1 //===-- RISCVISelLowering.cpp - RISCV DAG Lowering Implementation  --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the interfaces that RISCV uses to lower LLVM code into a
10 // selection DAG.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "RISCVISelLowering.h"
15 #include "MCTargetDesc/RISCVMatInt.h"
16 #include "RISCV.h"
17 #include "RISCVMachineFunctionInfo.h"
18 #include "RISCVRegisterInfo.h"
19 #include "RISCVSubtarget.h"
20 #include "RISCVTargetMachine.h"
21 #include "llvm/ADT/SmallSet.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/CodeGen/CallingConvLower.h"
24 #include "llvm/CodeGen/MachineFrameInfo.h"
25 #include "llvm/CodeGen/MachineFunction.h"
26 #include "llvm/CodeGen/MachineInstrBuilder.h"
27 #include "llvm/CodeGen/MachineRegisterInfo.h"
28 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
29 #include "llvm/CodeGen/ValueTypes.h"
30 #include "llvm/IR/DiagnosticInfo.h"
31 #include "llvm/IR/DiagnosticPrinter.h"
32 #include "llvm/IR/IntrinsicsRISCV.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/ErrorHandling.h"
35 #include "llvm/Support/KnownBits.h"
36 #include "llvm/Support/MathExtras.h"
37 #include "llvm/Support/raw_ostream.h"
38 
39 using namespace llvm;
40 
41 #define DEBUG_TYPE "riscv-lower"
42 
43 STATISTIC(NumTailCalls, "Number of tail calls");
44 
45 RISCVTargetLowering::RISCVTargetLowering(const TargetMachine &TM,
46                                          const RISCVSubtarget &STI)
47     : TargetLowering(TM), Subtarget(STI) {
48 
49   if (Subtarget.isRV32E())
50     report_fatal_error("Codegen not yet implemented for RV32E");
51 
52   RISCVABI::ABI ABI = Subtarget.getTargetABI();
53   assert(ABI != RISCVABI::ABI_Unknown && "Improperly initialised target ABI");
54 
55   if ((ABI == RISCVABI::ABI_ILP32F || ABI == RISCVABI::ABI_LP64F) &&
56       !Subtarget.hasStdExtF()) {
57     errs() << "Hard-float 'f' ABI can't be used for a target that "
58                 "doesn't support the F instruction set extension (ignoring "
59                           "target-abi)\n";
60     ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32;
61   } else if ((ABI == RISCVABI::ABI_ILP32D || ABI == RISCVABI::ABI_LP64D) &&
62              !Subtarget.hasStdExtD()) {
63     errs() << "Hard-float 'd' ABI can't be used for a target that "
64               "doesn't support the D instruction set extension (ignoring "
65               "target-abi)\n";
66     ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32;
67   }
68 
69   switch (ABI) {
70   default:
71     report_fatal_error("Don't know how to lower this ABI");
72   case RISCVABI::ABI_ILP32:
73   case RISCVABI::ABI_ILP32F:
74   case RISCVABI::ABI_ILP32D:
75   case RISCVABI::ABI_LP64:
76   case RISCVABI::ABI_LP64F:
77   case RISCVABI::ABI_LP64D:
78     break;
79   }
80 
81   MVT XLenVT = Subtarget.getXLenVT();
82 
83   // Set up the register classes.
84   addRegisterClass(XLenVT, &RISCV::GPRRegClass);
85 
86   if (Subtarget.hasStdExtZfh())
87     addRegisterClass(MVT::f16, &RISCV::FPR16RegClass);
88   if (Subtarget.hasStdExtF())
89     addRegisterClass(MVT::f32, &RISCV::FPR32RegClass);
90   if (Subtarget.hasStdExtD())
91     addRegisterClass(MVT::f64, &RISCV::FPR64RegClass);
92 
93   static const MVT::SimpleValueType BoolVecVTs[] = {
94       MVT::nxv1i1,  MVT::nxv2i1,  MVT::nxv4i1, MVT::nxv8i1,
95       MVT::nxv16i1, MVT::nxv32i1, MVT::nxv64i1};
96   static const MVT::SimpleValueType IntVecVTs[] = {
97       MVT::nxv1i8,  MVT::nxv2i8,   MVT::nxv4i8,   MVT::nxv8i8,  MVT::nxv16i8,
98       MVT::nxv32i8, MVT::nxv64i8,  MVT::nxv1i16,  MVT::nxv2i16, MVT::nxv4i16,
99       MVT::nxv8i16, MVT::nxv16i16, MVT::nxv32i16, MVT::nxv1i32, MVT::nxv2i32,
100       MVT::nxv4i32, MVT::nxv8i32,  MVT::nxv16i32, MVT::nxv1i64, MVT::nxv2i64,
101       MVT::nxv4i64, MVT::nxv8i64};
102   static const MVT::SimpleValueType F16VecVTs[] = {
103       MVT::nxv1f16, MVT::nxv2f16,  MVT::nxv4f16,
104       MVT::nxv8f16, MVT::nxv16f16, MVT::nxv32f16};
105   static const MVT::SimpleValueType F32VecVTs[] = {
106       MVT::nxv1f32, MVT::nxv2f32, MVT::nxv4f32, MVT::nxv8f32, MVT::nxv16f32};
107   static const MVT::SimpleValueType F64VecVTs[] = {
108       MVT::nxv1f64, MVT::nxv2f64, MVT::nxv4f64, MVT::nxv8f64};
109 
110   if (Subtarget.hasStdExtV()) {
111     auto addRegClassForRVV = [this](MVT VT) {
112       unsigned Size = VT.getSizeInBits().getKnownMinValue();
113       assert(Size <= 512 && isPowerOf2_32(Size));
114       const TargetRegisterClass *RC;
115       if (Size <= 64)
116         RC = &RISCV::VRRegClass;
117       else if (Size == 128)
118         RC = &RISCV::VRM2RegClass;
119       else if (Size == 256)
120         RC = &RISCV::VRM4RegClass;
121       else
122         RC = &RISCV::VRM8RegClass;
123 
124       addRegisterClass(VT, RC);
125     };
126 
127     for (MVT VT : BoolVecVTs)
128       addRegClassForRVV(VT);
129     for (MVT VT : IntVecVTs)
130       addRegClassForRVV(VT);
131 
132     if (Subtarget.hasStdExtZfh())
133       for (MVT VT : F16VecVTs)
134         addRegClassForRVV(VT);
135 
136     if (Subtarget.hasStdExtF())
137       for (MVT VT : F32VecVTs)
138         addRegClassForRVV(VT);
139 
140     if (Subtarget.hasStdExtD())
141       for (MVT VT : F64VecVTs)
142         addRegClassForRVV(VT);
143 
144     if (Subtarget.useRVVForFixedLengthVectors()) {
145       auto addRegClassForFixedVectors = [this](MVT VT) {
146         MVT ContainerVT = getContainerForFixedLengthVector(VT);
147         unsigned RCID = getRegClassIDForVecVT(ContainerVT);
148         const RISCVRegisterInfo &TRI = *Subtarget.getRegisterInfo();
149         addRegisterClass(VT, TRI.getRegClass(RCID));
150       };
151       for (MVT VT : MVT::integer_fixedlen_vector_valuetypes())
152         if (useRVVForFixedLengthVectorVT(VT))
153           addRegClassForFixedVectors(VT);
154 
155       for (MVT VT : MVT::fp_fixedlen_vector_valuetypes())
156         if (useRVVForFixedLengthVectorVT(VT))
157           addRegClassForFixedVectors(VT);
158     }
159   }
160 
161   // Compute derived properties from the register classes.
162   computeRegisterProperties(STI.getRegisterInfo());
163 
164   setStackPointerRegisterToSaveRestore(RISCV::X2);
165 
166   for (auto N : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD})
167     setLoadExtAction(N, XLenVT, MVT::i1, Promote);
168 
169   // TODO: add all necessary setOperationAction calls.
170   setOperationAction(ISD::DYNAMIC_STACKALLOC, XLenVT, Expand);
171 
172   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
173   setOperationAction(ISD::BR_CC, XLenVT, Expand);
174   setOperationAction(ISD::BRCOND, MVT::Other, Custom);
175   setOperationAction(ISD::SELECT_CC, XLenVT, Expand);
176 
177   setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
178   setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
179 
180   setOperationAction(ISD::VASTART, MVT::Other, Custom);
181   setOperationAction(ISD::VAARG, MVT::Other, Expand);
182   setOperationAction(ISD::VACOPY, MVT::Other, Expand);
183   setOperationAction(ISD::VAEND, MVT::Other, Expand);
184 
185   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
186   if (!Subtarget.hasStdExtZbb()) {
187     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand);
188     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
189   }
190 
191   if (Subtarget.is64Bit()) {
192     setOperationAction(ISD::ADD, MVT::i32, Custom);
193     setOperationAction(ISD::SUB, MVT::i32, Custom);
194     setOperationAction(ISD::SHL, MVT::i32, Custom);
195     setOperationAction(ISD::SRA, MVT::i32, Custom);
196     setOperationAction(ISD::SRL, MVT::i32, Custom);
197 
198     setOperationAction(ISD::UADDO, MVT::i32, Custom);
199     setOperationAction(ISD::USUBO, MVT::i32, Custom);
200     setOperationAction(ISD::UADDSAT, MVT::i32, Custom);
201     setOperationAction(ISD::USUBSAT, MVT::i32, Custom);
202   }
203 
204   if (!Subtarget.hasStdExtM()) {
205     setOperationAction(ISD::MUL, XLenVT, Expand);
206     setOperationAction(ISD::MULHS, XLenVT, Expand);
207     setOperationAction(ISD::MULHU, XLenVT, Expand);
208     setOperationAction(ISD::SDIV, XLenVT, Expand);
209     setOperationAction(ISD::UDIV, XLenVT, Expand);
210     setOperationAction(ISD::SREM, XLenVT, Expand);
211     setOperationAction(ISD::UREM, XLenVT, Expand);
212   } else {
213     if (Subtarget.is64Bit()) {
214       setOperationAction(ISD::MUL, MVT::i32, Custom);
215       setOperationAction(ISD::MUL, MVT::i128, Custom);
216 
217       setOperationAction(ISD::SDIV, MVT::i8, Custom);
218       setOperationAction(ISD::UDIV, MVT::i8, Custom);
219       setOperationAction(ISD::UREM, MVT::i8, Custom);
220       setOperationAction(ISD::SDIV, MVT::i16, Custom);
221       setOperationAction(ISD::UDIV, MVT::i16, Custom);
222       setOperationAction(ISD::UREM, MVT::i16, Custom);
223       setOperationAction(ISD::SDIV, MVT::i32, Custom);
224       setOperationAction(ISD::UDIV, MVT::i32, Custom);
225       setOperationAction(ISD::UREM, MVT::i32, Custom);
226     } else {
227       setOperationAction(ISD::MUL, MVT::i64, Custom);
228     }
229   }
230 
231   setOperationAction(ISD::SDIVREM, XLenVT, Expand);
232   setOperationAction(ISD::UDIVREM, XLenVT, Expand);
233   setOperationAction(ISD::SMUL_LOHI, XLenVT, Expand);
234   setOperationAction(ISD::UMUL_LOHI, XLenVT, Expand);
235 
236   setOperationAction(ISD::SHL_PARTS, XLenVT, Custom);
237   setOperationAction(ISD::SRL_PARTS, XLenVT, Custom);
238   setOperationAction(ISD::SRA_PARTS, XLenVT, Custom);
239 
240   if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp()) {
241     if (Subtarget.is64Bit()) {
242       setOperationAction(ISD::ROTL, MVT::i32, Custom);
243       setOperationAction(ISD::ROTR, MVT::i32, Custom);
244     }
245   } else {
246     setOperationAction(ISD::ROTL, XLenVT, Expand);
247     setOperationAction(ISD::ROTR, XLenVT, Expand);
248   }
249 
250   if (Subtarget.hasStdExtZbp()) {
251     // Custom lower bswap/bitreverse so we can convert them to GREVI to enable
252     // more combining.
253     setOperationAction(ISD::BITREVERSE, XLenVT, Custom);
254     setOperationAction(ISD::BSWAP, XLenVT, Custom);
255 
256     if (Subtarget.is64Bit()) {
257       setOperationAction(ISD::BITREVERSE, MVT::i32, Custom);
258       setOperationAction(ISD::BSWAP, MVT::i32, Custom);
259     }
260   } else {
261     // With Zbb we have an XLen rev8 instruction, but not GREVI. So we'll
262     // pattern match it directly in isel.
263     setOperationAction(ISD::BSWAP, XLenVT,
264                        Subtarget.hasStdExtZbb() ? Legal : Expand);
265   }
266 
267   if (Subtarget.hasStdExtZbb()) {
268     setOperationAction(ISD::SMIN, XLenVT, Legal);
269     setOperationAction(ISD::SMAX, XLenVT, Legal);
270     setOperationAction(ISD::UMIN, XLenVT, Legal);
271     setOperationAction(ISD::UMAX, XLenVT, Legal);
272 
273     if (Subtarget.is64Bit()) {
274       setOperationAction(ISD::CTTZ, MVT::i32, Custom);
275       setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Custom);
276       setOperationAction(ISD::CTLZ, MVT::i32, Custom);
277       setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom);
278     }
279   } else {
280     setOperationAction(ISD::CTTZ, XLenVT, Expand);
281     setOperationAction(ISD::CTLZ, XLenVT, Expand);
282     setOperationAction(ISD::CTPOP, XLenVT, Expand);
283   }
284 
285   if (Subtarget.hasStdExtZbt()) {
286     setOperationAction(ISD::FSHL, XLenVT, Custom);
287     setOperationAction(ISD::FSHR, XLenVT, Custom);
288     setOperationAction(ISD::SELECT, XLenVT, Legal);
289 
290     if (Subtarget.is64Bit()) {
291       setOperationAction(ISD::FSHL, MVT::i32, Custom);
292       setOperationAction(ISD::FSHR, MVT::i32, Custom);
293     }
294   } else {
295     setOperationAction(ISD::SELECT, XLenVT, Custom);
296   }
297 
298   ISD::CondCode FPCCToExpand[] = {
299       ISD::SETOGT, ISD::SETOGE, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT,
300       ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUNE, ISD::SETGT,
301       ISD::SETGE,  ISD::SETNE,  ISD::SETO,   ISD::SETUO};
302 
303   ISD::NodeType FPOpToExpand[] = {
304       ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, ISD::FREM, ISD::FP16_TO_FP,
305       ISD::FP_TO_FP16};
306 
307   if (Subtarget.hasStdExtZfh())
308     setOperationAction(ISD::BITCAST, MVT::i16, Custom);
309 
310   if (Subtarget.hasStdExtZfh()) {
311     setOperationAction(ISD::FMINNUM, MVT::f16, Legal);
312     setOperationAction(ISD::FMAXNUM, MVT::f16, Legal);
313     for (auto CC : FPCCToExpand)
314       setCondCodeAction(CC, MVT::f16, Expand);
315     setOperationAction(ISD::SELECT_CC, MVT::f16, Expand);
316     setOperationAction(ISD::SELECT, MVT::f16, Custom);
317     setOperationAction(ISD::BR_CC, MVT::f16, Expand);
318     for (auto Op : FPOpToExpand)
319       setOperationAction(Op, MVT::f16, Expand);
320   }
321 
322   if (Subtarget.hasStdExtF()) {
323     setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
324     setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
325     for (auto CC : FPCCToExpand)
326       setCondCodeAction(CC, MVT::f32, Expand);
327     setOperationAction(ISD::SELECT_CC, MVT::f32, Expand);
328     setOperationAction(ISD::SELECT, MVT::f32, Custom);
329     setOperationAction(ISD::BR_CC, MVT::f32, Expand);
330     for (auto Op : FPOpToExpand)
331       setOperationAction(Op, MVT::f32, Expand);
332     setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
333     setTruncStoreAction(MVT::f32, MVT::f16, Expand);
334   }
335 
336   if (Subtarget.hasStdExtF() && Subtarget.is64Bit())
337     setOperationAction(ISD::BITCAST, MVT::i32, Custom);
338 
339   if (Subtarget.hasStdExtD()) {
340     setOperationAction(ISD::FMINNUM, MVT::f64, Legal);
341     setOperationAction(ISD::FMAXNUM, MVT::f64, Legal);
342     for (auto CC : FPCCToExpand)
343       setCondCodeAction(CC, MVT::f64, Expand);
344     setOperationAction(ISD::SELECT_CC, MVT::f64, Expand);
345     setOperationAction(ISD::SELECT, MVT::f64, Custom);
346     setOperationAction(ISD::BR_CC, MVT::f64, Expand);
347     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
348     setTruncStoreAction(MVT::f64, MVT::f32, Expand);
349     for (auto Op : FPOpToExpand)
350       setOperationAction(Op, MVT::f64, Expand);
351     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
352     setTruncStoreAction(MVT::f64, MVT::f16, Expand);
353   }
354 
355   if (Subtarget.is64Bit()) {
356     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
357     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
358     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom);
359     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom);
360   }
361 
362   if (Subtarget.hasStdExtF()) {
363     setOperationAction(ISD::FLT_ROUNDS_, XLenVT, Custom);
364     setOperationAction(ISD::SET_ROUNDING, MVT::Other, Custom);
365   }
366 
367   setOperationAction(ISD::GlobalAddress, XLenVT, Custom);
368   setOperationAction(ISD::BlockAddress, XLenVT, Custom);
369   setOperationAction(ISD::ConstantPool, XLenVT, Custom);
370   setOperationAction(ISD::JumpTable, XLenVT, Custom);
371 
372   setOperationAction(ISD::GlobalTLSAddress, XLenVT, Custom);
373 
374   // TODO: On M-mode only targets, the cycle[h] CSR may not be present.
375   // Unfortunately this can't be determined just from the ISA naming string.
376   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64,
377                      Subtarget.is64Bit() ? Legal : Custom);
378 
379   setOperationAction(ISD::TRAP, MVT::Other, Legal);
380   setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal);
381   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
382   if (Subtarget.is64Bit())
383     setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i32, Custom);
384 
385   if (Subtarget.hasStdExtA()) {
386     setMaxAtomicSizeInBitsSupported(Subtarget.getXLen());
387     setMinCmpXchgSizeInBits(32);
388   } else {
389     setMaxAtomicSizeInBitsSupported(0);
390   }
391 
392   setBooleanContents(ZeroOrOneBooleanContent);
393 
394   if (Subtarget.hasStdExtV()) {
395     setBooleanVectorContents(ZeroOrOneBooleanContent);
396 
397     setOperationAction(ISD::VSCALE, XLenVT, Custom);
398 
399     // RVV intrinsics may have illegal operands.
400     // We also need to custom legalize vmv.x.s.
401     setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i8, Custom);
402     setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i16, Custom);
403     setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i8, Custom);
404     setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i16, Custom);
405     if (Subtarget.is64Bit()) {
406       setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i32, Custom);
407     } else {
408       setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i64, Custom);
409       setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i64, Custom);
410     }
411 
412     setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
413 
414     if (!Subtarget.is64Bit()) {
415       // We must custom-lower certain vXi64 operations on RV32 due to the vector
416       // element type being illegal.
417       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::i64, Custom);
418       setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::i64, Custom);
419 
420       setOperationAction(ISD::VECREDUCE_ADD, MVT::i64, Custom);
421       setOperationAction(ISD::VECREDUCE_AND, MVT::i64, Custom);
422       setOperationAction(ISD::VECREDUCE_OR, MVT::i64, Custom);
423       setOperationAction(ISD::VECREDUCE_XOR, MVT::i64, Custom);
424       setOperationAction(ISD::VECREDUCE_SMAX, MVT::i64, Custom);
425       setOperationAction(ISD::VECREDUCE_SMIN, MVT::i64, Custom);
426       setOperationAction(ISD::VECREDUCE_UMAX, MVT::i64, Custom);
427       setOperationAction(ISD::VECREDUCE_UMIN, MVT::i64, Custom);
428     }
429 
430     for (MVT VT : BoolVecVTs) {
431       setOperationAction(ISD::SPLAT_VECTOR, VT, Legal);
432 
433       // Mask VTs are custom-expanded into a series of standard nodes
434       setOperationAction(ISD::TRUNCATE, VT, Custom);
435       setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
436       setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
437 
438       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
439 
440       setOperationAction(ISD::VECREDUCE_AND, VT, Custom);
441       setOperationAction(ISD::VECREDUCE_OR, VT, Custom);
442       setOperationAction(ISD::VECREDUCE_XOR, VT, Custom);
443 
444       // Expand all extending loads to types larger than this, and truncating
445       // stores from types larger than this.
446       for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) {
447         setTruncStoreAction(OtherVT, VT, Expand);
448         setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand);
449         setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand);
450         setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand);
451       }
452     }
453 
454     for (MVT VT : IntVecVTs) {
455       setOperationAction(ISD::SPLAT_VECTOR, VT, Legal);
456       setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom);
457 
458       setOperationAction(ISD::SMIN, VT, Legal);
459       setOperationAction(ISD::SMAX, VT, Legal);
460       setOperationAction(ISD::UMIN, VT, Legal);
461       setOperationAction(ISD::UMAX, VT, Legal);
462 
463       setOperationAction(ISD::ROTL, VT, Expand);
464       setOperationAction(ISD::ROTR, VT, Expand);
465 
466       // Custom-lower extensions and truncations from/to mask types.
467       setOperationAction(ISD::ANY_EXTEND, VT, Custom);
468       setOperationAction(ISD::SIGN_EXTEND, VT, Custom);
469       setOperationAction(ISD::ZERO_EXTEND, VT, Custom);
470 
471       // RVV has native int->float & float->int conversions where the
472       // element type sizes are within one power-of-two of each other. Any
473       // wider distances between type sizes have to be lowered as sequences
474       // which progressively narrow the gap in stages.
475       setOperationAction(ISD::SINT_TO_FP, VT, Custom);
476       setOperationAction(ISD::UINT_TO_FP, VT, Custom);
477       setOperationAction(ISD::FP_TO_SINT, VT, Custom);
478       setOperationAction(ISD::FP_TO_UINT, VT, Custom);
479 
480       // Integer VTs are lowered as a series of "RISCVISD::TRUNCATE_VECTOR_VL"
481       // nodes which truncate by one power of two at a time.
482       setOperationAction(ISD::TRUNCATE, VT, Custom);
483 
484       // Custom-lower insert/extract operations to simplify patterns.
485       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
486       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
487 
488       // Custom-lower reduction operations to set up the corresponding custom
489       // nodes' operands.
490       setOperationAction(ISD::VECREDUCE_ADD, VT, Custom);
491       setOperationAction(ISD::VECREDUCE_AND, VT, Custom);
492       setOperationAction(ISD::VECREDUCE_OR, VT, Custom);
493       setOperationAction(ISD::VECREDUCE_XOR, VT, Custom);
494       setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom);
495       setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom);
496       setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom);
497       setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom);
498 
499       setOperationAction(ISD::MLOAD, VT, Custom);
500       setOperationAction(ISD::MSTORE, VT, Custom);
501       setOperationAction(ISD::MGATHER, VT, Custom);
502       setOperationAction(ISD::MSCATTER, VT, Custom);
503 
504       setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
505       setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
506       setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
507 
508       setOperationAction(ISD::STEP_VECTOR, VT, Custom);
509       setOperationAction(ISD::VECTOR_REVERSE, VT, Custom);
510 
511       for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) {
512         setTruncStoreAction(VT, OtherVT, Expand);
513         setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand);
514         setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand);
515         setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand);
516       }
517     }
518 
519     // Expand various CCs to best match the RVV ISA, which natively supports UNE
520     // but no other unordered comparisons, and supports all ordered comparisons
521     // except ONE. Additionally, we expand GT,OGT,GE,OGE for optimization
522     // purposes; they are expanded to their swapped-operand CCs (LT,OLT,LE,OLE),
523     // and we pattern-match those back to the "original", swapping operands once
524     // more. This way we catch both operations and both "vf" and "fv" forms with
525     // fewer patterns.
526     ISD::CondCode VFPCCToExpand[] = {
527         ISD::SETO,   ISD::SETONE, ISD::SETUEQ, ISD::SETUGT,
528         ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUO,
529         ISD::SETGT,  ISD::SETOGT, ISD::SETGE,  ISD::SETOGE,
530     };
531 
532     // Sets common operation actions on RVV floating-point vector types.
533     const auto SetCommonVFPActions = [&](MVT VT) {
534       setOperationAction(ISD::SPLAT_VECTOR, VT, Legal);
535       // RVV has native FP_ROUND & FP_EXTEND conversions where the element type
536       // sizes are within one power-of-two of each other. Therefore conversions
537       // between vXf16 and vXf64 must be lowered as sequences which convert via
538       // vXf32.
539       setOperationAction(ISD::FP_ROUND, VT, Custom);
540       setOperationAction(ISD::FP_EXTEND, VT, Custom);
541       // Custom-lower insert/extract operations to simplify patterns.
542       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
543       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
544       // Expand various condition codes (explained above).
545       for (auto CC : VFPCCToExpand)
546         setCondCodeAction(CC, VT, Expand);
547 
548       setOperationAction(ISD::FMINNUM, VT, Legal);
549       setOperationAction(ISD::FMAXNUM, VT, Legal);
550 
551       setOperationAction(ISD::VECREDUCE_FADD, VT, Custom);
552       setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom);
553       setOperationAction(ISD::FCOPYSIGN, VT, Legal);
554 
555       setOperationAction(ISD::MLOAD, VT, Custom);
556       setOperationAction(ISD::MSTORE, VT, Custom);
557       setOperationAction(ISD::MGATHER, VT, Custom);
558       setOperationAction(ISD::MSCATTER, VT, Custom);
559 
560       setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
561       setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
562       setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
563 
564       setOperationAction(ISD::VECTOR_REVERSE, VT, Custom);
565     };
566 
567     // Sets common extload/truncstore actions on RVV floating-point vector
568     // types.
569     const auto SetCommonVFPExtLoadTruncStoreActions =
570         [&](MVT VT, ArrayRef<MVT::SimpleValueType> SmallerVTs) {
571           for (auto SmallVT : SmallerVTs) {
572             setTruncStoreAction(VT, SmallVT, Expand);
573             setLoadExtAction(ISD::EXTLOAD, VT, SmallVT, Expand);
574           }
575         };
576 
577     if (Subtarget.hasStdExtZfh())
578       for (MVT VT : F16VecVTs)
579         SetCommonVFPActions(VT);
580 
581     for (MVT VT : F32VecVTs) {
582       if (Subtarget.hasStdExtF())
583         SetCommonVFPActions(VT);
584       SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs);
585     }
586 
587     for (MVT VT : F64VecVTs) {
588       if (Subtarget.hasStdExtD())
589         SetCommonVFPActions(VT);
590       SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs);
591       SetCommonVFPExtLoadTruncStoreActions(VT, F32VecVTs);
592     }
593 
594     if (Subtarget.useRVVForFixedLengthVectors()) {
595       for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) {
596         if (!useRVVForFixedLengthVectorVT(VT))
597           continue;
598 
599         // By default everything must be expanded.
600         for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op)
601           setOperationAction(Op, VT, Expand);
602         for (MVT OtherVT : MVT::integer_fixedlen_vector_valuetypes()) {
603           setTruncStoreAction(VT, OtherVT, Expand);
604           setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand);
605           setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand);
606           setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand);
607         }
608 
609         // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed.
610         setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
611         setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
612 
613         setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
614         setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
615 
616         setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
617 
618         setOperationAction(ISD::LOAD, VT, Custom);
619         setOperationAction(ISD::STORE, VT, Custom);
620 
621         setOperationAction(ISD::SETCC, VT, Custom);
622 
623         setOperationAction(ISD::TRUNCATE, VT, Custom);
624 
625         setOperationAction(ISD::BITCAST, VT, Custom);
626 
627         setOperationAction(ISD::VECREDUCE_AND, VT, Custom);
628         setOperationAction(ISD::VECREDUCE_OR, VT, Custom);
629         setOperationAction(ISD::VECREDUCE_XOR, VT, Custom);
630 
631         // Operations below are different for between masks and other vectors.
632         if (VT.getVectorElementType() == MVT::i1) {
633           setOperationAction(ISD::AND, VT, Custom);
634           setOperationAction(ISD::OR, VT, Custom);
635           setOperationAction(ISD::XOR, VT, Custom);
636           continue;
637         }
638 
639         setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
640         setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
641 
642         setOperationAction(ISD::MLOAD, VT, Custom);
643         setOperationAction(ISD::MSTORE, VT, Custom);
644         setOperationAction(ISD::MGATHER, VT, Custom);
645         setOperationAction(ISD::MSCATTER, VT, Custom);
646         setOperationAction(ISD::ADD, VT, Custom);
647         setOperationAction(ISD::MUL, VT, Custom);
648         setOperationAction(ISD::SUB, VT, Custom);
649         setOperationAction(ISD::AND, VT, Custom);
650         setOperationAction(ISD::OR, VT, Custom);
651         setOperationAction(ISD::XOR, VT, Custom);
652         setOperationAction(ISD::SDIV, VT, Custom);
653         setOperationAction(ISD::SREM, VT, Custom);
654         setOperationAction(ISD::UDIV, VT, Custom);
655         setOperationAction(ISD::UREM, VT, Custom);
656         setOperationAction(ISD::SHL, VT, Custom);
657         setOperationAction(ISD::SRA, VT, Custom);
658         setOperationAction(ISD::SRL, VT, Custom);
659 
660         setOperationAction(ISD::SMIN, VT, Custom);
661         setOperationAction(ISD::SMAX, VT, Custom);
662         setOperationAction(ISD::UMIN, VT, Custom);
663         setOperationAction(ISD::UMAX, VT, Custom);
664         setOperationAction(ISD::ABS,  VT, Custom);
665 
666         setOperationAction(ISD::MULHS, VT, Custom);
667         setOperationAction(ISD::MULHU, VT, Custom);
668 
669         setOperationAction(ISD::SINT_TO_FP, VT, Custom);
670         setOperationAction(ISD::UINT_TO_FP, VT, Custom);
671         setOperationAction(ISD::FP_TO_SINT, VT, Custom);
672         setOperationAction(ISD::FP_TO_UINT, VT, Custom);
673 
674         setOperationAction(ISD::VSELECT, VT, Custom);
675 
676         setOperationAction(ISD::ANY_EXTEND, VT, Custom);
677         setOperationAction(ISD::SIGN_EXTEND, VT, Custom);
678         setOperationAction(ISD::ZERO_EXTEND, VT, Custom);
679 
680         // Custom-lower reduction operations to set up the corresponding custom
681         // nodes' operands.
682         setOperationAction(ISD::VECREDUCE_ADD, VT, Custom);
683         setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom);
684         setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom);
685         setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom);
686         setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom);
687       }
688 
689       for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) {
690         if (!useRVVForFixedLengthVectorVT(VT))
691           continue;
692 
693         // By default everything must be expanded.
694         for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op)
695           setOperationAction(Op, VT, Expand);
696         for (MVT OtherVT : MVT::fp_fixedlen_vector_valuetypes()) {
697           setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand);
698           setTruncStoreAction(VT, OtherVT, Expand);
699         }
700 
701         // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed.
702         setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
703         setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
704 
705         setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
706         setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
707         setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
708         setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
709 
710         setOperationAction(ISD::LOAD, VT, Custom);
711         setOperationAction(ISD::STORE, VT, Custom);
712         setOperationAction(ISD::MLOAD, VT, Custom);
713         setOperationAction(ISD::MSTORE, VT, Custom);
714         setOperationAction(ISD::MGATHER, VT, Custom);
715         setOperationAction(ISD::MSCATTER, VT, Custom);
716         setOperationAction(ISD::FADD, VT, Custom);
717         setOperationAction(ISD::FSUB, VT, Custom);
718         setOperationAction(ISD::FMUL, VT, Custom);
719         setOperationAction(ISD::FDIV, VT, Custom);
720         setOperationAction(ISD::FNEG, VT, Custom);
721         setOperationAction(ISD::FABS, VT, Custom);
722         setOperationAction(ISD::FCOPYSIGN, VT, Custom);
723         setOperationAction(ISD::FSQRT, VT, Custom);
724         setOperationAction(ISD::FMA, VT, Custom);
725         setOperationAction(ISD::FMINNUM, VT, Custom);
726         setOperationAction(ISD::FMAXNUM, VT, Custom);
727 
728         setOperationAction(ISD::FP_ROUND, VT, Custom);
729         setOperationAction(ISD::FP_EXTEND, VT, Custom);
730 
731         for (auto CC : VFPCCToExpand)
732           setCondCodeAction(CC, VT, Expand);
733 
734         setOperationAction(ISD::VSELECT, VT, Custom);
735 
736         setOperationAction(ISD::BITCAST, VT, Custom);
737 
738         setOperationAction(ISD::VECREDUCE_FADD, VT, Custom);
739         setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom);
740       }
741 
742       // Custom-legalize bitcasts from fixed-length vectors to scalar types.
743       setOperationAction(ISD::BITCAST, MVT::i8, Custom);
744       setOperationAction(ISD::BITCAST, MVT::i16, Custom);
745       setOperationAction(ISD::BITCAST, MVT::i32, Custom);
746       setOperationAction(ISD::BITCAST, MVT::i64, Custom);
747       setOperationAction(ISD::BITCAST, MVT::f16, Custom);
748       setOperationAction(ISD::BITCAST, MVT::f32, Custom);
749       setOperationAction(ISD::BITCAST, MVT::f64, Custom);
750     }
751   }
752 
753   // Function alignments.
754   const Align FunctionAlignment(Subtarget.hasStdExtC() ? 2 : 4);
755   setMinFunctionAlignment(FunctionAlignment);
756   setPrefFunctionAlignment(FunctionAlignment);
757 
758   setMinimumJumpTableEntries(5);
759 
760   // Jumps are expensive, compared to logic
761   setJumpIsExpensive();
762 
763   // We can use any register for comparisons
764   setHasMultipleConditionRegisters();
765 
766   if (Subtarget.hasStdExtZbp()) {
767     setTargetDAGCombine(ISD::OR);
768   }
769   if (Subtarget.hasStdExtV()) {
770     setTargetDAGCombine(ISD::FCOPYSIGN);
771     setTargetDAGCombine(ISD::MGATHER);
772     setTargetDAGCombine(ISD::MSCATTER);
773   }
774 }
775 
776 EVT RISCVTargetLowering::getSetCCResultType(const DataLayout &DL,
777                                             LLVMContext &Context,
778                                             EVT VT) const {
779   if (!VT.isVector())
780     return getPointerTy(DL);
781   if (Subtarget.hasStdExtV() &&
782       (VT.isScalableVector() || Subtarget.useRVVForFixedLengthVectors()))
783     return EVT::getVectorVT(Context, MVT::i1, VT.getVectorElementCount());
784   return VT.changeVectorElementTypeToInteger();
785 }
786 
787 bool RISCVTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
788                                              const CallInst &I,
789                                              MachineFunction &MF,
790                                              unsigned Intrinsic) const {
791   switch (Intrinsic) {
792   default:
793     return false;
794   case Intrinsic::riscv_masked_atomicrmw_xchg_i32:
795   case Intrinsic::riscv_masked_atomicrmw_add_i32:
796   case Intrinsic::riscv_masked_atomicrmw_sub_i32:
797   case Intrinsic::riscv_masked_atomicrmw_nand_i32:
798   case Intrinsic::riscv_masked_atomicrmw_max_i32:
799   case Intrinsic::riscv_masked_atomicrmw_min_i32:
800   case Intrinsic::riscv_masked_atomicrmw_umax_i32:
801   case Intrinsic::riscv_masked_atomicrmw_umin_i32:
802   case Intrinsic::riscv_masked_cmpxchg_i32:
803     PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType());
804     Info.opc = ISD::INTRINSIC_W_CHAIN;
805     Info.memVT = MVT::getVT(PtrTy->getElementType());
806     Info.ptrVal = I.getArgOperand(0);
807     Info.offset = 0;
808     Info.align = Align(4);
809     Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore |
810                  MachineMemOperand::MOVolatile;
811     return true;
812   }
813 }
814 
815 bool RISCVTargetLowering::isLegalAddressingMode(const DataLayout &DL,
816                                                 const AddrMode &AM, Type *Ty,
817                                                 unsigned AS,
818                                                 Instruction *I) const {
819   // No global is ever allowed as a base.
820   if (AM.BaseGV)
821     return false;
822 
823   // Require a 12-bit signed offset.
824   if (!isInt<12>(AM.BaseOffs))
825     return false;
826 
827   switch (AM.Scale) {
828   case 0: // "r+i" or just "i", depending on HasBaseReg.
829     break;
830   case 1:
831     if (!AM.HasBaseReg) // allow "r+i".
832       break;
833     return false; // disallow "r+r" or "r+r+i".
834   default:
835     return false;
836   }
837 
838   return true;
839 }
840 
841 bool RISCVTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
842   return isInt<12>(Imm);
843 }
844 
845 bool RISCVTargetLowering::isLegalAddImmediate(int64_t Imm) const {
846   return isInt<12>(Imm);
847 }
848 
849 // On RV32, 64-bit integers are split into their high and low parts and held
850 // in two different registers, so the trunc is free since the low register can
851 // just be used.
852 bool RISCVTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const {
853   if (Subtarget.is64Bit() || !SrcTy->isIntegerTy() || !DstTy->isIntegerTy())
854     return false;
855   unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();
856   unsigned DestBits = DstTy->getPrimitiveSizeInBits();
857   return (SrcBits == 64 && DestBits == 32);
858 }
859 
860 bool RISCVTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const {
861   if (Subtarget.is64Bit() || SrcVT.isVector() || DstVT.isVector() ||
862       !SrcVT.isInteger() || !DstVT.isInteger())
863     return false;
864   unsigned SrcBits = SrcVT.getSizeInBits();
865   unsigned DestBits = DstVT.getSizeInBits();
866   return (SrcBits == 64 && DestBits == 32);
867 }
868 
869 bool RISCVTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
870   // Zexts are free if they can be combined with a load.
871   if (auto *LD = dyn_cast<LoadSDNode>(Val)) {
872     EVT MemVT = LD->getMemoryVT();
873     if ((MemVT == MVT::i8 || MemVT == MVT::i16 ||
874          (Subtarget.is64Bit() && MemVT == MVT::i32)) &&
875         (LD->getExtensionType() == ISD::NON_EXTLOAD ||
876          LD->getExtensionType() == ISD::ZEXTLOAD))
877       return true;
878   }
879 
880   return TargetLowering::isZExtFree(Val, VT2);
881 }
882 
883 bool RISCVTargetLowering::isSExtCheaperThanZExt(EVT SrcVT, EVT DstVT) const {
884   return Subtarget.is64Bit() && SrcVT == MVT::i32 && DstVT == MVT::i64;
885 }
886 
887 bool RISCVTargetLowering::isCheapToSpeculateCttz() const {
888   return Subtarget.hasStdExtZbb();
889 }
890 
891 bool RISCVTargetLowering::isCheapToSpeculateCtlz() const {
892   return Subtarget.hasStdExtZbb();
893 }
894 
895 bool RISCVTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
896                                        bool ForCodeSize) const {
897   if (VT == MVT::f16 && !Subtarget.hasStdExtZfh())
898     return false;
899   if (VT == MVT::f32 && !Subtarget.hasStdExtF())
900     return false;
901   if (VT == MVT::f64 && !Subtarget.hasStdExtD())
902     return false;
903   if (Imm.isNegZero())
904     return false;
905   return Imm.isZero();
906 }
907 
908 bool RISCVTargetLowering::hasBitPreservingFPLogic(EVT VT) const {
909   return (VT == MVT::f16 && Subtarget.hasStdExtZfh()) ||
910          (VT == MVT::f32 && Subtarget.hasStdExtF()) ||
911          (VT == MVT::f64 && Subtarget.hasStdExtD());
912 }
913 
914 MVT RISCVTargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context,
915                                                       CallingConv::ID CC,
916                                                       EVT VT) const {
917   // Use f32 to pass f16 if it is legal and Zfh is not enabled. We might still
918   // end up using a GPR but that will be decided based on ABI.
919   if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh())
920     return MVT::f32;
921 
922   return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT);
923 }
924 
925 unsigned RISCVTargetLowering::getNumRegistersForCallingConv(LLVMContext &Context,
926                                                            CallingConv::ID CC,
927                                                            EVT VT) const {
928   // Use f32 to pass f16 if it is legal and Zfh is not enabled. We might still
929   // end up using a GPR but that will be decided based on ABI.
930   if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh())
931     return 1;
932 
933   return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT);
934 }
935 
936 // Changes the condition code and swaps operands if necessary, so the SetCC
937 // operation matches one of the comparisons supported directly by branches
938 // in the RISC-V ISA. May adjust compares to favor compare with 0 over compare
939 // with 1/-1.
940 static void translateSetCCForBranch(const SDLoc &DL, SDValue &LHS, SDValue &RHS,
941                                     ISD::CondCode &CC, SelectionDAG &DAG) {
942   // Convert X > -1 to X >= 0.
943   if (CC == ISD::SETGT && isAllOnesConstant(RHS)) {
944     RHS = DAG.getConstant(0, DL, RHS.getValueType());
945     CC = ISD::SETGE;
946     return;
947   }
948   // Convert X < 1 to 0 >= X.
949   if (CC == ISD::SETLT && isOneConstant(RHS)) {
950     RHS = LHS;
951     LHS = DAG.getConstant(0, DL, RHS.getValueType());
952     CC = ISD::SETGE;
953     return;
954   }
955 
956   switch (CC) {
957   default:
958     break;
959   case ISD::SETGT:
960   case ISD::SETLE:
961   case ISD::SETUGT:
962   case ISD::SETULE:
963     CC = ISD::getSetCCSwappedOperands(CC);
964     std::swap(LHS, RHS);
965     break;
966   }
967 }
968 
969 // Return the RISC-V branch opcode that matches the given DAG integer
970 // condition code. The CondCode must be one of those supported by the RISC-V
971 // ISA (see translateSetCCForBranch).
972 static unsigned getBranchOpcodeForIntCondCode(ISD::CondCode CC) {
973   switch (CC) {
974   default:
975     llvm_unreachable("Unsupported CondCode");
976   case ISD::SETEQ:
977     return RISCV::BEQ;
978   case ISD::SETNE:
979     return RISCV::BNE;
980   case ISD::SETLT:
981     return RISCV::BLT;
982   case ISD::SETGE:
983     return RISCV::BGE;
984   case ISD::SETULT:
985     return RISCV::BLTU;
986   case ISD::SETUGE:
987     return RISCV::BGEU;
988   }
989 }
990 
991 RISCVVLMUL RISCVTargetLowering::getLMUL(MVT VT) {
992   assert(VT.isScalableVector() && "Expecting a scalable vector type");
993   unsigned KnownSize = VT.getSizeInBits().getKnownMinValue();
994   if (VT.getVectorElementType() == MVT::i1)
995     KnownSize *= 8;
996 
997   switch (KnownSize) {
998   default:
999     llvm_unreachable("Invalid LMUL.");
1000   case 8:
1001     return RISCVVLMUL::LMUL_F8;
1002   case 16:
1003     return RISCVVLMUL::LMUL_F4;
1004   case 32:
1005     return RISCVVLMUL::LMUL_F2;
1006   case 64:
1007     return RISCVVLMUL::LMUL_1;
1008   case 128:
1009     return RISCVVLMUL::LMUL_2;
1010   case 256:
1011     return RISCVVLMUL::LMUL_4;
1012   case 512:
1013     return RISCVVLMUL::LMUL_8;
1014   }
1015 }
1016 
1017 unsigned RISCVTargetLowering::getRegClassIDForLMUL(RISCVVLMUL LMul) {
1018   switch (LMul) {
1019   default:
1020     llvm_unreachable("Invalid LMUL.");
1021   case RISCVVLMUL::LMUL_F8:
1022   case RISCVVLMUL::LMUL_F4:
1023   case RISCVVLMUL::LMUL_F2:
1024   case RISCVVLMUL::LMUL_1:
1025     return RISCV::VRRegClassID;
1026   case RISCVVLMUL::LMUL_2:
1027     return RISCV::VRM2RegClassID;
1028   case RISCVVLMUL::LMUL_4:
1029     return RISCV::VRM4RegClassID;
1030   case RISCVVLMUL::LMUL_8:
1031     return RISCV::VRM8RegClassID;
1032   }
1033 }
1034 
1035 unsigned RISCVTargetLowering::getSubregIndexByMVT(MVT VT, unsigned Index) {
1036   RISCVVLMUL LMUL = getLMUL(VT);
1037   if (LMUL == RISCVVLMUL::LMUL_F8 || LMUL == RISCVVLMUL::LMUL_F4 ||
1038       LMUL == RISCVVLMUL::LMUL_F2 || LMUL == RISCVVLMUL::LMUL_1) {
1039     static_assert(RISCV::sub_vrm1_7 == RISCV::sub_vrm1_0 + 7,
1040                   "Unexpected subreg numbering");
1041     return RISCV::sub_vrm1_0 + Index;
1042   }
1043   if (LMUL == RISCVVLMUL::LMUL_2) {
1044     static_assert(RISCV::sub_vrm2_3 == RISCV::sub_vrm2_0 + 3,
1045                   "Unexpected subreg numbering");
1046     return RISCV::sub_vrm2_0 + Index;
1047   }
1048   if (LMUL == RISCVVLMUL::LMUL_4) {
1049     static_assert(RISCV::sub_vrm4_1 == RISCV::sub_vrm4_0 + 1,
1050                   "Unexpected subreg numbering");
1051     return RISCV::sub_vrm4_0 + Index;
1052   }
1053   llvm_unreachable("Invalid vector type.");
1054 }
1055 
1056 unsigned RISCVTargetLowering::getRegClassIDForVecVT(MVT VT) {
1057   if (VT.getVectorElementType() == MVT::i1)
1058     return RISCV::VRRegClassID;
1059   return getRegClassIDForLMUL(getLMUL(VT));
1060 }
1061 
1062 // Attempt to decompose a subvector insert/extract between VecVT and
1063 // SubVecVT via subregister indices. Returns the subregister index that
1064 // can perform the subvector insert/extract with the given element index, as
1065 // well as the index corresponding to any leftover subvectors that must be
1066 // further inserted/extracted within the register class for SubVecVT.
1067 std::pair<unsigned, unsigned>
1068 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs(
1069     MVT VecVT, MVT SubVecVT, unsigned InsertExtractIdx,
1070     const RISCVRegisterInfo *TRI) {
1071   static_assert((RISCV::VRM8RegClassID > RISCV::VRM4RegClassID &&
1072                  RISCV::VRM4RegClassID > RISCV::VRM2RegClassID &&
1073                  RISCV::VRM2RegClassID > RISCV::VRRegClassID),
1074                 "Register classes not ordered");
1075   unsigned VecRegClassID = getRegClassIDForVecVT(VecVT);
1076   unsigned SubRegClassID = getRegClassIDForVecVT(SubVecVT);
1077   // Try to compose a subregister index that takes us from the incoming
1078   // LMUL>1 register class down to the outgoing one. At each step we half
1079   // the LMUL:
1080   //   nxv16i32@12 -> nxv2i32: sub_vrm4_1_then_sub_vrm2_1_then_sub_vrm1_0
1081   // Note that this is not guaranteed to find a subregister index, such as
1082   // when we are extracting from one VR type to another.
1083   unsigned SubRegIdx = RISCV::NoSubRegister;
1084   for (const unsigned RCID :
1085        {RISCV::VRM4RegClassID, RISCV::VRM2RegClassID, RISCV::VRRegClassID})
1086     if (VecRegClassID > RCID && SubRegClassID <= RCID) {
1087       VecVT = VecVT.getHalfNumVectorElementsVT();
1088       bool IsHi =
1089           InsertExtractIdx >= VecVT.getVectorElementCount().getKnownMinValue();
1090       SubRegIdx = TRI->composeSubRegIndices(SubRegIdx,
1091                                             getSubregIndexByMVT(VecVT, IsHi));
1092       if (IsHi)
1093         InsertExtractIdx -= VecVT.getVectorElementCount().getKnownMinValue();
1094     }
1095   return {SubRegIdx, InsertExtractIdx};
1096 }
1097 
1098 static bool useRVVForFixedLengthVectorVT(MVT VT,
1099                                          const RISCVSubtarget &Subtarget) {
1100   assert(VT.isFixedLengthVector() && "Expected a fixed length vector type!");
1101   if (!Subtarget.useRVVForFixedLengthVectors())
1102     return false;
1103 
1104   unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits();
1105 
1106   // Don't use RVV for vectors we cannot scalarize if required.
1107   switch (VT.getVectorElementType().SimpleTy) {
1108   // i1 is supported but has different rules.
1109   default:
1110     return false;
1111   case MVT::i1:
1112     // Masks can only use a single register.
1113     if (VT.getVectorNumElements() > MinVLen)
1114       return false;
1115     MinVLen /= 8;
1116     break;
1117   case MVT::i8:
1118   case MVT::i16:
1119   case MVT::i32:
1120   case MVT::i64:
1121     break;
1122   case MVT::f16:
1123     if (!Subtarget.hasStdExtZfh())
1124       return false;
1125     break;
1126   case MVT::f32:
1127     if (!Subtarget.hasStdExtF())
1128       return false;
1129     break;
1130   case MVT::f64:
1131     if (!Subtarget.hasStdExtD())
1132       return false;
1133     break;
1134   }
1135 
1136   unsigned LMul = divideCeil(VT.getSizeInBits(), MinVLen);
1137   // Don't use RVV for types that don't fit.
1138   if (LMul > Subtarget.getMaxLMULForFixedLengthVectors())
1139     return false;
1140 
1141   // TODO: Perhaps an artificial restriction, but worth having whilst getting
1142   // the base fixed length RVV support in place.
1143   if (!VT.isPow2VectorType())
1144     return false;
1145 
1146   return true;
1147 }
1148 
1149 bool RISCVTargetLowering::useRVVForFixedLengthVectorVT(MVT VT) const {
1150   return ::useRVVForFixedLengthVectorVT(VT, Subtarget);
1151 }
1152 
1153 // Return the largest legal scalable vector type that matches VT's element type.
1154 static MVT getContainerForFixedLengthVector(const TargetLowering &TLI, MVT VT,
1155                                             const RISCVSubtarget &Subtarget) {
1156   // This may be called before legal types are setup.
1157   assert(((VT.isFixedLengthVector() && TLI.isTypeLegal(VT)) ||
1158           useRVVForFixedLengthVectorVT(VT, Subtarget)) &&
1159          "Expected legal fixed length vector!");
1160 
1161   unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits();
1162 
1163   MVT EltVT = VT.getVectorElementType();
1164   switch (EltVT.SimpleTy) {
1165   default:
1166     llvm_unreachable("unexpected element type for RVV container");
1167   case MVT::i1: {
1168     // Masks are calculated assuming 8-bit elements since that's when we need
1169     // the most elements.
1170     MinVLen /= 8;
1171     unsigned LMul = divideCeil(VT.getSizeInBits(), MinVLen);
1172     unsigned EltsPerBlock = RISCV::RVVBitsPerBlock / 8;
1173     return MVT::getScalableVectorVT(MVT::i1, LMul * EltsPerBlock);
1174   }
1175   case MVT::i8:
1176   case MVT::i16:
1177   case MVT::i32:
1178   case MVT::i64:
1179   case MVT::f16:
1180   case MVT::f32:
1181   case MVT::f64: {
1182     unsigned LMul = divideCeil(VT.getSizeInBits(), MinVLen);
1183     unsigned EltsPerBlock = RISCV::RVVBitsPerBlock / EltVT.getSizeInBits();
1184     return MVT::getScalableVectorVT(EltVT, LMul * EltsPerBlock);
1185   }
1186   }
1187 }
1188 
1189 static MVT getContainerForFixedLengthVector(SelectionDAG &DAG, MVT VT,
1190                                             const RISCVSubtarget &Subtarget) {
1191   return getContainerForFixedLengthVector(DAG.getTargetLoweringInfo(), VT,
1192                                           Subtarget);
1193 }
1194 
1195 MVT RISCVTargetLowering::getContainerForFixedLengthVector(MVT VT) const {
1196   return ::getContainerForFixedLengthVector(*this, VT, getSubtarget());
1197 }
1198 
1199 // Grow V to consume an entire RVV register.
1200 static SDValue convertToScalableVector(EVT VT, SDValue V, SelectionDAG &DAG,
1201                                        const RISCVSubtarget &Subtarget) {
1202   assert(VT.isScalableVector() &&
1203          "Expected to convert into a scalable vector!");
1204   assert(V.getValueType().isFixedLengthVector() &&
1205          "Expected a fixed length vector operand!");
1206   SDLoc DL(V);
1207   SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT());
1208   return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, DAG.getUNDEF(VT), V, Zero);
1209 }
1210 
1211 // Shrink V so it's just big enough to maintain a VT's worth of data.
1212 static SDValue convertFromScalableVector(EVT VT, SDValue V, SelectionDAG &DAG,
1213                                          const RISCVSubtarget &Subtarget) {
1214   assert(VT.isFixedLengthVector() &&
1215          "Expected to convert into a fixed length vector!");
1216   assert(V.getValueType().isScalableVector() &&
1217          "Expected a scalable vector operand!");
1218   SDLoc DL(V);
1219   SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT());
1220   return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V, Zero);
1221 }
1222 
1223 // Gets the two common "VL" operands: an all-ones mask and the vector length.
1224 // VecVT is a vector type, either fixed-length or scalable, and ContainerVT is
1225 // the vector type that it is contained in.
1226 static std::pair<SDValue, SDValue>
1227 getDefaultVLOps(MVT VecVT, MVT ContainerVT, SDLoc DL, SelectionDAG &DAG,
1228                 const RISCVSubtarget &Subtarget) {
1229   assert(ContainerVT.isScalableVector() && "Expecting scalable container type");
1230   MVT XLenVT = Subtarget.getXLenVT();
1231   SDValue VL = VecVT.isFixedLengthVector()
1232                    ? DAG.getConstant(VecVT.getVectorNumElements(), DL, XLenVT)
1233                    : DAG.getRegister(RISCV::X0, XLenVT);
1234   MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
1235   SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
1236   return {Mask, VL};
1237 }
1238 
1239 // As above but assuming the given type is a scalable vector type.
1240 static std::pair<SDValue, SDValue>
1241 getDefaultScalableVLOps(MVT VecVT, SDLoc DL, SelectionDAG &DAG,
1242                         const RISCVSubtarget &Subtarget) {
1243   assert(VecVT.isScalableVector() && "Expecting a scalable vector");
1244   return getDefaultVLOps(VecVT, VecVT, DL, DAG, Subtarget);
1245 }
1246 
1247 // The state of RVV BUILD_VECTOR and VECTOR_SHUFFLE lowering is that very few
1248 // of either is (currently) supported. This can get us into an infinite loop
1249 // where we try to lower a BUILD_VECTOR as a VECTOR_SHUFFLE as a BUILD_VECTOR
1250 // as a ..., etc.
1251 // Until either (or both) of these can reliably lower any node, reporting that
1252 // we don't want to expand BUILD_VECTORs via VECTOR_SHUFFLEs at least breaks
1253 // the infinite loop. Note that this lowers BUILD_VECTOR through the stack,
1254 // which is not desirable.
1255 bool RISCVTargetLowering::shouldExpandBuildVectorWithShuffles(
1256     EVT VT, unsigned DefinedValues) const {
1257   return false;
1258 }
1259 
1260 bool RISCVTargetLowering::isShuffleMaskLegal(ArrayRef<int> M, EVT VT) const {
1261   // Only splats are currently supported.
1262   if (ShuffleVectorSDNode::isSplatMask(M.data(), VT))
1263     return true;
1264 
1265   return false;
1266 }
1267 
1268 static SDValue lowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG,
1269                                  const RISCVSubtarget &Subtarget) {
1270   MVT VT = Op.getSimpleValueType();
1271   assert(VT.isFixedLengthVector() && "Unexpected vector!");
1272 
1273   MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
1274 
1275   SDLoc DL(Op);
1276   SDValue Mask, VL;
1277   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
1278 
1279   MVT XLenVT = Subtarget.getXLenVT();
1280   unsigned NumElts = Op.getNumOperands();
1281 
1282   if (VT.getVectorElementType() == MVT::i1) {
1283     if (ISD::isBuildVectorAllZeros(Op.getNode())) {
1284       SDValue VMClr = DAG.getNode(RISCVISD::VMCLR_VL, DL, ContainerVT, VL);
1285       return convertFromScalableVector(VT, VMClr, DAG, Subtarget);
1286     }
1287 
1288     if (ISD::isBuildVectorAllOnes(Op.getNode())) {
1289       SDValue VMSet = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL);
1290       return convertFromScalableVector(VT, VMSet, DAG, Subtarget);
1291     }
1292 
1293     // Lower constant mask BUILD_VECTORs via an integer vector type, in
1294     // scalar integer chunks whose bit-width depends on the number of mask
1295     // bits and XLEN.
1296     // First, determine the most appropriate scalar integer type to use. This
1297     // is at most XLenVT, but may be shrunk to a smaller vector element type
1298     // according to the size of the final vector - use i8 chunks rather than
1299     // XLenVT if we're producing a v8i1. This results in more consistent
1300     // codegen across RV32 and RV64.
1301     // If we have to use more than one INSERT_VECTOR_ELT then this optimization
1302     // is likely to increase code size; avoid peforming it in such a case.
1303     unsigned NumViaIntegerBits =
1304         std::min(std::max(NumElts, 8u), Subtarget.getXLen());
1305     if (ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) &&
1306         (!DAG.shouldOptForSize() || NumElts <= NumViaIntegerBits)) {
1307       // Now we can create our integer vector type. Note that it may be larger
1308       // than the resulting mask type: v4i1 would use v1i8 as its integer type.
1309       MVT IntegerViaVecVT =
1310           MVT::getVectorVT(MVT::getIntegerVT(NumViaIntegerBits),
1311                            divideCeil(NumElts, NumViaIntegerBits));
1312 
1313       uint64_t Bits = 0;
1314       unsigned BitPos = 0, IntegerEltIdx = 0;
1315       SDValue Vec = DAG.getUNDEF(IntegerViaVecVT);
1316 
1317       for (unsigned I = 0; I < NumElts; I++, BitPos++) {
1318         // Once we accumulate enough bits to fill our scalar type, insert into
1319         // our vector and clear our accumulated data.
1320         if (I != 0 && I % NumViaIntegerBits == 0) {
1321           if (NumViaIntegerBits <= 32)
1322             Bits = SignExtend64(Bits, 32);
1323           SDValue Elt = DAG.getConstant(Bits, DL, XLenVT);
1324           Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec,
1325                             Elt, DAG.getConstant(IntegerEltIdx, DL, XLenVT));
1326           Bits = 0;
1327           BitPos = 0;
1328           IntegerEltIdx++;
1329         }
1330         SDValue V = Op.getOperand(I);
1331         bool BitValue = !V.isUndef() && cast<ConstantSDNode>(V)->getZExtValue();
1332         Bits |= ((uint64_t)BitValue << BitPos);
1333       }
1334 
1335       // Insert the (remaining) scalar value into position in our integer
1336       // vector type.
1337       if (NumViaIntegerBits <= 32)
1338         Bits = SignExtend64(Bits, 32);
1339       SDValue Elt = DAG.getConstant(Bits, DL, XLenVT);
1340       Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec, Elt,
1341                         DAG.getConstant(IntegerEltIdx, DL, XLenVT));
1342 
1343       if (NumElts < NumViaIntegerBits) {
1344         // If we're producing a smaller vector than our minimum legal integer
1345         // type, bitcast to the equivalent (known-legal) mask type, and extract
1346         // our final mask.
1347         assert(IntegerViaVecVT == MVT::v1i8 && "Unexpected mask vector type");
1348         Vec = DAG.getBitcast(MVT::v8i1, Vec);
1349         Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Vec,
1350                           DAG.getConstant(0, DL, XLenVT));
1351       } else {
1352         // Else we must have produced an integer type with the same size as the
1353         // mask type; bitcast for the final result.
1354         assert(VT.getSizeInBits() == IntegerViaVecVT.getSizeInBits());
1355         Vec = DAG.getBitcast(VT, Vec);
1356       }
1357 
1358       return Vec;
1359     }
1360 
1361     return SDValue();
1362   }
1363 
1364   if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) {
1365     unsigned Opc = VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL
1366                                         : RISCVISD::VMV_V_X_VL;
1367     Splat = DAG.getNode(Opc, DL, ContainerVT, Splat, VL);
1368     return convertFromScalableVector(VT, Splat, DAG, Subtarget);
1369   }
1370 
1371   // Try and match an index sequence, which we can lower directly to the vid
1372   // instruction. An all-undef vector is matched by getSplatValue, above.
1373   if (VT.isInteger()) {
1374     bool IsVID = true;
1375     for (unsigned I = 0; I < NumElts && IsVID; I++)
1376       IsVID &= Op.getOperand(I).isUndef() ||
1377                (isa<ConstantSDNode>(Op.getOperand(I)) &&
1378                 Op.getConstantOperandVal(I) == I);
1379 
1380     if (IsVID) {
1381       SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, ContainerVT, Mask, VL);
1382       return convertFromScalableVector(VT, VID, DAG, Subtarget);
1383     }
1384   }
1385 
1386   // Attempt to detect "hidden" splats, which only reveal themselves as splats
1387   // when re-interpreted as a vector with a larger element type. For example,
1388   //   v4i16 = build_vector i16 0, i16 1, i16 0, i16 1
1389   // could be instead splat as
1390   //   v2i32 = build_vector i32 0x00010000, i32 0x00010000
1391   // TODO: This optimization could also work on non-constant splats, but it
1392   // would require bit-manipulation instructions to construct the splat value.
1393   SmallVector<SDValue> Sequence;
1394   unsigned EltBitSize = VT.getScalarSizeInBits();
1395   const auto *BV = cast<BuildVectorSDNode>(Op);
1396   if (VT.isInteger() && EltBitSize < 64 &&
1397       ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) &&
1398       BV->getRepeatedSequence(Sequence) &&
1399       (Sequence.size() * EltBitSize) <= 64) {
1400     unsigned SeqLen = Sequence.size();
1401     MVT ViaIntVT = MVT::getIntegerVT(EltBitSize * SeqLen);
1402     MVT ViaVecVT = MVT::getVectorVT(ViaIntVT, NumElts / SeqLen);
1403     assert((ViaIntVT == MVT::i16 || ViaIntVT == MVT::i32 ||
1404             ViaIntVT == MVT::i64) &&
1405            "Unexpected sequence type");
1406 
1407     unsigned EltIdx = 0;
1408     uint64_t EltMask = maskTrailingOnes<uint64_t>(EltBitSize);
1409     uint64_t SplatValue = 0;
1410     // Construct the amalgamated value which can be splatted as this larger
1411     // vector type.
1412     for (const auto &SeqV : Sequence) {
1413       if (!SeqV.isUndef())
1414         SplatValue |= ((cast<ConstantSDNode>(SeqV)->getZExtValue() & EltMask)
1415                        << (EltIdx * EltBitSize));
1416       EltIdx++;
1417     }
1418 
1419     // On RV64, sign-extend from 32 to 64 bits where possible in order to
1420     // achieve better constant materializion.
1421     if (Subtarget.is64Bit() && ViaIntVT == MVT::i32)
1422       SplatValue = SignExtend64(SplatValue, 32);
1423 
1424     // Since we can't introduce illegal i64 types at this stage, we can only
1425     // perform an i64 splat on RV32 if it is its own sign-extended value. That
1426     // way we can use RVV instructions to splat.
1427     assert((ViaIntVT.bitsLE(XLenVT) ||
1428             (!Subtarget.is64Bit() && ViaIntVT == MVT::i64)) &&
1429            "Unexpected bitcast sequence");
1430     if (ViaIntVT.bitsLE(XLenVT) || isInt<32>(SplatValue)) {
1431       SDValue ViaVL =
1432           DAG.getConstant(ViaVecVT.getVectorNumElements(), DL, XLenVT);
1433       MVT ViaContainerVT =
1434           getContainerForFixedLengthVector(DAG, ViaVecVT, Subtarget);
1435       SDValue Splat =
1436           DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ViaContainerVT,
1437                       DAG.getConstant(SplatValue, DL, XLenVT), ViaVL);
1438       Splat = convertFromScalableVector(ViaVecVT, Splat, DAG, Subtarget);
1439       return DAG.getBitcast(VT, Splat);
1440     }
1441   }
1442 
1443   // Try and optimize BUILD_VECTORs with "dominant values" - these are values
1444   // which constitute a large proportion of the elements. In such cases we can
1445   // splat a vector with the dominant element and make up the shortfall with
1446   // INSERT_VECTOR_ELTs.
1447   // Note that this includes vectors of 2 elements by association. The
1448   // upper-most element is the "dominant" one, allowing us to use a splat to
1449   // "insert" the upper element, and an insert of the lower element at position
1450   // 0, which improves codegen.
1451   SDValue DominantValue;
1452   unsigned MostCommonCount = 0;
1453   DenseMap<SDValue, unsigned> ValueCounts;
1454   unsigned NumUndefElts =
1455       count_if(Op->op_values(), [](const SDValue &V) { return V.isUndef(); });
1456 
1457   for (SDValue V : Op->op_values()) {
1458     if (V.isUndef())
1459       continue;
1460 
1461     ValueCounts.insert(std::make_pair(V, 0));
1462     unsigned &Count = ValueCounts[V];
1463 
1464     // Is this value dominant? In case of a tie, prefer the highest element as
1465     // it's cheaper to insert near the beginning of a vector than it is at the
1466     // end.
1467     if (++Count >= MostCommonCount) {
1468       DominantValue = V;
1469       MostCommonCount = Count;
1470     }
1471   }
1472 
1473   assert(DominantValue && "Not expecting an all-undef BUILD_VECTOR");
1474   unsigned NumDefElts = NumElts - NumUndefElts;
1475   unsigned DominantValueCountThreshold = NumDefElts <= 2 ? 0 : NumDefElts - 2;
1476 
1477   // Don't perform this optimization when optimizing for size, since
1478   // materializing elements and inserting them tends to cause code bloat.
1479   if (!DAG.shouldOptForSize() &&
1480       ((MostCommonCount > DominantValueCountThreshold) ||
1481        (ValueCounts.size() <= Log2_32(NumDefElts)))) {
1482     // Start by splatting the most common element.
1483     SDValue Vec = DAG.getSplatBuildVector(VT, DL, DominantValue);
1484 
1485     DenseSet<SDValue> Processed{DominantValue};
1486     MVT SelMaskTy = VT.changeVectorElementType(MVT::i1);
1487     for (const auto &OpIdx : enumerate(Op->ops())) {
1488       const SDValue &V = OpIdx.value();
1489       if (V.isUndef() || !Processed.insert(V).second)
1490         continue;
1491       if (ValueCounts[V] == 1) {
1492         Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Vec, V,
1493                           DAG.getConstant(OpIdx.index(), DL, XLenVT));
1494       } else {
1495         // Blend in all instances of this value using a VSELECT, using a
1496         // mask where each bit signals whether that element is the one
1497         // we're after.
1498         SmallVector<SDValue> Ops;
1499         transform(Op->op_values(), std::back_inserter(Ops), [&](SDValue V1) {
1500           return DAG.getConstant(V == V1, DL, XLenVT);
1501         });
1502         Vec = DAG.getNode(ISD::VSELECT, DL, VT,
1503                           DAG.getBuildVector(SelMaskTy, DL, Ops),
1504                           DAG.getSplatBuildVector(VT, DL, V), Vec);
1505       }
1506     }
1507 
1508     return Vec;
1509   }
1510 
1511   return SDValue();
1512 }
1513 
1514 // Use a stack slot to splat the two i32 values in Lo/Hi to the vector desired
1515 // vector nxvXi64 VT.
1516 static SDValue splatPartsI64ThroughStack(const SDLoc &DL, MVT VT, SDValue Lo,
1517                                          SDValue Hi, SDValue VL,
1518                                          SelectionDAG &DAG,
1519                                          const RISCVSubtarget &Subtarget) {
1520   assert(VT.getVectorElementType() == MVT::i64 && VT.isScalableVector() &&
1521          Lo.getValueType() == MVT::i32 && Hi.getValueType() == MVT::i32 &&
1522          "Unexpected VTs!");
1523   MachineFunction &MF = DAG.getMachineFunction();
1524   RISCVMachineFunctionInfo *FuncInfo = MF.getInfo<RISCVMachineFunctionInfo>();
1525 
1526   // We use the same frame index we use for moving two i32s into 64-bit FPR.
1527   // This is an analogous operation.
1528   int FI = FuncInfo->getMoveF64FrameIndex(MF);
1529   MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI);
1530   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1531   SDValue StackSlot =
1532       DAG.getFrameIndex(FI, TLI.getPointerTy(DAG.getDataLayout()));
1533 
1534   SDValue Chain = DAG.getEntryNode();
1535   Lo = DAG.getStore(Chain, DL, Lo, StackSlot, MPI, Align(8));
1536 
1537   SDValue OffsetSlot =
1538       DAG.getMemBasePlusOffset(StackSlot, TypeSize::Fixed(4), DL);
1539   Hi = DAG.getStore(Chain, DL, Hi, OffsetSlot, MPI.getWithOffset(4), Align(8));
1540 
1541   Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Lo, Hi);
1542 
1543   MVT XLenVT = Subtarget.getXLenVT();
1544   SDVTList VTs = DAG.getVTList({VT, MVT::Other});
1545   SDValue IntID = DAG.getTargetConstant(Intrinsic::riscv_vlse, DL, XLenVT);
1546   SDValue Ops[] = {Chain, IntID, StackSlot, DAG.getRegister(RISCV::X0, XLenVT),
1547                    VL};
1548 
1549   return DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, MVT::i64,
1550                                  MPI, Align(8), MachineMemOperand::MOLoad);
1551 }
1552 
1553 // Called by type legalization to handle splat of i64 on RV32.
1554 // FIXME: We can optimize this when the type has sign or zero bits in one
1555 // of the halves.
1556 static SDValue splatSplitI64WithVL(const SDLoc &DL, MVT VT, SDValue Scalar,
1557                                    SDValue VL, SelectionDAG &DAG,
1558                                    const RISCVSubtarget &Subtarget) {
1559   SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar,
1560                            DAG.getConstant(0, DL, MVT::i32));
1561   SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar,
1562                            DAG.getConstant(1, DL, MVT::i32));
1563 
1564   // Fall back to a stack store and stride x0 vector load.
1565   return splatPartsI64ThroughStack(DL, VT, Lo, Hi, VL, DAG, Subtarget);
1566 }
1567 
1568 // This function lowers a splat of a scalar operand Splat with the vector
1569 // length VL. It ensures the final sequence is type legal, which is useful when
1570 // lowering a splat after type legalization.
1571 static SDValue lowerScalarSplat(SDValue Scalar, SDValue VL, MVT VT, SDLoc DL,
1572                                 SelectionDAG &DAG,
1573                                 const RISCVSubtarget &Subtarget) {
1574   if (VT.isFloatingPoint())
1575     return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, VT, Scalar, VL);
1576 
1577   MVT XLenVT = Subtarget.getXLenVT();
1578 
1579   // Simplest case is that the operand needs to be promoted to XLenVT.
1580   if (Scalar.getValueType().bitsLE(XLenVT)) {
1581     // If the operand is a constant, sign extend to increase our chances
1582     // of being able to use a .vi instruction. ANY_EXTEND would become a
1583     // a zero extend and the simm5 check in isel would fail.
1584     // FIXME: Should we ignore the upper bits in isel instead?
1585     unsigned ExtOpc =
1586         isa<ConstantSDNode>(Scalar) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND;
1587     Scalar = DAG.getNode(ExtOpc, DL, XLenVT, Scalar);
1588     return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Scalar, VL);
1589   }
1590 
1591   assert(XLenVT == MVT::i32 && Scalar.getValueType() == MVT::i64 &&
1592          "Unexpected scalar for splat lowering!");
1593 
1594   // If this is a sign-extended 32-bit constant, we can truncate it and rely
1595   // on the instruction to sign-extend since SEW>XLEN.
1596   if (auto *CVal = dyn_cast<ConstantSDNode>(Scalar)) {
1597     if (isInt<32>(CVal->getSExtValue()))
1598       return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT,
1599                          DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32),
1600                          VL);
1601   }
1602 
1603   // Otherwise use the more complicated splatting algorithm.
1604   return splatSplitI64WithVL(DL, VT, Scalar, VL, DAG, Subtarget);
1605 }
1606 
1607 static SDValue lowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG,
1608                                    const RISCVSubtarget &Subtarget) {
1609   SDValue V1 = Op.getOperand(0);
1610   SDValue V2 = Op.getOperand(1);
1611   SDLoc DL(Op);
1612   MVT XLenVT = Subtarget.getXLenVT();
1613   MVT VT = Op.getSimpleValueType();
1614   unsigned NumElts = VT.getVectorNumElements();
1615   ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
1616 
1617   MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
1618 
1619   SDValue TrueMask, VL;
1620   std::tie(TrueMask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
1621 
1622   if (SVN->isSplat()) {
1623     const int Lane = SVN->getSplatIndex();
1624     if (Lane >= 0) {
1625       MVT SVT = VT.getVectorElementType();
1626 
1627       // Turn splatted vector load into a strided load with an X0 stride.
1628       SDValue V = V1;
1629       // Peek through CONCAT_VECTORS as VectorCombine can concat a vector
1630       // with undef.
1631       // FIXME: Peek through INSERT_SUBVECTOR, EXTRACT_SUBVECTOR, bitcasts?
1632       int Offset = Lane;
1633       if (V.getOpcode() == ISD::CONCAT_VECTORS) {
1634         int OpElements =
1635             V.getOperand(0).getSimpleValueType().getVectorNumElements();
1636         V = V.getOperand(Offset / OpElements);
1637         Offset %= OpElements;
1638       }
1639 
1640       // We need to ensure the load isn't atomic or volatile.
1641       if (ISD::isNormalLoad(V.getNode()) && cast<LoadSDNode>(V)->isSimple()) {
1642         auto *Ld = cast<LoadSDNode>(V);
1643         Offset *= SVT.getStoreSize();
1644         SDValue NewAddr = DAG.getMemBasePlusOffset(Ld->getBasePtr(),
1645                                                    TypeSize::Fixed(Offset), DL);
1646 
1647         // If this is SEW=64 on RV32, use a strided load with a stride of x0.
1648         if (SVT.isInteger() && SVT.bitsGT(XLenVT)) {
1649           SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
1650           SDValue IntID =
1651               DAG.getTargetConstant(Intrinsic::riscv_vlse, DL, XLenVT);
1652           SDValue Ops[] = {Ld->getChain(), IntID, NewAddr,
1653                            DAG.getRegister(RISCV::X0, XLenVT), VL};
1654           SDValue NewLoad = DAG.getMemIntrinsicNode(
1655               ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, SVT,
1656               DAG.getMachineFunction().getMachineMemOperand(
1657                   Ld->getMemOperand(), Offset, SVT.getStoreSize()));
1658           DAG.makeEquivalentMemoryOrdering(Ld, NewLoad);
1659           return convertFromScalableVector(VT, NewLoad, DAG, Subtarget);
1660         }
1661 
1662         // Otherwise use a scalar load and splat. This will give the best
1663         // opportunity to fold a splat into the operation. ISel can turn it into
1664         // the x0 strided load if we aren't able to fold away the select.
1665         if (SVT.isFloatingPoint())
1666           V = DAG.getLoad(SVT, DL, Ld->getChain(), NewAddr,
1667                           Ld->getPointerInfo().getWithOffset(Offset),
1668                           Ld->getOriginalAlign(),
1669                           Ld->getMemOperand()->getFlags());
1670         else
1671           V = DAG.getExtLoad(ISD::SEXTLOAD, DL, XLenVT, Ld->getChain(), NewAddr,
1672                              Ld->getPointerInfo().getWithOffset(Offset), SVT,
1673                              Ld->getOriginalAlign(),
1674                              Ld->getMemOperand()->getFlags());
1675         DAG.makeEquivalentMemoryOrdering(Ld, V);
1676 
1677         unsigned Opc =
1678             VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL : RISCVISD::VMV_V_X_VL;
1679         SDValue Splat = DAG.getNode(Opc, DL, ContainerVT, V, VL);
1680         return convertFromScalableVector(VT, Splat, DAG, Subtarget);
1681       }
1682 
1683       V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget);
1684       assert(Lane < (int)NumElts && "Unexpected lane!");
1685       SDValue Gather =
1686           DAG.getNode(RISCVISD::VRGATHER_VX_VL, DL, ContainerVT, V1,
1687                       DAG.getConstant(Lane, DL, XLenVT), TrueMask, VL);
1688       return convertFromScalableVector(VT, Gather, DAG, Subtarget);
1689     }
1690   }
1691 
1692   // Detect shuffles which can be re-expressed as vector selects; these are
1693   // shuffles in which each element in the destination is taken from an element
1694   // at the corresponding index in either source vectors.
1695   bool IsSelect = all_of(enumerate(SVN->getMask()), [&](const auto &MaskIdx) {
1696     int MaskIndex = MaskIdx.value();
1697     return MaskIndex < 0 || MaskIdx.index() == (unsigned)MaskIndex % NumElts;
1698   });
1699 
1700   assert(!V1.isUndef() && "Unexpected shuffle canonicalization");
1701 
1702   SmallVector<SDValue> MaskVals;
1703   // As a backup, shuffles can be lowered via a vrgather instruction, possibly
1704   // merged with a second vrgather.
1705   SmallVector<SDValue> GatherIndicesLHS, GatherIndicesRHS;
1706 
1707   // By default we preserve the original operand order, and use a mask to
1708   // select LHS as true and RHS as false. However, since RVV vector selects may
1709   // feature splats but only on the LHS, we may choose to invert our mask and
1710   // instead select between RHS and LHS.
1711   bool SwapOps = DAG.isSplatValue(V2) && !DAG.isSplatValue(V1);
1712   bool InvertMask = IsSelect == SwapOps;
1713 
1714   // Now construct the mask that will be used by the vselect or blended
1715   // vrgather operation. For vrgathers, construct the appropriate indices into
1716   // each vector.
1717   for (int MaskIndex : SVN->getMask()) {
1718     bool SelectMaskVal = (MaskIndex < (int)NumElts) ^ InvertMask;
1719     MaskVals.push_back(DAG.getConstant(SelectMaskVal, DL, XLenVT));
1720     if (!IsSelect) {
1721       bool IsLHS = MaskIndex < (int)NumElts;
1722       // For "undef" elements of -1, shuffle in element 0 instead.
1723       GatherIndicesLHS.push_back(
1724           DAG.getConstant(IsLHS ? std::max(MaskIndex, 0) : 0, DL, XLenVT));
1725       // TODO: If we're masking out unused elements anyway, it might produce
1726       // better code if we use the most-common element index instead of 0.
1727       GatherIndicesRHS.push_back(
1728           DAG.getConstant(IsLHS ? 0 : MaskIndex - NumElts, DL, XLenVT));
1729     }
1730   }
1731 
1732   if (SwapOps) {
1733     std::swap(V1, V2);
1734     std::swap(GatherIndicesLHS, GatherIndicesRHS);
1735   }
1736 
1737   assert(MaskVals.size() == NumElts && "Unexpected select-like shuffle");
1738   MVT MaskVT = MVT::getVectorVT(MVT::i1, NumElts);
1739   SDValue SelectMask = DAG.getBuildVector(MaskVT, DL, MaskVals);
1740 
1741   if (IsSelect)
1742     return DAG.getNode(ISD::VSELECT, DL, VT, SelectMask, V1, V2);
1743 
1744   if (VT.getScalarSizeInBits() == 8 && VT.getVectorNumElements() > 256) {
1745     // On such a large vector we're unable to use i8 as the index type.
1746     // FIXME: We could promote the index to i16 and use vrgatherei16, but that
1747     // may involve vector splitting if we're already at LMUL=8, or our
1748     // user-supplied maximum fixed-length LMUL.
1749     return SDValue();
1750   }
1751 
1752   unsigned GatherOpc = RISCVISD::VRGATHER_VV_VL;
1753   MVT IndexVT = VT.changeTypeToInteger();
1754   // Since we can't introduce illegal index types at this stage, use i16 and
1755   // vrgatherei16 if the corresponding index type for plain vrgather is greater
1756   // than XLenVT.
1757   if (IndexVT.getScalarType().bitsGT(XLenVT)) {
1758     GatherOpc = RISCVISD::VRGATHEREI16_VV_VL;
1759     IndexVT = IndexVT.changeVectorElementType(MVT::i16);
1760   }
1761 
1762   MVT IndexContainerVT =
1763       ContainerVT.changeVectorElementType(IndexVT.getScalarType());
1764 
1765   SDValue Gather;
1766   // TODO: This doesn't trigger for i64 vectors on RV32, since there we
1767   // encounter a bitcasted BUILD_VECTOR with low/high i32 values.
1768   if (SDValue SplatValue = DAG.getSplatValue(V1)) {
1769     Gather = lowerScalarSplat(SplatValue, VL, ContainerVT, DL, DAG, Subtarget);
1770   } else {
1771     SDValue LHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesLHS);
1772     LHSIndices =
1773         convertToScalableVector(IndexContainerVT, LHSIndices, DAG, Subtarget);
1774 
1775     V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget);
1776     Gather =
1777         DAG.getNode(GatherOpc, DL, ContainerVT, V1, LHSIndices, TrueMask, VL);
1778   }
1779 
1780   // If a second vector operand is used by this shuffle, blend it in with an
1781   // additional vrgather.
1782   if (!V2.isUndef()) {
1783     MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1);
1784     SelectMask =
1785         convertToScalableVector(MaskContainerVT, SelectMask, DAG, Subtarget);
1786 
1787     SDValue RHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesRHS);
1788     RHSIndices =
1789         convertToScalableVector(IndexContainerVT, RHSIndices, DAG, Subtarget);
1790 
1791     V2 = convertToScalableVector(ContainerVT, V2, DAG, Subtarget);
1792     V2 = DAG.getNode(GatherOpc, DL, ContainerVT, V2, RHSIndices, TrueMask, VL);
1793     Gather = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, SelectMask, V2,
1794                          Gather, VL);
1795   }
1796 
1797   return convertFromScalableVector(VT, Gather, DAG, Subtarget);
1798 }
1799 
1800 static SDValue getRVVFPExtendOrRound(SDValue Op, MVT VT, MVT ContainerVT,
1801                                      SDLoc DL, SelectionDAG &DAG,
1802                                      const RISCVSubtarget &Subtarget) {
1803   if (VT.isScalableVector())
1804     return DAG.getFPExtendOrRound(Op, DL, VT);
1805   assert(VT.isFixedLengthVector() &&
1806          "Unexpected value type for RVV FP extend/round lowering");
1807   SDValue Mask, VL;
1808   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
1809   unsigned RVVOpc = ContainerVT.bitsGT(Op.getSimpleValueType())
1810                         ? RISCVISD::FP_EXTEND_VL
1811                         : RISCVISD::FP_ROUND_VL;
1812   return DAG.getNode(RVVOpc, DL, ContainerVT, Op, Mask, VL);
1813 }
1814 
1815 SDValue RISCVTargetLowering::LowerOperation(SDValue Op,
1816                                             SelectionDAG &DAG) const {
1817   switch (Op.getOpcode()) {
1818   default:
1819     report_fatal_error("unimplemented operand");
1820   case ISD::GlobalAddress:
1821     return lowerGlobalAddress(Op, DAG);
1822   case ISD::BlockAddress:
1823     return lowerBlockAddress(Op, DAG);
1824   case ISD::ConstantPool:
1825     return lowerConstantPool(Op, DAG);
1826   case ISD::JumpTable:
1827     return lowerJumpTable(Op, DAG);
1828   case ISD::GlobalTLSAddress:
1829     return lowerGlobalTLSAddress(Op, DAG);
1830   case ISD::SELECT:
1831     return lowerSELECT(Op, DAG);
1832   case ISD::BRCOND:
1833     return lowerBRCOND(Op, DAG);
1834   case ISD::VASTART:
1835     return lowerVASTART(Op, DAG);
1836   case ISD::FRAMEADDR:
1837     return lowerFRAMEADDR(Op, DAG);
1838   case ISD::RETURNADDR:
1839     return lowerRETURNADDR(Op, DAG);
1840   case ISD::SHL_PARTS:
1841     return lowerShiftLeftParts(Op, DAG);
1842   case ISD::SRA_PARTS:
1843     return lowerShiftRightParts(Op, DAG, true);
1844   case ISD::SRL_PARTS:
1845     return lowerShiftRightParts(Op, DAG, false);
1846   case ISD::BITCAST: {
1847     SDLoc DL(Op);
1848     EVT VT = Op.getValueType();
1849     SDValue Op0 = Op.getOperand(0);
1850     EVT Op0VT = Op0.getValueType();
1851     MVT XLenVT = Subtarget.getXLenVT();
1852     if (VT.isFixedLengthVector()) {
1853       // We can handle fixed length vector bitcasts with a simple replacement
1854       // in isel.
1855       if (Op0VT.isFixedLengthVector())
1856         return Op;
1857       // When bitcasting from scalar to fixed-length vector, insert the scalar
1858       // into a one-element vector of the result type, and perform a vector
1859       // bitcast.
1860       if (!Op0VT.isVector()) {
1861         auto BVT = EVT::getVectorVT(*DAG.getContext(), Op0VT, 1);
1862         return DAG.getBitcast(VT, DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, BVT,
1863                                               DAG.getUNDEF(BVT), Op0,
1864                                               DAG.getConstant(0, DL, XLenVT)));
1865       }
1866       return SDValue();
1867     }
1868     // Custom-legalize bitcasts from fixed-length vector types to scalar types
1869     // thus: bitcast the vector to a one-element vector type whose element type
1870     // is the same as the result type, and extract the first element.
1871     if (!VT.isVector() && Op0VT.isFixedLengthVector()) {
1872       LLVMContext &Context = *DAG.getContext();
1873       SDValue BVec = DAG.getBitcast(EVT::getVectorVT(Context, VT, 1), Op0);
1874       return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec,
1875                          DAG.getConstant(0, DL, XLenVT));
1876     }
1877     if (VT == MVT::f16 && Op0VT == MVT::i16 && Subtarget.hasStdExtZfh()) {
1878       SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Op0);
1879       SDValue FPConv = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, NewOp0);
1880       return FPConv;
1881     }
1882     if (VT == MVT::f32 && Op0VT == MVT::i32 && Subtarget.is64Bit() &&
1883         Subtarget.hasStdExtF()) {
1884       SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
1885       SDValue FPConv =
1886           DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, NewOp0);
1887       return FPConv;
1888     }
1889     return SDValue();
1890   }
1891   case ISD::INTRINSIC_WO_CHAIN:
1892     return LowerINTRINSIC_WO_CHAIN(Op, DAG);
1893   case ISD::INTRINSIC_W_CHAIN:
1894     return LowerINTRINSIC_W_CHAIN(Op, DAG);
1895   case ISD::BSWAP:
1896   case ISD::BITREVERSE: {
1897     // Convert BSWAP/BITREVERSE to GREVI to enable GREVI combinining.
1898     assert(Subtarget.hasStdExtZbp() && "Unexpected custom legalisation");
1899     MVT VT = Op.getSimpleValueType();
1900     SDLoc DL(Op);
1901     // Start with the maximum immediate value which is the bitwidth - 1.
1902     unsigned Imm = VT.getSizeInBits() - 1;
1903     // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits.
1904     if (Op.getOpcode() == ISD::BSWAP)
1905       Imm &= ~0x7U;
1906     return DAG.getNode(RISCVISD::GREV, DL, VT, Op.getOperand(0),
1907                        DAG.getConstant(Imm, DL, VT));
1908   }
1909   case ISD::FSHL:
1910   case ISD::FSHR: {
1911     MVT VT = Op.getSimpleValueType();
1912     assert(VT == Subtarget.getXLenVT() && "Unexpected custom legalization");
1913     SDLoc DL(Op);
1914     if (Op.getOperand(2).getOpcode() == ISD::Constant)
1915       return Op;
1916     // FSL/FSR take a log2(XLen)+1 bit shift amount but XLenVT FSHL/FSHR only
1917     // use log(XLen) bits. Mask the shift amount accordingly.
1918     unsigned ShAmtWidth = Subtarget.getXLen() - 1;
1919     SDValue ShAmt = DAG.getNode(ISD::AND, DL, VT, Op.getOperand(2),
1920                                 DAG.getConstant(ShAmtWidth, DL, VT));
1921     unsigned Opc = Op.getOpcode() == ISD::FSHL ? RISCVISD::FSL : RISCVISD::FSR;
1922     return DAG.getNode(Opc, DL, VT, Op.getOperand(0), Op.getOperand(1), ShAmt);
1923   }
1924   case ISD::TRUNCATE: {
1925     SDLoc DL(Op);
1926     MVT VT = Op.getSimpleValueType();
1927     // Only custom-lower vector truncates
1928     if (!VT.isVector())
1929       return Op;
1930 
1931     // Truncates to mask types are handled differently
1932     if (VT.getVectorElementType() == MVT::i1)
1933       return lowerVectorMaskTrunc(Op, DAG);
1934 
1935     // RVV only has truncates which operate from SEW*2->SEW, so lower arbitrary
1936     // truncates as a series of "RISCVISD::TRUNCATE_VECTOR_VL" nodes which
1937     // truncate by one power of two at a time.
1938     MVT DstEltVT = VT.getVectorElementType();
1939 
1940     SDValue Src = Op.getOperand(0);
1941     MVT SrcVT = Src.getSimpleValueType();
1942     MVT SrcEltVT = SrcVT.getVectorElementType();
1943 
1944     assert(DstEltVT.bitsLT(SrcEltVT) &&
1945            isPowerOf2_64(DstEltVT.getSizeInBits()) &&
1946            isPowerOf2_64(SrcEltVT.getSizeInBits()) &&
1947            "Unexpected vector truncate lowering");
1948 
1949     MVT ContainerVT = SrcVT;
1950     if (SrcVT.isFixedLengthVector()) {
1951       ContainerVT = getContainerForFixedLengthVector(SrcVT);
1952       Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget);
1953     }
1954 
1955     SDValue Result = Src;
1956     SDValue Mask, VL;
1957     std::tie(Mask, VL) =
1958         getDefaultVLOps(SrcVT, ContainerVT, DL, DAG, Subtarget);
1959     LLVMContext &Context = *DAG.getContext();
1960     const ElementCount Count = ContainerVT.getVectorElementCount();
1961     do {
1962       SrcEltVT = MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2);
1963       EVT ResultVT = EVT::getVectorVT(Context, SrcEltVT, Count);
1964       Result = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, ResultVT, Result,
1965                            Mask, VL);
1966     } while (SrcEltVT != DstEltVT);
1967 
1968     if (SrcVT.isFixedLengthVector())
1969       Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
1970 
1971     return Result;
1972   }
1973   case ISD::ANY_EXTEND:
1974   case ISD::ZERO_EXTEND:
1975     if (Op.getOperand(0).getValueType().isVector() &&
1976         Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1)
1977       return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ 1);
1978     return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VZEXT_VL);
1979   case ISD::SIGN_EXTEND:
1980     if (Op.getOperand(0).getValueType().isVector() &&
1981         Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1)
1982       return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ -1);
1983     return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VSEXT_VL);
1984   case ISD::SPLAT_VECTOR_PARTS:
1985     return lowerSPLAT_VECTOR_PARTS(Op, DAG);
1986   case ISD::INSERT_VECTOR_ELT:
1987     return lowerINSERT_VECTOR_ELT(Op, DAG);
1988   case ISD::EXTRACT_VECTOR_ELT:
1989     return lowerEXTRACT_VECTOR_ELT(Op, DAG);
1990   case ISD::VSCALE: {
1991     MVT VT = Op.getSimpleValueType();
1992     SDLoc DL(Op);
1993     SDValue VLENB = DAG.getNode(RISCVISD::READ_VLENB, DL, VT);
1994     // We define our scalable vector types for lmul=1 to use a 64 bit known
1995     // minimum size. e.g. <vscale x 2 x i32>. VLENB is in bytes so we calculate
1996     // vscale as VLENB / 8.
1997     assert(RISCV::RVVBitsPerBlock == 64 && "Unexpected bits per block!");
1998     SDValue VScale = DAG.getNode(ISD::SRL, DL, VT, VLENB,
1999                                  DAG.getConstant(3, DL, VT));
2000     return DAG.getNode(ISD::MUL, DL, VT, VScale, Op.getOperand(0));
2001   }
2002   case ISD::FP_EXTEND: {
2003     // RVV can only do fp_extend to types double the size as the source. We
2004     // custom-lower f16->f64 extensions to two hops of ISD::FP_EXTEND, going
2005     // via f32.
2006     SDLoc DL(Op);
2007     MVT VT = Op.getSimpleValueType();
2008     SDValue Src = Op.getOperand(0);
2009     MVT SrcVT = Src.getSimpleValueType();
2010 
2011     // Prepare any fixed-length vector operands.
2012     MVT ContainerVT = VT;
2013     if (SrcVT.isFixedLengthVector()) {
2014       ContainerVT = getContainerForFixedLengthVector(VT);
2015       MVT SrcContainerVT =
2016           ContainerVT.changeVectorElementType(SrcVT.getVectorElementType());
2017       Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget);
2018     }
2019 
2020     if (!VT.isVector() || VT.getVectorElementType() != MVT::f64 ||
2021         SrcVT.getVectorElementType() != MVT::f16) {
2022       // For scalable vectors, we only need to close the gap between
2023       // vXf16->vXf64.
2024       if (!VT.isFixedLengthVector())
2025         return Op;
2026       // For fixed-length vectors, lower the FP_EXTEND to a custom "VL" version.
2027       Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget);
2028       return convertFromScalableVector(VT, Src, DAG, Subtarget);
2029     }
2030 
2031     MVT InterVT = VT.changeVectorElementType(MVT::f32);
2032     MVT InterContainerVT = ContainerVT.changeVectorElementType(MVT::f32);
2033     SDValue IntermediateExtend = getRVVFPExtendOrRound(
2034         Src, InterVT, InterContainerVT, DL, DAG, Subtarget);
2035 
2036     SDValue Extend = getRVVFPExtendOrRound(IntermediateExtend, VT, ContainerVT,
2037                                            DL, DAG, Subtarget);
2038     if (VT.isFixedLengthVector())
2039       return convertFromScalableVector(VT, Extend, DAG, Subtarget);
2040     return Extend;
2041   }
2042   case ISD::FP_ROUND: {
2043     // RVV can only do fp_round to types half the size as the source. We
2044     // custom-lower f64->f16 rounds via RVV's round-to-odd float
2045     // conversion instruction.
2046     SDLoc DL(Op);
2047     MVT VT = Op.getSimpleValueType();
2048     SDValue Src = Op.getOperand(0);
2049     MVT SrcVT = Src.getSimpleValueType();
2050 
2051     // Prepare any fixed-length vector operands.
2052     MVT ContainerVT = VT;
2053     if (VT.isFixedLengthVector()) {
2054       MVT SrcContainerVT = getContainerForFixedLengthVector(SrcVT);
2055       ContainerVT =
2056           SrcContainerVT.changeVectorElementType(VT.getVectorElementType());
2057       Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget);
2058     }
2059 
2060     if (!VT.isVector() || VT.getVectorElementType() != MVT::f16 ||
2061         SrcVT.getVectorElementType() != MVT::f64) {
2062       // For scalable vectors, we only need to close the gap between
2063       // vXf64<->vXf16.
2064       if (!VT.isFixedLengthVector())
2065         return Op;
2066       // For fixed-length vectors, lower the FP_ROUND to a custom "VL" version.
2067       Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget);
2068       return convertFromScalableVector(VT, Src, DAG, Subtarget);
2069     }
2070 
2071     SDValue Mask, VL;
2072     std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
2073 
2074     MVT InterVT = ContainerVT.changeVectorElementType(MVT::f32);
2075     SDValue IntermediateRound =
2076         DAG.getNode(RISCVISD::VFNCVT_ROD_VL, DL, InterVT, Src, Mask, VL);
2077     SDValue Round = getRVVFPExtendOrRound(IntermediateRound, VT, ContainerVT,
2078                                           DL, DAG, Subtarget);
2079 
2080     if (VT.isFixedLengthVector())
2081       return convertFromScalableVector(VT, Round, DAG, Subtarget);
2082     return Round;
2083   }
2084   case ISD::FP_TO_SINT:
2085   case ISD::FP_TO_UINT:
2086   case ISD::SINT_TO_FP:
2087   case ISD::UINT_TO_FP: {
2088     // RVV can only do fp<->int conversions to types half/double the size as
2089     // the source. We custom-lower any conversions that do two hops into
2090     // sequences.
2091     MVT VT = Op.getSimpleValueType();
2092     if (!VT.isVector())
2093       return Op;
2094     SDLoc DL(Op);
2095     SDValue Src = Op.getOperand(0);
2096     MVT EltVT = VT.getVectorElementType();
2097     MVT SrcVT = Src.getSimpleValueType();
2098     MVT SrcEltVT = SrcVT.getVectorElementType();
2099     unsigned EltSize = EltVT.getSizeInBits();
2100     unsigned SrcEltSize = SrcEltVT.getSizeInBits();
2101     assert(isPowerOf2_32(EltSize) && isPowerOf2_32(SrcEltSize) &&
2102            "Unexpected vector element types");
2103 
2104     bool IsInt2FP = SrcEltVT.isInteger();
2105     // Widening conversions
2106     if (EltSize > SrcEltSize && (EltSize / SrcEltSize >= 4)) {
2107       if (IsInt2FP) {
2108         // Do a regular integer sign/zero extension then convert to float.
2109         MVT IVecVT = MVT::getVectorVT(MVT::getIntegerVT(EltVT.getSizeInBits()),
2110                                       VT.getVectorElementCount());
2111         unsigned ExtOpcode = Op.getOpcode() == ISD::UINT_TO_FP
2112                                  ? ISD::ZERO_EXTEND
2113                                  : ISD::SIGN_EXTEND;
2114         SDValue Ext = DAG.getNode(ExtOpcode, DL, IVecVT, Src);
2115         return DAG.getNode(Op.getOpcode(), DL, VT, Ext);
2116       }
2117       // FP2Int
2118       assert(SrcEltVT == MVT::f16 && "Unexpected FP_TO_[US]INT lowering");
2119       // Do one doubling fp_extend then complete the operation by converting
2120       // to int.
2121       MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount());
2122       SDValue FExt = DAG.getFPExtendOrRound(Src, DL, InterimFVT);
2123       return DAG.getNode(Op.getOpcode(), DL, VT, FExt);
2124     }
2125 
2126     // Narrowing conversions
2127     if (SrcEltSize > EltSize && (SrcEltSize / EltSize >= 4)) {
2128       if (IsInt2FP) {
2129         // One narrowing int_to_fp, then an fp_round.
2130         assert(EltVT == MVT::f16 && "Unexpected [US]_TO_FP lowering");
2131         MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount());
2132         SDValue Int2FP = DAG.getNode(Op.getOpcode(), DL, InterimFVT, Src);
2133         return DAG.getFPExtendOrRound(Int2FP, DL, VT);
2134       }
2135       // FP2Int
2136       // One narrowing fp_to_int, then truncate the integer. If the float isn't
2137       // representable by the integer, the result is poison.
2138       MVT IVecVT =
2139           MVT::getVectorVT(MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2),
2140                            VT.getVectorElementCount());
2141       SDValue FP2Int = DAG.getNode(Op.getOpcode(), DL, IVecVT, Src);
2142       return DAG.getNode(ISD::TRUNCATE, DL, VT, FP2Int);
2143     }
2144 
2145     // Scalable vectors can exit here. Patterns will handle equally-sized
2146     // conversions halving/doubling ones.
2147     if (!VT.isFixedLengthVector())
2148       return Op;
2149 
2150     // For fixed-length vectors we lower to a custom "VL" node.
2151     unsigned RVVOpc = 0;
2152     switch (Op.getOpcode()) {
2153     default:
2154       llvm_unreachable("Impossible opcode");
2155     case ISD::FP_TO_SINT:
2156       RVVOpc = RISCVISD::FP_TO_SINT_VL;
2157       break;
2158     case ISD::FP_TO_UINT:
2159       RVVOpc = RISCVISD::FP_TO_UINT_VL;
2160       break;
2161     case ISD::SINT_TO_FP:
2162       RVVOpc = RISCVISD::SINT_TO_FP_VL;
2163       break;
2164     case ISD::UINT_TO_FP:
2165       RVVOpc = RISCVISD::UINT_TO_FP_VL;
2166       break;
2167     }
2168 
2169     MVT ContainerVT, SrcContainerVT;
2170     // Derive the reference container type from the larger vector type.
2171     if (SrcEltSize > EltSize) {
2172       SrcContainerVT = getContainerForFixedLengthVector(SrcVT);
2173       ContainerVT =
2174           SrcContainerVT.changeVectorElementType(VT.getVectorElementType());
2175     } else {
2176       ContainerVT = getContainerForFixedLengthVector(VT);
2177       SrcContainerVT = ContainerVT.changeVectorElementType(SrcEltVT);
2178     }
2179 
2180     SDValue Mask, VL;
2181     std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
2182 
2183     Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget);
2184     Src = DAG.getNode(RVVOpc, DL, ContainerVT, Src, Mask, VL);
2185     return convertFromScalableVector(VT, Src, DAG, Subtarget);
2186   }
2187   case ISD::VECREDUCE_ADD:
2188   case ISD::VECREDUCE_UMAX:
2189   case ISD::VECREDUCE_SMAX:
2190   case ISD::VECREDUCE_UMIN:
2191   case ISD::VECREDUCE_SMIN:
2192     return lowerVECREDUCE(Op, DAG);
2193   case ISD::VECREDUCE_AND:
2194   case ISD::VECREDUCE_OR:
2195   case ISD::VECREDUCE_XOR:
2196     if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1)
2197       return lowerVectorMaskVECREDUCE(Op, DAG);
2198     return lowerVECREDUCE(Op, DAG);
2199   case ISD::VECREDUCE_FADD:
2200   case ISD::VECREDUCE_SEQ_FADD:
2201     return lowerFPVECREDUCE(Op, DAG);
2202   case ISD::INSERT_SUBVECTOR:
2203     return lowerINSERT_SUBVECTOR(Op, DAG);
2204   case ISD::EXTRACT_SUBVECTOR:
2205     return lowerEXTRACT_SUBVECTOR(Op, DAG);
2206   case ISD::STEP_VECTOR:
2207     return lowerSTEP_VECTOR(Op, DAG);
2208   case ISD::VECTOR_REVERSE:
2209     return lowerVECTOR_REVERSE(Op, DAG);
2210   case ISD::BUILD_VECTOR:
2211     return lowerBUILD_VECTOR(Op, DAG, Subtarget);
2212   case ISD::VECTOR_SHUFFLE:
2213     return lowerVECTOR_SHUFFLE(Op, DAG, Subtarget);
2214   case ISD::CONCAT_VECTORS: {
2215     // Split CONCAT_VECTORS into a series of INSERT_SUBVECTOR nodes. This is
2216     // better than going through the stack, as the default expansion does.
2217     SDLoc DL(Op);
2218     MVT VT = Op.getSimpleValueType();
2219     unsigned NumOpElts =
2220         Op.getOperand(0).getSimpleValueType().getVectorMinNumElements();
2221     SDValue Vec = DAG.getUNDEF(VT);
2222     for (const auto &OpIdx : enumerate(Op->ops()))
2223       Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, Vec, OpIdx.value(),
2224                         DAG.getIntPtrConstant(OpIdx.index() * NumOpElts, DL));
2225     return Vec;
2226   }
2227   case ISD::LOAD:
2228     return lowerFixedLengthVectorLoadToRVV(Op, DAG);
2229   case ISD::STORE:
2230     return lowerFixedLengthVectorStoreToRVV(Op, DAG);
2231   case ISD::MLOAD:
2232     return lowerMLOAD(Op, DAG);
2233   case ISD::MSTORE:
2234     return lowerMSTORE(Op, DAG);
2235   case ISD::SETCC:
2236     return lowerFixedLengthVectorSetccToRVV(Op, DAG);
2237   case ISD::ADD:
2238     return lowerToScalableOp(Op, DAG, RISCVISD::ADD_VL);
2239   case ISD::SUB:
2240     return lowerToScalableOp(Op, DAG, RISCVISD::SUB_VL);
2241   case ISD::MUL:
2242     return lowerToScalableOp(Op, DAG, RISCVISD::MUL_VL);
2243   case ISD::MULHS:
2244     return lowerToScalableOp(Op, DAG, RISCVISD::MULHS_VL);
2245   case ISD::MULHU:
2246     return lowerToScalableOp(Op, DAG, RISCVISD::MULHU_VL);
2247   case ISD::AND:
2248     return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMAND_VL,
2249                                               RISCVISD::AND_VL);
2250   case ISD::OR:
2251     return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMOR_VL,
2252                                               RISCVISD::OR_VL);
2253   case ISD::XOR:
2254     return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMXOR_VL,
2255                                               RISCVISD::XOR_VL);
2256   case ISD::SDIV:
2257     return lowerToScalableOp(Op, DAG, RISCVISD::SDIV_VL);
2258   case ISD::SREM:
2259     return lowerToScalableOp(Op, DAG, RISCVISD::SREM_VL);
2260   case ISD::UDIV:
2261     return lowerToScalableOp(Op, DAG, RISCVISD::UDIV_VL);
2262   case ISD::UREM:
2263     return lowerToScalableOp(Op, DAG, RISCVISD::UREM_VL);
2264   case ISD::SHL:
2265     return lowerToScalableOp(Op, DAG, RISCVISD::SHL_VL);
2266   case ISD::SRA:
2267     return lowerToScalableOp(Op, DAG, RISCVISD::SRA_VL);
2268   case ISD::SRL:
2269     return lowerToScalableOp(Op, DAG, RISCVISD::SRL_VL);
2270   case ISD::FADD:
2271     return lowerToScalableOp(Op, DAG, RISCVISD::FADD_VL);
2272   case ISD::FSUB:
2273     return lowerToScalableOp(Op, DAG, RISCVISD::FSUB_VL);
2274   case ISD::FMUL:
2275     return lowerToScalableOp(Op, DAG, RISCVISD::FMUL_VL);
2276   case ISD::FDIV:
2277     return lowerToScalableOp(Op, DAG, RISCVISD::FDIV_VL);
2278   case ISD::FNEG:
2279     return lowerToScalableOp(Op, DAG, RISCVISD::FNEG_VL);
2280   case ISD::FABS:
2281     return lowerToScalableOp(Op, DAG, RISCVISD::FABS_VL);
2282   case ISD::FSQRT:
2283     return lowerToScalableOp(Op, DAG, RISCVISD::FSQRT_VL);
2284   case ISD::FMA:
2285     return lowerToScalableOp(Op, DAG, RISCVISD::FMA_VL);
2286   case ISD::SMIN:
2287     return lowerToScalableOp(Op, DAG, RISCVISD::SMIN_VL);
2288   case ISD::SMAX:
2289     return lowerToScalableOp(Op, DAG, RISCVISD::SMAX_VL);
2290   case ISD::UMIN:
2291     return lowerToScalableOp(Op, DAG, RISCVISD::UMIN_VL);
2292   case ISD::UMAX:
2293     return lowerToScalableOp(Op, DAG, RISCVISD::UMAX_VL);
2294   case ISD::FMINNUM:
2295     return lowerToScalableOp(Op, DAG, RISCVISD::FMINNUM_VL);
2296   case ISD::FMAXNUM:
2297     return lowerToScalableOp(Op, DAG, RISCVISD::FMAXNUM_VL);
2298   case ISD::ABS:
2299     return lowerABS(Op, DAG);
2300   case ISD::VSELECT:
2301     return lowerFixedLengthVectorSelectToRVV(Op, DAG);
2302   case ISD::FCOPYSIGN:
2303     return lowerFixedLengthVectorFCOPYSIGNToRVV(Op, DAG);
2304   case ISD::MGATHER:
2305     return lowerMGATHER(Op, DAG);
2306   case ISD::MSCATTER:
2307     return lowerMSCATTER(Op, DAG);
2308   case ISD::FLT_ROUNDS_:
2309     return lowerGET_ROUNDING(Op, DAG);
2310   case ISD::SET_ROUNDING:
2311     return lowerSET_ROUNDING(Op, DAG);
2312   }
2313 }
2314 
2315 static SDValue getTargetNode(GlobalAddressSDNode *N, SDLoc DL, EVT Ty,
2316                              SelectionDAG &DAG, unsigned Flags) {
2317   return DAG.getTargetGlobalAddress(N->getGlobal(), DL, Ty, 0, Flags);
2318 }
2319 
2320 static SDValue getTargetNode(BlockAddressSDNode *N, SDLoc DL, EVT Ty,
2321                              SelectionDAG &DAG, unsigned Flags) {
2322   return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, N->getOffset(),
2323                                    Flags);
2324 }
2325 
2326 static SDValue getTargetNode(ConstantPoolSDNode *N, SDLoc DL, EVT Ty,
2327                              SelectionDAG &DAG, unsigned Flags) {
2328   return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlign(),
2329                                    N->getOffset(), Flags);
2330 }
2331 
2332 static SDValue getTargetNode(JumpTableSDNode *N, SDLoc DL, EVT Ty,
2333                              SelectionDAG &DAG, unsigned Flags) {
2334   return DAG.getTargetJumpTable(N->getIndex(), Ty, Flags);
2335 }
2336 
2337 template <class NodeTy>
2338 SDValue RISCVTargetLowering::getAddr(NodeTy *N, SelectionDAG &DAG,
2339                                      bool IsLocal) const {
2340   SDLoc DL(N);
2341   EVT Ty = getPointerTy(DAG.getDataLayout());
2342 
2343   if (isPositionIndependent()) {
2344     SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0);
2345     if (IsLocal)
2346       // Use PC-relative addressing to access the symbol. This generates the
2347       // pattern (PseudoLLA sym), which expands to (addi (auipc %pcrel_hi(sym))
2348       // %pcrel_lo(auipc)).
2349       return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0);
2350 
2351     // Use PC-relative addressing to access the GOT for this symbol, then load
2352     // the address from the GOT. This generates the pattern (PseudoLA sym),
2353     // which expands to (ld (addi (auipc %got_pcrel_hi(sym)) %pcrel_lo(auipc))).
2354     return SDValue(DAG.getMachineNode(RISCV::PseudoLA, DL, Ty, Addr), 0);
2355   }
2356 
2357   switch (getTargetMachine().getCodeModel()) {
2358   default:
2359     report_fatal_error("Unsupported code model for lowering");
2360   case CodeModel::Small: {
2361     // Generate a sequence for accessing addresses within the first 2 GiB of
2362     // address space. This generates the pattern (addi (lui %hi(sym)) %lo(sym)).
2363     SDValue AddrHi = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_HI);
2364     SDValue AddrLo = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_LO);
2365     SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0);
2366     return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNHi, AddrLo), 0);
2367   }
2368   case CodeModel::Medium: {
2369     // Generate a sequence for accessing addresses within any 2GiB range within
2370     // the address space. This generates the pattern (PseudoLLA sym), which
2371     // expands to (addi (auipc %pcrel_hi(sym)) %pcrel_lo(auipc)).
2372     SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0);
2373     return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0);
2374   }
2375   }
2376 }
2377 
2378 SDValue RISCVTargetLowering::lowerGlobalAddress(SDValue Op,
2379                                                 SelectionDAG &DAG) const {
2380   SDLoc DL(Op);
2381   EVT Ty = Op.getValueType();
2382   GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op);
2383   int64_t Offset = N->getOffset();
2384   MVT XLenVT = Subtarget.getXLenVT();
2385 
2386   const GlobalValue *GV = N->getGlobal();
2387   bool IsLocal = getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV);
2388   SDValue Addr = getAddr(N, DAG, IsLocal);
2389 
2390   // In order to maximise the opportunity for common subexpression elimination,
2391   // emit a separate ADD node for the global address offset instead of folding
2392   // it in the global address node. Later peephole optimisations may choose to
2393   // fold it back in when profitable.
2394   if (Offset != 0)
2395     return DAG.getNode(ISD::ADD, DL, Ty, Addr,
2396                        DAG.getConstant(Offset, DL, XLenVT));
2397   return Addr;
2398 }
2399 
2400 SDValue RISCVTargetLowering::lowerBlockAddress(SDValue Op,
2401                                                SelectionDAG &DAG) const {
2402   BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op);
2403 
2404   return getAddr(N, DAG);
2405 }
2406 
2407 SDValue RISCVTargetLowering::lowerConstantPool(SDValue Op,
2408                                                SelectionDAG &DAG) const {
2409   ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op);
2410 
2411   return getAddr(N, DAG);
2412 }
2413 
2414 SDValue RISCVTargetLowering::lowerJumpTable(SDValue Op,
2415                                             SelectionDAG &DAG) const {
2416   JumpTableSDNode *N = cast<JumpTableSDNode>(Op);
2417 
2418   return getAddr(N, DAG);
2419 }
2420 
2421 SDValue RISCVTargetLowering::getStaticTLSAddr(GlobalAddressSDNode *N,
2422                                               SelectionDAG &DAG,
2423                                               bool UseGOT) const {
2424   SDLoc DL(N);
2425   EVT Ty = getPointerTy(DAG.getDataLayout());
2426   const GlobalValue *GV = N->getGlobal();
2427   MVT XLenVT = Subtarget.getXLenVT();
2428 
2429   if (UseGOT) {
2430     // Use PC-relative addressing to access the GOT for this TLS symbol, then
2431     // load the address from the GOT and add the thread pointer. This generates
2432     // the pattern (PseudoLA_TLS_IE sym), which expands to
2433     // (ld (auipc %tls_ie_pcrel_hi(sym)) %pcrel_lo(auipc)).
2434     SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0);
2435     SDValue Load =
2436         SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_IE, DL, Ty, Addr), 0);
2437 
2438     // Add the thread pointer.
2439     SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT);
2440     return DAG.getNode(ISD::ADD, DL, Ty, Load, TPReg);
2441   }
2442 
2443   // Generate a sequence for accessing the address relative to the thread
2444   // pointer, with the appropriate adjustment for the thread pointer offset.
2445   // This generates the pattern
2446   // (add (add_tprel (lui %tprel_hi(sym)) tp %tprel_add(sym)) %tprel_lo(sym))
2447   SDValue AddrHi =
2448       DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_HI);
2449   SDValue AddrAdd =
2450       DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_ADD);
2451   SDValue AddrLo =
2452       DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_LO);
2453 
2454   SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0);
2455   SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT);
2456   SDValue MNAdd = SDValue(
2457       DAG.getMachineNode(RISCV::PseudoAddTPRel, DL, Ty, MNHi, TPReg, AddrAdd),
2458       0);
2459   return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNAdd, AddrLo), 0);
2460 }
2461 
2462 SDValue RISCVTargetLowering::getDynamicTLSAddr(GlobalAddressSDNode *N,
2463                                                SelectionDAG &DAG) const {
2464   SDLoc DL(N);
2465   EVT Ty = getPointerTy(DAG.getDataLayout());
2466   IntegerType *CallTy = Type::getIntNTy(*DAG.getContext(), Ty.getSizeInBits());
2467   const GlobalValue *GV = N->getGlobal();
2468 
2469   // Use a PC-relative addressing mode to access the global dynamic GOT address.
2470   // This generates the pattern (PseudoLA_TLS_GD sym), which expands to
2471   // (addi (auipc %tls_gd_pcrel_hi(sym)) %pcrel_lo(auipc)).
2472   SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0);
2473   SDValue Load =
2474       SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_GD, DL, Ty, Addr), 0);
2475 
2476   // Prepare argument list to generate call.
2477   ArgListTy Args;
2478   ArgListEntry Entry;
2479   Entry.Node = Load;
2480   Entry.Ty = CallTy;
2481   Args.push_back(Entry);
2482 
2483   // Setup call to __tls_get_addr.
2484   TargetLowering::CallLoweringInfo CLI(DAG);
2485   CLI.setDebugLoc(DL)
2486       .setChain(DAG.getEntryNode())
2487       .setLibCallee(CallingConv::C, CallTy,
2488                     DAG.getExternalSymbol("__tls_get_addr", Ty),
2489                     std::move(Args));
2490 
2491   return LowerCallTo(CLI).first;
2492 }
2493 
2494 SDValue RISCVTargetLowering::lowerGlobalTLSAddress(SDValue Op,
2495                                                    SelectionDAG &DAG) const {
2496   SDLoc DL(Op);
2497   EVT Ty = Op.getValueType();
2498   GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op);
2499   int64_t Offset = N->getOffset();
2500   MVT XLenVT = Subtarget.getXLenVT();
2501 
2502   TLSModel::Model Model = getTargetMachine().getTLSModel(N->getGlobal());
2503 
2504   if (DAG.getMachineFunction().getFunction().getCallingConv() ==
2505       CallingConv::GHC)
2506     report_fatal_error("In GHC calling convention TLS is not supported");
2507 
2508   SDValue Addr;
2509   switch (Model) {
2510   case TLSModel::LocalExec:
2511     Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/false);
2512     break;
2513   case TLSModel::InitialExec:
2514     Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/true);
2515     break;
2516   case TLSModel::LocalDynamic:
2517   case TLSModel::GeneralDynamic:
2518     Addr = getDynamicTLSAddr(N, DAG);
2519     break;
2520   }
2521 
2522   // In order to maximise the opportunity for common subexpression elimination,
2523   // emit a separate ADD node for the global address offset instead of folding
2524   // it in the global address node. Later peephole optimisations may choose to
2525   // fold it back in when profitable.
2526   if (Offset != 0)
2527     return DAG.getNode(ISD::ADD, DL, Ty, Addr,
2528                        DAG.getConstant(Offset, DL, XLenVT));
2529   return Addr;
2530 }
2531 
2532 SDValue RISCVTargetLowering::lowerSELECT(SDValue Op, SelectionDAG &DAG) const {
2533   SDValue CondV = Op.getOperand(0);
2534   SDValue TrueV = Op.getOperand(1);
2535   SDValue FalseV = Op.getOperand(2);
2536   SDLoc DL(Op);
2537   MVT XLenVT = Subtarget.getXLenVT();
2538 
2539   // If the result type is XLenVT and CondV is the output of a SETCC node
2540   // which also operated on XLenVT inputs, then merge the SETCC node into the
2541   // lowered RISCVISD::SELECT_CC to take advantage of the integer
2542   // compare+branch instructions. i.e.:
2543   // (select (setcc lhs, rhs, cc), truev, falsev)
2544   // -> (riscvisd::select_cc lhs, rhs, cc, truev, falsev)
2545   if (Op.getSimpleValueType() == XLenVT && CondV.getOpcode() == ISD::SETCC &&
2546       CondV.getOperand(0).getSimpleValueType() == XLenVT) {
2547     SDValue LHS = CondV.getOperand(0);
2548     SDValue RHS = CondV.getOperand(1);
2549     auto CC = cast<CondCodeSDNode>(CondV.getOperand(2));
2550     ISD::CondCode CCVal = CC->get();
2551 
2552     // Special case for a select of 2 constants that have a diffence of 1.
2553     // Normally this is done by DAGCombine, but if the select is introduced by
2554     // type legalization or op legalization, we miss it. Restricting to SETLT
2555     // case for now because that is what signed saturating add/sub need.
2556     // FIXME: We don't need the condition to be SETLT or even a SETCC,
2557     // but we would probably want to swap the true/false values if the condition
2558     // is SETGE/SETLE to avoid an XORI.
2559     if (isa<ConstantSDNode>(TrueV) && isa<ConstantSDNode>(FalseV) &&
2560         CCVal == ISD::SETLT) {
2561       const APInt &TrueVal = cast<ConstantSDNode>(TrueV)->getAPIntValue();
2562       const APInt &FalseVal = cast<ConstantSDNode>(FalseV)->getAPIntValue();
2563       if (TrueVal - 1 == FalseVal)
2564         return DAG.getNode(ISD::ADD, DL, Op.getValueType(), CondV, FalseV);
2565       if (TrueVal + 1 == FalseVal)
2566         return DAG.getNode(ISD::SUB, DL, Op.getValueType(), FalseV, CondV);
2567     }
2568 
2569     translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
2570 
2571     SDValue TargetCC = DAG.getTargetConstant(CCVal, DL, XLenVT);
2572     SDValue Ops[] = {LHS, RHS, TargetCC, TrueV, FalseV};
2573     return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops);
2574   }
2575 
2576   // Otherwise:
2577   // (select condv, truev, falsev)
2578   // -> (riscvisd::select_cc condv, zero, setne, truev, falsev)
2579   SDValue Zero = DAG.getConstant(0, DL, XLenVT);
2580   SDValue SetNE = DAG.getTargetConstant(ISD::SETNE, DL, XLenVT);
2581 
2582   SDValue Ops[] = {CondV, Zero, SetNE, TrueV, FalseV};
2583 
2584   return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops);
2585 }
2586 
2587 SDValue RISCVTargetLowering::lowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
2588   SDValue CondV = Op.getOperand(1);
2589   SDLoc DL(Op);
2590   MVT XLenVT = Subtarget.getXLenVT();
2591 
2592   if (CondV.getOpcode() == ISD::SETCC &&
2593       CondV.getOperand(0).getValueType() == XLenVT) {
2594     SDValue LHS = CondV.getOperand(0);
2595     SDValue RHS = CondV.getOperand(1);
2596     ISD::CondCode CCVal = cast<CondCodeSDNode>(CondV.getOperand(2))->get();
2597 
2598     translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
2599 
2600     SDValue TargetCC = DAG.getCondCode(CCVal);
2601     return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0),
2602                        LHS, RHS, TargetCC, Op.getOperand(2));
2603   }
2604 
2605   return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0),
2606                      CondV, DAG.getConstant(0, DL, XLenVT),
2607                      DAG.getCondCode(ISD::SETNE), Op.getOperand(2));
2608 }
2609 
2610 SDValue RISCVTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const {
2611   MachineFunction &MF = DAG.getMachineFunction();
2612   RISCVMachineFunctionInfo *FuncInfo = MF.getInfo<RISCVMachineFunctionInfo>();
2613 
2614   SDLoc DL(Op);
2615   SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
2616                                  getPointerTy(MF.getDataLayout()));
2617 
2618   // vastart just stores the address of the VarArgsFrameIndex slot into the
2619   // memory location argument.
2620   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
2621   return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1),
2622                       MachinePointerInfo(SV));
2623 }
2624 
2625 SDValue RISCVTargetLowering::lowerFRAMEADDR(SDValue Op,
2626                                             SelectionDAG &DAG) const {
2627   const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo();
2628   MachineFunction &MF = DAG.getMachineFunction();
2629   MachineFrameInfo &MFI = MF.getFrameInfo();
2630   MFI.setFrameAddressIsTaken(true);
2631   Register FrameReg = RI.getFrameRegister(MF);
2632   int XLenInBytes = Subtarget.getXLen() / 8;
2633 
2634   EVT VT = Op.getValueType();
2635   SDLoc DL(Op);
2636   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, FrameReg, VT);
2637   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
2638   while (Depth--) {
2639     int Offset = -(XLenInBytes * 2);
2640     SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr,
2641                               DAG.getIntPtrConstant(Offset, DL));
2642     FrameAddr =
2643         DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo());
2644   }
2645   return FrameAddr;
2646 }
2647 
2648 SDValue RISCVTargetLowering::lowerRETURNADDR(SDValue Op,
2649                                              SelectionDAG &DAG) const {
2650   const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo();
2651   MachineFunction &MF = DAG.getMachineFunction();
2652   MachineFrameInfo &MFI = MF.getFrameInfo();
2653   MFI.setReturnAddressIsTaken(true);
2654   MVT XLenVT = Subtarget.getXLenVT();
2655   int XLenInBytes = Subtarget.getXLen() / 8;
2656 
2657   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
2658     return SDValue();
2659 
2660   EVT VT = Op.getValueType();
2661   SDLoc DL(Op);
2662   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
2663   if (Depth) {
2664     int Off = -XLenInBytes;
2665     SDValue FrameAddr = lowerFRAMEADDR(Op, DAG);
2666     SDValue Offset = DAG.getConstant(Off, DL, VT);
2667     return DAG.getLoad(VT, DL, DAG.getEntryNode(),
2668                        DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset),
2669                        MachinePointerInfo());
2670   }
2671 
2672   // Return the value of the return address register, marking it an implicit
2673   // live-in.
2674   Register Reg = MF.addLiveIn(RI.getRARegister(), getRegClassFor(XLenVT));
2675   return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, XLenVT);
2676 }
2677 
2678 SDValue RISCVTargetLowering::lowerShiftLeftParts(SDValue Op,
2679                                                  SelectionDAG &DAG) const {
2680   SDLoc DL(Op);
2681   SDValue Lo = Op.getOperand(0);
2682   SDValue Hi = Op.getOperand(1);
2683   SDValue Shamt = Op.getOperand(2);
2684   EVT VT = Lo.getValueType();
2685 
2686   // if Shamt-XLEN < 0: // Shamt < XLEN
2687   //   Lo = Lo << Shamt
2688   //   Hi = (Hi << Shamt) | ((Lo >>u 1) >>u (XLEN-1 - Shamt))
2689   // else:
2690   //   Lo = 0
2691   //   Hi = Lo << (Shamt-XLEN)
2692 
2693   SDValue Zero = DAG.getConstant(0, DL, VT);
2694   SDValue One = DAG.getConstant(1, DL, VT);
2695   SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT);
2696   SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT);
2697   SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen);
2698   SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt);
2699 
2700   SDValue LoTrue = DAG.getNode(ISD::SHL, DL, VT, Lo, Shamt);
2701   SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, VT, Lo, One);
2702   SDValue ShiftRightLo =
2703       DAG.getNode(ISD::SRL, DL, VT, ShiftRight1Lo, XLenMinus1Shamt);
2704   SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, Hi, Shamt);
2705   SDValue HiTrue = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo);
2706   SDValue HiFalse = DAG.getNode(ISD::SHL, DL, VT, Lo, ShamtMinusXLen);
2707 
2708   SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT);
2709 
2710   Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, Zero);
2711   Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse);
2712 
2713   SDValue Parts[2] = {Lo, Hi};
2714   return DAG.getMergeValues(Parts, DL);
2715 }
2716 
2717 SDValue RISCVTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG,
2718                                                   bool IsSRA) const {
2719   SDLoc DL(Op);
2720   SDValue Lo = Op.getOperand(0);
2721   SDValue Hi = Op.getOperand(1);
2722   SDValue Shamt = Op.getOperand(2);
2723   EVT VT = Lo.getValueType();
2724 
2725   // SRA expansion:
2726   //   if Shamt-XLEN < 0: // Shamt < XLEN
2727   //     Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt))
2728   //     Hi = Hi >>s Shamt
2729   //   else:
2730   //     Lo = Hi >>s (Shamt-XLEN);
2731   //     Hi = Hi >>s (XLEN-1)
2732   //
2733   // SRL expansion:
2734   //   if Shamt-XLEN < 0: // Shamt < XLEN
2735   //     Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt))
2736   //     Hi = Hi >>u Shamt
2737   //   else:
2738   //     Lo = Hi >>u (Shamt-XLEN);
2739   //     Hi = 0;
2740 
2741   unsigned ShiftRightOp = IsSRA ? ISD::SRA : ISD::SRL;
2742 
2743   SDValue Zero = DAG.getConstant(0, DL, VT);
2744   SDValue One = DAG.getConstant(1, DL, VT);
2745   SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT);
2746   SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT);
2747   SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen);
2748   SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt);
2749 
2750   SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, Lo, Shamt);
2751   SDValue ShiftLeftHi1 = DAG.getNode(ISD::SHL, DL, VT, Hi, One);
2752   SDValue ShiftLeftHi =
2753       DAG.getNode(ISD::SHL, DL, VT, ShiftLeftHi1, XLenMinus1Shamt);
2754   SDValue LoTrue = DAG.getNode(ISD::OR, DL, VT, ShiftRightLo, ShiftLeftHi);
2755   SDValue HiTrue = DAG.getNode(ShiftRightOp, DL, VT, Hi, Shamt);
2756   SDValue LoFalse = DAG.getNode(ShiftRightOp, DL, VT, Hi, ShamtMinusXLen);
2757   SDValue HiFalse =
2758       IsSRA ? DAG.getNode(ISD::SRA, DL, VT, Hi, XLenMinus1) : Zero;
2759 
2760   SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT);
2761 
2762   Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, LoFalse);
2763   Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse);
2764 
2765   SDValue Parts[2] = {Lo, Hi};
2766   return DAG.getMergeValues(Parts, DL);
2767 }
2768 
2769 // Custom-lower a SPLAT_VECTOR_PARTS where XLEN<SEW, as the SEW element type is
2770 // illegal (currently only vXi64 RV32).
2771 // FIXME: We could also catch non-constant sign-extended i32 values and lower
2772 // them to SPLAT_VECTOR_I64
2773 SDValue RISCVTargetLowering::lowerSPLAT_VECTOR_PARTS(SDValue Op,
2774                                                      SelectionDAG &DAG) const {
2775   SDLoc DL(Op);
2776   MVT VecVT = Op.getSimpleValueType();
2777   assert(!Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64 &&
2778          "Unexpected SPLAT_VECTOR_PARTS lowering");
2779 
2780   assert(Op.getNumOperands() == 2 && "Unexpected number of operands!");
2781   SDValue Lo = Op.getOperand(0);
2782   SDValue Hi = Op.getOperand(1);
2783 
2784   if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) {
2785     int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue();
2786     int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue();
2787     // If Hi constant is all the same sign bit as Lo, lower this as a custom
2788     // node in order to try and match RVV vector/scalar instructions.
2789     if ((LoC >> 31) == HiC)
2790       return DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, Lo);
2791   }
2792 
2793   // Detect cases where Hi is (SRA Lo, 31) which means Hi is Lo sign extended.
2794   if (Hi.getOpcode() == ISD::SRA && Hi.getOperand(0) == Lo &&
2795       isa<ConstantSDNode>(Hi.getOperand(1)) &&
2796       Hi.getConstantOperandVal(1) == 31)
2797     return DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, Lo);
2798 
2799   // Fall back to use a stack store and stride x0 vector load. Use X0 as VL.
2800   return splatPartsI64ThroughStack(
2801       DL, VecVT, Lo, Hi, DAG.getRegister(RISCV::X0, MVT::i64), DAG, Subtarget);
2802 }
2803 
2804 // Custom-lower extensions from mask vectors by using a vselect either with 1
2805 // for zero/any-extension or -1 for sign-extension:
2806 //   (vXiN = (s|z)ext vXi1:vmask) -> (vXiN = vselect vmask, (-1 or 1), 0)
2807 // Note that any-extension is lowered identically to zero-extension.
2808 SDValue RISCVTargetLowering::lowerVectorMaskExt(SDValue Op, SelectionDAG &DAG,
2809                                                 int64_t ExtTrueVal) const {
2810   SDLoc DL(Op);
2811   MVT VecVT = Op.getSimpleValueType();
2812   SDValue Src = Op.getOperand(0);
2813   // Only custom-lower extensions from mask types
2814   assert(Src.getValueType().isVector() &&
2815          Src.getValueType().getVectorElementType() == MVT::i1);
2816 
2817   MVT XLenVT = Subtarget.getXLenVT();
2818   SDValue SplatZero = DAG.getConstant(0, DL, XLenVT);
2819   SDValue SplatTrueVal = DAG.getConstant(ExtTrueVal, DL, XLenVT);
2820 
2821   if (VecVT.isScalableVector()) {
2822     // Be careful not to introduce illegal scalar types at this stage, and be
2823     // careful also about splatting constants as on RV32, vXi64 SPLAT_VECTOR is
2824     // illegal and must be expanded. Since we know that the constants are
2825     // sign-extended 32-bit values, we use SPLAT_VECTOR_I64 directly.
2826     bool IsRV32E64 =
2827         !Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64;
2828 
2829     if (!IsRV32E64) {
2830       SplatZero = DAG.getSplatVector(VecVT, DL, SplatZero);
2831       SplatTrueVal = DAG.getSplatVector(VecVT, DL, SplatTrueVal);
2832     } else {
2833       SplatZero = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, SplatZero);
2834       SplatTrueVal =
2835           DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, SplatTrueVal);
2836     }
2837 
2838     return DAG.getNode(ISD::VSELECT, DL, VecVT, Src, SplatTrueVal, SplatZero);
2839   }
2840 
2841   MVT ContainerVT = getContainerForFixedLengthVector(VecVT);
2842   MVT I1ContainerVT =
2843       MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
2844 
2845   SDValue CC = convertToScalableVector(I1ContainerVT, Src, DAG, Subtarget);
2846 
2847   SDValue Mask, VL;
2848   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
2849 
2850   SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatZero, VL);
2851   SplatTrueVal =
2852       DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatTrueVal, VL);
2853   SDValue Select = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC,
2854                                SplatTrueVal, SplatZero, VL);
2855 
2856   return convertFromScalableVector(VecVT, Select, DAG, Subtarget);
2857 }
2858 
2859 SDValue RISCVTargetLowering::lowerFixedLengthVectorExtendToRVV(
2860     SDValue Op, SelectionDAG &DAG, unsigned ExtendOpc) const {
2861   MVT ExtVT = Op.getSimpleValueType();
2862   // Only custom-lower extensions from fixed-length vector types.
2863   if (!ExtVT.isFixedLengthVector())
2864     return Op;
2865   MVT VT = Op.getOperand(0).getSimpleValueType();
2866   // Grab the canonical container type for the extended type. Infer the smaller
2867   // type from that to ensure the same number of vector elements, as we know
2868   // the LMUL will be sufficient to hold the smaller type.
2869   MVT ContainerExtVT = getContainerForFixedLengthVector(ExtVT);
2870   // Get the extended container type manually to ensure the same number of
2871   // vector elements between source and dest.
2872   MVT ContainerVT = MVT::getVectorVT(VT.getVectorElementType(),
2873                                      ContainerExtVT.getVectorElementCount());
2874 
2875   SDValue Op1 =
2876       convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget);
2877 
2878   SDLoc DL(Op);
2879   SDValue Mask, VL;
2880   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
2881 
2882   SDValue Ext = DAG.getNode(ExtendOpc, DL, ContainerExtVT, Op1, Mask, VL);
2883 
2884   return convertFromScalableVector(ExtVT, Ext, DAG, Subtarget);
2885 }
2886 
2887 // Custom-lower truncations from vectors to mask vectors by using a mask and a
2888 // setcc operation:
2889 //   (vXi1 = trunc vXiN vec) -> (vXi1 = setcc (and vec, 1), 0, ne)
2890 SDValue RISCVTargetLowering::lowerVectorMaskTrunc(SDValue Op,
2891                                                   SelectionDAG &DAG) const {
2892   SDLoc DL(Op);
2893   EVT MaskVT = Op.getValueType();
2894   // Only expect to custom-lower truncations to mask types
2895   assert(MaskVT.isVector() && MaskVT.getVectorElementType() == MVT::i1 &&
2896          "Unexpected type for vector mask lowering");
2897   SDValue Src = Op.getOperand(0);
2898   MVT VecVT = Src.getSimpleValueType();
2899 
2900   // If this is a fixed vector, we need to convert it to a scalable vector.
2901   MVT ContainerVT = VecVT;
2902   if (VecVT.isFixedLengthVector()) {
2903     ContainerVT = getContainerForFixedLengthVector(VecVT);
2904     Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget);
2905   }
2906 
2907   SDValue SplatOne = DAG.getConstant(1, DL, Subtarget.getXLenVT());
2908   SDValue SplatZero = DAG.getConstant(0, DL, Subtarget.getXLenVT());
2909 
2910   SplatOne = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatOne);
2911   SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatZero);
2912 
2913   if (VecVT.isScalableVector()) {
2914     SDValue Trunc = DAG.getNode(ISD::AND, DL, VecVT, Src, SplatOne);
2915     return DAG.getSetCC(DL, MaskVT, Trunc, SplatZero, ISD::SETNE);
2916   }
2917 
2918   SDValue Mask, VL;
2919   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
2920 
2921   MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1);
2922   SDValue Trunc =
2923       DAG.getNode(RISCVISD::AND_VL, DL, ContainerVT, Src, SplatOne, Mask, VL);
2924   Trunc = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskContainerVT, Trunc, SplatZero,
2925                       DAG.getCondCode(ISD::SETNE), Mask, VL);
2926   return convertFromScalableVector(MaskVT, Trunc, DAG, Subtarget);
2927 }
2928 
2929 // Custom-legalize INSERT_VECTOR_ELT so that the value is inserted into the
2930 // first position of a vector, and that vector is slid up to the insert index.
2931 // By limiting the active vector length to index+1 and merging with the
2932 // original vector (with an undisturbed tail policy for elements >= VL), we
2933 // achieve the desired result of leaving all elements untouched except the one
2934 // at VL-1, which is replaced with the desired value.
2935 SDValue RISCVTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op,
2936                                                     SelectionDAG &DAG) const {
2937   SDLoc DL(Op);
2938   MVT VecVT = Op.getSimpleValueType();
2939   SDValue Vec = Op.getOperand(0);
2940   SDValue Val = Op.getOperand(1);
2941   SDValue Idx = Op.getOperand(2);
2942 
2943   MVT ContainerVT = VecVT;
2944   // If the operand is a fixed-length vector, convert to a scalable one.
2945   if (VecVT.isFixedLengthVector()) {
2946     ContainerVT = getContainerForFixedLengthVector(VecVT);
2947     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
2948   }
2949 
2950   MVT XLenVT = Subtarget.getXLenVT();
2951 
2952   SDValue Zero = DAG.getConstant(0, DL, XLenVT);
2953   bool IsLegalInsert = Subtarget.is64Bit() || Val.getValueType() != MVT::i64;
2954   // Even i64-element vectors on RV32 can be lowered without scalar
2955   // legalization if the most-significant 32 bits of the value are not affected
2956   // by the sign-extension of the lower 32 bits.
2957   // TODO: We could also catch sign extensions of a 32-bit value.
2958   if (!IsLegalInsert && isa<ConstantSDNode>(Val)) {
2959     const auto *CVal = cast<ConstantSDNode>(Val);
2960     if (isInt<32>(CVal->getSExtValue())) {
2961       IsLegalInsert = true;
2962       Val = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32);
2963     }
2964   }
2965 
2966   SDValue Mask, VL;
2967   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
2968 
2969   SDValue ValInVec;
2970 
2971   if (IsLegalInsert) {
2972     unsigned Opc =
2973         VecVT.isFloatingPoint() ? RISCVISD::VFMV_S_F_VL : RISCVISD::VMV_S_X_VL;
2974     if (isNullConstant(Idx)) {
2975       Vec = DAG.getNode(Opc, DL, ContainerVT, Vec, Val, VL);
2976       if (!VecVT.isFixedLengthVector())
2977         return Vec;
2978       return convertFromScalableVector(VecVT, Vec, DAG, Subtarget);
2979     }
2980     ValInVec =
2981         DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), Val, VL);
2982   } else {
2983     // On RV32, i64-element vectors must be specially handled to place the
2984     // value at element 0, by using two vslide1up instructions in sequence on
2985     // the i32 split lo/hi value. Use an equivalently-sized i32 vector for
2986     // this.
2987     SDValue One = DAG.getConstant(1, DL, XLenVT);
2988     SDValue ValLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, Zero);
2989     SDValue ValHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, One);
2990     MVT I32ContainerVT =
2991         MVT::getVectorVT(MVT::i32, ContainerVT.getVectorElementCount() * 2);
2992     SDValue I32Mask =
2993         getDefaultScalableVLOps(I32ContainerVT, DL, DAG, Subtarget).first;
2994     // Limit the active VL to two.
2995     SDValue InsertI64VL = DAG.getConstant(2, DL, XLenVT);
2996     // Note: We can't pass a UNDEF to the first VSLIDE1UP_VL since an untied
2997     // undef doesn't obey the earlyclobber constraint. Just splat a zero value.
2998     ValInVec = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, I32ContainerVT, Zero,
2999                            InsertI64VL);
3000     // First slide in the hi value, then the lo in underneath it.
3001     ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT, ValInVec,
3002                            ValHi, I32Mask, InsertI64VL);
3003     ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT, ValInVec,
3004                            ValLo, I32Mask, InsertI64VL);
3005     // Bitcast back to the right container type.
3006     ValInVec = DAG.getBitcast(ContainerVT, ValInVec);
3007   }
3008 
3009   // Now that the value is in a vector, slide it into position.
3010   SDValue InsertVL =
3011       DAG.getNode(ISD::ADD, DL, XLenVT, Idx, DAG.getConstant(1, DL, XLenVT));
3012   SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec,
3013                                 ValInVec, Idx, Mask, InsertVL);
3014   if (!VecVT.isFixedLengthVector())
3015     return Slideup;
3016   return convertFromScalableVector(VecVT, Slideup, DAG, Subtarget);
3017 }
3018 
3019 // Custom-lower EXTRACT_VECTOR_ELT operations to slide the vector down, then
3020 // extract the first element: (extractelt (slidedown vec, idx), 0). For integer
3021 // types this is done using VMV_X_S to allow us to glean information about the
3022 // sign bits of the result.
3023 SDValue RISCVTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op,
3024                                                      SelectionDAG &DAG) const {
3025   SDLoc DL(Op);
3026   SDValue Idx = Op.getOperand(1);
3027   SDValue Vec = Op.getOperand(0);
3028   EVT EltVT = Op.getValueType();
3029   MVT VecVT = Vec.getSimpleValueType();
3030   MVT XLenVT = Subtarget.getXLenVT();
3031 
3032   if (VecVT.getVectorElementType() == MVT::i1) {
3033     // FIXME: For now we just promote to an i8 vector and extract from that,
3034     // but this is probably not optimal.
3035     MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount());
3036     Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec);
3037     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec, Idx);
3038   }
3039 
3040   // If this is a fixed vector, we need to convert it to a scalable vector.
3041   MVT ContainerVT = VecVT;
3042   if (VecVT.isFixedLengthVector()) {
3043     ContainerVT = getContainerForFixedLengthVector(VecVT);
3044     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
3045   }
3046 
3047   // If the index is 0, the vector is already in the right position.
3048   if (!isNullConstant(Idx)) {
3049     // Use a VL of 1 to avoid processing more elements than we need.
3050     SDValue VL = DAG.getConstant(1, DL, XLenVT);
3051     MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
3052     SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
3053     Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT,
3054                       DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL);
3055   }
3056 
3057   if (!EltVT.isInteger()) {
3058     // Floating-point extracts are handled in TableGen.
3059     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec,
3060                        DAG.getConstant(0, DL, XLenVT));
3061   }
3062 
3063   SDValue Elt0 = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec);
3064   return DAG.getNode(ISD::TRUNCATE, DL, EltVT, Elt0);
3065 }
3066 
3067 // Some RVV intrinsics may claim that they want an integer operand to be
3068 // promoted or expanded.
3069 static SDValue lowerVectorIntrinsicSplats(SDValue Op, SelectionDAG &DAG,
3070                                           const RISCVSubtarget &Subtarget) {
3071   assert((Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3072           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN) &&
3073          "Unexpected opcode");
3074 
3075   if (!Subtarget.hasStdExtV())
3076     return SDValue();
3077 
3078   bool HasChain = Op.getOpcode() == ISD::INTRINSIC_W_CHAIN;
3079   unsigned IntNo = Op.getConstantOperandVal(HasChain ? 1 : 0);
3080   SDLoc DL(Op);
3081 
3082   const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II =
3083       RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo);
3084   if (!II || !II->SplatOperand)
3085     return SDValue();
3086 
3087   unsigned SplatOp = II->SplatOperand + HasChain;
3088   assert(SplatOp < Op.getNumOperands());
3089 
3090   SmallVector<SDValue, 8> Operands(Op->op_begin(), Op->op_end());
3091   SDValue &ScalarOp = Operands[SplatOp];
3092   MVT OpVT = ScalarOp.getSimpleValueType();
3093   MVT XLenVT = Subtarget.getXLenVT();
3094 
3095   // If this isn't a scalar, or its type is XLenVT we're done.
3096   if (!OpVT.isScalarInteger() || OpVT == XLenVT)
3097     return SDValue();
3098 
3099   // Simplest case is that the operand needs to be promoted to XLenVT.
3100   if (OpVT.bitsLT(XLenVT)) {
3101     // If the operand is a constant, sign extend to increase our chances
3102     // of being able to use a .vi instruction. ANY_EXTEND would become a
3103     // a zero extend and the simm5 check in isel would fail.
3104     // FIXME: Should we ignore the upper bits in isel instead?
3105     unsigned ExtOpc =
3106         isa<ConstantSDNode>(ScalarOp) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND;
3107     ScalarOp = DAG.getNode(ExtOpc, DL, XLenVT, ScalarOp);
3108     return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands);
3109   }
3110 
3111   // Use the previous operand to get the vXi64 VT. The result might be a mask
3112   // VT for compares. Using the previous operand assumes that the previous
3113   // operand will never have a smaller element size than a scalar operand and
3114   // that a widening operation never uses SEW=64.
3115   // NOTE: If this fails the below assert, we can probably just find the
3116   // element count from any operand or result and use it to construct the VT.
3117   assert(II->SplatOperand > 1 && "Unexpected splat operand!");
3118   MVT VT = Op.getOperand(SplatOp - 1).getSimpleValueType();
3119 
3120   // The more complex case is when the scalar is larger than XLenVT.
3121   assert(XLenVT == MVT::i32 && OpVT == MVT::i64 &&
3122          VT.getVectorElementType() == MVT::i64 && "Unexpected VTs!");
3123 
3124   // If this is a sign-extended 32-bit constant, we can truncate it and rely
3125   // on the instruction to sign-extend since SEW>XLEN.
3126   if (auto *CVal = dyn_cast<ConstantSDNode>(ScalarOp)) {
3127     if (isInt<32>(CVal->getSExtValue())) {
3128       ScalarOp = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32);
3129       return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands);
3130     }
3131   }
3132 
3133   // We need to convert the scalar to a splat vector.
3134   // FIXME: Can we implicitly truncate the scalar if it is known to
3135   // be sign extended?
3136   // VL should be the last operand.
3137   SDValue VL = Op.getOperand(Op.getNumOperands() - 1);
3138   assert(VL.getValueType() == XLenVT);
3139   ScalarOp = splatSplitI64WithVL(DL, VT, ScalarOp, VL, DAG, Subtarget);
3140   return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands);
3141 }
3142 
3143 SDValue RISCVTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
3144                                                      SelectionDAG &DAG) const {
3145   unsigned IntNo = Op.getConstantOperandVal(0);
3146   SDLoc DL(Op);
3147   MVT XLenVT = Subtarget.getXLenVT();
3148 
3149   switch (IntNo) {
3150   default:
3151     break; // Don't custom lower most intrinsics.
3152   case Intrinsic::thread_pointer: {
3153     EVT PtrVT = getPointerTy(DAG.getDataLayout());
3154     return DAG.getRegister(RISCV::X4, PtrVT);
3155   }
3156   case Intrinsic::riscv_orc_b:
3157     // Lower to the GORCI encoding for orc.b.
3158     return DAG.getNode(RISCVISD::GORC, DL, XLenVT, Op.getOperand(1),
3159                        DAG.getConstant(7, DL, XLenVT));
3160   case Intrinsic::riscv_grev:
3161   case Intrinsic::riscv_gorc: {
3162     unsigned Opc =
3163         IntNo == Intrinsic::riscv_grev ? RISCVISD::GREV : RISCVISD::GORC;
3164     return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2));
3165   }
3166   case Intrinsic::riscv_shfl:
3167   case Intrinsic::riscv_unshfl: {
3168     unsigned Opc =
3169         IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL;
3170     return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2));
3171   }
3172   case Intrinsic::riscv_bcompress:
3173   case Intrinsic::riscv_bdecompress: {
3174     unsigned Opc = IntNo == Intrinsic::riscv_bcompress ? RISCVISD::BCOMPRESS
3175                                                        : RISCVISD::BDECOMPRESS;
3176     return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2));
3177   }
3178   case Intrinsic::riscv_vmv_x_s:
3179     assert(Op.getValueType() == XLenVT && "Unexpected VT!");
3180     return DAG.getNode(RISCVISD::VMV_X_S, DL, Op.getValueType(),
3181                        Op.getOperand(1));
3182   case Intrinsic::riscv_vmv_v_x:
3183     return lowerScalarSplat(Op.getOperand(1), Op.getOperand(2),
3184                             Op.getSimpleValueType(), DL, DAG, Subtarget);
3185   case Intrinsic::riscv_vfmv_v_f:
3186     return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, Op.getValueType(),
3187                        Op.getOperand(1), Op.getOperand(2));
3188   case Intrinsic::riscv_vmv_s_x: {
3189     SDValue Scalar = Op.getOperand(2);
3190 
3191     if (Scalar.getValueType().bitsLE(XLenVT)) {
3192       Scalar = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Scalar);
3193       return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, Op.getValueType(),
3194                          Op.getOperand(1), Scalar, Op.getOperand(3));
3195     }
3196 
3197     assert(Scalar.getValueType() == MVT::i64 && "Unexpected scalar VT!");
3198 
3199     // This is an i64 value that lives in two scalar registers. We have to
3200     // insert this in a convoluted way. First we build vXi64 splat containing
3201     // the/ two values that we assemble using some bit math. Next we'll use
3202     // vid.v and vmseq to build a mask with bit 0 set. Then we'll use that mask
3203     // to merge element 0 from our splat into the source vector.
3204     // FIXME: This is probably not the best way to do this, but it is
3205     // consistent with INSERT_VECTOR_ELT lowering so it is a good starting
3206     // point.
3207     //   vmv.v.x vX, hi
3208     //   vsll.vx vX, vX, /*32*/
3209     //   vmv.v.x vY, lo
3210     //   vsll.vx vY, vY, /*32*/
3211     //   vsrl.vx vY, vY, /*32*/
3212     //   vor.vv vX, vX, vY
3213     //
3214     //   vid.v      vVid
3215     //   vmseq.vx   mMask, vVid, 0
3216     //   vmerge.vvm vDest, vSrc, vVal, mMask
3217     MVT VT = Op.getSimpleValueType();
3218     SDValue Vec = Op.getOperand(1);
3219     SDValue VL = Op.getOperand(3);
3220 
3221     SDValue SplattedVal =
3222         splatSplitI64WithVL(DL, VT, Scalar, VL, DAG, Subtarget);
3223     SDValue SplattedIdx = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT,
3224                                       DAG.getConstant(0, DL, MVT::i32), VL);
3225 
3226     MVT MaskVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount());
3227     SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
3228     SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL);
3229     SDValue SelectCond =
3230         DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, VID, SplattedIdx,
3231                     DAG.getCondCode(ISD::SETEQ), Mask, VL);
3232     return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, SelectCond, SplattedVal,
3233                        Vec, VL);
3234   }
3235   case Intrinsic::riscv_vslide1up:
3236   case Intrinsic::riscv_vslide1down:
3237   case Intrinsic::riscv_vslide1up_mask:
3238   case Intrinsic::riscv_vslide1down_mask: {
3239     // We need to special case these when the scalar is larger than XLen.
3240     unsigned NumOps = Op.getNumOperands();
3241     bool IsMasked = NumOps == 6;
3242     unsigned OpOffset = IsMasked ? 1 : 0;
3243     SDValue Scalar = Op.getOperand(2 + OpOffset);
3244     if (Scalar.getValueType().bitsLE(XLenVT))
3245       break;
3246 
3247     // Splatting a sign extended constant is fine.
3248     if (auto *CVal = dyn_cast<ConstantSDNode>(Scalar))
3249       if (isInt<32>(CVal->getSExtValue()))
3250         break;
3251 
3252     MVT VT = Op.getSimpleValueType();
3253     assert(VT.getVectorElementType() == MVT::i64 &&
3254            Scalar.getValueType() == MVT::i64 && "Unexpected VTs");
3255 
3256     // Convert the vector source to the equivalent nxvXi32 vector.
3257     MVT I32VT = MVT::getVectorVT(MVT::i32, VT.getVectorElementCount() * 2);
3258     SDValue Vec = DAG.getBitcast(I32VT, Op.getOperand(1 + OpOffset));
3259 
3260     SDValue ScalarLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar,
3261                                    DAG.getConstant(0, DL, XLenVT));
3262     SDValue ScalarHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar,
3263                                    DAG.getConstant(1, DL, XLenVT));
3264 
3265     // Double the VL since we halved SEW.
3266     SDValue VL = Op.getOperand(NumOps - 1);
3267     SDValue I32VL =
3268         DAG.getNode(ISD::SHL, DL, XLenVT, VL, DAG.getConstant(1, DL, XLenVT));
3269 
3270     MVT I32MaskVT = MVT::getVectorVT(MVT::i1, I32VT.getVectorElementCount());
3271     SDValue I32Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, I32MaskVT, VL);
3272 
3273     // Shift the two scalar parts in using SEW=32 slide1up/slide1down
3274     // instructions.
3275     if (IntNo == Intrinsic::riscv_vslide1up ||
3276         IntNo == Intrinsic::riscv_vslide1up_mask) {
3277       Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Vec, ScalarHi,
3278                         I32Mask, I32VL);
3279       Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Vec, ScalarLo,
3280                         I32Mask, I32VL);
3281     } else {
3282       Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Vec, ScalarLo,
3283                         I32Mask, I32VL);
3284       Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Vec, ScalarHi,
3285                         I32Mask, I32VL);
3286     }
3287 
3288     // Convert back to nxvXi64.
3289     Vec = DAG.getBitcast(VT, Vec);
3290 
3291     if (!IsMasked)
3292       return Vec;
3293 
3294     // Apply mask after the operation.
3295     SDValue Mask = Op.getOperand(NumOps - 2);
3296     SDValue MaskedOff = Op.getOperand(1);
3297     return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, Mask, Vec, MaskedOff, VL);
3298   }
3299   }
3300 
3301   return lowerVectorIntrinsicSplats(Op, DAG, Subtarget);
3302 }
3303 
3304 SDValue RISCVTargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op,
3305                                                     SelectionDAG &DAG) const {
3306   return lowerVectorIntrinsicSplats(Op, DAG, Subtarget);
3307 }
3308 
3309 static MVT getLMUL1VT(MVT VT) {
3310   assert(VT.getVectorElementType().getSizeInBits() <= 64 &&
3311          "Unexpected vector MVT");
3312   return MVT::getScalableVectorVT(
3313       VT.getVectorElementType(),
3314       RISCV::RVVBitsPerBlock / VT.getVectorElementType().getSizeInBits());
3315 }
3316 
3317 static unsigned getRVVReductionOp(unsigned ISDOpcode) {
3318   switch (ISDOpcode) {
3319   default:
3320     llvm_unreachable("Unhandled reduction");
3321   case ISD::VECREDUCE_ADD:
3322     return RISCVISD::VECREDUCE_ADD_VL;
3323   case ISD::VECREDUCE_UMAX:
3324     return RISCVISD::VECREDUCE_UMAX_VL;
3325   case ISD::VECREDUCE_SMAX:
3326     return RISCVISD::VECREDUCE_SMAX_VL;
3327   case ISD::VECREDUCE_UMIN:
3328     return RISCVISD::VECREDUCE_UMIN_VL;
3329   case ISD::VECREDUCE_SMIN:
3330     return RISCVISD::VECREDUCE_SMIN_VL;
3331   case ISD::VECREDUCE_AND:
3332     return RISCVISD::VECREDUCE_AND_VL;
3333   case ISD::VECREDUCE_OR:
3334     return RISCVISD::VECREDUCE_OR_VL;
3335   case ISD::VECREDUCE_XOR:
3336     return RISCVISD::VECREDUCE_XOR_VL;
3337   }
3338 }
3339 
3340 SDValue RISCVTargetLowering::lowerVectorMaskVECREDUCE(SDValue Op,
3341                                                       SelectionDAG &DAG) const {
3342   SDLoc DL(Op);
3343   SDValue Vec = Op.getOperand(0);
3344   MVT VecVT = Vec.getSimpleValueType();
3345   assert((Op.getOpcode() == ISD::VECREDUCE_AND ||
3346           Op.getOpcode() == ISD::VECREDUCE_OR ||
3347           Op.getOpcode() == ISD::VECREDUCE_XOR) &&
3348          "Unexpected reduction lowering");
3349 
3350   MVT XLenVT = Subtarget.getXLenVT();
3351   assert(Op.getValueType() == XLenVT &&
3352          "Expected reduction output to be legalized to XLenVT");
3353 
3354   MVT ContainerVT = VecVT;
3355   if (VecVT.isFixedLengthVector()) {
3356     ContainerVT = getContainerForFixedLengthVector(VecVT);
3357     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
3358   }
3359 
3360   SDValue Mask, VL;
3361   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
3362   SDValue Zero = DAG.getConstant(0, DL, XLenVT);
3363 
3364   switch (Op.getOpcode()) {
3365   default:
3366     llvm_unreachable("Unhandled reduction");
3367   case ISD::VECREDUCE_AND:
3368     // vpopc ~x == 0
3369     Vec = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Vec, Mask, VL);
3370     Vec = DAG.getNode(RISCVISD::VPOPC_VL, DL, XLenVT, Vec, Mask, VL);
3371     return DAG.getSetCC(DL, XLenVT, Vec, Zero, ISD::SETEQ);
3372   case ISD::VECREDUCE_OR:
3373     // vpopc x != 0
3374     Vec = DAG.getNode(RISCVISD::VPOPC_VL, DL, XLenVT, Vec, Mask, VL);
3375     return DAG.getSetCC(DL, XLenVT, Vec, Zero, ISD::SETNE);
3376   case ISD::VECREDUCE_XOR: {
3377     // ((vpopc x) & 1) != 0
3378     SDValue One = DAG.getConstant(1, DL, XLenVT);
3379     Vec = DAG.getNode(RISCVISD::VPOPC_VL, DL, XLenVT, Vec, Mask, VL);
3380     Vec = DAG.getNode(ISD::AND, DL, XLenVT, Vec, One);
3381     return DAG.getSetCC(DL, XLenVT, Vec, Zero, ISD::SETNE);
3382   }
3383   }
3384 }
3385 
3386 SDValue RISCVTargetLowering::lowerVECREDUCE(SDValue Op,
3387                                             SelectionDAG &DAG) const {
3388   SDLoc DL(Op);
3389   SDValue Vec = Op.getOperand(0);
3390   EVT VecEVT = Vec.getValueType();
3391 
3392   unsigned BaseOpc = ISD::getVecReduceBaseOpcode(Op.getOpcode());
3393 
3394   // Due to ordering in legalize types we may have a vector type that needs to
3395   // be split. Do that manually so we can get down to a legal type.
3396   while (getTypeAction(*DAG.getContext(), VecEVT) ==
3397          TargetLowering::TypeSplitVector) {
3398     SDValue Lo, Hi;
3399     std::tie(Lo, Hi) = DAG.SplitVector(Vec, DL);
3400     VecEVT = Lo.getValueType();
3401     Vec = DAG.getNode(BaseOpc, DL, VecEVT, Lo, Hi);
3402   }
3403 
3404   // TODO: The type may need to be widened rather than split. Or widened before
3405   // it can be split.
3406   if (!isTypeLegal(VecEVT))
3407     return SDValue();
3408 
3409   MVT VecVT = VecEVT.getSimpleVT();
3410   MVT VecEltVT = VecVT.getVectorElementType();
3411   unsigned RVVOpcode = getRVVReductionOp(Op.getOpcode());
3412 
3413   MVT ContainerVT = VecVT;
3414   if (VecVT.isFixedLengthVector()) {
3415     ContainerVT = getContainerForFixedLengthVector(VecVT);
3416     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
3417   }
3418 
3419   MVT M1VT = getLMUL1VT(ContainerVT);
3420 
3421   SDValue Mask, VL;
3422   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
3423 
3424   // FIXME: This is a VLMAX splat which might be too large and can prevent
3425   // vsetvli removal.
3426   SDValue NeutralElem =
3427       DAG.getNeutralElement(BaseOpc, DL, VecEltVT, SDNodeFlags());
3428   SDValue IdentitySplat = DAG.getSplatVector(M1VT, DL, NeutralElem);
3429   SDValue Reduction =
3430       DAG.getNode(RVVOpcode, DL, M1VT, Vec, IdentitySplat, Mask, VL);
3431   SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction,
3432                              DAG.getConstant(0, DL, Subtarget.getXLenVT()));
3433   return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType());
3434 }
3435 
3436 // Given a reduction op, this function returns the matching reduction opcode,
3437 // the vector SDValue and the scalar SDValue required to lower this to a
3438 // RISCVISD node.
3439 static std::tuple<unsigned, SDValue, SDValue>
3440 getRVVFPReductionOpAndOperands(SDValue Op, SelectionDAG &DAG, EVT EltVT) {
3441   SDLoc DL(Op);
3442   switch (Op.getOpcode()) {
3443   default:
3444     llvm_unreachable("Unhandled reduction");
3445   case ISD::VECREDUCE_FADD:
3446     return std::make_tuple(RISCVISD::VECREDUCE_FADD_VL, Op.getOperand(0),
3447                            DAG.getConstantFP(0.0, DL, EltVT));
3448   case ISD::VECREDUCE_SEQ_FADD:
3449     return std::make_tuple(RISCVISD::VECREDUCE_SEQ_FADD_VL, Op.getOperand(1),
3450                            Op.getOperand(0));
3451   }
3452 }
3453 
3454 SDValue RISCVTargetLowering::lowerFPVECREDUCE(SDValue Op,
3455                                               SelectionDAG &DAG) const {
3456   SDLoc DL(Op);
3457   MVT VecEltVT = Op.getSimpleValueType();
3458 
3459   unsigned RVVOpcode;
3460   SDValue VectorVal, ScalarVal;
3461   std::tie(RVVOpcode, VectorVal, ScalarVal) =
3462       getRVVFPReductionOpAndOperands(Op, DAG, VecEltVT);
3463   MVT VecVT = VectorVal.getSimpleValueType();
3464 
3465   MVT ContainerVT = VecVT;
3466   if (VecVT.isFixedLengthVector()) {
3467     ContainerVT = getContainerForFixedLengthVector(VecVT);
3468     VectorVal = convertToScalableVector(ContainerVT, VectorVal, DAG, Subtarget);
3469   }
3470 
3471   MVT M1VT = getLMUL1VT(VectorVal.getSimpleValueType());
3472 
3473   SDValue Mask, VL;
3474   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
3475 
3476   // FIXME: This is a VLMAX splat which might be too large and can prevent
3477   // vsetvli removal.
3478   SDValue ScalarSplat = DAG.getSplatVector(M1VT, DL, ScalarVal);
3479   SDValue Reduction =
3480       DAG.getNode(RVVOpcode, DL, M1VT, VectorVal, ScalarSplat, Mask, VL);
3481   return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction,
3482                      DAG.getConstant(0, DL, Subtarget.getXLenVT()));
3483 }
3484 
3485 SDValue RISCVTargetLowering::lowerINSERT_SUBVECTOR(SDValue Op,
3486                                                    SelectionDAG &DAG) const {
3487   SDValue Vec = Op.getOperand(0);
3488   SDValue SubVec = Op.getOperand(1);
3489   MVT VecVT = Vec.getSimpleValueType();
3490   MVT SubVecVT = SubVec.getSimpleValueType();
3491 
3492   SDLoc DL(Op);
3493   MVT XLenVT = Subtarget.getXLenVT();
3494   unsigned OrigIdx = Op.getConstantOperandVal(2);
3495   const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo();
3496 
3497   // We don't have the ability to slide mask vectors up indexed by their i1
3498   // elements; the smallest we can do is i8. Often we are able to bitcast to
3499   // equivalent i8 vectors. Note that when inserting a fixed-length vector
3500   // into a scalable one, we might not necessarily have enough scalable
3501   // elements to safely divide by 8: nxv1i1 = insert nxv1i1, v4i1 is valid.
3502   if (SubVecVT.getVectorElementType() == MVT::i1 &&
3503       (OrigIdx != 0 || !Vec.isUndef())) {
3504     if (VecVT.getVectorMinNumElements() >= 8 &&
3505         SubVecVT.getVectorMinNumElements() >= 8) {
3506       assert(OrigIdx % 8 == 0 && "Invalid index");
3507       assert(VecVT.getVectorMinNumElements() % 8 == 0 &&
3508              SubVecVT.getVectorMinNumElements() % 8 == 0 &&
3509              "Unexpected mask vector lowering");
3510       OrigIdx /= 8;
3511       SubVecVT =
3512           MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8,
3513                            SubVecVT.isScalableVector());
3514       VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8,
3515                                VecVT.isScalableVector());
3516       Vec = DAG.getBitcast(VecVT, Vec);
3517       SubVec = DAG.getBitcast(SubVecVT, SubVec);
3518     } else {
3519       // We can't slide this mask vector up indexed by its i1 elements.
3520       // This poses a problem when we wish to insert a scalable vector which
3521       // can't be re-expressed as a larger type. Just choose the slow path and
3522       // extend to a larger type, then truncate back down.
3523       MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8);
3524       MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8);
3525       Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec);
3526       SubVec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtSubVecVT, SubVec);
3527       Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ExtVecVT, Vec, SubVec,
3528                         Op.getOperand(2));
3529       SDValue SplatZero = DAG.getConstant(0, DL, ExtVecVT);
3530       return DAG.getSetCC(DL, VecVT, Vec, SplatZero, ISD::SETNE);
3531     }
3532   }
3533 
3534   // If the subvector vector is a fixed-length type, we cannot use subregister
3535   // manipulation to simplify the codegen; we don't know which register of a
3536   // LMUL group contains the specific subvector as we only know the minimum
3537   // register size. Therefore we must slide the vector group up the full
3538   // amount.
3539   if (SubVecVT.isFixedLengthVector()) {
3540     if (OrigIdx == 0 && Vec.isUndef())
3541       return Op;
3542     MVT ContainerVT = VecVT;
3543     if (VecVT.isFixedLengthVector()) {
3544       ContainerVT = getContainerForFixedLengthVector(VecVT);
3545       Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
3546     }
3547     SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ContainerVT,
3548                          DAG.getUNDEF(ContainerVT), SubVec,
3549                          DAG.getConstant(0, DL, XLenVT));
3550     SDValue Mask =
3551         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first;
3552     // Set the vector length to only the number of elements we care about. Note
3553     // that for slideup this includes the offset.
3554     SDValue VL =
3555         DAG.getConstant(OrigIdx + SubVecVT.getVectorNumElements(), DL, XLenVT);
3556     SDValue SlideupAmt = DAG.getConstant(OrigIdx, DL, XLenVT);
3557     SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec,
3558                                   SubVec, SlideupAmt, Mask, VL);
3559     if (VecVT.isFixedLengthVector())
3560       Slideup = convertFromScalableVector(VecVT, Slideup, DAG, Subtarget);
3561     return DAG.getBitcast(Op.getValueType(), Slideup);
3562   }
3563 
3564   unsigned SubRegIdx, RemIdx;
3565   std::tie(SubRegIdx, RemIdx) =
3566       RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs(
3567           VecVT, SubVecVT, OrigIdx, TRI);
3568 
3569   RISCVVLMUL SubVecLMUL = RISCVTargetLowering::getLMUL(SubVecVT);
3570   bool IsSubVecPartReg = SubVecLMUL == RISCVVLMUL::LMUL_F2 ||
3571                          SubVecLMUL == RISCVVLMUL::LMUL_F4 ||
3572                          SubVecLMUL == RISCVVLMUL::LMUL_F8;
3573 
3574   // 1. If the Idx has been completely eliminated and this subvector's size is
3575   // a vector register or a multiple thereof, or the surrounding elements are
3576   // undef, then this is a subvector insert which naturally aligns to a vector
3577   // register. These can easily be handled using subregister manipulation.
3578   // 2. If the subvector is smaller than a vector register, then the insertion
3579   // must preserve the undisturbed elements of the register. We do this by
3580   // lowering to an EXTRACT_SUBVECTOR grabbing the nearest LMUL=1 vector type
3581   // (which resolves to a subregister copy), performing a VSLIDEUP to place the
3582   // subvector within the vector register, and an INSERT_SUBVECTOR of that
3583   // LMUL=1 type back into the larger vector (resolving to another subregister
3584   // operation). See below for how our VSLIDEUP works. We go via a LMUL=1 type
3585   // to avoid allocating a large register group to hold our subvector.
3586   if (RemIdx == 0 && (!IsSubVecPartReg || Vec.isUndef()))
3587     return Op;
3588 
3589   // VSLIDEUP works by leaving elements 0<i<OFFSET undisturbed, elements
3590   // OFFSET<=i<VL set to the "subvector" and vl<=i<VLMAX set to the tail policy
3591   // (in our case undisturbed). This means we can set up a subvector insertion
3592   // where OFFSET is the insertion offset, and the VL is the OFFSET plus the
3593   // size of the subvector.
3594   MVT InterSubVT = VecVT;
3595   SDValue AlignedExtract = Vec;
3596   unsigned AlignedIdx = OrigIdx - RemIdx;
3597   if (VecVT.bitsGT(getLMUL1VT(VecVT))) {
3598     InterSubVT = getLMUL1VT(VecVT);
3599     // Extract a subvector equal to the nearest full vector register type. This
3600     // should resolve to a EXTRACT_SUBREG instruction.
3601     AlignedExtract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec,
3602                                  DAG.getConstant(AlignedIdx, DL, XLenVT));
3603   }
3604 
3605   SDValue SlideupAmt = DAG.getConstant(RemIdx, DL, XLenVT);
3606   // For scalable vectors this must be further multiplied by vscale.
3607   SlideupAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlideupAmt);
3608 
3609   SDValue Mask, VL;
3610   std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget);
3611 
3612   // Construct the vector length corresponding to RemIdx + length(SubVecVT).
3613   VL = DAG.getConstant(SubVecVT.getVectorMinNumElements(), DL, XLenVT);
3614   VL = DAG.getNode(ISD::VSCALE, DL, XLenVT, VL);
3615   VL = DAG.getNode(ISD::ADD, DL, XLenVT, SlideupAmt, VL);
3616 
3617   SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, InterSubVT,
3618                        DAG.getUNDEF(InterSubVT), SubVec,
3619                        DAG.getConstant(0, DL, XLenVT));
3620 
3621   SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, InterSubVT,
3622                                 AlignedExtract, SubVec, SlideupAmt, Mask, VL);
3623 
3624   // If required, insert this subvector back into the correct vector register.
3625   // This should resolve to an INSERT_SUBREG instruction.
3626   if (VecVT.bitsGT(InterSubVT))
3627     Slideup = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, Vec, Slideup,
3628                           DAG.getConstant(AlignedIdx, DL, XLenVT));
3629 
3630   // We might have bitcast from a mask type: cast back to the original type if
3631   // required.
3632   return DAG.getBitcast(Op.getSimpleValueType(), Slideup);
3633 }
3634 
3635 SDValue RISCVTargetLowering::lowerEXTRACT_SUBVECTOR(SDValue Op,
3636                                                     SelectionDAG &DAG) const {
3637   SDValue Vec = Op.getOperand(0);
3638   MVT SubVecVT = Op.getSimpleValueType();
3639   MVT VecVT = Vec.getSimpleValueType();
3640 
3641   SDLoc DL(Op);
3642   MVT XLenVT = Subtarget.getXLenVT();
3643   unsigned OrigIdx = Op.getConstantOperandVal(1);
3644   const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo();
3645 
3646   // We don't have the ability to slide mask vectors down indexed by their i1
3647   // elements; the smallest we can do is i8. Often we are able to bitcast to
3648   // equivalent i8 vectors. Note that when extracting a fixed-length vector
3649   // from a scalable one, we might not necessarily have enough scalable
3650   // elements to safely divide by 8: v8i1 = extract nxv1i1 is valid.
3651   if (SubVecVT.getVectorElementType() == MVT::i1 && OrigIdx != 0) {
3652     if (VecVT.getVectorMinNumElements() >= 8 &&
3653         SubVecVT.getVectorMinNumElements() >= 8) {
3654       assert(OrigIdx % 8 == 0 && "Invalid index");
3655       assert(VecVT.getVectorMinNumElements() % 8 == 0 &&
3656              SubVecVT.getVectorMinNumElements() % 8 == 0 &&
3657              "Unexpected mask vector lowering");
3658       OrigIdx /= 8;
3659       SubVecVT =
3660           MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8,
3661                            SubVecVT.isScalableVector());
3662       VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8,
3663                                VecVT.isScalableVector());
3664       Vec = DAG.getBitcast(VecVT, Vec);
3665     } else {
3666       // We can't slide this mask vector down, indexed by its i1 elements.
3667       // This poses a problem when we wish to extract a scalable vector which
3668       // can't be re-expressed as a larger type. Just choose the slow path and
3669       // extend to a larger type, then truncate back down.
3670       // TODO: We could probably improve this when extracting certain fixed
3671       // from fixed, where we can extract as i8 and shift the correct element
3672       // right to reach the desired subvector?
3673       MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8);
3674       MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8);
3675       Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec);
3676       Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ExtSubVecVT, Vec,
3677                         Op.getOperand(1));
3678       SDValue SplatZero = DAG.getConstant(0, DL, ExtSubVecVT);
3679       return DAG.getSetCC(DL, SubVecVT, Vec, SplatZero, ISD::SETNE);
3680     }
3681   }
3682 
3683   // If the subvector vector is a fixed-length type, we cannot use subregister
3684   // manipulation to simplify the codegen; we don't know which register of a
3685   // LMUL group contains the specific subvector as we only know the minimum
3686   // register size. Therefore we must slide the vector group down the full
3687   // amount.
3688   if (SubVecVT.isFixedLengthVector()) {
3689     // With an index of 0 this is a cast-like subvector, which can be performed
3690     // with subregister operations.
3691     if (OrigIdx == 0)
3692       return Op;
3693     MVT ContainerVT = VecVT;
3694     if (VecVT.isFixedLengthVector()) {
3695       ContainerVT = getContainerForFixedLengthVector(VecVT);
3696       Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
3697     }
3698     SDValue Mask =
3699         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first;
3700     // Set the vector length to only the number of elements we care about. This
3701     // avoids sliding down elements we're going to discard straight away.
3702     SDValue VL = DAG.getConstant(SubVecVT.getVectorNumElements(), DL, XLenVT);
3703     SDValue SlidedownAmt = DAG.getConstant(OrigIdx, DL, XLenVT);
3704     SDValue Slidedown =
3705         DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT,
3706                     DAG.getUNDEF(ContainerVT), Vec, SlidedownAmt, Mask, VL);
3707     // Now we can use a cast-like subvector extract to get the result.
3708     Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown,
3709                             DAG.getConstant(0, DL, XLenVT));
3710     return DAG.getBitcast(Op.getValueType(), Slidedown);
3711   }
3712 
3713   unsigned SubRegIdx, RemIdx;
3714   std::tie(SubRegIdx, RemIdx) =
3715       RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs(
3716           VecVT, SubVecVT, OrigIdx, TRI);
3717 
3718   // If the Idx has been completely eliminated then this is a subvector extract
3719   // which naturally aligns to a vector register. These can easily be handled
3720   // using subregister manipulation.
3721   if (RemIdx == 0)
3722     return Op;
3723 
3724   // Else we must shift our vector register directly to extract the subvector.
3725   // Do this using VSLIDEDOWN.
3726 
3727   // If the vector type is an LMUL-group type, extract a subvector equal to the
3728   // nearest full vector register type. This should resolve to a EXTRACT_SUBREG
3729   // instruction.
3730   MVT InterSubVT = VecVT;
3731   if (VecVT.bitsGT(getLMUL1VT(VecVT))) {
3732     InterSubVT = getLMUL1VT(VecVT);
3733     Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec,
3734                       DAG.getConstant(OrigIdx - RemIdx, DL, XLenVT));
3735   }
3736 
3737   // Slide this vector register down by the desired number of elements in order
3738   // to place the desired subvector starting at element 0.
3739   SDValue SlidedownAmt = DAG.getConstant(RemIdx, DL, XLenVT);
3740   // For scalable vectors this must be further multiplied by vscale.
3741   SlidedownAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlidedownAmt);
3742 
3743   SDValue Mask, VL;
3744   std::tie(Mask, VL) = getDefaultScalableVLOps(InterSubVT, DL, DAG, Subtarget);
3745   SDValue Slidedown =
3746       DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, InterSubVT,
3747                   DAG.getUNDEF(InterSubVT), Vec, SlidedownAmt, Mask, VL);
3748 
3749   // Now the vector is in the right position, extract our final subvector. This
3750   // should resolve to a COPY.
3751   Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown,
3752                           DAG.getConstant(0, DL, XLenVT));
3753 
3754   // We might have bitcast from a mask type: cast back to the original type if
3755   // required.
3756   return DAG.getBitcast(Op.getSimpleValueType(), Slidedown);
3757 }
3758 
3759 // Implement step_vector to the vid instruction.
3760 SDValue RISCVTargetLowering::lowerSTEP_VECTOR(SDValue Op,
3761                                               SelectionDAG &DAG) const {
3762   SDLoc DL(Op);
3763   assert(Op.getConstantOperandAPInt(0) == 1 && "Unexpected step value");
3764   MVT VT = Op.getSimpleValueType();
3765   SDValue Mask, VL;
3766   std::tie(Mask, VL) = getDefaultScalableVLOps(VT, DL, DAG, Subtarget);
3767   return DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL);
3768 }
3769 
3770 // Implement vector_reverse using vrgather.vv with indices determined by
3771 // subtracting the id of each element from (VLMAX-1). This will convert
3772 // the indices like so:
3773 // (0, 1,..., VLMAX-2, VLMAX-1) -> (VLMAX-1, VLMAX-2,..., 1, 0).
3774 // TODO: This code assumes VLMAX <= 65536 for LMUL=8 SEW=16.
3775 SDValue RISCVTargetLowering::lowerVECTOR_REVERSE(SDValue Op,
3776                                                  SelectionDAG &DAG) const {
3777   SDLoc DL(Op);
3778   MVT VecVT = Op.getSimpleValueType();
3779   unsigned EltSize = VecVT.getScalarSizeInBits();
3780   unsigned MinSize = VecVT.getSizeInBits().getKnownMinValue();
3781 
3782   unsigned MaxVLMAX = 0;
3783   unsigned VectorBitsMax = Subtarget.getMaxRVVVectorSizeInBits();
3784   if (VectorBitsMax != 0)
3785     MaxVLMAX = ((VectorBitsMax / EltSize) * MinSize) / RISCV::RVVBitsPerBlock;
3786 
3787   unsigned GatherOpc = RISCVISD::VRGATHER_VV_VL;
3788   MVT IntVT = VecVT.changeVectorElementTypeToInteger();
3789 
3790   // If this is SEW=8 and VLMAX is unknown or more than 256, we need
3791   // to use vrgatherei16.vv.
3792   // TODO: It's also possible to use vrgatherei16.vv for other types to
3793   // decrease register width for the index calculation.
3794   if ((MaxVLMAX == 0 || MaxVLMAX > 256) && EltSize == 8) {
3795     // If this is LMUL=8, we have to split before can use vrgatherei16.vv.
3796     // Reverse each half, then reassemble them in reverse order.
3797     // NOTE: It's also possible that after splitting that VLMAX no longer
3798     // requires vrgatherei16.vv.
3799     if (MinSize == (8 * RISCV::RVVBitsPerBlock)) {
3800       SDValue Lo, Hi;
3801       std::tie(Lo, Hi) = DAG.SplitVectorOperand(Op.getNode(), 0);
3802       EVT LoVT, HiVT;
3803       std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VecVT);
3804       Lo = DAG.getNode(ISD::VECTOR_REVERSE, DL, LoVT, Lo);
3805       Hi = DAG.getNode(ISD::VECTOR_REVERSE, DL, HiVT, Hi);
3806       // Reassemble the low and high pieces reversed.
3807       // FIXME: This is a CONCAT_VECTORS.
3808       SDValue Res =
3809           DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, DAG.getUNDEF(VecVT), Hi,
3810                       DAG.getIntPtrConstant(0, DL));
3811       return DAG.getNode(
3812           ISD::INSERT_SUBVECTOR, DL, VecVT, Res, Lo,
3813           DAG.getIntPtrConstant(LoVT.getVectorMinNumElements(), DL));
3814     }
3815 
3816     // Just promote the int type to i16 which will double the LMUL.
3817     IntVT = MVT::getVectorVT(MVT::i16, VecVT.getVectorElementCount());
3818     GatherOpc = RISCVISD::VRGATHEREI16_VV_VL;
3819   }
3820 
3821   MVT XLenVT = Subtarget.getXLenVT();
3822   SDValue Mask, VL;
3823   std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget);
3824 
3825   // Calculate VLMAX-1 for the desired SEW.
3826   unsigned MinElts = VecVT.getVectorMinNumElements();
3827   SDValue VLMax = DAG.getNode(ISD::VSCALE, DL, XLenVT,
3828                               DAG.getConstant(MinElts, DL, XLenVT));
3829   SDValue VLMinus1 =
3830       DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, DAG.getConstant(1, DL, XLenVT));
3831 
3832   // Splat VLMAX-1 taking care to handle SEW==64 on RV32.
3833   bool IsRV32E64 =
3834       !Subtarget.is64Bit() && IntVT.getVectorElementType() == MVT::i64;
3835   SDValue SplatVL;
3836   if (!IsRV32E64)
3837     SplatVL = DAG.getSplatVector(IntVT, DL, VLMinus1);
3838   else
3839     SplatVL = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, IntVT, VLMinus1);
3840 
3841   SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, IntVT, Mask, VL);
3842   SDValue Indices =
3843       DAG.getNode(RISCVISD::SUB_VL, DL, IntVT, SplatVL, VID, Mask, VL);
3844 
3845   return DAG.getNode(GatherOpc, DL, VecVT, Op.getOperand(0), Indices, Mask, VL);
3846 }
3847 
3848 SDValue
3849 RISCVTargetLowering::lowerFixedLengthVectorLoadToRVV(SDValue Op,
3850                                                      SelectionDAG &DAG) const {
3851   auto *Load = cast<LoadSDNode>(Op);
3852 
3853   SDLoc DL(Op);
3854   MVT VT = Op.getSimpleValueType();
3855   MVT ContainerVT = getContainerForFixedLengthVector(VT);
3856 
3857   SDValue VL =
3858       DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT());
3859 
3860   SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
3861   SDValue NewLoad = DAG.getMemIntrinsicNode(
3862       RISCVISD::VLE_VL, DL, VTs, {Load->getChain(), Load->getBasePtr(), VL},
3863       Load->getMemoryVT(), Load->getMemOperand());
3864 
3865   SDValue Result = convertFromScalableVector(VT, NewLoad, DAG, Subtarget);
3866   return DAG.getMergeValues({Result, Load->getChain()}, DL);
3867 }
3868 
3869 SDValue
3870 RISCVTargetLowering::lowerFixedLengthVectorStoreToRVV(SDValue Op,
3871                                                       SelectionDAG &DAG) const {
3872   auto *Store = cast<StoreSDNode>(Op);
3873 
3874   SDLoc DL(Op);
3875   SDValue StoreVal = Store->getValue();
3876   MVT VT = StoreVal.getSimpleValueType();
3877 
3878   // If the size less than a byte, we need to pad with zeros to make a byte.
3879   if (VT.getVectorElementType() == MVT::i1 && VT.getVectorNumElements() < 8) {
3880     VT = MVT::v8i1;
3881     StoreVal = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT,
3882                            DAG.getConstant(0, DL, VT), StoreVal,
3883                            DAG.getIntPtrConstant(0, DL));
3884   }
3885 
3886   MVT ContainerVT = getContainerForFixedLengthVector(VT);
3887 
3888   SDValue VL =
3889       DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT());
3890 
3891   SDValue NewValue =
3892       convertToScalableVector(ContainerVT, StoreVal, DAG, Subtarget);
3893   return DAG.getMemIntrinsicNode(
3894       RISCVISD::VSE_VL, DL, DAG.getVTList(MVT::Other),
3895       {Store->getChain(), NewValue, Store->getBasePtr(), VL},
3896       Store->getMemoryVT(), Store->getMemOperand());
3897 }
3898 
3899 SDValue RISCVTargetLowering::lowerMLOAD(SDValue Op, SelectionDAG &DAG) const {
3900   auto *Load = cast<MaskedLoadSDNode>(Op);
3901 
3902   SDLoc DL(Op);
3903   MVT VT = Op.getSimpleValueType();
3904   MVT XLenVT = Subtarget.getXLenVT();
3905 
3906   SDValue Mask = Load->getMask();
3907   SDValue PassThru = Load->getPassThru();
3908   SDValue VL;
3909 
3910   MVT ContainerVT = VT;
3911   if (VT.isFixedLengthVector()) {
3912     ContainerVT = getContainerForFixedLengthVector(VT);
3913     MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
3914 
3915     Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
3916     PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget);
3917     VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT);
3918   } else
3919     VL = DAG.getRegister(RISCV::X0, XLenVT);
3920 
3921   SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
3922   SDValue IntID = DAG.getTargetConstant(Intrinsic::riscv_vle_mask, DL, XLenVT);
3923   SDValue Ops[] = {Load->getChain(),   IntID, PassThru,
3924                    Load->getBasePtr(), Mask,  VL};
3925   SDValue Result =
3926       DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops,
3927                               Load->getMemoryVT(), Load->getMemOperand());
3928   SDValue Chain = Result.getValue(1);
3929 
3930   if (VT.isFixedLengthVector())
3931     Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
3932 
3933   return DAG.getMergeValues({Result, Chain}, DL);
3934 }
3935 
3936 SDValue RISCVTargetLowering::lowerMSTORE(SDValue Op, SelectionDAG &DAG) const {
3937   auto *Store = cast<MaskedStoreSDNode>(Op);
3938 
3939   SDLoc DL(Op);
3940   SDValue Val = Store->getValue();
3941   SDValue Mask = Store->getMask();
3942   MVT VT = Val.getSimpleValueType();
3943   MVT XLenVT = Subtarget.getXLenVT();
3944   SDValue VL;
3945 
3946   MVT ContainerVT = VT;
3947   if (VT.isFixedLengthVector()) {
3948     ContainerVT = getContainerForFixedLengthVector(VT);
3949     MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
3950 
3951     Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget);
3952     Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
3953     VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT);
3954   } else
3955     VL = DAG.getRegister(RISCV::X0, XLenVT);
3956 
3957   SDValue IntID = DAG.getTargetConstant(Intrinsic::riscv_vse_mask, DL, XLenVT);
3958   return DAG.getMemIntrinsicNode(
3959       ISD::INTRINSIC_VOID, DL, DAG.getVTList(MVT::Other),
3960       {Store->getChain(), IntID, Val, Store->getBasePtr(), Mask, VL},
3961       Store->getMemoryVT(), Store->getMemOperand());
3962 }
3963 
3964 SDValue
3965 RISCVTargetLowering::lowerFixedLengthVectorSetccToRVV(SDValue Op,
3966                                                       SelectionDAG &DAG) const {
3967   MVT InVT = Op.getOperand(0).getSimpleValueType();
3968   MVT ContainerVT = getContainerForFixedLengthVector(InVT);
3969 
3970   MVT VT = Op.getSimpleValueType();
3971 
3972   SDValue Op1 =
3973       convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget);
3974   SDValue Op2 =
3975       convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget);
3976 
3977   SDLoc DL(Op);
3978   SDValue VL =
3979       DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT());
3980 
3981   MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
3982   SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
3983 
3984   SDValue Cmp = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, Op1, Op2,
3985                             Op.getOperand(2), Mask, VL);
3986 
3987   return convertFromScalableVector(VT, Cmp, DAG, Subtarget);
3988 }
3989 
3990 SDValue RISCVTargetLowering::lowerFixedLengthVectorLogicOpToRVV(
3991     SDValue Op, SelectionDAG &DAG, unsigned MaskOpc, unsigned VecOpc) const {
3992   MVT VT = Op.getSimpleValueType();
3993 
3994   if (VT.getVectorElementType() == MVT::i1)
3995     return lowerToScalableOp(Op, DAG, MaskOpc, /*HasMask*/ false);
3996 
3997   return lowerToScalableOp(Op, DAG, VecOpc, /*HasMask*/ true);
3998 }
3999 
4000 // Lower vector ABS to smax(X, sub(0, X)).
4001 SDValue RISCVTargetLowering::lowerABS(SDValue Op, SelectionDAG &DAG) const {
4002   SDLoc DL(Op);
4003   MVT VT = Op.getSimpleValueType();
4004   SDValue X = Op.getOperand(0);
4005 
4006   assert(VT.isFixedLengthVector() && "Unexpected type");
4007 
4008   MVT ContainerVT = getContainerForFixedLengthVector(VT);
4009   X = convertToScalableVector(ContainerVT, X, DAG, Subtarget);
4010 
4011   SDValue Mask, VL;
4012   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
4013 
4014   SDValue SplatZero =
4015       DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
4016                   DAG.getConstant(0, DL, Subtarget.getXLenVT()));
4017   SDValue NegX =
4018       DAG.getNode(RISCVISD::SUB_VL, DL, ContainerVT, SplatZero, X, Mask, VL);
4019   SDValue Max =
4020       DAG.getNode(RISCVISD::SMAX_VL, DL, ContainerVT, X, NegX, Mask, VL);
4021 
4022   return convertFromScalableVector(VT, Max, DAG, Subtarget);
4023 }
4024 
4025 SDValue RISCVTargetLowering::lowerFixedLengthVectorFCOPYSIGNToRVV(
4026     SDValue Op, SelectionDAG &DAG) const {
4027   SDLoc DL(Op);
4028   MVT VT = Op.getSimpleValueType();
4029   SDValue Mag = Op.getOperand(0);
4030   SDValue Sign = Op.getOperand(1);
4031   assert(Mag.getValueType() == Sign.getValueType() &&
4032          "Can only handle COPYSIGN with matching types.");
4033 
4034   MVT ContainerVT = getContainerForFixedLengthVector(VT);
4035   Mag = convertToScalableVector(ContainerVT, Mag, DAG, Subtarget);
4036   Sign = convertToScalableVector(ContainerVT, Sign, DAG, Subtarget);
4037 
4038   SDValue Mask, VL;
4039   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
4040 
4041   SDValue CopySign =
4042       DAG.getNode(RISCVISD::FCOPYSIGN_VL, DL, ContainerVT, Mag, Sign, Mask, VL);
4043 
4044   return convertFromScalableVector(VT, CopySign, DAG, Subtarget);
4045 }
4046 
4047 SDValue RISCVTargetLowering::lowerFixedLengthVectorSelectToRVV(
4048     SDValue Op, SelectionDAG &DAG) const {
4049   MVT VT = Op.getSimpleValueType();
4050   MVT ContainerVT = getContainerForFixedLengthVector(VT);
4051 
4052   MVT I1ContainerVT =
4053       MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
4054 
4055   SDValue CC =
4056       convertToScalableVector(I1ContainerVT, Op.getOperand(0), DAG, Subtarget);
4057   SDValue Op1 =
4058       convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget);
4059   SDValue Op2 =
4060       convertToScalableVector(ContainerVT, Op.getOperand(2), DAG, Subtarget);
4061 
4062   SDLoc DL(Op);
4063   SDValue Mask, VL;
4064   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
4065 
4066   SDValue Select =
4067       DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC, Op1, Op2, VL);
4068 
4069   return convertFromScalableVector(VT, Select, DAG, Subtarget);
4070 }
4071 
4072 SDValue RISCVTargetLowering::lowerToScalableOp(SDValue Op, SelectionDAG &DAG,
4073                                                unsigned NewOpc,
4074                                                bool HasMask) const {
4075   MVT VT = Op.getSimpleValueType();
4076   MVT ContainerVT = getContainerForFixedLengthVector(VT);
4077 
4078   // Create list of operands by converting existing ones to scalable types.
4079   SmallVector<SDValue, 6> Ops;
4080   for (const SDValue &V : Op->op_values()) {
4081     assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!");
4082 
4083     // Pass through non-vector operands.
4084     if (!V.getValueType().isVector()) {
4085       Ops.push_back(V);
4086       continue;
4087     }
4088 
4089     // "cast" fixed length vector to a scalable vector.
4090     assert(useRVVForFixedLengthVectorVT(V.getSimpleValueType()) &&
4091            "Only fixed length vectors are supported!");
4092     Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget));
4093   }
4094 
4095   SDLoc DL(Op);
4096   SDValue Mask, VL;
4097   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
4098   if (HasMask)
4099     Ops.push_back(Mask);
4100   Ops.push_back(VL);
4101 
4102   SDValue ScalableRes = DAG.getNode(NewOpc, DL, ContainerVT, Ops);
4103   return convertFromScalableVector(VT, ScalableRes, DAG, Subtarget);
4104 }
4105 
4106 // Custom lower MGATHER to a legalized form for RVV. It will then be matched to
4107 // a RVV indexed load. The RVV indexed load instructions only support the
4108 // "unsigned unscaled" addressing mode; indices are implicitly zero-extended or
4109 // truncated to XLEN and are treated as byte offsets. Any signed or scaled
4110 // indexing is extended to the XLEN value type and scaled accordingly.
4111 SDValue RISCVTargetLowering::lowerMGATHER(SDValue Op, SelectionDAG &DAG) const {
4112   auto *MGN = cast<MaskedGatherSDNode>(Op.getNode());
4113   SDLoc DL(Op);
4114 
4115   SDValue Index = MGN->getIndex();
4116   SDValue Mask = MGN->getMask();
4117   SDValue PassThru = MGN->getPassThru();
4118 
4119   MVT VT = Op.getSimpleValueType();
4120   MVT IndexVT = Index.getSimpleValueType();
4121   MVT XLenVT = Subtarget.getXLenVT();
4122 
4123   assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() &&
4124          "Unexpected VTs!");
4125   assert(MGN->getBasePtr().getSimpleValueType() == XLenVT &&
4126          "Unexpected pointer type");
4127   // Targets have to explicitly opt-in for extending vector loads.
4128   assert(MGN->getExtensionType() == ISD::NON_EXTLOAD &&
4129          "Unexpected extending MGATHER");
4130 
4131   // If the mask is known to be all ones, optimize to an unmasked intrinsic;
4132   // the selection of the masked intrinsics doesn't do this for us.
4133   bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
4134 
4135   SDValue VL;
4136   MVT ContainerVT = VT;
4137   if (VT.isFixedLengthVector()) {
4138     // We need to use the larger of the result and index type to determine the
4139     // scalable type to use so we don't increase LMUL for any operand/result.
4140     if (VT.bitsGE(IndexVT)) {
4141       ContainerVT = getContainerForFixedLengthVector(VT);
4142       IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(),
4143                                  ContainerVT.getVectorElementCount());
4144     } else {
4145       IndexVT = getContainerForFixedLengthVector(IndexVT);
4146       ContainerVT = MVT::getVectorVT(ContainerVT.getVectorElementType(),
4147                                      IndexVT.getVectorElementCount());
4148     }
4149 
4150     Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget);
4151 
4152     if (!IsUnmasked) {
4153       MVT MaskVT =
4154           MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
4155       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
4156       PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget);
4157     }
4158 
4159     VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT);
4160   } else
4161     VL = DAG.getRegister(RISCV::X0, XLenVT);
4162 
4163   unsigned IntID =
4164       IsUnmasked ? Intrinsic::riscv_vloxei : Intrinsic::riscv_vloxei_mask;
4165   SmallVector<SDValue, 8> Ops{MGN->getChain(),
4166                               DAG.getTargetConstant(IntID, DL, XLenVT)};
4167   if (!IsUnmasked)
4168     Ops.push_back(PassThru);
4169   Ops.push_back(MGN->getBasePtr());
4170   Ops.push_back(Index);
4171   if (!IsUnmasked)
4172     Ops.push_back(Mask);
4173   Ops.push_back(VL);
4174 
4175   SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
4176   SDValue Result =
4177       DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops,
4178                               MGN->getMemoryVT(), MGN->getMemOperand());
4179   SDValue Chain = Result.getValue(1);
4180 
4181   if (VT.isFixedLengthVector())
4182     Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
4183 
4184   return DAG.getMergeValues({Result, Chain}, DL);
4185 }
4186 
4187 // Custom lower MSCATTER to a legalized form for RVV. It will then be matched to
4188 // a RVV indexed store. The RVV indexed store instructions only support the
4189 // "unsigned unscaled" addressing mode; indices are implicitly zero-extended or
4190 // truncated to XLEN and are treated as byte offsets. Any signed or scaled
4191 // indexing is extended to the XLEN value type and scaled accordingly.
4192 SDValue RISCVTargetLowering::lowerMSCATTER(SDValue Op,
4193                                            SelectionDAG &DAG) const {
4194   auto *MSN = cast<MaskedScatterSDNode>(Op.getNode());
4195   SDLoc DL(Op);
4196   SDValue Index = MSN->getIndex();
4197   SDValue Mask = MSN->getMask();
4198   SDValue Val = MSN->getValue();
4199 
4200   MVT VT = Val.getSimpleValueType();
4201   MVT IndexVT = Index.getSimpleValueType();
4202   MVT XLenVT = Subtarget.getXLenVT();
4203 
4204   assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() &&
4205          "Unexpected VTs!");
4206   assert(MSN->getBasePtr().getSimpleValueType() == XLenVT &&
4207          "Unexpected pointer type");
4208   // Targets have to explicitly opt-in for extending vector loads and
4209   // truncating vector stores.
4210   assert(!MSN->isTruncatingStore() && "Unexpected extending MSCATTER");
4211 
4212   // If the mask is known to be all ones, optimize to an unmasked intrinsic;
4213   // the selection of the masked intrinsics doesn't do this for us.
4214   bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
4215 
4216   SDValue VL;
4217   if (VT.isFixedLengthVector()) {
4218     // We need to use the larger of the value and index type to determine the
4219     // scalable type to use so we don't increase LMUL for any operand/result.
4220     if (VT.bitsGE(IndexVT)) {
4221       VT = getContainerForFixedLengthVector(VT);
4222       IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(),
4223                                  VT.getVectorElementCount());
4224     } else {
4225       IndexVT = getContainerForFixedLengthVector(IndexVT);
4226       VT = MVT::getVectorVT(VT.getVectorElementType(),
4227                             IndexVT.getVectorElementCount());
4228     }
4229 
4230     Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget);
4231     Val = convertToScalableVector(VT, Val, DAG, Subtarget);
4232 
4233     if (!IsUnmasked) {
4234       MVT MaskVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount());
4235       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
4236     }
4237 
4238     VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT);
4239   } else
4240     VL = DAG.getRegister(RISCV::X0, XLenVT);
4241 
4242   unsigned IntID =
4243       IsUnmasked ? Intrinsic::riscv_vsoxei : Intrinsic::riscv_vsoxei_mask;
4244   SmallVector<SDValue, 8> Ops{MSN->getChain(),
4245                               DAG.getTargetConstant(IntID, DL, XLenVT)};
4246   Ops.push_back(Val);
4247   Ops.push_back(MSN->getBasePtr());
4248   Ops.push_back(Index);
4249   if (!IsUnmasked)
4250     Ops.push_back(Mask);
4251   Ops.push_back(VL);
4252 
4253   return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, MSN->getVTList(), Ops,
4254                                  MSN->getMemoryVT(), MSN->getMemOperand());
4255 }
4256 
4257 SDValue RISCVTargetLowering::lowerGET_ROUNDING(SDValue Op,
4258                                                SelectionDAG &DAG) const {
4259   const MVT XLenVT = Subtarget.getXLenVT();
4260   SDLoc DL(Op);
4261   SDValue Chain = Op->getOperand(0);
4262   SDValue SysRegNo = DAG.getConstant(
4263       RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT);
4264   SDVTList VTs = DAG.getVTList(XLenVT, MVT::Other);
4265   SDValue RM = DAG.getNode(RISCVISD::READ_CSR, DL, VTs, Chain, SysRegNo);
4266 
4267   // Encoding used for rounding mode in RISCV differs from that used in
4268   // FLT_ROUNDS. To convert it the RISCV rounding mode is used as an index in a
4269   // table, which consists of a sequence of 4-bit fields, each representing
4270   // corresponding FLT_ROUNDS mode.
4271   static const int Table =
4272       (int(RoundingMode::NearestTiesToEven) << 4 * RISCVFPRndMode::RNE) |
4273       (int(RoundingMode::TowardZero) << 4 * RISCVFPRndMode::RTZ) |
4274       (int(RoundingMode::TowardNegative) << 4 * RISCVFPRndMode::RDN) |
4275       (int(RoundingMode::TowardPositive) << 4 * RISCVFPRndMode::RUP) |
4276       (int(RoundingMode::NearestTiesToAway) << 4 * RISCVFPRndMode::RMM);
4277 
4278   SDValue Shift =
4279       DAG.getNode(ISD::SHL, DL, XLenVT, RM, DAG.getConstant(2, DL, XLenVT));
4280   SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT,
4281                                 DAG.getConstant(Table, DL, XLenVT), Shift);
4282   SDValue Masked = DAG.getNode(ISD::AND, DL, XLenVT, Shifted,
4283                                DAG.getConstant(7, DL, XLenVT));
4284 
4285   return DAG.getMergeValues({Masked, Chain}, DL);
4286 }
4287 
4288 SDValue RISCVTargetLowering::lowerSET_ROUNDING(SDValue Op,
4289                                                SelectionDAG &DAG) const {
4290   const MVT XLenVT = Subtarget.getXLenVT();
4291   SDLoc DL(Op);
4292   SDValue Chain = Op->getOperand(0);
4293   SDValue RMValue = Op->getOperand(1);
4294   SDValue SysRegNo = DAG.getConstant(
4295       RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT);
4296 
4297   // Encoding used for rounding mode in RISCV differs from that used in
4298   // FLT_ROUNDS. To convert it the C rounding mode is used as an index in
4299   // a table, which consists of a sequence of 4-bit fields, each representing
4300   // corresponding RISCV mode.
4301   static const unsigned Table =
4302       (RISCVFPRndMode::RNE << 4 * int(RoundingMode::NearestTiesToEven)) |
4303       (RISCVFPRndMode::RTZ << 4 * int(RoundingMode::TowardZero)) |
4304       (RISCVFPRndMode::RDN << 4 * int(RoundingMode::TowardNegative)) |
4305       (RISCVFPRndMode::RUP << 4 * int(RoundingMode::TowardPositive)) |
4306       (RISCVFPRndMode::RMM << 4 * int(RoundingMode::NearestTiesToAway));
4307 
4308   SDValue Shift = DAG.getNode(ISD::SHL, DL, XLenVT, RMValue,
4309                               DAG.getConstant(2, DL, XLenVT));
4310   SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT,
4311                                 DAG.getConstant(Table, DL, XLenVT), Shift);
4312   RMValue = DAG.getNode(ISD::AND, DL, XLenVT, Shifted,
4313                         DAG.getConstant(0x7, DL, XLenVT));
4314   return DAG.getNode(RISCVISD::WRITE_CSR, DL, MVT::Other, Chain, SysRegNo,
4315                      RMValue);
4316 }
4317 
4318 // Returns the opcode of the target-specific SDNode that implements the 32-bit
4319 // form of the given Opcode.
4320 static RISCVISD::NodeType getRISCVWOpcode(unsigned Opcode) {
4321   switch (Opcode) {
4322   default:
4323     llvm_unreachable("Unexpected opcode");
4324   case ISD::SHL:
4325     return RISCVISD::SLLW;
4326   case ISD::SRA:
4327     return RISCVISD::SRAW;
4328   case ISD::SRL:
4329     return RISCVISD::SRLW;
4330   case ISD::SDIV:
4331     return RISCVISD::DIVW;
4332   case ISD::UDIV:
4333     return RISCVISD::DIVUW;
4334   case ISD::UREM:
4335     return RISCVISD::REMUW;
4336   case ISD::ROTL:
4337     return RISCVISD::ROLW;
4338   case ISD::ROTR:
4339     return RISCVISD::RORW;
4340   case RISCVISD::GREV:
4341     return RISCVISD::GREVW;
4342   case RISCVISD::GORC:
4343     return RISCVISD::GORCW;
4344   }
4345 }
4346 
4347 // Converts the given 32-bit operation to a target-specific SelectionDAG node.
4348 // Because i32 isn't a legal type for RV64, these operations would otherwise
4349 // be promoted to i64, making it difficult to select the SLLW/DIVUW/.../*W
4350 // later one because the fact the operation was originally of type i32 is
4351 // lost.
4352 static SDValue customLegalizeToWOp(SDNode *N, SelectionDAG &DAG,
4353                                    unsigned ExtOpc = ISD::ANY_EXTEND) {
4354   SDLoc DL(N);
4355   RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode());
4356   SDValue NewOp0 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(0));
4357   SDValue NewOp1 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(1));
4358   SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1);
4359   // ReplaceNodeResults requires we maintain the same type for the return value.
4360   return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewRes);
4361 }
4362 
4363 // Converts the given 32-bit operation to a i64 operation with signed extension
4364 // semantic to reduce the signed extension instructions.
4365 static SDValue customLegalizeToWOpWithSExt(SDNode *N, SelectionDAG &DAG) {
4366   SDLoc DL(N);
4367   SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
4368   SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
4369   SDValue NewWOp = DAG.getNode(N->getOpcode(), DL, MVT::i64, NewOp0, NewOp1);
4370   SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp,
4371                                DAG.getValueType(MVT::i32));
4372   return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes);
4373 }
4374 
4375 void RISCVTargetLowering::ReplaceNodeResults(SDNode *N,
4376                                              SmallVectorImpl<SDValue> &Results,
4377                                              SelectionDAG &DAG) const {
4378   SDLoc DL(N);
4379   switch (N->getOpcode()) {
4380   default:
4381     llvm_unreachable("Don't know how to custom type legalize this operation!");
4382   case ISD::STRICT_FP_TO_SINT:
4383   case ISD::STRICT_FP_TO_UINT:
4384   case ISD::FP_TO_SINT:
4385   case ISD::FP_TO_UINT: {
4386     bool IsStrict = N->isStrictFPOpcode();
4387     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
4388            "Unexpected custom legalisation");
4389     SDValue Op0 = IsStrict ? N->getOperand(1) : N->getOperand(0);
4390     // If the FP type needs to be softened, emit a library call using the 'si'
4391     // version. If we left it to default legalization we'd end up with 'di'. If
4392     // the FP type doesn't need to be softened just let generic type
4393     // legalization promote the result type.
4394     if (getTypeAction(*DAG.getContext(), Op0.getValueType()) !=
4395         TargetLowering::TypeSoftenFloat)
4396       return;
4397     RTLIB::Libcall LC;
4398     if (N->getOpcode() == ISD::FP_TO_SINT ||
4399         N->getOpcode() == ISD::STRICT_FP_TO_SINT)
4400       LC = RTLIB::getFPTOSINT(Op0.getValueType(), N->getValueType(0));
4401     else
4402       LC = RTLIB::getFPTOUINT(Op0.getValueType(), N->getValueType(0));
4403     MakeLibCallOptions CallOptions;
4404     EVT OpVT = Op0.getValueType();
4405     CallOptions.setTypeListBeforeSoften(OpVT, N->getValueType(0), true);
4406     SDValue Chain = IsStrict ? N->getOperand(0) : SDValue();
4407     SDValue Result;
4408     std::tie(Result, Chain) =
4409         makeLibCall(DAG, LC, N->getValueType(0), Op0, CallOptions, DL, Chain);
4410     Results.push_back(Result);
4411     if (IsStrict)
4412       Results.push_back(Chain);
4413     break;
4414   }
4415   case ISD::READCYCLECOUNTER: {
4416     assert(!Subtarget.is64Bit() &&
4417            "READCYCLECOUNTER only has custom type legalization on riscv32");
4418 
4419     SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
4420     SDValue RCW =
4421         DAG.getNode(RISCVISD::READ_CYCLE_WIDE, DL, VTs, N->getOperand(0));
4422 
4423     Results.push_back(
4424         DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, RCW, RCW.getValue(1)));
4425     Results.push_back(RCW.getValue(2));
4426     break;
4427   }
4428   case ISD::MUL: {
4429     unsigned Size = N->getSimpleValueType(0).getSizeInBits();
4430     unsigned XLen = Subtarget.getXLen();
4431     // This multiply needs to be expanded, try to use MULHSU+MUL if possible.
4432     if (Size > XLen) {
4433       assert(Size == (XLen * 2) && "Unexpected custom legalisation");
4434       SDValue LHS = N->getOperand(0);
4435       SDValue RHS = N->getOperand(1);
4436       APInt HighMask = APInt::getHighBitsSet(Size, XLen);
4437 
4438       bool LHSIsU = DAG.MaskedValueIsZero(LHS, HighMask);
4439       bool RHSIsU = DAG.MaskedValueIsZero(RHS, HighMask);
4440       // We need exactly one side to be unsigned.
4441       if (LHSIsU == RHSIsU)
4442         return;
4443 
4444       auto MakeMULPair = [&](SDValue S, SDValue U) {
4445         MVT XLenVT = Subtarget.getXLenVT();
4446         S = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, S);
4447         U = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, U);
4448         SDValue Lo = DAG.getNode(ISD::MUL, DL, XLenVT, S, U);
4449         SDValue Hi = DAG.getNode(RISCVISD::MULHSU, DL, XLenVT, S, U);
4450         return DAG.getNode(ISD::BUILD_PAIR, DL, N->getValueType(0), Lo, Hi);
4451       };
4452 
4453       bool LHSIsS = DAG.ComputeNumSignBits(LHS) > XLen;
4454       bool RHSIsS = DAG.ComputeNumSignBits(RHS) > XLen;
4455 
4456       // The other operand should be signed, but still prefer MULH when
4457       // possible.
4458       if (RHSIsU && LHSIsS && !RHSIsS)
4459         Results.push_back(MakeMULPair(LHS, RHS));
4460       else if (LHSIsU && RHSIsS && !LHSIsS)
4461         Results.push_back(MakeMULPair(RHS, LHS));
4462 
4463       return;
4464     }
4465     LLVM_FALLTHROUGH;
4466   }
4467   case ISD::ADD:
4468   case ISD::SUB:
4469     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
4470            "Unexpected custom legalisation");
4471     if (N->getOperand(1).getOpcode() == ISD::Constant)
4472       return;
4473     Results.push_back(customLegalizeToWOpWithSExt(N, DAG));
4474     break;
4475   case ISD::SHL:
4476   case ISD::SRA:
4477   case ISD::SRL:
4478     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
4479            "Unexpected custom legalisation");
4480     if (N->getOperand(1).getOpcode() == ISD::Constant)
4481       return;
4482     Results.push_back(customLegalizeToWOp(N, DAG));
4483     break;
4484   case ISD::ROTL:
4485   case ISD::ROTR:
4486     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
4487            "Unexpected custom legalisation");
4488     Results.push_back(customLegalizeToWOp(N, DAG));
4489     break;
4490   case ISD::CTTZ:
4491   case ISD::CTTZ_ZERO_UNDEF:
4492   case ISD::CTLZ:
4493   case ISD::CTLZ_ZERO_UNDEF: {
4494     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
4495            "Unexpected custom legalisation");
4496 
4497     SDValue NewOp0 =
4498         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
4499     bool IsCTZ =
4500         N->getOpcode() == ISD::CTTZ || N->getOpcode() == ISD::CTTZ_ZERO_UNDEF;
4501     unsigned Opc = IsCTZ ? RISCVISD::CTZW : RISCVISD::CLZW;
4502     SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp0);
4503     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
4504     return;
4505   }
4506   case ISD::SDIV:
4507   case ISD::UDIV:
4508   case ISD::UREM: {
4509     MVT VT = N->getSimpleValueType(0);
4510     assert((VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) &&
4511            Subtarget.is64Bit() && Subtarget.hasStdExtM() &&
4512            "Unexpected custom legalisation");
4513     if (N->getOperand(0).getOpcode() == ISD::Constant ||
4514         N->getOperand(1).getOpcode() == ISD::Constant)
4515       return;
4516 
4517     // If the input is i32, use ANY_EXTEND since the W instructions don't read
4518     // the upper 32 bits. For other types we need to sign or zero extend
4519     // based on the opcode.
4520     unsigned ExtOpc = ISD::ANY_EXTEND;
4521     if (VT != MVT::i32)
4522       ExtOpc = N->getOpcode() == ISD::SDIV ? ISD::SIGN_EXTEND
4523                                            : ISD::ZERO_EXTEND;
4524 
4525     Results.push_back(customLegalizeToWOp(N, DAG, ExtOpc));
4526     break;
4527   }
4528   case ISD::UADDO:
4529   case ISD::USUBO: {
4530     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
4531            "Unexpected custom legalisation");
4532     bool IsAdd = N->getOpcode() == ISD::UADDO;
4533     // Create an ADDW or SUBW.
4534     SDValue LHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
4535     SDValue RHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
4536     SDValue Res =
4537         DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, DL, MVT::i64, LHS, RHS);
4538     Res = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Res,
4539                       DAG.getValueType(MVT::i32));
4540 
4541     // Sign extend the LHS and perform an unsigned compare with the ADDW result.
4542     // Since the inputs are sign extended from i32, this is equivalent to
4543     // comparing the lower 32 bits.
4544     LHS = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0));
4545     SDValue Overflow = DAG.getSetCC(DL, N->getValueType(1), Res, LHS,
4546                                     IsAdd ? ISD::SETULT : ISD::SETUGT);
4547 
4548     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
4549     Results.push_back(Overflow);
4550     return;
4551   }
4552   case ISD::UADDSAT:
4553   case ISD::USUBSAT: {
4554     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
4555            "Unexpected custom legalisation");
4556     if (Subtarget.hasStdExtZbb()) {
4557       // With Zbb we can sign extend and let LegalizeDAG use minu/maxu. Using
4558       // sign extend allows overflow of the lower 32 bits to be detected on
4559       // the promoted size.
4560       SDValue LHS =
4561           DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0));
4562       SDValue RHS =
4563           DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(1));
4564       SDValue Res = DAG.getNode(N->getOpcode(), DL, MVT::i64, LHS, RHS);
4565       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
4566       return;
4567     }
4568 
4569     // Without Zbb, expand to UADDO/USUBO+select which will trigger our custom
4570     // promotion for UADDO/USUBO.
4571     Results.push_back(expandAddSubSat(N, DAG));
4572     return;
4573   }
4574   case ISD::BITCAST: {
4575     EVT VT = N->getValueType(0);
4576     assert(VT.isInteger() && !VT.isVector() && "Unexpected VT!");
4577     SDValue Op0 = N->getOperand(0);
4578     EVT Op0VT = Op0.getValueType();
4579     MVT XLenVT = Subtarget.getXLenVT();
4580     if (VT == MVT::i16 && Op0VT == MVT::f16 && Subtarget.hasStdExtZfh()) {
4581       SDValue FPConv = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, XLenVT, Op0);
4582       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FPConv));
4583     } else if (VT == MVT::i32 && Op0VT == MVT::f32 && Subtarget.is64Bit() &&
4584                Subtarget.hasStdExtF()) {
4585       SDValue FPConv =
4586           DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Op0);
4587       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, FPConv));
4588     } else if (!VT.isVector() && Op0VT.isFixedLengthVector() &&
4589                isTypeLegal(Op0VT)) {
4590       // Custom-legalize bitcasts from fixed-length vector types to illegal
4591       // scalar types in order to improve codegen. Bitcast the vector to a
4592       // one-element vector type whose element type is the same as the result
4593       // type, and extract the first element.
4594       LLVMContext &Context = *DAG.getContext();
4595       SDValue BVec = DAG.getBitcast(EVT::getVectorVT(Context, VT, 1), Op0);
4596       Results.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec,
4597                                     DAG.getConstant(0, DL, XLenVT)));
4598     }
4599     break;
4600   }
4601   case RISCVISD::GREV:
4602   case RISCVISD::GORC: {
4603     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
4604            "Unexpected custom legalisation");
4605     assert(isa<ConstantSDNode>(N->getOperand(1)) && "Expected constant");
4606     // This is similar to customLegalizeToWOp, except that we pass the second
4607     // operand (a TargetConstant) straight through: it is already of type
4608     // XLenVT.
4609     RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode());
4610     SDValue NewOp0 =
4611         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
4612     SDValue NewOp1 =
4613         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
4614     SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1);
4615     // ReplaceNodeResults requires we maintain the same type for the return
4616     // value.
4617     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes));
4618     break;
4619   }
4620   case RISCVISD::SHFL: {
4621     // There is no SHFLIW instruction, but we can just promote the operation.
4622     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
4623            "Unexpected custom legalisation");
4624     assert(isa<ConstantSDNode>(N->getOperand(1)) && "Expected constant");
4625     SDValue NewOp0 =
4626         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
4627     SDValue NewOp1 =
4628         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
4629     SDValue NewRes = DAG.getNode(RISCVISD::SHFL, DL, MVT::i64, NewOp0, NewOp1);
4630     // ReplaceNodeResults requires we maintain the same type for the return
4631     // value.
4632     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes));
4633     break;
4634   }
4635   case ISD::BSWAP:
4636   case ISD::BITREVERSE: {
4637     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
4638            Subtarget.hasStdExtZbp() && "Unexpected custom legalisation");
4639     SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64,
4640                                  N->getOperand(0));
4641     unsigned Imm = N->getOpcode() == ISD::BITREVERSE ? 31 : 24;
4642     SDValue GREVIW = DAG.getNode(RISCVISD::GREVW, DL, MVT::i64, NewOp0,
4643                                  DAG.getConstant(Imm, DL, MVT::i64));
4644     // ReplaceNodeResults requires we maintain the same type for the return
4645     // value.
4646     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, GREVIW));
4647     break;
4648   }
4649   case ISD::FSHL:
4650   case ISD::FSHR: {
4651     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
4652            Subtarget.hasStdExtZbt() && "Unexpected custom legalisation");
4653     SDValue NewOp0 =
4654         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
4655     SDValue NewOp1 =
4656         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
4657     SDValue NewOp2 =
4658         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
4659     // FSLW/FSRW take a 6 bit shift amount but i32 FSHL/FSHR only use 5 bits.
4660     // Mask the shift amount to 5 bits.
4661     NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2,
4662                          DAG.getConstant(0x1f, DL, MVT::i64));
4663     unsigned Opc =
4664         N->getOpcode() == ISD::FSHL ? RISCVISD::FSLW : RISCVISD::FSRW;
4665     SDValue NewOp = DAG.getNode(Opc, DL, MVT::i64, NewOp0, NewOp1, NewOp2);
4666     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewOp));
4667     break;
4668   }
4669   case ISD::EXTRACT_VECTOR_ELT: {
4670     // Custom-legalize an EXTRACT_VECTOR_ELT where XLEN<SEW, as the SEW element
4671     // type is illegal (currently only vXi64 RV32).
4672     // With vmv.x.s, when SEW > XLEN, only the least-significant XLEN bits are
4673     // transferred to the destination register. We issue two of these from the
4674     // upper- and lower- halves of the SEW-bit vector element, slid down to the
4675     // first element.
4676     SDValue Vec = N->getOperand(0);
4677     SDValue Idx = N->getOperand(1);
4678 
4679     // The vector type hasn't been legalized yet so we can't issue target
4680     // specific nodes if it needs legalization.
4681     // FIXME: We would manually legalize if it's important.
4682     if (!isTypeLegal(Vec.getValueType()))
4683       return;
4684 
4685     MVT VecVT = Vec.getSimpleValueType();
4686 
4687     assert(!Subtarget.is64Bit() && N->getValueType(0) == MVT::i64 &&
4688            VecVT.getVectorElementType() == MVT::i64 &&
4689            "Unexpected EXTRACT_VECTOR_ELT legalization");
4690 
4691     // If this is a fixed vector, we need to convert it to a scalable vector.
4692     MVT ContainerVT = VecVT;
4693     if (VecVT.isFixedLengthVector()) {
4694       ContainerVT = getContainerForFixedLengthVector(VecVT);
4695       Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
4696     }
4697 
4698     MVT XLenVT = Subtarget.getXLenVT();
4699 
4700     // Use a VL of 1 to avoid processing more elements than we need.
4701     MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount());
4702     SDValue VL = DAG.getConstant(1, DL, XLenVT);
4703     SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
4704 
4705     // Unless the index is known to be 0, we must slide the vector down to get
4706     // the desired element into index 0.
4707     if (!isNullConstant(Idx)) {
4708       Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT,
4709                         DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL);
4710     }
4711 
4712     // Extract the lower XLEN bits of the correct vector element.
4713     SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec);
4714 
4715     // To extract the upper XLEN bits of the vector element, shift the first
4716     // element right by 32 bits and re-extract the lower XLEN bits.
4717     SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
4718                                      DAG.getConstant(32, DL, XLenVT), VL);
4719     SDValue LShr32 = DAG.getNode(RISCVISD::SRL_VL, DL, ContainerVT, Vec,
4720                                  ThirtyTwoV, Mask, VL);
4721 
4722     SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32);
4723 
4724     Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi));
4725     break;
4726   }
4727   case ISD::INTRINSIC_WO_CHAIN: {
4728     unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
4729     switch (IntNo) {
4730     default:
4731       llvm_unreachable(
4732           "Don't know how to custom type legalize this intrinsic!");
4733     case Intrinsic::riscv_orc_b: {
4734       // Lower to the GORCI encoding for orc.b with the operand extended.
4735       SDValue NewOp =
4736           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
4737       // If Zbp is enabled, use GORCIW which will sign extend the result.
4738       unsigned Opc =
4739           Subtarget.hasStdExtZbp() ? RISCVISD::GORCW : RISCVISD::GORC;
4740       SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp,
4741                                 DAG.getConstant(7, DL, MVT::i64));
4742       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
4743       return;
4744     }
4745     case Intrinsic::riscv_grev:
4746     case Intrinsic::riscv_gorc: {
4747       assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
4748              "Unexpected custom legalisation");
4749       SDValue NewOp1 =
4750           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
4751       SDValue NewOp2 =
4752           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
4753       unsigned Opc =
4754           IntNo == Intrinsic::riscv_grev ? RISCVISD::GREVW : RISCVISD::GORCW;
4755       SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2);
4756       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
4757       break;
4758     }
4759     case Intrinsic::riscv_shfl:
4760     case Intrinsic::riscv_unshfl: {
4761       assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
4762              "Unexpected custom legalisation");
4763       SDValue NewOp1 =
4764           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
4765       SDValue NewOp2 =
4766           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
4767       unsigned Opc =
4768           IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFLW : RISCVISD::UNSHFLW;
4769       if (isa<ConstantSDNode>(N->getOperand(2))) {
4770         NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2,
4771                              DAG.getConstant(0xf, DL, MVT::i64));
4772         Opc =
4773             IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL;
4774       }
4775       SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2);
4776       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
4777       break;
4778     }
4779     case Intrinsic::riscv_bcompress:
4780     case Intrinsic::riscv_bdecompress: {
4781       assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
4782              "Unexpected custom legalisation");
4783       SDValue NewOp1 =
4784           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
4785       SDValue NewOp2 =
4786           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
4787       unsigned Opc = IntNo == Intrinsic::riscv_bcompress
4788                          ? RISCVISD::BCOMPRESSW
4789                          : RISCVISD::BDECOMPRESSW;
4790       SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2);
4791       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
4792       break;
4793     }
4794     case Intrinsic::riscv_vmv_x_s: {
4795       EVT VT = N->getValueType(0);
4796       MVT XLenVT = Subtarget.getXLenVT();
4797       if (VT.bitsLT(XLenVT)) {
4798         // Simple case just extract using vmv.x.s and truncate.
4799         SDValue Extract = DAG.getNode(RISCVISD::VMV_X_S, DL,
4800                                       Subtarget.getXLenVT(), N->getOperand(1));
4801         Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, Extract));
4802         return;
4803       }
4804 
4805       assert(VT == MVT::i64 && !Subtarget.is64Bit() &&
4806              "Unexpected custom legalization");
4807 
4808       // We need to do the move in two steps.
4809       SDValue Vec = N->getOperand(1);
4810       MVT VecVT = Vec.getSimpleValueType();
4811 
4812       // First extract the lower XLEN bits of the element.
4813       SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec);
4814 
4815       // To extract the upper XLEN bits of the vector element, shift the first
4816       // element right by 32 bits and re-extract the lower XLEN bits.
4817       SDValue VL = DAG.getConstant(1, DL, XLenVT);
4818       MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount());
4819       SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
4820       SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT,
4821                                        DAG.getConstant(32, DL, XLenVT), VL);
4822       SDValue LShr32 =
4823           DAG.getNode(RISCVISD::SRL_VL, DL, VecVT, Vec, ThirtyTwoV, Mask, VL);
4824       SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32);
4825 
4826       Results.push_back(
4827           DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi));
4828       break;
4829     }
4830     }
4831     break;
4832   }
4833   case ISD::VECREDUCE_ADD:
4834   case ISD::VECREDUCE_AND:
4835   case ISD::VECREDUCE_OR:
4836   case ISD::VECREDUCE_XOR:
4837   case ISD::VECREDUCE_SMAX:
4838   case ISD::VECREDUCE_UMAX:
4839   case ISD::VECREDUCE_SMIN:
4840   case ISD::VECREDUCE_UMIN:
4841     if (SDValue V = lowerVECREDUCE(SDValue(N, 0), DAG))
4842       Results.push_back(V);
4843     break;
4844   case ISD::FLT_ROUNDS_: {
4845     SDVTList VTs = DAG.getVTList(Subtarget.getXLenVT(), MVT::Other);
4846     SDValue Res = DAG.getNode(ISD::FLT_ROUNDS_, DL, VTs, N->getOperand(0));
4847     Results.push_back(Res.getValue(0));
4848     Results.push_back(Res.getValue(1));
4849     break;
4850   }
4851   }
4852 }
4853 
4854 // A structure to hold one of the bit-manipulation patterns below. Together, a
4855 // SHL and non-SHL pattern may form a bit-manipulation pair on a single source:
4856 //   (or (and (shl x, 1), 0xAAAAAAAA),
4857 //       (and (srl x, 1), 0x55555555))
4858 struct RISCVBitmanipPat {
4859   SDValue Op;
4860   unsigned ShAmt;
4861   bool IsSHL;
4862 
4863   bool formsPairWith(const RISCVBitmanipPat &Other) const {
4864     return Op == Other.Op && ShAmt == Other.ShAmt && IsSHL != Other.IsSHL;
4865   }
4866 };
4867 
4868 // Matches patterns of the form
4869 //   (and (shl x, C2), (C1 << C2))
4870 //   (and (srl x, C2), C1)
4871 //   (shl (and x, C1), C2)
4872 //   (srl (and x, (C1 << C2)), C2)
4873 // Where C2 is a power of 2 and C1 has at least that many leading zeroes.
4874 // The expected masks for each shift amount are specified in BitmanipMasks where
4875 // BitmanipMasks[log2(C2)] specifies the expected C1 value.
4876 // The max allowed shift amount is either XLen/2 or XLen/4 determined by whether
4877 // BitmanipMasks contains 6 or 5 entries assuming that the maximum possible
4878 // XLen is 64.
4879 static Optional<RISCVBitmanipPat>
4880 matchRISCVBitmanipPat(SDValue Op, ArrayRef<uint64_t> BitmanipMasks) {
4881   assert((BitmanipMasks.size() == 5 || BitmanipMasks.size() == 6) &&
4882          "Unexpected number of masks");
4883   Optional<uint64_t> Mask;
4884   // Optionally consume a mask around the shift operation.
4885   if (Op.getOpcode() == ISD::AND && isa<ConstantSDNode>(Op.getOperand(1))) {
4886     Mask = Op.getConstantOperandVal(1);
4887     Op = Op.getOperand(0);
4888   }
4889   if (Op.getOpcode() != ISD::SHL && Op.getOpcode() != ISD::SRL)
4890     return None;
4891   bool IsSHL = Op.getOpcode() == ISD::SHL;
4892 
4893   if (!isa<ConstantSDNode>(Op.getOperand(1)))
4894     return None;
4895   uint64_t ShAmt = Op.getConstantOperandVal(1);
4896 
4897   unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32;
4898   if (ShAmt >= Width && !isPowerOf2_64(ShAmt))
4899     return None;
4900   // If we don't have enough masks for 64 bit, then we must be trying to
4901   // match SHFL so we're only allowed to shift 1/4 of the width.
4902   if (BitmanipMasks.size() == 5 && ShAmt >= (Width / 2))
4903     return None;
4904 
4905   SDValue Src = Op.getOperand(0);
4906 
4907   // The expected mask is shifted left when the AND is found around SHL
4908   // patterns.
4909   //   ((x >> 1) & 0x55555555)
4910   //   ((x << 1) & 0xAAAAAAAA)
4911   bool SHLExpMask = IsSHL;
4912 
4913   if (!Mask) {
4914     // Sometimes LLVM keeps the mask as an operand of the shift, typically when
4915     // the mask is all ones: consume that now.
4916     if (Src.getOpcode() == ISD::AND && isa<ConstantSDNode>(Src.getOperand(1))) {
4917       Mask = Src.getConstantOperandVal(1);
4918       Src = Src.getOperand(0);
4919       // The expected mask is now in fact shifted left for SRL, so reverse the
4920       // decision.
4921       //   ((x & 0xAAAAAAAA) >> 1)
4922       //   ((x & 0x55555555) << 1)
4923       SHLExpMask = !SHLExpMask;
4924     } else {
4925       // Use a default shifted mask of all-ones if there's no AND, truncated
4926       // down to the expected width. This simplifies the logic later on.
4927       Mask = maskTrailingOnes<uint64_t>(Width);
4928       *Mask &= (IsSHL ? *Mask << ShAmt : *Mask >> ShAmt);
4929     }
4930   }
4931 
4932   unsigned MaskIdx = Log2_32(ShAmt);
4933   uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width);
4934 
4935   if (SHLExpMask)
4936     ExpMask <<= ShAmt;
4937 
4938   if (Mask != ExpMask)
4939     return None;
4940 
4941   return RISCVBitmanipPat{Src, (unsigned)ShAmt, IsSHL};
4942 }
4943 
4944 // Matches any of the following bit-manipulation patterns:
4945 //   (and (shl x, 1), (0x55555555 << 1))
4946 //   (and (srl x, 1), 0x55555555)
4947 //   (shl (and x, 0x55555555), 1)
4948 //   (srl (and x, (0x55555555 << 1)), 1)
4949 // where the shift amount and mask may vary thus:
4950 //   [1]  = 0x55555555 / 0xAAAAAAAA
4951 //   [2]  = 0x33333333 / 0xCCCCCCCC
4952 //   [4]  = 0x0F0F0F0F / 0xF0F0F0F0
4953 //   [8]  = 0x00FF00FF / 0xFF00FF00
4954 //   [16] = 0x0000FFFF / 0xFFFFFFFF
4955 //   [32] = 0x00000000FFFFFFFF / 0xFFFFFFFF00000000 (for RV64)
4956 static Optional<RISCVBitmanipPat> matchGREVIPat(SDValue Op) {
4957   // These are the unshifted masks which we use to match bit-manipulation
4958   // patterns. They may be shifted left in certain circumstances.
4959   static const uint64_t BitmanipMasks[] = {
4960       0x5555555555555555ULL, 0x3333333333333333ULL, 0x0F0F0F0F0F0F0F0FULL,
4961       0x00FF00FF00FF00FFULL, 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL};
4962 
4963   return matchRISCVBitmanipPat(Op, BitmanipMasks);
4964 }
4965 
4966 // Match the following pattern as a GREVI(W) operation
4967 //   (or (BITMANIP_SHL x), (BITMANIP_SRL x))
4968 static SDValue combineORToGREV(SDValue Op, SelectionDAG &DAG,
4969                                const RISCVSubtarget &Subtarget) {
4970   assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson");
4971   EVT VT = Op.getValueType();
4972 
4973   if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) {
4974     auto LHS = matchGREVIPat(Op.getOperand(0));
4975     auto RHS = matchGREVIPat(Op.getOperand(1));
4976     if (LHS && RHS && LHS->formsPairWith(*RHS)) {
4977       SDLoc DL(Op);
4978       return DAG.getNode(RISCVISD::GREV, DL, VT, LHS->Op,
4979                          DAG.getConstant(LHS->ShAmt, DL, VT));
4980     }
4981   }
4982   return SDValue();
4983 }
4984 
4985 // Matches any the following pattern as a GORCI(W) operation
4986 // 1.  (or (GREVI x, shamt), x) if shamt is a power of 2
4987 // 2.  (or x, (GREVI x, shamt)) if shamt is a power of 2
4988 // 3.  (or (or (BITMANIP_SHL x), x), (BITMANIP_SRL x))
4989 // Note that with the variant of 3.,
4990 //     (or (or (BITMANIP_SHL x), (BITMANIP_SRL x)), x)
4991 // the inner pattern will first be matched as GREVI and then the outer
4992 // pattern will be matched to GORC via the first rule above.
4993 // 4.  (or (rotl/rotr x, bitwidth/2), x)
4994 static SDValue combineORToGORC(SDValue Op, SelectionDAG &DAG,
4995                                const RISCVSubtarget &Subtarget) {
4996   assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson");
4997   EVT VT = Op.getValueType();
4998 
4999   if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) {
5000     SDLoc DL(Op);
5001     SDValue Op0 = Op.getOperand(0);
5002     SDValue Op1 = Op.getOperand(1);
5003 
5004     auto MatchOROfReverse = [&](SDValue Reverse, SDValue X) {
5005       if (Reverse.getOpcode() == RISCVISD::GREV && Reverse.getOperand(0) == X &&
5006           isa<ConstantSDNode>(Reverse.getOperand(1)) &&
5007           isPowerOf2_32(Reverse.getConstantOperandVal(1)))
5008         return DAG.getNode(RISCVISD::GORC, DL, VT, X, Reverse.getOperand(1));
5009       // We can also form GORCI from ROTL/ROTR by half the bitwidth.
5010       if ((Reverse.getOpcode() == ISD::ROTL ||
5011            Reverse.getOpcode() == ISD::ROTR) &&
5012           Reverse.getOperand(0) == X &&
5013           isa<ConstantSDNode>(Reverse.getOperand(1))) {
5014         uint64_t RotAmt = Reverse.getConstantOperandVal(1);
5015         if (RotAmt == (VT.getSizeInBits() / 2))
5016           return DAG.getNode(RISCVISD::GORC, DL, VT, X,
5017                              DAG.getConstant(RotAmt, DL, VT));
5018       }
5019       return SDValue();
5020     };
5021 
5022     // Check for either commutable permutation of (or (GREVI x, shamt), x)
5023     if (SDValue V = MatchOROfReverse(Op0, Op1))
5024       return V;
5025     if (SDValue V = MatchOROfReverse(Op1, Op0))
5026       return V;
5027 
5028     // OR is commutable so canonicalize its OR operand to the left
5029     if (Op0.getOpcode() != ISD::OR && Op1.getOpcode() == ISD::OR)
5030       std::swap(Op0, Op1);
5031     if (Op0.getOpcode() != ISD::OR)
5032       return SDValue();
5033     SDValue OrOp0 = Op0.getOperand(0);
5034     SDValue OrOp1 = Op0.getOperand(1);
5035     auto LHS = matchGREVIPat(OrOp0);
5036     // OR is commutable so swap the operands and try again: x might have been
5037     // on the left
5038     if (!LHS) {
5039       std::swap(OrOp0, OrOp1);
5040       LHS = matchGREVIPat(OrOp0);
5041     }
5042     auto RHS = matchGREVIPat(Op1);
5043     if (LHS && RHS && LHS->formsPairWith(*RHS) && LHS->Op == OrOp1) {
5044       return DAG.getNode(RISCVISD::GORC, DL, VT, LHS->Op,
5045                          DAG.getConstant(LHS->ShAmt, DL, VT));
5046     }
5047   }
5048   return SDValue();
5049 }
5050 
5051 // Matches any of the following bit-manipulation patterns:
5052 //   (and (shl x, 1), (0x22222222 << 1))
5053 //   (and (srl x, 1), 0x22222222)
5054 //   (shl (and x, 0x22222222), 1)
5055 //   (srl (and x, (0x22222222 << 1)), 1)
5056 // where the shift amount and mask may vary thus:
5057 //   [1]  = 0x22222222 / 0x44444444
5058 //   [2]  = 0x0C0C0C0C / 0x3C3C3C3C
5059 //   [4]  = 0x00F000F0 / 0x0F000F00
5060 //   [8]  = 0x0000FF00 / 0x00FF0000
5061 //   [16] = 0x00000000FFFF0000 / 0x0000FFFF00000000 (for RV64)
5062 static Optional<RISCVBitmanipPat> matchSHFLPat(SDValue Op) {
5063   // These are the unshifted masks which we use to match bit-manipulation
5064   // patterns. They may be shifted left in certain circumstances.
5065   static const uint64_t BitmanipMasks[] = {
5066       0x2222222222222222ULL, 0x0C0C0C0C0C0C0C0CULL, 0x00F000F000F000F0ULL,
5067       0x0000FF000000FF00ULL, 0x00000000FFFF0000ULL};
5068 
5069   return matchRISCVBitmanipPat(Op, BitmanipMasks);
5070 }
5071 
5072 // Match (or (or (SHFL_SHL x), (SHFL_SHR x)), (SHFL_AND x)
5073 static SDValue combineORToSHFL(SDValue Op, SelectionDAG &DAG,
5074                                const RISCVSubtarget &Subtarget) {
5075   assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson");
5076   EVT VT = Op.getValueType();
5077 
5078   if (VT != MVT::i32 && VT != Subtarget.getXLenVT())
5079     return SDValue();
5080 
5081   SDValue Op0 = Op.getOperand(0);
5082   SDValue Op1 = Op.getOperand(1);
5083 
5084   // Or is commutable so canonicalize the second OR to the LHS.
5085   if (Op0.getOpcode() != ISD::OR)
5086     std::swap(Op0, Op1);
5087   if (Op0.getOpcode() != ISD::OR)
5088     return SDValue();
5089 
5090   // We found an inner OR, so our operands are the operands of the inner OR
5091   // and the other operand of the outer OR.
5092   SDValue A = Op0.getOperand(0);
5093   SDValue B = Op0.getOperand(1);
5094   SDValue C = Op1;
5095 
5096   auto Match1 = matchSHFLPat(A);
5097   auto Match2 = matchSHFLPat(B);
5098 
5099   // If neither matched, we failed.
5100   if (!Match1 && !Match2)
5101     return SDValue();
5102 
5103   // We had at least one match. if one failed, try the remaining C operand.
5104   if (!Match1) {
5105     std::swap(A, C);
5106     Match1 = matchSHFLPat(A);
5107     if (!Match1)
5108       return SDValue();
5109   } else if (!Match2) {
5110     std::swap(B, C);
5111     Match2 = matchSHFLPat(B);
5112     if (!Match2)
5113       return SDValue();
5114   }
5115   assert(Match1 && Match2);
5116 
5117   // Make sure our matches pair up.
5118   if (!Match1->formsPairWith(*Match2))
5119     return SDValue();
5120 
5121   // All the remains is to make sure C is an AND with the same input, that masks
5122   // out the bits that are being shuffled.
5123   if (C.getOpcode() != ISD::AND || !isa<ConstantSDNode>(C.getOperand(1)) ||
5124       C.getOperand(0) != Match1->Op)
5125     return SDValue();
5126 
5127   uint64_t Mask = C.getConstantOperandVal(1);
5128 
5129   static const uint64_t BitmanipMasks[] = {
5130       0x9999999999999999ULL, 0xC3C3C3C3C3C3C3C3ULL, 0xF00FF00FF00FF00FULL,
5131       0xFF0000FFFF0000FFULL, 0xFFFF00000000FFFFULL,
5132   };
5133 
5134   unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32;
5135   unsigned MaskIdx = Log2_32(Match1->ShAmt);
5136   uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width);
5137 
5138   if (Mask != ExpMask)
5139     return SDValue();
5140 
5141   SDLoc DL(Op);
5142   return DAG.getNode(RISCVISD::SHFL, DL, VT, Match1->Op,
5143                      DAG.getConstant(Match1->ShAmt, DL, VT));
5144 }
5145 
5146 // Combine (GREVI (GREVI x, C2), C1) -> (GREVI x, C1^C2) when C1^C2 is
5147 // non-zero, and to x when it is. Any repeated GREVI stage undoes itself.
5148 // Combine (GORCI (GORCI x, C2), C1) -> (GORCI x, C1|C2). Repeated stage does
5149 // not undo itself, but they are redundant.
5150 static SDValue combineGREVI_GORCI(SDNode *N, SelectionDAG &DAG) {
5151   SDValue Src = N->getOperand(0);
5152 
5153   if (Src.getOpcode() != N->getOpcode())
5154     return SDValue();
5155 
5156   if (!isa<ConstantSDNode>(N->getOperand(1)) ||
5157       !isa<ConstantSDNode>(Src.getOperand(1)))
5158     return SDValue();
5159 
5160   unsigned ShAmt1 = N->getConstantOperandVal(1);
5161   unsigned ShAmt2 = Src.getConstantOperandVal(1);
5162   Src = Src.getOperand(0);
5163 
5164   unsigned CombinedShAmt;
5165   if (N->getOpcode() == RISCVISD::GORC || N->getOpcode() == RISCVISD::GORCW)
5166     CombinedShAmt = ShAmt1 | ShAmt2;
5167   else
5168     CombinedShAmt = ShAmt1 ^ ShAmt2;
5169 
5170   if (CombinedShAmt == 0)
5171     return Src;
5172 
5173   SDLoc DL(N);
5174   return DAG.getNode(
5175       N->getOpcode(), DL, N->getValueType(0), Src,
5176       DAG.getConstant(CombinedShAmt, DL, N->getOperand(1).getValueType()));
5177 }
5178 
5179 SDValue RISCVTargetLowering::PerformDAGCombine(SDNode *N,
5180                                                DAGCombinerInfo &DCI) const {
5181   SelectionDAG &DAG = DCI.DAG;
5182 
5183   switch (N->getOpcode()) {
5184   default:
5185     break;
5186   case RISCVISD::SplitF64: {
5187     SDValue Op0 = N->getOperand(0);
5188     // If the input to SplitF64 is just BuildPairF64 then the operation is
5189     // redundant. Instead, use BuildPairF64's operands directly.
5190     if (Op0->getOpcode() == RISCVISD::BuildPairF64)
5191       return DCI.CombineTo(N, Op0.getOperand(0), Op0.getOperand(1));
5192 
5193     SDLoc DL(N);
5194 
5195     // It's cheaper to materialise two 32-bit integers than to load a double
5196     // from the constant pool and transfer it to integer registers through the
5197     // stack.
5198     if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op0)) {
5199       APInt V = C->getValueAPF().bitcastToAPInt();
5200       SDValue Lo = DAG.getConstant(V.trunc(32), DL, MVT::i32);
5201       SDValue Hi = DAG.getConstant(V.lshr(32).trunc(32), DL, MVT::i32);
5202       return DCI.CombineTo(N, Lo, Hi);
5203     }
5204 
5205     // This is a target-specific version of a DAGCombine performed in
5206     // DAGCombiner::visitBITCAST. It performs the equivalent of:
5207     // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
5208     // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
5209     if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) ||
5210         !Op0.getNode()->hasOneUse())
5211       break;
5212     SDValue NewSplitF64 =
5213         DAG.getNode(RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32),
5214                     Op0.getOperand(0));
5215     SDValue Lo = NewSplitF64.getValue(0);
5216     SDValue Hi = NewSplitF64.getValue(1);
5217     APInt SignBit = APInt::getSignMask(32);
5218     if (Op0.getOpcode() == ISD::FNEG) {
5219       SDValue NewHi = DAG.getNode(ISD::XOR, DL, MVT::i32, Hi,
5220                                   DAG.getConstant(SignBit, DL, MVT::i32));
5221       return DCI.CombineTo(N, Lo, NewHi);
5222     }
5223     assert(Op0.getOpcode() == ISD::FABS);
5224     SDValue NewHi = DAG.getNode(ISD::AND, DL, MVT::i32, Hi,
5225                                 DAG.getConstant(~SignBit, DL, MVT::i32));
5226     return DCI.CombineTo(N, Lo, NewHi);
5227   }
5228   case RISCVISD::SLLW:
5229   case RISCVISD::SRAW:
5230   case RISCVISD::SRLW:
5231   case RISCVISD::ROLW:
5232   case RISCVISD::RORW: {
5233     // Only the lower 32 bits of LHS and lower 5 bits of RHS are read.
5234     SDValue LHS = N->getOperand(0);
5235     SDValue RHS = N->getOperand(1);
5236     APInt LHSMask = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 32);
5237     APInt RHSMask = APInt::getLowBitsSet(RHS.getValueSizeInBits(), 5);
5238     if (SimplifyDemandedBits(N->getOperand(0), LHSMask, DCI) ||
5239         SimplifyDemandedBits(N->getOperand(1), RHSMask, DCI)) {
5240       if (N->getOpcode() != ISD::DELETED_NODE)
5241         DCI.AddToWorklist(N);
5242       return SDValue(N, 0);
5243     }
5244     break;
5245   }
5246   case RISCVISD::CLZW:
5247   case RISCVISD::CTZW: {
5248     // Only the lower 32 bits of the first operand are read
5249     SDValue Op0 = N->getOperand(0);
5250     APInt Mask = APInt::getLowBitsSet(Op0.getValueSizeInBits(), 32);
5251     if (SimplifyDemandedBits(Op0, Mask, DCI)) {
5252       if (N->getOpcode() != ISD::DELETED_NODE)
5253         DCI.AddToWorklist(N);
5254       return SDValue(N, 0);
5255     }
5256     break;
5257   }
5258   case RISCVISD::FSL:
5259   case RISCVISD::FSR: {
5260     // Only the lower log2(Bitwidth)+1 bits of the the shift amount are read.
5261     SDValue ShAmt = N->getOperand(2);
5262     unsigned BitWidth = ShAmt.getValueSizeInBits();
5263     assert(isPowerOf2_32(BitWidth) && "Unexpected bit width");
5264     APInt ShAmtMask(BitWidth, (BitWidth * 2) - 1);
5265     if (SimplifyDemandedBits(ShAmt, ShAmtMask, DCI)) {
5266       if (N->getOpcode() != ISD::DELETED_NODE)
5267         DCI.AddToWorklist(N);
5268       return SDValue(N, 0);
5269     }
5270     break;
5271   }
5272   case RISCVISD::FSLW:
5273   case RISCVISD::FSRW: {
5274     // Only the lower 32 bits of Values and lower 6 bits of shift amount are
5275     // read.
5276     SDValue Op0 = N->getOperand(0);
5277     SDValue Op1 = N->getOperand(1);
5278     SDValue ShAmt = N->getOperand(2);
5279     APInt OpMask = APInt::getLowBitsSet(Op0.getValueSizeInBits(), 32);
5280     APInt ShAmtMask = APInt::getLowBitsSet(ShAmt.getValueSizeInBits(), 6);
5281     if (SimplifyDemandedBits(Op0, OpMask, DCI) ||
5282         SimplifyDemandedBits(Op1, OpMask, DCI) ||
5283         SimplifyDemandedBits(ShAmt, ShAmtMask, DCI)) {
5284       if (N->getOpcode() != ISD::DELETED_NODE)
5285         DCI.AddToWorklist(N);
5286       return SDValue(N, 0);
5287     }
5288     break;
5289   }
5290   case RISCVISD::GREV:
5291   case RISCVISD::GORC: {
5292     // Only the lower log2(Bitwidth) bits of the the shift amount are read.
5293     SDValue ShAmt = N->getOperand(1);
5294     unsigned BitWidth = ShAmt.getValueSizeInBits();
5295     assert(isPowerOf2_32(BitWidth) && "Unexpected bit width");
5296     APInt ShAmtMask(BitWidth, BitWidth - 1);
5297     if (SimplifyDemandedBits(ShAmt, ShAmtMask, DCI)) {
5298       if (N->getOpcode() != ISD::DELETED_NODE)
5299         DCI.AddToWorklist(N);
5300       return SDValue(N, 0);
5301     }
5302 
5303     return combineGREVI_GORCI(N, DCI.DAG);
5304   }
5305   case RISCVISD::GREVW:
5306   case RISCVISD::GORCW: {
5307     // Only the lower 32 bits of LHS and lower 5 bits of RHS are read.
5308     SDValue LHS = N->getOperand(0);
5309     SDValue RHS = N->getOperand(1);
5310     APInt LHSMask = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 32);
5311     APInt RHSMask = APInt::getLowBitsSet(RHS.getValueSizeInBits(), 5);
5312     if (SimplifyDemandedBits(LHS, LHSMask, DCI) ||
5313         SimplifyDemandedBits(RHS, RHSMask, DCI)) {
5314       if (N->getOpcode() != ISD::DELETED_NODE)
5315         DCI.AddToWorklist(N);
5316       return SDValue(N, 0);
5317     }
5318 
5319     return combineGREVI_GORCI(N, DCI.DAG);
5320   }
5321   case RISCVISD::SHFL:
5322   case RISCVISD::UNSHFL: {
5323     // Only the lower log2(Bitwidth) bits of the the shift amount are read.
5324     SDValue ShAmt = N->getOperand(1);
5325     unsigned BitWidth = ShAmt.getValueSizeInBits();
5326     assert(isPowerOf2_32(BitWidth) && "Unexpected bit width");
5327     APInt ShAmtMask(BitWidth, (BitWidth / 2) - 1);
5328     if (SimplifyDemandedBits(ShAmt, ShAmtMask, DCI)) {
5329       if (N->getOpcode() != ISD::DELETED_NODE)
5330         DCI.AddToWorklist(N);
5331       return SDValue(N, 0);
5332     }
5333 
5334     break;
5335   }
5336   case RISCVISD::SHFLW:
5337   case RISCVISD::UNSHFLW: {
5338     // Only the lower 32 bits of LHS and lower 5 bits of RHS are read.
5339     SDValue LHS = N->getOperand(0);
5340     SDValue RHS = N->getOperand(1);
5341     APInt LHSMask = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 32);
5342     APInt RHSMask = APInt::getLowBitsSet(RHS.getValueSizeInBits(), 4);
5343     if (SimplifyDemandedBits(LHS, LHSMask, DCI) ||
5344         SimplifyDemandedBits(RHS, RHSMask, DCI)) {
5345       if (N->getOpcode() != ISD::DELETED_NODE)
5346         DCI.AddToWorklist(N);
5347       return SDValue(N, 0);
5348     }
5349 
5350     break;
5351   }
5352   case RISCVISD::BCOMPRESSW:
5353   case RISCVISD::BDECOMPRESSW: {
5354     // Only the lower 32 bits of LHS and RHS are read.
5355     SDValue LHS = N->getOperand(0);
5356     SDValue RHS = N->getOperand(1);
5357     APInt Mask = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 32);
5358     if (SimplifyDemandedBits(LHS, Mask, DCI) ||
5359         SimplifyDemandedBits(RHS, Mask, DCI)) {
5360       if (N->getOpcode() != ISD::DELETED_NODE)
5361         DCI.AddToWorklist(N);
5362       return SDValue(N, 0);
5363     }
5364 
5365     break;
5366   }
5367   case RISCVISD::FMV_X_ANYEXTW_RV64: {
5368     SDLoc DL(N);
5369     SDValue Op0 = N->getOperand(0);
5370     // If the input to FMV_X_ANYEXTW_RV64 is just FMV_W_X_RV64 then the
5371     // conversion is unnecessary and can be replaced with an ANY_EXTEND
5372     // of the FMV_W_X_RV64 operand.
5373     if (Op0->getOpcode() == RISCVISD::FMV_W_X_RV64) {
5374       assert(Op0.getOperand(0).getValueType() == MVT::i64 &&
5375              "Unexpected value type!");
5376       return Op0.getOperand(0);
5377     }
5378 
5379     // This is a target-specific version of a DAGCombine performed in
5380     // DAGCombiner::visitBITCAST. It performs the equivalent of:
5381     // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
5382     // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
5383     if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) ||
5384         !Op0.getNode()->hasOneUse())
5385       break;
5386     SDValue NewFMV = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64,
5387                                  Op0.getOperand(0));
5388     APInt SignBit = APInt::getSignMask(32).sext(64);
5389     if (Op0.getOpcode() == ISD::FNEG)
5390       return DAG.getNode(ISD::XOR, DL, MVT::i64, NewFMV,
5391                          DAG.getConstant(SignBit, DL, MVT::i64));
5392 
5393     assert(Op0.getOpcode() == ISD::FABS);
5394     return DAG.getNode(ISD::AND, DL, MVT::i64, NewFMV,
5395                        DAG.getConstant(~SignBit, DL, MVT::i64));
5396   }
5397   case ISD::OR:
5398     if (auto GREV = combineORToGREV(SDValue(N, 0), DCI.DAG, Subtarget))
5399       return GREV;
5400     if (auto GORC = combineORToGORC(SDValue(N, 0), DCI.DAG, Subtarget))
5401       return GORC;
5402     if (auto SHFL = combineORToSHFL(SDValue(N, 0), DCI.DAG, Subtarget))
5403       return SHFL;
5404     break;
5405   case RISCVISD::SELECT_CC: {
5406     // Transform
5407     SDValue LHS = N->getOperand(0);
5408     SDValue RHS = N->getOperand(1);
5409     auto CCVal = static_cast<ISD::CondCode>(N->getConstantOperandVal(2));
5410     if (!ISD::isIntEqualitySetCC(CCVal))
5411       break;
5412 
5413     // Fold (select_cc (setlt X, Y), 0, ne, trueV, falseV) ->
5414     //      (select_cc X, Y, lt, trueV, falseV)
5415     // Sometimes the setcc is introduced after select_cc has been formed.
5416     if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) &&
5417         LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) {
5418       // If we're looking for eq 0 instead of ne 0, we need to invert the
5419       // condition.
5420       bool Invert = CCVal == ISD::SETEQ;
5421       CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
5422       if (Invert)
5423         CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
5424 
5425       SDLoc DL(N);
5426       RHS = LHS.getOperand(1);
5427       LHS = LHS.getOperand(0);
5428       translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
5429 
5430       SDValue TargetCC =
5431           DAG.getTargetConstant(CCVal, DL, Subtarget.getXLenVT());
5432       return DAG.getNode(
5433           RISCVISD::SELECT_CC, DL, N->getValueType(0),
5434           {LHS, RHS, TargetCC, N->getOperand(3), N->getOperand(4)});
5435     }
5436 
5437     // Fold (select_cc (xor X, Y), 0, eq/ne, trueV, falseV) ->
5438     //      (select_cc X, Y, eq/ne, trueV, falseV)
5439     if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS))
5440       return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), N->getValueType(0),
5441                          {LHS.getOperand(0), LHS.getOperand(1),
5442                           N->getOperand(2), N->getOperand(3),
5443                           N->getOperand(4)});
5444     // (select_cc X, 1, setne, trueV, falseV) ->
5445     // (select_cc X, 0, seteq, trueV, falseV) if we can prove X is 0/1.
5446     // This can occur when legalizing some floating point comparisons.
5447     APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1);
5448     if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) {
5449       SDLoc DL(N);
5450       CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
5451       SDValue TargetCC =
5452           DAG.getTargetConstant(CCVal, DL, Subtarget.getXLenVT());
5453       RHS = DAG.getConstant(0, DL, LHS.getValueType());
5454       return DAG.getNode(
5455           RISCVISD::SELECT_CC, DL, N->getValueType(0),
5456           {LHS, RHS, TargetCC, N->getOperand(3), N->getOperand(4)});
5457     }
5458 
5459     break;
5460   }
5461   case RISCVISD::BR_CC: {
5462     SDValue LHS = N->getOperand(1);
5463     SDValue RHS = N->getOperand(2);
5464     ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(3))->get();
5465     if (!ISD::isIntEqualitySetCC(CCVal))
5466       break;
5467 
5468     // Fold (br_cc (setlt X, Y), 0, ne, dest) ->
5469     //      (br_cc X, Y, lt, dest)
5470     // Sometimes the setcc is introduced after br_cc has been formed.
5471     if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) &&
5472         LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) {
5473       // If we're looking for eq 0 instead of ne 0, we need to invert the
5474       // condition.
5475       bool Invert = CCVal == ISD::SETEQ;
5476       CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
5477       if (Invert)
5478         CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
5479 
5480       SDLoc DL(N);
5481       RHS = LHS.getOperand(1);
5482       LHS = LHS.getOperand(0);
5483       translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
5484 
5485       return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0),
5486                          N->getOperand(0), LHS, RHS, DAG.getCondCode(CCVal),
5487                          N->getOperand(4));
5488     }
5489 
5490     // Fold (br_cc (xor X, Y), 0, eq/ne, dest) ->
5491     //      (br_cc X, Y, eq/ne, trueV, falseV)
5492     if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS))
5493       return DAG.getNode(RISCVISD::BR_CC, SDLoc(N), N->getValueType(0),
5494                          N->getOperand(0), LHS.getOperand(0), LHS.getOperand(1),
5495                          N->getOperand(3), N->getOperand(4));
5496 
5497     // (br_cc X, 1, setne, br_cc) ->
5498     // (br_cc X, 0, seteq, br_cc) if we can prove X is 0/1.
5499     // This can occur when legalizing some floating point comparisons.
5500     APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1);
5501     if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) {
5502       SDLoc DL(N);
5503       CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
5504       SDValue TargetCC = DAG.getCondCode(CCVal);
5505       RHS = DAG.getConstant(0, DL, LHS.getValueType());
5506       return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0),
5507                          N->getOperand(0), LHS, RHS, TargetCC,
5508                          N->getOperand(4));
5509     }
5510     break;
5511   }
5512   case ISD::FCOPYSIGN: {
5513     EVT VT = N->getValueType(0);
5514     if (!VT.isVector())
5515       break;
5516     // There is a form of VFSGNJ which injects the negated sign of its second
5517     // operand. Try and bubble any FNEG up after the extend/round to produce
5518     // this optimized pattern. Avoid modifying cases where FP_ROUND and
5519     // TRUNC=1.
5520     SDValue In2 = N->getOperand(1);
5521     // Avoid cases where the extend/round has multiple uses, as duplicating
5522     // those is typically more expensive than removing a fneg.
5523     if (!In2.hasOneUse())
5524       break;
5525     if (In2.getOpcode() != ISD::FP_EXTEND &&
5526         (In2.getOpcode() != ISD::FP_ROUND || In2.getConstantOperandVal(1) != 0))
5527       break;
5528     In2 = In2.getOperand(0);
5529     if (In2.getOpcode() != ISD::FNEG)
5530       break;
5531     SDLoc DL(N);
5532     SDValue NewFPExtRound = DAG.getFPExtendOrRound(In2.getOperand(0), DL, VT);
5533     return DAG.getNode(ISD::FCOPYSIGN, DL, VT, N->getOperand(0),
5534                        DAG.getNode(ISD::FNEG, DL, VT, NewFPExtRound));
5535   }
5536   case ISD::MGATHER:
5537   case ISD::MSCATTER: {
5538     if (!DCI.isBeforeLegalize())
5539       break;
5540     MaskedGatherScatterSDNode *MGSN = cast<MaskedGatherScatterSDNode>(N);
5541     SDValue Index = MGSN->getIndex();
5542     EVT IndexVT = Index.getValueType();
5543     MVT XLenVT = Subtarget.getXLenVT();
5544     // RISCV indexed loads only support the "unsigned unscaled" addressing
5545     // mode, so anything else must be manually legalized.
5546     bool NeedsIdxLegalization = MGSN->isIndexScaled() ||
5547                                 (MGSN->isIndexSigned() &&
5548                                  IndexVT.getVectorElementType().bitsLT(XLenVT));
5549     if (!NeedsIdxLegalization)
5550       break;
5551 
5552     SDLoc DL(N);
5553 
5554     // Any index legalization should first promote to XLenVT, so we don't lose
5555     // bits when scaling. This may create an illegal index type so we let
5556     // LLVM's legalization take care of the splitting.
5557     if (IndexVT.getVectorElementType().bitsLT(XLenVT)) {
5558       IndexVT = IndexVT.changeVectorElementType(XLenVT);
5559       Index = DAG.getNode(MGSN->isIndexSigned() ? ISD::SIGN_EXTEND
5560                                                 : ISD::ZERO_EXTEND,
5561                           DL, IndexVT, Index);
5562     }
5563 
5564     unsigned Scale = N->getConstantOperandVal(5);
5565     if (MGSN->isIndexScaled() && Scale != 1) {
5566       // Manually scale the indices by the element size.
5567       // TODO: Sanitize the scale operand here?
5568       assert(isPowerOf2_32(Scale) && "Expecting power-of-two types");
5569       SDValue SplatScale = DAG.getConstant(Log2_32(Scale), DL, IndexVT);
5570       Index = DAG.getNode(ISD::SHL, DL, IndexVT, Index, SplatScale);
5571     }
5572 
5573     ISD::MemIndexType NewIndexTy = ISD::UNSIGNED_UNSCALED;
5574     if (const auto *MGN = dyn_cast<MaskedGatherSDNode>(N)) {
5575       return DAG.getMaskedGather(
5576           N->getVTList(), MGSN->getMemoryVT(), DL,
5577           {MGSN->getChain(), MGN->getPassThru(), MGSN->getMask(),
5578            MGSN->getBasePtr(), Index, MGN->getScale()},
5579           MGN->getMemOperand(), NewIndexTy, MGN->getExtensionType());
5580     }
5581     const auto *MSN = cast<MaskedScatterSDNode>(N);
5582     return DAG.getMaskedScatter(
5583         N->getVTList(), MGSN->getMemoryVT(), DL,
5584         {MGSN->getChain(), MSN->getValue(), MGSN->getMask(), MGSN->getBasePtr(),
5585          Index, MGSN->getScale()},
5586         MGSN->getMemOperand(), NewIndexTy, MSN->isTruncatingStore());
5587   }
5588   }
5589 
5590   return SDValue();
5591 }
5592 
5593 bool RISCVTargetLowering::isDesirableToCommuteWithShift(
5594     const SDNode *N, CombineLevel Level) const {
5595   // The following folds are only desirable if `(OP _, c1 << c2)` can be
5596   // materialised in fewer instructions than `(OP _, c1)`:
5597   //
5598   //   (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2)
5599   //   (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2)
5600   SDValue N0 = N->getOperand(0);
5601   EVT Ty = N0.getValueType();
5602   if (Ty.isScalarInteger() &&
5603       (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::OR)) {
5604     auto *C1 = dyn_cast<ConstantSDNode>(N0->getOperand(1));
5605     auto *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1));
5606     if (C1 && C2) {
5607       const APInt &C1Int = C1->getAPIntValue();
5608       APInt ShiftedC1Int = C1Int << C2->getAPIntValue();
5609 
5610       // We can materialise `c1 << c2` into an add immediate, so it's "free",
5611       // and the combine should happen, to potentially allow further combines
5612       // later.
5613       if (ShiftedC1Int.getMinSignedBits() <= 64 &&
5614           isLegalAddImmediate(ShiftedC1Int.getSExtValue()))
5615         return true;
5616 
5617       // We can materialise `c1` in an add immediate, so it's "free", and the
5618       // combine should be prevented.
5619       if (C1Int.getMinSignedBits() <= 64 &&
5620           isLegalAddImmediate(C1Int.getSExtValue()))
5621         return false;
5622 
5623       // Neither constant will fit into an immediate, so find materialisation
5624       // costs.
5625       int C1Cost = RISCVMatInt::getIntMatCost(C1Int, Ty.getSizeInBits(),
5626                                               Subtarget.is64Bit());
5627       int ShiftedC1Cost = RISCVMatInt::getIntMatCost(
5628           ShiftedC1Int, Ty.getSizeInBits(), Subtarget.is64Bit());
5629 
5630       // Materialising `c1` is cheaper than materialising `c1 << c2`, so the
5631       // combine should be prevented.
5632       if (C1Cost < ShiftedC1Cost)
5633         return false;
5634     }
5635   }
5636   return true;
5637 }
5638 
5639 bool RISCVTargetLowering::targetShrinkDemandedConstant(
5640     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
5641     TargetLoweringOpt &TLO) const {
5642   // Delay this optimization as late as possible.
5643   if (!TLO.LegalOps)
5644     return false;
5645 
5646   EVT VT = Op.getValueType();
5647   if (VT.isVector())
5648     return false;
5649 
5650   // Only handle AND for now.
5651   if (Op.getOpcode() != ISD::AND)
5652     return false;
5653 
5654   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
5655   if (!C)
5656     return false;
5657 
5658   const APInt &Mask = C->getAPIntValue();
5659 
5660   // Clear all non-demanded bits initially.
5661   APInt ShrunkMask = Mask & DemandedBits;
5662 
5663   // Try to make a smaller immediate by setting undemanded bits.
5664 
5665   APInt ExpandedMask = Mask | ~DemandedBits;
5666 
5667   auto IsLegalMask = [ShrunkMask, ExpandedMask](const APInt &Mask) -> bool {
5668     return ShrunkMask.isSubsetOf(Mask) && Mask.isSubsetOf(ExpandedMask);
5669   };
5670   auto UseMask = [Mask, Op, VT, &TLO](const APInt &NewMask) -> bool {
5671     if (NewMask == Mask)
5672       return true;
5673     SDLoc DL(Op);
5674     SDValue NewC = TLO.DAG.getConstant(NewMask, DL, VT);
5675     SDValue NewOp = TLO.DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), NewC);
5676     return TLO.CombineTo(Op, NewOp);
5677   };
5678 
5679   // If the shrunk mask fits in sign extended 12 bits, let the target
5680   // independent code apply it.
5681   if (ShrunkMask.isSignedIntN(12))
5682     return false;
5683 
5684   // Preserve (and X, 0xffff) when zext.h is supported.
5685   if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp()) {
5686     APInt NewMask = APInt(Mask.getBitWidth(), 0xffff);
5687     if (IsLegalMask(NewMask))
5688       return UseMask(NewMask);
5689   }
5690 
5691   // Try to preserve (and X, 0xffffffff), the (zext_inreg X, i32) pattern.
5692   if (VT == MVT::i64) {
5693     APInt NewMask = APInt(64, 0xffffffff);
5694     if (IsLegalMask(NewMask))
5695       return UseMask(NewMask);
5696   }
5697 
5698   // For the remaining optimizations, we need to be able to make a negative
5699   // number through a combination of mask and undemanded bits.
5700   if (!ExpandedMask.isNegative())
5701     return false;
5702 
5703   // What is the fewest number of bits we need to represent the negative number.
5704   unsigned MinSignedBits = ExpandedMask.getMinSignedBits();
5705 
5706   // Try to make a 12 bit negative immediate. If that fails try to make a 32
5707   // bit negative immediate unless the shrunk immediate already fits in 32 bits.
5708   APInt NewMask = ShrunkMask;
5709   if (MinSignedBits <= 12)
5710     NewMask.setBitsFrom(11);
5711   else if (MinSignedBits <= 32 && !ShrunkMask.isSignedIntN(32))
5712     NewMask.setBitsFrom(31);
5713   else
5714     return false;
5715 
5716   // Sanity check that our new mask is a subset of the demanded mask.
5717   assert(IsLegalMask(NewMask));
5718   return UseMask(NewMask);
5719 }
5720 
5721 void RISCVTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
5722                                                         KnownBits &Known,
5723                                                         const APInt &DemandedElts,
5724                                                         const SelectionDAG &DAG,
5725                                                         unsigned Depth) const {
5726   unsigned BitWidth = Known.getBitWidth();
5727   unsigned Opc = Op.getOpcode();
5728   assert((Opc >= ISD::BUILTIN_OP_END ||
5729           Opc == ISD::INTRINSIC_WO_CHAIN ||
5730           Opc == ISD::INTRINSIC_W_CHAIN ||
5731           Opc == ISD::INTRINSIC_VOID) &&
5732          "Should use MaskedValueIsZero if you don't know whether Op"
5733          " is a target node!");
5734 
5735   Known.resetAll();
5736   switch (Opc) {
5737   default: break;
5738   case RISCVISD::SELECT_CC: {
5739     Known = DAG.computeKnownBits(Op.getOperand(4), Depth + 1);
5740     // If we don't know any bits, early out.
5741     if (Known.isUnknown())
5742       break;
5743     KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(3), Depth + 1);
5744 
5745     // Only known if known in both the LHS and RHS.
5746     Known = KnownBits::commonBits(Known, Known2);
5747     break;
5748   }
5749   case RISCVISD::REMUW: {
5750     KnownBits Known2;
5751     Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
5752     Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
5753     // We only care about the lower 32 bits.
5754     Known = KnownBits::urem(Known.trunc(32), Known2.trunc(32));
5755     // Restore the original width by sign extending.
5756     Known = Known.sext(BitWidth);
5757     break;
5758   }
5759   case RISCVISD::DIVUW: {
5760     KnownBits Known2;
5761     Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
5762     Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
5763     // We only care about the lower 32 bits.
5764     Known = KnownBits::udiv(Known.trunc(32), Known2.trunc(32));
5765     // Restore the original width by sign extending.
5766     Known = Known.sext(BitWidth);
5767     break;
5768   }
5769   case RISCVISD::CTZW: {
5770     KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
5771     unsigned PossibleTZ = Known2.trunc(32).countMaxTrailingZeros();
5772     unsigned LowBits = Log2_32(PossibleTZ) + 1;
5773     Known.Zero.setBitsFrom(LowBits);
5774     break;
5775   }
5776   case RISCVISD::CLZW: {
5777     KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
5778     unsigned PossibleLZ = Known2.trunc(32).countMaxLeadingZeros();
5779     unsigned LowBits = Log2_32(PossibleLZ) + 1;
5780     Known.Zero.setBitsFrom(LowBits);
5781     break;
5782   }
5783   case RISCVISD::READ_VLENB:
5784     // We assume VLENB is at least 16 bytes.
5785     Known.Zero.setLowBits(4);
5786     break;
5787   }
5788 }
5789 
5790 unsigned RISCVTargetLowering::ComputeNumSignBitsForTargetNode(
5791     SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
5792     unsigned Depth) const {
5793   switch (Op.getOpcode()) {
5794   default:
5795     break;
5796   case RISCVISD::SLLW:
5797   case RISCVISD::SRAW:
5798   case RISCVISD::SRLW:
5799   case RISCVISD::DIVW:
5800   case RISCVISD::DIVUW:
5801   case RISCVISD::REMUW:
5802   case RISCVISD::ROLW:
5803   case RISCVISD::RORW:
5804   case RISCVISD::GREVW:
5805   case RISCVISD::GORCW:
5806   case RISCVISD::FSLW:
5807   case RISCVISD::FSRW:
5808   case RISCVISD::SHFLW:
5809   case RISCVISD::UNSHFLW:
5810   case RISCVISD::BCOMPRESSW:
5811   case RISCVISD::BDECOMPRESSW:
5812     // TODO: As the result is sign-extended, this is conservatively correct. A
5813     // more precise answer could be calculated for SRAW depending on known
5814     // bits in the shift amount.
5815     return 33;
5816   case RISCVISD::SHFL:
5817   case RISCVISD::UNSHFL: {
5818     // There is no SHFLIW, but a i64 SHFLI with bit 4 of the control word
5819     // cleared doesn't affect bit 31. The upper 32 bits will be shuffled, but
5820     // will stay within the upper 32 bits. If there were more than 32 sign bits
5821     // before there will be at least 33 sign bits after.
5822     if (Op.getValueType() == MVT::i64 &&
5823         isa<ConstantSDNode>(Op.getOperand(1)) &&
5824         (Op.getConstantOperandVal(1) & 0x10) == 0) {
5825       unsigned Tmp = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1);
5826       if (Tmp > 32)
5827         return 33;
5828     }
5829     break;
5830   }
5831   case RISCVISD::VMV_X_S:
5832     // The number of sign bits of the scalar result is computed by obtaining the
5833     // element type of the input vector operand, subtracting its width from the
5834     // XLEN, and then adding one (sign bit within the element type). If the
5835     // element type is wider than XLen, the least-significant XLEN bits are
5836     // taken.
5837     if (Op.getOperand(0).getScalarValueSizeInBits() > Subtarget.getXLen())
5838       return 1;
5839     return Subtarget.getXLen() - Op.getOperand(0).getScalarValueSizeInBits() + 1;
5840   }
5841 
5842   return 1;
5843 }
5844 
5845 static MachineBasicBlock *emitReadCycleWidePseudo(MachineInstr &MI,
5846                                                   MachineBasicBlock *BB) {
5847   assert(MI.getOpcode() == RISCV::ReadCycleWide && "Unexpected instruction");
5848 
5849   // To read the 64-bit cycle CSR on a 32-bit target, we read the two halves.
5850   // Should the count have wrapped while it was being read, we need to try
5851   // again.
5852   // ...
5853   // read:
5854   // rdcycleh x3 # load high word of cycle
5855   // rdcycle  x2 # load low word of cycle
5856   // rdcycleh x4 # load high word of cycle
5857   // bne x3, x4, read # check if high word reads match, otherwise try again
5858   // ...
5859 
5860   MachineFunction &MF = *BB->getParent();
5861   const BasicBlock *LLVM_BB = BB->getBasicBlock();
5862   MachineFunction::iterator It = ++BB->getIterator();
5863 
5864   MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB);
5865   MF.insert(It, LoopMBB);
5866 
5867   MachineBasicBlock *DoneMBB = MF.CreateMachineBasicBlock(LLVM_BB);
5868   MF.insert(It, DoneMBB);
5869 
5870   // Transfer the remainder of BB and its successor edges to DoneMBB.
5871   DoneMBB->splice(DoneMBB->begin(), BB,
5872                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
5873   DoneMBB->transferSuccessorsAndUpdatePHIs(BB);
5874 
5875   BB->addSuccessor(LoopMBB);
5876 
5877   MachineRegisterInfo &RegInfo = MF.getRegInfo();
5878   Register ReadAgainReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
5879   Register LoReg = MI.getOperand(0).getReg();
5880   Register HiReg = MI.getOperand(1).getReg();
5881   DebugLoc DL = MI.getDebugLoc();
5882 
5883   const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
5884   BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), HiReg)
5885       .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding)
5886       .addReg(RISCV::X0);
5887   BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), LoReg)
5888       .addImm(RISCVSysReg::lookupSysRegByName("CYCLE")->Encoding)
5889       .addReg(RISCV::X0);
5890   BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), ReadAgainReg)
5891       .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding)
5892       .addReg(RISCV::X0);
5893 
5894   BuildMI(LoopMBB, DL, TII->get(RISCV::BNE))
5895       .addReg(HiReg)
5896       .addReg(ReadAgainReg)
5897       .addMBB(LoopMBB);
5898 
5899   LoopMBB->addSuccessor(LoopMBB);
5900   LoopMBB->addSuccessor(DoneMBB);
5901 
5902   MI.eraseFromParent();
5903 
5904   return DoneMBB;
5905 }
5906 
5907 static MachineBasicBlock *emitSplitF64Pseudo(MachineInstr &MI,
5908                                              MachineBasicBlock *BB) {
5909   assert(MI.getOpcode() == RISCV::SplitF64Pseudo && "Unexpected instruction");
5910 
5911   MachineFunction &MF = *BB->getParent();
5912   DebugLoc DL = MI.getDebugLoc();
5913   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
5914   const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo();
5915   Register LoReg = MI.getOperand(0).getReg();
5916   Register HiReg = MI.getOperand(1).getReg();
5917   Register SrcReg = MI.getOperand(2).getReg();
5918   const TargetRegisterClass *SrcRC = &RISCV::FPR64RegClass;
5919   int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF);
5920 
5921   TII.storeRegToStackSlot(*BB, MI, SrcReg, MI.getOperand(2).isKill(), FI, SrcRC,
5922                           RI);
5923   MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI);
5924   MachineMemOperand *MMOLo =
5925       MF.getMachineMemOperand(MPI, MachineMemOperand::MOLoad, 4, Align(8));
5926   MachineMemOperand *MMOHi = MF.getMachineMemOperand(
5927       MPI.getWithOffset(4), MachineMemOperand::MOLoad, 4, Align(8));
5928   BuildMI(*BB, MI, DL, TII.get(RISCV::LW), LoReg)
5929       .addFrameIndex(FI)
5930       .addImm(0)
5931       .addMemOperand(MMOLo);
5932   BuildMI(*BB, MI, DL, TII.get(RISCV::LW), HiReg)
5933       .addFrameIndex(FI)
5934       .addImm(4)
5935       .addMemOperand(MMOHi);
5936   MI.eraseFromParent(); // The pseudo instruction is gone now.
5937   return BB;
5938 }
5939 
5940 static MachineBasicBlock *emitBuildPairF64Pseudo(MachineInstr &MI,
5941                                                  MachineBasicBlock *BB) {
5942   assert(MI.getOpcode() == RISCV::BuildPairF64Pseudo &&
5943          "Unexpected instruction");
5944 
5945   MachineFunction &MF = *BB->getParent();
5946   DebugLoc DL = MI.getDebugLoc();
5947   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
5948   const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo();
5949   Register DstReg = MI.getOperand(0).getReg();
5950   Register LoReg = MI.getOperand(1).getReg();
5951   Register HiReg = MI.getOperand(2).getReg();
5952   const TargetRegisterClass *DstRC = &RISCV::FPR64RegClass;
5953   int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF);
5954 
5955   MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI);
5956   MachineMemOperand *MMOLo =
5957       MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Align(8));
5958   MachineMemOperand *MMOHi = MF.getMachineMemOperand(
5959       MPI.getWithOffset(4), MachineMemOperand::MOStore, 4, Align(8));
5960   BuildMI(*BB, MI, DL, TII.get(RISCV::SW))
5961       .addReg(LoReg, getKillRegState(MI.getOperand(1).isKill()))
5962       .addFrameIndex(FI)
5963       .addImm(0)
5964       .addMemOperand(MMOLo);
5965   BuildMI(*BB, MI, DL, TII.get(RISCV::SW))
5966       .addReg(HiReg, getKillRegState(MI.getOperand(2).isKill()))
5967       .addFrameIndex(FI)
5968       .addImm(4)
5969       .addMemOperand(MMOHi);
5970   TII.loadRegFromStackSlot(*BB, MI, DstReg, FI, DstRC, RI);
5971   MI.eraseFromParent(); // The pseudo instruction is gone now.
5972   return BB;
5973 }
5974 
5975 static bool isSelectPseudo(MachineInstr &MI) {
5976   switch (MI.getOpcode()) {
5977   default:
5978     return false;
5979   case RISCV::Select_GPR_Using_CC_GPR:
5980   case RISCV::Select_FPR16_Using_CC_GPR:
5981   case RISCV::Select_FPR32_Using_CC_GPR:
5982   case RISCV::Select_FPR64_Using_CC_GPR:
5983     return true;
5984   }
5985 }
5986 
5987 static MachineBasicBlock *emitSelectPseudo(MachineInstr &MI,
5988                                            MachineBasicBlock *BB) {
5989   // To "insert" Select_* instructions, we actually have to insert the triangle
5990   // control-flow pattern.  The incoming instructions know the destination vreg
5991   // to set, the condition code register to branch on, the true/false values to
5992   // select between, and the condcode to use to select the appropriate branch.
5993   //
5994   // We produce the following control flow:
5995   //     HeadMBB
5996   //     |  \
5997   //     |  IfFalseMBB
5998   //     | /
5999   //    TailMBB
6000   //
6001   // When we find a sequence of selects we attempt to optimize their emission
6002   // by sharing the control flow. Currently we only handle cases where we have
6003   // multiple selects with the exact same condition (same LHS, RHS and CC).
6004   // The selects may be interleaved with other instructions if the other
6005   // instructions meet some requirements we deem safe:
6006   // - They are debug instructions. Otherwise,
6007   // - They do not have side-effects, do not access memory and their inputs do
6008   //   not depend on the results of the select pseudo-instructions.
6009   // The TrueV/FalseV operands of the selects cannot depend on the result of
6010   // previous selects in the sequence.
6011   // These conditions could be further relaxed. See the X86 target for a
6012   // related approach and more information.
6013   Register LHS = MI.getOperand(1).getReg();
6014   Register RHS = MI.getOperand(2).getReg();
6015   auto CC = static_cast<ISD::CondCode>(MI.getOperand(3).getImm());
6016 
6017   SmallVector<MachineInstr *, 4> SelectDebugValues;
6018   SmallSet<Register, 4> SelectDests;
6019   SelectDests.insert(MI.getOperand(0).getReg());
6020 
6021   MachineInstr *LastSelectPseudo = &MI;
6022 
6023   for (auto E = BB->end(), SequenceMBBI = MachineBasicBlock::iterator(MI);
6024        SequenceMBBI != E; ++SequenceMBBI) {
6025     if (SequenceMBBI->isDebugInstr())
6026       continue;
6027     else if (isSelectPseudo(*SequenceMBBI)) {
6028       if (SequenceMBBI->getOperand(1).getReg() != LHS ||
6029           SequenceMBBI->getOperand(2).getReg() != RHS ||
6030           SequenceMBBI->getOperand(3).getImm() != CC ||
6031           SelectDests.count(SequenceMBBI->getOperand(4).getReg()) ||
6032           SelectDests.count(SequenceMBBI->getOperand(5).getReg()))
6033         break;
6034       LastSelectPseudo = &*SequenceMBBI;
6035       SequenceMBBI->collectDebugValues(SelectDebugValues);
6036       SelectDests.insert(SequenceMBBI->getOperand(0).getReg());
6037     } else {
6038       if (SequenceMBBI->hasUnmodeledSideEffects() ||
6039           SequenceMBBI->mayLoadOrStore())
6040         break;
6041       if (llvm::any_of(SequenceMBBI->operands(), [&](MachineOperand &MO) {
6042             return MO.isReg() && MO.isUse() && SelectDests.count(MO.getReg());
6043           }))
6044         break;
6045     }
6046   }
6047 
6048   const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo();
6049   const BasicBlock *LLVM_BB = BB->getBasicBlock();
6050   DebugLoc DL = MI.getDebugLoc();
6051   MachineFunction::iterator I = ++BB->getIterator();
6052 
6053   MachineBasicBlock *HeadMBB = BB;
6054   MachineFunction *F = BB->getParent();
6055   MachineBasicBlock *TailMBB = F->CreateMachineBasicBlock(LLVM_BB);
6056   MachineBasicBlock *IfFalseMBB = F->CreateMachineBasicBlock(LLVM_BB);
6057 
6058   F->insert(I, IfFalseMBB);
6059   F->insert(I, TailMBB);
6060 
6061   // Transfer debug instructions associated with the selects to TailMBB.
6062   for (MachineInstr *DebugInstr : SelectDebugValues) {
6063     TailMBB->push_back(DebugInstr->removeFromParent());
6064   }
6065 
6066   // Move all instructions after the sequence to TailMBB.
6067   TailMBB->splice(TailMBB->end(), HeadMBB,
6068                   std::next(LastSelectPseudo->getIterator()), HeadMBB->end());
6069   // Update machine-CFG edges by transferring all successors of the current
6070   // block to the new block which will contain the Phi nodes for the selects.
6071   TailMBB->transferSuccessorsAndUpdatePHIs(HeadMBB);
6072   // Set the successors for HeadMBB.
6073   HeadMBB->addSuccessor(IfFalseMBB);
6074   HeadMBB->addSuccessor(TailMBB);
6075 
6076   // Insert appropriate branch.
6077   unsigned Opcode = getBranchOpcodeForIntCondCode(CC);
6078 
6079   BuildMI(HeadMBB, DL, TII.get(Opcode))
6080     .addReg(LHS)
6081     .addReg(RHS)
6082     .addMBB(TailMBB);
6083 
6084   // IfFalseMBB just falls through to TailMBB.
6085   IfFalseMBB->addSuccessor(TailMBB);
6086 
6087   // Create PHIs for all of the select pseudo-instructions.
6088   auto SelectMBBI = MI.getIterator();
6089   auto SelectEnd = std::next(LastSelectPseudo->getIterator());
6090   auto InsertionPoint = TailMBB->begin();
6091   while (SelectMBBI != SelectEnd) {
6092     auto Next = std::next(SelectMBBI);
6093     if (isSelectPseudo(*SelectMBBI)) {
6094       // %Result = phi [ %TrueValue, HeadMBB ], [ %FalseValue, IfFalseMBB ]
6095       BuildMI(*TailMBB, InsertionPoint, SelectMBBI->getDebugLoc(),
6096               TII.get(RISCV::PHI), SelectMBBI->getOperand(0).getReg())
6097           .addReg(SelectMBBI->getOperand(4).getReg())
6098           .addMBB(HeadMBB)
6099           .addReg(SelectMBBI->getOperand(5).getReg())
6100           .addMBB(IfFalseMBB);
6101       SelectMBBI->eraseFromParent();
6102     }
6103     SelectMBBI = Next;
6104   }
6105 
6106   F->getProperties().reset(MachineFunctionProperties::Property::NoPHIs);
6107   return TailMBB;
6108 }
6109 
6110 static MachineInstr *elideCopies(MachineInstr *MI,
6111                                  const MachineRegisterInfo &MRI) {
6112   while (true) {
6113     if (!MI->isFullCopy())
6114       return MI;
6115     if (!Register::isVirtualRegister(MI->getOperand(1).getReg()))
6116       return nullptr;
6117     MI = MRI.getVRegDef(MI->getOperand(1).getReg());
6118     if (!MI)
6119       return nullptr;
6120   }
6121 }
6122 
6123 static MachineBasicBlock *addVSetVL(MachineInstr &MI, MachineBasicBlock *BB,
6124                                     int VLIndex, unsigned SEWIndex,
6125                                     RISCVVLMUL VLMul, bool ForceTailAgnostic) {
6126   MachineFunction &MF = *BB->getParent();
6127   DebugLoc DL = MI.getDebugLoc();
6128   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
6129 
6130   unsigned SEW = MI.getOperand(SEWIndex).getImm();
6131   assert(RISCVVType::isValidSEW(SEW) && "Unexpected SEW");
6132   RISCVVSEW ElementWidth = static_cast<RISCVVSEW>(Log2_32(SEW / 8));
6133 
6134   MachineRegisterInfo &MRI = MF.getRegInfo();
6135 
6136   auto BuildVSETVLI = [&]() {
6137     if (VLIndex >= 0) {
6138       Register DestReg = MRI.createVirtualRegister(&RISCV::GPRRegClass);
6139       const MachineOperand &VLOp = MI.getOperand(VLIndex);
6140 
6141       // VL can be a register or an immediate.
6142       if (VLOp.isImm())
6143         return BuildMI(*BB, MI, DL, TII.get(RISCV::PseudoVSETIVLI))
6144             .addReg(DestReg, RegState::Define | RegState::Dead)
6145             .addImm(VLOp.getImm());
6146 
6147       Register VLReg = MI.getOperand(VLIndex).getReg();
6148       return BuildMI(*BB, MI, DL, TII.get(RISCV::PseudoVSETVLI))
6149           .addReg(DestReg, RegState::Define | RegState::Dead)
6150           .addReg(VLReg);
6151     }
6152 
6153     // With no VL operator in the pseudo, do not modify VL (rd = X0, rs1 = X0).
6154     return BuildMI(*BB, MI, DL, TII.get(RISCV::PseudoVSETVLI))
6155         .addReg(RISCV::X0, RegState::Define | RegState::Dead)
6156         .addReg(RISCV::X0, RegState::Kill);
6157   };
6158 
6159   MachineInstrBuilder MIB = BuildVSETVLI();
6160 
6161   // Default to tail agnostic unless the destination is tied to a source. In
6162   // that case the user would have some control over the tail values. The tail
6163   // policy is also ignored on instructions that only update element 0 like
6164   // vmv.s.x or reductions so use agnostic there to match the common case.
6165   // FIXME: This is conservatively correct, but we might want to detect that
6166   // the input is undefined.
6167   bool TailAgnostic = true;
6168   unsigned UseOpIdx;
6169   if (!ForceTailAgnostic && MI.isRegTiedToUseOperand(0, &UseOpIdx)) {
6170     TailAgnostic = false;
6171     // If the tied operand is an IMPLICIT_DEF we can keep TailAgnostic.
6172     const MachineOperand &UseMO = MI.getOperand(UseOpIdx);
6173     MachineInstr *UseMI = MRI.getVRegDef(UseMO.getReg());
6174     if (UseMI) {
6175       UseMI = elideCopies(UseMI, MRI);
6176       if (UseMI && UseMI->isImplicitDef())
6177         TailAgnostic = true;
6178     }
6179   }
6180 
6181   // For simplicity we reuse the vtype representation here.
6182   MIB.addImm(RISCVVType::encodeVTYPE(VLMul, ElementWidth,
6183                                      /*TailAgnostic*/ TailAgnostic,
6184                                      /*MaskAgnostic*/ false));
6185 
6186   // Remove (now) redundant operands from pseudo
6187   if (VLIndex >= 0 && MI.getOperand(VLIndex).isReg()) {
6188     MI.getOperand(VLIndex).setReg(RISCV::NoRegister);
6189     MI.getOperand(VLIndex).setIsKill(false);
6190   }
6191 
6192   return BB;
6193 }
6194 
6195 MachineBasicBlock *
6196 RISCVTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
6197                                                  MachineBasicBlock *BB) const {
6198   uint64_t TSFlags = MI.getDesc().TSFlags;
6199 
6200   if (TSFlags & RISCVII::HasSEWOpMask) {
6201     unsigned NumOperands = MI.getNumExplicitOperands();
6202     int VLIndex = (TSFlags & RISCVII::HasVLOpMask) ? NumOperands - 2 : -1;
6203     unsigned SEWIndex = NumOperands - 1;
6204     bool ForceTailAgnostic = TSFlags & RISCVII::ForceTailAgnosticMask;
6205 
6206     RISCVVLMUL VLMul = static_cast<RISCVVLMUL>((TSFlags & RISCVII::VLMulMask) >>
6207                                                RISCVII::VLMulShift);
6208     return addVSetVL(MI, BB, VLIndex, SEWIndex, VLMul, ForceTailAgnostic);
6209   }
6210 
6211   switch (MI.getOpcode()) {
6212   default:
6213     llvm_unreachable("Unexpected instr type to insert");
6214   case RISCV::ReadCycleWide:
6215     assert(!Subtarget.is64Bit() &&
6216            "ReadCycleWrite is only to be used on riscv32");
6217     return emitReadCycleWidePseudo(MI, BB);
6218   case RISCV::Select_GPR_Using_CC_GPR:
6219   case RISCV::Select_FPR16_Using_CC_GPR:
6220   case RISCV::Select_FPR32_Using_CC_GPR:
6221   case RISCV::Select_FPR64_Using_CC_GPR:
6222     return emitSelectPseudo(MI, BB);
6223   case RISCV::BuildPairF64Pseudo:
6224     return emitBuildPairF64Pseudo(MI, BB);
6225   case RISCV::SplitF64Pseudo:
6226     return emitSplitF64Pseudo(MI, BB);
6227   }
6228 }
6229 
6230 // Calling Convention Implementation.
6231 // The expectations for frontend ABI lowering vary from target to target.
6232 // Ideally, an LLVM frontend would be able to avoid worrying about many ABI
6233 // details, but this is a longer term goal. For now, we simply try to keep the
6234 // role of the frontend as simple and well-defined as possible. The rules can
6235 // be summarised as:
6236 // * Never split up large scalar arguments. We handle them here.
6237 // * If a hardfloat calling convention is being used, and the struct may be
6238 // passed in a pair of registers (fp+fp, int+fp), and both registers are
6239 // available, then pass as two separate arguments. If either the GPRs or FPRs
6240 // are exhausted, then pass according to the rule below.
6241 // * If a struct could never be passed in registers or directly in a stack
6242 // slot (as it is larger than 2*XLEN and the floating point rules don't
6243 // apply), then pass it using a pointer with the byval attribute.
6244 // * If a struct is less than 2*XLEN, then coerce to either a two-element
6245 // word-sized array or a 2*XLEN scalar (depending on alignment).
6246 // * The frontend can determine whether a struct is returned by reference or
6247 // not based on its size and fields. If it will be returned by reference, the
6248 // frontend must modify the prototype so a pointer with the sret annotation is
6249 // passed as the first argument. This is not necessary for large scalar
6250 // returns.
6251 // * Struct return values and varargs should be coerced to structs containing
6252 // register-size fields in the same situations they would be for fixed
6253 // arguments.
6254 
6255 static const MCPhysReg ArgGPRs[] = {
6256   RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13,
6257   RISCV::X14, RISCV::X15, RISCV::X16, RISCV::X17
6258 };
6259 static const MCPhysReg ArgFPR16s[] = {
6260   RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H,
6261   RISCV::F14_H, RISCV::F15_H, RISCV::F16_H, RISCV::F17_H
6262 };
6263 static const MCPhysReg ArgFPR32s[] = {
6264   RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F,
6265   RISCV::F14_F, RISCV::F15_F, RISCV::F16_F, RISCV::F17_F
6266 };
6267 static const MCPhysReg ArgFPR64s[] = {
6268   RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D,
6269   RISCV::F14_D, RISCV::F15_D, RISCV::F16_D, RISCV::F17_D
6270 };
6271 // This is an interim calling convention and it may be changed in the future.
6272 static const MCPhysReg ArgVRs[] = {
6273     RISCV::V8,  RISCV::V9,  RISCV::V10, RISCV::V11, RISCV::V12, RISCV::V13,
6274     RISCV::V14, RISCV::V15, RISCV::V16, RISCV::V17, RISCV::V18, RISCV::V19,
6275     RISCV::V20, RISCV::V21, RISCV::V22, RISCV::V23};
6276 static const MCPhysReg ArgVRM2s[] = {RISCV::V8M2,  RISCV::V10M2, RISCV::V12M2,
6277                                      RISCV::V14M2, RISCV::V16M2, RISCV::V18M2,
6278                                      RISCV::V20M2, RISCV::V22M2};
6279 static const MCPhysReg ArgVRM4s[] = {RISCV::V8M4, RISCV::V12M4, RISCV::V16M4,
6280                                      RISCV::V20M4};
6281 static const MCPhysReg ArgVRM8s[] = {RISCV::V8M8, RISCV::V16M8};
6282 
6283 // Pass a 2*XLEN argument that has been split into two XLEN values through
6284 // registers or the stack as necessary.
6285 static bool CC_RISCVAssign2XLen(unsigned XLen, CCState &State, CCValAssign VA1,
6286                                 ISD::ArgFlagsTy ArgFlags1, unsigned ValNo2,
6287                                 MVT ValVT2, MVT LocVT2,
6288                                 ISD::ArgFlagsTy ArgFlags2) {
6289   unsigned XLenInBytes = XLen / 8;
6290   if (Register Reg = State.AllocateReg(ArgGPRs)) {
6291     // At least one half can be passed via register.
6292     State.addLoc(CCValAssign::getReg(VA1.getValNo(), VA1.getValVT(), Reg,
6293                                      VA1.getLocVT(), CCValAssign::Full));
6294   } else {
6295     // Both halves must be passed on the stack, with proper alignment.
6296     Align StackAlign =
6297         std::max(Align(XLenInBytes), ArgFlags1.getNonZeroOrigAlign());
6298     State.addLoc(
6299         CCValAssign::getMem(VA1.getValNo(), VA1.getValVT(),
6300                             State.AllocateStack(XLenInBytes, StackAlign),
6301                             VA1.getLocVT(), CCValAssign::Full));
6302     State.addLoc(CCValAssign::getMem(
6303         ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)),
6304         LocVT2, CCValAssign::Full));
6305     return false;
6306   }
6307 
6308   if (Register Reg = State.AllocateReg(ArgGPRs)) {
6309     // The second half can also be passed via register.
6310     State.addLoc(
6311         CCValAssign::getReg(ValNo2, ValVT2, Reg, LocVT2, CCValAssign::Full));
6312   } else {
6313     // The second half is passed via the stack, without additional alignment.
6314     State.addLoc(CCValAssign::getMem(
6315         ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)),
6316         LocVT2, CCValAssign::Full));
6317   }
6318 
6319   return false;
6320 }
6321 
6322 // Implements the RISC-V calling convention. Returns true upon failure.
6323 static bool CC_RISCV(const DataLayout &DL, RISCVABI::ABI ABI, unsigned ValNo,
6324                      MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo,
6325                      ISD::ArgFlagsTy ArgFlags, CCState &State, bool IsFixed,
6326                      bool IsRet, Type *OrigTy, const RISCVTargetLowering &TLI,
6327                      Optional<unsigned> FirstMaskArgument) {
6328   unsigned XLen = DL.getLargestLegalIntTypeSizeInBits();
6329   assert(XLen == 32 || XLen == 64);
6330   MVT XLenVT = XLen == 32 ? MVT::i32 : MVT::i64;
6331 
6332   // Any return value split in to more than two values can't be returned
6333   // directly. Vectors are returned via the available vector registers.
6334   if (!LocVT.isVector() && IsRet && ValNo > 1)
6335     return true;
6336 
6337   // UseGPRForF16_F32 if targeting one of the soft-float ABIs, if passing a
6338   // variadic argument, or if no F16/F32 argument registers are available.
6339   bool UseGPRForF16_F32 = true;
6340   // UseGPRForF64 if targeting soft-float ABIs or an FLEN=32 ABI, if passing a
6341   // variadic argument, or if no F64 argument registers are available.
6342   bool UseGPRForF64 = true;
6343 
6344   switch (ABI) {
6345   default:
6346     llvm_unreachable("Unexpected ABI");
6347   case RISCVABI::ABI_ILP32:
6348   case RISCVABI::ABI_LP64:
6349     break;
6350   case RISCVABI::ABI_ILP32F:
6351   case RISCVABI::ABI_LP64F:
6352     UseGPRForF16_F32 = !IsFixed;
6353     break;
6354   case RISCVABI::ABI_ILP32D:
6355   case RISCVABI::ABI_LP64D:
6356     UseGPRForF16_F32 = !IsFixed;
6357     UseGPRForF64 = !IsFixed;
6358     break;
6359   }
6360 
6361   // FPR16, FPR32, and FPR64 alias each other.
6362   if (State.getFirstUnallocated(ArgFPR32s) == array_lengthof(ArgFPR32s)) {
6363     UseGPRForF16_F32 = true;
6364     UseGPRForF64 = true;
6365   }
6366 
6367   // From this point on, rely on UseGPRForF16_F32, UseGPRForF64 and
6368   // similar local variables rather than directly checking against the target
6369   // ABI.
6370 
6371   if (UseGPRForF16_F32 && (ValVT == MVT::f16 || ValVT == MVT::f32)) {
6372     LocVT = XLenVT;
6373     LocInfo = CCValAssign::BCvt;
6374   } else if (UseGPRForF64 && XLen == 64 && ValVT == MVT::f64) {
6375     LocVT = MVT::i64;
6376     LocInfo = CCValAssign::BCvt;
6377   }
6378 
6379   // If this is a variadic argument, the RISC-V calling convention requires
6380   // that it is assigned an 'even' or 'aligned' register if it has 8-byte
6381   // alignment (RV32) or 16-byte alignment (RV64). An aligned register should
6382   // be used regardless of whether the original argument was split during
6383   // legalisation or not. The argument will not be passed by registers if the
6384   // original type is larger than 2*XLEN, so the register alignment rule does
6385   // not apply.
6386   unsigned TwoXLenInBytes = (2 * XLen) / 8;
6387   if (!IsFixed && ArgFlags.getNonZeroOrigAlign() == TwoXLenInBytes &&
6388       DL.getTypeAllocSize(OrigTy) == TwoXLenInBytes) {
6389     unsigned RegIdx = State.getFirstUnallocated(ArgGPRs);
6390     // Skip 'odd' register if necessary.
6391     if (RegIdx != array_lengthof(ArgGPRs) && RegIdx % 2 == 1)
6392       State.AllocateReg(ArgGPRs);
6393   }
6394 
6395   SmallVectorImpl<CCValAssign> &PendingLocs = State.getPendingLocs();
6396   SmallVectorImpl<ISD::ArgFlagsTy> &PendingArgFlags =
6397       State.getPendingArgFlags();
6398 
6399   assert(PendingLocs.size() == PendingArgFlags.size() &&
6400          "PendingLocs and PendingArgFlags out of sync");
6401 
6402   // Handle passing f64 on RV32D with a soft float ABI or when floating point
6403   // registers are exhausted.
6404   if (UseGPRForF64 && XLen == 32 && ValVT == MVT::f64) {
6405     assert(!ArgFlags.isSplit() && PendingLocs.empty() &&
6406            "Can't lower f64 if it is split");
6407     // Depending on available argument GPRS, f64 may be passed in a pair of
6408     // GPRs, split between a GPR and the stack, or passed completely on the
6409     // stack. LowerCall/LowerFormalArguments/LowerReturn must recognise these
6410     // cases.
6411     Register Reg = State.AllocateReg(ArgGPRs);
6412     LocVT = MVT::i32;
6413     if (!Reg) {
6414       unsigned StackOffset = State.AllocateStack(8, Align(8));
6415       State.addLoc(
6416           CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
6417       return false;
6418     }
6419     if (!State.AllocateReg(ArgGPRs))
6420       State.AllocateStack(4, Align(4));
6421     State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
6422     return false;
6423   }
6424 
6425   // Fixed-length vectors are located in the corresponding scalable-vector
6426   // container types.
6427   if (ValVT.isFixedLengthVector())
6428     LocVT = TLI.getContainerForFixedLengthVector(LocVT);
6429 
6430   // Split arguments might be passed indirectly, so keep track of the pending
6431   // values. Split vectors are passed via a mix of registers and indirectly, so
6432   // treat them as we would any other argument.
6433   if (!LocVT.isVector() && (ArgFlags.isSplit() || !PendingLocs.empty())) {
6434     LocVT = XLenVT;
6435     LocInfo = CCValAssign::Indirect;
6436     PendingLocs.push_back(
6437         CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo));
6438     PendingArgFlags.push_back(ArgFlags);
6439     if (!ArgFlags.isSplitEnd()) {
6440       return false;
6441     }
6442   }
6443 
6444   // If the split argument only had two elements, it should be passed directly
6445   // in registers or on the stack.
6446   if (!LocVT.isVector() && ArgFlags.isSplitEnd() && PendingLocs.size() <= 2) {
6447     assert(PendingLocs.size() == 2 && "Unexpected PendingLocs.size()");
6448     // Apply the normal calling convention rules to the first half of the
6449     // split argument.
6450     CCValAssign VA = PendingLocs[0];
6451     ISD::ArgFlagsTy AF = PendingArgFlags[0];
6452     PendingLocs.clear();
6453     PendingArgFlags.clear();
6454     return CC_RISCVAssign2XLen(XLen, State, VA, AF, ValNo, ValVT, LocVT,
6455                                ArgFlags);
6456   }
6457 
6458   // Allocate to a register if possible, or else a stack slot.
6459   Register Reg;
6460   if (ValVT == MVT::f16 && !UseGPRForF16_F32)
6461     Reg = State.AllocateReg(ArgFPR16s);
6462   else if (ValVT == MVT::f32 && !UseGPRForF16_F32)
6463     Reg = State.AllocateReg(ArgFPR32s);
6464   else if (ValVT == MVT::f64 && !UseGPRForF64)
6465     Reg = State.AllocateReg(ArgFPR64s);
6466   else if (ValVT.isVector()) {
6467     const TargetRegisterClass *RC = TLI.getRegClassFor(ValVT);
6468     if (RC == &RISCV::VRRegClass) {
6469       // Assign the first mask argument to V0.
6470       // This is an interim calling convention and it may be changed in the
6471       // future.
6472       if (FirstMaskArgument.hasValue() &&
6473           ValNo == FirstMaskArgument.getValue()) {
6474         Reg = State.AllocateReg(RISCV::V0);
6475       } else {
6476         Reg = State.AllocateReg(ArgVRs);
6477       }
6478     } else if (RC == &RISCV::VRM2RegClass) {
6479       Reg = State.AllocateReg(ArgVRM2s);
6480     } else if (RC == &RISCV::VRM4RegClass) {
6481       Reg = State.AllocateReg(ArgVRM4s);
6482     } else if (RC == &RISCV::VRM8RegClass) {
6483       Reg = State.AllocateReg(ArgVRM8s);
6484     } else {
6485       llvm_unreachable("Unhandled class register for ValueType");
6486     }
6487     if (!Reg) {
6488       // For return values, the vector must be passed fully via registers or
6489       // via the stack.
6490       // FIXME: The proposed vector ABI only mandates v8-v15 for return values,
6491       // but we're using all of them.
6492       if (IsRet)
6493         return true;
6494       LocInfo = CCValAssign::Indirect;
6495       // Try using a GPR to pass the address
6496       Reg = State.AllocateReg(ArgGPRs);
6497       LocVT = XLenVT;
6498     }
6499   } else
6500     Reg = State.AllocateReg(ArgGPRs);
6501   unsigned StackOffset =
6502       Reg ? 0 : State.AllocateStack(XLen / 8, Align(XLen / 8));
6503 
6504   // If we reach this point and PendingLocs is non-empty, we must be at the
6505   // end of a split argument that must be passed indirectly.
6506   if (!PendingLocs.empty()) {
6507     assert(ArgFlags.isSplitEnd() && "Expected ArgFlags.isSplitEnd()");
6508     assert(PendingLocs.size() > 2 && "Unexpected PendingLocs.size()");
6509 
6510     for (auto &It : PendingLocs) {
6511       if (Reg)
6512         It.convertToReg(Reg);
6513       else
6514         It.convertToMem(StackOffset);
6515       State.addLoc(It);
6516     }
6517     PendingLocs.clear();
6518     PendingArgFlags.clear();
6519     return false;
6520   }
6521 
6522   assert((!UseGPRForF16_F32 || !UseGPRForF64 || LocVT == XLenVT ||
6523           (TLI.getSubtarget().hasStdExtV() && ValVT.isVector())) &&
6524          "Expected an XLenVT or vector types at this stage");
6525 
6526   if (Reg) {
6527     State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
6528     return false;
6529   }
6530 
6531   // When a floating-point value is passed on the stack, no bit-conversion is
6532   // needed.
6533   if (ValVT.isFloatingPoint()) {
6534     LocVT = ValVT;
6535     LocInfo = CCValAssign::Full;
6536   }
6537   State.addLoc(CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
6538   return false;
6539 }
6540 
6541 template <typename ArgTy>
6542 static Optional<unsigned> preAssignMask(const ArgTy &Args) {
6543   for (const auto &ArgIdx : enumerate(Args)) {
6544     MVT ArgVT = ArgIdx.value().VT;
6545     if (ArgVT.isVector() && ArgVT.getVectorElementType() == MVT::i1)
6546       return ArgIdx.index();
6547   }
6548   return None;
6549 }
6550 
6551 void RISCVTargetLowering::analyzeInputArgs(
6552     MachineFunction &MF, CCState &CCInfo,
6553     const SmallVectorImpl<ISD::InputArg> &Ins, bool IsRet) const {
6554   unsigned NumArgs = Ins.size();
6555   FunctionType *FType = MF.getFunction().getFunctionType();
6556 
6557   Optional<unsigned> FirstMaskArgument;
6558   if (Subtarget.hasStdExtV())
6559     FirstMaskArgument = preAssignMask(Ins);
6560 
6561   for (unsigned i = 0; i != NumArgs; ++i) {
6562     MVT ArgVT = Ins[i].VT;
6563     ISD::ArgFlagsTy ArgFlags = Ins[i].Flags;
6564 
6565     Type *ArgTy = nullptr;
6566     if (IsRet)
6567       ArgTy = FType->getReturnType();
6568     else if (Ins[i].isOrigArg())
6569       ArgTy = FType->getParamType(Ins[i].getOrigArgIndex());
6570 
6571     RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
6572     if (CC_RISCV(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full,
6573                  ArgFlags, CCInfo, /*IsFixed=*/true, IsRet, ArgTy, *this,
6574                  FirstMaskArgument)) {
6575       LLVM_DEBUG(dbgs() << "InputArg #" << i << " has unhandled type "
6576                         << EVT(ArgVT).getEVTString() << '\n');
6577       llvm_unreachable(nullptr);
6578     }
6579   }
6580 }
6581 
6582 void RISCVTargetLowering::analyzeOutputArgs(
6583     MachineFunction &MF, CCState &CCInfo,
6584     const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsRet,
6585     CallLoweringInfo *CLI) const {
6586   unsigned NumArgs = Outs.size();
6587 
6588   Optional<unsigned> FirstMaskArgument;
6589   if (Subtarget.hasStdExtV())
6590     FirstMaskArgument = preAssignMask(Outs);
6591 
6592   for (unsigned i = 0; i != NumArgs; i++) {
6593     MVT ArgVT = Outs[i].VT;
6594     ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
6595     Type *OrigTy = CLI ? CLI->getArgs()[Outs[i].OrigArgIndex].Ty : nullptr;
6596 
6597     RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
6598     if (CC_RISCV(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full,
6599                  ArgFlags, CCInfo, Outs[i].IsFixed, IsRet, OrigTy, *this,
6600                  FirstMaskArgument)) {
6601       LLVM_DEBUG(dbgs() << "OutputArg #" << i << " has unhandled type "
6602                         << EVT(ArgVT).getEVTString() << "\n");
6603       llvm_unreachable(nullptr);
6604     }
6605   }
6606 }
6607 
6608 // Convert Val to a ValVT. Should not be called for CCValAssign::Indirect
6609 // values.
6610 static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDValue Val,
6611                                    const CCValAssign &VA, const SDLoc &DL,
6612                                    const RISCVSubtarget &Subtarget) {
6613   switch (VA.getLocInfo()) {
6614   default:
6615     llvm_unreachable("Unexpected CCValAssign::LocInfo");
6616   case CCValAssign::Full:
6617     if (VA.getValVT().isFixedLengthVector() && VA.getLocVT().isScalableVector())
6618       Val = convertFromScalableVector(VA.getValVT(), Val, DAG, Subtarget);
6619     break;
6620   case CCValAssign::BCvt:
6621     if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16)
6622       Val = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, Val);
6623     else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32)
6624       Val = DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, Val);
6625     else
6626       Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val);
6627     break;
6628   }
6629   return Val;
6630 }
6631 
6632 // The caller is responsible for loading the full value if the argument is
6633 // passed with CCValAssign::Indirect.
6634 static SDValue unpackFromRegLoc(SelectionDAG &DAG, SDValue Chain,
6635                                 const CCValAssign &VA, const SDLoc &DL,
6636                                 const RISCVTargetLowering &TLI) {
6637   MachineFunction &MF = DAG.getMachineFunction();
6638   MachineRegisterInfo &RegInfo = MF.getRegInfo();
6639   EVT LocVT = VA.getLocVT();
6640   SDValue Val;
6641   const TargetRegisterClass *RC = TLI.getRegClassFor(LocVT.getSimpleVT());
6642   Register VReg = RegInfo.createVirtualRegister(RC);
6643   RegInfo.addLiveIn(VA.getLocReg(), VReg);
6644   Val = DAG.getCopyFromReg(Chain, DL, VReg, LocVT);
6645 
6646   if (VA.getLocInfo() == CCValAssign::Indirect)
6647     return Val;
6648 
6649   return convertLocVTToValVT(DAG, Val, VA, DL, TLI.getSubtarget());
6650 }
6651 
6652 static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDValue Val,
6653                                    const CCValAssign &VA, const SDLoc &DL,
6654                                    const RISCVSubtarget &Subtarget) {
6655   EVT LocVT = VA.getLocVT();
6656 
6657   switch (VA.getLocInfo()) {
6658   default:
6659     llvm_unreachable("Unexpected CCValAssign::LocInfo");
6660   case CCValAssign::Full:
6661     if (VA.getValVT().isFixedLengthVector() && LocVT.isScalableVector())
6662       Val = convertToScalableVector(LocVT, Val, DAG, Subtarget);
6663     break;
6664   case CCValAssign::BCvt:
6665     if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16)
6666       Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, VA.getLocVT(), Val);
6667     else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32)
6668       Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Val);
6669     else
6670       Val = DAG.getNode(ISD::BITCAST, DL, LocVT, Val);
6671     break;
6672   }
6673   return Val;
6674 }
6675 
6676 // The caller is responsible for loading the full value if the argument is
6677 // passed with CCValAssign::Indirect.
6678 static SDValue unpackFromMemLoc(SelectionDAG &DAG, SDValue Chain,
6679                                 const CCValAssign &VA, const SDLoc &DL) {
6680   MachineFunction &MF = DAG.getMachineFunction();
6681   MachineFrameInfo &MFI = MF.getFrameInfo();
6682   EVT LocVT = VA.getLocVT();
6683   EVT ValVT = VA.getValVT();
6684   EVT PtrVT = MVT::getIntegerVT(DAG.getDataLayout().getPointerSizeInBits(0));
6685   int FI = MFI.CreateFixedObject(ValVT.getSizeInBits() / 8,
6686                                  VA.getLocMemOffset(), /*Immutable=*/true);
6687   SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
6688   SDValue Val;
6689 
6690   ISD::LoadExtType ExtType;
6691   switch (VA.getLocInfo()) {
6692   default:
6693     llvm_unreachable("Unexpected CCValAssign::LocInfo");
6694   case CCValAssign::Full:
6695   case CCValAssign::Indirect:
6696   case CCValAssign::BCvt:
6697     ExtType = ISD::NON_EXTLOAD;
6698     break;
6699   }
6700   Val = DAG.getExtLoad(
6701       ExtType, DL, LocVT, Chain, FIN,
6702       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), ValVT);
6703   return Val;
6704 }
6705 
6706 static SDValue unpackF64OnRV32DSoftABI(SelectionDAG &DAG, SDValue Chain,
6707                                        const CCValAssign &VA, const SDLoc &DL) {
6708   assert(VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64 &&
6709          "Unexpected VA");
6710   MachineFunction &MF = DAG.getMachineFunction();
6711   MachineFrameInfo &MFI = MF.getFrameInfo();
6712   MachineRegisterInfo &RegInfo = MF.getRegInfo();
6713 
6714   if (VA.isMemLoc()) {
6715     // f64 is passed on the stack.
6716     int FI = MFI.CreateFixedObject(8, VA.getLocMemOffset(), /*Immutable=*/true);
6717     SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
6718     return DAG.getLoad(MVT::f64, DL, Chain, FIN,
6719                        MachinePointerInfo::getFixedStack(MF, FI));
6720   }
6721 
6722   assert(VA.isRegLoc() && "Expected register VA assignment");
6723 
6724   Register LoVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
6725   RegInfo.addLiveIn(VA.getLocReg(), LoVReg);
6726   SDValue Lo = DAG.getCopyFromReg(Chain, DL, LoVReg, MVT::i32);
6727   SDValue Hi;
6728   if (VA.getLocReg() == RISCV::X17) {
6729     // Second half of f64 is passed on the stack.
6730     int FI = MFI.CreateFixedObject(4, 0, /*Immutable=*/true);
6731     SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
6732     Hi = DAG.getLoad(MVT::i32, DL, Chain, FIN,
6733                      MachinePointerInfo::getFixedStack(MF, FI));
6734   } else {
6735     // Second half of f64 is passed in another GPR.
6736     Register HiVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
6737     RegInfo.addLiveIn(VA.getLocReg() + 1, HiVReg);
6738     Hi = DAG.getCopyFromReg(Chain, DL, HiVReg, MVT::i32);
6739   }
6740   return DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, Lo, Hi);
6741 }
6742 
6743 // FastCC has less than 1% performance improvement for some particular
6744 // benchmark. But theoretically, it may has benenfit for some cases.
6745 static bool CC_RISCV_FastCC(unsigned ValNo, MVT ValVT, MVT LocVT,
6746                             CCValAssign::LocInfo LocInfo,
6747                             ISD::ArgFlagsTy ArgFlags, CCState &State) {
6748 
6749   if (LocVT == MVT::i32 || LocVT == MVT::i64) {
6750     // X5 and X6 might be used for save-restore libcall.
6751     static const MCPhysReg GPRList[] = {
6752         RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, RISCV::X14,
6753         RISCV::X15, RISCV::X16, RISCV::X17, RISCV::X7,  RISCV::X28,
6754         RISCV::X29, RISCV::X30, RISCV::X31};
6755     if (unsigned Reg = State.AllocateReg(GPRList)) {
6756       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
6757       return false;
6758     }
6759   }
6760 
6761   if (LocVT == MVT::f16) {
6762     static const MCPhysReg FPR16List[] = {
6763         RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, RISCV::F14_H,
6764         RISCV::F15_H, RISCV::F16_H, RISCV::F17_H, RISCV::F0_H,  RISCV::F1_H,
6765         RISCV::F2_H,  RISCV::F3_H,  RISCV::F4_H,  RISCV::F5_H,  RISCV::F6_H,
6766         RISCV::F7_H,  RISCV::F28_H, RISCV::F29_H, RISCV::F30_H, RISCV::F31_H};
6767     if (unsigned Reg = State.AllocateReg(FPR16List)) {
6768       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
6769       return false;
6770     }
6771   }
6772 
6773   if (LocVT == MVT::f32) {
6774     static const MCPhysReg FPR32List[] = {
6775         RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, RISCV::F14_F,
6776         RISCV::F15_F, RISCV::F16_F, RISCV::F17_F, RISCV::F0_F,  RISCV::F1_F,
6777         RISCV::F2_F,  RISCV::F3_F,  RISCV::F4_F,  RISCV::F5_F,  RISCV::F6_F,
6778         RISCV::F7_F,  RISCV::F28_F, RISCV::F29_F, RISCV::F30_F, RISCV::F31_F};
6779     if (unsigned Reg = State.AllocateReg(FPR32List)) {
6780       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
6781       return false;
6782     }
6783   }
6784 
6785   if (LocVT == MVT::f64) {
6786     static const MCPhysReg FPR64List[] = {
6787         RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, RISCV::F14_D,
6788         RISCV::F15_D, RISCV::F16_D, RISCV::F17_D, RISCV::F0_D,  RISCV::F1_D,
6789         RISCV::F2_D,  RISCV::F3_D,  RISCV::F4_D,  RISCV::F5_D,  RISCV::F6_D,
6790         RISCV::F7_D,  RISCV::F28_D, RISCV::F29_D, RISCV::F30_D, RISCV::F31_D};
6791     if (unsigned Reg = State.AllocateReg(FPR64List)) {
6792       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
6793       return false;
6794     }
6795   }
6796 
6797   if (LocVT == MVT::i32 || LocVT == MVT::f32) {
6798     unsigned Offset4 = State.AllocateStack(4, Align(4));
6799     State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset4, LocVT, LocInfo));
6800     return false;
6801   }
6802 
6803   if (LocVT == MVT::i64 || LocVT == MVT::f64) {
6804     unsigned Offset5 = State.AllocateStack(8, Align(8));
6805     State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset5, LocVT, LocInfo));
6806     return false;
6807   }
6808 
6809   return true; // CC didn't match.
6810 }
6811 
6812 static bool CC_RISCV_GHC(unsigned ValNo, MVT ValVT, MVT LocVT,
6813                          CCValAssign::LocInfo LocInfo,
6814                          ISD::ArgFlagsTy ArgFlags, CCState &State) {
6815 
6816   if (LocVT == MVT::i32 || LocVT == MVT::i64) {
6817     // Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, R6, R7, SpLim
6818     //                        s1    s2  s3  s4  s5  s6  s7  s8  s9  s10 s11
6819     static const MCPhysReg GPRList[] = {
6820         RISCV::X9, RISCV::X18, RISCV::X19, RISCV::X20, RISCV::X21, RISCV::X22,
6821         RISCV::X23, RISCV::X24, RISCV::X25, RISCV::X26, RISCV::X27};
6822     if (unsigned Reg = State.AllocateReg(GPRList)) {
6823       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
6824       return false;
6825     }
6826   }
6827 
6828   if (LocVT == MVT::f32) {
6829     // Pass in STG registers: F1, ..., F6
6830     //                        fs0 ... fs5
6831     static const MCPhysReg FPR32List[] = {RISCV::F8_F, RISCV::F9_F,
6832                                           RISCV::F18_F, RISCV::F19_F,
6833                                           RISCV::F20_F, RISCV::F21_F};
6834     if (unsigned Reg = State.AllocateReg(FPR32List)) {
6835       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
6836       return false;
6837     }
6838   }
6839 
6840   if (LocVT == MVT::f64) {
6841     // Pass in STG registers: D1, ..., D6
6842     //                        fs6 ... fs11
6843     static const MCPhysReg FPR64List[] = {RISCV::F22_D, RISCV::F23_D,
6844                                           RISCV::F24_D, RISCV::F25_D,
6845                                           RISCV::F26_D, RISCV::F27_D};
6846     if (unsigned Reg = State.AllocateReg(FPR64List)) {
6847       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
6848       return false;
6849     }
6850   }
6851 
6852   report_fatal_error("No registers left in GHC calling convention");
6853   return true;
6854 }
6855 
6856 // Transform physical registers into virtual registers.
6857 SDValue RISCVTargetLowering::LowerFormalArguments(
6858     SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
6859     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
6860     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
6861 
6862   MachineFunction &MF = DAG.getMachineFunction();
6863 
6864   switch (CallConv) {
6865   default:
6866     report_fatal_error("Unsupported calling convention");
6867   case CallingConv::C:
6868   case CallingConv::Fast:
6869     break;
6870   case CallingConv::GHC:
6871     if (!MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtF] ||
6872         !MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtD])
6873       report_fatal_error(
6874         "GHC calling convention requires the F and D instruction set extensions");
6875   }
6876 
6877   const Function &Func = MF.getFunction();
6878   if (Func.hasFnAttribute("interrupt")) {
6879     if (!Func.arg_empty())
6880       report_fatal_error(
6881         "Functions with the interrupt attribute cannot have arguments!");
6882 
6883     StringRef Kind =
6884       MF.getFunction().getFnAttribute("interrupt").getValueAsString();
6885 
6886     if (!(Kind == "user" || Kind == "supervisor" || Kind == "machine"))
6887       report_fatal_error(
6888         "Function interrupt attribute argument not supported!");
6889   }
6890 
6891   EVT PtrVT = getPointerTy(DAG.getDataLayout());
6892   MVT XLenVT = Subtarget.getXLenVT();
6893   unsigned XLenInBytes = Subtarget.getXLen() / 8;
6894   // Used with vargs to acumulate store chains.
6895   std::vector<SDValue> OutChains;
6896 
6897   // Assign locations to all of the incoming arguments.
6898   SmallVector<CCValAssign, 16> ArgLocs;
6899   CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
6900 
6901   if (CallConv == CallingConv::Fast)
6902     CCInfo.AnalyzeFormalArguments(Ins, CC_RISCV_FastCC);
6903   else if (CallConv == CallingConv::GHC)
6904     CCInfo.AnalyzeFormalArguments(Ins, CC_RISCV_GHC);
6905   else
6906     analyzeInputArgs(MF, CCInfo, Ins, /*IsRet=*/false);
6907 
6908   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
6909     CCValAssign &VA = ArgLocs[i];
6910     SDValue ArgValue;
6911     // Passing f64 on RV32D with a soft float ABI must be handled as a special
6912     // case.
6913     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64)
6914       ArgValue = unpackF64OnRV32DSoftABI(DAG, Chain, VA, DL);
6915     else if (VA.isRegLoc())
6916       ArgValue = unpackFromRegLoc(DAG, Chain, VA, DL, *this);
6917     else
6918       ArgValue = unpackFromMemLoc(DAG, Chain, VA, DL);
6919 
6920     if (VA.getLocInfo() == CCValAssign::Indirect) {
6921       // If the original argument was split and passed by reference (e.g. i128
6922       // on RV32), we need to load all parts of it here (using the same
6923       // address). Vectors may be partly split to registers and partly to the
6924       // stack, in which case the base address is partly offset and subsequent
6925       // stores are relative to that.
6926       InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue,
6927                                    MachinePointerInfo()));
6928       unsigned ArgIndex = Ins[i].OrigArgIndex;
6929       unsigned ArgPartOffset = Ins[i].PartOffset;
6930       assert(VA.getValVT().isVector() || ArgPartOffset == 0);
6931       while (i + 1 != e && Ins[i + 1].OrigArgIndex == ArgIndex) {
6932         CCValAssign &PartVA = ArgLocs[i + 1];
6933         unsigned PartOffset = Ins[i + 1].PartOffset - ArgPartOffset;
6934         SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue,
6935                                       DAG.getIntPtrConstant(PartOffset, DL));
6936         InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address,
6937                                      MachinePointerInfo()));
6938         ++i;
6939       }
6940       continue;
6941     }
6942     InVals.push_back(ArgValue);
6943   }
6944 
6945   if (IsVarArg) {
6946     ArrayRef<MCPhysReg> ArgRegs = makeArrayRef(ArgGPRs);
6947     unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs);
6948     const TargetRegisterClass *RC = &RISCV::GPRRegClass;
6949     MachineFrameInfo &MFI = MF.getFrameInfo();
6950     MachineRegisterInfo &RegInfo = MF.getRegInfo();
6951     RISCVMachineFunctionInfo *RVFI = MF.getInfo<RISCVMachineFunctionInfo>();
6952 
6953     // Offset of the first variable argument from stack pointer, and size of
6954     // the vararg save area. For now, the varargs save area is either zero or
6955     // large enough to hold a0-a7.
6956     int VaArgOffset, VarArgsSaveSize;
6957 
6958     // If all registers are allocated, then all varargs must be passed on the
6959     // stack and we don't need to save any argregs.
6960     if (ArgRegs.size() == Idx) {
6961       VaArgOffset = CCInfo.getNextStackOffset();
6962       VarArgsSaveSize = 0;
6963     } else {
6964       VarArgsSaveSize = XLenInBytes * (ArgRegs.size() - Idx);
6965       VaArgOffset = -VarArgsSaveSize;
6966     }
6967 
6968     // Record the frame index of the first variable argument
6969     // which is a value necessary to VASTART.
6970     int FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true);
6971     RVFI->setVarArgsFrameIndex(FI);
6972 
6973     // If saving an odd number of registers then create an extra stack slot to
6974     // ensure that the frame pointer is 2*XLEN-aligned, which in turn ensures
6975     // offsets to even-numbered registered remain 2*XLEN-aligned.
6976     if (Idx % 2) {
6977       MFI.CreateFixedObject(XLenInBytes, VaArgOffset - (int)XLenInBytes, true);
6978       VarArgsSaveSize += XLenInBytes;
6979     }
6980 
6981     // Copy the integer registers that may have been used for passing varargs
6982     // to the vararg save area.
6983     for (unsigned I = Idx; I < ArgRegs.size();
6984          ++I, VaArgOffset += XLenInBytes) {
6985       const Register Reg = RegInfo.createVirtualRegister(RC);
6986       RegInfo.addLiveIn(ArgRegs[I], Reg);
6987       SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, XLenVT);
6988       FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true);
6989       SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
6990       SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff,
6991                                    MachinePointerInfo::getFixedStack(MF, FI));
6992       cast<StoreSDNode>(Store.getNode())
6993           ->getMemOperand()
6994           ->setValue((Value *)nullptr);
6995       OutChains.push_back(Store);
6996     }
6997     RVFI->setVarArgsSaveSize(VarArgsSaveSize);
6998   }
6999 
7000   // All stores are grouped in one node to allow the matching between
7001   // the size of Ins and InVals. This only happens for vararg functions.
7002   if (!OutChains.empty()) {
7003     OutChains.push_back(Chain);
7004     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains);
7005   }
7006 
7007   return Chain;
7008 }
7009 
7010 /// isEligibleForTailCallOptimization - Check whether the call is eligible
7011 /// for tail call optimization.
7012 /// Note: This is modelled after ARM's IsEligibleForTailCallOptimization.
7013 bool RISCVTargetLowering::isEligibleForTailCallOptimization(
7014     CCState &CCInfo, CallLoweringInfo &CLI, MachineFunction &MF,
7015     const SmallVector<CCValAssign, 16> &ArgLocs) const {
7016 
7017   auto &Callee = CLI.Callee;
7018   auto CalleeCC = CLI.CallConv;
7019   auto &Outs = CLI.Outs;
7020   auto &Caller = MF.getFunction();
7021   auto CallerCC = Caller.getCallingConv();
7022 
7023   // Exception-handling functions need a special set of instructions to
7024   // indicate a return to the hardware. Tail-calling another function would
7025   // probably break this.
7026   // TODO: The "interrupt" attribute isn't currently defined by RISC-V. This
7027   // should be expanded as new function attributes are introduced.
7028   if (Caller.hasFnAttribute("interrupt"))
7029     return false;
7030 
7031   // Do not tail call opt if the stack is used to pass parameters.
7032   if (CCInfo.getNextStackOffset() != 0)
7033     return false;
7034 
7035   // Do not tail call opt if any parameters need to be passed indirectly.
7036   // Since long doubles (fp128) and i128 are larger than 2*XLEN, they are
7037   // passed indirectly. So the address of the value will be passed in a
7038   // register, or if not available, then the address is put on the stack. In
7039   // order to pass indirectly, space on the stack often needs to be allocated
7040   // in order to store the value. In this case the CCInfo.getNextStackOffset()
7041   // != 0 check is not enough and we need to check if any CCValAssign ArgsLocs
7042   // are passed CCValAssign::Indirect.
7043   for (auto &VA : ArgLocs)
7044     if (VA.getLocInfo() == CCValAssign::Indirect)
7045       return false;
7046 
7047   // Do not tail call opt if either caller or callee uses struct return
7048   // semantics.
7049   auto IsCallerStructRet = Caller.hasStructRetAttr();
7050   auto IsCalleeStructRet = Outs.empty() ? false : Outs[0].Flags.isSRet();
7051   if (IsCallerStructRet || IsCalleeStructRet)
7052     return false;
7053 
7054   // Externally-defined functions with weak linkage should not be
7055   // tail-called. The behaviour of branch instructions in this situation (as
7056   // used for tail calls) is implementation-defined, so we cannot rely on the
7057   // linker replacing the tail call with a return.
7058   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
7059     const GlobalValue *GV = G->getGlobal();
7060     if (GV->hasExternalWeakLinkage())
7061       return false;
7062   }
7063 
7064   // The callee has to preserve all registers the caller needs to preserve.
7065   const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo();
7066   const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
7067   if (CalleeCC != CallerCC) {
7068     const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
7069     if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
7070       return false;
7071   }
7072 
7073   // Byval parameters hand the function a pointer directly into the stack area
7074   // we want to reuse during a tail call. Working around this *is* possible
7075   // but less efficient and uglier in LowerCall.
7076   for (auto &Arg : Outs)
7077     if (Arg.Flags.isByVal())
7078       return false;
7079 
7080   return true;
7081 }
7082 
7083 // Lower a call to a callseq_start + CALL + callseq_end chain, and add input
7084 // and output parameter nodes.
7085 SDValue RISCVTargetLowering::LowerCall(CallLoweringInfo &CLI,
7086                                        SmallVectorImpl<SDValue> &InVals) const {
7087   SelectionDAG &DAG = CLI.DAG;
7088   SDLoc &DL = CLI.DL;
7089   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
7090   SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
7091   SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
7092   SDValue Chain = CLI.Chain;
7093   SDValue Callee = CLI.Callee;
7094   bool &IsTailCall = CLI.IsTailCall;
7095   CallingConv::ID CallConv = CLI.CallConv;
7096   bool IsVarArg = CLI.IsVarArg;
7097   EVT PtrVT = getPointerTy(DAG.getDataLayout());
7098   MVT XLenVT = Subtarget.getXLenVT();
7099 
7100   MachineFunction &MF = DAG.getMachineFunction();
7101 
7102   // Analyze the operands of the call, assigning locations to each operand.
7103   SmallVector<CCValAssign, 16> ArgLocs;
7104   CCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
7105 
7106   if (CallConv == CallingConv::Fast)
7107     ArgCCInfo.AnalyzeCallOperands(Outs, CC_RISCV_FastCC);
7108   else if (CallConv == CallingConv::GHC)
7109     ArgCCInfo.AnalyzeCallOperands(Outs, CC_RISCV_GHC);
7110   else
7111     analyzeOutputArgs(MF, ArgCCInfo, Outs, /*IsRet=*/false, &CLI);
7112 
7113   // Check if it's really possible to do a tail call.
7114   if (IsTailCall)
7115     IsTailCall = isEligibleForTailCallOptimization(ArgCCInfo, CLI, MF, ArgLocs);
7116 
7117   if (IsTailCall)
7118     ++NumTailCalls;
7119   else if (CLI.CB && CLI.CB->isMustTailCall())
7120     report_fatal_error("failed to perform tail call elimination on a call "
7121                        "site marked musttail");
7122 
7123   // Get a count of how many bytes are to be pushed on the stack.
7124   unsigned NumBytes = ArgCCInfo.getNextStackOffset();
7125 
7126   // Create local copies for byval args
7127   SmallVector<SDValue, 8> ByValArgs;
7128   for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
7129     ISD::ArgFlagsTy Flags = Outs[i].Flags;
7130     if (!Flags.isByVal())
7131       continue;
7132 
7133     SDValue Arg = OutVals[i];
7134     unsigned Size = Flags.getByValSize();
7135     Align Alignment = Flags.getNonZeroByValAlign();
7136 
7137     int FI =
7138         MF.getFrameInfo().CreateStackObject(Size, Alignment, /*isSS=*/false);
7139     SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
7140     SDValue SizeNode = DAG.getConstant(Size, DL, XLenVT);
7141 
7142     Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Alignment,
7143                           /*IsVolatile=*/false,
7144                           /*AlwaysInline=*/false, IsTailCall,
7145                           MachinePointerInfo(), MachinePointerInfo());
7146     ByValArgs.push_back(FIPtr);
7147   }
7148 
7149   if (!IsTailCall)
7150     Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, CLI.DL);
7151 
7152   // Copy argument values to their designated locations.
7153   SmallVector<std::pair<Register, SDValue>, 8> RegsToPass;
7154   SmallVector<SDValue, 8> MemOpChains;
7155   SDValue StackPtr;
7156   for (unsigned i = 0, j = 0, e = ArgLocs.size(); i != e; ++i) {
7157     CCValAssign &VA = ArgLocs[i];
7158     SDValue ArgValue = OutVals[i];
7159     ISD::ArgFlagsTy Flags = Outs[i].Flags;
7160 
7161     // Handle passing f64 on RV32D with a soft float ABI as a special case.
7162     bool IsF64OnRV32DSoftABI =
7163         VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64;
7164     if (IsF64OnRV32DSoftABI && VA.isRegLoc()) {
7165       SDValue SplitF64 = DAG.getNode(
7166           RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), ArgValue);
7167       SDValue Lo = SplitF64.getValue(0);
7168       SDValue Hi = SplitF64.getValue(1);
7169 
7170       Register RegLo = VA.getLocReg();
7171       RegsToPass.push_back(std::make_pair(RegLo, Lo));
7172 
7173       if (RegLo == RISCV::X17) {
7174         // Second half of f64 is passed on the stack.
7175         // Work out the address of the stack slot.
7176         if (!StackPtr.getNode())
7177           StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT);
7178         // Emit the store.
7179         MemOpChains.push_back(
7180             DAG.getStore(Chain, DL, Hi, StackPtr, MachinePointerInfo()));
7181       } else {
7182         // Second half of f64 is passed in another GPR.
7183         assert(RegLo < RISCV::X31 && "Invalid register pair");
7184         Register RegHigh = RegLo + 1;
7185         RegsToPass.push_back(std::make_pair(RegHigh, Hi));
7186       }
7187       continue;
7188     }
7189 
7190     // IsF64OnRV32DSoftABI && VA.isMemLoc() is handled below in the same way
7191     // as any other MemLoc.
7192 
7193     // Promote the value if needed.
7194     // For now, only handle fully promoted and indirect arguments.
7195     if (VA.getLocInfo() == CCValAssign::Indirect) {
7196       // Store the argument in a stack slot and pass its address.
7197       SDValue SpillSlot = DAG.CreateStackTemporary(Outs[i].ArgVT);
7198       int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
7199       MemOpChains.push_back(
7200           DAG.getStore(Chain, DL, ArgValue, SpillSlot,
7201                        MachinePointerInfo::getFixedStack(MF, FI)));
7202       // If the original argument was split (e.g. i128), we need
7203       // to store the required parts of it here (and pass just one address).
7204       // Vectors may be partly split to registers and partly to the stack, in
7205       // which case the base address is partly offset and subsequent stores are
7206       // relative to that.
7207       unsigned ArgIndex = Outs[i].OrigArgIndex;
7208       unsigned ArgPartOffset = Outs[i].PartOffset;
7209       assert(VA.getValVT().isVector() || ArgPartOffset == 0);
7210       while (i + 1 != e && Outs[i + 1].OrigArgIndex == ArgIndex) {
7211         SDValue PartValue = OutVals[i + 1];
7212         unsigned PartOffset = Outs[i + 1].PartOffset - ArgPartOffset;
7213         SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot,
7214                                       DAG.getIntPtrConstant(PartOffset, DL));
7215         MemOpChains.push_back(
7216             DAG.getStore(Chain, DL, PartValue, Address,
7217                          MachinePointerInfo::getFixedStack(MF, FI)));
7218         ++i;
7219       }
7220       ArgValue = SpillSlot;
7221     } else {
7222       ArgValue = convertValVTToLocVT(DAG, ArgValue, VA, DL, Subtarget);
7223     }
7224 
7225     // Use local copy if it is a byval arg.
7226     if (Flags.isByVal())
7227       ArgValue = ByValArgs[j++];
7228 
7229     if (VA.isRegLoc()) {
7230       // Queue up the argument copies and emit them at the end.
7231       RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue));
7232     } else {
7233       assert(VA.isMemLoc() && "Argument not register or memory");
7234       assert(!IsTailCall && "Tail call not allowed if stack is used "
7235                             "for passing parameters");
7236 
7237       // Work out the address of the stack slot.
7238       if (!StackPtr.getNode())
7239         StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT);
7240       SDValue Address =
7241           DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr,
7242                       DAG.getIntPtrConstant(VA.getLocMemOffset(), DL));
7243 
7244       // Emit the store.
7245       MemOpChains.push_back(
7246           DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo()));
7247     }
7248   }
7249 
7250   // Join the stores, which are independent of one another.
7251   if (!MemOpChains.empty())
7252     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
7253 
7254   SDValue Glue;
7255 
7256   // Build a sequence of copy-to-reg nodes, chained and glued together.
7257   for (auto &Reg : RegsToPass) {
7258     Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, Glue);
7259     Glue = Chain.getValue(1);
7260   }
7261 
7262   // Validate that none of the argument registers have been marked as
7263   // reserved, if so report an error. Do the same for the return address if this
7264   // is not a tailcall.
7265   validateCCReservedRegs(RegsToPass, MF);
7266   if (!IsTailCall &&
7267       MF.getSubtarget<RISCVSubtarget>().isRegisterReservedByUser(RISCV::X1))
7268     MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
7269         MF.getFunction(),
7270         "Return address register required, but has been reserved."});
7271 
7272   // If the callee is a GlobalAddress/ExternalSymbol node, turn it into a
7273   // TargetGlobalAddress/TargetExternalSymbol node so that legalize won't
7274   // split it and then direct call can be matched by PseudoCALL.
7275   if (GlobalAddressSDNode *S = dyn_cast<GlobalAddressSDNode>(Callee)) {
7276     const GlobalValue *GV = S->getGlobal();
7277 
7278     unsigned OpFlags = RISCVII::MO_CALL;
7279     if (!getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV))
7280       OpFlags = RISCVII::MO_PLT;
7281 
7282     Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags);
7283   } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
7284     unsigned OpFlags = RISCVII::MO_CALL;
7285 
7286     if (!getTargetMachine().shouldAssumeDSOLocal(*MF.getFunction().getParent(),
7287                                                  nullptr))
7288       OpFlags = RISCVII::MO_PLT;
7289 
7290     Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, OpFlags);
7291   }
7292 
7293   // The first call operand is the chain and the second is the target address.
7294   SmallVector<SDValue, 8> Ops;
7295   Ops.push_back(Chain);
7296   Ops.push_back(Callee);
7297 
7298   // Add argument registers to the end of the list so that they are
7299   // known live into the call.
7300   for (auto &Reg : RegsToPass)
7301     Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType()));
7302 
7303   if (!IsTailCall) {
7304     // Add a register mask operand representing the call-preserved registers.
7305     const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
7306     const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
7307     assert(Mask && "Missing call preserved mask for calling convention");
7308     Ops.push_back(DAG.getRegisterMask(Mask));
7309   }
7310 
7311   // Glue the call to the argument copies, if any.
7312   if (Glue.getNode())
7313     Ops.push_back(Glue);
7314 
7315   // Emit the call.
7316   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7317 
7318   if (IsTailCall) {
7319     MF.getFrameInfo().setHasTailCall();
7320     return DAG.getNode(RISCVISD::TAIL, DL, NodeTys, Ops);
7321   }
7322 
7323   Chain = DAG.getNode(RISCVISD::CALL, DL, NodeTys, Ops);
7324   DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge);
7325   Glue = Chain.getValue(1);
7326 
7327   // Mark the end of the call, which is glued to the call itself.
7328   Chain = DAG.getCALLSEQ_END(Chain,
7329                              DAG.getConstant(NumBytes, DL, PtrVT, true),
7330                              DAG.getConstant(0, DL, PtrVT, true),
7331                              Glue, DL);
7332   Glue = Chain.getValue(1);
7333 
7334   // Assign locations to each value returned by this call.
7335   SmallVector<CCValAssign, 16> RVLocs;
7336   CCState RetCCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext());
7337   analyzeInputArgs(MF, RetCCInfo, Ins, /*IsRet=*/true);
7338 
7339   // Copy all of the result registers out of their specified physreg.
7340   for (auto &VA : RVLocs) {
7341     // Copy the value out
7342     SDValue RetValue =
7343         DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), Glue);
7344     // Glue the RetValue to the end of the call sequence
7345     Chain = RetValue.getValue(1);
7346     Glue = RetValue.getValue(2);
7347 
7348     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) {
7349       assert(VA.getLocReg() == ArgGPRs[0] && "Unexpected reg assignment");
7350       SDValue RetValue2 =
7351           DAG.getCopyFromReg(Chain, DL, ArgGPRs[1], MVT::i32, Glue);
7352       Chain = RetValue2.getValue(1);
7353       Glue = RetValue2.getValue(2);
7354       RetValue = DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, RetValue,
7355                              RetValue2);
7356     }
7357 
7358     RetValue = convertLocVTToValVT(DAG, RetValue, VA, DL, Subtarget);
7359 
7360     InVals.push_back(RetValue);
7361   }
7362 
7363   return Chain;
7364 }
7365 
7366 bool RISCVTargetLowering::CanLowerReturn(
7367     CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg,
7368     const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const {
7369   SmallVector<CCValAssign, 16> RVLocs;
7370   CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);
7371 
7372   Optional<unsigned> FirstMaskArgument;
7373   if (Subtarget.hasStdExtV())
7374     FirstMaskArgument = preAssignMask(Outs);
7375 
7376   for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
7377     MVT VT = Outs[i].VT;
7378     ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
7379     RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
7380     if (CC_RISCV(MF.getDataLayout(), ABI, i, VT, VT, CCValAssign::Full,
7381                  ArgFlags, CCInfo, /*IsFixed=*/true, /*IsRet=*/true, nullptr,
7382                  *this, FirstMaskArgument))
7383       return false;
7384   }
7385   return true;
7386 }
7387 
7388 SDValue
7389 RISCVTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
7390                                  bool IsVarArg,
7391                                  const SmallVectorImpl<ISD::OutputArg> &Outs,
7392                                  const SmallVectorImpl<SDValue> &OutVals,
7393                                  const SDLoc &DL, SelectionDAG &DAG) const {
7394   const MachineFunction &MF = DAG.getMachineFunction();
7395   const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>();
7396 
7397   // Stores the assignment of the return value to a location.
7398   SmallVector<CCValAssign, 16> RVLocs;
7399 
7400   // Info about the registers and stack slot.
7401   CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
7402                  *DAG.getContext());
7403 
7404   analyzeOutputArgs(DAG.getMachineFunction(), CCInfo, Outs, /*IsRet=*/true,
7405                     nullptr);
7406 
7407   if (CallConv == CallingConv::GHC && !RVLocs.empty())
7408     report_fatal_error("GHC functions return void only");
7409 
7410   SDValue Glue;
7411   SmallVector<SDValue, 4> RetOps(1, Chain);
7412 
7413   // Copy the result values into the output registers.
7414   for (unsigned i = 0, e = RVLocs.size(); i < e; ++i) {
7415     SDValue Val = OutVals[i];
7416     CCValAssign &VA = RVLocs[i];
7417     assert(VA.isRegLoc() && "Can only return in registers!");
7418 
7419     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) {
7420       // Handle returning f64 on RV32D with a soft float ABI.
7421       assert(VA.isRegLoc() && "Expected return via registers");
7422       SDValue SplitF64 = DAG.getNode(RISCVISD::SplitF64, DL,
7423                                      DAG.getVTList(MVT::i32, MVT::i32), Val);
7424       SDValue Lo = SplitF64.getValue(0);
7425       SDValue Hi = SplitF64.getValue(1);
7426       Register RegLo = VA.getLocReg();
7427       assert(RegLo < RISCV::X31 && "Invalid register pair");
7428       Register RegHi = RegLo + 1;
7429 
7430       if (STI.isRegisterReservedByUser(RegLo) ||
7431           STI.isRegisterReservedByUser(RegHi))
7432         MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
7433             MF.getFunction(),
7434             "Return value register required, but has been reserved."});
7435 
7436       Chain = DAG.getCopyToReg(Chain, DL, RegLo, Lo, Glue);
7437       Glue = Chain.getValue(1);
7438       RetOps.push_back(DAG.getRegister(RegLo, MVT::i32));
7439       Chain = DAG.getCopyToReg(Chain, DL, RegHi, Hi, Glue);
7440       Glue = Chain.getValue(1);
7441       RetOps.push_back(DAG.getRegister(RegHi, MVT::i32));
7442     } else {
7443       // Handle a 'normal' return.
7444       Val = convertValVTToLocVT(DAG, Val, VA, DL, Subtarget);
7445       Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Glue);
7446 
7447       if (STI.isRegisterReservedByUser(VA.getLocReg()))
7448         MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
7449             MF.getFunction(),
7450             "Return value register required, but has been reserved."});
7451 
7452       // Guarantee that all emitted copies are stuck together.
7453       Glue = Chain.getValue(1);
7454       RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
7455     }
7456   }
7457 
7458   RetOps[0] = Chain; // Update chain.
7459 
7460   // Add the glue node if we have it.
7461   if (Glue.getNode()) {
7462     RetOps.push_back(Glue);
7463   }
7464 
7465   // Interrupt service routines use different return instructions.
7466   const Function &Func = DAG.getMachineFunction().getFunction();
7467   if (Func.hasFnAttribute("interrupt")) {
7468     if (!Func.getReturnType()->isVoidTy())
7469       report_fatal_error(
7470           "Functions with the interrupt attribute must have void return type!");
7471 
7472     MachineFunction &MF = DAG.getMachineFunction();
7473     StringRef Kind =
7474       MF.getFunction().getFnAttribute("interrupt").getValueAsString();
7475 
7476     unsigned RetOpc;
7477     if (Kind == "user")
7478       RetOpc = RISCVISD::URET_FLAG;
7479     else if (Kind == "supervisor")
7480       RetOpc = RISCVISD::SRET_FLAG;
7481     else
7482       RetOpc = RISCVISD::MRET_FLAG;
7483 
7484     return DAG.getNode(RetOpc, DL, MVT::Other, RetOps);
7485   }
7486 
7487   return DAG.getNode(RISCVISD::RET_FLAG, DL, MVT::Other, RetOps);
7488 }
7489 
7490 void RISCVTargetLowering::validateCCReservedRegs(
7491     const SmallVectorImpl<std::pair<llvm::Register, llvm::SDValue>> &Regs,
7492     MachineFunction &MF) const {
7493   const Function &F = MF.getFunction();
7494   const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>();
7495 
7496   if (llvm::any_of(Regs, [&STI](auto Reg) {
7497         return STI.isRegisterReservedByUser(Reg.first);
7498       }))
7499     F.getContext().diagnose(DiagnosticInfoUnsupported{
7500         F, "Argument register required, but has been reserved."});
7501 }
7502 
7503 bool RISCVTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
7504   return CI->isTailCall();
7505 }
7506 
7507 const char *RISCVTargetLowering::getTargetNodeName(unsigned Opcode) const {
7508 #define NODE_NAME_CASE(NODE)                                                   \
7509   case RISCVISD::NODE:                                                         \
7510     return "RISCVISD::" #NODE;
7511   // clang-format off
7512   switch ((RISCVISD::NodeType)Opcode) {
7513   case RISCVISD::FIRST_NUMBER:
7514     break;
7515   NODE_NAME_CASE(RET_FLAG)
7516   NODE_NAME_CASE(URET_FLAG)
7517   NODE_NAME_CASE(SRET_FLAG)
7518   NODE_NAME_CASE(MRET_FLAG)
7519   NODE_NAME_CASE(CALL)
7520   NODE_NAME_CASE(SELECT_CC)
7521   NODE_NAME_CASE(BR_CC)
7522   NODE_NAME_CASE(BuildPairF64)
7523   NODE_NAME_CASE(SplitF64)
7524   NODE_NAME_CASE(TAIL)
7525   NODE_NAME_CASE(MULHSU)
7526   NODE_NAME_CASE(SLLW)
7527   NODE_NAME_CASE(SRAW)
7528   NODE_NAME_CASE(SRLW)
7529   NODE_NAME_CASE(DIVW)
7530   NODE_NAME_CASE(DIVUW)
7531   NODE_NAME_CASE(REMUW)
7532   NODE_NAME_CASE(ROLW)
7533   NODE_NAME_CASE(RORW)
7534   NODE_NAME_CASE(CLZW)
7535   NODE_NAME_CASE(CTZW)
7536   NODE_NAME_CASE(FSLW)
7537   NODE_NAME_CASE(FSRW)
7538   NODE_NAME_CASE(FSL)
7539   NODE_NAME_CASE(FSR)
7540   NODE_NAME_CASE(FMV_H_X)
7541   NODE_NAME_CASE(FMV_X_ANYEXTH)
7542   NODE_NAME_CASE(FMV_W_X_RV64)
7543   NODE_NAME_CASE(FMV_X_ANYEXTW_RV64)
7544   NODE_NAME_CASE(READ_CYCLE_WIDE)
7545   NODE_NAME_CASE(GREV)
7546   NODE_NAME_CASE(GREVW)
7547   NODE_NAME_CASE(GORC)
7548   NODE_NAME_CASE(GORCW)
7549   NODE_NAME_CASE(SHFL)
7550   NODE_NAME_CASE(SHFLW)
7551   NODE_NAME_CASE(UNSHFL)
7552   NODE_NAME_CASE(UNSHFLW)
7553   NODE_NAME_CASE(BCOMPRESS)
7554   NODE_NAME_CASE(BCOMPRESSW)
7555   NODE_NAME_CASE(BDECOMPRESS)
7556   NODE_NAME_CASE(BDECOMPRESSW)
7557   NODE_NAME_CASE(VMV_V_X_VL)
7558   NODE_NAME_CASE(VFMV_V_F_VL)
7559   NODE_NAME_CASE(VMV_X_S)
7560   NODE_NAME_CASE(VMV_S_X_VL)
7561   NODE_NAME_CASE(VFMV_S_F_VL)
7562   NODE_NAME_CASE(SPLAT_VECTOR_I64)
7563   NODE_NAME_CASE(READ_VLENB)
7564   NODE_NAME_CASE(TRUNCATE_VECTOR_VL)
7565   NODE_NAME_CASE(VLEFF)
7566   NODE_NAME_CASE(VLEFF_MASK)
7567   NODE_NAME_CASE(VSLIDEUP_VL)
7568   NODE_NAME_CASE(VSLIDE1UP_VL)
7569   NODE_NAME_CASE(VSLIDEDOWN_VL)
7570   NODE_NAME_CASE(VSLIDE1DOWN_VL)
7571   NODE_NAME_CASE(VID_VL)
7572   NODE_NAME_CASE(VFNCVT_ROD_VL)
7573   NODE_NAME_CASE(VECREDUCE_ADD_VL)
7574   NODE_NAME_CASE(VECREDUCE_UMAX_VL)
7575   NODE_NAME_CASE(VECREDUCE_SMAX_VL)
7576   NODE_NAME_CASE(VECREDUCE_UMIN_VL)
7577   NODE_NAME_CASE(VECREDUCE_SMIN_VL)
7578   NODE_NAME_CASE(VECREDUCE_AND_VL)
7579   NODE_NAME_CASE(VECREDUCE_OR_VL)
7580   NODE_NAME_CASE(VECREDUCE_XOR_VL)
7581   NODE_NAME_CASE(VECREDUCE_FADD_VL)
7582   NODE_NAME_CASE(VECREDUCE_SEQ_FADD_VL)
7583   NODE_NAME_CASE(ADD_VL)
7584   NODE_NAME_CASE(AND_VL)
7585   NODE_NAME_CASE(MUL_VL)
7586   NODE_NAME_CASE(OR_VL)
7587   NODE_NAME_CASE(SDIV_VL)
7588   NODE_NAME_CASE(SHL_VL)
7589   NODE_NAME_CASE(SREM_VL)
7590   NODE_NAME_CASE(SRA_VL)
7591   NODE_NAME_CASE(SRL_VL)
7592   NODE_NAME_CASE(SUB_VL)
7593   NODE_NAME_CASE(UDIV_VL)
7594   NODE_NAME_CASE(UREM_VL)
7595   NODE_NAME_CASE(XOR_VL)
7596   NODE_NAME_CASE(FADD_VL)
7597   NODE_NAME_CASE(FSUB_VL)
7598   NODE_NAME_CASE(FMUL_VL)
7599   NODE_NAME_CASE(FDIV_VL)
7600   NODE_NAME_CASE(FNEG_VL)
7601   NODE_NAME_CASE(FABS_VL)
7602   NODE_NAME_CASE(FSQRT_VL)
7603   NODE_NAME_CASE(FMA_VL)
7604   NODE_NAME_CASE(FCOPYSIGN_VL)
7605   NODE_NAME_CASE(SMIN_VL)
7606   NODE_NAME_CASE(SMAX_VL)
7607   NODE_NAME_CASE(UMIN_VL)
7608   NODE_NAME_CASE(UMAX_VL)
7609   NODE_NAME_CASE(FMINNUM_VL)
7610   NODE_NAME_CASE(FMAXNUM_VL)
7611   NODE_NAME_CASE(MULHS_VL)
7612   NODE_NAME_CASE(MULHU_VL)
7613   NODE_NAME_CASE(FP_TO_SINT_VL)
7614   NODE_NAME_CASE(FP_TO_UINT_VL)
7615   NODE_NAME_CASE(SINT_TO_FP_VL)
7616   NODE_NAME_CASE(UINT_TO_FP_VL)
7617   NODE_NAME_CASE(FP_EXTEND_VL)
7618   NODE_NAME_CASE(FP_ROUND_VL)
7619   NODE_NAME_CASE(SETCC_VL)
7620   NODE_NAME_CASE(VSELECT_VL)
7621   NODE_NAME_CASE(VMAND_VL)
7622   NODE_NAME_CASE(VMOR_VL)
7623   NODE_NAME_CASE(VMXOR_VL)
7624   NODE_NAME_CASE(VMCLR_VL)
7625   NODE_NAME_CASE(VMSET_VL)
7626   NODE_NAME_CASE(VRGATHER_VX_VL)
7627   NODE_NAME_CASE(VRGATHER_VV_VL)
7628   NODE_NAME_CASE(VRGATHEREI16_VV_VL)
7629   NODE_NAME_CASE(VSEXT_VL)
7630   NODE_NAME_CASE(VZEXT_VL)
7631   NODE_NAME_CASE(VPOPC_VL)
7632   NODE_NAME_CASE(VLE_VL)
7633   NODE_NAME_CASE(VSE_VL)
7634   NODE_NAME_CASE(READ_CSR)
7635   NODE_NAME_CASE(WRITE_CSR)
7636   NODE_NAME_CASE(SWAP_CSR)
7637   }
7638   // clang-format on
7639   return nullptr;
7640 #undef NODE_NAME_CASE
7641 }
7642 
7643 /// getConstraintType - Given a constraint letter, return the type of
7644 /// constraint it is for this target.
7645 RISCVTargetLowering::ConstraintType
7646 RISCVTargetLowering::getConstraintType(StringRef Constraint) const {
7647   if (Constraint.size() == 1) {
7648     switch (Constraint[0]) {
7649     default:
7650       break;
7651     case 'f':
7652     case 'v':
7653       return C_RegisterClass;
7654     case 'I':
7655     case 'J':
7656     case 'K':
7657       return C_Immediate;
7658     case 'A':
7659       return C_Memory;
7660     }
7661   }
7662   return TargetLowering::getConstraintType(Constraint);
7663 }
7664 
7665 std::pair<unsigned, const TargetRegisterClass *>
7666 RISCVTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
7667                                                   StringRef Constraint,
7668                                                   MVT VT) const {
7669   // First, see if this is a constraint that directly corresponds to a
7670   // RISCV register class.
7671   if (Constraint.size() == 1) {
7672     switch (Constraint[0]) {
7673     case 'r':
7674       return std::make_pair(0U, &RISCV::GPRRegClass);
7675     case 'f':
7676       if (Subtarget.hasStdExtZfh() && VT == MVT::f16)
7677         return std::make_pair(0U, &RISCV::FPR16RegClass);
7678       if (Subtarget.hasStdExtF() && VT == MVT::f32)
7679         return std::make_pair(0U, &RISCV::FPR32RegClass);
7680       if (Subtarget.hasStdExtD() && VT == MVT::f64)
7681         return std::make_pair(0U, &RISCV::FPR64RegClass);
7682       break;
7683     case 'v':
7684       for (const auto *RC :
7685            {&RISCV::VMRegClass, &RISCV::VRRegClass, &RISCV::VRM2RegClass,
7686             &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) {
7687         if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy))
7688           return std::make_pair(0U, RC);
7689       }
7690       break;
7691     default:
7692       break;
7693     }
7694   }
7695 
7696   // Clang will correctly decode the usage of register name aliases into their
7697   // official names. However, other frontends like `rustc` do not. This allows
7698   // users of these frontends to use the ABI names for registers in LLVM-style
7699   // register constraints.
7700   unsigned XRegFromAlias = StringSwitch<unsigned>(Constraint.lower())
7701                                .Case("{zero}", RISCV::X0)
7702                                .Case("{ra}", RISCV::X1)
7703                                .Case("{sp}", RISCV::X2)
7704                                .Case("{gp}", RISCV::X3)
7705                                .Case("{tp}", RISCV::X4)
7706                                .Case("{t0}", RISCV::X5)
7707                                .Case("{t1}", RISCV::X6)
7708                                .Case("{t2}", RISCV::X7)
7709                                .Cases("{s0}", "{fp}", RISCV::X8)
7710                                .Case("{s1}", RISCV::X9)
7711                                .Case("{a0}", RISCV::X10)
7712                                .Case("{a1}", RISCV::X11)
7713                                .Case("{a2}", RISCV::X12)
7714                                .Case("{a3}", RISCV::X13)
7715                                .Case("{a4}", RISCV::X14)
7716                                .Case("{a5}", RISCV::X15)
7717                                .Case("{a6}", RISCV::X16)
7718                                .Case("{a7}", RISCV::X17)
7719                                .Case("{s2}", RISCV::X18)
7720                                .Case("{s3}", RISCV::X19)
7721                                .Case("{s4}", RISCV::X20)
7722                                .Case("{s5}", RISCV::X21)
7723                                .Case("{s6}", RISCV::X22)
7724                                .Case("{s7}", RISCV::X23)
7725                                .Case("{s8}", RISCV::X24)
7726                                .Case("{s9}", RISCV::X25)
7727                                .Case("{s10}", RISCV::X26)
7728                                .Case("{s11}", RISCV::X27)
7729                                .Case("{t3}", RISCV::X28)
7730                                .Case("{t4}", RISCV::X29)
7731                                .Case("{t5}", RISCV::X30)
7732                                .Case("{t6}", RISCV::X31)
7733                                .Default(RISCV::NoRegister);
7734   if (XRegFromAlias != RISCV::NoRegister)
7735     return std::make_pair(XRegFromAlias, &RISCV::GPRRegClass);
7736 
7737   // Since TargetLowering::getRegForInlineAsmConstraint uses the name of the
7738   // TableGen record rather than the AsmName to choose registers for InlineAsm
7739   // constraints, plus we want to match those names to the widest floating point
7740   // register type available, manually select floating point registers here.
7741   //
7742   // The second case is the ABI name of the register, so that frontends can also
7743   // use the ABI names in register constraint lists.
7744   if (Subtarget.hasStdExtF()) {
7745     unsigned FReg = StringSwitch<unsigned>(Constraint.lower())
7746                         .Cases("{f0}", "{ft0}", RISCV::F0_F)
7747                         .Cases("{f1}", "{ft1}", RISCV::F1_F)
7748                         .Cases("{f2}", "{ft2}", RISCV::F2_F)
7749                         .Cases("{f3}", "{ft3}", RISCV::F3_F)
7750                         .Cases("{f4}", "{ft4}", RISCV::F4_F)
7751                         .Cases("{f5}", "{ft5}", RISCV::F5_F)
7752                         .Cases("{f6}", "{ft6}", RISCV::F6_F)
7753                         .Cases("{f7}", "{ft7}", RISCV::F7_F)
7754                         .Cases("{f8}", "{fs0}", RISCV::F8_F)
7755                         .Cases("{f9}", "{fs1}", RISCV::F9_F)
7756                         .Cases("{f10}", "{fa0}", RISCV::F10_F)
7757                         .Cases("{f11}", "{fa1}", RISCV::F11_F)
7758                         .Cases("{f12}", "{fa2}", RISCV::F12_F)
7759                         .Cases("{f13}", "{fa3}", RISCV::F13_F)
7760                         .Cases("{f14}", "{fa4}", RISCV::F14_F)
7761                         .Cases("{f15}", "{fa5}", RISCV::F15_F)
7762                         .Cases("{f16}", "{fa6}", RISCV::F16_F)
7763                         .Cases("{f17}", "{fa7}", RISCV::F17_F)
7764                         .Cases("{f18}", "{fs2}", RISCV::F18_F)
7765                         .Cases("{f19}", "{fs3}", RISCV::F19_F)
7766                         .Cases("{f20}", "{fs4}", RISCV::F20_F)
7767                         .Cases("{f21}", "{fs5}", RISCV::F21_F)
7768                         .Cases("{f22}", "{fs6}", RISCV::F22_F)
7769                         .Cases("{f23}", "{fs7}", RISCV::F23_F)
7770                         .Cases("{f24}", "{fs8}", RISCV::F24_F)
7771                         .Cases("{f25}", "{fs9}", RISCV::F25_F)
7772                         .Cases("{f26}", "{fs10}", RISCV::F26_F)
7773                         .Cases("{f27}", "{fs11}", RISCV::F27_F)
7774                         .Cases("{f28}", "{ft8}", RISCV::F28_F)
7775                         .Cases("{f29}", "{ft9}", RISCV::F29_F)
7776                         .Cases("{f30}", "{ft10}", RISCV::F30_F)
7777                         .Cases("{f31}", "{ft11}", RISCV::F31_F)
7778                         .Default(RISCV::NoRegister);
7779     if (FReg != RISCV::NoRegister) {
7780       assert(RISCV::F0_F <= FReg && FReg <= RISCV::F31_F && "Unknown fp-reg");
7781       if (Subtarget.hasStdExtD()) {
7782         unsigned RegNo = FReg - RISCV::F0_F;
7783         unsigned DReg = RISCV::F0_D + RegNo;
7784         return std::make_pair(DReg, &RISCV::FPR64RegClass);
7785       }
7786       return std::make_pair(FReg, &RISCV::FPR32RegClass);
7787     }
7788   }
7789 
7790   if (Subtarget.hasStdExtV()) {
7791     Register VReg = StringSwitch<Register>(Constraint.lower())
7792                         .Case("{v0}", RISCV::V0)
7793                         .Case("{v1}", RISCV::V1)
7794                         .Case("{v2}", RISCV::V2)
7795                         .Case("{v3}", RISCV::V3)
7796                         .Case("{v4}", RISCV::V4)
7797                         .Case("{v5}", RISCV::V5)
7798                         .Case("{v6}", RISCV::V6)
7799                         .Case("{v7}", RISCV::V7)
7800                         .Case("{v8}", RISCV::V8)
7801                         .Case("{v9}", RISCV::V9)
7802                         .Case("{v10}", RISCV::V10)
7803                         .Case("{v11}", RISCV::V11)
7804                         .Case("{v12}", RISCV::V12)
7805                         .Case("{v13}", RISCV::V13)
7806                         .Case("{v14}", RISCV::V14)
7807                         .Case("{v15}", RISCV::V15)
7808                         .Case("{v16}", RISCV::V16)
7809                         .Case("{v17}", RISCV::V17)
7810                         .Case("{v18}", RISCV::V18)
7811                         .Case("{v19}", RISCV::V19)
7812                         .Case("{v20}", RISCV::V20)
7813                         .Case("{v21}", RISCV::V21)
7814                         .Case("{v22}", RISCV::V22)
7815                         .Case("{v23}", RISCV::V23)
7816                         .Case("{v24}", RISCV::V24)
7817                         .Case("{v25}", RISCV::V25)
7818                         .Case("{v26}", RISCV::V26)
7819                         .Case("{v27}", RISCV::V27)
7820                         .Case("{v28}", RISCV::V28)
7821                         .Case("{v29}", RISCV::V29)
7822                         .Case("{v30}", RISCV::V30)
7823                         .Case("{v31}", RISCV::V31)
7824                         .Default(RISCV::NoRegister);
7825     if (VReg != RISCV::NoRegister) {
7826       if (TRI->isTypeLegalForClass(RISCV::VMRegClass, VT.SimpleTy))
7827         return std::make_pair(VReg, &RISCV::VMRegClass);
7828       if (TRI->isTypeLegalForClass(RISCV::VRRegClass, VT.SimpleTy))
7829         return std::make_pair(VReg, &RISCV::VRRegClass);
7830       for (const auto *RC :
7831            {&RISCV::VRM2RegClass, &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) {
7832         if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy)) {
7833           VReg = TRI->getMatchingSuperReg(VReg, RISCV::sub_vrm1_0, RC);
7834           return std::make_pair(VReg, RC);
7835         }
7836       }
7837     }
7838   }
7839 
7840   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
7841 }
7842 
7843 unsigned
7844 RISCVTargetLowering::getInlineAsmMemConstraint(StringRef ConstraintCode) const {
7845   // Currently only support length 1 constraints.
7846   if (ConstraintCode.size() == 1) {
7847     switch (ConstraintCode[0]) {
7848     case 'A':
7849       return InlineAsm::Constraint_A;
7850     default:
7851       break;
7852     }
7853   }
7854 
7855   return TargetLowering::getInlineAsmMemConstraint(ConstraintCode);
7856 }
7857 
7858 void RISCVTargetLowering::LowerAsmOperandForConstraint(
7859     SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops,
7860     SelectionDAG &DAG) const {
7861   // Currently only support length 1 constraints.
7862   if (Constraint.length() == 1) {
7863     switch (Constraint[0]) {
7864     case 'I':
7865       // Validate & create a 12-bit signed immediate operand.
7866       if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
7867         uint64_t CVal = C->getSExtValue();
7868         if (isInt<12>(CVal))
7869           Ops.push_back(
7870               DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT()));
7871       }
7872       return;
7873     case 'J':
7874       // Validate & create an integer zero operand.
7875       if (auto *C = dyn_cast<ConstantSDNode>(Op))
7876         if (C->getZExtValue() == 0)
7877           Ops.push_back(
7878               DAG.getTargetConstant(0, SDLoc(Op), Subtarget.getXLenVT()));
7879       return;
7880     case 'K':
7881       // Validate & create a 5-bit unsigned immediate operand.
7882       if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
7883         uint64_t CVal = C->getZExtValue();
7884         if (isUInt<5>(CVal))
7885           Ops.push_back(
7886               DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT()));
7887       }
7888       return;
7889     default:
7890       break;
7891     }
7892   }
7893   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
7894 }
7895 
7896 Instruction *RISCVTargetLowering::emitLeadingFence(IRBuilder<> &Builder,
7897                                                    Instruction *Inst,
7898                                                    AtomicOrdering Ord) const {
7899   if (isa<LoadInst>(Inst) && Ord == AtomicOrdering::SequentiallyConsistent)
7900     return Builder.CreateFence(Ord);
7901   if (isa<StoreInst>(Inst) && isReleaseOrStronger(Ord))
7902     return Builder.CreateFence(AtomicOrdering::Release);
7903   return nullptr;
7904 }
7905 
7906 Instruction *RISCVTargetLowering::emitTrailingFence(IRBuilder<> &Builder,
7907                                                     Instruction *Inst,
7908                                                     AtomicOrdering Ord) const {
7909   if (isa<LoadInst>(Inst) && isAcquireOrStronger(Ord))
7910     return Builder.CreateFence(AtomicOrdering::Acquire);
7911   return nullptr;
7912 }
7913 
7914 TargetLowering::AtomicExpansionKind
7915 RISCVTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
7916   // atomicrmw {fadd,fsub} must be expanded to use compare-exchange, as floating
7917   // point operations can't be used in an lr/sc sequence without breaking the
7918   // forward-progress guarantee.
7919   if (AI->isFloatingPointOperation())
7920     return AtomicExpansionKind::CmpXChg;
7921 
7922   unsigned Size = AI->getType()->getPrimitiveSizeInBits();
7923   if (Size == 8 || Size == 16)
7924     return AtomicExpansionKind::MaskedIntrinsic;
7925   return AtomicExpansionKind::None;
7926 }
7927 
7928 static Intrinsic::ID
7929 getIntrinsicForMaskedAtomicRMWBinOp(unsigned XLen, AtomicRMWInst::BinOp BinOp) {
7930   if (XLen == 32) {
7931     switch (BinOp) {
7932     default:
7933       llvm_unreachable("Unexpected AtomicRMW BinOp");
7934     case AtomicRMWInst::Xchg:
7935       return Intrinsic::riscv_masked_atomicrmw_xchg_i32;
7936     case AtomicRMWInst::Add:
7937       return Intrinsic::riscv_masked_atomicrmw_add_i32;
7938     case AtomicRMWInst::Sub:
7939       return Intrinsic::riscv_masked_atomicrmw_sub_i32;
7940     case AtomicRMWInst::Nand:
7941       return Intrinsic::riscv_masked_atomicrmw_nand_i32;
7942     case AtomicRMWInst::Max:
7943       return Intrinsic::riscv_masked_atomicrmw_max_i32;
7944     case AtomicRMWInst::Min:
7945       return Intrinsic::riscv_masked_atomicrmw_min_i32;
7946     case AtomicRMWInst::UMax:
7947       return Intrinsic::riscv_masked_atomicrmw_umax_i32;
7948     case AtomicRMWInst::UMin:
7949       return Intrinsic::riscv_masked_atomicrmw_umin_i32;
7950     }
7951   }
7952 
7953   if (XLen == 64) {
7954     switch (BinOp) {
7955     default:
7956       llvm_unreachable("Unexpected AtomicRMW BinOp");
7957     case AtomicRMWInst::Xchg:
7958       return Intrinsic::riscv_masked_atomicrmw_xchg_i64;
7959     case AtomicRMWInst::Add:
7960       return Intrinsic::riscv_masked_atomicrmw_add_i64;
7961     case AtomicRMWInst::Sub:
7962       return Intrinsic::riscv_masked_atomicrmw_sub_i64;
7963     case AtomicRMWInst::Nand:
7964       return Intrinsic::riscv_masked_atomicrmw_nand_i64;
7965     case AtomicRMWInst::Max:
7966       return Intrinsic::riscv_masked_atomicrmw_max_i64;
7967     case AtomicRMWInst::Min:
7968       return Intrinsic::riscv_masked_atomicrmw_min_i64;
7969     case AtomicRMWInst::UMax:
7970       return Intrinsic::riscv_masked_atomicrmw_umax_i64;
7971     case AtomicRMWInst::UMin:
7972       return Intrinsic::riscv_masked_atomicrmw_umin_i64;
7973     }
7974   }
7975 
7976   llvm_unreachable("Unexpected XLen\n");
7977 }
7978 
7979 Value *RISCVTargetLowering::emitMaskedAtomicRMWIntrinsic(
7980     IRBuilder<> &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr,
7981     Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const {
7982   unsigned XLen = Subtarget.getXLen();
7983   Value *Ordering =
7984       Builder.getIntN(XLen, static_cast<uint64_t>(AI->getOrdering()));
7985   Type *Tys[] = {AlignedAddr->getType()};
7986   Function *LrwOpScwLoop = Intrinsic::getDeclaration(
7987       AI->getModule(),
7988       getIntrinsicForMaskedAtomicRMWBinOp(XLen, AI->getOperation()), Tys);
7989 
7990   if (XLen == 64) {
7991     Incr = Builder.CreateSExt(Incr, Builder.getInt64Ty());
7992     Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty());
7993     ShiftAmt = Builder.CreateSExt(ShiftAmt, Builder.getInt64Ty());
7994   }
7995 
7996   Value *Result;
7997 
7998   // Must pass the shift amount needed to sign extend the loaded value prior
7999   // to performing a signed comparison for min/max. ShiftAmt is the number of
8000   // bits to shift the value into position. Pass XLen-ShiftAmt-ValWidth, which
8001   // is the number of bits to left+right shift the value in order to
8002   // sign-extend.
8003   if (AI->getOperation() == AtomicRMWInst::Min ||
8004       AI->getOperation() == AtomicRMWInst::Max) {
8005     const DataLayout &DL = AI->getModule()->getDataLayout();
8006     unsigned ValWidth =
8007         DL.getTypeStoreSizeInBits(AI->getValOperand()->getType());
8008     Value *SextShamt =
8009         Builder.CreateSub(Builder.getIntN(XLen, XLen - ValWidth), ShiftAmt);
8010     Result = Builder.CreateCall(LrwOpScwLoop,
8011                                 {AlignedAddr, Incr, Mask, SextShamt, Ordering});
8012   } else {
8013     Result =
8014         Builder.CreateCall(LrwOpScwLoop, {AlignedAddr, Incr, Mask, Ordering});
8015   }
8016 
8017   if (XLen == 64)
8018     Result = Builder.CreateTrunc(Result, Builder.getInt32Ty());
8019   return Result;
8020 }
8021 
8022 TargetLowering::AtomicExpansionKind
8023 RISCVTargetLowering::shouldExpandAtomicCmpXchgInIR(
8024     AtomicCmpXchgInst *CI) const {
8025   unsigned Size = CI->getCompareOperand()->getType()->getPrimitiveSizeInBits();
8026   if (Size == 8 || Size == 16)
8027     return AtomicExpansionKind::MaskedIntrinsic;
8028   return AtomicExpansionKind::None;
8029 }
8030 
8031 Value *RISCVTargetLowering::emitMaskedAtomicCmpXchgIntrinsic(
8032     IRBuilder<> &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr,
8033     Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const {
8034   unsigned XLen = Subtarget.getXLen();
8035   Value *Ordering = Builder.getIntN(XLen, static_cast<uint64_t>(Ord));
8036   Intrinsic::ID CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i32;
8037   if (XLen == 64) {
8038     CmpVal = Builder.CreateSExt(CmpVal, Builder.getInt64Ty());
8039     NewVal = Builder.CreateSExt(NewVal, Builder.getInt64Ty());
8040     Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty());
8041     CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i64;
8042   }
8043   Type *Tys[] = {AlignedAddr->getType()};
8044   Function *MaskedCmpXchg =
8045       Intrinsic::getDeclaration(CI->getModule(), CmpXchgIntrID, Tys);
8046   Value *Result = Builder.CreateCall(
8047       MaskedCmpXchg, {AlignedAddr, CmpVal, NewVal, Mask, Ordering});
8048   if (XLen == 64)
8049     Result = Builder.CreateTrunc(Result, Builder.getInt32Ty());
8050   return Result;
8051 }
8052 
8053 bool RISCVTargetLowering::shouldRemoveExtendFromGSIndex(EVT VT) const {
8054   return false;
8055 }
8056 
8057 bool RISCVTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF,
8058                                                      EVT VT) const {
8059   VT = VT.getScalarType();
8060 
8061   if (!VT.isSimple())
8062     return false;
8063 
8064   switch (VT.getSimpleVT().SimpleTy) {
8065   case MVT::f16:
8066     return Subtarget.hasStdExtZfh();
8067   case MVT::f32:
8068     return Subtarget.hasStdExtF();
8069   case MVT::f64:
8070     return Subtarget.hasStdExtD();
8071   default:
8072     break;
8073   }
8074 
8075   return false;
8076 }
8077 
8078 Register RISCVTargetLowering::getExceptionPointerRegister(
8079     const Constant *PersonalityFn) const {
8080   return RISCV::X10;
8081 }
8082 
8083 Register RISCVTargetLowering::getExceptionSelectorRegister(
8084     const Constant *PersonalityFn) const {
8085   return RISCV::X11;
8086 }
8087 
8088 bool RISCVTargetLowering::shouldExtendTypeInLibCall(EVT Type) const {
8089   // Return false to suppress the unnecessary extensions if the LibCall
8090   // arguments or return value is f32 type for LP64 ABI.
8091   RISCVABI::ABI ABI = Subtarget.getTargetABI();
8092   if (ABI == RISCVABI::ABI_LP64 && (Type == MVT::f32))
8093     return false;
8094 
8095   return true;
8096 }
8097 
8098 bool RISCVTargetLowering::shouldSignExtendTypeInLibCall(EVT Type, bool IsSigned) const {
8099   if (Subtarget.is64Bit() && Type == MVT::i32)
8100     return true;
8101 
8102   return IsSigned;
8103 }
8104 
8105 bool RISCVTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT,
8106                                                  SDValue C) const {
8107   // Check integral scalar types.
8108   if (VT.isScalarInteger()) {
8109     // Omit the optimization if the sub target has the M extension and the data
8110     // size exceeds XLen.
8111     if (Subtarget.hasStdExtM() && VT.getSizeInBits() > Subtarget.getXLen())
8112       return false;
8113     if (auto *ConstNode = dyn_cast<ConstantSDNode>(C.getNode())) {
8114       // Break the MUL to a SLLI and an ADD/SUB.
8115       const APInt &Imm = ConstNode->getAPIntValue();
8116       if ((Imm + 1).isPowerOf2() || (Imm - 1).isPowerOf2() ||
8117           (1 - Imm).isPowerOf2() || (-1 - Imm).isPowerOf2())
8118         return true;
8119       // Omit the following optimization if the sub target has the M extension
8120       // and the data size >= XLen.
8121       if (Subtarget.hasStdExtM() && VT.getSizeInBits() >= Subtarget.getXLen())
8122         return false;
8123       // Break the MUL to two SLLI instructions and an ADD/SUB, if Imm needs
8124       // a pair of LUI/ADDI.
8125       if (!Imm.isSignedIntN(12) && Imm.countTrailingZeros() < 12) {
8126         APInt ImmS = Imm.ashr(Imm.countTrailingZeros());
8127         if ((ImmS + 1).isPowerOf2() || (ImmS - 1).isPowerOf2() ||
8128             (1 - ImmS).isPowerOf2())
8129         return true;
8130       }
8131     }
8132   }
8133 
8134   return false;
8135 }
8136 
8137 bool RISCVTargetLowering::allowsMisalignedMemoryAccesses(
8138     EVT VT, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags,
8139     bool *Fast) const {
8140   if (!VT.isScalableVector())
8141     return false;
8142 
8143   EVT ElemVT = VT.getVectorElementType();
8144   if (Alignment >= ElemVT.getStoreSize()) {
8145     if (Fast)
8146       *Fast = true;
8147     return true;
8148   }
8149 
8150   return false;
8151 }
8152 
8153 bool RISCVTargetLowering::splitValueIntoRegisterParts(
8154     SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts,
8155     unsigned NumParts, MVT PartVT, Optional<CallingConv::ID> CC) const {
8156   bool IsABIRegCopy = CC.hasValue();
8157   EVT ValueVT = Val.getValueType();
8158   if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) {
8159     // Cast the f16 to i16, extend to i32, pad with ones to make a float nan,
8160     // and cast to f32.
8161     Val = DAG.getNode(ISD::BITCAST, DL, MVT::i16, Val);
8162     Val = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Val);
8163     Val = DAG.getNode(ISD::OR, DL, MVT::i32, Val,
8164                       DAG.getConstant(0xFFFF0000, DL, MVT::i32));
8165     Val = DAG.getNode(ISD::BITCAST, DL, MVT::f32, Val);
8166     Parts[0] = Val;
8167     return true;
8168   }
8169 
8170   if (ValueVT.isScalableVector() && PartVT.isScalableVector()) {
8171     LLVMContext &Context = *DAG.getContext();
8172     EVT ValueEltVT = ValueVT.getVectorElementType();
8173     EVT PartEltVT = PartVT.getVectorElementType();
8174     unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize();
8175     unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize();
8176     if (PartVTBitSize % ValueVTBitSize == 0) {
8177       // If the element types are different, bitcast to the same element type of
8178       // PartVT first.
8179       if (ValueEltVT != PartEltVT) {
8180         unsigned Count = ValueVTBitSize / PartEltVT.getSizeInBits();
8181         assert(Count != 0 && "The number of element should not be zero.");
8182         EVT SameEltTypeVT =
8183             EVT::getVectorVT(Context, PartEltVT, Count, /*IsScalable=*/true);
8184         Val = DAG.getNode(ISD::BITCAST, DL, SameEltTypeVT, Val);
8185       }
8186       Val = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT),
8187                         Val, DAG.getConstant(0, DL, Subtarget.getXLenVT()));
8188       Parts[0] = Val;
8189       return true;
8190     }
8191   }
8192   return false;
8193 }
8194 
8195 SDValue RISCVTargetLowering::joinRegisterPartsIntoValue(
8196     SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts,
8197     MVT PartVT, EVT ValueVT, Optional<CallingConv::ID> CC) const {
8198   bool IsABIRegCopy = CC.hasValue();
8199   if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) {
8200     SDValue Val = Parts[0];
8201 
8202     // Cast the f32 to i32, truncate to i16, and cast back to f16.
8203     Val = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Val);
8204     Val = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Val);
8205     Val = DAG.getNode(ISD::BITCAST, DL, MVT::f16, Val);
8206     return Val;
8207   }
8208 
8209   if (ValueVT.isScalableVector() && PartVT.isScalableVector()) {
8210     LLVMContext &Context = *DAG.getContext();
8211     SDValue Val = Parts[0];
8212     EVT ValueEltVT = ValueVT.getVectorElementType();
8213     EVT PartEltVT = PartVT.getVectorElementType();
8214     unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize();
8215     unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize();
8216     if (PartVTBitSize % ValueVTBitSize == 0) {
8217       EVT SameEltTypeVT = ValueVT;
8218       // If the element types are different, convert it to the same element type
8219       // of PartVT.
8220       if (ValueEltVT != PartEltVT) {
8221         unsigned Count = ValueVTBitSize / PartEltVT.getSizeInBits();
8222         assert(Count != 0 && "The number of element should not be zero.");
8223         SameEltTypeVT =
8224             EVT::getVectorVT(Context, PartEltVT, Count, /*IsScalable=*/true);
8225       }
8226       Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SameEltTypeVT, Val,
8227                         DAG.getConstant(0, DL, Subtarget.getXLenVT()));
8228       if (ValueEltVT != PartEltVT)
8229         Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
8230       return Val;
8231     }
8232   }
8233   return SDValue();
8234 }
8235 
8236 #define GET_REGISTER_MATCHER
8237 #include "RISCVGenAsmMatcher.inc"
8238 
8239 Register
8240 RISCVTargetLowering::getRegisterByName(const char *RegName, LLT VT,
8241                                        const MachineFunction &MF) const {
8242   Register Reg = MatchRegisterAltName(RegName);
8243   if (Reg == RISCV::NoRegister)
8244     Reg = MatchRegisterName(RegName);
8245   if (Reg == RISCV::NoRegister)
8246     report_fatal_error(
8247         Twine("Invalid register name \"" + StringRef(RegName) + "\"."));
8248   BitVector ReservedRegs = Subtarget.getRegisterInfo()->getReservedRegs(MF);
8249   if (!ReservedRegs.test(Reg) && !Subtarget.isRegisterReservedByUser(Reg))
8250     report_fatal_error(Twine("Trying to obtain non-reserved register \"" +
8251                              StringRef(RegName) + "\"."));
8252   return Reg;
8253 }
8254 
8255 namespace llvm {
8256 namespace RISCVVIntrinsicsTable {
8257 
8258 #define GET_RISCVVIntrinsicsTable_IMPL
8259 #include "RISCVGenSearchableTables.inc"
8260 
8261 } // namespace RISCVVIntrinsicsTable
8262 
8263 } // namespace llvm
8264