1 //===-- RISCVISelLowering.cpp - RISCV DAG Lowering Implementation  --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the interfaces that RISCV uses to lower LLVM code into a
10 // selection DAG.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "RISCVISelLowering.h"
15 #include "MCTargetDesc/RISCVMatInt.h"
16 #include "RISCV.h"
17 #include "RISCVMachineFunctionInfo.h"
18 #include "RISCVRegisterInfo.h"
19 #include "RISCVSubtarget.h"
20 #include "RISCVTargetMachine.h"
21 #include "llvm/ADT/SmallSet.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/Analysis/MemoryLocation.h"
24 #include "llvm/CodeGen/MachineFrameInfo.h"
25 #include "llvm/CodeGen/MachineFunction.h"
26 #include "llvm/CodeGen/MachineInstrBuilder.h"
27 #include "llvm/CodeGen/MachineJumpTableInfo.h"
28 #include "llvm/CodeGen/MachineRegisterInfo.h"
29 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
30 #include "llvm/CodeGen/ValueTypes.h"
31 #include "llvm/IR/DiagnosticInfo.h"
32 #include "llvm/IR/DiagnosticPrinter.h"
33 #include "llvm/IR/IRBuilder.h"
34 #include "llvm/IR/IntrinsicsRISCV.h"
35 #include "llvm/IR/PatternMatch.h"
36 #include "llvm/Support/Debug.h"
37 #include "llvm/Support/ErrorHandling.h"
38 #include "llvm/Support/KnownBits.h"
39 #include "llvm/Support/MathExtras.h"
40 #include "llvm/Support/raw_ostream.h"
41 
42 using namespace llvm;
43 
44 #define DEBUG_TYPE "riscv-lower"
45 
46 STATISTIC(NumTailCalls, "Number of tail calls");
47 
48 RISCVTargetLowering::RISCVTargetLowering(const TargetMachine &TM,
49                                          const RISCVSubtarget &STI)
50     : TargetLowering(TM), Subtarget(STI) {
51 
52   if (Subtarget.isRV32E())
53     report_fatal_error("Codegen not yet implemented for RV32E");
54 
55   RISCVABI::ABI ABI = Subtarget.getTargetABI();
56   assert(ABI != RISCVABI::ABI_Unknown && "Improperly initialised target ABI");
57 
58   if ((ABI == RISCVABI::ABI_ILP32F || ABI == RISCVABI::ABI_LP64F) &&
59       !Subtarget.hasStdExtF()) {
60     errs() << "Hard-float 'f' ABI can't be used for a target that "
61                 "doesn't support the F instruction set extension (ignoring "
62                           "target-abi)\n";
63     ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32;
64   } else if ((ABI == RISCVABI::ABI_ILP32D || ABI == RISCVABI::ABI_LP64D) &&
65              !Subtarget.hasStdExtD()) {
66     errs() << "Hard-float 'd' ABI can't be used for a target that "
67               "doesn't support the D instruction set extension (ignoring "
68               "target-abi)\n";
69     ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32;
70   }
71 
72   switch (ABI) {
73   default:
74     report_fatal_error("Don't know how to lower this ABI");
75   case RISCVABI::ABI_ILP32:
76   case RISCVABI::ABI_ILP32F:
77   case RISCVABI::ABI_ILP32D:
78   case RISCVABI::ABI_LP64:
79   case RISCVABI::ABI_LP64F:
80   case RISCVABI::ABI_LP64D:
81     break;
82   }
83 
84   MVT XLenVT = Subtarget.getXLenVT();
85 
86   // Set up the register classes.
87   addRegisterClass(XLenVT, &RISCV::GPRRegClass);
88 
89   if (Subtarget.hasStdExtZfh())
90     addRegisterClass(MVT::f16, &RISCV::FPR16RegClass);
91   if (Subtarget.hasStdExtF())
92     addRegisterClass(MVT::f32, &RISCV::FPR32RegClass);
93   if (Subtarget.hasStdExtD())
94     addRegisterClass(MVT::f64, &RISCV::FPR64RegClass);
95 
96   static const MVT::SimpleValueType BoolVecVTs[] = {
97       MVT::nxv1i1,  MVT::nxv2i1,  MVT::nxv4i1, MVT::nxv8i1,
98       MVT::nxv16i1, MVT::nxv32i1, MVT::nxv64i1};
99   static const MVT::SimpleValueType IntVecVTs[] = {
100       MVT::nxv1i8,  MVT::nxv2i8,   MVT::nxv4i8,   MVT::nxv8i8,  MVT::nxv16i8,
101       MVT::nxv32i8, MVT::nxv64i8,  MVT::nxv1i16,  MVT::nxv2i16, MVT::nxv4i16,
102       MVT::nxv8i16, MVT::nxv16i16, MVT::nxv32i16, MVT::nxv1i32, MVT::nxv2i32,
103       MVT::nxv4i32, MVT::nxv8i32,  MVT::nxv16i32, MVT::nxv1i64, MVT::nxv2i64,
104       MVT::nxv4i64, MVT::nxv8i64};
105   static const MVT::SimpleValueType F16VecVTs[] = {
106       MVT::nxv1f16, MVT::nxv2f16,  MVT::nxv4f16,
107       MVT::nxv8f16, MVT::nxv16f16, MVT::nxv32f16};
108   static const MVT::SimpleValueType F32VecVTs[] = {
109       MVT::nxv1f32, MVT::nxv2f32, MVT::nxv4f32, MVT::nxv8f32, MVT::nxv16f32};
110   static const MVT::SimpleValueType F64VecVTs[] = {
111       MVT::nxv1f64, MVT::nxv2f64, MVT::nxv4f64, MVT::nxv8f64};
112 
113   if (Subtarget.hasVInstructions()) {
114     auto addRegClassForRVV = [this](MVT VT) {
115       // Disable the smallest fractional LMUL types if ELEN is less than
116       // RVVBitsPerBlock.
117       unsigned MinElts = RISCV::RVVBitsPerBlock / Subtarget.getELEN();
118       if (VT.getVectorMinNumElements() < MinElts)
119         return;
120 
121       unsigned Size = VT.getSizeInBits().getKnownMinValue();
122       const TargetRegisterClass *RC;
123       if (Size <= RISCV::RVVBitsPerBlock)
124         RC = &RISCV::VRRegClass;
125       else if (Size == 2 * RISCV::RVVBitsPerBlock)
126         RC = &RISCV::VRM2RegClass;
127       else if (Size == 4 * RISCV::RVVBitsPerBlock)
128         RC = &RISCV::VRM4RegClass;
129       else if (Size == 8 * RISCV::RVVBitsPerBlock)
130         RC = &RISCV::VRM8RegClass;
131       else
132         llvm_unreachable("Unexpected size");
133 
134       addRegisterClass(VT, RC);
135     };
136 
137     for (MVT VT : BoolVecVTs)
138       addRegClassForRVV(VT);
139     for (MVT VT : IntVecVTs) {
140       if (VT.getVectorElementType() == MVT::i64 &&
141           !Subtarget.hasVInstructionsI64())
142         continue;
143       addRegClassForRVV(VT);
144     }
145 
146     if (Subtarget.hasVInstructionsF16())
147       for (MVT VT : F16VecVTs)
148         addRegClassForRVV(VT);
149 
150     if (Subtarget.hasVInstructionsF32())
151       for (MVT VT : F32VecVTs)
152         addRegClassForRVV(VT);
153 
154     if (Subtarget.hasVInstructionsF64())
155       for (MVT VT : F64VecVTs)
156         addRegClassForRVV(VT);
157 
158     if (Subtarget.useRVVForFixedLengthVectors()) {
159       auto addRegClassForFixedVectors = [this](MVT VT) {
160         MVT ContainerVT = getContainerForFixedLengthVector(VT);
161         unsigned RCID = getRegClassIDForVecVT(ContainerVT);
162         const RISCVRegisterInfo &TRI = *Subtarget.getRegisterInfo();
163         addRegisterClass(VT, TRI.getRegClass(RCID));
164       };
165       for (MVT VT : MVT::integer_fixedlen_vector_valuetypes())
166         if (useRVVForFixedLengthVectorVT(VT))
167           addRegClassForFixedVectors(VT);
168 
169       for (MVT VT : MVT::fp_fixedlen_vector_valuetypes())
170         if (useRVVForFixedLengthVectorVT(VT))
171           addRegClassForFixedVectors(VT);
172     }
173   }
174 
175   // Compute derived properties from the register classes.
176   computeRegisterProperties(STI.getRegisterInfo());
177 
178   setStackPointerRegisterToSaveRestore(RISCV::X2);
179 
180   setLoadExtAction({ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}, XLenVT,
181                    MVT::i1, Promote);
182 
183   // TODO: add all necessary setOperationAction calls.
184   setOperationAction(ISD::DYNAMIC_STACKALLOC, XLenVT, Expand);
185 
186   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
187   setOperationAction(ISD::BR_CC, XLenVT, Expand);
188   setOperationAction(ISD::BRCOND, MVT::Other, Custom);
189   setOperationAction(ISD::SELECT_CC, XLenVT, Expand);
190 
191   setOperationAction({ISD::STACKSAVE, ISD::STACKRESTORE}, MVT::Other, Expand);
192 
193   setOperationAction(ISD::VASTART, MVT::Other, Custom);
194   setOperationAction({ISD::VAARG, ISD::VACOPY, ISD::VAEND}, MVT::Other, Expand);
195 
196   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
197 
198   setOperationAction(ISD::EH_DWARF_CFA, MVT::i32, Custom);
199 
200   if (!Subtarget.hasStdExtZbb())
201     setOperationAction(ISD::SIGN_EXTEND_INREG, {MVT::i8, MVT::i16}, Expand);
202 
203   if (Subtarget.is64Bit()) {
204     setOperationAction(ISD::EH_DWARF_CFA, MVT::i64, Custom);
205 
206     setOperationAction({ISD::ADD, ISD::SUB, ISD::SHL, ISD::SRA, ISD::SRL},
207                        MVT::i32, Custom);
208 
209     setOperationAction({ISD::UADDO, ISD::USUBO, ISD::UADDSAT, ISD::USUBSAT},
210                        MVT::i32, Custom);
211   } else {
212     setLibcallName(
213         {RTLIB::SHL_I128, RTLIB::SRL_I128, RTLIB::SRA_I128, RTLIB::MUL_I128},
214         nullptr);
215     setLibcallName(RTLIB::MULO_I64, nullptr);
216   }
217 
218   if (!Subtarget.hasStdExtM() && !Subtarget.hasStdExtZmmul()) {
219     setOperationAction({ISD::MUL, ISD::MULHS, ISD::MULHU}, XLenVT, Expand);
220   } else {
221     if (Subtarget.is64Bit()) {
222       setOperationAction(ISD::MUL, {MVT::i32, MVT::i128}, Custom);
223     } else {
224       setOperationAction(ISD::MUL, MVT::i64, Custom);
225     }
226   }
227 
228   if (!Subtarget.hasStdExtM()) {
229     setOperationAction({ISD::SDIV, ISD::UDIV, ISD::SREM, ISD::UREM},
230                        XLenVT, Expand);
231   } else {
232     if (Subtarget.is64Bit()) {
233       setOperationAction({ISD::SDIV, ISD::UDIV, ISD::UREM},
234                           {MVT::i8, MVT::i16, MVT::i32}, Custom);
235     }
236   }
237 
238   setOperationAction(
239       {ISD::SDIVREM, ISD::UDIVREM, ISD::SMUL_LOHI, ISD::UMUL_LOHI}, XLenVT,
240       Expand);
241 
242   setOperationAction({ISD::SHL_PARTS, ISD::SRL_PARTS, ISD::SRA_PARTS}, XLenVT,
243                      Custom);
244 
245   if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp() ||
246       Subtarget.hasStdExtZbkb()) {
247     if (Subtarget.is64Bit())
248       setOperationAction({ISD::ROTL, ISD::ROTR}, MVT::i32, Custom);
249   } else {
250     setOperationAction({ISD::ROTL, ISD::ROTR}, XLenVT, Expand);
251   }
252 
253   if (Subtarget.hasStdExtZbp()) {
254     // Custom lower bswap/bitreverse so we can convert them to GREVI to enable
255     // more combining.
256     setOperationAction({ISD::BITREVERSE, ISD::BSWAP}, XLenVT, Custom);
257 
258     // BSWAP i8 doesn't exist.
259     setOperationAction(ISD::BITREVERSE, MVT::i8, Custom);
260 
261     setOperationAction({ISD::BITREVERSE, ISD::BSWAP}, MVT::i16, Custom);
262 
263     if (Subtarget.is64Bit())
264       setOperationAction({ISD::BITREVERSE, ISD::BSWAP}, MVT::i32, Custom);
265   } else {
266     // With Zbb we have an XLen rev8 instruction, but not GREVI. So we'll
267     // pattern match it directly in isel.
268     setOperationAction(ISD::BSWAP, XLenVT,
269                        (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbkb())
270                            ? Legal
271                            : Expand);
272     // Zbkb can use rev8+brev8 to implement bitreverse.
273     setOperationAction(ISD::BITREVERSE, XLenVT,
274                        Subtarget.hasStdExtZbkb() ? Custom : Expand);
275   }
276 
277   if (Subtarget.hasStdExtZbb()) {
278     setOperationAction({ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX}, XLenVT,
279                        Legal);
280 
281     if (Subtarget.is64Bit())
282       setOperationAction(
283           {ISD::CTTZ, ISD::CTTZ_ZERO_UNDEF, ISD::CTLZ, ISD::CTLZ_ZERO_UNDEF},
284           MVT::i32, Custom);
285   } else {
286     setOperationAction({ISD::CTTZ, ISD::CTLZ, ISD::CTPOP}, XLenVT, Expand);
287 
288     if (Subtarget.is64Bit())
289       setOperationAction(ISD::ABS, MVT::i32, Custom);
290   }
291 
292   if (Subtarget.hasStdExtZbt()) {
293     setOperationAction({ISD::FSHL, ISD::FSHR}, XLenVT, Custom);
294     setOperationAction(ISD::SELECT, XLenVT, Legal);
295 
296     if (Subtarget.is64Bit())
297       setOperationAction({ISD::FSHL, ISD::FSHR}, MVT::i32, Custom);
298   } else {
299     setOperationAction(ISD::SELECT, XLenVT, Custom);
300   }
301 
302   static const unsigned FPLegalNodeTypes[] = {
303       ISD::FMINNUM,        ISD::FMAXNUM,       ISD::LRINT,
304       ISD::LLRINT,         ISD::LROUND,        ISD::LLROUND,
305       ISD::STRICT_LRINT,   ISD::STRICT_LLRINT, ISD::STRICT_LROUND,
306       ISD::STRICT_LLROUND, ISD::STRICT_FMA,    ISD::STRICT_FADD,
307       ISD::STRICT_FSUB,    ISD::STRICT_FMUL,   ISD::STRICT_FDIV,
308       ISD::STRICT_FSQRT,   ISD::STRICT_FSETCC, ISD::STRICT_FSETCCS};
309 
310   static const ISD::CondCode FPCCToExpand[] = {
311       ISD::SETOGT, ISD::SETOGE, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT,
312       ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUNE, ISD::SETGT,
313       ISD::SETGE,  ISD::SETNE,  ISD::SETO,   ISD::SETUO};
314 
315   static const unsigned FPOpToExpand[] = {
316       ISD::FSIN, ISD::FCOS,       ISD::FSINCOS,   ISD::FPOW,
317       ISD::FREM, ISD::FP16_TO_FP, ISD::FP_TO_FP16};
318 
319   if (Subtarget.hasStdExtZfh())
320     setOperationAction(ISD::BITCAST, MVT::i16, Custom);
321 
322   if (Subtarget.hasStdExtZfh()) {
323     setOperationAction(FPLegalNodeTypes, MVT::f16, Legal);
324     setOperationAction(ISD::STRICT_FP_ROUND, MVT::f16, Legal);
325     setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f32, Legal);
326     setCondCodeAction(FPCCToExpand, MVT::f16, Expand);
327     setOperationAction(ISD::SELECT_CC, MVT::f16, Expand);
328     setOperationAction(ISD::SELECT, MVT::f16, Custom);
329     setOperationAction(ISD::BR_CC, MVT::f16, Expand);
330 
331     setOperationAction({ISD::FREM, ISD::FCEIL, ISD::FFLOOR, ISD::FNEARBYINT,
332                         ISD::FRINT, ISD::FROUND, ISD::FROUNDEVEN, ISD::FTRUNC,
333                         ISD::FPOW, ISD::FPOWI, ISD::FCOS, ISD::FSIN,
334                         ISD::FSINCOS, ISD::FEXP, ISD::FEXP2, ISD::FLOG,
335                         ISD::FLOG2, ISD::FLOG10},
336                        MVT::f16, Promote);
337 
338     // FIXME: Need to promote f16 STRICT_* to f32 libcalls, but we don't have
339     // complete support for all operations in LegalizeDAG.
340 
341     // We need to custom promote this.
342     if (Subtarget.is64Bit())
343       setOperationAction(ISD::FPOWI, MVT::i32, Custom);
344   }
345 
346   if (Subtarget.hasStdExtF()) {
347     setOperationAction(FPLegalNodeTypes, MVT::f32, Legal);
348     setCondCodeAction(FPCCToExpand, MVT::f32, Expand);
349     setOperationAction(ISD::SELECT_CC, MVT::f32, Expand);
350     setOperationAction(ISD::SELECT, MVT::f32, Custom);
351     setOperationAction(ISD::BR_CC, MVT::f32, Expand);
352     setOperationAction(FPOpToExpand, MVT::f32, Expand);
353     setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
354     setTruncStoreAction(MVT::f32, MVT::f16, Expand);
355   }
356 
357   if (Subtarget.hasStdExtF() && Subtarget.is64Bit())
358     setOperationAction(ISD::BITCAST, MVT::i32, Custom);
359 
360   if (Subtarget.hasStdExtD()) {
361     setOperationAction(FPLegalNodeTypes, MVT::f64, Legal);
362     setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal);
363     setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f64, Legal);
364     setCondCodeAction(FPCCToExpand, MVT::f64, Expand);
365     setOperationAction(ISD::SELECT_CC, MVT::f64, Expand);
366     setOperationAction(ISD::SELECT, MVT::f64, Custom);
367     setOperationAction(ISD::BR_CC, MVT::f64, Expand);
368     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
369     setTruncStoreAction(MVT::f64, MVT::f32, Expand);
370     setOperationAction(FPOpToExpand, MVT::f64, Expand);
371     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
372     setTruncStoreAction(MVT::f64, MVT::f16, Expand);
373   }
374 
375   if (Subtarget.is64Bit())
376     setOperationAction({ISD::FP_TO_UINT, ISD::FP_TO_SINT,
377                         ISD::STRICT_FP_TO_UINT, ISD::STRICT_FP_TO_SINT},
378                        MVT::i32, Custom);
379 
380   if (Subtarget.hasStdExtF()) {
381     setOperationAction({ISD::FP_TO_UINT_SAT, ISD::FP_TO_SINT_SAT}, XLenVT,
382                        Custom);
383 
384     setOperationAction({ISD::STRICT_FP_TO_UINT, ISD::STRICT_FP_TO_SINT,
385                         ISD::STRICT_UINT_TO_FP, ISD::STRICT_SINT_TO_FP},
386                        XLenVT, Legal);
387 
388     setOperationAction(ISD::FLT_ROUNDS_, XLenVT, Custom);
389     setOperationAction(ISD::SET_ROUNDING, MVT::Other, Custom);
390   }
391 
392   setOperationAction({ISD::GlobalAddress, ISD::BlockAddress, ISD::ConstantPool,
393                       ISD::JumpTable},
394                      XLenVT, Custom);
395 
396   setOperationAction(ISD::GlobalTLSAddress, XLenVT, Custom);
397 
398   if (Subtarget.is64Bit())
399     setOperationAction(ISD::Constant, MVT::i64, Custom);
400 
401   // TODO: On M-mode only targets, the cycle[h] CSR may not be present.
402   // Unfortunately this can't be determined just from the ISA naming string.
403   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64,
404                      Subtarget.is64Bit() ? Legal : Custom);
405 
406   setOperationAction({ISD::TRAP, ISD::DEBUGTRAP}, MVT::Other, Legal);
407   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
408   if (Subtarget.is64Bit())
409     setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i32, Custom);
410 
411   if (Subtarget.hasStdExtA()) {
412     setMaxAtomicSizeInBitsSupported(Subtarget.getXLen());
413     setMinCmpXchgSizeInBits(32);
414   } else {
415     setMaxAtomicSizeInBitsSupported(0);
416   }
417 
418   setBooleanContents(ZeroOrOneBooleanContent);
419 
420   if (Subtarget.hasVInstructions()) {
421     setBooleanVectorContents(ZeroOrOneBooleanContent);
422 
423     setOperationAction(ISD::VSCALE, XLenVT, Custom);
424 
425     // RVV intrinsics may have illegal operands.
426     // We also need to custom legalize vmv.x.s.
427     setOperationAction({ISD::INTRINSIC_WO_CHAIN, ISD::INTRINSIC_W_CHAIN},
428                        {MVT::i8, MVT::i16}, Custom);
429     if (Subtarget.is64Bit())
430       setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i32, Custom);
431     else
432       setOperationAction({ISD::INTRINSIC_WO_CHAIN, ISD::INTRINSIC_W_CHAIN},
433                          MVT::i64, Custom);
434 
435     setOperationAction({ISD::INTRINSIC_W_CHAIN, ISD::INTRINSIC_VOID},
436                        MVT::Other, Custom);
437 
438     static const unsigned IntegerVPOps[] = {
439         ISD::VP_ADD,         ISD::VP_SUB,         ISD::VP_MUL,
440         ISD::VP_SDIV,        ISD::VP_UDIV,        ISD::VP_SREM,
441         ISD::VP_UREM,        ISD::VP_AND,         ISD::VP_OR,
442         ISD::VP_XOR,         ISD::VP_ASHR,        ISD::VP_LSHR,
443         ISD::VP_SHL,         ISD::VP_REDUCE_ADD,  ISD::VP_REDUCE_AND,
444         ISD::VP_REDUCE_OR,   ISD::VP_REDUCE_XOR,  ISD::VP_REDUCE_SMAX,
445         ISD::VP_REDUCE_SMIN, ISD::VP_REDUCE_UMAX, ISD::VP_REDUCE_UMIN,
446         ISD::VP_MERGE,       ISD::VP_SELECT,      ISD::VP_FPTOSI,
447         ISD::VP_FPTOUI,      ISD::VP_SETCC,       ISD::VP_SIGN_EXTEND,
448         ISD::VP_ZERO_EXTEND, ISD::VP_TRUNCATE};
449 
450     static const unsigned FloatingPointVPOps[] = {
451         ISD::VP_FADD,        ISD::VP_FSUB,
452         ISD::VP_FMUL,        ISD::VP_FDIV,
453         ISD::VP_FNEG,        ISD::VP_FMA,
454         ISD::VP_REDUCE_FADD, ISD::VP_REDUCE_SEQ_FADD,
455         ISD::VP_REDUCE_FMIN, ISD::VP_REDUCE_FMAX,
456         ISD::VP_MERGE,       ISD::VP_SELECT,
457         ISD::VP_SITOFP,      ISD::VP_UITOFP,
458         ISD::VP_SETCC,       ISD::VP_FP_ROUND,
459         ISD::VP_FP_EXTEND};
460 
461     static const unsigned IntegerVecReduceOps[] = {
462         ISD::VECREDUCE_ADD,  ISD::VECREDUCE_AND,  ISD::VECREDUCE_OR,
463         ISD::VECREDUCE_XOR,  ISD::VECREDUCE_SMAX, ISD::VECREDUCE_SMIN,
464         ISD::VECREDUCE_UMAX, ISD::VECREDUCE_UMIN};
465 
466     static const unsigned FloatingPointVecReduceOps[] = {
467         ISD::VECREDUCE_FADD, ISD::VECREDUCE_SEQ_FADD, ISD::VECREDUCE_FMIN,
468         ISD::VECREDUCE_FMAX};
469 
470     if (!Subtarget.is64Bit()) {
471       // We must custom-lower certain vXi64 operations on RV32 due to the vector
472       // element type being illegal.
473       setOperationAction({ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT},
474                          MVT::i64, Custom);
475 
476       setOperationAction(IntegerVecReduceOps, MVT::i64, Custom);
477 
478       setOperationAction({ISD::VP_REDUCE_ADD, ISD::VP_REDUCE_AND,
479                           ISD::VP_REDUCE_OR, ISD::VP_REDUCE_XOR,
480                           ISD::VP_REDUCE_SMAX, ISD::VP_REDUCE_SMIN,
481                           ISD::VP_REDUCE_UMAX, ISD::VP_REDUCE_UMIN},
482                          MVT::i64, Custom);
483     }
484 
485     for (MVT VT : BoolVecVTs) {
486       if (!isTypeLegal(VT))
487         continue;
488 
489       setOperationAction(ISD::SPLAT_VECTOR, VT, Custom);
490 
491       // Mask VTs are custom-expanded into a series of standard nodes
492       setOperationAction({ISD::TRUNCATE, ISD::CONCAT_VECTORS,
493                           ISD::INSERT_SUBVECTOR, ISD::EXTRACT_SUBVECTOR},
494                          VT, Custom);
495 
496       setOperationAction({ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT}, VT,
497                          Custom);
498 
499       setOperationAction(ISD::SELECT, VT, Custom);
500       setOperationAction(
501           {ISD::SELECT_CC, ISD::VSELECT, ISD::VP_MERGE, ISD::VP_SELECT}, VT,
502           Expand);
503 
504       setOperationAction({ISD::VP_AND, ISD::VP_OR, ISD::VP_XOR}, VT, Custom);
505 
506       setOperationAction(
507           {ISD::VECREDUCE_AND, ISD::VECREDUCE_OR, ISD::VECREDUCE_XOR}, VT,
508           Custom);
509 
510       setOperationAction(
511           {ISD::VP_REDUCE_AND, ISD::VP_REDUCE_OR, ISD::VP_REDUCE_XOR}, VT,
512           Custom);
513 
514       // RVV has native int->float & float->int conversions where the
515       // element type sizes are within one power-of-two of each other. Any
516       // wider distances between type sizes have to be lowered as sequences
517       // which progressively narrow the gap in stages.
518       setOperationAction(
519           {ISD::SINT_TO_FP, ISD::UINT_TO_FP, ISD::FP_TO_SINT, ISD::FP_TO_UINT},
520           VT, Custom);
521 
522       // Expand all extending loads to types larger than this, and truncating
523       // stores from types larger than this.
524       for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) {
525         setTruncStoreAction(OtherVT, VT, Expand);
526         setLoadExtAction({ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}, OtherVT,
527                          VT, Expand);
528       }
529 
530       setOperationAction(
531           {ISD::VP_FPTOSI, ISD::VP_FPTOUI, ISD::VP_TRUNCATE, ISD::VP_SETCC}, VT,
532           Custom);
533       setOperationAction(ISD::VECTOR_REVERSE, VT, Custom);
534 
535       setOperationPromotedToType(
536           ISD::VECTOR_SPLICE, VT,
537           MVT::getVectorVT(MVT::i8, VT.getVectorElementCount()));
538     }
539 
540     for (MVT VT : IntVecVTs) {
541       if (!isTypeLegal(VT))
542         continue;
543 
544       setOperationAction(ISD::SPLAT_VECTOR, VT, Legal);
545       setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom);
546 
547       // Vectors implement MULHS/MULHU.
548       setOperationAction({ISD::SMUL_LOHI, ISD::UMUL_LOHI}, VT, Expand);
549 
550       // nxvXi64 MULHS/MULHU requires the V extension instead of Zve64*.
551       if (VT.getVectorElementType() == MVT::i64 && !Subtarget.hasStdExtV())
552         setOperationAction({ISD::MULHU, ISD::MULHS}, VT, Expand);
553 
554       setOperationAction({ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX}, VT,
555                          Legal);
556 
557       setOperationAction({ISD::ROTL, ISD::ROTR}, VT, Expand);
558 
559       setOperationAction({ISD::CTTZ, ISD::CTLZ, ISD::CTPOP, ISD::BSWAP}, VT,
560                          Expand);
561 
562       setOperationAction(ISD::BSWAP, VT, Expand);
563 
564       // Custom-lower extensions and truncations from/to mask types.
565       setOperationAction({ISD::ANY_EXTEND, ISD::SIGN_EXTEND, ISD::ZERO_EXTEND},
566                          VT, Custom);
567 
568       // RVV has native int->float & float->int conversions where the
569       // element type sizes are within one power-of-two of each other. Any
570       // wider distances between type sizes have to be lowered as sequences
571       // which progressively narrow the gap in stages.
572       setOperationAction(
573           {ISD::SINT_TO_FP, ISD::UINT_TO_FP, ISD::FP_TO_SINT, ISD::FP_TO_UINT},
574           VT, Custom);
575 
576       setOperationAction(
577           {ISD::SADDSAT, ISD::UADDSAT, ISD::SSUBSAT, ISD::USUBSAT}, VT, Legal);
578 
579       // Integer VTs are lowered as a series of "RISCVISD::TRUNCATE_VECTOR_VL"
580       // nodes which truncate by one power of two at a time.
581       setOperationAction(ISD::TRUNCATE, VT, Custom);
582 
583       // Custom-lower insert/extract operations to simplify patterns.
584       setOperationAction({ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT}, VT,
585                          Custom);
586 
587       // Custom-lower reduction operations to set up the corresponding custom
588       // nodes' operands.
589       setOperationAction(IntegerVecReduceOps, VT, Custom);
590 
591       setOperationAction(IntegerVPOps, VT, Custom);
592 
593       setOperationAction({ISD::LOAD, ISD::STORE}, VT, Custom);
594 
595       setOperationAction({ISD::MLOAD, ISD::MSTORE, ISD::MGATHER, ISD::MSCATTER},
596                          VT, Custom);
597 
598       setOperationAction(
599           {ISD::VP_LOAD, ISD::VP_STORE, ISD::VP_GATHER, ISD::VP_SCATTER}, VT,
600           Custom);
601 
602       setOperationAction(
603           {ISD::CONCAT_VECTORS, ISD::INSERT_SUBVECTOR, ISD::EXTRACT_SUBVECTOR},
604           VT, Custom);
605 
606       setOperationAction(ISD::SELECT, VT, Custom);
607       setOperationAction(ISD::SELECT_CC, VT, Expand);
608 
609       setOperationAction({ISD::STEP_VECTOR, ISD::VECTOR_REVERSE}, VT, Custom);
610 
611       for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) {
612         setTruncStoreAction(VT, OtherVT, Expand);
613         setLoadExtAction({ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}, OtherVT,
614                          VT, Expand);
615       }
616 
617       // Splice
618       setOperationAction(ISD::VECTOR_SPLICE, VT, Custom);
619 
620       // Lower CTLZ_ZERO_UNDEF and CTTZ_ZERO_UNDEF if we have a floating point
621       // type that can represent the value exactly.
622       if (VT.getVectorElementType() != MVT::i64) {
623         MVT FloatEltVT =
624             VT.getVectorElementType() == MVT::i32 ? MVT::f64 : MVT::f32;
625         EVT FloatVT = MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount());
626         if (isTypeLegal(FloatVT)) {
627           setOperationAction({ISD::CTLZ_ZERO_UNDEF, ISD::CTTZ_ZERO_UNDEF}, VT,
628                              Custom);
629         }
630       }
631     }
632 
633     // Expand various CCs to best match the RVV ISA, which natively supports UNE
634     // but no other unordered comparisons, and supports all ordered comparisons
635     // except ONE. Additionally, we expand GT,OGT,GE,OGE for optimization
636     // purposes; they are expanded to their swapped-operand CCs (LT,OLT,LE,OLE),
637     // and we pattern-match those back to the "original", swapping operands once
638     // more. This way we catch both operations and both "vf" and "fv" forms with
639     // fewer patterns.
640     static const ISD::CondCode VFPCCToExpand[] = {
641         ISD::SETO,   ISD::SETONE, ISD::SETUEQ, ISD::SETUGT,
642         ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUO,
643         ISD::SETGT,  ISD::SETOGT, ISD::SETGE,  ISD::SETOGE,
644     };
645 
646     // Sets common operation actions on RVV floating-point vector types.
647     const auto SetCommonVFPActions = [&](MVT VT) {
648       setOperationAction(ISD::SPLAT_VECTOR, VT, Legal);
649       // RVV has native FP_ROUND & FP_EXTEND conversions where the element type
650       // sizes are within one power-of-two of each other. Therefore conversions
651       // between vXf16 and vXf64 must be lowered as sequences which convert via
652       // vXf32.
653       setOperationAction({ISD::FP_ROUND, ISD::FP_EXTEND}, VT, Custom);
654       // Custom-lower insert/extract operations to simplify patterns.
655       setOperationAction({ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT}, VT,
656                          Custom);
657       // Expand various condition codes (explained above).
658       setCondCodeAction(VFPCCToExpand, VT, Expand);
659 
660       setOperationAction({ISD::FMINNUM, ISD::FMAXNUM}, VT, Legal);
661 
662       setOperationAction({ISD::FTRUNC, ISD::FCEIL, ISD::FFLOOR, ISD::FROUND},
663                          VT, Custom);
664 
665       setOperationAction(FloatingPointVecReduceOps, VT, Custom);
666 
667       // Expand FP operations that need libcalls.
668       setOperationAction(ISD::FREM, VT, Expand);
669       setOperationAction(ISD::FPOW, VT, Expand);
670       setOperationAction(ISD::FCOS, VT, Expand);
671       setOperationAction(ISD::FSIN, VT, Expand);
672       setOperationAction(ISD::FSINCOS, VT, Expand);
673       setOperationAction(ISD::FEXP, VT, Expand);
674       setOperationAction(ISD::FEXP2, VT, Expand);
675       setOperationAction(ISD::FLOG, VT, Expand);
676       setOperationAction(ISD::FLOG2, VT, Expand);
677       setOperationAction(ISD::FLOG10, VT, Expand);
678       setOperationAction(ISD::FRINT, VT, Expand);
679       setOperationAction(ISD::FNEARBYINT, VT, Expand);
680 
681       setOperationAction(ISD::VECREDUCE_FADD, VT, Custom);
682       setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom);
683       setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom);
684       setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom);
685 
686       setOperationAction(ISD::FCOPYSIGN, VT, Legal);
687 
688       setOperationAction({ISD::LOAD, ISD::STORE}, VT, Custom);
689 
690       setOperationAction({ISD::MLOAD, ISD::MSTORE, ISD::MGATHER, ISD::MSCATTER},
691                          VT, Custom);
692 
693       setOperationAction(
694           {ISD::VP_LOAD, ISD::VP_STORE, ISD::VP_GATHER, ISD::VP_SCATTER}, VT,
695           Custom);
696 
697       setOperationAction(ISD::SELECT, VT, Custom);
698       setOperationAction(ISD::SELECT_CC, VT, Expand);
699 
700       setOperationAction(
701           {ISD::CONCAT_VECTORS, ISD::INSERT_SUBVECTOR, ISD::EXTRACT_SUBVECTOR},
702           VT, Custom);
703 
704       setOperationAction({ISD::VECTOR_REVERSE, ISD::VECTOR_SPLICE}, VT, Custom);
705 
706       setOperationAction(FloatingPointVPOps, VT, Custom);
707     };
708 
709     // Sets common extload/truncstore actions on RVV floating-point vector
710     // types.
711     const auto SetCommonVFPExtLoadTruncStoreActions =
712         [&](MVT VT, ArrayRef<MVT::SimpleValueType> SmallerVTs) {
713           for (auto SmallVT : SmallerVTs) {
714             setTruncStoreAction(VT, SmallVT, Expand);
715             setLoadExtAction(ISD::EXTLOAD, VT, SmallVT, Expand);
716           }
717         };
718 
719     if (Subtarget.hasVInstructionsF16()) {
720       for (MVT VT : F16VecVTs) {
721         if (!isTypeLegal(VT))
722           continue;
723         SetCommonVFPActions(VT);
724       }
725     }
726 
727     if (Subtarget.hasVInstructionsF32()) {
728       for (MVT VT : F32VecVTs) {
729         if (!isTypeLegal(VT))
730           continue;
731         SetCommonVFPActions(VT);
732         SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs);
733       }
734     }
735 
736     if (Subtarget.hasVInstructionsF64()) {
737       for (MVT VT : F64VecVTs) {
738         if (!isTypeLegal(VT))
739           continue;
740         SetCommonVFPActions(VT);
741         SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs);
742         SetCommonVFPExtLoadTruncStoreActions(VT, F32VecVTs);
743       }
744     }
745 
746     if (Subtarget.useRVVForFixedLengthVectors()) {
747       for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) {
748         if (!useRVVForFixedLengthVectorVT(VT))
749           continue;
750 
751         // By default everything must be expanded.
752         for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op)
753           setOperationAction(Op, VT, Expand);
754         for (MVT OtherVT : MVT::integer_fixedlen_vector_valuetypes()) {
755           setTruncStoreAction(VT, OtherVT, Expand);
756           setLoadExtAction({ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD},
757                            OtherVT, VT, Expand);
758         }
759 
760         // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed.
761         setOperationAction({ISD::INSERT_SUBVECTOR, ISD::EXTRACT_SUBVECTOR}, VT,
762                            Custom);
763 
764         setOperationAction({ISD::BUILD_VECTOR, ISD::CONCAT_VECTORS}, VT,
765                            Custom);
766 
767         setOperationAction({ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT},
768                            VT, Custom);
769 
770         setOperationAction({ISD::LOAD, ISD::STORE}, VT, Custom);
771 
772         setOperationAction(ISD::SETCC, VT, Custom);
773 
774         setOperationAction(ISD::SELECT, VT, Custom);
775 
776         setOperationAction(ISD::TRUNCATE, VT, Custom);
777 
778         setOperationAction(ISD::BITCAST, VT, Custom);
779 
780         setOperationAction(
781             {ISD::VECREDUCE_AND, ISD::VECREDUCE_OR, ISD::VECREDUCE_XOR}, VT,
782             Custom);
783 
784         setOperationAction(
785             {ISD::VP_REDUCE_AND, ISD::VP_REDUCE_OR, ISD::VP_REDUCE_XOR}, VT,
786             Custom);
787 
788         setOperationAction({ISD::SINT_TO_FP, ISD::UINT_TO_FP, ISD::FP_TO_SINT,
789                             ISD::FP_TO_UINT},
790                            VT, Custom);
791 
792         // Operations below are different for between masks and other vectors.
793         if (VT.getVectorElementType() == MVT::i1) {
794           setOperationAction({ISD::VP_AND, ISD::VP_OR, ISD::VP_XOR, ISD::AND,
795                               ISD::OR, ISD::XOR},
796                              VT, Custom);
797 
798           setOperationAction(
799               {ISD::VP_FPTOSI, ISD::VP_FPTOUI, ISD::VP_SETCC, ISD::VP_TRUNCATE},
800               VT, Custom);
801           continue;
802         }
803 
804         // Make SPLAT_VECTOR Legal so DAGCombine will convert splat vectors to
805         // it before type legalization for i64 vectors on RV32. It will then be
806         // type legalized to SPLAT_VECTOR_PARTS which we need to Custom handle.
807         // FIXME: Use SPLAT_VECTOR for all types? DAGCombine probably needs
808         // improvements first.
809         if (!Subtarget.is64Bit() && VT.getVectorElementType() == MVT::i64) {
810           setOperationAction(ISD::SPLAT_VECTOR, VT, Legal);
811           setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom);
812         }
813 
814         setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
815         setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
816 
817         setOperationAction(
818             {ISD::MLOAD, ISD::MSTORE, ISD::MGATHER, ISD::MSCATTER}, VT, Custom);
819 
820         setOperationAction(
821             {ISD::VP_LOAD, ISD::VP_STORE, ISD::VP_GATHER, ISD::VP_SCATTER}, VT,
822             Custom);
823 
824         setOperationAction({ISD::ADD, ISD::MUL, ISD::SUB, ISD::AND, ISD::OR,
825                             ISD::XOR, ISD::SDIV, ISD::SREM, ISD::UDIV,
826                             ISD::UREM, ISD::SHL, ISD::SRA, ISD::SRL},
827                            VT, Custom);
828 
829         setOperationAction(
830             {ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX, ISD::ABS}, VT, Custom);
831 
832         // vXi64 MULHS/MULHU requires the V extension instead of Zve64*.
833         if (VT.getVectorElementType() != MVT::i64 || Subtarget.hasStdExtV())
834           setOperationAction({ISD::MULHS, ISD::MULHU}, VT, Custom);
835 
836         setOperationAction(
837             {ISD::SADDSAT, ISD::UADDSAT, ISD::SSUBSAT, ISD::USUBSAT}, VT,
838             Custom);
839 
840         setOperationAction(ISD::VSELECT, VT, Custom);
841         setOperationAction(ISD::SELECT_CC, VT, Expand);
842 
843         setOperationAction(
844             {ISD::ANY_EXTEND, ISD::SIGN_EXTEND, ISD::ZERO_EXTEND}, VT, Custom);
845 
846         // Custom-lower reduction operations to set up the corresponding custom
847         // nodes' operands.
848         setOperationAction({ISD::VECREDUCE_ADD, ISD::VECREDUCE_SMAX,
849                             ISD::VECREDUCE_SMIN, ISD::VECREDUCE_UMAX,
850                             ISD::VECREDUCE_UMIN},
851                            VT, Custom);
852 
853         setOperationAction(IntegerVPOps, VT, Custom);
854 
855         // Lower CTLZ_ZERO_UNDEF and CTTZ_ZERO_UNDEF if we have a floating point
856         // type that can represent the value exactly.
857         if (VT.getVectorElementType() != MVT::i64) {
858           MVT FloatEltVT =
859               VT.getVectorElementType() == MVT::i32 ? MVT::f64 : MVT::f32;
860           EVT FloatVT =
861               MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount());
862           if (isTypeLegal(FloatVT))
863             setOperationAction({ISD::CTLZ_ZERO_UNDEF, ISD::CTTZ_ZERO_UNDEF}, VT,
864                                Custom);
865         }
866       }
867 
868       for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) {
869         if (!useRVVForFixedLengthVectorVT(VT))
870           continue;
871 
872         // By default everything must be expanded.
873         for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op)
874           setOperationAction(Op, VT, Expand);
875         for (MVT OtherVT : MVT::fp_fixedlen_vector_valuetypes()) {
876           setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand);
877           setTruncStoreAction(VT, OtherVT, Expand);
878         }
879 
880         // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed.
881         setOperationAction({ISD::INSERT_SUBVECTOR, ISD::EXTRACT_SUBVECTOR}, VT,
882                            Custom);
883 
884         setOperationAction({ISD::BUILD_VECTOR, ISD::CONCAT_VECTORS,
885                             ISD::VECTOR_SHUFFLE, ISD::INSERT_VECTOR_ELT,
886                             ISD::EXTRACT_VECTOR_ELT},
887                            VT, Custom);
888 
889         setOperationAction({ISD::LOAD, ISD::STORE, ISD::MLOAD, ISD::MSTORE,
890                             ISD::MGATHER, ISD::MSCATTER},
891                            VT, Custom);
892 
893         setOperationAction(
894             {ISD::VP_LOAD, ISD::VP_STORE, ISD::VP_GATHER, ISD::VP_SCATTER}, VT,
895             Custom);
896 
897         setOperationAction({ISD::FADD, ISD::FSUB, ISD::FMUL, ISD::FDIV,
898                             ISD::FNEG, ISD::FABS, ISD::FCOPYSIGN, ISD::FSQRT,
899                             ISD::FMA, ISD::FMINNUM, ISD::FMAXNUM},
900                            VT, Custom);
901 
902         setOperationAction({ISD::FP_ROUND, ISD::FP_EXTEND}, VT, Custom);
903 
904         setOperationAction({ISD::FTRUNC, ISD::FCEIL, ISD::FFLOOR, ISD::FROUND},
905                            VT, Custom);
906 
907         setCondCodeAction(VFPCCToExpand, VT, Expand);
908 
909         setOperationAction({ISD::VSELECT, ISD::SELECT}, VT, Custom);
910         setOperationAction(ISD::SELECT_CC, VT, Expand);
911 
912         setOperationAction(ISD::BITCAST, VT, Custom);
913 
914         setOperationAction(FloatingPointVecReduceOps, VT, Custom);
915 
916         setOperationAction(FloatingPointVPOps, VT, Custom);
917       }
918 
919       // Custom-legalize bitcasts from fixed-length vectors to scalar types.
920       setOperationAction(ISD::BITCAST, {MVT::i8, MVT::i16, MVT::i32, MVT::i64},
921                          Custom);
922       if (Subtarget.hasStdExtZfh())
923         setOperationAction(ISD::BITCAST, MVT::f16, Custom);
924       if (Subtarget.hasStdExtF())
925         setOperationAction(ISD::BITCAST, MVT::f32, Custom);
926       if (Subtarget.hasStdExtD())
927         setOperationAction(ISD::BITCAST, MVT::f64, Custom);
928     }
929   }
930 
931   // Function alignments.
932   const Align FunctionAlignment(Subtarget.hasStdExtC() ? 2 : 4);
933   setMinFunctionAlignment(FunctionAlignment);
934   setPrefFunctionAlignment(FunctionAlignment);
935 
936   setMinimumJumpTableEntries(5);
937 
938   // Jumps are expensive, compared to logic
939   setJumpIsExpensive();
940 
941   setTargetDAGCombine({ISD::INTRINSIC_WO_CHAIN, ISD::ADD, ISD::SUB, ISD::AND,
942                        ISD::OR, ISD::XOR, ISD::SETCC});
943   if (Subtarget.is64Bit())
944     setTargetDAGCombine(ISD::SRA);
945 
946   if (Subtarget.hasStdExtF())
947     setTargetDAGCombine({ISD::FADD, ISD::FMAXNUM, ISD::FMINNUM});
948 
949   if (Subtarget.hasStdExtZbp())
950     setTargetDAGCombine({ISD::ROTL, ISD::ROTR});
951 
952   if (Subtarget.hasStdExtZbb())
953     setTargetDAGCombine({ISD::UMAX, ISD::UMIN, ISD::SMAX, ISD::SMIN});
954 
955   if (Subtarget.hasStdExtZbkb())
956     setTargetDAGCombine(ISD::BITREVERSE);
957   if (Subtarget.hasStdExtZfh() || Subtarget.hasStdExtZbb())
958     setTargetDAGCombine(ISD::SIGN_EXTEND_INREG);
959   if (Subtarget.hasStdExtF())
960     setTargetDAGCombine({ISD::ZERO_EXTEND, ISD::FP_TO_SINT, ISD::FP_TO_UINT,
961                          ISD::FP_TO_SINT_SAT, ISD::FP_TO_UINT_SAT});
962   if (Subtarget.hasVInstructions())
963     setTargetDAGCombine({ISD::FCOPYSIGN, ISD::MGATHER, ISD::MSCATTER,
964                          ISD::VP_GATHER, ISD::VP_SCATTER, ISD::SRA, ISD::SRL,
965                          ISD::SHL, ISD::STORE, ISD::SPLAT_VECTOR});
966   if (Subtarget.useRVVForFixedLengthVectors())
967     setTargetDAGCombine(ISD::BITCAST);
968 
969   setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2");
970   setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2");
971 }
972 
973 EVT RISCVTargetLowering::getSetCCResultType(const DataLayout &DL,
974                                             LLVMContext &Context,
975                                             EVT VT) const {
976   if (!VT.isVector())
977     return getPointerTy(DL);
978   if (Subtarget.hasVInstructions() &&
979       (VT.isScalableVector() || Subtarget.useRVVForFixedLengthVectors()))
980     return EVT::getVectorVT(Context, MVT::i1, VT.getVectorElementCount());
981   return VT.changeVectorElementTypeToInteger();
982 }
983 
984 MVT RISCVTargetLowering::getVPExplicitVectorLengthTy() const {
985   return Subtarget.getXLenVT();
986 }
987 
988 bool RISCVTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
989                                              const CallInst &I,
990                                              MachineFunction &MF,
991                                              unsigned Intrinsic) const {
992   auto &DL = I.getModule()->getDataLayout();
993   switch (Intrinsic) {
994   default:
995     return false;
996   case Intrinsic::riscv_masked_atomicrmw_xchg_i32:
997   case Intrinsic::riscv_masked_atomicrmw_add_i32:
998   case Intrinsic::riscv_masked_atomicrmw_sub_i32:
999   case Intrinsic::riscv_masked_atomicrmw_nand_i32:
1000   case Intrinsic::riscv_masked_atomicrmw_max_i32:
1001   case Intrinsic::riscv_masked_atomicrmw_min_i32:
1002   case Intrinsic::riscv_masked_atomicrmw_umax_i32:
1003   case Intrinsic::riscv_masked_atomicrmw_umin_i32:
1004   case Intrinsic::riscv_masked_cmpxchg_i32:
1005     Info.opc = ISD::INTRINSIC_W_CHAIN;
1006     Info.memVT = MVT::i32;
1007     Info.ptrVal = I.getArgOperand(0);
1008     Info.offset = 0;
1009     Info.align = Align(4);
1010     Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore |
1011                  MachineMemOperand::MOVolatile;
1012     return true;
1013   case Intrinsic::riscv_masked_strided_load:
1014     Info.opc = ISD::INTRINSIC_W_CHAIN;
1015     Info.ptrVal = I.getArgOperand(1);
1016     Info.memVT = getValueType(DL, I.getType()->getScalarType());
1017     Info.align = Align(DL.getTypeSizeInBits(I.getType()->getScalarType()) / 8);
1018     Info.size = MemoryLocation::UnknownSize;
1019     Info.flags |= MachineMemOperand::MOLoad;
1020     return true;
1021   case Intrinsic::riscv_masked_strided_store:
1022     Info.opc = ISD::INTRINSIC_VOID;
1023     Info.ptrVal = I.getArgOperand(1);
1024     Info.memVT =
1025         getValueType(DL, I.getArgOperand(0)->getType()->getScalarType());
1026     Info.align = Align(
1027         DL.getTypeSizeInBits(I.getArgOperand(0)->getType()->getScalarType()) /
1028         8);
1029     Info.size = MemoryLocation::UnknownSize;
1030     Info.flags |= MachineMemOperand::MOStore;
1031     return true;
1032   case Intrinsic::riscv_seg2_load:
1033   case Intrinsic::riscv_seg3_load:
1034   case Intrinsic::riscv_seg4_load:
1035   case Intrinsic::riscv_seg5_load:
1036   case Intrinsic::riscv_seg6_load:
1037   case Intrinsic::riscv_seg7_load:
1038   case Intrinsic::riscv_seg8_load:
1039     Info.opc = ISD::INTRINSIC_W_CHAIN;
1040     Info.ptrVal = I.getArgOperand(0);
1041     Info.memVT =
1042         getValueType(DL, I.getType()->getStructElementType(0)->getScalarType());
1043     Info.align =
1044         Align(DL.getTypeSizeInBits(
1045                   I.getType()->getStructElementType(0)->getScalarType()) /
1046               8);
1047     Info.size = MemoryLocation::UnknownSize;
1048     Info.flags |= MachineMemOperand::MOLoad;
1049     return true;
1050   }
1051 }
1052 
1053 bool RISCVTargetLowering::isLegalAddressingMode(const DataLayout &DL,
1054                                                 const AddrMode &AM, Type *Ty,
1055                                                 unsigned AS,
1056                                                 Instruction *I) const {
1057   // No global is ever allowed as a base.
1058   if (AM.BaseGV)
1059     return false;
1060 
1061   // RVV instructions only support register addressing.
1062   if (Subtarget.hasVInstructions() && isa<VectorType>(Ty))
1063     return AM.HasBaseReg && AM.Scale == 0 && !AM.BaseOffs;
1064 
1065   // Require a 12-bit signed offset.
1066   if (!isInt<12>(AM.BaseOffs))
1067     return false;
1068 
1069   switch (AM.Scale) {
1070   case 0: // "r+i" or just "i", depending on HasBaseReg.
1071     break;
1072   case 1:
1073     if (!AM.HasBaseReg) // allow "r+i".
1074       break;
1075     return false; // disallow "r+r" or "r+r+i".
1076   default:
1077     return false;
1078   }
1079 
1080   return true;
1081 }
1082 
1083 bool RISCVTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
1084   return isInt<12>(Imm);
1085 }
1086 
1087 bool RISCVTargetLowering::isLegalAddImmediate(int64_t Imm) const {
1088   return isInt<12>(Imm);
1089 }
1090 
1091 // On RV32, 64-bit integers are split into their high and low parts and held
1092 // in two different registers, so the trunc is free since the low register can
1093 // just be used.
1094 bool RISCVTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const {
1095   if (Subtarget.is64Bit() || !SrcTy->isIntegerTy() || !DstTy->isIntegerTy())
1096     return false;
1097   unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();
1098   unsigned DestBits = DstTy->getPrimitiveSizeInBits();
1099   return (SrcBits == 64 && DestBits == 32);
1100 }
1101 
1102 bool RISCVTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const {
1103   if (Subtarget.is64Bit() || SrcVT.isVector() || DstVT.isVector() ||
1104       !SrcVT.isInteger() || !DstVT.isInteger())
1105     return false;
1106   unsigned SrcBits = SrcVT.getSizeInBits();
1107   unsigned DestBits = DstVT.getSizeInBits();
1108   return (SrcBits == 64 && DestBits == 32);
1109 }
1110 
1111 bool RISCVTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
1112   // Zexts are free if they can be combined with a load.
1113   // Don't advertise i32->i64 zextload as being free for RV64. It interacts
1114   // poorly with type legalization of compares preferring sext.
1115   if (auto *LD = dyn_cast<LoadSDNode>(Val)) {
1116     EVT MemVT = LD->getMemoryVT();
1117     if ((MemVT == MVT::i8 || MemVT == MVT::i16) &&
1118         (LD->getExtensionType() == ISD::NON_EXTLOAD ||
1119          LD->getExtensionType() == ISD::ZEXTLOAD))
1120       return true;
1121   }
1122 
1123   return TargetLowering::isZExtFree(Val, VT2);
1124 }
1125 
1126 bool RISCVTargetLowering::isSExtCheaperThanZExt(EVT SrcVT, EVT DstVT) const {
1127   return Subtarget.is64Bit() && SrcVT == MVT::i32 && DstVT == MVT::i64;
1128 }
1129 
1130 bool RISCVTargetLowering::signExtendConstant(const ConstantInt *CI) const {
1131   return Subtarget.is64Bit() && CI->getType()->isIntegerTy(32);
1132 }
1133 
1134 bool RISCVTargetLowering::isCheapToSpeculateCttz() const {
1135   return Subtarget.hasStdExtZbb();
1136 }
1137 
1138 bool RISCVTargetLowering::isCheapToSpeculateCtlz() const {
1139   return Subtarget.hasStdExtZbb();
1140 }
1141 
1142 bool RISCVTargetLowering::hasAndNotCompare(SDValue Y) const {
1143   EVT VT = Y.getValueType();
1144 
1145   // FIXME: Support vectors once we have tests.
1146   if (VT.isVector())
1147     return false;
1148 
1149   return (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp() ||
1150           Subtarget.hasStdExtZbkb()) &&
1151          !isa<ConstantSDNode>(Y);
1152 }
1153 
1154 bool RISCVTargetLowering::hasBitTest(SDValue X, SDValue Y) const {
1155   // We can use ANDI+SEQZ/SNEZ as a bit test. Y contains the bit position.
1156   auto *C = dyn_cast<ConstantSDNode>(Y);
1157   return C && C->getAPIntValue().ule(10);
1158 }
1159 
1160 bool RISCVTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
1161                                                             Type *Ty) const {
1162   assert(Ty->isIntegerTy());
1163 
1164   unsigned BitSize = Ty->getIntegerBitWidth();
1165   if (BitSize > Subtarget.getXLen())
1166     return false;
1167 
1168   // Fast path, assume 32-bit immediates are cheap.
1169   int64_t Val = Imm.getSExtValue();
1170   if (isInt<32>(Val))
1171     return true;
1172 
1173   // A constant pool entry may be more aligned thant he load we're trying to
1174   // replace. If we don't support unaligned scalar mem, prefer the constant
1175   // pool.
1176   // TODO: Can the caller pass down the alignment?
1177   if (!Subtarget.enableUnalignedScalarMem())
1178     return true;
1179 
1180   // Prefer to keep the load if it would require many instructions.
1181   // This uses the same threshold we use for constant pools but doesn't
1182   // check useConstantPoolForLargeInts.
1183   // TODO: Should we keep the load only when we're definitely going to emit a
1184   // constant pool?
1185 
1186   RISCVMatInt::InstSeq Seq =
1187       RISCVMatInt::generateInstSeq(Val, Subtarget.getFeatureBits());
1188   return Seq.size() <= Subtarget.getMaxBuildIntsCost();
1189 }
1190 
1191 bool RISCVTargetLowering::
1192     shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd(
1193         SDValue X, ConstantSDNode *XC, ConstantSDNode *CC, SDValue Y,
1194         unsigned OldShiftOpcode, unsigned NewShiftOpcode,
1195         SelectionDAG &DAG) const {
1196   // One interesting pattern that we'd want to form is 'bit extract':
1197   //   ((1 >> Y) & 1) ==/!= 0
1198   // But we also need to be careful not to try to reverse that fold.
1199 
1200   // Is this '((1 >> Y) & 1)'?
1201   if (XC && OldShiftOpcode == ISD::SRL && XC->isOne())
1202     return false; // Keep the 'bit extract' pattern.
1203 
1204   // Will this be '((1 >> Y) & 1)' after the transform?
1205   if (NewShiftOpcode == ISD::SRL && CC->isOne())
1206     return true; // Do form the 'bit extract' pattern.
1207 
1208   // If 'X' is a constant, and we transform, then we will immediately
1209   // try to undo the fold, thus causing endless combine loop.
1210   // So only do the transform if X is not a constant. This matches the default
1211   // implementation of this function.
1212   return !XC;
1213 }
1214 
1215 /// Check if sinking \p I's operands to I's basic block is profitable, because
1216 /// the operands can be folded into a target instruction, e.g.
1217 /// splats of scalars can fold into vector instructions.
1218 bool RISCVTargetLowering::shouldSinkOperands(
1219     Instruction *I, SmallVectorImpl<Use *> &Ops) const {
1220   using namespace llvm::PatternMatch;
1221 
1222   if (!I->getType()->isVectorTy() || !Subtarget.hasVInstructions())
1223     return false;
1224 
1225   auto IsSinker = [&](Instruction *I, int Operand) {
1226     switch (I->getOpcode()) {
1227     case Instruction::Add:
1228     case Instruction::Sub:
1229     case Instruction::Mul:
1230     case Instruction::And:
1231     case Instruction::Or:
1232     case Instruction::Xor:
1233     case Instruction::FAdd:
1234     case Instruction::FSub:
1235     case Instruction::FMul:
1236     case Instruction::FDiv:
1237     case Instruction::ICmp:
1238     case Instruction::FCmp:
1239       return true;
1240     case Instruction::Shl:
1241     case Instruction::LShr:
1242     case Instruction::AShr:
1243     case Instruction::UDiv:
1244     case Instruction::SDiv:
1245     case Instruction::URem:
1246     case Instruction::SRem:
1247       return Operand == 1;
1248     case Instruction::Call:
1249       if (auto *II = dyn_cast<IntrinsicInst>(I)) {
1250         switch (II->getIntrinsicID()) {
1251         case Intrinsic::fma:
1252         case Intrinsic::vp_fma:
1253           return Operand == 0 || Operand == 1;
1254         // FIXME: Our patterns can only match vx/vf instructions when the splat
1255         // it on the RHS, because TableGen doesn't recognize our VP operations
1256         // as commutative.
1257         case Intrinsic::vp_add:
1258         case Intrinsic::vp_mul:
1259         case Intrinsic::vp_and:
1260         case Intrinsic::vp_or:
1261         case Intrinsic::vp_xor:
1262         case Intrinsic::vp_fadd:
1263         case Intrinsic::vp_fmul:
1264         case Intrinsic::vp_shl:
1265         case Intrinsic::vp_lshr:
1266         case Intrinsic::vp_ashr:
1267         case Intrinsic::vp_udiv:
1268         case Intrinsic::vp_sdiv:
1269         case Intrinsic::vp_urem:
1270         case Intrinsic::vp_srem:
1271           return Operand == 1;
1272         // ... with the exception of vp.sub/vp.fsub/vp.fdiv, which have
1273         // explicit patterns for both LHS and RHS (as 'vr' versions).
1274         case Intrinsic::vp_sub:
1275         case Intrinsic::vp_fsub:
1276         case Intrinsic::vp_fdiv:
1277           return Operand == 0 || Operand == 1;
1278         default:
1279           return false;
1280         }
1281       }
1282       return false;
1283     default:
1284       return false;
1285     }
1286   };
1287 
1288   for (auto OpIdx : enumerate(I->operands())) {
1289     if (!IsSinker(I, OpIdx.index()))
1290       continue;
1291 
1292     Instruction *Op = dyn_cast<Instruction>(OpIdx.value().get());
1293     // Make sure we are not already sinking this operand
1294     if (!Op || any_of(Ops, [&](Use *U) { return U->get() == Op; }))
1295       continue;
1296 
1297     // We are looking for a splat that can be sunk.
1298     if (!match(Op, m_Shuffle(m_InsertElt(m_Undef(), m_Value(), m_ZeroInt()),
1299                              m_Undef(), m_ZeroMask())))
1300       continue;
1301 
1302     // All uses of the shuffle should be sunk to avoid duplicating it across gpr
1303     // and vector registers
1304     for (Use &U : Op->uses()) {
1305       Instruction *Insn = cast<Instruction>(U.getUser());
1306       if (!IsSinker(Insn, U.getOperandNo()))
1307         return false;
1308     }
1309 
1310     Ops.push_back(&Op->getOperandUse(0));
1311     Ops.push_back(&OpIdx.value());
1312   }
1313   return true;
1314 }
1315 
1316 bool RISCVTargetLowering::shouldScalarizeBinop(SDValue VecOp) const {
1317   unsigned Opc = VecOp.getOpcode();
1318 
1319   // Assume target opcodes can't be scalarized.
1320   // TODO - do we have any exceptions?
1321   if (Opc >= ISD::BUILTIN_OP_END)
1322     return false;
1323 
1324   // If the vector op is not supported, try to convert to scalar.
1325   EVT VecVT = VecOp.getValueType();
1326   if (!isOperationLegalOrCustomOrPromote(Opc, VecVT))
1327     return true;
1328 
1329   // If the vector op is supported, but the scalar op is not, the transform may
1330   // not be worthwhile.
1331   EVT ScalarVT = VecVT.getScalarType();
1332   return isOperationLegalOrCustomOrPromote(Opc, ScalarVT);
1333 }
1334 
1335 bool RISCVTargetLowering::isOffsetFoldingLegal(
1336     const GlobalAddressSDNode *GA) const {
1337   // In order to maximise the opportunity for common subexpression elimination,
1338   // keep a separate ADD node for the global address offset instead of folding
1339   // it in the global address node. Later peephole optimisations may choose to
1340   // fold it back in when profitable.
1341   return false;
1342 }
1343 
1344 bool RISCVTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
1345                                        bool ForCodeSize) const {
1346   // FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin.
1347   if (VT == MVT::f16 && !Subtarget.hasStdExtZfh())
1348     return false;
1349   if (VT == MVT::f32 && !Subtarget.hasStdExtF())
1350     return false;
1351   if (VT == MVT::f64 && !Subtarget.hasStdExtD())
1352     return false;
1353   return Imm.isZero();
1354 }
1355 
1356 bool RISCVTargetLowering::hasBitPreservingFPLogic(EVT VT) const {
1357   return (VT == MVT::f16 && Subtarget.hasStdExtZfh()) ||
1358          (VT == MVT::f32 && Subtarget.hasStdExtF()) ||
1359          (VT == MVT::f64 && Subtarget.hasStdExtD());
1360 }
1361 
1362 MVT RISCVTargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context,
1363                                                       CallingConv::ID CC,
1364                                                       EVT VT) const {
1365   // Use f32 to pass f16 if it is legal and Zfh is not enabled.
1366   // We might still end up using a GPR but that will be decided based on ABI.
1367   // FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin.
1368   if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh())
1369     return MVT::f32;
1370 
1371   return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT);
1372 }
1373 
1374 unsigned RISCVTargetLowering::getNumRegistersForCallingConv(LLVMContext &Context,
1375                                                            CallingConv::ID CC,
1376                                                            EVT VT) const {
1377   // Use f32 to pass f16 if it is legal and Zfh is not enabled.
1378   // We might still end up using a GPR but that will be decided based on ABI.
1379   // FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin.
1380   if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh())
1381     return 1;
1382 
1383   return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT);
1384 }
1385 
1386 // Changes the condition code and swaps operands if necessary, so the SetCC
1387 // operation matches one of the comparisons supported directly by branches
1388 // in the RISC-V ISA. May adjust compares to favor compare with 0 over compare
1389 // with 1/-1.
1390 static void translateSetCCForBranch(const SDLoc &DL, SDValue &LHS, SDValue &RHS,
1391                                     ISD::CondCode &CC, SelectionDAG &DAG) {
1392   // If this is a single bit test that can't be handled by ANDI, shift the
1393   // bit to be tested to the MSB and perform a signed compare with 0.
1394   if (isIntEqualitySetCC(CC) && isNullConstant(RHS) &&
1395       LHS.getOpcode() == ISD::AND && LHS.hasOneUse() &&
1396       isa<ConstantSDNode>(LHS.getOperand(1))) {
1397     uint64_t Mask = LHS.getConstantOperandVal(1);
1398     if (isPowerOf2_64(Mask) && !isInt<12>(Mask)) {
1399       CC = CC == ISD::SETEQ ? ISD::SETGE : ISD::SETLT;
1400       unsigned ShAmt = LHS.getValueSizeInBits() - 1 - Log2_64(Mask);
1401       LHS = LHS.getOperand(0);
1402       if (ShAmt != 0)
1403         LHS = DAG.getNode(ISD::SHL, DL, LHS.getValueType(), LHS,
1404                           DAG.getConstant(ShAmt, DL, LHS.getValueType()));
1405       return;
1406     }
1407   }
1408 
1409   // Convert X > -1 to X >= 0.
1410   if (CC == ISD::SETGT && isAllOnesConstant(RHS)) {
1411     RHS = DAG.getConstant(0, DL, RHS.getValueType());
1412     CC = ISD::SETGE;
1413     return;
1414   }
1415   // Convert X < 1 to 0 >= X.
1416   if (CC == ISD::SETLT && isOneConstant(RHS)) {
1417     RHS = LHS;
1418     LHS = DAG.getConstant(0, DL, RHS.getValueType());
1419     CC = ISD::SETGE;
1420     return;
1421   }
1422 
1423   switch (CC) {
1424   default:
1425     break;
1426   case ISD::SETGT:
1427   case ISD::SETLE:
1428   case ISD::SETUGT:
1429   case ISD::SETULE:
1430     CC = ISD::getSetCCSwappedOperands(CC);
1431     std::swap(LHS, RHS);
1432     break;
1433   }
1434 }
1435 
1436 RISCVII::VLMUL RISCVTargetLowering::getLMUL(MVT VT) {
1437   assert(VT.isScalableVector() && "Expecting a scalable vector type");
1438   unsigned KnownSize = VT.getSizeInBits().getKnownMinValue();
1439   if (VT.getVectorElementType() == MVT::i1)
1440     KnownSize *= 8;
1441 
1442   switch (KnownSize) {
1443   default:
1444     llvm_unreachable("Invalid LMUL.");
1445   case 8:
1446     return RISCVII::VLMUL::LMUL_F8;
1447   case 16:
1448     return RISCVII::VLMUL::LMUL_F4;
1449   case 32:
1450     return RISCVII::VLMUL::LMUL_F2;
1451   case 64:
1452     return RISCVII::VLMUL::LMUL_1;
1453   case 128:
1454     return RISCVII::VLMUL::LMUL_2;
1455   case 256:
1456     return RISCVII::VLMUL::LMUL_4;
1457   case 512:
1458     return RISCVII::VLMUL::LMUL_8;
1459   }
1460 }
1461 
1462 unsigned RISCVTargetLowering::getRegClassIDForLMUL(RISCVII::VLMUL LMul) {
1463   switch (LMul) {
1464   default:
1465     llvm_unreachable("Invalid LMUL.");
1466   case RISCVII::VLMUL::LMUL_F8:
1467   case RISCVII::VLMUL::LMUL_F4:
1468   case RISCVII::VLMUL::LMUL_F2:
1469   case RISCVII::VLMUL::LMUL_1:
1470     return RISCV::VRRegClassID;
1471   case RISCVII::VLMUL::LMUL_2:
1472     return RISCV::VRM2RegClassID;
1473   case RISCVII::VLMUL::LMUL_4:
1474     return RISCV::VRM4RegClassID;
1475   case RISCVII::VLMUL::LMUL_8:
1476     return RISCV::VRM8RegClassID;
1477   }
1478 }
1479 
1480 unsigned RISCVTargetLowering::getSubregIndexByMVT(MVT VT, unsigned Index) {
1481   RISCVII::VLMUL LMUL = getLMUL(VT);
1482   if (LMUL == RISCVII::VLMUL::LMUL_F8 ||
1483       LMUL == RISCVII::VLMUL::LMUL_F4 ||
1484       LMUL == RISCVII::VLMUL::LMUL_F2 ||
1485       LMUL == RISCVII::VLMUL::LMUL_1) {
1486     static_assert(RISCV::sub_vrm1_7 == RISCV::sub_vrm1_0 + 7,
1487                   "Unexpected subreg numbering");
1488     return RISCV::sub_vrm1_0 + Index;
1489   }
1490   if (LMUL == RISCVII::VLMUL::LMUL_2) {
1491     static_assert(RISCV::sub_vrm2_3 == RISCV::sub_vrm2_0 + 3,
1492                   "Unexpected subreg numbering");
1493     return RISCV::sub_vrm2_0 + Index;
1494   }
1495   if (LMUL == RISCVII::VLMUL::LMUL_4) {
1496     static_assert(RISCV::sub_vrm4_1 == RISCV::sub_vrm4_0 + 1,
1497                   "Unexpected subreg numbering");
1498     return RISCV::sub_vrm4_0 + Index;
1499   }
1500   llvm_unreachable("Invalid vector type.");
1501 }
1502 
1503 unsigned RISCVTargetLowering::getRegClassIDForVecVT(MVT VT) {
1504   if (VT.getVectorElementType() == MVT::i1)
1505     return RISCV::VRRegClassID;
1506   return getRegClassIDForLMUL(getLMUL(VT));
1507 }
1508 
1509 // Attempt to decompose a subvector insert/extract between VecVT and
1510 // SubVecVT via subregister indices. Returns the subregister index that
1511 // can perform the subvector insert/extract with the given element index, as
1512 // well as the index corresponding to any leftover subvectors that must be
1513 // further inserted/extracted within the register class for SubVecVT.
1514 std::pair<unsigned, unsigned>
1515 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs(
1516     MVT VecVT, MVT SubVecVT, unsigned InsertExtractIdx,
1517     const RISCVRegisterInfo *TRI) {
1518   static_assert((RISCV::VRM8RegClassID > RISCV::VRM4RegClassID &&
1519                  RISCV::VRM4RegClassID > RISCV::VRM2RegClassID &&
1520                  RISCV::VRM2RegClassID > RISCV::VRRegClassID),
1521                 "Register classes not ordered");
1522   unsigned VecRegClassID = getRegClassIDForVecVT(VecVT);
1523   unsigned SubRegClassID = getRegClassIDForVecVT(SubVecVT);
1524   // Try to compose a subregister index that takes us from the incoming
1525   // LMUL>1 register class down to the outgoing one. At each step we half
1526   // the LMUL:
1527   //   nxv16i32@12 -> nxv2i32: sub_vrm4_1_then_sub_vrm2_1_then_sub_vrm1_0
1528   // Note that this is not guaranteed to find a subregister index, such as
1529   // when we are extracting from one VR type to another.
1530   unsigned SubRegIdx = RISCV::NoSubRegister;
1531   for (const unsigned RCID :
1532        {RISCV::VRM4RegClassID, RISCV::VRM2RegClassID, RISCV::VRRegClassID})
1533     if (VecRegClassID > RCID && SubRegClassID <= RCID) {
1534       VecVT = VecVT.getHalfNumVectorElementsVT();
1535       bool IsHi =
1536           InsertExtractIdx >= VecVT.getVectorElementCount().getKnownMinValue();
1537       SubRegIdx = TRI->composeSubRegIndices(SubRegIdx,
1538                                             getSubregIndexByMVT(VecVT, IsHi));
1539       if (IsHi)
1540         InsertExtractIdx -= VecVT.getVectorElementCount().getKnownMinValue();
1541     }
1542   return {SubRegIdx, InsertExtractIdx};
1543 }
1544 
1545 // Permit combining of mask vectors as BUILD_VECTOR never expands to scalar
1546 // stores for those types.
1547 bool RISCVTargetLowering::mergeStoresAfterLegalization(EVT VT) const {
1548   return !Subtarget.useRVVForFixedLengthVectors() ||
1549          (VT.isFixedLengthVector() && VT.getVectorElementType() == MVT::i1);
1550 }
1551 
1552 bool RISCVTargetLowering::isLegalElementTypeForRVV(Type *ScalarTy) const {
1553   if (ScalarTy->isPointerTy())
1554     return true;
1555 
1556   if (ScalarTy->isIntegerTy(8) || ScalarTy->isIntegerTy(16) ||
1557       ScalarTy->isIntegerTy(32))
1558     return true;
1559 
1560   if (ScalarTy->isIntegerTy(64))
1561     return Subtarget.hasVInstructionsI64();
1562 
1563   if (ScalarTy->isHalfTy())
1564     return Subtarget.hasVInstructionsF16();
1565   if (ScalarTy->isFloatTy())
1566     return Subtarget.hasVInstructionsF32();
1567   if (ScalarTy->isDoubleTy())
1568     return Subtarget.hasVInstructionsF64();
1569 
1570   return false;
1571 }
1572 
1573 static SDValue getVLOperand(SDValue Op) {
1574   assert((Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1575           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN) &&
1576          "Unexpected opcode");
1577   bool HasChain = Op.getOpcode() == ISD::INTRINSIC_W_CHAIN;
1578   unsigned IntNo = Op.getConstantOperandVal(HasChain ? 1 : 0);
1579   const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II =
1580       RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo);
1581   if (!II)
1582     return SDValue();
1583   return Op.getOperand(II->VLOperand + 1 + HasChain);
1584 }
1585 
1586 static bool useRVVForFixedLengthVectorVT(MVT VT,
1587                                          const RISCVSubtarget &Subtarget) {
1588   assert(VT.isFixedLengthVector() && "Expected a fixed length vector type!");
1589   if (!Subtarget.useRVVForFixedLengthVectors())
1590     return false;
1591 
1592   // We only support a set of vector types with a consistent maximum fixed size
1593   // across all supported vector element types to avoid legalization issues.
1594   // Therefore -- since the largest is v1024i8/v512i16/etc -- the largest
1595   // fixed-length vector type we support is 1024 bytes.
1596   if (VT.getFixedSizeInBits() > 1024 * 8)
1597     return false;
1598 
1599   unsigned MinVLen = Subtarget.getRealMinVLen();
1600 
1601   MVT EltVT = VT.getVectorElementType();
1602 
1603   // Don't use RVV for vectors we cannot scalarize if required.
1604   switch (EltVT.SimpleTy) {
1605   // i1 is supported but has different rules.
1606   default:
1607     return false;
1608   case MVT::i1:
1609     // Masks can only use a single register.
1610     if (VT.getVectorNumElements() > MinVLen)
1611       return false;
1612     MinVLen /= 8;
1613     break;
1614   case MVT::i8:
1615   case MVT::i16:
1616   case MVT::i32:
1617     break;
1618   case MVT::i64:
1619     if (!Subtarget.hasVInstructionsI64())
1620       return false;
1621     break;
1622   case MVT::f16:
1623     if (!Subtarget.hasVInstructionsF16())
1624       return false;
1625     break;
1626   case MVT::f32:
1627     if (!Subtarget.hasVInstructionsF32())
1628       return false;
1629     break;
1630   case MVT::f64:
1631     if (!Subtarget.hasVInstructionsF64())
1632       return false;
1633     break;
1634   }
1635 
1636   // Reject elements larger than ELEN.
1637   if (EltVT.getSizeInBits() > Subtarget.getELEN())
1638     return false;
1639 
1640   unsigned LMul = divideCeil(VT.getSizeInBits(), MinVLen);
1641   // Don't use RVV for types that don't fit.
1642   if (LMul > Subtarget.getMaxLMULForFixedLengthVectors())
1643     return false;
1644 
1645   // TODO: Perhaps an artificial restriction, but worth having whilst getting
1646   // the base fixed length RVV support in place.
1647   if (!VT.isPow2VectorType())
1648     return false;
1649 
1650   return true;
1651 }
1652 
1653 bool RISCVTargetLowering::useRVVForFixedLengthVectorVT(MVT VT) const {
1654   return ::useRVVForFixedLengthVectorVT(VT, Subtarget);
1655 }
1656 
1657 // Return the largest legal scalable vector type that matches VT's element type.
1658 static MVT getContainerForFixedLengthVector(const TargetLowering &TLI, MVT VT,
1659                                             const RISCVSubtarget &Subtarget) {
1660   // This may be called before legal types are setup.
1661   assert(((VT.isFixedLengthVector() && TLI.isTypeLegal(VT)) ||
1662           useRVVForFixedLengthVectorVT(VT, Subtarget)) &&
1663          "Expected legal fixed length vector!");
1664 
1665   unsigned MinVLen = Subtarget.getRealMinVLen();
1666   unsigned MaxELen = Subtarget.getELEN();
1667 
1668   MVT EltVT = VT.getVectorElementType();
1669   switch (EltVT.SimpleTy) {
1670   default:
1671     llvm_unreachable("unexpected element type for RVV container");
1672   case MVT::i1:
1673   case MVT::i8:
1674   case MVT::i16:
1675   case MVT::i32:
1676   case MVT::i64:
1677   case MVT::f16:
1678   case MVT::f32:
1679   case MVT::f64: {
1680     // We prefer to use LMUL=1 for VLEN sized types. Use fractional lmuls for
1681     // narrower types. The smallest fractional LMUL we support is 8/ELEN. Within
1682     // each fractional LMUL we support SEW between 8 and LMUL*ELEN.
1683     unsigned NumElts =
1684         (VT.getVectorNumElements() * RISCV::RVVBitsPerBlock) / MinVLen;
1685     NumElts = std::max(NumElts, RISCV::RVVBitsPerBlock / MaxELen);
1686     assert(isPowerOf2_32(NumElts) && "Expected power of 2 NumElts");
1687     return MVT::getScalableVectorVT(EltVT, NumElts);
1688   }
1689   }
1690 }
1691 
1692 static MVT getContainerForFixedLengthVector(SelectionDAG &DAG, MVT VT,
1693                                             const RISCVSubtarget &Subtarget) {
1694   return getContainerForFixedLengthVector(DAG.getTargetLoweringInfo(), VT,
1695                                           Subtarget);
1696 }
1697 
1698 MVT RISCVTargetLowering::getContainerForFixedLengthVector(MVT VT) const {
1699   return ::getContainerForFixedLengthVector(*this, VT, getSubtarget());
1700 }
1701 
1702 // Grow V to consume an entire RVV register.
1703 static SDValue convertToScalableVector(EVT VT, SDValue V, SelectionDAG &DAG,
1704                                        const RISCVSubtarget &Subtarget) {
1705   assert(VT.isScalableVector() &&
1706          "Expected to convert into a scalable vector!");
1707   assert(V.getValueType().isFixedLengthVector() &&
1708          "Expected a fixed length vector operand!");
1709   SDLoc DL(V);
1710   SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT());
1711   return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, DAG.getUNDEF(VT), V, Zero);
1712 }
1713 
1714 // Shrink V so it's just big enough to maintain a VT's worth of data.
1715 static SDValue convertFromScalableVector(EVT VT, SDValue V, SelectionDAG &DAG,
1716                                          const RISCVSubtarget &Subtarget) {
1717   assert(VT.isFixedLengthVector() &&
1718          "Expected to convert into a fixed length vector!");
1719   assert(V.getValueType().isScalableVector() &&
1720          "Expected a scalable vector operand!");
1721   SDLoc DL(V);
1722   SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT());
1723   return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V, Zero);
1724 }
1725 
1726 /// Return the type of the mask type suitable for masking the provided
1727 /// vector type.  This is simply an i1 element type vector of the same
1728 /// (possibly scalable) length.
1729 static MVT getMaskTypeFor(MVT VecVT) {
1730   assert(VecVT.isVector());
1731   ElementCount EC = VecVT.getVectorElementCount();
1732   return MVT::getVectorVT(MVT::i1, EC);
1733 }
1734 
1735 /// Creates an all ones mask suitable for masking a vector of type VecTy with
1736 /// vector length VL.  .
1737 static SDValue getAllOnesMask(MVT VecVT, SDValue VL, SDLoc DL,
1738                               SelectionDAG &DAG) {
1739   MVT MaskVT = getMaskTypeFor(VecVT);
1740   return DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
1741 }
1742 
1743 // Gets the two common "VL" operands: an all-ones mask and the vector length.
1744 // VecVT is a vector type, either fixed-length or scalable, and ContainerVT is
1745 // the vector type that it is contained in.
1746 static std::pair<SDValue, SDValue>
1747 getDefaultVLOps(MVT VecVT, MVT ContainerVT, SDLoc DL, SelectionDAG &DAG,
1748                 const RISCVSubtarget &Subtarget) {
1749   assert(ContainerVT.isScalableVector() && "Expecting scalable container type");
1750   MVT XLenVT = Subtarget.getXLenVT();
1751   SDValue VL = VecVT.isFixedLengthVector()
1752                    ? DAG.getConstant(VecVT.getVectorNumElements(), DL, XLenVT)
1753                    : DAG.getRegister(RISCV::X0, XLenVT);
1754   SDValue Mask = getAllOnesMask(ContainerVT, VL, DL, DAG);
1755   return {Mask, VL};
1756 }
1757 
1758 // As above but assuming the given type is a scalable vector type.
1759 static std::pair<SDValue, SDValue>
1760 getDefaultScalableVLOps(MVT VecVT, SDLoc DL, SelectionDAG &DAG,
1761                         const RISCVSubtarget &Subtarget) {
1762   assert(VecVT.isScalableVector() && "Expecting a scalable vector");
1763   return getDefaultVLOps(VecVT, VecVT, DL, DAG, Subtarget);
1764 }
1765 
1766 // The state of RVV BUILD_VECTOR and VECTOR_SHUFFLE lowering is that very few
1767 // of either is (currently) supported. This can get us into an infinite loop
1768 // where we try to lower a BUILD_VECTOR as a VECTOR_SHUFFLE as a BUILD_VECTOR
1769 // as a ..., etc.
1770 // Until either (or both) of these can reliably lower any node, reporting that
1771 // we don't want to expand BUILD_VECTORs via VECTOR_SHUFFLEs at least breaks
1772 // the infinite loop. Note that this lowers BUILD_VECTOR through the stack,
1773 // which is not desirable.
1774 bool RISCVTargetLowering::shouldExpandBuildVectorWithShuffles(
1775     EVT VT, unsigned DefinedValues) const {
1776   return false;
1777 }
1778 
1779 static SDValue lowerFP_TO_INT_SAT(SDValue Op, SelectionDAG &DAG,
1780                                   const RISCVSubtarget &Subtarget) {
1781   // RISCV FP-to-int conversions saturate to the destination register size, but
1782   // don't produce 0 for nan. We can use a conversion instruction and fix the
1783   // nan case with a compare and a select.
1784   SDValue Src = Op.getOperand(0);
1785 
1786   EVT DstVT = Op.getValueType();
1787   EVT SatVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1788 
1789   bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT_SAT;
1790   unsigned Opc;
1791   if (SatVT == DstVT)
1792     Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU;
1793   else if (DstVT == MVT::i64 && SatVT == MVT::i32)
1794     Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64;
1795   else
1796     return SDValue();
1797   // FIXME: Support other SatVTs by clamping before or after the conversion.
1798 
1799   SDLoc DL(Op);
1800   SDValue FpToInt = DAG.getNode(
1801       Opc, DL, DstVT, Src,
1802       DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, Subtarget.getXLenVT()));
1803 
1804   SDValue ZeroInt = DAG.getConstant(0, DL, DstVT);
1805   return DAG.getSelectCC(DL, Src, Src, ZeroInt, FpToInt, ISD::CondCode::SETUO);
1806 }
1807 
1808 // Expand vector FTRUNC, FCEIL, and FFLOOR by converting to the integer domain
1809 // and back. Taking care to avoid converting values that are nan or already
1810 // correct.
1811 // TODO: Floor and ceil could be shorter by changing rounding mode, but we don't
1812 // have FRM dependencies modeled yet.
1813 static SDValue lowerFTRUNC_FCEIL_FFLOOR(SDValue Op, SelectionDAG &DAG) {
1814   MVT VT = Op.getSimpleValueType();
1815   assert(VT.isVector() && "Unexpected type");
1816 
1817   SDLoc DL(Op);
1818 
1819   // Freeze the source since we are increasing the number of uses.
1820   SDValue Src = DAG.getFreeze(Op.getOperand(0));
1821 
1822   // Truncate to integer and convert back to FP.
1823   MVT IntVT = VT.changeVectorElementTypeToInteger();
1824   SDValue Truncated = DAG.getNode(ISD::FP_TO_SINT, DL, IntVT, Src);
1825   Truncated = DAG.getNode(ISD::SINT_TO_FP, DL, VT, Truncated);
1826 
1827   MVT SetccVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount());
1828 
1829   if (Op.getOpcode() == ISD::FCEIL) {
1830     // If the truncated value is the greater than or equal to the original
1831     // value, we've computed the ceil. Otherwise, we went the wrong way and
1832     // need to increase by 1.
1833     // FIXME: This should use a masked operation. Handle here or in isel?
1834     SDValue Adjust = DAG.getNode(ISD::FADD, DL, VT, Truncated,
1835                                  DAG.getConstantFP(1.0, DL, VT));
1836     SDValue NeedAdjust = DAG.getSetCC(DL, SetccVT, Truncated, Src, ISD::SETOLT);
1837     Truncated = DAG.getSelect(DL, VT, NeedAdjust, Adjust, Truncated);
1838   } else if (Op.getOpcode() == ISD::FFLOOR) {
1839     // If the truncated value is the less than or equal to the original value,
1840     // we've computed the floor. Otherwise, we went the wrong way and need to
1841     // decrease by 1.
1842     // FIXME: This should use a masked operation. Handle here or in isel?
1843     SDValue Adjust = DAG.getNode(ISD::FSUB, DL, VT, Truncated,
1844                                  DAG.getConstantFP(1.0, DL, VT));
1845     SDValue NeedAdjust = DAG.getSetCC(DL, SetccVT, Truncated, Src, ISD::SETOGT);
1846     Truncated = DAG.getSelect(DL, VT, NeedAdjust, Adjust, Truncated);
1847   }
1848 
1849   // Restore the original sign so that -0.0 is preserved.
1850   Truncated = DAG.getNode(ISD::FCOPYSIGN, DL, VT, Truncated, Src);
1851 
1852   // Determine the largest integer that can be represented exactly. This and
1853   // values larger than it don't have any fractional bits so don't need to
1854   // be converted.
1855   const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT);
1856   unsigned Precision = APFloat::semanticsPrecision(FltSem);
1857   APFloat MaxVal = APFloat(FltSem);
1858   MaxVal.convertFromAPInt(APInt::getOneBitSet(Precision, Precision - 1),
1859                           /*IsSigned*/ false, APFloat::rmNearestTiesToEven);
1860   SDValue MaxValNode = DAG.getConstantFP(MaxVal, DL, VT);
1861 
1862   // If abs(Src) was larger than MaxVal or nan, keep it.
1863   SDValue Abs = DAG.getNode(ISD::FABS, DL, VT, Src);
1864   SDValue Setcc = DAG.getSetCC(DL, SetccVT, Abs, MaxValNode, ISD::SETOLT);
1865   return DAG.getSelect(DL, VT, Setcc, Truncated, Src);
1866 }
1867 
1868 // ISD::FROUND is defined to round to nearest with ties rounding away from 0.
1869 // This mode isn't supported in vector hardware on RISCV. But as long as we
1870 // aren't compiling with trapping math, we can emulate this with
1871 // floor(X + copysign(nextafter(0.5, 0.0), X)).
1872 // FIXME: Could be shorter by changing rounding mode, but we don't have FRM
1873 // dependencies modeled yet.
1874 // FIXME: Use masked operations to avoid final merge.
1875 static SDValue lowerFROUND(SDValue Op, SelectionDAG &DAG) {
1876   MVT VT = Op.getSimpleValueType();
1877   assert(VT.isVector() && "Unexpected type");
1878 
1879   SDLoc DL(Op);
1880 
1881   // Freeze the source since we are increasing the number of uses.
1882   SDValue Src = DAG.getFreeze(Op.getOperand(0));
1883 
1884   // We do the conversion on the absolute value and fix the sign at the end.
1885   SDValue Abs = DAG.getNode(ISD::FABS, DL, VT, Src);
1886 
1887   const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT);
1888   bool Ignored;
1889   APFloat Point5Pred = APFloat(0.5f);
1890   Point5Pred.convert(FltSem, APFloat::rmNearestTiesToEven, &Ignored);
1891   Point5Pred.next(/*nextDown*/ true);
1892 
1893   // Add the adjustment.
1894   SDValue Adjust = DAG.getNode(ISD::FADD, DL, VT, Abs,
1895                                DAG.getConstantFP(Point5Pred, DL, VT));
1896 
1897   // Truncate to integer and convert back to fp.
1898   MVT IntVT = VT.changeVectorElementTypeToInteger();
1899   SDValue Truncated = DAG.getNode(ISD::FP_TO_SINT, DL, IntVT, Adjust);
1900   Truncated = DAG.getNode(ISD::SINT_TO_FP, DL, VT, Truncated);
1901 
1902   // Restore the original sign.
1903   Truncated = DAG.getNode(ISD::FCOPYSIGN, DL, VT, Truncated, Src);
1904 
1905   // Determine the largest integer that can be represented exactly. This and
1906   // values larger than it don't have any fractional bits so don't need to
1907   // be converted.
1908   unsigned Precision = APFloat::semanticsPrecision(FltSem);
1909   APFloat MaxVal = APFloat(FltSem);
1910   MaxVal.convertFromAPInt(APInt::getOneBitSet(Precision, Precision - 1),
1911                           /*IsSigned*/ false, APFloat::rmNearestTiesToEven);
1912   SDValue MaxValNode = DAG.getConstantFP(MaxVal, DL, VT);
1913 
1914   // If abs(Src) was larger than MaxVal or nan, keep it.
1915   MVT SetccVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount());
1916   SDValue Setcc = DAG.getSetCC(DL, SetccVT, Abs, MaxValNode, ISD::SETOLT);
1917   return DAG.getSelect(DL, VT, Setcc, Truncated, Src);
1918 }
1919 
1920 struct VIDSequence {
1921   int64_t StepNumerator;
1922   unsigned StepDenominator;
1923   int64_t Addend;
1924 };
1925 
1926 // Try to match an arithmetic-sequence BUILD_VECTOR [X,X+S,X+2*S,...,X+(N-1)*S]
1927 // to the (non-zero) step S and start value X. This can be then lowered as the
1928 // RVV sequence (VID * S) + X, for example.
1929 // The step S is represented as an integer numerator divided by a positive
1930 // denominator. Note that the implementation currently only identifies
1931 // sequences in which either the numerator is +/- 1 or the denominator is 1. It
1932 // cannot detect 2/3, for example.
1933 // Note that this method will also match potentially unappealing index
1934 // sequences, like <i32 0, i32 50939494>, however it is left to the caller to
1935 // determine whether this is worth generating code for.
1936 static Optional<VIDSequence> isSimpleVIDSequence(SDValue Op) {
1937   unsigned NumElts = Op.getNumOperands();
1938   assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unexpected BUILD_VECTOR");
1939   if (!Op.getValueType().isInteger())
1940     return None;
1941 
1942   Optional<unsigned> SeqStepDenom;
1943   Optional<int64_t> SeqStepNum, SeqAddend;
1944   Optional<std::pair<uint64_t, unsigned>> PrevElt;
1945   unsigned EltSizeInBits = Op.getValueType().getScalarSizeInBits();
1946   for (unsigned Idx = 0; Idx < NumElts; Idx++) {
1947     // Assume undef elements match the sequence; we just have to be careful
1948     // when interpolating across them.
1949     if (Op.getOperand(Idx).isUndef())
1950       continue;
1951     // The BUILD_VECTOR must be all constants.
1952     if (!isa<ConstantSDNode>(Op.getOperand(Idx)))
1953       return None;
1954 
1955     uint64_t Val = Op.getConstantOperandVal(Idx) &
1956                    maskTrailingOnes<uint64_t>(EltSizeInBits);
1957 
1958     if (PrevElt) {
1959       // Calculate the step since the last non-undef element, and ensure
1960       // it's consistent across the entire sequence.
1961       unsigned IdxDiff = Idx - PrevElt->second;
1962       int64_t ValDiff = SignExtend64(Val - PrevElt->first, EltSizeInBits);
1963 
1964       // A zero-value value difference means that we're somewhere in the middle
1965       // of a fractional step, e.g. <0,0,0*,0,1,1,1,1>. Wait until we notice a
1966       // step change before evaluating the sequence.
1967       if (ValDiff == 0)
1968         continue;
1969 
1970       int64_t Remainder = ValDiff % IdxDiff;
1971       // Normalize the step if it's greater than 1.
1972       if (Remainder != ValDiff) {
1973         // The difference must cleanly divide the element span.
1974         if (Remainder != 0)
1975           return None;
1976         ValDiff /= IdxDiff;
1977         IdxDiff = 1;
1978       }
1979 
1980       if (!SeqStepNum)
1981         SeqStepNum = ValDiff;
1982       else if (ValDiff != SeqStepNum)
1983         return None;
1984 
1985       if (!SeqStepDenom)
1986         SeqStepDenom = IdxDiff;
1987       else if (IdxDiff != *SeqStepDenom)
1988         return None;
1989     }
1990 
1991     // Record this non-undef element for later.
1992     if (!PrevElt || PrevElt->first != Val)
1993       PrevElt = std::make_pair(Val, Idx);
1994   }
1995 
1996   // We need to have logged a step for this to count as a legal index sequence.
1997   if (!SeqStepNum || !SeqStepDenom)
1998     return None;
1999 
2000   // Loop back through the sequence and validate elements we might have skipped
2001   // while waiting for a valid step. While doing this, log any sequence addend.
2002   for (unsigned Idx = 0; Idx < NumElts; Idx++) {
2003     if (Op.getOperand(Idx).isUndef())
2004       continue;
2005     uint64_t Val = Op.getConstantOperandVal(Idx) &
2006                    maskTrailingOnes<uint64_t>(EltSizeInBits);
2007     uint64_t ExpectedVal =
2008         (int64_t)(Idx * (uint64_t)*SeqStepNum) / *SeqStepDenom;
2009     int64_t Addend = SignExtend64(Val - ExpectedVal, EltSizeInBits);
2010     if (!SeqAddend)
2011       SeqAddend = Addend;
2012     else if (Addend != SeqAddend)
2013       return None;
2014   }
2015 
2016   assert(SeqAddend && "Must have an addend if we have a step");
2017 
2018   return VIDSequence{*SeqStepNum, *SeqStepDenom, *SeqAddend};
2019 }
2020 
2021 // Match a splatted value (SPLAT_VECTOR/BUILD_VECTOR) of an EXTRACT_VECTOR_ELT
2022 // and lower it as a VRGATHER_VX_VL from the source vector.
2023 static SDValue matchSplatAsGather(SDValue SplatVal, MVT VT, const SDLoc &DL,
2024                                   SelectionDAG &DAG,
2025                                   const RISCVSubtarget &Subtarget) {
2026   if (SplatVal.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
2027     return SDValue();
2028   SDValue Vec = SplatVal.getOperand(0);
2029   // Only perform this optimization on vectors of the same size for simplicity.
2030   // Don't perform this optimization for i1 vectors.
2031   // FIXME: Support i1 vectors, maybe by promoting to i8?
2032   if (Vec.getValueType() != VT || VT.getVectorElementType() == MVT::i1)
2033     return SDValue();
2034   SDValue Idx = SplatVal.getOperand(1);
2035   // The index must be a legal type.
2036   if (Idx.getValueType() != Subtarget.getXLenVT())
2037     return SDValue();
2038 
2039   MVT ContainerVT = VT;
2040   if (VT.isFixedLengthVector()) {
2041     ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
2042     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
2043   }
2044 
2045   SDValue Mask, VL;
2046   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
2047 
2048   SDValue Gather = DAG.getNode(RISCVISD::VRGATHER_VX_VL, DL, ContainerVT, Vec,
2049                                Idx, Mask, DAG.getUNDEF(ContainerVT), VL);
2050 
2051   if (!VT.isFixedLengthVector())
2052     return Gather;
2053 
2054   return convertFromScalableVector(VT, Gather, DAG, Subtarget);
2055 }
2056 
2057 static SDValue lowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG,
2058                                  const RISCVSubtarget &Subtarget) {
2059   MVT VT = Op.getSimpleValueType();
2060   assert(VT.isFixedLengthVector() && "Unexpected vector!");
2061 
2062   MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
2063 
2064   SDLoc DL(Op);
2065   SDValue Mask, VL;
2066   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
2067 
2068   MVT XLenVT = Subtarget.getXLenVT();
2069   unsigned NumElts = Op.getNumOperands();
2070 
2071   if (VT.getVectorElementType() == MVT::i1) {
2072     if (ISD::isBuildVectorAllZeros(Op.getNode())) {
2073       SDValue VMClr = DAG.getNode(RISCVISD::VMCLR_VL, DL, ContainerVT, VL);
2074       return convertFromScalableVector(VT, VMClr, DAG, Subtarget);
2075     }
2076 
2077     if (ISD::isBuildVectorAllOnes(Op.getNode())) {
2078       SDValue VMSet = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL);
2079       return convertFromScalableVector(VT, VMSet, DAG, Subtarget);
2080     }
2081 
2082     // Lower constant mask BUILD_VECTORs via an integer vector type, in
2083     // scalar integer chunks whose bit-width depends on the number of mask
2084     // bits and XLEN.
2085     // First, determine the most appropriate scalar integer type to use. This
2086     // is at most XLenVT, but may be shrunk to a smaller vector element type
2087     // according to the size of the final vector - use i8 chunks rather than
2088     // XLenVT if we're producing a v8i1. This results in more consistent
2089     // codegen across RV32 and RV64.
2090     unsigned NumViaIntegerBits =
2091         std::min(std::max(NumElts, 8u), Subtarget.getXLen());
2092     NumViaIntegerBits = std::min(NumViaIntegerBits, Subtarget.getELEN());
2093     if (ISD::isBuildVectorOfConstantSDNodes(Op.getNode())) {
2094       // If we have to use more than one INSERT_VECTOR_ELT then this
2095       // optimization is likely to increase code size; avoid peforming it in
2096       // such a case. We can use a load from a constant pool in this case.
2097       if (DAG.shouldOptForSize() && NumElts > NumViaIntegerBits)
2098         return SDValue();
2099       // Now we can create our integer vector type. Note that it may be larger
2100       // than the resulting mask type: v4i1 would use v1i8 as its integer type.
2101       MVT IntegerViaVecVT =
2102           MVT::getVectorVT(MVT::getIntegerVT(NumViaIntegerBits),
2103                            divideCeil(NumElts, NumViaIntegerBits));
2104 
2105       uint64_t Bits = 0;
2106       unsigned BitPos = 0, IntegerEltIdx = 0;
2107       SDValue Vec = DAG.getUNDEF(IntegerViaVecVT);
2108 
2109       for (unsigned I = 0; I < NumElts; I++, BitPos++) {
2110         // Once we accumulate enough bits to fill our scalar type, insert into
2111         // our vector and clear our accumulated data.
2112         if (I != 0 && I % NumViaIntegerBits == 0) {
2113           if (NumViaIntegerBits <= 32)
2114             Bits = SignExtend64<32>(Bits);
2115           SDValue Elt = DAG.getConstant(Bits, DL, XLenVT);
2116           Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec,
2117                             Elt, DAG.getConstant(IntegerEltIdx, DL, XLenVT));
2118           Bits = 0;
2119           BitPos = 0;
2120           IntegerEltIdx++;
2121         }
2122         SDValue V = Op.getOperand(I);
2123         bool BitValue = !V.isUndef() && cast<ConstantSDNode>(V)->getZExtValue();
2124         Bits |= ((uint64_t)BitValue << BitPos);
2125       }
2126 
2127       // Insert the (remaining) scalar value into position in our integer
2128       // vector type.
2129       if (NumViaIntegerBits <= 32)
2130         Bits = SignExtend64<32>(Bits);
2131       SDValue Elt = DAG.getConstant(Bits, DL, XLenVT);
2132       Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec, Elt,
2133                         DAG.getConstant(IntegerEltIdx, DL, XLenVT));
2134 
2135       if (NumElts < NumViaIntegerBits) {
2136         // If we're producing a smaller vector than our minimum legal integer
2137         // type, bitcast to the equivalent (known-legal) mask type, and extract
2138         // our final mask.
2139         assert(IntegerViaVecVT == MVT::v1i8 && "Unexpected mask vector type");
2140         Vec = DAG.getBitcast(MVT::v8i1, Vec);
2141         Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Vec,
2142                           DAG.getConstant(0, DL, XLenVT));
2143       } else {
2144         // Else we must have produced an integer type with the same size as the
2145         // mask type; bitcast for the final result.
2146         assert(VT.getSizeInBits() == IntegerViaVecVT.getSizeInBits());
2147         Vec = DAG.getBitcast(VT, Vec);
2148       }
2149 
2150       return Vec;
2151     }
2152 
2153     // A BUILD_VECTOR can be lowered as a SETCC. For each fixed-length mask
2154     // vector type, we have a legal equivalently-sized i8 type, so we can use
2155     // that.
2156     MVT WideVecVT = VT.changeVectorElementType(MVT::i8);
2157     SDValue VecZero = DAG.getConstant(0, DL, WideVecVT);
2158 
2159     SDValue WideVec;
2160     if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) {
2161       // For a splat, perform a scalar truncate before creating the wider
2162       // vector.
2163       assert(Splat.getValueType() == XLenVT &&
2164              "Unexpected type for i1 splat value");
2165       Splat = DAG.getNode(ISD::AND, DL, XLenVT, Splat,
2166                           DAG.getConstant(1, DL, XLenVT));
2167       WideVec = DAG.getSplatBuildVector(WideVecVT, DL, Splat);
2168     } else {
2169       SmallVector<SDValue, 8> Ops(Op->op_values());
2170       WideVec = DAG.getBuildVector(WideVecVT, DL, Ops);
2171       SDValue VecOne = DAG.getConstant(1, DL, WideVecVT);
2172       WideVec = DAG.getNode(ISD::AND, DL, WideVecVT, WideVec, VecOne);
2173     }
2174 
2175     return DAG.getSetCC(DL, VT, WideVec, VecZero, ISD::SETNE);
2176   }
2177 
2178   if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) {
2179     if (auto Gather = matchSplatAsGather(Splat, VT, DL, DAG, Subtarget))
2180       return Gather;
2181     unsigned Opc = VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL
2182                                         : RISCVISD::VMV_V_X_VL;
2183     Splat =
2184         DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), Splat, VL);
2185     return convertFromScalableVector(VT, Splat, DAG, Subtarget);
2186   }
2187 
2188   // Try and match index sequences, which we can lower to the vid instruction
2189   // with optional modifications. An all-undef vector is matched by
2190   // getSplatValue, above.
2191   if (auto SimpleVID = isSimpleVIDSequence(Op)) {
2192     int64_t StepNumerator = SimpleVID->StepNumerator;
2193     unsigned StepDenominator = SimpleVID->StepDenominator;
2194     int64_t Addend = SimpleVID->Addend;
2195 
2196     assert(StepNumerator != 0 && "Invalid step");
2197     bool Negate = false;
2198     int64_t SplatStepVal = StepNumerator;
2199     unsigned StepOpcode = ISD::MUL;
2200     if (StepNumerator != 1) {
2201       if (isPowerOf2_64(std::abs(StepNumerator))) {
2202         Negate = StepNumerator < 0;
2203         StepOpcode = ISD::SHL;
2204         SplatStepVal = Log2_64(std::abs(StepNumerator));
2205       }
2206     }
2207 
2208     // Only emit VIDs with suitably-small steps/addends. We use imm5 is a
2209     // threshold since it's the immediate value many RVV instructions accept.
2210     // There is no vmul.vi instruction so ensure multiply constant can fit in
2211     // a single addi instruction.
2212     if (((StepOpcode == ISD::MUL && isInt<12>(SplatStepVal)) ||
2213          (StepOpcode == ISD::SHL && isUInt<5>(SplatStepVal))) &&
2214         isPowerOf2_32(StepDenominator) &&
2215         (SplatStepVal >= 0 || StepDenominator == 1) && isInt<5>(Addend)) {
2216       SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, ContainerVT, Mask, VL);
2217       // Convert right out of the scalable type so we can use standard ISD
2218       // nodes for the rest of the computation. If we used scalable types with
2219       // these, we'd lose the fixed-length vector info and generate worse
2220       // vsetvli code.
2221       VID = convertFromScalableVector(VT, VID, DAG, Subtarget);
2222       if ((StepOpcode == ISD::MUL && SplatStepVal != 1) ||
2223           (StepOpcode == ISD::SHL && SplatStepVal != 0)) {
2224         SDValue SplatStep = DAG.getSplatBuildVector(
2225             VT, DL, DAG.getConstant(SplatStepVal, DL, XLenVT));
2226         VID = DAG.getNode(StepOpcode, DL, VT, VID, SplatStep);
2227       }
2228       if (StepDenominator != 1) {
2229         SDValue SplatStep = DAG.getSplatBuildVector(
2230             VT, DL, DAG.getConstant(Log2_64(StepDenominator), DL, XLenVT));
2231         VID = DAG.getNode(ISD::SRL, DL, VT, VID, SplatStep);
2232       }
2233       if (Addend != 0 || Negate) {
2234         SDValue SplatAddend = DAG.getSplatBuildVector(
2235             VT, DL, DAG.getConstant(Addend, DL, XLenVT));
2236         VID = DAG.getNode(Negate ? ISD::SUB : ISD::ADD, DL, VT, SplatAddend, VID);
2237       }
2238       return VID;
2239     }
2240   }
2241 
2242   // Attempt to detect "hidden" splats, which only reveal themselves as splats
2243   // when re-interpreted as a vector with a larger element type. For example,
2244   //   v4i16 = build_vector i16 0, i16 1, i16 0, i16 1
2245   // could be instead splat as
2246   //   v2i32 = build_vector i32 0x00010000, i32 0x00010000
2247   // TODO: This optimization could also work on non-constant splats, but it
2248   // would require bit-manipulation instructions to construct the splat value.
2249   SmallVector<SDValue> Sequence;
2250   unsigned EltBitSize = VT.getScalarSizeInBits();
2251   const auto *BV = cast<BuildVectorSDNode>(Op);
2252   if (VT.isInteger() && EltBitSize < 64 &&
2253       ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) &&
2254       BV->getRepeatedSequence(Sequence) &&
2255       (Sequence.size() * EltBitSize) <= 64) {
2256     unsigned SeqLen = Sequence.size();
2257     MVT ViaIntVT = MVT::getIntegerVT(EltBitSize * SeqLen);
2258     MVT ViaVecVT = MVT::getVectorVT(ViaIntVT, NumElts / SeqLen);
2259     assert((ViaIntVT == MVT::i16 || ViaIntVT == MVT::i32 ||
2260             ViaIntVT == MVT::i64) &&
2261            "Unexpected sequence type");
2262 
2263     unsigned EltIdx = 0;
2264     uint64_t EltMask = maskTrailingOnes<uint64_t>(EltBitSize);
2265     uint64_t SplatValue = 0;
2266     // Construct the amalgamated value which can be splatted as this larger
2267     // vector type.
2268     for (const auto &SeqV : Sequence) {
2269       if (!SeqV.isUndef())
2270         SplatValue |= ((cast<ConstantSDNode>(SeqV)->getZExtValue() & EltMask)
2271                        << (EltIdx * EltBitSize));
2272       EltIdx++;
2273     }
2274 
2275     // On RV64, sign-extend from 32 to 64 bits where possible in order to
2276     // achieve better constant materializion.
2277     if (Subtarget.is64Bit() && ViaIntVT == MVT::i32)
2278       SplatValue = SignExtend64<32>(SplatValue);
2279 
2280     // Since we can't introduce illegal i64 types at this stage, we can only
2281     // perform an i64 splat on RV32 if it is its own sign-extended value. That
2282     // way we can use RVV instructions to splat.
2283     assert((ViaIntVT.bitsLE(XLenVT) ||
2284             (!Subtarget.is64Bit() && ViaIntVT == MVT::i64)) &&
2285            "Unexpected bitcast sequence");
2286     if (ViaIntVT.bitsLE(XLenVT) || isInt<32>(SplatValue)) {
2287       SDValue ViaVL =
2288           DAG.getConstant(ViaVecVT.getVectorNumElements(), DL, XLenVT);
2289       MVT ViaContainerVT =
2290           getContainerForFixedLengthVector(DAG, ViaVecVT, Subtarget);
2291       SDValue Splat =
2292           DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ViaContainerVT,
2293                       DAG.getUNDEF(ViaContainerVT),
2294                       DAG.getConstant(SplatValue, DL, XLenVT), ViaVL);
2295       Splat = convertFromScalableVector(ViaVecVT, Splat, DAG, Subtarget);
2296       return DAG.getBitcast(VT, Splat);
2297     }
2298   }
2299 
2300   // Try and optimize BUILD_VECTORs with "dominant values" - these are values
2301   // which constitute a large proportion of the elements. In such cases we can
2302   // splat a vector with the dominant element and make up the shortfall with
2303   // INSERT_VECTOR_ELTs.
2304   // Note that this includes vectors of 2 elements by association. The
2305   // upper-most element is the "dominant" one, allowing us to use a splat to
2306   // "insert" the upper element, and an insert of the lower element at position
2307   // 0, which improves codegen.
2308   SDValue DominantValue;
2309   unsigned MostCommonCount = 0;
2310   DenseMap<SDValue, unsigned> ValueCounts;
2311   unsigned NumUndefElts =
2312       count_if(Op->op_values(), [](const SDValue &V) { return V.isUndef(); });
2313 
2314   // Track the number of scalar loads we know we'd be inserting, estimated as
2315   // any non-zero floating-point constant. Other kinds of element are either
2316   // already in registers or are materialized on demand. The threshold at which
2317   // a vector load is more desirable than several scalar materializion and
2318   // vector-insertion instructions is not known.
2319   unsigned NumScalarLoads = 0;
2320 
2321   for (SDValue V : Op->op_values()) {
2322     if (V.isUndef())
2323       continue;
2324 
2325     ValueCounts.insert(std::make_pair(V, 0));
2326     unsigned &Count = ValueCounts[V];
2327 
2328     if (auto *CFP = dyn_cast<ConstantFPSDNode>(V))
2329       NumScalarLoads += !CFP->isExactlyValue(+0.0);
2330 
2331     // Is this value dominant? In case of a tie, prefer the highest element as
2332     // it's cheaper to insert near the beginning of a vector than it is at the
2333     // end.
2334     if (++Count >= MostCommonCount) {
2335       DominantValue = V;
2336       MostCommonCount = Count;
2337     }
2338   }
2339 
2340   assert(DominantValue && "Not expecting an all-undef BUILD_VECTOR");
2341   unsigned NumDefElts = NumElts - NumUndefElts;
2342   unsigned DominantValueCountThreshold = NumDefElts <= 2 ? 0 : NumDefElts - 2;
2343 
2344   // Don't perform this optimization when optimizing for size, since
2345   // materializing elements and inserting them tends to cause code bloat.
2346   if (!DAG.shouldOptForSize() && NumScalarLoads < NumElts &&
2347       ((MostCommonCount > DominantValueCountThreshold) ||
2348        (ValueCounts.size() <= Log2_32(NumDefElts)))) {
2349     // Start by splatting the most common element.
2350     SDValue Vec = DAG.getSplatBuildVector(VT, DL, DominantValue);
2351 
2352     DenseSet<SDValue> Processed{DominantValue};
2353     MVT SelMaskTy = VT.changeVectorElementType(MVT::i1);
2354     for (const auto &OpIdx : enumerate(Op->ops())) {
2355       const SDValue &V = OpIdx.value();
2356       if (V.isUndef() || !Processed.insert(V).second)
2357         continue;
2358       if (ValueCounts[V] == 1) {
2359         Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Vec, V,
2360                           DAG.getConstant(OpIdx.index(), DL, XLenVT));
2361       } else {
2362         // Blend in all instances of this value using a VSELECT, using a
2363         // mask where each bit signals whether that element is the one
2364         // we're after.
2365         SmallVector<SDValue> Ops;
2366         transform(Op->op_values(), std::back_inserter(Ops), [&](SDValue V1) {
2367           return DAG.getConstant(V == V1, DL, XLenVT);
2368         });
2369         Vec = DAG.getNode(ISD::VSELECT, DL, VT,
2370                           DAG.getBuildVector(SelMaskTy, DL, Ops),
2371                           DAG.getSplatBuildVector(VT, DL, V), Vec);
2372       }
2373     }
2374 
2375     return Vec;
2376   }
2377 
2378   return SDValue();
2379 }
2380 
2381 static SDValue splatPartsI64WithVL(const SDLoc &DL, MVT VT, SDValue Passthru,
2382                                    SDValue Lo, SDValue Hi, SDValue VL,
2383                                    SelectionDAG &DAG) {
2384   if (!Passthru)
2385     Passthru = DAG.getUNDEF(VT);
2386   if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) {
2387     int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue();
2388     int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue();
2389     // If Hi constant is all the same sign bit as Lo, lower this as a custom
2390     // node in order to try and match RVV vector/scalar instructions.
2391     if ((LoC >> 31) == HiC)
2392       return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Passthru, Lo, VL);
2393 
2394     // If vl is equal to XLEN_MAX and Hi constant is equal to Lo, we could use
2395     // vmv.v.x whose EEW = 32 to lower it.
2396     auto *Const = dyn_cast<ConstantSDNode>(VL);
2397     if (LoC == HiC && Const && Const->isAllOnesValue()) {
2398       MVT InterVT = MVT::getVectorVT(MVT::i32, VT.getVectorElementCount() * 2);
2399       // TODO: if vl <= min(VLMAX), we can also do this. But we could not
2400       // access the subtarget here now.
2401       auto InterVec = DAG.getNode(
2402           RISCVISD::VMV_V_X_VL, DL, InterVT, DAG.getUNDEF(InterVT), Lo,
2403                                   DAG.getRegister(RISCV::X0, MVT::i32));
2404       return DAG.getNode(ISD::BITCAST, DL, VT, InterVec);
2405     }
2406   }
2407 
2408   // Fall back to a stack store and stride x0 vector load.
2409   return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VT, Passthru, Lo,
2410                      Hi, VL);
2411 }
2412 
2413 // Called by type legalization to handle splat of i64 on RV32.
2414 // FIXME: We can optimize this when the type has sign or zero bits in one
2415 // of the halves.
2416 static SDValue splatSplitI64WithVL(const SDLoc &DL, MVT VT, SDValue Passthru,
2417                                    SDValue Scalar, SDValue VL,
2418                                    SelectionDAG &DAG) {
2419   assert(Scalar.getValueType() == MVT::i64 && "Unexpected VT!");
2420   SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar,
2421                            DAG.getConstant(0, DL, MVT::i32));
2422   SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar,
2423                            DAG.getConstant(1, DL, MVT::i32));
2424   return splatPartsI64WithVL(DL, VT, Passthru, Lo, Hi, VL, DAG);
2425 }
2426 
2427 // This function lowers a splat of a scalar operand Splat with the vector
2428 // length VL. It ensures the final sequence is type legal, which is useful when
2429 // lowering a splat after type legalization.
2430 static SDValue lowerScalarSplat(SDValue Passthru, SDValue Scalar, SDValue VL,
2431                                 MVT VT, SDLoc DL, SelectionDAG &DAG,
2432                                 const RISCVSubtarget &Subtarget) {
2433   bool HasPassthru = Passthru && !Passthru.isUndef();
2434   if (!HasPassthru && !Passthru)
2435     Passthru = DAG.getUNDEF(VT);
2436   if (VT.isFloatingPoint()) {
2437     // If VL is 1, we could use vfmv.s.f.
2438     if (isOneConstant(VL))
2439       return DAG.getNode(RISCVISD::VFMV_S_F_VL, DL, VT, Passthru, Scalar, VL);
2440     return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, VT, Passthru, Scalar, VL);
2441   }
2442 
2443   MVT XLenVT = Subtarget.getXLenVT();
2444 
2445   // Simplest case is that the operand needs to be promoted to XLenVT.
2446   if (Scalar.getValueType().bitsLE(XLenVT)) {
2447     // If the operand is a constant, sign extend to increase our chances
2448     // of being able to use a .vi instruction. ANY_EXTEND would become a
2449     // a zero extend and the simm5 check in isel would fail.
2450     // FIXME: Should we ignore the upper bits in isel instead?
2451     unsigned ExtOpc =
2452         isa<ConstantSDNode>(Scalar) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND;
2453     Scalar = DAG.getNode(ExtOpc, DL, XLenVT, Scalar);
2454     ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Scalar);
2455     // If VL is 1 and the scalar value won't benefit from immediate, we could
2456     // use vmv.s.x.
2457     if (isOneConstant(VL) &&
2458         (!Const || isNullConstant(Scalar) || !isInt<5>(Const->getSExtValue())))
2459       return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, VT, Passthru, Scalar, VL);
2460     return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Passthru, Scalar, VL);
2461   }
2462 
2463   assert(XLenVT == MVT::i32 && Scalar.getValueType() == MVT::i64 &&
2464          "Unexpected scalar for splat lowering!");
2465 
2466   if (isOneConstant(VL) && isNullConstant(Scalar))
2467     return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, VT, Passthru,
2468                        DAG.getConstant(0, DL, XLenVT), VL);
2469 
2470   // Otherwise use the more complicated splatting algorithm.
2471   return splatSplitI64WithVL(DL, VT, Passthru, Scalar, VL, DAG);
2472 }
2473 
2474 static bool isInterleaveShuffle(ArrayRef<int> Mask, MVT VT, bool &SwapSources,
2475                                 const RISCVSubtarget &Subtarget) {
2476   // We need to be able to widen elements to the next larger integer type.
2477   if (VT.getScalarSizeInBits() >= Subtarget.getELEN())
2478     return false;
2479 
2480   int Size = Mask.size();
2481   assert(Size == (int)VT.getVectorNumElements() && "Unexpected mask size");
2482 
2483   int Srcs[] = {-1, -1};
2484   for (int i = 0; i != Size; ++i) {
2485     // Ignore undef elements.
2486     if (Mask[i] < 0)
2487       continue;
2488 
2489     // Is this an even or odd element.
2490     int Pol = i % 2;
2491 
2492     // Ensure we consistently use the same source for this element polarity.
2493     int Src = Mask[i] / Size;
2494     if (Srcs[Pol] < 0)
2495       Srcs[Pol] = Src;
2496     if (Srcs[Pol] != Src)
2497       return false;
2498 
2499     // Make sure the element within the source is appropriate for this element
2500     // in the destination.
2501     int Elt = Mask[i] % Size;
2502     if (Elt != i / 2)
2503       return false;
2504   }
2505 
2506   // We need to find a source for each polarity and they can't be the same.
2507   if (Srcs[0] < 0 || Srcs[1] < 0 || Srcs[0] == Srcs[1])
2508     return false;
2509 
2510   // Swap the sources if the second source was in the even polarity.
2511   SwapSources = Srcs[0] > Srcs[1];
2512 
2513   return true;
2514 }
2515 
2516 /// Match shuffles that concatenate two vectors, rotate the concatenation,
2517 /// and then extract the original number of elements from the rotated result.
2518 /// This is equivalent to vector.splice or X86's PALIGNR instruction. The
2519 /// returned rotation amount is for a rotate right, where elements move from
2520 /// higher elements to lower elements. \p LoSrc indicates the first source
2521 /// vector of the rotate or -1 for undef. \p HiSrc indicates the second vector
2522 /// of the rotate or -1 for undef. At least one of \p LoSrc and \p HiSrc will be
2523 /// 0 or 1 if a rotation is found.
2524 ///
2525 /// NOTE: We talk about rotate to the right which matches how bit shift and
2526 /// rotate instructions are described where LSBs are on the right, but LLVM IR
2527 /// and the table below write vectors with the lowest elements on the left.
2528 static int isElementRotate(int &LoSrc, int &HiSrc, ArrayRef<int> Mask) {
2529   int Size = Mask.size();
2530 
2531   // We need to detect various ways of spelling a rotation:
2532   //   [11, 12, 13, 14, 15,  0,  1,  2]
2533   //   [-1, 12, 13, 14, -1, -1,  1, -1]
2534   //   [-1, -1, -1, -1, -1, -1,  1,  2]
2535   //   [ 3,  4,  5,  6,  7,  8,  9, 10]
2536   //   [-1,  4,  5,  6, -1, -1,  9, -1]
2537   //   [-1,  4,  5,  6, -1, -1, -1, -1]
2538   int Rotation = 0;
2539   LoSrc = -1;
2540   HiSrc = -1;
2541   for (int i = 0; i != Size; ++i) {
2542     int M = Mask[i];
2543     if (M < 0)
2544       continue;
2545 
2546     // Determine where a rotate vector would have started.
2547     int StartIdx = i - (M % Size);
2548     // The identity rotation isn't interesting, stop.
2549     if (StartIdx == 0)
2550       return -1;
2551 
2552     // If we found the tail of a vector the rotation must be the missing
2553     // front. If we found the head of a vector, it must be how much of the
2554     // head.
2555     int CandidateRotation = StartIdx < 0 ? -StartIdx : Size - StartIdx;
2556 
2557     if (Rotation == 0)
2558       Rotation = CandidateRotation;
2559     else if (Rotation != CandidateRotation)
2560       // The rotations don't match, so we can't match this mask.
2561       return -1;
2562 
2563     // Compute which value this mask is pointing at.
2564     int MaskSrc = M < Size ? 0 : 1;
2565 
2566     // Compute which of the two target values this index should be assigned to.
2567     // This reflects whether the high elements are remaining or the low elemnts
2568     // are remaining.
2569     int &TargetSrc = StartIdx < 0 ? HiSrc : LoSrc;
2570 
2571     // Either set up this value if we've not encountered it before, or check
2572     // that it remains consistent.
2573     if (TargetSrc < 0)
2574       TargetSrc = MaskSrc;
2575     else if (TargetSrc != MaskSrc)
2576       // This may be a rotation, but it pulls from the inputs in some
2577       // unsupported interleaving.
2578       return -1;
2579   }
2580 
2581   // Check that we successfully analyzed the mask, and normalize the results.
2582   assert(Rotation != 0 && "Failed to locate a viable rotation!");
2583   assert((LoSrc >= 0 || HiSrc >= 0) &&
2584          "Failed to find a rotated input vector!");
2585 
2586   return Rotation;
2587 }
2588 
2589 static SDValue lowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG,
2590                                    const RISCVSubtarget &Subtarget) {
2591   SDValue V1 = Op.getOperand(0);
2592   SDValue V2 = Op.getOperand(1);
2593   SDLoc DL(Op);
2594   MVT XLenVT = Subtarget.getXLenVT();
2595   MVT VT = Op.getSimpleValueType();
2596   unsigned NumElts = VT.getVectorNumElements();
2597   ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
2598 
2599   MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
2600 
2601   SDValue TrueMask, VL;
2602   std::tie(TrueMask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
2603 
2604   if (SVN->isSplat()) {
2605     const int Lane = SVN->getSplatIndex();
2606     if (Lane >= 0) {
2607       MVT SVT = VT.getVectorElementType();
2608 
2609       // Turn splatted vector load into a strided load with an X0 stride.
2610       SDValue V = V1;
2611       // Peek through CONCAT_VECTORS as VectorCombine can concat a vector
2612       // with undef.
2613       // FIXME: Peek through INSERT_SUBVECTOR, EXTRACT_SUBVECTOR, bitcasts?
2614       int Offset = Lane;
2615       if (V.getOpcode() == ISD::CONCAT_VECTORS) {
2616         int OpElements =
2617             V.getOperand(0).getSimpleValueType().getVectorNumElements();
2618         V = V.getOperand(Offset / OpElements);
2619         Offset %= OpElements;
2620       }
2621 
2622       // We need to ensure the load isn't atomic or volatile.
2623       if (ISD::isNormalLoad(V.getNode()) && cast<LoadSDNode>(V)->isSimple()) {
2624         auto *Ld = cast<LoadSDNode>(V);
2625         Offset *= SVT.getStoreSize();
2626         SDValue NewAddr = DAG.getMemBasePlusOffset(Ld->getBasePtr(),
2627                                                    TypeSize::Fixed(Offset), DL);
2628 
2629         // If this is SEW=64 on RV32, use a strided load with a stride of x0.
2630         if (SVT.isInteger() && SVT.bitsGT(XLenVT)) {
2631           SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
2632           SDValue IntID =
2633               DAG.getTargetConstant(Intrinsic::riscv_vlse, DL, XLenVT);
2634           SDValue Ops[] = {Ld->getChain(),
2635                            IntID,
2636                            DAG.getUNDEF(ContainerVT),
2637                            NewAddr,
2638                            DAG.getRegister(RISCV::X0, XLenVT),
2639                            VL};
2640           SDValue NewLoad = DAG.getMemIntrinsicNode(
2641               ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, SVT,
2642               DAG.getMachineFunction().getMachineMemOperand(
2643                   Ld->getMemOperand(), Offset, SVT.getStoreSize()));
2644           DAG.makeEquivalentMemoryOrdering(Ld, NewLoad);
2645           return convertFromScalableVector(VT, NewLoad, DAG, Subtarget);
2646         }
2647 
2648         // Otherwise use a scalar load and splat. This will give the best
2649         // opportunity to fold a splat into the operation. ISel can turn it into
2650         // the x0 strided load if we aren't able to fold away the select.
2651         if (SVT.isFloatingPoint())
2652           V = DAG.getLoad(SVT, DL, Ld->getChain(), NewAddr,
2653                           Ld->getPointerInfo().getWithOffset(Offset),
2654                           Ld->getOriginalAlign(),
2655                           Ld->getMemOperand()->getFlags());
2656         else
2657           V = DAG.getExtLoad(ISD::SEXTLOAD, DL, XLenVT, Ld->getChain(), NewAddr,
2658                              Ld->getPointerInfo().getWithOffset(Offset), SVT,
2659                              Ld->getOriginalAlign(),
2660                              Ld->getMemOperand()->getFlags());
2661         DAG.makeEquivalentMemoryOrdering(Ld, V);
2662 
2663         unsigned Opc =
2664             VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL : RISCVISD::VMV_V_X_VL;
2665         SDValue Splat =
2666             DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), V, VL);
2667         return convertFromScalableVector(VT, Splat, DAG, Subtarget);
2668       }
2669 
2670       V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget);
2671       assert(Lane < (int)NumElts && "Unexpected lane!");
2672       SDValue Gather = DAG.getNode(RISCVISD::VRGATHER_VX_VL, DL, ContainerVT,
2673                                    V1, DAG.getConstant(Lane, DL, XLenVT),
2674                                    TrueMask, DAG.getUNDEF(ContainerVT), VL);
2675       return convertFromScalableVector(VT, Gather, DAG, Subtarget);
2676     }
2677   }
2678 
2679   ArrayRef<int> Mask = SVN->getMask();
2680 
2681   // Lower rotations to a SLIDEDOWN and a SLIDEUP. One of the source vectors may
2682   // be undef which can be handled with a single SLIDEDOWN/UP.
2683   int LoSrc, HiSrc;
2684   int Rotation = isElementRotate(LoSrc, HiSrc, Mask);
2685   if (Rotation > 0) {
2686     SDValue LoV, HiV;
2687     if (LoSrc >= 0) {
2688       LoV = LoSrc == 0 ? V1 : V2;
2689       LoV = convertToScalableVector(ContainerVT, LoV, DAG, Subtarget);
2690     }
2691     if (HiSrc >= 0) {
2692       HiV = HiSrc == 0 ? V1 : V2;
2693       HiV = convertToScalableVector(ContainerVT, HiV, DAG, Subtarget);
2694     }
2695 
2696     // We found a rotation. We need to slide HiV down by Rotation. Then we need
2697     // to slide LoV up by (NumElts - Rotation).
2698     unsigned InvRotate = NumElts - Rotation;
2699 
2700     SDValue Res = DAG.getUNDEF(ContainerVT);
2701     if (HiV) {
2702       // If we are doing a SLIDEDOWN+SLIDEUP, reduce the VL for the SLIDEDOWN.
2703       // FIXME: If we are only doing a SLIDEDOWN, don't reduce the VL as it
2704       // causes multiple vsetvlis in some test cases such as lowering
2705       // reduce.mul
2706       SDValue DownVL = VL;
2707       if (LoV)
2708         DownVL = DAG.getConstant(InvRotate, DL, XLenVT);
2709       Res =
2710           DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, Res, HiV,
2711                       DAG.getConstant(Rotation, DL, XLenVT), TrueMask, DownVL);
2712     }
2713     if (LoV)
2714       Res = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Res, LoV,
2715                         DAG.getConstant(InvRotate, DL, XLenVT), TrueMask, VL);
2716 
2717     return convertFromScalableVector(VT, Res, DAG, Subtarget);
2718   }
2719 
2720   // Detect an interleave shuffle and lower to
2721   // (vmaccu.vx (vwaddu.vx lohalf(V1), lohalf(V2)), lohalf(V2), (2^eltbits - 1))
2722   bool SwapSources;
2723   if (isInterleaveShuffle(Mask, VT, SwapSources, Subtarget)) {
2724     // Swap sources if needed.
2725     if (SwapSources)
2726       std::swap(V1, V2);
2727 
2728     // Extract the lower half of the vectors.
2729     MVT HalfVT = VT.getHalfNumVectorElementsVT();
2730     V1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, V1,
2731                      DAG.getConstant(0, DL, XLenVT));
2732     V2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, V2,
2733                      DAG.getConstant(0, DL, XLenVT));
2734 
2735     // Double the element width and halve the number of elements in an int type.
2736     unsigned EltBits = VT.getScalarSizeInBits();
2737     MVT WideIntEltVT = MVT::getIntegerVT(EltBits * 2);
2738     MVT WideIntVT =
2739         MVT::getVectorVT(WideIntEltVT, VT.getVectorNumElements() / 2);
2740     // Convert this to a scalable vector. We need to base this on the
2741     // destination size to ensure there's always a type with a smaller LMUL.
2742     MVT WideIntContainerVT =
2743         getContainerForFixedLengthVector(DAG, WideIntVT, Subtarget);
2744 
2745     // Convert sources to scalable vectors with the same element count as the
2746     // larger type.
2747     MVT HalfContainerVT = MVT::getVectorVT(
2748         VT.getVectorElementType(), WideIntContainerVT.getVectorElementCount());
2749     V1 = convertToScalableVector(HalfContainerVT, V1, DAG, Subtarget);
2750     V2 = convertToScalableVector(HalfContainerVT, V2, DAG, Subtarget);
2751 
2752     // Cast sources to integer.
2753     MVT IntEltVT = MVT::getIntegerVT(EltBits);
2754     MVT IntHalfVT =
2755         MVT::getVectorVT(IntEltVT, HalfContainerVT.getVectorElementCount());
2756     V1 = DAG.getBitcast(IntHalfVT, V1);
2757     V2 = DAG.getBitcast(IntHalfVT, V2);
2758 
2759     // Freeze V2 since we use it twice and we need to be sure that the add and
2760     // multiply see the same value.
2761     V2 = DAG.getFreeze(V2);
2762 
2763     // Recreate TrueMask using the widened type's element count.
2764     TrueMask = getAllOnesMask(HalfContainerVT, VL, DL, DAG);
2765 
2766     // Widen V1 and V2 with 0s and add one copy of V2 to V1.
2767     SDValue Add = DAG.getNode(RISCVISD::VWADDU_VL, DL, WideIntContainerVT, V1,
2768                               V2, TrueMask, VL);
2769     // Create 2^eltbits - 1 copies of V2 by multiplying by the largest integer.
2770     SDValue Multiplier = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, IntHalfVT,
2771                                      DAG.getUNDEF(IntHalfVT),
2772                                      DAG.getAllOnesConstant(DL, XLenVT));
2773     SDValue WidenMul = DAG.getNode(RISCVISD::VWMULU_VL, DL, WideIntContainerVT,
2774                                    V2, Multiplier, TrueMask, VL);
2775     // Add the new copies to our previous addition giving us 2^eltbits copies of
2776     // V2. This is equivalent to shifting V2 left by eltbits. This should
2777     // combine with the vwmulu.vv above to form vwmaccu.vv.
2778     Add = DAG.getNode(RISCVISD::ADD_VL, DL, WideIntContainerVT, Add, WidenMul,
2779                       TrueMask, VL);
2780     // Cast back to ContainerVT. We need to re-create a new ContainerVT in case
2781     // WideIntContainerVT is a larger fractional LMUL than implied by the fixed
2782     // vector VT.
2783     ContainerVT =
2784         MVT::getVectorVT(VT.getVectorElementType(),
2785                          WideIntContainerVT.getVectorElementCount() * 2);
2786     Add = DAG.getBitcast(ContainerVT, Add);
2787     return convertFromScalableVector(VT, Add, DAG, Subtarget);
2788   }
2789 
2790   // Detect shuffles which can be re-expressed as vector selects; these are
2791   // shuffles in which each element in the destination is taken from an element
2792   // at the corresponding index in either source vectors.
2793   bool IsSelect = all_of(enumerate(Mask), [&](const auto &MaskIdx) {
2794     int MaskIndex = MaskIdx.value();
2795     return MaskIndex < 0 || MaskIdx.index() == (unsigned)MaskIndex % NumElts;
2796   });
2797 
2798   assert(!V1.isUndef() && "Unexpected shuffle canonicalization");
2799 
2800   SmallVector<SDValue> MaskVals;
2801   // As a backup, shuffles can be lowered via a vrgather instruction, possibly
2802   // merged with a second vrgather.
2803   SmallVector<SDValue> GatherIndicesLHS, GatherIndicesRHS;
2804 
2805   // By default we preserve the original operand order, and use a mask to
2806   // select LHS as true and RHS as false. However, since RVV vector selects may
2807   // feature splats but only on the LHS, we may choose to invert our mask and
2808   // instead select between RHS and LHS.
2809   bool SwapOps = DAG.isSplatValue(V2) && !DAG.isSplatValue(V1);
2810   bool InvertMask = IsSelect == SwapOps;
2811 
2812   // Keep a track of which non-undef indices are used by each LHS/RHS shuffle
2813   // half.
2814   DenseMap<int, unsigned> LHSIndexCounts, RHSIndexCounts;
2815 
2816   // Now construct the mask that will be used by the vselect or blended
2817   // vrgather operation. For vrgathers, construct the appropriate indices into
2818   // each vector.
2819   for (int MaskIndex : Mask) {
2820     bool SelectMaskVal = (MaskIndex < (int)NumElts) ^ InvertMask;
2821     MaskVals.push_back(DAG.getConstant(SelectMaskVal, DL, XLenVT));
2822     if (!IsSelect) {
2823       bool IsLHSOrUndefIndex = MaskIndex < (int)NumElts;
2824       GatherIndicesLHS.push_back(IsLHSOrUndefIndex && MaskIndex >= 0
2825                                      ? DAG.getConstant(MaskIndex, DL, XLenVT)
2826                                      : DAG.getUNDEF(XLenVT));
2827       GatherIndicesRHS.push_back(
2828           IsLHSOrUndefIndex ? DAG.getUNDEF(XLenVT)
2829                             : DAG.getConstant(MaskIndex - NumElts, DL, XLenVT));
2830       if (IsLHSOrUndefIndex && MaskIndex >= 0)
2831         ++LHSIndexCounts[MaskIndex];
2832       if (!IsLHSOrUndefIndex)
2833         ++RHSIndexCounts[MaskIndex - NumElts];
2834     }
2835   }
2836 
2837   if (SwapOps) {
2838     std::swap(V1, V2);
2839     std::swap(GatherIndicesLHS, GatherIndicesRHS);
2840   }
2841 
2842   assert(MaskVals.size() == NumElts && "Unexpected select-like shuffle");
2843   MVT MaskVT = MVT::getVectorVT(MVT::i1, NumElts);
2844   SDValue SelectMask = DAG.getBuildVector(MaskVT, DL, MaskVals);
2845 
2846   if (IsSelect)
2847     return DAG.getNode(ISD::VSELECT, DL, VT, SelectMask, V1, V2);
2848 
2849   if (VT.getScalarSizeInBits() == 8 && VT.getVectorNumElements() > 256) {
2850     // On such a large vector we're unable to use i8 as the index type.
2851     // FIXME: We could promote the index to i16 and use vrgatherei16, but that
2852     // may involve vector splitting if we're already at LMUL=8, or our
2853     // user-supplied maximum fixed-length LMUL.
2854     return SDValue();
2855   }
2856 
2857   unsigned GatherVXOpc = RISCVISD::VRGATHER_VX_VL;
2858   unsigned GatherVVOpc = RISCVISD::VRGATHER_VV_VL;
2859   MVT IndexVT = VT.changeTypeToInteger();
2860   // Since we can't introduce illegal index types at this stage, use i16 and
2861   // vrgatherei16 if the corresponding index type for plain vrgather is greater
2862   // than XLenVT.
2863   if (IndexVT.getScalarType().bitsGT(XLenVT)) {
2864     GatherVVOpc = RISCVISD::VRGATHEREI16_VV_VL;
2865     IndexVT = IndexVT.changeVectorElementType(MVT::i16);
2866   }
2867 
2868   MVT IndexContainerVT =
2869       ContainerVT.changeVectorElementType(IndexVT.getScalarType());
2870 
2871   SDValue Gather;
2872   // TODO: This doesn't trigger for i64 vectors on RV32, since there we
2873   // encounter a bitcasted BUILD_VECTOR with low/high i32 values.
2874   if (SDValue SplatValue = DAG.getSplatValue(V1, /*LegalTypes*/ true)) {
2875     Gather = lowerScalarSplat(SDValue(), SplatValue, VL, ContainerVT, DL, DAG,
2876                               Subtarget);
2877   } else {
2878     V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget);
2879     // If only one index is used, we can use a "splat" vrgather.
2880     // TODO: We can splat the most-common index and fix-up any stragglers, if
2881     // that's beneficial.
2882     if (LHSIndexCounts.size() == 1) {
2883       int SplatIndex = LHSIndexCounts.begin()->getFirst();
2884       Gather = DAG.getNode(GatherVXOpc, DL, ContainerVT, V1,
2885                            DAG.getConstant(SplatIndex, DL, XLenVT), TrueMask,
2886                            DAG.getUNDEF(ContainerVT), VL);
2887     } else {
2888       SDValue LHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesLHS);
2889       LHSIndices =
2890           convertToScalableVector(IndexContainerVT, LHSIndices, DAG, Subtarget);
2891 
2892       Gather = DAG.getNode(GatherVVOpc, DL, ContainerVT, V1, LHSIndices,
2893                            TrueMask, DAG.getUNDEF(ContainerVT), VL);
2894     }
2895   }
2896 
2897   // If a second vector operand is used by this shuffle, blend it in with an
2898   // additional vrgather.
2899   if (!V2.isUndef()) {
2900     V2 = convertToScalableVector(ContainerVT, V2, DAG, Subtarget);
2901 
2902     MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1);
2903     SelectMask =
2904         convertToScalableVector(MaskContainerVT, SelectMask, DAG, Subtarget);
2905 
2906     // If only one index is used, we can use a "splat" vrgather.
2907     // TODO: We can splat the most-common index and fix-up any stragglers, if
2908     // that's beneficial.
2909     if (RHSIndexCounts.size() == 1) {
2910       int SplatIndex = RHSIndexCounts.begin()->getFirst();
2911       Gather = DAG.getNode(GatherVXOpc, DL, ContainerVT, V2,
2912                            DAG.getConstant(SplatIndex, DL, XLenVT), SelectMask,
2913                            Gather, VL);
2914     } else {
2915       SDValue RHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesRHS);
2916       RHSIndices =
2917           convertToScalableVector(IndexContainerVT, RHSIndices, DAG, Subtarget);
2918       Gather = DAG.getNode(GatherVVOpc, DL, ContainerVT, V2, RHSIndices,
2919                            SelectMask, Gather, VL);
2920     }
2921   }
2922 
2923   return convertFromScalableVector(VT, Gather, DAG, Subtarget);
2924 }
2925 
2926 bool RISCVTargetLowering::isShuffleMaskLegal(ArrayRef<int> M, EVT VT) const {
2927   // Support splats for any type. These should type legalize well.
2928   if (ShuffleVectorSDNode::isSplatMask(M.data(), VT))
2929     return true;
2930 
2931   // Only support legal VTs for other shuffles for now.
2932   if (!isTypeLegal(VT))
2933     return false;
2934 
2935   MVT SVT = VT.getSimpleVT();
2936 
2937   bool SwapSources;
2938   int LoSrc, HiSrc;
2939   return (isElementRotate(LoSrc, HiSrc, M) > 0) ||
2940          isInterleaveShuffle(M, SVT, SwapSources, Subtarget);
2941 }
2942 
2943 // Lower CTLZ_ZERO_UNDEF or CTTZ_ZERO_UNDEF by converting to FP and extracting
2944 // the exponent.
2945 static SDValue lowerCTLZ_CTTZ_ZERO_UNDEF(SDValue Op, SelectionDAG &DAG) {
2946   MVT VT = Op.getSimpleValueType();
2947   unsigned EltSize = VT.getScalarSizeInBits();
2948   SDValue Src = Op.getOperand(0);
2949   SDLoc DL(Op);
2950 
2951   // We need a FP type that can represent the value.
2952   // TODO: Use f16 for i8 when possible?
2953   MVT FloatEltVT = EltSize == 32 ? MVT::f64 : MVT::f32;
2954   MVT FloatVT = MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount());
2955 
2956   // Legal types should have been checked in the RISCVTargetLowering
2957   // constructor.
2958   // TODO: Splitting may make sense in some cases.
2959   assert(DAG.getTargetLoweringInfo().isTypeLegal(FloatVT) &&
2960          "Expected legal float type!");
2961 
2962   // For CTTZ_ZERO_UNDEF, we need to extract the lowest set bit using X & -X.
2963   // The trailing zero count is equal to log2 of this single bit value.
2964   if (Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF) {
2965     SDValue Neg =
2966         DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Src);
2967     Src = DAG.getNode(ISD::AND, DL, VT, Src, Neg);
2968   }
2969 
2970   // We have a legal FP type, convert to it.
2971   SDValue FloatVal = DAG.getNode(ISD::UINT_TO_FP, DL, FloatVT, Src);
2972   // Bitcast to integer and shift the exponent to the LSB.
2973   EVT IntVT = FloatVT.changeVectorElementTypeToInteger();
2974   SDValue Bitcast = DAG.getBitcast(IntVT, FloatVal);
2975   unsigned ShiftAmt = FloatEltVT == MVT::f64 ? 52 : 23;
2976   SDValue Shift = DAG.getNode(ISD::SRL, DL, IntVT, Bitcast,
2977                               DAG.getConstant(ShiftAmt, DL, IntVT));
2978   // Truncate back to original type to allow vnsrl.
2979   SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, VT, Shift);
2980   // The exponent contains log2 of the value in biased form.
2981   unsigned ExponentBias = FloatEltVT == MVT::f64 ? 1023 : 127;
2982 
2983   // For trailing zeros, we just need to subtract the bias.
2984   if (Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF)
2985     return DAG.getNode(ISD::SUB, DL, VT, Trunc,
2986                        DAG.getConstant(ExponentBias, DL, VT));
2987 
2988   // For leading zeros, we need to remove the bias and convert from log2 to
2989   // leading zeros. We can do this by subtracting from (Bias + (EltSize - 1)).
2990   unsigned Adjust = ExponentBias + (EltSize - 1);
2991   return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(Adjust, DL, VT), Trunc);
2992 }
2993 
2994 // While RVV has alignment restrictions, we should always be able to load as a
2995 // legal equivalently-sized byte-typed vector instead. This method is
2996 // responsible for re-expressing a ISD::LOAD via a correctly-aligned type. If
2997 // the load is already correctly-aligned, it returns SDValue().
2998 SDValue RISCVTargetLowering::expandUnalignedRVVLoad(SDValue Op,
2999                                                     SelectionDAG &DAG) const {
3000   auto *Load = cast<LoadSDNode>(Op);
3001   assert(Load && Load->getMemoryVT().isVector() && "Expected vector load");
3002 
3003   if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
3004                                      Load->getMemoryVT(),
3005                                      *Load->getMemOperand()))
3006     return SDValue();
3007 
3008   SDLoc DL(Op);
3009   MVT VT = Op.getSimpleValueType();
3010   unsigned EltSizeBits = VT.getScalarSizeInBits();
3011   assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) &&
3012          "Unexpected unaligned RVV load type");
3013   MVT NewVT =
3014       MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8));
3015   assert(NewVT.isValid() &&
3016          "Expecting equally-sized RVV vector types to be legal");
3017   SDValue L = DAG.getLoad(NewVT, DL, Load->getChain(), Load->getBasePtr(),
3018                           Load->getPointerInfo(), Load->getOriginalAlign(),
3019                           Load->getMemOperand()->getFlags());
3020   return DAG.getMergeValues({DAG.getBitcast(VT, L), L.getValue(1)}, DL);
3021 }
3022 
3023 // While RVV has alignment restrictions, we should always be able to store as a
3024 // legal equivalently-sized byte-typed vector instead. This method is
3025 // responsible for re-expressing a ISD::STORE via a correctly-aligned type. It
3026 // returns SDValue() if the store is already correctly aligned.
3027 SDValue RISCVTargetLowering::expandUnalignedRVVStore(SDValue Op,
3028                                                      SelectionDAG &DAG) const {
3029   auto *Store = cast<StoreSDNode>(Op);
3030   assert(Store && Store->getValue().getValueType().isVector() &&
3031          "Expected vector store");
3032 
3033   if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
3034                                      Store->getMemoryVT(),
3035                                      *Store->getMemOperand()))
3036     return SDValue();
3037 
3038   SDLoc DL(Op);
3039   SDValue StoredVal = Store->getValue();
3040   MVT VT = StoredVal.getSimpleValueType();
3041   unsigned EltSizeBits = VT.getScalarSizeInBits();
3042   assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) &&
3043          "Unexpected unaligned RVV store type");
3044   MVT NewVT =
3045       MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8));
3046   assert(NewVT.isValid() &&
3047          "Expecting equally-sized RVV vector types to be legal");
3048   StoredVal = DAG.getBitcast(NewVT, StoredVal);
3049   return DAG.getStore(Store->getChain(), DL, StoredVal, Store->getBasePtr(),
3050                       Store->getPointerInfo(), Store->getOriginalAlign(),
3051                       Store->getMemOperand()->getFlags());
3052 }
3053 
3054 static SDValue lowerConstant(SDValue Op, SelectionDAG &DAG,
3055                              const RISCVSubtarget &Subtarget) {
3056   assert(Op.getValueType() == MVT::i64 && "Unexpected VT");
3057 
3058   int64_t Imm = cast<ConstantSDNode>(Op)->getSExtValue();
3059 
3060   // All simm32 constants should be handled by isel.
3061   // NOTE: The getMaxBuildIntsCost call below should return a value >= 2 making
3062   // this check redundant, but small immediates are common so this check
3063   // should have better compile time.
3064   if (isInt<32>(Imm))
3065     return Op;
3066 
3067   // We only need to cost the immediate, if constant pool lowering is enabled.
3068   if (!Subtarget.useConstantPoolForLargeInts())
3069     return Op;
3070 
3071   RISCVMatInt::InstSeq Seq =
3072       RISCVMatInt::generateInstSeq(Imm, Subtarget.getFeatureBits());
3073   if (Seq.size() <= Subtarget.getMaxBuildIntsCost())
3074     return Op;
3075 
3076   // Expand to a constant pool using the default expansion code.
3077   return SDValue();
3078 }
3079 
3080 SDValue RISCVTargetLowering::LowerOperation(SDValue Op,
3081                                             SelectionDAG &DAG) const {
3082   switch (Op.getOpcode()) {
3083   default:
3084     report_fatal_error("unimplemented operand");
3085   case ISD::GlobalAddress:
3086     return lowerGlobalAddress(Op, DAG);
3087   case ISD::BlockAddress:
3088     return lowerBlockAddress(Op, DAG);
3089   case ISD::ConstantPool:
3090     return lowerConstantPool(Op, DAG);
3091   case ISD::JumpTable:
3092     return lowerJumpTable(Op, DAG);
3093   case ISD::GlobalTLSAddress:
3094     return lowerGlobalTLSAddress(Op, DAG);
3095   case ISD::Constant:
3096     return lowerConstant(Op, DAG, Subtarget);
3097   case ISD::SELECT:
3098     return lowerSELECT(Op, DAG);
3099   case ISD::BRCOND:
3100     return lowerBRCOND(Op, DAG);
3101   case ISD::VASTART:
3102     return lowerVASTART(Op, DAG);
3103   case ISD::FRAMEADDR:
3104     return lowerFRAMEADDR(Op, DAG);
3105   case ISD::RETURNADDR:
3106     return lowerRETURNADDR(Op, DAG);
3107   case ISD::SHL_PARTS:
3108     return lowerShiftLeftParts(Op, DAG);
3109   case ISD::SRA_PARTS:
3110     return lowerShiftRightParts(Op, DAG, true);
3111   case ISD::SRL_PARTS:
3112     return lowerShiftRightParts(Op, DAG, false);
3113   case ISD::BITCAST: {
3114     SDLoc DL(Op);
3115     EVT VT = Op.getValueType();
3116     SDValue Op0 = Op.getOperand(0);
3117     EVT Op0VT = Op0.getValueType();
3118     MVT XLenVT = Subtarget.getXLenVT();
3119     if (VT == MVT::f16 && Op0VT == MVT::i16 && Subtarget.hasStdExtZfh()) {
3120       SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Op0);
3121       SDValue FPConv = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, NewOp0);
3122       return FPConv;
3123     }
3124     if (VT == MVT::f32 && Op0VT == MVT::i32 && Subtarget.is64Bit() &&
3125         Subtarget.hasStdExtF()) {
3126       SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
3127       SDValue FPConv =
3128           DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, NewOp0);
3129       return FPConv;
3130     }
3131 
3132     // Consider other scalar<->scalar casts as legal if the types are legal.
3133     // Otherwise expand them.
3134     if (!VT.isVector() && !Op0VT.isVector()) {
3135       if (isTypeLegal(VT) && isTypeLegal(Op0VT))
3136         return Op;
3137       return SDValue();
3138     }
3139 
3140     assert(!VT.isScalableVector() && !Op0VT.isScalableVector() &&
3141            "Unexpected types");
3142 
3143     if (VT.isFixedLengthVector()) {
3144       // We can handle fixed length vector bitcasts with a simple replacement
3145       // in isel.
3146       if (Op0VT.isFixedLengthVector())
3147         return Op;
3148       // When bitcasting from scalar to fixed-length vector, insert the scalar
3149       // into a one-element vector of the result type, and perform a vector
3150       // bitcast.
3151       if (!Op0VT.isVector()) {
3152         EVT BVT = EVT::getVectorVT(*DAG.getContext(), Op0VT, 1);
3153         if (!isTypeLegal(BVT))
3154           return SDValue();
3155         return DAG.getBitcast(VT, DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, BVT,
3156                                               DAG.getUNDEF(BVT), Op0,
3157                                               DAG.getConstant(0, DL, XLenVT)));
3158       }
3159       return SDValue();
3160     }
3161     // Custom-legalize bitcasts from fixed-length vector types to scalar types
3162     // thus: bitcast the vector to a one-element vector type whose element type
3163     // is the same as the result type, and extract the first element.
3164     if (!VT.isVector() && Op0VT.isFixedLengthVector()) {
3165       EVT BVT = EVT::getVectorVT(*DAG.getContext(), VT, 1);
3166       if (!isTypeLegal(BVT))
3167         return SDValue();
3168       SDValue BVec = DAG.getBitcast(BVT, Op0);
3169       return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec,
3170                          DAG.getConstant(0, DL, XLenVT));
3171     }
3172     return SDValue();
3173   }
3174   case ISD::INTRINSIC_WO_CHAIN:
3175     return LowerINTRINSIC_WO_CHAIN(Op, DAG);
3176   case ISD::INTRINSIC_W_CHAIN:
3177     return LowerINTRINSIC_W_CHAIN(Op, DAG);
3178   case ISD::INTRINSIC_VOID:
3179     return LowerINTRINSIC_VOID(Op, DAG);
3180   case ISD::BSWAP:
3181   case ISD::BITREVERSE: {
3182     MVT VT = Op.getSimpleValueType();
3183     SDLoc DL(Op);
3184     if (Subtarget.hasStdExtZbp()) {
3185       // Convert BSWAP/BITREVERSE to GREVI to enable GREVI combinining.
3186       // Start with the maximum immediate value which is the bitwidth - 1.
3187       unsigned Imm = VT.getSizeInBits() - 1;
3188       // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits.
3189       if (Op.getOpcode() == ISD::BSWAP)
3190         Imm &= ~0x7U;
3191       return DAG.getNode(RISCVISD::GREV, DL, VT, Op.getOperand(0),
3192                          DAG.getConstant(Imm, DL, VT));
3193     }
3194     assert(Subtarget.hasStdExtZbkb() && "Unexpected custom legalization");
3195     assert(Op.getOpcode() == ISD::BITREVERSE && "Unexpected opcode");
3196     // Expand bitreverse to a bswap(rev8) followed by brev8.
3197     SDValue BSwap = DAG.getNode(ISD::BSWAP, DL, VT, Op.getOperand(0));
3198     // We use the Zbp grevi encoding for rev.b/brev8 which will be recognized
3199     // as brev8 by an isel pattern.
3200     return DAG.getNode(RISCVISD::GREV, DL, VT, BSwap,
3201                        DAG.getConstant(7, DL, VT));
3202   }
3203   case ISD::FSHL:
3204   case ISD::FSHR: {
3205     MVT VT = Op.getSimpleValueType();
3206     assert(VT == Subtarget.getXLenVT() && "Unexpected custom legalization");
3207     SDLoc DL(Op);
3208     // FSL/FSR take a log2(XLen)+1 bit shift amount but XLenVT FSHL/FSHR only
3209     // use log(XLen) bits. Mask the shift amount accordingly to prevent
3210     // accidentally setting the extra bit.
3211     unsigned ShAmtWidth = Subtarget.getXLen() - 1;
3212     SDValue ShAmt = DAG.getNode(ISD::AND, DL, VT, Op.getOperand(2),
3213                                 DAG.getConstant(ShAmtWidth, DL, VT));
3214     // fshl and fshr concatenate their operands in the same order. fsr and fsl
3215     // instruction use different orders. fshl will return its first operand for
3216     // shift of zero, fshr will return its second operand. fsl and fsr both
3217     // return rs1 so the ISD nodes need to have different operand orders.
3218     // Shift amount is in rs2.
3219     SDValue Op0 = Op.getOperand(0);
3220     SDValue Op1 = Op.getOperand(1);
3221     unsigned Opc = RISCVISD::FSL;
3222     if (Op.getOpcode() == ISD::FSHR) {
3223       std::swap(Op0, Op1);
3224       Opc = RISCVISD::FSR;
3225     }
3226     return DAG.getNode(Opc, DL, VT, Op0, Op1, ShAmt);
3227   }
3228   case ISD::TRUNCATE:
3229     // Only custom-lower vector truncates
3230     if (!Op.getSimpleValueType().isVector())
3231       return Op;
3232     return lowerVectorTruncLike(Op, DAG);
3233   case ISD::ANY_EXTEND:
3234   case ISD::ZERO_EXTEND:
3235     if (Op.getOperand(0).getValueType().isVector() &&
3236         Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1)
3237       return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ 1);
3238     return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VZEXT_VL);
3239   case ISD::SIGN_EXTEND:
3240     if (Op.getOperand(0).getValueType().isVector() &&
3241         Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1)
3242       return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ -1);
3243     return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VSEXT_VL);
3244   case ISD::SPLAT_VECTOR_PARTS:
3245     return lowerSPLAT_VECTOR_PARTS(Op, DAG);
3246   case ISD::INSERT_VECTOR_ELT:
3247     return lowerINSERT_VECTOR_ELT(Op, DAG);
3248   case ISD::EXTRACT_VECTOR_ELT:
3249     return lowerEXTRACT_VECTOR_ELT(Op, DAG);
3250   case ISD::VSCALE: {
3251     MVT VT = Op.getSimpleValueType();
3252     SDLoc DL(Op);
3253     SDValue VLENB = DAG.getNode(RISCVISD::READ_VLENB, DL, VT);
3254     // We define our scalable vector types for lmul=1 to use a 64 bit known
3255     // minimum size. e.g. <vscale x 2 x i32>. VLENB is in bytes so we calculate
3256     // vscale as VLENB / 8.
3257     static_assert(RISCV::RVVBitsPerBlock == 64, "Unexpected bits per block!");
3258     if (Subtarget.getRealMinVLen() < RISCV::RVVBitsPerBlock)
3259       report_fatal_error("Support for VLEN==32 is incomplete.");
3260     // We assume VLENB is a multiple of 8. We manually choose the best shift
3261     // here because SimplifyDemandedBits isn't always able to simplify it.
3262     uint64_t Val = Op.getConstantOperandVal(0);
3263     if (isPowerOf2_64(Val)) {
3264       uint64_t Log2 = Log2_64(Val);
3265       if (Log2 < 3)
3266         return DAG.getNode(ISD::SRL, DL, VT, VLENB,
3267                            DAG.getConstant(3 - Log2, DL, VT));
3268       if (Log2 > 3)
3269         return DAG.getNode(ISD::SHL, DL, VT, VLENB,
3270                            DAG.getConstant(Log2 - 3, DL, VT));
3271       return VLENB;
3272     }
3273     // If the multiplier is a multiple of 8, scale it down to avoid needing
3274     // to shift the VLENB value.
3275     if ((Val % 8) == 0)
3276       return DAG.getNode(ISD::MUL, DL, VT, VLENB,
3277                          DAG.getConstant(Val / 8, DL, VT));
3278 
3279     SDValue VScale = DAG.getNode(ISD::SRL, DL, VT, VLENB,
3280                                  DAG.getConstant(3, DL, VT));
3281     return DAG.getNode(ISD::MUL, DL, VT, VScale, Op.getOperand(0));
3282   }
3283   case ISD::FPOWI: {
3284     // Custom promote f16 powi with illegal i32 integer type on RV64. Once
3285     // promoted this will be legalized into a libcall by LegalizeIntegerTypes.
3286     if (Op.getValueType() == MVT::f16 && Subtarget.is64Bit() &&
3287         Op.getOperand(1).getValueType() == MVT::i32) {
3288       SDLoc DL(Op);
3289       SDValue Op0 = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Op.getOperand(0));
3290       SDValue Powi =
3291           DAG.getNode(ISD::FPOWI, DL, MVT::f32, Op0, Op.getOperand(1));
3292       return DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, Powi,
3293                          DAG.getIntPtrConstant(0, DL));
3294     }
3295     return SDValue();
3296   }
3297   case ISD::FP_EXTEND:
3298   case ISD::FP_ROUND:
3299     if (!Op.getValueType().isVector())
3300       return Op;
3301     return lowerVectorFPExtendOrRoundLike(Op, DAG);
3302   case ISD::FP_TO_SINT:
3303   case ISD::FP_TO_UINT:
3304   case ISD::SINT_TO_FP:
3305   case ISD::UINT_TO_FP: {
3306     // RVV can only do fp<->int conversions to types half/double the size as
3307     // the source. We custom-lower any conversions that do two hops into
3308     // sequences.
3309     MVT VT = Op.getSimpleValueType();
3310     if (!VT.isVector())
3311       return Op;
3312     SDLoc DL(Op);
3313     SDValue Src = Op.getOperand(0);
3314     MVT EltVT = VT.getVectorElementType();
3315     MVT SrcVT = Src.getSimpleValueType();
3316     MVT SrcEltVT = SrcVT.getVectorElementType();
3317     unsigned EltSize = EltVT.getSizeInBits();
3318     unsigned SrcEltSize = SrcEltVT.getSizeInBits();
3319     assert(isPowerOf2_32(EltSize) && isPowerOf2_32(SrcEltSize) &&
3320            "Unexpected vector element types");
3321 
3322     bool IsInt2FP = SrcEltVT.isInteger();
3323     // Widening conversions
3324     if (EltSize > (2 * SrcEltSize)) {
3325       if (IsInt2FP) {
3326         // Do a regular integer sign/zero extension then convert to float.
3327         MVT IVecVT = MVT::getVectorVT(MVT::getIntegerVT(EltSize),
3328                                       VT.getVectorElementCount());
3329         unsigned ExtOpcode = Op.getOpcode() == ISD::UINT_TO_FP
3330                                  ? ISD::ZERO_EXTEND
3331                                  : ISD::SIGN_EXTEND;
3332         SDValue Ext = DAG.getNode(ExtOpcode, DL, IVecVT, Src);
3333         return DAG.getNode(Op.getOpcode(), DL, VT, Ext);
3334       }
3335       // FP2Int
3336       assert(SrcEltVT == MVT::f16 && "Unexpected FP_TO_[US]INT lowering");
3337       // Do one doubling fp_extend then complete the operation by converting
3338       // to int.
3339       MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount());
3340       SDValue FExt = DAG.getFPExtendOrRound(Src, DL, InterimFVT);
3341       return DAG.getNode(Op.getOpcode(), DL, VT, FExt);
3342     }
3343 
3344     // Narrowing conversions
3345     if (SrcEltSize > (2 * EltSize)) {
3346       if (IsInt2FP) {
3347         // One narrowing int_to_fp, then an fp_round.
3348         assert(EltVT == MVT::f16 && "Unexpected [US]_TO_FP lowering");
3349         MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount());
3350         SDValue Int2FP = DAG.getNode(Op.getOpcode(), DL, InterimFVT, Src);
3351         return DAG.getFPExtendOrRound(Int2FP, DL, VT);
3352       }
3353       // FP2Int
3354       // One narrowing fp_to_int, then truncate the integer. If the float isn't
3355       // representable by the integer, the result is poison.
3356       MVT IVecVT = MVT::getVectorVT(MVT::getIntegerVT(SrcEltSize / 2),
3357                                     VT.getVectorElementCount());
3358       SDValue FP2Int = DAG.getNode(Op.getOpcode(), DL, IVecVT, Src);
3359       return DAG.getNode(ISD::TRUNCATE, DL, VT, FP2Int);
3360     }
3361 
3362     // Scalable vectors can exit here. Patterns will handle equally-sized
3363     // conversions halving/doubling ones.
3364     if (!VT.isFixedLengthVector())
3365       return Op;
3366 
3367     // For fixed-length vectors we lower to a custom "VL" node.
3368     unsigned RVVOpc = 0;
3369     switch (Op.getOpcode()) {
3370     default:
3371       llvm_unreachable("Impossible opcode");
3372     case ISD::FP_TO_SINT:
3373       RVVOpc = RISCVISD::FP_TO_SINT_VL;
3374       break;
3375     case ISD::FP_TO_UINT:
3376       RVVOpc = RISCVISD::FP_TO_UINT_VL;
3377       break;
3378     case ISD::SINT_TO_FP:
3379       RVVOpc = RISCVISD::SINT_TO_FP_VL;
3380       break;
3381     case ISD::UINT_TO_FP:
3382       RVVOpc = RISCVISD::UINT_TO_FP_VL;
3383       break;
3384     }
3385 
3386     MVT ContainerVT, SrcContainerVT;
3387     // Derive the reference container type from the larger vector type.
3388     if (SrcEltSize > EltSize) {
3389       SrcContainerVT = getContainerForFixedLengthVector(SrcVT);
3390       ContainerVT =
3391           SrcContainerVT.changeVectorElementType(VT.getVectorElementType());
3392     } else {
3393       ContainerVT = getContainerForFixedLengthVector(VT);
3394       SrcContainerVT = ContainerVT.changeVectorElementType(SrcEltVT);
3395     }
3396 
3397     SDValue Mask, VL;
3398     std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
3399 
3400     Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget);
3401     Src = DAG.getNode(RVVOpc, DL, ContainerVT, Src, Mask, VL);
3402     return convertFromScalableVector(VT, Src, DAG, Subtarget);
3403   }
3404   case ISD::FP_TO_SINT_SAT:
3405   case ISD::FP_TO_UINT_SAT:
3406     return lowerFP_TO_INT_SAT(Op, DAG, Subtarget);
3407   case ISD::FTRUNC:
3408   case ISD::FCEIL:
3409   case ISD::FFLOOR:
3410     return lowerFTRUNC_FCEIL_FFLOOR(Op, DAG);
3411   case ISD::FROUND:
3412     return lowerFROUND(Op, DAG);
3413   case ISD::VECREDUCE_ADD:
3414   case ISD::VECREDUCE_UMAX:
3415   case ISD::VECREDUCE_SMAX:
3416   case ISD::VECREDUCE_UMIN:
3417   case ISD::VECREDUCE_SMIN:
3418     return lowerVECREDUCE(Op, DAG);
3419   case ISD::VECREDUCE_AND:
3420   case ISD::VECREDUCE_OR:
3421   case ISD::VECREDUCE_XOR:
3422     if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1)
3423       return lowerVectorMaskVecReduction(Op, DAG, /*IsVP*/ false);
3424     return lowerVECREDUCE(Op, DAG);
3425   case ISD::VECREDUCE_FADD:
3426   case ISD::VECREDUCE_SEQ_FADD:
3427   case ISD::VECREDUCE_FMIN:
3428   case ISD::VECREDUCE_FMAX:
3429     return lowerFPVECREDUCE(Op, DAG);
3430   case ISD::VP_REDUCE_ADD:
3431   case ISD::VP_REDUCE_UMAX:
3432   case ISD::VP_REDUCE_SMAX:
3433   case ISD::VP_REDUCE_UMIN:
3434   case ISD::VP_REDUCE_SMIN:
3435   case ISD::VP_REDUCE_FADD:
3436   case ISD::VP_REDUCE_SEQ_FADD:
3437   case ISD::VP_REDUCE_FMIN:
3438   case ISD::VP_REDUCE_FMAX:
3439     return lowerVPREDUCE(Op, DAG);
3440   case ISD::VP_REDUCE_AND:
3441   case ISD::VP_REDUCE_OR:
3442   case ISD::VP_REDUCE_XOR:
3443     if (Op.getOperand(1).getValueType().getVectorElementType() == MVT::i1)
3444       return lowerVectorMaskVecReduction(Op, DAG, /*IsVP*/ true);
3445     return lowerVPREDUCE(Op, DAG);
3446   case ISD::INSERT_SUBVECTOR:
3447     return lowerINSERT_SUBVECTOR(Op, DAG);
3448   case ISD::EXTRACT_SUBVECTOR:
3449     return lowerEXTRACT_SUBVECTOR(Op, DAG);
3450   case ISD::STEP_VECTOR:
3451     return lowerSTEP_VECTOR(Op, DAG);
3452   case ISD::VECTOR_REVERSE:
3453     return lowerVECTOR_REVERSE(Op, DAG);
3454   case ISD::VECTOR_SPLICE:
3455     return lowerVECTOR_SPLICE(Op, DAG);
3456   case ISD::BUILD_VECTOR:
3457     return lowerBUILD_VECTOR(Op, DAG, Subtarget);
3458   case ISD::SPLAT_VECTOR:
3459     if (Op.getValueType().getVectorElementType() == MVT::i1)
3460       return lowerVectorMaskSplat(Op, DAG);
3461     return SDValue();
3462   case ISD::VECTOR_SHUFFLE:
3463     return lowerVECTOR_SHUFFLE(Op, DAG, Subtarget);
3464   case ISD::CONCAT_VECTORS: {
3465     // Split CONCAT_VECTORS into a series of INSERT_SUBVECTOR nodes. This is
3466     // better than going through the stack, as the default expansion does.
3467     SDLoc DL(Op);
3468     MVT VT = Op.getSimpleValueType();
3469     unsigned NumOpElts =
3470         Op.getOperand(0).getSimpleValueType().getVectorMinNumElements();
3471     SDValue Vec = DAG.getUNDEF(VT);
3472     for (const auto &OpIdx : enumerate(Op->ops())) {
3473       SDValue SubVec = OpIdx.value();
3474       // Don't insert undef subvectors.
3475       if (SubVec.isUndef())
3476         continue;
3477       Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, Vec, SubVec,
3478                         DAG.getIntPtrConstant(OpIdx.index() * NumOpElts, DL));
3479     }
3480     return Vec;
3481   }
3482   case ISD::LOAD:
3483     if (auto V = expandUnalignedRVVLoad(Op, DAG))
3484       return V;
3485     if (Op.getValueType().isFixedLengthVector())
3486       return lowerFixedLengthVectorLoadToRVV(Op, DAG);
3487     return Op;
3488   case ISD::STORE:
3489     if (auto V = expandUnalignedRVVStore(Op, DAG))
3490       return V;
3491     if (Op.getOperand(1).getValueType().isFixedLengthVector())
3492       return lowerFixedLengthVectorStoreToRVV(Op, DAG);
3493     return Op;
3494   case ISD::MLOAD:
3495   case ISD::VP_LOAD:
3496     return lowerMaskedLoad(Op, DAG);
3497   case ISD::MSTORE:
3498   case ISD::VP_STORE:
3499     return lowerMaskedStore(Op, DAG);
3500   case ISD::SETCC:
3501     return lowerFixedLengthVectorSetccToRVV(Op, DAG);
3502   case ISD::ADD:
3503     return lowerToScalableOp(Op, DAG, RISCVISD::ADD_VL);
3504   case ISD::SUB:
3505     return lowerToScalableOp(Op, DAG, RISCVISD::SUB_VL);
3506   case ISD::MUL:
3507     return lowerToScalableOp(Op, DAG, RISCVISD::MUL_VL);
3508   case ISD::MULHS:
3509     return lowerToScalableOp(Op, DAG, RISCVISD::MULHS_VL);
3510   case ISD::MULHU:
3511     return lowerToScalableOp(Op, DAG, RISCVISD::MULHU_VL);
3512   case ISD::AND:
3513     return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMAND_VL,
3514                                               RISCVISD::AND_VL);
3515   case ISD::OR:
3516     return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMOR_VL,
3517                                               RISCVISD::OR_VL);
3518   case ISD::XOR:
3519     return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMXOR_VL,
3520                                               RISCVISD::XOR_VL);
3521   case ISD::SDIV:
3522     return lowerToScalableOp(Op, DAG, RISCVISD::SDIV_VL);
3523   case ISD::SREM:
3524     return lowerToScalableOp(Op, DAG, RISCVISD::SREM_VL);
3525   case ISD::UDIV:
3526     return lowerToScalableOp(Op, DAG, RISCVISD::UDIV_VL);
3527   case ISD::UREM:
3528     return lowerToScalableOp(Op, DAG, RISCVISD::UREM_VL);
3529   case ISD::SHL:
3530   case ISD::SRA:
3531   case ISD::SRL:
3532     if (Op.getSimpleValueType().isFixedLengthVector())
3533       return lowerFixedLengthVectorShiftToRVV(Op, DAG);
3534     // This can be called for an i32 shift amount that needs to be promoted.
3535     assert(Op.getOperand(1).getValueType() == MVT::i32 && Subtarget.is64Bit() &&
3536            "Unexpected custom legalisation");
3537     return SDValue();
3538   case ISD::SADDSAT:
3539     return lowerToScalableOp(Op, DAG, RISCVISD::SADDSAT_VL);
3540   case ISD::UADDSAT:
3541     return lowerToScalableOp(Op, DAG, RISCVISD::UADDSAT_VL);
3542   case ISD::SSUBSAT:
3543     return lowerToScalableOp(Op, DAG, RISCVISD::SSUBSAT_VL);
3544   case ISD::USUBSAT:
3545     return lowerToScalableOp(Op, DAG, RISCVISD::USUBSAT_VL);
3546   case ISD::FADD:
3547     return lowerToScalableOp(Op, DAG, RISCVISD::FADD_VL);
3548   case ISD::FSUB:
3549     return lowerToScalableOp(Op, DAG, RISCVISD::FSUB_VL);
3550   case ISD::FMUL:
3551     return lowerToScalableOp(Op, DAG, RISCVISD::FMUL_VL);
3552   case ISD::FDIV:
3553     return lowerToScalableOp(Op, DAG, RISCVISD::FDIV_VL);
3554   case ISD::FNEG:
3555     return lowerToScalableOp(Op, DAG, RISCVISD::FNEG_VL);
3556   case ISD::FABS:
3557     return lowerToScalableOp(Op, DAG, RISCVISD::FABS_VL);
3558   case ISD::FSQRT:
3559     return lowerToScalableOp(Op, DAG, RISCVISD::FSQRT_VL);
3560   case ISD::FMA:
3561     return lowerToScalableOp(Op, DAG, RISCVISD::VFMADD_VL);
3562   case ISD::SMIN:
3563     return lowerToScalableOp(Op, DAG, RISCVISD::SMIN_VL);
3564   case ISD::SMAX:
3565     return lowerToScalableOp(Op, DAG, RISCVISD::SMAX_VL);
3566   case ISD::UMIN:
3567     return lowerToScalableOp(Op, DAG, RISCVISD::UMIN_VL);
3568   case ISD::UMAX:
3569     return lowerToScalableOp(Op, DAG, RISCVISD::UMAX_VL);
3570   case ISD::FMINNUM:
3571     return lowerToScalableOp(Op, DAG, RISCVISD::FMINNUM_VL);
3572   case ISD::FMAXNUM:
3573     return lowerToScalableOp(Op, DAG, RISCVISD::FMAXNUM_VL);
3574   case ISD::ABS:
3575     return lowerABS(Op, DAG);
3576   case ISD::CTLZ_ZERO_UNDEF:
3577   case ISD::CTTZ_ZERO_UNDEF:
3578     return lowerCTLZ_CTTZ_ZERO_UNDEF(Op, DAG);
3579   case ISD::VSELECT:
3580     return lowerFixedLengthVectorSelectToRVV(Op, DAG);
3581   case ISD::FCOPYSIGN:
3582     return lowerFixedLengthVectorFCOPYSIGNToRVV(Op, DAG);
3583   case ISD::MGATHER:
3584   case ISD::VP_GATHER:
3585     return lowerMaskedGather(Op, DAG);
3586   case ISD::MSCATTER:
3587   case ISD::VP_SCATTER:
3588     return lowerMaskedScatter(Op, DAG);
3589   case ISD::FLT_ROUNDS_:
3590     return lowerGET_ROUNDING(Op, DAG);
3591   case ISD::SET_ROUNDING:
3592     return lowerSET_ROUNDING(Op, DAG);
3593   case ISD::EH_DWARF_CFA:
3594     return lowerEH_DWARF_CFA(Op, DAG);
3595   case ISD::VP_SELECT:
3596     return lowerVPOp(Op, DAG, RISCVISD::VSELECT_VL);
3597   case ISD::VP_MERGE:
3598     return lowerVPOp(Op, DAG, RISCVISD::VP_MERGE_VL);
3599   case ISD::VP_ADD:
3600     return lowerVPOp(Op, DAG, RISCVISD::ADD_VL);
3601   case ISD::VP_SUB:
3602     return lowerVPOp(Op, DAG, RISCVISD::SUB_VL);
3603   case ISD::VP_MUL:
3604     return lowerVPOp(Op, DAG, RISCVISD::MUL_VL);
3605   case ISD::VP_SDIV:
3606     return lowerVPOp(Op, DAG, RISCVISD::SDIV_VL);
3607   case ISD::VP_UDIV:
3608     return lowerVPOp(Op, DAG, RISCVISD::UDIV_VL);
3609   case ISD::VP_SREM:
3610     return lowerVPOp(Op, DAG, RISCVISD::SREM_VL);
3611   case ISD::VP_UREM:
3612     return lowerVPOp(Op, DAG, RISCVISD::UREM_VL);
3613   case ISD::VP_AND:
3614     return lowerLogicVPOp(Op, DAG, RISCVISD::VMAND_VL, RISCVISD::AND_VL);
3615   case ISD::VP_OR:
3616     return lowerLogicVPOp(Op, DAG, RISCVISD::VMOR_VL, RISCVISD::OR_VL);
3617   case ISD::VP_XOR:
3618     return lowerLogicVPOp(Op, DAG, RISCVISD::VMXOR_VL, RISCVISD::XOR_VL);
3619   case ISD::VP_ASHR:
3620     return lowerVPOp(Op, DAG, RISCVISD::SRA_VL);
3621   case ISD::VP_LSHR:
3622     return lowerVPOp(Op, DAG, RISCVISD::SRL_VL);
3623   case ISD::VP_SHL:
3624     return lowerVPOp(Op, DAG, RISCVISD::SHL_VL);
3625   case ISD::VP_FADD:
3626     return lowerVPOp(Op, DAG, RISCVISD::FADD_VL);
3627   case ISD::VP_FSUB:
3628     return lowerVPOp(Op, DAG, RISCVISD::FSUB_VL);
3629   case ISD::VP_FMUL:
3630     return lowerVPOp(Op, DAG, RISCVISD::FMUL_VL);
3631   case ISD::VP_FDIV:
3632     return lowerVPOp(Op, DAG, RISCVISD::FDIV_VL);
3633   case ISD::VP_FNEG:
3634     return lowerVPOp(Op, DAG, RISCVISD::FNEG_VL);
3635   case ISD::VP_FMA:
3636     return lowerVPOp(Op, DAG, RISCVISD::VFMADD_VL);
3637   case ISD::VP_SIGN_EXTEND:
3638   case ISD::VP_ZERO_EXTEND:
3639     if (Op.getOperand(0).getSimpleValueType().getVectorElementType() == MVT::i1)
3640       return lowerVPExtMaskOp(Op, DAG);
3641     return lowerVPOp(Op, DAG,
3642                      Op.getOpcode() == ISD::VP_SIGN_EXTEND
3643                          ? RISCVISD::VSEXT_VL
3644                          : RISCVISD::VZEXT_VL);
3645   case ISD::VP_TRUNCATE:
3646     return lowerVectorTruncLike(Op, DAG);
3647   case ISD::VP_FP_EXTEND:
3648   case ISD::VP_FP_ROUND:
3649     return lowerVectorFPExtendOrRoundLike(Op, DAG);
3650   case ISD::VP_FPTOSI:
3651     return lowerVPFPIntConvOp(Op, DAG, RISCVISD::FP_TO_SINT_VL);
3652   case ISD::VP_FPTOUI:
3653     return lowerVPFPIntConvOp(Op, DAG, RISCVISD::FP_TO_UINT_VL);
3654   case ISD::VP_SITOFP:
3655     return lowerVPFPIntConvOp(Op, DAG, RISCVISD::SINT_TO_FP_VL);
3656   case ISD::VP_UITOFP:
3657     return lowerVPFPIntConvOp(Op, DAG, RISCVISD::UINT_TO_FP_VL);
3658   case ISD::VP_SETCC:
3659     if (Op.getOperand(0).getSimpleValueType().getVectorElementType() == MVT::i1)
3660       return lowerVPSetCCMaskOp(Op, DAG);
3661     return lowerVPOp(Op, DAG, RISCVISD::SETCC_VL);
3662   }
3663 }
3664 
3665 static SDValue getTargetNode(GlobalAddressSDNode *N, SDLoc DL, EVT Ty,
3666                              SelectionDAG &DAG, unsigned Flags) {
3667   return DAG.getTargetGlobalAddress(N->getGlobal(), DL, Ty, 0, Flags);
3668 }
3669 
3670 static SDValue getTargetNode(BlockAddressSDNode *N, SDLoc DL, EVT Ty,
3671                              SelectionDAG &DAG, unsigned Flags) {
3672   return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, N->getOffset(),
3673                                    Flags);
3674 }
3675 
3676 static SDValue getTargetNode(ConstantPoolSDNode *N, SDLoc DL, EVT Ty,
3677                              SelectionDAG &DAG, unsigned Flags) {
3678   return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlign(),
3679                                    N->getOffset(), Flags);
3680 }
3681 
3682 static SDValue getTargetNode(JumpTableSDNode *N, SDLoc DL, EVT Ty,
3683                              SelectionDAG &DAG, unsigned Flags) {
3684   return DAG.getTargetJumpTable(N->getIndex(), Ty, Flags);
3685 }
3686 
3687 template <class NodeTy>
3688 SDValue RISCVTargetLowering::getAddr(NodeTy *N, SelectionDAG &DAG,
3689                                      bool IsLocal) const {
3690   SDLoc DL(N);
3691   EVT Ty = getPointerTy(DAG.getDataLayout());
3692 
3693   if (isPositionIndependent()) {
3694     SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0);
3695     if (IsLocal)
3696       // Use PC-relative addressing to access the symbol. This generates the
3697       // pattern (PseudoLLA sym), which expands to (addi (auipc %pcrel_hi(sym))
3698       // %pcrel_lo(auipc)).
3699       return DAG.getNode(RISCVISD::LLA, DL, Ty, Addr);
3700 
3701     // Use PC-relative addressing to access the GOT for this symbol, then load
3702     // the address from the GOT. This generates the pattern (PseudoLA sym),
3703     // which expands to (ld (addi (auipc %got_pcrel_hi(sym)) %pcrel_lo(auipc))).
3704     MachineFunction &MF = DAG.getMachineFunction();
3705     MachineMemOperand *MemOp = MF.getMachineMemOperand(
3706         MachinePointerInfo::getGOT(MF),
3707         MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable |
3708             MachineMemOperand::MOInvariant,
3709         LLT(Ty.getSimpleVT()), Align(Ty.getFixedSizeInBits() / 8));
3710     SDValue Load =
3711         DAG.getMemIntrinsicNode(RISCVISD::LA, DL, DAG.getVTList(Ty, MVT::Other),
3712                                 {DAG.getEntryNode(), Addr}, Ty, MemOp);
3713     return Load;
3714   }
3715 
3716   switch (getTargetMachine().getCodeModel()) {
3717   default:
3718     report_fatal_error("Unsupported code model for lowering");
3719   case CodeModel::Small: {
3720     // Generate a sequence for accessing addresses within the first 2 GiB of
3721     // address space. This generates the pattern (addi (lui %hi(sym)) %lo(sym)).
3722     SDValue AddrHi = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_HI);
3723     SDValue AddrLo = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_LO);
3724     SDValue MNHi = DAG.getNode(RISCVISD::HI, DL, Ty, AddrHi);
3725     return DAG.getNode(RISCVISD::ADD_LO, DL, Ty, MNHi, AddrLo);
3726   }
3727   case CodeModel::Medium: {
3728     // Generate a sequence for accessing addresses within any 2GiB range within
3729     // the address space. This generates the pattern (PseudoLLA sym), which
3730     // expands to (addi (auipc %pcrel_hi(sym)) %pcrel_lo(auipc)).
3731     SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0);
3732     return DAG.getNode(RISCVISD::LLA, DL, Ty, Addr);
3733   }
3734   }
3735 }
3736 
3737 SDValue RISCVTargetLowering::lowerGlobalAddress(SDValue Op,
3738                                                 SelectionDAG &DAG) const {
3739   SDLoc DL(Op);
3740   GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op);
3741   assert(N->getOffset() == 0 && "unexpected offset in global node");
3742   return getAddr(N, DAG, N->getGlobal()->isDSOLocal());
3743 }
3744 
3745 SDValue RISCVTargetLowering::lowerBlockAddress(SDValue Op,
3746                                                SelectionDAG &DAG) const {
3747   BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op);
3748 
3749   return getAddr(N, DAG);
3750 }
3751 
3752 SDValue RISCVTargetLowering::lowerConstantPool(SDValue Op,
3753                                                SelectionDAG &DAG) const {
3754   ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op);
3755 
3756   return getAddr(N, DAG);
3757 }
3758 
3759 SDValue RISCVTargetLowering::lowerJumpTable(SDValue Op,
3760                                             SelectionDAG &DAG) const {
3761   JumpTableSDNode *N = cast<JumpTableSDNode>(Op);
3762 
3763   return getAddr(N, DAG);
3764 }
3765 
3766 SDValue RISCVTargetLowering::getStaticTLSAddr(GlobalAddressSDNode *N,
3767                                               SelectionDAG &DAG,
3768                                               bool UseGOT) const {
3769   SDLoc DL(N);
3770   EVT Ty = getPointerTy(DAG.getDataLayout());
3771   const GlobalValue *GV = N->getGlobal();
3772   MVT XLenVT = Subtarget.getXLenVT();
3773 
3774   if (UseGOT) {
3775     // Use PC-relative addressing to access the GOT for this TLS symbol, then
3776     // load the address from the GOT and add the thread pointer. This generates
3777     // the pattern (PseudoLA_TLS_IE sym), which expands to
3778     // (ld (auipc %tls_ie_pcrel_hi(sym)) %pcrel_lo(auipc)).
3779     SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0);
3780     MachineFunction &MF = DAG.getMachineFunction();
3781     MachineMemOperand *MemOp = MF.getMachineMemOperand(
3782         MachinePointerInfo::getGOT(MF),
3783         MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable |
3784             MachineMemOperand::MOInvariant,
3785         LLT(Ty.getSimpleVT()), Align(Ty.getFixedSizeInBits() / 8));
3786     SDValue Load = DAG.getMemIntrinsicNode(
3787         RISCVISD::LA_TLS_IE, DL, DAG.getVTList(Ty, MVT::Other),
3788         {DAG.getEntryNode(), Addr}, Ty, MemOp);
3789 
3790     // Add the thread pointer.
3791     SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT);
3792     return DAG.getNode(ISD::ADD, DL, Ty, Load, TPReg);
3793   }
3794 
3795   // Generate a sequence for accessing the address relative to the thread
3796   // pointer, with the appropriate adjustment for the thread pointer offset.
3797   // This generates the pattern
3798   // (add (add_tprel (lui %tprel_hi(sym)) tp %tprel_add(sym)) %tprel_lo(sym))
3799   SDValue AddrHi =
3800       DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_HI);
3801   SDValue AddrAdd =
3802       DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_ADD);
3803   SDValue AddrLo =
3804       DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_LO);
3805 
3806   SDValue MNHi = DAG.getNode(RISCVISD::HI, DL, Ty, AddrHi);
3807   SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT);
3808   SDValue MNAdd =
3809       DAG.getNode(RISCVISD::ADD_TPREL, DL, Ty, MNHi, TPReg, AddrAdd);
3810   return DAG.getNode(RISCVISD::ADD_LO, DL, Ty, MNAdd, AddrLo);
3811 }
3812 
3813 SDValue RISCVTargetLowering::getDynamicTLSAddr(GlobalAddressSDNode *N,
3814                                                SelectionDAG &DAG) const {
3815   SDLoc DL(N);
3816   EVT Ty = getPointerTy(DAG.getDataLayout());
3817   IntegerType *CallTy = Type::getIntNTy(*DAG.getContext(), Ty.getSizeInBits());
3818   const GlobalValue *GV = N->getGlobal();
3819 
3820   // Use a PC-relative addressing mode to access the global dynamic GOT address.
3821   // This generates the pattern (PseudoLA_TLS_GD sym), which expands to
3822   // (addi (auipc %tls_gd_pcrel_hi(sym)) %pcrel_lo(auipc)).
3823   SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0);
3824   SDValue Load = DAG.getNode(RISCVISD::LA_TLS_GD, DL, Ty, Addr);
3825 
3826   // Prepare argument list to generate call.
3827   ArgListTy Args;
3828   ArgListEntry Entry;
3829   Entry.Node = Load;
3830   Entry.Ty = CallTy;
3831   Args.push_back(Entry);
3832 
3833   // Setup call to __tls_get_addr.
3834   TargetLowering::CallLoweringInfo CLI(DAG);
3835   CLI.setDebugLoc(DL)
3836       .setChain(DAG.getEntryNode())
3837       .setLibCallee(CallingConv::C, CallTy,
3838                     DAG.getExternalSymbol("__tls_get_addr", Ty),
3839                     std::move(Args));
3840 
3841   return LowerCallTo(CLI).first;
3842 }
3843 
3844 SDValue RISCVTargetLowering::lowerGlobalTLSAddress(SDValue Op,
3845                                                    SelectionDAG &DAG) const {
3846   SDLoc DL(Op);
3847   GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op);
3848   assert(N->getOffset() == 0 && "unexpected offset in global node");
3849 
3850   TLSModel::Model Model = getTargetMachine().getTLSModel(N->getGlobal());
3851 
3852   if (DAG.getMachineFunction().getFunction().getCallingConv() ==
3853       CallingConv::GHC)
3854     report_fatal_error("In GHC calling convention TLS is not supported");
3855 
3856   SDValue Addr;
3857   switch (Model) {
3858   case TLSModel::LocalExec:
3859     Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/false);
3860     break;
3861   case TLSModel::InitialExec:
3862     Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/true);
3863     break;
3864   case TLSModel::LocalDynamic:
3865   case TLSModel::GeneralDynamic:
3866     Addr = getDynamicTLSAddr(N, DAG);
3867     break;
3868   }
3869 
3870   return Addr;
3871 }
3872 
3873 SDValue RISCVTargetLowering::lowerSELECT(SDValue Op, SelectionDAG &DAG) const {
3874   SDValue CondV = Op.getOperand(0);
3875   SDValue TrueV = Op.getOperand(1);
3876   SDValue FalseV = Op.getOperand(2);
3877   SDLoc DL(Op);
3878   MVT VT = Op.getSimpleValueType();
3879   MVT XLenVT = Subtarget.getXLenVT();
3880 
3881   // Lower vector SELECTs to VSELECTs by splatting the condition.
3882   if (VT.isVector()) {
3883     MVT SplatCondVT = VT.changeVectorElementType(MVT::i1);
3884     SDValue CondSplat = VT.isScalableVector()
3885                             ? DAG.getSplatVector(SplatCondVT, DL, CondV)
3886                             : DAG.getSplatBuildVector(SplatCondVT, DL, CondV);
3887     return DAG.getNode(ISD::VSELECT, DL, VT, CondSplat, TrueV, FalseV);
3888   }
3889 
3890   // If the result type is XLenVT and CondV is the output of a SETCC node
3891   // which also operated on XLenVT inputs, then merge the SETCC node into the
3892   // lowered RISCVISD::SELECT_CC to take advantage of the integer
3893   // compare+branch instructions. i.e.:
3894   // (select (setcc lhs, rhs, cc), truev, falsev)
3895   // -> (riscvisd::select_cc lhs, rhs, cc, truev, falsev)
3896   if (VT == XLenVT && CondV.getOpcode() == ISD::SETCC &&
3897       CondV.getOperand(0).getSimpleValueType() == XLenVT) {
3898     SDValue LHS = CondV.getOperand(0);
3899     SDValue RHS = CondV.getOperand(1);
3900     const auto *CC = cast<CondCodeSDNode>(CondV.getOperand(2));
3901     ISD::CondCode CCVal = CC->get();
3902 
3903     // Special case for a select of 2 constants that have a diffence of 1.
3904     // Normally this is done by DAGCombine, but if the select is introduced by
3905     // type legalization or op legalization, we miss it. Restricting to SETLT
3906     // case for now because that is what signed saturating add/sub need.
3907     // FIXME: We don't need the condition to be SETLT or even a SETCC,
3908     // but we would probably want to swap the true/false values if the condition
3909     // is SETGE/SETLE to avoid an XORI.
3910     if (isa<ConstantSDNode>(TrueV) && isa<ConstantSDNode>(FalseV) &&
3911         CCVal == ISD::SETLT) {
3912       const APInt &TrueVal = cast<ConstantSDNode>(TrueV)->getAPIntValue();
3913       const APInt &FalseVal = cast<ConstantSDNode>(FalseV)->getAPIntValue();
3914       if (TrueVal - 1 == FalseVal)
3915         return DAG.getNode(ISD::ADD, DL, Op.getValueType(), CondV, FalseV);
3916       if (TrueVal + 1 == FalseVal)
3917         return DAG.getNode(ISD::SUB, DL, Op.getValueType(), FalseV, CondV);
3918     }
3919 
3920     translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
3921 
3922     SDValue TargetCC = DAG.getCondCode(CCVal);
3923     SDValue Ops[] = {LHS, RHS, TargetCC, TrueV, FalseV};
3924     return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops);
3925   }
3926 
3927   // Otherwise:
3928   // (select condv, truev, falsev)
3929   // -> (riscvisd::select_cc condv, zero, setne, truev, falsev)
3930   SDValue Zero = DAG.getConstant(0, DL, XLenVT);
3931   SDValue SetNE = DAG.getCondCode(ISD::SETNE);
3932 
3933   SDValue Ops[] = {CondV, Zero, SetNE, TrueV, FalseV};
3934 
3935   return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops);
3936 }
3937 
3938 SDValue RISCVTargetLowering::lowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
3939   SDValue CondV = Op.getOperand(1);
3940   SDLoc DL(Op);
3941   MVT XLenVT = Subtarget.getXLenVT();
3942 
3943   if (CondV.getOpcode() == ISD::SETCC &&
3944       CondV.getOperand(0).getValueType() == XLenVT) {
3945     SDValue LHS = CondV.getOperand(0);
3946     SDValue RHS = CondV.getOperand(1);
3947     ISD::CondCode CCVal = cast<CondCodeSDNode>(CondV.getOperand(2))->get();
3948 
3949     translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
3950 
3951     SDValue TargetCC = DAG.getCondCode(CCVal);
3952     return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0),
3953                        LHS, RHS, TargetCC, Op.getOperand(2));
3954   }
3955 
3956   return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0),
3957                      CondV, DAG.getConstant(0, DL, XLenVT),
3958                      DAG.getCondCode(ISD::SETNE), Op.getOperand(2));
3959 }
3960 
3961 SDValue RISCVTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const {
3962   MachineFunction &MF = DAG.getMachineFunction();
3963   RISCVMachineFunctionInfo *FuncInfo = MF.getInfo<RISCVMachineFunctionInfo>();
3964 
3965   SDLoc DL(Op);
3966   SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
3967                                  getPointerTy(MF.getDataLayout()));
3968 
3969   // vastart just stores the address of the VarArgsFrameIndex slot into the
3970   // memory location argument.
3971   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3972   return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1),
3973                       MachinePointerInfo(SV));
3974 }
3975 
3976 SDValue RISCVTargetLowering::lowerFRAMEADDR(SDValue Op,
3977                                             SelectionDAG &DAG) const {
3978   const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo();
3979   MachineFunction &MF = DAG.getMachineFunction();
3980   MachineFrameInfo &MFI = MF.getFrameInfo();
3981   MFI.setFrameAddressIsTaken(true);
3982   Register FrameReg = RI.getFrameRegister(MF);
3983   int XLenInBytes = Subtarget.getXLen() / 8;
3984 
3985   EVT VT = Op.getValueType();
3986   SDLoc DL(Op);
3987   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, FrameReg, VT);
3988   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3989   while (Depth--) {
3990     int Offset = -(XLenInBytes * 2);
3991     SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr,
3992                               DAG.getIntPtrConstant(Offset, DL));
3993     FrameAddr =
3994         DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo());
3995   }
3996   return FrameAddr;
3997 }
3998 
3999 SDValue RISCVTargetLowering::lowerRETURNADDR(SDValue Op,
4000                                              SelectionDAG &DAG) const {
4001   const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo();
4002   MachineFunction &MF = DAG.getMachineFunction();
4003   MachineFrameInfo &MFI = MF.getFrameInfo();
4004   MFI.setReturnAddressIsTaken(true);
4005   MVT XLenVT = Subtarget.getXLenVT();
4006   int XLenInBytes = Subtarget.getXLen() / 8;
4007 
4008   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
4009     return SDValue();
4010 
4011   EVT VT = Op.getValueType();
4012   SDLoc DL(Op);
4013   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
4014   if (Depth) {
4015     int Off = -XLenInBytes;
4016     SDValue FrameAddr = lowerFRAMEADDR(Op, DAG);
4017     SDValue Offset = DAG.getConstant(Off, DL, VT);
4018     return DAG.getLoad(VT, DL, DAG.getEntryNode(),
4019                        DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset),
4020                        MachinePointerInfo());
4021   }
4022 
4023   // Return the value of the return address register, marking it an implicit
4024   // live-in.
4025   Register Reg = MF.addLiveIn(RI.getRARegister(), getRegClassFor(XLenVT));
4026   return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, XLenVT);
4027 }
4028 
4029 SDValue RISCVTargetLowering::lowerShiftLeftParts(SDValue Op,
4030                                                  SelectionDAG &DAG) const {
4031   SDLoc DL(Op);
4032   SDValue Lo = Op.getOperand(0);
4033   SDValue Hi = Op.getOperand(1);
4034   SDValue Shamt = Op.getOperand(2);
4035   EVT VT = Lo.getValueType();
4036 
4037   // if Shamt-XLEN < 0: // Shamt < XLEN
4038   //   Lo = Lo << Shamt
4039   //   Hi = (Hi << Shamt) | ((Lo >>u 1) >>u (XLEN-1 ^ Shamt))
4040   // else:
4041   //   Lo = 0
4042   //   Hi = Lo << (Shamt-XLEN)
4043 
4044   SDValue Zero = DAG.getConstant(0, DL, VT);
4045   SDValue One = DAG.getConstant(1, DL, VT);
4046   SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT);
4047   SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT);
4048   SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen);
4049   SDValue XLenMinus1Shamt = DAG.getNode(ISD::XOR, DL, VT, Shamt, XLenMinus1);
4050 
4051   SDValue LoTrue = DAG.getNode(ISD::SHL, DL, VT, Lo, Shamt);
4052   SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, VT, Lo, One);
4053   SDValue ShiftRightLo =
4054       DAG.getNode(ISD::SRL, DL, VT, ShiftRight1Lo, XLenMinus1Shamt);
4055   SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, Hi, Shamt);
4056   SDValue HiTrue = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo);
4057   SDValue HiFalse = DAG.getNode(ISD::SHL, DL, VT, Lo, ShamtMinusXLen);
4058 
4059   SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT);
4060 
4061   Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, Zero);
4062   Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse);
4063 
4064   SDValue Parts[2] = {Lo, Hi};
4065   return DAG.getMergeValues(Parts, DL);
4066 }
4067 
4068 SDValue RISCVTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG,
4069                                                   bool IsSRA) const {
4070   SDLoc DL(Op);
4071   SDValue Lo = Op.getOperand(0);
4072   SDValue Hi = Op.getOperand(1);
4073   SDValue Shamt = Op.getOperand(2);
4074   EVT VT = Lo.getValueType();
4075 
4076   // SRA expansion:
4077   //   if Shamt-XLEN < 0: // Shamt < XLEN
4078   //     Lo = (Lo >>u Shamt) | ((Hi << 1) << (ShAmt ^ XLEN-1))
4079   //     Hi = Hi >>s Shamt
4080   //   else:
4081   //     Lo = Hi >>s (Shamt-XLEN);
4082   //     Hi = Hi >>s (XLEN-1)
4083   //
4084   // SRL expansion:
4085   //   if Shamt-XLEN < 0: // Shamt < XLEN
4086   //     Lo = (Lo >>u Shamt) | ((Hi << 1) << (ShAmt ^ XLEN-1))
4087   //     Hi = Hi >>u Shamt
4088   //   else:
4089   //     Lo = Hi >>u (Shamt-XLEN);
4090   //     Hi = 0;
4091 
4092   unsigned ShiftRightOp = IsSRA ? ISD::SRA : ISD::SRL;
4093 
4094   SDValue Zero = DAG.getConstant(0, DL, VT);
4095   SDValue One = DAG.getConstant(1, DL, VT);
4096   SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT);
4097   SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT);
4098   SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen);
4099   SDValue XLenMinus1Shamt = DAG.getNode(ISD::XOR, DL, VT, Shamt, XLenMinus1);
4100 
4101   SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, Lo, Shamt);
4102   SDValue ShiftLeftHi1 = DAG.getNode(ISD::SHL, DL, VT, Hi, One);
4103   SDValue ShiftLeftHi =
4104       DAG.getNode(ISD::SHL, DL, VT, ShiftLeftHi1, XLenMinus1Shamt);
4105   SDValue LoTrue = DAG.getNode(ISD::OR, DL, VT, ShiftRightLo, ShiftLeftHi);
4106   SDValue HiTrue = DAG.getNode(ShiftRightOp, DL, VT, Hi, Shamt);
4107   SDValue LoFalse = DAG.getNode(ShiftRightOp, DL, VT, Hi, ShamtMinusXLen);
4108   SDValue HiFalse =
4109       IsSRA ? DAG.getNode(ISD::SRA, DL, VT, Hi, XLenMinus1) : Zero;
4110 
4111   SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT);
4112 
4113   Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, LoFalse);
4114   Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse);
4115 
4116   SDValue Parts[2] = {Lo, Hi};
4117   return DAG.getMergeValues(Parts, DL);
4118 }
4119 
4120 // Lower splats of i1 types to SETCC. For each mask vector type, we have a
4121 // legal equivalently-sized i8 type, so we can use that as a go-between.
4122 SDValue RISCVTargetLowering::lowerVectorMaskSplat(SDValue Op,
4123                                                   SelectionDAG &DAG) const {
4124   SDLoc DL(Op);
4125   MVT VT = Op.getSimpleValueType();
4126   SDValue SplatVal = Op.getOperand(0);
4127   // All-zeros or all-ones splats are handled specially.
4128   if (ISD::isConstantSplatVectorAllOnes(Op.getNode())) {
4129     SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second;
4130     return DAG.getNode(RISCVISD::VMSET_VL, DL, VT, VL);
4131   }
4132   if (ISD::isConstantSplatVectorAllZeros(Op.getNode())) {
4133     SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second;
4134     return DAG.getNode(RISCVISD::VMCLR_VL, DL, VT, VL);
4135   }
4136   MVT XLenVT = Subtarget.getXLenVT();
4137   assert(SplatVal.getValueType() == XLenVT &&
4138          "Unexpected type for i1 splat value");
4139   MVT InterVT = VT.changeVectorElementType(MVT::i8);
4140   SplatVal = DAG.getNode(ISD::AND, DL, XLenVT, SplatVal,
4141                          DAG.getConstant(1, DL, XLenVT));
4142   SDValue LHS = DAG.getSplatVector(InterVT, DL, SplatVal);
4143   SDValue Zero = DAG.getConstant(0, DL, InterVT);
4144   return DAG.getSetCC(DL, VT, LHS, Zero, ISD::SETNE);
4145 }
4146 
4147 // Custom-lower a SPLAT_VECTOR_PARTS where XLEN<SEW, as the SEW element type is
4148 // illegal (currently only vXi64 RV32).
4149 // FIXME: We could also catch non-constant sign-extended i32 values and lower
4150 // them to VMV_V_X_VL.
4151 SDValue RISCVTargetLowering::lowerSPLAT_VECTOR_PARTS(SDValue Op,
4152                                                      SelectionDAG &DAG) const {
4153   SDLoc DL(Op);
4154   MVT VecVT = Op.getSimpleValueType();
4155   assert(!Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64 &&
4156          "Unexpected SPLAT_VECTOR_PARTS lowering");
4157 
4158   assert(Op.getNumOperands() == 2 && "Unexpected number of operands!");
4159   SDValue Lo = Op.getOperand(0);
4160   SDValue Hi = Op.getOperand(1);
4161 
4162   if (VecVT.isFixedLengthVector()) {
4163     MVT ContainerVT = getContainerForFixedLengthVector(VecVT);
4164     SDLoc DL(Op);
4165     SDValue Mask, VL;
4166     std::tie(Mask, VL) =
4167         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
4168 
4169     SDValue Res =
4170         splatPartsI64WithVL(DL, ContainerVT, SDValue(), Lo, Hi, VL, DAG);
4171     return convertFromScalableVector(VecVT, Res, DAG, Subtarget);
4172   }
4173 
4174   if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) {
4175     int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue();
4176     int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue();
4177     // If Hi constant is all the same sign bit as Lo, lower this as a custom
4178     // node in order to try and match RVV vector/scalar instructions.
4179     if ((LoC >> 31) == HiC)
4180       return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, DAG.getUNDEF(VecVT),
4181                          Lo, DAG.getRegister(RISCV::X0, MVT::i32));
4182   }
4183 
4184   // Detect cases where Hi is (SRA Lo, 31) which means Hi is Lo sign extended.
4185   if (Hi.getOpcode() == ISD::SRA && Hi.getOperand(0) == Lo &&
4186       isa<ConstantSDNode>(Hi.getOperand(1)) &&
4187       Hi.getConstantOperandVal(1) == 31)
4188     return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, DAG.getUNDEF(VecVT), Lo,
4189                        DAG.getRegister(RISCV::X0, MVT::i32));
4190 
4191   // Fall back to use a stack store and stride x0 vector load. Use X0 as VL.
4192   return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VecVT,
4193                      DAG.getUNDEF(VecVT), Lo, Hi,
4194                      DAG.getRegister(RISCV::X0, MVT::i32));
4195 }
4196 
4197 // Custom-lower extensions from mask vectors by using a vselect either with 1
4198 // for zero/any-extension or -1 for sign-extension:
4199 //   (vXiN = (s|z)ext vXi1:vmask) -> (vXiN = vselect vmask, (-1 or 1), 0)
4200 // Note that any-extension is lowered identically to zero-extension.
4201 SDValue RISCVTargetLowering::lowerVectorMaskExt(SDValue Op, SelectionDAG &DAG,
4202                                                 int64_t ExtTrueVal) const {
4203   SDLoc DL(Op);
4204   MVT VecVT = Op.getSimpleValueType();
4205   SDValue Src = Op.getOperand(0);
4206   // Only custom-lower extensions from mask types
4207   assert(Src.getValueType().isVector() &&
4208          Src.getValueType().getVectorElementType() == MVT::i1);
4209 
4210   if (VecVT.isScalableVector()) {
4211     SDValue SplatZero = DAG.getConstant(0, DL, VecVT);
4212     SDValue SplatTrueVal = DAG.getConstant(ExtTrueVal, DL, VecVT);
4213     return DAG.getNode(ISD::VSELECT, DL, VecVT, Src, SplatTrueVal, SplatZero);
4214   }
4215 
4216   MVT ContainerVT = getContainerForFixedLengthVector(VecVT);
4217   MVT I1ContainerVT =
4218       MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
4219 
4220   SDValue CC = convertToScalableVector(I1ContainerVT, Src, DAG, Subtarget);
4221 
4222   SDValue Mask, VL;
4223   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
4224 
4225   MVT XLenVT = Subtarget.getXLenVT();
4226   SDValue SplatZero = DAG.getConstant(0, DL, XLenVT);
4227   SDValue SplatTrueVal = DAG.getConstant(ExtTrueVal, DL, XLenVT);
4228 
4229   SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
4230                           DAG.getUNDEF(ContainerVT), SplatZero, VL);
4231   SplatTrueVal = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
4232                              DAG.getUNDEF(ContainerVT), SplatTrueVal, VL);
4233   SDValue Select = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC,
4234                                SplatTrueVal, SplatZero, VL);
4235 
4236   return convertFromScalableVector(VecVT, Select, DAG, Subtarget);
4237 }
4238 
4239 SDValue RISCVTargetLowering::lowerFixedLengthVectorExtendToRVV(
4240     SDValue Op, SelectionDAG &DAG, unsigned ExtendOpc) const {
4241   MVT ExtVT = Op.getSimpleValueType();
4242   // Only custom-lower extensions from fixed-length vector types.
4243   if (!ExtVT.isFixedLengthVector())
4244     return Op;
4245   MVT VT = Op.getOperand(0).getSimpleValueType();
4246   // Grab the canonical container type for the extended type. Infer the smaller
4247   // type from that to ensure the same number of vector elements, as we know
4248   // the LMUL will be sufficient to hold the smaller type.
4249   MVT ContainerExtVT = getContainerForFixedLengthVector(ExtVT);
4250   // Get the extended container type manually to ensure the same number of
4251   // vector elements between source and dest.
4252   MVT ContainerVT = MVT::getVectorVT(VT.getVectorElementType(),
4253                                      ContainerExtVT.getVectorElementCount());
4254 
4255   SDValue Op1 =
4256       convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget);
4257 
4258   SDLoc DL(Op);
4259   SDValue Mask, VL;
4260   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
4261 
4262   SDValue Ext = DAG.getNode(ExtendOpc, DL, ContainerExtVT, Op1, Mask, VL);
4263 
4264   return convertFromScalableVector(ExtVT, Ext, DAG, Subtarget);
4265 }
4266 
4267 // Custom-lower truncations from vectors to mask vectors by using a mask and a
4268 // setcc operation:
4269 //   (vXi1 = trunc vXiN vec) -> (vXi1 = setcc (and vec, 1), 0, ne)
4270 SDValue RISCVTargetLowering::lowerVectorMaskTruncLike(SDValue Op,
4271                                                       SelectionDAG &DAG) const {
4272   bool IsVPTrunc = Op.getOpcode() == ISD::VP_TRUNCATE;
4273   SDLoc DL(Op);
4274   EVT MaskVT = Op.getValueType();
4275   // Only expect to custom-lower truncations to mask types
4276   assert(MaskVT.isVector() && MaskVT.getVectorElementType() == MVT::i1 &&
4277          "Unexpected type for vector mask lowering");
4278   SDValue Src = Op.getOperand(0);
4279   MVT VecVT = Src.getSimpleValueType();
4280   SDValue Mask, VL;
4281   if (IsVPTrunc) {
4282     Mask = Op.getOperand(1);
4283     VL = Op.getOperand(2);
4284   }
4285   // If this is a fixed vector, we need to convert it to a scalable vector.
4286   MVT ContainerVT = VecVT;
4287 
4288   if (VecVT.isFixedLengthVector()) {
4289     ContainerVT = getContainerForFixedLengthVector(VecVT);
4290     Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget);
4291     if (IsVPTrunc) {
4292       MVT MaskContainerVT =
4293           getContainerForFixedLengthVector(Mask.getSimpleValueType());
4294       Mask = convertToScalableVector(MaskContainerVT, Mask, DAG, Subtarget);
4295     }
4296   }
4297 
4298   if (!IsVPTrunc) {
4299     std::tie(Mask, VL) =
4300         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
4301   }
4302 
4303   SDValue SplatOne = DAG.getConstant(1, DL, Subtarget.getXLenVT());
4304   SDValue SplatZero = DAG.getConstant(0, DL, Subtarget.getXLenVT());
4305 
4306   SplatOne = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
4307                          DAG.getUNDEF(ContainerVT), SplatOne, VL);
4308   SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
4309                           DAG.getUNDEF(ContainerVT), SplatZero, VL);
4310 
4311   MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1);
4312   SDValue Trunc =
4313       DAG.getNode(RISCVISD::AND_VL, DL, ContainerVT, Src, SplatOne, Mask, VL);
4314   Trunc = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskContainerVT, Trunc, SplatZero,
4315                       DAG.getCondCode(ISD::SETNE), Mask, VL);
4316   if (MaskVT.isFixedLengthVector())
4317     Trunc = convertFromScalableVector(MaskVT, Trunc, DAG, Subtarget);
4318   return Trunc;
4319 }
4320 
4321 SDValue RISCVTargetLowering::lowerVectorTruncLike(SDValue Op,
4322                                                   SelectionDAG &DAG) const {
4323   bool IsVPTrunc = Op.getOpcode() == ISD::VP_TRUNCATE;
4324   SDLoc DL(Op);
4325 
4326   MVT VT = Op.getSimpleValueType();
4327   // Only custom-lower vector truncates
4328   assert(VT.isVector() && "Unexpected type for vector truncate lowering");
4329 
4330   // Truncates to mask types are handled differently
4331   if (VT.getVectorElementType() == MVT::i1)
4332     return lowerVectorMaskTruncLike(Op, DAG);
4333 
4334   // RVV only has truncates which operate from SEW*2->SEW, so lower arbitrary
4335   // truncates as a series of "RISCVISD::TRUNCATE_VECTOR_VL" nodes which
4336   // truncate by one power of two at a time.
4337   MVT DstEltVT = VT.getVectorElementType();
4338 
4339   SDValue Src = Op.getOperand(0);
4340   MVT SrcVT = Src.getSimpleValueType();
4341   MVT SrcEltVT = SrcVT.getVectorElementType();
4342 
4343   assert(DstEltVT.bitsLT(SrcEltVT) && isPowerOf2_64(DstEltVT.getSizeInBits()) &&
4344          isPowerOf2_64(SrcEltVT.getSizeInBits()) &&
4345          "Unexpected vector truncate lowering");
4346 
4347   MVT ContainerVT = SrcVT;
4348   SDValue Mask, VL;
4349   if (IsVPTrunc) {
4350     Mask = Op.getOperand(1);
4351     VL = Op.getOperand(2);
4352   }
4353   if (SrcVT.isFixedLengthVector()) {
4354     ContainerVT = getContainerForFixedLengthVector(SrcVT);
4355     Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget);
4356     if (IsVPTrunc) {
4357       MVT MaskVT = getMaskTypeFor(ContainerVT);
4358       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
4359     }
4360   }
4361 
4362   SDValue Result = Src;
4363   if (!IsVPTrunc) {
4364     std::tie(Mask, VL) =
4365         getDefaultVLOps(SrcVT, ContainerVT, DL, DAG, Subtarget);
4366   }
4367 
4368   LLVMContext &Context = *DAG.getContext();
4369   const ElementCount Count = ContainerVT.getVectorElementCount();
4370   do {
4371     SrcEltVT = MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2);
4372     EVT ResultVT = EVT::getVectorVT(Context, SrcEltVT, Count);
4373     Result = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, ResultVT, Result,
4374                          Mask, VL);
4375   } while (SrcEltVT != DstEltVT);
4376 
4377   if (SrcVT.isFixedLengthVector())
4378     Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
4379 
4380   return Result;
4381 }
4382 
4383 SDValue
4384 RISCVTargetLowering::lowerVectorFPExtendOrRoundLike(SDValue Op,
4385                                                     SelectionDAG &DAG) const {
4386   bool IsVP =
4387       Op.getOpcode() == ISD::VP_FP_ROUND || Op.getOpcode() == ISD::VP_FP_EXTEND;
4388   bool IsExtend =
4389       Op.getOpcode() == ISD::VP_FP_EXTEND || Op.getOpcode() == ISD::FP_EXTEND;
4390   // RVV can only do truncate fp to types half the size as the source. We
4391   // custom-lower f64->f16 rounds via RVV's round-to-odd float
4392   // conversion instruction.
4393   SDLoc DL(Op);
4394   MVT VT = Op.getSimpleValueType();
4395 
4396   assert(VT.isVector() && "Unexpected type for vector truncate lowering");
4397 
4398   SDValue Src = Op.getOperand(0);
4399   MVT SrcVT = Src.getSimpleValueType();
4400 
4401   bool IsDirectExtend = IsExtend && (VT.getVectorElementType() != MVT::f64 ||
4402                                      SrcVT.getVectorElementType() != MVT::f16);
4403   bool IsDirectTrunc = !IsExtend && (VT.getVectorElementType() != MVT::f16 ||
4404                                      SrcVT.getVectorElementType() != MVT::f64);
4405 
4406   bool IsDirectConv = IsDirectExtend || IsDirectTrunc;
4407 
4408   // Prepare any fixed-length vector operands.
4409   MVT ContainerVT = VT;
4410   SDValue Mask, VL;
4411   if (IsVP) {
4412     Mask = Op.getOperand(1);
4413     VL = Op.getOperand(2);
4414   }
4415   if (VT.isFixedLengthVector()) {
4416     MVT SrcContainerVT = getContainerForFixedLengthVector(SrcVT);
4417     ContainerVT =
4418         SrcContainerVT.changeVectorElementType(VT.getVectorElementType());
4419     Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget);
4420     if (IsVP) {
4421       MVT MaskVT = getMaskTypeFor(ContainerVT);
4422       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
4423     }
4424   }
4425 
4426   if (!IsVP)
4427     std::tie(Mask, VL) =
4428         getDefaultVLOps(SrcVT, ContainerVT, DL, DAG, Subtarget);
4429 
4430   unsigned ConvOpc = IsExtend ? RISCVISD::FP_EXTEND_VL : RISCVISD::FP_ROUND_VL;
4431 
4432   if (IsDirectConv) {
4433     Src = DAG.getNode(ConvOpc, DL, ContainerVT, Src, Mask, VL);
4434     if (VT.isFixedLengthVector())
4435       Src = convertFromScalableVector(VT, Src, DAG, Subtarget);
4436     return Src;
4437   }
4438 
4439   unsigned InterConvOpc =
4440       IsExtend ? RISCVISD::FP_EXTEND_VL : RISCVISD::VFNCVT_ROD_VL;
4441 
4442   MVT InterVT = ContainerVT.changeVectorElementType(MVT::f32);
4443   SDValue IntermediateConv =
4444       DAG.getNode(InterConvOpc, DL, InterVT, Src, Mask, VL);
4445   SDValue Result =
4446       DAG.getNode(ConvOpc, DL, ContainerVT, IntermediateConv, Mask, VL);
4447   if (VT.isFixedLengthVector())
4448     return convertFromScalableVector(VT, Result, DAG, Subtarget);
4449   return Result;
4450 }
4451 
4452 // Custom-legalize INSERT_VECTOR_ELT so that the value is inserted into the
4453 // first position of a vector, and that vector is slid up to the insert index.
4454 // By limiting the active vector length to index+1 and merging with the
4455 // original vector (with an undisturbed tail policy for elements >= VL), we
4456 // achieve the desired result of leaving all elements untouched except the one
4457 // at VL-1, which is replaced with the desired value.
4458 SDValue RISCVTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op,
4459                                                     SelectionDAG &DAG) const {
4460   SDLoc DL(Op);
4461   MVT VecVT = Op.getSimpleValueType();
4462   SDValue Vec = Op.getOperand(0);
4463   SDValue Val = Op.getOperand(1);
4464   SDValue Idx = Op.getOperand(2);
4465 
4466   if (VecVT.getVectorElementType() == MVT::i1) {
4467     // FIXME: For now we just promote to an i8 vector and insert into that,
4468     // but this is probably not optimal.
4469     MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount());
4470     Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec);
4471     Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, WideVT, Vec, Val, Idx);
4472     return DAG.getNode(ISD::TRUNCATE, DL, VecVT, Vec);
4473   }
4474 
4475   MVT ContainerVT = VecVT;
4476   // If the operand is a fixed-length vector, convert to a scalable one.
4477   if (VecVT.isFixedLengthVector()) {
4478     ContainerVT = getContainerForFixedLengthVector(VecVT);
4479     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
4480   }
4481 
4482   MVT XLenVT = Subtarget.getXLenVT();
4483 
4484   SDValue Zero = DAG.getConstant(0, DL, XLenVT);
4485   bool IsLegalInsert = Subtarget.is64Bit() || Val.getValueType() != MVT::i64;
4486   // Even i64-element vectors on RV32 can be lowered without scalar
4487   // legalization if the most-significant 32 bits of the value are not affected
4488   // by the sign-extension of the lower 32 bits.
4489   // TODO: We could also catch sign extensions of a 32-bit value.
4490   if (!IsLegalInsert && isa<ConstantSDNode>(Val)) {
4491     const auto *CVal = cast<ConstantSDNode>(Val);
4492     if (isInt<32>(CVal->getSExtValue())) {
4493       IsLegalInsert = true;
4494       Val = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32);
4495     }
4496   }
4497 
4498   SDValue Mask, VL;
4499   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
4500 
4501   SDValue ValInVec;
4502 
4503   if (IsLegalInsert) {
4504     unsigned Opc =
4505         VecVT.isFloatingPoint() ? RISCVISD::VFMV_S_F_VL : RISCVISD::VMV_S_X_VL;
4506     if (isNullConstant(Idx)) {
4507       Vec = DAG.getNode(Opc, DL, ContainerVT, Vec, Val, VL);
4508       if (!VecVT.isFixedLengthVector())
4509         return Vec;
4510       return convertFromScalableVector(VecVT, Vec, DAG, Subtarget);
4511     }
4512     ValInVec =
4513         DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), Val, VL);
4514   } else {
4515     // On RV32, i64-element vectors must be specially handled to place the
4516     // value at element 0, by using two vslide1up instructions in sequence on
4517     // the i32 split lo/hi value. Use an equivalently-sized i32 vector for
4518     // this.
4519     SDValue One = DAG.getConstant(1, DL, XLenVT);
4520     SDValue ValLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, Zero);
4521     SDValue ValHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, One);
4522     MVT I32ContainerVT =
4523         MVT::getVectorVT(MVT::i32, ContainerVT.getVectorElementCount() * 2);
4524     SDValue I32Mask =
4525         getDefaultScalableVLOps(I32ContainerVT, DL, DAG, Subtarget).first;
4526     // Limit the active VL to two.
4527     SDValue InsertI64VL = DAG.getConstant(2, DL, XLenVT);
4528     // Note: We can't pass a UNDEF to the first VSLIDE1UP_VL since an untied
4529     // undef doesn't obey the earlyclobber constraint. Just splat a zero value.
4530     ValInVec = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, I32ContainerVT,
4531                            DAG.getUNDEF(I32ContainerVT), Zero, InsertI64VL);
4532     // First slide in the hi value, then the lo in underneath it.
4533     ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT,
4534                            DAG.getUNDEF(I32ContainerVT), ValInVec, ValHi,
4535                            I32Mask, InsertI64VL);
4536     ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT,
4537                            DAG.getUNDEF(I32ContainerVT), ValInVec, ValLo,
4538                            I32Mask, InsertI64VL);
4539     // Bitcast back to the right container type.
4540     ValInVec = DAG.getBitcast(ContainerVT, ValInVec);
4541   }
4542 
4543   // Now that the value is in a vector, slide it into position.
4544   SDValue InsertVL =
4545       DAG.getNode(ISD::ADD, DL, XLenVT, Idx, DAG.getConstant(1, DL, XLenVT));
4546   SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec,
4547                                 ValInVec, Idx, Mask, InsertVL);
4548   if (!VecVT.isFixedLengthVector())
4549     return Slideup;
4550   return convertFromScalableVector(VecVT, Slideup, DAG, Subtarget);
4551 }
4552 
4553 // Custom-lower EXTRACT_VECTOR_ELT operations to slide the vector down, then
4554 // extract the first element: (extractelt (slidedown vec, idx), 0). For integer
4555 // types this is done using VMV_X_S to allow us to glean information about the
4556 // sign bits of the result.
4557 SDValue RISCVTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op,
4558                                                      SelectionDAG &DAG) const {
4559   SDLoc DL(Op);
4560   SDValue Idx = Op.getOperand(1);
4561   SDValue Vec = Op.getOperand(0);
4562   EVT EltVT = Op.getValueType();
4563   MVT VecVT = Vec.getSimpleValueType();
4564   MVT XLenVT = Subtarget.getXLenVT();
4565 
4566   if (VecVT.getVectorElementType() == MVT::i1) {
4567     if (VecVT.isFixedLengthVector()) {
4568       unsigned NumElts = VecVT.getVectorNumElements();
4569       if (NumElts >= 8) {
4570         MVT WideEltVT;
4571         unsigned WidenVecLen;
4572         SDValue ExtractElementIdx;
4573         SDValue ExtractBitIdx;
4574         unsigned MaxEEW = Subtarget.getELEN();
4575         MVT LargestEltVT = MVT::getIntegerVT(
4576             std::min(MaxEEW, unsigned(XLenVT.getSizeInBits())));
4577         if (NumElts <= LargestEltVT.getSizeInBits()) {
4578           assert(isPowerOf2_32(NumElts) &&
4579                  "the number of elements should be power of 2");
4580           WideEltVT = MVT::getIntegerVT(NumElts);
4581           WidenVecLen = 1;
4582           ExtractElementIdx = DAG.getConstant(0, DL, XLenVT);
4583           ExtractBitIdx = Idx;
4584         } else {
4585           WideEltVT = LargestEltVT;
4586           WidenVecLen = NumElts / WideEltVT.getSizeInBits();
4587           // extract element index = index / element width
4588           ExtractElementIdx = DAG.getNode(
4589               ISD::SRL, DL, XLenVT, Idx,
4590               DAG.getConstant(Log2_64(WideEltVT.getSizeInBits()), DL, XLenVT));
4591           // mask bit index = index % element width
4592           ExtractBitIdx = DAG.getNode(
4593               ISD::AND, DL, XLenVT, Idx,
4594               DAG.getConstant(WideEltVT.getSizeInBits() - 1, DL, XLenVT));
4595         }
4596         MVT WideVT = MVT::getVectorVT(WideEltVT, WidenVecLen);
4597         Vec = DAG.getNode(ISD::BITCAST, DL, WideVT, Vec);
4598         SDValue ExtractElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, XLenVT,
4599                                          Vec, ExtractElementIdx);
4600         // Extract the bit from GPR.
4601         SDValue ShiftRight =
4602             DAG.getNode(ISD::SRL, DL, XLenVT, ExtractElt, ExtractBitIdx);
4603         return DAG.getNode(ISD::AND, DL, XLenVT, ShiftRight,
4604                            DAG.getConstant(1, DL, XLenVT));
4605       }
4606     }
4607     // Otherwise, promote to an i8 vector and extract from that.
4608     MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount());
4609     Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec);
4610     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec, Idx);
4611   }
4612 
4613   // If this is a fixed vector, we need to convert it to a scalable vector.
4614   MVT ContainerVT = VecVT;
4615   if (VecVT.isFixedLengthVector()) {
4616     ContainerVT = getContainerForFixedLengthVector(VecVT);
4617     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
4618   }
4619 
4620   // If the index is 0, the vector is already in the right position.
4621   if (!isNullConstant(Idx)) {
4622     // Use a VL of 1 to avoid processing more elements than we need.
4623     SDValue VL = DAG.getConstant(1, DL, XLenVT);
4624     SDValue Mask = getAllOnesMask(ContainerVT, VL, DL, DAG);
4625     Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT,
4626                       DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL);
4627   }
4628 
4629   if (!EltVT.isInteger()) {
4630     // Floating-point extracts are handled in TableGen.
4631     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec,
4632                        DAG.getConstant(0, DL, XLenVT));
4633   }
4634 
4635   SDValue Elt0 = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec);
4636   return DAG.getNode(ISD::TRUNCATE, DL, EltVT, Elt0);
4637 }
4638 
4639 // Some RVV intrinsics may claim that they want an integer operand to be
4640 // promoted or expanded.
4641 static SDValue lowerVectorIntrinsicScalars(SDValue Op, SelectionDAG &DAG,
4642                                            const RISCVSubtarget &Subtarget) {
4643   assert((Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
4644           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN) &&
4645          "Unexpected opcode");
4646 
4647   if (!Subtarget.hasVInstructions())
4648     return SDValue();
4649 
4650   bool HasChain = Op.getOpcode() == ISD::INTRINSIC_W_CHAIN;
4651   unsigned IntNo = Op.getConstantOperandVal(HasChain ? 1 : 0);
4652   SDLoc DL(Op);
4653 
4654   const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II =
4655       RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo);
4656   if (!II || !II->hasScalarOperand())
4657     return SDValue();
4658 
4659   unsigned SplatOp = II->ScalarOperand + 1 + HasChain;
4660   assert(SplatOp < Op.getNumOperands());
4661 
4662   SmallVector<SDValue, 8> Operands(Op->op_begin(), Op->op_end());
4663   SDValue &ScalarOp = Operands[SplatOp];
4664   MVT OpVT = ScalarOp.getSimpleValueType();
4665   MVT XLenVT = Subtarget.getXLenVT();
4666 
4667   // If this isn't a scalar, or its type is XLenVT we're done.
4668   if (!OpVT.isScalarInteger() || OpVT == XLenVT)
4669     return SDValue();
4670 
4671   // Simplest case is that the operand needs to be promoted to XLenVT.
4672   if (OpVT.bitsLT(XLenVT)) {
4673     // If the operand is a constant, sign extend to increase our chances
4674     // of being able to use a .vi instruction. ANY_EXTEND would become a
4675     // a zero extend and the simm5 check in isel would fail.
4676     // FIXME: Should we ignore the upper bits in isel instead?
4677     unsigned ExtOpc =
4678         isa<ConstantSDNode>(ScalarOp) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND;
4679     ScalarOp = DAG.getNode(ExtOpc, DL, XLenVT, ScalarOp);
4680     return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands);
4681   }
4682 
4683   // Use the previous operand to get the vXi64 VT. The result might be a mask
4684   // VT for compares. Using the previous operand assumes that the previous
4685   // operand will never have a smaller element size than a scalar operand and
4686   // that a widening operation never uses SEW=64.
4687   // NOTE: If this fails the below assert, we can probably just find the
4688   // element count from any operand or result and use it to construct the VT.
4689   assert(II->ScalarOperand > 0 && "Unexpected splat operand!");
4690   MVT VT = Op.getOperand(SplatOp - 1).getSimpleValueType();
4691 
4692   // The more complex case is when the scalar is larger than XLenVT.
4693   assert(XLenVT == MVT::i32 && OpVT == MVT::i64 &&
4694          VT.getVectorElementType() == MVT::i64 && "Unexpected VTs!");
4695 
4696   // If this is a sign-extended 32-bit value, we can truncate it and rely on the
4697   // instruction to sign-extend since SEW>XLEN.
4698   if (DAG.ComputeNumSignBits(ScalarOp) > 32) {
4699     ScalarOp = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, ScalarOp);
4700     return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands);
4701   }
4702 
4703   switch (IntNo) {
4704   case Intrinsic::riscv_vslide1up:
4705   case Intrinsic::riscv_vslide1down:
4706   case Intrinsic::riscv_vslide1up_mask:
4707   case Intrinsic::riscv_vslide1down_mask: {
4708     // We need to special case these when the scalar is larger than XLen.
4709     unsigned NumOps = Op.getNumOperands();
4710     bool IsMasked = NumOps == 7;
4711 
4712     // Convert the vector source to the equivalent nxvXi32 vector.
4713     MVT I32VT = MVT::getVectorVT(MVT::i32, VT.getVectorElementCount() * 2);
4714     SDValue Vec = DAG.getBitcast(I32VT, Operands[2]);
4715 
4716     SDValue ScalarLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, ScalarOp,
4717                                    DAG.getConstant(0, DL, XLenVT));
4718     SDValue ScalarHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, ScalarOp,
4719                                    DAG.getConstant(1, DL, XLenVT));
4720 
4721     // Double the VL since we halved SEW.
4722     SDValue AVL = getVLOperand(Op);
4723     SDValue I32VL;
4724 
4725     // Optimize for constant AVL
4726     if (isa<ConstantSDNode>(AVL)) {
4727       unsigned EltSize = VT.getScalarSizeInBits();
4728       unsigned MinSize = VT.getSizeInBits().getKnownMinValue();
4729 
4730       unsigned VectorBitsMax = Subtarget.getRealMaxVLen();
4731       unsigned MaxVLMAX =
4732           RISCVTargetLowering::computeVLMAX(VectorBitsMax, EltSize, MinSize);
4733 
4734       unsigned VectorBitsMin = Subtarget.getRealMinVLen();
4735       unsigned MinVLMAX =
4736           RISCVTargetLowering::computeVLMAX(VectorBitsMin, EltSize, MinSize);
4737 
4738       uint64_t AVLInt = cast<ConstantSDNode>(AVL)->getZExtValue();
4739       if (AVLInt <= MinVLMAX) {
4740         I32VL = DAG.getConstant(2 * AVLInt, DL, XLenVT);
4741       } else if (AVLInt >= 2 * MaxVLMAX) {
4742         // Just set vl to VLMAX in this situation
4743         RISCVII::VLMUL Lmul = RISCVTargetLowering::getLMUL(I32VT);
4744         SDValue LMUL = DAG.getConstant(Lmul, DL, XLenVT);
4745         unsigned Sew = RISCVVType::encodeSEW(I32VT.getScalarSizeInBits());
4746         SDValue SEW = DAG.getConstant(Sew, DL, XLenVT);
4747         SDValue SETVLMAX = DAG.getTargetConstant(
4748             Intrinsic::riscv_vsetvlimax_opt, DL, MVT::i32);
4749         I32VL = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, XLenVT, SETVLMAX, SEW,
4750                             LMUL);
4751       } else {
4752         // For AVL between (MinVLMAX, 2 * MaxVLMAX), the actual working vl
4753         // is related to the hardware implementation.
4754         // So let the following code handle
4755       }
4756     }
4757     if (!I32VL) {
4758       RISCVII::VLMUL Lmul = RISCVTargetLowering::getLMUL(VT);
4759       SDValue LMUL = DAG.getConstant(Lmul, DL, XLenVT);
4760       unsigned Sew = RISCVVType::encodeSEW(VT.getScalarSizeInBits());
4761       SDValue SEW = DAG.getConstant(Sew, DL, XLenVT);
4762       SDValue SETVL =
4763           DAG.getTargetConstant(Intrinsic::riscv_vsetvli_opt, DL, MVT::i32);
4764       // Using vsetvli instruction to get actually used length which related to
4765       // the hardware implementation
4766       SDValue VL = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, XLenVT, SETVL, AVL,
4767                                SEW, LMUL);
4768       I32VL =
4769           DAG.getNode(ISD::SHL, DL, XLenVT, VL, DAG.getConstant(1, DL, XLenVT));
4770     }
4771 
4772     SDValue I32Mask = getAllOnesMask(I32VT, I32VL, DL, DAG);
4773 
4774     // Shift the two scalar parts in using SEW=32 slide1up/slide1down
4775     // instructions.
4776     SDValue Passthru;
4777     if (IsMasked)
4778       Passthru = DAG.getUNDEF(I32VT);
4779     else
4780       Passthru = DAG.getBitcast(I32VT, Operands[1]);
4781 
4782     if (IntNo == Intrinsic::riscv_vslide1up ||
4783         IntNo == Intrinsic::riscv_vslide1up_mask) {
4784       Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Passthru, Vec,
4785                         ScalarHi, I32Mask, I32VL);
4786       Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Passthru, Vec,
4787                         ScalarLo, I32Mask, I32VL);
4788     } else {
4789       Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Passthru, Vec,
4790                         ScalarLo, I32Mask, I32VL);
4791       Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Passthru, Vec,
4792                         ScalarHi, I32Mask, I32VL);
4793     }
4794 
4795     // Convert back to nxvXi64.
4796     Vec = DAG.getBitcast(VT, Vec);
4797 
4798     if (!IsMasked)
4799       return Vec;
4800     // Apply mask after the operation.
4801     SDValue Mask = Operands[NumOps - 3];
4802     SDValue MaskedOff = Operands[1];
4803     // Assume Policy operand is the last operand.
4804     uint64_t Policy =
4805         cast<ConstantSDNode>(Operands[NumOps - 1])->getZExtValue();
4806     // We don't need to select maskedoff if it's undef.
4807     if (MaskedOff.isUndef())
4808       return Vec;
4809     // TAMU
4810     if (Policy == RISCVII::TAIL_AGNOSTIC)
4811       return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, Mask, Vec, MaskedOff,
4812                          AVL);
4813     // TUMA or TUMU: Currently we always emit tumu policy regardless of tuma.
4814     // It's fine because vmerge does not care mask policy.
4815     return DAG.getNode(RISCVISD::VP_MERGE_VL, DL, VT, Mask, Vec, MaskedOff,
4816                        AVL);
4817   }
4818   }
4819 
4820   // We need to convert the scalar to a splat vector.
4821   SDValue VL = getVLOperand(Op);
4822   assert(VL.getValueType() == XLenVT);
4823   ScalarOp = splatSplitI64WithVL(DL, VT, SDValue(), ScalarOp, VL, DAG);
4824   return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands);
4825 }
4826 
4827 SDValue RISCVTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
4828                                                      SelectionDAG &DAG) const {
4829   unsigned IntNo = Op.getConstantOperandVal(0);
4830   SDLoc DL(Op);
4831   MVT XLenVT = Subtarget.getXLenVT();
4832 
4833   switch (IntNo) {
4834   default:
4835     break; // Don't custom lower most intrinsics.
4836   case Intrinsic::thread_pointer: {
4837     EVT PtrVT = getPointerTy(DAG.getDataLayout());
4838     return DAG.getRegister(RISCV::X4, PtrVT);
4839   }
4840   case Intrinsic::riscv_orc_b:
4841   case Intrinsic::riscv_brev8: {
4842     // Lower to the GORCI encoding for orc.b or the GREVI encoding for brev8.
4843     unsigned Opc =
4844         IntNo == Intrinsic::riscv_brev8 ? RISCVISD::GREV : RISCVISD::GORC;
4845     return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1),
4846                        DAG.getConstant(7, DL, XLenVT));
4847   }
4848   case Intrinsic::riscv_grev:
4849   case Intrinsic::riscv_gorc: {
4850     unsigned Opc =
4851         IntNo == Intrinsic::riscv_grev ? RISCVISD::GREV : RISCVISD::GORC;
4852     return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2));
4853   }
4854   case Intrinsic::riscv_zip:
4855   case Intrinsic::riscv_unzip: {
4856     // Lower to the SHFLI encoding for zip or the UNSHFLI encoding for unzip.
4857     // For i32 the immediate is 15. For i64 the immediate is 31.
4858     unsigned Opc =
4859         IntNo == Intrinsic::riscv_zip ? RISCVISD::SHFL : RISCVISD::UNSHFL;
4860     unsigned BitWidth = Op.getValueSizeInBits();
4861     assert(isPowerOf2_32(BitWidth) && BitWidth >= 2 && "Unexpected bit width");
4862     return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1),
4863                        DAG.getConstant((BitWidth / 2) - 1, DL, XLenVT));
4864   }
4865   case Intrinsic::riscv_shfl:
4866   case Intrinsic::riscv_unshfl: {
4867     unsigned Opc =
4868         IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL;
4869     return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2));
4870   }
4871   case Intrinsic::riscv_bcompress:
4872   case Intrinsic::riscv_bdecompress: {
4873     unsigned Opc = IntNo == Intrinsic::riscv_bcompress ? RISCVISD::BCOMPRESS
4874                                                        : RISCVISD::BDECOMPRESS;
4875     return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2));
4876   }
4877   case Intrinsic::riscv_bfp:
4878     return DAG.getNode(RISCVISD::BFP, DL, XLenVT, Op.getOperand(1),
4879                        Op.getOperand(2));
4880   case Intrinsic::riscv_fsl:
4881     return DAG.getNode(RISCVISD::FSL, DL, XLenVT, Op.getOperand(1),
4882                        Op.getOperand(2), Op.getOperand(3));
4883   case Intrinsic::riscv_fsr:
4884     return DAG.getNode(RISCVISD::FSR, DL, XLenVT, Op.getOperand(1),
4885                        Op.getOperand(2), Op.getOperand(3));
4886   case Intrinsic::riscv_vmv_x_s:
4887     assert(Op.getValueType() == XLenVT && "Unexpected VT!");
4888     return DAG.getNode(RISCVISD::VMV_X_S, DL, Op.getValueType(),
4889                        Op.getOperand(1));
4890   case Intrinsic::riscv_vmv_v_x:
4891     return lowerScalarSplat(Op.getOperand(1), Op.getOperand(2),
4892                             Op.getOperand(3), Op.getSimpleValueType(), DL, DAG,
4893                             Subtarget);
4894   case Intrinsic::riscv_vfmv_v_f:
4895     return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, Op.getValueType(),
4896                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
4897   case Intrinsic::riscv_vmv_s_x: {
4898     SDValue Scalar = Op.getOperand(2);
4899 
4900     if (Scalar.getValueType().bitsLE(XLenVT)) {
4901       Scalar = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Scalar);
4902       return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, Op.getValueType(),
4903                          Op.getOperand(1), Scalar, Op.getOperand(3));
4904     }
4905 
4906     assert(Scalar.getValueType() == MVT::i64 && "Unexpected scalar VT!");
4907 
4908     // This is an i64 value that lives in two scalar registers. We have to
4909     // insert this in a convoluted way. First we build vXi64 splat containing
4910     // the two values that we assemble using some bit math. Next we'll use
4911     // vid.v and vmseq to build a mask with bit 0 set. Then we'll use that mask
4912     // to merge element 0 from our splat into the source vector.
4913     // FIXME: This is probably not the best way to do this, but it is
4914     // consistent with INSERT_VECTOR_ELT lowering so it is a good starting
4915     // point.
4916     //   sw lo, (a0)
4917     //   sw hi, 4(a0)
4918     //   vlse vX, (a0)
4919     //
4920     //   vid.v      vVid
4921     //   vmseq.vx   mMask, vVid, 0
4922     //   vmerge.vvm vDest, vSrc, vVal, mMask
4923     MVT VT = Op.getSimpleValueType();
4924     SDValue Vec = Op.getOperand(1);
4925     SDValue VL = getVLOperand(Op);
4926 
4927     SDValue SplattedVal = splatSplitI64WithVL(DL, VT, SDValue(), Scalar, VL, DAG);
4928     if (Op.getOperand(1).isUndef())
4929       return SplattedVal;
4930     SDValue SplattedIdx =
4931         DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, DAG.getUNDEF(VT),
4932                     DAG.getConstant(0, DL, MVT::i32), VL);
4933 
4934     MVT MaskVT = getMaskTypeFor(VT);
4935     SDValue Mask = getAllOnesMask(VT, VL, DL, DAG);
4936     SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL);
4937     SDValue SelectCond =
4938         DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, VID, SplattedIdx,
4939                     DAG.getCondCode(ISD::SETEQ), Mask, VL);
4940     return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, SelectCond, SplattedVal,
4941                        Vec, VL);
4942   }
4943   }
4944 
4945   return lowerVectorIntrinsicScalars(Op, DAG, Subtarget);
4946 }
4947 
4948 SDValue RISCVTargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op,
4949                                                     SelectionDAG &DAG) const {
4950   unsigned IntNo = Op.getConstantOperandVal(1);
4951   switch (IntNo) {
4952   default:
4953     break;
4954   case Intrinsic::riscv_masked_strided_load: {
4955     SDLoc DL(Op);
4956     MVT XLenVT = Subtarget.getXLenVT();
4957 
4958     // If the mask is known to be all ones, optimize to an unmasked intrinsic;
4959     // the selection of the masked intrinsics doesn't do this for us.
4960     SDValue Mask = Op.getOperand(5);
4961     bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
4962 
4963     MVT VT = Op->getSimpleValueType(0);
4964     MVT ContainerVT = getContainerForFixedLengthVector(VT);
4965 
4966     SDValue PassThru = Op.getOperand(2);
4967     if (!IsUnmasked) {
4968       MVT MaskVT = getMaskTypeFor(ContainerVT);
4969       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
4970       PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget);
4971     }
4972 
4973     SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT);
4974 
4975     SDValue IntID = DAG.getTargetConstant(
4976         IsUnmasked ? Intrinsic::riscv_vlse : Intrinsic::riscv_vlse_mask, DL,
4977         XLenVT);
4978 
4979     auto *Load = cast<MemIntrinsicSDNode>(Op);
4980     SmallVector<SDValue, 8> Ops{Load->getChain(), IntID};
4981     if (IsUnmasked)
4982       Ops.push_back(DAG.getUNDEF(ContainerVT));
4983     else
4984       Ops.push_back(PassThru);
4985     Ops.push_back(Op.getOperand(3)); // Ptr
4986     Ops.push_back(Op.getOperand(4)); // Stride
4987     if (!IsUnmasked)
4988       Ops.push_back(Mask);
4989     Ops.push_back(VL);
4990     if (!IsUnmasked) {
4991       SDValue Policy = DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT);
4992       Ops.push_back(Policy);
4993     }
4994 
4995     SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
4996     SDValue Result =
4997         DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops,
4998                                 Load->getMemoryVT(), Load->getMemOperand());
4999     SDValue Chain = Result.getValue(1);
5000     Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
5001     return DAG.getMergeValues({Result, Chain}, DL);
5002   }
5003   case Intrinsic::riscv_seg2_load:
5004   case Intrinsic::riscv_seg3_load:
5005   case Intrinsic::riscv_seg4_load:
5006   case Intrinsic::riscv_seg5_load:
5007   case Intrinsic::riscv_seg6_load:
5008   case Intrinsic::riscv_seg7_load:
5009   case Intrinsic::riscv_seg8_load: {
5010     SDLoc DL(Op);
5011     static const Intrinsic::ID VlsegInts[7] = {
5012         Intrinsic::riscv_vlseg2, Intrinsic::riscv_vlseg3,
5013         Intrinsic::riscv_vlseg4, Intrinsic::riscv_vlseg5,
5014         Intrinsic::riscv_vlseg6, Intrinsic::riscv_vlseg7,
5015         Intrinsic::riscv_vlseg8};
5016     unsigned NF = Op->getNumValues() - 1;
5017     assert(NF >= 2 && NF <= 8 && "Unexpected seg number");
5018     MVT XLenVT = Subtarget.getXLenVT();
5019     MVT VT = Op->getSimpleValueType(0);
5020     MVT ContainerVT = getContainerForFixedLengthVector(VT);
5021 
5022     SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT);
5023     SDValue IntID = DAG.getTargetConstant(VlsegInts[NF - 2], DL, XLenVT);
5024     auto *Load = cast<MemIntrinsicSDNode>(Op);
5025     SmallVector<EVT, 9> ContainerVTs(NF, ContainerVT);
5026     ContainerVTs.push_back(MVT::Other);
5027     SDVTList VTs = DAG.getVTList(ContainerVTs);
5028     SmallVector<SDValue, 12> Ops = {Load->getChain(), IntID};
5029     Ops.insert(Ops.end(), NF, DAG.getUNDEF(ContainerVT));
5030     Ops.push_back(Op.getOperand(2));
5031     Ops.push_back(VL);
5032     SDValue Result =
5033         DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops,
5034                                 Load->getMemoryVT(), Load->getMemOperand());
5035     SmallVector<SDValue, 9> Results;
5036     for (unsigned int RetIdx = 0; RetIdx < NF; RetIdx++)
5037       Results.push_back(convertFromScalableVector(VT, Result.getValue(RetIdx),
5038                                                   DAG, Subtarget));
5039     Results.push_back(Result.getValue(NF));
5040     return DAG.getMergeValues(Results, DL);
5041   }
5042   }
5043 
5044   return lowerVectorIntrinsicScalars(Op, DAG, Subtarget);
5045 }
5046 
5047 SDValue RISCVTargetLowering::LowerINTRINSIC_VOID(SDValue Op,
5048                                                  SelectionDAG &DAG) const {
5049   unsigned IntNo = Op.getConstantOperandVal(1);
5050   switch (IntNo) {
5051   default:
5052     break;
5053   case Intrinsic::riscv_masked_strided_store: {
5054     SDLoc DL(Op);
5055     MVT XLenVT = Subtarget.getXLenVT();
5056 
5057     // If the mask is known to be all ones, optimize to an unmasked intrinsic;
5058     // the selection of the masked intrinsics doesn't do this for us.
5059     SDValue Mask = Op.getOperand(5);
5060     bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
5061 
5062     SDValue Val = Op.getOperand(2);
5063     MVT VT = Val.getSimpleValueType();
5064     MVT ContainerVT = getContainerForFixedLengthVector(VT);
5065 
5066     Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget);
5067     if (!IsUnmasked) {
5068       MVT MaskVT = getMaskTypeFor(ContainerVT);
5069       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
5070     }
5071 
5072     SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT);
5073 
5074     SDValue IntID = DAG.getTargetConstant(
5075         IsUnmasked ? Intrinsic::riscv_vsse : Intrinsic::riscv_vsse_mask, DL,
5076         XLenVT);
5077 
5078     auto *Store = cast<MemIntrinsicSDNode>(Op);
5079     SmallVector<SDValue, 8> Ops{Store->getChain(), IntID};
5080     Ops.push_back(Val);
5081     Ops.push_back(Op.getOperand(3)); // Ptr
5082     Ops.push_back(Op.getOperand(4)); // Stride
5083     if (!IsUnmasked)
5084       Ops.push_back(Mask);
5085     Ops.push_back(VL);
5086 
5087     return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, Store->getVTList(),
5088                                    Ops, Store->getMemoryVT(),
5089                                    Store->getMemOperand());
5090   }
5091   }
5092 
5093   return SDValue();
5094 }
5095 
5096 static MVT getLMUL1VT(MVT VT) {
5097   assert(VT.getVectorElementType().getSizeInBits() <= 64 &&
5098          "Unexpected vector MVT");
5099   return MVT::getScalableVectorVT(
5100       VT.getVectorElementType(),
5101       RISCV::RVVBitsPerBlock / VT.getVectorElementType().getSizeInBits());
5102 }
5103 
5104 static unsigned getRVVReductionOp(unsigned ISDOpcode) {
5105   switch (ISDOpcode) {
5106   default:
5107     llvm_unreachable("Unhandled reduction");
5108   case ISD::VECREDUCE_ADD:
5109     return RISCVISD::VECREDUCE_ADD_VL;
5110   case ISD::VECREDUCE_UMAX:
5111     return RISCVISD::VECREDUCE_UMAX_VL;
5112   case ISD::VECREDUCE_SMAX:
5113     return RISCVISD::VECREDUCE_SMAX_VL;
5114   case ISD::VECREDUCE_UMIN:
5115     return RISCVISD::VECREDUCE_UMIN_VL;
5116   case ISD::VECREDUCE_SMIN:
5117     return RISCVISD::VECREDUCE_SMIN_VL;
5118   case ISD::VECREDUCE_AND:
5119     return RISCVISD::VECREDUCE_AND_VL;
5120   case ISD::VECREDUCE_OR:
5121     return RISCVISD::VECREDUCE_OR_VL;
5122   case ISD::VECREDUCE_XOR:
5123     return RISCVISD::VECREDUCE_XOR_VL;
5124   }
5125 }
5126 
5127 SDValue RISCVTargetLowering::lowerVectorMaskVecReduction(SDValue Op,
5128                                                          SelectionDAG &DAG,
5129                                                          bool IsVP) const {
5130   SDLoc DL(Op);
5131   SDValue Vec = Op.getOperand(IsVP ? 1 : 0);
5132   MVT VecVT = Vec.getSimpleValueType();
5133   assert((Op.getOpcode() == ISD::VECREDUCE_AND ||
5134           Op.getOpcode() == ISD::VECREDUCE_OR ||
5135           Op.getOpcode() == ISD::VECREDUCE_XOR ||
5136           Op.getOpcode() == ISD::VP_REDUCE_AND ||
5137           Op.getOpcode() == ISD::VP_REDUCE_OR ||
5138           Op.getOpcode() == ISD::VP_REDUCE_XOR) &&
5139          "Unexpected reduction lowering");
5140 
5141   MVT XLenVT = Subtarget.getXLenVT();
5142   assert(Op.getValueType() == XLenVT &&
5143          "Expected reduction output to be legalized to XLenVT");
5144 
5145   MVT ContainerVT = VecVT;
5146   if (VecVT.isFixedLengthVector()) {
5147     ContainerVT = getContainerForFixedLengthVector(VecVT);
5148     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
5149   }
5150 
5151   SDValue Mask, VL;
5152   if (IsVP) {
5153     Mask = Op.getOperand(2);
5154     VL = Op.getOperand(3);
5155   } else {
5156     std::tie(Mask, VL) =
5157         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
5158   }
5159 
5160   unsigned BaseOpc;
5161   ISD::CondCode CC;
5162   SDValue Zero = DAG.getConstant(0, DL, XLenVT);
5163 
5164   switch (Op.getOpcode()) {
5165   default:
5166     llvm_unreachable("Unhandled reduction");
5167   case ISD::VECREDUCE_AND:
5168   case ISD::VP_REDUCE_AND: {
5169     // vcpop ~x == 0
5170     SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL);
5171     Vec = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Vec, TrueMask, VL);
5172     Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL);
5173     CC = ISD::SETEQ;
5174     BaseOpc = ISD::AND;
5175     break;
5176   }
5177   case ISD::VECREDUCE_OR:
5178   case ISD::VP_REDUCE_OR:
5179     // vcpop x != 0
5180     Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL);
5181     CC = ISD::SETNE;
5182     BaseOpc = ISD::OR;
5183     break;
5184   case ISD::VECREDUCE_XOR:
5185   case ISD::VP_REDUCE_XOR: {
5186     // ((vcpop x) & 1) != 0
5187     SDValue One = DAG.getConstant(1, DL, XLenVT);
5188     Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL);
5189     Vec = DAG.getNode(ISD::AND, DL, XLenVT, Vec, One);
5190     CC = ISD::SETNE;
5191     BaseOpc = ISD::XOR;
5192     break;
5193   }
5194   }
5195 
5196   SDValue SetCC = DAG.getSetCC(DL, XLenVT, Vec, Zero, CC);
5197 
5198   if (!IsVP)
5199     return SetCC;
5200 
5201   // Now include the start value in the operation.
5202   // Note that we must return the start value when no elements are operated
5203   // upon. The vcpop instructions we've emitted in each case above will return
5204   // 0 for an inactive vector, and so we've already received the neutral value:
5205   // AND gives us (0 == 0) -> 1 and OR/XOR give us (0 != 0) -> 0. Therefore we
5206   // can simply include the start value.
5207   return DAG.getNode(BaseOpc, DL, XLenVT, SetCC, Op.getOperand(0));
5208 }
5209 
5210 SDValue RISCVTargetLowering::lowerVECREDUCE(SDValue Op,
5211                                             SelectionDAG &DAG) const {
5212   SDLoc DL(Op);
5213   SDValue Vec = Op.getOperand(0);
5214   EVT VecEVT = Vec.getValueType();
5215 
5216   unsigned BaseOpc = ISD::getVecReduceBaseOpcode(Op.getOpcode());
5217 
5218   // Due to ordering in legalize types we may have a vector type that needs to
5219   // be split. Do that manually so we can get down to a legal type.
5220   while (getTypeAction(*DAG.getContext(), VecEVT) ==
5221          TargetLowering::TypeSplitVector) {
5222     SDValue Lo, Hi;
5223     std::tie(Lo, Hi) = DAG.SplitVector(Vec, DL);
5224     VecEVT = Lo.getValueType();
5225     Vec = DAG.getNode(BaseOpc, DL, VecEVT, Lo, Hi);
5226   }
5227 
5228   // TODO: The type may need to be widened rather than split. Or widened before
5229   // it can be split.
5230   if (!isTypeLegal(VecEVT))
5231     return SDValue();
5232 
5233   MVT VecVT = VecEVT.getSimpleVT();
5234   MVT VecEltVT = VecVT.getVectorElementType();
5235   unsigned RVVOpcode = getRVVReductionOp(Op.getOpcode());
5236 
5237   MVT ContainerVT = VecVT;
5238   if (VecVT.isFixedLengthVector()) {
5239     ContainerVT = getContainerForFixedLengthVector(VecVT);
5240     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
5241   }
5242 
5243   MVT M1VT = getLMUL1VT(ContainerVT);
5244   MVT XLenVT = Subtarget.getXLenVT();
5245 
5246   SDValue Mask, VL;
5247   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
5248 
5249   SDValue NeutralElem =
5250       DAG.getNeutralElement(BaseOpc, DL, VecEltVT, SDNodeFlags());
5251   SDValue IdentitySplat =
5252       lowerScalarSplat(SDValue(), NeutralElem, DAG.getConstant(1, DL, XLenVT),
5253                        M1VT, DL, DAG, Subtarget);
5254   SDValue Reduction = DAG.getNode(RVVOpcode, DL, M1VT, DAG.getUNDEF(M1VT), Vec,
5255                                   IdentitySplat, Mask, VL);
5256   SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction,
5257                              DAG.getConstant(0, DL, XLenVT));
5258   return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType());
5259 }
5260 
5261 // Given a reduction op, this function returns the matching reduction opcode,
5262 // the vector SDValue and the scalar SDValue required to lower this to a
5263 // RISCVISD node.
5264 static std::tuple<unsigned, SDValue, SDValue>
5265 getRVVFPReductionOpAndOperands(SDValue Op, SelectionDAG &DAG, EVT EltVT) {
5266   SDLoc DL(Op);
5267   auto Flags = Op->getFlags();
5268   unsigned Opcode = Op.getOpcode();
5269   unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Opcode);
5270   switch (Opcode) {
5271   default:
5272     llvm_unreachable("Unhandled reduction");
5273   case ISD::VECREDUCE_FADD: {
5274     // Use positive zero if we can. It is cheaper to materialize.
5275     SDValue Zero =
5276         DAG.getConstantFP(Flags.hasNoSignedZeros() ? 0.0 : -0.0, DL, EltVT);
5277     return std::make_tuple(RISCVISD::VECREDUCE_FADD_VL, Op.getOperand(0), Zero);
5278   }
5279   case ISD::VECREDUCE_SEQ_FADD:
5280     return std::make_tuple(RISCVISD::VECREDUCE_SEQ_FADD_VL, Op.getOperand(1),
5281                            Op.getOperand(0));
5282   case ISD::VECREDUCE_FMIN:
5283     return std::make_tuple(RISCVISD::VECREDUCE_FMIN_VL, Op.getOperand(0),
5284                            DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags));
5285   case ISD::VECREDUCE_FMAX:
5286     return std::make_tuple(RISCVISD::VECREDUCE_FMAX_VL, Op.getOperand(0),
5287                            DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags));
5288   }
5289 }
5290 
5291 SDValue RISCVTargetLowering::lowerFPVECREDUCE(SDValue Op,
5292                                               SelectionDAG &DAG) const {
5293   SDLoc DL(Op);
5294   MVT VecEltVT = Op.getSimpleValueType();
5295 
5296   unsigned RVVOpcode;
5297   SDValue VectorVal, ScalarVal;
5298   std::tie(RVVOpcode, VectorVal, ScalarVal) =
5299       getRVVFPReductionOpAndOperands(Op, DAG, VecEltVT);
5300   MVT VecVT = VectorVal.getSimpleValueType();
5301 
5302   MVT ContainerVT = VecVT;
5303   if (VecVT.isFixedLengthVector()) {
5304     ContainerVT = getContainerForFixedLengthVector(VecVT);
5305     VectorVal = convertToScalableVector(ContainerVT, VectorVal, DAG, Subtarget);
5306   }
5307 
5308   MVT M1VT = getLMUL1VT(VectorVal.getSimpleValueType());
5309   MVT XLenVT = Subtarget.getXLenVT();
5310 
5311   SDValue Mask, VL;
5312   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
5313 
5314   SDValue ScalarSplat =
5315       lowerScalarSplat(SDValue(), ScalarVal, DAG.getConstant(1, DL, XLenVT),
5316                        M1VT, DL, DAG, Subtarget);
5317   SDValue Reduction = DAG.getNode(RVVOpcode, DL, M1VT, DAG.getUNDEF(M1VT),
5318                                   VectorVal, ScalarSplat, Mask, VL);
5319   return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction,
5320                      DAG.getConstant(0, DL, XLenVT));
5321 }
5322 
5323 static unsigned getRVVVPReductionOp(unsigned ISDOpcode) {
5324   switch (ISDOpcode) {
5325   default:
5326     llvm_unreachable("Unhandled reduction");
5327   case ISD::VP_REDUCE_ADD:
5328     return RISCVISD::VECREDUCE_ADD_VL;
5329   case ISD::VP_REDUCE_UMAX:
5330     return RISCVISD::VECREDUCE_UMAX_VL;
5331   case ISD::VP_REDUCE_SMAX:
5332     return RISCVISD::VECREDUCE_SMAX_VL;
5333   case ISD::VP_REDUCE_UMIN:
5334     return RISCVISD::VECREDUCE_UMIN_VL;
5335   case ISD::VP_REDUCE_SMIN:
5336     return RISCVISD::VECREDUCE_SMIN_VL;
5337   case ISD::VP_REDUCE_AND:
5338     return RISCVISD::VECREDUCE_AND_VL;
5339   case ISD::VP_REDUCE_OR:
5340     return RISCVISD::VECREDUCE_OR_VL;
5341   case ISD::VP_REDUCE_XOR:
5342     return RISCVISD::VECREDUCE_XOR_VL;
5343   case ISD::VP_REDUCE_FADD:
5344     return RISCVISD::VECREDUCE_FADD_VL;
5345   case ISD::VP_REDUCE_SEQ_FADD:
5346     return RISCVISD::VECREDUCE_SEQ_FADD_VL;
5347   case ISD::VP_REDUCE_FMAX:
5348     return RISCVISD::VECREDUCE_FMAX_VL;
5349   case ISD::VP_REDUCE_FMIN:
5350     return RISCVISD::VECREDUCE_FMIN_VL;
5351   }
5352 }
5353 
5354 SDValue RISCVTargetLowering::lowerVPREDUCE(SDValue Op,
5355                                            SelectionDAG &DAG) const {
5356   SDLoc DL(Op);
5357   SDValue Vec = Op.getOperand(1);
5358   EVT VecEVT = Vec.getValueType();
5359 
5360   // TODO: The type may need to be widened rather than split. Or widened before
5361   // it can be split.
5362   if (!isTypeLegal(VecEVT))
5363     return SDValue();
5364 
5365   MVT VecVT = VecEVT.getSimpleVT();
5366   MVT VecEltVT = VecVT.getVectorElementType();
5367   unsigned RVVOpcode = getRVVVPReductionOp(Op.getOpcode());
5368 
5369   MVT ContainerVT = VecVT;
5370   if (VecVT.isFixedLengthVector()) {
5371     ContainerVT = getContainerForFixedLengthVector(VecVT);
5372     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
5373   }
5374 
5375   SDValue VL = Op.getOperand(3);
5376   SDValue Mask = Op.getOperand(2);
5377 
5378   MVT M1VT = getLMUL1VT(ContainerVT);
5379   MVT XLenVT = Subtarget.getXLenVT();
5380   MVT ResVT = !VecVT.isInteger() || VecEltVT.bitsGE(XLenVT) ? VecEltVT : XLenVT;
5381 
5382   SDValue StartSplat = lowerScalarSplat(SDValue(), Op.getOperand(0),
5383                                         DAG.getConstant(1, DL, XLenVT), M1VT,
5384                                         DL, DAG, Subtarget);
5385   SDValue Reduction =
5386       DAG.getNode(RVVOpcode, DL, M1VT, StartSplat, Vec, StartSplat, Mask, VL);
5387   SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Reduction,
5388                              DAG.getConstant(0, DL, XLenVT));
5389   if (!VecVT.isInteger())
5390     return Elt0;
5391   return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType());
5392 }
5393 
5394 SDValue RISCVTargetLowering::lowerINSERT_SUBVECTOR(SDValue Op,
5395                                                    SelectionDAG &DAG) const {
5396   SDValue Vec = Op.getOperand(0);
5397   SDValue SubVec = Op.getOperand(1);
5398   MVT VecVT = Vec.getSimpleValueType();
5399   MVT SubVecVT = SubVec.getSimpleValueType();
5400 
5401   SDLoc DL(Op);
5402   MVT XLenVT = Subtarget.getXLenVT();
5403   unsigned OrigIdx = Op.getConstantOperandVal(2);
5404   const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo();
5405 
5406   // We don't have the ability to slide mask vectors up indexed by their i1
5407   // elements; the smallest we can do is i8. Often we are able to bitcast to
5408   // equivalent i8 vectors. Note that when inserting a fixed-length vector
5409   // into a scalable one, we might not necessarily have enough scalable
5410   // elements to safely divide by 8: nxv1i1 = insert nxv1i1, v4i1 is valid.
5411   if (SubVecVT.getVectorElementType() == MVT::i1 &&
5412       (OrigIdx != 0 || !Vec.isUndef())) {
5413     if (VecVT.getVectorMinNumElements() >= 8 &&
5414         SubVecVT.getVectorMinNumElements() >= 8) {
5415       assert(OrigIdx % 8 == 0 && "Invalid index");
5416       assert(VecVT.getVectorMinNumElements() % 8 == 0 &&
5417              SubVecVT.getVectorMinNumElements() % 8 == 0 &&
5418              "Unexpected mask vector lowering");
5419       OrigIdx /= 8;
5420       SubVecVT =
5421           MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8,
5422                            SubVecVT.isScalableVector());
5423       VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8,
5424                                VecVT.isScalableVector());
5425       Vec = DAG.getBitcast(VecVT, Vec);
5426       SubVec = DAG.getBitcast(SubVecVT, SubVec);
5427     } else {
5428       // We can't slide this mask vector up indexed by its i1 elements.
5429       // This poses a problem when we wish to insert a scalable vector which
5430       // can't be re-expressed as a larger type. Just choose the slow path and
5431       // extend to a larger type, then truncate back down.
5432       MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8);
5433       MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8);
5434       Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec);
5435       SubVec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtSubVecVT, SubVec);
5436       Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ExtVecVT, Vec, SubVec,
5437                         Op.getOperand(2));
5438       SDValue SplatZero = DAG.getConstant(0, DL, ExtVecVT);
5439       return DAG.getSetCC(DL, VecVT, Vec, SplatZero, ISD::SETNE);
5440     }
5441   }
5442 
5443   // If the subvector vector is a fixed-length type, we cannot use subregister
5444   // manipulation to simplify the codegen; we don't know which register of a
5445   // LMUL group contains the specific subvector as we only know the minimum
5446   // register size. Therefore we must slide the vector group up the full
5447   // amount.
5448   if (SubVecVT.isFixedLengthVector()) {
5449     if (OrigIdx == 0 && Vec.isUndef() && !VecVT.isFixedLengthVector())
5450       return Op;
5451     MVT ContainerVT = VecVT;
5452     if (VecVT.isFixedLengthVector()) {
5453       ContainerVT = getContainerForFixedLengthVector(VecVT);
5454       Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
5455     }
5456     SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ContainerVT,
5457                          DAG.getUNDEF(ContainerVT), SubVec,
5458                          DAG.getConstant(0, DL, XLenVT));
5459     if (OrigIdx == 0 && Vec.isUndef() && VecVT.isFixedLengthVector()) {
5460       SubVec = convertFromScalableVector(VecVT, SubVec, DAG, Subtarget);
5461       return DAG.getBitcast(Op.getValueType(), SubVec);
5462     }
5463     SDValue Mask =
5464         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first;
5465     // Set the vector length to only the number of elements we care about. Note
5466     // that for slideup this includes the offset.
5467     SDValue VL =
5468         DAG.getConstant(OrigIdx + SubVecVT.getVectorNumElements(), DL, XLenVT);
5469     SDValue SlideupAmt = DAG.getConstant(OrigIdx, DL, XLenVT);
5470     SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec,
5471                                   SubVec, SlideupAmt, Mask, VL);
5472     if (VecVT.isFixedLengthVector())
5473       Slideup = convertFromScalableVector(VecVT, Slideup, DAG, Subtarget);
5474     return DAG.getBitcast(Op.getValueType(), Slideup);
5475   }
5476 
5477   unsigned SubRegIdx, RemIdx;
5478   std::tie(SubRegIdx, RemIdx) =
5479       RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs(
5480           VecVT, SubVecVT, OrigIdx, TRI);
5481 
5482   RISCVII::VLMUL SubVecLMUL = RISCVTargetLowering::getLMUL(SubVecVT);
5483   bool IsSubVecPartReg = SubVecLMUL == RISCVII::VLMUL::LMUL_F2 ||
5484                          SubVecLMUL == RISCVII::VLMUL::LMUL_F4 ||
5485                          SubVecLMUL == RISCVII::VLMUL::LMUL_F8;
5486 
5487   // 1. If the Idx has been completely eliminated and this subvector's size is
5488   // a vector register or a multiple thereof, or the surrounding elements are
5489   // undef, then this is a subvector insert which naturally aligns to a vector
5490   // register. These can easily be handled using subregister manipulation.
5491   // 2. If the subvector is smaller than a vector register, then the insertion
5492   // must preserve the undisturbed elements of the register. We do this by
5493   // lowering to an EXTRACT_SUBVECTOR grabbing the nearest LMUL=1 vector type
5494   // (which resolves to a subregister copy), performing a VSLIDEUP to place the
5495   // subvector within the vector register, and an INSERT_SUBVECTOR of that
5496   // LMUL=1 type back into the larger vector (resolving to another subregister
5497   // operation). See below for how our VSLIDEUP works. We go via a LMUL=1 type
5498   // to avoid allocating a large register group to hold our subvector.
5499   if (RemIdx == 0 && (!IsSubVecPartReg || Vec.isUndef()))
5500     return Op;
5501 
5502   // VSLIDEUP works by leaving elements 0<i<OFFSET undisturbed, elements
5503   // OFFSET<=i<VL set to the "subvector" and vl<=i<VLMAX set to the tail policy
5504   // (in our case undisturbed). This means we can set up a subvector insertion
5505   // where OFFSET is the insertion offset, and the VL is the OFFSET plus the
5506   // size of the subvector.
5507   MVT InterSubVT = VecVT;
5508   SDValue AlignedExtract = Vec;
5509   unsigned AlignedIdx = OrigIdx - RemIdx;
5510   if (VecVT.bitsGT(getLMUL1VT(VecVT))) {
5511     InterSubVT = getLMUL1VT(VecVT);
5512     // Extract a subvector equal to the nearest full vector register type. This
5513     // should resolve to a EXTRACT_SUBREG instruction.
5514     AlignedExtract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec,
5515                                  DAG.getConstant(AlignedIdx, DL, XLenVT));
5516   }
5517 
5518   SDValue SlideupAmt = DAG.getConstant(RemIdx, DL, XLenVT);
5519   // For scalable vectors this must be further multiplied by vscale.
5520   SlideupAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlideupAmt);
5521 
5522   SDValue Mask, VL;
5523   std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget);
5524 
5525   // Construct the vector length corresponding to RemIdx + length(SubVecVT).
5526   VL = DAG.getConstant(SubVecVT.getVectorMinNumElements(), DL, XLenVT);
5527   VL = DAG.getNode(ISD::VSCALE, DL, XLenVT, VL);
5528   VL = DAG.getNode(ISD::ADD, DL, XLenVT, SlideupAmt, VL);
5529 
5530   SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, InterSubVT,
5531                        DAG.getUNDEF(InterSubVT), SubVec,
5532                        DAG.getConstant(0, DL, XLenVT));
5533 
5534   SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, InterSubVT,
5535                                 AlignedExtract, SubVec, SlideupAmt, Mask, VL);
5536 
5537   // If required, insert this subvector back into the correct vector register.
5538   // This should resolve to an INSERT_SUBREG instruction.
5539   if (VecVT.bitsGT(InterSubVT))
5540     Slideup = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, Vec, Slideup,
5541                           DAG.getConstant(AlignedIdx, DL, XLenVT));
5542 
5543   // We might have bitcast from a mask type: cast back to the original type if
5544   // required.
5545   return DAG.getBitcast(Op.getSimpleValueType(), Slideup);
5546 }
5547 
5548 SDValue RISCVTargetLowering::lowerEXTRACT_SUBVECTOR(SDValue Op,
5549                                                     SelectionDAG &DAG) const {
5550   SDValue Vec = Op.getOperand(0);
5551   MVT SubVecVT = Op.getSimpleValueType();
5552   MVT VecVT = Vec.getSimpleValueType();
5553 
5554   SDLoc DL(Op);
5555   MVT XLenVT = Subtarget.getXLenVT();
5556   unsigned OrigIdx = Op.getConstantOperandVal(1);
5557   const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo();
5558 
5559   // We don't have the ability to slide mask vectors down indexed by their i1
5560   // elements; the smallest we can do is i8. Often we are able to bitcast to
5561   // equivalent i8 vectors. Note that when extracting a fixed-length vector
5562   // from a scalable one, we might not necessarily have enough scalable
5563   // elements to safely divide by 8: v8i1 = extract nxv1i1 is valid.
5564   if (SubVecVT.getVectorElementType() == MVT::i1 && OrigIdx != 0) {
5565     if (VecVT.getVectorMinNumElements() >= 8 &&
5566         SubVecVT.getVectorMinNumElements() >= 8) {
5567       assert(OrigIdx % 8 == 0 && "Invalid index");
5568       assert(VecVT.getVectorMinNumElements() % 8 == 0 &&
5569              SubVecVT.getVectorMinNumElements() % 8 == 0 &&
5570              "Unexpected mask vector lowering");
5571       OrigIdx /= 8;
5572       SubVecVT =
5573           MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8,
5574                            SubVecVT.isScalableVector());
5575       VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8,
5576                                VecVT.isScalableVector());
5577       Vec = DAG.getBitcast(VecVT, Vec);
5578     } else {
5579       // We can't slide this mask vector down, indexed by its i1 elements.
5580       // This poses a problem when we wish to extract a scalable vector which
5581       // can't be re-expressed as a larger type. Just choose the slow path and
5582       // extend to a larger type, then truncate back down.
5583       // TODO: We could probably improve this when extracting certain fixed
5584       // from fixed, where we can extract as i8 and shift the correct element
5585       // right to reach the desired subvector?
5586       MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8);
5587       MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8);
5588       Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec);
5589       Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ExtSubVecVT, Vec,
5590                         Op.getOperand(1));
5591       SDValue SplatZero = DAG.getConstant(0, DL, ExtSubVecVT);
5592       return DAG.getSetCC(DL, SubVecVT, Vec, SplatZero, ISD::SETNE);
5593     }
5594   }
5595 
5596   // If the subvector vector is a fixed-length type, we cannot use subregister
5597   // manipulation to simplify the codegen; we don't know which register of a
5598   // LMUL group contains the specific subvector as we only know the minimum
5599   // register size. Therefore we must slide the vector group down the full
5600   // amount.
5601   if (SubVecVT.isFixedLengthVector()) {
5602     // With an index of 0 this is a cast-like subvector, which can be performed
5603     // with subregister operations.
5604     if (OrigIdx == 0)
5605       return Op;
5606     MVT ContainerVT = VecVT;
5607     if (VecVT.isFixedLengthVector()) {
5608       ContainerVT = getContainerForFixedLengthVector(VecVT);
5609       Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
5610     }
5611     SDValue Mask =
5612         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first;
5613     // Set the vector length to only the number of elements we care about. This
5614     // avoids sliding down elements we're going to discard straight away.
5615     SDValue VL = DAG.getConstant(SubVecVT.getVectorNumElements(), DL, XLenVT);
5616     SDValue SlidedownAmt = DAG.getConstant(OrigIdx, DL, XLenVT);
5617     SDValue Slidedown =
5618         DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT,
5619                     DAG.getUNDEF(ContainerVT), Vec, SlidedownAmt, Mask, VL);
5620     // Now we can use a cast-like subvector extract to get the result.
5621     Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown,
5622                             DAG.getConstant(0, DL, XLenVT));
5623     return DAG.getBitcast(Op.getValueType(), Slidedown);
5624   }
5625 
5626   unsigned SubRegIdx, RemIdx;
5627   std::tie(SubRegIdx, RemIdx) =
5628       RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs(
5629           VecVT, SubVecVT, OrigIdx, TRI);
5630 
5631   // If the Idx has been completely eliminated then this is a subvector extract
5632   // which naturally aligns to a vector register. These can easily be handled
5633   // using subregister manipulation.
5634   if (RemIdx == 0)
5635     return Op;
5636 
5637   // Else we must shift our vector register directly to extract the subvector.
5638   // Do this using VSLIDEDOWN.
5639 
5640   // If the vector type is an LMUL-group type, extract a subvector equal to the
5641   // nearest full vector register type. This should resolve to a EXTRACT_SUBREG
5642   // instruction.
5643   MVT InterSubVT = VecVT;
5644   if (VecVT.bitsGT(getLMUL1VT(VecVT))) {
5645     InterSubVT = getLMUL1VT(VecVT);
5646     Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec,
5647                       DAG.getConstant(OrigIdx - RemIdx, DL, XLenVT));
5648   }
5649 
5650   // Slide this vector register down by the desired number of elements in order
5651   // to place the desired subvector starting at element 0.
5652   SDValue SlidedownAmt = DAG.getConstant(RemIdx, DL, XLenVT);
5653   // For scalable vectors this must be further multiplied by vscale.
5654   SlidedownAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlidedownAmt);
5655 
5656   SDValue Mask, VL;
5657   std::tie(Mask, VL) = getDefaultScalableVLOps(InterSubVT, DL, DAG, Subtarget);
5658   SDValue Slidedown =
5659       DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, InterSubVT,
5660                   DAG.getUNDEF(InterSubVT), Vec, SlidedownAmt, Mask, VL);
5661 
5662   // Now the vector is in the right position, extract our final subvector. This
5663   // should resolve to a COPY.
5664   Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown,
5665                           DAG.getConstant(0, DL, XLenVT));
5666 
5667   // We might have bitcast from a mask type: cast back to the original type if
5668   // required.
5669   return DAG.getBitcast(Op.getSimpleValueType(), Slidedown);
5670 }
5671 
5672 // Lower step_vector to the vid instruction. Any non-identity step value must
5673 // be accounted for my manual expansion.
5674 SDValue RISCVTargetLowering::lowerSTEP_VECTOR(SDValue Op,
5675                                               SelectionDAG &DAG) const {
5676   SDLoc DL(Op);
5677   MVT VT = Op.getSimpleValueType();
5678   MVT XLenVT = Subtarget.getXLenVT();
5679   SDValue Mask, VL;
5680   std::tie(Mask, VL) = getDefaultScalableVLOps(VT, DL, DAG, Subtarget);
5681   SDValue StepVec = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL);
5682   uint64_t StepValImm = Op.getConstantOperandVal(0);
5683   if (StepValImm != 1) {
5684     if (isPowerOf2_64(StepValImm)) {
5685       SDValue StepVal =
5686           DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, DAG.getUNDEF(VT),
5687                       DAG.getConstant(Log2_64(StepValImm), DL, XLenVT));
5688       StepVec = DAG.getNode(ISD::SHL, DL, VT, StepVec, StepVal);
5689     } else {
5690       SDValue StepVal = lowerScalarSplat(
5691           SDValue(), DAG.getConstant(StepValImm, DL, VT.getVectorElementType()),
5692           VL, VT, DL, DAG, Subtarget);
5693       StepVec = DAG.getNode(ISD::MUL, DL, VT, StepVec, StepVal);
5694     }
5695   }
5696   return StepVec;
5697 }
5698 
5699 // Implement vector_reverse using vrgather.vv with indices determined by
5700 // subtracting the id of each element from (VLMAX-1). This will convert
5701 // the indices like so:
5702 // (0, 1,..., VLMAX-2, VLMAX-1) -> (VLMAX-1, VLMAX-2,..., 1, 0).
5703 // TODO: This code assumes VLMAX <= 65536 for LMUL=8 SEW=16.
5704 SDValue RISCVTargetLowering::lowerVECTOR_REVERSE(SDValue Op,
5705                                                  SelectionDAG &DAG) const {
5706   SDLoc DL(Op);
5707   MVT VecVT = Op.getSimpleValueType();
5708   if (VecVT.getVectorElementType() == MVT::i1) {
5709     MVT WidenVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount());
5710     SDValue Op1 = DAG.getNode(ISD::ZERO_EXTEND, DL, WidenVT, Op.getOperand(0));
5711     SDValue Op2 = DAG.getNode(ISD::VECTOR_REVERSE, DL, WidenVT, Op1);
5712     return DAG.getNode(ISD::TRUNCATE, DL, VecVT, Op2);
5713   }
5714   unsigned EltSize = VecVT.getScalarSizeInBits();
5715   unsigned MinSize = VecVT.getSizeInBits().getKnownMinValue();
5716   unsigned VectorBitsMax = Subtarget.getRealMaxVLen();
5717   unsigned MaxVLMAX =
5718     RISCVTargetLowering::computeVLMAX(VectorBitsMax, EltSize, MinSize);
5719 
5720   unsigned GatherOpc = RISCVISD::VRGATHER_VV_VL;
5721   MVT IntVT = VecVT.changeVectorElementTypeToInteger();
5722 
5723   // If this is SEW=8 and VLMAX is potentially more than 256, we need
5724   // to use vrgatherei16.vv.
5725   // TODO: It's also possible to use vrgatherei16.vv for other types to
5726   // decrease register width for the index calculation.
5727   if (MaxVLMAX > 256 && EltSize == 8) {
5728     // If this is LMUL=8, we have to split before can use vrgatherei16.vv.
5729     // Reverse each half, then reassemble them in reverse order.
5730     // NOTE: It's also possible that after splitting that VLMAX no longer
5731     // requires vrgatherei16.vv.
5732     if (MinSize == (8 * RISCV::RVVBitsPerBlock)) {
5733       SDValue Lo, Hi;
5734       std::tie(Lo, Hi) = DAG.SplitVectorOperand(Op.getNode(), 0);
5735       EVT LoVT, HiVT;
5736       std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VecVT);
5737       Lo = DAG.getNode(ISD::VECTOR_REVERSE, DL, LoVT, Lo);
5738       Hi = DAG.getNode(ISD::VECTOR_REVERSE, DL, HiVT, Hi);
5739       // Reassemble the low and high pieces reversed.
5740       // FIXME: This is a CONCAT_VECTORS.
5741       SDValue Res =
5742           DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, DAG.getUNDEF(VecVT), Hi,
5743                       DAG.getIntPtrConstant(0, DL));
5744       return DAG.getNode(
5745           ISD::INSERT_SUBVECTOR, DL, VecVT, Res, Lo,
5746           DAG.getIntPtrConstant(LoVT.getVectorMinNumElements(), DL));
5747     }
5748 
5749     // Just promote the int type to i16 which will double the LMUL.
5750     IntVT = MVT::getVectorVT(MVT::i16, VecVT.getVectorElementCount());
5751     GatherOpc = RISCVISD::VRGATHEREI16_VV_VL;
5752   }
5753 
5754   MVT XLenVT = Subtarget.getXLenVT();
5755   SDValue Mask, VL;
5756   std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget);
5757 
5758   // Calculate VLMAX-1 for the desired SEW.
5759   unsigned MinElts = VecVT.getVectorMinNumElements();
5760   SDValue VLMax = DAG.getNode(ISD::VSCALE, DL, XLenVT,
5761                               DAG.getConstant(MinElts, DL, XLenVT));
5762   SDValue VLMinus1 =
5763       DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, DAG.getConstant(1, DL, XLenVT));
5764 
5765   // Splat VLMAX-1 taking care to handle SEW==64 on RV32.
5766   bool IsRV32E64 =
5767       !Subtarget.is64Bit() && IntVT.getVectorElementType() == MVT::i64;
5768   SDValue SplatVL;
5769   if (!IsRV32E64)
5770     SplatVL = DAG.getSplatVector(IntVT, DL, VLMinus1);
5771   else
5772     SplatVL = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, IntVT, DAG.getUNDEF(IntVT),
5773                           VLMinus1, DAG.getRegister(RISCV::X0, XLenVT));
5774 
5775   SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, IntVT, Mask, VL);
5776   SDValue Indices =
5777       DAG.getNode(RISCVISD::SUB_VL, DL, IntVT, SplatVL, VID, Mask, VL);
5778 
5779   return DAG.getNode(GatherOpc, DL, VecVT, Op.getOperand(0), Indices, Mask,
5780                      DAG.getUNDEF(VecVT), VL);
5781 }
5782 
5783 SDValue RISCVTargetLowering::lowerVECTOR_SPLICE(SDValue Op,
5784                                                 SelectionDAG &DAG) const {
5785   SDLoc DL(Op);
5786   SDValue V1 = Op.getOperand(0);
5787   SDValue V2 = Op.getOperand(1);
5788   MVT XLenVT = Subtarget.getXLenVT();
5789   MVT VecVT = Op.getSimpleValueType();
5790 
5791   unsigned MinElts = VecVT.getVectorMinNumElements();
5792   SDValue VLMax = DAG.getNode(ISD::VSCALE, DL, XLenVT,
5793                               DAG.getConstant(MinElts, DL, XLenVT));
5794 
5795   int64_t ImmValue = cast<ConstantSDNode>(Op.getOperand(2))->getSExtValue();
5796   SDValue DownOffset, UpOffset;
5797   if (ImmValue >= 0) {
5798     // The operand is a TargetConstant, we need to rebuild it as a regular
5799     // constant.
5800     DownOffset = DAG.getConstant(ImmValue, DL, XLenVT);
5801     UpOffset = DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, DownOffset);
5802   } else {
5803     // The operand is a TargetConstant, we need to rebuild it as a regular
5804     // constant rather than negating the original operand.
5805     UpOffset = DAG.getConstant(-ImmValue, DL, XLenVT);
5806     DownOffset = DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, UpOffset);
5807   }
5808 
5809   SDValue TrueMask = getAllOnesMask(VecVT, VLMax, DL, DAG);
5810 
5811   SDValue SlideDown =
5812       DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, VecVT, DAG.getUNDEF(VecVT), V1,
5813                   DownOffset, TrueMask, UpOffset);
5814   return DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, VecVT, SlideDown, V2, UpOffset,
5815                      TrueMask, DAG.getRegister(RISCV::X0, XLenVT));
5816 }
5817 
5818 SDValue
5819 RISCVTargetLowering::lowerFixedLengthVectorLoadToRVV(SDValue Op,
5820                                                      SelectionDAG &DAG) const {
5821   SDLoc DL(Op);
5822   auto *Load = cast<LoadSDNode>(Op);
5823 
5824   assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
5825                                         Load->getMemoryVT(),
5826                                         *Load->getMemOperand()) &&
5827          "Expecting a correctly-aligned load");
5828 
5829   MVT VT = Op.getSimpleValueType();
5830   MVT XLenVT = Subtarget.getXLenVT();
5831   MVT ContainerVT = getContainerForFixedLengthVector(VT);
5832 
5833   SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT);
5834 
5835   bool IsMaskOp = VT.getVectorElementType() == MVT::i1;
5836   SDValue IntID = DAG.getTargetConstant(
5837       IsMaskOp ? Intrinsic::riscv_vlm : Intrinsic::riscv_vle, DL, XLenVT);
5838   SmallVector<SDValue, 4> Ops{Load->getChain(), IntID};
5839   if (!IsMaskOp)
5840     Ops.push_back(DAG.getUNDEF(ContainerVT));
5841   Ops.push_back(Load->getBasePtr());
5842   Ops.push_back(VL);
5843   SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
5844   SDValue NewLoad =
5845       DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops,
5846                               Load->getMemoryVT(), Load->getMemOperand());
5847 
5848   SDValue Result = convertFromScalableVector(VT, NewLoad, DAG, Subtarget);
5849   return DAG.getMergeValues({Result, NewLoad.getValue(1)}, DL);
5850 }
5851 
5852 SDValue
5853 RISCVTargetLowering::lowerFixedLengthVectorStoreToRVV(SDValue Op,
5854                                                       SelectionDAG &DAG) const {
5855   SDLoc DL(Op);
5856   auto *Store = cast<StoreSDNode>(Op);
5857 
5858   assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
5859                                         Store->getMemoryVT(),
5860                                         *Store->getMemOperand()) &&
5861          "Expecting a correctly-aligned store");
5862 
5863   SDValue StoreVal = Store->getValue();
5864   MVT VT = StoreVal.getSimpleValueType();
5865   MVT XLenVT = Subtarget.getXLenVT();
5866 
5867   // If the size less than a byte, we need to pad with zeros to make a byte.
5868   if (VT.getVectorElementType() == MVT::i1 && VT.getVectorNumElements() < 8) {
5869     VT = MVT::v8i1;
5870     StoreVal = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT,
5871                            DAG.getConstant(0, DL, VT), StoreVal,
5872                            DAG.getIntPtrConstant(0, DL));
5873   }
5874 
5875   MVT ContainerVT = getContainerForFixedLengthVector(VT);
5876 
5877   SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT);
5878 
5879   SDValue NewValue =
5880       convertToScalableVector(ContainerVT, StoreVal, DAG, Subtarget);
5881 
5882   bool IsMaskOp = VT.getVectorElementType() == MVT::i1;
5883   SDValue IntID = DAG.getTargetConstant(
5884       IsMaskOp ? Intrinsic::riscv_vsm : Intrinsic::riscv_vse, DL, XLenVT);
5885   return DAG.getMemIntrinsicNode(
5886       ISD::INTRINSIC_VOID, DL, DAG.getVTList(MVT::Other),
5887       {Store->getChain(), IntID, NewValue, Store->getBasePtr(), VL},
5888       Store->getMemoryVT(), Store->getMemOperand());
5889 }
5890 
5891 SDValue RISCVTargetLowering::lowerMaskedLoad(SDValue Op,
5892                                              SelectionDAG &DAG) const {
5893   SDLoc DL(Op);
5894   MVT VT = Op.getSimpleValueType();
5895 
5896   const auto *MemSD = cast<MemSDNode>(Op);
5897   EVT MemVT = MemSD->getMemoryVT();
5898   MachineMemOperand *MMO = MemSD->getMemOperand();
5899   SDValue Chain = MemSD->getChain();
5900   SDValue BasePtr = MemSD->getBasePtr();
5901 
5902   SDValue Mask, PassThru, VL;
5903   if (const auto *VPLoad = dyn_cast<VPLoadSDNode>(Op)) {
5904     Mask = VPLoad->getMask();
5905     PassThru = DAG.getUNDEF(VT);
5906     VL = VPLoad->getVectorLength();
5907   } else {
5908     const auto *MLoad = cast<MaskedLoadSDNode>(Op);
5909     Mask = MLoad->getMask();
5910     PassThru = MLoad->getPassThru();
5911   }
5912 
5913   bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
5914 
5915   MVT XLenVT = Subtarget.getXLenVT();
5916 
5917   MVT ContainerVT = VT;
5918   if (VT.isFixedLengthVector()) {
5919     ContainerVT = getContainerForFixedLengthVector(VT);
5920     PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget);
5921     if (!IsUnmasked) {
5922       MVT MaskVT = getMaskTypeFor(ContainerVT);
5923       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
5924     }
5925   }
5926 
5927   if (!VL)
5928     VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second;
5929 
5930   unsigned IntID =
5931       IsUnmasked ? Intrinsic::riscv_vle : Intrinsic::riscv_vle_mask;
5932   SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)};
5933   if (IsUnmasked)
5934     Ops.push_back(DAG.getUNDEF(ContainerVT));
5935   else
5936     Ops.push_back(PassThru);
5937   Ops.push_back(BasePtr);
5938   if (!IsUnmasked)
5939     Ops.push_back(Mask);
5940   Ops.push_back(VL);
5941   if (!IsUnmasked)
5942     Ops.push_back(DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT));
5943 
5944   SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
5945 
5946   SDValue Result =
5947       DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, MemVT, MMO);
5948   Chain = Result.getValue(1);
5949 
5950   if (VT.isFixedLengthVector())
5951     Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
5952 
5953   return DAG.getMergeValues({Result, Chain}, DL);
5954 }
5955 
5956 SDValue RISCVTargetLowering::lowerMaskedStore(SDValue Op,
5957                                               SelectionDAG &DAG) const {
5958   SDLoc DL(Op);
5959 
5960   const auto *MemSD = cast<MemSDNode>(Op);
5961   EVT MemVT = MemSD->getMemoryVT();
5962   MachineMemOperand *MMO = MemSD->getMemOperand();
5963   SDValue Chain = MemSD->getChain();
5964   SDValue BasePtr = MemSD->getBasePtr();
5965   SDValue Val, Mask, VL;
5966 
5967   if (const auto *VPStore = dyn_cast<VPStoreSDNode>(Op)) {
5968     Val = VPStore->getValue();
5969     Mask = VPStore->getMask();
5970     VL = VPStore->getVectorLength();
5971   } else {
5972     const auto *MStore = cast<MaskedStoreSDNode>(Op);
5973     Val = MStore->getValue();
5974     Mask = MStore->getMask();
5975   }
5976 
5977   bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
5978 
5979   MVT VT = Val.getSimpleValueType();
5980   MVT XLenVT = Subtarget.getXLenVT();
5981 
5982   MVT ContainerVT = VT;
5983   if (VT.isFixedLengthVector()) {
5984     ContainerVT = getContainerForFixedLengthVector(VT);
5985 
5986     Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget);
5987     if (!IsUnmasked) {
5988       MVT MaskVT = getMaskTypeFor(ContainerVT);
5989       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
5990     }
5991   }
5992 
5993   if (!VL)
5994     VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second;
5995 
5996   unsigned IntID =
5997       IsUnmasked ? Intrinsic::riscv_vse : Intrinsic::riscv_vse_mask;
5998   SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)};
5999   Ops.push_back(Val);
6000   Ops.push_back(BasePtr);
6001   if (!IsUnmasked)
6002     Ops.push_back(Mask);
6003   Ops.push_back(VL);
6004 
6005   return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL,
6006                                  DAG.getVTList(MVT::Other), Ops, MemVT, MMO);
6007 }
6008 
6009 SDValue
6010 RISCVTargetLowering::lowerFixedLengthVectorSetccToRVV(SDValue Op,
6011                                                       SelectionDAG &DAG) const {
6012   MVT InVT = Op.getOperand(0).getSimpleValueType();
6013   MVT ContainerVT = getContainerForFixedLengthVector(InVT);
6014 
6015   MVT VT = Op.getSimpleValueType();
6016 
6017   SDValue Op1 =
6018       convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget);
6019   SDValue Op2 =
6020       convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget);
6021 
6022   SDLoc DL(Op);
6023   SDValue VL =
6024       DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT());
6025 
6026   MVT MaskVT = getMaskTypeFor(ContainerVT);
6027   SDValue Mask = getAllOnesMask(ContainerVT, VL, DL, DAG);
6028 
6029   SDValue Cmp = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, Op1, Op2,
6030                             Op.getOperand(2), Mask, VL);
6031 
6032   return convertFromScalableVector(VT, Cmp, DAG, Subtarget);
6033 }
6034 
6035 SDValue RISCVTargetLowering::lowerFixedLengthVectorLogicOpToRVV(
6036     SDValue Op, SelectionDAG &DAG, unsigned MaskOpc, unsigned VecOpc) const {
6037   MVT VT = Op.getSimpleValueType();
6038 
6039   if (VT.getVectorElementType() == MVT::i1)
6040     return lowerToScalableOp(Op, DAG, MaskOpc, /*HasMask*/ false);
6041 
6042   return lowerToScalableOp(Op, DAG, VecOpc, /*HasMask*/ true);
6043 }
6044 
6045 SDValue
6046 RISCVTargetLowering::lowerFixedLengthVectorShiftToRVV(SDValue Op,
6047                                                       SelectionDAG &DAG) const {
6048   unsigned Opc;
6049   switch (Op.getOpcode()) {
6050   default: llvm_unreachable("Unexpected opcode!");
6051   case ISD::SHL: Opc = RISCVISD::SHL_VL; break;
6052   case ISD::SRA: Opc = RISCVISD::SRA_VL; break;
6053   case ISD::SRL: Opc = RISCVISD::SRL_VL; break;
6054   }
6055 
6056   return lowerToScalableOp(Op, DAG, Opc);
6057 }
6058 
6059 // Lower vector ABS to smax(X, sub(0, X)).
6060 SDValue RISCVTargetLowering::lowerABS(SDValue Op, SelectionDAG &DAG) const {
6061   SDLoc DL(Op);
6062   MVT VT = Op.getSimpleValueType();
6063   SDValue X = Op.getOperand(0);
6064 
6065   assert(VT.isFixedLengthVector() && "Unexpected type");
6066 
6067   MVT ContainerVT = getContainerForFixedLengthVector(VT);
6068   X = convertToScalableVector(ContainerVT, X, DAG, Subtarget);
6069 
6070   SDValue Mask, VL;
6071   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
6072 
6073   SDValue SplatZero = DAG.getNode(
6074       RISCVISD::VMV_V_X_VL, DL, ContainerVT, DAG.getUNDEF(ContainerVT),
6075       DAG.getConstant(0, DL, Subtarget.getXLenVT()));
6076   SDValue NegX =
6077       DAG.getNode(RISCVISD::SUB_VL, DL, ContainerVT, SplatZero, X, Mask, VL);
6078   SDValue Max =
6079       DAG.getNode(RISCVISD::SMAX_VL, DL, ContainerVT, X, NegX, Mask, VL);
6080 
6081   return convertFromScalableVector(VT, Max, DAG, Subtarget);
6082 }
6083 
6084 SDValue RISCVTargetLowering::lowerFixedLengthVectorFCOPYSIGNToRVV(
6085     SDValue Op, SelectionDAG &DAG) const {
6086   SDLoc DL(Op);
6087   MVT VT = Op.getSimpleValueType();
6088   SDValue Mag = Op.getOperand(0);
6089   SDValue Sign = Op.getOperand(1);
6090   assert(Mag.getValueType() == Sign.getValueType() &&
6091          "Can only handle COPYSIGN with matching types.");
6092 
6093   MVT ContainerVT = getContainerForFixedLengthVector(VT);
6094   Mag = convertToScalableVector(ContainerVT, Mag, DAG, Subtarget);
6095   Sign = convertToScalableVector(ContainerVT, Sign, DAG, Subtarget);
6096 
6097   SDValue Mask, VL;
6098   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
6099 
6100   SDValue CopySign =
6101       DAG.getNode(RISCVISD::FCOPYSIGN_VL, DL, ContainerVT, Mag, Sign, Mask, VL);
6102 
6103   return convertFromScalableVector(VT, CopySign, DAG, Subtarget);
6104 }
6105 
6106 SDValue RISCVTargetLowering::lowerFixedLengthVectorSelectToRVV(
6107     SDValue Op, SelectionDAG &DAG) const {
6108   MVT VT = Op.getSimpleValueType();
6109   MVT ContainerVT = getContainerForFixedLengthVector(VT);
6110 
6111   MVT I1ContainerVT =
6112       MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
6113 
6114   SDValue CC =
6115       convertToScalableVector(I1ContainerVT, Op.getOperand(0), DAG, Subtarget);
6116   SDValue Op1 =
6117       convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget);
6118   SDValue Op2 =
6119       convertToScalableVector(ContainerVT, Op.getOperand(2), DAG, Subtarget);
6120 
6121   SDLoc DL(Op);
6122   SDValue Mask, VL;
6123   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
6124 
6125   SDValue Select =
6126       DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC, Op1, Op2, VL);
6127 
6128   return convertFromScalableVector(VT, Select, DAG, Subtarget);
6129 }
6130 
6131 SDValue RISCVTargetLowering::lowerToScalableOp(SDValue Op, SelectionDAG &DAG,
6132                                                unsigned NewOpc,
6133                                                bool HasMask) const {
6134   MVT VT = Op.getSimpleValueType();
6135   MVT ContainerVT = getContainerForFixedLengthVector(VT);
6136 
6137   // Create list of operands by converting existing ones to scalable types.
6138   SmallVector<SDValue, 6> Ops;
6139   for (const SDValue &V : Op->op_values()) {
6140     assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!");
6141 
6142     // Pass through non-vector operands.
6143     if (!V.getValueType().isVector()) {
6144       Ops.push_back(V);
6145       continue;
6146     }
6147 
6148     // "cast" fixed length vector to a scalable vector.
6149     assert(useRVVForFixedLengthVectorVT(V.getSimpleValueType()) &&
6150            "Only fixed length vectors are supported!");
6151     Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget));
6152   }
6153 
6154   SDLoc DL(Op);
6155   SDValue Mask, VL;
6156   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
6157   if (HasMask)
6158     Ops.push_back(Mask);
6159   Ops.push_back(VL);
6160 
6161   SDValue ScalableRes = DAG.getNode(NewOpc, DL, ContainerVT, Ops);
6162   return convertFromScalableVector(VT, ScalableRes, DAG, Subtarget);
6163 }
6164 
6165 // Lower a VP_* ISD node to the corresponding RISCVISD::*_VL node:
6166 // * Operands of each node are assumed to be in the same order.
6167 // * The EVL operand is promoted from i32 to i64 on RV64.
6168 // * Fixed-length vectors are converted to their scalable-vector container
6169 //   types.
6170 SDValue RISCVTargetLowering::lowerVPOp(SDValue Op, SelectionDAG &DAG,
6171                                        unsigned RISCVISDOpc) const {
6172   SDLoc DL(Op);
6173   MVT VT = Op.getSimpleValueType();
6174   SmallVector<SDValue, 4> Ops;
6175 
6176   for (const auto &OpIdx : enumerate(Op->ops())) {
6177     SDValue V = OpIdx.value();
6178     assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!");
6179     // Pass through operands which aren't fixed-length vectors.
6180     if (!V.getValueType().isFixedLengthVector()) {
6181       Ops.push_back(V);
6182       continue;
6183     }
6184     // "cast" fixed length vector to a scalable vector.
6185     MVT OpVT = V.getSimpleValueType();
6186     MVT ContainerVT = getContainerForFixedLengthVector(OpVT);
6187     assert(useRVVForFixedLengthVectorVT(OpVT) &&
6188            "Only fixed length vectors are supported!");
6189     Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget));
6190   }
6191 
6192   if (!VT.isFixedLengthVector())
6193     return DAG.getNode(RISCVISDOpc, DL, VT, Ops, Op->getFlags());
6194 
6195   MVT ContainerVT = getContainerForFixedLengthVector(VT);
6196 
6197   SDValue VPOp = DAG.getNode(RISCVISDOpc, DL, ContainerVT, Ops, Op->getFlags());
6198 
6199   return convertFromScalableVector(VT, VPOp, DAG, Subtarget);
6200 }
6201 
6202 SDValue RISCVTargetLowering::lowerVPExtMaskOp(SDValue Op,
6203                                               SelectionDAG &DAG) const {
6204   SDLoc DL(Op);
6205   MVT VT = Op.getSimpleValueType();
6206 
6207   SDValue Src = Op.getOperand(0);
6208   // NOTE: Mask is dropped.
6209   SDValue VL = Op.getOperand(2);
6210 
6211   MVT ContainerVT = VT;
6212   if (VT.isFixedLengthVector()) {
6213     ContainerVT = getContainerForFixedLengthVector(VT);
6214     MVT SrcVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
6215     Src = convertToScalableVector(SrcVT, Src, DAG, Subtarget);
6216   }
6217 
6218   MVT XLenVT = Subtarget.getXLenVT();
6219   SDValue Zero = DAG.getConstant(0, DL, XLenVT);
6220   SDValue ZeroSplat = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
6221                                   DAG.getUNDEF(ContainerVT), Zero, VL);
6222 
6223   SDValue SplatValue = DAG.getConstant(
6224       Op.getOpcode() == ISD::VP_ZERO_EXTEND ? 1 : -1, DL, XLenVT);
6225   SDValue Splat = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
6226                               DAG.getUNDEF(ContainerVT), SplatValue, VL);
6227 
6228   SDValue Result = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, Src,
6229                                Splat, ZeroSplat, VL);
6230   if (!VT.isFixedLengthVector())
6231     return Result;
6232   return convertFromScalableVector(VT, Result, DAG, Subtarget);
6233 }
6234 
6235 SDValue RISCVTargetLowering::lowerVPSetCCMaskOp(SDValue Op,
6236                                                 SelectionDAG &DAG) const {
6237   SDLoc DL(Op);
6238   MVT VT = Op.getSimpleValueType();
6239 
6240   SDValue Op1 = Op.getOperand(0);
6241   SDValue Op2 = Op.getOperand(1);
6242   ISD::CondCode Condition = cast<CondCodeSDNode>(Op.getOperand(2))->get();
6243   // NOTE: Mask is dropped.
6244   SDValue VL = Op.getOperand(4);
6245 
6246   MVT ContainerVT = VT;
6247   if (VT.isFixedLengthVector()) {
6248     ContainerVT = getContainerForFixedLengthVector(VT);
6249     Op1 = convertToScalableVector(ContainerVT, Op1, DAG, Subtarget);
6250     Op2 = convertToScalableVector(ContainerVT, Op2, DAG, Subtarget);
6251   }
6252 
6253   SDValue Result;
6254   SDValue AllOneMask = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL);
6255 
6256   switch (Condition) {
6257   default:
6258     break;
6259   // X != Y  --> (X^Y)
6260   case ISD::SETNE:
6261     Result = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Op1, Op2, VL);
6262     break;
6263   // X == Y  --> ~(X^Y)
6264   case ISD::SETEQ: {
6265     SDValue Temp =
6266         DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Op1, Op2, VL);
6267     Result =
6268         DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Temp, AllOneMask, VL);
6269     break;
6270   }
6271   // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y
6272   // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y
6273   case ISD::SETGT:
6274   case ISD::SETULT: {
6275     SDValue Temp =
6276         DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Op1, AllOneMask, VL);
6277     Result = DAG.getNode(RISCVISD::VMAND_VL, DL, ContainerVT, Temp, Op2, VL);
6278     break;
6279   }
6280   // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X
6281   // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X
6282   case ISD::SETLT:
6283   case ISD::SETUGT: {
6284     SDValue Temp =
6285         DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Op2, AllOneMask, VL);
6286     Result = DAG.getNode(RISCVISD::VMAND_VL, DL, ContainerVT, Op1, Temp, VL);
6287     break;
6288   }
6289   // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y
6290   // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y
6291   case ISD::SETGE:
6292   case ISD::SETULE: {
6293     SDValue Temp =
6294         DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Op1, AllOneMask, VL);
6295     Result = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Temp, Op2, VL);
6296     break;
6297   }
6298   // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X
6299   // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X
6300   case ISD::SETLE:
6301   case ISD::SETUGE: {
6302     SDValue Temp =
6303         DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Op2, AllOneMask, VL);
6304     Result = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Temp, Op1, VL);
6305     break;
6306   }
6307   }
6308 
6309   if (!VT.isFixedLengthVector())
6310     return Result;
6311   return convertFromScalableVector(VT, Result, DAG, Subtarget);
6312 }
6313 
6314 // Lower Floating-Point/Integer Type-Convert VP SDNodes
6315 SDValue RISCVTargetLowering::lowerVPFPIntConvOp(SDValue Op, SelectionDAG &DAG,
6316                                                 unsigned RISCVISDOpc) const {
6317   SDLoc DL(Op);
6318 
6319   SDValue Src = Op.getOperand(0);
6320   SDValue Mask = Op.getOperand(1);
6321   SDValue VL = Op.getOperand(2);
6322 
6323   MVT DstVT = Op.getSimpleValueType();
6324   MVT SrcVT = Src.getSimpleValueType();
6325   if (DstVT.isFixedLengthVector()) {
6326     DstVT = getContainerForFixedLengthVector(DstVT);
6327     SrcVT = getContainerForFixedLengthVector(SrcVT);
6328     Src = convertToScalableVector(SrcVT, Src, DAG, Subtarget);
6329     MVT MaskVT = getMaskTypeFor(DstVT);
6330     Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
6331   }
6332 
6333   unsigned RISCVISDExtOpc = (RISCVISDOpc == RISCVISD::SINT_TO_FP_VL ||
6334                              RISCVISDOpc == RISCVISD::FP_TO_SINT_VL)
6335                                 ? RISCVISD::VSEXT_VL
6336                                 : RISCVISD::VZEXT_VL;
6337 
6338   unsigned DstEltSize = DstVT.getScalarSizeInBits();
6339   unsigned SrcEltSize = SrcVT.getScalarSizeInBits();
6340 
6341   SDValue Result;
6342   if (DstEltSize >= SrcEltSize) { // Single-width and widening conversion.
6343     if (SrcVT.isInteger()) {
6344       assert(DstVT.isFloatingPoint() && "Wrong input/output vector types");
6345 
6346       // Do we need to do any pre-widening before converting?
6347       if (SrcEltSize == 1) {
6348         MVT IntVT = DstVT.changeVectorElementTypeToInteger();
6349         MVT XLenVT = Subtarget.getXLenVT();
6350         SDValue Zero = DAG.getConstant(0, DL, XLenVT);
6351         SDValue ZeroSplat = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, IntVT,
6352                                         DAG.getUNDEF(IntVT), Zero, VL);
6353         SDValue One = DAG.getConstant(
6354             RISCVISDExtOpc == RISCVISD::VZEXT_VL ? 1 : -1, DL, XLenVT);
6355         SDValue OneSplat = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, IntVT,
6356                                        DAG.getUNDEF(IntVT), One, VL);
6357         Src = DAG.getNode(RISCVISD::VSELECT_VL, DL, IntVT, Src, OneSplat,
6358                           ZeroSplat, VL);
6359       } else if (DstEltSize > (2 * SrcEltSize)) {
6360         // Widen before converting.
6361         MVT IntVT = MVT::getVectorVT(MVT::getIntegerVT(DstEltSize / 2),
6362                                      DstVT.getVectorElementCount());
6363         Src = DAG.getNode(RISCVISDExtOpc, DL, IntVT, Src, Mask, VL);
6364       }
6365 
6366       Result = DAG.getNode(RISCVISDOpc, DL, DstVT, Src, Mask, VL);
6367     } else {
6368       assert(SrcVT.isFloatingPoint() && DstVT.isInteger() &&
6369              "Wrong input/output vector types");
6370 
6371       // Convert f16 to f32 then convert f32 to i64.
6372       if (DstEltSize > (2 * SrcEltSize)) {
6373         assert(SrcVT.getVectorElementType() == MVT::f16 && "Unexpected type!");
6374         MVT InterimFVT =
6375             MVT::getVectorVT(MVT::f32, DstVT.getVectorElementCount());
6376         Src =
6377             DAG.getNode(RISCVISD::FP_EXTEND_VL, DL, InterimFVT, Src, Mask, VL);
6378       }
6379 
6380       Result = DAG.getNode(RISCVISDOpc, DL, DstVT, Src, Mask, VL);
6381     }
6382   } else { // Narrowing + Conversion
6383     if (SrcVT.isInteger()) {
6384       assert(DstVT.isFloatingPoint() && "Wrong input/output vector types");
6385       // First do a narrowing convert to an FP type half the size, then round
6386       // the FP type to a small FP type if needed.
6387 
6388       MVT InterimFVT = DstVT;
6389       if (SrcEltSize > (2 * DstEltSize)) {
6390         assert(SrcEltSize == (4 * DstEltSize) && "Unexpected types!");
6391         assert(DstVT.getVectorElementType() == MVT::f16 && "Unexpected type!");
6392         InterimFVT = MVT::getVectorVT(MVT::f32, DstVT.getVectorElementCount());
6393       }
6394 
6395       Result = DAG.getNode(RISCVISDOpc, DL, InterimFVT, Src, Mask, VL);
6396 
6397       if (InterimFVT != DstVT) {
6398         Src = Result;
6399         Result = DAG.getNode(RISCVISD::FP_ROUND_VL, DL, DstVT, Src, Mask, VL);
6400       }
6401     } else {
6402       assert(SrcVT.isFloatingPoint() && DstVT.isInteger() &&
6403              "Wrong input/output vector types");
6404       // First do a narrowing conversion to an integer half the size, then
6405       // truncate if needed.
6406 
6407       if (DstEltSize == 1) {
6408         // First convert to the same size integer, then convert to mask using
6409         // setcc.
6410         assert(SrcEltSize >= 16 && "Unexpected FP type!");
6411         MVT InterimIVT = MVT::getVectorVT(MVT::getIntegerVT(SrcEltSize),
6412                                           DstVT.getVectorElementCount());
6413         Result = DAG.getNode(RISCVISDOpc, DL, InterimIVT, Src, Mask, VL);
6414 
6415         // Compare the integer result to 0. The integer should be 0 or 1/-1,
6416         // otherwise the conversion was undefined.
6417         MVT XLenVT = Subtarget.getXLenVT();
6418         SDValue SplatZero = DAG.getConstant(0, DL, XLenVT);
6419         SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, InterimIVT,
6420                                 DAG.getUNDEF(InterimIVT), SplatZero);
6421         Result = DAG.getNode(RISCVISD::SETCC_VL, DL, DstVT, Result, SplatZero,
6422                              DAG.getCondCode(ISD::SETNE), Mask, VL);
6423       } else {
6424         MVT InterimIVT = MVT::getVectorVT(MVT::getIntegerVT(SrcEltSize / 2),
6425                                           DstVT.getVectorElementCount());
6426 
6427         Result = DAG.getNode(RISCVISDOpc, DL, InterimIVT, Src, Mask, VL);
6428 
6429         while (InterimIVT != DstVT) {
6430           SrcEltSize /= 2;
6431           Src = Result;
6432           InterimIVT = MVT::getVectorVT(MVT::getIntegerVT(SrcEltSize / 2),
6433                                         DstVT.getVectorElementCount());
6434           Result = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, InterimIVT,
6435                                Src, Mask, VL);
6436         }
6437       }
6438     }
6439   }
6440 
6441   MVT VT = Op.getSimpleValueType();
6442   if (!VT.isFixedLengthVector())
6443     return Result;
6444   return convertFromScalableVector(VT, Result, DAG, Subtarget);
6445 }
6446 
6447 SDValue RISCVTargetLowering::lowerLogicVPOp(SDValue Op, SelectionDAG &DAG,
6448                                             unsigned MaskOpc,
6449                                             unsigned VecOpc) const {
6450   MVT VT = Op.getSimpleValueType();
6451   if (VT.getVectorElementType() != MVT::i1)
6452     return lowerVPOp(Op, DAG, VecOpc);
6453 
6454   // It is safe to drop mask parameter as masked-off elements are undef.
6455   SDValue Op1 = Op->getOperand(0);
6456   SDValue Op2 = Op->getOperand(1);
6457   SDValue VL = Op->getOperand(3);
6458 
6459   MVT ContainerVT = VT;
6460   const bool IsFixed = VT.isFixedLengthVector();
6461   if (IsFixed) {
6462     ContainerVT = getContainerForFixedLengthVector(VT);
6463     Op1 = convertToScalableVector(ContainerVT, Op1, DAG, Subtarget);
6464     Op2 = convertToScalableVector(ContainerVT, Op2, DAG, Subtarget);
6465   }
6466 
6467   SDLoc DL(Op);
6468   SDValue Val = DAG.getNode(MaskOpc, DL, ContainerVT, Op1, Op2, VL);
6469   if (!IsFixed)
6470     return Val;
6471   return convertFromScalableVector(VT, Val, DAG, Subtarget);
6472 }
6473 
6474 // Custom lower MGATHER/VP_GATHER to a legalized form for RVV. It will then be
6475 // matched to a RVV indexed load. The RVV indexed load instructions only
6476 // support the "unsigned unscaled" addressing mode; indices are implicitly
6477 // zero-extended or truncated to XLEN and are treated as byte offsets. Any
6478 // signed or scaled indexing is extended to the XLEN value type and scaled
6479 // accordingly.
6480 SDValue RISCVTargetLowering::lowerMaskedGather(SDValue Op,
6481                                                SelectionDAG &DAG) const {
6482   SDLoc DL(Op);
6483   MVT VT = Op.getSimpleValueType();
6484 
6485   const auto *MemSD = cast<MemSDNode>(Op.getNode());
6486   EVT MemVT = MemSD->getMemoryVT();
6487   MachineMemOperand *MMO = MemSD->getMemOperand();
6488   SDValue Chain = MemSD->getChain();
6489   SDValue BasePtr = MemSD->getBasePtr();
6490 
6491   ISD::LoadExtType LoadExtType;
6492   SDValue Index, Mask, PassThru, VL;
6493 
6494   if (auto *VPGN = dyn_cast<VPGatherSDNode>(Op.getNode())) {
6495     Index = VPGN->getIndex();
6496     Mask = VPGN->getMask();
6497     PassThru = DAG.getUNDEF(VT);
6498     VL = VPGN->getVectorLength();
6499     // VP doesn't support extending loads.
6500     LoadExtType = ISD::NON_EXTLOAD;
6501   } else {
6502     // Else it must be a MGATHER.
6503     auto *MGN = cast<MaskedGatherSDNode>(Op.getNode());
6504     Index = MGN->getIndex();
6505     Mask = MGN->getMask();
6506     PassThru = MGN->getPassThru();
6507     LoadExtType = MGN->getExtensionType();
6508   }
6509 
6510   MVT IndexVT = Index.getSimpleValueType();
6511   MVT XLenVT = Subtarget.getXLenVT();
6512 
6513   assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() &&
6514          "Unexpected VTs!");
6515   assert(BasePtr.getSimpleValueType() == XLenVT && "Unexpected pointer type");
6516   // Targets have to explicitly opt-in for extending vector loads.
6517   assert(LoadExtType == ISD::NON_EXTLOAD &&
6518          "Unexpected extending MGATHER/VP_GATHER");
6519   (void)LoadExtType;
6520 
6521   // If the mask is known to be all ones, optimize to an unmasked intrinsic;
6522   // the selection of the masked intrinsics doesn't do this for us.
6523   bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
6524 
6525   MVT ContainerVT = VT;
6526   if (VT.isFixedLengthVector()) {
6527     ContainerVT = getContainerForFixedLengthVector(VT);
6528     IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(),
6529                                ContainerVT.getVectorElementCount());
6530 
6531     Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget);
6532 
6533     if (!IsUnmasked) {
6534       MVT MaskVT = getMaskTypeFor(ContainerVT);
6535       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
6536       PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget);
6537     }
6538   }
6539 
6540   if (!VL)
6541     VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second;
6542 
6543   if (XLenVT == MVT::i32 && IndexVT.getVectorElementType().bitsGT(XLenVT)) {
6544     IndexVT = IndexVT.changeVectorElementType(XLenVT);
6545     SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, Mask.getValueType(),
6546                                    VL);
6547     Index = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, IndexVT, Index,
6548                         TrueMask, VL);
6549   }
6550 
6551   unsigned IntID =
6552       IsUnmasked ? Intrinsic::riscv_vluxei : Intrinsic::riscv_vluxei_mask;
6553   SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)};
6554   if (IsUnmasked)
6555     Ops.push_back(DAG.getUNDEF(ContainerVT));
6556   else
6557     Ops.push_back(PassThru);
6558   Ops.push_back(BasePtr);
6559   Ops.push_back(Index);
6560   if (!IsUnmasked)
6561     Ops.push_back(Mask);
6562   Ops.push_back(VL);
6563   if (!IsUnmasked)
6564     Ops.push_back(DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT));
6565 
6566   SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
6567   SDValue Result =
6568       DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, MemVT, MMO);
6569   Chain = Result.getValue(1);
6570 
6571   if (VT.isFixedLengthVector())
6572     Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
6573 
6574   return DAG.getMergeValues({Result, Chain}, DL);
6575 }
6576 
6577 // Custom lower MSCATTER/VP_SCATTER to a legalized form for RVV. It will then be
6578 // matched to a RVV indexed store. The RVV indexed store instructions only
6579 // support the "unsigned unscaled" addressing mode; indices are implicitly
6580 // zero-extended or truncated to XLEN and are treated as byte offsets. Any
6581 // signed or scaled indexing is extended to the XLEN value type and scaled
6582 // accordingly.
6583 SDValue RISCVTargetLowering::lowerMaskedScatter(SDValue Op,
6584                                                 SelectionDAG &DAG) const {
6585   SDLoc DL(Op);
6586   const auto *MemSD = cast<MemSDNode>(Op.getNode());
6587   EVT MemVT = MemSD->getMemoryVT();
6588   MachineMemOperand *MMO = MemSD->getMemOperand();
6589   SDValue Chain = MemSD->getChain();
6590   SDValue BasePtr = MemSD->getBasePtr();
6591 
6592   bool IsTruncatingStore = false;
6593   SDValue Index, Mask, Val, VL;
6594 
6595   if (auto *VPSN = dyn_cast<VPScatterSDNode>(Op.getNode())) {
6596     Index = VPSN->getIndex();
6597     Mask = VPSN->getMask();
6598     Val = VPSN->getValue();
6599     VL = VPSN->getVectorLength();
6600     // VP doesn't support truncating stores.
6601     IsTruncatingStore = false;
6602   } else {
6603     // Else it must be a MSCATTER.
6604     auto *MSN = cast<MaskedScatterSDNode>(Op.getNode());
6605     Index = MSN->getIndex();
6606     Mask = MSN->getMask();
6607     Val = MSN->getValue();
6608     IsTruncatingStore = MSN->isTruncatingStore();
6609   }
6610 
6611   MVT VT = Val.getSimpleValueType();
6612   MVT IndexVT = Index.getSimpleValueType();
6613   MVT XLenVT = Subtarget.getXLenVT();
6614 
6615   assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() &&
6616          "Unexpected VTs!");
6617   assert(BasePtr.getSimpleValueType() == XLenVT && "Unexpected pointer type");
6618   // Targets have to explicitly opt-in for extending vector loads and
6619   // truncating vector stores.
6620   assert(!IsTruncatingStore && "Unexpected truncating MSCATTER/VP_SCATTER");
6621   (void)IsTruncatingStore;
6622 
6623   // If the mask is known to be all ones, optimize to an unmasked intrinsic;
6624   // the selection of the masked intrinsics doesn't do this for us.
6625   bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
6626 
6627   MVT ContainerVT = VT;
6628   if (VT.isFixedLengthVector()) {
6629     ContainerVT = getContainerForFixedLengthVector(VT);
6630     IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(),
6631                                ContainerVT.getVectorElementCount());
6632 
6633     Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget);
6634     Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget);
6635 
6636     if (!IsUnmasked) {
6637       MVT MaskVT = getMaskTypeFor(ContainerVT);
6638       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
6639     }
6640   }
6641 
6642   if (!VL)
6643     VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second;
6644 
6645   if (XLenVT == MVT::i32 && IndexVT.getVectorElementType().bitsGT(XLenVT)) {
6646     IndexVT = IndexVT.changeVectorElementType(XLenVT);
6647     SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, Mask.getValueType(),
6648                                    VL);
6649     Index = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, IndexVT, Index,
6650                         TrueMask, VL);
6651   }
6652 
6653   unsigned IntID =
6654       IsUnmasked ? Intrinsic::riscv_vsoxei : Intrinsic::riscv_vsoxei_mask;
6655   SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)};
6656   Ops.push_back(Val);
6657   Ops.push_back(BasePtr);
6658   Ops.push_back(Index);
6659   if (!IsUnmasked)
6660     Ops.push_back(Mask);
6661   Ops.push_back(VL);
6662 
6663   return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL,
6664                                  DAG.getVTList(MVT::Other), Ops, MemVT, MMO);
6665 }
6666 
6667 SDValue RISCVTargetLowering::lowerGET_ROUNDING(SDValue Op,
6668                                                SelectionDAG &DAG) const {
6669   const MVT XLenVT = Subtarget.getXLenVT();
6670   SDLoc DL(Op);
6671   SDValue Chain = Op->getOperand(0);
6672   SDValue SysRegNo = DAG.getTargetConstant(
6673       RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT);
6674   SDVTList VTs = DAG.getVTList(XLenVT, MVT::Other);
6675   SDValue RM = DAG.getNode(RISCVISD::READ_CSR, DL, VTs, Chain, SysRegNo);
6676 
6677   // Encoding used for rounding mode in RISCV differs from that used in
6678   // FLT_ROUNDS. To convert it the RISCV rounding mode is used as an index in a
6679   // table, which consists of a sequence of 4-bit fields, each representing
6680   // corresponding FLT_ROUNDS mode.
6681   static const int Table =
6682       (int(RoundingMode::NearestTiesToEven) << 4 * RISCVFPRndMode::RNE) |
6683       (int(RoundingMode::TowardZero) << 4 * RISCVFPRndMode::RTZ) |
6684       (int(RoundingMode::TowardNegative) << 4 * RISCVFPRndMode::RDN) |
6685       (int(RoundingMode::TowardPositive) << 4 * RISCVFPRndMode::RUP) |
6686       (int(RoundingMode::NearestTiesToAway) << 4 * RISCVFPRndMode::RMM);
6687 
6688   SDValue Shift =
6689       DAG.getNode(ISD::SHL, DL, XLenVT, RM, DAG.getConstant(2, DL, XLenVT));
6690   SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT,
6691                                 DAG.getConstant(Table, DL, XLenVT), Shift);
6692   SDValue Masked = DAG.getNode(ISD::AND, DL, XLenVT, Shifted,
6693                                DAG.getConstant(7, DL, XLenVT));
6694 
6695   return DAG.getMergeValues({Masked, Chain}, DL);
6696 }
6697 
6698 SDValue RISCVTargetLowering::lowerSET_ROUNDING(SDValue Op,
6699                                                SelectionDAG &DAG) const {
6700   const MVT XLenVT = Subtarget.getXLenVT();
6701   SDLoc DL(Op);
6702   SDValue Chain = Op->getOperand(0);
6703   SDValue RMValue = Op->getOperand(1);
6704   SDValue SysRegNo = DAG.getTargetConstant(
6705       RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT);
6706 
6707   // Encoding used for rounding mode in RISCV differs from that used in
6708   // FLT_ROUNDS. To convert it the C rounding mode is used as an index in
6709   // a table, which consists of a sequence of 4-bit fields, each representing
6710   // corresponding RISCV mode.
6711   static const unsigned Table =
6712       (RISCVFPRndMode::RNE << 4 * int(RoundingMode::NearestTiesToEven)) |
6713       (RISCVFPRndMode::RTZ << 4 * int(RoundingMode::TowardZero)) |
6714       (RISCVFPRndMode::RDN << 4 * int(RoundingMode::TowardNegative)) |
6715       (RISCVFPRndMode::RUP << 4 * int(RoundingMode::TowardPositive)) |
6716       (RISCVFPRndMode::RMM << 4 * int(RoundingMode::NearestTiesToAway));
6717 
6718   SDValue Shift = DAG.getNode(ISD::SHL, DL, XLenVT, RMValue,
6719                               DAG.getConstant(2, DL, XLenVT));
6720   SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT,
6721                                 DAG.getConstant(Table, DL, XLenVT), Shift);
6722   RMValue = DAG.getNode(ISD::AND, DL, XLenVT, Shifted,
6723                         DAG.getConstant(0x7, DL, XLenVT));
6724   return DAG.getNode(RISCVISD::WRITE_CSR, DL, MVT::Other, Chain, SysRegNo,
6725                      RMValue);
6726 }
6727 
6728 SDValue RISCVTargetLowering::lowerEH_DWARF_CFA(SDValue Op,
6729                                                SelectionDAG &DAG) const {
6730   MachineFunction &MF = DAG.getMachineFunction();
6731 
6732   bool isRISCV64 = Subtarget.is64Bit();
6733   EVT PtrVT = getPointerTy(DAG.getDataLayout());
6734 
6735   int FI = MF.getFrameInfo().CreateFixedObject(isRISCV64 ? 8 : 4, 0, false);
6736   return DAG.getFrameIndex(FI, PtrVT);
6737 }
6738 
6739 static RISCVISD::NodeType getRISCVWOpcodeByIntr(unsigned IntNo) {
6740   switch (IntNo) {
6741   default:
6742     llvm_unreachable("Unexpected Intrinsic");
6743   case Intrinsic::riscv_bcompress:
6744     return RISCVISD::BCOMPRESSW;
6745   case Intrinsic::riscv_bdecompress:
6746     return RISCVISD::BDECOMPRESSW;
6747   case Intrinsic::riscv_bfp:
6748     return RISCVISD::BFPW;
6749   case Intrinsic::riscv_fsl:
6750     return RISCVISD::FSLW;
6751   case Intrinsic::riscv_fsr:
6752     return RISCVISD::FSRW;
6753   }
6754 }
6755 
6756 // Converts the given intrinsic to a i64 operation with any extension.
6757 static SDValue customLegalizeToWOpByIntr(SDNode *N, SelectionDAG &DAG,
6758                                          unsigned IntNo) {
6759   SDLoc DL(N);
6760   RISCVISD::NodeType WOpcode = getRISCVWOpcodeByIntr(IntNo);
6761   // Deal with the Instruction Operands
6762   SmallVector<SDValue, 3> NewOps;
6763   for (SDValue Op : drop_begin(N->ops()))
6764     // Promote the operand to i64 type
6765     NewOps.push_back(DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op));
6766   SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOps);
6767   // ReplaceNodeResults requires we maintain the same type for the return value.
6768   return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewRes);
6769 }
6770 
6771 // Returns the opcode of the target-specific SDNode that implements the 32-bit
6772 // form of the given Opcode.
6773 static RISCVISD::NodeType getRISCVWOpcode(unsigned Opcode) {
6774   switch (Opcode) {
6775   default:
6776     llvm_unreachable("Unexpected opcode");
6777   case ISD::SHL:
6778     return RISCVISD::SLLW;
6779   case ISD::SRA:
6780     return RISCVISD::SRAW;
6781   case ISD::SRL:
6782     return RISCVISD::SRLW;
6783   case ISD::SDIV:
6784     return RISCVISD::DIVW;
6785   case ISD::UDIV:
6786     return RISCVISD::DIVUW;
6787   case ISD::UREM:
6788     return RISCVISD::REMUW;
6789   case ISD::ROTL:
6790     return RISCVISD::ROLW;
6791   case ISD::ROTR:
6792     return RISCVISD::RORW;
6793   }
6794 }
6795 
6796 // Converts the given i8/i16/i32 operation to a target-specific SelectionDAG
6797 // node. Because i8/i16/i32 isn't a legal type for RV64, these operations would
6798 // otherwise be promoted to i64, making it difficult to select the
6799 // SLLW/DIVUW/.../*W later one because the fact the operation was originally of
6800 // type i8/i16/i32 is lost.
6801 static SDValue customLegalizeToWOp(SDNode *N, SelectionDAG &DAG,
6802                                    unsigned ExtOpc = ISD::ANY_EXTEND) {
6803   SDLoc DL(N);
6804   RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode());
6805   SDValue NewOp0 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(0));
6806   SDValue NewOp1 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(1));
6807   SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1);
6808   // ReplaceNodeResults requires we maintain the same type for the return value.
6809   return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewRes);
6810 }
6811 
6812 // Converts the given 32-bit operation to a i64 operation with signed extension
6813 // semantic to reduce the signed extension instructions.
6814 static SDValue customLegalizeToWOpWithSExt(SDNode *N, SelectionDAG &DAG) {
6815   SDLoc DL(N);
6816   SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
6817   SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
6818   SDValue NewWOp = DAG.getNode(N->getOpcode(), DL, MVT::i64, NewOp0, NewOp1);
6819   SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp,
6820                                DAG.getValueType(MVT::i32));
6821   return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes);
6822 }
6823 
6824 void RISCVTargetLowering::ReplaceNodeResults(SDNode *N,
6825                                              SmallVectorImpl<SDValue> &Results,
6826                                              SelectionDAG &DAG) const {
6827   SDLoc DL(N);
6828   switch (N->getOpcode()) {
6829   default:
6830     llvm_unreachable("Don't know how to custom type legalize this operation!");
6831   case ISD::STRICT_FP_TO_SINT:
6832   case ISD::STRICT_FP_TO_UINT:
6833   case ISD::FP_TO_SINT:
6834   case ISD::FP_TO_UINT: {
6835     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6836            "Unexpected custom legalisation");
6837     bool IsStrict = N->isStrictFPOpcode();
6838     bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT ||
6839                     N->getOpcode() == ISD::STRICT_FP_TO_SINT;
6840     SDValue Op0 = IsStrict ? N->getOperand(1) : N->getOperand(0);
6841     if (getTypeAction(*DAG.getContext(), Op0.getValueType()) !=
6842         TargetLowering::TypeSoftenFloat) {
6843       if (!isTypeLegal(Op0.getValueType()))
6844         return;
6845       if (IsStrict) {
6846         unsigned Opc = IsSigned ? RISCVISD::STRICT_FCVT_W_RV64
6847                                 : RISCVISD::STRICT_FCVT_WU_RV64;
6848         SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other);
6849         SDValue Res = DAG.getNode(
6850             Opc, DL, VTs, N->getOperand(0), Op0,
6851             DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, MVT::i64));
6852         Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
6853         Results.push_back(Res.getValue(1));
6854         return;
6855       }
6856       unsigned Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64;
6857       SDValue Res =
6858           DAG.getNode(Opc, DL, MVT::i64, Op0,
6859                       DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, MVT::i64));
6860       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
6861       return;
6862     }
6863     // If the FP type needs to be softened, emit a library call using the 'si'
6864     // version. If we left it to default legalization we'd end up with 'di'. If
6865     // the FP type doesn't need to be softened just let generic type
6866     // legalization promote the result type.
6867     RTLIB::Libcall LC;
6868     if (IsSigned)
6869       LC = RTLIB::getFPTOSINT(Op0.getValueType(), N->getValueType(0));
6870     else
6871       LC = RTLIB::getFPTOUINT(Op0.getValueType(), N->getValueType(0));
6872     MakeLibCallOptions CallOptions;
6873     EVT OpVT = Op0.getValueType();
6874     CallOptions.setTypeListBeforeSoften(OpVT, N->getValueType(0), true);
6875     SDValue Chain = IsStrict ? N->getOperand(0) : SDValue();
6876     SDValue Result;
6877     std::tie(Result, Chain) =
6878         makeLibCall(DAG, LC, N->getValueType(0), Op0, CallOptions, DL, Chain);
6879     Results.push_back(Result);
6880     if (IsStrict)
6881       Results.push_back(Chain);
6882     break;
6883   }
6884   case ISD::READCYCLECOUNTER: {
6885     assert(!Subtarget.is64Bit() &&
6886            "READCYCLECOUNTER only has custom type legalization on riscv32");
6887 
6888     SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
6889     SDValue RCW =
6890         DAG.getNode(RISCVISD::READ_CYCLE_WIDE, DL, VTs, N->getOperand(0));
6891 
6892     Results.push_back(
6893         DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, RCW, RCW.getValue(1)));
6894     Results.push_back(RCW.getValue(2));
6895     break;
6896   }
6897   case ISD::MUL: {
6898     unsigned Size = N->getSimpleValueType(0).getSizeInBits();
6899     unsigned XLen = Subtarget.getXLen();
6900     // This multiply needs to be expanded, try to use MULHSU+MUL if possible.
6901     if (Size > XLen) {
6902       assert(Size == (XLen * 2) && "Unexpected custom legalisation");
6903       SDValue LHS = N->getOperand(0);
6904       SDValue RHS = N->getOperand(1);
6905       APInt HighMask = APInt::getHighBitsSet(Size, XLen);
6906 
6907       bool LHSIsU = DAG.MaskedValueIsZero(LHS, HighMask);
6908       bool RHSIsU = DAG.MaskedValueIsZero(RHS, HighMask);
6909       // We need exactly one side to be unsigned.
6910       if (LHSIsU == RHSIsU)
6911         return;
6912 
6913       auto MakeMULPair = [&](SDValue S, SDValue U) {
6914         MVT XLenVT = Subtarget.getXLenVT();
6915         S = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, S);
6916         U = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, U);
6917         SDValue Lo = DAG.getNode(ISD::MUL, DL, XLenVT, S, U);
6918         SDValue Hi = DAG.getNode(RISCVISD::MULHSU, DL, XLenVT, S, U);
6919         return DAG.getNode(ISD::BUILD_PAIR, DL, N->getValueType(0), Lo, Hi);
6920       };
6921 
6922       bool LHSIsS = DAG.ComputeNumSignBits(LHS) > XLen;
6923       bool RHSIsS = DAG.ComputeNumSignBits(RHS) > XLen;
6924 
6925       // The other operand should be signed, but still prefer MULH when
6926       // possible.
6927       if (RHSIsU && LHSIsS && !RHSIsS)
6928         Results.push_back(MakeMULPair(LHS, RHS));
6929       else if (LHSIsU && RHSIsS && !LHSIsS)
6930         Results.push_back(MakeMULPair(RHS, LHS));
6931 
6932       return;
6933     }
6934     LLVM_FALLTHROUGH;
6935   }
6936   case ISD::ADD:
6937   case ISD::SUB:
6938     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6939            "Unexpected custom legalisation");
6940     Results.push_back(customLegalizeToWOpWithSExt(N, DAG));
6941     break;
6942   case ISD::SHL:
6943   case ISD::SRA:
6944   case ISD::SRL:
6945     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6946            "Unexpected custom legalisation");
6947     if (N->getOperand(1).getOpcode() != ISD::Constant) {
6948       // If we can use a BSET instruction, allow default promotion to apply.
6949       if (N->getOpcode() == ISD::SHL && Subtarget.hasStdExtZbs() &&
6950           isOneConstant(N->getOperand(0)))
6951         break;
6952       Results.push_back(customLegalizeToWOp(N, DAG));
6953       break;
6954     }
6955 
6956     // Custom legalize ISD::SHL by placing a SIGN_EXTEND_INREG after. This is
6957     // similar to customLegalizeToWOpWithSExt, but we must zero_extend the
6958     // shift amount.
6959     if (N->getOpcode() == ISD::SHL) {
6960       SDLoc DL(N);
6961       SDValue NewOp0 =
6962           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
6963       SDValue NewOp1 =
6964           DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1));
6965       SDValue NewWOp = DAG.getNode(ISD::SHL, DL, MVT::i64, NewOp0, NewOp1);
6966       SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp,
6967                                    DAG.getValueType(MVT::i32));
6968       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes));
6969     }
6970 
6971     break;
6972   case ISD::ROTL:
6973   case ISD::ROTR:
6974     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6975            "Unexpected custom legalisation");
6976     Results.push_back(customLegalizeToWOp(N, DAG));
6977     break;
6978   case ISD::CTTZ:
6979   case ISD::CTTZ_ZERO_UNDEF:
6980   case ISD::CTLZ:
6981   case ISD::CTLZ_ZERO_UNDEF: {
6982     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6983            "Unexpected custom legalisation");
6984 
6985     SDValue NewOp0 =
6986         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
6987     bool IsCTZ =
6988         N->getOpcode() == ISD::CTTZ || N->getOpcode() == ISD::CTTZ_ZERO_UNDEF;
6989     unsigned Opc = IsCTZ ? RISCVISD::CTZW : RISCVISD::CLZW;
6990     SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp0);
6991     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
6992     return;
6993   }
6994   case ISD::SDIV:
6995   case ISD::UDIV:
6996   case ISD::UREM: {
6997     MVT VT = N->getSimpleValueType(0);
6998     assert((VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) &&
6999            Subtarget.is64Bit() && Subtarget.hasStdExtM() &&
7000            "Unexpected custom legalisation");
7001     // Don't promote division/remainder by constant since we should expand those
7002     // to multiply by magic constant.
7003     // FIXME: What if the expansion is disabled for minsize.
7004     if (N->getOperand(1).getOpcode() == ISD::Constant)
7005       return;
7006 
7007     // If the input is i32, use ANY_EXTEND since the W instructions don't read
7008     // the upper 32 bits. For other types we need to sign or zero extend
7009     // based on the opcode.
7010     unsigned ExtOpc = ISD::ANY_EXTEND;
7011     if (VT != MVT::i32)
7012       ExtOpc = N->getOpcode() == ISD::SDIV ? ISD::SIGN_EXTEND
7013                                            : ISD::ZERO_EXTEND;
7014 
7015     Results.push_back(customLegalizeToWOp(N, DAG, ExtOpc));
7016     break;
7017   }
7018   case ISD::UADDO:
7019   case ISD::USUBO: {
7020     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
7021            "Unexpected custom legalisation");
7022     bool IsAdd = N->getOpcode() == ISD::UADDO;
7023     // Create an ADDW or SUBW.
7024     SDValue LHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
7025     SDValue RHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
7026     SDValue Res =
7027         DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, DL, MVT::i64, LHS, RHS);
7028     Res = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Res,
7029                       DAG.getValueType(MVT::i32));
7030 
7031     SDValue Overflow;
7032     if (IsAdd && isOneConstant(RHS)) {
7033       // Special case uaddo X, 1 overflowed if the addition result is 0.
7034       // The general case (X + C) < C is not necessarily beneficial. Although we
7035       // reduce the live range of X, we may introduce the materialization of
7036       // constant C, especially when the setcc result is used by branch. We have
7037       // no compare with constant and branch instructions.
7038       Overflow = DAG.getSetCC(DL, N->getValueType(1), Res,
7039                               DAG.getConstant(0, DL, MVT::i64), ISD::SETEQ);
7040     } else {
7041       // Sign extend the LHS and perform an unsigned compare with the ADDW
7042       // result. Since the inputs are sign extended from i32, this is equivalent
7043       // to comparing the lower 32 bits.
7044       LHS = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0));
7045       Overflow = DAG.getSetCC(DL, N->getValueType(1), Res, LHS,
7046                               IsAdd ? ISD::SETULT : ISD::SETUGT);
7047     }
7048 
7049     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
7050     Results.push_back(Overflow);
7051     return;
7052   }
7053   case ISD::UADDSAT:
7054   case ISD::USUBSAT: {
7055     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
7056            "Unexpected custom legalisation");
7057     if (Subtarget.hasStdExtZbb()) {
7058       // With Zbb we can sign extend and let LegalizeDAG use minu/maxu. Using
7059       // sign extend allows overflow of the lower 32 bits to be detected on
7060       // the promoted size.
7061       SDValue LHS =
7062           DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0));
7063       SDValue RHS =
7064           DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(1));
7065       SDValue Res = DAG.getNode(N->getOpcode(), DL, MVT::i64, LHS, RHS);
7066       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
7067       return;
7068     }
7069 
7070     // Without Zbb, expand to UADDO/USUBO+select which will trigger our custom
7071     // promotion for UADDO/USUBO.
7072     Results.push_back(expandAddSubSat(N, DAG));
7073     return;
7074   }
7075   case ISD::ABS: {
7076     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
7077            "Unexpected custom legalisation");
7078 
7079     // Expand abs to Y = (sraiw X, 31); subw(xor(X, Y), Y)
7080 
7081     SDValue Src = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
7082 
7083     // Freeze the source so we can increase it's use count.
7084     Src = DAG.getFreeze(Src);
7085 
7086     // Copy sign bit to all bits using the sraiw pattern.
7087     SDValue SignFill = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Src,
7088                                    DAG.getValueType(MVT::i32));
7089     SignFill = DAG.getNode(ISD::SRA, DL, MVT::i64, SignFill,
7090                            DAG.getConstant(31, DL, MVT::i64));
7091 
7092     SDValue NewRes = DAG.getNode(ISD::XOR, DL, MVT::i64, Src, SignFill);
7093     NewRes = DAG.getNode(ISD::SUB, DL, MVT::i64, NewRes, SignFill);
7094 
7095     // NOTE: The result is only required to be anyextended, but sext is
7096     // consistent with type legalization of sub.
7097     NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewRes,
7098                          DAG.getValueType(MVT::i32));
7099     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes));
7100     return;
7101   }
7102   case ISD::BITCAST: {
7103     EVT VT = N->getValueType(0);
7104     assert(VT.isInteger() && !VT.isVector() && "Unexpected VT!");
7105     SDValue Op0 = N->getOperand(0);
7106     EVT Op0VT = Op0.getValueType();
7107     MVT XLenVT = Subtarget.getXLenVT();
7108     if (VT == MVT::i16 && Op0VT == MVT::f16 && Subtarget.hasStdExtZfh()) {
7109       SDValue FPConv = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, XLenVT, Op0);
7110       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FPConv));
7111     } else if (VT == MVT::i32 && Op0VT == MVT::f32 && Subtarget.is64Bit() &&
7112                Subtarget.hasStdExtF()) {
7113       SDValue FPConv =
7114           DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Op0);
7115       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, FPConv));
7116     } else if (!VT.isVector() && Op0VT.isFixedLengthVector() &&
7117                isTypeLegal(Op0VT)) {
7118       // Custom-legalize bitcasts from fixed-length vector types to illegal
7119       // scalar types in order to improve codegen. Bitcast the vector to a
7120       // one-element vector type whose element type is the same as the result
7121       // type, and extract the first element.
7122       EVT BVT = EVT::getVectorVT(*DAG.getContext(), VT, 1);
7123       if (isTypeLegal(BVT)) {
7124         SDValue BVec = DAG.getBitcast(BVT, Op0);
7125         Results.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec,
7126                                       DAG.getConstant(0, DL, XLenVT)));
7127       }
7128     }
7129     break;
7130   }
7131   case RISCVISD::GREV:
7132   case RISCVISD::GORC:
7133   case RISCVISD::SHFL: {
7134     MVT VT = N->getSimpleValueType(0);
7135     MVT XLenVT = Subtarget.getXLenVT();
7136     assert((VT == MVT::i16 || (VT == MVT::i32 && Subtarget.is64Bit())) &&
7137            "Unexpected custom legalisation");
7138     assert(isa<ConstantSDNode>(N->getOperand(1)) && "Expected constant");
7139     assert((Subtarget.hasStdExtZbp() ||
7140             (Subtarget.hasStdExtZbkb() && N->getOpcode() == RISCVISD::GREV &&
7141              N->getConstantOperandVal(1) == 7)) &&
7142            "Unexpected extension");
7143     SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, N->getOperand(0));
7144     SDValue NewOp1 =
7145         DAG.getNode(ISD::ZERO_EXTEND, DL, XLenVT, N->getOperand(1));
7146     SDValue NewRes = DAG.getNode(N->getOpcode(), DL, XLenVT, NewOp0, NewOp1);
7147     // ReplaceNodeResults requires we maintain the same type for the return
7148     // value.
7149     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, NewRes));
7150     break;
7151   }
7152   case ISD::BSWAP:
7153   case ISD::BITREVERSE: {
7154     MVT VT = N->getSimpleValueType(0);
7155     MVT XLenVT = Subtarget.getXLenVT();
7156     assert((VT == MVT::i8 || VT == MVT::i16 ||
7157             (VT == MVT::i32 && Subtarget.is64Bit())) &&
7158            Subtarget.hasStdExtZbp() && "Unexpected custom legalisation");
7159     SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, N->getOperand(0));
7160     unsigned Imm = VT.getSizeInBits() - 1;
7161     // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits.
7162     if (N->getOpcode() == ISD::BSWAP)
7163       Imm &= ~0x7U;
7164     SDValue GREVI = DAG.getNode(RISCVISD::GREV, DL, XLenVT, NewOp0,
7165                                 DAG.getConstant(Imm, DL, XLenVT));
7166     // ReplaceNodeResults requires we maintain the same type for the return
7167     // value.
7168     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, GREVI));
7169     break;
7170   }
7171   case ISD::FSHL:
7172   case ISD::FSHR: {
7173     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
7174            Subtarget.hasStdExtZbt() && "Unexpected custom legalisation");
7175     SDValue NewOp0 =
7176         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
7177     SDValue NewOp1 =
7178         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
7179     SDValue NewShAmt =
7180         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
7181     // FSLW/FSRW take a 6 bit shift amount but i32 FSHL/FSHR only use 5 bits.
7182     // Mask the shift amount to 5 bits to prevent accidentally setting bit 5.
7183     NewShAmt = DAG.getNode(ISD::AND, DL, MVT::i64, NewShAmt,
7184                            DAG.getConstant(0x1f, DL, MVT::i64));
7185     // fshl and fshr concatenate their operands in the same order. fsrw and fslw
7186     // instruction use different orders. fshl will return its first operand for
7187     // shift of zero, fshr will return its second operand. fsl and fsr both
7188     // return rs1 so the ISD nodes need to have different operand orders.
7189     // Shift amount is in rs2.
7190     unsigned Opc = RISCVISD::FSLW;
7191     if (N->getOpcode() == ISD::FSHR) {
7192       std::swap(NewOp0, NewOp1);
7193       Opc = RISCVISD::FSRW;
7194     }
7195     SDValue NewOp = DAG.getNode(Opc, DL, MVT::i64, NewOp0, NewOp1, NewShAmt);
7196     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewOp));
7197     break;
7198   }
7199   case ISD::EXTRACT_VECTOR_ELT: {
7200     // Custom-legalize an EXTRACT_VECTOR_ELT where XLEN<SEW, as the SEW element
7201     // type is illegal (currently only vXi64 RV32).
7202     // With vmv.x.s, when SEW > XLEN, only the least-significant XLEN bits are
7203     // transferred to the destination register. We issue two of these from the
7204     // upper- and lower- halves of the SEW-bit vector element, slid down to the
7205     // first element.
7206     SDValue Vec = N->getOperand(0);
7207     SDValue Idx = N->getOperand(1);
7208 
7209     // The vector type hasn't been legalized yet so we can't issue target
7210     // specific nodes if it needs legalization.
7211     // FIXME: We would manually legalize if it's important.
7212     if (!isTypeLegal(Vec.getValueType()))
7213       return;
7214 
7215     MVT VecVT = Vec.getSimpleValueType();
7216 
7217     assert(!Subtarget.is64Bit() && N->getValueType(0) == MVT::i64 &&
7218            VecVT.getVectorElementType() == MVT::i64 &&
7219            "Unexpected EXTRACT_VECTOR_ELT legalization");
7220 
7221     // If this is a fixed vector, we need to convert it to a scalable vector.
7222     MVT ContainerVT = VecVT;
7223     if (VecVT.isFixedLengthVector()) {
7224       ContainerVT = getContainerForFixedLengthVector(VecVT);
7225       Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
7226     }
7227 
7228     MVT XLenVT = Subtarget.getXLenVT();
7229 
7230     // Use a VL of 1 to avoid processing more elements than we need.
7231     SDValue VL = DAG.getConstant(1, DL, XLenVT);
7232     SDValue Mask = getAllOnesMask(ContainerVT, VL, DL, DAG);
7233 
7234     // Unless the index is known to be 0, we must slide the vector down to get
7235     // the desired element into index 0.
7236     if (!isNullConstant(Idx)) {
7237       Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT,
7238                         DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL);
7239     }
7240 
7241     // Extract the lower XLEN bits of the correct vector element.
7242     SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec);
7243 
7244     // To extract the upper XLEN bits of the vector element, shift the first
7245     // element right by 32 bits and re-extract the lower XLEN bits.
7246     SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
7247                                      DAG.getUNDEF(ContainerVT),
7248                                      DAG.getConstant(32, DL, XLenVT), VL);
7249     SDValue LShr32 = DAG.getNode(RISCVISD::SRL_VL, DL, ContainerVT, Vec,
7250                                  ThirtyTwoV, Mask, VL);
7251 
7252     SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32);
7253 
7254     Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi));
7255     break;
7256   }
7257   case ISD::INTRINSIC_WO_CHAIN: {
7258     unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
7259     switch (IntNo) {
7260     default:
7261       llvm_unreachable(
7262           "Don't know how to custom type legalize this intrinsic!");
7263     case Intrinsic::riscv_grev:
7264     case Intrinsic::riscv_gorc: {
7265       assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
7266              "Unexpected custom legalisation");
7267       SDValue NewOp1 =
7268           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
7269       SDValue NewOp2 =
7270           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
7271       unsigned Opc =
7272           IntNo == Intrinsic::riscv_grev ? RISCVISD::GREVW : RISCVISD::GORCW;
7273       // If the control is a constant, promote the node by clearing any extra
7274       // bits bits in the control. isel will form greviw/gorciw if the result is
7275       // sign extended.
7276       if (isa<ConstantSDNode>(NewOp2)) {
7277         NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2,
7278                              DAG.getConstant(0x1f, DL, MVT::i64));
7279         Opc = IntNo == Intrinsic::riscv_grev ? RISCVISD::GREV : RISCVISD::GORC;
7280       }
7281       SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2);
7282       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
7283       break;
7284     }
7285     case Intrinsic::riscv_bcompress:
7286     case Intrinsic::riscv_bdecompress:
7287     case Intrinsic::riscv_bfp:
7288     case Intrinsic::riscv_fsl:
7289     case Intrinsic::riscv_fsr: {
7290       assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
7291              "Unexpected custom legalisation");
7292       Results.push_back(customLegalizeToWOpByIntr(N, DAG, IntNo));
7293       break;
7294     }
7295     case Intrinsic::riscv_orc_b: {
7296       // Lower to the GORCI encoding for orc.b with the operand extended.
7297       SDValue NewOp =
7298           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
7299       SDValue Res = DAG.getNode(RISCVISD::GORC, DL, MVT::i64, NewOp,
7300                                 DAG.getConstant(7, DL, MVT::i64));
7301       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
7302       return;
7303     }
7304     case Intrinsic::riscv_shfl:
7305     case Intrinsic::riscv_unshfl: {
7306       assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
7307              "Unexpected custom legalisation");
7308       SDValue NewOp1 =
7309           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
7310       SDValue NewOp2 =
7311           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
7312       unsigned Opc =
7313           IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFLW : RISCVISD::UNSHFLW;
7314       // There is no (UN)SHFLIW. If the control word is a constant, we can use
7315       // (UN)SHFLI with bit 4 of the control word cleared. The upper 32 bit half
7316       // will be shuffled the same way as the lower 32 bit half, but the two
7317       // halves won't cross.
7318       if (isa<ConstantSDNode>(NewOp2)) {
7319         NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2,
7320                              DAG.getConstant(0xf, DL, MVT::i64));
7321         Opc =
7322             IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL;
7323       }
7324       SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2);
7325       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
7326       break;
7327     }
7328     case Intrinsic::riscv_vmv_x_s: {
7329       EVT VT = N->getValueType(0);
7330       MVT XLenVT = Subtarget.getXLenVT();
7331       if (VT.bitsLT(XLenVT)) {
7332         // Simple case just extract using vmv.x.s and truncate.
7333         SDValue Extract = DAG.getNode(RISCVISD::VMV_X_S, DL,
7334                                       Subtarget.getXLenVT(), N->getOperand(1));
7335         Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, Extract));
7336         return;
7337       }
7338 
7339       assert(VT == MVT::i64 && !Subtarget.is64Bit() &&
7340              "Unexpected custom legalization");
7341 
7342       // We need to do the move in two steps.
7343       SDValue Vec = N->getOperand(1);
7344       MVT VecVT = Vec.getSimpleValueType();
7345 
7346       // First extract the lower XLEN bits of the element.
7347       SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec);
7348 
7349       // To extract the upper XLEN bits of the vector element, shift the first
7350       // element right by 32 bits and re-extract the lower XLEN bits.
7351       SDValue VL = DAG.getConstant(1, DL, XLenVT);
7352       SDValue Mask = getAllOnesMask(VecVT, VL, DL, DAG);
7353 
7354       SDValue ThirtyTwoV =
7355           DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, DAG.getUNDEF(VecVT),
7356                       DAG.getConstant(32, DL, XLenVT), VL);
7357       SDValue LShr32 =
7358           DAG.getNode(RISCVISD::SRL_VL, DL, VecVT, Vec, ThirtyTwoV, Mask, VL);
7359       SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32);
7360 
7361       Results.push_back(
7362           DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi));
7363       break;
7364     }
7365     }
7366     break;
7367   }
7368   case ISD::VECREDUCE_ADD:
7369   case ISD::VECREDUCE_AND:
7370   case ISD::VECREDUCE_OR:
7371   case ISD::VECREDUCE_XOR:
7372   case ISD::VECREDUCE_SMAX:
7373   case ISD::VECREDUCE_UMAX:
7374   case ISD::VECREDUCE_SMIN:
7375   case ISD::VECREDUCE_UMIN:
7376     if (SDValue V = lowerVECREDUCE(SDValue(N, 0), DAG))
7377       Results.push_back(V);
7378     break;
7379   case ISD::VP_REDUCE_ADD:
7380   case ISD::VP_REDUCE_AND:
7381   case ISD::VP_REDUCE_OR:
7382   case ISD::VP_REDUCE_XOR:
7383   case ISD::VP_REDUCE_SMAX:
7384   case ISD::VP_REDUCE_UMAX:
7385   case ISD::VP_REDUCE_SMIN:
7386   case ISD::VP_REDUCE_UMIN:
7387     if (SDValue V = lowerVPREDUCE(SDValue(N, 0), DAG))
7388       Results.push_back(V);
7389     break;
7390   case ISD::FLT_ROUNDS_: {
7391     SDVTList VTs = DAG.getVTList(Subtarget.getXLenVT(), MVT::Other);
7392     SDValue Res = DAG.getNode(ISD::FLT_ROUNDS_, DL, VTs, N->getOperand(0));
7393     Results.push_back(Res.getValue(0));
7394     Results.push_back(Res.getValue(1));
7395     break;
7396   }
7397   }
7398 }
7399 
7400 // A structure to hold one of the bit-manipulation patterns below. Together, a
7401 // SHL and non-SHL pattern may form a bit-manipulation pair on a single source:
7402 //   (or (and (shl x, 1), 0xAAAAAAAA),
7403 //       (and (srl x, 1), 0x55555555))
7404 struct RISCVBitmanipPat {
7405   SDValue Op;
7406   unsigned ShAmt;
7407   bool IsSHL;
7408 
7409   bool formsPairWith(const RISCVBitmanipPat &Other) const {
7410     return Op == Other.Op && ShAmt == Other.ShAmt && IsSHL != Other.IsSHL;
7411   }
7412 };
7413 
7414 // Matches patterns of the form
7415 //   (and (shl x, C2), (C1 << C2))
7416 //   (and (srl x, C2), C1)
7417 //   (shl (and x, C1), C2)
7418 //   (srl (and x, (C1 << C2)), C2)
7419 // Where C2 is a power of 2 and C1 has at least that many leading zeroes.
7420 // The expected masks for each shift amount are specified in BitmanipMasks where
7421 // BitmanipMasks[log2(C2)] specifies the expected C1 value.
7422 // The max allowed shift amount is either XLen/2 or XLen/4 determined by whether
7423 // BitmanipMasks contains 6 or 5 entries assuming that the maximum possible
7424 // XLen is 64.
7425 static Optional<RISCVBitmanipPat>
7426 matchRISCVBitmanipPat(SDValue Op, ArrayRef<uint64_t> BitmanipMasks) {
7427   assert((BitmanipMasks.size() == 5 || BitmanipMasks.size() == 6) &&
7428          "Unexpected number of masks");
7429   Optional<uint64_t> Mask;
7430   // Optionally consume a mask around the shift operation.
7431   if (Op.getOpcode() == ISD::AND && isa<ConstantSDNode>(Op.getOperand(1))) {
7432     Mask = Op.getConstantOperandVal(1);
7433     Op = Op.getOperand(0);
7434   }
7435   if (Op.getOpcode() != ISD::SHL && Op.getOpcode() != ISD::SRL)
7436     return None;
7437   bool IsSHL = Op.getOpcode() == ISD::SHL;
7438 
7439   if (!isa<ConstantSDNode>(Op.getOperand(1)))
7440     return None;
7441   uint64_t ShAmt = Op.getConstantOperandVal(1);
7442 
7443   unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32;
7444   if (ShAmt >= Width || !isPowerOf2_64(ShAmt))
7445     return None;
7446   // If we don't have enough masks for 64 bit, then we must be trying to
7447   // match SHFL so we're only allowed to shift 1/4 of the width.
7448   if (BitmanipMasks.size() == 5 && ShAmt >= (Width / 2))
7449     return None;
7450 
7451   SDValue Src = Op.getOperand(0);
7452 
7453   // The expected mask is shifted left when the AND is found around SHL
7454   // patterns.
7455   //   ((x >> 1) & 0x55555555)
7456   //   ((x << 1) & 0xAAAAAAAA)
7457   bool SHLExpMask = IsSHL;
7458 
7459   if (!Mask) {
7460     // Sometimes LLVM keeps the mask as an operand of the shift, typically when
7461     // the mask is all ones: consume that now.
7462     if (Src.getOpcode() == ISD::AND && isa<ConstantSDNode>(Src.getOperand(1))) {
7463       Mask = Src.getConstantOperandVal(1);
7464       Src = Src.getOperand(0);
7465       // The expected mask is now in fact shifted left for SRL, so reverse the
7466       // decision.
7467       //   ((x & 0xAAAAAAAA) >> 1)
7468       //   ((x & 0x55555555) << 1)
7469       SHLExpMask = !SHLExpMask;
7470     } else {
7471       // Use a default shifted mask of all-ones if there's no AND, truncated
7472       // down to the expected width. This simplifies the logic later on.
7473       Mask = maskTrailingOnes<uint64_t>(Width);
7474       *Mask &= (IsSHL ? *Mask << ShAmt : *Mask >> ShAmt);
7475     }
7476   }
7477 
7478   unsigned MaskIdx = Log2_32(ShAmt);
7479   uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width);
7480 
7481   if (SHLExpMask)
7482     ExpMask <<= ShAmt;
7483 
7484   if (Mask != ExpMask)
7485     return None;
7486 
7487   return RISCVBitmanipPat{Src, (unsigned)ShAmt, IsSHL};
7488 }
7489 
7490 // Matches any of the following bit-manipulation patterns:
7491 //   (and (shl x, 1), (0x55555555 << 1))
7492 //   (and (srl x, 1), 0x55555555)
7493 //   (shl (and x, 0x55555555), 1)
7494 //   (srl (and x, (0x55555555 << 1)), 1)
7495 // where the shift amount and mask may vary thus:
7496 //   [1]  = 0x55555555 / 0xAAAAAAAA
7497 //   [2]  = 0x33333333 / 0xCCCCCCCC
7498 //   [4]  = 0x0F0F0F0F / 0xF0F0F0F0
7499 //   [8]  = 0x00FF00FF / 0xFF00FF00
7500 //   [16] = 0x0000FFFF / 0xFFFFFFFF
7501 //   [32] = 0x00000000FFFFFFFF / 0xFFFFFFFF00000000 (for RV64)
7502 static Optional<RISCVBitmanipPat> matchGREVIPat(SDValue Op) {
7503   // These are the unshifted masks which we use to match bit-manipulation
7504   // patterns. They may be shifted left in certain circumstances.
7505   static const uint64_t BitmanipMasks[] = {
7506       0x5555555555555555ULL, 0x3333333333333333ULL, 0x0F0F0F0F0F0F0F0FULL,
7507       0x00FF00FF00FF00FFULL, 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL};
7508 
7509   return matchRISCVBitmanipPat(Op, BitmanipMasks);
7510 }
7511 
7512 // Try to fold (<bop> x, (reduction.<bop> vec, start))
7513 static SDValue combineBinOpToReduce(SDNode *N, SelectionDAG &DAG) {
7514   auto BinOpToRVVReduce = [](unsigned Opc) {
7515     switch (Opc) {
7516     default:
7517       llvm_unreachable("Unhandled binary to transfrom reduction");
7518     case ISD::ADD:
7519       return RISCVISD::VECREDUCE_ADD_VL;
7520     case ISD::UMAX:
7521       return RISCVISD::VECREDUCE_UMAX_VL;
7522     case ISD::SMAX:
7523       return RISCVISD::VECREDUCE_SMAX_VL;
7524     case ISD::UMIN:
7525       return RISCVISD::VECREDUCE_UMIN_VL;
7526     case ISD::SMIN:
7527       return RISCVISD::VECREDUCE_SMIN_VL;
7528     case ISD::AND:
7529       return RISCVISD::VECREDUCE_AND_VL;
7530     case ISD::OR:
7531       return RISCVISD::VECREDUCE_OR_VL;
7532     case ISD::XOR:
7533       return RISCVISD::VECREDUCE_XOR_VL;
7534     case ISD::FADD:
7535       return RISCVISD::VECREDUCE_FADD_VL;
7536     case ISD::FMAXNUM:
7537       return RISCVISD::VECREDUCE_FMAX_VL;
7538     case ISD::FMINNUM:
7539       return RISCVISD::VECREDUCE_FMIN_VL;
7540     }
7541   };
7542 
7543   auto IsReduction = [&BinOpToRVVReduce](SDValue V, unsigned Opc) {
7544     return V.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
7545            isNullConstant(V.getOperand(1)) &&
7546            V.getOperand(0).getOpcode() == BinOpToRVVReduce(Opc);
7547   };
7548 
7549   unsigned Opc = N->getOpcode();
7550   unsigned ReduceIdx;
7551   if (IsReduction(N->getOperand(0), Opc))
7552     ReduceIdx = 0;
7553   else if (IsReduction(N->getOperand(1), Opc))
7554     ReduceIdx = 1;
7555   else
7556     return SDValue();
7557 
7558   // Skip if FADD disallows reassociation but the combiner needs.
7559   if (Opc == ISD::FADD && !N->getFlags().hasAllowReassociation())
7560     return SDValue();
7561 
7562   SDValue Extract = N->getOperand(ReduceIdx);
7563   SDValue Reduce = Extract.getOperand(0);
7564   if (!Reduce.hasOneUse())
7565     return SDValue();
7566 
7567   SDValue ScalarV = Reduce.getOperand(2);
7568 
7569   // Make sure that ScalarV is a splat with VL=1.
7570   if (ScalarV.getOpcode() != RISCVISD::VFMV_S_F_VL &&
7571       ScalarV.getOpcode() != RISCVISD::VMV_S_X_VL &&
7572       ScalarV.getOpcode() != RISCVISD::VMV_V_X_VL)
7573     return SDValue();
7574 
7575   if (!isOneConstant(ScalarV.getOperand(2)))
7576     return SDValue();
7577 
7578   // TODO: Deal with value other than neutral element.
7579   auto IsRVVNeutralElement = [Opc, &DAG](SDNode *N, SDValue V) {
7580     if (Opc == ISD::FADD && N->getFlags().hasNoSignedZeros() &&
7581         isNullFPConstant(V))
7582       return true;
7583     return DAG.getNeutralElement(Opc, SDLoc(V), V.getSimpleValueType(),
7584                                  N->getFlags()) == V;
7585   };
7586 
7587   // Check the scalar of ScalarV is neutral element
7588   if (!IsRVVNeutralElement(N, ScalarV.getOperand(1)))
7589     return SDValue();
7590 
7591   if (!ScalarV.hasOneUse())
7592     return SDValue();
7593 
7594   EVT SplatVT = ScalarV.getValueType();
7595   SDValue NewStart = N->getOperand(1 - ReduceIdx);
7596   unsigned SplatOpc = RISCVISD::VFMV_S_F_VL;
7597   if (SplatVT.isInteger()) {
7598     auto *C = dyn_cast<ConstantSDNode>(NewStart.getNode());
7599     if (!C || C->isZero() || !isInt<5>(C->getSExtValue()))
7600       SplatOpc = RISCVISD::VMV_S_X_VL;
7601     else
7602       SplatOpc = RISCVISD::VMV_V_X_VL;
7603   }
7604 
7605   SDValue NewScalarV =
7606       DAG.getNode(SplatOpc, SDLoc(N), SplatVT, ScalarV.getOperand(0), NewStart,
7607                   ScalarV.getOperand(2));
7608   SDValue NewReduce =
7609       DAG.getNode(Reduce.getOpcode(), SDLoc(Reduce), Reduce.getValueType(),
7610                   Reduce.getOperand(0), Reduce.getOperand(1), NewScalarV,
7611                   Reduce.getOperand(3), Reduce.getOperand(4));
7612   return DAG.getNode(Extract.getOpcode(), SDLoc(Extract),
7613                      Extract.getValueType(), NewReduce, Extract.getOperand(1));
7614 }
7615 
7616 // Match the following pattern as a GREVI(W) operation
7617 //   (or (BITMANIP_SHL x), (BITMANIP_SRL x))
7618 static SDValue combineORToGREV(SDValue Op, SelectionDAG &DAG,
7619                                const RISCVSubtarget &Subtarget) {
7620   assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson");
7621   EVT VT = Op.getValueType();
7622 
7623   if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) {
7624     auto LHS = matchGREVIPat(Op.getOperand(0));
7625     auto RHS = matchGREVIPat(Op.getOperand(1));
7626     if (LHS && RHS && LHS->formsPairWith(*RHS)) {
7627       SDLoc DL(Op);
7628       return DAG.getNode(RISCVISD::GREV, DL, VT, LHS->Op,
7629                          DAG.getConstant(LHS->ShAmt, DL, VT));
7630     }
7631   }
7632   return SDValue();
7633 }
7634 
7635 // Matches any the following pattern as a GORCI(W) operation
7636 // 1.  (or (GREVI x, shamt), x) if shamt is a power of 2
7637 // 2.  (or x, (GREVI x, shamt)) if shamt is a power of 2
7638 // 3.  (or (or (BITMANIP_SHL x), x), (BITMANIP_SRL x))
7639 // Note that with the variant of 3.,
7640 //     (or (or (BITMANIP_SHL x), (BITMANIP_SRL x)), x)
7641 // the inner pattern will first be matched as GREVI and then the outer
7642 // pattern will be matched to GORC via the first rule above.
7643 // 4.  (or (rotl/rotr x, bitwidth/2), x)
7644 static SDValue combineORToGORC(SDValue Op, SelectionDAG &DAG,
7645                                const RISCVSubtarget &Subtarget) {
7646   assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson");
7647   EVT VT = Op.getValueType();
7648 
7649   if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) {
7650     SDLoc DL(Op);
7651     SDValue Op0 = Op.getOperand(0);
7652     SDValue Op1 = Op.getOperand(1);
7653 
7654     auto MatchOROfReverse = [&](SDValue Reverse, SDValue X) {
7655       if (Reverse.getOpcode() == RISCVISD::GREV && Reverse.getOperand(0) == X &&
7656           isa<ConstantSDNode>(Reverse.getOperand(1)) &&
7657           isPowerOf2_32(Reverse.getConstantOperandVal(1)))
7658         return DAG.getNode(RISCVISD::GORC, DL, VT, X, Reverse.getOperand(1));
7659       // We can also form GORCI from ROTL/ROTR by half the bitwidth.
7660       if ((Reverse.getOpcode() == ISD::ROTL ||
7661            Reverse.getOpcode() == ISD::ROTR) &&
7662           Reverse.getOperand(0) == X &&
7663           isa<ConstantSDNode>(Reverse.getOperand(1))) {
7664         uint64_t RotAmt = Reverse.getConstantOperandVal(1);
7665         if (RotAmt == (VT.getSizeInBits() / 2))
7666           return DAG.getNode(RISCVISD::GORC, DL, VT, X,
7667                              DAG.getConstant(RotAmt, DL, VT));
7668       }
7669       return SDValue();
7670     };
7671 
7672     // Check for either commutable permutation of (or (GREVI x, shamt), x)
7673     if (SDValue V = MatchOROfReverse(Op0, Op1))
7674       return V;
7675     if (SDValue V = MatchOROfReverse(Op1, Op0))
7676       return V;
7677 
7678     // OR is commutable so canonicalize its OR operand to the left
7679     if (Op0.getOpcode() != ISD::OR && Op1.getOpcode() == ISD::OR)
7680       std::swap(Op0, Op1);
7681     if (Op0.getOpcode() != ISD::OR)
7682       return SDValue();
7683     SDValue OrOp0 = Op0.getOperand(0);
7684     SDValue OrOp1 = Op0.getOperand(1);
7685     auto LHS = matchGREVIPat(OrOp0);
7686     // OR is commutable so swap the operands and try again: x might have been
7687     // on the left
7688     if (!LHS) {
7689       std::swap(OrOp0, OrOp1);
7690       LHS = matchGREVIPat(OrOp0);
7691     }
7692     auto RHS = matchGREVIPat(Op1);
7693     if (LHS && RHS && LHS->formsPairWith(*RHS) && LHS->Op == OrOp1) {
7694       return DAG.getNode(RISCVISD::GORC, DL, VT, LHS->Op,
7695                          DAG.getConstant(LHS->ShAmt, DL, VT));
7696     }
7697   }
7698   return SDValue();
7699 }
7700 
7701 // Matches any of the following bit-manipulation patterns:
7702 //   (and (shl x, 1), (0x22222222 << 1))
7703 //   (and (srl x, 1), 0x22222222)
7704 //   (shl (and x, 0x22222222), 1)
7705 //   (srl (and x, (0x22222222 << 1)), 1)
7706 // where the shift amount and mask may vary thus:
7707 //   [1]  = 0x22222222 / 0x44444444
7708 //   [2]  = 0x0C0C0C0C / 0x3C3C3C3C
7709 //   [4]  = 0x00F000F0 / 0x0F000F00
7710 //   [8]  = 0x0000FF00 / 0x00FF0000
7711 //   [16] = 0x00000000FFFF0000 / 0x0000FFFF00000000 (for RV64)
7712 static Optional<RISCVBitmanipPat> matchSHFLPat(SDValue Op) {
7713   // These are the unshifted masks which we use to match bit-manipulation
7714   // patterns. They may be shifted left in certain circumstances.
7715   static const uint64_t BitmanipMasks[] = {
7716       0x2222222222222222ULL, 0x0C0C0C0C0C0C0C0CULL, 0x00F000F000F000F0ULL,
7717       0x0000FF000000FF00ULL, 0x00000000FFFF0000ULL};
7718 
7719   return matchRISCVBitmanipPat(Op, BitmanipMasks);
7720 }
7721 
7722 // Match (or (or (SHFL_SHL x), (SHFL_SHR x)), (SHFL_AND x)
7723 static SDValue combineORToSHFL(SDValue Op, SelectionDAG &DAG,
7724                                const RISCVSubtarget &Subtarget) {
7725   assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson");
7726   EVT VT = Op.getValueType();
7727 
7728   if (VT != MVT::i32 && VT != Subtarget.getXLenVT())
7729     return SDValue();
7730 
7731   SDValue Op0 = Op.getOperand(0);
7732   SDValue Op1 = Op.getOperand(1);
7733 
7734   // Or is commutable so canonicalize the second OR to the LHS.
7735   if (Op0.getOpcode() != ISD::OR)
7736     std::swap(Op0, Op1);
7737   if (Op0.getOpcode() != ISD::OR)
7738     return SDValue();
7739 
7740   // We found an inner OR, so our operands are the operands of the inner OR
7741   // and the other operand of the outer OR.
7742   SDValue A = Op0.getOperand(0);
7743   SDValue B = Op0.getOperand(1);
7744   SDValue C = Op1;
7745 
7746   auto Match1 = matchSHFLPat(A);
7747   auto Match2 = matchSHFLPat(B);
7748 
7749   // If neither matched, we failed.
7750   if (!Match1 && !Match2)
7751     return SDValue();
7752 
7753   // We had at least one match. if one failed, try the remaining C operand.
7754   if (!Match1) {
7755     std::swap(A, C);
7756     Match1 = matchSHFLPat(A);
7757     if (!Match1)
7758       return SDValue();
7759   } else if (!Match2) {
7760     std::swap(B, C);
7761     Match2 = matchSHFLPat(B);
7762     if (!Match2)
7763       return SDValue();
7764   }
7765   assert(Match1 && Match2);
7766 
7767   // Make sure our matches pair up.
7768   if (!Match1->formsPairWith(*Match2))
7769     return SDValue();
7770 
7771   // All the remains is to make sure C is an AND with the same input, that masks
7772   // out the bits that are being shuffled.
7773   if (C.getOpcode() != ISD::AND || !isa<ConstantSDNode>(C.getOperand(1)) ||
7774       C.getOperand(0) != Match1->Op)
7775     return SDValue();
7776 
7777   uint64_t Mask = C.getConstantOperandVal(1);
7778 
7779   static const uint64_t BitmanipMasks[] = {
7780       0x9999999999999999ULL, 0xC3C3C3C3C3C3C3C3ULL, 0xF00FF00FF00FF00FULL,
7781       0xFF0000FFFF0000FFULL, 0xFFFF00000000FFFFULL,
7782   };
7783 
7784   unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32;
7785   unsigned MaskIdx = Log2_32(Match1->ShAmt);
7786   uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width);
7787 
7788   if (Mask != ExpMask)
7789     return SDValue();
7790 
7791   SDLoc DL(Op);
7792   return DAG.getNode(RISCVISD::SHFL, DL, VT, Match1->Op,
7793                      DAG.getConstant(Match1->ShAmt, DL, VT));
7794 }
7795 
7796 // Optimize (add (shl x, c0), (shl y, c1)) ->
7797 //          (SLLI (SH*ADD x, y), c0), if c1-c0 equals to [1|2|3].
7798 static SDValue transformAddShlImm(SDNode *N, SelectionDAG &DAG,
7799                                   const RISCVSubtarget &Subtarget) {
7800   // Perform this optimization only in the zba extension.
7801   if (!Subtarget.hasStdExtZba())
7802     return SDValue();
7803 
7804   // Skip for vector types and larger types.
7805   EVT VT = N->getValueType(0);
7806   if (VT.isVector() || VT.getSizeInBits() > Subtarget.getXLen())
7807     return SDValue();
7808 
7809   // The two operand nodes must be SHL and have no other use.
7810   SDValue N0 = N->getOperand(0);
7811   SDValue N1 = N->getOperand(1);
7812   if (N0->getOpcode() != ISD::SHL || N1->getOpcode() != ISD::SHL ||
7813       !N0->hasOneUse() || !N1->hasOneUse())
7814     return SDValue();
7815 
7816   // Check c0 and c1.
7817   auto *N0C = dyn_cast<ConstantSDNode>(N0->getOperand(1));
7818   auto *N1C = dyn_cast<ConstantSDNode>(N1->getOperand(1));
7819   if (!N0C || !N1C)
7820     return SDValue();
7821   int64_t C0 = N0C->getSExtValue();
7822   int64_t C1 = N1C->getSExtValue();
7823   if (C0 <= 0 || C1 <= 0)
7824     return SDValue();
7825 
7826   // Skip if SH1ADD/SH2ADD/SH3ADD are not applicable.
7827   int64_t Bits = std::min(C0, C1);
7828   int64_t Diff = std::abs(C0 - C1);
7829   if (Diff != 1 && Diff != 2 && Diff != 3)
7830     return SDValue();
7831 
7832   // Build nodes.
7833   SDLoc DL(N);
7834   SDValue NS = (C0 < C1) ? N0->getOperand(0) : N1->getOperand(0);
7835   SDValue NL = (C0 > C1) ? N0->getOperand(0) : N1->getOperand(0);
7836   SDValue NA0 =
7837       DAG.getNode(ISD::SHL, DL, VT, NL, DAG.getConstant(Diff, DL, VT));
7838   SDValue NA1 = DAG.getNode(ISD::ADD, DL, VT, NA0, NS);
7839   return DAG.getNode(ISD::SHL, DL, VT, NA1, DAG.getConstant(Bits, DL, VT));
7840 }
7841 
7842 // Combine
7843 // ROTR ((GREVI x, 24), 16) -> (GREVI x, 8) for RV32
7844 // ROTL ((GREVI x, 24), 16) -> (GREVI x, 8) for RV32
7845 // ROTR ((GREVI x, 56), 32) -> (GREVI x, 24) for RV64
7846 // ROTL ((GREVI x, 56), 32) -> (GREVI x, 24) for RV64
7847 // RORW ((GREVI x, 24), 16) -> (GREVIW x, 8) for RV64
7848 // ROLW ((GREVI x, 24), 16) -> (GREVIW x, 8) for RV64
7849 // The grev patterns represents BSWAP.
7850 // FIXME: This can be generalized to any GREV. We just need to toggle the MSB
7851 // off the grev.
7852 static SDValue combineROTR_ROTL_RORW_ROLW(SDNode *N, SelectionDAG &DAG,
7853                                           const RISCVSubtarget &Subtarget) {
7854   bool IsWInstruction =
7855       N->getOpcode() == RISCVISD::RORW || N->getOpcode() == RISCVISD::ROLW;
7856   assert((N->getOpcode() == ISD::ROTR || N->getOpcode() == ISD::ROTL ||
7857           IsWInstruction) &&
7858          "Unexpected opcode!");
7859   SDValue Src = N->getOperand(0);
7860   EVT VT = N->getValueType(0);
7861   SDLoc DL(N);
7862 
7863   if (!Subtarget.hasStdExtZbp() || Src.getOpcode() != RISCVISD::GREV)
7864     return SDValue();
7865 
7866   if (!isa<ConstantSDNode>(N->getOperand(1)) ||
7867       !isa<ConstantSDNode>(Src.getOperand(1)))
7868     return SDValue();
7869 
7870   unsigned BitWidth = IsWInstruction ? 32 : VT.getSizeInBits();
7871   assert(isPowerOf2_32(BitWidth) && "Expected a power of 2");
7872 
7873   // Needs to be a rotate by half the bitwidth for ROTR/ROTL or by 16 for
7874   // RORW/ROLW. And the grev should be the encoding for bswap for this width.
7875   unsigned ShAmt1 = N->getConstantOperandVal(1);
7876   unsigned ShAmt2 = Src.getConstantOperandVal(1);
7877   if (BitWidth < 32 || ShAmt1 != (BitWidth / 2) || ShAmt2 != (BitWidth - 8))
7878     return SDValue();
7879 
7880   Src = Src.getOperand(0);
7881 
7882   // Toggle bit the MSB of the shift.
7883   unsigned CombinedShAmt = ShAmt1 ^ ShAmt2;
7884   if (CombinedShAmt == 0)
7885     return Src;
7886 
7887   SDValue Res = DAG.getNode(
7888       RISCVISD::GREV, DL, VT, Src,
7889       DAG.getConstant(CombinedShAmt, DL, N->getOperand(1).getValueType()));
7890   if (!IsWInstruction)
7891     return Res;
7892 
7893   // Sign extend the result to match the behavior of the rotate. This will be
7894   // selected to GREVIW in isel.
7895   return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Res,
7896                      DAG.getValueType(MVT::i32));
7897 }
7898 
7899 // Combine (GREVI (GREVI x, C2), C1) -> (GREVI x, C1^C2) when C1^C2 is
7900 // non-zero, and to x when it is. Any repeated GREVI stage undoes itself.
7901 // Combine (GORCI (GORCI x, C2), C1) -> (GORCI x, C1|C2). Repeated stage does
7902 // not undo itself, but they are redundant.
7903 static SDValue combineGREVI_GORCI(SDNode *N, SelectionDAG &DAG) {
7904   bool IsGORC = N->getOpcode() == RISCVISD::GORC;
7905   assert((IsGORC || N->getOpcode() == RISCVISD::GREV) && "Unexpected opcode");
7906   SDValue Src = N->getOperand(0);
7907 
7908   if (Src.getOpcode() != N->getOpcode())
7909     return SDValue();
7910 
7911   if (!isa<ConstantSDNode>(N->getOperand(1)) ||
7912       !isa<ConstantSDNode>(Src.getOperand(1)))
7913     return SDValue();
7914 
7915   unsigned ShAmt1 = N->getConstantOperandVal(1);
7916   unsigned ShAmt2 = Src.getConstantOperandVal(1);
7917   Src = Src.getOperand(0);
7918 
7919   unsigned CombinedShAmt;
7920   if (IsGORC)
7921     CombinedShAmt = ShAmt1 | ShAmt2;
7922   else
7923     CombinedShAmt = ShAmt1 ^ ShAmt2;
7924 
7925   if (CombinedShAmt == 0)
7926     return Src;
7927 
7928   SDLoc DL(N);
7929   return DAG.getNode(
7930       N->getOpcode(), DL, N->getValueType(0), Src,
7931       DAG.getConstant(CombinedShAmt, DL, N->getOperand(1).getValueType()));
7932 }
7933 
7934 // Combine a constant select operand into its use:
7935 //
7936 // (and (select cond, -1, c), x)
7937 //   -> (select cond, x, (and x, c))  [AllOnes=1]
7938 // (or  (select cond, 0, c), x)
7939 //   -> (select cond, x, (or x, c))  [AllOnes=0]
7940 // (xor (select cond, 0, c), x)
7941 //   -> (select cond, x, (xor x, c))  [AllOnes=0]
7942 // (add (select cond, 0, c), x)
7943 //   -> (select cond, x, (add x, c))  [AllOnes=0]
7944 // (sub x, (select cond, 0, c))
7945 //   -> (select cond, x, (sub x, c))  [AllOnes=0]
7946 static SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp,
7947                                    SelectionDAG &DAG, bool AllOnes) {
7948   EVT VT = N->getValueType(0);
7949 
7950   // Skip vectors.
7951   if (VT.isVector())
7952     return SDValue();
7953 
7954   if ((Slct.getOpcode() != ISD::SELECT &&
7955        Slct.getOpcode() != RISCVISD::SELECT_CC) ||
7956       !Slct.hasOneUse())
7957     return SDValue();
7958 
7959   auto isZeroOrAllOnes = [](SDValue N, bool AllOnes) {
7960     return AllOnes ? isAllOnesConstant(N) : isNullConstant(N);
7961   };
7962 
7963   bool SwapSelectOps;
7964   unsigned OpOffset = Slct.getOpcode() == RISCVISD::SELECT_CC ? 2 : 0;
7965   SDValue TrueVal = Slct.getOperand(1 + OpOffset);
7966   SDValue FalseVal = Slct.getOperand(2 + OpOffset);
7967   SDValue NonConstantVal;
7968   if (isZeroOrAllOnes(TrueVal, AllOnes)) {
7969     SwapSelectOps = false;
7970     NonConstantVal = FalseVal;
7971   } else if (isZeroOrAllOnes(FalseVal, AllOnes)) {
7972     SwapSelectOps = true;
7973     NonConstantVal = TrueVal;
7974   } else
7975     return SDValue();
7976 
7977   // Slct is now know to be the desired identity constant when CC is true.
7978   TrueVal = OtherOp;
7979   FalseVal = DAG.getNode(N->getOpcode(), SDLoc(N), VT, OtherOp, NonConstantVal);
7980   // Unless SwapSelectOps says the condition should be false.
7981   if (SwapSelectOps)
7982     std::swap(TrueVal, FalseVal);
7983 
7984   if (Slct.getOpcode() == RISCVISD::SELECT_CC)
7985     return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), VT,
7986                        {Slct.getOperand(0), Slct.getOperand(1),
7987                         Slct.getOperand(2), TrueVal, FalseVal});
7988 
7989   return DAG.getNode(ISD::SELECT, SDLoc(N), VT,
7990                      {Slct.getOperand(0), TrueVal, FalseVal});
7991 }
7992 
7993 // Attempt combineSelectAndUse on each operand of a commutative operator N.
7994 static SDValue combineSelectAndUseCommutative(SDNode *N, SelectionDAG &DAG,
7995                                               bool AllOnes) {
7996   SDValue N0 = N->getOperand(0);
7997   SDValue N1 = N->getOperand(1);
7998   if (SDValue Result = combineSelectAndUse(N, N0, N1, DAG, AllOnes))
7999     return Result;
8000   if (SDValue Result = combineSelectAndUse(N, N1, N0, DAG, AllOnes))
8001     return Result;
8002   return SDValue();
8003 }
8004 
8005 // Transform (add (mul x, c0), c1) ->
8006 //           (add (mul (add x, c1/c0), c0), c1%c0).
8007 // if c1/c0 and c1%c0 are simm12, while c1 is not. A special corner case
8008 // that should be excluded is when c0*(c1/c0) is simm12, which will lead
8009 // to an infinite loop in DAGCombine if transformed.
8010 // Or transform (add (mul x, c0), c1) ->
8011 //              (add (mul (add x, c1/c0+1), c0), c1%c0-c0),
8012 // if c1/c0+1 and c1%c0-c0 are simm12, while c1 is not. A special corner
8013 // case that should be excluded is when c0*(c1/c0+1) is simm12, which will
8014 // lead to an infinite loop in DAGCombine if transformed.
8015 // Or transform (add (mul x, c0), c1) ->
8016 //              (add (mul (add x, c1/c0-1), c0), c1%c0+c0),
8017 // if c1/c0-1 and c1%c0+c0 are simm12, while c1 is not. A special corner
8018 // case that should be excluded is when c0*(c1/c0-1) is simm12, which will
8019 // lead to an infinite loop in DAGCombine if transformed.
8020 // Or transform (add (mul x, c0), c1) ->
8021 //              (mul (add x, c1/c0), c0).
8022 // if c1%c0 is zero, and c1/c0 is simm12 while c1 is not.
8023 static SDValue transformAddImmMulImm(SDNode *N, SelectionDAG &DAG,
8024                                      const RISCVSubtarget &Subtarget) {
8025   // Skip for vector types and larger types.
8026   EVT VT = N->getValueType(0);
8027   if (VT.isVector() || VT.getSizeInBits() > Subtarget.getXLen())
8028     return SDValue();
8029   // The first operand node must be a MUL and has no other use.
8030   SDValue N0 = N->getOperand(0);
8031   if (!N0->hasOneUse() || N0->getOpcode() != ISD::MUL)
8032     return SDValue();
8033   // Check if c0 and c1 match above conditions.
8034   auto *N0C = dyn_cast<ConstantSDNode>(N0->getOperand(1));
8035   auto *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1));
8036   if (!N0C || !N1C)
8037     return SDValue();
8038   // If N0C has multiple uses it's possible one of the cases in
8039   // DAGCombiner::isMulAddWithConstProfitable will be true, which would result
8040   // in an infinite loop.
8041   if (!N0C->hasOneUse())
8042     return SDValue();
8043   int64_t C0 = N0C->getSExtValue();
8044   int64_t C1 = N1C->getSExtValue();
8045   int64_t CA, CB;
8046   if (C0 == -1 || C0 == 0 || C0 == 1 || isInt<12>(C1))
8047     return SDValue();
8048   // Search for proper CA (non-zero) and CB that both are simm12.
8049   if ((C1 / C0) != 0 && isInt<12>(C1 / C0) && isInt<12>(C1 % C0) &&
8050       !isInt<12>(C0 * (C1 / C0))) {
8051     CA = C1 / C0;
8052     CB = C1 % C0;
8053   } else if ((C1 / C0 + 1) != 0 && isInt<12>(C1 / C0 + 1) &&
8054              isInt<12>(C1 % C0 - C0) && !isInt<12>(C0 * (C1 / C0 + 1))) {
8055     CA = C1 / C0 + 1;
8056     CB = C1 % C0 - C0;
8057   } else if ((C1 / C0 - 1) != 0 && isInt<12>(C1 / C0 - 1) &&
8058              isInt<12>(C1 % C0 + C0) && !isInt<12>(C0 * (C1 / C0 - 1))) {
8059     CA = C1 / C0 - 1;
8060     CB = C1 % C0 + C0;
8061   } else
8062     return SDValue();
8063   // Build new nodes (add (mul (add x, c1/c0), c0), c1%c0).
8064   SDLoc DL(N);
8065   SDValue New0 = DAG.getNode(ISD::ADD, DL, VT, N0->getOperand(0),
8066                              DAG.getConstant(CA, DL, VT));
8067   SDValue New1 =
8068       DAG.getNode(ISD::MUL, DL, VT, New0, DAG.getConstant(C0, DL, VT));
8069   return DAG.getNode(ISD::ADD, DL, VT, New1, DAG.getConstant(CB, DL, VT));
8070 }
8071 
8072 static SDValue performADDCombine(SDNode *N, SelectionDAG &DAG,
8073                                  const RISCVSubtarget &Subtarget) {
8074   if (SDValue V = transformAddImmMulImm(N, DAG, Subtarget))
8075     return V;
8076   if (SDValue V = transformAddShlImm(N, DAG, Subtarget))
8077     return V;
8078   if (SDValue V = combineBinOpToReduce(N, DAG))
8079     return V;
8080   // fold (add (select lhs, rhs, cc, 0, y), x) ->
8081   //      (select lhs, rhs, cc, x, (add x, y))
8082   return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false);
8083 }
8084 
8085 static SDValue performSUBCombine(SDNode *N, SelectionDAG &DAG) {
8086   // fold (sub x, (select lhs, rhs, cc, 0, y)) ->
8087   //      (select lhs, rhs, cc, x, (sub x, y))
8088   SDValue N0 = N->getOperand(0);
8089   SDValue N1 = N->getOperand(1);
8090   return combineSelectAndUse(N, N1, N0, DAG, /*AllOnes*/ false);
8091 }
8092 
8093 static SDValue performANDCombine(SDNode *N, SelectionDAG &DAG,
8094                                  const RISCVSubtarget &Subtarget) {
8095   SDValue N0 = N->getOperand(0);
8096   // Pre-promote (i32 (and (srl X, Y), 1)) on RV64 with Zbs without zero
8097   // extending X. This is safe since we only need the LSB after the shift and
8098   // shift amounts larger than 31 would produce poison. If we wait until
8099   // type legalization, we'll create RISCVISD::SRLW and we can't recover it
8100   // to use a BEXT instruction.
8101   if (Subtarget.is64Bit() && Subtarget.hasStdExtZbs() &&
8102       N->getValueType(0) == MVT::i32 && isOneConstant(N->getOperand(1)) &&
8103       N0.getOpcode() == ISD::SRL && !isa<ConstantSDNode>(N0.getOperand(1)) &&
8104       N0.hasOneUse()) {
8105     SDLoc DL(N);
8106     SDValue Op0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N0.getOperand(0));
8107     SDValue Op1 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N0.getOperand(1));
8108     SDValue Srl = DAG.getNode(ISD::SRL, DL, MVT::i64, Op0, Op1);
8109     SDValue And = DAG.getNode(ISD::AND, DL, MVT::i64, Srl,
8110                               DAG.getConstant(1, DL, MVT::i64));
8111     return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, And);
8112   }
8113 
8114   if (SDValue V = combineBinOpToReduce(N, DAG))
8115     return V;
8116 
8117   // fold (and (select lhs, rhs, cc, -1, y), x) ->
8118   //      (select lhs, rhs, cc, x, (and x, y))
8119   return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ true);
8120 }
8121 
8122 static SDValue performORCombine(SDNode *N, SelectionDAG &DAG,
8123                                 const RISCVSubtarget &Subtarget) {
8124   if (Subtarget.hasStdExtZbp()) {
8125     if (auto GREV = combineORToGREV(SDValue(N, 0), DAG, Subtarget))
8126       return GREV;
8127     if (auto GORC = combineORToGORC(SDValue(N, 0), DAG, Subtarget))
8128       return GORC;
8129     if (auto SHFL = combineORToSHFL(SDValue(N, 0), DAG, Subtarget))
8130       return SHFL;
8131   }
8132 
8133   if (SDValue V = combineBinOpToReduce(N, DAG))
8134     return V;
8135   // fold (or (select cond, 0, y), x) ->
8136   //      (select cond, x, (or x, y))
8137   return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false);
8138 }
8139 
8140 static SDValue performXORCombine(SDNode *N, SelectionDAG &DAG) {
8141   SDValue N0 = N->getOperand(0);
8142   SDValue N1 = N->getOperand(1);
8143 
8144   // fold (xor (sllw 1, x), -1) -> (rolw ~1, x)
8145   // NOTE: Assumes ROL being legal means ROLW is legal.
8146   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8147   if (N0.getOpcode() == RISCVISD::SLLW &&
8148       isAllOnesConstant(N1) && isOneConstant(N0.getOperand(0)) &&
8149       TLI.isOperationLegal(ISD::ROTL, MVT::i64)) {
8150     SDLoc DL(N);
8151     return DAG.getNode(RISCVISD::ROLW, DL, MVT::i64,
8152                        DAG.getConstant(~1, DL, MVT::i64), N0.getOperand(1));
8153   }
8154 
8155   if (SDValue V = combineBinOpToReduce(N, DAG))
8156     return V;
8157   // fold (xor (select cond, 0, y), x) ->
8158   //      (select cond, x, (xor x, y))
8159   return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false);
8160 }
8161 
8162 // Replace (seteq (i64 (and X, 0xffffffff)), C1) with
8163 // (seteq (i64 (sext_inreg (X, i32)), C1')) where C1' is C1 sign extended from
8164 // bit 31. Same for setne. C1' may be cheaper to materialize and the sext_inreg
8165 // can become a sext.w instead of a shift pair.
8166 static SDValue performSETCCCombine(SDNode *N, SelectionDAG &DAG,
8167                                    const RISCVSubtarget &Subtarget) {
8168   SDValue N0 = N->getOperand(0);
8169   SDValue N1 = N->getOperand(1);
8170   EVT VT = N->getValueType(0);
8171   EVT OpVT = N0.getValueType();
8172 
8173   if (OpVT != MVT::i64 || !Subtarget.is64Bit())
8174     return SDValue();
8175 
8176   // RHS needs to be a constant.
8177   auto *N1C = dyn_cast<ConstantSDNode>(N1);
8178   if (!N1C)
8179     return SDValue();
8180 
8181   // LHS needs to be (and X, 0xffffffff).
8182   if (N0.getOpcode() != ISD::AND || !N0.hasOneUse() ||
8183       !isa<ConstantSDNode>(N0.getOperand(1)) ||
8184       N0.getConstantOperandVal(1) != UINT64_C(0xffffffff))
8185     return SDValue();
8186 
8187   // Looking for an equality compare.
8188   ISD::CondCode Cond = cast<CondCodeSDNode>(N->getOperand(2))->get();
8189   if (!isIntEqualitySetCC(Cond))
8190     return SDValue();
8191 
8192   const APInt &C1 = cast<ConstantSDNode>(N1)->getAPIntValue();
8193 
8194   SDLoc dl(N);
8195   // If the constant is larger than 2^32 - 1 it is impossible for both sides
8196   // to be equal.
8197   if (C1.getActiveBits() > 32)
8198     return DAG.getBoolConstant(Cond == ISD::SETNE, dl, VT, OpVT);
8199 
8200   SDValue SExtOp = DAG.getNode(ISD::SIGN_EXTEND_INREG, N, OpVT,
8201                                N0.getOperand(0), DAG.getValueType(MVT::i32));
8202   return DAG.getSetCC(dl, VT, SExtOp, DAG.getConstant(C1.trunc(32).sext(64),
8203                                                       dl, OpVT), Cond);
8204 }
8205 
8206 static SDValue
8207 performSIGN_EXTEND_INREGCombine(SDNode *N, SelectionDAG &DAG,
8208                                 const RISCVSubtarget &Subtarget) {
8209   SDValue Src = N->getOperand(0);
8210   EVT VT = N->getValueType(0);
8211 
8212   // Fold (sext_inreg (fmv_x_anyexth X), i16) -> (fmv_x_signexth X)
8213   if (Src.getOpcode() == RISCVISD::FMV_X_ANYEXTH &&
8214       cast<VTSDNode>(N->getOperand(1))->getVT().bitsGE(MVT::i16))
8215     return DAG.getNode(RISCVISD::FMV_X_SIGNEXTH, SDLoc(N), VT,
8216                        Src.getOperand(0));
8217 
8218   // Fold (i64 (sext_inreg (abs X), i32)) ->
8219   // (i64 (smax (sext_inreg (neg X), i32), X)) if X has more than 32 sign bits.
8220   // The (sext_inreg (neg X), i32) will be selected to negw by isel. This
8221   // pattern occurs after type legalization of (i32 (abs X)) on RV64 if the user
8222   // of the (i32 (abs X)) is a sext or setcc or something else that causes type
8223   // legalization to add a sext_inreg after the abs. The (i32 (abs X)) will have
8224   // been type legalized to (i64 (abs (sext_inreg X, i32))), but the sext_inreg
8225   // may get combined into an earlier operation so we need to use
8226   // ComputeNumSignBits.
8227   // NOTE: (i64 (sext_inreg (abs X), i32)) can also be created for
8228   // (i64 (ashr (shl (abs X), 32), 32)) without any type legalization so
8229   // we can't assume that X has 33 sign bits. We must check.
8230   if (Subtarget.hasStdExtZbb() && Subtarget.is64Bit() &&
8231       Src.getOpcode() == ISD::ABS && Src.hasOneUse() && VT == MVT::i64 &&
8232       cast<VTSDNode>(N->getOperand(1))->getVT() == MVT::i32 &&
8233       DAG.ComputeNumSignBits(Src.getOperand(0)) > 32) {
8234     SDLoc DL(N);
8235     SDValue Freeze = DAG.getFreeze(Src.getOperand(0));
8236     SDValue Neg =
8237         DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, MVT::i64), Freeze);
8238     Neg = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Neg,
8239                       DAG.getValueType(MVT::i32));
8240     return DAG.getNode(ISD::SMAX, DL, MVT::i64, Freeze, Neg);
8241   }
8242 
8243   return SDValue();
8244 }
8245 
8246 // Try to form vwadd(u).wv/wx or vwsub(u).wv/wx. It might later be optimized to
8247 // vwadd(u).vv/vx or vwsub(u).vv/vx.
8248 static SDValue combineADDSUB_VLToVWADDSUB_VL(SDNode *N, SelectionDAG &DAG,
8249                                              bool Commute = false) {
8250   assert((N->getOpcode() == RISCVISD::ADD_VL ||
8251           N->getOpcode() == RISCVISD::SUB_VL) &&
8252          "Unexpected opcode");
8253   bool IsAdd = N->getOpcode() == RISCVISD::ADD_VL;
8254   SDValue Op0 = N->getOperand(0);
8255   SDValue Op1 = N->getOperand(1);
8256   if (Commute)
8257     std::swap(Op0, Op1);
8258 
8259   MVT VT = N->getSimpleValueType(0);
8260 
8261   // Determine the narrow size for a widening add/sub.
8262   unsigned NarrowSize = VT.getScalarSizeInBits() / 2;
8263   MVT NarrowVT = MVT::getVectorVT(MVT::getIntegerVT(NarrowSize),
8264                                   VT.getVectorElementCount());
8265 
8266   SDValue Mask = N->getOperand(2);
8267   SDValue VL = N->getOperand(3);
8268 
8269   SDLoc DL(N);
8270 
8271   // If the RHS is a sext or zext, we can form a widening op.
8272   if ((Op1.getOpcode() == RISCVISD::VZEXT_VL ||
8273        Op1.getOpcode() == RISCVISD::VSEXT_VL) &&
8274       Op1.hasOneUse() && Op1.getOperand(1) == Mask && Op1.getOperand(2) == VL) {
8275     unsigned ExtOpc = Op1.getOpcode();
8276     Op1 = Op1.getOperand(0);
8277     // Re-introduce narrower extends if needed.
8278     if (Op1.getValueType() != NarrowVT)
8279       Op1 = DAG.getNode(ExtOpc, DL, NarrowVT, Op1, Mask, VL);
8280 
8281     unsigned WOpc;
8282     if (ExtOpc == RISCVISD::VSEXT_VL)
8283       WOpc = IsAdd ? RISCVISD::VWADD_W_VL : RISCVISD::VWSUB_W_VL;
8284     else
8285       WOpc = IsAdd ? RISCVISD::VWADDU_W_VL : RISCVISD::VWSUBU_W_VL;
8286 
8287     return DAG.getNode(WOpc, DL, VT, Op0, Op1, Mask, VL);
8288   }
8289 
8290   // FIXME: Is it useful to form a vwadd.wx or vwsub.wx if it removes a scalar
8291   // sext/zext?
8292 
8293   return SDValue();
8294 }
8295 
8296 // Try to convert vwadd(u).wv/wx or vwsub(u).wv/wx to vwadd(u).vv/vx or
8297 // vwsub(u).vv/vx.
8298 static SDValue combineVWADD_W_VL_VWSUB_W_VL(SDNode *N, SelectionDAG &DAG) {
8299   SDValue Op0 = N->getOperand(0);
8300   SDValue Op1 = N->getOperand(1);
8301   SDValue Mask = N->getOperand(2);
8302   SDValue VL = N->getOperand(3);
8303 
8304   MVT VT = N->getSimpleValueType(0);
8305   MVT NarrowVT = Op1.getSimpleValueType();
8306   unsigned NarrowSize = NarrowVT.getScalarSizeInBits();
8307 
8308   unsigned VOpc;
8309   switch (N->getOpcode()) {
8310   default: llvm_unreachable("Unexpected opcode");
8311   case RISCVISD::VWADD_W_VL:  VOpc = RISCVISD::VWADD_VL;  break;
8312   case RISCVISD::VWSUB_W_VL:  VOpc = RISCVISD::VWSUB_VL;  break;
8313   case RISCVISD::VWADDU_W_VL: VOpc = RISCVISD::VWADDU_VL; break;
8314   case RISCVISD::VWSUBU_W_VL: VOpc = RISCVISD::VWSUBU_VL; break;
8315   }
8316 
8317   bool IsSigned = N->getOpcode() == RISCVISD::VWADD_W_VL ||
8318                   N->getOpcode() == RISCVISD::VWSUB_W_VL;
8319 
8320   SDLoc DL(N);
8321 
8322   // If the LHS is a sext or zext, we can narrow this op to the same size as
8323   // the RHS.
8324   if (((Op0.getOpcode() == RISCVISD::VZEXT_VL && !IsSigned) ||
8325        (Op0.getOpcode() == RISCVISD::VSEXT_VL && IsSigned)) &&
8326       Op0.hasOneUse() && Op0.getOperand(1) == Mask && Op0.getOperand(2) == VL) {
8327     unsigned ExtOpc = Op0.getOpcode();
8328     Op0 = Op0.getOperand(0);
8329     // Re-introduce narrower extends if needed.
8330     if (Op0.getValueType() != NarrowVT)
8331       Op0 = DAG.getNode(ExtOpc, DL, NarrowVT, Op0, Mask, VL);
8332     return DAG.getNode(VOpc, DL, VT, Op0, Op1, Mask, VL);
8333   }
8334 
8335   bool IsAdd = N->getOpcode() == RISCVISD::VWADD_W_VL ||
8336                N->getOpcode() == RISCVISD::VWADDU_W_VL;
8337 
8338   // Look for splats on the left hand side of a vwadd(u).wv. We might be able
8339   // to commute and use a vwadd(u).vx instead.
8340   if (IsAdd && Op0.getOpcode() == RISCVISD::VMV_V_X_VL &&
8341       Op0.getOperand(0).isUndef() && Op0.getOperand(2) == VL) {
8342     Op0 = Op0.getOperand(1);
8343 
8344     // See if have enough sign bits or zero bits in the scalar to use a
8345     // widening add/sub by splatting to smaller element size.
8346     unsigned EltBits = VT.getScalarSizeInBits();
8347     unsigned ScalarBits = Op0.getValueSizeInBits();
8348     // Make sure we're getting all element bits from the scalar register.
8349     // FIXME: Support implicit sign extension of vmv.v.x?
8350     if (ScalarBits < EltBits)
8351       return SDValue();
8352 
8353     if (IsSigned) {
8354       if (DAG.ComputeNumSignBits(Op0) <= (ScalarBits - NarrowSize))
8355         return SDValue();
8356     } else {
8357       APInt Mask = APInt::getBitsSetFrom(ScalarBits, NarrowSize);
8358       if (!DAG.MaskedValueIsZero(Op0, Mask))
8359         return SDValue();
8360     }
8361 
8362     Op0 = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, NarrowVT,
8363                       DAG.getUNDEF(NarrowVT), Op0, VL);
8364     return DAG.getNode(VOpc, DL, VT, Op1, Op0, Mask, VL);
8365   }
8366 
8367   return SDValue();
8368 }
8369 
8370 // Try to form VWMUL, VWMULU or VWMULSU.
8371 // TODO: Support VWMULSU.vx with a sign extend Op and a splat of scalar Op.
8372 static SDValue combineMUL_VLToVWMUL_VL(SDNode *N, SelectionDAG &DAG,
8373                                        bool Commute) {
8374   assert(N->getOpcode() == RISCVISD::MUL_VL && "Unexpected opcode");
8375   SDValue Op0 = N->getOperand(0);
8376   SDValue Op1 = N->getOperand(1);
8377   if (Commute)
8378     std::swap(Op0, Op1);
8379 
8380   bool IsSignExt = Op0.getOpcode() == RISCVISD::VSEXT_VL;
8381   bool IsZeroExt = Op0.getOpcode() == RISCVISD::VZEXT_VL;
8382   bool IsVWMULSU = IsSignExt && Op1.getOpcode() == RISCVISD::VZEXT_VL;
8383   if ((!IsSignExt && !IsZeroExt) || !Op0.hasOneUse())
8384     return SDValue();
8385 
8386   SDValue Mask = N->getOperand(2);
8387   SDValue VL = N->getOperand(3);
8388 
8389   // Make sure the mask and VL match.
8390   if (Op0.getOperand(1) != Mask || Op0.getOperand(2) != VL)
8391     return SDValue();
8392 
8393   MVT VT = N->getSimpleValueType(0);
8394 
8395   // Determine the narrow size for a widening multiply.
8396   unsigned NarrowSize = VT.getScalarSizeInBits() / 2;
8397   MVT NarrowVT = MVT::getVectorVT(MVT::getIntegerVT(NarrowSize),
8398                                   VT.getVectorElementCount());
8399 
8400   SDLoc DL(N);
8401 
8402   // See if the other operand is the same opcode.
8403   if (IsVWMULSU || Op0.getOpcode() == Op1.getOpcode()) {
8404     if (!Op1.hasOneUse())
8405       return SDValue();
8406 
8407     // Make sure the mask and VL match.
8408     if (Op1.getOperand(1) != Mask || Op1.getOperand(2) != VL)
8409       return SDValue();
8410 
8411     Op1 = Op1.getOperand(0);
8412   } else if (Op1.getOpcode() == RISCVISD::VMV_V_X_VL) {
8413     // The operand is a splat of a scalar.
8414 
8415     // The pasthru must be undef for tail agnostic
8416     if (!Op1.getOperand(0).isUndef())
8417       return SDValue();
8418     // The VL must be the same.
8419     if (Op1.getOperand(2) != VL)
8420       return SDValue();
8421 
8422     // Get the scalar value.
8423     Op1 = Op1.getOperand(1);
8424 
8425     // See if have enough sign bits or zero bits in the scalar to use a
8426     // widening multiply by splatting to smaller element size.
8427     unsigned EltBits = VT.getScalarSizeInBits();
8428     unsigned ScalarBits = Op1.getValueSizeInBits();
8429     // Make sure we're getting all element bits from the scalar register.
8430     // FIXME: Support implicit sign extension of vmv.v.x?
8431     if (ScalarBits < EltBits)
8432       return SDValue();
8433 
8434     // If the LHS is a sign extend, try to use vwmul.
8435     if (IsSignExt && DAG.ComputeNumSignBits(Op1) > (ScalarBits - NarrowSize)) {
8436       // Can use vwmul.
8437     } else {
8438       // Otherwise try to use vwmulu or vwmulsu.
8439       APInt Mask = APInt::getBitsSetFrom(ScalarBits, NarrowSize);
8440       if (DAG.MaskedValueIsZero(Op1, Mask))
8441         IsVWMULSU = IsSignExt;
8442       else
8443         return SDValue();
8444     }
8445 
8446     Op1 = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, NarrowVT,
8447                       DAG.getUNDEF(NarrowVT), Op1, VL);
8448   } else
8449     return SDValue();
8450 
8451   Op0 = Op0.getOperand(0);
8452 
8453   // Re-introduce narrower extends if needed.
8454   unsigned ExtOpc = IsSignExt ? RISCVISD::VSEXT_VL : RISCVISD::VZEXT_VL;
8455   if (Op0.getValueType() != NarrowVT)
8456     Op0 = DAG.getNode(ExtOpc, DL, NarrowVT, Op0, Mask, VL);
8457   // vwmulsu requires second operand to be zero extended.
8458   ExtOpc = IsVWMULSU ? RISCVISD::VZEXT_VL : ExtOpc;
8459   if (Op1.getValueType() != NarrowVT)
8460     Op1 = DAG.getNode(ExtOpc, DL, NarrowVT, Op1, Mask, VL);
8461 
8462   unsigned WMulOpc = RISCVISD::VWMULSU_VL;
8463   if (!IsVWMULSU)
8464     WMulOpc = IsSignExt ? RISCVISD::VWMUL_VL : RISCVISD::VWMULU_VL;
8465   return DAG.getNode(WMulOpc, DL, VT, Op0, Op1, Mask, VL);
8466 }
8467 
8468 static RISCVFPRndMode::RoundingMode matchRoundingOp(SDValue Op) {
8469   switch (Op.getOpcode()) {
8470   case ISD::FROUNDEVEN: return RISCVFPRndMode::RNE;
8471   case ISD::FTRUNC:     return RISCVFPRndMode::RTZ;
8472   case ISD::FFLOOR:     return RISCVFPRndMode::RDN;
8473   case ISD::FCEIL:      return RISCVFPRndMode::RUP;
8474   case ISD::FROUND:     return RISCVFPRndMode::RMM;
8475   }
8476 
8477   return RISCVFPRndMode::Invalid;
8478 }
8479 
8480 // Fold
8481 //   (fp_to_int (froundeven X)) -> fcvt X, rne
8482 //   (fp_to_int (ftrunc X))     -> fcvt X, rtz
8483 //   (fp_to_int (ffloor X))     -> fcvt X, rdn
8484 //   (fp_to_int (fceil X))      -> fcvt X, rup
8485 //   (fp_to_int (fround X))     -> fcvt X, rmm
8486 static SDValue performFP_TO_INTCombine(SDNode *N,
8487                                        TargetLowering::DAGCombinerInfo &DCI,
8488                                        const RISCVSubtarget &Subtarget) {
8489   SelectionDAG &DAG = DCI.DAG;
8490   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8491   MVT XLenVT = Subtarget.getXLenVT();
8492 
8493   // Only handle XLen or i32 types. Other types narrower than XLen will
8494   // eventually be legalized to XLenVT.
8495   EVT VT = N->getValueType(0);
8496   if (VT != MVT::i32 && VT != XLenVT)
8497     return SDValue();
8498 
8499   SDValue Src = N->getOperand(0);
8500 
8501   // Ensure the FP type is also legal.
8502   if (!TLI.isTypeLegal(Src.getValueType()))
8503     return SDValue();
8504 
8505   // Don't do this for f16 with Zfhmin and not Zfh.
8506   if (Src.getValueType() == MVT::f16 && !Subtarget.hasStdExtZfh())
8507     return SDValue();
8508 
8509   RISCVFPRndMode::RoundingMode FRM = matchRoundingOp(Src);
8510   if (FRM == RISCVFPRndMode::Invalid)
8511     return SDValue();
8512 
8513   bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT;
8514 
8515   unsigned Opc;
8516   if (VT == XLenVT)
8517     Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU;
8518   else
8519     Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64;
8520 
8521   SDLoc DL(N);
8522   SDValue FpToInt = DAG.getNode(Opc, DL, XLenVT, Src.getOperand(0),
8523                                 DAG.getTargetConstant(FRM, DL, XLenVT));
8524   return DAG.getNode(ISD::TRUNCATE, DL, VT, FpToInt);
8525 }
8526 
8527 // Fold
8528 //   (fp_to_int_sat (froundeven X)) -> (select X == nan, 0, (fcvt X, rne))
8529 //   (fp_to_int_sat (ftrunc X))     -> (select X == nan, 0, (fcvt X, rtz))
8530 //   (fp_to_int_sat (ffloor X))     -> (select X == nan, 0, (fcvt X, rdn))
8531 //   (fp_to_int_sat (fceil X))      -> (select X == nan, 0, (fcvt X, rup))
8532 //   (fp_to_int_sat (fround X))     -> (select X == nan, 0, (fcvt X, rmm))
8533 static SDValue performFP_TO_INT_SATCombine(SDNode *N,
8534                                        TargetLowering::DAGCombinerInfo &DCI,
8535                                        const RISCVSubtarget &Subtarget) {
8536   SelectionDAG &DAG = DCI.DAG;
8537   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8538   MVT XLenVT = Subtarget.getXLenVT();
8539 
8540   // Only handle XLen types. Other types narrower than XLen will eventually be
8541   // legalized to XLenVT.
8542   EVT DstVT = N->getValueType(0);
8543   if (DstVT != XLenVT)
8544     return SDValue();
8545 
8546   SDValue Src = N->getOperand(0);
8547 
8548   // Ensure the FP type is also legal.
8549   if (!TLI.isTypeLegal(Src.getValueType()))
8550     return SDValue();
8551 
8552   // Don't do this for f16 with Zfhmin and not Zfh.
8553   if (Src.getValueType() == MVT::f16 && !Subtarget.hasStdExtZfh())
8554     return SDValue();
8555 
8556   EVT SatVT = cast<VTSDNode>(N->getOperand(1))->getVT();
8557 
8558   RISCVFPRndMode::RoundingMode FRM = matchRoundingOp(Src);
8559   if (FRM == RISCVFPRndMode::Invalid)
8560     return SDValue();
8561 
8562   bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT_SAT;
8563 
8564   unsigned Opc;
8565   if (SatVT == DstVT)
8566     Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU;
8567   else if (DstVT == MVT::i64 && SatVT == MVT::i32)
8568     Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64;
8569   else
8570     return SDValue();
8571   // FIXME: Support other SatVTs by clamping before or after the conversion.
8572 
8573   Src = Src.getOperand(0);
8574 
8575   SDLoc DL(N);
8576   SDValue FpToInt = DAG.getNode(Opc, DL, XLenVT, Src,
8577                                 DAG.getTargetConstant(FRM, DL, XLenVT));
8578 
8579   // RISCV FP-to-int conversions saturate to the destination register size, but
8580   // don't produce 0 for nan.
8581   SDValue ZeroInt = DAG.getConstant(0, DL, DstVT);
8582   return DAG.getSelectCC(DL, Src, Src, ZeroInt, FpToInt, ISD::CondCode::SETUO);
8583 }
8584 
8585 // Combine (bitreverse (bswap X)) to the BREV8 GREVI encoding if the type is
8586 // smaller than XLenVT.
8587 static SDValue performBITREVERSECombine(SDNode *N, SelectionDAG &DAG,
8588                                         const RISCVSubtarget &Subtarget) {
8589   assert(Subtarget.hasStdExtZbkb() && "Unexpected extension");
8590 
8591   SDValue Src = N->getOperand(0);
8592   if (Src.getOpcode() != ISD::BSWAP)
8593     return SDValue();
8594 
8595   EVT VT = N->getValueType(0);
8596   if (!VT.isScalarInteger() || VT.getSizeInBits() >= Subtarget.getXLen() ||
8597       !isPowerOf2_32(VT.getSizeInBits()))
8598     return SDValue();
8599 
8600   SDLoc DL(N);
8601   return DAG.getNode(RISCVISD::GREV, DL, VT, Src.getOperand(0),
8602                      DAG.getConstant(7, DL, VT));
8603 }
8604 
8605 // Convert from one FMA opcode to another based on whether we are negating the
8606 // multiply result and/or the accumulator.
8607 // NOTE: Only supports RVV operations with VL.
8608 static unsigned negateFMAOpcode(unsigned Opcode, bool NegMul, bool NegAcc) {
8609   assert((NegMul || NegAcc) && "Not negating anything?");
8610 
8611   // Negating the multiply result changes ADD<->SUB and toggles 'N'.
8612   if (NegMul) {
8613     // clang-format off
8614     switch (Opcode) {
8615     default: llvm_unreachable("Unexpected opcode");
8616     case RISCVISD::VFMADD_VL:  Opcode = RISCVISD::VFNMSUB_VL; break;
8617     case RISCVISD::VFNMSUB_VL: Opcode = RISCVISD::VFMADD_VL;  break;
8618     case RISCVISD::VFNMADD_VL: Opcode = RISCVISD::VFMSUB_VL;  break;
8619     case RISCVISD::VFMSUB_VL:  Opcode = RISCVISD::VFNMADD_VL; break;
8620     }
8621     // clang-format on
8622   }
8623 
8624   // Negating the accumulator changes ADD<->SUB.
8625   if (NegAcc) {
8626     // clang-format off
8627     switch (Opcode) {
8628     default: llvm_unreachable("Unexpected opcode");
8629     case RISCVISD::VFMADD_VL:  Opcode = RISCVISD::VFMSUB_VL;  break;
8630     case RISCVISD::VFMSUB_VL:  Opcode = RISCVISD::VFMADD_VL;  break;
8631     case RISCVISD::VFNMADD_VL: Opcode = RISCVISD::VFNMSUB_VL; break;
8632     case RISCVISD::VFNMSUB_VL: Opcode = RISCVISD::VFNMADD_VL; break;
8633     }
8634     // clang-format on
8635   }
8636 
8637   return Opcode;
8638 }
8639 
8640 static SDValue performSRACombine(SDNode *N, SelectionDAG &DAG,
8641                                  const RISCVSubtarget &Subtarget) {
8642   assert(N->getOpcode() == ISD::SRA && "Unexpected opcode");
8643 
8644   if (N->getValueType(0) != MVT::i64 || !Subtarget.is64Bit())
8645     return SDValue();
8646 
8647   if (!isa<ConstantSDNode>(N->getOperand(1)))
8648     return SDValue();
8649   uint64_t ShAmt = N->getConstantOperandVal(1);
8650   if (ShAmt > 32)
8651     return SDValue();
8652 
8653   SDValue N0 = N->getOperand(0);
8654 
8655   // Combine (sra (sext_inreg (shl X, C1), i32), C2) ->
8656   // (sra (shl X, C1+32), C2+32) so it gets selected as SLLI+SRAI instead of
8657   // SLLIW+SRAIW. SLLI+SRAI have compressed forms.
8658   if (ShAmt < 32 &&
8659       N0.getOpcode() == ISD::SIGN_EXTEND_INREG && N0.hasOneUse() &&
8660       cast<VTSDNode>(N0.getOperand(1))->getVT() == MVT::i32 &&
8661       N0.getOperand(0).getOpcode() == ISD::SHL && N0.getOperand(0).hasOneUse() &&
8662       isa<ConstantSDNode>(N0.getOperand(0).getOperand(1))) {
8663     uint64_t LShAmt = N0.getOperand(0).getConstantOperandVal(1);
8664     if (LShAmt < 32) {
8665       SDLoc ShlDL(N0.getOperand(0));
8666       SDValue Shl = DAG.getNode(ISD::SHL, ShlDL, MVT::i64,
8667                                 N0.getOperand(0).getOperand(0),
8668                                 DAG.getConstant(LShAmt + 32, ShlDL, MVT::i64));
8669       SDLoc DL(N);
8670       return DAG.getNode(ISD::SRA, DL, MVT::i64, Shl,
8671                          DAG.getConstant(ShAmt + 32, DL, MVT::i64));
8672     }
8673   }
8674 
8675   // Combine (sra (shl X, 32), 32 - C) -> (shl (sext_inreg X, i32), C)
8676   // FIXME: Should this be a generic combine? There's a similar combine on X86.
8677   //
8678   // Also try these folds where an add or sub is in the middle.
8679   // (sra (add (shl X, 32), C1), 32 - C) -> (shl (sext_inreg (add X, C1), C)
8680   // (sra (sub C1, (shl X, 32)), 32 - C) -> (shl (sext_inreg (sub C1, X), C)
8681   SDValue Shl;
8682   ConstantSDNode *AddC = nullptr;
8683 
8684   // We might have an ADD or SUB between the SRA and SHL.
8685   bool IsAdd = N0.getOpcode() == ISD::ADD;
8686   if ((IsAdd || N0.getOpcode() == ISD::SUB)) {
8687     if (!N0.hasOneUse())
8688       return SDValue();
8689     // Other operand needs to be a constant we can modify.
8690     AddC = dyn_cast<ConstantSDNode>(N0.getOperand(IsAdd ? 1 : 0));
8691     if (!AddC)
8692       return SDValue();
8693 
8694     // AddC needs to have at least 32 trailing zeros.
8695     if (AddC->getAPIntValue().countTrailingZeros() < 32)
8696       return SDValue();
8697 
8698     Shl = N0.getOperand(IsAdd ? 0 : 1);
8699   } else {
8700     // Not an ADD or SUB.
8701     Shl = N0;
8702   }
8703 
8704   // Look for a shift left by 32.
8705   if (Shl.getOpcode() != ISD::SHL || !Shl.hasOneUse() ||
8706       !isa<ConstantSDNode>(Shl.getOperand(1)) ||
8707       Shl.getConstantOperandVal(1) != 32)
8708     return SDValue();
8709 
8710   SDLoc DL(N);
8711   SDValue In = Shl.getOperand(0);
8712 
8713   // If we looked through an ADD or SUB, we need to rebuild it with the shifted
8714   // constant.
8715   if (AddC) {
8716     SDValue ShiftedAddC =
8717         DAG.getConstant(AddC->getAPIntValue().lshr(32), DL, MVT::i64);
8718     if (IsAdd)
8719       In = DAG.getNode(ISD::ADD, DL, MVT::i64, In, ShiftedAddC);
8720     else
8721       In = DAG.getNode(ISD::SUB, DL, MVT::i64, ShiftedAddC, In);
8722   }
8723 
8724   SDValue SExt = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, In,
8725                              DAG.getValueType(MVT::i32));
8726   if (ShAmt == 32)
8727     return SExt;
8728 
8729   return DAG.getNode(
8730       ISD::SHL, DL, MVT::i64, SExt,
8731       DAG.getConstant(32 - ShAmt, DL, MVT::i64));
8732 }
8733 
8734 // Perform common combines for BR_CC and SELECT_CC condtions.
8735 static bool combine_CC(SDValue &LHS, SDValue &RHS, SDValue &CC, const SDLoc &DL,
8736                        SelectionDAG &DAG, const RISCVSubtarget &Subtarget) {
8737   ISD::CondCode CCVal = cast<CondCodeSDNode>(CC)->get();
8738   if (!ISD::isIntEqualitySetCC(CCVal))
8739     return false;
8740 
8741   // Fold ((setlt X, Y), 0, ne) -> (X, Y, lt)
8742   // Sometimes the setcc is introduced after br_cc/select_cc has been formed.
8743   if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) &&
8744       LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) {
8745     // If we're looking for eq 0 instead of ne 0, we need to invert the
8746     // condition.
8747     bool Invert = CCVal == ISD::SETEQ;
8748     CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
8749     if (Invert)
8750       CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
8751 
8752     RHS = LHS.getOperand(1);
8753     LHS = LHS.getOperand(0);
8754     translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
8755 
8756     CC = DAG.getCondCode(CCVal);
8757     return true;
8758   }
8759 
8760   // Fold ((xor X, Y), 0, eq/ne) -> (X, Y, eq/ne)
8761   if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS)) {
8762     RHS = LHS.getOperand(1);
8763     LHS = LHS.getOperand(0);
8764     return true;
8765   }
8766 
8767   // Fold ((srl (and X, 1<<C), C), 0, eq/ne) -> ((shl X, XLen-1-C), 0, ge/lt)
8768   if (isNullConstant(RHS) && LHS.getOpcode() == ISD::SRL && LHS.hasOneUse() &&
8769       LHS.getOperand(1).getOpcode() == ISD::Constant) {
8770     SDValue LHS0 = LHS.getOperand(0);
8771     if (LHS0.getOpcode() == ISD::AND &&
8772         LHS0.getOperand(1).getOpcode() == ISD::Constant) {
8773       uint64_t Mask = LHS0.getConstantOperandVal(1);
8774       uint64_t ShAmt = LHS.getConstantOperandVal(1);
8775       if (isPowerOf2_64(Mask) && Log2_64(Mask) == ShAmt) {
8776         CCVal = CCVal == ISD::SETEQ ? ISD::SETGE : ISD::SETLT;
8777         CC = DAG.getCondCode(CCVal);
8778 
8779         ShAmt = LHS.getValueSizeInBits() - 1 - ShAmt;
8780         LHS = LHS0.getOperand(0);
8781         if (ShAmt != 0)
8782           LHS =
8783               DAG.getNode(ISD::SHL, DL, LHS.getValueType(), LHS0.getOperand(0),
8784                           DAG.getConstant(ShAmt, DL, LHS.getValueType()));
8785         return true;
8786       }
8787     }
8788   }
8789 
8790   // (X, 1, setne) -> // (X, 0, seteq) if we can prove X is 0/1.
8791   // This can occur when legalizing some floating point comparisons.
8792   APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1);
8793   if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) {
8794     CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
8795     CC = DAG.getCondCode(CCVal);
8796     RHS = DAG.getConstant(0, DL, LHS.getValueType());
8797     return true;
8798   }
8799 
8800   return false;
8801 }
8802 
8803 SDValue RISCVTargetLowering::PerformDAGCombine(SDNode *N,
8804                                                DAGCombinerInfo &DCI) const {
8805   SelectionDAG &DAG = DCI.DAG;
8806 
8807   // Helper to call SimplifyDemandedBits on an operand of N where only some low
8808   // bits are demanded. N will be added to the Worklist if it was not deleted.
8809   // Caller should return SDValue(N, 0) if this returns true.
8810   auto SimplifyDemandedLowBitsHelper = [&](unsigned OpNo, unsigned LowBits) {
8811     SDValue Op = N->getOperand(OpNo);
8812     APInt Mask = APInt::getLowBitsSet(Op.getValueSizeInBits(), LowBits);
8813     if (!SimplifyDemandedBits(Op, Mask, DCI))
8814       return false;
8815 
8816     if (N->getOpcode() != ISD::DELETED_NODE)
8817       DCI.AddToWorklist(N);
8818     return true;
8819   };
8820 
8821   switch (N->getOpcode()) {
8822   default:
8823     break;
8824   case RISCVISD::SplitF64: {
8825     SDValue Op0 = N->getOperand(0);
8826     // If the input to SplitF64 is just BuildPairF64 then the operation is
8827     // redundant. Instead, use BuildPairF64's operands directly.
8828     if (Op0->getOpcode() == RISCVISD::BuildPairF64)
8829       return DCI.CombineTo(N, Op0.getOperand(0), Op0.getOperand(1));
8830 
8831     if (Op0->isUndef()) {
8832       SDValue Lo = DAG.getUNDEF(MVT::i32);
8833       SDValue Hi = DAG.getUNDEF(MVT::i32);
8834       return DCI.CombineTo(N, Lo, Hi);
8835     }
8836 
8837     SDLoc DL(N);
8838 
8839     // It's cheaper to materialise two 32-bit integers than to load a double
8840     // from the constant pool and transfer it to integer registers through the
8841     // stack.
8842     if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op0)) {
8843       APInt V = C->getValueAPF().bitcastToAPInt();
8844       SDValue Lo = DAG.getConstant(V.trunc(32), DL, MVT::i32);
8845       SDValue Hi = DAG.getConstant(V.lshr(32).trunc(32), DL, MVT::i32);
8846       return DCI.CombineTo(N, Lo, Hi);
8847     }
8848 
8849     // This is a target-specific version of a DAGCombine performed in
8850     // DAGCombiner::visitBITCAST. It performs the equivalent of:
8851     // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
8852     // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
8853     if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) ||
8854         !Op0.getNode()->hasOneUse())
8855       break;
8856     SDValue NewSplitF64 =
8857         DAG.getNode(RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32),
8858                     Op0.getOperand(0));
8859     SDValue Lo = NewSplitF64.getValue(0);
8860     SDValue Hi = NewSplitF64.getValue(1);
8861     APInt SignBit = APInt::getSignMask(32);
8862     if (Op0.getOpcode() == ISD::FNEG) {
8863       SDValue NewHi = DAG.getNode(ISD::XOR, DL, MVT::i32, Hi,
8864                                   DAG.getConstant(SignBit, DL, MVT::i32));
8865       return DCI.CombineTo(N, Lo, NewHi);
8866     }
8867     assert(Op0.getOpcode() == ISD::FABS);
8868     SDValue NewHi = DAG.getNode(ISD::AND, DL, MVT::i32, Hi,
8869                                 DAG.getConstant(~SignBit, DL, MVT::i32));
8870     return DCI.CombineTo(N, Lo, NewHi);
8871   }
8872   case RISCVISD::SLLW:
8873   case RISCVISD::SRAW:
8874   case RISCVISD::SRLW: {
8875     // Only the lower 32 bits of LHS and lower 5 bits of RHS are read.
8876     if (SimplifyDemandedLowBitsHelper(0, 32) ||
8877         SimplifyDemandedLowBitsHelper(1, 5))
8878       return SDValue(N, 0);
8879 
8880     break;
8881   }
8882   case ISD::ROTR:
8883   case ISD::ROTL:
8884   case RISCVISD::RORW:
8885   case RISCVISD::ROLW: {
8886     if (N->getOpcode() == RISCVISD::RORW || N->getOpcode() == RISCVISD::ROLW) {
8887       // Only the lower 32 bits of LHS and lower 5 bits of RHS are read.
8888       if (SimplifyDemandedLowBitsHelper(0, 32) ||
8889           SimplifyDemandedLowBitsHelper(1, 5))
8890         return SDValue(N, 0);
8891     }
8892 
8893     return combineROTR_ROTL_RORW_ROLW(N, DAG, Subtarget);
8894   }
8895   case RISCVISD::CLZW:
8896   case RISCVISD::CTZW: {
8897     // Only the lower 32 bits of the first operand are read
8898     if (SimplifyDemandedLowBitsHelper(0, 32))
8899       return SDValue(N, 0);
8900     break;
8901   }
8902   case RISCVISD::GREV:
8903   case RISCVISD::GORC: {
8904     // Only the lower log2(Bitwidth) bits of the the shift amount are read.
8905     unsigned BitWidth = N->getOperand(1).getValueSizeInBits();
8906     assert(isPowerOf2_32(BitWidth) && "Unexpected bit width");
8907     if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth)))
8908       return SDValue(N, 0);
8909 
8910     return combineGREVI_GORCI(N, DAG);
8911   }
8912   case RISCVISD::GREVW:
8913   case RISCVISD::GORCW: {
8914     // Only the lower 32 bits of LHS and lower 5 bits of RHS are read.
8915     if (SimplifyDemandedLowBitsHelper(0, 32) ||
8916         SimplifyDemandedLowBitsHelper(1, 5))
8917       return SDValue(N, 0);
8918 
8919     break;
8920   }
8921   case RISCVISD::SHFL:
8922   case RISCVISD::UNSHFL: {
8923     // Only the lower log2(Bitwidth)-1 bits of the the shift amount are read.
8924     unsigned BitWidth = N->getOperand(1).getValueSizeInBits();
8925     assert(isPowerOf2_32(BitWidth) && "Unexpected bit width");
8926     if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth) - 1))
8927       return SDValue(N, 0);
8928 
8929     break;
8930   }
8931   case RISCVISD::SHFLW:
8932   case RISCVISD::UNSHFLW: {
8933     // Only the lower 32 bits of LHS and lower 4 bits of RHS are read.
8934     if (SimplifyDemandedLowBitsHelper(0, 32) ||
8935         SimplifyDemandedLowBitsHelper(1, 4))
8936       return SDValue(N, 0);
8937 
8938     break;
8939   }
8940   case RISCVISD::BCOMPRESSW:
8941   case RISCVISD::BDECOMPRESSW: {
8942     // Only the lower 32 bits of LHS and RHS are read.
8943     if (SimplifyDemandedLowBitsHelper(0, 32) ||
8944         SimplifyDemandedLowBitsHelper(1, 32))
8945       return SDValue(N, 0);
8946 
8947     break;
8948   }
8949   case RISCVISD::FSR:
8950   case RISCVISD::FSL:
8951   case RISCVISD::FSRW:
8952   case RISCVISD::FSLW: {
8953     bool IsWInstruction =
8954         N->getOpcode() == RISCVISD::FSRW || N->getOpcode() == RISCVISD::FSLW;
8955     unsigned BitWidth =
8956         IsWInstruction ? 32 : N->getSimpleValueType(0).getSizeInBits();
8957     assert(isPowerOf2_32(BitWidth) && "Unexpected bit width");
8958     // Only the lower log2(Bitwidth)+1 bits of the the shift amount are read.
8959     if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth) + 1))
8960       return SDValue(N, 0);
8961 
8962     break;
8963   }
8964   case RISCVISD::FMV_X_ANYEXTH:
8965   case RISCVISD::FMV_X_ANYEXTW_RV64: {
8966     SDLoc DL(N);
8967     SDValue Op0 = N->getOperand(0);
8968     MVT VT = N->getSimpleValueType(0);
8969     // If the input to FMV_X_ANYEXTW_RV64 is just FMV_W_X_RV64 then the
8970     // conversion is unnecessary and can be replaced with the FMV_W_X_RV64
8971     // operand. Similar for FMV_X_ANYEXTH and FMV_H_X.
8972     if ((N->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64 &&
8973          Op0->getOpcode() == RISCVISD::FMV_W_X_RV64) ||
8974         (N->getOpcode() == RISCVISD::FMV_X_ANYEXTH &&
8975          Op0->getOpcode() == RISCVISD::FMV_H_X)) {
8976       assert(Op0.getOperand(0).getValueType() == VT &&
8977              "Unexpected value type!");
8978       return Op0.getOperand(0);
8979     }
8980 
8981     // This is a target-specific version of a DAGCombine performed in
8982     // DAGCombiner::visitBITCAST. It performs the equivalent of:
8983     // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
8984     // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
8985     if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) ||
8986         !Op0.getNode()->hasOneUse())
8987       break;
8988     SDValue NewFMV = DAG.getNode(N->getOpcode(), DL, VT, Op0.getOperand(0));
8989     unsigned FPBits = N->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64 ? 32 : 16;
8990     APInt SignBit = APInt::getSignMask(FPBits).sext(VT.getSizeInBits());
8991     if (Op0.getOpcode() == ISD::FNEG)
8992       return DAG.getNode(ISD::XOR, DL, VT, NewFMV,
8993                          DAG.getConstant(SignBit, DL, VT));
8994 
8995     assert(Op0.getOpcode() == ISD::FABS);
8996     return DAG.getNode(ISD::AND, DL, VT, NewFMV,
8997                        DAG.getConstant(~SignBit, DL, VT));
8998   }
8999   case ISD::ADD:
9000     return performADDCombine(N, DAG, Subtarget);
9001   case ISD::SUB:
9002     return performSUBCombine(N, DAG);
9003   case ISD::AND:
9004     return performANDCombine(N, DAG, Subtarget);
9005   case ISD::OR:
9006     return performORCombine(N, DAG, Subtarget);
9007   case ISD::XOR:
9008     return performXORCombine(N, DAG);
9009   case ISD::FADD:
9010   case ISD::UMAX:
9011   case ISD::UMIN:
9012   case ISD::SMAX:
9013   case ISD::SMIN:
9014   case ISD::FMAXNUM:
9015   case ISD::FMINNUM:
9016     return combineBinOpToReduce(N, DAG);
9017   case ISD::SETCC:
9018     return performSETCCCombine(N, DAG, Subtarget);
9019   case ISD::SIGN_EXTEND_INREG:
9020     return performSIGN_EXTEND_INREGCombine(N, DAG, Subtarget);
9021   case ISD::ZERO_EXTEND:
9022     // Fold (zero_extend (fp_to_uint X)) to prevent forming fcvt+zexti32 during
9023     // type legalization. This is safe because fp_to_uint produces poison if
9024     // it overflows.
9025     if (N->getValueType(0) == MVT::i64 && Subtarget.is64Bit()) {
9026       SDValue Src = N->getOperand(0);
9027       if (Src.getOpcode() == ISD::FP_TO_UINT &&
9028           isTypeLegal(Src.getOperand(0).getValueType()))
9029         return DAG.getNode(ISD::FP_TO_UINT, SDLoc(N), MVT::i64,
9030                            Src.getOperand(0));
9031       if (Src.getOpcode() == ISD::STRICT_FP_TO_UINT && Src.hasOneUse() &&
9032           isTypeLegal(Src.getOperand(1).getValueType())) {
9033         SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other);
9034         SDValue Res = DAG.getNode(ISD::STRICT_FP_TO_UINT, SDLoc(N), VTs,
9035                                   Src.getOperand(0), Src.getOperand(1));
9036         DCI.CombineTo(N, Res);
9037         DAG.ReplaceAllUsesOfValueWith(Src.getValue(1), Res.getValue(1));
9038         DCI.recursivelyDeleteUnusedNodes(Src.getNode());
9039         return SDValue(N, 0); // Return N so it doesn't get rechecked.
9040       }
9041     }
9042     return SDValue();
9043   case RISCVISD::SELECT_CC: {
9044     // Transform
9045     SDValue LHS = N->getOperand(0);
9046     SDValue RHS = N->getOperand(1);
9047     SDValue CC = N->getOperand(2);
9048     SDValue TrueV = N->getOperand(3);
9049     SDValue FalseV = N->getOperand(4);
9050     SDLoc DL(N);
9051 
9052     // If the True and False values are the same, we don't need a select_cc.
9053     if (TrueV == FalseV)
9054       return TrueV;
9055 
9056     if (combine_CC(LHS, RHS, CC, DL, DAG, Subtarget))
9057       return DAG.getNode(RISCVISD::SELECT_CC, DL, N->getValueType(0),
9058                          {LHS, RHS, CC, TrueV, FalseV});
9059 
9060     return SDValue();
9061   }
9062   case RISCVISD::BR_CC: {
9063     SDValue LHS = N->getOperand(1);
9064     SDValue RHS = N->getOperand(2);
9065     SDValue CC = N->getOperand(3);
9066     SDLoc DL(N);
9067 
9068     if (combine_CC(LHS, RHS, CC, DL, DAG, Subtarget))
9069       return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0),
9070                          N->getOperand(0), LHS, RHS, CC, N->getOperand(4));
9071 
9072     return SDValue();
9073   }
9074   case ISD::BITREVERSE:
9075     return performBITREVERSECombine(N, DAG, Subtarget);
9076   case ISD::FP_TO_SINT:
9077   case ISD::FP_TO_UINT:
9078     return performFP_TO_INTCombine(N, DCI, Subtarget);
9079   case ISD::FP_TO_SINT_SAT:
9080   case ISD::FP_TO_UINT_SAT:
9081     return performFP_TO_INT_SATCombine(N, DCI, Subtarget);
9082   case ISD::FCOPYSIGN: {
9083     EVT VT = N->getValueType(0);
9084     if (!VT.isVector())
9085       break;
9086     // There is a form of VFSGNJ which injects the negated sign of its second
9087     // operand. Try and bubble any FNEG up after the extend/round to produce
9088     // this optimized pattern. Avoid modifying cases where FP_ROUND and
9089     // TRUNC=1.
9090     SDValue In2 = N->getOperand(1);
9091     // Avoid cases where the extend/round has multiple uses, as duplicating
9092     // those is typically more expensive than removing a fneg.
9093     if (!In2.hasOneUse())
9094       break;
9095     if (In2.getOpcode() != ISD::FP_EXTEND &&
9096         (In2.getOpcode() != ISD::FP_ROUND || In2.getConstantOperandVal(1) != 0))
9097       break;
9098     In2 = In2.getOperand(0);
9099     if (In2.getOpcode() != ISD::FNEG)
9100       break;
9101     SDLoc DL(N);
9102     SDValue NewFPExtRound = DAG.getFPExtendOrRound(In2.getOperand(0), DL, VT);
9103     return DAG.getNode(ISD::FCOPYSIGN, DL, VT, N->getOperand(0),
9104                        DAG.getNode(ISD::FNEG, DL, VT, NewFPExtRound));
9105   }
9106   case ISD::MGATHER:
9107   case ISD::MSCATTER:
9108   case ISD::VP_GATHER:
9109   case ISD::VP_SCATTER: {
9110     if (!DCI.isBeforeLegalize())
9111       break;
9112     SDValue Index, ScaleOp;
9113     bool IsIndexScaled = false;
9114     bool IsIndexSigned = false;
9115     if (const auto *VPGSN = dyn_cast<VPGatherScatterSDNode>(N)) {
9116       Index = VPGSN->getIndex();
9117       ScaleOp = VPGSN->getScale();
9118       IsIndexScaled = VPGSN->isIndexScaled();
9119       IsIndexSigned = VPGSN->isIndexSigned();
9120     } else {
9121       const auto *MGSN = cast<MaskedGatherScatterSDNode>(N);
9122       Index = MGSN->getIndex();
9123       ScaleOp = MGSN->getScale();
9124       IsIndexScaled = MGSN->isIndexScaled();
9125       IsIndexSigned = MGSN->isIndexSigned();
9126     }
9127     EVT IndexVT = Index.getValueType();
9128     MVT XLenVT = Subtarget.getXLenVT();
9129     // RISCV indexed loads only support the "unsigned unscaled" addressing
9130     // mode, so anything else must be manually legalized.
9131     bool NeedsIdxLegalization =
9132         IsIndexScaled ||
9133         (IsIndexSigned && IndexVT.getVectorElementType().bitsLT(XLenVT));
9134     if (!NeedsIdxLegalization)
9135       break;
9136 
9137     SDLoc DL(N);
9138 
9139     // Any index legalization should first promote to XLenVT, so we don't lose
9140     // bits when scaling. This may create an illegal index type so we let
9141     // LLVM's legalization take care of the splitting.
9142     // FIXME: LLVM can't split VP_GATHER or VP_SCATTER yet.
9143     if (IndexVT.getVectorElementType().bitsLT(XLenVT)) {
9144       IndexVT = IndexVT.changeVectorElementType(XLenVT);
9145       Index = DAG.getNode(IsIndexSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
9146                           DL, IndexVT, Index);
9147     }
9148 
9149     if (IsIndexScaled) {
9150       // Manually scale the indices.
9151       // TODO: Sanitize the scale operand here?
9152       // TODO: For VP nodes, should we use VP_SHL here?
9153       unsigned Scale = cast<ConstantSDNode>(ScaleOp)->getZExtValue();
9154       assert(isPowerOf2_32(Scale) && "Expecting power-of-two types");
9155       SDValue SplatScale = DAG.getConstant(Log2_32(Scale), DL, IndexVT);
9156       Index = DAG.getNode(ISD::SHL, DL, IndexVT, Index, SplatScale);
9157       ScaleOp = DAG.getTargetConstant(1, DL, ScaleOp.getValueType());
9158     }
9159 
9160     ISD::MemIndexType NewIndexTy = ISD::UNSIGNED_SCALED;
9161     if (const auto *VPGN = dyn_cast<VPGatherSDNode>(N))
9162       return DAG.getGatherVP(N->getVTList(), VPGN->getMemoryVT(), DL,
9163                              {VPGN->getChain(), VPGN->getBasePtr(), Index,
9164                               ScaleOp, VPGN->getMask(),
9165                               VPGN->getVectorLength()},
9166                              VPGN->getMemOperand(), NewIndexTy);
9167     if (const auto *VPSN = dyn_cast<VPScatterSDNode>(N))
9168       return DAG.getScatterVP(N->getVTList(), VPSN->getMemoryVT(), DL,
9169                               {VPSN->getChain(), VPSN->getValue(),
9170                                VPSN->getBasePtr(), Index, ScaleOp,
9171                                VPSN->getMask(), VPSN->getVectorLength()},
9172                               VPSN->getMemOperand(), NewIndexTy);
9173     if (const auto *MGN = dyn_cast<MaskedGatherSDNode>(N))
9174       return DAG.getMaskedGather(
9175           N->getVTList(), MGN->getMemoryVT(), DL,
9176           {MGN->getChain(), MGN->getPassThru(), MGN->getMask(),
9177            MGN->getBasePtr(), Index, ScaleOp},
9178           MGN->getMemOperand(), NewIndexTy, MGN->getExtensionType());
9179     const auto *MSN = cast<MaskedScatterSDNode>(N);
9180     return DAG.getMaskedScatter(
9181         N->getVTList(), MSN->getMemoryVT(), DL,
9182         {MSN->getChain(), MSN->getValue(), MSN->getMask(), MSN->getBasePtr(),
9183          Index, ScaleOp},
9184         MSN->getMemOperand(), NewIndexTy, MSN->isTruncatingStore());
9185   }
9186   case RISCVISD::SRA_VL:
9187   case RISCVISD::SRL_VL:
9188   case RISCVISD::SHL_VL: {
9189     SDValue ShAmt = N->getOperand(1);
9190     if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) {
9191       // We don't need the upper 32 bits of a 64-bit element for a shift amount.
9192       SDLoc DL(N);
9193       SDValue VL = N->getOperand(3);
9194       EVT VT = N->getValueType(0);
9195       ShAmt = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, DAG.getUNDEF(VT),
9196                           ShAmt.getOperand(1), VL);
9197       return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt,
9198                          N->getOperand(2), N->getOperand(3));
9199     }
9200     break;
9201   }
9202   case ISD::SRA:
9203     if (SDValue V = performSRACombine(N, DAG, Subtarget))
9204       return V;
9205     LLVM_FALLTHROUGH;
9206   case ISD::SRL:
9207   case ISD::SHL: {
9208     SDValue ShAmt = N->getOperand(1);
9209     if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) {
9210       // We don't need the upper 32 bits of a 64-bit element for a shift amount.
9211       SDLoc DL(N);
9212       EVT VT = N->getValueType(0);
9213       ShAmt = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, DAG.getUNDEF(VT),
9214                           ShAmt.getOperand(1),
9215                           DAG.getRegister(RISCV::X0, Subtarget.getXLenVT()));
9216       return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt);
9217     }
9218     break;
9219   }
9220   case RISCVISD::ADD_VL:
9221     if (SDValue V = combineADDSUB_VLToVWADDSUB_VL(N, DAG, /*Commute*/ false))
9222       return V;
9223     return combineADDSUB_VLToVWADDSUB_VL(N, DAG, /*Commute*/ true);
9224   case RISCVISD::SUB_VL:
9225     return combineADDSUB_VLToVWADDSUB_VL(N, DAG);
9226   case RISCVISD::VWADD_W_VL:
9227   case RISCVISD::VWADDU_W_VL:
9228   case RISCVISD::VWSUB_W_VL:
9229   case RISCVISD::VWSUBU_W_VL:
9230     return combineVWADD_W_VL_VWSUB_W_VL(N, DAG);
9231   case RISCVISD::MUL_VL:
9232     if (SDValue V = combineMUL_VLToVWMUL_VL(N, DAG, /*Commute*/ false))
9233       return V;
9234     // Mul is commutative.
9235     return combineMUL_VLToVWMUL_VL(N, DAG, /*Commute*/ true);
9236   case RISCVISD::VFMADD_VL:
9237   case RISCVISD::VFNMADD_VL:
9238   case RISCVISD::VFMSUB_VL:
9239   case RISCVISD::VFNMSUB_VL: {
9240     // Fold FNEG_VL into FMA opcodes.
9241     SDValue A = N->getOperand(0);
9242     SDValue B = N->getOperand(1);
9243     SDValue C = N->getOperand(2);
9244     SDValue Mask = N->getOperand(3);
9245     SDValue VL = N->getOperand(4);
9246 
9247     auto invertIfNegative = [&Mask, &VL](SDValue &V) {
9248       if (V.getOpcode() == RISCVISD::FNEG_VL && V.getOperand(1) == Mask &&
9249           V.getOperand(2) == VL) {
9250         // Return the negated input.
9251         V = V.getOperand(0);
9252         return true;
9253       }
9254 
9255       return false;
9256     };
9257 
9258     bool NegA = invertIfNegative(A);
9259     bool NegB = invertIfNegative(B);
9260     bool NegC = invertIfNegative(C);
9261 
9262     // If no operands are negated, we're done.
9263     if (!NegA && !NegB && !NegC)
9264       return SDValue();
9265 
9266     unsigned NewOpcode = negateFMAOpcode(N->getOpcode(), NegA != NegB, NegC);
9267     return DAG.getNode(NewOpcode, SDLoc(N), N->getValueType(0), A, B, C, Mask,
9268                        VL);
9269   }
9270   case ISD::STORE: {
9271     auto *Store = cast<StoreSDNode>(N);
9272     SDValue Val = Store->getValue();
9273     // Combine store of vmv.x.s to vse with VL of 1.
9274     // FIXME: Support FP.
9275     if (Val.getOpcode() == RISCVISD::VMV_X_S) {
9276       SDValue Src = Val.getOperand(0);
9277       MVT VecVT = Src.getSimpleValueType();
9278       EVT MemVT = Store->getMemoryVT();
9279       // The memory VT and the element type must match.
9280       if (MemVT == VecVT.getVectorElementType()) {
9281         SDLoc DL(N);
9282         MVT MaskVT = getMaskTypeFor(VecVT);
9283         return DAG.getStoreVP(
9284             Store->getChain(), DL, Src, Store->getBasePtr(), Store->getOffset(),
9285             DAG.getConstant(1, DL, MaskVT),
9286             DAG.getConstant(1, DL, Subtarget.getXLenVT()), MemVT,
9287             Store->getMemOperand(), Store->getAddressingMode(),
9288             Store->isTruncatingStore(), /*IsCompress*/ false);
9289       }
9290     }
9291 
9292     break;
9293   }
9294   case ISD::SPLAT_VECTOR: {
9295     EVT VT = N->getValueType(0);
9296     // Only perform this combine on legal MVT types.
9297     if (!isTypeLegal(VT))
9298       break;
9299     if (auto Gather = matchSplatAsGather(N->getOperand(0), VT.getSimpleVT(), N,
9300                                          DAG, Subtarget))
9301       return Gather;
9302     break;
9303   }
9304   case RISCVISD::VMV_V_X_VL: {
9305     // Tail agnostic VMV.V.X only demands the vector element bitwidth from the
9306     // scalar input.
9307     unsigned ScalarSize = N->getOperand(1).getValueSizeInBits();
9308     unsigned EltWidth = N->getValueType(0).getScalarSizeInBits();
9309     if (ScalarSize > EltWidth && N->getOperand(0).isUndef())
9310       if (SimplifyDemandedLowBitsHelper(1, EltWidth))
9311         return SDValue(N, 0);
9312 
9313     break;
9314   }
9315   case ISD::INTRINSIC_WO_CHAIN: {
9316     unsigned IntNo = N->getConstantOperandVal(0);
9317     switch (IntNo) {
9318       // By default we do not combine any intrinsic.
9319     default:
9320       return SDValue();
9321     case Intrinsic::riscv_vcpop:
9322     case Intrinsic::riscv_vcpop_mask:
9323     case Intrinsic::riscv_vfirst:
9324     case Intrinsic::riscv_vfirst_mask: {
9325       SDValue VL = N->getOperand(2);
9326       if (IntNo == Intrinsic::riscv_vcpop_mask ||
9327           IntNo == Intrinsic::riscv_vfirst_mask)
9328         VL = N->getOperand(3);
9329       if (!isNullConstant(VL))
9330         return SDValue();
9331       // If VL is 0, vcpop -> li 0, vfirst -> li -1.
9332       SDLoc DL(N);
9333       EVT VT = N->getValueType(0);
9334       if (IntNo == Intrinsic::riscv_vfirst ||
9335           IntNo == Intrinsic::riscv_vfirst_mask)
9336         return DAG.getConstant(-1, DL, VT);
9337       return DAG.getConstant(0, DL, VT);
9338     }
9339     }
9340   }
9341   case ISD::BITCAST: {
9342     assert(Subtarget.useRVVForFixedLengthVectors());
9343     SDValue N0 = N->getOperand(0);
9344     EVT VT = N->getValueType(0);
9345     EVT SrcVT = N0.getValueType();
9346     // If this is a bitcast between a MVT::v4i1/v2i1/v1i1 and an illegal integer
9347     // type, widen both sides to avoid a trip through memory.
9348     if ((SrcVT == MVT::v1i1 || SrcVT == MVT::v2i1 || SrcVT == MVT::v4i1) &&
9349         VT.isScalarInteger()) {
9350       unsigned NumConcats = 8 / SrcVT.getVectorNumElements();
9351       SmallVector<SDValue, 4> Ops(NumConcats, DAG.getUNDEF(SrcVT));
9352       Ops[0] = N0;
9353       SDLoc DL(N);
9354       N0 = DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v8i1, Ops);
9355       N0 = DAG.getBitcast(MVT::i8, N0);
9356       return DAG.getNode(ISD::TRUNCATE, DL, VT, N0);
9357     }
9358 
9359     return SDValue();
9360   }
9361   }
9362 
9363   return SDValue();
9364 }
9365 
9366 bool RISCVTargetLowering::isDesirableToCommuteWithShift(
9367     const SDNode *N, CombineLevel Level) const {
9368   assert((N->getOpcode() == ISD::SHL || N->getOpcode() == ISD::SRA ||
9369           N->getOpcode() == ISD::SRL) &&
9370          "Expected shift op");
9371 
9372   // The following folds are only desirable if `(OP _, c1 << c2)` can be
9373   // materialised in fewer instructions than `(OP _, c1)`:
9374   //
9375   //   (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2)
9376   //   (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2)
9377   SDValue N0 = N->getOperand(0);
9378   EVT Ty = N0.getValueType();
9379   if (Ty.isScalarInteger() &&
9380       (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::OR)) {
9381     auto *C1 = dyn_cast<ConstantSDNode>(N0->getOperand(1));
9382     auto *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1));
9383     if (C1 && C2) {
9384       const APInt &C1Int = C1->getAPIntValue();
9385       APInt ShiftedC1Int = C1Int << C2->getAPIntValue();
9386 
9387       // We can materialise `c1 << c2` into an add immediate, so it's "free",
9388       // and the combine should happen, to potentially allow further combines
9389       // later.
9390       if (ShiftedC1Int.getMinSignedBits() <= 64 &&
9391           isLegalAddImmediate(ShiftedC1Int.getSExtValue()))
9392         return true;
9393 
9394       // We can materialise `c1` in an add immediate, so it's "free", and the
9395       // combine should be prevented.
9396       if (C1Int.getMinSignedBits() <= 64 &&
9397           isLegalAddImmediate(C1Int.getSExtValue()))
9398         return false;
9399 
9400       // Neither constant will fit into an immediate, so find materialisation
9401       // costs.
9402       int C1Cost = RISCVMatInt::getIntMatCost(C1Int, Ty.getSizeInBits(),
9403                                               Subtarget.getFeatureBits(),
9404                                               /*CompressionCost*/true);
9405       int ShiftedC1Cost = RISCVMatInt::getIntMatCost(
9406           ShiftedC1Int, Ty.getSizeInBits(), Subtarget.getFeatureBits(),
9407           /*CompressionCost*/true);
9408 
9409       // Materialising `c1` is cheaper than materialising `c1 << c2`, so the
9410       // combine should be prevented.
9411       if (C1Cost < ShiftedC1Cost)
9412         return false;
9413     }
9414   }
9415   return true;
9416 }
9417 
9418 bool RISCVTargetLowering::targetShrinkDemandedConstant(
9419     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
9420     TargetLoweringOpt &TLO) const {
9421   // Delay this optimization as late as possible.
9422   if (!TLO.LegalOps)
9423     return false;
9424 
9425   EVT VT = Op.getValueType();
9426   if (VT.isVector())
9427     return false;
9428 
9429   // Only handle AND for now.
9430   unsigned Opcode = Op.getOpcode();
9431   if (Opcode != ISD::AND && Opcode != ISD::OR && Opcode != ISD::XOR)
9432     return false;
9433 
9434   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
9435   if (!C)
9436     return false;
9437 
9438   const APInt &Mask = C->getAPIntValue();
9439 
9440   // Clear all non-demanded bits initially.
9441   APInt ShrunkMask = Mask & DemandedBits;
9442 
9443   // Try to make a smaller immediate by setting undemanded bits.
9444 
9445   APInt ExpandedMask = Mask | ~DemandedBits;
9446 
9447   auto IsLegalMask = [ShrunkMask, ExpandedMask](const APInt &Mask) -> bool {
9448     return ShrunkMask.isSubsetOf(Mask) && Mask.isSubsetOf(ExpandedMask);
9449   };
9450   auto UseMask = [Mask, Op, &TLO](const APInt &NewMask) -> bool {
9451     if (NewMask == Mask)
9452       return true;
9453     SDLoc DL(Op);
9454     SDValue NewC = TLO.DAG.getConstant(NewMask, DL, Op.getValueType());
9455     SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), DL, Op.getValueType(),
9456                                     Op.getOperand(0), NewC);
9457     return TLO.CombineTo(Op, NewOp);
9458   };
9459 
9460   // If the shrunk mask fits in sign extended 12 bits, let the target
9461   // independent code apply it.
9462   if (ShrunkMask.isSignedIntN(12))
9463     return false;
9464 
9465   // And has a few special cases for zext.
9466   if (Opcode == ISD::AND) {
9467     // Preserve (and X, 0xffff) when zext.h is supported.
9468     if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp()) {
9469       APInt NewMask = APInt(Mask.getBitWidth(), 0xffff);
9470       if (IsLegalMask(NewMask))
9471         return UseMask(NewMask);
9472     }
9473 
9474     // Try to preserve (and X, 0xffffffff), the (zext_inreg X, i32) pattern.
9475     if (VT == MVT::i64) {
9476       APInt NewMask = APInt(64, 0xffffffff);
9477       if (IsLegalMask(NewMask))
9478         return UseMask(NewMask);
9479     }
9480   }
9481 
9482   // For the remaining optimizations, we need to be able to make a negative
9483   // number through a combination of mask and undemanded bits.
9484   if (!ExpandedMask.isNegative())
9485     return false;
9486 
9487   // What is the fewest number of bits we need to represent the negative number.
9488   unsigned MinSignedBits = ExpandedMask.getMinSignedBits();
9489 
9490   // Try to make a 12 bit negative immediate. If that fails try to make a 32
9491   // bit negative immediate unless the shrunk immediate already fits in 32 bits.
9492   // If we can't create a simm12, we shouldn't change opaque constants.
9493   APInt NewMask = ShrunkMask;
9494   if (MinSignedBits <= 12)
9495     NewMask.setBitsFrom(11);
9496   else if (!C->isOpaque() && MinSignedBits <= 32 && !ShrunkMask.isSignedIntN(32))
9497     NewMask.setBitsFrom(31);
9498   else
9499     return false;
9500 
9501   // Check that our new mask is a subset of the demanded mask.
9502   assert(IsLegalMask(NewMask));
9503   return UseMask(NewMask);
9504 }
9505 
9506 static uint64_t computeGREVOrGORC(uint64_t x, unsigned ShAmt, bool IsGORC) {
9507   static const uint64_t GREVMasks[] = {
9508       0x5555555555555555ULL, 0x3333333333333333ULL, 0x0F0F0F0F0F0F0F0FULL,
9509       0x00FF00FF00FF00FFULL, 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL};
9510 
9511   for (unsigned Stage = 0; Stage != 6; ++Stage) {
9512     unsigned Shift = 1 << Stage;
9513     if (ShAmt & Shift) {
9514       uint64_t Mask = GREVMasks[Stage];
9515       uint64_t Res = ((x & Mask) << Shift) | ((x >> Shift) & Mask);
9516       if (IsGORC)
9517         Res |= x;
9518       x = Res;
9519     }
9520   }
9521 
9522   return x;
9523 }
9524 
9525 void RISCVTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
9526                                                         KnownBits &Known,
9527                                                         const APInt &DemandedElts,
9528                                                         const SelectionDAG &DAG,
9529                                                         unsigned Depth) const {
9530   unsigned BitWidth = Known.getBitWidth();
9531   unsigned Opc = Op.getOpcode();
9532   assert((Opc >= ISD::BUILTIN_OP_END ||
9533           Opc == ISD::INTRINSIC_WO_CHAIN ||
9534           Opc == ISD::INTRINSIC_W_CHAIN ||
9535           Opc == ISD::INTRINSIC_VOID) &&
9536          "Should use MaskedValueIsZero if you don't know whether Op"
9537          " is a target node!");
9538 
9539   Known.resetAll();
9540   switch (Opc) {
9541   default: break;
9542   case RISCVISD::SELECT_CC: {
9543     Known = DAG.computeKnownBits(Op.getOperand(4), Depth + 1);
9544     // If we don't know any bits, early out.
9545     if (Known.isUnknown())
9546       break;
9547     KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(3), Depth + 1);
9548 
9549     // Only known if known in both the LHS and RHS.
9550     Known = KnownBits::commonBits(Known, Known2);
9551     break;
9552   }
9553   case RISCVISD::REMUW: {
9554     KnownBits Known2;
9555     Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
9556     Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
9557     // We only care about the lower 32 bits.
9558     Known = KnownBits::urem(Known.trunc(32), Known2.trunc(32));
9559     // Restore the original width by sign extending.
9560     Known = Known.sext(BitWidth);
9561     break;
9562   }
9563   case RISCVISD::DIVUW: {
9564     KnownBits Known2;
9565     Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
9566     Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
9567     // We only care about the lower 32 bits.
9568     Known = KnownBits::udiv(Known.trunc(32), Known2.trunc(32));
9569     // Restore the original width by sign extending.
9570     Known = Known.sext(BitWidth);
9571     break;
9572   }
9573   case RISCVISD::CTZW: {
9574     KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
9575     unsigned PossibleTZ = Known2.trunc(32).countMaxTrailingZeros();
9576     unsigned LowBits = Log2_32(PossibleTZ) + 1;
9577     Known.Zero.setBitsFrom(LowBits);
9578     break;
9579   }
9580   case RISCVISD::CLZW: {
9581     KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
9582     unsigned PossibleLZ = Known2.trunc(32).countMaxLeadingZeros();
9583     unsigned LowBits = Log2_32(PossibleLZ) + 1;
9584     Known.Zero.setBitsFrom(LowBits);
9585     break;
9586   }
9587   case RISCVISD::GREV:
9588   case RISCVISD::GORC: {
9589     if (auto *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
9590       Known = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
9591       unsigned ShAmt = C->getZExtValue() & (Known.getBitWidth() - 1);
9592       bool IsGORC = Op.getOpcode() == RISCVISD::GORC;
9593       // To compute zeros, we need to invert the value and invert it back after.
9594       Known.Zero =
9595           ~computeGREVOrGORC(~Known.Zero.getZExtValue(), ShAmt, IsGORC);
9596       Known.One = computeGREVOrGORC(Known.One.getZExtValue(), ShAmt, IsGORC);
9597     }
9598     break;
9599   }
9600   case RISCVISD::READ_VLENB: {
9601     // We can use the minimum and maximum VLEN values to bound VLENB.  We
9602     // know VLEN must be a power of two.
9603     const unsigned MinVLenB = Subtarget.getRealMinVLen() / 8;
9604     const unsigned MaxVLenB = Subtarget.getRealMaxVLen() / 8;
9605     assert(MinVLenB > 0 && "READ_VLENB without vector extension enabled?");
9606     Known.Zero.setLowBits(Log2_32(MinVLenB));
9607     Known.Zero.setBitsFrom(Log2_32(MaxVLenB)+1);
9608     if (MaxVLenB == MinVLenB)
9609       Known.One.setBit(Log2_32(MinVLenB));
9610     break;
9611   }
9612   case ISD::INTRINSIC_W_CHAIN:
9613   case ISD::INTRINSIC_WO_CHAIN: {
9614     unsigned IntNo =
9615         Op.getConstantOperandVal(Opc == ISD::INTRINSIC_WO_CHAIN ? 0 : 1);
9616     switch (IntNo) {
9617     default:
9618       // We can't do anything for most intrinsics.
9619       break;
9620     case Intrinsic::riscv_vsetvli:
9621     case Intrinsic::riscv_vsetvlimax:
9622     case Intrinsic::riscv_vsetvli_opt:
9623     case Intrinsic::riscv_vsetvlimax_opt:
9624       // Assume that VL output is positive and would fit in an int32_t.
9625       // TODO: VLEN might be capped at 16 bits in a future V spec update.
9626       if (BitWidth >= 32)
9627         Known.Zero.setBitsFrom(31);
9628       break;
9629     }
9630     break;
9631   }
9632   }
9633 }
9634 
9635 unsigned RISCVTargetLowering::ComputeNumSignBitsForTargetNode(
9636     SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
9637     unsigned Depth) const {
9638   switch (Op.getOpcode()) {
9639   default:
9640     break;
9641   case RISCVISD::SELECT_CC: {
9642     unsigned Tmp =
9643         DAG.ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth + 1);
9644     if (Tmp == 1) return 1;  // Early out.
9645     unsigned Tmp2 =
9646         DAG.ComputeNumSignBits(Op.getOperand(4), DemandedElts, Depth + 1);
9647     return std::min(Tmp, Tmp2);
9648   }
9649   case RISCVISD::SLLW:
9650   case RISCVISD::SRAW:
9651   case RISCVISD::SRLW:
9652   case RISCVISD::DIVW:
9653   case RISCVISD::DIVUW:
9654   case RISCVISD::REMUW:
9655   case RISCVISD::ROLW:
9656   case RISCVISD::RORW:
9657   case RISCVISD::GREVW:
9658   case RISCVISD::GORCW:
9659   case RISCVISD::FSLW:
9660   case RISCVISD::FSRW:
9661   case RISCVISD::SHFLW:
9662   case RISCVISD::UNSHFLW:
9663   case RISCVISD::BCOMPRESSW:
9664   case RISCVISD::BDECOMPRESSW:
9665   case RISCVISD::BFPW:
9666   case RISCVISD::FCVT_W_RV64:
9667   case RISCVISD::FCVT_WU_RV64:
9668   case RISCVISD::STRICT_FCVT_W_RV64:
9669   case RISCVISD::STRICT_FCVT_WU_RV64:
9670     // TODO: As the result is sign-extended, this is conservatively correct. A
9671     // more precise answer could be calculated for SRAW depending on known
9672     // bits in the shift amount.
9673     return 33;
9674   case RISCVISD::SHFL:
9675   case RISCVISD::UNSHFL: {
9676     // There is no SHFLIW, but a i64 SHFLI with bit 4 of the control word
9677     // cleared doesn't affect bit 31. The upper 32 bits will be shuffled, but
9678     // will stay within the upper 32 bits. If there were more than 32 sign bits
9679     // before there will be at least 33 sign bits after.
9680     if (Op.getValueType() == MVT::i64 &&
9681         isa<ConstantSDNode>(Op.getOperand(1)) &&
9682         (Op.getConstantOperandVal(1) & 0x10) == 0) {
9683       unsigned Tmp = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1);
9684       if (Tmp > 32)
9685         return 33;
9686     }
9687     break;
9688   }
9689   case RISCVISD::VMV_X_S: {
9690     // The number of sign bits of the scalar result is computed by obtaining the
9691     // element type of the input vector operand, subtracting its width from the
9692     // XLEN, and then adding one (sign bit within the element type). If the
9693     // element type is wider than XLen, the least-significant XLEN bits are
9694     // taken.
9695     unsigned XLen = Subtarget.getXLen();
9696     unsigned EltBits = Op.getOperand(0).getScalarValueSizeInBits();
9697     if (EltBits <= XLen)
9698       return XLen - EltBits + 1;
9699     break;
9700   }
9701   }
9702 
9703   return 1;
9704 }
9705 
9706 const Constant *
9707 RISCVTargetLowering::getTargetConstantFromLoad(LoadSDNode *Ld) const {
9708   assert(Ld && "Unexpected null LoadSDNode");
9709   if (!ISD::isNormalLoad(Ld))
9710     return nullptr;
9711 
9712   SDValue Ptr = Ld->getBasePtr();
9713 
9714   // Only constant pools with no offset are supported.
9715   auto GetSupportedConstantPool = [](SDValue Ptr) -> ConstantPoolSDNode * {
9716     auto *CNode = dyn_cast<ConstantPoolSDNode>(Ptr);
9717     if (!CNode || CNode->isMachineConstantPoolEntry() ||
9718         CNode->getOffset() != 0)
9719       return nullptr;
9720 
9721     return CNode;
9722   };
9723 
9724   // Simple case, LLA.
9725   if (Ptr.getOpcode() == RISCVISD::LLA) {
9726     auto *CNode = GetSupportedConstantPool(Ptr);
9727     if (!CNode || CNode->getTargetFlags() != 0)
9728       return nullptr;
9729 
9730     return CNode->getConstVal();
9731   }
9732 
9733   // Look for a HI and ADD_LO pair.
9734   if (Ptr.getOpcode() != RISCVISD::ADD_LO ||
9735       Ptr.getOperand(0).getOpcode() != RISCVISD::HI)
9736     return nullptr;
9737 
9738   auto *CNodeLo = GetSupportedConstantPool(Ptr.getOperand(1));
9739   auto *CNodeHi = GetSupportedConstantPool(Ptr.getOperand(0).getOperand(0));
9740 
9741   if (!CNodeLo || CNodeLo->getTargetFlags() != RISCVII::MO_LO ||
9742       !CNodeHi || CNodeHi->getTargetFlags() != RISCVII::MO_HI)
9743     return nullptr;
9744 
9745   if (CNodeLo->getConstVal() != CNodeHi->getConstVal())
9746     return nullptr;
9747 
9748   return CNodeLo->getConstVal();
9749 }
9750 
9751 static MachineBasicBlock *emitReadCycleWidePseudo(MachineInstr &MI,
9752                                                   MachineBasicBlock *BB) {
9753   assert(MI.getOpcode() == RISCV::ReadCycleWide && "Unexpected instruction");
9754 
9755   // To read the 64-bit cycle CSR on a 32-bit target, we read the two halves.
9756   // Should the count have wrapped while it was being read, we need to try
9757   // again.
9758   // ...
9759   // read:
9760   // rdcycleh x3 # load high word of cycle
9761   // rdcycle  x2 # load low word of cycle
9762   // rdcycleh x4 # load high word of cycle
9763   // bne x3, x4, read # check if high word reads match, otherwise try again
9764   // ...
9765 
9766   MachineFunction &MF = *BB->getParent();
9767   const BasicBlock *LLVM_BB = BB->getBasicBlock();
9768   MachineFunction::iterator It = ++BB->getIterator();
9769 
9770   MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB);
9771   MF.insert(It, LoopMBB);
9772 
9773   MachineBasicBlock *DoneMBB = MF.CreateMachineBasicBlock(LLVM_BB);
9774   MF.insert(It, DoneMBB);
9775 
9776   // Transfer the remainder of BB and its successor edges to DoneMBB.
9777   DoneMBB->splice(DoneMBB->begin(), BB,
9778                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
9779   DoneMBB->transferSuccessorsAndUpdatePHIs(BB);
9780 
9781   BB->addSuccessor(LoopMBB);
9782 
9783   MachineRegisterInfo &RegInfo = MF.getRegInfo();
9784   Register ReadAgainReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
9785   Register LoReg = MI.getOperand(0).getReg();
9786   Register HiReg = MI.getOperand(1).getReg();
9787   DebugLoc DL = MI.getDebugLoc();
9788 
9789   const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
9790   BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), HiReg)
9791       .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding)
9792       .addReg(RISCV::X0);
9793   BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), LoReg)
9794       .addImm(RISCVSysReg::lookupSysRegByName("CYCLE")->Encoding)
9795       .addReg(RISCV::X0);
9796   BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), ReadAgainReg)
9797       .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding)
9798       .addReg(RISCV::X0);
9799 
9800   BuildMI(LoopMBB, DL, TII->get(RISCV::BNE))
9801       .addReg(HiReg)
9802       .addReg(ReadAgainReg)
9803       .addMBB(LoopMBB);
9804 
9805   LoopMBB->addSuccessor(LoopMBB);
9806   LoopMBB->addSuccessor(DoneMBB);
9807 
9808   MI.eraseFromParent();
9809 
9810   return DoneMBB;
9811 }
9812 
9813 static MachineBasicBlock *emitSplitF64Pseudo(MachineInstr &MI,
9814                                              MachineBasicBlock *BB) {
9815   assert(MI.getOpcode() == RISCV::SplitF64Pseudo && "Unexpected instruction");
9816 
9817   MachineFunction &MF = *BB->getParent();
9818   DebugLoc DL = MI.getDebugLoc();
9819   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
9820   const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo();
9821   Register LoReg = MI.getOperand(0).getReg();
9822   Register HiReg = MI.getOperand(1).getReg();
9823   Register SrcReg = MI.getOperand(2).getReg();
9824   const TargetRegisterClass *SrcRC = &RISCV::FPR64RegClass;
9825   int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF);
9826 
9827   TII.storeRegToStackSlot(*BB, MI, SrcReg, MI.getOperand(2).isKill(), FI, SrcRC,
9828                           RI);
9829   MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI);
9830   MachineMemOperand *MMOLo =
9831       MF.getMachineMemOperand(MPI, MachineMemOperand::MOLoad, 4, Align(8));
9832   MachineMemOperand *MMOHi = MF.getMachineMemOperand(
9833       MPI.getWithOffset(4), MachineMemOperand::MOLoad, 4, Align(8));
9834   BuildMI(*BB, MI, DL, TII.get(RISCV::LW), LoReg)
9835       .addFrameIndex(FI)
9836       .addImm(0)
9837       .addMemOperand(MMOLo);
9838   BuildMI(*BB, MI, DL, TII.get(RISCV::LW), HiReg)
9839       .addFrameIndex(FI)
9840       .addImm(4)
9841       .addMemOperand(MMOHi);
9842   MI.eraseFromParent(); // The pseudo instruction is gone now.
9843   return BB;
9844 }
9845 
9846 static MachineBasicBlock *emitBuildPairF64Pseudo(MachineInstr &MI,
9847                                                  MachineBasicBlock *BB) {
9848   assert(MI.getOpcode() == RISCV::BuildPairF64Pseudo &&
9849          "Unexpected instruction");
9850 
9851   MachineFunction &MF = *BB->getParent();
9852   DebugLoc DL = MI.getDebugLoc();
9853   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
9854   const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo();
9855   Register DstReg = MI.getOperand(0).getReg();
9856   Register LoReg = MI.getOperand(1).getReg();
9857   Register HiReg = MI.getOperand(2).getReg();
9858   const TargetRegisterClass *DstRC = &RISCV::FPR64RegClass;
9859   int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF);
9860 
9861   MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI);
9862   MachineMemOperand *MMOLo =
9863       MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Align(8));
9864   MachineMemOperand *MMOHi = MF.getMachineMemOperand(
9865       MPI.getWithOffset(4), MachineMemOperand::MOStore, 4, Align(8));
9866   BuildMI(*BB, MI, DL, TII.get(RISCV::SW))
9867       .addReg(LoReg, getKillRegState(MI.getOperand(1).isKill()))
9868       .addFrameIndex(FI)
9869       .addImm(0)
9870       .addMemOperand(MMOLo);
9871   BuildMI(*BB, MI, DL, TII.get(RISCV::SW))
9872       .addReg(HiReg, getKillRegState(MI.getOperand(2).isKill()))
9873       .addFrameIndex(FI)
9874       .addImm(4)
9875       .addMemOperand(MMOHi);
9876   TII.loadRegFromStackSlot(*BB, MI, DstReg, FI, DstRC, RI);
9877   MI.eraseFromParent(); // The pseudo instruction is gone now.
9878   return BB;
9879 }
9880 
9881 static bool isSelectPseudo(MachineInstr &MI) {
9882   switch (MI.getOpcode()) {
9883   default:
9884     return false;
9885   case RISCV::Select_GPR_Using_CC_GPR:
9886   case RISCV::Select_FPR16_Using_CC_GPR:
9887   case RISCV::Select_FPR32_Using_CC_GPR:
9888   case RISCV::Select_FPR64_Using_CC_GPR:
9889     return true;
9890   }
9891 }
9892 
9893 static MachineBasicBlock *emitQuietFCMP(MachineInstr &MI, MachineBasicBlock *BB,
9894                                         unsigned RelOpcode, unsigned EqOpcode,
9895                                         const RISCVSubtarget &Subtarget) {
9896   DebugLoc DL = MI.getDebugLoc();
9897   Register DstReg = MI.getOperand(0).getReg();
9898   Register Src1Reg = MI.getOperand(1).getReg();
9899   Register Src2Reg = MI.getOperand(2).getReg();
9900   MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
9901   Register SavedFFlags = MRI.createVirtualRegister(&RISCV::GPRRegClass);
9902   const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo();
9903 
9904   // Save the current FFLAGS.
9905   BuildMI(*BB, MI, DL, TII.get(RISCV::ReadFFLAGS), SavedFFlags);
9906 
9907   auto MIB = BuildMI(*BB, MI, DL, TII.get(RelOpcode), DstReg)
9908                  .addReg(Src1Reg)
9909                  .addReg(Src2Reg);
9910   if (MI.getFlag(MachineInstr::MIFlag::NoFPExcept))
9911     MIB->setFlag(MachineInstr::MIFlag::NoFPExcept);
9912 
9913   // Restore the FFLAGS.
9914   BuildMI(*BB, MI, DL, TII.get(RISCV::WriteFFLAGS))
9915       .addReg(SavedFFlags, RegState::Kill);
9916 
9917   // Issue a dummy FEQ opcode to raise exception for signaling NaNs.
9918   auto MIB2 = BuildMI(*BB, MI, DL, TII.get(EqOpcode), RISCV::X0)
9919                   .addReg(Src1Reg, getKillRegState(MI.getOperand(1).isKill()))
9920                   .addReg(Src2Reg, getKillRegState(MI.getOperand(2).isKill()));
9921   if (MI.getFlag(MachineInstr::MIFlag::NoFPExcept))
9922     MIB2->setFlag(MachineInstr::MIFlag::NoFPExcept);
9923 
9924   // Erase the pseudoinstruction.
9925   MI.eraseFromParent();
9926   return BB;
9927 }
9928 
9929 static MachineBasicBlock *
9930 EmitLoweredCascadedSelect(MachineInstr &First, MachineInstr &Second,
9931                           MachineBasicBlock *ThisMBB,
9932                           const RISCVSubtarget &Subtarget) {
9933   // Select_FPRX_ (rs1, rs2, imm, rs4, (Select_FPRX_ rs1, rs2, imm, rs4, rs5)
9934   // Without this, custom-inserter would have generated:
9935   //
9936   //   A
9937   //   | \
9938   //   |  B
9939   //   | /
9940   //   C
9941   //   | \
9942   //   |  D
9943   //   | /
9944   //   E
9945   //
9946   // A: X = ...; Y = ...
9947   // B: empty
9948   // C: Z = PHI [X, A], [Y, B]
9949   // D: empty
9950   // E: PHI [X, C], [Z, D]
9951   //
9952   // If we lower both Select_FPRX_ in a single step, we can instead generate:
9953   //
9954   //   A
9955   //   | \
9956   //   |  C
9957   //   | /|
9958   //   |/ |
9959   //   |  |
9960   //   |  D
9961   //   | /
9962   //   E
9963   //
9964   // A: X = ...; Y = ...
9965   // D: empty
9966   // E: PHI [X, A], [X, C], [Y, D]
9967 
9968   const RISCVInstrInfo &TII = *Subtarget.getInstrInfo();
9969   const DebugLoc &DL = First.getDebugLoc();
9970   const BasicBlock *LLVM_BB = ThisMBB->getBasicBlock();
9971   MachineFunction *F = ThisMBB->getParent();
9972   MachineBasicBlock *FirstMBB = F->CreateMachineBasicBlock(LLVM_BB);
9973   MachineBasicBlock *SecondMBB = F->CreateMachineBasicBlock(LLVM_BB);
9974   MachineBasicBlock *SinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
9975   MachineFunction::iterator It = ++ThisMBB->getIterator();
9976   F->insert(It, FirstMBB);
9977   F->insert(It, SecondMBB);
9978   F->insert(It, SinkMBB);
9979 
9980   // Transfer the remainder of ThisMBB and its successor edges to SinkMBB.
9981   SinkMBB->splice(SinkMBB->begin(), ThisMBB,
9982                   std::next(MachineBasicBlock::iterator(First)),
9983                   ThisMBB->end());
9984   SinkMBB->transferSuccessorsAndUpdatePHIs(ThisMBB);
9985 
9986   // Fallthrough block for ThisMBB.
9987   ThisMBB->addSuccessor(FirstMBB);
9988   // Fallthrough block for FirstMBB.
9989   FirstMBB->addSuccessor(SecondMBB);
9990   ThisMBB->addSuccessor(SinkMBB);
9991   FirstMBB->addSuccessor(SinkMBB);
9992   // This is fallthrough.
9993   SecondMBB->addSuccessor(SinkMBB);
9994 
9995   auto FirstCC = static_cast<RISCVCC::CondCode>(First.getOperand(3).getImm());
9996   Register FLHS = First.getOperand(1).getReg();
9997   Register FRHS = First.getOperand(2).getReg();
9998   // Insert appropriate branch.
9999   BuildMI(FirstMBB, DL, TII.getBrCond(FirstCC))
10000       .addReg(FLHS)
10001       .addReg(FRHS)
10002       .addMBB(SinkMBB);
10003 
10004   Register SLHS = Second.getOperand(1).getReg();
10005   Register SRHS = Second.getOperand(2).getReg();
10006   Register Op1Reg4 = First.getOperand(4).getReg();
10007   Register Op1Reg5 = First.getOperand(5).getReg();
10008 
10009   auto SecondCC = static_cast<RISCVCC::CondCode>(Second.getOperand(3).getImm());
10010   // Insert appropriate branch.
10011   BuildMI(ThisMBB, DL, TII.getBrCond(SecondCC))
10012       .addReg(SLHS)
10013       .addReg(SRHS)
10014       .addMBB(SinkMBB);
10015 
10016   Register DestReg = Second.getOperand(0).getReg();
10017   Register Op2Reg4 = Second.getOperand(4).getReg();
10018   BuildMI(*SinkMBB, SinkMBB->begin(), DL, TII.get(RISCV::PHI), DestReg)
10019       .addReg(Op2Reg4)
10020       .addMBB(ThisMBB)
10021       .addReg(Op1Reg4)
10022       .addMBB(FirstMBB)
10023       .addReg(Op1Reg5)
10024       .addMBB(SecondMBB);
10025 
10026   // Now remove the Select_FPRX_s.
10027   First.eraseFromParent();
10028   Second.eraseFromParent();
10029   return SinkMBB;
10030 }
10031 
10032 static MachineBasicBlock *emitSelectPseudo(MachineInstr &MI,
10033                                            MachineBasicBlock *BB,
10034                                            const RISCVSubtarget &Subtarget) {
10035   // To "insert" Select_* instructions, we actually have to insert the triangle
10036   // control-flow pattern.  The incoming instructions know the destination vreg
10037   // to set, the condition code register to branch on, the true/false values to
10038   // select between, and the condcode to use to select the appropriate branch.
10039   //
10040   // We produce the following control flow:
10041   //     HeadMBB
10042   //     |  \
10043   //     |  IfFalseMBB
10044   //     | /
10045   //    TailMBB
10046   //
10047   // When we find a sequence of selects we attempt to optimize their emission
10048   // by sharing the control flow. Currently we only handle cases where we have
10049   // multiple selects with the exact same condition (same LHS, RHS and CC).
10050   // The selects may be interleaved with other instructions if the other
10051   // instructions meet some requirements we deem safe:
10052   // - They are debug instructions. Otherwise,
10053   // - They do not have side-effects, do not access memory and their inputs do
10054   //   not depend on the results of the select pseudo-instructions.
10055   // The TrueV/FalseV operands of the selects cannot depend on the result of
10056   // previous selects in the sequence.
10057   // These conditions could be further relaxed. See the X86 target for a
10058   // related approach and more information.
10059   //
10060   // Select_FPRX_ (rs1, rs2, imm, rs4, (Select_FPRX_ rs1, rs2, imm, rs4, rs5))
10061   // is checked here and handled by a separate function -
10062   // EmitLoweredCascadedSelect.
10063   Register LHS = MI.getOperand(1).getReg();
10064   Register RHS = MI.getOperand(2).getReg();
10065   auto CC = static_cast<RISCVCC::CondCode>(MI.getOperand(3).getImm());
10066 
10067   SmallVector<MachineInstr *, 4> SelectDebugValues;
10068   SmallSet<Register, 4> SelectDests;
10069   SelectDests.insert(MI.getOperand(0).getReg());
10070 
10071   MachineInstr *LastSelectPseudo = &MI;
10072   auto Next = next_nodbg(MI.getIterator(), BB->instr_end());
10073   if (MI.getOpcode() != RISCV::Select_GPR_Using_CC_GPR && Next != BB->end() &&
10074       Next->getOpcode() == MI.getOpcode() &&
10075       Next->getOperand(5).getReg() == MI.getOperand(0).getReg() &&
10076       Next->getOperand(5).isKill()) {
10077     return EmitLoweredCascadedSelect(MI, *Next, BB, Subtarget);
10078   }
10079 
10080   for (auto E = BB->end(), SequenceMBBI = MachineBasicBlock::iterator(MI);
10081        SequenceMBBI != E; ++SequenceMBBI) {
10082     if (SequenceMBBI->isDebugInstr())
10083       continue;
10084     if (isSelectPseudo(*SequenceMBBI)) {
10085       if (SequenceMBBI->getOperand(1).getReg() != LHS ||
10086           SequenceMBBI->getOperand(2).getReg() != RHS ||
10087           SequenceMBBI->getOperand(3).getImm() != CC ||
10088           SelectDests.count(SequenceMBBI->getOperand(4).getReg()) ||
10089           SelectDests.count(SequenceMBBI->getOperand(5).getReg()))
10090         break;
10091       LastSelectPseudo = &*SequenceMBBI;
10092       SequenceMBBI->collectDebugValues(SelectDebugValues);
10093       SelectDests.insert(SequenceMBBI->getOperand(0).getReg());
10094       continue;
10095     }
10096     if (SequenceMBBI->hasUnmodeledSideEffects() ||
10097         SequenceMBBI->mayLoadOrStore())
10098       break;
10099     if (llvm::any_of(SequenceMBBI->operands(), [&](MachineOperand &MO) {
10100           return MO.isReg() && MO.isUse() && SelectDests.count(MO.getReg());
10101         }))
10102       break;
10103   }
10104 
10105   const RISCVInstrInfo &TII = *Subtarget.getInstrInfo();
10106   const BasicBlock *LLVM_BB = BB->getBasicBlock();
10107   DebugLoc DL = MI.getDebugLoc();
10108   MachineFunction::iterator I = ++BB->getIterator();
10109 
10110   MachineBasicBlock *HeadMBB = BB;
10111   MachineFunction *F = BB->getParent();
10112   MachineBasicBlock *TailMBB = F->CreateMachineBasicBlock(LLVM_BB);
10113   MachineBasicBlock *IfFalseMBB = F->CreateMachineBasicBlock(LLVM_BB);
10114 
10115   F->insert(I, IfFalseMBB);
10116   F->insert(I, TailMBB);
10117 
10118   // Transfer debug instructions associated with the selects to TailMBB.
10119   for (MachineInstr *DebugInstr : SelectDebugValues) {
10120     TailMBB->push_back(DebugInstr->removeFromParent());
10121   }
10122 
10123   // Move all instructions after the sequence to TailMBB.
10124   TailMBB->splice(TailMBB->end(), HeadMBB,
10125                   std::next(LastSelectPseudo->getIterator()), HeadMBB->end());
10126   // Update machine-CFG edges by transferring all successors of the current
10127   // block to the new block which will contain the Phi nodes for the selects.
10128   TailMBB->transferSuccessorsAndUpdatePHIs(HeadMBB);
10129   // Set the successors for HeadMBB.
10130   HeadMBB->addSuccessor(IfFalseMBB);
10131   HeadMBB->addSuccessor(TailMBB);
10132 
10133   // Insert appropriate branch.
10134   BuildMI(HeadMBB, DL, TII.getBrCond(CC))
10135     .addReg(LHS)
10136     .addReg(RHS)
10137     .addMBB(TailMBB);
10138 
10139   // IfFalseMBB just falls through to TailMBB.
10140   IfFalseMBB->addSuccessor(TailMBB);
10141 
10142   // Create PHIs for all of the select pseudo-instructions.
10143   auto SelectMBBI = MI.getIterator();
10144   auto SelectEnd = std::next(LastSelectPseudo->getIterator());
10145   auto InsertionPoint = TailMBB->begin();
10146   while (SelectMBBI != SelectEnd) {
10147     auto Next = std::next(SelectMBBI);
10148     if (isSelectPseudo(*SelectMBBI)) {
10149       // %Result = phi [ %TrueValue, HeadMBB ], [ %FalseValue, IfFalseMBB ]
10150       BuildMI(*TailMBB, InsertionPoint, SelectMBBI->getDebugLoc(),
10151               TII.get(RISCV::PHI), SelectMBBI->getOperand(0).getReg())
10152           .addReg(SelectMBBI->getOperand(4).getReg())
10153           .addMBB(HeadMBB)
10154           .addReg(SelectMBBI->getOperand(5).getReg())
10155           .addMBB(IfFalseMBB);
10156       SelectMBBI->eraseFromParent();
10157     }
10158     SelectMBBI = Next;
10159   }
10160 
10161   F->getProperties().reset(MachineFunctionProperties::Property::NoPHIs);
10162   return TailMBB;
10163 }
10164 
10165 MachineBasicBlock *
10166 RISCVTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
10167                                                  MachineBasicBlock *BB) const {
10168   switch (MI.getOpcode()) {
10169   default:
10170     llvm_unreachable("Unexpected instr type to insert");
10171   case RISCV::ReadCycleWide:
10172     assert(!Subtarget.is64Bit() &&
10173            "ReadCycleWrite is only to be used on riscv32");
10174     return emitReadCycleWidePseudo(MI, BB);
10175   case RISCV::Select_GPR_Using_CC_GPR:
10176   case RISCV::Select_FPR16_Using_CC_GPR:
10177   case RISCV::Select_FPR32_Using_CC_GPR:
10178   case RISCV::Select_FPR64_Using_CC_GPR:
10179     return emitSelectPseudo(MI, BB, Subtarget);
10180   case RISCV::BuildPairF64Pseudo:
10181     return emitBuildPairF64Pseudo(MI, BB);
10182   case RISCV::SplitF64Pseudo:
10183     return emitSplitF64Pseudo(MI, BB);
10184   case RISCV::PseudoQuietFLE_H:
10185     return emitQuietFCMP(MI, BB, RISCV::FLE_H, RISCV::FEQ_H, Subtarget);
10186   case RISCV::PseudoQuietFLT_H:
10187     return emitQuietFCMP(MI, BB, RISCV::FLT_H, RISCV::FEQ_H, Subtarget);
10188   case RISCV::PseudoQuietFLE_S:
10189     return emitQuietFCMP(MI, BB, RISCV::FLE_S, RISCV::FEQ_S, Subtarget);
10190   case RISCV::PseudoQuietFLT_S:
10191     return emitQuietFCMP(MI, BB, RISCV::FLT_S, RISCV::FEQ_S, Subtarget);
10192   case RISCV::PseudoQuietFLE_D:
10193     return emitQuietFCMP(MI, BB, RISCV::FLE_D, RISCV::FEQ_D, Subtarget);
10194   case RISCV::PseudoQuietFLT_D:
10195     return emitQuietFCMP(MI, BB, RISCV::FLT_D, RISCV::FEQ_D, Subtarget);
10196   }
10197 }
10198 
10199 void RISCVTargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI,
10200                                                         SDNode *Node) const {
10201   // Add FRM dependency to any instructions with dynamic rounding mode.
10202   unsigned Opc = MI.getOpcode();
10203   auto Idx = RISCV::getNamedOperandIdx(Opc, RISCV::OpName::frm);
10204   if (Idx < 0)
10205     return;
10206   if (MI.getOperand(Idx).getImm() != RISCVFPRndMode::DYN)
10207     return;
10208   // If the instruction already reads FRM, don't add another read.
10209   if (MI.readsRegister(RISCV::FRM))
10210     return;
10211   MI.addOperand(
10212       MachineOperand::CreateReg(RISCV::FRM, /*isDef*/ false, /*isImp*/ true));
10213 }
10214 
10215 // Calling Convention Implementation.
10216 // The expectations for frontend ABI lowering vary from target to target.
10217 // Ideally, an LLVM frontend would be able to avoid worrying about many ABI
10218 // details, but this is a longer term goal. For now, we simply try to keep the
10219 // role of the frontend as simple and well-defined as possible. The rules can
10220 // be summarised as:
10221 // * Never split up large scalar arguments. We handle them here.
10222 // * If a hardfloat calling convention is being used, and the struct may be
10223 // passed in a pair of registers (fp+fp, int+fp), and both registers are
10224 // available, then pass as two separate arguments. If either the GPRs or FPRs
10225 // are exhausted, then pass according to the rule below.
10226 // * If a struct could never be passed in registers or directly in a stack
10227 // slot (as it is larger than 2*XLEN and the floating point rules don't
10228 // apply), then pass it using a pointer with the byval attribute.
10229 // * If a struct is less than 2*XLEN, then coerce to either a two-element
10230 // word-sized array or a 2*XLEN scalar (depending on alignment).
10231 // * The frontend can determine whether a struct is returned by reference or
10232 // not based on its size and fields. If it will be returned by reference, the
10233 // frontend must modify the prototype so a pointer with the sret annotation is
10234 // passed as the first argument. This is not necessary for large scalar
10235 // returns.
10236 // * Struct return values and varargs should be coerced to structs containing
10237 // register-size fields in the same situations they would be for fixed
10238 // arguments.
10239 
10240 static const MCPhysReg ArgGPRs[] = {
10241   RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13,
10242   RISCV::X14, RISCV::X15, RISCV::X16, RISCV::X17
10243 };
10244 static const MCPhysReg ArgFPR16s[] = {
10245   RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H,
10246   RISCV::F14_H, RISCV::F15_H, RISCV::F16_H, RISCV::F17_H
10247 };
10248 static const MCPhysReg ArgFPR32s[] = {
10249   RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F,
10250   RISCV::F14_F, RISCV::F15_F, RISCV::F16_F, RISCV::F17_F
10251 };
10252 static const MCPhysReg ArgFPR64s[] = {
10253   RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D,
10254   RISCV::F14_D, RISCV::F15_D, RISCV::F16_D, RISCV::F17_D
10255 };
10256 // This is an interim calling convention and it may be changed in the future.
10257 static const MCPhysReg ArgVRs[] = {
10258     RISCV::V8,  RISCV::V9,  RISCV::V10, RISCV::V11, RISCV::V12, RISCV::V13,
10259     RISCV::V14, RISCV::V15, RISCV::V16, RISCV::V17, RISCV::V18, RISCV::V19,
10260     RISCV::V20, RISCV::V21, RISCV::V22, RISCV::V23};
10261 static const MCPhysReg ArgVRM2s[] = {RISCV::V8M2,  RISCV::V10M2, RISCV::V12M2,
10262                                      RISCV::V14M2, RISCV::V16M2, RISCV::V18M2,
10263                                      RISCV::V20M2, RISCV::V22M2};
10264 static const MCPhysReg ArgVRM4s[] = {RISCV::V8M4, RISCV::V12M4, RISCV::V16M4,
10265                                      RISCV::V20M4};
10266 static const MCPhysReg ArgVRM8s[] = {RISCV::V8M8, RISCV::V16M8};
10267 
10268 // Pass a 2*XLEN argument that has been split into two XLEN values through
10269 // registers or the stack as necessary.
10270 static bool CC_RISCVAssign2XLen(unsigned XLen, CCState &State, CCValAssign VA1,
10271                                 ISD::ArgFlagsTy ArgFlags1, unsigned ValNo2,
10272                                 MVT ValVT2, MVT LocVT2,
10273                                 ISD::ArgFlagsTy ArgFlags2) {
10274   unsigned XLenInBytes = XLen / 8;
10275   if (Register Reg = State.AllocateReg(ArgGPRs)) {
10276     // At least one half can be passed via register.
10277     State.addLoc(CCValAssign::getReg(VA1.getValNo(), VA1.getValVT(), Reg,
10278                                      VA1.getLocVT(), CCValAssign::Full));
10279   } else {
10280     // Both halves must be passed on the stack, with proper alignment.
10281     Align StackAlign =
10282         std::max(Align(XLenInBytes), ArgFlags1.getNonZeroOrigAlign());
10283     State.addLoc(
10284         CCValAssign::getMem(VA1.getValNo(), VA1.getValVT(),
10285                             State.AllocateStack(XLenInBytes, StackAlign),
10286                             VA1.getLocVT(), CCValAssign::Full));
10287     State.addLoc(CCValAssign::getMem(
10288         ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)),
10289         LocVT2, CCValAssign::Full));
10290     return false;
10291   }
10292 
10293   if (Register Reg = State.AllocateReg(ArgGPRs)) {
10294     // The second half can also be passed via register.
10295     State.addLoc(
10296         CCValAssign::getReg(ValNo2, ValVT2, Reg, LocVT2, CCValAssign::Full));
10297   } else {
10298     // The second half is passed via the stack, without additional alignment.
10299     State.addLoc(CCValAssign::getMem(
10300         ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)),
10301         LocVT2, CCValAssign::Full));
10302   }
10303 
10304   return false;
10305 }
10306 
10307 static unsigned allocateRVVReg(MVT ValVT, unsigned ValNo,
10308                                Optional<unsigned> FirstMaskArgument,
10309                                CCState &State, const RISCVTargetLowering &TLI) {
10310   const TargetRegisterClass *RC = TLI.getRegClassFor(ValVT);
10311   if (RC == &RISCV::VRRegClass) {
10312     // Assign the first mask argument to V0.
10313     // This is an interim calling convention and it may be changed in the
10314     // future.
10315     if (FirstMaskArgument && ValNo == *FirstMaskArgument)
10316       return State.AllocateReg(RISCV::V0);
10317     return State.AllocateReg(ArgVRs);
10318   }
10319   if (RC == &RISCV::VRM2RegClass)
10320     return State.AllocateReg(ArgVRM2s);
10321   if (RC == &RISCV::VRM4RegClass)
10322     return State.AllocateReg(ArgVRM4s);
10323   if (RC == &RISCV::VRM8RegClass)
10324     return State.AllocateReg(ArgVRM8s);
10325   llvm_unreachable("Unhandled register class for ValueType");
10326 }
10327 
10328 // Implements the RISC-V calling convention. Returns true upon failure.
10329 static bool CC_RISCV(const DataLayout &DL, RISCVABI::ABI ABI, unsigned ValNo,
10330                      MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo,
10331                      ISD::ArgFlagsTy ArgFlags, CCState &State, bool IsFixed,
10332                      bool IsRet, Type *OrigTy, const RISCVTargetLowering &TLI,
10333                      Optional<unsigned> FirstMaskArgument) {
10334   unsigned XLen = DL.getLargestLegalIntTypeSizeInBits();
10335   assert(XLen == 32 || XLen == 64);
10336   MVT XLenVT = XLen == 32 ? MVT::i32 : MVT::i64;
10337 
10338   // Any return value split in to more than two values can't be returned
10339   // directly. Vectors are returned via the available vector registers.
10340   if (!LocVT.isVector() && IsRet && ValNo > 1)
10341     return true;
10342 
10343   // UseGPRForF16_F32 if targeting one of the soft-float ABIs, if passing a
10344   // variadic argument, or if no F16/F32 argument registers are available.
10345   bool UseGPRForF16_F32 = true;
10346   // UseGPRForF64 if targeting soft-float ABIs or an FLEN=32 ABI, if passing a
10347   // variadic argument, or if no F64 argument registers are available.
10348   bool UseGPRForF64 = true;
10349 
10350   switch (ABI) {
10351   default:
10352     llvm_unreachable("Unexpected ABI");
10353   case RISCVABI::ABI_ILP32:
10354   case RISCVABI::ABI_LP64:
10355     break;
10356   case RISCVABI::ABI_ILP32F:
10357   case RISCVABI::ABI_LP64F:
10358     UseGPRForF16_F32 = !IsFixed;
10359     break;
10360   case RISCVABI::ABI_ILP32D:
10361   case RISCVABI::ABI_LP64D:
10362     UseGPRForF16_F32 = !IsFixed;
10363     UseGPRForF64 = !IsFixed;
10364     break;
10365   }
10366 
10367   // FPR16, FPR32, and FPR64 alias each other.
10368   if (State.getFirstUnallocated(ArgFPR32s) == array_lengthof(ArgFPR32s)) {
10369     UseGPRForF16_F32 = true;
10370     UseGPRForF64 = true;
10371   }
10372 
10373   // From this point on, rely on UseGPRForF16_F32, UseGPRForF64 and
10374   // similar local variables rather than directly checking against the target
10375   // ABI.
10376 
10377   if (UseGPRForF16_F32 && (ValVT == MVT::f16 || ValVT == MVT::f32)) {
10378     LocVT = XLenVT;
10379     LocInfo = CCValAssign::BCvt;
10380   } else if (UseGPRForF64 && XLen == 64 && ValVT == MVT::f64) {
10381     LocVT = MVT::i64;
10382     LocInfo = CCValAssign::BCvt;
10383   }
10384 
10385   // If this is a variadic argument, the RISC-V calling convention requires
10386   // that it is assigned an 'even' or 'aligned' register if it has 8-byte
10387   // alignment (RV32) or 16-byte alignment (RV64). An aligned register should
10388   // be used regardless of whether the original argument was split during
10389   // legalisation or not. The argument will not be passed by registers if the
10390   // original type is larger than 2*XLEN, so the register alignment rule does
10391   // not apply.
10392   unsigned TwoXLenInBytes = (2 * XLen) / 8;
10393   if (!IsFixed && ArgFlags.getNonZeroOrigAlign() == TwoXLenInBytes &&
10394       DL.getTypeAllocSize(OrigTy) == TwoXLenInBytes) {
10395     unsigned RegIdx = State.getFirstUnallocated(ArgGPRs);
10396     // Skip 'odd' register if necessary.
10397     if (RegIdx != array_lengthof(ArgGPRs) && RegIdx % 2 == 1)
10398       State.AllocateReg(ArgGPRs);
10399   }
10400 
10401   SmallVectorImpl<CCValAssign> &PendingLocs = State.getPendingLocs();
10402   SmallVectorImpl<ISD::ArgFlagsTy> &PendingArgFlags =
10403       State.getPendingArgFlags();
10404 
10405   assert(PendingLocs.size() == PendingArgFlags.size() &&
10406          "PendingLocs and PendingArgFlags out of sync");
10407 
10408   // Handle passing f64 on RV32D with a soft float ABI or when floating point
10409   // registers are exhausted.
10410   if (UseGPRForF64 && XLen == 32 && ValVT == MVT::f64) {
10411     assert(!ArgFlags.isSplit() && PendingLocs.empty() &&
10412            "Can't lower f64 if it is split");
10413     // Depending on available argument GPRS, f64 may be passed in a pair of
10414     // GPRs, split between a GPR and the stack, or passed completely on the
10415     // stack. LowerCall/LowerFormalArguments/LowerReturn must recognise these
10416     // cases.
10417     Register Reg = State.AllocateReg(ArgGPRs);
10418     LocVT = MVT::i32;
10419     if (!Reg) {
10420       unsigned StackOffset = State.AllocateStack(8, Align(8));
10421       State.addLoc(
10422           CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
10423       return false;
10424     }
10425     if (!State.AllocateReg(ArgGPRs))
10426       State.AllocateStack(4, Align(4));
10427     State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
10428     return false;
10429   }
10430 
10431   // Fixed-length vectors are located in the corresponding scalable-vector
10432   // container types.
10433   if (ValVT.isFixedLengthVector())
10434     LocVT = TLI.getContainerForFixedLengthVector(LocVT);
10435 
10436   // Split arguments might be passed indirectly, so keep track of the pending
10437   // values. Split vectors are passed via a mix of registers and indirectly, so
10438   // treat them as we would any other argument.
10439   if (ValVT.isScalarInteger() && (ArgFlags.isSplit() || !PendingLocs.empty())) {
10440     LocVT = XLenVT;
10441     LocInfo = CCValAssign::Indirect;
10442     PendingLocs.push_back(
10443         CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo));
10444     PendingArgFlags.push_back(ArgFlags);
10445     if (!ArgFlags.isSplitEnd()) {
10446       return false;
10447     }
10448   }
10449 
10450   // If the split argument only had two elements, it should be passed directly
10451   // in registers or on the stack.
10452   if (ValVT.isScalarInteger() && ArgFlags.isSplitEnd() &&
10453       PendingLocs.size() <= 2) {
10454     assert(PendingLocs.size() == 2 && "Unexpected PendingLocs.size()");
10455     // Apply the normal calling convention rules to the first half of the
10456     // split argument.
10457     CCValAssign VA = PendingLocs[0];
10458     ISD::ArgFlagsTy AF = PendingArgFlags[0];
10459     PendingLocs.clear();
10460     PendingArgFlags.clear();
10461     return CC_RISCVAssign2XLen(XLen, State, VA, AF, ValNo, ValVT, LocVT,
10462                                ArgFlags);
10463   }
10464 
10465   // Allocate to a register if possible, or else a stack slot.
10466   Register Reg;
10467   unsigned StoreSizeBytes = XLen / 8;
10468   Align StackAlign = Align(XLen / 8);
10469 
10470   if (ValVT == MVT::f16 && !UseGPRForF16_F32)
10471     Reg = State.AllocateReg(ArgFPR16s);
10472   else if (ValVT == MVT::f32 && !UseGPRForF16_F32)
10473     Reg = State.AllocateReg(ArgFPR32s);
10474   else if (ValVT == MVT::f64 && !UseGPRForF64)
10475     Reg = State.AllocateReg(ArgFPR64s);
10476   else if (ValVT.isVector()) {
10477     Reg = allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI);
10478     if (!Reg) {
10479       // For return values, the vector must be passed fully via registers or
10480       // via the stack.
10481       // FIXME: The proposed vector ABI only mandates v8-v15 for return values,
10482       // but we're using all of them.
10483       if (IsRet)
10484         return true;
10485       // Try using a GPR to pass the address
10486       if ((Reg = State.AllocateReg(ArgGPRs))) {
10487         LocVT = XLenVT;
10488         LocInfo = CCValAssign::Indirect;
10489       } else if (ValVT.isScalableVector()) {
10490         LocVT = XLenVT;
10491         LocInfo = CCValAssign::Indirect;
10492       } else {
10493         // Pass fixed-length vectors on the stack.
10494         LocVT = ValVT;
10495         StoreSizeBytes = ValVT.getStoreSize();
10496         // Align vectors to their element sizes, being careful for vXi1
10497         // vectors.
10498         StackAlign = MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne();
10499       }
10500     }
10501   } else {
10502     Reg = State.AllocateReg(ArgGPRs);
10503   }
10504 
10505   unsigned StackOffset =
10506       Reg ? 0 : State.AllocateStack(StoreSizeBytes, StackAlign);
10507 
10508   // If we reach this point and PendingLocs is non-empty, we must be at the
10509   // end of a split argument that must be passed indirectly.
10510   if (!PendingLocs.empty()) {
10511     assert(ArgFlags.isSplitEnd() && "Expected ArgFlags.isSplitEnd()");
10512     assert(PendingLocs.size() > 2 && "Unexpected PendingLocs.size()");
10513 
10514     for (auto &It : PendingLocs) {
10515       if (Reg)
10516         It.convertToReg(Reg);
10517       else
10518         It.convertToMem(StackOffset);
10519       State.addLoc(It);
10520     }
10521     PendingLocs.clear();
10522     PendingArgFlags.clear();
10523     return false;
10524   }
10525 
10526   assert((!UseGPRForF16_F32 || !UseGPRForF64 || LocVT == XLenVT ||
10527           (TLI.getSubtarget().hasVInstructions() && ValVT.isVector())) &&
10528          "Expected an XLenVT or vector types at this stage");
10529 
10530   if (Reg) {
10531     State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
10532     return false;
10533   }
10534 
10535   // When a floating-point value is passed on the stack, no bit-conversion is
10536   // needed.
10537   if (ValVT.isFloatingPoint()) {
10538     LocVT = ValVT;
10539     LocInfo = CCValAssign::Full;
10540   }
10541   State.addLoc(CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
10542   return false;
10543 }
10544 
10545 template <typename ArgTy>
10546 static Optional<unsigned> preAssignMask(const ArgTy &Args) {
10547   for (const auto &ArgIdx : enumerate(Args)) {
10548     MVT ArgVT = ArgIdx.value().VT;
10549     if (ArgVT.isVector() && ArgVT.getVectorElementType() == MVT::i1)
10550       return ArgIdx.index();
10551   }
10552   return None;
10553 }
10554 
10555 void RISCVTargetLowering::analyzeInputArgs(
10556     MachineFunction &MF, CCState &CCInfo,
10557     const SmallVectorImpl<ISD::InputArg> &Ins, bool IsRet,
10558     RISCVCCAssignFn Fn) const {
10559   unsigned NumArgs = Ins.size();
10560   FunctionType *FType = MF.getFunction().getFunctionType();
10561 
10562   Optional<unsigned> FirstMaskArgument;
10563   if (Subtarget.hasVInstructions())
10564     FirstMaskArgument = preAssignMask(Ins);
10565 
10566   for (unsigned i = 0; i != NumArgs; ++i) {
10567     MVT ArgVT = Ins[i].VT;
10568     ISD::ArgFlagsTy ArgFlags = Ins[i].Flags;
10569 
10570     Type *ArgTy = nullptr;
10571     if (IsRet)
10572       ArgTy = FType->getReturnType();
10573     else if (Ins[i].isOrigArg())
10574       ArgTy = FType->getParamType(Ins[i].getOrigArgIndex());
10575 
10576     RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
10577     if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full,
10578            ArgFlags, CCInfo, /*IsFixed=*/true, IsRet, ArgTy, *this,
10579            FirstMaskArgument)) {
10580       LLVM_DEBUG(dbgs() << "InputArg #" << i << " has unhandled type "
10581                         << EVT(ArgVT).getEVTString() << '\n');
10582       llvm_unreachable(nullptr);
10583     }
10584   }
10585 }
10586 
10587 void RISCVTargetLowering::analyzeOutputArgs(
10588     MachineFunction &MF, CCState &CCInfo,
10589     const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsRet,
10590     CallLoweringInfo *CLI, RISCVCCAssignFn Fn) const {
10591   unsigned NumArgs = Outs.size();
10592 
10593   Optional<unsigned> FirstMaskArgument;
10594   if (Subtarget.hasVInstructions())
10595     FirstMaskArgument = preAssignMask(Outs);
10596 
10597   for (unsigned i = 0; i != NumArgs; i++) {
10598     MVT ArgVT = Outs[i].VT;
10599     ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
10600     Type *OrigTy = CLI ? CLI->getArgs()[Outs[i].OrigArgIndex].Ty : nullptr;
10601 
10602     RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
10603     if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full,
10604            ArgFlags, CCInfo, Outs[i].IsFixed, IsRet, OrigTy, *this,
10605            FirstMaskArgument)) {
10606       LLVM_DEBUG(dbgs() << "OutputArg #" << i << " has unhandled type "
10607                         << EVT(ArgVT).getEVTString() << "\n");
10608       llvm_unreachable(nullptr);
10609     }
10610   }
10611 }
10612 
10613 // Convert Val to a ValVT. Should not be called for CCValAssign::Indirect
10614 // values.
10615 static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDValue Val,
10616                                    const CCValAssign &VA, const SDLoc &DL,
10617                                    const RISCVSubtarget &Subtarget) {
10618   switch (VA.getLocInfo()) {
10619   default:
10620     llvm_unreachable("Unexpected CCValAssign::LocInfo");
10621   case CCValAssign::Full:
10622     if (VA.getValVT().isFixedLengthVector() && VA.getLocVT().isScalableVector())
10623       Val = convertFromScalableVector(VA.getValVT(), Val, DAG, Subtarget);
10624     break;
10625   case CCValAssign::BCvt:
10626     if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16)
10627       Val = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, Val);
10628     else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32)
10629       Val = DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, Val);
10630     else
10631       Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val);
10632     break;
10633   }
10634   return Val;
10635 }
10636 
10637 // The caller is responsible for loading the full value if the argument is
10638 // passed with CCValAssign::Indirect.
10639 static SDValue unpackFromRegLoc(SelectionDAG &DAG, SDValue Chain,
10640                                 const CCValAssign &VA, const SDLoc &DL,
10641                                 const RISCVTargetLowering &TLI) {
10642   MachineFunction &MF = DAG.getMachineFunction();
10643   MachineRegisterInfo &RegInfo = MF.getRegInfo();
10644   EVT LocVT = VA.getLocVT();
10645   SDValue Val;
10646   const TargetRegisterClass *RC = TLI.getRegClassFor(LocVT.getSimpleVT());
10647   Register VReg = RegInfo.createVirtualRegister(RC);
10648   RegInfo.addLiveIn(VA.getLocReg(), VReg);
10649   Val = DAG.getCopyFromReg(Chain, DL, VReg, LocVT);
10650 
10651   if (VA.getLocInfo() == CCValAssign::Indirect)
10652     return Val;
10653 
10654   return convertLocVTToValVT(DAG, Val, VA, DL, TLI.getSubtarget());
10655 }
10656 
10657 static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDValue Val,
10658                                    const CCValAssign &VA, const SDLoc &DL,
10659                                    const RISCVSubtarget &Subtarget) {
10660   EVT LocVT = VA.getLocVT();
10661 
10662   switch (VA.getLocInfo()) {
10663   default:
10664     llvm_unreachable("Unexpected CCValAssign::LocInfo");
10665   case CCValAssign::Full:
10666     if (VA.getValVT().isFixedLengthVector() && LocVT.isScalableVector())
10667       Val = convertToScalableVector(LocVT, Val, DAG, Subtarget);
10668     break;
10669   case CCValAssign::BCvt:
10670     if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16)
10671       Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, VA.getLocVT(), Val);
10672     else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32)
10673       Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Val);
10674     else
10675       Val = DAG.getNode(ISD::BITCAST, DL, LocVT, Val);
10676     break;
10677   }
10678   return Val;
10679 }
10680 
10681 // The caller is responsible for loading the full value if the argument is
10682 // passed with CCValAssign::Indirect.
10683 static SDValue unpackFromMemLoc(SelectionDAG &DAG, SDValue Chain,
10684                                 const CCValAssign &VA, const SDLoc &DL) {
10685   MachineFunction &MF = DAG.getMachineFunction();
10686   MachineFrameInfo &MFI = MF.getFrameInfo();
10687   EVT LocVT = VA.getLocVT();
10688   EVT ValVT = VA.getValVT();
10689   EVT PtrVT = MVT::getIntegerVT(DAG.getDataLayout().getPointerSizeInBits(0));
10690   if (ValVT.isScalableVector()) {
10691     // When the value is a scalable vector, we save the pointer which points to
10692     // the scalable vector value in the stack. The ValVT will be the pointer
10693     // type, instead of the scalable vector type.
10694     ValVT = LocVT;
10695   }
10696   int FI = MFI.CreateFixedObject(ValVT.getStoreSize(), VA.getLocMemOffset(),
10697                                  /*IsImmutable=*/true);
10698   SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
10699   SDValue Val;
10700 
10701   ISD::LoadExtType ExtType;
10702   switch (VA.getLocInfo()) {
10703   default:
10704     llvm_unreachable("Unexpected CCValAssign::LocInfo");
10705   case CCValAssign::Full:
10706   case CCValAssign::Indirect:
10707   case CCValAssign::BCvt:
10708     ExtType = ISD::NON_EXTLOAD;
10709     break;
10710   }
10711   Val = DAG.getExtLoad(
10712       ExtType, DL, LocVT, Chain, FIN,
10713       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), ValVT);
10714   return Val;
10715 }
10716 
10717 static SDValue unpackF64OnRV32DSoftABI(SelectionDAG &DAG, SDValue Chain,
10718                                        const CCValAssign &VA, const SDLoc &DL) {
10719   assert(VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64 &&
10720          "Unexpected VA");
10721   MachineFunction &MF = DAG.getMachineFunction();
10722   MachineFrameInfo &MFI = MF.getFrameInfo();
10723   MachineRegisterInfo &RegInfo = MF.getRegInfo();
10724 
10725   if (VA.isMemLoc()) {
10726     // f64 is passed on the stack.
10727     int FI =
10728         MFI.CreateFixedObject(8, VA.getLocMemOffset(), /*IsImmutable=*/true);
10729     SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
10730     return DAG.getLoad(MVT::f64, DL, Chain, FIN,
10731                        MachinePointerInfo::getFixedStack(MF, FI));
10732   }
10733 
10734   assert(VA.isRegLoc() && "Expected register VA assignment");
10735 
10736   Register LoVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
10737   RegInfo.addLiveIn(VA.getLocReg(), LoVReg);
10738   SDValue Lo = DAG.getCopyFromReg(Chain, DL, LoVReg, MVT::i32);
10739   SDValue Hi;
10740   if (VA.getLocReg() == RISCV::X17) {
10741     // Second half of f64 is passed on the stack.
10742     int FI = MFI.CreateFixedObject(4, 0, /*IsImmutable=*/true);
10743     SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
10744     Hi = DAG.getLoad(MVT::i32, DL, Chain, FIN,
10745                      MachinePointerInfo::getFixedStack(MF, FI));
10746   } else {
10747     // Second half of f64 is passed in another GPR.
10748     Register HiVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
10749     RegInfo.addLiveIn(VA.getLocReg() + 1, HiVReg);
10750     Hi = DAG.getCopyFromReg(Chain, DL, HiVReg, MVT::i32);
10751   }
10752   return DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, Lo, Hi);
10753 }
10754 
10755 // FastCC has less than 1% performance improvement for some particular
10756 // benchmark. But theoretically, it may has benenfit for some cases.
10757 static bool CC_RISCV_FastCC(const DataLayout &DL, RISCVABI::ABI ABI,
10758                             unsigned ValNo, MVT ValVT, MVT LocVT,
10759                             CCValAssign::LocInfo LocInfo,
10760                             ISD::ArgFlagsTy ArgFlags, CCState &State,
10761                             bool IsFixed, bool IsRet, Type *OrigTy,
10762                             const RISCVTargetLowering &TLI,
10763                             Optional<unsigned> FirstMaskArgument) {
10764 
10765   // X5 and X6 might be used for save-restore libcall.
10766   static const MCPhysReg GPRList[] = {
10767       RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, RISCV::X14,
10768       RISCV::X15, RISCV::X16, RISCV::X17, RISCV::X7,  RISCV::X28,
10769       RISCV::X29, RISCV::X30, RISCV::X31};
10770 
10771   if (LocVT == MVT::i32 || LocVT == MVT::i64) {
10772     if (unsigned Reg = State.AllocateReg(GPRList)) {
10773       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
10774       return false;
10775     }
10776   }
10777 
10778   if (LocVT == MVT::f16) {
10779     static const MCPhysReg FPR16List[] = {
10780         RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, RISCV::F14_H,
10781         RISCV::F15_H, RISCV::F16_H, RISCV::F17_H, RISCV::F0_H,  RISCV::F1_H,
10782         RISCV::F2_H,  RISCV::F3_H,  RISCV::F4_H,  RISCV::F5_H,  RISCV::F6_H,
10783         RISCV::F7_H,  RISCV::F28_H, RISCV::F29_H, RISCV::F30_H, RISCV::F31_H};
10784     if (unsigned Reg = State.AllocateReg(FPR16List)) {
10785       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
10786       return false;
10787     }
10788   }
10789 
10790   if (LocVT == MVT::f32) {
10791     static const MCPhysReg FPR32List[] = {
10792         RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, RISCV::F14_F,
10793         RISCV::F15_F, RISCV::F16_F, RISCV::F17_F, RISCV::F0_F,  RISCV::F1_F,
10794         RISCV::F2_F,  RISCV::F3_F,  RISCV::F4_F,  RISCV::F5_F,  RISCV::F6_F,
10795         RISCV::F7_F,  RISCV::F28_F, RISCV::F29_F, RISCV::F30_F, RISCV::F31_F};
10796     if (unsigned Reg = State.AllocateReg(FPR32List)) {
10797       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
10798       return false;
10799     }
10800   }
10801 
10802   if (LocVT == MVT::f64) {
10803     static const MCPhysReg FPR64List[] = {
10804         RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, RISCV::F14_D,
10805         RISCV::F15_D, RISCV::F16_D, RISCV::F17_D, RISCV::F0_D,  RISCV::F1_D,
10806         RISCV::F2_D,  RISCV::F3_D,  RISCV::F4_D,  RISCV::F5_D,  RISCV::F6_D,
10807         RISCV::F7_D,  RISCV::F28_D, RISCV::F29_D, RISCV::F30_D, RISCV::F31_D};
10808     if (unsigned Reg = State.AllocateReg(FPR64List)) {
10809       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
10810       return false;
10811     }
10812   }
10813 
10814   if (LocVT == MVT::i32 || LocVT == MVT::f32) {
10815     unsigned Offset4 = State.AllocateStack(4, Align(4));
10816     State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset4, LocVT, LocInfo));
10817     return false;
10818   }
10819 
10820   if (LocVT == MVT::i64 || LocVT == MVT::f64) {
10821     unsigned Offset5 = State.AllocateStack(8, Align(8));
10822     State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset5, LocVT, LocInfo));
10823     return false;
10824   }
10825 
10826   if (LocVT.isVector()) {
10827     if (unsigned Reg =
10828             allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI)) {
10829       // Fixed-length vectors are located in the corresponding scalable-vector
10830       // container types.
10831       if (ValVT.isFixedLengthVector())
10832         LocVT = TLI.getContainerForFixedLengthVector(LocVT);
10833       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
10834     } else {
10835       // Try and pass the address via a "fast" GPR.
10836       if (unsigned GPRReg = State.AllocateReg(GPRList)) {
10837         LocInfo = CCValAssign::Indirect;
10838         LocVT = TLI.getSubtarget().getXLenVT();
10839         State.addLoc(CCValAssign::getReg(ValNo, ValVT, GPRReg, LocVT, LocInfo));
10840       } else if (ValVT.isFixedLengthVector()) {
10841         auto StackAlign =
10842             MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne();
10843         unsigned StackOffset =
10844             State.AllocateStack(ValVT.getStoreSize(), StackAlign);
10845         State.addLoc(
10846             CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
10847       } else {
10848         // Can't pass scalable vectors on the stack.
10849         return true;
10850       }
10851     }
10852 
10853     return false;
10854   }
10855 
10856   return true; // CC didn't match.
10857 }
10858 
10859 static bool CC_RISCV_GHC(unsigned ValNo, MVT ValVT, MVT LocVT,
10860                          CCValAssign::LocInfo LocInfo,
10861                          ISD::ArgFlagsTy ArgFlags, CCState &State) {
10862 
10863   if (LocVT == MVT::i32 || LocVT == MVT::i64) {
10864     // Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, R6, R7, SpLim
10865     //                        s1    s2  s3  s4  s5  s6  s7  s8  s9  s10 s11
10866     static const MCPhysReg GPRList[] = {
10867         RISCV::X9, RISCV::X18, RISCV::X19, RISCV::X20, RISCV::X21, RISCV::X22,
10868         RISCV::X23, RISCV::X24, RISCV::X25, RISCV::X26, RISCV::X27};
10869     if (unsigned Reg = State.AllocateReg(GPRList)) {
10870       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
10871       return false;
10872     }
10873   }
10874 
10875   if (LocVT == MVT::f32) {
10876     // Pass in STG registers: F1, ..., F6
10877     //                        fs0 ... fs5
10878     static const MCPhysReg FPR32List[] = {RISCV::F8_F, RISCV::F9_F,
10879                                           RISCV::F18_F, RISCV::F19_F,
10880                                           RISCV::F20_F, RISCV::F21_F};
10881     if (unsigned Reg = State.AllocateReg(FPR32List)) {
10882       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
10883       return false;
10884     }
10885   }
10886 
10887   if (LocVT == MVT::f64) {
10888     // Pass in STG registers: D1, ..., D6
10889     //                        fs6 ... fs11
10890     static const MCPhysReg FPR64List[] = {RISCV::F22_D, RISCV::F23_D,
10891                                           RISCV::F24_D, RISCV::F25_D,
10892                                           RISCV::F26_D, RISCV::F27_D};
10893     if (unsigned Reg = State.AllocateReg(FPR64List)) {
10894       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
10895       return false;
10896     }
10897   }
10898 
10899   report_fatal_error("No registers left in GHC calling convention");
10900   return true;
10901 }
10902 
10903 // Transform physical registers into virtual registers.
10904 SDValue RISCVTargetLowering::LowerFormalArguments(
10905     SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
10906     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
10907     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
10908 
10909   MachineFunction &MF = DAG.getMachineFunction();
10910 
10911   switch (CallConv) {
10912   default:
10913     report_fatal_error("Unsupported calling convention");
10914   case CallingConv::C:
10915   case CallingConv::Fast:
10916     break;
10917   case CallingConv::GHC:
10918     if (!MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtF] ||
10919         !MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtD])
10920       report_fatal_error(
10921         "GHC calling convention requires the F and D instruction set extensions");
10922   }
10923 
10924   const Function &Func = MF.getFunction();
10925   if (Func.hasFnAttribute("interrupt")) {
10926     if (!Func.arg_empty())
10927       report_fatal_error(
10928         "Functions with the interrupt attribute cannot have arguments!");
10929 
10930     StringRef Kind =
10931       MF.getFunction().getFnAttribute("interrupt").getValueAsString();
10932 
10933     if (!(Kind == "user" || Kind == "supervisor" || Kind == "machine"))
10934       report_fatal_error(
10935         "Function interrupt attribute argument not supported!");
10936   }
10937 
10938   EVT PtrVT = getPointerTy(DAG.getDataLayout());
10939   MVT XLenVT = Subtarget.getXLenVT();
10940   unsigned XLenInBytes = Subtarget.getXLen() / 8;
10941   // Used with vargs to acumulate store chains.
10942   std::vector<SDValue> OutChains;
10943 
10944   // Assign locations to all of the incoming arguments.
10945   SmallVector<CCValAssign, 16> ArgLocs;
10946   CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
10947 
10948   if (CallConv == CallingConv::GHC)
10949     CCInfo.AnalyzeFormalArguments(Ins, CC_RISCV_GHC);
10950   else
10951     analyzeInputArgs(MF, CCInfo, Ins, /*IsRet=*/false,
10952                      CallConv == CallingConv::Fast ? CC_RISCV_FastCC
10953                                                    : CC_RISCV);
10954 
10955   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
10956     CCValAssign &VA = ArgLocs[i];
10957     SDValue ArgValue;
10958     // Passing f64 on RV32D with a soft float ABI must be handled as a special
10959     // case.
10960     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64)
10961       ArgValue = unpackF64OnRV32DSoftABI(DAG, Chain, VA, DL);
10962     else if (VA.isRegLoc())
10963       ArgValue = unpackFromRegLoc(DAG, Chain, VA, DL, *this);
10964     else
10965       ArgValue = unpackFromMemLoc(DAG, Chain, VA, DL);
10966 
10967     if (VA.getLocInfo() == CCValAssign::Indirect) {
10968       // If the original argument was split and passed by reference (e.g. i128
10969       // on RV32), we need to load all parts of it here (using the same
10970       // address). Vectors may be partly split to registers and partly to the
10971       // stack, in which case the base address is partly offset and subsequent
10972       // stores are relative to that.
10973       InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue,
10974                                    MachinePointerInfo()));
10975       unsigned ArgIndex = Ins[i].OrigArgIndex;
10976       unsigned ArgPartOffset = Ins[i].PartOffset;
10977       assert(VA.getValVT().isVector() || ArgPartOffset == 0);
10978       while (i + 1 != e && Ins[i + 1].OrigArgIndex == ArgIndex) {
10979         CCValAssign &PartVA = ArgLocs[i + 1];
10980         unsigned PartOffset = Ins[i + 1].PartOffset - ArgPartOffset;
10981         SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL);
10982         if (PartVA.getValVT().isScalableVector())
10983           Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset);
10984         SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, Offset);
10985         InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address,
10986                                      MachinePointerInfo()));
10987         ++i;
10988       }
10989       continue;
10990     }
10991     InVals.push_back(ArgValue);
10992   }
10993 
10994   if (IsVarArg) {
10995     ArrayRef<MCPhysReg> ArgRegs = makeArrayRef(ArgGPRs);
10996     unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs);
10997     const TargetRegisterClass *RC = &RISCV::GPRRegClass;
10998     MachineFrameInfo &MFI = MF.getFrameInfo();
10999     MachineRegisterInfo &RegInfo = MF.getRegInfo();
11000     RISCVMachineFunctionInfo *RVFI = MF.getInfo<RISCVMachineFunctionInfo>();
11001 
11002     // Offset of the first variable argument from stack pointer, and size of
11003     // the vararg save area. For now, the varargs save area is either zero or
11004     // large enough to hold a0-a7.
11005     int VaArgOffset, VarArgsSaveSize;
11006 
11007     // If all registers are allocated, then all varargs must be passed on the
11008     // stack and we don't need to save any argregs.
11009     if (ArgRegs.size() == Idx) {
11010       VaArgOffset = CCInfo.getNextStackOffset();
11011       VarArgsSaveSize = 0;
11012     } else {
11013       VarArgsSaveSize = XLenInBytes * (ArgRegs.size() - Idx);
11014       VaArgOffset = -VarArgsSaveSize;
11015     }
11016 
11017     // Record the frame index of the first variable argument
11018     // which is a value necessary to VASTART.
11019     int FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true);
11020     RVFI->setVarArgsFrameIndex(FI);
11021 
11022     // If saving an odd number of registers then create an extra stack slot to
11023     // ensure that the frame pointer is 2*XLEN-aligned, which in turn ensures
11024     // offsets to even-numbered registered remain 2*XLEN-aligned.
11025     if (Idx % 2) {
11026       MFI.CreateFixedObject(XLenInBytes, VaArgOffset - (int)XLenInBytes, true);
11027       VarArgsSaveSize += XLenInBytes;
11028     }
11029 
11030     // Copy the integer registers that may have been used for passing varargs
11031     // to the vararg save area.
11032     for (unsigned I = Idx; I < ArgRegs.size();
11033          ++I, VaArgOffset += XLenInBytes) {
11034       const Register Reg = RegInfo.createVirtualRegister(RC);
11035       RegInfo.addLiveIn(ArgRegs[I], Reg);
11036       SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, XLenVT);
11037       FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true);
11038       SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
11039       SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff,
11040                                    MachinePointerInfo::getFixedStack(MF, FI));
11041       cast<StoreSDNode>(Store.getNode())
11042           ->getMemOperand()
11043           ->setValue((Value *)nullptr);
11044       OutChains.push_back(Store);
11045     }
11046     RVFI->setVarArgsSaveSize(VarArgsSaveSize);
11047   }
11048 
11049   // All stores are grouped in one node to allow the matching between
11050   // the size of Ins and InVals. This only happens for vararg functions.
11051   if (!OutChains.empty()) {
11052     OutChains.push_back(Chain);
11053     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains);
11054   }
11055 
11056   return Chain;
11057 }
11058 
11059 /// isEligibleForTailCallOptimization - Check whether the call is eligible
11060 /// for tail call optimization.
11061 /// Note: This is modelled after ARM's IsEligibleForTailCallOptimization.
11062 bool RISCVTargetLowering::isEligibleForTailCallOptimization(
11063     CCState &CCInfo, CallLoweringInfo &CLI, MachineFunction &MF,
11064     const SmallVector<CCValAssign, 16> &ArgLocs) const {
11065 
11066   auto &Callee = CLI.Callee;
11067   auto CalleeCC = CLI.CallConv;
11068   auto &Outs = CLI.Outs;
11069   auto &Caller = MF.getFunction();
11070   auto CallerCC = Caller.getCallingConv();
11071 
11072   // Exception-handling functions need a special set of instructions to
11073   // indicate a return to the hardware. Tail-calling another function would
11074   // probably break this.
11075   // TODO: The "interrupt" attribute isn't currently defined by RISC-V. This
11076   // should be expanded as new function attributes are introduced.
11077   if (Caller.hasFnAttribute("interrupt"))
11078     return false;
11079 
11080   // Do not tail call opt if the stack is used to pass parameters.
11081   if (CCInfo.getNextStackOffset() != 0)
11082     return false;
11083 
11084   // Do not tail call opt if any parameters need to be passed indirectly.
11085   // Since long doubles (fp128) and i128 are larger than 2*XLEN, they are
11086   // passed indirectly. So the address of the value will be passed in a
11087   // register, or if not available, then the address is put on the stack. In
11088   // order to pass indirectly, space on the stack often needs to be allocated
11089   // in order to store the value. In this case the CCInfo.getNextStackOffset()
11090   // != 0 check is not enough and we need to check if any CCValAssign ArgsLocs
11091   // are passed CCValAssign::Indirect.
11092   for (auto &VA : ArgLocs)
11093     if (VA.getLocInfo() == CCValAssign::Indirect)
11094       return false;
11095 
11096   // Do not tail call opt if either caller or callee uses struct return
11097   // semantics.
11098   auto IsCallerStructRet = Caller.hasStructRetAttr();
11099   auto IsCalleeStructRet = Outs.empty() ? false : Outs[0].Flags.isSRet();
11100   if (IsCallerStructRet || IsCalleeStructRet)
11101     return false;
11102 
11103   // Externally-defined functions with weak linkage should not be
11104   // tail-called. The behaviour of branch instructions in this situation (as
11105   // used for tail calls) is implementation-defined, so we cannot rely on the
11106   // linker replacing the tail call with a return.
11107   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
11108     const GlobalValue *GV = G->getGlobal();
11109     if (GV->hasExternalWeakLinkage())
11110       return false;
11111   }
11112 
11113   // The callee has to preserve all registers the caller needs to preserve.
11114   const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo();
11115   const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
11116   if (CalleeCC != CallerCC) {
11117     const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
11118     if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
11119       return false;
11120   }
11121 
11122   // Byval parameters hand the function a pointer directly into the stack area
11123   // we want to reuse during a tail call. Working around this *is* possible
11124   // but less efficient and uglier in LowerCall.
11125   for (auto &Arg : Outs)
11126     if (Arg.Flags.isByVal())
11127       return false;
11128 
11129   return true;
11130 }
11131 
11132 static Align getPrefTypeAlign(EVT VT, SelectionDAG &DAG) {
11133   return DAG.getDataLayout().getPrefTypeAlign(
11134       VT.getTypeForEVT(*DAG.getContext()));
11135 }
11136 
11137 // Lower a call to a callseq_start + CALL + callseq_end chain, and add input
11138 // and output parameter nodes.
11139 SDValue RISCVTargetLowering::LowerCall(CallLoweringInfo &CLI,
11140                                        SmallVectorImpl<SDValue> &InVals) const {
11141   SelectionDAG &DAG = CLI.DAG;
11142   SDLoc &DL = CLI.DL;
11143   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
11144   SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
11145   SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
11146   SDValue Chain = CLI.Chain;
11147   SDValue Callee = CLI.Callee;
11148   bool &IsTailCall = CLI.IsTailCall;
11149   CallingConv::ID CallConv = CLI.CallConv;
11150   bool IsVarArg = CLI.IsVarArg;
11151   EVT PtrVT = getPointerTy(DAG.getDataLayout());
11152   MVT XLenVT = Subtarget.getXLenVT();
11153 
11154   MachineFunction &MF = DAG.getMachineFunction();
11155 
11156   // Analyze the operands of the call, assigning locations to each operand.
11157   SmallVector<CCValAssign, 16> ArgLocs;
11158   CCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
11159 
11160   if (CallConv == CallingConv::GHC)
11161     ArgCCInfo.AnalyzeCallOperands(Outs, CC_RISCV_GHC);
11162   else
11163     analyzeOutputArgs(MF, ArgCCInfo, Outs, /*IsRet=*/false, &CLI,
11164                       CallConv == CallingConv::Fast ? CC_RISCV_FastCC
11165                                                     : CC_RISCV);
11166 
11167   // Check if it's really possible to do a tail call.
11168   if (IsTailCall)
11169     IsTailCall = isEligibleForTailCallOptimization(ArgCCInfo, CLI, MF, ArgLocs);
11170 
11171   if (IsTailCall)
11172     ++NumTailCalls;
11173   else if (CLI.CB && CLI.CB->isMustTailCall())
11174     report_fatal_error("failed to perform tail call elimination on a call "
11175                        "site marked musttail");
11176 
11177   // Get a count of how many bytes are to be pushed on the stack.
11178   unsigned NumBytes = ArgCCInfo.getNextStackOffset();
11179 
11180   // Create local copies for byval args
11181   SmallVector<SDValue, 8> ByValArgs;
11182   for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
11183     ISD::ArgFlagsTy Flags = Outs[i].Flags;
11184     if (!Flags.isByVal())
11185       continue;
11186 
11187     SDValue Arg = OutVals[i];
11188     unsigned Size = Flags.getByValSize();
11189     Align Alignment = Flags.getNonZeroByValAlign();
11190 
11191     int FI =
11192         MF.getFrameInfo().CreateStackObject(Size, Alignment, /*isSS=*/false);
11193     SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
11194     SDValue SizeNode = DAG.getConstant(Size, DL, XLenVT);
11195 
11196     Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Alignment,
11197                           /*IsVolatile=*/false,
11198                           /*AlwaysInline=*/false, IsTailCall,
11199                           MachinePointerInfo(), MachinePointerInfo());
11200     ByValArgs.push_back(FIPtr);
11201   }
11202 
11203   if (!IsTailCall)
11204     Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, CLI.DL);
11205 
11206   // Copy argument values to their designated locations.
11207   SmallVector<std::pair<Register, SDValue>, 8> RegsToPass;
11208   SmallVector<SDValue, 8> MemOpChains;
11209   SDValue StackPtr;
11210   for (unsigned i = 0, j = 0, e = ArgLocs.size(); i != e; ++i) {
11211     CCValAssign &VA = ArgLocs[i];
11212     SDValue ArgValue = OutVals[i];
11213     ISD::ArgFlagsTy Flags = Outs[i].Flags;
11214 
11215     // Handle passing f64 on RV32D with a soft float ABI as a special case.
11216     bool IsF64OnRV32DSoftABI =
11217         VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64;
11218     if (IsF64OnRV32DSoftABI && VA.isRegLoc()) {
11219       SDValue SplitF64 = DAG.getNode(
11220           RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), ArgValue);
11221       SDValue Lo = SplitF64.getValue(0);
11222       SDValue Hi = SplitF64.getValue(1);
11223 
11224       Register RegLo = VA.getLocReg();
11225       RegsToPass.push_back(std::make_pair(RegLo, Lo));
11226 
11227       if (RegLo == RISCV::X17) {
11228         // Second half of f64 is passed on the stack.
11229         // Work out the address of the stack slot.
11230         if (!StackPtr.getNode())
11231           StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT);
11232         // Emit the store.
11233         MemOpChains.push_back(
11234             DAG.getStore(Chain, DL, Hi, StackPtr, MachinePointerInfo()));
11235       } else {
11236         // Second half of f64 is passed in another GPR.
11237         assert(RegLo < RISCV::X31 && "Invalid register pair");
11238         Register RegHigh = RegLo + 1;
11239         RegsToPass.push_back(std::make_pair(RegHigh, Hi));
11240       }
11241       continue;
11242     }
11243 
11244     // IsF64OnRV32DSoftABI && VA.isMemLoc() is handled below in the same way
11245     // as any other MemLoc.
11246 
11247     // Promote the value if needed.
11248     // For now, only handle fully promoted and indirect arguments.
11249     if (VA.getLocInfo() == CCValAssign::Indirect) {
11250       // Store the argument in a stack slot and pass its address.
11251       Align StackAlign =
11252           std::max(getPrefTypeAlign(Outs[i].ArgVT, DAG),
11253                    getPrefTypeAlign(ArgValue.getValueType(), DAG));
11254       TypeSize StoredSize = ArgValue.getValueType().getStoreSize();
11255       // If the original argument was split (e.g. i128), we need
11256       // to store the required parts of it here (and pass just one address).
11257       // Vectors may be partly split to registers and partly to the stack, in
11258       // which case the base address is partly offset and subsequent stores are
11259       // relative to that.
11260       unsigned ArgIndex = Outs[i].OrigArgIndex;
11261       unsigned ArgPartOffset = Outs[i].PartOffset;
11262       assert(VA.getValVT().isVector() || ArgPartOffset == 0);
11263       // Calculate the total size to store. We don't have access to what we're
11264       // actually storing other than performing the loop and collecting the
11265       // info.
11266       SmallVector<std::pair<SDValue, SDValue>> Parts;
11267       while (i + 1 != e && Outs[i + 1].OrigArgIndex == ArgIndex) {
11268         SDValue PartValue = OutVals[i + 1];
11269         unsigned PartOffset = Outs[i + 1].PartOffset - ArgPartOffset;
11270         SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL);
11271         EVT PartVT = PartValue.getValueType();
11272         if (PartVT.isScalableVector())
11273           Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset);
11274         StoredSize += PartVT.getStoreSize();
11275         StackAlign = std::max(StackAlign, getPrefTypeAlign(PartVT, DAG));
11276         Parts.push_back(std::make_pair(PartValue, Offset));
11277         ++i;
11278       }
11279       SDValue SpillSlot = DAG.CreateStackTemporary(StoredSize, StackAlign);
11280       int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
11281       MemOpChains.push_back(
11282           DAG.getStore(Chain, DL, ArgValue, SpillSlot,
11283                        MachinePointerInfo::getFixedStack(MF, FI)));
11284       for (const auto &Part : Parts) {
11285         SDValue PartValue = Part.first;
11286         SDValue PartOffset = Part.second;
11287         SDValue Address =
11288             DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, PartOffset);
11289         MemOpChains.push_back(
11290             DAG.getStore(Chain, DL, PartValue, Address,
11291                          MachinePointerInfo::getFixedStack(MF, FI)));
11292       }
11293       ArgValue = SpillSlot;
11294     } else {
11295       ArgValue = convertValVTToLocVT(DAG, ArgValue, VA, DL, Subtarget);
11296     }
11297 
11298     // Use local copy if it is a byval arg.
11299     if (Flags.isByVal())
11300       ArgValue = ByValArgs[j++];
11301 
11302     if (VA.isRegLoc()) {
11303       // Queue up the argument copies and emit them at the end.
11304       RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue));
11305     } else {
11306       assert(VA.isMemLoc() && "Argument not register or memory");
11307       assert(!IsTailCall && "Tail call not allowed if stack is used "
11308                             "for passing parameters");
11309 
11310       // Work out the address of the stack slot.
11311       if (!StackPtr.getNode())
11312         StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT);
11313       SDValue Address =
11314           DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr,
11315                       DAG.getIntPtrConstant(VA.getLocMemOffset(), DL));
11316 
11317       // Emit the store.
11318       MemOpChains.push_back(
11319           DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo()));
11320     }
11321   }
11322 
11323   // Join the stores, which are independent of one another.
11324   if (!MemOpChains.empty())
11325     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
11326 
11327   SDValue Glue;
11328 
11329   // Build a sequence of copy-to-reg nodes, chained and glued together.
11330   for (auto &Reg : RegsToPass) {
11331     Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, Glue);
11332     Glue = Chain.getValue(1);
11333   }
11334 
11335   // Validate that none of the argument registers have been marked as
11336   // reserved, if so report an error. Do the same for the return address if this
11337   // is not a tailcall.
11338   validateCCReservedRegs(RegsToPass, MF);
11339   if (!IsTailCall &&
11340       MF.getSubtarget<RISCVSubtarget>().isRegisterReservedByUser(RISCV::X1))
11341     MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
11342         MF.getFunction(),
11343         "Return address register required, but has been reserved."});
11344 
11345   // If the callee is a GlobalAddress/ExternalSymbol node, turn it into a
11346   // TargetGlobalAddress/TargetExternalSymbol node so that legalize won't
11347   // split it and then direct call can be matched by PseudoCALL.
11348   if (GlobalAddressSDNode *S = dyn_cast<GlobalAddressSDNode>(Callee)) {
11349     const GlobalValue *GV = S->getGlobal();
11350 
11351     unsigned OpFlags = RISCVII::MO_CALL;
11352     if (!getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV))
11353       OpFlags = RISCVII::MO_PLT;
11354 
11355     Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags);
11356   } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
11357     unsigned OpFlags = RISCVII::MO_CALL;
11358 
11359     if (!getTargetMachine().shouldAssumeDSOLocal(*MF.getFunction().getParent(),
11360                                                  nullptr))
11361       OpFlags = RISCVII::MO_PLT;
11362 
11363     Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, OpFlags);
11364   }
11365 
11366   // The first call operand is the chain and the second is the target address.
11367   SmallVector<SDValue, 8> Ops;
11368   Ops.push_back(Chain);
11369   Ops.push_back(Callee);
11370 
11371   // Add argument registers to the end of the list so that they are
11372   // known live into the call.
11373   for (auto &Reg : RegsToPass)
11374     Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType()));
11375 
11376   if (!IsTailCall) {
11377     // Add a register mask operand representing the call-preserved registers.
11378     const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
11379     const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
11380     assert(Mask && "Missing call preserved mask for calling convention");
11381     Ops.push_back(DAG.getRegisterMask(Mask));
11382   }
11383 
11384   // Glue the call to the argument copies, if any.
11385   if (Glue.getNode())
11386     Ops.push_back(Glue);
11387 
11388   // Emit the call.
11389   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
11390 
11391   if (IsTailCall) {
11392     MF.getFrameInfo().setHasTailCall();
11393     return DAG.getNode(RISCVISD::TAIL, DL, NodeTys, Ops);
11394   }
11395 
11396   Chain = DAG.getNode(RISCVISD::CALL, DL, NodeTys, Ops);
11397   DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge);
11398   Glue = Chain.getValue(1);
11399 
11400   // Mark the end of the call, which is glued to the call itself.
11401   Chain = DAG.getCALLSEQ_END(Chain,
11402                              DAG.getConstant(NumBytes, DL, PtrVT, true),
11403                              DAG.getConstant(0, DL, PtrVT, true),
11404                              Glue, DL);
11405   Glue = Chain.getValue(1);
11406 
11407   // Assign locations to each value returned by this call.
11408   SmallVector<CCValAssign, 16> RVLocs;
11409   CCState RetCCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext());
11410   analyzeInputArgs(MF, RetCCInfo, Ins, /*IsRet=*/true, CC_RISCV);
11411 
11412   // Copy all of the result registers out of their specified physreg.
11413   for (auto &VA : RVLocs) {
11414     // Copy the value out
11415     SDValue RetValue =
11416         DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), Glue);
11417     // Glue the RetValue to the end of the call sequence
11418     Chain = RetValue.getValue(1);
11419     Glue = RetValue.getValue(2);
11420 
11421     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) {
11422       assert(VA.getLocReg() == ArgGPRs[0] && "Unexpected reg assignment");
11423       SDValue RetValue2 =
11424           DAG.getCopyFromReg(Chain, DL, ArgGPRs[1], MVT::i32, Glue);
11425       Chain = RetValue2.getValue(1);
11426       Glue = RetValue2.getValue(2);
11427       RetValue = DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, RetValue,
11428                              RetValue2);
11429     }
11430 
11431     RetValue = convertLocVTToValVT(DAG, RetValue, VA, DL, Subtarget);
11432 
11433     InVals.push_back(RetValue);
11434   }
11435 
11436   return Chain;
11437 }
11438 
11439 bool RISCVTargetLowering::CanLowerReturn(
11440     CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg,
11441     const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const {
11442   SmallVector<CCValAssign, 16> RVLocs;
11443   CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);
11444 
11445   Optional<unsigned> FirstMaskArgument;
11446   if (Subtarget.hasVInstructions())
11447     FirstMaskArgument = preAssignMask(Outs);
11448 
11449   for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
11450     MVT VT = Outs[i].VT;
11451     ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
11452     RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
11453     if (CC_RISCV(MF.getDataLayout(), ABI, i, VT, VT, CCValAssign::Full,
11454                  ArgFlags, CCInfo, /*IsFixed=*/true, /*IsRet=*/true, nullptr,
11455                  *this, FirstMaskArgument))
11456       return false;
11457   }
11458   return true;
11459 }
11460 
11461 SDValue
11462 RISCVTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
11463                                  bool IsVarArg,
11464                                  const SmallVectorImpl<ISD::OutputArg> &Outs,
11465                                  const SmallVectorImpl<SDValue> &OutVals,
11466                                  const SDLoc &DL, SelectionDAG &DAG) const {
11467   const MachineFunction &MF = DAG.getMachineFunction();
11468   const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>();
11469 
11470   // Stores the assignment of the return value to a location.
11471   SmallVector<CCValAssign, 16> RVLocs;
11472 
11473   // Info about the registers and stack slot.
11474   CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
11475                  *DAG.getContext());
11476 
11477   analyzeOutputArgs(DAG.getMachineFunction(), CCInfo, Outs, /*IsRet=*/true,
11478                     nullptr, CC_RISCV);
11479 
11480   if (CallConv == CallingConv::GHC && !RVLocs.empty())
11481     report_fatal_error("GHC functions return void only");
11482 
11483   SDValue Glue;
11484   SmallVector<SDValue, 4> RetOps(1, Chain);
11485 
11486   // Copy the result values into the output registers.
11487   for (unsigned i = 0, e = RVLocs.size(); i < e; ++i) {
11488     SDValue Val = OutVals[i];
11489     CCValAssign &VA = RVLocs[i];
11490     assert(VA.isRegLoc() && "Can only return in registers!");
11491 
11492     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) {
11493       // Handle returning f64 on RV32D with a soft float ABI.
11494       assert(VA.isRegLoc() && "Expected return via registers");
11495       SDValue SplitF64 = DAG.getNode(RISCVISD::SplitF64, DL,
11496                                      DAG.getVTList(MVT::i32, MVT::i32), Val);
11497       SDValue Lo = SplitF64.getValue(0);
11498       SDValue Hi = SplitF64.getValue(1);
11499       Register RegLo = VA.getLocReg();
11500       assert(RegLo < RISCV::X31 && "Invalid register pair");
11501       Register RegHi = RegLo + 1;
11502 
11503       if (STI.isRegisterReservedByUser(RegLo) ||
11504           STI.isRegisterReservedByUser(RegHi))
11505         MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
11506             MF.getFunction(),
11507             "Return value register required, but has been reserved."});
11508 
11509       Chain = DAG.getCopyToReg(Chain, DL, RegLo, Lo, Glue);
11510       Glue = Chain.getValue(1);
11511       RetOps.push_back(DAG.getRegister(RegLo, MVT::i32));
11512       Chain = DAG.getCopyToReg(Chain, DL, RegHi, Hi, Glue);
11513       Glue = Chain.getValue(1);
11514       RetOps.push_back(DAG.getRegister(RegHi, MVT::i32));
11515     } else {
11516       // Handle a 'normal' return.
11517       Val = convertValVTToLocVT(DAG, Val, VA, DL, Subtarget);
11518       Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Glue);
11519 
11520       if (STI.isRegisterReservedByUser(VA.getLocReg()))
11521         MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
11522             MF.getFunction(),
11523             "Return value register required, but has been reserved."});
11524 
11525       // Guarantee that all emitted copies are stuck together.
11526       Glue = Chain.getValue(1);
11527       RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
11528     }
11529   }
11530 
11531   RetOps[0] = Chain; // Update chain.
11532 
11533   // Add the glue node if we have it.
11534   if (Glue.getNode()) {
11535     RetOps.push_back(Glue);
11536   }
11537 
11538   unsigned RetOpc = RISCVISD::RET_FLAG;
11539   // Interrupt service routines use different return instructions.
11540   const Function &Func = DAG.getMachineFunction().getFunction();
11541   if (Func.hasFnAttribute("interrupt")) {
11542     if (!Func.getReturnType()->isVoidTy())
11543       report_fatal_error(
11544           "Functions with the interrupt attribute must have void return type!");
11545 
11546     MachineFunction &MF = DAG.getMachineFunction();
11547     StringRef Kind =
11548       MF.getFunction().getFnAttribute("interrupt").getValueAsString();
11549 
11550     if (Kind == "user")
11551       RetOpc = RISCVISD::URET_FLAG;
11552     else if (Kind == "supervisor")
11553       RetOpc = RISCVISD::SRET_FLAG;
11554     else
11555       RetOpc = RISCVISD::MRET_FLAG;
11556   }
11557 
11558   return DAG.getNode(RetOpc, DL, MVT::Other, RetOps);
11559 }
11560 
11561 void RISCVTargetLowering::validateCCReservedRegs(
11562     const SmallVectorImpl<std::pair<llvm::Register, llvm::SDValue>> &Regs,
11563     MachineFunction &MF) const {
11564   const Function &F = MF.getFunction();
11565   const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>();
11566 
11567   if (llvm::any_of(Regs, [&STI](auto Reg) {
11568         return STI.isRegisterReservedByUser(Reg.first);
11569       }))
11570     F.getContext().diagnose(DiagnosticInfoUnsupported{
11571         F, "Argument register required, but has been reserved."});
11572 }
11573 
11574 bool RISCVTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
11575   return CI->isTailCall();
11576 }
11577 
11578 const char *RISCVTargetLowering::getTargetNodeName(unsigned Opcode) const {
11579 #define NODE_NAME_CASE(NODE)                                                   \
11580   case RISCVISD::NODE:                                                         \
11581     return "RISCVISD::" #NODE;
11582   // clang-format off
11583   switch ((RISCVISD::NodeType)Opcode) {
11584   case RISCVISD::FIRST_NUMBER:
11585     break;
11586   NODE_NAME_CASE(RET_FLAG)
11587   NODE_NAME_CASE(URET_FLAG)
11588   NODE_NAME_CASE(SRET_FLAG)
11589   NODE_NAME_CASE(MRET_FLAG)
11590   NODE_NAME_CASE(CALL)
11591   NODE_NAME_CASE(SELECT_CC)
11592   NODE_NAME_CASE(BR_CC)
11593   NODE_NAME_CASE(BuildPairF64)
11594   NODE_NAME_CASE(SplitF64)
11595   NODE_NAME_CASE(TAIL)
11596   NODE_NAME_CASE(ADD_LO)
11597   NODE_NAME_CASE(HI)
11598   NODE_NAME_CASE(LLA)
11599   NODE_NAME_CASE(ADD_TPREL)
11600   NODE_NAME_CASE(LA)
11601   NODE_NAME_CASE(LA_TLS_IE)
11602   NODE_NAME_CASE(LA_TLS_GD)
11603   NODE_NAME_CASE(MULHSU)
11604   NODE_NAME_CASE(SLLW)
11605   NODE_NAME_CASE(SRAW)
11606   NODE_NAME_CASE(SRLW)
11607   NODE_NAME_CASE(DIVW)
11608   NODE_NAME_CASE(DIVUW)
11609   NODE_NAME_CASE(REMUW)
11610   NODE_NAME_CASE(ROLW)
11611   NODE_NAME_CASE(RORW)
11612   NODE_NAME_CASE(CLZW)
11613   NODE_NAME_CASE(CTZW)
11614   NODE_NAME_CASE(FSLW)
11615   NODE_NAME_CASE(FSRW)
11616   NODE_NAME_CASE(FSL)
11617   NODE_NAME_CASE(FSR)
11618   NODE_NAME_CASE(FMV_H_X)
11619   NODE_NAME_CASE(FMV_X_ANYEXTH)
11620   NODE_NAME_CASE(FMV_X_SIGNEXTH)
11621   NODE_NAME_CASE(FMV_W_X_RV64)
11622   NODE_NAME_CASE(FMV_X_ANYEXTW_RV64)
11623   NODE_NAME_CASE(FCVT_X)
11624   NODE_NAME_CASE(FCVT_XU)
11625   NODE_NAME_CASE(FCVT_W_RV64)
11626   NODE_NAME_CASE(FCVT_WU_RV64)
11627   NODE_NAME_CASE(STRICT_FCVT_W_RV64)
11628   NODE_NAME_CASE(STRICT_FCVT_WU_RV64)
11629   NODE_NAME_CASE(READ_CYCLE_WIDE)
11630   NODE_NAME_CASE(GREV)
11631   NODE_NAME_CASE(GREVW)
11632   NODE_NAME_CASE(GORC)
11633   NODE_NAME_CASE(GORCW)
11634   NODE_NAME_CASE(SHFL)
11635   NODE_NAME_CASE(SHFLW)
11636   NODE_NAME_CASE(UNSHFL)
11637   NODE_NAME_CASE(UNSHFLW)
11638   NODE_NAME_CASE(BFP)
11639   NODE_NAME_CASE(BFPW)
11640   NODE_NAME_CASE(BCOMPRESS)
11641   NODE_NAME_CASE(BCOMPRESSW)
11642   NODE_NAME_CASE(BDECOMPRESS)
11643   NODE_NAME_CASE(BDECOMPRESSW)
11644   NODE_NAME_CASE(VMV_V_X_VL)
11645   NODE_NAME_CASE(VFMV_V_F_VL)
11646   NODE_NAME_CASE(VMV_X_S)
11647   NODE_NAME_CASE(VMV_S_X_VL)
11648   NODE_NAME_CASE(VFMV_S_F_VL)
11649   NODE_NAME_CASE(SPLAT_VECTOR_SPLIT_I64_VL)
11650   NODE_NAME_CASE(READ_VLENB)
11651   NODE_NAME_CASE(TRUNCATE_VECTOR_VL)
11652   NODE_NAME_CASE(VSLIDEUP_VL)
11653   NODE_NAME_CASE(VSLIDE1UP_VL)
11654   NODE_NAME_CASE(VSLIDEDOWN_VL)
11655   NODE_NAME_CASE(VSLIDE1DOWN_VL)
11656   NODE_NAME_CASE(VID_VL)
11657   NODE_NAME_CASE(VFNCVT_ROD_VL)
11658   NODE_NAME_CASE(VECREDUCE_ADD_VL)
11659   NODE_NAME_CASE(VECREDUCE_UMAX_VL)
11660   NODE_NAME_CASE(VECREDUCE_SMAX_VL)
11661   NODE_NAME_CASE(VECREDUCE_UMIN_VL)
11662   NODE_NAME_CASE(VECREDUCE_SMIN_VL)
11663   NODE_NAME_CASE(VECREDUCE_AND_VL)
11664   NODE_NAME_CASE(VECREDUCE_OR_VL)
11665   NODE_NAME_CASE(VECREDUCE_XOR_VL)
11666   NODE_NAME_CASE(VECREDUCE_FADD_VL)
11667   NODE_NAME_CASE(VECREDUCE_SEQ_FADD_VL)
11668   NODE_NAME_CASE(VECREDUCE_FMIN_VL)
11669   NODE_NAME_CASE(VECREDUCE_FMAX_VL)
11670   NODE_NAME_CASE(ADD_VL)
11671   NODE_NAME_CASE(AND_VL)
11672   NODE_NAME_CASE(MUL_VL)
11673   NODE_NAME_CASE(OR_VL)
11674   NODE_NAME_CASE(SDIV_VL)
11675   NODE_NAME_CASE(SHL_VL)
11676   NODE_NAME_CASE(SREM_VL)
11677   NODE_NAME_CASE(SRA_VL)
11678   NODE_NAME_CASE(SRL_VL)
11679   NODE_NAME_CASE(SUB_VL)
11680   NODE_NAME_CASE(UDIV_VL)
11681   NODE_NAME_CASE(UREM_VL)
11682   NODE_NAME_CASE(XOR_VL)
11683   NODE_NAME_CASE(SADDSAT_VL)
11684   NODE_NAME_CASE(UADDSAT_VL)
11685   NODE_NAME_CASE(SSUBSAT_VL)
11686   NODE_NAME_CASE(USUBSAT_VL)
11687   NODE_NAME_CASE(FADD_VL)
11688   NODE_NAME_CASE(FSUB_VL)
11689   NODE_NAME_CASE(FMUL_VL)
11690   NODE_NAME_CASE(FDIV_VL)
11691   NODE_NAME_CASE(FNEG_VL)
11692   NODE_NAME_CASE(FABS_VL)
11693   NODE_NAME_CASE(FSQRT_VL)
11694   NODE_NAME_CASE(VFMADD_VL)
11695   NODE_NAME_CASE(VFNMADD_VL)
11696   NODE_NAME_CASE(VFMSUB_VL)
11697   NODE_NAME_CASE(VFNMSUB_VL)
11698   NODE_NAME_CASE(FCOPYSIGN_VL)
11699   NODE_NAME_CASE(SMIN_VL)
11700   NODE_NAME_CASE(SMAX_VL)
11701   NODE_NAME_CASE(UMIN_VL)
11702   NODE_NAME_CASE(UMAX_VL)
11703   NODE_NAME_CASE(FMINNUM_VL)
11704   NODE_NAME_CASE(FMAXNUM_VL)
11705   NODE_NAME_CASE(MULHS_VL)
11706   NODE_NAME_CASE(MULHU_VL)
11707   NODE_NAME_CASE(FP_TO_SINT_VL)
11708   NODE_NAME_CASE(FP_TO_UINT_VL)
11709   NODE_NAME_CASE(SINT_TO_FP_VL)
11710   NODE_NAME_CASE(UINT_TO_FP_VL)
11711   NODE_NAME_CASE(FP_EXTEND_VL)
11712   NODE_NAME_CASE(FP_ROUND_VL)
11713   NODE_NAME_CASE(VWMUL_VL)
11714   NODE_NAME_CASE(VWMULU_VL)
11715   NODE_NAME_CASE(VWMULSU_VL)
11716   NODE_NAME_CASE(VWADD_VL)
11717   NODE_NAME_CASE(VWADDU_VL)
11718   NODE_NAME_CASE(VWSUB_VL)
11719   NODE_NAME_CASE(VWSUBU_VL)
11720   NODE_NAME_CASE(VWADD_W_VL)
11721   NODE_NAME_CASE(VWADDU_W_VL)
11722   NODE_NAME_CASE(VWSUB_W_VL)
11723   NODE_NAME_CASE(VWSUBU_W_VL)
11724   NODE_NAME_CASE(SETCC_VL)
11725   NODE_NAME_CASE(VSELECT_VL)
11726   NODE_NAME_CASE(VP_MERGE_VL)
11727   NODE_NAME_CASE(VMAND_VL)
11728   NODE_NAME_CASE(VMOR_VL)
11729   NODE_NAME_CASE(VMXOR_VL)
11730   NODE_NAME_CASE(VMCLR_VL)
11731   NODE_NAME_CASE(VMSET_VL)
11732   NODE_NAME_CASE(VRGATHER_VX_VL)
11733   NODE_NAME_CASE(VRGATHER_VV_VL)
11734   NODE_NAME_CASE(VRGATHEREI16_VV_VL)
11735   NODE_NAME_CASE(VSEXT_VL)
11736   NODE_NAME_CASE(VZEXT_VL)
11737   NODE_NAME_CASE(VCPOP_VL)
11738   NODE_NAME_CASE(READ_CSR)
11739   NODE_NAME_CASE(WRITE_CSR)
11740   NODE_NAME_CASE(SWAP_CSR)
11741   }
11742   // clang-format on
11743   return nullptr;
11744 #undef NODE_NAME_CASE
11745 }
11746 
11747 /// getConstraintType - Given a constraint letter, return the type of
11748 /// constraint it is for this target.
11749 RISCVTargetLowering::ConstraintType
11750 RISCVTargetLowering::getConstraintType(StringRef Constraint) const {
11751   if (Constraint.size() == 1) {
11752     switch (Constraint[0]) {
11753     default:
11754       break;
11755     case 'f':
11756       return C_RegisterClass;
11757     case 'I':
11758     case 'J':
11759     case 'K':
11760       return C_Immediate;
11761     case 'A':
11762       return C_Memory;
11763     case 'S': // A symbolic address
11764       return C_Other;
11765     }
11766   } else {
11767     if (Constraint == "vr" || Constraint == "vm")
11768       return C_RegisterClass;
11769   }
11770   return TargetLowering::getConstraintType(Constraint);
11771 }
11772 
11773 std::pair<unsigned, const TargetRegisterClass *>
11774 RISCVTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
11775                                                   StringRef Constraint,
11776                                                   MVT VT) const {
11777   // First, see if this is a constraint that directly corresponds to a
11778   // RISCV register class.
11779   if (Constraint.size() == 1) {
11780     switch (Constraint[0]) {
11781     case 'r':
11782       // TODO: Support fixed vectors up to XLen for P extension?
11783       if (VT.isVector())
11784         break;
11785       return std::make_pair(0U, &RISCV::GPRRegClass);
11786     case 'f':
11787       if (Subtarget.hasStdExtZfh() && VT == MVT::f16)
11788         return std::make_pair(0U, &RISCV::FPR16RegClass);
11789       if (Subtarget.hasStdExtF() && VT == MVT::f32)
11790         return std::make_pair(0U, &RISCV::FPR32RegClass);
11791       if (Subtarget.hasStdExtD() && VT == MVT::f64)
11792         return std::make_pair(0U, &RISCV::FPR64RegClass);
11793       break;
11794     default:
11795       break;
11796     }
11797   } else if (Constraint == "vr") {
11798     for (const auto *RC : {&RISCV::VRRegClass, &RISCV::VRM2RegClass,
11799                            &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) {
11800       if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy))
11801         return std::make_pair(0U, RC);
11802     }
11803   } else if (Constraint == "vm") {
11804     if (TRI->isTypeLegalForClass(RISCV::VMV0RegClass, VT.SimpleTy))
11805       return std::make_pair(0U, &RISCV::VMV0RegClass);
11806   }
11807 
11808   // Clang will correctly decode the usage of register name aliases into their
11809   // official names. However, other frontends like `rustc` do not. This allows
11810   // users of these frontends to use the ABI names for registers in LLVM-style
11811   // register constraints.
11812   unsigned XRegFromAlias = StringSwitch<unsigned>(Constraint.lower())
11813                                .Case("{zero}", RISCV::X0)
11814                                .Case("{ra}", RISCV::X1)
11815                                .Case("{sp}", RISCV::X2)
11816                                .Case("{gp}", RISCV::X3)
11817                                .Case("{tp}", RISCV::X4)
11818                                .Case("{t0}", RISCV::X5)
11819                                .Case("{t1}", RISCV::X6)
11820                                .Case("{t2}", RISCV::X7)
11821                                .Cases("{s0}", "{fp}", RISCV::X8)
11822                                .Case("{s1}", RISCV::X9)
11823                                .Case("{a0}", RISCV::X10)
11824                                .Case("{a1}", RISCV::X11)
11825                                .Case("{a2}", RISCV::X12)
11826                                .Case("{a3}", RISCV::X13)
11827                                .Case("{a4}", RISCV::X14)
11828                                .Case("{a5}", RISCV::X15)
11829                                .Case("{a6}", RISCV::X16)
11830                                .Case("{a7}", RISCV::X17)
11831                                .Case("{s2}", RISCV::X18)
11832                                .Case("{s3}", RISCV::X19)
11833                                .Case("{s4}", RISCV::X20)
11834                                .Case("{s5}", RISCV::X21)
11835                                .Case("{s6}", RISCV::X22)
11836                                .Case("{s7}", RISCV::X23)
11837                                .Case("{s8}", RISCV::X24)
11838                                .Case("{s9}", RISCV::X25)
11839                                .Case("{s10}", RISCV::X26)
11840                                .Case("{s11}", RISCV::X27)
11841                                .Case("{t3}", RISCV::X28)
11842                                .Case("{t4}", RISCV::X29)
11843                                .Case("{t5}", RISCV::X30)
11844                                .Case("{t6}", RISCV::X31)
11845                                .Default(RISCV::NoRegister);
11846   if (XRegFromAlias != RISCV::NoRegister)
11847     return std::make_pair(XRegFromAlias, &RISCV::GPRRegClass);
11848 
11849   // Since TargetLowering::getRegForInlineAsmConstraint uses the name of the
11850   // TableGen record rather than the AsmName to choose registers for InlineAsm
11851   // constraints, plus we want to match those names to the widest floating point
11852   // register type available, manually select floating point registers here.
11853   //
11854   // The second case is the ABI name of the register, so that frontends can also
11855   // use the ABI names in register constraint lists.
11856   if (Subtarget.hasStdExtF()) {
11857     unsigned FReg = StringSwitch<unsigned>(Constraint.lower())
11858                         .Cases("{f0}", "{ft0}", RISCV::F0_F)
11859                         .Cases("{f1}", "{ft1}", RISCV::F1_F)
11860                         .Cases("{f2}", "{ft2}", RISCV::F2_F)
11861                         .Cases("{f3}", "{ft3}", RISCV::F3_F)
11862                         .Cases("{f4}", "{ft4}", RISCV::F4_F)
11863                         .Cases("{f5}", "{ft5}", RISCV::F5_F)
11864                         .Cases("{f6}", "{ft6}", RISCV::F6_F)
11865                         .Cases("{f7}", "{ft7}", RISCV::F7_F)
11866                         .Cases("{f8}", "{fs0}", RISCV::F8_F)
11867                         .Cases("{f9}", "{fs1}", RISCV::F9_F)
11868                         .Cases("{f10}", "{fa0}", RISCV::F10_F)
11869                         .Cases("{f11}", "{fa1}", RISCV::F11_F)
11870                         .Cases("{f12}", "{fa2}", RISCV::F12_F)
11871                         .Cases("{f13}", "{fa3}", RISCV::F13_F)
11872                         .Cases("{f14}", "{fa4}", RISCV::F14_F)
11873                         .Cases("{f15}", "{fa5}", RISCV::F15_F)
11874                         .Cases("{f16}", "{fa6}", RISCV::F16_F)
11875                         .Cases("{f17}", "{fa7}", RISCV::F17_F)
11876                         .Cases("{f18}", "{fs2}", RISCV::F18_F)
11877                         .Cases("{f19}", "{fs3}", RISCV::F19_F)
11878                         .Cases("{f20}", "{fs4}", RISCV::F20_F)
11879                         .Cases("{f21}", "{fs5}", RISCV::F21_F)
11880                         .Cases("{f22}", "{fs6}", RISCV::F22_F)
11881                         .Cases("{f23}", "{fs7}", RISCV::F23_F)
11882                         .Cases("{f24}", "{fs8}", RISCV::F24_F)
11883                         .Cases("{f25}", "{fs9}", RISCV::F25_F)
11884                         .Cases("{f26}", "{fs10}", RISCV::F26_F)
11885                         .Cases("{f27}", "{fs11}", RISCV::F27_F)
11886                         .Cases("{f28}", "{ft8}", RISCV::F28_F)
11887                         .Cases("{f29}", "{ft9}", RISCV::F29_F)
11888                         .Cases("{f30}", "{ft10}", RISCV::F30_F)
11889                         .Cases("{f31}", "{ft11}", RISCV::F31_F)
11890                         .Default(RISCV::NoRegister);
11891     if (FReg != RISCV::NoRegister) {
11892       assert(RISCV::F0_F <= FReg && FReg <= RISCV::F31_F && "Unknown fp-reg");
11893       if (Subtarget.hasStdExtD() && (VT == MVT::f64 || VT == MVT::Other)) {
11894         unsigned RegNo = FReg - RISCV::F0_F;
11895         unsigned DReg = RISCV::F0_D + RegNo;
11896         return std::make_pair(DReg, &RISCV::FPR64RegClass);
11897       }
11898       if (VT == MVT::f32 || VT == MVT::Other)
11899         return std::make_pair(FReg, &RISCV::FPR32RegClass);
11900       if (Subtarget.hasStdExtZfh() && VT == MVT::f16) {
11901         unsigned RegNo = FReg - RISCV::F0_F;
11902         unsigned HReg = RISCV::F0_H + RegNo;
11903         return std::make_pair(HReg, &RISCV::FPR16RegClass);
11904       }
11905     }
11906   }
11907 
11908   if (Subtarget.hasVInstructions()) {
11909     Register VReg = StringSwitch<Register>(Constraint.lower())
11910                         .Case("{v0}", RISCV::V0)
11911                         .Case("{v1}", RISCV::V1)
11912                         .Case("{v2}", RISCV::V2)
11913                         .Case("{v3}", RISCV::V3)
11914                         .Case("{v4}", RISCV::V4)
11915                         .Case("{v5}", RISCV::V5)
11916                         .Case("{v6}", RISCV::V6)
11917                         .Case("{v7}", RISCV::V7)
11918                         .Case("{v8}", RISCV::V8)
11919                         .Case("{v9}", RISCV::V9)
11920                         .Case("{v10}", RISCV::V10)
11921                         .Case("{v11}", RISCV::V11)
11922                         .Case("{v12}", RISCV::V12)
11923                         .Case("{v13}", RISCV::V13)
11924                         .Case("{v14}", RISCV::V14)
11925                         .Case("{v15}", RISCV::V15)
11926                         .Case("{v16}", RISCV::V16)
11927                         .Case("{v17}", RISCV::V17)
11928                         .Case("{v18}", RISCV::V18)
11929                         .Case("{v19}", RISCV::V19)
11930                         .Case("{v20}", RISCV::V20)
11931                         .Case("{v21}", RISCV::V21)
11932                         .Case("{v22}", RISCV::V22)
11933                         .Case("{v23}", RISCV::V23)
11934                         .Case("{v24}", RISCV::V24)
11935                         .Case("{v25}", RISCV::V25)
11936                         .Case("{v26}", RISCV::V26)
11937                         .Case("{v27}", RISCV::V27)
11938                         .Case("{v28}", RISCV::V28)
11939                         .Case("{v29}", RISCV::V29)
11940                         .Case("{v30}", RISCV::V30)
11941                         .Case("{v31}", RISCV::V31)
11942                         .Default(RISCV::NoRegister);
11943     if (VReg != RISCV::NoRegister) {
11944       if (TRI->isTypeLegalForClass(RISCV::VMRegClass, VT.SimpleTy))
11945         return std::make_pair(VReg, &RISCV::VMRegClass);
11946       if (TRI->isTypeLegalForClass(RISCV::VRRegClass, VT.SimpleTy))
11947         return std::make_pair(VReg, &RISCV::VRRegClass);
11948       for (const auto *RC :
11949            {&RISCV::VRM2RegClass, &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) {
11950         if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy)) {
11951           VReg = TRI->getMatchingSuperReg(VReg, RISCV::sub_vrm1_0, RC);
11952           return std::make_pair(VReg, RC);
11953         }
11954       }
11955     }
11956   }
11957 
11958   std::pair<Register, const TargetRegisterClass *> Res =
11959       TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
11960 
11961   // If we picked one of the Zfinx register classes, remap it to the GPR class.
11962   // FIXME: When Zfinx is supported in CodeGen this will need to take the
11963   // Subtarget into account.
11964   if (Res.second == &RISCV::GPRF16RegClass ||
11965       Res.second == &RISCV::GPRF32RegClass ||
11966       Res.second == &RISCV::GPRF64RegClass)
11967     return std::make_pair(Res.first, &RISCV::GPRRegClass);
11968 
11969   return Res;
11970 }
11971 
11972 unsigned
11973 RISCVTargetLowering::getInlineAsmMemConstraint(StringRef ConstraintCode) const {
11974   // Currently only support length 1 constraints.
11975   if (ConstraintCode.size() == 1) {
11976     switch (ConstraintCode[0]) {
11977     case 'A':
11978       return InlineAsm::Constraint_A;
11979     default:
11980       break;
11981     }
11982   }
11983 
11984   return TargetLowering::getInlineAsmMemConstraint(ConstraintCode);
11985 }
11986 
11987 void RISCVTargetLowering::LowerAsmOperandForConstraint(
11988     SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops,
11989     SelectionDAG &DAG) const {
11990   // Currently only support length 1 constraints.
11991   if (Constraint.length() == 1) {
11992     switch (Constraint[0]) {
11993     case 'I':
11994       // Validate & create a 12-bit signed immediate operand.
11995       if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
11996         uint64_t CVal = C->getSExtValue();
11997         if (isInt<12>(CVal))
11998           Ops.push_back(
11999               DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT()));
12000       }
12001       return;
12002     case 'J':
12003       // Validate & create an integer zero operand.
12004       if (auto *C = dyn_cast<ConstantSDNode>(Op))
12005         if (C->getZExtValue() == 0)
12006           Ops.push_back(
12007               DAG.getTargetConstant(0, SDLoc(Op), Subtarget.getXLenVT()));
12008       return;
12009     case 'K':
12010       // Validate & create a 5-bit unsigned immediate operand.
12011       if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
12012         uint64_t CVal = C->getZExtValue();
12013         if (isUInt<5>(CVal))
12014           Ops.push_back(
12015               DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT()));
12016       }
12017       return;
12018     case 'S':
12019       if (const auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) {
12020         Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op),
12021                                                  GA->getValueType(0)));
12022       } else if (const auto *BA = dyn_cast<BlockAddressSDNode>(Op)) {
12023         Ops.push_back(DAG.getTargetBlockAddress(BA->getBlockAddress(),
12024                                                 BA->getValueType(0)));
12025       }
12026       return;
12027     default:
12028       break;
12029     }
12030   }
12031   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
12032 }
12033 
12034 Instruction *RISCVTargetLowering::emitLeadingFence(IRBuilderBase &Builder,
12035                                                    Instruction *Inst,
12036                                                    AtomicOrdering Ord) const {
12037   if (isa<LoadInst>(Inst) && Ord == AtomicOrdering::SequentiallyConsistent)
12038     return Builder.CreateFence(Ord);
12039   if (isa<StoreInst>(Inst) && isReleaseOrStronger(Ord))
12040     return Builder.CreateFence(AtomicOrdering::Release);
12041   return nullptr;
12042 }
12043 
12044 Instruction *RISCVTargetLowering::emitTrailingFence(IRBuilderBase &Builder,
12045                                                     Instruction *Inst,
12046                                                     AtomicOrdering Ord) const {
12047   if (isa<LoadInst>(Inst) && isAcquireOrStronger(Ord))
12048     return Builder.CreateFence(AtomicOrdering::Acquire);
12049   return nullptr;
12050 }
12051 
12052 TargetLowering::AtomicExpansionKind
12053 RISCVTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
12054   // atomicrmw {fadd,fsub} must be expanded to use compare-exchange, as floating
12055   // point operations can't be used in an lr/sc sequence without breaking the
12056   // forward-progress guarantee.
12057   if (AI->isFloatingPointOperation())
12058     return AtomicExpansionKind::CmpXChg;
12059 
12060   unsigned Size = AI->getType()->getPrimitiveSizeInBits();
12061   if (Size == 8 || Size == 16)
12062     return AtomicExpansionKind::MaskedIntrinsic;
12063   return AtomicExpansionKind::None;
12064 }
12065 
12066 static Intrinsic::ID
12067 getIntrinsicForMaskedAtomicRMWBinOp(unsigned XLen, AtomicRMWInst::BinOp BinOp) {
12068   if (XLen == 32) {
12069     switch (BinOp) {
12070     default:
12071       llvm_unreachable("Unexpected AtomicRMW BinOp");
12072     case AtomicRMWInst::Xchg:
12073       return Intrinsic::riscv_masked_atomicrmw_xchg_i32;
12074     case AtomicRMWInst::Add:
12075       return Intrinsic::riscv_masked_atomicrmw_add_i32;
12076     case AtomicRMWInst::Sub:
12077       return Intrinsic::riscv_masked_atomicrmw_sub_i32;
12078     case AtomicRMWInst::Nand:
12079       return Intrinsic::riscv_masked_atomicrmw_nand_i32;
12080     case AtomicRMWInst::Max:
12081       return Intrinsic::riscv_masked_atomicrmw_max_i32;
12082     case AtomicRMWInst::Min:
12083       return Intrinsic::riscv_masked_atomicrmw_min_i32;
12084     case AtomicRMWInst::UMax:
12085       return Intrinsic::riscv_masked_atomicrmw_umax_i32;
12086     case AtomicRMWInst::UMin:
12087       return Intrinsic::riscv_masked_atomicrmw_umin_i32;
12088     }
12089   }
12090 
12091   if (XLen == 64) {
12092     switch (BinOp) {
12093     default:
12094       llvm_unreachable("Unexpected AtomicRMW BinOp");
12095     case AtomicRMWInst::Xchg:
12096       return Intrinsic::riscv_masked_atomicrmw_xchg_i64;
12097     case AtomicRMWInst::Add:
12098       return Intrinsic::riscv_masked_atomicrmw_add_i64;
12099     case AtomicRMWInst::Sub:
12100       return Intrinsic::riscv_masked_atomicrmw_sub_i64;
12101     case AtomicRMWInst::Nand:
12102       return Intrinsic::riscv_masked_atomicrmw_nand_i64;
12103     case AtomicRMWInst::Max:
12104       return Intrinsic::riscv_masked_atomicrmw_max_i64;
12105     case AtomicRMWInst::Min:
12106       return Intrinsic::riscv_masked_atomicrmw_min_i64;
12107     case AtomicRMWInst::UMax:
12108       return Intrinsic::riscv_masked_atomicrmw_umax_i64;
12109     case AtomicRMWInst::UMin:
12110       return Intrinsic::riscv_masked_atomicrmw_umin_i64;
12111     }
12112   }
12113 
12114   llvm_unreachable("Unexpected XLen\n");
12115 }
12116 
12117 Value *RISCVTargetLowering::emitMaskedAtomicRMWIntrinsic(
12118     IRBuilderBase &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr,
12119     Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const {
12120   unsigned XLen = Subtarget.getXLen();
12121   Value *Ordering =
12122       Builder.getIntN(XLen, static_cast<uint64_t>(AI->getOrdering()));
12123   Type *Tys[] = {AlignedAddr->getType()};
12124   Function *LrwOpScwLoop = Intrinsic::getDeclaration(
12125       AI->getModule(),
12126       getIntrinsicForMaskedAtomicRMWBinOp(XLen, AI->getOperation()), Tys);
12127 
12128   if (XLen == 64) {
12129     Incr = Builder.CreateSExt(Incr, Builder.getInt64Ty());
12130     Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty());
12131     ShiftAmt = Builder.CreateSExt(ShiftAmt, Builder.getInt64Ty());
12132   }
12133 
12134   Value *Result;
12135 
12136   // Must pass the shift amount needed to sign extend the loaded value prior
12137   // to performing a signed comparison for min/max. ShiftAmt is the number of
12138   // bits to shift the value into position. Pass XLen-ShiftAmt-ValWidth, which
12139   // is the number of bits to left+right shift the value in order to
12140   // sign-extend.
12141   if (AI->getOperation() == AtomicRMWInst::Min ||
12142       AI->getOperation() == AtomicRMWInst::Max) {
12143     const DataLayout &DL = AI->getModule()->getDataLayout();
12144     unsigned ValWidth =
12145         DL.getTypeStoreSizeInBits(AI->getValOperand()->getType());
12146     Value *SextShamt =
12147         Builder.CreateSub(Builder.getIntN(XLen, XLen - ValWidth), ShiftAmt);
12148     Result = Builder.CreateCall(LrwOpScwLoop,
12149                                 {AlignedAddr, Incr, Mask, SextShamt, Ordering});
12150   } else {
12151     Result =
12152         Builder.CreateCall(LrwOpScwLoop, {AlignedAddr, Incr, Mask, Ordering});
12153   }
12154 
12155   if (XLen == 64)
12156     Result = Builder.CreateTrunc(Result, Builder.getInt32Ty());
12157   return Result;
12158 }
12159 
12160 TargetLowering::AtomicExpansionKind
12161 RISCVTargetLowering::shouldExpandAtomicCmpXchgInIR(
12162     AtomicCmpXchgInst *CI) const {
12163   unsigned Size = CI->getCompareOperand()->getType()->getPrimitiveSizeInBits();
12164   if (Size == 8 || Size == 16)
12165     return AtomicExpansionKind::MaskedIntrinsic;
12166   return AtomicExpansionKind::None;
12167 }
12168 
12169 Value *RISCVTargetLowering::emitMaskedAtomicCmpXchgIntrinsic(
12170     IRBuilderBase &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr,
12171     Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const {
12172   unsigned XLen = Subtarget.getXLen();
12173   Value *Ordering = Builder.getIntN(XLen, static_cast<uint64_t>(Ord));
12174   Intrinsic::ID CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i32;
12175   if (XLen == 64) {
12176     CmpVal = Builder.CreateSExt(CmpVal, Builder.getInt64Ty());
12177     NewVal = Builder.CreateSExt(NewVal, Builder.getInt64Ty());
12178     Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty());
12179     CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i64;
12180   }
12181   Type *Tys[] = {AlignedAddr->getType()};
12182   Function *MaskedCmpXchg =
12183       Intrinsic::getDeclaration(CI->getModule(), CmpXchgIntrID, Tys);
12184   Value *Result = Builder.CreateCall(
12185       MaskedCmpXchg, {AlignedAddr, CmpVal, NewVal, Mask, Ordering});
12186   if (XLen == 64)
12187     Result = Builder.CreateTrunc(Result, Builder.getInt32Ty());
12188   return Result;
12189 }
12190 
12191 bool RISCVTargetLowering::shouldRemoveExtendFromGSIndex(EVT IndexVT,
12192                                                         EVT DataVT) const {
12193   return false;
12194 }
12195 
12196 bool RISCVTargetLowering::shouldConvertFpToSat(unsigned Op, EVT FPVT,
12197                                                EVT VT) const {
12198   if (!isOperationLegalOrCustom(Op, VT) || !FPVT.isSimple())
12199     return false;
12200 
12201   switch (FPVT.getSimpleVT().SimpleTy) {
12202   case MVT::f16:
12203     return Subtarget.hasStdExtZfh();
12204   case MVT::f32:
12205     return Subtarget.hasStdExtF();
12206   case MVT::f64:
12207     return Subtarget.hasStdExtD();
12208   default:
12209     return false;
12210   }
12211 }
12212 
12213 unsigned RISCVTargetLowering::getJumpTableEncoding() const {
12214   // If we are using the small code model, we can reduce size of jump table
12215   // entry to 4 bytes.
12216   if (Subtarget.is64Bit() && !isPositionIndependent() &&
12217       getTargetMachine().getCodeModel() == CodeModel::Small) {
12218     return MachineJumpTableInfo::EK_Custom32;
12219   }
12220   return TargetLowering::getJumpTableEncoding();
12221 }
12222 
12223 const MCExpr *RISCVTargetLowering::LowerCustomJumpTableEntry(
12224     const MachineJumpTableInfo *MJTI, const MachineBasicBlock *MBB,
12225     unsigned uid, MCContext &Ctx) const {
12226   assert(Subtarget.is64Bit() && !isPositionIndependent() &&
12227          getTargetMachine().getCodeModel() == CodeModel::Small);
12228   return MCSymbolRefExpr::create(MBB->getSymbol(), Ctx);
12229 }
12230 
12231 bool RISCVTargetLowering::isVScaleKnownToBeAPowerOfTwo() const {
12232   // We define vscale to be VLEN/RVVBitsPerBlock.  VLEN is always a power
12233   // of two >= 64, and RVVBitsPerBlock is 64.  Thus, vscale must be
12234   // a power of two as well.
12235   // FIXME: This doesn't work for zve32, but that's already broken
12236   // elsewhere for the same reason.
12237   assert(Subtarget.getRealMinVLen() >= 64 && "zve32* unsupported");
12238   static_assert(RISCV::RVVBitsPerBlock == 64,
12239                 "RVVBitsPerBlock changed, audit needed");
12240   return true;
12241 }
12242 
12243 bool RISCVTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF,
12244                                                      EVT VT) const {
12245   VT = VT.getScalarType();
12246 
12247   if (!VT.isSimple())
12248     return false;
12249 
12250   switch (VT.getSimpleVT().SimpleTy) {
12251   case MVT::f16:
12252     return Subtarget.hasStdExtZfh();
12253   case MVT::f32:
12254     return Subtarget.hasStdExtF();
12255   case MVT::f64:
12256     return Subtarget.hasStdExtD();
12257   default:
12258     break;
12259   }
12260 
12261   return false;
12262 }
12263 
12264 Register RISCVTargetLowering::getExceptionPointerRegister(
12265     const Constant *PersonalityFn) const {
12266   return RISCV::X10;
12267 }
12268 
12269 Register RISCVTargetLowering::getExceptionSelectorRegister(
12270     const Constant *PersonalityFn) const {
12271   return RISCV::X11;
12272 }
12273 
12274 bool RISCVTargetLowering::shouldExtendTypeInLibCall(EVT Type) const {
12275   // Return false to suppress the unnecessary extensions if the LibCall
12276   // arguments or return value is f32 type for LP64 ABI.
12277   RISCVABI::ABI ABI = Subtarget.getTargetABI();
12278   if (ABI == RISCVABI::ABI_LP64 && (Type == MVT::f32))
12279     return false;
12280 
12281   return true;
12282 }
12283 
12284 bool RISCVTargetLowering::shouldSignExtendTypeInLibCall(EVT Type, bool IsSigned) const {
12285   if (Subtarget.is64Bit() && Type == MVT::i32)
12286     return true;
12287 
12288   return IsSigned;
12289 }
12290 
12291 bool RISCVTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT,
12292                                                  SDValue C) const {
12293   // Check integral scalar types.
12294   const bool HasExtMOrZmmul =
12295       Subtarget.hasStdExtM() || Subtarget.hasStdExtZmmul();
12296   if (VT.isScalarInteger()) {
12297     // Omit the optimization if the sub target has the M extension and the data
12298     // size exceeds XLen.
12299     if (HasExtMOrZmmul && VT.getSizeInBits() > Subtarget.getXLen())
12300       return false;
12301     if (auto *ConstNode = dyn_cast<ConstantSDNode>(C.getNode())) {
12302       // Break the MUL to a SLLI and an ADD/SUB.
12303       const APInt &Imm = ConstNode->getAPIntValue();
12304       if ((Imm + 1).isPowerOf2() || (Imm - 1).isPowerOf2() ||
12305           (1 - Imm).isPowerOf2() || (-1 - Imm).isPowerOf2())
12306         return true;
12307       // Optimize the MUL to (SH*ADD x, (SLLI x, bits)) if Imm is not simm12.
12308       if (Subtarget.hasStdExtZba() && !Imm.isSignedIntN(12) &&
12309           ((Imm - 2).isPowerOf2() || (Imm - 4).isPowerOf2() ||
12310            (Imm - 8).isPowerOf2()))
12311         return true;
12312       // Omit the following optimization if the sub target has the M extension
12313       // and the data size >= XLen.
12314       if (HasExtMOrZmmul && VT.getSizeInBits() >= Subtarget.getXLen())
12315         return false;
12316       // Break the MUL to two SLLI instructions and an ADD/SUB, if Imm needs
12317       // a pair of LUI/ADDI.
12318       if (!Imm.isSignedIntN(12) && Imm.countTrailingZeros() < 12) {
12319         APInt ImmS = Imm.ashr(Imm.countTrailingZeros());
12320         if ((ImmS + 1).isPowerOf2() || (ImmS - 1).isPowerOf2() ||
12321             (1 - ImmS).isPowerOf2())
12322           return true;
12323       }
12324     }
12325   }
12326 
12327   return false;
12328 }
12329 
12330 bool RISCVTargetLowering::isMulAddWithConstProfitable(SDValue AddNode,
12331                                                       SDValue ConstNode) const {
12332   // Let the DAGCombiner decide for vectors.
12333   EVT VT = AddNode.getValueType();
12334   if (VT.isVector())
12335     return true;
12336 
12337   // Let the DAGCombiner decide for larger types.
12338   if (VT.getScalarSizeInBits() > Subtarget.getXLen())
12339     return true;
12340 
12341   // It is worse if c1 is simm12 while c1*c2 is not.
12342   ConstantSDNode *C1Node = cast<ConstantSDNode>(AddNode.getOperand(1));
12343   ConstantSDNode *C2Node = cast<ConstantSDNode>(ConstNode);
12344   const APInt &C1 = C1Node->getAPIntValue();
12345   const APInt &C2 = C2Node->getAPIntValue();
12346   if (C1.isSignedIntN(12) && !(C1 * C2).isSignedIntN(12))
12347     return false;
12348 
12349   // Default to true and let the DAGCombiner decide.
12350   return true;
12351 }
12352 
12353 bool RISCVTargetLowering::allowsMisalignedMemoryAccesses(
12354     EVT VT, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags,
12355     bool *Fast) const {
12356   if (!VT.isVector()) {
12357     if (Fast)
12358       *Fast = false;
12359     return Subtarget.enableUnalignedScalarMem();
12360   }
12361 
12362   // All vector implementations must support element alignment
12363   EVT ElemVT = VT.getVectorElementType();
12364   if (Alignment >= ElemVT.getStoreSize()) {
12365     if (Fast)
12366       *Fast = true;
12367     return true;
12368   }
12369 
12370   return false;
12371 }
12372 
12373 bool RISCVTargetLowering::splitValueIntoRegisterParts(
12374     SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts,
12375     unsigned NumParts, MVT PartVT, Optional<CallingConv::ID> CC) const {
12376   bool IsABIRegCopy = CC.has_value();
12377   EVT ValueVT = Val.getValueType();
12378   if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) {
12379     // Cast the f16 to i16, extend to i32, pad with ones to make a float nan,
12380     // and cast to f32.
12381     Val = DAG.getNode(ISD::BITCAST, DL, MVT::i16, Val);
12382     Val = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Val);
12383     Val = DAG.getNode(ISD::OR, DL, MVT::i32, Val,
12384                       DAG.getConstant(0xFFFF0000, DL, MVT::i32));
12385     Val = DAG.getNode(ISD::BITCAST, DL, MVT::f32, Val);
12386     Parts[0] = Val;
12387     return true;
12388   }
12389 
12390   if (ValueVT.isScalableVector() && PartVT.isScalableVector()) {
12391     LLVMContext &Context = *DAG.getContext();
12392     EVT ValueEltVT = ValueVT.getVectorElementType();
12393     EVT PartEltVT = PartVT.getVectorElementType();
12394     unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize();
12395     unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize();
12396     if (PartVTBitSize % ValueVTBitSize == 0) {
12397       assert(PartVTBitSize >= ValueVTBitSize);
12398       // If the element types are different, bitcast to the same element type of
12399       // PartVT first.
12400       // Give an example here, we want copy a <vscale x 1 x i8> value to
12401       // <vscale x 4 x i16>.
12402       // We need to convert <vscale x 1 x i8> to <vscale x 8 x i8> by insert
12403       // subvector, then we can bitcast to <vscale x 4 x i16>.
12404       if (ValueEltVT != PartEltVT) {
12405         if (PartVTBitSize > ValueVTBitSize) {
12406           unsigned Count = PartVTBitSize / ValueEltVT.getFixedSizeInBits();
12407           assert(Count != 0 && "The number of element should not be zero.");
12408           EVT SameEltTypeVT =
12409               EVT::getVectorVT(Context, ValueEltVT, Count, /*IsScalable=*/true);
12410           Val = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, SameEltTypeVT,
12411                             DAG.getUNDEF(SameEltTypeVT), Val,
12412                             DAG.getVectorIdxConstant(0, DL));
12413         }
12414         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
12415       } else {
12416         Val =
12417             DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT),
12418                         Val, DAG.getVectorIdxConstant(0, DL));
12419       }
12420       Parts[0] = Val;
12421       return true;
12422     }
12423   }
12424   return false;
12425 }
12426 
12427 SDValue RISCVTargetLowering::joinRegisterPartsIntoValue(
12428     SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts,
12429     MVT PartVT, EVT ValueVT, Optional<CallingConv::ID> CC) const {
12430   bool IsABIRegCopy = CC.has_value();
12431   if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) {
12432     SDValue Val = Parts[0];
12433 
12434     // Cast the f32 to i32, truncate to i16, and cast back to f16.
12435     Val = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Val);
12436     Val = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Val);
12437     Val = DAG.getNode(ISD::BITCAST, DL, MVT::f16, Val);
12438     return Val;
12439   }
12440 
12441   if (ValueVT.isScalableVector() && PartVT.isScalableVector()) {
12442     LLVMContext &Context = *DAG.getContext();
12443     SDValue Val = Parts[0];
12444     EVT ValueEltVT = ValueVT.getVectorElementType();
12445     EVT PartEltVT = PartVT.getVectorElementType();
12446     unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize();
12447     unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize();
12448     if (PartVTBitSize % ValueVTBitSize == 0) {
12449       assert(PartVTBitSize >= ValueVTBitSize);
12450       EVT SameEltTypeVT = ValueVT;
12451       // If the element types are different, convert it to the same element type
12452       // of PartVT.
12453       // Give an example here, we want copy a <vscale x 1 x i8> value from
12454       // <vscale x 4 x i16>.
12455       // We need to convert <vscale x 4 x i16> to <vscale x 8 x i8> first,
12456       // then we can extract <vscale x 1 x i8>.
12457       if (ValueEltVT != PartEltVT) {
12458         unsigned Count = PartVTBitSize / ValueEltVT.getFixedSizeInBits();
12459         assert(Count != 0 && "The number of element should not be zero.");
12460         SameEltTypeVT =
12461             EVT::getVectorVT(Context, ValueEltVT, Count, /*IsScalable=*/true);
12462         Val = DAG.getNode(ISD::BITCAST, DL, SameEltTypeVT, Val);
12463       }
12464       Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
12465                         DAG.getVectorIdxConstant(0, DL));
12466       return Val;
12467     }
12468   }
12469   return SDValue();
12470 }
12471 
12472 SDValue
12473 RISCVTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
12474                                    SelectionDAG &DAG,
12475                                    SmallVectorImpl<SDNode *> &Created) const {
12476   AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
12477   if (isIntDivCheap(N->getValueType(0), Attr))
12478     return SDValue(N, 0); // Lower SDIV as SDIV
12479 
12480   assert((Divisor.isPowerOf2() || Divisor.isNegatedPowerOf2()) &&
12481          "Unexpected divisor!");
12482 
12483   // Conditional move is needed, so do the transformation iff Zbt is enabled.
12484   if (!Subtarget.hasStdExtZbt())
12485     return SDValue();
12486 
12487   // When |Divisor| >= 2 ^ 12, it isn't profitable to do such transformation.
12488   // Besides, more critical path instructions will be generated when dividing
12489   // by 2. So we keep using the original DAGs for these cases.
12490   unsigned Lg2 = Divisor.countTrailingZeros();
12491   if (Lg2 == 1 || Lg2 >= 12)
12492     return SDValue();
12493 
12494   // fold (sdiv X, pow2)
12495   EVT VT = N->getValueType(0);
12496   if (VT != MVT::i32 && !(Subtarget.is64Bit() && VT == MVT::i64))
12497     return SDValue();
12498 
12499   SDLoc DL(N);
12500   SDValue N0 = N->getOperand(0);
12501   SDValue Zero = DAG.getConstant(0, DL, VT);
12502   SDValue Pow2MinusOne = DAG.getConstant((1ULL << Lg2) - 1, DL, VT);
12503 
12504   // Add (N0 < 0) ? Pow2 - 1 : 0;
12505   SDValue Cmp = DAG.getSetCC(DL, VT, N0, Zero, ISD::SETLT);
12506   SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0, Pow2MinusOne);
12507   SDValue Sel = DAG.getNode(ISD::SELECT, DL, VT, Cmp, Add, N0);
12508 
12509   Created.push_back(Cmp.getNode());
12510   Created.push_back(Add.getNode());
12511   Created.push_back(Sel.getNode());
12512 
12513   // Divide by pow2.
12514   SDValue SRA =
12515       DAG.getNode(ISD::SRA, DL, VT, Sel, DAG.getConstant(Lg2, DL, VT));
12516 
12517   // If we're dividing by a positive value, we're done.  Otherwise, we must
12518   // negate the result.
12519   if (Divisor.isNonNegative())
12520     return SRA;
12521 
12522   Created.push_back(SRA.getNode());
12523   return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), SRA);
12524 }
12525 
12526 #define GET_REGISTER_MATCHER
12527 #include "RISCVGenAsmMatcher.inc"
12528 
12529 Register
12530 RISCVTargetLowering::getRegisterByName(const char *RegName, LLT VT,
12531                                        const MachineFunction &MF) const {
12532   Register Reg = MatchRegisterAltName(RegName);
12533   if (Reg == RISCV::NoRegister)
12534     Reg = MatchRegisterName(RegName);
12535   if (Reg == RISCV::NoRegister)
12536     report_fatal_error(
12537         Twine("Invalid register name \"" + StringRef(RegName) + "\"."));
12538   BitVector ReservedRegs = Subtarget.getRegisterInfo()->getReservedRegs(MF);
12539   if (!ReservedRegs.test(Reg) && !Subtarget.isRegisterReservedByUser(Reg))
12540     report_fatal_error(Twine("Trying to obtain non-reserved register \"" +
12541                              StringRef(RegName) + "\"."));
12542   return Reg;
12543 }
12544 
12545 namespace llvm {
12546 namespace RISCVVIntrinsicsTable {
12547 
12548 #define GET_RISCVVIntrinsicsTable_IMPL
12549 #include "RISCVGenSearchableTables.inc"
12550 
12551 } // namespace RISCVVIntrinsicsTable
12552 
12553 } // namespace llvm
12554