1 //===-- RISCVISelLowering.cpp - RISCV DAG Lowering Implementation --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the interfaces that RISCV uses to lower LLVM code into a 10 // selection DAG. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "RISCVISelLowering.h" 15 #include "MCTargetDesc/RISCVMatInt.h" 16 #include "RISCV.h" 17 #include "RISCVMachineFunctionInfo.h" 18 #include "RISCVRegisterInfo.h" 19 #include "RISCVSubtarget.h" 20 #include "RISCVTargetMachine.h" 21 #include "llvm/ADT/SmallSet.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/CodeGen/CallingConvLower.h" 24 #include "llvm/CodeGen/MachineFrameInfo.h" 25 #include "llvm/CodeGen/MachineFunction.h" 26 #include "llvm/CodeGen/MachineInstrBuilder.h" 27 #include "llvm/CodeGen/MachineRegisterInfo.h" 28 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 29 #include "llvm/CodeGen/ValueTypes.h" 30 #include "llvm/IR/DiagnosticInfo.h" 31 #include "llvm/IR/DiagnosticPrinter.h" 32 #include "llvm/IR/IntrinsicsRISCV.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/ErrorHandling.h" 35 #include "llvm/Support/KnownBits.h" 36 #include "llvm/Support/MathExtras.h" 37 #include "llvm/Support/raw_ostream.h" 38 39 using namespace llvm; 40 41 #define DEBUG_TYPE "riscv-lower" 42 43 STATISTIC(NumTailCalls, "Number of tail calls"); 44 45 RISCVTargetLowering::RISCVTargetLowering(const TargetMachine &TM, 46 const RISCVSubtarget &STI) 47 : TargetLowering(TM), Subtarget(STI) { 48 49 if (Subtarget.isRV32E()) 50 report_fatal_error("Codegen not yet implemented for RV32E"); 51 52 RISCVABI::ABI ABI = Subtarget.getTargetABI(); 53 assert(ABI != RISCVABI::ABI_Unknown && "Improperly initialised target ABI"); 54 55 if ((ABI == RISCVABI::ABI_ILP32F || ABI == RISCVABI::ABI_LP64F) && 56 !Subtarget.hasStdExtF()) { 57 errs() << "Hard-float 'f' ABI can't be used for a target that " 58 "doesn't support the F instruction set extension (ignoring " 59 "target-abi)\n"; 60 ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32; 61 } else if ((ABI == RISCVABI::ABI_ILP32D || ABI == RISCVABI::ABI_LP64D) && 62 !Subtarget.hasStdExtD()) { 63 errs() << "Hard-float 'd' ABI can't be used for a target that " 64 "doesn't support the D instruction set extension (ignoring " 65 "target-abi)\n"; 66 ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32; 67 } 68 69 switch (ABI) { 70 default: 71 report_fatal_error("Don't know how to lower this ABI"); 72 case RISCVABI::ABI_ILP32: 73 case RISCVABI::ABI_ILP32F: 74 case RISCVABI::ABI_ILP32D: 75 case RISCVABI::ABI_LP64: 76 case RISCVABI::ABI_LP64F: 77 case RISCVABI::ABI_LP64D: 78 break; 79 } 80 81 MVT XLenVT = Subtarget.getXLenVT(); 82 83 // Set up the register classes. 84 addRegisterClass(XLenVT, &RISCV::GPRRegClass); 85 86 if (Subtarget.hasStdExtZfh()) 87 addRegisterClass(MVT::f16, &RISCV::FPR16RegClass); 88 if (Subtarget.hasStdExtF()) 89 addRegisterClass(MVT::f32, &RISCV::FPR32RegClass); 90 if (Subtarget.hasStdExtD()) 91 addRegisterClass(MVT::f64, &RISCV::FPR64RegClass); 92 93 if (Subtarget.hasStdExtV()) { 94 addRegisterClass(RISCVVMVTs::vbool64_t, &RISCV::VRRegClass); 95 addRegisterClass(RISCVVMVTs::vbool32_t, &RISCV::VRRegClass); 96 addRegisterClass(RISCVVMVTs::vbool16_t, &RISCV::VRRegClass); 97 addRegisterClass(RISCVVMVTs::vbool8_t, &RISCV::VRRegClass); 98 addRegisterClass(RISCVVMVTs::vbool4_t, &RISCV::VRRegClass); 99 addRegisterClass(RISCVVMVTs::vbool2_t, &RISCV::VRRegClass); 100 addRegisterClass(RISCVVMVTs::vbool1_t, &RISCV::VRRegClass); 101 102 addRegisterClass(RISCVVMVTs::vint8mf8_t, &RISCV::VRRegClass); 103 addRegisterClass(RISCVVMVTs::vint8mf4_t, &RISCV::VRRegClass); 104 addRegisterClass(RISCVVMVTs::vint8mf2_t, &RISCV::VRRegClass); 105 addRegisterClass(RISCVVMVTs::vint8m1_t, &RISCV::VRRegClass); 106 addRegisterClass(RISCVVMVTs::vint8m2_t, &RISCV::VRM2RegClass); 107 addRegisterClass(RISCVVMVTs::vint8m4_t, &RISCV::VRM4RegClass); 108 addRegisterClass(RISCVVMVTs::vint8m8_t, &RISCV::VRM8RegClass); 109 110 addRegisterClass(RISCVVMVTs::vint16mf4_t, &RISCV::VRRegClass); 111 addRegisterClass(RISCVVMVTs::vint16mf2_t, &RISCV::VRRegClass); 112 addRegisterClass(RISCVVMVTs::vint16m1_t, &RISCV::VRRegClass); 113 addRegisterClass(RISCVVMVTs::vint16m2_t, &RISCV::VRM2RegClass); 114 addRegisterClass(RISCVVMVTs::vint16m4_t, &RISCV::VRM4RegClass); 115 addRegisterClass(RISCVVMVTs::vint16m8_t, &RISCV::VRM8RegClass); 116 117 addRegisterClass(RISCVVMVTs::vint32mf2_t, &RISCV::VRRegClass); 118 addRegisterClass(RISCVVMVTs::vint32m1_t, &RISCV::VRRegClass); 119 addRegisterClass(RISCVVMVTs::vint32m2_t, &RISCV::VRM2RegClass); 120 addRegisterClass(RISCVVMVTs::vint32m4_t, &RISCV::VRM4RegClass); 121 addRegisterClass(RISCVVMVTs::vint32m8_t, &RISCV::VRM8RegClass); 122 123 addRegisterClass(RISCVVMVTs::vint64m1_t, &RISCV::VRRegClass); 124 addRegisterClass(RISCVVMVTs::vint64m2_t, &RISCV::VRM2RegClass); 125 addRegisterClass(RISCVVMVTs::vint64m4_t, &RISCV::VRM4RegClass); 126 addRegisterClass(RISCVVMVTs::vint64m8_t, &RISCV::VRM8RegClass); 127 128 if (Subtarget.hasStdExtZfh()) { 129 addRegisterClass(RISCVVMVTs::vfloat16mf4_t, &RISCV::VRRegClass); 130 addRegisterClass(RISCVVMVTs::vfloat16mf2_t, &RISCV::VRRegClass); 131 addRegisterClass(RISCVVMVTs::vfloat16m1_t, &RISCV::VRRegClass); 132 addRegisterClass(RISCVVMVTs::vfloat16m2_t, &RISCV::VRM2RegClass); 133 addRegisterClass(RISCVVMVTs::vfloat16m4_t, &RISCV::VRM4RegClass); 134 addRegisterClass(RISCVVMVTs::vfloat16m8_t, &RISCV::VRM8RegClass); 135 } 136 137 if (Subtarget.hasStdExtF()) { 138 addRegisterClass(RISCVVMVTs::vfloat32mf2_t, &RISCV::VRRegClass); 139 addRegisterClass(RISCVVMVTs::vfloat32m1_t, &RISCV::VRRegClass); 140 addRegisterClass(RISCVVMVTs::vfloat32m2_t, &RISCV::VRM2RegClass); 141 addRegisterClass(RISCVVMVTs::vfloat32m4_t, &RISCV::VRM4RegClass); 142 addRegisterClass(RISCVVMVTs::vfloat32m8_t, &RISCV::VRM8RegClass); 143 } 144 145 if (Subtarget.hasStdExtD()) { 146 addRegisterClass(RISCVVMVTs::vfloat64m1_t, &RISCV::VRRegClass); 147 addRegisterClass(RISCVVMVTs::vfloat64m2_t, &RISCV::VRM2RegClass); 148 addRegisterClass(RISCVVMVTs::vfloat64m4_t, &RISCV::VRM4RegClass); 149 addRegisterClass(RISCVVMVTs::vfloat64m8_t, &RISCV::VRM8RegClass); 150 } 151 } 152 153 // Compute derived properties from the register classes. 154 computeRegisterProperties(STI.getRegisterInfo()); 155 156 setStackPointerRegisterToSaveRestore(RISCV::X2); 157 158 for (auto N : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}) 159 setLoadExtAction(N, XLenVT, MVT::i1, Promote); 160 161 // TODO: add all necessary setOperationAction calls. 162 setOperationAction(ISD::DYNAMIC_STACKALLOC, XLenVT, Expand); 163 164 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 165 setOperationAction(ISD::BR_CC, XLenVT, Expand); 166 setOperationAction(ISD::SELECT_CC, XLenVT, Expand); 167 168 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); 169 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); 170 171 setOperationAction(ISD::VASTART, MVT::Other, Custom); 172 setOperationAction(ISD::VAARG, MVT::Other, Expand); 173 setOperationAction(ISD::VACOPY, MVT::Other, Expand); 174 setOperationAction(ISD::VAEND, MVT::Other, Expand); 175 176 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 177 if (!Subtarget.hasStdExtZbb()) { 178 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand); 179 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand); 180 } 181 182 if (Subtarget.is64Bit()) { 183 setOperationAction(ISD::ADD, MVT::i32, Custom); 184 setOperationAction(ISD::SUB, MVT::i32, Custom); 185 setOperationAction(ISD::SHL, MVT::i32, Custom); 186 setOperationAction(ISD::SRA, MVT::i32, Custom); 187 setOperationAction(ISD::SRL, MVT::i32, Custom); 188 } 189 190 if (!Subtarget.hasStdExtM()) { 191 setOperationAction(ISD::MUL, XLenVT, Expand); 192 setOperationAction(ISD::MULHS, XLenVT, Expand); 193 setOperationAction(ISD::MULHU, XLenVT, Expand); 194 setOperationAction(ISD::SDIV, XLenVT, Expand); 195 setOperationAction(ISD::UDIV, XLenVT, Expand); 196 setOperationAction(ISD::SREM, XLenVT, Expand); 197 setOperationAction(ISD::UREM, XLenVT, Expand); 198 } 199 200 if (Subtarget.is64Bit() && Subtarget.hasStdExtM()) { 201 setOperationAction(ISD::MUL, MVT::i32, Custom); 202 setOperationAction(ISD::SDIV, MVT::i32, Custom); 203 setOperationAction(ISD::UDIV, MVT::i32, Custom); 204 setOperationAction(ISD::UREM, MVT::i32, Custom); 205 } 206 207 setOperationAction(ISD::SDIVREM, XLenVT, Expand); 208 setOperationAction(ISD::UDIVREM, XLenVT, Expand); 209 setOperationAction(ISD::SMUL_LOHI, XLenVT, Expand); 210 setOperationAction(ISD::UMUL_LOHI, XLenVT, Expand); 211 212 setOperationAction(ISD::SHL_PARTS, XLenVT, Custom); 213 setOperationAction(ISD::SRL_PARTS, XLenVT, Custom); 214 setOperationAction(ISD::SRA_PARTS, XLenVT, Custom); 215 216 if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp()) { 217 if (Subtarget.is64Bit()) { 218 setOperationAction(ISD::ROTL, MVT::i32, Custom); 219 setOperationAction(ISD::ROTR, MVT::i32, Custom); 220 } 221 } else { 222 setOperationAction(ISD::ROTL, XLenVT, Expand); 223 setOperationAction(ISD::ROTR, XLenVT, Expand); 224 } 225 226 if (Subtarget.hasStdExtZbp()) { 227 // Custom lower bswap/bitreverse so we can convert them to GREVI to enable 228 // more combining. 229 setOperationAction(ISD::BITREVERSE, XLenVT, Custom); 230 setOperationAction(ISD::BSWAP, XLenVT, Custom); 231 232 if (Subtarget.is64Bit()) { 233 setOperationAction(ISD::BITREVERSE, MVT::i32, Custom); 234 setOperationAction(ISD::BSWAP, MVT::i32, Custom); 235 } 236 } else { 237 // With Zbb we have an XLen rev8 instruction, but not GREVI. So we'll 238 // pattern match it directly in isel. 239 setOperationAction(ISD::BSWAP, XLenVT, 240 Subtarget.hasStdExtZbb() ? Legal : Expand); 241 } 242 243 if (Subtarget.hasStdExtZbb()) { 244 setOperationAction(ISD::SMIN, XLenVT, Legal); 245 setOperationAction(ISD::SMAX, XLenVT, Legal); 246 setOperationAction(ISD::UMIN, XLenVT, Legal); 247 setOperationAction(ISD::UMAX, XLenVT, Legal); 248 } else { 249 setOperationAction(ISD::CTTZ, XLenVT, Expand); 250 setOperationAction(ISD::CTLZ, XLenVT, Expand); 251 setOperationAction(ISD::CTPOP, XLenVT, Expand); 252 } 253 254 if (Subtarget.hasStdExtZbt()) { 255 setOperationAction(ISD::FSHL, XLenVT, Legal); 256 setOperationAction(ISD::FSHR, XLenVT, Legal); 257 setOperationAction(ISD::SELECT, XLenVT, Legal); 258 259 if (Subtarget.is64Bit()) { 260 setOperationAction(ISD::FSHL, MVT::i32, Custom); 261 setOperationAction(ISD::FSHR, MVT::i32, Custom); 262 } 263 } else { 264 setOperationAction(ISD::SELECT, XLenVT, Custom); 265 } 266 267 ISD::CondCode FPCCToExpand[] = { 268 ISD::SETOGT, ISD::SETOGE, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT, 269 ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUNE, ISD::SETGT, 270 ISD::SETGE, ISD::SETNE, ISD::SETO, ISD::SETUO}; 271 272 ISD::NodeType FPOpToExpand[] = { 273 ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, ISD::FREM, ISD::FP16_TO_FP, 274 ISD::FP_TO_FP16}; 275 276 if (Subtarget.hasStdExtZfh()) 277 setOperationAction(ISD::BITCAST, MVT::i16, Custom); 278 279 if (Subtarget.hasStdExtZfh()) { 280 setOperationAction(ISD::FMINNUM, MVT::f16, Legal); 281 setOperationAction(ISD::FMAXNUM, MVT::f16, Legal); 282 for (auto CC : FPCCToExpand) 283 setCondCodeAction(CC, MVT::f16, Expand); 284 setOperationAction(ISD::SELECT_CC, MVT::f16, Expand); 285 setOperationAction(ISD::SELECT, MVT::f16, Custom); 286 setOperationAction(ISD::BR_CC, MVT::f16, Expand); 287 for (auto Op : FPOpToExpand) 288 setOperationAction(Op, MVT::f16, Expand); 289 } 290 291 if (Subtarget.hasStdExtF()) { 292 setOperationAction(ISD::FMINNUM, MVT::f32, Legal); 293 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); 294 for (auto CC : FPCCToExpand) 295 setCondCodeAction(CC, MVT::f32, Expand); 296 setOperationAction(ISD::SELECT_CC, MVT::f32, Expand); 297 setOperationAction(ISD::SELECT, MVT::f32, Custom); 298 setOperationAction(ISD::BR_CC, MVT::f32, Expand); 299 for (auto Op : FPOpToExpand) 300 setOperationAction(Op, MVT::f32, Expand); 301 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); 302 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 303 } 304 305 if (Subtarget.hasStdExtF() && Subtarget.is64Bit()) 306 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 307 308 if (Subtarget.hasStdExtD()) { 309 setOperationAction(ISD::FMINNUM, MVT::f64, Legal); 310 setOperationAction(ISD::FMAXNUM, MVT::f64, Legal); 311 for (auto CC : FPCCToExpand) 312 setCondCodeAction(CC, MVT::f64, Expand); 313 setOperationAction(ISD::SELECT_CC, MVT::f64, Expand); 314 setOperationAction(ISD::SELECT, MVT::f64, Custom); 315 setOperationAction(ISD::BR_CC, MVT::f64, Expand); 316 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 317 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 318 for (auto Op : FPOpToExpand) 319 setOperationAction(Op, MVT::f64, Expand); 320 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); 321 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 322 } 323 324 if (Subtarget.is64Bit()) { 325 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 326 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 327 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom); 328 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom); 329 } 330 331 setOperationAction(ISD::GlobalAddress, XLenVT, Custom); 332 setOperationAction(ISD::BlockAddress, XLenVT, Custom); 333 setOperationAction(ISD::ConstantPool, XLenVT, Custom); 334 setOperationAction(ISD::JumpTable, XLenVT, Custom); 335 336 setOperationAction(ISD::GlobalTLSAddress, XLenVT, Custom); 337 338 // TODO: On M-mode only targets, the cycle[h] CSR may not be present. 339 // Unfortunately this can't be determined just from the ISA naming string. 340 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, 341 Subtarget.is64Bit() ? Legal : Custom); 342 343 setOperationAction(ISD::TRAP, MVT::Other, Legal); 344 setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal); 345 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 346 347 if (Subtarget.hasStdExtA()) { 348 setMaxAtomicSizeInBitsSupported(Subtarget.getXLen()); 349 setMinCmpXchgSizeInBits(32); 350 } else { 351 setMaxAtomicSizeInBitsSupported(0); 352 } 353 354 setBooleanContents(ZeroOrOneBooleanContent); 355 356 if (Subtarget.hasStdExtV()) { 357 setBooleanVectorContents(ZeroOrOneBooleanContent); 358 359 setOperationAction(ISD::VSCALE, XLenVT, Custom); 360 361 // RVV intrinsics may have illegal operands. 362 // We also need to custom legalize vmv.x.s. 363 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i8, Custom); 364 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i16, Custom); 365 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i8, Custom); 366 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i16, Custom); 367 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i32, Custom); 368 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i32, Custom); 369 370 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom); 371 372 if (Subtarget.is64Bit()) { 373 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i64, Custom); 374 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i64, Custom); 375 } 376 377 for (auto VT : MVT::integer_scalable_vector_valuetypes()) { 378 setOperationAction(ISD::SPLAT_VECTOR, VT, Legal); 379 380 setOperationAction(ISD::SMIN, VT, Legal); 381 setOperationAction(ISD::SMAX, VT, Legal); 382 setOperationAction(ISD::UMIN, VT, Legal); 383 setOperationAction(ISD::UMAX, VT, Legal); 384 385 setOperationAction(ISD::ROTL, VT, Expand); 386 setOperationAction(ISD::ROTR, VT, Expand); 387 388 if (isTypeLegal(VT)) { 389 // Custom-lower extensions and truncations from/to mask types. 390 setOperationAction(ISD::ANY_EXTEND, VT, Custom); 391 setOperationAction(ISD::SIGN_EXTEND, VT, Custom); 392 setOperationAction(ISD::ZERO_EXTEND, VT, Custom); 393 394 // We custom-lower all legally-typed vector truncates: 395 // 1. Mask VTs are custom-expanded into a series of standard nodes 396 // 2. Integer VTs are lowered as a series of "RISCVISD::TRUNCATE_VECTOR" 397 // nodes which truncate by one power of two at a time. 398 setOperationAction(ISD::TRUNCATE, VT, Custom); 399 } 400 } 401 402 // We must custom-lower SPLAT_VECTOR vXi64 on RV32 403 if (!Subtarget.is64Bit()) 404 setOperationAction(ISD::SPLAT_VECTOR, MVT::i64, Custom); 405 406 // Expand various CCs to best match the RVV ISA, which natively supports UNE 407 // but no other unordered comparisons, and supports all ordered comparisons 408 // except ONE. Additionally, we expand GT,OGT,GE,OGE for optimization 409 // purposes; they are expanded to their swapped-operand CCs (LT,OLT,LE,OLE), 410 // and we pattern-match those back to the "original", swapping operands once 411 // more. This way we catch both operations and both "vf" and "fv" forms with 412 // fewer patterns. 413 ISD::CondCode VFPCCToExpand[] = { 414 ISD::SETO, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT, 415 ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUO, 416 ISD::SETGT, ISD::SETOGT, ISD::SETGE, ISD::SETOGE, 417 }; 418 419 if (Subtarget.hasStdExtZfh()) { 420 for (auto VT : {RISCVVMVTs::vfloat16mf4_t, RISCVVMVTs::vfloat16mf2_t, 421 RISCVVMVTs::vfloat16m1_t, RISCVVMVTs::vfloat16m2_t, 422 RISCVVMVTs::vfloat16m4_t, RISCVVMVTs::vfloat16m8_t}) { 423 setOperationAction(ISD::SPLAT_VECTOR, VT, Legal); 424 for (auto CC : VFPCCToExpand) 425 setCondCodeAction(CC, VT, Expand); 426 } 427 } 428 429 if (Subtarget.hasStdExtF()) { 430 for (auto VT : {RISCVVMVTs::vfloat32mf2_t, RISCVVMVTs::vfloat32m1_t, 431 RISCVVMVTs::vfloat32m2_t, RISCVVMVTs::vfloat32m4_t, 432 RISCVVMVTs::vfloat32m8_t}) { 433 setOperationAction(ISD::SPLAT_VECTOR, VT, Legal); 434 for (auto CC : VFPCCToExpand) 435 setCondCodeAction(CC, VT, Expand); 436 } 437 } 438 439 if (Subtarget.hasStdExtD()) { 440 for (auto VT : {RISCVVMVTs::vfloat64m1_t, RISCVVMVTs::vfloat64m2_t, 441 RISCVVMVTs::vfloat64m4_t, RISCVVMVTs::vfloat64m8_t}) { 442 setOperationAction(ISD::SPLAT_VECTOR, VT, Legal); 443 for (auto CC : VFPCCToExpand) 444 setCondCodeAction(CC, VT, Expand); 445 } 446 } 447 } 448 449 // Function alignments. 450 const Align FunctionAlignment(Subtarget.hasStdExtC() ? 2 : 4); 451 setMinFunctionAlignment(FunctionAlignment); 452 setPrefFunctionAlignment(FunctionAlignment); 453 454 setMinimumJumpTableEntries(5); 455 456 // Jumps are expensive, compared to logic 457 setJumpIsExpensive(); 458 459 // We can use any register for comparisons 460 setHasMultipleConditionRegisters(); 461 462 setTargetDAGCombine(ISD::SETCC); 463 if (Subtarget.hasStdExtZbp()) { 464 setTargetDAGCombine(ISD::OR); 465 } 466 } 467 468 EVT RISCVTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &, 469 EVT VT) const { 470 if (!VT.isVector()) 471 return getPointerTy(DL); 472 if (Subtarget.hasStdExtV()) 473 return MVT::getVectorVT(MVT::i1, VT.getVectorElementCount()); 474 return VT.changeVectorElementTypeToInteger(); 475 } 476 477 bool RISCVTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 478 const CallInst &I, 479 MachineFunction &MF, 480 unsigned Intrinsic) const { 481 switch (Intrinsic) { 482 default: 483 return false; 484 case Intrinsic::riscv_masked_atomicrmw_xchg_i32: 485 case Intrinsic::riscv_masked_atomicrmw_add_i32: 486 case Intrinsic::riscv_masked_atomicrmw_sub_i32: 487 case Intrinsic::riscv_masked_atomicrmw_nand_i32: 488 case Intrinsic::riscv_masked_atomicrmw_max_i32: 489 case Intrinsic::riscv_masked_atomicrmw_min_i32: 490 case Intrinsic::riscv_masked_atomicrmw_umax_i32: 491 case Intrinsic::riscv_masked_atomicrmw_umin_i32: 492 case Intrinsic::riscv_masked_cmpxchg_i32: 493 PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType()); 494 Info.opc = ISD::INTRINSIC_W_CHAIN; 495 Info.memVT = MVT::getVT(PtrTy->getElementType()); 496 Info.ptrVal = I.getArgOperand(0); 497 Info.offset = 0; 498 Info.align = Align(4); 499 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore | 500 MachineMemOperand::MOVolatile; 501 return true; 502 } 503 } 504 505 bool RISCVTargetLowering::isLegalAddressingMode(const DataLayout &DL, 506 const AddrMode &AM, Type *Ty, 507 unsigned AS, 508 Instruction *I) const { 509 // No global is ever allowed as a base. 510 if (AM.BaseGV) 511 return false; 512 513 // Require a 12-bit signed offset. 514 if (!isInt<12>(AM.BaseOffs)) 515 return false; 516 517 switch (AM.Scale) { 518 case 0: // "r+i" or just "i", depending on HasBaseReg. 519 break; 520 case 1: 521 if (!AM.HasBaseReg) // allow "r+i". 522 break; 523 return false; // disallow "r+r" or "r+r+i". 524 default: 525 return false; 526 } 527 528 return true; 529 } 530 531 bool RISCVTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 532 return isInt<12>(Imm); 533 } 534 535 bool RISCVTargetLowering::isLegalAddImmediate(int64_t Imm) const { 536 return isInt<12>(Imm); 537 } 538 539 // On RV32, 64-bit integers are split into their high and low parts and held 540 // in two different registers, so the trunc is free since the low register can 541 // just be used. 542 bool RISCVTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const { 543 if (Subtarget.is64Bit() || !SrcTy->isIntegerTy() || !DstTy->isIntegerTy()) 544 return false; 545 unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); 546 unsigned DestBits = DstTy->getPrimitiveSizeInBits(); 547 return (SrcBits == 64 && DestBits == 32); 548 } 549 550 bool RISCVTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const { 551 if (Subtarget.is64Bit() || SrcVT.isVector() || DstVT.isVector() || 552 !SrcVT.isInteger() || !DstVT.isInteger()) 553 return false; 554 unsigned SrcBits = SrcVT.getSizeInBits(); 555 unsigned DestBits = DstVT.getSizeInBits(); 556 return (SrcBits == 64 && DestBits == 32); 557 } 558 559 bool RISCVTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 560 // Zexts are free if they can be combined with a load. 561 if (auto *LD = dyn_cast<LoadSDNode>(Val)) { 562 EVT MemVT = LD->getMemoryVT(); 563 if ((MemVT == MVT::i8 || MemVT == MVT::i16 || 564 (Subtarget.is64Bit() && MemVT == MVT::i32)) && 565 (LD->getExtensionType() == ISD::NON_EXTLOAD || 566 LD->getExtensionType() == ISD::ZEXTLOAD)) 567 return true; 568 } 569 570 return TargetLowering::isZExtFree(Val, VT2); 571 } 572 573 bool RISCVTargetLowering::isSExtCheaperThanZExt(EVT SrcVT, EVT DstVT) const { 574 return Subtarget.is64Bit() && SrcVT == MVT::i32 && DstVT == MVT::i64; 575 } 576 577 bool RISCVTargetLowering::isCheapToSpeculateCttz() const { 578 return Subtarget.hasStdExtZbb(); 579 } 580 581 bool RISCVTargetLowering::isCheapToSpeculateCtlz() const { 582 return Subtarget.hasStdExtZbb(); 583 } 584 585 bool RISCVTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 586 bool ForCodeSize) const { 587 if (VT == MVT::f16 && !Subtarget.hasStdExtZfh()) 588 return false; 589 if (VT == MVT::f32 && !Subtarget.hasStdExtF()) 590 return false; 591 if (VT == MVT::f64 && !Subtarget.hasStdExtD()) 592 return false; 593 if (Imm.isNegZero()) 594 return false; 595 return Imm.isZero(); 596 } 597 598 bool RISCVTargetLowering::hasBitPreservingFPLogic(EVT VT) const { 599 return (VT == MVT::f16 && Subtarget.hasStdExtZfh()) || 600 (VT == MVT::f32 && Subtarget.hasStdExtF()) || 601 (VT == MVT::f64 && Subtarget.hasStdExtD()); 602 } 603 604 // Changes the condition code and swaps operands if necessary, so the SetCC 605 // operation matches one of the comparisons supported directly in the RISC-V 606 // ISA. 607 static void normaliseSetCC(SDValue &LHS, SDValue &RHS, ISD::CondCode &CC) { 608 switch (CC) { 609 default: 610 break; 611 case ISD::SETGT: 612 case ISD::SETLE: 613 case ISD::SETUGT: 614 case ISD::SETULE: 615 CC = ISD::getSetCCSwappedOperands(CC); 616 std::swap(LHS, RHS); 617 break; 618 } 619 } 620 621 // Return the RISC-V branch opcode that matches the given DAG integer 622 // condition code. The CondCode must be one of those supported by the RISC-V 623 // ISA (see normaliseSetCC). 624 static unsigned getBranchOpcodeForIntCondCode(ISD::CondCode CC) { 625 switch (CC) { 626 default: 627 llvm_unreachable("Unsupported CondCode"); 628 case ISD::SETEQ: 629 return RISCV::BEQ; 630 case ISD::SETNE: 631 return RISCV::BNE; 632 case ISD::SETLT: 633 return RISCV::BLT; 634 case ISD::SETGE: 635 return RISCV::BGE; 636 case ISD::SETULT: 637 return RISCV::BLTU; 638 case ISD::SETUGE: 639 return RISCV::BGEU; 640 } 641 } 642 643 SDValue RISCVTargetLowering::LowerOperation(SDValue Op, 644 SelectionDAG &DAG) const { 645 switch (Op.getOpcode()) { 646 default: 647 report_fatal_error("unimplemented operand"); 648 case ISD::GlobalAddress: 649 return lowerGlobalAddress(Op, DAG); 650 case ISD::BlockAddress: 651 return lowerBlockAddress(Op, DAG); 652 case ISD::ConstantPool: 653 return lowerConstantPool(Op, DAG); 654 case ISD::JumpTable: 655 return lowerJumpTable(Op, DAG); 656 case ISD::GlobalTLSAddress: 657 return lowerGlobalTLSAddress(Op, DAG); 658 case ISD::SELECT: 659 return lowerSELECT(Op, DAG); 660 case ISD::VASTART: 661 return lowerVASTART(Op, DAG); 662 case ISD::FRAMEADDR: 663 return lowerFRAMEADDR(Op, DAG); 664 case ISD::RETURNADDR: 665 return lowerRETURNADDR(Op, DAG); 666 case ISD::SHL_PARTS: 667 return lowerShiftLeftParts(Op, DAG); 668 case ISD::SRA_PARTS: 669 return lowerShiftRightParts(Op, DAG, true); 670 case ISD::SRL_PARTS: 671 return lowerShiftRightParts(Op, DAG, false); 672 case ISD::BITCAST: { 673 assert(((Subtarget.is64Bit() && Subtarget.hasStdExtF()) || 674 Subtarget.hasStdExtZfh()) && 675 "Unexpected custom legalisation"); 676 SDLoc DL(Op); 677 SDValue Op0 = Op.getOperand(0); 678 if (Op.getValueType() == MVT::f16 && Subtarget.hasStdExtZfh()) { 679 if (Op0.getValueType() != MVT::i16) 680 return SDValue(); 681 SDValue NewOp0 = 682 DAG.getNode(ISD::ANY_EXTEND, DL, Subtarget.getXLenVT(), Op0); 683 SDValue FPConv = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, NewOp0); 684 return FPConv; 685 } else if (Op.getValueType() == MVT::f32 && Subtarget.is64Bit() && 686 Subtarget.hasStdExtF()) { 687 if (Op0.getValueType() != MVT::i32) 688 return SDValue(); 689 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); 690 SDValue FPConv = 691 DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, NewOp0); 692 return FPConv; 693 } 694 return SDValue(); 695 } 696 case ISD::INTRINSIC_WO_CHAIN: 697 return LowerINTRINSIC_WO_CHAIN(Op, DAG); 698 case ISD::INTRINSIC_W_CHAIN: 699 return LowerINTRINSIC_W_CHAIN(Op, DAG); 700 case ISD::BSWAP: 701 case ISD::BITREVERSE: { 702 // Convert BSWAP/BITREVERSE to GREVI to enable GREVI combinining. 703 assert(Subtarget.hasStdExtZbp() && "Unexpected custom legalisation"); 704 MVT VT = Op.getSimpleValueType(); 705 SDLoc DL(Op); 706 // Start with the maximum immediate value which is the bitwidth - 1. 707 unsigned Imm = VT.getSizeInBits() - 1; 708 // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits. 709 if (Op.getOpcode() == ISD::BSWAP) 710 Imm &= ~0x7U; 711 return DAG.getNode(RISCVISD::GREVI, DL, VT, Op.getOperand(0), 712 DAG.getTargetConstant(Imm, DL, Subtarget.getXLenVT())); 713 } 714 case ISD::TRUNCATE: { 715 SDLoc DL(Op); 716 EVT VT = Op.getValueType(); 717 // Only custom-lower vector truncates 718 if (!VT.isVector()) 719 return Op; 720 721 // Truncates to mask types are handled differently 722 if (VT.getVectorElementType() == MVT::i1) 723 return lowerVectorMaskTrunc(Op, DAG); 724 725 // RVV only has truncates which operate from SEW*2->SEW, so lower arbitrary 726 // truncates as a series of "RISCVISD::TRUNCATE_VECTOR" nodes which 727 // truncate by one power of two at a time. 728 EVT DstEltVT = VT.getVectorElementType(); 729 730 SDValue Src = Op.getOperand(0); 731 EVT SrcVT = Src.getValueType(); 732 EVT SrcEltVT = SrcVT.getVectorElementType(); 733 734 assert(DstEltVT.bitsLT(SrcEltVT) && 735 isPowerOf2_64(DstEltVT.getSizeInBits()) && 736 isPowerOf2_64(SrcEltVT.getSizeInBits()) && 737 "Unexpected vector truncate lowering"); 738 739 SDValue Result = Src; 740 LLVMContext &Context = *DAG.getContext(); 741 const ElementCount Count = SrcVT.getVectorElementCount(); 742 do { 743 SrcEltVT = EVT::getIntegerVT(Context, SrcEltVT.getSizeInBits() / 2); 744 EVT ResultVT = EVT::getVectorVT(Context, SrcEltVT, Count); 745 Result = DAG.getNode(RISCVISD::TRUNCATE_VECTOR, DL, ResultVT, Result); 746 } while (SrcEltVT != DstEltVT); 747 748 return Result; 749 } 750 case ISD::ANY_EXTEND: 751 case ISD::ZERO_EXTEND: 752 return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ 1); 753 case ISD::SIGN_EXTEND: 754 return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ -1); 755 case ISD::SPLAT_VECTOR: 756 return lowerSPLATVECTOR(Op, DAG); 757 case ISD::VSCALE: { 758 MVT VT = Op.getSimpleValueType(); 759 SDLoc DL(Op); 760 SDValue VLENB = DAG.getNode(RISCVISD::READ_VLENB, DL, VT); 761 // We define our scalable vector types for lmul=1 to use a 64 bit known 762 // minimum size. e.g. <vscale x 2 x i32>. VLENB is in bytes so we calculate 763 // vscale as VLENB / 8. 764 SDValue VScale = DAG.getNode(ISD::SRL, DL, VT, VLENB, 765 DAG.getConstant(3, DL, VT)); 766 return DAG.getNode(ISD::MUL, DL, VT, VScale, Op.getOperand(0)); 767 } 768 } 769 } 770 771 static SDValue getTargetNode(GlobalAddressSDNode *N, SDLoc DL, EVT Ty, 772 SelectionDAG &DAG, unsigned Flags) { 773 return DAG.getTargetGlobalAddress(N->getGlobal(), DL, Ty, 0, Flags); 774 } 775 776 static SDValue getTargetNode(BlockAddressSDNode *N, SDLoc DL, EVT Ty, 777 SelectionDAG &DAG, unsigned Flags) { 778 return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, N->getOffset(), 779 Flags); 780 } 781 782 static SDValue getTargetNode(ConstantPoolSDNode *N, SDLoc DL, EVT Ty, 783 SelectionDAG &DAG, unsigned Flags) { 784 return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlign(), 785 N->getOffset(), Flags); 786 } 787 788 static SDValue getTargetNode(JumpTableSDNode *N, SDLoc DL, EVT Ty, 789 SelectionDAG &DAG, unsigned Flags) { 790 return DAG.getTargetJumpTable(N->getIndex(), Ty, Flags); 791 } 792 793 template <class NodeTy> 794 SDValue RISCVTargetLowering::getAddr(NodeTy *N, SelectionDAG &DAG, 795 bool IsLocal) const { 796 SDLoc DL(N); 797 EVT Ty = getPointerTy(DAG.getDataLayout()); 798 799 if (isPositionIndependent()) { 800 SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0); 801 if (IsLocal) 802 // Use PC-relative addressing to access the symbol. This generates the 803 // pattern (PseudoLLA sym), which expands to (addi (auipc %pcrel_hi(sym)) 804 // %pcrel_lo(auipc)). 805 return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0); 806 807 // Use PC-relative addressing to access the GOT for this symbol, then load 808 // the address from the GOT. This generates the pattern (PseudoLA sym), 809 // which expands to (ld (addi (auipc %got_pcrel_hi(sym)) %pcrel_lo(auipc))). 810 return SDValue(DAG.getMachineNode(RISCV::PseudoLA, DL, Ty, Addr), 0); 811 } 812 813 switch (getTargetMachine().getCodeModel()) { 814 default: 815 report_fatal_error("Unsupported code model for lowering"); 816 case CodeModel::Small: { 817 // Generate a sequence for accessing addresses within the first 2 GiB of 818 // address space. This generates the pattern (addi (lui %hi(sym)) %lo(sym)). 819 SDValue AddrHi = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_HI); 820 SDValue AddrLo = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_LO); 821 SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0); 822 return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNHi, AddrLo), 0); 823 } 824 case CodeModel::Medium: { 825 // Generate a sequence for accessing addresses within any 2GiB range within 826 // the address space. This generates the pattern (PseudoLLA sym), which 827 // expands to (addi (auipc %pcrel_hi(sym)) %pcrel_lo(auipc)). 828 SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0); 829 return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0); 830 } 831 } 832 } 833 834 SDValue RISCVTargetLowering::lowerGlobalAddress(SDValue Op, 835 SelectionDAG &DAG) const { 836 SDLoc DL(Op); 837 EVT Ty = Op.getValueType(); 838 GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op); 839 int64_t Offset = N->getOffset(); 840 MVT XLenVT = Subtarget.getXLenVT(); 841 842 const GlobalValue *GV = N->getGlobal(); 843 bool IsLocal = getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV); 844 SDValue Addr = getAddr(N, DAG, IsLocal); 845 846 // In order to maximise the opportunity for common subexpression elimination, 847 // emit a separate ADD node for the global address offset instead of folding 848 // it in the global address node. Later peephole optimisations may choose to 849 // fold it back in when profitable. 850 if (Offset != 0) 851 return DAG.getNode(ISD::ADD, DL, Ty, Addr, 852 DAG.getConstant(Offset, DL, XLenVT)); 853 return Addr; 854 } 855 856 SDValue RISCVTargetLowering::lowerBlockAddress(SDValue Op, 857 SelectionDAG &DAG) const { 858 BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op); 859 860 return getAddr(N, DAG); 861 } 862 863 SDValue RISCVTargetLowering::lowerConstantPool(SDValue Op, 864 SelectionDAG &DAG) const { 865 ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op); 866 867 return getAddr(N, DAG); 868 } 869 870 SDValue RISCVTargetLowering::lowerJumpTable(SDValue Op, 871 SelectionDAG &DAG) const { 872 JumpTableSDNode *N = cast<JumpTableSDNode>(Op); 873 874 return getAddr(N, DAG); 875 } 876 877 SDValue RISCVTargetLowering::getStaticTLSAddr(GlobalAddressSDNode *N, 878 SelectionDAG &DAG, 879 bool UseGOT) const { 880 SDLoc DL(N); 881 EVT Ty = getPointerTy(DAG.getDataLayout()); 882 const GlobalValue *GV = N->getGlobal(); 883 MVT XLenVT = Subtarget.getXLenVT(); 884 885 if (UseGOT) { 886 // Use PC-relative addressing to access the GOT for this TLS symbol, then 887 // load the address from the GOT and add the thread pointer. This generates 888 // the pattern (PseudoLA_TLS_IE sym), which expands to 889 // (ld (auipc %tls_ie_pcrel_hi(sym)) %pcrel_lo(auipc)). 890 SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0); 891 SDValue Load = 892 SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_IE, DL, Ty, Addr), 0); 893 894 // Add the thread pointer. 895 SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT); 896 return DAG.getNode(ISD::ADD, DL, Ty, Load, TPReg); 897 } 898 899 // Generate a sequence for accessing the address relative to the thread 900 // pointer, with the appropriate adjustment for the thread pointer offset. 901 // This generates the pattern 902 // (add (add_tprel (lui %tprel_hi(sym)) tp %tprel_add(sym)) %tprel_lo(sym)) 903 SDValue AddrHi = 904 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_HI); 905 SDValue AddrAdd = 906 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_ADD); 907 SDValue AddrLo = 908 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_LO); 909 910 SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0); 911 SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT); 912 SDValue MNAdd = SDValue( 913 DAG.getMachineNode(RISCV::PseudoAddTPRel, DL, Ty, MNHi, TPReg, AddrAdd), 914 0); 915 return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNAdd, AddrLo), 0); 916 } 917 918 SDValue RISCVTargetLowering::getDynamicTLSAddr(GlobalAddressSDNode *N, 919 SelectionDAG &DAG) const { 920 SDLoc DL(N); 921 EVT Ty = getPointerTy(DAG.getDataLayout()); 922 IntegerType *CallTy = Type::getIntNTy(*DAG.getContext(), Ty.getSizeInBits()); 923 const GlobalValue *GV = N->getGlobal(); 924 925 // Use a PC-relative addressing mode to access the global dynamic GOT address. 926 // This generates the pattern (PseudoLA_TLS_GD sym), which expands to 927 // (addi (auipc %tls_gd_pcrel_hi(sym)) %pcrel_lo(auipc)). 928 SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0); 929 SDValue Load = 930 SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_GD, DL, Ty, Addr), 0); 931 932 // Prepare argument list to generate call. 933 ArgListTy Args; 934 ArgListEntry Entry; 935 Entry.Node = Load; 936 Entry.Ty = CallTy; 937 Args.push_back(Entry); 938 939 // Setup call to __tls_get_addr. 940 TargetLowering::CallLoweringInfo CLI(DAG); 941 CLI.setDebugLoc(DL) 942 .setChain(DAG.getEntryNode()) 943 .setLibCallee(CallingConv::C, CallTy, 944 DAG.getExternalSymbol("__tls_get_addr", Ty), 945 std::move(Args)); 946 947 return LowerCallTo(CLI).first; 948 } 949 950 SDValue RISCVTargetLowering::lowerGlobalTLSAddress(SDValue Op, 951 SelectionDAG &DAG) const { 952 SDLoc DL(Op); 953 EVT Ty = Op.getValueType(); 954 GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op); 955 int64_t Offset = N->getOffset(); 956 MVT XLenVT = Subtarget.getXLenVT(); 957 958 TLSModel::Model Model = getTargetMachine().getTLSModel(N->getGlobal()); 959 960 if (DAG.getMachineFunction().getFunction().getCallingConv() == 961 CallingConv::GHC) 962 report_fatal_error("In GHC calling convention TLS is not supported"); 963 964 SDValue Addr; 965 switch (Model) { 966 case TLSModel::LocalExec: 967 Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/false); 968 break; 969 case TLSModel::InitialExec: 970 Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/true); 971 break; 972 case TLSModel::LocalDynamic: 973 case TLSModel::GeneralDynamic: 974 Addr = getDynamicTLSAddr(N, DAG); 975 break; 976 } 977 978 // In order to maximise the opportunity for common subexpression elimination, 979 // emit a separate ADD node for the global address offset instead of folding 980 // it in the global address node. Later peephole optimisations may choose to 981 // fold it back in when profitable. 982 if (Offset != 0) 983 return DAG.getNode(ISD::ADD, DL, Ty, Addr, 984 DAG.getConstant(Offset, DL, XLenVT)); 985 return Addr; 986 } 987 988 SDValue RISCVTargetLowering::lowerSELECT(SDValue Op, SelectionDAG &DAG) const { 989 SDValue CondV = Op.getOperand(0); 990 SDValue TrueV = Op.getOperand(1); 991 SDValue FalseV = Op.getOperand(2); 992 SDLoc DL(Op); 993 MVT XLenVT = Subtarget.getXLenVT(); 994 995 // If the result type is XLenVT and CondV is the output of a SETCC node 996 // which also operated on XLenVT inputs, then merge the SETCC node into the 997 // lowered RISCVISD::SELECT_CC to take advantage of the integer 998 // compare+branch instructions. i.e.: 999 // (select (setcc lhs, rhs, cc), truev, falsev) 1000 // -> (riscvisd::select_cc lhs, rhs, cc, truev, falsev) 1001 if (Op.getSimpleValueType() == XLenVT && CondV.getOpcode() == ISD::SETCC && 1002 CondV.getOperand(0).getSimpleValueType() == XLenVT) { 1003 SDValue LHS = CondV.getOperand(0); 1004 SDValue RHS = CondV.getOperand(1); 1005 auto CC = cast<CondCodeSDNode>(CondV.getOperand(2)); 1006 ISD::CondCode CCVal = CC->get(); 1007 1008 normaliseSetCC(LHS, RHS, CCVal); 1009 1010 SDValue TargetCC = DAG.getConstant(CCVal, DL, XLenVT); 1011 SDValue Ops[] = {LHS, RHS, TargetCC, TrueV, FalseV}; 1012 return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops); 1013 } 1014 1015 // Otherwise: 1016 // (select condv, truev, falsev) 1017 // -> (riscvisd::select_cc condv, zero, setne, truev, falsev) 1018 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 1019 SDValue SetNE = DAG.getConstant(ISD::SETNE, DL, XLenVT); 1020 1021 SDValue Ops[] = {CondV, Zero, SetNE, TrueV, FalseV}; 1022 1023 return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops); 1024 } 1025 1026 SDValue RISCVTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const { 1027 MachineFunction &MF = DAG.getMachineFunction(); 1028 RISCVMachineFunctionInfo *FuncInfo = MF.getInfo<RISCVMachineFunctionInfo>(); 1029 1030 SDLoc DL(Op); 1031 SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), 1032 getPointerTy(MF.getDataLayout())); 1033 1034 // vastart just stores the address of the VarArgsFrameIndex slot into the 1035 // memory location argument. 1036 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 1037 return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1), 1038 MachinePointerInfo(SV)); 1039 } 1040 1041 SDValue RISCVTargetLowering::lowerFRAMEADDR(SDValue Op, 1042 SelectionDAG &DAG) const { 1043 const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo(); 1044 MachineFunction &MF = DAG.getMachineFunction(); 1045 MachineFrameInfo &MFI = MF.getFrameInfo(); 1046 MFI.setFrameAddressIsTaken(true); 1047 Register FrameReg = RI.getFrameRegister(MF); 1048 int XLenInBytes = Subtarget.getXLen() / 8; 1049 1050 EVT VT = Op.getValueType(); 1051 SDLoc DL(Op); 1052 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, FrameReg, VT); 1053 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 1054 while (Depth--) { 1055 int Offset = -(XLenInBytes * 2); 1056 SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr, 1057 DAG.getIntPtrConstant(Offset, DL)); 1058 FrameAddr = 1059 DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo()); 1060 } 1061 return FrameAddr; 1062 } 1063 1064 SDValue RISCVTargetLowering::lowerRETURNADDR(SDValue Op, 1065 SelectionDAG &DAG) const { 1066 const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo(); 1067 MachineFunction &MF = DAG.getMachineFunction(); 1068 MachineFrameInfo &MFI = MF.getFrameInfo(); 1069 MFI.setReturnAddressIsTaken(true); 1070 MVT XLenVT = Subtarget.getXLenVT(); 1071 int XLenInBytes = Subtarget.getXLen() / 8; 1072 1073 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 1074 return SDValue(); 1075 1076 EVT VT = Op.getValueType(); 1077 SDLoc DL(Op); 1078 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 1079 if (Depth) { 1080 int Off = -XLenInBytes; 1081 SDValue FrameAddr = lowerFRAMEADDR(Op, DAG); 1082 SDValue Offset = DAG.getConstant(Off, DL, VT); 1083 return DAG.getLoad(VT, DL, DAG.getEntryNode(), 1084 DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset), 1085 MachinePointerInfo()); 1086 } 1087 1088 // Return the value of the return address register, marking it an implicit 1089 // live-in. 1090 Register Reg = MF.addLiveIn(RI.getRARegister(), getRegClassFor(XLenVT)); 1091 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, XLenVT); 1092 } 1093 1094 SDValue RISCVTargetLowering::lowerShiftLeftParts(SDValue Op, 1095 SelectionDAG &DAG) const { 1096 SDLoc DL(Op); 1097 SDValue Lo = Op.getOperand(0); 1098 SDValue Hi = Op.getOperand(1); 1099 SDValue Shamt = Op.getOperand(2); 1100 EVT VT = Lo.getValueType(); 1101 1102 // if Shamt-XLEN < 0: // Shamt < XLEN 1103 // Lo = Lo << Shamt 1104 // Hi = (Hi << Shamt) | ((Lo >>u 1) >>u (XLEN-1 - Shamt)) 1105 // else: 1106 // Lo = 0 1107 // Hi = Lo << (Shamt-XLEN) 1108 1109 SDValue Zero = DAG.getConstant(0, DL, VT); 1110 SDValue One = DAG.getConstant(1, DL, VT); 1111 SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT); 1112 SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT); 1113 SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen); 1114 SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt); 1115 1116 SDValue LoTrue = DAG.getNode(ISD::SHL, DL, VT, Lo, Shamt); 1117 SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, VT, Lo, One); 1118 SDValue ShiftRightLo = 1119 DAG.getNode(ISD::SRL, DL, VT, ShiftRight1Lo, XLenMinus1Shamt); 1120 SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, Hi, Shamt); 1121 SDValue HiTrue = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo); 1122 SDValue HiFalse = DAG.getNode(ISD::SHL, DL, VT, Lo, ShamtMinusXLen); 1123 1124 SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT); 1125 1126 Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, Zero); 1127 Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse); 1128 1129 SDValue Parts[2] = {Lo, Hi}; 1130 return DAG.getMergeValues(Parts, DL); 1131 } 1132 1133 SDValue RISCVTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG, 1134 bool IsSRA) const { 1135 SDLoc DL(Op); 1136 SDValue Lo = Op.getOperand(0); 1137 SDValue Hi = Op.getOperand(1); 1138 SDValue Shamt = Op.getOperand(2); 1139 EVT VT = Lo.getValueType(); 1140 1141 // SRA expansion: 1142 // if Shamt-XLEN < 0: // Shamt < XLEN 1143 // Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt)) 1144 // Hi = Hi >>s Shamt 1145 // else: 1146 // Lo = Hi >>s (Shamt-XLEN); 1147 // Hi = Hi >>s (XLEN-1) 1148 // 1149 // SRL expansion: 1150 // if Shamt-XLEN < 0: // Shamt < XLEN 1151 // Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt)) 1152 // Hi = Hi >>u Shamt 1153 // else: 1154 // Lo = Hi >>u (Shamt-XLEN); 1155 // Hi = 0; 1156 1157 unsigned ShiftRightOp = IsSRA ? ISD::SRA : ISD::SRL; 1158 1159 SDValue Zero = DAG.getConstant(0, DL, VT); 1160 SDValue One = DAG.getConstant(1, DL, VT); 1161 SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT); 1162 SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT); 1163 SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen); 1164 SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt); 1165 1166 SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, Lo, Shamt); 1167 SDValue ShiftLeftHi1 = DAG.getNode(ISD::SHL, DL, VT, Hi, One); 1168 SDValue ShiftLeftHi = 1169 DAG.getNode(ISD::SHL, DL, VT, ShiftLeftHi1, XLenMinus1Shamt); 1170 SDValue LoTrue = DAG.getNode(ISD::OR, DL, VT, ShiftRightLo, ShiftLeftHi); 1171 SDValue HiTrue = DAG.getNode(ShiftRightOp, DL, VT, Hi, Shamt); 1172 SDValue LoFalse = DAG.getNode(ShiftRightOp, DL, VT, Hi, ShamtMinusXLen); 1173 SDValue HiFalse = 1174 IsSRA ? DAG.getNode(ISD::SRA, DL, VT, Hi, XLenMinus1) : Zero; 1175 1176 SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT); 1177 1178 Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, LoFalse); 1179 Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse); 1180 1181 SDValue Parts[2] = {Lo, Hi}; 1182 return DAG.getMergeValues(Parts, DL); 1183 } 1184 1185 // Custom-lower a SPLAT_VECTOR where XLEN<SEW, as the SEW element type is 1186 // illegal (currently only vXi64 RV32). 1187 // FIXME: We could also catch non-constant sign-extended i32 values and lower 1188 // them to SPLAT_VECTOR_I64 1189 SDValue RISCVTargetLowering::lowerSPLATVECTOR(SDValue Op, 1190 SelectionDAG &DAG) const { 1191 SDLoc DL(Op); 1192 EVT VecVT = Op.getValueType(); 1193 assert(!Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64 && 1194 "Unexpected SPLAT_VECTOR lowering"); 1195 SDValue SplatVal = Op.getOperand(0); 1196 1197 // If we can prove that the value is a sign-extended 32-bit value, lower this 1198 // as a custom node in order to try and match RVV vector/scalar instructions. 1199 if (auto *CVal = dyn_cast<ConstantSDNode>(SplatVal)) { 1200 if (isInt<32>(CVal->getSExtValue())) 1201 return DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, 1202 DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32)); 1203 } 1204 1205 // Else, on RV32 we lower an i64-element SPLAT_VECTOR thus, being careful not 1206 // to accidentally sign-extend the 32-bit halves to the e64 SEW: 1207 // vmv.v.x vX, hi 1208 // vsll.vx vX, vX, /*32*/ 1209 // vmv.v.x vY, lo 1210 // vsll.vx vY, vY, /*32*/ 1211 // vsrl.vx vY, vY, /*32*/ 1212 // vor.vv vX, vX, vY 1213 SDValue One = DAG.getConstant(1, DL, MVT::i32); 1214 SDValue Zero = DAG.getConstant(0, DL, MVT::i32); 1215 SDValue ThirtyTwoV = DAG.getConstant(32, DL, VecVT); 1216 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, SplatVal, Zero); 1217 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, SplatVal, One); 1218 1219 Lo = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, Lo); 1220 Lo = DAG.getNode(ISD::SHL, DL, VecVT, Lo, ThirtyTwoV); 1221 Lo = DAG.getNode(ISD::SRL, DL, VecVT, Lo, ThirtyTwoV); 1222 1223 if (isNullConstant(Hi)) 1224 return Lo; 1225 1226 Hi = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, Hi); 1227 Hi = DAG.getNode(ISD::SHL, DL, VecVT, Hi, ThirtyTwoV); 1228 1229 return DAG.getNode(ISD::OR, DL, VecVT, Lo, Hi); 1230 } 1231 1232 // Custom-lower extensions from mask vectors by using a vselect either with 1 1233 // for zero/any-extension or -1 for sign-extension: 1234 // (vXiN = (s|z)ext vXi1:vmask) -> (vXiN = vselect vmask, (-1 or 1), 0) 1235 // Note that any-extension is lowered identically to zero-extension. 1236 SDValue RISCVTargetLowering::lowerVectorMaskExt(SDValue Op, SelectionDAG &DAG, 1237 int64_t ExtTrueVal) const { 1238 SDLoc DL(Op); 1239 EVT VecVT = Op.getValueType(); 1240 SDValue Src = Op.getOperand(0); 1241 // Only custom-lower extensions from mask types 1242 if (!Src.getValueType().isVector() || 1243 Src.getValueType().getVectorElementType() != MVT::i1) 1244 return Op; 1245 1246 // Be careful not to introduce illegal scalar types at this stage, and be 1247 // careful also about splatting constants as on RV32, vXi64 SPLAT_VECTOR is 1248 // illegal and must be expanded. Since we know that the constants are 1249 // sign-extended 32-bit values, we use SPLAT_VECTOR_I64 directly. 1250 bool IsRV32E64 = 1251 !Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64; 1252 SDValue SplatZero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 1253 SDValue SplatTrueVal = DAG.getConstant(ExtTrueVal, DL, Subtarget.getXLenVT()); 1254 1255 if (!IsRV32E64) { 1256 SplatZero = DAG.getSplatVector(VecVT, DL, SplatZero); 1257 SplatTrueVal = DAG.getSplatVector(VecVT, DL, SplatTrueVal); 1258 } else { 1259 SplatZero = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, SplatZero); 1260 SplatTrueVal = 1261 DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, SplatTrueVal); 1262 } 1263 1264 return DAG.getNode(ISD::VSELECT, DL, VecVT, Src, SplatTrueVal, SplatZero); 1265 } 1266 1267 // Custom-lower truncations from vectors to mask vectors by using a mask and a 1268 // setcc operation: 1269 // (vXi1 = trunc vXiN vec) -> (vXi1 = setcc (and vec, 1), 0, ne) 1270 SDValue RISCVTargetLowering::lowerVectorMaskTrunc(SDValue Op, 1271 SelectionDAG &DAG) const { 1272 SDLoc DL(Op); 1273 EVT MaskVT = Op.getValueType(); 1274 // Only expect to custom-lower truncations to mask types 1275 assert(MaskVT.isVector() && MaskVT.getVectorElementType() == MVT::i1 && 1276 "Unexpected type for vector mask lowering"); 1277 SDValue Src = Op.getOperand(0); 1278 EVT VecVT = Src.getValueType(); 1279 1280 // Be careful not to introduce illegal scalar types at this stage, and be 1281 // careful also about splatting constants as on RV32, vXi64 SPLAT_VECTOR is 1282 // illegal and must be expanded. Since we know that the constants are 1283 // sign-extended 32-bit values, we use SPLAT_VECTOR_I64 directly. 1284 bool IsRV32E64 = 1285 !Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64; 1286 SDValue SplatOne = DAG.getConstant(1, DL, Subtarget.getXLenVT()); 1287 SDValue SplatZero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 1288 1289 if (!IsRV32E64) { 1290 SplatOne = DAG.getSplatVector(VecVT, DL, SplatOne); 1291 SplatZero = DAG.getSplatVector(VecVT, DL, SplatZero); 1292 } else { 1293 SplatOne = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, SplatOne); 1294 SplatZero = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, SplatZero); 1295 } 1296 1297 SDValue Trunc = DAG.getNode(ISD::AND, DL, VecVT, Src, SplatOne); 1298 1299 return DAG.getSetCC(DL, MaskVT, Trunc, SplatZero, ISD::SETNE); 1300 } 1301 1302 SDValue RISCVTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 1303 SelectionDAG &DAG) const { 1304 unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 1305 SDLoc DL(Op); 1306 1307 if (Subtarget.hasStdExtV()) { 1308 // Some RVV intrinsics may claim that they want an integer operand to be 1309 // extended. 1310 if (const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II = 1311 RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo)) { 1312 if (II->ExtendedOperand) { 1313 assert(II->ExtendedOperand < Op.getNumOperands()); 1314 SmallVector<SDValue, 8> Operands(Op->op_begin(), Op->op_end()); 1315 SDValue &ScalarOp = Operands[II->ExtendedOperand]; 1316 EVT OpVT = ScalarOp.getValueType(); 1317 if (OpVT == MVT::i8 || OpVT == MVT::i16 || 1318 (OpVT == MVT::i32 && Subtarget.is64Bit())) { 1319 // If the operand is a constant, sign extend to increase our chances 1320 // of being able to use a .vi instruction. ANY_EXTEND would become a 1321 // a zero extend and the simm5 check in isel would fail. 1322 // FIXME: Should we ignore the upper bits in isel instead? 1323 unsigned ExtOpc = isa<ConstantSDNode>(ScalarOp) ? ISD::SIGN_EXTEND 1324 : ISD::ANY_EXTEND; 1325 ScalarOp = DAG.getNode(ExtOpc, DL, Subtarget.getXLenVT(), ScalarOp); 1326 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, Op.getValueType(), 1327 Operands); 1328 } 1329 } 1330 } 1331 } 1332 1333 switch (IntNo) { 1334 default: 1335 return SDValue(); // Don't custom lower most intrinsics. 1336 case Intrinsic::thread_pointer: { 1337 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 1338 return DAG.getRegister(RISCV::X4, PtrVT); 1339 } 1340 case Intrinsic::riscv_vmv_x_s: 1341 assert(Op.getValueType() == Subtarget.getXLenVT() && "Unexpected VT!"); 1342 return DAG.getNode(RISCVISD::VMV_X_S, DL, Op.getValueType(), 1343 Op.getOperand(1)); 1344 } 1345 } 1346 1347 SDValue RISCVTargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op, 1348 SelectionDAG &DAG) const { 1349 unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 1350 SDLoc DL(Op); 1351 1352 if (Subtarget.hasStdExtV()) { 1353 // Some RVV intrinsics may claim that they want an integer operand to be 1354 // extended. 1355 if (const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II = 1356 RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo)) { 1357 if (II->ExtendedOperand) { 1358 // The operands start from the second argument in INTRINSIC_W_CHAIN. 1359 unsigned ExtendOp = II->ExtendedOperand + 1; 1360 assert(ExtendOp < Op.getNumOperands()); 1361 SmallVector<SDValue, 8> Operands(Op->op_begin(), Op->op_end()); 1362 SDValue &ScalarOp = Operands[ExtendOp]; 1363 EVT OpVT = ScalarOp.getValueType(); 1364 if (OpVT == MVT::i8 || OpVT == MVT::i16 || 1365 (OpVT == MVT::i32 && Subtarget.is64Bit())) { 1366 // If the operand is a constant, sign extend to increase our chances 1367 // of being able to use a .vi instruction. ANY_EXTEND would become a 1368 // a zero extend and the simm5 check in isel would fail. 1369 // FIXME: Should we ignore the upper bits in isel instead? 1370 unsigned ExtOpc = isa<ConstantSDNode>(ScalarOp) ? ISD::SIGN_EXTEND 1371 : ISD::ANY_EXTEND; 1372 ScalarOp = DAG.getNode(ExtOpc, DL, Subtarget.getXLenVT(), ScalarOp); 1373 return DAG.getNode(ISD::INTRINSIC_W_CHAIN, DL, Op->getVTList(), 1374 Operands); 1375 } 1376 } 1377 } 1378 } 1379 1380 switch (IntNo) { 1381 default: 1382 return SDValue(); // Don't custom lower most intrinsics. 1383 case Intrinsic::riscv_vleff: { 1384 SDLoc DL(Op); 1385 SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Other, MVT::Glue); 1386 SDValue Load = DAG.getNode(RISCVISD::VLEFF, DL, VTs, Op.getOperand(0), 1387 Op.getOperand(2), Op.getOperand(3)); 1388 VTs = DAG.getVTList(Op->getValueType(1), MVT::Other); 1389 SDValue ReadVL = DAG.getNode(RISCVISD::READ_VL, DL, VTs, Load.getValue(2)); 1390 return DAG.getMergeValues({Load, ReadVL, Load.getValue(1)}, DL); 1391 } 1392 case Intrinsic::riscv_vleff_mask: { 1393 SDLoc DL(Op); 1394 SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Other, MVT::Glue); 1395 SDValue Load = DAG.getNode(RISCVISD::VLEFF_MASK, DL, VTs, Op.getOperand(0), 1396 Op.getOperand(2), Op.getOperand(3), 1397 Op.getOperand(4), Op.getOperand(5)); 1398 VTs = DAG.getVTList(Op->getValueType(1), MVT::Other); 1399 SDValue ReadVL = DAG.getNode(RISCVISD::READ_VL, DL, VTs, Load.getValue(2)); 1400 return DAG.getMergeValues({Load, ReadVL, Load.getValue(1)}, DL); 1401 } 1402 } 1403 } 1404 1405 // Returns the opcode of the target-specific SDNode that implements the 32-bit 1406 // form of the given Opcode. 1407 static RISCVISD::NodeType getRISCVWOpcode(unsigned Opcode) { 1408 switch (Opcode) { 1409 default: 1410 llvm_unreachable("Unexpected opcode"); 1411 case ISD::SHL: 1412 return RISCVISD::SLLW; 1413 case ISD::SRA: 1414 return RISCVISD::SRAW; 1415 case ISD::SRL: 1416 return RISCVISD::SRLW; 1417 case ISD::SDIV: 1418 return RISCVISD::DIVW; 1419 case ISD::UDIV: 1420 return RISCVISD::DIVUW; 1421 case ISD::UREM: 1422 return RISCVISD::REMUW; 1423 case ISD::ROTL: 1424 return RISCVISD::ROLW; 1425 case ISD::ROTR: 1426 return RISCVISD::RORW; 1427 case RISCVISD::GREVI: 1428 return RISCVISD::GREVIW; 1429 case RISCVISD::GORCI: 1430 return RISCVISD::GORCIW; 1431 } 1432 } 1433 1434 // Converts the given 32-bit operation to a target-specific SelectionDAG node. 1435 // Because i32 isn't a legal type for RV64, these operations would otherwise 1436 // be promoted to i64, making it difficult to select the SLLW/DIVUW/.../*W 1437 // later one because the fact the operation was originally of type i32 is 1438 // lost. 1439 static SDValue customLegalizeToWOp(SDNode *N, SelectionDAG &DAG) { 1440 SDLoc DL(N); 1441 RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode()); 1442 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 1443 SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 1444 SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1); 1445 // ReplaceNodeResults requires we maintain the same type for the return value. 1446 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes); 1447 } 1448 1449 // Converts the given 32-bit operation to a i64 operation with signed extension 1450 // semantic to reduce the signed extension instructions. 1451 static SDValue customLegalizeToWOpWithSExt(SDNode *N, SelectionDAG &DAG) { 1452 SDLoc DL(N); 1453 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 1454 SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 1455 SDValue NewWOp = DAG.getNode(N->getOpcode(), DL, MVT::i64, NewOp0, NewOp1); 1456 SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp, 1457 DAG.getValueType(MVT::i32)); 1458 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes); 1459 } 1460 1461 void RISCVTargetLowering::ReplaceNodeResults(SDNode *N, 1462 SmallVectorImpl<SDValue> &Results, 1463 SelectionDAG &DAG) const { 1464 SDLoc DL(N); 1465 switch (N->getOpcode()) { 1466 default: 1467 llvm_unreachable("Don't know how to custom type legalize this operation!"); 1468 case ISD::STRICT_FP_TO_SINT: 1469 case ISD::STRICT_FP_TO_UINT: 1470 case ISD::FP_TO_SINT: 1471 case ISD::FP_TO_UINT: { 1472 bool IsStrict = N->isStrictFPOpcode(); 1473 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 1474 "Unexpected custom legalisation"); 1475 SDValue Op0 = IsStrict ? N->getOperand(1) : N->getOperand(0); 1476 // If the FP type needs to be softened, emit a library call using the 'si' 1477 // version. If we left it to default legalization we'd end up with 'di'. If 1478 // the FP type doesn't need to be softened just let generic type 1479 // legalization promote the result type. 1480 if (getTypeAction(*DAG.getContext(), Op0.getValueType()) != 1481 TargetLowering::TypeSoftenFloat) 1482 return; 1483 RTLIB::Libcall LC; 1484 if (N->getOpcode() == ISD::FP_TO_SINT || 1485 N->getOpcode() == ISD::STRICT_FP_TO_SINT) 1486 LC = RTLIB::getFPTOSINT(Op0.getValueType(), N->getValueType(0)); 1487 else 1488 LC = RTLIB::getFPTOUINT(Op0.getValueType(), N->getValueType(0)); 1489 MakeLibCallOptions CallOptions; 1490 EVT OpVT = Op0.getValueType(); 1491 CallOptions.setTypeListBeforeSoften(OpVT, N->getValueType(0), true); 1492 SDValue Chain = IsStrict ? N->getOperand(0) : SDValue(); 1493 SDValue Result; 1494 std::tie(Result, Chain) = 1495 makeLibCall(DAG, LC, N->getValueType(0), Op0, CallOptions, DL, Chain); 1496 Results.push_back(Result); 1497 if (IsStrict) 1498 Results.push_back(Chain); 1499 break; 1500 } 1501 case ISD::READCYCLECOUNTER: { 1502 assert(!Subtarget.is64Bit() && 1503 "READCYCLECOUNTER only has custom type legalization on riscv32"); 1504 1505 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other); 1506 SDValue RCW = 1507 DAG.getNode(RISCVISD::READ_CYCLE_WIDE, DL, VTs, N->getOperand(0)); 1508 1509 Results.push_back( 1510 DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, RCW, RCW.getValue(1))); 1511 Results.push_back(RCW.getValue(2)); 1512 break; 1513 } 1514 case ISD::ADD: 1515 case ISD::SUB: 1516 case ISD::MUL: 1517 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 1518 "Unexpected custom legalisation"); 1519 if (N->getOperand(1).getOpcode() == ISD::Constant) 1520 return; 1521 Results.push_back(customLegalizeToWOpWithSExt(N, DAG)); 1522 break; 1523 case ISD::SHL: 1524 case ISD::SRA: 1525 case ISD::SRL: 1526 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 1527 "Unexpected custom legalisation"); 1528 if (N->getOperand(1).getOpcode() == ISD::Constant) 1529 return; 1530 Results.push_back(customLegalizeToWOp(N, DAG)); 1531 break; 1532 case ISD::ROTL: 1533 case ISD::ROTR: 1534 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 1535 "Unexpected custom legalisation"); 1536 Results.push_back(customLegalizeToWOp(N, DAG)); 1537 break; 1538 case ISD::SDIV: 1539 case ISD::UDIV: 1540 case ISD::UREM: 1541 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 1542 Subtarget.hasStdExtM() && "Unexpected custom legalisation"); 1543 if (N->getOperand(0).getOpcode() == ISD::Constant || 1544 N->getOperand(1).getOpcode() == ISD::Constant) 1545 return; 1546 Results.push_back(customLegalizeToWOp(N, DAG)); 1547 break; 1548 case ISD::BITCAST: { 1549 assert(((N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 1550 Subtarget.hasStdExtF()) || 1551 (N->getValueType(0) == MVT::i16 && Subtarget.hasStdExtZfh())) && 1552 "Unexpected custom legalisation"); 1553 SDValue Op0 = N->getOperand(0); 1554 if (N->getValueType(0) == MVT::i16 && Subtarget.hasStdExtZfh()) { 1555 if (Op0.getValueType() != MVT::f16) 1556 return; 1557 SDValue FPConv = 1558 DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, Subtarget.getXLenVT(), Op0); 1559 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FPConv)); 1560 } else if (N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 1561 Subtarget.hasStdExtF()) { 1562 if (Op0.getValueType() != MVT::f32) 1563 return; 1564 SDValue FPConv = 1565 DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Op0); 1566 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, FPConv)); 1567 } 1568 break; 1569 } 1570 case RISCVISD::GREVI: 1571 case RISCVISD::GORCI: { 1572 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 1573 "Unexpected custom legalisation"); 1574 // This is similar to customLegalizeToWOp, except that we pass the second 1575 // operand (a TargetConstant) straight through: it is already of type 1576 // XLenVT. 1577 SDLoc DL(N); 1578 RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode()); 1579 SDValue NewOp0 = 1580 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 1581 SDValue NewRes = 1582 DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, N->getOperand(1)); 1583 // ReplaceNodeResults requires we maintain the same type for the return 1584 // value. 1585 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes)); 1586 break; 1587 } 1588 case ISD::BSWAP: 1589 case ISD::BITREVERSE: { 1590 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 1591 Subtarget.hasStdExtZbp() && "Unexpected custom legalisation"); 1592 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, 1593 N->getOperand(0)); 1594 unsigned Imm = N->getOpcode() == ISD::BITREVERSE ? 31 : 24; 1595 SDValue GREVIW = DAG.getNode(RISCVISD::GREVIW, DL, MVT::i64, NewOp0, 1596 DAG.getTargetConstant(Imm, DL, 1597 Subtarget.getXLenVT())); 1598 // ReplaceNodeResults requires we maintain the same type for the return 1599 // value. 1600 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, GREVIW)); 1601 break; 1602 } 1603 case ISD::FSHL: 1604 case ISD::FSHR: { 1605 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 1606 Subtarget.hasStdExtZbt() && "Unexpected custom legalisation"); 1607 SDValue NewOp0 = 1608 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 1609 SDValue NewOp1 = 1610 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 1611 SDValue NewOp2 = 1612 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 1613 // FSLW/FSRW take a 6 bit shift amount but i32 FSHL/FSHR only use 5 bits. 1614 // Mask the shift amount to 5 bits. 1615 NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2, 1616 DAG.getConstant(0x1f, DL, MVT::i64)); 1617 unsigned Opc = 1618 N->getOpcode() == ISD::FSHL ? RISCVISD::FSLW : RISCVISD::FSRW; 1619 SDValue NewOp = DAG.getNode(Opc, DL, MVT::i64, NewOp0, NewOp1, NewOp2); 1620 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewOp)); 1621 break; 1622 } 1623 case ISD::INTRINSIC_WO_CHAIN: { 1624 unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 1625 switch (IntNo) { 1626 default: 1627 llvm_unreachable( 1628 "Don't know how to custom type legalize this intrinsic!"); 1629 case Intrinsic::riscv_vmv_x_s: { 1630 EVT VT = N->getValueType(0); 1631 assert((VT == MVT::i8 || VT == MVT::i16 || 1632 (Subtarget.is64Bit() && VT == MVT::i32)) && 1633 "Unexpected custom legalisation!"); 1634 SDValue Extract = DAG.getNode(RISCVISD::VMV_X_S, DL, 1635 Subtarget.getXLenVT(), N->getOperand(1)); 1636 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, Extract)); 1637 break; 1638 } 1639 } 1640 break; 1641 } 1642 } 1643 } 1644 1645 // A structure to hold one of the bit-manipulation patterns below. Together, a 1646 // SHL and non-SHL pattern may form a bit-manipulation pair on a single source: 1647 // (or (and (shl x, 1), 0xAAAAAAAA), 1648 // (and (srl x, 1), 0x55555555)) 1649 struct RISCVBitmanipPat { 1650 SDValue Op; 1651 unsigned ShAmt; 1652 bool IsSHL; 1653 1654 bool formsPairWith(const RISCVBitmanipPat &Other) const { 1655 return Op == Other.Op && ShAmt == Other.ShAmt && IsSHL != Other.IsSHL; 1656 } 1657 }; 1658 1659 // Matches any of the following bit-manipulation patterns: 1660 // (and (shl x, 1), (0x55555555 << 1)) 1661 // (and (srl x, 1), 0x55555555) 1662 // (shl (and x, 0x55555555), 1) 1663 // (srl (and x, (0x55555555 << 1)), 1) 1664 // where the shift amount and mask may vary thus: 1665 // [1] = 0x55555555 / 0xAAAAAAAA 1666 // [2] = 0x33333333 / 0xCCCCCCCC 1667 // [4] = 0x0F0F0F0F / 0xF0F0F0F0 1668 // [8] = 0x00FF00FF / 0xFF00FF00 1669 // [16] = 0x0000FFFF / 0xFFFFFFFF 1670 // [32] = 0x00000000FFFFFFFF / 0xFFFFFFFF00000000 (for RV64) 1671 static Optional<RISCVBitmanipPat> matchRISCVBitmanipPat(SDValue Op) { 1672 Optional<uint64_t> Mask; 1673 // Optionally consume a mask around the shift operation. 1674 if (Op.getOpcode() == ISD::AND && isa<ConstantSDNode>(Op.getOperand(1))) { 1675 Mask = Op.getConstantOperandVal(1); 1676 Op = Op.getOperand(0); 1677 } 1678 if (Op.getOpcode() != ISD::SHL && Op.getOpcode() != ISD::SRL) 1679 return None; 1680 bool IsSHL = Op.getOpcode() == ISD::SHL; 1681 1682 if (!isa<ConstantSDNode>(Op.getOperand(1))) 1683 return None; 1684 auto ShAmt = Op.getConstantOperandVal(1); 1685 1686 if (!isPowerOf2_64(ShAmt)) 1687 return None; 1688 1689 // These are the unshifted masks which we use to match bit-manipulation 1690 // patterns. They may be shifted left in certain circumstances. 1691 static const uint64_t BitmanipMasks[] = { 1692 0x5555555555555555ULL, 0x3333333333333333ULL, 0x0F0F0F0F0F0F0F0FULL, 1693 0x00FF00FF00FF00FFULL, 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL, 1694 }; 1695 1696 unsigned MaskIdx = Log2_64(ShAmt); 1697 if (MaskIdx >= array_lengthof(BitmanipMasks)) 1698 return None; 1699 1700 auto Src = Op.getOperand(0); 1701 1702 unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32; 1703 auto ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width); 1704 1705 // The expected mask is shifted left when the AND is found around SHL 1706 // patterns. 1707 // ((x >> 1) & 0x55555555) 1708 // ((x << 1) & 0xAAAAAAAA) 1709 bool SHLExpMask = IsSHL; 1710 1711 if (!Mask) { 1712 // Sometimes LLVM keeps the mask as an operand of the shift, typically when 1713 // the mask is all ones: consume that now. 1714 if (Src.getOpcode() == ISD::AND && isa<ConstantSDNode>(Src.getOperand(1))) { 1715 Mask = Src.getConstantOperandVal(1); 1716 Src = Src.getOperand(0); 1717 // The expected mask is now in fact shifted left for SRL, so reverse the 1718 // decision. 1719 // ((x & 0xAAAAAAAA) >> 1) 1720 // ((x & 0x55555555) << 1) 1721 SHLExpMask = !SHLExpMask; 1722 } else { 1723 // Use a default shifted mask of all-ones if there's no AND, truncated 1724 // down to the expected width. This simplifies the logic later on. 1725 Mask = maskTrailingOnes<uint64_t>(Width); 1726 *Mask &= (IsSHL ? *Mask << ShAmt : *Mask >> ShAmt); 1727 } 1728 } 1729 1730 if (SHLExpMask) 1731 ExpMask <<= ShAmt; 1732 1733 if (Mask != ExpMask) 1734 return None; 1735 1736 return RISCVBitmanipPat{Src, (unsigned)ShAmt, IsSHL}; 1737 } 1738 1739 // Match the following pattern as a GREVI(W) operation 1740 // (or (BITMANIP_SHL x), (BITMANIP_SRL x)) 1741 static SDValue combineORToGREV(SDValue Op, SelectionDAG &DAG, 1742 const RISCVSubtarget &Subtarget) { 1743 EVT VT = Op.getValueType(); 1744 1745 if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) { 1746 auto LHS = matchRISCVBitmanipPat(Op.getOperand(0)); 1747 auto RHS = matchRISCVBitmanipPat(Op.getOperand(1)); 1748 if (LHS && RHS && LHS->formsPairWith(*RHS)) { 1749 SDLoc DL(Op); 1750 return DAG.getNode( 1751 RISCVISD::GREVI, DL, VT, LHS->Op, 1752 DAG.getTargetConstant(LHS->ShAmt, DL, Subtarget.getXLenVT())); 1753 } 1754 } 1755 return SDValue(); 1756 } 1757 1758 // Matches any the following pattern as a GORCI(W) operation 1759 // 1. (or (GREVI x, shamt), x) if shamt is a power of 2 1760 // 2. (or x, (GREVI x, shamt)) if shamt is a power of 2 1761 // 3. (or (or (BITMANIP_SHL x), x), (BITMANIP_SRL x)) 1762 // Note that with the variant of 3., 1763 // (or (or (BITMANIP_SHL x), (BITMANIP_SRL x)), x) 1764 // the inner pattern will first be matched as GREVI and then the outer 1765 // pattern will be matched to GORC via the first rule above. 1766 // 4. (or (rotl/rotr x, bitwidth/2), x) 1767 static SDValue combineORToGORC(SDValue Op, SelectionDAG &DAG, 1768 const RISCVSubtarget &Subtarget) { 1769 EVT VT = Op.getValueType(); 1770 1771 if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) { 1772 SDLoc DL(Op); 1773 SDValue Op0 = Op.getOperand(0); 1774 SDValue Op1 = Op.getOperand(1); 1775 1776 auto MatchOROfReverse = [&](SDValue Reverse, SDValue X) { 1777 if (Reverse.getOpcode() == RISCVISD::GREVI && Reverse.getOperand(0) == X && 1778 isPowerOf2_32(Reverse.getConstantOperandVal(1))) 1779 return DAG.getNode(RISCVISD::GORCI, DL, VT, X, Reverse.getOperand(1)); 1780 // We can also form GORCI from ROTL/ROTR by half the bitwidth. 1781 if ((Reverse.getOpcode() == ISD::ROTL || 1782 Reverse.getOpcode() == ISD::ROTR) && 1783 Reverse.getOperand(0) == X && 1784 isa<ConstantSDNode>(Reverse.getOperand(1))) { 1785 uint64_t RotAmt = Reverse.getConstantOperandVal(1); 1786 if (RotAmt == (VT.getSizeInBits() / 2)) 1787 return DAG.getNode( 1788 RISCVISD::GORCI, DL, VT, X, 1789 DAG.getTargetConstant(RotAmt, DL, Subtarget.getXLenVT())); 1790 } 1791 return SDValue(); 1792 }; 1793 1794 // Check for either commutable permutation of (or (GREVI x, shamt), x) 1795 if (SDValue V = MatchOROfReverse(Op0, Op1)) 1796 return V; 1797 if (SDValue V = MatchOROfReverse(Op1, Op0)) 1798 return V; 1799 1800 // OR is commutable so canonicalize its OR operand to the left 1801 if (Op0.getOpcode() != ISD::OR && Op1.getOpcode() == ISD::OR) 1802 std::swap(Op0, Op1); 1803 if (Op0.getOpcode() != ISD::OR) 1804 return SDValue(); 1805 SDValue OrOp0 = Op0.getOperand(0); 1806 SDValue OrOp1 = Op0.getOperand(1); 1807 auto LHS = matchRISCVBitmanipPat(OrOp0); 1808 // OR is commutable so swap the operands and try again: x might have been 1809 // on the left 1810 if (!LHS) { 1811 std::swap(OrOp0, OrOp1); 1812 LHS = matchRISCVBitmanipPat(OrOp0); 1813 } 1814 auto RHS = matchRISCVBitmanipPat(Op1); 1815 if (LHS && RHS && LHS->formsPairWith(*RHS) && LHS->Op == OrOp1) { 1816 return DAG.getNode( 1817 RISCVISD::GORCI, DL, VT, LHS->Op, 1818 DAG.getTargetConstant(LHS->ShAmt, DL, Subtarget.getXLenVT())); 1819 } 1820 } 1821 return SDValue(); 1822 } 1823 1824 // Combine (GREVI (GREVI x, C2), C1) -> (GREVI x, C1^C2) when C1^C2 is 1825 // non-zero, and to x when it is. Any repeated GREVI stage undoes itself. 1826 // Combine (GORCI (GORCI x, C2), C1) -> (GORCI x, C1|C2). Repeated stage does 1827 // not undo itself, but they are redundant. 1828 static SDValue combineGREVI_GORCI(SDNode *N, SelectionDAG &DAG) { 1829 unsigned ShAmt1 = N->getConstantOperandVal(1); 1830 SDValue Src = N->getOperand(0); 1831 1832 if (Src.getOpcode() != N->getOpcode()) 1833 return SDValue(); 1834 1835 unsigned ShAmt2 = Src.getConstantOperandVal(1); 1836 Src = Src.getOperand(0); 1837 1838 unsigned CombinedShAmt; 1839 if (N->getOpcode() == RISCVISD::GORCI || N->getOpcode() == RISCVISD::GORCIW) 1840 CombinedShAmt = ShAmt1 | ShAmt2; 1841 else 1842 CombinedShAmt = ShAmt1 ^ ShAmt2; 1843 1844 if (CombinedShAmt == 0) 1845 return Src; 1846 1847 SDLoc DL(N); 1848 return DAG.getNode(N->getOpcode(), DL, N->getValueType(0), Src, 1849 DAG.getTargetConstant(CombinedShAmt, DL, 1850 N->getOperand(1).getValueType())); 1851 } 1852 1853 SDValue RISCVTargetLowering::PerformDAGCombine(SDNode *N, 1854 DAGCombinerInfo &DCI) const { 1855 SelectionDAG &DAG = DCI.DAG; 1856 1857 switch (N->getOpcode()) { 1858 default: 1859 break; 1860 case RISCVISD::SplitF64: { 1861 SDValue Op0 = N->getOperand(0); 1862 // If the input to SplitF64 is just BuildPairF64 then the operation is 1863 // redundant. Instead, use BuildPairF64's operands directly. 1864 if (Op0->getOpcode() == RISCVISD::BuildPairF64) 1865 return DCI.CombineTo(N, Op0.getOperand(0), Op0.getOperand(1)); 1866 1867 SDLoc DL(N); 1868 1869 // It's cheaper to materialise two 32-bit integers than to load a double 1870 // from the constant pool and transfer it to integer registers through the 1871 // stack. 1872 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op0)) { 1873 APInt V = C->getValueAPF().bitcastToAPInt(); 1874 SDValue Lo = DAG.getConstant(V.trunc(32), DL, MVT::i32); 1875 SDValue Hi = DAG.getConstant(V.lshr(32).trunc(32), DL, MVT::i32); 1876 return DCI.CombineTo(N, Lo, Hi); 1877 } 1878 1879 // This is a target-specific version of a DAGCombine performed in 1880 // DAGCombiner::visitBITCAST. It performs the equivalent of: 1881 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) 1882 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) 1883 if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) || 1884 !Op0.getNode()->hasOneUse()) 1885 break; 1886 SDValue NewSplitF64 = 1887 DAG.getNode(RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), 1888 Op0.getOperand(0)); 1889 SDValue Lo = NewSplitF64.getValue(0); 1890 SDValue Hi = NewSplitF64.getValue(1); 1891 APInt SignBit = APInt::getSignMask(32); 1892 if (Op0.getOpcode() == ISD::FNEG) { 1893 SDValue NewHi = DAG.getNode(ISD::XOR, DL, MVT::i32, Hi, 1894 DAG.getConstant(SignBit, DL, MVT::i32)); 1895 return DCI.CombineTo(N, Lo, NewHi); 1896 } 1897 assert(Op0.getOpcode() == ISD::FABS); 1898 SDValue NewHi = DAG.getNode(ISD::AND, DL, MVT::i32, Hi, 1899 DAG.getConstant(~SignBit, DL, MVT::i32)); 1900 return DCI.CombineTo(N, Lo, NewHi); 1901 } 1902 case RISCVISD::SLLW: 1903 case RISCVISD::SRAW: 1904 case RISCVISD::SRLW: 1905 case RISCVISD::ROLW: 1906 case RISCVISD::RORW: { 1907 // Only the lower 32 bits of LHS and lower 5 bits of RHS are read. 1908 SDValue LHS = N->getOperand(0); 1909 SDValue RHS = N->getOperand(1); 1910 APInt LHSMask = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 32); 1911 APInt RHSMask = APInt::getLowBitsSet(RHS.getValueSizeInBits(), 5); 1912 if (SimplifyDemandedBits(N->getOperand(0), LHSMask, DCI) || 1913 SimplifyDemandedBits(N->getOperand(1), RHSMask, DCI)) { 1914 if (N->getOpcode() != ISD::DELETED_NODE) 1915 DCI.AddToWorklist(N); 1916 return SDValue(N, 0); 1917 } 1918 break; 1919 } 1920 case RISCVISD::FSLW: 1921 case RISCVISD::FSRW: { 1922 // Only the lower 32 bits of Values and lower 6 bits of shift amount are 1923 // read. 1924 SDValue Op0 = N->getOperand(0); 1925 SDValue Op1 = N->getOperand(1); 1926 SDValue ShAmt = N->getOperand(2); 1927 APInt OpMask = APInt::getLowBitsSet(Op0.getValueSizeInBits(), 32); 1928 APInt ShAmtMask = APInt::getLowBitsSet(ShAmt.getValueSizeInBits(), 6); 1929 if (SimplifyDemandedBits(Op0, OpMask, DCI) || 1930 SimplifyDemandedBits(Op1, OpMask, DCI) || 1931 SimplifyDemandedBits(ShAmt, ShAmtMask, DCI)) { 1932 if (N->getOpcode() != ISD::DELETED_NODE) 1933 DCI.AddToWorklist(N); 1934 return SDValue(N, 0); 1935 } 1936 break; 1937 } 1938 case RISCVISD::GREVIW: 1939 case RISCVISD::GORCIW: { 1940 // Only the lower 32 bits of the first operand are read 1941 SDValue Op0 = N->getOperand(0); 1942 APInt Mask = APInt::getLowBitsSet(Op0.getValueSizeInBits(), 32); 1943 if (SimplifyDemandedBits(Op0, Mask, DCI)) { 1944 if (N->getOpcode() != ISD::DELETED_NODE) 1945 DCI.AddToWorklist(N); 1946 return SDValue(N, 0); 1947 } 1948 1949 return combineGREVI_GORCI(N, DCI.DAG); 1950 } 1951 case RISCVISD::FMV_X_ANYEXTW_RV64: { 1952 SDLoc DL(N); 1953 SDValue Op0 = N->getOperand(0); 1954 // If the input to FMV_X_ANYEXTW_RV64 is just FMV_W_X_RV64 then the 1955 // conversion is unnecessary and can be replaced with an ANY_EXTEND 1956 // of the FMV_W_X_RV64 operand. 1957 if (Op0->getOpcode() == RISCVISD::FMV_W_X_RV64) { 1958 assert(Op0.getOperand(0).getValueType() == MVT::i64 && 1959 "Unexpected value type!"); 1960 return Op0.getOperand(0); 1961 } 1962 1963 // This is a target-specific version of a DAGCombine performed in 1964 // DAGCombiner::visitBITCAST. It performs the equivalent of: 1965 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) 1966 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) 1967 if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) || 1968 !Op0.getNode()->hasOneUse()) 1969 break; 1970 SDValue NewFMV = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, 1971 Op0.getOperand(0)); 1972 APInt SignBit = APInt::getSignMask(32).sext(64); 1973 if (Op0.getOpcode() == ISD::FNEG) 1974 return DAG.getNode(ISD::XOR, DL, MVT::i64, NewFMV, 1975 DAG.getConstant(SignBit, DL, MVT::i64)); 1976 1977 assert(Op0.getOpcode() == ISD::FABS); 1978 return DAG.getNode(ISD::AND, DL, MVT::i64, NewFMV, 1979 DAG.getConstant(~SignBit, DL, MVT::i64)); 1980 } 1981 case RISCVISD::GREVI: 1982 case RISCVISD::GORCI: 1983 return combineGREVI_GORCI(N, DCI.DAG); 1984 case ISD::OR: 1985 if (auto GREV = combineORToGREV(SDValue(N, 0), DCI.DAG, Subtarget)) 1986 return GREV; 1987 if (auto GORC = combineORToGORC(SDValue(N, 0), DCI.DAG, Subtarget)) 1988 return GORC; 1989 break; 1990 case RISCVISD::SELECT_CC: { 1991 // Transform 1992 // (select_cc (xor X, 1), 0, setne, trueV, falseV) -> 1993 // (select_cc X, 0, seteq, trueV, falseV) if we can prove X is 0/1. 1994 // This can occur when legalizing some floating point comparisons. 1995 SDValue LHS = N->getOperand(0); 1996 SDValue RHS = N->getOperand(1); 1997 auto CCVal = static_cast<ISD::CondCode>(N->getConstantOperandVal(2)); 1998 APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1); 1999 if (ISD::isIntEqualitySetCC(CCVal) && isNullConstant(RHS) && 2000 LHS.getOpcode() == ISD::XOR && isOneConstant(LHS.getOperand(1)) && 2001 DAG.MaskedValueIsZero(LHS.getOperand(0), Mask)) { 2002 SDLoc DL(N); 2003 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 2004 SDValue TargetCC = DAG.getConstant(CCVal, DL, Subtarget.getXLenVT()); 2005 return DAG.getNode(RISCVISD::SELECT_CC, DL, N->getValueType(0), 2006 {LHS.getOperand(0), RHS, TargetCC, N->getOperand(3), 2007 N->getOperand(4)}); 2008 } 2009 break; 2010 } 2011 case ISD::SETCC: { 2012 // (setcc X, 1, setne) -> (setcc X, 0, seteq) if we can prove X is 0/1. 2013 // Comparing with 0 may allow us to fold into bnez/beqz. 2014 SDValue LHS = N->getOperand(0); 2015 SDValue RHS = N->getOperand(1); 2016 if (LHS.getValueType().isScalableVector()) 2017 break; 2018 auto CC = cast<CondCodeSDNode>(N->getOperand(2))->get(); 2019 APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1); 2020 if (isOneConstant(RHS) && ISD::isIntEqualitySetCC(CC) && 2021 DAG.MaskedValueIsZero(LHS, Mask)) { 2022 SDLoc DL(N); 2023 SDValue Zero = DAG.getConstant(0, DL, LHS.getValueType()); 2024 CC = ISD::getSetCCInverse(CC, LHS.getValueType()); 2025 return DAG.getSetCC(DL, N->getValueType(0), LHS, Zero, CC); 2026 } 2027 break; 2028 } 2029 } 2030 2031 return SDValue(); 2032 } 2033 2034 bool RISCVTargetLowering::isDesirableToCommuteWithShift( 2035 const SDNode *N, CombineLevel Level) const { 2036 // The following folds are only desirable if `(OP _, c1 << c2)` can be 2037 // materialised in fewer instructions than `(OP _, c1)`: 2038 // 2039 // (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2) 2040 // (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2) 2041 SDValue N0 = N->getOperand(0); 2042 EVT Ty = N0.getValueType(); 2043 if (Ty.isScalarInteger() && 2044 (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::OR)) { 2045 auto *C1 = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 2046 auto *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2047 if (C1 && C2) { 2048 const APInt &C1Int = C1->getAPIntValue(); 2049 APInt ShiftedC1Int = C1Int << C2->getAPIntValue(); 2050 2051 // We can materialise `c1 << c2` into an add immediate, so it's "free", 2052 // and the combine should happen, to potentially allow further combines 2053 // later. 2054 if (ShiftedC1Int.getMinSignedBits() <= 64 && 2055 isLegalAddImmediate(ShiftedC1Int.getSExtValue())) 2056 return true; 2057 2058 // We can materialise `c1` in an add immediate, so it's "free", and the 2059 // combine should be prevented. 2060 if (C1Int.getMinSignedBits() <= 64 && 2061 isLegalAddImmediate(C1Int.getSExtValue())) 2062 return false; 2063 2064 // Neither constant will fit into an immediate, so find materialisation 2065 // costs. 2066 int C1Cost = RISCVMatInt::getIntMatCost(C1Int, Ty.getSizeInBits(), 2067 Subtarget.is64Bit()); 2068 int ShiftedC1Cost = RISCVMatInt::getIntMatCost( 2069 ShiftedC1Int, Ty.getSizeInBits(), Subtarget.is64Bit()); 2070 2071 // Materialising `c1` is cheaper than materialising `c1 << c2`, so the 2072 // combine should be prevented. 2073 if (C1Cost < ShiftedC1Cost) 2074 return false; 2075 } 2076 } 2077 return true; 2078 } 2079 2080 bool RISCVTargetLowering::targetShrinkDemandedConstant( 2081 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 2082 TargetLoweringOpt &TLO) const { 2083 // Delay this optimization as late as possible. 2084 if (!TLO.LegalOps) 2085 return false; 2086 2087 EVT VT = Op.getValueType(); 2088 if (VT.isVector()) 2089 return false; 2090 2091 // Only handle AND for now. 2092 if (Op.getOpcode() != ISD::AND) 2093 return false; 2094 2095 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 2096 if (!C) 2097 return false; 2098 2099 const APInt &Mask = C->getAPIntValue(); 2100 2101 // Clear all non-demanded bits initially. 2102 APInt ShrunkMask = Mask & DemandedBits; 2103 2104 // If the shrunk mask fits in sign extended 12 bits, let the target 2105 // independent code apply it. 2106 if (ShrunkMask.isSignedIntN(12)) 2107 return false; 2108 2109 // Try to make a smaller immediate by setting undemanded bits. 2110 2111 // We need to be able to make a negative number through a combination of mask 2112 // and undemanded bits. 2113 APInt ExpandedMask = Mask | ~DemandedBits; 2114 if (!ExpandedMask.isNegative()) 2115 return false; 2116 2117 // What is the fewest number of bits we need to represent the negative number. 2118 unsigned MinSignedBits = ExpandedMask.getMinSignedBits(); 2119 2120 // Try to make a 12 bit negative immediate. If that fails try to make a 32 2121 // bit negative immediate unless the shrunk immediate already fits in 32 bits. 2122 APInt NewMask = ShrunkMask; 2123 if (MinSignedBits <= 12) 2124 NewMask.setBitsFrom(11); 2125 else if (MinSignedBits <= 32 && !ShrunkMask.isSignedIntN(32)) 2126 NewMask.setBitsFrom(31); 2127 else 2128 return false; 2129 2130 // Sanity check that our new mask is a subset of the demanded mask. 2131 assert(NewMask.isSubsetOf(ExpandedMask)); 2132 2133 // If we aren't changing the mask, just return true to keep it and prevent 2134 // the caller from optimizing. 2135 if (NewMask == Mask) 2136 return true; 2137 2138 // Replace the constant with the new mask. 2139 SDLoc DL(Op); 2140 SDValue NewC = TLO.DAG.getConstant(NewMask, DL, VT); 2141 SDValue NewOp = TLO.DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), NewC); 2142 return TLO.CombineTo(Op, NewOp); 2143 } 2144 2145 void RISCVTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 2146 KnownBits &Known, 2147 const APInt &DemandedElts, 2148 const SelectionDAG &DAG, 2149 unsigned Depth) const { 2150 unsigned Opc = Op.getOpcode(); 2151 assert((Opc >= ISD::BUILTIN_OP_END || 2152 Opc == ISD::INTRINSIC_WO_CHAIN || 2153 Opc == ISD::INTRINSIC_W_CHAIN || 2154 Opc == ISD::INTRINSIC_VOID) && 2155 "Should use MaskedValueIsZero if you don't know whether Op" 2156 " is a target node!"); 2157 2158 Known.resetAll(); 2159 switch (Opc) { 2160 default: break; 2161 case RISCVISD::READ_VLENB: 2162 // We assume VLENB is at least 8 bytes. 2163 // FIXME: The 1.0 draft spec defines minimum VLEN as 128 bits. 2164 Known.Zero.setLowBits(3); 2165 break; 2166 } 2167 } 2168 2169 unsigned RISCVTargetLowering::ComputeNumSignBitsForTargetNode( 2170 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 2171 unsigned Depth) const { 2172 switch (Op.getOpcode()) { 2173 default: 2174 break; 2175 case RISCVISD::SLLW: 2176 case RISCVISD::SRAW: 2177 case RISCVISD::SRLW: 2178 case RISCVISD::DIVW: 2179 case RISCVISD::DIVUW: 2180 case RISCVISD::REMUW: 2181 case RISCVISD::ROLW: 2182 case RISCVISD::RORW: 2183 case RISCVISD::GREVIW: 2184 case RISCVISD::GORCIW: 2185 case RISCVISD::FSLW: 2186 case RISCVISD::FSRW: 2187 // TODO: As the result is sign-extended, this is conservatively correct. A 2188 // more precise answer could be calculated for SRAW depending on known 2189 // bits in the shift amount. 2190 return 33; 2191 case RISCVISD::VMV_X_S: 2192 // The number of sign bits of the scalar result is computed by obtaining the 2193 // element type of the input vector operand, substracting its width from the 2194 // XLEN, and then adding one (sign bit within the element type). 2195 return Subtarget.getXLen() - Op.getOperand(0).getScalarValueSizeInBits() + 1; 2196 } 2197 2198 return 1; 2199 } 2200 2201 static MachineBasicBlock *emitReadCycleWidePseudo(MachineInstr &MI, 2202 MachineBasicBlock *BB) { 2203 assert(MI.getOpcode() == RISCV::ReadCycleWide && "Unexpected instruction"); 2204 2205 // To read the 64-bit cycle CSR on a 32-bit target, we read the two halves. 2206 // Should the count have wrapped while it was being read, we need to try 2207 // again. 2208 // ... 2209 // read: 2210 // rdcycleh x3 # load high word of cycle 2211 // rdcycle x2 # load low word of cycle 2212 // rdcycleh x4 # load high word of cycle 2213 // bne x3, x4, read # check if high word reads match, otherwise try again 2214 // ... 2215 2216 MachineFunction &MF = *BB->getParent(); 2217 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 2218 MachineFunction::iterator It = ++BB->getIterator(); 2219 2220 MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB); 2221 MF.insert(It, LoopMBB); 2222 2223 MachineBasicBlock *DoneMBB = MF.CreateMachineBasicBlock(LLVM_BB); 2224 MF.insert(It, DoneMBB); 2225 2226 // Transfer the remainder of BB and its successor edges to DoneMBB. 2227 DoneMBB->splice(DoneMBB->begin(), BB, 2228 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 2229 DoneMBB->transferSuccessorsAndUpdatePHIs(BB); 2230 2231 BB->addSuccessor(LoopMBB); 2232 2233 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 2234 Register ReadAgainReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 2235 Register LoReg = MI.getOperand(0).getReg(); 2236 Register HiReg = MI.getOperand(1).getReg(); 2237 DebugLoc DL = MI.getDebugLoc(); 2238 2239 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 2240 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), HiReg) 2241 .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding) 2242 .addReg(RISCV::X0); 2243 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), LoReg) 2244 .addImm(RISCVSysReg::lookupSysRegByName("CYCLE")->Encoding) 2245 .addReg(RISCV::X0); 2246 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), ReadAgainReg) 2247 .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding) 2248 .addReg(RISCV::X0); 2249 2250 BuildMI(LoopMBB, DL, TII->get(RISCV::BNE)) 2251 .addReg(HiReg) 2252 .addReg(ReadAgainReg) 2253 .addMBB(LoopMBB); 2254 2255 LoopMBB->addSuccessor(LoopMBB); 2256 LoopMBB->addSuccessor(DoneMBB); 2257 2258 MI.eraseFromParent(); 2259 2260 return DoneMBB; 2261 } 2262 2263 static MachineBasicBlock *emitSplitF64Pseudo(MachineInstr &MI, 2264 MachineBasicBlock *BB) { 2265 assert(MI.getOpcode() == RISCV::SplitF64Pseudo && "Unexpected instruction"); 2266 2267 MachineFunction &MF = *BB->getParent(); 2268 DebugLoc DL = MI.getDebugLoc(); 2269 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 2270 const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo(); 2271 Register LoReg = MI.getOperand(0).getReg(); 2272 Register HiReg = MI.getOperand(1).getReg(); 2273 Register SrcReg = MI.getOperand(2).getReg(); 2274 const TargetRegisterClass *SrcRC = &RISCV::FPR64RegClass; 2275 int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF); 2276 2277 TII.storeRegToStackSlot(*BB, MI, SrcReg, MI.getOperand(2).isKill(), FI, SrcRC, 2278 RI); 2279 MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI); 2280 MachineMemOperand *MMOLo = 2281 MF.getMachineMemOperand(MPI, MachineMemOperand::MOLoad, 4, Align(8)); 2282 MachineMemOperand *MMOHi = MF.getMachineMemOperand( 2283 MPI.getWithOffset(4), MachineMemOperand::MOLoad, 4, Align(8)); 2284 BuildMI(*BB, MI, DL, TII.get(RISCV::LW), LoReg) 2285 .addFrameIndex(FI) 2286 .addImm(0) 2287 .addMemOperand(MMOLo); 2288 BuildMI(*BB, MI, DL, TII.get(RISCV::LW), HiReg) 2289 .addFrameIndex(FI) 2290 .addImm(4) 2291 .addMemOperand(MMOHi); 2292 MI.eraseFromParent(); // The pseudo instruction is gone now. 2293 return BB; 2294 } 2295 2296 static MachineBasicBlock *emitBuildPairF64Pseudo(MachineInstr &MI, 2297 MachineBasicBlock *BB) { 2298 assert(MI.getOpcode() == RISCV::BuildPairF64Pseudo && 2299 "Unexpected instruction"); 2300 2301 MachineFunction &MF = *BB->getParent(); 2302 DebugLoc DL = MI.getDebugLoc(); 2303 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 2304 const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo(); 2305 Register DstReg = MI.getOperand(0).getReg(); 2306 Register LoReg = MI.getOperand(1).getReg(); 2307 Register HiReg = MI.getOperand(2).getReg(); 2308 const TargetRegisterClass *DstRC = &RISCV::FPR64RegClass; 2309 int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF); 2310 2311 MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI); 2312 MachineMemOperand *MMOLo = 2313 MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Align(8)); 2314 MachineMemOperand *MMOHi = MF.getMachineMemOperand( 2315 MPI.getWithOffset(4), MachineMemOperand::MOStore, 4, Align(8)); 2316 BuildMI(*BB, MI, DL, TII.get(RISCV::SW)) 2317 .addReg(LoReg, getKillRegState(MI.getOperand(1).isKill())) 2318 .addFrameIndex(FI) 2319 .addImm(0) 2320 .addMemOperand(MMOLo); 2321 BuildMI(*BB, MI, DL, TII.get(RISCV::SW)) 2322 .addReg(HiReg, getKillRegState(MI.getOperand(2).isKill())) 2323 .addFrameIndex(FI) 2324 .addImm(4) 2325 .addMemOperand(MMOHi); 2326 TII.loadRegFromStackSlot(*BB, MI, DstReg, FI, DstRC, RI); 2327 MI.eraseFromParent(); // The pseudo instruction is gone now. 2328 return BB; 2329 } 2330 2331 static bool isSelectPseudo(MachineInstr &MI) { 2332 switch (MI.getOpcode()) { 2333 default: 2334 return false; 2335 case RISCV::Select_GPR_Using_CC_GPR: 2336 case RISCV::Select_FPR16_Using_CC_GPR: 2337 case RISCV::Select_FPR32_Using_CC_GPR: 2338 case RISCV::Select_FPR64_Using_CC_GPR: 2339 return true; 2340 } 2341 } 2342 2343 static MachineBasicBlock *emitSelectPseudo(MachineInstr &MI, 2344 MachineBasicBlock *BB) { 2345 // To "insert" Select_* instructions, we actually have to insert the triangle 2346 // control-flow pattern. The incoming instructions know the destination vreg 2347 // to set, the condition code register to branch on, the true/false values to 2348 // select between, and the condcode to use to select the appropriate branch. 2349 // 2350 // We produce the following control flow: 2351 // HeadMBB 2352 // | \ 2353 // | IfFalseMBB 2354 // | / 2355 // TailMBB 2356 // 2357 // When we find a sequence of selects we attempt to optimize their emission 2358 // by sharing the control flow. Currently we only handle cases where we have 2359 // multiple selects with the exact same condition (same LHS, RHS and CC). 2360 // The selects may be interleaved with other instructions if the other 2361 // instructions meet some requirements we deem safe: 2362 // - They are debug instructions. Otherwise, 2363 // - They do not have side-effects, do not access memory and their inputs do 2364 // not depend on the results of the select pseudo-instructions. 2365 // The TrueV/FalseV operands of the selects cannot depend on the result of 2366 // previous selects in the sequence. 2367 // These conditions could be further relaxed. See the X86 target for a 2368 // related approach and more information. 2369 Register LHS = MI.getOperand(1).getReg(); 2370 Register RHS = MI.getOperand(2).getReg(); 2371 auto CC = static_cast<ISD::CondCode>(MI.getOperand(3).getImm()); 2372 2373 SmallVector<MachineInstr *, 4> SelectDebugValues; 2374 SmallSet<Register, 4> SelectDests; 2375 SelectDests.insert(MI.getOperand(0).getReg()); 2376 2377 MachineInstr *LastSelectPseudo = &MI; 2378 2379 for (auto E = BB->end(), SequenceMBBI = MachineBasicBlock::iterator(MI); 2380 SequenceMBBI != E; ++SequenceMBBI) { 2381 if (SequenceMBBI->isDebugInstr()) 2382 continue; 2383 else if (isSelectPseudo(*SequenceMBBI)) { 2384 if (SequenceMBBI->getOperand(1).getReg() != LHS || 2385 SequenceMBBI->getOperand(2).getReg() != RHS || 2386 SequenceMBBI->getOperand(3).getImm() != CC || 2387 SelectDests.count(SequenceMBBI->getOperand(4).getReg()) || 2388 SelectDests.count(SequenceMBBI->getOperand(5).getReg())) 2389 break; 2390 LastSelectPseudo = &*SequenceMBBI; 2391 SequenceMBBI->collectDebugValues(SelectDebugValues); 2392 SelectDests.insert(SequenceMBBI->getOperand(0).getReg()); 2393 } else { 2394 if (SequenceMBBI->hasUnmodeledSideEffects() || 2395 SequenceMBBI->mayLoadOrStore()) 2396 break; 2397 if (llvm::any_of(SequenceMBBI->operands(), [&](MachineOperand &MO) { 2398 return MO.isReg() && MO.isUse() && SelectDests.count(MO.getReg()); 2399 })) 2400 break; 2401 } 2402 } 2403 2404 const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo(); 2405 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 2406 DebugLoc DL = MI.getDebugLoc(); 2407 MachineFunction::iterator I = ++BB->getIterator(); 2408 2409 MachineBasicBlock *HeadMBB = BB; 2410 MachineFunction *F = BB->getParent(); 2411 MachineBasicBlock *TailMBB = F->CreateMachineBasicBlock(LLVM_BB); 2412 MachineBasicBlock *IfFalseMBB = F->CreateMachineBasicBlock(LLVM_BB); 2413 2414 F->insert(I, IfFalseMBB); 2415 F->insert(I, TailMBB); 2416 2417 // Transfer debug instructions associated with the selects to TailMBB. 2418 for (MachineInstr *DebugInstr : SelectDebugValues) { 2419 TailMBB->push_back(DebugInstr->removeFromParent()); 2420 } 2421 2422 // Move all instructions after the sequence to TailMBB. 2423 TailMBB->splice(TailMBB->end(), HeadMBB, 2424 std::next(LastSelectPseudo->getIterator()), HeadMBB->end()); 2425 // Update machine-CFG edges by transferring all successors of the current 2426 // block to the new block which will contain the Phi nodes for the selects. 2427 TailMBB->transferSuccessorsAndUpdatePHIs(HeadMBB); 2428 // Set the successors for HeadMBB. 2429 HeadMBB->addSuccessor(IfFalseMBB); 2430 HeadMBB->addSuccessor(TailMBB); 2431 2432 // Insert appropriate branch. 2433 unsigned Opcode = getBranchOpcodeForIntCondCode(CC); 2434 2435 BuildMI(HeadMBB, DL, TII.get(Opcode)) 2436 .addReg(LHS) 2437 .addReg(RHS) 2438 .addMBB(TailMBB); 2439 2440 // IfFalseMBB just falls through to TailMBB. 2441 IfFalseMBB->addSuccessor(TailMBB); 2442 2443 // Create PHIs for all of the select pseudo-instructions. 2444 auto SelectMBBI = MI.getIterator(); 2445 auto SelectEnd = std::next(LastSelectPseudo->getIterator()); 2446 auto InsertionPoint = TailMBB->begin(); 2447 while (SelectMBBI != SelectEnd) { 2448 auto Next = std::next(SelectMBBI); 2449 if (isSelectPseudo(*SelectMBBI)) { 2450 // %Result = phi [ %TrueValue, HeadMBB ], [ %FalseValue, IfFalseMBB ] 2451 BuildMI(*TailMBB, InsertionPoint, SelectMBBI->getDebugLoc(), 2452 TII.get(RISCV::PHI), SelectMBBI->getOperand(0).getReg()) 2453 .addReg(SelectMBBI->getOperand(4).getReg()) 2454 .addMBB(HeadMBB) 2455 .addReg(SelectMBBI->getOperand(5).getReg()) 2456 .addMBB(IfFalseMBB); 2457 SelectMBBI->eraseFromParent(); 2458 } 2459 SelectMBBI = Next; 2460 } 2461 2462 F->getProperties().reset(MachineFunctionProperties::Property::NoPHIs); 2463 return TailMBB; 2464 } 2465 2466 static MachineBasicBlock *addVSetVL(MachineInstr &MI, MachineBasicBlock *BB, 2467 int VLIndex, unsigned SEWIndex, 2468 RISCVVLMUL VLMul, bool WritesElement0) { 2469 MachineFunction &MF = *BB->getParent(); 2470 DebugLoc DL = MI.getDebugLoc(); 2471 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 2472 2473 unsigned SEW = MI.getOperand(SEWIndex).getImm(); 2474 assert(RISCVVType::isValidSEW(SEW) && "Unexpected SEW"); 2475 RISCVVSEW ElementWidth = static_cast<RISCVVSEW>(Log2_32(SEW / 8)); 2476 2477 MachineRegisterInfo &MRI = MF.getRegInfo(); 2478 2479 // VL and VTYPE are alive here. 2480 MachineInstrBuilder MIB = BuildMI(*BB, MI, DL, TII.get(RISCV::PseudoVSETVLI)); 2481 2482 if (VLIndex >= 0) { 2483 // Set VL (rs1 != X0). 2484 Register DestReg = MRI.createVirtualRegister(&RISCV::GPRRegClass); 2485 MIB.addReg(DestReg, RegState::Define | RegState::Dead) 2486 .addReg(MI.getOperand(VLIndex).getReg()); 2487 } else 2488 // With no VL operator in the pseudo, do not modify VL (rd = X0, rs1 = X0). 2489 MIB.addReg(RISCV::X0, RegState::Define | RegState::Dead) 2490 .addReg(RISCV::X0, RegState::Kill); 2491 2492 // Default to tail agnostic unless the destination is tied to a source. In 2493 // that case the user would have some control over the tail values. The tail 2494 // policy is also ignored on instructions that only update element 0 like 2495 // vmv.s.x or reductions so use agnostic there to match the common case. 2496 // FIXME: This is conservatively correct, but we might want to detect that 2497 // the input is undefined. 2498 bool TailAgnostic = true; 2499 unsigned UseOpIdx; 2500 if (MI.isRegTiedToUseOperand(0, &UseOpIdx) && !WritesElement0) { 2501 TailAgnostic = false; 2502 // If the tied operand is an IMPLICIT_DEF we can keep TailAgnostic. 2503 const MachineOperand &UseMO = MI.getOperand(UseOpIdx); 2504 MachineInstr *UseMI = MRI.getVRegDef(UseMO.getReg()); 2505 if (UseMI && UseMI->isImplicitDef()) 2506 TailAgnostic = true; 2507 } 2508 2509 // For simplicity we reuse the vtype representation here. 2510 MIB.addImm(RISCVVType::encodeVTYPE(VLMul, ElementWidth, 2511 /*TailAgnostic*/ TailAgnostic, 2512 /*MaskAgnostic*/ false)); 2513 2514 // Remove (now) redundant operands from pseudo 2515 MI.getOperand(SEWIndex).setImm(-1); 2516 if (VLIndex >= 0) { 2517 MI.getOperand(VLIndex).setReg(RISCV::NoRegister); 2518 MI.getOperand(VLIndex).setIsKill(false); 2519 } 2520 2521 return BB; 2522 } 2523 2524 MachineBasicBlock * 2525 RISCVTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 2526 MachineBasicBlock *BB) const { 2527 uint64_t TSFlags = MI.getDesc().TSFlags; 2528 2529 if (TSFlags & RISCVII::HasSEWOpMask) { 2530 unsigned NumOperands = MI.getNumExplicitOperands(); 2531 int VLIndex = (TSFlags & RISCVII::HasVLOpMask) ? NumOperands - 2 : -1; 2532 unsigned SEWIndex = NumOperands - 1; 2533 bool WritesElement0 = TSFlags & RISCVII::WritesElement0Mask; 2534 2535 RISCVVLMUL VLMul = static_cast<RISCVVLMUL>((TSFlags & RISCVII::VLMulMask) >> 2536 RISCVII::VLMulShift); 2537 return addVSetVL(MI, BB, VLIndex, SEWIndex, VLMul, WritesElement0); 2538 } 2539 2540 switch (MI.getOpcode()) { 2541 default: 2542 llvm_unreachable("Unexpected instr type to insert"); 2543 case RISCV::ReadCycleWide: 2544 assert(!Subtarget.is64Bit() && 2545 "ReadCycleWrite is only to be used on riscv32"); 2546 return emitReadCycleWidePseudo(MI, BB); 2547 case RISCV::Select_GPR_Using_CC_GPR: 2548 case RISCV::Select_FPR16_Using_CC_GPR: 2549 case RISCV::Select_FPR32_Using_CC_GPR: 2550 case RISCV::Select_FPR64_Using_CC_GPR: 2551 return emitSelectPseudo(MI, BB); 2552 case RISCV::BuildPairF64Pseudo: 2553 return emitBuildPairF64Pseudo(MI, BB); 2554 case RISCV::SplitF64Pseudo: 2555 return emitSplitF64Pseudo(MI, BB); 2556 } 2557 } 2558 2559 // Calling Convention Implementation. 2560 // The expectations for frontend ABI lowering vary from target to target. 2561 // Ideally, an LLVM frontend would be able to avoid worrying about many ABI 2562 // details, but this is a longer term goal. For now, we simply try to keep the 2563 // role of the frontend as simple and well-defined as possible. The rules can 2564 // be summarised as: 2565 // * Never split up large scalar arguments. We handle them here. 2566 // * If a hardfloat calling convention is being used, and the struct may be 2567 // passed in a pair of registers (fp+fp, int+fp), and both registers are 2568 // available, then pass as two separate arguments. If either the GPRs or FPRs 2569 // are exhausted, then pass according to the rule below. 2570 // * If a struct could never be passed in registers or directly in a stack 2571 // slot (as it is larger than 2*XLEN and the floating point rules don't 2572 // apply), then pass it using a pointer with the byval attribute. 2573 // * If a struct is less than 2*XLEN, then coerce to either a two-element 2574 // word-sized array or a 2*XLEN scalar (depending on alignment). 2575 // * The frontend can determine whether a struct is returned by reference or 2576 // not based on its size and fields. If it will be returned by reference, the 2577 // frontend must modify the prototype so a pointer with the sret annotation is 2578 // passed as the first argument. This is not necessary for large scalar 2579 // returns. 2580 // * Struct return values and varargs should be coerced to structs containing 2581 // register-size fields in the same situations they would be for fixed 2582 // arguments. 2583 2584 static const MCPhysReg ArgGPRs[] = { 2585 RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, 2586 RISCV::X14, RISCV::X15, RISCV::X16, RISCV::X17 2587 }; 2588 static const MCPhysReg ArgFPR16s[] = { 2589 RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, 2590 RISCV::F14_H, RISCV::F15_H, RISCV::F16_H, RISCV::F17_H 2591 }; 2592 static const MCPhysReg ArgFPR32s[] = { 2593 RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, 2594 RISCV::F14_F, RISCV::F15_F, RISCV::F16_F, RISCV::F17_F 2595 }; 2596 static const MCPhysReg ArgFPR64s[] = { 2597 RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, 2598 RISCV::F14_D, RISCV::F15_D, RISCV::F16_D, RISCV::F17_D 2599 }; 2600 // This is an interim calling convention and it may be changed in the future. 2601 static const MCPhysReg ArgVRs[] = { 2602 RISCV::V8, RISCV::V9, RISCV::V10, RISCV::V11, RISCV::V12, RISCV::V13, 2603 RISCV::V14, RISCV::V15, RISCV::V16, RISCV::V17, RISCV::V18, RISCV::V19, 2604 RISCV::V20, RISCV::V21, RISCV::V22, RISCV::V23}; 2605 static const MCPhysReg ArgVRM2s[] = {RISCV::V8M2, RISCV::V10M2, RISCV::V12M2, 2606 RISCV::V14M2, RISCV::V16M2, RISCV::V18M2, 2607 RISCV::V20M2, RISCV::V22M2}; 2608 static const MCPhysReg ArgVRM4s[] = {RISCV::V8M4, RISCV::V12M4, RISCV::V16M4, 2609 RISCV::V20M4}; 2610 static const MCPhysReg ArgVRM8s[] = {RISCV::V8M8, RISCV::V16M8}; 2611 2612 // Pass a 2*XLEN argument that has been split into two XLEN values through 2613 // registers or the stack as necessary. 2614 static bool CC_RISCVAssign2XLen(unsigned XLen, CCState &State, CCValAssign VA1, 2615 ISD::ArgFlagsTy ArgFlags1, unsigned ValNo2, 2616 MVT ValVT2, MVT LocVT2, 2617 ISD::ArgFlagsTy ArgFlags2) { 2618 unsigned XLenInBytes = XLen / 8; 2619 if (Register Reg = State.AllocateReg(ArgGPRs)) { 2620 // At least one half can be passed via register. 2621 State.addLoc(CCValAssign::getReg(VA1.getValNo(), VA1.getValVT(), Reg, 2622 VA1.getLocVT(), CCValAssign::Full)); 2623 } else { 2624 // Both halves must be passed on the stack, with proper alignment. 2625 Align StackAlign = 2626 std::max(Align(XLenInBytes), ArgFlags1.getNonZeroOrigAlign()); 2627 State.addLoc( 2628 CCValAssign::getMem(VA1.getValNo(), VA1.getValVT(), 2629 State.AllocateStack(XLenInBytes, StackAlign), 2630 VA1.getLocVT(), CCValAssign::Full)); 2631 State.addLoc(CCValAssign::getMem( 2632 ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)), 2633 LocVT2, CCValAssign::Full)); 2634 return false; 2635 } 2636 2637 if (Register Reg = State.AllocateReg(ArgGPRs)) { 2638 // The second half can also be passed via register. 2639 State.addLoc( 2640 CCValAssign::getReg(ValNo2, ValVT2, Reg, LocVT2, CCValAssign::Full)); 2641 } else { 2642 // The second half is passed via the stack, without additional alignment. 2643 State.addLoc(CCValAssign::getMem( 2644 ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)), 2645 LocVT2, CCValAssign::Full)); 2646 } 2647 2648 return false; 2649 } 2650 2651 // Implements the RISC-V calling convention. Returns true upon failure. 2652 static bool CC_RISCV(const DataLayout &DL, RISCVABI::ABI ABI, unsigned ValNo, 2653 MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, 2654 ISD::ArgFlagsTy ArgFlags, CCState &State, bool IsFixed, 2655 bool IsRet, Type *OrigTy, const RISCVTargetLowering &TLI, 2656 Optional<unsigned> FirstMaskArgument) { 2657 unsigned XLen = DL.getLargestLegalIntTypeSizeInBits(); 2658 assert(XLen == 32 || XLen == 64); 2659 MVT XLenVT = XLen == 32 ? MVT::i32 : MVT::i64; 2660 2661 // Any return value split in to more than two values can't be returned 2662 // directly. 2663 if (IsRet && ValNo > 1) 2664 return true; 2665 2666 // UseGPRForF16_F32 if targeting one of the soft-float ABIs, if passing a 2667 // variadic argument, or if no F16/F32 argument registers are available. 2668 bool UseGPRForF16_F32 = true; 2669 // UseGPRForF64 if targeting soft-float ABIs or an FLEN=32 ABI, if passing a 2670 // variadic argument, or if no F64 argument registers are available. 2671 bool UseGPRForF64 = true; 2672 2673 switch (ABI) { 2674 default: 2675 llvm_unreachable("Unexpected ABI"); 2676 case RISCVABI::ABI_ILP32: 2677 case RISCVABI::ABI_LP64: 2678 break; 2679 case RISCVABI::ABI_ILP32F: 2680 case RISCVABI::ABI_LP64F: 2681 UseGPRForF16_F32 = !IsFixed; 2682 break; 2683 case RISCVABI::ABI_ILP32D: 2684 case RISCVABI::ABI_LP64D: 2685 UseGPRForF16_F32 = !IsFixed; 2686 UseGPRForF64 = !IsFixed; 2687 break; 2688 } 2689 2690 // FPR16, FPR32, and FPR64 alias each other. 2691 if (State.getFirstUnallocated(ArgFPR32s) == array_lengthof(ArgFPR32s)) { 2692 UseGPRForF16_F32 = true; 2693 UseGPRForF64 = true; 2694 } 2695 2696 // From this point on, rely on UseGPRForF16_F32, UseGPRForF64 and 2697 // similar local variables rather than directly checking against the target 2698 // ABI. 2699 2700 if (UseGPRForF16_F32 && (ValVT == MVT::f16 || ValVT == MVT::f32)) { 2701 LocVT = XLenVT; 2702 LocInfo = CCValAssign::BCvt; 2703 } else if (UseGPRForF64 && XLen == 64 && ValVT == MVT::f64) { 2704 LocVT = MVT::i64; 2705 LocInfo = CCValAssign::BCvt; 2706 } 2707 2708 // If this is a variadic argument, the RISC-V calling convention requires 2709 // that it is assigned an 'even' or 'aligned' register if it has 8-byte 2710 // alignment (RV32) or 16-byte alignment (RV64). An aligned register should 2711 // be used regardless of whether the original argument was split during 2712 // legalisation or not. The argument will not be passed by registers if the 2713 // original type is larger than 2*XLEN, so the register alignment rule does 2714 // not apply. 2715 unsigned TwoXLenInBytes = (2 * XLen) / 8; 2716 if (!IsFixed && ArgFlags.getNonZeroOrigAlign() == TwoXLenInBytes && 2717 DL.getTypeAllocSize(OrigTy) == TwoXLenInBytes) { 2718 unsigned RegIdx = State.getFirstUnallocated(ArgGPRs); 2719 // Skip 'odd' register if necessary. 2720 if (RegIdx != array_lengthof(ArgGPRs) && RegIdx % 2 == 1) 2721 State.AllocateReg(ArgGPRs); 2722 } 2723 2724 SmallVectorImpl<CCValAssign> &PendingLocs = State.getPendingLocs(); 2725 SmallVectorImpl<ISD::ArgFlagsTy> &PendingArgFlags = 2726 State.getPendingArgFlags(); 2727 2728 assert(PendingLocs.size() == PendingArgFlags.size() && 2729 "PendingLocs and PendingArgFlags out of sync"); 2730 2731 // Handle passing f64 on RV32D with a soft float ABI or when floating point 2732 // registers are exhausted. 2733 if (UseGPRForF64 && XLen == 32 && ValVT == MVT::f64) { 2734 assert(!ArgFlags.isSplit() && PendingLocs.empty() && 2735 "Can't lower f64 if it is split"); 2736 // Depending on available argument GPRS, f64 may be passed in a pair of 2737 // GPRs, split between a GPR and the stack, or passed completely on the 2738 // stack. LowerCall/LowerFormalArguments/LowerReturn must recognise these 2739 // cases. 2740 Register Reg = State.AllocateReg(ArgGPRs); 2741 LocVT = MVT::i32; 2742 if (!Reg) { 2743 unsigned StackOffset = State.AllocateStack(8, Align(8)); 2744 State.addLoc( 2745 CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 2746 return false; 2747 } 2748 if (!State.AllocateReg(ArgGPRs)) 2749 State.AllocateStack(4, Align(4)); 2750 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 2751 return false; 2752 } 2753 2754 // Split arguments might be passed indirectly, so keep track of the pending 2755 // values. 2756 if (ArgFlags.isSplit() || !PendingLocs.empty()) { 2757 LocVT = XLenVT; 2758 LocInfo = CCValAssign::Indirect; 2759 PendingLocs.push_back( 2760 CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo)); 2761 PendingArgFlags.push_back(ArgFlags); 2762 if (!ArgFlags.isSplitEnd()) { 2763 return false; 2764 } 2765 } 2766 2767 // If the split argument only had two elements, it should be passed directly 2768 // in registers or on the stack. 2769 if (ArgFlags.isSplitEnd() && PendingLocs.size() <= 2) { 2770 assert(PendingLocs.size() == 2 && "Unexpected PendingLocs.size()"); 2771 // Apply the normal calling convention rules to the first half of the 2772 // split argument. 2773 CCValAssign VA = PendingLocs[0]; 2774 ISD::ArgFlagsTy AF = PendingArgFlags[0]; 2775 PendingLocs.clear(); 2776 PendingArgFlags.clear(); 2777 return CC_RISCVAssign2XLen(XLen, State, VA, AF, ValNo, ValVT, LocVT, 2778 ArgFlags); 2779 } 2780 2781 // Allocate to a register if possible, or else a stack slot. 2782 Register Reg; 2783 if (ValVT == MVT::f16 && !UseGPRForF16_F32) 2784 Reg = State.AllocateReg(ArgFPR16s); 2785 else if (ValVT == MVT::f32 && !UseGPRForF16_F32) 2786 Reg = State.AllocateReg(ArgFPR32s); 2787 else if (ValVT == MVT::f64 && !UseGPRForF64) 2788 Reg = State.AllocateReg(ArgFPR64s); 2789 else if (ValVT.isScalableVector()) { 2790 const TargetRegisterClass *RC = TLI.getRegClassFor(ValVT); 2791 if (RC == &RISCV::VRRegClass) { 2792 // Assign the first mask argument to V0. 2793 // This is an interim calling convention and it may be changed in the 2794 // future. 2795 if (FirstMaskArgument.hasValue() && 2796 ValNo == FirstMaskArgument.getValue()) { 2797 Reg = State.AllocateReg(RISCV::V0); 2798 } else { 2799 Reg = State.AllocateReg(ArgVRs); 2800 } 2801 } else if (RC == &RISCV::VRM2RegClass) { 2802 Reg = State.AllocateReg(ArgVRM2s); 2803 } else if (RC == &RISCV::VRM4RegClass) { 2804 Reg = State.AllocateReg(ArgVRM4s); 2805 } else if (RC == &RISCV::VRM8RegClass) { 2806 Reg = State.AllocateReg(ArgVRM8s); 2807 } else { 2808 llvm_unreachable("Unhandled class register for ValueType"); 2809 } 2810 if (!Reg) { 2811 LocInfo = CCValAssign::Indirect; 2812 // Try using a GPR to pass the address 2813 Reg = State.AllocateReg(ArgGPRs); 2814 LocVT = XLenVT; 2815 } 2816 } else 2817 Reg = State.AllocateReg(ArgGPRs); 2818 unsigned StackOffset = 2819 Reg ? 0 : State.AllocateStack(XLen / 8, Align(XLen / 8)); 2820 2821 // If we reach this point and PendingLocs is non-empty, we must be at the 2822 // end of a split argument that must be passed indirectly. 2823 if (!PendingLocs.empty()) { 2824 assert(ArgFlags.isSplitEnd() && "Expected ArgFlags.isSplitEnd()"); 2825 assert(PendingLocs.size() > 2 && "Unexpected PendingLocs.size()"); 2826 2827 for (auto &It : PendingLocs) { 2828 if (Reg) 2829 It.convertToReg(Reg); 2830 else 2831 It.convertToMem(StackOffset); 2832 State.addLoc(It); 2833 } 2834 PendingLocs.clear(); 2835 PendingArgFlags.clear(); 2836 return false; 2837 } 2838 2839 assert((!UseGPRForF16_F32 || !UseGPRForF64 || LocVT == XLenVT || 2840 (TLI.getSubtarget().hasStdExtV() && ValVT.isScalableVector())) && 2841 "Expected an XLenVT or scalable vector types at this stage"); 2842 2843 if (Reg) { 2844 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 2845 return false; 2846 } 2847 2848 // When a floating-point value is passed on the stack, no bit-conversion is 2849 // needed. 2850 if (ValVT.isFloatingPoint()) { 2851 LocVT = ValVT; 2852 LocInfo = CCValAssign::Full; 2853 } 2854 State.addLoc(CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 2855 return false; 2856 } 2857 2858 template <typename ArgTy> 2859 static Optional<unsigned> preAssignMask(const ArgTy &Args) { 2860 for (const auto &ArgIdx : enumerate(Args)) { 2861 MVT ArgVT = ArgIdx.value().VT; 2862 if (ArgVT.isScalableVector() && 2863 ArgVT.getVectorElementType().SimpleTy == MVT::i1) 2864 return ArgIdx.index(); 2865 } 2866 return None; 2867 } 2868 2869 void RISCVTargetLowering::analyzeInputArgs( 2870 MachineFunction &MF, CCState &CCInfo, 2871 const SmallVectorImpl<ISD::InputArg> &Ins, bool IsRet) const { 2872 unsigned NumArgs = Ins.size(); 2873 FunctionType *FType = MF.getFunction().getFunctionType(); 2874 2875 Optional<unsigned> FirstMaskArgument; 2876 if (Subtarget.hasStdExtV()) 2877 FirstMaskArgument = preAssignMask(Ins); 2878 2879 for (unsigned i = 0; i != NumArgs; ++i) { 2880 MVT ArgVT = Ins[i].VT; 2881 ISD::ArgFlagsTy ArgFlags = Ins[i].Flags; 2882 2883 Type *ArgTy = nullptr; 2884 if (IsRet) 2885 ArgTy = FType->getReturnType(); 2886 else if (Ins[i].isOrigArg()) 2887 ArgTy = FType->getParamType(Ins[i].getOrigArgIndex()); 2888 2889 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 2890 if (CC_RISCV(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full, 2891 ArgFlags, CCInfo, /*IsFixed=*/true, IsRet, ArgTy, *this, 2892 FirstMaskArgument)) { 2893 LLVM_DEBUG(dbgs() << "InputArg #" << i << " has unhandled type " 2894 << EVT(ArgVT).getEVTString() << '\n'); 2895 llvm_unreachable(nullptr); 2896 } 2897 } 2898 } 2899 2900 void RISCVTargetLowering::analyzeOutputArgs( 2901 MachineFunction &MF, CCState &CCInfo, 2902 const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsRet, 2903 CallLoweringInfo *CLI) const { 2904 unsigned NumArgs = Outs.size(); 2905 2906 Optional<unsigned> FirstMaskArgument; 2907 if (Subtarget.hasStdExtV()) 2908 FirstMaskArgument = preAssignMask(Outs); 2909 2910 for (unsigned i = 0; i != NumArgs; i++) { 2911 MVT ArgVT = Outs[i].VT; 2912 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 2913 Type *OrigTy = CLI ? CLI->getArgs()[Outs[i].OrigArgIndex].Ty : nullptr; 2914 2915 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 2916 if (CC_RISCV(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full, 2917 ArgFlags, CCInfo, Outs[i].IsFixed, IsRet, OrigTy, *this, 2918 FirstMaskArgument)) { 2919 LLVM_DEBUG(dbgs() << "OutputArg #" << i << " has unhandled type " 2920 << EVT(ArgVT).getEVTString() << "\n"); 2921 llvm_unreachable(nullptr); 2922 } 2923 } 2924 } 2925 2926 // Convert Val to a ValVT. Should not be called for CCValAssign::Indirect 2927 // values. 2928 static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDValue Val, 2929 const CCValAssign &VA, const SDLoc &DL) { 2930 switch (VA.getLocInfo()) { 2931 default: 2932 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 2933 case CCValAssign::Full: 2934 break; 2935 case CCValAssign::BCvt: 2936 if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16) 2937 Val = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, Val); 2938 else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) 2939 Val = DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, Val); 2940 else 2941 Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val); 2942 break; 2943 } 2944 return Val; 2945 } 2946 2947 // The caller is responsible for loading the full value if the argument is 2948 // passed with CCValAssign::Indirect. 2949 static SDValue unpackFromRegLoc(SelectionDAG &DAG, SDValue Chain, 2950 const CCValAssign &VA, const SDLoc &DL, 2951 const RISCVTargetLowering &TLI) { 2952 MachineFunction &MF = DAG.getMachineFunction(); 2953 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 2954 EVT LocVT = VA.getLocVT(); 2955 SDValue Val; 2956 const TargetRegisterClass *RC = TLI.getRegClassFor(LocVT.getSimpleVT()); 2957 Register VReg = RegInfo.createVirtualRegister(RC); 2958 RegInfo.addLiveIn(VA.getLocReg(), VReg); 2959 Val = DAG.getCopyFromReg(Chain, DL, VReg, LocVT); 2960 2961 if (VA.getLocInfo() == CCValAssign::Indirect) 2962 return Val; 2963 2964 return convertLocVTToValVT(DAG, Val, VA, DL); 2965 } 2966 2967 static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDValue Val, 2968 const CCValAssign &VA, const SDLoc &DL) { 2969 EVT LocVT = VA.getLocVT(); 2970 2971 switch (VA.getLocInfo()) { 2972 default: 2973 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 2974 case CCValAssign::Full: 2975 break; 2976 case CCValAssign::BCvt: 2977 if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16) 2978 Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, VA.getLocVT(), Val); 2979 else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) 2980 Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Val); 2981 else 2982 Val = DAG.getNode(ISD::BITCAST, DL, LocVT, Val); 2983 break; 2984 } 2985 return Val; 2986 } 2987 2988 // The caller is responsible for loading the full value if the argument is 2989 // passed with CCValAssign::Indirect. 2990 static SDValue unpackFromMemLoc(SelectionDAG &DAG, SDValue Chain, 2991 const CCValAssign &VA, const SDLoc &DL) { 2992 MachineFunction &MF = DAG.getMachineFunction(); 2993 MachineFrameInfo &MFI = MF.getFrameInfo(); 2994 EVT LocVT = VA.getLocVT(); 2995 EVT ValVT = VA.getValVT(); 2996 EVT PtrVT = MVT::getIntegerVT(DAG.getDataLayout().getPointerSizeInBits(0)); 2997 int FI = MFI.CreateFixedObject(ValVT.getSizeInBits() / 8, 2998 VA.getLocMemOffset(), /*Immutable=*/true); 2999 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3000 SDValue Val; 3001 3002 ISD::LoadExtType ExtType; 3003 switch (VA.getLocInfo()) { 3004 default: 3005 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 3006 case CCValAssign::Full: 3007 case CCValAssign::Indirect: 3008 case CCValAssign::BCvt: 3009 ExtType = ISD::NON_EXTLOAD; 3010 break; 3011 } 3012 Val = DAG.getExtLoad( 3013 ExtType, DL, LocVT, Chain, FIN, 3014 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), ValVT); 3015 return Val; 3016 } 3017 3018 static SDValue unpackF64OnRV32DSoftABI(SelectionDAG &DAG, SDValue Chain, 3019 const CCValAssign &VA, const SDLoc &DL) { 3020 assert(VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64 && 3021 "Unexpected VA"); 3022 MachineFunction &MF = DAG.getMachineFunction(); 3023 MachineFrameInfo &MFI = MF.getFrameInfo(); 3024 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 3025 3026 if (VA.isMemLoc()) { 3027 // f64 is passed on the stack. 3028 int FI = MFI.CreateFixedObject(8, VA.getLocMemOffset(), /*Immutable=*/true); 3029 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 3030 return DAG.getLoad(MVT::f64, DL, Chain, FIN, 3031 MachinePointerInfo::getFixedStack(MF, FI)); 3032 } 3033 3034 assert(VA.isRegLoc() && "Expected register VA assignment"); 3035 3036 Register LoVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 3037 RegInfo.addLiveIn(VA.getLocReg(), LoVReg); 3038 SDValue Lo = DAG.getCopyFromReg(Chain, DL, LoVReg, MVT::i32); 3039 SDValue Hi; 3040 if (VA.getLocReg() == RISCV::X17) { 3041 // Second half of f64 is passed on the stack. 3042 int FI = MFI.CreateFixedObject(4, 0, /*Immutable=*/true); 3043 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 3044 Hi = DAG.getLoad(MVT::i32, DL, Chain, FIN, 3045 MachinePointerInfo::getFixedStack(MF, FI)); 3046 } else { 3047 // Second half of f64 is passed in another GPR. 3048 Register HiVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 3049 RegInfo.addLiveIn(VA.getLocReg() + 1, HiVReg); 3050 Hi = DAG.getCopyFromReg(Chain, DL, HiVReg, MVT::i32); 3051 } 3052 return DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, Lo, Hi); 3053 } 3054 3055 // FastCC has less than 1% performance improvement for some particular 3056 // benchmark. But theoretically, it may has benenfit for some cases. 3057 static bool CC_RISCV_FastCC(unsigned ValNo, MVT ValVT, MVT LocVT, 3058 CCValAssign::LocInfo LocInfo, 3059 ISD::ArgFlagsTy ArgFlags, CCState &State) { 3060 3061 if (LocVT == MVT::i32 || LocVT == MVT::i64) { 3062 // X5 and X6 might be used for save-restore libcall. 3063 static const MCPhysReg GPRList[] = { 3064 RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, RISCV::X14, 3065 RISCV::X15, RISCV::X16, RISCV::X17, RISCV::X7, RISCV::X28, 3066 RISCV::X29, RISCV::X30, RISCV::X31}; 3067 if (unsigned Reg = State.AllocateReg(GPRList)) { 3068 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 3069 return false; 3070 } 3071 } 3072 3073 if (LocVT == MVT::f16) { 3074 static const MCPhysReg FPR16List[] = { 3075 RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, RISCV::F14_H, 3076 RISCV::F15_H, RISCV::F16_H, RISCV::F17_H, RISCV::F0_H, RISCV::F1_H, 3077 RISCV::F2_H, RISCV::F3_H, RISCV::F4_H, RISCV::F5_H, RISCV::F6_H, 3078 RISCV::F7_H, RISCV::F28_H, RISCV::F29_H, RISCV::F30_H, RISCV::F31_H}; 3079 if (unsigned Reg = State.AllocateReg(FPR16List)) { 3080 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 3081 return false; 3082 } 3083 } 3084 3085 if (LocVT == MVT::f32) { 3086 static const MCPhysReg FPR32List[] = { 3087 RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, RISCV::F14_F, 3088 RISCV::F15_F, RISCV::F16_F, RISCV::F17_F, RISCV::F0_F, RISCV::F1_F, 3089 RISCV::F2_F, RISCV::F3_F, RISCV::F4_F, RISCV::F5_F, RISCV::F6_F, 3090 RISCV::F7_F, RISCV::F28_F, RISCV::F29_F, RISCV::F30_F, RISCV::F31_F}; 3091 if (unsigned Reg = State.AllocateReg(FPR32List)) { 3092 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 3093 return false; 3094 } 3095 } 3096 3097 if (LocVT == MVT::f64) { 3098 static const MCPhysReg FPR64List[] = { 3099 RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, RISCV::F14_D, 3100 RISCV::F15_D, RISCV::F16_D, RISCV::F17_D, RISCV::F0_D, RISCV::F1_D, 3101 RISCV::F2_D, RISCV::F3_D, RISCV::F4_D, RISCV::F5_D, RISCV::F6_D, 3102 RISCV::F7_D, RISCV::F28_D, RISCV::F29_D, RISCV::F30_D, RISCV::F31_D}; 3103 if (unsigned Reg = State.AllocateReg(FPR64List)) { 3104 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 3105 return false; 3106 } 3107 } 3108 3109 if (LocVT == MVT::i32 || LocVT == MVT::f32) { 3110 unsigned Offset4 = State.AllocateStack(4, Align(4)); 3111 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset4, LocVT, LocInfo)); 3112 return false; 3113 } 3114 3115 if (LocVT == MVT::i64 || LocVT == MVT::f64) { 3116 unsigned Offset5 = State.AllocateStack(8, Align(8)); 3117 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset5, LocVT, LocInfo)); 3118 return false; 3119 } 3120 3121 return true; // CC didn't match. 3122 } 3123 3124 static bool CC_RISCV_GHC(unsigned ValNo, MVT ValVT, MVT LocVT, 3125 CCValAssign::LocInfo LocInfo, 3126 ISD::ArgFlagsTy ArgFlags, CCState &State) { 3127 3128 if (LocVT == MVT::i32 || LocVT == MVT::i64) { 3129 // Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, R6, R7, SpLim 3130 // s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 3131 static const MCPhysReg GPRList[] = { 3132 RISCV::X9, RISCV::X18, RISCV::X19, RISCV::X20, RISCV::X21, RISCV::X22, 3133 RISCV::X23, RISCV::X24, RISCV::X25, RISCV::X26, RISCV::X27}; 3134 if (unsigned Reg = State.AllocateReg(GPRList)) { 3135 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 3136 return false; 3137 } 3138 } 3139 3140 if (LocVT == MVT::f32) { 3141 // Pass in STG registers: F1, ..., F6 3142 // fs0 ... fs5 3143 static const MCPhysReg FPR32List[] = {RISCV::F8_F, RISCV::F9_F, 3144 RISCV::F18_F, RISCV::F19_F, 3145 RISCV::F20_F, RISCV::F21_F}; 3146 if (unsigned Reg = State.AllocateReg(FPR32List)) { 3147 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 3148 return false; 3149 } 3150 } 3151 3152 if (LocVT == MVT::f64) { 3153 // Pass in STG registers: D1, ..., D6 3154 // fs6 ... fs11 3155 static const MCPhysReg FPR64List[] = {RISCV::F22_D, RISCV::F23_D, 3156 RISCV::F24_D, RISCV::F25_D, 3157 RISCV::F26_D, RISCV::F27_D}; 3158 if (unsigned Reg = State.AllocateReg(FPR64List)) { 3159 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 3160 return false; 3161 } 3162 } 3163 3164 report_fatal_error("No registers left in GHC calling convention"); 3165 return true; 3166 } 3167 3168 // Transform physical registers into virtual registers. 3169 SDValue RISCVTargetLowering::LowerFormalArguments( 3170 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 3171 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 3172 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 3173 3174 MachineFunction &MF = DAG.getMachineFunction(); 3175 3176 switch (CallConv) { 3177 default: 3178 report_fatal_error("Unsupported calling convention"); 3179 case CallingConv::C: 3180 case CallingConv::Fast: 3181 break; 3182 case CallingConv::GHC: 3183 if (!MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtF] || 3184 !MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtD]) 3185 report_fatal_error( 3186 "GHC calling convention requires the F and D instruction set extensions"); 3187 } 3188 3189 const Function &Func = MF.getFunction(); 3190 if (Func.hasFnAttribute("interrupt")) { 3191 if (!Func.arg_empty()) 3192 report_fatal_error( 3193 "Functions with the interrupt attribute cannot have arguments!"); 3194 3195 StringRef Kind = 3196 MF.getFunction().getFnAttribute("interrupt").getValueAsString(); 3197 3198 if (!(Kind == "user" || Kind == "supervisor" || Kind == "machine")) 3199 report_fatal_error( 3200 "Function interrupt attribute argument not supported!"); 3201 } 3202 3203 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3204 MVT XLenVT = Subtarget.getXLenVT(); 3205 unsigned XLenInBytes = Subtarget.getXLen() / 8; 3206 // Used with vargs to acumulate store chains. 3207 std::vector<SDValue> OutChains; 3208 3209 // Assign locations to all of the incoming arguments. 3210 SmallVector<CCValAssign, 16> ArgLocs; 3211 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 3212 3213 if (CallConv == CallingConv::Fast) 3214 CCInfo.AnalyzeFormalArguments(Ins, CC_RISCV_FastCC); 3215 else if (CallConv == CallingConv::GHC) 3216 CCInfo.AnalyzeFormalArguments(Ins, CC_RISCV_GHC); 3217 else 3218 analyzeInputArgs(MF, CCInfo, Ins, /*IsRet=*/false); 3219 3220 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 3221 CCValAssign &VA = ArgLocs[i]; 3222 SDValue ArgValue; 3223 // Passing f64 on RV32D with a soft float ABI must be handled as a special 3224 // case. 3225 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) 3226 ArgValue = unpackF64OnRV32DSoftABI(DAG, Chain, VA, DL); 3227 else if (VA.isRegLoc()) 3228 ArgValue = unpackFromRegLoc(DAG, Chain, VA, DL, *this); 3229 else 3230 ArgValue = unpackFromMemLoc(DAG, Chain, VA, DL); 3231 3232 if (VA.getLocInfo() == CCValAssign::Indirect) { 3233 // If the original argument was split and passed by reference (e.g. i128 3234 // on RV32), we need to load all parts of it here (using the same 3235 // address). 3236 InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue, 3237 MachinePointerInfo())); 3238 unsigned ArgIndex = Ins[i].OrigArgIndex; 3239 assert(Ins[i].PartOffset == 0); 3240 while (i + 1 != e && Ins[i + 1].OrigArgIndex == ArgIndex) { 3241 CCValAssign &PartVA = ArgLocs[i + 1]; 3242 unsigned PartOffset = Ins[i + 1].PartOffset; 3243 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, 3244 DAG.getIntPtrConstant(PartOffset, DL)); 3245 InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address, 3246 MachinePointerInfo())); 3247 ++i; 3248 } 3249 continue; 3250 } 3251 InVals.push_back(ArgValue); 3252 } 3253 3254 if (IsVarArg) { 3255 ArrayRef<MCPhysReg> ArgRegs = makeArrayRef(ArgGPRs); 3256 unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs); 3257 const TargetRegisterClass *RC = &RISCV::GPRRegClass; 3258 MachineFrameInfo &MFI = MF.getFrameInfo(); 3259 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 3260 RISCVMachineFunctionInfo *RVFI = MF.getInfo<RISCVMachineFunctionInfo>(); 3261 3262 // Offset of the first variable argument from stack pointer, and size of 3263 // the vararg save area. For now, the varargs save area is either zero or 3264 // large enough to hold a0-a7. 3265 int VaArgOffset, VarArgsSaveSize; 3266 3267 // If all registers are allocated, then all varargs must be passed on the 3268 // stack and we don't need to save any argregs. 3269 if (ArgRegs.size() == Idx) { 3270 VaArgOffset = CCInfo.getNextStackOffset(); 3271 VarArgsSaveSize = 0; 3272 } else { 3273 VarArgsSaveSize = XLenInBytes * (ArgRegs.size() - Idx); 3274 VaArgOffset = -VarArgsSaveSize; 3275 } 3276 3277 // Record the frame index of the first variable argument 3278 // which is a value necessary to VASTART. 3279 int FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true); 3280 RVFI->setVarArgsFrameIndex(FI); 3281 3282 // If saving an odd number of registers then create an extra stack slot to 3283 // ensure that the frame pointer is 2*XLEN-aligned, which in turn ensures 3284 // offsets to even-numbered registered remain 2*XLEN-aligned. 3285 if (Idx % 2) { 3286 MFI.CreateFixedObject(XLenInBytes, VaArgOffset - (int)XLenInBytes, true); 3287 VarArgsSaveSize += XLenInBytes; 3288 } 3289 3290 // Copy the integer registers that may have been used for passing varargs 3291 // to the vararg save area. 3292 for (unsigned I = Idx; I < ArgRegs.size(); 3293 ++I, VaArgOffset += XLenInBytes) { 3294 const Register Reg = RegInfo.createVirtualRegister(RC); 3295 RegInfo.addLiveIn(ArgRegs[I], Reg); 3296 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, XLenVT); 3297 FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true); 3298 SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 3299 SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff, 3300 MachinePointerInfo::getFixedStack(MF, FI)); 3301 cast<StoreSDNode>(Store.getNode()) 3302 ->getMemOperand() 3303 ->setValue((Value *)nullptr); 3304 OutChains.push_back(Store); 3305 } 3306 RVFI->setVarArgsSaveSize(VarArgsSaveSize); 3307 } 3308 3309 // All stores are grouped in one node to allow the matching between 3310 // the size of Ins and InVals. This only happens for vararg functions. 3311 if (!OutChains.empty()) { 3312 OutChains.push_back(Chain); 3313 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains); 3314 } 3315 3316 return Chain; 3317 } 3318 3319 /// isEligibleForTailCallOptimization - Check whether the call is eligible 3320 /// for tail call optimization. 3321 /// Note: This is modelled after ARM's IsEligibleForTailCallOptimization. 3322 bool RISCVTargetLowering::isEligibleForTailCallOptimization( 3323 CCState &CCInfo, CallLoweringInfo &CLI, MachineFunction &MF, 3324 const SmallVector<CCValAssign, 16> &ArgLocs) const { 3325 3326 auto &Callee = CLI.Callee; 3327 auto CalleeCC = CLI.CallConv; 3328 auto &Outs = CLI.Outs; 3329 auto &Caller = MF.getFunction(); 3330 auto CallerCC = Caller.getCallingConv(); 3331 3332 // Exception-handling functions need a special set of instructions to 3333 // indicate a return to the hardware. Tail-calling another function would 3334 // probably break this. 3335 // TODO: The "interrupt" attribute isn't currently defined by RISC-V. This 3336 // should be expanded as new function attributes are introduced. 3337 if (Caller.hasFnAttribute("interrupt")) 3338 return false; 3339 3340 // Do not tail call opt if the stack is used to pass parameters. 3341 if (CCInfo.getNextStackOffset() != 0) 3342 return false; 3343 3344 // Do not tail call opt if any parameters need to be passed indirectly. 3345 // Since long doubles (fp128) and i128 are larger than 2*XLEN, they are 3346 // passed indirectly. So the address of the value will be passed in a 3347 // register, or if not available, then the address is put on the stack. In 3348 // order to pass indirectly, space on the stack often needs to be allocated 3349 // in order to store the value. In this case the CCInfo.getNextStackOffset() 3350 // != 0 check is not enough and we need to check if any CCValAssign ArgsLocs 3351 // are passed CCValAssign::Indirect. 3352 for (auto &VA : ArgLocs) 3353 if (VA.getLocInfo() == CCValAssign::Indirect) 3354 return false; 3355 3356 // Do not tail call opt if either caller or callee uses struct return 3357 // semantics. 3358 auto IsCallerStructRet = Caller.hasStructRetAttr(); 3359 auto IsCalleeStructRet = Outs.empty() ? false : Outs[0].Flags.isSRet(); 3360 if (IsCallerStructRet || IsCalleeStructRet) 3361 return false; 3362 3363 // Externally-defined functions with weak linkage should not be 3364 // tail-called. The behaviour of branch instructions in this situation (as 3365 // used for tail calls) is implementation-defined, so we cannot rely on the 3366 // linker replacing the tail call with a return. 3367 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 3368 const GlobalValue *GV = G->getGlobal(); 3369 if (GV->hasExternalWeakLinkage()) 3370 return false; 3371 } 3372 3373 // The callee has to preserve all registers the caller needs to preserve. 3374 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 3375 const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC); 3376 if (CalleeCC != CallerCC) { 3377 const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC); 3378 if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved)) 3379 return false; 3380 } 3381 3382 // Byval parameters hand the function a pointer directly into the stack area 3383 // we want to reuse during a tail call. Working around this *is* possible 3384 // but less efficient and uglier in LowerCall. 3385 for (auto &Arg : Outs) 3386 if (Arg.Flags.isByVal()) 3387 return false; 3388 3389 return true; 3390 } 3391 3392 // Lower a call to a callseq_start + CALL + callseq_end chain, and add input 3393 // and output parameter nodes. 3394 SDValue RISCVTargetLowering::LowerCall(CallLoweringInfo &CLI, 3395 SmallVectorImpl<SDValue> &InVals) const { 3396 SelectionDAG &DAG = CLI.DAG; 3397 SDLoc &DL = CLI.DL; 3398 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 3399 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 3400 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 3401 SDValue Chain = CLI.Chain; 3402 SDValue Callee = CLI.Callee; 3403 bool &IsTailCall = CLI.IsTailCall; 3404 CallingConv::ID CallConv = CLI.CallConv; 3405 bool IsVarArg = CLI.IsVarArg; 3406 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3407 MVT XLenVT = Subtarget.getXLenVT(); 3408 3409 MachineFunction &MF = DAG.getMachineFunction(); 3410 3411 // Analyze the operands of the call, assigning locations to each operand. 3412 SmallVector<CCValAssign, 16> ArgLocs; 3413 CCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 3414 3415 if (CallConv == CallingConv::Fast) 3416 ArgCCInfo.AnalyzeCallOperands(Outs, CC_RISCV_FastCC); 3417 else if (CallConv == CallingConv::GHC) 3418 ArgCCInfo.AnalyzeCallOperands(Outs, CC_RISCV_GHC); 3419 else 3420 analyzeOutputArgs(MF, ArgCCInfo, Outs, /*IsRet=*/false, &CLI); 3421 3422 // Check if it's really possible to do a tail call. 3423 if (IsTailCall) 3424 IsTailCall = isEligibleForTailCallOptimization(ArgCCInfo, CLI, MF, ArgLocs); 3425 3426 if (IsTailCall) 3427 ++NumTailCalls; 3428 else if (CLI.CB && CLI.CB->isMustTailCall()) 3429 report_fatal_error("failed to perform tail call elimination on a call " 3430 "site marked musttail"); 3431 3432 // Get a count of how many bytes are to be pushed on the stack. 3433 unsigned NumBytes = ArgCCInfo.getNextStackOffset(); 3434 3435 // Create local copies for byval args 3436 SmallVector<SDValue, 8> ByValArgs; 3437 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 3438 ISD::ArgFlagsTy Flags = Outs[i].Flags; 3439 if (!Flags.isByVal()) 3440 continue; 3441 3442 SDValue Arg = OutVals[i]; 3443 unsigned Size = Flags.getByValSize(); 3444 Align Alignment = Flags.getNonZeroByValAlign(); 3445 3446 int FI = 3447 MF.getFrameInfo().CreateStackObject(Size, Alignment, /*isSS=*/false); 3448 SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 3449 SDValue SizeNode = DAG.getConstant(Size, DL, XLenVT); 3450 3451 Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Alignment, 3452 /*IsVolatile=*/false, 3453 /*AlwaysInline=*/false, IsTailCall, 3454 MachinePointerInfo(), MachinePointerInfo()); 3455 ByValArgs.push_back(FIPtr); 3456 } 3457 3458 if (!IsTailCall) 3459 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, CLI.DL); 3460 3461 // Copy argument values to their designated locations. 3462 SmallVector<std::pair<Register, SDValue>, 8> RegsToPass; 3463 SmallVector<SDValue, 8> MemOpChains; 3464 SDValue StackPtr; 3465 for (unsigned i = 0, j = 0, e = ArgLocs.size(); i != e; ++i) { 3466 CCValAssign &VA = ArgLocs[i]; 3467 SDValue ArgValue = OutVals[i]; 3468 ISD::ArgFlagsTy Flags = Outs[i].Flags; 3469 3470 // Handle passing f64 on RV32D with a soft float ABI as a special case. 3471 bool IsF64OnRV32DSoftABI = 3472 VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64; 3473 if (IsF64OnRV32DSoftABI && VA.isRegLoc()) { 3474 SDValue SplitF64 = DAG.getNode( 3475 RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), ArgValue); 3476 SDValue Lo = SplitF64.getValue(0); 3477 SDValue Hi = SplitF64.getValue(1); 3478 3479 Register RegLo = VA.getLocReg(); 3480 RegsToPass.push_back(std::make_pair(RegLo, Lo)); 3481 3482 if (RegLo == RISCV::X17) { 3483 // Second half of f64 is passed on the stack. 3484 // Work out the address of the stack slot. 3485 if (!StackPtr.getNode()) 3486 StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT); 3487 // Emit the store. 3488 MemOpChains.push_back( 3489 DAG.getStore(Chain, DL, Hi, StackPtr, MachinePointerInfo())); 3490 } else { 3491 // Second half of f64 is passed in another GPR. 3492 assert(RegLo < RISCV::X31 && "Invalid register pair"); 3493 Register RegHigh = RegLo + 1; 3494 RegsToPass.push_back(std::make_pair(RegHigh, Hi)); 3495 } 3496 continue; 3497 } 3498 3499 // IsF64OnRV32DSoftABI && VA.isMemLoc() is handled below in the same way 3500 // as any other MemLoc. 3501 3502 // Promote the value if needed. 3503 // For now, only handle fully promoted and indirect arguments. 3504 if (VA.getLocInfo() == CCValAssign::Indirect) { 3505 // Store the argument in a stack slot and pass its address. 3506 SDValue SpillSlot = DAG.CreateStackTemporary(Outs[i].ArgVT); 3507 int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); 3508 MemOpChains.push_back( 3509 DAG.getStore(Chain, DL, ArgValue, SpillSlot, 3510 MachinePointerInfo::getFixedStack(MF, FI))); 3511 // If the original argument was split (e.g. i128), we need 3512 // to store all parts of it here (and pass just one address). 3513 unsigned ArgIndex = Outs[i].OrigArgIndex; 3514 assert(Outs[i].PartOffset == 0); 3515 while (i + 1 != e && Outs[i + 1].OrigArgIndex == ArgIndex) { 3516 SDValue PartValue = OutVals[i + 1]; 3517 unsigned PartOffset = Outs[i + 1].PartOffset; 3518 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, 3519 DAG.getIntPtrConstant(PartOffset, DL)); 3520 MemOpChains.push_back( 3521 DAG.getStore(Chain, DL, PartValue, Address, 3522 MachinePointerInfo::getFixedStack(MF, FI))); 3523 ++i; 3524 } 3525 ArgValue = SpillSlot; 3526 } else { 3527 ArgValue = convertValVTToLocVT(DAG, ArgValue, VA, DL); 3528 } 3529 3530 // Use local copy if it is a byval arg. 3531 if (Flags.isByVal()) 3532 ArgValue = ByValArgs[j++]; 3533 3534 if (VA.isRegLoc()) { 3535 // Queue up the argument copies and emit them at the end. 3536 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue)); 3537 } else { 3538 assert(VA.isMemLoc() && "Argument not register or memory"); 3539 assert(!IsTailCall && "Tail call not allowed if stack is used " 3540 "for passing parameters"); 3541 3542 // Work out the address of the stack slot. 3543 if (!StackPtr.getNode()) 3544 StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT); 3545 SDValue Address = 3546 DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, 3547 DAG.getIntPtrConstant(VA.getLocMemOffset(), DL)); 3548 3549 // Emit the store. 3550 MemOpChains.push_back( 3551 DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo())); 3552 } 3553 } 3554 3555 // Join the stores, which are independent of one another. 3556 if (!MemOpChains.empty()) 3557 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); 3558 3559 SDValue Glue; 3560 3561 // Build a sequence of copy-to-reg nodes, chained and glued together. 3562 for (auto &Reg : RegsToPass) { 3563 Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, Glue); 3564 Glue = Chain.getValue(1); 3565 } 3566 3567 // Validate that none of the argument registers have been marked as 3568 // reserved, if so report an error. Do the same for the return address if this 3569 // is not a tailcall. 3570 validateCCReservedRegs(RegsToPass, MF); 3571 if (!IsTailCall && 3572 MF.getSubtarget<RISCVSubtarget>().isRegisterReservedByUser(RISCV::X1)) 3573 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 3574 MF.getFunction(), 3575 "Return address register required, but has been reserved."}); 3576 3577 // If the callee is a GlobalAddress/ExternalSymbol node, turn it into a 3578 // TargetGlobalAddress/TargetExternalSymbol node so that legalize won't 3579 // split it and then direct call can be matched by PseudoCALL. 3580 if (GlobalAddressSDNode *S = dyn_cast<GlobalAddressSDNode>(Callee)) { 3581 const GlobalValue *GV = S->getGlobal(); 3582 3583 unsigned OpFlags = RISCVII::MO_CALL; 3584 if (!getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV)) 3585 OpFlags = RISCVII::MO_PLT; 3586 3587 Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags); 3588 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { 3589 unsigned OpFlags = RISCVII::MO_CALL; 3590 3591 if (!getTargetMachine().shouldAssumeDSOLocal(*MF.getFunction().getParent(), 3592 nullptr)) 3593 OpFlags = RISCVII::MO_PLT; 3594 3595 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, OpFlags); 3596 } 3597 3598 // The first call operand is the chain and the second is the target address. 3599 SmallVector<SDValue, 8> Ops; 3600 Ops.push_back(Chain); 3601 Ops.push_back(Callee); 3602 3603 // Add argument registers to the end of the list so that they are 3604 // known live into the call. 3605 for (auto &Reg : RegsToPass) 3606 Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType())); 3607 3608 if (!IsTailCall) { 3609 // Add a register mask operand representing the call-preserved registers. 3610 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 3611 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv); 3612 assert(Mask && "Missing call preserved mask for calling convention"); 3613 Ops.push_back(DAG.getRegisterMask(Mask)); 3614 } 3615 3616 // Glue the call to the argument copies, if any. 3617 if (Glue.getNode()) 3618 Ops.push_back(Glue); 3619 3620 // Emit the call. 3621 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 3622 3623 if (IsTailCall) { 3624 MF.getFrameInfo().setHasTailCall(); 3625 return DAG.getNode(RISCVISD::TAIL, DL, NodeTys, Ops); 3626 } 3627 3628 Chain = DAG.getNode(RISCVISD::CALL, DL, NodeTys, Ops); 3629 DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge); 3630 Glue = Chain.getValue(1); 3631 3632 // Mark the end of the call, which is glued to the call itself. 3633 Chain = DAG.getCALLSEQ_END(Chain, 3634 DAG.getConstant(NumBytes, DL, PtrVT, true), 3635 DAG.getConstant(0, DL, PtrVT, true), 3636 Glue, DL); 3637 Glue = Chain.getValue(1); 3638 3639 // Assign locations to each value returned by this call. 3640 SmallVector<CCValAssign, 16> RVLocs; 3641 CCState RetCCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext()); 3642 analyzeInputArgs(MF, RetCCInfo, Ins, /*IsRet=*/true); 3643 3644 // Copy all of the result registers out of their specified physreg. 3645 for (auto &VA : RVLocs) { 3646 // Copy the value out 3647 SDValue RetValue = 3648 DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), Glue); 3649 // Glue the RetValue to the end of the call sequence 3650 Chain = RetValue.getValue(1); 3651 Glue = RetValue.getValue(2); 3652 3653 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { 3654 assert(VA.getLocReg() == ArgGPRs[0] && "Unexpected reg assignment"); 3655 SDValue RetValue2 = 3656 DAG.getCopyFromReg(Chain, DL, ArgGPRs[1], MVT::i32, Glue); 3657 Chain = RetValue2.getValue(1); 3658 Glue = RetValue2.getValue(2); 3659 RetValue = DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, RetValue, 3660 RetValue2); 3661 } 3662 3663 RetValue = convertLocVTToValVT(DAG, RetValue, VA, DL); 3664 3665 InVals.push_back(RetValue); 3666 } 3667 3668 return Chain; 3669 } 3670 3671 bool RISCVTargetLowering::CanLowerReturn( 3672 CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg, 3673 const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const { 3674 SmallVector<CCValAssign, 16> RVLocs; 3675 CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context); 3676 3677 Optional<unsigned> FirstMaskArgument; 3678 if (Subtarget.hasStdExtV()) 3679 FirstMaskArgument = preAssignMask(Outs); 3680 3681 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 3682 MVT VT = Outs[i].VT; 3683 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 3684 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 3685 if (CC_RISCV(MF.getDataLayout(), ABI, i, VT, VT, CCValAssign::Full, 3686 ArgFlags, CCInfo, /*IsFixed=*/true, /*IsRet=*/true, nullptr, 3687 *this, FirstMaskArgument)) 3688 return false; 3689 } 3690 return true; 3691 } 3692 3693 SDValue 3694 RISCVTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 3695 bool IsVarArg, 3696 const SmallVectorImpl<ISD::OutputArg> &Outs, 3697 const SmallVectorImpl<SDValue> &OutVals, 3698 const SDLoc &DL, SelectionDAG &DAG) const { 3699 const MachineFunction &MF = DAG.getMachineFunction(); 3700 const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>(); 3701 3702 // Stores the assignment of the return value to a location. 3703 SmallVector<CCValAssign, 16> RVLocs; 3704 3705 // Info about the registers and stack slot. 3706 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, 3707 *DAG.getContext()); 3708 3709 analyzeOutputArgs(DAG.getMachineFunction(), CCInfo, Outs, /*IsRet=*/true, 3710 nullptr); 3711 3712 if (CallConv == CallingConv::GHC && !RVLocs.empty()) 3713 report_fatal_error("GHC functions return void only"); 3714 3715 SDValue Glue; 3716 SmallVector<SDValue, 4> RetOps(1, Chain); 3717 3718 // Copy the result values into the output registers. 3719 for (unsigned i = 0, e = RVLocs.size(); i < e; ++i) { 3720 SDValue Val = OutVals[i]; 3721 CCValAssign &VA = RVLocs[i]; 3722 assert(VA.isRegLoc() && "Can only return in registers!"); 3723 3724 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { 3725 // Handle returning f64 on RV32D with a soft float ABI. 3726 assert(VA.isRegLoc() && "Expected return via registers"); 3727 SDValue SplitF64 = DAG.getNode(RISCVISD::SplitF64, DL, 3728 DAG.getVTList(MVT::i32, MVT::i32), Val); 3729 SDValue Lo = SplitF64.getValue(0); 3730 SDValue Hi = SplitF64.getValue(1); 3731 Register RegLo = VA.getLocReg(); 3732 assert(RegLo < RISCV::X31 && "Invalid register pair"); 3733 Register RegHi = RegLo + 1; 3734 3735 if (STI.isRegisterReservedByUser(RegLo) || 3736 STI.isRegisterReservedByUser(RegHi)) 3737 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 3738 MF.getFunction(), 3739 "Return value register required, but has been reserved."}); 3740 3741 Chain = DAG.getCopyToReg(Chain, DL, RegLo, Lo, Glue); 3742 Glue = Chain.getValue(1); 3743 RetOps.push_back(DAG.getRegister(RegLo, MVT::i32)); 3744 Chain = DAG.getCopyToReg(Chain, DL, RegHi, Hi, Glue); 3745 Glue = Chain.getValue(1); 3746 RetOps.push_back(DAG.getRegister(RegHi, MVT::i32)); 3747 } else { 3748 // Handle a 'normal' return. 3749 Val = convertValVTToLocVT(DAG, Val, VA, DL); 3750 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Glue); 3751 3752 if (STI.isRegisterReservedByUser(VA.getLocReg())) 3753 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 3754 MF.getFunction(), 3755 "Return value register required, but has been reserved."}); 3756 3757 // Guarantee that all emitted copies are stuck together. 3758 Glue = Chain.getValue(1); 3759 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 3760 } 3761 } 3762 3763 RetOps[0] = Chain; // Update chain. 3764 3765 // Add the glue node if we have it. 3766 if (Glue.getNode()) { 3767 RetOps.push_back(Glue); 3768 } 3769 3770 // Interrupt service routines use different return instructions. 3771 const Function &Func = DAG.getMachineFunction().getFunction(); 3772 if (Func.hasFnAttribute("interrupt")) { 3773 if (!Func.getReturnType()->isVoidTy()) 3774 report_fatal_error( 3775 "Functions with the interrupt attribute must have void return type!"); 3776 3777 MachineFunction &MF = DAG.getMachineFunction(); 3778 StringRef Kind = 3779 MF.getFunction().getFnAttribute("interrupt").getValueAsString(); 3780 3781 unsigned RetOpc; 3782 if (Kind == "user") 3783 RetOpc = RISCVISD::URET_FLAG; 3784 else if (Kind == "supervisor") 3785 RetOpc = RISCVISD::SRET_FLAG; 3786 else 3787 RetOpc = RISCVISD::MRET_FLAG; 3788 3789 return DAG.getNode(RetOpc, DL, MVT::Other, RetOps); 3790 } 3791 3792 return DAG.getNode(RISCVISD::RET_FLAG, DL, MVT::Other, RetOps); 3793 } 3794 3795 void RISCVTargetLowering::validateCCReservedRegs( 3796 const SmallVectorImpl<std::pair<llvm::Register, llvm::SDValue>> &Regs, 3797 MachineFunction &MF) const { 3798 const Function &F = MF.getFunction(); 3799 const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>(); 3800 3801 if (llvm::any_of(Regs, [&STI](auto Reg) { 3802 return STI.isRegisterReservedByUser(Reg.first); 3803 })) 3804 F.getContext().diagnose(DiagnosticInfoUnsupported{ 3805 F, "Argument register required, but has been reserved."}); 3806 } 3807 3808 bool RISCVTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { 3809 return CI->isTailCall(); 3810 } 3811 3812 const char *RISCVTargetLowering::getTargetNodeName(unsigned Opcode) const { 3813 #define NODE_NAME_CASE(NODE) \ 3814 case RISCVISD::NODE: \ 3815 return "RISCVISD::" #NODE; 3816 // clang-format off 3817 switch ((RISCVISD::NodeType)Opcode) { 3818 case RISCVISD::FIRST_NUMBER: 3819 break; 3820 NODE_NAME_CASE(RET_FLAG) 3821 NODE_NAME_CASE(URET_FLAG) 3822 NODE_NAME_CASE(SRET_FLAG) 3823 NODE_NAME_CASE(MRET_FLAG) 3824 NODE_NAME_CASE(CALL) 3825 NODE_NAME_CASE(SELECT_CC) 3826 NODE_NAME_CASE(BuildPairF64) 3827 NODE_NAME_CASE(SplitF64) 3828 NODE_NAME_CASE(TAIL) 3829 NODE_NAME_CASE(SLLW) 3830 NODE_NAME_CASE(SRAW) 3831 NODE_NAME_CASE(SRLW) 3832 NODE_NAME_CASE(DIVW) 3833 NODE_NAME_CASE(DIVUW) 3834 NODE_NAME_CASE(REMUW) 3835 NODE_NAME_CASE(ROLW) 3836 NODE_NAME_CASE(RORW) 3837 NODE_NAME_CASE(FSLW) 3838 NODE_NAME_CASE(FSRW) 3839 NODE_NAME_CASE(FMV_H_X) 3840 NODE_NAME_CASE(FMV_X_ANYEXTH) 3841 NODE_NAME_CASE(FMV_W_X_RV64) 3842 NODE_NAME_CASE(FMV_X_ANYEXTW_RV64) 3843 NODE_NAME_CASE(READ_CYCLE_WIDE) 3844 NODE_NAME_CASE(GREVI) 3845 NODE_NAME_CASE(GREVIW) 3846 NODE_NAME_CASE(GORCI) 3847 NODE_NAME_CASE(GORCIW) 3848 NODE_NAME_CASE(VMV_X_S) 3849 NODE_NAME_CASE(SPLAT_VECTOR_I64) 3850 NODE_NAME_CASE(READ_VLENB) 3851 NODE_NAME_CASE(TRUNCATE_VECTOR) 3852 NODE_NAME_CASE(VLEFF) 3853 NODE_NAME_CASE(VLEFF_MASK) 3854 NODE_NAME_CASE(READ_VL) 3855 } 3856 // clang-format on 3857 return nullptr; 3858 #undef NODE_NAME_CASE 3859 } 3860 3861 /// getConstraintType - Given a constraint letter, return the type of 3862 /// constraint it is for this target. 3863 RISCVTargetLowering::ConstraintType 3864 RISCVTargetLowering::getConstraintType(StringRef Constraint) const { 3865 if (Constraint.size() == 1) { 3866 switch (Constraint[0]) { 3867 default: 3868 break; 3869 case 'f': 3870 return C_RegisterClass; 3871 case 'I': 3872 case 'J': 3873 case 'K': 3874 return C_Immediate; 3875 case 'A': 3876 return C_Memory; 3877 } 3878 } 3879 return TargetLowering::getConstraintType(Constraint); 3880 } 3881 3882 std::pair<unsigned, const TargetRegisterClass *> 3883 RISCVTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 3884 StringRef Constraint, 3885 MVT VT) const { 3886 // First, see if this is a constraint that directly corresponds to a 3887 // RISCV register class. 3888 if (Constraint.size() == 1) { 3889 switch (Constraint[0]) { 3890 case 'r': 3891 return std::make_pair(0U, &RISCV::GPRRegClass); 3892 case 'f': 3893 if (Subtarget.hasStdExtZfh() && VT == MVT::f16) 3894 return std::make_pair(0U, &RISCV::FPR16RegClass); 3895 if (Subtarget.hasStdExtF() && VT == MVT::f32) 3896 return std::make_pair(0U, &RISCV::FPR32RegClass); 3897 if (Subtarget.hasStdExtD() && VT == MVT::f64) 3898 return std::make_pair(0U, &RISCV::FPR64RegClass); 3899 break; 3900 default: 3901 break; 3902 } 3903 } 3904 3905 // Clang will correctly decode the usage of register name aliases into their 3906 // official names. However, other frontends like `rustc` do not. This allows 3907 // users of these frontends to use the ABI names for registers in LLVM-style 3908 // register constraints. 3909 unsigned XRegFromAlias = StringSwitch<unsigned>(Constraint.lower()) 3910 .Case("{zero}", RISCV::X0) 3911 .Case("{ra}", RISCV::X1) 3912 .Case("{sp}", RISCV::X2) 3913 .Case("{gp}", RISCV::X3) 3914 .Case("{tp}", RISCV::X4) 3915 .Case("{t0}", RISCV::X5) 3916 .Case("{t1}", RISCV::X6) 3917 .Case("{t2}", RISCV::X7) 3918 .Cases("{s0}", "{fp}", RISCV::X8) 3919 .Case("{s1}", RISCV::X9) 3920 .Case("{a0}", RISCV::X10) 3921 .Case("{a1}", RISCV::X11) 3922 .Case("{a2}", RISCV::X12) 3923 .Case("{a3}", RISCV::X13) 3924 .Case("{a4}", RISCV::X14) 3925 .Case("{a5}", RISCV::X15) 3926 .Case("{a6}", RISCV::X16) 3927 .Case("{a7}", RISCV::X17) 3928 .Case("{s2}", RISCV::X18) 3929 .Case("{s3}", RISCV::X19) 3930 .Case("{s4}", RISCV::X20) 3931 .Case("{s5}", RISCV::X21) 3932 .Case("{s6}", RISCV::X22) 3933 .Case("{s7}", RISCV::X23) 3934 .Case("{s8}", RISCV::X24) 3935 .Case("{s9}", RISCV::X25) 3936 .Case("{s10}", RISCV::X26) 3937 .Case("{s11}", RISCV::X27) 3938 .Case("{t3}", RISCV::X28) 3939 .Case("{t4}", RISCV::X29) 3940 .Case("{t5}", RISCV::X30) 3941 .Case("{t6}", RISCV::X31) 3942 .Default(RISCV::NoRegister); 3943 if (XRegFromAlias != RISCV::NoRegister) 3944 return std::make_pair(XRegFromAlias, &RISCV::GPRRegClass); 3945 3946 // Since TargetLowering::getRegForInlineAsmConstraint uses the name of the 3947 // TableGen record rather than the AsmName to choose registers for InlineAsm 3948 // constraints, plus we want to match those names to the widest floating point 3949 // register type available, manually select floating point registers here. 3950 // 3951 // The second case is the ABI name of the register, so that frontends can also 3952 // use the ABI names in register constraint lists. 3953 if (Subtarget.hasStdExtF()) { 3954 unsigned FReg = StringSwitch<unsigned>(Constraint.lower()) 3955 .Cases("{f0}", "{ft0}", RISCV::F0_F) 3956 .Cases("{f1}", "{ft1}", RISCV::F1_F) 3957 .Cases("{f2}", "{ft2}", RISCV::F2_F) 3958 .Cases("{f3}", "{ft3}", RISCV::F3_F) 3959 .Cases("{f4}", "{ft4}", RISCV::F4_F) 3960 .Cases("{f5}", "{ft5}", RISCV::F5_F) 3961 .Cases("{f6}", "{ft6}", RISCV::F6_F) 3962 .Cases("{f7}", "{ft7}", RISCV::F7_F) 3963 .Cases("{f8}", "{fs0}", RISCV::F8_F) 3964 .Cases("{f9}", "{fs1}", RISCV::F9_F) 3965 .Cases("{f10}", "{fa0}", RISCV::F10_F) 3966 .Cases("{f11}", "{fa1}", RISCV::F11_F) 3967 .Cases("{f12}", "{fa2}", RISCV::F12_F) 3968 .Cases("{f13}", "{fa3}", RISCV::F13_F) 3969 .Cases("{f14}", "{fa4}", RISCV::F14_F) 3970 .Cases("{f15}", "{fa5}", RISCV::F15_F) 3971 .Cases("{f16}", "{fa6}", RISCV::F16_F) 3972 .Cases("{f17}", "{fa7}", RISCV::F17_F) 3973 .Cases("{f18}", "{fs2}", RISCV::F18_F) 3974 .Cases("{f19}", "{fs3}", RISCV::F19_F) 3975 .Cases("{f20}", "{fs4}", RISCV::F20_F) 3976 .Cases("{f21}", "{fs5}", RISCV::F21_F) 3977 .Cases("{f22}", "{fs6}", RISCV::F22_F) 3978 .Cases("{f23}", "{fs7}", RISCV::F23_F) 3979 .Cases("{f24}", "{fs8}", RISCV::F24_F) 3980 .Cases("{f25}", "{fs9}", RISCV::F25_F) 3981 .Cases("{f26}", "{fs10}", RISCV::F26_F) 3982 .Cases("{f27}", "{fs11}", RISCV::F27_F) 3983 .Cases("{f28}", "{ft8}", RISCV::F28_F) 3984 .Cases("{f29}", "{ft9}", RISCV::F29_F) 3985 .Cases("{f30}", "{ft10}", RISCV::F30_F) 3986 .Cases("{f31}", "{ft11}", RISCV::F31_F) 3987 .Default(RISCV::NoRegister); 3988 if (FReg != RISCV::NoRegister) { 3989 assert(RISCV::F0_F <= FReg && FReg <= RISCV::F31_F && "Unknown fp-reg"); 3990 if (Subtarget.hasStdExtD()) { 3991 unsigned RegNo = FReg - RISCV::F0_F; 3992 unsigned DReg = RISCV::F0_D + RegNo; 3993 return std::make_pair(DReg, &RISCV::FPR64RegClass); 3994 } 3995 return std::make_pair(FReg, &RISCV::FPR32RegClass); 3996 } 3997 } 3998 3999 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 4000 } 4001 4002 unsigned 4003 RISCVTargetLowering::getInlineAsmMemConstraint(StringRef ConstraintCode) const { 4004 // Currently only support length 1 constraints. 4005 if (ConstraintCode.size() == 1) { 4006 switch (ConstraintCode[0]) { 4007 case 'A': 4008 return InlineAsm::Constraint_A; 4009 default: 4010 break; 4011 } 4012 } 4013 4014 return TargetLowering::getInlineAsmMemConstraint(ConstraintCode); 4015 } 4016 4017 void RISCVTargetLowering::LowerAsmOperandForConstraint( 4018 SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops, 4019 SelectionDAG &DAG) const { 4020 // Currently only support length 1 constraints. 4021 if (Constraint.length() == 1) { 4022 switch (Constraint[0]) { 4023 case 'I': 4024 // Validate & create a 12-bit signed immediate operand. 4025 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 4026 uint64_t CVal = C->getSExtValue(); 4027 if (isInt<12>(CVal)) 4028 Ops.push_back( 4029 DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT())); 4030 } 4031 return; 4032 case 'J': 4033 // Validate & create an integer zero operand. 4034 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 4035 if (C->getZExtValue() == 0) 4036 Ops.push_back( 4037 DAG.getTargetConstant(0, SDLoc(Op), Subtarget.getXLenVT())); 4038 return; 4039 case 'K': 4040 // Validate & create a 5-bit unsigned immediate operand. 4041 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 4042 uint64_t CVal = C->getZExtValue(); 4043 if (isUInt<5>(CVal)) 4044 Ops.push_back( 4045 DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT())); 4046 } 4047 return; 4048 default: 4049 break; 4050 } 4051 } 4052 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 4053 } 4054 4055 Instruction *RISCVTargetLowering::emitLeadingFence(IRBuilder<> &Builder, 4056 Instruction *Inst, 4057 AtomicOrdering Ord) const { 4058 if (isa<LoadInst>(Inst) && Ord == AtomicOrdering::SequentiallyConsistent) 4059 return Builder.CreateFence(Ord); 4060 if (isa<StoreInst>(Inst) && isReleaseOrStronger(Ord)) 4061 return Builder.CreateFence(AtomicOrdering::Release); 4062 return nullptr; 4063 } 4064 4065 Instruction *RISCVTargetLowering::emitTrailingFence(IRBuilder<> &Builder, 4066 Instruction *Inst, 4067 AtomicOrdering Ord) const { 4068 if (isa<LoadInst>(Inst) && isAcquireOrStronger(Ord)) 4069 return Builder.CreateFence(AtomicOrdering::Acquire); 4070 return nullptr; 4071 } 4072 4073 TargetLowering::AtomicExpansionKind 4074 RISCVTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { 4075 // atomicrmw {fadd,fsub} must be expanded to use compare-exchange, as floating 4076 // point operations can't be used in an lr/sc sequence without breaking the 4077 // forward-progress guarantee. 4078 if (AI->isFloatingPointOperation()) 4079 return AtomicExpansionKind::CmpXChg; 4080 4081 unsigned Size = AI->getType()->getPrimitiveSizeInBits(); 4082 if (Size == 8 || Size == 16) 4083 return AtomicExpansionKind::MaskedIntrinsic; 4084 return AtomicExpansionKind::None; 4085 } 4086 4087 static Intrinsic::ID 4088 getIntrinsicForMaskedAtomicRMWBinOp(unsigned XLen, AtomicRMWInst::BinOp BinOp) { 4089 if (XLen == 32) { 4090 switch (BinOp) { 4091 default: 4092 llvm_unreachable("Unexpected AtomicRMW BinOp"); 4093 case AtomicRMWInst::Xchg: 4094 return Intrinsic::riscv_masked_atomicrmw_xchg_i32; 4095 case AtomicRMWInst::Add: 4096 return Intrinsic::riscv_masked_atomicrmw_add_i32; 4097 case AtomicRMWInst::Sub: 4098 return Intrinsic::riscv_masked_atomicrmw_sub_i32; 4099 case AtomicRMWInst::Nand: 4100 return Intrinsic::riscv_masked_atomicrmw_nand_i32; 4101 case AtomicRMWInst::Max: 4102 return Intrinsic::riscv_masked_atomicrmw_max_i32; 4103 case AtomicRMWInst::Min: 4104 return Intrinsic::riscv_masked_atomicrmw_min_i32; 4105 case AtomicRMWInst::UMax: 4106 return Intrinsic::riscv_masked_atomicrmw_umax_i32; 4107 case AtomicRMWInst::UMin: 4108 return Intrinsic::riscv_masked_atomicrmw_umin_i32; 4109 } 4110 } 4111 4112 if (XLen == 64) { 4113 switch (BinOp) { 4114 default: 4115 llvm_unreachable("Unexpected AtomicRMW BinOp"); 4116 case AtomicRMWInst::Xchg: 4117 return Intrinsic::riscv_masked_atomicrmw_xchg_i64; 4118 case AtomicRMWInst::Add: 4119 return Intrinsic::riscv_masked_atomicrmw_add_i64; 4120 case AtomicRMWInst::Sub: 4121 return Intrinsic::riscv_masked_atomicrmw_sub_i64; 4122 case AtomicRMWInst::Nand: 4123 return Intrinsic::riscv_masked_atomicrmw_nand_i64; 4124 case AtomicRMWInst::Max: 4125 return Intrinsic::riscv_masked_atomicrmw_max_i64; 4126 case AtomicRMWInst::Min: 4127 return Intrinsic::riscv_masked_atomicrmw_min_i64; 4128 case AtomicRMWInst::UMax: 4129 return Intrinsic::riscv_masked_atomicrmw_umax_i64; 4130 case AtomicRMWInst::UMin: 4131 return Intrinsic::riscv_masked_atomicrmw_umin_i64; 4132 } 4133 } 4134 4135 llvm_unreachable("Unexpected XLen\n"); 4136 } 4137 4138 Value *RISCVTargetLowering::emitMaskedAtomicRMWIntrinsic( 4139 IRBuilder<> &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr, 4140 Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const { 4141 unsigned XLen = Subtarget.getXLen(); 4142 Value *Ordering = 4143 Builder.getIntN(XLen, static_cast<uint64_t>(AI->getOrdering())); 4144 Type *Tys[] = {AlignedAddr->getType()}; 4145 Function *LrwOpScwLoop = Intrinsic::getDeclaration( 4146 AI->getModule(), 4147 getIntrinsicForMaskedAtomicRMWBinOp(XLen, AI->getOperation()), Tys); 4148 4149 if (XLen == 64) { 4150 Incr = Builder.CreateSExt(Incr, Builder.getInt64Ty()); 4151 Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty()); 4152 ShiftAmt = Builder.CreateSExt(ShiftAmt, Builder.getInt64Ty()); 4153 } 4154 4155 Value *Result; 4156 4157 // Must pass the shift amount needed to sign extend the loaded value prior 4158 // to performing a signed comparison for min/max. ShiftAmt is the number of 4159 // bits to shift the value into position. Pass XLen-ShiftAmt-ValWidth, which 4160 // is the number of bits to left+right shift the value in order to 4161 // sign-extend. 4162 if (AI->getOperation() == AtomicRMWInst::Min || 4163 AI->getOperation() == AtomicRMWInst::Max) { 4164 const DataLayout &DL = AI->getModule()->getDataLayout(); 4165 unsigned ValWidth = 4166 DL.getTypeStoreSizeInBits(AI->getValOperand()->getType()); 4167 Value *SextShamt = 4168 Builder.CreateSub(Builder.getIntN(XLen, XLen - ValWidth), ShiftAmt); 4169 Result = Builder.CreateCall(LrwOpScwLoop, 4170 {AlignedAddr, Incr, Mask, SextShamt, Ordering}); 4171 } else { 4172 Result = 4173 Builder.CreateCall(LrwOpScwLoop, {AlignedAddr, Incr, Mask, Ordering}); 4174 } 4175 4176 if (XLen == 64) 4177 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty()); 4178 return Result; 4179 } 4180 4181 TargetLowering::AtomicExpansionKind 4182 RISCVTargetLowering::shouldExpandAtomicCmpXchgInIR( 4183 AtomicCmpXchgInst *CI) const { 4184 unsigned Size = CI->getCompareOperand()->getType()->getPrimitiveSizeInBits(); 4185 if (Size == 8 || Size == 16) 4186 return AtomicExpansionKind::MaskedIntrinsic; 4187 return AtomicExpansionKind::None; 4188 } 4189 4190 Value *RISCVTargetLowering::emitMaskedAtomicCmpXchgIntrinsic( 4191 IRBuilder<> &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr, 4192 Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const { 4193 unsigned XLen = Subtarget.getXLen(); 4194 Value *Ordering = Builder.getIntN(XLen, static_cast<uint64_t>(Ord)); 4195 Intrinsic::ID CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i32; 4196 if (XLen == 64) { 4197 CmpVal = Builder.CreateSExt(CmpVal, Builder.getInt64Ty()); 4198 NewVal = Builder.CreateSExt(NewVal, Builder.getInt64Ty()); 4199 Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty()); 4200 CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i64; 4201 } 4202 Type *Tys[] = {AlignedAddr->getType()}; 4203 Function *MaskedCmpXchg = 4204 Intrinsic::getDeclaration(CI->getModule(), CmpXchgIntrID, Tys); 4205 Value *Result = Builder.CreateCall( 4206 MaskedCmpXchg, {AlignedAddr, CmpVal, NewVal, Mask, Ordering}); 4207 if (XLen == 64) 4208 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty()); 4209 return Result; 4210 } 4211 4212 bool RISCVTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, 4213 EVT VT) const { 4214 VT = VT.getScalarType(); 4215 4216 if (!VT.isSimple()) 4217 return false; 4218 4219 switch (VT.getSimpleVT().SimpleTy) { 4220 case MVT::f16: 4221 return Subtarget.hasStdExtZfh(); 4222 case MVT::f32: 4223 return Subtarget.hasStdExtF(); 4224 case MVT::f64: 4225 return Subtarget.hasStdExtD(); 4226 default: 4227 break; 4228 } 4229 4230 return false; 4231 } 4232 4233 Register RISCVTargetLowering::getExceptionPointerRegister( 4234 const Constant *PersonalityFn) const { 4235 return RISCV::X10; 4236 } 4237 4238 Register RISCVTargetLowering::getExceptionSelectorRegister( 4239 const Constant *PersonalityFn) const { 4240 return RISCV::X11; 4241 } 4242 4243 bool RISCVTargetLowering::shouldExtendTypeInLibCall(EVT Type) const { 4244 // Return false to suppress the unnecessary extensions if the LibCall 4245 // arguments or return value is f32 type for LP64 ABI. 4246 RISCVABI::ABI ABI = Subtarget.getTargetABI(); 4247 if (ABI == RISCVABI::ABI_LP64 && (Type == MVT::f32)) 4248 return false; 4249 4250 return true; 4251 } 4252 4253 bool RISCVTargetLowering::shouldSignExtendTypeInLibCall(EVT Type, bool IsSigned) const { 4254 if (Subtarget.is64Bit() && Type == MVT::i32) 4255 return true; 4256 4257 return IsSigned; 4258 } 4259 4260 bool RISCVTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT, 4261 SDValue C) const { 4262 // Check integral scalar types. 4263 if (VT.isScalarInteger()) { 4264 // Omit the optimization if the sub target has the M extension and the data 4265 // size exceeds XLen. 4266 if (Subtarget.hasStdExtM() && VT.getSizeInBits() > Subtarget.getXLen()) 4267 return false; 4268 if (auto *ConstNode = dyn_cast<ConstantSDNode>(C.getNode())) { 4269 // Break the MUL to a SLLI and an ADD/SUB. 4270 const APInt &Imm = ConstNode->getAPIntValue(); 4271 if ((Imm + 1).isPowerOf2() || (Imm - 1).isPowerOf2() || 4272 (1 - Imm).isPowerOf2() || (-1 - Imm).isPowerOf2()) 4273 return true; 4274 // Omit the following optimization if the sub target has the M extension 4275 // and the data size >= XLen. 4276 if (Subtarget.hasStdExtM() && VT.getSizeInBits() >= Subtarget.getXLen()) 4277 return false; 4278 // Break the MUL to two SLLI instructions and an ADD/SUB, if Imm needs 4279 // a pair of LUI/ADDI. 4280 if (!Imm.isSignedIntN(12) && Imm.countTrailingZeros() < 12) { 4281 APInt ImmS = Imm.ashr(Imm.countTrailingZeros()); 4282 if ((ImmS + 1).isPowerOf2() || (ImmS - 1).isPowerOf2() || 4283 (1 - ImmS).isPowerOf2()) 4284 return true; 4285 } 4286 } 4287 } 4288 4289 return false; 4290 } 4291 4292 #define GET_REGISTER_MATCHER 4293 #include "RISCVGenAsmMatcher.inc" 4294 4295 Register 4296 RISCVTargetLowering::getRegisterByName(const char *RegName, LLT VT, 4297 const MachineFunction &MF) const { 4298 Register Reg = MatchRegisterAltName(RegName); 4299 if (Reg == RISCV::NoRegister) 4300 Reg = MatchRegisterName(RegName); 4301 if (Reg == RISCV::NoRegister) 4302 report_fatal_error( 4303 Twine("Invalid register name \"" + StringRef(RegName) + "\".")); 4304 BitVector ReservedRegs = Subtarget.getRegisterInfo()->getReservedRegs(MF); 4305 if (!ReservedRegs.test(Reg) && !Subtarget.isRegisterReservedByUser(Reg)) 4306 report_fatal_error(Twine("Trying to obtain non-reserved register \"" + 4307 StringRef(RegName) + "\".")); 4308 return Reg; 4309 } 4310 4311 namespace llvm { 4312 namespace RISCVVIntrinsicsTable { 4313 4314 #define GET_RISCVVIntrinsicsTable_IMPL 4315 #include "RISCVGenSearchableTables.inc" 4316 4317 } // namespace RISCVVIntrinsicsTable 4318 4319 namespace RISCVZvlssegTable { 4320 4321 #define GET_RISCVZvlssegTable_IMPL 4322 #include "RISCVGenSearchableTables.inc" 4323 4324 } // namespace RISCVZvlssegTable 4325 } // namespace llvm 4326