1 //===-- RISCVISelLowering.cpp - RISCV DAG Lowering Implementation --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the interfaces that RISCV uses to lower LLVM code into a 10 // selection DAG. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "RISCVISelLowering.h" 15 #include "MCTargetDesc/RISCVMatInt.h" 16 #include "RISCV.h" 17 #include "RISCVMachineFunctionInfo.h" 18 #include "RISCVRegisterInfo.h" 19 #include "RISCVSubtarget.h" 20 #include "RISCVTargetMachine.h" 21 #include "llvm/ADT/SmallSet.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Analysis/MemoryLocation.h" 24 #include "llvm/CodeGen/MachineFrameInfo.h" 25 #include "llvm/CodeGen/MachineFunction.h" 26 #include "llvm/CodeGen/MachineInstrBuilder.h" 27 #include "llvm/CodeGen/MachineRegisterInfo.h" 28 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 29 #include "llvm/CodeGen/ValueTypes.h" 30 #include "llvm/IR/DiagnosticInfo.h" 31 #include "llvm/IR/DiagnosticPrinter.h" 32 #include "llvm/IR/IRBuilder.h" 33 #include "llvm/IR/IntrinsicsRISCV.h" 34 #include "llvm/IR/PatternMatch.h" 35 #include "llvm/Support/Debug.h" 36 #include "llvm/Support/ErrorHandling.h" 37 #include "llvm/Support/KnownBits.h" 38 #include "llvm/Support/MathExtras.h" 39 #include "llvm/Support/raw_ostream.h" 40 41 using namespace llvm; 42 43 #define DEBUG_TYPE "riscv-lower" 44 45 STATISTIC(NumTailCalls, "Number of tail calls"); 46 47 RISCVTargetLowering::RISCVTargetLowering(const TargetMachine &TM, 48 const RISCVSubtarget &STI) 49 : TargetLowering(TM), Subtarget(STI) { 50 51 if (Subtarget.isRV32E()) 52 report_fatal_error("Codegen not yet implemented for RV32E"); 53 54 RISCVABI::ABI ABI = Subtarget.getTargetABI(); 55 assert(ABI != RISCVABI::ABI_Unknown && "Improperly initialised target ABI"); 56 57 if ((ABI == RISCVABI::ABI_ILP32F || ABI == RISCVABI::ABI_LP64F) && 58 !Subtarget.hasStdExtF()) { 59 errs() << "Hard-float 'f' ABI can't be used for a target that " 60 "doesn't support the F instruction set extension (ignoring " 61 "target-abi)\n"; 62 ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32; 63 } else if ((ABI == RISCVABI::ABI_ILP32D || ABI == RISCVABI::ABI_LP64D) && 64 !Subtarget.hasStdExtD()) { 65 errs() << "Hard-float 'd' ABI can't be used for a target that " 66 "doesn't support the D instruction set extension (ignoring " 67 "target-abi)\n"; 68 ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32; 69 } 70 71 switch (ABI) { 72 default: 73 report_fatal_error("Don't know how to lower this ABI"); 74 case RISCVABI::ABI_ILP32: 75 case RISCVABI::ABI_ILP32F: 76 case RISCVABI::ABI_ILP32D: 77 case RISCVABI::ABI_LP64: 78 case RISCVABI::ABI_LP64F: 79 case RISCVABI::ABI_LP64D: 80 break; 81 } 82 83 MVT XLenVT = Subtarget.getXLenVT(); 84 85 // Set up the register classes. 86 addRegisterClass(XLenVT, &RISCV::GPRRegClass); 87 88 if (Subtarget.hasStdExtZfh()) 89 addRegisterClass(MVT::f16, &RISCV::FPR16RegClass); 90 if (Subtarget.hasStdExtF()) 91 addRegisterClass(MVT::f32, &RISCV::FPR32RegClass); 92 if (Subtarget.hasStdExtD()) 93 addRegisterClass(MVT::f64, &RISCV::FPR64RegClass); 94 95 static const MVT::SimpleValueType BoolVecVTs[] = { 96 MVT::nxv1i1, MVT::nxv2i1, MVT::nxv4i1, MVT::nxv8i1, 97 MVT::nxv16i1, MVT::nxv32i1, MVT::nxv64i1}; 98 static const MVT::SimpleValueType IntVecVTs[] = { 99 MVT::nxv1i8, MVT::nxv2i8, MVT::nxv4i8, MVT::nxv8i8, MVT::nxv16i8, 100 MVT::nxv32i8, MVT::nxv64i8, MVT::nxv1i16, MVT::nxv2i16, MVT::nxv4i16, 101 MVT::nxv8i16, MVT::nxv16i16, MVT::nxv32i16, MVT::nxv1i32, MVT::nxv2i32, 102 MVT::nxv4i32, MVT::nxv8i32, MVT::nxv16i32, MVT::nxv1i64, MVT::nxv2i64, 103 MVT::nxv4i64, MVT::nxv8i64}; 104 static const MVT::SimpleValueType F16VecVTs[] = { 105 MVT::nxv1f16, MVT::nxv2f16, MVT::nxv4f16, 106 MVT::nxv8f16, MVT::nxv16f16, MVT::nxv32f16}; 107 static const MVT::SimpleValueType F32VecVTs[] = { 108 MVT::nxv1f32, MVT::nxv2f32, MVT::nxv4f32, MVT::nxv8f32, MVT::nxv16f32}; 109 static const MVT::SimpleValueType F64VecVTs[] = { 110 MVT::nxv1f64, MVT::nxv2f64, MVT::nxv4f64, MVT::nxv8f64}; 111 112 if (Subtarget.hasVInstructions()) { 113 auto addRegClassForRVV = [this](MVT VT) { 114 unsigned Size = VT.getSizeInBits().getKnownMinValue(); 115 assert(Size <= 512 && isPowerOf2_32(Size)); 116 const TargetRegisterClass *RC; 117 if (Size <= 64) 118 RC = &RISCV::VRRegClass; 119 else if (Size == 128) 120 RC = &RISCV::VRM2RegClass; 121 else if (Size == 256) 122 RC = &RISCV::VRM4RegClass; 123 else 124 RC = &RISCV::VRM8RegClass; 125 126 addRegisterClass(VT, RC); 127 }; 128 129 for (MVT VT : BoolVecVTs) 130 addRegClassForRVV(VT); 131 for (MVT VT : IntVecVTs) { 132 if (VT.getVectorElementType() == MVT::i64 && 133 !Subtarget.hasVInstructionsI64()) 134 continue; 135 addRegClassForRVV(VT); 136 } 137 138 if (Subtarget.hasVInstructionsF16()) 139 for (MVT VT : F16VecVTs) 140 addRegClassForRVV(VT); 141 142 if (Subtarget.hasVInstructionsF32()) 143 for (MVT VT : F32VecVTs) 144 addRegClassForRVV(VT); 145 146 if (Subtarget.hasVInstructionsF64()) 147 for (MVT VT : F64VecVTs) 148 addRegClassForRVV(VT); 149 150 if (Subtarget.useRVVForFixedLengthVectors()) { 151 auto addRegClassForFixedVectors = [this](MVT VT) { 152 MVT ContainerVT = getContainerForFixedLengthVector(VT); 153 unsigned RCID = getRegClassIDForVecVT(ContainerVT); 154 const RISCVRegisterInfo &TRI = *Subtarget.getRegisterInfo(); 155 addRegisterClass(VT, TRI.getRegClass(RCID)); 156 }; 157 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) 158 if (useRVVForFixedLengthVectorVT(VT)) 159 addRegClassForFixedVectors(VT); 160 161 for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) 162 if (useRVVForFixedLengthVectorVT(VT)) 163 addRegClassForFixedVectors(VT); 164 } 165 } 166 167 // Compute derived properties from the register classes. 168 computeRegisterProperties(STI.getRegisterInfo()); 169 170 setStackPointerRegisterToSaveRestore(RISCV::X2); 171 172 for (auto N : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}) 173 setLoadExtAction(N, XLenVT, MVT::i1, Promote); 174 175 // TODO: add all necessary setOperationAction calls. 176 setOperationAction(ISD::DYNAMIC_STACKALLOC, XLenVT, Expand); 177 178 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 179 setOperationAction(ISD::BR_CC, XLenVT, Expand); 180 setOperationAction(ISD::BRCOND, MVT::Other, Custom); 181 setOperationAction(ISD::SELECT_CC, XLenVT, Expand); 182 183 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); 184 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); 185 186 setOperationAction(ISD::VASTART, MVT::Other, Custom); 187 setOperationAction(ISD::VAARG, MVT::Other, Expand); 188 setOperationAction(ISD::VACOPY, MVT::Other, Expand); 189 setOperationAction(ISD::VAEND, MVT::Other, Expand); 190 191 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 192 if (!Subtarget.hasStdExtZbb()) { 193 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand); 194 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand); 195 } 196 197 if (Subtarget.is64Bit()) { 198 setOperationAction(ISD::ADD, MVT::i32, Custom); 199 setOperationAction(ISD::SUB, MVT::i32, Custom); 200 setOperationAction(ISD::SHL, MVT::i32, Custom); 201 setOperationAction(ISD::SRA, MVT::i32, Custom); 202 setOperationAction(ISD::SRL, MVT::i32, Custom); 203 204 setOperationAction(ISD::UADDO, MVT::i32, Custom); 205 setOperationAction(ISD::USUBO, MVT::i32, Custom); 206 setOperationAction(ISD::UADDSAT, MVT::i32, Custom); 207 setOperationAction(ISD::USUBSAT, MVT::i32, Custom); 208 } else { 209 setLibcallName(RTLIB::SHL_I128, nullptr); 210 setLibcallName(RTLIB::SRL_I128, nullptr); 211 setLibcallName(RTLIB::SRA_I128, nullptr); 212 setLibcallName(RTLIB::MUL_I128, nullptr); 213 setLibcallName(RTLIB::MULO_I64, nullptr); 214 } 215 216 if (!Subtarget.hasStdExtM()) { 217 setOperationAction(ISD::MUL, XLenVT, Expand); 218 setOperationAction(ISD::MULHS, XLenVT, Expand); 219 setOperationAction(ISD::MULHU, XLenVT, Expand); 220 setOperationAction(ISD::SDIV, XLenVT, Expand); 221 setOperationAction(ISD::UDIV, XLenVT, Expand); 222 setOperationAction(ISD::SREM, XLenVT, Expand); 223 setOperationAction(ISD::UREM, XLenVT, Expand); 224 } else { 225 if (Subtarget.is64Bit()) { 226 setOperationAction(ISD::MUL, MVT::i32, Custom); 227 setOperationAction(ISD::MUL, MVT::i128, Custom); 228 229 setOperationAction(ISD::SDIV, MVT::i8, Custom); 230 setOperationAction(ISD::UDIV, MVT::i8, Custom); 231 setOperationAction(ISD::UREM, MVT::i8, Custom); 232 setOperationAction(ISD::SDIV, MVT::i16, Custom); 233 setOperationAction(ISD::UDIV, MVT::i16, Custom); 234 setOperationAction(ISD::UREM, MVT::i16, Custom); 235 setOperationAction(ISD::SDIV, MVT::i32, Custom); 236 setOperationAction(ISD::UDIV, MVT::i32, Custom); 237 setOperationAction(ISD::UREM, MVT::i32, Custom); 238 } else { 239 setOperationAction(ISD::MUL, MVT::i64, Custom); 240 } 241 } 242 243 setOperationAction(ISD::SDIVREM, XLenVT, Expand); 244 setOperationAction(ISD::UDIVREM, XLenVT, Expand); 245 setOperationAction(ISD::SMUL_LOHI, XLenVT, Expand); 246 setOperationAction(ISD::UMUL_LOHI, XLenVT, Expand); 247 248 setOperationAction(ISD::SHL_PARTS, XLenVT, Custom); 249 setOperationAction(ISD::SRL_PARTS, XLenVT, Custom); 250 setOperationAction(ISD::SRA_PARTS, XLenVT, Custom); 251 252 if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp()) { 253 if (Subtarget.is64Bit()) { 254 setOperationAction(ISD::ROTL, MVT::i32, Custom); 255 setOperationAction(ISD::ROTR, MVT::i32, Custom); 256 } 257 } else { 258 setOperationAction(ISD::ROTL, XLenVT, Expand); 259 setOperationAction(ISD::ROTR, XLenVT, Expand); 260 } 261 262 if (Subtarget.hasStdExtZbp()) { 263 // Custom lower bswap/bitreverse so we can convert them to GREVI to enable 264 // more combining. 265 setOperationAction(ISD::BITREVERSE, XLenVT, Custom); 266 setOperationAction(ISD::BSWAP, XLenVT, Custom); 267 setOperationAction(ISD::BITREVERSE, MVT::i8, Custom); 268 // BSWAP i8 doesn't exist. 269 setOperationAction(ISD::BITREVERSE, MVT::i16, Custom); 270 setOperationAction(ISD::BSWAP, MVT::i16, Custom); 271 272 if (Subtarget.is64Bit()) { 273 setOperationAction(ISD::BITREVERSE, MVT::i32, Custom); 274 setOperationAction(ISD::BSWAP, MVT::i32, Custom); 275 } 276 } else { 277 // With Zbb we have an XLen rev8 instruction, but not GREVI. So we'll 278 // pattern match it directly in isel. 279 setOperationAction(ISD::BSWAP, XLenVT, 280 Subtarget.hasStdExtZbb() ? Legal : Expand); 281 } 282 283 if (Subtarget.hasStdExtZbb()) { 284 setOperationAction(ISD::SMIN, XLenVT, Legal); 285 setOperationAction(ISD::SMAX, XLenVT, Legal); 286 setOperationAction(ISD::UMIN, XLenVT, Legal); 287 setOperationAction(ISD::UMAX, XLenVT, Legal); 288 289 if (Subtarget.is64Bit()) { 290 setOperationAction(ISD::CTTZ, MVT::i32, Custom); 291 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Custom); 292 setOperationAction(ISD::CTLZ, MVT::i32, Custom); 293 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom); 294 } 295 } else { 296 setOperationAction(ISD::CTTZ, XLenVT, Expand); 297 setOperationAction(ISD::CTLZ, XLenVT, Expand); 298 setOperationAction(ISD::CTPOP, XLenVT, Expand); 299 } 300 301 if (Subtarget.hasStdExtZbt()) { 302 setOperationAction(ISD::FSHL, XLenVT, Custom); 303 setOperationAction(ISD::FSHR, XLenVT, Custom); 304 setOperationAction(ISD::SELECT, XLenVT, Legal); 305 306 if (Subtarget.is64Bit()) { 307 setOperationAction(ISD::FSHL, MVT::i32, Custom); 308 setOperationAction(ISD::FSHR, MVT::i32, Custom); 309 } 310 } else { 311 setOperationAction(ISD::SELECT, XLenVT, Custom); 312 } 313 314 static const ISD::CondCode FPCCToExpand[] = { 315 ISD::SETOGT, ISD::SETOGE, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT, 316 ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUNE, ISD::SETGT, 317 ISD::SETGE, ISD::SETNE, ISD::SETO, ISD::SETUO}; 318 319 static const ISD::NodeType FPOpToExpand[] = { 320 ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, 321 ISD::FREM, ISD::FP16_TO_FP, ISD::FP_TO_FP16}; 322 323 if (Subtarget.hasStdExtZfh()) 324 setOperationAction(ISD::BITCAST, MVT::i16, Custom); 325 326 if (Subtarget.hasStdExtZfh()) { 327 setOperationAction(ISD::FMINNUM, MVT::f16, Legal); 328 setOperationAction(ISD::FMAXNUM, MVT::f16, Legal); 329 setOperationAction(ISD::LRINT, MVT::f16, Legal); 330 setOperationAction(ISD::LLRINT, MVT::f16, Legal); 331 setOperationAction(ISD::LROUND, MVT::f16, Legal); 332 setOperationAction(ISD::LLROUND, MVT::f16, Legal); 333 setOperationAction(ISD::STRICT_LRINT, MVT::f16, Legal); 334 setOperationAction(ISD::STRICT_LLRINT, MVT::f16, Legal); 335 setOperationAction(ISD::STRICT_LROUND, MVT::f16, Legal); 336 setOperationAction(ISD::STRICT_LLROUND, MVT::f16, Legal); 337 setOperationAction(ISD::STRICT_FADD, MVT::f16, Legal); 338 setOperationAction(ISD::STRICT_FMA, MVT::f16, Legal); 339 setOperationAction(ISD::STRICT_FSUB, MVT::f16, Legal); 340 setOperationAction(ISD::STRICT_FMUL, MVT::f16, Legal); 341 setOperationAction(ISD::STRICT_FDIV, MVT::f16, Legal); 342 setOperationAction(ISD::STRICT_FP_ROUND, MVT::f16, Legal); 343 setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f32, Legal); 344 setOperationAction(ISD::STRICT_FSQRT, MVT::f16, Legal); 345 for (auto CC : FPCCToExpand) 346 setCondCodeAction(CC, MVT::f16, Expand); 347 setOperationAction(ISD::SELECT_CC, MVT::f16, Expand); 348 setOperationAction(ISD::SELECT, MVT::f16, Custom); 349 setOperationAction(ISD::BR_CC, MVT::f16, Expand); 350 351 setOperationAction(ISD::FREM, MVT::f16, Promote); 352 setOperationAction(ISD::FCEIL, MVT::f16, Promote); 353 setOperationAction(ISD::FFLOOR, MVT::f16, Promote); 354 setOperationAction(ISD::FNEARBYINT, MVT::f16, Promote); 355 setOperationAction(ISD::FRINT, MVT::f16, Promote); 356 setOperationAction(ISD::FROUND, MVT::f16, Promote); 357 setOperationAction(ISD::FROUNDEVEN, MVT::f16, Promote); 358 setOperationAction(ISD::FTRUNC, MVT::f16, Promote); 359 setOperationAction(ISD::FPOW, MVT::f16, Promote); 360 setOperationAction(ISD::FPOWI, MVT::f16, Promote); 361 setOperationAction(ISD::FCOS, MVT::f16, Promote); 362 setOperationAction(ISD::FSIN, MVT::f16, Promote); 363 setOperationAction(ISD::FSINCOS, MVT::f16, Promote); 364 setOperationAction(ISD::FEXP, MVT::f16, Promote); 365 setOperationAction(ISD::FEXP2, MVT::f16, Promote); 366 setOperationAction(ISD::FLOG, MVT::f16, Promote); 367 setOperationAction(ISD::FLOG2, MVT::f16, Promote); 368 setOperationAction(ISD::FLOG10, MVT::f16, Promote); 369 370 // FIXME: Need to promote f16 STRICT_* to f32 libcalls, but we don't have 371 // complete support for all operations in LegalizeDAG. 372 373 // We need to custom promote this. 374 if (Subtarget.is64Bit()) 375 setOperationAction(ISD::FPOWI, MVT::i32, Custom); 376 } 377 378 if (Subtarget.hasStdExtF()) { 379 setOperationAction(ISD::FMINNUM, MVT::f32, Legal); 380 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); 381 setOperationAction(ISD::LRINT, MVT::f32, Legal); 382 setOperationAction(ISD::LLRINT, MVT::f32, Legal); 383 setOperationAction(ISD::LROUND, MVT::f32, Legal); 384 setOperationAction(ISD::LLROUND, MVT::f32, Legal); 385 setOperationAction(ISD::STRICT_LRINT, MVT::f32, Legal); 386 setOperationAction(ISD::STRICT_LLRINT, MVT::f32, Legal); 387 setOperationAction(ISD::STRICT_LROUND, MVT::f32, Legal); 388 setOperationAction(ISD::STRICT_LLROUND, MVT::f32, Legal); 389 setOperationAction(ISD::STRICT_FADD, MVT::f32, Legal); 390 setOperationAction(ISD::STRICT_FMA, MVT::f32, Legal); 391 setOperationAction(ISD::STRICT_FSUB, MVT::f32, Legal); 392 setOperationAction(ISD::STRICT_FMUL, MVT::f32, Legal); 393 setOperationAction(ISD::STRICT_FDIV, MVT::f32, Legal); 394 setOperationAction(ISD::STRICT_FSQRT, MVT::f32, Legal); 395 for (auto CC : FPCCToExpand) 396 setCondCodeAction(CC, MVT::f32, Expand); 397 setOperationAction(ISD::SELECT_CC, MVT::f32, Expand); 398 setOperationAction(ISD::SELECT, MVT::f32, Custom); 399 setOperationAction(ISD::BR_CC, MVT::f32, Expand); 400 for (auto Op : FPOpToExpand) 401 setOperationAction(Op, MVT::f32, Expand); 402 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); 403 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 404 } 405 406 if (Subtarget.hasStdExtF() && Subtarget.is64Bit()) 407 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 408 409 if (Subtarget.hasStdExtD()) { 410 setOperationAction(ISD::FMINNUM, MVT::f64, Legal); 411 setOperationAction(ISD::FMAXNUM, MVT::f64, Legal); 412 setOperationAction(ISD::LRINT, MVT::f64, Legal); 413 setOperationAction(ISD::LLRINT, MVT::f64, Legal); 414 setOperationAction(ISD::LROUND, MVT::f64, Legal); 415 setOperationAction(ISD::LLROUND, MVT::f64, Legal); 416 setOperationAction(ISD::STRICT_LRINT, MVT::f64, Legal); 417 setOperationAction(ISD::STRICT_LLRINT, MVT::f64, Legal); 418 setOperationAction(ISD::STRICT_LROUND, MVT::f64, Legal); 419 setOperationAction(ISD::STRICT_LLROUND, MVT::f64, Legal); 420 setOperationAction(ISD::STRICT_FMA, MVT::f64, Legal); 421 setOperationAction(ISD::STRICT_FADD, MVT::f64, Legal); 422 setOperationAction(ISD::STRICT_FSUB, MVT::f64, Legal); 423 setOperationAction(ISD::STRICT_FMUL, MVT::f64, Legal); 424 setOperationAction(ISD::STRICT_FDIV, MVT::f64, Legal); 425 setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal); 426 setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f64, Legal); 427 setOperationAction(ISD::STRICT_FSQRT, MVT::f64, Legal); 428 for (auto CC : FPCCToExpand) 429 setCondCodeAction(CC, MVT::f64, Expand); 430 setOperationAction(ISD::SELECT_CC, MVT::f64, Expand); 431 setOperationAction(ISD::SELECT, MVT::f64, Custom); 432 setOperationAction(ISD::BR_CC, MVT::f64, Expand); 433 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 434 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 435 for (auto Op : FPOpToExpand) 436 setOperationAction(Op, MVT::f64, Expand); 437 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); 438 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 439 } 440 441 if (Subtarget.is64Bit()) { 442 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 443 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 444 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom); 445 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom); 446 } 447 448 if (Subtarget.hasStdExtF()) { 449 setOperationAction(ISD::FP_TO_UINT_SAT, XLenVT, Custom); 450 setOperationAction(ISD::FP_TO_SINT_SAT, XLenVT, Custom); 451 452 setOperationAction(ISD::STRICT_FP_TO_UINT, XLenVT, Legal); 453 setOperationAction(ISD::STRICT_FP_TO_SINT, XLenVT, Legal); 454 setOperationAction(ISD::STRICT_UINT_TO_FP, XLenVT, Legal); 455 setOperationAction(ISD::STRICT_SINT_TO_FP, XLenVT, Legal); 456 457 setOperationAction(ISD::FLT_ROUNDS_, XLenVT, Custom); 458 setOperationAction(ISD::SET_ROUNDING, MVT::Other, Custom); 459 } 460 461 setOperationAction(ISD::GlobalAddress, XLenVT, Custom); 462 setOperationAction(ISD::BlockAddress, XLenVT, Custom); 463 setOperationAction(ISD::ConstantPool, XLenVT, Custom); 464 setOperationAction(ISD::JumpTable, XLenVT, Custom); 465 466 setOperationAction(ISD::GlobalTLSAddress, XLenVT, Custom); 467 468 // TODO: On M-mode only targets, the cycle[h] CSR may not be present. 469 // Unfortunately this can't be determined just from the ISA naming string. 470 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, 471 Subtarget.is64Bit() ? Legal : Custom); 472 473 setOperationAction(ISD::TRAP, MVT::Other, Legal); 474 setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal); 475 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 476 if (Subtarget.is64Bit()) 477 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i32, Custom); 478 479 if (Subtarget.hasStdExtA()) { 480 setMaxAtomicSizeInBitsSupported(Subtarget.getXLen()); 481 setMinCmpXchgSizeInBits(32); 482 } else { 483 setMaxAtomicSizeInBitsSupported(0); 484 } 485 486 setBooleanContents(ZeroOrOneBooleanContent); 487 488 if (Subtarget.hasVInstructions()) { 489 setBooleanVectorContents(ZeroOrOneBooleanContent); 490 491 setOperationAction(ISD::VSCALE, XLenVT, Custom); 492 493 // RVV intrinsics may have illegal operands. 494 // We also need to custom legalize vmv.x.s. 495 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i8, Custom); 496 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i16, Custom); 497 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i8, Custom); 498 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i16, Custom); 499 if (Subtarget.is64Bit()) { 500 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i32, Custom); 501 } else { 502 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i64, Custom); 503 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i64, Custom); 504 } 505 506 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom); 507 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); 508 509 static const unsigned IntegerVPOps[] = { 510 ISD::VP_ADD, ISD::VP_SUB, ISD::VP_MUL, 511 ISD::VP_SDIV, ISD::VP_UDIV, ISD::VP_SREM, 512 ISD::VP_UREM, ISD::VP_AND, ISD::VP_OR, 513 ISD::VP_XOR, ISD::VP_ASHR, ISD::VP_LSHR, 514 ISD::VP_SHL, ISD::VP_REDUCE_ADD, ISD::VP_REDUCE_AND, 515 ISD::VP_REDUCE_OR, ISD::VP_REDUCE_XOR, ISD::VP_REDUCE_SMAX, 516 ISD::VP_REDUCE_SMIN, ISD::VP_REDUCE_UMAX, ISD::VP_REDUCE_UMIN, 517 ISD::VP_SELECT}; 518 519 static const unsigned FloatingPointVPOps[] = { 520 ISD::VP_FADD, ISD::VP_FSUB, ISD::VP_FMUL, 521 ISD::VP_FDIV, ISD::VP_REDUCE_FADD, ISD::VP_REDUCE_SEQ_FADD, 522 ISD::VP_REDUCE_FMIN, ISD::VP_REDUCE_FMAX, ISD::VP_SELECT}; 523 524 if (!Subtarget.is64Bit()) { 525 // We must custom-lower certain vXi64 operations on RV32 due to the vector 526 // element type being illegal. 527 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::i64, Custom); 528 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::i64, Custom); 529 530 setOperationAction(ISD::VECREDUCE_ADD, MVT::i64, Custom); 531 setOperationAction(ISD::VECREDUCE_AND, MVT::i64, Custom); 532 setOperationAction(ISD::VECREDUCE_OR, MVT::i64, Custom); 533 setOperationAction(ISD::VECREDUCE_XOR, MVT::i64, Custom); 534 setOperationAction(ISD::VECREDUCE_SMAX, MVT::i64, Custom); 535 setOperationAction(ISD::VECREDUCE_SMIN, MVT::i64, Custom); 536 setOperationAction(ISD::VECREDUCE_UMAX, MVT::i64, Custom); 537 setOperationAction(ISD::VECREDUCE_UMIN, MVT::i64, Custom); 538 539 setOperationAction(ISD::VP_REDUCE_ADD, MVT::i64, Custom); 540 setOperationAction(ISD::VP_REDUCE_AND, MVT::i64, Custom); 541 setOperationAction(ISD::VP_REDUCE_OR, MVT::i64, Custom); 542 setOperationAction(ISD::VP_REDUCE_XOR, MVT::i64, Custom); 543 setOperationAction(ISD::VP_REDUCE_SMAX, MVT::i64, Custom); 544 setOperationAction(ISD::VP_REDUCE_SMIN, MVT::i64, Custom); 545 setOperationAction(ISD::VP_REDUCE_UMAX, MVT::i64, Custom); 546 setOperationAction(ISD::VP_REDUCE_UMIN, MVT::i64, Custom); 547 } 548 549 for (MVT VT : BoolVecVTs) { 550 setOperationAction(ISD::SPLAT_VECTOR, VT, Custom); 551 552 // Mask VTs are custom-expanded into a series of standard nodes 553 setOperationAction(ISD::TRUNCATE, VT, Custom); 554 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 555 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 556 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 557 558 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 559 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 560 561 setOperationAction(ISD::SELECT, VT, Custom); 562 setOperationAction(ISD::SELECT_CC, VT, Expand); 563 setOperationAction(ISD::VSELECT, VT, Expand); 564 setOperationAction(ISD::VP_SELECT, VT, Expand); 565 566 setOperationAction(ISD::VP_AND, VT, Custom); 567 setOperationAction(ISD::VP_OR, VT, Custom); 568 setOperationAction(ISD::VP_XOR, VT, Custom); 569 570 setOperationAction(ISD::VECREDUCE_AND, VT, Custom); 571 setOperationAction(ISD::VECREDUCE_OR, VT, Custom); 572 setOperationAction(ISD::VECREDUCE_XOR, VT, Custom); 573 574 setOperationAction(ISD::VP_REDUCE_AND, VT, Custom); 575 setOperationAction(ISD::VP_REDUCE_OR, VT, Custom); 576 setOperationAction(ISD::VP_REDUCE_XOR, VT, Custom); 577 578 // RVV has native int->float & float->int conversions where the 579 // element type sizes are within one power-of-two of each other. Any 580 // wider distances between type sizes have to be lowered as sequences 581 // which progressively narrow the gap in stages. 582 setOperationAction(ISD::SINT_TO_FP, VT, Custom); 583 setOperationAction(ISD::UINT_TO_FP, VT, Custom); 584 setOperationAction(ISD::FP_TO_SINT, VT, Custom); 585 setOperationAction(ISD::FP_TO_UINT, VT, Custom); 586 587 // Expand all extending loads to types larger than this, and truncating 588 // stores from types larger than this. 589 for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) { 590 setTruncStoreAction(OtherVT, VT, Expand); 591 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 592 setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand); 593 setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand); 594 } 595 } 596 597 for (MVT VT : IntVecVTs) { 598 if (VT.getVectorElementType() == MVT::i64 && 599 !Subtarget.hasVInstructionsI64()) 600 continue; 601 602 setOperationAction(ISD::SPLAT_VECTOR, VT, Legal); 603 setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom); 604 605 // Vectors implement MULHS/MULHU. 606 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 607 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 608 609 setOperationAction(ISD::SMIN, VT, Legal); 610 setOperationAction(ISD::SMAX, VT, Legal); 611 setOperationAction(ISD::UMIN, VT, Legal); 612 setOperationAction(ISD::UMAX, VT, Legal); 613 614 setOperationAction(ISD::ROTL, VT, Expand); 615 setOperationAction(ISD::ROTR, VT, Expand); 616 617 setOperationAction(ISD::CTTZ, VT, Expand); 618 setOperationAction(ISD::CTLZ, VT, Expand); 619 setOperationAction(ISD::CTPOP, VT, Expand); 620 621 setOperationAction(ISD::BSWAP, VT, Expand); 622 623 // Custom-lower extensions and truncations from/to mask types. 624 setOperationAction(ISD::ANY_EXTEND, VT, Custom); 625 setOperationAction(ISD::SIGN_EXTEND, VT, Custom); 626 setOperationAction(ISD::ZERO_EXTEND, VT, Custom); 627 628 // RVV has native int->float & float->int conversions where the 629 // element type sizes are within one power-of-two of each other. Any 630 // wider distances between type sizes have to be lowered as sequences 631 // which progressively narrow the gap in stages. 632 setOperationAction(ISD::SINT_TO_FP, VT, Custom); 633 setOperationAction(ISD::UINT_TO_FP, VT, Custom); 634 setOperationAction(ISD::FP_TO_SINT, VT, Custom); 635 setOperationAction(ISD::FP_TO_UINT, VT, Custom); 636 637 setOperationAction(ISD::SADDSAT, VT, Legal); 638 setOperationAction(ISD::UADDSAT, VT, Legal); 639 setOperationAction(ISD::SSUBSAT, VT, Legal); 640 setOperationAction(ISD::USUBSAT, VT, Legal); 641 642 // Integer VTs are lowered as a series of "RISCVISD::TRUNCATE_VECTOR_VL" 643 // nodes which truncate by one power of two at a time. 644 setOperationAction(ISD::TRUNCATE, VT, Custom); 645 646 // Custom-lower insert/extract operations to simplify patterns. 647 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 648 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 649 650 // Custom-lower reduction operations to set up the corresponding custom 651 // nodes' operands. 652 setOperationAction(ISD::VECREDUCE_ADD, VT, Custom); 653 setOperationAction(ISD::VECREDUCE_AND, VT, Custom); 654 setOperationAction(ISD::VECREDUCE_OR, VT, Custom); 655 setOperationAction(ISD::VECREDUCE_XOR, VT, Custom); 656 setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom); 657 setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom); 658 setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom); 659 setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom); 660 661 for (unsigned VPOpc : IntegerVPOps) 662 setOperationAction(VPOpc, VT, Custom); 663 664 setOperationAction(ISD::LOAD, VT, Custom); 665 setOperationAction(ISD::STORE, VT, Custom); 666 667 setOperationAction(ISD::MLOAD, VT, Custom); 668 setOperationAction(ISD::MSTORE, VT, Custom); 669 setOperationAction(ISD::MGATHER, VT, Custom); 670 setOperationAction(ISD::MSCATTER, VT, Custom); 671 672 setOperationAction(ISD::VP_LOAD, VT, Custom); 673 setOperationAction(ISD::VP_STORE, VT, Custom); 674 setOperationAction(ISD::VP_GATHER, VT, Custom); 675 setOperationAction(ISD::VP_SCATTER, VT, Custom); 676 677 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 678 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 679 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 680 681 setOperationAction(ISD::SELECT, VT, Custom); 682 setOperationAction(ISD::SELECT_CC, VT, Expand); 683 684 setOperationAction(ISD::STEP_VECTOR, VT, Custom); 685 setOperationAction(ISD::VECTOR_REVERSE, VT, Custom); 686 687 for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) { 688 setTruncStoreAction(VT, OtherVT, Expand); 689 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 690 setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand); 691 setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand); 692 } 693 694 // Lower CTLZ_ZERO_UNDEF and CTTZ_ZERO_UNDEF if we have a floating point 695 // type that can represent the value exactly. 696 if (VT.getVectorElementType() != MVT::i64) { 697 MVT FloatEltVT = 698 VT.getVectorElementType() == MVT::i32 ? MVT::f64 : MVT::f32; 699 EVT FloatVT = MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount()); 700 if (isTypeLegal(FloatVT)) { 701 setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Custom); 702 setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Custom); 703 } 704 } 705 } 706 707 // Expand various CCs to best match the RVV ISA, which natively supports UNE 708 // but no other unordered comparisons, and supports all ordered comparisons 709 // except ONE. Additionally, we expand GT,OGT,GE,OGE for optimization 710 // purposes; they are expanded to their swapped-operand CCs (LT,OLT,LE,OLE), 711 // and we pattern-match those back to the "original", swapping operands once 712 // more. This way we catch both operations and both "vf" and "fv" forms with 713 // fewer patterns. 714 static const ISD::CondCode VFPCCToExpand[] = { 715 ISD::SETO, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT, 716 ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUO, 717 ISD::SETGT, ISD::SETOGT, ISD::SETGE, ISD::SETOGE, 718 }; 719 720 // Sets common operation actions on RVV floating-point vector types. 721 const auto SetCommonVFPActions = [&](MVT VT) { 722 setOperationAction(ISD::SPLAT_VECTOR, VT, Legal); 723 // RVV has native FP_ROUND & FP_EXTEND conversions where the element type 724 // sizes are within one power-of-two of each other. Therefore conversions 725 // between vXf16 and vXf64 must be lowered as sequences which convert via 726 // vXf32. 727 setOperationAction(ISD::FP_ROUND, VT, Custom); 728 setOperationAction(ISD::FP_EXTEND, VT, Custom); 729 // Custom-lower insert/extract operations to simplify patterns. 730 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 731 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 732 // Expand various condition codes (explained above). 733 for (auto CC : VFPCCToExpand) 734 setCondCodeAction(CC, VT, Expand); 735 736 setOperationAction(ISD::FMINNUM, VT, Legal); 737 setOperationAction(ISD::FMAXNUM, VT, Legal); 738 739 setOperationAction(ISD::FTRUNC, VT, Custom); 740 setOperationAction(ISD::FCEIL, VT, Custom); 741 setOperationAction(ISD::FFLOOR, VT, Custom); 742 743 setOperationAction(ISD::VECREDUCE_FADD, VT, Custom); 744 setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom); 745 setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom); 746 setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom); 747 748 setOperationAction(ISD::FCOPYSIGN, VT, Legal); 749 750 setOperationAction(ISD::LOAD, VT, Custom); 751 setOperationAction(ISD::STORE, VT, Custom); 752 753 setOperationAction(ISD::MLOAD, VT, Custom); 754 setOperationAction(ISD::MSTORE, VT, Custom); 755 setOperationAction(ISD::MGATHER, VT, Custom); 756 setOperationAction(ISD::MSCATTER, VT, Custom); 757 758 setOperationAction(ISD::VP_LOAD, VT, Custom); 759 setOperationAction(ISD::VP_STORE, VT, Custom); 760 setOperationAction(ISD::VP_GATHER, VT, Custom); 761 setOperationAction(ISD::VP_SCATTER, VT, Custom); 762 763 setOperationAction(ISD::SELECT, VT, Custom); 764 setOperationAction(ISD::SELECT_CC, VT, Expand); 765 766 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 767 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 768 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 769 770 setOperationAction(ISD::VECTOR_REVERSE, VT, Custom); 771 772 for (unsigned VPOpc : FloatingPointVPOps) 773 setOperationAction(VPOpc, VT, Custom); 774 }; 775 776 // Sets common extload/truncstore actions on RVV floating-point vector 777 // types. 778 const auto SetCommonVFPExtLoadTruncStoreActions = 779 [&](MVT VT, ArrayRef<MVT::SimpleValueType> SmallerVTs) { 780 for (auto SmallVT : SmallerVTs) { 781 setTruncStoreAction(VT, SmallVT, Expand); 782 setLoadExtAction(ISD::EXTLOAD, VT, SmallVT, Expand); 783 } 784 }; 785 786 if (Subtarget.hasVInstructionsF16()) 787 for (MVT VT : F16VecVTs) 788 SetCommonVFPActions(VT); 789 790 for (MVT VT : F32VecVTs) { 791 if (Subtarget.hasVInstructionsF32()) 792 SetCommonVFPActions(VT); 793 SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs); 794 } 795 796 for (MVT VT : F64VecVTs) { 797 if (Subtarget.hasVInstructionsF64()) 798 SetCommonVFPActions(VT); 799 SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs); 800 SetCommonVFPExtLoadTruncStoreActions(VT, F32VecVTs); 801 } 802 803 if (Subtarget.useRVVForFixedLengthVectors()) { 804 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) { 805 if (!useRVVForFixedLengthVectorVT(VT)) 806 continue; 807 808 // By default everything must be expanded. 809 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) 810 setOperationAction(Op, VT, Expand); 811 for (MVT OtherVT : MVT::integer_fixedlen_vector_valuetypes()) { 812 setTruncStoreAction(VT, OtherVT, Expand); 813 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 814 setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand); 815 setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand); 816 } 817 818 // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed. 819 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 820 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 821 822 setOperationAction(ISD::BUILD_VECTOR, VT, Custom); 823 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 824 825 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 826 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 827 828 setOperationAction(ISD::LOAD, VT, Custom); 829 setOperationAction(ISD::STORE, VT, Custom); 830 831 setOperationAction(ISD::SETCC, VT, Custom); 832 833 setOperationAction(ISD::SELECT, VT, Custom); 834 835 setOperationAction(ISD::TRUNCATE, VT, Custom); 836 837 setOperationAction(ISD::BITCAST, VT, Custom); 838 839 setOperationAction(ISD::VECREDUCE_AND, VT, Custom); 840 setOperationAction(ISD::VECREDUCE_OR, VT, Custom); 841 setOperationAction(ISD::VECREDUCE_XOR, VT, Custom); 842 843 setOperationAction(ISD::VP_REDUCE_AND, VT, Custom); 844 setOperationAction(ISD::VP_REDUCE_OR, VT, Custom); 845 setOperationAction(ISD::VP_REDUCE_XOR, VT, Custom); 846 847 setOperationAction(ISD::SINT_TO_FP, VT, Custom); 848 setOperationAction(ISD::UINT_TO_FP, VT, Custom); 849 setOperationAction(ISD::FP_TO_SINT, VT, Custom); 850 setOperationAction(ISD::FP_TO_UINT, VT, Custom); 851 852 // Operations below are different for between masks and other vectors. 853 if (VT.getVectorElementType() == MVT::i1) { 854 setOperationAction(ISD::VP_AND, VT, Custom); 855 setOperationAction(ISD::VP_OR, VT, Custom); 856 setOperationAction(ISD::VP_XOR, VT, Custom); 857 setOperationAction(ISD::AND, VT, Custom); 858 setOperationAction(ISD::OR, VT, Custom); 859 setOperationAction(ISD::XOR, VT, Custom); 860 continue; 861 } 862 863 // Use SPLAT_VECTOR to prevent type legalization from destroying the 864 // splats when type legalizing i64 scalar on RV32. 865 // FIXME: Use SPLAT_VECTOR for all types? DAGCombine probably needs 866 // improvements first. 867 if (!Subtarget.is64Bit() && VT.getVectorElementType() == MVT::i64) { 868 setOperationAction(ISD::SPLAT_VECTOR, VT, Custom); 869 setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom); 870 } 871 872 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); 873 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 874 875 setOperationAction(ISD::MLOAD, VT, Custom); 876 setOperationAction(ISD::MSTORE, VT, Custom); 877 setOperationAction(ISD::MGATHER, VT, Custom); 878 setOperationAction(ISD::MSCATTER, VT, Custom); 879 880 setOperationAction(ISD::VP_LOAD, VT, Custom); 881 setOperationAction(ISD::VP_STORE, VT, Custom); 882 setOperationAction(ISD::VP_GATHER, VT, Custom); 883 setOperationAction(ISD::VP_SCATTER, VT, Custom); 884 885 setOperationAction(ISD::ADD, VT, Custom); 886 setOperationAction(ISD::MUL, VT, Custom); 887 setOperationAction(ISD::SUB, VT, Custom); 888 setOperationAction(ISD::AND, VT, Custom); 889 setOperationAction(ISD::OR, VT, Custom); 890 setOperationAction(ISD::XOR, VT, Custom); 891 setOperationAction(ISD::SDIV, VT, Custom); 892 setOperationAction(ISD::SREM, VT, Custom); 893 setOperationAction(ISD::UDIV, VT, Custom); 894 setOperationAction(ISD::UREM, VT, Custom); 895 setOperationAction(ISD::SHL, VT, Custom); 896 setOperationAction(ISD::SRA, VT, Custom); 897 setOperationAction(ISD::SRL, VT, Custom); 898 899 setOperationAction(ISD::SMIN, VT, Custom); 900 setOperationAction(ISD::SMAX, VT, Custom); 901 setOperationAction(ISD::UMIN, VT, Custom); 902 setOperationAction(ISD::UMAX, VT, Custom); 903 setOperationAction(ISD::ABS, VT, Custom); 904 905 setOperationAction(ISD::MULHS, VT, Custom); 906 setOperationAction(ISD::MULHU, VT, Custom); 907 908 setOperationAction(ISD::SADDSAT, VT, Custom); 909 setOperationAction(ISD::UADDSAT, VT, Custom); 910 setOperationAction(ISD::SSUBSAT, VT, Custom); 911 setOperationAction(ISD::USUBSAT, VT, Custom); 912 913 setOperationAction(ISD::VSELECT, VT, Custom); 914 setOperationAction(ISD::SELECT_CC, VT, Expand); 915 916 setOperationAction(ISD::ANY_EXTEND, VT, Custom); 917 setOperationAction(ISD::SIGN_EXTEND, VT, Custom); 918 setOperationAction(ISD::ZERO_EXTEND, VT, Custom); 919 920 // Custom-lower reduction operations to set up the corresponding custom 921 // nodes' operands. 922 setOperationAction(ISD::VECREDUCE_ADD, VT, Custom); 923 setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom); 924 setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom); 925 setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom); 926 setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom); 927 928 for (unsigned VPOpc : IntegerVPOps) 929 setOperationAction(VPOpc, VT, Custom); 930 931 // Lower CTLZ_ZERO_UNDEF and CTTZ_ZERO_UNDEF if we have a floating point 932 // type that can represent the value exactly. 933 if (VT.getVectorElementType() != MVT::i64) { 934 MVT FloatEltVT = 935 VT.getVectorElementType() == MVT::i32 ? MVT::f64 : MVT::f32; 936 EVT FloatVT = 937 MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount()); 938 if (isTypeLegal(FloatVT)) { 939 setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Custom); 940 setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Custom); 941 } 942 } 943 } 944 945 for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) { 946 if (!useRVVForFixedLengthVectorVT(VT)) 947 continue; 948 949 // By default everything must be expanded. 950 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) 951 setOperationAction(Op, VT, Expand); 952 for (MVT OtherVT : MVT::fp_fixedlen_vector_valuetypes()) { 953 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 954 setTruncStoreAction(VT, OtherVT, Expand); 955 } 956 957 // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed. 958 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 959 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 960 961 setOperationAction(ISD::BUILD_VECTOR, VT, Custom); 962 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 963 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); 964 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 965 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 966 967 setOperationAction(ISD::LOAD, VT, Custom); 968 setOperationAction(ISD::STORE, VT, Custom); 969 setOperationAction(ISD::MLOAD, VT, Custom); 970 setOperationAction(ISD::MSTORE, VT, Custom); 971 setOperationAction(ISD::MGATHER, VT, Custom); 972 setOperationAction(ISD::MSCATTER, VT, Custom); 973 974 setOperationAction(ISD::VP_LOAD, VT, Custom); 975 setOperationAction(ISD::VP_STORE, VT, Custom); 976 setOperationAction(ISD::VP_GATHER, VT, Custom); 977 setOperationAction(ISD::VP_SCATTER, VT, Custom); 978 979 setOperationAction(ISD::FADD, VT, Custom); 980 setOperationAction(ISD::FSUB, VT, Custom); 981 setOperationAction(ISD::FMUL, VT, Custom); 982 setOperationAction(ISD::FDIV, VT, Custom); 983 setOperationAction(ISD::FNEG, VT, Custom); 984 setOperationAction(ISD::FABS, VT, Custom); 985 setOperationAction(ISD::FCOPYSIGN, VT, Custom); 986 setOperationAction(ISD::FSQRT, VT, Custom); 987 setOperationAction(ISD::FMA, VT, Custom); 988 setOperationAction(ISD::FMINNUM, VT, Custom); 989 setOperationAction(ISD::FMAXNUM, VT, Custom); 990 991 setOperationAction(ISD::FP_ROUND, VT, Custom); 992 setOperationAction(ISD::FP_EXTEND, VT, Custom); 993 994 setOperationAction(ISD::FTRUNC, VT, Custom); 995 setOperationAction(ISD::FCEIL, VT, Custom); 996 setOperationAction(ISD::FFLOOR, VT, Custom); 997 998 for (auto CC : VFPCCToExpand) 999 setCondCodeAction(CC, VT, Expand); 1000 1001 setOperationAction(ISD::VSELECT, VT, Custom); 1002 setOperationAction(ISD::SELECT, VT, Custom); 1003 setOperationAction(ISD::SELECT_CC, VT, Expand); 1004 1005 setOperationAction(ISD::BITCAST, VT, Custom); 1006 1007 setOperationAction(ISD::VECREDUCE_FADD, VT, Custom); 1008 setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom); 1009 setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom); 1010 setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom); 1011 1012 for (unsigned VPOpc : FloatingPointVPOps) 1013 setOperationAction(VPOpc, VT, Custom); 1014 } 1015 1016 // Custom-legalize bitcasts from fixed-length vectors to scalar types. 1017 setOperationAction(ISD::BITCAST, MVT::i8, Custom); 1018 setOperationAction(ISD::BITCAST, MVT::i16, Custom); 1019 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 1020 setOperationAction(ISD::BITCAST, MVT::i64, Custom); 1021 setOperationAction(ISD::BITCAST, MVT::f16, Custom); 1022 setOperationAction(ISD::BITCAST, MVT::f32, Custom); 1023 setOperationAction(ISD::BITCAST, MVT::f64, Custom); 1024 } 1025 } 1026 1027 // Function alignments. 1028 const Align FunctionAlignment(Subtarget.hasStdExtC() ? 2 : 4); 1029 setMinFunctionAlignment(FunctionAlignment); 1030 setPrefFunctionAlignment(FunctionAlignment); 1031 1032 setMinimumJumpTableEntries(5); 1033 1034 // Jumps are expensive, compared to logic 1035 setJumpIsExpensive(); 1036 1037 setTargetDAGCombine(ISD::ADD); 1038 setTargetDAGCombine(ISD::SUB); 1039 setTargetDAGCombine(ISD::AND); 1040 setTargetDAGCombine(ISD::OR); 1041 setTargetDAGCombine(ISD::XOR); 1042 setTargetDAGCombine(ISD::ANY_EXTEND); 1043 setTargetDAGCombine(ISD::ZERO_EXTEND); 1044 if (Subtarget.hasVInstructions()) { 1045 setTargetDAGCombine(ISD::FCOPYSIGN); 1046 setTargetDAGCombine(ISD::MGATHER); 1047 setTargetDAGCombine(ISD::MSCATTER); 1048 setTargetDAGCombine(ISD::VP_GATHER); 1049 setTargetDAGCombine(ISD::VP_SCATTER); 1050 setTargetDAGCombine(ISD::SRA); 1051 setTargetDAGCombine(ISD::SRL); 1052 setTargetDAGCombine(ISD::SHL); 1053 setTargetDAGCombine(ISD::STORE); 1054 } 1055 } 1056 1057 EVT RISCVTargetLowering::getSetCCResultType(const DataLayout &DL, 1058 LLVMContext &Context, 1059 EVT VT) const { 1060 if (!VT.isVector()) 1061 return getPointerTy(DL); 1062 if (Subtarget.hasVInstructions() && 1063 (VT.isScalableVector() || Subtarget.useRVVForFixedLengthVectors())) 1064 return EVT::getVectorVT(Context, MVT::i1, VT.getVectorElementCount()); 1065 return VT.changeVectorElementTypeToInteger(); 1066 } 1067 1068 MVT RISCVTargetLowering::getVPExplicitVectorLengthTy() const { 1069 return Subtarget.getXLenVT(); 1070 } 1071 1072 bool RISCVTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 1073 const CallInst &I, 1074 MachineFunction &MF, 1075 unsigned Intrinsic) const { 1076 auto &DL = I.getModule()->getDataLayout(); 1077 switch (Intrinsic) { 1078 default: 1079 return false; 1080 case Intrinsic::riscv_masked_atomicrmw_xchg_i32: 1081 case Intrinsic::riscv_masked_atomicrmw_add_i32: 1082 case Intrinsic::riscv_masked_atomicrmw_sub_i32: 1083 case Intrinsic::riscv_masked_atomicrmw_nand_i32: 1084 case Intrinsic::riscv_masked_atomicrmw_max_i32: 1085 case Intrinsic::riscv_masked_atomicrmw_min_i32: 1086 case Intrinsic::riscv_masked_atomicrmw_umax_i32: 1087 case Intrinsic::riscv_masked_atomicrmw_umin_i32: 1088 case Intrinsic::riscv_masked_cmpxchg_i32: { 1089 PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType()); 1090 Info.opc = ISD::INTRINSIC_W_CHAIN; 1091 Info.memVT = MVT::getVT(PtrTy->getElementType()); 1092 Info.ptrVal = I.getArgOperand(0); 1093 Info.offset = 0; 1094 Info.align = Align(4); 1095 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore | 1096 MachineMemOperand::MOVolatile; 1097 return true; 1098 } 1099 case Intrinsic::riscv_masked_strided_load: 1100 Info.opc = ISD::INTRINSIC_W_CHAIN; 1101 Info.ptrVal = I.getArgOperand(1); 1102 Info.memVT = getValueType(DL, I.getType()->getScalarType()); 1103 Info.align = Align(DL.getTypeSizeInBits(I.getType()->getScalarType()) / 8); 1104 Info.size = MemoryLocation::UnknownSize; 1105 Info.flags |= MachineMemOperand::MOLoad; 1106 return true; 1107 case Intrinsic::riscv_masked_strided_store: 1108 Info.opc = ISD::INTRINSIC_VOID; 1109 Info.ptrVal = I.getArgOperand(1); 1110 Info.memVT = 1111 getValueType(DL, I.getArgOperand(0)->getType()->getScalarType()); 1112 Info.align = Align( 1113 DL.getTypeSizeInBits(I.getArgOperand(0)->getType()->getScalarType()) / 1114 8); 1115 Info.size = MemoryLocation::UnknownSize; 1116 Info.flags |= MachineMemOperand::MOStore; 1117 return true; 1118 } 1119 } 1120 1121 bool RISCVTargetLowering::isLegalAddressingMode(const DataLayout &DL, 1122 const AddrMode &AM, Type *Ty, 1123 unsigned AS, 1124 Instruction *I) const { 1125 // No global is ever allowed as a base. 1126 if (AM.BaseGV) 1127 return false; 1128 1129 // Require a 12-bit signed offset. 1130 if (!isInt<12>(AM.BaseOffs)) 1131 return false; 1132 1133 switch (AM.Scale) { 1134 case 0: // "r+i" or just "i", depending on HasBaseReg. 1135 break; 1136 case 1: 1137 if (!AM.HasBaseReg) // allow "r+i". 1138 break; 1139 return false; // disallow "r+r" or "r+r+i". 1140 default: 1141 return false; 1142 } 1143 1144 return true; 1145 } 1146 1147 bool RISCVTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 1148 return isInt<12>(Imm); 1149 } 1150 1151 bool RISCVTargetLowering::isLegalAddImmediate(int64_t Imm) const { 1152 return isInt<12>(Imm); 1153 } 1154 1155 // On RV32, 64-bit integers are split into their high and low parts and held 1156 // in two different registers, so the trunc is free since the low register can 1157 // just be used. 1158 bool RISCVTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const { 1159 if (Subtarget.is64Bit() || !SrcTy->isIntegerTy() || !DstTy->isIntegerTy()) 1160 return false; 1161 unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); 1162 unsigned DestBits = DstTy->getPrimitiveSizeInBits(); 1163 return (SrcBits == 64 && DestBits == 32); 1164 } 1165 1166 bool RISCVTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const { 1167 if (Subtarget.is64Bit() || SrcVT.isVector() || DstVT.isVector() || 1168 !SrcVT.isInteger() || !DstVT.isInteger()) 1169 return false; 1170 unsigned SrcBits = SrcVT.getSizeInBits(); 1171 unsigned DestBits = DstVT.getSizeInBits(); 1172 return (SrcBits == 64 && DestBits == 32); 1173 } 1174 1175 bool RISCVTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 1176 // Zexts are free if they can be combined with a load. 1177 // Don't advertise i32->i64 zextload as being free for RV64. It interacts 1178 // poorly with type legalization of compares preferring sext. 1179 if (auto *LD = dyn_cast<LoadSDNode>(Val)) { 1180 EVT MemVT = LD->getMemoryVT(); 1181 if ((MemVT == MVT::i8 || MemVT == MVT::i16) && 1182 (LD->getExtensionType() == ISD::NON_EXTLOAD || 1183 LD->getExtensionType() == ISD::ZEXTLOAD)) 1184 return true; 1185 } 1186 1187 return TargetLowering::isZExtFree(Val, VT2); 1188 } 1189 1190 bool RISCVTargetLowering::isSExtCheaperThanZExt(EVT SrcVT, EVT DstVT) const { 1191 return Subtarget.is64Bit() && SrcVT == MVT::i32 && DstVT == MVT::i64; 1192 } 1193 1194 bool RISCVTargetLowering::isCheapToSpeculateCttz() const { 1195 return Subtarget.hasStdExtZbb(); 1196 } 1197 1198 bool RISCVTargetLowering::isCheapToSpeculateCtlz() const { 1199 return Subtarget.hasStdExtZbb(); 1200 } 1201 1202 bool RISCVTargetLowering::hasAndNotCompare(SDValue Y) const { 1203 EVT VT = Y.getValueType(); 1204 1205 // FIXME: Support vectors once we have tests. 1206 if (VT.isVector()) 1207 return false; 1208 1209 return Subtarget.hasStdExtZbb() && !isa<ConstantSDNode>(Y); 1210 } 1211 1212 /// Check if sinking \p I's operands to I's basic block is profitable, because 1213 /// the operands can be folded into a target instruction, e.g. 1214 /// splats of scalars can fold into vector instructions. 1215 bool RISCVTargetLowering::shouldSinkOperands( 1216 Instruction *I, SmallVectorImpl<Use *> &Ops) const { 1217 using namespace llvm::PatternMatch; 1218 1219 if (!I->getType()->isVectorTy() || !Subtarget.hasVInstructions()) 1220 return false; 1221 1222 auto IsSinker = [&](Instruction *I, int Operand) { 1223 switch (I->getOpcode()) { 1224 case Instruction::Add: 1225 case Instruction::Sub: 1226 case Instruction::Mul: 1227 case Instruction::And: 1228 case Instruction::Or: 1229 case Instruction::Xor: 1230 case Instruction::FAdd: 1231 case Instruction::FSub: 1232 case Instruction::FMul: 1233 case Instruction::FDiv: 1234 case Instruction::ICmp: 1235 case Instruction::FCmp: 1236 return true; 1237 case Instruction::Shl: 1238 case Instruction::LShr: 1239 case Instruction::AShr: 1240 case Instruction::UDiv: 1241 case Instruction::SDiv: 1242 case Instruction::URem: 1243 case Instruction::SRem: 1244 return Operand == 1; 1245 case Instruction::Call: 1246 if (auto *II = dyn_cast<IntrinsicInst>(I)) { 1247 switch (II->getIntrinsicID()) { 1248 case Intrinsic::fma: 1249 return Operand == 0 || Operand == 1; 1250 default: 1251 return false; 1252 } 1253 } 1254 return false; 1255 default: 1256 return false; 1257 } 1258 }; 1259 1260 for (auto OpIdx : enumerate(I->operands())) { 1261 if (!IsSinker(I, OpIdx.index())) 1262 continue; 1263 1264 Instruction *Op = dyn_cast<Instruction>(OpIdx.value().get()); 1265 // Make sure we are not already sinking this operand 1266 if (!Op || any_of(Ops, [&](Use *U) { return U->get() == Op; })) 1267 continue; 1268 1269 // We are looking for a splat that can be sunk. 1270 if (!match(Op, m_Shuffle(m_InsertElt(m_Undef(), m_Value(), m_ZeroInt()), 1271 m_Undef(), m_ZeroMask()))) 1272 continue; 1273 1274 // All uses of the shuffle should be sunk to avoid duplicating it across gpr 1275 // and vector registers 1276 for (Use &U : Op->uses()) { 1277 Instruction *Insn = cast<Instruction>(U.getUser()); 1278 if (!IsSinker(Insn, U.getOperandNo())) 1279 return false; 1280 } 1281 1282 Ops.push_back(&Op->getOperandUse(0)); 1283 Ops.push_back(&OpIdx.value()); 1284 } 1285 return true; 1286 } 1287 1288 bool RISCVTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 1289 bool ForCodeSize) const { 1290 // FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin. 1291 if (VT == MVT::f16 && !Subtarget.hasStdExtZfh()) 1292 return false; 1293 if (VT == MVT::f32 && !Subtarget.hasStdExtF()) 1294 return false; 1295 if (VT == MVT::f64 && !Subtarget.hasStdExtD()) 1296 return false; 1297 if (Imm.isNegZero()) 1298 return false; 1299 return Imm.isZero(); 1300 } 1301 1302 bool RISCVTargetLowering::hasBitPreservingFPLogic(EVT VT) const { 1303 return (VT == MVT::f16 && Subtarget.hasStdExtZfh()) || 1304 (VT == MVT::f32 && Subtarget.hasStdExtF()) || 1305 (VT == MVT::f64 && Subtarget.hasStdExtD()); 1306 } 1307 1308 MVT RISCVTargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context, 1309 CallingConv::ID CC, 1310 EVT VT) const { 1311 // Use f32 to pass f16 if it is legal and Zfh is not enabled. 1312 // We might still end up using a GPR but that will be decided based on ABI. 1313 // FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin. 1314 if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh()) 1315 return MVT::f32; 1316 1317 return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT); 1318 } 1319 1320 unsigned RISCVTargetLowering::getNumRegistersForCallingConv(LLVMContext &Context, 1321 CallingConv::ID CC, 1322 EVT VT) const { 1323 // Use f32 to pass f16 if it is legal and Zfh is not enabled. 1324 // We might still end up using a GPR but that will be decided based on ABI. 1325 // FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin. 1326 if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh()) 1327 return 1; 1328 1329 return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT); 1330 } 1331 1332 // Changes the condition code and swaps operands if necessary, so the SetCC 1333 // operation matches one of the comparisons supported directly by branches 1334 // in the RISC-V ISA. May adjust compares to favor compare with 0 over compare 1335 // with 1/-1. 1336 static void translateSetCCForBranch(const SDLoc &DL, SDValue &LHS, SDValue &RHS, 1337 ISD::CondCode &CC, SelectionDAG &DAG) { 1338 // Convert X > -1 to X >= 0. 1339 if (CC == ISD::SETGT && isAllOnesConstant(RHS)) { 1340 RHS = DAG.getConstant(0, DL, RHS.getValueType()); 1341 CC = ISD::SETGE; 1342 return; 1343 } 1344 // Convert X < 1 to 0 >= X. 1345 if (CC == ISD::SETLT && isOneConstant(RHS)) { 1346 RHS = LHS; 1347 LHS = DAG.getConstant(0, DL, RHS.getValueType()); 1348 CC = ISD::SETGE; 1349 return; 1350 } 1351 1352 switch (CC) { 1353 default: 1354 break; 1355 case ISD::SETGT: 1356 case ISD::SETLE: 1357 case ISD::SETUGT: 1358 case ISD::SETULE: 1359 CC = ISD::getSetCCSwappedOperands(CC); 1360 std::swap(LHS, RHS); 1361 break; 1362 } 1363 } 1364 1365 RISCVII::VLMUL RISCVTargetLowering::getLMUL(MVT VT) { 1366 assert(VT.isScalableVector() && "Expecting a scalable vector type"); 1367 unsigned KnownSize = VT.getSizeInBits().getKnownMinValue(); 1368 if (VT.getVectorElementType() == MVT::i1) 1369 KnownSize *= 8; 1370 1371 switch (KnownSize) { 1372 default: 1373 llvm_unreachable("Invalid LMUL."); 1374 case 8: 1375 return RISCVII::VLMUL::LMUL_F8; 1376 case 16: 1377 return RISCVII::VLMUL::LMUL_F4; 1378 case 32: 1379 return RISCVII::VLMUL::LMUL_F2; 1380 case 64: 1381 return RISCVII::VLMUL::LMUL_1; 1382 case 128: 1383 return RISCVII::VLMUL::LMUL_2; 1384 case 256: 1385 return RISCVII::VLMUL::LMUL_4; 1386 case 512: 1387 return RISCVII::VLMUL::LMUL_8; 1388 } 1389 } 1390 1391 unsigned RISCVTargetLowering::getRegClassIDForLMUL(RISCVII::VLMUL LMul) { 1392 switch (LMul) { 1393 default: 1394 llvm_unreachable("Invalid LMUL."); 1395 case RISCVII::VLMUL::LMUL_F8: 1396 case RISCVII::VLMUL::LMUL_F4: 1397 case RISCVII::VLMUL::LMUL_F2: 1398 case RISCVII::VLMUL::LMUL_1: 1399 return RISCV::VRRegClassID; 1400 case RISCVII::VLMUL::LMUL_2: 1401 return RISCV::VRM2RegClassID; 1402 case RISCVII::VLMUL::LMUL_4: 1403 return RISCV::VRM4RegClassID; 1404 case RISCVII::VLMUL::LMUL_8: 1405 return RISCV::VRM8RegClassID; 1406 } 1407 } 1408 1409 unsigned RISCVTargetLowering::getSubregIndexByMVT(MVT VT, unsigned Index) { 1410 RISCVII::VLMUL LMUL = getLMUL(VT); 1411 if (LMUL == RISCVII::VLMUL::LMUL_F8 || 1412 LMUL == RISCVII::VLMUL::LMUL_F4 || 1413 LMUL == RISCVII::VLMUL::LMUL_F2 || 1414 LMUL == RISCVII::VLMUL::LMUL_1) { 1415 static_assert(RISCV::sub_vrm1_7 == RISCV::sub_vrm1_0 + 7, 1416 "Unexpected subreg numbering"); 1417 return RISCV::sub_vrm1_0 + Index; 1418 } 1419 if (LMUL == RISCVII::VLMUL::LMUL_2) { 1420 static_assert(RISCV::sub_vrm2_3 == RISCV::sub_vrm2_0 + 3, 1421 "Unexpected subreg numbering"); 1422 return RISCV::sub_vrm2_0 + Index; 1423 } 1424 if (LMUL == RISCVII::VLMUL::LMUL_4) { 1425 static_assert(RISCV::sub_vrm4_1 == RISCV::sub_vrm4_0 + 1, 1426 "Unexpected subreg numbering"); 1427 return RISCV::sub_vrm4_0 + Index; 1428 } 1429 llvm_unreachable("Invalid vector type."); 1430 } 1431 1432 unsigned RISCVTargetLowering::getRegClassIDForVecVT(MVT VT) { 1433 if (VT.getVectorElementType() == MVT::i1) 1434 return RISCV::VRRegClassID; 1435 return getRegClassIDForLMUL(getLMUL(VT)); 1436 } 1437 1438 // Attempt to decompose a subvector insert/extract between VecVT and 1439 // SubVecVT via subregister indices. Returns the subregister index that 1440 // can perform the subvector insert/extract with the given element index, as 1441 // well as the index corresponding to any leftover subvectors that must be 1442 // further inserted/extracted within the register class for SubVecVT. 1443 std::pair<unsigned, unsigned> 1444 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( 1445 MVT VecVT, MVT SubVecVT, unsigned InsertExtractIdx, 1446 const RISCVRegisterInfo *TRI) { 1447 static_assert((RISCV::VRM8RegClassID > RISCV::VRM4RegClassID && 1448 RISCV::VRM4RegClassID > RISCV::VRM2RegClassID && 1449 RISCV::VRM2RegClassID > RISCV::VRRegClassID), 1450 "Register classes not ordered"); 1451 unsigned VecRegClassID = getRegClassIDForVecVT(VecVT); 1452 unsigned SubRegClassID = getRegClassIDForVecVT(SubVecVT); 1453 // Try to compose a subregister index that takes us from the incoming 1454 // LMUL>1 register class down to the outgoing one. At each step we half 1455 // the LMUL: 1456 // nxv16i32@12 -> nxv2i32: sub_vrm4_1_then_sub_vrm2_1_then_sub_vrm1_0 1457 // Note that this is not guaranteed to find a subregister index, such as 1458 // when we are extracting from one VR type to another. 1459 unsigned SubRegIdx = RISCV::NoSubRegister; 1460 for (const unsigned RCID : 1461 {RISCV::VRM4RegClassID, RISCV::VRM2RegClassID, RISCV::VRRegClassID}) 1462 if (VecRegClassID > RCID && SubRegClassID <= RCID) { 1463 VecVT = VecVT.getHalfNumVectorElementsVT(); 1464 bool IsHi = 1465 InsertExtractIdx >= VecVT.getVectorElementCount().getKnownMinValue(); 1466 SubRegIdx = TRI->composeSubRegIndices(SubRegIdx, 1467 getSubregIndexByMVT(VecVT, IsHi)); 1468 if (IsHi) 1469 InsertExtractIdx -= VecVT.getVectorElementCount().getKnownMinValue(); 1470 } 1471 return {SubRegIdx, InsertExtractIdx}; 1472 } 1473 1474 // Permit combining of mask vectors as BUILD_VECTOR never expands to scalar 1475 // stores for those types. 1476 bool RISCVTargetLowering::mergeStoresAfterLegalization(EVT VT) const { 1477 return !Subtarget.useRVVForFixedLengthVectors() || 1478 (VT.isFixedLengthVector() && VT.getVectorElementType() == MVT::i1); 1479 } 1480 1481 bool RISCVTargetLowering::isLegalElementTypeForRVV(Type *ScalarTy) const { 1482 if (ScalarTy->isPointerTy()) 1483 return true; 1484 1485 if (ScalarTy->isIntegerTy(8) || ScalarTy->isIntegerTy(16) || 1486 ScalarTy->isIntegerTy(32)) 1487 return true; 1488 1489 if (ScalarTy->isIntegerTy(64)) 1490 return Subtarget.hasVInstructionsI64(); 1491 1492 if (ScalarTy->isHalfTy()) 1493 return Subtarget.hasVInstructionsF16(); 1494 if (ScalarTy->isFloatTy()) 1495 return Subtarget.hasVInstructionsF32(); 1496 if (ScalarTy->isDoubleTy()) 1497 return Subtarget.hasVInstructionsF64(); 1498 1499 return false; 1500 } 1501 1502 static bool useRVVForFixedLengthVectorVT(MVT VT, 1503 const RISCVSubtarget &Subtarget) { 1504 assert(VT.isFixedLengthVector() && "Expected a fixed length vector type!"); 1505 if (!Subtarget.useRVVForFixedLengthVectors()) 1506 return false; 1507 1508 // We only support a set of vector types with a consistent maximum fixed size 1509 // across all supported vector element types to avoid legalization issues. 1510 // Therefore -- since the largest is v1024i8/v512i16/etc -- the largest 1511 // fixed-length vector type we support is 1024 bytes. 1512 if (VT.getFixedSizeInBits() > 1024 * 8) 1513 return false; 1514 1515 unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits(); 1516 1517 MVT EltVT = VT.getVectorElementType(); 1518 1519 // Don't use RVV for vectors we cannot scalarize if required. 1520 switch (EltVT.SimpleTy) { 1521 // i1 is supported but has different rules. 1522 default: 1523 return false; 1524 case MVT::i1: 1525 // Masks can only use a single register. 1526 if (VT.getVectorNumElements() > MinVLen) 1527 return false; 1528 MinVLen /= 8; 1529 break; 1530 case MVT::i8: 1531 case MVT::i16: 1532 case MVT::i32: 1533 break; 1534 case MVT::i64: 1535 if (!Subtarget.hasVInstructionsI64()) 1536 return false; 1537 break; 1538 case MVT::f16: 1539 if (!Subtarget.hasVInstructionsF16()) 1540 return false; 1541 break; 1542 case MVT::f32: 1543 if (!Subtarget.hasVInstructionsF32()) 1544 return false; 1545 break; 1546 case MVT::f64: 1547 if (!Subtarget.hasVInstructionsF64()) 1548 return false; 1549 break; 1550 } 1551 1552 // Reject elements larger than ELEN. 1553 if (EltVT.getSizeInBits() > Subtarget.getMaxELENForFixedLengthVectors()) 1554 return false; 1555 1556 unsigned LMul = divideCeil(VT.getSizeInBits(), MinVLen); 1557 // Don't use RVV for types that don't fit. 1558 if (LMul > Subtarget.getMaxLMULForFixedLengthVectors()) 1559 return false; 1560 1561 // TODO: Perhaps an artificial restriction, but worth having whilst getting 1562 // the base fixed length RVV support in place. 1563 if (!VT.isPow2VectorType()) 1564 return false; 1565 1566 return true; 1567 } 1568 1569 bool RISCVTargetLowering::useRVVForFixedLengthVectorVT(MVT VT) const { 1570 return ::useRVVForFixedLengthVectorVT(VT, Subtarget); 1571 } 1572 1573 // Return the largest legal scalable vector type that matches VT's element type. 1574 static MVT getContainerForFixedLengthVector(const TargetLowering &TLI, MVT VT, 1575 const RISCVSubtarget &Subtarget) { 1576 // This may be called before legal types are setup. 1577 assert(((VT.isFixedLengthVector() && TLI.isTypeLegal(VT)) || 1578 useRVVForFixedLengthVectorVT(VT, Subtarget)) && 1579 "Expected legal fixed length vector!"); 1580 1581 unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits(); 1582 unsigned MaxELen = Subtarget.getMaxELENForFixedLengthVectors(); 1583 1584 MVT EltVT = VT.getVectorElementType(); 1585 switch (EltVT.SimpleTy) { 1586 default: 1587 llvm_unreachable("unexpected element type for RVV container"); 1588 case MVT::i1: 1589 case MVT::i8: 1590 case MVT::i16: 1591 case MVT::i32: 1592 case MVT::i64: 1593 case MVT::f16: 1594 case MVT::f32: 1595 case MVT::f64: { 1596 // We prefer to use LMUL=1 for VLEN sized types. Use fractional lmuls for 1597 // narrower types. The smallest fractional LMUL we support is 8/ELEN. Within 1598 // each fractional LMUL we support SEW between 8 and LMUL*ELEN. 1599 unsigned NumElts = 1600 (VT.getVectorNumElements() * RISCV::RVVBitsPerBlock) / MinVLen; 1601 NumElts = std::max(NumElts, RISCV::RVVBitsPerBlock / MaxELen); 1602 assert(isPowerOf2_32(NumElts) && "Expected power of 2 NumElts"); 1603 return MVT::getScalableVectorVT(EltVT, NumElts); 1604 } 1605 } 1606 } 1607 1608 static MVT getContainerForFixedLengthVector(SelectionDAG &DAG, MVT VT, 1609 const RISCVSubtarget &Subtarget) { 1610 return getContainerForFixedLengthVector(DAG.getTargetLoweringInfo(), VT, 1611 Subtarget); 1612 } 1613 1614 MVT RISCVTargetLowering::getContainerForFixedLengthVector(MVT VT) const { 1615 return ::getContainerForFixedLengthVector(*this, VT, getSubtarget()); 1616 } 1617 1618 // Grow V to consume an entire RVV register. 1619 static SDValue convertToScalableVector(EVT VT, SDValue V, SelectionDAG &DAG, 1620 const RISCVSubtarget &Subtarget) { 1621 assert(VT.isScalableVector() && 1622 "Expected to convert into a scalable vector!"); 1623 assert(V.getValueType().isFixedLengthVector() && 1624 "Expected a fixed length vector operand!"); 1625 SDLoc DL(V); 1626 SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 1627 return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, DAG.getUNDEF(VT), V, Zero); 1628 } 1629 1630 // Shrink V so it's just big enough to maintain a VT's worth of data. 1631 static SDValue convertFromScalableVector(EVT VT, SDValue V, SelectionDAG &DAG, 1632 const RISCVSubtarget &Subtarget) { 1633 assert(VT.isFixedLengthVector() && 1634 "Expected to convert into a fixed length vector!"); 1635 assert(V.getValueType().isScalableVector() && 1636 "Expected a scalable vector operand!"); 1637 SDLoc DL(V); 1638 SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 1639 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V, Zero); 1640 } 1641 1642 // Gets the two common "VL" operands: an all-ones mask and the vector length. 1643 // VecVT is a vector type, either fixed-length or scalable, and ContainerVT is 1644 // the vector type that it is contained in. 1645 static std::pair<SDValue, SDValue> 1646 getDefaultVLOps(MVT VecVT, MVT ContainerVT, SDLoc DL, SelectionDAG &DAG, 1647 const RISCVSubtarget &Subtarget) { 1648 assert(ContainerVT.isScalableVector() && "Expecting scalable container type"); 1649 MVT XLenVT = Subtarget.getXLenVT(); 1650 SDValue VL = VecVT.isFixedLengthVector() 1651 ? DAG.getConstant(VecVT.getVectorNumElements(), DL, XLenVT) 1652 : DAG.getTargetConstant(RISCV::VLMaxSentinel, DL, XLenVT); 1653 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 1654 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 1655 return {Mask, VL}; 1656 } 1657 1658 // As above but assuming the given type is a scalable vector type. 1659 static std::pair<SDValue, SDValue> 1660 getDefaultScalableVLOps(MVT VecVT, SDLoc DL, SelectionDAG &DAG, 1661 const RISCVSubtarget &Subtarget) { 1662 assert(VecVT.isScalableVector() && "Expecting a scalable vector"); 1663 return getDefaultVLOps(VecVT, VecVT, DL, DAG, Subtarget); 1664 } 1665 1666 // The state of RVV BUILD_VECTOR and VECTOR_SHUFFLE lowering is that very few 1667 // of either is (currently) supported. This can get us into an infinite loop 1668 // where we try to lower a BUILD_VECTOR as a VECTOR_SHUFFLE as a BUILD_VECTOR 1669 // as a ..., etc. 1670 // Until either (or both) of these can reliably lower any node, reporting that 1671 // we don't want to expand BUILD_VECTORs via VECTOR_SHUFFLEs at least breaks 1672 // the infinite loop. Note that this lowers BUILD_VECTOR through the stack, 1673 // which is not desirable. 1674 bool RISCVTargetLowering::shouldExpandBuildVectorWithShuffles( 1675 EVT VT, unsigned DefinedValues) const { 1676 return false; 1677 } 1678 1679 bool RISCVTargetLowering::isShuffleMaskLegal(ArrayRef<int> M, EVT VT) const { 1680 // Only splats are currently supported. 1681 if (ShuffleVectorSDNode::isSplatMask(M.data(), VT)) 1682 return true; 1683 1684 return false; 1685 } 1686 1687 static SDValue lowerFP_TO_INT_SAT(SDValue Op, SelectionDAG &DAG, 1688 const RISCVSubtarget &Subtarget) { 1689 // RISCV FP-to-int conversions saturate to the destination register size, but 1690 // don't produce 0 for nan. We can use a conversion instruction and fix the 1691 // nan case with a compare and a select. 1692 SDValue Src = Op.getOperand(0); 1693 1694 EVT DstVT = Op.getValueType(); 1695 EVT SatVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1696 1697 bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT_SAT; 1698 unsigned Opc; 1699 if (SatVT == DstVT) 1700 Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU; 1701 else if (DstVT == MVT::i64 && SatVT == MVT::i32) 1702 Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64; 1703 else 1704 return SDValue(); 1705 // FIXME: Support other SatVTs by clamping before or after the conversion. 1706 1707 SDLoc DL(Op); 1708 SDValue FpToInt = DAG.getNode( 1709 Opc, DL, DstVT, Src, 1710 DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, Subtarget.getXLenVT())); 1711 1712 SDValue ZeroInt = DAG.getConstant(0, DL, DstVT); 1713 return DAG.getSelectCC(DL, Src, Src, ZeroInt, FpToInt, ISD::CondCode::SETUO); 1714 } 1715 1716 // Expand vector FTRUNC, FCEIL, and FFLOOR by converting to the integer domain 1717 // and back. Taking care to avoid converting values that are nan or already 1718 // correct. 1719 // TODO: Floor and ceil could be shorter by changing rounding mode, but we don't 1720 // have FRM dependencies modeled yet. 1721 static SDValue lowerFTRUNC_FCEIL_FFLOOR(SDValue Op, SelectionDAG &DAG) { 1722 MVT VT = Op.getSimpleValueType(); 1723 assert(VT.isVector() && "Unexpected type"); 1724 1725 SDLoc DL(Op); 1726 1727 // Freeze the source since we are increasing the number of uses. 1728 SDValue Src = DAG.getNode(ISD::FREEZE, DL, VT, Op.getOperand(0)); 1729 1730 // Truncate to integer and convert back to FP. 1731 MVT IntVT = VT.changeVectorElementTypeToInteger(); 1732 SDValue Truncated = DAG.getNode(ISD::FP_TO_SINT, DL, IntVT, Src); 1733 Truncated = DAG.getNode(ISD::SINT_TO_FP, DL, VT, Truncated); 1734 1735 MVT SetccVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount()); 1736 1737 if (Op.getOpcode() == ISD::FCEIL) { 1738 // If the truncated value is the greater than or equal to the original 1739 // value, we've computed the ceil. Otherwise, we went the wrong way and 1740 // need to increase by 1. 1741 // FIXME: This should use a masked operation. Handle here or in isel? 1742 SDValue Adjust = DAG.getNode(ISD::FADD, DL, VT, Truncated, 1743 DAG.getConstantFP(1.0, DL, VT)); 1744 SDValue NeedAdjust = DAG.getSetCC(DL, SetccVT, Truncated, Src, ISD::SETOLT); 1745 Truncated = DAG.getSelect(DL, VT, NeedAdjust, Adjust, Truncated); 1746 } else if (Op.getOpcode() == ISD::FFLOOR) { 1747 // If the truncated value is the less than or equal to the original value, 1748 // we've computed the floor. Otherwise, we went the wrong way and need to 1749 // decrease by 1. 1750 // FIXME: This should use a masked operation. Handle here or in isel? 1751 SDValue Adjust = DAG.getNode(ISD::FSUB, DL, VT, Truncated, 1752 DAG.getConstantFP(1.0, DL, VT)); 1753 SDValue NeedAdjust = DAG.getSetCC(DL, SetccVT, Truncated, Src, ISD::SETOGT); 1754 Truncated = DAG.getSelect(DL, VT, NeedAdjust, Adjust, Truncated); 1755 } 1756 1757 // Restore the original sign so that -0.0 is preserved. 1758 Truncated = DAG.getNode(ISD::FCOPYSIGN, DL, VT, Truncated, Src); 1759 1760 // Determine the largest integer that can be represented exactly. This and 1761 // values larger than it don't have any fractional bits so don't need to 1762 // be converted. 1763 const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT); 1764 unsigned Precision = APFloat::semanticsPrecision(FltSem); 1765 APFloat MaxVal = APFloat(FltSem); 1766 MaxVal.convertFromAPInt(APInt::getOneBitSet(Precision, Precision - 1), 1767 /*IsSigned*/ false, APFloat::rmNearestTiesToEven); 1768 SDValue MaxValNode = DAG.getConstantFP(MaxVal, DL, VT); 1769 1770 // If abs(Src) was larger than MaxVal or nan, keep it. 1771 SDValue Abs = DAG.getNode(ISD::FABS, DL, VT, Src); 1772 SDValue Setcc = DAG.getSetCC(DL, SetccVT, Abs, MaxValNode, ISD::SETOLT); 1773 return DAG.getSelect(DL, VT, Setcc, Truncated, Src); 1774 } 1775 1776 static SDValue lowerSPLAT_VECTOR(SDValue Op, SelectionDAG &DAG, 1777 const RISCVSubtarget &Subtarget) { 1778 MVT VT = Op.getSimpleValueType(); 1779 assert(VT.isFixedLengthVector() && "Unexpected vector!"); 1780 1781 MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 1782 1783 SDLoc DL(Op); 1784 SDValue Mask, VL; 1785 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 1786 1787 unsigned Opc = 1788 VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL : RISCVISD::VMV_V_X_VL; 1789 SDValue Splat = DAG.getNode(Opc, DL, ContainerVT, Op.getOperand(0), VL); 1790 return convertFromScalableVector(VT, Splat, DAG, Subtarget); 1791 } 1792 1793 struct VIDSequence { 1794 int64_t StepNumerator; 1795 unsigned StepDenominator; 1796 int64_t Addend; 1797 }; 1798 1799 // Try to match an arithmetic-sequence BUILD_VECTOR [X,X+S,X+2*S,...,X+(N-1)*S] 1800 // to the (non-zero) step S and start value X. This can be then lowered as the 1801 // RVV sequence (VID * S) + X, for example. 1802 // The step S is represented as an integer numerator divided by a positive 1803 // denominator. Note that the implementation currently only identifies 1804 // sequences in which either the numerator is +/- 1 or the denominator is 1. It 1805 // cannot detect 2/3, for example. 1806 // Note that this method will also match potentially unappealing index 1807 // sequences, like <i32 0, i32 50939494>, however it is left to the caller to 1808 // determine whether this is worth generating code for. 1809 static Optional<VIDSequence> isSimpleVIDSequence(SDValue Op) { 1810 unsigned NumElts = Op.getNumOperands(); 1811 assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unexpected BUILD_VECTOR"); 1812 if (!Op.getValueType().isInteger()) 1813 return None; 1814 1815 Optional<unsigned> SeqStepDenom; 1816 Optional<int64_t> SeqStepNum, SeqAddend; 1817 Optional<std::pair<uint64_t, unsigned>> PrevElt; 1818 unsigned EltSizeInBits = Op.getValueType().getScalarSizeInBits(); 1819 for (unsigned Idx = 0; Idx < NumElts; Idx++) { 1820 // Assume undef elements match the sequence; we just have to be careful 1821 // when interpolating across them. 1822 if (Op.getOperand(Idx).isUndef()) 1823 continue; 1824 // The BUILD_VECTOR must be all constants. 1825 if (!isa<ConstantSDNode>(Op.getOperand(Idx))) 1826 return None; 1827 1828 uint64_t Val = Op.getConstantOperandVal(Idx) & 1829 maskTrailingOnes<uint64_t>(EltSizeInBits); 1830 1831 if (PrevElt) { 1832 // Calculate the step since the last non-undef element, and ensure 1833 // it's consistent across the entire sequence. 1834 unsigned IdxDiff = Idx - PrevElt->second; 1835 int64_t ValDiff = SignExtend64(Val - PrevElt->first, EltSizeInBits); 1836 1837 // A zero-value value difference means that we're somewhere in the middle 1838 // of a fractional step, e.g. <0,0,0*,0,1,1,1,1>. Wait until we notice a 1839 // step change before evaluating the sequence. 1840 if (ValDiff != 0) { 1841 int64_t Remainder = ValDiff % IdxDiff; 1842 // Normalize the step if it's greater than 1. 1843 if (Remainder != ValDiff) { 1844 // The difference must cleanly divide the element span. 1845 if (Remainder != 0) 1846 return None; 1847 ValDiff /= IdxDiff; 1848 IdxDiff = 1; 1849 } 1850 1851 if (!SeqStepNum) 1852 SeqStepNum = ValDiff; 1853 else if (ValDiff != SeqStepNum) 1854 return None; 1855 1856 if (!SeqStepDenom) 1857 SeqStepDenom = IdxDiff; 1858 else if (IdxDiff != *SeqStepDenom) 1859 return None; 1860 } 1861 } 1862 1863 // Record and/or check any addend. 1864 if (SeqStepNum && SeqStepDenom) { 1865 uint64_t ExpectedVal = 1866 (int64_t)(Idx * (uint64_t)*SeqStepNum) / *SeqStepDenom; 1867 int64_t Addend = SignExtend64(Val - ExpectedVal, EltSizeInBits); 1868 if (!SeqAddend) 1869 SeqAddend = Addend; 1870 else if (SeqAddend != Addend) 1871 return None; 1872 } 1873 1874 // Record this non-undef element for later. 1875 if (!PrevElt || PrevElt->first != Val) 1876 PrevElt = std::make_pair(Val, Idx); 1877 } 1878 // We need to have logged both a step and an addend for this to count as 1879 // a legal index sequence. 1880 if (!SeqStepNum || !SeqStepDenom || !SeqAddend) 1881 return None; 1882 1883 return VIDSequence{*SeqStepNum, *SeqStepDenom, *SeqAddend}; 1884 } 1885 1886 static SDValue lowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG, 1887 const RISCVSubtarget &Subtarget) { 1888 MVT VT = Op.getSimpleValueType(); 1889 assert(VT.isFixedLengthVector() && "Unexpected vector!"); 1890 1891 MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 1892 1893 SDLoc DL(Op); 1894 SDValue Mask, VL; 1895 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 1896 1897 MVT XLenVT = Subtarget.getXLenVT(); 1898 unsigned NumElts = Op.getNumOperands(); 1899 1900 if (VT.getVectorElementType() == MVT::i1) { 1901 if (ISD::isBuildVectorAllZeros(Op.getNode())) { 1902 SDValue VMClr = DAG.getNode(RISCVISD::VMCLR_VL, DL, ContainerVT, VL); 1903 return convertFromScalableVector(VT, VMClr, DAG, Subtarget); 1904 } 1905 1906 if (ISD::isBuildVectorAllOnes(Op.getNode())) { 1907 SDValue VMSet = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL); 1908 return convertFromScalableVector(VT, VMSet, DAG, Subtarget); 1909 } 1910 1911 // Lower constant mask BUILD_VECTORs via an integer vector type, in 1912 // scalar integer chunks whose bit-width depends on the number of mask 1913 // bits and XLEN. 1914 // First, determine the most appropriate scalar integer type to use. This 1915 // is at most XLenVT, but may be shrunk to a smaller vector element type 1916 // according to the size of the final vector - use i8 chunks rather than 1917 // XLenVT if we're producing a v8i1. This results in more consistent 1918 // codegen across RV32 and RV64. 1919 unsigned NumViaIntegerBits = 1920 std::min(std::max(NumElts, 8u), Subtarget.getXLen()); 1921 if (ISD::isBuildVectorOfConstantSDNodes(Op.getNode())) { 1922 // If we have to use more than one INSERT_VECTOR_ELT then this 1923 // optimization is likely to increase code size; avoid peforming it in 1924 // such a case. We can use a load from a constant pool in this case. 1925 if (DAG.shouldOptForSize() && NumElts > NumViaIntegerBits) 1926 return SDValue(); 1927 // Now we can create our integer vector type. Note that it may be larger 1928 // than the resulting mask type: v4i1 would use v1i8 as its integer type. 1929 MVT IntegerViaVecVT = 1930 MVT::getVectorVT(MVT::getIntegerVT(NumViaIntegerBits), 1931 divideCeil(NumElts, NumViaIntegerBits)); 1932 1933 uint64_t Bits = 0; 1934 unsigned BitPos = 0, IntegerEltIdx = 0; 1935 SDValue Vec = DAG.getUNDEF(IntegerViaVecVT); 1936 1937 for (unsigned I = 0; I < NumElts; I++, BitPos++) { 1938 // Once we accumulate enough bits to fill our scalar type, insert into 1939 // our vector and clear our accumulated data. 1940 if (I != 0 && I % NumViaIntegerBits == 0) { 1941 if (NumViaIntegerBits <= 32) 1942 Bits = SignExtend64(Bits, 32); 1943 SDValue Elt = DAG.getConstant(Bits, DL, XLenVT); 1944 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec, 1945 Elt, DAG.getConstant(IntegerEltIdx, DL, XLenVT)); 1946 Bits = 0; 1947 BitPos = 0; 1948 IntegerEltIdx++; 1949 } 1950 SDValue V = Op.getOperand(I); 1951 bool BitValue = !V.isUndef() && cast<ConstantSDNode>(V)->getZExtValue(); 1952 Bits |= ((uint64_t)BitValue << BitPos); 1953 } 1954 1955 // Insert the (remaining) scalar value into position in our integer 1956 // vector type. 1957 if (NumViaIntegerBits <= 32) 1958 Bits = SignExtend64(Bits, 32); 1959 SDValue Elt = DAG.getConstant(Bits, DL, XLenVT); 1960 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec, Elt, 1961 DAG.getConstant(IntegerEltIdx, DL, XLenVT)); 1962 1963 if (NumElts < NumViaIntegerBits) { 1964 // If we're producing a smaller vector than our minimum legal integer 1965 // type, bitcast to the equivalent (known-legal) mask type, and extract 1966 // our final mask. 1967 assert(IntegerViaVecVT == MVT::v1i8 && "Unexpected mask vector type"); 1968 Vec = DAG.getBitcast(MVT::v8i1, Vec); 1969 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Vec, 1970 DAG.getConstant(0, DL, XLenVT)); 1971 } else { 1972 // Else we must have produced an integer type with the same size as the 1973 // mask type; bitcast for the final result. 1974 assert(VT.getSizeInBits() == IntegerViaVecVT.getSizeInBits()); 1975 Vec = DAG.getBitcast(VT, Vec); 1976 } 1977 1978 return Vec; 1979 } 1980 1981 // A BUILD_VECTOR can be lowered as a SETCC. For each fixed-length mask 1982 // vector type, we have a legal equivalently-sized i8 type, so we can use 1983 // that. 1984 MVT WideVecVT = VT.changeVectorElementType(MVT::i8); 1985 SDValue VecZero = DAG.getConstant(0, DL, WideVecVT); 1986 1987 SDValue WideVec; 1988 if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) { 1989 // For a splat, perform a scalar truncate before creating the wider 1990 // vector. 1991 assert(Splat.getValueType() == XLenVT && 1992 "Unexpected type for i1 splat value"); 1993 Splat = DAG.getNode(ISD::AND, DL, XLenVT, Splat, 1994 DAG.getConstant(1, DL, XLenVT)); 1995 WideVec = DAG.getSplatBuildVector(WideVecVT, DL, Splat); 1996 } else { 1997 SmallVector<SDValue, 8> Ops(Op->op_values()); 1998 WideVec = DAG.getBuildVector(WideVecVT, DL, Ops); 1999 SDValue VecOne = DAG.getConstant(1, DL, WideVecVT); 2000 WideVec = DAG.getNode(ISD::AND, DL, WideVecVT, WideVec, VecOne); 2001 } 2002 2003 return DAG.getSetCC(DL, VT, WideVec, VecZero, ISD::SETNE); 2004 } 2005 2006 if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) { 2007 unsigned Opc = VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL 2008 : RISCVISD::VMV_V_X_VL; 2009 Splat = DAG.getNode(Opc, DL, ContainerVT, Splat, VL); 2010 return convertFromScalableVector(VT, Splat, DAG, Subtarget); 2011 } 2012 2013 // Try and match index sequences, which we can lower to the vid instruction 2014 // with optional modifications. An all-undef vector is matched by 2015 // getSplatValue, above. 2016 if (auto SimpleVID = isSimpleVIDSequence(Op)) { 2017 int64_t StepNumerator = SimpleVID->StepNumerator; 2018 unsigned StepDenominator = SimpleVID->StepDenominator; 2019 int64_t Addend = SimpleVID->Addend; 2020 2021 assert(StepNumerator != 0 && "Invalid step"); 2022 bool Negate = false; 2023 int64_t SplatStepVal = StepNumerator; 2024 unsigned StepOpcode = ISD::MUL; 2025 if (StepNumerator != 1) { 2026 if (isPowerOf2_64(std::abs(StepNumerator))) { 2027 Negate = StepNumerator < 0; 2028 StepOpcode = ISD::SHL; 2029 SplatStepVal = Log2_64(std::abs(StepNumerator)); 2030 } 2031 } 2032 2033 // Only emit VIDs with suitably-small steps/addends. We use imm5 is a 2034 // threshold since it's the immediate value many RVV instructions accept. 2035 // There is no vmul.vi instruction so ensure multiply constant can fit in 2036 // a single addi instruction. 2037 if (((StepOpcode == ISD::MUL && isInt<12>(SplatStepVal)) || 2038 (StepOpcode == ISD::SHL && isUInt<5>(SplatStepVal))) && 2039 isPowerOf2_32(StepDenominator) && isInt<5>(Addend)) { 2040 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, ContainerVT, Mask, VL); 2041 // Convert right out of the scalable type so we can use standard ISD 2042 // nodes for the rest of the computation. If we used scalable types with 2043 // these, we'd lose the fixed-length vector info and generate worse 2044 // vsetvli code. 2045 VID = convertFromScalableVector(VT, VID, DAG, Subtarget); 2046 if ((StepOpcode == ISD::MUL && SplatStepVal != 1) || 2047 (StepOpcode == ISD::SHL && SplatStepVal != 0)) { 2048 SDValue SplatStep = DAG.getSplatVector( 2049 VT, DL, DAG.getConstant(SplatStepVal, DL, XLenVT)); 2050 VID = DAG.getNode(StepOpcode, DL, VT, VID, SplatStep); 2051 } 2052 if (StepDenominator != 1) { 2053 SDValue SplatStep = DAG.getSplatVector( 2054 VT, DL, DAG.getConstant(Log2_64(StepDenominator), DL, XLenVT)); 2055 VID = DAG.getNode(ISD::SRL, DL, VT, VID, SplatStep); 2056 } 2057 if (Addend != 0 || Negate) { 2058 SDValue SplatAddend = 2059 DAG.getSplatVector(VT, DL, DAG.getConstant(Addend, DL, XLenVT)); 2060 VID = DAG.getNode(Negate ? ISD::SUB : ISD::ADD, DL, VT, SplatAddend, VID); 2061 } 2062 return VID; 2063 } 2064 } 2065 2066 // Attempt to detect "hidden" splats, which only reveal themselves as splats 2067 // when re-interpreted as a vector with a larger element type. For example, 2068 // v4i16 = build_vector i16 0, i16 1, i16 0, i16 1 2069 // could be instead splat as 2070 // v2i32 = build_vector i32 0x00010000, i32 0x00010000 2071 // TODO: This optimization could also work on non-constant splats, but it 2072 // would require bit-manipulation instructions to construct the splat value. 2073 SmallVector<SDValue> Sequence; 2074 unsigned EltBitSize = VT.getScalarSizeInBits(); 2075 const auto *BV = cast<BuildVectorSDNode>(Op); 2076 if (VT.isInteger() && EltBitSize < 64 && 2077 ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) && 2078 BV->getRepeatedSequence(Sequence) && 2079 (Sequence.size() * EltBitSize) <= 64) { 2080 unsigned SeqLen = Sequence.size(); 2081 MVT ViaIntVT = MVT::getIntegerVT(EltBitSize * SeqLen); 2082 MVT ViaVecVT = MVT::getVectorVT(ViaIntVT, NumElts / SeqLen); 2083 assert((ViaIntVT == MVT::i16 || ViaIntVT == MVT::i32 || 2084 ViaIntVT == MVT::i64) && 2085 "Unexpected sequence type"); 2086 2087 unsigned EltIdx = 0; 2088 uint64_t EltMask = maskTrailingOnes<uint64_t>(EltBitSize); 2089 uint64_t SplatValue = 0; 2090 // Construct the amalgamated value which can be splatted as this larger 2091 // vector type. 2092 for (const auto &SeqV : Sequence) { 2093 if (!SeqV.isUndef()) 2094 SplatValue |= ((cast<ConstantSDNode>(SeqV)->getZExtValue() & EltMask) 2095 << (EltIdx * EltBitSize)); 2096 EltIdx++; 2097 } 2098 2099 // On RV64, sign-extend from 32 to 64 bits where possible in order to 2100 // achieve better constant materializion. 2101 if (Subtarget.is64Bit() && ViaIntVT == MVT::i32) 2102 SplatValue = SignExtend64(SplatValue, 32); 2103 2104 // Since we can't introduce illegal i64 types at this stage, we can only 2105 // perform an i64 splat on RV32 if it is its own sign-extended value. That 2106 // way we can use RVV instructions to splat. 2107 assert((ViaIntVT.bitsLE(XLenVT) || 2108 (!Subtarget.is64Bit() && ViaIntVT == MVT::i64)) && 2109 "Unexpected bitcast sequence"); 2110 if (ViaIntVT.bitsLE(XLenVT) || isInt<32>(SplatValue)) { 2111 SDValue ViaVL = 2112 DAG.getConstant(ViaVecVT.getVectorNumElements(), DL, XLenVT); 2113 MVT ViaContainerVT = 2114 getContainerForFixedLengthVector(DAG, ViaVecVT, Subtarget); 2115 SDValue Splat = 2116 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ViaContainerVT, 2117 DAG.getConstant(SplatValue, DL, XLenVT), ViaVL); 2118 Splat = convertFromScalableVector(ViaVecVT, Splat, DAG, Subtarget); 2119 return DAG.getBitcast(VT, Splat); 2120 } 2121 } 2122 2123 // Try and optimize BUILD_VECTORs with "dominant values" - these are values 2124 // which constitute a large proportion of the elements. In such cases we can 2125 // splat a vector with the dominant element and make up the shortfall with 2126 // INSERT_VECTOR_ELTs. 2127 // Note that this includes vectors of 2 elements by association. The 2128 // upper-most element is the "dominant" one, allowing us to use a splat to 2129 // "insert" the upper element, and an insert of the lower element at position 2130 // 0, which improves codegen. 2131 SDValue DominantValue; 2132 unsigned MostCommonCount = 0; 2133 DenseMap<SDValue, unsigned> ValueCounts; 2134 unsigned NumUndefElts = 2135 count_if(Op->op_values(), [](const SDValue &V) { return V.isUndef(); }); 2136 2137 // Track the number of scalar loads we know we'd be inserting, estimated as 2138 // any non-zero floating-point constant. Other kinds of element are either 2139 // already in registers or are materialized on demand. The threshold at which 2140 // a vector load is more desirable than several scalar materializion and 2141 // vector-insertion instructions is not known. 2142 unsigned NumScalarLoads = 0; 2143 2144 for (SDValue V : Op->op_values()) { 2145 if (V.isUndef()) 2146 continue; 2147 2148 ValueCounts.insert(std::make_pair(V, 0)); 2149 unsigned &Count = ValueCounts[V]; 2150 2151 if (auto *CFP = dyn_cast<ConstantFPSDNode>(V)) 2152 NumScalarLoads += !CFP->isExactlyValue(+0.0); 2153 2154 // Is this value dominant? In case of a tie, prefer the highest element as 2155 // it's cheaper to insert near the beginning of a vector than it is at the 2156 // end. 2157 if (++Count >= MostCommonCount) { 2158 DominantValue = V; 2159 MostCommonCount = Count; 2160 } 2161 } 2162 2163 assert(DominantValue && "Not expecting an all-undef BUILD_VECTOR"); 2164 unsigned NumDefElts = NumElts - NumUndefElts; 2165 unsigned DominantValueCountThreshold = NumDefElts <= 2 ? 0 : NumDefElts - 2; 2166 2167 // Don't perform this optimization when optimizing for size, since 2168 // materializing elements and inserting them tends to cause code bloat. 2169 if (!DAG.shouldOptForSize() && NumScalarLoads < NumElts && 2170 ((MostCommonCount > DominantValueCountThreshold) || 2171 (ValueCounts.size() <= Log2_32(NumDefElts)))) { 2172 // Start by splatting the most common element. 2173 SDValue Vec = DAG.getSplatBuildVector(VT, DL, DominantValue); 2174 2175 DenseSet<SDValue> Processed{DominantValue}; 2176 MVT SelMaskTy = VT.changeVectorElementType(MVT::i1); 2177 for (const auto &OpIdx : enumerate(Op->ops())) { 2178 const SDValue &V = OpIdx.value(); 2179 if (V.isUndef() || !Processed.insert(V).second) 2180 continue; 2181 if (ValueCounts[V] == 1) { 2182 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Vec, V, 2183 DAG.getConstant(OpIdx.index(), DL, XLenVT)); 2184 } else { 2185 // Blend in all instances of this value using a VSELECT, using a 2186 // mask where each bit signals whether that element is the one 2187 // we're after. 2188 SmallVector<SDValue> Ops; 2189 transform(Op->op_values(), std::back_inserter(Ops), [&](SDValue V1) { 2190 return DAG.getConstant(V == V1, DL, XLenVT); 2191 }); 2192 Vec = DAG.getNode(ISD::VSELECT, DL, VT, 2193 DAG.getBuildVector(SelMaskTy, DL, Ops), 2194 DAG.getSplatBuildVector(VT, DL, V), Vec); 2195 } 2196 } 2197 2198 return Vec; 2199 } 2200 2201 return SDValue(); 2202 } 2203 2204 static SDValue splatPartsI64WithVL(const SDLoc &DL, MVT VT, SDValue Lo, 2205 SDValue Hi, SDValue VL, SelectionDAG &DAG) { 2206 if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) { 2207 int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue(); 2208 int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue(); 2209 // If Hi constant is all the same sign bit as Lo, lower this as a custom 2210 // node in order to try and match RVV vector/scalar instructions. 2211 if ((LoC >> 31) == HiC) 2212 return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Lo, VL); 2213 } 2214 2215 // Fall back to a stack store and stride x0 vector load. 2216 return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VT, Lo, Hi, VL); 2217 } 2218 2219 // Called by type legalization to handle splat of i64 on RV32. 2220 // FIXME: We can optimize this when the type has sign or zero bits in one 2221 // of the halves. 2222 static SDValue splatSplitI64WithVL(const SDLoc &DL, MVT VT, SDValue Scalar, 2223 SDValue VL, SelectionDAG &DAG) { 2224 assert(Scalar.getValueType() == MVT::i64 && "Unexpected VT!"); 2225 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 2226 DAG.getConstant(0, DL, MVT::i32)); 2227 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 2228 DAG.getConstant(1, DL, MVT::i32)); 2229 return splatPartsI64WithVL(DL, VT, Lo, Hi, VL, DAG); 2230 } 2231 2232 // This function lowers a splat of a scalar operand Splat with the vector 2233 // length VL. It ensures the final sequence is type legal, which is useful when 2234 // lowering a splat after type legalization. 2235 static SDValue lowerScalarSplat(SDValue Scalar, SDValue VL, MVT VT, SDLoc DL, 2236 SelectionDAG &DAG, 2237 const RISCVSubtarget &Subtarget) { 2238 if (VT.isFloatingPoint()) 2239 return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, VT, Scalar, VL); 2240 2241 MVT XLenVT = Subtarget.getXLenVT(); 2242 2243 // Simplest case is that the operand needs to be promoted to XLenVT. 2244 if (Scalar.getValueType().bitsLE(XLenVT)) { 2245 // If the operand is a constant, sign extend to increase our chances 2246 // of being able to use a .vi instruction. ANY_EXTEND would become a 2247 // a zero extend and the simm5 check in isel would fail. 2248 // FIXME: Should we ignore the upper bits in isel instead? 2249 unsigned ExtOpc = 2250 isa<ConstantSDNode>(Scalar) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND; 2251 Scalar = DAG.getNode(ExtOpc, DL, XLenVT, Scalar); 2252 return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Scalar, VL); 2253 } 2254 2255 assert(XLenVT == MVT::i32 && Scalar.getValueType() == MVT::i64 && 2256 "Unexpected scalar for splat lowering!"); 2257 2258 // Otherwise use the more complicated splatting algorithm. 2259 return splatSplitI64WithVL(DL, VT, Scalar, VL, DAG); 2260 } 2261 2262 static SDValue lowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG, 2263 const RISCVSubtarget &Subtarget) { 2264 SDValue V1 = Op.getOperand(0); 2265 SDValue V2 = Op.getOperand(1); 2266 SDLoc DL(Op); 2267 MVT XLenVT = Subtarget.getXLenVT(); 2268 MVT VT = Op.getSimpleValueType(); 2269 unsigned NumElts = VT.getVectorNumElements(); 2270 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode()); 2271 2272 MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 2273 2274 SDValue TrueMask, VL; 2275 std::tie(TrueMask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 2276 2277 if (SVN->isSplat()) { 2278 const int Lane = SVN->getSplatIndex(); 2279 if (Lane >= 0) { 2280 MVT SVT = VT.getVectorElementType(); 2281 2282 // Turn splatted vector load into a strided load with an X0 stride. 2283 SDValue V = V1; 2284 // Peek through CONCAT_VECTORS as VectorCombine can concat a vector 2285 // with undef. 2286 // FIXME: Peek through INSERT_SUBVECTOR, EXTRACT_SUBVECTOR, bitcasts? 2287 int Offset = Lane; 2288 if (V.getOpcode() == ISD::CONCAT_VECTORS) { 2289 int OpElements = 2290 V.getOperand(0).getSimpleValueType().getVectorNumElements(); 2291 V = V.getOperand(Offset / OpElements); 2292 Offset %= OpElements; 2293 } 2294 2295 // We need to ensure the load isn't atomic or volatile. 2296 if (ISD::isNormalLoad(V.getNode()) && cast<LoadSDNode>(V)->isSimple()) { 2297 auto *Ld = cast<LoadSDNode>(V); 2298 Offset *= SVT.getStoreSize(); 2299 SDValue NewAddr = DAG.getMemBasePlusOffset(Ld->getBasePtr(), 2300 TypeSize::Fixed(Offset), DL); 2301 2302 // If this is SEW=64 on RV32, use a strided load with a stride of x0. 2303 if (SVT.isInteger() && SVT.bitsGT(XLenVT)) { 2304 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 2305 SDValue IntID = 2306 DAG.getTargetConstant(Intrinsic::riscv_vlse, DL, XLenVT); 2307 SDValue Ops[] = {Ld->getChain(), IntID, NewAddr, 2308 DAG.getRegister(RISCV::X0, XLenVT), VL}; 2309 SDValue NewLoad = DAG.getMemIntrinsicNode( 2310 ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, SVT, 2311 DAG.getMachineFunction().getMachineMemOperand( 2312 Ld->getMemOperand(), Offset, SVT.getStoreSize())); 2313 DAG.makeEquivalentMemoryOrdering(Ld, NewLoad); 2314 return convertFromScalableVector(VT, NewLoad, DAG, Subtarget); 2315 } 2316 2317 // Otherwise use a scalar load and splat. This will give the best 2318 // opportunity to fold a splat into the operation. ISel can turn it into 2319 // the x0 strided load if we aren't able to fold away the select. 2320 if (SVT.isFloatingPoint()) 2321 V = DAG.getLoad(SVT, DL, Ld->getChain(), NewAddr, 2322 Ld->getPointerInfo().getWithOffset(Offset), 2323 Ld->getOriginalAlign(), 2324 Ld->getMemOperand()->getFlags()); 2325 else 2326 V = DAG.getExtLoad(ISD::SEXTLOAD, DL, XLenVT, Ld->getChain(), NewAddr, 2327 Ld->getPointerInfo().getWithOffset(Offset), SVT, 2328 Ld->getOriginalAlign(), 2329 Ld->getMemOperand()->getFlags()); 2330 DAG.makeEquivalentMemoryOrdering(Ld, V); 2331 2332 unsigned Opc = 2333 VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL : RISCVISD::VMV_V_X_VL; 2334 SDValue Splat = DAG.getNode(Opc, DL, ContainerVT, V, VL); 2335 return convertFromScalableVector(VT, Splat, DAG, Subtarget); 2336 } 2337 2338 V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget); 2339 assert(Lane < (int)NumElts && "Unexpected lane!"); 2340 SDValue Gather = 2341 DAG.getNode(RISCVISD::VRGATHER_VX_VL, DL, ContainerVT, V1, 2342 DAG.getConstant(Lane, DL, XLenVT), TrueMask, VL); 2343 return convertFromScalableVector(VT, Gather, DAG, Subtarget); 2344 } 2345 } 2346 2347 // Detect shuffles which can be re-expressed as vector selects; these are 2348 // shuffles in which each element in the destination is taken from an element 2349 // at the corresponding index in either source vectors. 2350 bool IsSelect = all_of(enumerate(SVN->getMask()), [&](const auto &MaskIdx) { 2351 int MaskIndex = MaskIdx.value(); 2352 return MaskIndex < 0 || MaskIdx.index() == (unsigned)MaskIndex % NumElts; 2353 }); 2354 2355 assert(!V1.isUndef() && "Unexpected shuffle canonicalization"); 2356 2357 SmallVector<SDValue> MaskVals; 2358 // As a backup, shuffles can be lowered via a vrgather instruction, possibly 2359 // merged with a second vrgather. 2360 SmallVector<SDValue> GatherIndicesLHS, GatherIndicesRHS; 2361 2362 // By default we preserve the original operand order, and use a mask to 2363 // select LHS as true and RHS as false. However, since RVV vector selects may 2364 // feature splats but only on the LHS, we may choose to invert our mask and 2365 // instead select between RHS and LHS. 2366 bool SwapOps = DAG.isSplatValue(V2) && !DAG.isSplatValue(V1); 2367 bool InvertMask = IsSelect == SwapOps; 2368 2369 // Keep a track of which non-undef indices are used by each LHS/RHS shuffle 2370 // half. 2371 DenseMap<int, unsigned> LHSIndexCounts, RHSIndexCounts; 2372 2373 // Now construct the mask that will be used by the vselect or blended 2374 // vrgather operation. For vrgathers, construct the appropriate indices into 2375 // each vector. 2376 for (int MaskIndex : SVN->getMask()) { 2377 bool SelectMaskVal = (MaskIndex < (int)NumElts) ^ InvertMask; 2378 MaskVals.push_back(DAG.getConstant(SelectMaskVal, DL, XLenVT)); 2379 if (!IsSelect) { 2380 bool IsLHSOrUndefIndex = MaskIndex < (int)NumElts; 2381 GatherIndicesLHS.push_back(IsLHSOrUndefIndex && MaskIndex >= 0 2382 ? DAG.getConstant(MaskIndex, DL, XLenVT) 2383 : DAG.getUNDEF(XLenVT)); 2384 GatherIndicesRHS.push_back( 2385 IsLHSOrUndefIndex ? DAG.getUNDEF(XLenVT) 2386 : DAG.getConstant(MaskIndex - NumElts, DL, XLenVT)); 2387 if (IsLHSOrUndefIndex && MaskIndex >= 0) 2388 ++LHSIndexCounts[MaskIndex]; 2389 if (!IsLHSOrUndefIndex) 2390 ++RHSIndexCounts[MaskIndex - NumElts]; 2391 } 2392 } 2393 2394 if (SwapOps) { 2395 std::swap(V1, V2); 2396 std::swap(GatherIndicesLHS, GatherIndicesRHS); 2397 } 2398 2399 assert(MaskVals.size() == NumElts && "Unexpected select-like shuffle"); 2400 MVT MaskVT = MVT::getVectorVT(MVT::i1, NumElts); 2401 SDValue SelectMask = DAG.getBuildVector(MaskVT, DL, MaskVals); 2402 2403 if (IsSelect) 2404 return DAG.getNode(ISD::VSELECT, DL, VT, SelectMask, V1, V2); 2405 2406 if (VT.getScalarSizeInBits() == 8 && VT.getVectorNumElements() > 256) { 2407 // On such a large vector we're unable to use i8 as the index type. 2408 // FIXME: We could promote the index to i16 and use vrgatherei16, but that 2409 // may involve vector splitting if we're already at LMUL=8, or our 2410 // user-supplied maximum fixed-length LMUL. 2411 return SDValue(); 2412 } 2413 2414 unsigned GatherVXOpc = RISCVISD::VRGATHER_VX_VL; 2415 unsigned GatherVVOpc = RISCVISD::VRGATHER_VV_VL; 2416 MVT IndexVT = VT.changeTypeToInteger(); 2417 // Since we can't introduce illegal index types at this stage, use i16 and 2418 // vrgatherei16 if the corresponding index type for plain vrgather is greater 2419 // than XLenVT. 2420 if (IndexVT.getScalarType().bitsGT(XLenVT)) { 2421 GatherVVOpc = RISCVISD::VRGATHEREI16_VV_VL; 2422 IndexVT = IndexVT.changeVectorElementType(MVT::i16); 2423 } 2424 2425 MVT IndexContainerVT = 2426 ContainerVT.changeVectorElementType(IndexVT.getScalarType()); 2427 2428 SDValue Gather; 2429 // TODO: This doesn't trigger for i64 vectors on RV32, since there we 2430 // encounter a bitcasted BUILD_VECTOR with low/high i32 values. 2431 if (SDValue SplatValue = DAG.getSplatValue(V1, /*LegalTypes*/ true)) { 2432 Gather = lowerScalarSplat(SplatValue, VL, ContainerVT, DL, DAG, Subtarget); 2433 } else { 2434 V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget); 2435 // If only one index is used, we can use a "splat" vrgather. 2436 // TODO: We can splat the most-common index and fix-up any stragglers, if 2437 // that's beneficial. 2438 if (LHSIndexCounts.size() == 1) { 2439 int SplatIndex = LHSIndexCounts.begin()->getFirst(); 2440 Gather = 2441 DAG.getNode(GatherVXOpc, DL, ContainerVT, V1, 2442 DAG.getConstant(SplatIndex, DL, XLenVT), TrueMask, VL); 2443 } else { 2444 SDValue LHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesLHS); 2445 LHSIndices = 2446 convertToScalableVector(IndexContainerVT, LHSIndices, DAG, Subtarget); 2447 2448 Gather = DAG.getNode(GatherVVOpc, DL, ContainerVT, V1, LHSIndices, 2449 TrueMask, VL); 2450 } 2451 } 2452 2453 // If a second vector operand is used by this shuffle, blend it in with an 2454 // additional vrgather. 2455 if (!V2.isUndef()) { 2456 V2 = convertToScalableVector(ContainerVT, V2, DAG, Subtarget); 2457 // If only one index is used, we can use a "splat" vrgather. 2458 // TODO: We can splat the most-common index and fix-up any stragglers, if 2459 // that's beneficial. 2460 if (RHSIndexCounts.size() == 1) { 2461 int SplatIndex = RHSIndexCounts.begin()->getFirst(); 2462 V2 = DAG.getNode(GatherVXOpc, DL, ContainerVT, V2, 2463 DAG.getConstant(SplatIndex, DL, XLenVT), TrueMask, VL); 2464 } else { 2465 SDValue RHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesRHS); 2466 RHSIndices = 2467 convertToScalableVector(IndexContainerVT, RHSIndices, DAG, Subtarget); 2468 V2 = DAG.getNode(GatherVVOpc, DL, ContainerVT, V2, RHSIndices, TrueMask, 2469 VL); 2470 } 2471 2472 MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1); 2473 SelectMask = 2474 convertToScalableVector(MaskContainerVT, SelectMask, DAG, Subtarget); 2475 2476 Gather = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, SelectMask, V2, 2477 Gather, VL); 2478 } 2479 2480 return convertFromScalableVector(VT, Gather, DAG, Subtarget); 2481 } 2482 2483 static SDValue getRVVFPExtendOrRound(SDValue Op, MVT VT, MVT ContainerVT, 2484 SDLoc DL, SelectionDAG &DAG, 2485 const RISCVSubtarget &Subtarget) { 2486 if (VT.isScalableVector()) 2487 return DAG.getFPExtendOrRound(Op, DL, VT); 2488 assert(VT.isFixedLengthVector() && 2489 "Unexpected value type for RVV FP extend/round lowering"); 2490 SDValue Mask, VL; 2491 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 2492 unsigned RVVOpc = ContainerVT.bitsGT(Op.getSimpleValueType()) 2493 ? RISCVISD::FP_EXTEND_VL 2494 : RISCVISD::FP_ROUND_VL; 2495 return DAG.getNode(RVVOpc, DL, ContainerVT, Op, Mask, VL); 2496 } 2497 2498 // Lower CTLZ_ZERO_UNDEF or CTTZ_ZERO_UNDEF by converting to FP and extracting 2499 // the exponent. 2500 static SDValue lowerCTLZ_CTTZ_ZERO_UNDEF(SDValue Op, SelectionDAG &DAG) { 2501 MVT VT = Op.getSimpleValueType(); 2502 unsigned EltSize = VT.getScalarSizeInBits(); 2503 SDValue Src = Op.getOperand(0); 2504 SDLoc DL(Op); 2505 2506 // We need a FP type that can represent the value. 2507 // TODO: Use f16 for i8 when possible? 2508 MVT FloatEltVT = EltSize == 32 ? MVT::f64 : MVT::f32; 2509 MVT FloatVT = MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount()); 2510 2511 // Legal types should have been checked in the RISCVTargetLowering 2512 // constructor. 2513 // TODO: Splitting may make sense in some cases. 2514 assert(DAG.getTargetLoweringInfo().isTypeLegal(FloatVT) && 2515 "Expected legal float type!"); 2516 2517 // For CTTZ_ZERO_UNDEF, we need to extract the lowest set bit using X & -X. 2518 // The trailing zero count is equal to log2 of this single bit value. 2519 if (Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF) { 2520 SDValue Neg = 2521 DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Src); 2522 Src = DAG.getNode(ISD::AND, DL, VT, Src, Neg); 2523 } 2524 2525 // We have a legal FP type, convert to it. 2526 SDValue FloatVal = DAG.getNode(ISD::UINT_TO_FP, DL, FloatVT, Src); 2527 // Bitcast to integer and shift the exponent to the LSB. 2528 EVT IntVT = FloatVT.changeVectorElementTypeToInteger(); 2529 SDValue Bitcast = DAG.getBitcast(IntVT, FloatVal); 2530 unsigned ShiftAmt = FloatEltVT == MVT::f64 ? 52 : 23; 2531 SDValue Shift = DAG.getNode(ISD::SRL, DL, IntVT, Bitcast, 2532 DAG.getConstant(ShiftAmt, DL, IntVT)); 2533 // Truncate back to original type to allow vnsrl. 2534 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, VT, Shift); 2535 // The exponent contains log2 of the value in biased form. 2536 unsigned ExponentBias = FloatEltVT == MVT::f64 ? 1023 : 127; 2537 2538 // For trailing zeros, we just need to subtract the bias. 2539 if (Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF) 2540 return DAG.getNode(ISD::SUB, DL, VT, Trunc, 2541 DAG.getConstant(ExponentBias, DL, VT)); 2542 2543 // For leading zeros, we need to remove the bias and convert from log2 to 2544 // leading zeros. We can do this by subtracting from (Bias + (EltSize - 1)). 2545 unsigned Adjust = ExponentBias + (EltSize - 1); 2546 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(Adjust, DL, VT), Trunc); 2547 } 2548 2549 // While RVV has alignment restrictions, we should always be able to load as a 2550 // legal equivalently-sized byte-typed vector instead. This method is 2551 // responsible for re-expressing a ISD::LOAD via a correctly-aligned type. If 2552 // the load is already correctly-aligned, it returns SDValue(). 2553 SDValue RISCVTargetLowering::expandUnalignedRVVLoad(SDValue Op, 2554 SelectionDAG &DAG) const { 2555 auto *Load = cast<LoadSDNode>(Op); 2556 assert(Load && Load->getMemoryVT().isVector() && "Expected vector load"); 2557 2558 if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 2559 Load->getMemoryVT(), 2560 *Load->getMemOperand())) 2561 return SDValue(); 2562 2563 SDLoc DL(Op); 2564 MVT VT = Op.getSimpleValueType(); 2565 unsigned EltSizeBits = VT.getScalarSizeInBits(); 2566 assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) && 2567 "Unexpected unaligned RVV load type"); 2568 MVT NewVT = 2569 MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8)); 2570 assert(NewVT.isValid() && 2571 "Expecting equally-sized RVV vector types to be legal"); 2572 SDValue L = DAG.getLoad(NewVT, DL, Load->getChain(), Load->getBasePtr(), 2573 Load->getPointerInfo(), Load->getOriginalAlign(), 2574 Load->getMemOperand()->getFlags()); 2575 return DAG.getMergeValues({DAG.getBitcast(VT, L), L.getValue(1)}, DL); 2576 } 2577 2578 // While RVV has alignment restrictions, we should always be able to store as a 2579 // legal equivalently-sized byte-typed vector instead. This method is 2580 // responsible for re-expressing a ISD::STORE via a correctly-aligned type. It 2581 // returns SDValue() if the store is already correctly aligned. 2582 SDValue RISCVTargetLowering::expandUnalignedRVVStore(SDValue Op, 2583 SelectionDAG &DAG) const { 2584 auto *Store = cast<StoreSDNode>(Op); 2585 assert(Store && Store->getValue().getValueType().isVector() && 2586 "Expected vector store"); 2587 2588 if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 2589 Store->getMemoryVT(), 2590 *Store->getMemOperand())) 2591 return SDValue(); 2592 2593 SDLoc DL(Op); 2594 SDValue StoredVal = Store->getValue(); 2595 MVT VT = StoredVal.getSimpleValueType(); 2596 unsigned EltSizeBits = VT.getScalarSizeInBits(); 2597 assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) && 2598 "Unexpected unaligned RVV store type"); 2599 MVT NewVT = 2600 MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8)); 2601 assert(NewVT.isValid() && 2602 "Expecting equally-sized RVV vector types to be legal"); 2603 StoredVal = DAG.getBitcast(NewVT, StoredVal); 2604 return DAG.getStore(Store->getChain(), DL, StoredVal, Store->getBasePtr(), 2605 Store->getPointerInfo(), Store->getOriginalAlign(), 2606 Store->getMemOperand()->getFlags()); 2607 } 2608 2609 SDValue RISCVTargetLowering::LowerOperation(SDValue Op, 2610 SelectionDAG &DAG) const { 2611 switch (Op.getOpcode()) { 2612 default: 2613 report_fatal_error("unimplemented operand"); 2614 case ISD::GlobalAddress: 2615 return lowerGlobalAddress(Op, DAG); 2616 case ISD::BlockAddress: 2617 return lowerBlockAddress(Op, DAG); 2618 case ISD::ConstantPool: 2619 return lowerConstantPool(Op, DAG); 2620 case ISD::JumpTable: 2621 return lowerJumpTable(Op, DAG); 2622 case ISD::GlobalTLSAddress: 2623 return lowerGlobalTLSAddress(Op, DAG); 2624 case ISD::SELECT: 2625 return lowerSELECT(Op, DAG); 2626 case ISD::BRCOND: 2627 return lowerBRCOND(Op, DAG); 2628 case ISD::VASTART: 2629 return lowerVASTART(Op, DAG); 2630 case ISD::FRAMEADDR: 2631 return lowerFRAMEADDR(Op, DAG); 2632 case ISD::RETURNADDR: 2633 return lowerRETURNADDR(Op, DAG); 2634 case ISD::SHL_PARTS: 2635 return lowerShiftLeftParts(Op, DAG); 2636 case ISD::SRA_PARTS: 2637 return lowerShiftRightParts(Op, DAG, true); 2638 case ISD::SRL_PARTS: 2639 return lowerShiftRightParts(Op, DAG, false); 2640 case ISD::BITCAST: { 2641 SDLoc DL(Op); 2642 EVT VT = Op.getValueType(); 2643 SDValue Op0 = Op.getOperand(0); 2644 EVT Op0VT = Op0.getValueType(); 2645 MVT XLenVT = Subtarget.getXLenVT(); 2646 if (VT.isFixedLengthVector()) { 2647 // We can handle fixed length vector bitcasts with a simple replacement 2648 // in isel. 2649 if (Op0VT.isFixedLengthVector()) 2650 return Op; 2651 // When bitcasting from scalar to fixed-length vector, insert the scalar 2652 // into a one-element vector of the result type, and perform a vector 2653 // bitcast. 2654 if (!Op0VT.isVector()) { 2655 EVT BVT = EVT::getVectorVT(*DAG.getContext(), Op0VT, 1); 2656 if (!isTypeLegal(BVT)) 2657 return SDValue(); 2658 return DAG.getBitcast(VT, DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, BVT, 2659 DAG.getUNDEF(BVT), Op0, 2660 DAG.getConstant(0, DL, XLenVT))); 2661 } 2662 return SDValue(); 2663 } 2664 // Custom-legalize bitcasts from fixed-length vector types to scalar types 2665 // thus: bitcast the vector to a one-element vector type whose element type 2666 // is the same as the result type, and extract the first element. 2667 if (!VT.isVector() && Op0VT.isFixedLengthVector()) { 2668 EVT BVT = EVT::getVectorVT(*DAG.getContext(), VT, 1); 2669 if (!isTypeLegal(BVT)) 2670 return SDValue(); 2671 SDValue BVec = DAG.getBitcast(BVT, Op0); 2672 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec, 2673 DAG.getConstant(0, DL, XLenVT)); 2674 } 2675 if (VT == MVT::f16 && Op0VT == MVT::i16 && Subtarget.hasStdExtZfh()) { 2676 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Op0); 2677 SDValue FPConv = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, NewOp0); 2678 return FPConv; 2679 } 2680 if (VT == MVT::f32 && Op0VT == MVT::i32 && Subtarget.is64Bit() && 2681 Subtarget.hasStdExtF()) { 2682 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); 2683 SDValue FPConv = 2684 DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, NewOp0); 2685 return FPConv; 2686 } 2687 return SDValue(); 2688 } 2689 case ISD::INTRINSIC_WO_CHAIN: 2690 return LowerINTRINSIC_WO_CHAIN(Op, DAG); 2691 case ISD::INTRINSIC_W_CHAIN: 2692 return LowerINTRINSIC_W_CHAIN(Op, DAG); 2693 case ISD::INTRINSIC_VOID: 2694 return LowerINTRINSIC_VOID(Op, DAG); 2695 case ISD::BSWAP: 2696 case ISD::BITREVERSE: { 2697 // Convert BSWAP/BITREVERSE to GREVI to enable GREVI combinining. 2698 assert(Subtarget.hasStdExtZbp() && "Unexpected custom legalisation"); 2699 MVT VT = Op.getSimpleValueType(); 2700 SDLoc DL(Op); 2701 // Start with the maximum immediate value which is the bitwidth - 1. 2702 unsigned Imm = VT.getSizeInBits() - 1; 2703 // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits. 2704 if (Op.getOpcode() == ISD::BSWAP) 2705 Imm &= ~0x7U; 2706 return DAG.getNode(RISCVISD::GREV, DL, VT, Op.getOperand(0), 2707 DAG.getConstant(Imm, DL, VT)); 2708 } 2709 case ISD::FSHL: 2710 case ISD::FSHR: { 2711 MVT VT = Op.getSimpleValueType(); 2712 assert(VT == Subtarget.getXLenVT() && "Unexpected custom legalization"); 2713 SDLoc DL(Op); 2714 if (Op.getOperand(2).getOpcode() == ISD::Constant) 2715 return Op; 2716 // FSL/FSR take a log2(XLen)+1 bit shift amount but XLenVT FSHL/FSHR only 2717 // use log(XLen) bits. Mask the shift amount accordingly. 2718 unsigned ShAmtWidth = Subtarget.getXLen() - 1; 2719 SDValue ShAmt = DAG.getNode(ISD::AND, DL, VT, Op.getOperand(2), 2720 DAG.getConstant(ShAmtWidth, DL, VT)); 2721 unsigned Opc = Op.getOpcode() == ISD::FSHL ? RISCVISD::FSL : RISCVISD::FSR; 2722 return DAG.getNode(Opc, DL, VT, Op.getOperand(0), Op.getOperand(1), ShAmt); 2723 } 2724 case ISD::TRUNCATE: { 2725 SDLoc DL(Op); 2726 MVT VT = Op.getSimpleValueType(); 2727 // Only custom-lower vector truncates 2728 if (!VT.isVector()) 2729 return Op; 2730 2731 // Truncates to mask types are handled differently 2732 if (VT.getVectorElementType() == MVT::i1) 2733 return lowerVectorMaskTrunc(Op, DAG); 2734 2735 // RVV only has truncates which operate from SEW*2->SEW, so lower arbitrary 2736 // truncates as a series of "RISCVISD::TRUNCATE_VECTOR_VL" nodes which 2737 // truncate by one power of two at a time. 2738 MVT DstEltVT = VT.getVectorElementType(); 2739 2740 SDValue Src = Op.getOperand(0); 2741 MVT SrcVT = Src.getSimpleValueType(); 2742 MVT SrcEltVT = SrcVT.getVectorElementType(); 2743 2744 assert(DstEltVT.bitsLT(SrcEltVT) && 2745 isPowerOf2_64(DstEltVT.getSizeInBits()) && 2746 isPowerOf2_64(SrcEltVT.getSizeInBits()) && 2747 "Unexpected vector truncate lowering"); 2748 2749 MVT ContainerVT = SrcVT; 2750 if (SrcVT.isFixedLengthVector()) { 2751 ContainerVT = getContainerForFixedLengthVector(SrcVT); 2752 Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget); 2753 } 2754 2755 SDValue Result = Src; 2756 SDValue Mask, VL; 2757 std::tie(Mask, VL) = 2758 getDefaultVLOps(SrcVT, ContainerVT, DL, DAG, Subtarget); 2759 LLVMContext &Context = *DAG.getContext(); 2760 const ElementCount Count = ContainerVT.getVectorElementCount(); 2761 do { 2762 SrcEltVT = MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2); 2763 EVT ResultVT = EVT::getVectorVT(Context, SrcEltVT, Count); 2764 Result = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, ResultVT, Result, 2765 Mask, VL); 2766 } while (SrcEltVT != DstEltVT); 2767 2768 if (SrcVT.isFixedLengthVector()) 2769 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 2770 2771 return Result; 2772 } 2773 case ISD::ANY_EXTEND: 2774 case ISD::ZERO_EXTEND: 2775 if (Op.getOperand(0).getValueType().isVector() && 2776 Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) 2777 return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ 1); 2778 return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VZEXT_VL); 2779 case ISD::SIGN_EXTEND: 2780 if (Op.getOperand(0).getValueType().isVector() && 2781 Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) 2782 return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ -1); 2783 return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VSEXT_VL); 2784 case ISD::SPLAT_VECTOR_PARTS: 2785 return lowerSPLAT_VECTOR_PARTS(Op, DAG); 2786 case ISD::INSERT_VECTOR_ELT: 2787 return lowerINSERT_VECTOR_ELT(Op, DAG); 2788 case ISD::EXTRACT_VECTOR_ELT: 2789 return lowerEXTRACT_VECTOR_ELT(Op, DAG); 2790 case ISD::VSCALE: { 2791 MVT VT = Op.getSimpleValueType(); 2792 SDLoc DL(Op); 2793 SDValue VLENB = DAG.getNode(RISCVISD::READ_VLENB, DL, VT); 2794 // We define our scalable vector types for lmul=1 to use a 64 bit known 2795 // minimum size. e.g. <vscale x 2 x i32>. VLENB is in bytes so we calculate 2796 // vscale as VLENB / 8. 2797 static_assert(RISCV::RVVBitsPerBlock == 64, "Unexpected bits per block!"); 2798 if (isa<ConstantSDNode>(Op.getOperand(0))) { 2799 // We assume VLENB is a multiple of 8. We manually choose the best shift 2800 // here because SimplifyDemandedBits isn't always able to simplify it. 2801 uint64_t Val = Op.getConstantOperandVal(0); 2802 if (isPowerOf2_64(Val)) { 2803 uint64_t Log2 = Log2_64(Val); 2804 if (Log2 < 3) 2805 return DAG.getNode(ISD::SRL, DL, VT, VLENB, 2806 DAG.getConstant(3 - Log2, DL, VT)); 2807 if (Log2 > 3) 2808 return DAG.getNode(ISD::SHL, DL, VT, VLENB, 2809 DAG.getConstant(Log2 - 3, DL, VT)); 2810 return VLENB; 2811 } 2812 // If the multiplier is a multiple of 8, scale it down to avoid needing 2813 // to shift the VLENB value. 2814 if ((Val % 8) == 0) 2815 return DAG.getNode(ISD::MUL, DL, VT, VLENB, 2816 DAG.getConstant(Val / 8, DL, VT)); 2817 } 2818 2819 SDValue VScale = DAG.getNode(ISD::SRL, DL, VT, VLENB, 2820 DAG.getConstant(3, DL, VT)); 2821 return DAG.getNode(ISD::MUL, DL, VT, VScale, Op.getOperand(0)); 2822 } 2823 case ISD::FPOWI: { 2824 // Custom promote f16 powi with illegal i32 integer type on RV64. Once 2825 // promoted this will be legalized into a libcall by LegalizeIntegerTypes. 2826 if (Op.getValueType() == MVT::f16 && Subtarget.is64Bit() && 2827 Op.getOperand(1).getValueType() == MVT::i32) { 2828 SDLoc DL(Op); 2829 SDValue Op0 = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Op.getOperand(0)); 2830 SDValue Powi = 2831 DAG.getNode(ISD::FPOWI, DL, MVT::f32, Op0, Op.getOperand(1)); 2832 return DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, Powi, 2833 DAG.getIntPtrConstant(0, DL)); 2834 } 2835 return SDValue(); 2836 } 2837 case ISD::FP_EXTEND: { 2838 // RVV can only do fp_extend to types double the size as the source. We 2839 // custom-lower f16->f64 extensions to two hops of ISD::FP_EXTEND, going 2840 // via f32. 2841 SDLoc DL(Op); 2842 MVT VT = Op.getSimpleValueType(); 2843 SDValue Src = Op.getOperand(0); 2844 MVT SrcVT = Src.getSimpleValueType(); 2845 2846 // Prepare any fixed-length vector operands. 2847 MVT ContainerVT = VT; 2848 if (SrcVT.isFixedLengthVector()) { 2849 ContainerVT = getContainerForFixedLengthVector(VT); 2850 MVT SrcContainerVT = 2851 ContainerVT.changeVectorElementType(SrcVT.getVectorElementType()); 2852 Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); 2853 } 2854 2855 if (!VT.isVector() || VT.getVectorElementType() != MVT::f64 || 2856 SrcVT.getVectorElementType() != MVT::f16) { 2857 // For scalable vectors, we only need to close the gap between 2858 // vXf16->vXf64. 2859 if (!VT.isFixedLengthVector()) 2860 return Op; 2861 // For fixed-length vectors, lower the FP_EXTEND to a custom "VL" version. 2862 Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget); 2863 return convertFromScalableVector(VT, Src, DAG, Subtarget); 2864 } 2865 2866 MVT InterVT = VT.changeVectorElementType(MVT::f32); 2867 MVT InterContainerVT = ContainerVT.changeVectorElementType(MVT::f32); 2868 SDValue IntermediateExtend = getRVVFPExtendOrRound( 2869 Src, InterVT, InterContainerVT, DL, DAG, Subtarget); 2870 2871 SDValue Extend = getRVVFPExtendOrRound(IntermediateExtend, VT, ContainerVT, 2872 DL, DAG, Subtarget); 2873 if (VT.isFixedLengthVector()) 2874 return convertFromScalableVector(VT, Extend, DAG, Subtarget); 2875 return Extend; 2876 } 2877 case ISD::FP_ROUND: { 2878 // RVV can only do fp_round to types half the size as the source. We 2879 // custom-lower f64->f16 rounds via RVV's round-to-odd float 2880 // conversion instruction. 2881 SDLoc DL(Op); 2882 MVT VT = Op.getSimpleValueType(); 2883 SDValue Src = Op.getOperand(0); 2884 MVT SrcVT = Src.getSimpleValueType(); 2885 2886 // Prepare any fixed-length vector operands. 2887 MVT ContainerVT = VT; 2888 if (VT.isFixedLengthVector()) { 2889 MVT SrcContainerVT = getContainerForFixedLengthVector(SrcVT); 2890 ContainerVT = 2891 SrcContainerVT.changeVectorElementType(VT.getVectorElementType()); 2892 Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); 2893 } 2894 2895 if (!VT.isVector() || VT.getVectorElementType() != MVT::f16 || 2896 SrcVT.getVectorElementType() != MVT::f64) { 2897 // For scalable vectors, we only need to close the gap between 2898 // vXf64<->vXf16. 2899 if (!VT.isFixedLengthVector()) 2900 return Op; 2901 // For fixed-length vectors, lower the FP_ROUND to a custom "VL" version. 2902 Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget); 2903 return convertFromScalableVector(VT, Src, DAG, Subtarget); 2904 } 2905 2906 SDValue Mask, VL; 2907 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 2908 2909 MVT InterVT = ContainerVT.changeVectorElementType(MVT::f32); 2910 SDValue IntermediateRound = 2911 DAG.getNode(RISCVISD::VFNCVT_ROD_VL, DL, InterVT, Src, Mask, VL); 2912 SDValue Round = getRVVFPExtendOrRound(IntermediateRound, VT, ContainerVT, 2913 DL, DAG, Subtarget); 2914 2915 if (VT.isFixedLengthVector()) 2916 return convertFromScalableVector(VT, Round, DAG, Subtarget); 2917 return Round; 2918 } 2919 case ISD::FP_TO_SINT: 2920 case ISD::FP_TO_UINT: 2921 case ISD::SINT_TO_FP: 2922 case ISD::UINT_TO_FP: { 2923 // RVV can only do fp<->int conversions to types half/double the size as 2924 // the source. We custom-lower any conversions that do two hops into 2925 // sequences. 2926 MVT VT = Op.getSimpleValueType(); 2927 if (!VT.isVector()) 2928 return Op; 2929 SDLoc DL(Op); 2930 SDValue Src = Op.getOperand(0); 2931 MVT EltVT = VT.getVectorElementType(); 2932 MVT SrcVT = Src.getSimpleValueType(); 2933 MVT SrcEltVT = SrcVT.getVectorElementType(); 2934 unsigned EltSize = EltVT.getSizeInBits(); 2935 unsigned SrcEltSize = SrcEltVT.getSizeInBits(); 2936 assert(isPowerOf2_32(EltSize) && isPowerOf2_32(SrcEltSize) && 2937 "Unexpected vector element types"); 2938 2939 bool IsInt2FP = SrcEltVT.isInteger(); 2940 // Widening conversions 2941 if (EltSize > SrcEltSize && (EltSize / SrcEltSize >= 4)) { 2942 if (IsInt2FP) { 2943 // Do a regular integer sign/zero extension then convert to float. 2944 MVT IVecVT = MVT::getVectorVT(MVT::getIntegerVT(EltVT.getSizeInBits()), 2945 VT.getVectorElementCount()); 2946 unsigned ExtOpcode = Op.getOpcode() == ISD::UINT_TO_FP 2947 ? ISD::ZERO_EXTEND 2948 : ISD::SIGN_EXTEND; 2949 SDValue Ext = DAG.getNode(ExtOpcode, DL, IVecVT, Src); 2950 return DAG.getNode(Op.getOpcode(), DL, VT, Ext); 2951 } 2952 // FP2Int 2953 assert(SrcEltVT == MVT::f16 && "Unexpected FP_TO_[US]INT lowering"); 2954 // Do one doubling fp_extend then complete the operation by converting 2955 // to int. 2956 MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount()); 2957 SDValue FExt = DAG.getFPExtendOrRound(Src, DL, InterimFVT); 2958 return DAG.getNode(Op.getOpcode(), DL, VT, FExt); 2959 } 2960 2961 // Narrowing conversions 2962 if (SrcEltSize > EltSize && (SrcEltSize / EltSize >= 4)) { 2963 if (IsInt2FP) { 2964 // One narrowing int_to_fp, then an fp_round. 2965 assert(EltVT == MVT::f16 && "Unexpected [US]_TO_FP lowering"); 2966 MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount()); 2967 SDValue Int2FP = DAG.getNode(Op.getOpcode(), DL, InterimFVT, Src); 2968 return DAG.getFPExtendOrRound(Int2FP, DL, VT); 2969 } 2970 // FP2Int 2971 // One narrowing fp_to_int, then truncate the integer. If the float isn't 2972 // representable by the integer, the result is poison. 2973 MVT IVecVT = 2974 MVT::getVectorVT(MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2), 2975 VT.getVectorElementCount()); 2976 SDValue FP2Int = DAG.getNode(Op.getOpcode(), DL, IVecVT, Src); 2977 return DAG.getNode(ISD::TRUNCATE, DL, VT, FP2Int); 2978 } 2979 2980 // Scalable vectors can exit here. Patterns will handle equally-sized 2981 // conversions halving/doubling ones. 2982 if (!VT.isFixedLengthVector()) 2983 return Op; 2984 2985 // For fixed-length vectors we lower to a custom "VL" node. 2986 unsigned RVVOpc = 0; 2987 switch (Op.getOpcode()) { 2988 default: 2989 llvm_unreachable("Impossible opcode"); 2990 case ISD::FP_TO_SINT: 2991 RVVOpc = RISCVISD::FP_TO_SINT_VL; 2992 break; 2993 case ISD::FP_TO_UINT: 2994 RVVOpc = RISCVISD::FP_TO_UINT_VL; 2995 break; 2996 case ISD::SINT_TO_FP: 2997 RVVOpc = RISCVISD::SINT_TO_FP_VL; 2998 break; 2999 case ISD::UINT_TO_FP: 3000 RVVOpc = RISCVISD::UINT_TO_FP_VL; 3001 break; 3002 } 3003 3004 MVT ContainerVT, SrcContainerVT; 3005 // Derive the reference container type from the larger vector type. 3006 if (SrcEltSize > EltSize) { 3007 SrcContainerVT = getContainerForFixedLengthVector(SrcVT); 3008 ContainerVT = 3009 SrcContainerVT.changeVectorElementType(VT.getVectorElementType()); 3010 } else { 3011 ContainerVT = getContainerForFixedLengthVector(VT); 3012 SrcContainerVT = ContainerVT.changeVectorElementType(SrcEltVT); 3013 } 3014 3015 SDValue Mask, VL; 3016 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 3017 3018 Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); 3019 Src = DAG.getNode(RVVOpc, DL, ContainerVT, Src, Mask, VL); 3020 return convertFromScalableVector(VT, Src, DAG, Subtarget); 3021 } 3022 case ISD::FP_TO_SINT_SAT: 3023 case ISD::FP_TO_UINT_SAT: 3024 return lowerFP_TO_INT_SAT(Op, DAG, Subtarget); 3025 case ISD::FTRUNC: 3026 case ISD::FCEIL: 3027 case ISD::FFLOOR: 3028 return lowerFTRUNC_FCEIL_FFLOOR(Op, DAG); 3029 case ISD::VECREDUCE_ADD: 3030 case ISD::VECREDUCE_UMAX: 3031 case ISD::VECREDUCE_SMAX: 3032 case ISD::VECREDUCE_UMIN: 3033 case ISD::VECREDUCE_SMIN: 3034 return lowerVECREDUCE(Op, DAG); 3035 case ISD::VECREDUCE_AND: 3036 case ISD::VECREDUCE_OR: 3037 case ISD::VECREDUCE_XOR: 3038 if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) 3039 return lowerVectorMaskVecReduction(Op, DAG, /*IsVP*/ false); 3040 return lowerVECREDUCE(Op, DAG); 3041 case ISD::VECREDUCE_FADD: 3042 case ISD::VECREDUCE_SEQ_FADD: 3043 case ISD::VECREDUCE_FMIN: 3044 case ISD::VECREDUCE_FMAX: 3045 return lowerFPVECREDUCE(Op, DAG); 3046 case ISD::VP_REDUCE_ADD: 3047 case ISD::VP_REDUCE_UMAX: 3048 case ISD::VP_REDUCE_SMAX: 3049 case ISD::VP_REDUCE_UMIN: 3050 case ISD::VP_REDUCE_SMIN: 3051 case ISD::VP_REDUCE_FADD: 3052 case ISD::VP_REDUCE_SEQ_FADD: 3053 case ISD::VP_REDUCE_FMIN: 3054 case ISD::VP_REDUCE_FMAX: 3055 return lowerVPREDUCE(Op, DAG); 3056 case ISD::VP_REDUCE_AND: 3057 case ISD::VP_REDUCE_OR: 3058 case ISD::VP_REDUCE_XOR: 3059 if (Op.getOperand(1).getValueType().getVectorElementType() == MVT::i1) 3060 return lowerVectorMaskVecReduction(Op, DAG, /*IsVP*/ true); 3061 return lowerVPREDUCE(Op, DAG); 3062 case ISD::INSERT_SUBVECTOR: 3063 return lowerINSERT_SUBVECTOR(Op, DAG); 3064 case ISD::EXTRACT_SUBVECTOR: 3065 return lowerEXTRACT_SUBVECTOR(Op, DAG); 3066 case ISD::STEP_VECTOR: 3067 return lowerSTEP_VECTOR(Op, DAG); 3068 case ISD::VECTOR_REVERSE: 3069 return lowerVECTOR_REVERSE(Op, DAG); 3070 case ISD::BUILD_VECTOR: 3071 return lowerBUILD_VECTOR(Op, DAG, Subtarget); 3072 case ISD::SPLAT_VECTOR: 3073 if (Op.getValueType().getVectorElementType() == MVT::i1) 3074 return lowerVectorMaskSplat(Op, DAG); 3075 return lowerSPLAT_VECTOR(Op, DAG, Subtarget); 3076 case ISD::VECTOR_SHUFFLE: 3077 return lowerVECTOR_SHUFFLE(Op, DAG, Subtarget); 3078 case ISD::CONCAT_VECTORS: { 3079 // Split CONCAT_VECTORS into a series of INSERT_SUBVECTOR nodes. This is 3080 // better than going through the stack, as the default expansion does. 3081 SDLoc DL(Op); 3082 MVT VT = Op.getSimpleValueType(); 3083 unsigned NumOpElts = 3084 Op.getOperand(0).getSimpleValueType().getVectorMinNumElements(); 3085 SDValue Vec = DAG.getUNDEF(VT); 3086 for (const auto &OpIdx : enumerate(Op->ops())) 3087 Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, Vec, OpIdx.value(), 3088 DAG.getIntPtrConstant(OpIdx.index() * NumOpElts, DL)); 3089 return Vec; 3090 } 3091 case ISD::LOAD: 3092 if (auto V = expandUnalignedRVVLoad(Op, DAG)) 3093 return V; 3094 if (Op.getValueType().isFixedLengthVector()) 3095 return lowerFixedLengthVectorLoadToRVV(Op, DAG); 3096 return Op; 3097 case ISD::STORE: 3098 if (auto V = expandUnalignedRVVStore(Op, DAG)) 3099 return V; 3100 if (Op.getOperand(1).getValueType().isFixedLengthVector()) 3101 return lowerFixedLengthVectorStoreToRVV(Op, DAG); 3102 return Op; 3103 case ISD::MLOAD: 3104 case ISD::VP_LOAD: 3105 return lowerMaskedLoad(Op, DAG); 3106 case ISD::MSTORE: 3107 case ISD::VP_STORE: 3108 return lowerMaskedStore(Op, DAG); 3109 case ISD::SETCC: 3110 return lowerFixedLengthVectorSetccToRVV(Op, DAG); 3111 case ISD::ADD: 3112 return lowerToScalableOp(Op, DAG, RISCVISD::ADD_VL); 3113 case ISD::SUB: 3114 return lowerToScalableOp(Op, DAG, RISCVISD::SUB_VL); 3115 case ISD::MUL: 3116 return lowerToScalableOp(Op, DAG, RISCVISD::MUL_VL); 3117 case ISD::MULHS: 3118 return lowerToScalableOp(Op, DAG, RISCVISD::MULHS_VL); 3119 case ISD::MULHU: 3120 return lowerToScalableOp(Op, DAG, RISCVISD::MULHU_VL); 3121 case ISD::AND: 3122 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMAND_VL, 3123 RISCVISD::AND_VL); 3124 case ISD::OR: 3125 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMOR_VL, 3126 RISCVISD::OR_VL); 3127 case ISD::XOR: 3128 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMXOR_VL, 3129 RISCVISD::XOR_VL); 3130 case ISD::SDIV: 3131 return lowerToScalableOp(Op, DAG, RISCVISD::SDIV_VL); 3132 case ISD::SREM: 3133 return lowerToScalableOp(Op, DAG, RISCVISD::SREM_VL); 3134 case ISD::UDIV: 3135 return lowerToScalableOp(Op, DAG, RISCVISD::UDIV_VL); 3136 case ISD::UREM: 3137 return lowerToScalableOp(Op, DAG, RISCVISD::UREM_VL); 3138 case ISD::SHL: 3139 case ISD::SRA: 3140 case ISD::SRL: 3141 if (Op.getSimpleValueType().isFixedLengthVector()) 3142 return lowerFixedLengthVectorShiftToRVV(Op, DAG); 3143 // This can be called for an i32 shift amount that needs to be promoted. 3144 assert(Op.getOperand(1).getValueType() == MVT::i32 && Subtarget.is64Bit() && 3145 "Unexpected custom legalisation"); 3146 return SDValue(); 3147 case ISD::SADDSAT: 3148 return lowerToScalableOp(Op, DAG, RISCVISD::SADDSAT_VL); 3149 case ISD::UADDSAT: 3150 return lowerToScalableOp(Op, DAG, RISCVISD::UADDSAT_VL); 3151 case ISD::SSUBSAT: 3152 return lowerToScalableOp(Op, DAG, RISCVISD::SSUBSAT_VL); 3153 case ISD::USUBSAT: 3154 return lowerToScalableOp(Op, DAG, RISCVISD::USUBSAT_VL); 3155 case ISD::FADD: 3156 return lowerToScalableOp(Op, DAG, RISCVISD::FADD_VL); 3157 case ISD::FSUB: 3158 return lowerToScalableOp(Op, DAG, RISCVISD::FSUB_VL); 3159 case ISD::FMUL: 3160 return lowerToScalableOp(Op, DAG, RISCVISD::FMUL_VL); 3161 case ISD::FDIV: 3162 return lowerToScalableOp(Op, DAG, RISCVISD::FDIV_VL); 3163 case ISD::FNEG: 3164 return lowerToScalableOp(Op, DAG, RISCVISD::FNEG_VL); 3165 case ISD::FABS: 3166 return lowerToScalableOp(Op, DAG, RISCVISD::FABS_VL); 3167 case ISD::FSQRT: 3168 return lowerToScalableOp(Op, DAG, RISCVISD::FSQRT_VL); 3169 case ISD::FMA: 3170 return lowerToScalableOp(Op, DAG, RISCVISD::FMA_VL); 3171 case ISD::SMIN: 3172 return lowerToScalableOp(Op, DAG, RISCVISD::SMIN_VL); 3173 case ISD::SMAX: 3174 return lowerToScalableOp(Op, DAG, RISCVISD::SMAX_VL); 3175 case ISD::UMIN: 3176 return lowerToScalableOp(Op, DAG, RISCVISD::UMIN_VL); 3177 case ISD::UMAX: 3178 return lowerToScalableOp(Op, DAG, RISCVISD::UMAX_VL); 3179 case ISD::FMINNUM: 3180 return lowerToScalableOp(Op, DAG, RISCVISD::FMINNUM_VL); 3181 case ISD::FMAXNUM: 3182 return lowerToScalableOp(Op, DAG, RISCVISD::FMAXNUM_VL); 3183 case ISD::ABS: 3184 return lowerABS(Op, DAG); 3185 case ISD::CTLZ_ZERO_UNDEF: 3186 case ISD::CTTZ_ZERO_UNDEF: 3187 return lowerCTLZ_CTTZ_ZERO_UNDEF(Op, DAG); 3188 case ISD::VSELECT: 3189 return lowerFixedLengthVectorSelectToRVV(Op, DAG); 3190 case ISD::FCOPYSIGN: 3191 return lowerFixedLengthVectorFCOPYSIGNToRVV(Op, DAG); 3192 case ISD::MGATHER: 3193 case ISD::VP_GATHER: 3194 return lowerMaskedGather(Op, DAG); 3195 case ISD::MSCATTER: 3196 case ISD::VP_SCATTER: 3197 return lowerMaskedScatter(Op, DAG); 3198 case ISD::FLT_ROUNDS_: 3199 return lowerGET_ROUNDING(Op, DAG); 3200 case ISD::SET_ROUNDING: 3201 return lowerSET_ROUNDING(Op, DAG); 3202 case ISD::VP_SELECT: 3203 return lowerVPOp(Op, DAG, RISCVISD::VSELECT_VL); 3204 case ISD::VP_ADD: 3205 return lowerVPOp(Op, DAG, RISCVISD::ADD_VL); 3206 case ISD::VP_SUB: 3207 return lowerVPOp(Op, DAG, RISCVISD::SUB_VL); 3208 case ISD::VP_MUL: 3209 return lowerVPOp(Op, DAG, RISCVISD::MUL_VL); 3210 case ISD::VP_SDIV: 3211 return lowerVPOp(Op, DAG, RISCVISD::SDIV_VL); 3212 case ISD::VP_UDIV: 3213 return lowerVPOp(Op, DAG, RISCVISD::UDIV_VL); 3214 case ISD::VP_SREM: 3215 return lowerVPOp(Op, DAG, RISCVISD::SREM_VL); 3216 case ISD::VP_UREM: 3217 return lowerVPOp(Op, DAG, RISCVISD::UREM_VL); 3218 case ISD::VP_AND: 3219 return lowerLogicVPOp(Op, DAG, RISCVISD::VMAND_VL, RISCVISD::AND_VL); 3220 case ISD::VP_OR: 3221 return lowerLogicVPOp(Op, DAG, RISCVISD::VMOR_VL, RISCVISD::OR_VL); 3222 case ISD::VP_XOR: 3223 return lowerLogicVPOp(Op, DAG, RISCVISD::VMXOR_VL, RISCVISD::XOR_VL); 3224 case ISD::VP_ASHR: 3225 return lowerVPOp(Op, DAG, RISCVISD::SRA_VL); 3226 case ISD::VP_LSHR: 3227 return lowerVPOp(Op, DAG, RISCVISD::SRL_VL); 3228 case ISD::VP_SHL: 3229 return lowerVPOp(Op, DAG, RISCVISD::SHL_VL); 3230 case ISD::VP_FADD: 3231 return lowerVPOp(Op, DAG, RISCVISD::FADD_VL); 3232 case ISD::VP_FSUB: 3233 return lowerVPOp(Op, DAG, RISCVISD::FSUB_VL); 3234 case ISD::VP_FMUL: 3235 return lowerVPOp(Op, DAG, RISCVISD::FMUL_VL); 3236 case ISD::VP_FDIV: 3237 return lowerVPOp(Op, DAG, RISCVISD::FDIV_VL); 3238 } 3239 } 3240 3241 static SDValue getTargetNode(GlobalAddressSDNode *N, SDLoc DL, EVT Ty, 3242 SelectionDAG &DAG, unsigned Flags) { 3243 return DAG.getTargetGlobalAddress(N->getGlobal(), DL, Ty, 0, Flags); 3244 } 3245 3246 static SDValue getTargetNode(BlockAddressSDNode *N, SDLoc DL, EVT Ty, 3247 SelectionDAG &DAG, unsigned Flags) { 3248 return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, N->getOffset(), 3249 Flags); 3250 } 3251 3252 static SDValue getTargetNode(ConstantPoolSDNode *N, SDLoc DL, EVT Ty, 3253 SelectionDAG &DAG, unsigned Flags) { 3254 return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlign(), 3255 N->getOffset(), Flags); 3256 } 3257 3258 static SDValue getTargetNode(JumpTableSDNode *N, SDLoc DL, EVT Ty, 3259 SelectionDAG &DAG, unsigned Flags) { 3260 return DAG.getTargetJumpTable(N->getIndex(), Ty, Flags); 3261 } 3262 3263 template <class NodeTy> 3264 SDValue RISCVTargetLowering::getAddr(NodeTy *N, SelectionDAG &DAG, 3265 bool IsLocal) const { 3266 SDLoc DL(N); 3267 EVT Ty = getPointerTy(DAG.getDataLayout()); 3268 3269 if (isPositionIndependent()) { 3270 SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0); 3271 if (IsLocal) 3272 // Use PC-relative addressing to access the symbol. This generates the 3273 // pattern (PseudoLLA sym), which expands to (addi (auipc %pcrel_hi(sym)) 3274 // %pcrel_lo(auipc)). 3275 return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0); 3276 3277 // Use PC-relative addressing to access the GOT for this symbol, then load 3278 // the address from the GOT. This generates the pattern (PseudoLA sym), 3279 // which expands to (ld (addi (auipc %got_pcrel_hi(sym)) %pcrel_lo(auipc))). 3280 return SDValue(DAG.getMachineNode(RISCV::PseudoLA, DL, Ty, Addr), 0); 3281 } 3282 3283 switch (getTargetMachine().getCodeModel()) { 3284 default: 3285 report_fatal_error("Unsupported code model for lowering"); 3286 case CodeModel::Small: { 3287 // Generate a sequence for accessing addresses within the first 2 GiB of 3288 // address space. This generates the pattern (addi (lui %hi(sym)) %lo(sym)). 3289 SDValue AddrHi = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_HI); 3290 SDValue AddrLo = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_LO); 3291 SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0); 3292 return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNHi, AddrLo), 0); 3293 } 3294 case CodeModel::Medium: { 3295 // Generate a sequence for accessing addresses within any 2GiB range within 3296 // the address space. This generates the pattern (PseudoLLA sym), which 3297 // expands to (addi (auipc %pcrel_hi(sym)) %pcrel_lo(auipc)). 3298 SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0); 3299 return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0); 3300 } 3301 } 3302 } 3303 3304 SDValue RISCVTargetLowering::lowerGlobalAddress(SDValue Op, 3305 SelectionDAG &DAG) const { 3306 SDLoc DL(Op); 3307 EVT Ty = Op.getValueType(); 3308 GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op); 3309 int64_t Offset = N->getOffset(); 3310 MVT XLenVT = Subtarget.getXLenVT(); 3311 3312 const GlobalValue *GV = N->getGlobal(); 3313 bool IsLocal = getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV); 3314 SDValue Addr = getAddr(N, DAG, IsLocal); 3315 3316 // In order to maximise the opportunity for common subexpression elimination, 3317 // emit a separate ADD node for the global address offset instead of folding 3318 // it in the global address node. Later peephole optimisations may choose to 3319 // fold it back in when profitable. 3320 if (Offset != 0) 3321 return DAG.getNode(ISD::ADD, DL, Ty, Addr, 3322 DAG.getConstant(Offset, DL, XLenVT)); 3323 return Addr; 3324 } 3325 3326 SDValue RISCVTargetLowering::lowerBlockAddress(SDValue Op, 3327 SelectionDAG &DAG) const { 3328 BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op); 3329 3330 return getAddr(N, DAG); 3331 } 3332 3333 SDValue RISCVTargetLowering::lowerConstantPool(SDValue Op, 3334 SelectionDAG &DAG) const { 3335 ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op); 3336 3337 return getAddr(N, DAG); 3338 } 3339 3340 SDValue RISCVTargetLowering::lowerJumpTable(SDValue Op, 3341 SelectionDAG &DAG) const { 3342 JumpTableSDNode *N = cast<JumpTableSDNode>(Op); 3343 3344 return getAddr(N, DAG); 3345 } 3346 3347 SDValue RISCVTargetLowering::getStaticTLSAddr(GlobalAddressSDNode *N, 3348 SelectionDAG &DAG, 3349 bool UseGOT) const { 3350 SDLoc DL(N); 3351 EVT Ty = getPointerTy(DAG.getDataLayout()); 3352 const GlobalValue *GV = N->getGlobal(); 3353 MVT XLenVT = Subtarget.getXLenVT(); 3354 3355 if (UseGOT) { 3356 // Use PC-relative addressing to access the GOT for this TLS symbol, then 3357 // load the address from the GOT and add the thread pointer. This generates 3358 // the pattern (PseudoLA_TLS_IE sym), which expands to 3359 // (ld (auipc %tls_ie_pcrel_hi(sym)) %pcrel_lo(auipc)). 3360 SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0); 3361 SDValue Load = 3362 SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_IE, DL, Ty, Addr), 0); 3363 3364 // Add the thread pointer. 3365 SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT); 3366 return DAG.getNode(ISD::ADD, DL, Ty, Load, TPReg); 3367 } 3368 3369 // Generate a sequence for accessing the address relative to the thread 3370 // pointer, with the appropriate adjustment for the thread pointer offset. 3371 // This generates the pattern 3372 // (add (add_tprel (lui %tprel_hi(sym)) tp %tprel_add(sym)) %tprel_lo(sym)) 3373 SDValue AddrHi = 3374 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_HI); 3375 SDValue AddrAdd = 3376 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_ADD); 3377 SDValue AddrLo = 3378 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_LO); 3379 3380 SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0); 3381 SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT); 3382 SDValue MNAdd = SDValue( 3383 DAG.getMachineNode(RISCV::PseudoAddTPRel, DL, Ty, MNHi, TPReg, AddrAdd), 3384 0); 3385 return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNAdd, AddrLo), 0); 3386 } 3387 3388 SDValue RISCVTargetLowering::getDynamicTLSAddr(GlobalAddressSDNode *N, 3389 SelectionDAG &DAG) const { 3390 SDLoc DL(N); 3391 EVT Ty = getPointerTy(DAG.getDataLayout()); 3392 IntegerType *CallTy = Type::getIntNTy(*DAG.getContext(), Ty.getSizeInBits()); 3393 const GlobalValue *GV = N->getGlobal(); 3394 3395 // Use a PC-relative addressing mode to access the global dynamic GOT address. 3396 // This generates the pattern (PseudoLA_TLS_GD sym), which expands to 3397 // (addi (auipc %tls_gd_pcrel_hi(sym)) %pcrel_lo(auipc)). 3398 SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0); 3399 SDValue Load = 3400 SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_GD, DL, Ty, Addr), 0); 3401 3402 // Prepare argument list to generate call. 3403 ArgListTy Args; 3404 ArgListEntry Entry; 3405 Entry.Node = Load; 3406 Entry.Ty = CallTy; 3407 Args.push_back(Entry); 3408 3409 // Setup call to __tls_get_addr. 3410 TargetLowering::CallLoweringInfo CLI(DAG); 3411 CLI.setDebugLoc(DL) 3412 .setChain(DAG.getEntryNode()) 3413 .setLibCallee(CallingConv::C, CallTy, 3414 DAG.getExternalSymbol("__tls_get_addr", Ty), 3415 std::move(Args)); 3416 3417 return LowerCallTo(CLI).first; 3418 } 3419 3420 SDValue RISCVTargetLowering::lowerGlobalTLSAddress(SDValue Op, 3421 SelectionDAG &DAG) const { 3422 SDLoc DL(Op); 3423 EVT Ty = Op.getValueType(); 3424 GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op); 3425 int64_t Offset = N->getOffset(); 3426 MVT XLenVT = Subtarget.getXLenVT(); 3427 3428 TLSModel::Model Model = getTargetMachine().getTLSModel(N->getGlobal()); 3429 3430 if (DAG.getMachineFunction().getFunction().getCallingConv() == 3431 CallingConv::GHC) 3432 report_fatal_error("In GHC calling convention TLS is not supported"); 3433 3434 SDValue Addr; 3435 switch (Model) { 3436 case TLSModel::LocalExec: 3437 Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/false); 3438 break; 3439 case TLSModel::InitialExec: 3440 Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/true); 3441 break; 3442 case TLSModel::LocalDynamic: 3443 case TLSModel::GeneralDynamic: 3444 Addr = getDynamicTLSAddr(N, DAG); 3445 break; 3446 } 3447 3448 // In order to maximise the opportunity for common subexpression elimination, 3449 // emit a separate ADD node for the global address offset instead of folding 3450 // it in the global address node. Later peephole optimisations may choose to 3451 // fold it back in when profitable. 3452 if (Offset != 0) 3453 return DAG.getNode(ISD::ADD, DL, Ty, Addr, 3454 DAG.getConstant(Offset, DL, XLenVT)); 3455 return Addr; 3456 } 3457 3458 SDValue RISCVTargetLowering::lowerSELECT(SDValue Op, SelectionDAG &DAG) const { 3459 SDValue CondV = Op.getOperand(0); 3460 SDValue TrueV = Op.getOperand(1); 3461 SDValue FalseV = Op.getOperand(2); 3462 SDLoc DL(Op); 3463 MVT VT = Op.getSimpleValueType(); 3464 MVT XLenVT = Subtarget.getXLenVT(); 3465 3466 // Lower vector SELECTs to VSELECTs by splatting the condition. 3467 if (VT.isVector()) { 3468 MVT SplatCondVT = VT.changeVectorElementType(MVT::i1); 3469 SDValue CondSplat = VT.isScalableVector() 3470 ? DAG.getSplatVector(SplatCondVT, DL, CondV) 3471 : DAG.getSplatBuildVector(SplatCondVT, DL, CondV); 3472 return DAG.getNode(ISD::VSELECT, DL, VT, CondSplat, TrueV, FalseV); 3473 } 3474 3475 // If the result type is XLenVT and CondV is the output of a SETCC node 3476 // which also operated on XLenVT inputs, then merge the SETCC node into the 3477 // lowered RISCVISD::SELECT_CC to take advantage of the integer 3478 // compare+branch instructions. i.e.: 3479 // (select (setcc lhs, rhs, cc), truev, falsev) 3480 // -> (riscvisd::select_cc lhs, rhs, cc, truev, falsev) 3481 if (VT == XLenVT && CondV.getOpcode() == ISD::SETCC && 3482 CondV.getOperand(0).getSimpleValueType() == XLenVT) { 3483 SDValue LHS = CondV.getOperand(0); 3484 SDValue RHS = CondV.getOperand(1); 3485 const auto *CC = cast<CondCodeSDNode>(CondV.getOperand(2)); 3486 ISD::CondCode CCVal = CC->get(); 3487 3488 // Special case for a select of 2 constants that have a diffence of 1. 3489 // Normally this is done by DAGCombine, but if the select is introduced by 3490 // type legalization or op legalization, we miss it. Restricting to SETLT 3491 // case for now because that is what signed saturating add/sub need. 3492 // FIXME: We don't need the condition to be SETLT or even a SETCC, 3493 // but we would probably want to swap the true/false values if the condition 3494 // is SETGE/SETLE to avoid an XORI. 3495 if (isa<ConstantSDNode>(TrueV) && isa<ConstantSDNode>(FalseV) && 3496 CCVal == ISD::SETLT) { 3497 const APInt &TrueVal = cast<ConstantSDNode>(TrueV)->getAPIntValue(); 3498 const APInt &FalseVal = cast<ConstantSDNode>(FalseV)->getAPIntValue(); 3499 if (TrueVal - 1 == FalseVal) 3500 return DAG.getNode(ISD::ADD, DL, Op.getValueType(), CondV, FalseV); 3501 if (TrueVal + 1 == FalseVal) 3502 return DAG.getNode(ISD::SUB, DL, Op.getValueType(), FalseV, CondV); 3503 } 3504 3505 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 3506 3507 SDValue TargetCC = DAG.getCondCode(CCVal); 3508 SDValue Ops[] = {LHS, RHS, TargetCC, TrueV, FalseV}; 3509 return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops); 3510 } 3511 3512 // Otherwise: 3513 // (select condv, truev, falsev) 3514 // -> (riscvisd::select_cc condv, zero, setne, truev, falsev) 3515 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 3516 SDValue SetNE = DAG.getCondCode(ISD::SETNE); 3517 3518 SDValue Ops[] = {CondV, Zero, SetNE, TrueV, FalseV}; 3519 3520 return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops); 3521 } 3522 3523 SDValue RISCVTargetLowering::lowerBRCOND(SDValue Op, SelectionDAG &DAG) const { 3524 SDValue CondV = Op.getOperand(1); 3525 SDLoc DL(Op); 3526 MVT XLenVT = Subtarget.getXLenVT(); 3527 3528 if (CondV.getOpcode() == ISD::SETCC && 3529 CondV.getOperand(0).getValueType() == XLenVT) { 3530 SDValue LHS = CondV.getOperand(0); 3531 SDValue RHS = CondV.getOperand(1); 3532 ISD::CondCode CCVal = cast<CondCodeSDNode>(CondV.getOperand(2))->get(); 3533 3534 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 3535 3536 SDValue TargetCC = DAG.getCondCode(CCVal); 3537 return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0), 3538 LHS, RHS, TargetCC, Op.getOperand(2)); 3539 } 3540 3541 return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0), 3542 CondV, DAG.getConstant(0, DL, XLenVT), 3543 DAG.getCondCode(ISD::SETNE), Op.getOperand(2)); 3544 } 3545 3546 SDValue RISCVTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const { 3547 MachineFunction &MF = DAG.getMachineFunction(); 3548 RISCVMachineFunctionInfo *FuncInfo = MF.getInfo<RISCVMachineFunctionInfo>(); 3549 3550 SDLoc DL(Op); 3551 SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), 3552 getPointerTy(MF.getDataLayout())); 3553 3554 // vastart just stores the address of the VarArgsFrameIndex slot into the 3555 // memory location argument. 3556 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 3557 return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1), 3558 MachinePointerInfo(SV)); 3559 } 3560 3561 SDValue RISCVTargetLowering::lowerFRAMEADDR(SDValue Op, 3562 SelectionDAG &DAG) const { 3563 const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo(); 3564 MachineFunction &MF = DAG.getMachineFunction(); 3565 MachineFrameInfo &MFI = MF.getFrameInfo(); 3566 MFI.setFrameAddressIsTaken(true); 3567 Register FrameReg = RI.getFrameRegister(MF); 3568 int XLenInBytes = Subtarget.getXLen() / 8; 3569 3570 EVT VT = Op.getValueType(); 3571 SDLoc DL(Op); 3572 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, FrameReg, VT); 3573 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 3574 while (Depth--) { 3575 int Offset = -(XLenInBytes * 2); 3576 SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr, 3577 DAG.getIntPtrConstant(Offset, DL)); 3578 FrameAddr = 3579 DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo()); 3580 } 3581 return FrameAddr; 3582 } 3583 3584 SDValue RISCVTargetLowering::lowerRETURNADDR(SDValue Op, 3585 SelectionDAG &DAG) const { 3586 const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo(); 3587 MachineFunction &MF = DAG.getMachineFunction(); 3588 MachineFrameInfo &MFI = MF.getFrameInfo(); 3589 MFI.setReturnAddressIsTaken(true); 3590 MVT XLenVT = Subtarget.getXLenVT(); 3591 int XLenInBytes = Subtarget.getXLen() / 8; 3592 3593 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 3594 return SDValue(); 3595 3596 EVT VT = Op.getValueType(); 3597 SDLoc DL(Op); 3598 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 3599 if (Depth) { 3600 int Off = -XLenInBytes; 3601 SDValue FrameAddr = lowerFRAMEADDR(Op, DAG); 3602 SDValue Offset = DAG.getConstant(Off, DL, VT); 3603 return DAG.getLoad(VT, DL, DAG.getEntryNode(), 3604 DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset), 3605 MachinePointerInfo()); 3606 } 3607 3608 // Return the value of the return address register, marking it an implicit 3609 // live-in. 3610 Register Reg = MF.addLiveIn(RI.getRARegister(), getRegClassFor(XLenVT)); 3611 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, XLenVT); 3612 } 3613 3614 SDValue RISCVTargetLowering::lowerShiftLeftParts(SDValue Op, 3615 SelectionDAG &DAG) const { 3616 SDLoc DL(Op); 3617 SDValue Lo = Op.getOperand(0); 3618 SDValue Hi = Op.getOperand(1); 3619 SDValue Shamt = Op.getOperand(2); 3620 EVT VT = Lo.getValueType(); 3621 3622 // if Shamt-XLEN < 0: // Shamt < XLEN 3623 // Lo = Lo << Shamt 3624 // Hi = (Hi << Shamt) | ((Lo >>u 1) >>u (XLEN-1 - Shamt)) 3625 // else: 3626 // Lo = 0 3627 // Hi = Lo << (Shamt-XLEN) 3628 3629 SDValue Zero = DAG.getConstant(0, DL, VT); 3630 SDValue One = DAG.getConstant(1, DL, VT); 3631 SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT); 3632 SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT); 3633 SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen); 3634 SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt); 3635 3636 SDValue LoTrue = DAG.getNode(ISD::SHL, DL, VT, Lo, Shamt); 3637 SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, VT, Lo, One); 3638 SDValue ShiftRightLo = 3639 DAG.getNode(ISD::SRL, DL, VT, ShiftRight1Lo, XLenMinus1Shamt); 3640 SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, Hi, Shamt); 3641 SDValue HiTrue = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo); 3642 SDValue HiFalse = DAG.getNode(ISD::SHL, DL, VT, Lo, ShamtMinusXLen); 3643 3644 SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT); 3645 3646 Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, Zero); 3647 Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse); 3648 3649 SDValue Parts[2] = {Lo, Hi}; 3650 return DAG.getMergeValues(Parts, DL); 3651 } 3652 3653 SDValue RISCVTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG, 3654 bool IsSRA) const { 3655 SDLoc DL(Op); 3656 SDValue Lo = Op.getOperand(0); 3657 SDValue Hi = Op.getOperand(1); 3658 SDValue Shamt = Op.getOperand(2); 3659 EVT VT = Lo.getValueType(); 3660 3661 // SRA expansion: 3662 // if Shamt-XLEN < 0: // Shamt < XLEN 3663 // Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt)) 3664 // Hi = Hi >>s Shamt 3665 // else: 3666 // Lo = Hi >>s (Shamt-XLEN); 3667 // Hi = Hi >>s (XLEN-1) 3668 // 3669 // SRL expansion: 3670 // if Shamt-XLEN < 0: // Shamt < XLEN 3671 // Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt)) 3672 // Hi = Hi >>u Shamt 3673 // else: 3674 // Lo = Hi >>u (Shamt-XLEN); 3675 // Hi = 0; 3676 3677 unsigned ShiftRightOp = IsSRA ? ISD::SRA : ISD::SRL; 3678 3679 SDValue Zero = DAG.getConstant(0, DL, VT); 3680 SDValue One = DAG.getConstant(1, DL, VT); 3681 SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT); 3682 SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT); 3683 SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen); 3684 SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt); 3685 3686 SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, Lo, Shamt); 3687 SDValue ShiftLeftHi1 = DAG.getNode(ISD::SHL, DL, VT, Hi, One); 3688 SDValue ShiftLeftHi = 3689 DAG.getNode(ISD::SHL, DL, VT, ShiftLeftHi1, XLenMinus1Shamt); 3690 SDValue LoTrue = DAG.getNode(ISD::OR, DL, VT, ShiftRightLo, ShiftLeftHi); 3691 SDValue HiTrue = DAG.getNode(ShiftRightOp, DL, VT, Hi, Shamt); 3692 SDValue LoFalse = DAG.getNode(ShiftRightOp, DL, VT, Hi, ShamtMinusXLen); 3693 SDValue HiFalse = 3694 IsSRA ? DAG.getNode(ISD::SRA, DL, VT, Hi, XLenMinus1) : Zero; 3695 3696 SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT); 3697 3698 Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, LoFalse); 3699 Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse); 3700 3701 SDValue Parts[2] = {Lo, Hi}; 3702 return DAG.getMergeValues(Parts, DL); 3703 } 3704 3705 // Lower splats of i1 types to SETCC. For each mask vector type, we have a 3706 // legal equivalently-sized i8 type, so we can use that as a go-between. 3707 SDValue RISCVTargetLowering::lowerVectorMaskSplat(SDValue Op, 3708 SelectionDAG &DAG) const { 3709 SDLoc DL(Op); 3710 MVT VT = Op.getSimpleValueType(); 3711 SDValue SplatVal = Op.getOperand(0); 3712 // All-zeros or all-ones splats are handled specially. 3713 if (ISD::isConstantSplatVectorAllOnes(Op.getNode())) { 3714 SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second; 3715 return DAG.getNode(RISCVISD::VMSET_VL, DL, VT, VL); 3716 } 3717 if (ISD::isConstantSplatVectorAllZeros(Op.getNode())) { 3718 SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second; 3719 return DAG.getNode(RISCVISD::VMCLR_VL, DL, VT, VL); 3720 } 3721 MVT XLenVT = Subtarget.getXLenVT(); 3722 assert(SplatVal.getValueType() == XLenVT && 3723 "Unexpected type for i1 splat value"); 3724 MVT InterVT = VT.changeVectorElementType(MVT::i8); 3725 SplatVal = DAG.getNode(ISD::AND, DL, XLenVT, SplatVal, 3726 DAG.getConstant(1, DL, XLenVT)); 3727 SDValue LHS = DAG.getSplatVector(InterVT, DL, SplatVal); 3728 SDValue Zero = DAG.getConstant(0, DL, InterVT); 3729 return DAG.getSetCC(DL, VT, LHS, Zero, ISD::SETNE); 3730 } 3731 3732 // Custom-lower a SPLAT_VECTOR_PARTS where XLEN<SEW, as the SEW element type is 3733 // illegal (currently only vXi64 RV32). 3734 // FIXME: We could also catch non-constant sign-extended i32 values and lower 3735 // them to SPLAT_VECTOR_I64 3736 SDValue RISCVTargetLowering::lowerSPLAT_VECTOR_PARTS(SDValue Op, 3737 SelectionDAG &DAG) const { 3738 SDLoc DL(Op); 3739 MVT VecVT = Op.getSimpleValueType(); 3740 assert(!Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64 && 3741 "Unexpected SPLAT_VECTOR_PARTS lowering"); 3742 3743 assert(Op.getNumOperands() == 2 && "Unexpected number of operands!"); 3744 SDValue Lo = Op.getOperand(0); 3745 SDValue Hi = Op.getOperand(1); 3746 3747 if (VecVT.isFixedLengthVector()) { 3748 MVT ContainerVT = getContainerForFixedLengthVector(VecVT); 3749 SDLoc DL(Op); 3750 SDValue Mask, VL; 3751 std::tie(Mask, VL) = 3752 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 3753 3754 SDValue Res = splatPartsI64WithVL(DL, ContainerVT, Lo, Hi, VL, DAG); 3755 return convertFromScalableVector(VecVT, Res, DAG, Subtarget); 3756 } 3757 3758 if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) { 3759 int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue(); 3760 int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue(); 3761 // If Hi constant is all the same sign bit as Lo, lower this as a custom 3762 // node in order to try and match RVV vector/scalar instructions. 3763 if ((LoC >> 31) == HiC) 3764 return DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, Lo); 3765 } 3766 3767 // Detect cases where Hi is (SRA Lo, 31) which means Hi is Lo sign extended. 3768 if (Hi.getOpcode() == ISD::SRA && Hi.getOperand(0) == Lo && 3769 isa<ConstantSDNode>(Hi.getOperand(1)) && 3770 Hi.getConstantOperandVal(1) == 31) 3771 return DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, Lo); 3772 3773 // Fall back to use a stack store and stride x0 vector load. Use X0 as VL. 3774 return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VecVT, Lo, Hi, 3775 DAG.getTargetConstant(RISCV::VLMaxSentinel, DL, MVT::i64)); 3776 } 3777 3778 // Custom-lower extensions from mask vectors by using a vselect either with 1 3779 // for zero/any-extension or -1 for sign-extension: 3780 // (vXiN = (s|z)ext vXi1:vmask) -> (vXiN = vselect vmask, (-1 or 1), 0) 3781 // Note that any-extension is lowered identically to zero-extension. 3782 SDValue RISCVTargetLowering::lowerVectorMaskExt(SDValue Op, SelectionDAG &DAG, 3783 int64_t ExtTrueVal) const { 3784 SDLoc DL(Op); 3785 MVT VecVT = Op.getSimpleValueType(); 3786 SDValue Src = Op.getOperand(0); 3787 // Only custom-lower extensions from mask types 3788 assert(Src.getValueType().isVector() && 3789 Src.getValueType().getVectorElementType() == MVT::i1); 3790 3791 MVT XLenVT = Subtarget.getXLenVT(); 3792 SDValue SplatZero = DAG.getConstant(0, DL, XLenVT); 3793 SDValue SplatTrueVal = DAG.getConstant(ExtTrueVal, DL, XLenVT); 3794 3795 if (VecVT.isScalableVector()) { 3796 // Be careful not to introduce illegal scalar types at this stage, and be 3797 // careful also about splatting constants as on RV32, vXi64 SPLAT_VECTOR is 3798 // illegal and must be expanded. Since we know that the constants are 3799 // sign-extended 32-bit values, we use SPLAT_VECTOR_I64 directly. 3800 bool IsRV32E64 = 3801 !Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64; 3802 3803 if (!IsRV32E64) { 3804 SplatZero = DAG.getSplatVector(VecVT, DL, SplatZero); 3805 SplatTrueVal = DAG.getSplatVector(VecVT, DL, SplatTrueVal); 3806 } else { 3807 SplatZero = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, SplatZero); 3808 SplatTrueVal = 3809 DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, SplatTrueVal); 3810 } 3811 3812 return DAG.getNode(ISD::VSELECT, DL, VecVT, Src, SplatTrueVal, SplatZero); 3813 } 3814 3815 MVT ContainerVT = getContainerForFixedLengthVector(VecVT); 3816 MVT I1ContainerVT = 3817 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 3818 3819 SDValue CC = convertToScalableVector(I1ContainerVT, Src, DAG, Subtarget); 3820 3821 SDValue Mask, VL; 3822 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 3823 3824 SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatZero, VL); 3825 SplatTrueVal = 3826 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatTrueVal, VL); 3827 SDValue Select = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC, 3828 SplatTrueVal, SplatZero, VL); 3829 3830 return convertFromScalableVector(VecVT, Select, DAG, Subtarget); 3831 } 3832 3833 SDValue RISCVTargetLowering::lowerFixedLengthVectorExtendToRVV( 3834 SDValue Op, SelectionDAG &DAG, unsigned ExtendOpc) const { 3835 MVT ExtVT = Op.getSimpleValueType(); 3836 // Only custom-lower extensions from fixed-length vector types. 3837 if (!ExtVT.isFixedLengthVector()) 3838 return Op; 3839 MVT VT = Op.getOperand(0).getSimpleValueType(); 3840 // Grab the canonical container type for the extended type. Infer the smaller 3841 // type from that to ensure the same number of vector elements, as we know 3842 // the LMUL will be sufficient to hold the smaller type. 3843 MVT ContainerExtVT = getContainerForFixedLengthVector(ExtVT); 3844 // Get the extended container type manually to ensure the same number of 3845 // vector elements between source and dest. 3846 MVT ContainerVT = MVT::getVectorVT(VT.getVectorElementType(), 3847 ContainerExtVT.getVectorElementCount()); 3848 3849 SDValue Op1 = 3850 convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget); 3851 3852 SDLoc DL(Op); 3853 SDValue Mask, VL; 3854 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 3855 3856 SDValue Ext = DAG.getNode(ExtendOpc, DL, ContainerExtVT, Op1, Mask, VL); 3857 3858 return convertFromScalableVector(ExtVT, Ext, DAG, Subtarget); 3859 } 3860 3861 // Custom-lower truncations from vectors to mask vectors by using a mask and a 3862 // setcc operation: 3863 // (vXi1 = trunc vXiN vec) -> (vXi1 = setcc (and vec, 1), 0, ne) 3864 SDValue RISCVTargetLowering::lowerVectorMaskTrunc(SDValue Op, 3865 SelectionDAG &DAG) const { 3866 SDLoc DL(Op); 3867 EVT MaskVT = Op.getValueType(); 3868 // Only expect to custom-lower truncations to mask types 3869 assert(MaskVT.isVector() && MaskVT.getVectorElementType() == MVT::i1 && 3870 "Unexpected type for vector mask lowering"); 3871 SDValue Src = Op.getOperand(0); 3872 MVT VecVT = Src.getSimpleValueType(); 3873 3874 // If this is a fixed vector, we need to convert it to a scalable vector. 3875 MVT ContainerVT = VecVT; 3876 if (VecVT.isFixedLengthVector()) { 3877 ContainerVT = getContainerForFixedLengthVector(VecVT); 3878 Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget); 3879 } 3880 3881 SDValue SplatOne = DAG.getConstant(1, DL, Subtarget.getXLenVT()); 3882 SDValue SplatZero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 3883 3884 SplatOne = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatOne); 3885 SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatZero); 3886 3887 if (VecVT.isScalableVector()) { 3888 SDValue Trunc = DAG.getNode(ISD::AND, DL, VecVT, Src, SplatOne); 3889 return DAG.getSetCC(DL, MaskVT, Trunc, SplatZero, ISD::SETNE); 3890 } 3891 3892 SDValue Mask, VL; 3893 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 3894 3895 MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1); 3896 SDValue Trunc = 3897 DAG.getNode(RISCVISD::AND_VL, DL, ContainerVT, Src, SplatOne, Mask, VL); 3898 Trunc = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskContainerVT, Trunc, SplatZero, 3899 DAG.getCondCode(ISD::SETNE), Mask, VL); 3900 return convertFromScalableVector(MaskVT, Trunc, DAG, Subtarget); 3901 } 3902 3903 // Custom-legalize INSERT_VECTOR_ELT so that the value is inserted into the 3904 // first position of a vector, and that vector is slid up to the insert index. 3905 // By limiting the active vector length to index+1 and merging with the 3906 // original vector (with an undisturbed tail policy for elements >= VL), we 3907 // achieve the desired result of leaving all elements untouched except the one 3908 // at VL-1, which is replaced with the desired value. 3909 SDValue RISCVTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op, 3910 SelectionDAG &DAG) const { 3911 SDLoc DL(Op); 3912 MVT VecVT = Op.getSimpleValueType(); 3913 SDValue Vec = Op.getOperand(0); 3914 SDValue Val = Op.getOperand(1); 3915 SDValue Idx = Op.getOperand(2); 3916 3917 if (VecVT.getVectorElementType() == MVT::i1) { 3918 // FIXME: For now we just promote to an i8 vector and insert into that, 3919 // but this is probably not optimal. 3920 MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount()); 3921 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec); 3922 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, WideVT, Vec, Val, Idx); 3923 return DAG.getNode(ISD::TRUNCATE, DL, VecVT, Vec); 3924 } 3925 3926 MVT ContainerVT = VecVT; 3927 // If the operand is a fixed-length vector, convert to a scalable one. 3928 if (VecVT.isFixedLengthVector()) { 3929 ContainerVT = getContainerForFixedLengthVector(VecVT); 3930 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 3931 } 3932 3933 MVT XLenVT = Subtarget.getXLenVT(); 3934 3935 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 3936 bool IsLegalInsert = Subtarget.is64Bit() || Val.getValueType() != MVT::i64; 3937 // Even i64-element vectors on RV32 can be lowered without scalar 3938 // legalization if the most-significant 32 bits of the value are not affected 3939 // by the sign-extension of the lower 32 bits. 3940 // TODO: We could also catch sign extensions of a 32-bit value. 3941 if (!IsLegalInsert && isa<ConstantSDNode>(Val)) { 3942 const auto *CVal = cast<ConstantSDNode>(Val); 3943 if (isInt<32>(CVal->getSExtValue())) { 3944 IsLegalInsert = true; 3945 Val = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32); 3946 } 3947 } 3948 3949 SDValue Mask, VL; 3950 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 3951 3952 SDValue ValInVec; 3953 3954 if (IsLegalInsert) { 3955 unsigned Opc = 3956 VecVT.isFloatingPoint() ? RISCVISD::VFMV_S_F_VL : RISCVISD::VMV_S_X_VL; 3957 if (isNullConstant(Idx)) { 3958 Vec = DAG.getNode(Opc, DL, ContainerVT, Vec, Val, VL); 3959 if (!VecVT.isFixedLengthVector()) 3960 return Vec; 3961 return convertFromScalableVector(VecVT, Vec, DAG, Subtarget); 3962 } 3963 ValInVec = 3964 DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), Val, VL); 3965 } else { 3966 // On RV32, i64-element vectors must be specially handled to place the 3967 // value at element 0, by using two vslide1up instructions in sequence on 3968 // the i32 split lo/hi value. Use an equivalently-sized i32 vector for 3969 // this. 3970 SDValue One = DAG.getConstant(1, DL, XLenVT); 3971 SDValue ValLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, Zero); 3972 SDValue ValHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, One); 3973 MVT I32ContainerVT = 3974 MVT::getVectorVT(MVT::i32, ContainerVT.getVectorElementCount() * 2); 3975 SDValue I32Mask = 3976 getDefaultScalableVLOps(I32ContainerVT, DL, DAG, Subtarget).first; 3977 // Limit the active VL to two. 3978 SDValue InsertI64VL = DAG.getConstant(2, DL, XLenVT); 3979 // Note: We can't pass a UNDEF to the first VSLIDE1UP_VL since an untied 3980 // undef doesn't obey the earlyclobber constraint. Just splat a zero value. 3981 ValInVec = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, I32ContainerVT, Zero, 3982 InsertI64VL); 3983 // First slide in the hi value, then the lo in underneath it. 3984 ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT, ValInVec, 3985 ValHi, I32Mask, InsertI64VL); 3986 ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT, ValInVec, 3987 ValLo, I32Mask, InsertI64VL); 3988 // Bitcast back to the right container type. 3989 ValInVec = DAG.getBitcast(ContainerVT, ValInVec); 3990 } 3991 3992 // Now that the value is in a vector, slide it into position. 3993 SDValue InsertVL = 3994 DAG.getNode(ISD::ADD, DL, XLenVT, Idx, DAG.getConstant(1, DL, XLenVT)); 3995 SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec, 3996 ValInVec, Idx, Mask, InsertVL); 3997 if (!VecVT.isFixedLengthVector()) 3998 return Slideup; 3999 return convertFromScalableVector(VecVT, Slideup, DAG, Subtarget); 4000 } 4001 4002 // Custom-lower EXTRACT_VECTOR_ELT operations to slide the vector down, then 4003 // extract the first element: (extractelt (slidedown vec, idx), 0). For integer 4004 // types this is done using VMV_X_S to allow us to glean information about the 4005 // sign bits of the result. 4006 SDValue RISCVTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op, 4007 SelectionDAG &DAG) const { 4008 SDLoc DL(Op); 4009 SDValue Idx = Op.getOperand(1); 4010 SDValue Vec = Op.getOperand(0); 4011 EVT EltVT = Op.getValueType(); 4012 MVT VecVT = Vec.getSimpleValueType(); 4013 MVT XLenVT = Subtarget.getXLenVT(); 4014 4015 if (VecVT.getVectorElementType() == MVT::i1) { 4016 // FIXME: For now we just promote to an i8 vector and extract from that, 4017 // but this is probably not optimal. 4018 MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount()); 4019 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec); 4020 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec, Idx); 4021 } 4022 4023 // If this is a fixed vector, we need to convert it to a scalable vector. 4024 MVT ContainerVT = VecVT; 4025 if (VecVT.isFixedLengthVector()) { 4026 ContainerVT = getContainerForFixedLengthVector(VecVT); 4027 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 4028 } 4029 4030 // If the index is 0, the vector is already in the right position. 4031 if (!isNullConstant(Idx)) { 4032 // Use a VL of 1 to avoid processing more elements than we need. 4033 SDValue VL = DAG.getConstant(1, DL, XLenVT); 4034 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4035 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 4036 Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 4037 DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL); 4038 } 4039 4040 if (!EltVT.isInteger()) { 4041 // Floating-point extracts are handled in TableGen. 4042 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec, 4043 DAG.getConstant(0, DL, XLenVT)); 4044 } 4045 4046 SDValue Elt0 = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); 4047 return DAG.getNode(ISD::TRUNCATE, DL, EltVT, Elt0); 4048 } 4049 4050 // Some RVV intrinsics may claim that they want an integer operand to be 4051 // promoted or expanded. 4052 static SDValue lowerVectorIntrinsicSplats(SDValue Op, SelectionDAG &DAG, 4053 const RISCVSubtarget &Subtarget) { 4054 assert((Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 4055 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN) && 4056 "Unexpected opcode"); 4057 4058 if (!Subtarget.hasVInstructions()) 4059 return SDValue(); 4060 4061 bool HasChain = Op.getOpcode() == ISD::INTRINSIC_W_CHAIN; 4062 unsigned IntNo = Op.getConstantOperandVal(HasChain ? 1 : 0); 4063 SDLoc DL(Op); 4064 4065 const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II = 4066 RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo); 4067 if (!II || !II->SplatOperand) 4068 return SDValue(); 4069 4070 unsigned SplatOp = II->SplatOperand + HasChain; 4071 assert(SplatOp < Op.getNumOperands()); 4072 4073 SmallVector<SDValue, 8> Operands(Op->op_begin(), Op->op_end()); 4074 SDValue &ScalarOp = Operands[SplatOp]; 4075 MVT OpVT = ScalarOp.getSimpleValueType(); 4076 MVT XLenVT = Subtarget.getXLenVT(); 4077 4078 // If this isn't a scalar, or its type is XLenVT we're done. 4079 if (!OpVT.isScalarInteger() || OpVT == XLenVT) 4080 return SDValue(); 4081 4082 // Simplest case is that the operand needs to be promoted to XLenVT. 4083 if (OpVT.bitsLT(XLenVT)) { 4084 // If the operand is a constant, sign extend to increase our chances 4085 // of being able to use a .vi instruction. ANY_EXTEND would become a 4086 // a zero extend and the simm5 check in isel would fail. 4087 // FIXME: Should we ignore the upper bits in isel instead? 4088 unsigned ExtOpc = 4089 isa<ConstantSDNode>(ScalarOp) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND; 4090 ScalarOp = DAG.getNode(ExtOpc, DL, XLenVT, ScalarOp); 4091 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); 4092 } 4093 4094 // Use the previous operand to get the vXi64 VT. The result might be a mask 4095 // VT for compares. Using the previous operand assumes that the previous 4096 // operand will never have a smaller element size than a scalar operand and 4097 // that a widening operation never uses SEW=64. 4098 // NOTE: If this fails the below assert, we can probably just find the 4099 // element count from any operand or result and use it to construct the VT. 4100 assert(II->SplatOperand > 1 && "Unexpected splat operand!"); 4101 MVT VT = Op.getOperand(SplatOp - 1).getSimpleValueType(); 4102 4103 // The more complex case is when the scalar is larger than XLenVT. 4104 assert(XLenVT == MVT::i32 && OpVT == MVT::i64 && 4105 VT.getVectorElementType() == MVT::i64 && "Unexpected VTs!"); 4106 4107 // If this is a sign-extended 32-bit constant, we can truncate it and rely 4108 // on the instruction to sign-extend since SEW>XLEN. 4109 if (auto *CVal = dyn_cast<ConstantSDNode>(ScalarOp)) { 4110 if (isInt<32>(CVal->getSExtValue())) { 4111 ScalarOp = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32); 4112 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); 4113 } 4114 } 4115 4116 // We need to convert the scalar to a splat vector. 4117 // FIXME: Can we implicitly truncate the scalar if it is known to 4118 // be sign extended? 4119 // VL should be the last operand. 4120 SDValue VL = Op.getOperand(Op.getNumOperands() - 1); 4121 assert(VL.getValueType() == XLenVT); 4122 ScalarOp = splatSplitI64WithVL(DL, VT, ScalarOp, VL, DAG); 4123 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); 4124 } 4125 4126 SDValue RISCVTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 4127 SelectionDAG &DAG) const { 4128 unsigned IntNo = Op.getConstantOperandVal(0); 4129 SDLoc DL(Op); 4130 MVT XLenVT = Subtarget.getXLenVT(); 4131 4132 switch (IntNo) { 4133 default: 4134 break; // Don't custom lower most intrinsics. 4135 case Intrinsic::thread_pointer: { 4136 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 4137 return DAG.getRegister(RISCV::X4, PtrVT); 4138 } 4139 case Intrinsic::riscv_orc_b: 4140 // Lower to the GORCI encoding for orc.b. 4141 return DAG.getNode(RISCVISD::GORC, DL, XLenVT, Op.getOperand(1), 4142 DAG.getConstant(7, DL, XLenVT)); 4143 case Intrinsic::riscv_grev: 4144 case Intrinsic::riscv_gorc: { 4145 unsigned Opc = 4146 IntNo == Intrinsic::riscv_grev ? RISCVISD::GREV : RISCVISD::GORC; 4147 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2)); 4148 } 4149 case Intrinsic::riscv_shfl: 4150 case Intrinsic::riscv_unshfl: { 4151 unsigned Opc = 4152 IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL; 4153 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2)); 4154 } 4155 case Intrinsic::riscv_bcompress: 4156 case Intrinsic::riscv_bdecompress: { 4157 unsigned Opc = IntNo == Intrinsic::riscv_bcompress ? RISCVISD::BCOMPRESS 4158 : RISCVISD::BDECOMPRESS; 4159 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2)); 4160 } 4161 case Intrinsic::riscv_vmv_x_s: 4162 assert(Op.getValueType() == XLenVT && "Unexpected VT!"); 4163 return DAG.getNode(RISCVISD::VMV_X_S, DL, Op.getValueType(), 4164 Op.getOperand(1)); 4165 case Intrinsic::riscv_vmv_v_x: 4166 return lowerScalarSplat(Op.getOperand(1), Op.getOperand(2), 4167 Op.getSimpleValueType(), DL, DAG, Subtarget); 4168 case Intrinsic::riscv_vfmv_v_f: 4169 return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, Op.getValueType(), 4170 Op.getOperand(1), Op.getOperand(2)); 4171 case Intrinsic::riscv_vmv_s_x: { 4172 SDValue Scalar = Op.getOperand(2); 4173 4174 if (Scalar.getValueType().bitsLE(XLenVT)) { 4175 Scalar = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Scalar); 4176 return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, Op.getValueType(), 4177 Op.getOperand(1), Scalar, Op.getOperand(3)); 4178 } 4179 4180 assert(Scalar.getValueType() == MVT::i64 && "Unexpected scalar VT!"); 4181 4182 // This is an i64 value that lives in two scalar registers. We have to 4183 // insert this in a convoluted way. First we build vXi64 splat containing 4184 // the/ two values that we assemble using some bit math. Next we'll use 4185 // vid.v and vmseq to build a mask with bit 0 set. Then we'll use that mask 4186 // to merge element 0 from our splat into the source vector. 4187 // FIXME: This is probably not the best way to do this, but it is 4188 // consistent with INSERT_VECTOR_ELT lowering so it is a good starting 4189 // point. 4190 // sw lo, (a0) 4191 // sw hi, 4(a0) 4192 // vlse vX, (a0) 4193 // 4194 // vid.v vVid 4195 // vmseq.vx mMask, vVid, 0 4196 // vmerge.vvm vDest, vSrc, vVal, mMask 4197 MVT VT = Op.getSimpleValueType(); 4198 SDValue Vec = Op.getOperand(1); 4199 SDValue VL = Op.getOperand(3); 4200 4201 SDValue SplattedVal = splatSplitI64WithVL(DL, VT, Scalar, VL, DAG); 4202 SDValue SplattedIdx = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, 4203 DAG.getConstant(0, DL, MVT::i32), VL); 4204 4205 MVT MaskVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount()); 4206 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 4207 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL); 4208 SDValue SelectCond = 4209 DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, VID, SplattedIdx, 4210 DAG.getCondCode(ISD::SETEQ), Mask, VL); 4211 return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, SelectCond, SplattedVal, 4212 Vec, VL); 4213 } 4214 case Intrinsic::riscv_vslide1up: 4215 case Intrinsic::riscv_vslide1down: 4216 case Intrinsic::riscv_vslide1up_mask: 4217 case Intrinsic::riscv_vslide1down_mask: { 4218 // We need to special case these when the scalar is larger than XLen. 4219 unsigned NumOps = Op.getNumOperands(); 4220 bool IsMasked = NumOps == 7; 4221 unsigned OpOffset = IsMasked ? 1 : 0; 4222 SDValue Scalar = Op.getOperand(2 + OpOffset); 4223 if (Scalar.getValueType().bitsLE(XLenVT)) 4224 break; 4225 4226 // Splatting a sign extended constant is fine. 4227 if (auto *CVal = dyn_cast<ConstantSDNode>(Scalar)) 4228 if (isInt<32>(CVal->getSExtValue())) 4229 break; 4230 4231 MVT VT = Op.getSimpleValueType(); 4232 assert(VT.getVectorElementType() == MVT::i64 && 4233 Scalar.getValueType() == MVT::i64 && "Unexpected VTs"); 4234 4235 // Convert the vector source to the equivalent nxvXi32 vector. 4236 MVT I32VT = MVT::getVectorVT(MVT::i32, VT.getVectorElementCount() * 2); 4237 SDValue Vec = DAG.getBitcast(I32VT, Op.getOperand(1 + OpOffset)); 4238 4239 SDValue ScalarLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 4240 DAG.getConstant(0, DL, XLenVT)); 4241 SDValue ScalarHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 4242 DAG.getConstant(1, DL, XLenVT)); 4243 4244 // Double the VL since we halved SEW. 4245 SDValue VL = Op.getOperand(NumOps - (1 + OpOffset)); 4246 SDValue I32VL = 4247 DAG.getNode(ISD::SHL, DL, XLenVT, VL, DAG.getConstant(1, DL, XLenVT)); 4248 4249 MVT I32MaskVT = MVT::getVectorVT(MVT::i1, I32VT.getVectorElementCount()); 4250 SDValue I32Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, I32MaskVT, VL); 4251 4252 // Shift the two scalar parts in using SEW=32 slide1up/slide1down 4253 // instructions. 4254 if (IntNo == Intrinsic::riscv_vslide1up || 4255 IntNo == Intrinsic::riscv_vslide1up_mask) { 4256 Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Vec, ScalarHi, 4257 I32Mask, I32VL); 4258 Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Vec, ScalarLo, 4259 I32Mask, I32VL); 4260 } else { 4261 Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Vec, ScalarLo, 4262 I32Mask, I32VL); 4263 Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Vec, ScalarHi, 4264 I32Mask, I32VL); 4265 } 4266 4267 // Convert back to nxvXi64. 4268 Vec = DAG.getBitcast(VT, Vec); 4269 4270 if (!IsMasked) 4271 return Vec; 4272 4273 // Apply mask after the operation. 4274 SDValue Mask = Op.getOperand(NumOps - 3); 4275 SDValue MaskedOff = Op.getOperand(1); 4276 return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, Mask, Vec, MaskedOff, VL); 4277 } 4278 } 4279 4280 return lowerVectorIntrinsicSplats(Op, DAG, Subtarget); 4281 } 4282 4283 SDValue RISCVTargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op, 4284 SelectionDAG &DAG) const { 4285 unsigned IntNo = Op.getConstantOperandVal(1); 4286 switch (IntNo) { 4287 default: 4288 break; 4289 case Intrinsic::riscv_masked_strided_load: { 4290 SDLoc DL(Op); 4291 MVT XLenVT = Subtarget.getXLenVT(); 4292 4293 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 4294 // the selection of the masked intrinsics doesn't do this for us. 4295 SDValue Mask = Op.getOperand(5); 4296 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 4297 4298 MVT VT = Op->getSimpleValueType(0); 4299 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4300 4301 SDValue PassThru = Op.getOperand(2); 4302 if (!IsUnmasked) { 4303 MVT MaskVT = 4304 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4305 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 4306 PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget); 4307 } 4308 4309 SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT); 4310 4311 SDValue IntID = DAG.getTargetConstant( 4312 IsUnmasked ? Intrinsic::riscv_vlse : Intrinsic::riscv_vlse_mask, DL, 4313 XLenVT); 4314 4315 auto *Load = cast<MemIntrinsicSDNode>(Op); 4316 SmallVector<SDValue, 8> Ops{Load->getChain(), IntID}; 4317 if (!IsUnmasked) 4318 Ops.push_back(PassThru); 4319 Ops.push_back(Op.getOperand(3)); // Ptr 4320 Ops.push_back(Op.getOperand(4)); // Stride 4321 if (!IsUnmasked) 4322 Ops.push_back(Mask); 4323 Ops.push_back(VL); 4324 if (!IsUnmasked) { 4325 SDValue Policy = DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT); 4326 Ops.push_back(Policy); 4327 } 4328 4329 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 4330 SDValue Result = 4331 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, 4332 Load->getMemoryVT(), Load->getMemOperand()); 4333 SDValue Chain = Result.getValue(1); 4334 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 4335 return DAG.getMergeValues({Result, Chain}, DL); 4336 } 4337 } 4338 4339 return lowerVectorIntrinsicSplats(Op, DAG, Subtarget); 4340 } 4341 4342 SDValue RISCVTargetLowering::LowerINTRINSIC_VOID(SDValue Op, 4343 SelectionDAG &DAG) const { 4344 unsigned IntNo = Op.getConstantOperandVal(1); 4345 switch (IntNo) { 4346 default: 4347 break; 4348 case Intrinsic::riscv_masked_strided_store: { 4349 SDLoc DL(Op); 4350 MVT XLenVT = Subtarget.getXLenVT(); 4351 4352 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 4353 // the selection of the masked intrinsics doesn't do this for us. 4354 SDValue Mask = Op.getOperand(5); 4355 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 4356 4357 SDValue Val = Op.getOperand(2); 4358 MVT VT = Val.getSimpleValueType(); 4359 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4360 4361 Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget); 4362 if (!IsUnmasked) { 4363 MVT MaskVT = 4364 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4365 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 4366 } 4367 4368 SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT); 4369 4370 SDValue IntID = DAG.getTargetConstant( 4371 IsUnmasked ? Intrinsic::riscv_vsse : Intrinsic::riscv_vsse_mask, DL, 4372 XLenVT); 4373 4374 auto *Store = cast<MemIntrinsicSDNode>(Op); 4375 SmallVector<SDValue, 8> Ops{Store->getChain(), IntID}; 4376 Ops.push_back(Val); 4377 Ops.push_back(Op.getOperand(3)); // Ptr 4378 Ops.push_back(Op.getOperand(4)); // Stride 4379 if (!IsUnmasked) 4380 Ops.push_back(Mask); 4381 Ops.push_back(VL); 4382 4383 return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, Store->getVTList(), 4384 Ops, Store->getMemoryVT(), 4385 Store->getMemOperand()); 4386 } 4387 } 4388 4389 return SDValue(); 4390 } 4391 4392 static MVT getLMUL1VT(MVT VT) { 4393 assert(VT.getVectorElementType().getSizeInBits() <= 64 && 4394 "Unexpected vector MVT"); 4395 return MVT::getScalableVectorVT( 4396 VT.getVectorElementType(), 4397 RISCV::RVVBitsPerBlock / VT.getVectorElementType().getSizeInBits()); 4398 } 4399 4400 static unsigned getRVVReductionOp(unsigned ISDOpcode) { 4401 switch (ISDOpcode) { 4402 default: 4403 llvm_unreachable("Unhandled reduction"); 4404 case ISD::VECREDUCE_ADD: 4405 return RISCVISD::VECREDUCE_ADD_VL; 4406 case ISD::VECREDUCE_UMAX: 4407 return RISCVISD::VECREDUCE_UMAX_VL; 4408 case ISD::VECREDUCE_SMAX: 4409 return RISCVISD::VECREDUCE_SMAX_VL; 4410 case ISD::VECREDUCE_UMIN: 4411 return RISCVISD::VECREDUCE_UMIN_VL; 4412 case ISD::VECREDUCE_SMIN: 4413 return RISCVISD::VECREDUCE_SMIN_VL; 4414 case ISD::VECREDUCE_AND: 4415 return RISCVISD::VECREDUCE_AND_VL; 4416 case ISD::VECREDUCE_OR: 4417 return RISCVISD::VECREDUCE_OR_VL; 4418 case ISD::VECREDUCE_XOR: 4419 return RISCVISD::VECREDUCE_XOR_VL; 4420 } 4421 } 4422 4423 SDValue RISCVTargetLowering::lowerVectorMaskVecReduction(SDValue Op, 4424 SelectionDAG &DAG, 4425 bool IsVP) const { 4426 SDLoc DL(Op); 4427 SDValue Vec = Op.getOperand(IsVP ? 1 : 0); 4428 MVT VecVT = Vec.getSimpleValueType(); 4429 assert((Op.getOpcode() == ISD::VECREDUCE_AND || 4430 Op.getOpcode() == ISD::VECREDUCE_OR || 4431 Op.getOpcode() == ISD::VECREDUCE_XOR || 4432 Op.getOpcode() == ISD::VP_REDUCE_AND || 4433 Op.getOpcode() == ISD::VP_REDUCE_OR || 4434 Op.getOpcode() == ISD::VP_REDUCE_XOR) && 4435 "Unexpected reduction lowering"); 4436 4437 MVT XLenVT = Subtarget.getXLenVT(); 4438 assert(Op.getValueType() == XLenVT && 4439 "Expected reduction output to be legalized to XLenVT"); 4440 4441 MVT ContainerVT = VecVT; 4442 if (VecVT.isFixedLengthVector()) { 4443 ContainerVT = getContainerForFixedLengthVector(VecVT); 4444 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 4445 } 4446 4447 SDValue Mask, VL; 4448 if (IsVP) { 4449 Mask = Op.getOperand(2); 4450 VL = Op.getOperand(3); 4451 } else { 4452 std::tie(Mask, VL) = 4453 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 4454 } 4455 4456 unsigned BaseOpc; 4457 ISD::CondCode CC; 4458 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 4459 4460 switch (Op.getOpcode()) { 4461 default: 4462 llvm_unreachable("Unhandled reduction"); 4463 case ISD::VECREDUCE_AND: 4464 case ISD::VP_REDUCE_AND: { 4465 // vcpop ~x == 0 4466 SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL); 4467 Vec = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Vec, TrueMask, VL); 4468 Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL); 4469 CC = ISD::SETEQ; 4470 BaseOpc = ISD::AND; 4471 break; 4472 } 4473 case ISD::VECREDUCE_OR: 4474 case ISD::VP_REDUCE_OR: 4475 // vcpop x != 0 4476 Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL); 4477 CC = ISD::SETNE; 4478 BaseOpc = ISD::OR; 4479 break; 4480 case ISD::VECREDUCE_XOR: 4481 case ISD::VP_REDUCE_XOR: { 4482 // ((vcpop x) & 1) != 0 4483 SDValue One = DAG.getConstant(1, DL, XLenVT); 4484 Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL); 4485 Vec = DAG.getNode(ISD::AND, DL, XLenVT, Vec, One); 4486 CC = ISD::SETNE; 4487 BaseOpc = ISD::XOR; 4488 break; 4489 } 4490 } 4491 4492 SDValue SetCC = DAG.getSetCC(DL, XLenVT, Vec, Zero, CC); 4493 4494 if (!IsVP) 4495 return SetCC; 4496 4497 // Now include the start value in the operation. 4498 // Note that we must return the start value when no elements are operated 4499 // upon. The vcpop instructions we've emitted in each case above will return 4500 // 0 for an inactive vector, and so we've already received the neutral value: 4501 // AND gives us (0 == 0) -> 1 and OR/XOR give us (0 != 0) -> 0. Therefore we 4502 // can simply include the start value. 4503 return DAG.getNode(BaseOpc, DL, XLenVT, SetCC, Op.getOperand(0)); 4504 } 4505 4506 SDValue RISCVTargetLowering::lowerVECREDUCE(SDValue Op, 4507 SelectionDAG &DAG) const { 4508 SDLoc DL(Op); 4509 SDValue Vec = Op.getOperand(0); 4510 EVT VecEVT = Vec.getValueType(); 4511 4512 unsigned BaseOpc = ISD::getVecReduceBaseOpcode(Op.getOpcode()); 4513 4514 // Due to ordering in legalize types we may have a vector type that needs to 4515 // be split. Do that manually so we can get down to a legal type. 4516 while (getTypeAction(*DAG.getContext(), VecEVT) == 4517 TargetLowering::TypeSplitVector) { 4518 SDValue Lo, Hi; 4519 std::tie(Lo, Hi) = DAG.SplitVector(Vec, DL); 4520 VecEVT = Lo.getValueType(); 4521 Vec = DAG.getNode(BaseOpc, DL, VecEVT, Lo, Hi); 4522 } 4523 4524 // TODO: The type may need to be widened rather than split. Or widened before 4525 // it can be split. 4526 if (!isTypeLegal(VecEVT)) 4527 return SDValue(); 4528 4529 MVT VecVT = VecEVT.getSimpleVT(); 4530 MVT VecEltVT = VecVT.getVectorElementType(); 4531 unsigned RVVOpcode = getRVVReductionOp(Op.getOpcode()); 4532 4533 MVT ContainerVT = VecVT; 4534 if (VecVT.isFixedLengthVector()) { 4535 ContainerVT = getContainerForFixedLengthVector(VecVT); 4536 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 4537 } 4538 4539 MVT M1VT = getLMUL1VT(ContainerVT); 4540 MVT XLenVT = Subtarget.getXLenVT(); 4541 4542 SDValue Mask, VL; 4543 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 4544 4545 SDValue NeutralElem = 4546 DAG.getNeutralElement(BaseOpc, DL, VecEltVT, SDNodeFlags()); 4547 SDValue IdentitySplat = lowerScalarSplat( 4548 NeutralElem, DAG.getConstant(1, DL, XLenVT), M1VT, DL, DAG, Subtarget); 4549 SDValue Reduction = DAG.getNode(RVVOpcode, DL, M1VT, DAG.getUNDEF(M1VT), Vec, 4550 IdentitySplat, Mask, VL); 4551 SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction, 4552 DAG.getConstant(0, DL, XLenVT)); 4553 return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType()); 4554 } 4555 4556 // Given a reduction op, this function returns the matching reduction opcode, 4557 // the vector SDValue and the scalar SDValue required to lower this to a 4558 // RISCVISD node. 4559 static std::tuple<unsigned, SDValue, SDValue> 4560 getRVVFPReductionOpAndOperands(SDValue Op, SelectionDAG &DAG, EVT EltVT) { 4561 SDLoc DL(Op); 4562 auto Flags = Op->getFlags(); 4563 unsigned Opcode = Op.getOpcode(); 4564 unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Opcode); 4565 switch (Opcode) { 4566 default: 4567 llvm_unreachable("Unhandled reduction"); 4568 case ISD::VECREDUCE_FADD: { 4569 // Use positive zero if we can. It is cheaper to materialize. 4570 SDValue Zero = 4571 DAG.getConstantFP(Flags.hasNoSignedZeros() ? 0.0 : -0.0, DL, EltVT); 4572 return std::make_tuple(RISCVISD::VECREDUCE_FADD_VL, Op.getOperand(0), Zero); 4573 } 4574 case ISD::VECREDUCE_SEQ_FADD: 4575 return std::make_tuple(RISCVISD::VECREDUCE_SEQ_FADD_VL, Op.getOperand(1), 4576 Op.getOperand(0)); 4577 case ISD::VECREDUCE_FMIN: 4578 return std::make_tuple(RISCVISD::VECREDUCE_FMIN_VL, Op.getOperand(0), 4579 DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags)); 4580 case ISD::VECREDUCE_FMAX: 4581 return std::make_tuple(RISCVISD::VECREDUCE_FMAX_VL, Op.getOperand(0), 4582 DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags)); 4583 } 4584 } 4585 4586 SDValue RISCVTargetLowering::lowerFPVECREDUCE(SDValue Op, 4587 SelectionDAG &DAG) const { 4588 SDLoc DL(Op); 4589 MVT VecEltVT = Op.getSimpleValueType(); 4590 4591 unsigned RVVOpcode; 4592 SDValue VectorVal, ScalarVal; 4593 std::tie(RVVOpcode, VectorVal, ScalarVal) = 4594 getRVVFPReductionOpAndOperands(Op, DAG, VecEltVT); 4595 MVT VecVT = VectorVal.getSimpleValueType(); 4596 4597 MVT ContainerVT = VecVT; 4598 if (VecVT.isFixedLengthVector()) { 4599 ContainerVT = getContainerForFixedLengthVector(VecVT); 4600 VectorVal = convertToScalableVector(ContainerVT, VectorVal, DAG, Subtarget); 4601 } 4602 4603 MVT M1VT = getLMUL1VT(VectorVal.getSimpleValueType()); 4604 MVT XLenVT = Subtarget.getXLenVT(); 4605 4606 SDValue Mask, VL; 4607 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 4608 4609 SDValue ScalarSplat = lowerScalarSplat( 4610 ScalarVal, DAG.getConstant(1, DL, XLenVT), M1VT, DL, DAG, Subtarget); 4611 SDValue Reduction = DAG.getNode(RVVOpcode, DL, M1VT, DAG.getUNDEF(M1VT), 4612 VectorVal, ScalarSplat, Mask, VL); 4613 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction, 4614 DAG.getConstant(0, DL, XLenVT)); 4615 } 4616 4617 static unsigned getRVVVPReductionOp(unsigned ISDOpcode) { 4618 switch (ISDOpcode) { 4619 default: 4620 llvm_unreachable("Unhandled reduction"); 4621 case ISD::VP_REDUCE_ADD: 4622 return RISCVISD::VECREDUCE_ADD_VL; 4623 case ISD::VP_REDUCE_UMAX: 4624 return RISCVISD::VECREDUCE_UMAX_VL; 4625 case ISD::VP_REDUCE_SMAX: 4626 return RISCVISD::VECREDUCE_SMAX_VL; 4627 case ISD::VP_REDUCE_UMIN: 4628 return RISCVISD::VECREDUCE_UMIN_VL; 4629 case ISD::VP_REDUCE_SMIN: 4630 return RISCVISD::VECREDUCE_SMIN_VL; 4631 case ISD::VP_REDUCE_AND: 4632 return RISCVISD::VECREDUCE_AND_VL; 4633 case ISD::VP_REDUCE_OR: 4634 return RISCVISD::VECREDUCE_OR_VL; 4635 case ISD::VP_REDUCE_XOR: 4636 return RISCVISD::VECREDUCE_XOR_VL; 4637 case ISD::VP_REDUCE_FADD: 4638 return RISCVISD::VECREDUCE_FADD_VL; 4639 case ISD::VP_REDUCE_SEQ_FADD: 4640 return RISCVISD::VECREDUCE_SEQ_FADD_VL; 4641 case ISD::VP_REDUCE_FMAX: 4642 return RISCVISD::VECREDUCE_FMAX_VL; 4643 case ISD::VP_REDUCE_FMIN: 4644 return RISCVISD::VECREDUCE_FMIN_VL; 4645 } 4646 } 4647 4648 SDValue RISCVTargetLowering::lowerVPREDUCE(SDValue Op, 4649 SelectionDAG &DAG) const { 4650 SDLoc DL(Op); 4651 SDValue Vec = Op.getOperand(1); 4652 EVT VecEVT = Vec.getValueType(); 4653 4654 // TODO: The type may need to be widened rather than split. Or widened before 4655 // it can be split. 4656 if (!isTypeLegal(VecEVT)) 4657 return SDValue(); 4658 4659 MVT VecVT = VecEVT.getSimpleVT(); 4660 MVT VecEltVT = VecVT.getVectorElementType(); 4661 unsigned RVVOpcode = getRVVVPReductionOp(Op.getOpcode()); 4662 4663 MVT ContainerVT = VecVT; 4664 if (VecVT.isFixedLengthVector()) { 4665 ContainerVT = getContainerForFixedLengthVector(VecVT); 4666 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 4667 } 4668 4669 SDValue VL = Op.getOperand(3); 4670 SDValue Mask = Op.getOperand(2); 4671 4672 MVT M1VT = getLMUL1VT(ContainerVT); 4673 MVT XLenVT = Subtarget.getXLenVT(); 4674 MVT ResVT = !VecVT.isInteger() || VecEltVT.bitsGE(XLenVT) ? VecEltVT : XLenVT; 4675 4676 SDValue StartSplat = 4677 lowerScalarSplat(Op.getOperand(0), DAG.getConstant(1, DL, XLenVT), M1VT, 4678 DL, DAG, Subtarget); 4679 SDValue Reduction = 4680 DAG.getNode(RVVOpcode, DL, M1VT, StartSplat, Vec, StartSplat, Mask, VL); 4681 SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Reduction, 4682 DAG.getConstant(0, DL, XLenVT)); 4683 if (!VecVT.isInteger()) 4684 return Elt0; 4685 return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType()); 4686 } 4687 4688 SDValue RISCVTargetLowering::lowerINSERT_SUBVECTOR(SDValue Op, 4689 SelectionDAG &DAG) const { 4690 SDValue Vec = Op.getOperand(0); 4691 SDValue SubVec = Op.getOperand(1); 4692 MVT VecVT = Vec.getSimpleValueType(); 4693 MVT SubVecVT = SubVec.getSimpleValueType(); 4694 4695 SDLoc DL(Op); 4696 MVT XLenVT = Subtarget.getXLenVT(); 4697 unsigned OrigIdx = Op.getConstantOperandVal(2); 4698 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 4699 4700 // We don't have the ability to slide mask vectors up indexed by their i1 4701 // elements; the smallest we can do is i8. Often we are able to bitcast to 4702 // equivalent i8 vectors. Note that when inserting a fixed-length vector 4703 // into a scalable one, we might not necessarily have enough scalable 4704 // elements to safely divide by 8: nxv1i1 = insert nxv1i1, v4i1 is valid. 4705 if (SubVecVT.getVectorElementType() == MVT::i1 && 4706 (OrigIdx != 0 || !Vec.isUndef())) { 4707 if (VecVT.getVectorMinNumElements() >= 8 && 4708 SubVecVT.getVectorMinNumElements() >= 8) { 4709 assert(OrigIdx % 8 == 0 && "Invalid index"); 4710 assert(VecVT.getVectorMinNumElements() % 8 == 0 && 4711 SubVecVT.getVectorMinNumElements() % 8 == 0 && 4712 "Unexpected mask vector lowering"); 4713 OrigIdx /= 8; 4714 SubVecVT = 4715 MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8, 4716 SubVecVT.isScalableVector()); 4717 VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8, 4718 VecVT.isScalableVector()); 4719 Vec = DAG.getBitcast(VecVT, Vec); 4720 SubVec = DAG.getBitcast(SubVecVT, SubVec); 4721 } else { 4722 // We can't slide this mask vector up indexed by its i1 elements. 4723 // This poses a problem when we wish to insert a scalable vector which 4724 // can't be re-expressed as a larger type. Just choose the slow path and 4725 // extend to a larger type, then truncate back down. 4726 MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8); 4727 MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8); 4728 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec); 4729 SubVec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtSubVecVT, SubVec); 4730 Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ExtVecVT, Vec, SubVec, 4731 Op.getOperand(2)); 4732 SDValue SplatZero = DAG.getConstant(0, DL, ExtVecVT); 4733 return DAG.getSetCC(DL, VecVT, Vec, SplatZero, ISD::SETNE); 4734 } 4735 } 4736 4737 // If the subvector vector is a fixed-length type, we cannot use subregister 4738 // manipulation to simplify the codegen; we don't know which register of a 4739 // LMUL group contains the specific subvector as we only know the minimum 4740 // register size. Therefore we must slide the vector group up the full 4741 // amount. 4742 if (SubVecVT.isFixedLengthVector()) { 4743 if (OrigIdx == 0 && Vec.isUndef()) 4744 return Op; 4745 MVT ContainerVT = VecVT; 4746 if (VecVT.isFixedLengthVector()) { 4747 ContainerVT = getContainerForFixedLengthVector(VecVT); 4748 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 4749 } 4750 SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ContainerVT, 4751 DAG.getUNDEF(ContainerVT), SubVec, 4752 DAG.getConstant(0, DL, XLenVT)); 4753 SDValue Mask = 4754 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first; 4755 // Set the vector length to only the number of elements we care about. Note 4756 // that for slideup this includes the offset. 4757 SDValue VL = 4758 DAG.getConstant(OrigIdx + SubVecVT.getVectorNumElements(), DL, XLenVT); 4759 SDValue SlideupAmt = DAG.getConstant(OrigIdx, DL, XLenVT); 4760 SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec, 4761 SubVec, SlideupAmt, Mask, VL); 4762 if (VecVT.isFixedLengthVector()) 4763 Slideup = convertFromScalableVector(VecVT, Slideup, DAG, Subtarget); 4764 return DAG.getBitcast(Op.getValueType(), Slideup); 4765 } 4766 4767 unsigned SubRegIdx, RemIdx; 4768 std::tie(SubRegIdx, RemIdx) = 4769 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( 4770 VecVT, SubVecVT, OrigIdx, TRI); 4771 4772 RISCVII::VLMUL SubVecLMUL = RISCVTargetLowering::getLMUL(SubVecVT); 4773 bool IsSubVecPartReg = SubVecLMUL == RISCVII::VLMUL::LMUL_F2 || 4774 SubVecLMUL == RISCVII::VLMUL::LMUL_F4 || 4775 SubVecLMUL == RISCVII::VLMUL::LMUL_F8; 4776 4777 // 1. If the Idx has been completely eliminated and this subvector's size is 4778 // a vector register or a multiple thereof, or the surrounding elements are 4779 // undef, then this is a subvector insert which naturally aligns to a vector 4780 // register. These can easily be handled using subregister manipulation. 4781 // 2. If the subvector is smaller than a vector register, then the insertion 4782 // must preserve the undisturbed elements of the register. We do this by 4783 // lowering to an EXTRACT_SUBVECTOR grabbing the nearest LMUL=1 vector type 4784 // (which resolves to a subregister copy), performing a VSLIDEUP to place the 4785 // subvector within the vector register, and an INSERT_SUBVECTOR of that 4786 // LMUL=1 type back into the larger vector (resolving to another subregister 4787 // operation). See below for how our VSLIDEUP works. We go via a LMUL=1 type 4788 // to avoid allocating a large register group to hold our subvector. 4789 if (RemIdx == 0 && (!IsSubVecPartReg || Vec.isUndef())) 4790 return Op; 4791 4792 // VSLIDEUP works by leaving elements 0<i<OFFSET undisturbed, elements 4793 // OFFSET<=i<VL set to the "subvector" and vl<=i<VLMAX set to the tail policy 4794 // (in our case undisturbed). This means we can set up a subvector insertion 4795 // where OFFSET is the insertion offset, and the VL is the OFFSET plus the 4796 // size of the subvector. 4797 MVT InterSubVT = VecVT; 4798 SDValue AlignedExtract = Vec; 4799 unsigned AlignedIdx = OrigIdx - RemIdx; 4800 if (VecVT.bitsGT(getLMUL1VT(VecVT))) { 4801 InterSubVT = getLMUL1VT(VecVT); 4802 // Extract a subvector equal to the nearest full vector register type. This 4803 // should resolve to a EXTRACT_SUBREG instruction. 4804 AlignedExtract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec, 4805 DAG.getConstant(AlignedIdx, DL, XLenVT)); 4806 } 4807 4808 SDValue SlideupAmt = DAG.getConstant(RemIdx, DL, XLenVT); 4809 // For scalable vectors this must be further multiplied by vscale. 4810 SlideupAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlideupAmt); 4811 4812 SDValue Mask, VL; 4813 std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget); 4814 4815 // Construct the vector length corresponding to RemIdx + length(SubVecVT). 4816 VL = DAG.getConstant(SubVecVT.getVectorMinNumElements(), DL, XLenVT); 4817 VL = DAG.getNode(ISD::VSCALE, DL, XLenVT, VL); 4818 VL = DAG.getNode(ISD::ADD, DL, XLenVT, SlideupAmt, VL); 4819 4820 SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, InterSubVT, 4821 DAG.getUNDEF(InterSubVT), SubVec, 4822 DAG.getConstant(0, DL, XLenVT)); 4823 4824 SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, InterSubVT, 4825 AlignedExtract, SubVec, SlideupAmt, Mask, VL); 4826 4827 // If required, insert this subvector back into the correct vector register. 4828 // This should resolve to an INSERT_SUBREG instruction. 4829 if (VecVT.bitsGT(InterSubVT)) 4830 Slideup = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, Vec, Slideup, 4831 DAG.getConstant(AlignedIdx, DL, XLenVT)); 4832 4833 // We might have bitcast from a mask type: cast back to the original type if 4834 // required. 4835 return DAG.getBitcast(Op.getSimpleValueType(), Slideup); 4836 } 4837 4838 SDValue RISCVTargetLowering::lowerEXTRACT_SUBVECTOR(SDValue Op, 4839 SelectionDAG &DAG) const { 4840 SDValue Vec = Op.getOperand(0); 4841 MVT SubVecVT = Op.getSimpleValueType(); 4842 MVT VecVT = Vec.getSimpleValueType(); 4843 4844 SDLoc DL(Op); 4845 MVT XLenVT = Subtarget.getXLenVT(); 4846 unsigned OrigIdx = Op.getConstantOperandVal(1); 4847 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 4848 4849 // We don't have the ability to slide mask vectors down indexed by their i1 4850 // elements; the smallest we can do is i8. Often we are able to bitcast to 4851 // equivalent i8 vectors. Note that when extracting a fixed-length vector 4852 // from a scalable one, we might not necessarily have enough scalable 4853 // elements to safely divide by 8: v8i1 = extract nxv1i1 is valid. 4854 if (SubVecVT.getVectorElementType() == MVT::i1 && OrigIdx != 0) { 4855 if (VecVT.getVectorMinNumElements() >= 8 && 4856 SubVecVT.getVectorMinNumElements() >= 8) { 4857 assert(OrigIdx % 8 == 0 && "Invalid index"); 4858 assert(VecVT.getVectorMinNumElements() % 8 == 0 && 4859 SubVecVT.getVectorMinNumElements() % 8 == 0 && 4860 "Unexpected mask vector lowering"); 4861 OrigIdx /= 8; 4862 SubVecVT = 4863 MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8, 4864 SubVecVT.isScalableVector()); 4865 VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8, 4866 VecVT.isScalableVector()); 4867 Vec = DAG.getBitcast(VecVT, Vec); 4868 } else { 4869 // We can't slide this mask vector down, indexed by its i1 elements. 4870 // This poses a problem when we wish to extract a scalable vector which 4871 // can't be re-expressed as a larger type. Just choose the slow path and 4872 // extend to a larger type, then truncate back down. 4873 // TODO: We could probably improve this when extracting certain fixed 4874 // from fixed, where we can extract as i8 and shift the correct element 4875 // right to reach the desired subvector? 4876 MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8); 4877 MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8); 4878 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec); 4879 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ExtSubVecVT, Vec, 4880 Op.getOperand(1)); 4881 SDValue SplatZero = DAG.getConstant(0, DL, ExtSubVecVT); 4882 return DAG.getSetCC(DL, SubVecVT, Vec, SplatZero, ISD::SETNE); 4883 } 4884 } 4885 4886 // If the subvector vector is a fixed-length type, we cannot use subregister 4887 // manipulation to simplify the codegen; we don't know which register of a 4888 // LMUL group contains the specific subvector as we only know the minimum 4889 // register size. Therefore we must slide the vector group down the full 4890 // amount. 4891 if (SubVecVT.isFixedLengthVector()) { 4892 // With an index of 0 this is a cast-like subvector, which can be performed 4893 // with subregister operations. 4894 if (OrigIdx == 0) 4895 return Op; 4896 MVT ContainerVT = VecVT; 4897 if (VecVT.isFixedLengthVector()) { 4898 ContainerVT = getContainerForFixedLengthVector(VecVT); 4899 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 4900 } 4901 SDValue Mask = 4902 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first; 4903 // Set the vector length to only the number of elements we care about. This 4904 // avoids sliding down elements we're going to discard straight away. 4905 SDValue VL = DAG.getConstant(SubVecVT.getVectorNumElements(), DL, XLenVT); 4906 SDValue SlidedownAmt = DAG.getConstant(OrigIdx, DL, XLenVT); 4907 SDValue Slidedown = 4908 DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 4909 DAG.getUNDEF(ContainerVT), Vec, SlidedownAmt, Mask, VL); 4910 // Now we can use a cast-like subvector extract to get the result. 4911 Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown, 4912 DAG.getConstant(0, DL, XLenVT)); 4913 return DAG.getBitcast(Op.getValueType(), Slidedown); 4914 } 4915 4916 unsigned SubRegIdx, RemIdx; 4917 std::tie(SubRegIdx, RemIdx) = 4918 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( 4919 VecVT, SubVecVT, OrigIdx, TRI); 4920 4921 // If the Idx has been completely eliminated then this is a subvector extract 4922 // which naturally aligns to a vector register. These can easily be handled 4923 // using subregister manipulation. 4924 if (RemIdx == 0) 4925 return Op; 4926 4927 // Else we must shift our vector register directly to extract the subvector. 4928 // Do this using VSLIDEDOWN. 4929 4930 // If the vector type is an LMUL-group type, extract a subvector equal to the 4931 // nearest full vector register type. This should resolve to a EXTRACT_SUBREG 4932 // instruction. 4933 MVT InterSubVT = VecVT; 4934 if (VecVT.bitsGT(getLMUL1VT(VecVT))) { 4935 InterSubVT = getLMUL1VT(VecVT); 4936 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec, 4937 DAG.getConstant(OrigIdx - RemIdx, DL, XLenVT)); 4938 } 4939 4940 // Slide this vector register down by the desired number of elements in order 4941 // to place the desired subvector starting at element 0. 4942 SDValue SlidedownAmt = DAG.getConstant(RemIdx, DL, XLenVT); 4943 // For scalable vectors this must be further multiplied by vscale. 4944 SlidedownAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlidedownAmt); 4945 4946 SDValue Mask, VL; 4947 std::tie(Mask, VL) = getDefaultScalableVLOps(InterSubVT, DL, DAG, Subtarget); 4948 SDValue Slidedown = 4949 DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, InterSubVT, 4950 DAG.getUNDEF(InterSubVT), Vec, SlidedownAmt, Mask, VL); 4951 4952 // Now the vector is in the right position, extract our final subvector. This 4953 // should resolve to a COPY. 4954 Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown, 4955 DAG.getConstant(0, DL, XLenVT)); 4956 4957 // We might have bitcast from a mask type: cast back to the original type if 4958 // required. 4959 return DAG.getBitcast(Op.getSimpleValueType(), Slidedown); 4960 } 4961 4962 // Lower step_vector to the vid instruction. Any non-identity step value must 4963 // be accounted for my manual expansion. 4964 SDValue RISCVTargetLowering::lowerSTEP_VECTOR(SDValue Op, 4965 SelectionDAG &DAG) const { 4966 SDLoc DL(Op); 4967 MVT VT = Op.getSimpleValueType(); 4968 MVT XLenVT = Subtarget.getXLenVT(); 4969 SDValue Mask, VL; 4970 std::tie(Mask, VL) = getDefaultScalableVLOps(VT, DL, DAG, Subtarget); 4971 SDValue StepVec = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL); 4972 uint64_t StepValImm = Op.getConstantOperandVal(0); 4973 if (StepValImm != 1) { 4974 if (isPowerOf2_64(StepValImm)) { 4975 SDValue StepVal = 4976 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, 4977 DAG.getConstant(Log2_64(StepValImm), DL, XLenVT)); 4978 StepVec = DAG.getNode(ISD::SHL, DL, VT, StepVec, StepVal); 4979 } else { 4980 SDValue StepVal = lowerScalarSplat( 4981 DAG.getConstant(StepValImm, DL, VT.getVectorElementType()), VL, VT, 4982 DL, DAG, Subtarget); 4983 StepVec = DAG.getNode(ISD::MUL, DL, VT, StepVec, StepVal); 4984 } 4985 } 4986 return StepVec; 4987 } 4988 4989 // Implement vector_reverse using vrgather.vv with indices determined by 4990 // subtracting the id of each element from (VLMAX-1). This will convert 4991 // the indices like so: 4992 // (0, 1,..., VLMAX-2, VLMAX-1) -> (VLMAX-1, VLMAX-2,..., 1, 0). 4993 // TODO: This code assumes VLMAX <= 65536 for LMUL=8 SEW=16. 4994 SDValue RISCVTargetLowering::lowerVECTOR_REVERSE(SDValue Op, 4995 SelectionDAG &DAG) const { 4996 SDLoc DL(Op); 4997 MVT VecVT = Op.getSimpleValueType(); 4998 unsigned EltSize = VecVT.getScalarSizeInBits(); 4999 unsigned MinSize = VecVT.getSizeInBits().getKnownMinValue(); 5000 5001 unsigned MaxVLMAX = 0; 5002 unsigned VectorBitsMax = Subtarget.getMaxRVVVectorSizeInBits(); 5003 if (VectorBitsMax != 0) 5004 MaxVLMAX = ((VectorBitsMax / EltSize) * MinSize) / RISCV::RVVBitsPerBlock; 5005 5006 unsigned GatherOpc = RISCVISD::VRGATHER_VV_VL; 5007 MVT IntVT = VecVT.changeVectorElementTypeToInteger(); 5008 5009 // If this is SEW=8 and VLMAX is unknown or more than 256, we need 5010 // to use vrgatherei16.vv. 5011 // TODO: It's also possible to use vrgatherei16.vv for other types to 5012 // decrease register width for the index calculation. 5013 if ((MaxVLMAX == 0 || MaxVLMAX > 256) && EltSize == 8) { 5014 // If this is LMUL=8, we have to split before can use vrgatherei16.vv. 5015 // Reverse each half, then reassemble them in reverse order. 5016 // NOTE: It's also possible that after splitting that VLMAX no longer 5017 // requires vrgatherei16.vv. 5018 if (MinSize == (8 * RISCV::RVVBitsPerBlock)) { 5019 SDValue Lo, Hi; 5020 std::tie(Lo, Hi) = DAG.SplitVectorOperand(Op.getNode(), 0); 5021 EVT LoVT, HiVT; 5022 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VecVT); 5023 Lo = DAG.getNode(ISD::VECTOR_REVERSE, DL, LoVT, Lo); 5024 Hi = DAG.getNode(ISD::VECTOR_REVERSE, DL, HiVT, Hi); 5025 // Reassemble the low and high pieces reversed. 5026 // FIXME: This is a CONCAT_VECTORS. 5027 SDValue Res = 5028 DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, DAG.getUNDEF(VecVT), Hi, 5029 DAG.getIntPtrConstant(0, DL)); 5030 return DAG.getNode( 5031 ISD::INSERT_SUBVECTOR, DL, VecVT, Res, Lo, 5032 DAG.getIntPtrConstant(LoVT.getVectorMinNumElements(), DL)); 5033 } 5034 5035 // Just promote the int type to i16 which will double the LMUL. 5036 IntVT = MVT::getVectorVT(MVT::i16, VecVT.getVectorElementCount()); 5037 GatherOpc = RISCVISD::VRGATHEREI16_VV_VL; 5038 } 5039 5040 MVT XLenVT = Subtarget.getXLenVT(); 5041 SDValue Mask, VL; 5042 std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget); 5043 5044 // Calculate VLMAX-1 for the desired SEW. 5045 unsigned MinElts = VecVT.getVectorMinNumElements(); 5046 SDValue VLMax = DAG.getNode(ISD::VSCALE, DL, XLenVT, 5047 DAG.getConstant(MinElts, DL, XLenVT)); 5048 SDValue VLMinus1 = 5049 DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, DAG.getConstant(1, DL, XLenVT)); 5050 5051 // Splat VLMAX-1 taking care to handle SEW==64 on RV32. 5052 bool IsRV32E64 = 5053 !Subtarget.is64Bit() && IntVT.getVectorElementType() == MVT::i64; 5054 SDValue SplatVL; 5055 if (!IsRV32E64) 5056 SplatVL = DAG.getSplatVector(IntVT, DL, VLMinus1); 5057 else 5058 SplatVL = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, IntVT, VLMinus1); 5059 5060 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, IntVT, Mask, VL); 5061 SDValue Indices = 5062 DAG.getNode(RISCVISD::SUB_VL, DL, IntVT, SplatVL, VID, Mask, VL); 5063 5064 return DAG.getNode(GatherOpc, DL, VecVT, Op.getOperand(0), Indices, Mask, VL); 5065 } 5066 5067 SDValue 5068 RISCVTargetLowering::lowerFixedLengthVectorLoadToRVV(SDValue Op, 5069 SelectionDAG &DAG) const { 5070 SDLoc DL(Op); 5071 auto *Load = cast<LoadSDNode>(Op); 5072 5073 assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 5074 Load->getMemoryVT(), 5075 *Load->getMemOperand()) && 5076 "Expecting a correctly-aligned load"); 5077 5078 MVT VT = Op.getSimpleValueType(); 5079 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5080 5081 SDValue VL = 5082 DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT()); 5083 5084 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 5085 SDValue NewLoad = DAG.getMemIntrinsicNode( 5086 RISCVISD::VLE_VL, DL, VTs, {Load->getChain(), Load->getBasePtr(), VL}, 5087 Load->getMemoryVT(), Load->getMemOperand()); 5088 5089 SDValue Result = convertFromScalableVector(VT, NewLoad, DAG, Subtarget); 5090 return DAG.getMergeValues({Result, Load->getChain()}, DL); 5091 } 5092 5093 SDValue 5094 RISCVTargetLowering::lowerFixedLengthVectorStoreToRVV(SDValue Op, 5095 SelectionDAG &DAG) const { 5096 SDLoc DL(Op); 5097 auto *Store = cast<StoreSDNode>(Op); 5098 5099 assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 5100 Store->getMemoryVT(), 5101 *Store->getMemOperand()) && 5102 "Expecting a correctly-aligned store"); 5103 5104 SDValue StoreVal = Store->getValue(); 5105 MVT VT = StoreVal.getSimpleValueType(); 5106 5107 // If the size less than a byte, we need to pad with zeros to make a byte. 5108 if (VT.getVectorElementType() == MVT::i1 && VT.getVectorNumElements() < 8) { 5109 VT = MVT::v8i1; 5110 StoreVal = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, 5111 DAG.getConstant(0, DL, VT), StoreVal, 5112 DAG.getIntPtrConstant(0, DL)); 5113 } 5114 5115 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5116 5117 SDValue VL = 5118 DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT()); 5119 5120 SDValue NewValue = 5121 convertToScalableVector(ContainerVT, StoreVal, DAG, Subtarget); 5122 return DAG.getMemIntrinsicNode( 5123 RISCVISD::VSE_VL, DL, DAG.getVTList(MVT::Other), 5124 {Store->getChain(), NewValue, Store->getBasePtr(), VL}, 5125 Store->getMemoryVT(), Store->getMemOperand()); 5126 } 5127 5128 SDValue RISCVTargetLowering::lowerMaskedLoad(SDValue Op, 5129 SelectionDAG &DAG) const { 5130 SDLoc DL(Op); 5131 MVT VT = Op.getSimpleValueType(); 5132 5133 const auto *MemSD = cast<MemSDNode>(Op); 5134 EVT MemVT = MemSD->getMemoryVT(); 5135 MachineMemOperand *MMO = MemSD->getMemOperand(); 5136 SDValue Chain = MemSD->getChain(); 5137 SDValue BasePtr = MemSD->getBasePtr(); 5138 5139 SDValue Mask, PassThru, VL; 5140 if (const auto *VPLoad = dyn_cast<VPLoadSDNode>(Op)) { 5141 Mask = VPLoad->getMask(); 5142 PassThru = DAG.getUNDEF(VT); 5143 VL = VPLoad->getVectorLength(); 5144 } else { 5145 const auto *MLoad = cast<MaskedLoadSDNode>(Op); 5146 Mask = MLoad->getMask(); 5147 PassThru = MLoad->getPassThru(); 5148 } 5149 5150 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 5151 5152 MVT XLenVT = Subtarget.getXLenVT(); 5153 5154 MVT ContainerVT = VT; 5155 if (VT.isFixedLengthVector()) { 5156 ContainerVT = getContainerForFixedLengthVector(VT); 5157 PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget); 5158 if (!IsUnmasked) { 5159 MVT MaskVT = 5160 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 5161 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 5162 } 5163 } 5164 5165 if (!VL) 5166 VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; 5167 5168 unsigned IntID = 5169 IsUnmasked ? Intrinsic::riscv_vle : Intrinsic::riscv_vle_mask; 5170 SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)}; 5171 if (!IsUnmasked) 5172 Ops.push_back(PassThru); 5173 Ops.push_back(BasePtr); 5174 if (!IsUnmasked) 5175 Ops.push_back(Mask); 5176 Ops.push_back(VL); 5177 if (!IsUnmasked) 5178 Ops.push_back(DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT)); 5179 5180 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 5181 5182 SDValue Result = 5183 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, MemVT, MMO); 5184 Chain = Result.getValue(1); 5185 5186 if (VT.isFixedLengthVector()) 5187 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 5188 5189 return DAG.getMergeValues({Result, Chain}, DL); 5190 } 5191 5192 SDValue RISCVTargetLowering::lowerMaskedStore(SDValue Op, 5193 SelectionDAG &DAG) const { 5194 SDLoc DL(Op); 5195 5196 const auto *MemSD = cast<MemSDNode>(Op); 5197 EVT MemVT = MemSD->getMemoryVT(); 5198 MachineMemOperand *MMO = MemSD->getMemOperand(); 5199 SDValue Chain = MemSD->getChain(); 5200 SDValue BasePtr = MemSD->getBasePtr(); 5201 SDValue Val, Mask, VL; 5202 5203 if (const auto *VPStore = dyn_cast<VPStoreSDNode>(Op)) { 5204 Val = VPStore->getValue(); 5205 Mask = VPStore->getMask(); 5206 VL = VPStore->getVectorLength(); 5207 } else { 5208 const auto *MStore = cast<MaskedStoreSDNode>(Op); 5209 Val = MStore->getValue(); 5210 Mask = MStore->getMask(); 5211 } 5212 5213 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 5214 5215 MVT VT = Val.getSimpleValueType(); 5216 MVT XLenVT = Subtarget.getXLenVT(); 5217 5218 MVT ContainerVT = VT; 5219 if (VT.isFixedLengthVector()) { 5220 ContainerVT = getContainerForFixedLengthVector(VT); 5221 5222 Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget); 5223 if (!IsUnmasked) { 5224 MVT MaskVT = 5225 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 5226 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 5227 } 5228 } 5229 5230 if (!VL) 5231 VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; 5232 5233 unsigned IntID = 5234 IsUnmasked ? Intrinsic::riscv_vse : Intrinsic::riscv_vse_mask; 5235 SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)}; 5236 Ops.push_back(Val); 5237 Ops.push_back(BasePtr); 5238 if (!IsUnmasked) 5239 Ops.push_back(Mask); 5240 Ops.push_back(VL); 5241 5242 return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, 5243 DAG.getVTList(MVT::Other), Ops, MemVT, MMO); 5244 } 5245 5246 SDValue 5247 RISCVTargetLowering::lowerFixedLengthVectorSetccToRVV(SDValue Op, 5248 SelectionDAG &DAG) const { 5249 MVT InVT = Op.getOperand(0).getSimpleValueType(); 5250 MVT ContainerVT = getContainerForFixedLengthVector(InVT); 5251 5252 MVT VT = Op.getSimpleValueType(); 5253 5254 SDValue Op1 = 5255 convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget); 5256 SDValue Op2 = 5257 convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget); 5258 5259 SDLoc DL(Op); 5260 SDValue VL = 5261 DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT()); 5262 5263 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 5264 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 5265 5266 SDValue Cmp = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, Op1, Op2, 5267 Op.getOperand(2), Mask, VL); 5268 5269 return convertFromScalableVector(VT, Cmp, DAG, Subtarget); 5270 } 5271 5272 SDValue RISCVTargetLowering::lowerFixedLengthVectorLogicOpToRVV( 5273 SDValue Op, SelectionDAG &DAG, unsigned MaskOpc, unsigned VecOpc) const { 5274 MVT VT = Op.getSimpleValueType(); 5275 5276 if (VT.getVectorElementType() == MVT::i1) 5277 return lowerToScalableOp(Op, DAG, MaskOpc, /*HasMask*/ false); 5278 5279 return lowerToScalableOp(Op, DAG, VecOpc, /*HasMask*/ true); 5280 } 5281 5282 SDValue 5283 RISCVTargetLowering::lowerFixedLengthVectorShiftToRVV(SDValue Op, 5284 SelectionDAG &DAG) const { 5285 unsigned Opc; 5286 switch (Op.getOpcode()) { 5287 default: llvm_unreachable("Unexpected opcode!"); 5288 case ISD::SHL: Opc = RISCVISD::SHL_VL; break; 5289 case ISD::SRA: Opc = RISCVISD::SRA_VL; break; 5290 case ISD::SRL: Opc = RISCVISD::SRL_VL; break; 5291 } 5292 5293 return lowerToScalableOp(Op, DAG, Opc); 5294 } 5295 5296 // Lower vector ABS to smax(X, sub(0, X)). 5297 SDValue RISCVTargetLowering::lowerABS(SDValue Op, SelectionDAG &DAG) const { 5298 SDLoc DL(Op); 5299 MVT VT = Op.getSimpleValueType(); 5300 SDValue X = Op.getOperand(0); 5301 5302 assert(VT.isFixedLengthVector() && "Unexpected type"); 5303 5304 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5305 X = convertToScalableVector(ContainerVT, X, DAG, Subtarget); 5306 5307 SDValue Mask, VL; 5308 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 5309 5310 SDValue SplatZero = 5311 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, 5312 DAG.getConstant(0, DL, Subtarget.getXLenVT())); 5313 SDValue NegX = 5314 DAG.getNode(RISCVISD::SUB_VL, DL, ContainerVT, SplatZero, X, Mask, VL); 5315 SDValue Max = 5316 DAG.getNode(RISCVISD::SMAX_VL, DL, ContainerVT, X, NegX, Mask, VL); 5317 5318 return convertFromScalableVector(VT, Max, DAG, Subtarget); 5319 } 5320 5321 SDValue RISCVTargetLowering::lowerFixedLengthVectorFCOPYSIGNToRVV( 5322 SDValue Op, SelectionDAG &DAG) const { 5323 SDLoc DL(Op); 5324 MVT VT = Op.getSimpleValueType(); 5325 SDValue Mag = Op.getOperand(0); 5326 SDValue Sign = Op.getOperand(1); 5327 assert(Mag.getValueType() == Sign.getValueType() && 5328 "Can only handle COPYSIGN with matching types."); 5329 5330 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5331 Mag = convertToScalableVector(ContainerVT, Mag, DAG, Subtarget); 5332 Sign = convertToScalableVector(ContainerVT, Sign, DAG, Subtarget); 5333 5334 SDValue Mask, VL; 5335 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 5336 5337 SDValue CopySign = 5338 DAG.getNode(RISCVISD::FCOPYSIGN_VL, DL, ContainerVT, Mag, Sign, Mask, VL); 5339 5340 return convertFromScalableVector(VT, CopySign, DAG, Subtarget); 5341 } 5342 5343 SDValue RISCVTargetLowering::lowerFixedLengthVectorSelectToRVV( 5344 SDValue Op, SelectionDAG &DAG) const { 5345 MVT VT = Op.getSimpleValueType(); 5346 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5347 5348 MVT I1ContainerVT = 5349 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 5350 5351 SDValue CC = 5352 convertToScalableVector(I1ContainerVT, Op.getOperand(0), DAG, Subtarget); 5353 SDValue Op1 = 5354 convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget); 5355 SDValue Op2 = 5356 convertToScalableVector(ContainerVT, Op.getOperand(2), DAG, Subtarget); 5357 5358 SDLoc DL(Op); 5359 SDValue Mask, VL; 5360 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 5361 5362 SDValue Select = 5363 DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC, Op1, Op2, VL); 5364 5365 return convertFromScalableVector(VT, Select, DAG, Subtarget); 5366 } 5367 5368 SDValue RISCVTargetLowering::lowerToScalableOp(SDValue Op, SelectionDAG &DAG, 5369 unsigned NewOpc, 5370 bool HasMask) const { 5371 MVT VT = Op.getSimpleValueType(); 5372 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5373 5374 // Create list of operands by converting existing ones to scalable types. 5375 SmallVector<SDValue, 6> Ops; 5376 for (const SDValue &V : Op->op_values()) { 5377 assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!"); 5378 5379 // Pass through non-vector operands. 5380 if (!V.getValueType().isVector()) { 5381 Ops.push_back(V); 5382 continue; 5383 } 5384 5385 // "cast" fixed length vector to a scalable vector. 5386 assert(useRVVForFixedLengthVectorVT(V.getSimpleValueType()) && 5387 "Only fixed length vectors are supported!"); 5388 Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget)); 5389 } 5390 5391 SDLoc DL(Op); 5392 SDValue Mask, VL; 5393 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 5394 if (HasMask) 5395 Ops.push_back(Mask); 5396 Ops.push_back(VL); 5397 5398 SDValue ScalableRes = DAG.getNode(NewOpc, DL, ContainerVT, Ops); 5399 return convertFromScalableVector(VT, ScalableRes, DAG, Subtarget); 5400 } 5401 5402 // Lower a VP_* ISD node to the corresponding RISCVISD::*_VL node: 5403 // * Operands of each node are assumed to be in the same order. 5404 // * The EVL operand is promoted from i32 to i64 on RV64. 5405 // * Fixed-length vectors are converted to their scalable-vector container 5406 // types. 5407 SDValue RISCVTargetLowering::lowerVPOp(SDValue Op, SelectionDAG &DAG, 5408 unsigned RISCVISDOpc) const { 5409 SDLoc DL(Op); 5410 MVT VT = Op.getSimpleValueType(); 5411 SmallVector<SDValue, 4> Ops; 5412 5413 for (const auto &OpIdx : enumerate(Op->ops())) { 5414 SDValue V = OpIdx.value(); 5415 assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!"); 5416 // Pass through operands which aren't fixed-length vectors. 5417 if (!V.getValueType().isFixedLengthVector()) { 5418 Ops.push_back(V); 5419 continue; 5420 } 5421 // "cast" fixed length vector to a scalable vector. 5422 MVT OpVT = V.getSimpleValueType(); 5423 MVT ContainerVT = getContainerForFixedLengthVector(OpVT); 5424 assert(useRVVForFixedLengthVectorVT(OpVT) && 5425 "Only fixed length vectors are supported!"); 5426 Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget)); 5427 } 5428 5429 if (!VT.isFixedLengthVector()) 5430 return DAG.getNode(RISCVISDOpc, DL, VT, Ops); 5431 5432 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5433 5434 SDValue VPOp = DAG.getNode(RISCVISDOpc, DL, ContainerVT, Ops); 5435 5436 return convertFromScalableVector(VT, VPOp, DAG, Subtarget); 5437 } 5438 5439 SDValue RISCVTargetLowering::lowerLogicVPOp(SDValue Op, SelectionDAG &DAG, 5440 unsigned MaskOpc, 5441 unsigned VecOpc) const { 5442 MVT VT = Op.getSimpleValueType(); 5443 if (VT.getVectorElementType() != MVT::i1) 5444 return lowerVPOp(Op, DAG, VecOpc); 5445 5446 // It is safe to drop mask parameter as masked-off elements are undef. 5447 SDValue Op1 = Op->getOperand(0); 5448 SDValue Op2 = Op->getOperand(1); 5449 SDValue VL = Op->getOperand(3); 5450 5451 MVT ContainerVT = VT; 5452 const bool IsFixed = VT.isFixedLengthVector(); 5453 if (IsFixed) { 5454 ContainerVT = getContainerForFixedLengthVector(VT); 5455 Op1 = convertToScalableVector(ContainerVT, Op1, DAG, Subtarget); 5456 Op2 = convertToScalableVector(ContainerVT, Op2, DAG, Subtarget); 5457 } 5458 5459 SDLoc DL(Op); 5460 SDValue Val = DAG.getNode(MaskOpc, DL, ContainerVT, Op1, Op2, VL); 5461 if (!IsFixed) 5462 return Val; 5463 return convertFromScalableVector(VT, Val, DAG, Subtarget); 5464 } 5465 5466 // Custom lower MGATHER/VP_GATHER to a legalized form for RVV. It will then be 5467 // matched to a RVV indexed load. The RVV indexed load instructions only 5468 // support the "unsigned unscaled" addressing mode; indices are implicitly 5469 // zero-extended or truncated to XLEN and are treated as byte offsets. Any 5470 // signed or scaled indexing is extended to the XLEN value type and scaled 5471 // accordingly. 5472 SDValue RISCVTargetLowering::lowerMaskedGather(SDValue Op, 5473 SelectionDAG &DAG) const { 5474 SDLoc DL(Op); 5475 MVT VT = Op.getSimpleValueType(); 5476 5477 const auto *MemSD = cast<MemSDNode>(Op.getNode()); 5478 EVT MemVT = MemSD->getMemoryVT(); 5479 MachineMemOperand *MMO = MemSD->getMemOperand(); 5480 SDValue Chain = MemSD->getChain(); 5481 SDValue BasePtr = MemSD->getBasePtr(); 5482 5483 ISD::LoadExtType LoadExtType; 5484 SDValue Index, Mask, PassThru, VL; 5485 5486 if (auto *VPGN = dyn_cast<VPGatherSDNode>(Op.getNode())) { 5487 Index = VPGN->getIndex(); 5488 Mask = VPGN->getMask(); 5489 PassThru = DAG.getUNDEF(VT); 5490 VL = VPGN->getVectorLength(); 5491 // VP doesn't support extending loads. 5492 LoadExtType = ISD::NON_EXTLOAD; 5493 } else { 5494 // Else it must be a MGATHER. 5495 auto *MGN = cast<MaskedGatherSDNode>(Op.getNode()); 5496 Index = MGN->getIndex(); 5497 Mask = MGN->getMask(); 5498 PassThru = MGN->getPassThru(); 5499 LoadExtType = MGN->getExtensionType(); 5500 } 5501 5502 MVT IndexVT = Index.getSimpleValueType(); 5503 MVT XLenVT = Subtarget.getXLenVT(); 5504 5505 assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() && 5506 "Unexpected VTs!"); 5507 assert(BasePtr.getSimpleValueType() == XLenVT && "Unexpected pointer type"); 5508 // Targets have to explicitly opt-in for extending vector loads. 5509 assert(LoadExtType == ISD::NON_EXTLOAD && 5510 "Unexpected extending MGATHER/VP_GATHER"); 5511 (void)LoadExtType; 5512 5513 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 5514 // the selection of the masked intrinsics doesn't do this for us. 5515 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 5516 5517 MVT ContainerVT = VT; 5518 if (VT.isFixedLengthVector()) { 5519 // We need to use the larger of the result and index type to determine the 5520 // scalable type to use so we don't increase LMUL for any operand/result. 5521 if (VT.bitsGE(IndexVT)) { 5522 ContainerVT = getContainerForFixedLengthVector(VT); 5523 IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(), 5524 ContainerVT.getVectorElementCount()); 5525 } else { 5526 IndexVT = getContainerForFixedLengthVector(IndexVT); 5527 ContainerVT = MVT::getVectorVT(ContainerVT.getVectorElementType(), 5528 IndexVT.getVectorElementCount()); 5529 } 5530 5531 Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget); 5532 5533 if (!IsUnmasked) { 5534 MVT MaskVT = 5535 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 5536 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 5537 PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget); 5538 } 5539 } 5540 5541 if (!VL) 5542 VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; 5543 5544 unsigned IntID = 5545 IsUnmasked ? Intrinsic::riscv_vluxei : Intrinsic::riscv_vluxei_mask; 5546 SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)}; 5547 if (!IsUnmasked) 5548 Ops.push_back(PassThru); 5549 Ops.push_back(BasePtr); 5550 Ops.push_back(Index); 5551 if (!IsUnmasked) 5552 Ops.push_back(Mask); 5553 Ops.push_back(VL); 5554 if (!IsUnmasked) 5555 Ops.push_back(DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT)); 5556 5557 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 5558 SDValue Result = 5559 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, MemVT, MMO); 5560 Chain = Result.getValue(1); 5561 5562 if (VT.isFixedLengthVector()) 5563 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 5564 5565 return DAG.getMergeValues({Result, Chain}, DL); 5566 } 5567 5568 // Custom lower MSCATTER/VP_SCATTER to a legalized form for RVV. It will then be 5569 // matched to a RVV indexed store. The RVV indexed store instructions only 5570 // support the "unsigned unscaled" addressing mode; indices are implicitly 5571 // zero-extended or truncated to XLEN and are treated as byte offsets. Any 5572 // signed or scaled indexing is extended to the XLEN value type and scaled 5573 // accordingly. 5574 SDValue RISCVTargetLowering::lowerMaskedScatter(SDValue Op, 5575 SelectionDAG &DAG) const { 5576 SDLoc DL(Op); 5577 const auto *MemSD = cast<MemSDNode>(Op.getNode()); 5578 EVT MemVT = MemSD->getMemoryVT(); 5579 MachineMemOperand *MMO = MemSD->getMemOperand(); 5580 SDValue Chain = MemSD->getChain(); 5581 SDValue BasePtr = MemSD->getBasePtr(); 5582 5583 bool IsTruncatingStore = false; 5584 SDValue Index, Mask, Val, VL; 5585 5586 if (auto *VPSN = dyn_cast<VPScatterSDNode>(Op.getNode())) { 5587 Index = VPSN->getIndex(); 5588 Mask = VPSN->getMask(); 5589 Val = VPSN->getValue(); 5590 VL = VPSN->getVectorLength(); 5591 // VP doesn't support truncating stores. 5592 IsTruncatingStore = false; 5593 } else { 5594 // Else it must be a MSCATTER. 5595 auto *MSN = cast<MaskedScatterSDNode>(Op.getNode()); 5596 Index = MSN->getIndex(); 5597 Mask = MSN->getMask(); 5598 Val = MSN->getValue(); 5599 IsTruncatingStore = MSN->isTruncatingStore(); 5600 } 5601 5602 MVT VT = Val.getSimpleValueType(); 5603 MVT IndexVT = Index.getSimpleValueType(); 5604 MVT XLenVT = Subtarget.getXLenVT(); 5605 5606 assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() && 5607 "Unexpected VTs!"); 5608 assert(BasePtr.getSimpleValueType() == XLenVT && "Unexpected pointer type"); 5609 // Targets have to explicitly opt-in for extending vector loads and 5610 // truncating vector stores. 5611 assert(!IsTruncatingStore && "Unexpected truncating MSCATTER/VP_SCATTER"); 5612 (void)IsTruncatingStore; 5613 5614 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 5615 // the selection of the masked intrinsics doesn't do this for us. 5616 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 5617 5618 MVT ContainerVT = VT; 5619 if (VT.isFixedLengthVector()) { 5620 // We need to use the larger of the value and index type to determine the 5621 // scalable type to use so we don't increase LMUL for any operand/result. 5622 if (VT.bitsGE(IndexVT)) { 5623 ContainerVT = getContainerForFixedLengthVector(VT); 5624 IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(), 5625 ContainerVT.getVectorElementCount()); 5626 } else { 5627 IndexVT = getContainerForFixedLengthVector(IndexVT); 5628 ContainerVT = MVT::getVectorVT(VT.getVectorElementType(), 5629 IndexVT.getVectorElementCount()); 5630 } 5631 5632 Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget); 5633 Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget); 5634 5635 if (!IsUnmasked) { 5636 MVT MaskVT = 5637 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 5638 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 5639 } 5640 } 5641 5642 if (!VL) 5643 VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; 5644 5645 unsigned IntID = 5646 IsUnmasked ? Intrinsic::riscv_vsoxei : Intrinsic::riscv_vsoxei_mask; 5647 SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)}; 5648 Ops.push_back(Val); 5649 Ops.push_back(BasePtr); 5650 Ops.push_back(Index); 5651 if (!IsUnmasked) 5652 Ops.push_back(Mask); 5653 Ops.push_back(VL); 5654 5655 return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, 5656 DAG.getVTList(MVT::Other), Ops, MemVT, MMO); 5657 } 5658 5659 SDValue RISCVTargetLowering::lowerGET_ROUNDING(SDValue Op, 5660 SelectionDAG &DAG) const { 5661 const MVT XLenVT = Subtarget.getXLenVT(); 5662 SDLoc DL(Op); 5663 SDValue Chain = Op->getOperand(0); 5664 SDValue SysRegNo = DAG.getTargetConstant( 5665 RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT); 5666 SDVTList VTs = DAG.getVTList(XLenVT, MVT::Other); 5667 SDValue RM = DAG.getNode(RISCVISD::READ_CSR, DL, VTs, Chain, SysRegNo); 5668 5669 // Encoding used for rounding mode in RISCV differs from that used in 5670 // FLT_ROUNDS. To convert it the RISCV rounding mode is used as an index in a 5671 // table, which consists of a sequence of 4-bit fields, each representing 5672 // corresponding FLT_ROUNDS mode. 5673 static const int Table = 5674 (int(RoundingMode::NearestTiesToEven) << 4 * RISCVFPRndMode::RNE) | 5675 (int(RoundingMode::TowardZero) << 4 * RISCVFPRndMode::RTZ) | 5676 (int(RoundingMode::TowardNegative) << 4 * RISCVFPRndMode::RDN) | 5677 (int(RoundingMode::TowardPositive) << 4 * RISCVFPRndMode::RUP) | 5678 (int(RoundingMode::NearestTiesToAway) << 4 * RISCVFPRndMode::RMM); 5679 5680 SDValue Shift = 5681 DAG.getNode(ISD::SHL, DL, XLenVT, RM, DAG.getConstant(2, DL, XLenVT)); 5682 SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT, 5683 DAG.getConstant(Table, DL, XLenVT), Shift); 5684 SDValue Masked = DAG.getNode(ISD::AND, DL, XLenVT, Shifted, 5685 DAG.getConstant(7, DL, XLenVT)); 5686 5687 return DAG.getMergeValues({Masked, Chain}, DL); 5688 } 5689 5690 SDValue RISCVTargetLowering::lowerSET_ROUNDING(SDValue Op, 5691 SelectionDAG &DAG) const { 5692 const MVT XLenVT = Subtarget.getXLenVT(); 5693 SDLoc DL(Op); 5694 SDValue Chain = Op->getOperand(0); 5695 SDValue RMValue = Op->getOperand(1); 5696 SDValue SysRegNo = DAG.getTargetConstant( 5697 RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT); 5698 5699 // Encoding used for rounding mode in RISCV differs from that used in 5700 // FLT_ROUNDS. To convert it the C rounding mode is used as an index in 5701 // a table, which consists of a sequence of 4-bit fields, each representing 5702 // corresponding RISCV mode. 5703 static const unsigned Table = 5704 (RISCVFPRndMode::RNE << 4 * int(RoundingMode::NearestTiesToEven)) | 5705 (RISCVFPRndMode::RTZ << 4 * int(RoundingMode::TowardZero)) | 5706 (RISCVFPRndMode::RDN << 4 * int(RoundingMode::TowardNegative)) | 5707 (RISCVFPRndMode::RUP << 4 * int(RoundingMode::TowardPositive)) | 5708 (RISCVFPRndMode::RMM << 4 * int(RoundingMode::NearestTiesToAway)); 5709 5710 SDValue Shift = DAG.getNode(ISD::SHL, DL, XLenVT, RMValue, 5711 DAG.getConstant(2, DL, XLenVT)); 5712 SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT, 5713 DAG.getConstant(Table, DL, XLenVT), Shift); 5714 RMValue = DAG.getNode(ISD::AND, DL, XLenVT, Shifted, 5715 DAG.getConstant(0x7, DL, XLenVT)); 5716 return DAG.getNode(RISCVISD::WRITE_CSR, DL, MVT::Other, Chain, SysRegNo, 5717 RMValue); 5718 } 5719 5720 // Returns the opcode of the target-specific SDNode that implements the 32-bit 5721 // form of the given Opcode. 5722 static RISCVISD::NodeType getRISCVWOpcode(unsigned Opcode) { 5723 switch (Opcode) { 5724 default: 5725 llvm_unreachable("Unexpected opcode"); 5726 case ISD::SHL: 5727 return RISCVISD::SLLW; 5728 case ISD::SRA: 5729 return RISCVISD::SRAW; 5730 case ISD::SRL: 5731 return RISCVISD::SRLW; 5732 case ISD::SDIV: 5733 return RISCVISD::DIVW; 5734 case ISD::UDIV: 5735 return RISCVISD::DIVUW; 5736 case ISD::UREM: 5737 return RISCVISD::REMUW; 5738 case ISD::ROTL: 5739 return RISCVISD::ROLW; 5740 case ISD::ROTR: 5741 return RISCVISD::RORW; 5742 case RISCVISD::GREV: 5743 return RISCVISD::GREVW; 5744 case RISCVISD::GORC: 5745 return RISCVISD::GORCW; 5746 } 5747 } 5748 5749 // Converts the given i8/i16/i32 operation to a target-specific SelectionDAG 5750 // node. Because i8/i16/i32 isn't a legal type for RV64, these operations would 5751 // otherwise be promoted to i64, making it difficult to select the 5752 // SLLW/DIVUW/.../*W later one because the fact the operation was originally of 5753 // type i8/i16/i32 is lost. 5754 static SDValue customLegalizeToWOp(SDNode *N, SelectionDAG &DAG, 5755 unsigned ExtOpc = ISD::ANY_EXTEND) { 5756 SDLoc DL(N); 5757 RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode()); 5758 SDValue NewOp0 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(0)); 5759 SDValue NewOp1 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(1)); 5760 SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1); 5761 // ReplaceNodeResults requires we maintain the same type for the return value. 5762 return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewRes); 5763 } 5764 5765 // Converts the given 32-bit operation to a i64 operation with signed extension 5766 // semantic to reduce the signed extension instructions. 5767 static SDValue customLegalizeToWOpWithSExt(SDNode *N, SelectionDAG &DAG) { 5768 SDLoc DL(N); 5769 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 5770 SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 5771 SDValue NewWOp = DAG.getNode(N->getOpcode(), DL, MVT::i64, NewOp0, NewOp1); 5772 SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp, 5773 DAG.getValueType(MVT::i32)); 5774 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes); 5775 } 5776 5777 void RISCVTargetLowering::ReplaceNodeResults(SDNode *N, 5778 SmallVectorImpl<SDValue> &Results, 5779 SelectionDAG &DAG) const { 5780 SDLoc DL(N); 5781 switch (N->getOpcode()) { 5782 default: 5783 llvm_unreachable("Don't know how to custom type legalize this operation!"); 5784 case ISD::STRICT_FP_TO_SINT: 5785 case ISD::STRICT_FP_TO_UINT: 5786 case ISD::FP_TO_SINT: 5787 case ISD::FP_TO_UINT: { 5788 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5789 "Unexpected custom legalisation"); 5790 bool IsStrict = N->isStrictFPOpcode(); 5791 bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT || 5792 N->getOpcode() == ISD::STRICT_FP_TO_SINT; 5793 SDValue Op0 = IsStrict ? N->getOperand(1) : N->getOperand(0); 5794 if (getTypeAction(*DAG.getContext(), Op0.getValueType()) != 5795 TargetLowering::TypeSoftenFloat) { 5796 if (!isTypeLegal(Op0.getValueType())) 5797 return; 5798 if (IsStrict) { 5799 unsigned Opc = IsSigned ? RISCVISD::STRICT_FCVT_W_RV64 5800 : RISCVISD::STRICT_FCVT_WU_RV64; 5801 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other); 5802 SDValue Res = DAG.getNode( 5803 Opc, DL, VTs, N->getOperand(0), Op0, 5804 DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, MVT::i64)); 5805 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 5806 Results.push_back(Res.getValue(1)); 5807 return; 5808 } 5809 unsigned Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64; 5810 SDValue Res = 5811 DAG.getNode(Opc, DL, MVT::i64, Op0, 5812 DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, MVT::i64)); 5813 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 5814 return; 5815 } 5816 // If the FP type needs to be softened, emit a library call using the 'si' 5817 // version. If we left it to default legalization we'd end up with 'di'. If 5818 // the FP type doesn't need to be softened just let generic type 5819 // legalization promote the result type. 5820 RTLIB::Libcall LC; 5821 if (IsSigned) 5822 LC = RTLIB::getFPTOSINT(Op0.getValueType(), N->getValueType(0)); 5823 else 5824 LC = RTLIB::getFPTOUINT(Op0.getValueType(), N->getValueType(0)); 5825 MakeLibCallOptions CallOptions; 5826 EVT OpVT = Op0.getValueType(); 5827 CallOptions.setTypeListBeforeSoften(OpVT, N->getValueType(0), true); 5828 SDValue Chain = IsStrict ? N->getOperand(0) : SDValue(); 5829 SDValue Result; 5830 std::tie(Result, Chain) = 5831 makeLibCall(DAG, LC, N->getValueType(0), Op0, CallOptions, DL, Chain); 5832 Results.push_back(Result); 5833 if (IsStrict) 5834 Results.push_back(Chain); 5835 break; 5836 } 5837 case ISD::READCYCLECOUNTER: { 5838 assert(!Subtarget.is64Bit() && 5839 "READCYCLECOUNTER only has custom type legalization on riscv32"); 5840 5841 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other); 5842 SDValue RCW = 5843 DAG.getNode(RISCVISD::READ_CYCLE_WIDE, DL, VTs, N->getOperand(0)); 5844 5845 Results.push_back( 5846 DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, RCW, RCW.getValue(1))); 5847 Results.push_back(RCW.getValue(2)); 5848 break; 5849 } 5850 case ISD::MUL: { 5851 unsigned Size = N->getSimpleValueType(0).getSizeInBits(); 5852 unsigned XLen = Subtarget.getXLen(); 5853 // This multiply needs to be expanded, try to use MULHSU+MUL if possible. 5854 if (Size > XLen) { 5855 assert(Size == (XLen * 2) && "Unexpected custom legalisation"); 5856 SDValue LHS = N->getOperand(0); 5857 SDValue RHS = N->getOperand(1); 5858 APInt HighMask = APInt::getHighBitsSet(Size, XLen); 5859 5860 bool LHSIsU = DAG.MaskedValueIsZero(LHS, HighMask); 5861 bool RHSIsU = DAG.MaskedValueIsZero(RHS, HighMask); 5862 // We need exactly one side to be unsigned. 5863 if (LHSIsU == RHSIsU) 5864 return; 5865 5866 auto MakeMULPair = [&](SDValue S, SDValue U) { 5867 MVT XLenVT = Subtarget.getXLenVT(); 5868 S = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, S); 5869 U = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, U); 5870 SDValue Lo = DAG.getNode(ISD::MUL, DL, XLenVT, S, U); 5871 SDValue Hi = DAG.getNode(RISCVISD::MULHSU, DL, XLenVT, S, U); 5872 return DAG.getNode(ISD::BUILD_PAIR, DL, N->getValueType(0), Lo, Hi); 5873 }; 5874 5875 bool LHSIsS = DAG.ComputeNumSignBits(LHS) > XLen; 5876 bool RHSIsS = DAG.ComputeNumSignBits(RHS) > XLen; 5877 5878 // The other operand should be signed, but still prefer MULH when 5879 // possible. 5880 if (RHSIsU && LHSIsS && !RHSIsS) 5881 Results.push_back(MakeMULPair(LHS, RHS)); 5882 else if (LHSIsU && RHSIsS && !LHSIsS) 5883 Results.push_back(MakeMULPair(RHS, LHS)); 5884 5885 return; 5886 } 5887 LLVM_FALLTHROUGH; 5888 } 5889 case ISD::ADD: 5890 case ISD::SUB: 5891 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5892 "Unexpected custom legalisation"); 5893 Results.push_back(customLegalizeToWOpWithSExt(N, DAG)); 5894 break; 5895 case ISD::SHL: 5896 case ISD::SRA: 5897 case ISD::SRL: 5898 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5899 "Unexpected custom legalisation"); 5900 if (N->getOperand(1).getOpcode() != ISD::Constant) { 5901 Results.push_back(customLegalizeToWOp(N, DAG)); 5902 break; 5903 } 5904 5905 // Custom legalize ISD::SHL by placing a SIGN_EXTEND_INREG after. This is 5906 // similar to customLegalizeToWOpWithSExt, but we must zero_extend the 5907 // shift amount. 5908 if (N->getOpcode() == ISD::SHL) { 5909 SDLoc DL(N); 5910 SDValue NewOp0 = 5911 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 5912 SDValue NewOp1 = 5913 DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1)); 5914 SDValue NewWOp = DAG.getNode(ISD::SHL, DL, MVT::i64, NewOp0, NewOp1); 5915 SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp, 5916 DAG.getValueType(MVT::i32)); 5917 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes)); 5918 } 5919 5920 break; 5921 case ISD::ROTL: 5922 case ISD::ROTR: 5923 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5924 "Unexpected custom legalisation"); 5925 Results.push_back(customLegalizeToWOp(N, DAG)); 5926 break; 5927 case ISD::CTTZ: 5928 case ISD::CTTZ_ZERO_UNDEF: 5929 case ISD::CTLZ: 5930 case ISD::CTLZ_ZERO_UNDEF: { 5931 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5932 "Unexpected custom legalisation"); 5933 5934 SDValue NewOp0 = 5935 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 5936 bool IsCTZ = 5937 N->getOpcode() == ISD::CTTZ || N->getOpcode() == ISD::CTTZ_ZERO_UNDEF; 5938 unsigned Opc = IsCTZ ? RISCVISD::CTZW : RISCVISD::CLZW; 5939 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp0); 5940 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 5941 return; 5942 } 5943 case ISD::SDIV: 5944 case ISD::UDIV: 5945 case ISD::UREM: { 5946 MVT VT = N->getSimpleValueType(0); 5947 assert((VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) && 5948 Subtarget.is64Bit() && Subtarget.hasStdExtM() && 5949 "Unexpected custom legalisation"); 5950 // Don't promote division/remainder by constant since we should expand those 5951 // to multiply by magic constant. 5952 // FIXME: What if the expansion is disabled for minsize. 5953 if (N->getOperand(1).getOpcode() == ISD::Constant) 5954 return; 5955 5956 // If the input is i32, use ANY_EXTEND since the W instructions don't read 5957 // the upper 32 bits. For other types we need to sign or zero extend 5958 // based on the opcode. 5959 unsigned ExtOpc = ISD::ANY_EXTEND; 5960 if (VT != MVT::i32) 5961 ExtOpc = N->getOpcode() == ISD::SDIV ? ISD::SIGN_EXTEND 5962 : ISD::ZERO_EXTEND; 5963 5964 Results.push_back(customLegalizeToWOp(N, DAG, ExtOpc)); 5965 break; 5966 } 5967 case ISD::UADDO: 5968 case ISD::USUBO: { 5969 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5970 "Unexpected custom legalisation"); 5971 bool IsAdd = N->getOpcode() == ISD::UADDO; 5972 // Create an ADDW or SUBW. 5973 SDValue LHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 5974 SDValue RHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 5975 SDValue Res = 5976 DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, DL, MVT::i64, LHS, RHS); 5977 Res = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Res, 5978 DAG.getValueType(MVT::i32)); 5979 5980 // Sign extend the LHS and perform an unsigned compare with the ADDW result. 5981 // Since the inputs are sign extended from i32, this is equivalent to 5982 // comparing the lower 32 bits. 5983 LHS = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0)); 5984 SDValue Overflow = DAG.getSetCC(DL, N->getValueType(1), Res, LHS, 5985 IsAdd ? ISD::SETULT : ISD::SETUGT); 5986 5987 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 5988 Results.push_back(Overflow); 5989 return; 5990 } 5991 case ISD::UADDSAT: 5992 case ISD::USUBSAT: { 5993 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5994 "Unexpected custom legalisation"); 5995 if (Subtarget.hasStdExtZbb()) { 5996 // With Zbb we can sign extend and let LegalizeDAG use minu/maxu. Using 5997 // sign extend allows overflow of the lower 32 bits to be detected on 5998 // the promoted size. 5999 SDValue LHS = 6000 DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0)); 6001 SDValue RHS = 6002 DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(1)); 6003 SDValue Res = DAG.getNode(N->getOpcode(), DL, MVT::i64, LHS, RHS); 6004 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6005 return; 6006 } 6007 6008 // Without Zbb, expand to UADDO/USUBO+select which will trigger our custom 6009 // promotion for UADDO/USUBO. 6010 Results.push_back(expandAddSubSat(N, DAG)); 6011 return; 6012 } 6013 case ISD::BITCAST: { 6014 EVT VT = N->getValueType(0); 6015 assert(VT.isInteger() && !VT.isVector() && "Unexpected VT!"); 6016 SDValue Op0 = N->getOperand(0); 6017 EVT Op0VT = Op0.getValueType(); 6018 MVT XLenVT = Subtarget.getXLenVT(); 6019 if (VT == MVT::i16 && Op0VT == MVT::f16 && Subtarget.hasStdExtZfh()) { 6020 SDValue FPConv = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, XLenVT, Op0); 6021 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FPConv)); 6022 } else if (VT == MVT::i32 && Op0VT == MVT::f32 && Subtarget.is64Bit() && 6023 Subtarget.hasStdExtF()) { 6024 SDValue FPConv = 6025 DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Op0); 6026 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, FPConv)); 6027 } else if (!VT.isVector() && Op0VT.isFixedLengthVector() && 6028 isTypeLegal(Op0VT)) { 6029 // Custom-legalize bitcasts from fixed-length vector types to illegal 6030 // scalar types in order to improve codegen. Bitcast the vector to a 6031 // one-element vector type whose element type is the same as the result 6032 // type, and extract the first element. 6033 EVT BVT = EVT::getVectorVT(*DAG.getContext(), VT, 1); 6034 if (isTypeLegal(BVT)) { 6035 SDValue BVec = DAG.getBitcast(BVT, Op0); 6036 Results.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec, 6037 DAG.getConstant(0, DL, XLenVT))); 6038 } 6039 } 6040 break; 6041 } 6042 case RISCVISD::GREV: 6043 case RISCVISD::GORC: { 6044 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6045 "Unexpected custom legalisation"); 6046 assert(isa<ConstantSDNode>(N->getOperand(1)) && "Expected constant"); 6047 // This is similar to customLegalizeToWOp, except that we pass the second 6048 // operand (a TargetConstant) straight through: it is already of type 6049 // XLenVT. 6050 RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode()); 6051 SDValue NewOp0 = 6052 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 6053 SDValue NewOp1 = 6054 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6055 SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1); 6056 // ReplaceNodeResults requires we maintain the same type for the return 6057 // value. 6058 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes)); 6059 break; 6060 } 6061 case RISCVISD::SHFL: { 6062 // There is no SHFLIW instruction, but we can just promote the operation. 6063 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6064 "Unexpected custom legalisation"); 6065 assert(isa<ConstantSDNode>(N->getOperand(1)) && "Expected constant"); 6066 SDValue NewOp0 = 6067 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 6068 SDValue NewOp1 = 6069 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6070 SDValue NewRes = DAG.getNode(RISCVISD::SHFL, DL, MVT::i64, NewOp0, NewOp1); 6071 // ReplaceNodeResults requires we maintain the same type for the return 6072 // value. 6073 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes)); 6074 break; 6075 } 6076 case ISD::BSWAP: 6077 case ISD::BITREVERSE: { 6078 MVT VT = N->getSimpleValueType(0); 6079 MVT XLenVT = Subtarget.getXLenVT(); 6080 assert((VT == MVT::i8 || VT == MVT::i16 || 6081 (VT == MVT::i32 && Subtarget.is64Bit())) && 6082 Subtarget.hasStdExtZbp() && "Unexpected custom legalisation"); 6083 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, N->getOperand(0)); 6084 unsigned Imm = VT.getSizeInBits() - 1; 6085 // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits. 6086 if (N->getOpcode() == ISD::BSWAP) 6087 Imm &= ~0x7U; 6088 unsigned Opc = Subtarget.is64Bit() ? RISCVISD::GREVW : RISCVISD::GREV; 6089 SDValue GREVI = 6090 DAG.getNode(Opc, DL, XLenVT, NewOp0, DAG.getConstant(Imm, DL, XLenVT)); 6091 // ReplaceNodeResults requires we maintain the same type for the return 6092 // value. 6093 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, GREVI)); 6094 break; 6095 } 6096 case ISD::FSHL: 6097 case ISD::FSHR: { 6098 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6099 Subtarget.hasStdExtZbt() && "Unexpected custom legalisation"); 6100 SDValue NewOp0 = 6101 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 6102 SDValue NewOp1 = 6103 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6104 SDValue NewOp2 = 6105 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 6106 // FSLW/FSRW take a 6 bit shift amount but i32 FSHL/FSHR only use 5 bits. 6107 // Mask the shift amount to 5 bits. 6108 NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2, 6109 DAG.getConstant(0x1f, DL, MVT::i64)); 6110 unsigned Opc = 6111 N->getOpcode() == ISD::FSHL ? RISCVISD::FSLW : RISCVISD::FSRW; 6112 SDValue NewOp = DAG.getNode(Opc, DL, MVT::i64, NewOp0, NewOp1, NewOp2); 6113 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewOp)); 6114 break; 6115 } 6116 case ISD::EXTRACT_VECTOR_ELT: { 6117 // Custom-legalize an EXTRACT_VECTOR_ELT where XLEN<SEW, as the SEW element 6118 // type is illegal (currently only vXi64 RV32). 6119 // With vmv.x.s, when SEW > XLEN, only the least-significant XLEN bits are 6120 // transferred to the destination register. We issue two of these from the 6121 // upper- and lower- halves of the SEW-bit vector element, slid down to the 6122 // first element. 6123 SDValue Vec = N->getOperand(0); 6124 SDValue Idx = N->getOperand(1); 6125 6126 // The vector type hasn't been legalized yet so we can't issue target 6127 // specific nodes if it needs legalization. 6128 // FIXME: We would manually legalize if it's important. 6129 if (!isTypeLegal(Vec.getValueType())) 6130 return; 6131 6132 MVT VecVT = Vec.getSimpleValueType(); 6133 6134 assert(!Subtarget.is64Bit() && N->getValueType(0) == MVT::i64 && 6135 VecVT.getVectorElementType() == MVT::i64 && 6136 "Unexpected EXTRACT_VECTOR_ELT legalization"); 6137 6138 // If this is a fixed vector, we need to convert it to a scalable vector. 6139 MVT ContainerVT = VecVT; 6140 if (VecVT.isFixedLengthVector()) { 6141 ContainerVT = getContainerForFixedLengthVector(VecVT); 6142 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 6143 } 6144 6145 MVT XLenVT = Subtarget.getXLenVT(); 6146 6147 // Use a VL of 1 to avoid processing more elements than we need. 6148 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 6149 SDValue VL = DAG.getConstant(1, DL, XLenVT); 6150 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 6151 6152 // Unless the index is known to be 0, we must slide the vector down to get 6153 // the desired element into index 0. 6154 if (!isNullConstant(Idx)) { 6155 Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 6156 DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL); 6157 } 6158 6159 // Extract the lower XLEN bits of the correct vector element. 6160 SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); 6161 6162 // To extract the upper XLEN bits of the vector element, shift the first 6163 // element right by 32 bits and re-extract the lower XLEN bits. 6164 SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, 6165 DAG.getConstant(32, DL, XLenVT), VL); 6166 SDValue LShr32 = DAG.getNode(RISCVISD::SRL_VL, DL, ContainerVT, Vec, 6167 ThirtyTwoV, Mask, VL); 6168 6169 SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32); 6170 6171 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi)); 6172 break; 6173 } 6174 case ISD::INTRINSIC_WO_CHAIN: { 6175 unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 6176 switch (IntNo) { 6177 default: 6178 llvm_unreachable( 6179 "Don't know how to custom type legalize this intrinsic!"); 6180 case Intrinsic::riscv_orc_b: { 6181 // Lower to the GORCI encoding for orc.b with the operand extended. 6182 SDValue NewOp = 6183 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6184 // If Zbp is enabled, use GORCIW which will sign extend the result. 6185 unsigned Opc = 6186 Subtarget.hasStdExtZbp() ? RISCVISD::GORCW : RISCVISD::GORC; 6187 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp, 6188 DAG.getConstant(7, DL, MVT::i64)); 6189 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6190 return; 6191 } 6192 case Intrinsic::riscv_grev: 6193 case Intrinsic::riscv_gorc: { 6194 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6195 "Unexpected custom legalisation"); 6196 SDValue NewOp1 = 6197 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6198 SDValue NewOp2 = 6199 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 6200 unsigned Opc = 6201 IntNo == Intrinsic::riscv_grev ? RISCVISD::GREVW : RISCVISD::GORCW; 6202 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2); 6203 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6204 break; 6205 } 6206 case Intrinsic::riscv_shfl: 6207 case Intrinsic::riscv_unshfl: { 6208 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6209 "Unexpected custom legalisation"); 6210 SDValue NewOp1 = 6211 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6212 SDValue NewOp2 = 6213 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 6214 unsigned Opc = 6215 IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFLW : RISCVISD::UNSHFLW; 6216 if (isa<ConstantSDNode>(N->getOperand(2))) { 6217 NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2, 6218 DAG.getConstant(0xf, DL, MVT::i64)); 6219 Opc = 6220 IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL; 6221 } 6222 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2); 6223 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6224 break; 6225 } 6226 case Intrinsic::riscv_bcompress: 6227 case Intrinsic::riscv_bdecompress: { 6228 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6229 "Unexpected custom legalisation"); 6230 SDValue NewOp1 = 6231 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6232 SDValue NewOp2 = 6233 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 6234 unsigned Opc = IntNo == Intrinsic::riscv_bcompress 6235 ? RISCVISD::BCOMPRESSW 6236 : RISCVISD::BDECOMPRESSW; 6237 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2); 6238 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6239 break; 6240 } 6241 case Intrinsic::riscv_vmv_x_s: { 6242 EVT VT = N->getValueType(0); 6243 MVT XLenVT = Subtarget.getXLenVT(); 6244 if (VT.bitsLT(XLenVT)) { 6245 // Simple case just extract using vmv.x.s and truncate. 6246 SDValue Extract = DAG.getNode(RISCVISD::VMV_X_S, DL, 6247 Subtarget.getXLenVT(), N->getOperand(1)); 6248 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, Extract)); 6249 return; 6250 } 6251 6252 assert(VT == MVT::i64 && !Subtarget.is64Bit() && 6253 "Unexpected custom legalization"); 6254 6255 // We need to do the move in two steps. 6256 SDValue Vec = N->getOperand(1); 6257 MVT VecVT = Vec.getSimpleValueType(); 6258 6259 // First extract the lower XLEN bits of the element. 6260 SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); 6261 6262 // To extract the upper XLEN bits of the vector element, shift the first 6263 // element right by 32 bits and re-extract the lower XLEN bits. 6264 SDValue VL = DAG.getConstant(1, DL, XLenVT); 6265 MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount()); 6266 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 6267 SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, 6268 DAG.getConstant(32, DL, XLenVT), VL); 6269 SDValue LShr32 = 6270 DAG.getNode(RISCVISD::SRL_VL, DL, VecVT, Vec, ThirtyTwoV, Mask, VL); 6271 SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32); 6272 6273 Results.push_back( 6274 DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi)); 6275 break; 6276 } 6277 } 6278 break; 6279 } 6280 case ISD::VECREDUCE_ADD: 6281 case ISD::VECREDUCE_AND: 6282 case ISD::VECREDUCE_OR: 6283 case ISD::VECREDUCE_XOR: 6284 case ISD::VECREDUCE_SMAX: 6285 case ISD::VECREDUCE_UMAX: 6286 case ISD::VECREDUCE_SMIN: 6287 case ISD::VECREDUCE_UMIN: 6288 if (SDValue V = lowerVECREDUCE(SDValue(N, 0), DAG)) 6289 Results.push_back(V); 6290 break; 6291 case ISD::VP_REDUCE_ADD: 6292 case ISD::VP_REDUCE_AND: 6293 case ISD::VP_REDUCE_OR: 6294 case ISD::VP_REDUCE_XOR: 6295 case ISD::VP_REDUCE_SMAX: 6296 case ISD::VP_REDUCE_UMAX: 6297 case ISD::VP_REDUCE_SMIN: 6298 case ISD::VP_REDUCE_UMIN: 6299 if (SDValue V = lowerVPREDUCE(SDValue(N, 0), DAG)) 6300 Results.push_back(V); 6301 break; 6302 case ISD::FLT_ROUNDS_: { 6303 SDVTList VTs = DAG.getVTList(Subtarget.getXLenVT(), MVT::Other); 6304 SDValue Res = DAG.getNode(ISD::FLT_ROUNDS_, DL, VTs, N->getOperand(0)); 6305 Results.push_back(Res.getValue(0)); 6306 Results.push_back(Res.getValue(1)); 6307 break; 6308 } 6309 } 6310 } 6311 6312 // A structure to hold one of the bit-manipulation patterns below. Together, a 6313 // SHL and non-SHL pattern may form a bit-manipulation pair on a single source: 6314 // (or (and (shl x, 1), 0xAAAAAAAA), 6315 // (and (srl x, 1), 0x55555555)) 6316 struct RISCVBitmanipPat { 6317 SDValue Op; 6318 unsigned ShAmt; 6319 bool IsSHL; 6320 6321 bool formsPairWith(const RISCVBitmanipPat &Other) const { 6322 return Op == Other.Op && ShAmt == Other.ShAmt && IsSHL != Other.IsSHL; 6323 } 6324 }; 6325 6326 // Matches patterns of the form 6327 // (and (shl x, C2), (C1 << C2)) 6328 // (and (srl x, C2), C1) 6329 // (shl (and x, C1), C2) 6330 // (srl (and x, (C1 << C2)), C2) 6331 // Where C2 is a power of 2 and C1 has at least that many leading zeroes. 6332 // The expected masks for each shift amount are specified in BitmanipMasks where 6333 // BitmanipMasks[log2(C2)] specifies the expected C1 value. 6334 // The max allowed shift amount is either XLen/2 or XLen/4 determined by whether 6335 // BitmanipMasks contains 6 or 5 entries assuming that the maximum possible 6336 // XLen is 64. 6337 static Optional<RISCVBitmanipPat> 6338 matchRISCVBitmanipPat(SDValue Op, ArrayRef<uint64_t> BitmanipMasks) { 6339 assert((BitmanipMasks.size() == 5 || BitmanipMasks.size() == 6) && 6340 "Unexpected number of masks"); 6341 Optional<uint64_t> Mask; 6342 // Optionally consume a mask around the shift operation. 6343 if (Op.getOpcode() == ISD::AND && isa<ConstantSDNode>(Op.getOperand(1))) { 6344 Mask = Op.getConstantOperandVal(1); 6345 Op = Op.getOperand(0); 6346 } 6347 if (Op.getOpcode() != ISD::SHL && Op.getOpcode() != ISD::SRL) 6348 return None; 6349 bool IsSHL = Op.getOpcode() == ISD::SHL; 6350 6351 if (!isa<ConstantSDNode>(Op.getOperand(1))) 6352 return None; 6353 uint64_t ShAmt = Op.getConstantOperandVal(1); 6354 6355 unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32; 6356 if (ShAmt >= Width || !isPowerOf2_64(ShAmt)) 6357 return None; 6358 // If we don't have enough masks for 64 bit, then we must be trying to 6359 // match SHFL so we're only allowed to shift 1/4 of the width. 6360 if (BitmanipMasks.size() == 5 && ShAmt >= (Width / 2)) 6361 return None; 6362 6363 SDValue Src = Op.getOperand(0); 6364 6365 // The expected mask is shifted left when the AND is found around SHL 6366 // patterns. 6367 // ((x >> 1) & 0x55555555) 6368 // ((x << 1) & 0xAAAAAAAA) 6369 bool SHLExpMask = IsSHL; 6370 6371 if (!Mask) { 6372 // Sometimes LLVM keeps the mask as an operand of the shift, typically when 6373 // the mask is all ones: consume that now. 6374 if (Src.getOpcode() == ISD::AND && isa<ConstantSDNode>(Src.getOperand(1))) { 6375 Mask = Src.getConstantOperandVal(1); 6376 Src = Src.getOperand(0); 6377 // The expected mask is now in fact shifted left for SRL, so reverse the 6378 // decision. 6379 // ((x & 0xAAAAAAAA) >> 1) 6380 // ((x & 0x55555555) << 1) 6381 SHLExpMask = !SHLExpMask; 6382 } else { 6383 // Use a default shifted mask of all-ones if there's no AND, truncated 6384 // down to the expected width. This simplifies the logic later on. 6385 Mask = maskTrailingOnes<uint64_t>(Width); 6386 *Mask &= (IsSHL ? *Mask << ShAmt : *Mask >> ShAmt); 6387 } 6388 } 6389 6390 unsigned MaskIdx = Log2_32(ShAmt); 6391 uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width); 6392 6393 if (SHLExpMask) 6394 ExpMask <<= ShAmt; 6395 6396 if (Mask != ExpMask) 6397 return None; 6398 6399 return RISCVBitmanipPat{Src, (unsigned)ShAmt, IsSHL}; 6400 } 6401 6402 // Matches any of the following bit-manipulation patterns: 6403 // (and (shl x, 1), (0x55555555 << 1)) 6404 // (and (srl x, 1), 0x55555555) 6405 // (shl (and x, 0x55555555), 1) 6406 // (srl (and x, (0x55555555 << 1)), 1) 6407 // where the shift amount and mask may vary thus: 6408 // [1] = 0x55555555 / 0xAAAAAAAA 6409 // [2] = 0x33333333 / 0xCCCCCCCC 6410 // [4] = 0x0F0F0F0F / 0xF0F0F0F0 6411 // [8] = 0x00FF00FF / 0xFF00FF00 6412 // [16] = 0x0000FFFF / 0xFFFFFFFF 6413 // [32] = 0x00000000FFFFFFFF / 0xFFFFFFFF00000000 (for RV64) 6414 static Optional<RISCVBitmanipPat> matchGREVIPat(SDValue Op) { 6415 // These are the unshifted masks which we use to match bit-manipulation 6416 // patterns. They may be shifted left in certain circumstances. 6417 static const uint64_t BitmanipMasks[] = { 6418 0x5555555555555555ULL, 0x3333333333333333ULL, 0x0F0F0F0F0F0F0F0FULL, 6419 0x00FF00FF00FF00FFULL, 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL}; 6420 6421 return matchRISCVBitmanipPat(Op, BitmanipMasks); 6422 } 6423 6424 // Match the following pattern as a GREVI(W) operation 6425 // (or (BITMANIP_SHL x), (BITMANIP_SRL x)) 6426 static SDValue combineORToGREV(SDValue Op, SelectionDAG &DAG, 6427 const RISCVSubtarget &Subtarget) { 6428 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson"); 6429 EVT VT = Op.getValueType(); 6430 6431 if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) { 6432 auto LHS = matchGREVIPat(Op.getOperand(0)); 6433 auto RHS = matchGREVIPat(Op.getOperand(1)); 6434 if (LHS && RHS && LHS->formsPairWith(*RHS)) { 6435 SDLoc DL(Op); 6436 return DAG.getNode(RISCVISD::GREV, DL, VT, LHS->Op, 6437 DAG.getConstant(LHS->ShAmt, DL, VT)); 6438 } 6439 } 6440 return SDValue(); 6441 } 6442 6443 // Matches any the following pattern as a GORCI(W) operation 6444 // 1. (or (GREVI x, shamt), x) if shamt is a power of 2 6445 // 2. (or x, (GREVI x, shamt)) if shamt is a power of 2 6446 // 3. (or (or (BITMANIP_SHL x), x), (BITMANIP_SRL x)) 6447 // Note that with the variant of 3., 6448 // (or (or (BITMANIP_SHL x), (BITMANIP_SRL x)), x) 6449 // the inner pattern will first be matched as GREVI and then the outer 6450 // pattern will be matched to GORC via the first rule above. 6451 // 4. (or (rotl/rotr x, bitwidth/2), x) 6452 static SDValue combineORToGORC(SDValue Op, SelectionDAG &DAG, 6453 const RISCVSubtarget &Subtarget) { 6454 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson"); 6455 EVT VT = Op.getValueType(); 6456 6457 if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) { 6458 SDLoc DL(Op); 6459 SDValue Op0 = Op.getOperand(0); 6460 SDValue Op1 = Op.getOperand(1); 6461 6462 auto MatchOROfReverse = [&](SDValue Reverse, SDValue X) { 6463 if (Reverse.getOpcode() == RISCVISD::GREV && Reverse.getOperand(0) == X && 6464 isa<ConstantSDNode>(Reverse.getOperand(1)) && 6465 isPowerOf2_32(Reverse.getConstantOperandVal(1))) 6466 return DAG.getNode(RISCVISD::GORC, DL, VT, X, Reverse.getOperand(1)); 6467 // We can also form GORCI from ROTL/ROTR by half the bitwidth. 6468 if ((Reverse.getOpcode() == ISD::ROTL || 6469 Reverse.getOpcode() == ISD::ROTR) && 6470 Reverse.getOperand(0) == X && 6471 isa<ConstantSDNode>(Reverse.getOperand(1))) { 6472 uint64_t RotAmt = Reverse.getConstantOperandVal(1); 6473 if (RotAmt == (VT.getSizeInBits() / 2)) 6474 return DAG.getNode(RISCVISD::GORC, DL, VT, X, 6475 DAG.getConstant(RotAmt, DL, VT)); 6476 } 6477 return SDValue(); 6478 }; 6479 6480 // Check for either commutable permutation of (or (GREVI x, shamt), x) 6481 if (SDValue V = MatchOROfReverse(Op0, Op1)) 6482 return V; 6483 if (SDValue V = MatchOROfReverse(Op1, Op0)) 6484 return V; 6485 6486 // OR is commutable so canonicalize its OR operand to the left 6487 if (Op0.getOpcode() != ISD::OR && Op1.getOpcode() == ISD::OR) 6488 std::swap(Op0, Op1); 6489 if (Op0.getOpcode() != ISD::OR) 6490 return SDValue(); 6491 SDValue OrOp0 = Op0.getOperand(0); 6492 SDValue OrOp1 = Op0.getOperand(1); 6493 auto LHS = matchGREVIPat(OrOp0); 6494 // OR is commutable so swap the operands and try again: x might have been 6495 // on the left 6496 if (!LHS) { 6497 std::swap(OrOp0, OrOp1); 6498 LHS = matchGREVIPat(OrOp0); 6499 } 6500 auto RHS = matchGREVIPat(Op1); 6501 if (LHS && RHS && LHS->formsPairWith(*RHS) && LHS->Op == OrOp1) { 6502 return DAG.getNode(RISCVISD::GORC, DL, VT, LHS->Op, 6503 DAG.getConstant(LHS->ShAmt, DL, VT)); 6504 } 6505 } 6506 return SDValue(); 6507 } 6508 6509 // Matches any of the following bit-manipulation patterns: 6510 // (and (shl x, 1), (0x22222222 << 1)) 6511 // (and (srl x, 1), 0x22222222) 6512 // (shl (and x, 0x22222222), 1) 6513 // (srl (and x, (0x22222222 << 1)), 1) 6514 // where the shift amount and mask may vary thus: 6515 // [1] = 0x22222222 / 0x44444444 6516 // [2] = 0x0C0C0C0C / 0x3C3C3C3C 6517 // [4] = 0x00F000F0 / 0x0F000F00 6518 // [8] = 0x0000FF00 / 0x00FF0000 6519 // [16] = 0x00000000FFFF0000 / 0x0000FFFF00000000 (for RV64) 6520 static Optional<RISCVBitmanipPat> matchSHFLPat(SDValue Op) { 6521 // These are the unshifted masks which we use to match bit-manipulation 6522 // patterns. They may be shifted left in certain circumstances. 6523 static const uint64_t BitmanipMasks[] = { 6524 0x2222222222222222ULL, 0x0C0C0C0C0C0C0C0CULL, 0x00F000F000F000F0ULL, 6525 0x0000FF000000FF00ULL, 0x00000000FFFF0000ULL}; 6526 6527 return matchRISCVBitmanipPat(Op, BitmanipMasks); 6528 } 6529 6530 // Match (or (or (SHFL_SHL x), (SHFL_SHR x)), (SHFL_AND x) 6531 static SDValue combineORToSHFL(SDValue Op, SelectionDAG &DAG, 6532 const RISCVSubtarget &Subtarget) { 6533 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson"); 6534 EVT VT = Op.getValueType(); 6535 6536 if (VT != MVT::i32 && VT != Subtarget.getXLenVT()) 6537 return SDValue(); 6538 6539 SDValue Op0 = Op.getOperand(0); 6540 SDValue Op1 = Op.getOperand(1); 6541 6542 // Or is commutable so canonicalize the second OR to the LHS. 6543 if (Op0.getOpcode() != ISD::OR) 6544 std::swap(Op0, Op1); 6545 if (Op0.getOpcode() != ISD::OR) 6546 return SDValue(); 6547 6548 // We found an inner OR, so our operands are the operands of the inner OR 6549 // and the other operand of the outer OR. 6550 SDValue A = Op0.getOperand(0); 6551 SDValue B = Op0.getOperand(1); 6552 SDValue C = Op1; 6553 6554 auto Match1 = matchSHFLPat(A); 6555 auto Match2 = matchSHFLPat(B); 6556 6557 // If neither matched, we failed. 6558 if (!Match1 && !Match2) 6559 return SDValue(); 6560 6561 // We had at least one match. if one failed, try the remaining C operand. 6562 if (!Match1) { 6563 std::swap(A, C); 6564 Match1 = matchSHFLPat(A); 6565 if (!Match1) 6566 return SDValue(); 6567 } else if (!Match2) { 6568 std::swap(B, C); 6569 Match2 = matchSHFLPat(B); 6570 if (!Match2) 6571 return SDValue(); 6572 } 6573 assert(Match1 && Match2); 6574 6575 // Make sure our matches pair up. 6576 if (!Match1->formsPairWith(*Match2)) 6577 return SDValue(); 6578 6579 // All the remains is to make sure C is an AND with the same input, that masks 6580 // out the bits that are being shuffled. 6581 if (C.getOpcode() != ISD::AND || !isa<ConstantSDNode>(C.getOperand(1)) || 6582 C.getOperand(0) != Match1->Op) 6583 return SDValue(); 6584 6585 uint64_t Mask = C.getConstantOperandVal(1); 6586 6587 static const uint64_t BitmanipMasks[] = { 6588 0x9999999999999999ULL, 0xC3C3C3C3C3C3C3C3ULL, 0xF00FF00FF00FF00FULL, 6589 0xFF0000FFFF0000FFULL, 0xFFFF00000000FFFFULL, 6590 }; 6591 6592 unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32; 6593 unsigned MaskIdx = Log2_32(Match1->ShAmt); 6594 uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width); 6595 6596 if (Mask != ExpMask) 6597 return SDValue(); 6598 6599 SDLoc DL(Op); 6600 return DAG.getNode(RISCVISD::SHFL, DL, VT, Match1->Op, 6601 DAG.getConstant(Match1->ShAmt, DL, VT)); 6602 } 6603 6604 // Optimize (add (shl x, c0), (shl y, c1)) -> 6605 // (SLLI (SH*ADD x, y), c0), if c1-c0 equals to [1|2|3]. 6606 static SDValue transformAddShlImm(SDNode *N, SelectionDAG &DAG, 6607 const RISCVSubtarget &Subtarget) { 6608 // Perform this optimization only in the zba extension. 6609 if (!Subtarget.hasStdExtZba()) 6610 return SDValue(); 6611 6612 // Skip for vector types and larger types. 6613 EVT VT = N->getValueType(0); 6614 if (VT.isVector() || VT.getSizeInBits() > Subtarget.getXLen()) 6615 return SDValue(); 6616 6617 // The two operand nodes must be SHL and have no other use. 6618 SDValue N0 = N->getOperand(0); 6619 SDValue N1 = N->getOperand(1); 6620 if (N0->getOpcode() != ISD::SHL || N1->getOpcode() != ISD::SHL || 6621 !N0->hasOneUse() || !N1->hasOneUse()) 6622 return SDValue(); 6623 6624 // Check c0 and c1. 6625 auto *N0C = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 6626 auto *N1C = dyn_cast<ConstantSDNode>(N1->getOperand(1)); 6627 if (!N0C || !N1C) 6628 return SDValue(); 6629 int64_t C0 = N0C->getSExtValue(); 6630 int64_t C1 = N1C->getSExtValue(); 6631 if (C0 <= 0 || C1 <= 0) 6632 return SDValue(); 6633 6634 // Skip if SH1ADD/SH2ADD/SH3ADD are not applicable. 6635 int64_t Bits = std::min(C0, C1); 6636 int64_t Diff = std::abs(C0 - C1); 6637 if (Diff != 1 && Diff != 2 && Diff != 3) 6638 return SDValue(); 6639 6640 // Build nodes. 6641 SDLoc DL(N); 6642 SDValue NS = (C0 < C1) ? N0->getOperand(0) : N1->getOperand(0); 6643 SDValue NL = (C0 > C1) ? N0->getOperand(0) : N1->getOperand(0); 6644 SDValue NA0 = 6645 DAG.getNode(ISD::SHL, DL, VT, NL, DAG.getConstant(Diff, DL, VT)); 6646 SDValue NA1 = DAG.getNode(ISD::ADD, DL, VT, NA0, NS); 6647 return DAG.getNode(ISD::SHL, DL, VT, NA1, DAG.getConstant(Bits, DL, VT)); 6648 } 6649 6650 // Combine (GREVI (GREVI x, C2), C1) -> (GREVI x, C1^C2) when C1^C2 is 6651 // non-zero, and to x when it is. Any repeated GREVI stage undoes itself. 6652 // Combine (GORCI (GORCI x, C2), C1) -> (GORCI x, C1|C2). Repeated stage does 6653 // not undo itself, but they are redundant. 6654 static SDValue combineGREVI_GORCI(SDNode *N, SelectionDAG &DAG) { 6655 SDValue Src = N->getOperand(0); 6656 6657 if (Src.getOpcode() != N->getOpcode()) 6658 return SDValue(); 6659 6660 if (!isa<ConstantSDNode>(N->getOperand(1)) || 6661 !isa<ConstantSDNode>(Src.getOperand(1))) 6662 return SDValue(); 6663 6664 unsigned ShAmt1 = N->getConstantOperandVal(1); 6665 unsigned ShAmt2 = Src.getConstantOperandVal(1); 6666 Src = Src.getOperand(0); 6667 6668 unsigned CombinedShAmt; 6669 if (N->getOpcode() == RISCVISD::GORC || N->getOpcode() == RISCVISD::GORCW) 6670 CombinedShAmt = ShAmt1 | ShAmt2; 6671 else 6672 CombinedShAmt = ShAmt1 ^ ShAmt2; 6673 6674 if (CombinedShAmt == 0) 6675 return Src; 6676 6677 SDLoc DL(N); 6678 return DAG.getNode( 6679 N->getOpcode(), DL, N->getValueType(0), Src, 6680 DAG.getConstant(CombinedShAmt, DL, N->getOperand(1).getValueType())); 6681 } 6682 6683 // Combine a constant select operand into its use: 6684 // 6685 // (and (select cond, -1, c), x) 6686 // -> (select cond, x, (and x, c)) [AllOnes=1] 6687 // (or (select cond, 0, c), x) 6688 // -> (select cond, x, (or x, c)) [AllOnes=0] 6689 // (xor (select cond, 0, c), x) 6690 // -> (select cond, x, (xor x, c)) [AllOnes=0] 6691 // (add (select cond, 0, c), x) 6692 // -> (select cond, x, (add x, c)) [AllOnes=0] 6693 // (sub x, (select cond, 0, c)) 6694 // -> (select cond, x, (sub x, c)) [AllOnes=0] 6695 static SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp, 6696 SelectionDAG &DAG, bool AllOnes) { 6697 EVT VT = N->getValueType(0); 6698 6699 // Skip vectors. 6700 if (VT.isVector()) 6701 return SDValue(); 6702 6703 if ((Slct.getOpcode() != ISD::SELECT && 6704 Slct.getOpcode() != RISCVISD::SELECT_CC) || 6705 !Slct.hasOneUse()) 6706 return SDValue(); 6707 6708 auto isZeroOrAllOnes = [](SDValue N, bool AllOnes) { 6709 return AllOnes ? isAllOnesConstant(N) : isNullConstant(N); 6710 }; 6711 6712 bool SwapSelectOps; 6713 unsigned OpOffset = Slct.getOpcode() == RISCVISD::SELECT_CC ? 2 : 0; 6714 SDValue TrueVal = Slct.getOperand(1 + OpOffset); 6715 SDValue FalseVal = Slct.getOperand(2 + OpOffset); 6716 SDValue NonConstantVal; 6717 if (isZeroOrAllOnes(TrueVal, AllOnes)) { 6718 SwapSelectOps = false; 6719 NonConstantVal = FalseVal; 6720 } else if (isZeroOrAllOnes(FalseVal, AllOnes)) { 6721 SwapSelectOps = true; 6722 NonConstantVal = TrueVal; 6723 } else 6724 return SDValue(); 6725 6726 // Slct is now know to be the desired identity constant when CC is true. 6727 TrueVal = OtherOp; 6728 FalseVal = DAG.getNode(N->getOpcode(), SDLoc(N), VT, OtherOp, NonConstantVal); 6729 // Unless SwapSelectOps says the condition should be false. 6730 if (SwapSelectOps) 6731 std::swap(TrueVal, FalseVal); 6732 6733 if (Slct.getOpcode() == RISCVISD::SELECT_CC) 6734 return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), VT, 6735 {Slct.getOperand(0), Slct.getOperand(1), 6736 Slct.getOperand(2), TrueVal, FalseVal}); 6737 6738 return DAG.getNode(ISD::SELECT, SDLoc(N), VT, 6739 {Slct.getOperand(0), TrueVal, FalseVal}); 6740 } 6741 6742 // Attempt combineSelectAndUse on each operand of a commutative operator N. 6743 static SDValue combineSelectAndUseCommutative(SDNode *N, SelectionDAG &DAG, 6744 bool AllOnes) { 6745 SDValue N0 = N->getOperand(0); 6746 SDValue N1 = N->getOperand(1); 6747 if (SDValue Result = combineSelectAndUse(N, N0, N1, DAG, AllOnes)) 6748 return Result; 6749 if (SDValue Result = combineSelectAndUse(N, N1, N0, DAG, AllOnes)) 6750 return Result; 6751 return SDValue(); 6752 } 6753 6754 // Transform (add (mul x, c0), c1) -> 6755 // (add (mul (add x, c1/c0), c0), c1%c0). 6756 // if c1/c0 and c1%c0 are simm12, while c1 is not. A special corner case 6757 // that should be excluded is when c0*(c1/c0) is simm12, which will lead 6758 // to an infinite loop in DAGCombine if transformed. 6759 // Or transform (add (mul x, c0), c1) -> 6760 // (add (mul (add x, c1/c0+1), c0), c1%c0-c0), 6761 // if c1/c0+1 and c1%c0-c0 are simm12, while c1 is not. A special corner 6762 // case that should be excluded is when c0*(c1/c0+1) is simm12, which will 6763 // lead to an infinite loop in DAGCombine if transformed. 6764 // Or transform (add (mul x, c0), c1) -> 6765 // (add (mul (add x, c1/c0-1), c0), c1%c0+c0), 6766 // if c1/c0-1 and c1%c0+c0 are simm12, while c1 is not. A special corner 6767 // case that should be excluded is when c0*(c1/c0-1) is simm12, which will 6768 // lead to an infinite loop in DAGCombine if transformed. 6769 // Or transform (add (mul x, c0), c1) -> 6770 // (mul (add x, c1/c0), c0). 6771 // if c1%c0 is zero, and c1/c0 is simm12 while c1 is not. 6772 static SDValue transformAddImmMulImm(SDNode *N, SelectionDAG &DAG, 6773 const RISCVSubtarget &Subtarget) { 6774 // Skip for vector types and larger types. 6775 EVT VT = N->getValueType(0); 6776 if (VT.isVector() || VT.getSizeInBits() > Subtarget.getXLen()) 6777 return SDValue(); 6778 // The first operand node must be a MUL and has no other use. 6779 SDValue N0 = N->getOperand(0); 6780 if (!N0->hasOneUse() || N0->getOpcode() != ISD::MUL) 6781 return SDValue(); 6782 // Check if c0 and c1 match above conditions. 6783 auto *N0C = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 6784 auto *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1)); 6785 if (!N0C || !N1C) 6786 return SDValue(); 6787 int64_t C0 = N0C->getSExtValue(); 6788 int64_t C1 = N1C->getSExtValue(); 6789 int64_t CA, CB; 6790 if (C0 == -1 || C0 == 0 || C0 == 1 || isInt<12>(C1)) 6791 return SDValue(); 6792 // Search for proper CA (non-zero) and CB that both are simm12. 6793 if ((C1 / C0) != 0 && isInt<12>(C1 / C0) && isInt<12>(C1 % C0) && 6794 !isInt<12>(C0 * (C1 / C0))) { 6795 CA = C1 / C0; 6796 CB = C1 % C0; 6797 } else if ((C1 / C0 + 1) != 0 && isInt<12>(C1 / C0 + 1) && 6798 isInt<12>(C1 % C0 - C0) && !isInt<12>(C0 * (C1 / C0 + 1))) { 6799 CA = C1 / C0 + 1; 6800 CB = C1 % C0 - C0; 6801 } else if ((C1 / C0 - 1) != 0 && isInt<12>(C1 / C0 - 1) && 6802 isInt<12>(C1 % C0 + C0) && !isInt<12>(C0 * (C1 / C0 - 1))) { 6803 CA = C1 / C0 - 1; 6804 CB = C1 % C0 + C0; 6805 } else 6806 return SDValue(); 6807 // Build new nodes (add (mul (add x, c1/c0), c0), c1%c0). 6808 SDLoc DL(N); 6809 SDValue New0 = DAG.getNode(ISD::ADD, DL, VT, N0->getOperand(0), 6810 DAG.getConstant(CA, DL, VT)); 6811 SDValue New1 = 6812 DAG.getNode(ISD::MUL, DL, VT, New0, DAG.getConstant(C0, DL, VT)); 6813 return DAG.getNode(ISD::ADD, DL, VT, New1, DAG.getConstant(CB, DL, VT)); 6814 } 6815 6816 static SDValue performADDCombine(SDNode *N, SelectionDAG &DAG, 6817 const RISCVSubtarget &Subtarget) { 6818 if (SDValue V = transformAddImmMulImm(N, DAG, Subtarget)) 6819 return V; 6820 if (SDValue V = transformAddShlImm(N, DAG, Subtarget)) 6821 return V; 6822 // fold (add (select lhs, rhs, cc, 0, y), x) -> 6823 // (select lhs, rhs, cc, x, (add x, y)) 6824 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false); 6825 } 6826 6827 static SDValue performSUBCombine(SDNode *N, SelectionDAG &DAG) { 6828 // fold (sub x, (select lhs, rhs, cc, 0, y)) -> 6829 // (select lhs, rhs, cc, x, (sub x, y)) 6830 SDValue N0 = N->getOperand(0); 6831 SDValue N1 = N->getOperand(1); 6832 return combineSelectAndUse(N, N1, N0, DAG, /*AllOnes*/ false); 6833 } 6834 6835 static SDValue performANDCombine(SDNode *N, SelectionDAG &DAG) { 6836 // fold (and (select lhs, rhs, cc, -1, y), x) -> 6837 // (select lhs, rhs, cc, x, (and x, y)) 6838 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ true); 6839 } 6840 6841 static SDValue performORCombine(SDNode *N, SelectionDAG &DAG, 6842 const RISCVSubtarget &Subtarget) { 6843 if (Subtarget.hasStdExtZbp()) { 6844 if (auto GREV = combineORToGREV(SDValue(N, 0), DAG, Subtarget)) 6845 return GREV; 6846 if (auto GORC = combineORToGORC(SDValue(N, 0), DAG, Subtarget)) 6847 return GORC; 6848 if (auto SHFL = combineORToSHFL(SDValue(N, 0), DAG, Subtarget)) 6849 return SHFL; 6850 } 6851 6852 // fold (or (select cond, 0, y), x) -> 6853 // (select cond, x, (or x, y)) 6854 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false); 6855 } 6856 6857 static SDValue performXORCombine(SDNode *N, SelectionDAG &DAG) { 6858 // fold (xor (select cond, 0, y), x) -> 6859 // (select cond, x, (xor x, y)) 6860 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false); 6861 } 6862 6863 // Attempt to turn ANY_EXTEND into SIGN_EXTEND if the input to the ANY_EXTEND 6864 // has users that require SIGN_EXTEND and the SIGN_EXTEND can be done for free 6865 // by an instruction like ADDW/SUBW/MULW. Without this the ANY_EXTEND would be 6866 // removed during type legalization leaving an ADD/SUB/MUL use that won't use 6867 // ADDW/SUBW/MULW. 6868 static SDValue performANY_EXTENDCombine(SDNode *N, 6869 TargetLowering::DAGCombinerInfo &DCI, 6870 const RISCVSubtarget &Subtarget) { 6871 if (!Subtarget.is64Bit()) 6872 return SDValue(); 6873 6874 SelectionDAG &DAG = DCI.DAG; 6875 6876 SDValue Src = N->getOperand(0); 6877 EVT VT = N->getValueType(0); 6878 if (VT != MVT::i64 || Src.getValueType() != MVT::i32) 6879 return SDValue(); 6880 6881 // The opcode must be one that can implicitly sign_extend. 6882 // FIXME: Additional opcodes. 6883 switch (Src.getOpcode()) { 6884 default: 6885 return SDValue(); 6886 case ISD::MUL: 6887 if (!Subtarget.hasStdExtM()) 6888 return SDValue(); 6889 LLVM_FALLTHROUGH; 6890 case ISD::ADD: 6891 case ISD::SUB: 6892 break; 6893 } 6894 6895 // Only handle cases where the result is used by a CopyToReg. That likely 6896 // means the value is a liveout of the basic block. This helps prevent 6897 // infinite combine loops like PR51206. 6898 if (none_of(N->uses(), 6899 [](SDNode *User) { return User->getOpcode() == ISD::CopyToReg; })) 6900 return SDValue(); 6901 6902 SmallVector<SDNode *, 4> SetCCs; 6903 for (SDNode::use_iterator UI = Src.getNode()->use_begin(), 6904 UE = Src.getNode()->use_end(); 6905 UI != UE; ++UI) { 6906 SDNode *User = *UI; 6907 if (User == N) 6908 continue; 6909 if (UI.getUse().getResNo() != Src.getResNo()) 6910 continue; 6911 // All i32 setccs are legalized by sign extending operands. 6912 if (User->getOpcode() == ISD::SETCC) { 6913 SetCCs.push_back(User); 6914 continue; 6915 } 6916 // We don't know if we can extend this user. 6917 break; 6918 } 6919 6920 // If we don't have any SetCCs, this isn't worthwhile. 6921 if (SetCCs.empty()) 6922 return SDValue(); 6923 6924 SDLoc DL(N); 6925 SDValue SExt = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Src); 6926 DCI.CombineTo(N, SExt); 6927 6928 // Promote all the setccs. 6929 for (SDNode *SetCC : SetCCs) { 6930 SmallVector<SDValue, 4> Ops; 6931 6932 for (unsigned j = 0; j != 2; ++j) { 6933 SDValue SOp = SetCC->getOperand(j); 6934 if (SOp == Src) 6935 Ops.push_back(SExt); 6936 else 6937 Ops.push_back(DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, SOp)); 6938 } 6939 6940 Ops.push_back(SetCC->getOperand(2)); 6941 DCI.CombineTo(SetCC, 6942 DAG.getNode(ISD::SETCC, DL, SetCC->getValueType(0), Ops)); 6943 } 6944 return SDValue(N, 0); 6945 } 6946 6947 // Try to form VWMUL or VWMULU. 6948 // FIXME: Support VWMULSU. 6949 static SDValue combineMUL_VLToVWMUL(SDNode *N, SDValue Op0, SDValue Op1, 6950 SelectionDAG &DAG) { 6951 assert(N->getOpcode() == RISCVISD::MUL_VL && "Unexpected opcode"); 6952 bool IsSignExt = Op0.getOpcode() == RISCVISD::VSEXT_VL; 6953 bool IsZeroExt = Op0.getOpcode() == RISCVISD::VZEXT_VL; 6954 if ((!IsSignExt && !IsZeroExt) || !Op0.hasOneUse()) 6955 return SDValue(); 6956 6957 SDValue Mask = N->getOperand(2); 6958 SDValue VL = N->getOperand(3); 6959 6960 // Make sure the mask and VL match. 6961 if (Op0.getOperand(1) != Mask || Op0.getOperand(2) != VL) 6962 return SDValue(); 6963 6964 MVT VT = N->getSimpleValueType(0); 6965 6966 // Determine the narrow size for a widening multiply. 6967 unsigned NarrowSize = VT.getScalarSizeInBits() / 2; 6968 MVT NarrowVT = MVT::getVectorVT(MVT::getIntegerVT(NarrowSize), 6969 VT.getVectorElementCount()); 6970 6971 SDLoc DL(N); 6972 6973 // See if the other operand is the same opcode. 6974 if (Op0.getOpcode() == Op1.getOpcode()) { 6975 if (!Op1.hasOneUse()) 6976 return SDValue(); 6977 6978 // Make sure the mask and VL match. 6979 if (Op1.getOperand(1) != Mask || Op1.getOperand(2) != VL) 6980 return SDValue(); 6981 6982 Op1 = Op1.getOperand(0); 6983 } else if (Op1.getOpcode() == RISCVISD::VMV_V_X_VL) { 6984 // The operand is a splat of a scalar. 6985 6986 // The VL must be the same. 6987 if (Op1.getOperand(1) != VL) 6988 return SDValue(); 6989 6990 // Get the scalar value. 6991 Op1 = Op1.getOperand(0); 6992 6993 // See if have enough sign bits or zero bits in the scalar to use a 6994 // widening multiply by splatting to smaller element size. 6995 unsigned EltBits = VT.getScalarSizeInBits(); 6996 unsigned ScalarBits = Op1.getValueSizeInBits(); 6997 // Make sure we're getting all element bits from the scalar register. 6998 // FIXME: Support implicit sign extension of vmv.v.x? 6999 if (ScalarBits < EltBits) 7000 return SDValue(); 7001 7002 if (IsSignExt) { 7003 if (DAG.ComputeNumSignBits(Op1) <= (ScalarBits - NarrowSize)) 7004 return SDValue(); 7005 } else { 7006 APInt Mask = APInt::getBitsSetFrom(ScalarBits, NarrowSize); 7007 if (!DAG.MaskedValueIsZero(Op1, Mask)) 7008 return SDValue(); 7009 } 7010 7011 Op1 = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, NarrowVT, Op1, VL); 7012 } else 7013 return SDValue(); 7014 7015 Op0 = Op0.getOperand(0); 7016 7017 // Re-introduce narrower extends if needed. 7018 unsigned ExtOpc = IsSignExt ? RISCVISD::VSEXT_VL : RISCVISD::VZEXT_VL; 7019 if (Op0.getValueType() != NarrowVT) 7020 Op0 = DAG.getNode(ExtOpc, DL, NarrowVT, Op0, Mask, VL); 7021 if (Op1.getValueType() != NarrowVT) 7022 Op1 = DAG.getNode(ExtOpc, DL, NarrowVT, Op1, Mask, VL); 7023 7024 unsigned WMulOpc = IsSignExt ? RISCVISD::VWMUL_VL : RISCVISD::VWMULU_VL; 7025 return DAG.getNode(WMulOpc, DL, VT, Op0, Op1, Mask, VL); 7026 } 7027 7028 SDValue RISCVTargetLowering::PerformDAGCombine(SDNode *N, 7029 DAGCombinerInfo &DCI) const { 7030 SelectionDAG &DAG = DCI.DAG; 7031 7032 // Helper to call SimplifyDemandedBits on an operand of N where only some low 7033 // bits are demanded. N will be added to the Worklist if it was not deleted. 7034 // Caller should return SDValue(N, 0) if this returns true. 7035 auto SimplifyDemandedLowBitsHelper = [&](unsigned OpNo, unsigned LowBits) { 7036 SDValue Op = N->getOperand(OpNo); 7037 APInt Mask = APInt::getLowBitsSet(Op.getValueSizeInBits(), LowBits); 7038 if (!SimplifyDemandedBits(Op, Mask, DCI)) 7039 return false; 7040 7041 if (N->getOpcode() != ISD::DELETED_NODE) 7042 DCI.AddToWorklist(N); 7043 return true; 7044 }; 7045 7046 switch (N->getOpcode()) { 7047 default: 7048 break; 7049 case RISCVISD::SplitF64: { 7050 SDValue Op0 = N->getOperand(0); 7051 // If the input to SplitF64 is just BuildPairF64 then the operation is 7052 // redundant. Instead, use BuildPairF64's operands directly. 7053 if (Op0->getOpcode() == RISCVISD::BuildPairF64) 7054 return DCI.CombineTo(N, Op0.getOperand(0), Op0.getOperand(1)); 7055 7056 SDLoc DL(N); 7057 7058 // It's cheaper to materialise two 32-bit integers than to load a double 7059 // from the constant pool and transfer it to integer registers through the 7060 // stack. 7061 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op0)) { 7062 APInt V = C->getValueAPF().bitcastToAPInt(); 7063 SDValue Lo = DAG.getConstant(V.trunc(32), DL, MVT::i32); 7064 SDValue Hi = DAG.getConstant(V.lshr(32).trunc(32), DL, MVT::i32); 7065 return DCI.CombineTo(N, Lo, Hi); 7066 } 7067 7068 // This is a target-specific version of a DAGCombine performed in 7069 // DAGCombiner::visitBITCAST. It performs the equivalent of: 7070 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) 7071 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) 7072 if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) || 7073 !Op0.getNode()->hasOneUse()) 7074 break; 7075 SDValue NewSplitF64 = 7076 DAG.getNode(RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), 7077 Op0.getOperand(0)); 7078 SDValue Lo = NewSplitF64.getValue(0); 7079 SDValue Hi = NewSplitF64.getValue(1); 7080 APInt SignBit = APInt::getSignMask(32); 7081 if (Op0.getOpcode() == ISD::FNEG) { 7082 SDValue NewHi = DAG.getNode(ISD::XOR, DL, MVT::i32, Hi, 7083 DAG.getConstant(SignBit, DL, MVT::i32)); 7084 return DCI.CombineTo(N, Lo, NewHi); 7085 } 7086 assert(Op0.getOpcode() == ISD::FABS); 7087 SDValue NewHi = DAG.getNode(ISD::AND, DL, MVT::i32, Hi, 7088 DAG.getConstant(~SignBit, DL, MVT::i32)); 7089 return DCI.CombineTo(N, Lo, NewHi); 7090 } 7091 case RISCVISD::SLLW: 7092 case RISCVISD::SRAW: 7093 case RISCVISD::SRLW: 7094 case RISCVISD::ROLW: 7095 case RISCVISD::RORW: { 7096 // Only the lower 32 bits of LHS and lower 5 bits of RHS are read. 7097 if (SimplifyDemandedLowBitsHelper(0, 32) || 7098 SimplifyDemandedLowBitsHelper(1, 5)) 7099 return SDValue(N, 0); 7100 break; 7101 } 7102 case RISCVISD::CLZW: 7103 case RISCVISD::CTZW: { 7104 // Only the lower 32 bits of the first operand are read 7105 if (SimplifyDemandedLowBitsHelper(0, 32)) 7106 return SDValue(N, 0); 7107 break; 7108 } 7109 case RISCVISD::FSL: 7110 case RISCVISD::FSR: { 7111 // Only the lower log2(Bitwidth)+1 bits of the the shift amount are read. 7112 unsigned BitWidth = N->getOperand(2).getValueSizeInBits(); 7113 assert(isPowerOf2_32(BitWidth) && "Unexpected bit width"); 7114 if (SimplifyDemandedLowBitsHelper(2, Log2_32(BitWidth) + 1)) 7115 return SDValue(N, 0); 7116 break; 7117 } 7118 case RISCVISD::FSLW: 7119 case RISCVISD::FSRW: { 7120 // Only the lower 32 bits of Values and lower 6 bits of shift amount are 7121 // read. 7122 if (SimplifyDemandedLowBitsHelper(0, 32) || 7123 SimplifyDemandedLowBitsHelper(1, 32) || 7124 SimplifyDemandedLowBitsHelper(2, 6)) 7125 return SDValue(N, 0); 7126 break; 7127 } 7128 case RISCVISD::GREV: 7129 case RISCVISD::GORC: { 7130 // Only the lower log2(Bitwidth) bits of the the shift amount are read. 7131 unsigned BitWidth = N->getOperand(1).getValueSizeInBits(); 7132 assert(isPowerOf2_32(BitWidth) && "Unexpected bit width"); 7133 if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth))) 7134 return SDValue(N, 0); 7135 7136 return combineGREVI_GORCI(N, DAG); 7137 } 7138 case RISCVISD::GREVW: 7139 case RISCVISD::GORCW: { 7140 // Only the lower 32 bits of LHS and lower 5 bits of RHS are read. 7141 if (SimplifyDemandedLowBitsHelper(0, 32) || 7142 SimplifyDemandedLowBitsHelper(1, 5)) 7143 return SDValue(N, 0); 7144 7145 return combineGREVI_GORCI(N, DAG); 7146 } 7147 case RISCVISD::SHFL: 7148 case RISCVISD::UNSHFL: { 7149 // Only the lower log2(Bitwidth)-1 bits of the the shift amount are read. 7150 unsigned BitWidth = N->getOperand(1).getValueSizeInBits(); 7151 assert(isPowerOf2_32(BitWidth) && "Unexpected bit width"); 7152 if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth) - 1)) 7153 return SDValue(N, 0); 7154 7155 break; 7156 } 7157 case RISCVISD::SHFLW: 7158 case RISCVISD::UNSHFLW: { 7159 // Only the lower 32 bits of LHS and lower 4 bits of RHS are read. 7160 SDValue LHS = N->getOperand(0); 7161 SDValue RHS = N->getOperand(1); 7162 APInt LHSMask = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 32); 7163 APInt RHSMask = APInt::getLowBitsSet(RHS.getValueSizeInBits(), 4); 7164 if (SimplifyDemandedLowBitsHelper(0, 32) || 7165 SimplifyDemandedLowBitsHelper(1, 4)) 7166 return SDValue(N, 0); 7167 7168 break; 7169 } 7170 case RISCVISD::BCOMPRESSW: 7171 case RISCVISD::BDECOMPRESSW: { 7172 // Only the lower 32 bits of LHS and RHS are read. 7173 if (SimplifyDemandedLowBitsHelper(0, 32) || 7174 SimplifyDemandedLowBitsHelper(1, 32)) 7175 return SDValue(N, 0); 7176 7177 break; 7178 } 7179 case RISCVISD::FMV_X_ANYEXTH: 7180 case RISCVISD::FMV_X_ANYEXTW_RV64: { 7181 SDLoc DL(N); 7182 SDValue Op0 = N->getOperand(0); 7183 MVT VT = N->getSimpleValueType(0); 7184 // If the input to FMV_X_ANYEXTW_RV64 is just FMV_W_X_RV64 then the 7185 // conversion is unnecessary and can be replaced with the FMV_W_X_RV64 7186 // operand. Similar for FMV_X_ANYEXTH and FMV_H_X. 7187 if ((N->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64 && 7188 Op0->getOpcode() == RISCVISD::FMV_W_X_RV64) || 7189 (N->getOpcode() == RISCVISD::FMV_X_ANYEXTH && 7190 Op0->getOpcode() == RISCVISD::FMV_H_X)) { 7191 assert(Op0.getOperand(0).getValueType() == VT && 7192 "Unexpected value type!"); 7193 return Op0.getOperand(0); 7194 } 7195 7196 // This is a target-specific version of a DAGCombine performed in 7197 // DAGCombiner::visitBITCAST. It performs the equivalent of: 7198 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) 7199 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) 7200 if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) || 7201 !Op0.getNode()->hasOneUse()) 7202 break; 7203 SDValue NewFMV = DAG.getNode(N->getOpcode(), DL, VT, Op0.getOperand(0)); 7204 unsigned FPBits = N->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64 ? 32 : 16; 7205 APInt SignBit = APInt::getSignMask(FPBits).sextOrSelf(VT.getSizeInBits()); 7206 if (Op0.getOpcode() == ISD::FNEG) 7207 return DAG.getNode(ISD::XOR, DL, VT, NewFMV, 7208 DAG.getConstant(SignBit, DL, VT)); 7209 7210 assert(Op0.getOpcode() == ISD::FABS); 7211 return DAG.getNode(ISD::AND, DL, VT, NewFMV, 7212 DAG.getConstant(~SignBit, DL, VT)); 7213 } 7214 case ISD::ADD: 7215 return performADDCombine(N, DAG, Subtarget); 7216 case ISD::SUB: 7217 return performSUBCombine(N, DAG); 7218 case ISD::AND: 7219 return performANDCombine(N, DAG); 7220 case ISD::OR: 7221 return performORCombine(N, DAG, Subtarget); 7222 case ISD::XOR: 7223 return performXORCombine(N, DAG); 7224 case ISD::ANY_EXTEND: 7225 return performANY_EXTENDCombine(N, DCI, Subtarget); 7226 case ISD::ZERO_EXTEND: 7227 // Fold (zero_extend (fp_to_uint X)) to prevent forming fcvt+zexti32 during 7228 // type legalization. This is safe because fp_to_uint produces poison if 7229 // it overflows. 7230 if (N->getValueType(0) == MVT::i64 && Subtarget.is64Bit()) { 7231 SDValue Src = N->getOperand(0); 7232 if (Src.getOpcode() == ISD::FP_TO_UINT && 7233 isTypeLegal(Src.getOperand(0).getValueType())) 7234 return DAG.getNode(ISD::FP_TO_UINT, SDLoc(N), MVT::i64, 7235 Src.getOperand(0)); 7236 if (Src.getOpcode() == ISD::STRICT_FP_TO_UINT && Src.hasOneUse() && 7237 isTypeLegal(Src.getOperand(1).getValueType())) { 7238 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other); 7239 SDValue Res = DAG.getNode(ISD::STRICT_FP_TO_UINT, SDLoc(N), VTs, 7240 Src.getOperand(0), Src.getOperand(1)); 7241 DCI.CombineTo(N, Res); 7242 DAG.ReplaceAllUsesOfValueWith(Src.getValue(1), Res.getValue(1)); 7243 DCI.recursivelyDeleteUnusedNodes(Src.getNode()); 7244 return SDValue(N, 0); // Return N so it doesn't get rechecked. 7245 } 7246 } 7247 return SDValue(); 7248 case RISCVISD::SELECT_CC: { 7249 // Transform 7250 SDValue LHS = N->getOperand(0); 7251 SDValue RHS = N->getOperand(1); 7252 SDValue TrueV = N->getOperand(3); 7253 SDValue FalseV = N->getOperand(4); 7254 7255 // If the True and False values are the same, we don't need a select_cc. 7256 if (TrueV == FalseV) 7257 return TrueV; 7258 7259 ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(2))->get(); 7260 if (!ISD::isIntEqualitySetCC(CCVal)) 7261 break; 7262 7263 // Fold (select_cc (setlt X, Y), 0, ne, trueV, falseV) -> 7264 // (select_cc X, Y, lt, trueV, falseV) 7265 // Sometimes the setcc is introduced after select_cc has been formed. 7266 if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) && 7267 LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) { 7268 // If we're looking for eq 0 instead of ne 0, we need to invert the 7269 // condition. 7270 bool Invert = CCVal == ISD::SETEQ; 7271 CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get(); 7272 if (Invert) 7273 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 7274 7275 SDLoc DL(N); 7276 RHS = LHS.getOperand(1); 7277 LHS = LHS.getOperand(0); 7278 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 7279 7280 SDValue TargetCC = DAG.getCondCode(CCVal); 7281 return DAG.getNode(RISCVISD::SELECT_CC, DL, N->getValueType(0), 7282 {LHS, RHS, TargetCC, TrueV, FalseV}); 7283 } 7284 7285 // Fold (select_cc (xor X, Y), 0, eq/ne, trueV, falseV) -> 7286 // (select_cc X, Y, eq/ne, trueV, falseV) 7287 if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS)) 7288 return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), N->getValueType(0), 7289 {LHS.getOperand(0), LHS.getOperand(1), 7290 N->getOperand(2), TrueV, FalseV}); 7291 // (select_cc X, 1, setne, trueV, falseV) -> 7292 // (select_cc X, 0, seteq, trueV, falseV) if we can prove X is 0/1. 7293 // This can occur when legalizing some floating point comparisons. 7294 APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1); 7295 if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) { 7296 SDLoc DL(N); 7297 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 7298 SDValue TargetCC = DAG.getCondCode(CCVal); 7299 RHS = DAG.getConstant(0, DL, LHS.getValueType()); 7300 return DAG.getNode(RISCVISD::SELECT_CC, DL, N->getValueType(0), 7301 {LHS, RHS, TargetCC, TrueV, FalseV}); 7302 } 7303 7304 break; 7305 } 7306 case RISCVISD::BR_CC: { 7307 SDValue LHS = N->getOperand(1); 7308 SDValue RHS = N->getOperand(2); 7309 ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(3))->get(); 7310 if (!ISD::isIntEqualitySetCC(CCVal)) 7311 break; 7312 7313 // Fold (br_cc (setlt X, Y), 0, ne, dest) -> 7314 // (br_cc X, Y, lt, dest) 7315 // Sometimes the setcc is introduced after br_cc has been formed. 7316 if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) && 7317 LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) { 7318 // If we're looking for eq 0 instead of ne 0, we need to invert the 7319 // condition. 7320 bool Invert = CCVal == ISD::SETEQ; 7321 CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get(); 7322 if (Invert) 7323 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 7324 7325 SDLoc DL(N); 7326 RHS = LHS.getOperand(1); 7327 LHS = LHS.getOperand(0); 7328 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 7329 7330 return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0), 7331 N->getOperand(0), LHS, RHS, DAG.getCondCode(CCVal), 7332 N->getOperand(4)); 7333 } 7334 7335 // Fold (br_cc (xor X, Y), 0, eq/ne, dest) -> 7336 // (br_cc X, Y, eq/ne, trueV, falseV) 7337 if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS)) 7338 return DAG.getNode(RISCVISD::BR_CC, SDLoc(N), N->getValueType(0), 7339 N->getOperand(0), LHS.getOperand(0), LHS.getOperand(1), 7340 N->getOperand(3), N->getOperand(4)); 7341 7342 // (br_cc X, 1, setne, br_cc) -> 7343 // (br_cc X, 0, seteq, br_cc) if we can prove X is 0/1. 7344 // This can occur when legalizing some floating point comparisons. 7345 APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1); 7346 if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) { 7347 SDLoc DL(N); 7348 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 7349 SDValue TargetCC = DAG.getCondCode(CCVal); 7350 RHS = DAG.getConstant(0, DL, LHS.getValueType()); 7351 return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0), 7352 N->getOperand(0), LHS, RHS, TargetCC, 7353 N->getOperand(4)); 7354 } 7355 break; 7356 } 7357 case ISD::FCOPYSIGN: { 7358 EVT VT = N->getValueType(0); 7359 if (!VT.isVector()) 7360 break; 7361 // There is a form of VFSGNJ which injects the negated sign of its second 7362 // operand. Try and bubble any FNEG up after the extend/round to produce 7363 // this optimized pattern. Avoid modifying cases where FP_ROUND and 7364 // TRUNC=1. 7365 SDValue In2 = N->getOperand(1); 7366 // Avoid cases where the extend/round has multiple uses, as duplicating 7367 // those is typically more expensive than removing a fneg. 7368 if (!In2.hasOneUse()) 7369 break; 7370 if (In2.getOpcode() != ISD::FP_EXTEND && 7371 (In2.getOpcode() != ISD::FP_ROUND || In2.getConstantOperandVal(1) != 0)) 7372 break; 7373 In2 = In2.getOperand(0); 7374 if (In2.getOpcode() != ISD::FNEG) 7375 break; 7376 SDLoc DL(N); 7377 SDValue NewFPExtRound = DAG.getFPExtendOrRound(In2.getOperand(0), DL, VT); 7378 return DAG.getNode(ISD::FCOPYSIGN, DL, VT, N->getOperand(0), 7379 DAG.getNode(ISD::FNEG, DL, VT, NewFPExtRound)); 7380 } 7381 case ISD::MGATHER: 7382 case ISD::MSCATTER: 7383 case ISD::VP_GATHER: 7384 case ISD::VP_SCATTER: { 7385 if (!DCI.isBeforeLegalize()) 7386 break; 7387 SDValue Index, ScaleOp; 7388 bool IsIndexScaled = false; 7389 bool IsIndexSigned = false; 7390 if (const auto *VPGSN = dyn_cast<VPGatherScatterSDNode>(N)) { 7391 Index = VPGSN->getIndex(); 7392 ScaleOp = VPGSN->getScale(); 7393 IsIndexScaled = VPGSN->isIndexScaled(); 7394 IsIndexSigned = VPGSN->isIndexSigned(); 7395 } else { 7396 const auto *MGSN = cast<MaskedGatherScatterSDNode>(N); 7397 Index = MGSN->getIndex(); 7398 ScaleOp = MGSN->getScale(); 7399 IsIndexScaled = MGSN->isIndexScaled(); 7400 IsIndexSigned = MGSN->isIndexSigned(); 7401 } 7402 EVT IndexVT = Index.getValueType(); 7403 MVT XLenVT = Subtarget.getXLenVT(); 7404 // RISCV indexed loads only support the "unsigned unscaled" addressing 7405 // mode, so anything else must be manually legalized. 7406 bool NeedsIdxLegalization = 7407 IsIndexScaled || 7408 (IsIndexSigned && IndexVT.getVectorElementType().bitsLT(XLenVT)); 7409 if (!NeedsIdxLegalization) 7410 break; 7411 7412 SDLoc DL(N); 7413 7414 // Any index legalization should first promote to XLenVT, so we don't lose 7415 // bits when scaling. This may create an illegal index type so we let 7416 // LLVM's legalization take care of the splitting. 7417 // FIXME: LLVM can't split VP_GATHER or VP_SCATTER yet. 7418 if (IndexVT.getVectorElementType().bitsLT(XLenVT)) { 7419 IndexVT = IndexVT.changeVectorElementType(XLenVT); 7420 Index = DAG.getNode(IsIndexSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, 7421 DL, IndexVT, Index); 7422 } 7423 7424 unsigned Scale = cast<ConstantSDNode>(ScaleOp)->getZExtValue(); 7425 if (IsIndexScaled && Scale != 1) { 7426 // Manually scale the indices by the element size. 7427 // TODO: Sanitize the scale operand here? 7428 // TODO: For VP nodes, should we use VP_SHL here? 7429 assert(isPowerOf2_32(Scale) && "Expecting power-of-two types"); 7430 SDValue SplatScale = DAG.getConstant(Log2_32(Scale), DL, IndexVT); 7431 Index = DAG.getNode(ISD::SHL, DL, IndexVT, Index, SplatScale); 7432 } 7433 7434 ISD::MemIndexType NewIndexTy = ISD::UNSIGNED_UNSCALED; 7435 if (const auto *VPGN = dyn_cast<VPGatherSDNode>(N)) 7436 return DAG.getGatherVP(N->getVTList(), VPGN->getMemoryVT(), DL, 7437 {VPGN->getChain(), VPGN->getBasePtr(), Index, 7438 VPGN->getScale(), VPGN->getMask(), 7439 VPGN->getVectorLength()}, 7440 VPGN->getMemOperand(), NewIndexTy); 7441 if (const auto *VPSN = dyn_cast<VPScatterSDNode>(N)) 7442 return DAG.getScatterVP(N->getVTList(), VPSN->getMemoryVT(), DL, 7443 {VPSN->getChain(), VPSN->getValue(), 7444 VPSN->getBasePtr(), Index, VPSN->getScale(), 7445 VPSN->getMask(), VPSN->getVectorLength()}, 7446 VPSN->getMemOperand(), NewIndexTy); 7447 if (const auto *MGN = dyn_cast<MaskedGatherSDNode>(N)) 7448 return DAG.getMaskedGather( 7449 N->getVTList(), MGN->getMemoryVT(), DL, 7450 {MGN->getChain(), MGN->getPassThru(), MGN->getMask(), 7451 MGN->getBasePtr(), Index, MGN->getScale()}, 7452 MGN->getMemOperand(), NewIndexTy, MGN->getExtensionType()); 7453 const auto *MSN = cast<MaskedScatterSDNode>(N); 7454 return DAG.getMaskedScatter( 7455 N->getVTList(), MSN->getMemoryVT(), DL, 7456 {MSN->getChain(), MSN->getValue(), MSN->getMask(), MSN->getBasePtr(), 7457 Index, MSN->getScale()}, 7458 MSN->getMemOperand(), NewIndexTy, MSN->isTruncatingStore()); 7459 } 7460 case RISCVISD::SRA_VL: 7461 case RISCVISD::SRL_VL: 7462 case RISCVISD::SHL_VL: { 7463 SDValue ShAmt = N->getOperand(1); 7464 if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) { 7465 // We don't need the upper 32 bits of a 64-bit element for a shift amount. 7466 SDLoc DL(N); 7467 SDValue VL = N->getOperand(3); 7468 EVT VT = N->getValueType(0); 7469 ShAmt = 7470 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, ShAmt.getOperand(0), VL); 7471 return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt, 7472 N->getOperand(2), N->getOperand(3)); 7473 } 7474 break; 7475 } 7476 case ISD::SRA: 7477 case ISD::SRL: 7478 case ISD::SHL: { 7479 SDValue ShAmt = N->getOperand(1); 7480 if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) { 7481 // We don't need the upper 32 bits of a 64-bit element for a shift amount. 7482 SDLoc DL(N); 7483 EVT VT = N->getValueType(0); 7484 ShAmt = 7485 DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VT, ShAmt.getOperand(0)); 7486 return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt); 7487 } 7488 break; 7489 } 7490 case RISCVISD::MUL_VL: { 7491 SDValue Op0 = N->getOperand(0); 7492 SDValue Op1 = N->getOperand(1); 7493 if (SDValue V = combineMUL_VLToVWMUL(N, Op0, Op1, DAG)) 7494 return V; 7495 if (SDValue V = combineMUL_VLToVWMUL(N, Op1, Op0, DAG)) 7496 return V; 7497 return SDValue(); 7498 } 7499 case ISD::STORE: { 7500 auto *Store = cast<StoreSDNode>(N); 7501 SDValue Val = Store->getValue(); 7502 // Combine store of vmv.x.s to vse with VL of 1. 7503 // FIXME: Support FP. 7504 if (Val.getOpcode() == RISCVISD::VMV_X_S) { 7505 SDValue Src = Val.getOperand(0); 7506 EVT VecVT = Src.getValueType(); 7507 EVT MemVT = Store->getMemoryVT(); 7508 // The memory VT and the element type must match. 7509 if (VecVT.getVectorElementType() == MemVT) { 7510 SDLoc DL(N); 7511 MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount()); 7512 return DAG.getStoreVP(Store->getChain(), DL, Src, Store->getBasePtr(), 7513 DAG.getConstant(1, DL, MaskVT), 7514 DAG.getConstant(1, DL, Subtarget.getXLenVT()), 7515 Store->getPointerInfo(), 7516 Store->getOriginalAlign(), 7517 Store->getMemOperand()->getFlags()); 7518 } 7519 } 7520 7521 break; 7522 } 7523 } 7524 7525 return SDValue(); 7526 } 7527 7528 bool RISCVTargetLowering::isDesirableToCommuteWithShift( 7529 const SDNode *N, CombineLevel Level) const { 7530 // The following folds are only desirable if `(OP _, c1 << c2)` can be 7531 // materialised in fewer instructions than `(OP _, c1)`: 7532 // 7533 // (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2) 7534 // (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2) 7535 SDValue N0 = N->getOperand(0); 7536 EVT Ty = N0.getValueType(); 7537 if (Ty.isScalarInteger() && 7538 (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::OR)) { 7539 auto *C1 = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 7540 auto *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1)); 7541 if (C1 && C2) { 7542 const APInt &C1Int = C1->getAPIntValue(); 7543 APInt ShiftedC1Int = C1Int << C2->getAPIntValue(); 7544 7545 // We can materialise `c1 << c2` into an add immediate, so it's "free", 7546 // and the combine should happen, to potentially allow further combines 7547 // later. 7548 if (ShiftedC1Int.getMinSignedBits() <= 64 && 7549 isLegalAddImmediate(ShiftedC1Int.getSExtValue())) 7550 return true; 7551 7552 // We can materialise `c1` in an add immediate, so it's "free", and the 7553 // combine should be prevented. 7554 if (C1Int.getMinSignedBits() <= 64 && 7555 isLegalAddImmediate(C1Int.getSExtValue())) 7556 return false; 7557 7558 // Neither constant will fit into an immediate, so find materialisation 7559 // costs. 7560 int C1Cost = RISCVMatInt::getIntMatCost(C1Int, Ty.getSizeInBits(), 7561 Subtarget.getFeatureBits(), 7562 /*CompressionCost*/true); 7563 int ShiftedC1Cost = RISCVMatInt::getIntMatCost( 7564 ShiftedC1Int, Ty.getSizeInBits(), Subtarget.getFeatureBits(), 7565 /*CompressionCost*/true); 7566 7567 // Materialising `c1` is cheaper than materialising `c1 << c2`, so the 7568 // combine should be prevented. 7569 if (C1Cost < ShiftedC1Cost) 7570 return false; 7571 } 7572 } 7573 return true; 7574 } 7575 7576 bool RISCVTargetLowering::targetShrinkDemandedConstant( 7577 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 7578 TargetLoweringOpt &TLO) const { 7579 // Delay this optimization as late as possible. 7580 if (!TLO.LegalOps) 7581 return false; 7582 7583 EVT VT = Op.getValueType(); 7584 if (VT.isVector()) 7585 return false; 7586 7587 // Only handle AND for now. 7588 if (Op.getOpcode() != ISD::AND) 7589 return false; 7590 7591 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 7592 if (!C) 7593 return false; 7594 7595 const APInt &Mask = C->getAPIntValue(); 7596 7597 // Clear all non-demanded bits initially. 7598 APInt ShrunkMask = Mask & DemandedBits; 7599 7600 // Try to make a smaller immediate by setting undemanded bits. 7601 7602 APInt ExpandedMask = Mask | ~DemandedBits; 7603 7604 auto IsLegalMask = [ShrunkMask, ExpandedMask](const APInt &Mask) -> bool { 7605 return ShrunkMask.isSubsetOf(Mask) && Mask.isSubsetOf(ExpandedMask); 7606 }; 7607 auto UseMask = [Mask, Op, VT, &TLO](const APInt &NewMask) -> bool { 7608 if (NewMask == Mask) 7609 return true; 7610 SDLoc DL(Op); 7611 SDValue NewC = TLO.DAG.getConstant(NewMask, DL, VT); 7612 SDValue NewOp = TLO.DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), NewC); 7613 return TLO.CombineTo(Op, NewOp); 7614 }; 7615 7616 // If the shrunk mask fits in sign extended 12 bits, let the target 7617 // independent code apply it. 7618 if (ShrunkMask.isSignedIntN(12)) 7619 return false; 7620 7621 // Preserve (and X, 0xffff) when zext.h is supported. 7622 if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp()) { 7623 APInt NewMask = APInt(Mask.getBitWidth(), 0xffff); 7624 if (IsLegalMask(NewMask)) 7625 return UseMask(NewMask); 7626 } 7627 7628 // Try to preserve (and X, 0xffffffff), the (zext_inreg X, i32) pattern. 7629 if (VT == MVT::i64) { 7630 APInt NewMask = APInt(64, 0xffffffff); 7631 if (IsLegalMask(NewMask)) 7632 return UseMask(NewMask); 7633 } 7634 7635 // For the remaining optimizations, we need to be able to make a negative 7636 // number through a combination of mask and undemanded bits. 7637 if (!ExpandedMask.isNegative()) 7638 return false; 7639 7640 // What is the fewest number of bits we need to represent the negative number. 7641 unsigned MinSignedBits = ExpandedMask.getMinSignedBits(); 7642 7643 // Try to make a 12 bit negative immediate. If that fails try to make a 32 7644 // bit negative immediate unless the shrunk immediate already fits in 32 bits. 7645 APInt NewMask = ShrunkMask; 7646 if (MinSignedBits <= 12) 7647 NewMask.setBitsFrom(11); 7648 else if (MinSignedBits <= 32 && !ShrunkMask.isSignedIntN(32)) 7649 NewMask.setBitsFrom(31); 7650 else 7651 return false; 7652 7653 // Check that our new mask is a subset of the demanded mask. 7654 assert(IsLegalMask(NewMask)); 7655 return UseMask(NewMask); 7656 } 7657 7658 static void computeGREV(APInt &Src, unsigned ShAmt) { 7659 ShAmt &= Src.getBitWidth() - 1; 7660 uint64_t x = Src.getZExtValue(); 7661 if (ShAmt & 1) 7662 x = ((x & 0x5555555555555555LL) << 1) | ((x & 0xAAAAAAAAAAAAAAAALL) >> 1); 7663 if (ShAmt & 2) 7664 x = ((x & 0x3333333333333333LL) << 2) | ((x & 0xCCCCCCCCCCCCCCCCLL) >> 2); 7665 if (ShAmt & 4) 7666 x = ((x & 0x0F0F0F0F0F0F0F0FLL) << 4) | ((x & 0xF0F0F0F0F0F0F0F0LL) >> 4); 7667 if (ShAmt & 8) 7668 x = ((x & 0x00FF00FF00FF00FFLL) << 8) | ((x & 0xFF00FF00FF00FF00LL) >> 8); 7669 if (ShAmt & 16) 7670 x = ((x & 0x0000FFFF0000FFFFLL) << 16) | ((x & 0xFFFF0000FFFF0000LL) >> 16); 7671 if (ShAmt & 32) 7672 x = ((x & 0x00000000FFFFFFFFLL) << 32) | ((x & 0xFFFFFFFF00000000LL) >> 32); 7673 Src = x; 7674 } 7675 7676 void RISCVTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 7677 KnownBits &Known, 7678 const APInt &DemandedElts, 7679 const SelectionDAG &DAG, 7680 unsigned Depth) const { 7681 unsigned BitWidth = Known.getBitWidth(); 7682 unsigned Opc = Op.getOpcode(); 7683 assert((Opc >= ISD::BUILTIN_OP_END || 7684 Opc == ISD::INTRINSIC_WO_CHAIN || 7685 Opc == ISD::INTRINSIC_W_CHAIN || 7686 Opc == ISD::INTRINSIC_VOID) && 7687 "Should use MaskedValueIsZero if you don't know whether Op" 7688 " is a target node!"); 7689 7690 Known.resetAll(); 7691 switch (Opc) { 7692 default: break; 7693 case RISCVISD::SELECT_CC: { 7694 Known = DAG.computeKnownBits(Op.getOperand(4), Depth + 1); 7695 // If we don't know any bits, early out. 7696 if (Known.isUnknown()) 7697 break; 7698 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(3), Depth + 1); 7699 7700 // Only known if known in both the LHS and RHS. 7701 Known = KnownBits::commonBits(Known, Known2); 7702 break; 7703 } 7704 case RISCVISD::REMUW: { 7705 KnownBits Known2; 7706 Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 7707 Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 7708 // We only care about the lower 32 bits. 7709 Known = KnownBits::urem(Known.trunc(32), Known2.trunc(32)); 7710 // Restore the original width by sign extending. 7711 Known = Known.sext(BitWidth); 7712 break; 7713 } 7714 case RISCVISD::DIVUW: { 7715 KnownBits Known2; 7716 Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 7717 Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 7718 // We only care about the lower 32 bits. 7719 Known = KnownBits::udiv(Known.trunc(32), Known2.trunc(32)); 7720 // Restore the original width by sign extending. 7721 Known = Known.sext(BitWidth); 7722 break; 7723 } 7724 case RISCVISD::CTZW: { 7725 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 7726 unsigned PossibleTZ = Known2.trunc(32).countMaxTrailingZeros(); 7727 unsigned LowBits = Log2_32(PossibleTZ) + 1; 7728 Known.Zero.setBitsFrom(LowBits); 7729 break; 7730 } 7731 case RISCVISD::CLZW: { 7732 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 7733 unsigned PossibleLZ = Known2.trunc(32).countMaxLeadingZeros(); 7734 unsigned LowBits = Log2_32(PossibleLZ) + 1; 7735 Known.Zero.setBitsFrom(LowBits); 7736 break; 7737 } 7738 case RISCVISD::GREV: 7739 case RISCVISD::GREVW: { 7740 if (auto *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 7741 Known = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 7742 if (Opc == RISCVISD::GREVW) 7743 Known = Known.trunc(32); 7744 unsigned ShAmt = C->getZExtValue(); 7745 computeGREV(Known.Zero, ShAmt); 7746 computeGREV(Known.One, ShAmt); 7747 if (Opc == RISCVISD::GREVW) 7748 Known = Known.sext(BitWidth); 7749 } 7750 break; 7751 } 7752 case RISCVISD::READ_VLENB: 7753 // We assume VLENB is at least 16 bytes. 7754 Known.Zero.setLowBits(4); 7755 // We assume VLENB is no more than 65536 / 8 bytes. 7756 Known.Zero.setBitsFrom(14); 7757 break; 7758 case ISD::INTRINSIC_W_CHAIN: { 7759 unsigned IntNo = Op.getConstantOperandVal(1); 7760 switch (IntNo) { 7761 default: 7762 // We can't do anything for most intrinsics. 7763 break; 7764 case Intrinsic::riscv_vsetvli: 7765 case Intrinsic::riscv_vsetvlimax: 7766 // Assume that VL output is positive and would fit in an int32_t. 7767 // TODO: VLEN might be capped at 16 bits in a future V spec update. 7768 if (BitWidth >= 32) 7769 Known.Zero.setBitsFrom(31); 7770 break; 7771 } 7772 break; 7773 } 7774 } 7775 } 7776 7777 unsigned RISCVTargetLowering::ComputeNumSignBitsForTargetNode( 7778 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 7779 unsigned Depth) const { 7780 switch (Op.getOpcode()) { 7781 default: 7782 break; 7783 case RISCVISD::SELECT_CC: { 7784 unsigned Tmp = DAG.ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth + 1); 7785 if (Tmp == 1) return 1; // Early out. 7786 unsigned Tmp2 = DAG.ComputeNumSignBits(Op.getOperand(4), DemandedElts, Depth + 1); 7787 return std::min(Tmp, Tmp2); 7788 } 7789 case RISCVISD::SLLW: 7790 case RISCVISD::SRAW: 7791 case RISCVISD::SRLW: 7792 case RISCVISD::DIVW: 7793 case RISCVISD::DIVUW: 7794 case RISCVISD::REMUW: 7795 case RISCVISD::ROLW: 7796 case RISCVISD::RORW: 7797 case RISCVISD::GREVW: 7798 case RISCVISD::GORCW: 7799 case RISCVISD::FSLW: 7800 case RISCVISD::FSRW: 7801 case RISCVISD::SHFLW: 7802 case RISCVISD::UNSHFLW: 7803 case RISCVISD::BCOMPRESSW: 7804 case RISCVISD::BDECOMPRESSW: 7805 case RISCVISD::FCVT_W_RV64: 7806 case RISCVISD::FCVT_WU_RV64: 7807 case RISCVISD::STRICT_FCVT_W_RV64: 7808 case RISCVISD::STRICT_FCVT_WU_RV64: 7809 // TODO: As the result is sign-extended, this is conservatively correct. A 7810 // more precise answer could be calculated for SRAW depending on known 7811 // bits in the shift amount. 7812 return 33; 7813 case RISCVISD::SHFL: 7814 case RISCVISD::UNSHFL: { 7815 // There is no SHFLIW, but a i64 SHFLI with bit 4 of the control word 7816 // cleared doesn't affect bit 31. The upper 32 bits will be shuffled, but 7817 // will stay within the upper 32 bits. If there were more than 32 sign bits 7818 // before there will be at least 33 sign bits after. 7819 if (Op.getValueType() == MVT::i64 && 7820 isa<ConstantSDNode>(Op.getOperand(1)) && 7821 (Op.getConstantOperandVal(1) & 0x10) == 0) { 7822 unsigned Tmp = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1); 7823 if (Tmp > 32) 7824 return 33; 7825 } 7826 break; 7827 } 7828 case RISCVISD::VMV_X_S: 7829 // The number of sign bits of the scalar result is computed by obtaining the 7830 // element type of the input vector operand, subtracting its width from the 7831 // XLEN, and then adding one (sign bit within the element type). If the 7832 // element type is wider than XLen, the least-significant XLEN bits are 7833 // taken. 7834 if (Op.getOperand(0).getScalarValueSizeInBits() > Subtarget.getXLen()) 7835 return 1; 7836 return Subtarget.getXLen() - Op.getOperand(0).getScalarValueSizeInBits() + 1; 7837 } 7838 7839 return 1; 7840 } 7841 7842 static MachineBasicBlock *emitReadCycleWidePseudo(MachineInstr &MI, 7843 MachineBasicBlock *BB) { 7844 assert(MI.getOpcode() == RISCV::ReadCycleWide && "Unexpected instruction"); 7845 7846 // To read the 64-bit cycle CSR on a 32-bit target, we read the two halves. 7847 // Should the count have wrapped while it was being read, we need to try 7848 // again. 7849 // ... 7850 // read: 7851 // rdcycleh x3 # load high word of cycle 7852 // rdcycle x2 # load low word of cycle 7853 // rdcycleh x4 # load high word of cycle 7854 // bne x3, x4, read # check if high word reads match, otherwise try again 7855 // ... 7856 7857 MachineFunction &MF = *BB->getParent(); 7858 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 7859 MachineFunction::iterator It = ++BB->getIterator(); 7860 7861 MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB); 7862 MF.insert(It, LoopMBB); 7863 7864 MachineBasicBlock *DoneMBB = MF.CreateMachineBasicBlock(LLVM_BB); 7865 MF.insert(It, DoneMBB); 7866 7867 // Transfer the remainder of BB and its successor edges to DoneMBB. 7868 DoneMBB->splice(DoneMBB->begin(), BB, 7869 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 7870 DoneMBB->transferSuccessorsAndUpdatePHIs(BB); 7871 7872 BB->addSuccessor(LoopMBB); 7873 7874 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 7875 Register ReadAgainReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 7876 Register LoReg = MI.getOperand(0).getReg(); 7877 Register HiReg = MI.getOperand(1).getReg(); 7878 DebugLoc DL = MI.getDebugLoc(); 7879 7880 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 7881 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), HiReg) 7882 .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding) 7883 .addReg(RISCV::X0); 7884 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), LoReg) 7885 .addImm(RISCVSysReg::lookupSysRegByName("CYCLE")->Encoding) 7886 .addReg(RISCV::X0); 7887 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), ReadAgainReg) 7888 .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding) 7889 .addReg(RISCV::X0); 7890 7891 BuildMI(LoopMBB, DL, TII->get(RISCV::BNE)) 7892 .addReg(HiReg) 7893 .addReg(ReadAgainReg) 7894 .addMBB(LoopMBB); 7895 7896 LoopMBB->addSuccessor(LoopMBB); 7897 LoopMBB->addSuccessor(DoneMBB); 7898 7899 MI.eraseFromParent(); 7900 7901 return DoneMBB; 7902 } 7903 7904 static MachineBasicBlock *emitSplitF64Pseudo(MachineInstr &MI, 7905 MachineBasicBlock *BB) { 7906 assert(MI.getOpcode() == RISCV::SplitF64Pseudo && "Unexpected instruction"); 7907 7908 MachineFunction &MF = *BB->getParent(); 7909 DebugLoc DL = MI.getDebugLoc(); 7910 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 7911 const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo(); 7912 Register LoReg = MI.getOperand(0).getReg(); 7913 Register HiReg = MI.getOperand(1).getReg(); 7914 Register SrcReg = MI.getOperand(2).getReg(); 7915 const TargetRegisterClass *SrcRC = &RISCV::FPR64RegClass; 7916 int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF); 7917 7918 TII.storeRegToStackSlot(*BB, MI, SrcReg, MI.getOperand(2).isKill(), FI, SrcRC, 7919 RI); 7920 MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI); 7921 MachineMemOperand *MMOLo = 7922 MF.getMachineMemOperand(MPI, MachineMemOperand::MOLoad, 4, Align(8)); 7923 MachineMemOperand *MMOHi = MF.getMachineMemOperand( 7924 MPI.getWithOffset(4), MachineMemOperand::MOLoad, 4, Align(8)); 7925 BuildMI(*BB, MI, DL, TII.get(RISCV::LW), LoReg) 7926 .addFrameIndex(FI) 7927 .addImm(0) 7928 .addMemOperand(MMOLo); 7929 BuildMI(*BB, MI, DL, TII.get(RISCV::LW), HiReg) 7930 .addFrameIndex(FI) 7931 .addImm(4) 7932 .addMemOperand(MMOHi); 7933 MI.eraseFromParent(); // The pseudo instruction is gone now. 7934 return BB; 7935 } 7936 7937 static MachineBasicBlock *emitBuildPairF64Pseudo(MachineInstr &MI, 7938 MachineBasicBlock *BB) { 7939 assert(MI.getOpcode() == RISCV::BuildPairF64Pseudo && 7940 "Unexpected instruction"); 7941 7942 MachineFunction &MF = *BB->getParent(); 7943 DebugLoc DL = MI.getDebugLoc(); 7944 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 7945 const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo(); 7946 Register DstReg = MI.getOperand(0).getReg(); 7947 Register LoReg = MI.getOperand(1).getReg(); 7948 Register HiReg = MI.getOperand(2).getReg(); 7949 const TargetRegisterClass *DstRC = &RISCV::FPR64RegClass; 7950 int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF); 7951 7952 MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI); 7953 MachineMemOperand *MMOLo = 7954 MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Align(8)); 7955 MachineMemOperand *MMOHi = MF.getMachineMemOperand( 7956 MPI.getWithOffset(4), MachineMemOperand::MOStore, 4, Align(8)); 7957 BuildMI(*BB, MI, DL, TII.get(RISCV::SW)) 7958 .addReg(LoReg, getKillRegState(MI.getOperand(1).isKill())) 7959 .addFrameIndex(FI) 7960 .addImm(0) 7961 .addMemOperand(MMOLo); 7962 BuildMI(*BB, MI, DL, TII.get(RISCV::SW)) 7963 .addReg(HiReg, getKillRegState(MI.getOperand(2).isKill())) 7964 .addFrameIndex(FI) 7965 .addImm(4) 7966 .addMemOperand(MMOHi); 7967 TII.loadRegFromStackSlot(*BB, MI, DstReg, FI, DstRC, RI); 7968 MI.eraseFromParent(); // The pseudo instruction is gone now. 7969 return BB; 7970 } 7971 7972 static bool isSelectPseudo(MachineInstr &MI) { 7973 switch (MI.getOpcode()) { 7974 default: 7975 return false; 7976 case RISCV::Select_GPR_Using_CC_GPR: 7977 case RISCV::Select_FPR16_Using_CC_GPR: 7978 case RISCV::Select_FPR32_Using_CC_GPR: 7979 case RISCV::Select_FPR64_Using_CC_GPR: 7980 return true; 7981 } 7982 } 7983 7984 static MachineBasicBlock *emitSelectPseudo(MachineInstr &MI, 7985 MachineBasicBlock *BB, 7986 const RISCVSubtarget &Subtarget) { 7987 // To "insert" Select_* instructions, we actually have to insert the triangle 7988 // control-flow pattern. The incoming instructions know the destination vreg 7989 // to set, the condition code register to branch on, the true/false values to 7990 // select between, and the condcode to use to select the appropriate branch. 7991 // 7992 // We produce the following control flow: 7993 // HeadMBB 7994 // | \ 7995 // | IfFalseMBB 7996 // | / 7997 // TailMBB 7998 // 7999 // When we find a sequence of selects we attempt to optimize their emission 8000 // by sharing the control flow. Currently we only handle cases where we have 8001 // multiple selects with the exact same condition (same LHS, RHS and CC). 8002 // The selects may be interleaved with other instructions if the other 8003 // instructions meet some requirements we deem safe: 8004 // - They are debug instructions. Otherwise, 8005 // - They do not have side-effects, do not access memory and their inputs do 8006 // not depend on the results of the select pseudo-instructions. 8007 // The TrueV/FalseV operands of the selects cannot depend on the result of 8008 // previous selects in the sequence. 8009 // These conditions could be further relaxed. See the X86 target for a 8010 // related approach and more information. 8011 Register LHS = MI.getOperand(1).getReg(); 8012 Register RHS = MI.getOperand(2).getReg(); 8013 auto CC = static_cast<RISCVCC::CondCode>(MI.getOperand(3).getImm()); 8014 8015 SmallVector<MachineInstr *, 4> SelectDebugValues; 8016 SmallSet<Register, 4> SelectDests; 8017 SelectDests.insert(MI.getOperand(0).getReg()); 8018 8019 MachineInstr *LastSelectPseudo = &MI; 8020 8021 for (auto E = BB->end(), SequenceMBBI = MachineBasicBlock::iterator(MI); 8022 SequenceMBBI != E; ++SequenceMBBI) { 8023 if (SequenceMBBI->isDebugInstr()) 8024 continue; 8025 else if (isSelectPseudo(*SequenceMBBI)) { 8026 if (SequenceMBBI->getOperand(1).getReg() != LHS || 8027 SequenceMBBI->getOperand(2).getReg() != RHS || 8028 SequenceMBBI->getOperand(3).getImm() != CC || 8029 SelectDests.count(SequenceMBBI->getOperand(4).getReg()) || 8030 SelectDests.count(SequenceMBBI->getOperand(5).getReg())) 8031 break; 8032 LastSelectPseudo = &*SequenceMBBI; 8033 SequenceMBBI->collectDebugValues(SelectDebugValues); 8034 SelectDests.insert(SequenceMBBI->getOperand(0).getReg()); 8035 } else { 8036 if (SequenceMBBI->hasUnmodeledSideEffects() || 8037 SequenceMBBI->mayLoadOrStore()) 8038 break; 8039 if (llvm::any_of(SequenceMBBI->operands(), [&](MachineOperand &MO) { 8040 return MO.isReg() && MO.isUse() && SelectDests.count(MO.getReg()); 8041 })) 8042 break; 8043 } 8044 } 8045 8046 const RISCVInstrInfo &TII = *Subtarget.getInstrInfo(); 8047 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 8048 DebugLoc DL = MI.getDebugLoc(); 8049 MachineFunction::iterator I = ++BB->getIterator(); 8050 8051 MachineBasicBlock *HeadMBB = BB; 8052 MachineFunction *F = BB->getParent(); 8053 MachineBasicBlock *TailMBB = F->CreateMachineBasicBlock(LLVM_BB); 8054 MachineBasicBlock *IfFalseMBB = F->CreateMachineBasicBlock(LLVM_BB); 8055 8056 F->insert(I, IfFalseMBB); 8057 F->insert(I, TailMBB); 8058 8059 // Transfer debug instructions associated with the selects to TailMBB. 8060 for (MachineInstr *DebugInstr : SelectDebugValues) { 8061 TailMBB->push_back(DebugInstr->removeFromParent()); 8062 } 8063 8064 // Move all instructions after the sequence to TailMBB. 8065 TailMBB->splice(TailMBB->end(), HeadMBB, 8066 std::next(LastSelectPseudo->getIterator()), HeadMBB->end()); 8067 // Update machine-CFG edges by transferring all successors of the current 8068 // block to the new block which will contain the Phi nodes for the selects. 8069 TailMBB->transferSuccessorsAndUpdatePHIs(HeadMBB); 8070 // Set the successors for HeadMBB. 8071 HeadMBB->addSuccessor(IfFalseMBB); 8072 HeadMBB->addSuccessor(TailMBB); 8073 8074 // Insert appropriate branch. 8075 BuildMI(HeadMBB, DL, TII.getBrCond(CC)) 8076 .addReg(LHS) 8077 .addReg(RHS) 8078 .addMBB(TailMBB); 8079 8080 // IfFalseMBB just falls through to TailMBB. 8081 IfFalseMBB->addSuccessor(TailMBB); 8082 8083 // Create PHIs for all of the select pseudo-instructions. 8084 auto SelectMBBI = MI.getIterator(); 8085 auto SelectEnd = std::next(LastSelectPseudo->getIterator()); 8086 auto InsertionPoint = TailMBB->begin(); 8087 while (SelectMBBI != SelectEnd) { 8088 auto Next = std::next(SelectMBBI); 8089 if (isSelectPseudo(*SelectMBBI)) { 8090 // %Result = phi [ %TrueValue, HeadMBB ], [ %FalseValue, IfFalseMBB ] 8091 BuildMI(*TailMBB, InsertionPoint, SelectMBBI->getDebugLoc(), 8092 TII.get(RISCV::PHI), SelectMBBI->getOperand(0).getReg()) 8093 .addReg(SelectMBBI->getOperand(4).getReg()) 8094 .addMBB(HeadMBB) 8095 .addReg(SelectMBBI->getOperand(5).getReg()) 8096 .addMBB(IfFalseMBB); 8097 SelectMBBI->eraseFromParent(); 8098 } 8099 SelectMBBI = Next; 8100 } 8101 8102 F->getProperties().reset(MachineFunctionProperties::Property::NoPHIs); 8103 return TailMBB; 8104 } 8105 8106 MachineBasicBlock * 8107 RISCVTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 8108 MachineBasicBlock *BB) const { 8109 switch (MI.getOpcode()) { 8110 default: 8111 llvm_unreachable("Unexpected instr type to insert"); 8112 case RISCV::ReadCycleWide: 8113 assert(!Subtarget.is64Bit() && 8114 "ReadCycleWrite is only to be used on riscv32"); 8115 return emitReadCycleWidePseudo(MI, BB); 8116 case RISCV::Select_GPR_Using_CC_GPR: 8117 case RISCV::Select_FPR16_Using_CC_GPR: 8118 case RISCV::Select_FPR32_Using_CC_GPR: 8119 case RISCV::Select_FPR64_Using_CC_GPR: 8120 return emitSelectPseudo(MI, BB, Subtarget); 8121 case RISCV::BuildPairF64Pseudo: 8122 return emitBuildPairF64Pseudo(MI, BB); 8123 case RISCV::SplitF64Pseudo: 8124 return emitSplitF64Pseudo(MI, BB); 8125 } 8126 } 8127 8128 void RISCVTargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI, 8129 SDNode *Node) const { 8130 // Add FRM dependency to any instructions with dynamic rounding mode. 8131 unsigned Opc = MI.getOpcode(); 8132 auto Idx = RISCV::getNamedOperandIdx(Opc, RISCV::OpName::frm); 8133 if (Idx < 0) 8134 return; 8135 if (MI.getOperand(Idx).getImm() != RISCVFPRndMode::DYN) 8136 return; 8137 // If the instruction already reads FRM, don't add another read. 8138 if (MI.readsRegister(RISCV::FRM)) 8139 return; 8140 MI.addOperand( 8141 MachineOperand::CreateReg(RISCV::FRM, /*isDef*/ false, /*isImp*/ true)); 8142 } 8143 8144 // Calling Convention Implementation. 8145 // The expectations for frontend ABI lowering vary from target to target. 8146 // Ideally, an LLVM frontend would be able to avoid worrying about many ABI 8147 // details, but this is a longer term goal. For now, we simply try to keep the 8148 // role of the frontend as simple and well-defined as possible. The rules can 8149 // be summarised as: 8150 // * Never split up large scalar arguments. We handle them here. 8151 // * If a hardfloat calling convention is being used, and the struct may be 8152 // passed in a pair of registers (fp+fp, int+fp), and both registers are 8153 // available, then pass as two separate arguments. If either the GPRs or FPRs 8154 // are exhausted, then pass according to the rule below. 8155 // * If a struct could never be passed in registers or directly in a stack 8156 // slot (as it is larger than 2*XLEN and the floating point rules don't 8157 // apply), then pass it using a pointer with the byval attribute. 8158 // * If a struct is less than 2*XLEN, then coerce to either a two-element 8159 // word-sized array or a 2*XLEN scalar (depending on alignment). 8160 // * The frontend can determine whether a struct is returned by reference or 8161 // not based on its size and fields. If it will be returned by reference, the 8162 // frontend must modify the prototype so a pointer with the sret annotation is 8163 // passed as the first argument. This is not necessary for large scalar 8164 // returns. 8165 // * Struct return values and varargs should be coerced to structs containing 8166 // register-size fields in the same situations they would be for fixed 8167 // arguments. 8168 8169 static const MCPhysReg ArgGPRs[] = { 8170 RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, 8171 RISCV::X14, RISCV::X15, RISCV::X16, RISCV::X17 8172 }; 8173 static const MCPhysReg ArgFPR16s[] = { 8174 RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, 8175 RISCV::F14_H, RISCV::F15_H, RISCV::F16_H, RISCV::F17_H 8176 }; 8177 static const MCPhysReg ArgFPR32s[] = { 8178 RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, 8179 RISCV::F14_F, RISCV::F15_F, RISCV::F16_F, RISCV::F17_F 8180 }; 8181 static const MCPhysReg ArgFPR64s[] = { 8182 RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, 8183 RISCV::F14_D, RISCV::F15_D, RISCV::F16_D, RISCV::F17_D 8184 }; 8185 // This is an interim calling convention and it may be changed in the future. 8186 static const MCPhysReg ArgVRs[] = { 8187 RISCV::V8, RISCV::V9, RISCV::V10, RISCV::V11, RISCV::V12, RISCV::V13, 8188 RISCV::V14, RISCV::V15, RISCV::V16, RISCV::V17, RISCV::V18, RISCV::V19, 8189 RISCV::V20, RISCV::V21, RISCV::V22, RISCV::V23}; 8190 static const MCPhysReg ArgVRM2s[] = {RISCV::V8M2, RISCV::V10M2, RISCV::V12M2, 8191 RISCV::V14M2, RISCV::V16M2, RISCV::V18M2, 8192 RISCV::V20M2, RISCV::V22M2}; 8193 static const MCPhysReg ArgVRM4s[] = {RISCV::V8M4, RISCV::V12M4, RISCV::V16M4, 8194 RISCV::V20M4}; 8195 static const MCPhysReg ArgVRM8s[] = {RISCV::V8M8, RISCV::V16M8}; 8196 8197 // Pass a 2*XLEN argument that has been split into two XLEN values through 8198 // registers or the stack as necessary. 8199 static bool CC_RISCVAssign2XLen(unsigned XLen, CCState &State, CCValAssign VA1, 8200 ISD::ArgFlagsTy ArgFlags1, unsigned ValNo2, 8201 MVT ValVT2, MVT LocVT2, 8202 ISD::ArgFlagsTy ArgFlags2) { 8203 unsigned XLenInBytes = XLen / 8; 8204 if (Register Reg = State.AllocateReg(ArgGPRs)) { 8205 // At least one half can be passed via register. 8206 State.addLoc(CCValAssign::getReg(VA1.getValNo(), VA1.getValVT(), Reg, 8207 VA1.getLocVT(), CCValAssign::Full)); 8208 } else { 8209 // Both halves must be passed on the stack, with proper alignment. 8210 Align StackAlign = 8211 std::max(Align(XLenInBytes), ArgFlags1.getNonZeroOrigAlign()); 8212 State.addLoc( 8213 CCValAssign::getMem(VA1.getValNo(), VA1.getValVT(), 8214 State.AllocateStack(XLenInBytes, StackAlign), 8215 VA1.getLocVT(), CCValAssign::Full)); 8216 State.addLoc(CCValAssign::getMem( 8217 ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)), 8218 LocVT2, CCValAssign::Full)); 8219 return false; 8220 } 8221 8222 if (Register Reg = State.AllocateReg(ArgGPRs)) { 8223 // The second half can also be passed via register. 8224 State.addLoc( 8225 CCValAssign::getReg(ValNo2, ValVT2, Reg, LocVT2, CCValAssign::Full)); 8226 } else { 8227 // The second half is passed via the stack, without additional alignment. 8228 State.addLoc(CCValAssign::getMem( 8229 ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)), 8230 LocVT2, CCValAssign::Full)); 8231 } 8232 8233 return false; 8234 } 8235 8236 static unsigned allocateRVVReg(MVT ValVT, unsigned ValNo, 8237 Optional<unsigned> FirstMaskArgument, 8238 CCState &State, const RISCVTargetLowering &TLI) { 8239 const TargetRegisterClass *RC = TLI.getRegClassFor(ValVT); 8240 if (RC == &RISCV::VRRegClass) { 8241 // Assign the first mask argument to V0. 8242 // This is an interim calling convention and it may be changed in the 8243 // future. 8244 if (FirstMaskArgument.hasValue() && ValNo == FirstMaskArgument.getValue()) 8245 return State.AllocateReg(RISCV::V0); 8246 return State.AllocateReg(ArgVRs); 8247 } 8248 if (RC == &RISCV::VRM2RegClass) 8249 return State.AllocateReg(ArgVRM2s); 8250 if (RC == &RISCV::VRM4RegClass) 8251 return State.AllocateReg(ArgVRM4s); 8252 if (RC == &RISCV::VRM8RegClass) 8253 return State.AllocateReg(ArgVRM8s); 8254 llvm_unreachable("Unhandled register class for ValueType"); 8255 } 8256 8257 // Implements the RISC-V calling convention. Returns true upon failure. 8258 static bool CC_RISCV(const DataLayout &DL, RISCVABI::ABI ABI, unsigned ValNo, 8259 MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, 8260 ISD::ArgFlagsTy ArgFlags, CCState &State, bool IsFixed, 8261 bool IsRet, Type *OrigTy, const RISCVTargetLowering &TLI, 8262 Optional<unsigned> FirstMaskArgument) { 8263 unsigned XLen = DL.getLargestLegalIntTypeSizeInBits(); 8264 assert(XLen == 32 || XLen == 64); 8265 MVT XLenVT = XLen == 32 ? MVT::i32 : MVT::i64; 8266 8267 // Any return value split in to more than two values can't be returned 8268 // directly. Vectors are returned via the available vector registers. 8269 if (!LocVT.isVector() && IsRet && ValNo > 1) 8270 return true; 8271 8272 // UseGPRForF16_F32 if targeting one of the soft-float ABIs, if passing a 8273 // variadic argument, or if no F16/F32 argument registers are available. 8274 bool UseGPRForF16_F32 = true; 8275 // UseGPRForF64 if targeting soft-float ABIs or an FLEN=32 ABI, if passing a 8276 // variadic argument, or if no F64 argument registers are available. 8277 bool UseGPRForF64 = true; 8278 8279 switch (ABI) { 8280 default: 8281 llvm_unreachable("Unexpected ABI"); 8282 case RISCVABI::ABI_ILP32: 8283 case RISCVABI::ABI_LP64: 8284 break; 8285 case RISCVABI::ABI_ILP32F: 8286 case RISCVABI::ABI_LP64F: 8287 UseGPRForF16_F32 = !IsFixed; 8288 break; 8289 case RISCVABI::ABI_ILP32D: 8290 case RISCVABI::ABI_LP64D: 8291 UseGPRForF16_F32 = !IsFixed; 8292 UseGPRForF64 = !IsFixed; 8293 break; 8294 } 8295 8296 // FPR16, FPR32, and FPR64 alias each other. 8297 if (State.getFirstUnallocated(ArgFPR32s) == array_lengthof(ArgFPR32s)) { 8298 UseGPRForF16_F32 = true; 8299 UseGPRForF64 = true; 8300 } 8301 8302 // From this point on, rely on UseGPRForF16_F32, UseGPRForF64 and 8303 // similar local variables rather than directly checking against the target 8304 // ABI. 8305 8306 if (UseGPRForF16_F32 && (ValVT == MVT::f16 || ValVT == MVT::f32)) { 8307 LocVT = XLenVT; 8308 LocInfo = CCValAssign::BCvt; 8309 } else if (UseGPRForF64 && XLen == 64 && ValVT == MVT::f64) { 8310 LocVT = MVT::i64; 8311 LocInfo = CCValAssign::BCvt; 8312 } 8313 8314 // If this is a variadic argument, the RISC-V calling convention requires 8315 // that it is assigned an 'even' or 'aligned' register if it has 8-byte 8316 // alignment (RV32) or 16-byte alignment (RV64). An aligned register should 8317 // be used regardless of whether the original argument was split during 8318 // legalisation or not. The argument will not be passed by registers if the 8319 // original type is larger than 2*XLEN, so the register alignment rule does 8320 // not apply. 8321 unsigned TwoXLenInBytes = (2 * XLen) / 8; 8322 if (!IsFixed && ArgFlags.getNonZeroOrigAlign() == TwoXLenInBytes && 8323 DL.getTypeAllocSize(OrigTy) == TwoXLenInBytes) { 8324 unsigned RegIdx = State.getFirstUnallocated(ArgGPRs); 8325 // Skip 'odd' register if necessary. 8326 if (RegIdx != array_lengthof(ArgGPRs) && RegIdx % 2 == 1) 8327 State.AllocateReg(ArgGPRs); 8328 } 8329 8330 SmallVectorImpl<CCValAssign> &PendingLocs = State.getPendingLocs(); 8331 SmallVectorImpl<ISD::ArgFlagsTy> &PendingArgFlags = 8332 State.getPendingArgFlags(); 8333 8334 assert(PendingLocs.size() == PendingArgFlags.size() && 8335 "PendingLocs and PendingArgFlags out of sync"); 8336 8337 // Handle passing f64 on RV32D with a soft float ABI or when floating point 8338 // registers are exhausted. 8339 if (UseGPRForF64 && XLen == 32 && ValVT == MVT::f64) { 8340 assert(!ArgFlags.isSplit() && PendingLocs.empty() && 8341 "Can't lower f64 if it is split"); 8342 // Depending on available argument GPRS, f64 may be passed in a pair of 8343 // GPRs, split between a GPR and the stack, or passed completely on the 8344 // stack. LowerCall/LowerFormalArguments/LowerReturn must recognise these 8345 // cases. 8346 Register Reg = State.AllocateReg(ArgGPRs); 8347 LocVT = MVT::i32; 8348 if (!Reg) { 8349 unsigned StackOffset = State.AllocateStack(8, Align(8)); 8350 State.addLoc( 8351 CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 8352 return false; 8353 } 8354 if (!State.AllocateReg(ArgGPRs)) 8355 State.AllocateStack(4, Align(4)); 8356 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 8357 return false; 8358 } 8359 8360 // Fixed-length vectors are located in the corresponding scalable-vector 8361 // container types. 8362 if (ValVT.isFixedLengthVector()) 8363 LocVT = TLI.getContainerForFixedLengthVector(LocVT); 8364 8365 // Split arguments might be passed indirectly, so keep track of the pending 8366 // values. Split vectors are passed via a mix of registers and indirectly, so 8367 // treat them as we would any other argument. 8368 if (ValVT.isScalarInteger() && (ArgFlags.isSplit() || !PendingLocs.empty())) { 8369 LocVT = XLenVT; 8370 LocInfo = CCValAssign::Indirect; 8371 PendingLocs.push_back( 8372 CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo)); 8373 PendingArgFlags.push_back(ArgFlags); 8374 if (!ArgFlags.isSplitEnd()) { 8375 return false; 8376 } 8377 } 8378 8379 // If the split argument only had two elements, it should be passed directly 8380 // in registers or on the stack. 8381 if (ValVT.isScalarInteger() && ArgFlags.isSplitEnd() && 8382 PendingLocs.size() <= 2) { 8383 assert(PendingLocs.size() == 2 && "Unexpected PendingLocs.size()"); 8384 // Apply the normal calling convention rules to the first half of the 8385 // split argument. 8386 CCValAssign VA = PendingLocs[0]; 8387 ISD::ArgFlagsTy AF = PendingArgFlags[0]; 8388 PendingLocs.clear(); 8389 PendingArgFlags.clear(); 8390 return CC_RISCVAssign2XLen(XLen, State, VA, AF, ValNo, ValVT, LocVT, 8391 ArgFlags); 8392 } 8393 8394 // Allocate to a register if possible, or else a stack slot. 8395 Register Reg; 8396 unsigned StoreSizeBytes = XLen / 8; 8397 Align StackAlign = Align(XLen / 8); 8398 8399 if (ValVT == MVT::f16 && !UseGPRForF16_F32) 8400 Reg = State.AllocateReg(ArgFPR16s); 8401 else if (ValVT == MVT::f32 && !UseGPRForF16_F32) 8402 Reg = State.AllocateReg(ArgFPR32s); 8403 else if (ValVT == MVT::f64 && !UseGPRForF64) 8404 Reg = State.AllocateReg(ArgFPR64s); 8405 else if (ValVT.isVector()) { 8406 Reg = allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI); 8407 if (!Reg) { 8408 // For return values, the vector must be passed fully via registers or 8409 // via the stack. 8410 // FIXME: The proposed vector ABI only mandates v8-v15 for return values, 8411 // but we're using all of them. 8412 if (IsRet) 8413 return true; 8414 // Try using a GPR to pass the address 8415 if ((Reg = State.AllocateReg(ArgGPRs))) { 8416 LocVT = XLenVT; 8417 LocInfo = CCValAssign::Indirect; 8418 } else if (ValVT.isScalableVector()) { 8419 LocVT = XLenVT; 8420 LocInfo = CCValAssign::Indirect; 8421 } else { 8422 // Pass fixed-length vectors on the stack. 8423 LocVT = ValVT; 8424 StoreSizeBytes = ValVT.getStoreSize(); 8425 // Align vectors to their element sizes, being careful for vXi1 8426 // vectors. 8427 StackAlign = MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne(); 8428 } 8429 } 8430 } else { 8431 Reg = State.AllocateReg(ArgGPRs); 8432 } 8433 8434 unsigned StackOffset = 8435 Reg ? 0 : State.AllocateStack(StoreSizeBytes, StackAlign); 8436 8437 // If we reach this point and PendingLocs is non-empty, we must be at the 8438 // end of a split argument that must be passed indirectly. 8439 if (!PendingLocs.empty()) { 8440 assert(ArgFlags.isSplitEnd() && "Expected ArgFlags.isSplitEnd()"); 8441 assert(PendingLocs.size() > 2 && "Unexpected PendingLocs.size()"); 8442 8443 for (auto &It : PendingLocs) { 8444 if (Reg) 8445 It.convertToReg(Reg); 8446 else 8447 It.convertToMem(StackOffset); 8448 State.addLoc(It); 8449 } 8450 PendingLocs.clear(); 8451 PendingArgFlags.clear(); 8452 return false; 8453 } 8454 8455 assert((!UseGPRForF16_F32 || !UseGPRForF64 || LocVT == XLenVT || 8456 (TLI.getSubtarget().hasVInstructions() && ValVT.isVector())) && 8457 "Expected an XLenVT or vector types at this stage"); 8458 8459 if (Reg) { 8460 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 8461 return false; 8462 } 8463 8464 // When a floating-point value is passed on the stack, no bit-conversion is 8465 // needed. 8466 if (ValVT.isFloatingPoint()) { 8467 LocVT = ValVT; 8468 LocInfo = CCValAssign::Full; 8469 } 8470 State.addLoc(CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 8471 return false; 8472 } 8473 8474 template <typename ArgTy> 8475 static Optional<unsigned> preAssignMask(const ArgTy &Args) { 8476 for (const auto &ArgIdx : enumerate(Args)) { 8477 MVT ArgVT = ArgIdx.value().VT; 8478 if (ArgVT.isVector() && ArgVT.getVectorElementType() == MVT::i1) 8479 return ArgIdx.index(); 8480 } 8481 return None; 8482 } 8483 8484 void RISCVTargetLowering::analyzeInputArgs( 8485 MachineFunction &MF, CCState &CCInfo, 8486 const SmallVectorImpl<ISD::InputArg> &Ins, bool IsRet, 8487 RISCVCCAssignFn Fn) const { 8488 unsigned NumArgs = Ins.size(); 8489 FunctionType *FType = MF.getFunction().getFunctionType(); 8490 8491 Optional<unsigned> FirstMaskArgument; 8492 if (Subtarget.hasVInstructions()) 8493 FirstMaskArgument = preAssignMask(Ins); 8494 8495 for (unsigned i = 0; i != NumArgs; ++i) { 8496 MVT ArgVT = Ins[i].VT; 8497 ISD::ArgFlagsTy ArgFlags = Ins[i].Flags; 8498 8499 Type *ArgTy = nullptr; 8500 if (IsRet) 8501 ArgTy = FType->getReturnType(); 8502 else if (Ins[i].isOrigArg()) 8503 ArgTy = FType->getParamType(Ins[i].getOrigArgIndex()); 8504 8505 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 8506 if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full, 8507 ArgFlags, CCInfo, /*IsFixed=*/true, IsRet, ArgTy, *this, 8508 FirstMaskArgument)) { 8509 LLVM_DEBUG(dbgs() << "InputArg #" << i << " has unhandled type " 8510 << EVT(ArgVT).getEVTString() << '\n'); 8511 llvm_unreachable(nullptr); 8512 } 8513 } 8514 } 8515 8516 void RISCVTargetLowering::analyzeOutputArgs( 8517 MachineFunction &MF, CCState &CCInfo, 8518 const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsRet, 8519 CallLoweringInfo *CLI, RISCVCCAssignFn Fn) const { 8520 unsigned NumArgs = Outs.size(); 8521 8522 Optional<unsigned> FirstMaskArgument; 8523 if (Subtarget.hasVInstructions()) 8524 FirstMaskArgument = preAssignMask(Outs); 8525 8526 for (unsigned i = 0; i != NumArgs; i++) { 8527 MVT ArgVT = Outs[i].VT; 8528 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 8529 Type *OrigTy = CLI ? CLI->getArgs()[Outs[i].OrigArgIndex].Ty : nullptr; 8530 8531 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 8532 if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full, 8533 ArgFlags, CCInfo, Outs[i].IsFixed, IsRet, OrigTy, *this, 8534 FirstMaskArgument)) { 8535 LLVM_DEBUG(dbgs() << "OutputArg #" << i << " has unhandled type " 8536 << EVT(ArgVT).getEVTString() << "\n"); 8537 llvm_unreachable(nullptr); 8538 } 8539 } 8540 } 8541 8542 // Convert Val to a ValVT. Should not be called for CCValAssign::Indirect 8543 // values. 8544 static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDValue Val, 8545 const CCValAssign &VA, const SDLoc &DL, 8546 const RISCVSubtarget &Subtarget) { 8547 switch (VA.getLocInfo()) { 8548 default: 8549 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 8550 case CCValAssign::Full: 8551 if (VA.getValVT().isFixedLengthVector() && VA.getLocVT().isScalableVector()) 8552 Val = convertFromScalableVector(VA.getValVT(), Val, DAG, Subtarget); 8553 break; 8554 case CCValAssign::BCvt: 8555 if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16) 8556 Val = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, Val); 8557 else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) 8558 Val = DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, Val); 8559 else 8560 Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val); 8561 break; 8562 } 8563 return Val; 8564 } 8565 8566 // The caller is responsible for loading the full value if the argument is 8567 // passed with CCValAssign::Indirect. 8568 static SDValue unpackFromRegLoc(SelectionDAG &DAG, SDValue Chain, 8569 const CCValAssign &VA, const SDLoc &DL, 8570 const RISCVTargetLowering &TLI) { 8571 MachineFunction &MF = DAG.getMachineFunction(); 8572 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 8573 EVT LocVT = VA.getLocVT(); 8574 SDValue Val; 8575 const TargetRegisterClass *RC = TLI.getRegClassFor(LocVT.getSimpleVT()); 8576 Register VReg = RegInfo.createVirtualRegister(RC); 8577 RegInfo.addLiveIn(VA.getLocReg(), VReg); 8578 Val = DAG.getCopyFromReg(Chain, DL, VReg, LocVT); 8579 8580 if (VA.getLocInfo() == CCValAssign::Indirect) 8581 return Val; 8582 8583 return convertLocVTToValVT(DAG, Val, VA, DL, TLI.getSubtarget()); 8584 } 8585 8586 static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDValue Val, 8587 const CCValAssign &VA, const SDLoc &DL, 8588 const RISCVSubtarget &Subtarget) { 8589 EVT LocVT = VA.getLocVT(); 8590 8591 switch (VA.getLocInfo()) { 8592 default: 8593 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 8594 case CCValAssign::Full: 8595 if (VA.getValVT().isFixedLengthVector() && LocVT.isScalableVector()) 8596 Val = convertToScalableVector(LocVT, Val, DAG, Subtarget); 8597 break; 8598 case CCValAssign::BCvt: 8599 if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16) 8600 Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, VA.getLocVT(), Val); 8601 else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) 8602 Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Val); 8603 else 8604 Val = DAG.getNode(ISD::BITCAST, DL, LocVT, Val); 8605 break; 8606 } 8607 return Val; 8608 } 8609 8610 // The caller is responsible for loading the full value if the argument is 8611 // passed with CCValAssign::Indirect. 8612 static SDValue unpackFromMemLoc(SelectionDAG &DAG, SDValue Chain, 8613 const CCValAssign &VA, const SDLoc &DL) { 8614 MachineFunction &MF = DAG.getMachineFunction(); 8615 MachineFrameInfo &MFI = MF.getFrameInfo(); 8616 EVT LocVT = VA.getLocVT(); 8617 EVT ValVT = VA.getValVT(); 8618 EVT PtrVT = MVT::getIntegerVT(DAG.getDataLayout().getPointerSizeInBits(0)); 8619 if (ValVT.isScalableVector()) { 8620 // When the value is a scalable vector, we save the pointer which points to 8621 // the scalable vector value in the stack. The ValVT will be the pointer 8622 // type, instead of the scalable vector type. 8623 ValVT = LocVT; 8624 } 8625 int FI = MFI.CreateFixedObject(ValVT.getStoreSize(), VA.getLocMemOffset(), 8626 /*IsImmutable=*/true); 8627 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 8628 SDValue Val; 8629 8630 ISD::LoadExtType ExtType; 8631 switch (VA.getLocInfo()) { 8632 default: 8633 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 8634 case CCValAssign::Full: 8635 case CCValAssign::Indirect: 8636 case CCValAssign::BCvt: 8637 ExtType = ISD::NON_EXTLOAD; 8638 break; 8639 } 8640 Val = DAG.getExtLoad( 8641 ExtType, DL, LocVT, Chain, FIN, 8642 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), ValVT); 8643 return Val; 8644 } 8645 8646 static SDValue unpackF64OnRV32DSoftABI(SelectionDAG &DAG, SDValue Chain, 8647 const CCValAssign &VA, const SDLoc &DL) { 8648 assert(VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64 && 8649 "Unexpected VA"); 8650 MachineFunction &MF = DAG.getMachineFunction(); 8651 MachineFrameInfo &MFI = MF.getFrameInfo(); 8652 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 8653 8654 if (VA.isMemLoc()) { 8655 // f64 is passed on the stack. 8656 int FI = 8657 MFI.CreateFixedObject(8, VA.getLocMemOffset(), /*IsImmutable=*/true); 8658 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 8659 return DAG.getLoad(MVT::f64, DL, Chain, FIN, 8660 MachinePointerInfo::getFixedStack(MF, FI)); 8661 } 8662 8663 assert(VA.isRegLoc() && "Expected register VA assignment"); 8664 8665 Register LoVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 8666 RegInfo.addLiveIn(VA.getLocReg(), LoVReg); 8667 SDValue Lo = DAG.getCopyFromReg(Chain, DL, LoVReg, MVT::i32); 8668 SDValue Hi; 8669 if (VA.getLocReg() == RISCV::X17) { 8670 // Second half of f64 is passed on the stack. 8671 int FI = MFI.CreateFixedObject(4, 0, /*IsImmutable=*/true); 8672 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 8673 Hi = DAG.getLoad(MVT::i32, DL, Chain, FIN, 8674 MachinePointerInfo::getFixedStack(MF, FI)); 8675 } else { 8676 // Second half of f64 is passed in another GPR. 8677 Register HiVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 8678 RegInfo.addLiveIn(VA.getLocReg() + 1, HiVReg); 8679 Hi = DAG.getCopyFromReg(Chain, DL, HiVReg, MVT::i32); 8680 } 8681 return DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, Lo, Hi); 8682 } 8683 8684 // FastCC has less than 1% performance improvement for some particular 8685 // benchmark. But theoretically, it may has benenfit for some cases. 8686 static bool CC_RISCV_FastCC(const DataLayout &DL, RISCVABI::ABI ABI, 8687 unsigned ValNo, MVT ValVT, MVT LocVT, 8688 CCValAssign::LocInfo LocInfo, 8689 ISD::ArgFlagsTy ArgFlags, CCState &State, 8690 bool IsFixed, bool IsRet, Type *OrigTy, 8691 const RISCVTargetLowering &TLI, 8692 Optional<unsigned> FirstMaskArgument) { 8693 8694 // X5 and X6 might be used for save-restore libcall. 8695 static const MCPhysReg GPRList[] = { 8696 RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, RISCV::X14, 8697 RISCV::X15, RISCV::X16, RISCV::X17, RISCV::X7, RISCV::X28, 8698 RISCV::X29, RISCV::X30, RISCV::X31}; 8699 8700 if (LocVT == MVT::i32 || LocVT == MVT::i64) { 8701 if (unsigned Reg = State.AllocateReg(GPRList)) { 8702 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 8703 return false; 8704 } 8705 } 8706 8707 if (LocVT == MVT::f16) { 8708 static const MCPhysReg FPR16List[] = { 8709 RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, RISCV::F14_H, 8710 RISCV::F15_H, RISCV::F16_H, RISCV::F17_H, RISCV::F0_H, RISCV::F1_H, 8711 RISCV::F2_H, RISCV::F3_H, RISCV::F4_H, RISCV::F5_H, RISCV::F6_H, 8712 RISCV::F7_H, RISCV::F28_H, RISCV::F29_H, RISCV::F30_H, RISCV::F31_H}; 8713 if (unsigned Reg = State.AllocateReg(FPR16List)) { 8714 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 8715 return false; 8716 } 8717 } 8718 8719 if (LocVT == MVT::f32) { 8720 static const MCPhysReg FPR32List[] = { 8721 RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, RISCV::F14_F, 8722 RISCV::F15_F, RISCV::F16_F, RISCV::F17_F, RISCV::F0_F, RISCV::F1_F, 8723 RISCV::F2_F, RISCV::F3_F, RISCV::F4_F, RISCV::F5_F, RISCV::F6_F, 8724 RISCV::F7_F, RISCV::F28_F, RISCV::F29_F, RISCV::F30_F, RISCV::F31_F}; 8725 if (unsigned Reg = State.AllocateReg(FPR32List)) { 8726 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 8727 return false; 8728 } 8729 } 8730 8731 if (LocVT == MVT::f64) { 8732 static const MCPhysReg FPR64List[] = { 8733 RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, RISCV::F14_D, 8734 RISCV::F15_D, RISCV::F16_D, RISCV::F17_D, RISCV::F0_D, RISCV::F1_D, 8735 RISCV::F2_D, RISCV::F3_D, RISCV::F4_D, RISCV::F5_D, RISCV::F6_D, 8736 RISCV::F7_D, RISCV::F28_D, RISCV::F29_D, RISCV::F30_D, RISCV::F31_D}; 8737 if (unsigned Reg = State.AllocateReg(FPR64List)) { 8738 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 8739 return false; 8740 } 8741 } 8742 8743 if (LocVT == MVT::i32 || LocVT == MVT::f32) { 8744 unsigned Offset4 = State.AllocateStack(4, Align(4)); 8745 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset4, LocVT, LocInfo)); 8746 return false; 8747 } 8748 8749 if (LocVT == MVT::i64 || LocVT == MVT::f64) { 8750 unsigned Offset5 = State.AllocateStack(8, Align(8)); 8751 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset5, LocVT, LocInfo)); 8752 return false; 8753 } 8754 8755 if (LocVT.isVector()) { 8756 if (unsigned Reg = 8757 allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI)) { 8758 // Fixed-length vectors are located in the corresponding scalable-vector 8759 // container types. 8760 if (ValVT.isFixedLengthVector()) 8761 LocVT = TLI.getContainerForFixedLengthVector(LocVT); 8762 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 8763 } else { 8764 // Try and pass the address via a "fast" GPR. 8765 if (unsigned GPRReg = State.AllocateReg(GPRList)) { 8766 LocInfo = CCValAssign::Indirect; 8767 LocVT = TLI.getSubtarget().getXLenVT(); 8768 State.addLoc(CCValAssign::getReg(ValNo, ValVT, GPRReg, LocVT, LocInfo)); 8769 } else if (ValVT.isFixedLengthVector()) { 8770 auto StackAlign = 8771 MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne(); 8772 unsigned StackOffset = 8773 State.AllocateStack(ValVT.getStoreSize(), StackAlign); 8774 State.addLoc( 8775 CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 8776 } else { 8777 // Can't pass scalable vectors on the stack. 8778 return true; 8779 } 8780 } 8781 8782 return false; 8783 } 8784 8785 return true; // CC didn't match. 8786 } 8787 8788 static bool CC_RISCV_GHC(unsigned ValNo, MVT ValVT, MVT LocVT, 8789 CCValAssign::LocInfo LocInfo, 8790 ISD::ArgFlagsTy ArgFlags, CCState &State) { 8791 8792 if (LocVT == MVT::i32 || LocVT == MVT::i64) { 8793 // Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, R6, R7, SpLim 8794 // s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 8795 static const MCPhysReg GPRList[] = { 8796 RISCV::X9, RISCV::X18, RISCV::X19, RISCV::X20, RISCV::X21, RISCV::X22, 8797 RISCV::X23, RISCV::X24, RISCV::X25, RISCV::X26, RISCV::X27}; 8798 if (unsigned Reg = State.AllocateReg(GPRList)) { 8799 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 8800 return false; 8801 } 8802 } 8803 8804 if (LocVT == MVT::f32) { 8805 // Pass in STG registers: F1, ..., F6 8806 // fs0 ... fs5 8807 static const MCPhysReg FPR32List[] = {RISCV::F8_F, RISCV::F9_F, 8808 RISCV::F18_F, RISCV::F19_F, 8809 RISCV::F20_F, RISCV::F21_F}; 8810 if (unsigned Reg = State.AllocateReg(FPR32List)) { 8811 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 8812 return false; 8813 } 8814 } 8815 8816 if (LocVT == MVT::f64) { 8817 // Pass in STG registers: D1, ..., D6 8818 // fs6 ... fs11 8819 static const MCPhysReg FPR64List[] = {RISCV::F22_D, RISCV::F23_D, 8820 RISCV::F24_D, RISCV::F25_D, 8821 RISCV::F26_D, RISCV::F27_D}; 8822 if (unsigned Reg = State.AllocateReg(FPR64List)) { 8823 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 8824 return false; 8825 } 8826 } 8827 8828 report_fatal_error("No registers left in GHC calling convention"); 8829 return true; 8830 } 8831 8832 // Transform physical registers into virtual registers. 8833 SDValue RISCVTargetLowering::LowerFormalArguments( 8834 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 8835 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 8836 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 8837 8838 MachineFunction &MF = DAG.getMachineFunction(); 8839 8840 switch (CallConv) { 8841 default: 8842 report_fatal_error("Unsupported calling convention"); 8843 case CallingConv::C: 8844 case CallingConv::Fast: 8845 break; 8846 case CallingConv::GHC: 8847 if (!MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtF] || 8848 !MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtD]) 8849 report_fatal_error( 8850 "GHC calling convention requires the F and D instruction set extensions"); 8851 } 8852 8853 const Function &Func = MF.getFunction(); 8854 if (Func.hasFnAttribute("interrupt")) { 8855 if (!Func.arg_empty()) 8856 report_fatal_error( 8857 "Functions with the interrupt attribute cannot have arguments!"); 8858 8859 StringRef Kind = 8860 MF.getFunction().getFnAttribute("interrupt").getValueAsString(); 8861 8862 if (!(Kind == "user" || Kind == "supervisor" || Kind == "machine")) 8863 report_fatal_error( 8864 "Function interrupt attribute argument not supported!"); 8865 } 8866 8867 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 8868 MVT XLenVT = Subtarget.getXLenVT(); 8869 unsigned XLenInBytes = Subtarget.getXLen() / 8; 8870 // Used with vargs to acumulate store chains. 8871 std::vector<SDValue> OutChains; 8872 8873 // Assign locations to all of the incoming arguments. 8874 SmallVector<CCValAssign, 16> ArgLocs; 8875 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 8876 8877 if (CallConv == CallingConv::GHC) 8878 CCInfo.AnalyzeFormalArguments(Ins, CC_RISCV_GHC); 8879 else 8880 analyzeInputArgs(MF, CCInfo, Ins, /*IsRet=*/false, 8881 CallConv == CallingConv::Fast ? CC_RISCV_FastCC 8882 : CC_RISCV); 8883 8884 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 8885 CCValAssign &VA = ArgLocs[i]; 8886 SDValue ArgValue; 8887 // Passing f64 on RV32D with a soft float ABI must be handled as a special 8888 // case. 8889 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) 8890 ArgValue = unpackF64OnRV32DSoftABI(DAG, Chain, VA, DL); 8891 else if (VA.isRegLoc()) 8892 ArgValue = unpackFromRegLoc(DAG, Chain, VA, DL, *this); 8893 else 8894 ArgValue = unpackFromMemLoc(DAG, Chain, VA, DL); 8895 8896 if (VA.getLocInfo() == CCValAssign::Indirect) { 8897 // If the original argument was split and passed by reference (e.g. i128 8898 // on RV32), we need to load all parts of it here (using the same 8899 // address). Vectors may be partly split to registers and partly to the 8900 // stack, in which case the base address is partly offset and subsequent 8901 // stores are relative to that. 8902 InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue, 8903 MachinePointerInfo())); 8904 unsigned ArgIndex = Ins[i].OrigArgIndex; 8905 unsigned ArgPartOffset = Ins[i].PartOffset; 8906 assert(VA.getValVT().isVector() || ArgPartOffset == 0); 8907 while (i + 1 != e && Ins[i + 1].OrigArgIndex == ArgIndex) { 8908 CCValAssign &PartVA = ArgLocs[i + 1]; 8909 unsigned PartOffset = Ins[i + 1].PartOffset - ArgPartOffset; 8910 SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL); 8911 if (PartVA.getValVT().isScalableVector()) 8912 Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset); 8913 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, Offset); 8914 InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address, 8915 MachinePointerInfo())); 8916 ++i; 8917 } 8918 continue; 8919 } 8920 InVals.push_back(ArgValue); 8921 } 8922 8923 if (IsVarArg) { 8924 ArrayRef<MCPhysReg> ArgRegs = makeArrayRef(ArgGPRs); 8925 unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs); 8926 const TargetRegisterClass *RC = &RISCV::GPRRegClass; 8927 MachineFrameInfo &MFI = MF.getFrameInfo(); 8928 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 8929 RISCVMachineFunctionInfo *RVFI = MF.getInfo<RISCVMachineFunctionInfo>(); 8930 8931 // Offset of the first variable argument from stack pointer, and size of 8932 // the vararg save area. For now, the varargs save area is either zero or 8933 // large enough to hold a0-a7. 8934 int VaArgOffset, VarArgsSaveSize; 8935 8936 // If all registers are allocated, then all varargs must be passed on the 8937 // stack and we don't need to save any argregs. 8938 if (ArgRegs.size() == Idx) { 8939 VaArgOffset = CCInfo.getNextStackOffset(); 8940 VarArgsSaveSize = 0; 8941 } else { 8942 VarArgsSaveSize = XLenInBytes * (ArgRegs.size() - Idx); 8943 VaArgOffset = -VarArgsSaveSize; 8944 } 8945 8946 // Record the frame index of the first variable argument 8947 // which is a value necessary to VASTART. 8948 int FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true); 8949 RVFI->setVarArgsFrameIndex(FI); 8950 8951 // If saving an odd number of registers then create an extra stack slot to 8952 // ensure that the frame pointer is 2*XLEN-aligned, which in turn ensures 8953 // offsets to even-numbered registered remain 2*XLEN-aligned. 8954 if (Idx % 2) { 8955 MFI.CreateFixedObject(XLenInBytes, VaArgOffset - (int)XLenInBytes, true); 8956 VarArgsSaveSize += XLenInBytes; 8957 } 8958 8959 // Copy the integer registers that may have been used for passing varargs 8960 // to the vararg save area. 8961 for (unsigned I = Idx; I < ArgRegs.size(); 8962 ++I, VaArgOffset += XLenInBytes) { 8963 const Register Reg = RegInfo.createVirtualRegister(RC); 8964 RegInfo.addLiveIn(ArgRegs[I], Reg); 8965 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, XLenVT); 8966 FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true); 8967 SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 8968 SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff, 8969 MachinePointerInfo::getFixedStack(MF, FI)); 8970 cast<StoreSDNode>(Store.getNode()) 8971 ->getMemOperand() 8972 ->setValue((Value *)nullptr); 8973 OutChains.push_back(Store); 8974 } 8975 RVFI->setVarArgsSaveSize(VarArgsSaveSize); 8976 } 8977 8978 // All stores are grouped in one node to allow the matching between 8979 // the size of Ins and InVals. This only happens for vararg functions. 8980 if (!OutChains.empty()) { 8981 OutChains.push_back(Chain); 8982 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains); 8983 } 8984 8985 return Chain; 8986 } 8987 8988 /// isEligibleForTailCallOptimization - Check whether the call is eligible 8989 /// for tail call optimization. 8990 /// Note: This is modelled after ARM's IsEligibleForTailCallOptimization. 8991 bool RISCVTargetLowering::isEligibleForTailCallOptimization( 8992 CCState &CCInfo, CallLoweringInfo &CLI, MachineFunction &MF, 8993 const SmallVector<CCValAssign, 16> &ArgLocs) const { 8994 8995 auto &Callee = CLI.Callee; 8996 auto CalleeCC = CLI.CallConv; 8997 auto &Outs = CLI.Outs; 8998 auto &Caller = MF.getFunction(); 8999 auto CallerCC = Caller.getCallingConv(); 9000 9001 // Exception-handling functions need a special set of instructions to 9002 // indicate a return to the hardware. Tail-calling another function would 9003 // probably break this. 9004 // TODO: The "interrupt" attribute isn't currently defined by RISC-V. This 9005 // should be expanded as new function attributes are introduced. 9006 if (Caller.hasFnAttribute("interrupt")) 9007 return false; 9008 9009 // Do not tail call opt if the stack is used to pass parameters. 9010 if (CCInfo.getNextStackOffset() != 0) 9011 return false; 9012 9013 // Do not tail call opt if any parameters need to be passed indirectly. 9014 // Since long doubles (fp128) and i128 are larger than 2*XLEN, they are 9015 // passed indirectly. So the address of the value will be passed in a 9016 // register, or if not available, then the address is put on the stack. In 9017 // order to pass indirectly, space on the stack often needs to be allocated 9018 // in order to store the value. In this case the CCInfo.getNextStackOffset() 9019 // != 0 check is not enough and we need to check if any CCValAssign ArgsLocs 9020 // are passed CCValAssign::Indirect. 9021 for (auto &VA : ArgLocs) 9022 if (VA.getLocInfo() == CCValAssign::Indirect) 9023 return false; 9024 9025 // Do not tail call opt if either caller or callee uses struct return 9026 // semantics. 9027 auto IsCallerStructRet = Caller.hasStructRetAttr(); 9028 auto IsCalleeStructRet = Outs.empty() ? false : Outs[0].Flags.isSRet(); 9029 if (IsCallerStructRet || IsCalleeStructRet) 9030 return false; 9031 9032 // Externally-defined functions with weak linkage should not be 9033 // tail-called. The behaviour of branch instructions in this situation (as 9034 // used for tail calls) is implementation-defined, so we cannot rely on the 9035 // linker replacing the tail call with a return. 9036 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 9037 const GlobalValue *GV = G->getGlobal(); 9038 if (GV->hasExternalWeakLinkage()) 9039 return false; 9040 } 9041 9042 // The callee has to preserve all registers the caller needs to preserve. 9043 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 9044 const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC); 9045 if (CalleeCC != CallerCC) { 9046 const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC); 9047 if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved)) 9048 return false; 9049 } 9050 9051 // Byval parameters hand the function a pointer directly into the stack area 9052 // we want to reuse during a tail call. Working around this *is* possible 9053 // but less efficient and uglier in LowerCall. 9054 for (auto &Arg : Outs) 9055 if (Arg.Flags.isByVal()) 9056 return false; 9057 9058 return true; 9059 } 9060 9061 static Align getPrefTypeAlign(EVT VT, SelectionDAG &DAG) { 9062 return DAG.getDataLayout().getPrefTypeAlign( 9063 VT.getTypeForEVT(*DAG.getContext())); 9064 } 9065 9066 // Lower a call to a callseq_start + CALL + callseq_end chain, and add input 9067 // and output parameter nodes. 9068 SDValue RISCVTargetLowering::LowerCall(CallLoweringInfo &CLI, 9069 SmallVectorImpl<SDValue> &InVals) const { 9070 SelectionDAG &DAG = CLI.DAG; 9071 SDLoc &DL = CLI.DL; 9072 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 9073 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 9074 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 9075 SDValue Chain = CLI.Chain; 9076 SDValue Callee = CLI.Callee; 9077 bool &IsTailCall = CLI.IsTailCall; 9078 CallingConv::ID CallConv = CLI.CallConv; 9079 bool IsVarArg = CLI.IsVarArg; 9080 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 9081 MVT XLenVT = Subtarget.getXLenVT(); 9082 9083 MachineFunction &MF = DAG.getMachineFunction(); 9084 9085 // Analyze the operands of the call, assigning locations to each operand. 9086 SmallVector<CCValAssign, 16> ArgLocs; 9087 CCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 9088 9089 if (CallConv == CallingConv::GHC) 9090 ArgCCInfo.AnalyzeCallOperands(Outs, CC_RISCV_GHC); 9091 else 9092 analyzeOutputArgs(MF, ArgCCInfo, Outs, /*IsRet=*/false, &CLI, 9093 CallConv == CallingConv::Fast ? CC_RISCV_FastCC 9094 : CC_RISCV); 9095 9096 // Check if it's really possible to do a tail call. 9097 if (IsTailCall) 9098 IsTailCall = isEligibleForTailCallOptimization(ArgCCInfo, CLI, MF, ArgLocs); 9099 9100 if (IsTailCall) 9101 ++NumTailCalls; 9102 else if (CLI.CB && CLI.CB->isMustTailCall()) 9103 report_fatal_error("failed to perform tail call elimination on a call " 9104 "site marked musttail"); 9105 9106 // Get a count of how many bytes are to be pushed on the stack. 9107 unsigned NumBytes = ArgCCInfo.getNextStackOffset(); 9108 9109 // Create local copies for byval args 9110 SmallVector<SDValue, 8> ByValArgs; 9111 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 9112 ISD::ArgFlagsTy Flags = Outs[i].Flags; 9113 if (!Flags.isByVal()) 9114 continue; 9115 9116 SDValue Arg = OutVals[i]; 9117 unsigned Size = Flags.getByValSize(); 9118 Align Alignment = Flags.getNonZeroByValAlign(); 9119 9120 int FI = 9121 MF.getFrameInfo().CreateStackObject(Size, Alignment, /*isSS=*/false); 9122 SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 9123 SDValue SizeNode = DAG.getConstant(Size, DL, XLenVT); 9124 9125 Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Alignment, 9126 /*IsVolatile=*/false, 9127 /*AlwaysInline=*/false, IsTailCall, 9128 MachinePointerInfo(), MachinePointerInfo()); 9129 ByValArgs.push_back(FIPtr); 9130 } 9131 9132 if (!IsTailCall) 9133 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, CLI.DL); 9134 9135 // Copy argument values to their designated locations. 9136 SmallVector<std::pair<Register, SDValue>, 8> RegsToPass; 9137 SmallVector<SDValue, 8> MemOpChains; 9138 SDValue StackPtr; 9139 for (unsigned i = 0, j = 0, e = ArgLocs.size(); i != e; ++i) { 9140 CCValAssign &VA = ArgLocs[i]; 9141 SDValue ArgValue = OutVals[i]; 9142 ISD::ArgFlagsTy Flags = Outs[i].Flags; 9143 9144 // Handle passing f64 on RV32D with a soft float ABI as a special case. 9145 bool IsF64OnRV32DSoftABI = 9146 VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64; 9147 if (IsF64OnRV32DSoftABI && VA.isRegLoc()) { 9148 SDValue SplitF64 = DAG.getNode( 9149 RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), ArgValue); 9150 SDValue Lo = SplitF64.getValue(0); 9151 SDValue Hi = SplitF64.getValue(1); 9152 9153 Register RegLo = VA.getLocReg(); 9154 RegsToPass.push_back(std::make_pair(RegLo, Lo)); 9155 9156 if (RegLo == RISCV::X17) { 9157 // Second half of f64 is passed on the stack. 9158 // Work out the address of the stack slot. 9159 if (!StackPtr.getNode()) 9160 StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT); 9161 // Emit the store. 9162 MemOpChains.push_back( 9163 DAG.getStore(Chain, DL, Hi, StackPtr, MachinePointerInfo())); 9164 } else { 9165 // Second half of f64 is passed in another GPR. 9166 assert(RegLo < RISCV::X31 && "Invalid register pair"); 9167 Register RegHigh = RegLo + 1; 9168 RegsToPass.push_back(std::make_pair(RegHigh, Hi)); 9169 } 9170 continue; 9171 } 9172 9173 // IsF64OnRV32DSoftABI && VA.isMemLoc() is handled below in the same way 9174 // as any other MemLoc. 9175 9176 // Promote the value if needed. 9177 // For now, only handle fully promoted and indirect arguments. 9178 if (VA.getLocInfo() == CCValAssign::Indirect) { 9179 // Store the argument in a stack slot and pass its address. 9180 Align StackAlign = 9181 std::max(getPrefTypeAlign(Outs[i].ArgVT, DAG), 9182 getPrefTypeAlign(ArgValue.getValueType(), DAG)); 9183 TypeSize StoredSize = ArgValue.getValueType().getStoreSize(); 9184 // If the original argument was split (e.g. i128), we need 9185 // to store the required parts of it here (and pass just one address). 9186 // Vectors may be partly split to registers and partly to the stack, in 9187 // which case the base address is partly offset and subsequent stores are 9188 // relative to that. 9189 unsigned ArgIndex = Outs[i].OrigArgIndex; 9190 unsigned ArgPartOffset = Outs[i].PartOffset; 9191 assert(VA.getValVT().isVector() || ArgPartOffset == 0); 9192 // Calculate the total size to store. We don't have access to what we're 9193 // actually storing other than performing the loop and collecting the 9194 // info. 9195 SmallVector<std::pair<SDValue, SDValue>> Parts; 9196 while (i + 1 != e && Outs[i + 1].OrigArgIndex == ArgIndex) { 9197 SDValue PartValue = OutVals[i + 1]; 9198 unsigned PartOffset = Outs[i + 1].PartOffset - ArgPartOffset; 9199 SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL); 9200 EVT PartVT = PartValue.getValueType(); 9201 if (PartVT.isScalableVector()) 9202 Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset); 9203 StoredSize += PartVT.getStoreSize(); 9204 StackAlign = std::max(StackAlign, getPrefTypeAlign(PartVT, DAG)); 9205 Parts.push_back(std::make_pair(PartValue, Offset)); 9206 ++i; 9207 } 9208 SDValue SpillSlot = DAG.CreateStackTemporary(StoredSize, StackAlign); 9209 int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); 9210 MemOpChains.push_back( 9211 DAG.getStore(Chain, DL, ArgValue, SpillSlot, 9212 MachinePointerInfo::getFixedStack(MF, FI))); 9213 for (const auto &Part : Parts) { 9214 SDValue PartValue = Part.first; 9215 SDValue PartOffset = Part.second; 9216 SDValue Address = 9217 DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, PartOffset); 9218 MemOpChains.push_back( 9219 DAG.getStore(Chain, DL, PartValue, Address, 9220 MachinePointerInfo::getFixedStack(MF, FI))); 9221 } 9222 ArgValue = SpillSlot; 9223 } else { 9224 ArgValue = convertValVTToLocVT(DAG, ArgValue, VA, DL, Subtarget); 9225 } 9226 9227 // Use local copy if it is a byval arg. 9228 if (Flags.isByVal()) 9229 ArgValue = ByValArgs[j++]; 9230 9231 if (VA.isRegLoc()) { 9232 // Queue up the argument copies and emit them at the end. 9233 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue)); 9234 } else { 9235 assert(VA.isMemLoc() && "Argument not register or memory"); 9236 assert(!IsTailCall && "Tail call not allowed if stack is used " 9237 "for passing parameters"); 9238 9239 // Work out the address of the stack slot. 9240 if (!StackPtr.getNode()) 9241 StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT); 9242 SDValue Address = 9243 DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, 9244 DAG.getIntPtrConstant(VA.getLocMemOffset(), DL)); 9245 9246 // Emit the store. 9247 MemOpChains.push_back( 9248 DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo())); 9249 } 9250 } 9251 9252 // Join the stores, which are independent of one another. 9253 if (!MemOpChains.empty()) 9254 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); 9255 9256 SDValue Glue; 9257 9258 // Build a sequence of copy-to-reg nodes, chained and glued together. 9259 for (auto &Reg : RegsToPass) { 9260 Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, Glue); 9261 Glue = Chain.getValue(1); 9262 } 9263 9264 // Validate that none of the argument registers have been marked as 9265 // reserved, if so report an error. Do the same for the return address if this 9266 // is not a tailcall. 9267 validateCCReservedRegs(RegsToPass, MF); 9268 if (!IsTailCall && 9269 MF.getSubtarget<RISCVSubtarget>().isRegisterReservedByUser(RISCV::X1)) 9270 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 9271 MF.getFunction(), 9272 "Return address register required, but has been reserved."}); 9273 9274 // If the callee is a GlobalAddress/ExternalSymbol node, turn it into a 9275 // TargetGlobalAddress/TargetExternalSymbol node so that legalize won't 9276 // split it and then direct call can be matched by PseudoCALL. 9277 if (GlobalAddressSDNode *S = dyn_cast<GlobalAddressSDNode>(Callee)) { 9278 const GlobalValue *GV = S->getGlobal(); 9279 9280 unsigned OpFlags = RISCVII::MO_CALL; 9281 if (!getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV)) 9282 OpFlags = RISCVII::MO_PLT; 9283 9284 Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags); 9285 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { 9286 unsigned OpFlags = RISCVII::MO_CALL; 9287 9288 if (!getTargetMachine().shouldAssumeDSOLocal(*MF.getFunction().getParent(), 9289 nullptr)) 9290 OpFlags = RISCVII::MO_PLT; 9291 9292 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, OpFlags); 9293 } 9294 9295 // The first call operand is the chain and the second is the target address. 9296 SmallVector<SDValue, 8> Ops; 9297 Ops.push_back(Chain); 9298 Ops.push_back(Callee); 9299 9300 // Add argument registers to the end of the list so that they are 9301 // known live into the call. 9302 for (auto &Reg : RegsToPass) 9303 Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType())); 9304 9305 if (!IsTailCall) { 9306 // Add a register mask operand representing the call-preserved registers. 9307 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 9308 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv); 9309 assert(Mask && "Missing call preserved mask for calling convention"); 9310 Ops.push_back(DAG.getRegisterMask(Mask)); 9311 } 9312 9313 // Glue the call to the argument copies, if any. 9314 if (Glue.getNode()) 9315 Ops.push_back(Glue); 9316 9317 // Emit the call. 9318 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 9319 9320 if (IsTailCall) { 9321 MF.getFrameInfo().setHasTailCall(); 9322 return DAG.getNode(RISCVISD::TAIL, DL, NodeTys, Ops); 9323 } 9324 9325 Chain = DAG.getNode(RISCVISD::CALL, DL, NodeTys, Ops); 9326 DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge); 9327 Glue = Chain.getValue(1); 9328 9329 // Mark the end of the call, which is glued to the call itself. 9330 Chain = DAG.getCALLSEQ_END(Chain, 9331 DAG.getConstant(NumBytes, DL, PtrVT, true), 9332 DAG.getConstant(0, DL, PtrVT, true), 9333 Glue, DL); 9334 Glue = Chain.getValue(1); 9335 9336 // Assign locations to each value returned by this call. 9337 SmallVector<CCValAssign, 16> RVLocs; 9338 CCState RetCCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext()); 9339 analyzeInputArgs(MF, RetCCInfo, Ins, /*IsRet=*/true, CC_RISCV); 9340 9341 // Copy all of the result registers out of their specified physreg. 9342 for (auto &VA : RVLocs) { 9343 // Copy the value out 9344 SDValue RetValue = 9345 DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), Glue); 9346 // Glue the RetValue to the end of the call sequence 9347 Chain = RetValue.getValue(1); 9348 Glue = RetValue.getValue(2); 9349 9350 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { 9351 assert(VA.getLocReg() == ArgGPRs[0] && "Unexpected reg assignment"); 9352 SDValue RetValue2 = 9353 DAG.getCopyFromReg(Chain, DL, ArgGPRs[1], MVT::i32, Glue); 9354 Chain = RetValue2.getValue(1); 9355 Glue = RetValue2.getValue(2); 9356 RetValue = DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, RetValue, 9357 RetValue2); 9358 } 9359 9360 RetValue = convertLocVTToValVT(DAG, RetValue, VA, DL, Subtarget); 9361 9362 InVals.push_back(RetValue); 9363 } 9364 9365 return Chain; 9366 } 9367 9368 bool RISCVTargetLowering::CanLowerReturn( 9369 CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg, 9370 const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const { 9371 SmallVector<CCValAssign, 16> RVLocs; 9372 CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context); 9373 9374 Optional<unsigned> FirstMaskArgument; 9375 if (Subtarget.hasVInstructions()) 9376 FirstMaskArgument = preAssignMask(Outs); 9377 9378 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 9379 MVT VT = Outs[i].VT; 9380 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 9381 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 9382 if (CC_RISCV(MF.getDataLayout(), ABI, i, VT, VT, CCValAssign::Full, 9383 ArgFlags, CCInfo, /*IsFixed=*/true, /*IsRet=*/true, nullptr, 9384 *this, FirstMaskArgument)) 9385 return false; 9386 } 9387 return true; 9388 } 9389 9390 SDValue 9391 RISCVTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 9392 bool IsVarArg, 9393 const SmallVectorImpl<ISD::OutputArg> &Outs, 9394 const SmallVectorImpl<SDValue> &OutVals, 9395 const SDLoc &DL, SelectionDAG &DAG) const { 9396 const MachineFunction &MF = DAG.getMachineFunction(); 9397 const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>(); 9398 9399 // Stores the assignment of the return value to a location. 9400 SmallVector<CCValAssign, 16> RVLocs; 9401 9402 // Info about the registers and stack slot. 9403 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, 9404 *DAG.getContext()); 9405 9406 analyzeOutputArgs(DAG.getMachineFunction(), CCInfo, Outs, /*IsRet=*/true, 9407 nullptr, CC_RISCV); 9408 9409 if (CallConv == CallingConv::GHC && !RVLocs.empty()) 9410 report_fatal_error("GHC functions return void only"); 9411 9412 SDValue Glue; 9413 SmallVector<SDValue, 4> RetOps(1, Chain); 9414 9415 // Copy the result values into the output registers. 9416 for (unsigned i = 0, e = RVLocs.size(); i < e; ++i) { 9417 SDValue Val = OutVals[i]; 9418 CCValAssign &VA = RVLocs[i]; 9419 assert(VA.isRegLoc() && "Can only return in registers!"); 9420 9421 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { 9422 // Handle returning f64 on RV32D with a soft float ABI. 9423 assert(VA.isRegLoc() && "Expected return via registers"); 9424 SDValue SplitF64 = DAG.getNode(RISCVISD::SplitF64, DL, 9425 DAG.getVTList(MVT::i32, MVT::i32), Val); 9426 SDValue Lo = SplitF64.getValue(0); 9427 SDValue Hi = SplitF64.getValue(1); 9428 Register RegLo = VA.getLocReg(); 9429 assert(RegLo < RISCV::X31 && "Invalid register pair"); 9430 Register RegHi = RegLo + 1; 9431 9432 if (STI.isRegisterReservedByUser(RegLo) || 9433 STI.isRegisterReservedByUser(RegHi)) 9434 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 9435 MF.getFunction(), 9436 "Return value register required, but has been reserved."}); 9437 9438 Chain = DAG.getCopyToReg(Chain, DL, RegLo, Lo, Glue); 9439 Glue = Chain.getValue(1); 9440 RetOps.push_back(DAG.getRegister(RegLo, MVT::i32)); 9441 Chain = DAG.getCopyToReg(Chain, DL, RegHi, Hi, Glue); 9442 Glue = Chain.getValue(1); 9443 RetOps.push_back(DAG.getRegister(RegHi, MVT::i32)); 9444 } else { 9445 // Handle a 'normal' return. 9446 Val = convertValVTToLocVT(DAG, Val, VA, DL, Subtarget); 9447 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Glue); 9448 9449 if (STI.isRegisterReservedByUser(VA.getLocReg())) 9450 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 9451 MF.getFunction(), 9452 "Return value register required, but has been reserved."}); 9453 9454 // Guarantee that all emitted copies are stuck together. 9455 Glue = Chain.getValue(1); 9456 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 9457 } 9458 } 9459 9460 RetOps[0] = Chain; // Update chain. 9461 9462 // Add the glue node if we have it. 9463 if (Glue.getNode()) { 9464 RetOps.push_back(Glue); 9465 } 9466 9467 unsigned RetOpc = RISCVISD::RET_FLAG; 9468 // Interrupt service routines use different return instructions. 9469 const Function &Func = DAG.getMachineFunction().getFunction(); 9470 if (Func.hasFnAttribute("interrupt")) { 9471 if (!Func.getReturnType()->isVoidTy()) 9472 report_fatal_error( 9473 "Functions with the interrupt attribute must have void return type!"); 9474 9475 MachineFunction &MF = DAG.getMachineFunction(); 9476 StringRef Kind = 9477 MF.getFunction().getFnAttribute("interrupt").getValueAsString(); 9478 9479 if (Kind == "user") 9480 RetOpc = RISCVISD::URET_FLAG; 9481 else if (Kind == "supervisor") 9482 RetOpc = RISCVISD::SRET_FLAG; 9483 else 9484 RetOpc = RISCVISD::MRET_FLAG; 9485 } 9486 9487 return DAG.getNode(RetOpc, DL, MVT::Other, RetOps); 9488 } 9489 9490 void RISCVTargetLowering::validateCCReservedRegs( 9491 const SmallVectorImpl<std::pair<llvm::Register, llvm::SDValue>> &Regs, 9492 MachineFunction &MF) const { 9493 const Function &F = MF.getFunction(); 9494 const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>(); 9495 9496 if (llvm::any_of(Regs, [&STI](auto Reg) { 9497 return STI.isRegisterReservedByUser(Reg.first); 9498 })) 9499 F.getContext().diagnose(DiagnosticInfoUnsupported{ 9500 F, "Argument register required, but has been reserved."}); 9501 } 9502 9503 bool RISCVTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { 9504 return CI->isTailCall(); 9505 } 9506 9507 const char *RISCVTargetLowering::getTargetNodeName(unsigned Opcode) const { 9508 #define NODE_NAME_CASE(NODE) \ 9509 case RISCVISD::NODE: \ 9510 return "RISCVISD::" #NODE; 9511 // clang-format off 9512 switch ((RISCVISD::NodeType)Opcode) { 9513 case RISCVISD::FIRST_NUMBER: 9514 break; 9515 NODE_NAME_CASE(RET_FLAG) 9516 NODE_NAME_CASE(URET_FLAG) 9517 NODE_NAME_CASE(SRET_FLAG) 9518 NODE_NAME_CASE(MRET_FLAG) 9519 NODE_NAME_CASE(CALL) 9520 NODE_NAME_CASE(SELECT_CC) 9521 NODE_NAME_CASE(BR_CC) 9522 NODE_NAME_CASE(BuildPairF64) 9523 NODE_NAME_CASE(SplitF64) 9524 NODE_NAME_CASE(TAIL) 9525 NODE_NAME_CASE(MULHSU) 9526 NODE_NAME_CASE(SLLW) 9527 NODE_NAME_CASE(SRAW) 9528 NODE_NAME_CASE(SRLW) 9529 NODE_NAME_CASE(DIVW) 9530 NODE_NAME_CASE(DIVUW) 9531 NODE_NAME_CASE(REMUW) 9532 NODE_NAME_CASE(ROLW) 9533 NODE_NAME_CASE(RORW) 9534 NODE_NAME_CASE(CLZW) 9535 NODE_NAME_CASE(CTZW) 9536 NODE_NAME_CASE(FSLW) 9537 NODE_NAME_CASE(FSRW) 9538 NODE_NAME_CASE(FSL) 9539 NODE_NAME_CASE(FSR) 9540 NODE_NAME_CASE(FMV_H_X) 9541 NODE_NAME_CASE(FMV_X_ANYEXTH) 9542 NODE_NAME_CASE(FMV_W_X_RV64) 9543 NODE_NAME_CASE(FMV_X_ANYEXTW_RV64) 9544 NODE_NAME_CASE(FCVT_X) 9545 NODE_NAME_CASE(FCVT_XU) 9546 NODE_NAME_CASE(FCVT_W_RV64) 9547 NODE_NAME_CASE(FCVT_WU_RV64) 9548 NODE_NAME_CASE(STRICT_FCVT_W_RV64) 9549 NODE_NAME_CASE(STRICT_FCVT_WU_RV64) 9550 NODE_NAME_CASE(READ_CYCLE_WIDE) 9551 NODE_NAME_CASE(GREV) 9552 NODE_NAME_CASE(GREVW) 9553 NODE_NAME_CASE(GORC) 9554 NODE_NAME_CASE(GORCW) 9555 NODE_NAME_CASE(SHFL) 9556 NODE_NAME_CASE(SHFLW) 9557 NODE_NAME_CASE(UNSHFL) 9558 NODE_NAME_CASE(UNSHFLW) 9559 NODE_NAME_CASE(BCOMPRESS) 9560 NODE_NAME_CASE(BCOMPRESSW) 9561 NODE_NAME_CASE(BDECOMPRESS) 9562 NODE_NAME_CASE(BDECOMPRESSW) 9563 NODE_NAME_CASE(VMV_V_X_VL) 9564 NODE_NAME_CASE(VFMV_V_F_VL) 9565 NODE_NAME_CASE(VMV_X_S) 9566 NODE_NAME_CASE(VMV_S_X_VL) 9567 NODE_NAME_CASE(VFMV_S_F_VL) 9568 NODE_NAME_CASE(SPLAT_VECTOR_I64) 9569 NODE_NAME_CASE(SPLAT_VECTOR_SPLIT_I64_VL) 9570 NODE_NAME_CASE(READ_VLENB) 9571 NODE_NAME_CASE(TRUNCATE_VECTOR_VL) 9572 NODE_NAME_CASE(VSLIDEUP_VL) 9573 NODE_NAME_CASE(VSLIDE1UP_VL) 9574 NODE_NAME_CASE(VSLIDEDOWN_VL) 9575 NODE_NAME_CASE(VSLIDE1DOWN_VL) 9576 NODE_NAME_CASE(VID_VL) 9577 NODE_NAME_CASE(VFNCVT_ROD_VL) 9578 NODE_NAME_CASE(VECREDUCE_ADD_VL) 9579 NODE_NAME_CASE(VECREDUCE_UMAX_VL) 9580 NODE_NAME_CASE(VECREDUCE_SMAX_VL) 9581 NODE_NAME_CASE(VECREDUCE_UMIN_VL) 9582 NODE_NAME_CASE(VECREDUCE_SMIN_VL) 9583 NODE_NAME_CASE(VECREDUCE_AND_VL) 9584 NODE_NAME_CASE(VECREDUCE_OR_VL) 9585 NODE_NAME_CASE(VECREDUCE_XOR_VL) 9586 NODE_NAME_CASE(VECREDUCE_FADD_VL) 9587 NODE_NAME_CASE(VECREDUCE_SEQ_FADD_VL) 9588 NODE_NAME_CASE(VECREDUCE_FMIN_VL) 9589 NODE_NAME_CASE(VECREDUCE_FMAX_VL) 9590 NODE_NAME_CASE(ADD_VL) 9591 NODE_NAME_CASE(AND_VL) 9592 NODE_NAME_CASE(MUL_VL) 9593 NODE_NAME_CASE(OR_VL) 9594 NODE_NAME_CASE(SDIV_VL) 9595 NODE_NAME_CASE(SHL_VL) 9596 NODE_NAME_CASE(SREM_VL) 9597 NODE_NAME_CASE(SRA_VL) 9598 NODE_NAME_CASE(SRL_VL) 9599 NODE_NAME_CASE(SUB_VL) 9600 NODE_NAME_CASE(UDIV_VL) 9601 NODE_NAME_CASE(UREM_VL) 9602 NODE_NAME_CASE(XOR_VL) 9603 NODE_NAME_CASE(SADDSAT_VL) 9604 NODE_NAME_CASE(UADDSAT_VL) 9605 NODE_NAME_CASE(SSUBSAT_VL) 9606 NODE_NAME_CASE(USUBSAT_VL) 9607 NODE_NAME_CASE(FADD_VL) 9608 NODE_NAME_CASE(FSUB_VL) 9609 NODE_NAME_CASE(FMUL_VL) 9610 NODE_NAME_CASE(FDIV_VL) 9611 NODE_NAME_CASE(FNEG_VL) 9612 NODE_NAME_CASE(FABS_VL) 9613 NODE_NAME_CASE(FSQRT_VL) 9614 NODE_NAME_CASE(FMA_VL) 9615 NODE_NAME_CASE(FCOPYSIGN_VL) 9616 NODE_NAME_CASE(SMIN_VL) 9617 NODE_NAME_CASE(SMAX_VL) 9618 NODE_NAME_CASE(UMIN_VL) 9619 NODE_NAME_CASE(UMAX_VL) 9620 NODE_NAME_CASE(FMINNUM_VL) 9621 NODE_NAME_CASE(FMAXNUM_VL) 9622 NODE_NAME_CASE(MULHS_VL) 9623 NODE_NAME_CASE(MULHU_VL) 9624 NODE_NAME_CASE(FP_TO_SINT_VL) 9625 NODE_NAME_CASE(FP_TO_UINT_VL) 9626 NODE_NAME_CASE(SINT_TO_FP_VL) 9627 NODE_NAME_CASE(UINT_TO_FP_VL) 9628 NODE_NAME_CASE(FP_EXTEND_VL) 9629 NODE_NAME_CASE(FP_ROUND_VL) 9630 NODE_NAME_CASE(VWMUL_VL) 9631 NODE_NAME_CASE(VWMULU_VL) 9632 NODE_NAME_CASE(SETCC_VL) 9633 NODE_NAME_CASE(VSELECT_VL) 9634 NODE_NAME_CASE(VMAND_VL) 9635 NODE_NAME_CASE(VMOR_VL) 9636 NODE_NAME_CASE(VMXOR_VL) 9637 NODE_NAME_CASE(VMCLR_VL) 9638 NODE_NAME_CASE(VMSET_VL) 9639 NODE_NAME_CASE(VRGATHER_VX_VL) 9640 NODE_NAME_CASE(VRGATHER_VV_VL) 9641 NODE_NAME_CASE(VRGATHEREI16_VV_VL) 9642 NODE_NAME_CASE(VSEXT_VL) 9643 NODE_NAME_CASE(VZEXT_VL) 9644 NODE_NAME_CASE(VCPOP_VL) 9645 NODE_NAME_CASE(VLE_VL) 9646 NODE_NAME_CASE(VSE_VL) 9647 NODE_NAME_CASE(READ_CSR) 9648 NODE_NAME_CASE(WRITE_CSR) 9649 NODE_NAME_CASE(SWAP_CSR) 9650 } 9651 // clang-format on 9652 return nullptr; 9653 #undef NODE_NAME_CASE 9654 } 9655 9656 /// getConstraintType - Given a constraint letter, return the type of 9657 /// constraint it is for this target. 9658 RISCVTargetLowering::ConstraintType 9659 RISCVTargetLowering::getConstraintType(StringRef Constraint) const { 9660 if (Constraint.size() == 1) { 9661 switch (Constraint[0]) { 9662 default: 9663 break; 9664 case 'f': 9665 return C_RegisterClass; 9666 case 'I': 9667 case 'J': 9668 case 'K': 9669 return C_Immediate; 9670 case 'A': 9671 return C_Memory; 9672 case 'S': // A symbolic address 9673 return C_Other; 9674 } 9675 } else { 9676 if (Constraint == "vr" || Constraint == "vm") 9677 return C_RegisterClass; 9678 } 9679 return TargetLowering::getConstraintType(Constraint); 9680 } 9681 9682 std::pair<unsigned, const TargetRegisterClass *> 9683 RISCVTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 9684 StringRef Constraint, 9685 MVT VT) const { 9686 // First, see if this is a constraint that directly corresponds to a 9687 // RISCV register class. 9688 if (Constraint.size() == 1) { 9689 switch (Constraint[0]) { 9690 case 'r': 9691 // TODO: Support fixed vectors up to XLen for P extension? 9692 if (VT.isVector()) 9693 break; 9694 return std::make_pair(0U, &RISCV::GPRRegClass); 9695 case 'f': 9696 if (Subtarget.hasStdExtZfh() && VT == MVT::f16) 9697 return std::make_pair(0U, &RISCV::FPR16RegClass); 9698 if (Subtarget.hasStdExtF() && VT == MVT::f32) 9699 return std::make_pair(0U, &RISCV::FPR32RegClass); 9700 if (Subtarget.hasStdExtD() && VT == MVT::f64) 9701 return std::make_pair(0U, &RISCV::FPR64RegClass); 9702 break; 9703 default: 9704 break; 9705 } 9706 } else if (Constraint == "vr") { 9707 for (const auto *RC : {&RISCV::VRRegClass, &RISCV::VRM2RegClass, 9708 &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) { 9709 if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy)) 9710 return std::make_pair(0U, RC); 9711 } 9712 } else if (Constraint == "vm") { 9713 if (TRI->isTypeLegalForClass(RISCV::VMV0RegClass, VT.SimpleTy)) 9714 return std::make_pair(0U, &RISCV::VMV0RegClass); 9715 } 9716 9717 // Clang will correctly decode the usage of register name aliases into their 9718 // official names. However, other frontends like `rustc` do not. This allows 9719 // users of these frontends to use the ABI names for registers in LLVM-style 9720 // register constraints. 9721 unsigned XRegFromAlias = StringSwitch<unsigned>(Constraint.lower()) 9722 .Case("{zero}", RISCV::X0) 9723 .Case("{ra}", RISCV::X1) 9724 .Case("{sp}", RISCV::X2) 9725 .Case("{gp}", RISCV::X3) 9726 .Case("{tp}", RISCV::X4) 9727 .Case("{t0}", RISCV::X5) 9728 .Case("{t1}", RISCV::X6) 9729 .Case("{t2}", RISCV::X7) 9730 .Cases("{s0}", "{fp}", RISCV::X8) 9731 .Case("{s1}", RISCV::X9) 9732 .Case("{a0}", RISCV::X10) 9733 .Case("{a1}", RISCV::X11) 9734 .Case("{a2}", RISCV::X12) 9735 .Case("{a3}", RISCV::X13) 9736 .Case("{a4}", RISCV::X14) 9737 .Case("{a5}", RISCV::X15) 9738 .Case("{a6}", RISCV::X16) 9739 .Case("{a7}", RISCV::X17) 9740 .Case("{s2}", RISCV::X18) 9741 .Case("{s3}", RISCV::X19) 9742 .Case("{s4}", RISCV::X20) 9743 .Case("{s5}", RISCV::X21) 9744 .Case("{s6}", RISCV::X22) 9745 .Case("{s7}", RISCV::X23) 9746 .Case("{s8}", RISCV::X24) 9747 .Case("{s9}", RISCV::X25) 9748 .Case("{s10}", RISCV::X26) 9749 .Case("{s11}", RISCV::X27) 9750 .Case("{t3}", RISCV::X28) 9751 .Case("{t4}", RISCV::X29) 9752 .Case("{t5}", RISCV::X30) 9753 .Case("{t6}", RISCV::X31) 9754 .Default(RISCV::NoRegister); 9755 if (XRegFromAlias != RISCV::NoRegister) 9756 return std::make_pair(XRegFromAlias, &RISCV::GPRRegClass); 9757 9758 // Since TargetLowering::getRegForInlineAsmConstraint uses the name of the 9759 // TableGen record rather than the AsmName to choose registers for InlineAsm 9760 // constraints, plus we want to match those names to the widest floating point 9761 // register type available, manually select floating point registers here. 9762 // 9763 // The second case is the ABI name of the register, so that frontends can also 9764 // use the ABI names in register constraint lists. 9765 if (Subtarget.hasStdExtF()) { 9766 unsigned FReg = StringSwitch<unsigned>(Constraint.lower()) 9767 .Cases("{f0}", "{ft0}", RISCV::F0_F) 9768 .Cases("{f1}", "{ft1}", RISCV::F1_F) 9769 .Cases("{f2}", "{ft2}", RISCV::F2_F) 9770 .Cases("{f3}", "{ft3}", RISCV::F3_F) 9771 .Cases("{f4}", "{ft4}", RISCV::F4_F) 9772 .Cases("{f5}", "{ft5}", RISCV::F5_F) 9773 .Cases("{f6}", "{ft6}", RISCV::F6_F) 9774 .Cases("{f7}", "{ft7}", RISCV::F7_F) 9775 .Cases("{f8}", "{fs0}", RISCV::F8_F) 9776 .Cases("{f9}", "{fs1}", RISCV::F9_F) 9777 .Cases("{f10}", "{fa0}", RISCV::F10_F) 9778 .Cases("{f11}", "{fa1}", RISCV::F11_F) 9779 .Cases("{f12}", "{fa2}", RISCV::F12_F) 9780 .Cases("{f13}", "{fa3}", RISCV::F13_F) 9781 .Cases("{f14}", "{fa4}", RISCV::F14_F) 9782 .Cases("{f15}", "{fa5}", RISCV::F15_F) 9783 .Cases("{f16}", "{fa6}", RISCV::F16_F) 9784 .Cases("{f17}", "{fa7}", RISCV::F17_F) 9785 .Cases("{f18}", "{fs2}", RISCV::F18_F) 9786 .Cases("{f19}", "{fs3}", RISCV::F19_F) 9787 .Cases("{f20}", "{fs4}", RISCV::F20_F) 9788 .Cases("{f21}", "{fs5}", RISCV::F21_F) 9789 .Cases("{f22}", "{fs6}", RISCV::F22_F) 9790 .Cases("{f23}", "{fs7}", RISCV::F23_F) 9791 .Cases("{f24}", "{fs8}", RISCV::F24_F) 9792 .Cases("{f25}", "{fs9}", RISCV::F25_F) 9793 .Cases("{f26}", "{fs10}", RISCV::F26_F) 9794 .Cases("{f27}", "{fs11}", RISCV::F27_F) 9795 .Cases("{f28}", "{ft8}", RISCV::F28_F) 9796 .Cases("{f29}", "{ft9}", RISCV::F29_F) 9797 .Cases("{f30}", "{ft10}", RISCV::F30_F) 9798 .Cases("{f31}", "{ft11}", RISCV::F31_F) 9799 .Default(RISCV::NoRegister); 9800 if (FReg != RISCV::NoRegister) { 9801 assert(RISCV::F0_F <= FReg && FReg <= RISCV::F31_F && "Unknown fp-reg"); 9802 if (Subtarget.hasStdExtD()) { 9803 unsigned RegNo = FReg - RISCV::F0_F; 9804 unsigned DReg = RISCV::F0_D + RegNo; 9805 return std::make_pair(DReg, &RISCV::FPR64RegClass); 9806 } 9807 return std::make_pair(FReg, &RISCV::FPR32RegClass); 9808 } 9809 } 9810 9811 if (Subtarget.hasVInstructions()) { 9812 Register VReg = StringSwitch<Register>(Constraint.lower()) 9813 .Case("{v0}", RISCV::V0) 9814 .Case("{v1}", RISCV::V1) 9815 .Case("{v2}", RISCV::V2) 9816 .Case("{v3}", RISCV::V3) 9817 .Case("{v4}", RISCV::V4) 9818 .Case("{v5}", RISCV::V5) 9819 .Case("{v6}", RISCV::V6) 9820 .Case("{v7}", RISCV::V7) 9821 .Case("{v8}", RISCV::V8) 9822 .Case("{v9}", RISCV::V9) 9823 .Case("{v10}", RISCV::V10) 9824 .Case("{v11}", RISCV::V11) 9825 .Case("{v12}", RISCV::V12) 9826 .Case("{v13}", RISCV::V13) 9827 .Case("{v14}", RISCV::V14) 9828 .Case("{v15}", RISCV::V15) 9829 .Case("{v16}", RISCV::V16) 9830 .Case("{v17}", RISCV::V17) 9831 .Case("{v18}", RISCV::V18) 9832 .Case("{v19}", RISCV::V19) 9833 .Case("{v20}", RISCV::V20) 9834 .Case("{v21}", RISCV::V21) 9835 .Case("{v22}", RISCV::V22) 9836 .Case("{v23}", RISCV::V23) 9837 .Case("{v24}", RISCV::V24) 9838 .Case("{v25}", RISCV::V25) 9839 .Case("{v26}", RISCV::V26) 9840 .Case("{v27}", RISCV::V27) 9841 .Case("{v28}", RISCV::V28) 9842 .Case("{v29}", RISCV::V29) 9843 .Case("{v30}", RISCV::V30) 9844 .Case("{v31}", RISCV::V31) 9845 .Default(RISCV::NoRegister); 9846 if (VReg != RISCV::NoRegister) { 9847 if (TRI->isTypeLegalForClass(RISCV::VMRegClass, VT.SimpleTy)) 9848 return std::make_pair(VReg, &RISCV::VMRegClass); 9849 if (TRI->isTypeLegalForClass(RISCV::VRRegClass, VT.SimpleTy)) 9850 return std::make_pair(VReg, &RISCV::VRRegClass); 9851 for (const auto *RC : 9852 {&RISCV::VRM2RegClass, &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) { 9853 if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy)) { 9854 VReg = TRI->getMatchingSuperReg(VReg, RISCV::sub_vrm1_0, RC); 9855 return std::make_pair(VReg, RC); 9856 } 9857 } 9858 } 9859 } 9860 9861 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 9862 } 9863 9864 unsigned 9865 RISCVTargetLowering::getInlineAsmMemConstraint(StringRef ConstraintCode) const { 9866 // Currently only support length 1 constraints. 9867 if (ConstraintCode.size() == 1) { 9868 switch (ConstraintCode[0]) { 9869 case 'A': 9870 return InlineAsm::Constraint_A; 9871 default: 9872 break; 9873 } 9874 } 9875 9876 return TargetLowering::getInlineAsmMemConstraint(ConstraintCode); 9877 } 9878 9879 void RISCVTargetLowering::LowerAsmOperandForConstraint( 9880 SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops, 9881 SelectionDAG &DAG) const { 9882 // Currently only support length 1 constraints. 9883 if (Constraint.length() == 1) { 9884 switch (Constraint[0]) { 9885 case 'I': 9886 // Validate & create a 12-bit signed immediate operand. 9887 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 9888 uint64_t CVal = C->getSExtValue(); 9889 if (isInt<12>(CVal)) 9890 Ops.push_back( 9891 DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT())); 9892 } 9893 return; 9894 case 'J': 9895 // Validate & create an integer zero operand. 9896 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 9897 if (C->getZExtValue() == 0) 9898 Ops.push_back( 9899 DAG.getTargetConstant(0, SDLoc(Op), Subtarget.getXLenVT())); 9900 return; 9901 case 'K': 9902 // Validate & create a 5-bit unsigned immediate operand. 9903 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 9904 uint64_t CVal = C->getZExtValue(); 9905 if (isUInt<5>(CVal)) 9906 Ops.push_back( 9907 DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT())); 9908 } 9909 return; 9910 case 'S': 9911 if (const auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) { 9912 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op), 9913 GA->getValueType(0))); 9914 } else if (const auto *BA = dyn_cast<BlockAddressSDNode>(Op)) { 9915 Ops.push_back(DAG.getTargetBlockAddress(BA->getBlockAddress(), 9916 BA->getValueType(0))); 9917 } 9918 return; 9919 default: 9920 break; 9921 } 9922 } 9923 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 9924 } 9925 9926 Instruction *RISCVTargetLowering::emitLeadingFence(IRBuilderBase &Builder, 9927 Instruction *Inst, 9928 AtomicOrdering Ord) const { 9929 if (isa<LoadInst>(Inst) && Ord == AtomicOrdering::SequentiallyConsistent) 9930 return Builder.CreateFence(Ord); 9931 if (isa<StoreInst>(Inst) && isReleaseOrStronger(Ord)) 9932 return Builder.CreateFence(AtomicOrdering::Release); 9933 return nullptr; 9934 } 9935 9936 Instruction *RISCVTargetLowering::emitTrailingFence(IRBuilderBase &Builder, 9937 Instruction *Inst, 9938 AtomicOrdering Ord) const { 9939 if (isa<LoadInst>(Inst) && isAcquireOrStronger(Ord)) 9940 return Builder.CreateFence(AtomicOrdering::Acquire); 9941 return nullptr; 9942 } 9943 9944 TargetLowering::AtomicExpansionKind 9945 RISCVTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { 9946 // atomicrmw {fadd,fsub} must be expanded to use compare-exchange, as floating 9947 // point operations can't be used in an lr/sc sequence without breaking the 9948 // forward-progress guarantee. 9949 if (AI->isFloatingPointOperation()) 9950 return AtomicExpansionKind::CmpXChg; 9951 9952 unsigned Size = AI->getType()->getPrimitiveSizeInBits(); 9953 if (Size == 8 || Size == 16) 9954 return AtomicExpansionKind::MaskedIntrinsic; 9955 return AtomicExpansionKind::None; 9956 } 9957 9958 static Intrinsic::ID 9959 getIntrinsicForMaskedAtomicRMWBinOp(unsigned XLen, AtomicRMWInst::BinOp BinOp) { 9960 if (XLen == 32) { 9961 switch (BinOp) { 9962 default: 9963 llvm_unreachable("Unexpected AtomicRMW BinOp"); 9964 case AtomicRMWInst::Xchg: 9965 return Intrinsic::riscv_masked_atomicrmw_xchg_i32; 9966 case AtomicRMWInst::Add: 9967 return Intrinsic::riscv_masked_atomicrmw_add_i32; 9968 case AtomicRMWInst::Sub: 9969 return Intrinsic::riscv_masked_atomicrmw_sub_i32; 9970 case AtomicRMWInst::Nand: 9971 return Intrinsic::riscv_masked_atomicrmw_nand_i32; 9972 case AtomicRMWInst::Max: 9973 return Intrinsic::riscv_masked_atomicrmw_max_i32; 9974 case AtomicRMWInst::Min: 9975 return Intrinsic::riscv_masked_atomicrmw_min_i32; 9976 case AtomicRMWInst::UMax: 9977 return Intrinsic::riscv_masked_atomicrmw_umax_i32; 9978 case AtomicRMWInst::UMin: 9979 return Intrinsic::riscv_masked_atomicrmw_umin_i32; 9980 } 9981 } 9982 9983 if (XLen == 64) { 9984 switch (BinOp) { 9985 default: 9986 llvm_unreachable("Unexpected AtomicRMW BinOp"); 9987 case AtomicRMWInst::Xchg: 9988 return Intrinsic::riscv_masked_atomicrmw_xchg_i64; 9989 case AtomicRMWInst::Add: 9990 return Intrinsic::riscv_masked_atomicrmw_add_i64; 9991 case AtomicRMWInst::Sub: 9992 return Intrinsic::riscv_masked_atomicrmw_sub_i64; 9993 case AtomicRMWInst::Nand: 9994 return Intrinsic::riscv_masked_atomicrmw_nand_i64; 9995 case AtomicRMWInst::Max: 9996 return Intrinsic::riscv_masked_atomicrmw_max_i64; 9997 case AtomicRMWInst::Min: 9998 return Intrinsic::riscv_masked_atomicrmw_min_i64; 9999 case AtomicRMWInst::UMax: 10000 return Intrinsic::riscv_masked_atomicrmw_umax_i64; 10001 case AtomicRMWInst::UMin: 10002 return Intrinsic::riscv_masked_atomicrmw_umin_i64; 10003 } 10004 } 10005 10006 llvm_unreachable("Unexpected XLen\n"); 10007 } 10008 10009 Value *RISCVTargetLowering::emitMaskedAtomicRMWIntrinsic( 10010 IRBuilderBase &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr, 10011 Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const { 10012 unsigned XLen = Subtarget.getXLen(); 10013 Value *Ordering = 10014 Builder.getIntN(XLen, static_cast<uint64_t>(AI->getOrdering())); 10015 Type *Tys[] = {AlignedAddr->getType()}; 10016 Function *LrwOpScwLoop = Intrinsic::getDeclaration( 10017 AI->getModule(), 10018 getIntrinsicForMaskedAtomicRMWBinOp(XLen, AI->getOperation()), Tys); 10019 10020 if (XLen == 64) { 10021 Incr = Builder.CreateSExt(Incr, Builder.getInt64Ty()); 10022 Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty()); 10023 ShiftAmt = Builder.CreateSExt(ShiftAmt, Builder.getInt64Ty()); 10024 } 10025 10026 Value *Result; 10027 10028 // Must pass the shift amount needed to sign extend the loaded value prior 10029 // to performing a signed comparison for min/max. ShiftAmt is the number of 10030 // bits to shift the value into position. Pass XLen-ShiftAmt-ValWidth, which 10031 // is the number of bits to left+right shift the value in order to 10032 // sign-extend. 10033 if (AI->getOperation() == AtomicRMWInst::Min || 10034 AI->getOperation() == AtomicRMWInst::Max) { 10035 const DataLayout &DL = AI->getModule()->getDataLayout(); 10036 unsigned ValWidth = 10037 DL.getTypeStoreSizeInBits(AI->getValOperand()->getType()); 10038 Value *SextShamt = 10039 Builder.CreateSub(Builder.getIntN(XLen, XLen - ValWidth), ShiftAmt); 10040 Result = Builder.CreateCall(LrwOpScwLoop, 10041 {AlignedAddr, Incr, Mask, SextShamt, Ordering}); 10042 } else { 10043 Result = 10044 Builder.CreateCall(LrwOpScwLoop, {AlignedAddr, Incr, Mask, Ordering}); 10045 } 10046 10047 if (XLen == 64) 10048 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty()); 10049 return Result; 10050 } 10051 10052 TargetLowering::AtomicExpansionKind 10053 RISCVTargetLowering::shouldExpandAtomicCmpXchgInIR( 10054 AtomicCmpXchgInst *CI) const { 10055 unsigned Size = CI->getCompareOperand()->getType()->getPrimitiveSizeInBits(); 10056 if (Size == 8 || Size == 16) 10057 return AtomicExpansionKind::MaskedIntrinsic; 10058 return AtomicExpansionKind::None; 10059 } 10060 10061 Value *RISCVTargetLowering::emitMaskedAtomicCmpXchgIntrinsic( 10062 IRBuilderBase &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr, 10063 Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const { 10064 unsigned XLen = Subtarget.getXLen(); 10065 Value *Ordering = Builder.getIntN(XLen, static_cast<uint64_t>(Ord)); 10066 Intrinsic::ID CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i32; 10067 if (XLen == 64) { 10068 CmpVal = Builder.CreateSExt(CmpVal, Builder.getInt64Ty()); 10069 NewVal = Builder.CreateSExt(NewVal, Builder.getInt64Ty()); 10070 Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty()); 10071 CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i64; 10072 } 10073 Type *Tys[] = {AlignedAddr->getType()}; 10074 Function *MaskedCmpXchg = 10075 Intrinsic::getDeclaration(CI->getModule(), CmpXchgIntrID, Tys); 10076 Value *Result = Builder.CreateCall( 10077 MaskedCmpXchg, {AlignedAddr, CmpVal, NewVal, Mask, Ordering}); 10078 if (XLen == 64) 10079 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty()); 10080 return Result; 10081 } 10082 10083 bool RISCVTargetLowering::shouldRemoveExtendFromGSIndex(EVT VT) const { 10084 return false; 10085 } 10086 10087 bool RISCVTargetLowering::shouldConvertFpToSat(unsigned Op, EVT FPVT, 10088 EVT VT) const { 10089 if (!isOperationLegalOrCustom(Op, VT) || !FPVT.isSimple()) 10090 return false; 10091 10092 switch (FPVT.getSimpleVT().SimpleTy) { 10093 case MVT::f16: 10094 return Subtarget.hasStdExtZfh(); 10095 case MVT::f32: 10096 return Subtarget.hasStdExtF(); 10097 case MVT::f64: 10098 return Subtarget.hasStdExtD(); 10099 default: 10100 return false; 10101 } 10102 } 10103 10104 bool RISCVTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, 10105 EVT VT) const { 10106 VT = VT.getScalarType(); 10107 10108 if (!VT.isSimple()) 10109 return false; 10110 10111 switch (VT.getSimpleVT().SimpleTy) { 10112 case MVT::f16: 10113 return Subtarget.hasStdExtZfh(); 10114 case MVT::f32: 10115 return Subtarget.hasStdExtF(); 10116 case MVT::f64: 10117 return Subtarget.hasStdExtD(); 10118 default: 10119 break; 10120 } 10121 10122 return false; 10123 } 10124 10125 Register RISCVTargetLowering::getExceptionPointerRegister( 10126 const Constant *PersonalityFn) const { 10127 return RISCV::X10; 10128 } 10129 10130 Register RISCVTargetLowering::getExceptionSelectorRegister( 10131 const Constant *PersonalityFn) const { 10132 return RISCV::X11; 10133 } 10134 10135 bool RISCVTargetLowering::shouldExtendTypeInLibCall(EVT Type) const { 10136 // Return false to suppress the unnecessary extensions if the LibCall 10137 // arguments or return value is f32 type for LP64 ABI. 10138 RISCVABI::ABI ABI = Subtarget.getTargetABI(); 10139 if (ABI == RISCVABI::ABI_LP64 && (Type == MVT::f32)) 10140 return false; 10141 10142 return true; 10143 } 10144 10145 bool RISCVTargetLowering::shouldSignExtendTypeInLibCall(EVT Type, bool IsSigned) const { 10146 if (Subtarget.is64Bit() && Type == MVT::i32) 10147 return true; 10148 10149 return IsSigned; 10150 } 10151 10152 bool RISCVTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT, 10153 SDValue C) const { 10154 // Check integral scalar types. 10155 if (VT.isScalarInteger()) { 10156 // Omit the optimization if the sub target has the M extension and the data 10157 // size exceeds XLen. 10158 if (Subtarget.hasStdExtM() && VT.getSizeInBits() > Subtarget.getXLen()) 10159 return false; 10160 if (auto *ConstNode = dyn_cast<ConstantSDNode>(C.getNode())) { 10161 // Break the MUL to a SLLI and an ADD/SUB. 10162 const APInt &Imm = ConstNode->getAPIntValue(); 10163 if ((Imm + 1).isPowerOf2() || (Imm - 1).isPowerOf2() || 10164 (1 - Imm).isPowerOf2() || (-1 - Imm).isPowerOf2()) 10165 return true; 10166 // Optimize the MUL to (SH*ADD x, (SLLI x, bits)) if Imm is not simm12. 10167 if (Subtarget.hasStdExtZba() && !Imm.isSignedIntN(12) && 10168 ((Imm - 2).isPowerOf2() || (Imm - 4).isPowerOf2() || 10169 (Imm - 8).isPowerOf2())) 10170 return true; 10171 // Omit the following optimization if the sub target has the M extension 10172 // and the data size >= XLen. 10173 if (Subtarget.hasStdExtM() && VT.getSizeInBits() >= Subtarget.getXLen()) 10174 return false; 10175 // Break the MUL to two SLLI instructions and an ADD/SUB, if Imm needs 10176 // a pair of LUI/ADDI. 10177 if (!Imm.isSignedIntN(12) && Imm.countTrailingZeros() < 12) { 10178 APInt ImmS = Imm.ashr(Imm.countTrailingZeros()); 10179 if ((ImmS + 1).isPowerOf2() || (ImmS - 1).isPowerOf2() || 10180 (1 - ImmS).isPowerOf2()) 10181 return true; 10182 } 10183 } 10184 } 10185 10186 return false; 10187 } 10188 10189 bool RISCVTargetLowering::isMulAddWithConstProfitable( 10190 const SDValue &AddNode, const SDValue &ConstNode) const { 10191 // Let the DAGCombiner decide for vectors. 10192 EVT VT = AddNode.getValueType(); 10193 if (VT.isVector()) 10194 return true; 10195 10196 // Let the DAGCombiner decide for larger types. 10197 if (VT.getScalarSizeInBits() > Subtarget.getXLen()) 10198 return true; 10199 10200 // It is worse if c1 is simm12 while c1*c2 is not. 10201 ConstantSDNode *C1Node = cast<ConstantSDNode>(AddNode.getOperand(1)); 10202 ConstantSDNode *C2Node = cast<ConstantSDNode>(ConstNode); 10203 const APInt &C1 = C1Node->getAPIntValue(); 10204 const APInt &C2 = C2Node->getAPIntValue(); 10205 if (C1.isSignedIntN(12) && !(C1 * C2).isSignedIntN(12)) 10206 return false; 10207 10208 // Default to true and let the DAGCombiner decide. 10209 return true; 10210 } 10211 10212 bool RISCVTargetLowering::allowsMisalignedMemoryAccesses( 10213 EVT VT, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags, 10214 bool *Fast) const { 10215 if (!VT.isVector()) 10216 return false; 10217 10218 EVT ElemVT = VT.getVectorElementType(); 10219 if (Alignment >= ElemVT.getStoreSize()) { 10220 if (Fast) 10221 *Fast = true; 10222 return true; 10223 } 10224 10225 return false; 10226 } 10227 10228 bool RISCVTargetLowering::splitValueIntoRegisterParts( 10229 SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts, 10230 unsigned NumParts, MVT PartVT, Optional<CallingConv::ID> CC) const { 10231 bool IsABIRegCopy = CC.hasValue(); 10232 EVT ValueVT = Val.getValueType(); 10233 if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) { 10234 // Cast the f16 to i16, extend to i32, pad with ones to make a float nan, 10235 // and cast to f32. 10236 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i16, Val); 10237 Val = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Val); 10238 Val = DAG.getNode(ISD::OR, DL, MVT::i32, Val, 10239 DAG.getConstant(0xFFFF0000, DL, MVT::i32)); 10240 Val = DAG.getNode(ISD::BITCAST, DL, MVT::f32, Val); 10241 Parts[0] = Val; 10242 return true; 10243 } 10244 10245 if (ValueVT.isScalableVector() && PartVT.isScalableVector()) { 10246 LLVMContext &Context = *DAG.getContext(); 10247 EVT ValueEltVT = ValueVT.getVectorElementType(); 10248 EVT PartEltVT = PartVT.getVectorElementType(); 10249 unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize(); 10250 unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize(); 10251 if (PartVTBitSize % ValueVTBitSize == 0) { 10252 assert(PartVTBitSize >= ValueVTBitSize); 10253 // If the element types are different, bitcast to the same element type of 10254 // PartVT first. 10255 // Give an example here, we want copy a <vscale x 1 x i8> value to 10256 // <vscale x 4 x i16>. 10257 // We need to convert <vscale x 1 x i8> to <vscale x 8 x i8> by insert 10258 // subvector, then we can bitcast to <vscale x 4 x i16>. 10259 if (ValueEltVT != PartEltVT) { 10260 if (PartVTBitSize > ValueVTBitSize) { 10261 unsigned Count = PartVTBitSize / ValueEltVT.getFixedSizeInBits(); 10262 assert(Count != 0 && "The number of element should not be zero."); 10263 EVT SameEltTypeVT = 10264 EVT::getVectorVT(Context, ValueEltVT, Count, /*IsScalable=*/true); 10265 Val = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, SameEltTypeVT, 10266 DAG.getUNDEF(SameEltTypeVT), Val, 10267 DAG.getVectorIdxConstant(0, DL)); 10268 } 10269 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 10270 } else { 10271 Val = 10272 DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT), 10273 Val, DAG.getVectorIdxConstant(0, DL)); 10274 } 10275 Parts[0] = Val; 10276 return true; 10277 } 10278 } 10279 return false; 10280 } 10281 10282 SDValue RISCVTargetLowering::joinRegisterPartsIntoValue( 10283 SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts, 10284 MVT PartVT, EVT ValueVT, Optional<CallingConv::ID> CC) const { 10285 bool IsABIRegCopy = CC.hasValue(); 10286 if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) { 10287 SDValue Val = Parts[0]; 10288 10289 // Cast the f32 to i32, truncate to i16, and cast back to f16. 10290 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Val); 10291 Val = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Val); 10292 Val = DAG.getNode(ISD::BITCAST, DL, MVT::f16, Val); 10293 return Val; 10294 } 10295 10296 if (ValueVT.isScalableVector() && PartVT.isScalableVector()) { 10297 LLVMContext &Context = *DAG.getContext(); 10298 SDValue Val = Parts[0]; 10299 EVT ValueEltVT = ValueVT.getVectorElementType(); 10300 EVT PartEltVT = PartVT.getVectorElementType(); 10301 unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize(); 10302 unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize(); 10303 if (PartVTBitSize % ValueVTBitSize == 0) { 10304 assert(PartVTBitSize >= ValueVTBitSize); 10305 EVT SameEltTypeVT = ValueVT; 10306 // If the element types are different, convert it to the same element type 10307 // of PartVT. 10308 // Give an example here, we want copy a <vscale x 1 x i8> value from 10309 // <vscale x 4 x i16>. 10310 // We need to convert <vscale x 4 x i16> to <vscale x 8 x i8> first, 10311 // then we can extract <vscale x 1 x i8>. 10312 if (ValueEltVT != PartEltVT) { 10313 unsigned Count = PartVTBitSize / ValueEltVT.getFixedSizeInBits(); 10314 assert(Count != 0 && "The number of element should not be zero."); 10315 SameEltTypeVT = 10316 EVT::getVectorVT(Context, ValueEltVT, Count, /*IsScalable=*/true); 10317 Val = DAG.getNode(ISD::BITCAST, DL, SameEltTypeVT, Val); 10318 } 10319 Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 10320 DAG.getVectorIdxConstant(0, DL)); 10321 return Val; 10322 } 10323 } 10324 return SDValue(); 10325 } 10326 10327 #define GET_REGISTER_MATCHER 10328 #include "RISCVGenAsmMatcher.inc" 10329 10330 Register 10331 RISCVTargetLowering::getRegisterByName(const char *RegName, LLT VT, 10332 const MachineFunction &MF) const { 10333 Register Reg = MatchRegisterAltName(RegName); 10334 if (Reg == RISCV::NoRegister) 10335 Reg = MatchRegisterName(RegName); 10336 if (Reg == RISCV::NoRegister) 10337 report_fatal_error( 10338 Twine("Invalid register name \"" + StringRef(RegName) + "\".")); 10339 BitVector ReservedRegs = Subtarget.getRegisterInfo()->getReservedRegs(MF); 10340 if (!ReservedRegs.test(Reg) && !Subtarget.isRegisterReservedByUser(Reg)) 10341 report_fatal_error(Twine("Trying to obtain non-reserved register \"" + 10342 StringRef(RegName) + "\".")); 10343 return Reg; 10344 } 10345 10346 namespace llvm { 10347 namespace RISCVVIntrinsicsTable { 10348 10349 #define GET_RISCVVIntrinsicsTable_IMPL 10350 #include "RISCVGenSearchableTables.inc" 10351 10352 } // namespace RISCVVIntrinsicsTable 10353 10354 } // namespace llvm 10355