1 //===-- RISCVISelLowering.cpp - RISCV DAG Lowering Implementation --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the interfaces that RISCV uses to lower LLVM code into a 10 // selection DAG. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "RISCVISelLowering.h" 15 #include "RISCV.h" 16 #include "RISCVMachineFunctionInfo.h" 17 #include "RISCVRegisterInfo.h" 18 #include "RISCVSubtarget.h" 19 #include "RISCVTargetMachine.h" 20 #include "llvm/ADT/SmallSet.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/CodeGen/CallingConvLower.h" 23 #include "llvm/CodeGen/MachineFrameInfo.h" 24 #include "llvm/CodeGen/MachineFunction.h" 25 #include "llvm/CodeGen/MachineInstrBuilder.h" 26 #include "llvm/CodeGen/MachineRegisterInfo.h" 27 #include "llvm/CodeGen/SelectionDAGISel.h" 28 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 29 #include "llvm/CodeGen/ValueTypes.h" 30 #include "llvm/IR/DiagnosticInfo.h" 31 #include "llvm/IR/DiagnosticPrinter.h" 32 #include "llvm/Support/Debug.h" 33 #include "llvm/Support/ErrorHandling.h" 34 #include "llvm/Support/raw_ostream.h" 35 36 using namespace llvm; 37 38 #define DEBUG_TYPE "riscv-lower" 39 40 STATISTIC(NumTailCalls, "Number of tail calls"); 41 42 RISCVTargetLowering::RISCVTargetLowering(const TargetMachine &TM, 43 const RISCVSubtarget &STI) 44 : TargetLowering(TM), Subtarget(STI) { 45 46 if (Subtarget.isRV32E()) 47 report_fatal_error("Codegen not yet implemented for RV32E"); 48 49 RISCVABI::ABI ABI = Subtarget.getTargetABI(); 50 assert(ABI != RISCVABI::ABI_Unknown && "Improperly initialised target ABI"); 51 52 switch (ABI) { 53 default: 54 report_fatal_error("Don't know how to lower this ABI"); 55 case RISCVABI::ABI_ILP32: 56 case RISCVABI::ABI_ILP32F: 57 case RISCVABI::ABI_ILP32D: 58 case RISCVABI::ABI_LP64: 59 case RISCVABI::ABI_LP64F: 60 case RISCVABI::ABI_LP64D: 61 break; 62 } 63 64 MVT XLenVT = Subtarget.getXLenVT(); 65 66 // Set up the register classes. 67 addRegisterClass(XLenVT, &RISCV::GPRRegClass); 68 69 if (Subtarget.hasStdExtF()) 70 addRegisterClass(MVT::f32, &RISCV::FPR32RegClass); 71 if (Subtarget.hasStdExtD()) 72 addRegisterClass(MVT::f64, &RISCV::FPR64RegClass); 73 74 // Compute derived properties from the register classes. 75 computeRegisterProperties(STI.getRegisterInfo()); 76 77 setStackPointerRegisterToSaveRestore(RISCV::X2); 78 79 for (auto N : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}) 80 setLoadExtAction(N, XLenVT, MVT::i1, Promote); 81 82 // TODO: add all necessary setOperationAction calls. 83 setOperationAction(ISD::DYNAMIC_STACKALLOC, XLenVT, Expand); 84 85 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 86 setOperationAction(ISD::BR_CC, XLenVT, Expand); 87 setOperationAction(ISD::SELECT, XLenVT, Custom); 88 setOperationAction(ISD::SELECT_CC, XLenVT, Expand); 89 90 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); 91 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); 92 93 setOperationAction(ISD::VASTART, MVT::Other, Custom); 94 setOperationAction(ISD::VAARG, MVT::Other, Expand); 95 setOperationAction(ISD::VACOPY, MVT::Other, Expand); 96 setOperationAction(ISD::VAEND, MVT::Other, Expand); 97 98 for (auto VT : {MVT::i1, MVT::i8, MVT::i16}) 99 setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand); 100 101 if (Subtarget.is64Bit()) { 102 setOperationAction(ISD::SHL, MVT::i32, Custom); 103 setOperationAction(ISD::SRA, MVT::i32, Custom); 104 setOperationAction(ISD::SRL, MVT::i32, Custom); 105 } 106 107 if (!Subtarget.hasStdExtM()) { 108 setOperationAction(ISD::MUL, XLenVT, Expand); 109 setOperationAction(ISD::MULHS, XLenVT, Expand); 110 setOperationAction(ISD::MULHU, XLenVT, Expand); 111 setOperationAction(ISD::SDIV, XLenVT, Expand); 112 setOperationAction(ISD::UDIV, XLenVT, Expand); 113 setOperationAction(ISD::SREM, XLenVT, Expand); 114 setOperationAction(ISD::UREM, XLenVT, Expand); 115 } 116 117 if (Subtarget.is64Bit() && Subtarget.hasStdExtM()) { 118 setOperationAction(ISD::SDIV, MVT::i32, Custom); 119 setOperationAction(ISD::UDIV, MVT::i32, Custom); 120 setOperationAction(ISD::UREM, MVT::i32, Custom); 121 } 122 123 setOperationAction(ISD::SDIVREM, XLenVT, Expand); 124 setOperationAction(ISD::UDIVREM, XLenVT, Expand); 125 setOperationAction(ISD::SMUL_LOHI, XLenVT, Expand); 126 setOperationAction(ISD::UMUL_LOHI, XLenVT, Expand); 127 128 setOperationAction(ISD::SHL_PARTS, XLenVT, Expand); 129 setOperationAction(ISD::SRL_PARTS, XLenVT, Expand); 130 setOperationAction(ISD::SRA_PARTS, XLenVT, Expand); 131 132 setOperationAction(ISD::ROTL, XLenVT, Expand); 133 setOperationAction(ISD::ROTR, XLenVT, Expand); 134 setOperationAction(ISD::BSWAP, XLenVT, Expand); 135 setOperationAction(ISD::CTTZ, XLenVT, Expand); 136 setOperationAction(ISD::CTLZ, XLenVT, Expand); 137 setOperationAction(ISD::CTPOP, XLenVT, Expand); 138 139 ISD::CondCode FPCCToExtend[] = { 140 ISD::SETOGT, ISD::SETOGE, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT, 141 ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUNE, ISD::SETGT, 142 ISD::SETGE, ISD::SETNE}; 143 144 ISD::NodeType FPOpToExtend[] = { 145 ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, ISD::FREM}; 146 147 if (Subtarget.hasStdExtF()) { 148 setOperationAction(ISD::FMINNUM, MVT::f32, Legal); 149 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); 150 for (auto CC : FPCCToExtend) 151 setCondCodeAction(CC, MVT::f32, Expand); 152 setOperationAction(ISD::SELECT_CC, MVT::f32, Expand); 153 setOperationAction(ISD::SELECT, MVT::f32, Custom); 154 setOperationAction(ISD::BR_CC, MVT::f32, Expand); 155 for (auto Op : FPOpToExtend) 156 setOperationAction(Op, MVT::f32, Expand); 157 } 158 159 if (Subtarget.hasStdExtF() && Subtarget.is64Bit()) 160 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 161 162 if (Subtarget.hasStdExtD()) { 163 setOperationAction(ISD::FMINNUM, MVT::f64, Legal); 164 setOperationAction(ISD::FMAXNUM, MVT::f64, Legal); 165 for (auto CC : FPCCToExtend) 166 setCondCodeAction(CC, MVT::f64, Expand); 167 setOperationAction(ISD::SELECT_CC, MVT::f64, Expand); 168 setOperationAction(ISD::SELECT, MVT::f64, Custom); 169 setOperationAction(ISD::BR_CC, MVT::f64, Expand); 170 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 171 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 172 for (auto Op : FPOpToExtend) 173 setOperationAction(Op, MVT::f64, Expand); 174 } 175 176 setOperationAction(ISD::GlobalAddress, XLenVT, Custom); 177 setOperationAction(ISD::BlockAddress, XLenVT, Custom); 178 setOperationAction(ISD::ConstantPool, XLenVT, Custom); 179 180 if (Subtarget.hasStdExtA()) { 181 setMaxAtomicSizeInBitsSupported(Subtarget.getXLen()); 182 setMinCmpXchgSizeInBits(32); 183 } else { 184 setMaxAtomicSizeInBitsSupported(0); 185 } 186 187 setBooleanContents(ZeroOrOneBooleanContent); 188 189 // Function alignments (log2). 190 unsigned FunctionAlignment = Subtarget.hasStdExtC() ? 1 : 2; 191 setMinFunctionAlignment(FunctionAlignment); 192 setPrefFunctionAlignment(FunctionAlignment); 193 194 // Effectively disable jump table generation. 195 setMinimumJumpTableEntries(INT_MAX); 196 } 197 198 EVT RISCVTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &, 199 EVT VT) const { 200 if (!VT.isVector()) 201 return getPointerTy(DL); 202 return VT.changeVectorElementTypeToInteger(); 203 } 204 205 bool RISCVTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 206 const CallInst &I, 207 MachineFunction &MF, 208 unsigned Intrinsic) const { 209 switch (Intrinsic) { 210 default: 211 return false; 212 case Intrinsic::riscv_masked_atomicrmw_xchg_i32: 213 case Intrinsic::riscv_masked_atomicrmw_add_i32: 214 case Intrinsic::riscv_masked_atomicrmw_sub_i32: 215 case Intrinsic::riscv_masked_atomicrmw_nand_i32: 216 case Intrinsic::riscv_masked_atomicrmw_max_i32: 217 case Intrinsic::riscv_masked_atomicrmw_min_i32: 218 case Intrinsic::riscv_masked_atomicrmw_umax_i32: 219 case Intrinsic::riscv_masked_atomicrmw_umin_i32: 220 case Intrinsic::riscv_masked_cmpxchg_i32: 221 PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType()); 222 Info.opc = ISD::INTRINSIC_W_CHAIN; 223 Info.memVT = MVT::getVT(PtrTy->getElementType()); 224 Info.ptrVal = I.getArgOperand(0); 225 Info.offset = 0; 226 Info.align = 4; 227 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore | 228 MachineMemOperand::MOVolatile; 229 return true; 230 } 231 } 232 233 bool RISCVTargetLowering::isLegalAddressingMode(const DataLayout &DL, 234 const AddrMode &AM, Type *Ty, 235 unsigned AS, 236 Instruction *I) const { 237 // No global is ever allowed as a base. 238 if (AM.BaseGV) 239 return false; 240 241 // Require a 12-bit signed offset. 242 if (!isInt<12>(AM.BaseOffs)) 243 return false; 244 245 switch (AM.Scale) { 246 case 0: // "r+i" or just "i", depending on HasBaseReg. 247 break; 248 case 1: 249 if (!AM.HasBaseReg) // allow "r+i". 250 break; 251 return false; // disallow "r+r" or "r+r+i". 252 default: 253 return false; 254 } 255 256 return true; 257 } 258 259 bool RISCVTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 260 return isInt<12>(Imm); 261 } 262 263 bool RISCVTargetLowering::isLegalAddImmediate(int64_t Imm) const { 264 return isInt<12>(Imm); 265 } 266 267 // On RV32, 64-bit integers are split into their high and low parts and held 268 // in two different registers, so the trunc is free since the low register can 269 // just be used. 270 bool RISCVTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const { 271 if (Subtarget.is64Bit() || !SrcTy->isIntegerTy() || !DstTy->isIntegerTy()) 272 return false; 273 unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); 274 unsigned DestBits = DstTy->getPrimitiveSizeInBits(); 275 return (SrcBits == 64 && DestBits == 32); 276 } 277 278 bool RISCVTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const { 279 if (Subtarget.is64Bit() || SrcVT.isVector() || DstVT.isVector() || 280 !SrcVT.isInteger() || !DstVT.isInteger()) 281 return false; 282 unsigned SrcBits = SrcVT.getSizeInBits(); 283 unsigned DestBits = DstVT.getSizeInBits(); 284 return (SrcBits == 64 && DestBits == 32); 285 } 286 287 bool RISCVTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 288 // Zexts are free if they can be combined with a load. 289 if (auto *LD = dyn_cast<LoadSDNode>(Val)) { 290 EVT MemVT = LD->getMemoryVT(); 291 if ((MemVT == MVT::i8 || MemVT == MVT::i16 || 292 (Subtarget.is64Bit() && MemVT == MVT::i32)) && 293 (LD->getExtensionType() == ISD::NON_EXTLOAD || 294 LD->getExtensionType() == ISD::ZEXTLOAD)) 295 return true; 296 } 297 298 return TargetLowering::isZExtFree(Val, VT2); 299 } 300 301 bool RISCVTargetLowering::isSExtCheaperThanZExt(EVT SrcVT, EVT DstVT) const { 302 return Subtarget.is64Bit() && SrcVT == MVT::i32 && DstVT == MVT::i64; 303 } 304 305 // Changes the condition code and swaps operands if necessary, so the SetCC 306 // operation matches one of the comparisons supported directly in the RISC-V 307 // ISA. 308 static void normaliseSetCC(SDValue &LHS, SDValue &RHS, ISD::CondCode &CC) { 309 switch (CC) { 310 default: 311 break; 312 case ISD::SETGT: 313 case ISD::SETLE: 314 case ISD::SETUGT: 315 case ISD::SETULE: 316 CC = ISD::getSetCCSwappedOperands(CC); 317 std::swap(LHS, RHS); 318 break; 319 } 320 } 321 322 // Return the RISC-V branch opcode that matches the given DAG integer 323 // condition code. The CondCode must be one of those supported by the RISC-V 324 // ISA (see normaliseSetCC). 325 static unsigned getBranchOpcodeForIntCondCode(ISD::CondCode CC) { 326 switch (CC) { 327 default: 328 llvm_unreachable("Unsupported CondCode"); 329 case ISD::SETEQ: 330 return RISCV::BEQ; 331 case ISD::SETNE: 332 return RISCV::BNE; 333 case ISD::SETLT: 334 return RISCV::BLT; 335 case ISD::SETGE: 336 return RISCV::BGE; 337 case ISD::SETULT: 338 return RISCV::BLTU; 339 case ISD::SETUGE: 340 return RISCV::BGEU; 341 } 342 } 343 344 SDValue RISCVTargetLowering::LowerOperation(SDValue Op, 345 SelectionDAG &DAG) const { 346 switch (Op.getOpcode()) { 347 default: 348 report_fatal_error("unimplemented operand"); 349 case ISD::GlobalAddress: 350 return lowerGlobalAddress(Op, DAG); 351 case ISD::BlockAddress: 352 return lowerBlockAddress(Op, DAG); 353 case ISD::ConstantPool: 354 return lowerConstantPool(Op, DAG); 355 case ISD::SELECT: 356 return lowerSELECT(Op, DAG); 357 case ISD::VASTART: 358 return lowerVASTART(Op, DAG); 359 case ISD::FRAMEADDR: 360 return lowerFRAMEADDR(Op, DAG); 361 case ISD::RETURNADDR: 362 return lowerRETURNADDR(Op, DAG); 363 case ISD::BITCAST: { 364 assert(Subtarget.is64Bit() && Subtarget.hasStdExtF() && 365 "Unexpected custom legalisation"); 366 SDLoc DL(Op); 367 SDValue Op0 = Op.getOperand(0); 368 if (Op.getValueType() != MVT::f32 || Op0.getValueType() != MVT::i32) 369 return SDValue(); 370 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); 371 SDValue FPConv = DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, NewOp0); 372 return FPConv; 373 } 374 } 375 } 376 377 static SDValue getTargetNode(GlobalAddressSDNode *N, SDLoc DL, EVT Ty, 378 SelectionDAG &DAG, unsigned Flags) { 379 return DAG.getTargetGlobalAddress(N->getGlobal(), DL, Ty, 0, Flags); 380 } 381 382 static SDValue getTargetNode(BlockAddressSDNode *N, SDLoc DL, EVT Ty, 383 SelectionDAG &DAG, unsigned Flags) { 384 return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, N->getOffset(), 385 Flags); 386 } 387 388 static SDValue getTargetNode(ConstantPoolSDNode *N, SDLoc DL, EVT Ty, 389 SelectionDAG &DAG, unsigned Flags) { 390 return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlignment(), 391 N->getOffset(), Flags); 392 } 393 394 template <class NodeTy> 395 SDValue RISCVTargetLowering::getAddr(NodeTy *N, SelectionDAG &DAG) const { 396 SDLoc DL(N); 397 EVT Ty = getPointerTy(DAG.getDataLayout()); 398 399 switch (getTargetMachine().getCodeModel()) { 400 default: 401 report_fatal_error("Unsupported code model for lowering"); 402 case CodeModel::Small: { 403 // Generate a sequence for accessing addresses within the first 2 GiB of 404 // address space. This generates the pattern (addi (lui %hi(sym)) %lo(sym)). 405 SDValue AddrHi = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_HI); 406 SDValue AddrLo = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_LO); 407 SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0); 408 return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNHi, AddrLo), 0); 409 } 410 case CodeModel::Medium: { 411 // Generate a sequence for accessing addresses within any 2GiB range within 412 // the address space. This generates the pattern (PseudoLLA sym), which 413 // expands to (addi (auipc %pcrel_hi(sym)) %pcrel_lo(auipc)). 414 SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0); 415 return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0); 416 } 417 } 418 } 419 420 SDValue RISCVTargetLowering::lowerGlobalAddress(SDValue Op, 421 SelectionDAG &DAG) const { 422 SDLoc DL(Op); 423 EVT Ty = Op.getValueType(); 424 GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op); 425 int64_t Offset = N->getOffset(); 426 MVT XLenVT = Subtarget.getXLenVT(); 427 428 if (isPositionIndependent()) 429 report_fatal_error("Unable to lowerGlobalAddress"); 430 431 SDValue Addr = getAddr(N, DAG); 432 433 // In order to maximise the opportunity for common subexpression elimination, 434 // emit a separate ADD node for the global address offset instead of folding 435 // it in the global address node. Later peephole optimisations may choose to 436 // fold it back in when profitable. 437 if (Offset != 0) 438 return DAG.getNode(ISD::ADD, DL, Ty, Addr, 439 DAG.getConstant(Offset, DL, XLenVT)); 440 return Addr; 441 } 442 443 SDValue RISCVTargetLowering::lowerBlockAddress(SDValue Op, 444 SelectionDAG &DAG) const { 445 BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op); 446 447 if (isPositionIndependent()) 448 report_fatal_error("Unable to lowerBlockAddress"); 449 450 return getAddr(N, DAG); 451 } 452 453 SDValue RISCVTargetLowering::lowerConstantPool(SDValue Op, 454 SelectionDAG &DAG) const { 455 ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op); 456 457 if (isPositionIndependent()) 458 report_fatal_error("Unable to lowerConstantPool"); 459 460 return getAddr(N, DAG); 461 } 462 463 SDValue RISCVTargetLowering::lowerSELECT(SDValue Op, SelectionDAG &DAG) const { 464 SDValue CondV = Op.getOperand(0); 465 SDValue TrueV = Op.getOperand(1); 466 SDValue FalseV = Op.getOperand(2); 467 SDLoc DL(Op); 468 MVT XLenVT = Subtarget.getXLenVT(); 469 470 // If the result type is XLenVT and CondV is the output of a SETCC node 471 // which also operated on XLenVT inputs, then merge the SETCC node into the 472 // lowered RISCVISD::SELECT_CC to take advantage of the integer 473 // compare+branch instructions. i.e.: 474 // (select (setcc lhs, rhs, cc), truev, falsev) 475 // -> (riscvisd::select_cc lhs, rhs, cc, truev, falsev) 476 if (Op.getSimpleValueType() == XLenVT && CondV.getOpcode() == ISD::SETCC && 477 CondV.getOperand(0).getSimpleValueType() == XLenVT) { 478 SDValue LHS = CondV.getOperand(0); 479 SDValue RHS = CondV.getOperand(1); 480 auto CC = cast<CondCodeSDNode>(CondV.getOperand(2)); 481 ISD::CondCode CCVal = CC->get(); 482 483 normaliseSetCC(LHS, RHS, CCVal); 484 485 SDValue TargetCC = DAG.getConstant(CCVal, DL, XLenVT); 486 SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue); 487 SDValue Ops[] = {LHS, RHS, TargetCC, TrueV, FalseV}; 488 return DAG.getNode(RISCVISD::SELECT_CC, DL, VTs, Ops); 489 } 490 491 // Otherwise: 492 // (select condv, truev, falsev) 493 // -> (riscvisd::select_cc condv, zero, setne, truev, falsev) 494 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 495 SDValue SetNE = DAG.getConstant(ISD::SETNE, DL, XLenVT); 496 497 SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue); 498 SDValue Ops[] = {CondV, Zero, SetNE, TrueV, FalseV}; 499 500 return DAG.getNode(RISCVISD::SELECT_CC, DL, VTs, Ops); 501 } 502 503 SDValue RISCVTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const { 504 MachineFunction &MF = DAG.getMachineFunction(); 505 RISCVMachineFunctionInfo *FuncInfo = MF.getInfo<RISCVMachineFunctionInfo>(); 506 507 SDLoc DL(Op); 508 SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), 509 getPointerTy(MF.getDataLayout())); 510 511 // vastart just stores the address of the VarArgsFrameIndex slot into the 512 // memory location argument. 513 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 514 return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1), 515 MachinePointerInfo(SV)); 516 } 517 518 SDValue RISCVTargetLowering::lowerFRAMEADDR(SDValue Op, 519 SelectionDAG &DAG) const { 520 const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo(); 521 MachineFunction &MF = DAG.getMachineFunction(); 522 MachineFrameInfo &MFI = MF.getFrameInfo(); 523 MFI.setFrameAddressIsTaken(true); 524 unsigned FrameReg = RI.getFrameRegister(MF); 525 int XLenInBytes = Subtarget.getXLen() / 8; 526 527 EVT VT = Op.getValueType(); 528 SDLoc DL(Op); 529 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, FrameReg, VT); 530 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 531 while (Depth--) { 532 int Offset = -(XLenInBytes * 2); 533 SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr, 534 DAG.getIntPtrConstant(Offset, DL)); 535 FrameAddr = 536 DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo()); 537 } 538 return FrameAddr; 539 } 540 541 SDValue RISCVTargetLowering::lowerRETURNADDR(SDValue Op, 542 SelectionDAG &DAG) const { 543 const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo(); 544 MachineFunction &MF = DAG.getMachineFunction(); 545 MachineFrameInfo &MFI = MF.getFrameInfo(); 546 MFI.setReturnAddressIsTaken(true); 547 MVT XLenVT = Subtarget.getXLenVT(); 548 int XLenInBytes = Subtarget.getXLen() / 8; 549 550 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 551 return SDValue(); 552 553 EVT VT = Op.getValueType(); 554 SDLoc DL(Op); 555 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 556 if (Depth) { 557 int Off = -XLenInBytes; 558 SDValue FrameAddr = lowerFRAMEADDR(Op, DAG); 559 SDValue Offset = DAG.getConstant(Off, DL, VT); 560 return DAG.getLoad(VT, DL, DAG.getEntryNode(), 561 DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset), 562 MachinePointerInfo()); 563 } 564 565 // Return the value of the return address register, marking it an implicit 566 // live-in. 567 unsigned Reg = MF.addLiveIn(RI.getRARegister(), getRegClassFor(XLenVT)); 568 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, XLenVT); 569 } 570 571 // Returns the opcode of the target-specific SDNode that implements the 32-bit 572 // form of the given Opcode. 573 static RISCVISD::NodeType getRISCVWOpcode(unsigned Opcode) { 574 switch (Opcode) { 575 default: 576 llvm_unreachable("Unexpected opcode"); 577 case ISD::SHL: 578 return RISCVISD::SLLW; 579 case ISD::SRA: 580 return RISCVISD::SRAW; 581 case ISD::SRL: 582 return RISCVISD::SRLW; 583 case ISD::SDIV: 584 return RISCVISD::DIVW; 585 case ISD::UDIV: 586 return RISCVISD::DIVUW; 587 case ISD::UREM: 588 return RISCVISD::REMUW; 589 } 590 } 591 592 // Converts the given 32-bit operation to a target-specific SelectionDAG node. 593 // Because i32 isn't a legal type for RV64, these operations would otherwise 594 // be promoted to i64, making it difficult to select the SLLW/DIVUW/.../*W 595 // later one because the fact the operation was originally of type i32 is 596 // lost. 597 static SDValue customLegalizeToWOp(SDNode *N, SelectionDAG &DAG) { 598 SDLoc DL(N); 599 RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode()); 600 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 601 SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 602 SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1); 603 // ReplaceNodeResults requires we maintain the same type for the return value. 604 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes); 605 } 606 607 void RISCVTargetLowering::ReplaceNodeResults(SDNode *N, 608 SmallVectorImpl<SDValue> &Results, 609 SelectionDAG &DAG) const { 610 SDLoc DL(N); 611 switch (N->getOpcode()) { 612 default: 613 llvm_unreachable("Don't know how to custom type legalize this operation!"); 614 case ISD::SHL: 615 case ISD::SRA: 616 case ISD::SRL: 617 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 618 "Unexpected custom legalisation"); 619 if (N->getOperand(1).getOpcode() == ISD::Constant) 620 return; 621 Results.push_back(customLegalizeToWOp(N, DAG)); 622 break; 623 case ISD::SDIV: 624 case ISD::UDIV: 625 case ISD::UREM: 626 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 627 Subtarget.hasStdExtM() && "Unexpected custom legalisation"); 628 if (N->getOperand(0).getOpcode() == ISD::Constant || 629 N->getOperand(1).getOpcode() == ISD::Constant) 630 return; 631 Results.push_back(customLegalizeToWOp(N, DAG)); 632 break; 633 case ISD::BITCAST: { 634 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 635 Subtarget.hasStdExtF() && "Unexpected custom legalisation"); 636 SDLoc DL(N); 637 SDValue Op0 = N->getOperand(0); 638 if (Op0.getValueType() != MVT::f32) 639 return; 640 SDValue FPConv = 641 DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Op0); 642 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, FPConv)); 643 break; 644 } 645 } 646 } 647 648 SDValue RISCVTargetLowering::PerformDAGCombine(SDNode *N, 649 DAGCombinerInfo &DCI) const { 650 SelectionDAG &DAG = DCI.DAG; 651 652 switch (N->getOpcode()) { 653 default: 654 break; 655 case RISCVISD::SplitF64: { 656 SDValue Op0 = N->getOperand(0); 657 // If the input to SplitF64 is just BuildPairF64 then the operation is 658 // redundant. Instead, use BuildPairF64's operands directly. 659 if (Op0->getOpcode() == RISCVISD::BuildPairF64) 660 return DCI.CombineTo(N, Op0.getOperand(0), Op0.getOperand(1)); 661 662 SDLoc DL(N); 663 664 // It's cheaper to materialise two 32-bit integers than to load a double 665 // from the constant pool and transfer it to integer registers through the 666 // stack. 667 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op0)) { 668 APInt V = C->getValueAPF().bitcastToAPInt(); 669 SDValue Lo = DAG.getConstant(V.trunc(32), DL, MVT::i32); 670 SDValue Hi = DAG.getConstant(V.lshr(32).trunc(32), DL, MVT::i32); 671 return DCI.CombineTo(N, Lo, Hi); 672 } 673 674 // This is a target-specific version of a DAGCombine performed in 675 // DAGCombiner::visitBITCAST. It performs the equivalent of: 676 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) 677 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) 678 if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) || 679 !Op0.getNode()->hasOneUse()) 680 break; 681 SDValue NewSplitF64 = 682 DAG.getNode(RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), 683 Op0.getOperand(0)); 684 SDValue Lo = NewSplitF64.getValue(0); 685 SDValue Hi = NewSplitF64.getValue(1); 686 APInt SignBit = APInt::getSignMask(32); 687 if (Op0.getOpcode() == ISD::FNEG) { 688 SDValue NewHi = DAG.getNode(ISD::XOR, DL, MVT::i32, Hi, 689 DAG.getConstant(SignBit, DL, MVT::i32)); 690 return DCI.CombineTo(N, Lo, NewHi); 691 } 692 assert(Op0.getOpcode() == ISD::FABS); 693 SDValue NewHi = DAG.getNode(ISD::AND, DL, MVT::i32, Hi, 694 DAG.getConstant(~SignBit, DL, MVT::i32)); 695 return DCI.CombineTo(N, Lo, NewHi); 696 } 697 case RISCVISD::SLLW: 698 case RISCVISD::SRAW: 699 case RISCVISD::SRLW: { 700 // Only the lower 32 bits of LHS and lower 5 bits of RHS are read. 701 SDValue LHS = N->getOperand(0); 702 SDValue RHS = N->getOperand(1); 703 APInt LHSMask = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 32); 704 APInt RHSMask = APInt::getLowBitsSet(RHS.getValueSizeInBits(), 5); 705 if ((SimplifyDemandedBits(N->getOperand(0), LHSMask, DCI)) || 706 (SimplifyDemandedBits(N->getOperand(1), RHSMask, DCI))) 707 return SDValue(); 708 break; 709 } 710 case RISCVISD::FMV_X_ANYEXTW_RV64: { 711 SDLoc DL(N); 712 SDValue Op0 = N->getOperand(0); 713 // If the input to FMV_X_ANYEXTW_RV64 is just FMV_W_X_RV64 then the 714 // conversion is unnecessary and can be replaced with an ANY_EXTEND 715 // of the FMV_W_X_RV64 operand. 716 if (Op0->getOpcode() == RISCVISD::FMV_W_X_RV64) { 717 SDValue AExtOp = 718 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0.getOperand(0)); 719 return DCI.CombineTo(N, AExtOp); 720 } 721 722 // This is a target-specific version of a DAGCombine performed in 723 // DAGCombiner::visitBITCAST. It performs the equivalent of: 724 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) 725 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) 726 if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) || 727 !Op0.getNode()->hasOneUse()) 728 break; 729 SDValue NewFMV = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, 730 Op0.getOperand(0)); 731 APInt SignBit = APInt::getSignMask(32).sext(64); 732 if (Op0.getOpcode() == ISD::FNEG) { 733 return DCI.CombineTo(N, 734 DAG.getNode(ISD::XOR, DL, MVT::i64, NewFMV, 735 DAG.getConstant(SignBit, DL, MVT::i64))); 736 } 737 assert(Op0.getOpcode() == ISD::FABS); 738 return DCI.CombineTo(N, 739 DAG.getNode(ISD::AND, DL, MVT::i64, NewFMV, 740 DAG.getConstant(~SignBit, DL, MVT::i64))); 741 } 742 } 743 744 return SDValue(); 745 } 746 747 unsigned RISCVTargetLowering::ComputeNumSignBitsForTargetNode( 748 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 749 unsigned Depth) const { 750 switch (Op.getOpcode()) { 751 default: 752 break; 753 case RISCVISD::SLLW: 754 case RISCVISD::SRAW: 755 case RISCVISD::SRLW: 756 case RISCVISD::DIVW: 757 case RISCVISD::DIVUW: 758 case RISCVISD::REMUW: 759 // TODO: As the result is sign-extended, this is conservatively correct. A 760 // more precise answer could be calculated for SRAW depending on known 761 // bits in the shift amount. 762 return 33; 763 } 764 765 return 1; 766 } 767 768 static MachineBasicBlock *emitSplitF64Pseudo(MachineInstr &MI, 769 MachineBasicBlock *BB) { 770 assert(MI.getOpcode() == RISCV::SplitF64Pseudo && "Unexpected instruction"); 771 772 MachineFunction &MF = *BB->getParent(); 773 DebugLoc DL = MI.getDebugLoc(); 774 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 775 const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo(); 776 unsigned LoReg = MI.getOperand(0).getReg(); 777 unsigned HiReg = MI.getOperand(1).getReg(); 778 unsigned SrcReg = MI.getOperand(2).getReg(); 779 const TargetRegisterClass *SrcRC = &RISCV::FPR64RegClass; 780 int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(); 781 782 TII.storeRegToStackSlot(*BB, MI, SrcReg, MI.getOperand(2).isKill(), FI, SrcRC, 783 RI); 784 MachineMemOperand *MMO = 785 MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(MF, FI), 786 MachineMemOperand::MOLoad, 8, 8); 787 BuildMI(*BB, MI, DL, TII.get(RISCV::LW), LoReg) 788 .addFrameIndex(FI) 789 .addImm(0) 790 .addMemOperand(MMO); 791 BuildMI(*BB, MI, DL, TII.get(RISCV::LW), HiReg) 792 .addFrameIndex(FI) 793 .addImm(4) 794 .addMemOperand(MMO); 795 MI.eraseFromParent(); // The pseudo instruction is gone now. 796 return BB; 797 } 798 799 static MachineBasicBlock *emitBuildPairF64Pseudo(MachineInstr &MI, 800 MachineBasicBlock *BB) { 801 assert(MI.getOpcode() == RISCV::BuildPairF64Pseudo && 802 "Unexpected instruction"); 803 804 MachineFunction &MF = *BB->getParent(); 805 DebugLoc DL = MI.getDebugLoc(); 806 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 807 const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo(); 808 unsigned DstReg = MI.getOperand(0).getReg(); 809 unsigned LoReg = MI.getOperand(1).getReg(); 810 unsigned HiReg = MI.getOperand(2).getReg(); 811 const TargetRegisterClass *DstRC = &RISCV::FPR64RegClass; 812 int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(); 813 814 MachineMemOperand *MMO = 815 MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(MF, FI), 816 MachineMemOperand::MOStore, 8, 8); 817 BuildMI(*BB, MI, DL, TII.get(RISCV::SW)) 818 .addReg(LoReg, getKillRegState(MI.getOperand(1).isKill())) 819 .addFrameIndex(FI) 820 .addImm(0) 821 .addMemOperand(MMO); 822 BuildMI(*BB, MI, DL, TII.get(RISCV::SW)) 823 .addReg(HiReg, getKillRegState(MI.getOperand(2).isKill())) 824 .addFrameIndex(FI) 825 .addImm(4) 826 .addMemOperand(MMO); 827 TII.loadRegFromStackSlot(*BB, MI, DstReg, FI, DstRC, RI); 828 MI.eraseFromParent(); // The pseudo instruction is gone now. 829 return BB; 830 } 831 832 static bool isSelectPseudo(MachineInstr &MI) { 833 switch (MI.getOpcode()) { 834 default: 835 return false; 836 case RISCV::Select_GPR_Using_CC_GPR: 837 case RISCV::Select_FPR32_Using_CC_GPR: 838 case RISCV::Select_FPR64_Using_CC_GPR: 839 return true; 840 } 841 } 842 843 static MachineBasicBlock *emitSelectPseudo(MachineInstr &MI, 844 MachineBasicBlock *BB) { 845 // To "insert" Select_* instructions, we actually have to insert the triangle 846 // control-flow pattern. The incoming instructions know the destination vreg 847 // to set, the condition code register to branch on, the true/false values to 848 // select between, and the condcode to use to select the appropriate branch. 849 // 850 // We produce the following control flow: 851 // HeadMBB 852 // | \ 853 // | IfFalseMBB 854 // | / 855 // TailMBB 856 // 857 // When we find a sequence of selects we attempt to optimize their emission 858 // by sharing the control flow. Currently we only handle cases where we have 859 // multiple selects with the exact same condition (same LHS, RHS and CC). 860 // The selects may be interleaved with other instructions if the other 861 // instructions meet some requirements we deem safe: 862 // - They are debug instructions. Otherwise, 863 // - They do not have side-effects, do not access memory and their inputs do 864 // not depend on the results of the select pseudo-instructions. 865 // The TrueV/FalseV operands of the selects cannot depend on the result of 866 // previous selects in the sequence. 867 // These conditions could be further relaxed. See the X86 target for a 868 // related approach and more information. 869 unsigned LHS = MI.getOperand(1).getReg(); 870 unsigned RHS = MI.getOperand(2).getReg(); 871 auto CC = static_cast<ISD::CondCode>(MI.getOperand(3).getImm()); 872 873 SmallVector<MachineInstr *, 4> SelectDebugValues; 874 SmallSet<unsigned, 4> SelectDests; 875 SelectDests.insert(MI.getOperand(0).getReg()); 876 877 MachineInstr *LastSelectPseudo = &MI; 878 879 for (auto E = BB->end(), SequenceMBBI = MachineBasicBlock::iterator(MI); 880 SequenceMBBI != E; ++SequenceMBBI) { 881 if (SequenceMBBI->isDebugInstr()) 882 continue; 883 else if (isSelectPseudo(*SequenceMBBI)) { 884 if (SequenceMBBI->getOperand(1).getReg() != LHS || 885 SequenceMBBI->getOperand(2).getReg() != RHS || 886 SequenceMBBI->getOperand(3).getImm() != CC || 887 SelectDests.count(SequenceMBBI->getOperand(4).getReg()) || 888 SelectDests.count(SequenceMBBI->getOperand(5).getReg())) 889 break; 890 LastSelectPseudo = &*SequenceMBBI; 891 SequenceMBBI->collectDebugValues(SelectDebugValues); 892 SelectDests.insert(SequenceMBBI->getOperand(0).getReg()); 893 } else { 894 if (SequenceMBBI->hasUnmodeledSideEffects() || 895 SequenceMBBI->mayLoadOrStore()) 896 break; 897 if (llvm::any_of(SequenceMBBI->operands(), [&](MachineOperand &MO) { 898 return MO.isReg() && MO.isUse() && SelectDests.count(MO.getReg()); 899 })) 900 break; 901 } 902 } 903 904 const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo(); 905 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 906 DebugLoc DL = MI.getDebugLoc(); 907 MachineFunction::iterator I = ++BB->getIterator(); 908 909 MachineBasicBlock *HeadMBB = BB; 910 MachineFunction *F = BB->getParent(); 911 MachineBasicBlock *TailMBB = F->CreateMachineBasicBlock(LLVM_BB); 912 MachineBasicBlock *IfFalseMBB = F->CreateMachineBasicBlock(LLVM_BB); 913 914 F->insert(I, IfFalseMBB); 915 F->insert(I, TailMBB); 916 917 // Transfer debug instructions associated with the selects to TailMBB. 918 for (MachineInstr *DebugInstr : SelectDebugValues) { 919 TailMBB->push_back(DebugInstr->removeFromParent()); 920 } 921 922 // Move all instructions after the sequence to TailMBB. 923 TailMBB->splice(TailMBB->end(), HeadMBB, 924 std::next(LastSelectPseudo->getIterator()), HeadMBB->end()); 925 // Update machine-CFG edges by transferring all successors of the current 926 // block to the new block which will contain the Phi nodes for the selects. 927 TailMBB->transferSuccessorsAndUpdatePHIs(HeadMBB); 928 // Set the successors for HeadMBB. 929 HeadMBB->addSuccessor(IfFalseMBB); 930 HeadMBB->addSuccessor(TailMBB); 931 932 // Insert appropriate branch. 933 unsigned Opcode = getBranchOpcodeForIntCondCode(CC); 934 935 BuildMI(HeadMBB, DL, TII.get(Opcode)) 936 .addReg(LHS) 937 .addReg(RHS) 938 .addMBB(TailMBB); 939 940 // IfFalseMBB just falls through to TailMBB. 941 IfFalseMBB->addSuccessor(TailMBB); 942 943 // Create PHIs for all of the select pseudo-instructions. 944 auto SelectMBBI = MI.getIterator(); 945 auto SelectEnd = std::next(LastSelectPseudo->getIterator()); 946 auto InsertionPoint = TailMBB->begin(); 947 while (SelectMBBI != SelectEnd) { 948 auto Next = std::next(SelectMBBI); 949 if (isSelectPseudo(*SelectMBBI)) { 950 // %Result = phi [ %TrueValue, HeadMBB ], [ %FalseValue, IfFalseMBB ] 951 BuildMI(*TailMBB, InsertionPoint, SelectMBBI->getDebugLoc(), 952 TII.get(RISCV::PHI), SelectMBBI->getOperand(0).getReg()) 953 .addReg(SelectMBBI->getOperand(4).getReg()) 954 .addMBB(HeadMBB) 955 .addReg(SelectMBBI->getOperand(5).getReg()) 956 .addMBB(IfFalseMBB); 957 SelectMBBI->eraseFromParent(); 958 } 959 SelectMBBI = Next; 960 } 961 962 return TailMBB; 963 } 964 965 MachineBasicBlock * 966 RISCVTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 967 MachineBasicBlock *BB) const { 968 switch (MI.getOpcode()) { 969 default: 970 llvm_unreachable("Unexpected instr type to insert"); 971 case RISCV::Select_GPR_Using_CC_GPR: 972 case RISCV::Select_FPR32_Using_CC_GPR: 973 case RISCV::Select_FPR64_Using_CC_GPR: 974 return emitSelectPseudo(MI, BB); 975 case RISCV::BuildPairF64Pseudo: 976 return emitBuildPairF64Pseudo(MI, BB); 977 case RISCV::SplitF64Pseudo: 978 return emitSplitF64Pseudo(MI, BB); 979 } 980 } 981 982 // Calling Convention Implementation. 983 // The expectations for frontend ABI lowering vary from target to target. 984 // Ideally, an LLVM frontend would be able to avoid worrying about many ABI 985 // details, but this is a longer term goal. For now, we simply try to keep the 986 // role of the frontend as simple and well-defined as possible. The rules can 987 // be summarised as: 988 // * Never split up large scalar arguments. We handle them here. 989 // * If a hardfloat calling convention is being used, and the struct may be 990 // passed in a pair of registers (fp+fp, int+fp), and both registers are 991 // available, then pass as two separate arguments. If either the GPRs or FPRs 992 // are exhausted, then pass according to the rule below. 993 // * If a struct could never be passed in registers or directly in a stack 994 // slot (as it is larger than 2*XLEN and the floating point rules don't 995 // apply), then pass it using a pointer with the byval attribute. 996 // * If a struct is less than 2*XLEN, then coerce to either a two-element 997 // word-sized array or a 2*XLEN scalar (depending on alignment). 998 // * The frontend can determine whether a struct is returned by reference or 999 // not based on its size and fields. If it will be returned by reference, the 1000 // frontend must modify the prototype so a pointer with the sret annotation is 1001 // passed as the first argument. This is not necessary for large scalar 1002 // returns. 1003 // * Struct return values and varargs should be coerced to structs containing 1004 // register-size fields in the same situations they would be for fixed 1005 // arguments. 1006 1007 static const MCPhysReg ArgGPRs[] = { 1008 RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, 1009 RISCV::X14, RISCV::X15, RISCV::X16, RISCV::X17 1010 }; 1011 static const MCPhysReg ArgFPR32s[] = { 1012 RISCV::F10_32, RISCV::F11_32, RISCV::F12_32, RISCV::F13_32, 1013 RISCV::F14_32, RISCV::F15_32, RISCV::F16_32, RISCV::F17_32 1014 }; 1015 static const MCPhysReg ArgFPR64s[] = { 1016 RISCV::F10_64, RISCV::F11_64, RISCV::F12_64, RISCV::F13_64, 1017 RISCV::F14_64, RISCV::F15_64, RISCV::F16_64, RISCV::F17_64 1018 }; 1019 1020 // Pass a 2*XLEN argument that has been split into two XLEN values through 1021 // registers or the stack as necessary. 1022 static bool CC_RISCVAssign2XLen(unsigned XLen, CCState &State, CCValAssign VA1, 1023 ISD::ArgFlagsTy ArgFlags1, unsigned ValNo2, 1024 MVT ValVT2, MVT LocVT2, 1025 ISD::ArgFlagsTy ArgFlags2) { 1026 unsigned XLenInBytes = XLen / 8; 1027 if (unsigned Reg = State.AllocateReg(ArgGPRs)) { 1028 // At least one half can be passed via register. 1029 State.addLoc(CCValAssign::getReg(VA1.getValNo(), VA1.getValVT(), Reg, 1030 VA1.getLocVT(), CCValAssign::Full)); 1031 } else { 1032 // Both halves must be passed on the stack, with proper alignment. 1033 unsigned StackAlign = std::max(XLenInBytes, ArgFlags1.getOrigAlign()); 1034 State.addLoc( 1035 CCValAssign::getMem(VA1.getValNo(), VA1.getValVT(), 1036 State.AllocateStack(XLenInBytes, StackAlign), 1037 VA1.getLocVT(), CCValAssign::Full)); 1038 State.addLoc(CCValAssign::getMem( 1039 ValNo2, ValVT2, State.AllocateStack(XLenInBytes, XLenInBytes), LocVT2, 1040 CCValAssign::Full)); 1041 return false; 1042 } 1043 1044 if (unsigned Reg = State.AllocateReg(ArgGPRs)) { 1045 // The second half can also be passed via register. 1046 State.addLoc( 1047 CCValAssign::getReg(ValNo2, ValVT2, Reg, LocVT2, CCValAssign::Full)); 1048 } else { 1049 // The second half is passed via the stack, without additional alignment. 1050 State.addLoc(CCValAssign::getMem( 1051 ValNo2, ValVT2, State.AllocateStack(XLenInBytes, XLenInBytes), LocVT2, 1052 CCValAssign::Full)); 1053 } 1054 1055 return false; 1056 } 1057 1058 // Implements the RISC-V calling convention. Returns true upon failure. 1059 static bool CC_RISCV(const DataLayout &DL, RISCVABI::ABI ABI, unsigned ValNo, 1060 MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, 1061 ISD::ArgFlagsTy ArgFlags, CCState &State, bool IsFixed, 1062 bool IsRet, Type *OrigTy) { 1063 unsigned XLen = DL.getLargestLegalIntTypeSizeInBits(); 1064 assert(XLen == 32 || XLen == 64); 1065 MVT XLenVT = XLen == 32 ? MVT::i32 : MVT::i64; 1066 1067 // Any return value split in to more than two values can't be returned 1068 // directly. 1069 if (IsRet && ValNo > 1) 1070 return true; 1071 1072 // UseGPRForF32 if targeting one of the soft-float ABIs, if passing a 1073 // variadic argument, or if no F32 argument registers are available. 1074 bool UseGPRForF32 = true; 1075 // UseGPRForF64 if targeting soft-float ABIs or an FLEN=32 ABI, if passing a 1076 // variadic argument, or if no F64 argument registers are available. 1077 bool UseGPRForF64 = true; 1078 1079 switch (ABI) { 1080 default: 1081 llvm_unreachable("Unexpected ABI"); 1082 case RISCVABI::ABI_ILP32: 1083 case RISCVABI::ABI_LP64: 1084 break; 1085 case RISCVABI::ABI_ILP32F: 1086 case RISCVABI::ABI_LP64F: 1087 UseGPRForF32 = !IsFixed; 1088 break; 1089 case RISCVABI::ABI_ILP32D: 1090 case RISCVABI::ABI_LP64D: 1091 UseGPRForF32 = !IsFixed; 1092 UseGPRForF64 = !IsFixed; 1093 break; 1094 } 1095 1096 if (State.getFirstUnallocated(ArgFPR32s) == array_lengthof(ArgFPR32s)) 1097 UseGPRForF32 = true; 1098 if (State.getFirstUnallocated(ArgFPR64s) == array_lengthof(ArgFPR64s)) 1099 UseGPRForF64 = true; 1100 1101 // From this point on, rely on UseGPRForF32, UseGPRForF64 and similar local 1102 // variables rather than directly checking against the target ABI. 1103 1104 if (UseGPRForF32 && ValVT == MVT::f32) { 1105 LocVT = XLenVT; 1106 LocInfo = CCValAssign::BCvt; 1107 } else if (UseGPRForF64 && XLen == 64 && ValVT == MVT::f64) { 1108 LocVT = MVT::i64; 1109 LocInfo = CCValAssign::BCvt; 1110 } 1111 1112 // If this is a variadic argument, the RISC-V calling convention requires 1113 // that it is assigned an 'even' or 'aligned' register if it has 8-byte 1114 // alignment (RV32) or 16-byte alignment (RV64). An aligned register should 1115 // be used regardless of whether the original argument was split during 1116 // legalisation or not. The argument will not be passed by registers if the 1117 // original type is larger than 2*XLEN, so the register alignment rule does 1118 // not apply. 1119 unsigned TwoXLenInBytes = (2 * XLen) / 8; 1120 if (!IsFixed && ArgFlags.getOrigAlign() == TwoXLenInBytes && 1121 DL.getTypeAllocSize(OrigTy) == TwoXLenInBytes) { 1122 unsigned RegIdx = State.getFirstUnallocated(ArgGPRs); 1123 // Skip 'odd' register if necessary. 1124 if (RegIdx != array_lengthof(ArgGPRs) && RegIdx % 2 == 1) 1125 State.AllocateReg(ArgGPRs); 1126 } 1127 1128 SmallVectorImpl<CCValAssign> &PendingLocs = State.getPendingLocs(); 1129 SmallVectorImpl<ISD::ArgFlagsTy> &PendingArgFlags = 1130 State.getPendingArgFlags(); 1131 1132 assert(PendingLocs.size() == PendingArgFlags.size() && 1133 "PendingLocs and PendingArgFlags out of sync"); 1134 1135 // Handle passing f64 on RV32D with a soft float ABI or when floating point 1136 // registers are exhausted. 1137 if (UseGPRForF64 && XLen == 32 && ValVT == MVT::f64) { 1138 assert(!ArgFlags.isSplit() && PendingLocs.empty() && 1139 "Can't lower f64 if it is split"); 1140 // Depending on available argument GPRS, f64 may be passed in a pair of 1141 // GPRs, split between a GPR and the stack, or passed completely on the 1142 // stack. LowerCall/LowerFormalArguments/LowerReturn must recognise these 1143 // cases. 1144 unsigned Reg = State.AllocateReg(ArgGPRs); 1145 LocVT = MVT::i32; 1146 if (!Reg) { 1147 unsigned StackOffset = State.AllocateStack(8, 8); 1148 State.addLoc( 1149 CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 1150 return false; 1151 } 1152 if (!State.AllocateReg(ArgGPRs)) 1153 State.AllocateStack(4, 4); 1154 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 1155 return false; 1156 } 1157 1158 // Split arguments might be passed indirectly, so keep track of the pending 1159 // values. 1160 if (ArgFlags.isSplit() || !PendingLocs.empty()) { 1161 LocVT = XLenVT; 1162 LocInfo = CCValAssign::Indirect; 1163 PendingLocs.push_back( 1164 CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo)); 1165 PendingArgFlags.push_back(ArgFlags); 1166 if (!ArgFlags.isSplitEnd()) { 1167 return false; 1168 } 1169 } 1170 1171 // If the split argument only had two elements, it should be passed directly 1172 // in registers or on the stack. 1173 if (ArgFlags.isSplitEnd() && PendingLocs.size() <= 2) { 1174 assert(PendingLocs.size() == 2 && "Unexpected PendingLocs.size()"); 1175 // Apply the normal calling convention rules to the first half of the 1176 // split argument. 1177 CCValAssign VA = PendingLocs[0]; 1178 ISD::ArgFlagsTy AF = PendingArgFlags[0]; 1179 PendingLocs.clear(); 1180 PendingArgFlags.clear(); 1181 return CC_RISCVAssign2XLen(XLen, State, VA, AF, ValNo, ValVT, LocVT, 1182 ArgFlags); 1183 } 1184 1185 // Allocate to a register if possible, or else a stack slot. 1186 unsigned Reg; 1187 if (ValVT == MVT::f32 && !UseGPRForF32) 1188 Reg = State.AllocateReg(ArgFPR32s, ArgFPR64s); 1189 else if (ValVT == MVT::f64 && !UseGPRForF64) 1190 Reg = State.AllocateReg(ArgFPR64s, ArgFPR32s); 1191 else 1192 Reg = State.AllocateReg(ArgGPRs); 1193 unsigned StackOffset = Reg ? 0 : State.AllocateStack(XLen / 8, XLen / 8); 1194 1195 // If we reach this point and PendingLocs is non-empty, we must be at the 1196 // end of a split argument that must be passed indirectly. 1197 if (!PendingLocs.empty()) { 1198 assert(ArgFlags.isSplitEnd() && "Expected ArgFlags.isSplitEnd()"); 1199 assert(PendingLocs.size() > 2 && "Unexpected PendingLocs.size()"); 1200 1201 for (auto &It : PendingLocs) { 1202 if (Reg) 1203 It.convertToReg(Reg); 1204 else 1205 It.convertToMem(StackOffset); 1206 State.addLoc(It); 1207 } 1208 PendingLocs.clear(); 1209 PendingArgFlags.clear(); 1210 return false; 1211 } 1212 1213 assert((!UseGPRForF32 || !UseGPRForF64 || LocVT == XLenVT) && 1214 "Expected an XLenVT at this stage"); 1215 1216 if (Reg) { 1217 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 1218 return false; 1219 } 1220 1221 // When an f32 or f64 is passed on the stack, no bit-conversion is needed. 1222 if (ValVT == MVT::f32 || ValVT == MVT::f64) { 1223 LocVT = ValVT; 1224 LocInfo = CCValAssign::Full; 1225 } 1226 State.addLoc(CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 1227 return false; 1228 } 1229 1230 void RISCVTargetLowering::analyzeInputArgs( 1231 MachineFunction &MF, CCState &CCInfo, 1232 const SmallVectorImpl<ISD::InputArg> &Ins, bool IsRet) const { 1233 unsigned NumArgs = Ins.size(); 1234 FunctionType *FType = MF.getFunction().getFunctionType(); 1235 1236 for (unsigned i = 0; i != NumArgs; ++i) { 1237 MVT ArgVT = Ins[i].VT; 1238 ISD::ArgFlagsTy ArgFlags = Ins[i].Flags; 1239 1240 Type *ArgTy = nullptr; 1241 if (IsRet) 1242 ArgTy = FType->getReturnType(); 1243 else if (Ins[i].isOrigArg()) 1244 ArgTy = FType->getParamType(Ins[i].getOrigArgIndex()); 1245 1246 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 1247 if (CC_RISCV(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full, 1248 ArgFlags, CCInfo, /*IsRet=*/true, IsRet, ArgTy)) { 1249 LLVM_DEBUG(dbgs() << "InputArg #" << i << " has unhandled type " 1250 << EVT(ArgVT).getEVTString() << '\n'); 1251 llvm_unreachable(nullptr); 1252 } 1253 } 1254 } 1255 1256 void RISCVTargetLowering::analyzeOutputArgs( 1257 MachineFunction &MF, CCState &CCInfo, 1258 const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsRet, 1259 CallLoweringInfo *CLI) const { 1260 unsigned NumArgs = Outs.size(); 1261 1262 for (unsigned i = 0; i != NumArgs; i++) { 1263 MVT ArgVT = Outs[i].VT; 1264 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 1265 Type *OrigTy = CLI ? CLI->getArgs()[Outs[i].OrigArgIndex].Ty : nullptr; 1266 1267 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 1268 if (CC_RISCV(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full, 1269 ArgFlags, CCInfo, Outs[i].IsFixed, IsRet, OrigTy)) { 1270 LLVM_DEBUG(dbgs() << "OutputArg #" << i << " has unhandled type " 1271 << EVT(ArgVT).getEVTString() << "\n"); 1272 llvm_unreachable(nullptr); 1273 } 1274 } 1275 } 1276 1277 // Convert Val to a ValVT. Should not be called for CCValAssign::Indirect 1278 // values. 1279 static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDValue Val, 1280 const CCValAssign &VA, const SDLoc &DL) { 1281 switch (VA.getLocInfo()) { 1282 default: 1283 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 1284 case CCValAssign::Full: 1285 break; 1286 case CCValAssign::BCvt: 1287 if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) { 1288 Val = DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, Val); 1289 break; 1290 } 1291 Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val); 1292 break; 1293 } 1294 return Val; 1295 } 1296 1297 // The caller is responsible for loading the full value if the argument is 1298 // passed with CCValAssign::Indirect. 1299 static SDValue unpackFromRegLoc(SelectionDAG &DAG, SDValue Chain, 1300 const CCValAssign &VA, const SDLoc &DL) { 1301 MachineFunction &MF = DAG.getMachineFunction(); 1302 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 1303 EVT LocVT = VA.getLocVT(); 1304 SDValue Val; 1305 const TargetRegisterClass *RC; 1306 1307 switch (LocVT.getSimpleVT().SimpleTy) { 1308 default: 1309 llvm_unreachable("Unexpected register type"); 1310 case MVT::i32: 1311 case MVT::i64: 1312 RC = &RISCV::GPRRegClass; 1313 break; 1314 case MVT::f32: 1315 RC = &RISCV::FPR32RegClass; 1316 break; 1317 case MVT::f64: 1318 RC = &RISCV::FPR64RegClass; 1319 break; 1320 } 1321 1322 unsigned VReg = RegInfo.createVirtualRegister(RC); 1323 RegInfo.addLiveIn(VA.getLocReg(), VReg); 1324 Val = DAG.getCopyFromReg(Chain, DL, VReg, LocVT); 1325 1326 if (VA.getLocInfo() == CCValAssign::Indirect) 1327 return Val; 1328 1329 return convertLocVTToValVT(DAG, Val, VA, DL); 1330 } 1331 1332 static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDValue Val, 1333 const CCValAssign &VA, const SDLoc &DL) { 1334 EVT LocVT = VA.getLocVT(); 1335 1336 switch (VA.getLocInfo()) { 1337 default: 1338 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 1339 case CCValAssign::Full: 1340 break; 1341 case CCValAssign::BCvt: 1342 if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) { 1343 Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Val); 1344 break; 1345 } 1346 Val = DAG.getNode(ISD::BITCAST, DL, LocVT, Val); 1347 break; 1348 } 1349 return Val; 1350 } 1351 1352 // The caller is responsible for loading the full value if the argument is 1353 // passed with CCValAssign::Indirect. 1354 static SDValue unpackFromMemLoc(SelectionDAG &DAG, SDValue Chain, 1355 const CCValAssign &VA, const SDLoc &DL) { 1356 MachineFunction &MF = DAG.getMachineFunction(); 1357 MachineFrameInfo &MFI = MF.getFrameInfo(); 1358 EVT LocVT = VA.getLocVT(); 1359 EVT ValVT = VA.getValVT(); 1360 EVT PtrVT = MVT::getIntegerVT(DAG.getDataLayout().getPointerSizeInBits(0)); 1361 int FI = MFI.CreateFixedObject(ValVT.getSizeInBits() / 8, 1362 VA.getLocMemOffset(), /*Immutable=*/true); 1363 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 1364 SDValue Val; 1365 1366 ISD::LoadExtType ExtType; 1367 switch (VA.getLocInfo()) { 1368 default: 1369 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 1370 case CCValAssign::Full: 1371 case CCValAssign::Indirect: 1372 case CCValAssign::BCvt: 1373 ExtType = ISD::NON_EXTLOAD; 1374 break; 1375 } 1376 Val = DAG.getExtLoad( 1377 ExtType, DL, LocVT, Chain, FIN, 1378 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), ValVT); 1379 return Val; 1380 } 1381 1382 static SDValue unpackF64OnRV32DSoftABI(SelectionDAG &DAG, SDValue Chain, 1383 const CCValAssign &VA, const SDLoc &DL) { 1384 assert(VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64 && 1385 "Unexpected VA"); 1386 MachineFunction &MF = DAG.getMachineFunction(); 1387 MachineFrameInfo &MFI = MF.getFrameInfo(); 1388 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 1389 1390 if (VA.isMemLoc()) { 1391 // f64 is passed on the stack. 1392 int FI = MFI.CreateFixedObject(8, VA.getLocMemOffset(), /*Immutable=*/true); 1393 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 1394 return DAG.getLoad(MVT::f64, DL, Chain, FIN, 1395 MachinePointerInfo::getFixedStack(MF, FI)); 1396 } 1397 1398 assert(VA.isRegLoc() && "Expected register VA assignment"); 1399 1400 unsigned LoVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 1401 RegInfo.addLiveIn(VA.getLocReg(), LoVReg); 1402 SDValue Lo = DAG.getCopyFromReg(Chain, DL, LoVReg, MVT::i32); 1403 SDValue Hi; 1404 if (VA.getLocReg() == RISCV::X17) { 1405 // Second half of f64 is passed on the stack. 1406 int FI = MFI.CreateFixedObject(4, 0, /*Immutable=*/true); 1407 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 1408 Hi = DAG.getLoad(MVT::i32, DL, Chain, FIN, 1409 MachinePointerInfo::getFixedStack(MF, FI)); 1410 } else { 1411 // Second half of f64 is passed in another GPR. 1412 unsigned HiVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 1413 RegInfo.addLiveIn(VA.getLocReg() + 1, HiVReg); 1414 Hi = DAG.getCopyFromReg(Chain, DL, HiVReg, MVT::i32); 1415 } 1416 return DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, Lo, Hi); 1417 } 1418 1419 // Transform physical registers into virtual registers. 1420 SDValue RISCVTargetLowering::LowerFormalArguments( 1421 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 1422 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 1423 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 1424 1425 switch (CallConv) { 1426 default: 1427 report_fatal_error("Unsupported calling convention"); 1428 case CallingConv::C: 1429 case CallingConv::Fast: 1430 break; 1431 } 1432 1433 MachineFunction &MF = DAG.getMachineFunction(); 1434 1435 const Function &Func = MF.getFunction(); 1436 if (Func.hasFnAttribute("interrupt")) { 1437 if (!Func.arg_empty()) 1438 report_fatal_error( 1439 "Functions with the interrupt attribute cannot have arguments!"); 1440 1441 StringRef Kind = 1442 MF.getFunction().getFnAttribute("interrupt").getValueAsString(); 1443 1444 if (!(Kind == "user" || Kind == "supervisor" || Kind == "machine")) 1445 report_fatal_error( 1446 "Function interrupt attribute argument not supported!"); 1447 } 1448 1449 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 1450 MVT XLenVT = Subtarget.getXLenVT(); 1451 unsigned XLenInBytes = Subtarget.getXLen() / 8; 1452 // Used with vargs to acumulate store chains. 1453 std::vector<SDValue> OutChains; 1454 1455 // Assign locations to all of the incoming arguments. 1456 SmallVector<CCValAssign, 16> ArgLocs; 1457 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 1458 analyzeInputArgs(MF, CCInfo, Ins, /*IsRet=*/false); 1459 1460 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 1461 CCValAssign &VA = ArgLocs[i]; 1462 SDValue ArgValue; 1463 // Passing f64 on RV32D with a soft float ABI must be handled as a special 1464 // case. 1465 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) 1466 ArgValue = unpackF64OnRV32DSoftABI(DAG, Chain, VA, DL); 1467 else if (VA.isRegLoc()) 1468 ArgValue = unpackFromRegLoc(DAG, Chain, VA, DL); 1469 else 1470 ArgValue = unpackFromMemLoc(DAG, Chain, VA, DL); 1471 1472 if (VA.getLocInfo() == CCValAssign::Indirect) { 1473 // If the original argument was split and passed by reference (e.g. i128 1474 // on RV32), we need to load all parts of it here (using the same 1475 // address). 1476 InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue, 1477 MachinePointerInfo())); 1478 unsigned ArgIndex = Ins[i].OrigArgIndex; 1479 assert(Ins[i].PartOffset == 0); 1480 while (i + 1 != e && Ins[i + 1].OrigArgIndex == ArgIndex) { 1481 CCValAssign &PartVA = ArgLocs[i + 1]; 1482 unsigned PartOffset = Ins[i + 1].PartOffset; 1483 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, 1484 DAG.getIntPtrConstant(PartOffset, DL)); 1485 InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address, 1486 MachinePointerInfo())); 1487 ++i; 1488 } 1489 continue; 1490 } 1491 InVals.push_back(ArgValue); 1492 } 1493 1494 if (IsVarArg) { 1495 ArrayRef<MCPhysReg> ArgRegs = makeArrayRef(ArgGPRs); 1496 unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs); 1497 const TargetRegisterClass *RC = &RISCV::GPRRegClass; 1498 MachineFrameInfo &MFI = MF.getFrameInfo(); 1499 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 1500 RISCVMachineFunctionInfo *RVFI = MF.getInfo<RISCVMachineFunctionInfo>(); 1501 1502 // Offset of the first variable argument from stack pointer, and size of 1503 // the vararg save area. For now, the varargs save area is either zero or 1504 // large enough to hold a0-a7. 1505 int VaArgOffset, VarArgsSaveSize; 1506 1507 // If all registers are allocated, then all varargs must be passed on the 1508 // stack and we don't need to save any argregs. 1509 if (ArgRegs.size() == Idx) { 1510 VaArgOffset = CCInfo.getNextStackOffset(); 1511 VarArgsSaveSize = 0; 1512 } else { 1513 VarArgsSaveSize = XLenInBytes * (ArgRegs.size() - Idx); 1514 VaArgOffset = -VarArgsSaveSize; 1515 } 1516 1517 // Record the frame index of the first variable argument 1518 // which is a value necessary to VASTART. 1519 int FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true); 1520 RVFI->setVarArgsFrameIndex(FI); 1521 1522 // If saving an odd number of registers then create an extra stack slot to 1523 // ensure that the frame pointer is 2*XLEN-aligned, which in turn ensures 1524 // offsets to even-numbered registered remain 2*XLEN-aligned. 1525 if (Idx % 2) { 1526 FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset - (int)XLenInBytes, 1527 true); 1528 VarArgsSaveSize += XLenInBytes; 1529 } 1530 1531 // Copy the integer registers that may have been used for passing varargs 1532 // to the vararg save area. 1533 for (unsigned I = Idx; I < ArgRegs.size(); 1534 ++I, VaArgOffset += XLenInBytes) { 1535 const unsigned Reg = RegInfo.createVirtualRegister(RC); 1536 RegInfo.addLiveIn(ArgRegs[I], Reg); 1537 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, XLenVT); 1538 FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true); 1539 SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 1540 SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff, 1541 MachinePointerInfo::getFixedStack(MF, FI)); 1542 cast<StoreSDNode>(Store.getNode()) 1543 ->getMemOperand() 1544 ->setValue((Value *)nullptr); 1545 OutChains.push_back(Store); 1546 } 1547 RVFI->setVarArgsSaveSize(VarArgsSaveSize); 1548 } 1549 1550 // All stores are grouped in one node to allow the matching between 1551 // the size of Ins and InVals. This only happens for vararg functions. 1552 if (!OutChains.empty()) { 1553 OutChains.push_back(Chain); 1554 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains); 1555 } 1556 1557 return Chain; 1558 } 1559 1560 /// isEligibleForTailCallOptimization - Check whether the call is eligible 1561 /// for tail call optimization. 1562 /// Note: This is modelled after ARM's IsEligibleForTailCallOptimization. 1563 bool RISCVTargetLowering::isEligibleForTailCallOptimization( 1564 CCState &CCInfo, CallLoweringInfo &CLI, MachineFunction &MF, 1565 const SmallVector<CCValAssign, 16> &ArgLocs) const { 1566 1567 auto &Callee = CLI.Callee; 1568 auto CalleeCC = CLI.CallConv; 1569 auto IsVarArg = CLI.IsVarArg; 1570 auto &Outs = CLI.Outs; 1571 auto &Caller = MF.getFunction(); 1572 auto CallerCC = Caller.getCallingConv(); 1573 1574 // Do not tail call opt functions with "disable-tail-calls" attribute. 1575 if (Caller.getFnAttribute("disable-tail-calls").getValueAsString() == "true") 1576 return false; 1577 1578 // Exception-handling functions need a special set of instructions to 1579 // indicate a return to the hardware. Tail-calling another function would 1580 // probably break this. 1581 // TODO: The "interrupt" attribute isn't currently defined by RISC-V. This 1582 // should be expanded as new function attributes are introduced. 1583 if (Caller.hasFnAttribute("interrupt")) 1584 return false; 1585 1586 // Do not tail call opt functions with varargs. 1587 if (IsVarArg) 1588 return false; 1589 1590 // Do not tail call opt if the stack is used to pass parameters. 1591 if (CCInfo.getNextStackOffset() != 0) 1592 return false; 1593 1594 // Do not tail call opt if any parameters need to be passed indirectly. 1595 // Since long doubles (fp128) and i128 are larger than 2*XLEN, they are 1596 // passed indirectly. So the address of the value will be passed in a 1597 // register, or if not available, then the address is put on the stack. In 1598 // order to pass indirectly, space on the stack often needs to be allocated 1599 // in order to store the value. In this case the CCInfo.getNextStackOffset() 1600 // != 0 check is not enough and we need to check if any CCValAssign ArgsLocs 1601 // are passed CCValAssign::Indirect. 1602 for (auto &VA : ArgLocs) 1603 if (VA.getLocInfo() == CCValAssign::Indirect) 1604 return false; 1605 1606 // Do not tail call opt if either caller or callee uses struct return 1607 // semantics. 1608 auto IsCallerStructRet = Caller.hasStructRetAttr(); 1609 auto IsCalleeStructRet = Outs.empty() ? false : Outs[0].Flags.isSRet(); 1610 if (IsCallerStructRet || IsCalleeStructRet) 1611 return false; 1612 1613 // Externally-defined functions with weak linkage should not be 1614 // tail-called. The behaviour of branch instructions in this situation (as 1615 // used for tail calls) is implementation-defined, so we cannot rely on the 1616 // linker replacing the tail call with a return. 1617 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 1618 const GlobalValue *GV = G->getGlobal(); 1619 if (GV->hasExternalWeakLinkage()) 1620 return false; 1621 } 1622 1623 // The callee has to preserve all registers the caller needs to preserve. 1624 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 1625 const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC); 1626 if (CalleeCC != CallerCC) { 1627 const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC); 1628 if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved)) 1629 return false; 1630 } 1631 1632 // Byval parameters hand the function a pointer directly into the stack area 1633 // we want to reuse during a tail call. Working around this *is* possible 1634 // but less efficient and uglier in LowerCall. 1635 for (auto &Arg : Outs) 1636 if (Arg.Flags.isByVal()) 1637 return false; 1638 1639 return true; 1640 } 1641 1642 // Lower a call to a callseq_start + CALL + callseq_end chain, and add input 1643 // and output parameter nodes. 1644 SDValue RISCVTargetLowering::LowerCall(CallLoweringInfo &CLI, 1645 SmallVectorImpl<SDValue> &InVals) const { 1646 SelectionDAG &DAG = CLI.DAG; 1647 SDLoc &DL = CLI.DL; 1648 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 1649 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 1650 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 1651 SDValue Chain = CLI.Chain; 1652 SDValue Callee = CLI.Callee; 1653 bool &IsTailCall = CLI.IsTailCall; 1654 CallingConv::ID CallConv = CLI.CallConv; 1655 bool IsVarArg = CLI.IsVarArg; 1656 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 1657 MVT XLenVT = Subtarget.getXLenVT(); 1658 1659 MachineFunction &MF = DAG.getMachineFunction(); 1660 1661 // Analyze the operands of the call, assigning locations to each operand. 1662 SmallVector<CCValAssign, 16> ArgLocs; 1663 CCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 1664 analyzeOutputArgs(MF, ArgCCInfo, Outs, /*IsRet=*/false, &CLI); 1665 1666 // Check if it's really possible to do a tail call. 1667 if (IsTailCall) 1668 IsTailCall = isEligibleForTailCallOptimization(ArgCCInfo, CLI, MF, ArgLocs); 1669 1670 if (IsTailCall) 1671 ++NumTailCalls; 1672 else if (CLI.CS && CLI.CS.isMustTailCall()) 1673 report_fatal_error("failed to perform tail call elimination on a call " 1674 "site marked musttail"); 1675 1676 // Get a count of how many bytes are to be pushed on the stack. 1677 unsigned NumBytes = ArgCCInfo.getNextStackOffset(); 1678 1679 // Create local copies for byval args 1680 SmallVector<SDValue, 8> ByValArgs; 1681 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 1682 ISD::ArgFlagsTy Flags = Outs[i].Flags; 1683 if (!Flags.isByVal()) 1684 continue; 1685 1686 SDValue Arg = OutVals[i]; 1687 unsigned Size = Flags.getByValSize(); 1688 unsigned Align = Flags.getByValAlign(); 1689 1690 int FI = MF.getFrameInfo().CreateStackObject(Size, Align, /*isSS=*/false); 1691 SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 1692 SDValue SizeNode = DAG.getConstant(Size, DL, XLenVT); 1693 1694 Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Align, 1695 /*IsVolatile=*/false, 1696 /*AlwaysInline=*/false, 1697 IsTailCall, MachinePointerInfo(), 1698 MachinePointerInfo()); 1699 ByValArgs.push_back(FIPtr); 1700 } 1701 1702 if (!IsTailCall) 1703 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, CLI.DL); 1704 1705 // Copy argument values to their designated locations. 1706 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 1707 SmallVector<SDValue, 8> MemOpChains; 1708 SDValue StackPtr; 1709 for (unsigned i = 0, j = 0, e = ArgLocs.size(); i != e; ++i) { 1710 CCValAssign &VA = ArgLocs[i]; 1711 SDValue ArgValue = OutVals[i]; 1712 ISD::ArgFlagsTy Flags = Outs[i].Flags; 1713 1714 // Handle passing f64 on RV32D with a soft float ABI as a special case. 1715 bool IsF64OnRV32DSoftABI = 1716 VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64; 1717 if (IsF64OnRV32DSoftABI && VA.isRegLoc()) { 1718 SDValue SplitF64 = DAG.getNode( 1719 RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), ArgValue); 1720 SDValue Lo = SplitF64.getValue(0); 1721 SDValue Hi = SplitF64.getValue(1); 1722 1723 unsigned RegLo = VA.getLocReg(); 1724 RegsToPass.push_back(std::make_pair(RegLo, Lo)); 1725 1726 if (RegLo == RISCV::X17) { 1727 // Second half of f64 is passed on the stack. 1728 // Work out the address of the stack slot. 1729 if (!StackPtr.getNode()) 1730 StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT); 1731 // Emit the store. 1732 MemOpChains.push_back( 1733 DAG.getStore(Chain, DL, Hi, StackPtr, MachinePointerInfo())); 1734 } else { 1735 // Second half of f64 is passed in another GPR. 1736 unsigned RegHigh = RegLo + 1; 1737 RegsToPass.push_back(std::make_pair(RegHigh, Hi)); 1738 } 1739 continue; 1740 } 1741 1742 // IsF64OnRV32DSoftABI && VA.isMemLoc() is handled below in the same way 1743 // as any other MemLoc. 1744 1745 // Promote the value if needed. 1746 // For now, only handle fully promoted and indirect arguments. 1747 if (VA.getLocInfo() == CCValAssign::Indirect) { 1748 // Store the argument in a stack slot and pass its address. 1749 SDValue SpillSlot = DAG.CreateStackTemporary(Outs[i].ArgVT); 1750 int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); 1751 MemOpChains.push_back( 1752 DAG.getStore(Chain, DL, ArgValue, SpillSlot, 1753 MachinePointerInfo::getFixedStack(MF, FI))); 1754 // If the original argument was split (e.g. i128), we need 1755 // to store all parts of it here (and pass just one address). 1756 unsigned ArgIndex = Outs[i].OrigArgIndex; 1757 assert(Outs[i].PartOffset == 0); 1758 while (i + 1 != e && Outs[i + 1].OrigArgIndex == ArgIndex) { 1759 SDValue PartValue = OutVals[i + 1]; 1760 unsigned PartOffset = Outs[i + 1].PartOffset; 1761 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, 1762 DAG.getIntPtrConstant(PartOffset, DL)); 1763 MemOpChains.push_back( 1764 DAG.getStore(Chain, DL, PartValue, Address, 1765 MachinePointerInfo::getFixedStack(MF, FI))); 1766 ++i; 1767 } 1768 ArgValue = SpillSlot; 1769 } else { 1770 ArgValue = convertValVTToLocVT(DAG, ArgValue, VA, DL); 1771 } 1772 1773 // Use local copy if it is a byval arg. 1774 if (Flags.isByVal()) 1775 ArgValue = ByValArgs[j++]; 1776 1777 if (VA.isRegLoc()) { 1778 // Queue up the argument copies and emit them at the end. 1779 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue)); 1780 } else { 1781 assert(VA.isMemLoc() && "Argument not register or memory"); 1782 assert(!IsTailCall && "Tail call not allowed if stack is used " 1783 "for passing parameters"); 1784 1785 // Work out the address of the stack slot. 1786 if (!StackPtr.getNode()) 1787 StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT); 1788 SDValue Address = 1789 DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, 1790 DAG.getIntPtrConstant(VA.getLocMemOffset(), DL)); 1791 1792 // Emit the store. 1793 MemOpChains.push_back( 1794 DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo())); 1795 } 1796 } 1797 1798 // Join the stores, which are independent of one another. 1799 if (!MemOpChains.empty()) 1800 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); 1801 1802 SDValue Glue; 1803 1804 // Build a sequence of copy-to-reg nodes, chained and glued together. 1805 for (auto &Reg : RegsToPass) { 1806 Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, Glue); 1807 Glue = Chain.getValue(1); 1808 } 1809 1810 // If the callee is a GlobalAddress/ExternalSymbol node, turn it into a 1811 // TargetGlobalAddress/TargetExternalSymbol node so that legalize won't 1812 // split it and then direct call can be matched by PseudoCALL. 1813 if (GlobalAddressSDNode *S = dyn_cast<GlobalAddressSDNode>(Callee)) { 1814 Callee = DAG.getTargetGlobalAddress(S->getGlobal(), DL, PtrVT, 0, 1815 RISCVII::MO_CALL); 1816 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { 1817 Callee = 1818 DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, RISCVII::MO_CALL); 1819 } 1820 1821 // The first call operand is the chain and the second is the target address. 1822 SmallVector<SDValue, 8> Ops; 1823 Ops.push_back(Chain); 1824 Ops.push_back(Callee); 1825 1826 // Add argument registers to the end of the list so that they are 1827 // known live into the call. 1828 for (auto &Reg : RegsToPass) 1829 Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType())); 1830 1831 if (!IsTailCall) { 1832 // Add a register mask operand representing the call-preserved registers. 1833 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 1834 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv); 1835 assert(Mask && "Missing call preserved mask for calling convention"); 1836 Ops.push_back(DAG.getRegisterMask(Mask)); 1837 } 1838 1839 // Glue the call to the argument copies, if any. 1840 if (Glue.getNode()) 1841 Ops.push_back(Glue); 1842 1843 // Emit the call. 1844 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 1845 1846 if (IsTailCall) { 1847 MF.getFrameInfo().setHasTailCall(); 1848 return DAG.getNode(RISCVISD::TAIL, DL, NodeTys, Ops); 1849 } 1850 1851 Chain = DAG.getNode(RISCVISD::CALL, DL, NodeTys, Ops); 1852 Glue = Chain.getValue(1); 1853 1854 // Mark the end of the call, which is glued to the call itself. 1855 Chain = DAG.getCALLSEQ_END(Chain, 1856 DAG.getConstant(NumBytes, DL, PtrVT, true), 1857 DAG.getConstant(0, DL, PtrVT, true), 1858 Glue, DL); 1859 Glue = Chain.getValue(1); 1860 1861 // Assign locations to each value returned by this call. 1862 SmallVector<CCValAssign, 16> RVLocs; 1863 CCState RetCCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext()); 1864 analyzeInputArgs(MF, RetCCInfo, Ins, /*IsRet=*/true); 1865 1866 // Copy all of the result registers out of their specified physreg. 1867 for (auto &VA : RVLocs) { 1868 // Copy the value out 1869 SDValue RetValue = 1870 DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), Glue); 1871 // Glue the RetValue to the end of the call sequence 1872 Chain = RetValue.getValue(1); 1873 Glue = RetValue.getValue(2); 1874 1875 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { 1876 assert(VA.getLocReg() == ArgGPRs[0] && "Unexpected reg assignment"); 1877 SDValue RetValue2 = 1878 DAG.getCopyFromReg(Chain, DL, ArgGPRs[1], MVT::i32, Glue); 1879 Chain = RetValue2.getValue(1); 1880 Glue = RetValue2.getValue(2); 1881 RetValue = DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, RetValue, 1882 RetValue2); 1883 } 1884 1885 RetValue = convertLocVTToValVT(DAG, RetValue, VA, DL); 1886 1887 InVals.push_back(RetValue); 1888 } 1889 1890 return Chain; 1891 } 1892 1893 bool RISCVTargetLowering::CanLowerReturn( 1894 CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg, 1895 const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const { 1896 SmallVector<CCValAssign, 16> RVLocs; 1897 CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context); 1898 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 1899 MVT VT = Outs[i].VT; 1900 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 1901 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 1902 if (CC_RISCV(MF.getDataLayout(), ABI, i, VT, VT, CCValAssign::Full, 1903 ArgFlags, CCInfo, /*IsFixed=*/true, /*IsRet=*/true, nullptr)) 1904 return false; 1905 } 1906 return true; 1907 } 1908 1909 SDValue 1910 RISCVTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 1911 bool IsVarArg, 1912 const SmallVectorImpl<ISD::OutputArg> &Outs, 1913 const SmallVectorImpl<SDValue> &OutVals, 1914 const SDLoc &DL, SelectionDAG &DAG) const { 1915 // Stores the assignment of the return value to a location. 1916 SmallVector<CCValAssign, 16> RVLocs; 1917 1918 // Info about the registers and stack slot. 1919 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, 1920 *DAG.getContext()); 1921 1922 analyzeOutputArgs(DAG.getMachineFunction(), CCInfo, Outs, /*IsRet=*/true, 1923 nullptr); 1924 1925 SDValue Glue; 1926 SmallVector<SDValue, 4> RetOps(1, Chain); 1927 1928 // Copy the result values into the output registers. 1929 for (unsigned i = 0, e = RVLocs.size(); i < e; ++i) { 1930 SDValue Val = OutVals[i]; 1931 CCValAssign &VA = RVLocs[i]; 1932 assert(VA.isRegLoc() && "Can only return in registers!"); 1933 1934 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { 1935 // Handle returning f64 on RV32D with a soft float ABI. 1936 assert(VA.isRegLoc() && "Expected return via registers"); 1937 SDValue SplitF64 = DAG.getNode(RISCVISD::SplitF64, DL, 1938 DAG.getVTList(MVT::i32, MVT::i32), Val); 1939 SDValue Lo = SplitF64.getValue(0); 1940 SDValue Hi = SplitF64.getValue(1); 1941 unsigned RegLo = VA.getLocReg(); 1942 unsigned RegHi = RegLo + 1; 1943 Chain = DAG.getCopyToReg(Chain, DL, RegLo, Lo, Glue); 1944 Glue = Chain.getValue(1); 1945 RetOps.push_back(DAG.getRegister(RegLo, MVT::i32)); 1946 Chain = DAG.getCopyToReg(Chain, DL, RegHi, Hi, Glue); 1947 Glue = Chain.getValue(1); 1948 RetOps.push_back(DAG.getRegister(RegHi, MVT::i32)); 1949 } else { 1950 // Handle a 'normal' return. 1951 Val = convertValVTToLocVT(DAG, Val, VA, DL); 1952 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Glue); 1953 1954 // Guarantee that all emitted copies are stuck together. 1955 Glue = Chain.getValue(1); 1956 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 1957 } 1958 } 1959 1960 RetOps[0] = Chain; // Update chain. 1961 1962 // Add the glue node if we have it. 1963 if (Glue.getNode()) { 1964 RetOps.push_back(Glue); 1965 } 1966 1967 // Interrupt service routines use different return instructions. 1968 const Function &Func = DAG.getMachineFunction().getFunction(); 1969 if (Func.hasFnAttribute("interrupt")) { 1970 if (!Func.getReturnType()->isVoidTy()) 1971 report_fatal_error( 1972 "Functions with the interrupt attribute must have void return type!"); 1973 1974 MachineFunction &MF = DAG.getMachineFunction(); 1975 StringRef Kind = 1976 MF.getFunction().getFnAttribute("interrupt").getValueAsString(); 1977 1978 unsigned RetOpc; 1979 if (Kind == "user") 1980 RetOpc = RISCVISD::URET_FLAG; 1981 else if (Kind == "supervisor") 1982 RetOpc = RISCVISD::SRET_FLAG; 1983 else 1984 RetOpc = RISCVISD::MRET_FLAG; 1985 1986 return DAG.getNode(RetOpc, DL, MVT::Other, RetOps); 1987 } 1988 1989 return DAG.getNode(RISCVISD::RET_FLAG, DL, MVT::Other, RetOps); 1990 } 1991 1992 const char *RISCVTargetLowering::getTargetNodeName(unsigned Opcode) const { 1993 switch ((RISCVISD::NodeType)Opcode) { 1994 case RISCVISD::FIRST_NUMBER: 1995 break; 1996 case RISCVISD::RET_FLAG: 1997 return "RISCVISD::RET_FLAG"; 1998 case RISCVISD::URET_FLAG: 1999 return "RISCVISD::URET_FLAG"; 2000 case RISCVISD::SRET_FLAG: 2001 return "RISCVISD::SRET_FLAG"; 2002 case RISCVISD::MRET_FLAG: 2003 return "RISCVISD::MRET_FLAG"; 2004 case RISCVISD::CALL: 2005 return "RISCVISD::CALL"; 2006 case RISCVISD::SELECT_CC: 2007 return "RISCVISD::SELECT_CC"; 2008 case RISCVISD::BuildPairF64: 2009 return "RISCVISD::BuildPairF64"; 2010 case RISCVISD::SplitF64: 2011 return "RISCVISD::SplitF64"; 2012 case RISCVISD::TAIL: 2013 return "RISCVISD::TAIL"; 2014 case RISCVISD::SLLW: 2015 return "RISCVISD::SLLW"; 2016 case RISCVISD::SRAW: 2017 return "RISCVISD::SRAW"; 2018 case RISCVISD::SRLW: 2019 return "RISCVISD::SRLW"; 2020 case RISCVISD::DIVW: 2021 return "RISCVISD::DIVW"; 2022 case RISCVISD::DIVUW: 2023 return "RISCVISD::DIVUW"; 2024 case RISCVISD::REMUW: 2025 return "RISCVISD::REMUW"; 2026 case RISCVISD::FMV_W_X_RV64: 2027 return "RISCVISD::FMV_W_X_RV64"; 2028 case RISCVISD::FMV_X_ANYEXTW_RV64: 2029 return "RISCVISD::FMV_X_ANYEXTW_RV64"; 2030 } 2031 return nullptr; 2032 } 2033 2034 std::pair<unsigned, const TargetRegisterClass *> 2035 RISCVTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 2036 StringRef Constraint, 2037 MVT VT) const { 2038 // First, see if this is a constraint that directly corresponds to a 2039 // RISCV register class. 2040 if (Constraint.size() == 1) { 2041 switch (Constraint[0]) { 2042 case 'r': 2043 return std::make_pair(0U, &RISCV::GPRRegClass); 2044 default: 2045 break; 2046 } 2047 } 2048 2049 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 2050 } 2051 2052 Instruction *RISCVTargetLowering::emitLeadingFence(IRBuilder<> &Builder, 2053 Instruction *Inst, 2054 AtomicOrdering Ord) const { 2055 if (isa<LoadInst>(Inst) && Ord == AtomicOrdering::SequentiallyConsistent) 2056 return Builder.CreateFence(Ord); 2057 if (isa<StoreInst>(Inst) && isReleaseOrStronger(Ord)) 2058 return Builder.CreateFence(AtomicOrdering::Release); 2059 return nullptr; 2060 } 2061 2062 Instruction *RISCVTargetLowering::emitTrailingFence(IRBuilder<> &Builder, 2063 Instruction *Inst, 2064 AtomicOrdering Ord) const { 2065 if (isa<LoadInst>(Inst) && isAcquireOrStronger(Ord)) 2066 return Builder.CreateFence(AtomicOrdering::Acquire); 2067 return nullptr; 2068 } 2069 2070 TargetLowering::AtomicExpansionKind 2071 RISCVTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { 2072 // atomicrmw {fadd,fsub} must be expanded to use compare-exchange, as floating 2073 // point operations can't be used in an lr/sc sequence without breaking the 2074 // forward-progress guarantee. 2075 if (AI->isFloatingPointOperation()) 2076 return AtomicExpansionKind::CmpXChg; 2077 2078 unsigned Size = AI->getType()->getPrimitiveSizeInBits(); 2079 if (Size == 8 || Size == 16) 2080 return AtomicExpansionKind::MaskedIntrinsic; 2081 return AtomicExpansionKind::None; 2082 } 2083 2084 static Intrinsic::ID 2085 getIntrinsicForMaskedAtomicRMWBinOp(unsigned XLen, AtomicRMWInst::BinOp BinOp) { 2086 if (XLen == 32) { 2087 switch (BinOp) { 2088 default: 2089 llvm_unreachable("Unexpected AtomicRMW BinOp"); 2090 case AtomicRMWInst::Xchg: 2091 return Intrinsic::riscv_masked_atomicrmw_xchg_i32; 2092 case AtomicRMWInst::Add: 2093 return Intrinsic::riscv_masked_atomicrmw_add_i32; 2094 case AtomicRMWInst::Sub: 2095 return Intrinsic::riscv_masked_atomicrmw_sub_i32; 2096 case AtomicRMWInst::Nand: 2097 return Intrinsic::riscv_masked_atomicrmw_nand_i32; 2098 case AtomicRMWInst::Max: 2099 return Intrinsic::riscv_masked_atomicrmw_max_i32; 2100 case AtomicRMWInst::Min: 2101 return Intrinsic::riscv_masked_atomicrmw_min_i32; 2102 case AtomicRMWInst::UMax: 2103 return Intrinsic::riscv_masked_atomicrmw_umax_i32; 2104 case AtomicRMWInst::UMin: 2105 return Intrinsic::riscv_masked_atomicrmw_umin_i32; 2106 } 2107 } 2108 2109 if (XLen == 64) { 2110 switch (BinOp) { 2111 default: 2112 llvm_unreachable("Unexpected AtomicRMW BinOp"); 2113 case AtomicRMWInst::Xchg: 2114 return Intrinsic::riscv_masked_atomicrmw_xchg_i64; 2115 case AtomicRMWInst::Add: 2116 return Intrinsic::riscv_masked_atomicrmw_add_i64; 2117 case AtomicRMWInst::Sub: 2118 return Intrinsic::riscv_masked_atomicrmw_sub_i64; 2119 case AtomicRMWInst::Nand: 2120 return Intrinsic::riscv_masked_atomicrmw_nand_i64; 2121 case AtomicRMWInst::Max: 2122 return Intrinsic::riscv_masked_atomicrmw_max_i64; 2123 case AtomicRMWInst::Min: 2124 return Intrinsic::riscv_masked_atomicrmw_min_i64; 2125 case AtomicRMWInst::UMax: 2126 return Intrinsic::riscv_masked_atomicrmw_umax_i64; 2127 case AtomicRMWInst::UMin: 2128 return Intrinsic::riscv_masked_atomicrmw_umin_i64; 2129 } 2130 } 2131 2132 llvm_unreachable("Unexpected XLen\n"); 2133 } 2134 2135 Value *RISCVTargetLowering::emitMaskedAtomicRMWIntrinsic( 2136 IRBuilder<> &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr, 2137 Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const { 2138 unsigned XLen = Subtarget.getXLen(); 2139 Value *Ordering = 2140 Builder.getIntN(XLen, static_cast<uint64_t>(AI->getOrdering())); 2141 Type *Tys[] = {AlignedAddr->getType()}; 2142 Function *LrwOpScwLoop = Intrinsic::getDeclaration( 2143 AI->getModule(), 2144 getIntrinsicForMaskedAtomicRMWBinOp(XLen, AI->getOperation()), Tys); 2145 2146 if (XLen == 64) { 2147 Incr = Builder.CreateSExt(Incr, Builder.getInt64Ty()); 2148 Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty()); 2149 ShiftAmt = Builder.CreateSExt(ShiftAmt, Builder.getInt64Ty()); 2150 } 2151 2152 Value *Result; 2153 2154 // Must pass the shift amount needed to sign extend the loaded value prior 2155 // to performing a signed comparison for min/max. ShiftAmt is the number of 2156 // bits to shift the value into position. Pass XLen-ShiftAmt-ValWidth, which 2157 // is the number of bits to left+right shift the value in order to 2158 // sign-extend. 2159 if (AI->getOperation() == AtomicRMWInst::Min || 2160 AI->getOperation() == AtomicRMWInst::Max) { 2161 const DataLayout &DL = AI->getModule()->getDataLayout(); 2162 unsigned ValWidth = 2163 DL.getTypeStoreSizeInBits(AI->getValOperand()->getType()); 2164 Value *SextShamt = 2165 Builder.CreateSub(Builder.getIntN(XLen, XLen - ValWidth), ShiftAmt); 2166 Result = Builder.CreateCall(LrwOpScwLoop, 2167 {AlignedAddr, Incr, Mask, SextShamt, Ordering}); 2168 } else { 2169 Result = 2170 Builder.CreateCall(LrwOpScwLoop, {AlignedAddr, Incr, Mask, Ordering}); 2171 } 2172 2173 if (XLen == 64) 2174 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty()); 2175 return Result; 2176 } 2177 2178 TargetLowering::AtomicExpansionKind 2179 RISCVTargetLowering::shouldExpandAtomicCmpXchgInIR( 2180 AtomicCmpXchgInst *CI) const { 2181 unsigned Size = CI->getCompareOperand()->getType()->getPrimitiveSizeInBits(); 2182 if (Size == 8 || Size == 16) 2183 return AtomicExpansionKind::MaskedIntrinsic; 2184 return AtomicExpansionKind::None; 2185 } 2186 2187 Value *RISCVTargetLowering::emitMaskedAtomicCmpXchgIntrinsic( 2188 IRBuilder<> &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr, 2189 Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const { 2190 unsigned XLen = Subtarget.getXLen(); 2191 Value *Ordering = Builder.getIntN(XLen, static_cast<uint64_t>(Ord)); 2192 Intrinsic::ID CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i32; 2193 if (XLen == 64) { 2194 CmpVal = Builder.CreateSExt(CmpVal, Builder.getInt64Ty()); 2195 NewVal = Builder.CreateSExt(NewVal, Builder.getInt64Ty()); 2196 Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty()); 2197 CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i64; 2198 } 2199 Type *Tys[] = {AlignedAddr->getType()}; 2200 Function *MaskedCmpXchg = 2201 Intrinsic::getDeclaration(CI->getModule(), CmpXchgIntrID, Tys); 2202 Value *Result = Builder.CreateCall( 2203 MaskedCmpXchg, {AlignedAddr, CmpVal, NewVal, Mask, Ordering}); 2204 if (XLen == 64) 2205 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty()); 2206 return Result; 2207 } 2208