1 //===-- RISCVISelLowering.cpp - RISCV DAG Lowering Implementation  --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the interfaces that RISCV uses to lower LLVM code into a
10 // selection DAG.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "RISCVISelLowering.h"
15 #include "MCTargetDesc/RISCVMatInt.h"
16 #include "RISCV.h"
17 #include "RISCVMachineFunctionInfo.h"
18 #include "RISCVRegisterInfo.h"
19 #include "RISCVSubtarget.h"
20 #include "RISCVTargetMachine.h"
21 #include "llvm/ADT/SmallSet.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/Analysis/MemoryLocation.h"
24 #include "llvm/CodeGen/MachineFrameInfo.h"
25 #include "llvm/CodeGen/MachineFunction.h"
26 #include "llvm/CodeGen/MachineInstrBuilder.h"
27 #include "llvm/CodeGen/MachineJumpTableInfo.h"
28 #include "llvm/CodeGen/MachineRegisterInfo.h"
29 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
30 #include "llvm/CodeGen/ValueTypes.h"
31 #include "llvm/IR/DiagnosticInfo.h"
32 #include "llvm/IR/DiagnosticPrinter.h"
33 #include "llvm/IR/IRBuilder.h"
34 #include "llvm/IR/IntrinsicsRISCV.h"
35 #include "llvm/IR/PatternMatch.h"
36 #include "llvm/Support/Debug.h"
37 #include "llvm/Support/ErrorHandling.h"
38 #include "llvm/Support/KnownBits.h"
39 #include "llvm/Support/MathExtras.h"
40 #include "llvm/Support/raw_ostream.h"
41 
42 using namespace llvm;
43 
44 #define DEBUG_TYPE "riscv-lower"
45 
46 STATISTIC(NumTailCalls, "Number of tail calls");
47 
48 RISCVTargetLowering::RISCVTargetLowering(const TargetMachine &TM,
49                                          const RISCVSubtarget &STI)
50     : TargetLowering(TM), Subtarget(STI) {
51 
52   if (Subtarget.isRV32E())
53     report_fatal_error("Codegen not yet implemented for RV32E");
54 
55   RISCVABI::ABI ABI = Subtarget.getTargetABI();
56   assert(ABI != RISCVABI::ABI_Unknown && "Improperly initialised target ABI");
57 
58   if ((ABI == RISCVABI::ABI_ILP32F || ABI == RISCVABI::ABI_LP64F) &&
59       !Subtarget.hasStdExtF()) {
60     errs() << "Hard-float 'f' ABI can't be used for a target that "
61                 "doesn't support the F instruction set extension (ignoring "
62                           "target-abi)\n";
63     ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32;
64   } else if ((ABI == RISCVABI::ABI_ILP32D || ABI == RISCVABI::ABI_LP64D) &&
65              !Subtarget.hasStdExtD()) {
66     errs() << "Hard-float 'd' ABI can't be used for a target that "
67               "doesn't support the D instruction set extension (ignoring "
68               "target-abi)\n";
69     ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32;
70   }
71 
72   switch (ABI) {
73   default:
74     report_fatal_error("Don't know how to lower this ABI");
75   case RISCVABI::ABI_ILP32:
76   case RISCVABI::ABI_ILP32F:
77   case RISCVABI::ABI_ILP32D:
78   case RISCVABI::ABI_LP64:
79   case RISCVABI::ABI_LP64F:
80   case RISCVABI::ABI_LP64D:
81     break;
82   }
83 
84   MVT XLenVT = Subtarget.getXLenVT();
85 
86   // Set up the register classes.
87   addRegisterClass(XLenVT, &RISCV::GPRRegClass);
88 
89   if (Subtarget.hasStdExtZfh())
90     addRegisterClass(MVT::f16, &RISCV::FPR16RegClass);
91   if (Subtarget.hasStdExtF())
92     addRegisterClass(MVT::f32, &RISCV::FPR32RegClass);
93   if (Subtarget.hasStdExtD())
94     addRegisterClass(MVT::f64, &RISCV::FPR64RegClass);
95 
96   static const MVT::SimpleValueType BoolVecVTs[] = {
97       MVT::nxv1i1,  MVT::nxv2i1,  MVT::nxv4i1, MVT::nxv8i1,
98       MVT::nxv16i1, MVT::nxv32i1, MVT::nxv64i1};
99   static const MVT::SimpleValueType IntVecVTs[] = {
100       MVT::nxv1i8,  MVT::nxv2i8,   MVT::nxv4i8,   MVT::nxv8i8,  MVT::nxv16i8,
101       MVT::nxv32i8, MVT::nxv64i8,  MVT::nxv1i16,  MVT::nxv2i16, MVT::nxv4i16,
102       MVT::nxv8i16, MVT::nxv16i16, MVT::nxv32i16, MVT::nxv1i32, MVT::nxv2i32,
103       MVT::nxv4i32, MVT::nxv8i32,  MVT::nxv16i32, MVT::nxv1i64, MVT::nxv2i64,
104       MVT::nxv4i64, MVT::nxv8i64};
105   static const MVT::SimpleValueType F16VecVTs[] = {
106       MVT::nxv1f16, MVT::nxv2f16,  MVT::nxv4f16,
107       MVT::nxv8f16, MVT::nxv16f16, MVT::nxv32f16};
108   static const MVT::SimpleValueType F32VecVTs[] = {
109       MVT::nxv1f32, MVT::nxv2f32, MVT::nxv4f32, MVT::nxv8f32, MVT::nxv16f32};
110   static const MVT::SimpleValueType F64VecVTs[] = {
111       MVT::nxv1f64, MVT::nxv2f64, MVT::nxv4f64, MVT::nxv8f64};
112 
113   if (Subtarget.hasVInstructions()) {
114     auto addRegClassForRVV = [this](MVT VT) {
115       unsigned Size = VT.getSizeInBits().getKnownMinValue();
116       assert(Size <= 512 && isPowerOf2_32(Size));
117       const TargetRegisterClass *RC;
118       if (Size <= 64)
119         RC = &RISCV::VRRegClass;
120       else if (Size == 128)
121         RC = &RISCV::VRM2RegClass;
122       else if (Size == 256)
123         RC = &RISCV::VRM4RegClass;
124       else
125         RC = &RISCV::VRM8RegClass;
126 
127       addRegisterClass(VT, RC);
128     };
129 
130     for (MVT VT : BoolVecVTs)
131       addRegClassForRVV(VT);
132     for (MVT VT : IntVecVTs) {
133       if (VT.getVectorElementType() == MVT::i64 &&
134           !Subtarget.hasVInstructionsI64())
135         continue;
136       addRegClassForRVV(VT);
137     }
138 
139     if (Subtarget.hasVInstructionsF16())
140       for (MVT VT : F16VecVTs)
141         addRegClassForRVV(VT);
142 
143     if (Subtarget.hasVInstructionsF32())
144       for (MVT VT : F32VecVTs)
145         addRegClassForRVV(VT);
146 
147     if (Subtarget.hasVInstructionsF64())
148       for (MVT VT : F64VecVTs)
149         addRegClassForRVV(VT);
150 
151     if (Subtarget.useRVVForFixedLengthVectors()) {
152       auto addRegClassForFixedVectors = [this](MVT VT) {
153         MVT ContainerVT = getContainerForFixedLengthVector(VT);
154         unsigned RCID = getRegClassIDForVecVT(ContainerVT);
155         const RISCVRegisterInfo &TRI = *Subtarget.getRegisterInfo();
156         addRegisterClass(VT, TRI.getRegClass(RCID));
157       };
158       for (MVT VT : MVT::integer_fixedlen_vector_valuetypes())
159         if (useRVVForFixedLengthVectorVT(VT))
160           addRegClassForFixedVectors(VT);
161 
162       for (MVT VT : MVT::fp_fixedlen_vector_valuetypes())
163         if (useRVVForFixedLengthVectorVT(VT))
164           addRegClassForFixedVectors(VT);
165     }
166   }
167 
168   // Compute derived properties from the register classes.
169   computeRegisterProperties(STI.getRegisterInfo());
170 
171   setStackPointerRegisterToSaveRestore(RISCV::X2);
172 
173   for (auto N : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD})
174     setLoadExtAction(N, XLenVT, MVT::i1, Promote);
175 
176   // TODO: add all necessary setOperationAction calls.
177   setOperationAction(ISD::DYNAMIC_STACKALLOC, XLenVT, Expand);
178 
179   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
180   setOperationAction(ISD::BR_CC, XLenVT, Expand);
181   setOperationAction(ISD::BRCOND, MVT::Other, Custom);
182   setOperationAction(ISD::SELECT_CC, XLenVT, Expand);
183 
184   setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
185   setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
186 
187   setOperationAction(ISD::VASTART, MVT::Other, Custom);
188   setOperationAction(ISD::VAARG, MVT::Other, Expand);
189   setOperationAction(ISD::VACOPY, MVT::Other, Expand);
190   setOperationAction(ISD::VAEND, MVT::Other, Expand);
191 
192   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
193   if (!Subtarget.hasStdExtZbb()) {
194     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand);
195     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
196   }
197 
198   if (Subtarget.is64Bit()) {
199     setOperationAction(ISD::ADD, MVT::i32, Custom);
200     setOperationAction(ISD::SUB, MVT::i32, Custom);
201     setOperationAction(ISD::SHL, MVT::i32, Custom);
202     setOperationAction(ISD::SRA, MVT::i32, Custom);
203     setOperationAction(ISD::SRL, MVT::i32, Custom);
204 
205     setOperationAction(ISD::UADDO, MVT::i32, Custom);
206     setOperationAction(ISD::USUBO, MVT::i32, Custom);
207     setOperationAction(ISD::UADDSAT, MVT::i32, Custom);
208     setOperationAction(ISD::USUBSAT, MVT::i32, Custom);
209   } else {
210     setLibcallName(RTLIB::SHL_I128, nullptr);
211     setLibcallName(RTLIB::SRL_I128, nullptr);
212     setLibcallName(RTLIB::SRA_I128, nullptr);
213     setLibcallName(RTLIB::MUL_I128, nullptr);
214     setLibcallName(RTLIB::MULO_I64, nullptr);
215   }
216 
217   if (!Subtarget.hasStdExtM()) {
218     setOperationAction(ISD::MUL, XLenVT, Expand);
219     setOperationAction(ISD::MULHS, XLenVT, Expand);
220     setOperationAction(ISD::MULHU, XLenVT, Expand);
221     setOperationAction(ISD::SDIV, XLenVT, Expand);
222     setOperationAction(ISD::UDIV, XLenVT, Expand);
223     setOperationAction(ISD::SREM, XLenVT, Expand);
224     setOperationAction(ISD::UREM, XLenVT, Expand);
225   } else {
226     if (Subtarget.is64Bit()) {
227       setOperationAction(ISD::MUL, MVT::i32, Custom);
228       setOperationAction(ISD::MUL, MVT::i128, Custom);
229 
230       setOperationAction(ISD::SDIV, MVT::i8, Custom);
231       setOperationAction(ISD::UDIV, MVT::i8, Custom);
232       setOperationAction(ISD::UREM, MVT::i8, Custom);
233       setOperationAction(ISD::SDIV, MVT::i16, Custom);
234       setOperationAction(ISD::UDIV, MVT::i16, Custom);
235       setOperationAction(ISD::UREM, MVT::i16, Custom);
236       setOperationAction(ISD::SDIV, MVT::i32, Custom);
237       setOperationAction(ISD::UDIV, MVT::i32, Custom);
238       setOperationAction(ISD::UREM, MVT::i32, Custom);
239     } else {
240       setOperationAction(ISD::MUL, MVT::i64, Custom);
241     }
242   }
243 
244   setOperationAction(ISD::SDIVREM, XLenVT, Expand);
245   setOperationAction(ISD::UDIVREM, XLenVT, Expand);
246   setOperationAction(ISD::SMUL_LOHI, XLenVT, Expand);
247   setOperationAction(ISD::UMUL_LOHI, XLenVT, Expand);
248 
249   setOperationAction(ISD::SHL_PARTS, XLenVT, Custom);
250   setOperationAction(ISD::SRL_PARTS, XLenVT, Custom);
251   setOperationAction(ISD::SRA_PARTS, XLenVT, Custom);
252 
253   if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp() ||
254       Subtarget.hasStdExtZbkb()) {
255     if (Subtarget.is64Bit()) {
256       setOperationAction(ISD::ROTL, MVT::i32, Custom);
257       setOperationAction(ISD::ROTR, MVT::i32, Custom);
258     }
259   } else {
260     setOperationAction(ISD::ROTL, XLenVT, Expand);
261     setOperationAction(ISD::ROTR, XLenVT, Expand);
262   }
263 
264   if (Subtarget.hasStdExtZbp()) {
265     // Custom lower bswap/bitreverse so we can convert them to GREVI to enable
266     // more combining.
267     setOperationAction(ISD::BITREVERSE, XLenVT,   Custom);
268     setOperationAction(ISD::BSWAP,      XLenVT,   Custom);
269     setOperationAction(ISD::BITREVERSE, MVT::i8,  Custom);
270     // BSWAP i8 doesn't exist.
271     setOperationAction(ISD::BITREVERSE, MVT::i16, Custom);
272     setOperationAction(ISD::BSWAP,      MVT::i16, Custom);
273 
274     if (Subtarget.is64Bit()) {
275       setOperationAction(ISD::BITREVERSE, MVT::i32, Custom);
276       setOperationAction(ISD::BSWAP,      MVT::i32, Custom);
277     }
278   } else {
279     // With Zbb we have an XLen rev8 instruction, but not GREVI. So we'll
280     // pattern match it directly in isel.
281     setOperationAction(ISD::BSWAP, XLenVT,
282                        (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbkb())
283                            ? Legal
284                            : Expand);
285     // Zbkb can use rev8+brev8 to implement bitreverse.
286     setOperationAction(ISD::BITREVERSE, XLenVT,
287                        Subtarget.hasStdExtZbkb() ? Custom : Expand);
288   }
289 
290   if (Subtarget.hasStdExtZbb()) {
291     setOperationAction(ISD::SMIN, XLenVT, Legal);
292     setOperationAction(ISD::SMAX, XLenVT, Legal);
293     setOperationAction(ISD::UMIN, XLenVT, Legal);
294     setOperationAction(ISD::UMAX, XLenVT, Legal);
295 
296     if (Subtarget.is64Bit()) {
297       setOperationAction(ISD::CTTZ, MVT::i32, Custom);
298       setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Custom);
299       setOperationAction(ISD::CTLZ, MVT::i32, Custom);
300       setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom);
301     }
302   } else {
303     setOperationAction(ISD::CTTZ, XLenVT, Expand);
304     setOperationAction(ISD::CTLZ, XLenVT, Expand);
305     setOperationAction(ISD::CTPOP, XLenVT, Expand);
306 
307     if (Subtarget.is64Bit())
308       setOperationAction(ISD::ABS, MVT::i32, Custom);
309   }
310 
311   if (Subtarget.hasStdExtZbt()) {
312     setOperationAction(ISD::FSHL, XLenVT, Custom);
313     setOperationAction(ISD::FSHR, XLenVT, Custom);
314     setOperationAction(ISD::SELECT, XLenVT, Legal);
315 
316     if (Subtarget.is64Bit()) {
317       setOperationAction(ISD::FSHL, MVT::i32, Custom);
318       setOperationAction(ISD::FSHR, MVT::i32, Custom);
319     }
320   } else {
321     setOperationAction(ISD::SELECT, XLenVT, Custom);
322   }
323 
324   static constexpr ISD::NodeType FPLegalNodeTypes[] = {
325       ISD::FMINNUM,        ISD::FMAXNUM,       ISD::LRINT,
326       ISD::LLRINT,         ISD::LROUND,        ISD::LLROUND,
327       ISD::STRICT_LRINT,   ISD::STRICT_LLRINT, ISD::STRICT_LROUND,
328       ISD::STRICT_LLROUND, ISD::STRICT_FMA,    ISD::STRICT_FADD,
329       ISD::STRICT_FSUB,    ISD::STRICT_FMUL,   ISD::STRICT_FDIV,
330       ISD::STRICT_FSQRT,   ISD::STRICT_FSETCC, ISD::STRICT_FSETCCS};
331 
332   static const ISD::CondCode FPCCToExpand[] = {
333       ISD::SETOGT, ISD::SETOGE, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT,
334       ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUNE, ISD::SETGT,
335       ISD::SETGE,  ISD::SETNE,  ISD::SETO,   ISD::SETUO};
336 
337   static const ISD::NodeType FPOpToExpand[] = {
338       ISD::FSIN, ISD::FCOS,       ISD::FSINCOS,   ISD::FPOW,
339       ISD::FREM, ISD::FP16_TO_FP, ISD::FP_TO_FP16};
340 
341   if (Subtarget.hasStdExtZfh())
342     setOperationAction(ISD::BITCAST, MVT::i16, Custom);
343 
344   if (Subtarget.hasStdExtZfh()) {
345     for (auto NT : FPLegalNodeTypes)
346       setOperationAction(NT, MVT::f16, Legal);
347     setOperationAction(ISD::STRICT_FP_ROUND, MVT::f16, Legal);
348     setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f32, Legal);
349     for (auto CC : FPCCToExpand)
350       setCondCodeAction(CC, MVT::f16, Expand);
351     setOperationAction(ISD::SELECT_CC, MVT::f16, Expand);
352     setOperationAction(ISD::SELECT, MVT::f16, Custom);
353     setOperationAction(ISD::BR_CC, MVT::f16, Expand);
354 
355     setOperationAction(ISD::FREM,       MVT::f16, Promote);
356     setOperationAction(ISD::FCEIL,      MVT::f16, Promote);
357     setOperationAction(ISD::FFLOOR,     MVT::f16, Promote);
358     setOperationAction(ISD::FNEARBYINT, MVT::f16, Promote);
359     setOperationAction(ISD::FRINT,      MVT::f16, Promote);
360     setOperationAction(ISD::FROUND,     MVT::f16, Promote);
361     setOperationAction(ISD::FROUNDEVEN, MVT::f16, Promote);
362     setOperationAction(ISD::FTRUNC,     MVT::f16, Promote);
363     setOperationAction(ISD::FPOW,       MVT::f16, Promote);
364     setOperationAction(ISD::FPOWI,      MVT::f16, Promote);
365     setOperationAction(ISD::FCOS,       MVT::f16, Promote);
366     setOperationAction(ISD::FSIN,       MVT::f16, Promote);
367     setOperationAction(ISD::FSINCOS,    MVT::f16, Promote);
368     setOperationAction(ISD::FEXP,       MVT::f16, Promote);
369     setOperationAction(ISD::FEXP2,      MVT::f16, Promote);
370     setOperationAction(ISD::FLOG,       MVT::f16, Promote);
371     setOperationAction(ISD::FLOG2,      MVT::f16, Promote);
372     setOperationAction(ISD::FLOG10,     MVT::f16, Promote);
373 
374     // FIXME: Need to promote f16 STRICT_* to f32 libcalls, but we don't have
375     // complete support for all operations in LegalizeDAG.
376 
377     // We need to custom promote this.
378     if (Subtarget.is64Bit())
379       setOperationAction(ISD::FPOWI, MVT::i32, Custom);
380   }
381 
382   if (Subtarget.hasStdExtF()) {
383     for (auto NT : FPLegalNodeTypes)
384       setOperationAction(NT, MVT::f32, Legal);
385     for (auto CC : FPCCToExpand)
386       setCondCodeAction(CC, MVT::f32, Expand);
387     setOperationAction(ISD::SELECT_CC, MVT::f32, Expand);
388     setOperationAction(ISD::SELECT, MVT::f32, Custom);
389     setOperationAction(ISD::BR_CC, MVT::f32, Expand);
390     for (auto Op : FPOpToExpand)
391       setOperationAction(Op, MVT::f32, Expand);
392     setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
393     setTruncStoreAction(MVT::f32, MVT::f16, Expand);
394   }
395 
396   if (Subtarget.hasStdExtF() && Subtarget.is64Bit())
397     setOperationAction(ISD::BITCAST, MVT::i32, Custom);
398 
399   if (Subtarget.hasStdExtD()) {
400     for (auto NT : FPLegalNodeTypes)
401       setOperationAction(NT, MVT::f64, Legal);
402     setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal);
403     setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f64, Legal);
404     for (auto CC : FPCCToExpand)
405       setCondCodeAction(CC, MVT::f64, Expand);
406     setOperationAction(ISD::SELECT_CC, MVT::f64, Expand);
407     setOperationAction(ISD::SELECT, MVT::f64, Custom);
408     setOperationAction(ISD::BR_CC, MVT::f64, Expand);
409     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
410     setTruncStoreAction(MVT::f64, MVT::f32, Expand);
411     for (auto Op : FPOpToExpand)
412       setOperationAction(Op, MVT::f64, Expand);
413     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
414     setTruncStoreAction(MVT::f64, MVT::f16, Expand);
415   }
416 
417   if (Subtarget.is64Bit()) {
418     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
419     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
420     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom);
421     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom);
422   }
423 
424   if (Subtarget.hasStdExtF()) {
425     setOperationAction(ISD::FP_TO_UINT_SAT, XLenVT, Custom);
426     setOperationAction(ISD::FP_TO_SINT_SAT, XLenVT, Custom);
427 
428     setOperationAction(ISD::STRICT_FP_TO_UINT, XLenVT, Legal);
429     setOperationAction(ISD::STRICT_FP_TO_SINT, XLenVT, Legal);
430     setOperationAction(ISD::STRICT_UINT_TO_FP, XLenVT, Legal);
431     setOperationAction(ISD::STRICT_SINT_TO_FP, XLenVT, Legal);
432 
433     setOperationAction(ISD::FLT_ROUNDS_, XLenVT, Custom);
434     setOperationAction(ISD::SET_ROUNDING, MVT::Other, Custom);
435   }
436 
437   setOperationAction(ISD::GlobalAddress, XLenVT, Custom);
438   setOperationAction(ISD::BlockAddress, XLenVT, Custom);
439   setOperationAction(ISD::ConstantPool, XLenVT, Custom);
440   setOperationAction(ISD::JumpTable, XLenVT, Custom);
441 
442   setOperationAction(ISD::GlobalTLSAddress, XLenVT, Custom);
443 
444   // TODO: On M-mode only targets, the cycle[h] CSR may not be present.
445   // Unfortunately this can't be determined just from the ISA naming string.
446   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64,
447                      Subtarget.is64Bit() ? Legal : Custom);
448 
449   setOperationAction(ISD::TRAP, MVT::Other, Legal);
450   setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal);
451   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
452   if (Subtarget.is64Bit())
453     setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i32, Custom);
454 
455   if (Subtarget.hasStdExtA()) {
456     setMaxAtomicSizeInBitsSupported(Subtarget.getXLen());
457     setMinCmpXchgSizeInBits(32);
458   } else {
459     setMaxAtomicSizeInBitsSupported(0);
460   }
461 
462   setBooleanContents(ZeroOrOneBooleanContent);
463 
464   if (Subtarget.hasVInstructions()) {
465     setBooleanVectorContents(ZeroOrOneBooleanContent);
466 
467     setOperationAction(ISD::VSCALE, XLenVT, Custom);
468 
469     // RVV intrinsics may have illegal operands.
470     // We also need to custom legalize vmv.x.s.
471     setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i8, Custom);
472     setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i16, Custom);
473     setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i8, Custom);
474     setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i16, Custom);
475     if (Subtarget.is64Bit()) {
476       setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i32, Custom);
477     } else {
478       setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i64, Custom);
479       setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i64, Custom);
480     }
481 
482     setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
483     setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
484 
485     static const unsigned IntegerVPOps[] = {
486         ISD::VP_ADD,         ISD::VP_SUB,         ISD::VP_MUL,
487         ISD::VP_SDIV,        ISD::VP_UDIV,        ISD::VP_SREM,
488         ISD::VP_UREM,        ISD::VP_AND,         ISD::VP_OR,
489         ISD::VP_XOR,         ISD::VP_ASHR,        ISD::VP_LSHR,
490         ISD::VP_SHL,         ISD::VP_REDUCE_ADD,  ISD::VP_REDUCE_AND,
491         ISD::VP_REDUCE_OR,   ISD::VP_REDUCE_XOR,  ISD::VP_REDUCE_SMAX,
492         ISD::VP_REDUCE_SMIN, ISD::VP_REDUCE_UMAX, ISD::VP_REDUCE_UMIN,
493         ISD::VP_MERGE,       ISD::VP_SELECT};
494 
495     static const unsigned FloatingPointVPOps[] = {
496         ISD::VP_FADD,        ISD::VP_FSUB,        ISD::VP_FMUL,
497         ISD::VP_FDIV,        ISD::VP_FNEG,        ISD::VP_FMA,
498         ISD::VP_REDUCE_FADD, ISD::VP_REDUCE_SEQ_FADD, ISD::VP_REDUCE_FMIN,
499         ISD::VP_REDUCE_FMAX, ISD::VP_MERGE,       ISD::VP_SELECT};
500 
501     if (!Subtarget.is64Bit()) {
502       // We must custom-lower certain vXi64 operations on RV32 due to the vector
503       // element type being illegal.
504       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::i64, Custom);
505       setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::i64, Custom);
506 
507       setOperationAction(ISD::VECREDUCE_ADD, MVT::i64, Custom);
508       setOperationAction(ISD::VECREDUCE_AND, MVT::i64, Custom);
509       setOperationAction(ISD::VECREDUCE_OR, MVT::i64, Custom);
510       setOperationAction(ISD::VECREDUCE_XOR, MVT::i64, Custom);
511       setOperationAction(ISD::VECREDUCE_SMAX, MVT::i64, Custom);
512       setOperationAction(ISD::VECREDUCE_SMIN, MVT::i64, Custom);
513       setOperationAction(ISD::VECREDUCE_UMAX, MVT::i64, Custom);
514       setOperationAction(ISD::VECREDUCE_UMIN, MVT::i64, Custom);
515 
516       setOperationAction(ISD::VP_REDUCE_ADD, MVT::i64, Custom);
517       setOperationAction(ISD::VP_REDUCE_AND, MVT::i64, Custom);
518       setOperationAction(ISD::VP_REDUCE_OR, MVT::i64, Custom);
519       setOperationAction(ISD::VP_REDUCE_XOR, MVT::i64, Custom);
520       setOperationAction(ISD::VP_REDUCE_SMAX, MVT::i64, Custom);
521       setOperationAction(ISD::VP_REDUCE_SMIN, MVT::i64, Custom);
522       setOperationAction(ISD::VP_REDUCE_UMAX, MVT::i64, Custom);
523       setOperationAction(ISD::VP_REDUCE_UMIN, MVT::i64, Custom);
524     }
525 
526     for (MVT VT : BoolVecVTs) {
527       setOperationAction(ISD::SPLAT_VECTOR, VT, Custom);
528 
529       // Mask VTs are custom-expanded into a series of standard nodes
530       setOperationAction(ISD::TRUNCATE, VT, Custom);
531       setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
532       setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
533       setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
534 
535       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
536       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
537 
538       setOperationAction(ISD::SELECT, VT, Custom);
539       setOperationAction(ISD::SELECT_CC, VT, Expand);
540       setOperationAction(ISD::VSELECT, VT, Expand);
541       setOperationAction(ISD::VP_MERGE, VT, Expand);
542       setOperationAction(ISD::VP_SELECT, VT, Expand);
543 
544       setOperationAction(ISD::VP_AND, VT, Custom);
545       setOperationAction(ISD::VP_OR, VT, Custom);
546       setOperationAction(ISD::VP_XOR, VT, Custom);
547 
548       setOperationAction(ISD::VECREDUCE_AND, VT, Custom);
549       setOperationAction(ISD::VECREDUCE_OR, VT, Custom);
550       setOperationAction(ISD::VECREDUCE_XOR, VT, Custom);
551 
552       setOperationAction(ISD::VP_REDUCE_AND, VT, Custom);
553       setOperationAction(ISD::VP_REDUCE_OR, VT, Custom);
554       setOperationAction(ISD::VP_REDUCE_XOR, VT, Custom);
555 
556       // RVV has native int->float & float->int conversions where the
557       // element type sizes are within one power-of-two of each other. Any
558       // wider distances between type sizes have to be lowered as sequences
559       // which progressively narrow the gap in stages.
560       setOperationAction(ISD::SINT_TO_FP, VT, Custom);
561       setOperationAction(ISD::UINT_TO_FP, VT, Custom);
562       setOperationAction(ISD::FP_TO_SINT, VT, Custom);
563       setOperationAction(ISD::FP_TO_UINT, VT, Custom);
564 
565       // Expand all extending loads to types larger than this, and truncating
566       // stores from types larger than this.
567       for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) {
568         setTruncStoreAction(OtherVT, VT, Expand);
569         setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand);
570         setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand);
571         setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand);
572       }
573     }
574 
575     for (MVT VT : IntVecVTs) {
576       if (VT.getVectorElementType() == MVT::i64 &&
577           !Subtarget.hasVInstructionsI64())
578         continue;
579 
580       setOperationAction(ISD::SPLAT_VECTOR, VT, Legal);
581       setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom);
582 
583       // Vectors implement MULHS/MULHU.
584       setOperationAction(ISD::SMUL_LOHI, VT, Expand);
585       setOperationAction(ISD::UMUL_LOHI, VT, Expand);
586 
587       // nxvXi64 MULHS/MULHU requires the V extension instead of Zve64*.
588       if (VT.getVectorElementType() == MVT::i64 && !Subtarget.hasStdExtV()) {
589         setOperationAction(ISD::MULHU, VT, Expand);
590         setOperationAction(ISD::MULHS, VT, Expand);
591       }
592 
593       setOperationAction(ISD::SMIN, VT, Legal);
594       setOperationAction(ISD::SMAX, VT, Legal);
595       setOperationAction(ISD::UMIN, VT, Legal);
596       setOperationAction(ISD::UMAX, VT, Legal);
597 
598       setOperationAction(ISD::ROTL, VT, Expand);
599       setOperationAction(ISD::ROTR, VT, Expand);
600 
601       setOperationAction(ISD::CTTZ, VT, Expand);
602       setOperationAction(ISD::CTLZ, VT, Expand);
603       setOperationAction(ISD::CTPOP, VT, Expand);
604 
605       setOperationAction(ISD::BSWAP, VT, Expand);
606 
607       // Custom-lower extensions and truncations from/to mask types.
608       setOperationAction(ISD::ANY_EXTEND, VT, Custom);
609       setOperationAction(ISD::SIGN_EXTEND, VT, Custom);
610       setOperationAction(ISD::ZERO_EXTEND, VT, Custom);
611 
612       // RVV has native int->float & float->int conversions where the
613       // element type sizes are within one power-of-two of each other. Any
614       // wider distances between type sizes have to be lowered as sequences
615       // which progressively narrow the gap in stages.
616       setOperationAction(ISD::SINT_TO_FP, VT, Custom);
617       setOperationAction(ISD::UINT_TO_FP, VT, Custom);
618       setOperationAction(ISD::FP_TO_SINT, VT, Custom);
619       setOperationAction(ISD::FP_TO_UINT, VT, Custom);
620 
621       setOperationAction(ISD::SADDSAT, VT, Legal);
622       setOperationAction(ISD::UADDSAT, VT, Legal);
623       setOperationAction(ISD::SSUBSAT, VT, Legal);
624       setOperationAction(ISD::USUBSAT, VT, Legal);
625 
626       // Integer VTs are lowered as a series of "RISCVISD::TRUNCATE_VECTOR_VL"
627       // nodes which truncate by one power of two at a time.
628       setOperationAction(ISD::TRUNCATE, VT, Custom);
629 
630       // Custom-lower insert/extract operations to simplify patterns.
631       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
632       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
633 
634       // Custom-lower reduction operations to set up the corresponding custom
635       // nodes' operands.
636       setOperationAction(ISD::VECREDUCE_ADD, VT, Custom);
637       setOperationAction(ISD::VECREDUCE_AND, VT, Custom);
638       setOperationAction(ISD::VECREDUCE_OR, VT, Custom);
639       setOperationAction(ISD::VECREDUCE_XOR, VT, Custom);
640       setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom);
641       setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom);
642       setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom);
643       setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom);
644 
645       for (unsigned VPOpc : IntegerVPOps)
646         setOperationAction(VPOpc, VT, Custom);
647 
648       setOperationAction(ISD::LOAD, VT, Custom);
649       setOperationAction(ISD::STORE, VT, Custom);
650 
651       setOperationAction(ISD::MLOAD, VT, Custom);
652       setOperationAction(ISD::MSTORE, VT, Custom);
653       setOperationAction(ISD::MGATHER, VT, Custom);
654       setOperationAction(ISD::MSCATTER, VT, Custom);
655 
656       setOperationAction(ISD::VP_LOAD, VT, Custom);
657       setOperationAction(ISD::VP_STORE, VT, Custom);
658       setOperationAction(ISD::VP_GATHER, VT, Custom);
659       setOperationAction(ISD::VP_SCATTER, VT, Custom);
660 
661       setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
662       setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
663       setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
664 
665       setOperationAction(ISD::SELECT, VT, Custom);
666       setOperationAction(ISD::SELECT_CC, VT, Expand);
667 
668       setOperationAction(ISD::STEP_VECTOR, VT, Custom);
669       setOperationAction(ISD::VECTOR_REVERSE, VT, Custom);
670 
671       for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) {
672         setTruncStoreAction(VT, OtherVT, Expand);
673         setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand);
674         setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand);
675         setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand);
676       }
677 
678       // Lower CTLZ_ZERO_UNDEF and CTTZ_ZERO_UNDEF if we have a floating point
679       // type that can represent the value exactly.
680       if (VT.getVectorElementType() != MVT::i64) {
681         MVT FloatEltVT =
682             VT.getVectorElementType() == MVT::i32 ? MVT::f64 : MVT::f32;
683         EVT FloatVT = MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount());
684         if (isTypeLegal(FloatVT)) {
685           setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Custom);
686           setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Custom);
687         }
688       }
689     }
690 
691     // Expand various CCs to best match the RVV ISA, which natively supports UNE
692     // but no other unordered comparisons, and supports all ordered comparisons
693     // except ONE. Additionally, we expand GT,OGT,GE,OGE for optimization
694     // purposes; they are expanded to their swapped-operand CCs (LT,OLT,LE,OLE),
695     // and we pattern-match those back to the "original", swapping operands once
696     // more. This way we catch both operations and both "vf" and "fv" forms with
697     // fewer patterns.
698     static const ISD::CondCode VFPCCToExpand[] = {
699         ISD::SETO,   ISD::SETONE, ISD::SETUEQ, ISD::SETUGT,
700         ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUO,
701         ISD::SETGT,  ISD::SETOGT, ISD::SETGE,  ISD::SETOGE,
702     };
703 
704     // Sets common operation actions on RVV floating-point vector types.
705     const auto SetCommonVFPActions = [&](MVT VT) {
706       setOperationAction(ISD::SPLAT_VECTOR, VT, Legal);
707       // RVV has native FP_ROUND & FP_EXTEND conversions where the element type
708       // sizes are within one power-of-two of each other. Therefore conversions
709       // between vXf16 and vXf64 must be lowered as sequences which convert via
710       // vXf32.
711       setOperationAction(ISD::FP_ROUND, VT, Custom);
712       setOperationAction(ISD::FP_EXTEND, VT, Custom);
713       // Custom-lower insert/extract operations to simplify patterns.
714       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
715       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
716       // Expand various condition codes (explained above).
717       for (auto CC : VFPCCToExpand)
718         setCondCodeAction(CC, VT, Expand);
719 
720       setOperationAction(ISD::FMINNUM, VT, Legal);
721       setOperationAction(ISD::FMAXNUM, VT, Legal);
722 
723       setOperationAction(ISD::FTRUNC, VT, Custom);
724       setOperationAction(ISD::FCEIL, VT, Custom);
725       setOperationAction(ISD::FFLOOR, VT, Custom);
726       setOperationAction(ISD::FROUND, VT, Custom);
727 
728       setOperationAction(ISD::VECREDUCE_FADD, VT, Custom);
729       setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom);
730       setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom);
731       setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom);
732 
733       setOperationAction(ISD::FCOPYSIGN, VT, Legal);
734 
735       setOperationAction(ISD::LOAD, VT, Custom);
736       setOperationAction(ISD::STORE, VT, Custom);
737 
738       setOperationAction(ISD::MLOAD, VT, Custom);
739       setOperationAction(ISD::MSTORE, VT, Custom);
740       setOperationAction(ISD::MGATHER, VT, Custom);
741       setOperationAction(ISD::MSCATTER, VT, Custom);
742 
743       setOperationAction(ISD::VP_LOAD, VT, Custom);
744       setOperationAction(ISD::VP_STORE, VT, Custom);
745       setOperationAction(ISD::VP_GATHER, VT, Custom);
746       setOperationAction(ISD::VP_SCATTER, VT, Custom);
747 
748       setOperationAction(ISD::SELECT, VT, Custom);
749       setOperationAction(ISD::SELECT_CC, VT, Expand);
750 
751       setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
752       setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
753       setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
754 
755       setOperationAction(ISD::VECTOR_REVERSE, VT, Custom);
756 
757       for (unsigned VPOpc : FloatingPointVPOps)
758         setOperationAction(VPOpc, VT, Custom);
759     };
760 
761     // Sets common extload/truncstore actions on RVV floating-point vector
762     // types.
763     const auto SetCommonVFPExtLoadTruncStoreActions =
764         [&](MVT VT, ArrayRef<MVT::SimpleValueType> SmallerVTs) {
765           for (auto SmallVT : SmallerVTs) {
766             setTruncStoreAction(VT, SmallVT, Expand);
767             setLoadExtAction(ISD::EXTLOAD, VT, SmallVT, Expand);
768           }
769         };
770 
771     if (Subtarget.hasVInstructionsF16())
772       for (MVT VT : F16VecVTs)
773         SetCommonVFPActions(VT);
774 
775     for (MVT VT : F32VecVTs) {
776       if (Subtarget.hasVInstructionsF32())
777         SetCommonVFPActions(VT);
778       SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs);
779     }
780 
781     for (MVT VT : F64VecVTs) {
782       if (Subtarget.hasVInstructionsF64())
783         SetCommonVFPActions(VT);
784       SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs);
785       SetCommonVFPExtLoadTruncStoreActions(VT, F32VecVTs);
786     }
787 
788     if (Subtarget.useRVVForFixedLengthVectors()) {
789       for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) {
790         if (!useRVVForFixedLengthVectorVT(VT))
791           continue;
792 
793         // By default everything must be expanded.
794         for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op)
795           setOperationAction(Op, VT, Expand);
796         for (MVT OtherVT : MVT::integer_fixedlen_vector_valuetypes()) {
797           setTruncStoreAction(VT, OtherVT, Expand);
798           setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand);
799           setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand);
800           setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand);
801         }
802 
803         // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed.
804         setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
805         setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
806 
807         setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
808         setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
809 
810         setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
811         setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
812 
813         setOperationAction(ISD::LOAD, VT, Custom);
814         setOperationAction(ISD::STORE, VT, Custom);
815 
816         setOperationAction(ISD::SETCC, VT, Custom);
817 
818         setOperationAction(ISD::SELECT, VT, Custom);
819 
820         setOperationAction(ISD::TRUNCATE, VT, Custom);
821 
822         setOperationAction(ISD::BITCAST, VT, Custom);
823 
824         setOperationAction(ISD::VECREDUCE_AND, VT, Custom);
825         setOperationAction(ISD::VECREDUCE_OR, VT, Custom);
826         setOperationAction(ISD::VECREDUCE_XOR, VT, Custom);
827 
828         setOperationAction(ISD::VP_REDUCE_AND, VT, Custom);
829         setOperationAction(ISD::VP_REDUCE_OR, VT, Custom);
830         setOperationAction(ISD::VP_REDUCE_XOR, VT, Custom);
831 
832         setOperationAction(ISD::SINT_TO_FP, VT, Custom);
833         setOperationAction(ISD::UINT_TO_FP, VT, Custom);
834         setOperationAction(ISD::FP_TO_SINT, VT, Custom);
835         setOperationAction(ISD::FP_TO_UINT, VT, Custom);
836 
837         // Operations below are different for between masks and other vectors.
838         if (VT.getVectorElementType() == MVT::i1) {
839           setOperationAction(ISD::VP_AND, VT, Custom);
840           setOperationAction(ISD::VP_OR, VT, Custom);
841           setOperationAction(ISD::VP_XOR, VT, Custom);
842           setOperationAction(ISD::AND, VT, Custom);
843           setOperationAction(ISD::OR, VT, Custom);
844           setOperationAction(ISD::XOR, VT, Custom);
845           continue;
846         }
847 
848         // Use SPLAT_VECTOR to prevent type legalization from destroying the
849         // splats when type legalizing i64 scalar on RV32.
850         // FIXME: Use SPLAT_VECTOR for all types? DAGCombine probably needs
851         // improvements first.
852         if (!Subtarget.is64Bit() && VT.getVectorElementType() == MVT::i64) {
853           setOperationAction(ISD::SPLAT_VECTOR, VT, Custom);
854           setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom);
855         }
856 
857         setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
858         setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
859 
860         setOperationAction(ISD::MLOAD, VT, Custom);
861         setOperationAction(ISD::MSTORE, VT, Custom);
862         setOperationAction(ISD::MGATHER, VT, Custom);
863         setOperationAction(ISD::MSCATTER, VT, Custom);
864 
865         setOperationAction(ISD::VP_LOAD, VT, Custom);
866         setOperationAction(ISD::VP_STORE, VT, Custom);
867         setOperationAction(ISD::VP_GATHER, VT, Custom);
868         setOperationAction(ISD::VP_SCATTER, VT, Custom);
869 
870         setOperationAction(ISD::ADD, VT, Custom);
871         setOperationAction(ISD::MUL, VT, Custom);
872         setOperationAction(ISD::SUB, VT, Custom);
873         setOperationAction(ISD::AND, VT, Custom);
874         setOperationAction(ISD::OR, VT, Custom);
875         setOperationAction(ISD::XOR, VT, Custom);
876         setOperationAction(ISD::SDIV, VT, Custom);
877         setOperationAction(ISD::SREM, VT, Custom);
878         setOperationAction(ISD::UDIV, VT, Custom);
879         setOperationAction(ISD::UREM, VT, Custom);
880         setOperationAction(ISD::SHL, VT, Custom);
881         setOperationAction(ISD::SRA, VT, Custom);
882         setOperationAction(ISD::SRL, VT, Custom);
883 
884         setOperationAction(ISD::SMIN, VT, Custom);
885         setOperationAction(ISD::SMAX, VT, Custom);
886         setOperationAction(ISD::UMIN, VT, Custom);
887         setOperationAction(ISD::UMAX, VT, Custom);
888         setOperationAction(ISD::ABS,  VT, Custom);
889 
890         // vXi64 MULHS/MULHU requires the V extension instead of Zve64*.
891         if (VT.getVectorElementType() != MVT::i64 || Subtarget.hasStdExtV()) {
892           setOperationAction(ISD::MULHS, VT, Custom);
893           setOperationAction(ISD::MULHU, VT, Custom);
894         }
895 
896         setOperationAction(ISD::SADDSAT, VT, Custom);
897         setOperationAction(ISD::UADDSAT, VT, Custom);
898         setOperationAction(ISD::SSUBSAT, VT, Custom);
899         setOperationAction(ISD::USUBSAT, VT, Custom);
900 
901         setOperationAction(ISD::VSELECT, VT, Custom);
902         setOperationAction(ISD::SELECT_CC, VT, Expand);
903 
904         setOperationAction(ISD::ANY_EXTEND, VT, Custom);
905         setOperationAction(ISD::SIGN_EXTEND, VT, Custom);
906         setOperationAction(ISD::ZERO_EXTEND, VT, Custom);
907 
908         // Custom-lower reduction operations to set up the corresponding custom
909         // nodes' operands.
910         setOperationAction(ISD::VECREDUCE_ADD, VT, Custom);
911         setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom);
912         setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom);
913         setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom);
914         setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom);
915 
916         for (unsigned VPOpc : IntegerVPOps)
917           setOperationAction(VPOpc, VT, Custom);
918 
919         // Lower CTLZ_ZERO_UNDEF and CTTZ_ZERO_UNDEF if we have a floating point
920         // type that can represent the value exactly.
921         if (VT.getVectorElementType() != MVT::i64) {
922           MVT FloatEltVT =
923               VT.getVectorElementType() == MVT::i32 ? MVT::f64 : MVT::f32;
924           EVT FloatVT =
925               MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount());
926           if (isTypeLegal(FloatVT)) {
927             setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Custom);
928             setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Custom);
929           }
930         }
931       }
932 
933       for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) {
934         if (!useRVVForFixedLengthVectorVT(VT))
935           continue;
936 
937         // By default everything must be expanded.
938         for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op)
939           setOperationAction(Op, VT, Expand);
940         for (MVT OtherVT : MVT::fp_fixedlen_vector_valuetypes()) {
941           setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand);
942           setTruncStoreAction(VT, OtherVT, Expand);
943         }
944 
945         // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed.
946         setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
947         setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
948 
949         setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
950         setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
951         setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
952         setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
953         setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
954 
955         setOperationAction(ISD::LOAD, VT, Custom);
956         setOperationAction(ISD::STORE, VT, Custom);
957         setOperationAction(ISD::MLOAD, VT, Custom);
958         setOperationAction(ISD::MSTORE, VT, Custom);
959         setOperationAction(ISD::MGATHER, VT, Custom);
960         setOperationAction(ISD::MSCATTER, VT, Custom);
961 
962         setOperationAction(ISD::VP_LOAD, VT, Custom);
963         setOperationAction(ISD::VP_STORE, VT, Custom);
964         setOperationAction(ISD::VP_GATHER, VT, Custom);
965         setOperationAction(ISD::VP_SCATTER, VT, Custom);
966 
967         setOperationAction(ISD::FADD, VT, Custom);
968         setOperationAction(ISD::FSUB, VT, Custom);
969         setOperationAction(ISD::FMUL, VT, Custom);
970         setOperationAction(ISD::FDIV, VT, Custom);
971         setOperationAction(ISD::FNEG, VT, Custom);
972         setOperationAction(ISD::FABS, VT, Custom);
973         setOperationAction(ISD::FCOPYSIGN, VT, Custom);
974         setOperationAction(ISD::FSQRT, VT, Custom);
975         setOperationAction(ISD::FMA, VT, Custom);
976         setOperationAction(ISD::FMINNUM, VT, Custom);
977         setOperationAction(ISD::FMAXNUM, VT, Custom);
978 
979         setOperationAction(ISD::FP_ROUND, VT, Custom);
980         setOperationAction(ISD::FP_EXTEND, VT, Custom);
981 
982         setOperationAction(ISD::FTRUNC, VT, Custom);
983         setOperationAction(ISD::FCEIL, VT, Custom);
984         setOperationAction(ISD::FFLOOR, VT, Custom);
985         setOperationAction(ISD::FROUND, VT, Custom);
986 
987         for (auto CC : VFPCCToExpand)
988           setCondCodeAction(CC, VT, Expand);
989 
990         setOperationAction(ISD::VSELECT, VT, Custom);
991         setOperationAction(ISD::SELECT, VT, Custom);
992         setOperationAction(ISD::SELECT_CC, VT, Expand);
993 
994         setOperationAction(ISD::BITCAST, VT, Custom);
995 
996         setOperationAction(ISD::VECREDUCE_FADD, VT, Custom);
997         setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom);
998         setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom);
999         setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom);
1000 
1001         for (unsigned VPOpc : FloatingPointVPOps)
1002           setOperationAction(VPOpc, VT, Custom);
1003       }
1004 
1005       // Custom-legalize bitcasts from fixed-length vectors to scalar types.
1006       setOperationAction(ISD::BITCAST, MVT::i8, Custom);
1007       setOperationAction(ISD::BITCAST, MVT::i16, Custom);
1008       setOperationAction(ISD::BITCAST, MVT::i32, Custom);
1009       setOperationAction(ISD::BITCAST, MVT::i64, Custom);
1010       if (Subtarget.hasStdExtZfh())
1011         setOperationAction(ISD::BITCAST, MVT::f16, Custom);
1012       if (Subtarget.hasStdExtF())
1013         setOperationAction(ISD::BITCAST, MVT::f32, Custom);
1014       if (Subtarget.hasStdExtD())
1015         setOperationAction(ISD::BITCAST, MVT::f64, Custom);
1016     }
1017   }
1018 
1019   // Function alignments.
1020   const Align FunctionAlignment(Subtarget.hasStdExtC() ? 2 : 4);
1021   setMinFunctionAlignment(FunctionAlignment);
1022   setPrefFunctionAlignment(FunctionAlignment);
1023 
1024   setMinimumJumpTableEntries(5);
1025 
1026   // Jumps are expensive, compared to logic
1027   setJumpIsExpensive();
1028 
1029   setTargetDAGCombine(ISD::ADD);
1030   setTargetDAGCombine(ISD::SUB);
1031   setTargetDAGCombine(ISD::AND);
1032   setTargetDAGCombine(ISD::OR);
1033   setTargetDAGCombine(ISD::XOR);
1034   if (Subtarget.hasStdExtZbp()) {
1035     setTargetDAGCombine(ISD::ROTL);
1036     setTargetDAGCombine(ISD::ROTR);
1037   }
1038   setTargetDAGCombine(ISD::ANY_EXTEND);
1039   setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
1040   if (Subtarget.hasStdExtZfh())
1041     setTargetDAGCombine(ISD::SIGN_EXTEND_INREG);
1042   if (Subtarget.hasStdExtF()) {
1043     setTargetDAGCombine(ISD::ZERO_EXTEND);
1044     setTargetDAGCombine(ISD::FP_TO_SINT);
1045     setTargetDAGCombine(ISD::FP_TO_UINT);
1046     setTargetDAGCombine(ISD::FP_TO_SINT_SAT);
1047     setTargetDAGCombine(ISD::FP_TO_UINT_SAT);
1048   }
1049   if (Subtarget.hasVInstructions()) {
1050     setTargetDAGCombine(ISD::FCOPYSIGN);
1051     setTargetDAGCombine(ISD::MGATHER);
1052     setTargetDAGCombine(ISD::MSCATTER);
1053     setTargetDAGCombine(ISD::VP_GATHER);
1054     setTargetDAGCombine(ISD::VP_SCATTER);
1055     setTargetDAGCombine(ISD::SRA);
1056     setTargetDAGCombine(ISD::SRL);
1057     setTargetDAGCombine(ISD::SHL);
1058     setTargetDAGCombine(ISD::STORE);
1059     setTargetDAGCombine(ISD::SPLAT_VECTOR);
1060   }
1061 
1062   setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2");
1063   setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2");
1064 }
1065 
1066 EVT RISCVTargetLowering::getSetCCResultType(const DataLayout &DL,
1067                                             LLVMContext &Context,
1068                                             EVT VT) const {
1069   if (!VT.isVector())
1070     return getPointerTy(DL);
1071   if (Subtarget.hasVInstructions() &&
1072       (VT.isScalableVector() || Subtarget.useRVVForFixedLengthVectors()))
1073     return EVT::getVectorVT(Context, MVT::i1, VT.getVectorElementCount());
1074   return VT.changeVectorElementTypeToInteger();
1075 }
1076 
1077 MVT RISCVTargetLowering::getVPExplicitVectorLengthTy() const {
1078   return Subtarget.getXLenVT();
1079 }
1080 
1081 bool RISCVTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
1082                                              const CallInst &I,
1083                                              MachineFunction &MF,
1084                                              unsigned Intrinsic) const {
1085   auto &DL = I.getModule()->getDataLayout();
1086   switch (Intrinsic) {
1087   default:
1088     return false;
1089   case Intrinsic::riscv_masked_atomicrmw_xchg_i32:
1090   case Intrinsic::riscv_masked_atomicrmw_add_i32:
1091   case Intrinsic::riscv_masked_atomicrmw_sub_i32:
1092   case Intrinsic::riscv_masked_atomicrmw_nand_i32:
1093   case Intrinsic::riscv_masked_atomicrmw_max_i32:
1094   case Intrinsic::riscv_masked_atomicrmw_min_i32:
1095   case Intrinsic::riscv_masked_atomicrmw_umax_i32:
1096   case Intrinsic::riscv_masked_atomicrmw_umin_i32:
1097   case Intrinsic::riscv_masked_cmpxchg_i32:
1098     Info.opc = ISD::INTRINSIC_W_CHAIN;
1099     Info.memVT = MVT::i32;
1100     Info.ptrVal = I.getArgOperand(0);
1101     Info.offset = 0;
1102     Info.align = Align(4);
1103     Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore |
1104                  MachineMemOperand::MOVolatile;
1105     return true;
1106   case Intrinsic::riscv_masked_strided_load:
1107     Info.opc = ISD::INTRINSIC_W_CHAIN;
1108     Info.ptrVal = I.getArgOperand(1);
1109     Info.memVT = getValueType(DL, I.getType()->getScalarType());
1110     Info.align = Align(DL.getTypeSizeInBits(I.getType()->getScalarType()) / 8);
1111     Info.size = MemoryLocation::UnknownSize;
1112     Info.flags |= MachineMemOperand::MOLoad;
1113     return true;
1114   case Intrinsic::riscv_masked_strided_store:
1115     Info.opc = ISD::INTRINSIC_VOID;
1116     Info.ptrVal = I.getArgOperand(1);
1117     Info.memVT =
1118         getValueType(DL, I.getArgOperand(0)->getType()->getScalarType());
1119     Info.align = Align(
1120         DL.getTypeSizeInBits(I.getArgOperand(0)->getType()->getScalarType()) /
1121         8);
1122     Info.size = MemoryLocation::UnknownSize;
1123     Info.flags |= MachineMemOperand::MOStore;
1124     return true;
1125   }
1126 }
1127 
1128 bool RISCVTargetLowering::isLegalAddressingMode(const DataLayout &DL,
1129                                                 const AddrMode &AM, Type *Ty,
1130                                                 unsigned AS,
1131                                                 Instruction *I) const {
1132   // No global is ever allowed as a base.
1133   if (AM.BaseGV)
1134     return false;
1135 
1136   // Require a 12-bit signed offset.
1137   if (!isInt<12>(AM.BaseOffs))
1138     return false;
1139 
1140   switch (AM.Scale) {
1141   case 0: // "r+i" or just "i", depending on HasBaseReg.
1142     break;
1143   case 1:
1144     if (!AM.HasBaseReg) // allow "r+i".
1145       break;
1146     return false; // disallow "r+r" or "r+r+i".
1147   default:
1148     return false;
1149   }
1150 
1151   return true;
1152 }
1153 
1154 bool RISCVTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
1155   return isInt<12>(Imm);
1156 }
1157 
1158 bool RISCVTargetLowering::isLegalAddImmediate(int64_t Imm) const {
1159   return isInt<12>(Imm);
1160 }
1161 
1162 // On RV32, 64-bit integers are split into their high and low parts and held
1163 // in two different registers, so the trunc is free since the low register can
1164 // just be used.
1165 bool RISCVTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const {
1166   if (Subtarget.is64Bit() || !SrcTy->isIntegerTy() || !DstTy->isIntegerTy())
1167     return false;
1168   unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();
1169   unsigned DestBits = DstTy->getPrimitiveSizeInBits();
1170   return (SrcBits == 64 && DestBits == 32);
1171 }
1172 
1173 bool RISCVTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const {
1174   if (Subtarget.is64Bit() || SrcVT.isVector() || DstVT.isVector() ||
1175       !SrcVT.isInteger() || !DstVT.isInteger())
1176     return false;
1177   unsigned SrcBits = SrcVT.getSizeInBits();
1178   unsigned DestBits = DstVT.getSizeInBits();
1179   return (SrcBits == 64 && DestBits == 32);
1180 }
1181 
1182 bool RISCVTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
1183   // Zexts are free if they can be combined with a load.
1184   // Don't advertise i32->i64 zextload as being free for RV64. It interacts
1185   // poorly with type legalization of compares preferring sext.
1186   if (auto *LD = dyn_cast<LoadSDNode>(Val)) {
1187     EVT MemVT = LD->getMemoryVT();
1188     if ((MemVT == MVT::i8 || MemVT == MVT::i16) &&
1189         (LD->getExtensionType() == ISD::NON_EXTLOAD ||
1190          LD->getExtensionType() == ISD::ZEXTLOAD))
1191       return true;
1192   }
1193 
1194   return TargetLowering::isZExtFree(Val, VT2);
1195 }
1196 
1197 bool RISCVTargetLowering::isSExtCheaperThanZExt(EVT SrcVT, EVT DstVT) const {
1198   return Subtarget.is64Bit() && SrcVT == MVT::i32 && DstVT == MVT::i64;
1199 }
1200 
1201 bool RISCVTargetLowering::isCheapToSpeculateCttz() const {
1202   return Subtarget.hasStdExtZbb();
1203 }
1204 
1205 bool RISCVTargetLowering::isCheapToSpeculateCtlz() const {
1206   return Subtarget.hasStdExtZbb();
1207 }
1208 
1209 bool RISCVTargetLowering::hasAndNotCompare(SDValue Y) const {
1210   EVT VT = Y.getValueType();
1211 
1212   // FIXME: Support vectors once we have tests.
1213   if (VT.isVector())
1214     return false;
1215 
1216   return (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp() ||
1217           Subtarget.hasStdExtZbkb()) &&
1218          !isa<ConstantSDNode>(Y);
1219 }
1220 
1221 /// Check if sinking \p I's operands to I's basic block is profitable, because
1222 /// the operands can be folded into a target instruction, e.g.
1223 /// splats of scalars can fold into vector instructions.
1224 bool RISCVTargetLowering::shouldSinkOperands(
1225     Instruction *I, SmallVectorImpl<Use *> &Ops) const {
1226   using namespace llvm::PatternMatch;
1227 
1228   if (!I->getType()->isVectorTy() || !Subtarget.hasVInstructions())
1229     return false;
1230 
1231   auto IsSinker = [&](Instruction *I, int Operand) {
1232     switch (I->getOpcode()) {
1233     case Instruction::Add:
1234     case Instruction::Sub:
1235     case Instruction::Mul:
1236     case Instruction::And:
1237     case Instruction::Or:
1238     case Instruction::Xor:
1239     case Instruction::FAdd:
1240     case Instruction::FSub:
1241     case Instruction::FMul:
1242     case Instruction::FDiv:
1243     case Instruction::ICmp:
1244     case Instruction::FCmp:
1245       return true;
1246     case Instruction::Shl:
1247     case Instruction::LShr:
1248     case Instruction::AShr:
1249     case Instruction::UDiv:
1250     case Instruction::SDiv:
1251     case Instruction::URem:
1252     case Instruction::SRem:
1253       return Operand == 1;
1254     case Instruction::Call:
1255       if (auto *II = dyn_cast<IntrinsicInst>(I)) {
1256         switch (II->getIntrinsicID()) {
1257         case Intrinsic::fma:
1258         case Intrinsic::vp_fma:
1259           return Operand == 0 || Operand == 1;
1260         // FIXME: Our patterns can only match vx/vf instructions when the splat
1261         // it on the RHS, because TableGen doesn't recognize our VP operations
1262         // as commutative.
1263         case Intrinsic::vp_add:
1264         case Intrinsic::vp_mul:
1265         case Intrinsic::vp_and:
1266         case Intrinsic::vp_or:
1267         case Intrinsic::vp_xor:
1268         case Intrinsic::vp_fadd:
1269         case Intrinsic::vp_fmul:
1270         case Intrinsic::vp_shl:
1271         case Intrinsic::vp_lshr:
1272         case Intrinsic::vp_ashr:
1273         case Intrinsic::vp_udiv:
1274         case Intrinsic::vp_sdiv:
1275         case Intrinsic::vp_urem:
1276         case Intrinsic::vp_srem:
1277           return Operand == 1;
1278         // ... with the exception of vp.sub/vp.fsub/vp.fdiv, which have
1279         // explicit patterns for both LHS and RHS (as 'vr' versions).
1280         case Intrinsic::vp_sub:
1281         case Intrinsic::vp_fsub:
1282         case Intrinsic::vp_fdiv:
1283           return Operand == 0 || Operand == 1;
1284         default:
1285           return false;
1286         }
1287       }
1288       return false;
1289     default:
1290       return false;
1291     }
1292   };
1293 
1294   for (auto OpIdx : enumerate(I->operands())) {
1295     if (!IsSinker(I, OpIdx.index()))
1296       continue;
1297 
1298     Instruction *Op = dyn_cast<Instruction>(OpIdx.value().get());
1299     // Make sure we are not already sinking this operand
1300     if (!Op || any_of(Ops, [&](Use *U) { return U->get() == Op; }))
1301       continue;
1302 
1303     // We are looking for a splat that can be sunk.
1304     if (!match(Op, m_Shuffle(m_InsertElt(m_Undef(), m_Value(), m_ZeroInt()),
1305                              m_Undef(), m_ZeroMask())))
1306       continue;
1307 
1308     // All uses of the shuffle should be sunk to avoid duplicating it across gpr
1309     // and vector registers
1310     for (Use &U : Op->uses()) {
1311       Instruction *Insn = cast<Instruction>(U.getUser());
1312       if (!IsSinker(Insn, U.getOperandNo()))
1313         return false;
1314     }
1315 
1316     Ops.push_back(&Op->getOperandUse(0));
1317     Ops.push_back(&OpIdx.value());
1318   }
1319   return true;
1320 }
1321 
1322 bool RISCVTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
1323                                        bool ForCodeSize) const {
1324   // FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin.
1325   if (VT == MVT::f16 && !Subtarget.hasStdExtZfh())
1326     return false;
1327   if (VT == MVT::f32 && !Subtarget.hasStdExtF())
1328     return false;
1329   if (VT == MVT::f64 && !Subtarget.hasStdExtD())
1330     return false;
1331   return Imm.isZero();
1332 }
1333 
1334 bool RISCVTargetLowering::hasBitPreservingFPLogic(EVT VT) const {
1335   return (VT == MVT::f16 && Subtarget.hasStdExtZfh()) ||
1336          (VT == MVT::f32 && Subtarget.hasStdExtF()) ||
1337          (VT == MVT::f64 && Subtarget.hasStdExtD());
1338 }
1339 
1340 MVT RISCVTargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context,
1341                                                       CallingConv::ID CC,
1342                                                       EVT VT) const {
1343   // Use f32 to pass f16 if it is legal and Zfh is not enabled.
1344   // We might still end up using a GPR but that will be decided based on ABI.
1345   // FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin.
1346   if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh())
1347     return MVT::f32;
1348 
1349   return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT);
1350 }
1351 
1352 unsigned RISCVTargetLowering::getNumRegistersForCallingConv(LLVMContext &Context,
1353                                                            CallingConv::ID CC,
1354                                                            EVT VT) const {
1355   // Use f32 to pass f16 if it is legal and Zfh is not enabled.
1356   // We might still end up using a GPR but that will be decided based on ABI.
1357   // FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin.
1358   if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh())
1359     return 1;
1360 
1361   return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT);
1362 }
1363 
1364 // Changes the condition code and swaps operands if necessary, so the SetCC
1365 // operation matches one of the comparisons supported directly by branches
1366 // in the RISC-V ISA. May adjust compares to favor compare with 0 over compare
1367 // with 1/-1.
1368 static void translateSetCCForBranch(const SDLoc &DL, SDValue &LHS, SDValue &RHS,
1369                                     ISD::CondCode &CC, SelectionDAG &DAG) {
1370   // Convert X > -1 to X >= 0.
1371   if (CC == ISD::SETGT && isAllOnesConstant(RHS)) {
1372     RHS = DAG.getConstant(0, DL, RHS.getValueType());
1373     CC = ISD::SETGE;
1374     return;
1375   }
1376   // Convert X < 1 to 0 >= X.
1377   if (CC == ISD::SETLT && isOneConstant(RHS)) {
1378     RHS = LHS;
1379     LHS = DAG.getConstant(0, DL, RHS.getValueType());
1380     CC = ISD::SETGE;
1381     return;
1382   }
1383 
1384   switch (CC) {
1385   default:
1386     break;
1387   case ISD::SETGT:
1388   case ISD::SETLE:
1389   case ISD::SETUGT:
1390   case ISD::SETULE:
1391     CC = ISD::getSetCCSwappedOperands(CC);
1392     std::swap(LHS, RHS);
1393     break;
1394   }
1395 }
1396 
1397 RISCVII::VLMUL RISCVTargetLowering::getLMUL(MVT VT) {
1398   assert(VT.isScalableVector() && "Expecting a scalable vector type");
1399   unsigned KnownSize = VT.getSizeInBits().getKnownMinValue();
1400   if (VT.getVectorElementType() == MVT::i1)
1401     KnownSize *= 8;
1402 
1403   switch (KnownSize) {
1404   default:
1405     llvm_unreachable("Invalid LMUL.");
1406   case 8:
1407     return RISCVII::VLMUL::LMUL_F8;
1408   case 16:
1409     return RISCVII::VLMUL::LMUL_F4;
1410   case 32:
1411     return RISCVII::VLMUL::LMUL_F2;
1412   case 64:
1413     return RISCVII::VLMUL::LMUL_1;
1414   case 128:
1415     return RISCVII::VLMUL::LMUL_2;
1416   case 256:
1417     return RISCVII::VLMUL::LMUL_4;
1418   case 512:
1419     return RISCVII::VLMUL::LMUL_8;
1420   }
1421 }
1422 
1423 unsigned RISCVTargetLowering::getRegClassIDForLMUL(RISCVII::VLMUL LMul) {
1424   switch (LMul) {
1425   default:
1426     llvm_unreachable("Invalid LMUL.");
1427   case RISCVII::VLMUL::LMUL_F8:
1428   case RISCVII::VLMUL::LMUL_F4:
1429   case RISCVII::VLMUL::LMUL_F2:
1430   case RISCVII::VLMUL::LMUL_1:
1431     return RISCV::VRRegClassID;
1432   case RISCVII::VLMUL::LMUL_2:
1433     return RISCV::VRM2RegClassID;
1434   case RISCVII::VLMUL::LMUL_4:
1435     return RISCV::VRM4RegClassID;
1436   case RISCVII::VLMUL::LMUL_8:
1437     return RISCV::VRM8RegClassID;
1438   }
1439 }
1440 
1441 unsigned RISCVTargetLowering::getSubregIndexByMVT(MVT VT, unsigned Index) {
1442   RISCVII::VLMUL LMUL = getLMUL(VT);
1443   if (LMUL == RISCVII::VLMUL::LMUL_F8 ||
1444       LMUL == RISCVII::VLMUL::LMUL_F4 ||
1445       LMUL == RISCVII::VLMUL::LMUL_F2 ||
1446       LMUL == RISCVII::VLMUL::LMUL_1) {
1447     static_assert(RISCV::sub_vrm1_7 == RISCV::sub_vrm1_0 + 7,
1448                   "Unexpected subreg numbering");
1449     return RISCV::sub_vrm1_0 + Index;
1450   }
1451   if (LMUL == RISCVII::VLMUL::LMUL_2) {
1452     static_assert(RISCV::sub_vrm2_3 == RISCV::sub_vrm2_0 + 3,
1453                   "Unexpected subreg numbering");
1454     return RISCV::sub_vrm2_0 + Index;
1455   }
1456   if (LMUL == RISCVII::VLMUL::LMUL_4) {
1457     static_assert(RISCV::sub_vrm4_1 == RISCV::sub_vrm4_0 + 1,
1458                   "Unexpected subreg numbering");
1459     return RISCV::sub_vrm4_0 + Index;
1460   }
1461   llvm_unreachable("Invalid vector type.");
1462 }
1463 
1464 unsigned RISCVTargetLowering::getRegClassIDForVecVT(MVT VT) {
1465   if (VT.getVectorElementType() == MVT::i1)
1466     return RISCV::VRRegClassID;
1467   return getRegClassIDForLMUL(getLMUL(VT));
1468 }
1469 
1470 // Attempt to decompose a subvector insert/extract between VecVT and
1471 // SubVecVT via subregister indices. Returns the subregister index that
1472 // can perform the subvector insert/extract with the given element index, as
1473 // well as the index corresponding to any leftover subvectors that must be
1474 // further inserted/extracted within the register class for SubVecVT.
1475 std::pair<unsigned, unsigned>
1476 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs(
1477     MVT VecVT, MVT SubVecVT, unsigned InsertExtractIdx,
1478     const RISCVRegisterInfo *TRI) {
1479   static_assert((RISCV::VRM8RegClassID > RISCV::VRM4RegClassID &&
1480                  RISCV::VRM4RegClassID > RISCV::VRM2RegClassID &&
1481                  RISCV::VRM2RegClassID > RISCV::VRRegClassID),
1482                 "Register classes not ordered");
1483   unsigned VecRegClassID = getRegClassIDForVecVT(VecVT);
1484   unsigned SubRegClassID = getRegClassIDForVecVT(SubVecVT);
1485   // Try to compose a subregister index that takes us from the incoming
1486   // LMUL>1 register class down to the outgoing one. At each step we half
1487   // the LMUL:
1488   //   nxv16i32@12 -> nxv2i32: sub_vrm4_1_then_sub_vrm2_1_then_sub_vrm1_0
1489   // Note that this is not guaranteed to find a subregister index, such as
1490   // when we are extracting from one VR type to another.
1491   unsigned SubRegIdx = RISCV::NoSubRegister;
1492   for (const unsigned RCID :
1493        {RISCV::VRM4RegClassID, RISCV::VRM2RegClassID, RISCV::VRRegClassID})
1494     if (VecRegClassID > RCID && SubRegClassID <= RCID) {
1495       VecVT = VecVT.getHalfNumVectorElementsVT();
1496       bool IsHi =
1497           InsertExtractIdx >= VecVT.getVectorElementCount().getKnownMinValue();
1498       SubRegIdx = TRI->composeSubRegIndices(SubRegIdx,
1499                                             getSubregIndexByMVT(VecVT, IsHi));
1500       if (IsHi)
1501         InsertExtractIdx -= VecVT.getVectorElementCount().getKnownMinValue();
1502     }
1503   return {SubRegIdx, InsertExtractIdx};
1504 }
1505 
1506 // Permit combining of mask vectors as BUILD_VECTOR never expands to scalar
1507 // stores for those types.
1508 bool RISCVTargetLowering::mergeStoresAfterLegalization(EVT VT) const {
1509   return !Subtarget.useRVVForFixedLengthVectors() ||
1510          (VT.isFixedLengthVector() && VT.getVectorElementType() == MVT::i1);
1511 }
1512 
1513 bool RISCVTargetLowering::isLegalElementTypeForRVV(Type *ScalarTy) const {
1514   if (ScalarTy->isPointerTy())
1515     return true;
1516 
1517   if (ScalarTy->isIntegerTy(8) || ScalarTy->isIntegerTy(16) ||
1518       ScalarTy->isIntegerTy(32))
1519     return true;
1520 
1521   if (ScalarTy->isIntegerTy(64))
1522     return Subtarget.hasVInstructionsI64();
1523 
1524   if (ScalarTy->isHalfTy())
1525     return Subtarget.hasVInstructionsF16();
1526   if (ScalarTy->isFloatTy())
1527     return Subtarget.hasVInstructionsF32();
1528   if (ScalarTy->isDoubleTy())
1529     return Subtarget.hasVInstructionsF64();
1530 
1531   return false;
1532 }
1533 
1534 static SDValue getVLOperand(SDValue Op) {
1535   assert((Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1536           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN) &&
1537          "Unexpected opcode");
1538   bool HasChain = Op.getOpcode() == ISD::INTRINSIC_W_CHAIN;
1539   unsigned IntNo = Op.getConstantOperandVal(HasChain ? 1 : 0);
1540   const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II =
1541       RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo);
1542   if (!II)
1543     return SDValue();
1544   return Op.getOperand(II->VLOperand + 1 + HasChain);
1545 }
1546 
1547 static bool useRVVForFixedLengthVectorVT(MVT VT,
1548                                          const RISCVSubtarget &Subtarget) {
1549   assert(VT.isFixedLengthVector() && "Expected a fixed length vector type!");
1550   if (!Subtarget.useRVVForFixedLengthVectors())
1551     return false;
1552 
1553   // We only support a set of vector types with a consistent maximum fixed size
1554   // across all supported vector element types to avoid legalization issues.
1555   // Therefore -- since the largest is v1024i8/v512i16/etc -- the largest
1556   // fixed-length vector type we support is 1024 bytes.
1557   if (VT.getFixedSizeInBits() > 1024 * 8)
1558     return false;
1559 
1560   unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits();
1561 
1562   MVT EltVT = VT.getVectorElementType();
1563 
1564   // Don't use RVV for vectors we cannot scalarize if required.
1565   switch (EltVT.SimpleTy) {
1566   // i1 is supported but has different rules.
1567   default:
1568     return false;
1569   case MVT::i1:
1570     // Masks can only use a single register.
1571     if (VT.getVectorNumElements() > MinVLen)
1572       return false;
1573     MinVLen /= 8;
1574     break;
1575   case MVT::i8:
1576   case MVT::i16:
1577   case MVT::i32:
1578     break;
1579   case MVT::i64:
1580     if (!Subtarget.hasVInstructionsI64())
1581       return false;
1582     break;
1583   case MVT::f16:
1584     if (!Subtarget.hasVInstructionsF16())
1585       return false;
1586     break;
1587   case MVT::f32:
1588     if (!Subtarget.hasVInstructionsF32())
1589       return false;
1590     break;
1591   case MVT::f64:
1592     if (!Subtarget.hasVInstructionsF64())
1593       return false;
1594     break;
1595   }
1596 
1597   // Reject elements larger than ELEN.
1598   if (EltVT.getSizeInBits() > Subtarget.getMaxELENForFixedLengthVectors())
1599     return false;
1600 
1601   unsigned LMul = divideCeil(VT.getSizeInBits(), MinVLen);
1602   // Don't use RVV for types that don't fit.
1603   if (LMul > Subtarget.getMaxLMULForFixedLengthVectors())
1604     return false;
1605 
1606   // TODO: Perhaps an artificial restriction, but worth having whilst getting
1607   // the base fixed length RVV support in place.
1608   if (!VT.isPow2VectorType())
1609     return false;
1610 
1611   return true;
1612 }
1613 
1614 bool RISCVTargetLowering::useRVVForFixedLengthVectorVT(MVT VT) const {
1615   return ::useRVVForFixedLengthVectorVT(VT, Subtarget);
1616 }
1617 
1618 // Return the largest legal scalable vector type that matches VT's element type.
1619 static MVT getContainerForFixedLengthVector(const TargetLowering &TLI, MVT VT,
1620                                             const RISCVSubtarget &Subtarget) {
1621   // This may be called before legal types are setup.
1622   assert(((VT.isFixedLengthVector() && TLI.isTypeLegal(VT)) ||
1623           useRVVForFixedLengthVectorVT(VT, Subtarget)) &&
1624          "Expected legal fixed length vector!");
1625 
1626   unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits();
1627   unsigned MaxELen = Subtarget.getMaxELENForFixedLengthVectors();
1628 
1629   MVT EltVT = VT.getVectorElementType();
1630   switch (EltVT.SimpleTy) {
1631   default:
1632     llvm_unreachable("unexpected element type for RVV container");
1633   case MVT::i1:
1634   case MVT::i8:
1635   case MVT::i16:
1636   case MVT::i32:
1637   case MVT::i64:
1638   case MVT::f16:
1639   case MVT::f32:
1640   case MVT::f64: {
1641     // We prefer to use LMUL=1 for VLEN sized types. Use fractional lmuls for
1642     // narrower types. The smallest fractional LMUL we support is 8/ELEN. Within
1643     // each fractional LMUL we support SEW between 8 and LMUL*ELEN.
1644     unsigned NumElts =
1645         (VT.getVectorNumElements() * RISCV::RVVBitsPerBlock) / MinVLen;
1646     NumElts = std::max(NumElts, RISCV::RVVBitsPerBlock / MaxELen);
1647     assert(isPowerOf2_32(NumElts) && "Expected power of 2 NumElts");
1648     return MVT::getScalableVectorVT(EltVT, NumElts);
1649   }
1650   }
1651 }
1652 
1653 static MVT getContainerForFixedLengthVector(SelectionDAG &DAG, MVT VT,
1654                                             const RISCVSubtarget &Subtarget) {
1655   return getContainerForFixedLengthVector(DAG.getTargetLoweringInfo(), VT,
1656                                           Subtarget);
1657 }
1658 
1659 MVT RISCVTargetLowering::getContainerForFixedLengthVector(MVT VT) const {
1660   return ::getContainerForFixedLengthVector(*this, VT, getSubtarget());
1661 }
1662 
1663 // Grow V to consume an entire RVV register.
1664 static SDValue convertToScalableVector(EVT VT, SDValue V, SelectionDAG &DAG,
1665                                        const RISCVSubtarget &Subtarget) {
1666   assert(VT.isScalableVector() &&
1667          "Expected to convert into a scalable vector!");
1668   assert(V.getValueType().isFixedLengthVector() &&
1669          "Expected a fixed length vector operand!");
1670   SDLoc DL(V);
1671   SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT());
1672   return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, DAG.getUNDEF(VT), V, Zero);
1673 }
1674 
1675 // Shrink V so it's just big enough to maintain a VT's worth of data.
1676 static SDValue convertFromScalableVector(EVT VT, SDValue V, SelectionDAG &DAG,
1677                                          const RISCVSubtarget &Subtarget) {
1678   assert(VT.isFixedLengthVector() &&
1679          "Expected to convert into a fixed length vector!");
1680   assert(V.getValueType().isScalableVector() &&
1681          "Expected a scalable vector operand!");
1682   SDLoc DL(V);
1683   SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT());
1684   return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V, Zero);
1685 }
1686 
1687 // Gets the two common "VL" operands: an all-ones mask and the vector length.
1688 // VecVT is a vector type, either fixed-length or scalable, and ContainerVT is
1689 // the vector type that it is contained in.
1690 static std::pair<SDValue, SDValue>
1691 getDefaultVLOps(MVT VecVT, MVT ContainerVT, SDLoc DL, SelectionDAG &DAG,
1692                 const RISCVSubtarget &Subtarget) {
1693   assert(ContainerVT.isScalableVector() && "Expecting scalable container type");
1694   MVT XLenVT = Subtarget.getXLenVT();
1695   SDValue VL = VecVT.isFixedLengthVector()
1696                    ? DAG.getConstant(VecVT.getVectorNumElements(), DL, XLenVT)
1697                    : DAG.getRegister(RISCV::X0, XLenVT);
1698   MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
1699   SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
1700   return {Mask, VL};
1701 }
1702 
1703 // As above but assuming the given type is a scalable vector type.
1704 static std::pair<SDValue, SDValue>
1705 getDefaultScalableVLOps(MVT VecVT, SDLoc DL, SelectionDAG &DAG,
1706                         const RISCVSubtarget &Subtarget) {
1707   assert(VecVT.isScalableVector() && "Expecting a scalable vector");
1708   return getDefaultVLOps(VecVT, VecVT, DL, DAG, Subtarget);
1709 }
1710 
1711 // The state of RVV BUILD_VECTOR and VECTOR_SHUFFLE lowering is that very few
1712 // of either is (currently) supported. This can get us into an infinite loop
1713 // where we try to lower a BUILD_VECTOR as a VECTOR_SHUFFLE as a BUILD_VECTOR
1714 // as a ..., etc.
1715 // Until either (or both) of these can reliably lower any node, reporting that
1716 // we don't want to expand BUILD_VECTORs via VECTOR_SHUFFLEs at least breaks
1717 // the infinite loop. Note that this lowers BUILD_VECTOR through the stack,
1718 // which is not desirable.
1719 bool RISCVTargetLowering::shouldExpandBuildVectorWithShuffles(
1720     EVT VT, unsigned DefinedValues) const {
1721   return false;
1722 }
1723 
1724 static SDValue lowerFP_TO_INT_SAT(SDValue Op, SelectionDAG &DAG,
1725                                   const RISCVSubtarget &Subtarget) {
1726   // RISCV FP-to-int conversions saturate to the destination register size, but
1727   // don't produce 0 for nan. We can use a conversion instruction and fix the
1728   // nan case with a compare and a select.
1729   SDValue Src = Op.getOperand(0);
1730 
1731   EVT DstVT = Op.getValueType();
1732   EVT SatVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1733 
1734   bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT_SAT;
1735   unsigned Opc;
1736   if (SatVT == DstVT)
1737     Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU;
1738   else if (DstVT == MVT::i64 && SatVT == MVT::i32)
1739     Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64;
1740   else
1741     return SDValue();
1742   // FIXME: Support other SatVTs by clamping before or after the conversion.
1743 
1744   SDLoc DL(Op);
1745   SDValue FpToInt = DAG.getNode(
1746       Opc, DL, DstVT, Src,
1747       DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, Subtarget.getXLenVT()));
1748 
1749   SDValue ZeroInt = DAG.getConstant(0, DL, DstVT);
1750   return DAG.getSelectCC(DL, Src, Src, ZeroInt, FpToInt, ISD::CondCode::SETUO);
1751 }
1752 
1753 // Expand vector FTRUNC, FCEIL, and FFLOOR by converting to the integer domain
1754 // and back. Taking care to avoid converting values that are nan or already
1755 // correct.
1756 // TODO: Floor and ceil could be shorter by changing rounding mode, but we don't
1757 // have FRM dependencies modeled yet.
1758 static SDValue lowerFTRUNC_FCEIL_FFLOOR(SDValue Op, SelectionDAG &DAG) {
1759   MVT VT = Op.getSimpleValueType();
1760   assert(VT.isVector() && "Unexpected type");
1761 
1762   SDLoc DL(Op);
1763 
1764   // Freeze the source since we are increasing the number of uses.
1765   SDValue Src = DAG.getFreeze(Op.getOperand(0));
1766 
1767   // Truncate to integer and convert back to FP.
1768   MVT IntVT = VT.changeVectorElementTypeToInteger();
1769   SDValue Truncated = DAG.getNode(ISD::FP_TO_SINT, DL, IntVT, Src);
1770   Truncated = DAG.getNode(ISD::SINT_TO_FP, DL, VT, Truncated);
1771 
1772   MVT SetccVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount());
1773 
1774   if (Op.getOpcode() == ISD::FCEIL) {
1775     // If the truncated value is the greater than or equal to the original
1776     // value, we've computed the ceil. Otherwise, we went the wrong way and
1777     // need to increase by 1.
1778     // FIXME: This should use a masked operation. Handle here or in isel?
1779     SDValue Adjust = DAG.getNode(ISD::FADD, DL, VT, Truncated,
1780                                  DAG.getConstantFP(1.0, DL, VT));
1781     SDValue NeedAdjust = DAG.getSetCC(DL, SetccVT, Truncated, Src, ISD::SETOLT);
1782     Truncated = DAG.getSelect(DL, VT, NeedAdjust, Adjust, Truncated);
1783   } else if (Op.getOpcode() == ISD::FFLOOR) {
1784     // If the truncated value is the less than or equal to the original value,
1785     // we've computed the floor. Otherwise, we went the wrong way and need to
1786     // decrease by 1.
1787     // FIXME: This should use a masked operation. Handle here or in isel?
1788     SDValue Adjust = DAG.getNode(ISD::FSUB, DL, VT, Truncated,
1789                                  DAG.getConstantFP(1.0, DL, VT));
1790     SDValue NeedAdjust = DAG.getSetCC(DL, SetccVT, Truncated, Src, ISD::SETOGT);
1791     Truncated = DAG.getSelect(DL, VT, NeedAdjust, Adjust, Truncated);
1792   }
1793 
1794   // Restore the original sign so that -0.0 is preserved.
1795   Truncated = DAG.getNode(ISD::FCOPYSIGN, DL, VT, Truncated, Src);
1796 
1797   // Determine the largest integer that can be represented exactly. This and
1798   // values larger than it don't have any fractional bits so don't need to
1799   // be converted.
1800   const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT);
1801   unsigned Precision = APFloat::semanticsPrecision(FltSem);
1802   APFloat MaxVal = APFloat(FltSem);
1803   MaxVal.convertFromAPInt(APInt::getOneBitSet(Precision, Precision - 1),
1804                           /*IsSigned*/ false, APFloat::rmNearestTiesToEven);
1805   SDValue MaxValNode = DAG.getConstantFP(MaxVal, DL, VT);
1806 
1807   // If abs(Src) was larger than MaxVal or nan, keep it.
1808   SDValue Abs = DAG.getNode(ISD::FABS, DL, VT, Src);
1809   SDValue Setcc = DAG.getSetCC(DL, SetccVT, Abs, MaxValNode, ISD::SETOLT);
1810   return DAG.getSelect(DL, VT, Setcc, Truncated, Src);
1811 }
1812 
1813 // ISD::FROUND is defined to round to nearest with ties rounding away from 0.
1814 // This mode isn't supported in vector hardware on RISCV. But as long as we
1815 // aren't compiling with trapping math, we can emulate this with
1816 // floor(X + copysign(nextafter(0.5, 0.0), X)).
1817 // FIXME: Could be shorter by changing rounding mode, but we don't have FRM
1818 // dependencies modeled yet.
1819 // FIXME: Use masked operations to avoid final merge.
1820 static SDValue lowerFROUND(SDValue Op, SelectionDAG &DAG) {
1821   MVT VT = Op.getSimpleValueType();
1822   assert(VT.isVector() && "Unexpected type");
1823 
1824   SDLoc DL(Op);
1825 
1826   // Freeze the source since we are increasing the number of uses.
1827   SDValue Src = DAG.getFreeze(Op.getOperand(0));
1828 
1829   // We do the conversion on the absolute value and fix the sign at the end.
1830   SDValue Abs = DAG.getNode(ISD::FABS, DL, VT, Src);
1831 
1832   const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT);
1833   bool Ignored;
1834   APFloat Point5Pred = APFloat(0.5f);
1835   Point5Pred.convert(FltSem, APFloat::rmNearestTiesToEven, &Ignored);
1836   Point5Pred.next(/*nextDown*/ true);
1837 
1838   // Add the adjustment.
1839   SDValue Adjust = DAG.getNode(ISD::FADD, DL, VT, Abs,
1840                                DAG.getConstantFP(Point5Pred, DL, VT));
1841 
1842   // Truncate to integer and convert back to fp.
1843   MVT IntVT = VT.changeVectorElementTypeToInteger();
1844   SDValue Truncated = DAG.getNode(ISD::FP_TO_SINT, DL, IntVT, Adjust);
1845   Truncated = DAG.getNode(ISD::SINT_TO_FP, DL, VT, Truncated);
1846 
1847   // Restore the original sign.
1848   Truncated = DAG.getNode(ISD::FCOPYSIGN, DL, VT, Truncated, Src);
1849 
1850   // Determine the largest integer that can be represented exactly. This and
1851   // values larger than it don't have any fractional bits so don't need to
1852   // be converted.
1853   unsigned Precision = APFloat::semanticsPrecision(FltSem);
1854   APFloat MaxVal = APFloat(FltSem);
1855   MaxVal.convertFromAPInt(APInt::getOneBitSet(Precision, Precision - 1),
1856                           /*IsSigned*/ false, APFloat::rmNearestTiesToEven);
1857   SDValue MaxValNode = DAG.getConstantFP(MaxVal, DL, VT);
1858 
1859   // If abs(Src) was larger than MaxVal or nan, keep it.
1860   MVT SetccVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount());
1861   SDValue Setcc = DAG.getSetCC(DL, SetccVT, Abs, MaxValNode, ISD::SETOLT);
1862   return DAG.getSelect(DL, VT, Setcc, Truncated, Src);
1863 }
1864 
1865 static SDValue lowerSPLAT_VECTOR(SDValue Op, SelectionDAG &DAG,
1866                                  const RISCVSubtarget &Subtarget) {
1867   MVT VT = Op.getSimpleValueType();
1868   assert(VT.isFixedLengthVector() && "Unexpected vector!");
1869 
1870   MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
1871 
1872   SDLoc DL(Op);
1873   SDValue Mask, VL;
1874   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
1875 
1876   unsigned Opc =
1877       VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL : RISCVISD::VMV_V_X_VL;
1878   SDValue Splat = DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT),
1879                               Op.getOperand(0), VL);
1880   return convertFromScalableVector(VT, Splat, DAG, Subtarget);
1881 }
1882 
1883 struct VIDSequence {
1884   int64_t StepNumerator;
1885   unsigned StepDenominator;
1886   int64_t Addend;
1887 };
1888 
1889 // Try to match an arithmetic-sequence BUILD_VECTOR [X,X+S,X+2*S,...,X+(N-1)*S]
1890 // to the (non-zero) step S and start value X. This can be then lowered as the
1891 // RVV sequence (VID * S) + X, for example.
1892 // The step S is represented as an integer numerator divided by a positive
1893 // denominator. Note that the implementation currently only identifies
1894 // sequences in which either the numerator is +/- 1 or the denominator is 1. It
1895 // cannot detect 2/3, for example.
1896 // Note that this method will also match potentially unappealing index
1897 // sequences, like <i32 0, i32 50939494>, however it is left to the caller to
1898 // determine whether this is worth generating code for.
1899 static Optional<VIDSequence> isSimpleVIDSequence(SDValue Op) {
1900   unsigned NumElts = Op.getNumOperands();
1901   assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unexpected BUILD_VECTOR");
1902   if (!Op.getValueType().isInteger())
1903     return None;
1904 
1905   Optional<unsigned> SeqStepDenom;
1906   Optional<int64_t> SeqStepNum, SeqAddend;
1907   Optional<std::pair<uint64_t, unsigned>> PrevElt;
1908   unsigned EltSizeInBits = Op.getValueType().getScalarSizeInBits();
1909   for (unsigned Idx = 0; Idx < NumElts; Idx++) {
1910     // Assume undef elements match the sequence; we just have to be careful
1911     // when interpolating across them.
1912     if (Op.getOperand(Idx).isUndef())
1913       continue;
1914     // The BUILD_VECTOR must be all constants.
1915     if (!isa<ConstantSDNode>(Op.getOperand(Idx)))
1916       return None;
1917 
1918     uint64_t Val = Op.getConstantOperandVal(Idx) &
1919                    maskTrailingOnes<uint64_t>(EltSizeInBits);
1920 
1921     if (PrevElt) {
1922       // Calculate the step since the last non-undef element, and ensure
1923       // it's consistent across the entire sequence.
1924       unsigned IdxDiff = Idx - PrevElt->second;
1925       int64_t ValDiff = SignExtend64(Val - PrevElt->first, EltSizeInBits);
1926 
1927       // A zero-value value difference means that we're somewhere in the middle
1928       // of a fractional step, e.g. <0,0,0*,0,1,1,1,1>. Wait until we notice a
1929       // step change before evaluating the sequence.
1930       if (ValDiff != 0) {
1931         int64_t Remainder = ValDiff % IdxDiff;
1932         // Normalize the step if it's greater than 1.
1933         if (Remainder != ValDiff) {
1934           // The difference must cleanly divide the element span.
1935           if (Remainder != 0)
1936             return None;
1937           ValDiff /= IdxDiff;
1938           IdxDiff = 1;
1939         }
1940 
1941         if (!SeqStepNum)
1942           SeqStepNum = ValDiff;
1943         else if (ValDiff != SeqStepNum)
1944           return None;
1945 
1946         if (!SeqStepDenom)
1947           SeqStepDenom = IdxDiff;
1948         else if (IdxDiff != *SeqStepDenom)
1949           return None;
1950       }
1951     }
1952 
1953     // Record and/or check any addend.
1954     if (SeqStepNum && SeqStepDenom) {
1955       uint64_t ExpectedVal =
1956           (int64_t)(Idx * (uint64_t)*SeqStepNum) / *SeqStepDenom;
1957       int64_t Addend = SignExtend64(Val - ExpectedVal, EltSizeInBits);
1958       if (!SeqAddend)
1959         SeqAddend = Addend;
1960       else if (SeqAddend != Addend)
1961         return None;
1962     }
1963 
1964     // Record this non-undef element for later.
1965     if (!PrevElt || PrevElt->first != Val)
1966       PrevElt = std::make_pair(Val, Idx);
1967   }
1968   // We need to have logged both a step and an addend for this to count as
1969   // a legal index sequence.
1970   if (!SeqStepNum || !SeqStepDenom || !SeqAddend)
1971     return None;
1972 
1973   return VIDSequence{*SeqStepNum, *SeqStepDenom, *SeqAddend};
1974 }
1975 
1976 // Match a splatted value (SPLAT_VECTOR/BUILD_VECTOR) of an EXTRACT_VECTOR_ELT
1977 // and lower it as a VRGATHER_VX_VL from the source vector.
1978 static SDValue matchSplatAsGather(SDValue SplatVal, MVT VT, const SDLoc &DL,
1979                                   SelectionDAG &DAG,
1980                                   const RISCVSubtarget &Subtarget) {
1981   if (SplatVal.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
1982     return SDValue();
1983   SDValue Vec = SplatVal.getOperand(0);
1984   // Only perform this optimization on vectors of the same size for simplicity.
1985   if (Vec.getValueType() != VT)
1986     return SDValue();
1987   SDValue Idx = SplatVal.getOperand(1);
1988   // The index must be a legal type.
1989   if (Idx.getValueType() != Subtarget.getXLenVT())
1990     return SDValue();
1991 
1992   MVT ContainerVT = VT;
1993   if (VT.isFixedLengthVector()) {
1994     ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
1995     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
1996   }
1997 
1998   SDValue Mask, VL;
1999   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
2000 
2001   SDValue Gather = DAG.getNode(RISCVISD::VRGATHER_VX_VL, DL, ContainerVT, Vec,
2002                                Idx, Mask, VL);
2003 
2004   if (!VT.isFixedLengthVector())
2005     return Gather;
2006 
2007   return convertFromScalableVector(VT, Gather, DAG, Subtarget);
2008 }
2009 
2010 static SDValue lowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG,
2011                                  const RISCVSubtarget &Subtarget) {
2012   MVT VT = Op.getSimpleValueType();
2013   assert(VT.isFixedLengthVector() && "Unexpected vector!");
2014 
2015   MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
2016 
2017   SDLoc DL(Op);
2018   SDValue Mask, VL;
2019   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
2020 
2021   MVT XLenVT = Subtarget.getXLenVT();
2022   unsigned NumElts = Op.getNumOperands();
2023 
2024   if (VT.getVectorElementType() == MVT::i1) {
2025     if (ISD::isBuildVectorAllZeros(Op.getNode())) {
2026       SDValue VMClr = DAG.getNode(RISCVISD::VMCLR_VL, DL, ContainerVT, VL);
2027       return convertFromScalableVector(VT, VMClr, DAG, Subtarget);
2028     }
2029 
2030     if (ISD::isBuildVectorAllOnes(Op.getNode())) {
2031       SDValue VMSet = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL);
2032       return convertFromScalableVector(VT, VMSet, DAG, Subtarget);
2033     }
2034 
2035     // Lower constant mask BUILD_VECTORs via an integer vector type, in
2036     // scalar integer chunks whose bit-width depends on the number of mask
2037     // bits and XLEN.
2038     // First, determine the most appropriate scalar integer type to use. This
2039     // is at most XLenVT, but may be shrunk to a smaller vector element type
2040     // according to the size of the final vector - use i8 chunks rather than
2041     // XLenVT if we're producing a v8i1. This results in more consistent
2042     // codegen across RV32 and RV64.
2043     unsigned NumViaIntegerBits =
2044         std::min(std::max(NumElts, 8u), Subtarget.getXLen());
2045     NumViaIntegerBits = std::min(NumViaIntegerBits,
2046                                  Subtarget.getMaxELENForFixedLengthVectors());
2047     if (ISD::isBuildVectorOfConstantSDNodes(Op.getNode())) {
2048       // If we have to use more than one INSERT_VECTOR_ELT then this
2049       // optimization is likely to increase code size; avoid peforming it in
2050       // such a case. We can use a load from a constant pool in this case.
2051       if (DAG.shouldOptForSize() && NumElts > NumViaIntegerBits)
2052         return SDValue();
2053       // Now we can create our integer vector type. Note that it may be larger
2054       // than the resulting mask type: v4i1 would use v1i8 as its integer type.
2055       MVT IntegerViaVecVT =
2056           MVT::getVectorVT(MVT::getIntegerVT(NumViaIntegerBits),
2057                            divideCeil(NumElts, NumViaIntegerBits));
2058 
2059       uint64_t Bits = 0;
2060       unsigned BitPos = 0, IntegerEltIdx = 0;
2061       SDValue Vec = DAG.getUNDEF(IntegerViaVecVT);
2062 
2063       for (unsigned I = 0; I < NumElts; I++, BitPos++) {
2064         // Once we accumulate enough bits to fill our scalar type, insert into
2065         // our vector and clear our accumulated data.
2066         if (I != 0 && I % NumViaIntegerBits == 0) {
2067           if (NumViaIntegerBits <= 32)
2068             Bits = SignExtend64(Bits, 32);
2069           SDValue Elt = DAG.getConstant(Bits, DL, XLenVT);
2070           Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec,
2071                             Elt, DAG.getConstant(IntegerEltIdx, DL, XLenVT));
2072           Bits = 0;
2073           BitPos = 0;
2074           IntegerEltIdx++;
2075         }
2076         SDValue V = Op.getOperand(I);
2077         bool BitValue = !V.isUndef() && cast<ConstantSDNode>(V)->getZExtValue();
2078         Bits |= ((uint64_t)BitValue << BitPos);
2079       }
2080 
2081       // Insert the (remaining) scalar value into position in our integer
2082       // vector type.
2083       if (NumViaIntegerBits <= 32)
2084         Bits = SignExtend64(Bits, 32);
2085       SDValue Elt = DAG.getConstant(Bits, DL, XLenVT);
2086       Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec, Elt,
2087                         DAG.getConstant(IntegerEltIdx, DL, XLenVT));
2088 
2089       if (NumElts < NumViaIntegerBits) {
2090         // If we're producing a smaller vector than our minimum legal integer
2091         // type, bitcast to the equivalent (known-legal) mask type, and extract
2092         // our final mask.
2093         assert(IntegerViaVecVT == MVT::v1i8 && "Unexpected mask vector type");
2094         Vec = DAG.getBitcast(MVT::v8i1, Vec);
2095         Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Vec,
2096                           DAG.getConstant(0, DL, XLenVT));
2097       } else {
2098         // Else we must have produced an integer type with the same size as the
2099         // mask type; bitcast for the final result.
2100         assert(VT.getSizeInBits() == IntegerViaVecVT.getSizeInBits());
2101         Vec = DAG.getBitcast(VT, Vec);
2102       }
2103 
2104       return Vec;
2105     }
2106 
2107     // A BUILD_VECTOR can be lowered as a SETCC. For each fixed-length mask
2108     // vector type, we have a legal equivalently-sized i8 type, so we can use
2109     // that.
2110     MVT WideVecVT = VT.changeVectorElementType(MVT::i8);
2111     SDValue VecZero = DAG.getConstant(0, DL, WideVecVT);
2112 
2113     SDValue WideVec;
2114     if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) {
2115       // For a splat, perform a scalar truncate before creating the wider
2116       // vector.
2117       assert(Splat.getValueType() == XLenVT &&
2118              "Unexpected type for i1 splat value");
2119       Splat = DAG.getNode(ISD::AND, DL, XLenVT, Splat,
2120                           DAG.getConstant(1, DL, XLenVT));
2121       WideVec = DAG.getSplatBuildVector(WideVecVT, DL, Splat);
2122     } else {
2123       SmallVector<SDValue, 8> Ops(Op->op_values());
2124       WideVec = DAG.getBuildVector(WideVecVT, DL, Ops);
2125       SDValue VecOne = DAG.getConstant(1, DL, WideVecVT);
2126       WideVec = DAG.getNode(ISD::AND, DL, WideVecVT, WideVec, VecOne);
2127     }
2128 
2129     return DAG.getSetCC(DL, VT, WideVec, VecZero, ISD::SETNE);
2130   }
2131 
2132   if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) {
2133     if (auto Gather = matchSplatAsGather(Splat, VT, DL, DAG, Subtarget))
2134       return Gather;
2135     unsigned Opc = VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL
2136                                         : RISCVISD::VMV_V_X_VL;
2137     Splat =
2138         DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), Splat, VL);
2139     return convertFromScalableVector(VT, Splat, DAG, Subtarget);
2140   }
2141 
2142   // Try and match index sequences, which we can lower to the vid instruction
2143   // with optional modifications. An all-undef vector is matched by
2144   // getSplatValue, above.
2145   if (auto SimpleVID = isSimpleVIDSequence(Op)) {
2146     int64_t StepNumerator = SimpleVID->StepNumerator;
2147     unsigned StepDenominator = SimpleVID->StepDenominator;
2148     int64_t Addend = SimpleVID->Addend;
2149 
2150     assert(StepNumerator != 0 && "Invalid step");
2151     bool Negate = false;
2152     int64_t SplatStepVal = StepNumerator;
2153     unsigned StepOpcode = ISD::MUL;
2154     if (StepNumerator != 1) {
2155       if (isPowerOf2_64(std::abs(StepNumerator))) {
2156         Negate = StepNumerator < 0;
2157         StepOpcode = ISD::SHL;
2158         SplatStepVal = Log2_64(std::abs(StepNumerator));
2159       }
2160     }
2161 
2162     // Only emit VIDs with suitably-small steps/addends. We use imm5 is a
2163     // threshold since it's the immediate value many RVV instructions accept.
2164     // There is no vmul.vi instruction so ensure multiply constant can fit in
2165     // a single addi instruction.
2166     if (((StepOpcode == ISD::MUL && isInt<12>(SplatStepVal)) ||
2167          (StepOpcode == ISD::SHL && isUInt<5>(SplatStepVal))) &&
2168         isPowerOf2_32(StepDenominator) && isInt<5>(Addend)) {
2169       SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, ContainerVT, Mask, VL);
2170       // Convert right out of the scalable type so we can use standard ISD
2171       // nodes for the rest of the computation. If we used scalable types with
2172       // these, we'd lose the fixed-length vector info and generate worse
2173       // vsetvli code.
2174       VID = convertFromScalableVector(VT, VID, DAG, Subtarget);
2175       if ((StepOpcode == ISD::MUL && SplatStepVal != 1) ||
2176           (StepOpcode == ISD::SHL && SplatStepVal != 0)) {
2177         SDValue SplatStep = DAG.getSplatVector(
2178             VT, DL, DAG.getConstant(SplatStepVal, DL, XLenVT));
2179         VID = DAG.getNode(StepOpcode, DL, VT, VID, SplatStep);
2180       }
2181       if (StepDenominator != 1) {
2182         SDValue SplatStep = DAG.getSplatVector(
2183             VT, DL, DAG.getConstant(Log2_64(StepDenominator), DL, XLenVT));
2184         VID = DAG.getNode(ISD::SRL, DL, VT, VID, SplatStep);
2185       }
2186       if (Addend != 0 || Negate) {
2187         SDValue SplatAddend =
2188             DAG.getSplatVector(VT, DL, DAG.getConstant(Addend, DL, XLenVT));
2189         VID = DAG.getNode(Negate ? ISD::SUB : ISD::ADD, DL, VT, SplatAddend, VID);
2190       }
2191       return VID;
2192     }
2193   }
2194 
2195   // Attempt to detect "hidden" splats, which only reveal themselves as splats
2196   // when re-interpreted as a vector with a larger element type. For example,
2197   //   v4i16 = build_vector i16 0, i16 1, i16 0, i16 1
2198   // could be instead splat as
2199   //   v2i32 = build_vector i32 0x00010000, i32 0x00010000
2200   // TODO: This optimization could also work on non-constant splats, but it
2201   // would require bit-manipulation instructions to construct the splat value.
2202   SmallVector<SDValue> Sequence;
2203   unsigned EltBitSize = VT.getScalarSizeInBits();
2204   const auto *BV = cast<BuildVectorSDNode>(Op);
2205   if (VT.isInteger() && EltBitSize < 64 &&
2206       ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) &&
2207       BV->getRepeatedSequence(Sequence) &&
2208       (Sequence.size() * EltBitSize) <= 64) {
2209     unsigned SeqLen = Sequence.size();
2210     MVT ViaIntVT = MVT::getIntegerVT(EltBitSize * SeqLen);
2211     MVT ViaVecVT = MVT::getVectorVT(ViaIntVT, NumElts / SeqLen);
2212     assert((ViaIntVT == MVT::i16 || ViaIntVT == MVT::i32 ||
2213             ViaIntVT == MVT::i64) &&
2214            "Unexpected sequence type");
2215 
2216     unsigned EltIdx = 0;
2217     uint64_t EltMask = maskTrailingOnes<uint64_t>(EltBitSize);
2218     uint64_t SplatValue = 0;
2219     // Construct the amalgamated value which can be splatted as this larger
2220     // vector type.
2221     for (const auto &SeqV : Sequence) {
2222       if (!SeqV.isUndef())
2223         SplatValue |= ((cast<ConstantSDNode>(SeqV)->getZExtValue() & EltMask)
2224                        << (EltIdx * EltBitSize));
2225       EltIdx++;
2226     }
2227 
2228     // On RV64, sign-extend from 32 to 64 bits where possible in order to
2229     // achieve better constant materializion.
2230     if (Subtarget.is64Bit() && ViaIntVT == MVT::i32)
2231       SplatValue = SignExtend64(SplatValue, 32);
2232 
2233     // Since we can't introduce illegal i64 types at this stage, we can only
2234     // perform an i64 splat on RV32 if it is its own sign-extended value. That
2235     // way we can use RVV instructions to splat.
2236     assert((ViaIntVT.bitsLE(XLenVT) ||
2237             (!Subtarget.is64Bit() && ViaIntVT == MVT::i64)) &&
2238            "Unexpected bitcast sequence");
2239     if (ViaIntVT.bitsLE(XLenVT) || isInt<32>(SplatValue)) {
2240       SDValue ViaVL =
2241           DAG.getConstant(ViaVecVT.getVectorNumElements(), DL, XLenVT);
2242       MVT ViaContainerVT =
2243           getContainerForFixedLengthVector(DAG, ViaVecVT, Subtarget);
2244       SDValue Splat =
2245           DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ViaContainerVT,
2246                       DAG.getUNDEF(ViaContainerVT),
2247                       DAG.getConstant(SplatValue, DL, XLenVT), ViaVL);
2248       Splat = convertFromScalableVector(ViaVecVT, Splat, DAG, Subtarget);
2249       return DAG.getBitcast(VT, Splat);
2250     }
2251   }
2252 
2253   // Try and optimize BUILD_VECTORs with "dominant values" - these are values
2254   // which constitute a large proportion of the elements. In such cases we can
2255   // splat a vector with the dominant element and make up the shortfall with
2256   // INSERT_VECTOR_ELTs.
2257   // Note that this includes vectors of 2 elements by association. The
2258   // upper-most element is the "dominant" one, allowing us to use a splat to
2259   // "insert" the upper element, and an insert of the lower element at position
2260   // 0, which improves codegen.
2261   SDValue DominantValue;
2262   unsigned MostCommonCount = 0;
2263   DenseMap<SDValue, unsigned> ValueCounts;
2264   unsigned NumUndefElts =
2265       count_if(Op->op_values(), [](const SDValue &V) { return V.isUndef(); });
2266 
2267   // Track the number of scalar loads we know we'd be inserting, estimated as
2268   // any non-zero floating-point constant. Other kinds of element are either
2269   // already in registers or are materialized on demand. The threshold at which
2270   // a vector load is more desirable than several scalar materializion and
2271   // vector-insertion instructions is not known.
2272   unsigned NumScalarLoads = 0;
2273 
2274   for (SDValue V : Op->op_values()) {
2275     if (V.isUndef())
2276       continue;
2277 
2278     ValueCounts.insert(std::make_pair(V, 0));
2279     unsigned &Count = ValueCounts[V];
2280 
2281     if (auto *CFP = dyn_cast<ConstantFPSDNode>(V))
2282       NumScalarLoads += !CFP->isExactlyValue(+0.0);
2283 
2284     // Is this value dominant? In case of a tie, prefer the highest element as
2285     // it's cheaper to insert near the beginning of a vector than it is at the
2286     // end.
2287     if (++Count >= MostCommonCount) {
2288       DominantValue = V;
2289       MostCommonCount = Count;
2290     }
2291   }
2292 
2293   assert(DominantValue && "Not expecting an all-undef BUILD_VECTOR");
2294   unsigned NumDefElts = NumElts - NumUndefElts;
2295   unsigned DominantValueCountThreshold = NumDefElts <= 2 ? 0 : NumDefElts - 2;
2296 
2297   // Don't perform this optimization when optimizing for size, since
2298   // materializing elements and inserting them tends to cause code bloat.
2299   if (!DAG.shouldOptForSize() && NumScalarLoads < NumElts &&
2300       ((MostCommonCount > DominantValueCountThreshold) ||
2301        (ValueCounts.size() <= Log2_32(NumDefElts)))) {
2302     // Start by splatting the most common element.
2303     SDValue Vec = DAG.getSplatBuildVector(VT, DL, DominantValue);
2304 
2305     DenseSet<SDValue> Processed{DominantValue};
2306     MVT SelMaskTy = VT.changeVectorElementType(MVT::i1);
2307     for (const auto &OpIdx : enumerate(Op->ops())) {
2308       const SDValue &V = OpIdx.value();
2309       if (V.isUndef() || !Processed.insert(V).second)
2310         continue;
2311       if (ValueCounts[V] == 1) {
2312         Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Vec, V,
2313                           DAG.getConstant(OpIdx.index(), DL, XLenVT));
2314       } else {
2315         // Blend in all instances of this value using a VSELECT, using a
2316         // mask where each bit signals whether that element is the one
2317         // we're after.
2318         SmallVector<SDValue> Ops;
2319         transform(Op->op_values(), std::back_inserter(Ops), [&](SDValue V1) {
2320           return DAG.getConstant(V == V1, DL, XLenVT);
2321         });
2322         Vec = DAG.getNode(ISD::VSELECT, DL, VT,
2323                           DAG.getBuildVector(SelMaskTy, DL, Ops),
2324                           DAG.getSplatBuildVector(VT, DL, V), Vec);
2325       }
2326     }
2327 
2328     return Vec;
2329   }
2330 
2331   return SDValue();
2332 }
2333 
2334 static SDValue splatPartsI64WithVL(const SDLoc &DL, MVT VT, SDValue Passthru,
2335                                    SDValue Lo, SDValue Hi, SDValue VL,
2336                                    SelectionDAG &DAG) {
2337   bool HasPassthru = Passthru && !Passthru.isUndef();
2338   if (!HasPassthru && !Passthru)
2339     Passthru = DAG.getUNDEF(VT);
2340   if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) {
2341     int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue();
2342     int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue();
2343     // If Hi constant is all the same sign bit as Lo, lower this as a custom
2344     // node in order to try and match RVV vector/scalar instructions.
2345     if ((LoC >> 31) == HiC)
2346       return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Passthru, Lo, VL);
2347 
2348     // If vl is equal to XLEN_MAX and Hi constant is equal to Lo, we could use
2349     // vmv.v.x whose EEW = 32 to lower it.
2350     auto *Const = dyn_cast<ConstantSDNode>(VL);
2351     if (LoC == HiC && Const && Const->isAllOnesValue()) {
2352       MVT InterVT = MVT::getVectorVT(MVT::i32, VT.getVectorElementCount() * 2);
2353       // TODO: if vl <= min(VLMAX), we can also do this. But we could not
2354       // access the subtarget here now.
2355       auto InterVec = DAG.getNode(
2356           RISCVISD::VMV_V_X_VL, DL, InterVT, DAG.getUNDEF(InterVT), Lo,
2357                                   DAG.getRegister(RISCV::X0, MVT::i32));
2358       return DAG.getNode(ISD::BITCAST, DL, VT, InterVec);
2359     }
2360   }
2361 
2362   // Fall back to a stack store and stride x0 vector load.
2363   return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VT, Passthru, Lo,
2364                      Hi, VL);
2365 }
2366 
2367 // Called by type legalization to handle splat of i64 on RV32.
2368 // FIXME: We can optimize this when the type has sign or zero bits in one
2369 // of the halves.
2370 static SDValue splatSplitI64WithVL(const SDLoc &DL, MVT VT, SDValue Passthru,
2371                                    SDValue Scalar, SDValue VL,
2372                                    SelectionDAG &DAG) {
2373   assert(Scalar.getValueType() == MVT::i64 && "Unexpected VT!");
2374   SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar,
2375                            DAG.getConstant(0, DL, MVT::i32));
2376   SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar,
2377                            DAG.getConstant(1, DL, MVT::i32));
2378   return splatPartsI64WithVL(DL, VT, Passthru, Lo, Hi, VL, DAG);
2379 }
2380 
2381 // This function lowers a splat of a scalar operand Splat with the vector
2382 // length VL. It ensures the final sequence is type legal, which is useful when
2383 // lowering a splat after type legalization.
2384 static SDValue lowerScalarSplat(SDValue Passthru, SDValue Scalar, SDValue VL,
2385                                 MVT VT, SDLoc DL, SelectionDAG &DAG,
2386                                 const RISCVSubtarget &Subtarget) {
2387   bool HasPassthru = Passthru && !Passthru.isUndef();
2388   if (!HasPassthru && !Passthru)
2389     Passthru = DAG.getUNDEF(VT);
2390   if (VT.isFloatingPoint()) {
2391     // If VL is 1, we could use vfmv.s.f.
2392     if (isOneConstant(VL))
2393       return DAG.getNode(RISCVISD::VFMV_S_F_VL, DL, VT, Passthru, Scalar, VL);
2394     return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, VT, Passthru, Scalar, VL);
2395   }
2396 
2397   MVT XLenVT = Subtarget.getXLenVT();
2398 
2399   // Simplest case is that the operand needs to be promoted to XLenVT.
2400   if (Scalar.getValueType().bitsLE(XLenVT)) {
2401     // If the operand is a constant, sign extend to increase our chances
2402     // of being able to use a .vi instruction. ANY_EXTEND would become a
2403     // a zero extend and the simm5 check in isel would fail.
2404     // FIXME: Should we ignore the upper bits in isel instead?
2405     unsigned ExtOpc =
2406         isa<ConstantSDNode>(Scalar) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND;
2407     Scalar = DAG.getNode(ExtOpc, DL, XLenVT, Scalar);
2408     ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Scalar);
2409     // If VL is 1 and the scalar value won't benefit from immediate, we could
2410     // use vmv.s.x.
2411     if (isOneConstant(VL) &&
2412         (!Const || isNullConstant(Scalar) || !isInt<5>(Const->getSExtValue())))
2413       return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, VT, Passthru, Scalar, VL);
2414     return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Passthru, Scalar, VL);
2415   }
2416 
2417   assert(XLenVT == MVT::i32 && Scalar.getValueType() == MVT::i64 &&
2418          "Unexpected scalar for splat lowering!");
2419 
2420   if (isOneConstant(VL) && isNullConstant(Scalar))
2421     return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, VT, Passthru,
2422                        DAG.getConstant(0, DL, XLenVT), VL);
2423 
2424   // Otherwise use the more complicated splatting algorithm.
2425   return splatSplitI64WithVL(DL, VT, Passthru, Scalar, VL, DAG);
2426 }
2427 
2428 static bool isInterleaveShuffle(ArrayRef<int> Mask, MVT VT, bool &SwapSources,
2429                                 const RISCVSubtarget &Subtarget) {
2430   // We need to be able to widen elements to the next larger integer type.
2431   if (VT.getScalarSizeInBits() >= Subtarget.getMaxELENForFixedLengthVectors())
2432     return false;
2433 
2434   int Size = Mask.size();
2435   assert(Size == (int)VT.getVectorNumElements() && "Unexpected mask size");
2436 
2437   int Srcs[] = {-1, -1};
2438   for (int i = 0; i != Size; ++i) {
2439     // Ignore undef elements.
2440     if (Mask[i] < 0)
2441       continue;
2442 
2443     // Is this an even or odd element.
2444     int Pol = i % 2;
2445 
2446     // Ensure we consistently use the same source for this element polarity.
2447     int Src = Mask[i] / Size;
2448     if (Srcs[Pol] < 0)
2449       Srcs[Pol] = Src;
2450     if (Srcs[Pol] != Src)
2451       return false;
2452 
2453     // Make sure the element within the source is appropriate for this element
2454     // in the destination.
2455     int Elt = Mask[i] % Size;
2456     if (Elt != i / 2)
2457       return false;
2458   }
2459 
2460   // We need to find a source for each polarity and they can't be the same.
2461   if (Srcs[0] < 0 || Srcs[1] < 0 || Srcs[0] == Srcs[1])
2462     return false;
2463 
2464   // Swap the sources if the second source was in the even polarity.
2465   SwapSources = Srcs[0] > Srcs[1];
2466 
2467   return true;
2468 }
2469 
2470 /// Match shuffles that concatenate two vectors, rotate the concatenation,
2471 /// and then extract the original number of elements from the rotated result.
2472 /// This is equivalent to vector.splice or X86's PALIGNR instruction. The
2473 /// returned rotation amount is for a rotate right, where elements move from
2474 /// higher elements to lower elements. \p LoSrc indicates the first source
2475 /// vector of the rotate or -1 for undef. \p HiSrc indicates the second vector
2476 /// of the rotate or -1 for undef. At least one of \p LoSrc and \p HiSrc will be
2477 /// 0 or 1 if a rotation is found.
2478 ///
2479 /// NOTE: We talk about rotate to the right which matches how bit shift and
2480 /// rotate instructions are described where LSBs are on the right, but LLVM IR
2481 /// and the table below write vectors with the lowest elements on the left.
2482 static int isElementRotate(int &LoSrc, int &HiSrc, ArrayRef<int> Mask) {
2483   int Size = Mask.size();
2484 
2485   // We need to detect various ways of spelling a rotation:
2486   //   [11, 12, 13, 14, 15,  0,  1,  2]
2487   //   [-1, 12, 13, 14, -1, -1,  1, -1]
2488   //   [-1, -1, -1, -1, -1, -1,  1,  2]
2489   //   [ 3,  4,  5,  6,  7,  8,  9, 10]
2490   //   [-1,  4,  5,  6, -1, -1,  9, -1]
2491   //   [-1,  4,  5,  6, -1, -1, -1, -1]
2492   int Rotation = 0;
2493   LoSrc = -1;
2494   HiSrc = -1;
2495   for (int i = 0; i != Size; ++i) {
2496     int M = Mask[i];
2497     if (M < 0)
2498       continue;
2499 
2500     // Determine where a rotate vector would have started.
2501     int StartIdx = i - (M % Size);
2502     // The identity rotation isn't interesting, stop.
2503     if (StartIdx == 0)
2504       return -1;
2505 
2506     // If we found the tail of a vector the rotation must be the missing
2507     // front. If we found the head of a vector, it must be how much of the
2508     // head.
2509     int CandidateRotation = StartIdx < 0 ? -StartIdx : Size - StartIdx;
2510 
2511     if (Rotation == 0)
2512       Rotation = CandidateRotation;
2513     else if (Rotation != CandidateRotation)
2514       // The rotations don't match, so we can't match this mask.
2515       return -1;
2516 
2517     // Compute which value this mask is pointing at.
2518     int MaskSrc = M < Size ? 0 : 1;
2519 
2520     // Compute which of the two target values this index should be assigned to.
2521     // This reflects whether the high elements are remaining or the low elemnts
2522     // are remaining.
2523     int &TargetSrc = StartIdx < 0 ? HiSrc : LoSrc;
2524 
2525     // Either set up this value if we've not encountered it before, or check
2526     // that it remains consistent.
2527     if (TargetSrc < 0)
2528       TargetSrc = MaskSrc;
2529     else if (TargetSrc != MaskSrc)
2530       // This may be a rotation, but it pulls from the inputs in some
2531       // unsupported interleaving.
2532       return -1;
2533   }
2534 
2535   // Check that we successfully analyzed the mask, and normalize the results.
2536   assert(Rotation != 0 && "Failed to locate a viable rotation!");
2537   assert((LoSrc >= 0 || HiSrc >= 0) &&
2538          "Failed to find a rotated input vector!");
2539 
2540   return Rotation;
2541 }
2542 
2543 static SDValue lowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG,
2544                                    const RISCVSubtarget &Subtarget) {
2545   SDValue V1 = Op.getOperand(0);
2546   SDValue V2 = Op.getOperand(1);
2547   SDLoc DL(Op);
2548   MVT XLenVT = Subtarget.getXLenVT();
2549   MVT VT = Op.getSimpleValueType();
2550   unsigned NumElts = VT.getVectorNumElements();
2551   ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
2552 
2553   MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
2554 
2555   SDValue TrueMask, VL;
2556   std::tie(TrueMask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
2557 
2558   if (SVN->isSplat()) {
2559     const int Lane = SVN->getSplatIndex();
2560     if (Lane >= 0) {
2561       MVT SVT = VT.getVectorElementType();
2562 
2563       // Turn splatted vector load into a strided load with an X0 stride.
2564       SDValue V = V1;
2565       // Peek through CONCAT_VECTORS as VectorCombine can concat a vector
2566       // with undef.
2567       // FIXME: Peek through INSERT_SUBVECTOR, EXTRACT_SUBVECTOR, bitcasts?
2568       int Offset = Lane;
2569       if (V.getOpcode() == ISD::CONCAT_VECTORS) {
2570         int OpElements =
2571             V.getOperand(0).getSimpleValueType().getVectorNumElements();
2572         V = V.getOperand(Offset / OpElements);
2573         Offset %= OpElements;
2574       }
2575 
2576       // We need to ensure the load isn't atomic or volatile.
2577       if (ISD::isNormalLoad(V.getNode()) && cast<LoadSDNode>(V)->isSimple()) {
2578         auto *Ld = cast<LoadSDNode>(V);
2579         Offset *= SVT.getStoreSize();
2580         SDValue NewAddr = DAG.getMemBasePlusOffset(Ld->getBasePtr(),
2581                                                    TypeSize::Fixed(Offset), DL);
2582 
2583         // If this is SEW=64 on RV32, use a strided load with a stride of x0.
2584         if (SVT.isInteger() && SVT.bitsGT(XLenVT)) {
2585           SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
2586           SDValue IntID =
2587               DAG.getTargetConstant(Intrinsic::riscv_vlse, DL, XLenVT);
2588           SDValue Ops[] = {Ld->getChain(),
2589                            IntID,
2590                            DAG.getUNDEF(ContainerVT),
2591                            NewAddr,
2592                            DAG.getRegister(RISCV::X0, XLenVT),
2593                            VL};
2594           SDValue NewLoad = DAG.getMemIntrinsicNode(
2595               ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, SVT,
2596               DAG.getMachineFunction().getMachineMemOperand(
2597                   Ld->getMemOperand(), Offset, SVT.getStoreSize()));
2598           DAG.makeEquivalentMemoryOrdering(Ld, NewLoad);
2599           return convertFromScalableVector(VT, NewLoad, DAG, Subtarget);
2600         }
2601 
2602         // Otherwise use a scalar load and splat. This will give the best
2603         // opportunity to fold a splat into the operation. ISel can turn it into
2604         // the x0 strided load if we aren't able to fold away the select.
2605         if (SVT.isFloatingPoint())
2606           V = DAG.getLoad(SVT, DL, Ld->getChain(), NewAddr,
2607                           Ld->getPointerInfo().getWithOffset(Offset),
2608                           Ld->getOriginalAlign(),
2609                           Ld->getMemOperand()->getFlags());
2610         else
2611           V = DAG.getExtLoad(ISD::SEXTLOAD, DL, XLenVT, Ld->getChain(), NewAddr,
2612                              Ld->getPointerInfo().getWithOffset(Offset), SVT,
2613                              Ld->getOriginalAlign(),
2614                              Ld->getMemOperand()->getFlags());
2615         DAG.makeEquivalentMemoryOrdering(Ld, V);
2616 
2617         unsigned Opc =
2618             VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL : RISCVISD::VMV_V_X_VL;
2619         SDValue Splat =
2620             DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), V, VL);
2621         return convertFromScalableVector(VT, Splat, DAG, Subtarget);
2622       }
2623 
2624       V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget);
2625       assert(Lane < (int)NumElts && "Unexpected lane!");
2626       SDValue Gather =
2627           DAG.getNode(RISCVISD::VRGATHER_VX_VL, DL, ContainerVT, V1,
2628                       DAG.getConstant(Lane, DL, XLenVT), TrueMask, VL);
2629       return convertFromScalableVector(VT, Gather, DAG, Subtarget);
2630     }
2631   }
2632 
2633   ArrayRef<int> Mask = SVN->getMask();
2634 
2635   // Lower rotations to a SLIDEDOWN and a SLIDEUP. One of the source vectors may
2636   // be undef which can be handled with a single SLIDEDOWN/UP.
2637   int LoSrc, HiSrc;
2638   int Rotation = isElementRotate(LoSrc, HiSrc, Mask);
2639   if (Rotation > 0) {
2640     SDValue LoV, HiV;
2641     if (LoSrc >= 0) {
2642       LoV = LoSrc == 0 ? V1 : V2;
2643       LoV = convertToScalableVector(ContainerVT, LoV, DAG, Subtarget);
2644     }
2645     if (HiSrc >= 0) {
2646       HiV = HiSrc == 0 ? V1 : V2;
2647       HiV = convertToScalableVector(ContainerVT, HiV, DAG, Subtarget);
2648     }
2649 
2650     // We found a rotation. We need to slide HiV down by Rotation. Then we need
2651     // to slide LoV up by (NumElts - Rotation).
2652     unsigned InvRotate = NumElts - Rotation;
2653 
2654     SDValue Res = DAG.getUNDEF(ContainerVT);
2655     if (HiV) {
2656       // If we are doing a SLIDEDOWN+SLIDEUP, reduce the VL for the SLIDEDOWN.
2657       // FIXME: If we are only doing a SLIDEDOWN, don't reduce the VL as it
2658       // causes multiple vsetvlis in some test cases such as lowering
2659       // reduce.mul
2660       SDValue DownVL = VL;
2661       if (LoV)
2662         DownVL = DAG.getConstant(InvRotate, DL, XLenVT);
2663       Res =
2664           DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, Res, HiV,
2665                       DAG.getConstant(Rotation, DL, XLenVT), TrueMask, DownVL);
2666     }
2667     if (LoV)
2668       Res = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Res, LoV,
2669                         DAG.getConstant(InvRotate, DL, XLenVT), TrueMask, VL);
2670 
2671     return convertFromScalableVector(VT, Res, DAG, Subtarget);
2672   }
2673 
2674   // Detect an interleave shuffle and lower to
2675   // (vmaccu.vx (vwaddu.vx lohalf(V1), lohalf(V2)), lohalf(V2), (2^eltbits - 1))
2676   bool SwapSources;
2677   if (isInterleaveShuffle(Mask, VT, SwapSources, Subtarget)) {
2678     // Swap sources if needed.
2679     if (SwapSources)
2680       std::swap(V1, V2);
2681 
2682     // Extract the lower half of the vectors.
2683     MVT HalfVT = VT.getHalfNumVectorElementsVT();
2684     V1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, V1,
2685                      DAG.getConstant(0, DL, XLenVT));
2686     V2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, V2,
2687                      DAG.getConstant(0, DL, XLenVT));
2688 
2689     // Double the element width and halve the number of elements in an int type.
2690     unsigned EltBits = VT.getScalarSizeInBits();
2691     MVT WideIntEltVT = MVT::getIntegerVT(EltBits * 2);
2692     MVT WideIntVT =
2693         MVT::getVectorVT(WideIntEltVT, VT.getVectorNumElements() / 2);
2694     // Convert this to a scalable vector. We need to base this on the
2695     // destination size to ensure there's always a type with a smaller LMUL.
2696     MVT WideIntContainerVT =
2697         getContainerForFixedLengthVector(DAG, WideIntVT, Subtarget);
2698 
2699     // Convert sources to scalable vectors with the same element count as the
2700     // larger type.
2701     MVT HalfContainerVT = MVT::getVectorVT(
2702         VT.getVectorElementType(), WideIntContainerVT.getVectorElementCount());
2703     V1 = convertToScalableVector(HalfContainerVT, V1, DAG, Subtarget);
2704     V2 = convertToScalableVector(HalfContainerVT, V2, DAG, Subtarget);
2705 
2706     // Cast sources to integer.
2707     MVT IntEltVT = MVT::getIntegerVT(EltBits);
2708     MVT IntHalfVT =
2709         MVT::getVectorVT(IntEltVT, HalfContainerVT.getVectorElementCount());
2710     V1 = DAG.getBitcast(IntHalfVT, V1);
2711     V2 = DAG.getBitcast(IntHalfVT, V2);
2712 
2713     // Freeze V2 since we use it twice and we need to be sure that the add and
2714     // multiply see the same value.
2715     V2 = DAG.getFreeze(V2);
2716 
2717     // Recreate TrueMask using the widened type's element count.
2718     MVT MaskVT =
2719         MVT::getVectorVT(MVT::i1, HalfContainerVT.getVectorElementCount());
2720     TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
2721 
2722     // Widen V1 and V2 with 0s and add one copy of V2 to V1.
2723     SDValue Add = DAG.getNode(RISCVISD::VWADDU_VL, DL, WideIntContainerVT, V1,
2724                               V2, TrueMask, VL);
2725     // Create 2^eltbits - 1 copies of V2 by multiplying by the largest integer.
2726     SDValue Multiplier = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, IntHalfVT,
2727                                      DAG.getUNDEF(IntHalfVT),
2728                                      DAG.getAllOnesConstant(DL, XLenVT));
2729     SDValue WidenMul = DAG.getNode(RISCVISD::VWMULU_VL, DL, WideIntContainerVT,
2730                                    V2, Multiplier, TrueMask, VL);
2731     // Add the new copies to our previous addition giving us 2^eltbits copies of
2732     // V2. This is equivalent to shifting V2 left by eltbits. This should
2733     // combine with the vwmulu.vv above to form vwmaccu.vv.
2734     Add = DAG.getNode(RISCVISD::ADD_VL, DL, WideIntContainerVT, Add, WidenMul,
2735                       TrueMask, VL);
2736     // Cast back to ContainerVT. We need to re-create a new ContainerVT in case
2737     // WideIntContainerVT is a larger fractional LMUL than implied by the fixed
2738     // vector VT.
2739     ContainerVT =
2740         MVT::getVectorVT(VT.getVectorElementType(),
2741                          WideIntContainerVT.getVectorElementCount() * 2);
2742     Add = DAG.getBitcast(ContainerVT, Add);
2743     return convertFromScalableVector(VT, Add, DAG, Subtarget);
2744   }
2745 
2746   // Detect shuffles which can be re-expressed as vector selects; these are
2747   // shuffles in which each element in the destination is taken from an element
2748   // at the corresponding index in either source vectors.
2749   bool IsSelect = all_of(enumerate(Mask), [&](const auto &MaskIdx) {
2750     int MaskIndex = MaskIdx.value();
2751     return MaskIndex < 0 || MaskIdx.index() == (unsigned)MaskIndex % NumElts;
2752   });
2753 
2754   assert(!V1.isUndef() && "Unexpected shuffle canonicalization");
2755 
2756   SmallVector<SDValue> MaskVals;
2757   // As a backup, shuffles can be lowered via a vrgather instruction, possibly
2758   // merged with a second vrgather.
2759   SmallVector<SDValue> GatherIndicesLHS, GatherIndicesRHS;
2760 
2761   // By default we preserve the original operand order, and use a mask to
2762   // select LHS as true and RHS as false. However, since RVV vector selects may
2763   // feature splats but only on the LHS, we may choose to invert our mask and
2764   // instead select between RHS and LHS.
2765   bool SwapOps = DAG.isSplatValue(V2) && !DAG.isSplatValue(V1);
2766   bool InvertMask = IsSelect == SwapOps;
2767 
2768   // Keep a track of which non-undef indices are used by each LHS/RHS shuffle
2769   // half.
2770   DenseMap<int, unsigned> LHSIndexCounts, RHSIndexCounts;
2771 
2772   // Now construct the mask that will be used by the vselect or blended
2773   // vrgather operation. For vrgathers, construct the appropriate indices into
2774   // each vector.
2775   for (int MaskIndex : Mask) {
2776     bool SelectMaskVal = (MaskIndex < (int)NumElts) ^ InvertMask;
2777     MaskVals.push_back(DAG.getConstant(SelectMaskVal, DL, XLenVT));
2778     if (!IsSelect) {
2779       bool IsLHSOrUndefIndex = MaskIndex < (int)NumElts;
2780       GatherIndicesLHS.push_back(IsLHSOrUndefIndex && MaskIndex >= 0
2781                                      ? DAG.getConstant(MaskIndex, DL, XLenVT)
2782                                      : DAG.getUNDEF(XLenVT));
2783       GatherIndicesRHS.push_back(
2784           IsLHSOrUndefIndex ? DAG.getUNDEF(XLenVT)
2785                             : DAG.getConstant(MaskIndex - NumElts, DL, XLenVT));
2786       if (IsLHSOrUndefIndex && MaskIndex >= 0)
2787         ++LHSIndexCounts[MaskIndex];
2788       if (!IsLHSOrUndefIndex)
2789         ++RHSIndexCounts[MaskIndex - NumElts];
2790     }
2791   }
2792 
2793   if (SwapOps) {
2794     std::swap(V1, V2);
2795     std::swap(GatherIndicesLHS, GatherIndicesRHS);
2796   }
2797 
2798   assert(MaskVals.size() == NumElts && "Unexpected select-like shuffle");
2799   MVT MaskVT = MVT::getVectorVT(MVT::i1, NumElts);
2800   SDValue SelectMask = DAG.getBuildVector(MaskVT, DL, MaskVals);
2801 
2802   if (IsSelect)
2803     return DAG.getNode(ISD::VSELECT, DL, VT, SelectMask, V1, V2);
2804 
2805   if (VT.getScalarSizeInBits() == 8 && VT.getVectorNumElements() > 256) {
2806     // On such a large vector we're unable to use i8 as the index type.
2807     // FIXME: We could promote the index to i16 and use vrgatherei16, but that
2808     // may involve vector splitting if we're already at LMUL=8, or our
2809     // user-supplied maximum fixed-length LMUL.
2810     return SDValue();
2811   }
2812 
2813   unsigned GatherVXOpc = RISCVISD::VRGATHER_VX_VL;
2814   unsigned GatherVVOpc = RISCVISD::VRGATHER_VV_VL;
2815   MVT IndexVT = VT.changeTypeToInteger();
2816   // Since we can't introduce illegal index types at this stage, use i16 and
2817   // vrgatherei16 if the corresponding index type for plain vrgather is greater
2818   // than XLenVT.
2819   if (IndexVT.getScalarType().bitsGT(XLenVT)) {
2820     GatherVVOpc = RISCVISD::VRGATHEREI16_VV_VL;
2821     IndexVT = IndexVT.changeVectorElementType(MVT::i16);
2822   }
2823 
2824   MVT IndexContainerVT =
2825       ContainerVT.changeVectorElementType(IndexVT.getScalarType());
2826 
2827   SDValue Gather;
2828   // TODO: This doesn't trigger for i64 vectors on RV32, since there we
2829   // encounter a bitcasted BUILD_VECTOR with low/high i32 values.
2830   if (SDValue SplatValue = DAG.getSplatValue(V1, /*LegalTypes*/ true)) {
2831     Gather = lowerScalarSplat(SDValue(), SplatValue, VL, ContainerVT, DL, DAG,
2832                               Subtarget);
2833   } else {
2834     V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget);
2835     // If only one index is used, we can use a "splat" vrgather.
2836     // TODO: We can splat the most-common index and fix-up any stragglers, if
2837     // that's beneficial.
2838     if (LHSIndexCounts.size() == 1) {
2839       int SplatIndex = LHSIndexCounts.begin()->getFirst();
2840       Gather =
2841           DAG.getNode(GatherVXOpc, DL, ContainerVT, V1,
2842                       DAG.getConstant(SplatIndex, DL, XLenVT), TrueMask, VL);
2843     } else {
2844       SDValue LHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesLHS);
2845       LHSIndices =
2846           convertToScalableVector(IndexContainerVT, LHSIndices, DAG, Subtarget);
2847 
2848       Gather = DAG.getNode(GatherVVOpc, DL, ContainerVT, V1, LHSIndices,
2849                            TrueMask, VL);
2850     }
2851   }
2852 
2853   // If a second vector operand is used by this shuffle, blend it in with an
2854   // additional vrgather.
2855   if (!V2.isUndef()) {
2856     V2 = convertToScalableVector(ContainerVT, V2, DAG, Subtarget);
2857     // If only one index is used, we can use a "splat" vrgather.
2858     // TODO: We can splat the most-common index and fix-up any stragglers, if
2859     // that's beneficial.
2860     if (RHSIndexCounts.size() == 1) {
2861       int SplatIndex = RHSIndexCounts.begin()->getFirst();
2862       V2 = DAG.getNode(GatherVXOpc, DL, ContainerVT, V2,
2863                        DAG.getConstant(SplatIndex, DL, XLenVT), TrueMask, VL);
2864     } else {
2865       SDValue RHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesRHS);
2866       RHSIndices =
2867           convertToScalableVector(IndexContainerVT, RHSIndices, DAG, Subtarget);
2868       V2 = DAG.getNode(GatherVVOpc, DL, ContainerVT, V2, RHSIndices, TrueMask,
2869                        VL);
2870     }
2871 
2872     MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1);
2873     SelectMask =
2874         convertToScalableVector(MaskContainerVT, SelectMask, DAG, Subtarget);
2875 
2876     Gather = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, SelectMask, V2,
2877                          Gather, VL);
2878   }
2879 
2880   return convertFromScalableVector(VT, Gather, DAG, Subtarget);
2881 }
2882 
2883 bool RISCVTargetLowering::isShuffleMaskLegal(ArrayRef<int> M, EVT VT) const {
2884   // Support splats for any type. These should type legalize well.
2885   if (ShuffleVectorSDNode::isSplatMask(M.data(), VT))
2886     return true;
2887 
2888   // Only support legal VTs for other shuffles for now.
2889   if (!isTypeLegal(VT))
2890     return false;
2891 
2892   MVT SVT = VT.getSimpleVT();
2893 
2894   bool SwapSources;
2895   int LoSrc, HiSrc;
2896   return (isElementRotate(LoSrc, HiSrc, M) > 0) ||
2897          isInterleaveShuffle(M, SVT, SwapSources, Subtarget);
2898 }
2899 
2900 static SDValue getRVVFPExtendOrRound(SDValue Op, MVT VT, MVT ContainerVT,
2901                                      SDLoc DL, SelectionDAG &DAG,
2902                                      const RISCVSubtarget &Subtarget) {
2903   if (VT.isScalableVector())
2904     return DAG.getFPExtendOrRound(Op, DL, VT);
2905   assert(VT.isFixedLengthVector() &&
2906          "Unexpected value type for RVV FP extend/round lowering");
2907   SDValue Mask, VL;
2908   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
2909   unsigned RVVOpc = ContainerVT.bitsGT(Op.getSimpleValueType())
2910                         ? RISCVISD::FP_EXTEND_VL
2911                         : RISCVISD::FP_ROUND_VL;
2912   return DAG.getNode(RVVOpc, DL, ContainerVT, Op, Mask, VL);
2913 }
2914 
2915 // Lower CTLZ_ZERO_UNDEF or CTTZ_ZERO_UNDEF by converting to FP and extracting
2916 // the exponent.
2917 static SDValue lowerCTLZ_CTTZ_ZERO_UNDEF(SDValue Op, SelectionDAG &DAG) {
2918   MVT VT = Op.getSimpleValueType();
2919   unsigned EltSize = VT.getScalarSizeInBits();
2920   SDValue Src = Op.getOperand(0);
2921   SDLoc DL(Op);
2922 
2923   // We need a FP type that can represent the value.
2924   // TODO: Use f16 for i8 when possible?
2925   MVT FloatEltVT = EltSize == 32 ? MVT::f64 : MVT::f32;
2926   MVT FloatVT = MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount());
2927 
2928   // Legal types should have been checked in the RISCVTargetLowering
2929   // constructor.
2930   // TODO: Splitting may make sense in some cases.
2931   assert(DAG.getTargetLoweringInfo().isTypeLegal(FloatVT) &&
2932          "Expected legal float type!");
2933 
2934   // For CTTZ_ZERO_UNDEF, we need to extract the lowest set bit using X & -X.
2935   // The trailing zero count is equal to log2 of this single bit value.
2936   if (Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF) {
2937     SDValue Neg =
2938         DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Src);
2939     Src = DAG.getNode(ISD::AND, DL, VT, Src, Neg);
2940   }
2941 
2942   // We have a legal FP type, convert to it.
2943   SDValue FloatVal = DAG.getNode(ISD::UINT_TO_FP, DL, FloatVT, Src);
2944   // Bitcast to integer and shift the exponent to the LSB.
2945   EVT IntVT = FloatVT.changeVectorElementTypeToInteger();
2946   SDValue Bitcast = DAG.getBitcast(IntVT, FloatVal);
2947   unsigned ShiftAmt = FloatEltVT == MVT::f64 ? 52 : 23;
2948   SDValue Shift = DAG.getNode(ISD::SRL, DL, IntVT, Bitcast,
2949                               DAG.getConstant(ShiftAmt, DL, IntVT));
2950   // Truncate back to original type to allow vnsrl.
2951   SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, VT, Shift);
2952   // The exponent contains log2 of the value in biased form.
2953   unsigned ExponentBias = FloatEltVT == MVT::f64 ? 1023 : 127;
2954 
2955   // For trailing zeros, we just need to subtract the bias.
2956   if (Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF)
2957     return DAG.getNode(ISD::SUB, DL, VT, Trunc,
2958                        DAG.getConstant(ExponentBias, DL, VT));
2959 
2960   // For leading zeros, we need to remove the bias and convert from log2 to
2961   // leading zeros. We can do this by subtracting from (Bias + (EltSize - 1)).
2962   unsigned Adjust = ExponentBias + (EltSize - 1);
2963   return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(Adjust, DL, VT), Trunc);
2964 }
2965 
2966 // While RVV has alignment restrictions, we should always be able to load as a
2967 // legal equivalently-sized byte-typed vector instead. This method is
2968 // responsible for re-expressing a ISD::LOAD via a correctly-aligned type. If
2969 // the load is already correctly-aligned, it returns SDValue().
2970 SDValue RISCVTargetLowering::expandUnalignedRVVLoad(SDValue Op,
2971                                                     SelectionDAG &DAG) const {
2972   auto *Load = cast<LoadSDNode>(Op);
2973   assert(Load && Load->getMemoryVT().isVector() && "Expected vector load");
2974 
2975   if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
2976                                      Load->getMemoryVT(),
2977                                      *Load->getMemOperand()))
2978     return SDValue();
2979 
2980   SDLoc DL(Op);
2981   MVT VT = Op.getSimpleValueType();
2982   unsigned EltSizeBits = VT.getScalarSizeInBits();
2983   assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) &&
2984          "Unexpected unaligned RVV load type");
2985   MVT NewVT =
2986       MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8));
2987   assert(NewVT.isValid() &&
2988          "Expecting equally-sized RVV vector types to be legal");
2989   SDValue L = DAG.getLoad(NewVT, DL, Load->getChain(), Load->getBasePtr(),
2990                           Load->getPointerInfo(), Load->getOriginalAlign(),
2991                           Load->getMemOperand()->getFlags());
2992   return DAG.getMergeValues({DAG.getBitcast(VT, L), L.getValue(1)}, DL);
2993 }
2994 
2995 // While RVV has alignment restrictions, we should always be able to store as a
2996 // legal equivalently-sized byte-typed vector instead. This method is
2997 // responsible for re-expressing a ISD::STORE via a correctly-aligned type. It
2998 // returns SDValue() if the store is already correctly aligned.
2999 SDValue RISCVTargetLowering::expandUnalignedRVVStore(SDValue Op,
3000                                                      SelectionDAG &DAG) const {
3001   auto *Store = cast<StoreSDNode>(Op);
3002   assert(Store && Store->getValue().getValueType().isVector() &&
3003          "Expected vector store");
3004 
3005   if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
3006                                      Store->getMemoryVT(),
3007                                      *Store->getMemOperand()))
3008     return SDValue();
3009 
3010   SDLoc DL(Op);
3011   SDValue StoredVal = Store->getValue();
3012   MVT VT = StoredVal.getSimpleValueType();
3013   unsigned EltSizeBits = VT.getScalarSizeInBits();
3014   assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) &&
3015          "Unexpected unaligned RVV store type");
3016   MVT NewVT =
3017       MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8));
3018   assert(NewVT.isValid() &&
3019          "Expecting equally-sized RVV vector types to be legal");
3020   StoredVal = DAG.getBitcast(NewVT, StoredVal);
3021   return DAG.getStore(Store->getChain(), DL, StoredVal, Store->getBasePtr(),
3022                       Store->getPointerInfo(), Store->getOriginalAlign(),
3023                       Store->getMemOperand()->getFlags());
3024 }
3025 
3026 SDValue RISCVTargetLowering::LowerOperation(SDValue Op,
3027                                             SelectionDAG &DAG) const {
3028   switch (Op.getOpcode()) {
3029   default:
3030     report_fatal_error("unimplemented operand");
3031   case ISD::GlobalAddress:
3032     return lowerGlobalAddress(Op, DAG);
3033   case ISD::BlockAddress:
3034     return lowerBlockAddress(Op, DAG);
3035   case ISD::ConstantPool:
3036     return lowerConstantPool(Op, DAG);
3037   case ISD::JumpTable:
3038     return lowerJumpTable(Op, DAG);
3039   case ISD::GlobalTLSAddress:
3040     return lowerGlobalTLSAddress(Op, DAG);
3041   case ISD::SELECT:
3042     return lowerSELECT(Op, DAG);
3043   case ISD::BRCOND:
3044     return lowerBRCOND(Op, DAG);
3045   case ISD::VASTART:
3046     return lowerVASTART(Op, DAG);
3047   case ISD::FRAMEADDR:
3048     return lowerFRAMEADDR(Op, DAG);
3049   case ISD::RETURNADDR:
3050     return lowerRETURNADDR(Op, DAG);
3051   case ISD::SHL_PARTS:
3052     return lowerShiftLeftParts(Op, DAG);
3053   case ISD::SRA_PARTS:
3054     return lowerShiftRightParts(Op, DAG, true);
3055   case ISD::SRL_PARTS:
3056     return lowerShiftRightParts(Op, DAG, false);
3057   case ISD::BITCAST: {
3058     SDLoc DL(Op);
3059     EVT VT = Op.getValueType();
3060     SDValue Op0 = Op.getOperand(0);
3061     EVT Op0VT = Op0.getValueType();
3062     MVT XLenVT = Subtarget.getXLenVT();
3063     if (VT.isFixedLengthVector()) {
3064       // We can handle fixed length vector bitcasts with a simple replacement
3065       // in isel.
3066       if (Op0VT.isFixedLengthVector())
3067         return Op;
3068       // When bitcasting from scalar to fixed-length vector, insert the scalar
3069       // into a one-element vector of the result type, and perform a vector
3070       // bitcast.
3071       if (!Op0VT.isVector()) {
3072         EVT BVT = EVT::getVectorVT(*DAG.getContext(), Op0VT, 1);
3073         if (!isTypeLegal(BVT))
3074           return SDValue();
3075         return DAG.getBitcast(VT, DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, BVT,
3076                                               DAG.getUNDEF(BVT), Op0,
3077                                               DAG.getConstant(0, DL, XLenVT)));
3078       }
3079       return SDValue();
3080     }
3081     // Custom-legalize bitcasts from fixed-length vector types to scalar types
3082     // thus: bitcast the vector to a one-element vector type whose element type
3083     // is the same as the result type, and extract the first element.
3084     if (!VT.isVector() && Op0VT.isFixedLengthVector()) {
3085       EVT BVT = EVT::getVectorVT(*DAG.getContext(), VT, 1);
3086       if (!isTypeLegal(BVT))
3087         return SDValue();
3088       SDValue BVec = DAG.getBitcast(BVT, Op0);
3089       return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec,
3090                          DAG.getConstant(0, DL, XLenVT));
3091     }
3092     if (VT == MVT::f16 && Op0VT == MVT::i16 && Subtarget.hasStdExtZfh()) {
3093       SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Op0);
3094       SDValue FPConv = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, NewOp0);
3095       return FPConv;
3096     }
3097     if (VT == MVT::f32 && Op0VT == MVT::i32 && Subtarget.is64Bit() &&
3098         Subtarget.hasStdExtF()) {
3099       SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
3100       SDValue FPConv =
3101           DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, NewOp0);
3102       return FPConv;
3103     }
3104     return SDValue();
3105   }
3106   case ISD::INTRINSIC_WO_CHAIN:
3107     return LowerINTRINSIC_WO_CHAIN(Op, DAG);
3108   case ISD::INTRINSIC_W_CHAIN:
3109     return LowerINTRINSIC_W_CHAIN(Op, DAG);
3110   case ISD::INTRINSIC_VOID:
3111     return LowerINTRINSIC_VOID(Op, DAG);
3112   case ISD::BSWAP:
3113   case ISD::BITREVERSE: {
3114     MVT VT = Op.getSimpleValueType();
3115     SDLoc DL(Op);
3116     if (Subtarget.hasStdExtZbp()) {
3117       // Convert BSWAP/BITREVERSE to GREVI to enable GREVI combinining.
3118       // Start with the maximum immediate value which is the bitwidth - 1.
3119       unsigned Imm = VT.getSizeInBits() - 1;
3120       // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits.
3121       if (Op.getOpcode() == ISD::BSWAP)
3122         Imm &= ~0x7U;
3123       return DAG.getNode(RISCVISD::GREV, DL, VT, Op.getOperand(0),
3124                          DAG.getConstant(Imm, DL, VT));
3125     }
3126     assert(Subtarget.hasStdExtZbkb() && "Unexpected custom legalization");
3127     assert(Op.getOpcode() == ISD::BITREVERSE && "Unexpected opcode");
3128     // Expand bitreverse to a bswap(rev8) followed by brev8.
3129     SDValue BSwap = DAG.getNode(ISD::BSWAP, DL, VT, Op.getOperand(0));
3130     // We use the Zbp grevi encoding for rev.b/brev8 which will be recognized
3131     // as brev8 by an isel pattern.
3132     return DAG.getNode(RISCVISD::GREV, DL, VT, BSwap,
3133                        DAG.getConstant(7, DL, VT));
3134   }
3135   case ISD::FSHL:
3136   case ISD::FSHR: {
3137     MVT VT = Op.getSimpleValueType();
3138     assert(VT == Subtarget.getXLenVT() && "Unexpected custom legalization");
3139     SDLoc DL(Op);
3140     // FSL/FSR take a log2(XLen)+1 bit shift amount but XLenVT FSHL/FSHR only
3141     // use log(XLen) bits. Mask the shift amount accordingly to prevent
3142     // accidentally setting the extra bit.
3143     unsigned ShAmtWidth = Subtarget.getXLen() - 1;
3144     SDValue ShAmt = DAG.getNode(ISD::AND, DL, VT, Op.getOperand(2),
3145                                 DAG.getConstant(ShAmtWidth, DL, VT));
3146     // fshl and fshr concatenate their operands in the same order. fsr and fsl
3147     // instruction use different orders. fshl will return its first operand for
3148     // shift of zero, fshr will return its second operand. fsl and fsr both
3149     // return rs1 so the ISD nodes need to have different operand orders.
3150     // Shift amount is in rs2.
3151     SDValue Op0 = Op.getOperand(0);
3152     SDValue Op1 = Op.getOperand(1);
3153     unsigned Opc = RISCVISD::FSL;
3154     if (Op.getOpcode() == ISD::FSHR) {
3155       std::swap(Op0, Op1);
3156       Opc = RISCVISD::FSR;
3157     }
3158     return DAG.getNode(Opc, DL, VT, Op0, Op1, ShAmt);
3159   }
3160   case ISD::TRUNCATE: {
3161     SDLoc DL(Op);
3162     MVT VT = Op.getSimpleValueType();
3163     // Only custom-lower vector truncates
3164     if (!VT.isVector())
3165       return Op;
3166 
3167     // Truncates to mask types are handled differently
3168     if (VT.getVectorElementType() == MVT::i1)
3169       return lowerVectorMaskTrunc(Op, DAG);
3170 
3171     // RVV only has truncates which operate from SEW*2->SEW, so lower arbitrary
3172     // truncates as a series of "RISCVISD::TRUNCATE_VECTOR_VL" nodes which
3173     // truncate by one power of two at a time.
3174     MVT DstEltVT = VT.getVectorElementType();
3175 
3176     SDValue Src = Op.getOperand(0);
3177     MVT SrcVT = Src.getSimpleValueType();
3178     MVT SrcEltVT = SrcVT.getVectorElementType();
3179 
3180     assert(DstEltVT.bitsLT(SrcEltVT) &&
3181            isPowerOf2_64(DstEltVT.getSizeInBits()) &&
3182            isPowerOf2_64(SrcEltVT.getSizeInBits()) &&
3183            "Unexpected vector truncate lowering");
3184 
3185     MVT ContainerVT = SrcVT;
3186     if (SrcVT.isFixedLengthVector()) {
3187       ContainerVT = getContainerForFixedLengthVector(SrcVT);
3188       Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget);
3189     }
3190 
3191     SDValue Result = Src;
3192     SDValue Mask, VL;
3193     std::tie(Mask, VL) =
3194         getDefaultVLOps(SrcVT, ContainerVT, DL, DAG, Subtarget);
3195     LLVMContext &Context = *DAG.getContext();
3196     const ElementCount Count = ContainerVT.getVectorElementCount();
3197     do {
3198       SrcEltVT = MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2);
3199       EVT ResultVT = EVT::getVectorVT(Context, SrcEltVT, Count);
3200       Result = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, ResultVT, Result,
3201                            Mask, VL);
3202     } while (SrcEltVT != DstEltVT);
3203 
3204     if (SrcVT.isFixedLengthVector())
3205       Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
3206 
3207     return Result;
3208   }
3209   case ISD::ANY_EXTEND:
3210   case ISD::ZERO_EXTEND:
3211     if (Op.getOperand(0).getValueType().isVector() &&
3212         Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1)
3213       return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ 1);
3214     return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VZEXT_VL);
3215   case ISD::SIGN_EXTEND:
3216     if (Op.getOperand(0).getValueType().isVector() &&
3217         Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1)
3218       return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ -1);
3219     return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VSEXT_VL);
3220   case ISD::SPLAT_VECTOR_PARTS:
3221     return lowerSPLAT_VECTOR_PARTS(Op, DAG);
3222   case ISD::INSERT_VECTOR_ELT:
3223     return lowerINSERT_VECTOR_ELT(Op, DAG);
3224   case ISD::EXTRACT_VECTOR_ELT:
3225     return lowerEXTRACT_VECTOR_ELT(Op, DAG);
3226   case ISD::VSCALE: {
3227     MVT VT = Op.getSimpleValueType();
3228     SDLoc DL(Op);
3229     SDValue VLENB = DAG.getNode(RISCVISD::READ_VLENB, DL, VT);
3230     // We define our scalable vector types for lmul=1 to use a 64 bit known
3231     // minimum size. e.g. <vscale x 2 x i32>. VLENB is in bytes so we calculate
3232     // vscale as VLENB / 8.
3233     static_assert(RISCV::RVVBitsPerBlock == 64, "Unexpected bits per block!");
3234     if (Subtarget.getMinVLen() < RISCV::RVVBitsPerBlock)
3235       report_fatal_error("Support for VLEN==32 is incomplete.");
3236     if (isa<ConstantSDNode>(Op.getOperand(0))) {
3237       // We assume VLENB is a multiple of 8. We manually choose the best shift
3238       // here because SimplifyDemandedBits isn't always able to simplify it.
3239       uint64_t Val = Op.getConstantOperandVal(0);
3240       if (isPowerOf2_64(Val)) {
3241         uint64_t Log2 = Log2_64(Val);
3242         if (Log2 < 3)
3243           return DAG.getNode(ISD::SRL, DL, VT, VLENB,
3244                              DAG.getConstant(3 - Log2, DL, VT));
3245         if (Log2 > 3)
3246           return DAG.getNode(ISD::SHL, DL, VT, VLENB,
3247                              DAG.getConstant(Log2 - 3, DL, VT));
3248         return VLENB;
3249       }
3250       // If the multiplier is a multiple of 8, scale it down to avoid needing
3251       // to shift the VLENB value.
3252       if ((Val % 8) == 0)
3253         return DAG.getNode(ISD::MUL, DL, VT, VLENB,
3254                            DAG.getConstant(Val / 8, DL, VT));
3255     }
3256 
3257     SDValue VScale = DAG.getNode(ISD::SRL, DL, VT, VLENB,
3258                                  DAG.getConstant(3, DL, VT));
3259     return DAG.getNode(ISD::MUL, DL, VT, VScale, Op.getOperand(0));
3260   }
3261   case ISD::FPOWI: {
3262     // Custom promote f16 powi with illegal i32 integer type on RV64. Once
3263     // promoted this will be legalized into a libcall by LegalizeIntegerTypes.
3264     if (Op.getValueType() == MVT::f16 && Subtarget.is64Bit() &&
3265         Op.getOperand(1).getValueType() == MVT::i32) {
3266       SDLoc DL(Op);
3267       SDValue Op0 = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Op.getOperand(0));
3268       SDValue Powi =
3269           DAG.getNode(ISD::FPOWI, DL, MVT::f32, Op0, Op.getOperand(1));
3270       return DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, Powi,
3271                          DAG.getIntPtrConstant(0, DL));
3272     }
3273     return SDValue();
3274   }
3275   case ISD::FP_EXTEND: {
3276     // RVV can only do fp_extend to types double the size as the source. We
3277     // custom-lower f16->f64 extensions to two hops of ISD::FP_EXTEND, going
3278     // via f32.
3279     SDLoc DL(Op);
3280     MVT VT = Op.getSimpleValueType();
3281     SDValue Src = Op.getOperand(0);
3282     MVT SrcVT = Src.getSimpleValueType();
3283 
3284     // Prepare any fixed-length vector operands.
3285     MVT ContainerVT = VT;
3286     if (SrcVT.isFixedLengthVector()) {
3287       ContainerVT = getContainerForFixedLengthVector(VT);
3288       MVT SrcContainerVT =
3289           ContainerVT.changeVectorElementType(SrcVT.getVectorElementType());
3290       Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget);
3291     }
3292 
3293     if (!VT.isVector() || VT.getVectorElementType() != MVT::f64 ||
3294         SrcVT.getVectorElementType() != MVT::f16) {
3295       // For scalable vectors, we only need to close the gap between
3296       // vXf16->vXf64.
3297       if (!VT.isFixedLengthVector())
3298         return Op;
3299       // For fixed-length vectors, lower the FP_EXTEND to a custom "VL" version.
3300       Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget);
3301       return convertFromScalableVector(VT, Src, DAG, Subtarget);
3302     }
3303 
3304     MVT InterVT = VT.changeVectorElementType(MVT::f32);
3305     MVT InterContainerVT = ContainerVT.changeVectorElementType(MVT::f32);
3306     SDValue IntermediateExtend = getRVVFPExtendOrRound(
3307         Src, InterVT, InterContainerVT, DL, DAG, Subtarget);
3308 
3309     SDValue Extend = getRVVFPExtendOrRound(IntermediateExtend, VT, ContainerVT,
3310                                            DL, DAG, Subtarget);
3311     if (VT.isFixedLengthVector())
3312       return convertFromScalableVector(VT, Extend, DAG, Subtarget);
3313     return Extend;
3314   }
3315   case ISD::FP_ROUND: {
3316     // RVV can only do fp_round to types half the size as the source. We
3317     // custom-lower f64->f16 rounds via RVV's round-to-odd float
3318     // conversion instruction.
3319     SDLoc DL(Op);
3320     MVT VT = Op.getSimpleValueType();
3321     SDValue Src = Op.getOperand(0);
3322     MVT SrcVT = Src.getSimpleValueType();
3323 
3324     // Prepare any fixed-length vector operands.
3325     MVT ContainerVT = VT;
3326     if (VT.isFixedLengthVector()) {
3327       MVT SrcContainerVT = getContainerForFixedLengthVector(SrcVT);
3328       ContainerVT =
3329           SrcContainerVT.changeVectorElementType(VT.getVectorElementType());
3330       Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget);
3331     }
3332 
3333     if (!VT.isVector() || VT.getVectorElementType() != MVT::f16 ||
3334         SrcVT.getVectorElementType() != MVT::f64) {
3335       // For scalable vectors, we only need to close the gap between
3336       // vXf64<->vXf16.
3337       if (!VT.isFixedLengthVector())
3338         return Op;
3339       // For fixed-length vectors, lower the FP_ROUND to a custom "VL" version.
3340       Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget);
3341       return convertFromScalableVector(VT, Src, DAG, Subtarget);
3342     }
3343 
3344     SDValue Mask, VL;
3345     std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
3346 
3347     MVT InterVT = ContainerVT.changeVectorElementType(MVT::f32);
3348     SDValue IntermediateRound =
3349         DAG.getNode(RISCVISD::VFNCVT_ROD_VL, DL, InterVT, Src, Mask, VL);
3350     SDValue Round = getRVVFPExtendOrRound(IntermediateRound, VT, ContainerVT,
3351                                           DL, DAG, Subtarget);
3352 
3353     if (VT.isFixedLengthVector())
3354       return convertFromScalableVector(VT, Round, DAG, Subtarget);
3355     return Round;
3356   }
3357   case ISD::FP_TO_SINT:
3358   case ISD::FP_TO_UINT:
3359   case ISD::SINT_TO_FP:
3360   case ISD::UINT_TO_FP: {
3361     // RVV can only do fp<->int conversions to types half/double the size as
3362     // the source. We custom-lower any conversions that do two hops into
3363     // sequences.
3364     MVT VT = Op.getSimpleValueType();
3365     if (!VT.isVector())
3366       return Op;
3367     SDLoc DL(Op);
3368     SDValue Src = Op.getOperand(0);
3369     MVT EltVT = VT.getVectorElementType();
3370     MVT SrcVT = Src.getSimpleValueType();
3371     MVT SrcEltVT = SrcVT.getVectorElementType();
3372     unsigned EltSize = EltVT.getSizeInBits();
3373     unsigned SrcEltSize = SrcEltVT.getSizeInBits();
3374     assert(isPowerOf2_32(EltSize) && isPowerOf2_32(SrcEltSize) &&
3375            "Unexpected vector element types");
3376 
3377     bool IsInt2FP = SrcEltVT.isInteger();
3378     // Widening conversions
3379     if (EltSize > SrcEltSize && (EltSize / SrcEltSize >= 4)) {
3380       if (IsInt2FP) {
3381         // Do a regular integer sign/zero extension then convert to float.
3382         MVT IVecVT = MVT::getVectorVT(MVT::getIntegerVT(EltVT.getSizeInBits()),
3383                                       VT.getVectorElementCount());
3384         unsigned ExtOpcode = Op.getOpcode() == ISD::UINT_TO_FP
3385                                  ? ISD::ZERO_EXTEND
3386                                  : ISD::SIGN_EXTEND;
3387         SDValue Ext = DAG.getNode(ExtOpcode, DL, IVecVT, Src);
3388         return DAG.getNode(Op.getOpcode(), DL, VT, Ext);
3389       }
3390       // FP2Int
3391       assert(SrcEltVT == MVT::f16 && "Unexpected FP_TO_[US]INT lowering");
3392       // Do one doubling fp_extend then complete the operation by converting
3393       // to int.
3394       MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount());
3395       SDValue FExt = DAG.getFPExtendOrRound(Src, DL, InterimFVT);
3396       return DAG.getNode(Op.getOpcode(), DL, VT, FExt);
3397     }
3398 
3399     // Narrowing conversions
3400     if (SrcEltSize > EltSize && (SrcEltSize / EltSize >= 4)) {
3401       if (IsInt2FP) {
3402         // One narrowing int_to_fp, then an fp_round.
3403         assert(EltVT == MVT::f16 && "Unexpected [US]_TO_FP lowering");
3404         MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount());
3405         SDValue Int2FP = DAG.getNode(Op.getOpcode(), DL, InterimFVT, Src);
3406         return DAG.getFPExtendOrRound(Int2FP, DL, VT);
3407       }
3408       // FP2Int
3409       // One narrowing fp_to_int, then truncate the integer. If the float isn't
3410       // representable by the integer, the result is poison.
3411       MVT IVecVT =
3412           MVT::getVectorVT(MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2),
3413                            VT.getVectorElementCount());
3414       SDValue FP2Int = DAG.getNode(Op.getOpcode(), DL, IVecVT, Src);
3415       return DAG.getNode(ISD::TRUNCATE, DL, VT, FP2Int);
3416     }
3417 
3418     // Scalable vectors can exit here. Patterns will handle equally-sized
3419     // conversions halving/doubling ones.
3420     if (!VT.isFixedLengthVector())
3421       return Op;
3422 
3423     // For fixed-length vectors we lower to a custom "VL" node.
3424     unsigned RVVOpc = 0;
3425     switch (Op.getOpcode()) {
3426     default:
3427       llvm_unreachable("Impossible opcode");
3428     case ISD::FP_TO_SINT:
3429       RVVOpc = RISCVISD::FP_TO_SINT_VL;
3430       break;
3431     case ISD::FP_TO_UINT:
3432       RVVOpc = RISCVISD::FP_TO_UINT_VL;
3433       break;
3434     case ISD::SINT_TO_FP:
3435       RVVOpc = RISCVISD::SINT_TO_FP_VL;
3436       break;
3437     case ISD::UINT_TO_FP:
3438       RVVOpc = RISCVISD::UINT_TO_FP_VL;
3439       break;
3440     }
3441 
3442     MVT ContainerVT, SrcContainerVT;
3443     // Derive the reference container type from the larger vector type.
3444     if (SrcEltSize > EltSize) {
3445       SrcContainerVT = getContainerForFixedLengthVector(SrcVT);
3446       ContainerVT =
3447           SrcContainerVT.changeVectorElementType(VT.getVectorElementType());
3448     } else {
3449       ContainerVT = getContainerForFixedLengthVector(VT);
3450       SrcContainerVT = ContainerVT.changeVectorElementType(SrcEltVT);
3451     }
3452 
3453     SDValue Mask, VL;
3454     std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
3455 
3456     Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget);
3457     Src = DAG.getNode(RVVOpc, DL, ContainerVT, Src, Mask, VL);
3458     return convertFromScalableVector(VT, Src, DAG, Subtarget);
3459   }
3460   case ISD::FP_TO_SINT_SAT:
3461   case ISD::FP_TO_UINT_SAT:
3462     return lowerFP_TO_INT_SAT(Op, DAG, Subtarget);
3463   case ISD::FTRUNC:
3464   case ISD::FCEIL:
3465   case ISD::FFLOOR:
3466     return lowerFTRUNC_FCEIL_FFLOOR(Op, DAG);
3467   case ISD::FROUND:
3468     return lowerFROUND(Op, DAG);
3469   case ISD::VECREDUCE_ADD:
3470   case ISD::VECREDUCE_UMAX:
3471   case ISD::VECREDUCE_SMAX:
3472   case ISD::VECREDUCE_UMIN:
3473   case ISD::VECREDUCE_SMIN:
3474     return lowerVECREDUCE(Op, DAG);
3475   case ISD::VECREDUCE_AND:
3476   case ISD::VECREDUCE_OR:
3477   case ISD::VECREDUCE_XOR:
3478     if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1)
3479       return lowerVectorMaskVecReduction(Op, DAG, /*IsVP*/ false);
3480     return lowerVECREDUCE(Op, DAG);
3481   case ISD::VECREDUCE_FADD:
3482   case ISD::VECREDUCE_SEQ_FADD:
3483   case ISD::VECREDUCE_FMIN:
3484   case ISD::VECREDUCE_FMAX:
3485     return lowerFPVECREDUCE(Op, DAG);
3486   case ISD::VP_REDUCE_ADD:
3487   case ISD::VP_REDUCE_UMAX:
3488   case ISD::VP_REDUCE_SMAX:
3489   case ISD::VP_REDUCE_UMIN:
3490   case ISD::VP_REDUCE_SMIN:
3491   case ISD::VP_REDUCE_FADD:
3492   case ISD::VP_REDUCE_SEQ_FADD:
3493   case ISD::VP_REDUCE_FMIN:
3494   case ISD::VP_REDUCE_FMAX:
3495     return lowerVPREDUCE(Op, DAG);
3496   case ISD::VP_REDUCE_AND:
3497   case ISD::VP_REDUCE_OR:
3498   case ISD::VP_REDUCE_XOR:
3499     if (Op.getOperand(1).getValueType().getVectorElementType() == MVT::i1)
3500       return lowerVectorMaskVecReduction(Op, DAG, /*IsVP*/ true);
3501     return lowerVPREDUCE(Op, DAG);
3502   case ISD::INSERT_SUBVECTOR:
3503     return lowerINSERT_SUBVECTOR(Op, DAG);
3504   case ISD::EXTRACT_SUBVECTOR:
3505     return lowerEXTRACT_SUBVECTOR(Op, DAG);
3506   case ISD::STEP_VECTOR:
3507     return lowerSTEP_VECTOR(Op, DAG);
3508   case ISD::VECTOR_REVERSE:
3509     return lowerVECTOR_REVERSE(Op, DAG);
3510   case ISD::BUILD_VECTOR:
3511     return lowerBUILD_VECTOR(Op, DAG, Subtarget);
3512   case ISD::SPLAT_VECTOR:
3513     if (Op.getValueType().getVectorElementType() == MVT::i1)
3514       return lowerVectorMaskSplat(Op, DAG);
3515     return lowerSPLAT_VECTOR(Op, DAG, Subtarget);
3516   case ISD::VECTOR_SHUFFLE:
3517     return lowerVECTOR_SHUFFLE(Op, DAG, Subtarget);
3518   case ISD::CONCAT_VECTORS: {
3519     // Split CONCAT_VECTORS into a series of INSERT_SUBVECTOR nodes. This is
3520     // better than going through the stack, as the default expansion does.
3521     SDLoc DL(Op);
3522     MVT VT = Op.getSimpleValueType();
3523     unsigned NumOpElts =
3524         Op.getOperand(0).getSimpleValueType().getVectorMinNumElements();
3525     SDValue Vec = DAG.getUNDEF(VT);
3526     for (const auto &OpIdx : enumerate(Op->ops())) {
3527       SDValue SubVec = OpIdx.value();
3528       // Don't insert undef subvectors.
3529       if (SubVec.isUndef())
3530         continue;
3531       Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, Vec, SubVec,
3532                         DAG.getIntPtrConstant(OpIdx.index() * NumOpElts, DL));
3533     }
3534     return Vec;
3535   }
3536   case ISD::LOAD:
3537     if (auto V = expandUnalignedRVVLoad(Op, DAG))
3538       return V;
3539     if (Op.getValueType().isFixedLengthVector())
3540       return lowerFixedLengthVectorLoadToRVV(Op, DAG);
3541     return Op;
3542   case ISD::STORE:
3543     if (auto V = expandUnalignedRVVStore(Op, DAG))
3544       return V;
3545     if (Op.getOperand(1).getValueType().isFixedLengthVector())
3546       return lowerFixedLengthVectorStoreToRVV(Op, DAG);
3547     return Op;
3548   case ISD::MLOAD:
3549   case ISD::VP_LOAD:
3550     return lowerMaskedLoad(Op, DAG);
3551   case ISD::MSTORE:
3552   case ISD::VP_STORE:
3553     return lowerMaskedStore(Op, DAG);
3554   case ISD::SETCC:
3555     return lowerFixedLengthVectorSetccToRVV(Op, DAG);
3556   case ISD::ADD:
3557     return lowerToScalableOp(Op, DAG, RISCVISD::ADD_VL);
3558   case ISD::SUB:
3559     return lowerToScalableOp(Op, DAG, RISCVISD::SUB_VL);
3560   case ISD::MUL:
3561     return lowerToScalableOp(Op, DAG, RISCVISD::MUL_VL);
3562   case ISD::MULHS:
3563     return lowerToScalableOp(Op, DAG, RISCVISD::MULHS_VL);
3564   case ISD::MULHU:
3565     return lowerToScalableOp(Op, DAG, RISCVISD::MULHU_VL);
3566   case ISD::AND:
3567     return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMAND_VL,
3568                                               RISCVISD::AND_VL);
3569   case ISD::OR:
3570     return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMOR_VL,
3571                                               RISCVISD::OR_VL);
3572   case ISD::XOR:
3573     return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMXOR_VL,
3574                                               RISCVISD::XOR_VL);
3575   case ISD::SDIV:
3576     return lowerToScalableOp(Op, DAG, RISCVISD::SDIV_VL);
3577   case ISD::SREM:
3578     return lowerToScalableOp(Op, DAG, RISCVISD::SREM_VL);
3579   case ISD::UDIV:
3580     return lowerToScalableOp(Op, DAG, RISCVISD::UDIV_VL);
3581   case ISD::UREM:
3582     return lowerToScalableOp(Op, DAG, RISCVISD::UREM_VL);
3583   case ISD::SHL:
3584   case ISD::SRA:
3585   case ISD::SRL:
3586     if (Op.getSimpleValueType().isFixedLengthVector())
3587       return lowerFixedLengthVectorShiftToRVV(Op, DAG);
3588     // This can be called for an i32 shift amount that needs to be promoted.
3589     assert(Op.getOperand(1).getValueType() == MVT::i32 && Subtarget.is64Bit() &&
3590            "Unexpected custom legalisation");
3591     return SDValue();
3592   case ISD::SADDSAT:
3593     return lowerToScalableOp(Op, DAG, RISCVISD::SADDSAT_VL);
3594   case ISD::UADDSAT:
3595     return lowerToScalableOp(Op, DAG, RISCVISD::UADDSAT_VL);
3596   case ISD::SSUBSAT:
3597     return lowerToScalableOp(Op, DAG, RISCVISD::SSUBSAT_VL);
3598   case ISD::USUBSAT:
3599     return lowerToScalableOp(Op, DAG, RISCVISD::USUBSAT_VL);
3600   case ISD::FADD:
3601     return lowerToScalableOp(Op, DAG, RISCVISD::FADD_VL);
3602   case ISD::FSUB:
3603     return lowerToScalableOp(Op, DAG, RISCVISD::FSUB_VL);
3604   case ISD::FMUL:
3605     return lowerToScalableOp(Op, DAG, RISCVISD::FMUL_VL);
3606   case ISD::FDIV:
3607     return lowerToScalableOp(Op, DAG, RISCVISD::FDIV_VL);
3608   case ISD::FNEG:
3609     return lowerToScalableOp(Op, DAG, RISCVISD::FNEG_VL);
3610   case ISD::FABS:
3611     return lowerToScalableOp(Op, DAG, RISCVISD::FABS_VL);
3612   case ISD::FSQRT:
3613     return lowerToScalableOp(Op, DAG, RISCVISD::FSQRT_VL);
3614   case ISD::FMA:
3615     return lowerToScalableOp(Op, DAG, RISCVISD::FMA_VL);
3616   case ISD::SMIN:
3617     return lowerToScalableOp(Op, DAG, RISCVISD::SMIN_VL);
3618   case ISD::SMAX:
3619     return lowerToScalableOp(Op, DAG, RISCVISD::SMAX_VL);
3620   case ISD::UMIN:
3621     return lowerToScalableOp(Op, DAG, RISCVISD::UMIN_VL);
3622   case ISD::UMAX:
3623     return lowerToScalableOp(Op, DAG, RISCVISD::UMAX_VL);
3624   case ISD::FMINNUM:
3625     return lowerToScalableOp(Op, DAG, RISCVISD::FMINNUM_VL);
3626   case ISD::FMAXNUM:
3627     return lowerToScalableOp(Op, DAG, RISCVISD::FMAXNUM_VL);
3628   case ISD::ABS:
3629     return lowerABS(Op, DAG);
3630   case ISD::CTLZ_ZERO_UNDEF:
3631   case ISD::CTTZ_ZERO_UNDEF:
3632     return lowerCTLZ_CTTZ_ZERO_UNDEF(Op, DAG);
3633   case ISD::VSELECT:
3634     return lowerFixedLengthVectorSelectToRVV(Op, DAG);
3635   case ISD::FCOPYSIGN:
3636     return lowerFixedLengthVectorFCOPYSIGNToRVV(Op, DAG);
3637   case ISD::MGATHER:
3638   case ISD::VP_GATHER:
3639     return lowerMaskedGather(Op, DAG);
3640   case ISD::MSCATTER:
3641   case ISD::VP_SCATTER:
3642     return lowerMaskedScatter(Op, DAG);
3643   case ISD::FLT_ROUNDS_:
3644     return lowerGET_ROUNDING(Op, DAG);
3645   case ISD::SET_ROUNDING:
3646     return lowerSET_ROUNDING(Op, DAG);
3647   case ISD::VP_SELECT:
3648     return lowerVPOp(Op, DAG, RISCVISD::VSELECT_VL);
3649   case ISD::VP_MERGE:
3650     return lowerVPOp(Op, DAG, RISCVISD::VP_MERGE_VL);
3651   case ISD::VP_ADD:
3652     return lowerVPOp(Op, DAG, RISCVISD::ADD_VL);
3653   case ISD::VP_SUB:
3654     return lowerVPOp(Op, DAG, RISCVISD::SUB_VL);
3655   case ISD::VP_MUL:
3656     return lowerVPOp(Op, DAG, RISCVISD::MUL_VL);
3657   case ISD::VP_SDIV:
3658     return lowerVPOp(Op, DAG, RISCVISD::SDIV_VL);
3659   case ISD::VP_UDIV:
3660     return lowerVPOp(Op, DAG, RISCVISD::UDIV_VL);
3661   case ISD::VP_SREM:
3662     return lowerVPOp(Op, DAG, RISCVISD::SREM_VL);
3663   case ISD::VP_UREM:
3664     return lowerVPOp(Op, DAG, RISCVISD::UREM_VL);
3665   case ISD::VP_AND:
3666     return lowerLogicVPOp(Op, DAG, RISCVISD::VMAND_VL, RISCVISD::AND_VL);
3667   case ISD::VP_OR:
3668     return lowerLogicVPOp(Op, DAG, RISCVISD::VMOR_VL, RISCVISD::OR_VL);
3669   case ISD::VP_XOR:
3670     return lowerLogicVPOp(Op, DAG, RISCVISD::VMXOR_VL, RISCVISD::XOR_VL);
3671   case ISD::VP_ASHR:
3672     return lowerVPOp(Op, DAG, RISCVISD::SRA_VL);
3673   case ISD::VP_LSHR:
3674     return lowerVPOp(Op, DAG, RISCVISD::SRL_VL);
3675   case ISD::VP_SHL:
3676     return lowerVPOp(Op, DAG, RISCVISD::SHL_VL);
3677   case ISD::VP_FADD:
3678     return lowerVPOp(Op, DAG, RISCVISD::FADD_VL);
3679   case ISD::VP_FSUB:
3680     return lowerVPOp(Op, DAG, RISCVISD::FSUB_VL);
3681   case ISD::VP_FMUL:
3682     return lowerVPOp(Op, DAG, RISCVISD::FMUL_VL);
3683   case ISD::VP_FDIV:
3684     return lowerVPOp(Op, DAG, RISCVISD::FDIV_VL);
3685   case ISD::VP_FNEG:
3686     return lowerVPOp(Op, DAG, RISCVISD::FNEG_VL);
3687   case ISD::VP_FMA:
3688     return lowerVPOp(Op, DAG, RISCVISD::FMA_VL);
3689   }
3690 }
3691 
3692 static SDValue getTargetNode(GlobalAddressSDNode *N, SDLoc DL, EVT Ty,
3693                              SelectionDAG &DAG, unsigned Flags) {
3694   return DAG.getTargetGlobalAddress(N->getGlobal(), DL, Ty, 0, Flags);
3695 }
3696 
3697 static SDValue getTargetNode(BlockAddressSDNode *N, SDLoc DL, EVT Ty,
3698                              SelectionDAG &DAG, unsigned Flags) {
3699   return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, N->getOffset(),
3700                                    Flags);
3701 }
3702 
3703 static SDValue getTargetNode(ConstantPoolSDNode *N, SDLoc DL, EVT Ty,
3704                              SelectionDAG &DAG, unsigned Flags) {
3705   return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlign(),
3706                                    N->getOffset(), Flags);
3707 }
3708 
3709 static SDValue getTargetNode(JumpTableSDNode *N, SDLoc DL, EVT Ty,
3710                              SelectionDAG &DAG, unsigned Flags) {
3711   return DAG.getTargetJumpTable(N->getIndex(), Ty, Flags);
3712 }
3713 
3714 template <class NodeTy>
3715 SDValue RISCVTargetLowering::getAddr(NodeTy *N, SelectionDAG &DAG,
3716                                      bool IsLocal) const {
3717   SDLoc DL(N);
3718   EVT Ty = getPointerTy(DAG.getDataLayout());
3719 
3720   if (isPositionIndependent()) {
3721     SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0);
3722     if (IsLocal)
3723       // Use PC-relative addressing to access the symbol. This generates the
3724       // pattern (PseudoLLA sym), which expands to (addi (auipc %pcrel_hi(sym))
3725       // %pcrel_lo(auipc)).
3726       return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0);
3727 
3728     // Use PC-relative addressing to access the GOT for this symbol, then load
3729     // the address from the GOT. This generates the pattern (PseudoLA sym),
3730     // which expands to (ld (addi (auipc %got_pcrel_hi(sym)) %pcrel_lo(auipc))).
3731     return SDValue(DAG.getMachineNode(RISCV::PseudoLA, DL, Ty, Addr), 0);
3732   }
3733 
3734   switch (getTargetMachine().getCodeModel()) {
3735   default:
3736     report_fatal_error("Unsupported code model for lowering");
3737   case CodeModel::Small: {
3738     // Generate a sequence for accessing addresses within the first 2 GiB of
3739     // address space. This generates the pattern (addi (lui %hi(sym)) %lo(sym)).
3740     SDValue AddrHi = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_HI);
3741     SDValue AddrLo = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_LO);
3742     SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0);
3743     return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNHi, AddrLo), 0);
3744   }
3745   case CodeModel::Medium: {
3746     // Generate a sequence for accessing addresses within any 2GiB range within
3747     // the address space. This generates the pattern (PseudoLLA sym), which
3748     // expands to (addi (auipc %pcrel_hi(sym)) %pcrel_lo(auipc)).
3749     SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0);
3750     return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0);
3751   }
3752   }
3753 }
3754 
3755 SDValue RISCVTargetLowering::lowerGlobalAddress(SDValue Op,
3756                                                 SelectionDAG &DAG) const {
3757   SDLoc DL(Op);
3758   EVT Ty = Op.getValueType();
3759   GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op);
3760   int64_t Offset = N->getOffset();
3761   MVT XLenVT = Subtarget.getXLenVT();
3762 
3763   const GlobalValue *GV = N->getGlobal();
3764   bool IsLocal = getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV);
3765   SDValue Addr = getAddr(N, DAG, IsLocal);
3766 
3767   // In order to maximise the opportunity for common subexpression elimination,
3768   // emit a separate ADD node for the global address offset instead of folding
3769   // it in the global address node. Later peephole optimisations may choose to
3770   // fold it back in when profitable.
3771   if (Offset != 0)
3772     return DAG.getNode(ISD::ADD, DL, Ty, Addr,
3773                        DAG.getConstant(Offset, DL, XLenVT));
3774   return Addr;
3775 }
3776 
3777 SDValue RISCVTargetLowering::lowerBlockAddress(SDValue Op,
3778                                                SelectionDAG &DAG) const {
3779   BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op);
3780 
3781   return getAddr(N, DAG);
3782 }
3783 
3784 SDValue RISCVTargetLowering::lowerConstantPool(SDValue Op,
3785                                                SelectionDAG &DAG) const {
3786   ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op);
3787 
3788   return getAddr(N, DAG);
3789 }
3790 
3791 SDValue RISCVTargetLowering::lowerJumpTable(SDValue Op,
3792                                             SelectionDAG &DAG) const {
3793   JumpTableSDNode *N = cast<JumpTableSDNode>(Op);
3794 
3795   return getAddr(N, DAG);
3796 }
3797 
3798 SDValue RISCVTargetLowering::getStaticTLSAddr(GlobalAddressSDNode *N,
3799                                               SelectionDAG &DAG,
3800                                               bool UseGOT) const {
3801   SDLoc DL(N);
3802   EVT Ty = getPointerTy(DAG.getDataLayout());
3803   const GlobalValue *GV = N->getGlobal();
3804   MVT XLenVT = Subtarget.getXLenVT();
3805 
3806   if (UseGOT) {
3807     // Use PC-relative addressing to access the GOT for this TLS symbol, then
3808     // load the address from the GOT and add the thread pointer. This generates
3809     // the pattern (PseudoLA_TLS_IE sym), which expands to
3810     // (ld (auipc %tls_ie_pcrel_hi(sym)) %pcrel_lo(auipc)).
3811     SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0);
3812     SDValue Load =
3813         SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_IE, DL, Ty, Addr), 0);
3814 
3815     // Add the thread pointer.
3816     SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT);
3817     return DAG.getNode(ISD::ADD, DL, Ty, Load, TPReg);
3818   }
3819 
3820   // Generate a sequence for accessing the address relative to the thread
3821   // pointer, with the appropriate adjustment for the thread pointer offset.
3822   // This generates the pattern
3823   // (add (add_tprel (lui %tprel_hi(sym)) tp %tprel_add(sym)) %tprel_lo(sym))
3824   SDValue AddrHi =
3825       DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_HI);
3826   SDValue AddrAdd =
3827       DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_ADD);
3828   SDValue AddrLo =
3829       DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_LO);
3830 
3831   SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0);
3832   SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT);
3833   SDValue MNAdd = SDValue(
3834       DAG.getMachineNode(RISCV::PseudoAddTPRel, DL, Ty, MNHi, TPReg, AddrAdd),
3835       0);
3836   return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNAdd, AddrLo), 0);
3837 }
3838 
3839 SDValue RISCVTargetLowering::getDynamicTLSAddr(GlobalAddressSDNode *N,
3840                                                SelectionDAG &DAG) const {
3841   SDLoc DL(N);
3842   EVT Ty = getPointerTy(DAG.getDataLayout());
3843   IntegerType *CallTy = Type::getIntNTy(*DAG.getContext(), Ty.getSizeInBits());
3844   const GlobalValue *GV = N->getGlobal();
3845 
3846   // Use a PC-relative addressing mode to access the global dynamic GOT address.
3847   // This generates the pattern (PseudoLA_TLS_GD sym), which expands to
3848   // (addi (auipc %tls_gd_pcrel_hi(sym)) %pcrel_lo(auipc)).
3849   SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0);
3850   SDValue Load =
3851       SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_GD, DL, Ty, Addr), 0);
3852 
3853   // Prepare argument list to generate call.
3854   ArgListTy Args;
3855   ArgListEntry Entry;
3856   Entry.Node = Load;
3857   Entry.Ty = CallTy;
3858   Args.push_back(Entry);
3859 
3860   // Setup call to __tls_get_addr.
3861   TargetLowering::CallLoweringInfo CLI(DAG);
3862   CLI.setDebugLoc(DL)
3863       .setChain(DAG.getEntryNode())
3864       .setLibCallee(CallingConv::C, CallTy,
3865                     DAG.getExternalSymbol("__tls_get_addr", Ty),
3866                     std::move(Args));
3867 
3868   return LowerCallTo(CLI).first;
3869 }
3870 
3871 SDValue RISCVTargetLowering::lowerGlobalTLSAddress(SDValue Op,
3872                                                    SelectionDAG &DAG) const {
3873   SDLoc DL(Op);
3874   EVT Ty = Op.getValueType();
3875   GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op);
3876   int64_t Offset = N->getOffset();
3877   MVT XLenVT = Subtarget.getXLenVT();
3878 
3879   TLSModel::Model Model = getTargetMachine().getTLSModel(N->getGlobal());
3880 
3881   if (DAG.getMachineFunction().getFunction().getCallingConv() ==
3882       CallingConv::GHC)
3883     report_fatal_error("In GHC calling convention TLS is not supported");
3884 
3885   SDValue Addr;
3886   switch (Model) {
3887   case TLSModel::LocalExec:
3888     Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/false);
3889     break;
3890   case TLSModel::InitialExec:
3891     Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/true);
3892     break;
3893   case TLSModel::LocalDynamic:
3894   case TLSModel::GeneralDynamic:
3895     Addr = getDynamicTLSAddr(N, DAG);
3896     break;
3897   }
3898 
3899   // In order to maximise the opportunity for common subexpression elimination,
3900   // emit a separate ADD node for the global address offset instead of folding
3901   // it in the global address node. Later peephole optimisations may choose to
3902   // fold it back in when profitable.
3903   if (Offset != 0)
3904     return DAG.getNode(ISD::ADD, DL, Ty, Addr,
3905                        DAG.getConstant(Offset, DL, XLenVT));
3906   return Addr;
3907 }
3908 
3909 SDValue RISCVTargetLowering::lowerSELECT(SDValue Op, SelectionDAG &DAG) const {
3910   SDValue CondV = Op.getOperand(0);
3911   SDValue TrueV = Op.getOperand(1);
3912   SDValue FalseV = Op.getOperand(2);
3913   SDLoc DL(Op);
3914   MVT VT = Op.getSimpleValueType();
3915   MVT XLenVT = Subtarget.getXLenVT();
3916 
3917   // Lower vector SELECTs to VSELECTs by splatting the condition.
3918   if (VT.isVector()) {
3919     MVT SplatCondVT = VT.changeVectorElementType(MVT::i1);
3920     SDValue CondSplat = VT.isScalableVector()
3921                             ? DAG.getSplatVector(SplatCondVT, DL, CondV)
3922                             : DAG.getSplatBuildVector(SplatCondVT, DL, CondV);
3923     return DAG.getNode(ISD::VSELECT, DL, VT, CondSplat, TrueV, FalseV);
3924   }
3925 
3926   // If the result type is XLenVT and CondV is the output of a SETCC node
3927   // which also operated on XLenVT inputs, then merge the SETCC node into the
3928   // lowered RISCVISD::SELECT_CC to take advantage of the integer
3929   // compare+branch instructions. i.e.:
3930   // (select (setcc lhs, rhs, cc), truev, falsev)
3931   // -> (riscvisd::select_cc lhs, rhs, cc, truev, falsev)
3932   if (VT == XLenVT && CondV.getOpcode() == ISD::SETCC &&
3933       CondV.getOperand(0).getSimpleValueType() == XLenVT) {
3934     SDValue LHS = CondV.getOperand(0);
3935     SDValue RHS = CondV.getOperand(1);
3936     const auto *CC = cast<CondCodeSDNode>(CondV.getOperand(2));
3937     ISD::CondCode CCVal = CC->get();
3938 
3939     // Special case for a select of 2 constants that have a diffence of 1.
3940     // Normally this is done by DAGCombine, but if the select is introduced by
3941     // type legalization or op legalization, we miss it. Restricting to SETLT
3942     // case for now because that is what signed saturating add/sub need.
3943     // FIXME: We don't need the condition to be SETLT or even a SETCC,
3944     // but we would probably want to swap the true/false values if the condition
3945     // is SETGE/SETLE to avoid an XORI.
3946     if (isa<ConstantSDNode>(TrueV) && isa<ConstantSDNode>(FalseV) &&
3947         CCVal == ISD::SETLT) {
3948       const APInt &TrueVal = cast<ConstantSDNode>(TrueV)->getAPIntValue();
3949       const APInt &FalseVal = cast<ConstantSDNode>(FalseV)->getAPIntValue();
3950       if (TrueVal - 1 == FalseVal)
3951         return DAG.getNode(ISD::ADD, DL, Op.getValueType(), CondV, FalseV);
3952       if (TrueVal + 1 == FalseVal)
3953         return DAG.getNode(ISD::SUB, DL, Op.getValueType(), FalseV, CondV);
3954     }
3955 
3956     translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
3957 
3958     SDValue TargetCC = DAG.getCondCode(CCVal);
3959     SDValue Ops[] = {LHS, RHS, TargetCC, TrueV, FalseV};
3960     return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops);
3961   }
3962 
3963   // Otherwise:
3964   // (select condv, truev, falsev)
3965   // -> (riscvisd::select_cc condv, zero, setne, truev, falsev)
3966   SDValue Zero = DAG.getConstant(0, DL, XLenVT);
3967   SDValue SetNE = DAG.getCondCode(ISD::SETNE);
3968 
3969   SDValue Ops[] = {CondV, Zero, SetNE, TrueV, FalseV};
3970 
3971   return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops);
3972 }
3973 
3974 SDValue RISCVTargetLowering::lowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
3975   SDValue CondV = Op.getOperand(1);
3976   SDLoc DL(Op);
3977   MVT XLenVT = Subtarget.getXLenVT();
3978 
3979   if (CondV.getOpcode() == ISD::SETCC &&
3980       CondV.getOperand(0).getValueType() == XLenVT) {
3981     SDValue LHS = CondV.getOperand(0);
3982     SDValue RHS = CondV.getOperand(1);
3983     ISD::CondCode CCVal = cast<CondCodeSDNode>(CondV.getOperand(2))->get();
3984 
3985     translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
3986 
3987     SDValue TargetCC = DAG.getCondCode(CCVal);
3988     return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0),
3989                        LHS, RHS, TargetCC, Op.getOperand(2));
3990   }
3991 
3992   return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0),
3993                      CondV, DAG.getConstant(0, DL, XLenVT),
3994                      DAG.getCondCode(ISD::SETNE), Op.getOperand(2));
3995 }
3996 
3997 SDValue RISCVTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const {
3998   MachineFunction &MF = DAG.getMachineFunction();
3999   RISCVMachineFunctionInfo *FuncInfo = MF.getInfo<RISCVMachineFunctionInfo>();
4000 
4001   SDLoc DL(Op);
4002   SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
4003                                  getPointerTy(MF.getDataLayout()));
4004 
4005   // vastart just stores the address of the VarArgsFrameIndex slot into the
4006   // memory location argument.
4007   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
4008   return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1),
4009                       MachinePointerInfo(SV));
4010 }
4011 
4012 SDValue RISCVTargetLowering::lowerFRAMEADDR(SDValue Op,
4013                                             SelectionDAG &DAG) const {
4014   const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo();
4015   MachineFunction &MF = DAG.getMachineFunction();
4016   MachineFrameInfo &MFI = MF.getFrameInfo();
4017   MFI.setFrameAddressIsTaken(true);
4018   Register FrameReg = RI.getFrameRegister(MF);
4019   int XLenInBytes = Subtarget.getXLen() / 8;
4020 
4021   EVT VT = Op.getValueType();
4022   SDLoc DL(Op);
4023   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, FrameReg, VT);
4024   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
4025   while (Depth--) {
4026     int Offset = -(XLenInBytes * 2);
4027     SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr,
4028                               DAG.getIntPtrConstant(Offset, DL));
4029     FrameAddr =
4030         DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo());
4031   }
4032   return FrameAddr;
4033 }
4034 
4035 SDValue RISCVTargetLowering::lowerRETURNADDR(SDValue Op,
4036                                              SelectionDAG &DAG) const {
4037   const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo();
4038   MachineFunction &MF = DAG.getMachineFunction();
4039   MachineFrameInfo &MFI = MF.getFrameInfo();
4040   MFI.setReturnAddressIsTaken(true);
4041   MVT XLenVT = Subtarget.getXLenVT();
4042   int XLenInBytes = Subtarget.getXLen() / 8;
4043 
4044   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
4045     return SDValue();
4046 
4047   EVT VT = Op.getValueType();
4048   SDLoc DL(Op);
4049   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
4050   if (Depth) {
4051     int Off = -XLenInBytes;
4052     SDValue FrameAddr = lowerFRAMEADDR(Op, DAG);
4053     SDValue Offset = DAG.getConstant(Off, DL, VT);
4054     return DAG.getLoad(VT, DL, DAG.getEntryNode(),
4055                        DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset),
4056                        MachinePointerInfo());
4057   }
4058 
4059   // Return the value of the return address register, marking it an implicit
4060   // live-in.
4061   Register Reg = MF.addLiveIn(RI.getRARegister(), getRegClassFor(XLenVT));
4062   return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, XLenVT);
4063 }
4064 
4065 SDValue RISCVTargetLowering::lowerShiftLeftParts(SDValue Op,
4066                                                  SelectionDAG &DAG) const {
4067   SDLoc DL(Op);
4068   SDValue Lo = Op.getOperand(0);
4069   SDValue Hi = Op.getOperand(1);
4070   SDValue Shamt = Op.getOperand(2);
4071   EVT VT = Lo.getValueType();
4072 
4073   // if Shamt-XLEN < 0: // Shamt < XLEN
4074   //   Lo = Lo << Shamt
4075   //   Hi = (Hi << Shamt) | ((Lo >>u 1) >>u (XLEN-1 ^ Shamt))
4076   // else:
4077   //   Lo = 0
4078   //   Hi = Lo << (Shamt-XLEN)
4079 
4080   SDValue Zero = DAG.getConstant(0, DL, VT);
4081   SDValue One = DAG.getConstant(1, DL, VT);
4082   SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT);
4083   SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT);
4084   SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen);
4085   SDValue XLenMinus1Shamt = DAG.getNode(ISD::XOR, DL, VT, Shamt, XLenMinus1);
4086 
4087   SDValue LoTrue = DAG.getNode(ISD::SHL, DL, VT, Lo, Shamt);
4088   SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, VT, Lo, One);
4089   SDValue ShiftRightLo =
4090       DAG.getNode(ISD::SRL, DL, VT, ShiftRight1Lo, XLenMinus1Shamt);
4091   SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, Hi, Shamt);
4092   SDValue HiTrue = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo);
4093   SDValue HiFalse = DAG.getNode(ISD::SHL, DL, VT, Lo, ShamtMinusXLen);
4094 
4095   SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT);
4096 
4097   Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, Zero);
4098   Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse);
4099 
4100   SDValue Parts[2] = {Lo, Hi};
4101   return DAG.getMergeValues(Parts, DL);
4102 }
4103 
4104 SDValue RISCVTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG,
4105                                                   bool IsSRA) const {
4106   SDLoc DL(Op);
4107   SDValue Lo = Op.getOperand(0);
4108   SDValue Hi = Op.getOperand(1);
4109   SDValue Shamt = Op.getOperand(2);
4110   EVT VT = Lo.getValueType();
4111 
4112   // SRA expansion:
4113   //   if Shamt-XLEN < 0: // Shamt < XLEN
4114   //     Lo = (Lo >>u Shamt) | ((Hi << 1) << (ShAmt ^ XLEN-1))
4115   //     Hi = Hi >>s Shamt
4116   //   else:
4117   //     Lo = Hi >>s (Shamt-XLEN);
4118   //     Hi = Hi >>s (XLEN-1)
4119   //
4120   // SRL expansion:
4121   //   if Shamt-XLEN < 0: // Shamt < XLEN
4122   //     Lo = (Lo >>u Shamt) | ((Hi << 1) << (ShAmt ^ XLEN-1))
4123   //     Hi = Hi >>u Shamt
4124   //   else:
4125   //     Lo = Hi >>u (Shamt-XLEN);
4126   //     Hi = 0;
4127 
4128   unsigned ShiftRightOp = IsSRA ? ISD::SRA : ISD::SRL;
4129 
4130   SDValue Zero = DAG.getConstant(0, DL, VT);
4131   SDValue One = DAG.getConstant(1, DL, VT);
4132   SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT);
4133   SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT);
4134   SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen);
4135   SDValue XLenMinus1Shamt = DAG.getNode(ISD::XOR, DL, VT, Shamt, XLenMinus1);
4136 
4137   SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, Lo, Shamt);
4138   SDValue ShiftLeftHi1 = DAG.getNode(ISD::SHL, DL, VT, Hi, One);
4139   SDValue ShiftLeftHi =
4140       DAG.getNode(ISD::SHL, DL, VT, ShiftLeftHi1, XLenMinus1Shamt);
4141   SDValue LoTrue = DAG.getNode(ISD::OR, DL, VT, ShiftRightLo, ShiftLeftHi);
4142   SDValue HiTrue = DAG.getNode(ShiftRightOp, DL, VT, Hi, Shamt);
4143   SDValue LoFalse = DAG.getNode(ShiftRightOp, DL, VT, Hi, ShamtMinusXLen);
4144   SDValue HiFalse =
4145       IsSRA ? DAG.getNode(ISD::SRA, DL, VT, Hi, XLenMinus1) : Zero;
4146 
4147   SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT);
4148 
4149   Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, LoFalse);
4150   Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse);
4151 
4152   SDValue Parts[2] = {Lo, Hi};
4153   return DAG.getMergeValues(Parts, DL);
4154 }
4155 
4156 // Lower splats of i1 types to SETCC. For each mask vector type, we have a
4157 // legal equivalently-sized i8 type, so we can use that as a go-between.
4158 SDValue RISCVTargetLowering::lowerVectorMaskSplat(SDValue Op,
4159                                                   SelectionDAG &DAG) const {
4160   SDLoc DL(Op);
4161   MVT VT = Op.getSimpleValueType();
4162   SDValue SplatVal = Op.getOperand(0);
4163   // All-zeros or all-ones splats are handled specially.
4164   if (ISD::isConstantSplatVectorAllOnes(Op.getNode())) {
4165     SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second;
4166     return DAG.getNode(RISCVISD::VMSET_VL, DL, VT, VL);
4167   }
4168   if (ISD::isConstantSplatVectorAllZeros(Op.getNode())) {
4169     SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second;
4170     return DAG.getNode(RISCVISD::VMCLR_VL, DL, VT, VL);
4171   }
4172   MVT XLenVT = Subtarget.getXLenVT();
4173   assert(SplatVal.getValueType() == XLenVT &&
4174          "Unexpected type for i1 splat value");
4175   MVT InterVT = VT.changeVectorElementType(MVT::i8);
4176   SplatVal = DAG.getNode(ISD::AND, DL, XLenVT, SplatVal,
4177                          DAG.getConstant(1, DL, XLenVT));
4178   SDValue LHS = DAG.getSplatVector(InterVT, DL, SplatVal);
4179   SDValue Zero = DAG.getConstant(0, DL, InterVT);
4180   return DAG.getSetCC(DL, VT, LHS, Zero, ISD::SETNE);
4181 }
4182 
4183 // Custom-lower a SPLAT_VECTOR_PARTS where XLEN<SEW, as the SEW element type is
4184 // illegal (currently only vXi64 RV32).
4185 // FIXME: We could also catch non-constant sign-extended i32 values and lower
4186 // them to VMV_V_X_VL.
4187 SDValue RISCVTargetLowering::lowerSPLAT_VECTOR_PARTS(SDValue Op,
4188                                                      SelectionDAG &DAG) const {
4189   SDLoc DL(Op);
4190   MVT VecVT = Op.getSimpleValueType();
4191   assert(!Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64 &&
4192          "Unexpected SPLAT_VECTOR_PARTS lowering");
4193 
4194   assert(Op.getNumOperands() == 2 && "Unexpected number of operands!");
4195   SDValue Lo = Op.getOperand(0);
4196   SDValue Hi = Op.getOperand(1);
4197 
4198   if (VecVT.isFixedLengthVector()) {
4199     MVT ContainerVT = getContainerForFixedLengthVector(VecVT);
4200     SDLoc DL(Op);
4201     SDValue Mask, VL;
4202     std::tie(Mask, VL) =
4203         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
4204 
4205     SDValue Res =
4206         splatPartsI64WithVL(DL, ContainerVT, SDValue(), Lo, Hi, VL, DAG);
4207     return convertFromScalableVector(VecVT, Res, DAG, Subtarget);
4208   }
4209 
4210   if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) {
4211     int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue();
4212     int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue();
4213     // If Hi constant is all the same sign bit as Lo, lower this as a custom
4214     // node in order to try and match RVV vector/scalar instructions.
4215     if ((LoC >> 31) == HiC)
4216       return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, DAG.getUNDEF(VecVT),
4217                          Lo, DAG.getRegister(RISCV::X0, MVT::i32));
4218   }
4219 
4220   // Detect cases where Hi is (SRA Lo, 31) which means Hi is Lo sign extended.
4221   if (Hi.getOpcode() == ISD::SRA && Hi.getOperand(0) == Lo &&
4222       isa<ConstantSDNode>(Hi.getOperand(1)) &&
4223       Hi.getConstantOperandVal(1) == 31)
4224     return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, DAG.getUNDEF(VecVT), Lo,
4225                        DAG.getRegister(RISCV::X0, MVT::i32));
4226 
4227   // Fall back to use a stack store and stride x0 vector load. Use X0 as VL.
4228   return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VecVT,
4229                      DAG.getUNDEF(VecVT), Lo, Hi,
4230                      DAG.getRegister(RISCV::X0, MVT::i32));
4231 }
4232 
4233 // Custom-lower extensions from mask vectors by using a vselect either with 1
4234 // for zero/any-extension or -1 for sign-extension:
4235 //   (vXiN = (s|z)ext vXi1:vmask) -> (vXiN = vselect vmask, (-1 or 1), 0)
4236 // Note that any-extension is lowered identically to zero-extension.
4237 SDValue RISCVTargetLowering::lowerVectorMaskExt(SDValue Op, SelectionDAG &DAG,
4238                                                 int64_t ExtTrueVal) const {
4239   SDLoc DL(Op);
4240   MVT VecVT = Op.getSimpleValueType();
4241   SDValue Src = Op.getOperand(0);
4242   // Only custom-lower extensions from mask types
4243   assert(Src.getValueType().isVector() &&
4244          Src.getValueType().getVectorElementType() == MVT::i1);
4245 
4246   MVT XLenVT = Subtarget.getXLenVT();
4247   SDValue SplatZero = DAG.getConstant(0, DL, XLenVT);
4248   SDValue SplatTrueVal = DAG.getConstant(ExtTrueVal, DL, XLenVT);
4249 
4250   if (VecVT.isScalableVector()) {
4251     // Be careful not to introduce illegal scalar types at this stage, and be
4252     // careful also about splatting constants as on RV32, vXi64 SPLAT_VECTOR is
4253     // illegal and must be expanded. Since we know that the constants are
4254     // sign-extended 32-bit values, we use VMV_V_X_VL directly.
4255     bool IsRV32E64 =
4256         !Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64;
4257 
4258     if (!IsRV32E64) {
4259       SplatZero = DAG.getSplatVector(VecVT, DL, SplatZero);
4260       SplatTrueVal = DAG.getSplatVector(VecVT, DL, SplatTrueVal);
4261     } else {
4262       SplatZero =
4263           DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, DAG.getUNDEF(VecVT),
4264                       SplatZero, DAG.getRegister(RISCV::X0, XLenVT));
4265       SplatTrueVal =
4266           DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, DAG.getUNDEF(VecVT),
4267                       SplatTrueVal, DAG.getRegister(RISCV::X0, XLenVT));
4268     }
4269 
4270     return DAG.getNode(ISD::VSELECT, DL, VecVT, Src, SplatTrueVal, SplatZero);
4271   }
4272 
4273   MVT ContainerVT = getContainerForFixedLengthVector(VecVT);
4274   MVT I1ContainerVT =
4275       MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
4276 
4277   SDValue CC = convertToScalableVector(I1ContainerVT, Src, DAG, Subtarget);
4278 
4279   SDValue Mask, VL;
4280   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
4281 
4282   SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
4283                           DAG.getUNDEF(ContainerVT), SplatZero, VL);
4284   SplatTrueVal = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
4285                              DAG.getUNDEF(ContainerVT), SplatTrueVal, VL);
4286   SDValue Select = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC,
4287                                SplatTrueVal, SplatZero, VL);
4288 
4289   return convertFromScalableVector(VecVT, Select, DAG, Subtarget);
4290 }
4291 
4292 SDValue RISCVTargetLowering::lowerFixedLengthVectorExtendToRVV(
4293     SDValue Op, SelectionDAG &DAG, unsigned ExtendOpc) const {
4294   MVT ExtVT = Op.getSimpleValueType();
4295   // Only custom-lower extensions from fixed-length vector types.
4296   if (!ExtVT.isFixedLengthVector())
4297     return Op;
4298   MVT VT = Op.getOperand(0).getSimpleValueType();
4299   // Grab the canonical container type for the extended type. Infer the smaller
4300   // type from that to ensure the same number of vector elements, as we know
4301   // the LMUL will be sufficient to hold the smaller type.
4302   MVT ContainerExtVT = getContainerForFixedLengthVector(ExtVT);
4303   // Get the extended container type manually to ensure the same number of
4304   // vector elements between source and dest.
4305   MVT ContainerVT = MVT::getVectorVT(VT.getVectorElementType(),
4306                                      ContainerExtVT.getVectorElementCount());
4307 
4308   SDValue Op1 =
4309       convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget);
4310 
4311   SDLoc DL(Op);
4312   SDValue Mask, VL;
4313   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
4314 
4315   SDValue Ext = DAG.getNode(ExtendOpc, DL, ContainerExtVT, Op1, Mask, VL);
4316 
4317   return convertFromScalableVector(ExtVT, Ext, DAG, Subtarget);
4318 }
4319 
4320 // Custom-lower truncations from vectors to mask vectors by using a mask and a
4321 // setcc operation:
4322 //   (vXi1 = trunc vXiN vec) -> (vXi1 = setcc (and vec, 1), 0, ne)
4323 SDValue RISCVTargetLowering::lowerVectorMaskTrunc(SDValue Op,
4324                                                   SelectionDAG &DAG) const {
4325   SDLoc DL(Op);
4326   EVT MaskVT = Op.getValueType();
4327   // Only expect to custom-lower truncations to mask types
4328   assert(MaskVT.isVector() && MaskVT.getVectorElementType() == MVT::i1 &&
4329          "Unexpected type for vector mask lowering");
4330   SDValue Src = Op.getOperand(0);
4331   MVT VecVT = Src.getSimpleValueType();
4332 
4333   // If this is a fixed vector, we need to convert it to a scalable vector.
4334   MVT ContainerVT = VecVT;
4335   if (VecVT.isFixedLengthVector()) {
4336     ContainerVT = getContainerForFixedLengthVector(VecVT);
4337     Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget);
4338   }
4339 
4340   SDValue SplatOne = DAG.getConstant(1, DL, Subtarget.getXLenVT());
4341   SDValue SplatZero = DAG.getConstant(0, DL, Subtarget.getXLenVT());
4342 
4343   SplatOne = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
4344                          DAG.getUNDEF(ContainerVT), SplatOne);
4345   SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
4346                           DAG.getUNDEF(ContainerVT), SplatZero);
4347 
4348   if (VecVT.isScalableVector()) {
4349     SDValue Trunc = DAG.getNode(ISD::AND, DL, VecVT, Src, SplatOne);
4350     return DAG.getSetCC(DL, MaskVT, Trunc, SplatZero, ISD::SETNE);
4351   }
4352 
4353   SDValue Mask, VL;
4354   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
4355 
4356   MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1);
4357   SDValue Trunc =
4358       DAG.getNode(RISCVISD::AND_VL, DL, ContainerVT, Src, SplatOne, Mask, VL);
4359   Trunc = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskContainerVT, Trunc, SplatZero,
4360                       DAG.getCondCode(ISD::SETNE), Mask, VL);
4361   return convertFromScalableVector(MaskVT, Trunc, DAG, Subtarget);
4362 }
4363 
4364 // Custom-legalize INSERT_VECTOR_ELT so that the value is inserted into the
4365 // first position of a vector, and that vector is slid up to the insert index.
4366 // By limiting the active vector length to index+1 and merging with the
4367 // original vector (with an undisturbed tail policy for elements >= VL), we
4368 // achieve the desired result of leaving all elements untouched except the one
4369 // at VL-1, which is replaced with the desired value.
4370 SDValue RISCVTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op,
4371                                                     SelectionDAG &DAG) const {
4372   SDLoc DL(Op);
4373   MVT VecVT = Op.getSimpleValueType();
4374   SDValue Vec = Op.getOperand(0);
4375   SDValue Val = Op.getOperand(1);
4376   SDValue Idx = Op.getOperand(2);
4377 
4378   if (VecVT.getVectorElementType() == MVT::i1) {
4379     // FIXME: For now we just promote to an i8 vector and insert into that,
4380     // but this is probably not optimal.
4381     MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount());
4382     Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec);
4383     Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, WideVT, Vec, Val, Idx);
4384     return DAG.getNode(ISD::TRUNCATE, DL, VecVT, Vec);
4385   }
4386 
4387   MVT ContainerVT = VecVT;
4388   // If the operand is a fixed-length vector, convert to a scalable one.
4389   if (VecVT.isFixedLengthVector()) {
4390     ContainerVT = getContainerForFixedLengthVector(VecVT);
4391     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
4392   }
4393 
4394   MVT XLenVT = Subtarget.getXLenVT();
4395 
4396   SDValue Zero = DAG.getConstant(0, DL, XLenVT);
4397   bool IsLegalInsert = Subtarget.is64Bit() || Val.getValueType() != MVT::i64;
4398   // Even i64-element vectors on RV32 can be lowered without scalar
4399   // legalization if the most-significant 32 bits of the value are not affected
4400   // by the sign-extension of the lower 32 bits.
4401   // TODO: We could also catch sign extensions of a 32-bit value.
4402   if (!IsLegalInsert && isa<ConstantSDNode>(Val)) {
4403     const auto *CVal = cast<ConstantSDNode>(Val);
4404     if (isInt<32>(CVal->getSExtValue())) {
4405       IsLegalInsert = true;
4406       Val = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32);
4407     }
4408   }
4409 
4410   SDValue Mask, VL;
4411   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
4412 
4413   SDValue ValInVec;
4414 
4415   if (IsLegalInsert) {
4416     unsigned Opc =
4417         VecVT.isFloatingPoint() ? RISCVISD::VFMV_S_F_VL : RISCVISD::VMV_S_X_VL;
4418     if (isNullConstant(Idx)) {
4419       Vec = DAG.getNode(Opc, DL, ContainerVT, Vec, Val, VL);
4420       if (!VecVT.isFixedLengthVector())
4421         return Vec;
4422       return convertFromScalableVector(VecVT, Vec, DAG, Subtarget);
4423     }
4424     ValInVec =
4425         DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), Val, VL);
4426   } else {
4427     // On RV32, i64-element vectors must be specially handled to place the
4428     // value at element 0, by using two vslide1up instructions in sequence on
4429     // the i32 split lo/hi value. Use an equivalently-sized i32 vector for
4430     // this.
4431     SDValue One = DAG.getConstant(1, DL, XLenVT);
4432     SDValue ValLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, Zero);
4433     SDValue ValHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, One);
4434     MVT I32ContainerVT =
4435         MVT::getVectorVT(MVT::i32, ContainerVT.getVectorElementCount() * 2);
4436     SDValue I32Mask =
4437         getDefaultScalableVLOps(I32ContainerVT, DL, DAG, Subtarget).first;
4438     // Limit the active VL to two.
4439     SDValue InsertI64VL = DAG.getConstant(2, DL, XLenVT);
4440     // Note: We can't pass a UNDEF to the first VSLIDE1UP_VL since an untied
4441     // undef doesn't obey the earlyclobber constraint. Just splat a zero value.
4442     ValInVec = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, I32ContainerVT,
4443                            DAG.getUNDEF(I32ContainerVT), Zero, InsertI64VL);
4444     // First slide in the hi value, then the lo in underneath it.
4445     ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT,
4446                            DAG.getUNDEF(I32ContainerVT), ValInVec, ValHi,
4447                            I32Mask, InsertI64VL);
4448     ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT,
4449                            DAG.getUNDEF(I32ContainerVT), ValInVec, ValLo,
4450                            I32Mask, InsertI64VL);
4451     // Bitcast back to the right container type.
4452     ValInVec = DAG.getBitcast(ContainerVT, ValInVec);
4453   }
4454 
4455   // Now that the value is in a vector, slide it into position.
4456   SDValue InsertVL =
4457       DAG.getNode(ISD::ADD, DL, XLenVT, Idx, DAG.getConstant(1, DL, XLenVT));
4458   SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec,
4459                                 ValInVec, Idx, Mask, InsertVL);
4460   if (!VecVT.isFixedLengthVector())
4461     return Slideup;
4462   return convertFromScalableVector(VecVT, Slideup, DAG, Subtarget);
4463 }
4464 
4465 // Custom-lower EXTRACT_VECTOR_ELT operations to slide the vector down, then
4466 // extract the first element: (extractelt (slidedown vec, idx), 0). For integer
4467 // types this is done using VMV_X_S to allow us to glean information about the
4468 // sign bits of the result.
4469 SDValue RISCVTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op,
4470                                                      SelectionDAG &DAG) const {
4471   SDLoc DL(Op);
4472   SDValue Idx = Op.getOperand(1);
4473   SDValue Vec = Op.getOperand(0);
4474   EVT EltVT = Op.getValueType();
4475   MVT VecVT = Vec.getSimpleValueType();
4476   MVT XLenVT = Subtarget.getXLenVT();
4477 
4478   if (VecVT.getVectorElementType() == MVT::i1) {
4479     if (VecVT.isFixedLengthVector()) {
4480       unsigned NumElts = VecVT.getVectorNumElements();
4481       if (NumElts >= 8) {
4482         MVT WideEltVT;
4483         unsigned WidenVecLen;
4484         SDValue ExtractElementIdx;
4485         SDValue ExtractBitIdx;
4486         unsigned MaxEEW = Subtarget.getMaxELENForFixedLengthVectors();
4487         MVT LargestEltVT = MVT::getIntegerVT(
4488             std::min(MaxEEW, unsigned(XLenVT.getSizeInBits())));
4489         if (NumElts <= LargestEltVT.getSizeInBits()) {
4490           assert(isPowerOf2_32(NumElts) &&
4491                  "the number of elements should be power of 2");
4492           WideEltVT = MVT::getIntegerVT(NumElts);
4493           WidenVecLen = 1;
4494           ExtractElementIdx = DAG.getConstant(0, DL, XLenVT);
4495           ExtractBitIdx = Idx;
4496         } else {
4497           WideEltVT = LargestEltVT;
4498           WidenVecLen = NumElts / WideEltVT.getSizeInBits();
4499           // extract element index = index / element width
4500           ExtractElementIdx = DAG.getNode(
4501               ISD::SRL, DL, XLenVT, Idx,
4502               DAG.getConstant(Log2_64(WideEltVT.getSizeInBits()), DL, XLenVT));
4503           // mask bit index = index % element width
4504           ExtractBitIdx = DAG.getNode(
4505               ISD::AND, DL, XLenVT, Idx,
4506               DAG.getConstant(WideEltVT.getSizeInBits() - 1, DL, XLenVT));
4507         }
4508         MVT WideVT = MVT::getVectorVT(WideEltVT, WidenVecLen);
4509         Vec = DAG.getNode(ISD::BITCAST, DL, WideVT, Vec);
4510         SDValue ExtractElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, XLenVT,
4511                                          Vec, ExtractElementIdx);
4512         // Extract the bit from GPR.
4513         SDValue ShiftRight =
4514             DAG.getNode(ISD::SRL, DL, XLenVT, ExtractElt, ExtractBitIdx);
4515         return DAG.getNode(ISD::AND, DL, XLenVT, ShiftRight,
4516                            DAG.getConstant(1, DL, XLenVT));
4517       }
4518     }
4519     // Otherwise, promote to an i8 vector and extract from that.
4520     MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount());
4521     Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec);
4522     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec, Idx);
4523   }
4524 
4525   // If this is a fixed vector, we need to convert it to a scalable vector.
4526   MVT ContainerVT = VecVT;
4527   if (VecVT.isFixedLengthVector()) {
4528     ContainerVT = getContainerForFixedLengthVector(VecVT);
4529     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
4530   }
4531 
4532   // If the index is 0, the vector is already in the right position.
4533   if (!isNullConstant(Idx)) {
4534     // Use a VL of 1 to avoid processing more elements than we need.
4535     SDValue VL = DAG.getConstant(1, DL, XLenVT);
4536     MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
4537     SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
4538     Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT,
4539                       DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL);
4540   }
4541 
4542   if (!EltVT.isInteger()) {
4543     // Floating-point extracts are handled in TableGen.
4544     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec,
4545                        DAG.getConstant(0, DL, XLenVT));
4546   }
4547 
4548   SDValue Elt0 = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec);
4549   return DAG.getNode(ISD::TRUNCATE, DL, EltVT, Elt0);
4550 }
4551 
4552 // Some RVV intrinsics may claim that they want an integer operand to be
4553 // promoted or expanded.
4554 static SDValue lowerVectorIntrinsicSplats(SDValue Op, SelectionDAG &DAG,
4555                                           const RISCVSubtarget &Subtarget) {
4556   assert((Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
4557           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN) &&
4558          "Unexpected opcode");
4559 
4560   if (!Subtarget.hasVInstructions())
4561     return SDValue();
4562 
4563   bool HasChain = Op.getOpcode() == ISD::INTRINSIC_W_CHAIN;
4564   unsigned IntNo = Op.getConstantOperandVal(HasChain ? 1 : 0);
4565   SDLoc DL(Op);
4566 
4567   const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II =
4568       RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo);
4569   if (!II || !II->hasSplatOperand())
4570     return SDValue();
4571 
4572   unsigned SplatOp = II->SplatOperand + 1 + HasChain;
4573   assert(SplatOp < Op.getNumOperands());
4574 
4575   SmallVector<SDValue, 8> Operands(Op->op_begin(), Op->op_end());
4576   SDValue &ScalarOp = Operands[SplatOp];
4577   MVT OpVT = ScalarOp.getSimpleValueType();
4578   MVT XLenVT = Subtarget.getXLenVT();
4579 
4580   // If this isn't a scalar, or its type is XLenVT we're done.
4581   if (!OpVT.isScalarInteger() || OpVT == XLenVT)
4582     return SDValue();
4583 
4584   // Simplest case is that the operand needs to be promoted to XLenVT.
4585   if (OpVT.bitsLT(XLenVT)) {
4586     // If the operand is a constant, sign extend to increase our chances
4587     // of being able to use a .vi instruction. ANY_EXTEND would become a
4588     // a zero extend and the simm5 check in isel would fail.
4589     // FIXME: Should we ignore the upper bits in isel instead?
4590     unsigned ExtOpc =
4591         isa<ConstantSDNode>(ScalarOp) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND;
4592     ScalarOp = DAG.getNode(ExtOpc, DL, XLenVT, ScalarOp);
4593     return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands);
4594   }
4595 
4596   // Use the previous operand to get the vXi64 VT. The result might be a mask
4597   // VT for compares. Using the previous operand assumes that the previous
4598   // operand will never have a smaller element size than a scalar operand and
4599   // that a widening operation never uses SEW=64.
4600   // NOTE: If this fails the below assert, we can probably just find the
4601   // element count from any operand or result and use it to construct the VT.
4602   assert(II->SplatOperand > 0 && "Unexpected splat operand!");
4603   MVT VT = Op.getOperand(SplatOp - 1).getSimpleValueType();
4604 
4605   // The more complex case is when the scalar is larger than XLenVT.
4606   assert(XLenVT == MVT::i32 && OpVT == MVT::i64 &&
4607          VT.getVectorElementType() == MVT::i64 && "Unexpected VTs!");
4608 
4609   // If this is a sign-extended 32-bit constant, we can truncate it and rely
4610   // on the instruction to sign-extend since SEW>XLEN.
4611   if (auto *CVal = dyn_cast<ConstantSDNode>(ScalarOp)) {
4612     if (isInt<32>(CVal->getSExtValue())) {
4613       ScalarOp = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32);
4614       return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands);
4615     }
4616   }
4617 
4618   // We need to convert the scalar to a splat vector.
4619   // FIXME: Can we implicitly truncate the scalar if it is known to
4620   // be sign extended?
4621   SDValue VL = getVLOperand(Op);
4622   assert(VL.getValueType() == XLenVT);
4623   ScalarOp = splatSplitI64WithVL(DL, VT, SDValue(), ScalarOp, VL, DAG);
4624   return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands);
4625 }
4626 
4627 SDValue RISCVTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
4628                                                      SelectionDAG &DAG) const {
4629   unsigned IntNo = Op.getConstantOperandVal(0);
4630   SDLoc DL(Op);
4631   MVT XLenVT = Subtarget.getXLenVT();
4632 
4633   switch (IntNo) {
4634   default:
4635     break; // Don't custom lower most intrinsics.
4636   case Intrinsic::thread_pointer: {
4637     EVT PtrVT = getPointerTy(DAG.getDataLayout());
4638     return DAG.getRegister(RISCV::X4, PtrVT);
4639   }
4640   case Intrinsic::riscv_orc_b:
4641   case Intrinsic::riscv_brev8: {
4642     // Lower to the GORCI encoding for orc.b or the GREVI encoding for brev8.
4643     unsigned Opc =
4644         IntNo == Intrinsic::riscv_brev8 ? RISCVISD::GREV : RISCVISD::GORC;
4645     return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1),
4646                        DAG.getConstant(7, DL, XLenVT));
4647   }
4648   case Intrinsic::riscv_grev:
4649   case Intrinsic::riscv_gorc: {
4650     unsigned Opc =
4651         IntNo == Intrinsic::riscv_grev ? RISCVISD::GREV : RISCVISD::GORC;
4652     return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2));
4653   }
4654   case Intrinsic::riscv_zip:
4655   case Intrinsic::riscv_unzip: {
4656     // Lower to the SHFLI encoding for zip or the UNSHFLI encoding for unzip.
4657     // For i32 the immdiate is 15. For i64 the immediate is 31.
4658     unsigned Opc =
4659         IntNo == Intrinsic::riscv_zip ? RISCVISD::SHFL : RISCVISD::UNSHFL;
4660     unsigned BitWidth = Op.getValueSizeInBits();
4661     assert(isPowerOf2_32(BitWidth) && BitWidth >= 2 && "Unexpected bit width");
4662     return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1),
4663                        DAG.getConstant((BitWidth / 2) - 1, DL, XLenVT));
4664   }
4665   case Intrinsic::riscv_shfl:
4666   case Intrinsic::riscv_unshfl: {
4667     unsigned Opc =
4668         IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL;
4669     return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2));
4670   }
4671   case Intrinsic::riscv_bcompress:
4672   case Intrinsic::riscv_bdecompress: {
4673     unsigned Opc = IntNo == Intrinsic::riscv_bcompress ? RISCVISD::BCOMPRESS
4674                                                        : RISCVISD::BDECOMPRESS;
4675     return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2));
4676   }
4677   case Intrinsic::riscv_bfp:
4678     return DAG.getNode(RISCVISD::BFP, DL, XLenVT, Op.getOperand(1),
4679                        Op.getOperand(2));
4680   case Intrinsic::riscv_fsl:
4681     return DAG.getNode(RISCVISD::FSL, DL, XLenVT, Op.getOperand(1),
4682                        Op.getOperand(2), Op.getOperand(3));
4683   case Intrinsic::riscv_fsr:
4684     return DAG.getNode(RISCVISD::FSR, DL, XLenVT, Op.getOperand(1),
4685                        Op.getOperand(2), Op.getOperand(3));
4686   case Intrinsic::riscv_vmv_x_s:
4687     assert(Op.getValueType() == XLenVT && "Unexpected VT!");
4688     return DAG.getNode(RISCVISD::VMV_X_S, DL, Op.getValueType(),
4689                        Op.getOperand(1));
4690   case Intrinsic::riscv_vmv_v_x:
4691     return lowerScalarSplat(Op.getOperand(1), Op.getOperand(2),
4692                             Op.getOperand(3), Op.getSimpleValueType(), DL, DAG,
4693                             Subtarget);
4694   case Intrinsic::riscv_vfmv_v_f:
4695     return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, Op.getValueType(),
4696                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
4697   case Intrinsic::riscv_vmv_s_x: {
4698     SDValue Scalar = Op.getOperand(2);
4699 
4700     if (Scalar.getValueType().bitsLE(XLenVT)) {
4701       Scalar = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Scalar);
4702       return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, Op.getValueType(),
4703                          Op.getOperand(1), Scalar, Op.getOperand(3));
4704     }
4705 
4706     assert(Scalar.getValueType() == MVT::i64 && "Unexpected scalar VT!");
4707 
4708     // This is an i64 value that lives in two scalar registers. We have to
4709     // insert this in a convoluted way. First we build vXi64 splat containing
4710     // the/ two values that we assemble using some bit math. Next we'll use
4711     // vid.v and vmseq to build a mask with bit 0 set. Then we'll use that mask
4712     // to merge element 0 from our splat into the source vector.
4713     // FIXME: This is probably not the best way to do this, but it is
4714     // consistent with INSERT_VECTOR_ELT lowering so it is a good starting
4715     // point.
4716     //   sw lo, (a0)
4717     //   sw hi, 4(a0)
4718     //   vlse vX, (a0)
4719     //
4720     //   vid.v      vVid
4721     //   vmseq.vx   mMask, vVid, 0
4722     //   vmerge.vvm vDest, vSrc, vVal, mMask
4723     MVT VT = Op.getSimpleValueType();
4724     SDValue Vec = Op.getOperand(1);
4725     SDValue VL = getVLOperand(Op);
4726 
4727     SDValue SplattedVal = splatSplitI64WithVL(DL, VT, SDValue(), Scalar, VL, DAG);
4728     if (Op.getOperand(1).isUndef())
4729       return SplattedVal;
4730     SDValue SplattedIdx =
4731         DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, DAG.getUNDEF(VT),
4732                     DAG.getConstant(0, DL, MVT::i32), VL);
4733 
4734     MVT MaskVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount());
4735     SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
4736     SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL);
4737     SDValue SelectCond =
4738         DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, VID, SplattedIdx,
4739                     DAG.getCondCode(ISD::SETEQ), Mask, VL);
4740     return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, SelectCond, SplattedVal,
4741                        Vec, VL);
4742   }
4743   case Intrinsic::riscv_vslide1up:
4744   case Intrinsic::riscv_vslide1down:
4745   case Intrinsic::riscv_vslide1up_mask:
4746   case Intrinsic::riscv_vslide1down_mask: {
4747     // We need to special case these when the scalar is larger than XLen.
4748     unsigned NumOps = Op.getNumOperands();
4749     bool IsMasked = NumOps == 7;
4750     SDValue Scalar = Op.getOperand(3);
4751     if (Scalar.getValueType().bitsLE(XLenVT))
4752       break;
4753 
4754     // Splatting a sign extended constant is fine.
4755     if (auto *CVal = dyn_cast<ConstantSDNode>(Scalar))
4756       if (isInt<32>(CVal->getSExtValue()))
4757         break;
4758 
4759     MVT VT = Op.getSimpleValueType();
4760     assert(VT.getVectorElementType() == MVT::i64 &&
4761            Scalar.getValueType() == MVT::i64 && "Unexpected VTs");
4762 
4763     // Convert the vector source to the equivalent nxvXi32 vector.
4764     MVT I32VT = MVT::getVectorVT(MVT::i32, VT.getVectorElementCount() * 2);
4765     SDValue Vec = DAG.getBitcast(I32VT, Op.getOperand(2));
4766 
4767     SDValue ScalarLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar,
4768                                    DAG.getConstant(0, DL, XLenVT));
4769     SDValue ScalarHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar,
4770                                    DAG.getConstant(1, DL, XLenVT));
4771 
4772     // Double the VL since we halved SEW.
4773     SDValue VL = getVLOperand(Op);
4774     SDValue I32VL =
4775         DAG.getNode(ISD::SHL, DL, XLenVT, VL, DAG.getConstant(1, DL, XLenVT));
4776 
4777     MVT I32MaskVT = MVT::getVectorVT(MVT::i1, I32VT.getVectorElementCount());
4778     SDValue I32Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, I32MaskVT, VL);
4779 
4780     // Shift the two scalar parts in using SEW=32 slide1up/slide1down
4781     // instructions.
4782     SDValue Passthru = DAG.getBitcast(I32VT, Op.getOperand(1));
4783     if (!IsMasked) {
4784       if (IntNo == Intrinsic::riscv_vslide1up) {
4785         Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Passthru, Vec,
4786                           ScalarHi, I32Mask, I32VL);
4787         Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Passthru, Vec,
4788                           ScalarLo, I32Mask, I32VL);
4789       } else {
4790         Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Passthru, Vec,
4791                           ScalarLo, I32Mask, I32VL);
4792         Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Passthru, Vec,
4793                           ScalarHi, I32Mask, I32VL);
4794       }
4795     } else {
4796       // TODO Those VSLIDE1 could be TAMA because we use vmerge to select
4797       // maskedoff
4798       SDValue Undef = DAG.getUNDEF(I32VT);
4799       if (IntNo == Intrinsic::riscv_vslide1up_mask) {
4800         Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Undef, Vec,
4801                           ScalarHi, I32Mask, I32VL);
4802         Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Undef, Vec,
4803                           ScalarLo, I32Mask, I32VL);
4804       } else {
4805         Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Undef, Vec,
4806                           ScalarLo, I32Mask, I32VL);
4807         Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Undef, Vec,
4808                           ScalarHi, I32Mask, I32VL);
4809       }
4810     }
4811 
4812     // Convert back to nxvXi64.
4813     Vec = DAG.getBitcast(VT, Vec);
4814 
4815     if (!IsMasked)
4816       return Vec;
4817     // Apply mask after the operation.
4818     SDValue Mask = Op.getOperand(NumOps - 3);
4819     SDValue MaskedOff = Op.getOperand(1);
4820     // Assume Policy operand is the last operand.
4821     uint64_t Policy = Op.getConstantOperandVal(NumOps - 1);
4822     // We don't need to select maskedoff if it's undef.
4823     if (MaskedOff.isUndef())
4824       return Vec;
4825     // TAMU
4826     if (Policy == RISCVII::TAIL_AGNOSTIC)
4827       return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, Mask, Vec, MaskedOff,
4828                          VL);
4829     // TUMA or TUMU: Currently we always emit tumu policy regardless of tuma.
4830     // It's fine because vmerge does not care mask policy.
4831     return DAG.getNode(RISCVISD::VP_MERGE_VL, DL, VT, Mask, Vec, MaskedOff, VL);
4832   }
4833   }
4834 
4835   return lowerVectorIntrinsicSplats(Op, DAG, Subtarget);
4836 }
4837 
4838 SDValue RISCVTargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op,
4839                                                     SelectionDAG &DAG) const {
4840   unsigned IntNo = Op.getConstantOperandVal(1);
4841   switch (IntNo) {
4842   default:
4843     break;
4844   case Intrinsic::riscv_masked_strided_load: {
4845     SDLoc DL(Op);
4846     MVT XLenVT = Subtarget.getXLenVT();
4847 
4848     // If the mask is known to be all ones, optimize to an unmasked intrinsic;
4849     // the selection of the masked intrinsics doesn't do this for us.
4850     SDValue Mask = Op.getOperand(5);
4851     bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
4852 
4853     MVT VT = Op->getSimpleValueType(0);
4854     MVT ContainerVT = getContainerForFixedLengthVector(VT);
4855 
4856     SDValue PassThru = Op.getOperand(2);
4857     if (!IsUnmasked) {
4858       MVT MaskVT =
4859           MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
4860       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
4861       PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget);
4862     }
4863 
4864     SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT);
4865 
4866     SDValue IntID = DAG.getTargetConstant(
4867         IsUnmasked ? Intrinsic::riscv_vlse : Intrinsic::riscv_vlse_mask, DL,
4868         XLenVT);
4869 
4870     auto *Load = cast<MemIntrinsicSDNode>(Op);
4871     SmallVector<SDValue, 8> Ops{Load->getChain(), IntID};
4872     if (IsUnmasked)
4873       Ops.push_back(DAG.getUNDEF(ContainerVT));
4874     else
4875       Ops.push_back(PassThru);
4876     Ops.push_back(Op.getOperand(3)); // Ptr
4877     Ops.push_back(Op.getOperand(4)); // Stride
4878     if (!IsUnmasked)
4879       Ops.push_back(Mask);
4880     Ops.push_back(VL);
4881     if (!IsUnmasked) {
4882       SDValue Policy = DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT);
4883       Ops.push_back(Policy);
4884     }
4885 
4886     SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
4887     SDValue Result =
4888         DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops,
4889                                 Load->getMemoryVT(), Load->getMemOperand());
4890     SDValue Chain = Result.getValue(1);
4891     Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
4892     return DAG.getMergeValues({Result, Chain}, DL);
4893   }
4894   }
4895 
4896   return lowerVectorIntrinsicSplats(Op, DAG, Subtarget);
4897 }
4898 
4899 SDValue RISCVTargetLowering::LowerINTRINSIC_VOID(SDValue Op,
4900                                                  SelectionDAG &DAG) const {
4901   unsigned IntNo = Op.getConstantOperandVal(1);
4902   switch (IntNo) {
4903   default:
4904     break;
4905   case Intrinsic::riscv_masked_strided_store: {
4906     SDLoc DL(Op);
4907     MVT XLenVT = Subtarget.getXLenVT();
4908 
4909     // If the mask is known to be all ones, optimize to an unmasked intrinsic;
4910     // the selection of the masked intrinsics doesn't do this for us.
4911     SDValue Mask = Op.getOperand(5);
4912     bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
4913 
4914     SDValue Val = Op.getOperand(2);
4915     MVT VT = Val.getSimpleValueType();
4916     MVT ContainerVT = getContainerForFixedLengthVector(VT);
4917 
4918     Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget);
4919     if (!IsUnmasked) {
4920       MVT MaskVT =
4921           MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
4922       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
4923     }
4924 
4925     SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT);
4926 
4927     SDValue IntID = DAG.getTargetConstant(
4928         IsUnmasked ? Intrinsic::riscv_vsse : Intrinsic::riscv_vsse_mask, DL,
4929         XLenVT);
4930 
4931     auto *Store = cast<MemIntrinsicSDNode>(Op);
4932     SmallVector<SDValue, 8> Ops{Store->getChain(), IntID};
4933     Ops.push_back(Val);
4934     Ops.push_back(Op.getOperand(3)); // Ptr
4935     Ops.push_back(Op.getOperand(4)); // Stride
4936     if (!IsUnmasked)
4937       Ops.push_back(Mask);
4938     Ops.push_back(VL);
4939 
4940     return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, Store->getVTList(),
4941                                    Ops, Store->getMemoryVT(),
4942                                    Store->getMemOperand());
4943   }
4944   }
4945 
4946   return SDValue();
4947 }
4948 
4949 static MVT getLMUL1VT(MVT VT) {
4950   assert(VT.getVectorElementType().getSizeInBits() <= 64 &&
4951          "Unexpected vector MVT");
4952   return MVT::getScalableVectorVT(
4953       VT.getVectorElementType(),
4954       RISCV::RVVBitsPerBlock / VT.getVectorElementType().getSizeInBits());
4955 }
4956 
4957 static unsigned getRVVReductionOp(unsigned ISDOpcode) {
4958   switch (ISDOpcode) {
4959   default:
4960     llvm_unreachable("Unhandled reduction");
4961   case ISD::VECREDUCE_ADD:
4962     return RISCVISD::VECREDUCE_ADD_VL;
4963   case ISD::VECREDUCE_UMAX:
4964     return RISCVISD::VECREDUCE_UMAX_VL;
4965   case ISD::VECREDUCE_SMAX:
4966     return RISCVISD::VECREDUCE_SMAX_VL;
4967   case ISD::VECREDUCE_UMIN:
4968     return RISCVISD::VECREDUCE_UMIN_VL;
4969   case ISD::VECREDUCE_SMIN:
4970     return RISCVISD::VECREDUCE_SMIN_VL;
4971   case ISD::VECREDUCE_AND:
4972     return RISCVISD::VECREDUCE_AND_VL;
4973   case ISD::VECREDUCE_OR:
4974     return RISCVISD::VECREDUCE_OR_VL;
4975   case ISD::VECREDUCE_XOR:
4976     return RISCVISD::VECREDUCE_XOR_VL;
4977   }
4978 }
4979 
4980 SDValue RISCVTargetLowering::lowerVectorMaskVecReduction(SDValue Op,
4981                                                          SelectionDAG &DAG,
4982                                                          bool IsVP) const {
4983   SDLoc DL(Op);
4984   SDValue Vec = Op.getOperand(IsVP ? 1 : 0);
4985   MVT VecVT = Vec.getSimpleValueType();
4986   assert((Op.getOpcode() == ISD::VECREDUCE_AND ||
4987           Op.getOpcode() == ISD::VECREDUCE_OR ||
4988           Op.getOpcode() == ISD::VECREDUCE_XOR ||
4989           Op.getOpcode() == ISD::VP_REDUCE_AND ||
4990           Op.getOpcode() == ISD::VP_REDUCE_OR ||
4991           Op.getOpcode() == ISD::VP_REDUCE_XOR) &&
4992          "Unexpected reduction lowering");
4993 
4994   MVT XLenVT = Subtarget.getXLenVT();
4995   assert(Op.getValueType() == XLenVT &&
4996          "Expected reduction output to be legalized to XLenVT");
4997 
4998   MVT ContainerVT = VecVT;
4999   if (VecVT.isFixedLengthVector()) {
5000     ContainerVT = getContainerForFixedLengthVector(VecVT);
5001     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
5002   }
5003 
5004   SDValue Mask, VL;
5005   if (IsVP) {
5006     Mask = Op.getOperand(2);
5007     VL = Op.getOperand(3);
5008   } else {
5009     std::tie(Mask, VL) =
5010         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
5011   }
5012 
5013   unsigned BaseOpc;
5014   ISD::CondCode CC;
5015   SDValue Zero = DAG.getConstant(0, DL, XLenVT);
5016 
5017   switch (Op.getOpcode()) {
5018   default:
5019     llvm_unreachable("Unhandled reduction");
5020   case ISD::VECREDUCE_AND:
5021   case ISD::VP_REDUCE_AND: {
5022     // vcpop ~x == 0
5023     SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL);
5024     Vec = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Vec, TrueMask, VL);
5025     Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL);
5026     CC = ISD::SETEQ;
5027     BaseOpc = ISD::AND;
5028     break;
5029   }
5030   case ISD::VECREDUCE_OR:
5031   case ISD::VP_REDUCE_OR:
5032     // vcpop x != 0
5033     Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL);
5034     CC = ISD::SETNE;
5035     BaseOpc = ISD::OR;
5036     break;
5037   case ISD::VECREDUCE_XOR:
5038   case ISD::VP_REDUCE_XOR: {
5039     // ((vcpop x) & 1) != 0
5040     SDValue One = DAG.getConstant(1, DL, XLenVT);
5041     Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL);
5042     Vec = DAG.getNode(ISD::AND, DL, XLenVT, Vec, One);
5043     CC = ISD::SETNE;
5044     BaseOpc = ISD::XOR;
5045     break;
5046   }
5047   }
5048 
5049   SDValue SetCC = DAG.getSetCC(DL, XLenVT, Vec, Zero, CC);
5050 
5051   if (!IsVP)
5052     return SetCC;
5053 
5054   // Now include the start value in the operation.
5055   // Note that we must return the start value when no elements are operated
5056   // upon. The vcpop instructions we've emitted in each case above will return
5057   // 0 for an inactive vector, and so we've already received the neutral value:
5058   // AND gives us (0 == 0) -> 1 and OR/XOR give us (0 != 0) -> 0. Therefore we
5059   // can simply include the start value.
5060   return DAG.getNode(BaseOpc, DL, XLenVT, SetCC, Op.getOperand(0));
5061 }
5062 
5063 SDValue RISCVTargetLowering::lowerVECREDUCE(SDValue Op,
5064                                             SelectionDAG &DAG) const {
5065   SDLoc DL(Op);
5066   SDValue Vec = Op.getOperand(0);
5067   EVT VecEVT = Vec.getValueType();
5068 
5069   unsigned BaseOpc = ISD::getVecReduceBaseOpcode(Op.getOpcode());
5070 
5071   // Due to ordering in legalize types we may have a vector type that needs to
5072   // be split. Do that manually so we can get down to a legal type.
5073   while (getTypeAction(*DAG.getContext(), VecEVT) ==
5074          TargetLowering::TypeSplitVector) {
5075     SDValue Lo, Hi;
5076     std::tie(Lo, Hi) = DAG.SplitVector(Vec, DL);
5077     VecEVT = Lo.getValueType();
5078     Vec = DAG.getNode(BaseOpc, DL, VecEVT, Lo, Hi);
5079   }
5080 
5081   // TODO: The type may need to be widened rather than split. Or widened before
5082   // it can be split.
5083   if (!isTypeLegal(VecEVT))
5084     return SDValue();
5085 
5086   MVT VecVT = VecEVT.getSimpleVT();
5087   MVT VecEltVT = VecVT.getVectorElementType();
5088   unsigned RVVOpcode = getRVVReductionOp(Op.getOpcode());
5089 
5090   MVT ContainerVT = VecVT;
5091   if (VecVT.isFixedLengthVector()) {
5092     ContainerVT = getContainerForFixedLengthVector(VecVT);
5093     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
5094   }
5095 
5096   MVT M1VT = getLMUL1VT(ContainerVT);
5097   MVT XLenVT = Subtarget.getXLenVT();
5098 
5099   SDValue Mask, VL;
5100   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
5101 
5102   SDValue NeutralElem =
5103       DAG.getNeutralElement(BaseOpc, DL, VecEltVT, SDNodeFlags());
5104   SDValue IdentitySplat =
5105       lowerScalarSplat(SDValue(), NeutralElem, DAG.getConstant(1, DL, XLenVT),
5106                        M1VT, DL, DAG, Subtarget);
5107   SDValue Reduction = DAG.getNode(RVVOpcode, DL, M1VT, DAG.getUNDEF(M1VT), Vec,
5108                                   IdentitySplat, Mask, VL);
5109   SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction,
5110                              DAG.getConstant(0, DL, XLenVT));
5111   return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType());
5112 }
5113 
5114 // Given a reduction op, this function returns the matching reduction opcode,
5115 // the vector SDValue and the scalar SDValue required to lower this to a
5116 // RISCVISD node.
5117 static std::tuple<unsigned, SDValue, SDValue>
5118 getRVVFPReductionOpAndOperands(SDValue Op, SelectionDAG &DAG, EVT EltVT) {
5119   SDLoc DL(Op);
5120   auto Flags = Op->getFlags();
5121   unsigned Opcode = Op.getOpcode();
5122   unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Opcode);
5123   switch (Opcode) {
5124   default:
5125     llvm_unreachable("Unhandled reduction");
5126   case ISD::VECREDUCE_FADD: {
5127     // Use positive zero if we can. It is cheaper to materialize.
5128     SDValue Zero =
5129         DAG.getConstantFP(Flags.hasNoSignedZeros() ? 0.0 : -0.0, DL, EltVT);
5130     return std::make_tuple(RISCVISD::VECREDUCE_FADD_VL, Op.getOperand(0), Zero);
5131   }
5132   case ISD::VECREDUCE_SEQ_FADD:
5133     return std::make_tuple(RISCVISD::VECREDUCE_SEQ_FADD_VL, Op.getOperand(1),
5134                            Op.getOperand(0));
5135   case ISD::VECREDUCE_FMIN:
5136     return std::make_tuple(RISCVISD::VECREDUCE_FMIN_VL, Op.getOperand(0),
5137                            DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags));
5138   case ISD::VECREDUCE_FMAX:
5139     return std::make_tuple(RISCVISD::VECREDUCE_FMAX_VL, Op.getOperand(0),
5140                            DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags));
5141   }
5142 }
5143 
5144 SDValue RISCVTargetLowering::lowerFPVECREDUCE(SDValue Op,
5145                                               SelectionDAG &DAG) const {
5146   SDLoc DL(Op);
5147   MVT VecEltVT = Op.getSimpleValueType();
5148 
5149   unsigned RVVOpcode;
5150   SDValue VectorVal, ScalarVal;
5151   std::tie(RVVOpcode, VectorVal, ScalarVal) =
5152       getRVVFPReductionOpAndOperands(Op, DAG, VecEltVT);
5153   MVT VecVT = VectorVal.getSimpleValueType();
5154 
5155   MVT ContainerVT = VecVT;
5156   if (VecVT.isFixedLengthVector()) {
5157     ContainerVT = getContainerForFixedLengthVector(VecVT);
5158     VectorVal = convertToScalableVector(ContainerVT, VectorVal, DAG, Subtarget);
5159   }
5160 
5161   MVT M1VT = getLMUL1VT(VectorVal.getSimpleValueType());
5162   MVT XLenVT = Subtarget.getXLenVT();
5163 
5164   SDValue Mask, VL;
5165   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
5166 
5167   SDValue ScalarSplat =
5168       lowerScalarSplat(SDValue(), ScalarVal, DAG.getConstant(1, DL, XLenVT),
5169                        M1VT, DL, DAG, Subtarget);
5170   SDValue Reduction = DAG.getNode(RVVOpcode, DL, M1VT, DAG.getUNDEF(M1VT),
5171                                   VectorVal, ScalarSplat, Mask, VL);
5172   return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction,
5173                      DAG.getConstant(0, DL, XLenVT));
5174 }
5175 
5176 static unsigned getRVVVPReductionOp(unsigned ISDOpcode) {
5177   switch (ISDOpcode) {
5178   default:
5179     llvm_unreachable("Unhandled reduction");
5180   case ISD::VP_REDUCE_ADD:
5181     return RISCVISD::VECREDUCE_ADD_VL;
5182   case ISD::VP_REDUCE_UMAX:
5183     return RISCVISD::VECREDUCE_UMAX_VL;
5184   case ISD::VP_REDUCE_SMAX:
5185     return RISCVISD::VECREDUCE_SMAX_VL;
5186   case ISD::VP_REDUCE_UMIN:
5187     return RISCVISD::VECREDUCE_UMIN_VL;
5188   case ISD::VP_REDUCE_SMIN:
5189     return RISCVISD::VECREDUCE_SMIN_VL;
5190   case ISD::VP_REDUCE_AND:
5191     return RISCVISD::VECREDUCE_AND_VL;
5192   case ISD::VP_REDUCE_OR:
5193     return RISCVISD::VECREDUCE_OR_VL;
5194   case ISD::VP_REDUCE_XOR:
5195     return RISCVISD::VECREDUCE_XOR_VL;
5196   case ISD::VP_REDUCE_FADD:
5197     return RISCVISD::VECREDUCE_FADD_VL;
5198   case ISD::VP_REDUCE_SEQ_FADD:
5199     return RISCVISD::VECREDUCE_SEQ_FADD_VL;
5200   case ISD::VP_REDUCE_FMAX:
5201     return RISCVISD::VECREDUCE_FMAX_VL;
5202   case ISD::VP_REDUCE_FMIN:
5203     return RISCVISD::VECREDUCE_FMIN_VL;
5204   }
5205 }
5206 
5207 SDValue RISCVTargetLowering::lowerVPREDUCE(SDValue Op,
5208                                            SelectionDAG &DAG) const {
5209   SDLoc DL(Op);
5210   SDValue Vec = Op.getOperand(1);
5211   EVT VecEVT = Vec.getValueType();
5212 
5213   // TODO: The type may need to be widened rather than split. Or widened before
5214   // it can be split.
5215   if (!isTypeLegal(VecEVT))
5216     return SDValue();
5217 
5218   MVT VecVT = VecEVT.getSimpleVT();
5219   MVT VecEltVT = VecVT.getVectorElementType();
5220   unsigned RVVOpcode = getRVVVPReductionOp(Op.getOpcode());
5221 
5222   MVT ContainerVT = VecVT;
5223   if (VecVT.isFixedLengthVector()) {
5224     ContainerVT = getContainerForFixedLengthVector(VecVT);
5225     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
5226   }
5227 
5228   SDValue VL = Op.getOperand(3);
5229   SDValue Mask = Op.getOperand(2);
5230 
5231   MVT M1VT = getLMUL1VT(ContainerVT);
5232   MVT XLenVT = Subtarget.getXLenVT();
5233   MVT ResVT = !VecVT.isInteger() || VecEltVT.bitsGE(XLenVT) ? VecEltVT : XLenVT;
5234 
5235   SDValue StartSplat = lowerScalarSplat(SDValue(), Op.getOperand(0),
5236                                         DAG.getConstant(1, DL, XLenVT), M1VT,
5237                                         DL, DAG, Subtarget);
5238   SDValue Reduction =
5239       DAG.getNode(RVVOpcode, DL, M1VT, StartSplat, Vec, StartSplat, Mask, VL);
5240   SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Reduction,
5241                              DAG.getConstant(0, DL, XLenVT));
5242   if (!VecVT.isInteger())
5243     return Elt0;
5244   return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType());
5245 }
5246 
5247 SDValue RISCVTargetLowering::lowerINSERT_SUBVECTOR(SDValue Op,
5248                                                    SelectionDAG &DAG) const {
5249   SDValue Vec = Op.getOperand(0);
5250   SDValue SubVec = Op.getOperand(1);
5251   MVT VecVT = Vec.getSimpleValueType();
5252   MVT SubVecVT = SubVec.getSimpleValueType();
5253 
5254   SDLoc DL(Op);
5255   MVT XLenVT = Subtarget.getXLenVT();
5256   unsigned OrigIdx = Op.getConstantOperandVal(2);
5257   const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo();
5258 
5259   // We don't have the ability to slide mask vectors up indexed by their i1
5260   // elements; the smallest we can do is i8. Often we are able to bitcast to
5261   // equivalent i8 vectors. Note that when inserting a fixed-length vector
5262   // into a scalable one, we might not necessarily have enough scalable
5263   // elements to safely divide by 8: nxv1i1 = insert nxv1i1, v4i1 is valid.
5264   if (SubVecVT.getVectorElementType() == MVT::i1 &&
5265       (OrigIdx != 0 || !Vec.isUndef())) {
5266     if (VecVT.getVectorMinNumElements() >= 8 &&
5267         SubVecVT.getVectorMinNumElements() >= 8) {
5268       assert(OrigIdx % 8 == 0 && "Invalid index");
5269       assert(VecVT.getVectorMinNumElements() % 8 == 0 &&
5270              SubVecVT.getVectorMinNumElements() % 8 == 0 &&
5271              "Unexpected mask vector lowering");
5272       OrigIdx /= 8;
5273       SubVecVT =
5274           MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8,
5275                            SubVecVT.isScalableVector());
5276       VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8,
5277                                VecVT.isScalableVector());
5278       Vec = DAG.getBitcast(VecVT, Vec);
5279       SubVec = DAG.getBitcast(SubVecVT, SubVec);
5280     } else {
5281       // We can't slide this mask vector up indexed by its i1 elements.
5282       // This poses a problem when we wish to insert a scalable vector which
5283       // can't be re-expressed as a larger type. Just choose the slow path and
5284       // extend to a larger type, then truncate back down.
5285       MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8);
5286       MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8);
5287       Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec);
5288       SubVec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtSubVecVT, SubVec);
5289       Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ExtVecVT, Vec, SubVec,
5290                         Op.getOperand(2));
5291       SDValue SplatZero = DAG.getConstant(0, DL, ExtVecVT);
5292       return DAG.getSetCC(DL, VecVT, Vec, SplatZero, ISD::SETNE);
5293     }
5294   }
5295 
5296   // If the subvector vector is a fixed-length type, we cannot use subregister
5297   // manipulation to simplify the codegen; we don't know which register of a
5298   // LMUL group contains the specific subvector as we only know the minimum
5299   // register size. Therefore we must slide the vector group up the full
5300   // amount.
5301   if (SubVecVT.isFixedLengthVector()) {
5302     if (OrigIdx == 0 && Vec.isUndef() && !VecVT.isFixedLengthVector())
5303       return Op;
5304     MVT ContainerVT = VecVT;
5305     if (VecVT.isFixedLengthVector()) {
5306       ContainerVT = getContainerForFixedLengthVector(VecVT);
5307       Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
5308     }
5309     SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ContainerVT,
5310                          DAG.getUNDEF(ContainerVT), SubVec,
5311                          DAG.getConstant(0, DL, XLenVT));
5312     if (OrigIdx == 0 && Vec.isUndef() && VecVT.isFixedLengthVector()) {
5313       SubVec = convertFromScalableVector(VecVT, SubVec, DAG, Subtarget);
5314       return DAG.getBitcast(Op.getValueType(), SubVec);
5315     }
5316     SDValue Mask =
5317         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first;
5318     // Set the vector length to only the number of elements we care about. Note
5319     // that for slideup this includes the offset.
5320     SDValue VL =
5321         DAG.getConstant(OrigIdx + SubVecVT.getVectorNumElements(), DL, XLenVT);
5322     SDValue SlideupAmt = DAG.getConstant(OrigIdx, DL, XLenVT);
5323     SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec,
5324                                   SubVec, SlideupAmt, Mask, VL);
5325     if (VecVT.isFixedLengthVector())
5326       Slideup = convertFromScalableVector(VecVT, Slideup, DAG, Subtarget);
5327     return DAG.getBitcast(Op.getValueType(), Slideup);
5328   }
5329 
5330   unsigned SubRegIdx, RemIdx;
5331   std::tie(SubRegIdx, RemIdx) =
5332       RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs(
5333           VecVT, SubVecVT, OrigIdx, TRI);
5334 
5335   RISCVII::VLMUL SubVecLMUL = RISCVTargetLowering::getLMUL(SubVecVT);
5336   bool IsSubVecPartReg = SubVecLMUL == RISCVII::VLMUL::LMUL_F2 ||
5337                          SubVecLMUL == RISCVII::VLMUL::LMUL_F4 ||
5338                          SubVecLMUL == RISCVII::VLMUL::LMUL_F8;
5339 
5340   // 1. If the Idx has been completely eliminated and this subvector's size is
5341   // a vector register or a multiple thereof, or the surrounding elements are
5342   // undef, then this is a subvector insert which naturally aligns to a vector
5343   // register. These can easily be handled using subregister manipulation.
5344   // 2. If the subvector is smaller than a vector register, then the insertion
5345   // must preserve the undisturbed elements of the register. We do this by
5346   // lowering to an EXTRACT_SUBVECTOR grabbing the nearest LMUL=1 vector type
5347   // (which resolves to a subregister copy), performing a VSLIDEUP to place the
5348   // subvector within the vector register, and an INSERT_SUBVECTOR of that
5349   // LMUL=1 type back into the larger vector (resolving to another subregister
5350   // operation). See below for how our VSLIDEUP works. We go via a LMUL=1 type
5351   // to avoid allocating a large register group to hold our subvector.
5352   if (RemIdx == 0 && (!IsSubVecPartReg || Vec.isUndef()))
5353     return Op;
5354 
5355   // VSLIDEUP works by leaving elements 0<i<OFFSET undisturbed, elements
5356   // OFFSET<=i<VL set to the "subvector" and vl<=i<VLMAX set to the tail policy
5357   // (in our case undisturbed). This means we can set up a subvector insertion
5358   // where OFFSET is the insertion offset, and the VL is the OFFSET plus the
5359   // size of the subvector.
5360   MVT InterSubVT = VecVT;
5361   SDValue AlignedExtract = Vec;
5362   unsigned AlignedIdx = OrigIdx - RemIdx;
5363   if (VecVT.bitsGT(getLMUL1VT(VecVT))) {
5364     InterSubVT = getLMUL1VT(VecVT);
5365     // Extract a subvector equal to the nearest full vector register type. This
5366     // should resolve to a EXTRACT_SUBREG instruction.
5367     AlignedExtract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec,
5368                                  DAG.getConstant(AlignedIdx, DL, XLenVT));
5369   }
5370 
5371   SDValue SlideupAmt = DAG.getConstant(RemIdx, DL, XLenVT);
5372   // For scalable vectors this must be further multiplied by vscale.
5373   SlideupAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlideupAmt);
5374 
5375   SDValue Mask, VL;
5376   std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget);
5377 
5378   // Construct the vector length corresponding to RemIdx + length(SubVecVT).
5379   VL = DAG.getConstant(SubVecVT.getVectorMinNumElements(), DL, XLenVT);
5380   VL = DAG.getNode(ISD::VSCALE, DL, XLenVT, VL);
5381   VL = DAG.getNode(ISD::ADD, DL, XLenVT, SlideupAmt, VL);
5382 
5383   SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, InterSubVT,
5384                        DAG.getUNDEF(InterSubVT), SubVec,
5385                        DAG.getConstant(0, DL, XLenVT));
5386 
5387   SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, InterSubVT,
5388                                 AlignedExtract, SubVec, SlideupAmt, Mask, VL);
5389 
5390   // If required, insert this subvector back into the correct vector register.
5391   // This should resolve to an INSERT_SUBREG instruction.
5392   if (VecVT.bitsGT(InterSubVT))
5393     Slideup = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, Vec, Slideup,
5394                           DAG.getConstant(AlignedIdx, DL, XLenVT));
5395 
5396   // We might have bitcast from a mask type: cast back to the original type if
5397   // required.
5398   return DAG.getBitcast(Op.getSimpleValueType(), Slideup);
5399 }
5400 
5401 SDValue RISCVTargetLowering::lowerEXTRACT_SUBVECTOR(SDValue Op,
5402                                                     SelectionDAG &DAG) const {
5403   SDValue Vec = Op.getOperand(0);
5404   MVT SubVecVT = Op.getSimpleValueType();
5405   MVT VecVT = Vec.getSimpleValueType();
5406 
5407   SDLoc DL(Op);
5408   MVT XLenVT = Subtarget.getXLenVT();
5409   unsigned OrigIdx = Op.getConstantOperandVal(1);
5410   const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo();
5411 
5412   // We don't have the ability to slide mask vectors down indexed by their i1
5413   // elements; the smallest we can do is i8. Often we are able to bitcast to
5414   // equivalent i8 vectors. Note that when extracting a fixed-length vector
5415   // from a scalable one, we might not necessarily have enough scalable
5416   // elements to safely divide by 8: v8i1 = extract nxv1i1 is valid.
5417   if (SubVecVT.getVectorElementType() == MVT::i1 && OrigIdx != 0) {
5418     if (VecVT.getVectorMinNumElements() >= 8 &&
5419         SubVecVT.getVectorMinNumElements() >= 8) {
5420       assert(OrigIdx % 8 == 0 && "Invalid index");
5421       assert(VecVT.getVectorMinNumElements() % 8 == 0 &&
5422              SubVecVT.getVectorMinNumElements() % 8 == 0 &&
5423              "Unexpected mask vector lowering");
5424       OrigIdx /= 8;
5425       SubVecVT =
5426           MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8,
5427                            SubVecVT.isScalableVector());
5428       VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8,
5429                                VecVT.isScalableVector());
5430       Vec = DAG.getBitcast(VecVT, Vec);
5431     } else {
5432       // We can't slide this mask vector down, indexed by its i1 elements.
5433       // This poses a problem when we wish to extract a scalable vector which
5434       // can't be re-expressed as a larger type. Just choose the slow path and
5435       // extend to a larger type, then truncate back down.
5436       // TODO: We could probably improve this when extracting certain fixed
5437       // from fixed, where we can extract as i8 and shift the correct element
5438       // right to reach the desired subvector?
5439       MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8);
5440       MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8);
5441       Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec);
5442       Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ExtSubVecVT, Vec,
5443                         Op.getOperand(1));
5444       SDValue SplatZero = DAG.getConstant(0, DL, ExtSubVecVT);
5445       return DAG.getSetCC(DL, SubVecVT, Vec, SplatZero, ISD::SETNE);
5446     }
5447   }
5448 
5449   // If the subvector vector is a fixed-length type, we cannot use subregister
5450   // manipulation to simplify the codegen; we don't know which register of a
5451   // LMUL group contains the specific subvector as we only know the minimum
5452   // register size. Therefore we must slide the vector group down the full
5453   // amount.
5454   if (SubVecVT.isFixedLengthVector()) {
5455     // With an index of 0 this is a cast-like subvector, which can be performed
5456     // with subregister operations.
5457     if (OrigIdx == 0)
5458       return Op;
5459     MVT ContainerVT = VecVT;
5460     if (VecVT.isFixedLengthVector()) {
5461       ContainerVT = getContainerForFixedLengthVector(VecVT);
5462       Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
5463     }
5464     SDValue Mask =
5465         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first;
5466     // Set the vector length to only the number of elements we care about. This
5467     // avoids sliding down elements we're going to discard straight away.
5468     SDValue VL = DAG.getConstant(SubVecVT.getVectorNumElements(), DL, XLenVT);
5469     SDValue SlidedownAmt = DAG.getConstant(OrigIdx, DL, XLenVT);
5470     SDValue Slidedown =
5471         DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT,
5472                     DAG.getUNDEF(ContainerVT), Vec, SlidedownAmt, Mask, VL);
5473     // Now we can use a cast-like subvector extract to get the result.
5474     Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown,
5475                             DAG.getConstant(0, DL, XLenVT));
5476     return DAG.getBitcast(Op.getValueType(), Slidedown);
5477   }
5478 
5479   unsigned SubRegIdx, RemIdx;
5480   std::tie(SubRegIdx, RemIdx) =
5481       RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs(
5482           VecVT, SubVecVT, OrigIdx, TRI);
5483 
5484   // If the Idx has been completely eliminated then this is a subvector extract
5485   // which naturally aligns to a vector register. These can easily be handled
5486   // using subregister manipulation.
5487   if (RemIdx == 0)
5488     return Op;
5489 
5490   // Else we must shift our vector register directly to extract the subvector.
5491   // Do this using VSLIDEDOWN.
5492 
5493   // If the vector type is an LMUL-group type, extract a subvector equal to the
5494   // nearest full vector register type. This should resolve to a EXTRACT_SUBREG
5495   // instruction.
5496   MVT InterSubVT = VecVT;
5497   if (VecVT.bitsGT(getLMUL1VT(VecVT))) {
5498     InterSubVT = getLMUL1VT(VecVT);
5499     Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec,
5500                       DAG.getConstant(OrigIdx - RemIdx, DL, XLenVT));
5501   }
5502 
5503   // Slide this vector register down by the desired number of elements in order
5504   // to place the desired subvector starting at element 0.
5505   SDValue SlidedownAmt = DAG.getConstant(RemIdx, DL, XLenVT);
5506   // For scalable vectors this must be further multiplied by vscale.
5507   SlidedownAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlidedownAmt);
5508 
5509   SDValue Mask, VL;
5510   std::tie(Mask, VL) = getDefaultScalableVLOps(InterSubVT, DL, DAG, Subtarget);
5511   SDValue Slidedown =
5512       DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, InterSubVT,
5513                   DAG.getUNDEF(InterSubVT), Vec, SlidedownAmt, Mask, VL);
5514 
5515   // Now the vector is in the right position, extract our final subvector. This
5516   // should resolve to a COPY.
5517   Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown,
5518                           DAG.getConstant(0, DL, XLenVT));
5519 
5520   // We might have bitcast from a mask type: cast back to the original type if
5521   // required.
5522   return DAG.getBitcast(Op.getSimpleValueType(), Slidedown);
5523 }
5524 
5525 // Lower step_vector to the vid instruction. Any non-identity step value must
5526 // be accounted for my manual expansion.
5527 SDValue RISCVTargetLowering::lowerSTEP_VECTOR(SDValue Op,
5528                                               SelectionDAG &DAG) const {
5529   SDLoc DL(Op);
5530   MVT VT = Op.getSimpleValueType();
5531   MVT XLenVT = Subtarget.getXLenVT();
5532   SDValue Mask, VL;
5533   std::tie(Mask, VL) = getDefaultScalableVLOps(VT, DL, DAG, Subtarget);
5534   SDValue StepVec = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL);
5535   uint64_t StepValImm = Op.getConstantOperandVal(0);
5536   if (StepValImm != 1) {
5537     if (isPowerOf2_64(StepValImm)) {
5538       SDValue StepVal =
5539           DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, DAG.getUNDEF(VT),
5540                       DAG.getConstant(Log2_64(StepValImm), DL, XLenVT));
5541       StepVec = DAG.getNode(ISD::SHL, DL, VT, StepVec, StepVal);
5542     } else {
5543       SDValue StepVal = lowerScalarSplat(
5544           SDValue(), DAG.getConstant(StepValImm, DL, VT.getVectorElementType()),
5545           VL, VT, DL, DAG, Subtarget);
5546       StepVec = DAG.getNode(ISD::MUL, DL, VT, StepVec, StepVal);
5547     }
5548   }
5549   return StepVec;
5550 }
5551 
5552 // Implement vector_reverse using vrgather.vv with indices determined by
5553 // subtracting the id of each element from (VLMAX-1). This will convert
5554 // the indices like so:
5555 // (0, 1,..., VLMAX-2, VLMAX-1) -> (VLMAX-1, VLMAX-2,..., 1, 0).
5556 // TODO: This code assumes VLMAX <= 65536 for LMUL=8 SEW=16.
5557 SDValue RISCVTargetLowering::lowerVECTOR_REVERSE(SDValue Op,
5558                                                  SelectionDAG &DAG) const {
5559   SDLoc DL(Op);
5560   MVT VecVT = Op.getSimpleValueType();
5561   unsigned EltSize = VecVT.getScalarSizeInBits();
5562   unsigned MinSize = VecVT.getSizeInBits().getKnownMinValue();
5563 
5564   unsigned MaxVLMAX = 0;
5565   unsigned VectorBitsMax = Subtarget.getMaxRVVVectorSizeInBits();
5566   if (VectorBitsMax != 0)
5567     MaxVLMAX = ((VectorBitsMax / EltSize) * MinSize) / RISCV::RVVBitsPerBlock;
5568 
5569   unsigned GatherOpc = RISCVISD::VRGATHER_VV_VL;
5570   MVT IntVT = VecVT.changeVectorElementTypeToInteger();
5571 
5572   // If this is SEW=8 and VLMAX is unknown or more than 256, we need
5573   // to use vrgatherei16.vv.
5574   // TODO: It's also possible to use vrgatherei16.vv for other types to
5575   // decrease register width for the index calculation.
5576   if ((MaxVLMAX == 0 || MaxVLMAX > 256) && EltSize == 8) {
5577     // If this is LMUL=8, we have to split before can use vrgatherei16.vv.
5578     // Reverse each half, then reassemble them in reverse order.
5579     // NOTE: It's also possible that after splitting that VLMAX no longer
5580     // requires vrgatherei16.vv.
5581     if (MinSize == (8 * RISCV::RVVBitsPerBlock)) {
5582       SDValue Lo, Hi;
5583       std::tie(Lo, Hi) = DAG.SplitVectorOperand(Op.getNode(), 0);
5584       EVT LoVT, HiVT;
5585       std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VecVT);
5586       Lo = DAG.getNode(ISD::VECTOR_REVERSE, DL, LoVT, Lo);
5587       Hi = DAG.getNode(ISD::VECTOR_REVERSE, DL, HiVT, Hi);
5588       // Reassemble the low and high pieces reversed.
5589       // FIXME: This is a CONCAT_VECTORS.
5590       SDValue Res =
5591           DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, DAG.getUNDEF(VecVT), Hi,
5592                       DAG.getIntPtrConstant(0, DL));
5593       return DAG.getNode(
5594           ISD::INSERT_SUBVECTOR, DL, VecVT, Res, Lo,
5595           DAG.getIntPtrConstant(LoVT.getVectorMinNumElements(), DL));
5596     }
5597 
5598     // Just promote the int type to i16 which will double the LMUL.
5599     IntVT = MVT::getVectorVT(MVT::i16, VecVT.getVectorElementCount());
5600     GatherOpc = RISCVISD::VRGATHEREI16_VV_VL;
5601   }
5602 
5603   MVT XLenVT = Subtarget.getXLenVT();
5604   SDValue Mask, VL;
5605   std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget);
5606 
5607   // Calculate VLMAX-1 for the desired SEW.
5608   unsigned MinElts = VecVT.getVectorMinNumElements();
5609   SDValue VLMax = DAG.getNode(ISD::VSCALE, DL, XLenVT,
5610                               DAG.getConstant(MinElts, DL, XLenVT));
5611   SDValue VLMinus1 =
5612       DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, DAG.getConstant(1, DL, XLenVT));
5613 
5614   // Splat VLMAX-1 taking care to handle SEW==64 on RV32.
5615   bool IsRV32E64 =
5616       !Subtarget.is64Bit() && IntVT.getVectorElementType() == MVT::i64;
5617   SDValue SplatVL;
5618   if (!IsRV32E64)
5619     SplatVL = DAG.getSplatVector(IntVT, DL, VLMinus1);
5620   else
5621     SplatVL = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, IntVT, DAG.getUNDEF(IntVT),
5622                           VLMinus1, DAG.getRegister(RISCV::X0, XLenVT));
5623 
5624   SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, IntVT, Mask, VL);
5625   SDValue Indices =
5626       DAG.getNode(RISCVISD::SUB_VL, DL, IntVT, SplatVL, VID, Mask, VL);
5627 
5628   return DAG.getNode(GatherOpc, DL, VecVT, Op.getOperand(0), Indices, Mask, VL);
5629 }
5630 
5631 SDValue
5632 RISCVTargetLowering::lowerFixedLengthVectorLoadToRVV(SDValue Op,
5633                                                      SelectionDAG &DAG) const {
5634   SDLoc DL(Op);
5635   auto *Load = cast<LoadSDNode>(Op);
5636 
5637   assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
5638                                         Load->getMemoryVT(),
5639                                         *Load->getMemOperand()) &&
5640          "Expecting a correctly-aligned load");
5641 
5642   MVT VT = Op.getSimpleValueType();
5643   MVT ContainerVT = getContainerForFixedLengthVector(VT);
5644 
5645   SDValue VL =
5646       DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT());
5647 
5648   SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
5649   SDValue NewLoad = DAG.getMemIntrinsicNode(
5650       RISCVISD::VLE_VL, DL, VTs, {Load->getChain(), Load->getBasePtr(), VL},
5651       Load->getMemoryVT(), Load->getMemOperand());
5652 
5653   SDValue Result = convertFromScalableVector(VT, NewLoad, DAG, Subtarget);
5654   return DAG.getMergeValues({Result, Load->getChain()}, DL);
5655 }
5656 
5657 SDValue
5658 RISCVTargetLowering::lowerFixedLengthVectorStoreToRVV(SDValue Op,
5659                                                       SelectionDAG &DAG) const {
5660   SDLoc DL(Op);
5661   auto *Store = cast<StoreSDNode>(Op);
5662 
5663   assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
5664                                         Store->getMemoryVT(),
5665                                         *Store->getMemOperand()) &&
5666          "Expecting a correctly-aligned store");
5667 
5668   SDValue StoreVal = Store->getValue();
5669   MVT VT = StoreVal.getSimpleValueType();
5670 
5671   // If the size less than a byte, we need to pad with zeros to make a byte.
5672   if (VT.getVectorElementType() == MVT::i1 && VT.getVectorNumElements() < 8) {
5673     VT = MVT::v8i1;
5674     StoreVal = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT,
5675                            DAG.getConstant(0, DL, VT), StoreVal,
5676                            DAG.getIntPtrConstant(0, DL));
5677   }
5678 
5679   MVT ContainerVT = getContainerForFixedLengthVector(VT);
5680 
5681   SDValue VL =
5682       DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT());
5683 
5684   SDValue NewValue =
5685       convertToScalableVector(ContainerVT, StoreVal, DAG, Subtarget);
5686   return DAG.getMemIntrinsicNode(
5687       RISCVISD::VSE_VL, DL, DAG.getVTList(MVT::Other),
5688       {Store->getChain(), NewValue, Store->getBasePtr(), VL},
5689       Store->getMemoryVT(), Store->getMemOperand());
5690 }
5691 
5692 SDValue RISCVTargetLowering::lowerMaskedLoad(SDValue Op,
5693                                              SelectionDAG &DAG) const {
5694   SDLoc DL(Op);
5695   MVT VT = Op.getSimpleValueType();
5696 
5697   const auto *MemSD = cast<MemSDNode>(Op);
5698   EVT MemVT = MemSD->getMemoryVT();
5699   MachineMemOperand *MMO = MemSD->getMemOperand();
5700   SDValue Chain = MemSD->getChain();
5701   SDValue BasePtr = MemSD->getBasePtr();
5702 
5703   SDValue Mask, PassThru, VL;
5704   if (const auto *VPLoad = dyn_cast<VPLoadSDNode>(Op)) {
5705     Mask = VPLoad->getMask();
5706     PassThru = DAG.getUNDEF(VT);
5707     VL = VPLoad->getVectorLength();
5708   } else {
5709     const auto *MLoad = cast<MaskedLoadSDNode>(Op);
5710     Mask = MLoad->getMask();
5711     PassThru = MLoad->getPassThru();
5712   }
5713 
5714   bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
5715 
5716   MVT XLenVT = Subtarget.getXLenVT();
5717 
5718   MVT ContainerVT = VT;
5719   if (VT.isFixedLengthVector()) {
5720     ContainerVT = getContainerForFixedLengthVector(VT);
5721     PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget);
5722     if (!IsUnmasked) {
5723       MVT MaskVT =
5724           MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
5725       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
5726     }
5727   }
5728 
5729   if (!VL)
5730     VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second;
5731 
5732   unsigned IntID =
5733       IsUnmasked ? Intrinsic::riscv_vle : Intrinsic::riscv_vle_mask;
5734   SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)};
5735   if (IsUnmasked)
5736     Ops.push_back(DAG.getUNDEF(ContainerVT));
5737   else
5738     Ops.push_back(PassThru);
5739   Ops.push_back(BasePtr);
5740   if (!IsUnmasked)
5741     Ops.push_back(Mask);
5742   Ops.push_back(VL);
5743   if (!IsUnmasked)
5744     Ops.push_back(DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT));
5745 
5746   SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
5747 
5748   SDValue Result =
5749       DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, MemVT, MMO);
5750   Chain = Result.getValue(1);
5751 
5752   if (VT.isFixedLengthVector())
5753     Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
5754 
5755   return DAG.getMergeValues({Result, Chain}, DL);
5756 }
5757 
5758 SDValue RISCVTargetLowering::lowerMaskedStore(SDValue Op,
5759                                               SelectionDAG &DAG) const {
5760   SDLoc DL(Op);
5761 
5762   const auto *MemSD = cast<MemSDNode>(Op);
5763   EVT MemVT = MemSD->getMemoryVT();
5764   MachineMemOperand *MMO = MemSD->getMemOperand();
5765   SDValue Chain = MemSD->getChain();
5766   SDValue BasePtr = MemSD->getBasePtr();
5767   SDValue Val, Mask, VL;
5768 
5769   if (const auto *VPStore = dyn_cast<VPStoreSDNode>(Op)) {
5770     Val = VPStore->getValue();
5771     Mask = VPStore->getMask();
5772     VL = VPStore->getVectorLength();
5773   } else {
5774     const auto *MStore = cast<MaskedStoreSDNode>(Op);
5775     Val = MStore->getValue();
5776     Mask = MStore->getMask();
5777   }
5778 
5779   bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
5780 
5781   MVT VT = Val.getSimpleValueType();
5782   MVT XLenVT = Subtarget.getXLenVT();
5783 
5784   MVT ContainerVT = VT;
5785   if (VT.isFixedLengthVector()) {
5786     ContainerVT = getContainerForFixedLengthVector(VT);
5787 
5788     Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget);
5789     if (!IsUnmasked) {
5790       MVT MaskVT =
5791           MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
5792       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
5793     }
5794   }
5795 
5796   if (!VL)
5797     VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second;
5798 
5799   unsigned IntID =
5800       IsUnmasked ? Intrinsic::riscv_vse : Intrinsic::riscv_vse_mask;
5801   SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)};
5802   Ops.push_back(Val);
5803   Ops.push_back(BasePtr);
5804   if (!IsUnmasked)
5805     Ops.push_back(Mask);
5806   Ops.push_back(VL);
5807 
5808   return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL,
5809                                  DAG.getVTList(MVT::Other), Ops, MemVT, MMO);
5810 }
5811 
5812 SDValue
5813 RISCVTargetLowering::lowerFixedLengthVectorSetccToRVV(SDValue Op,
5814                                                       SelectionDAG &DAG) const {
5815   MVT InVT = Op.getOperand(0).getSimpleValueType();
5816   MVT ContainerVT = getContainerForFixedLengthVector(InVT);
5817 
5818   MVT VT = Op.getSimpleValueType();
5819 
5820   SDValue Op1 =
5821       convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget);
5822   SDValue Op2 =
5823       convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget);
5824 
5825   SDLoc DL(Op);
5826   SDValue VL =
5827       DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT());
5828 
5829   MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
5830   SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
5831 
5832   SDValue Cmp = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, Op1, Op2,
5833                             Op.getOperand(2), Mask, VL);
5834 
5835   return convertFromScalableVector(VT, Cmp, DAG, Subtarget);
5836 }
5837 
5838 SDValue RISCVTargetLowering::lowerFixedLengthVectorLogicOpToRVV(
5839     SDValue Op, SelectionDAG &DAG, unsigned MaskOpc, unsigned VecOpc) const {
5840   MVT VT = Op.getSimpleValueType();
5841 
5842   if (VT.getVectorElementType() == MVT::i1)
5843     return lowerToScalableOp(Op, DAG, MaskOpc, /*HasMask*/ false);
5844 
5845   return lowerToScalableOp(Op, DAG, VecOpc, /*HasMask*/ true);
5846 }
5847 
5848 SDValue
5849 RISCVTargetLowering::lowerFixedLengthVectorShiftToRVV(SDValue Op,
5850                                                       SelectionDAG &DAG) const {
5851   unsigned Opc;
5852   switch (Op.getOpcode()) {
5853   default: llvm_unreachable("Unexpected opcode!");
5854   case ISD::SHL: Opc = RISCVISD::SHL_VL; break;
5855   case ISD::SRA: Opc = RISCVISD::SRA_VL; break;
5856   case ISD::SRL: Opc = RISCVISD::SRL_VL; break;
5857   }
5858 
5859   return lowerToScalableOp(Op, DAG, Opc);
5860 }
5861 
5862 // Lower vector ABS to smax(X, sub(0, X)).
5863 SDValue RISCVTargetLowering::lowerABS(SDValue Op, SelectionDAG &DAG) const {
5864   SDLoc DL(Op);
5865   MVT VT = Op.getSimpleValueType();
5866   SDValue X = Op.getOperand(0);
5867 
5868   assert(VT.isFixedLengthVector() && "Unexpected type");
5869 
5870   MVT ContainerVT = getContainerForFixedLengthVector(VT);
5871   X = convertToScalableVector(ContainerVT, X, DAG, Subtarget);
5872 
5873   SDValue Mask, VL;
5874   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
5875 
5876   SDValue SplatZero = DAG.getNode(
5877       RISCVISD::VMV_V_X_VL, DL, ContainerVT, DAG.getUNDEF(ContainerVT),
5878       DAG.getConstant(0, DL, Subtarget.getXLenVT()));
5879   SDValue NegX =
5880       DAG.getNode(RISCVISD::SUB_VL, DL, ContainerVT, SplatZero, X, Mask, VL);
5881   SDValue Max =
5882       DAG.getNode(RISCVISD::SMAX_VL, DL, ContainerVT, X, NegX, Mask, VL);
5883 
5884   return convertFromScalableVector(VT, Max, DAG, Subtarget);
5885 }
5886 
5887 SDValue RISCVTargetLowering::lowerFixedLengthVectorFCOPYSIGNToRVV(
5888     SDValue Op, SelectionDAG &DAG) const {
5889   SDLoc DL(Op);
5890   MVT VT = Op.getSimpleValueType();
5891   SDValue Mag = Op.getOperand(0);
5892   SDValue Sign = Op.getOperand(1);
5893   assert(Mag.getValueType() == Sign.getValueType() &&
5894          "Can only handle COPYSIGN with matching types.");
5895 
5896   MVT ContainerVT = getContainerForFixedLengthVector(VT);
5897   Mag = convertToScalableVector(ContainerVT, Mag, DAG, Subtarget);
5898   Sign = convertToScalableVector(ContainerVT, Sign, DAG, Subtarget);
5899 
5900   SDValue Mask, VL;
5901   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
5902 
5903   SDValue CopySign =
5904       DAG.getNode(RISCVISD::FCOPYSIGN_VL, DL, ContainerVT, Mag, Sign, Mask, VL);
5905 
5906   return convertFromScalableVector(VT, CopySign, DAG, Subtarget);
5907 }
5908 
5909 SDValue RISCVTargetLowering::lowerFixedLengthVectorSelectToRVV(
5910     SDValue Op, SelectionDAG &DAG) const {
5911   MVT VT = Op.getSimpleValueType();
5912   MVT ContainerVT = getContainerForFixedLengthVector(VT);
5913 
5914   MVT I1ContainerVT =
5915       MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
5916 
5917   SDValue CC =
5918       convertToScalableVector(I1ContainerVT, Op.getOperand(0), DAG, Subtarget);
5919   SDValue Op1 =
5920       convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget);
5921   SDValue Op2 =
5922       convertToScalableVector(ContainerVT, Op.getOperand(2), DAG, Subtarget);
5923 
5924   SDLoc DL(Op);
5925   SDValue Mask, VL;
5926   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
5927 
5928   SDValue Select =
5929       DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC, Op1, Op2, VL);
5930 
5931   return convertFromScalableVector(VT, Select, DAG, Subtarget);
5932 }
5933 
5934 SDValue RISCVTargetLowering::lowerToScalableOp(SDValue Op, SelectionDAG &DAG,
5935                                                unsigned NewOpc,
5936                                                bool HasMask) const {
5937   MVT VT = Op.getSimpleValueType();
5938   MVT ContainerVT = getContainerForFixedLengthVector(VT);
5939 
5940   // Create list of operands by converting existing ones to scalable types.
5941   SmallVector<SDValue, 6> Ops;
5942   for (const SDValue &V : Op->op_values()) {
5943     assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!");
5944 
5945     // Pass through non-vector operands.
5946     if (!V.getValueType().isVector()) {
5947       Ops.push_back(V);
5948       continue;
5949     }
5950 
5951     // "cast" fixed length vector to a scalable vector.
5952     assert(useRVVForFixedLengthVectorVT(V.getSimpleValueType()) &&
5953            "Only fixed length vectors are supported!");
5954     Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget));
5955   }
5956 
5957   SDLoc DL(Op);
5958   SDValue Mask, VL;
5959   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
5960   if (HasMask)
5961     Ops.push_back(Mask);
5962   Ops.push_back(VL);
5963 
5964   SDValue ScalableRes = DAG.getNode(NewOpc, DL, ContainerVT, Ops);
5965   return convertFromScalableVector(VT, ScalableRes, DAG, Subtarget);
5966 }
5967 
5968 // Lower a VP_* ISD node to the corresponding RISCVISD::*_VL node:
5969 // * Operands of each node are assumed to be in the same order.
5970 // * The EVL operand is promoted from i32 to i64 on RV64.
5971 // * Fixed-length vectors are converted to their scalable-vector container
5972 //   types.
5973 SDValue RISCVTargetLowering::lowerVPOp(SDValue Op, SelectionDAG &DAG,
5974                                        unsigned RISCVISDOpc) const {
5975   SDLoc DL(Op);
5976   MVT VT = Op.getSimpleValueType();
5977   SmallVector<SDValue, 4> Ops;
5978 
5979   for (const auto &OpIdx : enumerate(Op->ops())) {
5980     SDValue V = OpIdx.value();
5981     assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!");
5982     // Pass through operands which aren't fixed-length vectors.
5983     if (!V.getValueType().isFixedLengthVector()) {
5984       Ops.push_back(V);
5985       continue;
5986     }
5987     // "cast" fixed length vector to a scalable vector.
5988     MVT OpVT = V.getSimpleValueType();
5989     MVT ContainerVT = getContainerForFixedLengthVector(OpVT);
5990     assert(useRVVForFixedLengthVectorVT(OpVT) &&
5991            "Only fixed length vectors are supported!");
5992     Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget));
5993   }
5994 
5995   if (!VT.isFixedLengthVector())
5996     return DAG.getNode(RISCVISDOpc, DL, VT, Ops);
5997 
5998   MVT ContainerVT = getContainerForFixedLengthVector(VT);
5999 
6000   SDValue VPOp = DAG.getNode(RISCVISDOpc, DL, ContainerVT, Ops);
6001 
6002   return convertFromScalableVector(VT, VPOp, DAG, Subtarget);
6003 }
6004 
6005 SDValue RISCVTargetLowering::lowerLogicVPOp(SDValue Op, SelectionDAG &DAG,
6006                                             unsigned MaskOpc,
6007                                             unsigned VecOpc) const {
6008   MVT VT = Op.getSimpleValueType();
6009   if (VT.getVectorElementType() != MVT::i1)
6010     return lowerVPOp(Op, DAG, VecOpc);
6011 
6012   // It is safe to drop mask parameter as masked-off elements are undef.
6013   SDValue Op1 = Op->getOperand(0);
6014   SDValue Op2 = Op->getOperand(1);
6015   SDValue VL = Op->getOperand(3);
6016 
6017   MVT ContainerVT = VT;
6018   const bool IsFixed = VT.isFixedLengthVector();
6019   if (IsFixed) {
6020     ContainerVT = getContainerForFixedLengthVector(VT);
6021     Op1 = convertToScalableVector(ContainerVT, Op1, DAG, Subtarget);
6022     Op2 = convertToScalableVector(ContainerVT, Op2, DAG, Subtarget);
6023   }
6024 
6025   SDLoc DL(Op);
6026   SDValue Val = DAG.getNode(MaskOpc, DL, ContainerVT, Op1, Op2, VL);
6027   if (!IsFixed)
6028     return Val;
6029   return convertFromScalableVector(VT, Val, DAG, Subtarget);
6030 }
6031 
6032 // Custom lower MGATHER/VP_GATHER to a legalized form for RVV. It will then be
6033 // matched to a RVV indexed load. The RVV indexed load instructions only
6034 // support the "unsigned unscaled" addressing mode; indices are implicitly
6035 // zero-extended or truncated to XLEN and are treated as byte offsets. Any
6036 // signed or scaled indexing is extended to the XLEN value type and scaled
6037 // accordingly.
6038 SDValue RISCVTargetLowering::lowerMaskedGather(SDValue Op,
6039                                                SelectionDAG &DAG) const {
6040   SDLoc DL(Op);
6041   MVT VT = Op.getSimpleValueType();
6042 
6043   const auto *MemSD = cast<MemSDNode>(Op.getNode());
6044   EVT MemVT = MemSD->getMemoryVT();
6045   MachineMemOperand *MMO = MemSD->getMemOperand();
6046   SDValue Chain = MemSD->getChain();
6047   SDValue BasePtr = MemSD->getBasePtr();
6048 
6049   ISD::LoadExtType LoadExtType;
6050   SDValue Index, Mask, PassThru, VL;
6051 
6052   if (auto *VPGN = dyn_cast<VPGatherSDNode>(Op.getNode())) {
6053     Index = VPGN->getIndex();
6054     Mask = VPGN->getMask();
6055     PassThru = DAG.getUNDEF(VT);
6056     VL = VPGN->getVectorLength();
6057     // VP doesn't support extending loads.
6058     LoadExtType = ISD::NON_EXTLOAD;
6059   } else {
6060     // Else it must be a MGATHER.
6061     auto *MGN = cast<MaskedGatherSDNode>(Op.getNode());
6062     Index = MGN->getIndex();
6063     Mask = MGN->getMask();
6064     PassThru = MGN->getPassThru();
6065     LoadExtType = MGN->getExtensionType();
6066   }
6067 
6068   MVT IndexVT = Index.getSimpleValueType();
6069   MVT XLenVT = Subtarget.getXLenVT();
6070 
6071   assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() &&
6072          "Unexpected VTs!");
6073   assert(BasePtr.getSimpleValueType() == XLenVT && "Unexpected pointer type");
6074   // Targets have to explicitly opt-in for extending vector loads.
6075   assert(LoadExtType == ISD::NON_EXTLOAD &&
6076          "Unexpected extending MGATHER/VP_GATHER");
6077   (void)LoadExtType;
6078 
6079   // If the mask is known to be all ones, optimize to an unmasked intrinsic;
6080   // the selection of the masked intrinsics doesn't do this for us.
6081   bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
6082 
6083   MVT ContainerVT = VT;
6084   if (VT.isFixedLengthVector()) {
6085     // We need to use the larger of the result and index type to determine the
6086     // scalable type to use so we don't increase LMUL for any operand/result.
6087     if (VT.bitsGE(IndexVT)) {
6088       ContainerVT = getContainerForFixedLengthVector(VT);
6089       IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(),
6090                                  ContainerVT.getVectorElementCount());
6091     } else {
6092       IndexVT = getContainerForFixedLengthVector(IndexVT);
6093       ContainerVT = MVT::getVectorVT(ContainerVT.getVectorElementType(),
6094                                      IndexVT.getVectorElementCount());
6095     }
6096 
6097     Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget);
6098 
6099     if (!IsUnmasked) {
6100       MVT MaskVT =
6101           MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
6102       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
6103       PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget);
6104     }
6105   }
6106 
6107   if (!VL)
6108     VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second;
6109 
6110   if (XLenVT == MVT::i32 && IndexVT.getVectorElementType().bitsGT(XLenVT)) {
6111     IndexVT = IndexVT.changeVectorElementType(XLenVT);
6112     SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, Mask.getValueType(),
6113                                    VL);
6114     Index = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, IndexVT, Index,
6115                         TrueMask, VL);
6116   }
6117 
6118   unsigned IntID =
6119       IsUnmasked ? Intrinsic::riscv_vluxei : Intrinsic::riscv_vluxei_mask;
6120   SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)};
6121   if (IsUnmasked)
6122     Ops.push_back(DAG.getUNDEF(ContainerVT));
6123   else
6124     Ops.push_back(PassThru);
6125   Ops.push_back(BasePtr);
6126   Ops.push_back(Index);
6127   if (!IsUnmasked)
6128     Ops.push_back(Mask);
6129   Ops.push_back(VL);
6130   if (!IsUnmasked)
6131     Ops.push_back(DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT));
6132 
6133   SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
6134   SDValue Result =
6135       DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, MemVT, MMO);
6136   Chain = Result.getValue(1);
6137 
6138   if (VT.isFixedLengthVector())
6139     Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
6140 
6141   return DAG.getMergeValues({Result, Chain}, DL);
6142 }
6143 
6144 // Custom lower MSCATTER/VP_SCATTER to a legalized form for RVV. It will then be
6145 // matched to a RVV indexed store. The RVV indexed store instructions only
6146 // support the "unsigned unscaled" addressing mode; indices are implicitly
6147 // zero-extended or truncated to XLEN and are treated as byte offsets. Any
6148 // signed or scaled indexing is extended to the XLEN value type and scaled
6149 // accordingly.
6150 SDValue RISCVTargetLowering::lowerMaskedScatter(SDValue Op,
6151                                                 SelectionDAG &DAG) const {
6152   SDLoc DL(Op);
6153   const auto *MemSD = cast<MemSDNode>(Op.getNode());
6154   EVT MemVT = MemSD->getMemoryVT();
6155   MachineMemOperand *MMO = MemSD->getMemOperand();
6156   SDValue Chain = MemSD->getChain();
6157   SDValue BasePtr = MemSD->getBasePtr();
6158 
6159   bool IsTruncatingStore = false;
6160   SDValue Index, Mask, Val, VL;
6161 
6162   if (auto *VPSN = dyn_cast<VPScatterSDNode>(Op.getNode())) {
6163     Index = VPSN->getIndex();
6164     Mask = VPSN->getMask();
6165     Val = VPSN->getValue();
6166     VL = VPSN->getVectorLength();
6167     // VP doesn't support truncating stores.
6168     IsTruncatingStore = false;
6169   } else {
6170     // Else it must be a MSCATTER.
6171     auto *MSN = cast<MaskedScatterSDNode>(Op.getNode());
6172     Index = MSN->getIndex();
6173     Mask = MSN->getMask();
6174     Val = MSN->getValue();
6175     IsTruncatingStore = MSN->isTruncatingStore();
6176   }
6177 
6178   MVT VT = Val.getSimpleValueType();
6179   MVT IndexVT = Index.getSimpleValueType();
6180   MVT XLenVT = Subtarget.getXLenVT();
6181 
6182   assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() &&
6183          "Unexpected VTs!");
6184   assert(BasePtr.getSimpleValueType() == XLenVT && "Unexpected pointer type");
6185   // Targets have to explicitly opt-in for extending vector loads and
6186   // truncating vector stores.
6187   assert(!IsTruncatingStore && "Unexpected truncating MSCATTER/VP_SCATTER");
6188   (void)IsTruncatingStore;
6189 
6190   // If the mask is known to be all ones, optimize to an unmasked intrinsic;
6191   // the selection of the masked intrinsics doesn't do this for us.
6192   bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
6193 
6194   MVT ContainerVT = VT;
6195   if (VT.isFixedLengthVector()) {
6196     // We need to use the larger of the value and index type to determine the
6197     // scalable type to use so we don't increase LMUL for any operand/result.
6198     if (VT.bitsGE(IndexVT)) {
6199       ContainerVT = getContainerForFixedLengthVector(VT);
6200       IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(),
6201                                  ContainerVT.getVectorElementCount());
6202     } else {
6203       IndexVT = getContainerForFixedLengthVector(IndexVT);
6204       ContainerVT = MVT::getVectorVT(VT.getVectorElementType(),
6205                                      IndexVT.getVectorElementCount());
6206     }
6207 
6208     Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget);
6209     Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget);
6210 
6211     if (!IsUnmasked) {
6212       MVT MaskVT =
6213           MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
6214       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
6215     }
6216   }
6217 
6218   if (!VL)
6219     VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second;
6220 
6221   if (XLenVT == MVT::i32 && IndexVT.getVectorElementType().bitsGT(XLenVT)) {
6222     IndexVT = IndexVT.changeVectorElementType(XLenVT);
6223     SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, Mask.getValueType(),
6224                                    VL);
6225     Index = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, IndexVT, Index,
6226                         TrueMask, VL);
6227   }
6228 
6229   unsigned IntID =
6230       IsUnmasked ? Intrinsic::riscv_vsoxei : Intrinsic::riscv_vsoxei_mask;
6231   SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)};
6232   Ops.push_back(Val);
6233   Ops.push_back(BasePtr);
6234   Ops.push_back(Index);
6235   if (!IsUnmasked)
6236     Ops.push_back(Mask);
6237   Ops.push_back(VL);
6238 
6239   return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL,
6240                                  DAG.getVTList(MVT::Other), Ops, MemVT, MMO);
6241 }
6242 
6243 SDValue RISCVTargetLowering::lowerGET_ROUNDING(SDValue Op,
6244                                                SelectionDAG &DAG) const {
6245   const MVT XLenVT = Subtarget.getXLenVT();
6246   SDLoc DL(Op);
6247   SDValue Chain = Op->getOperand(0);
6248   SDValue SysRegNo = DAG.getTargetConstant(
6249       RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT);
6250   SDVTList VTs = DAG.getVTList(XLenVT, MVT::Other);
6251   SDValue RM = DAG.getNode(RISCVISD::READ_CSR, DL, VTs, Chain, SysRegNo);
6252 
6253   // Encoding used for rounding mode in RISCV differs from that used in
6254   // FLT_ROUNDS. To convert it the RISCV rounding mode is used as an index in a
6255   // table, which consists of a sequence of 4-bit fields, each representing
6256   // corresponding FLT_ROUNDS mode.
6257   static const int Table =
6258       (int(RoundingMode::NearestTiesToEven) << 4 * RISCVFPRndMode::RNE) |
6259       (int(RoundingMode::TowardZero) << 4 * RISCVFPRndMode::RTZ) |
6260       (int(RoundingMode::TowardNegative) << 4 * RISCVFPRndMode::RDN) |
6261       (int(RoundingMode::TowardPositive) << 4 * RISCVFPRndMode::RUP) |
6262       (int(RoundingMode::NearestTiesToAway) << 4 * RISCVFPRndMode::RMM);
6263 
6264   SDValue Shift =
6265       DAG.getNode(ISD::SHL, DL, XLenVT, RM, DAG.getConstant(2, DL, XLenVT));
6266   SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT,
6267                                 DAG.getConstant(Table, DL, XLenVT), Shift);
6268   SDValue Masked = DAG.getNode(ISD::AND, DL, XLenVT, Shifted,
6269                                DAG.getConstant(7, DL, XLenVT));
6270 
6271   return DAG.getMergeValues({Masked, Chain}, DL);
6272 }
6273 
6274 SDValue RISCVTargetLowering::lowerSET_ROUNDING(SDValue Op,
6275                                                SelectionDAG &DAG) const {
6276   const MVT XLenVT = Subtarget.getXLenVT();
6277   SDLoc DL(Op);
6278   SDValue Chain = Op->getOperand(0);
6279   SDValue RMValue = Op->getOperand(1);
6280   SDValue SysRegNo = DAG.getTargetConstant(
6281       RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT);
6282 
6283   // Encoding used for rounding mode in RISCV differs from that used in
6284   // FLT_ROUNDS. To convert it the C rounding mode is used as an index in
6285   // a table, which consists of a sequence of 4-bit fields, each representing
6286   // corresponding RISCV mode.
6287   static const unsigned Table =
6288       (RISCVFPRndMode::RNE << 4 * int(RoundingMode::NearestTiesToEven)) |
6289       (RISCVFPRndMode::RTZ << 4 * int(RoundingMode::TowardZero)) |
6290       (RISCVFPRndMode::RDN << 4 * int(RoundingMode::TowardNegative)) |
6291       (RISCVFPRndMode::RUP << 4 * int(RoundingMode::TowardPositive)) |
6292       (RISCVFPRndMode::RMM << 4 * int(RoundingMode::NearestTiesToAway));
6293 
6294   SDValue Shift = DAG.getNode(ISD::SHL, DL, XLenVT, RMValue,
6295                               DAG.getConstant(2, DL, XLenVT));
6296   SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT,
6297                                 DAG.getConstant(Table, DL, XLenVT), Shift);
6298   RMValue = DAG.getNode(ISD::AND, DL, XLenVT, Shifted,
6299                         DAG.getConstant(0x7, DL, XLenVT));
6300   return DAG.getNode(RISCVISD::WRITE_CSR, DL, MVT::Other, Chain, SysRegNo,
6301                      RMValue);
6302 }
6303 
6304 static RISCVISD::NodeType getRISCVWOpcodeByIntr(unsigned IntNo) {
6305   switch (IntNo) {
6306   default:
6307     llvm_unreachable("Unexpected Intrinsic");
6308   case Intrinsic::riscv_grev:
6309     return RISCVISD::GREVW;
6310   case Intrinsic::riscv_gorc:
6311     return RISCVISD::GORCW;
6312   case Intrinsic::riscv_bcompress:
6313     return RISCVISD::BCOMPRESSW;
6314   case Intrinsic::riscv_bdecompress:
6315     return RISCVISD::BDECOMPRESSW;
6316   case Intrinsic::riscv_bfp:
6317     return RISCVISD::BFPW;
6318   case Intrinsic::riscv_fsl:
6319     return RISCVISD::FSLW;
6320   case Intrinsic::riscv_fsr:
6321     return RISCVISD::FSRW;
6322   }
6323 }
6324 
6325 // Converts the given intrinsic to a i64 operation with any extension.
6326 static SDValue customLegalizeToWOpByIntr(SDNode *N, SelectionDAG &DAG,
6327                                          unsigned IntNo) {
6328   SDLoc DL(N);
6329   RISCVISD::NodeType WOpcode = getRISCVWOpcodeByIntr(IntNo);
6330   SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
6331   SDValue NewOp2 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
6332   SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp1, NewOp2);
6333   // ReplaceNodeResults requires we maintain the same type for the return value.
6334   return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewRes);
6335 }
6336 
6337 // Returns the opcode of the target-specific SDNode that implements the 32-bit
6338 // form of the given Opcode.
6339 static RISCVISD::NodeType getRISCVWOpcode(unsigned Opcode) {
6340   switch (Opcode) {
6341   default:
6342     llvm_unreachable("Unexpected opcode");
6343   case ISD::SHL:
6344     return RISCVISD::SLLW;
6345   case ISD::SRA:
6346     return RISCVISD::SRAW;
6347   case ISD::SRL:
6348     return RISCVISD::SRLW;
6349   case ISD::SDIV:
6350     return RISCVISD::DIVW;
6351   case ISD::UDIV:
6352     return RISCVISD::DIVUW;
6353   case ISD::UREM:
6354     return RISCVISD::REMUW;
6355   case ISD::ROTL:
6356     return RISCVISD::ROLW;
6357   case ISD::ROTR:
6358     return RISCVISD::RORW;
6359   case RISCVISD::GREV:
6360     return RISCVISD::GREVW;
6361   case RISCVISD::GORC:
6362     return RISCVISD::GORCW;
6363   }
6364 }
6365 
6366 // Converts the given i8/i16/i32 operation to a target-specific SelectionDAG
6367 // node. Because i8/i16/i32 isn't a legal type for RV64, these operations would
6368 // otherwise be promoted to i64, making it difficult to select the
6369 // SLLW/DIVUW/.../*W later one because the fact the operation was originally of
6370 // type i8/i16/i32 is lost.
6371 static SDValue customLegalizeToWOp(SDNode *N, SelectionDAG &DAG,
6372                                    unsigned ExtOpc = ISD::ANY_EXTEND) {
6373   SDLoc DL(N);
6374   RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode());
6375   SDValue NewOp0 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(0));
6376   SDValue NewOp1 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(1));
6377   SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1);
6378   // ReplaceNodeResults requires we maintain the same type for the return value.
6379   return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewRes);
6380 }
6381 
6382 // Converts the given 32-bit operation to a i64 operation with signed extension
6383 // semantic to reduce the signed extension instructions.
6384 static SDValue customLegalizeToWOpWithSExt(SDNode *N, SelectionDAG &DAG) {
6385   SDLoc DL(N);
6386   SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
6387   SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
6388   SDValue NewWOp = DAG.getNode(N->getOpcode(), DL, MVT::i64, NewOp0, NewOp1);
6389   SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp,
6390                                DAG.getValueType(MVT::i32));
6391   return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes);
6392 }
6393 
6394 void RISCVTargetLowering::ReplaceNodeResults(SDNode *N,
6395                                              SmallVectorImpl<SDValue> &Results,
6396                                              SelectionDAG &DAG) const {
6397   SDLoc DL(N);
6398   switch (N->getOpcode()) {
6399   default:
6400     llvm_unreachable("Don't know how to custom type legalize this operation!");
6401   case ISD::STRICT_FP_TO_SINT:
6402   case ISD::STRICT_FP_TO_UINT:
6403   case ISD::FP_TO_SINT:
6404   case ISD::FP_TO_UINT: {
6405     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6406            "Unexpected custom legalisation");
6407     bool IsStrict = N->isStrictFPOpcode();
6408     bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT ||
6409                     N->getOpcode() == ISD::STRICT_FP_TO_SINT;
6410     SDValue Op0 = IsStrict ? N->getOperand(1) : N->getOperand(0);
6411     if (getTypeAction(*DAG.getContext(), Op0.getValueType()) !=
6412         TargetLowering::TypeSoftenFloat) {
6413       if (!isTypeLegal(Op0.getValueType()))
6414         return;
6415       if (IsStrict) {
6416         unsigned Opc = IsSigned ? RISCVISD::STRICT_FCVT_W_RV64
6417                                 : RISCVISD::STRICT_FCVT_WU_RV64;
6418         SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other);
6419         SDValue Res = DAG.getNode(
6420             Opc, DL, VTs, N->getOperand(0), Op0,
6421             DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, MVT::i64));
6422         Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
6423         Results.push_back(Res.getValue(1));
6424         return;
6425       }
6426       unsigned Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64;
6427       SDValue Res =
6428           DAG.getNode(Opc, DL, MVT::i64, Op0,
6429                       DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, MVT::i64));
6430       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
6431       return;
6432     }
6433     // If the FP type needs to be softened, emit a library call using the 'si'
6434     // version. If we left it to default legalization we'd end up with 'di'. If
6435     // the FP type doesn't need to be softened just let generic type
6436     // legalization promote the result type.
6437     RTLIB::Libcall LC;
6438     if (IsSigned)
6439       LC = RTLIB::getFPTOSINT(Op0.getValueType(), N->getValueType(0));
6440     else
6441       LC = RTLIB::getFPTOUINT(Op0.getValueType(), N->getValueType(0));
6442     MakeLibCallOptions CallOptions;
6443     EVT OpVT = Op0.getValueType();
6444     CallOptions.setTypeListBeforeSoften(OpVT, N->getValueType(0), true);
6445     SDValue Chain = IsStrict ? N->getOperand(0) : SDValue();
6446     SDValue Result;
6447     std::tie(Result, Chain) =
6448         makeLibCall(DAG, LC, N->getValueType(0), Op0, CallOptions, DL, Chain);
6449     Results.push_back(Result);
6450     if (IsStrict)
6451       Results.push_back(Chain);
6452     break;
6453   }
6454   case ISD::READCYCLECOUNTER: {
6455     assert(!Subtarget.is64Bit() &&
6456            "READCYCLECOUNTER only has custom type legalization on riscv32");
6457 
6458     SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
6459     SDValue RCW =
6460         DAG.getNode(RISCVISD::READ_CYCLE_WIDE, DL, VTs, N->getOperand(0));
6461 
6462     Results.push_back(
6463         DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, RCW, RCW.getValue(1)));
6464     Results.push_back(RCW.getValue(2));
6465     break;
6466   }
6467   case ISD::MUL: {
6468     unsigned Size = N->getSimpleValueType(0).getSizeInBits();
6469     unsigned XLen = Subtarget.getXLen();
6470     // This multiply needs to be expanded, try to use MULHSU+MUL if possible.
6471     if (Size > XLen) {
6472       assert(Size == (XLen * 2) && "Unexpected custom legalisation");
6473       SDValue LHS = N->getOperand(0);
6474       SDValue RHS = N->getOperand(1);
6475       APInt HighMask = APInt::getHighBitsSet(Size, XLen);
6476 
6477       bool LHSIsU = DAG.MaskedValueIsZero(LHS, HighMask);
6478       bool RHSIsU = DAG.MaskedValueIsZero(RHS, HighMask);
6479       // We need exactly one side to be unsigned.
6480       if (LHSIsU == RHSIsU)
6481         return;
6482 
6483       auto MakeMULPair = [&](SDValue S, SDValue U) {
6484         MVT XLenVT = Subtarget.getXLenVT();
6485         S = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, S);
6486         U = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, U);
6487         SDValue Lo = DAG.getNode(ISD::MUL, DL, XLenVT, S, U);
6488         SDValue Hi = DAG.getNode(RISCVISD::MULHSU, DL, XLenVT, S, U);
6489         return DAG.getNode(ISD::BUILD_PAIR, DL, N->getValueType(0), Lo, Hi);
6490       };
6491 
6492       bool LHSIsS = DAG.ComputeNumSignBits(LHS) > XLen;
6493       bool RHSIsS = DAG.ComputeNumSignBits(RHS) > XLen;
6494 
6495       // The other operand should be signed, but still prefer MULH when
6496       // possible.
6497       if (RHSIsU && LHSIsS && !RHSIsS)
6498         Results.push_back(MakeMULPair(LHS, RHS));
6499       else if (LHSIsU && RHSIsS && !LHSIsS)
6500         Results.push_back(MakeMULPair(RHS, LHS));
6501 
6502       return;
6503     }
6504     LLVM_FALLTHROUGH;
6505   }
6506   case ISD::ADD:
6507   case ISD::SUB:
6508     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6509            "Unexpected custom legalisation");
6510     Results.push_back(customLegalizeToWOpWithSExt(N, DAG));
6511     break;
6512   case ISD::SHL:
6513   case ISD::SRA:
6514   case ISD::SRL:
6515     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6516            "Unexpected custom legalisation");
6517     if (N->getOperand(1).getOpcode() != ISD::Constant) {
6518       Results.push_back(customLegalizeToWOp(N, DAG));
6519       break;
6520     }
6521 
6522     // Custom legalize ISD::SHL by placing a SIGN_EXTEND_INREG after. This is
6523     // similar to customLegalizeToWOpWithSExt, but we must zero_extend the
6524     // shift amount.
6525     if (N->getOpcode() == ISD::SHL) {
6526       SDLoc DL(N);
6527       SDValue NewOp0 =
6528           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
6529       SDValue NewOp1 =
6530           DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1));
6531       SDValue NewWOp = DAG.getNode(ISD::SHL, DL, MVT::i64, NewOp0, NewOp1);
6532       SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp,
6533                                    DAG.getValueType(MVT::i32));
6534       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes));
6535     }
6536 
6537     break;
6538   case ISD::ROTL:
6539   case ISD::ROTR:
6540     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6541            "Unexpected custom legalisation");
6542     Results.push_back(customLegalizeToWOp(N, DAG));
6543     break;
6544   case ISD::CTTZ:
6545   case ISD::CTTZ_ZERO_UNDEF:
6546   case ISD::CTLZ:
6547   case ISD::CTLZ_ZERO_UNDEF: {
6548     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6549            "Unexpected custom legalisation");
6550 
6551     SDValue NewOp0 =
6552         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
6553     bool IsCTZ =
6554         N->getOpcode() == ISD::CTTZ || N->getOpcode() == ISD::CTTZ_ZERO_UNDEF;
6555     unsigned Opc = IsCTZ ? RISCVISD::CTZW : RISCVISD::CLZW;
6556     SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp0);
6557     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
6558     return;
6559   }
6560   case ISD::SDIV:
6561   case ISD::UDIV:
6562   case ISD::UREM: {
6563     MVT VT = N->getSimpleValueType(0);
6564     assert((VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) &&
6565            Subtarget.is64Bit() && Subtarget.hasStdExtM() &&
6566            "Unexpected custom legalisation");
6567     // Don't promote division/remainder by constant since we should expand those
6568     // to multiply by magic constant.
6569     // FIXME: What if the expansion is disabled for minsize.
6570     if (N->getOperand(1).getOpcode() == ISD::Constant)
6571       return;
6572 
6573     // If the input is i32, use ANY_EXTEND since the W instructions don't read
6574     // the upper 32 bits. For other types we need to sign or zero extend
6575     // based on the opcode.
6576     unsigned ExtOpc = ISD::ANY_EXTEND;
6577     if (VT != MVT::i32)
6578       ExtOpc = N->getOpcode() == ISD::SDIV ? ISD::SIGN_EXTEND
6579                                            : ISD::ZERO_EXTEND;
6580 
6581     Results.push_back(customLegalizeToWOp(N, DAG, ExtOpc));
6582     break;
6583   }
6584   case ISD::UADDO:
6585   case ISD::USUBO: {
6586     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6587            "Unexpected custom legalisation");
6588     bool IsAdd = N->getOpcode() == ISD::UADDO;
6589     // Create an ADDW or SUBW.
6590     SDValue LHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
6591     SDValue RHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
6592     SDValue Res =
6593         DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, DL, MVT::i64, LHS, RHS);
6594     Res = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Res,
6595                       DAG.getValueType(MVT::i32));
6596 
6597     // Sign extend the LHS and perform an unsigned compare with the ADDW result.
6598     // Since the inputs are sign extended from i32, this is equivalent to
6599     // comparing the lower 32 bits.
6600     LHS = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0));
6601     SDValue Overflow = DAG.getSetCC(DL, N->getValueType(1), Res, LHS,
6602                                     IsAdd ? ISD::SETULT : ISD::SETUGT);
6603 
6604     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
6605     Results.push_back(Overflow);
6606     return;
6607   }
6608   case ISD::UADDSAT:
6609   case ISD::USUBSAT: {
6610     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6611            "Unexpected custom legalisation");
6612     if (Subtarget.hasStdExtZbb()) {
6613       // With Zbb we can sign extend and let LegalizeDAG use minu/maxu. Using
6614       // sign extend allows overflow of the lower 32 bits to be detected on
6615       // the promoted size.
6616       SDValue LHS =
6617           DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0));
6618       SDValue RHS =
6619           DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(1));
6620       SDValue Res = DAG.getNode(N->getOpcode(), DL, MVT::i64, LHS, RHS);
6621       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
6622       return;
6623     }
6624 
6625     // Without Zbb, expand to UADDO/USUBO+select which will trigger our custom
6626     // promotion for UADDO/USUBO.
6627     Results.push_back(expandAddSubSat(N, DAG));
6628     return;
6629   }
6630   case ISD::ABS: {
6631     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6632            "Unexpected custom legalisation");
6633           DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0));
6634 
6635     // Expand abs to Y = (sraiw X, 31); subw(xor(X, Y), Y)
6636 
6637     SDValue Src = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
6638 
6639     // Freeze the source so we can increase it's use count.
6640     Src = DAG.getFreeze(Src);
6641 
6642     // Copy sign bit to all bits using the sraiw pattern.
6643     SDValue SignFill = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Src,
6644                                    DAG.getValueType(MVT::i32));
6645     SignFill = DAG.getNode(ISD::SRA, DL, MVT::i64, SignFill,
6646                            DAG.getConstant(31, DL, MVT::i64));
6647 
6648     SDValue NewRes = DAG.getNode(ISD::XOR, DL, MVT::i64, Src, SignFill);
6649     NewRes = DAG.getNode(ISD::SUB, DL, MVT::i64, NewRes, SignFill);
6650 
6651     // NOTE: The result is only required to be anyextended, but sext is
6652     // consistent with type legalization of sub.
6653     NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewRes,
6654                          DAG.getValueType(MVT::i32));
6655     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes));
6656     return;
6657   }
6658   case ISD::BITCAST: {
6659     EVT VT = N->getValueType(0);
6660     assert(VT.isInteger() && !VT.isVector() && "Unexpected VT!");
6661     SDValue Op0 = N->getOperand(0);
6662     EVT Op0VT = Op0.getValueType();
6663     MVT XLenVT = Subtarget.getXLenVT();
6664     if (VT == MVT::i16 && Op0VT == MVT::f16 && Subtarget.hasStdExtZfh()) {
6665       SDValue FPConv = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, XLenVT, Op0);
6666       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FPConv));
6667     } else if (VT == MVT::i32 && Op0VT == MVT::f32 && Subtarget.is64Bit() &&
6668                Subtarget.hasStdExtF()) {
6669       SDValue FPConv =
6670           DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Op0);
6671       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, FPConv));
6672     } else if (!VT.isVector() && Op0VT.isFixedLengthVector() &&
6673                isTypeLegal(Op0VT)) {
6674       // Custom-legalize bitcasts from fixed-length vector types to illegal
6675       // scalar types in order to improve codegen. Bitcast the vector to a
6676       // one-element vector type whose element type is the same as the result
6677       // type, and extract the first element.
6678       EVT BVT = EVT::getVectorVT(*DAG.getContext(), VT, 1);
6679       if (isTypeLegal(BVT)) {
6680         SDValue BVec = DAG.getBitcast(BVT, Op0);
6681         Results.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec,
6682                                       DAG.getConstant(0, DL, XLenVT)));
6683       }
6684     }
6685     break;
6686   }
6687   case RISCVISD::GREV:
6688   case RISCVISD::GORC: {
6689     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6690            "Unexpected custom legalisation");
6691     assert(isa<ConstantSDNode>(N->getOperand(1)) && "Expected constant");
6692     // This is similar to customLegalizeToWOp, except that we pass the second
6693     // operand (a TargetConstant) straight through: it is already of type
6694     // XLenVT.
6695     RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode());
6696     SDValue NewOp0 =
6697         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
6698     SDValue NewOp1 =
6699         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
6700     SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1);
6701     // ReplaceNodeResults requires we maintain the same type for the return
6702     // value.
6703     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes));
6704     break;
6705   }
6706   case RISCVISD::SHFL: {
6707     // There is no SHFLIW instruction, but we can just promote the operation.
6708     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6709            "Unexpected custom legalisation");
6710     assert(isa<ConstantSDNode>(N->getOperand(1)) && "Expected constant");
6711     SDValue NewOp0 =
6712         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
6713     SDValue NewOp1 =
6714         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
6715     SDValue NewRes = DAG.getNode(RISCVISD::SHFL, DL, MVT::i64, NewOp0, NewOp1);
6716     // ReplaceNodeResults requires we maintain the same type for the return
6717     // value.
6718     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes));
6719     break;
6720   }
6721   case ISD::BSWAP:
6722   case ISD::BITREVERSE: {
6723     MVT VT = N->getSimpleValueType(0);
6724     MVT XLenVT = Subtarget.getXLenVT();
6725     assert((VT == MVT::i8 || VT == MVT::i16 ||
6726             (VT == MVT::i32 && Subtarget.is64Bit())) &&
6727            Subtarget.hasStdExtZbp() && "Unexpected custom legalisation");
6728     SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, N->getOperand(0));
6729     unsigned Imm = VT.getSizeInBits() - 1;
6730     // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits.
6731     if (N->getOpcode() == ISD::BSWAP)
6732       Imm &= ~0x7U;
6733     unsigned Opc = Subtarget.is64Bit() ? RISCVISD::GREVW : RISCVISD::GREV;
6734     SDValue GREVI =
6735         DAG.getNode(Opc, DL, XLenVT, NewOp0, DAG.getConstant(Imm, DL, XLenVT));
6736     // ReplaceNodeResults requires we maintain the same type for the return
6737     // value.
6738     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, GREVI));
6739     break;
6740   }
6741   case ISD::FSHL:
6742   case ISD::FSHR: {
6743     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6744            Subtarget.hasStdExtZbt() && "Unexpected custom legalisation");
6745     SDValue NewOp0 =
6746         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
6747     SDValue NewOp1 =
6748         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
6749     SDValue NewShAmt =
6750         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
6751     // FSLW/FSRW take a 6 bit shift amount but i32 FSHL/FSHR only use 5 bits.
6752     // Mask the shift amount to 5 bits to prevent accidentally setting bit 5.
6753     NewShAmt = DAG.getNode(ISD::AND, DL, MVT::i64, NewShAmt,
6754                            DAG.getConstant(0x1f, DL, MVT::i64));
6755     // fshl and fshr concatenate their operands in the same order. fsrw and fslw
6756     // instruction use different orders. fshl will return its first operand for
6757     // shift of zero, fshr will return its second operand. fsl and fsr both
6758     // return rs1 so the ISD nodes need to have different operand orders.
6759     // Shift amount is in rs2.
6760     unsigned Opc = RISCVISD::FSLW;
6761     if (N->getOpcode() == ISD::FSHR) {
6762       std::swap(NewOp0, NewOp1);
6763       Opc = RISCVISD::FSRW;
6764     }
6765     SDValue NewOp = DAG.getNode(Opc, DL, MVT::i64, NewOp0, NewOp1, NewShAmt);
6766     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewOp));
6767     break;
6768   }
6769   case ISD::EXTRACT_VECTOR_ELT: {
6770     // Custom-legalize an EXTRACT_VECTOR_ELT where XLEN<SEW, as the SEW element
6771     // type is illegal (currently only vXi64 RV32).
6772     // With vmv.x.s, when SEW > XLEN, only the least-significant XLEN bits are
6773     // transferred to the destination register. We issue two of these from the
6774     // upper- and lower- halves of the SEW-bit vector element, slid down to the
6775     // first element.
6776     SDValue Vec = N->getOperand(0);
6777     SDValue Idx = N->getOperand(1);
6778 
6779     // The vector type hasn't been legalized yet so we can't issue target
6780     // specific nodes if it needs legalization.
6781     // FIXME: We would manually legalize if it's important.
6782     if (!isTypeLegal(Vec.getValueType()))
6783       return;
6784 
6785     MVT VecVT = Vec.getSimpleValueType();
6786 
6787     assert(!Subtarget.is64Bit() && N->getValueType(0) == MVT::i64 &&
6788            VecVT.getVectorElementType() == MVT::i64 &&
6789            "Unexpected EXTRACT_VECTOR_ELT legalization");
6790 
6791     // If this is a fixed vector, we need to convert it to a scalable vector.
6792     MVT ContainerVT = VecVT;
6793     if (VecVT.isFixedLengthVector()) {
6794       ContainerVT = getContainerForFixedLengthVector(VecVT);
6795       Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
6796     }
6797 
6798     MVT XLenVT = Subtarget.getXLenVT();
6799 
6800     // Use a VL of 1 to avoid processing more elements than we need.
6801     MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
6802     SDValue VL = DAG.getConstant(1, DL, XLenVT);
6803     SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
6804 
6805     // Unless the index is known to be 0, we must slide the vector down to get
6806     // the desired element into index 0.
6807     if (!isNullConstant(Idx)) {
6808       Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT,
6809                         DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL);
6810     }
6811 
6812     // Extract the lower XLEN bits of the correct vector element.
6813     SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec);
6814 
6815     // To extract the upper XLEN bits of the vector element, shift the first
6816     // element right by 32 bits and re-extract the lower XLEN bits.
6817     SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
6818                                      DAG.getUNDEF(ContainerVT),
6819                                      DAG.getConstant(32, DL, XLenVT), VL);
6820     SDValue LShr32 = DAG.getNode(RISCVISD::SRL_VL, DL, ContainerVT, Vec,
6821                                  ThirtyTwoV, Mask, VL);
6822 
6823     SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32);
6824 
6825     Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi));
6826     break;
6827   }
6828   case ISD::INTRINSIC_WO_CHAIN: {
6829     unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
6830     switch (IntNo) {
6831     default:
6832       llvm_unreachable(
6833           "Don't know how to custom type legalize this intrinsic!");
6834     case Intrinsic::riscv_grev:
6835     case Intrinsic::riscv_gorc:
6836     case Intrinsic::riscv_bcompress:
6837     case Intrinsic::riscv_bdecompress:
6838     case Intrinsic::riscv_bfp: {
6839       assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6840              "Unexpected custom legalisation");
6841       Results.push_back(customLegalizeToWOpByIntr(N, DAG, IntNo));
6842       break;
6843     }
6844     case Intrinsic::riscv_fsl:
6845     case Intrinsic::riscv_fsr: {
6846       assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6847              "Unexpected custom legalisation");
6848       SDValue NewOp1 =
6849           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
6850       SDValue NewOp2 =
6851           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
6852       SDValue NewOp3 =
6853           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(3));
6854       unsigned Opc = getRISCVWOpcodeByIntr(IntNo);
6855       SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2, NewOp3);
6856       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
6857       break;
6858     }
6859     case Intrinsic::riscv_orc_b: {
6860       // Lower to the GORCI encoding for orc.b with the operand extended.
6861       SDValue NewOp =
6862           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
6863       // If Zbp is enabled, use GORCIW which will sign extend the result.
6864       unsigned Opc =
6865           Subtarget.hasStdExtZbp() ? RISCVISD::GORCW : RISCVISD::GORC;
6866       SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp,
6867                                 DAG.getConstant(7, DL, MVT::i64));
6868       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
6869       return;
6870     }
6871     case Intrinsic::riscv_shfl:
6872     case Intrinsic::riscv_unshfl: {
6873       assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6874              "Unexpected custom legalisation");
6875       SDValue NewOp1 =
6876           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
6877       SDValue NewOp2 =
6878           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
6879       unsigned Opc =
6880           IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFLW : RISCVISD::UNSHFLW;
6881       // There is no (UN)SHFLIW. If the control word is a constant, we can use
6882       // (UN)SHFLI with bit 4 of the control word cleared. The upper 32 bit half
6883       // will be shuffled the same way as the lower 32 bit half, but the two
6884       // halves won't cross.
6885       if (isa<ConstantSDNode>(NewOp2)) {
6886         NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2,
6887                              DAG.getConstant(0xf, DL, MVT::i64));
6888         Opc =
6889             IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL;
6890       }
6891       SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2);
6892       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
6893       break;
6894     }
6895     case Intrinsic::riscv_vmv_x_s: {
6896       EVT VT = N->getValueType(0);
6897       MVT XLenVT = Subtarget.getXLenVT();
6898       if (VT.bitsLT(XLenVT)) {
6899         // Simple case just extract using vmv.x.s and truncate.
6900         SDValue Extract = DAG.getNode(RISCVISD::VMV_X_S, DL,
6901                                       Subtarget.getXLenVT(), N->getOperand(1));
6902         Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, Extract));
6903         return;
6904       }
6905 
6906       assert(VT == MVT::i64 && !Subtarget.is64Bit() &&
6907              "Unexpected custom legalization");
6908 
6909       // We need to do the move in two steps.
6910       SDValue Vec = N->getOperand(1);
6911       MVT VecVT = Vec.getSimpleValueType();
6912 
6913       // First extract the lower XLEN bits of the element.
6914       SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec);
6915 
6916       // To extract the upper XLEN bits of the vector element, shift the first
6917       // element right by 32 bits and re-extract the lower XLEN bits.
6918       SDValue VL = DAG.getConstant(1, DL, XLenVT);
6919       MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount());
6920       SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
6921       SDValue ThirtyTwoV =
6922           DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, DAG.getUNDEF(VecVT),
6923                       DAG.getConstant(32, DL, XLenVT), VL);
6924       SDValue LShr32 =
6925           DAG.getNode(RISCVISD::SRL_VL, DL, VecVT, Vec, ThirtyTwoV, Mask, VL);
6926       SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32);
6927 
6928       Results.push_back(
6929           DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi));
6930       break;
6931     }
6932     }
6933     break;
6934   }
6935   case ISD::VECREDUCE_ADD:
6936   case ISD::VECREDUCE_AND:
6937   case ISD::VECREDUCE_OR:
6938   case ISD::VECREDUCE_XOR:
6939   case ISD::VECREDUCE_SMAX:
6940   case ISD::VECREDUCE_UMAX:
6941   case ISD::VECREDUCE_SMIN:
6942   case ISD::VECREDUCE_UMIN:
6943     if (SDValue V = lowerVECREDUCE(SDValue(N, 0), DAG))
6944       Results.push_back(V);
6945     break;
6946   case ISD::VP_REDUCE_ADD:
6947   case ISD::VP_REDUCE_AND:
6948   case ISD::VP_REDUCE_OR:
6949   case ISD::VP_REDUCE_XOR:
6950   case ISD::VP_REDUCE_SMAX:
6951   case ISD::VP_REDUCE_UMAX:
6952   case ISD::VP_REDUCE_SMIN:
6953   case ISD::VP_REDUCE_UMIN:
6954     if (SDValue V = lowerVPREDUCE(SDValue(N, 0), DAG))
6955       Results.push_back(V);
6956     break;
6957   case ISD::FLT_ROUNDS_: {
6958     SDVTList VTs = DAG.getVTList(Subtarget.getXLenVT(), MVT::Other);
6959     SDValue Res = DAG.getNode(ISD::FLT_ROUNDS_, DL, VTs, N->getOperand(0));
6960     Results.push_back(Res.getValue(0));
6961     Results.push_back(Res.getValue(1));
6962     break;
6963   }
6964   }
6965 }
6966 
6967 // A structure to hold one of the bit-manipulation patterns below. Together, a
6968 // SHL and non-SHL pattern may form a bit-manipulation pair on a single source:
6969 //   (or (and (shl x, 1), 0xAAAAAAAA),
6970 //       (and (srl x, 1), 0x55555555))
6971 struct RISCVBitmanipPat {
6972   SDValue Op;
6973   unsigned ShAmt;
6974   bool IsSHL;
6975 
6976   bool formsPairWith(const RISCVBitmanipPat &Other) const {
6977     return Op == Other.Op && ShAmt == Other.ShAmt && IsSHL != Other.IsSHL;
6978   }
6979 };
6980 
6981 // Matches patterns of the form
6982 //   (and (shl x, C2), (C1 << C2))
6983 //   (and (srl x, C2), C1)
6984 //   (shl (and x, C1), C2)
6985 //   (srl (and x, (C1 << C2)), C2)
6986 // Where C2 is a power of 2 and C1 has at least that many leading zeroes.
6987 // The expected masks for each shift amount are specified in BitmanipMasks where
6988 // BitmanipMasks[log2(C2)] specifies the expected C1 value.
6989 // The max allowed shift amount is either XLen/2 or XLen/4 determined by whether
6990 // BitmanipMasks contains 6 or 5 entries assuming that the maximum possible
6991 // XLen is 64.
6992 static Optional<RISCVBitmanipPat>
6993 matchRISCVBitmanipPat(SDValue Op, ArrayRef<uint64_t> BitmanipMasks) {
6994   assert((BitmanipMasks.size() == 5 || BitmanipMasks.size() == 6) &&
6995          "Unexpected number of masks");
6996   Optional<uint64_t> Mask;
6997   // Optionally consume a mask around the shift operation.
6998   if (Op.getOpcode() == ISD::AND && isa<ConstantSDNode>(Op.getOperand(1))) {
6999     Mask = Op.getConstantOperandVal(1);
7000     Op = Op.getOperand(0);
7001   }
7002   if (Op.getOpcode() != ISD::SHL && Op.getOpcode() != ISD::SRL)
7003     return None;
7004   bool IsSHL = Op.getOpcode() == ISD::SHL;
7005 
7006   if (!isa<ConstantSDNode>(Op.getOperand(1)))
7007     return None;
7008   uint64_t ShAmt = Op.getConstantOperandVal(1);
7009 
7010   unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32;
7011   if (ShAmt >= Width || !isPowerOf2_64(ShAmt))
7012     return None;
7013   // If we don't have enough masks for 64 bit, then we must be trying to
7014   // match SHFL so we're only allowed to shift 1/4 of the width.
7015   if (BitmanipMasks.size() == 5 && ShAmt >= (Width / 2))
7016     return None;
7017 
7018   SDValue Src = Op.getOperand(0);
7019 
7020   // The expected mask is shifted left when the AND is found around SHL
7021   // patterns.
7022   //   ((x >> 1) & 0x55555555)
7023   //   ((x << 1) & 0xAAAAAAAA)
7024   bool SHLExpMask = IsSHL;
7025 
7026   if (!Mask) {
7027     // Sometimes LLVM keeps the mask as an operand of the shift, typically when
7028     // the mask is all ones: consume that now.
7029     if (Src.getOpcode() == ISD::AND && isa<ConstantSDNode>(Src.getOperand(1))) {
7030       Mask = Src.getConstantOperandVal(1);
7031       Src = Src.getOperand(0);
7032       // The expected mask is now in fact shifted left for SRL, so reverse the
7033       // decision.
7034       //   ((x & 0xAAAAAAAA) >> 1)
7035       //   ((x & 0x55555555) << 1)
7036       SHLExpMask = !SHLExpMask;
7037     } else {
7038       // Use a default shifted mask of all-ones if there's no AND, truncated
7039       // down to the expected width. This simplifies the logic later on.
7040       Mask = maskTrailingOnes<uint64_t>(Width);
7041       *Mask &= (IsSHL ? *Mask << ShAmt : *Mask >> ShAmt);
7042     }
7043   }
7044 
7045   unsigned MaskIdx = Log2_32(ShAmt);
7046   uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width);
7047 
7048   if (SHLExpMask)
7049     ExpMask <<= ShAmt;
7050 
7051   if (Mask != ExpMask)
7052     return None;
7053 
7054   return RISCVBitmanipPat{Src, (unsigned)ShAmt, IsSHL};
7055 }
7056 
7057 // Matches any of the following bit-manipulation patterns:
7058 //   (and (shl x, 1), (0x55555555 << 1))
7059 //   (and (srl x, 1), 0x55555555)
7060 //   (shl (and x, 0x55555555), 1)
7061 //   (srl (and x, (0x55555555 << 1)), 1)
7062 // where the shift amount and mask may vary thus:
7063 //   [1]  = 0x55555555 / 0xAAAAAAAA
7064 //   [2]  = 0x33333333 / 0xCCCCCCCC
7065 //   [4]  = 0x0F0F0F0F / 0xF0F0F0F0
7066 //   [8]  = 0x00FF00FF / 0xFF00FF00
7067 //   [16] = 0x0000FFFF / 0xFFFFFFFF
7068 //   [32] = 0x00000000FFFFFFFF / 0xFFFFFFFF00000000 (for RV64)
7069 static Optional<RISCVBitmanipPat> matchGREVIPat(SDValue Op) {
7070   // These are the unshifted masks which we use to match bit-manipulation
7071   // patterns. They may be shifted left in certain circumstances.
7072   static const uint64_t BitmanipMasks[] = {
7073       0x5555555555555555ULL, 0x3333333333333333ULL, 0x0F0F0F0F0F0F0F0FULL,
7074       0x00FF00FF00FF00FFULL, 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL};
7075 
7076   return matchRISCVBitmanipPat(Op, BitmanipMasks);
7077 }
7078 
7079 // Match the following pattern as a GREVI(W) operation
7080 //   (or (BITMANIP_SHL x), (BITMANIP_SRL x))
7081 static SDValue combineORToGREV(SDValue Op, SelectionDAG &DAG,
7082                                const RISCVSubtarget &Subtarget) {
7083   assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson");
7084   EVT VT = Op.getValueType();
7085 
7086   if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) {
7087     auto LHS = matchGREVIPat(Op.getOperand(0));
7088     auto RHS = matchGREVIPat(Op.getOperand(1));
7089     if (LHS && RHS && LHS->formsPairWith(*RHS)) {
7090       SDLoc DL(Op);
7091       return DAG.getNode(RISCVISD::GREV, DL, VT, LHS->Op,
7092                          DAG.getConstant(LHS->ShAmt, DL, VT));
7093     }
7094   }
7095   return SDValue();
7096 }
7097 
7098 // Matches any the following pattern as a GORCI(W) operation
7099 // 1.  (or (GREVI x, shamt), x) if shamt is a power of 2
7100 // 2.  (or x, (GREVI x, shamt)) if shamt is a power of 2
7101 // 3.  (or (or (BITMANIP_SHL x), x), (BITMANIP_SRL x))
7102 // Note that with the variant of 3.,
7103 //     (or (or (BITMANIP_SHL x), (BITMANIP_SRL x)), x)
7104 // the inner pattern will first be matched as GREVI and then the outer
7105 // pattern will be matched to GORC via the first rule above.
7106 // 4.  (or (rotl/rotr x, bitwidth/2), x)
7107 static SDValue combineORToGORC(SDValue Op, SelectionDAG &DAG,
7108                                const RISCVSubtarget &Subtarget) {
7109   assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson");
7110   EVT VT = Op.getValueType();
7111 
7112   if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) {
7113     SDLoc DL(Op);
7114     SDValue Op0 = Op.getOperand(0);
7115     SDValue Op1 = Op.getOperand(1);
7116 
7117     auto MatchOROfReverse = [&](SDValue Reverse, SDValue X) {
7118       if (Reverse.getOpcode() == RISCVISD::GREV && Reverse.getOperand(0) == X &&
7119           isa<ConstantSDNode>(Reverse.getOperand(1)) &&
7120           isPowerOf2_32(Reverse.getConstantOperandVal(1)))
7121         return DAG.getNode(RISCVISD::GORC, DL, VT, X, Reverse.getOperand(1));
7122       // We can also form GORCI from ROTL/ROTR by half the bitwidth.
7123       if ((Reverse.getOpcode() == ISD::ROTL ||
7124            Reverse.getOpcode() == ISD::ROTR) &&
7125           Reverse.getOperand(0) == X &&
7126           isa<ConstantSDNode>(Reverse.getOperand(1))) {
7127         uint64_t RotAmt = Reverse.getConstantOperandVal(1);
7128         if (RotAmt == (VT.getSizeInBits() / 2))
7129           return DAG.getNode(RISCVISD::GORC, DL, VT, X,
7130                              DAG.getConstant(RotAmt, DL, VT));
7131       }
7132       return SDValue();
7133     };
7134 
7135     // Check for either commutable permutation of (or (GREVI x, shamt), x)
7136     if (SDValue V = MatchOROfReverse(Op0, Op1))
7137       return V;
7138     if (SDValue V = MatchOROfReverse(Op1, Op0))
7139       return V;
7140 
7141     // OR is commutable so canonicalize its OR operand to the left
7142     if (Op0.getOpcode() != ISD::OR && Op1.getOpcode() == ISD::OR)
7143       std::swap(Op0, Op1);
7144     if (Op0.getOpcode() != ISD::OR)
7145       return SDValue();
7146     SDValue OrOp0 = Op0.getOperand(0);
7147     SDValue OrOp1 = Op0.getOperand(1);
7148     auto LHS = matchGREVIPat(OrOp0);
7149     // OR is commutable so swap the operands and try again: x might have been
7150     // on the left
7151     if (!LHS) {
7152       std::swap(OrOp0, OrOp1);
7153       LHS = matchGREVIPat(OrOp0);
7154     }
7155     auto RHS = matchGREVIPat(Op1);
7156     if (LHS && RHS && LHS->formsPairWith(*RHS) && LHS->Op == OrOp1) {
7157       return DAG.getNode(RISCVISD::GORC, DL, VT, LHS->Op,
7158                          DAG.getConstant(LHS->ShAmt, DL, VT));
7159     }
7160   }
7161   return SDValue();
7162 }
7163 
7164 // Matches any of the following bit-manipulation patterns:
7165 //   (and (shl x, 1), (0x22222222 << 1))
7166 //   (and (srl x, 1), 0x22222222)
7167 //   (shl (and x, 0x22222222), 1)
7168 //   (srl (and x, (0x22222222 << 1)), 1)
7169 // where the shift amount and mask may vary thus:
7170 //   [1]  = 0x22222222 / 0x44444444
7171 //   [2]  = 0x0C0C0C0C / 0x3C3C3C3C
7172 //   [4]  = 0x00F000F0 / 0x0F000F00
7173 //   [8]  = 0x0000FF00 / 0x00FF0000
7174 //   [16] = 0x00000000FFFF0000 / 0x0000FFFF00000000 (for RV64)
7175 static Optional<RISCVBitmanipPat> matchSHFLPat(SDValue Op) {
7176   // These are the unshifted masks which we use to match bit-manipulation
7177   // patterns. They may be shifted left in certain circumstances.
7178   static const uint64_t BitmanipMasks[] = {
7179       0x2222222222222222ULL, 0x0C0C0C0C0C0C0C0CULL, 0x00F000F000F000F0ULL,
7180       0x0000FF000000FF00ULL, 0x00000000FFFF0000ULL};
7181 
7182   return matchRISCVBitmanipPat(Op, BitmanipMasks);
7183 }
7184 
7185 // Match (or (or (SHFL_SHL x), (SHFL_SHR x)), (SHFL_AND x)
7186 static SDValue combineORToSHFL(SDValue Op, SelectionDAG &DAG,
7187                                const RISCVSubtarget &Subtarget) {
7188   assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson");
7189   EVT VT = Op.getValueType();
7190 
7191   if (VT != MVT::i32 && VT != Subtarget.getXLenVT())
7192     return SDValue();
7193 
7194   SDValue Op0 = Op.getOperand(0);
7195   SDValue Op1 = Op.getOperand(1);
7196 
7197   // Or is commutable so canonicalize the second OR to the LHS.
7198   if (Op0.getOpcode() != ISD::OR)
7199     std::swap(Op0, Op1);
7200   if (Op0.getOpcode() != ISD::OR)
7201     return SDValue();
7202 
7203   // We found an inner OR, so our operands are the operands of the inner OR
7204   // and the other operand of the outer OR.
7205   SDValue A = Op0.getOperand(0);
7206   SDValue B = Op0.getOperand(1);
7207   SDValue C = Op1;
7208 
7209   auto Match1 = matchSHFLPat(A);
7210   auto Match2 = matchSHFLPat(B);
7211 
7212   // If neither matched, we failed.
7213   if (!Match1 && !Match2)
7214     return SDValue();
7215 
7216   // We had at least one match. if one failed, try the remaining C operand.
7217   if (!Match1) {
7218     std::swap(A, C);
7219     Match1 = matchSHFLPat(A);
7220     if (!Match1)
7221       return SDValue();
7222   } else if (!Match2) {
7223     std::swap(B, C);
7224     Match2 = matchSHFLPat(B);
7225     if (!Match2)
7226       return SDValue();
7227   }
7228   assert(Match1 && Match2);
7229 
7230   // Make sure our matches pair up.
7231   if (!Match1->formsPairWith(*Match2))
7232     return SDValue();
7233 
7234   // All the remains is to make sure C is an AND with the same input, that masks
7235   // out the bits that are being shuffled.
7236   if (C.getOpcode() != ISD::AND || !isa<ConstantSDNode>(C.getOperand(1)) ||
7237       C.getOperand(0) != Match1->Op)
7238     return SDValue();
7239 
7240   uint64_t Mask = C.getConstantOperandVal(1);
7241 
7242   static const uint64_t BitmanipMasks[] = {
7243       0x9999999999999999ULL, 0xC3C3C3C3C3C3C3C3ULL, 0xF00FF00FF00FF00FULL,
7244       0xFF0000FFFF0000FFULL, 0xFFFF00000000FFFFULL,
7245   };
7246 
7247   unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32;
7248   unsigned MaskIdx = Log2_32(Match1->ShAmt);
7249   uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width);
7250 
7251   if (Mask != ExpMask)
7252     return SDValue();
7253 
7254   SDLoc DL(Op);
7255   return DAG.getNode(RISCVISD::SHFL, DL, VT, Match1->Op,
7256                      DAG.getConstant(Match1->ShAmt, DL, VT));
7257 }
7258 
7259 // Optimize (add (shl x, c0), (shl y, c1)) ->
7260 //          (SLLI (SH*ADD x, y), c0), if c1-c0 equals to [1|2|3].
7261 static SDValue transformAddShlImm(SDNode *N, SelectionDAG &DAG,
7262                                   const RISCVSubtarget &Subtarget) {
7263   // Perform this optimization only in the zba extension.
7264   if (!Subtarget.hasStdExtZba())
7265     return SDValue();
7266 
7267   // Skip for vector types and larger types.
7268   EVT VT = N->getValueType(0);
7269   if (VT.isVector() || VT.getSizeInBits() > Subtarget.getXLen())
7270     return SDValue();
7271 
7272   // The two operand nodes must be SHL and have no other use.
7273   SDValue N0 = N->getOperand(0);
7274   SDValue N1 = N->getOperand(1);
7275   if (N0->getOpcode() != ISD::SHL || N1->getOpcode() != ISD::SHL ||
7276       !N0->hasOneUse() || !N1->hasOneUse())
7277     return SDValue();
7278 
7279   // Check c0 and c1.
7280   auto *N0C = dyn_cast<ConstantSDNode>(N0->getOperand(1));
7281   auto *N1C = dyn_cast<ConstantSDNode>(N1->getOperand(1));
7282   if (!N0C || !N1C)
7283     return SDValue();
7284   int64_t C0 = N0C->getSExtValue();
7285   int64_t C1 = N1C->getSExtValue();
7286   if (C0 <= 0 || C1 <= 0)
7287     return SDValue();
7288 
7289   // Skip if SH1ADD/SH2ADD/SH3ADD are not applicable.
7290   int64_t Bits = std::min(C0, C1);
7291   int64_t Diff = std::abs(C0 - C1);
7292   if (Diff != 1 && Diff != 2 && Diff != 3)
7293     return SDValue();
7294 
7295   // Build nodes.
7296   SDLoc DL(N);
7297   SDValue NS = (C0 < C1) ? N0->getOperand(0) : N1->getOperand(0);
7298   SDValue NL = (C0 > C1) ? N0->getOperand(0) : N1->getOperand(0);
7299   SDValue NA0 =
7300       DAG.getNode(ISD::SHL, DL, VT, NL, DAG.getConstant(Diff, DL, VT));
7301   SDValue NA1 = DAG.getNode(ISD::ADD, DL, VT, NA0, NS);
7302   return DAG.getNode(ISD::SHL, DL, VT, NA1, DAG.getConstant(Bits, DL, VT));
7303 }
7304 
7305 // Combine
7306 // ROTR ((GREV x, 24), 16) -> (GREVI x, 8)
7307 // ROTL ((GREV x, 24), 16) -> (GREVI x, 8)
7308 // RORW ((GREVW x, 24), 16) -> (GREVIW x, 8)
7309 // ROLW ((GREVW x, 24), 16) -> (GREVIW x, 8)
7310 static SDValue combineROTR_ROTL_RORW_ROLW(SDNode *N, SelectionDAG &DAG,
7311                                           const RISCVSubtarget &Subtarget) {
7312   assert((N->getOpcode() == ISD::ROTR || N->getOpcode() == ISD::ROTL ||
7313           N->getOpcode() == RISCVISD::RORW ||
7314           N->getOpcode() == RISCVISD::ROLW) &&
7315          "Unexpected opcode!");
7316   SDValue Src = N->getOperand(0);
7317   SDLoc DL(N);
7318   unsigned Opc;
7319 
7320   if (!Subtarget.hasStdExtZbp())
7321     return SDValue();
7322 
7323   if ((N->getOpcode() == ISD::ROTR || N->getOpcode() == ISD::ROTL) &&
7324       Src.getOpcode() == RISCVISD::GREV)
7325     Opc = RISCVISD::GREV;
7326   else if ((N->getOpcode() == RISCVISD::RORW ||
7327             N->getOpcode() == RISCVISD::ROLW) &&
7328            Src.getOpcode() == RISCVISD::GREVW)
7329     Opc = RISCVISD::GREVW;
7330   else
7331     return SDValue();
7332 
7333   if (!isa<ConstantSDNode>(N->getOperand(1)) ||
7334       !isa<ConstantSDNode>(Src.getOperand(1)))
7335     return SDValue();
7336 
7337   unsigned ShAmt1 = N->getConstantOperandVal(1);
7338   unsigned ShAmt2 = Src.getConstantOperandVal(1);
7339   if (ShAmt1 != 16 && ShAmt2 != 24)
7340     return SDValue();
7341 
7342   Src = Src.getOperand(0);
7343   return DAG.getNode(Opc, DL, N->getValueType(0), Src,
7344                      DAG.getConstant(8, DL, N->getOperand(1).getValueType()));
7345 }
7346 
7347 // Combine (GREVI (GREVI x, C2), C1) -> (GREVI x, C1^C2) when C1^C2 is
7348 // non-zero, and to x when it is. Any repeated GREVI stage undoes itself.
7349 // Combine (GORCI (GORCI x, C2), C1) -> (GORCI x, C1|C2). Repeated stage does
7350 // not undo itself, but they are redundant.
7351 static SDValue combineGREVI_GORCI(SDNode *N, SelectionDAG &DAG) {
7352   SDValue Src = N->getOperand(0);
7353 
7354   if (Src.getOpcode() != N->getOpcode())
7355     return SDValue();
7356 
7357   if (!isa<ConstantSDNode>(N->getOperand(1)) ||
7358       !isa<ConstantSDNode>(Src.getOperand(1)))
7359     return SDValue();
7360 
7361   unsigned ShAmt1 = N->getConstantOperandVal(1);
7362   unsigned ShAmt2 = Src.getConstantOperandVal(1);
7363   Src = Src.getOperand(0);
7364 
7365   unsigned CombinedShAmt;
7366   if (N->getOpcode() == RISCVISD::GORC || N->getOpcode() == RISCVISD::GORCW)
7367     CombinedShAmt = ShAmt1 | ShAmt2;
7368   else
7369     CombinedShAmt = ShAmt1 ^ ShAmt2;
7370 
7371   if (CombinedShAmt == 0)
7372     return Src;
7373 
7374   SDLoc DL(N);
7375   return DAG.getNode(
7376       N->getOpcode(), DL, N->getValueType(0), Src,
7377       DAG.getConstant(CombinedShAmt, DL, N->getOperand(1).getValueType()));
7378 }
7379 
7380 // Combine a constant select operand into its use:
7381 //
7382 // (and (select cond, -1, c), x)
7383 //   -> (select cond, x, (and x, c))  [AllOnes=1]
7384 // (or  (select cond, 0, c), x)
7385 //   -> (select cond, x, (or x, c))  [AllOnes=0]
7386 // (xor (select cond, 0, c), x)
7387 //   -> (select cond, x, (xor x, c))  [AllOnes=0]
7388 // (add (select cond, 0, c), x)
7389 //   -> (select cond, x, (add x, c))  [AllOnes=0]
7390 // (sub x, (select cond, 0, c))
7391 //   -> (select cond, x, (sub x, c))  [AllOnes=0]
7392 static SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp,
7393                                    SelectionDAG &DAG, bool AllOnes) {
7394   EVT VT = N->getValueType(0);
7395 
7396   // Skip vectors.
7397   if (VT.isVector())
7398     return SDValue();
7399 
7400   if ((Slct.getOpcode() != ISD::SELECT &&
7401        Slct.getOpcode() != RISCVISD::SELECT_CC) ||
7402       !Slct.hasOneUse())
7403     return SDValue();
7404 
7405   auto isZeroOrAllOnes = [](SDValue N, bool AllOnes) {
7406     return AllOnes ? isAllOnesConstant(N) : isNullConstant(N);
7407   };
7408 
7409   bool SwapSelectOps;
7410   unsigned OpOffset = Slct.getOpcode() == RISCVISD::SELECT_CC ? 2 : 0;
7411   SDValue TrueVal = Slct.getOperand(1 + OpOffset);
7412   SDValue FalseVal = Slct.getOperand(2 + OpOffset);
7413   SDValue NonConstantVal;
7414   if (isZeroOrAllOnes(TrueVal, AllOnes)) {
7415     SwapSelectOps = false;
7416     NonConstantVal = FalseVal;
7417   } else if (isZeroOrAllOnes(FalseVal, AllOnes)) {
7418     SwapSelectOps = true;
7419     NonConstantVal = TrueVal;
7420   } else
7421     return SDValue();
7422 
7423   // Slct is now know to be the desired identity constant when CC is true.
7424   TrueVal = OtherOp;
7425   FalseVal = DAG.getNode(N->getOpcode(), SDLoc(N), VT, OtherOp, NonConstantVal);
7426   // Unless SwapSelectOps says the condition should be false.
7427   if (SwapSelectOps)
7428     std::swap(TrueVal, FalseVal);
7429 
7430   if (Slct.getOpcode() == RISCVISD::SELECT_CC)
7431     return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), VT,
7432                        {Slct.getOperand(0), Slct.getOperand(1),
7433                         Slct.getOperand(2), TrueVal, FalseVal});
7434 
7435   return DAG.getNode(ISD::SELECT, SDLoc(N), VT,
7436                      {Slct.getOperand(0), TrueVal, FalseVal});
7437 }
7438 
7439 // Attempt combineSelectAndUse on each operand of a commutative operator N.
7440 static SDValue combineSelectAndUseCommutative(SDNode *N, SelectionDAG &DAG,
7441                                               bool AllOnes) {
7442   SDValue N0 = N->getOperand(0);
7443   SDValue N1 = N->getOperand(1);
7444   if (SDValue Result = combineSelectAndUse(N, N0, N1, DAG, AllOnes))
7445     return Result;
7446   if (SDValue Result = combineSelectAndUse(N, N1, N0, DAG, AllOnes))
7447     return Result;
7448   return SDValue();
7449 }
7450 
7451 // Transform (add (mul x, c0), c1) ->
7452 //           (add (mul (add x, c1/c0), c0), c1%c0).
7453 // if c1/c0 and c1%c0 are simm12, while c1 is not. A special corner case
7454 // that should be excluded is when c0*(c1/c0) is simm12, which will lead
7455 // to an infinite loop in DAGCombine if transformed.
7456 // Or transform (add (mul x, c0), c1) ->
7457 //              (add (mul (add x, c1/c0+1), c0), c1%c0-c0),
7458 // if c1/c0+1 and c1%c0-c0 are simm12, while c1 is not. A special corner
7459 // case that should be excluded is when c0*(c1/c0+1) is simm12, which will
7460 // lead to an infinite loop in DAGCombine if transformed.
7461 // Or transform (add (mul x, c0), c1) ->
7462 //              (add (mul (add x, c1/c0-1), c0), c1%c0+c0),
7463 // if c1/c0-1 and c1%c0+c0 are simm12, while c1 is not. A special corner
7464 // case that should be excluded is when c0*(c1/c0-1) is simm12, which will
7465 // lead to an infinite loop in DAGCombine if transformed.
7466 // Or transform (add (mul x, c0), c1) ->
7467 //              (mul (add x, c1/c0), c0).
7468 // if c1%c0 is zero, and c1/c0 is simm12 while c1 is not.
7469 static SDValue transformAddImmMulImm(SDNode *N, SelectionDAG &DAG,
7470                                      const RISCVSubtarget &Subtarget) {
7471   // Skip for vector types and larger types.
7472   EVT VT = N->getValueType(0);
7473   if (VT.isVector() || VT.getSizeInBits() > Subtarget.getXLen())
7474     return SDValue();
7475   // The first operand node must be a MUL and has no other use.
7476   SDValue N0 = N->getOperand(0);
7477   if (!N0->hasOneUse() || N0->getOpcode() != ISD::MUL)
7478     return SDValue();
7479   // Check if c0 and c1 match above conditions.
7480   auto *N0C = dyn_cast<ConstantSDNode>(N0->getOperand(1));
7481   auto *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1));
7482   if (!N0C || !N1C)
7483     return SDValue();
7484   // If N0C has multiple uses it's possible one of the cases in
7485   // DAGCombiner::isMulAddWithConstProfitable will be true, which would result
7486   // in an infinite loop.
7487   if (!N0C->hasOneUse())
7488     return SDValue();
7489   int64_t C0 = N0C->getSExtValue();
7490   int64_t C1 = N1C->getSExtValue();
7491   int64_t CA, CB;
7492   if (C0 == -1 || C0 == 0 || C0 == 1 || isInt<12>(C1))
7493     return SDValue();
7494   // Search for proper CA (non-zero) and CB that both are simm12.
7495   if ((C1 / C0) != 0 && isInt<12>(C1 / C0) && isInt<12>(C1 % C0) &&
7496       !isInt<12>(C0 * (C1 / C0))) {
7497     CA = C1 / C0;
7498     CB = C1 % C0;
7499   } else if ((C1 / C0 + 1) != 0 && isInt<12>(C1 / C0 + 1) &&
7500              isInt<12>(C1 % C0 - C0) && !isInt<12>(C0 * (C1 / C0 + 1))) {
7501     CA = C1 / C0 + 1;
7502     CB = C1 % C0 - C0;
7503   } else if ((C1 / C0 - 1) != 0 && isInt<12>(C1 / C0 - 1) &&
7504              isInt<12>(C1 % C0 + C0) && !isInt<12>(C0 * (C1 / C0 - 1))) {
7505     CA = C1 / C0 - 1;
7506     CB = C1 % C0 + C0;
7507   } else
7508     return SDValue();
7509   // Build new nodes (add (mul (add x, c1/c0), c0), c1%c0).
7510   SDLoc DL(N);
7511   SDValue New0 = DAG.getNode(ISD::ADD, DL, VT, N0->getOperand(0),
7512                              DAG.getConstant(CA, DL, VT));
7513   SDValue New1 =
7514       DAG.getNode(ISD::MUL, DL, VT, New0, DAG.getConstant(C0, DL, VT));
7515   return DAG.getNode(ISD::ADD, DL, VT, New1, DAG.getConstant(CB, DL, VT));
7516 }
7517 
7518 static SDValue performADDCombine(SDNode *N, SelectionDAG &DAG,
7519                                  const RISCVSubtarget &Subtarget) {
7520   if (SDValue V = transformAddImmMulImm(N, DAG, Subtarget))
7521     return V;
7522   if (SDValue V = transformAddShlImm(N, DAG, Subtarget))
7523     return V;
7524   // fold (add (select lhs, rhs, cc, 0, y), x) ->
7525   //      (select lhs, rhs, cc, x, (add x, y))
7526   return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false);
7527 }
7528 
7529 static SDValue performSUBCombine(SDNode *N, SelectionDAG &DAG) {
7530   // fold (sub x, (select lhs, rhs, cc, 0, y)) ->
7531   //      (select lhs, rhs, cc, x, (sub x, y))
7532   SDValue N0 = N->getOperand(0);
7533   SDValue N1 = N->getOperand(1);
7534   return combineSelectAndUse(N, N1, N0, DAG, /*AllOnes*/ false);
7535 }
7536 
7537 static SDValue performANDCombine(SDNode *N, SelectionDAG &DAG) {
7538   // fold (and (select lhs, rhs, cc, -1, y), x) ->
7539   //      (select lhs, rhs, cc, x, (and x, y))
7540   return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ true);
7541 }
7542 
7543 static SDValue performORCombine(SDNode *N, SelectionDAG &DAG,
7544                                 const RISCVSubtarget &Subtarget) {
7545   if (Subtarget.hasStdExtZbp()) {
7546     if (auto GREV = combineORToGREV(SDValue(N, 0), DAG, Subtarget))
7547       return GREV;
7548     if (auto GORC = combineORToGORC(SDValue(N, 0), DAG, Subtarget))
7549       return GORC;
7550     if (auto SHFL = combineORToSHFL(SDValue(N, 0), DAG, Subtarget))
7551       return SHFL;
7552   }
7553 
7554   // fold (or (select cond, 0, y), x) ->
7555   //      (select cond, x, (or x, y))
7556   return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false);
7557 }
7558 
7559 static SDValue performXORCombine(SDNode *N, SelectionDAG &DAG) {
7560   // fold (xor (select cond, 0, y), x) ->
7561   //      (select cond, x, (xor x, y))
7562   return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false);
7563 }
7564 
7565 static SDValue performSIGN_EXTEND_INREG(SDNode *N, SelectionDAG &DAG) {
7566   SDValue Src = N->getOperand(0);
7567 
7568   // Fold (sext_inreg (fmv_x_anyexth X), i16) -> (fmv_x_signexth X)
7569   if (Src.getOpcode() == RISCVISD::FMV_X_ANYEXTH &&
7570       cast<VTSDNode>(N->getOperand(1))->getVT().bitsGE(MVT::i16))
7571     return DAG.getNode(RISCVISD::FMV_X_SIGNEXTH, SDLoc(N), N->getValueType(0),
7572                        Src.getOperand(0));
7573 
7574   return SDValue();
7575 }
7576 
7577 // Attempt to turn ANY_EXTEND into SIGN_EXTEND if the input to the ANY_EXTEND
7578 // has users that require SIGN_EXTEND and the SIGN_EXTEND can be done for free
7579 // by an instruction like ADDW/SUBW/MULW. Without this the ANY_EXTEND would be
7580 // removed during type legalization leaving an ADD/SUB/MUL use that won't use
7581 // ADDW/SUBW/MULW.
7582 static SDValue performANY_EXTENDCombine(SDNode *N,
7583                                         TargetLowering::DAGCombinerInfo &DCI,
7584                                         const RISCVSubtarget &Subtarget) {
7585   if (!Subtarget.is64Bit())
7586     return SDValue();
7587 
7588   SelectionDAG &DAG = DCI.DAG;
7589 
7590   SDValue Src = N->getOperand(0);
7591   EVT VT = N->getValueType(0);
7592   if (VT != MVT::i64 || Src.getValueType() != MVT::i32)
7593     return SDValue();
7594 
7595   // The opcode must be one that can implicitly sign_extend.
7596   // FIXME: Additional opcodes.
7597   switch (Src.getOpcode()) {
7598   default:
7599     return SDValue();
7600   case ISD::MUL:
7601     if (!Subtarget.hasStdExtM())
7602       return SDValue();
7603     LLVM_FALLTHROUGH;
7604   case ISD::ADD:
7605   case ISD::SUB:
7606     break;
7607   }
7608 
7609   // Only handle cases where the result is used by a CopyToReg. That likely
7610   // means the value is a liveout of the basic block. This helps prevent
7611   // infinite combine loops like PR51206.
7612   if (none_of(N->uses(),
7613               [](SDNode *User) { return User->getOpcode() == ISD::CopyToReg; }))
7614     return SDValue();
7615 
7616   SmallVector<SDNode *, 4> SetCCs;
7617   for (SDNode::use_iterator UI = Src.getNode()->use_begin(),
7618                             UE = Src.getNode()->use_end();
7619        UI != UE; ++UI) {
7620     SDNode *User = *UI;
7621     if (User == N)
7622       continue;
7623     if (UI.getUse().getResNo() != Src.getResNo())
7624       continue;
7625     // All i32 setccs are legalized by sign extending operands.
7626     if (User->getOpcode() == ISD::SETCC) {
7627       SetCCs.push_back(User);
7628       continue;
7629     }
7630     // We don't know if we can extend this user.
7631     break;
7632   }
7633 
7634   // If we don't have any SetCCs, this isn't worthwhile.
7635   if (SetCCs.empty())
7636     return SDValue();
7637 
7638   SDLoc DL(N);
7639   SDValue SExt = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Src);
7640   DCI.CombineTo(N, SExt);
7641 
7642   // Promote all the setccs.
7643   for (SDNode *SetCC : SetCCs) {
7644     SmallVector<SDValue, 4> Ops;
7645 
7646     for (unsigned j = 0; j != 2; ++j) {
7647       SDValue SOp = SetCC->getOperand(j);
7648       if (SOp == Src)
7649         Ops.push_back(SExt);
7650       else
7651         Ops.push_back(DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, SOp));
7652     }
7653 
7654     Ops.push_back(SetCC->getOperand(2));
7655     DCI.CombineTo(SetCC,
7656                   DAG.getNode(ISD::SETCC, DL, SetCC->getValueType(0), Ops));
7657   }
7658   return SDValue(N, 0);
7659 }
7660 
7661 // Try to form vwadd(u).wv/wx or vwsub(u).wv/wx. It might later be optimized to
7662 // vwadd(u).vv/vx or vwsub(u).vv/vx.
7663 static SDValue combineADDSUB_VLToVWADDSUB_VL(SDNode *N, SelectionDAG &DAG,
7664                                              bool Commute = false) {
7665   assert((N->getOpcode() == RISCVISD::ADD_VL ||
7666           N->getOpcode() == RISCVISD::SUB_VL) &&
7667          "Unexpected opcode");
7668   bool IsAdd = N->getOpcode() == RISCVISD::ADD_VL;
7669   SDValue Op0 = N->getOperand(0);
7670   SDValue Op1 = N->getOperand(1);
7671   if (Commute)
7672     std::swap(Op0, Op1);
7673 
7674   MVT VT = N->getSimpleValueType(0);
7675 
7676   // Determine the narrow size for a widening add/sub.
7677   unsigned NarrowSize = VT.getScalarSizeInBits() / 2;
7678   MVT NarrowVT = MVT::getVectorVT(MVT::getIntegerVT(NarrowSize),
7679                                   VT.getVectorElementCount());
7680 
7681   SDValue Mask = N->getOperand(2);
7682   SDValue VL = N->getOperand(3);
7683 
7684   SDLoc DL(N);
7685 
7686   // If the RHS is a sext or zext, we can form a widening op.
7687   if ((Op1.getOpcode() == RISCVISD::VZEXT_VL ||
7688        Op1.getOpcode() == RISCVISD::VSEXT_VL) &&
7689       Op1.hasOneUse() && Op1.getOperand(1) == Mask && Op1.getOperand(2) == VL) {
7690     unsigned ExtOpc = Op1.getOpcode();
7691     Op1 = Op1.getOperand(0);
7692     // Re-introduce narrower extends if needed.
7693     if (Op1.getValueType() != NarrowVT)
7694       Op1 = DAG.getNode(ExtOpc, DL, NarrowVT, Op1, Mask, VL);
7695 
7696     unsigned WOpc;
7697     if (ExtOpc == RISCVISD::VSEXT_VL)
7698       WOpc = IsAdd ? RISCVISD::VWADD_W_VL : RISCVISD::VWSUB_W_VL;
7699     else
7700       WOpc = IsAdd ? RISCVISD::VWADDU_W_VL : RISCVISD::VWSUBU_W_VL;
7701 
7702     return DAG.getNode(WOpc, DL, VT, Op0, Op1, Mask, VL);
7703   }
7704 
7705   // FIXME: Is it useful to form a vwadd.wx or vwsub.wx if it removes a scalar
7706   // sext/zext?
7707 
7708   return SDValue();
7709 }
7710 
7711 // Try to convert vwadd(u).wv/wx or vwsub(u).wv/wx to vwadd(u).vv/vx or
7712 // vwsub(u).vv/vx.
7713 static SDValue combineVWADD_W_VL_VWSUB_W_VL(SDNode *N, SelectionDAG &DAG) {
7714   SDValue Op0 = N->getOperand(0);
7715   SDValue Op1 = N->getOperand(1);
7716   SDValue Mask = N->getOperand(2);
7717   SDValue VL = N->getOperand(3);
7718 
7719   MVT VT = N->getSimpleValueType(0);
7720   MVT NarrowVT = Op1.getSimpleValueType();
7721   unsigned NarrowSize = NarrowVT.getScalarSizeInBits();
7722 
7723   unsigned VOpc;
7724   switch (N->getOpcode()) {
7725   default: llvm_unreachable("Unexpected opcode");
7726   case RISCVISD::VWADD_W_VL:  VOpc = RISCVISD::VWADD_VL;  break;
7727   case RISCVISD::VWSUB_W_VL:  VOpc = RISCVISD::VWSUB_VL;  break;
7728   case RISCVISD::VWADDU_W_VL: VOpc = RISCVISD::VWADDU_VL; break;
7729   case RISCVISD::VWSUBU_W_VL: VOpc = RISCVISD::VWSUBU_VL; break;
7730   }
7731 
7732   bool IsSigned = N->getOpcode() == RISCVISD::VWADD_W_VL ||
7733                   N->getOpcode() == RISCVISD::VWSUB_W_VL;
7734 
7735   SDLoc DL(N);
7736 
7737   // If the LHS is a sext or zext, we can narrow this op to the same size as
7738   // the RHS.
7739   if (((Op0.getOpcode() == RISCVISD::VZEXT_VL && !IsSigned) ||
7740        (Op0.getOpcode() == RISCVISD::VSEXT_VL && IsSigned)) &&
7741       Op0.hasOneUse() && Op0.getOperand(1) == Mask && Op0.getOperand(2) == VL) {
7742     unsigned ExtOpc = Op0.getOpcode();
7743     Op0 = Op0.getOperand(0);
7744     // Re-introduce narrower extends if needed.
7745     if (Op0.getValueType() != NarrowVT)
7746       Op0 = DAG.getNode(ExtOpc, DL, NarrowVT, Op0, Mask, VL);
7747     return DAG.getNode(VOpc, DL, VT, Op0, Op1, Mask, VL);
7748   }
7749 
7750   bool IsAdd = N->getOpcode() == RISCVISD::VWADD_W_VL ||
7751                N->getOpcode() == RISCVISD::VWADDU_W_VL;
7752 
7753   // Look for splats on the left hand side of a vwadd(u).wv. We might be able
7754   // to commute and use a vwadd(u).vx instead.
7755   if (IsAdd && Op0.getOpcode() == RISCVISD::VMV_V_X_VL &&
7756       Op0.getOperand(0).isUndef() && Op0.getOperand(2) == VL) {
7757     Op0 = Op0.getOperand(1);
7758 
7759     // See if have enough sign bits or zero bits in the scalar to use a
7760     // widening add/sub by splatting to smaller element size.
7761     unsigned EltBits = VT.getScalarSizeInBits();
7762     unsigned ScalarBits = Op0.getValueSizeInBits();
7763     // Make sure we're getting all element bits from the scalar register.
7764     // FIXME: Support implicit sign extension of vmv.v.x?
7765     if (ScalarBits < EltBits)
7766       return SDValue();
7767 
7768     if (IsSigned) {
7769       if (DAG.ComputeNumSignBits(Op0) <= (ScalarBits - NarrowSize))
7770         return SDValue();
7771     } else {
7772       APInt Mask = APInt::getBitsSetFrom(ScalarBits, NarrowSize);
7773       if (!DAG.MaskedValueIsZero(Op0, Mask))
7774         return SDValue();
7775     }
7776 
7777     Op0 = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, NarrowVT,
7778                       DAG.getUNDEF(NarrowVT), Op0, VL);
7779     return DAG.getNode(VOpc, DL, VT, Op1, Op0, Mask, VL);
7780   }
7781 
7782   return SDValue();
7783 }
7784 
7785 // Try to form VWMUL, VWMULU or VWMULSU.
7786 // TODO: Support VWMULSU.vx with a sign extend Op and a splat of scalar Op.
7787 static SDValue combineMUL_VLToVWMUL_VL(SDNode *N, SelectionDAG &DAG,
7788                                        bool Commute) {
7789   assert(N->getOpcode() == RISCVISD::MUL_VL && "Unexpected opcode");
7790   SDValue Op0 = N->getOperand(0);
7791   SDValue Op1 = N->getOperand(1);
7792   if (Commute)
7793     std::swap(Op0, Op1);
7794 
7795   bool IsSignExt = Op0.getOpcode() == RISCVISD::VSEXT_VL;
7796   bool IsZeroExt = Op0.getOpcode() == RISCVISD::VZEXT_VL;
7797   bool IsVWMULSU = IsSignExt && Op1.getOpcode() == RISCVISD::VZEXT_VL;
7798   if ((!IsSignExt && !IsZeroExt) || !Op0.hasOneUse())
7799     return SDValue();
7800 
7801   SDValue Mask = N->getOperand(2);
7802   SDValue VL = N->getOperand(3);
7803 
7804   // Make sure the mask and VL match.
7805   if (Op0.getOperand(1) != Mask || Op0.getOperand(2) != VL)
7806     return SDValue();
7807 
7808   MVT VT = N->getSimpleValueType(0);
7809 
7810   // Determine the narrow size for a widening multiply.
7811   unsigned NarrowSize = VT.getScalarSizeInBits() / 2;
7812   MVT NarrowVT = MVT::getVectorVT(MVT::getIntegerVT(NarrowSize),
7813                                   VT.getVectorElementCount());
7814 
7815   SDLoc DL(N);
7816 
7817   // See if the other operand is the same opcode.
7818   if (IsVWMULSU || Op0.getOpcode() == Op1.getOpcode()) {
7819     if (!Op1.hasOneUse())
7820       return SDValue();
7821 
7822     // Make sure the mask and VL match.
7823     if (Op1.getOperand(1) != Mask || Op1.getOperand(2) != VL)
7824       return SDValue();
7825 
7826     Op1 = Op1.getOperand(0);
7827   } else if (Op1.getOpcode() == RISCVISD::VMV_V_X_VL) {
7828     // The operand is a splat of a scalar.
7829 
7830     // The pasthru must be undef for tail agnostic
7831     if (!Op1.getOperand(0).isUndef())
7832       return SDValue();
7833     // The VL must be the same.
7834     if (Op1.getOperand(2) != VL)
7835       return SDValue();
7836 
7837     // Get the scalar value.
7838     Op1 = Op1.getOperand(1);
7839 
7840     // See if have enough sign bits or zero bits in the scalar to use a
7841     // widening multiply by splatting to smaller element size.
7842     unsigned EltBits = VT.getScalarSizeInBits();
7843     unsigned ScalarBits = Op1.getValueSizeInBits();
7844     // Make sure we're getting all element bits from the scalar register.
7845     // FIXME: Support implicit sign extension of vmv.v.x?
7846     if (ScalarBits < EltBits)
7847       return SDValue();
7848 
7849     // If the LHS is a sign extend, try to use vwmul.
7850     if (IsSignExt && DAG.ComputeNumSignBits(Op1) > (ScalarBits - NarrowSize)) {
7851       // Can use vwmul.
7852     } else {
7853       // Otherwise try to use vwmulu or vwmulsu.
7854       APInt Mask = APInt::getBitsSetFrom(ScalarBits, NarrowSize);
7855       if (DAG.MaskedValueIsZero(Op1, Mask))
7856         IsVWMULSU = IsSignExt;
7857       else
7858         return SDValue();
7859     }
7860 
7861     Op1 = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, NarrowVT,
7862                       DAG.getUNDEF(NarrowVT), Op1, VL);
7863   } else
7864     return SDValue();
7865 
7866   Op0 = Op0.getOperand(0);
7867 
7868   // Re-introduce narrower extends if needed.
7869   unsigned ExtOpc = IsSignExt ? RISCVISD::VSEXT_VL : RISCVISD::VZEXT_VL;
7870   if (Op0.getValueType() != NarrowVT)
7871     Op0 = DAG.getNode(ExtOpc, DL, NarrowVT, Op0, Mask, VL);
7872   // vwmulsu requires second operand to be zero extended.
7873   ExtOpc = IsVWMULSU ? RISCVISD::VZEXT_VL : ExtOpc;
7874   if (Op1.getValueType() != NarrowVT)
7875     Op1 = DAG.getNode(ExtOpc, DL, NarrowVT, Op1, Mask, VL);
7876 
7877   unsigned WMulOpc = RISCVISD::VWMULSU_VL;
7878   if (!IsVWMULSU)
7879     WMulOpc = IsSignExt ? RISCVISD::VWMUL_VL : RISCVISD::VWMULU_VL;
7880   return DAG.getNode(WMulOpc, DL, VT, Op0, Op1, Mask, VL);
7881 }
7882 
7883 static RISCVFPRndMode::RoundingMode matchRoundingOp(SDValue Op) {
7884   switch (Op.getOpcode()) {
7885   case ISD::FROUNDEVEN: return RISCVFPRndMode::RNE;
7886   case ISD::FTRUNC:     return RISCVFPRndMode::RTZ;
7887   case ISD::FFLOOR:     return RISCVFPRndMode::RDN;
7888   case ISD::FCEIL:      return RISCVFPRndMode::RUP;
7889   case ISD::FROUND:     return RISCVFPRndMode::RMM;
7890   }
7891 
7892   return RISCVFPRndMode::Invalid;
7893 }
7894 
7895 // Fold
7896 //   (fp_to_int (froundeven X)) -> fcvt X, rne
7897 //   (fp_to_int (ftrunc X))     -> fcvt X, rtz
7898 //   (fp_to_int (ffloor X))     -> fcvt X, rdn
7899 //   (fp_to_int (fceil X))      -> fcvt X, rup
7900 //   (fp_to_int (fround X))     -> fcvt X, rmm
7901 static SDValue performFP_TO_INTCombine(SDNode *N,
7902                                        TargetLowering::DAGCombinerInfo &DCI,
7903                                        const RISCVSubtarget &Subtarget) {
7904   SelectionDAG &DAG = DCI.DAG;
7905   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7906   MVT XLenVT = Subtarget.getXLenVT();
7907 
7908   // Only handle XLen or i32 types. Other types narrower than XLen will
7909   // eventually be legalized to XLenVT.
7910   EVT VT = N->getValueType(0);
7911   if (VT != MVT::i32 && VT != XLenVT)
7912     return SDValue();
7913 
7914   SDValue Src = N->getOperand(0);
7915 
7916   // Ensure the FP type is also legal.
7917   if (!TLI.isTypeLegal(Src.getValueType()))
7918     return SDValue();
7919 
7920   // Don't do this for f16 with Zfhmin and not Zfh.
7921   if (Src.getValueType() == MVT::f16 && !Subtarget.hasStdExtZfh())
7922     return SDValue();
7923 
7924   RISCVFPRndMode::RoundingMode FRM = matchRoundingOp(Src);
7925   if (FRM == RISCVFPRndMode::Invalid)
7926     return SDValue();
7927 
7928   bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT;
7929 
7930   unsigned Opc;
7931   if (VT == XLenVT)
7932     Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU;
7933   else
7934     Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64;
7935 
7936   SDLoc DL(N);
7937   SDValue FpToInt = DAG.getNode(Opc, DL, XLenVT, Src.getOperand(0),
7938                                 DAG.getTargetConstant(FRM, DL, XLenVT));
7939   return DAG.getNode(ISD::TRUNCATE, DL, VT, FpToInt);
7940 }
7941 
7942 // Fold
7943 //   (fp_to_int_sat (froundeven X)) -> (select X == nan, 0, (fcvt X, rne))
7944 //   (fp_to_int_sat (ftrunc X))     -> (select X == nan, 0, (fcvt X, rtz))
7945 //   (fp_to_int_sat (ffloor X))     -> (select X == nan, 0, (fcvt X, rdn))
7946 //   (fp_to_int_sat (fceil X))      -> (select X == nan, 0, (fcvt X, rup))
7947 //   (fp_to_int_sat (fround X))     -> (select X == nan, 0, (fcvt X, rmm))
7948 static SDValue performFP_TO_INT_SATCombine(SDNode *N,
7949                                        TargetLowering::DAGCombinerInfo &DCI,
7950                                        const RISCVSubtarget &Subtarget) {
7951   SelectionDAG &DAG = DCI.DAG;
7952   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7953   MVT XLenVT = Subtarget.getXLenVT();
7954 
7955   // Only handle XLen types. Other types narrower than XLen will eventually be
7956   // legalized to XLenVT.
7957   EVT DstVT = N->getValueType(0);
7958   if (DstVT != XLenVT)
7959     return SDValue();
7960 
7961   SDValue Src = N->getOperand(0);
7962 
7963   // Ensure the FP type is also legal.
7964   if (!TLI.isTypeLegal(Src.getValueType()))
7965     return SDValue();
7966 
7967   // Don't do this for f16 with Zfhmin and not Zfh.
7968   if (Src.getValueType() == MVT::f16 && !Subtarget.hasStdExtZfh())
7969     return SDValue();
7970 
7971   EVT SatVT = cast<VTSDNode>(N->getOperand(1))->getVT();
7972 
7973   RISCVFPRndMode::RoundingMode FRM = matchRoundingOp(Src);
7974   if (FRM == RISCVFPRndMode::Invalid)
7975     return SDValue();
7976 
7977   bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT_SAT;
7978 
7979   unsigned Opc;
7980   if (SatVT == DstVT)
7981     Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU;
7982   else if (DstVT == MVT::i64 && SatVT == MVT::i32)
7983     Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64;
7984   else
7985     return SDValue();
7986   // FIXME: Support other SatVTs by clamping before or after the conversion.
7987 
7988   Src = Src.getOperand(0);
7989 
7990   SDLoc DL(N);
7991   SDValue FpToInt = DAG.getNode(Opc, DL, XLenVT, Src,
7992                                 DAG.getTargetConstant(FRM, DL, XLenVT));
7993 
7994   // RISCV FP-to-int conversions saturate to the destination register size, but
7995   // don't produce 0 for nan.
7996   SDValue ZeroInt = DAG.getConstant(0, DL, DstVT);
7997   return DAG.getSelectCC(DL, Src, Src, ZeroInt, FpToInt, ISD::CondCode::SETUO);
7998 }
7999 
8000 SDValue RISCVTargetLowering::PerformDAGCombine(SDNode *N,
8001                                                DAGCombinerInfo &DCI) const {
8002   SelectionDAG &DAG = DCI.DAG;
8003 
8004   // Helper to call SimplifyDemandedBits on an operand of N where only some low
8005   // bits are demanded. N will be added to the Worklist if it was not deleted.
8006   // Caller should return SDValue(N, 0) if this returns true.
8007   auto SimplifyDemandedLowBitsHelper = [&](unsigned OpNo, unsigned LowBits) {
8008     SDValue Op = N->getOperand(OpNo);
8009     APInt Mask = APInt::getLowBitsSet(Op.getValueSizeInBits(), LowBits);
8010     if (!SimplifyDemandedBits(Op, Mask, DCI))
8011       return false;
8012 
8013     if (N->getOpcode() != ISD::DELETED_NODE)
8014       DCI.AddToWorklist(N);
8015     return true;
8016   };
8017 
8018   switch (N->getOpcode()) {
8019   default:
8020     break;
8021   case RISCVISD::SplitF64: {
8022     SDValue Op0 = N->getOperand(0);
8023     // If the input to SplitF64 is just BuildPairF64 then the operation is
8024     // redundant. Instead, use BuildPairF64's operands directly.
8025     if (Op0->getOpcode() == RISCVISD::BuildPairF64)
8026       return DCI.CombineTo(N, Op0.getOperand(0), Op0.getOperand(1));
8027 
8028     if (Op0->isUndef()) {
8029       SDValue Lo = DAG.getUNDEF(MVT::i32);
8030       SDValue Hi = DAG.getUNDEF(MVT::i32);
8031       return DCI.CombineTo(N, Lo, Hi);
8032     }
8033 
8034     SDLoc DL(N);
8035 
8036     // It's cheaper to materialise two 32-bit integers than to load a double
8037     // from the constant pool and transfer it to integer registers through the
8038     // stack.
8039     if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op0)) {
8040       APInt V = C->getValueAPF().bitcastToAPInt();
8041       SDValue Lo = DAG.getConstant(V.trunc(32), DL, MVT::i32);
8042       SDValue Hi = DAG.getConstant(V.lshr(32).trunc(32), DL, MVT::i32);
8043       return DCI.CombineTo(N, Lo, Hi);
8044     }
8045 
8046     // This is a target-specific version of a DAGCombine performed in
8047     // DAGCombiner::visitBITCAST. It performs the equivalent of:
8048     // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
8049     // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
8050     if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) ||
8051         !Op0.getNode()->hasOneUse())
8052       break;
8053     SDValue NewSplitF64 =
8054         DAG.getNode(RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32),
8055                     Op0.getOperand(0));
8056     SDValue Lo = NewSplitF64.getValue(0);
8057     SDValue Hi = NewSplitF64.getValue(1);
8058     APInt SignBit = APInt::getSignMask(32);
8059     if (Op0.getOpcode() == ISD::FNEG) {
8060       SDValue NewHi = DAG.getNode(ISD::XOR, DL, MVT::i32, Hi,
8061                                   DAG.getConstant(SignBit, DL, MVT::i32));
8062       return DCI.CombineTo(N, Lo, NewHi);
8063     }
8064     assert(Op0.getOpcode() == ISD::FABS);
8065     SDValue NewHi = DAG.getNode(ISD::AND, DL, MVT::i32, Hi,
8066                                 DAG.getConstant(~SignBit, DL, MVT::i32));
8067     return DCI.CombineTo(N, Lo, NewHi);
8068   }
8069   case RISCVISD::SLLW:
8070   case RISCVISD::SRAW:
8071   case RISCVISD::SRLW: {
8072     // Only the lower 32 bits of LHS and lower 5 bits of RHS are read.
8073     if (SimplifyDemandedLowBitsHelper(0, 32) ||
8074         SimplifyDemandedLowBitsHelper(1, 5))
8075       return SDValue(N, 0);
8076 
8077     break;
8078   }
8079   case ISD::ROTR:
8080   case ISD::ROTL:
8081   case RISCVISD::RORW:
8082   case RISCVISD::ROLW: {
8083     if (N->getOpcode() == RISCVISD::RORW || N->getOpcode() == RISCVISD::ROLW) {
8084       // Only the lower 32 bits of LHS and lower 5 bits of RHS are read.
8085       if (SimplifyDemandedLowBitsHelper(0, 32) ||
8086           SimplifyDemandedLowBitsHelper(1, 5))
8087         return SDValue(N, 0);
8088     }
8089 
8090     return combineROTR_ROTL_RORW_ROLW(N, DAG, Subtarget);
8091   }
8092   case RISCVISD::CLZW:
8093   case RISCVISD::CTZW: {
8094     // Only the lower 32 bits of the first operand are read
8095     if (SimplifyDemandedLowBitsHelper(0, 32))
8096       return SDValue(N, 0);
8097     break;
8098   }
8099   case RISCVISD::GREV:
8100   case RISCVISD::GORC: {
8101     // Only the lower log2(Bitwidth) bits of the the shift amount are read.
8102     unsigned BitWidth = N->getOperand(1).getValueSizeInBits();
8103     assert(isPowerOf2_32(BitWidth) && "Unexpected bit width");
8104     if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth)))
8105       return SDValue(N, 0);
8106 
8107     return combineGREVI_GORCI(N, DAG);
8108   }
8109   case RISCVISD::GREVW:
8110   case RISCVISD::GORCW: {
8111     // Only the lower 32 bits of LHS and lower 5 bits of RHS are read.
8112     if (SimplifyDemandedLowBitsHelper(0, 32) ||
8113         SimplifyDemandedLowBitsHelper(1, 5))
8114       return SDValue(N, 0);
8115 
8116     return combineGREVI_GORCI(N, DAG);
8117   }
8118   case RISCVISD::SHFL:
8119   case RISCVISD::UNSHFL: {
8120     // Only the lower log2(Bitwidth)-1 bits of the the shift amount are read.
8121     unsigned BitWidth = N->getOperand(1).getValueSizeInBits();
8122     assert(isPowerOf2_32(BitWidth) && "Unexpected bit width");
8123     if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth) - 1))
8124       return SDValue(N, 0);
8125 
8126     break;
8127   }
8128   case RISCVISD::SHFLW:
8129   case RISCVISD::UNSHFLW: {
8130     // Only the lower 32 bits of LHS and lower 4 bits of RHS are read.
8131     if (SimplifyDemandedLowBitsHelper(0, 32) ||
8132         SimplifyDemandedLowBitsHelper(1, 4))
8133       return SDValue(N, 0);
8134 
8135     break;
8136   }
8137   case RISCVISD::BCOMPRESSW:
8138   case RISCVISD::BDECOMPRESSW: {
8139     // Only the lower 32 bits of LHS and RHS are read.
8140     if (SimplifyDemandedLowBitsHelper(0, 32) ||
8141         SimplifyDemandedLowBitsHelper(1, 32))
8142       return SDValue(N, 0);
8143 
8144     break;
8145   }
8146   case RISCVISD::FMV_X_ANYEXTH:
8147   case RISCVISD::FMV_X_ANYEXTW_RV64: {
8148     SDLoc DL(N);
8149     SDValue Op0 = N->getOperand(0);
8150     MVT VT = N->getSimpleValueType(0);
8151     // If the input to FMV_X_ANYEXTW_RV64 is just FMV_W_X_RV64 then the
8152     // conversion is unnecessary and can be replaced with the FMV_W_X_RV64
8153     // operand. Similar for FMV_X_ANYEXTH and FMV_H_X.
8154     if ((N->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64 &&
8155          Op0->getOpcode() == RISCVISD::FMV_W_X_RV64) ||
8156         (N->getOpcode() == RISCVISD::FMV_X_ANYEXTH &&
8157          Op0->getOpcode() == RISCVISD::FMV_H_X)) {
8158       assert(Op0.getOperand(0).getValueType() == VT &&
8159              "Unexpected value type!");
8160       return Op0.getOperand(0);
8161     }
8162 
8163     // This is a target-specific version of a DAGCombine performed in
8164     // DAGCombiner::visitBITCAST. It performs the equivalent of:
8165     // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
8166     // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
8167     if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) ||
8168         !Op0.getNode()->hasOneUse())
8169       break;
8170     SDValue NewFMV = DAG.getNode(N->getOpcode(), DL, VT, Op0.getOperand(0));
8171     unsigned FPBits = N->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64 ? 32 : 16;
8172     APInt SignBit = APInt::getSignMask(FPBits).sextOrSelf(VT.getSizeInBits());
8173     if (Op0.getOpcode() == ISD::FNEG)
8174       return DAG.getNode(ISD::XOR, DL, VT, NewFMV,
8175                          DAG.getConstant(SignBit, DL, VT));
8176 
8177     assert(Op0.getOpcode() == ISD::FABS);
8178     return DAG.getNode(ISD::AND, DL, VT, NewFMV,
8179                        DAG.getConstant(~SignBit, DL, VT));
8180   }
8181   case ISD::ADD:
8182     return performADDCombine(N, DAG, Subtarget);
8183   case ISD::SUB:
8184     return performSUBCombine(N, DAG);
8185   case ISD::AND:
8186     return performANDCombine(N, DAG);
8187   case ISD::OR:
8188     return performORCombine(N, DAG, Subtarget);
8189   case ISD::XOR:
8190     return performXORCombine(N, DAG);
8191   case ISD::SIGN_EXTEND_INREG:
8192     return performSIGN_EXTEND_INREG(N, DAG);
8193   case ISD::ANY_EXTEND:
8194     return performANY_EXTENDCombine(N, DCI, Subtarget);
8195   case ISD::ZERO_EXTEND:
8196     // Fold (zero_extend (fp_to_uint X)) to prevent forming fcvt+zexti32 during
8197     // type legalization. This is safe because fp_to_uint produces poison if
8198     // it overflows.
8199     if (N->getValueType(0) == MVT::i64 && Subtarget.is64Bit()) {
8200       SDValue Src = N->getOperand(0);
8201       if (Src.getOpcode() == ISD::FP_TO_UINT &&
8202           isTypeLegal(Src.getOperand(0).getValueType()))
8203         return DAG.getNode(ISD::FP_TO_UINT, SDLoc(N), MVT::i64,
8204                            Src.getOperand(0));
8205       if (Src.getOpcode() == ISD::STRICT_FP_TO_UINT && Src.hasOneUse() &&
8206           isTypeLegal(Src.getOperand(1).getValueType())) {
8207         SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other);
8208         SDValue Res = DAG.getNode(ISD::STRICT_FP_TO_UINT, SDLoc(N), VTs,
8209                                   Src.getOperand(0), Src.getOperand(1));
8210         DCI.CombineTo(N, Res);
8211         DAG.ReplaceAllUsesOfValueWith(Src.getValue(1), Res.getValue(1));
8212         DCI.recursivelyDeleteUnusedNodes(Src.getNode());
8213         return SDValue(N, 0); // Return N so it doesn't get rechecked.
8214       }
8215     }
8216     return SDValue();
8217   case RISCVISD::SELECT_CC: {
8218     // Transform
8219     SDValue LHS = N->getOperand(0);
8220     SDValue RHS = N->getOperand(1);
8221     SDValue TrueV = N->getOperand(3);
8222     SDValue FalseV = N->getOperand(4);
8223 
8224     // If the True and False values are the same, we don't need a select_cc.
8225     if (TrueV == FalseV)
8226       return TrueV;
8227 
8228     ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(2))->get();
8229     if (!ISD::isIntEqualitySetCC(CCVal))
8230       break;
8231 
8232     // Fold (select_cc (setlt X, Y), 0, ne, trueV, falseV) ->
8233     //      (select_cc X, Y, lt, trueV, falseV)
8234     // Sometimes the setcc is introduced after select_cc has been formed.
8235     if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) &&
8236         LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) {
8237       // If we're looking for eq 0 instead of ne 0, we need to invert the
8238       // condition.
8239       bool Invert = CCVal == ISD::SETEQ;
8240       CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
8241       if (Invert)
8242         CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
8243 
8244       SDLoc DL(N);
8245       RHS = LHS.getOperand(1);
8246       LHS = LHS.getOperand(0);
8247       translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
8248 
8249       SDValue TargetCC = DAG.getCondCode(CCVal);
8250       return DAG.getNode(RISCVISD::SELECT_CC, DL, N->getValueType(0),
8251                          {LHS, RHS, TargetCC, TrueV, FalseV});
8252     }
8253 
8254     // Fold (select_cc (xor X, Y), 0, eq/ne, trueV, falseV) ->
8255     //      (select_cc X, Y, eq/ne, trueV, falseV)
8256     if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS))
8257       return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), N->getValueType(0),
8258                          {LHS.getOperand(0), LHS.getOperand(1),
8259                           N->getOperand(2), TrueV, FalseV});
8260     // (select_cc X, 1, setne, trueV, falseV) ->
8261     // (select_cc X, 0, seteq, trueV, falseV) if we can prove X is 0/1.
8262     // This can occur when legalizing some floating point comparisons.
8263     APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1);
8264     if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) {
8265       SDLoc DL(N);
8266       CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
8267       SDValue TargetCC = DAG.getCondCode(CCVal);
8268       RHS = DAG.getConstant(0, DL, LHS.getValueType());
8269       return DAG.getNode(RISCVISD::SELECT_CC, DL, N->getValueType(0),
8270                          {LHS, RHS, TargetCC, TrueV, FalseV});
8271     }
8272 
8273     break;
8274   }
8275   case RISCVISD::BR_CC: {
8276     SDValue LHS = N->getOperand(1);
8277     SDValue RHS = N->getOperand(2);
8278     ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(3))->get();
8279     if (!ISD::isIntEqualitySetCC(CCVal))
8280       break;
8281 
8282     // Fold (br_cc (setlt X, Y), 0, ne, dest) ->
8283     //      (br_cc X, Y, lt, dest)
8284     // Sometimes the setcc is introduced after br_cc has been formed.
8285     if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) &&
8286         LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) {
8287       // If we're looking for eq 0 instead of ne 0, we need to invert the
8288       // condition.
8289       bool Invert = CCVal == ISD::SETEQ;
8290       CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
8291       if (Invert)
8292         CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
8293 
8294       SDLoc DL(N);
8295       RHS = LHS.getOperand(1);
8296       LHS = LHS.getOperand(0);
8297       translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
8298 
8299       return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0),
8300                          N->getOperand(0), LHS, RHS, DAG.getCondCode(CCVal),
8301                          N->getOperand(4));
8302     }
8303 
8304     // Fold (br_cc (xor X, Y), 0, eq/ne, dest) ->
8305     //      (br_cc X, Y, eq/ne, trueV, falseV)
8306     if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS))
8307       return DAG.getNode(RISCVISD::BR_CC, SDLoc(N), N->getValueType(0),
8308                          N->getOperand(0), LHS.getOperand(0), LHS.getOperand(1),
8309                          N->getOperand(3), N->getOperand(4));
8310 
8311     // (br_cc X, 1, setne, br_cc) ->
8312     // (br_cc X, 0, seteq, br_cc) if we can prove X is 0/1.
8313     // This can occur when legalizing some floating point comparisons.
8314     APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1);
8315     if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) {
8316       SDLoc DL(N);
8317       CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
8318       SDValue TargetCC = DAG.getCondCode(CCVal);
8319       RHS = DAG.getConstant(0, DL, LHS.getValueType());
8320       return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0),
8321                          N->getOperand(0), LHS, RHS, TargetCC,
8322                          N->getOperand(4));
8323     }
8324     break;
8325   }
8326   case ISD::FP_TO_SINT:
8327   case ISD::FP_TO_UINT:
8328     return performFP_TO_INTCombine(N, DCI, Subtarget);
8329   case ISD::FP_TO_SINT_SAT:
8330   case ISD::FP_TO_UINT_SAT:
8331     return performFP_TO_INT_SATCombine(N, DCI, Subtarget);
8332   case ISD::FCOPYSIGN: {
8333     EVT VT = N->getValueType(0);
8334     if (!VT.isVector())
8335       break;
8336     // There is a form of VFSGNJ which injects the negated sign of its second
8337     // operand. Try and bubble any FNEG up after the extend/round to produce
8338     // this optimized pattern. Avoid modifying cases where FP_ROUND and
8339     // TRUNC=1.
8340     SDValue In2 = N->getOperand(1);
8341     // Avoid cases where the extend/round has multiple uses, as duplicating
8342     // those is typically more expensive than removing a fneg.
8343     if (!In2.hasOneUse())
8344       break;
8345     if (In2.getOpcode() != ISD::FP_EXTEND &&
8346         (In2.getOpcode() != ISD::FP_ROUND || In2.getConstantOperandVal(1) != 0))
8347       break;
8348     In2 = In2.getOperand(0);
8349     if (In2.getOpcode() != ISD::FNEG)
8350       break;
8351     SDLoc DL(N);
8352     SDValue NewFPExtRound = DAG.getFPExtendOrRound(In2.getOperand(0), DL, VT);
8353     return DAG.getNode(ISD::FCOPYSIGN, DL, VT, N->getOperand(0),
8354                        DAG.getNode(ISD::FNEG, DL, VT, NewFPExtRound));
8355   }
8356   case ISD::MGATHER:
8357   case ISD::MSCATTER:
8358   case ISD::VP_GATHER:
8359   case ISD::VP_SCATTER: {
8360     if (!DCI.isBeforeLegalize())
8361       break;
8362     SDValue Index, ScaleOp;
8363     bool IsIndexScaled = false;
8364     bool IsIndexSigned = false;
8365     if (const auto *VPGSN = dyn_cast<VPGatherScatterSDNode>(N)) {
8366       Index = VPGSN->getIndex();
8367       ScaleOp = VPGSN->getScale();
8368       IsIndexScaled = VPGSN->isIndexScaled();
8369       IsIndexSigned = VPGSN->isIndexSigned();
8370     } else {
8371       const auto *MGSN = cast<MaskedGatherScatterSDNode>(N);
8372       Index = MGSN->getIndex();
8373       ScaleOp = MGSN->getScale();
8374       IsIndexScaled = MGSN->isIndexScaled();
8375       IsIndexSigned = MGSN->isIndexSigned();
8376     }
8377     EVT IndexVT = Index.getValueType();
8378     MVT XLenVT = Subtarget.getXLenVT();
8379     // RISCV indexed loads only support the "unsigned unscaled" addressing
8380     // mode, so anything else must be manually legalized.
8381     bool NeedsIdxLegalization =
8382         IsIndexScaled ||
8383         (IsIndexSigned && IndexVT.getVectorElementType().bitsLT(XLenVT));
8384     if (!NeedsIdxLegalization)
8385       break;
8386 
8387     SDLoc DL(N);
8388 
8389     // Any index legalization should first promote to XLenVT, so we don't lose
8390     // bits when scaling. This may create an illegal index type so we let
8391     // LLVM's legalization take care of the splitting.
8392     // FIXME: LLVM can't split VP_GATHER or VP_SCATTER yet.
8393     if (IndexVT.getVectorElementType().bitsLT(XLenVT)) {
8394       IndexVT = IndexVT.changeVectorElementType(XLenVT);
8395       Index = DAG.getNode(IsIndexSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
8396                           DL, IndexVT, Index);
8397     }
8398 
8399     unsigned Scale = cast<ConstantSDNode>(ScaleOp)->getZExtValue();
8400     if (IsIndexScaled && Scale != 1) {
8401       // Manually scale the indices by the element size.
8402       // TODO: Sanitize the scale operand here?
8403       // TODO: For VP nodes, should we use VP_SHL here?
8404       assert(isPowerOf2_32(Scale) && "Expecting power-of-two types");
8405       SDValue SplatScale = DAG.getConstant(Log2_32(Scale), DL, IndexVT);
8406       Index = DAG.getNode(ISD::SHL, DL, IndexVT, Index, SplatScale);
8407     }
8408 
8409     ISD::MemIndexType NewIndexTy = ISD::UNSIGNED_UNSCALED;
8410     if (const auto *VPGN = dyn_cast<VPGatherSDNode>(N))
8411       return DAG.getGatherVP(N->getVTList(), VPGN->getMemoryVT(), DL,
8412                              {VPGN->getChain(), VPGN->getBasePtr(), Index,
8413                               VPGN->getScale(), VPGN->getMask(),
8414                               VPGN->getVectorLength()},
8415                              VPGN->getMemOperand(), NewIndexTy);
8416     if (const auto *VPSN = dyn_cast<VPScatterSDNode>(N))
8417       return DAG.getScatterVP(N->getVTList(), VPSN->getMemoryVT(), DL,
8418                               {VPSN->getChain(), VPSN->getValue(),
8419                                VPSN->getBasePtr(), Index, VPSN->getScale(),
8420                                VPSN->getMask(), VPSN->getVectorLength()},
8421                               VPSN->getMemOperand(), NewIndexTy);
8422     if (const auto *MGN = dyn_cast<MaskedGatherSDNode>(N))
8423       return DAG.getMaskedGather(
8424           N->getVTList(), MGN->getMemoryVT(), DL,
8425           {MGN->getChain(), MGN->getPassThru(), MGN->getMask(),
8426            MGN->getBasePtr(), Index, MGN->getScale()},
8427           MGN->getMemOperand(), NewIndexTy, MGN->getExtensionType());
8428     const auto *MSN = cast<MaskedScatterSDNode>(N);
8429     return DAG.getMaskedScatter(
8430         N->getVTList(), MSN->getMemoryVT(), DL,
8431         {MSN->getChain(), MSN->getValue(), MSN->getMask(), MSN->getBasePtr(),
8432          Index, MSN->getScale()},
8433         MSN->getMemOperand(), NewIndexTy, MSN->isTruncatingStore());
8434   }
8435   case RISCVISD::SRA_VL:
8436   case RISCVISD::SRL_VL:
8437   case RISCVISD::SHL_VL: {
8438     SDValue ShAmt = N->getOperand(1);
8439     if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) {
8440       // We don't need the upper 32 bits of a 64-bit element for a shift amount.
8441       SDLoc DL(N);
8442       SDValue VL = N->getOperand(3);
8443       EVT VT = N->getValueType(0);
8444       ShAmt = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, DAG.getUNDEF(VT),
8445                           ShAmt.getOperand(1), VL);
8446       return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt,
8447                          N->getOperand(2), N->getOperand(3));
8448     }
8449     break;
8450   }
8451   case ISD::SRA:
8452   case ISD::SRL:
8453   case ISD::SHL: {
8454     SDValue ShAmt = N->getOperand(1);
8455     if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) {
8456       // We don't need the upper 32 bits of a 64-bit element for a shift amount.
8457       SDLoc DL(N);
8458       EVT VT = N->getValueType(0);
8459       ShAmt = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, DAG.getUNDEF(VT),
8460                           ShAmt.getOperand(1),
8461                           DAG.getRegister(RISCV::X0, Subtarget.getXLenVT()));
8462       return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt);
8463     }
8464     break;
8465   }
8466   case RISCVISD::ADD_VL:
8467     if (SDValue V = combineADDSUB_VLToVWADDSUB_VL(N, DAG, /*Commute*/ false))
8468       return V;
8469     return combineADDSUB_VLToVWADDSUB_VL(N, DAG, /*Commute*/ true);
8470   case RISCVISD::SUB_VL:
8471     return combineADDSUB_VLToVWADDSUB_VL(N, DAG);
8472   case RISCVISD::VWADD_W_VL:
8473   case RISCVISD::VWADDU_W_VL:
8474   case RISCVISD::VWSUB_W_VL:
8475   case RISCVISD::VWSUBU_W_VL:
8476     return combineVWADD_W_VL_VWSUB_W_VL(N, DAG);
8477   case RISCVISD::MUL_VL:
8478     if (SDValue V = combineMUL_VLToVWMUL_VL(N, DAG, /*Commute*/ false))
8479       return V;
8480     // Mul is commutative.
8481     return combineMUL_VLToVWMUL_VL(N, DAG, /*Commute*/ true);
8482   case ISD::STORE: {
8483     auto *Store = cast<StoreSDNode>(N);
8484     SDValue Val = Store->getValue();
8485     // Combine store of vmv.x.s to vse with VL of 1.
8486     // FIXME: Support FP.
8487     if (Val.getOpcode() == RISCVISD::VMV_X_S) {
8488       SDValue Src = Val.getOperand(0);
8489       EVT VecVT = Src.getValueType();
8490       EVT MemVT = Store->getMemoryVT();
8491       // The memory VT and the element type must match.
8492       if (VecVT.getVectorElementType() == MemVT) {
8493         SDLoc DL(N);
8494         MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount());
8495         return DAG.getStoreVP(
8496             Store->getChain(), DL, Src, Store->getBasePtr(), Store->getOffset(),
8497             DAG.getConstant(1, DL, MaskVT),
8498             DAG.getConstant(1, DL, Subtarget.getXLenVT()), MemVT,
8499             Store->getMemOperand(), Store->getAddressingMode(),
8500             Store->isTruncatingStore(), /*IsCompress*/ false);
8501       }
8502     }
8503 
8504     break;
8505   }
8506   case ISD::SPLAT_VECTOR: {
8507     EVT VT = N->getValueType(0);
8508     // Only perform this combine on legal MVT types.
8509     if (!isTypeLegal(VT))
8510       break;
8511     if (auto Gather = matchSplatAsGather(N->getOperand(0), VT.getSimpleVT(), N,
8512                                          DAG, Subtarget))
8513       return Gather;
8514     break;
8515   }
8516   case RISCVISD::VMV_V_X_VL: {
8517     // Tail agnostic VMV.V.X only demands the vector element bitwidth from the
8518     // scalar input.
8519     unsigned ScalarSize = N->getOperand(1).getValueSizeInBits();
8520     unsigned EltWidth = N->getValueType(0).getScalarSizeInBits();
8521     if (ScalarSize > EltWidth && N->getOperand(0).isUndef())
8522       if (SimplifyDemandedLowBitsHelper(1, EltWidth))
8523         return SDValue(N, 0);
8524 
8525     break;
8526   }
8527   case ISD::INTRINSIC_WO_CHAIN: {
8528     unsigned IntNo = N->getConstantOperandVal(0);
8529     switch (IntNo) {
8530       // By default we do not combine any intrinsic.
8531     default:
8532       return SDValue();
8533     case Intrinsic::riscv_vcpop:
8534     case Intrinsic::riscv_vcpop_mask:
8535     case Intrinsic::riscv_vfirst:
8536     case Intrinsic::riscv_vfirst_mask: {
8537       SDValue VL = N->getOperand(2);
8538       if (IntNo == Intrinsic::riscv_vcpop_mask ||
8539           IntNo == Intrinsic::riscv_vfirst_mask)
8540         VL = N->getOperand(3);
8541       if (!isNullConstant(VL))
8542         return SDValue();
8543       // If VL is 0, vcpop -> li 0, vfirst -> li -1.
8544       SDLoc DL(N);
8545       EVT VT = N->getValueType(0);
8546       if (IntNo == Intrinsic::riscv_vfirst ||
8547           IntNo == Intrinsic::riscv_vfirst_mask)
8548         return DAG.getConstant(-1, DL, VT);
8549       return DAG.getConstant(0, DL, VT);
8550     }
8551     }
8552   }
8553   }
8554 
8555   return SDValue();
8556 }
8557 
8558 bool RISCVTargetLowering::isDesirableToCommuteWithShift(
8559     const SDNode *N, CombineLevel Level) const {
8560   // The following folds are only desirable if `(OP _, c1 << c2)` can be
8561   // materialised in fewer instructions than `(OP _, c1)`:
8562   //
8563   //   (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2)
8564   //   (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2)
8565   SDValue N0 = N->getOperand(0);
8566   EVT Ty = N0.getValueType();
8567   if (Ty.isScalarInteger() &&
8568       (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::OR)) {
8569     auto *C1 = dyn_cast<ConstantSDNode>(N0->getOperand(1));
8570     auto *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1));
8571     if (C1 && C2) {
8572       const APInt &C1Int = C1->getAPIntValue();
8573       APInt ShiftedC1Int = C1Int << C2->getAPIntValue();
8574 
8575       // We can materialise `c1 << c2` into an add immediate, so it's "free",
8576       // and the combine should happen, to potentially allow further combines
8577       // later.
8578       if (ShiftedC1Int.getMinSignedBits() <= 64 &&
8579           isLegalAddImmediate(ShiftedC1Int.getSExtValue()))
8580         return true;
8581 
8582       // We can materialise `c1` in an add immediate, so it's "free", and the
8583       // combine should be prevented.
8584       if (C1Int.getMinSignedBits() <= 64 &&
8585           isLegalAddImmediate(C1Int.getSExtValue()))
8586         return false;
8587 
8588       // Neither constant will fit into an immediate, so find materialisation
8589       // costs.
8590       int C1Cost = RISCVMatInt::getIntMatCost(C1Int, Ty.getSizeInBits(),
8591                                               Subtarget.getFeatureBits(),
8592                                               /*CompressionCost*/true);
8593       int ShiftedC1Cost = RISCVMatInt::getIntMatCost(
8594           ShiftedC1Int, Ty.getSizeInBits(), Subtarget.getFeatureBits(),
8595           /*CompressionCost*/true);
8596 
8597       // Materialising `c1` is cheaper than materialising `c1 << c2`, so the
8598       // combine should be prevented.
8599       if (C1Cost < ShiftedC1Cost)
8600         return false;
8601     }
8602   }
8603   return true;
8604 }
8605 
8606 bool RISCVTargetLowering::targetShrinkDemandedConstant(
8607     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
8608     TargetLoweringOpt &TLO) const {
8609   // Delay this optimization as late as possible.
8610   if (!TLO.LegalOps)
8611     return false;
8612 
8613   EVT VT = Op.getValueType();
8614   if (VT.isVector())
8615     return false;
8616 
8617   // Only handle AND for now.
8618   if (Op.getOpcode() != ISD::AND)
8619     return false;
8620 
8621   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
8622   if (!C)
8623     return false;
8624 
8625   const APInt &Mask = C->getAPIntValue();
8626 
8627   // Clear all non-demanded bits initially.
8628   APInt ShrunkMask = Mask & DemandedBits;
8629 
8630   // Try to make a smaller immediate by setting undemanded bits.
8631 
8632   APInt ExpandedMask = Mask | ~DemandedBits;
8633 
8634   auto IsLegalMask = [ShrunkMask, ExpandedMask](const APInt &Mask) -> bool {
8635     return ShrunkMask.isSubsetOf(Mask) && Mask.isSubsetOf(ExpandedMask);
8636   };
8637   auto UseMask = [Mask, Op, VT, &TLO](const APInt &NewMask) -> bool {
8638     if (NewMask == Mask)
8639       return true;
8640     SDLoc DL(Op);
8641     SDValue NewC = TLO.DAG.getConstant(NewMask, DL, VT);
8642     SDValue NewOp = TLO.DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), NewC);
8643     return TLO.CombineTo(Op, NewOp);
8644   };
8645 
8646   // If the shrunk mask fits in sign extended 12 bits, let the target
8647   // independent code apply it.
8648   if (ShrunkMask.isSignedIntN(12))
8649     return false;
8650 
8651   // Preserve (and X, 0xffff) when zext.h is supported.
8652   if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp()) {
8653     APInt NewMask = APInt(Mask.getBitWidth(), 0xffff);
8654     if (IsLegalMask(NewMask))
8655       return UseMask(NewMask);
8656   }
8657 
8658   // Try to preserve (and X, 0xffffffff), the (zext_inreg X, i32) pattern.
8659   if (VT == MVT::i64) {
8660     APInt NewMask = APInt(64, 0xffffffff);
8661     if (IsLegalMask(NewMask))
8662       return UseMask(NewMask);
8663   }
8664 
8665   // For the remaining optimizations, we need to be able to make a negative
8666   // number through a combination of mask and undemanded bits.
8667   if (!ExpandedMask.isNegative())
8668     return false;
8669 
8670   // What is the fewest number of bits we need to represent the negative number.
8671   unsigned MinSignedBits = ExpandedMask.getMinSignedBits();
8672 
8673   // Try to make a 12 bit negative immediate. If that fails try to make a 32
8674   // bit negative immediate unless the shrunk immediate already fits in 32 bits.
8675   APInt NewMask = ShrunkMask;
8676   if (MinSignedBits <= 12)
8677     NewMask.setBitsFrom(11);
8678   else if (MinSignedBits <= 32 && !ShrunkMask.isSignedIntN(32))
8679     NewMask.setBitsFrom(31);
8680   else
8681     return false;
8682 
8683   // Check that our new mask is a subset of the demanded mask.
8684   assert(IsLegalMask(NewMask));
8685   return UseMask(NewMask);
8686 }
8687 
8688 static void computeGREV(APInt &Src, unsigned ShAmt) {
8689   ShAmt &= Src.getBitWidth() - 1;
8690   uint64_t x = Src.getZExtValue();
8691   if (ShAmt & 1)
8692     x = ((x & 0x5555555555555555LL) << 1) | ((x & 0xAAAAAAAAAAAAAAAALL) >> 1);
8693   if (ShAmt & 2)
8694     x = ((x & 0x3333333333333333LL) << 2) | ((x & 0xCCCCCCCCCCCCCCCCLL) >> 2);
8695   if (ShAmt & 4)
8696     x = ((x & 0x0F0F0F0F0F0F0F0FLL) << 4) | ((x & 0xF0F0F0F0F0F0F0F0LL) >> 4);
8697   if (ShAmt & 8)
8698     x = ((x & 0x00FF00FF00FF00FFLL) << 8) | ((x & 0xFF00FF00FF00FF00LL) >> 8);
8699   if (ShAmt & 16)
8700     x = ((x & 0x0000FFFF0000FFFFLL) << 16) | ((x & 0xFFFF0000FFFF0000LL) >> 16);
8701   if (ShAmt & 32)
8702     x = ((x & 0x00000000FFFFFFFFLL) << 32) | ((x & 0xFFFFFFFF00000000LL) >> 32);
8703   Src = x;
8704 }
8705 
8706 void RISCVTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
8707                                                         KnownBits &Known,
8708                                                         const APInt &DemandedElts,
8709                                                         const SelectionDAG &DAG,
8710                                                         unsigned Depth) const {
8711   unsigned BitWidth = Known.getBitWidth();
8712   unsigned Opc = Op.getOpcode();
8713   assert((Opc >= ISD::BUILTIN_OP_END ||
8714           Opc == ISD::INTRINSIC_WO_CHAIN ||
8715           Opc == ISD::INTRINSIC_W_CHAIN ||
8716           Opc == ISD::INTRINSIC_VOID) &&
8717          "Should use MaskedValueIsZero if you don't know whether Op"
8718          " is a target node!");
8719 
8720   Known.resetAll();
8721   switch (Opc) {
8722   default: break;
8723   case RISCVISD::SELECT_CC: {
8724     Known = DAG.computeKnownBits(Op.getOperand(4), Depth + 1);
8725     // If we don't know any bits, early out.
8726     if (Known.isUnknown())
8727       break;
8728     KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(3), Depth + 1);
8729 
8730     // Only known if known in both the LHS and RHS.
8731     Known = KnownBits::commonBits(Known, Known2);
8732     break;
8733   }
8734   case RISCVISD::REMUW: {
8735     KnownBits Known2;
8736     Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
8737     Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
8738     // We only care about the lower 32 bits.
8739     Known = KnownBits::urem(Known.trunc(32), Known2.trunc(32));
8740     // Restore the original width by sign extending.
8741     Known = Known.sext(BitWidth);
8742     break;
8743   }
8744   case RISCVISD::DIVUW: {
8745     KnownBits Known2;
8746     Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
8747     Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
8748     // We only care about the lower 32 bits.
8749     Known = KnownBits::udiv(Known.trunc(32), Known2.trunc(32));
8750     // Restore the original width by sign extending.
8751     Known = Known.sext(BitWidth);
8752     break;
8753   }
8754   case RISCVISD::CTZW: {
8755     KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
8756     unsigned PossibleTZ = Known2.trunc(32).countMaxTrailingZeros();
8757     unsigned LowBits = Log2_32(PossibleTZ) + 1;
8758     Known.Zero.setBitsFrom(LowBits);
8759     break;
8760   }
8761   case RISCVISD::CLZW: {
8762     KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
8763     unsigned PossibleLZ = Known2.trunc(32).countMaxLeadingZeros();
8764     unsigned LowBits = Log2_32(PossibleLZ) + 1;
8765     Known.Zero.setBitsFrom(LowBits);
8766     break;
8767   }
8768   case RISCVISD::GREV:
8769   case RISCVISD::GREVW: {
8770     if (auto *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
8771       Known = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
8772       if (Opc == RISCVISD::GREVW)
8773         Known = Known.trunc(32);
8774       unsigned ShAmt = C->getZExtValue();
8775       computeGREV(Known.Zero, ShAmt);
8776       computeGREV(Known.One, ShAmt);
8777       if (Opc == RISCVISD::GREVW)
8778         Known = Known.sext(BitWidth);
8779     }
8780     break;
8781   }
8782   case RISCVISD::READ_VLENB: {
8783     // If we know the minimum VLen from Zvl extensions, we can use that to
8784     // determine the trailing zeros of VLENB.
8785     // FIXME: Limit to 128 bit vectors until we have more testing.
8786     unsigned MinVLenB = std::min(128U, Subtarget.getMinVLen()) / 8;
8787     if (MinVLenB > 0)
8788       Known.Zero.setLowBits(Log2_32(MinVLenB));
8789     // We assume VLENB is no more than 65536 / 8 bytes.
8790     Known.Zero.setBitsFrom(14);
8791     break;
8792   }
8793   case ISD::INTRINSIC_W_CHAIN:
8794   case ISD::INTRINSIC_WO_CHAIN: {
8795     unsigned IntNo =
8796         Op.getConstantOperandVal(Opc == ISD::INTRINSIC_WO_CHAIN ? 0 : 1);
8797     switch (IntNo) {
8798     default:
8799       // We can't do anything for most intrinsics.
8800       break;
8801     case Intrinsic::riscv_vsetvli:
8802     case Intrinsic::riscv_vsetvlimax:
8803     case Intrinsic::riscv_vsetvli_opt:
8804     case Intrinsic::riscv_vsetvlimax_opt:
8805       // Assume that VL output is positive and would fit in an int32_t.
8806       // TODO: VLEN might be capped at 16 bits in a future V spec update.
8807       if (BitWidth >= 32)
8808         Known.Zero.setBitsFrom(31);
8809       break;
8810     }
8811     break;
8812   }
8813   }
8814 }
8815 
8816 unsigned RISCVTargetLowering::ComputeNumSignBitsForTargetNode(
8817     SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
8818     unsigned Depth) const {
8819   switch (Op.getOpcode()) {
8820   default:
8821     break;
8822   case RISCVISD::SELECT_CC: {
8823     unsigned Tmp =
8824         DAG.ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth + 1);
8825     if (Tmp == 1) return 1;  // Early out.
8826     unsigned Tmp2 =
8827         DAG.ComputeNumSignBits(Op.getOperand(4), DemandedElts, Depth + 1);
8828     return std::min(Tmp, Tmp2);
8829   }
8830   case RISCVISD::SLLW:
8831   case RISCVISD::SRAW:
8832   case RISCVISD::SRLW:
8833   case RISCVISD::DIVW:
8834   case RISCVISD::DIVUW:
8835   case RISCVISD::REMUW:
8836   case RISCVISD::ROLW:
8837   case RISCVISD::RORW:
8838   case RISCVISD::GREVW:
8839   case RISCVISD::GORCW:
8840   case RISCVISD::FSLW:
8841   case RISCVISD::FSRW:
8842   case RISCVISD::SHFLW:
8843   case RISCVISD::UNSHFLW:
8844   case RISCVISD::BCOMPRESSW:
8845   case RISCVISD::BDECOMPRESSW:
8846   case RISCVISD::BFPW:
8847   case RISCVISD::FCVT_W_RV64:
8848   case RISCVISD::FCVT_WU_RV64:
8849   case RISCVISD::STRICT_FCVT_W_RV64:
8850   case RISCVISD::STRICT_FCVT_WU_RV64:
8851     // TODO: As the result is sign-extended, this is conservatively correct. A
8852     // more precise answer could be calculated for SRAW depending on known
8853     // bits in the shift amount.
8854     return 33;
8855   case RISCVISD::SHFL:
8856   case RISCVISD::UNSHFL: {
8857     // There is no SHFLIW, but a i64 SHFLI with bit 4 of the control word
8858     // cleared doesn't affect bit 31. The upper 32 bits will be shuffled, but
8859     // will stay within the upper 32 bits. If there were more than 32 sign bits
8860     // before there will be at least 33 sign bits after.
8861     if (Op.getValueType() == MVT::i64 &&
8862         isa<ConstantSDNode>(Op.getOperand(1)) &&
8863         (Op.getConstantOperandVal(1) & 0x10) == 0) {
8864       unsigned Tmp = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1);
8865       if (Tmp > 32)
8866         return 33;
8867     }
8868     break;
8869   }
8870   case RISCVISD::VMV_X_S: {
8871     // The number of sign bits of the scalar result is computed by obtaining the
8872     // element type of the input vector operand, subtracting its width from the
8873     // XLEN, and then adding one (sign bit within the element type). If the
8874     // element type is wider than XLen, the least-significant XLEN bits are
8875     // taken.
8876     unsigned XLen = Subtarget.getXLen();
8877     unsigned EltBits = Op.getOperand(0).getScalarValueSizeInBits();
8878     if (EltBits <= XLen)
8879       return XLen - EltBits + 1;
8880     break;
8881   }
8882   }
8883 
8884   return 1;
8885 }
8886 
8887 static MachineBasicBlock *emitReadCycleWidePseudo(MachineInstr &MI,
8888                                                   MachineBasicBlock *BB) {
8889   assert(MI.getOpcode() == RISCV::ReadCycleWide && "Unexpected instruction");
8890 
8891   // To read the 64-bit cycle CSR on a 32-bit target, we read the two halves.
8892   // Should the count have wrapped while it was being read, we need to try
8893   // again.
8894   // ...
8895   // read:
8896   // rdcycleh x3 # load high word of cycle
8897   // rdcycle  x2 # load low word of cycle
8898   // rdcycleh x4 # load high word of cycle
8899   // bne x3, x4, read # check if high word reads match, otherwise try again
8900   // ...
8901 
8902   MachineFunction &MF = *BB->getParent();
8903   const BasicBlock *LLVM_BB = BB->getBasicBlock();
8904   MachineFunction::iterator It = ++BB->getIterator();
8905 
8906   MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB);
8907   MF.insert(It, LoopMBB);
8908 
8909   MachineBasicBlock *DoneMBB = MF.CreateMachineBasicBlock(LLVM_BB);
8910   MF.insert(It, DoneMBB);
8911 
8912   // Transfer the remainder of BB and its successor edges to DoneMBB.
8913   DoneMBB->splice(DoneMBB->begin(), BB,
8914                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
8915   DoneMBB->transferSuccessorsAndUpdatePHIs(BB);
8916 
8917   BB->addSuccessor(LoopMBB);
8918 
8919   MachineRegisterInfo &RegInfo = MF.getRegInfo();
8920   Register ReadAgainReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
8921   Register LoReg = MI.getOperand(0).getReg();
8922   Register HiReg = MI.getOperand(1).getReg();
8923   DebugLoc DL = MI.getDebugLoc();
8924 
8925   const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
8926   BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), HiReg)
8927       .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding)
8928       .addReg(RISCV::X0);
8929   BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), LoReg)
8930       .addImm(RISCVSysReg::lookupSysRegByName("CYCLE")->Encoding)
8931       .addReg(RISCV::X0);
8932   BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), ReadAgainReg)
8933       .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding)
8934       .addReg(RISCV::X0);
8935 
8936   BuildMI(LoopMBB, DL, TII->get(RISCV::BNE))
8937       .addReg(HiReg)
8938       .addReg(ReadAgainReg)
8939       .addMBB(LoopMBB);
8940 
8941   LoopMBB->addSuccessor(LoopMBB);
8942   LoopMBB->addSuccessor(DoneMBB);
8943 
8944   MI.eraseFromParent();
8945 
8946   return DoneMBB;
8947 }
8948 
8949 static MachineBasicBlock *emitSplitF64Pseudo(MachineInstr &MI,
8950                                              MachineBasicBlock *BB) {
8951   assert(MI.getOpcode() == RISCV::SplitF64Pseudo && "Unexpected instruction");
8952 
8953   MachineFunction &MF = *BB->getParent();
8954   DebugLoc DL = MI.getDebugLoc();
8955   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
8956   const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo();
8957   Register LoReg = MI.getOperand(0).getReg();
8958   Register HiReg = MI.getOperand(1).getReg();
8959   Register SrcReg = MI.getOperand(2).getReg();
8960   const TargetRegisterClass *SrcRC = &RISCV::FPR64RegClass;
8961   int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF);
8962 
8963   TII.storeRegToStackSlot(*BB, MI, SrcReg, MI.getOperand(2).isKill(), FI, SrcRC,
8964                           RI);
8965   MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI);
8966   MachineMemOperand *MMOLo =
8967       MF.getMachineMemOperand(MPI, MachineMemOperand::MOLoad, 4, Align(8));
8968   MachineMemOperand *MMOHi = MF.getMachineMemOperand(
8969       MPI.getWithOffset(4), MachineMemOperand::MOLoad, 4, Align(8));
8970   BuildMI(*BB, MI, DL, TII.get(RISCV::LW), LoReg)
8971       .addFrameIndex(FI)
8972       .addImm(0)
8973       .addMemOperand(MMOLo);
8974   BuildMI(*BB, MI, DL, TII.get(RISCV::LW), HiReg)
8975       .addFrameIndex(FI)
8976       .addImm(4)
8977       .addMemOperand(MMOHi);
8978   MI.eraseFromParent(); // The pseudo instruction is gone now.
8979   return BB;
8980 }
8981 
8982 static MachineBasicBlock *emitBuildPairF64Pseudo(MachineInstr &MI,
8983                                                  MachineBasicBlock *BB) {
8984   assert(MI.getOpcode() == RISCV::BuildPairF64Pseudo &&
8985          "Unexpected instruction");
8986 
8987   MachineFunction &MF = *BB->getParent();
8988   DebugLoc DL = MI.getDebugLoc();
8989   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
8990   const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo();
8991   Register DstReg = MI.getOperand(0).getReg();
8992   Register LoReg = MI.getOperand(1).getReg();
8993   Register HiReg = MI.getOperand(2).getReg();
8994   const TargetRegisterClass *DstRC = &RISCV::FPR64RegClass;
8995   int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF);
8996 
8997   MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI);
8998   MachineMemOperand *MMOLo =
8999       MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Align(8));
9000   MachineMemOperand *MMOHi = MF.getMachineMemOperand(
9001       MPI.getWithOffset(4), MachineMemOperand::MOStore, 4, Align(8));
9002   BuildMI(*BB, MI, DL, TII.get(RISCV::SW))
9003       .addReg(LoReg, getKillRegState(MI.getOperand(1).isKill()))
9004       .addFrameIndex(FI)
9005       .addImm(0)
9006       .addMemOperand(MMOLo);
9007   BuildMI(*BB, MI, DL, TII.get(RISCV::SW))
9008       .addReg(HiReg, getKillRegState(MI.getOperand(2).isKill()))
9009       .addFrameIndex(FI)
9010       .addImm(4)
9011       .addMemOperand(MMOHi);
9012   TII.loadRegFromStackSlot(*BB, MI, DstReg, FI, DstRC, RI);
9013   MI.eraseFromParent(); // The pseudo instruction is gone now.
9014   return BB;
9015 }
9016 
9017 static bool isSelectPseudo(MachineInstr &MI) {
9018   switch (MI.getOpcode()) {
9019   default:
9020     return false;
9021   case RISCV::Select_GPR_Using_CC_GPR:
9022   case RISCV::Select_FPR16_Using_CC_GPR:
9023   case RISCV::Select_FPR32_Using_CC_GPR:
9024   case RISCV::Select_FPR64_Using_CC_GPR:
9025     return true;
9026   }
9027 }
9028 
9029 static MachineBasicBlock *emitQuietFCMP(MachineInstr &MI, MachineBasicBlock *BB,
9030                                         unsigned RelOpcode, unsigned EqOpcode,
9031                                         const RISCVSubtarget &Subtarget) {
9032   DebugLoc DL = MI.getDebugLoc();
9033   Register DstReg = MI.getOperand(0).getReg();
9034   Register Src1Reg = MI.getOperand(1).getReg();
9035   Register Src2Reg = MI.getOperand(2).getReg();
9036   MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
9037   Register SavedFFlags = MRI.createVirtualRegister(&RISCV::GPRRegClass);
9038   const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo();
9039 
9040   // Save the current FFLAGS.
9041   BuildMI(*BB, MI, DL, TII.get(RISCV::ReadFFLAGS), SavedFFlags);
9042 
9043   auto MIB = BuildMI(*BB, MI, DL, TII.get(RelOpcode), DstReg)
9044                  .addReg(Src1Reg)
9045                  .addReg(Src2Reg);
9046   if (MI.getFlag(MachineInstr::MIFlag::NoFPExcept))
9047     MIB->setFlag(MachineInstr::MIFlag::NoFPExcept);
9048 
9049   // Restore the FFLAGS.
9050   BuildMI(*BB, MI, DL, TII.get(RISCV::WriteFFLAGS))
9051       .addReg(SavedFFlags, RegState::Kill);
9052 
9053   // Issue a dummy FEQ opcode to raise exception for signaling NaNs.
9054   auto MIB2 = BuildMI(*BB, MI, DL, TII.get(EqOpcode), RISCV::X0)
9055                   .addReg(Src1Reg, getKillRegState(MI.getOperand(1).isKill()))
9056                   .addReg(Src2Reg, getKillRegState(MI.getOperand(2).isKill()));
9057   if (MI.getFlag(MachineInstr::MIFlag::NoFPExcept))
9058     MIB2->setFlag(MachineInstr::MIFlag::NoFPExcept);
9059 
9060   // Erase the pseudoinstruction.
9061   MI.eraseFromParent();
9062   return BB;
9063 }
9064 
9065 static MachineBasicBlock *emitSelectPseudo(MachineInstr &MI,
9066                                            MachineBasicBlock *BB,
9067                                            const RISCVSubtarget &Subtarget) {
9068   // To "insert" Select_* instructions, we actually have to insert the triangle
9069   // control-flow pattern.  The incoming instructions know the destination vreg
9070   // to set, the condition code register to branch on, the true/false values to
9071   // select between, and the condcode to use to select the appropriate branch.
9072   //
9073   // We produce the following control flow:
9074   //     HeadMBB
9075   //     |  \
9076   //     |  IfFalseMBB
9077   //     | /
9078   //    TailMBB
9079   //
9080   // When we find a sequence of selects we attempt to optimize their emission
9081   // by sharing the control flow. Currently we only handle cases where we have
9082   // multiple selects with the exact same condition (same LHS, RHS and CC).
9083   // The selects may be interleaved with other instructions if the other
9084   // instructions meet some requirements we deem safe:
9085   // - They are debug instructions. Otherwise,
9086   // - They do not have side-effects, do not access memory and their inputs do
9087   //   not depend on the results of the select pseudo-instructions.
9088   // The TrueV/FalseV operands of the selects cannot depend on the result of
9089   // previous selects in the sequence.
9090   // These conditions could be further relaxed. See the X86 target for a
9091   // related approach and more information.
9092   Register LHS = MI.getOperand(1).getReg();
9093   Register RHS = MI.getOperand(2).getReg();
9094   auto CC = static_cast<RISCVCC::CondCode>(MI.getOperand(3).getImm());
9095 
9096   SmallVector<MachineInstr *, 4> SelectDebugValues;
9097   SmallSet<Register, 4> SelectDests;
9098   SelectDests.insert(MI.getOperand(0).getReg());
9099 
9100   MachineInstr *LastSelectPseudo = &MI;
9101 
9102   for (auto E = BB->end(), SequenceMBBI = MachineBasicBlock::iterator(MI);
9103        SequenceMBBI != E; ++SequenceMBBI) {
9104     if (SequenceMBBI->isDebugInstr())
9105       continue;
9106     else if (isSelectPseudo(*SequenceMBBI)) {
9107       if (SequenceMBBI->getOperand(1).getReg() != LHS ||
9108           SequenceMBBI->getOperand(2).getReg() != RHS ||
9109           SequenceMBBI->getOperand(3).getImm() != CC ||
9110           SelectDests.count(SequenceMBBI->getOperand(4).getReg()) ||
9111           SelectDests.count(SequenceMBBI->getOperand(5).getReg()))
9112         break;
9113       LastSelectPseudo = &*SequenceMBBI;
9114       SequenceMBBI->collectDebugValues(SelectDebugValues);
9115       SelectDests.insert(SequenceMBBI->getOperand(0).getReg());
9116     } else {
9117       if (SequenceMBBI->hasUnmodeledSideEffects() ||
9118           SequenceMBBI->mayLoadOrStore())
9119         break;
9120       if (llvm::any_of(SequenceMBBI->operands(), [&](MachineOperand &MO) {
9121             return MO.isReg() && MO.isUse() && SelectDests.count(MO.getReg());
9122           }))
9123         break;
9124     }
9125   }
9126 
9127   const RISCVInstrInfo &TII = *Subtarget.getInstrInfo();
9128   const BasicBlock *LLVM_BB = BB->getBasicBlock();
9129   DebugLoc DL = MI.getDebugLoc();
9130   MachineFunction::iterator I = ++BB->getIterator();
9131 
9132   MachineBasicBlock *HeadMBB = BB;
9133   MachineFunction *F = BB->getParent();
9134   MachineBasicBlock *TailMBB = F->CreateMachineBasicBlock(LLVM_BB);
9135   MachineBasicBlock *IfFalseMBB = F->CreateMachineBasicBlock(LLVM_BB);
9136 
9137   F->insert(I, IfFalseMBB);
9138   F->insert(I, TailMBB);
9139 
9140   // Transfer debug instructions associated with the selects to TailMBB.
9141   for (MachineInstr *DebugInstr : SelectDebugValues) {
9142     TailMBB->push_back(DebugInstr->removeFromParent());
9143   }
9144 
9145   // Move all instructions after the sequence to TailMBB.
9146   TailMBB->splice(TailMBB->end(), HeadMBB,
9147                   std::next(LastSelectPseudo->getIterator()), HeadMBB->end());
9148   // Update machine-CFG edges by transferring all successors of the current
9149   // block to the new block which will contain the Phi nodes for the selects.
9150   TailMBB->transferSuccessorsAndUpdatePHIs(HeadMBB);
9151   // Set the successors for HeadMBB.
9152   HeadMBB->addSuccessor(IfFalseMBB);
9153   HeadMBB->addSuccessor(TailMBB);
9154 
9155   // Insert appropriate branch.
9156   BuildMI(HeadMBB, DL, TII.getBrCond(CC))
9157     .addReg(LHS)
9158     .addReg(RHS)
9159     .addMBB(TailMBB);
9160 
9161   // IfFalseMBB just falls through to TailMBB.
9162   IfFalseMBB->addSuccessor(TailMBB);
9163 
9164   // Create PHIs for all of the select pseudo-instructions.
9165   auto SelectMBBI = MI.getIterator();
9166   auto SelectEnd = std::next(LastSelectPseudo->getIterator());
9167   auto InsertionPoint = TailMBB->begin();
9168   while (SelectMBBI != SelectEnd) {
9169     auto Next = std::next(SelectMBBI);
9170     if (isSelectPseudo(*SelectMBBI)) {
9171       // %Result = phi [ %TrueValue, HeadMBB ], [ %FalseValue, IfFalseMBB ]
9172       BuildMI(*TailMBB, InsertionPoint, SelectMBBI->getDebugLoc(),
9173               TII.get(RISCV::PHI), SelectMBBI->getOperand(0).getReg())
9174           .addReg(SelectMBBI->getOperand(4).getReg())
9175           .addMBB(HeadMBB)
9176           .addReg(SelectMBBI->getOperand(5).getReg())
9177           .addMBB(IfFalseMBB);
9178       SelectMBBI->eraseFromParent();
9179     }
9180     SelectMBBI = Next;
9181   }
9182 
9183   F->getProperties().reset(MachineFunctionProperties::Property::NoPHIs);
9184   return TailMBB;
9185 }
9186 
9187 MachineBasicBlock *
9188 RISCVTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
9189                                                  MachineBasicBlock *BB) const {
9190   switch (MI.getOpcode()) {
9191   default:
9192     llvm_unreachable("Unexpected instr type to insert");
9193   case RISCV::ReadCycleWide:
9194     assert(!Subtarget.is64Bit() &&
9195            "ReadCycleWrite is only to be used on riscv32");
9196     return emitReadCycleWidePseudo(MI, BB);
9197   case RISCV::Select_GPR_Using_CC_GPR:
9198   case RISCV::Select_FPR16_Using_CC_GPR:
9199   case RISCV::Select_FPR32_Using_CC_GPR:
9200   case RISCV::Select_FPR64_Using_CC_GPR:
9201     return emitSelectPseudo(MI, BB, Subtarget);
9202   case RISCV::BuildPairF64Pseudo:
9203     return emitBuildPairF64Pseudo(MI, BB);
9204   case RISCV::SplitF64Pseudo:
9205     return emitSplitF64Pseudo(MI, BB);
9206   case RISCV::PseudoQuietFLE_H:
9207     return emitQuietFCMP(MI, BB, RISCV::FLE_H, RISCV::FEQ_H, Subtarget);
9208   case RISCV::PseudoQuietFLT_H:
9209     return emitQuietFCMP(MI, BB, RISCV::FLT_H, RISCV::FEQ_H, Subtarget);
9210   case RISCV::PseudoQuietFLE_S:
9211     return emitQuietFCMP(MI, BB, RISCV::FLE_S, RISCV::FEQ_S, Subtarget);
9212   case RISCV::PseudoQuietFLT_S:
9213     return emitQuietFCMP(MI, BB, RISCV::FLT_S, RISCV::FEQ_S, Subtarget);
9214   case RISCV::PseudoQuietFLE_D:
9215     return emitQuietFCMP(MI, BB, RISCV::FLE_D, RISCV::FEQ_D, Subtarget);
9216   case RISCV::PseudoQuietFLT_D:
9217     return emitQuietFCMP(MI, BB, RISCV::FLT_D, RISCV::FEQ_D, Subtarget);
9218   }
9219 }
9220 
9221 void RISCVTargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI,
9222                                                         SDNode *Node) const {
9223   // Add FRM dependency to any instructions with dynamic rounding mode.
9224   unsigned Opc = MI.getOpcode();
9225   auto Idx = RISCV::getNamedOperandIdx(Opc, RISCV::OpName::frm);
9226   if (Idx < 0)
9227     return;
9228   if (MI.getOperand(Idx).getImm() != RISCVFPRndMode::DYN)
9229     return;
9230   // If the instruction already reads FRM, don't add another read.
9231   if (MI.readsRegister(RISCV::FRM))
9232     return;
9233   MI.addOperand(
9234       MachineOperand::CreateReg(RISCV::FRM, /*isDef*/ false, /*isImp*/ true));
9235 }
9236 
9237 // Calling Convention Implementation.
9238 // The expectations for frontend ABI lowering vary from target to target.
9239 // Ideally, an LLVM frontend would be able to avoid worrying about many ABI
9240 // details, but this is a longer term goal. For now, we simply try to keep the
9241 // role of the frontend as simple and well-defined as possible. The rules can
9242 // be summarised as:
9243 // * Never split up large scalar arguments. We handle them here.
9244 // * If a hardfloat calling convention is being used, and the struct may be
9245 // passed in a pair of registers (fp+fp, int+fp), and both registers are
9246 // available, then pass as two separate arguments. If either the GPRs or FPRs
9247 // are exhausted, then pass according to the rule below.
9248 // * If a struct could never be passed in registers or directly in a stack
9249 // slot (as it is larger than 2*XLEN and the floating point rules don't
9250 // apply), then pass it using a pointer with the byval attribute.
9251 // * If a struct is less than 2*XLEN, then coerce to either a two-element
9252 // word-sized array or a 2*XLEN scalar (depending on alignment).
9253 // * The frontend can determine whether a struct is returned by reference or
9254 // not based on its size and fields. If it will be returned by reference, the
9255 // frontend must modify the prototype so a pointer with the sret annotation is
9256 // passed as the first argument. This is not necessary for large scalar
9257 // returns.
9258 // * Struct return values and varargs should be coerced to structs containing
9259 // register-size fields in the same situations they would be for fixed
9260 // arguments.
9261 
9262 static const MCPhysReg ArgGPRs[] = {
9263   RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13,
9264   RISCV::X14, RISCV::X15, RISCV::X16, RISCV::X17
9265 };
9266 static const MCPhysReg ArgFPR16s[] = {
9267   RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H,
9268   RISCV::F14_H, RISCV::F15_H, RISCV::F16_H, RISCV::F17_H
9269 };
9270 static const MCPhysReg ArgFPR32s[] = {
9271   RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F,
9272   RISCV::F14_F, RISCV::F15_F, RISCV::F16_F, RISCV::F17_F
9273 };
9274 static const MCPhysReg ArgFPR64s[] = {
9275   RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D,
9276   RISCV::F14_D, RISCV::F15_D, RISCV::F16_D, RISCV::F17_D
9277 };
9278 // This is an interim calling convention and it may be changed in the future.
9279 static const MCPhysReg ArgVRs[] = {
9280     RISCV::V8,  RISCV::V9,  RISCV::V10, RISCV::V11, RISCV::V12, RISCV::V13,
9281     RISCV::V14, RISCV::V15, RISCV::V16, RISCV::V17, RISCV::V18, RISCV::V19,
9282     RISCV::V20, RISCV::V21, RISCV::V22, RISCV::V23};
9283 static const MCPhysReg ArgVRM2s[] = {RISCV::V8M2,  RISCV::V10M2, RISCV::V12M2,
9284                                      RISCV::V14M2, RISCV::V16M2, RISCV::V18M2,
9285                                      RISCV::V20M2, RISCV::V22M2};
9286 static const MCPhysReg ArgVRM4s[] = {RISCV::V8M4, RISCV::V12M4, RISCV::V16M4,
9287                                      RISCV::V20M4};
9288 static const MCPhysReg ArgVRM8s[] = {RISCV::V8M8, RISCV::V16M8};
9289 
9290 // Pass a 2*XLEN argument that has been split into two XLEN values through
9291 // registers or the stack as necessary.
9292 static bool CC_RISCVAssign2XLen(unsigned XLen, CCState &State, CCValAssign VA1,
9293                                 ISD::ArgFlagsTy ArgFlags1, unsigned ValNo2,
9294                                 MVT ValVT2, MVT LocVT2,
9295                                 ISD::ArgFlagsTy ArgFlags2) {
9296   unsigned XLenInBytes = XLen / 8;
9297   if (Register Reg = State.AllocateReg(ArgGPRs)) {
9298     // At least one half can be passed via register.
9299     State.addLoc(CCValAssign::getReg(VA1.getValNo(), VA1.getValVT(), Reg,
9300                                      VA1.getLocVT(), CCValAssign::Full));
9301   } else {
9302     // Both halves must be passed on the stack, with proper alignment.
9303     Align StackAlign =
9304         std::max(Align(XLenInBytes), ArgFlags1.getNonZeroOrigAlign());
9305     State.addLoc(
9306         CCValAssign::getMem(VA1.getValNo(), VA1.getValVT(),
9307                             State.AllocateStack(XLenInBytes, StackAlign),
9308                             VA1.getLocVT(), CCValAssign::Full));
9309     State.addLoc(CCValAssign::getMem(
9310         ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)),
9311         LocVT2, CCValAssign::Full));
9312     return false;
9313   }
9314 
9315   if (Register Reg = State.AllocateReg(ArgGPRs)) {
9316     // The second half can also be passed via register.
9317     State.addLoc(
9318         CCValAssign::getReg(ValNo2, ValVT2, Reg, LocVT2, CCValAssign::Full));
9319   } else {
9320     // The second half is passed via the stack, without additional alignment.
9321     State.addLoc(CCValAssign::getMem(
9322         ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)),
9323         LocVT2, CCValAssign::Full));
9324   }
9325 
9326   return false;
9327 }
9328 
9329 static unsigned allocateRVVReg(MVT ValVT, unsigned ValNo,
9330                                Optional<unsigned> FirstMaskArgument,
9331                                CCState &State, const RISCVTargetLowering &TLI) {
9332   const TargetRegisterClass *RC = TLI.getRegClassFor(ValVT);
9333   if (RC == &RISCV::VRRegClass) {
9334     // Assign the first mask argument to V0.
9335     // This is an interim calling convention and it may be changed in the
9336     // future.
9337     if (FirstMaskArgument.hasValue() && ValNo == FirstMaskArgument.getValue())
9338       return State.AllocateReg(RISCV::V0);
9339     return State.AllocateReg(ArgVRs);
9340   }
9341   if (RC == &RISCV::VRM2RegClass)
9342     return State.AllocateReg(ArgVRM2s);
9343   if (RC == &RISCV::VRM4RegClass)
9344     return State.AllocateReg(ArgVRM4s);
9345   if (RC == &RISCV::VRM8RegClass)
9346     return State.AllocateReg(ArgVRM8s);
9347   llvm_unreachable("Unhandled register class for ValueType");
9348 }
9349 
9350 // Implements the RISC-V calling convention. Returns true upon failure.
9351 static bool CC_RISCV(const DataLayout &DL, RISCVABI::ABI ABI, unsigned ValNo,
9352                      MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo,
9353                      ISD::ArgFlagsTy ArgFlags, CCState &State, bool IsFixed,
9354                      bool IsRet, Type *OrigTy, const RISCVTargetLowering &TLI,
9355                      Optional<unsigned> FirstMaskArgument) {
9356   unsigned XLen = DL.getLargestLegalIntTypeSizeInBits();
9357   assert(XLen == 32 || XLen == 64);
9358   MVT XLenVT = XLen == 32 ? MVT::i32 : MVT::i64;
9359 
9360   // Any return value split in to more than two values can't be returned
9361   // directly. Vectors are returned via the available vector registers.
9362   if (!LocVT.isVector() && IsRet && ValNo > 1)
9363     return true;
9364 
9365   // UseGPRForF16_F32 if targeting one of the soft-float ABIs, if passing a
9366   // variadic argument, or if no F16/F32 argument registers are available.
9367   bool UseGPRForF16_F32 = true;
9368   // UseGPRForF64 if targeting soft-float ABIs or an FLEN=32 ABI, if passing a
9369   // variadic argument, or if no F64 argument registers are available.
9370   bool UseGPRForF64 = true;
9371 
9372   switch (ABI) {
9373   default:
9374     llvm_unreachable("Unexpected ABI");
9375   case RISCVABI::ABI_ILP32:
9376   case RISCVABI::ABI_LP64:
9377     break;
9378   case RISCVABI::ABI_ILP32F:
9379   case RISCVABI::ABI_LP64F:
9380     UseGPRForF16_F32 = !IsFixed;
9381     break;
9382   case RISCVABI::ABI_ILP32D:
9383   case RISCVABI::ABI_LP64D:
9384     UseGPRForF16_F32 = !IsFixed;
9385     UseGPRForF64 = !IsFixed;
9386     break;
9387   }
9388 
9389   // FPR16, FPR32, and FPR64 alias each other.
9390   if (State.getFirstUnallocated(ArgFPR32s) == array_lengthof(ArgFPR32s)) {
9391     UseGPRForF16_F32 = true;
9392     UseGPRForF64 = true;
9393   }
9394 
9395   // From this point on, rely on UseGPRForF16_F32, UseGPRForF64 and
9396   // similar local variables rather than directly checking against the target
9397   // ABI.
9398 
9399   if (UseGPRForF16_F32 && (ValVT == MVT::f16 || ValVT == MVT::f32)) {
9400     LocVT = XLenVT;
9401     LocInfo = CCValAssign::BCvt;
9402   } else if (UseGPRForF64 && XLen == 64 && ValVT == MVT::f64) {
9403     LocVT = MVT::i64;
9404     LocInfo = CCValAssign::BCvt;
9405   }
9406 
9407   // If this is a variadic argument, the RISC-V calling convention requires
9408   // that it is assigned an 'even' or 'aligned' register if it has 8-byte
9409   // alignment (RV32) or 16-byte alignment (RV64). An aligned register should
9410   // be used regardless of whether the original argument was split during
9411   // legalisation or not. The argument will not be passed by registers if the
9412   // original type is larger than 2*XLEN, so the register alignment rule does
9413   // not apply.
9414   unsigned TwoXLenInBytes = (2 * XLen) / 8;
9415   if (!IsFixed && ArgFlags.getNonZeroOrigAlign() == TwoXLenInBytes &&
9416       DL.getTypeAllocSize(OrigTy) == TwoXLenInBytes) {
9417     unsigned RegIdx = State.getFirstUnallocated(ArgGPRs);
9418     // Skip 'odd' register if necessary.
9419     if (RegIdx != array_lengthof(ArgGPRs) && RegIdx % 2 == 1)
9420       State.AllocateReg(ArgGPRs);
9421   }
9422 
9423   SmallVectorImpl<CCValAssign> &PendingLocs = State.getPendingLocs();
9424   SmallVectorImpl<ISD::ArgFlagsTy> &PendingArgFlags =
9425       State.getPendingArgFlags();
9426 
9427   assert(PendingLocs.size() == PendingArgFlags.size() &&
9428          "PendingLocs and PendingArgFlags out of sync");
9429 
9430   // Handle passing f64 on RV32D with a soft float ABI or when floating point
9431   // registers are exhausted.
9432   if (UseGPRForF64 && XLen == 32 && ValVT == MVT::f64) {
9433     assert(!ArgFlags.isSplit() && PendingLocs.empty() &&
9434            "Can't lower f64 if it is split");
9435     // Depending on available argument GPRS, f64 may be passed in a pair of
9436     // GPRs, split between a GPR and the stack, or passed completely on the
9437     // stack. LowerCall/LowerFormalArguments/LowerReturn must recognise these
9438     // cases.
9439     Register Reg = State.AllocateReg(ArgGPRs);
9440     LocVT = MVT::i32;
9441     if (!Reg) {
9442       unsigned StackOffset = State.AllocateStack(8, Align(8));
9443       State.addLoc(
9444           CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
9445       return false;
9446     }
9447     if (!State.AllocateReg(ArgGPRs))
9448       State.AllocateStack(4, Align(4));
9449     State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
9450     return false;
9451   }
9452 
9453   // Fixed-length vectors are located in the corresponding scalable-vector
9454   // container types.
9455   if (ValVT.isFixedLengthVector())
9456     LocVT = TLI.getContainerForFixedLengthVector(LocVT);
9457 
9458   // Split arguments might be passed indirectly, so keep track of the pending
9459   // values. Split vectors are passed via a mix of registers and indirectly, so
9460   // treat them as we would any other argument.
9461   if (ValVT.isScalarInteger() && (ArgFlags.isSplit() || !PendingLocs.empty())) {
9462     LocVT = XLenVT;
9463     LocInfo = CCValAssign::Indirect;
9464     PendingLocs.push_back(
9465         CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo));
9466     PendingArgFlags.push_back(ArgFlags);
9467     if (!ArgFlags.isSplitEnd()) {
9468       return false;
9469     }
9470   }
9471 
9472   // If the split argument only had two elements, it should be passed directly
9473   // in registers or on the stack.
9474   if (ValVT.isScalarInteger() && ArgFlags.isSplitEnd() &&
9475       PendingLocs.size() <= 2) {
9476     assert(PendingLocs.size() == 2 && "Unexpected PendingLocs.size()");
9477     // Apply the normal calling convention rules to the first half of the
9478     // split argument.
9479     CCValAssign VA = PendingLocs[0];
9480     ISD::ArgFlagsTy AF = PendingArgFlags[0];
9481     PendingLocs.clear();
9482     PendingArgFlags.clear();
9483     return CC_RISCVAssign2XLen(XLen, State, VA, AF, ValNo, ValVT, LocVT,
9484                                ArgFlags);
9485   }
9486 
9487   // Allocate to a register if possible, or else a stack slot.
9488   Register Reg;
9489   unsigned StoreSizeBytes = XLen / 8;
9490   Align StackAlign = Align(XLen / 8);
9491 
9492   if (ValVT == MVT::f16 && !UseGPRForF16_F32)
9493     Reg = State.AllocateReg(ArgFPR16s);
9494   else if (ValVT == MVT::f32 && !UseGPRForF16_F32)
9495     Reg = State.AllocateReg(ArgFPR32s);
9496   else if (ValVT == MVT::f64 && !UseGPRForF64)
9497     Reg = State.AllocateReg(ArgFPR64s);
9498   else if (ValVT.isVector()) {
9499     Reg = allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI);
9500     if (!Reg) {
9501       // For return values, the vector must be passed fully via registers or
9502       // via the stack.
9503       // FIXME: The proposed vector ABI only mandates v8-v15 for return values,
9504       // but we're using all of them.
9505       if (IsRet)
9506         return true;
9507       // Try using a GPR to pass the address
9508       if ((Reg = State.AllocateReg(ArgGPRs))) {
9509         LocVT = XLenVT;
9510         LocInfo = CCValAssign::Indirect;
9511       } else if (ValVT.isScalableVector()) {
9512         LocVT = XLenVT;
9513         LocInfo = CCValAssign::Indirect;
9514       } else {
9515         // Pass fixed-length vectors on the stack.
9516         LocVT = ValVT;
9517         StoreSizeBytes = ValVT.getStoreSize();
9518         // Align vectors to their element sizes, being careful for vXi1
9519         // vectors.
9520         StackAlign = MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne();
9521       }
9522     }
9523   } else {
9524     Reg = State.AllocateReg(ArgGPRs);
9525   }
9526 
9527   unsigned StackOffset =
9528       Reg ? 0 : State.AllocateStack(StoreSizeBytes, StackAlign);
9529 
9530   // If we reach this point and PendingLocs is non-empty, we must be at the
9531   // end of a split argument that must be passed indirectly.
9532   if (!PendingLocs.empty()) {
9533     assert(ArgFlags.isSplitEnd() && "Expected ArgFlags.isSplitEnd()");
9534     assert(PendingLocs.size() > 2 && "Unexpected PendingLocs.size()");
9535 
9536     for (auto &It : PendingLocs) {
9537       if (Reg)
9538         It.convertToReg(Reg);
9539       else
9540         It.convertToMem(StackOffset);
9541       State.addLoc(It);
9542     }
9543     PendingLocs.clear();
9544     PendingArgFlags.clear();
9545     return false;
9546   }
9547 
9548   assert((!UseGPRForF16_F32 || !UseGPRForF64 || LocVT == XLenVT ||
9549           (TLI.getSubtarget().hasVInstructions() && ValVT.isVector())) &&
9550          "Expected an XLenVT or vector types at this stage");
9551 
9552   if (Reg) {
9553     State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
9554     return false;
9555   }
9556 
9557   // When a floating-point value is passed on the stack, no bit-conversion is
9558   // needed.
9559   if (ValVT.isFloatingPoint()) {
9560     LocVT = ValVT;
9561     LocInfo = CCValAssign::Full;
9562   }
9563   State.addLoc(CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
9564   return false;
9565 }
9566 
9567 template <typename ArgTy>
9568 static Optional<unsigned> preAssignMask(const ArgTy &Args) {
9569   for (const auto &ArgIdx : enumerate(Args)) {
9570     MVT ArgVT = ArgIdx.value().VT;
9571     if (ArgVT.isVector() && ArgVT.getVectorElementType() == MVT::i1)
9572       return ArgIdx.index();
9573   }
9574   return None;
9575 }
9576 
9577 void RISCVTargetLowering::analyzeInputArgs(
9578     MachineFunction &MF, CCState &CCInfo,
9579     const SmallVectorImpl<ISD::InputArg> &Ins, bool IsRet,
9580     RISCVCCAssignFn Fn) const {
9581   unsigned NumArgs = Ins.size();
9582   FunctionType *FType = MF.getFunction().getFunctionType();
9583 
9584   Optional<unsigned> FirstMaskArgument;
9585   if (Subtarget.hasVInstructions())
9586     FirstMaskArgument = preAssignMask(Ins);
9587 
9588   for (unsigned i = 0; i != NumArgs; ++i) {
9589     MVT ArgVT = Ins[i].VT;
9590     ISD::ArgFlagsTy ArgFlags = Ins[i].Flags;
9591 
9592     Type *ArgTy = nullptr;
9593     if (IsRet)
9594       ArgTy = FType->getReturnType();
9595     else if (Ins[i].isOrigArg())
9596       ArgTy = FType->getParamType(Ins[i].getOrigArgIndex());
9597 
9598     RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
9599     if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full,
9600            ArgFlags, CCInfo, /*IsFixed=*/true, IsRet, ArgTy, *this,
9601            FirstMaskArgument)) {
9602       LLVM_DEBUG(dbgs() << "InputArg #" << i << " has unhandled type "
9603                         << EVT(ArgVT).getEVTString() << '\n');
9604       llvm_unreachable(nullptr);
9605     }
9606   }
9607 }
9608 
9609 void RISCVTargetLowering::analyzeOutputArgs(
9610     MachineFunction &MF, CCState &CCInfo,
9611     const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsRet,
9612     CallLoweringInfo *CLI, RISCVCCAssignFn Fn) const {
9613   unsigned NumArgs = Outs.size();
9614 
9615   Optional<unsigned> FirstMaskArgument;
9616   if (Subtarget.hasVInstructions())
9617     FirstMaskArgument = preAssignMask(Outs);
9618 
9619   for (unsigned i = 0; i != NumArgs; i++) {
9620     MVT ArgVT = Outs[i].VT;
9621     ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
9622     Type *OrigTy = CLI ? CLI->getArgs()[Outs[i].OrigArgIndex].Ty : nullptr;
9623 
9624     RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
9625     if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full,
9626            ArgFlags, CCInfo, Outs[i].IsFixed, IsRet, OrigTy, *this,
9627            FirstMaskArgument)) {
9628       LLVM_DEBUG(dbgs() << "OutputArg #" << i << " has unhandled type "
9629                         << EVT(ArgVT).getEVTString() << "\n");
9630       llvm_unreachable(nullptr);
9631     }
9632   }
9633 }
9634 
9635 // Convert Val to a ValVT. Should not be called for CCValAssign::Indirect
9636 // values.
9637 static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDValue Val,
9638                                    const CCValAssign &VA, const SDLoc &DL,
9639                                    const RISCVSubtarget &Subtarget) {
9640   switch (VA.getLocInfo()) {
9641   default:
9642     llvm_unreachable("Unexpected CCValAssign::LocInfo");
9643   case CCValAssign::Full:
9644     if (VA.getValVT().isFixedLengthVector() && VA.getLocVT().isScalableVector())
9645       Val = convertFromScalableVector(VA.getValVT(), Val, DAG, Subtarget);
9646     break;
9647   case CCValAssign::BCvt:
9648     if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16)
9649       Val = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, Val);
9650     else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32)
9651       Val = DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, Val);
9652     else
9653       Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val);
9654     break;
9655   }
9656   return Val;
9657 }
9658 
9659 // The caller is responsible for loading the full value if the argument is
9660 // passed with CCValAssign::Indirect.
9661 static SDValue unpackFromRegLoc(SelectionDAG &DAG, SDValue Chain,
9662                                 const CCValAssign &VA, const SDLoc &DL,
9663                                 const RISCVTargetLowering &TLI) {
9664   MachineFunction &MF = DAG.getMachineFunction();
9665   MachineRegisterInfo &RegInfo = MF.getRegInfo();
9666   EVT LocVT = VA.getLocVT();
9667   SDValue Val;
9668   const TargetRegisterClass *RC = TLI.getRegClassFor(LocVT.getSimpleVT());
9669   Register VReg = RegInfo.createVirtualRegister(RC);
9670   RegInfo.addLiveIn(VA.getLocReg(), VReg);
9671   Val = DAG.getCopyFromReg(Chain, DL, VReg, LocVT);
9672 
9673   if (VA.getLocInfo() == CCValAssign::Indirect)
9674     return Val;
9675 
9676   return convertLocVTToValVT(DAG, Val, VA, DL, TLI.getSubtarget());
9677 }
9678 
9679 static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDValue Val,
9680                                    const CCValAssign &VA, const SDLoc &DL,
9681                                    const RISCVSubtarget &Subtarget) {
9682   EVT LocVT = VA.getLocVT();
9683 
9684   switch (VA.getLocInfo()) {
9685   default:
9686     llvm_unreachable("Unexpected CCValAssign::LocInfo");
9687   case CCValAssign::Full:
9688     if (VA.getValVT().isFixedLengthVector() && LocVT.isScalableVector())
9689       Val = convertToScalableVector(LocVT, Val, DAG, Subtarget);
9690     break;
9691   case CCValAssign::BCvt:
9692     if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16)
9693       Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, VA.getLocVT(), Val);
9694     else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32)
9695       Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Val);
9696     else
9697       Val = DAG.getNode(ISD::BITCAST, DL, LocVT, Val);
9698     break;
9699   }
9700   return Val;
9701 }
9702 
9703 // The caller is responsible for loading the full value if the argument is
9704 // passed with CCValAssign::Indirect.
9705 static SDValue unpackFromMemLoc(SelectionDAG &DAG, SDValue Chain,
9706                                 const CCValAssign &VA, const SDLoc &DL) {
9707   MachineFunction &MF = DAG.getMachineFunction();
9708   MachineFrameInfo &MFI = MF.getFrameInfo();
9709   EVT LocVT = VA.getLocVT();
9710   EVT ValVT = VA.getValVT();
9711   EVT PtrVT = MVT::getIntegerVT(DAG.getDataLayout().getPointerSizeInBits(0));
9712   if (ValVT.isScalableVector()) {
9713     // When the value is a scalable vector, we save the pointer which points to
9714     // the scalable vector value in the stack. The ValVT will be the pointer
9715     // type, instead of the scalable vector type.
9716     ValVT = LocVT;
9717   }
9718   int FI = MFI.CreateFixedObject(ValVT.getStoreSize(), VA.getLocMemOffset(),
9719                                  /*IsImmutable=*/true);
9720   SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
9721   SDValue Val;
9722 
9723   ISD::LoadExtType ExtType;
9724   switch (VA.getLocInfo()) {
9725   default:
9726     llvm_unreachable("Unexpected CCValAssign::LocInfo");
9727   case CCValAssign::Full:
9728   case CCValAssign::Indirect:
9729   case CCValAssign::BCvt:
9730     ExtType = ISD::NON_EXTLOAD;
9731     break;
9732   }
9733   Val = DAG.getExtLoad(
9734       ExtType, DL, LocVT, Chain, FIN,
9735       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), ValVT);
9736   return Val;
9737 }
9738 
9739 static SDValue unpackF64OnRV32DSoftABI(SelectionDAG &DAG, SDValue Chain,
9740                                        const CCValAssign &VA, const SDLoc &DL) {
9741   assert(VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64 &&
9742          "Unexpected VA");
9743   MachineFunction &MF = DAG.getMachineFunction();
9744   MachineFrameInfo &MFI = MF.getFrameInfo();
9745   MachineRegisterInfo &RegInfo = MF.getRegInfo();
9746 
9747   if (VA.isMemLoc()) {
9748     // f64 is passed on the stack.
9749     int FI =
9750         MFI.CreateFixedObject(8, VA.getLocMemOffset(), /*IsImmutable=*/true);
9751     SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
9752     return DAG.getLoad(MVT::f64, DL, Chain, FIN,
9753                        MachinePointerInfo::getFixedStack(MF, FI));
9754   }
9755 
9756   assert(VA.isRegLoc() && "Expected register VA assignment");
9757 
9758   Register LoVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
9759   RegInfo.addLiveIn(VA.getLocReg(), LoVReg);
9760   SDValue Lo = DAG.getCopyFromReg(Chain, DL, LoVReg, MVT::i32);
9761   SDValue Hi;
9762   if (VA.getLocReg() == RISCV::X17) {
9763     // Second half of f64 is passed on the stack.
9764     int FI = MFI.CreateFixedObject(4, 0, /*IsImmutable=*/true);
9765     SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
9766     Hi = DAG.getLoad(MVT::i32, DL, Chain, FIN,
9767                      MachinePointerInfo::getFixedStack(MF, FI));
9768   } else {
9769     // Second half of f64 is passed in another GPR.
9770     Register HiVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
9771     RegInfo.addLiveIn(VA.getLocReg() + 1, HiVReg);
9772     Hi = DAG.getCopyFromReg(Chain, DL, HiVReg, MVT::i32);
9773   }
9774   return DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, Lo, Hi);
9775 }
9776 
9777 // FastCC has less than 1% performance improvement for some particular
9778 // benchmark. But theoretically, it may has benenfit for some cases.
9779 static bool CC_RISCV_FastCC(const DataLayout &DL, RISCVABI::ABI ABI,
9780                             unsigned ValNo, MVT ValVT, MVT LocVT,
9781                             CCValAssign::LocInfo LocInfo,
9782                             ISD::ArgFlagsTy ArgFlags, CCState &State,
9783                             bool IsFixed, bool IsRet, Type *OrigTy,
9784                             const RISCVTargetLowering &TLI,
9785                             Optional<unsigned> FirstMaskArgument) {
9786 
9787   // X5 and X6 might be used for save-restore libcall.
9788   static const MCPhysReg GPRList[] = {
9789       RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, RISCV::X14,
9790       RISCV::X15, RISCV::X16, RISCV::X17, RISCV::X7,  RISCV::X28,
9791       RISCV::X29, RISCV::X30, RISCV::X31};
9792 
9793   if (LocVT == MVT::i32 || LocVT == MVT::i64) {
9794     if (unsigned Reg = State.AllocateReg(GPRList)) {
9795       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
9796       return false;
9797     }
9798   }
9799 
9800   if (LocVT == MVT::f16) {
9801     static const MCPhysReg FPR16List[] = {
9802         RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, RISCV::F14_H,
9803         RISCV::F15_H, RISCV::F16_H, RISCV::F17_H, RISCV::F0_H,  RISCV::F1_H,
9804         RISCV::F2_H,  RISCV::F3_H,  RISCV::F4_H,  RISCV::F5_H,  RISCV::F6_H,
9805         RISCV::F7_H,  RISCV::F28_H, RISCV::F29_H, RISCV::F30_H, RISCV::F31_H};
9806     if (unsigned Reg = State.AllocateReg(FPR16List)) {
9807       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
9808       return false;
9809     }
9810   }
9811 
9812   if (LocVT == MVT::f32) {
9813     static const MCPhysReg FPR32List[] = {
9814         RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, RISCV::F14_F,
9815         RISCV::F15_F, RISCV::F16_F, RISCV::F17_F, RISCV::F0_F,  RISCV::F1_F,
9816         RISCV::F2_F,  RISCV::F3_F,  RISCV::F4_F,  RISCV::F5_F,  RISCV::F6_F,
9817         RISCV::F7_F,  RISCV::F28_F, RISCV::F29_F, RISCV::F30_F, RISCV::F31_F};
9818     if (unsigned Reg = State.AllocateReg(FPR32List)) {
9819       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
9820       return false;
9821     }
9822   }
9823 
9824   if (LocVT == MVT::f64) {
9825     static const MCPhysReg FPR64List[] = {
9826         RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, RISCV::F14_D,
9827         RISCV::F15_D, RISCV::F16_D, RISCV::F17_D, RISCV::F0_D,  RISCV::F1_D,
9828         RISCV::F2_D,  RISCV::F3_D,  RISCV::F4_D,  RISCV::F5_D,  RISCV::F6_D,
9829         RISCV::F7_D,  RISCV::F28_D, RISCV::F29_D, RISCV::F30_D, RISCV::F31_D};
9830     if (unsigned Reg = State.AllocateReg(FPR64List)) {
9831       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
9832       return false;
9833     }
9834   }
9835 
9836   if (LocVT == MVT::i32 || LocVT == MVT::f32) {
9837     unsigned Offset4 = State.AllocateStack(4, Align(4));
9838     State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset4, LocVT, LocInfo));
9839     return false;
9840   }
9841 
9842   if (LocVT == MVT::i64 || LocVT == MVT::f64) {
9843     unsigned Offset5 = State.AllocateStack(8, Align(8));
9844     State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset5, LocVT, LocInfo));
9845     return false;
9846   }
9847 
9848   if (LocVT.isVector()) {
9849     if (unsigned Reg =
9850             allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI)) {
9851       // Fixed-length vectors are located in the corresponding scalable-vector
9852       // container types.
9853       if (ValVT.isFixedLengthVector())
9854         LocVT = TLI.getContainerForFixedLengthVector(LocVT);
9855       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
9856     } else {
9857       // Try and pass the address via a "fast" GPR.
9858       if (unsigned GPRReg = State.AllocateReg(GPRList)) {
9859         LocInfo = CCValAssign::Indirect;
9860         LocVT = TLI.getSubtarget().getXLenVT();
9861         State.addLoc(CCValAssign::getReg(ValNo, ValVT, GPRReg, LocVT, LocInfo));
9862       } else if (ValVT.isFixedLengthVector()) {
9863         auto StackAlign =
9864             MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne();
9865         unsigned StackOffset =
9866             State.AllocateStack(ValVT.getStoreSize(), StackAlign);
9867         State.addLoc(
9868             CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
9869       } else {
9870         // Can't pass scalable vectors on the stack.
9871         return true;
9872       }
9873     }
9874 
9875     return false;
9876   }
9877 
9878   return true; // CC didn't match.
9879 }
9880 
9881 static bool CC_RISCV_GHC(unsigned ValNo, MVT ValVT, MVT LocVT,
9882                          CCValAssign::LocInfo LocInfo,
9883                          ISD::ArgFlagsTy ArgFlags, CCState &State) {
9884 
9885   if (LocVT == MVT::i32 || LocVT == MVT::i64) {
9886     // Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, R6, R7, SpLim
9887     //                        s1    s2  s3  s4  s5  s6  s7  s8  s9  s10 s11
9888     static const MCPhysReg GPRList[] = {
9889         RISCV::X9, RISCV::X18, RISCV::X19, RISCV::X20, RISCV::X21, RISCV::X22,
9890         RISCV::X23, RISCV::X24, RISCV::X25, RISCV::X26, RISCV::X27};
9891     if (unsigned Reg = State.AllocateReg(GPRList)) {
9892       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
9893       return false;
9894     }
9895   }
9896 
9897   if (LocVT == MVT::f32) {
9898     // Pass in STG registers: F1, ..., F6
9899     //                        fs0 ... fs5
9900     static const MCPhysReg FPR32List[] = {RISCV::F8_F, RISCV::F9_F,
9901                                           RISCV::F18_F, RISCV::F19_F,
9902                                           RISCV::F20_F, RISCV::F21_F};
9903     if (unsigned Reg = State.AllocateReg(FPR32List)) {
9904       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
9905       return false;
9906     }
9907   }
9908 
9909   if (LocVT == MVT::f64) {
9910     // Pass in STG registers: D1, ..., D6
9911     //                        fs6 ... fs11
9912     static const MCPhysReg FPR64List[] = {RISCV::F22_D, RISCV::F23_D,
9913                                           RISCV::F24_D, RISCV::F25_D,
9914                                           RISCV::F26_D, RISCV::F27_D};
9915     if (unsigned Reg = State.AllocateReg(FPR64List)) {
9916       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
9917       return false;
9918     }
9919   }
9920 
9921   report_fatal_error("No registers left in GHC calling convention");
9922   return true;
9923 }
9924 
9925 // Transform physical registers into virtual registers.
9926 SDValue RISCVTargetLowering::LowerFormalArguments(
9927     SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
9928     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
9929     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
9930 
9931   MachineFunction &MF = DAG.getMachineFunction();
9932 
9933   switch (CallConv) {
9934   default:
9935     report_fatal_error("Unsupported calling convention");
9936   case CallingConv::C:
9937   case CallingConv::Fast:
9938     break;
9939   case CallingConv::GHC:
9940     if (!MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtF] ||
9941         !MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtD])
9942       report_fatal_error(
9943         "GHC calling convention requires the F and D instruction set extensions");
9944   }
9945 
9946   const Function &Func = MF.getFunction();
9947   if (Func.hasFnAttribute("interrupt")) {
9948     if (!Func.arg_empty())
9949       report_fatal_error(
9950         "Functions with the interrupt attribute cannot have arguments!");
9951 
9952     StringRef Kind =
9953       MF.getFunction().getFnAttribute("interrupt").getValueAsString();
9954 
9955     if (!(Kind == "user" || Kind == "supervisor" || Kind == "machine"))
9956       report_fatal_error(
9957         "Function interrupt attribute argument not supported!");
9958   }
9959 
9960   EVT PtrVT = getPointerTy(DAG.getDataLayout());
9961   MVT XLenVT = Subtarget.getXLenVT();
9962   unsigned XLenInBytes = Subtarget.getXLen() / 8;
9963   // Used with vargs to acumulate store chains.
9964   std::vector<SDValue> OutChains;
9965 
9966   // Assign locations to all of the incoming arguments.
9967   SmallVector<CCValAssign, 16> ArgLocs;
9968   CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
9969 
9970   if (CallConv == CallingConv::GHC)
9971     CCInfo.AnalyzeFormalArguments(Ins, CC_RISCV_GHC);
9972   else
9973     analyzeInputArgs(MF, CCInfo, Ins, /*IsRet=*/false,
9974                      CallConv == CallingConv::Fast ? CC_RISCV_FastCC
9975                                                    : CC_RISCV);
9976 
9977   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
9978     CCValAssign &VA = ArgLocs[i];
9979     SDValue ArgValue;
9980     // Passing f64 on RV32D with a soft float ABI must be handled as a special
9981     // case.
9982     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64)
9983       ArgValue = unpackF64OnRV32DSoftABI(DAG, Chain, VA, DL);
9984     else if (VA.isRegLoc())
9985       ArgValue = unpackFromRegLoc(DAG, Chain, VA, DL, *this);
9986     else
9987       ArgValue = unpackFromMemLoc(DAG, Chain, VA, DL);
9988 
9989     if (VA.getLocInfo() == CCValAssign::Indirect) {
9990       // If the original argument was split and passed by reference (e.g. i128
9991       // on RV32), we need to load all parts of it here (using the same
9992       // address). Vectors may be partly split to registers and partly to the
9993       // stack, in which case the base address is partly offset and subsequent
9994       // stores are relative to that.
9995       InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue,
9996                                    MachinePointerInfo()));
9997       unsigned ArgIndex = Ins[i].OrigArgIndex;
9998       unsigned ArgPartOffset = Ins[i].PartOffset;
9999       assert(VA.getValVT().isVector() || ArgPartOffset == 0);
10000       while (i + 1 != e && Ins[i + 1].OrigArgIndex == ArgIndex) {
10001         CCValAssign &PartVA = ArgLocs[i + 1];
10002         unsigned PartOffset = Ins[i + 1].PartOffset - ArgPartOffset;
10003         SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL);
10004         if (PartVA.getValVT().isScalableVector())
10005           Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset);
10006         SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, Offset);
10007         InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address,
10008                                      MachinePointerInfo()));
10009         ++i;
10010       }
10011       continue;
10012     }
10013     InVals.push_back(ArgValue);
10014   }
10015 
10016   if (IsVarArg) {
10017     ArrayRef<MCPhysReg> ArgRegs = makeArrayRef(ArgGPRs);
10018     unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs);
10019     const TargetRegisterClass *RC = &RISCV::GPRRegClass;
10020     MachineFrameInfo &MFI = MF.getFrameInfo();
10021     MachineRegisterInfo &RegInfo = MF.getRegInfo();
10022     RISCVMachineFunctionInfo *RVFI = MF.getInfo<RISCVMachineFunctionInfo>();
10023 
10024     // Offset of the first variable argument from stack pointer, and size of
10025     // the vararg save area. For now, the varargs save area is either zero or
10026     // large enough to hold a0-a7.
10027     int VaArgOffset, VarArgsSaveSize;
10028 
10029     // If all registers are allocated, then all varargs must be passed on the
10030     // stack and we don't need to save any argregs.
10031     if (ArgRegs.size() == Idx) {
10032       VaArgOffset = CCInfo.getNextStackOffset();
10033       VarArgsSaveSize = 0;
10034     } else {
10035       VarArgsSaveSize = XLenInBytes * (ArgRegs.size() - Idx);
10036       VaArgOffset = -VarArgsSaveSize;
10037     }
10038 
10039     // Record the frame index of the first variable argument
10040     // which is a value necessary to VASTART.
10041     int FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true);
10042     RVFI->setVarArgsFrameIndex(FI);
10043 
10044     // If saving an odd number of registers then create an extra stack slot to
10045     // ensure that the frame pointer is 2*XLEN-aligned, which in turn ensures
10046     // offsets to even-numbered registered remain 2*XLEN-aligned.
10047     if (Idx % 2) {
10048       MFI.CreateFixedObject(XLenInBytes, VaArgOffset - (int)XLenInBytes, true);
10049       VarArgsSaveSize += XLenInBytes;
10050     }
10051 
10052     // Copy the integer registers that may have been used for passing varargs
10053     // to the vararg save area.
10054     for (unsigned I = Idx; I < ArgRegs.size();
10055          ++I, VaArgOffset += XLenInBytes) {
10056       const Register Reg = RegInfo.createVirtualRegister(RC);
10057       RegInfo.addLiveIn(ArgRegs[I], Reg);
10058       SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, XLenVT);
10059       FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true);
10060       SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
10061       SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff,
10062                                    MachinePointerInfo::getFixedStack(MF, FI));
10063       cast<StoreSDNode>(Store.getNode())
10064           ->getMemOperand()
10065           ->setValue((Value *)nullptr);
10066       OutChains.push_back(Store);
10067     }
10068     RVFI->setVarArgsSaveSize(VarArgsSaveSize);
10069   }
10070 
10071   // All stores are grouped in one node to allow the matching between
10072   // the size of Ins and InVals. This only happens for vararg functions.
10073   if (!OutChains.empty()) {
10074     OutChains.push_back(Chain);
10075     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains);
10076   }
10077 
10078   return Chain;
10079 }
10080 
10081 /// isEligibleForTailCallOptimization - Check whether the call is eligible
10082 /// for tail call optimization.
10083 /// Note: This is modelled after ARM's IsEligibleForTailCallOptimization.
10084 bool RISCVTargetLowering::isEligibleForTailCallOptimization(
10085     CCState &CCInfo, CallLoweringInfo &CLI, MachineFunction &MF,
10086     const SmallVector<CCValAssign, 16> &ArgLocs) const {
10087 
10088   auto &Callee = CLI.Callee;
10089   auto CalleeCC = CLI.CallConv;
10090   auto &Outs = CLI.Outs;
10091   auto &Caller = MF.getFunction();
10092   auto CallerCC = Caller.getCallingConv();
10093 
10094   // Exception-handling functions need a special set of instructions to
10095   // indicate a return to the hardware. Tail-calling another function would
10096   // probably break this.
10097   // TODO: The "interrupt" attribute isn't currently defined by RISC-V. This
10098   // should be expanded as new function attributes are introduced.
10099   if (Caller.hasFnAttribute("interrupt"))
10100     return false;
10101 
10102   // Do not tail call opt if the stack is used to pass parameters.
10103   if (CCInfo.getNextStackOffset() != 0)
10104     return false;
10105 
10106   // Do not tail call opt if any parameters need to be passed indirectly.
10107   // Since long doubles (fp128) and i128 are larger than 2*XLEN, they are
10108   // passed indirectly. So the address of the value will be passed in a
10109   // register, or if not available, then the address is put on the stack. In
10110   // order to pass indirectly, space on the stack often needs to be allocated
10111   // in order to store the value. In this case the CCInfo.getNextStackOffset()
10112   // != 0 check is not enough and we need to check if any CCValAssign ArgsLocs
10113   // are passed CCValAssign::Indirect.
10114   for (auto &VA : ArgLocs)
10115     if (VA.getLocInfo() == CCValAssign::Indirect)
10116       return false;
10117 
10118   // Do not tail call opt if either caller or callee uses struct return
10119   // semantics.
10120   auto IsCallerStructRet = Caller.hasStructRetAttr();
10121   auto IsCalleeStructRet = Outs.empty() ? false : Outs[0].Flags.isSRet();
10122   if (IsCallerStructRet || IsCalleeStructRet)
10123     return false;
10124 
10125   // Externally-defined functions with weak linkage should not be
10126   // tail-called. The behaviour of branch instructions in this situation (as
10127   // used for tail calls) is implementation-defined, so we cannot rely on the
10128   // linker replacing the tail call with a return.
10129   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
10130     const GlobalValue *GV = G->getGlobal();
10131     if (GV->hasExternalWeakLinkage())
10132       return false;
10133   }
10134 
10135   // The callee has to preserve all registers the caller needs to preserve.
10136   const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo();
10137   const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
10138   if (CalleeCC != CallerCC) {
10139     const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
10140     if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
10141       return false;
10142   }
10143 
10144   // Byval parameters hand the function a pointer directly into the stack area
10145   // we want to reuse during a tail call. Working around this *is* possible
10146   // but less efficient and uglier in LowerCall.
10147   for (auto &Arg : Outs)
10148     if (Arg.Flags.isByVal())
10149       return false;
10150 
10151   return true;
10152 }
10153 
10154 static Align getPrefTypeAlign(EVT VT, SelectionDAG &DAG) {
10155   return DAG.getDataLayout().getPrefTypeAlign(
10156       VT.getTypeForEVT(*DAG.getContext()));
10157 }
10158 
10159 // Lower a call to a callseq_start + CALL + callseq_end chain, and add input
10160 // and output parameter nodes.
10161 SDValue RISCVTargetLowering::LowerCall(CallLoweringInfo &CLI,
10162                                        SmallVectorImpl<SDValue> &InVals) const {
10163   SelectionDAG &DAG = CLI.DAG;
10164   SDLoc &DL = CLI.DL;
10165   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
10166   SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
10167   SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
10168   SDValue Chain = CLI.Chain;
10169   SDValue Callee = CLI.Callee;
10170   bool &IsTailCall = CLI.IsTailCall;
10171   CallingConv::ID CallConv = CLI.CallConv;
10172   bool IsVarArg = CLI.IsVarArg;
10173   EVT PtrVT = getPointerTy(DAG.getDataLayout());
10174   MVT XLenVT = Subtarget.getXLenVT();
10175 
10176   MachineFunction &MF = DAG.getMachineFunction();
10177 
10178   // Analyze the operands of the call, assigning locations to each operand.
10179   SmallVector<CCValAssign, 16> ArgLocs;
10180   CCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
10181 
10182   if (CallConv == CallingConv::GHC)
10183     ArgCCInfo.AnalyzeCallOperands(Outs, CC_RISCV_GHC);
10184   else
10185     analyzeOutputArgs(MF, ArgCCInfo, Outs, /*IsRet=*/false, &CLI,
10186                       CallConv == CallingConv::Fast ? CC_RISCV_FastCC
10187                                                     : CC_RISCV);
10188 
10189   // Check if it's really possible to do a tail call.
10190   if (IsTailCall)
10191     IsTailCall = isEligibleForTailCallOptimization(ArgCCInfo, CLI, MF, ArgLocs);
10192 
10193   if (IsTailCall)
10194     ++NumTailCalls;
10195   else if (CLI.CB && CLI.CB->isMustTailCall())
10196     report_fatal_error("failed to perform tail call elimination on a call "
10197                        "site marked musttail");
10198 
10199   // Get a count of how many bytes are to be pushed on the stack.
10200   unsigned NumBytes = ArgCCInfo.getNextStackOffset();
10201 
10202   // Create local copies for byval args
10203   SmallVector<SDValue, 8> ByValArgs;
10204   for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
10205     ISD::ArgFlagsTy Flags = Outs[i].Flags;
10206     if (!Flags.isByVal())
10207       continue;
10208 
10209     SDValue Arg = OutVals[i];
10210     unsigned Size = Flags.getByValSize();
10211     Align Alignment = Flags.getNonZeroByValAlign();
10212 
10213     int FI =
10214         MF.getFrameInfo().CreateStackObject(Size, Alignment, /*isSS=*/false);
10215     SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
10216     SDValue SizeNode = DAG.getConstant(Size, DL, XLenVT);
10217 
10218     Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Alignment,
10219                           /*IsVolatile=*/false,
10220                           /*AlwaysInline=*/false, IsTailCall,
10221                           MachinePointerInfo(), MachinePointerInfo());
10222     ByValArgs.push_back(FIPtr);
10223   }
10224 
10225   if (!IsTailCall)
10226     Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, CLI.DL);
10227 
10228   // Copy argument values to their designated locations.
10229   SmallVector<std::pair<Register, SDValue>, 8> RegsToPass;
10230   SmallVector<SDValue, 8> MemOpChains;
10231   SDValue StackPtr;
10232   for (unsigned i = 0, j = 0, e = ArgLocs.size(); i != e; ++i) {
10233     CCValAssign &VA = ArgLocs[i];
10234     SDValue ArgValue = OutVals[i];
10235     ISD::ArgFlagsTy Flags = Outs[i].Flags;
10236 
10237     // Handle passing f64 on RV32D with a soft float ABI as a special case.
10238     bool IsF64OnRV32DSoftABI =
10239         VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64;
10240     if (IsF64OnRV32DSoftABI && VA.isRegLoc()) {
10241       SDValue SplitF64 = DAG.getNode(
10242           RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), ArgValue);
10243       SDValue Lo = SplitF64.getValue(0);
10244       SDValue Hi = SplitF64.getValue(1);
10245 
10246       Register RegLo = VA.getLocReg();
10247       RegsToPass.push_back(std::make_pair(RegLo, Lo));
10248 
10249       if (RegLo == RISCV::X17) {
10250         // Second half of f64 is passed on the stack.
10251         // Work out the address of the stack slot.
10252         if (!StackPtr.getNode())
10253           StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT);
10254         // Emit the store.
10255         MemOpChains.push_back(
10256             DAG.getStore(Chain, DL, Hi, StackPtr, MachinePointerInfo()));
10257       } else {
10258         // Second half of f64 is passed in another GPR.
10259         assert(RegLo < RISCV::X31 && "Invalid register pair");
10260         Register RegHigh = RegLo + 1;
10261         RegsToPass.push_back(std::make_pair(RegHigh, Hi));
10262       }
10263       continue;
10264     }
10265 
10266     // IsF64OnRV32DSoftABI && VA.isMemLoc() is handled below in the same way
10267     // as any other MemLoc.
10268 
10269     // Promote the value if needed.
10270     // For now, only handle fully promoted and indirect arguments.
10271     if (VA.getLocInfo() == CCValAssign::Indirect) {
10272       // Store the argument in a stack slot and pass its address.
10273       Align StackAlign =
10274           std::max(getPrefTypeAlign(Outs[i].ArgVT, DAG),
10275                    getPrefTypeAlign(ArgValue.getValueType(), DAG));
10276       TypeSize StoredSize = ArgValue.getValueType().getStoreSize();
10277       // If the original argument was split (e.g. i128), we need
10278       // to store the required parts of it here (and pass just one address).
10279       // Vectors may be partly split to registers and partly to the stack, in
10280       // which case the base address is partly offset and subsequent stores are
10281       // relative to that.
10282       unsigned ArgIndex = Outs[i].OrigArgIndex;
10283       unsigned ArgPartOffset = Outs[i].PartOffset;
10284       assert(VA.getValVT().isVector() || ArgPartOffset == 0);
10285       // Calculate the total size to store. We don't have access to what we're
10286       // actually storing other than performing the loop and collecting the
10287       // info.
10288       SmallVector<std::pair<SDValue, SDValue>> Parts;
10289       while (i + 1 != e && Outs[i + 1].OrigArgIndex == ArgIndex) {
10290         SDValue PartValue = OutVals[i + 1];
10291         unsigned PartOffset = Outs[i + 1].PartOffset - ArgPartOffset;
10292         SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL);
10293         EVT PartVT = PartValue.getValueType();
10294         if (PartVT.isScalableVector())
10295           Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset);
10296         StoredSize += PartVT.getStoreSize();
10297         StackAlign = std::max(StackAlign, getPrefTypeAlign(PartVT, DAG));
10298         Parts.push_back(std::make_pair(PartValue, Offset));
10299         ++i;
10300       }
10301       SDValue SpillSlot = DAG.CreateStackTemporary(StoredSize, StackAlign);
10302       int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
10303       MemOpChains.push_back(
10304           DAG.getStore(Chain, DL, ArgValue, SpillSlot,
10305                        MachinePointerInfo::getFixedStack(MF, FI)));
10306       for (const auto &Part : Parts) {
10307         SDValue PartValue = Part.first;
10308         SDValue PartOffset = Part.second;
10309         SDValue Address =
10310             DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, PartOffset);
10311         MemOpChains.push_back(
10312             DAG.getStore(Chain, DL, PartValue, Address,
10313                          MachinePointerInfo::getFixedStack(MF, FI)));
10314       }
10315       ArgValue = SpillSlot;
10316     } else {
10317       ArgValue = convertValVTToLocVT(DAG, ArgValue, VA, DL, Subtarget);
10318     }
10319 
10320     // Use local copy if it is a byval arg.
10321     if (Flags.isByVal())
10322       ArgValue = ByValArgs[j++];
10323 
10324     if (VA.isRegLoc()) {
10325       // Queue up the argument copies and emit them at the end.
10326       RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue));
10327     } else {
10328       assert(VA.isMemLoc() && "Argument not register or memory");
10329       assert(!IsTailCall && "Tail call not allowed if stack is used "
10330                             "for passing parameters");
10331 
10332       // Work out the address of the stack slot.
10333       if (!StackPtr.getNode())
10334         StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT);
10335       SDValue Address =
10336           DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr,
10337                       DAG.getIntPtrConstant(VA.getLocMemOffset(), DL));
10338 
10339       // Emit the store.
10340       MemOpChains.push_back(
10341           DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo()));
10342     }
10343   }
10344 
10345   // Join the stores, which are independent of one another.
10346   if (!MemOpChains.empty())
10347     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
10348 
10349   SDValue Glue;
10350 
10351   // Build a sequence of copy-to-reg nodes, chained and glued together.
10352   for (auto &Reg : RegsToPass) {
10353     Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, Glue);
10354     Glue = Chain.getValue(1);
10355   }
10356 
10357   // Validate that none of the argument registers have been marked as
10358   // reserved, if so report an error. Do the same for the return address if this
10359   // is not a tailcall.
10360   validateCCReservedRegs(RegsToPass, MF);
10361   if (!IsTailCall &&
10362       MF.getSubtarget<RISCVSubtarget>().isRegisterReservedByUser(RISCV::X1))
10363     MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
10364         MF.getFunction(),
10365         "Return address register required, but has been reserved."});
10366 
10367   // If the callee is a GlobalAddress/ExternalSymbol node, turn it into a
10368   // TargetGlobalAddress/TargetExternalSymbol node so that legalize won't
10369   // split it and then direct call can be matched by PseudoCALL.
10370   if (GlobalAddressSDNode *S = dyn_cast<GlobalAddressSDNode>(Callee)) {
10371     const GlobalValue *GV = S->getGlobal();
10372 
10373     unsigned OpFlags = RISCVII::MO_CALL;
10374     if (!getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV))
10375       OpFlags = RISCVII::MO_PLT;
10376 
10377     Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags);
10378   } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
10379     unsigned OpFlags = RISCVII::MO_CALL;
10380 
10381     if (!getTargetMachine().shouldAssumeDSOLocal(*MF.getFunction().getParent(),
10382                                                  nullptr))
10383       OpFlags = RISCVII::MO_PLT;
10384 
10385     Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, OpFlags);
10386   }
10387 
10388   // The first call operand is the chain and the second is the target address.
10389   SmallVector<SDValue, 8> Ops;
10390   Ops.push_back(Chain);
10391   Ops.push_back(Callee);
10392 
10393   // Add argument registers to the end of the list so that they are
10394   // known live into the call.
10395   for (auto &Reg : RegsToPass)
10396     Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType()));
10397 
10398   if (!IsTailCall) {
10399     // Add a register mask operand representing the call-preserved registers.
10400     const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
10401     const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
10402     assert(Mask && "Missing call preserved mask for calling convention");
10403     Ops.push_back(DAG.getRegisterMask(Mask));
10404   }
10405 
10406   // Glue the call to the argument copies, if any.
10407   if (Glue.getNode())
10408     Ops.push_back(Glue);
10409 
10410   // Emit the call.
10411   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
10412 
10413   if (IsTailCall) {
10414     MF.getFrameInfo().setHasTailCall();
10415     return DAG.getNode(RISCVISD::TAIL, DL, NodeTys, Ops);
10416   }
10417 
10418   Chain = DAG.getNode(RISCVISD::CALL, DL, NodeTys, Ops);
10419   DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge);
10420   Glue = Chain.getValue(1);
10421 
10422   // Mark the end of the call, which is glued to the call itself.
10423   Chain = DAG.getCALLSEQ_END(Chain,
10424                              DAG.getConstant(NumBytes, DL, PtrVT, true),
10425                              DAG.getConstant(0, DL, PtrVT, true),
10426                              Glue, DL);
10427   Glue = Chain.getValue(1);
10428 
10429   // Assign locations to each value returned by this call.
10430   SmallVector<CCValAssign, 16> RVLocs;
10431   CCState RetCCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext());
10432   analyzeInputArgs(MF, RetCCInfo, Ins, /*IsRet=*/true, CC_RISCV);
10433 
10434   // Copy all of the result registers out of their specified physreg.
10435   for (auto &VA : RVLocs) {
10436     // Copy the value out
10437     SDValue RetValue =
10438         DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), Glue);
10439     // Glue the RetValue to the end of the call sequence
10440     Chain = RetValue.getValue(1);
10441     Glue = RetValue.getValue(2);
10442 
10443     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) {
10444       assert(VA.getLocReg() == ArgGPRs[0] && "Unexpected reg assignment");
10445       SDValue RetValue2 =
10446           DAG.getCopyFromReg(Chain, DL, ArgGPRs[1], MVT::i32, Glue);
10447       Chain = RetValue2.getValue(1);
10448       Glue = RetValue2.getValue(2);
10449       RetValue = DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, RetValue,
10450                              RetValue2);
10451     }
10452 
10453     RetValue = convertLocVTToValVT(DAG, RetValue, VA, DL, Subtarget);
10454 
10455     InVals.push_back(RetValue);
10456   }
10457 
10458   return Chain;
10459 }
10460 
10461 bool RISCVTargetLowering::CanLowerReturn(
10462     CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg,
10463     const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const {
10464   SmallVector<CCValAssign, 16> RVLocs;
10465   CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);
10466 
10467   Optional<unsigned> FirstMaskArgument;
10468   if (Subtarget.hasVInstructions())
10469     FirstMaskArgument = preAssignMask(Outs);
10470 
10471   for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
10472     MVT VT = Outs[i].VT;
10473     ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
10474     RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
10475     if (CC_RISCV(MF.getDataLayout(), ABI, i, VT, VT, CCValAssign::Full,
10476                  ArgFlags, CCInfo, /*IsFixed=*/true, /*IsRet=*/true, nullptr,
10477                  *this, FirstMaskArgument))
10478       return false;
10479   }
10480   return true;
10481 }
10482 
10483 SDValue
10484 RISCVTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
10485                                  bool IsVarArg,
10486                                  const SmallVectorImpl<ISD::OutputArg> &Outs,
10487                                  const SmallVectorImpl<SDValue> &OutVals,
10488                                  const SDLoc &DL, SelectionDAG &DAG) const {
10489   const MachineFunction &MF = DAG.getMachineFunction();
10490   const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>();
10491 
10492   // Stores the assignment of the return value to a location.
10493   SmallVector<CCValAssign, 16> RVLocs;
10494 
10495   // Info about the registers and stack slot.
10496   CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
10497                  *DAG.getContext());
10498 
10499   analyzeOutputArgs(DAG.getMachineFunction(), CCInfo, Outs, /*IsRet=*/true,
10500                     nullptr, CC_RISCV);
10501 
10502   if (CallConv == CallingConv::GHC && !RVLocs.empty())
10503     report_fatal_error("GHC functions return void only");
10504 
10505   SDValue Glue;
10506   SmallVector<SDValue, 4> RetOps(1, Chain);
10507 
10508   // Copy the result values into the output registers.
10509   for (unsigned i = 0, e = RVLocs.size(); i < e; ++i) {
10510     SDValue Val = OutVals[i];
10511     CCValAssign &VA = RVLocs[i];
10512     assert(VA.isRegLoc() && "Can only return in registers!");
10513 
10514     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) {
10515       // Handle returning f64 on RV32D with a soft float ABI.
10516       assert(VA.isRegLoc() && "Expected return via registers");
10517       SDValue SplitF64 = DAG.getNode(RISCVISD::SplitF64, DL,
10518                                      DAG.getVTList(MVT::i32, MVT::i32), Val);
10519       SDValue Lo = SplitF64.getValue(0);
10520       SDValue Hi = SplitF64.getValue(1);
10521       Register RegLo = VA.getLocReg();
10522       assert(RegLo < RISCV::X31 && "Invalid register pair");
10523       Register RegHi = RegLo + 1;
10524 
10525       if (STI.isRegisterReservedByUser(RegLo) ||
10526           STI.isRegisterReservedByUser(RegHi))
10527         MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
10528             MF.getFunction(),
10529             "Return value register required, but has been reserved."});
10530 
10531       Chain = DAG.getCopyToReg(Chain, DL, RegLo, Lo, Glue);
10532       Glue = Chain.getValue(1);
10533       RetOps.push_back(DAG.getRegister(RegLo, MVT::i32));
10534       Chain = DAG.getCopyToReg(Chain, DL, RegHi, Hi, Glue);
10535       Glue = Chain.getValue(1);
10536       RetOps.push_back(DAG.getRegister(RegHi, MVT::i32));
10537     } else {
10538       // Handle a 'normal' return.
10539       Val = convertValVTToLocVT(DAG, Val, VA, DL, Subtarget);
10540       Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Glue);
10541 
10542       if (STI.isRegisterReservedByUser(VA.getLocReg()))
10543         MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
10544             MF.getFunction(),
10545             "Return value register required, but has been reserved."});
10546 
10547       // Guarantee that all emitted copies are stuck together.
10548       Glue = Chain.getValue(1);
10549       RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
10550     }
10551   }
10552 
10553   RetOps[0] = Chain; // Update chain.
10554 
10555   // Add the glue node if we have it.
10556   if (Glue.getNode()) {
10557     RetOps.push_back(Glue);
10558   }
10559 
10560   unsigned RetOpc = RISCVISD::RET_FLAG;
10561   // Interrupt service routines use different return instructions.
10562   const Function &Func = DAG.getMachineFunction().getFunction();
10563   if (Func.hasFnAttribute("interrupt")) {
10564     if (!Func.getReturnType()->isVoidTy())
10565       report_fatal_error(
10566           "Functions with the interrupt attribute must have void return type!");
10567 
10568     MachineFunction &MF = DAG.getMachineFunction();
10569     StringRef Kind =
10570       MF.getFunction().getFnAttribute("interrupt").getValueAsString();
10571 
10572     if (Kind == "user")
10573       RetOpc = RISCVISD::URET_FLAG;
10574     else if (Kind == "supervisor")
10575       RetOpc = RISCVISD::SRET_FLAG;
10576     else
10577       RetOpc = RISCVISD::MRET_FLAG;
10578   }
10579 
10580   return DAG.getNode(RetOpc, DL, MVT::Other, RetOps);
10581 }
10582 
10583 void RISCVTargetLowering::validateCCReservedRegs(
10584     const SmallVectorImpl<std::pair<llvm::Register, llvm::SDValue>> &Regs,
10585     MachineFunction &MF) const {
10586   const Function &F = MF.getFunction();
10587   const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>();
10588 
10589   if (llvm::any_of(Regs, [&STI](auto Reg) {
10590         return STI.isRegisterReservedByUser(Reg.first);
10591       }))
10592     F.getContext().diagnose(DiagnosticInfoUnsupported{
10593         F, "Argument register required, but has been reserved."});
10594 }
10595 
10596 bool RISCVTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
10597   return CI->isTailCall();
10598 }
10599 
10600 const char *RISCVTargetLowering::getTargetNodeName(unsigned Opcode) const {
10601 #define NODE_NAME_CASE(NODE)                                                   \
10602   case RISCVISD::NODE:                                                         \
10603     return "RISCVISD::" #NODE;
10604   // clang-format off
10605   switch ((RISCVISD::NodeType)Opcode) {
10606   case RISCVISD::FIRST_NUMBER:
10607     break;
10608   NODE_NAME_CASE(RET_FLAG)
10609   NODE_NAME_CASE(URET_FLAG)
10610   NODE_NAME_CASE(SRET_FLAG)
10611   NODE_NAME_CASE(MRET_FLAG)
10612   NODE_NAME_CASE(CALL)
10613   NODE_NAME_CASE(SELECT_CC)
10614   NODE_NAME_CASE(BR_CC)
10615   NODE_NAME_CASE(BuildPairF64)
10616   NODE_NAME_CASE(SplitF64)
10617   NODE_NAME_CASE(TAIL)
10618   NODE_NAME_CASE(MULHSU)
10619   NODE_NAME_CASE(SLLW)
10620   NODE_NAME_CASE(SRAW)
10621   NODE_NAME_CASE(SRLW)
10622   NODE_NAME_CASE(DIVW)
10623   NODE_NAME_CASE(DIVUW)
10624   NODE_NAME_CASE(REMUW)
10625   NODE_NAME_CASE(ROLW)
10626   NODE_NAME_CASE(RORW)
10627   NODE_NAME_CASE(CLZW)
10628   NODE_NAME_CASE(CTZW)
10629   NODE_NAME_CASE(FSLW)
10630   NODE_NAME_CASE(FSRW)
10631   NODE_NAME_CASE(FSL)
10632   NODE_NAME_CASE(FSR)
10633   NODE_NAME_CASE(FMV_H_X)
10634   NODE_NAME_CASE(FMV_X_ANYEXTH)
10635   NODE_NAME_CASE(FMV_X_SIGNEXTH)
10636   NODE_NAME_CASE(FMV_W_X_RV64)
10637   NODE_NAME_CASE(FMV_X_ANYEXTW_RV64)
10638   NODE_NAME_CASE(FCVT_X)
10639   NODE_NAME_CASE(FCVT_XU)
10640   NODE_NAME_CASE(FCVT_W_RV64)
10641   NODE_NAME_CASE(FCVT_WU_RV64)
10642   NODE_NAME_CASE(STRICT_FCVT_W_RV64)
10643   NODE_NAME_CASE(STRICT_FCVT_WU_RV64)
10644   NODE_NAME_CASE(READ_CYCLE_WIDE)
10645   NODE_NAME_CASE(GREV)
10646   NODE_NAME_CASE(GREVW)
10647   NODE_NAME_CASE(GORC)
10648   NODE_NAME_CASE(GORCW)
10649   NODE_NAME_CASE(SHFL)
10650   NODE_NAME_CASE(SHFLW)
10651   NODE_NAME_CASE(UNSHFL)
10652   NODE_NAME_CASE(UNSHFLW)
10653   NODE_NAME_CASE(BFP)
10654   NODE_NAME_CASE(BFPW)
10655   NODE_NAME_CASE(BCOMPRESS)
10656   NODE_NAME_CASE(BCOMPRESSW)
10657   NODE_NAME_CASE(BDECOMPRESS)
10658   NODE_NAME_CASE(BDECOMPRESSW)
10659   NODE_NAME_CASE(VMV_V_X_VL)
10660   NODE_NAME_CASE(VFMV_V_F_VL)
10661   NODE_NAME_CASE(VMV_X_S)
10662   NODE_NAME_CASE(VMV_S_X_VL)
10663   NODE_NAME_CASE(VFMV_S_F_VL)
10664   NODE_NAME_CASE(SPLAT_VECTOR_SPLIT_I64_VL)
10665   NODE_NAME_CASE(READ_VLENB)
10666   NODE_NAME_CASE(TRUNCATE_VECTOR_VL)
10667   NODE_NAME_CASE(VSLIDEUP_VL)
10668   NODE_NAME_CASE(VSLIDE1UP_VL)
10669   NODE_NAME_CASE(VSLIDEDOWN_VL)
10670   NODE_NAME_CASE(VSLIDE1DOWN_VL)
10671   NODE_NAME_CASE(VID_VL)
10672   NODE_NAME_CASE(VFNCVT_ROD_VL)
10673   NODE_NAME_CASE(VECREDUCE_ADD_VL)
10674   NODE_NAME_CASE(VECREDUCE_UMAX_VL)
10675   NODE_NAME_CASE(VECREDUCE_SMAX_VL)
10676   NODE_NAME_CASE(VECREDUCE_UMIN_VL)
10677   NODE_NAME_CASE(VECREDUCE_SMIN_VL)
10678   NODE_NAME_CASE(VECREDUCE_AND_VL)
10679   NODE_NAME_CASE(VECREDUCE_OR_VL)
10680   NODE_NAME_CASE(VECREDUCE_XOR_VL)
10681   NODE_NAME_CASE(VECREDUCE_FADD_VL)
10682   NODE_NAME_CASE(VECREDUCE_SEQ_FADD_VL)
10683   NODE_NAME_CASE(VECREDUCE_FMIN_VL)
10684   NODE_NAME_CASE(VECREDUCE_FMAX_VL)
10685   NODE_NAME_CASE(ADD_VL)
10686   NODE_NAME_CASE(AND_VL)
10687   NODE_NAME_CASE(MUL_VL)
10688   NODE_NAME_CASE(OR_VL)
10689   NODE_NAME_CASE(SDIV_VL)
10690   NODE_NAME_CASE(SHL_VL)
10691   NODE_NAME_CASE(SREM_VL)
10692   NODE_NAME_CASE(SRA_VL)
10693   NODE_NAME_CASE(SRL_VL)
10694   NODE_NAME_CASE(SUB_VL)
10695   NODE_NAME_CASE(UDIV_VL)
10696   NODE_NAME_CASE(UREM_VL)
10697   NODE_NAME_CASE(XOR_VL)
10698   NODE_NAME_CASE(SADDSAT_VL)
10699   NODE_NAME_CASE(UADDSAT_VL)
10700   NODE_NAME_CASE(SSUBSAT_VL)
10701   NODE_NAME_CASE(USUBSAT_VL)
10702   NODE_NAME_CASE(FADD_VL)
10703   NODE_NAME_CASE(FSUB_VL)
10704   NODE_NAME_CASE(FMUL_VL)
10705   NODE_NAME_CASE(FDIV_VL)
10706   NODE_NAME_CASE(FNEG_VL)
10707   NODE_NAME_CASE(FABS_VL)
10708   NODE_NAME_CASE(FSQRT_VL)
10709   NODE_NAME_CASE(FMA_VL)
10710   NODE_NAME_CASE(FCOPYSIGN_VL)
10711   NODE_NAME_CASE(SMIN_VL)
10712   NODE_NAME_CASE(SMAX_VL)
10713   NODE_NAME_CASE(UMIN_VL)
10714   NODE_NAME_CASE(UMAX_VL)
10715   NODE_NAME_CASE(FMINNUM_VL)
10716   NODE_NAME_CASE(FMAXNUM_VL)
10717   NODE_NAME_CASE(MULHS_VL)
10718   NODE_NAME_CASE(MULHU_VL)
10719   NODE_NAME_CASE(FP_TO_SINT_VL)
10720   NODE_NAME_CASE(FP_TO_UINT_VL)
10721   NODE_NAME_CASE(SINT_TO_FP_VL)
10722   NODE_NAME_CASE(UINT_TO_FP_VL)
10723   NODE_NAME_CASE(FP_EXTEND_VL)
10724   NODE_NAME_CASE(FP_ROUND_VL)
10725   NODE_NAME_CASE(VWMUL_VL)
10726   NODE_NAME_CASE(VWMULU_VL)
10727   NODE_NAME_CASE(VWMULSU_VL)
10728   NODE_NAME_CASE(VWADD_VL)
10729   NODE_NAME_CASE(VWADDU_VL)
10730   NODE_NAME_CASE(VWSUB_VL)
10731   NODE_NAME_CASE(VWSUBU_VL)
10732   NODE_NAME_CASE(VWADD_W_VL)
10733   NODE_NAME_CASE(VWADDU_W_VL)
10734   NODE_NAME_CASE(VWSUB_W_VL)
10735   NODE_NAME_CASE(VWSUBU_W_VL)
10736   NODE_NAME_CASE(SETCC_VL)
10737   NODE_NAME_CASE(VSELECT_VL)
10738   NODE_NAME_CASE(VP_MERGE_VL)
10739   NODE_NAME_CASE(VMAND_VL)
10740   NODE_NAME_CASE(VMOR_VL)
10741   NODE_NAME_CASE(VMXOR_VL)
10742   NODE_NAME_CASE(VMCLR_VL)
10743   NODE_NAME_CASE(VMSET_VL)
10744   NODE_NAME_CASE(VRGATHER_VX_VL)
10745   NODE_NAME_CASE(VRGATHER_VV_VL)
10746   NODE_NAME_CASE(VRGATHEREI16_VV_VL)
10747   NODE_NAME_CASE(VSEXT_VL)
10748   NODE_NAME_CASE(VZEXT_VL)
10749   NODE_NAME_CASE(VCPOP_VL)
10750   NODE_NAME_CASE(VLE_VL)
10751   NODE_NAME_CASE(VSE_VL)
10752   NODE_NAME_CASE(READ_CSR)
10753   NODE_NAME_CASE(WRITE_CSR)
10754   NODE_NAME_CASE(SWAP_CSR)
10755   }
10756   // clang-format on
10757   return nullptr;
10758 #undef NODE_NAME_CASE
10759 }
10760 
10761 /// getConstraintType - Given a constraint letter, return the type of
10762 /// constraint it is for this target.
10763 RISCVTargetLowering::ConstraintType
10764 RISCVTargetLowering::getConstraintType(StringRef Constraint) const {
10765   if (Constraint.size() == 1) {
10766     switch (Constraint[0]) {
10767     default:
10768       break;
10769     case 'f':
10770       return C_RegisterClass;
10771     case 'I':
10772     case 'J':
10773     case 'K':
10774       return C_Immediate;
10775     case 'A':
10776       return C_Memory;
10777     case 'S': // A symbolic address
10778       return C_Other;
10779     }
10780   } else {
10781     if (Constraint == "vr" || Constraint == "vm")
10782       return C_RegisterClass;
10783   }
10784   return TargetLowering::getConstraintType(Constraint);
10785 }
10786 
10787 std::pair<unsigned, const TargetRegisterClass *>
10788 RISCVTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
10789                                                   StringRef Constraint,
10790                                                   MVT VT) const {
10791   // First, see if this is a constraint that directly corresponds to a
10792   // RISCV register class.
10793   if (Constraint.size() == 1) {
10794     switch (Constraint[0]) {
10795     case 'r':
10796       // TODO: Support fixed vectors up to XLen for P extension?
10797       if (VT.isVector())
10798         break;
10799       return std::make_pair(0U, &RISCV::GPRRegClass);
10800     case 'f':
10801       if (Subtarget.hasStdExtZfh() && VT == MVT::f16)
10802         return std::make_pair(0U, &RISCV::FPR16RegClass);
10803       if (Subtarget.hasStdExtF() && VT == MVT::f32)
10804         return std::make_pair(0U, &RISCV::FPR32RegClass);
10805       if (Subtarget.hasStdExtD() && VT == MVT::f64)
10806         return std::make_pair(0U, &RISCV::FPR64RegClass);
10807       break;
10808     default:
10809       break;
10810     }
10811   } else if (Constraint == "vr") {
10812     for (const auto *RC : {&RISCV::VRRegClass, &RISCV::VRM2RegClass,
10813                            &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) {
10814       if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy))
10815         return std::make_pair(0U, RC);
10816     }
10817   } else if (Constraint == "vm") {
10818     if (TRI->isTypeLegalForClass(RISCV::VMV0RegClass, VT.SimpleTy))
10819       return std::make_pair(0U, &RISCV::VMV0RegClass);
10820   }
10821 
10822   // Clang will correctly decode the usage of register name aliases into their
10823   // official names. However, other frontends like `rustc` do not. This allows
10824   // users of these frontends to use the ABI names for registers in LLVM-style
10825   // register constraints.
10826   unsigned XRegFromAlias = StringSwitch<unsigned>(Constraint.lower())
10827                                .Case("{zero}", RISCV::X0)
10828                                .Case("{ra}", RISCV::X1)
10829                                .Case("{sp}", RISCV::X2)
10830                                .Case("{gp}", RISCV::X3)
10831                                .Case("{tp}", RISCV::X4)
10832                                .Case("{t0}", RISCV::X5)
10833                                .Case("{t1}", RISCV::X6)
10834                                .Case("{t2}", RISCV::X7)
10835                                .Cases("{s0}", "{fp}", RISCV::X8)
10836                                .Case("{s1}", RISCV::X9)
10837                                .Case("{a0}", RISCV::X10)
10838                                .Case("{a1}", RISCV::X11)
10839                                .Case("{a2}", RISCV::X12)
10840                                .Case("{a3}", RISCV::X13)
10841                                .Case("{a4}", RISCV::X14)
10842                                .Case("{a5}", RISCV::X15)
10843                                .Case("{a6}", RISCV::X16)
10844                                .Case("{a7}", RISCV::X17)
10845                                .Case("{s2}", RISCV::X18)
10846                                .Case("{s3}", RISCV::X19)
10847                                .Case("{s4}", RISCV::X20)
10848                                .Case("{s5}", RISCV::X21)
10849                                .Case("{s6}", RISCV::X22)
10850                                .Case("{s7}", RISCV::X23)
10851                                .Case("{s8}", RISCV::X24)
10852                                .Case("{s9}", RISCV::X25)
10853                                .Case("{s10}", RISCV::X26)
10854                                .Case("{s11}", RISCV::X27)
10855                                .Case("{t3}", RISCV::X28)
10856                                .Case("{t4}", RISCV::X29)
10857                                .Case("{t5}", RISCV::X30)
10858                                .Case("{t6}", RISCV::X31)
10859                                .Default(RISCV::NoRegister);
10860   if (XRegFromAlias != RISCV::NoRegister)
10861     return std::make_pair(XRegFromAlias, &RISCV::GPRRegClass);
10862 
10863   // Since TargetLowering::getRegForInlineAsmConstraint uses the name of the
10864   // TableGen record rather than the AsmName to choose registers for InlineAsm
10865   // constraints, plus we want to match those names to the widest floating point
10866   // register type available, manually select floating point registers here.
10867   //
10868   // The second case is the ABI name of the register, so that frontends can also
10869   // use the ABI names in register constraint lists.
10870   if (Subtarget.hasStdExtF()) {
10871     unsigned FReg = StringSwitch<unsigned>(Constraint.lower())
10872                         .Cases("{f0}", "{ft0}", RISCV::F0_F)
10873                         .Cases("{f1}", "{ft1}", RISCV::F1_F)
10874                         .Cases("{f2}", "{ft2}", RISCV::F2_F)
10875                         .Cases("{f3}", "{ft3}", RISCV::F3_F)
10876                         .Cases("{f4}", "{ft4}", RISCV::F4_F)
10877                         .Cases("{f5}", "{ft5}", RISCV::F5_F)
10878                         .Cases("{f6}", "{ft6}", RISCV::F6_F)
10879                         .Cases("{f7}", "{ft7}", RISCV::F7_F)
10880                         .Cases("{f8}", "{fs0}", RISCV::F8_F)
10881                         .Cases("{f9}", "{fs1}", RISCV::F9_F)
10882                         .Cases("{f10}", "{fa0}", RISCV::F10_F)
10883                         .Cases("{f11}", "{fa1}", RISCV::F11_F)
10884                         .Cases("{f12}", "{fa2}", RISCV::F12_F)
10885                         .Cases("{f13}", "{fa3}", RISCV::F13_F)
10886                         .Cases("{f14}", "{fa4}", RISCV::F14_F)
10887                         .Cases("{f15}", "{fa5}", RISCV::F15_F)
10888                         .Cases("{f16}", "{fa6}", RISCV::F16_F)
10889                         .Cases("{f17}", "{fa7}", RISCV::F17_F)
10890                         .Cases("{f18}", "{fs2}", RISCV::F18_F)
10891                         .Cases("{f19}", "{fs3}", RISCV::F19_F)
10892                         .Cases("{f20}", "{fs4}", RISCV::F20_F)
10893                         .Cases("{f21}", "{fs5}", RISCV::F21_F)
10894                         .Cases("{f22}", "{fs6}", RISCV::F22_F)
10895                         .Cases("{f23}", "{fs7}", RISCV::F23_F)
10896                         .Cases("{f24}", "{fs8}", RISCV::F24_F)
10897                         .Cases("{f25}", "{fs9}", RISCV::F25_F)
10898                         .Cases("{f26}", "{fs10}", RISCV::F26_F)
10899                         .Cases("{f27}", "{fs11}", RISCV::F27_F)
10900                         .Cases("{f28}", "{ft8}", RISCV::F28_F)
10901                         .Cases("{f29}", "{ft9}", RISCV::F29_F)
10902                         .Cases("{f30}", "{ft10}", RISCV::F30_F)
10903                         .Cases("{f31}", "{ft11}", RISCV::F31_F)
10904                         .Default(RISCV::NoRegister);
10905     if (FReg != RISCV::NoRegister) {
10906       assert(RISCV::F0_F <= FReg && FReg <= RISCV::F31_F && "Unknown fp-reg");
10907       if (Subtarget.hasStdExtD() && (VT == MVT::f64 || VT == MVT::Other)) {
10908         unsigned RegNo = FReg - RISCV::F0_F;
10909         unsigned DReg = RISCV::F0_D + RegNo;
10910         return std::make_pair(DReg, &RISCV::FPR64RegClass);
10911       }
10912       if (VT == MVT::f32 || VT == MVT::Other)
10913         return std::make_pair(FReg, &RISCV::FPR32RegClass);
10914       if (Subtarget.hasStdExtZfh() && VT == MVT::f16) {
10915         unsigned RegNo = FReg - RISCV::F0_F;
10916         unsigned HReg = RISCV::F0_H + RegNo;
10917         return std::make_pair(HReg, &RISCV::FPR16RegClass);
10918       }
10919     }
10920   }
10921 
10922   if (Subtarget.hasVInstructions()) {
10923     Register VReg = StringSwitch<Register>(Constraint.lower())
10924                         .Case("{v0}", RISCV::V0)
10925                         .Case("{v1}", RISCV::V1)
10926                         .Case("{v2}", RISCV::V2)
10927                         .Case("{v3}", RISCV::V3)
10928                         .Case("{v4}", RISCV::V4)
10929                         .Case("{v5}", RISCV::V5)
10930                         .Case("{v6}", RISCV::V6)
10931                         .Case("{v7}", RISCV::V7)
10932                         .Case("{v8}", RISCV::V8)
10933                         .Case("{v9}", RISCV::V9)
10934                         .Case("{v10}", RISCV::V10)
10935                         .Case("{v11}", RISCV::V11)
10936                         .Case("{v12}", RISCV::V12)
10937                         .Case("{v13}", RISCV::V13)
10938                         .Case("{v14}", RISCV::V14)
10939                         .Case("{v15}", RISCV::V15)
10940                         .Case("{v16}", RISCV::V16)
10941                         .Case("{v17}", RISCV::V17)
10942                         .Case("{v18}", RISCV::V18)
10943                         .Case("{v19}", RISCV::V19)
10944                         .Case("{v20}", RISCV::V20)
10945                         .Case("{v21}", RISCV::V21)
10946                         .Case("{v22}", RISCV::V22)
10947                         .Case("{v23}", RISCV::V23)
10948                         .Case("{v24}", RISCV::V24)
10949                         .Case("{v25}", RISCV::V25)
10950                         .Case("{v26}", RISCV::V26)
10951                         .Case("{v27}", RISCV::V27)
10952                         .Case("{v28}", RISCV::V28)
10953                         .Case("{v29}", RISCV::V29)
10954                         .Case("{v30}", RISCV::V30)
10955                         .Case("{v31}", RISCV::V31)
10956                         .Default(RISCV::NoRegister);
10957     if (VReg != RISCV::NoRegister) {
10958       if (TRI->isTypeLegalForClass(RISCV::VMRegClass, VT.SimpleTy))
10959         return std::make_pair(VReg, &RISCV::VMRegClass);
10960       if (TRI->isTypeLegalForClass(RISCV::VRRegClass, VT.SimpleTy))
10961         return std::make_pair(VReg, &RISCV::VRRegClass);
10962       for (const auto *RC :
10963            {&RISCV::VRM2RegClass, &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) {
10964         if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy)) {
10965           VReg = TRI->getMatchingSuperReg(VReg, RISCV::sub_vrm1_0, RC);
10966           return std::make_pair(VReg, RC);
10967         }
10968       }
10969     }
10970   }
10971 
10972   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
10973 }
10974 
10975 unsigned
10976 RISCVTargetLowering::getInlineAsmMemConstraint(StringRef ConstraintCode) const {
10977   // Currently only support length 1 constraints.
10978   if (ConstraintCode.size() == 1) {
10979     switch (ConstraintCode[0]) {
10980     case 'A':
10981       return InlineAsm::Constraint_A;
10982     default:
10983       break;
10984     }
10985   }
10986 
10987   return TargetLowering::getInlineAsmMemConstraint(ConstraintCode);
10988 }
10989 
10990 void RISCVTargetLowering::LowerAsmOperandForConstraint(
10991     SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops,
10992     SelectionDAG &DAG) const {
10993   // Currently only support length 1 constraints.
10994   if (Constraint.length() == 1) {
10995     switch (Constraint[0]) {
10996     case 'I':
10997       // Validate & create a 12-bit signed immediate operand.
10998       if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
10999         uint64_t CVal = C->getSExtValue();
11000         if (isInt<12>(CVal))
11001           Ops.push_back(
11002               DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT()));
11003       }
11004       return;
11005     case 'J':
11006       // Validate & create an integer zero operand.
11007       if (auto *C = dyn_cast<ConstantSDNode>(Op))
11008         if (C->getZExtValue() == 0)
11009           Ops.push_back(
11010               DAG.getTargetConstant(0, SDLoc(Op), Subtarget.getXLenVT()));
11011       return;
11012     case 'K':
11013       // Validate & create a 5-bit unsigned immediate operand.
11014       if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
11015         uint64_t CVal = C->getZExtValue();
11016         if (isUInt<5>(CVal))
11017           Ops.push_back(
11018               DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT()));
11019       }
11020       return;
11021     case 'S':
11022       if (const auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) {
11023         Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op),
11024                                                  GA->getValueType(0)));
11025       } else if (const auto *BA = dyn_cast<BlockAddressSDNode>(Op)) {
11026         Ops.push_back(DAG.getTargetBlockAddress(BA->getBlockAddress(),
11027                                                 BA->getValueType(0)));
11028       }
11029       return;
11030     default:
11031       break;
11032     }
11033   }
11034   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
11035 }
11036 
11037 Instruction *RISCVTargetLowering::emitLeadingFence(IRBuilderBase &Builder,
11038                                                    Instruction *Inst,
11039                                                    AtomicOrdering Ord) const {
11040   if (isa<LoadInst>(Inst) && Ord == AtomicOrdering::SequentiallyConsistent)
11041     return Builder.CreateFence(Ord);
11042   if (isa<StoreInst>(Inst) && isReleaseOrStronger(Ord))
11043     return Builder.CreateFence(AtomicOrdering::Release);
11044   return nullptr;
11045 }
11046 
11047 Instruction *RISCVTargetLowering::emitTrailingFence(IRBuilderBase &Builder,
11048                                                     Instruction *Inst,
11049                                                     AtomicOrdering Ord) const {
11050   if (isa<LoadInst>(Inst) && isAcquireOrStronger(Ord))
11051     return Builder.CreateFence(AtomicOrdering::Acquire);
11052   return nullptr;
11053 }
11054 
11055 TargetLowering::AtomicExpansionKind
11056 RISCVTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
11057   // atomicrmw {fadd,fsub} must be expanded to use compare-exchange, as floating
11058   // point operations can't be used in an lr/sc sequence without breaking the
11059   // forward-progress guarantee.
11060   if (AI->isFloatingPointOperation())
11061     return AtomicExpansionKind::CmpXChg;
11062 
11063   unsigned Size = AI->getType()->getPrimitiveSizeInBits();
11064   if (Size == 8 || Size == 16)
11065     return AtomicExpansionKind::MaskedIntrinsic;
11066   return AtomicExpansionKind::None;
11067 }
11068 
11069 static Intrinsic::ID
11070 getIntrinsicForMaskedAtomicRMWBinOp(unsigned XLen, AtomicRMWInst::BinOp BinOp) {
11071   if (XLen == 32) {
11072     switch (BinOp) {
11073     default:
11074       llvm_unreachable("Unexpected AtomicRMW BinOp");
11075     case AtomicRMWInst::Xchg:
11076       return Intrinsic::riscv_masked_atomicrmw_xchg_i32;
11077     case AtomicRMWInst::Add:
11078       return Intrinsic::riscv_masked_atomicrmw_add_i32;
11079     case AtomicRMWInst::Sub:
11080       return Intrinsic::riscv_masked_atomicrmw_sub_i32;
11081     case AtomicRMWInst::Nand:
11082       return Intrinsic::riscv_masked_atomicrmw_nand_i32;
11083     case AtomicRMWInst::Max:
11084       return Intrinsic::riscv_masked_atomicrmw_max_i32;
11085     case AtomicRMWInst::Min:
11086       return Intrinsic::riscv_masked_atomicrmw_min_i32;
11087     case AtomicRMWInst::UMax:
11088       return Intrinsic::riscv_masked_atomicrmw_umax_i32;
11089     case AtomicRMWInst::UMin:
11090       return Intrinsic::riscv_masked_atomicrmw_umin_i32;
11091     }
11092   }
11093 
11094   if (XLen == 64) {
11095     switch (BinOp) {
11096     default:
11097       llvm_unreachable("Unexpected AtomicRMW BinOp");
11098     case AtomicRMWInst::Xchg:
11099       return Intrinsic::riscv_masked_atomicrmw_xchg_i64;
11100     case AtomicRMWInst::Add:
11101       return Intrinsic::riscv_masked_atomicrmw_add_i64;
11102     case AtomicRMWInst::Sub:
11103       return Intrinsic::riscv_masked_atomicrmw_sub_i64;
11104     case AtomicRMWInst::Nand:
11105       return Intrinsic::riscv_masked_atomicrmw_nand_i64;
11106     case AtomicRMWInst::Max:
11107       return Intrinsic::riscv_masked_atomicrmw_max_i64;
11108     case AtomicRMWInst::Min:
11109       return Intrinsic::riscv_masked_atomicrmw_min_i64;
11110     case AtomicRMWInst::UMax:
11111       return Intrinsic::riscv_masked_atomicrmw_umax_i64;
11112     case AtomicRMWInst::UMin:
11113       return Intrinsic::riscv_masked_atomicrmw_umin_i64;
11114     }
11115   }
11116 
11117   llvm_unreachable("Unexpected XLen\n");
11118 }
11119 
11120 Value *RISCVTargetLowering::emitMaskedAtomicRMWIntrinsic(
11121     IRBuilderBase &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr,
11122     Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const {
11123   unsigned XLen = Subtarget.getXLen();
11124   Value *Ordering =
11125       Builder.getIntN(XLen, static_cast<uint64_t>(AI->getOrdering()));
11126   Type *Tys[] = {AlignedAddr->getType()};
11127   Function *LrwOpScwLoop = Intrinsic::getDeclaration(
11128       AI->getModule(),
11129       getIntrinsicForMaskedAtomicRMWBinOp(XLen, AI->getOperation()), Tys);
11130 
11131   if (XLen == 64) {
11132     Incr = Builder.CreateSExt(Incr, Builder.getInt64Ty());
11133     Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty());
11134     ShiftAmt = Builder.CreateSExt(ShiftAmt, Builder.getInt64Ty());
11135   }
11136 
11137   Value *Result;
11138 
11139   // Must pass the shift amount needed to sign extend the loaded value prior
11140   // to performing a signed comparison for min/max. ShiftAmt is the number of
11141   // bits to shift the value into position. Pass XLen-ShiftAmt-ValWidth, which
11142   // is the number of bits to left+right shift the value in order to
11143   // sign-extend.
11144   if (AI->getOperation() == AtomicRMWInst::Min ||
11145       AI->getOperation() == AtomicRMWInst::Max) {
11146     const DataLayout &DL = AI->getModule()->getDataLayout();
11147     unsigned ValWidth =
11148         DL.getTypeStoreSizeInBits(AI->getValOperand()->getType());
11149     Value *SextShamt =
11150         Builder.CreateSub(Builder.getIntN(XLen, XLen - ValWidth), ShiftAmt);
11151     Result = Builder.CreateCall(LrwOpScwLoop,
11152                                 {AlignedAddr, Incr, Mask, SextShamt, Ordering});
11153   } else {
11154     Result =
11155         Builder.CreateCall(LrwOpScwLoop, {AlignedAddr, Incr, Mask, Ordering});
11156   }
11157 
11158   if (XLen == 64)
11159     Result = Builder.CreateTrunc(Result, Builder.getInt32Ty());
11160   return Result;
11161 }
11162 
11163 TargetLowering::AtomicExpansionKind
11164 RISCVTargetLowering::shouldExpandAtomicCmpXchgInIR(
11165     AtomicCmpXchgInst *CI) const {
11166   unsigned Size = CI->getCompareOperand()->getType()->getPrimitiveSizeInBits();
11167   if (Size == 8 || Size == 16)
11168     return AtomicExpansionKind::MaskedIntrinsic;
11169   return AtomicExpansionKind::None;
11170 }
11171 
11172 Value *RISCVTargetLowering::emitMaskedAtomicCmpXchgIntrinsic(
11173     IRBuilderBase &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr,
11174     Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const {
11175   unsigned XLen = Subtarget.getXLen();
11176   Value *Ordering = Builder.getIntN(XLen, static_cast<uint64_t>(Ord));
11177   Intrinsic::ID CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i32;
11178   if (XLen == 64) {
11179     CmpVal = Builder.CreateSExt(CmpVal, Builder.getInt64Ty());
11180     NewVal = Builder.CreateSExt(NewVal, Builder.getInt64Ty());
11181     Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty());
11182     CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i64;
11183   }
11184   Type *Tys[] = {AlignedAddr->getType()};
11185   Function *MaskedCmpXchg =
11186       Intrinsic::getDeclaration(CI->getModule(), CmpXchgIntrID, Tys);
11187   Value *Result = Builder.CreateCall(
11188       MaskedCmpXchg, {AlignedAddr, CmpVal, NewVal, Mask, Ordering});
11189   if (XLen == 64)
11190     Result = Builder.CreateTrunc(Result, Builder.getInt32Ty());
11191   return Result;
11192 }
11193 
11194 bool RISCVTargetLowering::shouldRemoveExtendFromGSIndex(EVT VT) const {
11195   return false;
11196 }
11197 
11198 bool RISCVTargetLowering::shouldConvertFpToSat(unsigned Op, EVT FPVT,
11199                                                EVT VT) const {
11200   if (!isOperationLegalOrCustom(Op, VT) || !FPVT.isSimple())
11201     return false;
11202 
11203   switch (FPVT.getSimpleVT().SimpleTy) {
11204   case MVT::f16:
11205     return Subtarget.hasStdExtZfh();
11206   case MVT::f32:
11207     return Subtarget.hasStdExtF();
11208   case MVT::f64:
11209     return Subtarget.hasStdExtD();
11210   default:
11211     return false;
11212   }
11213 }
11214 
11215 unsigned RISCVTargetLowering::getJumpTableEncoding() const {
11216   // If we are using the small code model, we can reduce size of jump table
11217   // entry to 4 bytes.
11218   if (Subtarget.is64Bit() && !isPositionIndependent() &&
11219       getTargetMachine().getCodeModel() == CodeModel::Small) {
11220     return MachineJumpTableInfo::EK_Custom32;
11221   }
11222   return TargetLowering::getJumpTableEncoding();
11223 }
11224 
11225 const MCExpr *RISCVTargetLowering::LowerCustomJumpTableEntry(
11226     const MachineJumpTableInfo *MJTI, const MachineBasicBlock *MBB,
11227     unsigned uid, MCContext &Ctx) const {
11228   assert(Subtarget.is64Bit() && !isPositionIndependent() &&
11229          getTargetMachine().getCodeModel() == CodeModel::Small);
11230   return MCSymbolRefExpr::create(MBB->getSymbol(), Ctx);
11231 }
11232 
11233 bool RISCVTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF,
11234                                                      EVT VT) const {
11235   VT = VT.getScalarType();
11236 
11237   if (!VT.isSimple())
11238     return false;
11239 
11240   switch (VT.getSimpleVT().SimpleTy) {
11241   case MVT::f16:
11242     return Subtarget.hasStdExtZfh();
11243   case MVT::f32:
11244     return Subtarget.hasStdExtF();
11245   case MVT::f64:
11246     return Subtarget.hasStdExtD();
11247   default:
11248     break;
11249   }
11250 
11251   return false;
11252 }
11253 
11254 Register RISCVTargetLowering::getExceptionPointerRegister(
11255     const Constant *PersonalityFn) const {
11256   return RISCV::X10;
11257 }
11258 
11259 Register RISCVTargetLowering::getExceptionSelectorRegister(
11260     const Constant *PersonalityFn) const {
11261   return RISCV::X11;
11262 }
11263 
11264 bool RISCVTargetLowering::shouldExtendTypeInLibCall(EVT Type) const {
11265   // Return false to suppress the unnecessary extensions if the LibCall
11266   // arguments or return value is f32 type for LP64 ABI.
11267   RISCVABI::ABI ABI = Subtarget.getTargetABI();
11268   if (ABI == RISCVABI::ABI_LP64 && (Type == MVT::f32))
11269     return false;
11270 
11271   return true;
11272 }
11273 
11274 bool RISCVTargetLowering::shouldSignExtendTypeInLibCall(EVT Type, bool IsSigned) const {
11275   if (Subtarget.is64Bit() && Type == MVT::i32)
11276     return true;
11277 
11278   return IsSigned;
11279 }
11280 
11281 bool RISCVTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT,
11282                                                  SDValue C) const {
11283   // Check integral scalar types.
11284   if (VT.isScalarInteger()) {
11285     // Omit the optimization if the sub target has the M extension and the data
11286     // size exceeds XLen.
11287     if (Subtarget.hasStdExtM() && VT.getSizeInBits() > Subtarget.getXLen())
11288       return false;
11289     if (auto *ConstNode = dyn_cast<ConstantSDNode>(C.getNode())) {
11290       // Break the MUL to a SLLI and an ADD/SUB.
11291       const APInt &Imm = ConstNode->getAPIntValue();
11292       if ((Imm + 1).isPowerOf2() || (Imm - 1).isPowerOf2() ||
11293           (1 - Imm).isPowerOf2() || (-1 - Imm).isPowerOf2())
11294         return true;
11295       // Optimize the MUL to (SH*ADD x, (SLLI x, bits)) if Imm is not simm12.
11296       if (Subtarget.hasStdExtZba() && !Imm.isSignedIntN(12) &&
11297           ((Imm - 2).isPowerOf2() || (Imm - 4).isPowerOf2() ||
11298            (Imm - 8).isPowerOf2()))
11299         return true;
11300       // Omit the following optimization if the sub target has the M extension
11301       // and the data size >= XLen.
11302       if (Subtarget.hasStdExtM() && VT.getSizeInBits() >= Subtarget.getXLen())
11303         return false;
11304       // Break the MUL to two SLLI instructions and an ADD/SUB, if Imm needs
11305       // a pair of LUI/ADDI.
11306       if (!Imm.isSignedIntN(12) && Imm.countTrailingZeros() < 12) {
11307         APInt ImmS = Imm.ashr(Imm.countTrailingZeros());
11308         if ((ImmS + 1).isPowerOf2() || (ImmS - 1).isPowerOf2() ||
11309             (1 - ImmS).isPowerOf2())
11310         return true;
11311       }
11312     }
11313   }
11314 
11315   return false;
11316 }
11317 
11318 bool RISCVTargetLowering::isMulAddWithConstProfitable(SDValue AddNode,
11319                                                       SDValue ConstNode) const {
11320   // Let the DAGCombiner decide for vectors.
11321   EVT VT = AddNode.getValueType();
11322   if (VT.isVector())
11323     return true;
11324 
11325   // Let the DAGCombiner decide for larger types.
11326   if (VT.getScalarSizeInBits() > Subtarget.getXLen())
11327     return true;
11328 
11329   // It is worse if c1 is simm12 while c1*c2 is not.
11330   ConstantSDNode *C1Node = cast<ConstantSDNode>(AddNode.getOperand(1));
11331   ConstantSDNode *C2Node = cast<ConstantSDNode>(ConstNode);
11332   const APInt &C1 = C1Node->getAPIntValue();
11333   const APInt &C2 = C2Node->getAPIntValue();
11334   if (C1.isSignedIntN(12) && !(C1 * C2).isSignedIntN(12))
11335     return false;
11336 
11337   // Default to true and let the DAGCombiner decide.
11338   return true;
11339 }
11340 
11341 bool RISCVTargetLowering::allowsMisalignedMemoryAccesses(
11342     EVT VT, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags,
11343     bool *Fast) const {
11344   if (!VT.isVector())
11345     return false;
11346 
11347   EVT ElemVT = VT.getVectorElementType();
11348   if (Alignment >= ElemVT.getStoreSize()) {
11349     if (Fast)
11350       *Fast = true;
11351     return true;
11352   }
11353 
11354   return false;
11355 }
11356 
11357 bool RISCVTargetLowering::splitValueIntoRegisterParts(
11358     SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts,
11359     unsigned NumParts, MVT PartVT, Optional<CallingConv::ID> CC) const {
11360   bool IsABIRegCopy = CC.hasValue();
11361   EVT ValueVT = Val.getValueType();
11362   if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) {
11363     // Cast the f16 to i16, extend to i32, pad with ones to make a float nan,
11364     // and cast to f32.
11365     Val = DAG.getNode(ISD::BITCAST, DL, MVT::i16, Val);
11366     Val = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Val);
11367     Val = DAG.getNode(ISD::OR, DL, MVT::i32, Val,
11368                       DAG.getConstant(0xFFFF0000, DL, MVT::i32));
11369     Val = DAG.getNode(ISD::BITCAST, DL, MVT::f32, Val);
11370     Parts[0] = Val;
11371     return true;
11372   }
11373 
11374   if (ValueVT.isScalableVector() && PartVT.isScalableVector()) {
11375     LLVMContext &Context = *DAG.getContext();
11376     EVT ValueEltVT = ValueVT.getVectorElementType();
11377     EVT PartEltVT = PartVT.getVectorElementType();
11378     unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize();
11379     unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize();
11380     if (PartVTBitSize % ValueVTBitSize == 0) {
11381       assert(PartVTBitSize >= ValueVTBitSize);
11382       // If the element types are different, bitcast to the same element type of
11383       // PartVT first.
11384       // Give an example here, we want copy a <vscale x 1 x i8> value to
11385       // <vscale x 4 x i16>.
11386       // We need to convert <vscale x 1 x i8> to <vscale x 8 x i8> by insert
11387       // subvector, then we can bitcast to <vscale x 4 x i16>.
11388       if (ValueEltVT != PartEltVT) {
11389         if (PartVTBitSize > ValueVTBitSize) {
11390           unsigned Count = PartVTBitSize / ValueEltVT.getFixedSizeInBits();
11391           assert(Count != 0 && "The number of element should not be zero.");
11392           EVT SameEltTypeVT =
11393               EVT::getVectorVT(Context, ValueEltVT, Count, /*IsScalable=*/true);
11394           Val = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, SameEltTypeVT,
11395                             DAG.getUNDEF(SameEltTypeVT), Val,
11396                             DAG.getVectorIdxConstant(0, DL));
11397         }
11398         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
11399       } else {
11400         Val =
11401             DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT),
11402                         Val, DAG.getVectorIdxConstant(0, DL));
11403       }
11404       Parts[0] = Val;
11405       return true;
11406     }
11407   }
11408   return false;
11409 }
11410 
11411 SDValue RISCVTargetLowering::joinRegisterPartsIntoValue(
11412     SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts,
11413     MVT PartVT, EVT ValueVT, Optional<CallingConv::ID> CC) const {
11414   bool IsABIRegCopy = CC.hasValue();
11415   if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) {
11416     SDValue Val = Parts[0];
11417 
11418     // Cast the f32 to i32, truncate to i16, and cast back to f16.
11419     Val = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Val);
11420     Val = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Val);
11421     Val = DAG.getNode(ISD::BITCAST, DL, MVT::f16, Val);
11422     return Val;
11423   }
11424 
11425   if (ValueVT.isScalableVector() && PartVT.isScalableVector()) {
11426     LLVMContext &Context = *DAG.getContext();
11427     SDValue Val = Parts[0];
11428     EVT ValueEltVT = ValueVT.getVectorElementType();
11429     EVT PartEltVT = PartVT.getVectorElementType();
11430     unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize();
11431     unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize();
11432     if (PartVTBitSize % ValueVTBitSize == 0) {
11433       assert(PartVTBitSize >= ValueVTBitSize);
11434       EVT SameEltTypeVT = ValueVT;
11435       // If the element types are different, convert it to the same element type
11436       // of PartVT.
11437       // Give an example here, we want copy a <vscale x 1 x i8> value from
11438       // <vscale x 4 x i16>.
11439       // We need to convert <vscale x 4 x i16> to <vscale x 8 x i8> first,
11440       // then we can extract <vscale x 1 x i8>.
11441       if (ValueEltVT != PartEltVT) {
11442         unsigned Count = PartVTBitSize / ValueEltVT.getFixedSizeInBits();
11443         assert(Count != 0 && "The number of element should not be zero.");
11444         SameEltTypeVT =
11445             EVT::getVectorVT(Context, ValueEltVT, Count, /*IsScalable=*/true);
11446         Val = DAG.getNode(ISD::BITCAST, DL, SameEltTypeVT, Val);
11447       }
11448       Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
11449                         DAG.getVectorIdxConstant(0, DL));
11450       return Val;
11451     }
11452   }
11453   return SDValue();
11454 }
11455 
11456 SDValue
11457 RISCVTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
11458                                    SelectionDAG &DAG,
11459                                    SmallVectorImpl<SDNode *> &Created) const {
11460   AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
11461   if (isIntDivCheap(N->getValueType(0), Attr))
11462     return SDValue(N, 0); // Lower SDIV as SDIV
11463 
11464   assert((Divisor.isPowerOf2() || Divisor.isNegatedPowerOf2()) &&
11465          "Unexpected divisor!");
11466 
11467   // Conditional move is needed, so do the transformation iff Zbt is enabled.
11468   if (!Subtarget.hasStdExtZbt())
11469     return SDValue();
11470 
11471   // When |Divisor| >= 2 ^ 12, it isn't profitable to do such transformation.
11472   // Besides, more critical path instructions will be generated when dividing
11473   // by 2. So we keep using the original DAGs for these cases.
11474   unsigned Lg2 = Divisor.countTrailingZeros();
11475   if (Lg2 == 1 || Lg2 >= 12)
11476     return SDValue();
11477 
11478   // fold (sdiv X, pow2)
11479   EVT VT = N->getValueType(0);
11480   if (VT != MVT::i32 && !(Subtarget.is64Bit() && VT == MVT::i64))
11481     return SDValue();
11482 
11483   SDLoc DL(N);
11484   SDValue N0 = N->getOperand(0);
11485   SDValue Zero = DAG.getConstant(0, DL, VT);
11486   SDValue Pow2MinusOne = DAG.getConstant((1ULL << Lg2) - 1, DL, VT);
11487 
11488   // Add (N0 < 0) ? Pow2 - 1 : 0;
11489   SDValue Cmp = DAG.getSetCC(DL, VT, N0, Zero, ISD::SETLT);
11490   SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0, Pow2MinusOne);
11491   SDValue Sel = DAG.getNode(ISD::SELECT, DL, VT, Cmp, Add, N0);
11492 
11493   Created.push_back(Cmp.getNode());
11494   Created.push_back(Add.getNode());
11495   Created.push_back(Sel.getNode());
11496 
11497   // Divide by pow2.
11498   SDValue SRA =
11499       DAG.getNode(ISD::SRA, DL, VT, Sel, DAG.getConstant(Lg2, DL, VT));
11500 
11501   // If we're dividing by a positive value, we're done.  Otherwise, we must
11502   // negate the result.
11503   if (Divisor.isNonNegative())
11504     return SRA;
11505 
11506   Created.push_back(SRA.getNode());
11507   return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), SRA);
11508 }
11509 
11510 #define GET_REGISTER_MATCHER
11511 #include "RISCVGenAsmMatcher.inc"
11512 
11513 Register
11514 RISCVTargetLowering::getRegisterByName(const char *RegName, LLT VT,
11515                                        const MachineFunction &MF) const {
11516   Register Reg = MatchRegisterAltName(RegName);
11517   if (Reg == RISCV::NoRegister)
11518     Reg = MatchRegisterName(RegName);
11519   if (Reg == RISCV::NoRegister)
11520     report_fatal_error(
11521         Twine("Invalid register name \"" + StringRef(RegName) + "\"."));
11522   BitVector ReservedRegs = Subtarget.getRegisterInfo()->getReservedRegs(MF);
11523   if (!ReservedRegs.test(Reg) && !Subtarget.isRegisterReservedByUser(Reg))
11524     report_fatal_error(Twine("Trying to obtain non-reserved register \"" +
11525                              StringRef(RegName) + "\"."));
11526   return Reg;
11527 }
11528 
11529 namespace llvm {
11530 namespace RISCVVIntrinsicsTable {
11531 
11532 #define GET_RISCVVIntrinsicsTable_IMPL
11533 #include "RISCVGenSearchableTables.inc"
11534 
11535 } // namespace RISCVVIntrinsicsTable
11536 
11537 } // namespace llvm
11538