1 //===-- RISCVISelLowering.cpp - RISCV DAG Lowering Implementation --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the interfaces that RISCV uses to lower LLVM code into a 10 // selection DAG. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "RISCVISelLowering.h" 15 #include "MCTargetDesc/RISCVMatInt.h" 16 #include "RISCV.h" 17 #include "RISCVMachineFunctionInfo.h" 18 #include "RISCVRegisterInfo.h" 19 #include "RISCVSubtarget.h" 20 #include "RISCVTargetMachine.h" 21 #include "llvm/ADT/SmallSet.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/CodeGen/MachineFrameInfo.h" 24 #include "llvm/CodeGen/MachineFunction.h" 25 #include "llvm/CodeGen/MachineInstrBuilder.h" 26 #include "llvm/CodeGen/MachineRegisterInfo.h" 27 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 28 #include "llvm/CodeGen/ValueTypes.h" 29 #include "llvm/IR/DiagnosticInfo.h" 30 #include "llvm/IR/DiagnosticPrinter.h" 31 #include "llvm/IR/IntrinsicsRISCV.h" 32 #include "llvm/IR/IRBuilder.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/ErrorHandling.h" 35 #include "llvm/Support/KnownBits.h" 36 #include "llvm/Support/MathExtras.h" 37 #include "llvm/Support/raw_ostream.h" 38 39 using namespace llvm; 40 41 #define DEBUG_TYPE "riscv-lower" 42 43 STATISTIC(NumTailCalls, "Number of tail calls"); 44 45 RISCVTargetLowering::RISCVTargetLowering(const TargetMachine &TM, 46 const RISCVSubtarget &STI) 47 : TargetLowering(TM), Subtarget(STI) { 48 49 if (Subtarget.isRV32E()) 50 report_fatal_error("Codegen not yet implemented for RV32E"); 51 52 RISCVABI::ABI ABI = Subtarget.getTargetABI(); 53 assert(ABI != RISCVABI::ABI_Unknown && "Improperly initialised target ABI"); 54 55 if ((ABI == RISCVABI::ABI_ILP32F || ABI == RISCVABI::ABI_LP64F) && 56 !Subtarget.hasStdExtF()) { 57 errs() << "Hard-float 'f' ABI can't be used for a target that " 58 "doesn't support the F instruction set extension (ignoring " 59 "target-abi)\n"; 60 ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32; 61 } else if ((ABI == RISCVABI::ABI_ILP32D || ABI == RISCVABI::ABI_LP64D) && 62 !Subtarget.hasStdExtD()) { 63 errs() << "Hard-float 'd' ABI can't be used for a target that " 64 "doesn't support the D instruction set extension (ignoring " 65 "target-abi)\n"; 66 ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32; 67 } 68 69 switch (ABI) { 70 default: 71 report_fatal_error("Don't know how to lower this ABI"); 72 case RISCVABI::ABI_ILP32: 73 case RISCVABI::ABI_ILP32F: 74 case RISCVABI::ABI_ILP32D: 75 case RISCVABI::ABI_LP64: 76 case RISCVABI::ABI_LP64F: 77 case RISCVABI::ABI_LP64D: 78 break; 79 } 80 81 MVT XLenVT = Subtarget.getXLenVT(); 82 83 // Set up the register classes. 84 addRegisterClass(XLenVT, &RISCV::GPRRegClass); 85 86 if (Subtarget.hasStdExtZfh()) 87 addRegisterClass(MVT::f16, &RISCV::FPR16RegClass); 88 if (Subtarget.hasStdExtF()) 89 addRegisterClass(MVT::f32, &RISCV::FPR32RegClass); 90 if (Subtarget.hasStdExtD()) 91 addRegisterClass(MVT::f64, &RISCV::FPR64RegClass); 92 93 static const MVT::SimpleValueType BoolVecVTs[] = { 94 MVT::nxv1i1, MVT::nxv2i1, MVT::nxv4i1, MVT::nxv8i1, 95 MVT::nxv16i1, MVT::nxv32i1, MVT::nxv64i1}; 96 static const MVT::SimpleValueType IntVecVTs[] = { 97 MVT::nxv1i8, MVT::nxv2i8, MVT::nxv4i8, MVT::nxv8i8, MVT::nxv16i8, 98 MVT::nxv32i8, MVT::nxv64i8, MVT::nxv1i16, MVT::nxv2i16, MVT::nxv4i16, 99 MVT::nxv8i16, MVT::nxv16i16, MVT::nxv32i16, MVT::nxv1i32, MVT::nxv2i32, 100 MVT::nxv4i32, MVT::nxv8i32, MVT::nxv16i32, MVT::nxv1i64, MVT::nxv2i64, 101 MVT::nxv4i64, MVT::nxv8i64}; 102 static const MVT::SimpleValueType F16VecVTs[] = { 103 MVT::nxv1f16, MVT::nxv2f16, MVT::nxv4f16, 104 MVT::nxv8f16, MVT::nxv16f16, MVT::nxv32f16}; 105 static const MVT::SimpleValueType F32VecVTs[] = { 106 MVT::nxv1f32, MVT::nxv2f32, MVT::nxv4f32, MVT::nxv8f32, MVT::nxv16f32}; 107 static const MVT::SimpleValueType F64VecVTs[] = { 108 MVT::nxv1f64, MVT::nxv2f64, MVT::nxv4f64, MVT::nxv8f64}; 109 110 if (Subtarget.hasStdExtV()) { 111 auto addRegClassForRVV = [this](MVT VT) { 112 unsigned Size = VT.getSizeInBits().getKnownMinValue(); 113 assert(Size <= 512 && isPowerOf2_32(Size)); 114 const TargetRegisterClass *RC; 115 if (Size <= 64) 116 RC = &RISCV::VRRegClass; 117 else if (Size == 128) 118 RC = &RISCV::VRM2RegClass; 119 else if (Size == 256) 120 RC = &RISCV::VRM4RegClass; 121 else 122 RC = &RISCV::VRM8RegClass; 123 124 addRegisterClass(VT, RC); 125 }; 126 127 for (MVT VT : BoolVecVTs) 128 addRegClassForRVV(VT); 129 for (MVT VT : IntVecVTs) 130 addRegClassForRVV(VT); 131 132 if (Subtarget.hasStdExtZfh()) 133 for (MVT VT : F16VecVTs) 134 addRegClassForRVV(VT); 135 136 if (Subtarget.hasStdExtF()) 137 for (MVT VT : F32VecVTs) 138 addRegClassForRVV(VT); 139 140 if (Subtarget.hasStdExtD()) 141 for (MVT VT : F64VecVTs) 142 addRegClassForRVV(VT); 143 144 if (Subtarget.useRVVForFixedLengthVectors()) { 145 auto addRegClassForFixedVectors = [this](MVT VT) { 146 MVT ContainerVT = getContainerForFixedLengthVector(VT); 147 unsigned RCID = getRegClassIDForVecVT(ContainerVT); 148 const RISCVRegisterInfo &TRI = *Subtarget.getRegisterInfo(); 149 addRegisterClass(VT, TRI.getRegClass(RCID)); 150 }; 151 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) 152 if (useRVVForFixedLengthVectorVT(VT)) 153 addRegClassForFixedVectors(VT); 154 155 for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) 156 if (useRVVForFixedLengthVectorVT(VT)) 157 addRegClassForFixedVectors(VT); 158 } 159 } 160 161 // Compute derived properties from the register classes. 162 computeRegisterProperties(STI.getRegisterInfo()); 163 164 setStackPointerRegisterToSaveRestore(RISCV::X2); 165 166 for (auto N : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}) 167 setLoadExtAction(N, XLenVT, MVT::i1, Promote); 168 169 // TODO: add all necessary setOperationAction calls. 170 setOperationAction(ISD::DYNAMIC_STACKALLOC, XLenVT, Expand); 171 172 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 173 setOperationAction(ISD::BR_CC, XLenVT, Expand); 174 setOperationAction(ISD::BRCOND, MVT::Other, Custom); 175 setOperationAction(ISD::SELECT_CC, XLenVT, Expand); 176 177 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); 178 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); 179 180 setOperationAction(ISD::VASTART, MVT::Other, Custom); 181 setOperationAction(ISD::VAARG, MVT::Other, Expand); 182 setOperationAction(ISD::VACOPY, MVT::Other, Expand); 183 setOperationAction(ISD::VAEND, MVT::Other, Expand); 184 185 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 186 if (!Subtarget.hasStdExtZbb()) { 187 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand); 188 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand); 189 } 190 191 if (Subtarget.is64Bit()) { 192 setOperationAction(ISD::ADD, MVT::i32, Custom); 193 setOperationAction(ISD::SUB, MVT::i32, Custom); 194 setOperationAction(ISD::SHL, MVT::i32, Custom); 195 setOperationAction(ISD::SRA, MVT::i32, Custom); 196 setOperationAction(ISD::SRL, MVT::i32, Custom); 197 198 setOperationAction(ISD::UADDO, MVT::i32, Custom); 199 setOperationAction(ISD::USUBO, MVT::i32, Custom); 200 setOperationAction(ISD::UADDSAT, MVT::i32, Custom); 201 setOperationAction(ISD::USUBSAT, MVT::i32, Custom); 202 } 203 204 if (!Subtarget.hasStdExtM()) { 205 setOperationAction(ISD::MUL, XLenVT, Expand); 206 setOperationAction(ISD::MULHS, XLenVT, Expand); 207 setOperationAction(ISD::MULHU, XLenVT, Expand); 208 setOperationAction(ISD::SDIV, XLenVT, Expand); 209 setOperationAction(ISD::UDIV, XLenVT, Expand); 210 setOperationAction(ISD::SREM, XLenVT, Expand); 211 setOperationAction(ISD::UREM, XLenVT, Expand); 212 } else { 213 if (Subtarget.is64Bit()) { 214 setOperationAction(ISD::MUL, MVT::i32, Custom); 215 setOperationAction(ISD::MUL, MVT::i128, Custom); 216 217 setOperationAction(ISD::SDIV, MVT::i8, Custom); 218 setOperationAction(ISD::UDIV, MVT::i8, Custom); 219 setOperationAction(ISD::UREM, MVT::i8, Custom); 220 setOperationAction(ISD::SDIV, MVT::i16, Custom); 221 setOperationAction(ISD::UDIV, MVT::i16, Custom); 222 setOperationAction(ISD::UREM, MVT::i16, Custom); 223 setOperationAction(ISD::SDIV, MVT::i32, Custom); 224 setOperationAction(ISD::UDIV, MVT::i32, Custom); 225 setOperationAction(ISD::UREM, MVT::i32, Custom); 226 } else { 227 setOperationAction(ISD::MUL, MVT::i64, Custom); 228 } 229 } 230 231 setOperationAction(ISD::SDIVREM, XLenVT, Expand); 232 setOperationAction(ISD::UDIVREM, XLenVT, Expand); 233 setOperationAction(ISD::SMUL_LOHI, XLenVT, Expand); 234 setOperationAction(ISD::UMUL_LOHI, XLenVT, Expand); 235 236 setOperationAction(ISD::SHL_PARTS, XLenVT, Custom); 237 setOperationAction(ISD::SRL_PARTS, XLenVT, Custom); 238 setOperationAction(ISD::SRA_PARTS, XLenVT, Custom); 239 240 if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp()) { 241 if (Subtarget.is64Bit()) { 242 setOperationAction(ISD::ROTL, MVT::i32, Custom); 243 setOperationAction(ISD::ROTR, MVT::i32, Custom); 244 } 245 } else { 246 setOperationAction(ISD::ROTL, XLenVT, Expand); 247 setOperationAction(ISD::ROTR, XLenVT, Expand); 248 } 249 250 if (Subtarget.hasStdExtZbp()) { 251 // Custom lower bswap/bitreverse so we can convert them to GREVI to enable 252 // more combining. 253 setOperationAction(ISD::BITREVERSE, XLenVT, Custom); 254 setOperationAction(ISD::BSWAP, XLenVT, Custom); 255 setOperationAction(ISD::BITREVERSE, MVT::i8, Custom); 256 // BSWAP i8 doesn't exist. 257 setOperationAction(ISD::BITREVERSE, MVT::i16, Custom); 258 setOperationAction(ISD::BSWAP, MVT::i16, Custom); 259 260 if (Subtarget.is64Bit()) { 261 setOperationAction(ISD::BITREVERSE, MVT::i32, Custom); 262 setOperationAction(ISD::BSWAP, MVT::i32, Custom); 263 } 264 } else { 265 // With Zbb we have an XLen rev8 instruction, but not GREVI. So we'll 266 // pattern match it directly in isel. 267 setOperationAction(ISD::BSWAP, XLenVT, 268 Subtarget.hasStdExtZbb() ? Legal : Expand); 269 } 270 271 if (Subtarget.hasStdExtZbb()) { 272 setOperationAction(ISD::SMIN, XLenVT, Legal); 273 setOperationAction(ISD::SMAX, XLenVT, Legal); 274 setOperationAction(ISD::UMIN, XLenVT, Legal); 275 setOperationAction(ISD::UMAX, XLenVT, Legal); 276 277 if (Subtarget.is64Bit()) { 278 setOperationAction(ISD::CTTZ, MVT::i32, Custom); 279 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Custom); 280 setOperationAction(ISD::CTLZ, MVT::i32, Custom); 281 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom); 282 } 283 } else { 284 setOperationAction(ISD::CTTZ, XLenVT, Expand); 285 setOperationAction(ISD::CTLZ, XLenVT, Expand); 286 setOperationAction(ISD::CTPOP, XLenVT, Expand); 287 } 288 289 if (Subtarget.hasStdExtZbt()) { 290 setOperationAction(ISD::FSHL, XLenVT, Custom); 291 setOperationAction(ISD::FSHR, XLenVT, Custom); 292 setOperationAction(ISD::SELECT, XLenVT, Legal); 293 294 if (Subtarget.is64Bit()) { 295 setOperationAction(ISD::FSHL, MVT::i32, Custom); 296 setOperationAction(ISD::FSHR, MVT::i32, Custom); 297 } 298 } else { 299 setOperationAction(ISD::SELECT, XLenVT, Custom); 300 } 301 302 ISD::CondCode FPCCToExpand[] = { 303 ISD::SETOGT, ISD::SETOGE, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT, 304 ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUNE, ISD::SETGT, 305 ISD::SETGE, ISD::SETNE, ISD::SETO, ISD::SETUO}; 306 307 ISD::NodeType FPOpToExpand[] = { 308 ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, ISD::FREM, ISD::FP16_TO_FP, 309 ISD::FP_TO_FP16}; 310 311 if (Subtarget.hasStdExtZfh()) 312 setOperationAction(ISD::BITCAST, MVT::i16, Custom); 313 314 if (Subtarget.hasStdExtZfh()) { 315 setOperationAction(ISD::FMINNUM, MVT::f16, Legal); 316 setOperationAction(ISD::FMAXNUM, MVT::f16, Legal); 317 for (auto CC : FPCCToExpand) 318 setCondCodeAction(CC, MVT::f16, Expand); 319 setOperationAction(ISD::SELECT_CC, MVT::f16, Expand); 320 setOperationAction(ISD::SELECT, MVT::f16, Custom); 321 setOperationAction(ISD::BR_CC, MVT::f16, Expand); 322 for (auto Op : FPOpToExpand) 323 setOperationAction(Op, MVT::f16, Expand); 324 } 325 326 if (Subtarget.hasStdExtF()) { 327 setOperationAction(ISD::FMINNUM, MVT::f32, Legal); 328 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); 329 for (auto CC : FPCCToExpand) 330 setCondCodeAction(CC, MVT::f32, Expand); 331 setOperationAction(ISD::SELECT_CC, MVT::f32, Expand); 332 setOperationAction(ISD::SELECT, MVT::f32, Custom); 333 setOperationAction(ISD::BR_CC, MVT::f32, Expand); 334 for (auto Op : FPOpToExpand) 335 setOperationAction(Op, MVT::f32, Expand); 336 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); 337 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 338 } 339 340 if (Subtarget.hasStdExtF() && Subtarget.is64Bit()) 341 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 342 343 if (Subtarget.hasStdExtD()) { 344 setOperationAction(ISD::FMINNUM, MVT::f64, Legal); 345 setOperationAction(ISD::FMAXNUM, MVT::f64, Legal); 346 for (auto CC : FPCCToExpand) 347 setCondCodeAction(CC, MVT::f64, Expand); 348 setOperationAction(ISD::SELECT_CC, MVT::f64, Expand); 349 setOperationAction(ISD::SELECT, MVT::f64, Custom); 350 setOperationAction(ISD::BR_CC, MVT::f64, Expand); 351 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 352 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 353 for (auto Op : FPOpToExpand) 354 setOperationAction(Op, MVT::f64, Expand); 355 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); 356 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 357 } 358 359 if (Subtarget.is64Bit()) { 360 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 361 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 362 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom); 363 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom); 364 } 365 366 if (Subtarget.hasStdExtF()) { 367 setOperationAction(ISD::FLT_ROUNDS_, XLenVT, Custom); 368 setOperationAction(ISD::SET_ROUNDING, MVT::Other, Custom); 369 } 370 371 setOperationAction(ISD::GlobalAddress, XLenVT, Custom); 372 setOperationAction(ISD::BlockAddress, XLenVT, Custom); 373 setOperationAction(ISD::ConstantPool, XLenVT, Custom); 374 setOperationAction(ISD::JumpTable, XLenVT, Custom); 375 376 setOperationAction(ISD::GlobalTLSAddress, XLenVT, Custom); 377 378 // TODO: On M-mode only targets, the cycle[h] CSR may not be present. 379 // Unfortunately this can't be determined just from the ISA naming string. 380 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, 381 Subtarget.is64Bit() ? Legal : Custom); 382 383 setOperationAction(ISD::TRAP, MVT::Other, Legal); 384 setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal); 385 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 386 if (Subtarget.is64Bit()) 387 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i32, Custom); 388 389 if (Subtarget.hasStdExtA()) { 390 setMaxAtomicSizeInBitsSupported(Subtarget.getXLen()); 391 setMinCmpXchgSizeInBits(32); 392 } else { 393 setMaxAtomicSizeInBitsSupported(0); 394 } 395 396 setBooleanContents(ZeroOrOneBooleanContent); 397 398 if (Subtarget.hasStdExtV()) { 399 setBooleanVectorContents(ZeroOrOneBooleanContent); 400 401 setOperationAction(ISD::VSCALE, XLenVT, Custom); 402 403 // RVV intrinsics may have illegal operands. 404 // We also need to custom legalize vmv.x.s. 405 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i8, Custom); 406 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i16, Custom); 407 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i8, Custom); 408 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i16, Custom); 409 if (Subtarget.is64Bit()) { 410 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i32, Custom); 411 } else { 412 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i64, Custom); 413 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i64, Custom); 414 } 415 416 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom); 417 418 static unsigned IntegerVPOps[] = { 419 ISD::VP_ADD, ISD::VP_SUB, ISD::VP_MUL, ISD::VP_SDIV, ISD::VP_UDIV, 420 ISD::VP_SREM, ISD::VP_UREM, ISD::VP_AND, ISD::VP_OR, ISD::VP_XOR, 421 ISD::VP_ASHR, ISD::VP_LSHR, ISD::VP_SHL}; 422 423 if (!Subtarget.is64Bit()) { 424 // We must custom-lower certain vXi64 operations on RV32 due to the vector 425 // element type being illegal. 426 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::i64, Custom); 427 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::i64, Custom); 428 429 setOperationAction(ISD::VECREDUCE_ADD, MVT::i64, Custom); 430 setOperationAction(ISD::VECREDUCE_AND, MVT::i64, Custom); 431 setOperationAction(ISD::VECREDUCE_OR, MVT::i64, Custom); 432 setOperationAction(ISD::VECREDUCE_XOR, MVT::i64, Custom); 433 setOperationAction(ISD::VECREDUCE_SMAX, MVT::i64, Custom); 434 setOperationAction(ISD::VECREDUCE_SMIN, MVT::i64, Custom); 435 setOperationAction(ISD::VECREDUCE_UMAX, MVT::i64, Custom); 436 setOperationAction(ISD::VECREDUCE_UMIN, MVT::i64, Custom); 437 } 438 439 for (MVT VT : BoolVecVTs) { 440 setOperationAction(ISD::SPLAT_VECTOR, VT, Custom); 441 442 // Mask VTs are custom-expanded into a series of standard nodes 443 setOperationAction(ISD::TRUNCATE, VT, Custom); 444 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 445 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 446 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 447 448 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 449 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 450 451 setOperationAction(ISD::SELECT, VT, Expand); 452 setOperationAction(ISD::SELECT_CC, VT, Expand); 453 setOperationAction(ISD::VSELECT, VT, Expand); 454 455 setOperationAction(ISD::VECREDUCE_AND, VT, Custom); 456 setOperationAction(ISD::VECREDUCE_OR, VT, Custom); 457 setOperationAction(ISD::VECREDUCE_XOR, VT, Custom); 458 459 // RVV has native int->float & float->int conversions where the 460 // element type sizes are within one power-of-two of each other. Any 461 // wider distances between type sizes have to be lowered as sequences 462 // which progressively narrow the gap in stages. 463 setOperationAction(ISD::SINT_TO_FP, VT, Custom); 464 setOperationAction(ISD::UINT_TO_FP, VT, Custom); 465 setOperationAction(ISD::FP_TO_SINT, VT, Custom); 466 setOperationAction(ISD::FP_TO_UINT, VT, Custom); 467 468 // Expand all extending loads to types larger than this, and truncating 469 // stores from types larger than this. 470 for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) { 471 setTruncStoreAction(OtherVT, VT, Expand); 472 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 473 setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand); 474 setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand); 475 } 476 } 477 478 for (MVT VT : IntVecVTs) { 479 setOperationAction(ISD::SPLAT_VECTOR, VT, Legal); 480 setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom); 481 482 setOperationAction(ISD::SMIN, VT, Legal); 483 setOperationAction(ISD::SMAX, VT, Legal); 484 setOperationAction(ISD::UMIN, VT, Legal); 485 setOperationAction(ISD::UMAX, VT, Legal); 486 487 setOperationAction(ISD::ROTL, VT, Expand); 488 setOperationAction(ISD::ROTR, VT, Expand); 489 490 // Custom-lower extensions and truncations from/to mask types. 491 setOperationAction(ISD::ANY_EXTEND, VT, Custom); 492 setOperationAction(ISD::SIGN_EXTEND, VT, Custom); 493 setOperationAction(ISD::ZERO_EXTEND, VT, Custom); 494 495 // RVV has native int->float & float->int conversions where the 496 // element type sizes are within one power-of-two of each other. Any 497 // wider distances between type sizes have to be lowered as sequences 498 // which progressively narrow the gap in stages. 499 setOperationAction(ISD::SINT_TO_FP, VT, Custom); 500 setOperationAction(ISD::UINT_TO_FP, VT, Custom); 501 setOperationAction(ISD::FP_TO_SINT, VT, Custom); 502 setOperationAction(ISD::FP_TO_UINT, VT, Custom); 503 504 // Integer VTs are lowered as a series of "RISCVISD::TRUNCATE_VECTOR_VL" 505 // nodes which truncate by one power of two at a time. 506 setOperationAction(ISD::TRUNCATE, VT, Custom); 507 508 // Custom-lower insert/extract operations to simplify patterns. 509 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 510 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 511 512 // Custom-lower reduction operations to set up the corresponding custom 513 // nodes' operands. 514 setOperationAction(ISD::VECREDUCE_ADD, VT, Custom); 515 setOperationAction(ISD::VECREDUCE_AND, VT, Custom); 516 setOperationAction(ISD::VECREDUCE_OR, VT, Custom); 517 setOperationAction(ISD::VECREDUCE_XOR, VT, Custom); 518 setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom); 519 setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom); 520 setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom); 521 setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom); 522 523 for (unsigned VPOpc : IntegerVPOps) 524 setOperationAction(VPOpc, VT, Custom); 525 526 setOperationAction(ISD::LOAD, VT, Custom); 527 setOperationAction(ISD::STORE, VT, Custom); 528 529 setOperationAction(ISD::MLOAD, VT, Custom); 530 setOperationAction(ISD::MSTORE, VT, Custom); 531 setOperationAction(ISD::MGATHER, VT, Custom); 532 setOperationAction(ISD::MSCATTER, VT, Custom); 533 534 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 535 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 536 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 537 538 setOperationAction(ISD::SELECT, VT, Expand); 539 setOperationAction(ISD::SELECT_CC, VT, Expand); 540 541 setOperationAction(ISD::STEP_VECTOR, VT, Custom); 542 setOperationAction(ISD::VECTOR_REVERSE, VT, Custom); 543 544 for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) { 545 setTruncStoreAction(VT, OtherVT, Expand); 546 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 547 setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand); 548 setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand); 549 } 550 } 551 552 // Expand various CCs to best match the RVV ISA, which natively supports UNE 553 // but no other unordered comparisons, and supports all ordered comparisons 554 // except ONE. Additionally, we expand GT,OGT,GE,OGE for optimization 555 // purposes; they are expanded to their swapped-operand CCs (LT,OLT,LE,OLE), 556 // and we pattern-match those back to the "original", swapping operands once 557 // more. This way we catch both operations and both "vf" and "fv" forms with 558 // fewer patterns. 559 ISD::CondCode VFPCCToExpand[] = { 560 ISD::SETO, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT, 561 ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUO, 562 ISD::SETGT, ISD::SETOGT, ISD::SETGE, ISD::SETOGE, 563 }; 564 565 // Sets common operation actions on RVV floating-point vector types. 566 const auto SetCommonVFPActions = [&](MVT VT) { 567 setOperationAction(ISD::SPLAT_VECTOR, VT, Legal); 568 // RVV has native FP_ROUND & FP_EXTEND conversions where the element type 569 // sizes are within one power-of-two of each other. Therefore conversions 570 // between vXf16 and vXf64 must be lowered as sequences which convert via 571 // vXf32. 572 setOperationAction(ISD::FP_ROUND, VT, Custom); 573 setOperationAction(ISD::FP_EXTEND, VT, Custom); 574 // Custom-lower insert/extract operations to simplify patterns. 575 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 576 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 577 // Expand various condition codes (explained above). 578 for (auto CC : VFPCCToExpand) 579 setCondCodeAction(CC, VT, Expand); 580 581 setOperationAction(ISD::FMINNUM, VT, Legal); 582 setOperationAction(ISD::FMAXNUM, VT, Legal); 583 584 setOperationAction(ISD::VECREDUCE_FADD, VT, Custom); 585 setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom); 586 setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom); 587 setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom); 588 setOperationAction(ISD::FCOPYSIGN, VT, Legal); 589 590 setOperationAction(ISD::LOAD, VT, Custom); 591 setOperationAction(ISD::STORE, VT, Custom); 592 593 setOperationAction(ISD::MLOAD, VT, Custom); 594 setOperationAction(ISD::MSTORE, VT, Custom); 595 setOperationAction(ISD::MGATHER, VT, Custom); 596 setOperationAction(ISD::MSCATTER, VT, Custom); 597 598 setOperationAction(ISD::SELECT, VT, Expand); 599 setOperationAction(ISD::SELECT_CC, VT, Expand); 600 601 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 602 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 603 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 604 605 setOperationAction(ISD::VECTOR_REVERSE, VT, Custom); 606 }; 607 608 // Sets common extload/truncstore actions on RVV floating-point vector 609 // types. 610 const auto SetCommonVFPExtLoadTruncStoreActions = 611 [&](MVT VT, ArrayRef<MVT::SimpleValueType> SmallerVTs) { 612 for (auto SmallVT : SmallerVTs) { 613 setTruncStoreAction(VT, SmallVT, Expand); 614 setLoadExtAction(ISD::EXTLOAD, VT, SmallVT, Expand); 615 } 616 }; 617 618 if (Subtarget.hasStdExtZfh()) 619 for (MVT VT : F16VecVTs) 620 SetCommonVFPActions(VT); 621 622 for (MVT VT : F32VecVTs) { 623 if (Subtarget.hasStdExtF()) 624 SetCommonVFPActions(VT); 625 SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs); 626 } 627 628 for (MVT VT : F64VecVTs) { 629 if (Subtarget.hasStdExtD()) 630 SetCommonVFPActions(VT); 631 SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs); 632 SetCommonVFPExtLoadTruncStoreActions(VT, F32VecVTs); 633 } 634 635 if (Subtarget.useRVVForFixedLengthVectors()) { 636 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) { 637 if (!useRVVForFixedLengthVectorVT(VT)) 638 continue; 639 640 // By default everything must be expanded. 641 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) 642 setOperationAction(Op, VT, Expand); 643 for (MVT OtherVT : MVT::integer_fixedlen_vector_valuetypes()) { 644 setTruncStoreAction(VT, OtherVT, Expand); 645 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 646 setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand); 647 setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand); 648 } 649 650 // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed. 651 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 652 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 653 654 setOperationAction(ISD::BUILD_VECTOR, VT, Custom); 655 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 656 657 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 658 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 659 660 setOperationAction(ISD::LOAD, VT, Custom); 661 setOperationAction(ISD::STORE, VT, Custom); 662 663 setOperationAction(ISD::SETCC, VT, Custom); 664 665 setOperationAction(ISD::TRUNCATE, VT, Custom); 666 667 setOperationAction(ISD::BITCAST, VT, Custom); 668 669 setOperationAction(ISD::VECREDUCE_AND, VT, Custom); 670 setOperationAction(ISD::VECREDUCE_OR, VT, Custom); 671 setOperationAction(ISD::VECREDUCE_XOR, VT, Custom); 672 673 setOperationAction(ISD::SINT_TO_FP, VT, Custom); 674 setOperationAction(ISD::UINT_TO_FP, VT, Custom); 675 setOperationAction(ISD::FP_TO_SINT, VT, Custom); 676 setOperationAction(ISD::FP_TO_UINT, VT, Custom); 677 678 // Operations below are different for between masks and other vectors. 679 if (VT.getVectorElementType() == MVT::i1) { 680 setOperationAction(ISD::AND, VT, Custom); 681 setOperationAction(ISD::OR, VT, Custom); 682 setOperationAction(ISD::XOR, VT, Custom); 683 continue; 684 } 685 686 // Use SPLAT_VECTOR to prevent type legalization from destroying the 687 // splats when type legalizing i64 scalar on RV32. 688 // FIXME: Use SPLAT_VECTOR for all types? DAGCombine probably needs 689 // improvements first. 690 if (!Subtarget.is64Bit() && VT.getVectorElementType() == MVT::i64) { 691 setOperationAction(ISD::SPLAT_VECTOR, VT, Custom); 692 setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom); 693 } 694 695 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); 696 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 697 698 setOperationAction(ISD::MLOAD, VT, Custom); 699 setOperationAction(ISD::MSTORE, VT, Custom); 700 setOperationAction(ISD::MGATHER, VT, Custom); 701 setOperationAction(ISD::MSCATTER, VT, Custom); 702 setOperationAction(ISD::ADD, VT, Custom); 703 setOperationAction(ISD::MUL, VT, Custom); 704 setOperationAction(ISD::SUB, VT, Custom); 705 setOperationAction(ISD::AND, VT, Custom); 706 setOperationAction(ISD::OR, VT, Custom); 707 setOperationAction(ISD::XOR, VT, Custom); 708 setOperationAction(ISD::SDIV, VT, Custom); 709 setOperationAction(ISD::SREM, VT, Custom); 710 setOperationAction(ISD::UDIV, VT, Custom); 711 setOperationAction(ISD::UREM, VT, Custom); 712 setOperationAction(ISD::SHL, VT, Custom); 713 setOperationAction(ISD::SRA, VT, Custom); 714 setOperationAction(ISD::SRL, VT, Custom); 715 716 setOperationAction(ISD::SMIN, VT, Custom); 717 setOperationAction(ISD::SMAX, VT, Custom); 718 setOperationAction(ISD::UMIN, VT, Custom); 719 setOperationAction(ISD::UMAX, VT, Custom); 720 setOperationAction(ISD::ABS, VT, Custom); 721 722 setOperationAction(ISD::MULHS, VT, Custom); 723 setOperationAction(ISD::MULHU, VT, Custom); 724 725 setOperationAction(ISD::VSELECT, VT, Custom); 726 setOperationAction(ISD::SELECT, VT, Expand); 727 setOperationAction(ISD::SELECT_CC, VT, Expand); 728 729 setOperationAction(ISD::ANY_EXTEND, VT, Custom); 730 setOperationAction(ISD::SIGN_EXTEND, VT, Custom); 731 setOperationAction(ISD::ZERO_EXTEND, VT, Custom); 732 733 // Custom-lower reduction operations to set up the corresponding custom 734 // nodes' operands. 735 setOperationAction(ISD::VECREDUCE_ADD, VT, Custom); 736 setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom); 737 setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom); 738 setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom); 739 setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom); 740 741 for (unsigned VPOpc : IntegerVPOps) 742 setOperationAction(VPOpc, VT, Custom); 743 } 744 745 for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) { 746 if (!useRVVForFixedLengthVectorVT(VT)) 747 continue; 748 749 // By default everything must be expanded. 750 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) 751 setOperationAction(Op, VT, Expand); 752 for (MVT OtherVT : MVT::fp_fixedlen_vector_valuetypes()) { 753 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 754 setTruncStoreAction(VT, OtherVT, Expand); 755 } 756 757 // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed. 758 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 759 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 760 761 setOperationAction(ISD::BUILD_VECTOR, VT, Custom); 762 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); 763 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 764 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 765 766 setOperationAction(ISD::LOAD, VT, Custom); 767 setOperationAction(ISD::STORE, VT, Custom); 768 setOperationAction(ISD::MLOAD, VT, Custom); 769 setOperationAction(ISD::MSTORE, VT, Custom); 770 setOperationAction(ISD::MGATHER, VT, Custom); 771 setOperationAction(ISD::MSCATTER, VT, Custom); 772 setOperationAction(ISD::FADD, VT, Custom); 773 setOperationAction(ISD::FSUB, VT, Custom); 774 setOperationAction(ISD::FMUL, VT, Custom); 775 setOperationAction(ISD::FDIV, VT, Custom); 776 setOperationAction(ISD::FNEG, VT, Custom); 777 setOperationAction(ISD::FABS, VT, Custom); 778 setOperationAction(ISD::FCOPYSIGN, VT, Custom); 779 setOperationAction(ISD::FSQRT, VT, Custom); 780 setOperationAction(ISD::FMA, VT, Custom); 781 setOperationAction(ISD::FMINNUM, VT, Custom); 782 setOperationAction(ISD::FMAXNUM, VT, Custom); 783 784 setOperationAction(ISD::FP_ROUND, VT, Custom); 785 setOperationAction(ISD::FP_EXTEND, VT, Custom); 786 787 for (auto CC : VFPCCToExpand) 788 setCondCodeAction(CC, VT, Expand); 789 790 setOperationAction(ISD::VSELECT, VT, Custom); 791 setOperationAction(ISD::SELECT, VT, Expand); 792 setOperationAction(ISD::SELECT_CC, VT, Expand); 793 794 setOperationAction(ISD::BITCAST, VT, Custom); 795 796 setOperationAction(ISD::VECREDUCE_FADD, VT, Custom); 797 setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom); 798 setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom); 799 setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom); 800 } 801 802 // Custom-legalize bitcasts from fixed-length vectors to scalar types. 803 setOperationAction(ISD::BITCAST, MVT::i8, Custom); 804 setOperationAction(ISD::BITCAST, MVT::i16, Custom); 805 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 806 setOperationAction(ISD::BITCAST, MVT::i64, Custom); 807 setOperationAction(ISD::BITCAST, MVT::f16, Custom); 808 setOperationAction(ISD::BITCAST, MVT::f32, Custom); 809 setOperationAction(ISD::BITCAST, MVT::f64, Custom); 810 } 811 } 812 813 // Function alignments. 814 const Align FunctionAlignment(Subtarget.hasStdExtC() ? 2 : 4); 815 setMinFunctionAlignment(FunctionAlignment); 816 setPrefFunctionAlignment(FunctionAlignment); 817 818 setMinimumJumpTableEntries(5); 819 820 // Jumps are expensive, compared to logic 821 setJumpIsExpensive(); 822 823 // We can use any register for comparisons 824 setHasMultipleConditionRegisters(); 825 826 setTargetDAGCombine(ISD::AND); 827 setTargetDAGCombine(ISD::OR); 828 setTargetDAGCombine(ISD::XOR); 829 if (Subtarget.hasStdExtV()) { 830 setTargetDAGCombine(ISD::FCOPYSIGN); 831 setTargetDAGCombine(ISD::MGATHER); 832 setTargetDAGCombine(ISD::MSCATTER); 833 setTargetDAGCombine(ISD::SRA); 834 setTargetDAGCombine(ISD::SRL); 835 setTargetDAGCombine(ISD::SHL); 836 } 837 } 838 839 EVT RISCVTargetLowering::getSetCCResultType(const DataLayout &DL, 840 LLVMContext &Context, 841 EVT VT) const { 842 if (!VT.isVector()) 843 return getPointerTy(DL); 844 if (Subtarget.hasStdExtV() && 845 (VT.isScalableVector() || Subtarget.useRVVForFixedLengthVectors())) 846 return EVT::getVectorVT(Context, MVT::i1, VT.getVectorElementCount()); 847 return VT.changeVectorElementTypeToInteger(); 848 } 849 850 MVT RISCVTargetLowering::getVPExplicitVectorLengthTy() const { 851 return Subtarget.getXLenVT(); 852 } 853 854 bool RISCVTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 855 const CallInst &I, 856 MachineFunction &MF, 857 unsigned Intrinsic) const { 858 switch (Intrinsic) { 859 default: 860 return false; 861 case Intrinsic::riscv_masked_atomicrmw_xchg_i32: 862 case Intrinsic::riscv_masked_atomicrmw_add_i32: 863 case Intrinsic::riscv_masked_atomicrmw_sub_i32: 864 case Intrinsic::riscv_masked_atomicrmw_nand_i32: 865 case Intrinsic::riscv_masked_atomicrmw_max_i32: 866 case Intrinsic::riscv_masked_atomicrmw_min_i32: 867 case Intrinsic::riscv_masked_atomicrmw_umax_i32: 868 case Intrinsic::riscv_masked_atomicrmw_umin_i32: 869 case Intrinsic::riscv_masked_cmpxchg_i32: 870 PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType()); 871 Info.opc = ISD::INTRINSIC_W_CHAIN; 872 Info.memVT = MVT::getVT(PtrTy->getElementType()); 873 Info.ptrVal = I.getArgOperand(0); 874 Info.offset = 0; 875 Info.align = Align(4); 876 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore | 877 MachineMemOperand::MOVolatile; 878 return true; 879 } 880 } 881 882 bool RISCVTargetLowering::isLegalAddressingMode(const DataLayout &DL, 883 const AddrMode &AM, Type *Ty, 884 unsigned AS, 885 Instruction *I) const { 886 // No global is ever allowed as a base. 887 if (AM.BaseGV) 888 return false; 889 890 // Require a 12-bit signed offset. 891 if (!isInt<12>(AM.BaseOffs)) 892 return false; 893 894 switch (AM.Scale) { 895 case 0: // "r+i" or just "i", depending on HasBaseReg. 896 break; 897 case 1: 898 if (!AM.HasBaseReg) // allow "r+i". 899 break; 900 return false; // disallow "r+r" or "r+r+i". 901 default: 902 return false; 903 } 904 905 return true; 906 } 907 908 bool RISCVTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 909 return isInt<12>(Imm); 910 } 911 912 bool RISCVTargetLowering::isLegalAddImmediate(int64_t Imm) const { 913 return isInt<12>(Imm); 914 } 915 916 // On RV32, 64-bit integers are split into their high and low parts and held 917 // in two different registers, so the trunc is free since the low register can 918 // just be used. 919 bool RISCVTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const { 920 if (Subtarget.is64Bit() || !SrcTy->isIntegerTy() || !DstTy->isIntegerTy()) 921 return false; 922 unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); 923 unsigned DestBits = DstTy->getPrimitiveSizeInBits(); 924 return (SrcBits == 64 && DestBits == 32); 925 } 926 927 bool RISCVTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const { 928 if (Subtarget.is64Bit() || SrcVT.isVector() || DstVT.isVector() || 929 !SrcVT.isInteger() || !DstVT.isInteger()) 930 return false; 931 unsigned SrcBits = SrcVT.getSizeInBits(); 932 unsigned DestBits = DstVT.getSizeInBits(); 933 return (SrcBits == 64 && DestBits == 32); 934 } 935 936 bool RISCVTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 937 // Zexts are free if they can be combined with a load. 938 if (auto *LD = dyn_cast<LoadSDNode>(Val)) { 939 EVT MemVT = LD->getMemoryVT(); 940 if ((MemVT == MVT::i8 || MemVT == MVT::i16 || 941 (Subtarget.is64Bit() && MemVT == MVT::i32)) && 942 (LD->getExtensionType() == ISD::NON_EXTLOAD || 943 LD->getExtensionType() == ISD::ZEXTLOAD)) 944 return true; 945 } 946 947 return TargetLowering::isZExtFree(Val, VT2); 948 } 949 950 bool RISCVTargetLowering::isSExtCheaperThanZExt(EVT SrcVT, EVT DstVT) const { 951 return Subtarget.is64Bit() && SrcVT == MVT::i32 && DstVT == MVT::i64; 952 } 953 954 bool RISCVTargetLowering::isCheapToSpeculateCttz() const { 955 return Subtarget.hasStdExtZbb(); 956 } 957 958 bool RISCVTargetLowering::isCheapToSpeculateCtlz() const { 959 return Subtarget.hasStdExtZbb(); 960 } 961 962 bool RISCVTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 963 bool ForCodeSize) const { 964 if (VT == MVT::f16 && !Subtarget.hasStdExtZfh()) 965 return false; 966 if (VT == MVT::f32 && !Subtarget.hasStdExtF()) 967 return false; 968 if (VT == MVT::f64 && !Subtarget.hasStdExtD()) 969 return false; 970 if (Imm.isNegZero()) 971 return false; 972 return Imm.isZero(); 973 } 974 975 bool RISCVTargetLowering::hasBitPreservingFPLogic(EVT VT) const { 976 return (VT == MVT::f16 && Subtarget.hasStdExtZfh()) || 977 (VT == MVT::f32 && Subtarget.hasStdExtF()) || 978 (VT == MVT::f64 && Subtarget.hasStdExtD()); 979 } 980 981 MVT RISCVTargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context, 982 CallingConv::ID CC, 983 EVT VT) const { 984 // Use f32 to pass f16 if it is legal and Zfh is not enabled. We might still 985 // end up using a GPR but that will be decided based on ABI. 986 if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh()) 987 return MVT::f32; 988 989 return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT); 990 } 991 992 unsigned RISCVTargetLowering::getNumRegistersForCallingConv(LLVMContext &Context, 993 CallingConv::ID CC, 994 EVT VT) const { 995 // Use f32 to pass f16 if it is legal and Zfh is not enabled. We might still 996 // end up using a GPR but that will be decided based on ABI. 997 if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh()) 998 return 1; 999 1000 return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT); 1001 } 1002 1003 // Changes the condition code and swaps operands if necessary, so the SetCC 1004 // operation matches one of the comparisons supported directly by branches 1005 // in the RISC-V ISA. May adjust compares to favor compare with 0 over compare 1006 // with 1/-1. 1007 static void translateSetCCForBranch(const SDLoc &DL, SDValue &LHS, SDValue &RHS, 1008 ISD::CondCode &CC, SelectionDAG &DAG) { 1009 // Convert X > -1 to X >= 0. 1010 if (CC == ISD::SETGT && isAllOnesConstant(RHS)) { 1011 RHS = DAG.getConstant(0, DL, RHS.getValueType()); 1012 CC = ISD::SETGE; 1013 return; 1014 } 1015 // Convert X < 1 to 0 >= X. 1016 if (CC == ISD::SETLT && isOneConstant(RHS)) { 1017 RHS = LHS; 1018 LHS = DAG.getConstant(0, DL, RHS.getValueType()); 1019 CC = ISD::SETGE; 1020 return; 1021 } 1022 1023 switch (CC) { 1024 default: 1025 break; 1026 case ISD::SETGT: 1027 case ISD::SETLE: 1028 case ISD::SETUGT: 1029 case ISD::SETULE: 1030 CC = ISD::getSetCCSwappedOperands(CC); 1031 std::swap(LHS, RHS); 1032 break; 1033 } 1034 } 1035 1036 // Return the RISC-V branch opcode that matches the given DAG integer 1037 // condition code. The CondCode must be one of those supported by the RISC-V 1038 // ISA (see translateSetCCForBranch). 1039 static unsigned getBranchOpcodeForIntCondCode(ISD::CondCode CC) { 1040 switch (CC) { 1041 default: 1042 llvm_unreachable("Unsupported CondCode"); 1043 case ISD::SETEQ: 1044 return RISCV::BEQ; 1045 case ISD::SETNE: 1046 return RISCV::BNE; 1047 case ISD::SETLT: 1048 return RISCV::BLT; 1049 case ISD::SETGE: 1050 return RISCV::BGE; 1051 case ISD::SETULT: 1052 return RISCV::BLTU; 1053 case ISD::SETUGE: 1054 return RISCV::BGEU; 1055 } 1056 } 1057 1058 RISCVII::VLMUL RISCVTargetLowering::getLMUL(MVT VT) { 1059 assert(VT.isScalableVector() && "Expecting a scalable vector type"); 1060 unsigned KnownSize = VT.getSizeInBits().getKnownMinValue(); 1061 if (VT.getVectorElementType() == MVT::i1) 1062 KnownSize *= 8; 1063 1064 switch (KnownSize) { 1065 default: 1066 llvm_unreachable("Invalid LMUL."); 1067 case 8: 1068 return RISCVII::VLMUL::LMUL_F8; 1069 case 16: 1070 return RISCVII::VLMUL::LMUL_F4; 1071 case 32: 1072 return RISCVII::VLMUL::LMUL_F2; 1073 case 64: 1074 return RISCVII::VLMUL::LMUL_1; 1075 case 128: 1076 return RISCVII::VLMUL::LMUL_2; 1077 case 256: 1078 return RISCVII::VLMUL::LMUL_4; 1079 case 512: 1080 return RISCVII::VLMUL::LMUL_8; 1081 } 1082 } 1083 1084 unsigned RISCVTargetLowering::getRegClassIDForLMUL(RISCVII::VLMUL LMul) { 1085 switch (LMul) { 1086 default: 1087 llvm_unreachable("Invalid LMUL."); 1088 case RISCVII::VLMUL::LMUL_F8: 1089 case RISCVII::VLMUL::LMUL_F4: 1090 case RISCVII::VLMUL::LMUL_F2: 1091 case RISCVII::VLMUL::LMUL_1: 1092 return RISCV::VRRegClassID; 1093 case RISCVII::VLMUL::LMUL_2: 1094 return RISCV::VRM2RegClassID; 1095 case RISCVII::VLMUL::LMUL_4: 1096 return RISCV::VRM4RegClassID; 1097 case RISCVII::VLMUL::LMUL_8: 1098 return RISCV::VRM8RegClassID; 1099 } 1100 } 1101 1102 unsigned RISCVTargetLowering::getSubregIndexByMVT(MVT VT, unsigned Index) { 1103 RISCVII::VLMUL LMUL = getLMUL(VT); 1104 if (LMUL == RISCVII::VLMUL::LMUL_F8 || 1105 LMUL == RISCVII::VLMUL::LMUL_F4 || 1106 LMUL == RISCVII::VLMUL::LMUL_F2 || 1107 LMUL == RISCVII::VLMUL::LMUL_1) { 1108 static_assert(RISCV::sub_vrm1_7 == RISCV::sub_vrm1_0 + 7, 1109 "Unexpected subreg numbering"); 1110 return RISCV::sub_vrm1_0 + Index; 1111 } 1112 if (LMUL == RISCVII::VLMUL::LMUL_2) { 1113 static_assert(RISCV::sub_vrm2_3 == RISCV::sub_vrm2_0 + 3, 1114 "Unexpected subreg numbering"); 1115 return RISCV::sub_vrm2_0 + Index; 1116 } 1117 if (LMUL == RISCVII::VLMUL::LMUL_4) { 1118 static_assert(RISCV::sub_vrm4_1 == RISCV::sub_vrm4_0 + 1, 1119 "Unexpected subreg numbering"); 1120 return RISCV::sub_vrm4_0 + Index; 1121 } 1122 llvm_unreachable("Invalid vector type."); 1123 } 1124 1125 unsigned RISCVTargetLowering::getRegClassIDForVecVT(MVT VT) { 1126 if (VT.getVectorElementType() == MVT::i1) 1127 return RISCV::VRRegClassID; 1128 return getRegClassIDForLMUL(getLMUL(VT)); 1129 } 1130 1131 // Attempt to decompose a subvector insert/extract between VecVT and 1132 // SubVecVT via subregister indices. Returns the subregister index that 1133 // can perform the subvector insert/extract with the given element index, as 1134 // well as the index corresponding to any leftover subvectors that must be 1135 // further inserted/extracted within the register class for SubVecVT. 1136 std::pair<unsigned, unsigned> 1137 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( 1138 MVT VecVT, MVT SubVecVT, unsigned InsertExtractIdx, 1139 const RISCVRegisterInfo *TRI) { 1140 static_assert((RISCV::VRM8RegClassID > RISCV::VRM4RegClassID && 1141 RISCV::VRM4RegClassID > RISCV::VRM2RegClassID && 1142 RISCV::VRM2RegClassID > RISCV::VRRegClassID), 1143 "Register classes not ordered"); 1144 unsigned VecRegClassID = getRegClassIDForVecVT(VecVT); 1145 unsigned SubRegClassID = getRegClassIDForVecVT(SubVecVT); 1146 // Try to compose a subregister index that takes us from the incoming 1147 // LMUL>1 register class down to the outgoing one. At each step we half 1148 // the LMUL: 1149 // nxv16i32@12 -> nxv2i32: sub_vrm4_1_then_sub_vrm2_1_then_sub_vrm1_0 1150 // Note that this is not guaranteed to find a subregister index, such as 1151 // when we are extracting from one VR type to another. 1152 unsigned SubRegIdx = RISCV::NoSubRegister; 1153 for (const unsigned RCID : 1154 {RISCV::VRM4RegClassID, RISCV::VRM2RegClassID, RISCV::VRRegClassID}) 1155 if (VecRegClassID > RCID && SubRegClassID <= RCID) { 1156 VecVT = VecVT.getHalfNumVectorElementsVT(); 1157 bool IsHi = 1158 InsertExtractIdx >= VecVT.getVectorElementCount().getKnownMinValue(); 1159 SubRegIdx = TRI->composeSubRegIndices(SubRegIdx, 1160 getSubregIndexByMVT(VecVT, IsHi)); 1161 if (IsHi) 1162 InsertExtractIdx -= VecVT.getVectorElementCount().getKnownMinValue(); 1163 } 1164 return {SubRegIdx, InsertExtractIdx}; 1165 } 1166 1167 // Permit combining of mask vectors as BUILD_VECTOR never expands to scalar 1168 // stores for those types. 1169 bool RISCVTargetLowering::mergeStoresAfterLegalization(EVT VT) const { 1170 return !Subtarget.useRVVForFixedLengthVectors() || 1171 (VT.isFixedLengthVector() && VT.getVectorElementType() == MVT::i1); 1172 } 1173 1174 static bool useRVVForFixedLengthVectorVT(MVT VT, 1175 const RISCVSubtarget &Subtarget) { 1176 assert(VT.isFixedLengthVector() && "Expected a fixed length vector type!"); 1177 if (!Subtarget.useRVVForFixedLengthVectors()) 1178 return false; 1179 1180 // We only support a set of vector types with a consistent maximum fixed size 1181 // across all supported vector element types to avoid legalization issues. 1182 // Therefore -- since the largest is v1024i8/v512i16/etc -- the largest 1183 // fixed-length vector type we support is 1024 bytes. 1184 if (VT.getFixedSizeInBits() > 1024 * 8) 1185 return false; 1186 1187 unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits(); 1188 1189 // Don't use RVV for vectors we cannot scalarize if required. 1190 switch (VT.getVectorElementType().SimpleTy) { 1191 // i1 is supported but has different rules. 1192 default: 1193 return false; 1194 case MVT::i1: 1195 // Masks can only use a single register. 1196 if (VT.getVectorNumElements() > MinVLen) 1197 return false; 1198 MinVLen /= 8; 1199 break; 1200 case MVT::i8: 1201 case MVT::i16: 1202 case MVT::i32: 1203 case MVT::i64: 1204 break; 1205 case MVT::f16: 1206 if (!Subtarget.hasStdExtZfh()) 1207 return false; 1208 break; 1209 case MVT::f32: 1210 if (!Subtarget.hasStdExtF()) 1211 return false; 1212 break; 1213 case MVT::f64: 1214 if (!Subtarget.hasStdExtD()) 1215 return false; 1216 break; 1217 } 1218 1219 unsigned LMul = divideCeil(VT.getSizeInBits(), MinVLen); 1220 // Don't use RVV for types that don't fit. 1221 if (LMul > Subtarget.getMaxLMULForFixedLengthVectors()) 1222 return false; 1223 1224 // TODO: Perhaps an artificial restriction, but worth having whilst getting 1225 // the base fixed length RVV support in place. 1226 if (!VT.isPow2VectorType()) 1227 return false; 1228 1229 return true; 1230 } 1231 1232 bool RISCVTargetLowering::useRVVForFixedLengthVectorVT(MVT VT) const { 1233 return ::useRVVForFixedLengthVectorVT(VT, Subtarget); 1234 } 1235 1236 // Return the largest legal scalable vector type that matches VT's element type. 1237 static MVT getContainerForFixedLengthVector(const TargetLowering &TLI, MVT VT, 1238 const RISCVSubtarget &Subtarget) { 1239 // This may be called before legal types are setup. 1240 assert(((VT.isFixedLengthVector() && TLI.isTypeLegal(VT)) || 1241 useRVVForFixedLengthVectorVT(VT, Subtarget)) && 1242 "Expected legal fixed length vector!"); 1243 1244 unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits(); 1245 1246 MVT EltVT = VT.getVectorElementType(); 1247 switch (EltVT.SimpleTy) { 1248 default: 1249 llvm_unreachable("unexpected element type for RVV container"); 1250 case MVT::i1: 1251 case MVT::i8: 1252 case MVT::i16: 1253 case MVT::i32: 1254 case MVT::i64: 1255 case MVT::f16: 1256 case MVT::f32: 1257 case MVT::f64: { 1258 // We prefer to use LMUL=1 for VLEN sized types. Use fractional lmuls for 1259 // narrower types, but we can't have a fractional LMUL with demoninator less 1260 // than 64/SEW. 1261 unsigned NumElts = 1262 divideCeil(VT.getVectorNumElements(), MinVLen / RISCV::RVVBitsPerBlock); 1263 return MVT::getScalableVectorVT(EltVT, NumElts); 1264 } 1265 } 1266 } 1267 1268 static MVT getContainerForFixedLengthVector(SelectionDAG &DAG, MVT VT, 1269 const RISCVSubtarget &Subtarget) { 1270 return getContainerForFixedLengthVector(DAG.getTargetLoweringInfo(), VT, 1271 Subtarget); 1272 } 1273 1274 MVT RISCVTargetLowering::getContainerForFixedLengthVector(MVT VT) const { 1275 return ::getContainerForFixedLengthVector(*this, VT, getSubtarget()); 1276 } 1277 1278 // Grow V to consume an entire RVV register. 1279 static SDValue convertToScalableVector(EVT VT, SDValue V, SelectionDAG &DAG, 1280 const RISCVSubtarget &Subtarget) { 1281 assert(VT.isScalableVector() && 1282 "Expected to convert into a scalable vector!"); 1283 assert(V.getValueType().isFixedLengthVector() && 1284 "Expected a fixed length vector operand!"); 1285 SDLoc DL(V); 1286 SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 1287 return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, DAG.getUNDEF(VT), V, Zero); 1288 } 1289 1290 // Shrink V so it's just big enough to maintain a VT's worth of data. 1291 static SDValue convertFromScalableVector(EVT VT, SDValue V, SelectionDAG &DAG, 1292 const RISCVSubtarget &Subtarget) { 1293 assert(VT.isFixedLengthVector() && 1294 "Expected to convert into a fixed length vector!"); 1295 assert(V.getValueType().isScalableVector() && 1296 "Expected a scalable vector operand!"); 1297 SDLoc DL(V); 1298 SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 1299 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V, Zero); 1300 } 1301 1302 // Gets the two common "VL" operands: an all-ones mask and the vector length. 1303 // VecVT is a vector type, either fixed-length or scalable, and ContainerVT is 1304 // the vector type that it is contained in. 1305 static std::pair<SDValue, SDValue> 1306 getDefaultVLOps(MVT VecVT, MVT ContainerVT, SDLoc DL, SelectionDAG &DAG, 1307 const RISCVSubtarget &Subtarget) { 1308 assert(ContainerVT.isScalableVector() && "Expecting scalable container type"); 1309 MVT XLenVT = Subtarget.getXLenVT(); 1310 SDValue VL = VecVT.isFixedLengthVector() 1311 ? DAG.getConstant(VecVT.getVectorNumElements(), DL, XLenVT) 1312 : DAG.getRegister(RISCV::X0, XLenVT); 1313 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 1314 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 1315 return {Mask, VL}; 1316 } 1317 1318 // As above but assuming the given type is a scalable vector type. 1319 static std::pair<SDValue, SDValue> 1320 getDefaultScalableVLOps(MVT VecVT, SDLoc DL, SelectionDAG &DAG, 1321 const RISCVSubtarget &Subtarget) { 1322 assert(VecVT.isScalableVector() && "Expecting a scalable vector"); 1323 return getDefaultVLOps(VecVT, VecVT, DL, DAG, Subtarget); 1324 } 1325 1326 // The state of RVV BUILD_VECTOR and VECTOR_SHUFFLE lowering is that very few 1327 // of either is (currently) supported. This can get us into an infinite loop 1328 // where we try to lower a BUILD_VECTOR as a VECTOR_SHUFFLE as a BUILD_VECTOR 1329 // as a ..., etc. 1330 // Until either (or both) of these can reliably lower any node, reporting that 1331 // we don't want to expand BUILD_VECTORs via VECTOR_SHUFFLEs at least breaks 1332 // the infinite loop. Note that this lowers BUILD_VECTOR through the stack, 1333 // which is not desirable. 1334 bool RISCVTargetLowering::shouldExpandBuildVectorWithShuffles( 1335 EVT VT, unsigned DefinedValues) const { 1336 return false; 1337 } 1338 1339 bool RISCVTargetLowering::isShuffleMaskLegal(ArrayRef<int> M, EVT VT) const { 1340 // Only splats are currently supported. 1341 if (ShuffleVectorSDNode::isSplatMask(M.data(), VT)) 1342 return true; 1343 1344 return false; 1345 } 1346 1347 static SDValue lowerSPLAT_VECTOR(SDValue Op, SelectionDAG &DAG, 1348 const RISCVSubtarget &Subtarget) { 1349 MVT VT = Op.getSimpleValueType(); 1350 assert(VT.isFixedLengthVector() && "Unexpected vector!"); 1351 1352 MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 1353 1354 SDLoc DL(Op); 1355 SDValue Mask, VL; 1356 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 1357 1358 unsigned Opc = 1359 VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL : RISCVISD::VMV_V_X_VL; 1360 SDValue Splat = DAG.getNode(Opc, DL, ContainerVT, Op.getOperand(0), VL); 1361 return convertFromScalableVector(VT, Splat, DAG, Subtarget); 1362 } 1363 1364 static SDValue lowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG, 1365 const RISCVSubtarget &Subtarget) { 1366 MVT VT = Op.getSimpleValueType(); 1367 assert(VT.isFixedLengthVector() && "Unexpected vector!"); 1368 1369 MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 1370 1371 SDLoc DL(Op); 1372 SDValue Mask, VL; 1373 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 1374 1375 MVT XLenVT = Subtarget.getXLenVT(); 1376 unsigned NumElts = Op.getNumOperands(); 1377 1378 if (VT.getVectorElementType() == MVT::i1) { 1379 if (ISD::isBuildVectorAllZeros(Op.getNode())) { 1380 SDValue VMClr = DAG.getNode(RISCVISD::VMCLR_VL, DL, ContainerVT, VL); 1381 return convertFromScalableVector(VT, VMClr, DAG, Subtarget); 1382 } 1383 1384 if (ISD::isBuildVectorAllOnes(Op.getNode())) { 1385 SDValue VMSet = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL); 1386 return convertFromScalableVector(VT, VMSet, DAG, Subtarget); 1387 } 1388 1389 // Lower constant mask BUILD_VECTORs via an integer vector type, in 1390 // scalar integer chunks whose bit-width depends on the number of mask 1391 // bits and XLEN. 1392 // First, determine the most appropriate scalar integer type to use. This 1393 // is at most XLenVT, but may be shrunk to a smaller vector element type 1394 // according to the size of the final vector - use i8 chunks rather than 1395 // XLenVT if we're producing a v8i1. This results in more consistent 1396 // codegen across RV32 and RV64. 1397 unsigned NumViaIntegerBits = 1398 std::min(std::max(NumElts, 8u), Subtarget.getXLen()); 1399 if (ISD::isBuildVectorOfConstantSDNodes(Op.getNode())) { 1400 // If we have to use more than one INSERT_VECTOR_ELT then this 1401 // optimization is likely to increase code size; avoid peforming it in 1402 // such a case. We can use a load from a constant pool in this case. 1403 if (DAG.shouldOptForSize() && NumElts > NumViaIntegerBits) 1404 return SDValue(); 1405 // Now we can create our integer vector type. Note that it may be larger 1406 // than the resulting mask type: v4i1 would use v1i8 as its integer type. 1407 MVT IntegerViaVecVT = 1408 MVT::getVectorVT(MVT::getIntegerVT(NumViaIntegerBits), 1409 divideCeil(NumElts, NumViaIntegerBits)); 1410 1411 uint64_t Bits = 0; 1412 unsigned BitPos = 0, IntegerEltIdx = 0; 1413 SDValue Vec = DAG.getUNDEF(IntegerViaVecVT); 1414 1415 for (unsigned I = 0; I < NumElts; I++, BitPos++) { 1416 // Once we accumulate enough bits to fill our scalar type, insert into 1417 // our vector and clear our accumulated data. 1418 if (I != 0 && I % NumViaIntegerBits == 0) { 1419 if (NumViaIntegerBits <= 32) 1420 Bits = SignExtend64(Bits, 32); 1421 SDValue Elt = DAG.getConstant(Bits, DL, XLenVT); 1422 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec, 1423 Elt, DAG.getConstant(IntegerEltIdx, DL, XLenVT)); 1424 Bits = 0; 1425 BitPos = 0; 1426 IntegerEltIdx++; 1427 } 1428 SDValue V = Op.getOperand(I); 1429 bool BitValue = !V.isUndef() && cast<ConstantSDNode>(V)->getZExtValue(); 1430 Bits |= ((uint64_t)BitValue << BitPos); 1431 } 1432 1433 // Insert the (remaining) scalar value into position in our integer 1434 // vector type. 1435 if (NumViaIntegerBits <= 32) 1436 Bits = SignExtend64(Bits, 32); 1437 SDValue Elt = DAG.getConstant(Bits, DL, XLenVT); 1438 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec, Elt, 1439 DAG.getConstant(IntegerEltIdx, DL, XLenVT)); 1440 1441 if (NumElts < NumViaIntegerBits) { 1442 // If we're producing a smaller vector than our minimum legal integer 1443 // type, bitcast to the equivalent (known-legal) mask type, and extract 1444 // our final mask. 1445 assert(IntegerViaVecVT == MVT::v1i8 && "Unexpected mask vector type"); 1446 Vec = DAG.getBitcast(MVT::v8i1, Vec); 1447 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Vec, 1448 DAG.getConstant(0, DL, XLenVT)); 1449 } else { 1450 // Else we must have produced an integer type with the same size as the 1451 // mask type; bitcast for the final result. 1452 assert(VT.getSizeInBits() == IntegerViaVecVT.getSizeInBits()); 1453 Vec = DAG.getBitcast(VT, Vec); 1454 } 1455 1456 return Vec; 1457 } 1458 1459 // A BUILD_VECTOR can be lowered as a SETCC. For each fixed-length mask 1460 // vector type, we have a legal equivalently-sized i8 type, so we can use 1461 // that. 1462 MVT WideVecVT = VT.changeVectorElementType(MVT::i8); 1463 SDValue VecZero = DAG.getConstant(0, DL, WideVecVT); 1464 1465 SDValue WideVec; 1466 if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) { 1467 // For a splat, perform a scalar truncate before creating the wider 1468 // vector. 1469 assert(Splat.getValueType() == XLenVT && 1470 "Unexpected type for i1 splat value"); 1471 Splat = DAG.getNode(ISD::AND, DL, XLenVT, Splat, 1472 DAG.getConstant(1, DL, XLenVT)); 1473 WideVec = DAG.getSplatBuildVector(WideVecVT, DL, Splat); 1474 } else { 1475 SmallVector<SDValue, 8> Ops(Op->op_values()); 1476 WideVec = DAG.getBuildVector(WideVecVT, DL, Ops); 1477 SDValue VecOne = DAG.getConstant(1, DL, WideVecVT); 1478 WideVec = DAG.getNode(ISD::AND, DL, WideVecVT, WideVec, VecOne); 1479 } 1480 1481 return DAG.getSetCC(DL, VT, WideVec, VecZero, ISD::SETNE); 1482 } 1483 1484 if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) { 1485 unsigned Opc = VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL 1486 : RISCVISD::VMV_V_X_VL; 1487 Splat = DAG.getNode(Opc, DL, ContainerVT, Splat, VL); 1488 return convertFromScalableVector(VT, Splat, DAG, Subtarget); 1489 } 1490 1491 // Try and match an index sequence, which we can lower directly to the vid 1492 // instruction. An all-undef vector is matched by getSplatValue, above. 1493 if (VT.isInteger()) { 1494 bool IsVID = true; 1495 for (unsigned I = 0; I < NumElts && IsVID; I++) 1496 IsVID &= Op.getOperand(I).isUndef() || 1497 (isa<ConstantSDNode>(Op.getOperand(I)) && 1498 Op.getConstantOperandVal(I) == I); 1499 1500 if (IsVID) { 1501 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, ContainerVT, Mask, VL); 1502 return convertFromScalableVector(VT, VID, DAG, Subtarget); 1503 } 1504 } 1505 1506 // Attempt to detect "hidden" splats, which only reveal themselves as splats 1507 // when re-interpreted as a vector with a larger element type. For example, 1508 // v4i16 = build_vector i16 0, i16 1, i16 0, i16 1 1509 // could be instead splat as 1510 // v2i32 = build_vector i32 0x00010000, i32 0x00010000 1511 // TODO: This optimization could also work on non-constant splats, but it 1512 // would require bit-manipulation instructions to construct the splat value. 1513 SmallVector<SDValue> Sequence; 1514 unsigned EltBitSize = VT.getScalarSizeInBits(); 1515 const auto *BV = cast<BuildVectorSDNode>(Op); 1516 if (VT.isInteger() && EltBitSize < 64 && 1517 ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) && 1518 BV->getRepeatedSequence(Sequence) && 1519 (Sequence.size() * EltBitSize) <= 64) { 1520 unsigned SeqLen = Sequence.size(); 1521 MVT ViaIntVT = MVT::getIntegerVT(EltBitSize * SeqLen); 1522 MVT ViaVecVT = MVT::getVectorVT(ViaIntVT, NumElts / SeqLen); 1523 assert((ViaIntVT == MVT::i16 || ViaIntVT == MVT::i32 || 1524 ViaIntVT == MVT::i64) && 1525 "Unexpected sequence type"); 1526 1527 unsigned EltIdx = 0; 1528 uint64_t EltMask = maskTrailingOnes<uint64_t>(EltBitSize); 1529 uint64_t SplatValue = 0; 1530 // Construct the amalgamated value which can be splatted as this larger 1531 // vector type. 1532 for (const auto &SeqV : Sequence) { 1533 if (!SeqV.isUndef()) 1534 SplatValue |= ((cast<ConstantSDNode>(SeqV)->getZExtValue() & EltMask) 1535 << (EltIdx * EltBitSize)); 1536 EltIdx++; 1537 } 1538 1539 // On RV64, sign-extend from 32 to 64 bits where possible in order to 1540 // achieve better constant materializion. 1541 if (Subtarget.is64Bit() && ViaIntVT == MVT::i32) 1542 SplatValue = SignExtend64(SplatValue, 32); 1543 1544 // Since we can't introduce illegal i64 types at this stage, we can only 1545 // perform an i64 splat on RV32 if it is its own sign-extended value. That 1546 // way we can use RVV instructions to splat. 1547 assert((ViaIntVT.bitsLE(XLenVT) || 1548 (!Subtarget.is64Bit() && ViaIntVT == MVT::i64)) && 1549 "Unexpected bitcast sequence"); 1550 if (ViaIntVT.bitsLE(XLenVT) || isInt<32>(SplatValue)) { 1551 SDValue ViaVL = 1552 DAG.getConstant(ViaVecVT.getVectorNumElements(), DL, XLenVT); 1553 MVT ViaContainerVT = 1554 getContainerForFixedLengthVector(DAG, ViaVecVT, Subtarget); 1555 SDValue Splat = 1556 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ViaContainerVT, 1557 DAG.getConstant(SplatValue, DL, XLenVT), ViaVL); 1558 Splat = convertFromScalableVector(ViaVecVT, Splat, DAG, Subtarget); 1559 return DAG.getBitcast(VT, Splat); 1560 } 1561 } 1562 1563 // Try and optimize BUILD_VECTORs with "dominant values" - these are values 1564 // which constitute a large proportion of the elements. In such cases we can 1565 // splat a vector with the dominant element and make up the shortfall with 1566 // INSERT_VECTOR_ELTs. 1567 // Note that this includes vectors of 2 elements by association. The 1568 // upper-most element is the "dominant" one, allowing us to use a splat to 1569 // "insert" the upper element, and an insert of the lower element at position 1570 // 0, which improves codegen. 1571 SDValue DominantValue; 1572 unsigned MostCommonCount = 0; 1573 DenseMap<SDValue, unsigned> ValueCounts; 1574 unsigned NumUndefElts = 1575 count_if(Op->op_values(), [](const SDValue &V) { return V.isUndef(); }); 1576 1577 for (SDValue V : Op->op_values()) { 1578 if (V.isUndef()) 1579 continue; 1580 1581 ValueCounts.insert(std::make_pair(V, 0)); 1582 unsigned &Count = ValueCounts[V]; 1583 1584 // Is this value dominant? In case of a tie, prefer the highest element as 1585 // it's cheaper to insert near the beginning of a vector than it is at the 1586 // end. 1587 if (++Count >= MostCommonCount) { 1588 DominantValue = V; 1589 MostCommonCount = Count; 1590 } 1591 } 1592 1593 assert(DominantValue && "Not expecting an all-undef BUILD_VECTOR"); 1594 unsigned NumDefElts = NumElts - NumUndefElts; 1595 unsigned DominantValueCountThreshold = NumDefElts <= 2 ? 0 : NumDefElts - 2; 1596 1597 // Don't perform this optimization when optimizing for size, since 1598 // materializing elements and inserting them tends to cause code bloat. 1599 if (!DAG.shouldOptForSize() && 1600 ((MostCommonCount > DominantValueCountThreshold) || 1601 (ValueCounts.size() <= Log2_32(NumDefElts)))) { 1602 // Start by splatting the most common element. 1603 SDValue Vec = DAG.getSplatBuildVector(VT, DL, DominantValue); 1604 1605 DenseSet<SDValue> Processed{DominantValue}; 1606 MVT SelMaskTy = VT.changeVectorElementType(MVT::i1); 1607 for (const auto &OpIdx : enumerate(Op->ops())) { 1608 const SDValue &V = OpIdx.value(); 1609 if (V.isUndef() || !Processed.insert(V).second) 1610 continue; 1611 if (ValueCounts[V] == 1) { 1612 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Vec, V, 1613 DAG.getConstant(OpIdx.index(), DL, XLenVT)); 1614 } else { 1615 // Blend in all instances of this value using a VSELECT, using a 1616 // mask where each bit signals whether that element is the one 1617 // we're after. 1618 SmallVector<SDValue> Ops; 1619 transform(Op->op_values(), std::back_inserter(Ops), [&](SDValue V1) { 1620 return DAG.getConstant(V == V1, DL, XLenVT); 1621 }); 1622 Vec = DAG.getNode(ISD::VSELECT, DL, VT, 1623 DAG.getBuildVector(SelMaskTy, DL, Ops), 1624 DAG.getSplatBuildVector(VT, DL, V), Vec); 1625 } 1626 } 1627 1628 return Vec; 1629 } 1630 1631 return SDValue(); 1632 } 1633 1634 static SDValue splatPartsI64WithVL(const SDLoc &DL, MVT VT, SDValue Lo, 1635 SDValue Hi, SDValue VL, SelectionDAG &DAG) { 1636 if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) { 1637 int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue(); 1638 int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue(); 1639 // If Hi constant is all the same sign bit as Lo, lower this as a custom 1640 // node in order to try and match RVV vector/scalar instructions. 1641 if ((LoC >> 31) == HiC) 1642 return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Lo, VL); 1643 } 1644 1645 // Fall back to a stack store and stride x0 vector load. 1646 return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VT, Lo, Hi, VL); 1647 } 1648 1649 // Called by type legalization to handle splat of i64 on RV32. 1650 // FIXME: We can optimize this when the type has sign or zero bits in one 1651 // of the halves. 1652 static SDValue splatSplitI64WithVL(const SDLoc &DL, MVT VT, SDValue Scalar, 1653 SDValue VL, SelectionDAG &DAG) { 1654 assert(Scalar.getValueType() == MVT::i64 && "Unexpected VT!"); 1655 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 1656 DAG.getConstant(0, DL, MVT::i32)); 1657 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 1658 DAG.getConstant(1, DL, MVT::i32)); 1659 return splatPartsI64WithVL(DL, VT, Lo, Hi, VL, DAG); 1660 } 1661 1662 // This function lowers a splat of a scalar operand Splat with the vector 1663 // length VL. It ensures the final sequence is type legal, which is useful when 1664 // lowering a splat after type legalization. 1665 static SDValue lowerScalarSplat(SDValue Scalar, SDValue VL, MVT VT, SDLoc DL, 1666 SelectionDAG &DAG, 1667 const RISCVSubtarget &Subtarget) { 1668 if (VT.isFloatingPoint()) 1669 return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, VT, Scalar, VL); 1670 1671 MVT XLenVT = Subtarget.getXLenVT(); 1672 1673 // Simplest case is that the operand needs to be promoted to XLenVT. 1674 if (Scalar.getValueType().bitsLE(XLenVT)) { 1675 // If the operand is a constant, sign extend to increase our chances 1676 // of being able to use a .vi instruction. ANY_EXTEND would become a 1677 // a zero extend and the simm5 check in isel would fail. 1678 // FIXME: Should we ignore the upper bits in isel instead? 1679 unsigned ExtOpc = 1680 isa<ConstantSDNode>(Scalar) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND; 1681 Scalar = DAG.getNode(ExtOpc, DL, XLenVT, Scalar); 1682 return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Scalar, VL); 1683 } 1684 1685 assert(XLenVT == MVT::i32 && Scalar.getValueType() == MVT::i64 && 1686 "Unexpected scalar for splat lowering!"); 1687 1688 // Otherwise use the more complicated splatting algorithm. 1689 return splatSplitI64WithVL(DL, VT, Scalar, VL, DAG); 1690 } 1691 1692 static SDValue lowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG, 1693 const RISCVSubtarget &Subtarget) { 1694 SDValue V1 = Op.getOperand(0); 1695 SDValue V2 = Op.getOperand(1); 1696 SDLoc DL(Op); 1697 MVT XLenVT = Subtarget.getXLenVT(); 1698 MVT VT = Op.getSimpleValueType(); 1699 unsigned NumElts = VT.getVectorNumElements(); 1700 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode()); 1701 1702 MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 1703 1704 SDValue TrueMask, VL; 1705 std::tie(TrueMask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 1706 1707 if (SVN->isSplat()) { 1708 const int Lane = SVN->getSplatIndex(); 1709 if (Lane >= 0) { 1710 MVT SVT = VT.getVectorElementType(); 1711 1712 // Turn splatted vector load into a strided load with an X0 stride. 1713 SDValue V = V1; 1714 // Peek through CONCAT_VECTORS as VectorCombine can concat a vector 1715 // with undef. 1716 // FIXME: Peek through INSERT_SUBVECTOR, EXTRACT_SUBVECTOR, bitcasts? 1717 int Offset = Lane; 1718 if (V.getOpcode() == ISD::CONCAT_VECTORS) { 1719 int OpElements = 1720 V.getOperand(0).getSimpleValueType().getVectorNumElements(); 1721 V = V.getOperand(Offset / OpElements); 1722 Offset %= OpElements; 1723 } 1724 1725 // We need to ensure the load isn't atomic or volatile. 1726 if (ISD::isNormalLoad(V.getNode()) && cast<LoadSDNode>(V)->isSimple()) { 1727 auto *Ld = cast<LoadSDNode>(V); 1728 Offset *= SVT.getStoreSize(); 1729 SDValue NewAddr = DAG.getMemBasePlusOffset(Ld->getBasePtr(), 1730 TypeSize::Fixed(Offset), DL); 1731 1732 // If this is SEW=64 on RV32, use a strided load with a stride of x0. 1733 if (SVT.isInteger() && SVT.bitsGT(XLenVT)) { 1734 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 1735 SDValue IntID = 1736 DAG.getTargetConstant(Intrinsic::riscv_vlse, DL, XLenVT); 1737 SDValue Ops[] = {Ld->getChain(), IntID, NewAddr, 1738 DAG.getRegister(RISCV::X0, XLenVT), VL}; 1739 SDValue NewLoad = DAG.getMemIntrinsicNode( 1740 ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, SVT, 1741 DAG.getMachineFunction().getMachineMemOperand( 1742 Ld->getMemOperand(), Offset, SVT.getStoreSize())); 1743 DAG.makeEquivalentMemoryOrdering(Ld, NewLoad); 1744 return convertFromScalableVector(VT, NewLoad, DAG, Subtarget); 1745 } 1746 1747 // Otherwise use a scalar load and splat. This will give the best 1748 // opportunity to fold a splat into the operation. ISel can turn it into 1749 // the x0 strided load if we aren't able to fold away the select. 1750 if (SVT.isFloatingPoint()) 1751 V = DAG.getLoad(SVT, DL, Ld->getChain(), NewAddr, 1752 Ld->getPointerInfo().getWithOffset(Offset), 1753 Ld->getOriginalAlign(), 1754 Ld->getMemOperand()->getFlags()); 1755 else 1756 V = DAG.getExtLoad(ISD::SEXTLOAD, DL, XLenVT, Ld->getChain(), NewAddr, 1757 Ld->getPointerInfo().getWithOffset(Offset), SVT, 1758 Ld->getOriginalAlign(), 1759 Ld->getMemOperand()->getFlags()); 1760 DAG.makeEquivalentMemoryOrdering(Ld, V); 1761 1762 unsigned Opc = 1763 VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL : RISCVISD::VMV_V_X_VL; 1764 SDValue Splat = DAG.getNode(Opc, DL, ContainerVT, V, VL); 1765 return convertFromScalableVector(VT, Splat, DAG, Subtarget); 1766 } 1767 1768 V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget); 1769 assert(Lane < (int)NumElts && "Unexpected lane!"); 1770 SDValue Gather = 1771 DAG.getNode(RISCVISD::VRGATHER_VX_VL, DL, ContainerVT, V1, 1772 DAG.getConstant(Lane, DL, XLenVT), TrueMask, VL); 1773 return convertFromScalableVector(VT, Gather, DAG, Subtarget); 1774 } 1775 } 1776 1777 // Detect shuffles which can be re-expressed as vector selects; these are 1778 // shuffles in which each element in the destination is taken from an element 1779 // at the corresponding index in either source vectors. 1780 bool IsSelect = all_of(enumerate(SVN->getMask()), [&](const auto &MaskIdx) { 1781 int MaskIndex = MaskIdx.value(); 1782 return MaskIndex < 0 || MaskIdx.index() == (unsigned)MaskIndex % NumElts; 1783 }); 1784 1785 assert(!V1.isUndef() && "Unexpected shuffle canonicalization"); 1786 1787 SmallVector<SDValue> MaskVals; 1788 // As a backup, shuffles can be lowered via a vrgather instruction, possibly 1789 // merged with a second vrgather. 1790 SmallVector<SDValue> GatherIndicesLHS, GatherIndicesRHS; 1791 1792 // By default we preserve the original operand order, and use a mask to 1793 // select LHS as true and RHS as false. However, since RVV vector selects may 1794 // feature splats but only on the LHS, we may choose to invert our mask and 1795 // instead select between RHS and LHS. 1796 bool SwapOps = DAG.isSplatValue(V2) && !DAG.isSplatValue(V1); 1797 bool InvertMask = IsSelect == SwapOps; 1798 1799 // Now construct the mask that will be used by the vselect or blended 1800 // vrgather operation. For vrgathers, construct the appropriate indices into 1801 // each vector. 1802 for (int MaskIndex : SVN->getMask()) { 1803 bool SelectMaskVal = (MaskIndex < (int)NumElts) ^ InvertMask; 1804 MaskVals.push_back(DAG.getConstant(SelectMaskVal, DL, XLenVT)); 1805 if (!IsSelect) { 1806 bool IsLHS = MaskIndex < (int)NumElts; 1807 // For "undef" elements of -1, shuffle in element 0 instead. 1808 GatherIndicesLHS.push_back( 1809 DAG.getConstant(IsLHS ? std::max(MaskIndex, 0) : 0, DL, XLenVT)); 1810 // TODO: If we're masking out unused elements anyway, it might produce 1811 // better code if we use the most-common element index instead of 0. 1812 GatherIndicesRHS.push_back( 1813 DAG.getConstant(IsLHS ? 0 : MaskIndex - NumElts, DL, XLenVT)); 1814 } 1815 } 1816 1817 if (SwapOps) { 1818 std::swap(V1, V2); 1819 std::swap(GatherIndicesLHS, GatherIndicesRHS); 1820 } 1821 1822 assert(MaskVals.size() == NumElts && "Unexpected select-like shuffle"); 1823 MVT MaskVT = MVT::getVectorVT(MVT::i1, NumElts); 1824 SDValue SelectMask = DAG.getBuildVector(MaskVT, DL, MaskVals); 1825 1826 if (IsSelect) 1827 return DAG.getNode(ISD::VSELECT, DL, VT, SelectMask, V1, V2); 1828 1829 if (VT.getScalarSizeInBits() == 8 && VT.getVectorNumElements() > 256) { 1830 // On such a large vector we're unable to use i8 as the index type. 1831 // FIXME: We could promote the index to i16 and use vrgatherei16, but that 1832 // may involve vector splitting if we're already at LMUL=8, or our 1833 // user-supplied maximum fixed-length LMUL. 1834 return SDValue(); 1835 } 1836 1837 unsigned GatherOpc = RISCVISD::VRGATHER_VV_VL; 1838 MVT IndexVT = VT.changeTypeToInteger(); 1839 // Since we can't introduce illegal index types at this stage, use i16 and 1840 // vrgatherei16 if the corresponding index type for plain vrgather is greater 1841 // than XLenVT. 1842 if (IndexVT.getScalarType().bitsGT(XLenVT)) { 1843 GatherOpc = RISCVISD::VRGATHEREI16_VV_VL; 1844 IndexVT = IndexVT.changeVectorElementType(MVT::i16); 1845 } 1846 1847 MVT IndexContainerVT = 1848 ContainerVT.changeVectorElementType(IndexVT.getScalarType()); 1849 1850 SDValue Gather; 1851 // TODO: This doesn't trigger for i64 vectors on RV32, since there we 1852 // encounter a bitcasted BUILD_VECTOR with low/high i32 values. 1853 if (SDValue SplatValue = DAG.getSplatValue(V1, /*LegalTypes*/ true)) { 1854 Gather = lowerScalarSplat(SplatValue, VL, ContainerVT, DL, DAG, Subtarget); 1855 } else { 1856 SDValue LHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesLHS); 1857 LHSIndices = 1858 convertToScalableVector(IndexContainerVT, LHSIndices, DAG, Subtarget); 1859 1860 V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget); 1861 Gather = 1862 DAG.getNode(GatherOpc, DL, ContainerVT, V1, LHSIndices, TrueMask, VL); 1863 } 1864 1865 // If a second vector operand is used by this shuffle, blend it in with an 1866 // additional vrgather. 1867 if (!V2.isUndef()) { 1868 MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1); 1869 SelectMask = 1870 convertToScalableVector(MaskContainerVT, SelectMask, DAG, Subtarget); 1871 1872 SDValue RHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesRHS); 1873 RHSIndices = 1874 convertToScalableVector(IndexContainerVT, RHSIndices, DAG, Subtarget); 1875 1876 V2 = convertToScalableVector(ContainerVT, V2, DAG, Subtarget); 1877 V2 = DAG.getNode(GatherOpc, DL, ContainerVT, V2, RHSIndices, TrueMask, VL); 1878 Gather = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, SelectMask, V2, 1879 Gather, VL); 1880 } 1881 1882 return convertFromScalableVector(VT, Gather, DAG, Subtarget); 1883 } 1884 1885 static SDValue getRVVFPExtendOrRound(SDValue Op, MVT VT, MVT ContainerVT, 1886 SDLoc DL, SelectionDAG &DAG, 1887 const RISCVSubtarget &Subtarget) { 1888 if (VT.isScalableVector()) 1889 return DAG.getFPExtendOrRound(Op, DL, VT); 1890 assert(VT.isFixedLengthVector() && 1891 "Unexpected value type for RVV FP extend/round lowering"); 1892 SDValue Mask, VL; 1893 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 1894 unsigned RVVOpc = ContainerVT.bitsGT(Op.getSimpleValueType()) 1895 ? RISCVISD::FP_EXTEND_VL 1896 : RISCVISD::FP_ROUND_VL; 1897 return DAG.getNode(RVVOpc, DL, ContainerVT, Op, Mask, VL); 1898 } 1899 1900 // While RVV has alignment restrictions, we should always be able to load as a 1901 // legal equivalently-sized byte-typed vector instead. This method is 1902 // responsible for re-expressing a ISD::LOAD via a correctly-aligned type. If 1903 // the load is already correctly-aligned, it returns SDValue(). 1904 SDValue RISCVTargetLowering::expandUnalignedRVVLoad(SDValue Op, 1905 SelectionDAG &DAG) const { 1906 auto *Load = cast<LoadSDNode>(Op); 1907 assert(Load && Load->getMemoryVT().isVector() && "Expected vector load"); 1908 1909 if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 1910 Load->getMemoryVT(), 1911 *Load->getMemOperand())) 1912 return SDValue(); 1913 1914 SDLoc DL(Op); 1915 MVT VT = Op.getSimpleValueType(); 1916 unsigned EltSizeBits = VT.getScalarSizeInBits(); 1917 assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) && 1918 "Unexpected unaligned RVV load type"); 1919 MVT NewVT = 1920 MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8)); 1921 assert(NewVT.isValid() && 1922 "Expecting equally-sized RVV vector types to be legal"); 1923 SDValue L = DAG.getLoad(NewVT, DL, Load->getChain(), Load->getBasePtr(), 1924 Load->getPointerInfo(), Load->getOriginalAlign(), 1925 Load->getMemOperand()->getFlags()); 1926 return DAG.getMergeValues({DAG.getBitcast(VT, L), L.getValue(1)}, DL); 1927 } 1928 1929 // While RVV has alignment restrictions, we should always be able to store as a 1930 // legal equivalently-sized byte-typed vector instead. This method is 1931 // responsible for re-expressing a ISD::STORE via a correctly-aligned type. It 1932 // returns SDValue() if the store is already correctly aligned. 1933 SDValue RISCVTargetLowering::expandUnalignedRVVStore(SDValue Op, 1934 SelectionDAG &DAG) const { 1935 auto *Store = cast<StoreSDNode>(Op); 1936 assert(Store && Store->getValue().getValueType().isVector() && 1937 "Expected vector store"); 1938 1939 if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 1940 Store->getMemoryVT(), 1941 *Store->getMemOperand())) 1942 return SDValue(); 1943 1944 SDLoc DL(Op); 1945 SDValue StoredVal = Store->getValue(); 1946 MVT VT = StoredVal.getSimpleValueType(); 1947 unsigned EltSizeBits = VT.getScalarSizeInBits(); 1948 assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) && 1949 "Unexpected unaligned RVV store type"); 1950 MVT NewVT = 1951 MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8)); 1952 assert(NewVT.isValid() && 1953 "Expecting equally-sized RVV vector types to be legal"); 1954 StoredVal = DAG.getBitcast(NewVT, StoredVal); 1955 return DAG.getStore(Store->getChain(), DL, StoredVal, Store->getBasePtr(), 1956 Store->getPointerInfo(), Store->getOriginalAlign(), 1957 Store->getMemOperand()->getFlags()); 1958 } 1959 1960 SDValue RISCVTargetLowering::LowerOperation(SDValue Op, 1961 SelectionDAG &DAG) const { 1962 switch (Op.getOpcode()) { 1963 default: 1964 report_fatal_error("unimplemented operand"); 1965 case ISD::GlobalAddress: 1966 return lowerGlobalAddress(Op, DAG); 1967 case ISD::BlockAddress: 1968 return lowerBlockAddress(Op, DAG); 1969 case ISD::ConstantPool: 1970 return lowerConstantPool(Op, DAG); 1971 case ISD::JumpTable: 1972 return lowerJumpTable(Op, DAG); 1973 case ISD::GlobalTLSAddress: 1974 return lowerGlobalTLSAddress(Op, DAG); 1975 case ISD::SELECT: 1976 return lowerSELECT(Op, DAG); 1977 case ISD::BRCOND: 1978 return lowerBRCOND(Op, DAG); 1979 case ISD::VASTART: 1980 return lowerVASTART(Op, DAG); 1981 case ISD::FRAMEADDR: 1982 return lowerFRAMEADDR(Op, DAG); 1983 case ISD::RETURNADDR: 1984 return lowerRETURNADDR(Op, DAG); 1985 case ISD::SHL_PARTS: 1986 return lowerShiftLeftParts(Op, DAG); 1987 case ISD::SRA_PARTS: 1988 return lowerShiftRightParts(Op, DAG, true); 1989 case ISD::SRL_PARTS: 1990 return lowerShiftRightParts(Op, DAG, false); 1991 case ISD::BITCAST: { 1992 SDLoc DL(Op); 1993 EVT VT = Op.getValueType(); 1994 SDValue Op0 = Op.getOperand(0); 1995 EVT Op0VT = Op0.getValueType(); 1996 MVT XLenVT = Subtarget.getXLenVT(); 1997 if (VT.isFixedLengthVector()) { 1998 // We can handle fixed length vector bitcasts with a simple replacement 1999 // in isel. 2000 if (Op0VT.isFixedLengthVector()) 2001 return Op; 2002 // When bitcasting from scalar to fixed-length vector, insert the scalar 2003 // into a one-element vector of the result type, and perform a vector 2004 // bitcast. 2005 if (!Op0VT.isVector()) { 2006 auto BVT = EVT::getVectorVT(*DAG.getContext(), Op0VT, 1); 2007 return DAG.getBitcast(VT, DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, BVT, 2008 DAG.getUNDEF(BVT), Op0, 2009 DAG.getConstant(0, DL, XLenVT))); 2010 } 2011 return SDValue(); 2012 } 2013 // Custom-legalize bitcasts from fixed-length vector types to scalar types 2014 // thus: bitcast the vector to a one-element vector type whose element type 2015 // is the same as the result type, and extract the first element. 2016 if (!VT.isVector() && Op0VT.isFixedLengthVector()) { 2017 LLVMContext &Context = *DAG.getContext(); 2018 SDValue BVec = DAG.getBitcast(EVT::getVectorVT(Context, VT, 1), Op0); 2019 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec, 2020 DAG.getConstant(0, DL, XLenVT)); 2021 } 2022 if (VT == MVT::f16 && Op0VT == MVT::i16 && Subtarget.hasStdExtZfh()) { 2023 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Op0); 2024 SDValue FPConv = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, NewOp0); 2025 return FPConv; 2026 } 2027 if (VT == MVT::f32 && Op0VT == MVT::i32 && Subtarget.is64Bit() && 2028 Subtarget.hasStdExtF()) { 2029 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); 2030 SDValue FPConv = 2031 DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, NewOp0); 2032 return FPConv; 2033 } 2034 return SDValue(); 2035 } 2036 case ISD::INTRINSIC_WO_CHAIN: 2037 return LowerINTRINSIC_WO_CHAIN(Op, DAG); 2038 case ISD::INTRINSIC_W_CHAIN: 2039 return LowerINTRINSIC_W_CHAIN(Op, DAG); 2040 case ISD::BSWAP: 2041 case ISD::BITREVERSE: { 2042 // Convert BSWAP/BITREVERSE to GREVI to enable GREVI combinining. 2043 assert(Subtarget.hasStdExtZbp() && "Unexpected custom legalisation"); 2044 MVT VT = Op.getSimpleValueType(); 2045 SDLoc DL(Op); 2046 // Start with the maximum immediate value which is the bitwidth - 1. 2047 unsigned Imm = VT.getSizeInBits() - 1; 2048 // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits. 2049 if (Op.getOpcode() == ISD::BSWAP) 2050 Imm &= ~0x7U; 2051 return DAG.getNode(RISCVISD::GREV, DL, VT, Op.getOperand(0), 2052 DAG.getConstant(Imm, DL, VT)); 2053 } 2054 case ISD::FSHL: 2055 case ISD::FSHR: { 2056 MVT VT = Op.getSimpleValueType(); 2057 assert(VT == Subtarget.getXLenVT() && "Unexpected custom legalization"); 2058 SDLoc DL(Op); 2059 if (Op.getOperand(2).getOpcode() == ISD::Constant) 2060 return Op; 2061 // FSL/FSR take a log2(XLen)+1 bit shift amount but XLenVT FSHL/FSHR only 2062 // use log(XLen) bits. Mask the shift amount accordingly. 2063 unsigned ShAmtWidth = Subtarget.getXLen() - 1; 2064 SDValue ShAmt = DAG.getNode(ISD::AND, DL, VT, Op.getOperand(2), 2065 DAG.getConstant(ShAmtWidth, DL, VT)); 2066 unsigned Opc = Op.getOpcode() == ISD::FSHL ? RISCVISD::FSL : RISCVISD::FSR; 2067 return DAG.getNode(Opc, DL, VT, Op.getOperand(0), Op.getOperand(1), ShAmt); 2068 } 2069 case ISD::TRUNCATE: { 2070 SDLoc DL(Op); 2071 MVT VT = Op.getSimpleValueType(); 2072 // Only custom-lower vector truncates 2073 if (!VT.isVector()) 2074 return Op; 2075 2076 // Truncates to mask types are handled differently 2077 if (VT.getVectorElementType() == MVT::i1) 2078 return lowerVectorMaskTrunc(Op, DAG); 2079 2080 // RVV only has truncates which operate from SEW*2->SEW, so lower arbitrary 2081 // truncates as a series of "RISCVISD::TRUNCATE_VECTOR_VL" nodes which 2082 // truncate by one power of two at a time. 2083 MVT DstEltVT = VT.getVectorElementType(); 2084 2085 SDValue Src = Op.getOperand(0); 2086 MVT SrcVT = Src.getSimpleValueType(); 2087 MVT SrcEltVT = SrcVT.getVectorElementType(); 2088 2089 assert(DstEltVT.bitsLT(SrcEltVT) && 2090 isPowerOf2_64(DstEltVT.getSizeInBits()) && 2091 isPowerOf2_64(SrcEltVT.getSizeInBits()) && 2092 "Unexpected vector truncate lowering"); 2093 2094 MVT ContainerVT = SrcVT; 2095 if (SrcVT.isFixedLengthVector()) { 2096 ContainerVT = getContainerForFixedLengthVector(SrcVT); 2097 Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget); 2098 } 2099 2100 SDValue Result = Src; 2101 SDValue Mask, VL; 2102 std::tie(Mask, VL) = 2103 getDefaultVLOps(SrcVT, ContainerVT, DL, DAG, Subtarget); 2104 LLVMContext &Context = *DAG.getContext(); 2105 const ElementCount Count = ContainerVT.getVectorElementCount(); 2106 do { 2107 SrcEltVT = MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2); 2108 EVT ResultVT = EVT::getVectorVT(Context, SrcEltVT, Count); 2109 Result = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, ResultVT, Result, 2110 Mask, VL); 2111 } while (SrcEltVT != DstEltVT); 2112 2113 if (SrcVT.isFixedLengthVector()) 2114 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 2115 2116 return Result; 2117 } 2118 case ISD::ANY_EXTEND: 2119 case ISD::ZERO_EXTEND: 2120 if (Op.getOperand(0).getValueType().isVector() && 2121 Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) 2122 return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ 1); 2123 return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VZEXT_VL); 2124 case ISD::SIGN_EXTEND: 2125 if (Op.getOperand(0).getValueType().isVector() && 2126 Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) 2127 return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ -1); 2128 return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VSEXT_VL); 2129 case ISD::SPLAT_VECTOR_PARTS: 2130 return lowerSPLAT_VECTOR_PARTS(Op, DAG); 2131 case ISD::INSERT_VECTOR_ELT: 2132 return lowerINSERT_VECTOR_ELT(Op, DAG); 2133 case ISD::EXTRACT_VECTOR_ELT: 2134 return lowerEXTRACT_VECTOR_ELT(Op, DAG); 2135 case ISD::VSCALE: { 2136 MVT VT = Op.getSimpleValueType(); 2137 SDLoc DL(Op); 2138 SDValue VLENB = DAG.getNode(RISCVISD::READ_VLENB, DL, VT); 2139 // We define our scalable vector types for lmul=1 to use a 64 bit known 2140 // minimum size. e.g. <vscale x 2 x i32>. VLENB is in bytes so we calculate 2141 // vscale as VLENB / 8. 2142 assert(RISCV::RVVBitsPerBlock == 64 && "Unexpected bits per block!"); 2143 SDValue VScale = DAG.getNode(ISD::SRL, DL, VT, VLENB, 2144 DAG.getConstant(3, DL, VT)); 2145 return DAG.getNode(ISD::MUL, DL, VT, VScale, Op.getOperand(0)); 2146 } 2147 case ISD::FP_EXTEND: { 2148 // RVV can only do fp_extend to types double the size as the source. We 2149 // custom-lower f16->f64 extensions to two hops of ISD::FP_EXTEND, going 2150 // via f32. 2151 SDLoc DL(Op); 2152 MVT VT = Op.getSimpleValueType(); 2153 SDValue Src = Op.getOperand(0); 2154 MVT SrcVT = Src.getSimpleValueType(); 2155 2156 // Prepare any fixed-length vector operands. 2157 MVT ContainerVT = VT; 2158 if (SrcVT.isFixedLengthVector()) { 2159 ContainerVT = getContainerForFixedLengthVector(VT); 2160 MVT SrcContainerVT = 2161 ContainerVT.changeVectorElementType(SrcVT.getVectorElementType()); 2162 Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); 2163 } 2164 2165 if (!VT.isVector() || VT.getVectorElementType() != MVT::f64 || 2166 SrcVT.getVectorElementType() != MVT::f16) { 2167 // For scalable vectors, we only need to close the gap between 2168 // vXf16->vXf64. 2169 if (!VT.isFixedLengthVector()) 2170 return Op; 2171 // For fixed-length vectors, lower the FP_EXTEND to a custom "VL" version. 2172 Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget); 2173 return convertFromScalableVector(VT, Src, DAG, Subtarget); 2174 } 2175 2176 MVT InterVT = VT.changeVectorElementType(MVT::f32); 2177 MVT InterContainerVT = ContainerVT.changeVectorElementType(MVT::f32); 2178 SDValue IntermediateExtend = getRVVFPExtendOrRound( 2179 Src, InterVT, InterContainerVT, DL, DAG, Subtarget); 2180 2181 SDValue Extend = getRVVFPExtendOrRound(IntermediateExtend, VT, ContainerVT, 2182 DL, DAG, Subtarget); 2183 if (VT.isFixedLengthVector()) 2184 return convertFromScalableVector(VT, Extend, DAG, Subtarget); 2185 return Extend; 2186 } 2187 case ISD::FP_ROUND: { 2188 // RVV can only do fp_round to types half the size as the source. We 2189 // custom-lower f64->f16 rounds via RVV's round-to-odd float 2190 // conversion instruction. 2191 SDLoc DL(Op); 2192 MVT VT = Op.getSimpleValueType(); 2193 SDValue Src = Op.getOperand(0); 2194 MVT SrcVT = Src.getSimpleValueType(); 2195 2196 // Prepare any fixed-length vector operands. 2197 MVT ContainerVT = VT; 2198 if (VT.isFixedLengthVector()) { 2199 MVT SrcContainerVT = getContainerForFixedLengthVector(SrcVT); 2200 ContainerVT = 2201 SrcContainerVT.changeVectorElementType(VT.getVectorElementType()); 2202 Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); 2203 } 2204 2205 if (!VT.isVector() || VT.getVectorElementType() != MVT::f16 || 2206 SrcVT.getVectorElementType() != MVT::f64) { 2207 // For scalable vectors, we only need to close the gap between 2208 // vXf64<->vXf16. 2209 if (!VT.isFixedLengthVector()) 2210 return Op; 2211 // For fixed-length vectors, lower the FP_ROUND to a custom "VL" version. 2212 Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget); 2213 return convertFromScalableVector(VT, Src, DAG, Subtarget); 2214 } 2215 2216 SDValue Mask, VL; 2217 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 2218 2219 MVT InterVT = ContainerVT.changeVectorElementType(MVT::f32); 2220 SDValue IntermediateRound = 2221 DAG.getNode(RISCVISD::VFNCVT_ROD_VL, DL, InterVT, Src, Mask, VL); 2222 SDValue Round = getRVVFPExtendOrRound(IntermediateRound, VT, ContainerVT, 2223 DL, DAG, Subtarget); 2224 2225 if (VT.isFixedLengthVector()) 2226 return convertFromScalableVector(VT, Round, DAG, Subtarget); 2227 return Round; 2228 } 2229 case ISD::FP_TO_SINT: 2230 case ISD::FP_TO_UINT: 2231 case ISD::SINT_TO_FP: 2232 case ISD::UINT_TO_FP: { 2233 // RVV can only do fp<->int conversions to types half/double the size as 2234 // the source. We custom-lower any conversions that do two hops into 2235 // sequences. 2236 MVT VT = Op.getSimpleValueType(); 2237 if (!VT.isVector()) 2238 return Op; 2239 SDLoc DL(Op); 2240 SDValue Src = Op.getOperand(0); 2241 MVT EltVT = VT.getVectorElementType(); 2242 MVT SrcVT = Src.getSimpleValueType(); 2243 MVT SrcEltVT = SrcVT.getVectorElementType(); 2244 unsigned EltSize = EltVT.getSizeInBits(); 2245 unsigned SrcEltSize = SrcEltVT.getSizeInBits(); 2246 assert(isPowerOf2_32(EltSize) && isPowerOf2_32(SrcEltSize) && 2247 "Unexpected vector element types"); 2248 2249 bool IsInt2FP = SrcEltVT.isInteger(); 2250 // Widening conversions 2251 if (EltSize > SrcEltSize && (EltSize / SrcEltSize >= 4)) { 2252 if (IsInt2FP) { 2253 // Do a regular integer sign/zero extension then convert to float. 2254 MVT IVecVT = MVT::getVectorVT(MVT::getIntegerVT(EltVT.getSizeInBits()), 2255 VT.getVectorElementCount()); 2256 unsigned ExtOpcode = Op.getOpcode() == ISD::UINT_TO_FP 2257 ? ISD::ZERO_EXTEND 2258 : ISD::SIGN_EXTEND; 2259 SDValue Ext = DAG.getNode(ExtOpcode, DL, IVecVT, Src); 2260 return DAG.getNode(Op.getOpcode(), DL, VT, Ext); 2261 } 2262 // FP2Int 2263 assert(SrcEltVT == MVT::f16 && "Unexpected FP_TO_[US]INT lowering"); 2264 // Do one doubling fp_extend then complete the operation by converting 2265 // to int. 2266 MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount()); 2267 SDValue FExt = DAG.getFPExtendOrRound(Src, DL, InterimFVT); 2268 return DAG.getNode(Op.getOpcode(), DL, VT, FExt); 2269 } 2270 2271 // Narrowing conversions 2272 if (SrcEltSize > EltSize && (SrcEltSize / EltSize >= 4)) { 2273 if (IsInt2FP) { 2274 // One narrowing int_to_fp, then an fp_round. 2275 assert(EltVT == MVT::f16 && "Unexpected [US]_TO_FP lowering"); 2276 MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount()); 2277 SDValue Int2FP = DAG.getNode(Op.getOpcode(), DL, InterimFVT, Src); 2278 return DAG.getFPExtendOrRound(Int2FP, DL, VT); 2279 } 2280 // FP2Int 2281 // One narrowing fp_to_int, then truncate the integer. If the float isn't 2282 // representable by the integer, the result is poison. 2283 MVT IVecVT = 2284 MVT::getVectorVT(MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2), 2285 VT.getVectorElementCount()); 2286 SDValue FP2Int = DAG.getNode(Op.getOpcode(), DL, IVecVT, Src); 2287 return DAG.getNode(ISD::TRUNCATE, DL, VT, FP2Int); 2288 } 2289 2290 // Scalable vectors can exit here. Patterns will handle equally-sized 2291 // conversions halving/doubling ones. 2292 if (!VT.isFixedLengthVector()) 2293 return Op; 2294 2295 // For fixed-length vectors we lower to a custom "VL" node. 2296 unsigned RVVOpc = 0; 2297 switch (Op.getOpcode()) { 2298 default: 2299 llvm_unreachable("Impossible opcode"); 2300 case ISD::FP_TO_SINT: 2301 RVVOpc = RISCVISD::FP_TO_SINT_VL; 2302 break; 2303 case ISD::FP_TO_UINT: 2304 RVVOpc = RISCVISD::FP_TO_UINT_VL; 2305 break; 2306 case ISD::SINT_TO_FP: 2307 RVVOpc = RISCVISD::SINT_TO_FP_VL; 2308 break; 2309 case ISD::UINT_TO_FP: 2310 RVVOpc = RISCVISD::UINT_TO_FP_VL; 2311 break; 2312 } 2313 2314 MVT ContainerVT, SrcContainerVT; 2315 // Derive the reference container type from the larger vector type. 2316 if (SrcEltSize > EltSize) { 2317 SrcContainerVT = getContainerForFixedLengthVector(SrcVT); 2318 ContainerVT = 2319 SrcContainerVT.changeVectorElementType(VT.getVectorElementType()); 2320 } else { 2321 ContainerVT = getContainerForFixedLengthVector(VT); 2322 SrcContainerVT = ContainerVT.changeVectorElementType(SrcEltVT); 2323 } 2324 2325 SDValue Mask, VL; 2326 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 2327 2328 Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); 2329 Src = DAG.getNode(RVVOpc, DL, ContainerVT, Src, Mask, VL); 2330 return convertFromScalableVector(VT, Src, DAG, Subtarget); 2331 } 2332 case ISD::VECREDUCE_ADD: 2333 case ISD::VECREDUCE_UMAX: 2334 case ISD::VECREDUCE_SMAX: 2335 case ISD::VECREDUCE_UMIN: 2336 case ISD::VECREDUCE_SMIN: 2337 return lowerVECREDUCE(Op, DAG); 2338 case ISD::VECREDUCE_AND: 2339 case ISD::VECREDUCE_OR: 2340 case ISD::VECREDUCE_XOR: 2341 if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) 2342 return lowerVectorMaskVECREDUCE(Op, DAG); 2343 return lowerVECREDUCE(Op, DAG); 2344 case ISD::VECREDUCE_FADD: 2345 case ISD::VECREDUCE_SEQ_FADD: 2346 case ISD::VECREDUCE_FMIN: 2347 case ISD::VECREDUCE_FMAX: 2348 return lowerFPVECREDUCE(Op, DAG); 2349 case ISD::INSERT_SUBVECTOR: 2350 return lowerINSERT_SUBVECTOR(Op, DAG); 2351 case ISD::EXTRACT_SUBVECTOR: 2352 return lowerEXTRACT_SUBVECTOR(Op, DAG); 2353 case ISD::STEP_VECTOR: 2354 return lowerSTEP_VECTOR(Op, DAG); 2355 case ISD::VECTOR_REVERSE: 2356 return lowerVECTOR_REVERSE(Op, DAG); 2357 case ISD::BUILD_VECTOR: 2358 return lowerBUILD_VECTOR(Op, DAG, Subtarget); 2359 case ISD::SPLAT_VECTOR: 2360 if (Op.getValueType().getVectorElementType() == MVT::i1) 2361 return lowerVectorMaskSplat(Op, DAG); 2362 return lowerSPLAT_VECTOR(Op, DAG, Subtarget); 2363 case ISD::VECTOR_SHUFFLE: 2364 return lowerVECTOR_SHUFFLE(Op, DAG, Subtarget); 2365 case ISD::CONCAT_VECTORS: { 2366 // Split CONCAT_VECTORS into a series of INSERT_SUBVECTOR nodes. This is 2367 // better than going through the stack, as the default expansion does. 2368 SDLoc DL(Op); 2369 MVT VT = Op.getSimpleValueType(); 2370 unsigned NumOpElts = 2371 Op.getOperand(0).getSimpleValueType().getVectorMinNumElements(); 2372 SDValue Vec = DAG.getUNDEF(VT); 2373 for (const auto &OpIdx : enumerate(Op->ops())) 2374 Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, Vec, OpIdx.value(), 2375 DAG.getIntPtrConstant(OpIdx.index() * NumOpElts, DL)); 2376 return Vec; 2377 } 2378 case ISD::LOAD: 2379 if (auto V = expandUnalignedRVVLoad(Op, DAG)) 2380 return V; 2381 if (Op.getValueType().isFixedLengthVector()) 2382 return lowerFixedLengthVectorLoadToRVV(Op, DAG); 2383 return Op; 2384 case ISD::STORE: 2385 if (auto V = expandUnalignedRVVStore(Op, DAG)) 2386 return V; 2387 if (Op.getOperand(1).getValueType().isFixedLengthVector()) 2388 return lowerFixedLengthVectorStoreToRVV(Op, DAG); 2389 return Op; 2390 case ISD::MLOAD: 2391 return lowerMLOAD(Op, DAG); 2392 case ISD::MSTORE: 2393 return lowerMSTORE(Op, DAG); 2394 case ISD::SETCC: 2395 return lowerFixedLengthVectorSetccToRVV(Op, DAG); 2396 case ISD::ADD: 2397 return lowerToScalableOp(Op, DAG, RISCVISD::ADD_VL); 2398 case ISD::SUB: 2399 return lowerToScalableOp(Op, DAG, RISCVISD::SUB_VL); 2400 case ISD::MUL: 2401 return lowerToScalableOp(Op, DAG, RISCVISD::MUL_VL); 2402 case ISD::MULHS: 2403 return lowerToScalableOp(Op, DAG, RISCVISD::MULHS_VL); 2404 case ISD::MULHU: 2405 return lowerToScalableOp(Op, DAG, RISCVISD::MULHU_VL); 2406 case ISD::AND: 2407 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMAND_VL, 2408 RISCVISD::AND_VL); 2409 case ISD::OR: 2410 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMOR_VL, 2411 RISCVISD::OR_VL); 2412 case ISD::XOR: 2413 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMXOR_VL, 2414 RISCVISD::XOR_VL); 2415 case ISD::SDIV: 2416 return lowerToScalableOp(Op, DAG, RISCVISD::SDIV_VL); 2417 case ISD::SREM: 2418 return lowerToScalableOp(Op, DAG, RISCVISD::SREM_VL); 2419 case ISD::UDIV: 2420 return lowerToScalableOp(Op, DAG, RISCVISD::UDIV_VL); 2421 case ISD::UREM: 2422 return lowerToScalableOp(Op, DAG, RISCVISD::UREM_VL); 2423 case ISD::SHL: 2424 return lowerToScalableOp(Op, DAG, RISCVISD::SHL_VL); 2425 case ISD::SRA: 2426 return lowerToScalableOp(Op, DAG, RISCVISD::SRA_VL); 2427 case ISD::SRL: 2428 return lowerToScalableOp(Op, DAG, RISCVISD::SRL_VL); 2429 case ISD::FADD: 2430 return lowerToScalableOp(Op, DAG, RISCVISD::FADD_VL); 2431 case ISD::FSUB: 2432 return lowerToScalableOp(Op, DAG, RISCVISD::FSUB_VL); 2433 case ISD::FMUL: 2434 return lowerToScalableOp(Op, DAG, RISCVISD::FMUL_VL); 2435 case ISD::FDIV: 2436 return lowerToScalableOp(Op, DAG, RISCVISD::FDIV_VL); 2437 case ISD::FNEG: 2438 return lowerToScalableOp(Op, DAG, RISCVISD::FNEG_VL); 2439 case ISD::FABS: 2440 return lowerToScalableOp(Op, DAG, RISCVISD::FABS_VL); 2441 case ISD::FSQRT: 2442 return lowerToScalableOp(Op, DAG, RISCVISD::FSQRT_VL); 2443 case ISD::FMA: 2444 return lowerToScalableOp(Op, DAG, RISCVISD::FMA_VL); 2445 case ISD::SMIN: 2446 return lowerToScalableOp(Op, DAG, RISCVISD::SMIN_VL); 2447 case ISD::SMAX: 2448 return lowerToScalableOp(Op, DAG, RISCVISD::SMAX_VL); 2449 case ISD::UMIN: 2450 return lowerToScalableOp(Op, DAG, RISCVISD::UMIN_VL); 2451 case ISD::UMAX: 2452 return lowerToScalableOp(Op, DAG, RISCVISD::UMAX_VL); 2453 case ISD::FMINNUM: 2454 return lowerToScalableOp(Op, DAG, RISCVISD::FMINNUM_VL); 2455 case ISD::FMAXNUM: 2456 return lowerToScalableOp(Op, DAG, RISCVISD::FMAXNUM_VL); 2457 case ISD::ABS: 2458 return lowerABS(Op, DAG); 2459 case ISD::VSELECT: 2460 return lowerFixedLengthVectorSelectToRVV(Op, DAG); 2461 case ISD::FCOPYSIGN: 2462 return lowerFixedLengthVectorFCOPYSIGNToRVV(Op, DAG); 2463 case ISD::MGATHER: 2464 return lowerMGATHER(Op, DAG); 2465 case ISD::MSCATTER: 2466 return lowerMSCATTER(Op, DAG); 2467 case ISD::FLT_ROUNDS_: 2468 return lowerGET_ROUNDING(Op, DAG); 2469 case ISD::SET_ROUNDING: 2470 return lowerSET_ROUNDING(Op, DAG); 2471 case ISD::VP_ADD: 2472 return lowerVPOp(Op, DAG, RISCVISD::ADD_VL); 2473 case ISD::VP_SUB: 2474 return lowerVPOp(Op, DAG, RISCVISD::SUB_VL); 2475 case ISD::VP_MUL: 2476 return lowerVPOp(Op, DAG, RISCVISD::MUL_VL); 2477 case ISD::VP_SDIV: 2478 return lowerVPOp(Op, DAG, RISCVISD::SDIV_VL); 2479 case ISD::VP_UDIV: 2480 return lowerVPOp(Op, DAG, RISCVISD::UDIV_VL); 2481 case ISD::VP_SREM: 2482 return lowerVPOp(Op, DAG, RISCVISD::SREM_VL); 2483 case ISD::VP_UREM: 2484 return lowerVPOp(Op, DAG, RISCVISD::UREM_VL); 2485 case ISD::VP_AND: 2486 return lowerVPOp(Op, DAG, RISCVISD::AND_VL); 2487 case ISD::VP_OR: 2488 return lowerVPOp(Op, DAG, RISCVISD::OR_VL); 2489 case ISD::VP_XOR: 2490 return lowerVPOp(Op, DAG, RISCVISD::XOR_VL); 2491 case ISD::VP_ASHR: 2492 return lowerVPOp(Op, DAG, RISCVISD::SRA_VL); 2493 case ISD::VP_LSHR: 2494 return lowerVPOp(Op, DAG, RISCVISD::SRL_VL); 2495 case ISD::VP_SHL: 2496 return lowerVPOp(Op, DAG, RISCVISD::SHL_VL); 2497 } 2498 } 2499 2500 static SDValue getTargetNode(GlobalAddressSDNode *N, SDLoc DL, EVT Ty, 2501 SelectionDAG &DAG, unsigned Flags) { 2502 return DAG.getTargetGlobalAddress(N->getGlobal(), DL, Ty, 0, Flags); 2503 } 2504 2505 static SDValue getTargetNode(BlockAddressSDNode *N, SDLoc DL, EVT Ty, 2506 SelectionDAG &DAG, unsigned Flags) { 2507 return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, N->getOffset(), 2508 Flags); 2509 } 2510 2511 static SDValue getTargetNode(ConstantPoolSDNode *N, SDLoc DL, EVT Ty, 2512 SelectionDAG &DAG, unsigned Flags) { 2513 return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlign(), 2514 N->getOffset(), Flags); 2515 } 2516 2517 static SDValue getTargetNode(JumpTableSDNode *N, SDLoc DL, EVT Ty, 2518 SelectionDAG &DAG, unsigned Flags) { 2519 return DAG.getTargetJumpTable(N->getIndex(), Ty, Flags); 2520 } 2521 2522 template <class NodeTy> 2523 SDValue RISCVTargetLowering::getAddr(NodeTy *N, SelectionDAG &DAG, 2524 bool IsLocal) const { 2525 SDLoc DL(N); 2526 EVT Ty = getPointerTy(DAG.getDataLayout()); 2527 2528 if (isPositionIndependent()) { 2529 SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0); 2530 if (IsLocal) 2531 // Use PC-relative addressing to access the symbol. This generates the 2532 // pattern (PseudoLLA sym), which expands to (addi (auipc %pcrel_hi(sym)) 2533 // %pcrel_lo(auipc)). 2534 return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0); 2535 2536 // Use PC-relative addressing to access the GOT for this symbol, then load 2537 // the address from the GOT. This generates the pattern (PseudoLA sym), 2538 // which expands to (ld (addi (auipc %got_pcrel_hi(sym)) %pcrel_lo(auipc))). 2539 return SDValue(DAG.getMachineNode(RISCV::PseudoLA, DL, Ty, Addr), 0); 2540 } 2541 2542 switch (getTargetMachine().getCodeModel()) { 2543 default: 2544 report_fatal_error("Unsupported code model for lowering"); 2545 case CodeModel::Small: { 2546 // Generate a sequence for accessing addresses within the first 2 GiB of 2547 // address space. This generates the pattern (addi (lui %hi(sym)) %lo(sym)). 2548 SDValue AddrHi = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_HI); 2549 SDValue AddrLo = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_LO); 2550 SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0); 2551 return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNHi, AddrLo), 0); 2552 } 2553 case CodeModel::Medium: { 2554 // Generate a sequence for accessing addresses within any 2GiB range within 2555 // the address space. This generates the pattern (PseudoLLA sym), which 2556 // expands to (addi (auipc %pcrel_hi(sym)) %pcrel_lo(auipc)). 2557 SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0); 2558 return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0); 2559 } 2560 } 2561 } 2562 2563 SDValue RISCVTargetLowering::lowerGlobalAddress(SDValue Op, 2564 SelectionDAG &DAG) const { 2565 SDLoc DL(Op); 2566 EVT Ty = Op.getValueType(); 2567 GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op); 2568 int64_t Offset = N->getOffset(); 2569 MVT XLenVT = Subtarget.getXLenVT(); 2570 2571 const GlobalValue *GV = N->getGlobal(); 2572 bool IsLocal = getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV); 2573 SDValue Addr = getAddr(N, DAG, IsLocal); 2574 2575 // In order to maximise the opportunity for common subexpression elimination, 2576 // emit a separate ADD node for the global address offset instead of folding 2577 // it in the global address node. Later peephole optimisations may choose to 2578 // fold it back in when profitable. 2579 if (Offset != 0) 2580 return DAG.getNode(ISD::ADD, DL, Ty, Addr, 2581 DAG.getConstant(Offset, DL, XLenVT)); 2582 return Addr; 2583 } 2584 2585 SDValue RISCVTargetLowering::lowerBlockAddress(SDValue Op, 2586 SelectionDAG &DAG) const { 2587 BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op); 2588 2589 return getAddr(N, DAG); 2590 } 2591 2592 SDValue RISCVTargetLowering::lowerConstantPool(SDValue Op, 2593 SelectionDAG &DAG) const { 2594 ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op); 2595 2596 return getAddr(N, DAG); 2597 } 2598 2599 SDValue RISCVTargetLowering::lowerJumpTable(SDValue Op, 2600 SelectionDAG &DAG) const { 2601 JumpTableSDNode *N = cast<JumpTableSDNode>(Op); 2602 2603 return getAddr(N, DAG); 2604 } 2605 2606 SDValue RISCVTargetLowering::getStaticTLSAddr(GlobalAddressSDNode *N, 2607 SelectionDAG &DAG, 2608 bool UseGOT) const { 2609 SDLoc DL(N); 2610 EVT Ty = getPointerTy(DAG.getDataLayout()); 2611 const GlobalValue *GV = N->getGlobal(); 2612 MVT XLenVT = Subtarget.getXLenVT(); 2613 2614 if (UseGOT) { 2615 // Use PC-relative addressing to access the GOT for this TLS symbol, then 2616 // load the address from the GOT and add the thread pointer. This generates 2617 // the pattern (PseudoLA_TLS_IE sym), which expands to 2618 // (ld (auipc %tls_ie_pcrel_hi(sym)) %pcrel_lo(auipc)). 2619 SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0); 2620 SDValue Load = 2621 SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_IE, DL, Ty, Addr), 0); 2622 2623 // Add the thread pointer. 2624 SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT); 2625 return DAG.getNode(ISD::ADD, DL, Ty, Load, TPReg); 2626 } 2627 2628 // Generate a sequence for accessing the address relative to the thread 2629 // pointer, with the appropriate adjustment for the thread pointer offset. 2630 // This generates the pattern 2631 // (add (add_tprel (lui %tprel_hi(sym)) tp %tprel_add(sym)) %tprel_lo(sym)) 2632 SDValue AddrHi = 2633 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_HI); 2634 SDValue AddrAdd = 2635 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_ADD); 2636 SDValue AddrLo = 2637 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_LO); 2638 2639 SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0); 2640 SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT); 2641 SDValue MNAdd = SDValue( 2642 DAG.getMachineNode(RISCV::PseudoAddTPRel, DL, Ty, MNHi, TPReg, AddrAdd), 2643 0); 2644 return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNAdd, AddrLo), 0); 2645 } 2646 2647 SDValue RISCVTargetLowering::getDynamicTLSAddr(GlobalAddressSDNode *N, 2648 SelectionDAG &DAG) const { 2649 SDLoc DL(N); 2650 EVT Ty = getPointerTy(DAG.getDataLayout()); 2651 IntegerType *CallTy = Type::getIntNTy(*DAG.getContext(), Ty.getSizeInBits()); 2652 const GlobalValue *GV = N->getGlobal(); 2653 2654 // Use a PC-relative addressing mode to access the global dynamic GOT address. 2655 // This generates the pattern (PseudoLA_TLS_GD sym), which expands to 2656 // (addi (auipc %tls_gd_pcrel_hi(sym)) %pcrel_lo(auipc)). 2657 SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0); 2658 SDValue Load = 2659 SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_GD, DL, Ty, Addr), 0); 2660 2661 // Prepare argument list to generate call. 2662 ArgListTy Args; 2663 ArgListEntry Entry; 2664 Entry.Node = Load; 2665 Entry.Ty = CallTy; 2666 Args.push_back(Entry); 2667 2668 // Setup call to __tls_get_addr. 2669 TargetLowering::CallLoweringInfo CLI(DAG); 2670 CLI.setDebugLoc(DL) 2671 .setChain(DAG.getEntryNode()) 2672 .setLibCallee(CallingConv::C, CallTy, 2673 DAG.getExternalSymbol("__tls_get_addr", Ty), 2674 std::move(Args)); 2675 2676 return LowerCallTo(CLI).first; 2677 } 2678 2679 SDValue RISCVTargetLowering::lowerGlobalTLSAddress(SDValue Op, 2680 SelectionDAG &DAG) const { 2681 SDLoc DL(Op); 2682 EVT Ty = Op.getValueType(); 2683 GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op); 2684 int64_t Offset = N->getOffset(); 2685 MVT XLenVT = Subtarget.getXLenVT(); 2686 2687 TLSModel::Model Model = getTargetMachine().getTLSModel(N->getGlobal()); 2688 2689 if (DAG.getMachineFunction().getFunction().getCallingConv() == 2690 CallingConv::GHC) 2691 report_fatal_error("In GHC calling convention TLS is not supported"); 2692 2693 SDValue Addr; 2694 switch (Model) { 2695 case TLSModel::LocalExec: 2696 Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/false); 2697 break; 2698 case TLSModel::InitialExec: 2699 Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/true); 2700 break; 2701 case TLSModel::LocalDynamic: 2702 case TLSModel::GeneralDynamic: 2703 Addr = getDynamicTLSAddr(N, DAG); 2704 break; 2705 } 2706 2707 // In order to maximise the opportunity for common subexpression elimination, 2708 // emit a separate ADD node for the global address offset instead of folding 2709 // it in the global address node. Later peephole optimisations may choose to 2710 // fold it back in when profitable. 2711 if (Offset != 0) 2712 return DAG.getNode(ISD::ADD, DL, Ty, Addr, 2713 DAG.getConstant(Offset, DL, XLenVT)); 2714 return Addr; 2715 } 2716 2717 SDValue RISCVTargetLowering::lowerSELECT(SDValue Op, SelectionDAG &DAG) const { 2718 SDValue CondV = Op.getOperand(0); 2719 SDValue TrueV = Op.getOperand(1); 2720 SDValue FalseV = Op.getOperand(2); 2721 SDLoc DL(Op); 2722 MVT XLenVT = Subtarget.getXLenVT(); 2723 2724 // If the result type is XLenVT and CondV is the output of a SETCC node 2725 // which also operated on XLenVT inputs, then merge the SETCC node into the 2726 // lowered RISCVISD::SELECT_CC to take advantage of the integer 2727 // compare+branch instructions. i.e.: 2728 // (select (setcc lhs, rhs, cc), truev, falsev) 2729 // -> (riscvisd::select_cc lhs, rhs, cc, truev, falsev) 2730 if (Op.getSimpleValueType() == XLenVT && CondV.getOpcode() == ISD::SETCC && 2731 CondV.getOperand(0).getSimpleValueType() == XLenVT) { 2732 SDValue LHS = CondV.getOperand(0); 2733 SDValue RHS = CondV.getOperand(1); 2734 auto CC = cast<CondCodeSDNode>(CondV.getOperand(2)); 2735 ISD::CondCode CCVal = CC->get(); 2736 2737 // Special case for a select of 2 constants that have a diffence of 1. 2738 // Normally this is done by DAGCombine, but if the select is introduced by 2739 // type legalization or op legalization, we miss it. Restricting to SETLT 2740 // case for now because that is what signed saturating add/sub need. 2741 // FIXME: We don't need the condition to be SETLT or even a SETCC, 2742 // but we would probably want to swap the true/false values if the condition 2743 // is SETGE/SETLE to avoid an XORI. 2744 if (isa<ConstantSDNode>(TrueV) && isa<ConstantSDNode>(FalseV) && 2745 CCVal == ISD::SETLT) { 2746 const APInt &TrueVal = cast<ConstantSDNode>(TrueV)->getAPIntValue(); 2747 const APInt &FalseVal = cast<ConstantSDNode>(FalseV)->getAPIntValue(); 2748 if (TrueVal - 1 == FalseVal) 2749 return DAG.getNode(ISD::ADD, DL, Op.getValueType(), CondV, FalseV); 2750 if (TrueVal + 1 == FalseVal) 2751 return DAG.getNode(ISD::SUB, DL, Op.getValueType(), FalseV, CondV); 2752 } 2753 2754 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 2755 2756 SDValue TargetCC = DAG.getTargetConstant(CCVal, DL, XLenVT); 2757 SDValue Ops[] = {LHS, RHS, TargetCC, TrueV, FalseV}; 2758 return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops); 2759 } 2760 2761 // Otherwise: 2762 // (select condv, truev, falsev) 2763 // -> (riscvisd::select_cc condv, zero, setne, truev, falsev) 2764 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 2765 SDValue SetNE = DAG.getTargetConstant(ISD::SETNE, DL, XLenVT); 2766 2767 SDValue Ops[] = {CondV, Zero, SetNE, TrueV, FalseV}; 2768 2769 return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops); 2770 } 2771 2772 SDValue RISCVTargetLowering::lowerBRCOND(SDValue Op, SelectionDAG &DAG) const { 2773 SDValue CondV = Op.getOperand(1); 2774 SDLoc DL(Op); 2775 MVT XLenVT = Subtarget.getXLenVT(); 2776 2777 if (CondV.getOpcode() == ISD::SETCC && 2778 CondV.getOperand(0).getValueType() == XLenVT) { 2779 SDValue LHS = CondV.getOperand(0); 2780 SDValue RHS = CondV.getOperand(1); 2781 ISD::CondCode CCVal = cast<CondCodeSDNode>(CondV.getOperand(2))->get(); 2782 2783 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 2784 2785 SDValue TargetCC = DAG.getCondCode(CCVal); 2786 return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0), 2787 LHS, RHS, TargetCC, Op.getOperand(2)); 2788 } 2789 2790 return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0), 2791 CondV, DAG.getConstant(0, DL, XLenVT), 2792 DAG.getCondCode(ISD::SETNE), Op.getOperand(2)); 2793 } 2794 2795 SDValue RISCVTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const { 2796 MachineFunction &MF = DAG.getMachineFunction(); 2797 RISCVMachineFunctionInfo *FuncInfo = MF.getInfo<RISCVMachineFunctionInfo>(); 2798 2799 SDLoc DL(Op); 2800 SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), 2801 getPointerTy(MF.getDataLayout())); 2802 2803 // vastart just stores the address of the VarArgsFrameIndex slot into the 2804 // memory location argument. 2805 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 2806 return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1), 2807 MachinePointerInfo(SV)); 2808 } 2809 2810 SDValue RISCVTargetLowering::lowerFRAMEADDR(SDValue Op, 2811 SelectionDAG &DAG) const { 2812 const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo(); 2813 MachineFunction &MF = DAG.getMachineFunction(); 2814 MachineFrameInfo &MFI = MF.getFrameInfo(); 2815 MFI.setFrameAddressIsTaken(true); 2816 Register FrameReg = RI.getFrameRegister(MF); 2817 int XLenInBytes = Subtarget.getXLen() / 8; 2818 2819 EVT VT = Op.getValueType(); 2820 SDLoc DL(Op); 2821 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, FrameReg, VT); 2822 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 2823 while (Depth--) { 2824 int Offset = -(XLenInBytes * 2); 2825 SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr, 2826 DAG.getIntPtrConstant(Offset, DL)); 2827 FrameAddr = 2828 DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo()); 2829 } 2830 return FrameAddr; 2831 } 2832 2833 SDValue RISCVTargetLowering::lowerRETURNADDR(SDValue Op, 2834 SelectionDAG &DAG) const { 2835 const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo(); 2836 MachineFunction &MF = DAG.getMachineFunction(); 2837 MachineFrameInfo &MFI = MF.getFrameInfo(); 2838 MFI.setReturnAddressIsTaken(true); 2839 MVT XLenVT = Subtarget.getXLenVT(); 2840 int XLenInBytes = Subtarget.getXLen() / 8; 2841 2842 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 2843 return SDValue(); 2844 2845 EVT VT = Op.getValueType(); 2846 SDLoc DL(Op); 2847 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 2848 if (Depth) { 2849 int Off = -XLenInBytes; 2850 SDValue FrameAddr = lowerFRAMEADDR(Op, DAG); 2851 SDValue Offset = DAG.getConstant(Off, DL, VT); 2852 return DAG.getLoad(VT, DL, DAG.getEntryNode(), 2853 DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset), 2854 MachinePointerInfo()); 2855 } 2856 2857 // Return the value of the return address register, marking it an implicit 2858 // live-in. 2859 Register Reg = MF.addLiveIn(RI.getRARegister(), getRegClassFor(XLenVT)); 2860 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, XLenVT); 2861 } 2862 2863 SDValue RISCVTargetLowering::lowerShiftLeftParts(SDValue Op, 2864 SelectionDAG &DAG) const { 2865 SDLoc DL(Op); 2866 SDValue Lo = Op.getOperand(0); 2867 SDValue Hi = Op.getOperand(1); 2868 SDValue Shamt = Op.getOperand(2); 2869 EVT VT = Lo.getValueType(); 2870 2871 // if Shamt-XLEN < 0: // Shamt < XLEN 2872 // Lo = Lo << Shamt 2873 // Hi = (Hi << Shamt) | ((Lo >>u 1) >>u (XLEN-1 - Shamt)) 2874 // else: 2875 // Lo = 0 2876 // Hi = Lo << (Shamt-XLEN) 2877 2878 SDValue Zero = DAG.getConstant(0, DL, VT); 2879 SDValue One = DAG.getConstant(1, DL, VT); 2880 SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT); 2881 SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT); 2882 SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen); 2883 SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt); 2884 2885 SDValue LoTrue = DAG.getNode(ISD::SHL, DL, VT, Lo, Shamt); 2886 SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, VT, Lo, One); 2887 SDValue ShiftRightLo = 2888 DAG.getNode(ISD::SRL, DL, VT, ShiftRight1Lo, XLenMinus1Shamt); 2889 SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, Hi, Shamt); 2890 SDValue HiTrue = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo); 2891 SDValue HiFalse = DAG.getNode(ISD::SHL, DL, VT, Lo, ShamtMinusXLen); 2892 2893 SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT); 2894 2895 Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, Zero); 2896 Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse); 2897 2898 SDValue Parts[2] = {Lo, Hi}; 2899 return DAG.getMergeValues(Parts, DL); 2900 } 2901 2902 SDValue RISCVTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG, 2903 bool IsSRA) const { 2904 SDLoc DL(Op); 2905 SDValue Lo = Op.getOperand(0); 2906 SDValue Hi = Op.getOperand(1); 2907 SDValue Shamt = Op.getOperand(2); 2908 EVT VT = Lo.getValueType(); 2909 2910 // SRA expansion: 2911 // if Shamt-XLEN < 0: // Shamt < XLEN 2912 // Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt)) 2913 // Hi = Hi >>s Shamt 2914 // else: 2915 // Lo = Hi >>s (Shamt-XLEN); 2916 // Hi = Hi >>s (XLEN-1) 2917 // 2918 // SRL expansion: 2919 // if Shamt-XLEN < 0: // Shamt < XLEN 2920 // Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt)) 2921 // Hi = Hi >>u Shamt 2922 // else: 2923 // Lo = Hi >>u (Shamt-XLEN); 2924 // Hi = 0; 2925 2926 unsigned ShiftRightOp = IsSRA ? ISD::SRA : ISD::SRL; 2927 2928 SDValue Zero = DAG.getConstant(0, DL, VT); 2929 SDValue One = DAG.getConstant(1, DL, VT); 2930 SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT); 2931 SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT); 2932 SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen); 2933 SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt); 2934 2935 SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, Lo, Shamt); 2936 SDValue ShiftLeftHi1 = DAG.getNode(ISD::SHL, DL, VT, Hi, One); 2937 SDValue ShiftLeftHi = 2938 DAG.getNode(ISD::SHL, DL, VT, ShiftLeftHi1, XLenMinus1Shamt); 2939 SDValue LoTrue = DAG.getNode(ISD::OR, DL, VT, ShiftRightLo, ShiftLeftHi); 2940 SDValue HiTrue = DAG.getNode(ShiftRightOp, DL, VT, Hi, Shamt); 2941 SDValue LoFalse = DAG.getNode(ShiftRightOp, DL, VT, Hi, ShamtMinusXLen); 2942 SDValue HiFalse = 2943 IsSRA ? DAG.getNode(ISD::SRA, DL, VT, Hi, XLenMinus1) : Zero; 2944 2945 SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT); 2946 2947 Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, LoFalse); 2948 Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse); 2949 2950 SDValue Parts[2] = {Lo, Hi}; 2951 return DAG.getMergeValues(Parts, DL); 2952 } 2953 2954 // Lower splats of i1 types to SETCC. For each mask vector type, we have a 2955 // legal equivalently-sized i8 type, so we can use that as a go-between. 2956 SDValue RISCVTargetLowering::lowerVectorMaskSplat(SDValue Op, 2957 SelectionDAG &DAG) const { 2958 SDLoc DL(Op); 2959 MVT VT = Op.getSimpleValueType(); 2960 SDValue SplatVal = Op.getOperand(0); 2961 // All-zeros or all-ones splats are handled specially. 2962 if (ISD::isConstantSplatVectorAllOnes(Op.getNode())) { 2963 SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second; 2964 return DAG.getNode(RISCVISD::VMSET_VL, DL, VT, VL); 2965 } 2966 if (ISD::isConstantSplatVectorAllZeros(Op.getNode())) { 2967 SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second; 2968 return DAG.getNode(RISCVISD::VMCLR_VL, DL, VT, VL); 2969 } 2970 MVT XLenVT = Subtarget.getXLenVT(); 2971 assert(SplatVal.getValueType() == XLenVT && 2972 "Unexpected type for i1 splat value"); 2973 MVT InterVT = VT.changeVectorElementType(MVT::i8); 2974 SplatVal = DAG.getNode(ISD::AND, DL, XLenVT, SplatVal, 2975 DAG.getConstant(1, DL, XLenVT)); 2976 SDValue LHS = DAG.getSplatVector(InterVT, DL, SplatVal); 2977 SDValue Zero = DAG.getConstant(0, DL, InterVT); 2978 return DAG.getSetCC(DL, VT, LHS, Zero, ISD::SETNE); 2979 } 2980 2981 // Custom-lower a SPLAT_VECTOR_PARTS where XLEN<SEW, as the SEW element type is 2982 // illegal (currently only vXi64 RV32). 2983 // FIXME: We could also catch non-constant sign-extended i32 values and lower 2984 // them to SPLAT_VECTOR_I64 2985 SDValue RISCVTargetLowering::lowerSPLAT_VECTOR_PARTS(SDValue Op, 2986 SelectionDAG &DAG) const { 2987 SDLoc DL(Op); 2988 MVT VecVT = Op.getSimpleValueType(); 2989 assert(!Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64 && 2990 "Unexpected SPLAT_VECTOR_PARTS lowering"); 2991 2992 assert(Op.getNumOperands() == 2 && "Unexpected number of operands!"); 2993 SDValue Lo = Op.getOperand(0); 2994 SDValue Hi = Op.getOperand(1); 2995 2996 if (VecVT.isFixedLengthVector()) { 2997 MVT ContainerVT = getContainerForFixedLengthVector(VecVT); 2998 SDLoc DL(Op); 2999 SDValue Mask, VL; 3000 std::tie(Mask, VL) = 3001 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 3002 3003 SDValue Res = splatPartsI64WithVL(DL, ContainerVT, Lo, Hi, VL, DAG); 3004 return convertFromScalableVector(VecVT, Res, DAG, Subtarget); 3005 } 3006 3007 if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) { 3008 int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue(); 3009 int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue(); 3010 // If Hi constant is all the same sign bit as Lo, lower this as a custom 3011 // node in order to try and match RVV vector/scalar instructions. 3012 if ((LoC >> 31) == HiC) 3013 return DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, Lo); 3014 } 3015 3016 // Detect cases where Hi is (SRA Lo, 31) which means Hi is Lo sign extended. 3017 if (Hi.getOpcode() == ISD::SRA && Hi.getOperand(0) == Lo && 3018 isa<ConstantSDNode>(Hi.getOperand(1)) && 3019 Hi.getConstantOperandVal(1) == 31) 3020 return DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, Lo); 3021 3022 // Fall back to use a stack store and stride x0 vector load. Use X0 as VL. 3023 return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VecVT, Lo, Hi, 3024 DAG.getRegister(RISCV::X0, MVT::i64)); 3025 } 3026 3027 // Custom-lower extensions from mask vectors by using a vselect either with 1 3028 // for zero/any-extension or -1 for sign-extension: 3029 // (vXiN = (s|z)ext vXi1:vmask) -> (vXiN = vselect vmask, (-1 or 1), 0) 3030 // Note that any-extension is lowered identically to zero-extension. 3031 SDValue RISCVTargetLowering::lowerVectorMaskExt(SDValue Op, SelectionDAG &DAG, 3032 int64_t ExtTrueVal) const { 3033 SDLoc DL(Op); 3034 MVT VecVT = Op.getSimpleValueType(); 3035 SDValue Src = Op.getOperand(0); 3036 // Only custom-lower extensions from mask types 3037 assert(Src.getValueType().isVector() && 3038 Src.getValueType().getVectorElementType() == MVT::i1); 3039 3040 MVT XLenVT = Subtarget.getXLenVT(); 3041 SDValue SplatZero = DAG.getConstant(0, DL, XLenVT); 3042 SDValue SplatTrueVal = DAG.getConstant(ExtTrueVal, DL, XLenVT); 3043 3044 if (VecVT.isScalableVector()) { 3045 // Be careful not to introduce illegal scalar types at this stage, and be 3046 // careful also about splatting constants as on RV32, vXi64 SPLAT_VECTOR is 3047 // illegal and must be expanded. Since we know that the constants are 3048 // sign-extended 32-bit values, we use SPLAT_VECTOR_I64 directly. 3049 bool IsRV32E64 = 3050 !Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64; 3051 3052 if (!IsRV32E64) { 3053 SplatZero = DAG.getSplatVector(VecVT, DL, SplatZero); 3054 SplatTrueVal = DAG.getSplatVector(VecVT, DL, SplatTrueVal); 3055 } else { 3056 SplatZero = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, SplatZero); 3057 SplatTrueVal = 3058 DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, SplatTrueVal); 3059 } 3060 3061 return DAG.getNode(ISD::VSELECT, DL, VecVT, Src, SplatTrueVal, SplatZero); 3062 } 3063 3064 MVT ContainerVT = getContainerForFixedLengthVector(VecVT); 3065 MVT I1ContainerVT = 3066 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 3067 3068 SDValue CC = convertToScalableVector(I1ContainerVT, Src, DAG, Subtarget); 3069 3070 SDValue Mask, VL; 3071 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 3072 3073 SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatZero, VL); 3074 SplatTrueVal = 3075 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatTrueVal, VL); 3076 SDValue Select = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC, 3077 SplatTrueVal, SplatZero, VL); 3078 3079 return convertFromScalableVector(VecVT, Select, DAG, Subtarget); 3080 } 3081 3082 SDValue RISCVTargetLowering::lowerFixedLengthVectorExtendToRVV( 3083 SDValue Op, SelectionDAG &DAG, unsigned ExtendOpc) const { 3084 MVT ExtVT = Op.getSimpleValueType(); 3085 // Only custom-lower extensions from fixed-length vector types. 3086 if (!ExtVT.isFixedLengthVector()) 3087 return Op; 3088 MVT VT = Op.getOperand(0).getSimpleValueType(); 3089 // Grab the canonical container type for the extended type. Infer the smaller 3090 // type from that to ensure the same number of vector elements, as we know 3091 // the LMUL will be sufficient to hold the smaller type. 3092 MVT ContainerExtVT = getContainerForFixedLengthVector(ExtVT); 3093 // Get the extended container type manually to ensure the same number of 3094 // vector elements between source and dest. 3095 MVT ContainerVT = MVT::getVectorVT(VT.getVectorElementType(), 3096 ContainerExtVT.getVectorElementCount()); 3097 3098 SDValue Op1 = 3099 convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget); 3100 3101 SDLoc DL(Op); 3102 SDValue Mask, VL; 3103 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 3104 3105 SDValue Ext = DAG.getNode(ExtendOpc, DL, ContainerExtVT, Op1, Mask, VL); 3106 3107 return convertFromScalableVector(ExtVT, Ext, DAG, Subtarget); 3108 } 3109 3110 // Custom-lower truncations from vectors to mask vectors by using a mask and a 3111 // setcc operation: 3112 // (vXi1 = trunc vXiN vec) -> (vXi1 = setcc (and vec, 1), 0, ne) 3113 SDValue RISCVTargetLowering::lowerVectorMaskTrunc(SDValue Op, 3114 SelectionDAG &DAG) const { 3115 SDLoc DL(Op); 3116 EVT MaskVT = Op.getValueType(); 3117 // Only expect to custom-lower truncations to mask types 3118 assert(MaskVT.isVector() && MaskVT.getVectorElementType() == MVT::i1 && 3119 "Unexpected type for vector mask lowering"); 3120 SDValue Src = Op.getOperand(0); 3121 MVT VecVT = Src.getSimpleValueType(); 3122 3123 // If this is a fixed vector, we need to convert it to a scalable vector. 3124 MVT ContainerVT = VecVT; 3125 if (VecVT.isFixedLengthVector()) { 3126 ContainerVT = getContainerForFixedLengthVector(VecVT); 3127 Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget); 3128 } 3129 3130 SDValue SplatOne = DAG.getConstant(1, DL, Subtarget.getXLenVT()); 3131 SDValue SplatZero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 3132 3133 SplatOne = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatOne); 3134 SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatZero); 3135 3136 if (VecVT.isScalableVector()) { 3137 SDValue Trunc = DAG.getNode(ISD::AND, DL, VecVT, Src, SplatOne); 3138 return DAG.getSetCC(DL, MaskVT, Trunc, SplatZero, ISD::SETNE); 3139 } 3140 3141 SDValue Mask, VL; 3142 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 3143 3144 MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1); 3145 SDValue Trunc = 3146 DAG.getNode(RISCVISD::AND_VL, DL, ContainerVT, Src, SplatOne, Mask, VL); 3147 Trunc = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskContainerVT, Trunc, SplatZero, 3148 DAG.getCondCode(ISD::SETNE), Mask, VL); 3149 return convertFromScalableVector(MaskVT, Trunc, DAG, Subtarget); 3150 } 3151 3152 // Custom-legalize INSERT_VECTOR_ELT so that the value is inserted into the 3153 // first position of a vector, and that vector is slid up to the insert index. 3154 // By limiting the active vector length to index+1 and merging with the 3155 // original vector (with an undisturbed tail policy for elements >= VL), we 3156 // achieve the desired result of leaving all elements untouched except the one 3157 // at VL-1, which is replaced with the desired value. 3158 SDValue RISCVTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op, 3159 SelectionDAG &DAG) const { 3160 SDLoc DL(Op); 3161 MVT VecVT = Op.getSimpleValueType(); 3162 SDValue Vec = Op.getOperand(0); 3163 SDValue Val = Op.getOperand(1); 3164 SDValue Idx = Op.getOperand(2); 3165 3166 if (VecVT.getVectorElementType() == MVT::i1) { 3167 // FIXME: For now we just promote to an i8 vector and insert into that, 3168 // but this is probably not optimal. 3169 MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount()); 3170 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec); 3171 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, WideVT, Vec, Val, Idx); 3172 return DAG.getNode(ISD::TRUNCATE, DL, VecVT, Vec); 3173 } 3174 3175 MVT ContainerVT = VecVT; 3176 // If the operand is a fixed-length vector, convert to a scalable one. 3177 if (VecVT.isFixedLengthVector()) { 3178 ContainerVT = getContainerForFixedLengthVector(VecVT); 3179 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 3180 } 3181 3182 MVT XLenVT = Subtarget.getXLenVT(); 3183 3184 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 3185 bool IsLegalInsert = Subtarget.is64Bit() || Val.getValueType() != MVT::i64; 3186 // Even i64-element vectors on RV32 can be lowered without scalar 3187 // legalization if the most-significant 32 bits of the value are not affected 3188 // by the sign-extension of the lower 32 bits. 3189 // TODO: We could also catch sign extensions of a 32-bit value. 3190 if (!IsLegalInsert && isa<ConstantSDNode>(Val)) { 3191 const auto *CVal = cast<ConstantSDNode>(Val); 3192 if (isInt<32>(CVal->getSExtValue())) { 3193 IsLegalInsert = true; 3194 Val = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32); 3195 } 3196 } 3197 3198 SDValue Mask, VL; 3199 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 3200 3201 SDValue ValInVec; 3202 3203 if (IsLegalInsert) { 3204 unsigned Opc = 3205 VecVT.isFloatingPoint() ? RISCVISD::VFMV_S_F_VL : RISCVISD::VMV_S_X_VL; 3206 if (isNullConstant(Idx)) { 3207 Vec = DAG.getNode(Opc, DL, ContainerVT, Vec, Val, VL); 3208 if (!VecVT.isFixedLengthVector()) 3209 return Vec; 3210 return convertFromScalableVector(VecVT, Vec, DAG, Subtarget); 3211 } 3212 ValInVec = 3213 DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), Val, VL); 3214 } else { 3215 // On RV32, i64-element vectors must be specially handled to place the 3216 // value at element 0, by using two vslide1up instructions in sequence on 3217 // the i32 split lo/hi value. Use an equivalently-sized i32 vector for 3218 // this. 3219 SDValue One = DAG.getConstant(1, DL, XLenVT); 3220 SDValue ValLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, Zero); 3221 SDValue ValHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, One); 3222 MVT I32ContainerVT = 3223 MVT::getVectorVT(MVT::i32, ContainerVT.getVectorElementCount() * 2); 3224 SDValue I32Mask = 3225 getDefaultScalableVLOps(I32ContainerVT, DL, DAG, Subtarget).first; 3226 // Limit the active VL to two. 3227 SDValue InsertI64VL = DAG.getConstant(2, DL, XLenVT); 3228 // Note: We can't pass a UNDEF to the first VSLIDE1UP_VL since an untied 3229 // undef doesn't obey the earlyclobber constraint. Just splat a zero value. 3230 ValInVec = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, I32ContainerVT, Zero, 3231 InsertI64VL); 3232 // First slide in the hi value, then the lo in underneath it. 3233 ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT, ValInVec, 3234 ValHi, I32Mask, InsertI64VL); 3235 ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT, ValInVec, 3236 ValLo, I32Mask, InsertI64VL); 3237 // Bitcast back to the right container type. 3238 ValInVec = DAG.getBitcast(ContainerVT, ValInVec); 3239 } 3240 3241 // Now that the value is in a vector, slide it into position. 3242 SDValue InsertVL = 3243 DAG.getNode(ISD::ADD, DL, XLenVT, Idx, DAG.getConstant(1, DL, XLenVT)); 3244 SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec, 3245 ValInVec, Idx, Mask, InsertVL); 3246 if (!VecVT.isFixedLengthVector()) 3247 return Slideup; 3248 return convertFromScalableVector(VecVT, Slideup, DAG, Subtarget); 3249 } 3250 3251 // Custom-lower EXTRACT_VECTOR_ELT operations to slide the vector down, then 3252 // extract the first element: (extractelt (slidedown vec, idx), 0). For integer 3253 // types this is done using VMV_X_S to allow us to glean information about the 3254 // sign bits of the result. 3255 SDValue RISCVTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op, 3256 SelectionDAG &DAG) const { 3257 SDLoc DL(Op); 3258 SDValue Idx = Op.getOperand(1); 3259 SDValue Vec = Op.getOperand(0); 3260 EVT EltVT = Op.getValueType(); 3261 MVT VecVT = Vec.getSimpleValueType(); 3262 MVT XLenVT = Subtarget.getXLenVT(); 3263 3264 if (VecVT.getVectorElementType() == MVT::i1) { 3265 // FIXME: For now we just promote to an i8 vector and extract from that, 3266 // but this is probably not optimal. 3267 MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount()); 3268 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec); 3269 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec, Idx); 3270 } 3271 3272 // If this is a fixed vector, we need to convert it to a scalable vector. 3273 MVT ContainerVT = VecVT; 3274 if (VecVT.isFixedLengthVector()) { 3275 ContainerVT = getContainerForFixedLengthVector(VecVT); 3276 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 3277 } 3278 3279 // If the index is 0, the vector is already in the right position. 3280 if (!isNullConstant(Idx)) { 3281 // Use a VL of 1 to avoid processing more elements than we need. 3282 SDValue VL = DAG.getConstant(1, DL, XLenVT); 3283 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 3284 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 3285 Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 3286 DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL); 3287 } 3288 3289 if (!EltVT.isInteger()) { 3290 // Floating-point extracts are handled in TableGen. 3291 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec, 3292 DAG.getConstant(0, DL, XLenVT)); 3293 } 3294 3295 SDValue Elt0 = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); 3296 return DAG.getNode(ISD::TRUNCATE, DL, EltVT, Elt0); 3297 } 3298 3299 // Some RVV intrinsics may claim that they want an integer operand to be 3300 // promoted or expanded. 3301 static SDValue lowerVectorIntrinsicSplats(SDValue Op, SelectionDAG &DAG, 3302 const RISCVSubtarget &Subtarget) { 3303 assert((Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3304 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN) && 3305 "Unexpected opcode"); 3306 3307 if (!Subtarget.hasStdExtV()) 3308 return SDValue(); 3309 3310 bool HasChain = Op.getOpcode() == ISD::INTRINSIC_W_CHAIN; 3311 unsigned IntNo = Op.getConstantOperandVal(HasChain ? 1 : 0); 3312 SDLoc DL(Op); 3313 3314 const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II = 3315 RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo); 3316 if (!II || !II->SplatOperand) 3317 return SDValue(); 3318 3319 unsigned SplatOp = II->SplatOperand + HasChain; 3320 assert(SplatOp < Op.getNumOperands()); 3321 3322 SmallVector<SDValue, 8> Operands(Op->op_begin(), Op->op_end()); 3323 SDValue &ScalarOp = Operands[SplatOp]; 3324 MVT OpVT = ScalarOp.getSimpleValueType(); 3325 MVT XLenVT = Subtarget.getXLenVT(); 3326 3327 // If this isn't a scalar, or its type is XLenVT we're done. 3328 if (!OpVT.isScalarInteger() || OpVT == XLenVT) 3329 return SDValue(); 3330 3331 // Simplest case is that the operand needs to be promoted to XLenVT. 3332 if (OpVT.bitsLT(XLenVT)) { 3333 // If the operand is a constant, sign extend to increase our chances 3334 // of being able to use a .vi instruction. ANY_EXTEND would become a 3335 // a zero extend and the simm5 check in isel would fail. 3336 // FIXME: Should we ignore the upper bits in isel instead? 3337 unsigned ExtOpc = 3338 isa<ConstantSDNode>(ScalarOp) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND; 3339 ScalarOp = DAG.getNode(ExtOpc, DL, XLenVT, ScalarOp); 3340 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); 3341 } 3342 3343 // Use the previous operand to get the vXi64 VT. The result might be a mask 3344 // VT for compares. Using the previous operand assumes that the previous 3345 // operand will never have a smaller element size than a scalar operand and 3346 // that a widening operation never uses SEW=64. 3347 // NOTE: If this fails the below assert, we can probably just find the 3348 // element count from any operand or result and use it to construct the VT. 3349 assert(II->SplatOperand > 1 && "Unexpected splat operand!"); 3350 MVT VT = Op.getOperand(SplatOp - 1).getSimpleValueType(); 3351 3352 // The more complex case is when the scalar is larger than XLenVT. 3353 assert(XLenVT == MVT::i32 && OpVT == MVT::i64 && 3354 VT.getVectorElementType() == MVT::i64 && "Unexpected VTs!"); 3355 3356 // If this is a sign-extended 32-bit constant, we can truncate it and rely 3357 // on the instruction to sign-extend since SEW>XLEN. 3358 if (auto *CVal = dyn_cast<ConstantSDNode>(ScalarOp)) { 3359 if (isInt<32>(CVal->getSExtValue())) { 3360 ScalarOp = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32); 3361 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); 3362 } 3363 } 3364 3365 // We need to convert the scalar to a splat vector. 3366 // FIXME: Can we implicitly truncate the scalar if it is known to 3367 // be sign extended? 3368 // VL should be the last operand. 3369 SDValue VL = Op.getOperand(Op.getNumOperands() - 1); 3370 assert(VL.getValueType() == XLenVT); 3371 ScalarOp = splatSplitI64WithVL(DL, VT, ScalarOp, VL, DAG); 3372 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); 3373 } 3374 3375 SDValue RISCVTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 3376 SelectionDAG &DAG) const { 3377 unsigned IntNo = Op.getConstantOperandVal(0); 3378 SDLoc DL(Op); 3379 MVT XLenVT = Subtarget.getXLenVT(); 3380 3381 switch (IntNo) { 3382 default: 3383 break; // Don't custom lower most intrinsics. 3384 case Intrinsic::thread_pointer: { 3385 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3386 return DAG.getRegister(RISCV::X4, PtrVT); 3387 } 3388 case Intrinsic::riscv_orc_b: 3389 // Lower to the GORCI encoding for orc.b. 3390 return DAG.getNode(RISCVISD::GORC, DL, XLenVT, Op.getOperand(1), 3391 DAG.getConstant(7, DL, XLenVT)); 3392 case Intrinsic::riscv_grev: 3393 case Intrinsic::riscv_gorc: { 3394 unsigned Opc = 3395 IntNo == Intrinsic::riscv_grev ? RISCVISD::GREV : RISCVISD::GORC; 3396 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2)); 3397 } 3398 case Intrinsic::riscv_shfl: 3399 case Intrinsic::riscv_unshfl: { 3400 unsigned Opc = 3401 IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL; 3402 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2)); 3403 } 3404 case Intrinsic::riscv_bcompress: 3405 case Intrinsic::riscv_bdecompress: { 3406 unsigned Opc = IntNo == Intrinsic::riscv_bcompress ? RISCVISD::BCOMPRESS 3407 : RISCVISD::BDECOMPRESS; 3408 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2)); 3409 } 3410 case Intrinsic::riscv_vmv_x_s: 3411 assert(Op.getValueType() == XLenVT && "Unexpected VT!"); 3412 return DAG.getNode(RISCVISD::VMV_X_S, DL, Op.getValueType(), 3413 Op.getOperand(1)); 3414 case Intrinsic::riscv_vmv_v_x: 3415 return lowerScalarSplat(Op.getOperand(1), Op.getOperand(2), 3416 Op.getSimpleValueType(), DL, DAG, Subtarget); 3417 case Intrinsic::riscv_vfmv_v_f: 3418 return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, Op.getValueType(), 3419 Op.getOperand(1), Op.getOperand(2)); 3420 case Intrinsic::riscv_vmv_s_x: { 3421 SDValue Scalar = Op.getOperand(2); 3422 3423 if (Scalar.getValueType().bitsLE(XLenVT)) { 3424 Scalar = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Scalar); 3425 return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, Op.getValueType(), 3426 Op.getOperand(1), Scalar, Op.getOperand(3)); 3427 } 3428 3429 assert(Scalar.getValueType() == MVT::i64 && "Unexpected scalar VT!"); 3430 3431 // This is an i64 value that lives in two scalar registers. We have to 3432 // insert this in a convoluted way. First we build vXi64 splat containing 3433 // the/ two values that we assemble using some bit math. Next we'll use 3434 // vid.v and vmseq to build a mask with bit 0 set. Then we'll use that mask 3435 // to merge element 0 from our splat into the source vector. 3436 // FIXME: This is probably not the best way to do this, but it is 3437 // consistent with INSERT_VECTOR_ELT lowering so it is a good starting 3438 // point. 3439 // sw lo, (a0) 3440 // sw hi, 4(a0) 3441 // vlse vX, (a0) 3442 // 3443 // vid.v vVid 3444 // vmseq.vx mMask, vVid, 0 3445 // vmerge.vvm vDest, vSrc, vVal, mMask 3446 MVT VT = Op.getSimpleValueType(); 3447 SDValue Vec = Op.getOperand(1); 3448 SDValue VL = Op.getOperand(3); 3449 3450 SDValue SplattedVal = splatSplitI64WithVL(DL, VT, Scalar, VL, DAG); 3451 SDValue SplattedIdx = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, 3452 DAG.getConstant(0, DL, MVT::i32), VL); 3453 3454 MVT MaskVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount()); 3455 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 3456 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL); 3457 SDValue SelectCond = 3458 DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, VID, SplattedIdx, 3459 DAG.getCondCode(ISD::SETEQ), Mask, VL); 3460 return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, SelectCond, SplattedVal, 3461 Vec, VL); 3462 } 3463 case Intrinsic::riscv_vslide1up: 3464 case Intrinsic::riscv_vslide1down: 3465 case Intrinsic::riscv_vslide1up_mask: 3466 case Intrinsic::riscv_vslide1down_mask: { 3467 // We need to special case these when the scalar is larger than XLen. 3468 unsigned NumOps = Op.getNumOperands(); 3469 bool IsMasked = NumOps == 6; 3470 unsigned OpOffset = IsMasked ? 1 : 0; 3471 SDValue Scalar = Op.getOperand(2 + OpOffset); 3472 if (Scalar.getValueType().bitsLE(XLenVT)) 3473 break; 3474 3475 // Splatting a sign extended constant is fine. 3476 if (auto *CVal = dyn_cast<ConstantSDNode>(Scalar)) 3477 if (isInt<32>(CVal->getSExtValue())) 3478 break; 3479 3480 MVT VT = Op.getSimpleValueType(); 3481 assert(VT.getVectorElementType() == MVT::i64 && 3482 Scalar.getValueType() == MVT::i64 && "Unexpected VTs"); 3483 3484 // Convert the vector source to the equivalent nxvXi32 vector. 3485 MVT I32VT = MVT::getVectorVT(MVT::i32, VT.getVectorElementCount() * 2); 3486 SDValue Vec = DAG.getBitcast(I32VT, Op.getOperand(1 + OpOffset)); 3487 3488 SDValue ScalarLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 3489 DAG.getConstant(0, DL, XLenVT)); 3490 SDValue ScalarHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 3491 DAG.getConstant(1, DL, XLenVT)); 3492 3493 // Double the VL since we halved SEW. 3494 SDValue VL = Op.getOperand(NumOps - 1); 3495 SDValue I32VL = 3496 DAG.getNode(ISD::SHL, DL, XLenVT, VL, DAG.getConstant(1, DL, XLenVT)); 3497 3498 MVT I32MaskVT = MVT::getVectorVT(MVT::i1, I32VT.getVectorElementCount()); 3499 SDValue I32Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, I32MaskVT, VL); 3500 3501 // Shift the two scalar parts in using SEW=32 slide1up/slide1down 3502 // instructions. 3503 if (IntNo == Intrinsic::riscv_vslide1up || 3504 IntNo == Intrinsic::riscv_vslide1up_mask) { 3505 Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Vec, ScalarHi, 3506 I32Mask, I32VL); 3507 Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Vec, ScalarLo, 3508 I32Mask, I32VL); 3509 } else { 3510 Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Vec, ScalarLo, 3511 I32Mask, I32VL); 3512 Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Vec, ScalarHi, 3513 I32Mask, I32VL); 3514 } 3515 3516 // Convert back to nxvXi64. 3517 Vec = DAG.getBitcast(VT, Vec); 3518 3519 if (!IsMasked) 3520 return Vec; 3521 3522 // Apply mask after the operation. 3523 SDValue Mask = Op.getOperand(NumOps - 2); 3524 SDValue MaskedOff = Op.getOperand(1); 3525 return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, Mask, Vec, MaskedOff, VL); 3526 } 3527 } 3528 3529 return lowerVectorIntrinsicSplats(Op, DAG, Subtarget); 3530 } 3531 3532 SDValue RISCVTargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op, 3533 SelectionDAG &DAG) const { 3534 return lowerVectorIntrinsicSplats(Op, DAG, Subtarget); 3535 } 3536 3537 static MVT getLMUL1VT(MVT VT) { 3538 assert(VT.getVectorElementType().getSizeInBits() <= 64 && 3539 "Unexpected vector MVT"); 3540 return MVT::getScalableVectorVT( 3541 VT.getVectorElementType(), 3542 RISCV::RVVBitsPerBlock / VT.getVectorElementType().getSizeInBits()); 3543 } 3544 3545 static unsigned getRVVReductionOp(unsigned ISDOpcode) { 3546 switch (ISDOpcode) { 3547 default: 3548 llvm_unreachable("Unhandled reduction"); 3549 case ISD::VECREDUCE_ADD: 3550 return RISCVISD::VECREDUCE_ADD_VL; 3551 case ISD::VECREDUCE_UMAX: 3552 return RISCVISD::VECREDUCE_UMAX_VL; 3553 case ISD::VECREDUCE_SMAX: 3554 return RISCVISD::VECREDUCE_SMAX_VL; 3555 case ISD::VECREDUCE_UMIN: 3556 return RISCVISD::VECREDUCE_UMIN_VL; 3557 case ISD::VECREDUCE_SMIN: 3558 return RISCVISD::VECREDUCE_SMIN_VL; 3559 case ISD::VECREDUCE_AND: 3560 return RISCVISD::VECREDUCE_AND_VL; 3561 case ISD::VECREDUCE_OR: 3562 return RISCVISD::VECREDUCE_OR_VL; 3563 case ISD::VECREDUCE_XOR: 3564 return RISCVISD::VECREDUCE_XOR_VL; 3565 } 3566 } 3567 3568 SDValue RISCVTargetLowering::lowerVectorMaskVECREDUCE(SDValue Op, 3569 SelectionDAG &DAG) const { 3570 SDLoc DL(Op); 3571 SDValue Vec = Op.getOperand(0); 3572 MVT VecVT = Vec.getSimpleValueType(); 3573 assert((Op.getOpcode() == ISD::VECREDUCE_AND || 3574 Op.getOpcode() == ISD::VECREDUCE_OR || 3575 Op.getOpcode() == ISD::VECREDUCE_XOR) && 3576 "Unexpected reduction lowering"); 3577 3578 MVT XLenVT = Subtarget.getXLenVT(); 3579 assert(Op.getValueType() == XLenVT && 3580 "Expected reduction output to be legalized to XLenVT"); 3581 3582 MVT ContainerVT = VecVT; 3583 if (VecVT.isFixedLengthVector()) { 3584 ContainerVT = getContainerForFixedLengthVector(VecVT); 3585 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 3586 } 3587 3588 SDValue Mask, VL; 3589 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 3590 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 3591 3592 switch (Op.getOpcode()) { 3593 default: 3594 llvm_unreachable("Unhandled reduction"); 3595 case ISD::VECREDUCE_AND: 3596 // vpopc ~x == 0 3597 Vec = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Vec, Mask, VL); 3598 Vec = DAG.getNode(RISCVISD::VPOPC_VL, DL, XLenVT, Vec, Mask, VL); 3599 return DAG.getSetCC(DL, XLenVT, Vec, Zero, ISD::SETEQ); 3600 case ISD::VECREDUCE_OR: 3601 // vpopc x != 0 3602 Vec = DAG.getNode(RISCVISD::VPOPC_VL, DL, XLenVT, Vec, Mask, VL); 3603 return DAG.getSetCC(DL, XLenVT, Vec, Zero, ISD::SETNE); 3604 case ISD::VECREDUCE_XOR: { 3605 // ((vpopc x) & 1) != 0 3606 SDValue One = DAG.getConstant(1, DL, XLenVT); 3607 Vec = DAG.getNode(RISCVISD::VPOPC_VL, DL, XLenVT, Vec, Mask, VL); 3608 Vec = DAG.getNode(ISD::AND, DL, XLenVT, Vec, One); 3609 return DAG.getSetCC(DL, XLenVT, Vec, Zero, ISD::SETNE); 3610 } 3611 } 3612 } 3613 3614 SDValue RISCVTargetLowering::lowerVECREDUCE(SDValue Op, 3615 SelectionDAG &DAG) const { 3616 SDLoc DL(Op); 3617 SDValue Vec = Op.getOperand(0); 3618 EVT VecEVT = Vec.getValueType(); 3619 3620 unsigned BaseOpc = ISD::getVecReduceBaseOpcode(Op.getOpcode()); 3621 3622 // Due to ordering in legalize types we may have a vector type that needs to 3623 // be split. Do that manually so we can get down to a legal type. 3624 while (getTypeAction(*DAG.getContext(), VecEVT) == 3625 TargetLowering::TypeSplitVector) { 3626 SDValue Lo, Hi; 3627 std::tie(Lo, Hi) = DAG.SplitVector(Vec, DL); 3628 VecEVT = Lo.getValueType(); 3629 Vec = DAG.getNode(BaseOpc, DL, VecEVT, Lo, Hi); 3630 } 3631 3632 // TODO: The type may need to be widened rather than split. Or widened before 3633 // it can be split. 3634 if (!isTypeLegal(VecEVT)) 3635 return SDValue(); 3636 3637 MVT VecVT = VecEVT.getSimpleVT(); 3638 MVT VecEltVT = VecVT.getVectorElementType(); 3639 unsigned RVVOpcode = getRVVReductionOp(Op.getOpcode()); 3640 3641 MVT ContainerVT = VecVT; 3642 if (VecVT.isFixedLengthVector()) { 3643 ContainerVT = getContainerForFixedLengthVector(VecVT); 3644 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 3645 } 3646 3647 MVT M1VT = getLMUL1VT(ContainerVT); 3648 3649 SDValue Mask, VL; 3650 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 3651 3652 // FIXME: This is a VLMAX splat which might be too large and can prevent 3653 // vsetvli removal. 3654 SDValue NeutralElem = 3655 DAG.getNeutralElement(BaseOpc, DL, VecEltVT, SDNodeFlags()); 3656 SDValue IdentitySplat = DAG.getSplatVector(M1VT, DL, NeutralElem); 3657 SDValue Reduction = 3658 DAG.getNode(RVVOpcode, DL, M1VT, Vec, IdentitySplat, Mask, VL); 3659 SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction, 3660 DAG.getConstant(0, DL, Subtarget.getXLenVT())); 3661 return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType()); 3662 } 3663 3664 // Given a reduction op, this function returns the matching reduction opcode, 3665 // the vector SDValue and the scalar SDValue required to lower this to a 3666 // RISCVISD node. 3667 static std::tuple<unsigned, SDValue, SDValue> 3668 getRVVFPReductionOpAndOperands(SDValue Op, SelectionDAG &DAG, EVT EltVT) { 3669 SDLoc DL(Op); 3670 auto Flags = Op->getFlags(); 3671 unsigned Opcode = Op.getOpcode(); 3672 unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Opcode); 3673 switch (Opcode) { 3674 default: 3675 llvm_unreachable("Unhandled reduction"); 3676 case ISD::VECREDUCE_FADD: 3677 return std::make_tuple(RISCVISD::VECREDUCE_FADD_VL, Op.getOperand(0), 3678 DAG.getConstantFP(0.0, DL, EltVT)); 3679 case ISD::VECREDUCE_SEQ_FADD: 3680 return std::make_tuple(RISCVISD::VECREDUCE_SEQ_FADD_VL, Op.getOperand(1), 3681 Op.getOperand(0)); 3682 case ISD::VECREDUCE_FMIN: 3683 return std::make_tuple(RISCVISD::VECREDUCE_FMIN_VL, Op.getOperand(0), 3684 DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags)); 3685 case ISD::VECREDUCE_FMAX: 3686 return std::make_tuple(RISCVISD::VECREDUCE_FMAX_VL, Op.getOperand(0), 3687 DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags)); 3688 } 3689 } 3690 3691 SDValue RISCVTargetLowering::lowerFPVECREDUCE(SDValue Op, 3692 SelectionDAG &DAG) const { 3693 SDLoc DL(Op); 3694 MVT VecEltVT = Op.getSimpleValueType(); 3695 3696 unsigned RVVOpcode; 3697 SDValue VectorVal, ScalarVal; 3698 std::tie(RVVOpcode, VectorVal, ScalarVal) = 3699 getRVVFPReductionOpAndOperands(Op, DAG, VecEltVT); 3700 MVT VecVT = VectorVal.getSimpleValueType(); 3701 3702 MVT ContainerVT = VecVT; 3703 if (VecVT.isFixedLengthVector()) { 3704 ContainerVT = getContainerForFixedLengthVector(VecVT); 3705 VectorVal = convertToScalableVector(ContainerVT, VectorVal, DAG, Subtarget); 3706 } 3707 3708 MVT M1VT = getLMUL1VT(VectorVal.getSimpleValueType()); 3709 3710 SDValue Mask, VL; 3711 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 3712 3713 // FIXME: This is a VLMAX splat which might be too large and can prevent 3714 // vsetvli removal. 3715 SDValue ScalarSplat = DAG.getSplatVector(M1VT, DL, ScalarVal); 3716 SDValue Reduction = 3717 DAG.getNode(RVVOpcode, DL, M1VT, VectorVal, ScalarSplat, Mask, VL); 3718 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction, 3719 DAG.getConstant(0, DL, Subtarget.getXLenVT())); 3720 } 3721 3722 SDValue RISCVTargetLowering::lowerINSERT_SUBVECTOR(SDValue Op, 3723 SelectionDAG &DAG) const { 3724 SDValue Vec = Op.getOperand(0); 3725 SDValue SubVec = Op.getOperand(1); 3726 MVT VecVT = Vec.getSimpleValueType(); 3727 MVT SubVecVT = SubVec.getSimpleValueType(); 3728 3729 SDLoc DL(Op); 3730 MVT XLenVT = Subtarget.getXLenVT(); 3731 unsigned OrigIdx = Op.getConstantOperandVal(2); 3732 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 3733 3734 // We don't have the ability to slide mask vectors up indexed by their i1 3735 // elements; the smallest we can do is i8. Often we are able to bitcast to 3736 // equivalent i8 vectors. Note that when inserting a fixed-length vector 3737 // into a scalable one, we might not necessarily have enough scalable 3738 // elements to safely divide by 8: nxv1i1 = insert nxv1i1, v4i1 is valid. 3739 if (SubVecVT.getVectorElementType() == MVT::i1 && 3740 (OrigIdx != 0 || !Vec.isUndef())) { 3741 if (VecVT.getVectorMinNumElements() >= 8 && 3742 SubVecVT.getVectorMinNumElements() >= 8) { 3743 assert(OrigIdx % 8 == 0 && "Invalid index"); 3744 assert(VecVT.getVectorMinNumElements() % 8 == 0 && 3745 SubVecVT.getVectorMinNumElements() % 8 == 0 && 3746 "Unexpected mask vector lowering"); 3747 OrigIdx /= 8; 3748 SubVecVT = 3749 MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8, 3750 SubVecVT.isScalableVector()); 3751 VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8, 3752 VecVT.isScalableVector()); 3753 Vec = DAG.getBitcast(VecVT, Vec); 3754 SubVec = DAG.getBitcast(SubVecVT, SubVec); 3755 } else { 3756 // We can't slide this mask vector up indexed by its i1 elements. 3757 // This poses a problem when we wish to insert a scalable vector which 3758 // can't be re-expressed as a larger type. Just choose the slow path and 3759 // extend to a larger type, then truncate back down. 3760 MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8); 3761 MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8); 3762 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec); 3763 SubVec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtSubVecVT, SubVec); 3764 Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ExtVecVT, Vec, SubVec, 3765 Op.getOperand(2)); 3766 SDValue SplatZero = DAG.getConstant(0, DL, ExtVecVT); 3767 return DAG.getSetCC(DL, VecVT, Vec, SplatZero, ISD::SETNE); 3768 } 3769 } 3770 3771 // If the subvector vector is a fixed-length type, we cannot use subregister 3772 // manipulation to simplify the codegen; we don't know which register of a 3773 // LMUL group contains the specific subvector as we only know the minimum 3774 // register size. Therefore we must slide the vector group up the full 3775 // amount. 3776 if (SubVecVT.isFixedLengthVector()) { 3777 if (OrigIdx == 0 && Vec.isUndef()) 3778 return Op; 3779 MVT ContainerVT = VecVT; 3780 if (VecVT.isFixedLengthVector()) { 3781 ContainerVT = getContainerForFixedLengthVector(VecVT); 3782 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 3783 } 3784 SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ContainerVT, 3785 DAG.getUNDEF(ContainerVT), SubVec, 3786 DAG.getConstant(0, DL, XLenVT)); 3787 SDValue Mask = 3788 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first; 3789 // Set the vector length to only the number of elements we care about. Note 3790 // that for slideup this includes the offset. 3791 SDValue VL = 3792 DAG.getConstant(OrigIdx + SubVecVT.getVectorNumElements(), DL, XLenVT); 3793 SDValue SlideupAmt = DAG.getConstant(OrigIdx, DL, XLenVT); 3794 SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec, 3795 SubVec, SlideupAmt, Mask, VL); 3796 if (VecVT.isFixedLengthVector()) 3797 Slideup = convertFromScalableVector(VecVT, Slideup, DAG, Subtarget); 3798 return DAG.getBitcast(Op.getValueType(), Slideup); 3799 } 3800 3801 unsigned SubRegIdx, RemIdx; 3802 std::tie(SubRegIdx, RemIdx) = 3803 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( 3804 VecVT, SubVecVT, OrigIdx, TRI); 3805 3806 RISCVII::VLMUL SubVecLMUL = RISCVTargetLowering::getLMUL(SubVecVT); 3807 bool IsSubVecPartReg = SubVecLMUL == RISCVII::VLMUL::LMUL_F2 || 3808 SubVecLMUL == RISCVII::VLMUL::LMUL_F4 || 3809 SubVecLMUL == RISCVII::VLMUL::LMUL_F8; 3810 3811 // 1. If the Idx has been completely eliminated and this subvector's size is 3812 // a vector register or a multiple thereof, or the surrounding elements are 3813 // undef, then this is a subvector insert which naturally aligns to a vector 3814 // register. These can easily be handled using subregister manipulation. 3815 // 2. If the subvector is smaller than a vector register, then the insertion 3816 // must preserve the undisturbed elements of the register. We do this by 3817 // lowering to an EXTRACT_SUBVECTOR grabbing the nearest LMUL=1 vector type 3818 // (which resolves to a subregister copy), performing a VSLIDEUP to place the 3819 // subvector within the vector register, and an INSERT_SUBVECTOR of that 3820 // LMUL=1 type back into the larger vector (resolving to another subregister 3821 // operation). See below for how our VSLIDEUP works. We go via a LMUL=1 type 3822 // to avoid allocating a large register group to hold our subvector. 3823 if (RemIdx == 0 && (!IsSubVecPartReg || Vec.isUndef())) 3824 return Op; 3825 3826 // VSLIDEUP works by leaving elements 0<i<OFFSET undisturbed, elements 3827 // OFFSET<=i<VL set to the "subvector" and vl<=i<VLMAX set to the tail policy 3828 // (in our case undisturbed). This means we can set up a subvector insertion 3829 // where OFFSET is the insertion offset, and the VL is the OFFSET plus the 3830 // size of the subvector. 3831 MVT InterSubVT = VecVT; 3832 SDValue AlignedExtract = Vec; 3833 unsigned AlignedIdx = OrigIdx - RemIdx; 3834 if (VecVT.bitsGT(getLMUL1VT(VecVT))) { 3835 InterSubVT = getLMUL1VT(VecVT); 3836 // Extract a subvector equal to the nearest full vector register type. This 3837 // should resolve to a EXTRACT_SUBREG instruction. 3838 AlignedExtract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec, 3839 DAG.getConstant(AlignedIdx, DL, XLenVT)); 3840 } 3841 3842 SDValue SlideupAmt = DAG.getConstant(RemIdx, DL, XLenVT); 3843 // For scalable vectors this must be further multiplied by vscale. 3844 SlideupAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlideupAmt); 3845 3846 SDValue Mask, VL; 3847 std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget); 3848 3849 // Construct the vector length corresponding to RemIdx + length(SubVecVT). 3850 VL = DAG.getConstant(SubVecVT.getVectorMinNumElements(), DL, XLenVT); 3851 VL = DAG.getNode(ISD::VSCALE, DL, XLenVT, VL); 3852 VL = DAG.getNode(ISD::ADD, DL, XLenVT, SlideupAmt, VL); 3853 3854 SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, InterSubVT, 3855 DAG.getUNDEF(InterSubVT), SubVec, 3856 DAG.getConstant(0, DL, XLenVT)); 3857 3858 SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, InterSubVT, 3859 AlignedExtract, SubVec, SlideupAmt, Mask, VL); 3860 3861 // If required, insert this subvector back into the correct vector register. 3862 // This should resolve to an INSERT_SUBREG instruction. 3863 if (VecVT.bitsGT(InterSubVT)) 3864 Slideup = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, Vec, Slideup, 3865 DAG.getConstant(AlignedIdx, DL, XLenVT)); 3866 3867 // We might have bitcast from a mask type: cast back to the original type if 3868 // required. 3869 return DAG.getBitcast(Op.getSimpleValueType(), Slideup); 3870 } 3871 3872 SDValue RISCVTargetLowering::lowerEXTRACT_SUBVECTOR(SDValue Op, 3873 SelectionDAG &DAG) const { 3874 SDValue Vec = Op.getOperand(0); 3875 MVT SubVecVT = Op.getSimpleValueType(); 3876 MVT VecVT = Vec.getSimpleValueType(); 3877 3878 SDLoc DL(Op); 3879 MVT XLenVT = Subtarget.getXLenVT(); 3880 unsigned OrigIdx = Op.getConstantOperandVal(1); 3881 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 3882 3883 // We don't have the ability to slide mask vectors down indexed by their i1 3884 // elements; the smallest we can do is i8. Often we are able to bitcast to 3885 // equivalent i8 vectors. Note that when extracting a fixed-length vector 3886 // from a scalable one, we might not necessarily have enough scalable 3887 // elements to safely divide by 8: v8i1 = extract nxv1i1 is valid. 3888 if (SubVecVT.getVectorElementType() == MVT::i1 && OrigIdx != 0) { 3889 if (VecVT.getVectorMinNumElements() >= 8 && 3890 SubVecVT.getVectorMinNumElements() >= 8) { 3891 assert(OrigIdx % 8 == 0 && "Invalid index"); 3892 assert(VecVT.getVectorMinNumElements() % 8 == 0 && 3893 SubVecVT.getVectorMinNumElements() % 8 == 0 && 3894 "Unexpected mask vector lowering"); 3895 OrigIdx /= 8; 3896 SubVecVT = 3897 MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8, 3898 SubVecVT.isScalableVector()); 3899 VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8, 3900 VecVT.isScalableVector()); 3901 Vec = DAG.getBitcast(VecVT, Vec); 3902 } else { 3903 // We can't slide this mask vector down, indexed by its i1 elements. 3904 // This poses a problem when we wish to extract a scalable vector which 3905 // can't be re-expressed as a larger type. Just choose the slow path and 3906 // extend to a larger type, then truncate back down. 3907 // TODO: We could probably improve this when extracting certain fixed 3908 // from fixed, where we can extract as i8 and shift the correct element 3909 // right to reach the desired subvector? 3910 MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8); 3911 MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8); 3912 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec); 3913 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ExtSubVecVT, Vec, 3914 Op.getOperand(1)); 3915 SDValue SplatZero = DAG.getConstant(0, DL, ExtSubVecVT); 3916 return DAG.getSetCC(DL, SubVecVT, Vec, SplatZero, ISD::SETNE); 3917 } 3918 } 3919 3920 // If the subvector vector is a fixed-length type, we cannot use subregister 3921 // manipulation to simplify the codegen; we don't know which register of a 3922 // LMUL group contains the specific subvector as we only know the minimum 3923 // register size. Therefore we must slide the vector group down the full 3924 // amount. 3925 if (SubVecVT.isFixedLengthVector()) { 3926 // With an index of 0 this is a cast-like subvector, which can be performed 3927 // with subregister operations. 3928 if (OrigIdx == 0) 3929 return Op; 3930 MVT ContainerVT = VecVT; 3931 if (VecVT.isFixedLengthVector()) { 3932 ContainerVT = getContainerForFixedLengthVector(VecVT); 3933 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 3934 } 3935 SDValue Mask = 3936 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first; 3937 // Set the vector length to only the number of elements we care about. This 3938 // avoids sliding down elements we're going to discard straight away. 3939 SDValue VL = DAG.getConstant(SubVecVT.getVectorNumElements(), DL, XLenVT); 3940 SDValue SlidedownAmt = DAG.getConstant(OrigIdx, DL, XLenVT); 3941 SDValue Slidedown = 3942 DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 3943 DAG.getUNDEF(ContainerVT), Vec, SlidedownAmt, Mask, VL); 3944 // Now we can use a cast-like subvector extract to get the result. 3945 Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown, 3946 DAG.getConstant(0, DL, XLenVT)); 3947 return DAG.getBitcast(Op.getValueType(), Slidedown); 3948 } 3949 3950 unsigned SubRegIdx, RemIdx; 3951 std::tie(SubRegIdx, RemIdx) = 3952 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( 3953 VecVT, SubVecVT, OrigIdx, TRI); 3954 3955 // If the Idx has been completely eliminated then this is a subvector extract 3956 // which naturally aligns to a vector register. These can easily be handled 3957 // using subregister manipulation. 3958 if (RemIdx == 0) 3959 return Op; 3960 3961 // Else we must shift our vector register directly to extract the subvector. 3962 // Do this using VSLIDEDOWN. 3963 3964 // If the vector type is an LMUL-group type, extract a subvector equal to the 3965 // nearest full vector register type. This should resolve to a EXTRACT_SUBREG 3966 // instruction. 3967 MVT InterSubVT = VecVT; 3968 if (VecVT.bitsGT(getLMUL1VT(VecVT))) { 3969 InterSubVT = getLMUL1VT(VecVT); 3970 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec, 3971 DAG.getConstant(OrigIdx - RemIdx, DL, XLenVT)); 3972 } 3973 3974 // Slide this vector register down by the desired number of elements in order 3975 // to place the desired subvector starting at element 0. 3976 SDValue SlidedownAmt = DAG.getConstant(RemIdx, DL, XLenVT); 3977 // For scalable vectors this must be further multiplied by vscale. 3978 SlidedownAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlidedownAmt); 3979 3980 SDValue Mask, VL; 3981 std::tie(Mask, VL) = getDefaultScalableVLOps(InterSubVT, DL, DAG, Subtarget); 3982 SDValue Slidedown = 3983 DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, InterSubVT, 3984 DAG.getUNDEF(InterSubVT), Vec, SlidedownAmt, Mask, VL); 3985 3986 // Now the vector is in the right position, extract our final subvector. This 3987 // should resolve to a COPY. 3988 Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown, 3989 DAG.getConstant(0, DL, XLenVT)); 3990 3991 // We might have bitcast from a mask type: cast back to the original type if 3992 // required. 3993 return DAG.getBitcast(Op.getSimpleValueType(), Slidedown); 3994 } 3995 3996 // Lower step_vector to the vid instruction. Any non-identity step value must 3997 // be accounted for my manual expansion. 3998 SDValue RISCVTargetLowering::lowerSTEP_VECTOR(SDValue Op, 3999 SelectionDAG &DAG) const { 4000 SDLoc DL(Op); 4001 MVT VT = Op.getSimpleValueType(); 4002 MVT XLenVT = Subtarget.getXLenVT(); 4003 SDValue Mask, VL; 4004 std::tie(Mask, VL) = getDefaultScalableVLOps(VT, DL, DAG, Subtarget); 4005 SDValue StepVec = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL); 4006 uint64_t StepValImm = Op.getConstantOperandVal(0); 4007 if (StepValImm != 1) { 4008 assert(Op.getOperand(0).getValueType() == XLenVT && 4009 "Unexpected step value type"); 4010 if (isPowerOf2_64(StepValImm)) { 4011 SDValue StepVal = 4012 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, 4013 DAG.getConstant(Log2_64(StepValImm), DL, XLenVT)); 4014 StepVec = DAG.getNode(ISD::SHL, DL, VT, StepVec, StepVal); 4015 } else { 4016 SDValue StepVal = 4017 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Op.getOperand(0)); 4018 StepVec = DAG.getNode(ISD::MUL, DL, VT, StepVec, StepVal); 4019 } 4020 } 4021 return StepVec; 4022 } 4023 4024 // Implement vector_reverse using vrgather.vv with indices determined by 4025 // subtracting the id of each element from (VLMAX-1). This will convert 4026 // the indices like so: 4027 // (0, 1,..., VLMAX-2, VLMAX-1) -> (VLMAX-1, VLMAX-2,..., 1, 0). 4028 // TODO: This code assumes VLMAX <= 65536 for LMUL=8 SEW=16. 4029 SDValue RISCVTargetLowering::lowerVECTOR_REVERSE(SDValue Op, 4030 SelectionDAG &DAG) const { 4031 SDLoc DL(Op); 4032 MVT VecVT = Op.getSimpleValueType(); 4033 unsigned EltSize = VecVT.getScalarSizeInBits(); 4034 unsigned MinSize = VecVT.getSizeInBits().getKnownMinValue(); 4035 4036 unsigned MaxVLMAX = 0; 4037 unsigned VectorBitsMax = Subtarget.getMaxRVVVectorSizeInBits(); 4038 if (VectorBitsMax != 0) 4039 MaxVLMAX = ((VectorBitsMax / EltSize) * MinSize) / RISCV::RVVBitsPerBlock; 4040 4041 unsigned GatherOpc = RISCVISD::VRGATHER_VV_VL; 4042 MVT IntVT = VecVT.changeVectorElementTypeToInteger(); 4043 4044 // If this is SEW=8 and VLMAX is unknown or more than 256, we need 4045 // to use vrgatherei16.vv. 4046 // TODO: It's also possible to use vrgatherei16.vv for other types to 4047 // decrease register width for the index calculation. 4048 if ((MaxVLMAX == 0 || MaxVLMAX > 256) && EltSize == 8) { 4049 // If this is LMUL=8, we have to split before can use vrgatherei16.vv. 4050 // Reverse each half, then reassemble them in reverse order. 4051 // NOTE: It's also possible that after splitting that VLMAX no longer 4052 // requires vrgatherei16.vv. 4053 if (MinSize == (8 * RISCV::RVVBitsPerBlock)) { 4054 SDValue Lo, Hi; 4055 std::tie(Lo, Hi) = DAG.SplitVectorOperand(Op.getNode(), 0); 4056 EVT LoVT, HiVT; 4057 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VecVT); 4058 Lo = DAG.getNode(ISD::VECTOR_REVERSE, DL, LoVT, Lo); 4059 Hi = DAG.getNode(ISD::VECTOR_REVERSE, DL, HiVT, Hi); 4060 // Reassemble the low and high pieces reversed. 4061 // FIXME: This is a CONCAT_VECTORS. 4062 SDValue Res = 4063 DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, DAG.getUNDEF(VecVT), Hi, 4064 DAG.getIntPtrConstant(0, DL)); 4065 return DAG.getNode( 4066 ISD::INSERT_SUBVECTOR, DL, VecVT, Res, Lo, 4067 DAG.getIntPtrConstant(LoVT.getVectorMinNumElements(), DL)); 4068 } 4069 4070 // Just promote the int type to i16 which will double the LMUL. 4071 IntVT = MVT::getVectorVT(MVT::i16, VecVT.getVectorElementCount()); 4072 GatherOpc = RISCVISD::VRGATHEREI16_VV_VL; 4073 } 4074 4075 MVT XLenVT = Subtarget.getXLenVT(); 4076 SDValue Mask, VL; 4077 std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget); 4078 4079 // Calculate VLMAX-1 for the desired SEW. 4080 unsigned MinElts = VecVT.getVectorMinNumElements(); 4081 SDValue VLMax = DAG.getNode(ISD::VSCALE, DL, XLenVT, 4082 DAG.getConstant(MinElts, DL, XLenVT)); 4083 SDValue VLMinus1 = 4084 DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, DAG.getConstant(1, DL, XLenVT)); 4085 4086 // Splat VLMAX-1 taking care to handle SEW==64 on RV32. 4087 bool IsRV32E64 = 4088 !Subtarget.is64Bit() && IntVT.getVectorElementType() == MVT::i64; 4089 SDValue SplatVL; 4090 if (!IsRV32E64) 4091 SplatVL = DAG.getSplatVector(IntVT, DL, VLMinus1); 4092 else 4093 SplatVL = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, IntVT, VLMinus1); 4094 4095 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, IntVT, Mask, VL); 4096 SDValue Indices = 4097 DAG.getNode(RISCVISD::SUB_VL, DL, IntVT, SplatVL, VID, Mask, VL); 4098 4099 return DAG.getNode(GatherOpc, DL, VecVT, Op.getOperand(0), Indices, Mask, VL); 4100 } 4101 4102 SDValue 4103 RISCVTargetLowering::lowerFixedLengthVectorLoadToRVV(SDValue Op, 4104 SelectionDAG &DAG) const { 4105 SDLoc DL(Op); 4106 auto *Load = cast<LoadSDNode>(Op); 4107 4108 assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 4109 Load->getMemoryVT(), 4110 *Load->getMemOperand()) && 4111 "Expecting a correctly-aligned load"); 4112 4113 MVT VT = Op.getSimpleValueType(); 4114 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4115 4116 SDValue VL = 4117 DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT()); 4118 4119 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 4120 SDValue NewLoad = DAG.getMemIntrinsicNode( 4121 RISCVISD::VLE_VL, DL, VTs, {Load->getChain(), Load->getBasePtr(), VL}, 4122 Load->getMemoryVT(), Load->getMemOperand()); 4123 4124 SDValue Result = convertFromScalableVector(VT, NewLoad, DAG, Subtarget); 4125 return DAG.getMergeValues({Result, Load->getChain()}, DL); 4126 } 4127 4128 SDValue 4129 RISCVTargetLowering::lowerFixedLengthVectorStoreToRVV(SDValue Op, 4130 SelectionDAG &DAG) const { 4131 SDLoc DL(Op); 4132 auto *Store = cast<StoreSDNode>(Op); 4133 4134 assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 4135 Store->getMemoryVT(), 4136 *Store->getMemOperand()) && 4137 "Expecting a correctly-aligned store"); 4138 4139 SDValue StoreVal = Store->getValue(); 4140 MVT VT = StoreVal.getSimpleValueType(); 4141 4142 // If the size less than a byte, we need to pad with zeros to make a byte. 4143 if (VT.getVectorElementType() == MVT::i1 && VT.getVectorNumElements() < 8) { 4144 VT = MVT::v8i1; 4145 StoreVal = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, 4146 DAG.getConstant(0, DL, VT), StoreVal, 4147 DAG.getIntPtrConstant(0, DL)); 4148 } 4149 4150 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4151 4152 SDValue VL = 4153 DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT()); 4154 4155 SDValue NewValue = 4156 convertToScalableVector(ContainerVT, StoreVal, DAG, Subtarget); 4157 return DAG.getMemIntrinsicNode( 4158 RISCVISD::VSE_VL, DL, DAG.getVTList(MVT::Other), 4159 {Store->getChain(), NewValue, Store->getBasePtr(), VL}, 4160 Store->getMemoryVT(), Store->getMemOperand()); 4161 } 4162 4163 SDValue RISCVTargetLowering::lowerMLOAD(SDValue Op, SelectionDAG &DAG) const { 4164 auto *Load = cast<MaskedLoadSDNode>(Op); 4165 4166 SDLoc DL(Op); 4167 MVT VT = Op.getSimpleValueType(); 4168 MVT XLenVT = Subtarget.getXLenVT(); 4169 4170 SDValue Mask = Load->getMask(); 4171 SDValue PassThru = Load->getPassThru(); 4172 SDValue VL; 4173 4174 MVT ContainerVT = VT; 4175 if (VT.isFixedLengthVector()) { 4176 ContainerVT = getContainerForFixedLengthVector(VT); 4177 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4178 4179 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 4180 PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget); 4181 VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT); 4182 } else 4183 VL = DAG.getRegister(RISCV::X0, XLenVT); 4184 4185 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 4186 SDValue IntID = DAG.getTargetConstant(Intrinsic::riscv_vle_mask, DL, XLenVT); 4187 SDValue Ops[] = {Load->getChain(), IntID, PassThru, 4188 Load->getBasePtr(), Mask, VL}; 4189 SDValue Result = 4190 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, 4191 Load->getMemoryVT(), Load->getMemOperand()); 4192 SDValue Chain = Result.getValue(1); 4193 4194 if (VT.isFixedLengthVector()) 4195 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 4196 4197 return DAG.getMergeValues({Result, Chain}, DL); 4198 } 4199 4200 SDValue RISCVTargetLowering::lowerMSTORE(SDValue Op, SelectionDAG &DAG) const { 4201 auto *Store = cast<MaskedStoreSDNode>(Op); 4202 4203 SDLoc DL(Op); 4204 SDValue Val = Store->getValue(); 4205 SDValue Mask = Store->getMask(); 4206 MVT VT = Val.getSimpleValueType(); 4207 MVT XLenVT = Subtarget.getXLenVT(); 4208 SDValue VL; 4209 4210 MVT ContainerVT = VT; 4211 if (VT.isFixedLengthVector()) { 4212 ContainerVT = getContainerForFixedLengthVector(VT); 4213 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4214 4215 Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget); 4216 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 4217 VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT); 4218 } else 4219 VL = DAG.getRegister(RISCV::X0, XLenVT); 4220 4221 SDValue IntID = DAG.getTargetConstant(Intrinsic::riscv_vse_mask, DL, XLenVT); 4222 return DAG.getMemIntrinsicNode( 4223 ISD::INTRINSIC_VOID, DL, DAG.getVTList(MVT::Other), 4224 {Store->getChain(), IntID, Val, Store->getBasePtr(), Mask, VL}, 4225 Store->getMemoryVT(), Store->getMemOperand()); 4226 } 4227 4228 SDValue 4229 RISCVTargetLowering::lowerFixedLengthVectorSetccToRVV(SDValue Op, 4230 SelectionDAG &DAG) const { 4231 MVT InVT = Op.getOperand(0).getSimpleValueType(); 4232 MVT ContainerVT = getContainerForFixedLengthVector(InVT); 4233 4234 MVT VT = Op.getSimpleValueType(); 4235 4236 SDValue Op1 = 4237 convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget); 4238 SDValue Op2 = 4239 convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget); 4240 4241 SDLoc DL(Op); 4242 SDValue VL = 4243 DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT()); 4244 4245 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4246 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 4247 4248 SDValue Cmp = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, Op1, Op2, 4249 Op.getOperand(2), Mask, VL); 4250 4251 return convertFromScalableVector(VT, Cmp, DAG, Subtarget); 4252 } 4253 4254 SDValue RISCVTargetLowering::lowerFixedLengthVectorLogicOpToRVV( 4255 SDValue Op, SelectionDAG &DAG, unsigned MaskOpc, unsigned VecOpc) const { 4256 MVT VT = Op.getSimpleValueType(); 4257 4258 if (VT.getVectorElementType() == MVT::i1) 4259 return lowerToScalableOp(Op, DAG, MaskOpc, /*HasMask*/ false); 4260 4261 return lowerToScalableOp(Op, DAG, VecOpc, /*HasMask*/ true); 4262 } 4263 4264 // Lower vector ABS to smax(X, sub(0, X)). 4265 SDValue RISCVTargetLowering::lowerABS(SDValue Op, SelectionDAG &DAG) const { 4266 SDLoc DL(Op); 4267 MVT VT = Op.getSimpleValueType(); 4268 SDValue X = Op.getOperand(0); 4269 4270 assert(VT.isFixedLengthVector() && "Unexpected type"); 4271 4272 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4273 X = convertToScalableVector(ContainerVT, X, DAG, Subtarget); 4274 4275 SDValue Mask, VL; 4276 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 4277 4278 SDValue SplatZero = 4279 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, 4280 DAG.getConstant(0, DL, Subtarget.getXLenVT())); 4281 SDValue NegX = 4282 DAG.getNode(RISCVISD::SUB_VL, DL, ContainerVT, SplatZero, X, Mask, VL); 4283 SDValue Max = 4284 DAG.getNode(RISCVISD::SMAX_VL, DL, ContainerVT, X, NegX, Mask, VL); 4285 4286 return convertFromScalableVector(VT, Max, DAG, Subtarget); 4287 } 4288 4289 SDValue RISCVTargetLowering::lowerFixedLengthVectorFCOPYSIGNToRVV( 4290 SDValue Op, SelectionDAG &DAG) const { 4291 SDLoc DL(Op); 4292 MVT VT = Op.getSimpleValueType(); 4293 SDValue Mag = Op.getOperand(0); 4294 SDValue Sign = Op.getOperand(1); 4295 assert(Mag.getValueType() == Sign.getValueType() && 4296 "Can only handle COPYSIGN with matching types."); 4297 4298 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4299 Mag = convertToScalableVector(ContainerVT, Mag, DAG, Subtarget); 4300 Sign = convertToScalableVector(ContainerVT, Sign, DAG, Subtarget); 4301 4302 SDValue Mask, VL; 4303 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 4304 4305 SDValue CopySign = 4306 DAG.getNode(RISCVISD::FCOPYSIGN_VL, DL, ContainerVT, Mag, Sign, Mask, VL); 4307 4308 return convertFromScalableVector(VT, CopySign, DAG, Subtarget); 4309 } 4310 4311 SDValue RISCVTargetLowering::lowerFixedLengthVectorSelectToRVV( 4312 SDValue Op, SelectionDAG &DAG) const { 4313 MVT VT = Op.getSimpleValueType(); 4314 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4315 4316 MVT I1ContainerVT = 4317 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4318 4319 SDValue CC = 4320 convertToScalableVector(I1ContainerVT, Op.getOperand(0), DAG, Subtarget); 4321 SDValue Op1 = 4322 convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget); 4323 SDValue Op2 = 4324 convertToScalableVector(ContainerVT, Op.getOperand(2), DAG, Subtarget); 4325 4326 SDLoc DL(Op); 4327 SDValue Mask, VL; 4328 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 4329 4330 SDValue Select = 4331 DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC, Op1, Op2, VL); 4332 4333 return convertFromScalableVector(VT, Select, DAG, Subtarget); 4334 } 4335 4336 SDValue RISCVTargetLowering::lowerToScalableOp(SDValue Op, SelectionDAG &DAG, 4337 unsigned NewOpc, 4338 bool HasMask) const { 4339 MVT VT = Op.getSimpleValueType(); 4340 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4341 4342 // Create list of operands by converting existing ones to scalable types. 4343 SmallVector<SDValue, 6> Ops; 4344 for (const SDValue &V : Op->op_values()) { 4345 assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!"); 4346 4347 // Pass through non-vector operands. 4348 if (!V.getValueType().isVector()) { 4349 Ops.push_back(V); 4350 continue; 4351 } 4352 4353 // "cast" fixed length vector to a scalable vector. 4354 assert(useRVVForFixedLengthVectorVT(V.getSimpleValueType()) && 4355 "Only fixed length vectors are supported!"); 4356 Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget)); 4357 } 4358 4359 SDLoc DL(Op); 4360 SDValue Mask, VL; 4361 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 4362 if (HasMask) 4363 Ops.push_back(Mask); 4364 Ops.push_back(VL); 4365 4366 SDValue ScalableRes = DAG.getNode(NewOpc, DL, ContainerVT, Ops); 4367 return convertFromScalableVector(VT, ScalableRes, DAG, Subtarget); 4368 } 4369 4370 // Lower a VP_* ISD node to the corresponding RISCVISD::*_VL node: 4371 // * Operands of each node are assumed to be in the same order. 4372 // * The EVL operand is promoted from i32 to i64 on RV64. 4373 // * Fixed-length vectors are converted to their scalable-vector container 4374 // types. 4375 SDValue RISCVTargetLowering::lowerVPOp(SDValue Op, SelectionDAG &DAG, 4376 unsigned RISCVISDOpc) const { 4377 SDLoc DL(Op); 4378 MVT VT = Op.getSimpleValueType(); 4379 SmallVector<SDValue, 4> Ops; 4380 4381 for (const auto &OpIdx : enumerate(Op->ops())) { 4382 SDValue V = OpIdx.value(); 4383 assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!"); 4384 // Pass through operands which aren't fixed-length vectors. 4385 if (!V.getValueType().isFixedLengthVector()) { 4386 Ops.push_back(V); 4387 continue; 4388 } 4389 // "cast" fixed length vector to a scalable vector. 4390 MVT OpVT = V.getSimpleValueType(); 4391 MVT ContainerVT = getContainerForFixedLengthVector(OpVT); 4392 assert(useRVVForFixedLengthVectorVT(OpVT) && 4393 "Only fixed length vectors are supported!"); 4394 Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget)); 4395 } 4396 4397 if (!VT.isFixedLengthVector()) 4398 return DAG.getNode(RISCVISDOpc, DL, VT, Ops); 4399 4400 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4401 4402 SDValue VPOp = DAG.getNode(RISCVISDOpc, DL, ContainerVT, Ops); 4403 4404 return convertFromScalableVector(VT, VPOp, DAG, Subtarget); 4405 } 4406 4407 // Custom lower MGATHER to a legalized form for RVV. It will then be matched to 4408 // a RVV indexed load. The RVV indexed load instructions only support the 4409 // "unsigned unscaled" addressing mode; indices are implicitly zero-extended or 4410 // truncated to XLEN and are treated as byte offsets. Any signed or scaled 4411 // indexing is extended to the XLEN value type and scaled accordingly. 4412 SDValue RISCVTargetLowering::lowerMGATHER(SDValue Op, SelectionDAG &DAG) const { 4413 auto *MGN = cast<MaskedGatherSDNode>(Op.getNode()); 4414 SDLoc DL(Op); 4415 4416 SDValue Index = MGN->getIndex(); 4417 SDValue Mask = MGN->getMask(); 4418 SDValue PassThru = MGN->getPassThru(); 4419 4420 MVT VT = Op.getSimpleValueType(); 4421 MVT IndexVT = Index.getSimpleValueType(); 4422 MVT XLenVT = Subtarget.getXLenVT(); 4423 4424 assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() && 4425 "Unexpected VTs!"); 4426 assert(MGN->getBasePtr().getSimpleValueType() == XLenVT && 4427 "Unexpected pointer type"); 4428 // Targets have to explicitly opt-in for extending vector loads. 4429 assert(MGN->getExtensionType() == ISD::NON_EXTLOAD && 4430 "Unexpected extending MGATHER"); 4431 4432 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 4433 // the selection of the masked intrinsics doesn't do this for us. 4434 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 4435 4436 SDValue VL; 4437 MVT ContainerVT = VT; 4438 if (VT.isFixedLengthVector()) { 4439 // We need to use the larger of the result and index type to determine the 4440 // scalable type to use so we don't increase LMUL for any operand/result. 4441 if (VT.bitsGE(IndexVT)) { 4442 ContainerVT = getContainerForFixedLengthVector(VT); 4443 IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(), 4444 ContainerVT.getVectorElementCount()); 4445 } else { 4446 IndexVT = getContainerForFixedLengthVector(IndexVT); 4447 ContainerVT = MVT::getVectorVT(ContainerVT.getVectorElementType(), 4448 IndexVT.getVectorElementCount()); 4449 } 4450 4451 Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget); 4452 4453 if (!IsUnmasked) { 4454 MVT MaskVT = 4455 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4456 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 4457 PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget); 4458 } 4459 4460 VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT); 4461 } else 4462 VL = DAG.getRegister(RISCV::X0, XLenVT); 4463 4464 unsigned IntID = 4465 IsUnmasked ? Intrinsic::riscv_vloxei : Intrinsic::riscv_vloxei_mask; 4466 SmallVector<SDValue, 8> Ops{MGN->getChain(), 4467 DAG.getTargetConstant(IntID, DL, XLenVT)}; 4468 if (!IsUnmasked) 4469 Ops.push_back(PassThru); 4470 Ops.push_back(MGN->getBasePtr()); 4471 Ops.push_back(Index); 4472 if (!IsUnmasked) 4473 Ops.push_back(Mask); 4474 Ops.push_back(VL); 4475 4476 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 4477 SDValue Result = 4478 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, 4479 MGN->getMemoryVT(), MGN->getMemOperand()); 4480 SDValue Chain = Result.getValue(1); 4481 4482 if (VT.isFixedLengthVector()) 4483 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 4484 4485 return DAG.getMergeValues({Result, Chain}, DL); 4486 } 4487 4488 // Custom lower MSCATTER to a legalized form for RVV. It will then be matched to 4489 // a RVV indexed store. The RVV indexed store instructions only support the 4490 // "unsigned unscaled" addressing mode; indices are implicitly zero-extended or 4491 // truncated to XLEN and are treated as byte offsets. Any signed or scaled 4492 // indexing is extended to the XLEN value type and scaled accordingly. 4493 SDValue RISCVTargetLowering::lowerMSCATTER(SDValue Op, 4494 SelectionDAG &DAG) const { 4495 auto *MSN = cast<MaskedScatterSDNode>(Op.getNode()); 4496 SDLoc DL(Op); 4497 SDValue Index = MSN->getIndex(); 4498 SDValue Mask = MSN->getMask(); 4499 SDValue Val = MSN->getValue(); 4500 4501 MVT VT = Val.getSimpleValueType(); 4502 MVT IndexVT = Index.getSimpleValueType(); 4503 MVT XLenVT = Subtarget.getXLenVT(); 4504 4505 assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() && 4506 "Unexpected VTs!"); 4507 assert(MSN->getBasePtr().getSimpleValueType() == XLenVT && 4508 "Unexpected pointer type"); 4509 // Targets have to explicitly opt-in for extending vector loads and 4510 // truncating vector stores. 4511 assert(!MSN->isTruncatingStore() && "Unexpected extending MSCATTER"); 4512 4513 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 4514 // the selection of the masked intrinsics doesn't do this for us. 4515 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 4516 4517 SDValue VL; 4518 if (VT.isFixedLengthVector()) { 4519 // We need to use the larger of the value and index type to determine the 4520 // scalable type to use so we don't increase LMUL for any operand/result. 4521 MVT ContainerVT; 4522 if (VT.bitsGE(IndexVT)) { 4523 ContainerVT = getContainerForFixedLengthVector(VT); 4524 IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(), 4525 ContainerVT.getVectorElementCount()); 4526 } else { 4527 IndexVT = getContainerForFixedLengthVector(IndexVT); 4528 ContainerVT = MVT::getVectorVT(VT.getVectorElementType(), 4529 IndexVT.getVectorElementCount()); 4530 } 4531 4532 Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget); 4533 Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget); 4534 4535 if (!IsUnmasked) { 4536 MVT MaskVT = 4537 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4538 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 4539 } 4540 4541 VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT); 4542 } else 4543 VL = DAG.getRegister(RISCV::X0, XLenVT); 4544 4545 unsigned IntID = 4546 IsUnmasked ? Intrinsic::riscv_vsoxei : Intrinsic::riscv_vsoxei_mask; 4547 SmallVector<SDValue, 8> Ops{MSN->getChain(), 4548 DAG.getTargetConstant(IntID, DL, XLenVT)}; 4549 Ops.push_back(Val); 4550 Ops.push_back(MSN->getBasePtr()); 4551 Ops.push_back(Index); 4552 if (!IsUnmasked) 4553 Ops.push_back(Mask); 4554 Ops.push_back(VL); 4555 4556 return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, MSN->getVTList(), Ops, 4557 MSN->getMemoryVT(), MSN->getMemOperand()); 4558 } 4559 4560 SDValue RISCVTargetLowering::lowerGET_ROUNDING(SDValue Op, 4561 SelectionDAG &DAG) const { 4562 const MVT XLenVT = Subtarget.getXLenVT(); 4563 SDLoc DL(Op); 4564 SDValue Chain = Op->getOperand(0); 4565 SDValue SysRegNo = DAG.getConstant( 4566 RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT); 4567 SDVTList VTs = DAG.getVTList(XLenVT, MVT::Other); 4568 SDValue RM = DAG.getNode(RISCVISD::READ_CSR, DL, VTs, Chain, SysRegNo); 4569 4570 // Encoding used for rounding mode in RISCV differs from that used in 4571 // FLT_ROUNDS. To convert it the RISCV rounding mode is used as an index in a 4572 // table, which consists of a sequence of 4-bit fields, each representing 4573 // corresponding FLT_ROUNDS mode. 4574 static const int Table = 4575 (int(RoundingMode::NearestTiesToEven) << 4 * RISCVFPRndMode::RNE) | 4576 (int(RoundingMode::TowardZero) << 4 * RISCVFPRndMode::RTZ) | 4577 (int(RoundingMode::TowardNegative) << 4 * RISCVFPRndMode::RDN) | 4578 (int(RoundingMode::TowardPositive) << 4 * RISCVFPRndMode::RUP) | 4579 (int(RoundingMode::NearestTiesToAway) << 4 * RISCVFPRndMode::RMM); 4580 4581 SDValue Shift = 4582 DAG.getNode(ISD::SHL, DL, XLenVT, RM, DAG.getConstant(2, DL, XLenVT)); 4583 SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT, 4584 DAG.getConstant(Table, DL, XLenVT), Shift); 4585 SDValue Masked = DAG.getNode(ISD::AND, DL, XLenVT, Shifted, 4586 DAG.getConstant(7, DL, XLenVT)); 4587 4588 return DAG.getMergeValues({Masked, Chain}, DL); 4589 } 4590 4591 SDValue RISCVTargetLowering::lowerSET_ROUNDING(SDValue Op, 4592 SelectionDAG &DAG) const { 4593 const MVT XLenVT = Subtarget.getXLenVT(); 4594 SDLoc DL(Op); 4595 SDValue Chain = Op->getOperand(0); 4596 SDValue RMValue = Op->getOperand(1); 4597 SDValue SysRegNo = DAG.getConstant( 4598 RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT); 4599 4600 // Encoding used for rounding mode in RISCV differs from that used in 4601 // FLT_ROUNDS. To convert it the C rounding mode is used as an index in 4602 // a table, which consists of a sequence of 4-bit fields, each representing 4603 // corresponding RISCV mode. 4604 static const unsigned Table = 4605 (RISCVFPRndMode::RNE << 4 * int(RoundingMode::NearestTiesToEven)) | 4606 (RISCVFPRndMode::RTZ << 4 * int(RoundingMode::TowardZero)) | 4607 (RISCVFPRndMode::RDN << 4 * int(RoundingMode::TowardNegative)) | 4608 (RISCVFPRndMode::RUP << 4 * int(RoundingMode::TowardPositive)) | 4609 (RISCVFPRndMode::RMM << 4 * int(RoundingMode::NearestTiesToAway)); 4610 4611 SDValue Shift = DAG.getNode(ISD::SHL, DL, XLenVT, RMValue, 4612 DAG.getConstant(2, DL, XLenVT)); 4613 SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT, 4614 DAG.getConstant(Table, DL, XLenVT), Shift); 4615 RMValue = DAG.getNode(ISD::AND, DL, XLenVT, Shifted, 4616 DAG.getConstant(0x7, DL, XLenVT)); 4617 return DAG.getNode(RISCVISD::WRITE_CSR, DL, MVT::Other, Chain, SysRegNo, 4618 RMValue); 4619 } 4620 4621 // Returns the opcode of the target-specific SDNode that implements the 32-bit 4622 // form of the given Opcode. 4623 static RISCVISD::NodeType getRISCVWOpcode(unsigned Opcode) { 4624 switch (Opcode) { 4625 default: 4626 llvm_unreachable("Unexpected opcode"); 4627 case ISD::SHL: 4628 return RISCVISD::SLLW; 4629 case ISD::SRA: 4630 return RISCVISD::SRAW; 4631 case ISD::SRL: 4632 return RISCVISD::SRLW; 4633 case ISD::SDIV: 4634 return RISCVISD::DIVW; 4635 case ISD::UDIV: 4636 return RISCVISD::DIVUW; 4637 case ISD::UREM: 4638 return RISCVISD::REMUW; 4639 case ISD::ROTL: 4640 return RISCVISD::ROLW; 4641 case ISD::ROTR: 4642 return RISCVISD::RORW; 4643 case RISCVISD::GREV: 4644 return RISCVISD::GREVW; 4645 case RISCVISD::GORC: 4646 return RISCVISD::GORCW; 4647 } 4648 } 4649 4650 // Converts the given 32-bit operation to a target-specific SelectionDAG node. 4651 // Because i32 isn't a legal type for RV64, these operations would otherwise 4652 // be promoted to i64, making it difficult to select the SLLW/DIVUW/.../*W 4653 // later one because the fact the operation was originally of type i32 is 4654 // lost. 4655 static SDValue customLegalizeToWOp(SDNode *N, SelectionDAG &DAG, 4656 unsigned ExtOpc = ISD::ANY_EXTEND) { 4657 SDLoc DL(N); 4658 RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode()); 4659 SDValue NewOp0 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(0)); 4660 SDValue NewOp1 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(1)); 4661 SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1); 4662 // ReplaceNodeResults requires we maintain the same type for the return value. 4663 return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewRes); 4664 } 4665 4666 // Converts the given 32-bit operation to a i64 operation with signed extension 4667 // semantic to reduce the signed extension instructions. 4668 static SDValue customLegalizeToWOpWithSExt(SDNode *N, SelectionDAG &DAG) { 4669 SDLoc DL(N); 4670 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 4671 SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 4672 SDValue NewWOp = DAG.getNode(N->getOpcode(), DL, MVT::i64, NewOp0, NewOp1); 4673 SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp, 4674 DAG.getValueType(MVT::i32)); 4675 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes); 4676 } 4677 4678 void RISCVTargetLowering::ReplaceNodeResults(SDNode *N, 4679 SmallVectorImpl<SDValue> &Results, 4680 SelectionDAG &DAG) const { 4681 SDLoc DL(N); 4682 switch (N->getOpcode()) { 4683 default: 4684 llvm_unreachable("Don't know how to custom type legalize this operation!"); 4685 case ISD::STRICT_FP_TO_SINT: 4686 case ISD::STRICT_FP_TO_UINT: 4687 case ISD::FP_TO_SINT: 4688 case ISD::FP_TO_UINT: { 4689 bool IsStrict = N->isStrictFPOpcode(); 4690 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 4691 "Unexpected custom legalisation"); 4692 SDValue Op0 = IsStrict ? N->getOperand(1) : N->getOperand(0); 4693 // If the FP type needs to be softened, emit a library call using the 'si' 4694 // version. If we left it to default legalization we'd end up with 'di'. If 4695 // the FP type doesn't need to be softened just let generic type 4696 // legalization promote the result type. 4697 if (getTypeAction(*DAG.getContext(), Op0.getValueType()) != 4698 TargetLowering::TypeSoftenFloat) 4699 return; 4700 RTLIB::Libcall LC; 4701 if (N->getOpcode() == ISD::FP_TO_SINT || 4702 N->getOpcode() == ISD::STRICT_FP_TO_SINT) 4703 LC = RTLIB::getFPTOSINT(Op0.getValueType(), N->getValueType(0)); 4704 else 4705 LC = RTLIB::getFPTOUINT(Op0.getValueType(), N->getValueType(0)); 4706 MakeLibCallOptions CallOptions; 4707 EVT OpVT = Op0.getValueType(); 4708 CallOptions.setTypeListBeforeSoften(OpVT, N->getValueType(0), true); 4709 SDValue Chain = IsStrict ? N->getOperand(0) : SDValue(); 4710 SDValue Result; 4711 std::tie(Result, Chain) = 4712 makeLibCall(DAG, LC, N->getValueType(0), Op0, CallOptions, DL, Chain); 4713 Results.push_back(Result); 4714 if (IsStrict) 4715 Results.push_back(Chain); 4716 break; 4717 } 4718 case ISD::READCYCLECOUNTER: { 4719 assert(!Subtarget.is64Bit() && 4720 "READCYCLECOUNTER only has custom type legalization on riscv32"); 4721 4722 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other); 4723 SDValue RCW = 4724 DAG.getNode(RISCVISD::READ_CYCLE_WIDE, DL, VTs, N->getOperand(0)); 4725 4726 Results.push_back( 4727 DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, RCW, RCW.getValue(1))); 4728 Results.push_back(RCW.getValue(2)); 4729 break; 4730 } 4731 case ISD::MUL: { 4732 unsigned Size = N->getSimpleValueType(0).getSizeInBits(); 4733 unsigned XLen = Subtarget.getXLen(); 4734 // This multiply needs to be expanded, try to use MULHSU+MUL if possible. 4735 if (Size > XLen) { 4736 assert(Size == (XLen * 2) && "Unexpected custom legalisation"); 4737 SDValue LHS = N->getOperand(0); 4738 SDValue RHS = N->getOperand(1); 4739 APInt HighMask = APInt::getHighBitsSet(Size, XLen); 4740 4741 bool LHSIsU = DAG.MaskedValueIsZero(LHS, HighMask); 4742 bool RHSIsU = DAG.MaskedValueIsZero(RHS, HighMask); 4743 // We need exactly one side to be unsigned. 4744 if (LHSIsU == RHSIsU) 4745 return; 4746 4747 auto MakeMULPair = [&](SDValue S, SDValue U) { 4748 MVT XLenVT = Subtarget.getXLenVT(); 4749 S = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, S); 4750 U = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, U); 4751 SDValue Lo = DAG.getNode(ISD::MUL, DL, XLenVT, S, U); 4752 SDValue Hi = DAG.getNode(RISCVISD::MULHSU, DL, XLenVT, S, U); 4753 return DAG.getNode(ISD::BUILD_PAIR, DL, N->getValueType(0), Lo, Hi); 4754 }; 4755 4756 bool LHSIsS = DAG.ComputeNumSignBits(LHS) > XLen; 4757 bool RHSIsS = DAG.ComputeNumSignBits(RHS) > XLen; 4758 4759 // The other operand should be signed, but still prefer MULH when 4760 // possible. 4761 if (RHSIsU && LHSIsS && !RHSIsS) 4762 Results.push_back(MakeMULPair(LHS, RHS)); 4763 else if (LHSIsU && RHSIsS && !LHSIsS) 4764 Results.push_back(MakeMULPair(RHS, LHS)); 4765 4766 return; 4767 } 4768 LLVM_FALLTHROUGH; 4769 } 4770 case ISD::ADD: 4771 case ISD::SUB: 4772 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 4773 "Unexpected custom legalisation"); 4774 if (N->getOperand(1).getOpcode() == ISD::Constant) 4775 return; 4776 Results.push_back(customLegalizeToWOpWithSExt(N, DAG)); 4777 break; 4778 case ISD::SHL: 4779 case ISD::SRA: 4780 case ISD::SRL: 4781 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 4782 "Unexpected custom legalisation"); 4783 if (N->getOperand(1).getOpcode() == ISD::Constant) 4784 return; 4785 Results.push_back(customLegalizeToWOp(N, DAG)); 4786 break; 4787 case ISD::ROTL: 4788 case ISD::ROTR: 4789 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 4790 "Unexpected custom legalisation"); 4791 Results.push_back(customLegalizeToWOp(N, DAG)); 4792 break; 4793 case ISD::CTTZ: 4794 case ISD::CTTZ_ZERO_UNDEF: 4795 case ISD::CTLZ: 4796 case ISD::CTLZ_ZERO_UNDEF: { 4797 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 4798 "Unexpected custom legalisation"); 4799 4800 SDValue NewOp0 = 4801 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 4802 bool IsCTZ = 4803 N->getOpcode() == ISD::CTTZ || N->getOpcode() == ISD::CTTZ_ZERO_UNDEF; 4804 unsigned Opc = IsCTZ ? RISCVISD::CTZW : RISCVISD::CLZW; 4805 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp0); 4806 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 4807 return; 4808 } 4809 case ISD::SDIV: 4810 case ISD::UDIV: 4811 case ISD::UREM: { 4812 MVT VT = N->getSimpleValueType(0); 4813 assert((VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) && 4814 Subtarget.is64Bit() && Subtarget.hasStdExtM() && 4815 "Unexpected custom legalisation"); 4816 if (N->getOperand(0).getOpcode() == ISD::Constant || 4817 N->getOperand(1).getOpcode() == ISD::Constant) 4818 return; 4819 4820 // If the input is i32, use ANY_EXTEND since the W instructions don't read 4821 // the upper 32 bits. For other types we need to sign or zero extend 4822 // based on the opcode. 4823 unsigned ExtOpc = ISD::ANY_EXTEND; 4824 if (VT != MVT::i32) 4825 ExtOpc = N->getOpcode() == ISD::SDIV ? ISD::SIGN_EXTEND 4826 : ISD::ZERO_EXTEND; 4827 4828 Results.push_back(customLegalizeToWOp(N, DAG, ExtOpc)); 4829 break; 4830 } 4831 case ISD::UADDO: 4832 case ISD::USUBO: { 4833 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 4834 "Unexpected custom legalisation"); 4835 bool IsAdd = N->getOpcode() == ISD::UADDO; 4836 // Create an ADDW or SUBW. 4837 SDValue LHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 4838 SDValue RHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 4839 SDValue Res = 4840 DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, DL, MVT::i64, LHS, RHS); 4841 Res = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Res, 4842 DAG.getValueType(MVT::i32)); 4843 4844 // Sign extend the LHS and perform an unsigned compare with the ADDW result. 4845 // Since the inputs are sign extended from i32, this is equivalent to 4846 // comparing the lower 32 bits. 4847 LHS = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0)); 4848 SDValue Overflow = DAG.getSetCC(DL, N->getValueType(1), Res, LHS, 4849 IsAdd ? ISD::SETULT : ISD::SETUGT); 4850 4851 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 4852 Results.push_back(Overflow); 4853 return; 4854 } 4855 case ISD::UADDSAT: 4856 case ISD::USUBSAT: { 4857 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 4858 "Unexpected custom legalisation"); 4859 if (Subtarget.hasStdExtZbb()) { 4860 // With Zbb we can sign extend and let LegalizeDAG use minu/maxu. Using 4861 // sign extend allows overflow of the lower 32 bits to be detected on 4862 // the promoted size. 4863 SDValue LHS = 4864 DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0)); 4865 SDValue RHS = 4866 DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(1)); 4867 SDValue Res = DAG.getNode(N->getOpcode(), DL, MVT::i64, LHS, RHS); 4868 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 4869 return; 4870 } 4871 4872 // Without Zbb, expand to UADDO/USUBO+select which will trigger our custom 4873 // promotion for UADDO/USUBO. 4874 Results.push_back(expandAddSubSat(N, DAG)); 4875 return; 4876 } 4877 case ISD::BITCAST: { 4878 EVT VT = N->getValueType(0); 4879 assert(VT.isInteger() && !VT.isVector() && "Unexpected VT!"); 4880 SDValue Op0 = N->getOperand(0); 4881 EVT Op0VT = Op0.getValueType(); 4882 MVT XLenVT = Subtarget.getXLenVT(); 4883 if (VT == MVT::i16 && Op0VT == MVT::f16 && Subtarget.hasStdExtZfh()) { 4884 SDValue FPConv = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, XLenVT, Op0); 4885 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FPConv)); 4886 } else if (VT == MVT::i32 && Op0VT == MVT::f32 && Subtarget.is64Bit() && 4887 Subtarget.hasStdExtF()) { 4888 SDValue FPConv = 4889 DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Op0); 4890 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, FPConv)); 4891 } else if (!VT.isVector() && Op0VT.isFixedLengthVector() && 4892 isTypeLegal(Op0VT)) { 4893 // Custom-legalize bitcasts from fixed-length vector types to illegal 4894 // scalar types in order to improve codegen. Bitcast the vector to a 4895 // one-element vector type whose element type is the same as the result 4896 // type, and extract the first element. 4897 LLVMContext &Context = *DAG.getContext(); 4898 SDValue BVec = DAG.getBitcast(EVT::getVectorVT(Context, VT, 1), Op0); 4899 Results.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec, 4900 DAG.getConstant(0, DL, XLenVT))); 4901 } 4902 break; 4903 } 4904 case RISCVISD::GREV: 4905 case RISCVISD::GORC: { 4906 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 4907 "Unexpected custom legalisation"); 4908 assert(isa<ConstantSDNode>(N->getOperand(1)) && "Expected constant"); 4909 // This is similar to customLegalizeToWOp, except that we pass the second 4910 // operand (a TargetConstant) straight through: it is already of type 4911 // XLenVT. 4912 RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode()); 4913 SDValue NewOp0 = 4914 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 4915 SDValue NewOp1 = 4916 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 4917 SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1); 4918 // ReplaceNodeResults requires we maintain the same type for the return 4919 // value. 4920 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes)); 4921 break; 4922 } 4923 case RISCVISD::SHFL: { 4924 // There is no SHFLIW instruction, but we can just promote the operation. 4925 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 4926 "Unexpected custom legalisation"); 4927 assert(isa<ConstantSDNode>(N->getOperand(1)) && "Expected constant"); 4928 SDValue NewOp0 = 4929 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 4930 SDValue NewOp1 = 4931 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 4932 SDValue NewRes = DAG.getNode(RISCVISD::SHFL, DL, MVT::i64, NewOp0, NewOp1); 4933 // ReplaceNodeResults requires we maintain the same type for the return 4934 // value. 4935 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes)); 4936 break; 4937 } 4938 case ISD::BSWAP: 4939 case ISD::BITREVERSE: { 4940 MVT VT = N->getSimpleValueType(0); 4941 MVT XLenVT = Subtarget.getXLenVT(); 4942 assert((VT == MVT::i8 || VT == MVT::i16 || 4943 (VT == MVT::i32 && Subtarget.is64Bit())) && 4944 Subtarget.hasStdExtZbp() && "Unexpected custom legalisation"); 4945 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, N->getOperand(0)); 4946 unsigned Imm = VT.getSizeInBits() - 1; 4947 // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits. 4948 if (N->getOpcode() == ISD::BSWAP) 4949 Imm &= ~0x7U; 4950 unsigned Opc = Subtarget.is64Bit() ? RISCVISD::GREVW : RISCVISD::GREV; 4951 SDValue GREVI = 4952 DAG.getNode(Opc, DL, XLenVT, NewOp0, DAG.getConstant(Imm, DL, XLenVT)); 4953 // ReplaceNodeResults requires we maintain the same type for the return 4954 // value. 4955 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, GREVI)); 4956 break; 4957 } 4958 case ISD::FSHL: 4959 case ISD::FSHR: { 4960 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 4961 Subtarget.hasStdExtZbt() && "Unexpected custom legalisation"); 4962 SDValue NewOp0 = 4963 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 4964 SDValue NewOp1 = 4965 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 4966 SDValue NewOp2 = 4967 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 4968 // FSLW/FSRW take a 6 bit shift amount but i32 FSHL/FSHR only use 5 bits. 4969 // Mask the shift amount to 5 bits. 4970 NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2, 4971 DAG.getConstant(0x1f, DL, MVT::i64)); 4972 unsigned Opc = 4973 N->getOpcode() == ISD::FSHL ? RISCVISD::FSLW : RISCVISD::FSRW; 4974 SDValue NewOp = DAG.getNode(Opc, DL, MVT::i64, NewOp0, NewOp1, NewOp2); 4975 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewOp)); 4976 break; 4977 } 4978 case ISD::EXTRACT_VECTOR_ELT: { 4979 // Custom-legalize an EXTRACT_VECTOR_ELT where XLEN<SEW, as the SEW element 4980 // type is illegal (currently only vXi64 RV32). 4981 // With vmv.x.s, when SEW > XLEN, only the least-significant XLEN bits are 4982 // transferred to the destination register. We issue two of these from the 4983 // upper- and lower- halves of the SEW-bit vector element, slid down to the 4984 // first element. 4985 SDValue Vec = N->getOperand(0); 4986 SDValue Idx = N->getOperand(1); 4987 4988 // The vector type hasn't been legalized yet so we can't issue target 4989 // specific nodes if it needs legalization. 4990 // FIXME: We would manually legalize if it's important. 4991 if (!isTypeLegal(Vec.getValueType())) 4992 return; 4993 4994 MVT VecVT = Vec.getSimpleValueType(); 4995 4996 assert(!Subtarget.is64Bit() && N->getValueType(0) == MVT::i64 && 4997 VecVT.getVectorElementType() == MVT::i64 && 4998 "Unexpected EXTRACT_VECTOR_ELT legalization"); 4999 5000 // If this is a fixed vector, we need to convert it to a scalable vector. 5001 MVT ContainerVT = VecVT; 5002 if (VecVT.isFixedLengthVector()) { 5003 ContainerVT = getContainerForFixedLengthVector(VecVT); 5004 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 5005 } 5006 5007 MVT XLenVT = Subtarget.getXLenVT(); 5008 5009 // Use a VL of 1 to avoid processing more elements than we need. 5010 MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount()); 5011 SDValue VL = DAG.getConstant(1, DL, XLenVT); 5012 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 5013 5014 // Unless the index is known to be 0, we must slide the vector down to get 5015 // the desired element into index 0. 5016 if (!isNullConstant(Idx)) { 5017 Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 5018 DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL); 5019 } 5020 5021 // Extract the lower XLEN bits of the correct vector element. 5022 SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); 5023 5024 // To extract the upper XLEN bits of the vector element, shift the first 5025 // element right by 32 bits and re-extract the lower XLEN bits. 5026 SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, 5027 DAG.getConstant(32, DL, XLenVT), VL); 5028 SDValue LShr32 = DAG.getNode(RISCVISD::SRL_VL, DL, ContainerVT, Vec, 5029 ThirtyTwoV, Mask, VL); 5030 5031 SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32); 5032 5033 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi)); 5034 break; 5035 } 5036 case ISD::INTRINSIC_WO_CHAIN: { 5037 unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 5038 switch (IntNo) { 5039 default: 5040 llvm_unreachable( 5041 "Don't know how to custom type legalize this intrinsic!"); 5042 case Intrinsic::riscv_orc_b: { 5043 // Lower to the GORCI encoding for orc.b with the operand extended. 5044 SDValue NewOp = 5045 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 5046 // If Zbp is enabled, use GORCIW which will sign extend the result. 5047 unsigned Opc = 5048 Subtarget.hasStdExtZbp() ? RISCVISD::GORCW : RISCVISD::GORC; 5049 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp, 5050 DAG.getConstant(7, DL, MVT::i64)); 5051 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 5052 return; 5053 } 5054 case Intrinsic::riscv_grev: 5055 case Intrinsic::riscv_gorc: { 5056 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5057 "Unexpected custom legalisation"); 5058 SDValue NewOp1 = 5059 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 5060 SDValue NewOp2 = 5061 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 5062 unsigned Opc = 5063 IntNo == Intrinsic::riscv_grev ? RISCVISD::GREVW : RISCVISD::GORCW; 5064 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2); 5065 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 5066 break; 5067 } 5068 case Intrinsic::riscv_shfl: 5069 case Intrinsic::riscv_unshfl: { 5070 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5071 "Unexpected custom legalisation"); 5072 SDValue NewOp1 = 5073 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 5074 SDValue NewOp2 = 5075 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 5076 unsigned Opc = 5077 IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFLW : RISCVISD::UNSHFLW; 5078 if (isa<ConstantSDNode>(N->getOperand(2))) { 5079 NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2, 5080 DAG.getConstant(0xf, DL, MVT::i64)); 5081 Opc = 5082 IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL; 5083 } 5084 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2); 5085 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 5086 break; 5087 } 5088 case Intrinsic::riscv_bcompress: 5089 case Intrinsic::riscv_bdecompress: { 5090 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5091 "Unexpected custom legalisation"); 5092 SDValue NewOp1 = 5093 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 5094 SDValue NewOp2 = 5095 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 5096 unsigned Opc = IntNo == Intrinsic::riscv_bcompress 5097 ? RISCVISD::BCOMPRESSW 5098 : RISCVISD::BDECOMPRESSW; 5099 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2); 5100 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 5101 break; 5102 } 5103 case Intrinsic::riscv_vmv_x_s: { 5104 EVT VT = N->getValueType(0); 5105 MVT XLenVT = Subtarget.getXLenVT(); 5106 if (VT.bitsLT(XLenVT)) { 5107 // Simple case just extract using vmv.x.s and truncate. 5108 SDValue Extract = DAG.getNode(RISCVISD::VMV_X_S, DL, 5109 Subtarget.getXLenVT(), N->getOperand(1)); 5110 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, Extract)); 5111 return; 5112 } 5113 5114 assert(VT == MVT::i64 && !Subtarget.is64Bit() && 5115 "Unexpected custom legalization"); 5116 5117 // We need to do the move in two steps. 5118 SDValue Vec = N->getOperand(1); 5119 MVT VecVT = Vec.getSimpleValueType(); 5120 5121 // First extract the lower XLEN bits of the element. 5122 SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); 5123 5124 // To extract the upper XLEN bits of the vector element, shift the first 5125 // element right by 32 bits and re-extract the lower XLEN bits. 5126 SDValue VL = DAG.getConstant(1, DL, XLenVT); 5127 MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount()); 5128 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 5129 SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, 5130 DAG.getConstant(32, DL, XLenVT), VL); 5131 SDValue LShr32 = 5132 DAG.getNode(RISCVISD::SRL_VL, DL, VecVT, Vec, ThirtyTwoV, Mask, VL); 5133 SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32); 5134 5135 Results.push_back( 5136 DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi)); 5137 break; 5138 } 5139 } 5140 break; 5141 } 5142 case ISD::VECREDUCE_ADD: 5143 case ISD::VECREDUCE_AND: 5144 case ISD::VECREDUCE_OR: 5145 case ISD::VECREDUCE_XOR: 5146 case ISD::VECREDUCE_SMAX: 5147 case ISD::VECREDUCE_UMAX: 5148 case ISD::VECREDUCE_SMIN: 5149 case ISD::VECREDUCE_UMIN: 5150 if (SDValue V = lowerVECREDUCE(SDValue(N, 0), DAG)) 5151 Results.push_back(V); 5152 break; 5153 case ISD::FLT_ROUNDS_: { 5154 SDVTList VTs = DAG.getVTList(Subtarget.getXLenVT(), MVT::Other); 5155 SDValue Res = DAG.getNode(ISD::FLT_ROUNDS_, DL, VTs, N->getOperand(0)); 5156 Results.push_back(Res.getValue(0)); 5157 Results.push_back(Res.getValue(1)); 5158 break; 5159 } 5160 } 5161 } 5162 5163 // A structure to hold one of the bit-manipulation patterns below. Together, a 5164 // SHL and non-SHL pattern may form a bit-manipulation pair on a single source: 5165 // (or (and (shl x, 1), 0xAAAAAAAA), 5166 // (and (srl x, 1), 0x55555555)) 5167 struct RISCVBitmanipPat { 5168 SDValue Op; 5169 unsigned ShAmt; 5170 bool IsSHL; 5171 5172 bool formsPairWith(const RISCVBitmanipPat &Other) const { 5173 return Op == Other.Op && ShAmt == Other.ShAmt && IsSHL != Other.IsSHL; 5174 } 5175 }; 5176 5177 // Matches patterns of the form 5178 // (and (shl x, C2), (C1 << C2)) 5179 // (and (srl x, C2), C1) 5180 // (shl (and x, C1), C2) 5181 // (srl (and x, (C1 << C2)), C2) 5182 // Where C2 is a power of 2 and C1 has at least that many leading zeroes. 5183 // The expected masks for each shift amount are specified in BitmanipMasks where 5184 // BitmanipMasks[log2(C2)] specifies the expected C1 value. 5185 // The max allowed shift amount is either XLen/2 or XLen/4 determined by whether 5186 // BitmanipMasks contains 6 or 5 entries assuming that the maximum possible 5187 // XLen is 64. 5188 static Optional<RISCVBitmanipPat> 5189 matchRISCVBitmanipPat(SDValue Op, ArrayRef<uint64_t> BitmanipMasks) { 5190 assert((BitmanipMasks.size() == 5 || BitmanipMasks.size() == 6) && 5191 "Unexpected number of masks"); 5192 Optional<uint64_t> Mask; 5193 // Optionally consume a mask around the shift operation. 5194 if (Op.getOpcode() == ISD::AND && isa<ConstantSDNode>(Op.getOperand(1))) { 5195 Mask = Op.getConstantOperandVal(1); 5196 Op = Op.getOperand(0); 5197 } 5198 if (Op.getOpcode() != ISD::SHL && Op.getOpcode() != ISD::SRL) 5199 return None; 5200 bool IsSHL = Op.getOpcode() == ISD::SHL; 5201 5202 if (!isa<ConstantSDNode>(Op.getOperand(1))) 5203 return None; 5204 uint64_t ShAmt = Op.getConstantOperandVal(1); 5205 5206 unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32; 5207 if (ShAmt >= Width || !isPowerOf2_64(ShAmt)) 5208 return None; 5209 // If we don't have enough masks for 64 bit, then we must be trying to 5210 // match SHFL so we're only allowed to shift 1/4 of the width. 5211 if (BitmanipMasks.size() == 5 && ShAmt >= (Width / 2)) 5212 return None; 5213 5214 SDValue Src = Op.getOperand(0); 5215 5216 // The expected mask is shifted left when the AND is found around SHL 5217 // patterns. 5218 // ((x >> 1) & 0x55555555) 5219 // ((x << 1) & 0xAAAAAAAA) 5220 bool SHLExpMask = IsSHL; 5221 5222 if (!Mask) { 5223 // Sometimes LLVM keeps the mask as an operand of the shift, typically when 5224 // the mask is all ones: consume that now. 5225 if (Src.getOpcode() == ISD::AND && isa<ConstantSDNode>(Src.getOperand(1))) { 5226 Mask = Src.getConstantOperandVal(1); 5227 Src = Src.getOperand(0); 5228 // The expected mask is now in fact shifted left for SRL, so reverse the 5229 // decision. 5230 // ((x & 0xAAAAAAAA) >> 1) 5231 // ((x & 0x55555555) << 1) 5232 SHLExpMask = !SHLExpMask; 5233 } else { 5234 // Use a default shifted mask of all-ones if there's no AND, truncated 5235 // down to the expected width. This simplifies the logic later on. 5236 Mask = maskTrailingOnes<uint64_t>(Width); 5237 *Mask &= (IsSHL ? *Mask << ShAmt : *Mask >> ShAmt); 5238 } 5239 } 5240 5241 unsigned MaskIdx = Log2_32(ShAmt); 5242 uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width); 5243 5244 if (SHLExpMask) 5245 ExpMask <<= ShAmt; 5246 5247 if (Mask != ExpMask) 5248 return None; 5249 5250 return RISCVBitmanipPat{Src, (unsigned)ShAmt, IsSHL}; 5251 } 5252 5253 // Matches any of the following bit-manipulation patterns: 5254 // (and (shl x, 1), (0x55555555 << 1)) 5255 // (and (srl x, 1), 0x55555555) 5256 // (shl (and x, 0x55555555), 1) 5257 // (srl (and x, (0x55555555 << 1)), 1) 5258 // where the shift amount and mask may vary thus: 5259 // [1] = 0x55555555 / 0xAAAAAAAA 5260 // [2] = 0x33333333 / 0xCCCCCCCC 5261 // [4] = 0x0F0F0F0F / 0xF0F0F0F0 5262 // [8] = 0x00FF00FF / 0xFF00FF00 5263 // [16] = 0x0000FFFF / 0xFFFFFFFF 5264 // [32] = 0x00000000FFFFFFFF / 0xFFFFFFFF00000000 (for RV64) 5265 static Optional<RISCVBitmanipPat> matchGREVIPat(SDValue Op) { 5266 // These are the unshifted masks which we use to match bit-manipulation 5267 // patterns. They may be shifted left in certain circumstances. 5268 static const uint64_t BitmanipMasks[] = { 5269 0x5555555555555555ULL, 0x3333333333333333ULL, 0x0F0F0F0F0F0F0F0FULL, 5270 0x00FF00FF00FF00FFULL, 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL}; 5271 5272 return matchRISCVBitmanipPat(Op, BitmanipMasks); 5273 } 5274 5275 // Match the following pattern as a GREVI(W) operation 5276 // (or (BITMANIP_SHL x), (BITMANIP_SRL x)) 5277 static SDValue combineORToGREV(SDValue Op, SelectionDAG &DAG, 5278 const RISCVSubtarget &Subtarget) { 5279 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson"); 5280 EVT VT = Op.getValueType(); 5281 5282 if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) { 5283 auto LHS = matchGREVIPat(Op.getOperand(0)); 5284 auto RHS = matchGREVIPat(Op.getOperand(1)); 5285 if (LHS && RHS && LHS->formsPairWith(*RHS)) { 5286 SDLoc DL(Op); 5287 return DAG.getNode(RISCVISD::GREV, DL, VT, LHS->Op, 5288 DAG.getConstant(LHS->ShAmt, DL, VT)); 5289 } 5290 } 5291 return SDValue(); 5292 } 5293 5294 // Matches any the following pattern as a GORCI(W) operation 5295 // 1. (or (GREVI x, shamt), x) if shamt is a power of 2 5296 // 2. (or x, (GREVI x, shamt)) if shamt is a power of 2 5297 // 3. (or (or (BITMANIP_SHL x), x), (BITMANIP_SRL x)) 5298 // Note that with the variant of 3., 5299 // (or (or (BITMANIP_SHL x), (BITMANIP_SRL x)), x) 5300 // the inner pattern will first be matched as GREVI and then the outer 5301 // pattern will be matched to GORC via the first rule above. 5302 // 4. (or (rotl/rotr x, bitwidth/2), x) 5303 static SDValue combineORToGORC(SDValue Op, SelectionDAG &DAG, 5304 const RISCVSubtarget &Subtarget) { 5305 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson"); 5306 EVT VT = Op.getValueType(); 5307 5308 if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) { 5309 SDLoc DL(Op); 5310 SDValue Op0 = Op.getOperand(0); 5311 SDValue Op1 = Op.getOperand(1); 5312 5313 auto MatchOROfReverse = [&](SDValue Reverse, SDValue X) { 5314 if (Reverse.getOpcode() == RISCVISD::GREV && Reverse.getOperand(0) == X && 5315 isa<ConstantSDNode>(Reverse.getOperand(1)) && 5316 isPowerOf2_32(Reverse.getConstantOperandVal(1))) 5317 return DAG.getNode(RISCVISD::GORC, DL, VT, X, Reverse.getOperand(1)); 5318 // We can also form GORCI from ROTL/ROTR by half the bitwidth. 5319 if ((Reverse.getOpcode() == ISD::ROTL || 5320 Reverse.getOpcode() == ISD::ROTR) && 5321 Reverse.getOperand(0) == X && 5322 isa<ConstantSDNode>(Reverse.getOperand(1))) { 5323 uint64_t RotAmt = Reverse.getConstantOperandVal(1); 5324 if (RotAmt == (VT.getSizeInBits() / 2)) 5325 return DAG.getNode(RISCVISD::GORC, DL, VT, X, 5326 DAG.getConstant(RotAmt, DL, VT)); 5327 } 5328 return SDValue(); 5329 }; 5330 5331 // Check for either commutable permutation of (or (GREVI x, shamt), x) 5332 if (SDValue V = MatchOROfReverse(Op0, Op1)) 5333 return V; 5334 if (SDValue V = MatchOROfReverse(Op1, Op0)) 5335 return V; 5336 5337 // OR is commutable so canonicalize its OR operand to the left 5338 if (Op0.getOpcode() != ISD::OR && Op1.getOpcode() == ISD::OR) 5339 std::swap(Op0, Op1); 5340 if (Op0.getOpcode() != ISD::OR) 5341 return SDValue(); 5342 SDValue OrOp0 = Op0.getOperand(0); 5343 SDValue OrOp1 = Op0.getOperand(1); 5344 auto LHS = matchGREVIPat(OrOp0); 5345 // OR is commutable so swap the operands and try again: x might have been 5346 // on the left 5347 if (!LHS) { 5348 std::swap(OrOp0, OrOp1); 5349 LHS = matchGREVIPat(OrOp0); 5350 } 5351 auto RHS = matchGREVIPat(Op1); 5352 if (LHS && RHS && LHS->formsPairWith(*RHS) && LHS->Op == OrOp1) { 5353 return DAG.getNode(RISCVISD::GORC, DL, VT, LHS->Op, 5354 DAG.getConstant(LHS->ShAmt, DL, VT)); 5355 } 5356 } 5357 return SDValue(); 5358 } 5359 5360 // Matches any of the following bit-manipulation patterns: 5361 // (and (shl x, 1), (0x22222222 << 1)) 5362 // (and (srl x, 1), 0x22222222) 5363 // (shl (and x, 0x22222222), 1) 5364 // (srl (and x, (0x22222222 << 1)), 1) 5365 // where the shift amount and mask may vary thus: 5366 // [1] = 0x22222222 / 0x44444444 5367 // [2] = 0x0C0C0C0C / 0x3C3C3C3C 5368 // [4] = 0x00F000F0 / 0x0F000F00 5369 // [8] = 0x0000FF00 / 0x00FF0000 5370 // [16] = 0x00000000FFFF0000 / 0x0000FFFF00000000 (for RV64) 5371 static Optional<RISCVBitmanipPat> matchSHFLPat(SDValue Op) { 5372 // These are the unshifted masks which we use to match bit-manipulation 5373 // patterns. They may be shifted left in certain circumstances. 5374 static const uint64_t BitmanipMasks[] = { 5375 0x2222222222222222ULL, 0x0C0C0C0C0C0C0C0CULL, 0x00F000F000F000F0ULL, 5376 0x0000FF000000FF00ULL, 0x00000000FFFF0000ULL}; 5377 5378 return matchRISCVBitmanipPat(Op, BitmanipMasks); 5379 } 5380 5381 // Match (or (or (SHFL_SHL x), (SHFL_SHR x)), (SHFL_AND x) 5382 static SDValue combineORToSHFL(SDValue Op, SelectionDAG &DAG, 5383 const RISCVSubtarget &Subtarget) { 5384 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson"); 5385 EVT VT = Op.getValueType(); 5386 5387 if (VT != MVT::i32 && VT != Subtarget.getXLenVT()) 5388 return SDValue(); 5389 5390 SDValue Op0 = Op.getOperand(0); 5391 SDValue Op1 = Op.getOperand(1); 5392 5393 // Or is commutable so canonicalize the second OR to the LHS. 5394 if (Op0.getOpcode() != ISD::OR) 5395 std::swap(Op0, Op1); 5396 if (Op0.getOpcode() != ISD::OR) 5397 return SDValue(); 5398 5399 // We found an inner OR, so our operands are the operands of the inner OR 5400 // and the other operand of the outer OR. 5401 SDValue A = Op0.getOperand(0); 5402 SDValue B = Op0.getOperand(1); 5403 SDValue C = Op1; 5404 5405 auto Match1 = matchSHFLPat(A); 5406 auto Match2 = matchSHFLPat(B); 5407 5408 // If neither matched, we failed. 5409 if (!Match1 && !Match2) 5410 return SDValue(); 5411 5412 // We had at least one match. if one failed, try the remaining C operand. 5413 if (!Match1) { 5414 std::swap(A, C); 5415 Match1 = matchSHFLPat(A); 5416 if (!Match1) 5417 return SDValue(); 5418 } else if (!Match2) { 5419 std::swap(B, C); 5420 Match2 = matchSHFLPat(B); 5421 if (!Match2) 5422 return SDValue(); 5423 } 5424 assert(Match1 && Match2); 5425 5426 // Make sure our matches pair up. 5427 if (!Match1->formsPairWith(*Match2)) 5428 return SDValue(); 5429 5430 // All the remains is to make sure C is an AND with the same input, that masks 5431 // out the bits that are being shuffled. 5432 if (C.getOpcode() != ISD::AND || !isa<ConstantSDNode>(C.getOperand(1)) || 5433 C.getOperand(0) != Match1->Op) 5434 return SDValue(); 5435 5436 uint64_t Mask = C.getConstantOperandVal(1); 5437 5438 static const uint64_t BitmanipMasks[] = { 5439 0x9999999999999999ULL, 0xC3C3C3C3C3C3C3C3ULL, 0xF00FF00FF00FF00FULL, 5440 0xFF0000FFFF0000FFULL, 0xFFFF00000000FFFFULL, 5441 }; 5442 5443 unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32; 5444 unsigned MaskIdx = Log2_32(Match1->ShAmt); 5445 uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width); 5446 5447 if (Mask != ExpMask) 5448 return SDValue(); 5449 5450 SDLoc DL(Op); 5451 return DAG.getNode(RISCVISD::SHFL, DL, VT, Match1->Op, 5452 DAG.getConstant(Match1->ShAmt, DL, VT)); 5453 } 5454 5455 // Combine (GREVI (GREVI x, C2), C1) -> (GREVI x, C1^C2) when C1^C2 is 5456 // non-zero, and to x when it is. Any repeated GREVI stage undoes itself. 5457 // Combine (GORCI (GORCI x, C2), C1) -> (GORCI x, C1|C2). Repeated stage does 5458 // not undo itself, but they are redundant. 5459 static SDValue combineGREVI_GORCI(SDNode *N, SelectionDAG &DAG) { 5460 SDValue Src = N->getOperand(0); 5461 5462 if (Src.getOpcode() != N->getOpcode()) 5463 return SDValue(); 5464 5465 if (!isa<ConstantSDNode>(N->getOperand(1)) || 5466 !isa<ConstantSDNode>(Src.getOperand(1))) 5467 return SDValue(); 5468 5469 unsigned ShAmt1 = N->getConstantOperandVal(1); 5470 unsigned ShAmt2 = Src.getConstantOperandVal(1); 5471 Src = Src.getOperand(0); 5472 5473 unsigned CombinedShAmt; 5474 if (N->getOpcode() == RISCVISD::GORC || N->getOpcode() == RISCVISD::GORCW) 5475 CombinedShAmt = ShAmt1 | ShAmt2; 5476 else 5477 CombinedShAmt = ShAmt1 ^ ShAmt2; 5478 5479 if (CombinedShAmt == 0) 5480 return Src; 5481 5482 SDLoc DL(N); 5483 return DAG.getNode( 5484 N->getOpcode(), DL, N->getValueType(0), Src, 5485 DAG.getConstant(CombinedShAmt, DL, N->getOperand(1).getValueType())); 5486 } 5487 5488 // Combine a constant select operand into its use: 5489 // 5490 // (and (select_cc lhs, rhs, cc, -1, c), x) 5491 // -> (select_cc lhs, rhs, cc, x, (and, x, c)) [AllOnes=1] 5492 // (or (select_cc lhs, rhs, cc, 0, c), x) 5493 // -> (select_cc lhs, rhs, cc, x, (or, x, c)) [AllOnes=0] 5494 // (xor (select_cc lhs, rhs, cc, 0, c), x) 5495 // -> (select_cc lhs, rhs, cc, x, (xor, x, c)) [AllOnes=0] 5496 static SDValue combineSelectCCAndUse(SDNode *N, SDValue Slct, SDValue OtherOp, 5497 SelectionDAG &DAG, bool AllOnes) { 5498 EVT VT = N->getValueType(0); 5499 5500 if (Slct.getOpcode() != RISCVISD::SELECT_CC || !Slct.hasOneUse()) 5501 return SDValue(); 5502 5503 auto isZeroOrAllOnes = [](SDValue N, bool AllOnes) { 5504 return AllOnes ? isAllOnesConstant(N) : isNullConstant(N); 5505 }; 5506 5507 bool SwapSelectOps; 5508 SDValue TrueVal = Slct.getOperand(3); 5509 SDValue FalseVal = Slct.getOperand(4); 5510 SDValue NonConstantVal; 5511 if (isZeroOrAllOnes(TrueVal, AllOnes)) { 5512 SwapSelectOps = false; 5513 NonConstantVal = FalseVal; 5514 } else if (isZeroOrAllOnes(FalseVal, AllOnes)) { 5515 SwapSelectOps = true; 5516 NonConstantVal = TrueVal; 5517 } else 5518 return SDValue(); 5519 5520 // Slct is now know to be the desired identity constant when CC is true. 5521 TrueVal = OtherOp; 5522 FalseVal = DAG.getNode(N->getOpcode(), SDLoc(N), VT, OtherOp, NonConstantVal); 5523 // Unless SwapSelectOps says CC should be false. 5524 if (SwapSelectOps) 5525 std::swap(TrueVal, FalseVal); 5526 5527 return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), VT, 5528 {Slct.getOperand(0), Slct.getOperand(1), 5529 Slct.getOperand(2), TrueVal, FalseVal}); 5530 } 5531 5532 // Attempt combineSelectAndUse on each operand of a commutative operator N. 5533 static SDValue combineSelectCCAndUseCommutative(SDNode *N, SelectionDAG &DAG, 5534 bool AllOnes) { 5535 SDValue N0 = N->getOperand(0); 5536 SDValue N1 = N->getOperand(1); 5537 if (SDValue Result = combineSelectCCAndUse(N, N0, N1, DAG, AllOnes)) 5538 return Result; 5539 if (SDValue Result = combineSelectCCAndUse(N, N1, N0, DAG, AllOnes)) 5540 return Result; 5541 return SDValue(); 5542 } 5543 5544 static SDValue performANDCombine(SDNode *N, 5545 TargetLowering::DAGCombinerInfo &DCI, 5546 const RISCVSubtarget &Subtarget) { 5547 SelectionDAG &DAG = DCI.DAG; 5548 5549 // fold (and (select_cc lhs, rhs, cc, -1, y), x) -> 5550 // (select lhs, rhs, cc, x, (and x, y)) 5551 return combineSelectCCAndUseCommutative(N, DAG, true); 5552 } 5553 5554 static SDValue performORCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, 5555 const RISCVSubtarget &Subtarget) { 5556 SelectionDAG &DAG = DCI.DAG; 5557 if (Subtarget.hasStdExtZbp()) { 5558 if (auto GREV = combineORToGREV(SDValue(N, 0), DAG, Subtarget)) 5559 return GREV; 5560 if (auto GORC = combineORToGORC(SDValue(N, 0), DAG, Subtarget)) 5561 return GORC; 5562 if (auto SHFL = combineORToSHFL(SDValue(N, 0), DAG, Subtarget)) 5563 return SHFL; 5564 } 5565 5566 // fold (or (select_cc lhs, rhs, cc, 0, y), x) -> 5567 // (select lhs, rhs, cc, x, (or x, y)) 5568 return combineSelectCCAndUseCommutative(N, DAG, false); 5569 } 5570 5571 static SDValue performXORCombine(SDNode *N, 5572 TargetLowering::DAGCombinerInfo &DCI, 5573 const RISCVSubtarget &Subtarget) { 5574 SelectionDAG &DAG = DCI.DAG; 5575 5576 // fold (xor (select_cc lhs, rhs, cc, 0, y), x) -> 5577 // (select lhs, rhs, cc, x, (xor x, y)) 5578 return combineSelectCCAndUseCommutative(N, DAG, false); 5579 } 5580 5581 SDValue RISCVTargetLowering::PerformDAGCombine(SDNode *N, 5582 DAGCombinerInfo &DCI) const { 5583 SelectionDAG &DAG = DCI.DAG; 5584 5585 switch (N->getOpcode()) { 5586 default: 5587 break; 5588 case RISCVISD::SplitF64: { 5589 SDValue Op0 = N->getOperand(0); 5590 // If the input to SplitF64 is just BuildPairF64 then the operation is 5591 // redundant. Instead, use BuildPairF64's operands directly. 5592 if (Op0->getOpcode() == RISCVISD::BuildPairF64) 5593 return DCI.CombineTo(N, Op0.getOperand(0), Op0.getOperand(1)); 5594 5595 SDLoc DL(N); 5596 5597 // It's cheaper to materialise two 32-bit integers than to load a double 5598 // from the constant pool and transfer it to integer registers through the 5599 // stack. 5600 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op0)) { 5601 APInt V = C->getValueAPF().bitcastToAPInt(); 5602 SDValue Lo = DAG.getConstant(V.trunc(32), DL, MVT::i32); 5603 SDValue Hi = DAG.getConstant(V.lshr(32).trunc(32), DL, MVT::i32); 5604 return DCI.CombineTo(N, Lo, Hi); 5605 } 5606 5607 // This is a target-specific version of a DAGCombine performed in 5608 // DAGCombiner::visitBITCAST. It performs the equivalent of: 5609 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) 5610 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) 5611 if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) || 5612 !Op0.getNode()->hasOneUse()) 5613 break; 5614 SDValue NewSplitF64 = 5615 DAG.getNode(RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), 5616 Op0.getOperand(0)); 5617 SDValue Lo = NewSplitF64.getValue(0); 5618 SDValue Hi = NewSplitF64.getValue(1); 5619 APInt SignBit = APInt::getSignMask(32); 5620 if (Op0.getOpcode() == ISD::FNEG) { 5621 SDValue NewHi = DAG.getNode(ISD::XOR, DL, MVT::i32, Hi, 5622 DAG.getConstant(SignBit, DL, MVT::i32)); 5623 return DCI.CombineTo(N, Lo, NewHi); 5624 } 5625 assert(Op0.getOpcode() == ISD::FABS); 5626 SDValue NewHi = DAG.getNode(ISD::AND, DL, MVT::i32, Hi, 5627 DAG.getConstant(~SignBit, DL, MVT::i32)); 5628 return DCI.CombineTo(N, Lo, NewHi); 5629 } 5630 case RISCVISD::SLLW: 5631 case RISCVISD::SRAW: 5632 case RISCVISD::SRLW: 5633 case RISCVISD::ROLW: 5634 case RISCVISD::RORW: { 5635 // Only the lower 32 bits of LHS and lower 5 bits of RHS are read. 5636 SDValue LHS = N->getOperand(0); 5637 SDValue RHS = N->getOperand(1); 5638 APInt LHSMask = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 32); 5639 APInt RHSMask = APInt::getLowBitsSet(RHS.getValueSizeInBits(), 5); 5640 if (SimplifyDemandedBits(N->getOperand(0), LHSMask, DCI) || 5641 SimplifyDemandedBits(N->getOperand(1), RHSMask, DCI)) { 5642 if (N->getOpcode() != ISD::DELETED_NODE) 5643 DCI.AddToWorklist(N); 5644 return SDValue(N, 0); 5645 } 5646 break; 5647 } 5648 case RISCVISD::CLZW: 5649 case RISCVISD::CTZW: { 5650 // Only the lower 32 bits of the first operand are read 5651 SDValue Op0 = N->getOperand(0); 5652 APInt Mask = APInt::getLowBitsSet(Op0.getValueSizeInBits(), 32); 5653 if (SimplifyDemandedBits(Op0, Mask, DCI)) { 5654 if (N->getOpcode() != ISD::DELETED_NODE) 5655 DCI.AddToWorklist(N); 5656 return SDValue(N, 0); 5657 } 5658 break; 5659 } 5660 case RISCVISD::FSL: 5661 case RISCVISD::FSR: { 5662 // Only the lower log2(Bitwidth)+1 bits of the the shift amount are read. 5663 SDValue ShAmt = N->getOperand(2); 5664 unsigned BitWidth = ShAmt.getValueSizeInBits(); 5665 assert(isPowerOf2_32(BitWidth) && "Unexpected bit width"); 5666 APInt ShAmtMask(BitWidth, (BitWidth * 2) - 1); 5667 if (SimplifyDemandedBits(ShAmt, ShAmtMask, DCI)) { 5668 if (N->getOpcode() != ISD::DELETED_NODE) 5669 DCI.AddToWorklist(N); 5670 return SDValue(N, 0); 5671 } 5672 break; 5673 } 5674 case RISCVISD::FSLW: 5675 case RISCVISD::FSRW: { 5676 // Only the lower 32 bits of Values and lower 6 bits of shift amount are 5677 // read. 5678 SDValue Op0 = N->getOperand(0); 5679 SDValue Op1 = N->getOperand(1); 5680 SDValue ShAmt = N->getOperand(2); 5681 APInt OpMask = APInt::getLowBitsSet(Op0.getValueSizeInBits(), 32); 5682 APInt ShAmtMask = APInt::getLowBitsSet(ShAmt.getValueSizeInBits(), 6); 5683 if (SimplifyDemandedBits(Op0, OpMask, DCI) || 5684 SimplifyDemandedBits(Op1, OpMask, DCI) || 5685 SimplifyDemandedBits(ShAmt, ShAmtMask, DCI)) { 5686 if (N->getOpcode() != ISD::DELETED_NODE) 5687 DCI.AddToWorklist(N); 5688 return SDValue(N, 0); 5689 } 5690 break; 5691 } 5692 case RISCVISD::GREV: 5693 case RISCVISD::GORC: { 5694 // Only the lower log2(Bitwidth) bits of the the shift amount are read. 5695 SDValue ShAmt = N->getOperand(1); 5696 unsigned BitWidth = ShAmt.getValueSizeInBits(); 5697 assert(isPowerOf2_32(BitWidth) && "Unexpected bit width"); 5698 APInt ShAmtMask(BitWidth, BitWidth - 1); 5699 if (SimplifyDemandedBits(ShAmt, ShAmtMask, DCI)) { 5700 if (N->getOpcode() != ISD::DELETED_NODE) 5701 DCI.AddToWorklist(N); 5702 return SDValue(N, 0); 5703 } 5704 5705 return combineGREVI_GORCI(N, DCI.DAG); 5706 } 5707 case RISCVISD::GREVW: 5708 case RISCVISD::GORCW: { 5709 // Only the lower 32 bits of LHS and lower 5 bits of RHS are read. 5710 SDValue LHS = N->getOperand(0); 5711 SDValue RHS = N->getOperand(1); 5712 APInt LHSMask = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 32); 5713 APInt RHSMask = APInt::getLowBitsSet(RHS.getValueSizeInBits(), 5); 5714 if (SimplifyDemandedBits(LHS, LHSMask, DCI) || 5715 SimplifyDemandedBits(RHS, RHSMask, DCI)) { 5716 if (N->getOpcode() != ISD::DELETED_NODE) 5717 DCI.AddToWorklist(N); 5718 return SDValue(N, 0); 5719 } 5720 5721 return combineGREVI_GORCI(N, DCI.DAG); 5722 } 5723 case RISCVISD::SHFL: 5724 case RISCVISD::UNSHFL: { 5725 // Only the lower log2(Bitwidth) bits of the the shift amount are read. 5726 SDValue ShAmt = N->getOperand(1); 5727 unsigned BitWidth = ShAmt.getValueSizeInBits(); 5728 assert(isPowerOf2_32(BitWidth) && "Unexpected bit width"); 5729 APInt ShAmtMask(BitWidth, (BitWidth / 2) - 1); 5730 if (SimplifyDemandedBits(ShAmt, ShAmtMask, DCI)) { 5731 if (N->getOpcode() != ISD::DELETED_NODE) 5732 DCI.AddToWorklist(N); 5733 return SDValue(N, 0); 5734 } 5735 5736 break; 5737 } 5738 case RISCVISD::SHFLW: 5739 case RISCVISD::UNSHFLW: { 5740 // Only the lower 32 bits of LHS and lower 5 bits of RHS are read. 5741 SDValue LHS = N->getOperand(0); 5742 SDValue RHS = N->getOperand(1); 5743 APInt LHSMask = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 32); 5744 APInt RHSMask = APInt::getLowBitsSet(RHS.getValueSizeInBits(), 4); 5745 if (SimplifyDemandedBits(LHS, LHSMask, DCI) || 5746 SimplifyDemandedBits(RHS, RHSMask, DCI)) { 5747 if (N->getOpcode() != ISD::DELETED_NODE) 5748 DCI.AddToWorklist(N); 5749 return SDValue(N, 0); 5750 } 5751 5752 break; 5753 } 5754 case RISCVISD::BCOMPRESSW: 5755 case RISCVISD::BDECOMPRESSW: { 5756 // Only the lower 32 bits of LHS and RHS are read. 5757 SDValue LHS = N->getOperand(0); 5758 SDValue RHS = N->getOperand(1); 5759 APInt Mask = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 32); 5760 if (SimplifyDemandedBits(LHS, Mask, DCI) || 5761 SimplifyDemandedBits(RHS, Mask, DCI)) { 5762 if (N->getOpcode() != ISD::DELETED_NODE) 5763 DCI.AddToWorklist(N); 5764 return SDValue(N, 0); 5765 } 5766 5767 break; 5768 } 5769 case RISCVISD::FMV_X_ANYEXTW_RV64: { 5770 SDLoc DL(N); 5771 SDValue Op0 = N->getOperand(0); 5772 // If the input to FMV_X_ANYEXTW_RV64 is just FMV_W_X_RV64 then the 5773 // conversion is unnecessary and can be replaced with an ANY_EXTEND 5774 // of the FMV_W_X_RV64 operand. 5775 if (Op0->getOpcode() == RISCVISD::FMV_W_X_RV64) { 5776 assert(Op0.getOperand(0).getValueType() == MVT::i64 && 5777 "Unexpected value type!"); 5778 return Op0.getOperand(0); 5779 } 5780 5781 // This is a target-specific version of a DAGCombine performed in 5782 // DAGCombiner::visitBITCAST. It performs the equivalent of: 5783 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) 5784 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) 5785 if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) || 5786 !Op0.getNode()->hasOneUse()) 5787 break; 5788 SDValue NewFMV = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, 5789 Op0.getOperand(0)); 5790 APInt SignBit = APInt::getSignMask(32).sext(64); 5791 if (Op0.getOpcode() == ISD::FNEG) 5792 return DAG.getNode(ISD::XOR, DL, MVT::i64, NewFMV, 5793 DAG.getConstant(SignBit, DL, MVT::i64)); 5794 5795 assert(Op0.getOpcode() == ISD::FABS); 5796 return DAG.getNode(ISD::AND, DL, MVT::i64, NewFMV, 5797 DAG.getConstant(~SignBit, DL, MVT::i64)); 5798 } 5799 case ISD::AND: 5800 return performANDCombine(N, DCI, Subtarget); 5801 case ISD::OR: 5802 return performORCombine(N, DCI, Subtarget); 5803 case ISD::XOR: 5804 return performXORCombine(N, DCI, Subtarget); 5805 case RISCVISD::SELECT_CC: { 5806 // Transform 5807 SDValue LHS = N->getOperand(0); 5808 SDValue RHS = N->getOperand(1); 5809 auto CCVal = static_cast<ISD::CondCode>(N->getConstantOperandVal(2)); 5810 if (!ISD::isIntEqualitySetCC(CCVal)) 5811 break; 5812 5813 // Fold (select_cc (setlt X, Y), 0, ne, trueV, falseV) -> 5814 // (select_cc X, Y, lt, trueV, falseV) 5815 // Sometimes the setcc is introduced after select_cc has been formed. 5816 if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) && 5817 LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) { 5818 // If we're looking for eq 0 instead of ne 0, we need to invert the 5819 // condition. 5820 bool Invert = CCVal == ISD::SETEQ; 5821 CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get(); 5822 if (Invert) 5823 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 5824 5825 SDLoc DL(N); 5826 RHS = LHS.getOperand(1); 5827 LHS = LHS.getOperand(0); 5828 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 5829 5830 SDValue TargetCC = 5831 DAG.getTargetConstant(CCVal, DL, Subtarget.getXLenVT()); 5832 return DAG.getNode( 5833 RISCVISD::SELECT_CC, DL, N->getValueType(0), 5834 {LHS, RHS, TargetCC, N->getOperand(3), N->getOperand(4)}); 5835 } 5836 5837 // Fold (select_cc (xor X, Y), 0, eq/ne, trueV, falseV) -> 5838 // (select_cc X, Y, eq/ne, trueV, falseV) 5839 if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS)) 5840 return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), N->getValueType(0), 5841 {LHS.getOperand(0), LHS.getOperand(1), 5842 N->getOperand(2), N->getOperand(3), 5843 N->getOperand(4)}); 5844 // (select_cc X, 1, setne, trueV, falseV) -> 5845 // (select_cc X, 0, seteq, trueV, falseV) if we can prove X is 0/1. 5846 // This can occur when legalizing some floating point comparisons. 5847 APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1); 5848 if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) { 5849 SDLoc DL(N); 5850 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 5851 SDValue TargetCC = 5852 DAG.getTargetConstant(CCVal, DL, Subtarget.getXLenVT()); 5853 RHS = DAG.getConstant(0, DL, LHS.getValueType()); 5854 return DAG.getNode( 5855 RISCVISD::SELECT_CC, DL, N->getValueType(0), 5856 {LHS, RHS, TargetCC, N->getOperand(3), N->getOperand(4)}); 5857 } 5858 5859 break; 5860 } 5861 case RISCVISD::BR_CC: { 5862 SDValue LHS = N->getOperand(1); 5863 SDValue RHS = N->getOperand(2); 5864 ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(3))->get(); 5865 if (!ISD::isIntEqualitySetCC(CCVal)) 5866 break; 5867 5868 // Fold (br_cc (setlt X, Y), 0, ne, dest) -> 5869 // (br_cc X, Y, lt, dest) 5870 // Sometimes the setcc is introduced after br_cc has been formed. 5871 if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) && 5872 LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) { 5873 // If we're looking for eq 0 instead of ne 0, we need to invert the 5874 // condition. 5875 bool Invert = CCVal == ISD::SETEQ; 5876 CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get(); 5877 if (Invert) 5878 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 5879 5880 SDLoc DL(N); 5881 RHS = LHS.getOperand(1); 5882 LHS = LHS.getOperand(0); 5883 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 5884 5885 return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0), 5886 N->getOperand(0), LHS, RHS, DAG.getCondCode(CCVal), 5887 N->getOperand(4)); 5888 } 5889 5890 // Fold (br_cc (xor X, Y), 0, eq/ne, dest) -> 5891 // (br_cc X, Y, eq/ne, trueV, falseV) 5892 if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS)) 5893 return DAG.getNode(RISCVISD::BR_CC, SDLoc(N), N->getValueType(0), 5894 N->getOperand(0), LHS.getOperand(0), LHS.getOperand(1), 5895 N->getOperand(3), N->getOperand(4)); 5896 5897 // (br_cc X, 1, setne, br_cc) -> 5898 // (br_cc X, 0, seteq, br_cc) if we can prove X is 0/1. 5899 // This can occur when legalizing some floating point comparisons. 5900 APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1); 5901 if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) { 5902 SDLoc DL(N); 5903 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 5904 SDValue TargetCC = DAG.getCondCode(CCVal); 5905 RHS = DAG.getConstant(0, DL, LHS.getValueType()); 5906 return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0), 5907 N->getOperand(0), LHS, RHS, TargetCC, 5908 N->getOperand(4)); 5909 } 5910 break; 5911 } 5912 case ISD::FCOPYSIGN: { 5913 EVT VT = N->getValueType(0); 5914 if (!VT.isVector()) 5915 break; 5916 // There is a form of VFSGNJ which injects the negated sign of its second 5917 // operand. Try and bubble any FNEG up after the extend/round to produce 5918 // this optimized pattern. Avoid modifying cases where FP_ROUND and 5919 // TRUNC=1. 5920 SDValue In2 = N->getOperand(1); 5921 // Avoid cases where the extend/round has multiple uses, as duplicating 5922 // those is typically more expensive than removing a fneg. 5923 if (!In2.hasOneUse()) 5924 break; 5925 if (In2.getOpcode() != ISD::FP_EXTEND && 5926 (In2.getOpcode() != ISD::FP_ROUND || In2.getConstantOperandVal(1) != 0)) 5927 break; 5928 In2 = In2.getOperand(0); 5929 if (In2.getOpcode() != ISD::FNEG) 5930 break; 5931 SDLoc DL(N); 5932 SDValue NewFPExtRound = DAG.getFPExtendOrRound(In2.getOperand(0), DL, VT); 5933 return DAG.getNode(ISD::FCOPYSIGN, DL, VT, N->getOperand(0), 5934 DAG.getNode(ISD::FNEG, DL, VT, NewFPExtRound)); 5935 } 5936 case ISD::MGATHER: 5937 case ISD::MSCATTER: { 5938 if (!DCI.isBeforeLegalize()) 5939 break; 5940 MaskedGatherScatterSDNode *MGSN = cast<MaskedGatherScatterSDNode>(N); 5941 SDValue Index = MGSN->getIndex(); 5942 EVT IndexVT = Index.getValueType(); 5943 MVT XLenVT = Subtarget.getXLenVT(); 5944 // RISCV indexed loads only support the "unsigned unscaled" addressing 5945 // mode, so anything else must be manually legalized. 5946 bool NeedsIdxLegalization = MGSN->isIndexScaled() || 5947 (MGSN->isIndexSigned() && 5948 IndexVT.getVectorElementType().bitsLT(XLenVT)); 5949 if (!NeedsIdxLegalization) 5950 break; 5951 5952 SDLoc DL(N); 5953 5954 // Any index legalization should first promote to XLenVT, so we don't lose 5955 // bits when scaling. This may create an illegal index type so we let 5956 // LLVM's legalization take care of the splitting. 5957 if (IndexVT.getVectorElementType().bitsLT(XLenVT)) { 5958 IndexVT = IndexVT.changeVectorElementType(XLenVT); 5959 Index = DAG.getNode(MGSN->isIndexSigned() ? ISD::SIGN_EXTEND 5960 : ISD::ZERO_EXTEND, 5961 DL, IndexVT, Index); 5962 } 5963 5964 unsigned Scale = N->getConstantOperandVal(5); 5965 if (MGSN->isIndexScaled() && Scale != 1) { 5966 // Manually scale the indices by the element size. 5967 // TODO: Sanitize the scale operand here? 5968 assert(isPowerOf2_32(Scale) && "Expecting power-of-two types"); 5969 SDValue SplatScale = DAG.getConstant(Log2_32(Scale), DL, IndexVT); 5970 Index = DAG.getNode(ISD::SHL, DL, IndexVT, Index, SplatScale); 5971 } 5972 5973 ISD::MemIndexType NewIndexTy = ISD::UNSIGNED_UNSCALED; 5974 if (const auto *MGN = dyn_cast<MaskedGatherSDNode>(N)) { 5975 return DAG.getMaskedGather( 5976 N->getVTList(), MGSN->getMemoryVT(), DL, 5977 {MGSN->getChain(), MGN->getPassThru(), MGSN->getMask(), 5978 MGSN->getBasePtr(), Index, MGN->getScale()}, 5979 MGN->getMemOperand(), NewIndexTy, MGN->getExtensionType()); 5980 } 5981 const auto *MSN = cast<MaskedScatterSDNode>(N); 5982 return DAG.getMaskedScatter( 5983 N->getVTList(), MGSN->getMemoryVT(), DL, 5984 {MGSN->getChain(), MSN->getValue(), MGSN->getMask(), MGSN->getBasePtr(), 5985 Index, MGSN->getScale()}, 5986 MGSN->getMemOperand(), NewIndexTy, MSN->isTruncatingStore()); 5987 } 5988 case RISCVISD::SRA_VL: 5989 case RISCVISD::SRL_VL: 5990 case RISCVISD::SHL_VL: { 5991 SDValue ShAmt = N->getOperand(1); 5992 if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) { 5993 // We don't need the upper 32 bits of a 64-bit element for a shift amount. 5994 SDLoc DL(N); 5995 SDValue VL = N->getOperand(3); 5996 EVT VT = N->getValueType(0); 5997 ShAmt = 5998 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, ShAmt.getOperand(0), VL); 5999 return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt, 6000 N->getOperand(2), N->getOperand(3)); 6001 } 6002 break; 6003 } 6004 case ISD::SRA: 6005 case ISD::SRL: 6006 case ISD::SHL: { 6007 SDValue ShAmt = N->getOperand(1); 6008 if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) { 6009 // We don't need the upper 32 bits of a 64-bit element for a shift amount. 6010 SDLoc DL(N); 6011 EVT VT = N->getValueType(0); 6012 ShAmt = 6013 DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VT, ShAmt.getOperand(0)); 6014 return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt); 6015 } 6016 break; 6017 } 6018 } 6019 6020 return SDValue(); 6021 } 6022 6023 bool RISCVTargetLowering::isDesirableToCommuteWithShift( 6024 const SDNode *N, CombineLevel Level) const { 6025 // The following folds are only desirable if `(OP _, c1 << c2)` can be 6026 // materialised in fewer instructions than `(OP _, c1)`: 6027 // 6028 // (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2) 6029 // (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2) 6030 SDValue N0 = N->getOperand(0); 6031 EVT Ty = N0.getValueType(); 6032 if (Ty.isScalarInteger() && 6033 (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::OR)) { 6034 auto *C1 = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 6035 auto *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1)); 6036 if (C1 && C2) { 6037 const APInt &C1Int = C1->getAPIntValue(); 6038 APInt ShiftedC1Int = C1Int << C2->getAPIntValue(); 6039 6040 // We can materialise `c1 << c2` into an add immediate, so it's "free", 6041 // and the combine should happen, to potentially allow further combines 6042 // later. 6043 if (ShiftedC1Int.getMinSignedBits() <= 64 && 6044 isLegalAddImmediate(ShiftedC1Int.getSExtValue())) 6045 return true; 6046 6047 // We can materialise `c1` in an add immediate, so it's "free", and the 6048 // combine should be prevented. 6049 if (C1Int.getMinSignedBits() <= 64 && 6050 isLegalAddImmediate(C1Int.getSExtValue())) 6051 return false; 6052 6053 // Neither constant will fit into an immediate, so find materialisation 6054 // costs. 6055 int C1Cost = RISCVMatInt::getIntMatCost(C1Int, Ty.getSizeInBits(), 6056 Subtarget.is64Bit()); 6057 int ShiftedC1Cost = RISCVMatInt::getIntMatCost( 6058 ShiftedC1Int, Ty.getSizeInBits(), Subtarget.is64Bit()); 6059 6060 // Materialising `c1` is cheaper than materialising `c1 << c2`, so the 6061 // combine should be prevented. 6062 if (C1Cost < ShiftedC1Cost) 6063 return false; 6064 } 6065 } 6066 return true; 6067 } 6068 6069 bool RISCVTargetLowering::targetShrinkDemandedConstant( 6070 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 6071 TargetLoweringOpt &TLO) const { 6072 // Delay this optimization as late as possible. 6073 if (!TLO.LegalOps) 6074 return false; 6075 6076 EVT VT = Op.getValueType(); 6077 if (VT.isVector()) 6078 return false; 6079 6080 // Only handle AND for now. 6081 if (Op.getOpcode() != ISD::AND) 6082 return false; 6083 6084 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 6085 if (!C) 6086 return false; 6087 6088 const APInt &Mask = C->getAPIntValue(); 6089 6090 // Clear all non-demanded bits initially. 6091 APInt ShrunkMask = Mask & DemandedBits; 6092 6093 // Try to make a smaller immediate by setting undemanded bits. 6094 6095 APInt ExpandedMask = Mask | ~DemandedBits; 6096 6097 auto IsLegalMask = [ShrunkMask, ExpandedMask](const APInt &Mask) -> bool { 6098 return ShrunkMask.isSubsetOf(Mask) && Mask.isSubsetOf(ExpandedMask); 6099 }; 6100 auto UseMask = [Mask, Op, VT, &TLO](const APInt &NewMask) -> bool { 6101 if (NewMask == Mask) 6102 return true; 6103 SDLoc DL(Op); 6104 SDValue NewC = TLO.DAG.getConstant(NewMask, DL, VT); 6105 SDValue NewOp = TLO.DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), NewC); 6106 return TLO.CombineTo(Op, NewOp); 6107 }; 6108 6109 // If the shrunk mask fits in sign extended 12 bits, let the target 6110 // independent code apply it. 6111 if (ShrunkMask.isSignedIntN(12)) 6112 return false; 6113 6114 // Preserve (and X, 0xffff) when zext.h is supported. 6115 if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp()) { 6116 APInt NewMask = APInt(Mask.getBitWidth(), 0xffff); 6117 if (IsLegalMask(NewMask)) 6118 return UseMask(NewMask); 6119 } 6120 6121 // Try to preserve (and X, 0xffffffff), the (zext_inreg X, i32) pattern. 6122 if (VT == MVT::i64) { 6123 APInt NewMask = APInt(64, 0xffffffff); 6124 if (IsLegalMask(NewMask)) 6125 return UseMask(NewMask); 6126 } 6127 6128 // For the remaining optimizations, we need to be able to make a negative 6129 // number through a combination of mask and undemanded bits. 6130 if (!ExpandedMask.isNegative()) 6131 return false; 6132 6133 // What is the fewest number of bits we need to represent the negative number. 6134 unsigned MinSignedBits = ExpandedMask.getMinSignedBits(); 6135 6136 // Try to make a 12 bit negative immediate. If that fails try to make a 32 6137 // bit negative immediate unless the shrunk immediate already fits in 32 bits. 6138 APInt NewMask = ShrunkMask; 6139 if (MinSignedBits <= 12) 6140 NewMask.setBitsFrom(11); 6141 else if (MinSignedBits <= 32 && !ShrunkMask.isSignedIntN(32)) 6142 NewMask.setBitsFrom(31); 6143 else 6144 return false; 6145 6146 // Sanity check that our new mask is a subset of the demanded mask. 6147 assert(IsLegalMask(NewMask)); 6148 return UseMask(NewMask); 6149 } 6150 6151 static void computeGREV(APInt &Src, unsigned ShAmt) { 6152 ShAmt &= Src.getBitWidth() - 1; 6153 uint64_t x = Src.getZExtValue(); 6154 if (ShAmt & 1) 6155 x = ((x & 0x5555555555555555LL) << 1) | ((x & 0xAAAAAAAAAAAAAAAALL) >> 1); 6156 if (ShAmt & 2) 6157 x = ((x & 0x3333333333333333LL) << 2) | ((x & 0xCCCCCCCCCCCCCCCCLL) >> 2); 6158 if (ShAmt & 4) 6159 x = ((x & 0x0F0F0F0F0F0F0F0FLL) << 4) | ((x & 0xF0F0F0F0F0F0F0F0LL) >> 4); 6160 if (ShAmt & 8) 6161 x = ((x & 0x00FF00FF00FF00FFLL) << 8) | ((x & 0xFF00FF00FF00FF00LL) >> 8); 6162 if (ShAmt & 16) 6163 x = ((x & 0x0000FFFF0000FFFFLL) << 16) | ((x & 0xFFFF0000FFFF0000LL) >> 16); 6164 if (ShAmt & 32) 6165 x = ((x & 0x00000000FFFFFFFFLL) << 32) | ((x & 0xFFFFFFFF00000000LL) >> 32); 6166 Src = x; 6167 } 6168 6169 void RISCVTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 6170 KnownBits &Known, 6171 const APInt &DemandedElts, 6172 const SelectionDAG &DAG, 6173 unsigned Depth) const { 6174 unsigned BitWidth = Known.getBitWidth(); 6175 unsigned Opc = Op.getOpcode(); 6176 assert((Opc >= ISD::BUILTIN_OP_END || 6177 Opc == ISD::INTRINSIC_WO_CHAIN || 6178 Opc == ISD::INTRINSIC_W_CHAIN || 6179 Opc == ISD::INTRINSIC_VOID) && 6180 "Should use MaskedValueIsZero if you don't know whether Op" 6181 " is a target node!"); 6182 6183 Known.resetAll(); 6184 switch (Opc) { 6185 default: break; 6186 case RISCVISD::SELECT_CC: { 6187 Known = DAG.computeKnownBits(Op.getOperand(4), Depth + 1); 6188 // If we don't know any bits, early out. 6189 if (Known.isUnknown()) 6190 break; 6191 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(3), Depth + 1); 6192 6193 // Only known if known in both the LHS and RHS. 6194 Known = KnownBits::commonBits(Known, Known2); 6195 break; 6196 } 6197 case RISCVISD::REMUW: { 6198 KnownBits Known2; 6199 Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 6200 Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 6201 // We only care about the lower 32 bits. 6202 Known = KnownBits::urem(Known.trunc(32), Known2.trunc(32)); 6203 // Restore the original width by sign extending. 6204 Known = Known.sext(BitWidth); 6205 break; 6206 } 6207 case RISCVISD::DIVUW: { 6208 KnownBits Known2; 6209 Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 6210 Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 6211 // We only care about the lower 32 bits. 6212 Known = KnownBits::udiv(Known.trunc(32), Known2.trunc(32)); 6213 // Restore the original width by sign extending. 6214 Known = Known.sext(BitWidth); 6215 break; 6216 } 6217 case RISCVISD::CTZW: { 6218 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 6219 unsigned PossibleTZ = Known2.trunc(32).countMaxTrailingZeros(); 6220 unsigned LowBits = Log2_32(PossibleTZ) + 1; 6221 Known.Zero.setBitsFrom(LowBits); 6222 break; 6223 } 6224 case RISCVISD::CLZW: { 6225 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 6226 unsigned PossibleLZ = Known2.trunc(32).countMaxLeadingZeros(); 6227 unsigned LowBits = Log2_32(PossibleLZ) + 1; 6228 Known.Zero.setBitsFrom(LowBits); 6229 break; 6230 } 6231 case RISCVISD::GREV: 6232 case RISCVISD::GREVW: { 6233 if (auto *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 6234 Known = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 6235 if (Opc == RISCVISD::GREVW) 6236 Known = Known.trunc(32); 6237 unsigned ShAmt = C->getZExtValue(); 6238 computeGREV(Known.Zero, ShAmt); 6239 computeGREV(Known.One, ShAmt); 6240 if (Opc == RISCVISD::GREVW) 6241 Known = Known.sext(BitWidth); 6242 } 6243 break; 6244 } 6245 case RISCVISD::READ_VLENB: 6246 // We assume VLENB is at least 16 bytes. 6247 Known.Zero.setLowBits(4); 6248 break; 6249 case ISD::INTRINSIC_W_CHAIN: { 6250 unsigned IntNo = Op.getConstantOperandVal(1); 6251 switch (IntNo) { 6252 default: 6253 // We can't do anything for most intrinsics. 6254 break; 6255 case Intrinsic::riscv_vsetvli: 6256 case Intrinsic::riscv_vsetvlimax: 6257 // Assume that VL output is positive and would fit in an int32_t. 6258 // TODO: VLEN might be capped at 16 bits in a future V spec update. 6259 if (BitWidth >= 32) 6260 Known.Zero.setBitsFrom(31); 6261 break; 6262 } 6263 break; 6264 } 6265 } 6266 } 6267 6268 unsigned RISCVTargetLowering::ComputeNumSignBitsForTargetNode( 6269 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 6270 unsigned Depth) const { 6271 switch (Op.getOpcode()) { 6272 default: 6273 break; 6274 case RISCVISD::SLLW: 6275 case RISCVISD::SRAW: 6276 case RISCVISD::SRLW: 6277 case RISCVISD::DIVW: 6278 case RISCVISD::DIVUW: 6279 case RISCVISD::REMUW: 6280 case RISCVISD::ROLW: 6281 case RISCVISD::RORW: 6282 case RISCVISD::GREVW: 6283 case RISCVISD::GORCW: 6284 case RISCVISD::FSLW: 6285 case RISCVISD::FSRW: 6286 case RISCVISD::SHFLW: 6287 case RISCVISD::UNSHFLW: 6288 case RISCVISD::BCOMPRESSW: 6289 case RISCVISD::BDECOMPRESSW: 6290 // TODO: As the result is sign-extended, this is conservatively correct. A 6291 // more precise answer could be calculated for SRAW depending on known 6292 // bits in the shift amount. 6293 return 33; 6294 case RISCVISD::SHFL: 6295 case RISCVISD::UNSHFL: { 6296 // There is no SHFLIW, but a i64 SHFLI with bit 4 of the control word 6297 // cleared doesn't affect bit 31. The upper 32 bits will be shuffled, but 6298 // will stay within the upper 32 bits. If there were more than 32 sign bits 6299 // before there will be at least 33 sign bits after. 6300 if (Op.getValueType() == MVT::i64 && 6301 isa<ConstantSDNode>(Op.getOperand(1)) && 6302 (Op.getConstantOperandVal(1) & 0x10) == 0) { 6303 unsigned Tmp = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1); 6304 if (Tmp > 32) 6305 return 33; 6306 } 6307 break; 6308 } 6309 case RISCVISD::VMV_X_S: 6310 // The number of sign bits of the scalar result is computed by obtaining the 6311 // element type of the input vector operand, subtracting its width from the 6312 // XLEN, and then adding one (sign bit within the element type). If the 6313 // element type is wider than XLen, the least-significant XLEN bits are 6314 // taken. 6315 if (Op.getOperand(0).getScalarValueSizeInBits() > Subtarget.getXLen()) 6316 return 1; 6317 return Subtarget.getXLen() - Op.getOperand(0).getScalarValueSizeInBits() + 1; 6318 } 6319 6320 return 1; 6321 } 6322 6323 static MachineBasicBlock *emitReadCycleWidePseudo(MachineInstr &MI, 6324 MachineBasicBlock *BB) { 6325 assert(MI.getOpcode() == RISCV::ReadCycleWide && "Unexpected instruction"); 6326 6327 // To read the 64-bit cycle CSR on a 32-bit target, we read the two halves. 6328 // Should the count have wrapped while it was being read, we need to try 6329 // again. 6330 // ... 6331 // read: 6332 // rdcycleh x3 # load high word of cycle 6333 // rdcycle x2 # load low word of cycle 6334 // rdcycleh x4 # load high word of cycle 6335 // bne x3, x4, read # check if high word reads match, otherwise try again 6336 // ... 6337 6338 MachineFunction &MF = *BB->getParent(); 6339 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 6340 MachineFunction::iterator It = ++BB->getIterator(); 6341 6342 MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB); 6343 MF.insert(It, LoopMBB); 6344 6345 MachineBasicBlock *DoneMBB = MF.CreateMachineBasicBlock(LLVM_BB); 6346 MF.insert(It, DoneMBB); 6347 6348 // Transfer the remainder of BB and its successor edges to DoneMBB. 6349 DoneMBB->splice(DoneMBB->begin(), BB, 6350 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 6351 DoneMBB->transferSuccessorsAndUpdatePHIs(BB); 6352 6353 BB->addSuccessor(LoopMBB); 6354 6355 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 6356 Register ReadAgainReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 6357 Register LoReg = MI.getOperand(0).getReg(); 6358 Register HiReg = MI.getOperand(1).getReg(); 6359 DebugLoc DL = MI.getDebugLoc(); 6360 6361 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 6362 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), HiReg) 6363 .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding) 6364 .addReg(RISCV::X0); 6365 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), LoReg) 6366 .addImm(RISCVSysReg::lookupSysRegByName("CYCLE")->Encoding) 6367 .addReg(RISCV::X0); 6368 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), ReadAgainReg) 6369 .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding) 6370 .addReg(RISCV::X0); 6371 6372 BuildMI(LoopMBB, DL, TII->get(RISCV::BNE)) 6373 .addReg(HiReg) 6374 .addReg(ReadAgainReg) 6375 .addMBB(LoopMBB); 6376 6377 LoopMBB->addSuccessor(LoopMBB); 6378 LoopMBB->addSuccessor(DoneMBB); 6379 6380 MI.eraseFromParent(); 6381 6382 return DoneMBB; 6383 } 6384 6385 static MachineBasicBlock *emitSplitF64Pseudo(MachineInstr &MI, 6386 MachineBasicBlock *BB) { 6387 assert(MI.getOpcode() == RISCV::SplitF64Pseudo && "Unexpected instruction"); 6388 6389 MachineFunction &MF = *BB->getParent(); 6390 DebugLoc DL = MI.getDebugLoc(); 6391 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 6392 const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo(); 6393 Register LoReg = MI.getOperand(0).getReg(); 6394 Register HiReg = MI.getOperand(1).getReg(); 6395 Register SrcReg = MI.getOperand(2).getReg(); 6396 const TargetRegisterClass *SrcRC = &RISCV::FPR64RegClass; 6397 int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF); 6398 6399 TII.storeRegToStackSlot(*BB, MI, SrcReg, MI.getOperand(2).isKill(), FI, SrcRC, 6400 RI); 6401 MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI); 6402 MachineMemOperand *MMOLo = 6403 MF.getMachineMemOperand(MPI, MachineMemOperand::MOLoad, 4, Align(8)); 6404 MachineMemOperand *MMOHi = MF.getMachineMemOperand( 6405 MPI.getWithOffset(4), MachineMemOperand::MOLoad, 4, Align(8)); 6406 BuildMI(*BB, MI, DL, TII.get(RISCV::LW), LoReg) 6407 .addFrameIndex(FI) 6408 .addImm(0) 6409 .addMemOperand(MMOLo); 6410 BuildMI(*BB, MI, DL, TII.get(RISCV::LW), HiReg) 6411 .addFrameIndex(FI) 6412 .addImm(4) 6413 .addMemOperand(MMOHi); 6414 MI.eraseFromParent(); // The pseudo instruction is gone now. 6415 return BB; 6416 } 6417 6418 static MachineBasicBlock *emitBuildPairF64Pseudo(MachineInstr &MI, 6419 MachineBasicBlock *BB) { 6420 assert(MI.getOpcode() == RISCV::BuildPairF64Pseudo && 6421 "Unexpected instruction"); 6422 6423 MachineFunction &MF = *BB->getParent(); 6424 DebugLoc DL = MI.getDebugLoc(); 6425 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 6426 const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo(); 6427 Register DstReg = MI.getOperand(0).getReg(); 6428 Register LoReg = MI.getOperand(1).getReg(); 6429 Register HiReg = MI.getOperand(2).getReg(); 6430 const TargetRegisterClass *DstRC = &RISCV::FPR64RegClass; 6431 int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF); 6432 6433 MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI); 6434 MachineMemOperand *MMOLo = 6435 MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Align(8)); 6436 MachineMemOperand *MMOHi = MF.getMachineMemOperand( 6437 MPI.getWithOffset(4), MachineMemOperand::MOStore, 4, Align(8)); 6438 BuildMI(*BB, MI, DL, TII.get(RISCV::SW)) 6439 .addReg(LoReg, getKillRegState(MI.getOperand(1).isKill())) 6440 .addFrameIndex(FI) 6441 .addImm(0) 6442 .addMemOperand(MMOLo); 6443 BuildMI(*BB, MI, DL, TII.get(RISCV::SW)) 6444 .addReg(HiReg, getKillRegState(MI.getOperand(2).isKill())) 6445 .addFrameIndex(FI) 6446 .addImm(4) 6447 .addMemOperand(MMOHi); 6448 TII.loadRegFromStackSlot(*BB, MI, DstReg, FI, DstRC, RI); 6449 MI.eraseFromParent(); // The pseudo instruction is gone now. 6450 return BB; 6451 } 6452 6453 static bool isSelectPseudo(MachineInstr &MI) { 6454 switch (MI.getOpcode()) { 6455 default: 6456 return false; 6457 case RISCV::Select_GPR_Using_CC_GPR: 6458 case RISCV::Select_FPR16_Using_CC_GPR: 6459 case RISCV::Select_FPR32_Using_CC_GPR: 6460 case RISCV::Select_FPR64_Using_CC_GPR: 6461 return true; 6462 } 6463 } 6464 6465 static MachineBasicBlock *emitSelectPseudo(MachineInstr &MI, 6466 MachineBasicBlock *BB) { 6467 // To "insert" Select_* instructions, we actually have to insert the triangle 6468 // control-flow pattern. The incoming instructions know the destination vreg 6469 // to set, the condition code register to branch on, the true/false values to 6470 // select between, and the condcode to use to select the appropriate branch. 6471 // 6472 // We produce the following control flow: 6473 // HeadMBB 6474 // | \ 6475 // | IfFalseMBB 6476 // | / 6477 // TailMBB 6478 // 6479 // When we find a sequence of selects we attempt to optimize their emission 6480 // by sharing the control flow. Currently we only handle cases where we have 6481 // multiple selects with the exact same condition (same LHS, RHS and CC). 6482 // The selects may be interleaved with other instructions if the other 6483 // instructions meet some requirements we deem safe: 6484 // - They are debug instructions. Otherwise, 6485 // - They do not have side-effects, do not access memory and their inputs do 6486 // not depend on the results of the select pseudo-instructions. 6487 // The TrueV/FalseV operands of the selects cannot depend on the result of 6488 // previous selects in the sequence. 6489 // These conditions could be further relaxed. See the X86 target for a 6490 // related approach and more information. 6491 Register LHS = MI.getOperand(1).getReg(); 6492 Register RHS = MI.getOperand(2).getReg(); 6493 auto CC = static_cast<ISD::CondCode>(MI.getOperand(3).getImm()); 6494 6495 SmallVector<MachineInstr *, 4> SelectDebugValues; 6496 SmallSet<Register, 4> SelectDests; 6497 SelectDests.insert(MI.getOperand(0).getReg()); 6498 6499 MachineInstr *LastSelectPseudo = &MI; 6500 6501 for (auto E = BB->end(), SequenceMBBI = MachineBasicBlock::iterator(MI); 6502 SequenceMBBI != E; ++SequenceMBBI) { 6503 if (SequenceMBBI->isDebugInstr()) 6504 continue; 6505 else if (isSelectPseudo(*SequenceMBBI)) { 6506 if (SequenceMBBI->getOperand(1).getReg() != LHS || 6507 SequenceMBBI->getOperand(2).getReg() != RHS || 6508 SequenceMBBI->getOperand(3).getImm() != CC || 6509 SelectDests.count(SequenceMBBI->getOperand(4).getReg()) || 6510 SelectDests.count(SequenceMBBI->getOperand(5).getReg())) 6511 break; 6512 LastSelectPseudo = &*SequenceMBBI; 6513 SequenceMBBI->collectDebugValues(SelectDebugValues); 6514 SelectDests.insert(SequenceMBBI->getOperand(0).getReg()); 6515 } else { 6516 if (SequenceMBBI->hasUnmodeledSideEffects() || 6517 SequenceMBBI->mayLoadOrStore()) 6518 break; 6519 if (llvm::any_of(SequenceMBBI->operands(), [&](MachineOperand &MO) { 6520 return MO.isReg() && MO.isUse() && SelectDests.count(MO.getReg()); 6521 })) 6522 break; 6523 } 6524 } 6525 6526 const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo(); 6527 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 6528 DebugLoc DL = MI.getDebugLoc(); 6529 MachineFunction::iterator I = ++BB->getIterator(); 6530 6531 MachineBasicBlock *HeadMBB = BB; 6532 MachineFunction *F = BB->getParent(); 6533 MachineBasicBlock *TailMBB = F->CreateMachineBasicBlock(LLVM_BB); 6534 MachineBasicBlock *IfFalseMBB = F->CreateMachineBasicBlock(LLVM_BB); 6535 6536 F->insert(I, IfFalseMBB); 6537 F->insert(I, TailMBB); 6538 6539 // Transfer debug instructions associated with the selects to TailMBB. 6540 for (MachineInstr *DebugInstr : SelectDebugValues) { 6541 TailMBB->push_back(DebugInstr->removeFromParent()); 6542 } 6543 6544 // Move all instructions after the sequence to TailMBB. 6545 TailMBB->splice(TailMBB->end(), HeadMBB, 6546 std::next(LastSelectPseudo->getIterator()), HeadMBB->end()); 6547 // Update machine-CFG edges by transferring all successors of the current 6548 // block to the new block which will contain the Phi nodes for the selects. 6549 TailMBB->transferSuccessorsAndUpdatePHIs(HeadMBB); 6550 // Set the successors for HeadMBB. 6551 HeadMBB->addSuccessor(IfFalseMBB); 6552 HeadMBB->addSuccessor(TailMBB); 6553 6554 // Insert appropriate branch. 6555 unsigned Opcode = getBranchOpcodeForIntCondCode(CC); 6556 6557 BuildMI(HeadMBB, DL, TII.get(Opcode)) 6558 .addReg(LHS) 6559 .addReg(RHS) 6560 .addMBB(TailMBB); 6561 6562 // IfFalseMBB just falls through to TailMBB. 6563 IfFalseMBB->addSuccessor(TailMBB); 6564 6565 // Create PHIs for all of the select pseudo-instructions. 6566 auto SelectMBBI = MI.getIterator(); 6567 auto SelectEnd = std::next(LastSelectPseudo->getIterator()); 6568 auto InsertionPoint = TailMBB->begin(); 6569 while (SelectMBBI != SelectEnd) { 6570 auto Next = std::next(SelectMBBI); 6571 if (isSelectPseudo(*SelectMBBI)) { 6572 // %Result = phi [ %TrueValue, HeadMBB ], [ %FalseValue, IfFalseMBB ] 6573 BuildMI(*TailMBB, InsertionPoint, SelectMBBI->getDebugLoc(), 6574 TII.get(RISCV::PHI), SelectMBBI->getOperand(0).getReg()) 6575 .addReg(SelectMBBI->getOperand(4).getReg()) 6576 .addMBB(HeadMBB) 6577 .addReg(SelectMBBI->getOperand(5).getReg()) 6578 .addMBB(IfFalseMBB); 6579 SelectMBBI->eraseFromParent(); 6580 } 6581 SelectMBBI = Next; 6582 } 6583 6584 F->getProperties().reset(MachineFunctionProperties::Property::NoPHIs); 6585 return TailMBB; 6586 } 6587 6588 MachineBasicBlock * 6589 RISCVTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 6590 MachineBasicBlock *BB) const { 6591 switch (MI.getOpcode()) { 6592 default: 6593 llvm_unreachable("Unexpected instr type to insert"); 6594 case RISCV::ReadCycleWide: 6595 assert(!Subtarget.is64Bit() && 6596 "ReadCycleWrite is only to be used on riscv32"); 6597 return emitReadCycleWidePseudo(MI, BB); 6598 case RISCV::Select_GPR_Using_CC_GPR: 6599 case RISCV::Select_FPR16_Using_CC_GPR: 6600 case RISCV::Select_FPR32_Using_CC_GPR: 6601 case RISCV::Select_FPR64_Using_CC_GPR: 6602 return emitSelectPseudo(MI, BB); 6603 case RISCV::BuildPairF64Pseudo: 6604 return emitBuildPairF64Pseudo(MI, BB); 6605 case RISCV::SplitF64Pseudo: 6606 return emitSplitF64Pseudo(MI, BB); 6607 } 6608 } 6609 6610 // Calling Convention Implementation. 6611 // The expectations for frontend ABI lowering vary from target to target. 6612 // Ideally, an LLVM frontend would be able to avoid worrying about many ABI 6613 // details, but this is a longer term goal. For now, we simply try to keep the 6614 // role of the frontend as simple and well-defined as possible. The rules can 6615 // be summarised as: 6616 // * Never split up large scalar arguments. We handle them here. 6617 // * If a hardfloat calling convention is being used, and the struct may be 6618 // passed in a pair of registers (fp+fp, int+fp), and both registers are 6619 // available, then pass as two separate arguments. If either the GPRs or FPRs 6620 // are exhausted, then pass according to the rule below. 6621 // * If a struct could never be passed in registers or directly in a stack 6622 // slot (as it is larger than 2*XLEN and the floating point rules don't 6623 // apply), then pass it using a pointer with the byval attribute. 6624 // * If a struct is less than 2*XLEN, then coerce to either a two-element 6625 // word-sized array or a 2*XLEN scalar (depending on alignment). 6626 // * The frontend can determine whether a struct is returned by reference or 6627 // not based on its size and fields. If it will be returned by reference, the 6628 // frontend must modify the prototype so a pointer with the sret annotation is 6629 // passed as the first argument. This is not necessary for large scalar 6630 // returns. 6631 // * Struct return values and varargs should be coerced to structs containing 6632 // register-size fields in the same situations they would be for fixed 6633 // arguments. 6634 6635 static const MCPhysReg ArgGPRs[] = { 6636 RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, 6637 RISCV::X14, RISCV::X15, RISCV::X16, RISCV::X17 6638 }; 6639 static const MCPhysReg ArgFPR16s[] = { 6640 RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, 6641 RISCV::F14_H, RISCV::F15_H, RISCV::F16_H, RISCV::F17_H 6642 }; 6643 static const MCPhysReg ArgFPR32s[] = { 6644 RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, 6645 RISCV::F14_F, RISCV::F15_F, RISCV::F16_F, RISCV::F17_F 6646 }; 6647 static const MCPhysReg ArgFPR64s[] = { 6648 RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, 6649 RISCV::F14_D, RISCV::F15_D, RISCV::F16_D, RISCV::F17_D 6650 }; 6651 // This is an interim calling convention and it may be changed in the future. 6652 static const MCPhysReg ArgVRs[] = { 6653 RISCV::V8, RISCV::V9, RISCV::V10, RISCV::V11, RISCV::V12, RISCV::V13, 6654 RISCV::V14, RISCV::V15, RISCV::V16, RISCV::V17, RISCV::V18, RISCV::V19, 6655 RISCV::V20, RISCV::V21, RISCV::V22, RISCV::V23}; 6656 static const MCPhysReg ArgVRM2s[] = {RISCV::V8M2, RISCV::V10M2, RISCV::V12M2, 6657 RISCV::V14M2, RISCV::V16M2, RISCV::V18M2, 6658 RISCV::V20M2, RISCV::V22M2}; 6659 static const MCPhysReg ArgVRM4s[] = {RISCV::V8M4, RISCV::V12M4, RISCV::V16M4, 6660 RISCV::V20M4}; 6661 static const MCPhysReg ArgVRM8s[] = {RISCV::V8M8, RISCV::V16M8}; 6662 6663 // Pass a 2*XLEN argument that has been split into two XLEN values through 6664 // registers or the stack as necessary. 6665 static bool CC_RISCVAssign2XLen(unsigned XLen, CCState &State, CCValAssign VA1, 6666 ISD::ArgFlagsTy ArgFlags1, unsigned ValNo2, 6667 MVT ValVT2, MVT LocVT2, 6668 ISD::ArgFlagsTy ArgFlags2) { 6669 unsigned XLenInBytes = XLen / 8; 6670 if (Register Reg = State.AllocateReg(ArgGPRs)) { 6671 // At least one half can be passed via register. 6672 State.addLoc(CCValAssign::getReg(VA1.getValNo(), VA1.getValVT(), Reg, 6673 VA1.getLocVT(), CCValAssign::Full)); 6674 } else { 6675 // Both halves must be passed on the stack, with proper alignment. 6676 Align StackAlign = 6677 std::max(Align(XLenInBytes), ArgFlags1.getNonZeroOrigAlign()); 6678 State.addLoc( 6679 CCValAssign::getMem(VA1.getValNo(), VA1.getValVT(), 6680 State.AllocateStack(XLenInBytes, StackAlign), 6681 VA1.getLocVT(), CCValAssign::Full)); 6682 State.addLoc(CCValAssign::getMem( 6683 ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)), 6684 LocVT2, CCValAssign::Full)); 6685 return false; 6686 } 6687 6688 if (Register Reg = State.AllocateReg(ArgGPRs)) { 6689 // The second half can also be passed via register. 6690 State.addLoc( 6691 CCValAssign::getReg(ValNo2, ValVT2, Reg, LocVT2, CCValAssign::Full)); 6692 } else { 6693 // The second half is passed via the stack, without additional alignment. 6694 State.addLoc(CCValAssign::getMem( 6695 ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)), 6696 LocVT2, CCValAssign::Full)); 6697 } 6698 6699 return false; 6700 } 6701 6702 static unsigned allocateRVVReg(MVT ValVT, unsigned ValNo, 6703 Optional<unsigned> FirstMaskArgument, 6704 CCState &State, const RISCVTargetLowering &TLI) { 6705 const TargetRegisterClass *RC = TLI.getRegClassFor(ValVT); 6706 if (RC == &RISCV::VRRegClass) { 6707 // Assign the first mask argument to V0. 6708 // This is an interim calling convention and it may be changed in the 6709 // future. 6710 if (FirstMaskArgument.hasValue() && ValNo == FirstMaskArgument.getValue()) 6711 return State.AllocateReg(RISCV::V0); 6712 return State.AllocateReg(ArgVRs); 6713 } 6714 if (RC == &RISCV::VRM2RegClass) 6715 return State.AllocateReg(ArgVRM2s); 6716 if (RC == &RISCV::VRM4RegClass) 6717 return State.AllocateReg(ArgVRM4s); 6718 if (RC == &RISCV::VRM8RegClass) 6719 return State.AllocateReg(ArgVRM8s); 6720 llvm_unreachable("Unhandled register class for ValueType"); 6721 } 6722 6723 // Implements the RISC-V calling convention. Returns true upon failure. 6724 static bool CC_RISCV(const DataLayout &DL, RISCVABI::ABI ABI, unsigned ValNo, 6725 MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, 6726 ISD::ArgFlagsTy ArgFlags, CCState &State, bool IsFixed, 6727 bool IsRet, Type *OrigTy, const RISCVTargetLowering &TLI, 6728 Optional<unsigned> FirstMaskArgument) { 6729 unsigned XLen = DL.getLargestLegalIntTypeSizeInBits(); 6730 assert(XLen == 32 || XLen == 64); 6731 MVT XLenVT = XLen == 32 ? MVT::i32 : MVT::i64; 6732 6733 // Any return value split in to more than two values can't be returned 6734 // directly. Vectors are returned via the available vector registers. 6735 if (!LocVT.isVector() && IsRet && ValNo > 1) 6736 return true; 6737 6738 // UseGPRForF16_F32 if targeting one of the soft-float ABIs, if passing a 6739 // variadic argument, or if no F16/F32 argument registers are available. 6740 bool UseGPRForF16_F32 = true; 6741 // UseGPRForF64 if targeting soft-float ABIs or an FLEN=32 ABI, if passing a 6742 // variadic argument, or if no F64 argument registers are available. 6743 bool UseGPRForF64 = true; 6744 6745 switch (ABI) { 6746 default: 6747 llvm_unreachable("Unexpected ABI"); 6748 case RISCVABI::ABI_ILP32: 6749 case RISCVABI::ABI_LP64: 6750 break; 6751 case RISCVABI::ABI_ILP32F: 6752 case RISCVABI::ABI_LP64F: 6753 UseGPRForF16_F32 = !IsFixed; 6754 break; 6755 case RISCVABI::ABI_ILP32D: 6756 case RISCVABI::ABI_LP64D: 6757 UseGPRForF16_F32 = !IsFixed; 6758 UseGPRForF64 = !IsFixed; 6759 break; 6760 } 6761 6762 // FPR16, FPR32, and FPR64 alias each other. 6763 if (State.getFirstUnallocated(ArgFPR32s) == array_lengthof(ArgFPR32s)) { 6764 UseGPRForF16_F32 = true; 6765 UseGPRForF64 = true; 6766 } 6767 6768 // From this point on, rely on UseGPRForF16_F32, UseGPRForF64 and 6769 // similar local variables rather than directly checking against the target 6770 // ABI. 6771 6772 if (UseGPRForF16_F32 && (ValVT == MVT::f16 || ValVT == MVT::f32)) { 6773 LocVT = XLenVT; 6774 LocInfo = CCValAssign::BCvt; 6775 } else if (UseGPRForF64 && XLen == 64 && ValVT == MVT::f64) { 6776 LocVT = MVT::i64; 6777 LocInfo = CCValAssign::BCvt; 6778 } 6779 6780 // If this is a variadic argument, the RISC-V calling convention requires 6781 // that it is assigned an 'even' or 'aligned' register if it has 8-byte 6782 // alignment (RV32) or 16-byte alignment (RV64). An aligned register should 6783 // be used regardless of whether the original argument was split during 6784 // legalisation or not. The argument will not be passed by registers if the 6785 // original type is larger than 2*XLEN, so the register alignment rule does 6786 // not apply. 6787 unsigned TwoXLenInBytes = (2 * XLen) / 8; 6788 if (!IsFixed && ArgFlags.getNonZeroOrigAlign() == TwoXLenInBytes && 6789 DL.getTypeAllocSize(OrigTy) == TwoXLenInBytes) { 6790 unsigned RegIdx = State.getFirstUnallocated(ArgGPRs); 6791 // Skip 'odd' register if necessary. 6792 if (RegIdx != array_lengthof(ArgGPRs) && RegIdx % 2 == 1) 6793 State.AllocateReg(ArgGPRs); 6794 } 6795 6796 SmallVectorImpl<CCValAssign> &PendingLocs = State.getPendingLocs(); 6797 SmallVectorImpl<ISD::ArgFlagsTy> &PendingArgFlags = 6798 State.getPendingArgFlags(); 6799 6800 assert(PendingLocs.size() == PendingArgFlags.size() && 6801 "PendingLocs and PendingArgFlags out of sync"); 6802 6803 // Handle passing f64 on RV32D with a soft float ABI or when floating point 6804 // registers are exhausted. 6805 if (UseGPRForF64 && XLen == 32 && ValVT == MVT::f64) { 6806 assert(!ArgFlags.isSplit() && PendingLocs.empty() && 6807 "Can't lower f64 if it is split"); 6808 // Depending on available argument GPRS, f64 may be passed in a pair of 6809 // GPRs, split between a GPR and the stack, or passed completely on the 6810 // stack. LowerCall/LowerFormalArguments/LowerReturn must recognise these 6811 // cases. 6812 Register Reg = State.AllocateReg(ArgGPRs); 6813 LocVT = MVT::i32; 6814 if (!Reg) { 6815 unsigned StackOffset = State.AllocateStack(8, Align(8)); 6816 State.addLoc( 6817 CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 6818 return false; 6819 } 6820 if (!State.AllocateReg(ArgGPRs)) 6821 State.AllocateStack(4, Align(4)); 6822 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 6823 return false; 6824 } 6825 6826 // Fixed-length vectors are located in the corresponding scalable-vector 6827 // container types. 6828 if (ValVT.isFixedLengthVector()) 6829 LocVT = TLI.getContainerForFixedLengthVector(LocVT); 6830 6831 // Split arguments might be passed indirectly, so keep track of the pending 6832 // values. Split vectors are passed via a mix of registers and indirectly, so 6833 // treat them as we would any other argument. 6834 if (!LocVT.isVector() && (ArgFlags.isSplit() || !PendingLocs.empty())) { 6835 LocVT = XLenVT; 6836 LocInfo = CCValAssign::Indirect; 6837 PendingLocs.push_back( 6838 CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo)); 6839 PendingArgFlags.push_back(ArgFlags); 6840 if (!ArgFlags.isSplitEnd()) { 6841 return false; 6842 } 6843 } 6844 6845 // If the split argument only had two elements, it should be passed directly 6846 // in registers or on the stack. 6847 if (!LocVT.isVector() && ArgFlags.isSplitEnd() && PendingLocs.size() <= 2) { 6848 assert(PendingLocs.size() == 2 && "Unexpected PendingLocs.size()"); 6849 // Apply the normal calling convention rules to the first half of the 6850 // split argument. 6851 CCValAssign VA = PendingLocs[0]; 6852 ISD::ArgFlagsTy AF = PendingArgFlags[0]; 6853 PendingLocs.clear(); 6854 PendingArgFlags.clear(); 6855 return CC_RISCVAssign2XLen(XLen, State, VA, AF, ValNo, ValVT, LocVT, 6856 ArgFlags); 6857 } 6858 6859 // Allocate to a register if possible, or else a stack slot. 6860 Register Reg; 6861 unsigned StoreSizeBytes = XLen / 8; 6862 Align StackAlign = Align(XLen / 8); 6863 6864 if (ValVT == MVT::f16 && !UseGPRForF16_F32) 6865 Reg = State.AllocateReg(ArgFPR16s); 6866 else if (ValVT == MVT::f32 && !UseGPRForF16_F32) 6867 Reg = State.AllocateReg(ArgFPR32s); 6868 else if (ValVT == MVT::f64 && !UseGPRForF64) 6869 Reg = State.AllocateReg(ArgFPR64s); 6870 else if (ValVT.isVector()) { 6871 Reg = allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI); 6872 if (!Reg) { 6873 // For return values, the vector must be passed fully via registers or 6874 // via the stack. 6875 // FIXME: The proposed vector ABI only mandates v8-v15 for return values, 6876 // but we're using all of them. 6877 if (IsRet) 6878 return true; 6879 // Try using a GPR to pass the address 6880 if ((Reg = State.AllocateReg(ArgGPRs))) { 6881 LocVT = XLenVT; 6882 LocInfo = CCValAssign::Indirect; 6883 } else if (ValVT.isScalableVector()) { 6884 report_fatal_error("Unable to pass scalable vector types on the stack"); 6885 } else { 6886 // Pass fixed-length vectors on the stack. 6887 LocVT = ValVT; 6888 StoreSizeBytes = ValVT.getStoreSize(); 6889 // Align vectors to their element sizes, being careful for vXi1 6890 // vectors. 6891 StackAlign = MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne(); 6892 } 6893 } 6894 } else { 6895 Reg = State.AllocateReg(ArgGPRs); 6896 } 6897 6898 unsigned StackOffset = 6899 Reg ? 0 : State.AllocateStack(StoreSizeBytes, StackAlign); 6900 6901 // If we reach this point and PendingLocs is non-empty, we must be at the 6902 // end of a split argument that must be passed indirectly. 6903 if (!PendingLocs.empty()) { 6904 assert(ArgFlags.isSplitEnd() && "Expected ArgFlags.isSplitEnd()"); 6905 assert(PendingLocs.size() > 2 && "Unexpected PendingLocs.size()"); 6906 6907 for (auto &It : PendingLocs) { 6908 if (Reg) 6909 It.convertToReg(Reg); 6910 else 6911 It.convertToMem(StackOffset); 6912 State.addLoc(It); 6913 } 6914 PendingLocs.clear(); 6915 PendingArgFlags.clear(); 6916 return false; 6917 } 6918 6919 assert((!UseGPRForF16_F32 || !UseGPRForF64 || LocVT == XLenVT || 6920 (TLI.getSubtarget().hasStdExtV() && ValVT.isVector())) && 6921 "Expected an XLenVT or vector types at this stage"); 6922 6923 if (Reg) { 6924 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 6925 return false; 6926 } 6927 6928 // When a floating-point value is passed on the stack, no bit-conversion is 6929 // needed. 6930 if (ValVT.isFloatingPoint()) { 6931 LocVT = ValVT; 6932 LocInfo = CCValAssign::Full; 6933 } 6934 State.addLoc(CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 6935 return false; 6936 } 6937 6938 template <typename ArgTy> 6939 static Optional<unsigned> preAssignMask(const ArgTy &Args) { 6940 for (const auto &ArgIdx : enumerate(Args)) { 6941 MVT ArgVT = ArgIdx.value().VT; 6942 if (ArgVT.isVector() && ArgVT.getVectorElementType() == MVT::i1) 6943 return ArgIdx.index(); 6944 } 6945 return None; 6946 } 6947 6948 void RISCVTargetLowering::analyzeInputArgs( 6949 MachineFunction &MF, CCState &CCInfo, 6950 const SmallVectorImpl<ISD::InputArg> &Ins, bool IsRet, 6951 RISCVCCAssignFn Fn) const { 6952 unsigned NumArgs = Ins.size(); 6953 FunctionType *FType = MF.getFunction().getFunctionType(); 6954 6955 Optional<unsigned> FirstMaskArgument; 6956 if (Subtarget.hasStdExtV()) 6957 FirstMaskArgument = preAssignMask(Ins); 6958 6959 for (unsigned i = 0; i != NumArgs; ++i) { 6960 MVT ArgVT = Ins[i].VT; 6961 ISD::ArgFlagsTy ArgFlags = Ins[i].Flags; 6962 6963 Type *ArgTy = nullptr; 6964 if (IsRet) 6965 ArgTy = FType->getReturnType(); 6966 else if (Ins[i].isOrigArg()) 6967 ArgTy = FType->getParamType(Ins[i].getOrigArgIndex()); 6968 6969 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 6970 if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full, 6971 ArgFlags, CCInfo, /*IsFixed=*/true, IsRet, ArgTy, *this, 6972 FirstMaskArgument)) { 6973 LLVM_DEBUG(dbgs() << "InputArg #" << i << " has unhandled type " 6974 << EVT(ArgVT).getEVTString() << '\n'); 6975 llvm_unreachable(nullptr); 6976 } 6977 } 6978 } 6979 6980 void RISCVTargetLowering::analyzeOutputArgs( 6981 MachineFunction &MF, CCState &CCInfo, 6982 const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsRet, 6983 CallLoweringInfo *CLI, RISCVCCAssignFn Fn) const { 6984 unsigned NumArgs = Outs.size(); 6985 6986 Optional<unsigned> FirstMaskArgument; 6987 if (Subtarget.hasStdExtV()) 6988 FirstMaskArgument = preAssignMask(Outs); 6989 6990 for (unsigned i = 0; i != NumArgs; i++) { 6991 MVT ArgVT = Outs[i].VT; 6992 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 6993 Type *OrigTy = CLI ? CLI->getArgs()[Outs[i].OrigArgIndex].Ty : nullptr; 6994 6995 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 6996 if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full, 6997 ArgFlags, CCInfo, Outs[i].IsFixed, IsRet, OrigTy, *this, 6998 FirstMaskArgument)) { 6999 LLVM_DEBUG(dbgs() << "OutputArg #" << i << " has unhandled type " 7000 << EVT(ArgVT).getEVTString() << "\n"); 7001 llvm_unreachable(nullptr); 7002 } 7003 } 7004 } 7005 7006 // Convert Val to a ValVT. Should not be called for CCValAssign::Indirect 7007 // values. 7008 static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDValue Val, 7009 const CCValAssign &VA, const SDLoc &DL, 7010 const RISCVSubtarget &Subtarget) { 7011 switch (VA.getLocInfo()) { 7012 default: 7013 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 7014 case CCValAssign::Full: 7015 if (VA.getValVT().isFixedLengthVector() && VA.getLocVT().isScalableVector()) 7016 Val = convertFromScalableVector(VA.getValVT(), Val, DAG, Subtarget); 7017 break; 7018 case CCValAssign::BCvt: 7019 if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16) 7020 Val = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, Val); 7021 else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) 7022 Val = DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, Val); 7023 else 7024 Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val); 7025 break; 7026 } 7027 return Val; 7028 } 7029 7030 // The caller is responsible for loading the full value if the argument is 7031 // passed with CCValAssign::Indirect. 7032 static SDValue unpackFromRegLoc(SelectionDAG &DAG, SDValue Chain, 7033 const CCValAssign &VA, const SDLoc &DL, 7034 const RISCVTargetLowering &TLI) { 7035 MachineFunction &MF = DAG.getMachineFunction(); 7036 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 7037 EVT LocVT = VA.getLocVT(); 7038 SDValue Val; 7039 const TargetRegisterClass *RC = TLI.getRegClassFor(LocVT.getSimpleVT()); 7040 Register VReg = RegInfo.createVirtualRegister(RC); 7041 RegInfo.addLiveIn(VA.getLocReg(), VReg); 7042 Val = DAG.getCopyFromReg(Chain, DL, VReg, LocVT); 7043 7044 if (VA.getLocInfo() == CCValAssign::Indirect) 7045 return Val; 7046 7047 return convertLocVTToValVT(DAG, Val, VA, DL, TLI.getSubtarget()); 7048 } 7049 7050 static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDValue Val, 7051 const CCValAssign &VA, const SDLoc &DL, 7052 const RISCVSubtarget &Subtarget) { 7053 EVT LocVT = VA.getLocVT(); 7054 7055 switch (VA.getLocInfo()) { 7056 default: 7057 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 7058 case CCValAssign::Full: 7059 if (VA.getValVT().isFixedLengthVector() && LocVT.isScalableVector()) 7060 Val = convertToScalableVector(LocVT, Val, DAG, Subtarget); 7061 break; 7062 case CCValAssign::BCvt: 7063 if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16) 7064 Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, VA.getLocVT(), Val); 7065 else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) 7066 Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Val); 7067 else 7068 Val = DAG.getNode(ISD::BITCAST, DL, LocVT, Val); 7069 break; 7070 } 7071 return Val; 7072 } 7073 7074 // The caller is responsible for loading the full value if the argument is 7075 // passed with CCValAssign::Indirect. 7076 static SDValue unpackFromMemLoc(SelectionDAG &DAG, SDValue Chain, 7077 const CCValAssign &VA, const SDLoc &DL) { 7078 MachineFunction &MF = DAG.getMachineFunction(); 7079 MachineFrameInfo &MFI = MF.getFrameInfo(); 7080 EVT LocVT = VA.getLocVT(); 7081 EVT ValVT = VA.getValVT(); 7082 EVT PtrVT = MVT::getIntegerVT(DAG.getDataLayout().getPointerSizeInBits(0)); 7083 int FI = MFI.CreateFixedObject(ValVT.getStoreSize(), VA.getLocMemOffset(), 7084 /*Immutable=*/true); 7085 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 7086 SDValue Val; 7087 7088 ISD::LoadExtType ExtType; 7089 switch (VA.getLocInfo()) { 7090 default: 7091 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 7092 case CCValAssign::Full: 7093 case CCValAssign::Indirect: 7094 case CCValAssign::BCvt: 7095 ExtType = ISD::NON_EXTLOAD; 7096 break; 7097 } 7098 Val = DAG.getExtLoad( 7099 ExtType, DL, LocVT, Chain, FIN, 7100 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), ValVT); 7101 return Val; 7102 } 7103 7104 static SDValue unpackF64OnRV32DSoftABI(SelectionDAG &DAG, SDValue Chain, 7105 const CCValAssign &VA, const SDLoc &DL) { 7106 assert(VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64 && 7107 "Unexpected VA"); 7108 MachineFunction &MF = DAG.getMachineFunction(); 7109 MachineFrameInfo &MFI = MF.getFrameInfo(); 7110 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 7111 7112 if (VA.isMemLoc()) { 7113 // f64 is passed on the stack. 7114 int FI = MFI.CreateFixedObject(8, VA.getLocMemOffset(), /*Immutable=*/true); 7115 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 7116 return DAG.getLoad(MVT::f64, DL, Chain, FIN, 7117 MachinePointerInfo::getFixedStack(MF, FI)); 7118 } 7119 7120 assert(VA.isRegLoc() && "Expected register VA assignment"); 7121 7122 Register LoVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 7123 RegInfo.addLiveIn(VA.getLocReg(), LoVReg); 7124 SDValue Lo = DAG.getCopyFromReg(Chain, DL, LoVReg, MVT::i32); 7125 SDValue Hi; 7126 if (VA.getLocReg() == RISCV::X17) { 7127 // Second half of f64 is passed on the stack. 7128 int FI = MFI.CreateFixedObject(4, 0, /*Immutable=*/true); 7129 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 7130 Hi = DAG.getLoad(MVT::i32, DL, Chain, FIN, 7131 MachinePointerInfo::getFixedStack(MF, FI)); 7132 } else { 7133 // Second half of f64 is passed in another GPR. 7134 Register HiVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 7135 RegInfo.addLiveIn(VA.getLocReg() + 1, HiVReg); 7136 Hi = DAG.getCopyFromReg(Chain, DL, HiVReg, MVT::i32); 7137 } 7138 return DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, Lo, Hi); 7139 } 7140 7141 // FastCC has less than 1% performance improvement for some particular 7142 // benchmark. But theoretically, it may has benenfit for some cases. 7143 static bool CC_RISCV_FastCC(const DataLayout &DL, RISCVABI::ABI ABI, 7144 unsigned ValNo, MVT ValVT, MVT LocVT, 7145 CCValAssign::LocInfo LocInfo, 7146 ISD::ArgFlagsTy ArgFlags, CCState &State, 7147 bool IsFixed, bool IsRet, Type *OrigTy, 7148 const RISCVTargetLowering &TLI, 7149 Optional<unsigned> FirstMaskArgument) { 7150 7151 // X5 and X6 might be used for save-restore libcall. 7152 static const MCPhysReg GPRList[] = { 7153 RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, RISCV::X14, 7154 RISCV::X15, RISCV::X16, RISCV::X17, RISCV::X7, RISCV::X28, 7155 RISCV::X29, RISCV::X30, RISCV::X31}; 7156 7157 if (LocVT == MVT::i32 || LocVT == MVT::i64) { 7158 if (unsigned Reg = State.AllocateReg(GPRList)) { 7159 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 7160 return false; 7161 } 7162 } 7163 7164 if (LocVT == MVT::f16) { 7165 static const MCPhysReg FPR16List[] = { 7166 RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, RISCV::F14_H, 7167 RISCV::F15_H, RISCV::F16_H, RISCV::F17_H, RISCV::F0_H, RISCV::F1_H, 7168 RISCV::F2_H, RISCV::F3_H, RISCV::F4_H, RISCV::F5_H, RISCV::F6_H, 7169 RISCV::F7_H, RISCV::F28_H, RISCV::F29_H, RISCV::F30_H, RISCV::F31_H}; 7170 if (unsigned Reg = State.AllocateReg(FPR16List)) { 7171 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 7172 return false; 7173 } 7174 } 7175 7176 if (LocVT == MVT::f32) { 7177 static const MCPhysReg FPR32List[] = { 7178 RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, RISCV::F14_F, 7179 RISCV::F15_F, RISCV::F16_F, RISCV::F17_F, RISCV::F0_F, RISCV::F1_F, 7180 RISCV::F2_F, RISCV::F3_F, RISCV::F4_F, RISCV::F5_F, RISCV::F6_F, 7181 RISCV::F7_F, RISCV::F28_F, RISCV::F29_F, RISCV::F30_F, RISCV::F31_F}; 7182 if (unsigned Reg = State.AllocateReg(FPR32List)) { 7183 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 7184 return false; 7185 } 7186 } 7187 7188 if (LocVT == MVT::f64) { 7189 static const MCPhysReg FPR64List[] = { 7190 RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, RISCV::F14_D, 7191 RISCV::F15_D, RISCV::F16_D, RISCV::F17_D, RISCV::F0_D, RISCV::F1_D, 7192 RISCV::F2_D, RISCV::F3_D, RISCV::F4_D, RISCV::F5_D, RISCV::F6_D, 7193 RISCV::F7_D, RISCV::F28_D, RISCV::F29_D, RISCV::F30_D, RISCV::F31_D}; 7194 if (unsigned Reg = State.AllocateReg(FPR64List)) { 7195 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 7196 return false; 7197 } 7198 } 7199 7200 if (LocVT == MVT::i32 || LocVT == MVT::f32) { 7201 unsigned Offset4 = State.AllocateStack(4, Align(4)); 7202 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset4, LocVT, LocInfo)); 7203 return false; 7204 } 7205 7206 if (LocVT == MVT::i64 || LocVT == MVT::f64) { 7207 unsigned Offset5 = State.AllocateStack(8, Align(8)); 7208 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset5, LocVT, LocInfo)); 7209 return false; 7210 } 7211 7212 if (LocVT.isVector()) { 7213 if (unsigned Reg = 7214 allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI)) { 7215 // Fixed-length vectors are located in the corresponding scalable-vector 7216 // container types. 7217 if (ValVT.isFixedLengthVector()) 7218 LocVT = TLI.getContainerForFixedLengthVector(LocVT); 7219 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 7220 } else { 7221 // Try and pass the address via a "fast" GPR. 7222 if (unsigned GPRReg = State.AllocateReg(GPRList)) { 7223 LocInfo = CCValAssign::Indirect; 7224 LocVT = TLI.getSubtarget().getXLenVT(); 7225 State.addLoc(CCValAssign::getReg(ValNo, ValVT, GPRReg, LocVT, LocInfo)); 7226 } else if (ValVT.isFixedLengthVector()) { 7227 auto StackAlign = 7228 MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne(); 7229 unsigned StackOffset = 7230 State.AllocateStack(ValVT.getStoreSize(), StackAlign); 7231 State.addLoc( 7232 CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 7233 } else { 7234 // Can't pass scalable vectors on the stack. 7235 return true; 7236 } 7237 } 7238 7239 return false; 7240 } 7241 7242 return true; // CC didn't match. 7243 } 7244 7245 static bool CC_RISCV_GHC(unsigned ValNo, MVT ValVT, MVT LocVT, 7246 CCValAssign::LocInfo LocInfo, 7247 ISD::ArgFlagsTy ArgFlags, CCState &State) { 7248 7249 if (LocVT == MVT::i32 || LocVT == MVT::i64) { 7250 // Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, R6, R7, SpLim 7251 // s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 7252 static const MCPhysReg GPRList[] = { 7253 RISCV::X9, RISCV::X18, RISCV::X19, RISCV::X20, RISCV::X21, RISCV::X22, 7254 RISCV::X23, RISCV::X24, RISCV::X25, RISCV::X26, RISCV::X27}; 7255 if (unsigned Reg = State.AllocateReg(GPRList)) { 7256 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 7257 return false; 7258 } 7259 } 7260 7261 if (LocVT == MVT::f32) { 7262 // Pass in STG registers: F1, ..., F6 7263 // fs0 ... fs5 7264 static const MCPhysReg FPR32List[] = {RISCV::F8_F, RISCV::F9_F, 7265 RISCV::F18_F, RISCV::F19_F, 7266 RISCV::F20_F, RISCV::F21_F}; 7267 if (unsigned Reg = State.AllocateReg(FPR32List)) { 7268 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 7269 return false; 7270 } 7271 } 7272 7273 if (LocVT == MVT::f64) { 7274 // Pass in STG registers: D1, ..., D6 7275 // fs6 ... fs11 7276 static const MCPhysReg FPR64List[] = {RISCV::F22_D, RISCV::F23_D, 7277 RISCV::F24_D, RISCV::F25_D, 7278 RISCV::F26_D, RISCV::F27_D}; 7279 if (unsigned Reg = State.AllocateReg(FPR64List)) { 7280 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 7281 return false; 7282 } 7283 } 7284 7285 report_fatal_error("No registers left in GHC calling convention"); 7286 return true; 7287 } 7288 7289 // Transform physical registers into virtual registers. 7290 SDValue RISCVTargetLowering::LowerFormalArguments( 7291 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 7292 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 7293 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 7294 7295 MachineFunction &MF = DAG.getMachineFunction(); 7296 7297 switch (CallConv) { 7298 default: 7299 report_fatal_error("Unsupported calling convention"); 7300 case CallingConv::C: 7301 case CallingConv::Fast: 7302 break; 7303 case CallingConv::GHC: 7304 if (!MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtF] || 7305 !MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtD]) 7306 report_fatal_error( 7307 "GHC calling convention requires the F and D instruction set extensions"); 7308 } 7309 7310 const Function &Func = MF.getFunction(); 7311 if (Func.hasFnAttribute("interrupt")) { 7312 if (!Func.arg_empty()) 7313 report_fatal_error( 7314 "Functions with the interrupt attribute cannot have arguments!"); 7315 7316 StringRef Kind = 7317 MF.getFunction().getFnAttribute("interrupt").getValueAsString(); 7318 7319 if (!(Kind == "user" || Kind == "supervisor" || Kind == "machine")) 7320 report_fatal_error( 7321 "Function interrupt attribute argument not supported!"); 7322 } 7323 7324 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7325 MVT XLenVT = Subtarget.getXLenVT(); 7326 unsigned XLenInBytes = Subtarget.getXLen() / 8; 7327 // Used with vargs to acumulate store chains. 7328 std::vector<SDValue> OutChains; 7329 7330 // Assign locations to all of the incoming arguments. 7331 SmallVector<CCValAssign, 16> ArgLocs; 7332 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 7333 7334 if (CallConv == CallingConv::GHC) 7335 CCInfo.AnalyzeFormalArguments(Ins, CC_RISCV_GHC); 7336 else 7337 analyzeInputArgs(MF, CCInfo, Ins, /*IsRet=*/false, 7338 CallConv == CallingConv::Fast ? CC_RISCV_FastCC 7339 : CC_RISCV); 7340 7341 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 7342 CCValAssign &VA = ArgLocs[i]; 7343 SDValue ArgValue; 7344 // Passing f64 on RV32D with a soft float ABI must be handled as a special 7345 // case. 7346 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) 7347 ArgValue = unpackF64OnRV32DSoftABI(DAG, Chain, VA, DL); 7348 else if (VA.isRegLoc()) 7349 ArgValue = unpackFromRegLoc(DAG, Chain, VA, DL, *this); 7350 else 7351 ArgValue = unpackFromMemLoc(DAG, Chain, VA, DL); 7352 7353 if (VA.getLocInfo() == CCValAssign::Indirect) { 7354 // If the original argument was split and passed by reference (e.g. i128 7355 // on RV32), we need to load all parts of it here (using the same 7356 // address). Vectors may be partly split to registers and partly to the 7357 // stack, in which case the base address is partly offset and subsequent 7358 // stores are relative to that. 7359 InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue, 7360 MachinePointerInfo())); 7361 unsigned ArgIndex = Ins[i].OrigArgIndex; 7362 unsigned ArgPartOffset = Ins[i].PartOffset; 7363 assert(VA.getValVT().isVector() || ArgPartOffset == 0); 7364 while (i + 1 != e && Ins[i + 1].OrigArgIndex == ArgIndex) { 7365 CCValAssign &PartVA = ArgLocs[i + 1]; 7366 unsigned PartOffset = Ins[i + 1].PartOffset - ArgPartOffset; 7367 SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL); 7368 if (PartVA.getValVT().isScalableVector()) 7369 Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset); 7370 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, Offset); 7371 InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address, 7372 MachinePointerInfo())); 7373 ++i; 7374 } 7375 continue; 7376 } 7377 InVals.push_back(ArgValue); 7378 } 7379 7380 if (IsVarArg) { 7381 ArrayRef<MCPhysReg> ArgRegs = makeArrayRef(ArgGPRs); 7382 unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs); 7383 const TargetRegisterClass *RC = &RISCV::GPRRegClass; 7384 MachineFrameInfo &MFI = MF.getFrameInfo(); 7385 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 7386 RISCVMachineFunctionInfo *RVFI = MF.getInfo<RISCVMachineFunctionInfo>(); 7387 7388 // Offset of the first variable argument from stack pointer, and size of 7389 // the vararg save area. For now, the varargs save area is either zero or 7390 // large enough to hold a0-a7. 7391 int VaArgOffset, VarArgsSaveSize; 7392 7393 // If all registers are allocated, then all varargs must be passed on the 7394 // stack and we don't need to save any argregs. 7395 if (ArgRegs.size() == Idx) { 7396 VaArgOffset = CCInfo.getNextStackOffset(); 7397 VarArgsSaveSize = 0; 7398 } else { 7399 VarArgsSaveSize = XLenInBytes * (ArgRegs.size() - Idx); 7400 VaArgOffset = -VarArgsSaveSize; 7401 } 7402 7403 // Record the frame index of the first variable argument 7404 // which is a value necessary to VASTART. 7405 int FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true); 7406 RVFI->setVarArgsFrameIndex(FI); 7407 7408 // If saving an odd number of registers then create an extra stack slot to 7409 // ensure that the frame pointer is 2*XLEN-aligned, which in turn ensures 7410 // offsets to even-numbered registered remain 2*XLEN-aligned. 7411 if (Idx % 2) { 7412 MFI.CreateFixedObject(XLenInBytes, VaArgOffset - (int)XLenInBytes, true); 7413 VarArgsSaveSize += XLenInBytes; 7414 } 7415 7416 // Copy the integer registers that may have been used for passing varargs 7417 // to the vararg save area. 7418 for (unsigned I = Idx; I < ArgRegs.size(); 7419 ++I, VaArgOffset += XLenInBytes) { 7420 const Register Reg = RegInfo.createVirtualRegister(RC); 7421 RegInfo.addLiveIn(ArgRegs[I], Reg); 7422 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, XLenVT); 7423 FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true); 7424 SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 7425 SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff, 7426 MachinePointerInfo::getFixedStack(MF, FI)); 7427 cast<StoreSDNode>(Store.getNode()) 7428 ->getMemOperand() 7429 ->setValue((Value *)nullptr); 7430 OutChains.push_back(Store); 7431 } 7432 RVFI->setVarArgsSaveSize(VarArgsSaveSize); 7433 } 7434 7435 // All stores are grouped in one node to allow the matching between 7436 // the size of Ins and InVals. This only happens for vararg functions. 7437 if (!OutChains.empty()) { 7438 OutChains.push_back(Chain); 7439 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains); 7440 } 7441 7442 return Chain; 7443 } 7444 7445 /// isEligibleForTailCallOptimization - Check whether the call is eligible 7446 /// for tail call optimization. 7447 /// Note: This is modelled after ARM's IsEligibleForTailCallOptimization. 7448 bool RISCVTargetLowering::isEligibleForTailCallOptimization( 7449 CCState &CCInfo, CallLoweringInfo &CLI, MachineFunction &MF, 7450 const SmallVector<CCValAssign, 16> &ArgLocs) const { 7451 7452 auto &Callee = CLI.Callee; 7453 auto CalleeCC = CLI.CallConv; 7454 auto &Outs = CLI.Outs; 7455 auto &Caller = MF.getFunction(); 7456 auto CallerCC = Caller.getCallingConv(); 7457 7458 // Exception-handling functions need a special set of instructions to 7459 // indicate a return to the hardware. Tail-calling another function would 7460 // probably break this. 7461 // TODO: The "interrupt" attribute isn't currently defined by RISC-V. This 7462 // should be expanded as new function attributes are introduced. 7463 if (Caller.hasFnAttribute("interrupt")) 7464 return false; 7465 7466 // Do not tail call opt if the stack is used to pass parameters. 7467 if (CCInfo.getNextStackOffset() != 0) 7468 return false; 7469 7470 // Do not tail call opt if any parameters need to be passed indirectly. 7471 // Since long doubles (fp128) and i128 are larger than 2*XLEN, they are 7472 // passed indirectly. So the address of the value will be passed in a 7473 // register, or if not available, then the address is put on the stack. In 7474 // order to pass indirectly, space on the stack often needs to be allocated 7475 // in order to store the value. In this case the CCInfo.getNextStackOffset() 7476 // != 0 check is not enough and we need to check if any CCValAssign ArgsLocs 7477 // are passed CCValAssign::Indirect. 7478 for (auto &VA : ArgLocs) 7479 if (VA.getLocInfo() == CCValAssign::Indirect) 7480 return false; 7481 7482 // Do not tail call opt if either caller or callee uses struct return 7483 // semantics. 7484 auto IsCallerStructRet = Caller.hasStructRetAttr(); 7485 auto IsCalleeStructRet = Outs.empty() ? false : Outs[0].Flags.isSRet(); 7486 if (IsCallerStructRet || IsCalleeStructRet) 7487 return false; 7488 7489 // Externally-defined functions with weak linkage should not be 7490 // tail-called. The behaviour of branch instructions in this situation (as 7491 // used for tail calls) is implementation-defined, so we cannot rely on the 7492 // linker replacing the tail call with a return. 7493 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 7494 const GlobalValue *GV = G->getGlobal(); 7495 if (GV->hasExternalWeakLinkage()) 7496 return false; 7497 } 7498 7499 // The callee has to preserve all registers the caller needs to preserve. 7500 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 7501 const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC); 7502 if (CalleeCC != CallerCC) { 7503 const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC); 7504 if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved)) 7505 return false; 7506 } 7507 7508 // Byval parameters hand the function a pointer directly into the stack area 7509 // we want to reuse during a tail call. Working around this *is* possible 7510 // but less efficient and uglier in LowerCall. 7511 for (auto &Arg : Outs) 7512 if (Arg.Flags.isByVal()) 7513 return false; 7514 7515 return true; 7516 } 7517 7518 static Align getPrefTypeAlign(EVT VT, SelectionDAG &DAG) { 7519 return DAG.getDataLayout().getPrefTypeAlign( 7520 VT.getTypeForEVT(*DAG.getContext())); 7521 } 7522 7523 // Lower a call to a callseq_start + CALL + callseq_end chain, and add input 7524 // and output parameter nodes. 7525 SDValue RISCVTargetLowering::LowerCall(CallLoweringInfo &CLI, 7526 SmallVectorImpl<SDValue> &InVals) const { 7527 SelectionDAG &DAG = CLI.DAG; 7528 SDLoc &DL = CLI.DL; 7529 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 7530 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 7531 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 7532 SDValue Chain = CLI.Chain; 7533 SDValue Callee = CLI.Callee; 7534 bool &IsTailCall = CLI.IsTailCall; 7535 CallingConv::ID CallConv = CLI.CallConv; 7536 bool IsVarArg = CLI.IsVarArg; 7537 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7538 MVT XLenVT = Subtarget.getXLenVT(); 7539 7540 MachineFunction &MF = DAG.getMachineFunction(); 7541 7542 // Analyze the operands of the call, assigning locations to each operand. 7543 SmallVector<CCValAssign, 16> ArgLocs; 7544 CCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 7545 7546 if (CallConv == CallingConv::GHC) 7547 ArgCCInfo.AnalyzeCallOperands(Outs, CC_RISCV_GHC); 7548 else 7549 analyzeOutputArgs(MF, ArgCCInfo, Outs, /*IsRet=*/false, &CLI, 7550 CallConv == CallingConv::Fast ? CC_RISCV_FastCC 7551 : CC_RISCV); 7552 7553 // Check if it's really possible to do a tail call. 7554 if (IsTailCall) 7555 IsTailCall = isEligibleForTailCallOptimization(ArgCCInfo, CLI, MF, ArgLocs); 7556 7557 if (IsTailCall) 7558 ++NumTailCalls; 7559 else if (CLI.CB && CLI.CB->isMustTailCall()) 7560 report_fatal_error("failed to perform tail call elimination on a call " 7561 "site marked musttail"); 7562 7563 // Get a count of how many bytes are to be pushed on the stack. 7564 unsigned NumBytes = ArgCCInfo.getNextStackOffset(); 7565 7566 // Create local copies for byval args 7567 SmallVector<SDValue, 8> ByValArgs; 7568 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 7569 ISD::ArgFlagsTy Flags = Outs[i].Flags; 7570 if (!Flags.isByVal()) 7571 continue; 7572 7573 SDValue Arg = OutVals[i]; 7574 unsigned Size = Flags.getByValSize(); 7575 Align Alignment = Flags.getNonZeroByValAlign(); 7576 7577 int FI = 7578 MF.getFrameInfo().CreateStackObject(Size, Alignment, /*isSS=*/false); 7579 SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 7580 SDValue SizeNode = DAG.getConstant(Size, DL, XLenVT); 7581 7582 Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Alignment, 7583 /*IsVolatile=*/false, 7584 /*AlwaysInline=*/false, IsTailCall, 7585 MachinePointerInfo(), MachinePointerInfo()); 7586 ByValArgs.push_back(FIPtr); 7587 } 7588 7589 if (!IsTailCall) 7590 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, CLI.DL); 7591 7592 // Copy argument values to their designated locations. 7593 SmallVector<std::pair<Register, SDValue>, 8> RegsToPass; 7594 SmallVector<SDValue, 8> MemOpChains; 7595 SDValue StackPtr; 7596 for (unsigned i = 0, j = 0, e = ArgLocs.size(); i != e; ++i) { 7597 CCValAssign &VA = ArgLocs[i]; 7598 SDValue ArgValue = OutVals[i]; 7599 ISD::ArgFlagsTy Flags = Outs[i].Flags; 7600 7601 // Handle passing f64 on RV32D with a soft float ABI as a special case. 7602 bool IsF64OnRV32DSoftABI = 7603 VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64; 7604 if (IsF64OnRV32DSoftABI && VA.isRegLoc()) { 7605 SDValue SplitF64 = DAG.getNode( 7606 RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), ArgValue); 7607 SDValue Lo = SplitF64.getValue(0); 7608 SDValue Hi = SplitF64.getValue(1); 7609 7610 Register RegLo = VA.getLocReg(); 7611 RegsToPass.push_back(std::make_pair(RegLo, Lo)); 7612 7613 if (RegLo == RISCV::X17) { 7614 // Second half of f64 is passed on the stack. 7615 // Work out the address of the stack slot. 7616 if (!StackPtr.getNode()) 7617 StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT); 7618 // Emit the store. 7619 MemOpChains.push_back( 7620 DAG.getStore(Chain, DL, Hi, StackPtr, MachinePointerInfo())); 7621 } else { 7622 // Second half of f64 is passed in another GPR. 7623 assert(RegLo < RISCV::X31 && "Invalid register pair"); 7624 Register RegHigh = RegLo + 1; 7625 RegsToPass.push_back(std::make_pair(RegHigh, Hi)); 7626 } 7627 continue; 7628 } 7629 7630 // IsF64OnRV32DSoftABI && VA.isMemLoc() is handled below in the same way 7631 // as any other MemLoc. 7632 7633 // Promote the value if needed. 7634 // For now, only handle fully promoted and indirect arguments. 7635 if (VA.getLocInfo() == CCValAssign::Indirect) { 7636 // Store the argument in a stack slot and pass its address. 7637 Align StackAlign = 7638 std::max(getPrefTypeAlign(Outs[i].ArgVT, DAG), 7639 getPrefTypeAlign(ArgValue.getValueType(), DAG)); 7640 TypeSize StoredSize = ArgValue.getValueType().getStoreSize(); 7641 // If the original argument was split (e.g. i128), we need 7642 // to store the required parts of it here (and pass just one address). 7643 // Vectors may be partly split to registers and partly to the stack, in 7644 // which case the base address is partly offset and subsequent stores are 7645 // relative to that. 7646 unsigned ArgIndex = Outs[i].OrigArgIndex; 7647 unsigned ArgPartOffset = Outs[i].PartOffset; 7648 assert(VA.getValVT().isVector() || ArgPartOffset == 0); 7649 // Calculate the total size to store. We don't have access to what we're 7650 // actually storing other than performing the loop and collecting the 7651 // info. 7652 SmallVector<std::pair<SDValue, SDValue>> Parts; 7653 while (i + 1 != e && Outs[i + 1].OrigArgIndex == ArgIndex) { 7654 SDValue PartValue = OutVals[i + 1]; 7655 unsigned PartOffset = Outs[i + 1].PartOffset - ArgPartOffset; 7656 SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL); 7657 EVT PartVT = PartValue.getValueType(); 7658 if (PartVT.isScalableVector()) 7659 Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset); 7660 StoredSize += PartVT.getStoreSize(); 7661 StackAlign = std::max(StackAlign, getPrefTypeAlign(PartVT, DAG)); 7662 Parts.push_back(std::make_pair(PartValue, Offset)); 7663 ++i; 7664 } 7665 SDValue SpillSlot = DAG.CreateStackTemporary(StoredSize, StackAlign); 7666 int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); 7667 MemOpChains.push_back( 7668 DAG.getStore(Chain, DL, ArgValue, SpillSlot, 7669 MachinePointerInfo::getFixedStack(MF, FI))); 7670 for (const auto &Part : Parts) { 7671 SDValue PartValue = Part.first; 7672 SDValue PartOffset = Part.second; 7673 SDValue Address = 7674 DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, PartOffset); 7675 MemOpChains.push_back( 7676 DAG.getStore(Chain, DL, PartValue, Address, 7677 MachinePointerInfo::getFixedStack(MF, FI))); 7678 } 7679 ArgValue = SpillSlot; 7680 } else { 7681 ArgValue = convertValVTToLocVT(DAG, ArgValue, VA, DL, Subtarget); 7682 } 7683 7684 // Use local copy if it is a byval arg. 7685 if (Flags.isByVal()) 7686 ArgValue = ByValArgs[j++]; 7687 7688 if (VA.isRegLoc()) { 7689 // Queue up the argument copies and emit them at the end. 7690 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue)); 7691 } else { 7692 assert(VA.isMemLoc() && "Argument not register or memory"); 7693 assert(!IsTailCall && "Tail call not allowed if stack is used " 7694 "for passing parameters"); 7695 7696 // Work out the address of the stack slot. 7697 if (!StackPtr.getNode()) 7698 StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT); 7699 SDValue Address = 7700 DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, 7701 DAG.getIntPtrConstant(VA.getLocMemOffset(), DL)); 7702 7703 // Emit the store. 7704 MemOpChains.push_back( 7705 DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo())); 7706 } 7707 } 7708 7709 // Join the stores, which are independent of one another. 7710 if (!MemOpChains.empty()) 7711 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); 7712 7713 SDValue Glue; 7714 7715 // Build a sequence of copy-to-reg nodes, chained and glued together. 7716 for (auto &Reg : RegsToPass) { 7717 Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, Glue); 7718 Glue = Chain.getValue(1); 7719 } 7720 7721 // Validate that none of the argument registers have been marked as 7722 // reserved, if so report an error. Do the same for the return address if this 7723 // is not a tailcall. 7724 validateCCReservedRegs(RegsToPass, MF); 7725 if (!IsTailCall && 7726 MF.getSubtarget<RISCVSubtarget>().isRegisterReservedByUser(RISCV::X1)) 7727 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 7728 MF.getFunction(), 7729 "Return address register required, but has been reserved."}); 7730 7731 // If the callee is a GlobalAddress/ExternalSymbol node, turn it into a 7732 // TargetGlobalAddress/TargetExternalSymbol node so that legalize won't 7733 // split it and then direct call can be matched by PseudoCALL. 7734 if (GlobalAddressSDNode *S = dyn_cast<GlobalAddressSDNode>(Callee)) { 7735 const GlobalValue *GV = S->getGlobal(); 7736 7737 unsigned OpFlags = RISCVII::MO_CALL; 7738 if (!getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV)) 7739 OpFlags = RISCVII::MO_PLT; 7740 7741 Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags); 7742 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { 7743 unsigned OpFlags = RISCVII::MO_CALL; 7744 7745 if (!getTargetMachine().shouldAssumeDSOLocal(*MF.getFunction().getParent(), 7746 nullptr)) 7747 OpFlags = RISCVII::MO_PLT; 7748 7749 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, OpFlags); 7750 } 7751 7752 // The first call operand is the chain and the second is the target address. 7753 SmallVector<SDValue, 8> Ops; 7754 Ops.push_back(Chain); 7755 Ops.push_back(Callee); 7756 7757 // Add argument registers to the end of the list so that they are 7758 // known live into the call. 7759 for (auto &Reg : RegsToPass) 7760 Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType())); 7761 7762 if (!IsTailCall) { 7763 // Add a register mask operand representing the call-preserved registers. 7764 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 7765 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv); 7766 assert(Mask && "Missing call preserved mask for calling convention"); 7767 Ops.push_back(DAG.getRegisterMask(Mask)); 7768 } 7769 7770 // Glue the call to the argument copies, if any. 7771 if (Glue.getNode()) 7772 Ops.push_back(Glue); 7773 7774 // Emit the call. 7775 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7776 7777 if (IsTailCall) { 7778 MF.getFrameInfo().setHasTailCall(); 7779 return DAG.getNode(RISCVISD::TAIL, DL, NodeTys, Ops); 7780 } 7781 7782 Chain = DAG.getNode(RISCVISD::CALL, DL, NodeTys, Ops); 7783 DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge); 7784 Glue = Chain.getValue(1); 7785 7786 // Mark the end of the call, which is glued to the call itself. 7787 Chain = DAG.getCALLSEQ_END(Chain, 7788 DAG.getConstant(NumBytes, DL, PtrVT, true), 7789 DAG.getConstant(0, DL, PtrVT, true), 7790 Glue, DL); 7791 Glue = Chain.getValue(1); 7792 7793 // Assign locations to each value returned by this call. 7794 SmallVector<CCValAssign, 16> RVLocs; 7795 CCState RetCCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext()); 7796 analyzeInputArgs(MF, RetCCInfo, Ins, /*IsRet=*/true, CC_RISCV); 7797 7798 // Copy all of the result registers out of their specified physreg. 7799 for (auto &VA : RVLocs) { 7800 // Copy the value out 7801 SDValue RetValue = 7802 DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), Glue); 7803 // Glue the RetValue to the end of the call sequence 7804 Chain = RetValue.getValue(1); 7805 Glue = RetValue.getValue(2); 7806 7807 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { 7808 assert(VA.getLocReg() == ArgGPRs[0] && "Unexpected reg assignment"); 7809 SDValue RetValue2 = 7810 DAG.getCopyFromReg(Chain, DL, ArgGPRs[1], MVT::i32, Glue); 7811 Chain = RetValue2.getValue(1); 7812 Glue = RetValue2.getValue(2); 7813 RetValue = DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, RetValue, 7814 RetValue2); 7815 } 7816 7817 RetValue = convertLocVTToValVT(DAG, RetValue, VA, DL, Subtarget); 7818 7819 InVals.push_back(RetValue); 7820 } 7821 7822 return Chain; 7823 } 7824 7825 bool RISCVTargetLowering::CanLowerReturn( 7826 CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg, 7827 const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const { 7828 SmallVector<CCValAssign, 16> RVLocs; 7829 CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context); 7830 7831 Optional<unsigned> FirstMaskArgument; 7832 if (Subtarget.hasStdExtV()) 7833 FirstMaskArgument = preAssignMask(Outs); 7834 7835 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 7836 MVT VT = Outs[i].VT; 7837 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 7838 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 7839 if (CC_RISCV(MF.getDataLayout(), ABI, i, VT, VT, CCValAssign::Full, 7840 ArgFlags, CCInfo, /*IsFixed=*/true, /*IsRet=*/true, nullptr, 7841 *this, FirstMaskArgument)) 7842 return false; 7843 } 7844 return true; 7845 } 7846 7847 SDValue 7848 RISCVTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 7849 bool IsVarArg, 7850 const SmallVectorImpl<ISD::OutputArg> &Outs, 7851 const SmallVectorImpl<SDValue> &OutVals, 7852 const SDLoc &DL, SelectionDAG &DAG) const { 7853 const MachineFunction &MF = DAG.getMachineFunction(); 7854 const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>(); 7855 7856 // Stores the assignment of the return value to a location. 7857 SmallVector<CCValAssign, 16> RVLocs; 7858 7859 // Info about the registers and stack slot. 7860 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, 7861 *DAG.getContext()); 7862 7863 analyzeOutputArgs(DAG.getMachineFunction(), CCInfo, Outs, /*IsRet=*/true, 7864 nullptr, CC_RISCV); 7865 7866 if (CallConv == CallingConv::GHC && !RVLocs.empty()) 7867 report_fatal_error("GHC functions return void only"); 7868 7869 SDValue Glue; 7870 SmallVector<SDValue, 4> RetOps(1, Chain); 7871 7872 // Copy the result values into the output registers. 7873 for (unsigned i = 0, e = RVLocs.size(); i < e; ++i) { 7874 SDValue Val = OutVals[i]; 7875 CCValAssign &VA = RVLocs[i]; 7876 assert(VA.isRegLoc() && "Can only return in registers!"); 7877 7878 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { 7879 // Handle returning f64 on RV32D with a soft float ABI. 7880 assert(VA.isRegLoc() && "Expected return via registers"); 7881 SDValue SplitF64 = DAG.getNode(RISCVISD::SplitF64, DL, 7882 DAG.getVTList(MVT::i32, MVT::i32), Val); 7883 SDValue Lo = SplitF64.getValue(0); 7884 SDValue Hi = SplitF64.getValue(1); 7885 Register RegLo = VA.getLocReg(); 7886 assert(RegLo < RISCV::X31 && "Invalid register pair"); 7887 Register RegHi = RegLo + 1; 7888 7889 if (STI.isRegisterReservedByUser(RegLo) || 7890 STI.isRegisterReservedByUser(RegHi)) 7891 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 7892 MF.getFunction(), 7893 "Return value register required, but has been reserved."}); 7894 7895 Chain = DAG.getCopyToReg(Chain, DL, RegLo, Lo, Glue); 7896 Glue = Chain.getValue(1); 7897 RetOps.push_back(DAG.getRegister(RegLo, MVT::i32)); 7898 Chain = DAG.getCopyToReg(Chain, DL, RegHi, Hi, Glue); 7899 Glue = Chain.getValue(1); 7900 RetOps.push_back(DAG.getRegister(RegHi, MVT::i32)); 7901 } else { 7902 // Handle a 'normal' return. 7903 Val = convertValVTToLocVT(DAG, Val, VA, DL, Subtarget); 7904 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Glue); 7905 7906 if (STI.isRegisterReservedByUser(VA.getLocReg())) 7907 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 7908 MF.getFunction(), 7909 "Return value register required, but has been reserved."}); 7910 7911 // Guarantee that all emitted copies are stuck together. 7912 Glue = Chain.getValue(1); 7913 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 7914 } 7915 } 7916 7917 RetOps[0] = Chain; // Update chain. 7918 7919 // Add the glue node if we have it. 7920 if (Glue.getNode()) { 7921 RetOps.push_back(Glue); 7922 } 7923 7924 // Interrupt service routines use different return instructions. 7925 const Function &Func = DAG.getMachineFunction().getFunction(); 7926 if (Func.hasFnAttribute("interrupt")) { 7927 if (!Func.getReturnType()->isVoidTy()) 7928 report_fatal_error( 7929 "Functions with the interrupt attribute must have void return type!"); 7930 7931 MachineFunction &MF = DAG.getMachineFunction(); 7932 StringRef Kind = 7933 MF.getFunction().getFnAttribute("interrupt").getValueAsString(); 7934 7935 unsigned RetOpc; 7936 if (Kind == "user") 7937 RetOpc = RISCVISD::URET_FLAG; 7938 else if (Kind == "supervisor") 7939 RetOpc = RISCVISD::SRET_FLAG; 7940 else 7941 RetOpc = RISCVISD::MRET_FLAG; 7942 7943 return DAG.getNode(RetOpc, DL, MVT::Other, RetOps); 7944 } 7945 7946 return DAG.getNode(RISCVISD::RET_FLAG, DL, MVT::Other, RetOps); 7947 } 7948 7949 void RISCVTargetLowering::validateCCReservedRegs( 7950 const SmallVectorImpl<std::pair<llvm::Register, llvm::SDValue>> &Regs, 7951 MachineFunction &MF) const { 7952 const Function &F = MF.getFunction(); 7953 const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>(); 7954 7955 if (llvm::any_of(Regs, [&STI](auto Reg) { 7956 return STI.isRegisterReservedByUser(Reg.first); 7957 })) 7958 F.getContext().diagnose(DiagnosticInfoUnsupported{ 7959 F, "Argument register required, but has been reserved."}); 7960 } 7961 7962 bool RISCVTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { 7963 return CI->isTailCall(); 7964 } 7965 7966 const char *RISCVTargetLowering::getTargetNodeName(unsigned Opcode) const { 7967 #define NODE_NAME_CASE(NODE) \ 7968 case RISCVISD::NODE: \ 7969 return "RISCVISD::" #NODE; 7970 // clang-format off 7971 switch ((RISCVISD::NodeType)Opcode) { 7972 case RISCVISD::FIRST_NUMBER: 7973 break; 7974 NODE_NAME_CASE(RET_FLAG) 7975 NODE_NAME_CASE(URET_FLAG) 7976 NODE_NAME_CASE(SRET_FLAG) 7977 NODE_NAME_CASE(MRET_FLAG) 7978 NODE_NAME_CASE(CALL) 7979 NODE_NAME_CASE(SELECT_CC) 7980 NODE_NAME_CASE(BR_CC) 7981 NODE_NAME_CASE(BuildPairF64) 7982 NODE_NAME_CASE(SplitF64) 7983 NODE_NAME_CASE(TAIL) 7984 NODE_NAME_CASE(MULHSU) 7985 NODE_NAME_CASE(SLLW) 7986 NODE_NAME_CASE(SRAW) 7987 NODE_NAME_CASE(SRLW) 7988 NODE_NAME_CASE(DIVW) 7989 NODE_NAME_CASE(DIVUW) 7990 NODE_NAME_CASE(REMUW) 7991 NODE_NAME_CASE(ROLW) 7992 NODE_NAME_CASE(RORW) 7993 NODE_NAME_CASE(CLZW) 7994 NODE_NAME_CASE(CTZW) 7995 NODE_NAME_CASE(FSLW) 7996 NODE_NAME_CASE(FSRW) 7997 NODE_NAME_CASE(FSL) 7998 NODE_NAME_CASE(FSR) 7999 NODE_NAME_CASE(FMV_H_X) 8000 NODE_NAME_CASE(FMV_X_ANYEXTH) 8001 NODE_NAME_CASE(FMV_W_X_RV64) 8002 NODE_NAME_CASE(FMV_X_ANYEXTW_RV64) 8003 NODE_NAME_CASE(READ_CYCLE_WIDE) 8004 NODE_NAME_CASE(GREV) 8005 NODE_NAME_CASE(GREVW) 8006 NODE_NAME_CASE(GORC) 8007 NODE_NAME_CASE(GORCW) 8008 NODE_NAME_CASE(SHFL) 8009 NODE_NAME_CASE(SHFLW) 8010 NODE_NAME_CASE(UNSHFL) 8011 NODE_NAME_CASE(UNSHFLW) 8012 NODE_NAME_CASE(BCOMPRESS) 8013 NODE_NAME_CASE(BCOMPRESSW) 8014 NODE_NAME_CASE(BDECOMPRESS) 8015 NODE_NAME_CASE(BDECOMPRESSW) 8016 NODE_NAME_CASE(VMV_V_X_VL) 8017 NODE_NAME_CASE(VFMV_V_F_VL) 8018 NODE_NAME_CASE(VMV_X_S) 8019 NODE_NAME_CASE(VMV_S_X_VL) 8020 NODE_NAME_CASE(VFMV_S_F_VL) 8021 NODE_NAME_CASE(SPLAT_VECTOR_I64) 8022 NODE_NAME_CASE(SPLAT_VECTOR_SPLIT_I64_VL) 8023 NODE_NAME_CASE(READ_VLENB) 8024 NODE_NAME_CASE(TRUNCATE_VECTOR_VL) 8025 NODE_NAME_CASE(VSLIDEUP_VL) 8026 NODE_NAME_CASE(VSLIDE1UP_VL) 8027 NODE_NAME_CASE(VSLIDEDOWN_VL) 8028 NODE_NAME_CASE(VSLIDE1DOWN_VL) 8029 NODE_NAME_CASE(VID_VL) 8030 NODE_NAME_CASE(VFNCVT_ROD_VL) 8031 NODE_NAME_CASE(VECREDUCE_ADD_VL) 8032 NODE_NAME_CASE(VECREDUCE_UMAX_VL) 8033 NODE_NAME_CASE(VECREDUCE_SMAX_VL) 8034 NODE_NAME_CASE(VECREDUCE_UMIN_VL) 8035 NODE_NAME_CASE(VECREDUCE_SMIN_VL) 8036 NODE_NAME_CASE(VECREDUCE_AND_VL) 8037 NODE_NAME_CASE(VECREDUCE_OR_VL) 8038 NODE_NAME_CASE(VECREDUCE_XOR_VL) 8039 NODE_NAME_CASE(VECREDUCE_FADD_VL) 8040 NODE_NAME_CASE(VECREDUCE_SEQ_FADD_VL) 8041 NODE_NAME_CASE(VECREDUCE_FMIN_VL) 8042 NODE_NAME_CASE(VECREDUCE_FMAX_VL) 8043 NODE_NAME_CASE(ADD_VL) 8044 NODE_NAME_CASE(AND_VL) 8045 NODE_NAME_CASE(MUL_VL) 8046 NODE_NAME_CASE(OR_VL) 8047 NODE_NAME_CASE(SDIV_VL) 8048 NODE_NAME_CASE(SHL_VL) 8049 NODE_NAME_CASE(SREM_VL) 8050 NODE_NAME_CASE(SRA_VL) 8051 NODE_NAME_CASE(SRL_VL) 8052 NODE_NAME_CASE(SUB_VL) 8053 NODE_NAME_CASE(UDIV_VL) 8054 NODE_NAME_CASE(UREM_VL) 8055 NODE_NAME_CASE(XOR_VL) 8056 NODE_NAME_CASE(FADD_VL) 8057 NODE_NAME_CASE(FSUB_VL) 8058 NODE_NAME_CASE(FMUL_VL) 8059 NODE_NAME_CASE(FDIV_VL) 8060 NODE_NAME_CASE(FNEG_VL) 8061 NODE_NAME_CASE(FABS_VL) 8062 NODE_NAME_CASE(FSQRT_VL) 8063 NODE_NAME_CASE(FMA_VL) 8064 NODE_NAME_CASE(FCOPYSIGN_VL) 8065 NODE_NAME_CASE(SMIN_VL) 8066 NODE_NAME_CASE(SMAX_VL) 8067 NODE_NAME_CASE(UMIN_VL) 8068 NODE_NAME_CASE(UMAX_VL) 8069 NODE_NAME_CASE(FMINNUM_VL) 8070 NODE_NAME_CASE(FMAXNUM_VL) 8071 NODE_NAME_CASE(MULHS_VL) 8072 NODE_NAME_CASE(MULHU_VL) 8073 NODE_NAME_CASE(FP_TO_SINT_VL) 8074 NODE_NAME_CASE(FP_TO_UINT_VL) 8075 NODE_NAME_CASE(SINT_TO_FP_VL) 8076 NODE_NAME_CASE(UINT_TO_FP_VL) 8077 NODE_NAME_CASE(FP_EXTEND_VL) 8078 NODE_NAME_CASE(FP_ROUND_VL) 8079 NODE_NAME_CASE(SETCC_VL) 8080 NODE_NAME_CASE(VSELECT_VL) 8081 NODE_NAME_CASE(VMAND_VL) 8082 NODE_NAME_CASE(VMOR_VL) 8083 NODE_NAME_CASE(VMXOR_VL) 8084 NODE_NAME_CASE(VMCLR_VL) 8085 NODE_NAME_CASE(VMSET_VL) 8086 NODE_NAME_CASE(VRGATHER_VX_VL) 8087 NODE_NAME_CASE(VRGATHER_VV_VL) 8088 NODE_NAME_CASE(VRGATHEREI16_VV_VL) 8089 NODE_NAME_CASE(VSEXT_VL) 8090 NODE_NAME_CASE(VZEXT_VL) 8091 NODE_NAME_CASE(VPOPC_VL) 8092 NODE_NAME_CASE(VLE_VL) 8093 NODE_NAME_CASE(VSE_VL) 8094 NODE_NAME_CASE(READ_CSR) 8095 NODE_NAME_CASE(WRITE_CSR) 8096 NODE_NAME_CASE(SWAP_CSR) 8097 } 8098 // clang-format on 8099 return nullptr; 8100 #undef NODE_NAME_CASE 8101 } 8102 8103 /// getConstraintType - Given a constraint letter, return the type of 8104 /// constraint it is for this target. 8105 RISCVTargetLowering::ConstraintType 8106 RISCVTargetLowering::getConstraintType(StringRef Constraint) const { 8107 if (Constraint.size() == 1) { 8108 switch (Constraint[0]) { 8109 default: 8110 break; 8111 case 'f': 8112 case 'v': 8113 return C_RegisterClass; 8114 case 'I': 8115 case 'J': 8116 case 'K': 8117 return C_Immediate; 8118 case 'A': 8119 return C_Memory; 8120 } 8121 } 8122 return TargetLowering::getConstraintType(Constraint); 8123 } 8124 8125 std::pair<unsigned, const TargetRegisterClass *> 8126 RISCVTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 8127 StringRef Constraint, 8128 MVT VT) const { 8129 // First, see if this is a constraint that directly corresponds to a 8130 // RISCV register class. 8131 if (Constraint.size() == 1) { 8132 switch (Constraint[0]) { 8133 case 'r': 8134 return std::make_pair(0U, &RISCV::GPRRegClass); 8135 case 'f': 8136 if (Subtarget.hasStdExtZfh() && VT == MVT::f16) 8137 return std::make_pair(0U, &RISCV::FPR16RegClass); 8138 if (Subtarget.hasStdExtF() && VT == MVT::f32) 8139 return std::make_pair(0U, &RISCV::FPR32RegClass); 8140 if (Subtarget.hasStdExtD() && VT == MVT::f64) 8141 return std::make_pair(0U, &RISCV::FPR64RegClass); 8142 break; 8143 case 'v': 8144 for (const auto *RC : 8145 {&RISCV::VMRegClass, &RISCV::VRRegClass, &RISCV::VRM2RegClass, 8146 &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) { 8147 if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy)) 8148 return std::make_pair(0U, RC); 8149 } 8150 break; 8151 default: 8152 break; 8153 } 8154 } 8155 8156 // Clang will correctly decode the usage of register name aliases into their 8157 // official names. However, other frontends like `rustc` do not. This allows 8158 // users of these frontends to use the ABI names for registers in LLVM-style 8159 // register constraints. 8160 unsigned XRegFromAlias = StringSwitch<unsigned>(Constraint.lower()) 8161 .Case("{zero}", RISCV::X0) 8162 .Case("{ra}", RISCV::X1) 8163 .Case("{sp}", RISCV::X2) 8164 .Case("{gp}", RISCV::X3) 8165 .Case("{tp}", RISCV::X4) 8166 .Case("{t0}", RISCV::X5) 8167 .Case("{t1}", RISCV::X6) 8168 .Case("{t2}", RISCV::X7) 8169 .Cases("{s0}", "{fp}", RISCV::X8) 8170 .Case("{s1}", RISCV::X9) 8171 .Case("{a0}", RISCV::X10) 8172 .Case("{a1}", RISCV::X11) 8173 .Case("{a2}", RISCV::X12) 8174 .Case("{a3}", RISCV::X13) 8175 .Case("{a4}", RISCV::X14) 8176 .Case("{a5}", RISCV::X15) 8177 .Case("{a6}", RISCV::X16) 8178 .Case("{a7}", RISCV::X17) 8179 .Case("{s2}", RISCV::X18) 8180 .Case("{s3}", RISCV::X19) 8181 .Case("{s4}", RISCV::X20) 8182 .Case("{s5}", RISCV::X21) 8183 .Case("{s6}", RISCV::X22) 8184 .Case("{s7}", RISCV::X23) 8185 .Case("{s8}", RISCV::X24) 8186 .Case("{s9}", RISCV::X25) 8187 .Case("{s10}", RISCV::X26) 8188 .Case("{s11}", RISCV::X27) 8189 .Case("{t3}", RISCV::X28) 8190 .Case("{t4}", RISCV::X29) 8191 .Case("{t5}", RISCV::X30) 8192 .Case("{t6}", RISCV::X31) 8193 .Default(RISCV::NoRegister); 8194 if (XRegFromAlias != RISCV::NoRegister) 8195 return std::make_pair(XRegFromAlias, &RISCV::GPRRegClass); 8196 8197 // Since TargetLowering::getRegForInlineAsmConstraint uses the name of the 8198 // TableGen record rather than the AsmName to choose registers for InlineAsm 8199 // constraints, plus we want to match those names to the widest floating point 8200 // register type available, manually select floating point registers here. 8201 // 8202 // The second case is the ABI name of the register, so that frontends can also 8203 // use the ABI names in register constraint lists. 8204 if (Subtarget.hasStdExtF()) { 8205 unsigned FReg = StringSwitch<unsigned>(Constraint.lower()) 8206 .Cases("{f0}", "{ft0}", RISCV::F0_F) 8207 .Cases("{f1}", "{ft1}", RISCV::F1_F) 8208 .Cases("{f2}", "{ft2}", RISCV::F2_F) 8209 .Cases("{f3}", "{ft3}", RISCV::F3_F) 8210 .Cases("{f4}", "{ft4}", RISCV::F4_F) 8211 .Cases("{f5}", "{ft5}", RISCV::F5_F) 8212 .Cases("{f6}", "{ft6}", RISCV::F6_F) 8213 .Cases("{f7}", "{ft7}", RISCV::F7_F) 8214 .Cases("{f8}", "{fs0}", RISCV::F8_F) 8215 .Cases("{f9}", "{fs1}", RISCV::F9_F) 8216 .Cases("{f10}", "{fa0}", RISCV::F10_F) 8217 .Cases("{f11}", "{fa1}", RISCV::F11_F) 8218 .Cases("{f12}", "{fa2}", RISCV::F12_F) 8219 .Cases("{f13}", "{fa3}", RISCV::F13_F) 8220 .Cases("{f14}", "{fa4}", RISCV::F14_F) 8221 .Cases("{f15}", "{fa5}", RISCV::F15_F) 8222 .Cases("{f16}", "{fa6}", RISCV::F16_F) 8223 .Cases("{f17}", "{fa7}", RISCV::F17_F) 8224 .Cases("{f18}", "{fs2}", RISCV::F18_F) 8225 .Cases("{f19}", "{fs3}", RISCV::F19_F) 8226 .Cases("{f20}", "{fs4}", RISCV::F20_F) 8227 .Cases("{f21}", "{fs5}", RISCV::F21_F) 8228 .Cases("{f22}", "{fs6}", RISCV::F22_F) 8229 .Cases("{f23}", "{fs7}", RISCV::F23_F) 8230 .Cases("{f24}", "{fs8}", RISCV::F24_F) 8231 .Cases("{f25}", "{fs9}", RISCV::F25_F) 8232 .Cases("{f26}", "{fs10}", RISCV::F26_F) 8233 .Cases("{f27}", "{fs11}", RISCV::F27_F) 8234 .Cases("{f28}", "{ft8}", RISCV::F28_F) 8235 .Cases("{f29}", "{ft9}", RISCV::F29_F) 8236 .Cases("{f30}", "{ft10}", RISCV::F30_F) 8237 .Cases("{f31}", "{ft11}", RISCV::F31_F) 8238 .Default(RISCV::NoRegister); 8239 if (FReg != RISCV::NoRegister) { 8240 assert(RISCV::F0_F <= FReg && FReg <= RISCV::F31_F && "Unknown fp-reg"); 8241 if (Subtarget.hasStdExtD()) { 8242 unsigned RegNo = FReg - RISCV::F0_F; 8243 unsigned DReg = RISCV::F0_D + RegNo; 8244 return std::make_pair(DReg, &RISCV::FPR64RegClass); 8245 } 8246 return std::make_pair(FReg, &RISCV::FPR32RegClass); 8247 } 8248 } 8249 8250 if (Subtarget.hasStdExtV()) { 8251 Register VReg = StringSwitch<Register>(Constraint.lower()) 8252 .Case("{v0}", RISCV::V0) 8253 .Case("{v1}", RISCV::V1) 8254 .Case("{v2}", RISCV::V2) 8255 .Case("{v3}", RISCV::V3) 8256 .Case("{v4}", RISCV::V4) 8257 .Case("{v5}", RISCV::V5) 8258 .Case("{v6}", RISCV::V6) 8259 .Case("{v7}", RISCV::V7) 8260 .Case("{v8}", RISCV::V8) 8261 .Case("{v9}", RISCV::V9) 8262 .Case("{v10}", RISCV::V10) 8263 .Case("{v11}", RISCV::V11) 8264 .Case("{v12}", RISCV::V12) 8265 .Case("{v13}", RISCV::V13) 8266 .Case("{v14}", RISCV::V14) 8267 .Case("{v15}", RISCV::V15) 8268 .Case("{v16}", RISCV::V16) 8269 .Case("{v17}", RISCV::V17) 8270 .Case("{v18}", RISCV::V18) 8271 .Case("{v19}", RISCV::V19) 8272 .Case("{v20}", RISCV::V20) 8273 .Case("{v21}", RISCV::V21) 8274 .Case("{v22}", RISCV::V22) 8275 .Case("{v23}", RISCV::V23) 8276 .Case("{v24}", RISCV::V24) 8277 .Case("{v25}", RISCV::V25) 8278 .Case("{v26}", RISCV::V26) 8279 .Case("{v27}", RISCV::V27) 8280 .Case("{v28}", RISCV::V28) 8281 .Case("{v29}", RISCV::V29) 8282 .Case("{v30}", RISCV::V30) 8283 .Case("{v31}", RISCV::V31) 8284 .Default(RISCV::NoRegister); 8285 if (VReg != RISCV::NoRegister) { 8286 if (TRI->isTypeLegalForClass(RISCV::VMRegClass, VT.SimpleTy)) 8287 return std::make_pair(VReg, &RISCV::VMRegClass); 8288 if (TRI->isTypeLegalForClass(RISCV::VRRegClass, VT.SimpleTy)) 8289 return std::make_pair(VReg, &RISCV::VRRegClass); 8290 for (const auto *RC : 8291 {&RISCV::VRM2RegClass, &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) { 8292 if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy)) { 8293 VReg = TRI->getMatchingSuperReg(VReg, RISCV::sub_vrm1_0, RC); 8294 return std::make_pair(VReg, RC); 8295 } 8296 } 8297 } 8298 } 8299 8300 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 8301 } 8302 8303 unsigned 8304 RISCVTargetLowering::getInlineAsmMemConstraint(StringRef ConstraintCode) const { 8305 // Currently only support length 1 constraints. 8306 if (ConstraintCode.size() == 1) { 8307 switch (ConstraintCode[0]) { 8308 case 'A': 8309 return InlineAsm::Constraint_A; 8310 default: 8311 break; 8312 } 8313 } 8314 8315 return TargetLowering::getInlineAsmMemConstraint(ConstraintCode); 8316 } 8317 8318 void RISCVTargetLowering::LowerAsmOperandForConstraint( 8319 SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops, 8320 SelectionDAG &DAG) const { 8321 // Currently only support length 1 constraints. 8322 if (Constraint.length() == 1) { 8323 switch (Constraint[0]) { 8324 case 'I': 8325 // Validate & create a 12-bit signed immediate operand. 8326 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 8327 uint64_t CVal = C->getSExtValue(); 8328 if (isInt<12>(CVal)) 8329 Ops.push_back( 8330 DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT())); 8331 } 8332 return; 8333 case 'J': 8334 // Validate & create an integer zero operand. 8335 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 8336 if (C->getZExtValue() == 0) 8337 Ops.push_back( 8338 DAG.getTargetConstant(0, SDLoc(Op), Subtarget.getXLenVT())); 8339 return; 8340 case 'K': 8341 // Validate & create a 5-bit unsigned immediate operand. 8342 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 8343 uint64_t CVal = C->getZExtValue(); 8344 if (isUInt<5>(CVal)) 8345 Ops.push_back( 8346 DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT())); 8347 } 8348 return; 8349 default: 8350 break; 8351 } 8352 } 8353 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 8354 } 8355 8356 Instruction *RISCVTargetLowering::emitLeadingFence(IRBuilderBase &Builder, 8357 Instruction *Inst, 8358 AtomicOrdering Ord) const { 8359 if (isa<LoadInst>(Inst) && Ord == AtomicOrdering::SequentiallyConsistent) 8360 return Builder.CreateFence(Ord); 8361 if (isa<StoreInst>(Inst) && isReleaseOrStronger(Ord)) 8362 return Builder.CreateFence(AtomicOrdering::Release); 8363 return nullptr; 8364 } 8365 8366 Instruction *RISCVTargetLowering::emitTrailingFence(IRBuilderBase &Builder, 8367 Instruction *Inst, 8368 AtomicOrdering Ord) const { 8369 if (isa<LoadInst>(Inst) && isAcquireOrStronger(Ord)) 8370 return Builder.CreateFence(AtomicOrdering::Acquire); 8371 return nullptr; 8372 } 8373 8374 TargetLowering::AtomicExpansionKind 8375 RISCVTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { 8376 // atomicrmw {fadd,fsub} must be expanded to use compare-exchange, as floating 8377 // point operations can't be used in an lr/sc sequence without breaking the 8378 // forward-progress guarantee. 8379 if (AI->isFloatingPointOperation()) 8380 return AtomicExpansionKind::CmpXChg; 8381 8382 unsigned Size = AI->getType()->getPrimitiveSizeInBits(); 8383 if (Size == 8 || Size == 16) 8384 return AtomicExpansionKind::MaskedIntrinsic; 8385 return AtomicExpansionKind::None; 8386 } 8387 8388 static Intrinsic::ID 8389 getIntrinsicForMaskedAtomicRMWBinOp(unsigned XLen, AtomicRMWInst::BinOp BinOp) { 8390 if (XLen == 32) { 8391 switch (BinOp) { 8392 default: 8393 llvm_unreachable("Unexpected AtomicRMW BinOp"); 8394 case AtomicRMWInst::Xchg: 8395 return Intrinsic::riscv_masked_atomicrmw_xchg_i32; 8396 case AtomicRMWInst::Add: 8397 return Intrinsic::riscv_masked_atomicrmw_add_i32; 8398 case AtomicRMWInst::Sub: 8399 return Intrinsic::riscv_masked_atomicrmw_sub_i32; 8400 case AtomicRMWInst::Nand: 8401 return Intrinsic::riscv_masked_atomicrmw_nand_i32; 8402 case AtomicRMWInst::Max: 8403 return Intrinsic::riscv_masked_atomicrmw_max_i32; 8404 case AtomicRMWInst::Min: 8405 return Intrinsic::riscv_masked_atomicrmw_min_i32; 8406 case AtomicRMWInst::UMax: 8407 return Intrinsic::riscv_masked_atomicrmw_umax_i32; 8408 case AtomicRMWInst::UMin: 8409 return Intrinsic::riscv_masked_atomicrmw_umin_i32; 8410 } 8411 } 8412 8413 if (XLen == 64) { 8414 switch (BinOp) { 8415 default: 8416 llvm_unreachable("Unexpected AtomicRMW BinOp"); 8417 case AtomicRMWInst::Xchg: 8418 return Intrinsic::riscv_masked_atomicrmw_xchg_i64; 8419 case AtomicRMWInst::Add: 8420 return Intrinsic::riscv_masked_atomicrmw_add_i64; 8421 case AtomicRMWInst::Sub: 8422 return Intrinsic::riscv_masked_atomicrmw_sub_i64; 8423 case AtomicRMWInst::Nand: 8424 return Intrinsic::riscv_masked_atomicrmw_nand_i64; 8425 case AtomicRMWInst::Max: 8426 return Intrinsic::riscv_masked_atomicrmw_max_i64; 8427 case AtomicRMWInst::Min: 8428 return Intrinsic::riscv_masked_atomicrmw_min_i64; 8429 case AtomicRMWInst::UMax: 8430 return Intrinsic::riscv_masked_atomicrmw_umax_i64; 8431 case AtomicRMWInst::UMin: 8432 return Intrinsic::riscv_masked_atomicrmw_umin_i64; 8433 } 8434 } 8435 8436 llvm_unreachable("Unexpected XLen\n"); 8437 } 8438 8439 Value *RISCVTargetLowering::emitMaskedAtomicRMWIntrinsic( 8440 IRBuilderBase &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr, 8441 Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const { 8442 unsigned XLen = Subtarget.getXLen(); 8443 Value *Ordering = 8444 Builder.getIntN(XLen, static_cast<uint64_t>(AI->getOrdering())); 8445 Type *Tys[] = {AlignedAddr->getType()}; 8446 Function *LrwOpScwLoop = Intrinsic::getDeclaration( 8447 AI->getModule(), 8448 getIntrinsicForMaskedAtomicRMWBinOp(XLen, AI->getOperation()), Tys); 8449 8450 if (XLen == 64) { 8451 Incr = Builder.CreateSExt(Incr, Builder.getInt64Ty()); 8452 Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty()); 8453 ShiftAmt = Builder.CreateSExt(ShiftAmt, Builder.getInt64Ty()); 8454 } 8455 8456 Value *Result; 8457 8458 // Must pass the shift amount needed to sign extend the loaded value prior 8459 // to performing a signed comparison for min/max. ShiftAmt is the number of 8460 // bits to shift the value into position. Pass XLen-ShiftAmt-ValWidth, which 8461 // is the number of bits to left+right shift the value in order to 8462 // sign-extend. 8463 if (AI->getOperation() == AtomicRMWInst::Min || 8464 AI->getOperation() == AtomicRMWInst::Max) { 8465 const DataLayout &DL = AI->getModule()->getDataLayout(); 8466 unsigned ValWidth = 8467 DL.getTypeStoreSizeInBits(AI->getValOperand()->getType()); 8468 Value *SextShamt = 8469 Builder.CreateSub(Builder.getIntN(XLen, XLen - ValWidth), ShiftAmt); 8470 Result = Builder.CreateCall(LrwOpScwLoop, 8471 {AlignedAddr, Incr, Mask, SextShamt, Ordering}); 8472 } else { 8473 Result = 8474 Builder.CreateCall(LrwOpScwLoop, {AlignedAddr, Incr, Mask, Ordering}); 8475 } 8476 8477 if (XLen == 64) 8478 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty()); 8479 return Result; 8480 } 8481 8482 TargetLowering::AtomicExpansionKind 8483 RISCVTargetLowering::shouldExpandAtomicCmpXchgInIR( 8484 AtomicCmpXchgInst *CI) const { 8485 unsigned Size = CI->getCompareOperand()->getType()->getPrimitiveSizeInBits(); 8486 if (Size == 8 || Size == 16) 8487 return AtomicExpansionKind::MaskedIntrinsic; 8488 return AtomicExpansionKind::None; 8489 } 8490 8491 Value *RISCVTargetLowering::emitMaskedAtomicCmpXchgIntrinsic( 8492 IRBuilderBase &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr, 8493 Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const { 8494 unsigned XLen = Subtarget.getXLen(); 8495 Value *Ordering = Builder.getIntN(XLen, static_cast<uint64_t>(Ord)); 8496 Intrinsic::ID CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i32; 8497 if (XLen == 64) { 8498 CmpVal = Builder.CreateSExt(CmpVal, Builder.getInt64Ty()); 8499 NewVal = Builder.CreateSExt(NewVal, Builder.getInt64Ty()); 8500 Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty()); 8501 CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i64; 8502 } 8503 Type *Tys[] = {AlignedAddr->getType()}; 8504 Function *MaskedCmpXchg = 8505 Intrinsic::getDeclaration(CI->getModule(), CmpXchgIntrID, Tys); 8506 Value *Result = Builder.CreateCall( 8507 MaskedCmpXchg, {AlignedAddr, CmpVal, NewVal, Mask, Ordering}); 8508 if (XLen == 64) 8509 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty()); 8510 return Result; 8511 } 8512 8513 bool RISCVTargetLowering::shouldRemoveExtendFromGSIndex(EVT VT) const { 8514 return false; 8515 } 8516 8517 bool RISCVTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, 8518 EVT VT) const { 8519 VT = VT.getScalarType(); 8520 8521 if (!VT.isSimple()) 8522 return false; 8523 8524 switch (VT.getSimpleVT().SimpleTy) { 8525 case MVT::f16: 8526 return Subtarget.hasStdExtZfh(); 8527 case MVT::f32: 8528 return Subtarget.hasStdExtF(); 8529 case MVT::f64: 8530 return Subtarget.hasStdExtD(); 8531 default: 8532 break; 8533 } 8534 8535 return false; 8536 } 8537 8538 Register RISCVTargetLowering::getExceptionPointerRegister( 8539 const Constant *PersonalityFn) const { 8540 return RISCV::X10; 8541 } 8542 8543 Register RISCVTargetLowering::getExceptionSelectorRegister( 8544 const Constant *PersonalityFn) const { 8545 return RISCV::X11; 8546 } 8547 8548 bool RISCVTargetLowering::shouldExtendTypeInLibCall(EVT Type) const { 8549 // Return false to suppress the unnecessary extensions if the LibCall 8550 // arguments or return value is f32 type for LP64 ABI. 8551 RISCVABI::ABI ABI = Subtarget.getTargetABI(); 8552 if (ABI == RISCVABI::ABI_LP64 && (Type == MVT::f32)) 8553 return false; 8554 8555 return true; 8556 } 8557 8558 bool RISCVTargetLowering::shouldSignExtendTypeInLibCall(EVT Type, bool IsSigned) const { 8559 if (Subtarget.is64Bit() && Type == MVT::i32) 8560 return true; 8561 8562 return IsSigned; 8563 } 8564 8565 bool RISCVTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT, 8566 SDValue C) const { 8567 // Check integral scalar types. 8568 if (VT.isScalarInteger()) { 8569 // Omit the optimization if the sub target has the M extension and the data 8570 // size exceeds XLen. 8571 if (Subtarget.hasStdExtM() && VT.getSizeInBits() > Subtarget.getXLen()) 8572 return false; 8573 if (auto *ConstNode = dyn_cast<ConstantSDNode>(C.getNode())) { 8574 // Break the MUL to a SLLI and an ADD/SUB. 8575 const APInt &Imm = ConstNode->getAPIntValue(); 8576 if ((Imm + 1).isPowerOf2() || (Imm - 1).isPowerOf2() || 8577 (1 - Imm).isPowerOf2() || (-1 - Imm).isPowerOf2()) 8578 return true; 8579 // Omit the following optimization if the sub target has the M extension 8580 // and the data size >= XLen. 8581 if (Subtarget.hasStdExtM() && VT.getSizeInBits() >= Subtarget.getXLen()) 8582 return false; 8583 // Break the MUL to two SLLI instructions and an ADD/SUB, if Imm needs 8584 // a pair of LUI/ADDI. 8585 if (!Imm.isSignedIntN(12) && Imm.countTrailingZeros() < 12) { 8586 APInt ImmS = Imm.ashr(Imm.countTrailingZeros()); 8587 if ((ImmS + 1).isPowerOf2() || (ImmS - 1).isPowerOf2() || 8588 (1 - ImmS).isPowerOf2()) 8589 return true; 8590 } 8591 } 8592 } 8593 8594 return false; 8595 } 8596 8597 bool RISCVTargetLowering::allowsMisalignedMemoryAccesses( 8598 EVT VT, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags, 8599 bool *Fast) const { 8600 if (!VT.isVector()) 8601 return false; 8602 8603 EVT ElemVT = VT.getVectorElementType(); 8604 if (Alignment >= ElemVT.getStoreSize()) { 8605 if (Fast) 8606 *Fast = true; 8607 return true; 8608 } 8609 8610 return false; 8611 } 8612 8613 bool RISCVTargetLowering::splitValueIntoRegisterParts( 8614 SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts, 8615 unsigned NumParts, MVT PartVT, Optional<CallingConv::ID> CC) const { 8616 bool IsABIRegCopy = CC.hasValue(); 8617 EVT ValueVT = Val.getValueType(); 8618 if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) { 8619 // Cast the f16 to i16, extend to i32, pad with ones to make a float nan, 8620 // and cast to f32. 8621 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i16, Val); 8622 Val = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Val); 8623 Val = DAG.getNode(ISD::OR, DL, MVT::i32, Val, 8624 DAG.getConstant(0xFFFF0000, DL, MVT::i32)); 8625 Val = DAG.getNode(ISD::BITCAST, DL, MVT::f32, Val); 8626 Parts[0] = Val; 8627 return true; 8628 } 8629 8630 if (ValueVT.isScalableVector() && PartVT.isScalableVector()) { 8631 LLVMContext &Context = *DAG.getContext(); 8632 EVT ValueEltVT = ValueVT.getVectorElementType(); 8633 EVT PartEltVT = PartVT.getVectorElementType(); 8634 unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize(); 8635 unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize(); 8636 if (PartVTBitSize % ValueVTBitSize == 0) { 8637 // If the element types are different, bitcast to the same element type of 8638 // PartVT first. 8639 if (ValueEltVT != PartEltVT) { 8640 unsigned Count = ValueVTBitSize / PartEltVT.getSizeInBits(); 8641 assert(Count != 0 && "The number of element should not be zero."); 8642 EVT SameEltTypeVT = 8643 EVT::getVectorVT(Context, PartEltVT, Count, /*IsScalable=*/true); 8644 Val = DAG.getNode(ISD::BITCAST, DL, SameEltTypeVT, Val); 8645 } 8646 Val = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT), 8647 Val, DAG.getConstant(0, DL, Subtarget.getXLenVT())); 8648 Parts[0] = Val; 8649 return true; 8650 } 8651 } 8652 return false; 8653 } 8654 8655 SDValue RISCVTargetLowering::joinRegisterPartsIntoValue( 8656 SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts, 8657 MVT PartVT, EVT ValueVT, Optional<CallingConv::ID> CC) const { 8658 bool IsABIRegCopy = CC.hasValue(); 8659 if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) { 8660 SDValue Val = Parts[0]; 8661 8662 // Cast the f32 to i32, truncate to i16, and cast back to f16. 8663 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Val); 8664 Val = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Val); 8665 Val = DAG.getNode(ISD::BITCAST, DL, MVT::f16, Val); 8666 return Val; 8667 } 8668 8669 if (ValueVT.isScalableVector() && PartVT.isScalableVector()) { 8670 LLVMContext &Context = *DAG.getContext(); 8671 SDValue Val = Parts[0]; 8672 EVT ValueEltVT = ValueVT.getVectorElementType(); 8673 EVT PartEltVT = PartVT.getVectorElementType(); 8674 unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize(); 8675 unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize(); 8676 if (PartVTBitSize % ValueVTBitSize == 0) { 8677 EVT SameEltTypeVT = ValueVT; 8678 // If the element types are different, convert it to the same element type 8679 // of PartVT. 8680 if (ValueEltVT != PartEltVT) { 8681 unsigned Count = ValueVTBitSize / PartEltVT.getSizeInBits(); 8682 assert(Count != 0 && "The number of element should not be zero."); 8683 SameEltTypeVT = 8684 EVT::getVectorVT(Context, PartEltVT, Count, /*IsScalable=*/true); 8685 } 8686 Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SameEltTypeVT, Val, 8687 DAG.getConstant(0, DL, Subtarget.getXLenVT())); 8688 if (ValueEltVT != PartEltVT) 8689 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 8690 return Val; 8691 } 8692 } 8693 return SDValue(); 8694 } 8695 8696 #define GET_REGISTER_MATCHER 8697 #include "RISCVGenAsmMatcher.inc" 8698 8699 Register 8700 RISCVTargetLowering::getRegisterByName(const char *RegName, LLT VT, 8701 const MachineFunction &MF) const { 8702 Register Reg = MatchRegisterAltName(RegName); 8703 if (Reg == RISCV::NoRegister) 8704 Reg = MatchRegisterName(RegName); 8705 if (Reg == RISCV::NoRegister) 8706 report_fatal_error( 8707 Twine("Invalid register name \"" + StringRef(RegName) + "\".")); 8708 BitVector ReservedRegs = Subtarget.getRegisterInfo()->getReservedRegs(MF); 8709 if (!ReservedRegs.test(Reg) && !Subtarget.isRegisterReservedByUser(Reg)) 8710 report_fatal_error(Twine("Trying to obtain non-reserved register \"" + 8711 StringRef(RegName) + "\".")); 8712 return Reg; 8713 } 8714 8715 namespace llvm { 8716 namespace RISCVVIntrinsicsTable { 8717 8718 #define GET_RISCVVIntrinsicsTable_IMPL 8719 #include "RISCVGenSearchableTables.inc" 8720 8721 } // namespace RISCVVIntrinsicsTable 8722 8723 } // namespace llvm 8724