1 //===-- RISCVISelLowering.cpp - RISCV DAG Lowering Implementation  --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the interfaces that RISCV uses to lower LLVM code into a
10 // selection DAG.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "RISCVISelLowering.h"
15 #include "MCTargetDesc/RISCVMatInt.h"
16 #include "RISCV.h"
17 #include "RISCVMachineFunctionInfo.h"
18 #include "RISCVRegisterInfo.h"
19 #include "RISCVSubtarget.h"
20 #include "RISCVTargetMachine.h"
21 #include "llvm/ADT/SmallSet.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/CodeGen/CallingConvLower.h"
24 #include "llvm/CodeGen/MachineFrameInfo.h"
25 #include "llvm/CodeGen/MachineFunction.h"
26 #include "llvm/CodeGen/MachineInstrBuilder.h"
27 #include "llvm/CodeGen/MachineRegisterInfo.h"
28 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
29 #include "llvm/CodeGen/ValueTypes.h"
30 #include "llvm/IR/DiagnosticInfo.h"
31 #include "llvm/IR/DiagnosticPrinter.h"
32 #include "llvm/IR/IntrinsicsRISCV.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/ErrorHandling.h"
35 #include "llvm/Support/KnownBits.h"
36 #include "llvm/Support/MathExtras.h"
37 #include "llvm/Support/raw_ostream.h"
38 
39 using namespace llvm;
40 
41 #define DEBUG_TYPE "riscv-lower"
42 
43 STATISTIC(NumTailCalls, "Number of tail calls");
44 
45 RISCVTargetLowering::RISCVTargetLowering(const TargetMachine &TM,
46                                          const RISCVSubtarget &STI)
47     : TargetLowering(TM), Subtarget(STI) {
48 
49   if (Subtarget.isRV32E())
50     report_fatal_error("Codegen not yet implemented for RV32E");
51 
52   RISCVABI::ABI ABI = Subtarget.getTargetABI();
53   assert(ABI != RISCVABI::ABI_Unknown && "Improperly initialised target ABI");
54 
55   if ((ABI == RISCVABI::ABI_ILP32F || ABI == RISCVABI::ABI_LP64F) &&
56       !Subtarget.hasStdExtF()) {
57     errs() << "Hard-float 'f' ABI can't be used for a target that "
58                 "doesn't support the F instruction set extension (ignoring "
59                           "target-abi)\n";
60     ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32;
61   } else if ((ABI == RISCVABI::ABI_ILP32D || ABI == RISCVABI::ABI_LP64D) &&
62              !Subtarget.hasStdExtD()) {
63     errs() << "Hard-float 'd' ABI can't be used for a target that "
64               "doesn't support the D instruction set extension (ignoring "
65               "target-abi)\n";
66     ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32;
67   }
68 
69   switch (ABI) {
70   default:
71     report_fatal_error("Don't know how to lower this ABI");
72   case RISCVABI::ABI_ILP32:
73   case RISCVABI::ABI_ILP32F:
74   case RISCVABI::ABI_ILP32D:
75   case RISCVABI::ABI_LP64:
76   case RISCVABI::ABI_LP64F:
77   case RISCVABI::ABI_LP64D:
78     break;
79   }
80 
81   MVT XLenVT = Subtarget.getXLenVT();
82 
83   // Set up the register classes.
84   addRegisterClass(XLenVT, &RISCV::GPRRegClass);
85 
86   if (Subtarget.hasStdExtZfh())
87     addRegisterClass(MVT::f16, &RISCV::FPR16RegClass);
88   if (Subtarget.hasStdExtF())
89     addRegisterClass(MVT::f32, &RISCV::FPR32RegClass);
90   if (Subtarget.hasStdExtD())
91     addRegisterClass(MVT::f64, &RISCV::FPR64RegClass);
92 
93   static const MVT::SimpleValueType BoolVecVTs[] = {
94       MVT::nxv1i1,  MVT::nxv2i1,  MVT::nxv4i1, MVT::nxv8i1,
95       MVT::nxv16i1, MVT::nxv32i1, MVT::nxv64i1};
96   static const MVT::SimpleValueType IntVecVTs[] = {
97       MVT::nxv1i8,  MVT::nxv2i8,   MVT::nxv4i8,   MVT::nxv8i8,  MVT::nxv16i8,
98       MVT::nxv32i8, MVT::nxv64i8,  MVT::nxv1i16,  MVT::nxv2i16, MVT::nxv4i16,
99       MVT::nxv8i16, MVT::nxv16i16, MVT::nxv32i16, MVT::nxv1i32, MVT::nxv2i32,
100       MVT::nxv4i32, MVT::nxv8i32,  MVT::nxv16i32, MVT::nxv1i64, MVT::nxv2i64,
101       MVT::nxv4i64, MVT::nxv8i64};
102   static const MVT::SimpleValueType F16VecVTs[] = {
103       MVT::nxv1f16, MVT::nxv2f16,  MVT::nxv4f16,
104       MVT::nxv8f16, MVT::nxv16f16, MVT::nxv32f16};
105   static const MVT::SimpleValueType F32VecVTs[] = {
106       MVT::nxv1f32, MVT::nxv2f32, MVT::nxv4f32, MVT::nxv8f32, MVT::nxv16f32};
107   static const MVT::SimpleValueType F64VecVTs[] = {
108       MVT::nxv1f64, MVT::nxv2f64, MVT::nxv4f64, MVT::nxv8f64};
109 
110   if (Subtarget.hasStdExtV()) {
111     auto addRegClassForRVV = [this](MVT VT) {
112       unsigned Size = VT.getSizeInBits().getKnownMinValue();
113       assert(Size <= 512 && isPowerOf2_32(Size));
114       const TargetRegisterClass *RC;
115       if (Size <= 64)
116         RC = &RISCV::VRRegClass;
117       else if (Size == 128)
118         RC = &RISCV::VRM2RegClass;
119       else if (Size == 256)
120         RC = &RISCV::VRM4RegClass;
121       else
122         RC = &RISCV::VRM8RegClass;
123 
124       addRegisterClass(VT, RC);
125     };
126 
127     for (MVT VT : BoolVecVTs)
128       addRegClassForRVV(VT);
129     for (MVT VT : IntVecVTs)
130       addRegClassForRVV(VT);
131 
132     if (Subtarget.hasStdExtZfh())
133       for (MVT VT : F16VecVTs)
134         addRegClassForRVV(VT);
135 
136     if (Subtarget.hasStdExtF())
137       for (MVT VT : F32VecVTs)
138         addRegClassForRVV(VT);
139 
140     if (Subtarget.hasStdExtD())
141       for (MVT VT : F64VecVTs)
142         addRegClassForRVV(VT);
143 
144     if (Subtarget.useRVVForFixedLengthVectors()) {
145       auto addRegClassForFixedVectors = [this](MVT VT) {
146         unsigned LMul = Subtarget.getLMULForFixedLengthVector(VT);
147         const TargetRegisterClass *RC;
148         if (LMul == 1 || VT.getVectorElementType() == MVT::i1)
149           RC = &RISCV::VRRegClass;
150         else if (LMul == 2)
151           RC = &RISCV::VRM2RegClass;
152         else if (LMul == 4)
153           RC = &RISCV::VRM4RegClass;
154         else if (LMul == 8)
155           RC = &RISCV::VRM8RegClass;
156         else
157           llvm_unreachable("Unexpected LMul!");
158 
159         addRegisterClass(VT, RC);
160       };
161       for (MVT VT : MVT::integer_fixedlen_vector_valuetypes())
162         if (useRVVForFixedLengthVectorVT(VT))
163           addRegClassForFixedVectors(VT);
164 
165       for (MVT VT : MVT::fp_fixedlen_vector_valuetypes())
166         if (useRVVForFixedLengthVectorVT(VT))
167           addRegClassForFixedVectors(VT);
168     }
169   }
170 
171   // Compute derived properties from the register classes.
172   computeRegisterProperties(STI.getRegisterInfo());
173 
174   setStackPointerRegisterToSaveRestore(RISCV::X2);
175 
176   for (auto N : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD})
177     setLoadExtAction(N, XLenVT, MVT::i1, Promote);
178 
179   // TODO: add all necessary setOperationAction calls.
180   setOperationAction(ISD::DYNAMIC_STACKALLOC, XLenVT, Expand);
181 
182   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
183   setOperationAction(ISD::BR_CC, XLenVT, Expand);
184   setOperationAction(ISD::BRCOND, MVT::Other, Custom);
185   setOperationAction(ISD::SELECT_CC, XLenVT, Expand);
186 
187   setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
188   setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
189 
190   setOperationAction(ISD::VASTART, MVT::Other, Custom);
191   setOperationAction(ISD::VAARG, MVT::Other, Expand);
192   setOperationAction(ISD::VACOPY, MVT::Other, Expand);
193   setOperationAction(ISD::VAEND, MVT::Other, Expand);
194 
195   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
196   if (!Subtarget.hasStdExtZbb()) {
197     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand);
198     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
199   }
200 
201   if (Subtarget.hasStdExtZbb() && Subtarget.is64Bit())
202     setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i32, Custom);
203 
204   if (Subtarget.is64Bit()) {
205     setOperationAction(ISD::ADD, MVT::i32, Custom);
206     setOperationAction(ISD::SUB, MVT::i32, Custom);
207     setOperationAction(ISD::SHL, MVT::i32, Custom);
208     setOperationAction(ISD::SRA, MVT::i32, Custom);
209     setOperationAction(ISD::SRL, MVT::i32, Custom);
210 
211     setOperationAction(ISD::UADDO, MVT::i32, Custom);
212     setOperationAction(ISD::USUBO, MVT::i32, Custom);
213     setOperationAction(ISD::UADDSAT, MVT::i32, Custom);
214     setOperationAction(ISD::USUBSAT, MVT::i32, Custom);
215   }
216 
217   if (!Subtarget.hasStdExtM()) {
218     setOperationAction(ISD::MUL, XLenVT, Expand);
219     setOperationAction(ISD::MULHS, XLenVT, Expand);
220     setOperationAction(ISD::MULHU, XLenVT, Expand);
221     setOperationAction(ISD::SDIV, XLenVT, Expand);
222     setOperationAction(ISD::UDIV, XLenVT, Expand);
223     setOperationAction(ISD::SREM, XLenVT, Expand);
224     setOperationAction(ISD::UREM, XLenVT, Expand);
225   } else {
226     if (Subtarget.is64Bit()) {
227       setOperationAction(ISD::MUL, MVT::i32, Custom);
228       setOperationAction(ISD::MUL, MVT::i128, Custom);
229 
230       setOperationAction(ISD::SDIV, MVT::i8, Custom);
231       setOperationAction(ISD::UDIV, MVT::i8, Custom);
232       setOperationAction(ISD::UREM, MVT::i8, Custom);
233       setOperationAction(ISD::SDIV, MVT::i16, Custom);
234       setOperationAction(ISD::UDIV, MVT::i16, Custom);
235       setOperationAction(ISD::UREM, MVT::i16, Custom);
236       setOperationAction(ISD::SDIV, MVT::i32, Custom);
237       setOperationAction(ISD::UDIV, MVT::i32, Custom);
238       setOperationAction(ISD::UREM, MVT::i32, Custom);
239     } else {
240       setOperationAction(ISD::MUL, MVT::i64, Custom);
241     }
242   }
243 
244   setOperationAction(ISD::SDIVREM, XLenVT, Expand);
245   setOperationAction(ISD::UDIVREM, XLenVT, Expand);
246   setOperationAction(ISD::SMUL_LOHI, XLenVT, Expand);
247   setOperationAction(ISD::UMUL_LOHI, XLenVT, Expand);
248 
249   setOperationAction(ISD::SHL_PARTS, XLenVT, Custom);
250   setOperationAction(ISD::SRL_PARTS, XLenVT, Custom);
251   setOperationAction(ISD::SRA_PARTS, XLenVT, Custom);
252 
253   if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp()) {
254     if (Subtarget.is64Bit()) {
255       setOperationAction(ISD::ROTL, MVT::i32, Custom);
256       setOperationAction(ISD::ROTR, MVT::i32, Custom);
257     }
258   } else {
259     setOperationAction(ISD::ROTL, XLenVT, Expand);
260     setOperationAction(ISD::ROTR, XLenVT, Expand);
261   }
262 
263   if (Subtarget.hasStdExtZbp()) {
264     // Custom lower bswap/bitreverse so we can convert them to GREVI to enable
265     // more combining.
266     setOperationAction(ISD::BITREVERSE, XLenVT, Custom);
267     setOperationAction(ISD::BSWAP, XLenVT, Custom);
268 
269     if (Subtarget.is64Bit()) {
270       setOperationAction(ISD::BITREVERSE, MVT::i32, Custom);
271       setOperationAction(ISD::BSWAP, MVT::i32, Custom);
272     }
273   } else {
274     // With Zbb we have an XLen rev8 instruction, but not GREVI. So we'll
275     // pattern match it directly in isel.
276     setOperationAction(ISD::BSWAP, XLenVT,
277                        Subtarget.hasStdExtZbb() ? Legal : Expand);
278   }
279 
280   if (Subtarget.hasStdExtZbb()) {
281     setOperationAction(ISD::SMIN, XLenVT, Legal);
282     setOperationAction(ISD::SMAX, XLenVT, Legal);
283     setOperationAction(ISD::UMIN, XLenVT, Legal);
284     setOperationAction(ISD::UMAX, XLenVT, Legal);
285 
286     if (Subtarget.is64Bit()) {
287       setOperationAction(ISD::CTTZ, MVT::i32, Custom);
288       setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Custom);
289       setOperationAction(ISD::CTLZ, MVT::i32, Custom);
290       setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom);
291     }
292   } else {
293     setOperationAction(ISD::CTTZ, XLenVT, Expand);
294     setOperationAction(ISD::CTLZ, XLenVT, Expand);
295     setOperationAction(ISD::CTPOP, XLenVT, Expand);
296   }
297 
298   if (Subtarget.hasStdExtZbt()) {
299     setOperationAction(ISD::FSHL, XLenVT, Custom);
300     setOperationAction(ISD::FSHR, XLenVT, Custom);
301     setOperationAction(ISD::SELECT, XLenVT, Legal);
302 
303     if (Subtarget.is64Bit()) {
304       setOperationAction(ISD::FSHL, MVT::i32, Custom);
305       setOperationAction(ISD::FSHR, MVT::i32, Custom);
306     }
307   } else {
308     setOperationAction(ISD::SELECT, XLenVT, Custom);
309   }
310 
311   ISD::CondCode FPCCToExpand[] = {
312       ISD::SETOGT, ISD::SETOGE, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT,
313       ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUNE, ISD::SETGT,
314       ISD::SETGE,  ISD::SETNE,  ISD::SETO,   ISD::SETUO};
315 
316   ISD::NodeType FPOpToExpand[] = {
317       ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, ISD::FREM, ISD::FP16_TO_FP,
318       ISD::FP_TO_FP16};
319 
320   if (Subtarget.hasStdExtZfh())
321     setOperationAction(ISD::BITCAST, MVT::i16, Custom);
322 
323   if (Subtarget.hasStdExtZfh()) {
324     setOperationAction(ISD::FMINNUM, MVT::f16, Legal);
325     setOperationAction(ISD::FMAXNUM, MVT::f16, Legal);
326     for (auto CC : FPCCToExpand)
327       setCondCodeAction(CC, MVT::f16, Expand);
328     setOperationAction(ISD::SELECT_CC, MVT::f16, Expand);
329     setOperationAction(ISD::SELECT, MVT::f16, Custom);
330     setOperationAction(ISD::BR_CC, MVT::f16, Expand);
331     for (auto Op : FPOpToExpand)
332       setOperationAction(Op, MVT::f16, Expand);
333   }
334 
335   if (Subtarget.hasStdExtF()) {
336     setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
337     setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
338     for (auto CC : FPCCToExpand)
339       setCondCodeAction(CC, MVT::f32, Expand);
340     setOperationAction(ISD::SELECT_CC, MVT::f32, Expand);
341     setOperationAction(ISD::SELECT, MVT::f32, Custom);
342     setOperationAction(ISD::BR_CC, MVT::f32, Expand);
343     for (auto Op : FPOpToExpand)
344       setOperationAction(Op, MVT::f32, Expand);
345     setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
346     setTruncStoreAction(MVT::f32, MVT::f16, Expand);
347   }
348 
349   if (Subtarget.hasStdExtF() && Subtarget.is64Bit())
350     setOperationAction(ISD::BITCAST, MVT::i32, Custom);
351 
352   if (Subtarget.hasStdExtD()) {
353     setOperationAction(ISD::FMINNUM, MVT::f64, Legal);
354     setOperationAction(ISD::FMAXNUM, MVT::f64, Legal);
355     for (auto CC : FPCCToExpand)
356       setCondCodeAction(CC, MVT::f64, Expand);
357     setOperationAction(ISD::SELECT_CC, MVT::f64, Expand);
358     setOperationAction(ISD::SELECT, MVT::f64, Custom);
359     setOperationAction(ISD::BR_CC, MVT::f64, Expand);
360     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
361     setTruncStoreAction(MVT::f64, MVT::f32, Expand);
362     for (auto Op : FPOpToExpand)
363       setOperationAction(Op, MVT::f64, Expand);
364     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
365     setTruncStoreAction(MVT::f64, MVT::f16, Expand);
366   }
367 
368   if (Subtarget.is64Bit()) {
369     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
370     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
371     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom);
372     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom);
373   }
374 
375   setOperationAction(ISD::GlobalAddress, XLenVT, Custom);
376   setOperationAction(ISD::BlockAddress, XLenVT, Custom);
377   setOperationAction(ISD::ConstantPool, XLenVT, Custom);
378   setOperationAction(ISD::JumpTable, XLenVT, Custom);
379 
380   setOperationAction(ISD::GlobalTLSAddress, XLenVT, Custom);
381 
382   // TODO: On M-mode only targets, the cycle[h] CSR may not be present.
383   // Unfortunately this can't be determined just from the ISA naming string.
384   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64,
385                      Subtarget.is64Bit() ? Legal : Custom);
386 
387   setOperationAction(ISD::TRAP, MVT::Other, Legal);
388   setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal);
389   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
390 
391   if (Subtarget.hasStdExtA()) {
392     setMaxAtomicSizeInBitsSupported(Subtarget.getXLen());
393     setMinCmpXchgSizeInBits(32);
394   } else {
395     setMaxAtomicSizeInBitsSupported(0);
396   }
397 
398   setBooleanContents(ZeroOrOneBooleanContent);
399 
400   if (Subtarget.hasStdExtV()) {
401     setBooleanVectorContents(ZeroOrOneBooleanContent);
402 
403     setOperationAction(ISD::VSCALE, XLenVT, Custom);
404 
405     // RVV intrinsics may have illegal operands.
406     // We also need to custom legalize vmv.x.s.
407     setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i8, Custom);
408     setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i16, Custom);
409     setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i8, Custom);
410     setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i16, Custom);
411     setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i32, Custom);
412     setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i32, Custom);
413     setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i64, Custom);
414     setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i64, Custom);
415 
416     setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
417 
418     if (!Subtarget.is64Bit()) {
419       // We must custom-lower certain vXi64 operations on RV32 due to the vector
420       // element type being illegal.
421       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::i64, Custom);
422       setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::i64, Custom);
423 
424       setOperationAction(ISD::VECREDUCE_ADD, MVT::i64, Custom);
425       setOperationAction(ISD::VECREDUCE_AND, MVT::i64, Custom);
426       setOperationAction(ISD::VECREDUCE_OR, MVT::i64, Custom);
427       setOperationAction(ISD::VECREDUCE_XOR, MVT::i64, Custom);
428       setOperationAction(ISD::VECREDUCE_SMAX, MVT::i64, Custom);
429       setOperationAction(ISD::VECREDUCE_SMIN, MVT::i64, Custom);
430       setOperationAction(ISD::VECREDUCE_UMAX, MVT::i64, Custom);
431       setOperationAction(ISD::VECREDUCE_UMIN, MVT::i64, Custom);
432     }
433 
434     for (MVT VT : BoolVecVTs) {
435       setOperationAction(ISD::SPLAT_VECTOR, VT, Legal);
436 
437       // Mask VTs are custom-expanded into a series of standard nodes
438       setOperationAction(ISD::TRUNCATE, VT, Custom);
439       setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
440       setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
441 
442       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
443 
444       setOperationAction(ISD::VECREDUCE_AND, VT, Custom);
445       setOperationAction(ISD::VECREDUCE_OR, VT, Custom);
446       setOperationAction(ISD::VECREDUCE_XOR, VT, Custom);
447 
448       // Expand all extending loads to types larger than this, and truncating
449       // stores from types larger than this.
450       for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) {
451         setTruncStoreAction(OtherVT, VT, Expand);
452         setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand);
453         setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand);
454         setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand);
455       }
456     }
457 
458     for (MVT VT : IntVecVTs) {
459       setOperationAction(ISD::SPLAT_VECTOR, VT, Legal);
460       setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom);
461 
462       setOperationAction(ISD::SMIN, VT, Legal);
463       setOperationAction(ISD::SMAX, VT, Legal);
464       setOperationAction(ISD::UMIN, VT, Legal);
465       setOperationAction(ISD::UMAX, VT, Legal);
466 
467       setOperationAction(ISD::ROTL, VT, Expand);
468       setOperationAction(ISD::ROTR, VT, Expand);
469 
470       // Custom-lower extensions and truncations from/to mask types.
471       setOperationAction(ISD::ANY_EXTEND, VT, Custom);
472       setOperationAction(ISD::SIGN_EXTEND, VT, Custom);
473       setOperationAction(ISD::ZERO_EXTEND, VT, Custom);
474 
475       // RVV has native int->float & float->int conversions where the
476       // element type sizes are within one power-of-two of each other. Any
477       // wider distances between type sizes have to be lowered as sequences
478       // which progressively narrow the gap in stages.
479       setOperationAction(ISD::SINT_TO_FP, VT, Custom);
480       setOperationAction(ISD::UINT_TO_FP, VT, Custom);
481       setOperationAction(ISD::FP_TO_SINT, VT, Custom);
482       setOperationAction(ISD::FP_TO_UINT, VT, Custom);
483 
484       // Integer VTs are lowered as a series of "RISCVISD::TRUNCATE_VECTOR_VL"
485       // nodes which truncate by one power of two at a time.
486       setOperationAction(ISD::TRUNCATE, VT, Custom);
487 
488       // Custom-lower insert/extract operations to simplify patterns.
489       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
490       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
491 
492       // Custom-lower reduction operations to set up the corresponding custom
493       // nodes' operands.
494       setOperationAction(ISD::VECREDUCE_ADD, VT, Custom);
495       setOperationAction(ISD::VECREDUCE_AND, VT, Custom);
496       setOperationAction(ISD::VECREDUCE_OR, VT, Custom);
497       setOperationAction(ISD::VECREDUCE_XOR, VT, Custom);
498       setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom);
499       setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom);
500       setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom);
501       setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom);
502 
503       setOperationAction(ISD::MLOAD, VT, Custom);
504       setOperationAction(ISD::MSTORE, VT, Custom);
505       setOperationAction(ISD::MGATHER, VT, Custom);
506       setOperationAction(ISD::MSCATTER, VT, Custom);
507 
508       setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
509       setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
510       setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
511 
512       setOperationAction(ISD::STEP_VECTOR, VT, Custom);
513       setOperationAction(ISD::VECTOR_REVERSE, VT, Custom);
514 
515       for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) {
516         setTruncStoreAction(VT, OtherVT, Expand);
517         setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand);
518         setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand);
519         setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand);
520       }
521     }
522 
523     // Expand various CCs to best match the RVV ISA, which natively supports UNE
524     // but no other unordered comparisons, and supports all ordered comparisons
525     // except ONE. Additionally, we expand GT,OGT,GE,OGE for optimization
526     // purposes; they are expanded to their swapped-operand CCs (LT,OLT,LE,OLE),
527     // and we pattern-match those back to the "original", swapping operands once
528     // more. This way we catch both operations and both "vf" and "fv" forms with
529     // fewer patterns.
530     ISD::CondCode VFPCCToExpand[] = {
531         ISD::SETO,   ISD::SETONE, ISD::SETUEQ, ISD::SETUGT,
532         ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUO,
533         ISD::SETGT,  ISD::SETOGT, ISD::SETGE,  ISD::SETOGE,
534     };
535 
536     // Sets common operation actions on RVV floating-point vector types.
537     const auto SetCommonVFPActions = [&](MVT VT) {
538       setOperationAction(ISD::SPLAT_VECTOR, VT, Legal);
539       // RVV has native FP_ROUND & FP_EXTEND conversions where the element type
540       // sizes are within one power-of-two of each other. Therefore conversions
541       // between vXf16 and vXf64 must be lowered as sequences which convert via
542       // vXf32.
543       setOperationAction(ISD::FP_ROUND, VT, Custom);
544       setOperationAction(ISD::FP_EXTEND, VT, Custom);
545       // Custom-lower insert/extract operations to simplify patterns.
546       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
547       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
548       // Expand various condition codes (explained above).
549       for (auto CC : VFPCCToExpand)
550         setCondCodeAction(CC, VT, Expand);
551 
552       setOperationAction(ISD::VECREDUCE_FADD, VT, Custom);
553       setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom);
554       setOperationAction(ISD::FCOPYSIGN, VT, Legal);
555 
556       setOperationAction(ISD::MLOAD, VT, Custom);
557       setOperationAction(ISD::MSTORE, VT, Custom);
558       setOperationAction(ISD::MGATHER, VT, Custom);
559       setOperationAction(ISD::MSCATTER, VT, Custom);
560 
561       setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
562       setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
563       setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
564 
565       setOperationAction(ISD::VECTOR_REVERSE, VT, Custom);
566     };
567 
568     // Sets common extload/truncstore actions on RVV floating-point vector
569     // types.
570     const auto SetCommonVFPExtLoadTruncStoreActions =
571         [&](MVT VT, ArrayRef<MVT::SimpleValueType> SmallerVTs) {
572           for (auto SmallVT : SmallerVTs) {
573             setTruncStoreAction(VT, SmallVT, Expand);
574             setLoadExtAction(ISD::EXTLOAD, VT, SmallVT, Expand);
575           }
576         };
577 
578     if (Subtarget.hasStdExtZfh())
579       for (MVT VT : F16VecVTs)
580         SetCommonVFPActions(VT);
581 
582     for (MVT VT : F32VecVTs) {
583       if (Subtarget.hasStdExtF())
584         SetCommonVFPActions(VT);
585       SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs);
586     }
587 
588     for (MVT VT : F64VecVTs) {
589       if (Subtarget.hasStdExtD())
590         SetCommonVFPActions(VT);
591       SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs);
592       SetCommonVFPExtLoadTruncStoreActions(VT, F32VecVTs);
593     }
594 
595     if (Subtarget.useRVVForFixedLengthVectors()) {
596       for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) {
597         if (!useRVVForFixedLengthVectorVT(VT))
598           continue;
599 
600         // By default everything must be expanded.
601         for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op)
602           setOperationAction(Op, VT, Expand);
603         for (MVT OtherVT : MVT::integer_fixedlen_vector_valuetypes()) {
604           setTruncStoreAction(VT, OtherVT, Expand);
605           setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand);
606           setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand);
607           setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand);
608         }
609 
610         // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed.
611         setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
612         setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
613 
614         setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
615         setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
616 
617         setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
618 
619         setOperationAction(ISD::LOAD, VT, Custom);
620         setOperationAction(ISD::STORE, VT, Custom);
621 
622         setOperationAction(ISD::SETCC, VT, Custom);
623 
624         setOperationAction(ISD::TRUNCATE, VT, Custom);
625 
626         setOperationAction(ISD::BITCAST, VT, Custom);
627 
628         setOperationAction(ISD::VECREDUCE_AND, VT, Custom);
629         setOperationAction(ISD::VECREDUCE_OR, VT, Custom);
630         setOperationAction(ISD::VECREDUCE_XOR, VT, Custom);
631 
632         // Operations below are different for between masks and other vectors.
633         if (VT.getVectorElementType() == MVT::i1) {
634           setOperationAction(ISD::AND, VT, Custom);
635           setOperationAction(ISD::OR, VT, Custom);
636           setOperationAction(ISD::XOR, VT, Custom);
637           continue;
638         }
639 
640         setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
641         setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
642 
643         setOperationAction(ISD::MLOAD, VT, Custom);
644         setOperationAction(ISD::MSTORE, VT, Custom);
645         setOperationAction(ISD::MGATHER, VT, Custom);
646         setOperationAction(ISD::MSCATTER, VT, Custom);
647         setOperationAction(ISD::ADD, VT, Custom);
648         setOperationAction(ISD::MUL, VT, Custom);
649         setOperationAction(ISD::SUB, VT, Custom);
650         setOperationAction(ISD::AND, VT, Custom);
651         setOperationAction(ISD::OR, VT, Custom);
652         setOperationAction(ISD::XOR, VT, Custom);
653         setOperationAction(ISD::SDIV, VT, Custom);
654         setOperationAction(ISD::SREM, VT, Custom);
655         setOperationAction(ISD::UDIV, VT, Custom);
656         setOperationAction(ISD::UREM, VT, Custom);
657         setOperationAction(ISD::SHL, VT, Custom);
658         setOperationAction(ISD::SRA, VT, Custom);
659         setOperationAction(ISD::SRL, VT, Custom);
660 
661         setOperationAction(ISD::SMIN, VT, Custom);
662         setOperationAction(ISD::SMAX, VT, Custom);
663         setOperationAction(ISD::UMIN, VT, Custom);
664         setOperationAction(ISD::UMAX, VT, Custom);
665         setOperationAction(ISD::ABS,  VT, Custom);
666 
667         setOperationAction(ISD::MULHS, VT, Custom);
668         setOperationAction(ISD::MULHU, VT, Custom);
669 
670         setOperationAction(ISD::SINT_TO_FP, VT, Custom);
671         setOperationAction(ISD::UINT_TO_FP, VT, Custom);
672         setOperationAction(ISD::FP_TO_SINT, VT, Custom);
673         setOperationAction(ISD::FP_TO_UINT, VT, Custom);
674 
675         setOperationAction(ISD::VSELECT, VT, Custom);
676 
677         setOperationAction(ISD::ANY_EXTEND, VT, Custom);
678         setOperationAction(ISD::SIGN_EXTEND, VT, Custom);
679         setOperationAction(ISD::ZERO_EXTEND, VT, Custom);
680 
681         // Custom-lower reduction operations to set up the corresponding custom
682         // nodes' operands.
683         setOperationAction(ISD::VECREDUCE_ADD, VT, Custom);
684         setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom);
685         setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom);
686         setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom);
687         setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom);
688       }
689 
690       for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) {
691         if (!useRVVForFixedLengthVectorVT(VT))
692           continue;
693 
694         // By default everything must be expanded.
695         for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op)
696           setOperationAction(Op, VT, Expand);
697         for (MVT OtherVT : MVT::fp_fixedlen_vector_valuetypes()) {
698           setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand);
699           setTruncStoreAction(VT, OtherVT, Expand);
700         }
701 
702         // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed.
703         setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
704         setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
705 
706         setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
707         setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
708         setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
709         setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
710 
711         setOperationAction(ISD::LOAD, VT, Custom);
712         setOperationAction(ISD::STORE, VT, Custom);
713         setOperationAction(ISD::MLOAD, VT, Custom);
714         setOperationAction(ISD::MSTORE, VT, Custom);
715         setOperationAction(ISD::MGATHER, VT, Custom);
716         setOperationAction(ISD::MSCATTER, VT, Custom);
717         setOperationAction(ISD::FADD, VT, Custom);
718         setOperationAction(ISD::FSUB, VT, Custom);
719         setOperationAction(ISD::FMUL, VT, Custom);
720         setOperationAction(ISD::FDIV, VT, Custom);
721         setOperationAction(ISD::FNEG, VT, Custom);
722         setOperationAction(ISD::FABS, VT, Custom);
723         setOperationAction(ISD::FCOPYSIGN, VT, Custom);
724         setOperationAction(ISD::FSQRT, VT, Custom);
725         setOperationAction(ISD::FMA, VT, Custom);
726 
727         setOperationAction(ISD::FP_ROUND, VT, Custom);
728         setOperationAction(ISD::FP_EXTEND, VT, Custom);
729 
730         for (auto CC : VFPCCToExpand)
731           setCondCodeAction(CC, VT, Expand);
732 
733         setOperationAction(ISD::VSELECT, VT, Custom);
734 
735         setOperationAction(ISD::BITCAST, VT, Custom);
736 
737         setOperationAction(ISD::VECREDUCE_FADD, VT, Custom);
738         setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom);
739       }
740 
741       // Custom-legalize bitcasts from fixed-length vectors to scalar types.
742       setOperationAction(ISD::BITCAST, MVT::i8, Custom);
743       setOperationAction(ISD::BITCAST, MVT::i16, Custom);
744       setOperationAction(ISD::BITCAST, MVT::i32, Custom);
745       setOperationAction(ISD::BITCAST, MVT::i64, Custom);
746       setOperationAction(ISD::BITCAST, MVT::f16, Custom);
747       setOperationAction(ISD::BITCAST, MVT::f32, Custom);
748       setOperationAction(ISD::BITCAST, MVT::f64, Custom);
749     }
750   }
751 
752   // Function alignments.
753   const Align FunctionAlignment(Subtarget.hasStdExtC() ? 2 : 4);
754   setMinFunctionAlignment(FunctionAlignment);
755   setPrefFunctionAlignment(FunctionAlignment);
756 
757   setMinimumJumpTableEntries(5);
758 
759   // Jumps are expensive, compared to logic
760   setJumpIsExpensive();
761 
762   // We can use any register for comparisons
763   setHasMultipleConditionRegisters();
764 
765   if (Subtarget.hasStdExtZbp()) {
766     setTargetDAGCombine(ISD::OR);
767   }
768   if (Subtarget.hasStdExtV()) {
769     setTargetDAGCombine(ISD::FCOPYSIGN);
770     setTargetDAGCombine(ISD::MGATHER);
771     setTargetDAGCombine(ISD::MSCATTER);
772   }
773 }
774 
775 EVT RISCVTargetLowering::getSetCCResultType(const DataLayout &DL,
776                                             LLVMContext &Context,
777                                             EVT VT) const {
778   if (!VT.isVector())
779     return getPointerTy(DL);
780   if (Subtarget.hasStdExtV() &&
781       (VT.isScalableVector() || Subtarget.useRVVForFixedLengthVectors()))
782     return EVT::getVectorVT(Context, MVT::i1, VT.getVectorElementCount());
783   return VT.changeVectorElementTypeToInteger();
784 }
785 
786 bool RISCVTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
787                                              const CallInst &I,
788                                              MachineFunction &MF,
789                                              unsigned Intrinsic) const {
790   switch (Intrinsic) {
791   default:
792     return false;
793   case Intrinsic::riscv_masked_atomicrmw_xchg_i32:
794   case Intrinsic::riscv_masked_atomicrmw_add_i32:
795   case Intrinsic::riscv_masked_atomicrmw_sub_i32:
796   case Intrinsic::riscv_masked_atomicrmw_nand_i32:
797   case Intrinsic::riscv_masked_atomicrmw_max_i32:
798   case Intrinsic::riscv_masked_atomicrmw_min_i32:
799   case Intrinsic::riscv_masked_atomicrmw_umax_i32:
800   case Intrinsic::riscv_masked_atomicrmw_umin_i32:
801   case Intrinsic::riscv_masked_cmpxchg_i32:
802     PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType());
803     Info.opc = ISD::INTRINSIC_W_CHAIN;
804     Info.memVT = MVT::getVT(PtrTy->getElementType());
805     Info.ptrVal = I.getArgOperand(0);
806     Info.offset = 0;
807     Info.align = Align(4);
808     Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore |
809                  MachineMemOperand::MOVolatile;
810     return true;
811   }
812 }
813 
814 bool RISCVTargetLowering::isLegalAddressingMode(const DataLayout &DL,
815                                                 const AddrMode &AM, Type *Ty,
816                                                 unsigned AS,
817                                                 Instruction *I) const {
818   // No global is ever allowed as a base.
819   if (AM.BaseGV)
820     return false;
821 
822   // Require a 12-bit signed offset.
823   if (!isInt<12>(AM.BaseOffs))
824     return false;
825 
826   switch (AM.Scale) {
827   case 0: // "r+i" or just "i", depending on HasBaseReg.
828     break;
829   case 1:
830     if (!AM.HasBaseReg) // allow "r+i".
831       break;
832     return false; // disallow "r+r" or "r+r+i".
833   default:
834     return false;
835   }
836 
837   return true;
838 }
839 
840 bool RISCVTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
841   return isInt<12>(Imm);
842 }
843 
844 bool RISCVTargetLowering::isLegalAddImmediate(int64_t Imm) const {
845   return isInt<12>(Imm);
846 }
847 
848 // On RV32, 64-bit integers are split into their high and low parts and held
849 // in two different registers, so the trunc is free since the low register can
850 // just be used.
851 bool RISCVTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const {
852   if (Subtarget.is64Bit() || !SrcTy->isIntegerTy() || !DstTy->isIntegerTy())
853     return false;
854   unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();
855   unsigned DestBits = DstTy->getPrimitiveSizeInBits();
856   return (SrcBits == 64 && DestBits == 32);
857 }
858 
859 bool RISCVTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const {
860   if (Subtarget.is64Bit() || SrcVT.isVector() || DstVT.isVector() ||
861       !SrcVT.isInteger() || !DstVT.isInteger())
862     return false;
863   unsigned SrcBits = SrcVT.getSizeInBits();
864   unsigned DestBits = DstVT.getSizeInBits();
865   return (SrcBits == 64 && DestBits == 32);
866 }
867 
868 bool RISCVTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
869   // Zexts are free if they can be combined with a load.
870   if (auto *LD = dyn_cast<LoadSDNode>(Val)) {
871     EVT MemVT = LD->getMemoryVT();
872     if ((MemVT == MVT::i8 || MemVT == MVT::i16 ||
873          (Subtarget.is64Bit() && MemVT == MVT::i32)) &&
874         (LD->getExtensionType() == ISD::NON_EXTLOAD ||
875          LD->getExtensionType() == ISD::ZEXTLOAD))
876       return true;
877   }
878 
879   return TargetLowering::isZExtFree(Val, VT2);
880 }
881 
882 bool RISCVTargetLowering::isSExtCheaperThanZExt(EVT SrcVT, EVT DstVT) const {
883   return Subtarget.is64Bit() && SrcVT == MVT::i32 && DstVT == MVT::i64;
884 }
885 
886 bool RISCVTargetLowering::isCheapToSpeculateCttz() const {
887   return Subtarget.hasStdExtZbb();
888 }
889 
890 bool RISCVTargetLowering::isCheapToSpeculateCtlz() const {
891   return Subtarget.hasStdExtZbb();
892 }
893 
894 bool RISCVTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
895                                        bool ForCodeSize) const {
896   if (VT == MVT::f16 && !Subtarget.hasStdExtZfh())
897     return false;
898   if (VT == MVT::f32 && !Subtarget.hasStdExtF())
899     return false;
900   if (VT == MVT::f64 && !Subtarget.hasStdExtD())
901     return false;
902   if (Imm.isNegZero())
903     return false;
904   return Imm.isZero();
905 }
906 
907 bool RISCVTargetLowering::hasBitPreservingFPLogic(EVT VT) const {
908   return (VT == MVT::f16 && Subtarget.hasStdExtZfh()) ||
909          (VT == MVT::f32 && Subtarget.hasStdExtF()) ||
910          (VT == MVT::f64 && Subtarget.hasStdExtD());
911 }
912 
913 MVT RISCVTargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context,
914                                                       CallingConv::ID CC,
915                                                       EVT VT) const {
916   // Use f32 to pass f16 if it is legal and Zfh is not enabled. We might still
917   // end up using a GPR but that will be decided based on ABI.
918   if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh())
919     return MVT::f32;
920 
921   return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT);
922 }
923 
924 unsigned RISCVTargetLowering::getNumRegistersForCallingConv(LLVMContext &Context,
925                                                            CallingConv::ID CC,
926                                                            EVT VT) const {
927   // Use f32 to pass f16 if it is legal and Zfh is not enabled. We might still
928   // end up using a GPR but that will be decided based on ABI.
929   if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh())
930     return 1;
931 
932   return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT);
933 }
934 
935 // Changes the condition code and swaps operands if necessary, so the SetCC
936 // operation matches one of the comparisons supported directly by branches
937 // in the RISC-V ISA. May adjust compares to favor compare with 0 over compare
938 // with 1/-1.
939 static void translateSetCCForBranch(const SDLoc &DL, SDValue &LHS, SDValue &RHS,
940                                     ISD::CondCode &CC, SelectionDAG &DAG) {
941   // Convert X > -1 to X >= 0.
942   if (CC == ISD::SETGT && isAllOnesConstant(RHS)) {
943     RHS = DAG.getConstant(0, DL, RHS.getValueType());
944     CC = ISD::SETGE;
945     return;
946   }
947   // Convert X < 1 to 0 >= X.
948   if (CC == ISD::SETLT && isOneConstant(RHS)) {
949     RHS = LHS;
950     LHS = DAG.getConstant(0, DL, RHS.getValueType());
951     CC = ISD::SETGE;
952     return;
953   }
954 
955   switch (CC) {
956   default:
957     break;
958   case ISD::SETGT:
959   case ISD::SETLE:
960   case ISD::SETUGT:
961   case ISD::SETULE:
962     CC = ISD::getSetCCSwappedOperands(CC);
963     std::swap(LHS, RHS);
964     break;
965   }
966 }
967 
968 // Return the RISC-V branch opcode that matches the given DAG integer
969 // condition code. The CondCode must be one of those supported by the RISC-V
970 // ISA (see translateSetCCForBranch).
971 static unsigned getBranchOpcodeForIntCondCode(ISD::CondCode CC) {
972   switch (CC) {
973   default:
974     llvm_unreachable("Unsupported CondCode");
975   case ISD::SETEQ:
976     return RISCV::BEQ;
977   case ISD::SETNE:
978     return RISCV::BNE;
979   case ISD::SETLT:
980     return RISCV::BLT;
981   case ISD::SETGE:
982     return RISCV::BGE;
983   case ISD::SETULT:
984     return RISCV::BLTU;
985   case ISD::SETUGE:
986     return RISCV::BGEU;
987   }
988 }
989 
990 RISCVVLMUL RISCVTargetLowering::getLMUL(MVT VT) {
991   assert(VT.isScalableVector() && "Expecting a scalable vector type");
992   unsigned KnownSize = VT.getSizeInBits().getKnownMinValue();
993   if (VT.getVectorElementType() == MVT::i1)
994     KnownSize *= 8;
995 
996   switch (KnownSize) {
997   default:
998     llvm_unreachable("Invalid LMUL.");
999   case 8:
1000     return RISCVVLMUL::LMUL_F8;
1001   case 16:
1002     return RISCVVLMUL::LMUL_F4;
1003   case 32:
1004     return RISCVVLMUL::LMUL_F2;
1005   case 64:
1006     return RISCVVLMUL::LMUL_1;
1007   case 128:
1008     return RISCVVLMUL::LMUL_2;
1009   case 256:
1010     return RISCVVLMUL::LMUL_4;
1011   case 512:
1012     return RISCVVLMUL::LMUL_8;
1013   }
1014 }
1015 
1016 unsigned RISCVTargetLowering::getRegClassIDForLMUL(RISCVVLMUL LMul) {
1017   switch (LMul) {
1018   default:
1019     llvm_unreachable("Invalid LMUL.");
1020   case RISCVVLMUL::LMUL_F8:
1021   case RISCVVLMUL::LMUL_F4:
1022   case RISCVVLMUL::LMUL_F2:
1023   case RISCVVLMUL::LMUL_1:
1024     return RISCV::VRRegClassID;
1025   case RISCVVLMUL::LMUL_2:
1026     return RISCV::VRM2RegClassID;
1027   case RISCVVLMUL::LMUL_4:
1028     return RISCV::VRM4RegClassID;
1029   case RISCVVLMUL::LMUL_8:
1030     return RISCV::VRM8RegClassID;
1031   }
1032 }
1033 
1034 unsigned RISCVTargetLowering::getSubregIndexByMVT(MVT VT, unsigned Index) {
1035   RISCVVLMUL LMUL = getLMUL(VT);
1036   if (LMUL == RISCVVLMUL::LMUL_F8 || LMUL == RISCVVLMUL::LMUL_F4 ||
1037       LMUL == RISCVVLMUL::LMUL_F2 || LMUL == RISCVVLMUL::LMUL_1) {
1038     static_assert(RISCV::sub_vrm1_7 == RISCV::sub_vrm1_0 + 7,
1039                   "Unexpected subreg numbering");
1040     return RISCV::sub_vrm1_0 + Index;
1041   }
1042   if (LMUL == RISCVVLMUL::LMUL_2) {
1043     static_assert(RISCV::sub_vrm2_3 == RISCV::sub_vrm2_0 + 3,
1044                   "Unexpected subreg numbering");
1045     return RISCV::sub_vrm2_0 + Index;
1046   }
1047   if (LMUL == RISCVVLMUL::LMUL_4) {
1048     static_assert(RISCV::sub_vrm4_1 == RISCV::sub_vrm4_0 + 1,
1049                   "Unexpected subreg numbering");
1050     return RISCV::sub_vrm4_0 + Index;
1051   }
1052   llvm_unreachable("Invalid vector type.");
1053 }
1054 
1055 unsigned RISCVTargetLowering::getRegClassIDForVecVT(MVT VT) {
1056   if (VT.getVectorElementType() == MVT::i1)
1057     return RISCV::VRRegClassID;
1058   return getRegClassIDForLMUL(getLMUL(VT));
1059 }
1060 
1061 // Attempt to decompose a subvector insert/extract between VecVT and
1062 // SubVecVT via subregister indices. Returns the subregister index that
1063 // can perform the subvector insert/extract with the given element index, as
1064 // well as the index corresponding to any leftover subvectors that must be
1065 // further inserted/extracted within the register class for SubVecVT.
1066 std::pair<unsigned, unsigned>
1067 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs(
1068     MVT VecVT, MVT SubVecVT, unsigned InsertExtractIdx,
1069     const RISCVRegisterInfo *TRI) {
1070   static_assert((RISCV::VRM8RegClassID > RISCV::VRM4RegClassID &&
1071                  RISCV::VRM4RegClassID > RISCV::VRM2RegClassID &&
1072                  RISCV::VRM2RegClassID > RISCV::VRRegClassID),
1073                 "Register classes not ordered");
1074   unsigned VecRegClassID = getRegClassIDForVecVT(VecVT);
1075   unsigned SubRegClassID = getRegClassIDForVecVT(SubVecVT);
1076   // Try to compose a subregister index that takes us from the incoming
1077   // LMUL>1 register class down to the outgoing one. At each step we half
1078   // the LMUL:
1079   //   nxv16i32@12 -> nxv2i32: sub_vrm4_1_then_sub_vrm2_1_then_sub_vrm1_0
1080   // Note that this is not guaranteed to find a subregister index, such as
1081   // when we are extracting from one VR type to another.
1082   unsigned SubRegIdx = RISCV::NoSubRegister;
1083   for (const unsigned RCID :
1084        {RISCV::VRM4RegClassID, RISCV::VRM2RegClassID, RISCV::VRRegClassID})
1085     if (VecRegClassID > RCID && SubRegClassID <= RCID) {
1086       VecVT = VecVT.getHalfNumVectorElementsVT();
1087       bool IsHi =
1088           InsertExtractIdx >= VecVT.getVectorElementCount().getKnownMinValue();
1089       SubRegIdx = TRI->composeSubRegIndices(SubRegIdx,
1090                                             getSubregIndexByMVT(VecVT, IsHi));
1091       if (IsHi)
1092         InsertExtractIdx -= VecVT.getVectorElementCount().getKnownMinValue();
1093     }
1094   return {SubRegIdx, InsertExtractIdx};
1095 }
1096 
1097 // Return the largest legal scalable vector type that matches VT's element type.
1098 MVT RISCVTargetLowering::getContainerForFixedLengthVector(
1099     const TargetLowering &TLI, MVT VT, const RISCVSubtarget &Subtarget) {
1100   assert(VT.isFixedLengthVector() && TLI.isTypeLegal(VT) &&
1101          "Expected legal fixed length vector!");
1102 
1103   unsigned LMul = Subtarget.getLMULForFixedLengthVector(VT);
1104   assert(LMul <= 8 && isPowerOf2_32(LMul) && "Unexpected LMUL!");
1105 
1106   MVT EltVT = VT.getVectorElementType();
1107   switch (EltVT.SimpleTy) {
1108   default:
1109     llvm_unreachable("unexpected element type for RVV container");
1110   case MVT::i1: {
1111     // Masks are calculated assuming 8-bit elements since that's when we need
1112     // the most elements.
1113     unsigned EltsPerBlock = RISCV::RVVBitsPerBlock / 8;
1114     return MVT::getScalableVectorVT(MVT::i1, LMul * EltsPerBlock);
1115   }
1116   case MVT::i8:
1117   case MVT::i16:
1118   case MVT::i32:
1119   case MVT::i64:
1120   case MVT::f16:
1121   case MVT::f32:
1122   case MVT::f64: {
1123     unsigned EltsPerBlock = RISCV::RVVBitsPerBlock / EltVT.getSizeInBits();
1124     return MVT::getScalableVectorVT(EltVT, LMul * EltsPerBlock);
1125   }
1126   }
1127 }
1128 
1129 MVT RISCVTargetLowering::getContainerForFixedLengthVector(
1130     SelectionDAG &DAG, MVT VT, const RISCVSubtarget &Subtarget) {
1131   return getContainerForFixedLengthVector(DAG.getTargetLoweringInfo(), VT,
1132                                           Subtarget);
1133 }
1134 
1135 MVT RISCVTargetLowering::getContainerForFixedLengthVector(MVT VT) const {
1136   return getContainerForFixedLengthVector(*this, VT, getSubtarget());
1137 }
1138 
1139 // Grow V to consume an entire RVV register.
1140 static SDValue convertToScalableVector(EVT VT, SDValue V, SelectionDAG &DAG,
1141                                        const RISCVSubtarget &Subtarget) {
1142   assert(VT.isScalableVector() &&
1143          "Expected to convert into a scalable vector!");
1144   assert(V.getValueType().isFixedLengthVector() &&
1145          "Expected a fixed length vector operand!");
1146   SDLoc DL(V);
1147   SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT());
1148   return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, DAG.getUNDEF(VT), V, Zero);
1149 }
1150 
1151 // Shrink V so it's just big enough to maintain a VT's worth of data.
1152 static SDValue convertFromScalableVector(EVT VT, SDValue V, SelectionDAG &DAG,
1153                                          const RISCVSubtarget &Subtarget) {
1154   assert(VT.isFixedLengthVector() &&
1155          "Expected to convert into a fixed length vector!");
1156   assert(V.getValueType().isScalableVector() &&
1157          "Expected a scalable vector operand!");
1158   SDLoc DL(V);
1159   SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT());
1160   return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V, Zero);
1161 }
1162 
1163 // Gets the two common "VL" operands: an all-ones mask and the vector length.
1164 // VecVT is a vector type, either fixed-length or scalable, and ContainerVT is
1165 // the vector type that it is contained in.
1166 static std::pair<SDValue, SDValue>
1167 getDefaultVLOps(MVT VecVT, MVT ContainerVT, SDLoc DL, SelectionDAG &DAG,
1168                 const RISCVSubtarget &Subtarget) {
1169   assert(ContainerVT.isScalableVector() && "Expecting scalable container type");
1170   MVT XLenVT = Subtarget.getXLenVT();
1171   SDValue VL = VecVT.isFixedLengthVector()
1172                    ? DAG.getConstant(VecVT.getVectorNumElements(), DL, XLenVT)
1173                    : DAG.getRegister(RISCV::X0, XLenVT);
1174   MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
1175   SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
1176   return {Mask, VL};
1177 }
1178 
1179 // As above but assuming the given type is a scalable vector type.
1180 static std::pair<SDValue, SDValue>
1181 getDefaultScalableVLOps(MVT VecVT, SDLoc DL, SelectionDAG &DAG,
1182                         const RISCVSubtarget &Subtarget) {
1183   assert(VecVT.isScalableVector() && "Expecting a scalable vector");
1184   return getDefaultVLOps(VecVT, VecVT, DL, DAG, Subtarget);
1185 }
1186 
1187 // The state of RVV BUILD_VECTOR and VECTOR_SHUFFLE lowering is that very few
1188 // of either is (currently) supported. This can get us into an infinite loop
1189 // where we try to lower a BUILD_VECTOR as a VECTOR_SHUFFLE as a BUILD_VECTOR
1190 // as a ..., etc.
1191 // Until either (or both) of these can reliably lower any node, reporting that
1192 // we don't want to expand BUILD_VECTORs via VECTOR_SHUFFLEs at least breaks
1193 // the infinite loop. Note that this lowers BUILD_VECTOR through the stack,
1194 // which is not desirable.
1195 bool RISCVTargetLowering::shouldExpandBuildVectorWithShuffles(
1196     EVT VT, unsigned DefinedValues) const {
1197   return false;
1198 }
1199 
1200 bool RISCVTargetLowering::isShuffleMaskLegal(ArrayRef<int> M, EVT VT) const {
1201   // Only splats are currently supported.
1202   if (ShuffleVectorSDNode::isSplatMask(M.data(), VT))
1203     return true;
1204 
1205   return false;
1206 }
1207 
1208 static SDValue lowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG,
1209                                  const RISCVSubtarget &Subtarget) {
1210   MVT VT = Op.getSimpleValueType();
1211   assert(VT.isFixedLengthVector() && "Unexpected vector!");
1212 
1213   MVT ContainerVT =
1214       RISCVTargetLowering::getContainerForFixedLengthVector(DAG, VT, Subtarget);
1215 
1216   SDLoc DL(Op);
1217   SDValue Mask, VL;
1218   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
1219 
1220   MVT XLenVT = Subtarget.getXLenVT();
1221   unsigned NumElts = Op.getNumOperands();
1222 
1223   if (VT.getVectorElementType() == MVT::i1) {
1224     if (ISD::isBuildVectorAllZeros(Op.getNode())) {
1225       SDValue VMClr = DAG.getNode(RISCVISD::VMCLR_VL, DL, ContainerVT, VL);
1226       return convertFromScalableVector(VT, VMClr, DAG, Subtarget);
1227     }
1228 
1229     if (ISD::isBuildVectorAllOnes(Op.getNode())) {
1230       SDValue VMSet = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL);
1231       return convertFromScalableVector(VT, VMSet, DAG, Subtarget);
1232     }
1233 
1234     // Lower constant mask BUILD_VECTORs via an integer vector type, in
1235     // scalar integer chunks whose bit-width depends on the number of mask
1236     // bits and XLEN.
1237     // First, determine the most appropriate scalar integer type to use. This
1238     // is at most XLenVT, but may be shrunk to a smaller vector element type
1239     // according to the size of the final vector - use i8 chunks rather than
1240     // XLenVT if we're producing a v8i1. This results in more consistent
1241     // codegen across RV32 and RV64.
1242     // If we have to use more than one INSERT_VECTOR_ELT then this optimization
1243     // is likely to increase code size; avoid peforming it in such a case.
1244     unsigned NumViaIntegerBits =
1245         std::min(std::max(NumElts, 8u), Subtarget.getXLen());
1246     if (ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) &&
1247         (!DAG.shouldOptForSize() || NumElts <= NumViaIntegerBits)) {
1248       // Now we can create our integer vector type. Note that it may be larger
1249       // than the resulting mask type: v4i1 would use v1i8 as its integer type.
1250       MVT IntegerViaVecVT =
1251           MVT::getVectorVT(MVT::getIntegerVT(NumViaIntegerBits),
1252                            divideCeil(NumElts, NumViaIntegerBits));
1253 
1254       uint64_t Bits = 0;
1255       unsigned BitPos = 0, IntegerEltIdx = 0;
1256       SDValue Vec = DAG.getUNDEF(IntegerViaVecVT);
1257 
1258       for (unsigned I = 0; I < NumElts; I++, BitPos++) {
1259         // Once we accumulate enough bits to fill our scalar type, insert into
1260         // our vector and clear our accumulated data.
1261         if (I != 0 && I % NumViaIntegerBits == 0) {
1262           if (NumViaIntegerBits <= 32)
1263             Bits = SignExtend64(Bits, 32);
1264           SDValue Elt = DAG.getConstant(Bits, DL, XLenVT);
1265           Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec,
1266                             Elt, DAG.getConstant(IntegerEltIdx, DL, XLenVT));
1267           Bits = 0;
1268           BitPos = 0;
1269           IntegerEltIdx++;
1270         }
1271         SDValue V = Op.getOperand(I);
1272         bool BitValue = !V.isUndef() && cast<ConstantSDNode>(V)->getZExtValue();
1273         Bits |= ((uint64_t)BitValue << BitPos);
1274       }
1275 
1276       // Insert the (remaining) scalar value into position in our integer
1277       // vector type.
1278       if (NumViaIntegerBits <= 32)
1279         Bits = SignExtend64(Bits, 32);
1280       SDValue Elt = DAG.getConstant(Bits, DL, XLenVT);
1281       Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec, Elt,
1282                         DAG.getConstant(IntegerEltIdx, DL, XLenVT));
1283 
1284       if (NumElts < NumViaIntegerBits) {
1285         // If we're producing a smaller vector than our minimum legal integer
1286         // type, bitcast to the equivalent (known-legal) mask type, and extract
1287         // our final mask.
1288         assert(IntegerViaVecVT == MVT::v1i8 && "Unexpected mask vector type");
1289         Vec = DAG.getBitcast(MVT::v8i1, Vec);
1290         Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Vec,
1291                           DAG.getConstant(0, DL, XLenVT));
1292       } else {
1293         // Else we must have produced an integer type with the same size as the
1294         // mask type; bitcast for the final result.
1295         assert(VT.getSizeInBits() == IntegerViaVecVT.getSizeInBits());
1296         Vec = DAG.getBitcast(VT, Vec);
1297       }
1298 
1299       return Vec;
1300     }
1301 
1302     return SDValue();
1303   }
1304 
1305   if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) {
1306     unsigned Opc = VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL
1307                                         : RISCVISD::VMV_V_X_VL;
1308     Splat = DAG.getNode(Opc, DL, ContainerVT, Splat, VL);
1309     return convertFromScalableVector(VT, Splat, DAG, Subtarget);
1310   }
1311 
1312   // Try and match an index sequence, which we can lower directly to the vid
1313   // instruction. An all-undef vector is matched by getSplatValue, above.
1314   if (VT.isInteger()) {
1315     bool IsVID = true;
1316     for (unsigned I = 0; I < NumElts && IsVID; I++)
1317       IsVID &= Op.getOperand(I).isUndef() ||
1318                (isa<ConstantSDNode>(Op.getOperand(I)) &&
1319                 Op.getConstantOperandVal(I) == I);
1320 
1321     if (IsVID) {
1322       SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, ContainerVT, Mask, VL);
1323       return convertFromScalableVector(VT, VID, DAG, Subtarget);
1324     }
1325   }
1326 
1327   // Attempt to detect "hidden" splats, which only reveal themselves as splats
1328   // when re-interpreted as a vector with a larger element type. For example,
1329   //   v4i16 = build_vector i16 0, i16 1, i16 0, i16 1
1330   // could be instead splat as
1331   //   v2i32 = build_vector i32 0x00010000, i32 0x00010000
1332   // TODO: This optimization could also work on non-constant splats, but it
1333   // would require bit-manipulation instructions to construct the splat value.
1334   SmallVector<SDValue> Sequence;
1335   unsigned EltBitSize = VT.getScalarSizeInBits();
1336   const auto *BV = cast<BuildVectorSDNode>(Op);
1337   if (VT.isInteger() && EltBitSize < 64 &&
1338       ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) &&
1339       BV->getRepeatedSequence(Sequence) &&
1340       (Sequence.size() * EltBitSize) <= 64) {
1341     unsigned SeqLen = Sequence.size();
1342     MVT ViaIntVT = MVT::getIntegerVT(EltBitSize * SeqLen);
1343     MVT ViaVecVT = MVT::getVectorVT(ViaIntVT, NumElts / SeqLen);
1344     assert((ViaIntVT == MVT::i16 || ViaIntVT == MVT::i32 ||
1345             ViaIntVT == MVT::i64) &&
1346            "Unexpected sequence type");
1347 
1348     unsigned EltIdx = 0;
1349     uint64_t EltMask = maskTrailingOnes<uint64_t>(EltBitSize);
1350     uint64_t SplatValue = 0;
1351     // Construct the amalgamated value which can be splatted as this larger
1352     // vector type.
1353     for (const auto &SeqV : Sequence) {
1354       if (!SeqV.isUndef())
1355         SplatValue |= ((cast<ConstantSDNode>(SeqV)->getZExtValue() & EltMask)
1356                        << (EltIdx * EltBitSize));
1357       EltIdx++;
1358     }
1359 
1360     // On RV64, sign-extend from 32 to 64 bits where possible in order to
1361     // achieve better constant materializion.
1362     if (Subtarget.is64Bit() && ViaIntVT == MVT::i32)
1363       SplatValue = SignExtend64(SplatValue, 32);
1364 
1365     // Since we can't introduce illegal i64 types at this stage, we can only
1366     // perform an i64 splat on RV32 if it is its own sign-extended value. That
1367     // way we can use RVV instructions to splat.
1368     assert((ViaIntVT.bitsLE(XLenVT) ||
1369             (!Subtarget.is64Bit() && ViaIntVT == MVT::i64)) &&
1370            "Unexpected bitcast sequence");
1371     if (ViaIntVT.bitsLE(XLenVT) || isInt<32>(SplatValue)) {
1372       SDValue ViaVL =
1373           DAG.getConstant(ViaVecVT.getVectorNumElements(), DL, XLenVT);
1374       MVT ViaContainerVT =
1375           RISCVTargetLowering::getContainerForFixedLengthVector(DAG, ViaVecVT,
1376                                                                 Subtarget);
1377       SDValue Splat =
1378           DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ViaContainerVT,
1379                       DAG.getConstant(SplatValue, DL, XLenVT), ViaVL);
1380       Splat = convertFromScalableVector(ViaVecVT, Splat, DAG, Subtarget);
1381       return DAG.getBitcast(VT, Splat);
1382     }
1383   }
1384 
1385   // Try and optimize BUILD_VECTORs with "dominant values" - these are values
1386   // which constitute a large proportion of the elements. In such cases we can
1387   // splat a vector with the dominant element and make up the shortfall with
1388   // INSERT_VECTOR_ELTs.
1389   // Note that this includes vectors of 2 elements by association. The
1390   // upper-most element is the "dominant" one, allowing us to use a splat to
1391   // "insert" the upper element, and an insert of the lower element at position
1392   // 0, which improves codegen.
1393   SDValue DominantValue;
1394   unsigned MostCommonCount = 0;
1395   DenseMap<SDValue, unsigned> ValueCounts;
1396   unsigned NumUndefElts =
1397       count_if(Op->op_values(), [](const SDValue &V) { return V.isUndef(); });
1398 
1399   for (SDValue V : Op->op_values()) {
1400     if (V.isUndef())
1401       continue;
1402 
1403     ValueCounts.insert(std::make_pair(V, 0));
1404     unsigned &Count = ValueCounts[V];
1405 
1406     // Is this value dominant? In case of a tie, prefer the highest element as
1407     // it's cheaper to insert near the beginning of a vector than it is at the
1408     // end.
1409     if (++Count >= MostCommonCount) {
1410       DominantValue = V;
1411       MostCommonCount = Count;
1412     }
1413   }
1414 
1415   assert(DominantValue && "Not expecting an all-undef BUILD_VECTOR");
1416   unsigned NumDefElts = NumElts - NumUndefElts;
1417   unsigned DominantValueCountThreshold = NumDefElts <= 2 ? 0 : NumDefElts - 2;
1418 
1419   // Don't perform this optimization when optimizing for size, since
1420   // materializing elements and inserting them tends to cause code bloat.
1421   if (!DAG.shouldOptForSize() &&
1422       ((MostCommonCount > DominantValueCountThreshold) ||
1423        (ValueCounts.size() <= Log2_32(NumDefElts)))) {
1424     // Start by splatting the most common element.
1425     SDValue Vec = DAG.getSplatBuildVector(VT, DL, DominantValue);
1426 
1427     DenseSet<SDValue> Processed{DominantValue};
1428     MVT SelMaskTy = VT.changeVectorElementType(MVT::i1);
1429     for (const auto &OpIdx : enumerate(Op->ops())) {
1430       const SDValue &V = OpIdx.value();
1431       if (V.isUndef() || !Processed.insert(V).second)
1432         continue;
1433       if (ValueCounts[V] == 1) {
1434         Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Vec, V,
1435                           DAG.getConstant(OpIdx.index(), DL, XLenVT));
1436       } else {
1437         // Blend in all instances of this value using a VSELECT, using a
1438         // mask where each bit signals whether that element is the one
1439         // we're after.
1440         SmallVector<SDValue> Ops;
1441         transform(Op->op_values(), std::back_inserter(Ops), [&](SDValue V1) {
1442           return DAG.getConstant(V == V1, DL, XLenVT);
1443         });
1444         Vec = DAG.getNode(ISD::VSELECT, DL, VT,
1445                           DAG.getBuildVector(SelMaskTy, DL, Ops),
1446                           DAG.getSplatBuildVector(VT, DL, V), Vec);
1447       }
1448     }
1449 
1450     return Vec;
1451   }
1452 
1453   return SDValue();
1454 }
1455 
1456 static SDValue lowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG,
1457                                    const RISCVSubtarget &Subtarget) {
1458   SDValue V1 = Op.getOperand(0);
1459   SDValue V2 = Op.getOperand(1);
1460   SDLoc DL(Op);
1461   MVT XLenVT = Subtarget.getXLenVT();
1462   MVT VT = Op.getSimpleValueType();
1463   unsigned NumElts = VT.getVectorNumElements();
1464   ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
1465 
1466   if (SVN->isSplat()) {
1467     int Lane = SVN->getSplatIndex();
1468     if (Lane >= 0) {
1469       MVT ContainerVT = RISCVTargetLowering::getContainerForFixedLengthVector(
1470           DAG, VT, Subtarget);
1471 
1472       V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget);
1473       assert(Lane < (int)NumElts && "Unexpected lane!");
1474 
1475       SDValue Mask, VL;
1476       std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
1477       SDValue Gather =
1478           DAG.getNode(RISCVISD::VRGATHER_VX_VL, DL, ContainerVT, V1,
1479                       DAG.getConstant(Lane, DL, XLenVT), Mask, VL);
1480       return convertFromScalableVector(VT, Gather, DAG, Subtarget);
1481     }
1482   }
1483 
1484   // Detect shuffles which can be re-expressed as vector selects.
1485   SmallVector<SDValue> MaskVals;
1486   // By default we preserve the original operand order, and select LHS as true
1487   // and RHS as false. However, since RVV vector selects may feature splats but
1488   // only on the LHS, we may choose to invert our mask and instead select
1489   // between RHS and LHS.
1490   bool SwapOps = DAG.isSplatValue(V2) && !DAG.isSplatValue(V1);
1491 
1492   bool IsSelect = all_of(enumerate(SVN->getMask()), [&](const auto &MaskIdx) {
1493     int MaskIndex = MaskIdx.value();
1494     bool SelectMaskVal = (MaskIndex < (int)NumElts) ^ SwapOps;
1495     MaskVals.push_back(DAG.getConstant(SelectMaskVal, DL, XLenVT));
1496     return MaskIndex < 0 || MaskIdx.index() == (unsigned)MaskIndex % NumElts;
1497   });
1498 
1499   if (IsSelect) {
1500     assert(MaskVals.size() == NumElts && "Unexpected select-like shuffle");
1501     MVT MaskVT = MVT::getVectorVT(MVT::i1, NumElts);
1502     SDValue SelectMask = DAG.getBuildVector(MaskVT, DL, MaskVals);
1503     return DAG.getNode(ISD::VSELECT, DL, VT, SelectMask, SwapOps ? V2 : V1,
1504                        SwapOps ? V1 : V2);
1505   }
1506 
1507   return SDValue();
1508 }
1509 
1510 static SDValue getRVVFPExtendOrRound(SDValue Op, MVT VT, MVT ContainerVT,
1511                                      SDLoc DL, SelectionDAG &DAG,
1512                                      const RISCVSubtarget &Subtarget) {
1513   if (VT.isScalableVector())
1514     return DAG.getFPExtendOrRound(Op, DL, VT);
1515   assert(VT.isFixedLengthVector() &&
1516          "Unexpected value type for RVV FP extend/round lowering");
1517   SDValue Mask, VL;
1518   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
1519   unsigned RVVOpc = ContainerVT.bitsGT(Op.getSimpleValueType())
1520                         ? RISCVISD::FP_EXTEND_VL
1521                         : RISCVISD::FP_ROUND_VL;
1522   return DAG.getNode(RVVOpc, DL, ContainerVT, Op, Mask, VL);
1523 }
1524 
1525 SDValue RISCVTargetLowering::LowerOperation(SDValue Op,
1526                                             SelectionDAG &DAG) const {
1527   switch (Op.getOpcode()) {
1528   default:
1529     report_fatal_error("unimplemented operand");
1530   case ISD::GlobalAddress:
1531     return lowerGlobalAddress(Op, DAG);
1532   case ISD::BlockAddress:
1533     return lowerBlockAddress(Op, DAG);
1534   case ISD::ConstantPool:
1535     return lowerConstantPool(Op, DAG);
1536   case ISD::JumpTable:
1537     return lowerJumpTable(Op, DAG);
1538   case ISD::GlobalTLSAddress:
1539     return lowerGlobalTLSAddress(Op, DAG);
1540   case ISD::SELECT:
1541     return lowerSELECT(Op, DAG);
1542   case ISD::BRCOND:
1543     return lowerBRCOND(Op, DAG);
1544   case ISD::VASTART:
1545     return lowerVASTART(Op, DAG);
1546   case ISD::FRAMEADDR:
1547     return lowerFRAMEADDR(Op, DAG);
1548   case ISD::RETURNADDR:
1549     return lowerRETURNADDR(Op, DAG);
1550   case ISD::SHL_PARTS:
1551     return lowerShiftLeftParts(Op, DAG);
1552   case ISD::SRA_PARTS:
1553     return lowerShiftRightParts(Op, DAG, true);
1554   case ISD::SRL_PARTS:
1555     return lowerShiftRightParts(Op, DAG, false);
1556   case ISD::BITCAST: {
1557     SDLoc DL(Op);
1558     EVT VT = Op.getValueType();
1559     SDValue Op0 = Op.getOperand(0);
1560     EVT Op0VT = Op0.getValueType();
1561     MVT XLenVT = Subtarget.getXLenVT();
1562     if (VT.isFixedLengthVector()) {
1563       // We can handle fixed length vector bitcasts with a simple replacement
1564       // in isel.
1565       if (Op0VT.isFixedLengthVector())
1566         return Op;
1567       // When bitcasting from scalar to fixed-length vector, insert the scalar
1568       // into a one-element vector of the result type, and perform a vector
1569       // bitcast.
1570       if (!Op0VT.isVector()) {
1571         auto BVT = EVT::getVectorVT(*DAG.getContext(), Op0VT, 1);
1572         return DAG.getBitcast(VT, DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, BVT,
1573                                               DAG.getUNDEF(BVT), Op0,
1574                                               DAG.getConstant(0, DL, XLenVT)));
1575       }
1576       return SDValue();
1577     }
1578     // Custom-legalize bitcasts from fixed-length vector types to scalar types
1579     // thus: bitcast the vector to a one-element vector type whose element type
1580     // is the same as the result type, and extract the first element.
1581     if (!VT.isVector() && Op0VT.isFixedLengthVector()) {
1582       LLVMContext &Context = *DAG.getContext();
1583       SDValue BVec = DAG.getBitcast(EVT::getVectorVT(Context, VT, 1), Op0);
1584       return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec,
1585                          DAG.getConstant(0, DL, XLenVT));
1586     }
1587     if (VT == MVT::f16 && Op0VT == MVT::i16 && Subtarget.hasStdExtZfh()) {
1588       SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Op0);
1589       SDValue FPConv = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, NewOp0);
1590       return FPConv;
1591     }
1592     if (VT == MVT::f32 && Op0VT == MVT::i32 && Subtarget.is64Bit() &&
1593         Subtarget.hasStdExtF()) {
1594       SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
1595       SDValue FPConv =
1596           DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, NewOp0);
1597       return FPConv;
1598     }
1599     return SDValue();
1600   }
1601   case ISD::INTRINSIC_WO_CHAIN:
1602     return LowerINTRINSIC_WO_CHAIN(Op, DAG);
1603   case ISD::INTRINSIC_W_CHAIN:
1604     return LowerINTRINSIC_W_CHAIN(Op, DAG);
1605   case ISD::BSWAP:
1606   case ISD::BITREVERSE: {
1607     // Convert BSWAP/BITREVERSE to GREVI to enable GREVI combinining.
1608     assert(Subtarget.hasStdExtZbp() && "Unexpected custom legalisation");
1609     MVT VT = Op.getSimpleValueType();
1610     SDLoc DL(Op);
1611     // Start with the maximum immediate value which is the bitwidth - 1.
1612     unsigned Imm = VT.getSizeInBits() - 1;
1613     // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits.
1614     if (Op.getOpcode() == ISD::BSWAP)
1615       Imm &= ~0x7U;
1616     return DAG.getNode(RISCVISD::GREVI, DL, VT, Op.getOperand(0),
1617                        DAG.getTargetConstant(Imm, DL, Subtarget.getXLenVT()));
1618   }
1619   case ISD::FSHL:
1620   case ISD::FSHR: {
1621     MVT VT = Op.getSimpleValueType();
1622     assert(VT == Subtarget.getXLenVT() && "Unexpected custom legalization");
1623     SDLoc DL(Op);
1624     if (Op.getOperand(2).getOpcode() == ISD::Constant)
1625       return Op;
1626     // FSL/FSR take a log2(XLen)+1 bit shift amount but XLenVT FSHL/FSHR only
1627     // use log(XLen) bits. Mask the shift amount accordingly.
1628     unsigned ShAmtWidth = Subtarget.getXLen() - 1;
1629     SDValue ShAmt = DAG.getNode(ISD::AND, DL, VT, Op.getOperand(2),
1630                                 DAG.getConstant(ShAmtWidth, DL, VT));
1631     unsigned Opc = Op.getOpcode() == ISD::FSHL ? RISCVISD::FSL : RISCVISD::FSR;
1632     return DAG.getNode(Opc, DL, VT, Op.getOperand(0), Op.getOperand(1), ShAmt);
1633   }
1634   case ISD::TRUNCATE: {
1635     SDLoc DL(Op);
1636     MVT VT = Op.getSimpleValueType();
1637     // Only custom-lower vector truncates
1638     if (!VT.isVector())
1639       return Op;
1640 
1641     // Truncates to mask types are handled differently
1642     if (VT.getVectorElementType() == MVT::i1)
1643       return lowerVectorMaskTrunc(Op, DAG);
1644 
1645     // RVV only has truncates which operate from SEW*2->SEW, so lower arbitrary
1646     // truncates as a series of "RISCVISD::TRUNCATE_VECTOR_VL" nodes which
1647     // truncate by one power of two at a time.
1648     MVT DstEltVT = VT.getVectorElementType();
1649 
1650     SDValue Src = Op.getOperand(0);
1651     MVT SrcVT = Src.getSimpleValueType();
1652     MVT SrcEltVT = SrcVT.getVectorElementType();
1653 
1654     assert(DstEltVT.bitsLT(SrcEltVT) &&
1655            isPowerOf2_64(DstEltVT.getSizeInBits()) &&
1656            isPowerOf2_64(SrcEltVT.getSizeInBits()) &&
1657            "Unexpected vector truncate lowering");
1658 
1659     MVT ContainerVT = SrcVT;
1660     if (SrcVT.isFixedLengthVector()) {
1661       ContainerVT = getContainerForFixedLengthVector(SrcVT);
1662       Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget);
1663     }
1664 
1665     SDValue Result = Src;
1666     SDValue Mask, VL;
1667     std::tie(Mask, VL) =
1668         getDefaultVLOps(SrcVT, ContainerVT, DL, DAG, Subtarget);
1669     LLVMContext &Context = *DAG.getContext();
1670     const ElementCount Count = ContainerVT.getVectorElementCount();
1671     do {
1672       SrcEltVT = MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2);
1673       EVT ResultVT = EVT::getVectorVT(Context, SrcEltVT, Count);
1674       Result = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, ResultVT, Result,
1675                            Mask, VL);
1676     } while (SrcEltVT != DstEltVT);
1677 
1678     if (SrcVT.isFixedLengthVector())
1679       Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
1680 
1681     return Result;
1682   }
1683   case ISD::ANY_EXTEND:
1684   case ISD::ZERO_EXTEND:
1685     if (Op.getOperand(0).getValueType().isVector() &&
1686         Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1)
1687       return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ 1);
1688     return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VZEXT_VL);
1689   case ISD::SIGN_EXTEND:
1690     if (Op.getOperand(0).getValueType().isVector() &&
1691         Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1)
1692       return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ -1);
1693     return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VSEXT_VL);
1694   case ISD::SPLAT_VECTOR_PARTS:
1695     return lowerSPLAT_VECTOR_PARTS(Op, DAG);
1696   case ISD::INSERT_VECTOR_ELT:
1697     return lowerINSERT_VECTOR_ELT(Op, DAG);
1698   case ISD::EXTRACT_VECTOR_ELT:
1699     return lowerEXTRACT_VECTOR_ELT(Op, DAG);
1700   case ISD::VSCALE: {
1701     MVT VT = Op.getSimpleValueType();
1702     SDLoc DL(Op);
1703     SDValue VLENB = DAG.getNode(RISCVISD::READ_VLENB, DL, VT);
1704     // We define our scalable vector types for lmul=1 to use a 64 bit known
1705     // minimum size. e.g. <vscale x 2 x i32>. VLENB is in bytes so we calculate
1706     // vscale as VLENB / 8.
1707     assert(RISCV::RVVBitsPerBlock == 64 && "Unexpected bits per block!");
1708     SDValue VScale = DAG.getNode(ISD::SRL, DL, VT, VLENB,
1709                                  DAG.getConstant(3, DL, VT));
1710     return DAG.getNode(ISD::MUL, DL, VT, VScale, Op.getOperand(0));
1711   }
1712   case ISD::FP_EXTEND: {
1713     // RVV can only do fp_extend to types double the size as the source. We
1714     // custom-lower f16->f64 extensions to two hops of ISD::FP_EXTEND, going
1715     // via f32.
1716     SDLoc DL(Op);
1717     MVT VT = Op.getSimpleValueType();
1718     SDValue Src = Op.getOperand(0);
1719     MVT SrcVT = Src.getSimpleValueType();
1720 
1721     // Prepare any fixed-length vector operands.
1722     MVT ContainerVT = VT;
1723     if (SrcVT.isFixedLengthVector()) {
1724       ContainerVT = getContainerForFixedLengthVector(VT);
1725       MVT SrcContainerVT =
1726           ContainerVT.changeVectorElementType(SrcVT.getVectorElementType());
1727       Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget);
1728     }
1729 
1730     if (!VT.isVector() || VT.getVectorElementType() != MVT::f64 ||
1731         SrcVT.getVectorElementType() != MVT::f16) {
1732       // For scalable vectors, we only need to close the gap between
1733       // vXf16->vXf64.
1734       if (!VT.isFixedLengthVector())
1735         return Op;
1736       // For fixed-length vectors, lower the FP_EXTEND to a custom "VL" version.
1737       Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget);
1738       return convertFromScalableVector(VT, Src, DAG, Subtarget);
1739     }
1740 
1741     MVT InterVT = VT.changeVectorElementType(MVT::f32);
1742     MVT InterContainerVT = ContainerVT.changeVectorElementType(MVT::f32);
1743     SDValue IntermediateExtend = getRVVFPExtendOrRound(
1744         Src, InterVT, InterContainerVT, DL, DAG, Subtarget);
1745 
1746     SDValue Extend = getRVVFPExtendOrRound(IntermediateExtend, VT, ContainerVT,
1747                                            DL, DAG, Subtarget);
1748     if (VT.isFixedLengthVector())
1749       return convertFromScalableVector(VT, Extend, DAG, Subtarget);
1750     return Extend;
1751   }
1752   case ISD::FP_ROUND: {
1753     // RVV can only do fp_round to types half the size as the source. We
1754     // custom-lower f64->f16 rounds via RVV's round-to-odd float
1755     // conversion instruction.
1756     SDLoc DL(Op);
1757     MVT VT = Op.getSimpleValueType();
1758     SDValue Src = Op.getOperand(0);
1759     MVT SrcVT = Src.getSimpleValueType();
1760 
1761     // Prepare any fixed-length vector operands.
1762     MVT ContainerVT = VT;
1763     if (VT.isFixedLengthVector()) {
1764       MVT SrcContainerVT = getContainerForFixedLengthVector(SrcVT);
1765       ContainerVT =
1766           SrcContainerVT.changeVectorElementType(VT.getVectorElementType());
1767       Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget);
1768     }
1769 
1770     if (!VT.isVector() || VT.getVectorElementType() != MVT::f16 ||
1771         SrcVT.getVectorElementType() != MVT::f64) {
1772       // For scalable vectors, we only need to close the gap between
1773       // vXf64<->vXf16.
1774       if (!VT.isFixedLengthVector())
1775         return Op;
1776       // For fixed-length vectors, lower the FP_ROUND to a custom "VL" version.
1777       Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget);
1778       return convertFromScalableVector(VT, Src, DAG, Subtarget);
1779     }
1780 
1781     SDValue Mask, VL;
1782     std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
1783 
1784     MVT InterVT = ContainerVT.changeVectorElementType(MVT::f32);
1785     SDValue IntermediateRound =
1786         DAG.getNode(RISCVISD::VFNCVT_ROD_VL, DL, InterVT, Src, Mask, VL);
1787     SDValue Round = getRVVFPExtendOrRound(IntermediateRound, VT, ContainerVT,
1788                                           DL, DAG, Subtarget);
1789 
1790     if (VT.isFixedLengthVector())
1791       return convertFromScalableVector(VT, Round, DAG, Subtarget);
1792     return Round;
1793   }
1794   case ISD::FP_TO_SINT:
1795   case ISD::FP_TO_UINT:
1796   case ISD::SINT_TO_FP:
1797   case ISD::UINT_TO_FP: {
1798     // RVV can only do fp<->int conversions to types half/double the size as
1799     // the source. We custom-lower any conversions that do two hops into
1800     // sequences.
1801     MVT VT = Op.getSimpleValueType();
1802     if (!VT.isVector())
1803       return Op;
1804     SDLoc DL(Op);
1805     SDValue Src = Op.getOperand(0);
1806     MVT EltVT = VT.getVectorElementType();
1807     MVT SrcVT = Src.getSimpleValueType();
1808     MVT SrcEltVT = SrcVT.getVectorElementType();
1809     unsigned EltSize = EltVT.getSizeInBits();
1810     unsigned SrcEltSize = SrcEltVT.getSizeInBits();
1811     assert(isPowerOf2_32(EltSize) && isPowerOf2_32(SrcEltSize) &&
1812            "Unexpected vector element types");
1813 
1814     bool IsInt2FP = SrcEltVT.isInteger();
1815     // Widening conversions
1816     if (EltSize > SrcEltSize && (EltSize / SrcEltSize >= 4)) {
1817       if (IsInt2FP) {
1818         // Do a regular integer sign/zero extension then convert to float.
1819         MVT IVecVT = MVT::getVectorVT(MVT::getIntegerVT(EltVT.getSizeInBits()),
1820                                       VT.getVectorElementCount());
1821         unsigned ExtOpcode = Op.getOpcode() == ISD::UINT_TO_FP
1822                                  ? ISD::ZERO_EXTEND
1823                                  : ISD::SIGN_EXTEND;
1824         SDValue Ext = DAG.getNode(ExtOpcode, DL, IVecVT, Src);
1825         return DAG.getNode(Op.getOpcode(), DL, VT, Ext);
1826       }
1827       // FP2Int
1828       assert(SrcEltVT == MVT::f16 && "Unexpected FP_TO_[US]INT lowering");
1829       // Do one doubling fp_extend then complete the operation by converting
1830       // to int.
1831       MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount());
1832       SDValue FExt = DAG.getFPExtendOrRound(Src, DL, InterimFVT);
1833       return DAG.getNode(Op.getOpcode(), DL, VT, FExt);
1834     }
1835 
1836     // Narrowing conversions
1837     if (SrcEltSize > EltSize && (SrcEltSize / EltSize >= 4)) {
1838       if (IsInt2FP) {
1839         // One narrowing int_to_fp, then an fp_round.
1840         assert(EltVT == MVT::f16 && "Unexpected [US]_TO_FP lowering");
1841         MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount());
1842         SDValue Int2FP = DAG.getNode(Op.getOpcode(), DL, InterimFVT, Src);
1843         return DAG.getFPExtendOrRound(Int2FP, DL, VT);
1844       }
1845       // FP2Int
1846       // One narrowing fp_to_int, then truncate the integer. If the float isn't
1847       // representable by the integer, the result is poison.
1848       MVT IVecVT =
1849           MVT::getVectorVT(MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2),
1850                            VT.getVectorElementCount());
1851       SDValue FP2Int = DAG.getNode(Op.getOpcode(), DL, IVecVT, Src);
1852       return DAG.getNode(ISD::TRUNCATE, DL, VT, FP2Int);
1853     }
1854 
1855     // Scalable vectors can exit here. Patterns will handle equally-sized
1856     // conversions halving/doubling ones.
1857     if (!VT.isFixedLengthVector())
1858       return Op;
1859 
1860     // For fixed-length vectors we lower to a custom "VL" node.
1861     unsigned RVVOpc = 0;
1862     switch (Op.getOpcode()) {
1863     default:
1864       llvm_unreachable("Impossible opcode");
1865     case ISD::FP_TO_SINT:
1866       RVVOpc = RISCVISD::FP_TO_SINT_VL;
1867       break;
1868     case ISD::FP_TO_UINT:
1869       RVVOpc = RISCVISD::FP_TO_UINT_VL;
1870       break;
1871     case ISD::SINT_TO_FP:
1872       RVVOpc = RISCVISD::SINT_TO_FP_VL;
1873       break;
1874     case ISD::UINT_TO_FP:
1875       RVVOpc = RISCVISD::UINT_TO_FP_VL;
1876       break;
1877     }
1878 
1879     MVT ContainerVT, SrcContainerVT;
1880     // Derive the reference container type from the larger vector type.
1881     if (SrcEltSize > EltSize) {
1882       SrcContainerVT = getContainerForFixedLengthVector(SrcVT);
1883       ContainerVT =
1884           SrcContainerVT.changeVectorElementType(VT.getVectorElementType());
1885     } else {
1886       ContainerVT = getContainerForFixedLengthVector(VT);
1887       SrcContainerVT = ContainerVT.changeVectorElementType(SrcEltVT);
1888     }
1889 
1890     SDValue Mask, VL;
1891     std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
1892 
1893     Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget);
1894     Src = DAG.getNode(RVVOpc, DL, ContainerVT, Src, Mask, VL);
1895     return convertFromScalableVector(VT, Src, DAG, Subtarget);
1896   }
1897   case ISD::VECREDUCE_ADD:
1898   case ISD::VECREDUCE_UMAX:
1899   case ISD::VECREDUCE_SMAX:
1900   case ISD::VECREDUCE_UMIN:
1901   case ISD::VECREDUCE_SMIN:
1902     return lowerVECREDUCE(Op, DAG);
1903   case ISD::VECREDUCE_AND:
1904   case ISD::VECREDUCE_OR:
1905   case ISD::VECREDUCE_XOR:
1906     if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1)
1907       return lowerVectorMaskVECREDUCE(Op, DAG);
1908     return lowerVECREDUCE(Op, DAG);
1909   case ISD::VECREDUCE_FADD:
1910   case ISD::VECREDUCE_SEQ_FADD:
1911     return lowerFPVECREDUCE(Op, DAG);
1912   case ISD::INSERT_SUBVECTOR:
1913     return lowerINSERT_SUBVECTOR(Op, DAG);
1914   case ISD::EXTRACT_SUBVECTOR:
1915     return lowerEXTRACT_SUBVECTOR(Op, DAG);
1916   case ISD::STEP_VECTOR:
1917     return lowerSTEP_VECTOR(Op, DAG);
1918   case ISD::VECTOR_REVERSE:
1919     return lowerVECTOR_REVERSE(Op, DAG);
1920   case ISD::BUILD_VECTOR:
1921     return lowerBUILD_VECTOR(Op, DAG, Subtarget);
1922   case ISD::VECTOR_SHUFFLE:
1923     return lowerVECTOR_SHUFFLE(Op, DAG, Subtarget);
1924   case ISD::CONCAT_VECTORS: {
1925     // Split CONCAT_VECTORS into a series of INSERT_SUBVECTOR nodes. This is
1926     // better than going through the stack, as the default expansion does.
1927     SDLoc DL(Op);
1928     MVT VT = Op.getSimpleValueType();
1929     unsigned NumOpElts =
1930         Op.getOperand(0).getSimpleValueType().getVectorMinNumElements();
1931     SDValue Vec = DAG.getUNDEF(VT);
1932     for (const auto &OpIdx : enumerate(Op->ops()))
1933       Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, Vec, OpIdx.value(),
1934                         DAG.getIntPtrConstant(OpIdx.index() * NumOpElts, DL));
1935     return Vec;
1936   }
1937   case ISD::LOAD:
1938     return lowerFixedLengthVectorLoadToRVV(Op, DAG);
1939   case ISD::STORE:
1940     return lowerFixedLengthVectorStoreToRVV(Op, DAG);
1941   case ISD::MLOAD:
1942     return lowerMLOAD(Op, DAG);
1943   case ISD::MSTORE:
1944     return lowerMSTORE(Op, DAG);
1945   case ISD::SETCC:
1946     return lowerFixedLengthVectorSetccToRVV(Op, DAG);
1947   case ISD::ADD:
1948     return lowerToScalableOp(Op, DAG, RISCVISD::ADD_VL);
1949   case ISD::SUB:
1950     return lowerToScalableOp(Op, DAG, RISCVISD::SUB_VL);
1951   case ISD::MUL:
1952     return lowerToScalableOp(Op, DAG, RISCVISD::MUL_VL);
1953   case ISD::MULHS:
1954     return lowerToScalableOp(Op, DAG, RISCVISD::MULHS_VL);
1955   case ISD::MULHU:
1956     return lowerToScalableOp(Op, DAG, RISCVISD::MULHU_VL);
1957   case ISD::AND:
1958     return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMAND_VL,
1959                                               RISCVISD::AND_VL);
1960   case ISD::OR:
1961     return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMOR_VL,
1962                                               RISCVISD::OR_VL);
1963   case ISD::XOR:
1964     return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMXOR_VL,
1965                                               RISCVISD::XOR_VL);
1966   case ISD::SDIV:
1967     return lowerToScalableOp(Op, DAG, RISCVISD::SDIV_VL);
1968   case ISD::SREM:
1969     return lowerToScalableOp(Op, DAG, RISCVISD::SREM_VL);
1970   case ISD::UDIV:
1971     return lowerToScalableOp(Op, DAG, RISCVISD::UDIV_VL);
1972   case ISD::UREM:
1973     return lowerToScalableOp(Op, DAG, RISCVISD::UREM_VL);
1974   case ISD::SHL:
1975     return lowerToScalableOp(Op, DAG, RISCVISD::SHL_VL);
1976   case ISD::SRA:
1977     return lowerToScalableOp(Op, DAG, RISCVISD::SRA_VL);
1978   case ISD::SRL:
1979     return lowerToScalableOp(Op, DAG, RISCVISD::SRL_VL);
1980   case ISD::FADD:
1981     return lowerToScalableOp(Op, DAG, RISCVISD::FADD_VL);
1982   case ISD::FSUB:
1983     return lowerToScalableOp(Op, DAG, RISCVISD::FSUB_VL);
1984   case ISD::FMUL:
1985     return lowerToScalableOp(Op, DAG, RISCVISD::FMUL_VL);
1986   case ISD::FDIV:
1987     return lowerToScalableOp(Op, DAG, RISCVISD::FDIV_VL);
1988   case ISD::FNEG:
1989     return lowerToScalableOp(Op, DAG, RISCVISD::FNEG_VL);
1990   case ISD::FABS:
1991     return lowerToScalableOp(Op, DAG, RISCVISD::FABS_VL);
1992   case ISD::FSQRT:
1993     return lowerToScalableOp(Op, DAG, RISCVISD::FSQRT_VL);
1994   case ISD::FMA:
1995     return lowerToScalableOp(Op, DAG, RISCVISD::FMA_VL);
1996   case ISD::SMIN:
1997     return lowerToScalableOp(Op, DAG, RISCVISD::SMIN_VL);
1998   case ISD::SMAX:
1999     return lowerToScalableOp(Op, DAG, RISCVISD::SMAX_VL);
2000   case ISD::UMIN:
2001     return lowerToScalableOp(Op, DAG, RISCVISD::UMIN_VL);
2002   case ISD::UMAX:
2003     return lowerToScalableOp(Op, DAG, RISCVISD::UMAX_VL);
2004   case ISD::ABS:
2005     return lowerABS(Op, DAG);
2006   case ISD::VSELECT:
2007     return lowerFixedLengthVectorSelectToRVV(Op, DAG);
2008   case ISD::FCOPYSIGN:
2009     return lowerFixedLengthVectorFCOPYSIGNToRVV(Op, DAG);
2010   case ISD::MGATHER:
2011     return lowerMGATHER(Op, DAG);
2012   case ISD::MSCATTER:
2013     return lowerMSCATTER(Op, DAG);
2014   }
2015 }
2016 
2017 static SDValue getTargetNode(GlobalAddressSDNode *N, SDLoc DL, EVT Ty,
2018                              SelectionDAG &DAG, unsigned Flags) {
2019   return DAG.getTargetGlobalAddress(N->getGlobal(), DL, Ty, 0, Flags);
2020 }
2021 
2022 static SDValue getTargetNode(BlockAddressSDNode *N, SDLoc DL, EVT Ty,
2023                              SelectionDAG &DAG, unsigned Flags) {
2024   return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, N->getOffset(),
2025                                    Flags);
2026 }
2027 
2028 static SDValue getTargetNode(ConstantPoolSDNode *N, SDLoc DL, EVT Ty,
2029                              SelectionDAG &DAG, unsigned Flags) {
2030   return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlign(),
2031                                    N->getOffset(), Flags);
2032 }
2033 
2034 static SDValue getTargetNode(JumpTableSDNode *N, SDLoc DL, EVT Ty,
2035                              SelectionDAG &DAG, unsigned Flags) {
2036   return DAG.getTargetJumpTable(N->getIndex(), Ty, Flags);
2037 }
2038 
2039 template <class NodeTy>
2040 SDValue RISCVTargetLowering::getAddr(NodeTy *N, SelectionDAG &DAG,
2041                                      bool IsLocal) const {
2042   SDLoc DL(N);
2043   EVT Ty = getPointerTy(DAG.getDataLayout());
2044 
2045   if (isPositionIndependent()) {
2046     SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0);
2047     if (IsLocal)
2048       // Use PC-relative addressing to access the symbol. This generates the
2049       // pattern (PseudoLLA sym), which expands to (addi (auipc %pcrel_hi(sym))
2050       // %pcrel_lo(auipc)).
2051       return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0);
2052 
2053     // Use PC-relative addressing to access the GOT for this symbol, then load
2054     // the address from the GOT. This generates the pattern (PseudoLA sym),
2055     // which expands to (ld (addi (auipc %got_pcrel_hi(sym)) %pcrel_lo(auipc))).
2056     return SDValue(DAG.getMachineNode(RISCV::PseudoLA, DL, Ty, Addr), 0);
2057   }
2058 
2059   switch (getTargetMachine().getCodeModel()) {
2060   default:
2061     report_fatal_error("Unsupported code model for lowering");
2062   case CodeModel::Small: {
2063     // Generate a sequence for accessing addresses within the first 2 GiB of
2064     // address space. This generates the pattern (addi (lui %hi(sym)) %lo(sym)).
2065     SDValue AddrHi = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_HI);
2066     SDValue AddrLo = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_LO);
2067     SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0);
2068     return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNHi, AddrLo), 0);
2069   }
2070   case CodeModel::Medium: {
2071     // Generate a sequence for accessing addresses within any 2GiB range within
2072     // the address space. This generates the pattern (PseudoLLA sym), which
2073     // expands to (addi (auipc %pcrel_hi(sym)) %pcrel_lo(auipc)).
2074     SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0);
2075     return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0);
2076   }
2077   }
2078 }
2079 
2080 SDValue RISCVTargetLowering::lowerGlobalAddress(SDValue Op,
2081                                                 SelectionDAG &DAG) const {
2082   SDLoc DL(Op);
2083   EVT Ty = Op.getValueType();
2084   GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op);
2085   int64_t Offset = N->getOffset();
2086   MVT XLenVT = Subtarget.getXLenVT();
2087 
2088   const GlobalValue *GV = N->getGlobal();
2089   bool IsLocal = getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV);
2090   SDValue Addr = getAddr(N, DAG, IsLocal);
2091 
2092   // In order to maximise the opportunity for common subexpression elimination,
2093   // emit a separate ADD node for the global address offset instead of folding
2094   // it in the global address node. Later peephole optimisations may choose to
2095   // fold it back in when profitable.
2096   if (Offset != 0)
2097     return DAG.getNode(ISD::ADD, DL, Ty, Addr,
2098                        DAG.getConstant(Offset, DL, XLenVT));
2099   return Addr;
2100 }
2101 
2102 SDValue RISCVTargetLowering::lowerBlockAddress(SDValue Op,
2103                                                SelectionDAG &DAG) const {
2104   BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op);
2105 
2106   return getAddr(N, DAG);
2107 }
2108 
2109 SDValue RISCVTargetLowering::lowerConstantPool(SDValue Op,
2110                                                SelectionDAG &DAG) const {
2111   ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op);
2112 
2113   return getAddr(N, DAG);
2114 }
2115 
2116 SDValue RISCVTargetLowering::lowerJumpTable(SDValue Op,
2117                                             SelectionDAG &DAG) const {
2118   JumpTableSDNode *N = cast<JumpTableSDNode>(Op);
2119 
2120   return getAddr(N, DAG);
2121 }
2122 
2123 SDValue RISCVTargetLowering::getStaticTLSAddr(GlobalAddressSDNode *N,
2124                                               SelectionDAG &DAG,
2125                                               bool UseGOT) const {
2126   SDLoc DL(N);
2127   EVT Ty = getPointerTy(DAG.getDataLayout());
2128   const GlobalValue *GV = N->getGlobal();
2129   MVT XLenVT = Subtarget.getXLenVT();
2130 
2131   if (UseGOT) {
2132     // Use PC-relative addressing to access the GOT for this TLS symbol, then
2133     // load the address from the GOT and add the thread pointer. This generates
2134     // the pattern (PseudoLA_TLS_IE sym), which expands to
2135     // (ld (auipc %tls_ie_pcrel_hi(sym)) %pcrel_lo(auipc)).
2136     SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0);
2137     SDValue Load =
2138         SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_IE, DL, Ty, Addr), 0);
2139 
2140     // Add the thread pointer.
2141     SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT);
2142     return DAG.getNode(ISD::ADD, DL, Ty, Load, TPReg);
2143   }
2144 
2145   // Generate a sequence for accessing the address relative to the thread
2146   // pointer, with the appropriate adjustment for the thread pointer offset.
2147   // This generates the pattern
2148   // (add (add_tprel (lui %tprel_hi(sym)) tp %tprel_add(sym)) %tprel_lo(sym))
2149   SDValue AddrHi =
2150       DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_HI);
2151   SDValue AddrAdd =
2152       DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_ADD);
2153   SDValue AddrLo =
2154       DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_LO);
2155 
2156   SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0);
2157   SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT);
2158   SDValue MNAdd = SDValue(
2159       DAG.getMachineNode(RISCV::PseudoAddTPRel, DL, Ty, MNHi, TPReg, AddrAdd),
2160       0);
2161   return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNAdd, AddrLo), 0);
2162 }
2163 
2164 SDValue RISCVTargetLowering::getDynamicTLSAddr(GlobalAddressSDNode *N,
2165                                                SelectionDAG &DAG) const {
2166   SDLoc DL(N);
2167   EVT Ty = getPointerTy(DAG.getDataLayout());
2168   IntegerType *CallTy = Type::getIntNTy(*DAG.getContext(), Ty.getSizeInBits());
2169   const GlobalValue *GV = N->getGlobal();
2170 
2171   // Use a PC-relative addressing mode to access the global dynamic GOT address.
2172   // This generates the pattern (PseudoLA_TLS_GD sym), which expands to
2173   // (addi (auipc %tls_gd_pcrel_hi(sym)) %pcrel_lo(auipc)).
2174   SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0);
2175   SDValue Load =
2176       SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_GD, DL, Ty, Addr), 0);
2177 
2178   // Prepare argument list to generate call.
2179   ArgListTy Args;
2180   ArgListEntry Entry;
2181   Entry.Node = Load;
2182   Entry.Ty = CallTy;
2183   Args.push_back(Entry);
2184 
2185   // Setup call to __tls_get_addr.
2186   TargetLowering::CallLoweringInfo CLI(DAG);
2187   CLI.setDebugLoc(DL)
2188       .setChain(DAG.getEntryNode())
2189       .setLibCallee(CallingConv::C, CallTy,
2190                     DAG.getExternalSymbol("__tls_get_addr", Ty),
2191                     std::move(Args));
2192 
2193   return LowerCallTo(CLI).first;
2194 }
2195 
2196 SDValue RISCVTargetLowering::lowerGlobalTLSAddress(SDValue Op,
2197                                                    SelectionDAG &DAG) const {
2198   SDLoc DL(Op);
2199   EVT Ty = Op.getValueType();
2200   GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op);
2201   int64_t Offset = N->getOffset();
2202   MVT XLenVT = Subtarget.getXLenVT();
2203 
2204   TLSModel::Model Model = getTargetMachine().getTLSModel(N->getGlobal());
2205 
2206   if (DAG.getMachineFunction().getFunction().getCallingConv() ==
2207       CallingConv::GHC)
2208     report_fatal_error("In GHC calling convention TLS is not supported");
2209 
2210   SDValue Addr;
2211   switch (Model) {
2212   case TLSModel::LocalExec:
2213     Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/false);
2214     break;
2215   case TLSModel::InitialExec:
2216     Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/true);
2217     break;
2218   case TLSModel::LocalDynamic:
2219   case TLSModel::GeneralDynamic:
2220     Addr = getDynamicTLSAddr(N, DAG);
2221     break;
2222   }
2223 
2224   // In order to maximise the opportunity for common subexpression elimination,
2225   // emit a separate ADD node for the global address offset instead of folding
2226   // it in the global address node. Later peephole optimisations may choose to
2227   // fold it back in when profitable.
2228   if (Offset != 0)
2229     return DAG.getNode(ISD::ADD, DL, Ty, Addr,
2230                        DAG.getConstant(Offset, DL, XLenVT));
2231   return Addr;
2232 }
2233 
2234 SDValue RISCVTargetLowering::lowerSELECT(SDValue Op, SelectionDAG &DAG) const {
2235   SDValue CondV = Op.getOperand(0);
2236   SDValue TrueV = Op.getOperand(1);
2237   SDValue FalseV = Op.getOperand(2);
2238   SDLoc DL(Op);
2239   MVT XLenVT = Subtarget.getXLenVT();
2240 
2241   // If the result type is XLenVT and CondV is the output of a SETCC node
2242   // which also operated on XLenVT inputs, then merge the SETCC node into the
2243   // lowered RISCVISD::SELECT_CC to take advantage of the integer
2244   // compare+branch instructions. i.e.:
2245   // (select (setcc lhs, rhs, cc), truev, falsev)
2246   // -> (riscvisd::select_cc lhs, rhs, cc, truev, falsev)
2247   if (Op.getSimpleValueType() == XLenVT && CondV.getOpcode() == ISD::SETCC &&
2248       CondV.getOperand(0).getSimpleValueType() == XLenVT) {
2249     SDValue LHS = CondV.getOperand(0);
2250     SDValue RHS = CondV.getOperand(1);
2251     auto CC = cast<CondCodeSDNode>(CondV.getOperand(2));
2252     ISD::CondCode CCVal = CC->get();
2253 
2254     // Special case for a select of 2 constants that have a diffence of 1.
2255     // Normally this is done by DAGCombine, but if the select is introduced by
2256     // type legalization or op legalization, we miss it. Restricting to SETLT
2257     // case for now because that is what signed saturating add/sub need.
2258     // FIXME: We don't need the condition to be SETLT or even a SETCC,
2259     // but we would probably want to swap the true/false values if the condition
2260     // is SETGE/SETLE to avoid an XORI.
2261     if (isa<ConstantSDNode>(TrueV) && isa<ConstantSDNode>(FalseV) &&
2262         CCVal == ISD::SETLT) {
2263       const APInt &TrueVal = cast<ConstantSDNode>(TrueV)->getAPIntValue();
2264       const APInt &FalseVal = cast<ConstantSDNode>(FalseV)->getAPIntValue();
2265       if (TrueVal - 1 == FalseVal)
2266         return DAG.getNode(ISD::ADD, DL, Op.getValueType(), CondV, FalseV);
2267       if (TrueVal + 1 == FalseVal)
2268         return DAG.getNode(ISD::SUB, DL, Op.getValueType(), FalseV, CondV);
2269     }
2270 
2271     translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
2272 
2273     SDValue TargetCC = DAG.getConstant(CCVal, DL, XLenVT);
2274     SDValue Ops[] = {LHS, RHS, TargetCC, TrueV, FalseV};
2275     return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops);
2276   }
2277 
2278   // Otherwise:
2279   // (select condv, truev, falsev)
2280   // -> (riscvisd::select_cc condv, zero, setne, truev, falsev)
2281   SDValue Zero = DAG.getConstant(0, DL, XLenVT);
2282   SDValue SetNE = DAG.getConstant(ISD::SETNE, DL, XLenVT);
2283 
2284   SDValue Ops[] = {CondV, Zero, SetNE, TrueV, FalseV};
2285 
2286   return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops);
2287 }
2288 
2289 SDValue RISCVTargetLowering::lowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
2290   SDValue CondV = Op.getOperand(1);
2291   SDLoc DL(Op);
2292   MVT XLenVT = Subtarget.getXLenVT();
2293 
2294   if (CondV.getOpcode() == ISD::SETCC &&
2295       CondV.getOperand(0).getValueType() == XLenVT) {
2296     SDValue LHS = CondV.getOperand(0);
2297     SDValue RHS = CondV.getOperand(1);
2298     ISD::CondCode CCVal = cast<CondCodeSDNode>(CondV.getOperand(2))->get();
2299 
2300     translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
2301 
2302     SDValue TargetCC = DAG.getCondCode(CCVal);
2303     return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0),
2304                        LHS, RHS, TargetCC, Op.getOperand(2));
2305   }
2306 
2307   return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0),
2308                      CondV, DAG.getConstant(0, DL, XLenVT),
2309                      DAG.getCondCode(ISD::SETNE), Op.getOperand(2));
2310 }
2311 
2312 SDValue RISCVTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const {
2313   MachineFunction &MF = DAG.getMachineFunction();
2314   RISCVMachineFunctionInfo *FuncInfo = MF.getInfo<RISCVMachineFunctionInfo>();
2315 
2316   SDLoc DL(Op);
2317   SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
2318                                  getPointerTy(MF.getDataLayout()));
2319 
2320   // vastart just stores the address of the VarArgsFrameIndex slot into the
2321   // memory location argument.
2322   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
2323   return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1),
2324                       MachinePointerInfo(SV));
2325 }
2326 
2327 SDValue RISCVTargetLowering::lowerFRAMEADDR(SDValue Op,
2328                                             SelectionDAG &DAG) const {
2329   const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo();
2330   MachineFunction &MF = DAG.getMachineFunction();
2331   MachineFrameInfo &MFI = MF.getFrameInfo();
2332   MFI.setFrameAddressIsTaken(true);
2333   Register FrameReg = RI.getFrameRegister(MF);
2334   int XLenInBytes = Subtarget.getXLen() / 8;
2335 
2336   EVT VT = Op.getValueType();
2337   SDLoc DL(Op);
2338   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, FrameReg, VT);
2339   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
2340   while (Depth--) {
2341     int Offset = -(XLenInBytes * 2);
2342     SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr,
2343                               DAG.getIntPtrConstant(Offset, DL));
2344     FrameAddr =
2345         DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo());
2346   }
2347   return FrameAddr;
2348 }
2349 
2350 SDValue RISCVTargetLowering::lowerRETURNADDR(SDValue Op,
2351                                              SelectionDAG &DAG) const {
2352   const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo();
2353   MachineFunction &MF = DAG.getMachineFunction();
2354   MachineFrameInfo &MFI = MF.getFrameInfo();
2355   MFI.setReturnAddressIsTaken(true);
2356   MVT XLenVT = Subtarget.getXLenVT();
2357   int XLenInBytes = Subtarget.getXLen() / 8;
2358 
2359   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
2360     return SDValue();
2361 
2362   EVT VT = Op.getValueType();
2363   SDLoc DL(Op);
2364   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
2365   if (Depth) {
2366     int Off = -XLenInBytes;
2367     SDValue FrameAddr = lowerFRAMEADDR(Op, DAG);
2368     SDValue Offset = DAG.getConstant(Off, DL, VT);
2369     return DAG.getLoad(VT, DL, DAG.getEntryNode(),
2370                        DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset),
2371                        MachinePointerInfo());
2372   }
2373 
2374   // Return the value of the return address register, marking it an implicit
2375   // live-in.
2376   Register Reg = MF.addLiveIn(RI.getRARegister(), getRegClassFor(XLenVT));
2377   return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, XLenVT);
2378 }
2379 
2380 SDValue RISCVTargetLowering::lowerShiftLeftParts(SDValue Op,
2381                                                  SelectionDAG &DAG) const {
2382   SDLoc DL(Op);
2383   SDValue Lo = Op.getOperand(0);
2384   SDValue Hi = Op.getOperand(1);
2385   SDValue Shamt = Op.getOperand(2);
2386   EVT VT = Lo.getValueType();
2387 
2388   // if Shamt-XLEN < 0: // Shamt < XLEN
2389   //   Lo = Lo << Shamt
2390   //   Hi = (Hi << Shamt) | ((Lo >>u 1) >>u (XLEN-1 - Shamt))
2391   // else:
2392   //   Lo = 0
2393   //   Hi = Lo << (Shamt-XLEN)
2394 
2395   SDValue Zero = DAG.getConstant(0, DL, VT);
2396   SDValue One = DAG.getConstant(1, DL, VT);
2397   SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT);
2398   SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT);
2399   SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen);
2400   SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt);
2401 
2402   SDValue LoTrue = DAG.getNode(ISD::SHL, DL, VT, Lo, Shamt);
2403   SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, VT, Lo, One);
2404   SDValue ShiftRightLo =
2405       DAG.getNode(ISD::SRL, DL, VT, ShiftRight1Lo, XLenMinus1Shamt);
2406   SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, Hi, Shamt);
2407   SDValue HiTrue = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo);
2408   SDValue HiFalse = DAG.getNode(ISD::SHL, DL, VT, Lo, ShamtMinusXLen);
2409 
2410   SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT);
2411 
2412   Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, Zero);
2413   Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse);
2414 
2415   SDValue Parts[2] = {Lo, Hi};
2416   return DAG.getMergeValues(Parts, DL);
2417 }
2418 
2419 SDValue RISCVTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG,
2420                                                   bool IsSRA) const {
2421   SDLoc DL(Op);
2422   SDValue Lo = Op.getOperand(0);
2423   SDValue Hi = Op.getOperand(1);
2424   SDValue Shamt = Op.getOperand(2);
2425   EVT VT = Lo.getValueType();
2426 
2427   // SRA expansion:
2428   //   if Shamt-XLEN < 0: // Shamt < XLEN
2429   //     Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt))
2430   //     Hi = Hi >>s Shamt
2431   //   else:
2432   //     Lo = Hi >>s (Shamt-XLEN);
2433   //     Hi = Hi >>s (XLEN-1)
2434   //
2435   // SRL expansion:
2436   //   if Shamt-XLEN < 0: // Shamt < XLEN
2437   //     Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt))
2438   //     Hi = Hi >>u Shamt
2439   //   else:
2440   //     Lo = Hi >>u (Shamt-XLEN);
2441   //     Hi = 0;
2442 
2443   unsigned ShiftRightOp = IsSRA ? ISD::SRA : ISD::SRL;
2444 
2445   SDValue Zero = DAG.getConstant(0, DL, VT);
2446   SDValue One = DAG.getConstant(1, DL, VT);
2447   SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT);
2448   SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT);
2449   SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen);
2450   SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt);
2451 
2452   SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, Lo, Shamt);
2453   SDValue ShiftLeftHi1 = DAG.getNode(ISD::SHL, DL, VT, Hi, One);
2454   SDValue ShiftLeftHi =
2455       DAG.getNode(ISD::SHL, DL, VT, ShiftLeftHi1, XLenMinus1Shamt);
2456   SDValue LoTrue = DAG.getNode(ISD::OR, DL, VT, ShiftRightLo, ShiftLeftHi);
2457   SDValue HiTrue = DAG.getNode(ShiftRightOp, DL, VT, Hi, Shamt);
2458   SDValue LoFalse = DAG.getNode(ShiftRightOp, DL, VT, Hi, ShamtMinusXLen);
2459   SDValue HiFalse =
2460       IsSRA ? DAG.getNode(ISD::SRA, DL, VT, Hi, XLenMinus1) : Zero;
2461 
2462   SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT);
2463 
2464   Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, LoFalse);
2465   Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse);
2466 
2467   SDValue Parts[2] = {Lo, Hi};
2468   return DAG.getMergeValues(Parts, DL);
2469 }
2470 
2471 // Custom-lower a SPLAT_VECTOR_PARTS where XLEN<SEW, as the SEW element type is
2472 // illegal (currently only vXi64 RV32).
2473 // FIXME: We could also catch non-constant sign-extended i32 values and lower
2474 // them to SPLAT_VECTOR_I64
2475 SDValue RISCVTargetLowering::lowerSPLAT_VECTOR_PARTS(SDValue Op,
2476                                                      SelectionDAG &DAG) const {
2477   SDLoc DL(Op);
2478   EVT VecVT = Op.getValueType();
2479   assert(!Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64 &&
2480          "Unexpected SPLAT_VECTOR_PARTS lowering");
2481 
2482   assert(Op.getNumOperands() == 2 && "Unexpected number of operands!");
2483   SDValue Lo = Op.getOperand(0);
2484   SDValue Hi = Op.getOperand(1);
2485 
2486   if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) {
2487     int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue();
2488     int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue();
2489     // If Hi constant is all the same sign bit as Lo, lower this as a custom
2490     // node in order to try and match RVV vector/scalar instructions.
2491     if ((LoC >> 31) == HiC)
2492       return DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, Lo);
2493   }
2494 
2495   // Else, on RV32 we lower an i64-element SPLAT_VECTOR thus, being careful not
2496   // to accidentally sign-extend the 32-bit halves to the e64 SEW:
2497   // vmv.v.x vX, hi
2498   // vsll.vx vX, vX, /*32*/
2499   // vmv.v.x vY, lo
2500   // vsll.vx vY, vY, /*32*/
2501   // vsrl.vx vY, vY, /*32*/
2502   // vor.vv vX, vX, vY
2503   SDValue ThirtyTwoV = DAG.getConstant(32, DL, VecVT);
2504 
2505   Lo = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, Lo);
2506   Lo = DAG.getNode(ISD::SHL, DL, VecVT, Lo, ThirtyTwoV);
2507   Lo = DAG.getNode(ISD::SRL, DL, VecVT, Lo, ThirtyTwoV);
2508 
2509   if (isNullConstant(Hi))
2510     return Lo;
2511 
2512   Hi = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, Hi);
2513   Hi = DAG.getNode(ISD::SHL, DL, VecVT, Hi, ThirtyTwoV);
2514 
2515   return DAG.getNode(ISD::OR, DL, VecVT, Lo, Hi);
2516 }
2517 
2518 // Custom-lower extensions from mask vectors by using a vselect either with 1
2519 // for zero/any-extension or -1 for sign-extension:
2520 //   (vXiN = (s|z)ext vXi1:vmask) -> (vXiN = vselect vmask, (-1 or 1), 0)
2521 // Note that any-extension is lowered identically to zero-extension.
2522 SDValue RISCVTargetLowering::lowerVectorMaskExt(SDValue Op, SelectionDAG &DAG,
2523                                                 int64_t ExtTrueVal) const {
2524   SDLoc DL(Op);
2525   MVT VecVT = Op.getSimpleValueType();
2526   SDValue Src = Op.getOperand(0);
2527   // Only custom-lower extensions from mask types
2528   assert(Src.getValueType().isVector() &&
2529          Src.getValueType().getVectorElementType() == MVT::i1);
2530 
2531   MVT XLenVT = Subtarget.getXLenVT();
2532   SDValue SplatZero = DAG.getConstant(0, DL, XLenVT);
2533   SDValue SplatTrueVal = DAG.getConstant(ExtTrueVal, DL, XLenVT);
2534 
2535   if (VecVT.isScalableVector()) {
2536     // Be careful not to introduce illegal scalar types at this stage, and be
2537     // careful also about splatting constants as on RV32, vXi64 SPLAT_VECTOR is
2538     // illegal and must be expanded. Since we know that the constants are
2539     // sign-extended 32-bit values, we use SPLAT_VECTOR_I64 directly.
2540     bool IsRV32E64 =
2541         !Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64;
2542 
2543     if (!IsRV32E64) {
2544       SplatZero = DAG.getSplatVector(VecVT, DL, SplatZero);
2545       SplatTrueVal = DAG.getSplatVector(VecVT, DL, SplatTrueVal);
2546     } else {
2547       SplatZero = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, SplatZero);
2548       SplatTrueVal =
2549           DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, SplatTrueVal);
2550     }
2551 
2552     return DAG.getNode(ISD::VSELECT, DL, VecVT, Src, SplatTrueVal, SplatZero);
2553   }
2554 
2555   MVT ContainerVT = getContainerForFixedLengthVector(VecVT);
2556   MVT I1ContainerVT =
2557       MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
2558 
2559   SDValue CC = convertToScalableVector(I1ContainerVT, Src, DAG, Subtarget);
2560 
2561   SDValue Mask, VL;
2562   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
2563 
2564   SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatZero, VL);
2565   SplatTrueVal =
2566       DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatTrueVal, VL);
2567   SDValue Select = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC,
2568                                SplatTrueVal, SplatZero, VL);
2569 
2570   return convertFromScalableVector(VecVT, Select, DAG, Subtarget);
2571 }
2572 
2573 SDValue RISCVTargetLowering::lowerFixedLengthVectorExtendToRVV(
2574     SDValue Op, SelectionDAG &DAG, unsigned ExtendOpc) const {
2575   MVT ExtVT = Op.getSimpleValueType();
2576   // Only custom-lower extensions from fixed-length vector types.
2577   if (!ExtVT.isFixedLengthVector())
2578     return Op;
2579   MVT VT = Op.getOperand(0).getSimpleValueType();
2580   // Grab the canonical container type for the extended type. Infer the smaller
2581   // type from that to ensure the same number of vector elements, as we know
2582   // the LMUL will be sufficient to hold the smaller type.
2583   MVT ContainerExtVT = getContainerForFixedLengthVector(ExtVT);
2584   // Get the extended container type manually to ensure the same number of
2585   // vector elements between source and dest.
2586   MVT ContainerVT = MVT::getVectorVT(VT.getVectorElementType(),
2587                                      ContainerExtVT.getVectorElementCount());
2588 
2589   SDValue Op1 =
2590       convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget);
2591 
2592   SDLoc DL(Op);
2593   SDValue Mask, VL;
2594   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
2595 
2596   SDValue Ext = DAG.getNode(ExtendOpc, DL, ContainerExtVT, Op1, Mask, VL);
2597 
2598   return convertFromScalableVector(ExtVT, Ext, DAG, Subtarget);
2599 }
2600 
2601 // Custom-lower truncations from vectors to mask vectors by using a mask and a
2602 // setcc operation:
2603 //   (vXi1 = trunc vXiN vec) -> (vXi1 = setcc (and vec, 1), 0, ne)
2604 SDValue RISCVTargetLowering::lowerVectorMaskTrunc(SDValue Op,
2605                                                   SelectionDAG &DAG) const {
2606   SDLoc DL(Op);
2607   EVT MaskVT = Op.getValueType();
2608   // Only expect to custom-lower truncations to mask types
2609   assert(MaskVT.isVector() && MaskVT.getVectorElementType() == MVT::i1 &&
2610          "Unexpected type for vector mask lowering");
2611   SDValue Src = Op.getOperand(0);
2612   MVT VecVT = Src.getSimpleValueType();
2613 
2614   // If this is a fixed vector, we need to convert it to a scalable vector.
2615   MVT ContainerVT = VecVT;
2616   if (VecVT.isFixedLengthVector()) {
2617     ContainerVT = getContainerForFixedLengthVector(VecVT);
2618     Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget);
2619   }
2620 
2621   SDValue SplatOne = DAG.getConstant(1, DL, Subtarget.getXLenVT());
2622   SDValue SplatZero = DAG.getConstant(0, DL, Subtarget.getXLenVT());
2623 
2624   SplatOne = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatOne);
2625   SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatZero);
2626 
2627   if (VecVT.isScalableVector()) {
2628     SDValue Trunc = DAG.getNode(ISD::AND, DL, VecVT, Src, SplatOne);
2629     return DAG.getSetCC(DL, MaskVT, Trunc, SplatZero, ISD::SETNE);
2630   }
2631 
2632   SDValue Mask, VL;
2633   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
2634 
2635   MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1);
2636   SDValue Trunc =
2637       DAG.getNode(RISCVISD::AND_VL, DL, ContainerVT, Src, SplatOne, Mask, VL);
2638   Trunc = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskContainerVT, Trunc, SplatZero,
2639                       DAG.getCondCode(ISD::SETNE), Mask, VL);
2640   return convertFromScalableVector(MaskVT, Trunc, DAG, Subtarget);
2641 }
2642 
2643 // Custom-legalize INSERT_VECTOR_ELT so that the value is inserted into the
2644 // first position of a vector, and that vector is slid up to the insert index.
2645 // By limiting the active vector length to index+1 and merging with the
2646 // original vector (with an undisturbed tail policy for elements >= VL), we
2647 // achieve the desired result of leaving all elements untouched except the one
2648 // at VL-1, which is replaced with the desired value.
2649 SDValue RISCVTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op,
2650                                                     SelectionDAG &DAG) const {
2651   SDLoc DL(Op);
2652   MVT VecVT = Op.getSimpleValueType();
2653   SDValue Vec = Op.getOperand(0);
2654   SDValue Val = Op.getOperand(1);
2655   SDValue Idx = Op.getOperand(2);
2656 
2657   MVT ContainerVT = VecVT;
2658   // If the operand is a fixed-length vector, convert to a scalable one.
2659   if (VecVT.isFixedLengthVector()) {
2660     ContainerVT = getContainerForFixedLengthVector(VecVT);
2661     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
2662   }
2663 
2664   MVT XLenVT = Subtarget.getXLenVT();
2665 
2666   SDValue Zero = DAG.getConstant(0, DL, XLenVT);
2667   bool IsLegalInsert = Subtarget.is64Bit() || Val.getValueType() != MVT::i64;
2668   // Even i64-element vectors on RV32 can be lowered without scalar
2669   // legalization if the most-significant 32 bits of the value are not affected
2670   // by the sign-extension of the lower 32 bits.
2671   // TODO: We could also catch sign extensions of a 32-bit value.
2672   if (!IsLegalInsert && isa<ConstantSDNode>(Val)) {
2673     const auto *CVal = cast<ConstantSDNode>(Val);
2674     if (isInt<32>(CVal->getSExtValue())) {
2675       IsLegalInsert = true;
2676       Val = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32);
2677     }
2678   }
2679 
2680   SDValue Mask, VL;
2681   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
2682 
2683   SDValue ValInVec;
2684 
2685   if (IsLegalInsert) {
2686     unsigned Opc =
2687         VecVT.isFloatingPoint() ? RISCVISD::VFMV_S_F_VL : RISCVISD::VMV_S_X_VL;
2688     if (isNullConstant(Idx)) {
2689       Vec = DAG.getNode(Opc, DL, ContainerVT, Vec, Val, VL);
2690       if (!VecVT.isFixedLengthVector())
2691         return Vec;
2692       return convertFromScalableVector(VecVT, Vec, DAG, Subtarget);
2693     }
2694     ValInVec =
2695         DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), Val, VL);
2696   } else {
2697     // On RV32, i64-element vectors must be specially handled to place the
2698     // value at element 0, by using two vslide1up instructions in sequence on
2699     // the i32 split lo/hi value. Use an equivalently-sized i32 vector for
2700     // this.
2701     SDValue One = DAG.getConstant(1, DL, XLenVT);
2702     SDValue ValLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, Zero);
2703     SDValue ValHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, One);
2704     MVT I32ContainerVT =
2705         MVT::getVectorVT(MVT::i32, ContainerVT.getVectorElementCount() * 2);
2706     SDValue I32Mask =
2707         getDefaultScalableVLOps(I32ContainerVT, DL, DAG, Subtarget).first;
2708     // Limit the active VL to two.
2709     SDValue InsertI64VL = DAG.getConstant(2, DL, XLenVT);
2710     // Note: We can't pass a UNDEF to the first VSLIDE1UP_VL since an untied
2711     // undef doesn't obey the earlyclobber constraint. Just splat a zero value.
2712     ValInVec = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, I32ContainerVT, Zero,
2713                            InsertI64VL);
2714     // First slide in the hi value, then the lo in underneath it.
2715     ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT, ValInVec,
2716                            ValHi, I32Mask, InsertI64VL);
2717     ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT, ValInVec,
2718                            ValLo, I32Mask, InsertI64VL);
2719     // Bitcast back to the right container type.
2720     ValInVec = DAG.getBitcast(ContainerVT, ValInVec);
2721   }
2722 
2723   // Now that the value is in a vector, slide it into position.
2724   SDValue InsertVL =
2725       DAG.getNode(ISD::ADD, DL, XLenVT, Idx, DAG.getConstant(1, DL, XLenVT));
2726   SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec,
2727                                 ValInVec, Idx, Mask, InsertVL);
2728   if (!VecVT.isFixedLengthVector())
2729     return Slideup;
2730   return convertFromScalableVector(VecVT, Slideup, DAG, Subtarget);
2731 }
2732 
2733 // Custom-lower EXTRACT_VECTOR_ELT operations to slide the vector down, then
2734 // extract the first element: (extractelt (slidedown vec, idx), 0). For integer
2735 // types this is done using VMV_X_S to allow us to glean information about the
2736 // sign bits of the result.
2737 SDValue RISCVTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op,
2738                                                      SelectionDAG &DAG) const {
2739   SDLoc DL(Op);
2740   SDValue Idx = Op.getOperand(1);
2741   SDValue Vec = Op.getOperand(0);
2742   EVT EltVT = Op.getValueType();
2743   MVT VecVT = Vec.getSimpleValueType();
2744   MVT XLenVT = Subtarget.getXLenVT();
2745 
2746   if (VecVT.getVectorElementType() == MVT::i1) {
2747     // FIXME: For now we just promote to an i8 vector and extract from that,
2748     // but this is probably not optimal.
2749     MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount());
2750     Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec);
2751     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec, Idx);
2752   }
2753 
2754   // If this is a fixed vector, we need to convert it to a scalable vector.
2755   MVT ContainerVT = VecVT;
2756   if (VecVT.isFixedLengthVector()) {
2757     ContainerVT = getContainerForFixedLengthVector(VecVT);
2758     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
2759   }
2760 
2761   // If the index is 0, the vector is already in the right position.
2762   if (!isNullConstant(Idx)) {
2763     // Use a VL of 1 to avoid processing more elements than we need.
2764     SDValue VL = DAG.getConstant(1, DL, XLenVT);
2765     MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
2766     SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
2767     Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT,
2768                       DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL);
2769   }
2770 
2771   if (!EltVT.isInteger()) {
2772     // Floating-point extracts are handled in TableGen.
2773     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec,
2774                        DAG.getConstant(0, DL, XLenVT));
2775   }
2776 
2777   SDValue Elt0 = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec);
2778   return DAG.getNode(ISD::TRUNCATE, DL, EltVT, Elt0);
2779 }
2780 
2781 // Called by type legalization to handle splat of i64 on RV32.
2782 // FIXME: We can optimize this when the type has sign or zero bits in one
2783 // of the halves.
2784 static SDValue splatSplitI64WithVL(const SDLoc &DL, MVT VT, SDValue Scalar,
2785                                    SDValue VL, SelectionDAG &DAG) {
2786   SDValue ThirtyTwoV = DAG.getConstant(32, DL, VT);
2787   SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar,
2788                            DAG.getConstant(0, DL, MVT::i32));
2789   SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar,
2790                            DAG.getConstant(1, DL, MVT::i32));
2791 
2792   // vmv.v.x vX, hi
2793   // vsll.vx vX, vX, /*32*/
2794   // vmv.v.x vY, lo
2795   // vsll.vx vY, vY, /*32*/
2796   // vsrl.vx vY, vY, /*32*/
2797   // vor.vv vX, vX, vY
2798   MVT MaskVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount());
2799   SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
2800   Lo = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Lo, VL);
2801   Lo = DAG.getNode(RISCVISD::SHL_VL, DL, VT, Lo, ThirtyTwoV, Mask, VL);
2802   Lo = DAG.getNode(RISCVISD::SRL_VL, DL, VT, Lo, ThirtyTwoV, Mask, VL);
2803 
2804   Hi = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Hi, VL);
2805   Hi = DAG.getNode(RISCVISD::SHL_VL, DL, VT, Hi, ThirtyTwoV, Mask, VL);
2806 
2807   return DAG.getNode(RISCVISD::OR_VL, DL, VT, Lo, Hi, Mask, VL);
2808 }
2809 
2810 // Some RVV intrinsics may claim that they want an integer operand to be
2811 // promoted or expanded.
2812 static SDValue lowerVectorIntrinsicSplats(SDValue Op, SelectionDAG &DAG,
2813                                           const RISCVSubtarget &Subtarget) {
2814   assert((Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2815           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN) &&
2816          "Unexpected opcode");
2817 
2818   if (!Subtarget.hasStdExtV())
2819     return SDValue();
2820 
2821   bool HasChain = Op.getOpcode() == ISD::INTRINSIC_W_CHAIN;
2822   unsigned IntNo = Op.getConstantOperandVal(HasChain ? 1 : 0);
2823   SDLoc DL(Op);
2824 
2825   const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II =
2826       RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo);
2827   if (!II || !II->SplatOperand)
2828     return SDValue();
2829 
2830   unsigned SplatOp = II->SplatOperand + HasChain;
2831   assert(SplatOp < Op.getNumOperands());
2832 
2833   SmallVector<SDValue, 8> Operands(Op->op_begin(), Op->op_end());
2834   SDValue &ScalarOp = Operands[SplatOp];
2835   MVT OpVT = ScalarOp.getSimpleValueType();
2836   MVT XLenVT = Subtarget.getXLenVT();
2837 
2838   // If this isn't a scalar, or its type is XLenVT we're done.
2839   if (!OpVT.isScalarInteger() || OpVT == XLenVT)
2840     return SDValue();
2841 
2842   // Simplest case is that the operand needs to be promoted to XLenVT.
2843   if (OpVT.bitsLT(XLenVT)) {
2844     // If the operand is a constant, sign extend to increase our chances
2845     // of being able to use a .vi instruction. ANY_EXTEND would become a
2846     // a zero extend and the simm5 check in isel would fail.
2847     // FIXME: Should we ignore the upper bits in isel instead?
2848     unsigned ExtOpc =
2849         isa<ConstantSDNode>(ScalarOp) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND;
2850     ScalarOp = DAG.getNode(ExtOpc, DL, XLenVT, ScalarOp);
2851     return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands);
2852   }
2853 
2854   // Use the previous operand to get the vXi64 VT. The result might be a mask
2855   // VT for compares. Using the previous operand assumes that the previous
2856   // operand will never have a smaller element size than a scalar operand and
2857   // that a widening operation never uses SEW=64.
2858   // NOTE: If this fails the below assert, we can probably just find the
2859   // element count from any operand or result and use it to construct the VT.
2860   assert(II->SplatOperand > 1 && "Unexpected splat operand!");
2861   MVT VT = Op.getOperand(SplatOp - 1).getSimpleValueType();
2862 
2863   // The more complex case is when the scalar is larger than XLenVT.
2864   assert(XLenVT == MVT::i32 && OpVT == MVT::i64 &&
2865          VT.getVectorElementType() == MVT::i64 && "Unexpected VTs!");
2866 
2867   // If this is a sign-extended 32-bit constant, we can truncate it and rely
2868   // on the instruction to sign-extend since SEW>XLEN.
2869   if (auto *CVal = dyn_cast<ConstantSDNode>(ScalarOp)) {
2870     if (isInt<32>(CVal->getSExtValue())) {
2871       ScalarOp = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32);
2872       return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands);
2873     }
2874   }
2875 
2876   // We need to convert the scalar to a splat vector.
2877   // FIXME: Can we implicitly truncate the scalar if it is known to
2878   // be sign extended?
2879   // VL should be the last operand.
2880   SDValue VL = Op.getOperand(Op.getNumOperands() - 1);
2881   assert(VL.getValueType() == XLenVT);
2882   ScalarOp = splatSplitI64WithVL(DL, VT, ScalarOp, VL, DAG);
2883   return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands);
2884 }
2885 
2886 SDValue RISCVTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
2887                                                      SelectionDAG &DAG) const {
2888   unsigned IntNo = Op.getConstantOperandVal(0);
2889   SDLoc DL(Op);
2890   MVT XLenVT = Subtarget.getXLenVT();
2891 
2892   switch (IntNo) {
2893   default:
2894     break; // Don't custom lower most intrinsics.
2895   case Intrinsic::thread_pointer: {
2896     EVT PtrVT = getPointerTy(DAG.getDataLayout());
2897     return DAG.getRegister(RISCV::X4, PtrVT);
2898   }
2899   case Intrinsic::riscv_orc_b:
2900     // Lower to the GORCI encoding for orc.b.
2901     return DAG.getNode(RISCVISD::GORCI, DL, XLenVT, Op.getOperand(1),
2902                        DAG.getTargetConstant(7, DL, XLenVT));
2903   case Intrinsic::riscv_vmv_x_s:
2904     assert(Op.getValueType() == XLenVT && "Unexpected VT!");
2905     return DAG.getNode(RISCVISD::VMV_X_S, DL, Op.getValueType(),
2906                        Op.getOperand(1));
2907   case Intrinsic::riscv_vmv_v_x: {
2908     SDValue Scalar = Op.getOperand(1);
2909     if (Scalar.getValueType().bitsLE(XLenVT)) {
2910       unsigned ExtOpc =
2911           isa<ConstantSDNode>(Scalar) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND;
2912       Scalar = DAG.getNode(ExtOpc, DL, XLenVT, Scalar);
2913       return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, Op.getValueType(), Scalar,
2914                          Op.getOperand(2));
2915     }
2916 
2917     assert(Scalar.getValueType() == MVT::i64 && "Unexpected scalar VT!");
2918 
2919     // If this is a sign-extended 32-bit constant, we can truncate it and rely
2920     // on the instruction to sign-extend since SEW>XLEN.
2921     if (auto *CVal = dyn_cast<ConstantSDNode>(Scalar)) {
2922       if (isInt<32>(CVal->getSExtValue()))
2923         return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, Op.getValueType(),
2924                            DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32),
2925                            Op.getOperand(2));
2926     }
2927 
2928     // Otherwise use the more complicated splatting algorithm.
2929     return splatSplitI64WithVL(DL, Op.getSimpleValueType(), Scalar,
2930                                Op.getOperand(2), DAG);
2931   }
2932   case Intrinsic::riscv_vfmv_v_f:
2933     return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, Op.getValueType(),
2934                        Op.getOperand(1), Op.getOperand(2));
2935   case Intrinsic::riscv_vmv_s_x: {
2936     SDValue Scalar = Op.getOperand(2);
2937 
2938     if (Scalar.getValueType().bitsLE(XLenVT)) {
2939       Scalar = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Scalar);
2940       return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, Op.getValueType(),
2941                          Op.getOperand(1), Scalar, Op.getOperand(3));
2942     }
2943 
2944     assert(Scalar.getValueType() == MVT::i64 && "Unexpected scalar VT!");
2945 
2946     // This is an i64 value that lives in two scalar registers. We have to
2947     // insert this in a convoluted way. First we build vXi64 splat containing
2948     // the/ two values that we assemble using some bit math. Next we'll use
2949     // vid.v and vmseq to build a mask with bit 0 set. Then we'll use that mask
2950     // to merge element 0 from our splat into the source vector.
2951     // FIXME: This is probably not the best way to do this, but it is
2952     // consistent with INSERT_VECTOR_ELT lowering so it is a good starting
2953     // point.
2954     //   vmv.v.x vX, hi
2955     //   vsll.vx vX, vX, /*32*/
2956     //   vmv.v.x vY, lo
2957     //   vsll.vx vY, vY, /*32*/
2958     //   vsrl.vx vY, vY, /*32*/
2959     //   vor.vv vX, vX, vY
2960     //
2961     //   vid.v      vVid
2962     //   vmseq.vx   mMask, vVid, 0
2963     //   vmerge.vvm vDest, vSrc, vVal, mMask
2964     MVT VT = Op.getSimpleValueType();
2965     SDValue Vec = Op.getOperand(1);
2966     SDValue VL = Op.getOperand(3);
2967 
2968     SDValue SplattedVal = splatSplitI64WithVL(DL, VT, Scalar, VL, DAG);
2969     SDValue SplattedIdx = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT,
2970                                       DAG.getConstant(0, DL, MVT::i32), VL);
2971 
2972     MVT MaskVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount());
2973     SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
2974     SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL);
2975     SDValue SelectCond =
2976         DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, VID, SplattedIdx,
2977                     DAG.getCondCode(ISD::SETEQ), Mask, VL);
2978     return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, SelectCond, SplattedVal,
2979                        Vec, VL);
2980   }
2981   case Intrinsic::riscv_vslide1up:
2982   case Intrinsic::riscv_vslide1down:
2983   case Intrinsic::riscv_vslide1up_mask:
2984   case Intrinsic::riscv_vslide1down_mask: {
2985     // We need to special case these when the scalar is larger than XLen.
2986     unsigned NumOps = Op.getNumOperands();
2987     bool IsMasked = NumOps == 6;
2988     unsigned OpOffset = IsMasked ? 1 : 0;
2989     SDValue Scalar = Op.getOperand(2 + OpOffset);
2990     if (Scalar.getValueType().bitsLE(XLenVT))
2991       break;
2992 
2993     // Splatting a sign extended constant is fine.
2994     if (auto *CVal = dyn_cast<ConstantSDNode>(Scalar))
2995       if (isInt<32>(CVal->getSExtValue()))
2996         break;
2997 
2998     MVT VT = Op.getSimpleValueType();
2999     assert(VT.getVectorElementType() == MVT::i64 &&
3000            Scalar.getValueType() == MVT::i64 && "Unexpected VTs");
3001 
3002     // Convert the vector source to the equivalent nxvXi32 vector.
3003     MVT I32VT = MVT::getVectorVT(MVT::i32, VT.getVectorElementCount() * 2);
3004     SDValue Vec = DAG.getBitcast(I32VT, Op.getOperand(1 + OpOffset));
3005 
3006     SDValue ScalarLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar,
3007                                    DAG.getConstant(0, DL, XLenVT));
3008     SDValue ScalarHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar,
3009                                    DAG.getConstant(1, DL, XLenVT));
3010 
3011     // Double the VL since we halved SEW.
3012     SDValue VL = Op.getOperand(NumOps - 1);
3013     SDValue I32VL =
3014         DAG.getNode(ISD::SHL, DL, XLenVT, VL, DAG.getConstant(1, DL, XLenVT));
3015 
3016     MVT I32MaskVT = MVT::getVectorVT(MVT::i1, I32VT.getVectorElementCount());
3017     SDValue I32Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, I32MaskVT, VL);
3018 
3019     // Shift the two scalar parts in using SEW=32 slide1up/slide1down
3020     // instructions.
3021     if (IntNo == Intrinsic::riscv_vslide1up ||
3022         IntNo == Intrinsic::riscv_vslide1up_mask) {
3023       Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Vec, ScalarHi,
3024                         I32Mask, I32VL);
3025       Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Vec, ScalarLo,
3026                         I32Mask, I32VL);
3027     } else {
3028       Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Vec, ScalarLo,
3029                         I32Mask, I32VL);
3030       Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Vec, ScalarHi,
3031                         I32Mask, I32VL);
3032     }
3033 
3034     // Convert back to nxvXi64.
3035     Vec = DAG.getBitcast(VT, Vec);
3036 
3037     if (!IsMasked)
3038       return Vec;
3039 
3040     // Apply mask after the operation.
3041     SDValue Mask = Op.getOperand(NumOps - 2);
3042     SDValue MaskedOff = Op.getOperand(1);
3043     return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, Mask, Vec, MaskedOff, VL);
3044   }
3045   }
3046 
3047   return lowerVectorIntrinsicSplats(Op, DAG, Subtarget);
3048 }
3049 
3050 SDValue RISCVTargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op,
3051                                                     SelectionDAG &DAG) const {
3052   return lowerVectorIntrinsicSplats(Op, DAG, Subtarget);
3053 }
3054 
3055 static MVT getLMUL1VT(MVT VT) {
3056   assert(VT.getVectorElementType().getSizeInBits() <= 64 &&
3057          "Unexpected vector MVT");
3058   return MVT::getScalableVectorVT(
3059       VT.getVectorElementType(),
3060       RISCV::RVVBitsPerBlock / VT.getVectorElementType().getSizeInBits());
3061 }
3062 
3063 static unsigned getRVVReductionOp(unsigned ISDOpcode) {
3064   switch (ISDOpcode) {
3065   default:
3066     llvm_unreachable("Unhandled reduction");
3067   case ISD::VECREDUCE_ADD:
3068     return RISCVISD::VECREDUCE_ADD_VL;
3069   case ISD::VECREDUCE_UMAX:
3070     return RISCVISD::VECREDUCE_UMAX_VL;
3071   case ISD::VECREDUCE_SMAX:
3072     return RISCVISD::VECREDUCE_SMAX_VL;
3073   case ISD::VECREDUCE_UMIN:
3074     return RISCVISD::VECREDUCE_UMIN_VL;
3075   case ISD::VECREDUCE_SMIN:
3076     return RISCVISD::VECREDUCE_SMIN_VL;
3077   case ISD::VECREDUCE_AND:
3078     return RISCVISD::VECREDUCE_AND_VL;
3079   case ISD::VECREDUCE_OR:
3080     return RISCVISD::VECREDUCE_OR_VL;
3081   case ISD::VECREDUCE_XOR:
3082     return RISCVISD::VECREDUCE_XOR_VL;
3083   }
3084 }
3085 
3086 SDValue RISCVTargetLowering::lowerVectorMaskVECREDUCE(SDValue Op,
3087                                                       SelectionDAG &DAG) const {
3088   SDLoc DL(Op);
3089   SDValue Vec = Op.getOperand(0);
3090   MVT VecVT = Vec.getSimpleValueType();
3091   assert((Op.getOpcode() == ISD::VECREDUCE_AND ||
3092           Op.getOpcode() == ISD::VECREDUCE_OR ||
3093           Op.getOpcode() == ISD::VECREDUCE_XOR) &&
3094          "Unexpected reduction lowering");
3095 
3096   MVT XLenVT = Subtarget.getXLenVT();
3097   assert(Op.getValueType() == XLenVT &&
3098          "Expected reduction output to be legalized to XLenVT");
3099 
3100   MVT ContainerVT = VecVT;
3101   if (VecVT.isFixedLengthVector()) {
3102     ContainerVT = getContainerForFixedLengthVector(VecVT);
3103     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
3104   }
3105 
3106   SDValue Mask, VL;
3107   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
3108   SDValue Zero = DAG.getConstant(0, DL, XLenVT);
3109 
3110   switch (Op.getOpcode()) {
3111   default:
3112     llvm_unreachable("Unhandled reduction");
3113   case ISD::VECREDUCE_AND:
3114     // vpopc ~x == 0
3115     Vec = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Vec, Mask, VL);
3116     Vec = DAG.getNode(RISCVISD::VPOPC_VL, DL, XLenVT, Vec, Mask, VL);
3117     return DAG.getSetCC(DL, XLenVT, Vec, Zero, ISD::SETEQ);
3118   case ISD::VECREDUCE_OR:
3119     // vpopc x != 0
3120     Vec = DAG.getNode(RISCVISD::VPOPC_VL, DL, XLenVT, Vec, Mask, VL);
3121     return DAG.getSetCC(DL, XLenVT, Vec, Zero, ISD::SETNE);
3122   case ISD::VECREDUCE_XOR: {
3123     // ((vpopc x) & 1) != 0
3124     SDValue One = DAG.getConstant(1, DL, XLenVT);
3125     Vec = DAG.getNode(RISCVISD::VPOPC_VL, DL, XLenVT, Vec, Mask, VL);
3126     Vec = DAG.getNode(ISD::AND, DL, XLenVT, Vec, One);
3127     return DAG.getSetCC(DL, XLenVT, Vec, Zero, ISD::SETNE);
3128   }
3129   }
3130 }
3131 
3132 SDValue RISCVTargetLowering::lowerVECREDUCE(SDValue Op,
3133                                             SelectionDAG &DAG) const {
3134   SDLoc DL(Op);
3135   SDValue Vec = Op.getOperand(0);
3136   EVT VecEVT = Vec.getValueType();
3137 
3138   unsigned BaseOpc = ISD::getVecReduceBaseOpcode(Op.getOpcode());
3139 
3140   // Due to ordering in legalize types we may have a vector type that needs to
3141   // be split. Do that manually so we can get down to a legal type.
3142   while (getTypeAction(*DAG.getContext(), VecEVT) ==
3143          TargetLowering::TypeSplitVector) {
3144     SDValue Lo, Hi;
3145     std::tie(Lo, Hi) = DAG.SplitVector(Vec, DL);
3146     VecEVT = Lo.getValueType();
3147     Vec = DAG.getNode(BaseOpc, DL, VecEVT, Lo, Hi);
3148   }
3149 
3150   // TODO: The type may need to be widened rather than split. Or widened before
3151   // it can be split.
3152   if (!isTypeLegal(VecEVT))
3153     return SDValue();
3154 
3155   MVT VecVT = VecEVT.getSimpleVT();
3156   MVT VecEltVT = VecVT.getVectorElementType();
3157   unsigned RVVOpcode = getRVVReductionOp(Op.getOpcode());
3158 
3159   MVT ContainerVT = VecVT;
3160   if (VecVT.isFixedLengthVector()) {
3161     ContainerVT = getContainerForFixedLengthVector(VecVT);
3162     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
3163   }
3164 
3165   MVT M1VT = getLMUL1VT(ContainerVT);
3166 
3167   SDValue Mask, VL;
3168   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
3169 
3170   // FIXME: This is a VLMAX splat which might be too large and can prevent
3171   // vsetvli removal.
3172   SDValue NeutralElem =
3173       DAG.getNeutralElement(BaseOpc, DL, VecEltVT, SDNodeFlags());
3174   SDValue IdentitySplat = DAG.getSplatVector(M1VT, DL, NeutralElem);
3175   SDValue Reduction =
3176       DAG.getNode(RVVOpcode, DL, M1VT, Vec, IdentitySplat, Mask, VL);
3177   SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction,
3178                              DAG.getConstant(0, DL, Subtarget.getXLenVT()));
3179   return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType());
3180 }
3181 
3182 // Given a reduction op, this function returns the matching reduction opcode,
3183 // the vector SDValue and the scalar SDValue required to lower this to a
3184 // RISCVISD node.
3185 static std::tuple<unsigned, SDValue, SDValue>
3186 getRVVFPReductionOpAndOperands(SDValue Op, SelectionDAG &DAG, EVT EltVT) {
3187   SDLoc DL(Op);
3188   switch (Op.getOpcode()) {
3189   default:
3190     llvm_unreachable("Unhandled reduction");
3191   case ISD::VECREDUCE_FADD:
3192     return std::make_tuple(RISCVISD::VECREDUCE_FADD_VL, Op.getOperand(0),
3193                            DAG.getConstantFP(0.0, DL, EltVT));
3194   case ISD::VECREDUCE_SEQ_FADD:
3195     return std::make_tuple(RISCVISD::VECREDUCE_SEQ_FADD_VL, Op.getOperand(1),
3196                            Op.getOperand(0));
3197   }
3198 }
3199 
3200 SDValue RISCVTargetLowering::lowerFPVECREDUCE(SDValue Op,
3201                                               SelectionDAG &DAG) const {
3202   SDLoc DL(Op);
3203   MVT VecEltVT = Op.getSimpleValueType();
3204 
3205   unsigned RVVOpcode;
3206   SDValue VectorVal, ScalarVal;
3207   std::tie(RVVOpcode, VectorVal, ScalarVal) =
3208       getRVVFPReductionOpAndOperands(Op, DAG, VecEltVT);
3209   MVT VecVT = VectorVal.getSimpleValueType();
3210 
3211   MVT ContainerVT = VecVT;
3212   if (VecVT.isFixedLengthVector()) {
3213     ContainerVT = getContainerForFixedLengthVector(VecVT);
3214     VectorVal = convertToScalableVector(ContainerVT, VectorVal, DAG, Subtarget);
3215   }
3216 
3217   MVT M1VT = getLMUL1VT(VectorVal.getSimpleValueType());
3218 
3219   SDValue Mask, VL;
3220   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
3221 
3222   // FIXME: This is a VLMAX splat which might be too large and can prevent
3223   // vsetvli removal.
3224   SDValue ScalarSplat = DAG.getSplatVector(M1VT, DL, ScalarVal);
3225   SDValue Reduction =
3226       DAG.getNode(RVVOpcode, DL, M1VT, VectorVal, ScalarSplat, Mask, VL);
3227   return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction,
3228                      DAG.getConstant(0, DL, Subtarget.getXLenVT()));
3229 }
3230 
3231 SDValue RISCVTargetLowering::lowerINSERT_SUBVECTOR(SDValue Op,
3232                                                    SelectionDAG &DAG) const {
3233   SDValue Vec = Op.getOperand(0);
3234   SDValue SubVec = Op.getOperand(1);
3235   MVT VecVT = Vec.getSimpleValueType();
3236   MVT SubVecVT = SubVec.getSimpleValueType();
3237 
3238   SDLoc DL(Op);
3239   MVT XLenVT = Subtarget.getXLenVT();
3240   unsigned OrigIdx = Op.getConstantOperandVal(2);
3241   const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo();
3242 
3243   // We don't have the ability to slide mask vectors up indexed by their i1
3244   // elements; the smallest we can do is i8. Often we are able to bitcast to
3245   // equivalent i8 vectors. Note that when inserting a fixed-length vector
3246   // into a scalable one, we might not necessarily have enough scalable
3247   // elements to safely divide by 8: nxv1i1 = insert nxv1i1, v4i1 is valid.
3248   if (SubVecVT.getVectorElementType() == MVT::i1 &&
3249       (OrigIdx != 0 || !Vec.isUndef())) {
3250     if (VecVT.getVectorMinNumElements() >= 8 &&
3251         SubVecVT.getVectorMinNumElements() >= 8) {
3252       assert(OrigIdx % 8 == 0 && "Invalid index");
3253       assert(VecVT.getVectorMinNumElements() % 8 == 0 &&
3254              SubVecVT.getVectorMinNumElements() % 8 == 0 &&
3255              "Unexpected mask vector lowering");
3256       OrigIdx /= 8;
3257       SubVecVT =
3258           MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8,
3259                            SubVecVT.isScalableVector());
3260       VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8,
3261                                VecVT.isScalableVector());
3262       Vec = DAG.getBitcast(VecVT, Vec);
3263       SubVec = DAG.getBitcast(SubVecVT, SubVec);
3264     } else {
3265       // We can't slide this mask vector up indexed by its i1 elements.
3266       // This poses a problem when we wish to insert a scalable vector which
3267       // can't be re-expressed as a larger type. Just choose the slow path and
3268       // extend to a larger type, then truncate back down.
3269       MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8);
3270       MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8);
3271       Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec);
3272       SubVec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtSubVecVT, SubVec);
3273       Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ExtVecVT, Vec, SubVec,
3274                         Op.getOperand(2));
3275       SDValue SplatZero = DAG.getConstant(0, DL, ExtVecVT);
3276       return DAG.getSetCC(DL, VecVT, Vec, SplatZero, ISD::SETNE);
3277     }
3278   }
3279 
3280   // If the subvector vector is a fixed-length type, we cannot use subregister
3281   // manipulation to simplify the codegen; we don't know which register of a
3282   // LMUL group contains the specific subvector as we only know the minimum
3283   // register size. Therefore we must slide the vector group up the full
3284   // amount.
3285   if (SubVecVT.isFixedLengthVector()) {
3286     if (OrigIdx == 0 && Vec.isUndef())
3287       return Op;
3288     MVT ContainerVT = VecVT;
3289     if (VecVT.isFixedLengthVector()) {
3290       ContainerVT = getContainerForFixedLengthVector(VecVT);
3291       Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
3292     }
3293     SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ContainerVT,
3294                          DAG.getUNDEF(ContainerVT), SubVec,
3295                          DAG.getConstant(0, DL, XLenVT));
3296     SDValue Mask =
3297         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first;
3298     // Set the vector length to only the number of elements we care about. Note
3299     // that for slideup this includes the offset.
3300     SDValue VL =
3301         DAG.getConstant(OrigIdx + SubVecVT.getVectorNumElements(), DL, XLenVT);
3302     SDValue SlideupAmt = DAG.getConstant(OrigIdx, DL, XLenVT);
3303     SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec,
3304                                   SubVec, SlideupAmt, Mask, VL);
3305     if (VecVT.isFixedLengthVector())
3306       Slideup = convertFromScalableVector(VecVT, Slideup, DAG, Subtarget);
3307     return DAG.getBitcast(Op.getValueType(), Slideup);
3308   }
3309 
3310   unsigned SubRegIdx, RemIdx;
3311   std::tie(SubRegIdx, RemIdx) =
3312       RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs(
3313           VecVT, SubVecVT, OrigIdx, TRI);
3314 
3315   RISCVVLMUL SubVecLMUL = RISCVTargetLowering::getLMUL(SubVecVT);
3316   bool IsSubVecPartReg = SubVecLMUL == RISCVVLMUL::LMUL_F2 ||
3317                          SubVecLMUL == RISCVVLMUL::LMUL_F4 ||
3318                          SubVecLMUL == RISCVVLMUL::LMUL_F8;
3319 
3320   // 1. If the Idx has been completely eliminated and this subvector's size is
3321   // a vector register or a multiple thereof, or the surrounding elements are
3322   // undef, then this is a subvector insert which naturally aligns to a vector
3323   // register. These can easily be handled using subregister manipulation.
3324   // 2. If the subvector is smaller than a vector register, then the insertion
3325   // must preserve the undisturbed elements of the register. We do this by
3326   // lowering to an EXTRACT_SUBVECTOR grabbing the nearest LMUL=1 vector type
3327   // (which resolves to a subregister copy), performing a VSLIDEUP to place the
3328   // subvector within the vector register, and an INSERT_SUBVECTOR of that
3329   // LMUL=1 type back into the larger vector (resolving to another subregister
3330   // operation). See below for how our VSLIDEUP works. We go via a LMUL=1 type
3331   // to avoid allocating a large register group to hold our subvector.
3332   if (RemIdx == 0 && (!IsSubVecPartReg || Vec.isUndef()))
3333     return Op;
3334 
3335   // VSLIDEUP works by leaving elements 0<i<OFFSET undisturbed, elements
3336   // OFFSET<=i<VL set to the "subvector" and vl<=i<VLMAX set to the tail policy
3337   // (in our case undisturbed). This means we can set up a subvector insertion
3338   // where OFFSET is the insertion offset, and the VL is the OFFSET plus the
3339   // size of the subvector.
3340   MVT InterSubVT = VecVT;
3341   SDValue AlignedExtract = Vec;
3342   unsigned AlignedIdx = OrigIdx - RemIdx;
3343   if (VecVT.bitsGT(getLMUL1VT(VecVT))) {
3344     InterSubVT = getLMUL1VT(VecVT);
3345     // Extract a subvector equal to the nearest full vector register type. This
3346     // should resolve to a EXTRACT_SUBREG instruction.
3347     AlignedExtract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec,
3348                                  DAG.getConstant(AlignedIdx, DL, XLenVT));
3349   }
3350 
3351   SDValue SlideupAmt = DAG.getConstant(RemIdx, DL, XLenVT);
3352   // For scalable vectors this must be further multiplied by vscale.
3353   SlideupAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlideupAmt);
3354 
3355   SDValue Mask, VL;
3356   std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget);
3357 
3358   // Construct the vector length corresponding to RemIdx + length(SubVecVT).
3359   VL = DAG.getConstant(SubVecVT.getVectorMinNumElements(), DL, XLenVT);
3360   VL = DAG.getNode(ISD::VSCALE, DL, XLenVT, VL);
3361   VL = DAG.getNode(ISD::ADD, DL, XLenVT, SlideupAmt, VL);
3362 
3363   SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, InterSubVT,
3364                        DAG.getUNDEF(InterSubVT), SubVec,
3365                        DAG.getConstant(0, DL, XLenVT));
3366 
3367   SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, InterSubVT,
3368                                 AlignedExtract, SubVec, SlideupAmt, Mask, VL);
3369 
3370   // If required, insert this subvector back into the correct vector register.
3371   // This should resolve to an INSERT_SUBREG instruction.
3372   if (VecVT.bitsGT(InterSubVT))
3373     Slideup = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, Vec, Slideup,
3374                           DAG.getConstant(AlignedIdx, DL, XLenVT));
3375 
3376   // We might have bitcast from a mask type: cast back to the original type if
3377   // required.
3378   return DAG.getBitcast(Op.getSimpleValueType(), Slideup);
3379 }
3380 
3381 SDValue RISCVTargetLowering::lowerEXTRACT_SUBVECTOR(SDValue Op,
3382                                                     SelectionDAG &DAG) const {
3383   SDValue Vec = Op.getOperand(0);
3384   MVT SubVecVT = Op.getSimpleValueType();
3385   MVT VecVT = Vec.getSimpleValueType();
3386 
3387   SDLoc DL(Op);
3388   MVT XLenVT = Subtarget.getXLenVT();
3389   unsigned OrigIdx = Op.getConstantOperandVal(1);
3390   const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo();
3391 
3392   // We don't have the ability to slide mask vectors down indexed by their i1
3393   // elements; the smallest we can do is i8. Often we are able to bitcast to
3394   // equivalent i8 vectors. Note that when extracting a fixed-length vector
3395   // from a scalable one, we might not necessarily have enough scalable
3396   // elements to safely divide by 8: v8i1 = extract nxv1i1 is valid.
3397   if (SubVecVT.getVectorElementType() == MVT::i1 && OrigIdx != 0) {
3398     if (VecVT.getVectorMinNumElements() >= 8 &&
3399         SubVecVT.getVectorMinNumElements() >= 8) {
3400       assert(OrigIdx % 8 == 0 && "Invalid index");
3401       assert(VecVT.getVectorMinNumElements() % 8 == 0 &&
3402              SubVecVT.getVectorMinNumElements() % 8 == 0 &&
3403              "Unexpected mask vector lowering");
3404       OrigIdx /= 8;
3405       SubVecVT =
3406           MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8,
3407                            SubVecVT.isScalableVector());
3408       VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8,
3409                                VecVT.isScalableVector());
3410       Vec = DAG.getBitcast(VecVT, Vec);
3411     } else {
3412       // We can't slide this mask vector down, indexed by its i1 elements.
3413       // This poses a problem when we wish to extract a scalable vector which
3414       // can't be re-expressed as a larger type. Just choose the slow path and
3415       // extend to a larger type, then truncate back down.
3416       // TODO: We could probably improve this when extracting certain fixed
3417       // from fixed, where we can extract as i8 and shift the correct element
3418       // right to reach the desired subvector?
3419       MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8);
3420       MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8);
3421       Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec);
3422       Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ExtSubVecVT, Vec,
3423                         Op.getOperand(1));
3424       SDValue SplatZero = DAG.getConstant(0, DL, ExtSubVecVT);
3425       return DAG.getSetCC(DL, SubVecVT, Vec, SplatZero, ISD::SETNE);
3426     }
3427   }
3428 
3429   // If the subvector vector is a fixed-length type, we cannot use subregister
3430   // manipulation to simplify the codegen; we don't know which register of a
3431   // LMUL group contains the specific subvector as we only know the minimum
3432   // register size. Therefore we must slide the vector group down the full
3433   // amount.
3434   if (SubVecVT.isFixedLengthVector()) {
3435     // With an index of 0 this is a cast-like subvector, which can be performed
3436     // with subregister operations.
3437     if (OrigIdx == 0)
3438       return Op;
3439     MVT ContainerVT = VecVT;
3440     if (VecVT.isFixedLengthVector()) {
3441       ContainerVT = getContainerForFixedLengthVector(VecVT);
3442       Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
3443     }
3444     SDValue Mask =
3445         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first;
3446     // Set the vector length to only the number of elements we care about. This
3447     // avoids sliding down elements we're going to discard straight away.
3448     SDValue VL = DAG.getConstant(SubVecVT.getVectorNumElements(), DL, XLenVT);
3449     SDValue SlidedownAmt = DAG.getConstant(OrigIdx, DL, XLenVT);
3450     SDValue Slidedown =
3451         DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT,
3452                     DAG.getUNDEF(ContainerVT), Vec, SlidedownAmt, Mask, VL);
3453     // Now we can use a cast-like subvector extract to get the result.
3454     Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown,
3455                             DAG.getConstant(0, DL, XLenVT));
3456     return DAG.getBitcast(Op.getValueType(), Slidedown);
3457   }
3458 
3459   unsigned SubRegIdx, RemIdx;
3460   std::tie(SubRegIdx, RemIdx) =
3461       RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs(
3462           VecVT, SubVecVT, OrigIdx, TRI);
3463 
3464   // If the Idx has been completely eliminated then this is a subvector extract
3465   // which naturally aligns to a vector register. These can easily be handled
3466   // using subregister manipulation.
3467   if (RemIdx == 0)
3468     return Op;
3469 
3470   // Else we must shift our vector register directly to extract the subvector.
3471   // Do this using VSLIDEDOWN.
3472 
3473   // If the vector type is an LMUL-group type, extract a subvector equal to the
3474   // nearest full vector register type. This should resolve to a EXTRACT_SUBREG
3475   // instruction.
3476   MVT InterSubVT = VecVT;
3477   if (VecVT.bitsGT(getLMUL1VT(VecVT))) {
3478     InterSubVT = getLMUL1VT(VecVT);
3479     Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec,
3480                       DAG.getConstant(OrigIdx - RemIdx, DL, XLenVT));
3481   }
3482 
3483   // Slide this vector register down by the desired number of elements in order
3484   // to place the desired subvector starting at element 0.
3485   SDValue SlidedownAmt = DAG.getConstant(RemIdx, DL, XLenVT);
3486   // For scalable vectors this must be further multiplied by vscale.
3487   SlidedownAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlidedownAmt);
3488 
3489   SDValue Mask, VL;
3490   std::tie(Mask, VL) = getDefaultScalableVLOps(InterSubVT, DL, DAG, Subtarget);
3491   SDValue Slidedown =
3492       DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, InterSubVT,
3493                   DAG.getUNDEF(InterSubVT), Vec, SlidedownAmt, Mask, VL);
3494 
3495   // Now the vector is in the right position, extract our final subvector. This
3496   // should resolve to a COPY.
3497   Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown,
3498                           DAG.getConstant(0, DL, XLenVT));
3499 
3500   // We might have bitcast from a mask type: cast back to the original type if
3501   // required.
3502   return DAG.getBitcast(Op.getSimpleValueType(), Slidedown);
3503 }
3504 
3505 // Implement step_vector to the vid instruction.
3506 SDValue RISCVTargetLowering::lowerSTEP_VECTOR(SDValue Op,
3507                                               SelectionDAG &DAG) const {
3508   SDLoc DL(Op);
3509   assert(Op.getConstantOperandAPInt(0) == 1 && "Unexpected step value");
3510   MVT VT = Op.getSimpleValueType();
3511   SDValue Mask, VL;
3512   std::tie(Mask, VL) = getDefaultScalableVLOps(VT, DL, DAG, Subtarget);
3513   return DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL);
3514 }
3515 
3516 // Implement vector_reverse using vrgather.vv with indices determined by
3517 // subtracting the id of each element from (VLMAX-1). This will convert
3518 // the indices like so:
3519 // (0, 1,..., VLMAX-2, VLMAX-1) -> (VLMAX-1, VLMAX-2,..., 1, 0).
3520 // TODO: This code assumes VLMAX <= 65536 for LMUL=8 SEW=16.
3521 SDValue RISCVTargetLowering::lowerVECTOR_REVERSE(SDValue Op,
3522                                                  SelectionDAG &DAG) const {
3523   SDLoc DL(Op);
3524   MVT VecVT = Op.getSimpleValueType();
3525   unsigned EltSize = VecVT.getScalarSizeInBits();
3526   unsigned MinSize = VecVT.getSizeInBits().getKnownMinValue();
3527 
3528   unsigned MaxVLMAX = 0;
3529   unsigned VectorBitsMax = Subtarget.getMaxRVVVectorSizeInBits();
3530   if (VectorBitsMax != 0)
3531     MaxVLMAX = ((VectorBitsMax / EltSize) * MinSize) / RISCV::RVVBitsPerBlock;
3532 
3533   unsigned GatherOpc = RISCVISD::VRGATHER_VV_VL;
3534   MVT IntVT = VecVT.changeVectorElementTypeToInteger();
3535 
3536   // If this is SEW=8 and VLMAX is unknown or more than 256, we need
3537   // to use vrgatherei16.vv.
3538   // TODO: It's also possible to use vrgatherei16.vv for other types to
3539   // decrease register width for the index calculation.
3540   if ((MaxVLMAX == 0 || MaxVLMAX > 256) && EltSize == 8) {
3541     // If this is LMUL=8, we have to split before can use vrgatherei16.vv.
3542     // Reverse each half, then reassemble them in reverse order.
3543     // NOTE: It's also possible that after splitting that VLMAX no longer
3544     // requires vrgatherei16.vv.
3545     if (MinSize == (8 * RISCV::RVVBitsPerBlock)) {
3546       SDValue Lo, Hi;
3547       std::tie(Lo, Hi) = DAG.SplitVectorOperand(Op.getNode(), 0);
3548       EVT LoVT, HiVT;
3549       std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VecVT);
3550       Lo = DAG.getNode(ISD::VECTOR_REVERSE, DL, LoVT, Lo);
3551       Hi = DAG.getNode(ISD::VECTOR_REVERSE, DL, HiVT, Hi);
3552       // Reassemble the low and high pieces reversed.
3553       // FIXME: This is a CONCAT_VECTORS.
3554       SDValue Res =
3555           DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, DAG.getUNDEF(VecVT), Hi,
3556                       DAG.getIntPtrConstant(0, DL));
3557       return DAG.getNode(
3558           ISD::INSERT_SUBVECTOR, DL, VecVT, Res, Lo,
3559           DAG.getIntPtrConstant(LoVT.getVectorMinNumElements(), DL));
3560     }
3561 
3562     // Just promote the int type to i16 which will double the LMUL.
3563     IntVT = MVT::getVectorVT(MVT::i16, VecVT.getVectorElementCount());
3564     GatherOpc = RISCVISD::VRGATHEREI16_VV_VL;
3565   }
3566 
3567   MVT XLenVT = Subtarget.getXLenVT();
3568   SDValue Mask, VL;
3569   std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget);
3570 
3571   // Calculate VLMAX-1 for the desired SEW.
3572   unsigned MinElts = VecVT.getVectorMinNumElements();
3573   SDValue VLMax = DAG.getNode(ISD::VSCALE, DL, XLenVT,
3574                               DAG.getConstant(MinElts, DL, XLenVT));
3575   SDValue VLMinus1 =
3576       DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, DAG.getConstant(1, DL, XLenVT));
3577 
3578   // Splat VLMAX-1 taking care to handle SEW==64 on RV32.
3579   bool IsRV32E64 =
3580       !Subtarget.is64Bit() && IntVT.getVectorElementType() == MVT::i64;
3581   SDValue SplatVL;
3582   if (!IsRV32E64)
3583     SplatVL = DAG.getSplatVector(IntVT, DL, VLMinus1);
3584   else
3585     SplatVL = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, IntVT, VLMinus1);
3586 
3587   SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, IntVT, Mask, VL);
3588   SDValue Indices =
3589       DAG.getNode(RISCVISD::SUB_VL, DL, IntVT, SplatVL, VID, Mask, VL);
3590 
3591   return DAG.getNode(GatherOpc, DL, VecVT, Op.getOperand(0), Indices, Mask, VL);
3592 }
3593 
3594 SDValue
3595 RISCVTargetLowering::lowerFixedLengthVectorLoadToRVV(SDValue Op,
3596                                                      SelectionDAG &DAG) const {
3597   auto *Load = cast<LoadSDNode>(Op);
3598 
3599   SDLoc DL(Op);
3600   MVT VT = Op.getSimpleValueType();
3601   MVT ContainerVT = getContainerForFixedLengthVector(VT);
3602 
3603   SDValue VL =
3604       DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT());
3605 
3606   SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
3607   SDValue NewLoad = DAG.getMemIntrinsicNode(
3608       RISCVISD::VLE_VL, DL, VTs, {Load->getChain(), Load->getBasePtr(), VL},
3609       Load->getMemoryVT(), Load->getMemOperand());
3610 
3611   SDValue Result = convertFromScalableVector(VT, NewLoad, DAG, Subtarget);
3612   return DAG.getMergeValues({Result, Load->getChain()}, DL);
3613 }
3614 
3615 SDValue
3616 RISCVTargetLowering::lowerFixedLengthVectorStoreToRVV(SDValue Op,
3617                                                       SelectionDAG &DAG) const {
3618   auto *Store = cast<StoreSDNode>(Op);
3619 
3620   SDLoc DL(Op);
3621   MVT VT = Store->getValue().getSimpleValueType();
3622 
3623   // FIXME: We probably need to zero any extra bits in a byte for mask stores.
3624   // This is tricky to do.
3625 
3626   MVT ContainerVT = getContainerForFixedLengthVector(VT);
3627 
3628   SDValue VL =
3629       DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT());
3630 
3631   SDValue NewValue =
3632       convertToScalableVector(ContainerVT, Store->getValue(), DAG, Subtarget);
3633   return DAG.getMemIntrinsicNode(
3634       RISCVISD::VSE_VL, DL, DAG.getVTList(MVT::Other),
3635       {Store->getChain(), NewValue, Store->getBasePtr(), VL},
3636       Store->getMemoryVT(), Store->getMemOperand());
3637 }
3638 
3639 SDValue RISCVTargetLowering::lowerMLOAD(SDValue Op, SelectionDAG &DAG) const {
3640   auto *Load = cast<MaskedLoadSDNode>(Op);
3641 
3642   SDLoc DL(Op);
3643   MVT VT = Op.getSimpleValueType();
3644   MVT XLenVT = Subtarget.getXLenVT();
3645 
3646   SDValue Mask = Load->getMask();
3647   SDValue PassThru = Load->getPassThru();
3648   SDValue VL;
3649 
3650   MVT ContainerVT = VT;
3651   if (VT.isFixedLengthVector()) {
3652     ContainerVT = getContainerForFixedLengthVector(VT);
3653     MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
3654 
3655     Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
3656     PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget);
3657     VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT);
3658   } else
3659     VL = DAG.getRegister(RISCV::X0, XLenVT);
3660 
3661   SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
3662   SDValue IntID = DAG.getTargetConstant(Intrinsic::riscv_vle_mask, DL, XLenVT);
3663   SDValue Ops[] = {Load->getChain(),   IntID, PassThru,
3664                    Load->getBasePtr(), Mask,  VL};
3665   SDValue Result =
3666       DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops,
3667                               Load->getMemoryVT(), Load->getMemOperand());
3668   SDValue Chain = Result.getValue(1);
3669 
3670   if (VT.isFixedLengthVector())
3671     Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
3672 
3673   return DAG.getMergeValues({Result, Chain}, DL);
3674 }
3675 
3676 SDValue RISCVTargetLowering::lowerMSTORE(SDValue Op, SelectionDAG &DAG) const {
3677   auto *Store = cast<MaskedStoreSDNode>(Op);
3678 
3679   SDLoc DL(Op);
3680   SDValue Val = Store->getValue();
3681   SDValue Mask = Store->getMask();
3682   MVT VT = Val.getSimpleValueType();
3683   MVT XLenVT = Subtarget.getXLenVT();
3684   SDValue VL;
3685 
3686   MVT ContainerVT = VT;
3687   if (VT.isFixedLengthVector()) {
3688     ContainerVT = getContainerForFixedLengthVector(VT);
3689     MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
3690 
3691     Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget);
3692     Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
3693     VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT);
3694   } else
3695     VL = DAG.getRegister(RISCV::X0, XLenVT);
3696 
3697   SDValue IntID = DAG.getTargetConstant(Intrinsic::riscv_vse_mask, DL, XLenVT);
3698   return DAG.getMemIntrinsicNode(
3699       ISD::INTRINSIC_VOID, DL, DAG.getVTList(MVT::Other),
3700       {Store->getChain(), IntID, Val, Store->getBasePtr(), Mask, VL},
3701       Store->getMemoryVT(), Store->getMemOperand());
3702 }
3703 
3704 SDValue
3705 RISCVTargetLowering::lowerFixedLengthVectorSetccToRVV(SDValue Op,
3706                                                       SelectionDAG &DAG) const {
3707   MVT InVT = Op.getOperand(0).getSimpleValueType();
3708   MVT ContainerVT = getContainerForFixedLengthVector(InVT);
3709 
3710   MVT VT = Op.getSimpleValueType();
3711 
3712   SDValue Op1 =
3713       convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget);
3714   SDValue Op2 =
3715       convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget);
3716 
3717   SDLoc DL(Op);
3718   SDValue VL =
3719       DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT());
3720 
3721   MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
3722   SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
3723 
3724   SDValue Cmp = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, Op1, Op2,
3725                             Op.getOperand(2), Mask, VL);
3726 
3727   return convertFromScalableVector(VT, Cmp, DAG, Subtarget);
3728 }
3729 
3730 SDValue RISCVTargetLowering::lowerFixedLengthVectorLogicOpToRVV(
3731     SDValue Op, SelectionDAG &DAG, unsigned MaskOpc, unsigned VecOpc) const {
3732   MVT VT = Op.getSimpleValueType();
3733 
3734   if (VT.getVectorElementType() == MVT::i1)
3735     return lowerToScalableOp(Op, DAG, MaskOpc, /*HasMask*/ false);
3736 
3737   return lowerToScalableOp(Op, DAG, VecOpc, /*HasMask*/ true);
3738 }
3739 
3740 // Lower vector ABS to smax(X, sub(0, X)).
3741 SDValue RISCVTargetLowering::lowerABS(SDValue Op, SelectionDAG &DAG) const {
3742   SDLoc DL(Op);
3743   MVT VT = Op.getSimpleValueType();
3744   SDValue X = Op.getOperand(0);
3745 
3746   assert(VT.isFixedLengthVector() && "Unexpected type");
3747 
3748   MVT ContainerVT = getContainerForFixedLengthVector(VT);
3749   X = convertToScalableVector(ContainerVT, X, DAG, Subtarget);
3750 
3751   SDValue Mask, VL;
3752   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
3753 
3754   SDValue SplatZero =
3755       DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
3756                   DAG.getConstant(0, DL, Subtarget.getXLenVT()));
3757   SDValue NegX =
3758       DAG.getNode(RISCVISD::SUB_VL, DL, ContainerVT, SplatZero, X, Mask, VL);
3759   SDValue Max =
3760       DAG.getNode(RISCVISD::SMAX_VL, DL, ContainerVT, X, NegX, Mask, VL);
3761 
3762   return convertFromScalableVector(VT, Max, DAG, Subtarget);
3763 }
3764 
3765 SDValue RISCVTargetLowering::lowerFixedLengthVectorFCOPYSIGNToRVV(
3766     SDValue Op, SelectionDAG &DAG) const {
3767   SDLoc DL(Op);
3768   MVT VT = Op.getSimpleValueType();
3769   SDValue Mag = Op.getOperand(0);
3770   SDValue Sign = Op.getOperand(1);
3771   assert(Mag.getValueType() == Sign.getValueType() &&
3772          "Can only handle COPYSIGN with matching types.");
3773 
3774   MVT ContainerVT = getContainerForFixedLengthVector(VT);
3775   Mag = convertToScalableVector(ContainerVT, Mag, DAG, Subtarget);
3776   Sign = convertToScalableVector(ContainerVT, Sign, DAG, Subtarget);
3777 
3778   SDValue Mask, VL;
3779   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
3780 
3781   SDValue CopySign =
3782       DAG.getNode(RISCVISD::FCOPYSIGN_VL, DL, ContainerVT, Mag, Sign, Mask, VL);
3783 
3784   return convertFromScalableVector(VT, CopySign, DAG, Subtarget);
3785 }
3786 
3787 SDValue RISCVTargetLowering::lowerFixedLengthVectorSelectToRVV(
3788     SDValue Op, SelectionDAG &DAG) const {
3789   MVT VT = Op.getSimpleValueType();
3790   MVT ContainerVT = getContainerForFixedLengthVector(VT);
3791 
3792   MVT I1ContainerVT =
3793       MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
3794 
3795   SDValue CC =
3796       convertToScalableVector(I1ContainerVT, Op.getOperand(0), DAG, Subtarget);
3797   SDValue Op1 =
3798       convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget);
3799   SDValue Op2 =
3800       convertToScalableVector(ContainerVT, Op.getOperand(2), DAG, Subtarget);
3801 
3802   SDLoc DL(Op);
3803   SDValue Mask, VL;
3804   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
3805 
3806   SDValue Select =
3807       DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC, Op1, Op2, VL);
3808 
3809   return convertFromScalableVector(VT, Select, DAG, Subtarget);
3810 }
3811 
3812 SDValue RISCVTargetLowering::lowerToScalableOp(SDValue Op, SelectionDAG &DAG,
3813                                                unsigned NewOpc,
3814                                                bool HasMask) const {
3815   MVT VT = Op.getSimpleValueType();
3816   assert(useRVVForFixedLengthVectorVT(VT) &&
3817          "Only expected to lower fixed length vector operation!");
3818   MVT ContainerVT = getContainerForFixedLengthVector(VT);
3819 
3820   // Create list of operands by converting existing ones to scalable types.
3821   SmallVector<SDValue, 6> Ops;
3822   for (const SDValue &V : Op->op_values()) {
3823     assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!");
3824 
3825     // Pass through non-vector operands.
3826     if (!V.getValueType().isVector()) {
3827       Ops.push_back(V);
3828       continue;
3829     }
3830 
3831     // "cast" fixed length vector to a scalable vector.
3832     assert(useRVVForFixedLengthVectorVT(V.getSimpleValueType()) &&
3833            "Only fixed length vectors are supported!");
3834     Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget));
3835   }
3836 
3837   SDLoc DL(Op);
3838   SDValue Mask, VL;
3839   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
3840   if (HasMask)
3841     Ops.push_back(Mask);
3842   Ops.push_back(VL);
3843 
3844   SDValue ScalableRes = DAG.getNode(NewOpc, DL, ContainerVT, Ops);
3845   return convertFromScalableVector(VT, ScalableRes, DAG, Subtarget);
3846 }
3847 
3848 // Custom lower MGATHER to a legalized form for RVV. It will then be matched to
3849 // a RVV indexed load. The RVV indexed load instructions only support the
3850 // "unsigned unscaled" addressing mode; indices are implicitly zero-extended or
3851 // truncated to XLEN and are treated as byte offsets. Any signed or scaled
3852 // indexing is extended to the XLEN value type and scaled accordingly.
3853 SDValue RISCVTargetLowering::lowerMGATHER(SDValue Op, SelectionDAG &DAG) const {
3854   auto *MGN = cast<MaskedGatherSDNode>(Op.getNode());
3855   SDLoc DL(Op);
3856 
3857   SDValue Index = MGN->getIndex();
3858   SDValue Mask = MGN->getMask();
3859   SDValue PassThru = MGN->getPassThru();
3860 
3861   MVT VT = Op.getSimpleValueType();
3862   MVT IndexVT = Index.getSimpleValueType();
3863   MVT XLenVT = Subtarget.getXLenVT();
3864 
3865   assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() &&
3866          "Unexpected VTs!");
3867   assert(MGN->getBasePtr().getSimpleValueType() == XLenVT &&
3868          "Unexpected pointer type");
3869   // Targets have to explicitly opt-in for extending vector loads.
3870   assert(MGN->getExtensionType() == ISD::NON_EXTLOAD &&
3871          "Unexpected extending MGATHER");
3872 
3873   // If the mask is known to be all ones, optimize to an unmasked intrinsic;
3874   // the selection of the masked intrinsics doesn't do this for us.
3875   bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
3876 
3877   SDValue VL;
3878   MVT ContainerVT = VT;
3879   if (VT.isFixedLengthVector()) {
3880     // We need to use the larger of the result and index type to determine the
3881     // scalable type to use so we don't increase LMUL for any operand/result.
3882     if (VT.bitsGE(IndexVT)) {
3883       ContainerVT = getContainerForFixedLengthVector(VT);
3884       IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(),
3885                                  ContainerVT.getVectorElementCount());
3886     } else {
3887       IndexVT = getContainerForFixedLengthVector(IndexVT);
3888       ContainerVT = MVT::getVectorVT(ContainerVT.getVectorElementType(),
3889                                      IndexVT.getVectorElementCount());
3890     }
3891 
3892     Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget);
3893 
3894     if (!IsUnmasked) {
3895       MVT MaskVT =
3896           MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
3897       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
3898       PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget);
3899     }
3900 
3901     VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT);
3902   } else
3903     VL = DAG.getRegister(RISCV::X0, XLenVT);
3904 
3905   unsigned IntID =
3906       IsUnmasked ? Intrinsic::riscv_vloxei : Intrinsic::riscv_vloxei_mask;
3907   SmallVector<SDValue, 8> Ops{MGN->getChain(),
3908                               DAG.getTargetConstant(IntID, DL, XLenVT)};
3909   if (!IsUnmasked)
3910     Ops.push_back(PassThru);
3911   Ops.push_back(MGN->getBasePtr());
3912   Ops.push_back(Index);
3913   if (!IsUnmasked)
3914     Ops.push_back(Mask);
3915   Ops.push_back(VL);
3916 
3917   SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
3918   SDValue Result =
3919       DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops,
3920                               MGN->getMemoryVT(), MGN->getMemOperand());
3921   SDValue Chain = Result.getValue(1);
3922 
3923   if (VT.isFixedLengthVector())
3924     Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
3925 
3926   return DAG.getMergeValues({Result, Chain}, DL);
3927 }
3928 
3929 // Custom lower MSCATTER to a legalized form for RVV. It will then be matched to
3930 // a RVV indexed store. The RVV indexed store instructions only support the
3931 // "unsigned unscaled" addressing mode; indices are implicitly zero-extended or
3932 // truncated to XLEN and are treated as byte offsets. Any signed or scaled
3933 // indexing is extended to the XLEN value type and scaled accordingly.
3934 SDValue RISCVTargetLowering::lowerMSCATTER(SDValue Op,
3935                                            SelectionDAG &DAG) const {
3936   auto *MSN = cast<MaskedScatterSDNode>(Op.getNode());
3937   SDLoc DL(Op);
3938   SDValue Index = MSN->getIndex();
3939   SDValue Mask = MSN->getMask();
3940   SDValue Val = MSN->getValue();
3941 
3942   MVT VT = Val.getSimpleValueType();
3943   MVT IndexVT = Index.getSimpleValueType();
3944   MVT XLenVT = Subtarget.getXLenVT();
3945 
3946   assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() &&
3947          "Unexpected VTs!");
3948   assert(MSN->getBasePtr().getSimpleValueType() == XLenVT &&
3949          "Unexpected pointer type");
3950   // Targets have to explicitly opt-in for extending vector loads and
3951   // truncating vector stores.
3952   assert(!MSN->isTruncatingStore() && "Unexpected extending MSCATTER");
3953 
3954   // If the mask is known to be all ones, optimize to an unmasked intrinsic;
3955   // the selection of the masked intrinsics doesn't do this for us.
3956   bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
3957 
3958   SDValue VL;
3959   if (VT.isFixedLengthVector()) {
3960     // We need to use the larger of the value and index type to determine the
3961     // scalable type to use so we don't increase LMUL for any operand/result.
3962     if (VT.bitsGE(IndexVT)) {
3963       VT = getContainerForFixedLengthVector(VT);
3964       IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(),
3965                                  VT.getVectorElementCount());
3966     } else {
3967       IndexVT = getContainerForFixedLengthVector(IndexVT);
3968       VT = MVT::getVectorVT(VT.getVectorElementType(),
3969                             IndexVT.getVectorElementCount());
3970     }
3971 
3972     Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget);
3973     Val = convertToScalableVector(VT, Val, DAG, Subtarget);
3974 
3975     if (!IsUnmasked) {
3976       MVT MaskVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount());
3977       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
3978     }
3979 
3980     VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT);
3981   } else
3982     VL = DAG.getRegister(RISCV::X0, XLenVT);
3983 
3984   unsigned IntID =
3985       IsUnmasked ? Intrinsic::riscv_vsoxei : Intrinsic::riscv_vsoxei_mask;
3986   SmallVector<SDValue, 8> Ops{MSN->getChain(),
3987                               DAG.getTargetConstant(IntID, DL, XLenVT)};
3988   Ops.push_back(Val);
3989   Ops.push_back(MSN->getBasePtr());
3990   Ops.push_back(Index);
3991   if (!IsUnmasked)
3992     Ops.push_back(Mask);
3993   Ops.push_back(VL);
3994 
3995   return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, MSN->getVTList(), Ops,
3996                                  MSN->getMemoryVT(), MSN->getMemOperand());
3997 }
3998 
3999 // Returns the opcode of the target-specific SDNode that implements the 32-bit
4000 // form of the given Opcode.
4001 static RISCVISD::NodeType getRISCVWOpcode(unsigned Opcode) {
4002   switch (Opcode) {
4003   default:
4004     llvm_unreachable("Unexpected opcode");
4005   case ISD::SHL:
4006     return RISCVISD::SLLW;
4007   case ISD::SRA:
4008     return RISCVISD::SRAW;
4009   case ISD::SRL:
4010     return RISCVISD::SRLW;
4011   case ISD::SDIV:
4012     return RISCVISD::DIVW;
4013   case ISD::UDIV:
4014     return RISCVISD::DIVUW;
4015   case ISD::UREM:
4016     return RISCVISD::REMUW;
4017   case ISD::ROTL:
4018     return RISCVISD::ROLW;
4019   case ISD::ROTR:
4020     return RISCVISD::RORW;
4021   case RISCVISD::GREVI:
4022     return RISCVISD::GREVIW;
4023   case RISCVISD::GORCI:
4024     return RISCVISD::GORCIW;
4025   }
4026 }
4027 
4028 // Converts the given 32-bit operation to a target-specific SelectionDAG node.
4029 // Because i32 isn't a legal type for RV64, these operations would otherwise
4030 // be promoted to i64, making it difficult to select the SLLW/DIVUW/.../*W
4031 // later one because the fact the operation was originally of type i32 is
4032 // lost.
4033 static SDValue customLegalizeToWOp(SDNode *N, SelectionDAG &DAG,
4034                                    unsigned ExtOpc = ISD::ANY_EXTEND) {
4035   SDLoc DL(N);
4036   RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode());
4037   SDValue NewOp0 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(0));
4038   SDValue NewOp1 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(1));
4039   SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1);
4040   // ReplaceNodeResults requires we maintain the same type for the return value.
4041   return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewRes);
4042 }
4043 
4044 // Converts the given 32-bit operation to a i64 operation with signed extension
4045 // semantic to reduce the signed extension instructions.
4046 static SDValue customLegalizeToWOpWithSExt(SDNode *N, SelectionDAG &DAG) {
4047   SDLoc DL(N);
4048   SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
4049   SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
4050   SDValue NewWOp = DAG.getNode(N->getOpcode(), DL, MVT::i64, NewOp0, NewOp1);
4051   SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp,
4052                                DAG.getValueType(MVT::i32));
4053   return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes);
4054 }
4055 
4056 void RISCVTargetLowering::ReplaceNodeResults(SDNode *N,
4057                                              SmallVectorImpl<SDValue> &Results,
4058                                              SelectionDAG &DAG) const {
4059   SDLoc DL(N);
4060   switch (N->getOpcode()) {
4061   default:
4062     llvm_unreachable("Don't know how to custom type legalize this operation!");
4063   case ISD::STRICT_FP_TO_SINT:
4064   case ISD::STRICT_FP_TO_UINT:
4065   case ISD::FP_TO_SINT:
4066   case ISD::FP_TO_UINT: {
4067     bool IsStrict = N->isStrictFPOpcode();
4068     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
4069            "Unexpected custom legalisation");
4070     SDValue Op0 = IsStrict ? N->getOperand(1) : N->getOperand(0);
4071     // If the FP type needs to be softened, emit a library call using the 'si'
4072     // version. If we left it to default legalization we'd end up with 'di'. If
4073     // the FP type doesn't need to be softened just let generic type
4074     // legalization promote the result type.
4075     if (getTypeAction(*DAG.getContext(), Op0.getValueType()) !=
4076         TargetLowering::TypeSoftenFloat)
4077       return;
4078     RTLIB::Libcall LC;
4079     if (N->getOpcode() == ISD::FP_TO_SINT ||
4080         N->getOpcode() == ISD::STRICT_FP_TO_SINT)
4081       LC = RTLIB::getFPTOSINT(Op0.getValueType(), N->getValueType(0));
4082     else
4083       LC = RTLIB::getFPTOUINT(Op0.getValueType(), N->getValueType(0));
4084     MakeLibCallOptions CallOptions;
4085     EVT OpVT = Op0.getValueType();
4086     CallOptions.setTypeListBeforeSoften(OpVT, N->getValueType(0), true);
4087     SDValue Chain = IsStrict ? N->getOperand(0) : SDValue();
4088     SDValue Result;
4089     std::tie(Result, Chain) =
4090         makeLibCall(DAG, LC, N->getValueType(0), Op0, CallOptions, DL, Chain);
4091     Results.push_back(Result);
4092     if (IsStrict)
4093       Results.push_back(Chain);
4094     break;
4095   }
4096   case ISD::READCYCLECOUNTER: {
4097     assert(!Subtarget.is64Bit() &&
4098            "READCYCLECOUNTER only has custom type legalization on riscv32");
4099 
4100     SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
4101     SDValue RCW =
4102         DAG.getNode(RISCVISD::READ_CYCLE_WIDE, DL, VTs, N->getOperand(0));
4103 
4104     Results.push_back(
4105         DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, RCW, RCW.getValue(1)));
4106     Results.push_back(RCW.getValue(2));
4107     break;
4108   }
4109   case ISD::MUL: {
4110     unsigned Size = N->getSimpleValueType(0).getSizeInBits();
4111     unsigned XLen = Subtarget.getXLen();
4112     // This multiply needs to be expanded, try to use MULHSU+MUL if possible.
4113     if (Size > XLen) {
4114       assert(Size == (XLen * 2) && "Unexpected custom legalisation");
4115       SDValue LHS = N->getOperand(0);
4116       SDValue RHS = N->getOperand(1);
4117       APInt HighMask = APInt::getHighBitsSet(Size, XLen);
4118 
4119       bool LHSIsU = DAG.MaskedValueIsZero(LHS, HighMask);
4120       bool RHSIsU = DAG.MaskedValueIsZero(RHS, HighMask);
4121       // We need exactly one side to be unsigned.
4122       if (LHSIsU == RHSIsU)
4123         return;
4124 
4125       auto MakeMULPair = [&](SDValue S, SDValue U) {
4126         MVT XLenVT = Subtarget.getXLenVT();
4127         S = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, S);
4128         U = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, U);
4129         SDValue Lo = DAG.getNode(ISD::MUL, DL, XLenVT, S, U);
4130         SDValue Hi = DAG.getNode(RISCVISD::MULHSU, DL, XLenVT, S, U);
4131         return DAG.getNode(ISD::BUILD_PAIR, DL, N->getValueType(0), Lo, Hi);
4132       };
4133 
4134       bool LHSIsS = DAG.ComputeNumSignBits(LHS) > XLen;
4135       bool RHSIsS = DAG.ComputeNumSignBits(RHS) > XLen;
4136 
4137       // The other operand should be signed, but still prefer MULH when
4138       // possible.
4139       if (RHSIsU && LHSIsS && !RHSIsS)
4140         Results.push_back(MakeMULPair(LHS, RHS));
4141       else if (LHSIsU && RHSIsS && !LHSIsS)
4142         Results.push_back(MakeMULPair(RHS, LHS));
4143 
4144       return;
4145     }
4146     LLVM_FALLTHROUGH;
4147   }
4148   case ISD::ADD:
4149   case ISD::SUB:
4150     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
4151            "Unexpected custom legalisation");
4152     if (N->getOperand(1).getOpcode() == ISD::Constant)
4153       return;
4154     Results.push_back(customLegalizeToWOpWithSExt(N, DAG));
4155     break;
4156   case ISD::SHL:
4157   case ISD::SRA:
4158   case ISD::SRL:
4159     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
4160            "Unexpected custom legalisation");
4161     if (N->getOperand(1).getOpcode() == ISD::Constant)
4162       return;
4163     Results.push_back(customLegalizeToWOp(N, DAG));
4164     break;
4165   case ISD::ROTL:
4166   case ISD::ROTR:
4167     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
4168            "Unexpected custom legalisation");
4169     Results.push_back(customLegalizeToWOp(N, DAG));
4170     break;
4171   case ISD::CTTZ:
4172   case ISD::CTTZ_ZERO_UNDEF:
4173   case ISD::CTLZ:
4174   case ISD::CTLZ_ZERO_UNDEF: {
4175     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
4176            "Unexpected custom legalisation");
4177 
4178     SDValue NewOp0 =
4179         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
4180     bool IsCTZ =
4181         N->getOpcode() == ISD::CTTZ || N->getOpcode() == ISD::CTTZ_ZERO_UNDEF;
4182     unsigned Opc = IsCTZ ? RISCVISD::CTZW : RISCVISD::CLZW;
4183     SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp0);
4184     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
4185     return;
4186   }
4187   case ISD::SDIV:
4188   case ISD::UDIV:
4189   case ISD::UREM: {
4190     MVT VT = N->getSimpleValueType(0);
4191     assert((VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) &&
4192            Subtarget.is64Bit() && Subtarget.hasStdExtM() &&
4193            "Unexpected custom legalisation");
4194     if (N->getOperand(0).getOpcode() == ISD::Constant ||
4195         N->getOperand(1).getOpcode() == ISD::Constant)
4196       return;
4197 
4198     // If the input is i32, use ANY_EXTEND since the W instructions don't read
4199     // the upper 32 bits. For other types we need to sign or zero extend
4200     // based on the opcode.
4201     unsigned ExtOpc = ISD::ANY_EXTEND;
4202     if (VT != MVT::i32)
4203       ExtOpc = N->getOpcode() == ISD::SDIV ? ISD::SIGN_EXTEND
4204                                            : ISD::ZERO_EXTEND;
4205 
4206     Results.push_back(customLegalizeToWOp(N, DAG, ExtOpc));
4207     break;
4208   }
4209   case ISD::UADDO:
4210   case ISD::USUBO: {
4211     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
4212            "Unexpected custom legalisation");
4213     bool IsAdd = N->getOpcode() == ISD::UADDO;
4214     // Create an ADDW or SUBW.
4215     SDValue LHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
4216     SDValue RHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
4217     SDValue Res =
4218         DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, DL, MVT::i64, LHS, RHS);
4219     Res = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Res,
4220                       DAG.getValueType(MVT::i32));
4221 
4222     // Sign extend the LHS and perform an unsigned compare with the ADDW result.
4223     // Since the inputs are sign extended from i32, this is equivalent to
4224     // comparing the lower 32 bits.
4225     LHS = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0));
4226     SDValue Overflow = DAG.getSetCC(DL, N->getValueType(1), Res, LHS,
4227                                     IsAdd ? ISD::SETULT : ISD::SETUGT);
4228 
4229     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
4230     Results.push_back(Overflow);
4231     return;
4232   }
4233   case ISD::UADDSAT:
4234   case ISD::USUBSAT: {
4235     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
4236            "Unexpected custom legalisation");
4237     if (Subtarget.hasStdExtZbb()) {
4238       // With Zbb we can sign extend and let LegalizeDAG use minu/maxu. Using
4239       // sign extend allows overflow of the lower 32 bits to be detected on
4240       // the promoted size.
4241       SDValue LHS =
4242           DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0));
4243       SDValue RHS =
4244           DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(1));
4245       SDValue Res = DAG.getNode(N->getOpcode(), DL, MVT::i64, LHS, RHS);
4246       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
4247       return;
4248     }
4249 
4250     // Without Zbb, expand to UADDO/USUBO+select which will trigger our custom
4251     // promotion for UADDO/USUBO.
4252     Results.push_back(expandAddSubSat(N, DAG));
4253     return;
4254   }
4255   case ISD::BITCAST: {
4256     EVT VT = N->getValueType(0);
4257     assert(VT.isInteger() && !VT.isVector() && "Unexpected VT!");
4258     SDValue Op0 = N->getOperand(0);
4259     EVT Op0VT = Op0.getValueType();
4260     MVT XLenVT = Subtarget.getXLenVT();
4261     if (VT == MVT::i16 && Op0VT == MVT::f16 && Subtarget.hasStdExtZfh()) {
4262       SDValue FPConv = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, XLenVT, Op0);
4263       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FPConv));
4264     } else if (VT == MVT::i32 && Op0VT == MVT::f32 && Subtarget.is64Bit() &&
4265                Subtarget.hasStdExtF()) {
4266       SDValue FPConv =
4267           DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Op0);
4268       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, FPConv));
4269     } else if (!VT.isVector() && Op0VT.isFixedLengthVector() &&
4270                isTypeLegal(Op0VT)) {
4271       // Custom-legalize bitcasts from fixed-length vector types to illegal
4272       // scalar types in order to improve codegen. Bitcast the vector to a
4273       // one-element vector type whose element type is the same as the result
4274       // type, and extract the first element.
4275       LLVMContext &Context = *DAG.getContext();
4276       SDValue BVec = DAG.getBitcast(EVT::getVectorVT(Context, VT, 1), Op0);
4277       Results.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec,
4278                                     DAG.getConstant(0, DL, XLenVT)));
4279     }
4280     break;
4281   }
4282   case RISCVISD::GREVI:
4283   case RISCVISD::GORCI: {
4284     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
4285            "Unexpected custom legalisation");
4286     // This is similar to customLegalizeToWOp, except that we pass the second
4287     // operand (a TargetConstant) straight through: it is already of type
4288     // XLenVT.
4289     RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode());
4290     SDValue NewOp0 =
4291         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
4292     SDValue NewRes =
4293         DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, N->getOperand(1));
4294     // ReplaceNodeResults requires we maintain the same type for the return
4295     // value.
4296     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes));
4297     break;
4298   }
4299   case RISCVISD::SHFLI: {
4300     // There is no SHFLIW instruction, but we can just promote the operation.
4301     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
4302            "Unexpected custom legalisation");
4303     SDValue NewOp0 =
4304         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
4305     SDValue NewRes =
4306         DAG.getNode(RISCVISD::SHFLI, DL, MVT::i64, NewOp0, N->getOperand(1));
4307     // ReplaceNodeResults requires we maintain the same type for the return
4308     // value.
4309     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes));
4310     break;
4311   }
4312   case ISD::BSWAP:
4313   case ISD::BITREVERSE: {
4314     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
4315            Subtarget.hasStdExtZbp() && "Unexpected custom legalisation");
4316     SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64,
4317                                  N->getOperand(0));
4318     unsigned Imm = N->getOpcode() == ISD::BITREVERSE ? 31 : 24;
4319     SDValue GREVIW = DAG.getNode(RISCVISD::GREVIW, DL, MVT::i64, NewOp0,
4320                                  DAG.getTargetConstant(Imm, DL,
4321                                                        Subtarget.getXLenVT()));
4322     // ReplaceNodeResults requires we maintain the same type for the return
4323     // value.
4324     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, GREVIW));
4325     break;
4326   }
4327   case ISD::FSHL:
4328   case ISD::FSHR: {
4329     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
4330            Subtarget.hasStdExtZbt() && "Unexpected custom legalisation");
4331     SDValue NewOp0 =
4332         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
4333     SDValue NewOp1 =
4334         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
4335     SDValue NewOp2 =
4336         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
4337     // FSLW/FSRW take a 6 bit shift amount but i32 FSHL/FSHR only use 5 bits.
4338     // Mask the shift amount to 5 bits.
4339     NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2,
4340                          DAG.getConstant(0x1f, DL, MVT::i64));
4341     unsigned Opc =
4342         N->getOpcode() == ISD::FSHL ? RISCVISD::FSLW : RISCVISD::FSRW;
4343     SDValue NewOp = DAG.getNode(Opc, DL, MVT::i64, NewOp0, NewOp1, NewOp2);
4344     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewOp));
4345     break;
4346   }
4347   case ISD::EXTRACT_VECTOR_ELT: {
4348     // Custom-legalize an EXTRACT_VECTOR_ELT where XLEN<SEW, as the SEW element
4349     // type is illegal (currently only vXi64 RV32).
4350     // With vmv.x.s, when SEW > XLEN, only the least-significant XLEN bits are
4351     // transferred to the destination register. We issue two of these from the
4352     // upper- and lower- halves of the SEW-bit vector element, slid down to the
4353     // first element.
4354     SDValue Vec = N->getOperand(0);
4355     SDValue Idx = N->getOperand(1);
4356 
4357     // The vector type hasn't been legalized yet so we can't issue target
4358     // specific nodes if it needs legalization.
4359     // FIXME: We would manually legalize if it's important.
4360     if (!isTypeLegal(Vec.getValueType()))
4361       return;
4362 
4363     MVT VecVT = Vec.getSimpleValueType();
4364 
4365     assert(!Subtarget.is64Bit() && N->getValueType(0) == MVT::i64 &&
4366            VecVT.getVectorElementType() == MVT::i64 &&
4367            "Unexpected EXTRACT_VECTOR_ELT legalization");
4368 
4369     // If this is a fixed vector, we need to convert it to a scalable vector.
4370     MVT ContainerVT = VecVT;
4371     if (VecVT.isFixedLengthVector()) {
4372       ContainerVT = getContainerForFixedLengthVector(VecVT);
4373       Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
4374     }
4375 
4376     MVT XLenVT = Subtarget.getXLenVT();
4377 
4378     // Use a VL of 1 to avoid processing more elements than we need.
4379     MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount());
4380     SDValue VL = DAG.getConstant(1, DL, XLenVT);
4381     SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
4382 
4383     // Unless the index is known to be 0, we must slide the vector down to get
4384     // the desired element into index 0.
4385     if (!isNullConstant(Idx)) {
4386       Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT,
4387                         DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL);
4388     }
4389 
4390     // Extract the lower XLEN bits of the correct vector element.
4391     SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec);
4392 
4393     // To extract the upper XLEN bits of the vector element, shift the first
4394     // element right by 32 bits and re-extract the lower XLEN bits.
4395     SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
4396                                      DAG.getConstant(32, DL, XLenVT), VL);
4397     SDValue LShr32 = DAG.getNode(RISCVISD::SRL_VL, DL, ContainerVT, Vec,
4398                                  ThirtyTwoV, Mask, VL);
4399 
4400     SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32);
4401 
4402     Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi));
4403     break;
4404   }
4405   case ISD::INTRINSIC_WO_CHAIN: {
4406     unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
4407     switch (IntNo) {
4408     default:
4409       llvm_unreachable(
4410           "Don't know how to custom type legalize this intrinsic!");
4411     case Intrinsic::riscv_orc_b: {
4412       // Lower to the GORCI encoding for orc.b with the operand extended.
4413       SDValue NewOp =
4414           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
4415       // If Zbp is enabled, use GORCIW which will sign extend the result.
4416       unsigned Opc =
4417           Subtarget.hasStdExtZbp() ? RISCVISD::GORCIW : RISCVISD::GORCI;
4418       SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp,
4419                                 DAG.getTargetConstant(7, DL, MVT::i64));
4420       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
4421       return;
4422     }
4423     case Intrinsic::riscv_vmv_x_s: {
4424       EVT VT = N->getValueType(0);
4425       MVT XLenVT = Subtarget.getXLenVT();
4426       if (VT.bitsLT(XLenVT)) {
4427         // Simple case just extract using vmv.x.s and truncate.
4428         SDValue Extract = DAG.getNode(RISCVISD::VMV_X_S, DL,
4429                                       Subtarget.getXLenVT(), N->getOperand(1));
4430         Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, Extract));
4431         return;
4432       }
4433 
4434       assert(VT == MVT::i64 && !Subtarget.is64Bit() &&
4435              "Unexpected custom legalization");
4436 
4437       // We need to do the move in two steps.
4438       SDValue Vec = N->getOperand(1);
4439       MVT VecVT = Vec.getSimpleValueType();
4440 
4441       // First extract the lower XLEN bits of the element.
4442       SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec);
4443 
4444       // To extract the upper XLEN bits of the vector element, shift the first
4445       // element right by 32 bits and re-extract the lower XLEN bits.
4446       SDValue VL = DAG.getConstant(1, DL, XLenVT);
4447       MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount());
4448       SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
4449       SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT,
4450                                        DAG.getConstant(32, DL, XLenVT), VL);
4451       SDValue LShr32 =
4452           DAG.getNode(RISCVISD::SRL_VL, DL, VecVT, Vec, ThirtyTwoV, Mask, VL);
4453       SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32);
4454 
4455       Results.push_back(
4456           DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi));
4457       break;
4458     }
4459     }
4460     break;
4461   }
4462   case ISD::VECREDUCE_ADD:
4463   case ISD::VECREDUCE_AND:
4464   case ISD::VECREDUCE_OR:
4465   case ISD::VECREDUCE_XOR:
4466   case ISD::VECREDUCE_SMAX:
4467   case ISD::VECREDUCE_UMAX:
4468   case ISD::VECREDUCE_SMIN:
4469   case ISD::VECREDUCE_UMIN:
4470     if (SDValue V = lowerVECREDUCE(SDValue(N, 0), DAG))
4471       Results.push_back(V);
4472     break;
4473   }
4474 }
4475 
4476 // A structure to hold one of the bit-manipulation patterns below. Together, a
4477 // SHL and non-SHL pattern may form a bit-manipulation pair on a single source:
4478 //   (or (and (shl x, 1), 0xAAAAAAAA),
4479 //       (and (srl x, 1), 0x55555555))
4480 struct RISCVBitmanipPat {
4481   SDValue Op;
4482   unsigned ShAmt;
4483   bool IsSHL;
4484 
4485   bool formsPairWith(const RISCVBitmanipPat &Other) const {
4486     return Op == Other.Op && ShAmt == Other.ShAmt && IsSHL != Other.IsSHL;
4487   }
4488 };
4489 
4490 // Matches patterns of the form
4491 //   (and (shl x, C2), (C1 << C2))
4492 //   (and (srl x, C2), C1)
4493 //   (shl (and x, C1), C2)
4494 //   (srl (and x, (C1 << C2)), C2)
4495 // Where C2 is a power of 2 and C1 has at least that many leading zeroes.
4496 // The expected masks for each shift amount are specified in BitmanipMasks where
4497 // BitmanipMasks[log2(C2)] specifies the expected C1 value.
4498 // The max allowed shift amount is either XLen/2 or XLen/4 determined by whether
4499 // BitmanipMasks contains 6 or 5 entries assuming that the maximum possible
4500 // XLen is 64.
4501 static Optional<RISCVBitmanipPat>
4502 matchRISCVBitmanipPat(SDValue Op, ArrayRef<uint64_t> BitmanipMasks) {
4503   assert((BitmanipMasks.size() == 5 || BitmanipMasks.size() == 6) &&
4504          "Unexpected number of masks");
4505   Optional<uint64_t> Mask;
4506   // Optionally consume a mask around the shift operation.
4507   if (Op.getOpcode() == ISD::AND && isa<ConstantSDNode>(Op.getOperand(1))) {
4508     Mask = Op.getConstantOperandVal(1);
4509     Op = Op.getOperand(0);
4510   }
4511   if (Op.getOpcode() != ISD::SHL && Op.getOpcode() != ISD::SRL)
4512     return None;
4513   bool IsSHL = Op.getOpcode() == ISD::SHL;
4514 
4515   if (!isa<ConstantSDNode>(Op.getOperand(1)))
4516     return None;
4517   uint64_t ShAmt = Op.getConstantOperandVal(1);
4518 
4519   unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32;
4520   if (ShAmt >= Width && !isPowerOf2_64(ShAmt))
4521     return None;
4522   // If we don't have enough masks for 64 bit, then we must be trying to
4523   // match SHFL so we're only allowed to shift 1/4 of the width.
4524   if (BitmanipMasks.size() == 5 && ShAmt >= (Width / 2))
4525     return None;
4526 
4527   SDValue Src = Op.getOperand(0);
4528 
4529   // The expected mask is shifted left when the AND is found around SHL
4530   // patterns.
4531   //   ((x >> 1) & 0x55555555)
4532   //   ((x << 1) & 0xAAAAAAAA)
4533   bool SHLExpMask = IsSHL;
4534 
4535   if (!Mask) {
4536     // Sometimes LLVM keeps the mask as an operand of the shift, typically when
4537     // the mask is all ones: consume that now.
4538     if (Src.getOpcode() == ISD::AND && isa<ConstantSDNode>(Src.getOperand(1))) {
4539       Mask = Src.getConstantOperandVal(1);
4540       Src = Src.getOperand(0);
4541       // The expected mask is now in fact shifted left for SRL, so reverse the
4542       // decision.
4543       //   ((x & 0xAAAAAAAA) >> 1)
4544       //   ((x & 0x55555555) << 1)
4545       SHLExpMask = !SHLExpMask;
4546     } else {
4547       // Use a default shifted mask of all-ones if there's no AND, truncated
4548       // down to the expected width. This simplifies the logic later on.
4549       Mask = maskTrailingOnes<uint64_t>(Width);
4550       *Mask &= (IsSHL ? *Mask << ShAmt : *Mask >> ShAmt);
4551     }
4552   }
4553 
4554   unsigned MaskIdx = Log2_32(ShAmt);
4555   uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width);
4556 
4557   if (SHLExpMask)
4558     ExpMask <<= ShAmt;
4559 
4560   if (Mask != ExpMask)
4561     return None;
4562 
4563   return RISCVBitmanipPat{Src, (unsigned)ShAmt, IsSHL};
4564 }
4565 
4566 // Matches any of the following bit-manipulation patterns:
4567 //   (and (shl x, 1), (0x55555555 << 1))
4568 //   (and (srl x, 1), 0x55555555)
4569 //   (shl (and x, 0x55555555), 1)
4570 //   (srl (and x, (0x55555555 << 1)), 1)
4571 // where the shift amount and mask may vary thus:
4572 //   [1]  = 0x55555555 / 0xAAAAAAAA
4573 //   [2]  = 0x33333333 / 0xCCCCCCCC
4574 //   [4]  = 0x0F0F0F0F / 0xF0F0F0F0
4575 //   [8]  = 0x00FF00FF / 0xFF00FF00
4576 //   [16] = 0x0000FFFF / 0xFFFFFFFF
4577 //   [32] = 0x00000000FFFFFFFF / 0xFFFFFFFF00000000 (for RV64)
4578 static Optional<RISCVBitmanipPat> matchGREVIPat(SDValue Op) {
4579   // These are the unshifted masks which we use to match bit-manipulation
4580   // patterns. They may be shifted left in certain circumstances.
4581   static const uint64_t BitmanipMasks[] = {
4582       0x5555555555555555ULL, 0x3333333333333333ULL, 0x0F0F0F0F0F0F0F0FULL,
4583       0x00FF00FF00FF00FFULL, 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL};
4584 
4585   return matchRISCVBitmanipPat(Op, BitmanipMasks);
4586 }
4587 
4588 // Match the following pattern as a GREVI(W) operation
4589 //   (or (BITMANIP_SHL x), (BITMANIP_SRL x))
4590 static SDValue combineORToGREV(SDValue Op, SelectionDAG &DAG,
4591                                const RISCVSubtarget &Subtarget) {
4592   assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson");
4593   EVT VT = Op.getValueType();
4594 
4595   if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) {
4596     auto LHS = matchGREVIPat(Op.getOperand(0));
4597     auto RHS = matchGREVIPat(Op.getOperand(1));
4598     if (LHS && RHS && LHS->formsPairWith(*RHS)) {
4599       SDLoc DL(Op);
4600       return DAG.getNode(
4601           RISCVISD::GREVI, DL, VT, LHS->Op,
4602           DAG.getTargetConstant(LHS->ShAmt, DL, Subtarget.getXLenVT()));
4603     }
4604   }
4605   return SDValue();
4606 }
4607 
4608 // Matches any the following pattern as a GORCI(W) operation
4609 // 1.  (or (GREVI x, shamt), x) if shamt is a power of 2
4610 // 2.  (or x, (GREVI x, shamt)) if shamt is a power of 2
4611 // 3.  (or (or (BITMANIP_SHL x), x), (BITMANIP_SRL x))
4612 // Note that with the variant of 3.,
4613 //     (or (or (BITMANIP_SHL x), (BITMANIP_SRL x)), x)
4614 // the inner pattern will first be matched as GREVI and then the outer
4615 // pattern will be matched to GORC via the first rule above.
4616 // 4.  (or (rotl/rotr x, bitwidth/2), x)
4617 static SDValue combineORToGORC(SDValue Op, SelectionDAG &DAG,
4618                                const RISCVSubtarget &Subtarget) {
4619   assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson");
4620   EVT VT = Op.getValueType();
4621 
4622   if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) {
4623     SDLoc DL(Op);
4624     SDValue Op0 = Op.getOperand(0);
4625     SDValue Op1 = Op.getOperand(1);
4626 
4627     auto MatchOROfReverse = [&](SDValue Reverse, SDValue X) {
4628       if (Reverse.getOpcode() == RISCVISD::GREVI && Reverse.getOperand(0) == X &&
4629           isPowerOf2_32(Reverse.getConstantOperandVal(1)))
4630         return DAG.getNode(RISCVISD::GORCI, DL, VT, X, Reverse.getOperand(1));
4631       // We can also form GORCI from ROTL/ROTR by half the bitwidth.
4632       if ((Reverse.getOpcode() == ISD::ROTL ||
4633            Reverse.getOpcode() == ISD::ROTR) &&
4634           Reverse.getOperand(0) == X &&
4635           isa<ConstantSDNode>(Reverse.getOperand(1))) {
4636         uint64_t RotAmt = Reverse.getConstantOperandVal(1);
4637         if (RotAmt == (VT.getSizeInBits() / 2))
4638           return DAG.getNode(
4639               RISCVISD::GORCI, DL, VT, X,
4640               DAG.getTargetConstant(RotAmt, DL, Subtarget.getXLenVT()));
4641       }
4642       return SDValue();
4643     };
4644 
4645     // Check for either commutable permutation of (or (GREVI x, shamt), x)
4646     if (SDValue V = MatchOROfReverse(Op0, Op1))
4647       return V;
4648     if (SDValue V = MatchOROfReverse(Op1, Op0))
4649       return V;
4650 
4651     // OR is commutable so canonicalize its OR operand to the left
4652     if (Op0.getOpcode() != ISD::OR && Op1.getOpcode() == ISD::OR)
4653       std::swap(Op0, Op1);
4654     if (Op0.getOpcode() != ISD::OR)
4655       return SDValue();
4656     SDValue OrOp0 = Op0.getOperand(0);
4657     SDValue OrOp1 = Op0.getOperand(1);
4658     auto LHS = matchGREVIPat(OrOp0);
4659     // OR is commutable so swap the operands and try again: x might have been
4660     // on the left
4661     if (!LHS) {
4662       std::swap(OrOp0, OrOp1);
4663       LHS = matchGREVIPat(OrOp0);
4664     }
4665     auto RHS = matchGREVIPat(Op1);
4666     if (LHS && RHS && LHS->formsPairWith(*RHS) && LHS->Op == OrOp1) {
4667       return DAG.getNode(
4668           RISCVISD::GORCI, DL, VT, LHS->Op,
4669           DAG.getTargetConstant(LHS->ShAmt, DL, Subtarget.getXLenVT()));
4670     }
4671   }
4672   return SDValue();
4673 }
4674 
4675 // Matches any of the following bit-manipulation patterns:
4676 //   (and (shl x, 1), (0x22222222 << 1))
4677 //   (and (srl x, 1), 0x22222222)
4678 //   (shl (and x, 0x22222222), 1)
4679 //   (srl (and x, (0x22222222 << 1)), 1)
4680 // where the shift amount and mask may vary thus:
4681 //   [1]  = 0x22222222 / 0x44444444
4682 //   [2]  = 0x0C0C0C0C / 0x3C3C3C3C
4683 //   [4]  = 0x00F000F0 / 0x0F000F00
4684 //   [8]  = 0x0000FF00 / 0x00FF0000
4685 //   [16] = 0x00000000FFFF0000 / 0x0000FFFF00000000 (for RV64)
4686 static Optional<RISCVBitmanipPat> matchSHFLPat(SDValue Op) {
4687   // These are the unshifted masks which we use to match bit-manipulation
4688   // patterns. They may be shifted left in certain circumstances.
4689   static const uint64_t BitmanipMasks[] = {
4690       0x2222222222222222ULL, 0x0C0C0C0C0C0C0C0CULL, 0x00F000F000F000F0ULL,
4691       0x0000FF000000FF00ULL, 0x00000000FFFF0000ULL};
4692 
4693   return matchRISCVBitmanipPat(Op, BitmanipMasks);
4694 }
4695 
4696 // Match (or (or (SHFL_SHL x), (SHFL_SHR x)), (SHFL_AND x)
4697 static SDValue combineORToSHFL(SDValue Op, SelectionDAG &DAG,
4698                                const RISCVSubtarget &Subtarget) {
4699   assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson");
4700   EVT VT = Op.getValueType();
4701 
4702   if (VT != MVT::i32 && VT != Subtarget.getXLenVT())
4703     return SDValue();
4704 
4705   SDValue Op0 = Op.getOperand(0);
4706   SDValue Op1 = Op.getOperand(1);
4707 
4708   // Or is commutable so canonicalize the second OR to the LHS.
4709   if (Op0.getOpcode() != ISD::OR)
4710     std::swap(Op0, Op1);
4711   if (Op0.getOpcode() != ISD::OR)
4712     return SDValue();
4713 
4714   // We found an inner OR, so our operands are the operands of the inner OR
4715   // and the other operand of the outer OR.
4716   SDValue A = Op0.getOperand(0);
4717   SDValue B = Op0.getOperand(1);
4718   SDValue C = Op1;
4719 
4720   auto Match1 = matchSHFLPat(A);
4721   auto Match2 = matchSHFLPat(B);
4722 
4723   // If neither matched, we failed.
4724   if (!Match1 && !Match2)
4725     return SDValue();
4726 
4727   // We had at least one match. if one failed, try the remaining C operand.
4728   if (!Match1) {
4729     std::swap(A, C);
4730     Match1 = matchSHFLPat(A);
4731     if (!Match1)
4732       return SDValue();
4733   } else if (!Match2) {
4734     std::swap(B, C);
4735     Match2 = matchSHFLPat(B);
4736     if (!Match2)
4737       return SDValue();
4738   }
4739   assert(Match1 && Match2);
4740 
4741   // Make sure our matches pair up.
4742   if (!Match1->formsPairWith(*Match2))
4743     return SDValue();
4744 
4745   // All the remains is to make sure C is an AND with the same input, that masks
4746   // out the bits that are being shuffled.
4747   if (C.getOpcode() != ISD::AND || !isa<ConstantSDNode>(C.getOperand(1)) ||
4748       C.getOperand(0) != Match1->Op)
4749     return SDValue();
4750 
4751   uint64_t Mask = C.getConstantOperandVal(1);
4752 
4753   static const uint64_t BitmanipMasks[] = {
4754       0x9999999999999999ULL, 0xC3C3C3C3C3C3C3C3ULL, 0xF00FF00FF00FF00FULL,
4755       0xFF0000FFFF0000FFULL, 0xFFFF00000000FFFFULL,
4756   };
4757 
4758   unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32;
4759   unsigned MaskIdx = Log2_32(Match1->ShAmt);
4760   uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width);
4761 
4762   if (Mask != ExpMask)
4763     return SDValue();
4764 
4765   SDLoc DL(Op);
4766   return DAG.getNode(
4767       RISCVISD::SHFLI, DL, VT, Match1->Op,
4768       DAG.getTargetConstant(Match1->ShAmt, DL, Subtarget.getXLenVT()));
4769 }
4770 
4771 // Combine (GREVI (GREVI x, C2), C1) -> (GREVI x, C1^C2) when C1^C2 is
4772 // non-zero, and to x when it is. Any repeated GREVI stage undoes itself.
4773 // Combine (GORCI (GORCI x, C2), C1) -> (GORCI x, C1|C2). Repeated stage does
4774 // not undo itself, but they are redundant.
4775 static SDValue combineGREVI_GORCI(SDNode *N, SelectionDAG &DAG) {
4776   unsigned ShAmt1 = N->getConstantOperandVal(1);
4777   SDValue Src = N->getOperand(0);
4778 
4779   if (Src.getOpcode() != N->getOpcode())
4780     return SDValue();
4781 
4782   unsigned ShAmt2 = Src.getConstantOperandVal(1);
4783   Src = Src.getOperand(0);
4784 
4785   unsigned CombinedShAmt;
4786   if (N->getOpcode() == RISCVISD::GORCI || N->getOpcode() == RISCVISD::GORCIW)
4787     CombinedShAmt = ShAmt1 | ShAmt2;
4788   else
4789     CombinedShAmt = ShAmt1 ^ ShAmt2;
4790 
4791   if (CombinedShAmt == 0)
4792     return Src;
4793 
4794   SDLoc DL(N);
4795   return DAG.getNode(N->getOpcode(), DL, N->getValueType(0), Src,
4796                      DAG.getTargetConstant(CombinedShAmt, DL,
4797                                            N->getOperand(1).getValueType()));
4798 }
4799 
4800 SDValue RISCVTargetLowering::PerformDAGCombine(SDNode *N,
4801                                                DAGCombinerInfo &DCI) const {
4802   SelectionDAG &DAG = DCI.DAG;
4803 
4804   switch (N->getOpcode()) {
4805   default:
4806     break;
4807   case RISCVISD::SplitF64: {
4808     SDValue Op0 = N->getOperand(0);
4809     // If the input to SplitF64 is just BuildPairF64 then the operation is
4810     // redundant. Instead, use BuildPairF64's operands directly.
4811     if (Op0->getOpcode() == RISCVISD::BuildPairF64)
4812       return DCI.CombineTo(N, Op0.getOperand(0), Op0.getOperand(1));
4813 
4814     SDLoc DL(N);
4815 
4816     // It's cheaper to materialise two 32-bit integers than to load a double
4817     // from the constant pool and transfer it to integer registers through the
4818     // stack.
4819     if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op0)) {
4820       APInt V = C->getValueAPF().bitcastToAPInt();
4821       SDValue Lo = DAG.getConstant(V.trunc(32), DL, MVT::i32);
4822       SDValue Hi = DAG.getConstant(V.lshr(32).trunc(32), DL, MVT::i32);
4823       return DCI.CombineTo(N, Lo, Hi);
4824     }
4825 
4826     // This is a target-specific version of a DAGCombine performed in
4827     // DAGCombiner::visitBITCAST. It performs the equivalent of:
4828     // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
4829     // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
4830     if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) ||
4831         !Op0.getNode()->hasOneUse())
4832       break;
4833     SDValue NewSplitF64 =
4834         DAG.getNode(RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32),
4835                     Op0.getOperand(0));
4836     SDValue Lo = NewSplitF64.getValue(0);
4837     SDValue Hi = NewSplitF64.getValue(1);
4838     APInt SignBit = APInt::getSignMask(32);
4839     if (Op0.getOpcode() == ISD::FNEG) {
4840       SDValue NewHi = DAG.getNode(ISD::XOR, DL, MVT::i32, Hi,
4841                                   DAG.getConstant(SignBit, DL, MVT::i32));
4842       return DCI.CombineTo(N, Lo, NewHi);
4843     }
4844     assert(Op0.getOpcode() == ISD::FABS);
4845     SDValue NewHi = DAG.getNode(ISD::AND, DL, MVT::i32, Hi,
4846                                 DAG.getConstant(~SignBit, DL, MVT::i32));
4847     return DCI.CombineTo(N, Lo, NewHi);
4848   }
4849   case RISCVISD::SLLW:
4850   case RISCVISD::SRAW:
4851   case RISCVISD::SRLW:
4852   case RISCVISD::ROLW:
4853   case RISCVISD::RORW: {
4854     // Only the lower 32 bits of LHS and lower 5 bits of RHS are read.
4855     SDValue LHS = N->getOperand(0);
4856     SDValue RHS = N->getOperand(1);
4857     APInt LHSMask = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 32);
4858     APInt RHSMask = APInt::getLowBitsSet(RHS.getValueSizeInBits(), 5);
4859     if (SimplifyDemandedBits(N->getOperand(0), LHSMask, DCI) ||
4860         SimplifyDemandedBits(N->getOperand(1), RHSMask, DCI)) {
4861       if (N->getOpcode() != ISD::DELETED_NODE)
4862         DCI.AddToWorklist(N);
4863       return SDValue(N, 0);
4864     }
4865     break;
4866   }
4867   case RISCVISD::CLZW:
4868   case RISCVISD::CTZW: {
4869     // Only the lower 32 bits of the first operand are read
4870     SDValue Op0 = N->getOperand(0);
4871     APInt Mask = APInt::getLowBitsSet(Op0.getValueSizeInBits(), 32);
4872     if (SimplifyDemandedBits(Op0, Mask, DCI)) {
4873       if (N->getOpcode() != ISD::DELETED_NODE)
4874         DCI.AddToWorklist(N);
4875       return SDValue(N, 0);
4876     }
4877     break;
4878   }
4879   case RISCVISD::FSL:
4880   case RISCVISD::FSR: {
4881     // Only the lower log2(Bitwidth)+1 bits of the the shift amount are read.
4882     SDValue ShAmt = N->getOperand(2);
4883     unsigned BitWidth = ShAmt.getValueSizeInBits();
4884     assert(isPowerOf2_32(BitWidth) && "Unexpected bit width");
4885     APInt ShAmtMask(BitWidth, (BitWidth * 2) - 1);
4886     if (SimplifyDemandedBits(ShAmt, ShAmtMask, DCI)) {
4887       if (N->getOpcode() != ISD::DELETED_NODE)
4888         DCI.AddToWorklist(N);
4889       return SDValue(N, 0);
4890     }
4891     break;
4892   }
4893   case RISCVISD::FSLW:
4894   case RISCVISD::FSRW: {
4895     // Only the lower 32 bits of Values and lower 6 bits of shift amount are
4896     // read.
4897     SDValue Op0 = N->getOperand(0);
4898     SDValue Op1 = N->getOperand(1);
4899     SDValue ShAmt = N->getOperand(2);
4900     APInt OpMask = APInt::getLowBitsSet(Op0.getValueSizeInBits(), 32);
4901     APInt ShAmtMask = APInt::getLowBitsSet(ShAmt.getValueSizeInBits(), 6);
4902     if (SimplifyDemandedBits(Op0, OpMask, DCI) ||
4903         SimplifyDemandedBits(Op1, OpMask, DCI) ||
4904         SimplifyDemandedBits(ShAmt, ShAmtMask, DCI)) {
4905       if (N->getOpcode() != ISD::DELETED_NODE)
4906         DCI.AddToWorklist(N);
4907       return SDValue(N, 0);
4908     }
4909     break;
4910   }
4911   case RISCVISD::GREVIW:
4912   case RISCVISD::GORCIW: {
4913     // Only the lower 32 bits of the first operand are read
4914     SDValue Op0 = N->getOperand(0);
4915     APInt Mask = APInt::getLowBitsSet(Op0.getValueSizeInBits(), 32);
4916     if (SimplifyDemandedBits(Op0, Mask, DCI)) {
4917       if (N->getOpcode() != ISD::DELETED_NODE)
4918         DCI.AddToWorklist(N);
4919       return SDValue(N, 0);
4920     }
4921 
4922     return combineGREVI_GORCI(N, DCI.DAG);
4923   }
4924   case RISCVISD::FMV_X_ANYEXTW_RV64: {
4925     SDLoc DL(N);
4926     SDValue Op0 = N->getOperand(0);
4927     // If the input to FMV_X_ANYEXTW_RV64 is just FMV_W_X_RV64 then the
4928     // conversion is unnecessary and can be replaced with an ANY_EXTEND
4929     // of the FMV_W_X_RV64 operand.
4930     if (Op0->getOpcode() == RISCVISD::FMV_W_X_RV64) {
4931       assert(Op0.getOperand(0).getValueType() == MVT::i64 &&
4932              "Unexpected value type!");
4933       return Op0.getOperand(0);
4934     }
4935 
4936     // This is a target-specific version of a DAGCombine performed in
4937     // DAGCombiner::visitBITCAST. It performs the equivalent of:
4938     // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
4939     // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
4940     if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) ||
4941         !Op0.getNode()->hasOneUse())
4942       break;
4943     SDValue NewFMV = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64,
4944                                  Op0.getOperand(0));
4945     APInt SignBit = APInt::getSignMask(32).sext(64);
4946     if (Op0.getOpcode() == ISD::FNEG)
4947       return DAG.getNode(ISD::XOR, DL, MVT::i64, NewFMV,
4948                          DAG.getConstant(SignBit, DL, MVT::i64));
4949 
4950     assert(Op0.getOpcode() == ISD::FABS);
4951     return DAG.getNode(ISD::AND, DL, MVT::i64, NewFMV,
4952                        DAG.getConstant(~SignBit, DL, MVT::i64));
4953   }
4954   case RISCVISD::GREVI:
4955   case RISCVISD::GORCI:
4956     return combineGREVI_GORCI(N, DCI.DAG);
4957   case ISD::OR:
4958     if (auto GREV = combineORToGREV(SDValue(N, 0), DCI.DAG, Subtarget))
4959       return GREV;
4960     if (auto GORC = combineORToGORC(SDValue(N, 0), DCI.DAG, Subtarget))
4961       return GORC;
4962     if (auto SHFL = combineORToSHFL(SDValue(N, 0), DCI.DAG, Subtarget))
4963       return SHFL;
4964     break;
4965   case RISCVISD::SELECT_CC: {
4966     // Transform
4967     SDValue LHS = N->getOperand(0);
4968     SDValue RHS = N->getOperand(1);
4969     auto CCVal = static_cast<ISD::CondCode>(N->getConstantOperandVal(2));
4970     if (!ISD::isIntEqualitySetCC(CCVal))
4971       break;
4972 
4973     // Fold (select_cc (setlt X, Y), 0, ne, trueV, falseV) ->
4974     //      (select_cc X, Y, lt, trueV, falseV)
4975     // Sometimes the setcc is introduced after select_cc has been formed.
4976     if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) &&
4977         LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) {
4978       // If we're looking for eq 0 instead of ne 0, we need to invert the
4979       // condition.
4980       bool Invert = CCVal == ISD::SETEQ;
4981       CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
4982       if (Invert)
4983         CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
4984 
4985       SDLoc DL(N);
4986       RHS = LHS.getOperand(1);
4987       LHS = LHS.getOperand(0);
4988       translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
4989 
4990       SDValue TargetCC = DAG.getConstant(CCVal, DL, Subtarget.getXLenVT());
4991       return DAG.getNode(
4992           RISCVISD::SELECT_CC, DL, N->getValueType(0),
4993           {LHS, RHS, TargetCC, N->getOperand(3), N->getOperand(4)});
4994     }
4995 
4996     // Fold (select_cc (xor X, Y), 0, eq/ne, trueV, falseV) ->
4997     //      (select_cc X, Y, eq/ne, trueV, falseV)
4998     if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS))
4999       return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), N->getValueType(0),
5000                          {LHS.getOperand(0), LHS.getOperand(1),
5001                           N->getOperand(2), N->getOperand(3),
5002                           N->getOperand(4)});
5003     // (select_cc X, 1, setne, trueV, falseV) ->
5004     // (select_cc X, 0, seteq, trueV, falseV) if we can prove X is 0/1.
5005     // This can occur when legalizing some floating point comparisons.
5006     APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1);
5007     if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) {
5008       SDLoc DL(N);
5009       CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
5010       SDValue TargetCC = DAG.getConstant(CCVal, DL, Subtarget.getXLenVT());
5011       RHS = DAG.getConstant(0, DL, LHS.getValueType());
5012       return DAG.getNode(
5013           RISCVISD::SELECT_CC, DL, N->getValueType(0),
5014           {LHS, RHS, TargetCC, N->getOperand(3), N->getOperand(4)});
5015     }
5016 
5017     break;
5018   }
5019   case RISCVISD::BR_CC: {
5020     SDValue LHS = N->getOperand(1);
5021     SDValue RHS = N->getOperand(2);
5022     ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(3))->get();
5023     if (!ISD::isIntEqualitySetCC(CCVal))
5024       break;
5025 
5026     // Fold (br_cc (setlt X, Y), 0, ne, dest) ->
5027     //      (br_cc X, Y, lt, dest)
5028     // Sometimes the setcc is introduced after br_cc has been formed.
5029     if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) &&
5030         LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) {
5031       // If we're looking for eq 0 instead of ne 0, we need to invert the
5032       // condition.
5033       bool Invert = CCVal == ISD::SETEQ;
5034       CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
5035       if (Invert)
5036         CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
5037 
5038       SDLoc DL(N);
5039       RHS = LHS.getOperand(1);
5040       LHS = LHS.getOperand(0);
5041       translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
5042 
5043       return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0),
5044                          N->getOperand(0), LHS, RHS, DAG.getCondCode(CCVal),
5045                          N->getOperand(4));
5046     }
5047 
5048     // Fold (br_cc (xor X, Y), 0, eq/ne, dest) ->
5049     //      (br_cc X, Y, eq/ne, trueV, falseV)
5050     if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS))
5051       return DAG.getNode(RISCVISD::BR_CC, SDLoc(N), N->getValueType(0),
5052                          N->getOperand(0), LHS.getOperand(0), LHS.getOperand(1),
5053                          N->getOperand(3), N->getOperand(4));
5054 
5055     // (br_cc X, 1, setne, br_cc) ->
5056     // (br_cc X, 0, seteq, br_cc) if we can prove X is 0/1.
5057     // This can occur when legalizing some floating point comparisons.
5058     APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1);
5059     if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) {
5060       SDLoc DL(N);
5061       CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
5062       SDValue TargetCC = DAG.getCondCode(CCVal);
5063       RHS = DAG.getConstant(0, DL, LHS.getValueType());
5064       return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0),
5065                          N->getOperand(0), LHS, RHS, TargetCC,
5066                          N->getOperand(4));
5067     }
5068     break;
5069   }
5070   case ISD::FCOPYSIGN: {
5071     EVT VT = N->getValueType(0);
5072     if (!VT.isVector())
5073       break;
5074     // There is a form of VFSGNJ which injects the negated sign of its second
5075     // operand. Try and bubble any FNEG up after the extend/round to produce
5076     // this optimized pattern. Avoid modifying cases where FP_ROUND and
5077     // TRUNC=1.
5078     SDValue In2 = N->getOperand(1);
5079     // Avoid cases where the extend/round has multiple uses, as duplicating
5080     // those is typically more expensive than removing a fneg.
5081     if (!In2.hasOneUse())
5082       break;
5083     if (In2.getOpcode() != ISD::FP_EXTEND &&
5084         (In2.getOpcode() != ISD::FP_ROUND || In2.getConstantOperandVal(1) != 0))
5085       break;
5086     In2 = In2.getOperand(0);
5087     if (In2.getOpcode() != ISD::FNEG)
5088       break;
5089     SDLoc DL(N);
5090     SDValue NewFPExtRound = DAG.getFPExtendOrRound(In2.getOperand(0), DL, VT);
5091     return DAG.getNode(ISD::FCOPYSIGN, DL, VT, N->getOperand(0),
5092                        DAG.getNode(ISD::FNEG, DL, VT, NewFPExtRound));
5093   }
5094   case ISD::MGATHER:
5095   case ISD::MSCATTER: {
5096     if (!DCI.isBeforeLegalize())
5097       break;
5098     MaskedGatherScatterSDNode *MGSN = cast<MaskedGatherScatterSDNode>(N);
5099     SDValue Index = MGSN->getIndex();
5100     EVT IndexVT = Index.getValueType();
5101     MVT XLenVT = Subtarget.getXLenVT();
5102     // RISCV indexed loads only support the "unsigned unscaled" addressing
5103     // mode, so anything else must be manually legalized.
5104     bool NeedsIdxLegalization = MGSN->isIndexScaled() ||
5105                                 (MGSN->isIndexSigned() &&
5106                                  IndexVT.getVectorElementType().bitsLT(XLenVT));
5107     if (!NeedsIdxLegalization)
5108       break;
5109 
5110     SDLoc DL(N);
5111 
5112     // Any index legalization should first promote to XLenVT, so we don't lose
5113     // bits when scaling. This may create an illegal index type so we let
5114     // LLVM's legalization take care of the splitting.
5115     if (IndexVT.getVectorElementType().bitsLT(XLenVT)) {
5116       IndexVT = IndexVT.changeVectorElementType(XLenVT);
5117       Index = DAG.getNode(MGSN->isIndexSigned() ? ISD::SIGN_EXTEND
5118                                                 : ISD::ZERO_EXTEND,
5119                           DL, IndexVT, Index);
5120     }
5121 
5122     unsigned Scale = N->getConstantOperandVal(5);
5123     if (MGSN->isIndexScaled() && Scale != 1) {
5124       // Manually scale the indices by the element size.
5125       // TODO: Sanitize the scale operand here?
5126       assert(isPowerOf2_32(Scale) && "Expecting power-of-two types");
5127       SDValue SplatScale = DAG.getConstant(Log2_32(Scale), DL, IndexVT);
5128       Index = DAG.getNode(ISD::SHL, DL, IndexVT, Index, SplatScale);
5129     }
5130 
5131     ISD::MemIndexType NewIndexTy = ISD::UNSIGNED_UNSCALED;
5132     if (const auto *MGN = dyn_cast<MaskedGatherSDNode>(N)) {
5133       return DAG.getMaskedGather(
5134           N->getVTList(), MGSN->getMemoryVT(), DL,
5135           {MGSN->getChain(), MGN->getPassThru(), MGSN->getMask(),
5136            MGSN->getBasePtr(), Index, MGN->getScale()},
5137           MGN->getMemOperand(), NewIndexTy, MGN->getExtensionType());
5138     }
5139     const auto *MSN = cast<MaskedScatterSDNode>(N);
5140     return DAG.getMaskedScatter(
5141         N->getVTList(), MGSN->getMemoryVT(), DL,
5142         {MGSN->getChain(), MSN->getValue(), MGSN->getMask(), MGSN->getBasePtr(),
5143          Index, MGSN->getScale()},
5144         MGSN->getMemOperand(), NewIndexTy, MSN->isTruncatingStore());
5145   }
5146   }
5147 
5148   return SDValue();
5149 }
5150 
5151 bool RISCVTargetLowering::isDesirableToCommuteWithShift(
5152     const SDNode *N, CombineLevel Level) const {
5153   // The following folds are only desirable if `(OP _, c1 << c2)` can be
5154   // materialised in fewer instructions than `(OP _, c1)`:
5155   //
5156   //   (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2)
5157   //   (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2)
5158   SDValue N0 = N->getOperand(0);
5159   EVT Ty = N0.getValueType();
5160   if (Ty.isScalarInteger() &&
5161       (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::OR)) {
5162     auto *C1 = dyn_cast<ConstantSDNode>(N0->getOperand(1));
5163     auto *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1));
5164     if (C1 && C2) {
5165       const APInt &C1Int = C1->getAPIntValue();
5166       APInt ShiftedC1Int = C1Int << C2->getAPIntValue();
5167 
5168       // We can materialise `c1 << c2` into an add immediate, so it's "free",
5169       // and the combine should happen, to potentially allow further combines
5170       // later.
5171       if (ShiftedC1Int.getMinSignedBits() <= 64 &&
5172           isLegalAddImmediate(ShiftedC1Int.getSExtValue()))
5173         return true;
5174 
5175       // We can materialise `c1` in an add immediate, so it's "free", and the
5176       // combine should be prevented.
5177       if (C1Int.getMinSignedBits() <= 64 &&
5178           isLegalAddImmediate(C1Int.getSExtValue()))
5179         return false;
5180 
5181       // Neither constant will fit into an immediate, so find materialisation
5182       // costs.
5183       int C1Cost = RISCVMatInt::getIntMatCost(C1Int, Ty.getSizeInBits(),
5184                                               Subtarget.is64Bit());
5185       int ShiftedC1Cost = RISCVMatInt::getIntMatCost(
5186           ShiftedC1Int, Ty.getSizeInBits(), Subtarget.is64Bit());
5187 
5188       // Materialising `c1` is cheaper than materialising `c1 << c2`, so the
5189       // combine should be prevented.
5190       if (C1Cost < ShiftedC1Cost)
5191         return false;
5192     }
5193   }
5194   return true;
5195 }
5196 
5197 bool RISCVTargetLowering::targetShrinkDemandedConstant(
5198     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
5199     TargetLoweringOpt &TLO) const {
5200   // Delay this optimization as late as possible.
5201   if (!TLO.LegalOps)
5202     return false;
5203 
5204   EVT VT = Op.getValueType();
5205   if (VT.isVector())
5206     return false;
5207 
5208   // Only handle AND for now.
5209   if (Op.getOpcode() != ISD::AND)
5210     return false;
5211 
5212   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
5213   if (!C)
5214     return false;
5215 
5216   const APInt &Mask = C->getAPIntValue();
5217 
5218   // Clear all non-demanded bits initially.
5219   APInt ShrunkMask = Mask & DemandedBits;
5220 
5221   // Try to make a smaller immediate by setting undemanded bits.
5222 
5223   APInt ExpandedMask = Mask | ~DemandedBits;
5224 
5225   auto IsLegalMask = [ShrunkMask, ExpandedMask](const APInt &Mask) -> bool {
5226     return ShrunkMask.isSubsetOf(Mask) && Mask.isSubsetOf(ExpandedMask);
5227   };
5228   auto UseMask = [Mask, Op, VT, &TLO](const APInt &NewMask) -> bool {
5229     if (NewMask == Mask)
5230       return true;
5231     SDLoc DL(Op);
5232     SDValue NewC = TLO.DAG.getConstant(NewMask, DL, VT);
5233     SDValue NewOp = TLO.DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), NewC);
5234     return TLO.CombineTo(Op, NewOp);
5235   };
5236 
5237   // If the shrunk mask fits in sign extended 12 bits, let the target
5238   // independent code apply it.
5239   if (ShrunkMask.isSignedIntN(12))
5240     return false;
5241 
5242   // Preserve (and X, 0xffff) when zext.h is supported.
5243   if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp()) {
5244     APInt NewMask = APInt(Mask.getBitWidth(), 0xffff);
5245     if (IsLegalMask(NewMask))
5246       return UseMask(NewMask);
5247   }
5248 
5249   // Try to preserve (and X, 0xffffffff), the (zext_inreg X, i32) pattern.
5250   if (VT == MVT::i64) {
5251     APInt NewMask = APInt(64, 0xffffffff);
5252     if (IsLegalMask(NewMask))
5253       return UseMask(NewMask);
5254   }
5255 
5256   // For the remaining optimizations, we need to be able to make a negative
5257   // number through a combination of mask and undemanded bits.
5258   if (!ExpandedMask.isNegative())
5259     return false;
5260 
5261   // What is the fewest number of bits we need to represent the negative number.
5262   unsigned MinSignedBits = ExpandedMask.getMinSignedBits();
5263 
5264   // Try to make a 12 bit negative immediate. If that fails try to make a 32
5265   // bit negative immediate unless the shrunk immediate already fits in 32 bits.
5266   APInt NewMask = ShrunkMask;
5267   if (MinSignedBits <= 12)
5268     NewMask.setBitsFrom(11);
5269   else if (MinSignedBits <= 32 && !ShrunkMask.isSignedIntN(32))
5270     NewMask.setBitsFrom(31);
5271   else
5272     return false;
5273 
5274   // Sanity check that our new mask is a subset of the demanded mask.
5275   assert(IsLegalMask(NewMask));
5276   return UseMask(NewMask);
5277 }
5278 
5279 void RISCVTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
5280                                                         KnownBits &Known,
5281                                                         const APInt &DemandedElts,
5282                                                         const SelectionDAG &DAG,
5283                                                         unsigned Depth) const {
5284   unsigned BitWidth = Known.getBitWidth();
5285   unsigned Opc = Op.getOpcode();
5286   assert((Opc >= ISD::BUILTIN_OP_END ||
5287           Opc == ISD::INTRINSIC_WO_CHAIN ||
5288           Opc == ISD::INTRINSIC_W_CHAIN ||
5289           Opc == ISD::INTRINSIC_VOID) &&
5290          "Should use MaskedValueIsZero if you don't know whether Op"
5291          " is a target node!");
5292 
5293   Known.resetAll();
5294   switch (Opc) {
5295   default: break;
5296   case RISCVISD::SELECT_CC: {
5297     Known = DAG.computeKnownBits(Op.getOperand(4), Depth + 1);
5298     // If we don't know any bits, early out.
5299     if (Known.isUnknown())
5300       break;
5301     KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(3), Depth + 1);
5302 
5303     // Only known if known in both the LHS and RHS.
5304     Known = KnownBits::commonBits(Known, Known2);
5305     break;
5306   }
5307   case RISCVISD::REMUW: {
5308     KnownBits Known2;
5309     Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
5310     Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
5311     // We only care about the lower 32 bits.
5312     Known = KnownBits::urem(Known.trunc(32), Known2.trunc(32));
5313     // Restore the original width by sign extending.
5314     Known = Known.sext(BitWidth);
5315     break;
5316   }
5317   case RISCVISD::DIVUW: {
5318     KnownBits Known2;
5319     Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
5320     Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
5321     // We only care about the lower 32 bits.
5322     Known = KnownBits::udiv(Known.trunc(32), Known2.trunc(32));
5323     // Restore the original width by sign extending.
5324     Known = Known.sext(BitWidth);
5325     break;
5326   }
5327   case RISCVISD::CTZW: {
5328     KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
5329     unsigned PossibleTZ = Known2.trunc(32).countMaxTrailingZeros();
5330     unsigned LowBits = Log2_32(PossibleTZ) + 1;
5331     Known.Zero.setBitsFrom(LowBits);
5332     break;
5333   }
5334   case RISCVISD::CLZW: {
5335     KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
5336     unsigned PossibleLZ = Known2.trunc(32).countMaxLeadingZeros();
5337     unsigned LowBits = Log2_32(PossibleLZ) + 1;
5338     Known.Zero.setBitsFrom(LowBits);
5339     break;
5340   }
5341   case RISCVISD::READ_VLENB:
5342     // We assume VLENB is at least 16 bytes.
5343     Known.Zero.setLowBits(4);
5344     break;
5345   }
5346 }
5347 
5348 unsigned RISCVTargetLowering::ComputeNumSignBitsForTargetNode(
5349     SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
5350     unsigned Depth) const {
5351   switch (Op.getOpcode()) {
5352   default:
5353     break;
5354   case RISCVISD::SLLW:
5355   case RISCVISD::SRAW:
5356   case RISCVISD::SRLW:
5357   case RISCVISD::DIVW:
5358   case RISCVISD::DIVUW:
5359   case RISCVISD::REMUW:
5360   case RISCVISD::ROLW:
5361   case RISCVISD::RORW:
5362   case RISCVISD::GREVIW:
5363   case RISCVISD::GORCIW:
5364   case RISCVISD::FSLW:
5365   case RISCVISD::FSRW:
5366     // TODO: As the result is sign-extended, this is conservatively correct. A
5367     // more precise answer could be calculated for SRAW depending on known
5368     // bits in the shift amount.
5369     return 33;
5370   case RISCVISD::SHFLI: {
5371     // There is no SHFLIW, but a i64 SHFLI with bit 4 of the control word
5372     // cleared doesn't affect bit 31. The upper 32 bits will be shuffled, but
5373     // will stay within the upper 32 bits. If there were more than 32 sign bits
5374     // before there will be at least 33 sign bits after.
5375     if (Op.getValueType() == MVT::i64 &&
5376         (Op.getConstantOperandVal(1) & 0x10) == 0) {
5377       unsigned Tmp = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1);
5378       if (Tmp > 32)
5379         return 33;
5380     }
5381     break;
5382   }
5383   case RISCVISD::VMV_X_S:
5384     // The number of sign bits of the scalar result is computed by obtaining the
5385     // element type of the input vector operand, subtracting its width from the
5386     // XLEN, and then adding one (sign bit within the element type). If the
5387     // element type is wider than XLen, the least-significant XLEN bits are
5388     // taken.
5389     if (Op.getOperand(0).getScalarValueSizeInBits() > Subtarget.getXLen())
5390       return 1;
5391     return Subtarget.getXLen() - Op.getOperand(0).getScalarValueSizeInBits() + 1;
5392   }
5393 
5394   return 1;
5395 }
5396 
5397 static MachineBasicBlock *emitReadCycleWidePseudo(MachineInstr &MI,
5398                                                   MachineBasicBlock *BB) {
5399   assert(MI.getOpcode() == RISCV::ReadCycleWide && "Unexpected instruction");
5400 
5401   // To read the 64-bit cycle CSR on a 32-bit target, we read the two halves.
5402   // Should the count have wrapped while it was being read, we need to try
5403   // again.
5404   // ...
5405   // read:
5406   // rdcycleh x3 # load high word of cycle
5407   // rdcycle  x2 # load low word of cycle
5408   // rdcycleh x4 # load high word of cycle
5409   // bne x3, x4, read # check if high word reads match, otherwise try again
5410   // ...
5411 
5412   MachineFunction &MF = *BB->getParent();
5413   const BasicBlock *LLVM_BB = BB->getBasicBlock();
5414   MachineFunction::iterator It = ++BB->getIterator();
5415 
5416   MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB);
5417   MF.insert(It, LoopMBB);
5418 
5419   MachineBasicBlock *DoneMBB = MF.CreateMachineBasicBlock(LLVM_BB);
5420   MF.insert(It, DoneMBB);
5421 
5422   // Transfer the remainder of BB and its successor edges to DoneMBB.
5423   DoneMBB->splice(DoneMBB->begin(), BB,
5424                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
5425   DoneMBB->transferSuccessorsAndUpdatePHIs(BB);
5426 
5427   BB->addSuccessor(LoopMBB);
5428 
5429   MachineRegisterInfo &RegInfo = MF.getRegInfo();
5430   Register ReadAgainReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
5431   Register LoReg = MI.getOperand(0).getReg();
5432   Register HiReg = MI.getOperand(1).getReg();
5433   DebugLoc DL = MI.getDebugLoc();
5434 
5435   const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
5436   BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), HiReg)
5437       .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding)
5438       .addReg(RISCV::X0);
5439   BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), LoReg)
5440       .addImm(RISCVSysReg::lookupSysRegByName("CYCLE")->Encoding)
5441       .addReg(RISCV::X0);
5442   BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), ReadAgainReg)
5443       .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding)
5444       .addReg(RISCV::X0);
5445 
5446   BuildMI(LoopMBB, DL, TII->get(RISCV::BNE))
5447       .addReg(HiReg)
5448       .addReg(ReadAgainReg)
5449       .addMBB(LoopMBB);
5450 
5451   LoopMBB->addSuccessor(LoopMBB);
5452   LoopMBB->addSuccessor(DoneMBB);
5453 
5454   MI.eraseFromParent();
5455 
5456   return DoneMBB;
5457 }
5458 
5459 static MachineBasicBlock *emitSplitF64Pseudo(MachineInstr &MI,
5460                                              MachineBasicBlock *BB) {
5461   assert(MI.getOpcode() == RISCV::SplitF64Pseudo && "Unexpected instruction");
5462 
5463   MachineFunction &MF = *BB->getParent();
5464   DebugLoc DL = MI.getDebugLoc();
5465   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
5466   const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo();
5467   Register LoReg = MI.getOperand(0).getReg();
5468   Register HiReg = MI.getOperand(1).getReg();
5469   Register SrcReg = MI.getOperand(2).getReg();
5470   const TargetRegisterClass *SrcRC = &RISCV::FPR64RegClass;
5471   int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF);
5472 
5473   TII.storeRegToStackSlot(*BB, MI, SrcReg, MI.getOperand(2).isKill(), FI, SrcRC,
5474                           RI);
5475   MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI);
5476   MachineMemOperand *MMOLo =
5477       MF.getMachineMemOperand(MPI, MachineMemOperand::MOLoad, 4, Align(8));
5478   MachineMemOperand *MMOHi = MF.getMachineMemOperand(
5479       MPI.getWithOffset(4), MachineMemOperand::MOLoad, 4, Align(8));
5480   BuildMI(*BB, MI, DL, TII.get(RISCV::LW), LoReg)
5481       .addFrameIndex(FI)
5482       .addImm(0)
5483       .addMemOperand(MMOLo);
5484   BuildMI(*BB, MI, DL, TII.get(RISCV::LW), HiReg)
5485       .addFrameIndex(FI)
5486       .addImm(4)
5487       .addMemOperand(MMOHi);
5488   MI.eraseFromParent(); // The pseudo instruction is gone now.
5489   return BB;
5490 }
5491 
5492 static MachineBasicBlock *emitBuildPairF64Pseudo(MachineInstr &MI,
5493                                                  MachineBasicBlock *BB) {
5494   assert(MI.getOpcode() == RISCV::BuildPairF64Pseudo &&
5495          "Unexpected instruction");
5496 
5497   MachineFunction &MF = *BB->getParent();
5498   DebugLoc DL = MI.getDebugLoc();
5499   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
5500   const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo();
5501   Register DstReg = MI.getOperand(0).getReg();
5502   Register LoReg = MI.getOperand(1).getReg();
5503   Register HiReg = MI.getOperand(2).getReg();
5504   const TargetRegisterClass *DstRC = &RISCV::FPR64RegClass;
5505   int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF);
5506 
5507   MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI);
5508   MachineMemOperand *MMOLo =
5509       MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Align(8));
5510   MachineMemOperand *MMOHi = MF.getMachineMemOperand(
5511       MPI.getWithOffset(4), MachineMemOperand::MOStore, 4, Align(8));
5512   BuildMI(*BB, MI, DL, TII.get(RISCV::SW))
5513       .addReg(LoReg, getKillRegState(MI.getOperand(1).isKill()))
5514       .addFrameIndex(FI)
5515       .addImm(0)
5516       .addMemOperand(MMOLo);
5517   BuildMI(*BB, MI, DL, TII.get(RISCV::SW))
5518       .addReg(HiReg, getKillRegState(MI.getOperand(2).isKill()))
5519       .addFrameIndex(FI)
5520       .addImm(4)
5521       .addMemOperand(MMOHi);
5522   TII.loadRegFromStackSlot(*BB, MI, DstReg, FI, DstRC, RI);
5523   MI.eraseFromParent(); // The pseudo instruction is gone now.
5524   return BB;
5525 }
5526 
5527 static bool isSelectPseudo(MachineInstr &MI) {
5528   switch (MI.getOpcode()) {
5529   default:
5530     return false;
5531   case RISCV::Select_GPR_Using_CC_GPR:
5532   case RISCV::Select_FPR16_Using_CC_GPR:
5533   case RISCV::Select_FPR32_Using_CC_GPR:
5534   case RISCV::Select_FPR64_Using_CC_GPR:
5535     return true;
5536   }
5537 }
5538 
5539 static MachineBasicBlock *emitSelectPseudo(MachineInstr &MI,
5540                                            MachineBasicBlock *BB) {
5541   // To "insert" Select_* instructions, we actually have to insert the triangle
5542   // control-flow pattern.  The incoming instructions know the destination vreg
5543   // to set, the condition code register to branch on, the true/false values to
5544   // select between, and the condcode to use to select the appropriate branch.
5545   //
5546   // We produce the following control flow:
5547   //     HeadMBB
5548   //     |  \
5549   //     |  IfFalseMBB
5550   //     | /
5551   //    TailMBB
5552   //
5553   // When we find a sequence of selects we attempt to optimize their emission
5554   // by sharing the control flow. Currently we only handle cases where we have
5555   // multiple selects with the exact same condition (same LHS, RHS and CC).
5556   // The selects may be interleaved with other instructions if the other
5557   // instructions meet some requirements we deem safe:
5558   // - They are debug instructions. Otherwise,
5559   // - They do not have side-effects, do not access memory and their inputs do
5560   //   not depend on the results of the select pseudo-instructions.
5561   // The TrueV/FalseV operands of the selects cannot depend on the result of
5562   // previous selects in the sequence.
5563   // These conditions could be further relaxed. See the X86 target for a
5564   // related approach and more information.
5565   Register LHS = MI.getOperand(1).getReg();
5566   Register RHS = MI.getOperand(2).getReg();
5567   auto CC = static_cast<ISD::CondCode>(MI.getOperand(3).getImm());
5568 
5569   SmallVector<MachineInstr *, 4> SelectDebugValues;
5570   SmallSet<Register, 4> SelectDests;
5571   SelectDests.insert(MI.getOperand(0).getReg());
5572 
5573   MachineInstr *LastSelectPseudo = &MI;
5574 
5575   for (auto E = BB->end(), SequenceMBBI = MachineBasicBlock::iterator(MI);
5576        SequenceMBBI != E; ++SequenceMBBI) {
5577     if (SequenceMBBI->isDebugInstr())
5578       continue;
5579     else if (isSelectPseudo(*SequenceMBBI)) {
5580       if (SequenceMBBI->getOperand(1).getReg() != LHS ||
5581           SequenceMBBI->getOperand(2).getReg() != RHS ||
5582           SequenceMBBI->getOperand(3).getImm() != CC ||
5583           SelectDests.count(SequenceMBBI->getOperand(4).getReg()) ||
5584           SelectDests.count(SequenceMBBI->getOperand(5).getReg()))
5585         break;
5586       LastSelectPseudo = &*SequenceMBBI;
5587       SequenceMBBI->collectDebugValues(SelectDebugValues);
5588       SelectDests.insert(SequenceMBBI->getOperand(0).getReg());
5589     } else {
5590       if (SequenceMBBI->hasUnmodeledSideEffects() ||
5591           SequenceMBBI->mayLoadOrStore())
5592         break;
5593       if (llvm::any_of(SequenceMBBI->operands(), [&](MachineOperand &MO) {
5594             return MO.isReg() && MO.isUse() && SelectDests.count(MO.getReg());
5595           }))
5596         break;
5597     }
5598   }
5599 
5600   const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo();
5601   const BasicBlock *LLVM_BB = BB->getBasicBlock();
5602   DebugLoc DL = MI.getDebugLoc();
5603   MachineFunction::iterator I = ++BB->getIterator();
5604 
5605   MachineBasicBlock *HeadMBB = BB;
5606   MachineFunction *F = BB->getParent();
5607   MachineBasicBlock *TailMBB = F->CreateMachineBasicBlock(LLVM_BB);
5608   MachineBasicBlock *IfFalseMBB = F->CreateMachineBasicBlock(LLVM_BB);
5609 
5610   F->insert(I, IfFalseMBB);
5611   F->insert(I, TailMBB);
5612 
5613   // Transfer debug instructions associated with the selects to TailMBB.
5614   for (MachineInstr *DebugInstr : SelectDebugValues) {
5615     TailMBB->push_back(DebugInstr->removeFromParent());
5616   }
5617 
5618   // Move all instructions after the sequence to TailMBB.
5619   TailMBB->splice(TailMBB->end(), HeadMBB,
5620                   std::next(LastSelectPseudo->getIterator()), HeadMBB->end());
5621   // Update machine-CFG edges by transferring all successors of the current
5622   // block to the new block which will contain the Phi nodes for the selects.
5623   TailMBB->transferSuccessorsAndUpdatePHIs(HeadMBB);
5624   // Set the successors for HeadMBB.
5625   HeadMBB->addSuccessor(IfFalseMBB);
5626   HeadMBB->addSuccessor(TailMBB);
5627 
5628   // Insert appropriate branch.
5629   unsigned Opcode = getBranchOpcodeForIntCondCode(CC);
5630 
5631   BuildMI(HeadMBB, DL, TII.get(Opcode))
5632     .addReg(LHS)
5633     .addReg(RHS)
5634     .addMBB(TailMBB);
5635 
5636   // IfFalseMBB just falls through to TailMBB.
5637   IfFalseMBB->addSuccessor(TailMBB);
5638 
5639   // Create PHIs for all of the select pseudo-instructions.
5640   auto SelectMBBI = MI.getIterator();
5641   auto SelectEnd = std::next(LastSelectPseudo->getIterator());
5642   auto InsertionPoint = TailMBB->begin();
5643   while (SelectMBBI != SelectEnd) {
5644     auto Next = std::next(SelectMBBI);
5645     if (isSelectPseudo(*SelectMBBI)) {
5646       // %Result = phi [ %TrueValue, HeadMBB ], [ %FalseValue, IfFalseMBB ]
5647       BuildMI(*TailMBB, InsertionPoint, SelectMBBI->getDebugLoc(),
5648               TII.get(RISCV::PHI), SelectMBBI->getOperand(0).getReg())
5649           .addReg(SelectMBBI->getOperand(4).getReg())
5650           .addMBB(HeadMBB)
5651           .addReg(SelectMBBI->getOperand(5).getReg())
5652           .addMBB(IfFalseMBB);
5653       SelectMBBI->eraseFromParent();
5654     }
5655     SelectMBBI = Next;
5656   }
5657 
5658   F->getProperties().reset(MachineFunctionProperties::Property::NoPHIs);
5659   return TailMBB;
5660 }
5661 
5662 static MachineInstr *elideCopies(MachineInstr *MI,
5663                                  const MachineRegisterInfo &MRI) {
5664   while (true) {
5665     if (!MI->isFullCopy())
5666       return MI;
5667     if (!Register::isVirtualRegister(MI->getOperand(1).getReg()))
5668       return nullptr;
5669     MI = MRI.getVRegDef(MI->getOperand(1).getReg());
5670     if (!MI)
5671       return nullptr;
5672   }
5673 }
5674 
5675 static MachineBasicBlock *addVSetVL(MachineInstr &MI, MachineBasicBlock *BB,
5676                                     int VLIndex, unsigned SEWIndex,
5677                                     RISCVVLMUL VLMul, bool ForceTailAgnostic) {
5678   MachineFunction &MF = *BB->getParent();
5679   DebugLoc DL = MI.getDebugLoc();
5680   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
5681 
5682   unsigned SEW = MI.getOperand(SEWIndex).getImm();
5683   assert(RISCVVType::isValidSEW(SEW) && "Unexpected SEW");
5684   RISCVVSEW ElementWidth = static_cast<RISCVVSEW>(Log2_32(SEW / 8));
5685 
5686   MachineRegisterInfo &MRI = MF.getRegInfo();
5687 
5688   auto BuildVSETVLI = [&]() {
5689     if (VLIndex >= 0) {
5690       Register DestReg = MRI.createVirtualRegister(&RISCV::GPRRegClass);
5691       Register VLReg = MI.getOperand(VLIndex).getReg();
5692 
5693       // VL might be a compile time constant, but isel would have to put it
5694       // in a register. See if VL comes from an ADDI X0, imm.
5695       if (VLReg.isVirtual()) {
5696         MachineInstr *Def = MRI.getVRegDef(VLReg);
5697         if (Def && Def->getOpcode() == RISCV::ADDI &&
5698             Def->getOperand(1).getReg() == RISCV::X0 &&
5699             Def->getOperand(2).isImm()) {
5700           uint64_t Imm = Def->getOperand(2).getImm();
5701           // VSETIVLI allows a 5-bit zero extended immediate.
5702           if (isUInt<5>(Imm))
5703             return BuildMI(*BB, MI, DL, TII.get(RISCV::PseudoVSETIVLI))
5704                 .addReg(DestReg, RegState::Define | RegState::Dead)
5705                 .addImm(Imm);
5706         }
5707       }
5708 
5709       return BuildMI(*BB, MI, DL, TII.get(RISCV::PseudoVSETVLI))
5710           .addReg(DestReg, RegState::Define | RegState::Dead)
5711           .addReg(VLReg);
5712     }
5713 
5714     // With no VL operator in the pseudo, do not modify VL (rd = X0, rs1 = X0).
5715     return BuildMI(*BB, MI, DL, TII.get(RISCV::PseudoVSETVLI))
5716         .addReg(RISCV::X0, RegState::Define | RegState::Dead)
5717         .addReg(RISCV::X0, RegState::Kill);
5718   };
5719 
5720   MachineInstrBuilder MIB = BuildVSETVLI();
5721 
5722   // Default to tail agnostic unless the destination is tied to a source. In
5723   // that case the user would have some control over the tail values. The tail
5724   // policy is also ignored on instructions that only update element 0 like
5725   // vmv.s.x or reductions so use agnostic there to match the common case.
5726   // FIXME: This is conservatively correct, but we might want to detect that
5727   // the input is undefined.
5728   bool TailAgnostic = true;
5729   unsigned UseOpIdx;
5730   if (!ForceTailAgnostic && MI.isRegTiedToUseOperand(0, &UseOpIdx)) {
5731     TailAgnostic = false;
5732     // If the tied operand is an IMPLICIT_DEF we can keep TailAgnostic.
5733     const MachineOperand &UseMO = MI.getOperand(UseOpIdx);
5734     MachineInstr *UseMI = MRI.getVRegDef(UseMO.getReg());
5735     if (UseMI) {
5736       UseMI = elideCopies(UseMI, MRI);
5737       if (UseMI && UseMI->isImplicitDef())
5738         TailAgnostic = true;
5739     }
5740   }
5741 
5742   // For simplicity we reuse the vtype representation here.
5743   MIB.addImm(RISCVVType::encodeVTYPE(VLMul, ElementWidth,
5744                                      /*TailAgnostic*/ TailAgnostic,
5745                                      /*MaskAgnostic*/ false));
5746 
5747   // Remove (now) redundant operands from pseudo
5748   if (VLIndex >= 0) {
5749     MI.getOperand(VLIndex).setReg(RISCV::NoRegister);
5750     MI.getOperand(VLIndex).setIsKill(false);
5751   }
5752 
5753   return BB;
5754 }
5755 
5756 MachineBasicBlock *
5757 RISCVTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
5758                                                  MachineBasicBlock *BB) const {
5759   uint64_t TSFlags = MI.getDesc().TSFlags;
5760 
5761   if (TSFlags & RISCVII::HasSEWOpMask) {
5762     unsigned NumOperands = MI.getNumExplicitOperands();
5763     int VLIndex = (TSFlags & RISCVII::HasVLOpMask) ? NumOperands - 2 : -1;
5764     unsigned SEWIndex = NumOperands - 1;
5765     bool ForceTailAgnostic = TSFlags & RISCVII::ForceTailAgnosticMask;
5766 
5767     RISCVVLMUL VLMul = static_cast<RISCVVLMUL>((TSFlags & RISCVII::VLMulMask) >>
5768                                                RISCVII::VLMulShift);
5769     return addVSetVL(MI, BB, VLIndex, SEWIndex, VLMul, ForceTailAgnostic);
5770   }
5771 
5772   switch (MI.getOpcode()) {
5773   default:
5774     llvm_unreachable("Unexpected instr type to insert");
5775   case RISCV::ReadCycleWide:
5776     assert(!Subtarget.is64Bit() &&
5777            "ReadCycleWrite is only to be used on riscv32");
5778     return emitReadCycleWidePseudo(MI, BB);
5779   case RISCV::Select_GPR_Using_CC_GPR:
5780   case RISCV::Select_FPR16_Using_CC_GPR:
5781   case RISCV::Select_FPR32_Using_CC_GPR:
5782   case RISCV::Select_FPR64_Using_CC_GPR:
5783     return emitSelectPseudo(MI, BB);
5784   case RISCV::BuildPairF64Pseudo:
5785     return emitBuildPairF64Pseudo(MI, BB);
5786   case RISCV::SplitF64Pseudo:
5787     return emitSplitF64Pseudo(MI, BB);
5788   }
5789 }
5790 
5791 // Calling Convention Implementation.
5792 // The expectations for frontend ABI lowering vary from target to target.
5793 // Ideally, an LLVM frontend would be able to avoid worrying about many ABI
5794 // details, but this is a longer term goal. For now, we simply try to keep the
5795 // role of the frontend as simple and well-defined as possible. The rules can
5796 // be summarised as:
5797 // * Never split up large scalar arguments. We handle them here.
5798 // * If a hardfloat calling convention is being used, and the struct may be
5799 // passed in a pair of registers (fp+fp, int+fp), and both registers are
5800 // available, then pass as two separate arguments. If either the GPRs or FPRs
5801 // are exhausted, then pass according to the rule below.
5802 // * If a struct could never be passed in registers or directly in a stack
5803 // slot (as it is larger than 2*XLEN and the floating point rules don't
5804 // apply), then pass it using a pointer with the byval attribute.
5805 // * If a struct is less than 2*XLEN, then coerce to either a two-element
5806 // word-sized array or a 2*XLEN scalar (depending on alignment).
5807 // * The frontend can determine whether a struct is returned by reference or
5808 // not based on its size and fields. If it will be returned by reference, the
5809 // frontend must modify the prototype so a pointer with the sret annotation is
5810 // passed as the first argument. This is not necessary for large scalar
5811 // returns.
5812 // * Struct return values and varargs should be coerced to structs containing
5813 // register-size fields in the same situations they would be for fixed
5814 // arguments.
5815 
5816 static const MCPhysReg ArgGPRs[] = {
5817   RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13,
5818   RISCV::X14, RISCV::X15, RISCV::X16, RISCV::X17
5819 };
5820 static const MCPhysReg ArgFPR16s[] = {
5821   RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H,
5822   RISCV::F14_H, RISCV::F15_H, RISCV::F16_H, RISCV::F17_H
5823 };
5824 static const MCPhysReg ArgFPR32s[] = {
5825   RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F,
5826   RISCV::F14_F, RISCV::F15_F, RISCV::F16_F, RISCV::F17_F
5827 };
5828 static const MCPhysReg ArgFPR64s[] = {
5829   RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D,
5830   RISCV::F14_D, RISCV::F15_D, RISCV::F16_D, RISCV::F17_D
5831 };
5832 // This is an interim calling convention and it may be changed in the future.
5833 static const MCPhysReg ArgVRs[] = {
5834     RISCV::V8,  RISCV::V9,  RISCV::V10, RISCV::V11, RISCV::V12, RISCV::V13,
5835     RISCV::V14, RISCV::V15, RISCV::V16, RISCV::V17, RISCV::V18, RISCV::V19,
5836     RISCV::V20, RISCV::V21, RISCV::V22, RISCV::V23};
5837 static const MCPhysReg ArgVRM2s[] = {RISCV::V8M2,  RISCV::V10M2, RISCV::V12M2,
5838                                      RISCV::V14M2, RISCV::V16M2, RISCV::V18M2,
5839                                      RISCV::V20M2, RISCV::V22M2};
5840 static const MCPhysReg ArgVRM4s[] = {RISCV::V8M4, RISCV::V12M4, RISCV::V16M4,
5841                                      RISCV::V20M4};
5842 static const MCPhysReg ArgVRM8s[] = {RISCV::V8M8, RISCV::V16M8};
5843 
5844 // Pass a 2*XLEN argument that has been split into two XLEN values through
5845 // registers or the stack as necessary.
5846 static bool CC_RISCVAssign2XLen(unsigned XLen, CCState &State, CCValAssign VA1,
5847                                 ISD::ArgFlagsTy ArgFlags1, unsigned ValNo2,
5848                                 MVT ValVT2, MVT LocVT2,
5849                                 ISD::ArgFlagsTy ArgFlags2) {
5850   unsigned XLenInBytes = XLen / 8;
5851   if (Register Reg = State.AllocateReg(ArgGPRs)) {
5852     // At least one half can be passed via register.
5853     State.addLoc(CCValAssign::getReg(VA1.getValNo(), VA1.getValVT(), Reg,
5854                                      VA1.getLocVT(), CCValAssign::Full));
5855   } else {
5856     // Both halves must be passed on the stack, with proper alignment.
5857     Align StackAlign =
5858         std::max(Align(XLenInBytes), ArgFlags1.getNonZeroOrigAlign());
5859     State.addLoc(
5860         CCValAssign::getMem(VA1.getValNo(), VA1.getValVT(),
5861                             State.AllocateStack(XLenInBytes, StackAlign),
5862                             VA1.getLocVT(), CCValAssign::Full));
5863     State.addLoc(CCValAssign::getMem(
5864         ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)),
5865         LocVT2, CCValAssign::Full));
5866     return false;
5867   }
5868 
5869   if (Register Reg = State.AllocateReg(ArgGPRs)) {
5870     // The second half can also be passed via register.
5871     State.addLoc(
5872         CCValAssign::getReg(ValNo2, ValVT2, Reg, LocVT2, CCValAssign::Full));
5873   } else {
5874     // The second half is passed via the stack, without additional alignment.
5875     State.addLoc(CCValAssign::getMem(
5876         ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)),
5877         LocVT2, CCValAssign::Full));
5878   }
5879 
5880   return false;
5881 }
5882 
5883 // Implements the RISC-V calling convention. Returns true upon failure.
5884 static bool CC_RISCV(const DataLayout &DL, RISCVABI::ABI ABI, unsigned ValNo,
5885                      MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo,
5886                      ISD::ArgFlagsTy ArgFlags, CCState &State, bool IsFixed,
5887                      bool IsRet, Type *OrigTy, const RISCVTargetLowering &TLI,
5888                      Optional<unsigned> FirstMaskArgument) {
5889   unsigned XLen = DL.getLargestLegalIntTypeSizeInBits();
5890   assert(XLen == 32 || XLen == 64);
5891   MVT XLenVT = XLen == 32 ? MVT::i32 : MVT::i64;
5892 
5893   // Any return value split in to more than two values can't be returned
5894   // directly. Vectors are returned via the available vector registers.
5895   if (!LocVT.isVector() && IsRet && ValNo > 1)
5896     return true;
5897 
5898   // UseGPRForF16_F32 if targeting one of the soft-float ABIs, if passing a
5899   // variadic argument, or if no F16/F32 argument registers are available.
5900   bool UseGPRForF16_F32 = true;
5901   // UseGPRForF64 if targeting soft-float ABIs or an FLEN=32 ABI, if passing a
5902   // variadic argument, or if no F64 argument registers are available.
5903   bool UseGPRForF64 = true;
5904 
5905   switch (ABI) {
5906   default:
5907     llvm_unreachable("Unexpected ABI");
5908   case RISCVABI::ABI_ILP32:
5909   case RISCVABI::ABI_LP64:
5910     break;
5911   case RISCVABI::ABI_ILP32F:
5912   case RISCVABI::ABI_LP64F:
5913     UseGPRForF16_F32 = !IsFixed;
5914     break;
5915   case RISCVABI::ABI_ILP32D:
5916   case RISCVABI::ABI_LP64D:
5917     UseGPRForF16_F32 = !IsFixed;
5918     UseGPRForF64 = !IsFixed;
5919     break;
5920   }
5921 
5922   // FPR16, FPR32, and FPR64 alias each other.
5923   if (State.getFirstUnallocated(ArgFPR32s) == array_lengthof(ArgFPR32s)) {
5924     UseGPRForF16_F32 = true;
5925     UseGPRForF64 = true;
5926   }
5927 
5928   // From this point on, rely on UseGPRForF16_F32, UseGPRForF64 and
5929   // similar local variables rather than directly checking against the target
5930   // ABI.
5931 
5932   if (UseGPRForF16_F32 && (ValVT == MVT::f16 || ValVT == MVT::f32)) {
5933     LocVT = XLenVT;
5934     LocInfo = CCValAssign::BCvt;
5935   } else if (UseGPRForF64 && XLen == 64 && ValVT == MVT::f64) {
5936     LocVT = MVT::i64;
5937     LocInfo = CCValAssign::BCvt;
5938   }
5939 
5940   // If this is a variadic argument, the RISC-V calling convention requires
5941   // that it is assigned an 'even' or 'aligned' register if it has 8-byte
5942   // alignment (RV32) or 16-byte alignment (RV64). An aligned register should
5943   // be used regardless of whether the original argument was split during
5944   // legalisation or not. The argument will not be passed by registers if the
5945   // original type is larger than 2*XLEN, so the register alignment rule does
5946   // not apply.
5947   unsigned TwoXLenInBytes = (2 * XLen) / 8;
5948   if (!IsFixed && ArgFlags.getNonZeroOrigAlign() == TwoXLenInBytes &&
5949       DL.getTypeAllocSize(OrigTy) == TwoXLenInBytes) {
5950     unsigned RegIdx = State.getFirstUnallocated(ArgGPRs);
5951     // Skip 'odd' register if necessary.
5952     if (RegIdx != array_lengthof(ArgGPRs) && RegIdx % 2 == 1)
5953       State.AllocateReg(ArgGPRs);
5954   }
5955 
5956   SmallVectorImpl<CCValAssign> &PendingLocs = State.getPendingLocs();
5957   SmallVectorImpl<ISD::ArgFlagsTy> &PendingArgFlags =
5958       State.getPendingArgFlags();
5959 
5960   assert(PendingLocs.size() == PendingArgFlags.size() &&
5961          "PendingLocs and PendingArgFlags out of sync");
5962 
5963   // Handle passing f64 on RV32D with a soft float ABI or when floating point
5964   // registers are exhausted.
5965   if (UseGPRForF64 && XLen == 32 && ValVT == MVT::f64) {
5966     assert(!ArgFlags.isSplit() && PendingLocs.empty() &&
5967            "Can't lower f64 if it is split");
5968     // Depending on available argument GPRS, f64 may be passed in a pair of
5969     // GPRs, split between a GPR and the stack, or passed completely on the
5970     // stack. LowerCall/LowerFormalArguments/LowerReturn must recognise these
5971     // cases.
5972     Register Reg = State.AllocateReg(ArgGPRs);
5973     LocVT = MVT::i32;
5974     if (!Reg) {
5975       unsigned StackOffset = State.AllocateStack(8, Align(8));
5976       State.addLoc(
5977           CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
5978       return false;
5979     }
5980     if (!State.AllocateReg(ArgGPRs))
5981       State.AllocateStack(4, Align(4));
5982     State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
5983     return false;
5984   }
5985 
5986   // Fixed-length vectors are located in the corresponding scalable-vector
5987   // container types.
5988   if (ValVT.isFixedLengthVector())
5989     LocVT = TLI.getContainerForFixedLengthVector(LocVT);
5990 
5991   // Split arguments might be passed indirectly, so keep track of the pending
5992   // values. Split vectors are passed via a mix of registers and indirectly, so
5993   // treat them as we would any other argument.
5994   if (!LocVT.isVector() && (ArgFlags.isSplit() || !PendingLocs.empty())) {
5995     LocVT = XLenVT;
5996     LocInfo = CCValAssign::Indirect;
5997     PendingLocs.push_back(
5998         CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo));
5999     PendingArgFlags.push_back(ArgFlags);
6000     if (!ArgFlags.isSplitEnd()) {
6001       return false;
6002     }
6003   }
6004 
6005   // If the split argument only had two elements, it should be passed directly
6006   // in registers or on the stack.
6007   if (!LocVT.isVector() && ArgFlags.isSplitEnd() && PendingLocs.size() <= 2) {
6008     assert(PendingLocs.size() == 2 && "Unexpected PendingLocs.size()");
6009     // Apply the normal calling convention rules to the first half of the
6010     // split argument.
6011     CCValAssign VA = PendingLocs[0];
6012     ISD::ArgFlagsTy AF = PendingArgFlags[0];
6013     PendingLocs.clear();
6014     PendingArgFlags.clear();
6015     return CC_RISCVAssign2XLen(XLen, State, VA, AF, ValNo, ValVT, LocVT,
6016                                ArgFlags);
6017   }
6018 
6019   // Allocate to a register if possible, or else a stack slot.
6020   Register Reg;
6021   if (ValVT == MVT::f16 && !UseGPRForF16_F32)
6022     Reg = State.AllocateReg(ArgFPR16s);
6023   else if (ValVT == MVT::f32 && !UseGPRForF16_F32)
6024     Reg = State.AllocateReg(ArgFPR32s);
6025   else if (ValVT == MVT::f64 && !UseGPRForF64)
6026     Reg = State.AllocateReg(ArgFPR64s);
6027   else if (ValVT.isVector()) {
6028     const TargetRegisterClass *RC = TLI.getRegClassFor(ValVT);
6029     if (RC == &RISCV::VRRegClass) {
6030       // Assign the first mask argument to V0.
6031       // This is an interim calling convention and it may be changed in the
6032       // future.
6033       if (FirstMaskArgument.hasValue() &&
6034           ValNo == FirstMaskArgument.getValue()) {
6035         Reg = State.AllocateReg(RISCV::V0);
6036       } else {
6037         Reg = State.AllocateReg(ArgVRs);
6038       }
6039     } else if (RC == &RISCV::VRM2RegClass) {
6040       Reg = State.AllocateReg(ArgVRM2s);
6041     } else if (RC == &RISCV::VRM4RegClass) {
6042       Reg = State.AllocateReg(ArgVRM4s);
6043     } else if (RC == &RISCV::VRM8RegClass) {
6044       Reg = State.AllocateReg(ArgVRM8s);
6045     } else {
6046       llvm_unreachable("Unhandled class register for ValueType");
6047     }
6048     if (!Reg) {
6049       // For return values, the vector must be passed fully via registers or
6050       // via the stack.
6051       // FIXME: The proposed vector ABI only mandates v8-v15 for return values,
6052       // but we're using all of them.
6053       if (IsRet)
6054         return true;
6055       LocInfo = CCValAssign::Indirect;
6056       // Try using a GPR to pass the address
6057       Reg = State.AllocateReg(ArgGPRs);
6058       LocVT = XLenVT;
6059     }
6060   } else
6061     Reg = State.AllocateReg(ArgGPRs);
6062   unsigned StackOffset =
6063       Reg ? 0 : State.AllocateStack(XLen / 8, Align(XLen / 8));
6064 
6065   // If we reach this point and PendingLocs is non-empty, we must be at the
6066   // end of a split argument that must be passed indirectly.
6067   if (!PendingLocs.empty()) {
6068     assert(ArgFlags.isSplitEnd() && "Expected ArgFlags.isSplitEnd()");
6069     assert(PendingLocs.size() > 2 && "Unexpected PendingLocs.size()");
6070 
6071     for (auto &It : PendingLocs) {
6072       if (Reg)
6073         It.convertToReg(Reg);
6074       else
6075         It.convertToMem(StackOffset);
6076       State.addLoc(It);
6077     }
6078     PendingLocs.clear();
6079     PendingArgFlags.clear();
6080     return false;
6081   }
6082 
6083   assert((!UseGPRForF16_F32 || !UseGPRForF64 || LocVT == XLenVT ||
6084           (TLI.getSubtarget().hasStdExtV() && ValVT.isVector())) &&
6085          "Expected an XLenVT or vector types at this stage");
6086 
6087   if (Reg) {
6088     State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
6089     return false;
6090   }
6091 
6092   // When a floating-point value is passed on the stack, no bit-conversion is
6093   // needed.
6094   if (ValVT.isFloatingPoint()) {
6095     LocVT = ValVT;
6096     LocInfo = CCValAssign::Full;
6097   }
6098   State.addLoc(CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
6099   return false;
6100 }
6101 
6102 template <typename ArgTy>
6103 static Optional<unsigned> preAssignMask(const ArgTy &Args) {
6104   for (const auto &ArgIdx : enumerate(Args)) {
6105     MVT ArgVT = ArgIdx.value().VT;
6106     if (ArgVT.isVector() && ArgVT.getVectorElementType() == MVT::i1)
6107       return ArgIdx.index();
6108   }
6109   return None;
6110 }
6111 
6112 void RISCVTargetLowering::analyzeInputArgs(
6113     MachineFunction &MF, CCState &CCInfo,
6114     const SmallVectorImpl<ISD::InputArg> &Ins, bool IsRet) const {
6115   unsigned NumArgs = Ins.size();
6116   FunctionType *FType = MF.getFunction().getFunctionType();
6117 
6118   Optional<unsigned> FirstMaskArgument;
6119   if (Subtarget.hasStdExtV())
6120     FirstMaskArgument = preAssignMask(Ins);
6121 
6122   for (unsigned i = 0; i != NumArgs; ++i) {
6123     MVT ArgVT = Ins[i].VT;
6124     ISD::ArgFlagsTy ArgFlags = Ins[i].Flags;
6125 
6126     Type *ArgTy = nullptr;
6127     if (IsRet)
6128       ArgTy = FType->getReturnType();
6129     else if (Ins[i].isOrigArg())
6130       ArgTy = FType->getParamType(Ins[i].getOrigArgIndex());
6131 
6132     RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
6133     if (CC_RISCV(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full,
6134                  ArgFlags, CCInfo, /*IsFixed=*/true, IsRet, ArgTy, *this,
6135                  FirstMaskArgument)) {
6136       LLVM_DEBUG(dbgs() << "InputArg #" << i << " has unhandled type "
6137                         << EVT(ArgVT).getEVTString() << '\n');
6138       llvm_unreachable(nullptr);
6139     }
6140   }
6141 }
6142 
6143 void RISCVTargetLowering::analyzeOutputArgs(
6144     MachineFunction &MF, CCState &CCInfo,
6145     const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsRet,
6146     CallLoweringInfo *CLI) const {
6147   unsigned NumArgs = Outs.size();
6148 
6149   Optional<unsigned> FirstMaskArgument;
6150   if (Subtarget.hasStdExtV())
6151     FirstMaskArgument = preAssignMask(Outs);
6152 
6153   for (unsigned i = 0; i != NumArgs; i++) {
6154     MVT ArgVT = Outs[i].VT;
6155     ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
6156     Type *OrigTy = CLI ? CLI->getArgs()[Outs[i].OrigArgIndex].Ty : nullptr;
6157 
6158     RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
6159     if (CC_RISCV(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full,
6160                  ArgFlags, CCInfo, Outs[i].IsFixed, IsRet, OrigTy, *this,
6161                  FirstMaskArgument)) {
6162       LLVM_DEBUG(dbgs() << "OutputArg #" << i << " has unhandled type "
6163                         << EVT(ArgVT).getEVTString() << "\n");
6164       llvm_unreachable(nullptr);
6165     }
6166   }
6167 }
6168 
6169 // Convert Val to a ValVT. Should not be called for CCValAssign::Indirect
6170 // values.
6171 static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDValue Val,
6172                                    const CCValAssign &VA, const SDLoc &DL,
6173                                    const RISCVSubtarget &Subtarget) {
6174   switch (VA.getLocInfo()) {
6175   default:
6176     llvm_unreachable("Unexpected CCValAssign::LocInfo");
6177   case CCValAssign::Full:
6178     if (VA.getValVT().isFixedLengthVector() && VA.getLocVT().isScalableVector())
6179       Val = convertFromScalableVector(VA.getValVT(), Val, DAG, Subtarget);
6180     break;
6181   case CCValAssign::BCvt:
6182     if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16)
6183       Val = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, Val);
6184     else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32)
6185       Val = DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, Val);
6186     else
6187       Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val);
6188     break;
6189   }
6190   return Val;
6191 }
6192 
6193 // The caller is responsible for loading the full value if the argument is
6194 // passed with CCValAssign::Indirect.
6195 static SDValue unpackFromRegLoc(SelectionDAG &DAG, SDValue Chain,
6196                                 const CCValAssign &VA, const SDLoc &DL,
6197                                 const RISCVTargetLowering &TLI) {
6198   MachineFunction &MF = DAG.getMachineFunction();
6199   MachineRegisterInfo &RegInfo = MF.getRegInfo();
6200   EVT LocVT = VA.getLocVT();
6201   SDValue Val;
6202   const TargetRegisterClass *RC = TLI.getRegClassFor(LocVT.getSimpleVT());
6203   Register VReg = RegInfo.createVirtualRegister(RC);
6204   RegInfo.addLiveIn(VA.getLocReg(), VReg);
6205   Val = DAG.getCopyFromReg(Chain, DL, VReg, LocVT);
6206 
6207   if (VA.getLocInfo() == CCValAssign::Indirect)
6208     return Val;
6209 
6210   return convertLocVTToValVT(DAG, Val, VA, DL, TLI.getSubtarget());
6211 }
6212 
6213 static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDValue Val,
6214                                    const CCValAssign &VA, const SDLoc &DL,
6215                                    const RISCVSubtarget &Subtarget) {
6216   EVT LocVT = VA.getLocVT();
6217 
6218   switch (VA.getLocInfo()) {
6219   default:
6220     llvm_unreachable("Unexpected CCValAssign::LocInfo");
6221   case CCValAssign::Full:
6222     if (VA.getValVT().isFixedLengthVector() && LocVT.isScalableVector())
6223       Val = convertToScalableVector(LocVT, Val, DAG, Subtarget);
6224     break;
6225   case CCValAssign::BCvt:
6226     if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16)
6227       Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, VA.getLocVT(), Val);
6228     else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32)
6229       Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Val);
6230     else
6231       Val = DAG.getNode(ISD::BITCAST, DL, LocVT, Val);
6232     break;
6233   }
6234   return Val;
6235 }
6236 
6237 // The caller is responsible for loading the full value if the argument is
6238 // passed with CCValAssign::Indirect.
6239 static SDValue unpackFromMemLoc(SelectionDAG &DAG, SDValue Chain,
6240                                 const CCValAssign &VA, const SDLoc &DL) {
6241   MachineFunction &MF = DAG.getMachineFunction();
6242   MachineFrameInfo &MFI = MF.getFrameInfo();
6243   EVT LocVT = VA.getLocVT();
6244   EVT ValVT = VA.getValVT();
6245   EVT PtrVT = MVT::getIntegerVT(DAG.getDataLayout().getPointerSizeInBits(0));
6246   int FI = MFI.CreateFixedObject(ValVT.getSizeInBits() / 8,
6247                                  VA.getLocMemOffset(), /*Immutable=*/true);
6248   SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
6249   SDValue Val;
6250 
6251   ISD::LoadExtType ExtType;
6252   switch (VA.getLocInfo()) {
6253   default:
6254     llvm_unreachable("Unexpected CCValAssign::LocInfo");
6255   case CCValAssign::Full:
6256   case CCValAssign::Indirect:
6257   case CCValAssign::BCvt:
6258     ExtType = ISD::NON_EXTLOAD;
6259     break;
6260   }
6261   Val = DAG.getExtLoad(
6262       ExtType, DL, LocVT, Chain, FIN,
6263       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), ValVT);
6264   return Val;
6265 }
6266 
6267 static SDValue unpackF64OnRV32DSoftABI(SelectionDAG &DAG, SDValue Chain,
6268                                        const CCValAssign &VA, const SDLoc &DL) {
6269   assert(VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64 &&
6270          "Unexpected VA");
6271   MachineFunction &MF = DAG.getMachineFunction();
6272   MachineFrameInfo &MFI = MF.getFrameInfo();
6273   MachineRegisterInfo &RegInfo = MF.getRegInfo();
6274 
6275   if (VA.isMemLoc()) {
6276     // f64 is passed on the stack.
6277     int FI = MFI.CreateFixedObject(8, VA.getLocMemOffset(), /*Immutable=*/true);
6278     SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
6279     return DAG.getLoad(MVT::f64, DL, Chain, FIN,
6280                        MachinePointerInfo::getFixedStack(MF, FI));
6281   }
6282 
6283   assert(VA.isRegLoc() && "Expected register VA assignment");
6284 
6285   Register LoVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
6286   RegInfo.addLiveIn(VA.getLocReg(), LoVReg);
6287   SDValue Lo = DAG.getCopyFromReg(Chain, DL, LoVReg, MVT::i32);
6288   SDValue Hi;
6289   if (VA.getLocReg() == RISCV::X17) {
6290     // Second half of f64 is passed on the stack.
6291     int FI = MFI.CreateFixedObject(4, 0, /*Immutable=*/true);
6292     SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
6293     Hi = DAG.getLoad(MVT::i32, DL, Chain, FIN,
6294                      MachinePointerInfo::getFixedStack(MF, FI));
6295   } else {
6296     // Second half of f64 is passed in another GPR.
6297     Register HiVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
6298     RegInfo.addLiveIn(VA.getLocReg() + 1, HiVReg);
6299     Hi = DAG.getCopyFromReg(Chain, DL, HiVReg, MVT::i32);
6300   }
6301   return DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, Lo, Hi);
6302 }
6303 
6304 // FastCC has less than 1% performance improvement for some particular
6305 // benchmark. But theoretically, it may has benenfit for some cases.
6306 static bool CC_RISCV_FastCC(unsigned ValNo, MVT ValVT, MVT LocVT,
6307                             CCValAssign::LocInfo LocInfo,
6308                             ISD::ArgFlagsTy ArgFlags, CCState &State) {
6309 
6310   if (LocVT == MVT::i32 || LocVT == MVT::i64) {
6311     // X5 and X6 might be used for save-restore libcall.
6312     static const MCPhysReg GPRList[] = {
6313         RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, RISCV::X14,
6314         RISCV::X15, RISCV::X16, RISCV::X17, RISCV::X7,  RISCV::X28,
6315         RISCV::X29, RISCV::X30, RISCV::X31};
6316     if (unsigned Reg = State.AllocateReg(GPRList)) {
6317       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
6318       return false;
6319     }
6320   }
6321 
6322   if (LocVT == MVT::f16) {
6323     static const MCPhysReg FPR16List[] = {
6324         RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, RISCV::F14_H,
6325         RISCV::F15_H, RISCV::F16_H, RISCV::F17_H, RISCV::F0_H,  RISCV::F1_H,
6326         RISCV::F2_H,  RISCV::F3_H,  RISCV::F4_H,  RISCV::F5_H,  RISCV::F6_H,
6327         RISCV::F7_H,  RISCV::F28_H, RISCV::F29_H, RISCV::F30_H, RISCV::F31_H};
6328     if (unsigned Reg = State.AllocateReg(FPR16List)) {
6329       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
6330       return false;
6331     }
6332   }
6333 
6334   if (LocVT == MVT::f32) {
6335     static const MCPhysReg FPR32List[] = {
6336         RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, RISCV::F14_F,
6337         RISCV::F15_F, RISCV::F16_F, RISCV::F17_F, RISCV::F0_F,  RISCV::F1_F,
6338         RISCV::F2_F,  RISCV::F3_F,  RISCV::F4_F,  RISCV::F5_F,  RISCV::F6_F,
6339         RISCV::F7_F,  RISCV::F28_F, RISCV::F29_F, RISCV::F30_F, RISCV::F31_F};
6340     if (unsigned Reg = State.AllocateReg(FPR32List)) {
6341       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
6342       return false;
6343     }
6344   }
6345 
6346   if (LocVT == MVT::f64) {
6347     static const MCPhysReg FPR64List[] = {
6348         RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, RISCV::F14_D,
6349         RISCV::F15_D, RISCV::F16_D, RISCV::F17_D, RISCV::F0_D,  RISCV::F1_D,
6350         RISCV::F2_D,  RISCV::F3_D,  RISCV::F4_D,  RISCV::F5_D,  RISCV::F6_D,
6351         RISCV::F7_D,  RISCV::F28_D, RISCV::F29_D, RISCV::F30_D, RISCV::F31_D};
6352     if (unsigned Reg = State.AllocateReg(FPR64List)) {
6353       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
6354       return false;
6355     }
6356   }
6357 
6358   if (LocVT == MVT::i32 || LocVT == MVT::f32) {
6359     unsigned Offset4 = State.AllocateStack(4, Align(4));
6360     State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset4, LocVT, LocInfo));
6361     return false;
6362   }
6363 
6364   if (LocVT == MVT::i64 || LocVT == MVT::f64) {
6365     unsigned Offset5 = State.AllocateStack(8, Align(8));
6366     State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset5, LocVT, LocInfo));
6367     return false;
6368   }
6369 
6370   return true; // CC didn't match.
6371 }
6372 
6373 static bool CC_RISCV_GHC(unsigned ValNo, MVT ValVT, MVT LocVT,
6374                          CCValAssign::LocInfo LocInfo,
6375                          ISD::ArgFlagsTy ArgFlags, CCState &State) {
6376 
6377   if (LocVT == MVT::i32 || LocVT == MVT::i64) {
6378     // Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, R6, R7, SpLim
6379     //                        s1    s2  s3  s4  s5  s6  s7  s8  s9  s10 s11
6380     static const MCPhysReg GPRList[] = {
6381         RISCV::X9, RISCV::X18, RISCV::X19, RISCV::X20, RISCV::X21, RISCV::X22,
6382         RISCV::X23, RISCV::X24, RISCV::X25, RISCV::X26, RISCV::X27};
6383     if (unsigned Reg = State.AllocateReg(GPRList)) {
6384       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
6385       return false;
6386     }
6387   }
6388 
6389   if (LocVT == MVT::f32) {
6390     // Pass in STG registers: F1, ..., F6
6391     //                        fs0 ... fs5
6392     static const MCPhysReg FPR32List[] = {RISCV::F8_F, RISCV::F9_F,
6393                                           RISCV::F18_F, RISCV::F19_F,
6394                                           RISCV::F20_F, RISCV::F21_F};
6395     if (unsigned Reg = State.AllocateReg(FPR32List)) {
6396       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
6397       return false;
6398     }
6399   }
6400 
6401   if (LocVT == MVT::f64) {
6402     // Pass in STG registers: D1, ..., D6
6403     //                        fs6 ... fs11
6404     static const MCPhysReg FPR64List[] = {RISCV::F22_D, RISCV::F23_D,
6405                                           RISCV::F24_D, RISCV::F25_D,
6406                                           RISCV::F26_D, RISCV::F27_D};
6407     if (unsigned Reg = State.AllocateReg(FPR64List)) {
6408       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
6409       return false;
6410     }
6411   }
6412 
6413   report_fatal_error("No registers left in GHC calling convention");
6414   return true;
6415 }
6416 
6417 // Transform physical registers into virtual registers.
6418 SDValue RISCVTargetLowering::LowerFormalArguments(
6419     SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
6420     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
6421     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
6422 
6423   MachineFunction &MF = DAG.getMachineFunction();
6424 
6425   switch (CallConv) {
6426   default:
6427     report_fatal_error("Unsupported calling convention");
6428   case CallingConv::C:
6429   case CallingConv::Fast:
6430     break;
6431   case CallingConv::GHC:
6432     if (!MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtF] ||
6433         !MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtD])
6434       report_fatal_error(
6435         "GHC calling convention requires the F and D instruction set extensions");
6436   }
6437 
6438   const Function &Func = MF.getFunction();
6439   if (Func.hasFnAttribute("interrupt")) {
6440     if (!Func.arg_empty())
6441       report_fatal_error(
6442         "Functions with the interrupt attribute cannot have arguments!");
6443 
6444     StringRef Kind =
6445       MF.getFunction().getFnAttribute("interrupt").getValueAsString();
6446 
6447     if (!(Kind == "user" || Kind == "supervisor" || Kind == "machine"))
6448       report_fatal_error(
6449         "Function interrupt attribute argument not supported!");
6450   }
6451 
6452   EVT PtrVT = getPointerTy(DAG.getDataLayout());
6453   MVT XLenVT = Subtarget.getXLenVT();
6454   unsigned XLenInBytes = Subtarget.getXLen() / 8;
6455   // Used with vargs to acumulate store chains.
6456   std::vector<SDValue> OutChains;
6457 
6458   // Assign locations to all of the incoming arguments.
6459   SmallVector<CCValAssign, 16> ArgLocs;
6460   CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
6461 
6462   if (CallConv == CallingConv::Fast)
6463     CCInfo.AnalyzeFormalArguments(Ins, CC_RISCV_FastCC);
6464   else if (CallConv == CallingConv::GHC)
6465     CCInfo.AnalyzeFormalArguments(Ins, CC_RISCV_GHC);
6466   else
6467     analyzeInputArgs(MF, CCInfo, Ins, /*IsRet=*/false);
6468 
6469   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
6470     CCValAssign &VA = ArgLocs[i];
6471     SDValue ArgValue;
6472     // Passing f64 on RV32D with a soft float ABI must be handled as a special
6473     // case.
6474     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64)
6475       ArgValue = unpackF64OnRV32DSoftABI(DAG, Chain, VA, DL);
6476     else if (VA.isRegLoc())
6477       ArgValue = unpackFromRegLoc(DAG, Chain, VA, DL, *this);
6478     else
6479       ArgValue = unpackFromMemLoc(DAG, Chain, VA, DL);
6480 
6481     if (VA.getLocInfo() == CCValAssign::Indirect) {
6482       // If the original argument was split and passed by reference (e.g. i128
6483       // on RV32), we need to load all parts of it here (using the same
6484       // address). Vectors may be partly split to registers and partly to the
6485       // stack, in which case the base address is partly offset and subsequent
6486       // stores are relative to that.
6487       InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue,
6488                                    MachinePointerInfo()));
6489       unsigned ArgIndex = Ins[i].OrigArgIndex;
6490       unsigned ArgPartOffset = Ins[i].PartOffset;
6491       assert(VA.getValVT().isVector() || ArgPartOffset == 0);
6492       while (i + 1 != e && Ins[i + 1].OrigArgIndex == ArgIndex) {
6493         CCValAssign &PartVA = ArgLocs[i + 1];
6494         unsigned PartOffset = Ins[i + 1].PartOffset - ArgPartOffset;
6495         SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue,
6496                                       DAG.getIntPtrConstant(PartOffset, DL));
6497         InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address,
6498                                      MachinePointerInfo()));
6499         ++i;
6500       }
6501       continue;
6502     }
6503     InVals.push_back(ArgValue);
6504   }
6505 
6506   if (IsVarArg) {
6507     ArrayRef<MCPhysReg> ArgRegs = makeArrayRef(ArgGPRs);
6508     unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs);
6509     const TargetRegisterClass *RC = &RISCV::GPRRegClass;
6510     MachineFrameInfo &MFI = MF.getFrameInfo();
6511     MachineRegisterInfo &RegInfo = MF.getRegInfo();
6512     RISCVMachineFunctionInfo *RVFI = MF.getInfo<RISCVMachineFunctionInfo>();
6513 
6514     // Offset of the first variable argument from stack pointer, and size of
6515     // the vararg save area. For now, the varargs save area is either zero or
6516     // large enough to hold a0-a7.
6517     int VaArgOffset, VarArgsSaveSize;
6518 
6519     // If all registers are allocated, then all varargs must be passed on the
6520     // stack and we don't need to save any argregs.
6521     if (ArgRegs.size() == Idx) {
6522       VaArgOffset = CCInfo.getNextStackOffset();
6523       VarArgsSaveSize = 0;
6524     } else {
6525       VarArgsSaveSize = XLenInBytes * (ArgRegs.size() - Idx);
6526       VaArgOffset = -VarArgsSaveSize;
6527     }
6528 
6529     // Record the frame index of the first variable argument
6530     // which is a value necessary to VASTART.
6531     int FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true);
6532     RVFI->setVarArgsFrameIndex(FI);
6533 
6534     // If saving an odd number of registers then create an extra stack slot to
6535     // ensure that the frame pointer is 2*XLEN-aligned, which in turn ensures
6536     // offsets to even-numbered registered remain 2*XLEN-aligned.
6537     if (Idx % 2) {
6538       MFI.CreateFixedObject(XLenInBytes, VaArgOffset - (int)XLenInBytes, true);
6539       VarArgsSaveSize += XLenInBytes;
6540     }
6541 
6542     // Copy the integer registers that may have been used for passing varargs
6543     // to the vararg save area.
6544     for (unsigned I = Idx; I < ArgRegs.size();
6545          ++I, VaArgOffset += XLenInBytes) {
6546       const Register Reg = RegInfo.createVirtualRegister(RC);
6547       RegInfo.addLiveIn(ArgRegs[I], Reg);
6548       SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, XLenVT);
6549       FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true);
6550       SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
6551       SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff,
6552                                    MachinePointerInfo::getFixedStack(MF, FI));
6553       cast<StoreSDNode>(Store.getNode())
6554           ->getMemOperand()
6555           ->setValue((Value *)nullptr);
6556       OutChains.push_back(Store);
6557     }
6558     RVFI->setVarArgsSaveSize(VarArgsSaveSize);
6559   }
6560 
6561   // All stores are grouped in one node to allow the matching between
6562   // the size of Ins and InVals. This only happens for vararg functions.
6563   if (!OutChains.empty()) {
6564     OutChains.push_back(Chain);
6565     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains);
6566   }
6567 
6568   return Chain;
6569 }
6570 
6571 /// isEligibleForTailCallOptimization - Check whether the call is eligible
6572 /// for tail call optimization.
6573 /// Note: This is modelled after ARM's IsEligibleForTailCallOptimization.
6574 bool RISCVTargetLowering::isEligibleForTailCallOptimization(
6575     CCState &CCInfo, CallLoweringInfo &CLI, MachineFunction &MF,
6576     const SmallVector<CCValAssign, 16> &ArgLocs) const {
6577 
6578   auto &Callee = CLI.Callee;
6579   auto CalleeCC = CLI.CallConv;
6580   auto &Outs = CLI.Outs;
6581   auto &Caller = MF.getFunction();
6582   auto CallerCC = Caller.getCallingConv();
6583 
6584   // Exception-handling functions need a special set of instructions to
6585   // indicate a return to the hardware. Tail-calling another function would
6586   // probably break this.
6587   // TODO: The "interrupt" attribute isn't currently defined by RISC-V. This
6588   // should be expanded as new function attributes are introduced.
6589   if (Caller.hasFnAttribute("interrupt"))
6590     return false;
6591 
6592   // Do not tail call opt if the stack is used to pass parameters.
6593   if (CCInfo.getNextStackOffset() != 0)
6594     return false;
6595 
6596   // Do not tail call opt if any parameters need to be passed indirectly.
6597   // Since long doubles (fp128) and i128 are larger than 2*XLEN, they are
6598   // passed indirectly. So the address of the value will be passed in a
6599   // register, or if not available, then the address is put on the stack. In
6600   // order to pass indirectly, space on the stack often needs to be allocated
6601   // in order to store the value. In this case the CCInfo.getNextStackOffset()
6602   // != 0 check is not enough and we need to check if any CCValAssign ArgsLocs
6603   // are passed CCValAssign::Indirect.
6604   for (auto &VA : ArgLocs)
6605     if (VA.getLocInfo() == CCValAssign::Indirect)
6606       return false;
6607 
6608   // Do not tail call opt if either caller or callee uses struct return
6609   // semantics.
6610   auto IsCallerStructRet = Caller.hasStructRetAttr();
6611   auto IsCalleeStructRet = Outs.empty() ? false : Outs[0].Flags.isSRet();
6612   if (IsCallerStructRet || IsCalleeStructRet)
6613     return false;
6614 
6615   // Externally-defined functions with weak linkage should not be
6616   // tail-called. The behaviour of branch instructions in this situation (as
6617   // used for tail calls) is implementation-defined, so we cannot rely on the
6618   // linker replacing the tail call with a return.
6619   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
6620     const GlobalValue *GV = G->getGlobal();
6621     if (GV->hasExternalWeakLinkage())
6622       return false;
6623   }
6624 
6625   // The callee has to preserve all registers the caller needs to preserve.
6626   const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo();
6627   const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
6628   if (CalleeCC != CallerCC) {
6629     const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
6630     if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
6631       return false;
6632   }
6633 
6634   // Byval parameters hand the function a pointer directly into the stack area
6635   // we want to reuse during a tail call. Working around this *is* possible
6636   // but less efficient and uglier in LowerCall.
6637   for (auto &Arg : Outs)
6638     if (Arg.Flags.isByVal())
6639       return false;
6640 
6641   return true;
6642 }
6643 
6644 // Lower a call to a callseq_start + CALL + callseq_end chain, and add input
6645 // and output parameter nodes.
6646 SDValue RISCVTargetLowering::LowerCall(CallLoweringInfo &CLI,
6647                                        SmallVectorImpl<SDValue> &InVals) const {
6648   SelectionDAG &DAG = CLI.DAG;
6649   SDLoc &DL = CLI.DL;
6650   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
6651   SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
6652   SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
6653   SDValue Chain = CLI.Chain;
6654   SDValue Callee = CLI.Callee;
6655   bool &IsTailCall = CLI.IsTailCall;
6656   CallingConv::ID CallConv = CLI.CallConv;
6657   bool IsVarArg = CLI.IsVarArg;
6658   EVT PtrVT = getPointerTy(DAG.getDataLayout());
6659   MVT XLenVT = Subtarget.getXLenVT();
6660 
6661   MachineFunction &MF = DAG.getMachineFunction();
6662 
6663   // Analyze the operands of the call, assigning locations to each operand.
6664   SmallVector<CCValAssign, 16> ArgLocs;
6665   CCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
6666 
6667   if (CallConv == CallingConv::Fast)
6668     ArgCCInfo.AnalyzeCallOperands(Outs, CC_RISCV_FastCC);
6669   else if (CallConv == CallingConv::GHC)
6670     ArgCCInfo.AnalyzeCallOperands(Outs, CC_RISCV_GHC);
6671   else
6672     analyzeOutputArgs(MF, ArgCCInfo, Outs, /*IsRet=*/false, &CLI);
6673 
6674   // Check if it's really possible to do a tail call.
6675   if (IsTailCall)
6676     IsTailCall = isEligibleForTailCallOptimization(ArgCCInfo, CLI, MF, ArgLocs);
6677 
6678   if (IsTailCall)
6679     ++NumTailCalls;
6680   else if (CLI.CB && CLI.CB->isMustTailCall())
6681     report_fatal_error("failed to perform tail call elimination on a call "
6682                        "site marked musttail");
6683 
6684   // Get a count of how many bytes are to be pushed on the stack.
6685   unsigned NumBytes = ArgCCInfo.getNextStackOffset();
6686 
6687   // Create local copies for byval args
6688   SmallVector<SDValue, 8> ByValArgs;
6689   for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
6690     ISD::ArgFlagsTy Flags = Outs[i].Flags;
6691     if (!Flags.isByVal())
6692       continue;
6693 
6694     SDValue Arg = OutVals[i];
6695     unsigned Size = Flags.getByValSize();
6696     Align Alignment = Flags.getNonZeroByValAlign();
6697 
6698     int FI =
6699         MF.getFrameInfo().CreateStackObject(Size, Alignment, /*isSS=*/false);
6700     SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
6701     SDValue SizeNode = DAG.getConstant(Size, DL, XLenVT);
6702 
6703     Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Alignment,
6704                           /*IsVolatile=*/false,
6705                           /*AlwaysInline=*/false, IsTailCall,
6706                           MachinePointerInfo(), MachinePointerInfo());
6707     ByValArgs.push_back(FIPtr);
6708   }
6709 
6710   if (!IsTailCall)
6711     Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, CLI.DL);
6712 
6713   // Copy argument values to their designated locations.
6714   SmallVector<std::pair<Register, SDValue>, 8> RegsToPass;
6715   SmallVector<SDValue, 8> MemOpChains;
6716   SDValue StackPtr;
6717   for (unsigned i = 0, j = 0, e = ArgLocs.size(); i != e; ++i) {
6718     CCValAssign &VA = ArgLocs[i];
6719     SDValue ArgValue = OutVals[i];
6720     ISD::ArgFlagsTy Flags = Outs[i].Flags;
6721 
6722     // Handle passing f64 on RV32D with a soft float ABI as a special case.
6723     bool IsF64OnRV32DSoftABI =
6724         VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64;
6725     if (IsF64OnRV32DSoftABI && VA.isRegLoc()) {
6726       SDValue SplitF64 = DAG.getNode(
6727           RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), ArgValue);
6728       SDValue Lo = SplitF64.getValue(0);
6729       SDValue Hi = SplitF64.getValue(1);
6730 
6731       Register RegLo = VA.getLocReg();
6732       RegsToPass.push_back(std::make_pair(RegLo, Lo));
6733 
6734       if (RegLo == RISCV::X17) {
6735         // Second half of f64 is passed on the stack.
6736         // Work out the address of the stack slot.
6737         if (!StackPtr.getNode())
6738           StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT);
6739         // Emit the store.
6740         MemOpChains.push_back(
6741             DAG.getStore(Chain, DL, Hi, StackPtr, MachinePointerInfo()));
6742       } else {
6743         // Second half of f64 is passed in another GPR.
6744         assert(RegLo < RISCV::X31 && "Invalid register pair");
6745         Register RegHigh = RegLo + 1;
6746         RegsToPass.push_back(std::make_pair(RegHigh, Hi));
6747       }
6748       continue;
6749     }
6750 
6751     // IsF64OnRV32DSoftABI && VA.isMemLoc() is handled below in the same way
6752     // as any other MemLoc.
6753 
6754     // Promote the value if needed.
6755     // For now, only handle fully promoted and indirect arguments.
6756     if (VA.getLocInfo() == CCValAssign::Indirect) {
6757       // Store the argument in a stack slot and pass its address.
6758       SDValue SpillSlot = DAG.CreateStackTemporary(Outs[i].ArgVT);
6759       int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
6760       MemOpChains.push_back(
6761           DAG.getStore(Chain, DL, ArgValue, SpillSlot,
6762                        MachinePointerInfo::getFixedStack(MF, FI)));
6763       // If the original argument was split (e.g. i128), we need
6764       // to store the required parts of it here (and pass just one address).
6765       // Vectors may be partly split to registers and partly to the stack, in
6766       // which case the base address is partly offset and subsequent stores are
6767       // relative to that.
6768       unsigned ArgIndex = Outs[i].OrigArgIndex;
6769       unsigned ArgPartOffset = Outs[i].PartOffset;
6770       assert(VA.getValVT().isVector() || ArgPartOffset == 0);
6771       while (i + 1 != e && Outs[i + 1].OrigArgIndex == ArgIndex) {
6772         SDValue PartValue = OutVals[i + 1];
6773         unsigned PartOffset = Outs[i + 1].PartOffset - ArgPartOffset;
6774         SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot,
6775                                       DAG.getIntPtrConstant(PartOffset, DL));
6776         MemOpChains.push_back(
6777             DAG.getStore(Chain, DL, PartValue, Address,
6778                          MachinePointerInfo::getFixedStack(MF, FI)));
6779         ++i;
6780       }
6781       ArgValue = SpillSlot;
6782     } else {
6783       ArgValue = convertValVTToLocVT(DAG, ArgValue, VA, DL, Subtarget);
6784     }
6785 
6786     // Use local copy if it is a byval arg.
6787     if (Flags.isByVal())
6788       ArgValue = ByValArgs[j++];
6789 
6790     if (VA.isRegLoc()) {
6791       // Queue up the argument copies and emit them at the end.
6792       RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue));
6793     } else {
6794       assert(VA.isMemLoc() && "Argument not register or memory");
6795       assert(!IsTailCall && "Tail call not allowed if stack is used "
6796                             "for passing parameters");
6797 
6798       // Work out the address of the stack slot.
6799       if (!StackPtr.getNode())
6800         StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT);
6801       SDValue Address =
6802           DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr,
6803                       DAG.getIntPtrConstant(VA.getLocMemOffset(), DL));
6804 
6805       // Emit the store.
6806       MemOpChains.push_back(
6807           DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo()));
6808     }
6809   }
6810 
6811   // Join the stores, which are independent of one another.
6812   if (!MemOpChains.empty())
6813     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
6814 
6815   SDValue Glue;
6816 
6817   // Build a sequence of copy-to-reg nodes, chained and glued together.
6818   for (auto &Reg : RegsToPass) {
6819     Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, Glue);
6820     Glue = Chain.getValue(1);
6821   }
6822 
6823   // Validate that none of the argument registers have been marked as
6824   // reserved, if so report an error. Do the same for the return address if this
6825   // is not a tailcall.
6826   validateCCReservedRegs(RegsToPass, MF);
6827   if (!IsTailCall &&
6828       MF.getSubtarget<RISCVSubtarget>().isRegisterReservedByUser(RISCV::X1))
6829     MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
6830         MF.getFunction(),
6831         "Return address register required, but has been reserved."});
6832 
6833   // If the callee is a GlobalAddress/ExternalSymbol node, turn it into a
6834   // TargetGlobalAddress/TargetExternalSymbol node so that legalize won't
6835   // split it and then direct call can be matched by PseudoCALL.
6836   if (GlobalAddressSDNode *S = dyn_cast<GlobalAddressSDNode>(Callee)) {
6837     const GlobalValue *GV = S->getGlobal();
6838 
6839     unsigned OpFlags = RISCVII::MO_CALL;
6840     if (!getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV))
6841       OpFlags = RISCVII::MO_PLT;
6842 
6843     Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags);
6844   } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
6845     unsigned OpFlags = RISCVII::MO_CALL;
6846 
6847     if (!getTargetMachine().shouldAssumeDSOLocal(*MF.getFunction().getParent(),
6848                                                  nullptr))
6849       OpFlags = RISCVII::MO_PLT;
6850 
6851     Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, OpFlags);
6852   }
6853 
6854   // The first call operand is the chain and the second is the target address.
6855   SmallVector<SDValue, 8> Ops;
6856   Ops.push_back(Chain);
6857   Ops.push_back(Callee);
6858 
6859   // Add argument registers to the end of the list so that they are
6860   // known live into the call.
6861   for (auto &Reg : RegsToPass)
6862     Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType()));
6863 
6864   if (!IsTailCall) {
6865     // Add a register mask operand representing the call-preserved registers.
6866     const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
6867     const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
6868     assert(Mask && "Missing call preserved mask for calling convention");
6869     Ops.push_back(DAG.getRegisterMask(Mask));
6870   }
6871 
6872   // Glue the call to the argument copies, if any.
6873   if (Glue.getNode())
6874     Ops.push_back(Glue);
6875 
6876   // Emit the call.
6877   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6878 
6879   if (IsTailCall) {
6880     MF.getFrameInfo().setHasTailCall();
6881     return DAG.getNode(RISCVISD::TAIL, DL, NodeTys, Ops);
6882   }
6883 
6884   Chain = DAG.getNode(RISCVISD::CALL, DL, NodeTys, Ops);
6885   DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge);
6886   Glue = Chain.getValue(1);
6887 
6888   // Mark the end of the call, which is glued to the call itself.
6889   Chain = DAG.getCALLSEQ_END(Chain,
6890                              DAG.getConstant(NumBytes, DL, PtrVT, true),
6891                              DAG.getConstant(0, DL, PtrVT, true),
6892                              Glue, DL);
6893   Glue = Chain.getValue(1);
6894 
6895   // Assign locations to each value returned by this call.
6896   SmallVector<CCValAssign, 16> RVLocs;
6897   CCState RetCCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext());
6898   analyzeInputArgs(MF, RetCCInfo, Ins, /*IsRet=*/true);
6899 
6900   // Copy all of the result registers out of their specified physreg.
6901   for (auto &VA : RVLocs) {
6902     // Copy the value out
6903     SDValue RetValue =
6904         DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), Glue);
6905     // Glue the RetValue to the end of the call sequence
6906     Chain = RetValue.getValue(1);
6907     Glue = RetValue.getValue(2);
6908 
6909     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) {
6910       assert(VA.getLocReg() == ArgGPRs[0] && "Unexpected reg assignment");
6911       SDValue RetValue2 =
6912           DAG.getCopyFromReg(Chain, DL, ArgGPRs[1], MVT::i32, Glue);
6913       Chain = RetValue2.getValue(1);
6914       Glue = RetValue2.getValue(2);
6915       RetValue = DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, RetValue,
6916                              RetValue2);
6917     }
6918 
6919     RetValue = convertLocVTToValVT(DAG, RetValue, VA, DL, Subtarget);
6920 
6921     InVals.push_back(RetValue);
6922   }
6923 
6924   return Chain;
6925 }
6926 
6927 bool RISCVTargetLowering::CanLowerReturn(
6928     CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg,
6929     const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const {
6930   SmallVector<CCValAssign, 16> RVLocs;
6931   CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);
6932 
6933   Optional<unsigned> FirstMaskArgument;
6934   if (Subtarget.hasStdExtV())
6935     FirstMaskArgument = preAssignMask(Outs);
6936 
6937   for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
6938     MVT VT = Outs[i].VT;
6939     ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
6940     RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
6941     if (CC_RISCV(MF.getDataLayout(), ABI, i, VT, VT, CCValAssign::Full,
6942                  ArgFlags, CCInfo, /*IsFixed=*/true, /*IsRet=*/true, nullptr,
6943                  *this, FirstMaskArgument))
6944       return false;
6945   }
6946   return true;
6947 }
6948 
6949 SDValue
6950 RISCVTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
6951                                  bool IsVarArg,
6952                                  const SmallVectorImpl<ISD::OutputArg> &Outs,
6953                                  const SmallVectorImpl<SDValue> &OutVals,
6954                                  const SDLoc &DL, SelectionDAG &DAG) const {
6955   const MachineFunction &MF = DAG.getMachineFunction();
6956   const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>();
6957 
6958   // Stores the assignment of the return value to a location.
6959   SmallVector<CCValAssign, 16> RVLocs;
6960 
6961   // Info about the registers and stack slot.
6962   CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
6963                  *DAG.getContext());
6964 
6965   analyzeOutputArgs(DAG.getMachineFunction(), CCInfo, Outs, /*IsRet=*/true,
6966                     nullptr);
6967 
6968   if (CallConv == CallingConv::GHC && !RVLocs.empty())
6969     report_fatal_error("GHC functions return void only");
6970 
6971   SDValue Glue;
6972   SmallVector<SDValue, 4> RetOps(1, Chain);
6973 
6974   // Copy the result values into the output registers.
6975   for (unsigned i = 0, e = RVLocs.size(); i < e; ++i) {
6976     SDValue Val = OutVals[i];
6977     CCValAssign &VA = RVLocs[i];
6978     assert(VA.isRegLoc() && "Can only return in registers!");
6979 
6980     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) {
6981       // Handle returning f64 on RV32D with a soft float ABI.
6982       assert(VA.isRegLoc() && "Expected return via registers");
6983       SDValue SplitF64 = DAG.getNode(RISCVISD::SplitF64, DL,
6984                                      DAG.getVTList(MVT::i32, MVT::i32), Val);
6985       SDValue Lo = SplitF64.getValue(0);
6986       SDValue Hi = SplitF64.getValue(1);
6987       Register RegLo = VA.getLocReg();
6988       assert(RegLo < RISCV::X31 && "Invalid register pair");
6989       Register RegHi = RegLo + 1;
6990 
6991       if (STI.isRegisterReservedByUser(RegLo) ||
6992           STI.isRegisterReservedByUser(RegHi))
6993         MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
6994             MF.getFunction(),
6995             "Return value register required, but has been reserved."});
6996 
6997       Chain = DAG.getCopyToReg(Chain, DL, RegLo, Lo, Glue);
6998       Glue = Chain.getValue(1);
6999       RetOps.push_back(DAG.getRegister(RegLo, MVT::i32));
7000       Chain = DAG.getCopyToReg(Chain, DL, RegHi, Hi, Glue);
7001       Glue = Chain.getValue(1);
7002       RetOps.push_back(DAG.getRegister(RegHi, MVT::i32));
7003     } else {
7004       // Handle a 'normal' return.
7005       Val = convertValVTToLocVT(DAG, Val, VA, DL, Subtarget);
7006       Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Glue);
7007 
7008       if (STI.isRegisterReservedByUser(VA.getLocReg()))
7009         MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
7010             MF.getFunction(),
7011             "Return value register required, but has been reserved."});
7012 
7013       // Guarantee that all emitted copies are stuck together.
7014       Glue = Chain.getValue(1);
7015       RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
7016     }
7017   }
7018 
7019   RetOps[0] = Chain; // Update chain.
7020 
7021   // Add the glue node if we have it.
7022   if (Glue.getNode()) {
7023     RetOps.push_back(Glue);
7024   }
7025 
7026   // Interrupt service routines use different return instructions.
7027   const Function &Func = DAG.getMachineFunction().getFunction();
7028   if (Func.hasFnAttribute("interrupt")) {
7029     if (!Func.getReturnType()->isVoidTy())
7030       report_fatal_error(
7031           "Functions with the interrupt attribute must have void return type!");
7032 
7033     MachineFunction &MF = DAG.getMachineFunction();
7034     StringRef Kind =
7035       MF.getFunction().getFnAttribute("interrupt").getValueAsString();
7036 
7037     unsigned RetOpc;
7038     if (Kind == "user")
7039       RetOpc = RISCVISD::URET_FLAG;
7040     else if (Kind == "supervisor")
7041       RetOpc = RISCVISD::SRET_FLAG;
7042     else
7043       RetOpc = RISCVISD::MRET_FLAG;
7044 
7045     return DAG.getNode(RetOpc, DL, MVT::Other, RetOps);
7046   }
7047 
7048   return DAG.getNode(RISCVISD::RET_FLAG, DL, MVT::Other, RetOps);
7049 }
7050 
7051 void RISCVTargetLowering::validateCCReservedRegs(
7052     const SmallVectorImpl<std::pair<llvm::Register, llvm::SDValue>> &Regs,
7053     MachineFunction &MF) const {
7054   const Function &F = MF.getFunction();
7055   const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>();
7056 
7057   if (llvm::any_of(Regs, [&STI](auto Reg) {
7058         return STI.isRegisterReservedByUser(Reg.first);
7059       }))
7060     F.getContext().diagnose(DiagnosticInfoUnsupported{
7061         F, "Argument register required, but has been reserved."});
7062 }
7063 
7064 bool RISCVTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
7065   return CI->isTailCall();
7066 }
7067 
7068 const char *RISCVTargetLowering::getTargetNodeName(unsigned Opcode) const {
7069 #define NODE_NAME_CASE(NODE)                                                   \
7070   case RISCVISD::NODE:                                                         \
7071     return "RISCVISD::" #NODE;
7072   // clang-format off
7073   switch ((RISCVISD::NodeType)Opcode) {
7074   case RISCVISD::FIRST_NUMBER:
7075     break;
7076   NODE_NAME_CASE(RET_FLAG)
7077   NODE_NAME_CASE(URET_FLAG)
7078   NODE_NAME_CASE(SRET_FLAG)
7079   NODE_NAME_CASE(MRET_FLAG)
7080   NODE_NAME_CASE(CALL)
7081   NODE_NAME_CASE(SELECT_CC)
7082   NODE_NAME_CASE(BR_CC)
7083   NODE_NAME_CASE(BuildPairF64)
7084   NODE_NAME_CASE(SplitF64)
7085   NODE_NAME_CASE(TAIL)
7086   NODE_NAME_CASE(MULHSU)
7087   NODE_NAME_CASE(SLLW)
7088   NODE_NAME_CASE(SRAW)
7089   NODE_NAME_CASE(SRLW)
7090   NODE_NAME_CASE(DIVW)
7091   NODE_NAME_CASE(DIVUW)
7092   NODE_NAME_CASE(REMUW)
7093   NODE_NAME_CASE(ROLW)
7094   NODE_NAME_CASE(RORW)
7095   NODE_NAME_CASE(CLZW)
7096   NODE_NAME_CASE(CTZW)
7097   NODE_NAME_CASE(FSLW)
7098   NODE_NAME_CASE(FSRW)
7099   NODE_NAME_CASE(FSL)
7100   NODE_NAME_CASE(FSR)
7101   NODE_NAME_CASE(FMV_H_X)
7102   NODE_NAME_CASE(FMV_X_ANYEXTH)
7103   NODE_NAME_CASE(FMV_W_X_RV64)
7104   NODE_NAME_CASE(FMV_X_ANYEXTW_RV64)
7105   NODE_NAME_CASE(READ_CYCLE_WIDE)
7106   NODE_NAME_CASE(GREVI)
7107   NODE_NAME_CASE(GREVIW)
7108   NODE_NAME_CASE(GORCI)
7109   NODE_NAME_CASE(GORCIW)
7110   NODE_NAME_CASE(SHFLI)
7111   NODE_NAME_CASE(VMV_V_X_VL)
7112   NODE_NAME_CASE(VFMV_V_F_VL)
7113   NODE_NAME_CASE(VMV_X_S)
7114   NODE_NAME_CASE(VMV_S_X_VL)
7115   NODE_NAME_CASE(VFMV_S_F_VL)
7116   NODE_NAME_CASE(SPLAT_VECTOR_I64)
7117   NODE_NAME_CASE(READ_VLENB)
7118   NODE_NAME_CASE(TRUNCATE_VECTOR_VL)
7119   NODE_NAME_CASE(VLEFF)
7120   NODE_NAME_CASE(VLEFF_MASK)
7121   NODE_NAME_CASE(VSLIDEUP_VL)
7122   NODE_NAME_CASE(VSLIDE1UP_VL)
7123   NODE_NAME_CASE(VSLIDEDOWN_VL)
7124   NODE_NAME_CASE(VSLIDE1DOWN_VL)
7125   NODE_NAME_CASE(VID_VL)
7126   NODE_NAME_CASE(VFNCVT_ROD_VL)
7127   NODE_NAME_CASE(VECREDUCE_ADD_VL)
7128   NODE_NAME_CASE(VECREDUCE_UMAX_VL)
7129   NODE_NAME_CASE(VECREDUCE_SMAX_VL)
7130   NODE_NAME_CASE(VECREDUCE_UMIN_VL)
7131   NODE_NAME_CASE(VECREDUCE_SMIN_VL)
7132   NODE_NAME_CASE(VECREDUCE_AND_VL)
7133   NODE_NAME_CASE(VECREDUCE_OR_VL)
7134   NODE_NAME_CASE(VECREDUCE_XOR_VL)
7135   NODE_NAME_CASE(VECREDUCE_FADD_VL)
7136   NODE_NAME_CASE(VECREDUCE_SEQ_FADD_VL)
7137   NODE_NAME_CASE(ADD_VL)
7138   NODE_NAME_CASE(AND_VL)
7139   NODE_NAME_CASE(MUL_VL)
7140   NODE_NAME_CASE(OR_VL)
7141   NODE_NAME_CASE(SDIV_VL)
7142   NODE_NAME_CASE(SHL_VL)
7143   NODE_NAME_CASE(SREM_VL)
7144   NODE_NAME_CASE(SRA_VL)
7145   NODE_NAME_CASE(SRL_VL)
7146   NODE_NAME_CASE(SUB_VL)
7147   NODE_NAME_CASE(UDIV_VL)
7148   NODE_NAME_CASE(UREM_VL)
7149   NODE_NAME_CASE(XOR_VL)
7150   NODE_NAME_CASE(FADD_VL)
7151   NODE_NAME_CASE(FSUB_VL)
7152   NODE_NAME_CASE(FMUL_VL)
7153   NODE_NAME_CASE(FDIV_VL)
7154   NODE_NAME_CASE(FNEG_VL)
7155   NODE_NAME_CASE(FABS_VL)
7156   NODE_NAME_CASE(FSQRT_VL)
7157   NODE_NAME_CASE(FMA_VL)
7158   NODE_NAME_CASE(FCOPYSIGN_VL)
7159   NODE_NAME_CASE(SMIN_VL)
7160   NODE_NAME_CASE(SMAX_VL)
7161   NODE_NAME_CASE(UMIN_VL)
7162   NODE_NAME_CASE(UMAX_VL)
7163   NODE_NAME_CASE(MULHS_VL)
7164   NODE_NAME_CASE(MULHU_VL)
7165   NODE_NAME_CASE(FP_TO_SINT_VL)
7166   NODE_NAME_CASE(FP_TO_UINT_VL)
7167   NODE_NAME_CASE(SINT_TO_FP_VL)
7168   NODE_NAME_CASE(UINT_TO_FP_VL)
7169   NODE_NAME_CASE(FP_EXTEND_VL)
7170   NODE_NAME_CASE(FP_ROUND_VL)
7171   NODE_NAME_CASE(SETCC_VL)
7172   NODE_NAME_CASE(VSELECT_VL)
7173   NODE_NAME_CASE(VMAND_VL)
7174   NODE_NAME_CASE(VMOR_VL)
7175   NODE_NAME_CASE(VMXOR_VL)
7176   NODE_NAME_CASE(VMCLR_VL)
7177   NODE_NAME_CASE(VMSET_VL)
7178   NODE_NAME_CASE(VRGATHER_VX_VL)
7179   NODE_NAME_CASE(VRGATHER_VV_VL)
7180   NODE_NAME_CASE(VRGATHEREI16_VV_VL)
7181   NODE_NAME_CASE(VSEXT_VL)
7182   NODE_NAME_CASE(VZEXT_VL)
7183   NODE_NAME_CASE(VPOPC_VL)
7184   NODE_NAME_CASE(VLE_VL)
7185   NODE_NAME_CASE(VSE_VL)
7186   NODE_NAME_CASE(READ_CSR)
7187   NODE_NAME_CASE(WRITE_CSR)
7188   NODE_NAME_CASE(SWAP_CSR)
7189   }
7190   // clang-format on
7191   return nullptr;
7192 #undef NODE_NAME_CASE
7193 }
7194 
7195 /// getConstraintType - Given a constraint letter, return the type of
7196 /// constraint it is for this target.
7197 RISCVTargetLowering::ConstraintType
7198 RISCVTargetLowering::getConstraintType(StringRef Constraint) const {
7199   if (Constraint.size() == 1) {
7200     switch (Constraint[0]) {
7201     default:
7202       break;
7203     case 'f':
7204     case 'v':
7205       return C_RegisterClass;
7206     case 'I':
7207     case 'J':
7208     case 'K':
7209       return C_Immediate;
7210     case 'A':
7211       return C_Memory;
7212     }
7213   }
7214   return TargetLowering::getConstraintType(Constraint);
7215 }
7216 
7217 std::pair<unsigned, const TargetRegisterClass *>
7218 RISCVTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
7219                                                   StringRef Constraint,
7220                                                   MVT VT) const {
7221   // First, see if this is a constraint that directly corresponds to a
7222   // RISCV register class.
7223   if (Constraint.size() == 1) {
7224     switch (Constraint[0]) {
7225     case 'r':
7226       return std::make_pair(0U, &RISCV::GPRRegClass);
7227     case 'f':
7228       if (Subtarget.hasStdExtZfh() && VT == MVT::f16)
7229         return std::make_pair(0U, &RISCV::FPR16RegClass);
7230       if (Subtarget.hasStdExtF() && VT == MVT::f32)
7231         return std::make_pair(0U, &RISCV::FPR32RegClass);
7232       if (Subtarget.hasStdExtD() && VT == MVT::f64)
7233         return std::make_pair(0U, &RISCV::FPR64RegClass);
7234       break;
7235     case 'v':
7236       for (const auto *RC :
7237            {&RISCV::VMRegClass, &RISCV::VRRegClass, &RISCV::VRM2RegClass,
7238             &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) {
7239         if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy))
7240           return std::make_pair(0U, RC);
7241       }
7242       break;
7243     default:
7244       break;
7245     }
7246   }
7247 
7248   // Clang will correctly decode the usage of register name aliases into their
7249   // official names. However, other frontends like `rustc` do not. This allows
7250   // users of these frontends to use the ABI names for registers in LLVM-style
7251   // register constraints.
7252   unsigned XRegFromAlias = StringSwitch<unsigned>(Constraint.lower())
7253                                .Case("{zero}", RISCV::X0)
7254                                .Case("{ra}", RISCV::X1)
7255                                .Case("{sp}", RISCV::X2)
7256                                .Case("{gp}", RISCV::X3)
7257                                .Case("{tp}", RISCV::X4)
7258                                .Case("{t0}", RISCV::X5)
7259                                .Case("{t1}", RISCV::X6)
7260                                .Case("{t2}", RISCV::X7)
7261                                .Cases("{s0}", "{fp}", RISCV::X8)
7262                                .Case("{s1}", RISCV::X9)
7263                                .Case("{a0}", RISCV::X10)
7264                                .Case("{a1}", RISCV::X11)
7265                                .Case("{a2}", RISCV::X12)
7266                                .Case("{a3}", RISCV::X13)
7267                                .Case("{a4}", RISCV::X14)
7268                                .Case("{a5}", RISCV::X15)
7269                                .Case("{a6}", RISCV::X16)
7270                                .Case("{a7}", RISCV::X17)
7271                                .Case("{s2}", RISCV::X18)
7272                                .Case("{s3}", RISCV::X19)
7273                                .Case("{s4}", RISCV::X20)
7274                                .Case("{s5}", RISCV::X21)
7275                                .Case("{s6}", RISCV::X22)
7276                                .Case("{s7}", RISCV::X23)
7277                                .Case("{s8}", RISCV::X24)
7278                                .Case("{s9}", RISCV::X25)
7279                                .Case("{s10}", RISCV::X26)
7280                                .Case("{s11}", RISCV::X27)
7281                                .Case("{t3}", RISCV::X28)
7282                                .Case("{t4}", RISCV::X29)
7283                                .Case("{t5}", RISCV::X30)
7284                                .Case("{t6}", RISCV::X31)
7285                                .Default(RISCV::NoRegister);
7286   if (XRegFromAlias != RISCV::NoRegister)
7287     return std::make_pair(XRegFromAlias, &RISCV::GPRRegClass);
7288 
7289   // Since TargetLowering::getRegForInlineAsmConstraint uses the name of the
7290   // TableGen record rather than the AsmName to choose registers for InlineAsm
7291   // constraints, plus we want to match those names to the widest floating point
7292   // register type available, manually select floating point registers here.
7293   //
7294   // The second case is the ABI name of the register, so that frontends can also
7295   // use the ABI names in register constraint lists.
7296   if (Subtarget.hasStdExtF()) {
7297     unsigned FReg = StringSwitch<unsigned>(Constraint.lower())
7298                         .Cases("{f0}", "{ft0}", RISCV::F0_F)
7299                         .Cases("{f1}", "{ft1}", RISCV::F1_F)
7300                         .Cases("{f2}", "{ft2}", RISCV::F2_F)
7301                         .Cases("{f3}", "{ft3}", RISCV::F3_F)
7302                         .Cases("{f4}", "{ft4}", RISCV::F4_F)
7303                         .Cases("{f5}", "{ft5}", RISCV::F5_F)
7304                         .Cases("{f6}", "{ft6}", RISCV::F6_F)
7305                         .Cases("{f7}", "{ft7}", RISCV::F7_F)
7306                         .Cases("{f8}", "{fs0}", RISCV::F8_F)
7307                         .Cases("{f9}", "{fs1}", RISCV::F9_F)
7308                         .Cases("{f10}", "{fa0}", RISCV::F10_F)
7309                         .Cases("{f11}", "{fa1}", RISCV::F11_F)
7310                         .Cases("{f12}", "{fa2}", RISCV::F12_F)
7311                         .Cases("{f13}", "{fa3}", RISCV::F13_F)
7312                         .Cases("{f14}", "{fa4}", RISCV::F14_F)
7313                         .Cases("{f15}", "{fa5}", RISCV::F15_F)
7314                         .Cases("{f16}", "{fa6}", RISCV::F16_F)
7315                         .Cases("{f17}", "{fa7}", RISCV::F17_F)
7316                         .Cases("{f18}", "{fs2}", RISCV::F18_F)
7317                         .Cases("{f19}", "{fs3}", RISCV::F19_F)
7318                         .Cases("{f20}", "{fs4}", RISCV::F20_F)
7319                         .Cases("{f21}", "{fs5}", RISCV::F21_F)
7320                         .Cases("{f22}", "{fs6}", RISCV::F22_F)
7321                         .Cases("{f23}", "{fs7}", RISCV::F23_F)
7322                         .Cases("{f24}", "{fs8}", RISCV::F24_F)
7323                         .Cases("{f25}", "{fs9}", RISCV::F25_F)
7324                         .Cases("{f26}", "{fs10}", RISCV::F26_F)
7325                         .Cases("{f27}", "{fs11}", RISCV::F27_F)
7326                         .Cases("{f28}", "{ft8}", RISCV::F28_F)
7327                         .Cases("{f29}", "{ft9}", RISCV::F29_F)
7328                         .Cases("{f30}", "{ft10}", RISCV::F30_F)
7329                         .Cases("{f31}", "{ft11}", RISCV::F31_F)
7330                         .Default(RISCV::NoRegister);
7331     if (FReg != RISCV::NoRegister) {
7332       assert(RISCV::F0_F <= FReg && FReg <= RISCV::F31_F && "Unknown fp-reg");
7333       if (Subtarget.hasStdExtD()) {
7334         unsigned RegNo = FReg - RISCV::F0_F;
7335         unsigned DReg = RISCV::F0_D + RegNo;
7336         return std::make_pair(DReg, &RISCV::FPR64RegClass);
7337       }
7338       return std::make_pair(FReg, &RISCV::FPR32RegClass);
7339     }
7340   }
7341 
7342   if (Subtarget.hasStdExtV()) {
7343     Register VReg = StringSwitch<Register>(Constraint.lower())
7344                         .Case("{v0}", RISCV::V0)
7345                         .Case("{v1}", RISCV::V1)
7346                         .Case("{v2}", RISCV::V2)
7347                         .Case("{v3}", RISCV::V3)
7348                         .Case("{v4}", RISCV::V4)
7349                         .Case("{v5}", RISCV::V5)
7350                         .Case("{v6}", RISCV::V6)
7351                         .Case("{v7}", RISCV::V7)
7352                         .Case("{v8}", RISCV::V8)
7353                         .Case("{v9}", RISCV::V9)
7354                         .Case("{v10}", RISCV::V10)
7355                         .Case("{v11}", RISCV::V11)
7356                         .Case("{v12}", RISCV::V12)
7357                         .Case("{v13}", RISCV::V13)
7358                         .Case("{v14}", RISCV::V14)
7359                         .Case("{v15}", RISCV::V15)
7360                         .Case("{v16}", RISCV::V16)
7361                         .Case("{v17}", RISCV::V17)
7362                         .Case("{v18}", RISCV::V18)
7363                         .Case("{v19}", RISCV::V19)
7364                         .Case("{v20}", RISCV::V20)
7365                         .Case("{v21}", RISCV::V21)
7366                         .Case("{v22}", RISCV::V22)
7367                         .Case("{v23}", RISCV::V23)
7368                         .Case("{v24}", RISCV::V24)
7369                         .Case("{v25}", RISCV::V25)
7370                         .Case("{v26}", RISCV::V26)
7371                         .Case("{v27}", RISCV::V27)
7372                         .Case("{v28}", RISCV::V28)
7373                         .Case("{v29}", RISCV::V29)
7374                         .Case("{v30}", RISCV::V30)
7375                         .Case("{v31}", RISCV::V31)
7376                         .Default(RISCV::NoRegister);
7377     if (VReg != RISCV::NoRegister) {
7378       if (TRI->isTypeLegalForClass(RISCV::VMRegClass, VT.SimpleTy))
7379         return std::make_pair(VReg, &RISCV::VMRegClass);
7380       if (TRI->isTypeLegalForClass(RISCV::VRRegClass, VT.SimpleTy))
7381         return std::make_pair(VReg, &RISCV::VRRegClass);
7382       for (const auto *RC :
7383            {&RISCV::VRM2RegClass, &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) {
7384         if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy)) {
7385           VReg = TRI->getMatchingSuperReg(VReg, RISCV::sub_vrm1_0, RC);
7386           return std::make_pair(VReg, RC);
7387         }
7388       }
7389     }
7390   }
7391 
7392   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
7393 }
7394 
7395 unsigned
7396 RISCVTargetLowering::getInlineAsmMemConstraint(StringRef ConstraintCode) const {
7397   // Currently only support length 1 constraints.
7398   if (ConstraintCode.size() == 1) {
7399     switch (ConstraintCode[0]) {
7400     case 'A':
7401       return InlineAsm::Constraint_A;
7402     default:
7403       break;
7404     }
7405   }
7406 
7407   return TargetLowering::getInlineAsmMemConstraint(ConstraintCode);
7408 }
7409 
7410 void RISCVTargetLowering::LowerAsmOperandForConstraint(
7411     SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops,
7412     SelectionDAG &DAG) const {
7413   // Currently only support length 1 constraints.
7414   if (Constraint.length() == 1) {
7415     switch (Constraint[0]) {
7416     case 'I':
7417       // Validate & create a 12-bit signed immediate operand.
7418       if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
7419         uint64_t CVal = C->getSExtValue();
7420         if (isInt<12>(CVal))
7421           Ops.push_back(
7422               DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT()));
7423       }
7424       return;
7425     case 'J':
7426       // Validate & create an integer zero operand.
7427       if (auto *C = dyn_cast<ConstantSDNode>(Op))
7428         if (C->getZExtValue() == 0)
7429           Ops.push_back(
7430               DAG.getTargetConstant(0, SDLoc(Op), Subtarget.getXLenVT()));
7431       return;
7432     case 'K':
7433       // Validate & create a 5-bit unsigned immediate operand.
7434       if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
7435         uint64_t CVal = C->getZExtValue();
7436         if (isUInt<5>(CVal))
7437           Ops.push_back(
7438               DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT()));
7439       }
7440       return;
7441     default:
7442       break;
7443     }
7444   }
7445   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
7446 }
7447 
7448 Instruction *RISCVTargetLowering::emitLeadingFence(IRBuilder<> &Builder,
7449                                                    Instruction *Inst,
7450                                                    AtomicOrdering Ord) const {
7451   if (isa<LoadInst>(Inst) && Ord == AtomicOrdering::SequentiallyConsistent)
7452     return Builder.CreateFence(Ord);
7453   if (isa<StoreInst>(Inst) && isReleaseOrStronger(Ord))
7454     return Builder.CreateFence(AtomicOrdering::Release);
7455   return nullptr;
7456 }
7457 
7458 Instruction *RISCVTargetLowering::emitTrailingFence(IRBuilder<> &Builder,
7459                                                     Instruction *Inst,
7460                                                     AtomicOrdering Ord) const {
7461   if (isa<LoadInst>(Inst) && isAcquireOrStronger(Ord))
7462     return Builder.CreateFence(AtomicOrdering::Acquire);
7463   return nullptr;
7464 }
7465 
7466 TargetLowering::AtomicExpansionKind
7467 RISCVTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
7468   // atomicrmw {fadd,fsub} must be expanded to use compare-exchange, as floating
7469   // point operations can't be used in an lr/sc sequence without breaking the
7470   // forward-progress guarantee.
7471   if (AI->isFloatingPointOperation())
7472     return AtomicExpansionKind::CmpXChg;
7473 
7474   unsigned Size = AI->getType()->getPrimitiveSizeInBits();
7475   if (Size == 8 || Size == 16)
7476     return AtomicExpansionKind::MaskedIntrinsic;
7477   return AtomicExpansionKind::None;
7478 }
7479 
7480 static Intrinsic::ID
7481 getIntrinsicForMaskedAtomicRMWBinOp(unsigned XLen, AtomicRMWInst::BinOp BinOp) {
7482   if (XLen == 32) {
7483     switch (BinOp) {
7484     default:
7485       llvm_unreachable("Unexpected AtomicRMW BinOp");
7486     case AtomicRMWInst::Xchg:
7487       return Intrinsic::riscv_masked_atomicrmw_xchg_i32;
7488     case AtomicRMWInst::Add:
7489       return Intrinsic::riscv_masked_atomicrmw_add_i32;
7490     case AtomicRMWInst::Sub:
7491       return Intrinsic::riscv_masked_atomicrmw_sub_i32;
7492     case AtomicRMWInst::Nand:
7493       return Intrinsic::riscv_masked_atomicrmw_nand_i32;
7494     case AtomicRMWInst::Max:
7495       return Intrinsic::riscv_masked_atomicrmw_max_i32;
7496     case AtomicRMWInst::Min:
7497       return Intrinsic::riscv_masked_atomicrmw_min_i32;
7498     case AtomicRMWInst::UMax:
7499       return Intrinsic::riscv_masked_atomicrmw_umax_i32;
7500     case AtomicRMWInst::UMin:
7501       return Intrinsic::riscv_masked_atomicrmw_umin_i32;
7502     }
7503   }
7504 
7505   if (XLen == 64) {
7506     switch (BinOp) {
7507     default:
7508       llvm_unreachable("Unexpected AtomicRMW BinOp");
7509     case AtomicRMWInst::Xchg:
7510       return Intrinsic::riscv_masked_atomicrmw_xchg_i64;
7511     case AtomicRMWInst::Add:
7512       return Intrinsic::riscv_masked_atomicrmw_add_i64;
7513     case AtomicRMWInst::Sub:
7514       return Intrinsic::riscv_masked_atomicrmw_sub_i64;
7515     case AtomicRMWInst::Nand:
7516       return Intrinsic::riscv_masked_atomicrmw_nand_i64;
7517     case AtomicRMWInst::Max:
7518       return Intrinsic::riscv_masked_atomicrmw_max_i64;
7519     case AtomicRMWInst::Min:
7520       return Intrinsic::riscv_masked_atomicrmw_min_i64;
7521     case AtomicRMWInst::UMax:
7522       return Intrinsic::riscv_masked_atomicrmw_umax_i64;
7523     case AtomicRMWInst::UMin:
7524       return Intrinsic::riscv_masked_atomicrmw_umin_i64;
7525     }
7526   }
7527 
7528   llvm_unreachable("Unexpected XLen\n");
7529 }
7530 
7531 Value *RISCVTargetLowering::emitMaskedAtomicRMWIntrinsic(
7532     IRBuilder<> &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr,
7533     Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const {
7534   unsigned XLen = Subtarget.getXLen();
7535   Value *Ordering =
7536       Builder.getIntN(XLen, static_cast<uint64_t>(AI->getOrdering()));
7537   Type *Tys[] = {AlignedAddr->getType()};
7538   Function *LrwOpScwLoop = Intrinsic::getDeclaration(
7539       AI->getModule(),
7540       getIntrinsicForMaskedAtomicRMWBinOp(XLen, AI->getOperation()), Tys);
7541 
7542   if (XLen == 64) {
7543     Incr = Builder.CreateSExt(Incr, Builder.getInt64Ty());
7544     Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty());
7545     ShiftAmt = Builder.CreateSExt(ShiftAmt, Builder.getInt64Ty());
7546   }
7547 
7548   Value *Result;
7549 
7550   // Must pass the shift amount needed to sign extend the loaded value prior
7551   // to performing a signed comparison for min/max. ShiftAmt is the number of
7552   // bits to shift the value into position. Pass XLen-ShiftAmt-ValWidth, which
7553   // is the number of bits to left+right shift the value in order to
7554   // sign-extend.
7555   if (AI->getOperation() == AtomicRMWInst::Min ||
7556       AI->getOperation() == AtomicRMWInst::Max) {
7557     const DataLayout &DL = AI->getModule()->getDataLayout();
7558     unsigned ValWidth =
7559         DL.getTypeStoreSizeInBits(AI->getValOperand()->getType());
7560     Value *SextShamt =
7561         Builder.CreateSub(Builder.getIntN(XLen, XLen - ValWidth), ShiftAmt);
7562     Result = Builder.CreateCall(LrwOpScwLoop,
7563                                 {AlignedAddr, Incr, Mask, SextShamt, Ordering});
7564   } else {
7565     Result =
7566         Builder.CreateCall(LrwOpScwLoop, {AlignedAddr, Incr, Mask, Ordering});
7567   }
7568 
7569   if (XLen == 64)
7570     Result = Builder.CreateTrunc(Result, Builder.getInt32Ty());
7571   return Result;
7572 }
7573 
7574 TargetLowering::AtomicExpansionKind
7575 RISCVTargetLowering::shouldExpandAtomicCmpXchgInIR(
7576     AtomicCmpXchgInst *CI) const {
7577   unsigned Size = CI->getCompareOperand()->getType()->getPrimitiveSizeInBits();
7578   if (Size == 8 || Size == 16)
7579     return AtomicExpansionKind::MaskedIntrinsic;
7580   return AtomicExpansionKind::None;
7581 }
7582 
7583 Value *RISCVTargetLowering::emitMaskedAtomicCmpXchgIntrinsic(
7584     IRBuilder<> &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr,
7585     Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const {
7586   unsigned XLen = Subtarget.getXLen();
7587   Value *Ordering = Builder.getIntN(XLen, static_cast<uint64_t>(Ord));
7588   Intrinsic::ID CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i32;
7589   if (XLen == 64) {
7590     CmpVal = Builder.CreateSExt(CmpVal, Builder.getInt64Ty());
7591     NewVal = Builder.CreateSExt(NewVal, Builder.getInt64Ty());
7592     Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty());
7593     CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i64;
7594   }
7595   Type *Tys[] = {AlignedAddr->getType()};
7596   Function *MaskedCmpXchg =
7597       Intrinsic::getDeclaration(CI->getModule(), CmpXchgIntrID, Tys);
7598   Value *Result = Builder.CreateCall(
7599       MaskedCmpXchg, {AlignedAddr, CmpVal, NewVal, Mask, Ordering});
7600   if (XLen == 64)
7601     Result = Builder.CreateTrunc(Result, Builder.getInt32Ty());
7602   return Result;
7603 }
7604 
7605 bool RISCVTargetLowering::shouldRemoveExtendFromGSIndex(EVT VT) const {
7606   return false;
7607 }
7608 
7609 bool RISCVTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF,
7610                                                      EVT VT) const {
7611   VT = VT.getScalarType();
7612 
7613   if (!VT.isSimple())
7614     return false;
7615 
7616   switch (VT.getSimpleVT().SimpleTy) {
7617   case MVT::f16:
7618     return Subtarget.hasStdExtZfh();
7619   case MVT::f32:
7620     return Subtarget.hasStdExtF();
7621   case MVT::f64:
7622     return Subtarget.hasStdExtD();
7623   default:
7624     break;
7625   }
7626 
7627   return false;
7628 }
7629 
7630 Register RISCVTargetLowering::getExceptionPointerRegister(
7631     const Constant *PersonalityFn) const {
7632   return RISCV::X10;
7633 }
7634 
7635 Register RISCVTargetLowering::getExceptionSelectorRegister(
7636     const Constant *PersonalityFn) const {
7637   return RISCV::X11;
7638 }
7639 
7640 bool RISCVTargetLowering::shouldExtendTypeInLibCall(EVT Type) const {
7641   // Return false to suppress the unnecessary extensions if the LibCall
7642   // arguments or return value is f32 type for LP64 ABI.
7643   RISCVABI::ABI ABI = Subtarget.getTargetABI();
7644   if (ABI == RISCVABI::ABI_LP64 && (Type == MVT::f32))
7645     return false;
7646 
7647   return true;
7648 }
7649 
7650 bool RISCVTargetLowering::shouldSignExtendTypeInLibCall(EVT Type, bool IsSigned) const {
7651   if (Subtarget.is64Bit() && Type == MVT::i32)
7652     return true;
7653 
7654   return IsSigned;
7655 }
7656 
7657 bool RISCVTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT,
7658                                                  SDValue C) const {
7659   // Check integral scalar types.
7660   if (VT.isScalarInteger()) {
7661     // Omit the optimization if the sub target has the M extension and the data
7662     // size exceeds XLen.
7663     if (Subtarget.hasStdExtM() && VT.getSizeInBits() > Subtarget.getXLen())
7664       return false;
7665     if (auto *ConstNode = dyn_cast<ConstantSDNode>(C.getNode())) {
7666       // Break the MUL to a SLLI and an ADD/SUB.
7667       const APInt &Imm = ConstNode->getAPIntValue();
7668       if ((Imm + 1).isPowerOf2() || (Imm - 1).isPowerOf2() ||
7669           (1 - Imm).isPowerOf2() || (-1 - Imm).isPowerOf2())
7670         return true;
7671       // Omit the following optimization if the sub target has the M extension
7672       // and the data size >= XLen.
7673       if (Subtarget.hasStdExtM() && VT.getSizeInBits() >= Subtarget.getXLen())
7674         return false;
7675       // Break the MUL to two SLLI instructions and an ADD/SUB, if Imm needs
7676       // a pair of LUI/ADDI.
7677       if (!Imm.isSignedIntN(12) && Imm.countTrailingZeros() < 12) {
7678         APInt ImmS = Imm.ashr(Imm.countTrailingZeros());
7679         if ((ImmS + 1).isPowerOf2() || (ImmS - 1).isPowerOf2() ||
7680             (1 - ImmS).isPowerOf2())
7681         return true;
7682       }
7683     }
7684   }
7685 
7686   return false;
7687 }
7688 
7689 bool RISCVTargetLowering::useRVVForFixedLengthVectorVT(MVT VT) const {
7690   if (!Subtarget.useRVVForFixedLengthVectors())
7691     return false;
7692 
7693   if (!VT.isFixedLengthVector())
7694     return false;
7695 
7696   // Don't use RVV for vectors we cannot scalarize if required.
7697   switch (VT.getVectorElementType().SimpleTy) {
7698   // i1 is supported but has different rules.
7699   default:
7700     return false;
7701   case MVT::i1:
7702     // Masks can only use a single register.
7703     if (VT.getVectorNumElements() > Subtarget.getMinRVVVectorSizeInBits())
7704       return false;
7705     break;
7706   case MVT::i8:
7707   case MVT::i16:
7708   case MVT::i32:
7709   case MVT::i64:
7710     break;
7711   case MVT::f16:
7712     if (!Subtarget.hasStdExtZfh())
7713       return false;
7714     break;
7715   case MVT::f32:
7716     if (!Subtarget.hasStdExtF())
7717       return false;
7718     break;
7719   case MVT::f64:
7720     if (!Subtarget.hasStdExtD())
7721       return false;
7722     break;
7723   }
7724 
7725   unsigned LMul = Subtarget.getLMULForFixedLengthVector(VT);
7726   // Don't use RVV for types that don't fit.
7727   if (LMul > Subtarget.getMaxLMULForFixedLengthVectors())
7728     return false;
7729 
7730   // TODO: Perhaps an artificial restriction, but worth having whilst getting
7731   // the base fixed length RVV support in place.
7732   if (!VT.isPow2VectorType())
7733     return false;
7734 
7735   return true;
7736 }
7737 
7738 bool RISCVTargetLowering::allowsMisalignedMemoryAccesses(
7739     EVT VT, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags,
7740     bool *Fast) const {
7741   if (!VT.isScalableVector())
7742     return false;
7743 
7744   EVT ElemVT = VT.getVectorElementType();
7745   if (Alignment >= ElemVT.getStoreSize()) {
7746     if (Fast)
7747       *Fast = true;
7748     return true;
7749   }
7750 
7751   return false;
7752 }
7753 
7754 bool RISCVTargetLowering::splitValueIntoRegisterParts(
7755     SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts,
7756     unsigned NumParts, MVT PartVT, Optional<CallingConv::ID> CC) const {
7757   bool IsABIRegCopy = CC.hasValue();
7758   EVT ValueVT = Val.getValueType();
7759   if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) {
7760     // Cast the f16 to i16, extend to i32, pad with ones to make a float nan,
7761     // and cast to f32.
7762     Val = DAG.getNode(ISD::BITCAST, DL, MVT::i16, Val);
7763     Val = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Val);
7764     Val = DAG.getNode(ISD::OR, DL, MVT::i32, Val,
7765                       DAG.getConstant(0xFFFF0000, DL, MVT::i32));
7766     Val = DAG.getNode(ISD::BITCAST, DL, MVT::f32, Val);
7767     Parts[0] = Val;
7768     return true;
7769   }
7770 
7771   if (ValueVT.isScalableVector() && PartVT.isScalableVector()) {
7772     LLVMContext &Context = *DAG.getContext();
7773     EVT ValueEltVT = ValueVT.getVectorElementType();
7774     EVT PartEltVT = PartVT.getVectorElementType();
7775     unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize();
7776     unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize();
7777     if (PartVTBitSize % ValueVTBitSize == 0) {
7778       // If the element types are different, bitcast to the same element type of
7779       // PartVT first.
7780       if (ValueEltVT != PartEltVT) {
7781         unsigned Count = ValueVTBitSize / PartEltVT.getSizeInBits();
7782         assert(Count != 0 && "The number of element should not be zero.");
7783         EVT SameEltTypeVT =
7784             EVT::getVectorVT(Context, PartEltVT, Count, /*IsScalable=*/true);
7785         Val = DAG.getNode(ISD::BITCAST, DL, SameEltTypeVT, Val);
7786       }
7787       Val = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT),
7788                         Val, DAG.getConstant(0, DL, Subtarget.getXLenVT()));
7789       Parts[0] = Val;
7790       return true;
7791     }
7792   }
7793   return false;
7794 }
7795 
7796 SDValue RISCVTargetLowering::joinRegisterPartsIntoValue(
7797     SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts,
7798     MVT PartVT, EVT ValueVT, Optional<CallingConv::ID> CC) const {
7799   bool IsABIRegCopy = CC.hasValue();
7800   if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) {
7801     SDValue Val = Parts[0];
7802 
7803     // Cast the f32 to i32, truncate to i16, and cast back to f16.
7804     Val = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Val);
7805     Val = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Val);
7806     Val = DAG.getNode(ISD::BITCAST, DL, MVT::f16, Val);
7807     return Val;
7808   }
7809 
7810   if (ValueVT.isScalableVector() && PartVT.isScalableVector()) {
7811     LLVMContext &Context = *DAG.getContext();
7812     SDValue Val = Parts[0];
7813     EVT ValueEltVT = ValueVT.getVectorElementType();
7814     EVT PartEltVT = PartVT.getVectorElementType();
7815     unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize();
7816     unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize();
7817     if (PartVTBitSize % ValueVTBitSize == 0) {
7818       EVT SameEltTypeVT = ValueVT;
7819       // If the element types are different, convert it to the same element type
7820       // of PartVT.
7821       if (ValueEltVT != PartEltVT) {
7822         unsigned Count = ValueVTBitSize / PartEltVT.getSizeInBits();
7823         assert(Count != 0 && "The number of element should not be zero.");
7824         SameEltTypeVT =
7825             EVT::getVectorVT(Context, PartEltVT, Count, /*IsScalable=*/true);
7826       }
7827       Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SameEltTypeVT, Val,
7828                         DAG.getConstant(0, DL, Subtarget.getXLenVT()));
7829       if (ValueEltVT != PartEltVT)
7830         Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
7831       return Val;
7832     }
7833   }
7834   return SDValue();
7835 }
7836 
7837 #define GET_REGISTER_MATCHER
7838 #include "RISCVGenAsmMatcher.inc"
7839 
7840 Register
7841 RISCVTargetLowering::getRegisterByName(const char *RegName, LLT VT,
7842                                        const MachineFunction &MF) const {
7843   Register Reg = MatchRegisterAltName(RegName);
7844   if (Reg == RISCV::NoRegister)
7845     Reg = MatchRegisterName(RegName);
7846   if (Reg == RISCV::NoRegister)
7847     report_fatal_error(
7848         Twine("Invalid register name \"" + StringRef(RegName) + "\"."));
7849   BitVector ReservedRegs = Subtarget.getRegisterInfo()->getReservedRegs(MF);
7850   if (!ReservedRegs.test(Reg) && !Subtarget.isRegisterReservedByUser(Reg))
7851     report_fatal_error(Twine("Trying to obtain non-reserved register \"" +
7852                              StringRef(RegName) + "\"."));
7853   return Reg;
7854 }
7855 
7856 namespace llvm {
7857 namespace RISCVVIntrinsicsTable {
7858 
7859 #define GET_RISCVVIntrinsicsTable_IMPL
7860 #include "RISCVGenSearchableTables.inc"
7861 
7862 } // namespace RISCVVIntrinsicsTable
7863 
7864 } // namespace llvm
7865