1 //===-- RISCVISelLowering.cpp - RISCV DAG Lowering Implementation --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the interfaces that RISCV uses to lower LLVM code into a 10 // selection DAG. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "RISCVISelLowering.h" 15 #include "MCTargetDesc/RISCVMatInt.h" 16 #include "RISCV.h" 17 #include "RISCVMachineFunctionInfo.h" 18 #include "RISCVRegisterInfo.h" 19 #include "RISCVSubtarget.h" 20 #include "RISCVTargetMachine.h" 21 #include "llvm/ADT/SmallSet.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/CodeGen/CallingConvLower.h" 24 #include "llvm/CodeGen/MachineFrameInfo.h" 25 #include "llvm/CodeGen/MachineFunction.h" 26 #include "llvm/CodeGen/MachineInstrBuilder.h" 27 #include "llvm/CodeGen/MachineRegisterInfo.h" 28 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 29 #include "llvm/CodeGen/ValueTypes.h" 30 #include "llvm/IR/DiagnosticInfo.h" 31 #include "llvm/IR/DiagnosticPrinter.h" 32 #include "llvm/IR/IntrinsicsRISCV.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/ErrorHandling.h" 35 #include "llvm/Support/KnownBits.h" 36 #include "llvm/Support/MathExtras.h" 37 #include "llvm/Support/raw_ostream.h" 38 39 using namespace llvm; 40 41 #define DEBUG_TYPE "riscv-lower" 42 43 STATISTIC(NumTailCalls, "Number of tail calls"); 44 45 RISCVTargetLowering::RISCVTargetLowering(const TargetMachine &TM, 46 const RISCVSubtarget &STI) 47 : TargetLowering(TM), Subtarget(STI) { 48 49 if (Subtarget.isRV32E()) 50 report_fatal_error("Codegen not yet implemented for RV32E"); 51 52 RISCVABI::ABI ABI = Subtarget.getTargetABI(); 53 assert(ABI != RISCVABI::ABI_Unknown && "Improperly initialised target ABI"); 54 55 if ((ABI == RISCVABI::ABI_ILP32F || ABI == RISCVABI::ABI_LP64F) && 56 !Subtarget.hasStdExtF()) { 57 errs() << "Hard-float 'f' ABI can't be used for a target that " 58 "doesn't support the F instruction set extension (ignoring " 59 "target-abi)\n"; 60 ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32; 61 } else if ((ABI == RISCVABI::ABI_ILP32D || ABI == RISCVABI::ABI_LP64D) && 62 !Subtarget.hasStdExtD()) { 63 errs() << "Hard-float 'd' ABI can't be used for a target that " 64 "doesn't support the D instruction set extension (ignoring " 65 "target-abi)\n"; 66 ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32; 67 } 68 69 switch (ABI) { 70 default: 71 report_fatal_error("Don't know how to lower this ABI"); 72 case RISCVABI::ABI_ILP32: 73 case RISCVABI::ABI_ILP32F: 74 case RISCVABI::ABI_ILP32D: 75 case RISCVABI::ABI_LP64: 76 case RISCVABI::ABI_LP64F: 77 case RISCVABI::ABI_LP64D: 78 break; 79 } 80 81 MVT XLenVT = Subtarget.getXLenVT(); 82 83 // Set up the register classes. 84 addRegisterClass(XLenVT, &RISCV::GPRRegClass); 85 86 if (Subtarget.hasStdExtZfh()) 87 addRegisterClass(MVT::f16, &RISCV::FPR16RegClass); 88 if (Subtarget.hasStdExtF()) 89 addRegisterClass(MVT::f32, &RISCV::FPR32RegClass); 90 if (Subtarget.hasStdExtD()) 91 addRegisterClass(MVT::f64, &RISCV::FPR64RegClass); 92 93 static const MVT::SimpleValueType BoolVecVTs[] = { 94 MVT::nxv1i1, MVT::nxv2i1, MVT::nxv4i1, MVT::nxv8i1, 95 MVT::nxv16i1, MVT::nxv32i1, MVT::nxv64i1}; 96 static const MVT::SimpleValueType IntVecVTs[] = { 97 MVT::nxv1i8, MVT::nxv2i8, MVT::nxv4i8, MVT::nxv8i8, MVT::nxv16i8, 98 MVT::nxv32i8, MVT::nxv64i8, MVT::nxv1i16, MVT::nxv2i16, MVT::nxv4i16, 99 MVT::nxv8i16, MVT::nxv16i16, MVT::nxv32i16, MVT::nxv1i32, MVT::nxv2i32, 100 MVT::nxv4i32, MVT::nxv8i32, MVT::nxv16i32, MVT::nxv1i64, MVT::nxv2i64, 101 MVT::nxv4i64, MVT::nxv8i64}; 102 static const MVT::SimpleValueType F16VecVTs[] = { 103 MVT::nxv1f16, MVT::nxv2f16, MVT::nxv4f16, 104 MVT::nxv8f16, MVT::nxv16f16, MVT::nxv32f16}; 105 static const MVT::SimpleValueType F32VecVTs[] = { 106 MVT::nxv1f32, MVT::nxv2f32, MVT::nxv4f32, MVT::nxv8f32, MVT::nxv16f32}; 107 static const MVT::SimpleValueType F64VecVTs[] = { 108 MVT::nxv1f64, MVT::nxv2f64, MVT::nxv4f64, MVT::nxv8f64}; 109 110 if (Subtarget.hasStdExtV()) { 111 auto addRegClassForRVV = [this](MVT VT) { 112 unsigned Size = VT.getSizeInBits().getKnownMinValue(); 113 assert(Size <= 512 && isPowerOf2_32(Size)); 114 const TargetRegisterClass *RC; 115 if (Size <= 64) 116 RC = &RISCV::VRRegClass; 117 else if (Size == 128) 118 RC = &RISCV::VRM2RegClass; 119 else if (Size == 256) 120 RC = &RISCV::VRM4RegClass; 121 else 122 RC = &RISCV::VRM8RegClass; 123 124 addRegisterClass(VT, RC); 125 }; 126 127 for (MVT VT : BoolVecVTs) 128 addRegClassForRVV(VT); 129 for (MVT VT : IntVecVTs) 130 addRegClassForRVV(VT); 131 132 if (Subtarget.hasStdExtZfh()) 133 for (MVT VT : F16VecVTs) 134 addRegClassForRVV(VT); 135 136 if (Subtarget.hasStdExtF()) 137 for (MVT VT : F32VecVTs) 138 addRegClassForRVV(VT); 139 140 if (Subtarget.hasStdExtD()) 141 for (MVT VT : F64VecVTs) 142 addRegClassForRVV(VT); 143 144 if (Subtarget.useRVVForFixedLengthVectors()) { 145 auto addRegClassForFixedVectors = [this](MVT VT) { 146 MVT ContainerVT = getContainerForFixedLengthVector(VT); 147 unsigned RCID = getRegClassIDForVecVT(ContainerVT); 148 const RISCVRegisterInfo &TRI = *Subtarget.getRegisterInfo(); 149 addRegisterClass(VT, TRI.getRegClass(RCID)); 150 }; 151 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) 152 if (useRVVForFixedLengthVectorVT(VT)) 153 addRegClassForFixedVectors(VT); 154 155 for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) 156 if (useRVVForFixedLengthVectorVT(VT)) 157 addRegClassForFixedVectors(VT); 158 } 159 } 160 161 // Compute derived properties from the register classes. 162 computeRegisterProperties(STI.getRegisterInfo()); 163 164 setStackPointerRegisterToSaveRestore(RISCV::X2); 165 166 for (auto N : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}) 167 setLoadExtAction(N, XLenVT, MVT::i1, Promote); 168 169 // TODO: add all necessary setOperationAction calls. 170 setOperationAction(ISD::DYNAMIC_STACKALLOC, XLenVT, Expand); 171 172 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 173 setOperationAction(ISD::BR_CC, XLenVT, Expand); 174 setOperationAction(ISD::BRCOND, MVT::Other, Custom); 175 setOperationAction(ISD::SELECT_CC, XLenVT, Expand); 176 177 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); 178 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); 179 180 setOperationAction(ISD::VASTART, MVT::Other, Custom); 181 setOperationAction(ISD::VAARG, MVT::Other, Expand); 182 setOperationAction(ISD::VACOPY, MVT::Other, Expand); 183 setOperationAction(ISD::VAEND, MVT::Other, Expand); 184 185 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 186 if (!Subtarget.hasStdExtZbb()) { 187 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand); 188 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand); 189 } 190 191 if (Subtarget.is64Bit()) { 192 setOperationAction(ISD::ADD, MVT::i32, Custom); 193 setOperationAction(ISD::SUB, MVT::i32, Custom); 194 setOperationAction(ISD::SHL, MVT::i32, Custom); 195 setOperationAction(ISD::SRA, MVT::i32, Custom); 196 setOperationAction(ISD::SRL, MVT::i32, Custom); 197 198 setOperationAction(ISD::UADDO, MVT::i32, Custom); 199 setOperationAction(ISD::USUBO, MVT::i32, Custom); 200 setOperationAction(ISD::UADDSAT, MVT::i32, Custom); 201 setOperationAction(ISD::USUBSAT, MVT::i32, Custom); 202 } 203 204 if (!Subtarget.hasStdExtM()) { 205 setOperationAction(ISD::MUL, XLenVT, Expand); 206 setOperationAction(ISD::MULHS, XLenVT, Expand); 207 setOperationAction(ISD::MULHU, XLenVT, Expand); 208 setOperationAction(ISD::SDIV, XLenVT, Expand); 209 setOperationAction(ISD::UDIV, XLenVT, Expand); 210 setOperationAction(ISD::SREM, XLenVT, Expand); 211 setOperationAction(ISD::UREM, XLenVT, Expand); 212 } else { 213 if (Subtarget.is64Bit()) { 214 setOperationAction(ISD::MUL, MVT::i32, Custom); 215 setOperationAction(ISD::MUL, MVT::i128, Custom); 216 217 setOperationAction(ISD::SDIV, MVT::i8, Custom); 218 setOperationAction(ISD::UDIV, MVT::i8, Custom); 219 setOperationAction(ISD::UREM, MVT::i8, Custom); 220 setOperationAction(ISD::SDIV, MVT::i16, Custom); 221 setOperationAction(ISD::UDIV, MVT::i16, Custom); 222 setOperationAction(ISD::UREM, MVT::i16, Custom); 223 setOperationAction(ISD::SDIV, MVT::i32, Custom); 224 setOperationAction(ISD::UDIV, MVT::i32, Custom); 225 setOperationAction(ISD::UREM, MVT::i32, Custom); 226 } else { 227 setOperationAction(ISD::MUL, MVT::i64, Custom); 228 } 229 } 230 231 setOperationAction(ISD::SDIVREM, XLenVT, Expand); 232 setOperationAction(ISD::UDIVREM, XLenVT, Expand); 233 setOperationAction(ISD::SMUL_LOHI, XLenVT, Expand); 234 setOperationAction(ISD::UMUL_LOHI, XLenVT, Expand); 235 236 setOperationAction(ISD::SHL_PARTS, XLenVT, Custom); 237 setOperationAction(ISD::SRL_PARTS, XLenVT, Custom); 238 setOperationAction(ISD::SRA_PARTS, XLenVT, Custom); 239 240 if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp()) { 241 if (Subtarget.is64Bit()) { 242 setOperationAction(ISD::ROTL, MVT::i32, Custom); 243 setOperationAction(ISD::ROTR, MVT::i32, Custom); 244 } 245 } else { 246 setOperationAction(ISD::ROTL, XLenVT, Expand); 247 setOperationAction(ISD::ROTR, XLenVT, Expand); 248 } 249 250 if (Subtarget.hasStdExtZbp()) { 251 // Custom lower bswap/bitreverse so we can convert them to GREVI to enable 252 // more combining. 253 setOperationAction(ISD::BITREVERSE, XLenVT, Custom); 254 setOperationAction(ISD::BSWAP, XLenVT, Custom); 255 256 if (Subtarget.is64Bit()) { 257 setOperationAction(ISD::BITREVERSE, MVT::i32, Custom); 258 setOperationAction(ISD::BSWAP, MVT::i32, Custom); 259 } 260 } else { 261 // With Zbb we have an XLen rev8 instruction, but not GREVI. So we'll 262 // pattern match it directly in isel. 263 setOperationAction(ISD::BSWAP, XLenVT, 264 Subtarget.hasStdExtZbb() ? Legal : Expand); 265 } 266 267 if (Subtarget.hasStdExtZbb()) { 268 setOperationAction(ISD::SMIN, XLenVT, Legal); 269 setOperationAction(ISD::SMAX, XLenVT, Legal); 270 setOperationAction(ISD::UMIN, XLenVT, Legal); 271 setOperationAction(ISD::UMAX, XLenVT, Legal); 272 273 if (Subtarget.is64Bit()) { 274 setOperationAction(ISD::CTTZ, MVT::i32, Custom); 275 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Custom); 276 setOperationAction(ISD::CTLZ, MVT::i32, Custom); 277 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom); 278 } 279 } else { 280 setOperationAction(ISD::CTTZ, XLenVT, Expand); 281 setOperationAction(ISD::CTLZ, XLenVT, Expand); 282 setOperationAction(ISD::CTPOP, XLenVT, Expand); 283 } 284 285 if (Subtarget.hasStdExtZbt()) { 286 setOperationAction(ISD::FSHL, XLenVT, Custom); 287 setOperationAction(ISD::FSHR, XLenVT, Custom); 288 setOperationAction(ISD::SELECT, XLenVT, Legal); 289 290 if (Subtarget.is64Bit()) { 291 setOperationAction(ISD::FSHL, MVT::i32, Custom); 292 setOperationAction(ISD::FSHR, MVT::i32, Custom); 293 } 294 } else { 295 setOperationAction(ISD::SELECT, XLenVT, Custom); 296 } 297 298 ISD::CondCode FPCCToExpand[] = { 299 ISD::SETOGT, ISD::SETOGE, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT, 300 ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUNE, ISD::SETGT, 301 ISD::SETGE, ISD::SETNE, ISD::SETO, ISD::SETUO}; 302 303 ISD::NodeType FPOpToExpand[] = { 304 ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, ISD::FREM, ISD::FP16_TO_FP, 305 ISD::FP_TO_FP16}; 306 307 if (Subtarget.hasStdExtZfh()) 308 setOperationAction(ISD::BITCAST, MVT::i16, Custom); 309 310 if (Subtarget.hasStdExtZfh()) { 311 setOperationAction(ISD::FMINNUM, MVT::f16, Legal); 312 setOperationAction(ISD::FMAXNUM, MVT::f16, Legal); 313 for (auto CC : FPCCToExpand) 314 setCondCodeAction(CC, MVT::f16, Expand); 315 setOperationAction(ISD::SELECT_CC, MVT::f16, Expand); 316 setOperationAction(ISD::SELECT, MVT::f16, Custom); 317 setOperationAction(ISD::BR_CC, MVT::f16, Expand); 318 for (auto Op : FPOpToExpand) 319 setOperationAction(Op, MVT::f16, Expand); 320 } 321 322 if (Subtarget.hasStdExtF()) { 323 setOperationAction(ISD::FMINNUM, MVT::f32, Legal); 324 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); 325 for (auto CC : FPCCToExpand) 326 setCondCodeAction(CC, MVT::f32, Expand); 327 setOperationAction(ISD::SELECT_CC, MVT::f32, Expand); 328 setOperationAction(ISD::SELECT, MVT::f32, Custom); 329 setOperationAction(ISD::BR_CC, MVT::f32, Expand); 330 for (auto Op : FPOpToExpand) 331 setOperationAction(Op, MVT::f32, Expand); 332 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); 333 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 334 } 335 336 if (Subtarget.hasStdExtF() && Subtarget.is64Bit()) 337 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 338 339 if (Subtarget.hasStdExtD()) { 340 setOperationAction(ISD::FMINNUM, MVT::f64, Legal); 341 setOperationAction(ISD::FMAXNUM, MVT::f64, Legal); 342 for (auto CC : FPCCToExpand) 343 setCondCodeAction(CC, MVT::f64, Expand); 344 setOperationAction(ISD::SELECT_CC, MVT::f64, Expand); 345 setOperationAction(ISD::SELECT, MVT::f64, Custom); 346 setOperationAction(ISD::BR_CC, MVT::f64, Expand); 347 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 348 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 349 for (auto Op : FPOpToExpand) 350 setOperationAction(Op, MVT::f64, Expand); 351 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); 352 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 353 } 354 355 if (Subtarget.is64Bit()) { 356 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 357 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 358 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom); 359 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom); 360 } 361 362 if (Subtarget.hasStdExtF()) { 363 setOperationAction(ISD::FLT_ROUNDS_, XLenVT, Custom); 364 setOperationAction(ISD::SET_ROUNDING, MVT::Other, Custom); 365 } 366 367 setOperationAction(ISD::GlobalAddress, XLenVT, Custom); 368 setOperationAction(ISD::BlockAddress, XLenVT, Custom); 369 setOperationAction(ISD::ConstantPool, XLenVT, Custom); 370 setOperationAction(ISD::JumpTable, XLenVT, Custom); 371 372 setOperationAction(ISD::GlobalTLSAddress, XLenVT, Custom); 373 374 // TODO: On M-mode only targets, the cycle[h] CSR may not be present. 375 // Unfortunately this can't be determined just from the ISA naming string. 376 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, 377 Subtarget.is64Bit() ? Legal : Custom); 378 379 setOperationAction(ISD::TRAP, MVT::Other, Legal); 380 setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal); 381 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 382 if (Subtarget.is64Bit()) 383 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i32, Custom); 384 385 if (Subtarget.hasStdExtA()) { 386 setMaxAtomicSizeInBitsSupported(Subtarget.getXLen()); 387 setMinCmpXchgSizeInBits(32); 388 } else { 389 setMaxAtomicSizeInBitsSupported(0); 390 } 391 392 setBooleanContents(ZeroOrOneBooleanContent); 393 394 if (Subtarget.hasStdExtV()) { 395 setBooleanVectorContents(ZeroOrOneBooleanContent); 396 397 setOperationAction(ISD::VSCALE, XLenVT, Custom); 398 399 // RVV intrinsics may have illegal operands. 400 // We also need to custom legalize vmv.x.s. 401 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i8, Custom); 402 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i16, Custom); 403 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i8, Custom); 404 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i16, Custom); 405 if (Subtarget.is64Bit()) { 406 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i32, Custom); 407 } else { 408 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i64, Custom); 409 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i64, Custom); 410 } 411 412 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom); 413 414 static unsigned IntegerVPOps[] = { 415 ISD::VP_ADD, ISD::VP_SUB, ISD::VP_MUL, ISD::VP_SDIV, ISD::VP_UDIV, 416 ISD::VP_SREM, ISD::VP_UREM, ISD::VP_AND, ISD::VP_OR, ISD::VP_XOR, 417 ISD::VP_ASHR, ISD::VP_LSHR, ISD::VP_SHL}; 418 419 if (!Subtarget.is64Bit()) { 420 // We must custom-lower certain vXi64 operations on RV32 due to the vector 421 // element type being illegal. 422 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::i64, Custom); 423 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::i64, Custom); 424 425 setOperationAction(ISD::VECREDUCE_ADD, MVT::i64, Custom); 426 setOperationAction(ISD::VECREDUCE_AND, MVT::i64, Custom); 427 setOperationAction(ISD::VECREDUCE_OR, MVT::i64, Custom); 428 setOperationAction(ISD::VECREDUCE_XOR, MVT::i64, Custom); 429 setOperationAction(ISD::VECREDUCE_SMAX, MVT::i64, Custom); 430 setOperationAction(ISD::VECREDUCE_SMIN, MVT::i64, Custom); 431 setOperationAction(ISD::VECREDUCE_UMAX, MVT::i64, Custom); 432 setOperationAction(ISD::VECREDUCE_UMIN, MVT::i64, Custom); 433 } 434 435 for (MVT VT : BoolVecVTs) { 436 setOperationAction(ISD::SPLAT_VECTOR, VT, Custom); 437 438 // Mask VTs are custom-expanded into a series of standard nodes 439 setOperationAction(ISD::TRUNCATE, VT, Custom); 440 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 441 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 442 443 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 444 445 setOperationAction(ISD::VECREDUCE_AND, VT, Custom); 446 setOperationAction(ISD::VECREDUCE_OR, VT, Custom); 447 setOperationAction(ISD::VECREDUCE_XOR, VT, Custom); 448 449 // Expand all extending loads to types larger than this, and truncating 450 // stores from types larger than this. 451 for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) { 452 setTruncStoreAction(OtherVT, VT, Expand); 453 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 454 setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand); 455 setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand); 456 } 457 } 458 459 for (MVT VT : IntVecVTs) { 460 setOperationAction(ISD::SPLAT_VECTOR, VT, Legal); 461 setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom); 462 463 setOperationAction(ISD::SMIN, VT, Legal); 464 setOperationAction(ISD::SMAX, VT, Legal); 465 setOperationAction(ISD::UMIN, VT, Legal); 466 setOperationAction(ISD::UMAX, VT, Legal); 467 468 setOperationAction(ISD::ROTL, VT, Expand); 469 setOperationAction(ISD::ROTR, VT, Expand); 470 471 // Custom-lower extensions and truncations from/to mask types. 472 setOperationAction(ISD::ANY_EXTEND, VT, Custom); 473 setOperationAction(ISD::SIGN_EXTEND, VT, Custom); 474 setOperationAction(ISD::ZERO_EXTEND, VT, Custom); 475 476 // RVV has native int->float & float->int conversions where the 477 // element type sizes are within one power-of-two of each other. Any 478 // wider distances between type sizes have to be lowered as sequences 479 // which progressively narrow the gap in stages. 480 setOperationAction(ISD::SINT_TO_FP, VT, Custom); 481 setOperationAction(ISD::UINT_TO_FP, VT, Custom); 482 setOperationAction(ISD::FP_TO_SINT, VT, Custom); 483 setOperationAction(ISD::FP_TO_UINT, VT, Custom); 484 485 // Integer VTs are lowered as a series of "RISCVISD::TRUNCATE_VECTOR_VL" 486 // nodes which truncate by one power of two at a time. 487 setOperationAction(ISD::TRUNCATE, VT, Custom); 488 489 // Custom-lower insert/extract operations to simplify patterns. 490 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 491 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 492 493 // Custom-lower reduction operations to set up the corresponding custom 494 // nodes' operands. 495 setOperationAction(ISD::VECREDUCE_ADD, VT, Custom); 496 setOperationAction(ISD::VECREDUCE_AND, VT, Custom); 497 setOperationAction(ISD::VECREDUCE_OR, VT, Custom); 498 setOperationAction(ISD::VECREDUCE_XOR, VT, Custom); 499 setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom); 500 setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom); 501 setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom); 502 setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom); 503 504 for (unsigned VPOpc : IntegerVPOps) { 505 setOperationAction(VPOpc, VT, Custom); 506 // RV64 must custom-legalize the i32 EVL parameter. 507 if (Subtarget.is64Bit()) 508 setOperationAction(VPOpc, MVT::i32, Custom); 509 } 510 511 setOperationAction(ISD::MLOAD, VT, Custom); 512 setOperationAction(ISD::MSTORE, VT, Custom); 513 setOperationAction(ISD::MGATHER, VT, Custom); 514 setOperationAction(ISD::MSCATTER, VT, Custom); 515 516 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 517 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 518 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 519 520 setOperationAction(ISD::STEP_VECTOR, VT, Custom); 521 setOperationAction(ISD::VECTOR_REVERSE, VT, Custom); 522 523 for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) { 524 setTruncStoreAction(VT, OtherVT, Expand); 525 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 526 setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand); 527 setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand); 528 } 529 } 530 531 // Expand various CCs to best match the RVV ISA, which natively supports UNE 532 // but no other unordered comparisons, and supports all ordered comparisons 533 // except ONE. Additionally, we expand GT,OGT,GE,OGE for optimization 534 // purposes; they are expanded to their swapped-operand CCs (LT,OLT,LE,OLE), 535 // and we pattern-match those back to the "original", swapping operands once 536 // more. This way we catch both operations and both "vf" and "fv" forms with 537 // fewer patterns. 538 ISD::CondCode VFPCCToExpand[] = { 539 ISD::SETO, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT, 540 ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUO, 541 ISD::SETGT, ISD::SETOGT, ISD::SETGE, ISD::SETOGE, 542 }; 543 544 // Sets common operation actions on RVV floating-point vector types. 545 const auto SetCommonVFPActions = [&](MVT VT) { 546 setOperationAction(ISD::SPLAT_VECTOR, VT, Legal); 547 // RVV has native FP_ROUND & FP_EXTEND conversions where the element type 548 // sizes are within one power-of-two of each other. Therefore conversions 549 // between vXf16 and vXf64 must be lowered as sequences which convert via 550 // vXf32. 551 setOperationAction(ISD::FP_ROUND, VT, Custom); 552 setOperationAction(ISD::FP_EXTEND, VT, Custom); 553 // Custom-lower insert/extract operations to simplify patterns. 554 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 555 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 556 // Expand various condition codes (explained above). 557 for (auto CC : VFPCCToExpand) 558 setCondCodeAction(CC, VT, Expand); 559 560 setOperationAction(ISD::FMINNUM, VT, Legal); 561 setOperationAction(ISD::FMAXNUM, VT, Legal); 562 563 setOperationAction(ISD::VECREDUCE_FADD, VT, Custom); 564 setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom); 565 setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom); 566 setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom); 567 setOperationAction(ISD::FCOPYSIGN, VT, Legal); 568 569 setOperationAction(ISD::MLOAD, VT, Custom); 570 setOperationAction(ISD::MSTORE, VT, Custom); 571 setOperationAction(ISD::MGATHER, VT, Custom); 572 setOperationAction(ISD::MSCATTER, VT, Custom); 573 574 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 575 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 576 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 577 578 setOperationAction(ISD::VECTOR_REVERSE, VT, Custom); 579 }; 580 581 // Sets common extload/truncstore actions on RVV floating-point vector 582 // types. 583 const auto SetCommonVFPExtLoadTruncStoreActions = 584 [&](MVT VT, ArrayRef<MVT::SimpleValueType> SmallerVTs) { 585 for (auto SmallVT : SmallerVTs) { 586 setTruncStoreAction(VT, SmallVT, Expand); 587 setLoadExtAction(ISD::EXTLOAD, VT, SmallVT, Expand); 588 } 589 }; 590 591 if (Subtarget.hasStdExtZfh()) 592 for (MVT VT : F16VecVTs) 593 SetCommonVFPActions(VT); 594 595 for (MVT VT : F32VecVTs) { 596 if (Subtarget.hasStdExtF()) 597 SetCommonVFPActions(VT); 598 SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs); 599 } 600 601 for (MVT VT : F64VecVTs) { 602 if (Subtarget.hasStdExtD()) 603 SetCommonVFPActions(VT); 604 SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs); 605 SetCommonVFPExtLoadTruncStoreActions(VT, F32VecVTs); 606 } 607 608 if (Subtarget.useRVVForFixedLengthVectors()) { 609 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) { 610 if (!useRVVForFixedLengthVectorVT(VT)) 611 continue; 612 613 // By default everything must be expanded. 614 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) 615 setOperationAction(Op, VT, Expand); 616 for (MVT OtherVT : MVT::integer_fixedlen_vector_valuetypes()) { 617 setTruncStoreAction(VT, OtherVT, Expand); 618 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 619 setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand); 620 setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand); 621 } 622 623 // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed. 624 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 625 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 626 627 setOperationAction(ISD::BUILD_VECTOR, VT, Custom); 628 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 629 630 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 631 632 setOperationAction(ISD::LOAD, VT, Custom); 633 setOperationAction(ISD::STORE, VT, Custom); 634 635 setOperationAction(ISD::SETCC, VT, Custom); 636 637 setOperationAction(ISD::TRUNCATE, VT, Custom); 638 639 setOperationAction(ISD::BITCAST, VT, Custom); 640 641 setOperationAction(ISD::VECREDUCE_AND, VT, Custom); 642 setOperationAction(ISD::VECREDUCE_OR, VT, Custom); 643 setOperationAction(ISD::VECREDUCE_XOR, VT, Custom); 644 645 // Operations below are different for between masks and other vectors. 646 if (VT.getVectorElementType() == MVT::i1) { 647 setOperationAction(ISD::AND, VT, Custom); 648 setOperationAction(ISD::OR, VT, Custom); 649 setOperationAction(ISD::XOR, VT, Custom); 650 continue; 651 } 652 653 // Use SPLAT_VECTOR to prevent type legalization from destroying the 654 // splats when type legalizing i64 scalar on RV32. 655 // FIXME: Use SPLAT_VECTOR for all types? DAGCombine probably needs 656 // improvements first. 657 if (!Subtarget.is64Bit() && VT.getVectorElementType() == MVT::i64) { 658 setOperationAction(ISD::SPLAT_VECTOR, VT, Custom); 659 setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom); 660 } 661 662 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); 663 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 664 665 setOperationAction(ISD::MLOAD, VT, Custom); 666 setOperationAction(ISD::MSTORE, VT, Custom); 667 setOperationAction(ISD::MGATHER, VT, Custom); 668 setOperationAction(ISD::MSCATTER, VT, Custom); 669 setOperationAction(ISD::ADD, VT, Custom); 670 setOperationAction(ISD::MUL, VT, Custom); 671 setOperationAction(ISD::SUB, VT, Custom); 672 setOperationAction(ISD::AND, VT, Custom); 673 setOperationAction(ISD::OR, VT, Custom); 674 setOperationAction(ISD::XOR, VT, Custom); 675 setOperationAction(ISD::SDIV, VT, Custom); 676 setOperationAction(ISD::SREM, VT, Custom); 677 setOperationAction(ISD::UDIV, VT, Custom); 678 setOperationAction(ISD::UREM, VT, Custom); 679 setOperationAction(ISD::SHL, VT, Custom); 680 setOperationAction(ISD::SRA, VT, Custom); 681 setOperationAction(ISD::SRL, VT, Custom); 682 683 setOperationAction(ISD::SMIN, VT, Custom); 684 setOperationAction(ISD::SMAX, VT, Custom); 685 setOperationAction(ISD::UMIN, VT, Custom); 686 setOperationAction(ISD::UMAX, VT, Custom); 687 setOperationAction(ISD::ABS, VT, Custom); 688 689 setOperationAction(ISD::MULHS, VT, Custom); 690 setOperationAction(ISD::MULHU, VT, Custom); 691 692 setOperationAction(ISD::SINT_TO_FP, VT, Custom); 693 setOperationAction(ISD::UINT_TO_FP, VT, Custom); 694 setOperationAction(ISD::FP_TO_SINT, VT, Custom); 695 setOperationAction(ISD::FP_TO_UINT, VT, Custom); 696 697 setOperationAction(ISD::VSELECT, VT, Custom); 698 699 setOperationAction(ISD::ANY_EXTEND, VT, Custom); 700 setOperationAction(ISD::SIGN_EXTEND, VT, Custom); 701 setOperationAction(ISD::ZERO_EXTEND, VT, Custom); 702 703 // Custom-lower reduction operations to set up the corresponding custom 704 // nodes' operands. 705 setOperationAction(ISD::VECREDUCE_ADD, VT, Custom); 706 setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom); 707 setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom); 708 setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom); 709 setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom); 710 711 for (unsigned VPOpc : IntegerVPOps) { 712 setOperationAction(VPOpc, VT, Custom); 713 // RV64 must custom-legalize the i32 EVL parameter. 714 if (Subtarget.is64Bit()) 715 setOperationAction(VPOpc, MVT::i32, Custom); 716 } 717 } 718 719 for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) { 720 if (!useRVVForFixedLengthVectorVT(VT)) 721 continue; 722 723 // By default everything must be expanded. 724 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) 725 setOperationAction(Op, VT, Expand); 726 for (MVT OtherVT : MVT::fp_fixedlen_vector_valuetypes()) { 727 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 728 setTruncStoreAction(VT, OtherVT, Expand); 729 } 730 731 // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed. 732 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 733 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 734 735 setOperationAction(ISD::BUILD_VECTOR, VT, Custom); 736 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); 737 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 738 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 739 740 setOperationAction(ISD::LOAD, VT, Custom); 741 setOperationAction(ISD::STORE, VT, Custom); 742 setOperationAction(ISD::MLOAD, VT, Custom); 743 setOperationAction(ISD::MSTORE, VT, Custom); 744 setOperationAction(ISD::MGATHER, VT, Custom); 745 setOperationAction(ISD::MSCATTER, VT, Custom); 746 setOperationAction(ISD::FADD, VT, Custom); 747 setOperationAction(ISD::FSUB, VT, Custom); 748 setOperationAction(ISD::FMUL, VT, Custom); 749 setOperationAction(ISD::FDIV, VT, Custom); 750 setOperationAction(ISD::FNEG, VT, Custom); 751 setOperationAction(ISD::FABS, VT, Custom); 752 setOperationAction(ISD::FCOPYSIGN, VT, Custom); 753 setOperationAction(ISD::FSQRT, VT, Custom); 754 setOperationAction(ISD::FMA, VT, Custom); 755 setOperationAction(ISD::FMINNUM, VT, Custom); 756 setOperationAction(ISD::FMAXNUM, VT, Custom); 757 758 setOperationAction(ISD::FP_ROUND, VT, Custom); 759 setOperationAction(ISD::FP_EXTEND, VT, Custom); 760 761 for (auto CC : VFPCCToExpand) 762 setCondCodeAction(CC, VT, Expand); 763 764 setOperationAction(ISD::VSELECT, VT, Custom); 765 766 setOperationAction(ISD::BITCAST, VT, Custom); 767 768 setOperationAction(ISD::VECREDUCE_FADD, VT, Custom); 769 setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom); 770 setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom); 771 setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom); 772 } 773 774 // Custom-legalize bitcasts from fixed-length vectors to scalar types. 775 setOperationAction(ISD::BITCAST, MVT::i8, Custom); 776 setOperationAction(ISD::BITCAST, MVT::i16, Custom); 777 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 778 setOperationAction(ISD::BITCAST, MVT::i64, Custom); 779 setOperationAction(ISD::BITCAST, MVT::f16, Custom); 780 setOperationAction(ISD::BITCAST, MVT::f32, Custom); 781 setOperationAction(ISD::BITCAST, MVT::f64, Custom); 782 } 783 } 784 785 // Function alignments. 786 const Align FunctionAlignment(Subtarget.hasStdExtC() ? 2 : 4); 787 setMinFunctionAlignment(FunctionAlignment); 788 setPrefFunctionAlignment(FunctionAlignment); 789 790 setMinimumJumpTableEntries(5); 791 792 // Jumps are expensive, compared to logic 793 setJumpIsExpensive(); 794 795 // We can use any register for comparisons 796 setHasMultipleConditionRegisters(); 797 798 setTargetDAGCombine(ISD::AND); 799 setTargetDAGCombine(ISD::OR); 800 setTargetDAGCombine(ISD::XOR); 801 if (Subtarget.hasStdExtV()) { 802 setTargetDAGCombine(ISD::FCOPYSIGN); 803 setTargetDAGCombine(ISD::MGATHER); 804 setTargetDAGCombine(ISD::MSCATTER); 805 } 806 } 807 808 EVT RISCVTargetLowering::getSetCCResultType(const DataLayout &DL, 809 LLVMContext &Context, 810 EVT VT) const { 811 if (!VT.isVector()) 812 return getPointerTy(DL); 813 if (Subtarget.hasStdExtV() && 814 (VT.isScalableVector() || Subtarget.useRVVForFixedLengthVectors())) 815 return EVT::getVectorVT(Context, MVT::i1, VT.getVectorElementCount()); 816 return VT.changeVectorElementTypeToInteger(); 817 } 818 819 bool RISCVTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 820 const CallInst &I, 821 MachineFunction &MF, 822 unsigned Intrinsic) const { 823 switch (Intrinsic) { 824 default: 825 return false; 826 case Intrinsic::riscv_masked_atomicrmw_xchg_i32: 827 case Intrinsic::riscv_masked_atomicrmw_add_i32: 828 case Intrinsic::riscv_masked_atomicrmw_sub_i32: 829 case Intrinsic::riscv_masked_atomicrmw_nand_i32: 830 case Intrinsic::riscv_masked_atomicrmw_max_i32: 831 case Intrinsic::riscv_masked_atomicrmw_min_i32: 832 case Intrinsic::riscv_masked_atomicrmw_umax_i32: 833 case Intrinsic::riscv_masked_atomicrmw_umin_i32: 834 case Intrinsic::riscv_masked_cmpxchg_i32: 835 PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType()); 836 Info.opc = ISD::INTRINSIC_W_CHAIN; 837 Info.memVT = MVT::getVT(PtrTy->getElementType()); 838 Info.ptrVal = I.getArgOperand(0); 839 Info.offset = 0; 840 Info.align = Align(4); 841 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore | 842 MachineMemOperand::MOVolatile; 843 return true; 844 } 845 } 846 847 bool RISCVTargetLowering::isLegalAddressingMode(const DataLayout &DL, 848 const AddrMode &AM, Type *Ty, 849 unsigned AS, 850 Instruction *I) const { 851 // No global is ever allowed as a base. 852 if (AM.BaseGV) 853 return false; 854 855 // Require a 12-bit signed offset. 856 if (!isInt<12>(AM.BaseOffs)) 857 return false; 858 859 switch (AM.Scale) { 860 case 0: // "r+i" or just "i", depending on HasBaseReg. 861 break; 862 case 1: 863 if (!AM.HasBaseReg) // allow "r+i". 864 break; 865 return false; // disallow "r+r" or "r+r+i". 866 default: 867 return false; 868 } 869 870 return true; 871 } 872 873 bool RISCVTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 874 return isInt<12>(Imm); 875 } 876 877 bool RISCVTargetLowering::isLegalAddImmediate(int64_t Imm) const { 878 return isInt<12>(Imm); 879 } 880 881 // On RV32, 64-bit integers are split into their high and low parts and held 882 // in two different registers, so the trunc is free since the low register can 883 // just be used. 884 bool RISCVTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const { 885 if (Subtarget.is64Bit() || !SrcTy->isIntegerTy() || !DstTy->isIntegerTy()) 886 return false; 887 unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); 888 unsigned DestBits = DstTy->getPrimitiveSizeInBits(); 889 return (SrcBits == 64 && DestBits == 32); 890 } 891 892 bool RISCVTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const { 893 if (Subtarget.is64Bit() || SrcVT.isVector() || DstVT.isVector() || 894 !SrcVT.isInteger() || !DstVT.isInteger()) 895 return false; 896 unsigned SrcBits = SrcVT.getSizeInBits(); 897 unsigned DestBits = DstVT.getSizeInBits(); 898 return (SrcBits == 64 && DestBits == 32); 899 } 900 901 bool RISCVTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 902 // Zexts are free if they can be combined with a load. 903 if (auto *LD = dyn_cast<LoadSDNode>(Val)) { 904 EVT MemVT = LD->getMemoryVT(); 905 if ((MemVT == MVT::i8 || MemVT == MVT::i16 || 906 (Subtarget.is64Bit() && MemVT == MVT::i32)) && 907 (LD->getExtensionType() == ISD::NON_EXTLOAD || 908 LD->getExtensionType() == ISD::ZEXTLOAD)) 909 return true; 910 } 911 912 return TargetLowering::isZExtFree(Val, VT2); 913 } 914 915 bool RISCVTargetLowering::isSExtCheaperThanZExt(EVT SrcVT, EVT DstVT) const { 916 return Subtarget.is64Bit() && SrcVT == MVT::i32 && DstVT == MVT::i64; 917 } 918 919 bool RISCVTargetLowering::isCheapToSpeculateCttz() const { 920 return Subtarget.hasStdExtZbb(); 921 } 922 923 bool RISCVTargetLowering::isCheapToSpeculateCtlz() const { 924 return Subtarget.hasStdExtZbb(); 925 } 926 927 bool RISCVTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 928 bool ForCodeSize) const { 929 if (VT == MVT::f16 && !Subtarget.hasStdExtZfh()) 930 return false; 931 if (VT == MVT::f32 && !Subtarget.hasStdExtF()) 932 return false; 933 if (VT == MVT::f64 && !Subtarget.hasStdExtD()) 934 return false; 935 if (Imm.isNegZero()) 936 return false; 937 return Imm.isZero(); 938 } 939 940 bool RISCVTargetLowering::hasBitPreservingFPLogic(EVT VT) const { 941 return (VT == MVT::f16 && Subtarget.hasStdExtZfh()) || 942 (VT == MVT::f32 && Subtarget.hasStdExtF()) || 943 (VT == MVT::f64 && Subtarget.hasStdExtD()); 944 } 945 946 MVT RISCVTargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context, 947 CallingConv::ID CC, 948 EVT VT) const { 949 // Use f32 to pass f16 if it is legal and Zfh is not enabled. We might still 950 // end up using a GPR but that will be decided based on ABI. 951 if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh()) 952 return MVT::f32; 953 954 return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT); 955 } 956 957 unsigned RISCVTargetLowering::getNumRegistersForCallingConv(LLVMContext &Context, 958 CallingConv::ID CC, 959 EVT VT) const { 960 // Use f32 to pass f16 if it is legal and Zfh is not enabled. We might still 961 // end up using a GPR but that will be decided based on ABI. 962 if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh()) 963 return 1; 964 965 return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT); 966 } 967 968 // Changes the condition code and swaps operands if necessary, so the SetCC 969 // operation matches one of the comparisons supported directly by branches 970 // in the RISC-V ISA. May adjust compares to favor compare with 0 over compare 971 // with 1/-1. 972 static void translateSetCCForBranch(const SDLoc &DL, SDValue &LHS, SDValue &RHS, 973 ISD::CondCode &CC, SelectionDAG &DAG) { 974 // Convert X > -1 to X >= 0. 975 if (CC == ISD::SETGT && isAllOnesConstant(RHS)) { 976 RHS = DAG.getConstant(0, DL, RHS.getValueType()); 977 CC = ISD::SETGE; 978 return; 979 } 980 // Convert X < 1 to 0 >= X. 981 if (CC == ISD::SETLT && isOneConstant(RHS)) { 982 RHS = LHS; 983 LHS = DAG.getConstant(0, DL, RHS.getValueType()); 984 CC = ISD::SETGE; 985 return; 986 } 987 988 switch (CC) { 989 default: 990 break; 991 case ISD::SETGT: 992 case ISD::SETLE: 993 case ISD::SETUGT: 994 case ISD::SETULE: 995 CC = ISD::getSetCCSwappedOperands(CC); 996 std::swap(LHS, RHS); 997 break; 998 } 999 } 1000 1001 // Return the RISC-V branch opcode that matches the given DAG integer 1002 // condition code. The CondCode must be one of those supported by the RISC-V 1003 // ISA (see translateSetCCForBranch). 1004 static unsigned getBranchOpcodeForIntCondCode(ISD::CondCode CC) { 1005 switch (CC) { 1006 default: 1007 llvm_unreachable("Unsupported CondCode"); 1008 case ISD::SETEQ: 1009 return RISCV::BEQ; 1010 case ISD::SETNE: 1011 return RISCV::BNE; 1012 case ISD::SETLT: 1013 return RISCV::BLT; 1014 case ISD::SETGE: 1015 return RISCV::BGE; 1016 case ISD::SETULT: 1017 return RISCV::BLTU; 1018 case ISD::SETUGE: 1019 return RISCV::BGEU; 1020 } 1021 } 1022 1023 RISCVVLMUL RISCVTargetLowering::getLMUL(MVT VT) { 1024 assert(VT.isScalableVector() && "Expecting a scalable vector type"); 1025 unsigned KnownSize = VT.getSizeInBits().getKnownMinValue(); 1026 if (VT.getVectorElementType() == MVT::i1) 1027 KnownSize *= 8; 1028 1029 switch (KnownSize) { 1030 default: 1031 llvm_unreachable("Invalid LMUL."); 1032 case 8: 1033 return RISCVVLMUL::LMUL_F8; 1034 case 16: 1035 return RISCVVLMUL::LMUL_F4; 1036 case 32: 1037 return RISCVVLMUL::LMUL_F2; 1038 case 64: 1039 return RISCVVLMUL::LMUL_1; 1040 case 128: 1041 return RISCVVLMUL::LMUL_2; 1042 case 256: 1043 return RISCVVLMUL::LMUL_4; 1044 case 512: 1045 return RISCVVLMUL::LMUL_8; 1046 } 1047 } 1048 1049 unsigned RISCVTargetLowering::getRegClassIDForLMUL(RISCVVLMUL LMul) { 1050 switch (LMul) { 1051 default: 1052 llvm_unreachable("Invalid LMUL."); 1053 case RISCVVLMUL::LMUL_F8: 1054 case RISCVVLMUL::LMUL_F4: 1055 case RISCVVLMUL::LMUL_F2: 1056 case RISCVVLMUL::LMUL_1: 1057 return RISCV::VRRegClassID; 1058 case RISCVVLMUL::LMUL_2: 1059 return RISCV::VRM2RegClassID; 1060 case RISCVVLMUL::LMUL_4: 1061 return RISCV::VRM4RegClassID; 1062 case RISCVVLMUL::LMUL_8: 1063 return RISCV::VRM8RegClassID; 1064 } 1065 } 1066 1067 unsigned RISCVTargetLowering::getSubregIndexByMVT(MVT VT, unsigned Index) { 1068 RISCVVLMUL LMUL = getLMUL(VT); 1069 if (LMUL == RISCVVLMUL::LMUL_F8 || LMUL == RISCVVLMUL::LMUL_F4 || 1070 LMUL == RISCVVLMUL::LMUL_F2 || LMUL == RISCVVLMUL::LMUL_1) { 1071 static_assert(RISCV::sub_vrm1_7 == RISCV::sub_vrm1_0 + 7, 1072 "Unexpected subreg numbering"); 1073 return RISCV::sub_vrm1_0 + Index; 1074 } 1075 if (LMUL == RISCVVLMUL::LMUL_2) { 1076 static_assert(RISCV::sub_vrm2_3 == RISCV::sub_vrm2_0 + 3, 1077 "Unexpected subreg numbering"); 1078 return RISCV::sub_vrm2_0 + Index; 1079 } 1080 if (LMUL == RISCVVLMUL::LMUL_4) { 1081 static_assert(RISCV::sub_vrm4_1 == RISCV::sub_vrm4_0 + 1, 1082 "Unexpected subreg numbering"); 1083 return RISCV::sub_vrm4_0 + Index; 1084 } 1085 llvm_unreachable("Invalid vector type."); 1086 } 1087 1088 unsigned RISCVTargetLowering::getRegClassIDForVecVT(MVT VT) { 1089 if (VT.getVectorElementType() == MVT::i1) 1090 return RISCV::VRRegClassID; 1091 return getRegClassIDForLMUL(getLMUL(VT)); 1092 } 1093 1094 // Attempt to decompose a subvector insert/extract between VecVT and 1095 // SubVecVT via subregister indices. Returns the subregister index that 1096 // can perform the subvector insert/extract with the given element index, as 1097 // well as the index corresponding to any leftover subvectors that must be 1098 // further inserted/extracted within the register class for SubVecVT. 1099 std::pair<unsigned, unsigned> 1100 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( 1101 MVT VecVT, MVT SubVecVT, unsigned InsertExtractIdx, 1102 const RISCVRegisterInfo *TRI) { 1103 static_assert((RISCV::VRM8RegClassID > RISCV::VRM4RegClassID && 1104 RISCV::VRM4RegClassID > RISCV::VRM2RegClassID && 1105 RISCV::VRM2RegClassID > RISCV::VRRegClassID), 1106 "Register classes not ordered"); 1107 unsigned VecRegClassID = getRegClassIDForVecVT(VecVT); 1108 unsigned SubRegClassID = getRegClassIDForVecVT(SubVecVT); 1109 // Try to compose a subregister index that takes us from the incoming 1110 // LMUL>1 register class down to the outgoing one. At each step we half 1111 // the LMUL: 1112 // nxv16i32@12 -> nxv2i32: sub_vrm4_1_then_sub_vrm2_1_then_sub_vrm1_0 1113 // Note that this is not guaranteed to find a subregister index, such as 1114 // when we are extracting from one VR type to another. 1115 unsigned SubRegIdx = RISCV::NoSubRegister; 1116 for (const unsigned RCID : 1117 {RISCV::VRM4RegClassID, RISCV::VRM2RegClassID, RISCV::VRRegClassID}) 1118 if (VecRegClassID > RCID && SubRegClassID <= RCID) { 1119 VecVT = VecVT.getHalfNumVectorElementsVT(); 1120 bool IsHi = 1121 InsertExtractIdx >= VecVT.getVectorElementCount().getKnownMinValue(); 1122 SubRegIdx = TRI->composeSubRegIndices(SubRegIdx, 1123 getSubregIndexByMVT(VecVT, IsHi)); 1124 if (IsHi) 1125 InsertExtractIdx -= VecVT.getVectorElementCount().getKnownMinValue(); 1126 } 1127 return {SubRegIdx, InsertExtractIdx}; 1128 } 1129 1130 static bool useRVVForFixedLengthVectorVT(MVT VT, 1131 const RISCVSubtarget &Subtarget) { 1132 assert(VT.isFixedLengthVector() && "Expected a fixed length vector type!"); 1133 if (!Subtarget.useRVVForFixedLengthVectors()) 1134 return false; 1135 1136 // We only support a set of vector types with an equivalent number of 1137 // elements to avoid legalization issues. Therefore -- since we don't have 1138 // v512i8/v512i16/etc -- the longest fixed-length vector type we support has 1139 // 256 elements. 1140 if (VT.getVectorNumElements() > 256) 1141 return false; 1142 1143 unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits(); 1144 1145 // Don't use RVV for vectors we cannot scalarize if required. 1146 switch (VT.getVectorElementType().SimpleTy) { 1147 // i1 is supported but has different rules. 1148 default: 1149 return false; 1150 case MVT::i1: 1151 // Masks can only use a single register. 1152 if (VT.getVectorNumElements() > MinVLen) 1153 return false; 1154 MinVLen /= 8; 1155 break; 1156 case MVT::i8: 1157 case MVT::i16: 1158 case MVT::i32: 1159 case MVT::i64: 1160 break; 1161 case MVT::f16: 1162 if (!Subtarget.hasStdExtZfh()) 1163 return false; 1164 break; 1165 case MVT::f32: 1166 if (!Subtarget.hasStdExtF()) 1167 return false; 1168 break; 1169 case MVT::f64: 1170 if (!Subtarget.hasStdExtD()) 1171 return false; 1172 break; 1173 } 1174 1175 unsigned LMul = divideCeil(VT.getSizeInBits(), MinVLen); 1176 // Don't use RVV for types that don't fit. 1177 if (LMul > Subtarget.getMaxLMULForFixedLengthVectors()) 1178 return false; 1179 1180 // TODO: Perhaps an artificial restriction, but worth having whilst getting 1181 // the base fixed length RVV support in place. 1182 if (!VT.isPow2VectorType()) 1183 return false; 1184 1185 return true; 1186 } 1187 1188 bool RISCVTargetLowering::useRVVForFixedLengthVectorVT(MVT VT) const { 1189 return ::useRVVForFixedLengthVectorVT(VT, Subtarget); 1190 } 1191 1192 // Return the largest legal scalable vector type that matches VT's element type. 1193 static MVT getContainerForFixedLengthVector(const TargetLowering &TLI, MVT VT, 1194 const RISCVSubtarget &Subtarget) { 1195 // This may be called before legal types are setup. 1196 assert(((VT.isFixedLengthVector() && TLI.isTypeLegal(VT)) || 1197 useRVVForFixedLengthVectorVT(VT, Subtarget)) && 1198 "Expected legal fixed length vector!"); 1199 1200 unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits(); 1201 1202 MVT EltVT = VT.getVectorElementType(); 1203 switch (EltVT.SimpleTy) { 1204 default: 1205 llvm_unreachable("unexpected element type for RVV container"); 1206 case MVT::i1: { 1207 // Masks are calculated assuming 8-bit elements since that's when we need 1208 // the most elements. 1209 MinVLen /= 8; 1210 unsigned LMul = divideCeil(VT.getSizeInBits(), MinVLen); 1211 unsigned EltsPerBlock = RISCV::RVVBitsPerBlock / 8; 1212 return MVT::getScalableVectorVT(MVT::i1, LMul * EltsPerBlock); 1213 } 1214 case MVT::i8: 1215 case MVT::i16: 1216 case MVT::i32: 1217 case MVT::i64: 1218 case MVT::f16: 1219 case MVT::f32: 1220 case MVT::f64: { 1221 unsigned LMul = divideCeil(VT.getSizeInBits(), MinVLen); 1222 unsigned EltsPerBlock = RISCV::RVVBitsPerBlock / EltVT.getSizeInBits(); 1223 return MVT::getScalableVectorVT(EltVT, LMul * EltsPerBlock); 1224 } 1225 } 1226 } 1227 1228 static MVT getContainerForFixedLengthVector(SelectionDAG &DAG, MVT VT, 1229 const RISCVSubtarget &Subtarget) { 1230 return getContainerForFixedLengthVector(DAG.getTargetLoweringInfo(), VT, 1231 Subtarget); 1232 } 1233 1234 MVT RISCVTargetLowering::getContainerForFixedLengthVector(MVT VT) const { 1235 return ::getContainerForFixedLengthVector(*this, VT, getSubtarget()); 1236 } 1237 1238 // Grow V to consume an entire RVV register. 1239 static SDValue convertToScalableVector(EVT VT, SDValue V, SelectionDAG &DAG, 1240 const RISCVSubtarget &Subtarget) { 1241 assert(VT.isScalableVector() && 1242 "Expected to convert into a scalable vector!"); 1243 assert(V.getValueType().isFixedLengthVector() && 1244 "Expected a fixed length vector operand!"); 1245 SDLoc DL(V); 1246 SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 1247 return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, DAG.getUNDEF(VT), V, Zero); 1248 } 1249 1250 // Shrink V so it's just big enough to maintain a VT's worth of data. 1251 static SDValue convertFromScalableVector(EVT VT, SDValue V, SelectionDAG &DAG, 1252 const RISCVSubtarget &Subtarget) { 1253 assert(VT.isFixedLengthVector() && 1254 "Expected to convert into a fixed length vector!"); 1255 assert(V.getValueType().isScalableVector() && 1256 "Expected a scalable vector operand!"); 1257 SDLoc DL(V); 1258 SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 1259 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V, Zero); 1260 } 1261 1262 // Gets the two common "VL" operands: an all-ones mask and the vector length. 1263 // VecVT is a vector type, either fixed-length or scalable, and ContainerVT is 1264 // the vector type that it is contained in. 1265 static std::pair<SDValue, SDValue> 1266 getDefaultVLOps(MVT VecVT, MVT ContainerVT, SDLoc DL, SelectionDAG &DAG, 1267 const RISCVSubtarget &Subtarget) { 1268 assert(ContainerVT.isScalableVector() && "Expecting scalable container type"); 1269 MVT XLenVT = Subtarget.getXLenVT(); 1270 SDValue VL = VecVT.isFixedLengthVector() 1271 ? DAG.getConstant(VecVT.getVectorNumElements(), DL, XLenVT) 1272 : DAG.getRegister(RISCV::X0, XLenVT); 1273 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 1274 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 1275 return {Mask, VL}; 1276 } 1277 1278 // As above but assuming the given type is a scalable vector type. 1279 static std::pair<SDValue, SDValue> 1280 getDefaultScalableVLOps(MVT VecVT, SDLoc DL, SelectionDAG &DAG, 1281 const RISCVSubtarget &Subtarget) { 1282 assert(VecVT.isScalableVector() && "Expecting a scalable vector"); 1283 return getDefaultVLOps(VecVT, VecVT, DL, DAG, Subtarget); 1284 } 1285 1286 // The state of RVV BUILD_VECTOR and VECTOR_SHUFFLE lowering is that very few 1287 // of either is (currently) supported. This can get us into an infinite loop 1288 // where we try to lower a BUILD_VECTOR as a VECTOR_SHUFFLE as a BUILD_VECTOR 1289 // as a ..., etc. 1290 // Until either (or both) of these can reliably lower any node, reporting that 1291 // we don't want to expand BUILD_VECTORs via VECTOR_SHUFFLEs at least breaks 1292 // the infinite loop. Note that this lowers BUILD_VECTOR through the stack, 1293 // which is not desirable. 1294 bool RISCVTargetLowering::shouldExpandBuildVectorWithShuffles( 1295 EVT VT, unsigned DefinedValues) const { 1296 return false; 1297 } 1298 1299 bool RISCVTargetLowering::isShuffleMaskLegal(ArrayRef<int> M, EVT VT) const { 1300 // Only splats are currently supported. 1301 if (ShuffleVectorSDNode::isSplatMask(M.data(), VT)) 1302 return true; 1303 1304 return false; 1305 } 1306 1307 static SDValue lowerSPLAT_VECTOR(SDValue Op, SelectionDAG &DAG, 1308 const RISCVSubtarget &Subtarget) { 1309 MVT VT = Op.getSimpleValueType(); 1310 assert(VT.isFixedLengthVector() && "Unexpected vector!"); 1311 1312 MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 1313 1314 SDLoc DL(Op); 1315 SDValue Mask, VL; 1316 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 1317 1318 unsigned Opc = 1319 VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL : RISCVISD::VMV_V_X_VL; 1320 SDValue Splat = DAG.getNode(Opc, DL, ContainerVT, Op.getOperand(0), VL); 1321 return convertFromScalableVector(VT, Splat, DAG, Subtarget); 1322 } 1323 1324 static SDValue lowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG, 1325 const RISCVSubtarget &Subtarget) { 1326 MVT VT = Op.getSimpleValueType(); 1327 assert(VT.isFixedLengthVector() && "Unexpected vector!"); 1328 1329 MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 1330 1331 SDLoc DL(Op); 1332 SDValue Mask, VL; 1333 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 1334 1335 MVT XLenVT = Subtarget.getXLenVT(); 1336 unsigned NumElts = Op.getNumOperands(); 1337 1338 if (VT.getVectorElementType() == MVT::i1) { 1339 if (ISD::isBuildVectorAllZeros(Op.getNode())) { 1340 SDValue VMClr = DAG.getNode(RISCVISD::VMCLR_VL, DL, ContainerVT, VL); 1341 return convertFromScalableVector(VT, VMClr, DAG, Subtarget); 1342 } 1343 1344 if (ISD::isBuildVectorAllOnes(Op.getNode())) { 1345 SDValue VMSet = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL); 1346 return convertFromScalableVector(VT, VMSet, DAG, Subtarget); 1347 } 1348 1349 // Lower constant mask BUILD_VECTORs via an integer vector type, in 1350 // scalar integer chunks whose bit-width depends on the number of mask 1351 // bits and XLEN. 1352 // First, determine the most appropriate scalar integer type to use. This 1353 // is at most XLenVT, but may be shrunk to a smaller vector element type 1354 // according to the size of the final vector - use i8 chunks rather than 1355 // XLenVT if we're producing a v8i1. This results in more consistent 1356 // codegen across RV32 and RV64. 1357 // If we have to use more than one INSERT_VECTOR_ELT then this optimization 1358 // is likely to increase code size; avoid peforming it in such a case. 1359 unsigned NumViaIntegerBits = 1360 std::min(std::max(NumElts, 8u), Subtarget.getXLen()); 1361 if (ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) && 1362 (!DAG.shouldOptForSize() || NumElts <= NumViaIntegerBits)) { 1363 // Now we can create our integer vector type. Note that it may be larger 1364 // than the resulting mask type: v4i1 would use v1i8 as its integer type. 1365 MVT IntegerViaVecVT = 1366 MVT::getVectorVT(MVT::getIntegerVT(NumViaIntegerBits), 1367 divideCeil(NumElts, NumViaIntegerBits)); 1368 1369 uint64_t Bits = 0; 1370 unsigned BitPos = 0, IntegerEltIdx = 0; 1371 SDValue Vec = DAG.getUNDEF(IntegerViaVecVT); 1372 1373 for (unsigned I = 0; I < NumElts; I++, BitPos++) { 1374 // Once we accumulate enough bits to fill our scalar type, insert into 1375 // our vector and clear our accumulated data. 1376 if (I != 0 && I % NumViaIntegerBits == 0) { 1377 if (NumViaIntegerBits <= 32) 1378 Bits = SignExtend64(Bits, 32); 1379 SDValue Elt = DAG.getConstant(Bits, DL, XLenVT); 1380 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec, 1381 Elt, DAG.getConstant(IntegerEltIdx, DL, XLenVT)); 1382 Bits = 0; 1383 BitPos = 0; 1384 IntegerEltIdx++; 1385 } 1386 SDValue V = Op.getOperand(I); 1387 bool BitValue = !V.isUndef() && cast<ConstantSDNode>(V)->getZExtValue(); 1388 Bits |= ((uint64_t)BitValue << BitPos); 1389 } 1390 1391 // Insert the (remaining) scalar value into position in our integer 1392 // vector type. 1393 if (NumViaIntegerBits <= 32) 1394 Bits = SignExtend64(Bits, 32); 1395 SDValue Elt = DAG.getConstant(Bits, DL, XLenVT); 1396 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec, Elt, 1397 DAG.getConstant(IntegerEltIdx, DL, XLenVT)); 1398 1399 if (NumElts < NumViaIntegerBits) { 1400 // If we're producing a smaller vector than our minimum legal integer 1401 // type, bitcast to the equivalent (known-legal) mask type, and extract 1402 // our final mask. 1403 assert(IntegerViaVecVT == MVT::v1i8 && "Unexpected mask vector type"); 1404 Vec = DAG.getBitcast(MVT::v8i1, Vec); 1405 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Vec, 1406 DAG.getConstant(0, DL, XLenVT)); 1407 } else { 1408 // Else we must have produced an integer type with the same size as the 1409 // mask type; bitcast for the final result. 1410 assert(VT.getSizeInBits() == IntegerViaVecVT.getSizeInBits()); 1411 Vec = DAG.getBitcast(VT, Vec); 1412 } 1413 1414 return Vec; 1415 } 1416 1417 // A splat can be lowered as a SETCC. For each fixed-length mask vector 1418 // type, we have a legal equivalently-sized i8 type, so we can use that. 1419 if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) { 1420 assert(Splat.getValueType() == XLenVT && 1421 "Unexpected type for i1 splat value"); 1422 MVT InterVT = VT.changeVectorElementType(MVT::i8); 1423 Splat = DAG.getNode(ISD::AND, DL, XLenVT, Splat, 1424 DAG.getConstant(1, DL, XLenVT)); 1425 Splat = DAG.getSplatBuildVector(InterVT, DL, Splat); 1426 SDValue Zero = DAG.getConstant(0, DL, InterVT); 1427 return DAG.getSetCC(DL, VT, Splat, Zero, ISD::SETNE); 1428 } 1429 1430 return SDValue(); 1431 } 1432 1433 if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) { 1434 unsigned Opc = VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL 1435 : RISCVISD::VMV_V_X_VL; 1436 Splat = DAG.getNode(Opc, DL, ContainerVT, Splat, VL); 1437 return convertFromScalableVector(VT, Splat, DAG, Subtarget); 1438 } 1439 1440 // Try and match an index sequence, which we can lower directly to the vid 1441 // instruction. An all-undef vector is matched by getSplatValue, above. 1442 if (VT.isInteger()) { 1443 bool IsVID = true; 1444 for (unsigned I = 0; I < NumElts && IsVID; I++) 1445 IsVID &= Op.getOperand(I).isUndef() || 1446 (isa<ConstantSDNode>(Op.getOperand(I)) && 1447 Op.getConstantOperandVal(I) == I); 1448 1449 if (IsVID) { 1450 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, ContainerVT, Mask, VL); 1451 return convertFromScalableVector(VT, VID, DAG, Subtarget); 1452 } 1453 } 1454 1455 // Attempt to detect "hidden" splats, which only reveal themselves as splats 1456 // when re-interpreted as a vector with a larger element type. For example, 1457 // v4i16 = build_vector i16 0, i16 1, i16 0, i16 1 1458 // could be instead splat as 1459 // v2i32 = build_vector i32 0x00010000, i32 0x00010000 1460 // TODO: This optimization could also work on non-constant splats, but it 1461 // would require bit-manipulation instructions to construct the splat value. 1462 SmallVector<SDValue> Sequence; 1463 unsigned EltBitSize = VT.getScalarSizeInBits(); 1464 const auto *BV = cast<BuildVectorSDNode>(Op); 1465 if (VT.isInteger() && EltBitSize < 64 && 1466 ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) && 1467 BV->getRepeatedSequence(Sequence) && 1468 (Sequence.size() * EltBitSize) <= 64) { 1469 unsigned SeqLen = Sequence.size(); 1470 MVT ViaIntVT = MVT::getIntegerVT(EltBitSize * SeqLen); 1471 MVT ViaVecVT = MVT::getVectorVT(ViaIntVT, NumElts / SeqLen); 1472 assert((ViaIntVT == MVT::i16 || ViaIntVT == MVT::i32 || 1473 ViaIntVT == MVT::i64) && 1474 "Unexpected sequence type"); 1475 1476 unsigned EltIdx = 0; 1477 uint64_t EltMask = maskTrailingOnes<uint64_t>(EltBitSize); 1478 uint64_t SplatValue = 0; 1479 // Construct the amalgamated value which can be splatted as this larger 1480 // vector type. 1481 for (const auto &SeqV : Sequence) { 1482 if (!SeqV.isUndef()) 1483 SplatValue |= ((cast<ConstantSDNode>(SeqV)->getZExtValue() & EltMask) 1484 << (EltIdx * EltBitSize)); 1485 EltIdx++; 1486 } 1487 1488 // On RV64, sign-extend from 32 to 64 bits where possible in order to 1489 // achieve better constant materializion. 1490 if (Subtarget.is64Bit() && ViaIntVT == MVT::i32) 1491 SplatValue = SignExtend64(SplatValue, 32); 1492 1493 // Since we can't introduce illegal i64 types at this stage, we can only 1494 // perform an i64 splat on RV32 if it is its own sign-extended value. That 1495 // way we can use RVV instructions to splat. 1496 assert((ViaIntVT.bitsLE(XLenVT) || 1497 (!Subtarget.is64Bit() && ViaIntVT == MVT::i64)) && 1498 "Unexpected bitcast sequence"); 1499 if (ViaIntVT.bitsLE(XLenVT) || isInt<32>(SplatValue)) { 1500 SDValue ViaVL = 1501 DAG.getConstant(ViaVecVT.getVectorNumElements(), DL, XLenVT); 1502 MVT ViaContainerVT = 1503 getContainerForFixedLengthVector(DAG, ViaVecVT, Subtarget); 1504 SDValue Splat = 1505 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ViaContainerVT, 1506 DAG.getConstant(SplatValue, DL, XLenVT), ViaVL); 1507 Splat = convertFromScalableVector(ViaVecVT, Splat, DAG, Subtarget); 1508 return DAG.getBitcast(VT, Splat); 1509 } 1510 } 1511 1512 // Try and optimize BUILD_VECTORs with "dominant values" - these are values 1513 // which constitute a large proportion of the elements. In such cases we can 1514 // splat a vector with the dominant element and make up the shortfall with 1515 // INSERT_VECTOR_ELTs. 1516 // Note that this includes vectors of 2 elements by association. The 1517 // upper-most element is the "dominant" one, allowing us to use a splat to 1518 // "insert" the upper element, and an insert of the lower element at position 1519 // 0, which improves codegen. 1520 SDValue DominantValue; 1521 unsigned MostCommonCount = 0; 1522 DenseMap<SDValue, unsigned> ValueCounts; 1523 unsigned NumUndefElts = 1524 count_if(Op->op_values(), [](const SDValue &V) { return V.isUndef(); }); 1525 1526 for (SDValue V : Op->op_values()) { 1527 if (V.isUndef()) 1528 continue; 1529 1530 ValueCounts.insert(std::make_pair(V, 0)); 1531 unsigned &Count = ValueCounts[V]; 1532 1533 // Is this value dominant? In case of a tie, prefer the highest element as 1534 // it's cheaper to insert near the beginning of a vector than it is at the 1535 // end. 1536 if (++Count >= MostCommonCount) { 1537 DominantValue = V; 1538 MostCommonCount = Count; 1539 } 1540 } 1541 1542 assert(DominantValue && "Not expecting an all-undef BUILD_VECTOR"); 1543 unsigned NumDefElts = NumElts - NumUndefElts; 1544 unsigned DominantValueCountThreshold = NumDefElts <= 2 ? 0 : NumDefElts - 2; 1545 1546 // Don't perform this optimization when optimizing for size, since 1547 // materializing elements and inserting them tends to cause code bloat. 1548 if (!DAG.shouldOptForSize() && 1549 ((MostCommonCount > DominantValueCountThreshold) || 1550 (ValueCounts.size() <= Log2_32(NumDefElts)))) { 1551 // Start by splatting the most common element. 1552 SDValue Vec = DAG.getSplatBuildVector(VT, DL, DominantValue); 1553 1554 DenseSet<SDValue> Processed{DominantValue}; 1555 MVT SelMaskTy = VT.changeVectorElementType(MVT::i1); 1556 for (const auto &OpIdx : enumerate(Op->ops())) { 1557 const SDValue &V = OpIdx.value(); 1558 if (V.isUndef() || !Processed.insert(V).second) 1559 continue; 1560 if (ValueCounts[V] == 1) { 1561 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Vec, V, 1562 DAG.getConstant(OpIdx.index(), DL, XLenVT)); 1563 } else { 1564 // Blend in all instances of this value using a VSELECT, using a 1565 // mask where each bit signals whether that element is the one 1566 // we're after. 1567 SmallVector<SDValue> Ops; 1568 transform(Op->op_values(), std::back_inserter(Ops), [&](SDValue V1) { 1569 return DAG.getConstant(V == V1, DL, XLenVT); 1570 }); 1571 Vec = DAG.getNode(ISD::VSELECT, DL, VT, 1572 DAG.getBuildVector(SelMaskTy, DL, Ops), 1573 DAG.getSplatBuildVector(VT, DL, V), Vec); 1574 } 1575 } 1576 1577 return Vec; 1578 } 1579 1580 return SDValue(); 1581 } 1582 1583 // Use a stack slot to splat the two i32 values in Lo/Hi to the vector desired 1584 // vector nxvXi64 VT. 1585 static SDValue splatPartsI64ThroughStack(const SDLoc &DL, MVT VT, SDValue Lo, 1586 SDValue Hi, SDValue VL, 1587 SelectionDAG &DAG) { 1588 assert(VT.getVectorElementType() == MVT::i64 && VT.isScalableVector() && 1589 Lo.getValueType() == MVT::i32 && Hi.getValueType() == MVT::i32 && 1590 "Unexpected VTs!"); 1591 MachineFunction &MF = DAG.getMachineFunction(); 1592 RISCVMachineFunctionInfo *FuncInfo = MF.getInfo<RISCVMachineFunctionInfo>(); 1593 1594 // We use the same frame index we use for moving two i32s into 64-bit FPR. 1595 // This is an analogous operation. 1596 int FI = FuncInfo->getMoveF64FrameIndex(MF); 1597 MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI); 1598 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1599 SDValue StackSlot = 1600 DAG.getFrameIndex(FI, TLI.getPointerTy(DAG.getDataLayout())); 1601 1602 SDValue Chain = DAG.getEntryNode(); 1603 Lo = DAG.getStore(Chain, DL, Lo, StackSlot, MPI, Align(8)); 1604 1605 SDValue OffsetSlot = 1606 DAG.getMemBasePlusOffset(StackSlot, TypeSize::Fixed(4), DL); 1607 Hi = DAG.getStore(Chain, DL, Hi, OffsetSlot, MPI.getWithOffset(4), Align(8)); 1608 1609 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Lo, Hi); 1610 1611 SDVTList VTs = DAG.getVTList({VT, MVT::Other}); 1612 SDValue IntID = DAG.getTargetConstant(Intrinsic::riscv_vlse, DL, MVT::i64); 1613 SDValue Ops[] = {Chain, IntID, StackSlot, 1614 DAG.getRegister(RISCV::X0, MVT::i64), VL}; 1615 1616 return DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, MVT::i64, 1617 MPI, Align(8), MachineMemOperand::MOLoad); 1618 } 1619 1620 static SDValue splatPartsI64WithVL(const SDLoc &DL, MVT VT, SDValue Lo, 1621 SDValue Hi, SDValue VL, SelectionDAG &DAG) { 1622 if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) { 1623 int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue(); 1624 int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue(); 1625 // If Hi constant is all the same sign bit as Lo, lower this as a custom 1626 // node in order to try and match RVV vector/scalar instructions. 1627 if ((LoC >> 31) == HiC) 1628 return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Lo, VL); 1629 } 1630 1631 // Fall back to a stack store and stride x0 vector load. 1632 return splatPartsI64ThroughStack(DL, VT, Lo, Hi, VL, DAG); 1633 } 1634 1635 // Called by type legalization to handle splat of i64 on RV32. 1636 // FIXME: We can optimize this when the type has sign or zero bits in one 1637 // of the halves. 1638 static SDValue splatSplitI64WithVL(const SDLoc &DL, MVT VT, SDValue Scalar, 1639 SDValue VL, SelectionDAG &DAG) { 1640 assert(Scalar.getValueType() == MVT::i64 && "Unexpected VT!"); 1641 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 1642 DAG.getConstant(0, DL, MVT::i32)); 1643 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 1644 DAG.getConstant(1, DL, MVT::i32)); 1645 return splatPartsI64WithVL(DL, VT, Lo, Hi, VL, DAG); 1646 } 1647 1648 // This function lowers a splat of a scalar operand Splat with the vector 1649 // length VL. It ensures the final sequence is type legal, which is useful when 1650 // lowering a splat after type legalization. 1651 static SDValue lowerScalarSplat(SDValue Scalar, SDValue VL, MVT VT, SDLoc DL, 1652 SelectionDAG &DAG, 1653 const RISCVSubtarget &Subtarget) { 1654 if (VT.isFloatingPoint()) 1655 return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, VT, Scalar, VL); 1656 1657 MVT XLenVT = Subtarget.getXLenVT(); 1658 1659 // Simplest case is that the operand needs to be promoted to XLenVT. 1660 if (Scalar.getValueType().bitsLE(XLenVT)) { 1661 // If the operand is a constant, sign extend to increase our chances 1662 // of being able to use a .vi instruction. ANY_EXTEND would become a 1663 // a zero extend and the simm5 check in isel would fail. 1664 // FIXME: Should we ignore the upper bits in isel instead? 1665 unsigned ExtOpc = 1666 isa<ConstantSDNode>(Scalar) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND; 1667 Scalar = DAG.getNode(ExtOpc, DL, XLenVT, Scalar); 1668 return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Scalar, VL); 1669 } 1670 1671 assert(XLenVT == MVT::i32 && Scalar.getValueType() == MVT::i64 && 1672 "Unexpected scalar for splat lowering!"); 1673 1674 // Otherwise use the more complicated splatting algorithm. 1675 return splatSplitI64WithVL(DL, VT, Scalar, VL, DAG); 1676 } 1677 1678 static SDValue lowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG, 1679 const RISCVSubtarget &Subtarget) { 1680 SDValue V1 = Op.getOperand(0); 1681 SDValue V2 = Op.getOperand(1); 1682 SDLoc DL(Op); 1683 MVT XLenVT = Subtarget.getXLenVT(); 1684 MVT VT = Op.getSimpleValueType(); 1685 unsigned NumElts = VT.getVectorNumElements(); 1686 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode()); 1687 1688 MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 1689 1690 SDValue TrueMask, VL; 1691 std::tie(TrueMask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 1692 1693 if (SVN->isSplat()) { 1694 const int Lane = SVN->getSplatIndex(); 1695 if (Lane >= 0) { 1696 MVT SVT = VT.getVectorElementType(); 1697 1698 // Turn splatted vector load into a strided load with an X0 stride. 1699 SDValue V = V1; 1700 // Peek through CONCAT_VECTORS as VectorCombine can concat a vector 1701 // with undef. 1702 // FIXME: Peek through INSERT_SUBVECTOR, EXTRACT_SUBVECTOR, bitcasts? 1703 int Offset = Lane; 1704 if (V.getOpcode() == ISD::CONCAT_VECTORS) { 1705 int OpElements = 1706 V.getOperand(0).getSimpleValueType().getVectorNumElements(); 1707 V = V.getOperand(Offset / OpElements); 1708 Offset %= OpElements; 1709 } 1710 1711 // We need to ensure the load isn't atomic or volatile. 1712 if (ISD::isNormalLoad(V.getNode()) && cast<LoadSDNode>(V)->isSimple()) { 1713 auto *Ld = cast<LoadSDNode>(V); 1714 Offset *= SVT.getStoreSize(); 1715 SDValue NewAddr = DAG.getMemBasePlusOffset(Ld->getBasePtr(), 1716 TypeSize::Fixed(Offset), DL); 1717 1718 // If this is SEW=64 on RV32, use a strided load with a stride of x0. 1719 if (SVT.isInteger() && SVT.bitsGT(XLenVT)) { 1720 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 1721 SDValue IntID = 1722 DAG.getTargetConstant(Intrinsic::riscv_vlse, DL, XLenVT); 1723 SDValue Ops[] = {Ld->getChain(), IntID, NewAddr, 1724 DAG.getRegister(RISCV::X0, XLenVT), VL}; 1725 SDValue NewLoad = DAG.getMemIntrinsicNode( 1726 ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, SVT, 1727 DAG.getMachineFunction().getMachineMemOperand( 1728 Ld->getMemOperand(), Offset, SVT.getStoreSize())); 1729 DAG.makeEquivalentMemoryOrdering(Ld, NewLoad); 1730 return convertFromScalableVector(VT, NewLoad, DAG, Subtarget); 1731 } 1732 1733 // Otherwise use a scalar load and splat. This will give the best 1734 // opportunity to fold a splat into the operation. ISel can turn it into 1735 // the x0 strided load if we aren't able to fold away the select. 1736 if (SVT.isFloatingPoint()) 1737 V = DAG.getLoad(SVT, DL, Ld->getChain(), NewAddr, 1738 Ld->getPointerInfo().getWithOffset(Offset), 1739 Ld->getOriginalAlign(), 1740 Ld->getMemOperand()->getFlags()); 1741 else 1742 V = DAG.getExtLoad(ISD::SEXTLOAD, DL, XLenVT, Ld->getChain(), NewAddr, 1743 Ld->getPointerInfo().getWithOffset(Offset), SVT, 1744 Ld->getOriginalAlign(), 1745 Ld->getMemOperand()->getFlags()); 1746 DAG.makeEquivalentMemoryOrdering(Ld, V); 1747 1748 unsigned Opc = 1749 VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL : RISCVISD::VMV_V_X_VL; 1750 SDValue Splat = DAG.getNode(Opc, DL, ContainerVT, V, VL); 1751 return convertFromScalableVector(VT, Splat, DAG, Subtarget); 1752 } 1753 1754 V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget); 1755 assert(Lane < (int)NumElts && "Unexpected lane!"); 1756 SDValue Gather = 1757 DAG.getNode(RISCVISD::VRGATHER_VX_VL, DL, ContainerVT, V1, 1758 DAG.getConstant(Lane, DL, XLenVT), TrueMask, VL); 1759 return convertFromScalableVector(VT, Gather, DAG, Subtarget); 1760 } 1761 } 1762 1763 // Detect shuffles which can be re-expressed as vector selects; these are 1764 // shuffles in which each element in the destination is taken from an element 1765 // at the corresponding index in either source vectors. 1766 bool IsSelect = all_of(enumerate(SVN->getMask()), [&](const auto &MaskIdx) { 1767 int MaskIndex = MaskIdx.value(); 1768 return MaskIndex < 0 || MaskIdx.index() == (unsigned)MaskIndex % NumElts; 1769 }); 1770 1771 assert(!V1.isUndef() && "Unexpected shuffle canonicalization"); 1772 1773 SmallVector<SDValue> MaskVals; 1774 // As a backup, shuffles can be lowered via a vrgather instruction, possibly 1775 // merged with a second vrgather. 1776 SmallVector<SDValue> GatherIndicesLHS, GatherIndicesRHS; 1777 1778 // By default we preserve the original operand order, and use a mask to 1779 // select LHS as true and RHS as false. However, since RVV vector selects may 1780 // feature splats but only on the LHS, we may choose to invert our mask and 1781 // instead select between RHS and LHS. 1782 bool SwapOps = DAG.isSplatValue(V2) && !DAG.isSplatValue(V1); 1783 bool InvertMask = IsSelect == SwapOps; 1784 1785 // Now construct the mask that will be used by the vselect or blended 1786 // vrgather operation. For vrgathers, construct the appropriate indices into 1787 // each vector. 1788 for (int MaskIndex : SVN->getMask()) { 1789 bool SelectMaskVal = (MaskIndex < (int)NumElts) ^ InvertMask; 1790 MaskVals.push_back(DAG.getConstant(SelectMaskVal, DL, XLenVT)); 1791 if (!IsSelect) { 1792 bool IsLHS = MaskIndex < (int)NumElts; 1793 // For "undef" elements of -1, shuffle in element 0 instead. 1794 GatherIndicesLHS.push_back( 1795 DAG.getConstant(IsLHS ? std::max(MaskIndex, 0) : 0, DL, XLenVT)); 1796 // TODO: If we're masking out unused elements anyway, it might produce 1797 // better code if we use the most-common element index instead of 0. 1798 GatherIndicesRHS.push_back( 1799 DAG.getConstant(IsLHS ? 0 : MaskIndex - NumElts, DL, XLenVT)); 1800 } 1801 } 1802 1803 if (SwapOps) { 1804 std::swap(V1, V2); 1805 std::swap(GatherIndicesLHS, GatherIndicesRHS); 1806 } 1807 1808 assert(MaskVals.size() == NumElts && "Unexpected select-like shuffle"); 1809 MVT MaskVT = MVT::getVectorVT(MVT::i1, NumElts); 1810 SDValue SelectMask = DAG.getBuildVector(MaskVT, DL, MaskVals); 1811 1812 if (IsSelect) 1813 return DAG.getNode(ISD::VSELECT, DL, VT, SelectMask, V1, V2); 1814 1815 if (VT.getScalarSizeInBits() == 8 && VT.getVectorNumElements() > 256) { 1816 // On such a large vector we're unable to use i8 as the index type. 1817 // FIXME: We could promote the index to i16 and use vrgatherei16, but that 1818 // may involve vector splitting if we're already at LMUL=8, or our 1819 // user-supplied maximum fixed-length LMUL. 1820 return SDValue(); 1821 } 1822 1823 unsigned GatherOpc = RISCVISD::VRGATHER_VV_VL; 1824 MVT IndexVT = VT.changeTypeToInteger(); 1825 // Since we can't introduce illegal index types at this stage, use i16 and 1826 // vrgatherei16 if the corresponding index type for plain vrgather is greater 1827 // than XLenVT. 1828 if (IndexVT.getScalarType().bitsGT(XLenVT)) { 1829 GatherOpc = RISCVISD::VRGATHEREI16_VV_VL; 1830 IndexVT = IndexVT.changeVectorElementType(MVT::i16); 1831 } 1832 1833 MVT IndexContainerVT = 1834 ContainerVT.changeVectorElementType(IndexVT.getScalarType()); 1835 1836 SDValue Gather; 1837 // TODO: This doesn't trigger for i64 vectors on RV32, since there we 1838 // encounter a bitcasted BUILD_VECTOR with low/high i32 values. 1839 if (SDValue SplatValue = DAG.getSplatValue(V1)) { 1840 Gather = lowerScalarSplat(SplatValue, VL, ContainerVT, DL, DAG, Subtarget); 1841 } else { 1842 SDValue LHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesLHS); 1843 LHSIndices = 1844 convertToScalableVector(IndexContainerVT, LHSIndices, DAG, Subtarget); 1845 1846 V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget); 1847 Gather = 1848 DAG.getNode(GatherOpc, DL, ContainerVT, V1, LHSIndices, TrueMask, VL); 1849 } 1850 1851 // If a second vector operand is used by this shuffle, blend it in with an 1852 // additional vrgather. 1853 if (!V2.isUndef()) { 1854 MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1); 1855 SelectMask = 1856 convertToScalableVector(MaskContainerVT, SelectMask, DAG, Subtarget); 1857 1858 SDValue RHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesRHS); 1859 RHSIndices = 1860 convertToScalableVector(IndexContainerVT, RHSIndices, DAG, Subtarget); 1861 1862 V2 = convertToScalableVector(ContainerVT, V2, DAG, Subtarget); 1863 V2 = DAG.getNode(GatherOpc, DL, ContainerVT, V2, RHSIndices, TrueMask, VL); 1864 Gather = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, SelectMask, V2, 1865 Gather, VL); 1866 } 1867 1868 return convertFromScalableVector(VT, Gather, DAG, Subtarget); 1869 } 1870 1871 static SDValue getRVVFPExtendOrRound(SDValue Op, MVT VT, MVT ContainerVT, 1872 SDLoc DL, SelectionDAG &DAG, 1873 const RISCVSubtarget &Subtarget) { 1874 if (VT.isScalableVector()) 1875 return DAG.getFPExtendOrRound(Op, DL, VT); 1876 assert(VT.isFixedLengthVector() && 1877 "Unexpected value type for RVV FP extend/round lowering"); 1878 SDValue Mask, VL; 1879 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 1880 unsigned RVVOpc = ContainerVT.bitsGT(Op.getSimpleValueType()) 1881 ? RISCVISD::FP_EXTEND_VL 1882 : RISCVISD::FP_ROUND_VL; 1883 return DAG.getNode(RVVOpc, DL, ContainerVT, Op, Mask, VL); 1884 } 1885 1886 SDValue RISCVTargetLowering::LowerOperation(SDValue Op, 1887 SelectionDAG &DAG) const { 1888 switch (Op.getOpcode()) { 1889 default: 1890 report_fatal_error("unimplemented operand"); 1891 case ISD::GlobalAddress: 1892 return lowerGlobalAddress(Op, DAG); 1893 case ISD::BlockAddress: 1894 return lowerBlockAddress(Op, DAG); 1895 case ISD::ConstantPool: 1896 return lowerConstantPool(Op, DAG); 1897 case ISD::JumpTable: 1898 return lowerJumpTable(Op, DAG); 1899 case ISD::GlobalTLSAddress: 1900 return lowerGlobalTLSAddress(Op, DAG); 1901 case ISD::SELECT: 1902 return lowerSELECT(Op, DAG); 1903 case ISD::BRCOND: 1904 return lowerBRCOND(Op, DAG); 1905 case ISD::VASTART: 1906 return lowerVASTART(Op, DAG); 1907 case ISD::FRAMEADDR: 1908 return lowerFRAMEADDR(Op, DAG); 1909 case ISD::RETURNADDR: 1910 return lowerRETURNADDR(Op, DAG); 1911 case ISD::SHL_PARTS: 1912 return lowerShiftLeftParts(Op, DAG); 1913 case ISD::SRA_PARTS: 1914 return lowerShiftRightParts(Op, DAG, true); 1915 case ISD::SRL_PARTS: 1916 return lowerShiftRightParts(Op, DAG, false); 1917 case ISD::BITCAST: { 1918 SDLoc DL(Op); 1919 EVT VT = Op.getValueType(); 1920 SDValue Op0 = Op.getOperand(0); 1921 EVT Op0VT = Op0.getValueType(); 1922 MVT XLenVT = Subtarget.getXLenVT(); 1923 if (VT.isFixedLengthVector()) { 1924 // We can handle fixed length vector bitcasts with a simple replacement 1925 // in isel. 1926 if (Op0VT.isFixedLengthVector()) 1927 return Op; 1928 // When bitcasting from scalar to fixed-length vector, insert the scalar 1929 // into a one-element vector of the result type, and perform a vector 1930 // bitcast. 1931 if (!Op0VT.isVector()) { 1932 auto BVT = EVT::getVectorVT(*DAG.getContext(), Op0VT, 1); 1933 return DAG.getBitcast(VT, DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, BVT, 1934 DAG.getUNDEF(BVT), Op0, 1935 DAG.getConstant(0, DL, XLenVT))); 1936 } 1937 return SDValue(); 1938 } 1939 // Custom-legalize bitcasts from fixed-length vector types to scalar types 1940 // thus: bitcast the vector to a one-element vector type whose element type 1941 // is the same as the result type, and extract the first element. 1942 if (!VT.isVector() && Op0VT.isFixedLengthVector()) { 1943 LLVMContext &Context = *DAG.getContext(); 1944 SDValue BVec = DAG.getBitcast(EVT::getVectorVT(Context, VT, 1), Op0); 1945 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec, 1946 DAG.getConstant(0, DL, XLenVT)); 1947 } 1948 if (VT == MVT::f16 && Op0VT == MVT::i16 && Subtarget.hasStdExtZfh()) { 1949 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Op0); 1950 SDValue FPConv = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, NewOp0); 1951 return FPConv; 1952 } 1953 if (VT == MVT::f32 && Op0VT == MVT::i32 && Subtarget.is64Bit() && 1954 Subtarget.hasStdExtF()) { 1955 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); 1956 SDValue FPConv = 1957 DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, NewOp0); 1958 return FPConv; 1959 } 1960 return SDValue(); 1961 } 1962 case ISD::INTRINSIC_WO_CHAIN: 1963 return LowerINTRINSIC_WO_CHAIN(Op, DAG); 1964 case ISD::INTRINSIC_W_CHAIN: 1965 return LowerINTRINSIC_W_CHAIN(Op, DAG); 1966 case ISD::BSWAP: 1967 case ISD::BITREVERSE: { 1968 // Convert BSWAP/BITREVERSE to GREVI to enable GREVI combinining. 1969 assert(Subtarget.hasStdExtZbp() && "Unexpected custom legalisation"); 1970 MVT VT = Op.getSimpleValueType(); 1971 SDLoc DL(Op); 1972 // Start with the maximum immediate value which is the bitwidth - 1. 1973 unsigned Imm = VT.getSizeInBits() - 1; 1974 // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits. 1975 if (Op.getOpcode() == ISD::BSWAP) 1976 Imm &= ~0x7U; 1977 return DAG.getNode(RISCVISD::GREV, DL, VT, Op.getOperand(0), 1978 DAG.getConstant(Imm, DL, VT)); 1979 } 1980 case ISD::FSHL: 1981 case ISD::FSHR: { 1982 MVT VT = Op.getSimpleValueType(); 1983 assert(VT == Subtarget.getXLenVT() && "Unexpected custom legalization"); 1984 SDLoc DL(Op); 1985 if (Op.getOperand(2).getOpcode() == ISD::Constant) 1986 return Op; 1987 // FSL/FSR take a log2(XLen)+1 bit shift amount but XLenVT FSHL/FSHR only 1988 // use log(XLen) bits. Mask the shift amount accordingly. 1989 unsigned ShAmtWidth = Subtarget.getXLen() - 1; 1990 SDValue ShAmt = DAG.getNode(ISD::AND, DL, VT, Op.getOperand(2), 1991 DAG.getConstant(ShAmtWidth, DL, VT)); 1992 unsigned Opc = Op.getOpcode() == ISD::FSHL ? RISCVISD::FSL : RISCVISD::FSR; 1993 return DAG.getNode(Opc, DL, VT, Op.getOperand(0), Op.getOperand(1), ShAmt); 1994 } 1995 case ISD::TRUNCATE: { 1996 SDLoc DL(Op); 1997 MVT VT = Op.getSimpleValueType(); 1998 // Only custom-lower vector truncates 1999 if (!VT.isVector()) 2000 return Op; 2001 2002 // Truncates to mask types are handled differently 2003 if (VT.getVectorElementType() == MVT::i1) 2004 return lowerVectorMaskTrunc(Op, DAG); 2005 2006 // RVV only has truncates which operate from SEW*2->SEW, so lower arbitrary 2007 // truncates as a series of "RISCVISD::TRUNCATE_VECTOR_VL" nodes which 2008 // truncate by one power of two at a time. 2009 MVT DstEltVT = VT.getVectorElementType(); 2010 2011 SDValue Src = Op.getOperand(0); 2012 MVT SrcVT = Src.getSimpleValueType(); 2013 MVT SrcEltVT = SrcVT.getVectorElementType(); 2014 2015 assert(DstEltVT.bitsLT(SrcEltVT) && 2016 isPowerOf2_64(DstEltVT.getSizeInBits()) && 2017 isPowerOf2_64(SrcEltVT.getSizeInBits()) && 2018 "Unexpected vector truncate lowering"); 2019 2020 MVT ContainerVT = SrcVT; 2021 if (SrcVT.isFixedLengthVector()) { 2022 ContainerVT = getContainerForFixedLengthVector(SrcVT); 2023 Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget); 2024 } 2025 2026 SDValue Result = Src; 2027 SDValue Mask, VL; 2028 std::tie(Mask, VL) = 2029 getDefaultVLOps(SrcVT, ContainerVT, DL, DAG, Subtarget); 2030 LLVMContext &Context = *DAG.getContext(); 2031 const ElementCount Count = ContainerVT.getVectorElementCount(); 2032 do { 2033 SrcEltVT = MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2); 2034 EVT ResultVT = EVT::getVectorVT(Context, SrcEltVT, Count); 2035 Result = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, ResultVT, Result, 2036 Mask, VL); 2037 } while (SrcEltVT != DstEltVT); 2038 2039 if (SrcVT.isFixedLengthVector()) 2040 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 2041 2042 return Result; 2043 } 2044 case ISD::ANY_EXTEND: 2045 case ISD::ZERO_EXTEND: 2046 if (Op.getOperand(0).getValueType().isVector() && 2047 Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) 2048 return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ 1); 2049 return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VZEXT_VL); 2050 case ISD::SIGN_EXTEND: 2051 if (Op.getOperand(0).getValueType().isVector() && 2052 Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) 2053 return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ -1); 2054 return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VSEXT_VL); 2055 case ISD::SPLAT_VECTOR_PARTS: 2056 return lowerSPLAT_VECTOR_PARTS(Op, DAG); 2057 case ISD::INSERT_VECTOR_ELT: 2058 return lowerINSERT_VECTOR_ELT(Op, DAG); 2059 case ISD::EXTRACT_VECTOR_ELT: 2060 return lowerEXTRACT_VECTOR_ELT(Op, DAG); 2061 case ISD::VSCALE: { 2062 MVT VT = Op.getSimpleValueType(); 2063 SDLoc DL(Op); 2064 SDValue VLENB = DAG.getNode(RISCVISD::READ_VLENB, DL, VT); 2065 // We define our scalable vector types for lmul=1 to use a 64 bit known 2066 // minimum size. e.g. <vscale x 2 x i32>. VLENB is in bytes so we calculate 2067 // vscale as VLENB / 8. 2068 assert(RISCV::RVVBitsPerBlock == 64 && "Unexpected bits per block!"); 2069 SDValue VScale = DAG.getNode(ISD::SRL, DL, VT, VLENB, 2070 DAG.getConstant(3, DL, VT)); 2071 return DAG.getNode(ISD::MUL, DL, VT, VScale, Op.getOperand(0)); 2072 } 2073 case ISD::FP_EXTEND: { 2074 // RVV can only do fp_extend to types double the size as the source. We 2075 // custom-lower f16->f64 extensions to two hops of ISD::FP_EXTEND, going 2076 // via f32. 2077 SDLoc DL(Op); 2078 MVT VT = Op.getSimpleValueType(); 2079 SDValue Src = Op.getOperand(0); 2080 MVT SrcVT = Src.getSimpleValueType(); 2081 2082 // Prepare any fixed-length vector operands. 2083 MVT ContainerVT = VT; 2084 if (SrcVT.isFixedLengthVector()) { 2085 ContainerVT = getContainerForFixedLengthVector(VT); 2086 MVT SrcContainerVT = 2087 ContainerVT.changeVectorElementType(SrcVT.getVectorElementType()); 2088 Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); 2089 } 2090 2091 if (!VT.isVector() || VT.getVectorElementType() != MVT::f64 || 2092 SrcVT.getVectorElementType() != MVT::f16) { 2093 // For scalable vectors, we only need to close the gap between 2094 // vXf16->vXf64. 2095 if (!VT.isFixedLengthVector()) 2096 return Op; 2097 // For fixed-length vectors, lower the FP_EXTEND to a custom "VL" version. 2098 Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget); 2099 return convertFromScalableVector(VT, Src, DAG, Subtarget); 2100 } 2101 2102 MVT InterVT = VT.changeVectorElementType(MVT::f32); 2103 MVT InterContainerVT = ContainerVT.changeVectorElementType(MVT::f32); 2104 SDValue IntermediateExtend = getRVVFPExtendOrRound( 2105 Src, InterVT, InterContainerVT, DL, DAG, Subtarget); 2106 2107 SDValue Extend = getRVVFPExtendOrRound(IntermediateExtend, VT, ContainerVT, 2108 DL, DAG, Subtarget); 2109 if (VT.isFixedLengthVector()) 2110 return convertFromScalableVector(VT, Extend, DAG, Subtarget); 2111 return Extend; 2112 } 2113 case ISD::FP_ROUND: { 2114 // RVV can only do fp_round to types half the size as the source. We 2115 // custom-lower f64->f16 rounds via RVV's round-to-odd float 2116 // conversion instruction. 2117 SDLoc DL(Op); 2118 MVT VT = Op.getSimpleValueType(); 2119 SDValue Src = Op.getOperand(0); 2120 MVT SrcVT = Src.getSimpleValueType(); 2121 2122 // Prepare any fixed-length vector operands. 2123 MVT ContainerVT = VT; 2124 if (VT.isFixedLengthVector()) { 2125 MVT SrcContainerVT = getContainerForFixedLengthVector(SrcVT); 2126 ContainerVT = 2127 SrcContainerVT.changeVectorElementType(VT.getVectorElementType()); 2128 Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); 2129 } 2130 2131 if (!VT.isVector() || VT.getVectorElementType() != MVT::f16 || 2132 SrcVT.getVectorElementType() != MVT::f64) { 2133 // For scalable vectors, we only need to close the gap between 2134 // vXf64<->vXf16. 2135 if (!VT.isFixedLengthVector()) 2136 return Op; 2137 // For fixed-length vectors, lower the FP_ROUND to a custom "VL" version. 2138 Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget); 2139 return convertFromScalableVector(VT, Src, DAG, Subtarget); 2140 } 2141 2142 SDValue Mask, VL; 2143 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 2144 2145 MVT InterVT = ContainerVT.changeVectorElementType(MVT::f32); 2146 SDValue IntermediateRound = 2147 DAG.getNode(RISCVISD::VFNCVT_ROD_VL, DL, InterVT, Src, Mask, VL); 2148 SDValue Round = getRVVFPExtendOrRound(IntermediateRound, VT, ContainerVT, 2149 DL, DAG, Subtarget); 2150 2151 if (VT.isFixedLengthVector()) 2152 return convertFromScalableVector(VT, Round, DAG, Subtarget); 2153 return Round; 2154 } 2155 case ISD::FP_TO_SINT: 2156 case ISD::FP_TO_UINT: 2157 case ISD::SINT_TO_FP: 2158 case ISD::UINT_TO_FP: { 2159 // RVV can only do fp<->int conversions to types half/double the size as 2160 // the source. We custom-lower any conversions that do two hops into 2161 // sequences. 2162 MVT VT = Op.getSimpleValueType(); 2163 if (!VT.isVector()) 2164 return Op; 2165 SDLoc DL(Op); 2166 SDValue Src = Op.getOperand(0); 2167 MVT EltVT = VT.getVectorElementType(); 2168 MVT SrcVT = Src.getSimpleValueType(); 2169 MVT SrcEltVT = SrcVT.getVectorElementType(); 2170 unsigned EltSize = EltVT.getSizeInBits(); 2171 unsigned SrcEltSize = SrcEltVT.getSizeInBits(); 2172 assert(isPowerOf2_32(EltSize) && isPowerOf2_32(SrcEltSize) && 2173 "Unexpected vector element types"); 2174 2175 bool IsInt2FP = SrcEltVT.isInteger(); 2176 // Widening conversions 2177 if (EltSize > SrcEltSize && (EltSize / SrcEltSize >= 4)) { 2178 if (IsInt2FP) { 2179 // Do a regular integer sign/zero extension then convert to float. 2180 MVT IVecVT = MVT::getVectorVT(MVT::getIntegerVT(EltVT.getSizeInBits()), 2181 VT.getVectorElementCount()); 2182 unsigned ExtOpcode = Op.getOpcode() == ISD::UINT_TO_FP 2183 ? ISD::ZERO_EXTEND 2184 : ISD::SIGN_EXTEND; 2185 SDValue Ext = DAG.getNode(ExtOpcode, DL, IVecVT, Src); 2186 return DAG.getNode(Op.getOpcode(), DL, VT, Ext); 2187 } 2188 // FP2Int 2189 assert(SrcEltVT == MVT::f16 && "Unexpected FP_TO_[US]INT lowering"); 2190 // Do one doubling fp_extend then complete the operation by converting 2191 // to int. 2192 MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount()); 2193 SDValue FExt = DAG.getFPExtendOrRound(Src, DL, InterimFVT); 2194 return DAG.getNode(Op.getOpcode(), DL, VT, FExt); 2195 } 2196 2197 // Narrowing conversions 2198 if (SrcEltSize > EltSize && (SrcEltSize / EltSize >= 4)) { 2199 if (IsInt2FP) { 2200 // One narrowing int_to_fp, then an fp_round. 2201 assert(EltVT == MVT::f16 && "Unexpected [US]_TO_FP lowering"); 2202 MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount()); 2203 SDValue Int2FP = DAG.getNode(Op.getOpcode(), DL, InterimFVT, Src); 2204 return DAG.getFPExtendOrRound(Int2FP, DL, VT); 2205 } 2206 // FP2Int 2207 // One narrowing fp_to_int, then truncate the integer. If the float isn't 2208 // representable by the integer, the result is poison. 2209 MVT IVecVT = 2210 MVT::getVectorVT(MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2), 2211 VT.getVectorElementCount()); 2212 SDValue FP2Int = DAG.getNode(Op.getOpcode(), DL, IVecVT, Src); 2213 return DAG.getNode(ISD::TRUNCATE, DL, VT, FP2Int); 2214 } 2215 2216 // Scalable vectors can exit here. Patterns will handle equally-sized 2217 // conversions halving/doubling ones. 2218 if (!VT.isFixedLengthVector()) 2219 return Op; 2220 2221 // For fixed-length vectors we lower to a custom "VL" node. 2222 unsigned RVVOpc = 0; 2223 switch (Op.getOpcode()) { 2224 default: 2225 llvm_unreachable("Impossible opcode"); 2226 case ISD::FP_TO_SINT: 2227 RVVOpc = RISCVISD::FP_TO_SINT_VL; 2228 break; 2229 case ISD::FP_TO_UINT: 2230 RVVOpc = RISCVISD::FP_TO_UINT_VL; 2231 break; 2232 case ISD::SINT_TO_FP: 2233 RVVOpc = RISCVISD::SINT_TO_FP_VL; 2234 break; 2235 case ISD::UINT_TO_FP: 2236 RVVOpc = RISCVISD::UINT_TO_FP_VL; 2237 break; 2238 } 2239 2240 MVT ContainerVT, SrcContainerVT; 2241 // Derive the reference container type from the larger vector type. 2242 if (SrcEltSize > EltSize) { 2243 SrcContainerVT = getContainerForFixedLengthVector(SrcVT); 2244 ContainerVT = 2245 SrcContainerVT.changeVectorElementType(VT.getVectorElementType()); 2246 } else { 2247 ContainerVT = getContainerForFixedLengthVector(VT); 2248 SrcContainerVT = ContainerVT.changeVectorElementType(SrcEltVT); 2249 } 2250 2251 SDValue Mask, VL; 2252 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 2253 2254 Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); 2255 Src = DAG.getNode(RVVOpc, DL, ContainerVT, Src, Mask, VL); 2256 return convertFromScalableVector(VT, Src, DAG, Subtarget); 2257 } 2258 case ISD::VECREDUCE_ADD: 2259 case ISD::VECREDUCE_UMAX: 2260 case ISD::VECREDUCE_SMAX: 2261 case ISD::VECREDUCE_UMIN: 2262 case ISD::VECREDUCE_SMIN: 2263 return lowerVECREDUCE(Op, DAG); 2264 case ISD::VECREDUCE_AND: 2265 case ISD::VECREDUCE_OR: 2266 case ISD::VECREDUCE_XOR: 2267 if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) 2268 return lowerVectorMaskVECREDUCE(Op, DAG); 2269 return lowerVECREDUCE(Op, DAG); 2270 case ISD::VECREDUCE_FADD: 2271 case ISD::VECREDUCE_SEQ_FADD: 2272 case ISD::VECREDUCE_FMIN: 2273 case ISD::VECREDUCE_FMAX: 2274 return lowerFPVECREDUCE(Op, DAG); 2275 case ISD::INSERT_SUBVECTOR: 2276 return lowerINSERT_SUBVECTOR(Op, DAG); 2277 case ISD::EXTRACT_SUBVECTOR: 2278 return lowerEXTRACT_SUBVECTOR(Op, DAG); 2279 case ISD::STEP_VECTOR: 2280 return lowerSTEP_VECTOR(Op, DAG); 2281 case ISD::VECTOR_REVERSE: 2282 return lowerVECTOR_REVERSE(Op, DAG); 2283 case ISD::BUILD_VECTOR: 2284 return lowerBUILD_VECTOR(Op, DAG, Subtarget); 2285 case ISD::SPLAT_VECTOR: 2286 if (Op.getValueType().getVectorElementType() == MVT::i1) 2287 return lowerVectorMaskSplat(Op, DAG); 2288 return lowerSPLAT_VECTOR(Op, DAG, Subtarget); 2289 case ISD::VECTOR_SHUFFLE: 2290 return lowerVECTOR_SHUFFLE(Op, DAG, Subtarget); 2291 case ISD::CONCAT_VECTORS: { 2292 // Split CONCAT_VECTORS into a series of INSERT_SUBVECTOR nodes. This is 2293 // better than going through the stack, as the default expansion does. 2294 SDLoc DL(Op); 2295 MVT VT = Op.getSimpleValueType(); 2296 unsigned NumOpElts = 2297 Op.getOperand(0).getSimpleValueType().getVectorMinNumElements(); 2298 SDValue Vec = DAG.getUNDEF(VT); 2299 for (const auto &OpIdx : enumerate(Op->ops())) 2300 Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, Vec, OpIdx.value(), 2301 DAG.getIntPtrConstant(OpIdx.index() * NumOpElts, DL)); 2302 return Vec; 2303 } 2304 case ISD::LOAD: 2305 return lowerFixedLengthVectorLoadToRVV(Op, DAG); 2306 case ISD::STORE: 2307 return lowerFixedLengthVectorStoreToRVV(Op, DAG); 2308 case ISD::MLOAD: 2309 return lowerMLOAD(Op, DAG); 2310 case ISD::MSTORE: 2311 return lowerMSTORE(Op, DAG); 2312 case ISD::SETCC: 2313 return lowerFixedLengthVectorSetccToRVV(Op, DAG); 2314 case ISD::ADD: 2315 return lowerToScalableOp(Op, DAG, RISCVISD::ADD_VL); 2316 case ISD::SUB: 2317 return lowerToScalableOp(Op, DAG, RISCVISD::SUB_VL); 2318 case ISD::MUL: 2319 return lowerToScalableOp(Op, DAG, RISCVISD::MUL_VL); 2320 case ISD::MULHS: 2321 return lowerToScalableOp(Op, DAG, RISCVISD::MULHS_VL); 2322 case ISD::MULHU: 2323 return lowerToScalableOp(Op, DAG, RISCVISD::MULHU_VL); 2324 case ISD::AND: 2325 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMAND_VL, 2326 RISCVISD::AND_VL); 2327 case ISD::OR: 2328 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMOR_VL, 2329 RISCVISD::OR_VL); 2330 case ISD::XOR: 2331 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMXOR_VL, 2332 RISCVISD::XOR_VL); 2333 case ISD::SDIV: 2334 return lowerToScalableOp(Op, DAG, RISCVISD::SDIV_VL); 2335 case ISD::SREM: 2336 return lowerToScalableOp(Op, DAG, RISCVISD::SREM_VL); 2337 case ISD::UDIV: 2338 return lowerToScalableOp(Op, DAG, RISCVISD::UDIV_VL); 2339 case ISD::UREM: 2340 return lowerToScalableOp(Op, DAG, RISCVISD::UREM_VL); 2341 case ISD::SHL: 2342 return lowerToScalableOp(Op, DAG, RISCVISD::SHL_VL); 2343 case ISD::SRA: 2344 return lowerToScalableOp(Op, DAG, RISCVISD::SRA_VL); 2345 case ISD::SRL: 2346 return lowerToScalableOp(Op, DAG, RISCVISD::SRL_VL); 2347 case ISD::FADD: 2348 return lowerToScalableOp(Op, DAG, RISCVISD::FADD_VL); 2349 case ISD::FSUB: 2350 return lowerToScalableOp(Op, DAG, RISCVISD::FSUB_VL); 2351 case ISD::FMUL: 2352 return lowerToScalableOp(Op, DAG, RISCVISD::FMUL_VL); 2353 case ISD::FDIV: 2354 return lowerToScalableOp(Op, DAG, RISCVISD::FDIV_VL); 2355 case ISD::FNEG: 2356 return lowerToScalableOp(Op, DAG, RISCVISD::FNEG_VL); 2357 case ISD::FABS: 2358 return lowerToScalableOp(Op, DAG, RISCVISD::FABS_VL); 2359 case ISD::FSQRT: 2360 return lowerToScalableOp(Op, DAG, RISCVISD::FSQRT_VL); 2361 case ISD::FMA: 2362 return lowerToScalableOp(Op, DAG, RISCVISD::FMA_VL); 2363 case ISD::SMIN: 2364 return lowerToScalableOp(Op, DAG, RISCVISD::SMIN_VL); 2365 case ISD::SMAX: 2366 return lowerToScalableOp(Op, DAG, RISCVISD::SMAX_VL); 2367 case ISD::UMIN: 2368 return lowerToScalableOp(Op, DAG, RISCVISD::UMIN_VL); 2369 case ISD::UMAX: 2370 return lowerToScalableOp(Op, DAG, RISCVISD::UMAX_VL); 2371 case ISD::FMINNUM: 2372 return lowerToScalableOp(Op, DAG, RISCVISD::FMINNUM_VL); 2373 case ISD::FMAXNUM: 2374 return lowerToScalableOp(Op, DAG, RISCVISD::FMAXNUM_VL); 2375 case ISD::ABS: 2376 return lowerABS(Op, DAG); 2377 case ISD::VSELECT: 2378 return lowerFixedLengthVectorSelectToRVV(Op, DAG); 2379 case ISD::FCOPYSIGN: 2380 return lowerFixedLengthVectorFCOPYSIGNToRVV(Op, DAG); 2381 case ISD::MGATHER: 2382 return lowerMGATHER(Op, DAG); 2383 case ISD::MSCATTER: 2384 return lowerMSCATTER(Op, DAG); 2385 case ISD::FLT_ROUNDS_: 2386 return lowerGET_ROUNDING(Op, DAG); 2387 case ISD::SET_ROUNDING: 2388 return lowerSET_ROUNDING(Op, DAG); 2389 case ISD::VP_ADD: 2390 return lowerVPOp(Op, DAG, RISCVISD::ADD_VL); 2391 case ISD::VP_SUB: 2392 return lowerVPOp(Op, DAG, RISCVISD::SUB_VL); 2393 case ISD::VP_MUL: 2394 return lowerVPOp(Op, DAG, RISCVISD::MUL_VL); 2395 case ISD::VP_SDIV: 2396 return lowerVPOp(Op, DAG, RISCVISD::SDIV_VL); 2397 case ISD::VP_UDIV: 2398 return lowerVPOp(Op, DAG, RISCVISD::UDIV_VL); 2399 case ISD::VP_SREM: 2400 return lowerVPOp(Op, DAG, RISCVISD::SREM_VL); 2401 case ISD::VP_UREM: 2402 return lowerVPOp(Op, DAG, RISCVISD::UREM_VL); 2403 case ISD::VP_AND: 2404 return lowerVPOp(Op, DAG, RISCVISD::AND_VL); 2405 case ISD::VP_OR: 2406 return lowerVPOp(Op, DAG, RISCVISD::OR_VL); 2407 case ISD::VP_XOR: 2408 return lowerVPOp(Op, DAG, RISCVISD::XOR_VL); 2409 case ISD::VP_ASHR: 2410 return lowerVPOp(Op, DAG, RISCVISD::SRA_VL); 2411 case ISD::VP_LSHR: 2412 return lowerVPOp(Op, DAG, RISCVISD::SRL_VL); 2413 case ISD::VP_SHL: 2414 return lowerVPOp(Op, DAG, RISCVISD::SHL_VL); 2415 } 2416 } 2417 2418 static SDValue getTargetNode(GlobalAddressSDNode *N, SDLoc DL, EVT Ty, 2419 SelectionDAG &DAG, unsigned Flags) { 2420 return DAG.getTargetGlobalAddress(N->getGlobal(), DL, Ty, 0, Flags); 2421 } 2422 2423 static SDValue getTargetNode(BlockAddressSDNode *N, SDLoc DL, EVT Ty, 2424 SelectionDAG &DAG, unsigned Flags) { 2425 return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, N->getOffset(), 2426 Flags); 2427 } 2428 2429 static SDValue getTargetNode(ConstantPoolSDNode *N, SDLoc DL, EVT Ty, 2430 SelectionDAG &DAG, unsigned Flags) { 2431 return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlign(), 2432 N->getOffset(), Flags); 2433 } 2434 2435 static SDValue getTargetNode(JumpTableSDNode *N, SDLoc DL, EVT Ty, 2436 SelectionDAG &DAG, unsigned Flags) { 2437 return DAG.getTargetJumpTable(N->getIndex(), Ty, Flags); 2438 } 2439 2440 template <class NodeTy> 2441 SDValue RISCVTargetLowering::getAddr(NodeTy *N, SelectionDAG &DAG, 2442 bool IsLocal) const { 2443 SDLoc DL(N); 2444 EVT Ty = getPointerTy(DAG.getDataLayout()); 2445 2446 if (isPositionIndependent()) { 2447 SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0); 2448 if (IsLocal) 2449 // Use PC-relative addressing to access the symbol. This generates the 2450 // pattern (PseudoLLA sym), which expands to (addi (auipc %pcrel_hi(sym)) 2451 // %pcrel_lo(auipc)). 2452 return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0); 2453 2454 // Use PC-relative addressing to access the GOT for this symbol, then load 2455 // the address from the GOT. This generates the pattern (PseudoLA sym), 2456 // which expands to (ld (addi (auipc %got_pcrel_hi(sym)) %pcrel_lo(auipc))). 2457 return SDValue(DAG.getMachineNode(RISCV::PseudoLA, DL, Ty, Addr), 0); 2458 } 2459 2460 switch (getTargetMachine().getCodeModel()) { 2461 default: 2462 report_fatal_error("Unsupported code model for lowering"); 2463 case CodeModel::Small: { 2464 // Generate a sequence for accessing addresses within the first 2 GiB of 2465 // address space. This generates the pattern (addi (lui %hi(sym)) %lo(sym)). 2466 SDValue AddrHi = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_HI); 2467 SDValue AddrLo = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_LO); 2468 SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0); 2469 return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNHi, AddrLo), 0); 2470 } 2471 case CodeModel::Medium: { 2472 // Generate a sequence for accessing addresses within any 2GiB range within 2473 // the address space. This generates the pattern (PseudoLLA sym), which 2474 // expands to (addi (auipc %pcrel_hi(sym)) %pcrel_lo(auipc)). 2475 SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0); 2476 return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0); 2477 } 2478 } 2479 } 2480 2481 SDValue RISCVTargetLowering::lowerGlobalAddress(SDValue Op, 2482 SelectionDAG &DAG) const { 2483 SDLoc DL(Op); 2484 EVT Ty = Op.getValueType(); 2485 GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op); 2486 int64_t Offset = N->getOffset(); 2487 MVT XLenVT = Subtarget.getXLenVT(); 2488 2489 const GlobalValue *GV = N->getGlobal(); 2490 bool IsLocal = getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV); 2491 SDValue Addr = getAddr(N, DAG, IsLocal); 2492 2493 // In order to maximise the opportunity for common subexpression elimination, 2494 // emit a separate ADD node for the global address offset instead of folding 2495 // it in the global address node. Later peephole optimisations may choose to 2496 // fold it back in when profitable. 2497 if (Offset != 0) 2498 return DAG.getNode(ISD::ADD, DL, Ty, Addr, 2499 DAG.getConstant(Offset, DL, XLenVT)); 2500 return Addr; 2501 } 2502 2503 SDValue RISCVTargetLowering::lowerBlockAddress(SDValue Op, 2504 SelectionDAG &DAG) const { 2505 BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op); 2506 2507 return getAddr(N, DAG); 2508 } 2509 2510 SDValue RISCVTargetLowering::lowerConstantPool(SDValue Op, 2511 SelectionDAG &DAG) const { 2512 ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op); 2513 2514 return getAddr(N, DAG); 2515 } 2516 2517 SDValue RISCVTargetLowering::lowerJumpTable(SDValue Op, 2518 SelectionDAG &DAG) const { 2519 JumpTableSDNode *N = cast<JumpTableSDNode>(Op); 2520 2521 return getAddr(N, DAG); 2522 } 2523 2524 SDValue RISCVTargetLowering::getStaticTLSAddr(GlobalAddressSDNode *N, 2525 SelectionDAG &DAG, 2526 bool UseGOT) const { 2527 SDLoc DL(N); 2528 EVT Ty = getPointerTy(DAG.getDataLayout()); 2529 const GlobalValue *GV = N->getGlobal(); 2530 MVT XLenVT = Subtarget.getXLenVT(); 2531 2532 if (UseGOT) { 2533 // Use PC-relative addressing to access the GOT for this TLS symbol, then 2534 // load the address from the GOT and add the thread pointer. This generates 2535 // the pattern (PseudoLA_TLS_IE sym), which expands to 2536 // (ld (auipc %tls_ie_pcrel_hi(sym)) %pcrel_lo(auipc)). 2537 SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0); 2538 SDValue Load = 2539 SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_IE, DL, Ty, Addr), 0); 2540 2541 // Add the thread pointer. 2542 SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT); 2543 return DAG.getNode(ISD::ADD, DL, Ty, Load, TPReg); 2544 } 2545 2546 // Generate a sequence for accessing the address relative to the thread 2547 // pointer, with the appropriate adjustment for the thread pointer offset. 2548 // This generates the pattern 2549 // (add (add_tprel (lui %tprel_hi(sym)) tp %tprel_add(sym)) %tprel_lo(sym)) 2550 SDValue AddrHi = 2551 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_HI); 2552 SDValue AddrAdd = 2553 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_ADD); 2554 SDValue AddrLo = 2555 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_LO); 2556 2557 SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0); 2558 SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT); 2559 SDValue MNAdd = SDValue( 2560 DAG.getMachineNode(RISCV::PseudoAddTPRel, DL, Ty, MNHi, TPReg, AddrAdd), 2561 0); 2562 return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNAdd, AddrLo), 0); 2563 } 2564 2565 SDValue RISCVTargetLowering::getDynamicTLSAddr(GlobalAddressSDNode *N, 2566 SelectionDAG &DAG) const { 2567 SDLoc DL(N); 2568 EVT Ty = getPointerTy(DAG.getDataLayout()); 2569 IntegerType *CallTy = Type::getIntNTy(*DAG.getContext(), Ty.getSizeInBits()); 2570 const GlobalValue *GV = N->getGlobal(); 2571 2572 // Use a PC-relative addressing mode to access the global dynamic GOT address. 2573 // This generates the pattern (PseudoLA_TLS_GD sym), which expands to 2574 // (addi (auipc %tls_gd_pcrel_hi(sym)) %pcrel_lo(auipc)). 2575 SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0); 2576 SDValue Load = 2577 SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_GD, DL, Ty, Addr), 0); 2578 2579 // Prepare argument list to generate call. 2580 ArgListTy Args; 2581 ArgListEntry Entry; 2582 Entry.Node = Load; 2583 Entry.Ty = CallTy; 2584 Args.push_back(Entry); 2585 2586 // Setup call to __tls_get_addr. 2587 TargetLowering::CallLoweringInfo CLI(DAG); 2588 CLI.setDebugLoc(DL) 2589 .setChain(DAG.getEntryNode()) 2590 .setLibCallee(CallingConv::C, CallTy, 2591 DAG.getExternalSymbol("__tls_get_addr", Ty), 2592 std::move(Args)); 2593 2594 return LowerCallTo(CLI).first; 2595 } 2596 2597 SDValue RISCVTargetLowering::lowerGlobalTLSAddress(SDValue Op, 2598 SelectionDAG &DAG) const { 2599 SDLoc DL(Op); 2600 EVT Ty = Op.getValueType(); 2601 GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op); 2602 int64_t Offset = N->getOffset(); 2603 MVT XLenVT = Subtarget.getXLenVT(); 2604 2605 TLSModel::Model Model = getTargetMachine().getTLSModel(N->getGlobal()); 2606 2607 if (DAG.getMachineFunction().getFunction().getCallingConv() == 2608 CallingConv::GHC) 2609 report_fatal_error("In GHC calling convention TLS is not supported"); 2610 2611 SDValue Addr; 2612 switch (Model) { 2613 case TLSModel::LocalExec: 2614 Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/false); 2615 break; 2616 case TLSModel::InitialExec: 2617 Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/true); 2618 break; 2619 case TLSModel::LocalDynamic: 2620 case TLSModel::GeneralDynamic: 2621 Addr = getDynamicTLSAddr(N, DAG); 2622 break; 2623 } 2624 2625 // In order to maximise the opportunity for common subexpression elimination, 2626 // emit a separate ADD node for the global address offset instead of folding 2627 // it in the global address node. Later peephole optimisations may choose to 2628 // fold it back in when profitable. 2629 if (Offset != 0) 2630 return DAG.getNode(ISD::ADD, DL, Ty, Addr, 2631 DAG.getConstant(Offset, DL, XLenVT)); 2632 return Addr; 2633 } 2634 2635 SDValue RISCVTargetLowering::lowerSELECT(SDValue Op, SelectionDAG &DAG) const { 2636 SDValue CondV = Op.getOperand(0); 2637 SDValue TrueV = Op.getOperand(1); 2638 SDValue FalseV = Op.getOperand(2); 2639 SDLoc DL(Op); 2640 MVT XLenVT = Subtarget.getXLenVT(); 2641 2642 // If the result type is XLenVT and CondV is the output of a SETCC node 2643 // which also operated on XLenVT inputs, then merge the SETCC node into the 2644 // lowered RISCVISD::SELECT_CC to take advantage of the integer 2645 // compare+branch instructions. i.e.: 2646 // (select (setcc lhs, rhs, cc), truev, falsev) 2647 // -> (riscvisd::select_cc lhs, rhs, cc, truev, falsev) 2648 if (Op.getSimpleValueType() == XLenVT && CondV.getOpcode() == ISD::SETCC && 2649 CondV.getOperand(0).getSimpleValueType() == XLenVT) { 2650 SDValue LHS = CondV.getOperand(0); 2651 SDValue RHS = CondV.getOperand(1); 2652 auto CC = cast<CondCodeSDNode>(CondV.getOperand(2)); 2653 ISD::CondCode CCVal = CC->get(); 2654 2655 // Special case for a select of 2 constants that have a diffence of 1. 2656 // Normally this is done by DAGCombine, but if the select is introduced by 2657 // type legalization or op legalization, we miss it. Restricting to SETLT 2658 // case for now because that is what signed saturating add/sub need. 2659 // FIXME: We don't need the condition to be SETLT or even a SETCC, 2660 // but we would probably want to swap the true/false values if the condition 2661 // is SETGE/SETLE to avoid an XORI. 2662 if (isa<ConstantSDNode>(TrueV) && isa<ConstantSDNode>(FalseV) && 2663 CCVal == ISD::SETLT) { 2664 const APInt &TrueVal = cast<ConstantSDNode>(TrueV)->getAPIntValue(); 2665 const APInt &FalseVal = cast<ConstantSDNode>(FalseV)->getAPIntValue(); 2666 if (TrueVal - 1 == FalseVal) 2667 return DAG.getNode(ISD::ADD, DL, Op.getValueType(), CondV, FalseV); 2668 if (TrueVal + 1 == FalseVal) 2669 return DAG.getNode(ISD::SUB, DL, Op.getValueType(), FalseV, CondV); 2670 } 2671 2672 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 2673 2674 SDValue TargetCC = DAG.getTargetConstant(CCVal, DL, XLenVT); 2675 SDValue Ops[] = {LHS, RHS, TargetCC, TrueV, FalseV}; 2676 return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops); 2677 } 2678 2679 // Otherwise: 2680 // (select condv, truev, falsev) 2681 // -> (riscvisd::select_cc condv, zero, setne, truev, falsev) 2682 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 2683 SDValue SetNE = DAG.getTargetConstant(ISD::SETNE, DL, XLenVT); 2684 2685 SDValue Ops[] = {CondV, Zero, SetNE, TrueV, FalseV}; 2686 2687 return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops); 2688 } 2689 2690 SDValue RISCVTargetLowering::lowerBRCOND(SDValue Op, SelectionDAG &DAG) const { 2691 SDValue CondV = Op.getOperand(1); 2692 SDLoc DL(Op); 2693 MVT XLenVT = Subtarget.getXLenVT(); 2694 2695 if (CondV.getOpcode() == ISD::SETCC && 2696 CondV.getOperand(0).getValueType() == XLenVT) { 2697 SDValue LHS = CondV.getOperand(0); 2698 SDValue RHS = CondV.getOperand(1); 2699 ISD::CondCode CCVal = cast<CondCodeSDNode>(CondV.getOperand(2))->get(); 2700 2701 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 2702 2703 SDValue TargetCC = DAG.getCondCode(CCVal); 2704 return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0), 2705 LHS, RHS, TargetCC, Op.getOperand(2)); 2706 } 2707 2708 return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0), 2709 CondV, DAG.getConstant(0, DL, XLenVT), 2710 DAG.getCondCode(ISD::SETNE), Op.getOperand(2)); 2711 } 2712 2713 SDValue RISCVTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const { 2714 MachineFunction &MF = DAG.getMachineFunction(); 2715 RISCVMachineFunctionInfo *FuncInfo = MF.getInfo<RISCVMachineFunctionInfo>(); 2716 2717 SDLoc DL(Op); 2718 SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), 2719 getPointerTy(MF.getDataLayout())); 2720 2721 // vastart just stores the address of the VarArgsFrameIndex slot into the 2722 // memory location argument. 2723 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 2724 return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1), 2725 MachinePointerInfo(SV)); 2726 } 2727 2728 SDValue RISCVTargetLowering::lowerFRAMEADDR(SDValue Op, 2729 SelectionDAG &DAG) const { 2730 const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo(); 2731 MachineFunction &MF = DAG.getMachineFunction(); 2732 MachineFrameInfo &MFI = MF.getFrameInfo(); 2733 MFI.setFrameAddressIsTaken(true); 2734 Register FrameReg = RI.getFrameRegister(MF); 2735 int XLenInBytes = Subtarget.getXLen() / 8; 2736 2737 EVT VT = Op.getValueType(); 2738 SDLoc DL(Op); 2739 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, FrameReg, VT); 2740 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 2741 while (Depth--) { 2742 int Offset = -(XLenInBytes * 2); 2743 SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr, 2744 DAG.getIntPtrConstant(Offset, DL)); 2745 FrameAddr = 2746 DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo()); 2747 } 2748 return FrameAddr; 2749 } 2750 2751 SDValue RISCVTargetLowering::lowerRETURNADDR(SDValue Op, 2752 SelectionDAG &DAG) const { 2753 const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo(); 2754 MachineFunction &MF = DAG.getMachineFunction(); 2755 MachineFrameInfo &MFI = MF.getFrameInfo(); 2756 MFI.setReturnAddressIsTaken(true); 2757 MVT XLenVT = Subtarget.getXLenVT(); 2758 int XLenInBytes = Subtarget.getXLen() / 8; 2759 2760 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 2761 return SDValue(); 2762 2763 EVT VT = Op.getValueType(); 2764 SDLoc DL(Op); 2765 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 2766 if (Depth) { 2767 int Off = -XLenInBytes; 2768 SDValue FrameAddr = lowerFRAMEADDR(Op, DAG); 2769 SDValue Offset = DAG.getConstant(Off, DL, VT); 2770 return DAG.getLoad(VT, DL, DAG.getEntryNode(), 2771 DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset), 2772 MachinePointerInfo()); 2773 } 2774 2775 // Return the value of the return address register, marking it an implicit 2776 // live-in. 2777 Register Reg = MF.addLiveIn(RI.getRARegister(), getRegClassFor(XLenVT)); 2778 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, XLenVT); 2779 } 2780 2781 SDValue RISCVTargetLowering::lowerShiftLeftParts(SDValue Op, 2782 SelectionDAG &DAG) const { 2783 SDLoc DL(Op); 2784 SDValue Lo = Op.getOperand(0); 2785 SDValue Hi = Op.getOperand(1); 2786 SDValue Shamt = Op.getOperand(2); 2787 EVT VT = Lo.getValueType(); 2788 2789 // if Shamt-XLEN < 0: // Shamt < XLEN 2790 // Lo = Lo << Shamt 2791 // Hi = (Hi << Shamt) | ((Lo >>u 1) >>u (XLEN-1 - Shamt)) 2792 // else: 2793 // Lo = 0 2794 // Hi = Lo << (Shamt-XLEN) 2795 2796 SDValue Zero = DAG.getConstant(0, DL, VT); 2797 SDValue One = DAG.getConstant(1, DL, VT); 2798 SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT); 2799 SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT); 2800 SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen); 2801 SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt); 2802 2803 SDValue LoTrue = DAG.getNode(ISD::SHL, DL, VT, Lo, Shamt); 2804 SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, VT, Lo, One); 2805 SDValue ShiftRightLo = 2806 DAG.getNode(ISD::SRL, DL, VT, ShiftRight1Lo, XLenMinus1Shamt); 2807 SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, Hi, Shamt); 2808 SDValue HiTrue = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo); 2809 SDValue HiFalse = DAG.getNode(ISD::SHL, DL, VT, Lo, ShamtMinusXLen); 2810 2811 SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT); 2812 2813 Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, Zero); 2814 Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse); 2815 2816 SDValue Parts[2] = {Lo, Hi}; 2817 return DAG.getMergeValues(Parts, DL); 2818 } 2819 2820 SDValue RISCVTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG, 2821 bool IsSRA) const { 2822 SDLoc DL(Op); 2823 SDValue Lo = Op.getOperand(0); 2824 SDValue Hi = Op.getOperand(1); 2825 SDValue Shamt = Op.getOperand(2); 2826 EVT VT = Lo.getValueType(); 2827 2828 // SRA expansion: 2829 // if Shamt-XLEN < 0: // Shamt < XLEN 2830 // Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt)) 2831 // Hi = Hi >>s Shamt 2832 // else: 2833 // Lo = Hi >>s (Shamt-XLEN); 2834 // Hi = Hi >>s (XLEN-1) 2835 // 2836 // SRL expansion: 2837 // if Shamt-XLEN < 0: // Shamt < XLEN 2838 // Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt)) 2839 // Hi = Hi >>u Shamt 2840 // else: 2841 // Lo = Hi >>u (Shamt-XLEN); 2842 // Hi = 0; 2843 2844 unsigned ShiftRightOp = IsSRA ? ISD::SRA : ISD::SRL; 2845 2846 SDValue Zero = DAG.getConstant(0, DL, VT); 2847 SDValue One = DAG.getConstant(1, DL, VT); 2848 SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT); 2849 SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT); 2850 SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen); 2851 SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt); 2852 2853 SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, Lo, Shamt); 2854 SDValue ShiftLeftHi1 = DAG.getNode(ISD::SHL, DL, VT, Hi, One); 2855 SDValue ShiftLeftHi = 2856 DAG.getNode(ISD::SHL, DL, VT, ShiftLeftHi1, XLenMinus1Shamt); 2857 SDValue LoTrue = DAG.getNode(ISD::OR, DL, VT, ShiftRightLo, ShiftLeftHi); 2858 SDValue HiTrue = DAG.getNode(ShiftRightOp, DL, VT, Hi, Shamt); 2859 SDValue LoFalse = DAG.getNode(ShiftRightOp, DL, VT, Hi, ShamtMinusXLen); 2860 SDValue HiFalse = 2861 IsSRA ? DAG.getNode(ISD::SRA, DL, VT, Hi, XLenMinus1) : Zero; 2862 2863 SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT); 2864 2865 Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, LoFalse); 2866 Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse); 2867 2868 SDValue Parts[2] = {Lo, Hi}; 2869 return DAG.getMergeValues(Parts, DL); 2870 } 2871 2872 // Lower splats of i1 types to SETCC. For each mask vector type, we have a 2873 // legal equivalently-sized i8 type, so we can use that as a go-between. 2874 SDValue RISCVTargetLowering::lowerVectorMaskSplat(SDValue Op, 2875 SelectionDAG &DAG) const { 2876 SDLoc DL(Op); 2877 MVT VT = Op.getSimpleValueType(); 2878 SDValue SplatVal = Op.getOperand(0); 2879 // All-zeros or all-ones splats are handled specially. 2880 if (ISD::isConstantSplatVectorAllOnes(Op.getNode())) { 2881 SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second; 2882 return DAG.getNode(RISCVISD::VMSET_VL, DL, VT, VL); 2883 } 2884 if (ISD::isConstantSplatVectorAllZeros(Op.getNode())) { 2885 SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second; 2886 return DAG.getNode(RISCVISD::VMCLR_VL, DL, VT, VL); 2887 } 2888 MVT XLenVT = Subtarget.getXLenVT(); 2889 assert(SplatVal.getValueType() == XLenVT && 2890 "Unexpected type for i1 splat value"); 2891 MVT InterVT = VT.changeVectorElementType(MVT::i8); 2892 SplatVal = DAG.getNode(ISD::AND, DL, XLenVT, SplatVal, 2893 DAG.getConstant(1, DL, XLenVT)); 2894 SDValue LHS = DAG.getSplatVector(InterVT, DL, SplatVal); 2895 SDValue Zero = DAG.getConstant(0, DL, InterVT); 2896 return DAG.getSetCC(DL, VT, LHS, Zero, ISD::SETNE); 2897 } 2898 2899 // Custom-lower a SPLAT_VECTOR_PARTS where XLEN<SEW, as the SEW element type is 2900 // illegal (currently only vXi64 RV32). 2901 // FIXME: We could also catch non-constant sign-extended i32 values and lower 2902 // them to SPLAT_VECTOR_I64 2903 SDValue RISCVTargetLowering::lowerSPLAT_VECTOR_PARTS(SDValue Op, 2904 SelectionDAG &DAG) const { 2905 SDLoc DL(Op); 2906 MVT VecVT = Op.getSimpleValueType(); 2907 assert(!Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64 && 2908 "Unexpected SPLAT_VECTOR_PARTS lowering"); 2909 2910 assert(Op.getNumOperands() == 2 && "Unexpected number of operands!"); 2911 SDValue Lo = Op.getOperand(0); 2912 SDValue Hi = Op.getOperand(1); 2913 2914 if (VecVT.isFixedLengthVector()) { 2915 MVT ContainerVT = getContainerForFixedLengthVector(VecVT); 2916 SDLoc DL(Op); 2917 SDValue Mask, VL; 2918 std::tie(Mask, VL) = 2919 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 2920 2921 SDValue Res = splatPartsI64WithVL(DL, ContainerVT, Lo, Hi, VL, DAG); 2922 return convertFromScalableVector(VecVT, Res, DAG, Subtarget); 2923 } 2924 2925 if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) { 2926 int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue(); 2927 int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue(); 2928 // If Hi constant is all the same sign bit as Lo, lower this as a custom 2929 // node in order to try and match RVV vector/scalar instructions. 2930 if ((LoC >> 31) == HiC) 2931 return DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, Lo); 2932 } 2933 2934 // Detect cases where Hi is (SRA Lo, 31) which means Hi is Lo sign extended. 2935 if (Hi.getOpcode() == ISD::SRA && Hi.getOperand(0) == Lo && 2936 isa<ConstantSDNode>(Hi.getOperand(1)) && 2937 Hi.getConstantOperandVal(1) == 31) 2938 return DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, Lo); 2939 2940 // Fall back to use a stack store and stride x0 vector load. Use X0 as VL. 2941 return splatPartsI64ThroughStack(DL, VecVT, Lo, Hi, 2942 DAG.getRegister(RISCV::X0, MVT::i64), DAG); 2943 } 2944 2945 // Custom-lower extensions from mask vectors by using a vselect either with 1 2946 // for zero/any-extension or -1 for sign-extension: 2947 // (vXiN = (s|z)ext vXi1:vmask) -> (vXiN = vselect vmask, (-1 or 1), 0) 2948 // Note that any-extension is lowered identically to zero-extension. 2949 SDValue RISCVTargetLowering::lowerVectorMaskExt(SDValue Op, SelectionDAG &DAG, 2950 int64_t ExtTrueVal) const { 2951 SDLoc DL(Op); 2952 MVT VecVT = Op.getSimpleValueType(); 2953 SDValue Src = Op.getOperand(0); 2954 // Only custom-lower extensions from mask types 2955 assert(Src.getValueType().isVector() && 2956 Src.getValueType().getVectorElementType() == MVT::i1); 2957 2958 MVT XLenVT = Subtarget.getXLenVT(); 2959 SDValue SplatZero = DAG.getConstant(0, DL, XLenVT); 2960 SDValue SplatTrueVal = DAG.getConstant(ExtTrueVal, DL, XLenVT); 2961 2962 if (VecVT.isScalableVector()) { 2963 // Be careful not to introduce illegal scalar types at this stage, and be 2964 // careful also about splatting constants as on RV32, vXi64 SPLAT_VECTOR is 2965 // illegal and must be expanded. Since we know that the constants are 2966 // sign-extended 32-bit values, we use SPLAT_VECTOR_I64 directly. 2967 bool IsRV32E64 = 2968 !Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64; 2969 2970 if (!IsRV32E64) { 2971 SplatZero = DAG.getSplatVector(VecVT, DL, SplatZero); 2972 SplatTrueVal = DAG.getSplatVector(VecVT, DL, SplatTrueVal); 2973 } else { 2974 SplatZero = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, SplatZero); 2975 SplatTrueVal = 2976 DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, SplatTrueVal); 2977 } 2978 2979 return DAG.getNode(ISD::VSELECT, DL, VecVT, Src, SplatTrueVal, SplatZero); 2980 } 2981 2982 MVT ContainerVT = getContainerForFixedLengthVector(VecVT); 2983 MVT I1ContainerVT = 2984 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 2985 2986 SDValue CC = convertToScalableVector(I1ContainerVT, Src, DAG, Subtarget); 2987 2988 SDValue Mask, VL; 2989 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 2990 2991 SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatZero, VL); 2992 SplatTrueVal = 2993 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatTrueVal, VL); 2994 SDValue Select = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC, 2995 SplatTrueVal, SplatZero, VL); 2996 2997 return convertFromScalableVector(VecVT, Select, DAG, Subtarget); 2998 } 2999 3000 SDValue RISCVTargetLowering::lowerFixedLengthVectorExtendToRVV( 3001 SDValue Op, SelectionDAG &DAG, unsigned ExtendOpc) const { 3002 MVT ExtVT = Op.getSimpleValueType(); 3003 // Only custom-lower extensions from fixed-length vector types. 3004 if (!ExtVT.isFixedLengthVector()) 3005 return Op; 3006 MVT VT = Op.getOperand(0).getSimpleValueType(); 3007 // Grab the canonical container type for the extended type. Infer the smaller 3008 // type from that to ensure the same number of vector elements, as we know 3009 // the LMUL will be sufficient to hold the smaller type. 3010 MVT ContainerExtVT = getContainerForFixedLengthVector(ExtVT); 3011 // Get the extended container type manually to ensure the same number of 3012 // vector elements between source and dest. 3013 MVT ContainerVT = MVT::getVectorVT(VT.getVectorElementType(), 3014 ContainerExtVT.getVectorElementCount()); 3015 3016 SDValue Op1 = 3017 convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget); 3018 3019 SDLoc DL(Op); 3020 SDValue Mask, VL; 3021 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 3022 3023 SDValue Ext = DAG.getNode(ExtendOpc, DL, ContainerExtVT, Op1, Mask, VL); 3024 3025 return convertFromScalableVector(ExtVT, Ext, DAG, Subtarget); 3026 } 3027 3028 // Custom-lower truncations from vectors to mask vectors by using a mask and a 3029 // setcc operation: 3030 // (vXi1 = trunc vXiN vec) -> (vXi1 = setcc (and vec, 1), 0, ne) 3031 SDValue RISCVTargetLowering::lowerVectorMaskTrunc(SDValue Op, 3032 SelectionDAG &DAG) const { 3033 SDLoc DL(Op); 3034 EVT MaskVT = Op.getValueType(); 3035 // Only expect to custom-lower truncations to mask types 3036 assert(MaskVT.isVector() && MaskVT.getVectorElementType() == MVT::i1 && 3037 "Unexpected type for vector mask lowering"); 3038 SDValue Src = Op.getOperand(0); 3039 MVT VecVT = Src.getSimpleValueType(); 3040 3041 // If this is a fixed vector, we need to convert it to a scalable vector. 3042 MVT ContainerVT = VecVT; 3043 if (VecVT.isFixedLengthVector()) { 3044 ContainerVT = getContainerForFixedLengthVector(VecVT); 3045 Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget); 3046 } 3047 3048 SDValue SplatOne = DAG.getConstant(1, DL, Subtarget.getXLenVT()); 3049 SDValue SplatZero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 3050 3051 SplatOne = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatOne); 3052 SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatZero); 3053 3054 if (VecVT.isScalableVector()) { 3055 SDValue Trunc = DAG.getNode(ISD::AND, DL, VecVT, Src, SplatOne); 3056 return DAG.getSetCC(DL, MaskVT, Trunc, SplatZero, ISD::SETNE); 3057 } 3058 3059 SDValue Mask, VL; 3060 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 3061 3062 MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1); 3063 SDValue Trunc = 3064 DAG.getNode(RISCVISD::AND_VL, DL, ContainerVT, Src, SplatOne, Mask, VL); 3065 Trunc = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskContainerVT, Trunc, SplatZero, 3066 DAG.getCondCode(ISD::SETNE), Mask, VL); 3067 return convertFromScalableVector(MaskVT, Trunc, DAG, Subtarget); 3068 } 3069 3070 // Custom-legalize INSERT_VECTOR_ELT so that the value is inserted into the 3071 // first position of a vector, and that vector is slid up to the insert index. 3072 // By limiting the active vector length to index+1 and merging with the 3073 // original vector (with an undisturbed tail policy for elements >= VL), we 3074 // achieve the desired result of leaving all elements untouched except the one 3075 // at VL-1, which is replaced with the desired value. 3076 SDValue RISCVTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op, 3077 SelectionDAG &DAG) const { 3078 SDLoc DL(Op); 3079 MVT VecVT = Op.getSimpleValueType(); 3080 SDValue Vec = Op.getOperand(0); 3081 SDValue Val = Op.getOperand(1); 3082 SDValue Idx = Op.getOperand(2); 3083 3084 MVT ContainerVT = VecVT; 3085 // If the operand is a fixed-length vector, convert to a scalable one. 3086 if (VecVT.isFixedLengthVector()) { 3087 ContainerVT = getContainerForFixedLengthVector(VecVT); 3088 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 3089 } 3090 3091 MVT XLenVT = Subtarget.getXLenVT(); 3092 3093 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 3094 bool IsLegalInsert = Subtarget.is64Bit() || Val.getValueType() != MVT::i64; 3095 // Even i64-element vectors on RV32 can be lowered without scalar 3096 // legalization if the most-significant 32 bits of the value are not affected 3097 // by the sign-extension of the lower 32 bits. 3098 // TODO: We could also catch sign extensions of a 32-bit value. 3099 if (!IsLegalInsert && isa<ConstantSDNode>(Val)) { 3100 const auto *CVal = cast<ConstantSDNode>(Val); 3101 if (isInt<32>(CVal->getSExtValue())) { 3102 IsLegalInsert = true; 3103 Val = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32); 3104 } 3105 } 3106 3107 SDValue Mask, VL; 3108 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 3109 3110 SDValue ValInVec; 3111 3112 if (IsLegalInsert) { 3113 unsigned Opc = 3114 VecVT.isFloatingPoint() ? RISCVISD::VFMV_S_F_VL : RISCVISD::VMV_S_X_VL; 3115 if (isNullConstant(Idx)) { 3116 Vec = DAG.getNode(Opc, DL, ContainerVT, Vec, Val, VL); 3117 if (!VecVT.isFixedLengthVector()) 3118 return Vec; 3119 return convertFromScalableVector(VecVT, Vec, DAG, Subtarget); 3120 } 3121 ValInVec = 3122 DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), Val, VL); 3123 } else { 3124 // On RV32, i64-element vectors must be specially handled to place the 3125 // value at element 0, by using two vslide1up instructions in sequence on 3126 // the i32 split lo/hi value. Use an equivalently-sized i32 vector for 3127 // this. 3128 SDValue One = DAG.getConstant(1, DL, XLenVT); 3129 SDValue ValLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, Zero); 3130 SDValue ValHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, One); 3131 MVT I32ContainerVT = 3132 MVT::getVectorVT(MVT::i32, ContainerVT.getVectorElementCount() * 2); 3133 SDValue I32Mask = 3134 getDefaultScalableVLOps(I32ContainerVT, DL, DAG, Subtarget).first; 3135 // Limit the active VL to two. 3136 SDValue InsertI64VL = DAG.getConstant(2, DL, XLenVT); 3137 // Note: We can't pass a UNDEF to the first VSLIDE1UP_VL since an untied 3138 // undef doesn't obey the earlyclobber constraint. Just splat a zero value. 3139 ValInVec = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, I32ContainerVT, Zero, 3140 InsertI64VL); 3141 // First slide in the hi value, then the lo in underneath it. 3142 ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT, ValInVec, 3143 ValHi, I32Mask, InsertI64VL); 3144 ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT, ValInVec, 3145 ValLo, I32Mask, InsertI64VL); 3146 // Bitcast back to the right container type. 3147 ValInVec = DAG.getBitcast(ContainerVT, ValInVec); 3148 } 3149 3150 // Now that the value is in a vector, slide it into position. 3151 SDValue InsertVL = 3152 DAG.getNode(ISD::ADD, DL, XLenVT, Idx, DAG.getConstant(1, DL, XLenVT)); 3153 SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec, 3154 ValInVec, Idx, Mask, InsertVL); 3155 if (!VecVT.isFixedLengthVector()) 3156 return Slideup; 3157 return convertFromScalableVector(VecVT, Slideup, DAG, Subtarget); 3158 } 3159 3160 // Custom-lower EXTRACT_VECTOR_ELT operations to slide the vector down, then 3161 // extract the first element: (extractelt (slidedown vec, idx), 0). For integer 3162 // types this is done using VMV_X_S to allow us to glean information about the 3163 // sign bits of the result. 3164 SDValue RISCVTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op, 3165 SelectionDAG &DAG) const { 3166 SDLoc DL(Op); 3167 SDValue Idx = Op.getOperand(1); 3168 SDValue Vec = Op.getOperand(0); 3169 EVT EltVT = Op.getValueType(); 3170 MVT VecVT = Vec.getSimpleValueType(); 3171 MVT XLenVT = Subtarget.getXLenVT(); 3172 3173 if (VecVT.getVectorElementType() == MVT::i1) { 3174 // FIXME: For now we just promote to an i8 vector and extract from that, 3175 // but this is probably not optimal. 3176 MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount()); 3177 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec); 3178 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec, Idx); 3179 } 3180 3181 // If this is a fixed vector, we need to convert it to a scalable vector. 3182 MVT ContainerVT = VecVT; 3183 if (VecVT.isFixedLengthVector()) { 3184 ContainerVT = getContainerForFixedLengthVector(VecVT); 3185 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 3186 } 3187 3188 // If the index is 0, the vector is already in the right position. 3189 if (!isNullConstant(Idx)) { 3190 // Use a VL of 1 to avoid processing more elements than we need. 3191 SDValue VL = DAG.getConstant(1, DL, XLenVT); 3192 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 3193 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 3194 Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 3195 DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL); 3196 } 3197 3198 if (!EltVT.isInteger()) { 3199 // Floating-point extracts are handled in TableGen. 3200 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec, 3201 DAG.getConstant(0, DL, XLenVT)); 3202 } 3203 3204 SDValue Elt0 = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); 3205 return DAG.getNode(ISD::TRUNCATE, DL, EltVT, Elt0); 3206 } 3207 3208 // Some RVV intrinsics may claim that they want an integer operand to be 3209 // promoted or expanded. 3210 static SDValue lowerVectorIntrinsicSplats(SDValue Op, SelectionDAG &DAG, 3211 const RISCVSubtarget &Subtarget) { 3212 assert((Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3213 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN) && 3214 "Unexpected opcode"); 3215 3216 if (!Subtarget.hasStdExtV()) 3217 return SDValue(); 3218 3219 bool HasChain = Op.getOpcode() == ISD::INTRINSIC_W_CHAIN; 3220 unsigned IntNo = Op.getConstantOperandVal(HasChain ? 1 : 0); 3221 SDLoc DL(Op); 3222 3223 const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II = 3224 RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo); 3225 if (!II || !II->SplatOperand) 3226 return SDValue(); 3227 3228 unsigned SplatOp = II->SplatOperand + HasChain; 3229 assert(SplatOp < Op.getNumOperands()); 3230 3231 SmallVector<SDValue, 8> Operands(Op->op_begin(), Op->op_end()); 3232 SDValue &ScalarOp = Operands[SplatOp]; 3233 MVT OpVT = ScalarOp.getSimpleValueType(); 3234 MVT XLenVT = Subtarget.getXLenVT(); 3235 3236 // If this isn't a scalar, or its type is XLenVT we're done. 3237 if (!OpVT.isScalarInteger() || OpVT == XLenVT) 3238 return SDValue(); 3239 3240 // Simplest case is that the operand needs to be promoted to XLenVT. 3241 if (OpVT.bitsLT(XLenVT)) { 3242 // If the operand is a constant, sign extend to increase our chances 3243 // of being able to use a .vi instruction. ANY_EXTEND would become a 3244 // a zero extend and the simm5 check in isel would fail. 3245 // FIXME: Should we ignore the upper bits in isel instead? 3246 unsigned ExtOpc = 3247 isa<ConstantSDNode>(ScalarOp) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND; 3248 ScalarOp = DAG.getNode(ExtOpc, DL, XLenVT, ScalarOp); 3249 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); 3250 } 3251 3252 // Use the previous operand to get the vXi64 VT. The result might be a mask 3253 // VT for compares. Using the previous operand assumes that the previous 3254 // operand will never have a smaller element size than a scalar operand and 3255 // that a widening operation never uses SEW=64. 3256 // NOTE: If this fails the below assert, we can probably just find the 3257 // element count from any operand or result and use it to construct the VT. 3258 assert(II->SplatOperand > 1 && "Unexpected splat operand!"); 3259 MVT VT = Op.getOperand(SplatOp - 1).getSimpleValueType(); 3260 3261 // The more complex case is when the scalar is larger than XLenVT. 3262 assert(XLenVT == MVT::i32 && OpVT == MVT::i64 && 3263 VT.getVectorElementType() == MVT::i64 && "Unexpected VTs!"); 3264 3265 // If this is a sign-extended 32-bit constant, we can truncate it and rely 3266 // on the instruction to sign-extend since SEW>XLEN. 3267 if (auto *CVal = dyn_cast<ConstantSDNode>(ScalarOp)) { 3268 if (isInt<32>(CVal->getSExtValue())) { 3269 ScalarOp = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32); 3270 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); 3271 } 3272 } 3273 3274 // We need to convert the scalar to a splat vector. 3275 // FIXME: Can we implicitly truncate the scalar if it is known to 3276 // be sign extended? 3277 // VL should be the last operand. 3278 SDValue VL = Op.getOperand(Op.getNumOperands() - 1); 3279 assert(VL.getValueType() == XLenVT); 3280 ScalarOp = splatSplitI64WithVL(DL, VT, ScalarOp, VL, DAG); 3281 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); 3282 } 3283 3284 SDValue RISCVTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 3285 SelectionDAG &DAG) const { 3286 unsigned IntNo = Op.getConstantOperandVal(0); 3287 SDLoc DL(Op); 3288 MVT XLenVT = Subtarget.getXLenVT(); 3289 3290 switch (IntNo) { 3291 default: 3292 break; // Don't custom lower most intrinsics. 3293 case Intrinsic::thread_pointer: { 3294 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3295 return DAG.getRegister(RISCV::X4, PtrVT); 3296 } 3297 case Intrinsic::riscv_orc_b: 3298 // Lower to the GORCI encoding for orc.b. 3299 return DAG.getNode(RISCVISD::GORC, DL, XLenVT, Op.getOperand(1), 3300 DAG.getConstant(7, DL, XLenVT)); 3301 case Intrinsic::riscv_grev: 3302 case Intrinsic::riscv_gorc: { 3303 unsigned Opc = 3304 IntNo == Intrinsic::riscv_grev ? RISCVISD::GREV : RISCVISD::GORC; 3305 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2)); 3306 } 3307 case Intrinsic::riscv_shfl: 3308 case Intrinsic::riscv_unshfl: { 3309 unsigned Opc = 3310 IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL; 3311 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2)); 3312 } 3313 case Intrinsic::riscv_bcompress: 3314 case Intrinsic::riscv_bdecompress: { 3315 unsigned Opc = IntNo == Intrinsic::riscv_bcompress ? RISCVISD::BCOMPRESS 3316 : RISCVISD::BDECOMPRESS; 3317 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2)); 3318 } 3319 case Intrinsic::riscv_vmv_x_s: 3320 assert(Op.getValueType() == XLenVT && "Unexpected VT!"); 3321 return DAG.getNode(RISCVISD::VMV_X_S, DL, Op.getValueType(), 3322 Op.getOperand(1)); 3323 case Intrinsic::riscv_vmv_v_x: 3324 return lowerScalarSplat(Op.getOperand(1), Op.getOperand(2), 3325 Op.getSimpleValueType(), DL, DAG, Subtarget); 3326 case Intrinsic::riscv_vfmv_v_f: 3327 return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, Op.getValueType(), 3328 Op.getOperand(1), Op.getOperand(2)); 3329 case Intrinsic::riscv_vmv_s_x: { 3330 SDValue Scalar = Op.getOperand(2); 3331 3332 if (Scalar.getValueType().bitsLE(XLenVT)) { 3333 Scalar = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Scalar); 3334 return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, Op.getValueType(), 3335 Op.getOperand(1), Scalar, Op.getOperand(3)); 3336 } 3337 3338 assert(Scalar.getValueType() == MVT::i64 && "Unexpected scalar VT!"); 3339 3340 // This is an i64 value that lives in two scalar registers. We have to 3341 // insert this in a convoluted way. First we build vXi64 splat containing 3342 // the/ two values that we assemble using some bit math. Next we'll use 3343 // vid.v and vmseq to build a mask with bit 0 set. Then we'll use that mask 3344 // to merge element 0 from our splat into the source vector. 3345 // FIXME: This is probably not the best way to do this, but it is 3346 // consistent with INSERT_VECTOR_ELT lowering so it is a good starting 3347 // point. 3348 // sw lo, (a0) 3349 // sw hi, 4(a0) 3350 // vlse vX, (a0) 3351 // 3352 // vid.v vVid 3353 // vmseq.vx mMask, vVid, 0 3354 // vmerge.vvm vDest, vSrc, vVal, mMask 3355 MVT VT = Op.getSimpleValueType(); 3356 SDValue Vec = Op.getOperand(1); 3357 SDValue VL = Op.getOperand(3); 3358 3359 SDValue SplattedVal = splatSplitI64WithVL(DL, VT, Scalar, VL, DAG); 3360 SDValue SplattedIdx = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, 3361 DAG.getConstant(0, DL, MVT::i32), VL); 3362 3363 MVT MaskVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount()); 3364 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 3365 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL); 3366 SDValue SelectCond = 3367 DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, VID, SplattedIdx, 3368 DAG.getCondCode(ISD::SETEQ), Mask, VL); 3369 return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, SelectCond, SplattedVal, 3370 Vec, VL); 3371 } 3372 case Intrinsic::riscv_vslide1up: 3373 case Intrinsic::riscv_vslide1down: 3374 case Intrinsic::riscv_vslide1up_mask: 3375 case Intrinsic::riscv_vslide1down_mask: { 3376 // We need to special case these when the scalar is larger than XLen. 3377 unsigned NumOps = Op.getNumOperands(); 3378 bool IsMasked = NumOps == 6; 3379 unsigned OpOffset = IsMasked ? 1 : 0; 3380 SDValue Scalar = Op.getOperand(2 + OpOffset); 3381 if (Scalar.getValueType().bitsLE(XLenVT)) 3382 break; 3383 3384 // Splatting a sign extended constant is fine. 3385 if (auto *CVal = dyn_cast<ConstantSDNode>(Scalar)) 3386 if (isInt<32>(CVal->getSExtValue())) 3387 break; 3388 3389 MVT VT = Op.getSimpleValueType(); 3390 assert(VT.getVectorElementType() == MVT::i64 && 3391 Scalar.getValueType() == MVT::i64 && "Unexpected VTs"); 3392 3393 // Convert the vector source to the equivalent nxvXi32 vector. 3394 MVT I32VT = MVT::getVectorVT(MVT::i32, VT.getVectorElementCount() * 2); 3395 SDValue Vec = DAG.getBitcast(I32VT, Op.getOperand(1 + OpOffset)); 3396 3397 SDValue ScalarLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 3398 DAG.getConstant(0, DL, XLenVT)); 3399 SDValue ScalarHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 3400 DAG.getConstant(1, DL, XLenVT)); 3401 3402 // Double the VL since we halved SEW. 3403 SDValue VL = Op.getOperand(NumOps - 1); 3404 SDValue I32VL = 3405 DAG.getNode(ISD::SHL, DL, XLenVT, VL, DAG.getConstant(1, DL, XLenVT)); 3406 3407 MVT I32MaskVT = MVT::getVectorVT(MVT::i1, I32VT.getVectorElementCount()); 3408 SDValue I32Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, I32MaskVT, VL); 3409 3410 // Shift the two scalar parts in using SEW=32 slide1up/slide1down 3411 // instructions. 3412 if (IntNo == Intrinsic::riscv_vslide1up || 3413 IntNo == Intrinsic::riscv_vslide1up_mask) { 3414 Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Vec, ScalarHi, 3415 I32Mask, I32VL); 3416 Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Vec, ScalarLo, 3417 I32Mask, I32VL); 3418 } else { 3419 Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Vec, ScalarLo, 3420 I32Mask, I32VL); 3421 Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Vec, ScalarHi, 3422 I32Mask, I32VL); 3423 } 3424 3425 // Convert back to nxvXi64. 3426 Vec = DAG.getBitcast(VT, Vec); 3427 3428 if (!IsMasked) 3429 return Vec; 3430 3431 // Apply mask after the operation. 3432 SDValue Mask = Op.getOperand(NumOps - 2); 3433 SDValue MaskedOff = Op.getOperand(1); 3434 return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, Mask, Vec, MaskedOff, VL); 3435 } 3436 } 3437 3438 return lowerVectorIntrinsicSplats(Op, DAG, Subtarget); 3439 } 3440 3441 SDValue RISCVTargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op, 3442 SelectionDAG &DAG) const { 3443 return lowerVectorIntrinsicSplats(Op, DAG, Subtarget); 3444 } 3445 3446 static MVT getLMUL1VT(MVT VT) { 3447 assert(VT.getVectorElementType().getSizeInBits() <= 64 && 3448 "Unexpected vector MVT"); 3449 return MVT::getScalableVectorVT( 3450 VT.getVectorElementType(), 3451 RISCV::RVVBitsPerBlock / VT.getVectorElementType().getSizeInBits()); 3452 } 3453 3454 static unsigned getRVVReductionOp(unsigned ISDOpcode) { 3455 switch (ISDOpcode) { 3456 default: 3457 llvm_unreachable("Unhandled reduction"); 3458 case ISD::VECREDUCE_ADD: 3459 return RISCVISD::VECREDUCE_ADD_VL; 3460 case ISD::VECREDUCE_UMAX: 3461 return RISCVISD::VECREDUCE_UMAX_VL; 3462 case ISD::VECREDUCE_SMAX: 3463 return RISCVISD::VECREDUCE_SMAX_VL; 3464 case ISD::VECREDUCE_UMIN: 3465 return RISCVISD::VECREDUCE_UMIN_VL; 3466 case ISD::VECREDUCE_SMIN: 3467 return RISCVISD::VECREDUCE_SMIN_VL; 3468 case ISD::VECREDUCE_AND: 3469 return RISCVISD::VECREDUCE_AND_VL; 3470 case ISD::VECREDUCE_OR: 3471 return RISCVISD::VECREDUCE_OR_VL; 3472 case ISD::VECREDUCE_XOR: 3473 return RISCVISD::VECREDUCE_XOR_VL; 3474 } 3475 } 3476 3477 SDValue RISCVTargetLowering::lowerVectorMaskVECREDUCE(SDValue Op, 3478 SelectionDAG &DAG) const { 3479 SDLoc DL(Op); 3480 SDValue Vec = Op.getOperand(0); 3481 MVT VecVT = Vec.getSimpleValueType(); 3482 assert((Op.getOpcode() == ISD::VECREDUCE_AND || 3483 Op.getOpcode() == ISD::VECREDUCE_OR || 3484 Op.getOpcode() == ISD::VECREDUCE_XOR) && 3485 "Unexpected reduction lowering"); 3486 3487 MVT XLenVT = Subtarget.getXLenVT(); 3488 assert(Op.getValueType() == XLenVT && 3489 "Expected reduction output to be legalized to XLenVT"); 3490 3491 MVT ContainerVT = VecVT; 3492 if (VecVT.isFixedLengthVector()) { 3493 ContainerVT = getContainerForFixedLengthVector(VecVT); 3494 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 3495 } 3496 3497 SDValue Mask, VL; 3498 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 3499 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 3500 3501 switch (Op.getOpcode()) { 3502 default: 3503 llvm_unreachable("Unhandled reduction"); 3504 case ISD::VECREDUCE_AND: 3505 // vpopc ~x == 0 3506 Vec = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Vec, Mask, VL); 3507 Vec = DAG.getNode(RISCVISD::VPOPC_VL, DL, XLenVT, Vec, Mask, VL); 3508 return DAG.getSetCC(DL, XLenVT, Vec, Zero, ISD::SETEQ); 3509 case ISD::VECREDUCE_OR: 3510 // vpopc x != 0 3511 Vec = DAG.getNode(RISCVISD::VPOPC_VL, DL, XLenVT, Vec, Mask, VL); 3512 return DAG.getSetCC(DL, XLenVT, Vec, Zero, ISD::SETNE); 3513 case ISD::VECREDUCE_XOR: { 3514 // ((vpopc x) & 1) != 0 3515 SDValue One = DAG.getConstant(1, DL, XLenVT); 3516 Vec = DAG.getNode(RISCVISD::VPOPC_VL, DL, XLenVT, Vec, Mask, VL); 3517 Vec = DAG.getNode(ISD::AND, DL, XLenVT, Vec, One); 3518 return DAG.getSetCC(DL, XLenVT, Vec, Zero, ISD::SETNE); 3519 } 3520 } 3521 } 3522 3523 SDValue RISCVTargetLowering::lowerVECREDUCE(SDValue Op, 3524 SelectionDAG &DAG) const { 3525 SDLoc DL(Op); 3526 SDValue Vec = Op.getOperand(0); 3527 EVT VecEVT = Vec.getValueType(); 3528 3529 unsigned BaseOpc = ISD::getVecReduceBaseOpcode(Op.getOpcode()); 3530 3531 // Due to ordering in legalize types we may have a vector type that needs to 3532 // be split. Do that manually so we can get down to a legal type. 3533 while (getTypeAction(*DAG.getContext(), VecEVT) == 3534 TargetLowering::TypeSplitVector) { 3535 SDValue Lo, Hi; 3536 std::tie(Lo, Hi) = DAG.SplitVector(Vec, DL); 3537 VecEVT = Lo.getValueType(); 3538 Vec = DAG.getNode(BaseOpc, DL, VecEVT, Lo, Hi); 3539 } 3540 3541 // TODO: The type may need to be widened rather than split. Or widened before 3542 // it can be split. 3543 if (!isTypeLegal(VecEVT)) 3544 return SDValue(); 3545 3546 MVT VecVT = VecEVT.getSimpleVT(); 3547 MVT VecEltVT = VecVT.getVectorElementType(); 3548 unsigned RVVOpcode = getRVVReductionOp(Op.getOpcode()); 3549 3550 MVT ContainerVT = VecVT; 3551 if (VecVT.isFixedLengthVector()) { 3552 ContainerVT = getContainerForFixedLengthVector(VecVT); 3553 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 3554 } 3555 3556 MVT M1VT = getLMUL1VT(ContainerVT); 3557 3558 SDValue Mask, VL; 3559 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 3560 3561 // FIXME: This is a VLMAX splat which might be too large and can prevent 3562 // vsetvli removal. 3563 SDValue NeutralElem = 3564 DAG.getNeutralElement(BaseOpc, DL, VecEltVT, SDNodeFlags()); 3565 SDValue IdentitySplat = DAG.getSplatVector(M1VT, DL, NeutralElem); 3566 SDValue Reduction = 3567 DAG.getNode(RVVOpcode, DL, M1VT, Vec, IdentitySplat, Mask, VL); 3568 SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction, 3569 DAG.getConstant(0, DL, Subtarget.getXLenVT())); 3570 return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType()); 3571 } 3572 3573 // Given a reduction op, this function returns the matching reduction opcode, 3574 // the vector SDValue and the scalar SDValue required to lower this to a 3575 // RISCVISD node. 3576 static std::tuple<unsigned, SDValue, SDValue> 3577 getRVVFPReductionOpAndOperands(SDValue Op, SelectionDAG &DAG, EVT EltVT) { 3578 SDLoc DL(Op); 3579 auto Flags = Op->getFlags(); 3580 unsigned Opcode = Op.getOpcode(); 3581 unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Opcode); 3582 switch (Opcode) { 3583 default: 3584 llvm_unreachable("Unhandled reduction"); 3585 case ISD::VECREDUCE_FADD: 3586 return std::make_tuple(RISCVISD::VECREDUCE_FADD_VL, Op.getOperand(0), 3587 DAG.getConstantFP(0.0, DL, EltVT)); 3588 case ISD::VECREDUCE_SEQ_FADD: 3589 return std::make_tuple(RISCVISD::VECREDUCE_SEQ_FADD_VL, Op.getOperand(1), 3590 Op.getOperand(0)); 3591 case ISD::VECREDUCE_FMIN: 3592 return std::make_tuple(RISCVISD::VECREDUCE_FMIN_VL, Op.getOperand(0), 3593 DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags)); 3594 case ISD::VECREDUCE_FMAX: 3595 return std::make_tuple(RISCVISD::VECREDUCE_FMAX_VL, Op.getOperand(0), 3596 DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags)); 3597 } 3598 } 3599 3600 SDValue RISCVTargetLowering::lowerFPVECREDUCE(SDValue Op, 3601 SelectionDAG &DAG) const { 3602 SDLoc DL(Op); 3603 MVT VecEltVT = Op.getSimpleValueType(); 3604 3605 unsigned RVVOpcode; 3606 SDValue VectorVal, ScalarVal; 3607 std::tie(RVVOpcode, VectorVal, ScalarVal) = 3608 getRVVFPReductionOpAndOperands(Op, DAG, VecEltVT); 3609 MVT VecVT = VectorVal.getSimpleValueType(); 3610 3611 MVT ContainerVT = VecVT; 3612 if (VecVT.isFixedLengthVector()) { 3613 ContainerVT = getContainerForFixedLengthVector(VecVT); 3614 VectorVal = convertToScalableVector(ContainerVT, VectorVal, DAG, Subtarget); 3615 } 3616 3617 MVT M1VT = getLMUL1VT(VectorVal.getSimpleValueType()); 3618 3619 SDValue Mask, VL; 3620 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 3621 3622 // FIXME: This is a VLMAX splat which might be too large and can prevent 3623 // vsetvli removal. 3624 SDValue ScalarSplat = DAG.getSplatVector(M1VT, DL, ScalarVal); 3625 SDValue Reduction = 3626 DAG.getNode(RVVOpcode, DL, M1VT, VectorVal, ScalarSplat, Mask, VL); 3627 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction, 3628 DAG.getConstant(0, DL, Subtarget.getXLenVT())); 3629 } 3630 3631 SDValue RISCVTargetLowering::lowerINSERT_SUBVECTOR(SDValue Op, 3632 SelectionDAG &DAG) const { 3633 SDValue Vec = Op.getOperand(0); 3634 SDValue SubVec = Op.getOperand(1); 3635 MVT VecVT = Vec.getSimpleValueType(); 3636 MVT SubVecVT = SubVec.getSimpleValueType(); 3637 3638 SDLoc DL(Op); 3639 MVT XLenVT = Subtarget.getXLenVT(); 3640 unsigned OrigIdx = Op.getConstantOperandVal(2); 3641 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 3642 3643 // We don't have the ability to slide mask vectors up indexed by their i1 3644 // elements; the smallest we can do is i8. Often we are able to bitcast to 3645 // equivalent i8 vectors. Note that when inserting a fixed-length vector 3646 // into a scalable one, we might not necessarily have enough scalable 3647 // elements to safely divide by 8: nxv1i1 = insert nxv1i1, v4i1 is valid. 3648 if (SubVecVT.getVectorElementType() == MVT::i1 && 3649 (OrigIdx != 0 || !Vec.isUndef())) { 3650 if (VecVT.getVectorMinNumElements() >= 8 && 3651 SubVecVT.getVectorMinNumElements() >= 8) { 3652 assert(OrigIdx % 8 == 0 && "Invalid index"); 3653 assert(VecVT.getVectorMinNumElements() % 8 == 0 && 3654 SubVecVT.getVectorMinNumElements() % 8 == 0 && 3655 "Unexpected mask vector lowering"); 3656 OrigIdx /= 8; 3657 SubVecVT = 3658 MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8, 3659 SubVecVT.isScalableVector()); 3660 VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8, 3661 VecVT.isScalableVector()); 3662 Vec = DAG.getBitcast(VecVT, Vec); 3663 SubVec = DAG.getBitcast(SubVecVT, SubVec); 3664 } else { 3665 // We can't slide this mask vector up indexed by its i1 elements. 3666 // This poses a problem when we wish to insert a scalable vector which 3667 // can't be re-expressed as a larger type. Just choose the slow path and 3668 // extend to a larger type, then truncate back down. 3669 MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8); 3670 MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8); 3671 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec); 3672 SubVec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtSubVecVT, SubVec); 3673 Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ExtVecVT, Vec, SubVec, 3674 Op.getOperand(2)); 3675 SDValue SplatZero = DAG.getConstant(0, DL, ExtVecVT); 3676 return DAG.getSetCC(DL, VecVT, Vec, SplatZero, ISD::SETNE); 3677 } 3678 } 3679 3680 // If the subvector vector is a fixed-length type, we cannot use subregister 3681 // manipulation to simplify the codegen; we don't know which register of a 3682 // LMUL group contains the specific subvector as we only know the minimum 3683 // register size. Therefore we must slide the vector group up the full 3684 // amount. 3685 if (SubVecVT.isFixedLengthVector()) { 3686 if (OrigIdx == 0 && Vec.isUndef()) 3687 return Op; 3688 MVT ContainerVT = VecVT; 3689 if (VecVT.isFixedLengthVector()) { 3690 ContainerVT = getContainerForFixedLengthVector(VecVT); 3691 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 3692 } 3693 SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ContainerVT, 3694 DAG.getUNDEF(ContainerVT), SubVec, 3695 DAG.getConstant(0, DL, XLenVT)); 3696 SDValue Mask = 3697 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first; 3698 // Set the vector length to only the number of elements we care about. Note 3699 // that for slideup this includes the offset. 3700 SDValue VL = 3701 DAG.getConstant(OrigIdx + SubVecVT.getVectorNumElements(), DL, XLenVT); 3702 SDValue SlideupAmt = DAG.getConstant(OrigIdx, DL, XLenVT); 3703 SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec, 3704 SubVec, SlideupAmt, Mask, VL); 3705 if (VecVT.isFixedLengthVector()) 3706 Slideup = convertFromScalableVector(VecVT, Slideup, DAG, Subtarget); 3707 return DAG.getBitcast(Op.getValueType(), Slideup); 3708 } 3709 3710 unsigned SubRegIdx, RemIdx; 3711 std::tie(SubRegIdx, RemIdx) = 3712 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( 3713 VecVT, SubVecVT, OrigIdx, TRI); 3714 3715 RISCVVLMUL SubVecLMUL = RISCVTargetLowering::getLMUL(SubVecVT); 3716 bool IsSubVecPartReg = SubVecLMUL == RISCVVLMUL::LMUL_F2 || 3717 SubVecLMUL == RISCVVLMUL::LMUL_F4 || 3718 SubVecLMUL == RISCVVLMUL::LMUL_F8; 3719 3720 // 1. If the Idx has been completely eliminated and this subvector's size is 3721 // a vector register or a multiple thereof, or the surrounding elements are 3722 // undef, then this is a subvector insert which naturally aligns to a vector 3723 // register. These can easily be handled using subregister manipulation. 3724 // 2. If the subvector is smaller than a vector register, then the insertion 3725 // must preserve the undisturbed elements of the register. We do this by 3726 // lowering to an EXTRACT_SUBVECTOR grabbing the nearest LMUL=1 vector type 3727 // (which resolves to a subregister copy), performing a VSLIDEUP to place the 3728 // subvector within the vector register, and an INSERT_SUBVECTOR of that 3729 // LMUL=1 type back into the larger vector (resolving to another subregister 3730 // operation). See below for how our VSLIDEUP works. We go via a LMUL=1 type 3731 // to avoid allocating a large register group to hold our subvector. 3732 if (RemIdx == 0 && (!IsSubVecPartReg || Vec.isUndef())) 3733 return Op; 3734 3735 // VSLIDEUP works by leaving elements 0<i<OFFSET undisturbed, elements 3736 // OFFSET<=i<VL set to the "subvector" and vl<=i<VLMAX set to the tail policy 3737 // (in our case undisturbed). This means we can set up a subvector insertion 3738 // where OFFSET is the insertion offset, and the VL is the OFFSET plus the 3739 // size of the subvector. 3740 MVT InterSubVT = VecVT; 3741 SDValue AlignedExtract = Vec; 3742 unsigned AlignedIdx = OrigIdx - RemIdx; 3743 if (VecVT.bitsGT(getLMUL1VT(VecVT))) { 3744 InterSubVT = getLMUL1VT(VecVT); 3745 // Extract a subvector equal to the nearest full vector register type. This 3746 // should resolve to a EXTRACT_SUBREG instruction. 3747 AlignedExtract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec, 3748 DAG.getConstant(AlignedIdx, DL, XLenVT)); 3749 } 3750 3751 SDValue SlideupAmt = DAG.getConstant(RemIdx, DL, XLenVT); 3752 // For scalable vectors this must be further multiplied by vscale. 3753 SlideupAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlideupAmt); 3754 3755 SDValue Mask, VL; 3756 std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget); 3757 3758 // Construct the vector length corresponding to RemIdx + length(SubVecVT). 3759 VL = DAG.getConstant(SubVecVT.getVectorMinNumElements(), DL, XLenVT); 3760 VL = DAG.getNode(ISD::VSCALE, DL, XLenVT, VL); 3761 VL = DAG.getNode(ISD::ADD, DL, XLenVT, SlideupAmt, VL); 3762 3763 SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, InterSubVT, 3764 DAG.getUNDEF(InterSubVT), SubVec, 3765 DAG.getConstant(0, DL, XLenVT)); 3766 3767 SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, InterSubVT, 3768 AlignedExtract, SubVec, SlideupAmt, Mask, VL); 3769 3770 // If required, insert this subvector back into the correct vector register. 3771 // This should resolve to an INSERT_SUBREG instruction. 3772 if (VecVT.bitsGT(InterSubVT)) 3773 Slideup = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, Vec, Slideup, 3774 DAG.getConstant(AlignedIdx, DL, XLenVT)); 3775 3776 // We might have bitcast from a mask type: cast back to the original type if 3777 // required. 3778 return DAG.getBitcast(Op.getSimpleValueType(), Slideup); 3779 } 3780 3781 SDValue RISCVTargetLowering::lowerEXTRACT_SUBVECTOR(SDValue Op, 3782 SelectionDAG &DAG) const { 3783 SDValue Vec = Op.getOperand(0); 3784 MVT SubVecVT = Op.getSimpleValueType(); 3785 MVT VecVT = Vec.getSimpleValueType(); 3786 3787 SDLoc DL(Op); 3788 MVT XLenVT = Subtarget.getXLenVT(); 3789 unsigned OrigIdx = Op.getConstantOperandVal(1); 3790 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 3791 3792 // We don't have the ability to slide mask vectors down indexed by their i1 3793 // elements; the smallest we can do is i8. Often we are able to bitcast to 3794 // equivalent i8 vectors. Note that when extracting a fixed-length vector 3795 // from a scalable one, we might not necessarily have enough scalable 3796 // elements to safely divide by 8: v8i1 = extract nxv1i1 is valid. 3797 if (SubVecVT.getVectorElementType() == MVT::i1 && OrigIdx != 0) { 3798 if (VecVT.getVectorMinNumElements() >= 8 && 3799 SubVecVT.getVectorMinNumElements() >= 8) { 3800 assert(OrigIdx % 8 == 0 && "Invalid index"); 3801 assert(VecVT.getVectorMinNumElements() % 8 == 0 && 3802 SubVecVT.getVectorMinNumElements() % 8 == 0 && 3803 "Unexpected mask vector lowering"); 3804 OrigIdx /= 8; 3805 SubVecVT = 3806 MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8, 3807 SubVecVT.isScalableVector()); 3808 VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8, 3809 VecVT.isScalableVector()); 3810 Vec = DAG.getBitcast(VecVT, Vec); 3811 } else { 3812 // We can't slide this mask vector down, indexed by its i1 elements. 3813 // This poses a problem when we wish to extract a scalable vector which 3814 // can't be re-expressed as a larger type. Just choose the slow path and 3815 // extend to a larger type, then truncate back down. 3816 // TODO: We could probably improve this when extracting certain fixed 3817 // from fixed, where we can extract as i8 and shift the correct element 3818 // right to reach the desired subvector? 3819 MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8); 3820 MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8); 3821 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec); 3822 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ExtSubVecVT, Vec, 3823 Op.getOperand(1)); 3824 SDValue SplatZero = DAG.getConstant(0, DL, ExtSubVecVT); 3825 return DAG.getSetCC(DL, SubVecVT, Vec, SplatZero, ISD::SETNE); 3826 } 3827 } 3828 3829 // If the subvector vector is a fixed-length type, we cannot use subregister 3830 // manipulation to simplify the codegen; we don't know which register of a 3831 // LMUL group contains the specific subvector as we only know the minimum 3832 // register size. Therefore we must slide the vector group down the full 3833 // amount. 3834 if (SubVecVT.isFixedLengthVector()) { 3835 // With an index of 0 this is a cast-like subvector, which can be performed 3836 // with subregister operations. 3837 if (OrigIdx == 0) 3838 return Op; 3839 MVT ContainerVT = VecVT; 3840 if (VecVT.isFixedLengthVector()) { 3841 ContainerVT = getContainerForFixedLengthVector(VecVT); 3842 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 3843 } 3844 SDValue Mask = 3845 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first; 3846 // Set the vector length to only the number of elements we care about. This 3847 // avoids sliding down elements we're going to discard straight away. 3848 SDValue VL = DAG.getConstant(SubVecVT.getVectorNumElements(), DL, XLenVT); 3849 SDValue SlidedownAmt = DAG.getConstant(OrigIdx, DL, XLenVT); 3850 SDValue Slidedown = 3851 DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 3852 DAG.getUNDEF(ContainerVT), Vec, SlidedownAmt, Mask, VL); 3853 // Now we can use a cast-like subvector extract to get the result. 3854 Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown, 3855 DAG.getConstant(0, DL, XLenVT)); 3856 return DAG.getBitcast(Op.getValueType(), Slidedown); 3857 } 3858 3859 unsigned SubRegIdx, RemIdx; 3860 std::tie(SubRegIdx, RemIdx) = 3861 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( 3862 VecVT, SubVecVT, OrigIdx, TRI); 3863 3864 // If the Idx has been completely eliminated then this is a subvector extract 3865 // which naturally aligns to a vector register. These can easily be handled 3866 // using subregister manipulation. 3867 if (RemIdx == 0) 3868 return Op; 3869 3870 // Else we must shift our vector register directly to extract the subvector. 3871 // Do this using VSLIDEDOWN. 3872 3873 // If the vector type is an LMUL-group type, extract a subvector equal to the 3874 // nearest full vector register type. This should resolve to a EXTRACT_SUBREG 3875 // instruction. 3876 MVT InterSubVT = VecVT; 3877 if (VecVT.bitsGT(getLMUL1VT(VecVT))) { 3878 InterSubVT = getLMUL1VT(VecVT); 3879 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec, 3880 DAG.getConstant(OrigIdx - RemIdx, DL, XLenVT)); 3881 } 3882 3883 // Slide this vector register down by the desired number of elements in order 3884 // to place the desired subvector starting at element 0. 3885 SDValue SlidedownAmt = DAG.getConstant(RemIdx, DL, XLenVT); 3886 // For scalable vectors this must be further multiplied by vscale. 3887 SlidedownAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlidedownAmt); 3888 3889 SDValue Mask, VL; 3890 std::tie(Mask, VL) = getDefaultScalableVLOps(InterSubVT, DL, DAG, Subtarget); 3891 SDValue Slidedown = 3892 DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, InterSubVT, 3893 DAG.getUNDEF(InterSubVT), Vec, SlidedownAmt, Mask, VL); 3894 3895 // Now the vector is in the right position, extract our final subvector. This 3896 // should resolve to a COPY. 3897 Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown, 3898 DAG.getConstant(0, DL, XLenVT)); 3899 3900 // We might have bitcast from a mask type: cast back to the original type if 3901 // required. 3902 return DAG.getBitcast(Op.getSimpleValueType(), Slidedown); 3903 } 3904 3905 // Lower step_vector to the vid instruction. Any non-identity step value must 3906 // be accounted for my manual expansion. 3907 SDValue RISCVTargetLowering::lowerSTEP_VECTOR(SDValue Op, 3908 SelectionDAG &DAG) const { 3909 SDLoc DL(Op); 3910 MVT VT = Op.getSimpleValueType(); 3911 MVT XLenVT = Subtarget.getXLenVT(); 3912 SDValue Mask, VL; 3913 std::tie(Mask, VL) = getDefaultScalableVLOps(VT, DL, DAG, Subtarget); 3914 SDValue StepVec = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL); 3915 uint64_t StepValImm = Op.getConstantOperandVal(0); 3916 if (StepValImm != 1) { 3917 assert(Op.getOperand(0).getValueType() == XLenVT && 3918 "Unexpected step value type"); 3919 if (isPowerOf2_64(StepValImm)) { 3920 SDValue StepVal = 3921 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, 3922 DAG.getConstant(Log2_64(StepValImm), DL, XLenVT)); 3923 StepVec = DAG.getNode(ISD::SHL, DL, VT, StepVec, StepVal); 3924 } else { 3925 SDValue StepVal = 3926 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Op.getOperand(0)); 3927 StepVec = DAG.getNode(ISD::MUL, DL, VT, StepVec, StepVal); 3928 } 3929 } 3930 return StepVec; 3931 } 3932 3933 // Implement vector_reverse using vrgather.vv with indices determined by 3934 // subtracting the id of each element from (VLMAX-1). This will convert 3935 // the indices like so: 3936 // (0, 1,..., VLMAX-2, VLMAX-1) -> (VLMAX-1, VLMAX-2,..., 1, 0). 3937 // TODO: This code assumes VLMAX <= 65536 for LMUL=8 SEW=16. 3938 SDValue RISCVTargetLowering::lowerVECTOR_REVERSE(SDValue Op, 3939 SelectionDAG &DAG) const { 3940 SDLoc DL(Op); 3941 MVT VecVT = Op.getSimpleValueType(); 3942 unsigned EltSize = VecVT.getScalarSizeInBits(); 3943 unsigned MinSize = VecVT.getSizeInBits().getKnownMinValue(); 3944 3945 unsigned MaxVLMAX = 0; 3946 unsigned VectorBitsMax = Subtarget.getMaxRVVVectorSizeInBits(); 3947 if (VectorBitsMax != 0) 3948 MaxVLMAX = ((VectorBitsMax / EltSize) * MinSize) / RISCV::RVVBitsPerBlock; 3949 3950 unsigned GatherOpc = RISCVISD::VRGATHER_VV_VL; 3951 MVT IntVT = VecVT.changeVectorElementTypeToInteger(); 3952 3953 // If this is SEW=8 and VLMAX is unknown or more than 256, we need 3954 // to use vrgatherei16.vv. 3955 // TODO: It's also possible to use vrgatherei16.vv for other types to 3956 // decrease register width for the index calculation. 3957 if ((MaxVLMAX == 0 || MaxVLMAX > 256) && EltSize == 8) { 3958 // If this is LMUL=8, we have to split before can use vrgatherei16.vv. 3959 // Reverse each half, then reassemble them in reverse order. 3960 // NOTE: It's also possible that after splitting that VLMAX no longer 3961 // requires vrgatherei16.vv. 3962 if (MinSize == (8 * RISCV::RVVBitsPerBlock)) { 3963 SDValue Lo, Hi; 3964 std::tie(Lo, Hi) = DAG.SplitVectorOperand(Op.getNode(), 0); 3965 EVT LoVT, HiVT; 3966 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VecVT); 3967 Lo = DAG.getNode(ISD::VECTOR_REVERSE, DL, LoVT, Lo); 3968 Hi = DAG.getNode(ISD::VECTOR_REVERSE, DL, HiVT, Hi); 3969 // Reassemble the low and high pieces reversed. 3970 // FIXME: This is a CONCAT_VECTORS. 3971 SDValue Res = 3972 DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, DAG.getUNDEF(VecVT), Hi, 3973 DAG.getIntPtrConstant(0, DL)); 3974 return DAG.getNode( 3975 ISD::INSERT_SUBVECTOR, DL, VecVT, Res, Lo, 3976 DAG.getIntPtrConstant(LoVT.getVectorMinNumElements(), DL)); 3977 } 3978 3979 // Just promote the int type to i16 which will double the LMUL. 3980 IntVT = MVT::getVectorVT(MVT::i16, VecVT.getVectorElementCount()); 3981 GatherOpc = RISCVISD::VRGATHEREI16_VV_VL; 3982 } 3983 3984 MVT XLenVT = Subtarget.getXLenVT(); 3985 SDValue Mask, VL; 3986 std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget); 3987 3988 // Calculate VLMAX-1 for the desired SEW. 3989 unsigned MinElts = VecVT.getVectorMinNumElements(); 3990 SDValue VLMax = DAG.getNode(ISD::VSCALE, DL, XLenVT, 3991 DAG.getConstant(MinElts, DL, XLenVT)); 3992 SDValue VLMinus1 = 3993 DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, DAG.getConstant(1, DL, XLenVT)); 3994 3995 // Splat VLMAX-1 taking care to handle SEW==64 on RV32. 3996 bool IsRV32E64 = 3997 !Subtarget.is64Bit() && IntVT.getVectorElementType() == MVT::i64; 3998 SDValue SplatVL; 3999 if (!IsRV32E64) 4000 SplatVL = DAG.getSplatVector(IntVT, DL, VLMinus1); 4001 else 4002 SplatVL = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, IntVT, VLMinus1); 4003 4004 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, IntVT, Mask, VL); 4005 SDValue Indices = 4006 DAG.getNode(RISCVISD::SUB_VL, DL, IntVT, SplatVL, VID, Mask, VL); 4007 4008 return DAG.getNode(GatherOpc, DL, VecVT, Op.getOperand(0), Indices, Mask, VL); 4009 } 4010 4011 SDValue 4012 RISCVTargetLowering::lowerFixedLengthVectorLoadToRVV(SDValue Op, 4013 SelectionDAG &DAG) const { 4014 auto *Load = cast<LoadSDNode>(Op); 4015 4016 SDLoc DL(Op); 4017 MVT VT = Op.getSimpleValueType(); 4018 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4019 4020 SDValue VL = 4021 DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT()); 4022 4023 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 4024 SDValue NewLoad = DAG.getMemIntrinsicNode( 4025 RISCVISD::VLE_VL, DL, VTs, {Load->getChain(), Load->getBasePtr(), VL}, 4026 Load->getMemoryVT(), Load->getMemOperand()); 4027 4028 SDValue Result = convertFromScalableVector(VT, NewLoad, DAG, Subtarget); 4029 return DAG.getMergeValues({Result, Load->getChain()}, DL); 4030 } 4031 4032 SDValue 4033 RISCVTargetLowering::lowerFixedLengthVectorStoreToRVV(SDValue Op, 4034 SelectionDAG &DAG) const { 4035 auto *Store = cast<StoreSDNode>(Op); 4036 4037 SDLoc DL(Op); 4038 SDValue StoreVal = Store->getValue(); 4039 MVT VT = StoreVal.getSimpleValueType(); 4040 4041 // If the size less than a byte, we need to pad with zeros to make a byte. 4042 if (VT.getVectorElementType() == MVT::i1 && VT.getVectorNumElements() < 8) { 4043 VT = MVT::v8i1; 4044 StoreVal = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, 4045 DAG.getConstant(0, DL, VT), StoreVal, 4046 DAG.getIntPtrConstant(0, DL)); 4047 } 4048 4049 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4050 4051 SDValue VL = 4052 DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT()); 4053 4054 SDValue NewValue = 4055 convertToScalableVector(ContainerVT, StoreVal, DAG, Subtarget); 4056 return DAG.getMemIntrinsicNode( 4057 RISCVISD::VSE_VL, DL, DAG.getVTList(MVT::Other), 4058 {Store->getChain(), NewValue, Store->getBasePtr(), VL}, 4059 Store->getMemoryVT(), Store->getMemOperand()); 4060 } 4061 4062 SDValue RISCVTargetLowering::lowerMLOAD(SDValue Op, SelectionDAG &DAG) const { 4063 auto *Load = cast<MaskedLoadSDNode>(Op); 4064 4065 SDLoc DL(Op); 4066 MVT VT = Op.getSimpleValueType(); 4067 MVT XLenVT = Subtarget.getXLenVT(); 4068 4069 SDValue Mask = Load->getMask(); 4070 SDValue PassThru = Load->getPassThru(); 4071 SDValue VL; 4072 4073 MVT ContainerVT = VT; 4074 if (VT.isFixedLengthVector()) { 4075 ContainerVT = getContainerForFixedLengthVector(VT); 4076 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4077 4078 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 4079 PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget); 4080 VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT); 4081 } else 4082 VL = DAG.getRegister(RISCV::X0, XLenVT); 4083 4084 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 4085 SDValue IntID = DAG.getTargetConstant(Intrinsic::riscv_vle_mask, DL, XLenVT); 4086 SDValue Ops[] = {Load->getChain(), IntID, PassThru, 4087 Load->getBasePtr(), Mask, VL}; 4088 SDValue Result = 4089 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, 4090 Load->getMemoryVT(), Load->getMemOperand()); 4091 SDValue Chain = Result.getValue(1); 4092 4093 if (VT.isFixedLengthVector()) 4094 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 4095 4096 return DAG.getMergeValues({Result, Chain}, DL); 4097 } 4098 4099 SDValue RISCVTargetLowering::lowerMSTORE(SDValue Op, SelectionDAG &DAG) const { 4100 auto *Store = cast<MaskedStoreSDNode>(Op); 4101 4102 SDLoc DL(Op); 4103 SDValue Val = Store->getValue(); 4104 SDValue Mask = Store->getMask(); 4105 MVT VT = Val.getSimpleValueType(); 4106 MVT XLenVT = Subtarget.getXLenVT(); 4107 SDValue VL; 4108 4109 MVT ContainerVT = VT; 4110 if (VT.isFixedLengthVector()) { 4111 ContainerVT = getContainerForFixedLengthVector(VT); 4112 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4113 4114 Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget); 4115 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 4116 VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT); 4117 } else 4118 VL = DAG.getRegister(RISCV::X0, XLenVT); 4119 4120 SDValue IntID = DAG.getTargetConstant(Intrinsic::riscv_vse_mask, DL, XLenVT); 4121 return DAG.getMemIntrinsicNode( 4122 ISD::INTRINSIC_VOID, DL, DAG.getVTList(MVT::Other), 4123 {Store->getChain(), IntID, Val, Store->getBasePtr(), Mask, VL}, 4124 Store->getMemoryVT(), Store->getMemOperand()); 4125 } 4126 4127 SDValue 4128 RISCVTargetLowering::lowerFixedLengthVectorSetccToRVV(SDValue Op, 4129 SelectionDAG &DAG) const { 4130 MVT InVT = Op.getOperand(0).getSimpleValueType(); 4131 MVT ContainerVT = getContainerForFixedLengthVector(InVT); 4132 4133 MVT VT = Op.getSimpleValueType(); 4134 4135 SDValue Op1 = 4136 convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget); 4137 SDValue Op2 = 4138 convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget); 4139 4140 SDLoc DL(Op); 4141 SDValue VL = 4142 DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT()); 4143 4144 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4145 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 4146 4147 SDValue Cmp = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, Op1, Op2, 4148 Op.getOperand(2), Mask, VL); 4149 4150 return convertFromScalableVector(VT, Cmp, DAG, Subtarget); 4151 } 4152 4153 SDValue RISCVTargetLowering::lowerFixedLengthVectorLogicOpToRVV( 4154 SDValue Op, SelectionDAG &DAG, unsigned MaskOpc, unsigned VecOpc) const { 4155 MVT VT = Op.getSimpleValueType(); 4156 4157 if (VT.getVectorElementType() == MVT::i1) 4158 return lowerToScalableOp(Op, DAG, MaskOpc, /*HasMask*/ false); 4159 4160 return lowerToScalableOp(Op, DAG, VecOpc, /*HasMask*/ true); 4161 } 4162 4163 // Lower vector ABS to smax(X, sub(0, X)). 4164 SDValue RISCVTargetLowering::lowerABS(SDValue Op, SelectionDAG &DAG) const { 4165 SDLoc DL(Op); 4166 MVT VT = Op.getSimpleValueType(); 4167 SDValue X = Op.getOperand(0); 4168 4169 assert(VT.isFixedLengthVector() && "Unexpected type"); 4170 4171 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4172 X = convertToScalableVector(ContainerVT, X, DAG, Subtarget); 4173 4174 SDValue Mask, VL; 4175 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 4176 4177 SDValue SplatZero = 4178 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, 4179 DAG.getConstant(0, DL, Subtarget.getXLenVT())); 4180 SDValue NegX = 4181 DAG.getNode(RISCVISD::SUB_VL, DL, ContainerVT, SplatZero, X, Mask, VL); 4182 SDValue Max = 4183 DAG.getNode(RISCVISD::SMAX_VL, DL, ContainerVT, X, NegX, Mask, VL); 4184 4185 return convertFromScalableVector(VT, Max, DAG, Subtarget); 4186 } 4187 4188 SDValue RISCVTargetLowering::lowerFixedLengthVectorFCOPYSIGNToRVV( 4189 SDValue Op, SelectionDAG &DAG) const { 4190 SDLoc DL(Op); 4191 MVT VT = Op.getSimpleValueType(); 4192 SDValue Mag = Op.getOperand(0); 4193 SDValue Sign = Op.getOperand(1); 4194 assert(Mag.getValueType() == Sign.getValueType() && 4195 "Can only handle COPYSIGN with matching types."); 4196 4197 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4198 Mag = convertToScalableVector(ContainerVT, Mag, DAG, Subtarget); 4199 Sign = convertToScalableVector(ContainerVT, Sign, DAG, Subtarget); 4200 4201 SDValue Mask, VL; 4202 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 4203 4204 SDValue CopySign = 4205 DAG.getNode(RISCVISD::FCOPYSIGN_VL, DL, ContainerVT, Mag, Sign, Mask, VL); 4206 4207 return convertFromScalableVector(VT, CopySign, DAG, Subtarget); 4208 } 4209 4210 SDValue RISCVTargetLowering::lowerFixedLengthVectorSelectToRVV( 4211 SDValue Op, SelectionDAG &DAG) const { 4212 MVT VT = Op.getSimpleValueType(); 4213 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4214 4215 MVT I1ContainerVT = 4216 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4217 4218 SDValue CC = 4219 convertToScalableVector(I1ContainerVT, Op.getOperand(0), DAG, Subtarget); 4220 SDValue Op1 = 4221 convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget); 4222 SDValue Op2 = 4223 convertToScalableVector(ContainerVT, Op.getOperand(2), DAG, Subtarget); 4224 4225 SDLoc DL(Op); 4226 SDValue Mask, VL; 4227 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 4228 4229 SDValue Select = 4230 DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC, Op1, Op2, VL); 4231 4232 return convertFromScalableVector(VT, Select, DAG, Subtarget); 4233 } 4234 4235 SDValue RISCVTargetLowering::lowerToScalableOp(SDValue Op, SelectionDAG &DAG, 4236 unsigned NewOpc, 4237 bool HasMask) const { 4238 MVT VT = Op.getSimpleValueType(); 4239 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4240 4241 // Create list of operands by converting existing ones to scalable types. 4242 SmallVector<SDValue, 6> Ops; 4243 for (const SDValue &V : Op->op_values()) { 4244 assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!"); 4245 4246 // Pass through non-vector operands. 4247 if (!V.getValueType().isVector()) { 4248 Ops.push_back(V); 4249 continue; 4250 } 4251 4252 // "cast" fixed length vector to a scalable vector. 4253 assert(useRVVForFixedLengthVectorVT(V.getSimpleValueType()) && 4254 "Only fixed length vectors are supported!"); 4255 Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget)); 4256 } 4257 4258 SDLoc DL(Op); 4259 SDValue Mask, VL; 4260 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 4261 if (HasMask) 4262 Ops.push_back(Mask); 4263 Ops.push_back(VL); 4264 4265 SDValue ScalableRes = DAG.getNode(NewOpc, DL, ContainerVT, Ops); 4266 return convertFromScalableVector(VT, ScalableRes, DAG, Subtarget); 4267 } 4268 4269 // Lower a VP_* ISD node to the corresponding RISCVISD::*_VL node: 4270 // * Operands of each node are assumed to be in the same order. 4271 // * The EVL operand is promoted from i32 to i64 on RV64. 4272 // * Fixed-length vectors are converted to their scalable-vector container 4273 // types. 4274 SDValue RISCVTargetLowering::lowerVPOp(SDValue Op, SelectionDAG &DAG, 4275 unsigned RISCVISDOpc) const { 4276 SDLoc DL(Op); 4277 MVT VT = Op.getSimpleValueType(); 4278 Optional<unsigned> EVLIdx = ISD::getVPExplicitVectorLengthIdx(Op.getOpcode()); 4279 4280 SmallVector<SDValue, 4> Ops; 4281 MVT XLenVT = Subtarget.getXLenVT(); 4282 4283 for (const auto &OpIdx : enumerate(Op->ops())) { 4284 SDValue V = OpIdx.value(); 4285 if ((unsigned)OpIdx.index() == EVLIdx) { 4286 Ops.push_back(DAG.getZExtOrTrunc(V, DL, XLenVT)); 4287 continue; 4288 } 4289 assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!"); 4290 // Pass through operands which aren't fixed-length vectors. 4291 if (!V.getValueType().isFixedLengthVector()) { 4292 Ops.push_back(V); 4293 continue; 4294 } 4295 // "cast" fixed length vector to a scalable vector. 4296 MVT OpVT = V.getSimpleValueType(); 4297 MVT ContainerVT = getContainerForFixedLengthVector(OpVT); 4298 assert(useRVVForFixedLengthVectorVT(OpVT) && 4299 "Only fixed length vectors are supported!"); 4300 Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget)); 4301 } 4302 4303 if (!VT.isFixedLengthVector()) 4304 return DAG.getNode(RISCVISDOpc, DL, VT, Ops); 4305 4306 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4307 4308 SDValue VPOp = DAG.getNode(RISCVISDOpc, DL, ContainerVT, Ops); 4309 4310 return convertFromScalableVector(VT, VPOp, DAG, Subtarget); 4311 } 4312 4313 // Custom lower MGATHER to a legalized form for RVV. It will then be matched to 4314 // a RVV indexed load. The RVV indexed load instructions only support the 4315 // "unsigned unscaled" addressing mode; indices are implicitly zero-extended or 4316 // truncated to XLEN and are treated as byte offsets. Any signed or scaled 4317 // indexing is extended to the XLEN value type and scaled accordingly. 4318 SDValue RISCVTargetLowering::lowerMGATHER(SDValue Op, SelectionDAG &DAG) const { 4319 auto *MGN = cast<MaskedGatherSDNode>(Op.getNode()); 4320 SDLoc DL(Op); 4321 4322 SDValue Index = MGN->getIndex(); 4323 SDValue Mask = MGN->getMask(); 4324 SDValue PassThru = MGN->getPassThru(); 4325 4326 MVT VT = Op.getSimpleValueType(); 4327 MVT IndexVT = Index.getSimpleValueType(); 4328 MVT XLenVT = Subtarget.getXLenVT(); 4329 4330 assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() && 4331 "Unexpected VTs!"); 4332 assert(MGN->getBasePtr().getSimpleValueType() == XLenVT && 4333 "Unexpected pointer type"); 4334 // Targets have to explicitly opt-in for extending vector loads. 4335 assert(MGN->getExtensionType() == ISD::NON_EXTLOAD && 4336 "Unexpected extending MGATHER"); 4337 4338 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 4339 // the selection of the masked intrinsics doesn't do this for us. 4340 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 4341 4342 SDValue VL; 4343 MVT ContainerVT = VT; 4344 if (VT.isFixedLengthVector()) { 4345 // We need to use the larger of the result and index type to determine the 4346 // scalable type to use so we don't increase LMUL for any operand/result. 4347 if (VT.bitsGE(IndexVT)) { 4348 ContainerVT = getContainerForFixedLengthVector(VT); 4349 IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(), 4350 ContainerVT.getVectorElementCount()); 4351 } else { 4352 IndexVT = getContainerForFixedLengthVector(IndexVT); 4353 ContainerVT = MVT::getVectorVT(ContainerVT.getVectorElementType(), 4354 IndexVT.getVectorElementCount()); 4355 } 4356 4357 Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget); 4358 4359 if (!IsUnmasked) { 4360 MVT MaskVT = 4361 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4362 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 4363 PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget); 4364 } 4365 4366 VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT); 4367 } else 4368 VL = DAG.getRegister(RISCV::X0, XLenVT); 4369 4370 unsigned IntID = 4371 IsUnmasked ? Intrinsic::riscv_vloxei : Intrinsic::riscv_vloxei_mask; 4372 SmallVector<SDValue, 8> Ops{MGN->getChain(), 4373 DAG.getTargetConstant(IntID, DL, XLenVT)}; 4374 if (!IsUnmasked) 4375 Ops.push_back(PassThru); 4376 Ops.push_back(MGN->getBasePtr()); 4377 Ops.push_back(Index); 4378 if (!IsUnmasked) 4379 Ops.push_back(Mask); 4380 Ops.push_back(VL); 4381 4382 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 4383 SDValue Result = 4384 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, 4385 MGN->getMemoryVT(), MGN->getMemOperand()); 4386 SDValue Chain = Result.getValue(1); 4387 4388 if (VT.isFixedLengthVector()) 4389 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 4390 4391 return DAG.getMergeValues({Result, Chain}, DL); 4392 } 4393 4394 // Custom lower MSCATTER to a legalized form for RVV. It will then be matched to 4395 // a RVV indexed store. The RVV indexed store instructions only support the 4396 // "unsigned unscaled" addressing mode; indices are implicitly zero-extended or 4397 // truncated to XLEN and are treated as byte offsets. Any signed or scaled 4398 // indexing is extended to the XLEN value type and scaled accordingly. 4399 SDValue RISCVTargetLowering::lowerMSCATTER(SDValue Op, 4400 SelectionDAG &DAG) const { 4401 auto *MSN = cast<MaskedScatterSDNode>(Op.getNode()); 4402 SDLoc DL(Op); 4403 SDValue Index = MSN->getIndex(); 4404 SDValue Mask = MSN->getMask(); 4405 SDValue Val = MSN->getValue(); 4406 4407 MVT VT = Val.getSimpleValueType(); 4408 MVT IndexVT = Index.getSimpleValueType(); 4409 MVT XLenVT = Subtarget.getXLenVT(); 4410 4411 assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() && 4412 "Unexpected VTs!"); 4413 assert(MSN->getBasePtr().getSimpleValueType() == XLenVT && 4414 "Unexpected pointer type"); 4415 // Targets have to explicitly opt-in for extending vector loads and 4416 // truncating vector stores. 4417 assert(!MSN->isTruncatingStore() && "Unexpected extending MSCATTER"); 4418 4419 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 4420 // the selection of the masked intrinsics doesn't do this for us. 4421 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 4422 4423 SDValue VL; 4424 if (VT.isFixedLengthVector()) { 4425 // We need to use the larger of the value and index type to determine the 4426 // scalable type to use so we don't increase LMUL for any operand/result. 4427 if (VT.bitsGE(IndexVT)) { 4428 VT = getContainerForFixedLengthVector(VT); 4429 IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(), 4430 VT.getVectorElementCount()); 4431 } else { 4432 IndexVT = getContainerForFixedLengthVector(IndexVT); 4433 VT = MVT::getVectorVT(VT.getVectorElementType(), 4434 IndexVT.getVectorElementCount()); 4435 } 4436 4437 Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget); 4438 Val = convertToScalableVector(VT, Val, DAG, Subtarget); 4439 4440 if (!IsUnmasked) { 4441 MVT MaskVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount()); 4442 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 4443 } 4444 4445 VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT); 4446 } else 4447 VL = DAG.getRegister(RISCV::X0, XLenVT); 4448 4449 unsigned IntID = 4450 IsUnmasked ? Intrinsic::riscv_vsoxei : Intrinsic::riscv_vsoxei_mask; 4451 SmallVector<SDValue, 8> Ops{MSN->getChain(), 4452 DAG.getTargetConstant(IntID, DL, XLenVT)}; 4453 Ops.push_back(Val); 4454 Ops.push_back(MSN->getBasePtr()); 4455 Ops.push_back(Index); 4456 if (!IsUnmasked) 4457 Ops.push_back(Mask); 4458 Ops.push_back(VL); 4459 4460 return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, MSN->getVTList(), Ops, 4461 MSN->getMemoryVT(), MSN->getMemOperand()); 4462 } 4463 4464 SDValue RISCVTargetLowering::lowerGET_ROUNDING(SDValue Op, 4465 SelectionDAG &DAG) const { 4466 const MVT XLenVT = Subtarget.getXLenVT(); 4467 SDLoc DL(Op); 4468 SDValue Chain = Op->getOperand(0); 4469 SDValue SysRegNo = DAG.getConstant( 4470 RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT); 4471 SDVTList VTs = DAG.getVTList(XLenVT, MVT::Other); 4472 SDValue RM = DAG.getNode(RISCVISD::READ_CSR, DL, VTs, Chain, SysRegNo); 4473 4474 // Encoding used for rounding mode in RISCV differs from that used in 4475 // FLT_ROUNDS. To convert it the RISCV rounding mode is used as an index in a 4476 // table, which consists of a sequence of 4-bit fields, each representing 4477 // corresponding FLT_ROUNDS mode. 4478 static const int Table = 4479 (int(RoundingMode::NearestTiesToEven) << 4 * RISCVFPRndMode::RNE) | 4480 (int(RoundingMode::TowardZero) << 4 * RISCVFPRndMode::RTZ) | 4481 (int(RoundingMode::TowardNegative) << 4 * RISCVFPRndMode::RDN) | 4482 (int(RoundingMode::TowardPositive) << 4 * RISCVFPRndMode::RUP) | 4483 (int(RoundingMode::NearestTiesToAway) << 4 * RISCVFPRndMode::RMM); 4484 4485 SDValue Shift = 4486 DAG.getNode(ISD::SHL, DL, XLenVT, RM, DAG.getConstant(2, DL, XLenVT)); 4487 SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT, 4488 DAG.getConstant(Table, DL, XLenVT), Shift); 4489 SDValue Masked = DAG.getNode(ISD::AND, DL, XLenVT, Shifted, 4490 DAG.getConstant(7, DL, XLenVT)); 4491 4492 return DAG.getMergeValues({Masked, Chain}, DL); 4493 } 4494 4495 SDValue RISCVTargetLowering::lowerSET_ROUNDING(SDValue Op, 4496 SelectionDAG &DAG) const { 4497 const MVT XLenVT = Subtarget.getXLenVT(); 4498 SDLoc DL(Op); 4499 SDValue Chain = Op->getOperand(0); 4500 SDValue RMValue = Op->getOperand(1); 4501 SDValue SysRegNo = DAG.getConstant( 4502 RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT); 4503 4504 // Encoding used for rounding mode in RISCV differs from that used in 4505 // FLT_ROUNDS. To convert it the C rounding mode is used as an index in 4506 // a table, which consists of a sequence of 4-bit fields, each representing 4507 // corresponding RISCV mode. 4508 static const unsigned Table = 4509 (RISCVFPRndMode::RNE << 4 * int(RoundingMode::NearestTiesToEven)) | 4510 (RISCVFPRndMode::RTZ << 4 * int(RoundingMode::TowardZero)) | 4511 (RISCVFPRndMode::RDN << 4 * int(RoundingMode::TowardNegative)) | 4512 (RISCVFPRndMode::RUP << 4 * int(RoundingMode::TowardPositive)) | 4513 (RISCVFPRndMode::RMM << 4 * int(RoundingMode::NearestTiesToAway)); 4514 4515 SDValue Shift = DAG.getNode(ISD::SHL, DL, XLenVT, RMValue, 4516 DAG.getConstant(2, DL, XLenVT)); 4517 SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT, 4518 DAG.getConstant(Table, DL, XLenVT), Shift); 4519 RMValue = DAG.getNode(ISD::AND, DL, XLenVT, Shifted, 4520 DAG.getConstant(0x7, DL, XLenVT)); 4521 return DAG.getNode(RISCVISD::WRITE_CSR, DL, MVT::Other, Chain, SysRegNo, 4522 RMValue); 4523 } 4524 4525 // Returns the opcode of the target-specific SDNode that implements the 32-bit 4526 // form of the given Opcode. 4527 static RISCVISD::NodeType getRISCVWOpcode(unsigned Opcode) { 4528 switch (Opcode) { 4529 default: 4530 llvm_unreachable("Unexpected opcode"); 4531 case ISD::SHL: 4532 return RISCVISD::SLLW; 4533 case ISD::SRA: 4534 return RISCVISD::SRAW; 4535 case ISD::SRL: 4536 return RISCVISD::SRLW; 4537 case ISD::SDIV: 4538 return RISCVISD::DIVW; 4539 case ISD::UDIV: 4540 return RISCVISD::DIVUW; 4541 case ISD::UREM: 4542 return RISCVISD::REMUW; 4543 case ISD::ROTL: 4544 return RISCVISD::ROLW; 4545 case ISD::ROTR: 4546 return RISCVISD::RORW; 4547 case RISCVISD::GREV: 4548 return RISCVISD::GREVW; 4549 case RISCVISD::GORC: 4550 return RISCVISD::GORCW; 4551 } 4552 } 4553 4554 // Converts the given 32-bit operation to a target-specific SelectionDAG node. 4555 // Because i32 isn't a legal type for RV64, these operations would otherwise 4556 // be promoted to i64, making it difficult to select the SLLW/DIVUW/.../*W 4557 // later one because the fact the operation was originally of type i32 is 4558 // lost. 4559 static SDValue customLegalizeToWOp(SDNode *N, SelectionDAG &DAG, 4560 unsigned ExtOpc = ISD::ANY_EXTEND) { 4561 SDLoc DL(N); 4562 RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode()); 4563 SDValue NewOp0 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(0)); 4564 SDValue NewOp1 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(1)); 4565 SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1); 4566 // ReplaceNodeResults requires we maintain the same type for the return value. 4567 return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewRes); 4568 } 4569 4570 // Converts the given 32-bit operation to a i64 operation with signed extension 4571 // semantic to reduce the signed extension instructions. 4572 static SDValue customLegalizeToWOpWithSExt(SDNode *N, SelectionDAG &DAG) { 4573 SDLoc DL(N); 4574 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 4575 SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 4576 SDValue NewWOp = DAG.getNode(N->getOpcode(), DL, MVT::i64, NewOp0, NewOp1); 4577 SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp, 4578 DAG.getValueType(MVT::i32)); 4579 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes); 4580 } 4581 4582 void RISCVTargetLowering::ReplaceNodeResults(SDNode *N, 4583 SmallVectorImpl<SDValue> &Results, 4584 SelectionDAG &DAG) const { 4585 SDLoc DL(N); 4586 switch (N->getOpcode()) { 4587 default: 4588 llvm_unreachable("Don't know how to custom type legalize this operation!"); 4589 case ISD::STRICT_FP_TO_SINT: 4590 case ISD::STRICT_FP_TO_UINT: 4591 case ISD::FP_TO_SINT: 4592 case ISD::FP_TO_UINT: { 4593 bool IsStrict = N->isStrictFPOpcode(); 4594 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 4595 "Unexpected custom legalisation"); 4596 SDValue Op0 = IsStrict ? N->getOperand(1) : N->getOperand(0); 4597 // If the FP type needs to be softened, emit a library call using the 'si' 4598 // version. If we left it to default legalization we'd end up with 'di'. If 4599 // the FP type doesn't need to be softened just let generic type 4600 // legalization promote the result type. 4601 if (getTypeAction(*DAG.getContext(), Op0.getValueType()) != 4602 TargetLowering::TypeSoftenFloat) 4603 return; 4604 RTLIB::Libcall LC; 4605 if (N->getOpcode() == ISD::FP_TO_SINT || 4606 N->getOpcode() == ISD::STRICT_FP_TO_SINT) 4607 LC = RTLIB::getFPTOSINT(Op0.getValueType(), N->getValueType(0)); 4608 else 4609 LC = RTLIB::getFPTOUINT(Op0.getValueType(), N->getValueType(0)); 4610 MakeLibCallOptions CallOptions; 4611 EVT OpVT = Op0.getValueType(); 4612 CallOptions.setTypeListBeforeSoften(OpVT, N->getValueType(0), true); 4613 SDValue Chain = IsStrict ? N->getOperand(0) : SDValue(); 4614 SDValue Result; 4615 std::tie(Result, Chain) = 4616 makeLibCall(DAG, LC, N->getValueType(0), Op0, CallOptions, DL, Chain); 4617 Results.push_back(Result); 4618 if (IsStrict) 4619 Results.push_back(Chain); 4620 break; 4621 } 4622 case ISD::READCYCLECOUNTER: { 4623 assert(!Subtarget.is64Bit() && 4624 "READCYCLECOUNTER only has custom type legalization on riscv32"); 4625 4626 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other); 4627 SDValue RCW = 4628 DAG.getNode(RISCVISD::READ_CYCLE_WIDE, DL, VTs, N->getOperand(0)); 4629 4630 Results.push_back( 4631 DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, RCW, RCW.getValue(1))); 4632 Results.push_back(RCW.getValue(2)); 4633 break; 4634 } 4635 case ISD::MUL: { 4636 unsigned Size = N->getSimpleValueType(0).getSizeInBits(); 4637 unsigned XLen = Subtarget.getXLen(); 4638 // This multiply needs to be expanded, try to use MULHSU+MUL if possible. 4639 if (Size > XLen) { 4640 assert(Size == (XLen * 2) && "Unexpected custom legalisation"); 4641 SDValue LHS = N->getOperand(0); 4642 SDValue RHS = N->getOperand(1); 4643 APInt HighMask = APInt::getHighBitsSet(Size, XLen); 4644 4645 bool LHSIsU = DAG.MaskedValueIsZero(LHS, HighMask); 4646 bool RHSIsU = DAG.MaskedValueIsZero(RHS, HighMask); 4647 // We need exactly one side to be unsigned. 4648 if (LHSIsU == RHSIsU) 4649 return; 4650 4651 auto MakeMULPair = [&](SDValue S, SDValue U) { 4652 MVT XLenVT = Subtarget.getXLenVT(); 4653 S = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, S); 4654 U = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, U); 4655 SDValue Lo = DAG.getNode(ISD::MUL, DL, XLenVT, S, U); 4656 SDValue Hi = DAG.getNode(RISCVISD::MULHSU, DL, XLenVT, S, U); 4657 return DAG.getNode(ISD::BUILD_PAIR, DL, N->getValueType(0), Lo, Hi); 4658 }; 4659 4660 bool LHSIsS = DAG.ComputeNumSignBits(LHS) > XLen; 4661 bool RHSIsS = DAG.ComputeNumSignBits(RHS) > XLen; 4662 4663 // The other operand should be signed, but still prefer MULH when 4664 // possible. 4665 if (RHSIsU && LHSIsS && !RHSIsS) 4666 Results.push_back(MakeMULPair(LHS, RHS)); 4667 else if (LHSIsU && RHSIsS && !LHSIsS) 4668 Results.push_back(MakeMULPair(RHS, LHS)); 4669 4670 return; 4671 } 4672 LLVM_FALLTHROUGH; 4673 } 4674 case ISD::ADD: 4675 case ISD::SUB: 4676 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 4677 "Unexpected custom legalisation"); 4678 if (N->getOperand(1).getOpcode() == ISD::Constant) 4679 return; 4680 Results.push_back(customLegalizeToWOpWithSExt(N, DAG)); 4681 break; 4682 case ISD::SHL: 4683 case ISD::SRA: 4684 case ISD::SRL: 4685 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 4686 "Unexpected custom legalisation"); 4687 if (N->getOperand(1).getOpcode() == ISD::Constant) 4688 return; 4689 Results.push_back(customLegalizeToWOp(N, DAG)); 4690 break; 4691 case ISD::ROTL: 4692 case ISD::ROTR: 4693 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 4694 "Unexpected custom legalisation"); 4695 Results.push_back(customLegalizeToWOp(N, DAG)); 4696 break; 4697 case ISD::CTTZ: 4698 case ISD::CTTZ_ZERO_UNDEF: 4699 case ISD::CTLZ: 4700 case ISD::CTLZ_ZERO_UNDEF: { 4701 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 4702 "Unexpected custom legalisation"); 4703 4704 SDValue NewOp0 = 4705 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 4706 bool IsCTZ = 4707 N->getOpcode() == ISD::CTTZ || N->getOpcode() == ISD::CTTZ_ZERO_UNDEF; 4708 unsigned Opc = IsCTZ ? RISCVISD::CTZW : RISCVISD::CLZW; 4709 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp0); 4710 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 4711 return; 4712 } 4713 case ISD::SDIV: 4714 case ISD::UDIV: 4715 case ISD::UREM: { 4716 MVT VT = N->getSimpleValueType(0); 4717 assert((VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) && 4718 Subtarget.is64Bit() && Subtarget.hasStdExtM() && 4719 "Unexpected custom legalisation"); 4720 if (N->getOperand(0).getOpcode() == ISD::Constant || 4721 N->getOperand(1).getOpcode() == ISD::Constant) 4722 return; 4723 4724 // If the input is i32, use ANY_EXTEND since the W instructions don't read 4725 // the upper 32 bits. For other types we need to sign or zero extend 4726 // based on the opcode. 4727 unsigned ExtOpc = ISD::ANY_EXTEND; 4728 if (VT != MVT::i32) 4729 ExtOpc = N->getOpcode() == ISD::SDIV ? ISD::SIGN_EXTEND 4730 : ISD::ZERO_EXTEND; 4731 4732 Results.push_back(customLegalizeToWOp(N, DAG, ExtOpc)); 4733 break; 4734 } 4735 case ISD::UADDO: 4736 case ISD::USUBO: { 4737 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 4738 "Unexpected custom legalisation"); 4739 bool IsAdd = N->getOpcode() == ISD::UADDO; 4740 // Create an ADDW or SUBW. 4741 SDValue LHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 4742 SDValue RHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 4743 SDValue Res = 4744 DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, DL, MVT::i64, LHS, RHS); 4745 Res = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Res, 4746 DAG.getValueType(MVT::i32)); 4747 4748 // Sign extend the LHS and perform an unsigned compare with the ADDW result. 4749 // Since the inputs are sign extended from i32, this is equivalent to 4750 // comparing the lower 32 bits. 4751 LHS = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0)); 4752 SDValue Overflow = DAG.getSetCC(DL, N->getValueType(1), Res, LHS, 4753 IsAdd ? ISD::SETULT : ISD::SETUGT); 4754 4755 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 4756 Results.push_back(Overflow); 4757 return; 4758 } 4759 case ISD::UADDSAT: 4760 case ISD::USUBSAT: { 4761 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 4762 "Unexpected custom legalisation"); 4763 if (Subtarget.hasStdExtZbb()) { 4764 // With Zbb we can sign extend and let LegalizeDAG use minu/maxu. Using 4765 // sign extend allows overflow of the lower 32 bits to be detected on 4766 // the promoted size. 4767 SDValue LHS = 4768 DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0)); 4769 SDValue RHS = 4770 DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(1)); 4771 SDValue Res = DAG.getNode(N->getOpcode(), DL, MVT::i64, LHS, RHS); 4772 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 4773 return; 4774 } 4775 4776 // Without Zbb, expand to UADDO/USUBO+select which will trigger our custom 4777 // promotion for UADDO/USUBO. 4778 Results.push_back(expandAddSubSat(N, DAG)); 4779 return; 4780 } 4781 case ISD::BITCAST: { 4782 EVT VT = N->getValueType(0); 4783 assert(VT.isInteger() && !VT.isVector() && "Unexpected VT!"); 4784 SDValue Op0 = N->getOperand(0); 4785 EVT Op0VT = Op0.getValueType(); 4786 MVT XLenVT = Subtarget.getXLenVT(); 4787 if (VT == MVT::i16 && Op0VT == MVT::f16 && Subtarget.hasStdExtZfh()) { 4788 SDValue FPConv = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, XLenVT, Op0); 4789 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FPConv)); 4790 } else if (VT == MVT::i32 && Op0VT == MVT::f32 && Subtarget.is64Bit() && 4791 Subtarget.hasStdExtF()) { 4792 SDValue FPConv = 4793 DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Op0); 4794 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, FPConv)); 4795 } else if (!VT.isVector() && Op0VT.isFixedLengthVector() && 4796 isTypeLegal(Op0VT)) { 4797 // Custom-legalize bitcasts from fixed-length vector types to illegal 4798 // scalar types in order to improve codegen. Bitcast the vector to a 4799 // one-element vector type whose element type is the same as the result 4800 // type, and extract the first element. 4801 LLVMContext &Context = *DAG.getContext(); 4802 SDValue BVec = DAG.getBitcast(EVT::getVectorVT(Context, VT, 1), Op0); 4803 Results.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec, 4804 DAG.getConstant(0, DL, XLenVT))); 4805 } 4806 break; 4807 } 4808 case RISCVISD::GREV: 4809 case RISCVISD::GORC: { 4810 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 4811 "Unexpected custom legalisation"); 4812 assert(isa<ConstantSDNode>(N->getOperand(1)) && "Expected constant"); 4813 // This is similar to customLegalizeToWOp, except that we pass the second 4814 // operand (a TargetConstant) straight through: it is already of type 4815 // XLenVT. 4816 RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode()); 4817 SDValue NewOp0 = 4818 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 4819 SDValue NewOp1 = 4820 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 4821 SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1); 4822 // ReplaceNodeResults requires we maintain the same type for the return 4823 // value. 4824 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes)); 4825 break; 4826 } 4827 case RISCVISD::SHFL: { 4828 // There is no SHFLIW instruction, but we can just promote the operation. 4829 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 4830 "Unexpected custom legalisation"); 4831 assert(isa<ConstantSDNode>(N->getOperand(1)) && "Expected constant"); 4832 SDValue NewOp0 = 4833 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 4834 SDValue NewOp1 = 4835 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 4836 SDValue NewRes = DAG.getNode(RISCVISD::SHFL, DL, MVT::i64, NewOp0, NewOp1); 4837 // ReplaceNodeResults requires we maintain the same type for the return 4838 // value. 4839 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes)); 4840 break; 4841 } 4842 case ISD::BSWAP: 4843 case ISD::BITREVERSE: { 4844 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 4845 Subtarget.hasStdExtZbp() && "Unexpected custom legalisation"); 4846 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, 4847 N->getOperand(0)); 4848 unsigned Imm = N->getOpcode() == ISD::BITREVERSE ? 31 : 24; 4849 SDValue GREVIW = DAG.getNode(RISCVISD::GREVW, DL, MVT::i64, NewOp0, 4850 DAG.getConstant(Imm, DL, MVT::i64)); 4851 // ReplaceNodeResults requires we maintain the same type for the return 4852 // value. 4853 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, GREVIW)); 4854 break; 4855 } 4856 case ISD::FSHL: 4857 case ISD::FSHR: { 4858 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 4859 Subtarget.hasStdExtZbt() && "Unexpected custom legalisation"); 4860 SDValue NewOp0 = 4861 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 4862 SDValue NewOp1 = 4863 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 4864 SDValue NewOp2 = 4865 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 4866 // FSLW/FSRW take a 6 bit shift amount but i32 FSHL/FSHR only use 5 bits. 4867 // Mask the shift amount to 5 bits. 4868 NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2, 4869 DAG.getConstant(0x1f, DL, MVT::i64)); 4870 unsigned Opc = 4871 N->getOpcode() == ISD::FSHL ? RISCVISD::FSLW : RISCVISD::FSRW; 4872 SDValue NewOp = DAG.getNode(Opc, DL, MVT::i64, NewOp0, NewOp1, NewOp2); 4873 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewOp)); 4874 break; 4875 } 4876 case ISD::EXTRACT_VECTOR_ELT: { 4877 // Custom-legalize an EXTRACT_VECTOR_ELT where XLEN<SEW, as the SEW element 4878 // type is illegal (currently only vXi64 RV32). 4879 // With vmv.x.s, when SEW > XLEN, only the least-significant XLEN bits are 4880 // transferred to the destination register. We issue two of these from the 4881 // upper- and lower- halves of the SEW-bit vector element, slid down to the 4882 // first element. 4883 SDValue Vec = N->getOperand(0); 4884 SDValue Idx = N->getOperand(1); 4885 4886 // The vector type hasn't been legalized yet so we can't issue target 4887 // specific nodes if it needs legalization. 4888 // FIXME: We would manually legalize if it's important. 4889 if (!isTypeLegal(Vec.getValueType())) 4890 return; 4891 4892 MVT VecVT = Vec.getSimpleValueType(); 4893 4894 assert(!Subtarget.is64Bit() && N->getValueType(0) == MVT::i64 && 4895 VecVT.getVectorElementType() == MVT::i64 && 4896 "Unexpected EXTRACT_VECTOR_ELT legalization"); 4897 4898 // If this is a fixed vector, we need to convert it to a scalable vector. 4899 MVT ContainerVT = VecVT; 4900 if (VecVT.isFixedLengthVector()) { 4901 ContainerVT = getContainerForFixedLengthVector(VecVT); 4902 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 4903 } 4904 4905 MVT XLenVT = Subtarget.getXLenVT(); 4906 4907 // Use a VL of 1 to avoid processing more elements than we need. 4908 MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount()); 4909 SDValue VL = DAG.getConstant(1, DL, XLenVT); 4910 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 4911 4912 // Unless the index is known to be 0, we must slide the vector down to get 4913 // the desired element into index 0. 4914 if (!isNullConstant(Idx)) { 4915 Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 4916 DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL); 4917 } 4918 4919 // Extract the lower XLEN bits of the correct vector element. 4920 SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); 4921 4922 // To extract the upper XLEN bits of the vector element, shift the first 4923 // element right by 32 bits and re-extract the lower XLEN bits. 4924 SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, 4925 DAG.getConstant(32, DL, XLenVT), VL); 4926 SDValue LShr32 = DAG.getNode(RISCVISD::SRL_VL, DL, ContainerVT, Vec, 4927 ThirtyTwoV, Mask, VL); 4928 4929 SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32); 4930 4931 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi)); 4932 break; 4933 } 4934 case ISD::INTRINSIC_WO_CHAIN: { 4935 unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 4936 switch (IntNo) { 4937 default: 4938 llvm_unreachable( 4939 "Don't know how to custom type legalize this intrinsic!"); 4940 case Intrinsic::riscv_orc_b: { 4941 // Lower to the GORCI encoding for orc.b with the operand extended. 4942 SDValue NewOp = 4943 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 4944 // If Zbp is enabled, use GORCIW which will sign extend the result. 4945 unsigned Opc = 4946 Subtarget.hasStdExtZbp() ? RISCVISD::GORCW : RISCVISD::GORC; 4947 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp, 4948 DAG.getConstant(7, DL, MVT::i64)); 4949 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 4950 return; 4951 } 4952 case Intrinsic::riscv_grev: 4953 case Intrinsic::riscv_gorc: { 4954 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 4955 "Unexpected custom legalisation"); 4956 SDValue NewOp1 = 4957 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 4958 SDValue NewOp2 = 4959 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 4960 unsigned Opc = 4961 IntNo == Intrinsic::riscv_grev ? RISCVISD::GREVW : RISCVISD::GORCW; 4962 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2); 4963 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 4964 break; 4965 } 4966 case Intrinsic::riscv_shfl: 4967 case Intrinsic::riscv_unshfl: { 4968 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 4969 "Unexpected custom legalisation"); 4970 SDValue NewOp1 = 4971 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 4972 SDValue NewOp2 = 4973 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 4974 unsigned Opc = 4975 IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFLW : RISCVISD::UNSHFLW; 4976 if (isa<ConstantSDNode>(N->getOperand(2))) { 4977 NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2, 4978 DAG.getConstant(0xf, DL, MVT::i64)); 4979 Opc = 4980 IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL; 4981 } 4982 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2); 4983 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 4984 break; 4985 } 4986 case Intrinsic::riscv_bcompress: 4987 case Intrinsic::riscv_bdecompress: { 4988 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 4989 "Unexpected custom legalisation"); 4990 SDValue NewOp1 = 4991 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 4992 SDValue NewOp2 = 4993 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 4994 unsigned Opc = IntNo == Intrinsic::riscv_bcompress 4995 ? RISCVISD::BCOMPRESSW 4996 : RISCVISD::BDECOMPRESSW; 4997 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2); 4998 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 4999 break; 5000 } 5001 case Intrinsic::riscv_vmv_x_s: { 5002 EVT VT = N->getValueType(0); 5003 MVT XLenVT = Subtarget.getXLenVT(); 5004 if (VT.bitsLT(XLenVT)) { 5005 // Simple case just extract using vmv.x.s and truncate. 5006 SDValue Extract = DAG.getNode(RISCVISD::VMV_X_S, DL, 5007 Subtarget.getXLenVT(), N->getOperand(1)); 5008 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, Extract)); 5009 return; 5010 } 5011 5012 assert(VT == MVT::i64 && !Subtarget.is64Bit() && 5013 "Unexpected custom legalization"); 5014 5015 // We need to do the move in two steps. 5016 SDValue Vec = N->getOperand(1); 5017 MVT VecVT = Vec.getSimpleValueType(); 5018 5019 // First extract the lower XLEN bits of the element. 5020 SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); 5021 5022 // To extract the upper XLEN bits of the vector element, shift the first 5023 // element right by 32 bits and re-extract the lower XLEN bits. 5024 SDValue VL = DAG.getConstant(1, DL, XLenVT); 5025 MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount()); 5026 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 5027 SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, 5028 DAG.getConstant(32, DL, XLenVT), VL); 5029 SDValue LShr32 = 5030 DAG.getNode(RISCVISD::SRL_VL, DL, VecVT, Vec, ThirtyTwoV, Mask, VL); 5031 SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32); 5032 5033 Results.push_back( 5034 DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi)); 5035 break; 5036 } 5037 } 5038 break; 5039 } 5040 case ISD::VECREDUCE_ADD: 5041 case ISD::VECREDUCE_AND: 5042 case ISD::VECREDUCE_OR: 5043 case ISD::VECREDUCE_XOR: 5044 case ISD::VECREDUCE_SMAX: 5045 case ISD::VECREDUCE_UMAX: 5046 case ISD::VECREDUCE_SMIN: 5047 case ISD::VECREDUCE_UMIN: 5048 if (SDValue V = lowerVECREDUCE(SDValue(N, 0), DAG)) 5049 Results.push_back(V); 5050 break; 5051 case ISD::FLT_ROUNDS_: { 5052 SDVTList VTs = DAG.getVTList(Subtarget.getXLenVT(), MVT::Other); 5053 SDValue Res = DAG.getNode(ISD::FLT_ROUNDS_, DL, VTs, N->getOperand(0)); 5054 Results.push_back(Res.getValue(0)); 5055 Results.push_back(Res.getValue(1)); 5056 break; 5057 } 5058 } 5059 } 5060 5061 // A structure to hold one of the bit-manipulation patterns below. Together, a 5062 // SHL and non-SHL pattern may form a bit-manipulation pair on a single source: 5063 // (or (and (shl x, 1), 0xAAAAAAAA), 5064 // (and (srl x, 1), 0x55555555)) 5065 struct RISCVBitmanipPat { 5066 SDValue Op; 5067 unsigned ShAmt; 5068 bool IsSHL; 5069 5070 bool formsPairWith(const RISCVBitmanipPat &Other) const { 5071 return Op == Other.Op && ShAmt == Other.ShAmt && IsSHL != Other.IsSHL; 5072 } 5073 }; 5074 5075 // Matches patterns of the form 5076 // (and (shl x, C2), (C1 << C2)) 5077 // (and (srl x, C2), C1) 5078 // (shl (and x, C1), C2) 5079 // (srl (and x, (C1 << C2)), C2) 5080 // Where C2 is a power of 2 and C1 has at least that many leading zeroes. 5081 // The expected masks for each shift amount are specified in BitmanipMasks where 5082 // BitmanipMasks[log2(C2)] specifies the expected C1 value. 5083 // The max allowed shift amount is either XLen/2 or XLen/4 determined by whether 5084 // BitmanipMasks contains 6 or 5 entries assuming that the maximum possible 5085 // XLen is 64. 5086 static Optional<RISCVBitmanipPat> 5087 matchRISCVBitmanipPat(SDValue Op, ArrayRef<uint64_t> BitmanipMasks) { 5088 assert((BitmanipMasks.size() == 5 || BitmanipMasks.size() == 6) && 5089 "Unexpected number of masks"); 5090 Optional<uint64_t> Mask; 5091 // Optionally consume a mask around the shift operation. 5092 if (Op.getOpcode() == ISD::AND && isa<ConstantSDNode>(Op.getOperand(1))) { 5093 Mask = Op.getConstantOperandVal(1); 5094 Op = Op.getOperand(0); 5095 } 5096 if (Op.getOpcode() != ISD::SHL && Op.getOpcode() != ISD::SRL) 5097 return None; 5098 bool IsSHL = Op.getOpcode() == ISD::SHL; 5099 5100 if (!isa<ConstantSDNode>(Op.getOperand(1))) 5101 return None; 5102 uint64_t ShAmt = Op.getConstantOperandVal(1); 5103 5104 unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32; 5105 if (ShAmt >= Width && !isPowerOf2_64(ShAmt)) 5106 return None; 5107 // If we don't have enough masks for 64 bit, then we must be trying to 5108 // match SHFL so we're only allowed to shift 1/4 of the width. 5109 if (BitmanipMasks.size() == 5 && ShAmt >= (Width / 2)) 5110 return None; 5111 5112 SDValue Src = Op.getOperand(0); 5113 5114 // The expected mask is shifted left when the AND is found around SHL 5115 // patterns. 5116 // ((x >> 1) & 0x55555555) 5117 // ((x << 1) & 0xAAAAAAAA) 5118 bool SHLExpMask = IsSHL; 5119 5120 if (!Mask) { 5121 // Sometimes LLVM keeps the mask as an operand of the shift, typically when 5122 // the mask is all ones: consume that now. 5123 if (Src.getOpcode() == ISD::AND && isa<ConstantSDNode>(Src.getOperand(1))) { 5124 Mask = Src.getConstantOperandVal(1); 5125 Src = Src.getOperand(0); 5126 // The expected mask is now in fact shifted left for SRL, so reverse the 5127 // decision. 5128 // ((x & 0xAAAAAAAA) >> 1) 5129 // ((x & 0x55555555) << 1) 5130 SHLExpMask = !SHLExpMask; 5131 } else { 5132 // Use a default shifted mask of all-ones if there's no AND, truncated 5133 // down to the expected width. This simplifies the logic later on. 5134 Mask = maskTrailingOnes<uint64_t>(Width); 5135 *Mask &= (IsSHL ? *Mask << ShAmt : *Mask >> ShAmt); 5136 } 5137 } 5138 5139 unsigned MaskIdx = Log2_32(ShAmt); 5140 uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width); 5141 5142 if (SHLExpMask) 5143 ExpMask <<= ShAmt; 5144 5145 if (Mask != ExpMask) 5146 return None; 5147 5148 return RISCVBitmanipPat{Src, (unsigned)ShAmt, IsSHL}; 5149 } 5150 5151 // Matches any of the following bit-manipulation patterns: 5152 // (and (shl x, 1), (0x55555555 << 1)) 5153 // (and (srl x, 1), 0x55555555) 5154 // (shl (and x, 0x55555555), 1) 5155 // (srl (and x, (0x55555555 << 1)), 1) 5156 // where the shift amount and mask may vary thus: 5157 // [1] = 0x55555555 / 0xAAAAAAAA 5158 // [2] = 0x33333333 / 0xCCCCCCCC 5159 // [4] = 0x0F0F0F0F / 0xF0F0F0F0 5160 // [8] = 0x00FF00FF / 0xFF00FF00 5161 // [16] = 0x0000FFFF / 0xFFFFFFFF 5162 // [32] = 0x00000000FFFFFFFF / 0xFFFFFFFF00000000 (for RV64) 5163 static Optional<RISCVBitmanipPat> matchGREVIPat(SDValue Op) { 5164 // These are the unshifted masks which we use to match bit-manipulation 5165 // patterns. They may be shifted left in certain circumstances. 5166 static const uint64_t BitmanipMasks[] = { 5167 0x5555555555555555ULL, 0x3333333333333333ULL, 0x0F0F0F0F0F0F0F0FULL, 5168 0x00FF00FF00FF00FFULL, 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL}; 5169 5170 return matchRISCVBitmanipPat(Op, BitmanipMasks); 5171 } 5172 5173 // Match the following pattern as a GREVI(W) operation 5174 // (or (BITMANIP_SHL x), (BITMANIP_SRL x)) 5175 static SDValue combineORToGREV(SDValue Op, SelectionDAG &DAG, 5176 const RISCVSubtarget &Subtarget) { 5177 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson"); 5178 EVT VT = Op.getValueType(); 5179 5180 if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) { 5181 auto LHS = matchGREVIPat(Op.getOperand(0)); 5182 auto RHS = matchGREVIPat(Op.getOperand(1)); 5183 if (LHS && RHS && LHS->formsPairWith(*RHS)) { 5184 SDLoc DL(Op); 5185 return DAG.getNode(RISCVISD::GREV, DL, VT, LHS->Op, 5186 DAG.getConstant(LHS->ShAmt, DL, VT)); 5187 } 5188 } 5189 return SDValue(); 5190 } 5191 5192 // Matches any the following pattern as a GORCI(W) operation 5193 // 1. (or (GREVI x, shamt), x) if shamt is a power of 2 5194 // 2. (or x, (GREVI x, shamt)) if shamt is a power of 2 5195 // 3. (or (or (BITMANIP_SHL x), x), (BITMANIP_SRL x)) 5196 // Note that with the variant of 3., 5197 // (or (or (BITMANIP_SHL x), (BITMANIP_SRL x)), x) 5198 // the inner pattern will first be matched as GREVI and then the outer 5199 // pattern will be matched to GORC via the first rule above. 5200 // 4. (or (rotl/rotr x, bitwidth/2), x) 5201 static SDValue combineORToGORC(SDValue Op, SelectionDAG &DAG, 5202 const RISCVSubtarget &Subtarget) { 5203 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson"); 5204 EVT VT = Op.getValueType(); 5205 5206 if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) { 5207 SDLoc DL(Op); 5208 SDValue Op0 = Op.getOperand(0); 5209 SDValue Op1 = Op.getOperand(1); 5210 5211 auto MatchOROfReverse = [&](SDValue Reverse, SDValue X) { 5212 if (Reverse.getOpcode() == RISCVISD::GREV && Reverse.getOperand(0) == X && 5213 isa<ConstantSDNode>(Reverse.getOperand(1)) && 5214 isPowerOf2_32(Reverse.getConstantOperandVal(1))) 5215 return DAG.getNode(RISCVISD::GORC, DL, VT, X, Reverse.getOperand(1)); 5216 // We can also form GORCI from ROTL/ROTR by half the bitwidth. 5217 if ((Reverse.getOpcode() == ISD::ROTL || 5218 Reverse.getOpcode() == ISD::ROTR) && 5219 Reverse.getOperand(0) == X && 5220 isa<ConstantSDNode>(Reverse.getOperand(1))) { 5221 uint64_t RotAmt = Reverse.getConstantOperandVal(1); 5222 if (RotAmt == (VT.getSizeInBits() / 2)) 5223 return DAG.getNode(RISCVISD::GORC, DL, VT, X, 5224 DAG.getConstant(RotAmt, DL, VT)); 5225 } 5226 return SDValue(); 5227 }; 5228 5229 // Check for either commutable permutation of (or (GREVI x, shamt), x) 5230 if (SDValue V = MatchOROfReverse(Op0, Op1)) 5231 return V; 5232 if (SDValue V = MatchOROfReverse(Op1, Op0)) 5233 return V; 5234 5235 // OR is commutable so canonicalize its OR operand to the left 5236 if (Op0.getOpcode() != ISD::OR && Op1.getOpcode() == ISD::OR) 5237 std::swap(Op0, Op1); 5238 if (Op0.getOpcode() != ISD::OR) 5239 return SDValue(); 5240 SDValue OrOp0 = Op0.getOperand(0); 5241 SDValue OrOp1 = Op0.getOperand(1); 5242 auto LHS = matchGREVIPat(OrOp0); 5243 // OR is commutable so swap the operands and try again: x might have been 5244 // on the left 5245 if (!LHS) { 5246 std::swap(OrOp0, OrOp1); 5247 LHS = matchGREVIPat(OrOp0); 5248 } 5249 auto RHS = matchGREVIPat(Op1); 5250 if (LHS && RHS && LHS->formsPairWith(*RHS) && LHS->Op == OrOp1) { 5251 return DAG.getNode(RISCVISD::GORC, DL, VT, LHS->Op, 5252 DAG.getConstant(LHS->ShAmt, DL, VT)); 5253 } 5254 } 5255 return SDValue(); 5256 } 5257 5258 // Matches any of the following bit-manipulation patterns: 5259 // (and (shl x, 1), (0x22222222 << 1)) 5260 // (and (srl x, 1), 0x22222222) 5261 // (shl (and x, 0x22222222), 1) 5262 // (srl (and x, (0x22222222 << 1)), 1) 5263 // where the shift amount and mask may vary thus: 5264 // [1] = 0x22222222 / 0x44444444 5265 // [2] = 0x0C0C0C0C / 0x3C3C3C3C 5266 // [4] = 0x00F000F0 / 0x0F000F00 5267 // [8] = 0x0000FF00 / 0x00FF0000 5268 // [16] = 0x00000000FFFF0000 / 0x0000FFFF00000000 (for RV64) 5269 static Optional<RISCVBitmanipPat> matchSHFLPat(SDValue Op) { 5270 // These are the unshifted masks which we use to match bit-manipulation 5271 // patterns. They may be shifted left in certain circumstances. 5272 static const uint64_t BitmanipMasks[] = { 5273 0x2222222222222222ULL, 0x0C0C0C0C0C0C0C0CULL, 0x00F000F000F000F0ULL, 5274 0x0000FF000000FF00ULL, 0x00000000FFFF0000ULL}; 5275 5276 return matchRISCVBitmanipPat(Op, BitmanipMasks); 5277 } 5278 5279 // Match (or (or (SHFL_SHL x), (SHFL_SHR x)), (SHFL_AND x) 5280 static SDValue combineORToSHFL(SDValue Op, SelectionDAG &DAG, 5281 const RISCVSubtarget &Subtarget) { 5282 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson"); 5283 EVT VT = Op.getValueType(); 5284 5285 if (VT != MVT::i32 && VT != Subtarget.getXLenVT()) 5286 return SDValue(); 5287 5288 SDValue Op0 = Op.getOperand(0); 5289 SDValue Op1 = Op.getOperand(1); 5290 5291 // Or is commutable so canonicalize the second OR to the LHS. 5292 if (Op0.getOpcode() != ISD::OR) 5293 std::swap(Op0, Op1); 5294 if (Op0.getOpcode() != ISD::OR) 5295 return SDValue(); 5296 5297 // We found an inner OR, so our operands are the operands of the inner OR 5298 // and the other operand of the outer OR. 5299 SDValue A = Op0.getOperand(0); 5300 SDValue B = Op0.getOperand(1); 5301 SDValue C = Op1; 5302 5303 auto Match1 = matchSHFLPat(A); 5304 auto Match2 = matchSHFLPat(B); 5305 5306 // If neither matched, we failed. 5307 if (!Match1 && !Match2) 5308 return SDValue(); 5309 5310 // We had at least one match. if one failed, try the remaining C operand. 5311 if (!Match1) { 5312 std::swap(A, C); 5313 Match1 = matchSHFLPat(A); 5314 if (!Match1) 5315 return SDValue(); 5316 } else if (!Match2) { 5317 std::swap(B, C); 5318 Match2 = matchSHFLPat(B); 5319 if (!Match2) 5320 return SDValue(); 5321 } 5322 assert(Match1 && Match2); 5323 5324 // Make sure our matches pair up. 5325 if (!Match1->formsPairWith(*Match2)) 5326 return SDValue(); 5327 5328 // All the remains is to make sure C is an AND with the same input, that masks 5329 // out the bits that are being shuffled. 5330 if (C.getOpcode() != ISD::AND || !isa<ConstantSDNode>(C.getOperand(1)) || 5331 C.getOperand(0) != Match1->Op) 5332 return SDValue(); 5333 5334 uint64_t Mask = C.getConstantOperandVal(1); 5335 5336 static const uint64_t BitmanipMasks[] = { 5337 0x9999999999999999ULL, 0xC3C3C3C3C3C3C3C3ULL, 0xF00FF00FF00FF00FULL, 5338 0xFF0000FFFF0000FFULL, 0xFFFF00000000FFFFULL, 5339 }; 5340 5341 unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32; 5342 unsigned MaskIdx = Log2_32(Match1->ShAmt); 5343 uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width); 5344 5345 if (Mask != ExpMask) 5346 return SDValue(); 5347 5348 SDLoc DL(Op); 5349 return DAG.getNode(RISCVISD::SHFL, DL, VT, Match1->Op, 5350 DAG.getConstant(Match1->ShAmt, DL, VT)); 5351 } 5352 5353 // Combine (GREVI (GREVI x, C2), C1) -> (GREVI x, C1^C2) when C1^C2 is 5354 // non-zero, and to x when it is. Any repeated GREVI stage undoes itself. 5355 // Combine (GORCI (GORCI x, C2), C1) -> (GORCI x, C1|C2). Repeated stage does 5356 // not undo itself, but they are redundant. 5357 static SDValue combineGREVI_GORCI(SDNode *N, SelectionDAG &DAG) { 5358 SDValue Src = N->getOperand(0); 5359 5360 if (Src.getOpcode() != N->getOpcode()) 5361 return SDValue(); 5362 5363 if (!isa<ConstantSDNode>(N->getOperand(1)) || 5364 !isa<ConstantSDNode>(Src.getOperand(1))) 5365 return SDValue(); 5366 5367 unsigned ShAmt1 = N->getConstantOperandVal(1); 5368 unsigned ShAmt2 = Src.getConstantOperandVal(1); 5369 Src = Src.getOperand(0); 5370 5371 unsigned CombinedShAmt; 5372 if (N->getOpcode() == RISCVISD::GORC || N->getOpcode() == RISCVISD::GORCW) 5373 CombinedShAmt = ShAmt1 | ShAmt2; 5374 else 5375 CombinedShAmt = ShAmt1 ^ ShAmt2; 5376 5377 if (CombinedShAmt == 0) 5378 return Src; 5379 5380 SDLoc DL(N); 5381 return DAG.getNode( 5382 N->getOpcode(), DL, N->getValueType(0), Src, 5383 DAG.getConstant(CombinedShAmt, DL, N->getOperand(1).getValueType())); 5384 } 5385 5386 // Combine a constant select operand into its use: 5387 // 5388 // (and (select_cc lhs, rhs, cc, -1, c), x) 5389 // -> (select_cc lhs, rhs, cc, x, (and, x, c)) [AllOnes=1] 5390 // (or (select_cc lhs, rhs, cc, 0, c), x) 5391 // -> (select_cc lhs, rhs, cc, x, (or, x, c)) [AllOnes=0] 5392 // (xor (select_cc lhs, rhs, cc, 0, c), x) 5393 // -> (select_cc lhs, rhs, cc, x, (xor, x, c)) [AllOnes=0] 5394 static SDValue combineSelectCCAndUse(SDNode *N, SDValue Slct, SDValue OtherOp, 5395 SelectionDAG &DAG, bool AllOnes) { 5396 EVT VT = N->getValueType(0); 5397 5398 if (Slct.getOpcode() != RISCVISD::SELECT_CC || !Slct.hasOneUse()) 5399 return SDValue(); 5400 5401 auto isZeroOrAllOnes = [](SDValue N, bool AllOnes) { 5402 return AllOnes ? isAllOnesConstant(N) : isNullConstant(N); 5403 }; 5404 5405 bool SwapSelectOps; 5406 SDValue TrueVal = Slct.getOperand(3); 5407 SDValue FalseVal = Slct.getOperand(4); 5408 SDValue NonConstantVal; 5409 if (isZeroOrAllOnes(TrueVal, AllOnes)) { 5410 SwapSelectOps = false; 5411 NonConstantVal = FalseVal; 5412 } else if (isZeroOrAllOnes(FalseVal, AllOnes)) { 5413 SwapSelectOps = true; 5414 NonConstantVal = TrueVal; 5415 } else 5416 return SDValue(); 5417 5418 // Slct is now know to be the desired identity constant when CC is true. 5419 TrueVal = OtherOp; 5420 FalseVal = DAG.getNode(N->getOpcode(), SDLoc(N), VT, OtherOp, NonConstantVal); 5421 // Unless SwapSelectOps says CC should be false. 5422 if (SwapSelectOps) 5423 std::swap(TrueVal, FalseVal); 5424 5425 return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), VT, 5426 {Slct.getOperand(0), Slct.getOperand(1), 5427 Slct.getOperand(2), TrueVal, FalseVal}); 5428 } 5429 5430 // Attempt combineSelectAndUse on each operand of a commutative operator N. 5431 static SDValue combineSelectCCAndUseCommutative(SDNode *N, SelectionDAG &DAG, 5432 bool AllOnes) { 5433 SDValue N0 = N->getOperand(0); 5434 SDValue N1 = N->getOperand(1); 5435 if (SDValue Result = combineSelectCCAndUse(N, N0, N1, DAG, AllOnes)) 5436 return Result; 5437 if (SDValue Result = combineSelectCCAndUse(N, N1, N0, DAG, AllOnes)) 5438 return Result; 5439 return SDValue(); 5440 } 5441 5442 static SDValue performANDCombine(SDNode *N, 5443 TargetLowering::DAGCombinerInfo &DCI, 5444 const RISCVSubtarget &Subtarget) { 5445 SelectionDAG &DAG = DCI.DAG; 5446 5447 // fold (and (select_cc lhs, rhs, cc, -1, y), x) -> 5448 // (select lhs, rhs, cc, x, (and x, y)) 5449 return combineSelectCCAndUseCommutative(N, DAG, true); 5450 } 5451 5452 static SDValue performORCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, 5453 const RISCVSubtarget &Subtarget) { 5454 SelectionDAG &DAG = DCI.DAG; 5455 if (Subtarget.hasStdExtZbp()) { 5456 if (auto GREV = combineORToGREV(SDValue(N, 0), DAG, Subtarget)) 5457 return GREV; 5458 if (auto GORC = combineORToGORC(SDValue(N, 0), DAG, Subtarget)) 5459 return GORC; 5460 if (auto SHFL = combineORToSHFL(SDValue(N, 0), DAG, Subtarget)) 5461 return SHFL; 5462 } 5463 5464 // fold (or (select_cc lhs, rhs, cc, 0, y), x) -> 5465 // (select lhs, rhs, cc, x, (or x, y)) 5466 return combineSelectCCAndUseCommutative(N, DAG, false); 5467 } 5468 5469 static SDValue performXORCombine(SDNode *N, 5470 TargetLowering::DAGCombinerInfo &DCI, 5471 const RISCVSubtarget &Subtarget) { 5472 SelectionDAG &DAG = DCI.DAG; 5473 5474 // fold (xor (select_cc lhs, rhs, cc, 0, y), x) -> 5475 // (select lhs, rhs, cc, x, (xor x, y)) 5476 return combineSelectCCAndUseCommutative(N, DAG, false); 5477 } 5478 5479 SDValue RISCVTargetLowering::PerformDAGCombine(SDNode *N, 5480 DAGCombinerInfo &DCI) const { 5481 SelectionDAG &DAG = DCI.DAG; 5482 5483 switch (N->getOpcode()) { 5484 default: 5485 break; 5486 case RISCVISD::SplitF64: { 5487 SDValue Op0 = N->getOperand(0); 5488 // If the input to SplitF64 is just BuildPairF64 then the operation is 5489 // redundant. Instead, use BuildPairF64's operands directly. 5490 if (Op0->getOpcode() == RISCVISD::BuildPairF64) 5491 return DCI.CombineTo(N, Op0.getOperand(0), Op0.getOperand(1)); 5492 5493 SDLoc DL(N); 5494 5495 // It's cheaper to materialise two 32-bit integers than to load a double 5496 // from the constant pool and transfer it to integer registers through the 5497 // stack. 5498 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op0)) { 5499 APInt V = C->getValueAPF().bitcastToAPInt(); 5500 SDValue Lo = DAG.getConstant(V.trunc(32), DL, MVT::i32); 5501 SDValue Hi = DAG.getConstant(V.lshr(32).trunc(32), DL, MVT::i32); 5502 return DCI.CombineTo(N, Lo, Hi); 5503 } 5504 5505 // This is a target-specific version of a DAGCombine performed in 5506 // DAGCombiner::visitBITCAST. It performs the equivalent of: 5507 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) 5508 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) 5509 if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) || 5510 !Op0.getNode()->hasOneUse()) 5511 break; 5512 SDValue NewSplitF64 = 5513 DAG.getNode(RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), 5514 Op0.getOperand(0)); 5515 SDValue Lo = NewSplitF64.getValue(0); 5516 SDValue Hi = NewSplitF64.getValue(1); 5517 APInt SignBit = APInt::getSignMask(32); 5518 if (Op0.getOpcode() == ISD::FNEG) { 5519 SDValue NewHi = DAG.getNode(ISD::XOR, DL, MVT::i32, Hi, 5520 DAG.getConstant(SignBit, DL, MVT::i32)); 5521 return DCI.CombineTo(N, Lo, NewHi); 5522 } 5523 assert(Op0.getOpcode() == ISD::FABS); 5524 SDValue NewHi = DAG.getNode(ISD::AND, DL, MVT::i32, Hi, 5525 DAG.getConstant(~SignBit, DL, MVT::i32)); 5526 return DCI.CombineTo(N, Lo, NewHi); 5527 } 5528 case RISCVISD::SLLW: 5529 case RISCVISD::SRAW: 5530 case RISCVISD::SRLW: 5531 case RISCVISD::ROLW: 5532 case RISCVISD::RORW: { 5533 // Only the lower 32 bits of LHS and lower 5 bits of RHS are read. 5534 SDValue LHS = N->getOperand(0); 5535 SDValue RHS = N->getOperand(1); 5536 APInt LHSMask = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 32); 5537 APInt RHSMask = APInt::getLowBitsSet(RHS.getValueSizeInBits(), 5); 5538 if (SimplifyDemandedBits(N->getOperand(0), LHSMask, DCI) || 5539 SimplifyDemandedBits(N->getOperand(1), RHSMask, DCI)) { 5540 if (N->getOpcode() != ISD::DELETED_NODE) 5541 DCI.AddToWorklist(N); 5542 return SDValue(N, 0); 5543 } 5544 break; 5545 } 5546 case RISCVISD::CLZW: 5547 case RISCVISD::CTZW: { 5548 // Only the lower 32 bits of the first operand are read 5549 SDValue Op0 = N->getOperand(0); 5550 APInt Mask = APInt::getLowBitsSet(Op0.getValueSizeInBits(), 32); 5551 if (SimplifyDemandedBits(Op0, Mask, DCI)) { 5552 if (N->getOpcode() != ISD::DELETED_NODE) 5553 DCI.AddToWorklist(N); 5554 return SDValue(N, 0); 5555 } 5556 break; 5557 } 5558 case RISCVISD::FSL: 5559 case RISCVISD::FSR: { 5560 // Only the lower log2(Bitwidth)+1 bits of the the shift amount are read. 5561 SDValue ShAmt = N->getOperand(2); 5562 unsigned BitWidth = ShAmt.getValueSizeInBits(); 5563 assert(isPowerOf2_32(BitWidth) && "Unexpected bit width"); 5564 APInt ShAmtMask(BitWidth, (BitWidth * 2) - 1); 5565 if (SimplifyDemandedBits(ShAmt, ShAmtMask, DCI)) { 5566 if (N->getOpcode() != ISD::DELETED_NODE) 5567 DCI.AddToWorklist(N); 5568 return SDValue(N, 0); 5569 } 5570 break; 5571 } 5572 case RISCVISD::FSLW: 5573 case RISCVISD::FSRW: { 5574 // Only the lower 32 bits of Values and lower 6 bits of shift amount are 5575 // read. 5576 SDValue Op0 = N->getOperand(0); 5577 SDValue Op1 = N->getOperand(1); 5578 SDValue ShAmt = N->getOperand(2); 5579 APInt OpMask = APInt::getLowBitsSet(Op0.getValueSizeInBits(), 32); 5580 APInt ShAmtMask = APInt::getLowBitsSet(ShAmt.getValueSizeInBits(), 6); 5581 if (SimplifyDemandedBits(Op0, OpMask, DCI) || 5582 SimplifyDemandedBits(Op1, OpMask, DCI) || 5583 SimplifyDemandedBits(ShAmt, ShAmtMask, DCI)) { 5584 if (N->getOpcode() != ISD::DELETED_NODE) 5585 DCI.AddToWorklist(N); 5586 return SDValue(N, 0); 5587 } 5588 break; 5589 } 5590 case RISCVISD::GREV: 5591 case RISCVISD::GORC: { 5592 // Only the lower log2(Bitwidth) bits of the the shift amount are read. 5593 SDValue ShAmt = N->getOperand(1); 5594 unsigned BitWidth = ShAmt.getValueSizeInBits(); 5595 assert(isPowerOf2_32(BitWidth) && "Unexpected bit width"); 5596 APInt ShAmtMask(BitWidth, BitWidth - 1); 5597 if (SimplifyDemandedBits(ShAmt, ShAmtMask, DCI)) { 5598 if (N->getOpcode() != ISD::DELETED_NODE) 5599 DCI.AddToWorklist(N); 5600 return SDValue(N, 0); 5601 } 5602 5603 return combineGREVI_GORCI(N, DCI.DAG); 5604 } 5605 case RISCVISD::GREVW: 5606 case RISCVISD::GORCW: { 5607 // Only the lower 32 bits of LHS and lower 5 bits of RHS are read. 5608 SDValue LHS = N->getOperand(0); 5609 SDValue RHS = N->getOperand(1); 5610 APInt LHSMask = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 32); 5611 APInt RHSMask = APInt::getLowBitsSet(RHS.getValueSizeInBits(), 5); 5612 if (SimplifyDemandedBits(LHS, LHSMask, DCI) || 5613 SimplifyDemandedBits(RHS, RHSMask, DCI)) { 5614 if (N->getOpcode() != ISD::DELETED_NODE) 5615 DCI.AddToWorklist(N); 5616 return SDValue(N, 0); 5617 } 5618 5619 return combineGREVI_GORCI(N, DCI.DAG); 5620 } 5621 case RISCVISD::SHFL: 5622 case RISCVISD::UNSHFL: { 5623 // Only the lower log2(Bitwidth) bits of the the shift amount are read. 5624 SDValue ShAmt = N->getOperand(1); 5625 unsigned BitWidth = ShAmt.getValueSizeInBits(); 5626 assert(isPowerOf2_32(BitWidth) && "Unexpected bit width"); 5627 APInt ShAmtMask(BitWidth, (BitWidth / 2) - 1); 5628 if (SimplifyDemandedBits(ShAmt, ShAmtMask, DCI)) { 5629 if (N->getOpcode() != ISD::DELETED_NODE) 5630 DCI.AddToWorklist(N); 5631 return SDValue(N, 0); 5632 } 5633 5634 break; 5635 } 5636 case RISCVISD::SHFLW: 5637 case RISCVISD::UNSHFLW: { 5638 // Only the lower 32 bits of LHS and lower 5 bits of RHS are read. 5639 SDValue LHS = N->getOperand(0); 5640 SDValue RHS = N->getOperand(1); 5641 APInt LHSMask = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 32); 5642 APInt RHSMask = APInt::getLowBitsSet(RHS.getValueSizeInBits(), 4); 5643 if (SimplifyDemandedBits(LHS, LHSMask, DCI) || 5644 SimplifyDemandedBits(RHS, RHSMask, DCI)) { 5645 if (N->getOpcode() != ISD::DELETED_NODE) 5646 DCI.AddToWorklist(N); 5647 return SDValue(N, 0); 5648 } 5649 5650 break; 5651 } 5652 case RISCVISD::BCOMPRESSW: 5653 case RISCVISD::BDECOMPRESSW: { 5654 // Only the lower 32 bits of LHS and RHS are read. 5655 SDValue LHS = N->getOperand(0); 5656 SDValue RHS = N->getOperand(1); 5657 APInt Mask = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 32); 5658 if (SimplifyDemandedBits(LHS, Mask, DCI) || 5659 SimplifyDemandedBits(RHS, Mask, DCI)) { 5660 if (N->getOpcode() != ISD::DELETED_NODE) 5661 DCI.AddToWorklist(N); 5662 return SDValue(N, 0); 5663 } 5664 5665 break; 5666 } 5667 case RISCVISD::FMV_X_ANYEXTW_RV64: { 5668 SDLoc DL(N); 5669 SDValue Op0 = N->getOperand(0); 5670 // If the input to FMV_X_ANYEXTW_RV64 is just FMV_W_X_RV64 then the 5671 // conversion is unnecessary and can be replaced with an ANY_EXTEND 5672 // of the FMV_W_X_RV64 operand. 5673 if (Op0->getOpcode() == RISCVISD::FMV_W_X_RV64) { 5674 assert(Op0.getOperand(0).getValueType() == MVT::i64 && 5675 "Unexpected value type!"); 5676 return Op0.getOperand(0); 5677 } 5678 5679 // This is a target-specific version of a DAGCombine performed in 5680 // DAGCombiner::visitBITCAST. It performs the equivalent of: 5681 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) 5682 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) 5683 if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) || 5684 !Op0.getNode()->hasOneUse()) 5685 break; 5686 SDValue NewFMV = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, 5687 Op0.getOperand(0)); 5688 APInt SignBit = APInt::getSignMask(32).sext(64); 5689 if (Op0.getOpcode() == ISD::FNEG) 5690 return DAG.getNode(ISD::XOR, DL, MVT::i64, NewFMV, 5691 DAG.getConstant(SignBit, DL, MVT::i64)); 5692 5693 assert(Op0.getOpcode() == ISD::FABS); 5694 return DAG.getNode(ISD::AND, DL, MVT::i64, NewFMV, 5695 DAG.getConstant(~SignBit, DL, MVT::i64)); 5696 } 5697 case ISD::AND: 5698 return performANDCombine(N, DCI, Subtarget); 5699 case ISD::OR: 5700 return performORCombine(N, DCI, Subtarget); 5701 case ISD::XOR: 5702 return performXORCombine(N, DCI, Subtarget); 5703 case RISCVISD::SELECT_CC: { 5704 // Transform 5705 SDValue LHS = N->getOperand(0); 5706 SDValue RHS = N->getOperand(1); 5707 auto CCVal = static_cast<ISD::CondCode>(N->getConstantOperandVal(2)); 5708 if (!ISD::isIntEqualitySetCC(CCVal)) 5709 break; 5710 5711 // Fold (select_cc (setlt X, Y), 0, ne, trueV, falseV) -> 5712 // (select_cc X, Y, lt, trueV, falseV) 5713 // Sometimes the setcc is introduced after select_cc has been formed. 5714 if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) && 5715 LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) { 5716 // If we're looking for eq 0 instead of ne 0, we need to invert the 5717 // condition. 5718 bool Invert = CCVal == ISD::SETEQ; 5719 CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get(); 5720 if (Invert) 5721 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 5722 5723 SDLoc DL(N); 5724 RHS = LHS.getOperand(1); 5725 LHS = LHS.getOperand(0); 5726 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 5727 5728 SDValue TargetCC = 5729 DAG.getTargetConstant(CCVal, DL, Subtarget.getXLenVT()); 5730 return DAG.getNode( 5731 RISCVISD::SELECT_CC, DL, N->getValueType(0), 5732 {LHS, RHS, TargetCC, N->getOperand(3), N->getOperand(4)}); 5733 } 5734 5735 // Fold (select_cc (xor X, Y), 0, eq/ne, trueV, falseV) -> 5736 // (select_cc X, Y, eq/ne, trueV, falseV) 5737 if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS)) 5738 return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), N->getValueType(0), 5739 {LHS.getOperand(0), LHS.getOperand(1), 5740 N->getOperand(2), N->getOperand(3), 5741 N->getOperand(4)}); 5742 // (select_cc X, 1, setne, trueV, falseV) -> 5743 // (select_cc X, 0, seteq, trueV, falseV) if we can prove X is 0/1. 5744 // This can occur when legalizing some floating point comparisons. 5745 APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1); 5746 if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) { 5747 SDLoc DL(N); 5748 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 5749 SDValue TargetCC = 5750 DAG.getTargetConstant(CCVal, DL, Subtarget.getXLenVT()); 5751 RHS = DAG.getConstant(0, DL, LHS.getValueType()); 5752 return DAG.getNode( 5753 RISCVISD::SELECT_CC, DL, N->getValueType(0), 5754 {LHS, RHS, TargetCC, N->getOperand(3), N->getOperand(4)}); 5755 } 5756 5757 break; 5758 } 5759 case RISCVISD::BR_CC: { 5760 SDValue LHS = N->getOperand(1); 5761 SDValue RHS = N->getOperand(2); 5762 ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(3))->get(); 5763 if (!ISD::isIntEqualitySetCC(CCVal)) 5764 break; 5765 5766 // Fold (br_cc (setlt X, Y), 0, ne, dest) -> 5767 // (br_cc X, Y, lt, dest) 5768 // Sometimes the setcc is introduced after br_cc has been formed. 5769 if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) && 5770 LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) { 5771 // If we're looking for eq 0 instead of ne 0, we need to invert the 5772 // condition. 5773 bool Invert = CCVal == ISD::SETEQ; 5774 CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get(); 5775 if (Invert) 5776 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 5777 5778 SDLoc DL(N); 5779 RHS = LHS.getOperand(1); 5780 LHS = LHS.getOperand(0); 5781 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 5782 5783 return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0), 5784 N->getOperand(0), LHS, RHS, DAG.getCondCode(CCVal), 5785 N->getOperand(4)); 5786 } 5787 5788 // Fold (br_cc (xor X, Y), 0, eq/ne, dest) -> 5789 // (br_cc X, Y, eq/ne, trueV, falseV) 5790 if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS)) 5791 return DAG.getNode(RISCVISD::BR_CC, SDLoc(N), N->getValueType(0), 5792 N->getOperand(0), LHS.getOperand(0), LHS.getOperand(1), 5793 N->getOperand(3), N->getOperand(4)); 5794 5795 // (br_cc X, 1, setne, br_cc) -> 5796 // (br_cc X, 0, seteq, br_cc) if we can prove X is 0/1. 5797 // This can occur when legalizing some floating point comparisons. 5798 APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1); 5799 if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) { 5800 SDLoc DL(N); 5801 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 5802 SDValue TargetCC = DAG.getCondCode(CCVal); 5803 RHS = DAG.getConstant(0, DL, LHS.getValueType()); 5804 return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0), 5805 N->getOperand(0), LHS, RHS, TargetCC, 5806 N->getOperand(4)); 5807 } 5808 break; 5809 } 5810 case ISD::FCOPYSIGN: { 5811 EVT VT = N->getValueType(0); 5812 if (!VT.isVector()) 5813 break; 5814 // There is a form of VFSGNJ which injects the negated sign of its second 5815 // operand. Try and bubble any FNEG up after the extend/round to produce 5816 // this optimized pattern. Avoid modifying cases where FP_ROUND and 5817 // TRUNC=1. 5818 SDValue In2 = N->getOperand(1); 5819 // Avoid cases where the extend/round has multiple uses, as duplicating 5820 // those is typically more expensive than removing a fneg. 5821 if (!In2.hasOneUse()) 5822 break; 5823 if (In2.getOpcode() != ISD::FP_EXTEND && 5824 (In2.getOpcode() != ISD::FP_ROUND || In2.getConstantOperandVal(1) != 0)) 5825 break; 5826 In2 = In2.getOperand(0); 5827 if (In2.getOpcode() != ISD::FNEG) 5828 break; 5829 SDLoc DL(N); 5830 SDValue NewFPExtRound = DAG.getFPExtendOrRound(In2.getOperand(0), DL, VT); 5831 return DAG.getNode(ISD::FCOPYSIGN, DL, VT, N->getOperand(0), 5832 DAG.getNode(ISD::FNEG, DL, VT, NewFPExtRound)); 5833 } 5834 case ISD::MGATHER: 5835 case ISD::MSCATTER: { 5836 if (!DCI.isBeforeLegalize()) 5837 break; 5838 MaskedGatherScatterSDNode *MGSN = cast<MaskedGatherScatterSDNode>(N); 5839 SDValue Index = MGSN->getIndex(); 5840 EVT IndexVT = Index.getValueType(); 5841 MVT XLenVT = Subtarget.getXLenVT(); 5842 // RISCV indexed loads only support the "unsigned unscaled" addressing 5843 // mode, so anything else must be manually legalized. 5844 bool NeedsIdxLegalization = MGSN->isIndexScaled() || 5845 (MGSN->isIndexSigned() && 5846 IndexVT.getVectorElementType().bitsLT(XLenVT)); 5847 if (!NeedsIdxLegalization) 5848 break; 5849 5850 SDLoc DL(N); 5851 5852 // Any index legalization should first promote to XLenVT, so we don't lose 5853 // bits when scaling. This may create an illegal index type so we let 5854 // LLVM's legalization take care of the splitting. 5855 if (IndexVT.getVectorElementType().bitsLT(XLenVT)) { 5856 IndexVT = IndexVT.changeVectorElementType(XLenVT); 5857 Index = DAG.getNode(MGSN->isIndexSigned() ? ISD::SIGN_EXTEND 5858 : ISD::ZERO_EXTEND, 5859 DL, IndexVT, Index); 5860 } 5861 5862 unsigned Scale = N->getConstantOperandVal(5); 5863 if (MGSN->isIndexScaled() && Scale != 1) { 5864 // Manually scale the indices by the element size. 5865 // TODO: Sanitize the scale operand here? 5866 assert(isPowerOf2_32(Scale) && "Expecting power-of-two types"); 5867 SDValue SplatScale = DAG.getConstant(Log2_32(Scale), DL, IndexVT); 5868 Index = DAG.getNode(ISD::SHL, DL, IndexVT, Index, SplatScale); 5869 } 5870 5871 ISD::MemIndexType NewIndexTy = ISD::UNSIGNED_UNSCALED; 5872 if (const auto *MGN = dyn_cast<MaskedGatherSDNode>(N)) { 5873 return DAG.getMaskedGather( 5874 N->getVTList(), MGSN->getMemoryVT(), DL, 5875 {MGSN->getChain(), MGN->getPassThru(), MGSN->getMask(), 5876 MGSN->getBasePtr(), Index, MGN->getScale()}, 5877 MGN->getMemOperand(), NewIndexTy, MGN->getExtensionType()); 5878 } 5879 const auto *MSN = cast<MaskedScatterSDNode>(N); 5880 return DAG.getMaskedScatter( 5881 N->getVTList(), MGSN->getMemoryVT(), DL, 5882 {MGSN->getChain(), MSN->getValue(), MGSN->getMask(), MGSN->getBasePtr(), 5883 Index, MGSN->getScale()}, 5884 MGSN->getMemOperand(), NewIndexTy, MSN->isTruncatingStore()); 5885 } 5886 } 5887 5888 return SDValue(); 5889 } 5890 5891 bool RISCVTargetLowering::isDesirableToCommuteWithShift( 5892 const SDNode *N, CombineLevel Level) const { 5893 // The following folds are only desirable if `(OP _, c1 << c2)` can be 5894 // materialised in fewer instructions than `(OP _, c1)`: 5895 // 5896 // (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2) 5897 // (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2) 5898 SDValue N0 = N->getOperand(0); 5899 EVT Ty = N0.getValueType(); 5900 if (Ty.isScalarInteger() && 5901 (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::OR)) { 5902 auto *C1 = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 5903 auto *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1)); 5904 if (C1 && C2) { 5905 const APInt &C1Int = C1->getAPIntValue(); 5906 APInt ShiftedC1Int = C1Int << C2->getAPIntValue(); 5907 5908 // We can materialise `c1 << c2` into an add immediate, so it's "free", 5909 // and the combine should happen, to potentially allow further combines 5910 // later. 5911 if (ShiftedC1Int.getMinSignedBits() <= 64 && 5912 isLegalAddImmediate(ShiftedC1Int.getSExtValue())) 5913 return true; 5914 5915 // We can materialise `c1` in an add immediate, so it's "free", and the 5916 // combine should be prevented. 5917 if (C1Int.getMinSignedBits() <= 64 && 5918 isLegalAddImmediate(C1Int.getSExtValue())) 5919 return false; 5920 5921 // Neither constant will fit into an immediate, so find materialisation 5922 // costs. 5923 int C1Cost = RISCVMatInt::getIntMatCost(C1Int, Ty.getSizeInBits(), 5924 Subtarget.is64Bit()); 5925 int ShiftedC1Cost = RISCVMatInt::getIntMatCost( 5926 ShiftedC1Int, Ty.getSizeInBits(), Subtarget.is64Bit()); 5927 5928 // Materialising `c1` is cheaper than materialising `c1 << c2`, so the 5929 // combine should be prevented. 5930 if (C1Cost < ShiftedC1Cost) 5931 return false; 5932 } 5933 } 5934 return true; 5935 } 5936 5937 bool RISCVTargetLowering::targetShrinkDemandedConstant( 5938 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 5939 TargetLoweringOpt &TLO) const { 5940 // Delay this optimization as late as possible. 5941 if (!TLO.LegalOps) 5942 return false; 5943 5944 EVT VT = Op.getValueType(); 5945 if (VT.isVector()) 5946 return false; 5947 5948 // Only handle AND for now. 5949 if (Op.getOpcode() != ISD::AND) 5950 return false; 5951 5952 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 5953 if (!C) 5954 return false; 5955 5956 const APInt &Mask = C->getAPIntValue(); 5957 5958 // Clear all non-demanded bits initially. 5959 APInt ShrunkMask = Mask & DemandedBits; 5960 5961 // Try to make a smaller immediate by setting undemanded bits. 5962 5963 APInt ExpandedMask = Mask | ~DemandedBits; 5964 5965 auto IsLegalMask = [ShrunkMask, ExpandedMask](const APInt &Mask) -> bool { 5966 return ShrunkMask.isSubsetOf(Mask) && Mask.isSubsetOf(ExpandedMask); 5967 }; 5968 auto UseMask = [Mask, Op, VT, &TLO](const APInt &NewMask) -> bool { 5969 if (NewMask == Mask) 5970 return true; 5971 SDLoc DL(Op); 5972 SDValue NewC = TLO.DAG.getConstant(NewMask, DL, VT); 5973 SDValue NewOp = TLO.DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), NewC); 5974 return TLO.CombineTo(Op, NewOp); 5975 }; 5976 5977 // If the shrunk mask fits in sign extended 12 bits, let the target 5978 // independent code apply it. 5979 if (ShrunkMask.isSignedIntN(12)) 5980 return false; 5981 5982 // Preserve (and X, 0xffff) when zext.h is supported. 5983 if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp()) { 5984 APInt NewMask = APInt(Mask.getBitWidth(), 0xffff); 5985 if (IsLegalMask(NewMask)) 5986 return UseMask(NewMask); 5987 } 5988 5989 // Try to preserve (and X, 0xffffffff), the (zext_inreg X, i32) pattern. 5990 if (VT == MVT::i64) { 5991 APInt NewMask = APInt(64, 0xffffffff); 5992 if (IsLegalMask(NewMask)) 5993 return UseMask(NewMask); 5994 } 5995 5996 // For the remaining optimizations, we need to be able to make a negative 5997 // number through a combination of mask and undemanded bits. 5998 if (!ExpandedMask.isNegative()) 5999 return false; 6000 6001 // What is the fewest number of bits we need to represent the negative number. 6002 unsigned MinSignedBits = ExpandedMask.getMinSignedBits(); 6003 6004 // Try to make a 12 bit negative immediate. If that fails try to make a 32 6005 // bit negative immediate unless the shrunk immediate already fits in 32 bits. 6006 APInt NewMask = ShrunkMask; 6007 if (MinSignedBits <= 12) 6008 NewMask.setBitsFrom(11); 6009 else if (MinSignedBits <= 32 && !ShrunkMask.isSignedIntN(32)) 6010 NewMask.setBitsFrom(31); 6011 else 6012 return false; 6013 6014 // Sanity check that our new mask is a subset of the demanded mask. 6015 assert(IsLegalMask(NewMask)); 6016 return UseMask(NewMask); 6017 } 6018 6019 void RISCVTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 6020 KnownBits &Known, 6021 const APInt &DemandedElts, 6022 const SelectionDAG &DAG, 6023 unsigned Depth) const { 6024 unsigned BitWidth = Known.getBitWidth(); 6025 unsigned Opc = Op.getOpcode(); 6026 assert((Opc >= ISD::BUILTIN_OP_END || 6027 Opc == ISD::INTRINSIC_WO_CHAIN || 6028 Opc == ISD::INTRINSIC_W_CHAIN || 6029 Opc == ISD::INTRINSIC_VOID) && 6030 "Should use MaskedValueIsZero if you don't know whether Op" 6031 " is a target node!"); 6032 6033 Known.resetAll(); 6034 switch (Opc) { 6035 default: break; 6036 case RISCVISD::SELECT_CC: { 6037 Known = DAG.computeKnownBits(Op.getOperand(4), Depth + 1); 6038 // If we don't know any bits, early out. 6039 if (Known.isUnknown()) 6040 break; 6041 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(3), Depth + 1); 6042 6043 // Only known if known in both the LHS and RHS. 6044 Known = KnownBits::commonBits(Known, Known2); 6045 break; 6046 } 6047 case RISCVISD::REMUW: { 6048 KnownBits Known2; 6049 Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 6050 Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 6051 // We only care about the lower 32 bits. 6052 Known = KnownBits::urem(Known.trunc(32), Known2.trunc(32)); 6053 // Restore the original width by sign extending. 6054 Known = Known.sext(BitWidth); 6055 break; 6056 } 6057 case RISCVISD::DIVUW: { 6058 KnownBits Known2; 6059 Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 6060 Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 6061 // We only care about the lower 32 bits. 6062 Known = KnownBits::udiv(Known.trunc(32), Known2.trunc(32)); 6063 // Restore the original width by sign extending. 6064 Known = Known.sext(BitWidth); 6065 break; 6066 } 6067 case RISCVISD::CTZW: { 6068 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 6069 unsigned PossibleTZ = Known2.trunc(32).countMaxTrailingZeros(); 6070 unsigned LowBits = Log2_32(PossibleTZ) + 1; 6071 Known.Zero.setBitsFrom(LowBits); 6072 break; 6073 } 6074 case RISCVISD::CLZW: { 6075 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 6076 unsigned PossibleLZ = Known2.trunc(32).countMaxLeadingZeros(); 6077 unsigned LowBits = Log2_32(PossibleLZ) + 1; 6078 Known.Zero.setBitsFrom(LowBits); 6079 break; 6080 } 6081 case RISCVISD::READ_VLENB: 6082 // We assume VLENB is at least 16 bytes. 6083 Known.Zero.setLowBits(4); 6084 break; 6085 case ISD::INTRINSIC_W_CHAIN: { 6086 unsigned IntNo = Op.getConstantOperandVal(1); 6087 switch (IntNo) { 6088 default: 6089 // We can't do anything for most intrinsics. 6090 break; 6091 case Intrinsic::riscv_vsetvli: 6092 case Intrinsic::riscv_vsetvlimax: 6093 // Assume that VL output is positive and would fit in an int32_t. 6094 // TODO: VLEN might be capped at 16 bits in a future V spec update. 6095 if (BitWidth >= 32) 6096 Known.Zero.setBitsFrom(31); 6097 break; 6098 } 6099 break; 6100 } 6101 } 6102 } 6103 6104 unsigned RISCVTargetLowering::ComputeNumSignBitsForTargetNode( 6105 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 6106 unsigned Depth) const { 6107 switch (Op.getOpcode()) { 6108 default: 6109 break; 6110 case RISCVISD::SLLW: 6111 case RISCVISD::SRAW: 6112 case RISCVISD::SRLW: 6113 case RISCVISD::DIVW: 6114 case RISCVISD::DIVUW: 6115 case RISCVISD::REMUW: 6116 case RISCVISD::ROLW: 6117 case RISCVISD::RORW: 6118 case RISCVISD::GREVW: 6119 case RISCVISD::GORCW: 6120 case RISCVISD::FSLW: 6121 case RISCVISD::FSRW: 6122 case RISCVISD::SHFLW: 6123 case RISCVISD::UNSHFLW: 6124 case RISCVISD::BCOMPRESSW: 6125 case RISCVISD::BDECOMPRESSW: 6126 // TODO: As the result is sign-extended, this is conservatively correct. A 6127 // more precise answer could be calculated for SRAW depending on known 6128 // bits in the shift amount. 6129 return 33; 6130 case RISCVISD::SHFL: 6131 case RISCVISD::UNSHFL: { 6132 // There is no SHFLIW, but a i64 SHFLI with bit 4 of the control word 6133 // cleared doesn't affect bit 31. The upper 32 bits will be shuffled, but 6134 // will stay within the upper 32 bits. If there were more than 32 sign bits 6135 // before there will be at least 33 sign bits after. 6136 if (Op.getValueType() == MVT::i64 && 6137 isa<ConstantSDNode>(Op.getOperand(1)) && 6138 (Op.getConstantOperandVal(1) & 0x10) == 0) { 6139 unsigned Tmp = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1); 6140 if (Tmp > 32) 6141 return 33; 6142 } 6143 break; 6144 } 6145 case RISCVISD::VMV_X_S: 6146 // The number of sign bits of the scalar result is computed by obtaining the 6147 // element type of the input vector operand, subtracting its width from the 6148 // XLEN, and then adding one (sign bit within the element type). If the 6149 // element type is wider than XLen, the least-significant XLEN bits are 6150 // taken. 6151 if (Op.getOperand(0).getScalarValueSizeInBits() > Subtarget.getXLen()) 6152 return 1; 6153 return Subtarget.getXLen() - Op.getOperand(0).getScalarValueSizeInBits() + 1; 6154 } 6155 6156 return 1; 6157 } 6158 6159 static MachineBasicBlock *emitReadCycleWidePseudo(MachineInstr &MI, 6160 MachineBasicBlock *BB) { 6161 assert(MI.getOpcode() == RISCV::ReadCycleWide && "Unexpected instruction"); 6162 6163 // To read the 64-bit cycle CSR on a 32-bit target, we read the two halves. 6164 // Should the count have wrapped while it was being read, we need to try 6165 // again. 6166 // ... 6167 // read: 6168 // rdcycleh x3 # load high word of cycle 6169 // rdcycle x2 # load low word of cycle 6170 // rdcycleh x4 # load high word of cycle 6171 // bne x3, x4, read # check if high word reads match, otherwise try again 6172 // ... 6173 6174 MachineFunction &MF = *BB->getParent(); 6175 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 6176 MachineFunction::iterator It = ++BB->getIterator(); 6177 6178 MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB); 6179 MF.insert(It, LoopMBB); 6180 6181 MachineBasicBlock *DoneMBB = MF.CreateMachineBasicBlock(LLVM_BB); 6182 MF.insert(It, DoneMBB); 6183 6184 // Transfer the remainder of BB and its successor edges to DoneMBB. 6185 DoneMBB->splice(DoneMBB->begin(), BB, 6186 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 6187 DoneMBB->transferSuccessorsAndUpdatePHIs(BB); 6188 6189 BB->addSuccessor(LoopMBB); 6190 6191 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 6192 Register ReadAgainReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 6193 Register LoReg = MI.getOperand(0).getReg(); 6194 Register HiReg = MI.getOperand(1).getReg(); 6195 DebugLoc DL = MI.getDebugLoc(); 6196 6197 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 6198 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), HiReg) 6199 .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding) 6200 .addReg(RISCV::X0); 6201 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), LoReg) 6202 .addImm(RISCVSysReg::lookupSysRegByName("CYCLE")->Encoding) 6203 .addReg(RISCV::X0); 6204 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), ReadAgainReg) 6205 .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding) 6206 .addReg(RISCV::X0); 6207 6208 BuildMI(LoopMBB, DL, TII->get(RISCV::BNE)) 6209 .addReg(HiReg) 6210 .addReg(ReadAgainReg) 6211 .addMBB(LoopMBB); 6212 6213 LoopMBB->addSuccessor(LoopMBB); 6214 LoopMBB->addSuccessor(DoneMBB); 6215 6216 MI.eraseFromParent(); 6217 6218 return DoneMBB; 6219 } 6220 6221 static MachineBasicBlock *emitSplitF64Pseudo(MachineInstr &MI, 6222 MachineBasicBlock *BB) { 6223 assert(MI.getOpcode() == RISCV::SplitF64Pseudo && "Unexpected instruction"); 6224 6225 MachineFunction &MF = *BB->getParent(); 6226 DebugLoc DL = MI.getDebugLoc(); 6227 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 6228 const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo(); 6229 Register LoReg = MI.getOperand(0).getReg(); 6230 Register HiReg = MI.getOperand(1).getReg(); 6231 Register SrcReg = MI.getOperand(2).getReg(); 6232 const TargetRegisterClass *SrcRC = &RISCV::FPR64RegClass; 6233 int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF); 6234 6235 TII.storeRegToStackSlot(*BB, MI, SrcReg, MI.getOperand(2).isKill(), FI, SrcRC, 6236 RI); 6237 MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI); 6238 MachineMemOperand *MMOLo = 6239 MF.getMachineMemOperand(MPI, MachineMemOperand::MOLoad, 4, Align(8)); 6240 MachineMemOperand *MMOHi = MF.getMachineMemOperand( 6241 MPI.getWithOffset(4), MachineMemOperand::MOLoad, 4, Align(8)); 6242 BuildMI(*BB, MI, DL, TII.get(RISCV::LW), LoReg) 6243 .addFrameIndex(FI) 6244 .addImm(0) 6245 .addMemOperand(MMOLo); 6246 BuildMI(*BB, MI, DL, TII.get(RISCV::LW), HiReg) 6247 .addFrameIndex(FI) 6248 .addImm(4) 6249 .addMemOperand(MMOHi); 6250 MI.eraseFromParent(); // The pseudo instruction is gone now. 6251 return BB; 6252 } 6253 6254 static MachineBasicBlock *emitBuildPairF64Pseudo(MachineInstr &MI, 6255 MachineBasicBlock *BB) { 6256 assert(MI.getOpcode() == RISCV::BuildPairF64Pseudo && 6257 "Unexpected instruction"); 6258 6259 MachineFunction &MF = *BB->getParent(); 6260 DebugLoc DL = MI.getDebugLoc(); 6261 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 6262 const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo(); 6263 Register DstReg = MI.getOperand(0).getReg(); 6264 Register LoReg = MI.getOperand(1).getReg(); 6265 Register HiReg = MI.getOperand(2).getReg(); 6266 const TargetRegisterClass *DstRC = &RISCV::FPR64RegClass; 6267 int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF); 6268 6269 MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI); 6270 MachineMemOperand *MMOLo = 6271 MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Align(8)); 6272 MachineMemOperand *MMOHi = MF.getMachineMemOperand( 6273 MPI.getWithOffset(4), MachineMemOperand::MOStore, 4, Align(8)); 6274 BuildMI(*BB, MI, DL, TII.get(RISCV::SW)) 6275 .addReg(LoReg, getKillRegState(MI.getOperand(1).isKill())) 6276 .addFrameIndex(FI) 6277 .addImm(0) 6278 .addMemOperand(MMOLo); 6279 BuildMI(*BB, MI, DL, TII.get(RISCV::SW)) 6280 .addReg(HiReg, getKillRegState(MI.getOperand(2).isKill())) 6281 .addFrameIndex(FI) 6282 .addImm(4) 6283 .addMemOperand(MMOHi); 6284 TII.loadRegFromStackSlot(*BB, MI, DstReg, FI, DstRC, RI); 6285 MI.eraseFromParent(); // The pseudo instruction is gone now. 6286 return BB; 6287 } 6288 6289 static bool isSelectPseudo(MachineInstr &MI) { 6290 switch (MI.getOpcode()) { 6291 default: 6292 return false; 6293 case RISCV::Select_GPR_Using_CC_GPR: 6294 case RISCV::Select_FPR16_Using_CC_GPR: 6295 case RISCV::Select_FPR32_Using_CC_GPR: 6296 case RISCV::Select_FPR64_Using_CC_GPR: 6297 return true; 6298 } 6299 } 6300 6301 static MachineBasicBlock *emitSelectPseudo(MachineInstr &MI, 6302 MachineBasicBlock *BB) { 6303 // To "insert" Select_* instructions, we actually have to insert the triangle 6304 // control-flow pattern. The incoming instructions know the destination vreg 6305 // to set, the condition code register to branch on, the true/false values to 6306 // select between, and the condcode to use to select the appropriate branch. 6307 // 6308 // We produce the following control flow: 6309 // HeadMBB 6310 // | \ 6311 // | IfFalseMBB 6312 // | / 6313 // TailMBB 6314 // 6315 // When we find a sequence of selects we attempt to optimize their emission 6316 // by sharing the control flow. Currently we only handle cases where we have 6317 // multiple selects with the exact same condition (same LHS, RHS and CC). 6318 // The selects may be interleaved with other instructions if the other 6319 // instructions meet some requirements we deem safe: 6320 // - They are debug instructions. Otherwise, 6321 // - They do not have side-effects, do not access memory and their inputs do 6322 // not depend on the results of the select pseudo-instructions. 6323 // The TrueV/FalseV operands of the selects cannot depend on the result of 6324 // previous selects in the sequence. 6325 // These conditions could be further relaxed. See the X86 target for a 6326 // related approach and more information. 6327 Register LHS = MI.getOperand(1).getReg(); 6328 Register RHS = MI.getOperand(2).getReg(); 6329 auto CC = static_cast<ISD::CondCode>(MI.getOperand(3).getImm()); 6330 6331 SmallVector<MachineInstr *, 4> SelectDebugValues; 6332 SmallSet<Register, 4> SelectDests; 6333 SelectDests.insert(MI.getOperand(0).getReg()); 6334 6335 MachineInstr *LastSelectPseudo = &MI; 6336 6337 for (auto E = BB->end(), SequenceMBBI = MachineBasicBlock::iterator(MI); 6338 SequenceMBBI != E; ++SequenceMBBI) { 6339 if (SequenceMBBI->isDebugInstr()) 6340 continue; 6341 else if (isSelectPseudo(*SequenceMBBI)) { 6342 if (SequenceMBBI->getOperand(1).getReg() != LHS || 6343 SequenceMBBI->getOperand(2).getReg() != RHS || 6344 SequenceMBBI->getOperand(3).getImm() != CC || 6345 SelectDests.count(SequenceMBBI->getOperand(4).getReg()) || 6346 SelectDests.count(SequenceMBBI->getOperand(5).getReg())) 6347 break; 6348 LastSelectPseudo = &*SequenceMBBI; 6349 SequenceMBBI->collectDebugValues(SelectDebugValues); 6350 SelectDests.insert(SequenceMBBI->getOperand(0).getReg()); 6351 } else { 6352 if (SequenceMBBI->hasUnmodeledSideEffects() || 6353 SequenceMBBI->mayLoadOrStore()) 6354 break; 6355 if (llvm::any_of(SequenceMBBI->operands(), [&](MachineOperand &MO) { 6356 return MO.isReg() && MO.isUse() && SelectDests.count(MO.getReg()); 6357 })) 6358 break; 6359 } 6360 } 6361 6362 const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo(); 6363 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 6364 DebugLoc DL = MI.getDebugLoc(); 6365 MachineFunction::iterator I = ++BB->getIterator(); 6366 6367 MachineBasicBlock *HeadMBB = BB; 6368 MachineFunction *F = BB->getParent(); 6369 MachineBasicBlock *TailMBB = F->CreateMachineBasicBlock(LLVM_BB); 6370 MachineBasicBlock *IfFalseMBB = F->CreateMachineBasicBlock(LLVM_BB); 6371 6372 F->insert(I, IfFalseMBB); 6373 F->insert(I, TailMBB); 6374 6375 // Transfer debug instructions associated with the selects to TailMBB. 6376 for (MachineInstr *DebugInstr : SelectDebugValues) { 6377 TailMBB->push_back(DebugInstr->removeFromParent()); 6378 } 6379 6380 // Move all instructions after the sequence to TailMBB. 6381 TailMBB->splice(TailMBB->end(), HeadMBB, 6382 std::next(LastSelectPseudo->getIterator()), HeadMBB->end()); 6383 // Update machine-CFG edges by transferring all successors of the current 6384 // block to the new block which will contain the Phi nodes for the selects. 6385 TailMBB->transferSuccessorsAndUpdatePHIs(HeadMBB); 6386 // Set the successors for HeadMBB. 6387 HeadMBB->addSuccessor(IfFalseMBB); 6388 HeadMBB->addSuccessor(TailMBB); 6389 6390 // Insert appropriate branch. 6391 unsigned Opcode = getBranchOpcodeForIntCondCode(CC); 6392 6393 BuildMI(HeadMBB, DL, TII.get(Opcode)) 6394 .addReg(LHS) 6395 .addReg(RHS) 6396 .addMBB(TailMBB); 6397 6398 // IfFalseMBB just falls through to TailMBB. 6399 IfFalseMBB->addSuccessor(TailMBB); 6400 6401 // Create PHIs for all of the select pseudo-instructions. 6402 auto SelectMBBI = MI.getIterator(); 6403 auto SelectEnd = std::next(LastSelectPseudo->getIterator()); 6404 auto InsertionPoint = TailMBB->begin(); 6405 while (SelectMBBI != SelectEnd) { 6406 auto Next = std::next(SelectMBBI); 6407 if (isSelectPseudo(*SelectMBBI)) { 6408 // %Result = phi [ %TrueValue, HeadMBB ], [ %FalseValue, IfFalseMBB ] 6409 BuildMI(*TailMBB, InsertionPoint, SelectMBBI->getDebugLoc(), 6410 TII.get(RISCV::PHI), SelectMBBI->getOperand(0).getReg()) 6411 .addReg(SelectMBBI->getOperand(4).getReg()) 6412 .addMBB(HeadMBB) 6413 .addReg(SelectMBBI->getOperand(5).getReg()) 6414 .addMBB(IfFalseMBB); 6415 SelectMBBI->eraseFromParent(); 6416 } 6417 SelectMBBI = Next; 6418 } 6419 6420 F->getProperties().reset(MachineFunctionProperties::Property::NoPHIs); 6421 return TailMBB; 6422 } 6423 6424 static MachineInstr *elideCopies(MachineInstr *MI, 6425 const MachineRegisterInfo &MRI) { 6426 while (true) { 6427 if (!MI->isFullCopy()) 6428 return MI; 6429 if (!Register::isVirtualRegister(MI->getOperand(1).getReg())) 6430 return nullptr; 6431 MI = MRI.getVRegDef(MI->getOperand(1).getReg()); 6432 if (!MI) 6433 return nullptr; 6434 } 6435 } 6436 6437 static MachineBasicBlock *addVSetVL(MachineInstr &MI, MachineBasicBlock *BB, 6438 int VLIndex, unsigned SEWIndex, 6439 RISCVVLMUL VLMul, bool ForceTailAgnostic) { 6440 MachineFunction &MF = *BB->getParent(); 6441 DebugLoc DL = MI.getDebugLoc(); 6442 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 6443 6444 unsigned Log2SEW = MI.getOperand(SEWIndex).getImm(); 6445 assert(RISCVVType::isValidSEW(1 << Log2SEW) && "Unexpected SEW"); 6446 RISCVVSEW ElementWidth = static_cast<RISCVVSEW>(Log2SEW - 3); 6447 6448 MachineRegisterInfo &MRI = MF.getRegInfo(); 6449 6450 auto BuildVSETVLI = [&]() { 6451 if (VLIndex >= 0) { 6452 Register DestReg = MRI.createVirtualRegister(&RISCV::GPRRegClass); 6453 const MachineOperand &VLOp = MI.getOperand(VLIndex); 6454 6455 // VL can be a register or an immediate. 6456 if (VLOp.isImm()) 6457 return BuildMI(*BB, MI, DL, TII.get(RISCV::PseudoVSETIVLI)) 6458 .addReg(DestReg, RegState::Define | RegState::Dead) 6459 .addImm(VLOp.getImm()); 6460 6461 Register VLReg = MI.getOperand(VLIndex).getReg(); 6462 return BuildMI(*BB, MI, DL, TII.get(RISCV::PseudoVSETVLI)) 6463 .addReg(DestReg, RegState::Define | RegState::Dead) 6464 .addReg(VLReg); 6465 } 6466 6467 // With no VL operator in the pseudo, do not modify VL (rd = X0, rs1 = X0). 6468 return BuildMI(*BB, MI, DL, TII.get(RISCV::PseudoVSETVLI)) 6469 .addReg(RISCV::X0, RegState::Define | RegState::Dead) 6470 .addReg(RISCV::X0, RegState::Kill); 6471 }; 6472 6473 MachineInstrBuilder MIB = BuildVSETVLI(); 6474 6475 // Default to tail agnostic unless the destination is tied to a source. In 6476 // that case the user would have some control over the tail values. The tail 6477 // policy is also ignored on instructions that only update element 0 like 6478 // vmv.s.x or reductions so use agnostic there to match the common case. 6479 // FIXME: This is conservatively correct, but we might want to detect that 6480 // the input is undefined. 6481 bool TailAgnostic = true; 6482 unsigned UseOpIdx; 6483 if (!ForceTailAgnostic && MI.isRegTiedToUseOperand(0, &UseOpIdx)) { 6484 TailAgnostic = false; 6485 // If the tied operand is an IMPLICIT_DEF we can keep TailAgnostic. 6486 const MachineOperand &UseMO = MI.getOperand(UseOpIdx); 6487 MachineInstr *UseMI = MRI.getVRegDef(UseMO.getReg()); 6488 if (UseMI) { 6489 UseMI = elideCopies(UseMI, MRI); 6490 if (UseMI && UseMI->isImplicitDef()) 6491 TailAgnostic = true; 6492 } 6493 } 6494 6495 // For simplicity we reuse the vtype representation here. 6496 MIB.addImm(RISCVVType::encodeVTYPE(VLMul, ElementWidth, 6497 /*TailAgnostic*/ TailAgnostic, 6498 /*MaskAgnostic*/ false)); 6499 6500 // Remove (now) redundant operands from pseudo 6501 if (VLIndex >= 0 && MI.getOperand(VLIndex).isReg()) { 6502 MI.getOperand(VLIndex).setReg(RISCV::NoRegister); 6503 MI.getOperand(VLIndex).setIsKill(false); 6504 } 6505 6506 return BB; 6507 } 6508 6509 MachineBasicBlock * 6510 RISCVTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 6511 MachineBasicBlock *BB) const { 6512 uint64_t TSFlags = MI.getDesc().TSFlags; 6513 6514 if (TSFlags & RISCVII::HasSEWOpMask) { 6515 unsigned NumOperands = MI.getNumExplicitOperands(); 6516 int VLIndex = (TSFlags & RISCVII::HasVLOpMask) ? NumOperands - 2 : -1; 6517 unsigned SEWIndex = NumOperands - 1; 6518 bool ForceTailAgnostic = TSFlags & RISCVII::ForceTailAgnosticMask; 6519 6520 RISCVVLMUL VLMul = static_cast<RISCVVLMUL>((TSFlags & RISCVII::VLMulMask) >> 6521 RISCVII::VLMulShift); 6522 return addVSetVL(MI, BB, VLIndex, SEWIndex, VLMul, ForceTailAgnostic); 6523 } 6524 6525 switch (MI.getOpcode()) { 6526 default: 6527 llvm_unreachable("Unexpected instr type to insert"); 6528 case RISCV::ReadCycleWide: 6529 assert(!Subtarget.is64Bit() && 6530 "ReadCycleWrite is only to be used on riscv32"); 6531 return emitReadCycleWidePseudo(MI, BB); 6532 case RISCV::Select_GPR_Using_CC_GPR: 6533 case RISCV::Select_FPR16_Using_CC_GPR: 6534 case RISCV::Select_FPR32_Using_CC_GPR: 6535 case RISCV::Select_FPR64_Using_CC_GPR: 6536 return emitSelectPseudo(MI, BB); 6537 case RISCV::BuildPairF64Pseudo: 6538 return emitBuildPairF64Pseudo(MI, BB); 6539 case RISCV::SplitF64Pseudo: 6540 return emitSplitF64Pseudo(MI, BB); 6541 } 6542 } 6543 6544 // Calling Convention Implementation. 6545 // The expectations for frontend ABI lowering vary from target to target. 6546 // Ideally, an LLVM frontend would be able to avoid worrying about many ABI 6547 // details, but this is a longer term goal. For now, we simply try to keep the 6548 // role of the frontend as simple and well-defined as possible. The rules can 6549 // be summarised as: 6550 // * Never split up large scalar arguments. We handle them here. 6551 // * If a hardfloat calling convention is being used, and the struct may be 6552 // passed in a pair of registers (fp+fp, int+fp), and both registers are 6553 // available, then pass as two separate arguments. If either the GPRs or FPRs 6554 // are exhausted, then pass according to the rule below. 6555 // * If a struct could never be passed in registers or directly in a stack 6556 // slot (as it is larger than 2*XLEN and the floating point rules don't 6557 // apply), then pass it using a pointer with the byval attribute. 6558 // * If a struct is less than 2*XLEN, then coerce to either a two-element 6559 // word-sized array or a 2*XLEN scalar (depending on alignment). 6560 // * The frontend can determine whether a struct is returned by reference or 6561 // not based on its size and fields. If it will be returned by reference, the 6562 // frontend must modify the prototype so a pointer with the sret annotation is 6563 // passed as the first argument. This is not necessary for large scalar 6564 // returns. 6565 // * Struct return values and varargs should be coerced to structs containing 6566 // register-size fields in the same situations they would be for fixed 6567 // arguments. 6568 6569 static const MCPhysReg ArgGPRs[] = { 6570 RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, 6571 RISCV::X14, RISCV::X15, RISCV::X16, RISCV::X17 6572 }; 6573 static const MCPhysReg ArgFPR16s[] = { 6574 RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, 6575 RISCV::F14_H, RISCV::F15_H, RISCV::F16_H, RISCV::F17_H 6576 }; 6577 static const MCPhysReg ArgFPR32s[] = { 6578 RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, 6579 RISCV::F14_F, RISCV::F15_F, RISCV::F16_F, RISCV::F17_F 6580 }; 6581 static const MCPhysReg ArgFPR64s[] = { 6582 RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, 6583 RISCV::F14_D, RISCV::F15_D, RISCV::F16_D, RISCV::F17_D 6584 }; 6585 // This is an interim calling convention and it may be changed in the future. 6586 static const MCPhysReg ArgVRs[] = { 6587 RISCV::V8, RISCV::V9, RISCV::V10, RISCV::V11, RISCV::V12, RISCV::V13, 6588 RISCV::V14, RISCV::V15, RISCV::V16, RISCV::V17, RISCV::V18, RISCV::V19, 6589 RISCV::V20, RISCV::V21, RISCV::V22, RISCV::V23}; 6590 static const MCPhysReg ArgVRM2s[] = {RISCV::V8M2, RISCV::V10M2, RISCV::V12M2, 6591 RISCV::V14M2, RISCV::V16M2, RISCV::V18M2, 6592 RISCV::V20M2, RISCV::V22M2}; 6593 static const MCPhysReg ArgVRM4s[] = {RISCV::V8M4, RISCV::V12M4, RISCV::V16M4, 6594 RISCV::V20M4}; 6595 static const MCPhysReg ArgVRM8s[] = {RISCV::V8M8, RISCV::V16M8}; 6596 6597 // Pass a 2*XLEN argument that has been split into two XLEN values through 6598 // registers or the stack as necessary. 6599 static bool CC_RISCVAssign2XLen(unsigned XLen, CCState &State, CCValAssign VA1, 6600 ISD::ArgFlagsTy ArgFlags1, unsigned ValNo2, 6601 MVT ValVT2, MVT LocVT2, 6602 ISD::ArgFlagsTy ArgFlags2) { 6603 unsigned XLenInBytes = XLen / 8; 6604 if (Register Reg = State.AllocateReg(ArgGPRs)) { 6605 // At least one half can be passed via register. 6606 State.addLoc(CCValAssign::getReg(VA1.getValNo(), VA1.getValVT(), Reg, 6607 VA1.getLocVT(), CCValAssign::Full)); 6608 } else { 6609 // Both halves must be passed on the stack, with proper alignment. 6610 Align StackAlign = 6611 std::max(Align(XLenInBytes), ArgFlags1.getNonZeroOrigAlign()); 6612 State.addLoc( 6613 CCValAssign::getMem(VA1.getValNo(), VA1.getValVT(), 6614 State.AllocateStack(XLenInBytes, StackAlign), 6615 VA1.getLocVT(), CCValAssign::Full)); 6616 State.addLoc(CCValAssign::getMem( 6617 ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)), 6618 LocVT2, CCValAssign::Full)); 6619 return false; 6620 } 6621 6622 if (Register Reg = State.AllocateReg(ArgGPRs)) { 6623 // The second half can also be passed via register. 6624 State.addLoc( 6625 CCValAssign::getReg(ValNo2, ValVT2, Reg, LocVT2, CCValAssign::Full)); 6626 } else { 6627 // The second half is passed via the stack, without additional alignment. 6628 State.addLoc(CCValAssign::getMem( 6629 ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)), 6630 LocVT2, CCValAssign::Full)); 6631 } 6632 6633 return false; 6634 } 6635 6636 // Implements the RISC-V calling convention. Returns true upon failure. 6637 static bool CC_RISCV(const DataLayout &DL, RISCVABI::ABI ABI, unsigned ValNo, 6638 MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, 6639 ISD::ArgFlagsTy ArgFlags, CCState &State, bool IsFixed, 6640 bool IsRet, Type *OrigTy, const RISCVTargetLowering &TLI, 6641 Optional<unsigned> FirstMaskArgument) { 6642 unsigned XLen = DL.getLargestLegalIntTypeSizeInBits(); 6643 assert(XLen == 32 || XLen == 64); 6644 MVT XLenVT = XLen == 32 ? MVT::i32 : MVT::i64; 6645 6646 // Any return value split in to more than two values can't be returned 6647 // directly. Vectors are returned via the available vector registers. 6648 if (!LocVT.isVector() && IsRet && ValNo > 1) 6649 return true; 6650 6651 // UseGPRForF16_F32 if targeting one of the soft-float ABIs, if passing a 6652 // variadic argument, or if no F16/F32 argument registers are available. 6653 bool UseGPRForF16_F32 = true; 6654 // UseGPRForF64 if targeting soft-float ABIs or an FLEN=32 ABI, if passing a 6655 // variadic argument, or if no F64 argument registers are available. 6656 bool UseGPRForF64 = true; 6657 6658 switch (ABI) { 6659 default: 6660 llvm_unreachable("Unexpected ABI"); 6661 case RISCVABI::ABI_ILP32: 6662 case RISCVABI::ABI_LP64: 6663 break; 6664 case RISCVABI::ABI_ILP32F: 6665 case RISCVABI::ABI_LP64F: 6666 UseGPRForF16_F32 = !IsFixed; 6667 break; 6668 case RISCVABI::ABI_ILP32D: 6669 case RISCVABI::ABI_LP64D: 6670 UseGPRForF16_F32 = !IsFixed; 6671 UseGPRForF64 = !IsFixed; 6672 break; 6673 } 6674 6675 // FPR16, FPR32, and FPR64 alias each other. 6676 if (State.getFirstUnallocated(ArgFPR32s) == array_lengthof(ArgFPR32s)) { 6677 UseGPRForF16_F32 = true; 6678 UseGPRForF64 = true; 6679 } 6680 6681 // From this point on, rely on UseGPRForF16_F32, UseGPRForF64 and 6682 // similar local variables rather than directly checking against the target 6683 // ABI. 6684 6685 if (UseGPRForF16_F32 && (ValVT == MVT::f16 || ValVT == MVT::f32)) { 6686 LocVT = XLenVT; 6687 LocInfo = CCValAssign::BCvt; 6688 } else if (UseGPRForF64 && XLen == 64 && ValVT == MVT::f64) { 6689 LocVT = MVT::i64; 6690 LocInfo = CCValAssign::BCvt; 6691 } 6692 6693 // If this is a variadic argument, the RISC-V calling convention requires 6694 // that it is assigned an 'even' or 'aligned' register if it has 8-byte 6695 // alignment (RV32) or 16-byte alignment (RV64). An aligned register should 6696 // be used regardless of whether the original argument was split during 6697 // legalisation or not. The argument will not be passed by registers if the 6698 // original type is larger than 2*XLEN, so the register alignment rule does 6699 // not apply. 6700 unsigned TwoXLenInBytes = (2 * XLen) / 8; 6701 if (!IsFixed && ArgFlags.getNonZeroOrigAlign() == TwoXLenInBytes && 6702 DL.getTypeAllocSize(OrigTy) == TwoXLenInBytes) { 6703 unsigned RegIdx = State.getFirstUnallocated(ArgGPRs); 6704 // Skip 'odd' register if necessary. 6705 if (RegIdx != array_lengthof(ArgGPRs) && RegIdx % 2 == 1) 6706 State.AllocateReg(ArgGPRs); 6707 } 6708 6709 SmallVectorImpl<CCValAssign> &PendingLocs = State.getPendingLocs(); 6710 SmallVectorImpl<ISD::ArgFlagsTy> &PendingArgFlags = 6711 State.getPendingArgFlags(); 6712 6713 assert(PendingLocs.size() == PendingArgFlags.size() && 6714 "PendingLocs and PendingArgFlags out of sync"); 6715 6716 // Handle passing f64 on RV32D with a soft float ABI or when floating point 6717 // registers are exhausted. 6718 if (UseGPRForF64 && XLen == 32 && ValVT == MVT::f64) { 6719 assert(!ArgFlags.isSplit() && PendingLocs.empty() && 6720 "Can't lower f64 if it is split"); 6721 // Depending on available argument GPRS, f64 may be passed in a pair of 6722 // GPRs, split between a GPR and the stack, or passed completely on the 6723 // stack. LowerCall/LowerFormalArguments/LowerReturn must recognise these 6724 // cases. 6725 Register Reg = State.AllocateReg(ArgGPRs); 6726 LocVT = MVT::i32; 6727 if (!Reg) { 6728 unsigned StackOffset = State.AllocateStack(8, Align(8)); 6729 State.addLoc( 6730 CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 6731 return false; 6732 } 6733 if (!State.AllocateReg(ArgGPRs)) 6734 State.AllocateStack(4, Align(4)); 6735 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 6736 return false; 6737 } 6738 6739 // Fixed-length vectors are located in the corresponding scalable-vector 6740 // container types. 6741 if (ValVT.isFixedLengthVector()) 6742 LocVT = TLI.getContainerForFixedLengthVector(LocVT); 6743 6744 // Split arguments might be passed indirectly, so keep track of the pending 6745 // values. Split vectors are passed via a mix of registers and indirectly, so 6746 // treat them as we would any other argument. 6747 if (!LocVT.isVector() && (ArgFlags.isSplit() || !PendingLocs.empty())) { 6748 LocVT = XLenVT; 6749 LocInfo = CCValAssign::Indirect; 6750 PendingLocs.push_back( 6751 CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo)); 6752 PendingArgFlags.push_back(ArgFlags); 6753 if (!ArgFlags.isSplitEnd()) { 6754 return false; 6755 } 6756 } 6757 6758 // If the split argument only had two elements, it should be passed directly 6759 // in registers or on the stack. 6760 if (!LocVT.isVector() && ArgFlags.isSplitEnd() && PendingLocs.size() <= 2) { 6761 assert(PendingLocs.size() == 2 && "Unexpected PendingLocs.size()"); 6762 // Apply the normal calling convention rules to the first half of the 6763 // split argument. 6764 CCValAssign VA = PendingLocs[0]; 6765 ISD::ArgFlagsTy AF = PendingArgFlags[0]; 6766 PendingLocs.clear(); 6767 PendingArgFlags.clear(); 6768 return CC_RISCVAssign2XLen(XLen, State, VA, AF, ValNo, ValVT, LocVT, 6769 ArgFlags); 6770 } 6771 6772 // Allocate to a register if possible, or else a stack slot. 6773 Register Reg; 6774 if (ValVT == MVT::f16 && !UseGPRForF16_F32) 6775 Reg = State.AllocateReg(ArgFPR16s); 6776 else if (ValVT == MVT::f32 && !UseGPRForF16_F32) 6777 Reg = State.AllocateReg(ArgFPR32s); 6778 else if (ValVT == MVT::f64 && !UseGPRForF64) 6779 Reg = State.AllocateReg(ArgFPR64s); 6780 else if (ValVT.isVector()) { 6781 const TargetRegisterClass *RC = TLI.getRegClassFor(ValVT); 6782 if (RC == &RISCV::VRRegClass) { 6783 // Assign the first mask argument to V0. 6784 // This is an interim calling convention and it may be changed in the 6785 // future. 6786 if (FirstMaskArgument.hasValue() && 6787 ValNo == FirstMaskArgument.getValue()) { 6788 Reg = State.AllocateReg(RISCV::V0); 6789 } else { 6790 Reg = State.AllocateReg(ArgVRs); 6791 } 6792 } else if (RC == &RISCV::VRM2RegClass) { 6793 Reg = State.AllocateReg(ArgVRM2s); 6794 } else if (RC == &RISCV::VRM4RegClass) { 6795 Reg = State.AllocateReg(ArgVRM4s); 6796 } else if (RC == &RISCV::VRM8RegClass) { 6797 Reg = State.AllocateReg(ArgVRM8s); 6798 } else { 6799 llvm_unreachable("Unhandled class register for ValueType"); 6800 } 6801 if (!Reg) { 6802 // For return values, the vector must be passed fully via registers or 6803 // via the stack. 6804 // FIXME: The proposed vector ABI only mandates v8-v15 for return values, 6805 // but we're using all of them. 6806 if (IsRet) 6807 return true; 6808 LocInfo = CCValAssign::Indirect; 6809 // Try using a GPR to pass the address 6810 Reg = State.AllocateReg(ArgGPRs); 6811 LocVT = XLenVT; 6812 } 6813 } else 6814 Reg = State.AllocateReg(ArgGPRs); 6815 unsigned StackOffset = 6816 Reg ? 0 : State.AllocateStack(XLen / 8, Align(XLen / 8)); 6817 6818 // If we reach this point and PendingLocs is non-empty, we must be at the 6819 // end of a split argument that must be passed indirectly. 6820 if (!PendingLocs.empty()) { 6821 assert(ArgFlags.isSplitEnd() && "Expected ArgFlags.isSplitEnd()"); 6822 assert(PendingLocs.size() > 2 && "Unexpected PendingLocs.size()"); 6823 6824 for (auto &It : PendingLocs) { 6825 if (Reg) 6826 It.convertToReg(Reg); 6827 else 6828 It.convertToMem(StackOffset); 6829 State.addLoc(It); 6830 } 6831 PendingLocs.clear(); 6832 PendingArgFlags.clear(); 6833 return false; 6834 } 6835 6836 assert((!UseGPRForF16_F32 || !UseGPRForF64 || LocVT == XLenVT || 6837 (TLI.getSubtarget().hasStdExtV() && ValVT.isVector())) && 6838 "Expected an XLenVT or vector types at this stage"); 6839 6840 if (Reg) { 6841 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 6842 return false; 6843 } 6844 6845 // When a floating-point value is passed on the stack, no bit-conversion is 6846 // needed. 6847 if (ValVT.isFloatingPoint()) { 6848 LocVT = ValVT; 6849 LocInfo = CCValAssign::Full; 6850 } 6851 State.addLoc(CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 6852 return false; 6853 } 6854 6855 template <typename ArgTy> 6856 static Optional<unsigned> preAssignMask(const ArgTy &Args) { 6857 for (const auto &ArgIdx : enumerate(Args)) { 6858 MVT ArgVT = ArgIdx.value().VT; 6859 if (ArgVT.isVector() && ArgVT.getVectorElementType() == MVT::i1) 6860 return ArgIdx.index(); 6861 } 6862 return None; 6863 } 6864 6865 void RISCVTargetLowering::analyzeInputArgs( 6866 MachineFunction &MF, CCState &CCInfo, 6867 const SmallVectorImpl<ISD::InputArg> &Ins, bool IsRet) const { 6868 unsigned NumArgs = Ins.size(); 6869 FunctionType *FType = MF.getFunction().getFunctionType(); 6870 6871 Optional<unsigned> FirstMaskArgument; 6872 if (Subtarget.hasStdExtV()) 6873 FirstMaskArgument = preAssignMask(Ins); 6874 6875 for (unsigned i = 0; i != NumArgs; ++i) { 6876 MVT ArgVT = Ins[i].VT; 6877 ISD::ArgFlagsTy ArgFlags = Ins[i].Flags; 6878 6879 Type *ArgTy = nullptr; 6880 if (IsRet) 6881 ArgTy = FType->getReturnType(); 6882 else if (Ins[i].isOrigArg()) 6883 ArgTy = FType->getParamType(Ins[i].getOrigArgIndex()); 6884 6885 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 6886 if (CC_RISCV(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full, 6887 ArgFlags, CCInfo, /*IsFixed=*/true, IsRet, ArgTy, *this, 6888 FirstMaskArgument)) { 6889 LLVM_DEBUG(dbgs() << "InputArg #" << i << " has unhandled type " 6890 << EVT(ArgVT).getEVTString() << '\n'); 6891 llvm_unreachable(nullptr); 6892 } 6893 } 6894 } 6895 6896 void RISCVTargetLowering::analyzeOutputArgs( 6897 MachineFunction &MF, CCState &CCInfo, 6898 const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsRet, 6899 CallLoweringInfo *CLI) const { 6900 unsigned NumArgs = Outs.size(); 6901 6902 Optional<unsigned> FirstMaskArgument; 6903 if (Subtarget.hasStdExtV()) 6904 FirstMaskArgument = preAssignMask(Outs); 6905 6906 for (unsigned i = 0; i != NumArgs; i++) { 6907 MVT ArgVT = Outs[i].VT; 6908 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 6909 Type *OrigTy = CLI ? CLI->getArgs()[Outs[i].OrigArgIndex].Ty : nullptr; 6910 6911 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 6912 if (CC_RISCV(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full, 6913 ArgFlags, CCInfo, Outs[i].IsFixed, IsRet, OrigTy, *this, 6914 FirstMaskArgument)) { 6915 LLVM_DEBUG(dbgs() << "OutputArg #" << i << " has unhandled type " 6916 << EVT(ArgVT).getEVTString() << "\n"); 6917 llvm_unreachable(nullptr); 6918 } 6919 } 6920 } 6921 6922 // Convert Val to a ValVT. Should not be called for CCValAssign::Indirect 6923 // values. 6924 static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDValue Val, 6925 const CCValAssign &VA, const SDLoc &DL, 6926 const RISCVSubtarget &Subtarget) { 6927 switch (VA.getLocInfo()) { 6928 default: 6929 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 6930 case CCValAssign::Full: 6931 if (VA.getValVT().isFixedLengthVector() && VA.getLocVT().isScalableVector()) 6932 Val = convertFromScalableVector(VA.getValVT(), Val, DAG, Subtarget); 6933 break; 6934 case CCValAssign::BCvt: 6935 if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16) 6936 Val = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, Val); 6937 else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) 6938 Val = DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, Val); 6939 else 6940 Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val); 6941 break; 6942 } 6943 return Val; 6944 } 6945 6946 // The caller is responsible for loading the full value if the argument is 6947 // passed with CCValAssign::Indirect. 6948 static SDValue unpackFromRegLoc(SelectionDAG &DAG, SDValue Chain, 6949 const CCValAssign &VA, const SDLoc &DL, 6950 const RISCVTargetLowering &TLI) { 6951 MachineFunction &MF = DAG.getMachineFunction(); 6952 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 6953 EVT LocVT = VA.getLocVT(); 6954 SDValue Val; 6955 const TargetRegisterClass *RC = TLI.getRegClassFor(LocVT.getSimpleVT()); 6956 Register VReg = RegInfo.createVirtualRegister(RC); 6957 RegInfo.addLiveIn(VA.getLocReg(), VReg); 6958 Val = DAG.getCopyFromReg(Chain, DL, VReg, LocVT); 6959 6960 if (VA.getLocInfo() == CCValAssign::Indirect) 6961 return Val; 6962 6963 return convertLocVTToValVT(DAG, Val, VA, DL, TLI.getSubtarget()); 6964 } 6965 6966 static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDValue Val, 6967 const CCValAssign &VA, const SDLoc &DL, 6968 const RISCVSubtarget &Subtarget) { 6969 EVT LocVT = VA.getLocVT(); 6970 6971 switch (VA.getLocInfo()) { 6972 default: 6973 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 6974 case CCValAssign::Full: 6975 if (VA.getValVT().isFixedLengthVector() && LocVT.isScalableVector()) 6976 Val = convertToScalableVector(LocVT, Val, DAG, Subtarget); 6977 break; 6978 case CCValAssign::BCvt: 6979 if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16) 6980 Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, VA.getLocVT(), Val); 6981 else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) 6982 Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Val); 6983 else 6984 Val = DAG.getNode(ISD::BITCAST, DL, LocVT, Val); 6985 break; 6986 } 6987 return Val; 6988 } 6989 6990 // The caller is responsible for loading the full value if the argument is 6991 // passed with CCValAssign::Indirect. 6992 static SDValue unpackFromMemLoc(SelectionDAG &DAG, SDValue Chain, 6993 const CCValAssign &VA, const SDLoc &DL) { 6994 MachineFunction &MF = DAG.getMachineFunction(); 6995 MachineFrameInfo &MFI = MF.getFrameInfo(); 6996 EVT LocVT = VA.getLocVT(); 6997 EVT ValVT = VA.getValVT(); 6998 EVT PtrVT = MVT::getIntegerVT(DAG.getDataLayout().getPointerSizeInBits(0)); 6999 int FI = MFI.CreateFixedObject(ValVT.getSizeInBits() / 8, 7000 VA.getLocMemOffset(), /*Immutable=*/true); 7001 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 7002 SDValue Val; 7003 7004 ISD::LoadExtType ExtType; 7005 switch (VA.getLocInfo()) { 7006 default: 7007 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 7008 case CCValAssign::Full: 7009 case CCValAssign::Indirect: 7010 case CCValAssign::BCvt: 7011 ExtType = ISD::NON_EXTLOAD; 7012 break; 7013 } 7014 Val = DAG.getExtLoad( 7015 ExtType, DL, LocVT, Chain, FIN, 7016 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), ValVT); 7017 return Val; 7018 } 7019 7020 static SDValue unpackF64OnRV32DSoftABI(SelectionDAG &DAG, SDValue Chain, 7021 const CCValAssign &VA, const SDLoc &DL) { 7022 assert(VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64 && 7023 "Unexpected VA"); 7024 MachineFunction &MF = DAG.getMachineFunction(); 7025 MachineFrameInfo &MFI = MF.getFrameInfo(); 7026 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 7027 7028 if (VA.isMemLoc()) { 7029 // f64 is passed on the stack. 7030 int FI = MFI.CreateFixedObject(8, VA.getLocMemOffset(), /*Immutable=*/true); 7031 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 7032 return DAG.getLoad(MVT::f64, DL, Chain, FIN, 7033 MachinePointerInfo::getFixedStack(MF, FI)); 7034 } 7035 7036 assert(VA.isRegLoc() && "Expected register VA assignment"); 7037 7038 Register LoVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 7039 RegInfo.addLiveIn(VA.getLocReg(), LoVReg); 7040 SDValue Lo = DAG.getCopyFromReg(Chain, DL, LoVReg, MVT::i32); 7041 SDValue Hi; 7042 if (VA.getLocReg() == RISCV::X17) { 7043 // Second half of f64 is passed on the stack. 7044 int FI = MFI.CreateFixedObject(4, 0, /*Immutable=*/true); 7045 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 7046 Hi = DAG.getLoad(MVT::i32, DL, Chain, FIN, 7047 MachinePointerInfo::getFixedStack(MF, FI)); 7048 } else { 7049 // Second half of f64 is passed in another GPR. 7050 Register HiVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 7051 RegInfo.addLiveIn(VA.getLocReg() + 1, HiVReg); 7052 Hi = DAG.getCopyFromReg(Chain, DL, HiVReg, MVT::i32); 7053 } 7054 return DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, Lo, Hi); 7055 } 7056 7057 // FastCC has less than 1% performance improvement for some particular 7058 // benchmark. But theoretically, it may has benenfit for some cases. 7059 static bool CC_RISCV_FastCC(unsigned ValNo, MVT ValVT, MVT LocVT, 7060 CCValAssign::LocInfo LocInfo, 7061 ISD::ArgFlagsTy ArgFlags, CCState &State) { 7062 7063 if (LocVT == MVT::i32 || LocVT == MVT::i64) { 7064 // X5 and X6 might be used for save-restore libcall. 7065 static const MCPhysReg GPRList[] = { 7066 RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, RISCV::X14, 7067 RISCV::X15, RISCV::X16, RISCV::X17, RISCV::X7, RISCV::X28, 7068 RISCV::X29, RISCV::X30, RISCV::X31}; 7069 if (unsigned Reg = State.AllocateReg(GPRList)) { 7070 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 7071 return false; 7072 } 7073 } 7074 7075 if (LocVT == MVT::f16) { 7076 static const MCPhysReg FPR16List[] = { 7077 RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, RISCV::F14_H, 7078 RISCV::F15_H, RISCV::F16_H, RISCV::F17_H, RISCV::F0_H, RISCV::F1_H, 7079 RISCV::F2_H, RISCV::F3_H, RISCV::F4_H, RISCV::F5_H, RISCV::F6_H, 7080 RISCV::F7_H, RISCV::F28_H, RISCV::F29_H, RISCV::F30_H, RISCV::F31_H}; 7081 if (unsigned Reg = State.AllocateReg(FPR16List)) { 7082 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 7083 return false; 7084 } 7085 } 7086 7087 if (LocVT == MVT::f32) { 7088 static const MCPhysReg FPR32List[] = { 7089 RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, RISCV::F14_F, 7090 RISCV::F15_F, RISCV::F16_F, RISCV::F17_F, RISCV::F0_F, RISCV::F1_F, 7091 RISCV::F2_F, RISCV::F3_F, RISCV::F4_F, RISCV::F5_F, RISCV::F6_F, 7092 RISCV::F7_F, RISCV::F28_F, RISCV::F29_F, RISCV::F30_F, RISCV::F31_F}; 7093 if (unsigned Reg = State.AllocateReg(FPR32List)) { 7094 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 7095 return false; 7096 } 7097 } 7098 7099 if (LocVT == MVT::f64) { 7100 static const MCPhysReg FPR64List[] = { 7101 RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, RISCV::F14_D, 7102 RISCV::F15_D, RISCV::F16_D, RISCV::F17_D, RISCV::F0_D, RISCV::F1_D, 7103 RISCV::F2_D, RISCV::F3_D, RISCV::F4_D, RISCV::F5_D, RISCV::F6_D, 7104 RISCV::F7_D, RISCV::F28_D, RISCV::F29_D, RISCV::F30_D, RISCV::F31_D}; 7105 if (unsigned Reg = State.AllocateReg(FPR64List)) { 7106 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 7107 return false; 7108 } 7109 } 7110 7111 if (LocVT == MVT::i32 || LocVT == MVT::f32) { 7112 unsigned Offset4 = State.AllocateStack(4, Align(4)); 7113 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset4, LocVT, LocInfo)); 7114 return false; 7115 } 7116 7117 if (LocVT == MVT::i64 || LocVT == MVT::f64) { 7118 unsigned Offset5 = State.AllocateStack(8, Align(8)); 7119 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset5, LocVT, LocInfo)); 7120 return false; 7121 } 7122 7123 return true; // CC didn't match. 7124 } 7125 7126 static bool CC_RISCV_GHC(unsigned ValNo, MVT ValVT, MVT LocVT, 7127 CCValAssign::LocInfo LocInfo, 7128 ISD::ArgFlagsTy ArgFlags, CCState &State) { 7129 7130 if (LocVT == MVT::i32 || LocVT == MVT::i64) { 7131 // Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, R6, R7, SpLim 7132 // s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 7133 static const MCPhysReg GPRList[] = { 7134 RISCV::X9, RISCV::X18, RISCV::X19, RISCV::X20, RISCV::X21, RISCV::X22, 7135 RISCV::X23, RISCV::X24, RISCV::X25, RISCV::X26, RISCV::X27}; 7136 if (unsigned Reg = State.AllocateReg(GPRList)) { 7137 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 7138 return false; 7139 } 7140 } 7141 7142 if (LocVT == MVT::f32) { 7143 // Pass in STG registers: F1, ..., F6 7144 // fs0 ... fs5 7145 static const MCPhysReg FPR32List[] = {RISCV::F8_F, RISCV::F9_F, 7146 RISCV::F18_F, RISCV::F19_F, 7147 RISCV::F20_F, RISCV::F21_F}; 7148 if (unsigned Reg = State.AllocateReg(FPR32List)) { 7149 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 7150 return false; 7151 } 7152 } 7153 7154 if (LocVT == MVT::f64) { 7155 // Pass in STG registers: D1, ..., D6 7156 // fs6 ... fs11 7157 static const MCPhysReg FPR64List[] = {RISCV::F22_D, RISCV::F23_D, 7158 RISCV::F24_D, RISCV::F25_D, 7159 RISCV::F26_D, RISCV::F27_D}; 7160 if (unsigned Reg = State.AllocateReg(FPR64List)) { 7161 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 7162 return false; 7163 } 7164 } 7165 7166 report_fatal_error("No registers left in GHC calling convention"); 7167 return true; 7168 } 7169 7170 // Transform physical registers into virtual registers. 7171 SDValue RISCVTargetLowering::LowerFormalArguments( 7172 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 7173 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 7174 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 7175 7176 MachineFunction &MF = DAG.getMachineFunction(); 7177 7178 switch (CallConv) { 7179 default: 7180 report_fatal_error("Unsupported calling convention"); 7181 case CallingConv::C: 7182 case CallingConv::Fast: 7183 break; 7184 case CallingConv::GHC: 7185 if (!MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtF] || 7186 !MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtD]) 7187 report_fatal_error( 7188 "GHC calling convention requires the F and D instruction set extensions"); 7189 } 7190 7191 const Function &Func = MF.getFunction(); 7192 if (Func.hasFnAttribute("interrupt")) { 7193 if (!Func.arg_empty()) 7194 report_fatal_error( 7195 "Functions with the interrupt attribute cannot have arguments!"); 7196 7197 StringRef Kind = 7198 MF.getFunction().getFnAttribute("interrupt").getValueAsString(); 7199 7200 if (!(Kind == "user" || Kind == "supervisor" || Kind == "machine")) 7201 report_fatal_error( 7202 "Function interrupt attribute argument not supported!"); 7203 } 7204 7205 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7206 MVT XLenVT = Subtarget.getXLenVT(); 7207 unsigned XLenInBytes = Subtarget.getXLen() / 8; 7208 // Used with vargs to acumulate store chains. 7209 std::vector<SDValue> OutChains; 7210 7211 // Assign locations to all of the incoming arguments. 7212 SmallVector<CCValAssign, 16> ArgLocs; 7213 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 7214 7215 if (CallConv == CallingConv::Fast) 7216 CCInfo.AnalyzeFormalArguments(Ins, CC_RISCV_FastCC); 7217 else if (CallConv == CallingConv::GHC) 7218 CCInfo.AnalyzeFormalArguments(Ins, CC_RISCV_GHC); 7219 else 7220 analyzeInputArgs(MF, CCInfo, Ins, /*IsRet=*/false); 7221 7222 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 7223 CCValAssign &VA = ArgLocs[i]; 7224 SDValue ArgValue; 7225 // Passing f64 on RV32D with a soft float ABI must be handled as a special 7226 // case. 7227 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) 7228 ArgValue = unpackF64OnRV32DSoftABI(DAG, Chain, VA, DL); 7229 else if (VA.isRegLoc()) 7230 ArgValue = unpackFromRegLoc(DAG, Chain, VA, DL, *this); 7231 else 7232 ArgValue = unpackFromMemLoc(DAG, Chain, VA, DL); 7233 7234 if (VA.getLocInfo() == CCValAssign::Indirect) { 7235 // If the original argument was split and passed by reference (e.g. i128 7236 // on RV32), we need to load all parts of it here (using the same 7237 // address). Vectors may be partly split to registers and partly to the 7238 // stack, in which case the base address is partly offset and subsequent 7239 // stores are relative to that. 7240 InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue, 7241 MachinePointerInfo())); 7242 unsigned ArgIndex = Ins[i].OrigArgIndex; 7243 unsigned ArgPartOffset = Ins[i].PartOffset; 7244 assert(VA.getValVT().isVector() || ArgPartOffset == 0); 7245 while (i + 1 != e && Ins[i + 1].OrigArgIndex == ArgIndex) { 7246 CCValAssign &PartVA = ArgLocs[i + 1]; 7247 unsigned PartOffset = Ins[i + 1].PartOffset - ArgPartOffset; 7248 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, 7249 DAG.getIntPtrConstant(PartOffset, DL)); 7250 InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address, 7251 MachinePointerInfo())); 7252 ++i; 7253 } 7254 continue; 7255 } 7256 InVals.push_back(ArgValue); 7257 } 7258 7259 if (IsVarArg) { 7260 ArrayRef<MCPhysReg> ArgRegs = makeArrayRef(ArgGPRs); 7261 unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs); 7262 const TargetRegisterClass *RC = &RISCV::GPRRegClass; 7263 MachineFrameInfo &MFI = MF.getFrameInfo(); 7264 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 7265 RISCVMachineFunctionInfo *RVFI = MF.getInfo<RISCVMachineFunctionInfo>(); 7266 7267 // Offset of the first variable argument from stack pointer, and size of 7268 // the vararg save area. For now, the varargs save area is either zero or 7269 // large enough to hold a0-a7. 7270 int VaArgOffset, VarArgsSaveSize; 7271 7272 // If all registers are allocated, then all varargs must be passed on the 7273 // stack and we don't need to save any argregs. 7274 if (ArgRegs.size() == Idx) { 7275 VaArgOffset = CCInfo.getNextStackOffset(); 7276 VarArgsSaveSize = 0; 7277 } else { 7278 VarArgsSaveSize = XLenInBytes * (ArgRegs.size() - Idx); 7279 VaArgOffset = -VarArgsSaveSize; 7280 } 7281 7282 // Record the frame index of the first variable argument 7283 // which is a value necessary to VASTART. 7284 int FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true); 7285 RVFI->setVarArgsFrameIndex(FI); 7286 7287 // If saving an odd number of registers then create an extra stack slot to 7288 // ensure that the frame pointer is 2*XLEN-aligned, which in turn ensures 7289 // offsets to even-numbered registered remain 2*XLEN-aligned. 7290 if (Idx % 2) { 7291 MFI.CreateFixedObject(XLenInBytes, VaArgOffset - (int)XLenInBytes, true); 7292 VarArgsSaveSize += XLenInBytes; 7293 } 7294 7295 // Copy the integer registers that may have been used for passing varargs 7296 // to the vararg save area. 7297 for (unsigned I = Idx; I < ArgRegs.size(); 7298 ++I, VaArgOffset += XLenInBytes) { 7299 const Register Reg = RegInfo.createVirtualRegister(RC); 7300 RegInfo.addLiveIn(ArgRegs[I], Reg); 7301 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, XLenVT); 7302 FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true); 7303 SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 7304 SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff, 7305 MachinePointerInfo::getFixedStack(MF, FI)); 7306 cast<StoreSDNode>(Store.getNode()) 7307 ->getMemOperand() 7308 ->setValue((Value *)nullptr); 7309 OutChains.push_back(Store); 7310 } 7311 RVFI->setVarArgsSaveSize(VarArgsSaveSize); 7312 } 7313 7314 // All stores are grouped in one node to allow the matching between 7315 // the size of Ins and InVals. This only happens for vararg functions. 7316 if (!OutChains.empty()) { 7317 OutChains.push_back(Chain); 7318 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains); 7319 } 7320 7321 return Chain; 7322 } 7323 7324 /// isEligibleForTailCallOptimization - Check whether the call is eligible 7325 /// for tail call optimization. 7326 /// Note: This is modelled after ARM's IsEligibleForTailCallOptimization. 7327 bool RISCVTargetLowering::isEligibleForTailCallOptimization( 7328 CCState &CCInfo, CallLoweringInfo &CLI, MachineFunction &MF, 7329 const SmallVector<CCValAssign, 16> &ArgLocs) const { 7330 7331 auto &Callee = CLI.Callee; 7332 auto CalleeCC = CLI.CallConv; 7333 auto &Outs = CLI.Outs; 7334 auto &Caller = MF.getFunction(); 7335 auto CallerCC = Caller.getCallingConv(); 7336 7337 // Exception-handling functions need a special set of instructions to 7338 // indicate a return to the hardware. Tail-calling another function would 7339 // probably break this. 7340 // TODO: The "interrupt" attribute isn't currently defined by RISC-V. This 7341 // should be expanded as new function attributes are introduced. 7342 if (Caller.hasFnAttribute("interrupt")) 7343 return false; 7344 7345 // Do not tail call opt if the stack is used to pass parameters. 7346 if (CCInfo.getNextStackOffset() != 0) 7347 return false; 7348 7349 // Do not tail call opt if any parameters need to be passed indirectly. 7350 // Since long doubles (fp128) and i128 are larger than 2*XLEN, they are 7351 // passed indirectly. So the address of the value will be passed in a 7352 // register, or if not available, then the address is put on the stack. In 7353 // order to pass indirectly, space on the stack often needs to be allocated 7354 // in order to store the value. In this case the CCInfo.getNextStackOffset() 7355 // != 0 check is not enough and we need to check if any CCValAssign ArgsLocs 7356 // are passed CCValAssign::Indirect. 7357 for (auto &VA : ArgLocs) 7358 if (VA.getLocInfo() == CCValAssign::Indirect) 7359 return false; 7360 7361 // Do not tail call opt if either caller or callee uses struct return 7362 // semantics. 7363 auto IsCallerStructRet = Caller.hasStructRetAttr(); 7364 auto IsCalleeStructRet = Outs.empty() ? false : Outs[0].Flags.isSRet(); 7365 if (IsCallerStructRet || IsCalleeStructRet) 7366 return false; 7367 7368 // Externally-defined functions with weak linkage should not be 7369 // tail-called. The behaviour of branch instructions in this situation (as 7370 // used for tail calls) is implementation-defined, so we cannot rely on the 7371 // linker replacing the tail call with a return. 7372 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 7373 const GlobalValue *GV = G->getGlobal(); 7374 if (GV->hasExternalWeakLinkage()) 7375 return false; 7376 } 7377 7378 // The callee has to preserve all registers the caller needs to preserve. 7379 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 7380 const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC); 7381 if (CalleeCC != CallerCC) { 7382 const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC); 7383 if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved)) 7384 return false; 7385 } 7386 7387 // Byval parameters hand the function a pointer directly into the stack area 7388 // we want to reuse during a tail call. Working around this *is* possible 7389 // but less efficient and uglier in LowerCall. 7390 for (auto &Arg : Outs) 7391 if (Arg.Flags.isByVal()) 7392 return false; 7393 7394 return true; 7395 } 7396 7397 static Align getPrefTypeAlign(EVT VT, SelectionDAG &DAG) { 7398 return DAG.getDataLayout().getPrefTypeAlign( 7399 VT.getTypeForEVT(*DAG.getContext())); 7400 } 7401 7402 // Lower a call to a callseq_start + CALL + callseq_end chain, and add input 7403 // and output parameter nodes. 7404 SDValue RISCVTargetLowering::LowerCall(CallLoweringInfo &CLI, 7405 SmallVectorImpl<SDValue> &InVals) const { 7406 SelectionDAG &DAG = CLI.DAG; 7407 SDLoc &DL = CLI.DL; 7408 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 7409 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 7410 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 7411 SDValue Chain = CLI.Chain; 7412 SDValue Callee = CLI.Callee; 7413 bool &IsTailCall = CLI.IsTailCall; 7414 CallingConv::ID CallConv = CLI.CallConv; 7415 bool IsVarArg = CLI.IsVarArg; 7416 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7417 MVT XLenVT = Subtarget.getXLenVT(); 7418 7419 MachineFunction &MF = DAG.getMachineFunction(); 7420 7421 // Analyze the operands of the call, assigning locations to each operand. 7422 SmallVector<CCValAssign, 16> ArgLocs; 7423 CCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 7424 7425 if (CallConv == CallingConv::Fast) 7426 ArgCCInfo.AnalyzeCallOperands(Outs, CC_RISCV_FastCC); 7427 else if (CallConv == CallingConv::GHC) 7428 ArgCCInfo.AnalyzeCallOperands(Outs, CC_RISCV_GHC); 7429 else 7430 analyzeOutputArgs(MF, ArgCCInfo, Outs, /*IsRet=*/false, &CLI); 7431 7432 // Check if it's really possible to do a tail call. 7433 if (IsTailCall) 7434 IsTailCall = isEligibleForTailCallOptimization(ArgCCInfo, CLI, MF, ArgLocs); 7435 7436 if (IsTailCall) 7437 ++NumTailCalls; 7438 else if (CLI.CB && CLI.CB->isMustTailCall()) 7439 report_fatal_error("failed to perform tail call elimination on a call " 7440 "site marked musttail"); 7441 7442 // Get a count of how many bytes are to be pushed on the stack. 7443 unsigned NumBytes = ArgCCInfo.getNextStackOffset(); 7444 7445 // Create local copies for byval args 7446 SmallVector<SDValue, 8> ByValArgs; 7447 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 7448 ISD::ArgFlagsTy Flags = Outs[i].Flags; 7449 if (!Flags.isByVal()) 7450 continue; 7451 7452 SDValue Arg = OutVals[i]; 7453 unsigned Size = Flags.getByValSize(); 7454 Align Alignment = Flags.getNonZeroByValAlign(); 7455 7456 int FI = 7457 MF.getFrameInfo().CreateStackObject(Size, Alignment, /*isSS=*/false); 7458 SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 7459 SDValue SizeNode = DAG.getConstant(Size, DL, XLenVT); 7460 7461 Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Alignment, 7462 /*IsVolatile=*/false, 7463 /*AlwaysInline=*/false, IsTailCall, 7464 MachinePointerInfo(), MachinePointerInfo()); 7465 ByValArgs.push_back(FIPtr); 7466 } 7467 7468 if (!IsTailCall) 7469 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, CLI.DL); 7470 7471 // Copy argument values to their designated locations. 7472 SmallVector<std::pair<Register, SDValue>, 8> RegsToPass; 7473 SmallVector<SDValue, 8> MemOpChains; 7474 SDValue StackPtr; 7475 for (unsigned i = 0, j = 0, e = ArgLocs.size(); i != e; ++i) { 7476 CCValAssign &VA = ArgLocs[i]; 7477 SDValue ArgValue = OutVals[i]; 7478 ISD::ArgFlagsTy Flags = Outs[i].Flags; 7479 7480 // Handle passing f64 on RV32D with a soft float ABI as a special case. 7481 bool IsF64OnRV32DSoftABI = 7482 VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64; 7483 if (IsF64OnRV32DSoftABI && VA.isRegLoc()) { 7484 SDValue SplitF64 = DAG.getNode( 7485 RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), ArgValue); 7486 SDValue Lo = SplitF64.getValue(0); 7487 SDValue Hi = SplitF64.getValue(1); 7488 7489 Register RegLo = VA.getLocReg(); 7490 RegsToPass.push_back(std::make_pair(RegLo, Lo)); 7491 7492 if (RegLo == RISCV::X17) { 7493 // Second half of f64 is passed on the stack. 7494 // Work out the address of the stack slot. 7495 if (!StackPtr.getNode()) 7496 StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT); 7497 // Emit the store. 7498 MemOpChains.push_back( 7499 DAG.getStore(Chain, DL, Hi, StackPtr, MachinePointerInfo())); 7500 } else { 7501 // Second half of f64 is passed in another GPR. 7502 assert(RegLo < RISCV::X31 && "Invalid register pair"); 7503 Register RegHigh = RegLo + 1; 7504 RegsToPass.push_back(std::make_pair(RegHigh, Hi)); 7505 } 7506 continue; 7507 } 7508 7509 // IsF64OnRV32DSoftABI && VA.isMemLoc() is handled below in the same way 7510 // as any other MemLoc. 7511 7512 // Promote the value if needed. 7513 // For now, only handle fully promoted and indirect arguments. 7514 if (VA.getLocInfo() == CCValAssign::Indirect) { 7515 // Store the argument in a stack slot and pass its address. 7516 Align StackAlign = 7517 std::max(getPrefTypeAlign(Outs[i].ArgVT, DAG), 7518 getPrefTypeAlign(ArgValue.getValueType(), DAG)); 7519 TypeSize StoredSize = ArgValue.getValueType().getStoreSize(); 7520 // If the original argument was split (e.g. i128), we need 7521 // to store the required parts of it here (and pass just one address). 7522 // Vectors may be partly split to registers and partly to the stack, in 7523 // which case the base address is partly offset and subsequent stores are 7524 // relative to that. 7525 unsigned ArgIndex = Outs[i].OrigArgIndex; 7526 unsigned ArgPartOffset = Outs[i].PartOffset; 7527 assert(VA.getValVT().isVector() || ArgPartOffset == 0); 7528 // Calculate the total size to store. We don't have access to what we're 7529 // actually storing other than performing the loop and collecting the 7530 // info. 7531 SmallVector<std::pair<SDValue, unsigned>> Parts; 7532 while (i + 1 != e && Outs[i + 1].OrigArgIndex == ArgIndex) { 7533 SDValue PartValue = OutVals[i + 1]; 7534 unsigned PartOffset = Outs[i + 1].PartOffset - ArgPartOffset; 7535 EVT PartVT = PartValue.getValueType(); 7536 StoredSize += PartVT.getStoreSize(); 7537 StackAlign = std::max(StackAlign, getPrefTypeAlign(PartVT, DAG)); 7538 Parts.push_back(std::make_pair(PartValue, PartOffset)); 7539 ++i; 7540 } 7541 SDValue SpillSlot = DAG.CreateStackTemporary(StoredSize, StackAlign); 7542 int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); 7543 MemOpChains.push_back( 7544 DAG.getStore(Chain, DL, ArgValue, SpillSlot, 7545 MachinePointerInfo::getFixedStack(MF, FI))); 7546 for (const auto &Part : Parts) { 7547 SDValue PartValue = Part.first; 7548 unsigned PartOffset = Part.second; 7549 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, 7550 DAG.getIntPtrConstant(PartOffset, DL)); 7551 MemOpChains.push_back( 7552 DAG.getStore(Chain, DL, PartValue, Address, 7553 MachinePointerInfo::getFixedStack(MF, FI))); 7554 } 7555 ArgValue = SpillSlot; 7556 } else { 7557 ArgValue = convertValVTToLocVT(DAG, ArgValue, VA, DL, Subtarget); 7558 } 7559 7560 // Use local copy if it is a byval arg. 7561 if (Flags.isByVal()) 7562 ArgValue = ByValArgs[j++]; 7563 7564 if (VA.isRegLoc()) { 7565 // Queue up the argument copies and emit them at the end. 7566 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue)); 7567 } else { 7568 assert(VA.isMemLoc() && "Argument not register or memory"); 7569 assert(!IsTailCall && "Tail call not allowed if stack is used " 7570 "for passing parameters"); 7571 7572 // Work out the address of the stack slot. 7573 if (!StackPtr.getNode()) 7574 StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT); 7575 SDValue Address = 7576 DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, 7577 DAG.getIntPtrConstant(VA.getLocMemOffset(), DL)); 7578 7579 // Emit the store. 7580 MemOpChains.push_back( 7581 DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo())); 7582 } 7583 } 7584 7585 // Join the stores, which are independent of one another. 7586 if (!MemOpChains.empty()) 7587 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); 7588 7589 SDValue Glue; 7590 7591 // Build a sequence of copy-to-reg nodes, chained and glued together. 7592 for (auto &Reg : RegsToPass) { 7593 Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, Glue); 7594 Glue = Chain.getValue(1); 7595 } 7596 7597 // Validate that none of the argument registers have been marked as 7598 // reserved, if so report an error. Do the same for the return address if this 7599 // is not a tailcall. 7600 validateCCReservedRegs(RegsToPass, MF); 7601 if (!IsTailCall && 7602 MF.getSubtarget<RISCVSubtarget>().isRegisterReservedByUser(RISCV::X1)) 7603 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 7604 MF.getFunction(), 7605 "Return address register required, but has been reserved."}); 7606 7607 // If the callee is a GlobalAddress/ExternalSymbol node, turn it into a 7608 // TargetGlobalAddress/TargetExternalSymbol node so that legalize won't 7609 // split it and then direct call can be matched by PseudoCALL. 7610 if (GlobalAddressSDNode *S = dyn_cast<GlobalAddressSDNode>(Callee)) { 7611 const GlobalValue *GV = S->getGlobal(); 7612 7613 unsigned OpFlags = RISCVII::MO_CALL; 7614 if (!getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV)) 7615 OpFlags = RISCVII::MO_PLT; 7616 7617 Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags); 7618 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { 7619 unsigned OpFlags = RISCVII::MO_CALL; 7620 7621 if (!getTargetMachine().shouldAssumeDSOLocal(*MF.getFunction().getParent(), 7622 nullptr)) 7623 OpFlags = RISCVII::MO_PLT; 7624 7625 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, OpFlags); 7626 } 7627 7628 // The first call operand is the chain and the second is the target address. 7629 SmallVector<SDValue, 8> Ops; 7630 Ops.push_back(Chain); 7631 Ops.push_back(Callee); 7632 7633 // Add argument registers to the end of the list so that they are 7634 // known live into the call. 7635 for (auto &Reg : RegsToPass) 7636 Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType())); 7637 7638 if (!IsTailCall) { 7639 // Add a register mask operand representing the call-preserved registers. 7640 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 7641 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv); 7642 assert(Mask && "Missing call preserved mask for calling convention"); 7643 Ops.push_back(DAG.getRegisterMask(Mask)); 7644 } 7645 7646 // Glue the call to the argument copies, if any. 7647 if (Glue.getNode()) 7648 Ops.push_back(Glue); 7649 7650 // Emit the call. 7651 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7652 7653 if (IsTailCall) { 7654 MF.getFrameInfo().setHasTailCall(); 7655 return DAG.getNode(RISCVISD::TAIL, DL, NodeTys, Ops); 7656 } 7657 7658 Chain = DAG.getNode(RISCVISD::CALL, DL, NodeTys, Ops); 7659 DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge); 7660 Glue = Chain.getValue(1); 7661 7662 // Mark the end of the call, which is glued to the call itself. 7663 Chain = DAG.getCALLSEQ_END(Chain, 7664 DAG.getConstant(NumBytes, DL, PtrVT, true), 7665 DAG.getConstant(0, DL, PtrVT, true), 7666 Glue, DL); 7667 Glue = Chain.getValue(1); 7668 7669 // Assign locations to each value returned by this call. 7670 SmallVector<CCValAssign, 16> RVLocs; 7671 CCState RetCCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext()); 7672 analyzeInputArgs(MF, RetCCInfo, Ins, /*IsRet=*/true); 7673 7674 // Copy all of the result registers out of their specified physreg. 7675 for (auto &VA : RVLocs) { 7676 // Copy the value out 7677 SDValue RetValue = 7678 DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), Glue); 7679 // Glue the RetValue to the end of the call sequence 7680 Chain = RetValue.getValue(1); 7681 Glue = RetValue.getValue(2); 7682 7683 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { 7684 assert(VA.getLocReg() == ArgGPRs[0] && "Unexpected reg assignment"); 7685 SDValue RetValue2 = 7686 DAG.getCopyFromReg(Chain, DL, ArgGPRs[1], MVT::i32, Glue); 7687 Chain = RetValue2.getValue(1); 7688 Glue = RetValue2.getValue(2); 7689 RetValue = DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, RetValue, 7690 RetValue2); 7691 } 7692 7693 RetValue = convertLocVTToValVT(DAG, RetValue, VA, DL, Subtarget); 7694 7695 InVals.push_back(RetValue); 7696 } 7697 7698 return Chain; 7699 } 7700 7701 bool RISCVTargetLowering::CanLowerReturn( 7702 CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg, 7703 const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const { 7704 SmallVector<CCValAssign, 16> RVLocs; 7705 CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context); 7706 7707 Optional<unsigned> FirstMaskArgument; 7708 if (Subtarget.hasStdExtV()) 7709 FirstMaskArgument = preAssignMask(Outs); 7710 7711 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 7712 MVT VT = Outs[i].VT; 7713 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 7714 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 7715 if (CC_RISCV(MF.getDataLayout(), ABI, i, VT, VT, CCValAssign::Full, 7716 ArgFlags, CCInfo, /*IsFixed=*/true, /*IsRet=*/true, nullptr, 7717 *this, FirstMaskArgument)) 7718 return false; 7719 } 7720 return true; 7721 } 7722 7723 SDValue 7724 RISCVTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 7725 bool IsVarArg, 7726 const SmallVectorImpl<ISD::OutputArg> &Outs, 7727 const SmallVectorImpl<SDValue> &OutVals, 7728 const SDLoc &DL, SelectionDAG &DAG) const { 7729 const MachineFunction &MF = DAG.getMachineFunction(); 7730 const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>(); 7731 7732 // Stores the assignment of the return value to a location. 7733 SmallVector<CCValAssign, 16> RVLocs; 7734 7735 // Info about the registers and stack slot. 7736 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, 7737 *DAG.getContext()); 7738 7739 analyzeOutputArgs(DAG.getMachineFunction(), CCInfo, Outs, /*IsRet=*/true, 7740 nullptr); 7741 7742 if (CallConv == CallingConv::GHC && !RVLocs.empty()) 7743 report_fatal_error("GHC functions return void only"); 7744 7745 SDValue Glue; 7746 SmallVector<SDValue, 4> RetOps(1, Chain); 7747 7748 // Copy the result values into the output registers. 7749 for (unsigned i = 0, e = RVLocs.size(); i < e; ++i) { 7750 SDValue Val = OutVals[i]; 7751 CCValAssign &VA = RVLocs[i]; 7752 assert(VA.isRegLoc() && "Can only return in registers!"); 7753 7754 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { 7755 // Handle returning f64 on RV32D with a soft float ABI. 7756 assert(VA.isRegLoc() && "Expected return via registers"); 7757 SDValue SplitF64 = DAG.getNode(RISCVISD::SplitF64, DL, 7758 DAG.getVTList(MVT::i32, MVT::i32), Val); 7759 SDValue Lo = SplitF64.getValue(0); 7760 SDValue Hi = SplitF64.getValue(1); 7761 Register RegLo = VA.getLocReg(); 7762 assert(RegLo < RISCV::X31 && "Invalid register pair"); 7763 Register RegHi = RegLo + 1; 7764 7765 if (STI.isRegisterReservedByUser(RegLo) || 7766 STI.isRegisterReservedByUser(RegHi)) 7767 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 7768 MF.getFunction(), 7769 "Return value register required, but has been reserved."}); 7770 7771 Chain = DAG.getCopyToReg(Chain, DL, RegLo, Lo, Glue); 7772 Glue = Chain.getValue(1); 7773 RetOps.push_back(DAG.getRegister(RegLo, MVT::i32)); 7774 Chain = DAG.getCopyToReg(Chain, DL, RegHi, Hi, Glue); 7775 Glue = Chain.getValue(1); 7776 RetOps.push_back(DAG.getRegister(RegHi, MVT::i32)); 7777 } else { 7778 // Handle a 'normal' return. 7779 Val = convertValVTToLocVT(DAG, Val, VA, DL, Subtarget); 7780 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Glue); 7781 7782 if (STI.isRegisterReservedByUser(VA.getLocReg())) 7783 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 7784 MF.getFunction(), 7785 "Return value register required, but has been reserved."}); 7786 7787 // Guarantee that all emitted copies are stuck together. 7788 Glue = Chain.getValue(1); 7789 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 7790 } 7791 } 7792 7793 RetOps[0] = Chain; // Update chain. 7794 7795 // Add the glue node if we have it. 7796 if (Glue.getNode()) { 7797 RetOps.push_back(Glue); 7798 } 7799 7800 // Interrupt service routines use different return instructions. 7801 const Function &Func = DAG.getMachineFunction().getFunction(); 7802 if (Func.hasFnAttribute("interrupt")) { 7803 if (!Func.getReturnType()->isVoidTy()) 7804 report_fatal_error( 7805 "Functions with the interrupt attribute must have void return type!"); 7806 7807 MachineFunction &MF = DAG.getMachineFunction(); 7808 StringRef Kind = 7809 MF.getFunction().getFnAttribute("interrupt").getValueAsString(); 7810 7811 unsigned RetOpc; 7812 if (Kind == "user") 7813 RetOpc = RISCVISD::URET_FLAG; 7814 else if (Kind == "supervisor") 7815 RetOpc = RISCVISD::SRET_FLAG; 7816 else 7817 RetOpc = RISCVISD::MRET_FLAG; 7818 7819 return DAG.getNode(RetOpc, DL, MVT::Other, RetOps); 7820 } 7821 7822 return DAG.getNode(RISCVISD::RET_FLAG, DL, MVT::Other, RetOps); 7823 } 7824 7825 void RISCVTargetLowering::validateCCReservedRegs( 7826 const SmallVectorImpl<std::pair<llvm::Register, llvm::SDValue>> &Regs, 7827 MachineFunction &MF) const { 7828 const Function &F = MF.getFunction(); 7829 const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>(); 7830 7831 if (llvm::any_of(Regs, [&STI](auto Reg) { 7832 return STI.isRegisterReservedByUser(Reg.first); 7833 })) 7834 F.getContext().diagnose(DiagnosticInfoUnsupported{ 7835 F, "Argument register required, but has been reserved."}); 7836 } 7837 7838 bool RISCVTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { 7839 return CI->isTailCall(); 7840 } 7841 7842 const char *RISCVTargetLowering::getTargetNodeName(unsigned Opcode) const { 7843 #define NODE_NAME_CASE(NODE) \ 7844 case RISCVISD::NODE: \ 7845 return "RISCVISD::" #NODE; 7846 // clang-format off 7847 switch ((RISCVISD::NodeType)Opcode) { 7848 case RISCVISD::FIRST_NUMBER: 7849 break; 7850 NODE_NAME_CASE(RET_FLAG) 7851 NODE_NAME_CASE(URET_FLAG) 7852 NODE_NAME_CASE(SRET_FLAG) 7853 NODE_NAME_CASE(MRET_FLAG) 7854 NODE_NAME_CASE(CALL) 7855 NODE_NAME_CASE(SELECT_CC) 7856 NODE_NAME_CASE(BR_CC) 7857 NODE_NAME_CASE(BuildPairF64) 7858 NODE_NAME_CASE(SplitF64) 7859 NODE_NAME_CASE(TAIL) 7860 NODE_NAME_CASE(MULHSU) 7861 NODE_NAME_CASE(SLLW) 7862 NODE_NAME_CASE(SRAW) 7863 NODE_NAME_CASE(SRLW) 7864 NODE_NAME_CASE(DIVW) 7865 NODE_NAME_CASE(DIVUW) 7866 NODE_NAME_CASE(REMUW) 7867 NODE_NAME_CASE(ROLW) 7868 NODE_NAME_CASE(RORW) 7869 NODE_NAME_CASE(CLZW) 7870 NODE_NAME_CASE(CTZW) 7871 NODE_NAME_CASE(FSLW) 7872 NODE_NAME_CASE(FSRW) 7873 NODE_NAME_CASE(FSL) 7874 NODE_NAME_CASE(FSR) 7875 NODE_NAME_CASE(FMV_H_X) 7876 NODE_NAME_CASE(FMV_X_ANYEXTH) 7877 NODE_NAME_CASE(FMV_W_X_RV64) 7878 NODE_NAME_CASE(FMV_X_ANYEXTW_RV64) 7879 NODE_NAME_CASE(READ_CYCLE_WIDE) 7880 NODE_NAME_CASE(GREV) 7881 NODE_NAME_CASE(GREVW) 7882 NODE_NAME_CASE(GORC) 7883 NODE_NAME_CASE(GORCW) 7884 NODE_NAME_CASE(SHFL) 7885 NODE_NAME_CASE(SHFLW) 7886 NODE_NAME_CASE(UNSHFL) 7887 NODE_NAME_CASE(UNSHFLW) 7888 NODE_NAME_CASE(BCOMPRESS) 7889 NODE_NAME_CASE(BCOMPRESSW) 7890 NODE_NAME_CASE(BDECOMPRESS) 7891 NODE_NAME_CASE(BDECOMPRESSW) 7892 NODE_NAME_CASE(VMV_V_X_VL) 7893 NODE_NAME_CASE(VFMV_V_F_VL) 7894 NODE_NAME_CASE(VMV_X_S) 7895 NODE_NAME_CASE(VMV_S_X_VL) 7896 NODE_NAME_CASE(VFMV_S_F_VL) 7897 NODE_NAME_CASE(SPLAT_VECTOR_I64) 7898 NODE_NAME_CASE(READ_VLENB) 7899 NODE_NAME_CASE(TRUNCATE_VECTOR_VL) 7900 NODE_NAME_CASE(VSLIDEUP_VL) 7901 NODE_NAME_CASE(VSLIDE1UP_VL) 7902 NODE_NAME_CASE(VSLIDEDOWN_VL) 7903 NODE_NAME_CASE(VSLIDE1DOWN_VL) 7904 NODE_NAME_CASE(VID_VL) 7905 NODE_NAME_CASE(VFNCVT_ROD_VL) 7906 NODE_NAME_CASE(VECREDUCE_ADD_VL) 7907 NODE_NAME_CASE(VECREDUCE_UMAX_VL) 7908 NODE_NAME_CASE(VECREDUCE_SMAX_VL) 7909 NODE_NAME_CASE(VECREDUCE_UMIN_VL) 7910 NODE_NAME_CASE(VECREDUCE_SMIN_VL) 7911 NODE_NAME_CASE(VECREDUCE_AND_VL) 7912 NODE_NAME_CASE(VECREDUCE_OR_VL) 7913 NODE_NAME_CASE(VECREDUCE_XOR_VL) 7914 NODE_NAME_CASE(VECREDUCE_FADD_VL) 7915 NODE_NAME_CASE(VECREDUCE_SEQ_FADD_VL) 7916 NODE_NAME_CASE(VECREDUCE_FMIN_VL) 7917 NODE_NAME_CASE(VECREDUCE_FMAX_VL) 7918 NODE_NAME_CASE(ADD_VL) 7919 NODE_NAME_CASE(AND_VL) 7920 NODE_NAME_CASE(MUL_VL) 7921 NODE_NAME_CASE(OR_VL) 7922 NODE_NAME_CASE(SDIV_VL) 7923 NODE_NAME_CASE(SHL_VL) 7924 NODE_NAME_CASE(SREM_VL) 7925 NODE_NAME_CASE(SRA_VL) 7926 NODE_NAME_CASE(SRL_VL) 7927 NODE_NAME_CASE(SUB_VL) 7928 NODE_NAME_CASE(UDIV_VL) 7929 NODE_NAME_CASE(UREM_VL) 7930 NODE_NAME_CASE(XOR_VL) 7931 NODE_NAME_CASE(FADD_VL) 7932 NODE_NAME_CASE(FSUB_VL) 7933 NODE_NAME_CASE(FMUL_VL) 7934 NODE_NAME_CASE(FDIV_VL) 7935 NODE_NAME_CASE(FNEG_VL) 7936 NODE_NAME_CASE(FABS_VL) 7937 NODE_NAME_CASE(FSQRT_VL) 7938 NODE_NAME_CASE(FMA_VL) 7939 NODE_NAME_CASE(FCOPYSIGN_VL) 7940 NODE_NAME_CASE(SMIN_VL) 7941 NODE_NAME_CASE(SMAX_VL) 7942 NODE_NAME_CASE(UMIN_VL) 7943 NODE_NAME_CASE(UMAX_VL) 7944 NODE_NAME_CASE(FMINNUM_VL) 7945 NODE_NAME_CASE(FMAXNUM_VL) 7946 NODE_NAME_CASE(MULHS_VL) 7947 NODE_NAME_CASE(MULHU_VL) 7948 NODE_NAME_CASE(FP_TO_SINT_VL) 7949 NODE_NAME_CASE(FP_TO_UINT_VL) 7950 NODE_NAME_CASE(SINT_TO_FP_VL) 7951 NODE_NAME_CASE(UINT_TO_FP_VL) 7952 NODE_NAME_CASE(FP_EXTEND_VL) 7953 NODE_NAME_CASE(FP_ROUND_VL) 7954 NODE_NAME_CASE(SETCC_VL) 7955 NODE_NAME_CASE(VSELECT_VL) 7956 NODE_NAME_CASE(VMAND_VL) 7957 NODE_NAME_CASE(VMOR_VL) 7958 NODE_NAME_CASE(VMXOR_VL) 7959 NODE_NAME_CASE(VMCLR_VL) 7960 NODE_NAME_CASE(VMSET_VL) 7961 NODE_NAME_CASE(VRGATHER_VX_VL) 7962 NODE_NAME_CASE(VRGATHER_VV_VL) 7963 NODE_NAME_CASE(VRGATHEREI16_VV_VL) 7964 NODE_NAME_CASE(VSEXT_VL) 7965 NODE_NAME_CASE(VZEXT_VL) 7966 NODE_NAME_CASE(VPOPC_VL) 7967 NODE_NAME_CASE(VLE_VL) 7968 NODE_NAME_CASE(VSE_VL) 7969 NODE_NAME_CASE(READ_CSR) 7970 NODE_NAME_CASE(WRITE_CSR) 7971 NODE_NAME_CASE(SWAP_CSR) 7972 } 7973 // clang-format on 7974 return nullptr; 7975 #undef NODE_NAME_CASE 7976 } 7977 7978 /// getConstraintType - Given a constraint letter, return the type of 7979 /// constraint it is for this target. 7980 RISCVTargetLowering::ConstraintType 7981 RISCVTargetLowering::getConstraintType(StringRef Constraint) const { 7982 if (Constraint.size() == 1) { 7983 switch (Constraint[0]) { 7984 default: 7985 break; 7986 case 'f': 7987 case 'v': 7988 return C_RegisterClass; 7989 case 'I': 7990 case 'J': 7991 case 'K': 7992 return C_Immediate; 7993 case 'A': 7994 return C_Memory; 7995 } 7996 } 7997 return TargetLowering::getConstraintType(Constraint); 7998 } 7999 8000 std::pair<unsigned, const TargetRegisterClass *> 8001 RISCVTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 8002 StringRef Constraint, 8003 MVT VT) const { 8004 // First, see if this is a constraint that directly corresponds to a 8005 // RISCV register class. 8006 if (Constraint.size() == 1) { 8007 switch (Constraint[0]) { 8008 case 'r': 8009 return std::make_pair(0U, &RISCV::GPRRegClass); 8010 case 'f': 8011 if (Subtarget.hasStdExtZfh() && VT == MVT::f16) 8012 return std::make_pair(0U, &RISCV::FPR16RegClass); 8013 if (Subtarget.hasStdExtF() && VT == MVT::f32) 8014 return std::make_pair(0U, &RISCV::FPR32RegClass); 8015 if (Subtarget.hasStdExtD() && VT == MVT::f64) 8016 return std::make_pair(0U, &RISCV::FPR64RegClass); 8017 break; 8018 case 'v': 8019 for (const auto *RC : 8020 {&RISCV::VMRegClass, &RISCV::VRRegClass, &RISCV::VRM2RegClass, 8021 &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) { 8022 if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy)) 8023 return std::make_pair(0U, RC); 8024 } 8025 break; 8026 default: 8027 break; 8028 } 8029 } 8030 8031 // Clang will correctly decode the usage of register name aliases into their 8032 // official names. However, other frontends like `rustc` do not. This allows 8033 // users of these frontends to use the ABI names for registers in LLVM-style 8034 // register constraints. 8035 unsigned XRegFromAlias = StringSwitch<unsigned>(Constraint.lower()) 8036 .Case("{zero}", RISCV::X0) 8037 .Case("{ra}", RISCV::X1) 8038 .Case("{sp}", RISCV::X2) 8039 .Case("{gp}", RISCV::X3) 8040 .Case("{tp}", RISCV::X4) 8041 .Case("{t0}", RISCV::X5) 8042 .Case("{t1}", RISCV::X6) 8043 .Case("{t2}", RISCV::X7) 8044 .Cases("{s0}", "{fp}", RISCV::X8) 8045 .Case("{s1}", RISCV::X9) 8046 .Case("{a0}", RISCV::X10) 8047 .Case("{a1}", RISCV::X11) 8048 .Case("{a2}", RISCV::X12) 8049 .Case("{a3}", RISCV::X13) 8050 .Case("{a4}", RISCV::X14) 8051 .Case("{a5}", RISCV::X15) 8052 .Case("{a6}", RISCV::X16) 8053 .Case("{a7}", RISCV::X17) 8054 .Case("{s2}", RISCV::X18) 8055 .Case("{s3}", RISCV::X19) 8056 .Case("{s4}", RISCV::X20) 8057 .Case("{s5}", RISCV::X21) 8058 .Case("{s6}", RISCV::X22) 8059 .Case("{s7}", RISCV::X23) 8060 .Case("{s8}", RISCV::X24) 8061 .Case("{s9}", RISCV::X25) 8062 .Case("{s10}", RISCV::X26) 8063 .Case("{s11}", RISCV::X27) 8064 .Case("{t3}", RISCV::X28) 8065 .Case("{t4}", RISCV::X29) 8066 .Case("{t5}", RISCV::X30) 8067 .Case("{t6}", RISCV::X31) 8068 .Default(RISCV::NoRegister); 8069 if (XRegFromAlias != RISCV::NoRegister) 8070 return std::make_pair(XRegFromAlias, &RISCV::GPRRegClass); 8071 8072 // Since TargetLowering::getRegForInlineAsmConstraint uses the name of the 8073 // TableGen record rather than the AsmName to choose registers for InlineAsm 8074 // constraints, plus we want to match those names to the widest floating point 8075 // register type available, manually select floating point registers here. 8076 // 8077 // The second case is the ABI name of the register, so that frontends can also 8078 // use the ABI names in register constraint lists. 8079 if (Subtarget.hasStdExtF()) { 8080 unsigned FReg = StringSwitch<unsigned>(Constraint.lower()) 8081 .Cases("{f0}", "{ft0}", RISCV::F0_F) 8082 .Cases("{f1}", "{ft1}", RISCV::F1_F) 8083 .Cases("{f2}", "{ft2}", RISCV::F2_F) 8084 .Cases("{f3}", "{ft3}", RISCV::F3_F) 8085 .Cases("{f4}", "{ft4}", RISCV::F4_F) 8086 .Cases("{f5}", "{ft5}", RISCV::F5_F) 8087 .Cases("{f6}", "{ft6}", RISCV::F6_F) 8088 .Cases("{f7}", "{ft7}", RISCV::F7_F) 8089 .Cases("{f8}", "{fs0}", RISCV::F8_F) 8090 .Cases("{f9}", "{fs1}", RISCV::F9_F) 8091 .Cases("{f10}", "{fa0}", RISCV::F10_F) 8092 .Cases("{f11}", "{fa1}", RISCV::F11_F) 8093 .Cases("{f12}", "{fa2}", RISCV::F12_F) 8094 .Cases("{f13}", "{fa3}", RISCV::F13_F) 8095 .Cases("{f14}", "{fa4}", RISCV::F14_F) 8096 .Cases("{f15}", "{fa5}", RISCV::F15_F) 8097 .Cases("{f16}", "{fa6}", RISCV::F16_F) 8098 .Cases("{f17}", "{fa7}", RISCV::F17_F) 8099 .Cases("{f18}", "{fs2}", RISCV::F18_F) 8100 .Cases("{f19}", "{fs3}", RISCV::F19_F) 8101 .Cases("{f20}", "{fs4}", RISCV::F20_F) 8102 .Cases("{f21}", "{fs5}", RISCV::F21_F) 8103 .Cases("{f22}", "{fs6}", RISCV::F22_F) 8104 .Cases("{f23}", "{fs7}", RISCV::F23_F) 8105 .Cases("{f24}", "{fs8}", RISCV::F24_F) 8106 .Cases("{f25}", "{fs9}", RISCV::F25_F) 8107 .Cases("{f26}", "{fs10}", RISCV::F26_F) 8108 .Cases("{f27}", "{fs11}", RISCV::F27_F) 8109 .Cases("{f28}", "{ft8}", RISCV::F28_F) 8110 .Cases("{f29}", "{ft9}", RISCV::F29_F) 8111 .Cases("{f30}", "{ft10}", RISCV::F30_F) 8112 .Cases("{f31}", "{ft11}", RISCV::F31_F) 8113 .Default(RISCV::NoRegister); 8114 if (FReg != RISCV::NoRegister) { 8115 assert(RISCV::F0_F <= FReg && FReg <= RISCV::F31_F && "Unknown fp-reg"); 8116 if (Subtarget.hasStdExtD()) { 8117 unsigned RegNo = FReg - RISCV::F0_F; 8118 unsigned DReg = RISCV::F0_D + RegNo; 8119 return std::make_pair(DReg, &RISCV::FPR64RegClass); 8120 } 8121 return std::make_pair(FReg, &RISCV::FPR32RegClass); 8122 } 8123 } 8124 8125 if (Subtarget.hasStdExtV()) { 8126 Register VReg = StringSwitch<Register>(Constraint.lower()) 8127 .Case("{v0}", RISCV::V0) 8128 .Case("{v1}", RISCV::V1) 8129 .Case("{v2}", RISCV::V2) 8130 .Case("{v3}", RISCV::V3) 8131 .Case("{v4}", RISCV::V4) 8132 .Case("{v5}", RISCV::V5) 8133 .Case("{v6}", RISCV::V6) 8134 .Case("{v7}", RISCV::V7) 8135 .Case("{v8}", RISCV::V8) 8136 .Case("{v9}", RISCV::V9) 8137 .Case("{v10}", RISCV::V10) 8138 .Case("{v11}", RISCV::V11) 8139 .Case("{v12}", RISCV::V12) 8140 .Case("{v13}", RISCV::V13) 8141 .Case("{v14}", RISCV::V14) 8142 .Case("{v15}", RISCV::V15) 8143 .Case("{v16}", RISCV::V16) 8144 .Case("{v17}", RISCV::V17) 8145 .Case("{v18}", RISCV::V18) 8146 .Case("{v19}", RISCV::V19) 8147 .Case("{v20}", RISCV::V20) 8148 .Case("{v21}", RISCV::V21) 8149 .Case("{v22}", RISCV::V22) 8150 .Case("{v23}", RISCV::V23) 8151 .Case("{v24}", RISCV::V24) 8152 .Case("{v25}", RISCV::V25) 8153 .Case("{v26}", RISCV::V26) 8154 .Case("{v27}", RISCV::V27) 8155 .Case("{v28}", RISCV::V28) 8156 .Case("{v29}", RISCV::V29) 8157 .Case("{v30}", RISCV::V30) 8158 .Case("{v31}", RISCV::V31) 8159 .Default(RISCV::NoRegister); 8160 if (VReg != RISCV::NoRegister) { 8161 if (TRI->isTypeLegalForClass(RISCV::VMRegClass, VT.SimpleTy)) 8162 return std::make_pair(VReg, &RISCV::VMRegClass); 8163 if (TRI->isTypeLegalForClass(RISCV::VRRegClass, VT.SimpleTy)) 8164 return std::make_pair(VReg, &RISCV::VRRegClass); 8165 for (const auto *RC : 8166 {&RISCV::VRM2RegClass, &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) { 8167 if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy)) { 8168 VReg = TRI->getMatchingSuperReg(VReg, RISCV::sub_vrm1_0, RC); 8169 return std::make_pair(VReg, RC); 8170 } 8171 } 8172 } 8173 } 8174 8175 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 8176 } 8177 8178 unsigned 8179 RISCVTargetLowering::getInlineAsmMemConstraint(StringRef ConstraintCode) const { 8180 // Currently only support length 1 constraints. 8181 if (ConstraintCode.size() == 1) { 8182 switch (ConstraintCode[0]) { 8183 case 'A': 8184 return InlineAsm::Constraint_A; 8185 default: 8186 break; 8187 } 8188 } 8189 8190 return TargetLowering::getInlineAsmMemConstraint(ConstraintCode); 8191 } 8192 8193 void RISCVTargetLowering::LowerAsmOperandForConstraint( 8194 SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops, 8195 SelectionDAG &DAG) const { 8196 // Currently only support length 1 constraints. 8197 if (Constraint.length() == 1) { 8198 switch (Constraint[0]) { 8199 case 'I': 8200 // Validate & create a 12-bit signed immediate operand. 8201 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 8202 uint64_t CVal = C->getSExtValue(); 8203 if (isInt<12>(CVal)) 8204 Ops.push_back( 8205 DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT())); 8206 } 8207 return; 8208 case 'J': 8209 // Validate & create an integer zero operand. 8210 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 8211 if (C->getZExtValue() == 0) 8212 Ops.push_back( 8213 DAG.getTargetConstant(0, SDLoc(Op), Subtarget.getXLenVT())); 8214 return; 8215 case 'K': 8216 // Validate & create a 5-bit unsigned immediate operand. 8217 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 8218 uint64_t CVal = C->getZExtValue(); 8219 if (isUInt<5>(CVal)) 8220 Ops.push_back( 8221 DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT())); 8222 } 8223 return; 8224 default: 8225 break; 8226 } 8227 } 8228 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 8229 } 8230 8231 Instruction *RISCVTargetLowering::emitLeadingFence(IRBuilder<> &Builder, 8232 Instruction *Inst, 8233 AtomicOrdering Ord) const { 8234 if (isa<LoadInst>(Inst) && Ord == AtomicOrdering::SequentiallyConsistent) 8235 return Builder.CreateFence(Ord); 8236 if (isa<StoreInst>(Inst) && isReleaseOrStronger(Ord)) 8237 return Builder.CreateFence(AtomicOrdering::Release); 8238 return nullptr; 8239 } 8240 8241 Instruction *RISCVTargetLowering::emitTrailingFence(IRBuilder<> &Builder, 8242 Instruction *Inst, 8243 AtomicOrdering Ord) const { 8244 if (isa<LoadInst>(Inst) && isAcquireOrStronger(Ord)) 8245 return Builder.CreateFence(AtomicOrdering::Acquire); 8246 return nullptr; 8247 } 8248 8249 TargetLowering::AtomicExpansionKind 8250 RISCVTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { 8251 // atomicrmw {fadd,fsub} must be expanded to use compare-exchange, as floating 8252 // point operations can't be used in an lr/sc sequence without breaking the 8253 // forward-progress guarantee. 8254 if (AI->isFloatingPointOperation()) 8255 return AtomicExpansionKind::CmpXChg; 8256 8257 unsigned Size = AI->getType()->getPrimitiveSizeInBits(); 8258 if (Size == 8 || Size == 16) 8259 return AtomicExpansionKind::MaskedIntrinsic; 8260 return AtomicExpansionKind::None; 8261 } 8262 8263 static Intrinsic::ID 8264 getIntrinsicForMaskedAtomicRMWBinOp(unsigned XLen, AtomicRMWInst::BinOp BinOp) { 8265 if (XLen == 32) { 8266 switch (BinOp) { 8267 default: 8268 llvm_unreachable("Unexpected AtomicRMW BinOp"); 8269 case AtomicRMWInst::Xchg: 8270 return Intrinsic::riscv_masked_atomicrmw_xchg_i32; 8271 case AtomicRMWInst::Add: 8272 return Intrinsic::riscv_masked_atomicrmw_add_i32; 8273 case AtomicRMWInst::Sub: 8274 return Intrinsic::riscv_masked_atomicrmw_sub_i32; 8275 case AtomicRMWInst::Nand: 8276 return Intrinsic::riscv_masked_atomicrmw_nand_i32; 8277 case AtomicRMWInst::Max: 8278 return Intrinsic::riscv_masked_atomicrmw_max_i32; 8279 case AtomicRMWInst::Min: 8280 return Intrinsic::riscv_masked_atomicrmw_min_i32; 8281 case AtomicRMWInst::UMax: 8282 return Intrinsic::riscv_masked_atomicrmw_umax_i32; 8283 case AtomicRMWInst::UMin: 8284 return Intrinsic::riscv_masked_atomicrmw_umin_i32; 8285 } 8286 } 8287 8288 if (XLen == 64) { 8289 switch (BinOp) { 8290 default: 8291 llvm_unreachable("Unexpected AtomicRMW BinOp"); 8292 case AtomicRMWInst::Xchg: 8293 return Intrinsic::riscv_masked_atomicrmw_xchg_i64; 8294 case AtomicRMWInst::Add: 8295 return Intrinsic::riscv_masked_atomicrmw_add_i64; 8296 case AtomicRMWInst::Sub: 8297 return Intrinsic::riscv_masked_atomicrmw_sub_i64; 8298 case AtomicRMWInst::Nand: 8299 return Intrinsic::riscv_masked_atomicrmw_nand_i64; 8300 case AtomicRMWInst::Max: 8301 return Intrinsic::riscv_masked_atomicrmw_max_i64; 8302 case AtomicRMWInst::Min: 8303 return Intrinsic::riscv_masked_atomicrmw_min_i64; 8304 case AtomicRMWInst::UMax: 8305 return Intrinsic::riscv_masked_atomicrmw_umax_i64; 8306 case AtomicRMWInst::UMin: 8307 return Intrinsic::riscv_masked_atomicrmw_umin_i64; 8308 } 8309 } 8310 8311 llvm_unreachable("Unexpected XLen\n"); 8312 } 8313 8314 Value *RISCVTargetLowering::emitMaskedAtomicRMWIntrinsic( 8315 IRBuilder<> &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr, 8316 Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const { 8317 unsigned XLen = Subtarget.getXLen(); 8318 Value *Ordering = 8319 Builder.getIntN(XLen, static_cast<uint64_t>(AI->getOrdering())); 8320 Type *Tys[] = {AlignedAddr->getType()}; 8321 Function *LrwOpScwLoop = Intrinsic::getDeclaration( 8322 AI->getModule(), 8323 getIntrinsicForMaskedAtomicRMWBinOp(XLen, AI->getOperation()), Tys); 8324 8325 if (XLen == 64) { 8326 Incr = Builder.CreateSExt(Incr, Builder.getInt64Ty()); 8327 Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty()); 8328 ShiftAmt = Builder.CreateSExt(ShiftAmt, Builder.getInt64Ty()); 8329 } 8330 8331 Value *Result; 8332 8333 // Must pass the shift amount needed to sign extend the loaded value prior 8334 // to performing a signed comparison for min/max. ShiftAmt is the number of 8335 // bits to shift the value into position. Pass XLen-ShiftAmt-ValWidth, which 8336 // is the number of bits to left+right shift the value in order to 8337 // sign-extend. 8338 if (AI->getOperation() == AtomicRMWInst::Min || 8339 AI->getOperation() == AtomicRMWInst::Max) { 8340 const DataLayout &DL = AI->getModule()->getDataLayout(); 8341 unsigned ValWidth = 8342 DL.getTypeStoreSizeInBits(AI->getValOperand()->getType()); 8343 Value *SextShamt = 8344 Builder.CreateSub(Builder.getIntN(XLen, XLen - ValWidth), ShiftAmt); 8345 Result = Builder.CreateCall(LrwOpScwLoop, 8346 {AlignedAddr, Incr, Mask, SextShamt, Ordering}); 8347 } else { 8348 Result = 8349 Builder.CreateCall(LrwOpScwLoop, {AlignedAddr, Incr, Mask, Ordering}); 8350 } 8351 8352 if (XLen == 64) 8353 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty()); 8354 return Result; 8355 } 8356 8357 TargetLowering::AtomicExpansionKind 8358 RISCVTargetLowering::shouldExpandAtomicCmpXchgInIR( 8359 AtomicCmpXchgInst *CI) const { 8360 unsigned Size = CI->getCompareOperand()->getType()->getPrimitiveSizeInBits(); 8361 if (Size == 8 || Size == 16) 8362 return AtomicExpansionKind::MaskedIntrinsic; 8363 return AtomicExpansionKind::None; 8364 } 8365 8366 Value *RISCVTargetLowering::emitMaskedAtomicCmpXchgIntrinsic( 8367 IRBuilder<> &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr, 8368 Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const { 8369 unsigned XLen = Subtarget.getXLen(); 8370 Value *Ordering = Builder.getIntN(XLen, static_cast<uint64_t>(Ord)); 8371 Intrinsic::ID CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i32; 8372 if (XLen == 64) { 8373 CmpVal = Builder.CreateSExt(CmpVal, Builder.getInt64Ty()); 8374 NewVal = Builder.CreateSExt(NewVal, Builder.getInt64Ty()); 8375 Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty()); 8376 CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i64; 8377 } 8378 Type *Tys[] = {AlignedAddr->getType()}; 8379 Function *MaskedCmpXchg = 8380 Intrinsic::getDeclaration(CI->getModule(), CmpXchgIntrID, Tys); 8381 Value *Result = Builder.CreateCall( 8382 MaskedCmpXchg, {AlignedAddr, CmpVal, NewVal, Mask, Ordering}); 8383 if (XLen == 64) 8384 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty()); 8385 return Result; 8386 } 8387 8388 bool RISCVTargetLowering::shouldRemoveExtendFromGSIndex(EVT VT) const { 8389 return false; 8390 } 8391 8392 bool RISCVTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, 8393 EVT VT) const { 8394 VT = VT.getScalarType(); 8395 8396 if (!VT.isSimple()) 8397 return false; 8398 8399 switch (VT.getSimpleVT().SimpleTy) { 8400 case MVT::f16: 8401 return Subtarget.hasStdExtZfh(); 8402 case MVT::f32: 8403 return Subtarget.hasStdExtF(); 8404 case MVT::f64: 8405 return Subtarget.hasStdExtD(); 8406 default: 8407 break; 8408 } 8409 8410 return false; 8411 } 8412 8413 Register RISCVTargetLowering::getExceptionPointerRegister( 8414 const Constant *PersonalityFn) const { 8415 return RISCV::X10; 8416 } 8417 8418 Register RISCVTargetLowering::getExceptionSelectorRegister( 8419 const Constant *PersonalityFn) const { 8420 return RISCV::X11; 8421 } 8422 8423 bool RISCVTargetLowering::shouldExtendTypeInLibCall(EVT Type) const { 8424 // Return false to suppress the unnecessary extensions if the LibCall 8425 // arguments or return value is f32 type for LP64 ABI. 8426 RISCVABI::ABI ABI = Subtarget.getTargetABI(); 8427 if (ABI == RISCVABI::ABI_LP64 && (Type == MVT::f32)) 8428 return false; 8429 8430 return true; 8431 } 8432 8433 bool RISCVTargetLowering::shouldSignExtendTypeInLibCall(EVT Type, bool IsSigned) const { 8434 if (Subtarget.is64Bit() && Type == MVT::i32) 8435 return true; 8436 8437 return IsSigned; 8438 } 8439 8440 bool RISCVTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT, 8441 SDValue C) const { 8442 // Check integral scalar types. 8443 if (VT.isScalarInteger()) { 8444 // Omit the optimization if the sub target has the M extension and the data 8445 // size exceeds XLen. 8446 if (Subtarget.hasStdExtM() && VT.getSizeInBits() > Subtarget.getXLen()) 8447 return false; 8448 if (auto *ConstNode = dyn_cast<ConstantSDNode>(C.getNode())) { 8449 // Break the MUL to a SLLI and an ADD/SUB. 8450 const APInt &Imm = ConstNode->getAPIntValue(); 8451 if ((Imm + 1).isPowerOf2() || (Imm - 1).isPowerOf2() || 8452 (1 - Imm).isPowerOf2() || (-1 - Imm).isPowerOf2()) 8453 return true; 8454 // Omit the following optimization if the sub target has the M extension 8455 // and the data size >= XLen. 8456 if (Subtarget.hasStdExtM() && VT.getSizeInBits() >= Subtarget.getXLen()) 8457 return false; 8458 // Break the MUL to two SLLI instructions and an ADD/SUB, if Imm needs 8459 // a pair of LUI/ADDI. 8460 if (!Imm.isSignedIntN(12) && Imm.countTrailingZeros() < 12) { 8461 APInt ImmS = Imm.ashr(Imm.countTrailingZeros()); 8462 if ((ImmS + 1).isPowerOf2() || (ImmS - 1).isPowerOf2() || 8463 (1 - ImmS).isPowerOf2()) 8464 return true; 8465 } 8466 } 8467 } 8468 8469 return false; 8470 } 8471 8472 bool RISCVTargetLowering::allowsMisalignedMemoryAccesses( 8473 EVT VT, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags, 8474 bool *Fast) const { 8475 if (!VT.isScalableVector()) 8476 return false; 8477 8478 EVT ElemVT = VT.getVectorElementType(); 8479 if (Alignment >= ElemVT.getStoreSize()) { 8480 if (Fast) 8481 *Fast = true; 8482 return true; 8483 } 8484 8485 return false; 8486 } 8487 8488 bool RISCVTargetLowering::splitValueIntoRegisterParts( 8489 SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts, 8490 unsigned NumParts, MVT PartVT, Optional<CallingConv::ID> CC) const { 8491 bool IsABIRegCopy = CC.hasValue(); 8492 EVT ValueVT = Val.getValueType(); 8493 if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) { 8494 // Cast the f16 to i16, extend to i32, pad with ones to make a float nan, 8495 // and cast to f32. 8496 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i16, Val); 8497 Val = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Val); 8498 Val = DAG.getNode(ISD::OR, DL, MVT::i32, Val, 8499 DAG.getConstant(0xFFFF0000, DL, MVT::i32)); 8500 Val = DAG.getNode(ISD::BITCAST, DL, MVT::f32, Val); 8501 Parts[0] = Val; 8502 return true; 8503 } 8504 8505 if (ValueVT.isScalableVector() && PartVT.isScalableVector()) { 8506 LLVMContext &Context = *DAG.getContext(); 8507 EVT ValueEltVT = ValueVT.getVectorElementType(); 8508 EVT PartEltVT = PartVT.getVectorElementType(); 8509 unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize(); 8510 unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize(); 8511 if (PartVTBitSize % ValueVTBitSize == 0) { 8512 // If the element types are different, bitcast to the same element type of 8513 // PartVT first. 8514 if (ValueEltVT != PartEltVT) { 8515 unsigned Count = ValueVTBitSize / PartEltVT.getSizeInBits(); 8516 assert(Count != 0 && "The number of element should not be zero."); 8517 EVT SameEltTypeVT = 8518 EVT::getVectorVT(Context, PartEltVT, Count, /*IsScalable=*/true); 8519 Val = DAG.getNode(ISD::BITCAST, DL, SameEltTypeVT, Val); 8520 } 8521 Val = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT), 8522 Val, DAG.getConstant(0, DL, Subtarget.getXLenVT())); 8523 Parts[0] = Val; 8524 return true; 8525 } 8526 } 8527 return false; 8528 } 8529 8530 SDValue RISCVTargetLowering::joinRegisterPartsIntoValue( 8531 SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts, 8532 MVT PartVT, EVT ValueVT, Optional<CallingConv::ID> CC) const { 8533 bool IsABIRegCopy = CC.hasValue(); 8534 if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) { 8535 SDValue Val = Parts[0]; 8536 8537 // Cast the f32 to i32, truncate to i16, and cast back to f16. 8538 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Val); 8539 Val = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Val); 8540 Val = DAG.getNode(ISD::BITCAST, DL, MVT::f16, Val); 8541 return Val; 8542 } 8543 8544 if (ValueVT.isScalableVector() && PartVT.isScalableVector()) { 8545 LLVMContext &Context = *DAG.getContext(); 8546 SDValue Val = Parts[0]; 8547 EVT ValueEltVT = ValueVT.getVectorElementType(); 8548 EVT PartEltVT = PartVT.getVectorElementType(); 8549 unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize(); 8550 unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize(); 8551 if (PartVTBitSize % ValueVTBitSize == 0) { 8552 EVT SameEltTypeVT = ValueVT; 8553 // If the element types are different, convert it to the same element type 8554 // of PartVT. 8555 if (ValueEltVT != PartEltVT) { 8556 unsigned Count = ValueVTBitSize / PartEltVT.getSizeInBits(); 8557 assert(Count != 0 && "The number of element should not be zero."); 8558 SameEltTypeVT = 8559 EVT::getVectorVT(Context, PartEltVT, Count, /*IsScalable=*/true); 8560 } 8561 Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SameEltTypeVT, Val, 8562 DAG.getConstant(0, DL, Subtarget.getXLenVT())); 8563 if (ValueEltVT != PartEltVT) 8564 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 8565 return Val; 8566 } 8567 } 8568 return SDValue(); 8569 } 8570 8571 #define GET_REGISTER_MATCHER 8572 #include "RISCVGenAsmMatcher.inc" 8573 8574 Register 8575 RISCVTargetLowering::getRegisterByName(const char *RegName, LLT VT, 8576 const MachineFunction &MF) const { 8577 Register Reg = MatchRegisterAltName(RegName); 8578 if (Reg == RISCV::NoRegister) 8579 Reg = MatchRegisterName(RegName); 8580 if (Reg == RISCV::NoRegister) 8581 report_fatal_error( 8582 Twine("Invalid register name \"" + StringRef(RegName) + "\".")); 8583 BitVector ReservedRegs = Subtarget.getRegisterInfo()->getReservedRegs(MF); 8584 if (!ReservedRegs.test(Reg) && !Subtarget.isRegisterReservedByUser(Reg)) 8585 report_fatal_error(Twine("Trying to obtain non-reserved register \"" + 8586 StringRef(RegName) + "\".")); 8587 return Reg; 8588 } 8589 8590 namespace llvm { 8591 namespace RISCVVIntrinsicsTable { 8592 8593 #define GET_RISCVVIntrinsicsTable_IMPL 8594 #include "RISCVGenSearchableTables.inc" 8595 8596 } // namespace RISCVVIntrinsicsTable 8597 8598 } // namespace llvm 8599