1 //===-- RISCVISelLowering.cpp - RISCV DAG Lowering Implementation --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the interfaces that RISCV uses to lower LLVM code into a 10 // selection DAG. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "RISCVISelLowering.h" 15 #include "MCTargetDesc/RISCVMatInt.h" 16 #include "RISCV.h" 17 #include "RISCVMachineFunctionInfo.h" 18 #include "RISCVRegisterInfo.h" 19 #include "RISCVSubtarget.h" 20 #include "RISCVTargetMachine.h" 21 #include "llvm/ADT/SmallSet.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Analysis/MemoryLocation.h" 24 #include "llvm/CodeGen/MachineFrameInfo.h" 25 #include "llvm/CodeGen/MachineFunction.h" 26 #include "llvm/CodeGen/MachineInstrBuilder.h" 27 #include "llvm/CodeGen/MachineRegisterInfo.h" 28 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 29 #include "llvm/CodeGen/ValueTypes.h" 30 #include "llvm/IR/DiagnosticInfo.h" 31 #include "llvm/IR/DiagnosticPrinter.h" 32 #include "llvm/IR/IRBuilder.h" 33 #include "llvm/IR/IntrinsicsRISCV.h" 34 #include "llvm/IR/PatternMatch.h" 35 #include "llvm/Support/Debug.h" 36 #include "llvm/Support/ErrorHandling.h" 37 #include "llvm/Support/KnownBits.h" 38 #include "llvm/Support/MathExtras.h" 39 #include "llvm/Support/raw_ostream.h" 40 41 using namespace llvm; 42 43 #define DEBUG_TYPE "riscv-lower" 44 45 STATISTIC(NumTailCalls, "Number of tail calls"); 46 47 RISCVTargetLowering::RISCVTargetLowering(const TargetMachine &TM, 48 const RISCVSubtarget &STI) 49 : TargetLowering(TM), Subtarget(STI) { 50 51 if (Subtarget.isRV32E()) 52 report_fatal_error("Codegen not yet implemented for RV32E"); 53 54 RISCVABI::ABI ABI = Subtarget.getTargetABI(); 55 assert(ABI != RISCVABI::ABI_Unknown && "Improperly initialised target ABI"); 56 57 if ((ABI == RISCVABI::ABI_ILP32F || ABI == RISCVABI::ABI_LP64F) && 58 !Subtarget.hasStdExtF()) { 59 errs() << "Hard-float 'f' ABI can't be used for a target that " 60 "doesn't support the F instruction set extension (ignoring " 61 "target-abi)\n"; 62 ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32; 63 } else if ((ABI == RISCVABI::ABI_ILP32D || ABI == RISCVABI::ABI_LP64D) && 64 !Subtarget.hasStdExtD()) { 65 errs() << "Hard-float 'd' ABI can't be used for a target that " 66 "doesn't support the D instruction set extension (ignoring " 67 "target-abi)\n"; 68 ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32; 69 } 70 71 switch (ABI) { 72 default: 73 report_fatal_error("Don't know how to lower this ABI"); 74 case RISCVABI::ABI_ILP32: 75 case RISCVABI::ABI_ILP32F: 76 case RISCVABI::ABI_ILP32D: 77 case RISCVABI::ABI_LP64: 78 case RISCVABI::ABI_LP64F: 79 case RISCVABI::ABI_LP64D: 80 break; 81 } 82 83 MVT XLenVT = Subtarget.getXLenVT(); 84 85 // Set up the register classes. 86 addRegisterClass(XLenVT, &RISCV::GPRRegClass); 87 88 if (Subtarget.hasStdExtZfh()) 89 addRegisterClass(MVT::f16, &RISCV::FPR16RegClass); 90 if (Subtarget.hasStdExtF()) 91 addRegisterClass(MVT::f32, &RISCV::FPR32RegClass); 92 if (Subtarget.hasStdExtD()) 93 addRegisterClass(MVT::f64, &RISCV::FPR64RegClass); 94 95 static const MVT::SimpleValueType BoolVecVTs[] = { 96 MVT::nxv1i1, MVT::nxv2i1, MVT::nxv4i1, MVT::nxv8i1, 97 MVT::nxv16i1, MVT::nxv32i1, MVT::nxv64i1}; 98 static const MVT::SimpleValueType IntVecVTs[] = { 99 MVT::nxv1i8, MVT::nxv2i8, MVT::nxv4i8, MVT::nxv8i8, MVT::nxv16i8, 100 MVT::nxv32i8, MVT::nxv64i8, MVT::nxv1i16, MVT::nxv2i16, MVT::nxv4i16, 101 MVT::nxv8i16, MVT::nxv16i16, MVT::nxv32i16, MVT::nxv1i32, MVT::nxv2i32, 102 MVT::nxv4i32, MVT::nxv8i32, MVT::nxv16i32, MVT::nxv1i64, MVT::nxv2i64, 103 MVT::nxv4i64, MVT::nxv8i64}; 104 static const MVT::SimpleValueType F16VecVTs[] = { 105 MVT::nxv1f16, MVT::nxv2f16, MVT::nxv4f16, 106 MVT::nxv8f16, MVT::nxv16f16, MVT::nxv32f16}; 107 static const MVT::SimpleValueType F32VecVTs[] = { 108 MVT::nxv1f32, MVT::nxv2f32, MVT::nxv4f32, MVT::nxv8f32, MVT::nxv16f32}; 109 static const MVT::SimpleValueType F64VecVTs[] = { 110 MVT::nxv1f64, MVT::nxv2f64, MVT::nxv4f64, MVT::nxv8f64}; 111 112 if (Subtarget.hasVInstructions()) { 113 auto addRegClassForRVV = [this](MVT VT) { 114 unsigned Size = VT.getSizeInBits().getKnownMinValue(); 115 assert(Size <= 512 && isPowerOf2_32(Size)); 116 const TargetRegisterClass *RC; 117 if (Size <= 64) 118 RC = &RISCV::VRRegClass; 119 else if (Size == 128) 120 RC = &RISCV::VRM2RegClass; 121 else if (Size == 256) 122 RC = &RISCV::VRM4RegClass; 123 else 124 RC = &RISCV::VRM8RegClass; 125 126 addRegisterClass(VT, RC); 127 }; 128 129 for (MVT VT : BoolVecVTs) 130 addRegClassForRVV(VT); 131 for (MVT VT : IntVecVTs) { 132 if (VT.getVectorElementType() == MVT::i64 && 133 !Subtarget.hasVInstructionsI64()) 134 continue; 135 addRegClassForRVV(VT); 136 } 137 138 if (Subtarget.hasVInstructionsF16()) 139 for (MVT VT : F16VecVTs) 140 addRegClassForRVV(VT); 141 142 if (Subtarget.hasVInstructionsF32()) 143 for (MVT VT : F32VecVTs) 144 addRegClassForRVV(VT); 145 146 if (Subtarget.hasVInstructionsF64()) 147 for (MVT VT : F64VecVTs) 148 addRegClassForRVV(VT); 149 150 if (Subtarget.useRVVForFixedLengthVectors()) { 151 auto addRegClassForFixedVectors = [this](MVT VT) { 152 MVT ContainerVT = getContainerForFixedLengthVector(VT); 153 unsigned RCID = getRegClassIDForVecVT(ContainerVT); 154 const RISCVRegisterInfo &TRI = *Subtarget.getRegisterInfo(); 155 addRegisterClass(VT, TRI.getRegClass(RCID)); 156 }; 157 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) 158 if (useRVVForFixedLengthVectorVT(VT)) 159 addRegClassForFixedVectors(VT); 160 161 for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) 162 if (useRVVForFixedLengthVectorVT(VT)) 163 addRegClassForFixedVectors(VT); 164 } 165 } 166 167 // Compute derived properties from the register classes. 168 computeRegisterProperties(STI.getRegisterInfo()); 169 170 setStackPointerRegisterToSaveRestore(RISCV::X2); 171 172 for (auto N : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}) 173 setLoadExtAction(N, XLenVT, MVT::i1, Promote); 174 175 // TODO: add all necessary setOperationAction calls. 176 setOperationAction(ISD::DYNAMIC_STACKALLOC, XLenVT, Expand); 177 178 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 179 setOperationAction(ISD::BR_CC, XLenVT, Expand); 180 setOperationAction(ISD::BRCOND, MVT::Other, Custom); 181 setOperationAction(ISD::SELECT_CC, XLenVT, Expand); 182 183 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); 184 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); 185 186 setOperationAction(ISD::VASTART, MVT::Other, Custom); 187 setOperationAction(ISD::VAARG, MVT::Other, Expand); 188 setOperationAction(ISD::VACOPY, MVT::Other, Expand); 189 setOperationAction(ISD::VAEND, MVT::Other, Expand); 190 191 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 192 if (!Subtarget.hasStdExtZbb()) { 193 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand); 194 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand); 195 } 196 197 if (Subtarget.is64Bit()) { 198 setOperationAction(ISD::ADD, MVT::i32, Custom); 199 setOperationAction(ISD::SUB, MVT::i32, Custom); 200 setOperationAction(ISD::SHL, MVT::i32, Custom); 201 setOperationAction(ISD::SRA, MVT::i32, Custom); 202 setOperationAction(ISD::SRL, MVT::i32, Custom); 203 204 setOperationAction(ISD::UADDO, MVT::i32, Custom); 205 setOperationAction(ISD::USUBO, MVT::i32, Custom); 206 setOperationAction(ISD::UADDSAT, MVT::i32, Custom); 207 setOperationAction(ISD::USUBSAT, MVT::i32, Custom); 208 } else { 209 setLibcallName(RTLIB::SHL_I128, nullptr); 210 setLibcallName(RTLIB::SRL_I128, nullptr); 211 setLibcallName(RTLIB::SRA_I128, nullptr); 212 setLibcallName(RTLIB::MUL_I128, nullptr); 213 setLibcallName(RTLIB::MULO_I64, nullptr); 214 } 215 216 if (!Subtarget.hasStdExtM()) { 217 setOperationAction(ISD::MUL, XLenVT, Expand); 218 setOperationAction(ISD::MULHS, XLenVT, Expand); 219 setOperationAction(ISD::MULHU, XLenVT, Expand); 220 setOperationAction(ISD::SDIV, XLenVT, Expand); 221 setOperationAction(ISD::UDIV, XLenVT, Expand); 222 setOperationAction(ISD::SREM, XLenVT, Expand); 223 setOperationAction(ISD::UREM, XLenVT, Expand); 224 } else { 225 if (Subtarget.is64Bit()) { 226 setOperationAction(ISD::MUL, MVT::i32, Custom); 227 setOperationAction(ISD::MUL, MVT::i128, Custom); 228 229 setOperationAction(ISD::SDIV, MVT::i8, Custom); 230 setOperationAction(ISD::UDIV, MVT::i8, Custom); 231 setOperationAction(ISD::UREM, MVT::i8, Custom); 232 setOperationAction(ISD::SDIV, MVT::i16, Custom); 233 setOperationAction(ISD::UDIV, MVT::i16, Custom); 234 setOperationAction(ISD::UREM, MVT::i16, Custom); 235 setOperationAction(ISD::SDIV, MVT::i32, Custom); 236 setOperationAction(ISD::UDIV, MVT::i32, Custom); 237 setOperationAction(ISD::UREM, MVT::i32, Custom); 238 } else { 239 setOperationAction(ISD::MUL, MVT::i64, Custom); 240 } 241 } 242 243 setOperationAction(ISD::SDIVREM, XLenVT, Expand); 244 setOperationAction(ISD::UDIVREM, XLenVT, Expand); 245 setOperationAction(ISD::SMUL_LOHI, XLenVT, Expand); 246 setOperationAction(ISD::UMUL_LOHI, XLenVT, Expand); 247 248 setOperationAction(ISD::SHL_PARTS, XLenVT, Custom); 249 setOperationAction(ISD::SRL_PARTS, XLenVT, Custom); 250 setOperationAction(ISD::SRA_PARTS, XLenVT, Custom); 251 252 if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp()) { 253 if (Subtarget.is64Bit()) { 254 setOperationAction(ISD::ROTL, MVT::i32, Custom); 255 setOperationAction(ISD::ROTR, MVT::i32, Custom); 256 } 257 } else { 258 setOperationAction(ISD::ROTL, XLenVT, Expand); 259 setOperationAction(ISD::ROTR, XLenVT, Expand); 260 } 261 262 if (Subtarget.hasStdExtZbp()) { 263 // Custom lower bswap/bitreverse so we can convert them to GREVI to enable 264 // more combining. 265 setOperationAction(ISD::BITREVERSE, XLenVT, Custom); 266 setOperationAction(ISD::BSWAP, XLenVT, Custom); 267 setOperationAction(ISD::BITREVERSE, MVT::i8, Custom); 268 // BSWAP i8 doesn't exist. 269 setOperationAction(ISD::BITREVERSE, MVT::i16, Custom); 270 setOperationAction(ISD::BSWAP, MVT::i16, Custom); 271 272 if (Subtarget.is64Bit()) { 273 setOperationAction(ISD::BITREVERSE, MVT::i32, Custom); 274 setOperationAction(ISD::BSWAP, MVT::i32, Custom); 275 } 276 } else { 277 // With Zbb we have an XLen rev8 instruction, but not GREVI. So we'll 278 // pattern match it directly in isel. 279 setOperationAction(ISD::BSWAP, XLenVT, 280 Subtarget.hasStdExtZbb() ? Legal : Expand); 281 } 282 283 if (Subtarget.hasStdExtZbb()) { 284 setOperationAction(ISD::SMIN, XLenVT, Legal); 285 setOperationAction(ISD::SMAX, XLenVT, Legal); 286 setOperationAction(ISD::UMIN, XLenVT, Legal); 287 setOperationAction(ISD::UMAX, XLenVT, Legal); 288 289 if (Subtarget.is64Bit()) { 290 setOperationAction(ISD::CTTZ, MVT::i32, Custom); 291 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Custom); 292 setOperationAction(ISD::CTLZ, MVT::i32, Custom); 293 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom); 294 } 295 } else { 296 setOperationAction(ISD::CTTZ, XLenVT, Expand); 297 setOperationAction(ISD::CTLZ, XLenVT, Expand); 298 setOperationAction(ISD::CTPOP, XLenVT, Expand); 299 } 300 301 if (Subtarget.hasStdExtZbt()) { 302 setOperationAction(ISD::FSHL, XLenVT, Custom); 303 setOperationAction(ISD::FSHR, XLenVT, Custom); 304 setOperationAction(ISD::SELECT, XLenVT, Legal); 305 306 if (Subtarget.is64Bit()) { 307 setOperationAction(ISD::FSHL, MVT::i32, Custom); 308 setOperationAction(ISD::FSHR, MVT::i32, Custom); 309 } 310 } else { 311 setOperationAction(ISD::SELECT, XLenVT, Custom); 312 } 313 314 static const ISD::CondCode FPCCToExpand[] = { 315 ISD::SETOGT, ISD::SETOGE, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT, 316 ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUNE, ISD::SETGT, 317 ISD::SETGE, ISD::SETNE, ISD::SETO, ISD::SETUO}; 318 319 static const ISD::NodeType FPOpToExpand[] = { 320 ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, 321 ISD::FREM, ISD::FP16_TO_FP, ISD::FP_TO_FP16}; 322 323 if (Subtarget.hasStdExtZfh()) 324 setOperationAction(ISD::BITCAST, MVT::i16, Custom); 325 326 if (Subtarget.hasStdExtZfh()) { 327 setOperationAction(ISD::FMINNUM, MVT::f16, Legal); 328 setOperationAction(ISD::FMAXNUM, MVT::f16, Legal); 329 setOperationAction(ISD::LRINT, MVT::f16, Legal); 330 setOperationAction(ISD::LLRINT, MVT::f16, Legal); 331 setOperationAction(ISD::LROUND, MVT::f16, Legal); 332 setOperationAction(ISD::LLROUND, MVT::f16, Legal); 333 for (auto CC : FPCCToExpand) 334 setCondCodeAction(CC, MVT::f16, Expand); 335 setOperationAction(ISD::SELECT_CC, MVT::f16, Expand); 336 setOperationAction(ISD::SELECT, MVT::f16, Custom); 337 setOperationAction(ISD::BR_CC, MVT::f16, Expand); 338 for (auto Op : FPOpToExpand) 339 setOperationAction(Op, MVT::f16, Expand); 340 } 341 342 if (Subtarget.hasStdExtF()) { 343 setOperationAction(ISD::FMINNUM, MVT::f32, Legal); 344 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); 345 setOperationAction(ISD::LRINT, MVT::f32, Legal); 346 setOperationAction(ISD::LLRINT, MVT::f32, Legal); 347 setOperationAction(ISD::LROUND, MVT::f32, Legal); 348 setOperationAction(ISD::LLROUND, MVT::f32, Legal); 349 for (auto CC : FPCCToExpand) 350 setCondCodeAction(CC, MVT::f32, Expand); 351 setOperationAction(ISD::SELECT_CC, MVT::f32, Expand); 352 setOperationAction(ISD::SELECT, MVT::f32, Custom); 353 setOperationAction(ISD::BR_CC, MVT::f32, Expand); 354 for (auto Op : FPOpToExpand) 355 setOperationAction(Op, MVT::f32, Expand); 356 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); 357 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 358 } 359 360 if (Subtarget.hasStdExtF() && Subtarget.is64Bit()) 361 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 362 363 if (Subtarget.hasStdExtD()) { 364 setOperationAction(ISD::FMINNUM, MVT::f64, Legal); 365 setOperationAction(ISD::FMAXNUM, MVT::f64, Legal); 366 setOperationAction(ISD::LRINT, MVT::f64, Legal); 367 setOperationAction(ISD::LLRINT, MVT::f64, Legal); 368 setOperationAction(ISD::LROUND, MVT::f64, Legal); 369 setOperationAction(ISD::LLROUND, MVT::f64, Legal); 370 for (auto CC : FPCCToExpand) 371 setCondCodeAction(CC, MVT::f64, Expand); 372 setOperationAction(ISD::SELECT_CC, MVT::f64, Expand); 373 setOperationAction(ISD::SELECT, MVT::f64, Custom); 374 setOperationAction(ISD::BR_CC, MVT::f64, Expand); 375 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 376 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 377 for (auto Op : FPOpToExpand) 378 setOperationAction(Op, MVT::f64, Expand); 379 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); 380 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 381 } 382 383 if (Subtarget.is64Bit()) { 384 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 385 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 386 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom); 387 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom); 388 } 389 390 if (Subtarget.hasStdExtF()) { 391 setOperationAction(ISD::FP_TO_UINT_SAT, XLenVT, Custom); 392 setOperationAction(ISD::FP_TO_SINT_SAT, XLenVT, Custom); 393 394 setOperationAction(ISD::FLT_ROUNDS_, XLenVT, Custom); 395 setOperationAction(ISD::SET_ROUNDING, MVT::Other, Custom); 396 } 397 398 setOperationAction(ISD::GlobalAddress, XLenVT, Custom); 399 setOperationAction(ISD::BlockAddress, XLenVT, Custom); 400 setOperationAction(ISD::ConstantPool, XLenVT, Custom); 401 setOperationAction(ISD::JumpTable, XLenVT, Custom); 402 403 setOperationAction(ISD::GlobalTLSAddress, XLenVT, Custom); 404 405 // TODO: On M-mode only targets, the cycle[h] CSR may not be present. 406 // Unfortunately this can't be determined just from the ISA naming string. 407 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, 408 Subtarget.is64Bit() ? Legal : Custom); 409 410 setOperationAction(ISD::TRAP, MVT::Other, Legal); 411 setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal); 412 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 413 if (Subtarget.is64Bit()) 414 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i32, Custom); 415 416 if (Subtarget.hasStdExtA()) { 417 setMaxAtomicSizeInBitsSupported(Subtarget.getXLen()); 418 setMinCmpXchgSizeInBits(32); 419 } else { 420 setMaxAtomicSizeInBitsSupported(0); 421 } 422 423 setBooleanContents(ZeroOrOneBooleanContent); 424 425 if (Subtarget.hasVInstructions()) { 426 setBooleanVectorContents(ZeroOrOneBooleanContent); 427 428 setOperationAction(ISD::VSCALE, XLenVT, Custom); 429 430 // RVV intrinsics may have illegal operands. 431 // We also need to custom legalize vmv.x.s. 432 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i8, Custom); 433 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i16, Custom); 434 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i8, Custom); 435 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i16, Custom); 436 if (Subtarget.is64Bit()) { 437 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i32, Custom); 438 } else { 439 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i64, Custom); 440 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i64, Custom); 441 } 442 443 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom); 444 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); 445 446 static const unsigned IntegerVPOps[] = { 447 ISD::VP_ADD, ISD::VP_SUB, ISD::VP_MUL, 448 ISD::VP_SDIV, ISD::VP_UDIV, ISD::VP_SREM, 449 ISD::VP_UREM, ISD::VP_AND, ISD::VP_OR, 450 ISD::VP_XOR, ISD::VP_ASHR, ISD::VP_LSHR, 451 ISD::VP_SHL, ISD::VP_REDUCE_ADD, ISD::VP_REDUCE_AND, 452 ISD::VP_REDUCE_OR, ISD::VP_REDUCE_XOR, ISD::VP_REDUCE_SMAX, 453 ISD::VP_REDUCE_SMIN, ISD::VP_REDUCE_UMAX, ISD::VP_REDUCE_UMIN}; 454 455 static const unsigned FloatingPointVPOps[] = { 456 ISD::VP_FADD, ISD::VP_FSUB, ISD::VP_FMUL, 457 ISD::VP_FDIV, ISD::VP_REDUCE_FADD, ISD::VP_REDUCE_SEQ_FADD, 458 ISD::VP_REDUCE_FMIN, ISD::VP_REDUCE_FMAX}; 459 460 if (!Subtarget.is64Bit()) { 461 // We must custom-lower certain vXi64 operations on RV32 due to the vector 462 // element type being illegal. 463 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::i64, Custom); 464 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::i64, Custom); 465 466 setOperationAction(ISD::VECREDUCE_ADD, MVT::i64, Custom); 467 setOperationAction(ISD::VECREDUCE_AND, MVT::i64, Custom); 468 setOperationAction(ISD::VECREDUCE_OR, MVT::i64, Custom); 469 setOperationAction(ISD::VECREDUCE_XOR, MVT::i64, Custom); 470 setOperationAction(ISD::VECREDUCE_SMAX, MVT::i64, Custom); 471 setOperationAction(ISD::VECREDUCE_SMIN, MVT::i64, Custom); 472 setOperationAction(ISD::VECREDUCE_UMAX, MVT::i64, Custom); 473 setOperationAction(ISD::VECREDUCE_UMIN, MVT::i64, Custom); 474 475 setOperationAction(ISD::VP_REDUCE_ADD, MVT::i64, Custom); 476 setOperationAction(ISD::VP_REDUCE_AND, MVT::i64, Custom); 477 setOperationAction(ISD::VP_REDUCE_OR, MVT::i64, Custom); 478 setOperationAction(ISD::VP_REDUCE_XOR, MVT::i64, Custom); 479 setOperationAction(ISD::VP_REDUCE_SMAX, MVT::i64, Custom); 480 setOperationAction(ISD::VP_REDUCE_SMIN, MVT::i64, Custom); 481 setOperationAction(ISD::VP_REDUCE_UMAX, MVT::i64, Custom); 482 setOperationAction(ISD::VP_REDUCE_UMIN, MVT::i64, Custom); 483 } 484 485 for (MVT VT : BoolVecVTs) { 486 setOperationAction(ISD::SPLAT_VECTOR, VT, Custom); 487 488 // Mask VTs are custom-expanded into a series of standard nodes 489 setOperationAction(ISD::TRUNCATE, VT, Custom); 490 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 491 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 492 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 493 494 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 495 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 496 497 setOperationAction(ISD::SELECT, VT, Custom); 498 setOperationAction(ISD::SELECT_CC, VT, Expand); 499 setOperationAction(ISD::VSELECT, VT, Expand); 500 501 setOperationAction(ISD::VECREDUCE_AND, VT, Custom); 502 setOperationAction(ISD::VECREDUCE_OR, VT, Custom); 503 setOperationAction(ISD::VECREDUCE_XOR, VT, Custom); 504 505 setOperationAction(ISD::VP_REDUCE_AND, VT, Custom); 506 setOperationAction(ISD::VP_REDUCE_OR, VT, Custom); 507 setOperationAction(ISD::VP_REDUCE_XOR, VT, Custom); 508 509 // RVV has native int->float & float->int conversions where the 510 // element type sizes are within one power-of-two of each other. Any 511 // wider distances between type sizes have to be lowered as sequences 512 // which progressively narrow the gap in stages. 513 setOperationAction(ISD::SINT_TO_FP, VT, Custom); 514 setOperationAction(ISD::UINT_TO_FP, VT, Custom); 515 setOperationAction(ISD::FP_TO_SINT, VT, Custom); 516 setOperationAction(ISD::FP_TO_UINT, VT, Custom); 517 518 // Expand all extending loads to types larger than this, and truncating 519 // stores from types larger than this. 520 for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) { 521 setTruncStoreAction(OtherVT, VT, Expand); 522 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 523 setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand); 524 setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand); 525 } 526 } 527 528 for (MVT VT : IntVecVTs) { 529 if (VT.getVectorElementType() == MVT::i64 && 530 !Subtarget.hasVInstructionsI64()) 531 continue; 532 533 setOperationAction(ISD::SPLAT_VECTOR, VT, Legal); 534 setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom); 535 536 setOperationAction(ISD::SMIN, VT, Legal); 537 setOperationAction(ISD::SMAX, VT, Legal); 538 setOperationAction(ISD::UMIN, VT, Legal); 539 setOperationAction(ISD::UMAX, VT, Legal); 540 541 setOperationAction(ISD::ROTL, VT, Expand); 542 setOperationAction(ISD::ROTR, VT, Expand); 543 544 setOperationAction(ISD::CTTZ, VT, Expand); 545 setOperationAction(ISD::CTLZ, VT, Expand); 546 setOperationAction(ISD::CTPOP, VT, Expand); 547 548 setOperationAction(ISD::BSWAP, VT, Expand); 549 550 // Custom-lower extensions and truncations from/to mask types. 551 setOperationAction(ISD::ANY_EXTEND, VT, Custom); 552 setOperationAction(ISD::SIGN_EXTEND, VT, Custom); 553 setOperationAction(ISD::ZERO_EXTEND, VT, Custom); 554 555 // RVV has native int->float & float->int conversions where the 556 // element type sizes are within one power-of-two of each other. Any 557 // wider distances between type sizes have to be lowered as sequences 558 // which progressively narrow the gap in stages. 559 setOperationAction(ISD::SINT_TO_FP, VT, Custom); 560 setOperationAction(ISD::UINT_TO_FP, VT, Custom); 561 setOperationAction(ISD::FP_TO_SINT, VT, Custom); 562 setOperationAction(ISD::FP_TO_UINT, VT, Custom); 563 564 setOperationAction(ISD::SADDSAT, VT, Legal); 565 setOperationAction(ISD::UADDSAT, VT, Legal); 566 setOperationAction(ISD::SSUBSAT, VT, Legal); 567 setOperationAction(ISD::USUBSAT, VT, Legal); 568 569 // Integer VTs are lowered as a series of "RISCVISD::TRUNCATE_VECTOR_VL" 570 // nodes which truncate by one power of two at a time. 571 setOperationAction(ISD::TRUNCATE, VT, Custom); 572 573 // Custom-lower insert/extract operations to simplify patterns. 574 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 575 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 576 577 // Custom-lower reduction operations to set up the corresponding custom 578 // nodes' operands. 579 setOperationAction(ISD::VECREDUCE_ADD, VT, Custom); 580 setOperationAction(ISD::VECREDUCE_AND, VT, Custom); 581 setOperationAction(ISD::VECREDUCE_OR, VT, Custom); 582 setOperationAction(ISD::VECREDUCE_XOR, VT, Custom); 583 setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom); 584 setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom); 585 setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom); 586 setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom); 587 588 for (unsigned VPOpc : IntegerVPOps) 589 setOperationAction(VPOpc, VT, Custom); 590 591 setOperationAction(ISD::LOAD, VT, Custom); 592 setOperationAction(ISD::STORE, VT, Custom); 593 594 setOperationAction(ISD::MLOAD, VT, Custom); 595 setOperationAction(ISD::MSTORE, VT, Custom); 596 setOperationAction(ISD::MGATHER, VT, Custom); 597 setOperationAction(ISD::MSCATTER, VT, Custom); 598 599 setOperationAction(ISD::VP_LOAD, VT, Custom); 600 setOperationAction(ISD::VP_STORE, VT, Custom); 601 setOperationAction(ISD::VP_GATHER, VT, Custom); 602 setOperationAction(ISD::VP_SCATTER, VT, Custom); 603 604 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 605 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 606 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 607 608 setOperationAction(ISD::SELECT, VT, Custom); 609 setOperationAction(ISD::SELECT_CC, VT, Expand); 610 611 setOperationAction(ISD::STEP_VECTOR, VT, Custom); 612 setOperationAction(ISD::VECTOR_REVERSE, VT, Custom); 613 614 for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) { 615 setTruncStoreAction(VT, OtherVT, Expand); 616 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 617 setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand); 618 setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand); 619 } 620 } 621 622 // Expand various CCs to best match the RVV ISA, which natively supports UNE 623 // but no other unordered comparisons, and supports all ordered comparisons 624 // except ONE. Additionally, we expand GT,OGT,GE,OGE for optimization 625 // purposes; they are expanded to their swapped-operand CCs (LT,OLT,LE,OLE), 626 // and we pattern-match those back to the "original", swapping operands once 627 // more. This way we catch both operations and both "vf" and "fv" forms with 628 // fewer patterns. 629 static const ISD::CondCode VFPCCToExpand[] = { 630 ISD::SETO, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT, 631 ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUO, 632 ISD::SETGT, ISD::SETOGT, ISD::SETGE, ISD::SETOGE, 633 }; 634 635 // Sets common operation actions on RVV floating-point vector types. 636 const auto SetCommonVFPActions = [&](MVT VT) { 637 setOperationAction(ISD::SPLAT_VECTOR, VT, Legal); 638 // RVV has native FP_ROUND & FP_EXTEND conversions where the element type 639 // sizes are within one power-of-two of each other. Therefore conversions 640 // between vXf16 and vXf64 must be lowered as sequences which convert via 641 // vXf32. 642 setOperationAction(ISD::FP_ROUND, VT, Custom); 643 setOperationAction(ISD::FP_EXTEND, VT, Custom); 644 // Custom-lower insert/extract operations to simplify patterns. 645 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 646 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 647 // Expand various condition codes (explained above). 648 for (auto CC : VFPCCToExpand) 649 setCondCodeAction(CC, VT, Expand); 650 651 setOperationAction(ISD::FMINNUM, VT, Legal); 652 setOperationAction(ISD::FMAXNUM, VT, Legal); 653 654 setOperationAction(ISD::VECREDUCE_FADD, VT, Custom); 655 setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom); 656 setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom); 657 setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom); 658 659 setOperationAction(ISD::FCOPYSIGN, VT, Legal); 660 661 setOperationAction(ISD::LOAD, VT, Custom); 662 setOperationAction(ISD::STORE, VT, Custom); 663 664 setOperationAction(ISD::MLOAD, VT, Custom); 665 setOperationAction(ISD::MSTORE, VT, Custom); 666 setOperationAction(ISD::MGATHER, VT, Custom); 667 setOperationAction(ISD::MSCATTER, VT, Custom); 668 669 setOperationAction(ISD::VP_LOAD, VT, Custom); 670 setOperationAction(ISD::VP_STORE, VT, Custom); 671 setOperationAction(ISD::VP_GATHER, VT, Custom); 672 setOperationAction(ISD::VP_SCATTER, VT, Custom); 673 674 setOperationAction(ISD::SELECT, VT, Custom); 675 setOperationAction(ISD::SELECT_CC, VT, Expand); 676 677 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 678 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 679 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 680 681 setOperationAction(ISD::VECTOR_REVERSE, VT, Custom); 682 683 for (unsigned VPOpc : FloatingPointVPOps) 684 setOperationAction(VPOpc, VT, Custom); 685 }; 686 687 // Sets common extload/truncstore actions on RVV floating-point vector 688 // types. 689 const auto SetCommonVFPExtLoadTruncStoreActions = 690 [&](MVT VT, ArrayRef<MVT::SimpleValueType> SmallerVTs) { 691 for (auto SmallVT : SmallerVTs) { 692 setTruncStoreAction(VT, SmallVT, Expand); 693 setLoadExtAction(ISD::EXTLOAD, VT, SmallVT, Expand); 694 } 695 }; 696 697 if (Subtarget.hasVInstructionsF16()) 698 for (MVT VT : F16VecVTs) 699 SetCommonVFPActions(VT); 700 701 for (MVT VT : F32VecVTs) { 702 if (Subtarget.hasVInstructionsF32()) 703 SetCommonVFPActions(VT); 704 SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs); 705 } 706 707 for (MVT VT : F64VecVTs) { 708 if (Subtarget.hasVInstructionsF64()) 709 SetCommonVFPActions(VT); 710 SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs); 711 SetCommonVFPExtLoadTruncStoreActions(VT, F32VecVTs); 712 } 713 714 if (Subtarget.useRVVForFixedLengthVectors()) { 715 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) { 716 if (!useRVVForFixedLengthVectorVT(VT)) 717 continue; 718 719 // By default everything must be expanded. 720 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) 721 setOperationAction(Op, VT, Expand); 722 for (MVT OtherVT : MVT::integer_fixedlen_vector_valuetypes()) { 723 setTruncStoreAction(VT, OtherVT, Expand); 724 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 725 setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand); 726 setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand); 727 } 728 729 // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed. 730 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 731 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 732 733 setOperationAction(ISD::BUILD_VECTOR, VT, Custom); 734 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 735 736 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 737 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 738 739 setOperationAction(ISD::LOAD, VT, Custom); 740 setOperationAction(ISD::STORE, VT, Custom); 741 742 setOperationAction(ISD::SETCC, VT, Custom); 743 744 setOperationAction(ISD::SELECT, VT, Custom); 745 746 setOperationAction(ISD::TRUNCATE, VT, Custom); 747 748 setOperationAction(ISD::BITCAST, VT, Custom); 749 750 setOperationAction(ISD::VECREDUCE_AND, VT, Custom); 751 setOperationAction(ISD::VECREDUCE_OR, VT, Custom); 752 setOperationAction(ISD::VECREDUCE_XOR, VT, Custom); 753 754 setOperationAction(ISD::VP_REDUCE_AND, VT, Custom); 755 setOperationAction(ISD::VP_REDUCE_OR, VT, Custom); 756 setOperationAction(ISD::VP_REDUCE_XOR, VT, Custom); 757 758 setOperationAction(ISD::SINT_TO_FP, VT, Custom); 759 setOperationAction(ISD::UINT_TO_FP, VT, Custom); 760 setOperationAction(ISD::FP_TO_SINT, VT, Custom); 761 setOperationAction(ISD::FP_TO_UINT, VT, Custom); 762 763 // Operations below are different for between masks and other vectors. 764 if (VT.getVectorElementType() == MVT::i1) { 765 setOperationAction(ISD::AND, VT, Custom); 766 setOperationAction(ISD::OR, VT, Custom); 767 setOperationAction(ISD::XOR, VT, Custom); 768 continue; 769 } 770 771 // Use SPLAT_VECTOR to prevent type legalization from destroying the 772 // splats when type legalizing i64 scalar on RV32. 773 // FIXME: Use SPLAT_VECTOR for all types? DAGCombine probably needs 774 // improvements first. 775 if (!Subtarget.is64Bit() && VT.getVectorElementType() == MVT::i64) { 776 setOperationAction(ISD::SPLAT_VECTOR, VT, Custom); 777 setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom); 778 } 779 780 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); 781 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 782 783 setOperationAction(ISD::MLOAD, VT, Custom); 784 setOperationAction(ISD::MSTORE, VT, Custom); 785 setOperationAction(ISD::MGATHER, VT, Custom); 786 setOperationAction(ISD::MSCATTER, VT, Custom); 787 788 setOperationAction(ISD::VP_LOAD, VT, Custom); 789 setOperationAction(ISD::VP_STORE, VT, Custom); 790 setOperationAction(ISD::VP_GATHER, VT, Custom); 791 setOperationAction(ISD::VP_SCATTER, VT, Custom); 792 793 setOperationAction(ISD::ADD, VT, Custom); 794 setOperationAction(ISD::MUL, VT, Custom); 795 setOperationAction(ISD::SUB, VT, Custom); 796 setOperationAction(ISD::AND, VT, Custom); 797 setOperationAction(ISD::OR, VT, Custom); 798 setOperationAction(ISD::XOR, VT, Custom); 799 setOperationAction(ISD::SDIV, VT, Custom); 800 setOperationAction(ISD::SREM, VT, Custom); 801 setOperationAction(ISD::UDIV, VT, Custom); 802 setOperationAction(ISD::UREM, VT, Custom); 803 setOperationAction(ISD::SHL, VT, Custom); 804 setOperationAction(ISD::SRA, VT, Custom); 805 setOperationAction(ISD::SRL, VT, Custom); 806 807 setOperationAction(ISD::SMIN, VT, Custom); 808 setOperationAction(ISD::SMAX, VT, Custom); 809 setOperationAction(ISD::UMIN, VT, Custom); 810 setOperationAction(ISD::UMAX, VT, Custom); 811 setOperationAction(ISD::ABS, VT, Custom); 812 813 setOperationAction(ISD::MULHS, VT, Custom); 814 setOperationAction(ISD::MULHU, VT, Custom); 815 816 setOperationAction(ISD::SADDSAT, VT, Custom); 817 setOperationAction(ISD::UADDSAT, VT, Custom); 818 setOperationAction(ISD::SSUBSAT, VT, Custom); 819 setOperationAction(ISD::USUBSAT, VT, Custom); 820 821 setOperationAction(ISD::VSELECT, VT, Custom); 822 setOperationAction(ISD::SELECT_CC, VT, Expand); 823 824 setOperationAction(ISD::ANY_EXTEND, VT, Custom); 825 setOperationAction(ISD::SIGN_EXTEND, VT, Custom); 826 setOperationAction(ISD::ZERO_EXTEND, VT, Custom); 827 828 // Custom-lower reduction operations to set up the corresponding custom 829 // nodes' operands. 830 setOperationAction(ISD::VECREDUCE_ADD, VT, Custom); 831 setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom); 832 setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom); 833 setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom); 834 setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom); 835 836 for (unsigned VPOpc : IntegerVPOps) 837 setOperationAction(VPOpc, VT, Custom); 838 } 839 840 for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) { 841 if (!useRVVForFixedLengthVectorVT(VT)) 842 continue; 843 844 // By default everything must be expanded. 845 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) 846 setOperationAction(Op, VT, Expand); 847 for (MVT OtherVT : MVT::fp_fixedlen_vector_valuetypes()) { 848 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 849 setTruncStoreAction(VT, OtherVT, Expand); 850 } 851 852 // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed. 853 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 854 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 855 856 setOperationAction(ISD::BUILD_VECTOR, VT, Custom); 857 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 858 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); 859 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 860 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 861 862 setOperationAction(ISD::LOAD, VT, Custom); 863 setOperationAction(ISD::STORE, VT, Custom); 864 setOperationAction(ISD::MLOAD, VT, Custom); 865 setOperationAction(ISD::MSTORE, VT, Custom); 866 setOperationAction(ISD::MGATHER, VT, Custom); 867 setOperationAction(ISD::MSCATTER, VT, Custom); 868 869 setOperationAction(ISD::VP_LOAD, VT, Custom); 870 setOperationAction(ISD::VP_STORE, VT, Custom); 871 setOperationAction(ISD::VP_GATHER, VT, Custom); 872 setOperationAction(ISD::VP_SCATTER, VT, Custom); 873 874 setOperationAction(ISD::FADD, VT, Custom); 875 setOperationAction(ISD::FSUB, VT, Custom); 876 setOperationAction(ISD::FMUL, VT, Custom); 877 setOperationAction(ISD::FDIV, VT, Custom); 878 setOperationAction(ISD::FNEG, VT, Custom); 879 setOperationAction(ISD::FABS, VT, Custom); 880 setOperationAction(ISD::FCOPYSIGN, VT, Custom); 881 setOperationAction(ISD::FSQRT, VT, Custom); 882 setOperationAction(ISD::FMA, VT, Custom); 883 setOperationAction(ISD::FMINNUM, VT, Custom); 884 setOperationAction(ISD::FMAXNUM, VT, Custom); 885 886 setOperationAction(ISD::FP_ROUND, VT, Custom); 887 setOperationAction(ISD::FP_EXTEND, VT, Custom); 888 889 for (auto CC : VFPCCToExpand) 890 setCondCodeAction(CC, VT, Expand); 891 892 setOperationAction(ISD::VSELECT, VT, Custom); 893 setOperationAction(ISD::SELECT, VT, Custom); 894 setOperationAction(ISD::SELECT_CC, VT, Expand); 895 896 setOperationAction(ISD::BITCAST, VT, Custom); 897 898 setOperationAction(ISD::VECREDUCE_FADD, VT, Custom); 899 setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom); 900 setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom); 901 setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom); 902 903 for (unsigned VPOpc : FloatingPointVPOps) 904 setOperationAction(VPOpc, VT, Custom); 905 } 906 907 // Custom-legalize bitcasts from fixed-length vectors to scalar types. 908 setOperationAction(ISD::BITCAST, MVT::i8, Custom); 909 setOperationAction(ISD::BITCAST, MVT::i16, Custom); 910 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 911 setOperationAction(ISD::BITCAST, MVT::i64, Custom); 912 setOperationAction(ISD::BITCAST, MVT::f16, Custom); 913 setOperationAction(ISD::BITCAST, MVT::f32, Custom); 914 setOperationAction(ISD::BITCAST, MVT::f64, Custom); 915 } 916 } 917 918 // Function alignments. 919 const Align FunctionAlignment(Subtarget.hasStdExtC() ? 2 : 4); 920 setMinFunctionAlignment(FunctionAlignment); 921 setPrefFunctionAlignment(FunctionAlignment); 922 923 setMinimumJumpTableEntries(5); 924 925 // Jumps are expensive, compared to logic 926 setJumpIsExpensive(); 927 928 // We can use any register for comparisons 929 setHasMultipleConditionRegisters(); 930 931 setTargetDAGCombine(ISD::ADD); 932 setTargetDAGCombine(ISD::SUB); 933 setTargetDAGCombine(ISD::AND); 934 setTargetDAGCombine(ISD::OR); 935 setTargetDAGCombine(ISD::XOR); 936 setTargetDAGCombine(ISD::ANY_EXTEND); 937 setTargetDAGCombine(ISD::ZERO_EXTEND); 938 if (Subtarget.hasVInstructions()) { 939 setTargetDAGCombine(ISD::FCOPYSIGN); 940 setTargetDAGCombine(ISD::MGATHER); 941 setTargetDAGCombine(ISD::MSCATTER); 942 setTargetDAGCombine(ISD::VP_GATHER); 943 setTargetDAGCombine(ISD::VP_SCATTER); 944 setTargetDAGCombine(ISD::SRA); 945 setTargetDAGCombine(ISD::SRL); 946 setTargetDAGCombine(ISD::SHL); 947 setTargetDAGCombine(ISD::STORE); 948 } 949 } 950 951 EVT RISCVTargetLowering::getSetCCResultType(const DataLayout &DL, 952 LLVMContext &Context, 953 EVT VT) const { 954 if (!VT.isVector()) 955 return getPointerTy(DL); 956 if (Subtarget.hasVInstructions() && 957 (VT.isScalableVector() || Subtarget.useRVVForFixedLengthVectors())) 958 return EVT::getVectorVT(Context, MVT::i1, VT.getVectorElementCount()); 959 return VT.changeVectorElementTypeToInteger(); 960 } 961 962 MVT RISCVTargetLowering::getVPExplicitVectorLengthTy() const { 963 return Subtarget.getXLenVT(); 964 } 965 966 bool RISCVTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 967 const CallInst &I, 968 MachineFunction &MF, 969 unsigned Intrinsic) const { 970 auto &DL = I.getModule()->getDataLayout(); 971 switch (Intrinsic) { 972 default: 973 return false; 974 case Intrinsic::riscv_masked_atomicrmw_xchg_i32: 975 case Intrinsic::riscv_masked_atomicrmw_add_i32: 976 case Intrinsic::riscv_masked_atomicrmw_sub_i32: 977 case Intrinsic::riscv_masked_atomicrmw_nand_i32: 978 case Intrinsic::riscv_masked_atomicrmw_max_i32: 979 case Intrinsic::riscv_masked_atomicrmw_min_i32: 980 case Intrinsic::riscv_masked_atomicrmw_umax_i32: 981 case Intrinsic::riscv_masked_atomicrmw_umin_i32: 982 case Intrinsic::riscv_masked_cmpxchg_i32: { 983 PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType()); 984 Info.opc = ISD::INTRINSIC_W_CHAIN; 985 Info.memVT = MVT::getVT(PtrTy->getElementType()); 986 Info.ptrVal = I.getArgOperand(0); 987 Info.offset = 0; 988 Info.align = Align(4); 989 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore | 990 MachineMemOperand::MOVolatile; 991 return true; 992 } 993 case Intrinsic::riscv_masked_strided_load: 994 Info.opc = ISD::INTRINSIC_W_CHAIN; 995 Info.ptrVal = I.getArgOperand(1); 996 Info.memVT = getValueType(DL, I.getType()->getScalarType()); 997 Info.align = Align(DL.getTypeSizeInBits(I.getType()->getScalarType()) / 8); 998 Info.size = MemoryLocation::UnknownSize; 999 Info.flags |= MachineMemOperand::MOLoad; 1000 return true; 1001 case Intrinsic::riscv_masked_strided_store: 1002 Info.opc = ISD::INTRINSIC_VOID; 1003 Info.ptrVal = I.getArgOperand(1); 1004 Info.memVT = 1005 getValueType(DL, I.getArgOperand(0)->getType()->getScalarType()); 1006 Info.align = Align( 1007 DL.getTypeSizeInBits(I.getArgOperand(0)->getType()->getScalarType()) / 1008 8); 1009 Info.size = MemoryLocation::UnknownSize; 1010 Info.flags |= MachineMemOperand::MOStore; 1011 return true; 1012 } 1013 } 1014 1015 bool RISCVTargetLowering::isLegalAddressingMode(const DataLayout &DL, 1016 const AddrMode &AM, Type *Ty, 1017 unsigned AS, 1018 Instruction *I) const { 1019 // No global is ever allowed as a base. 1020 if (AM.BaseGV) 1021 return false; 1022 1023 // Require a 12-bit signed offset. 1024 if (!isInt<12>(AM.BaseOffs)) 1025 return false; 1026 1027 switch (AM.Scale) { 1028 case 0: // "r+i" or just "i", depending on HasBaseReg. 1029 break; 1030 case 1: 1031 if (!AM.HasBaseReg) // allow "r+i". 1032 break; 1033 return false; // disallow "r+r" or "r+r+i". 1034 default: 1035 return false; 1036 } 1037 1038 return true; 1039 } 1040 1041 bool RISCVTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 1042 return isInt<12>(Imm); 1043 } 1044 1045 bool RISCVTargetLowering::isLegalAddImmediate(int64_t Imm) const { 1046 return isInt<12>(Imm); 1047 } 1048 1049 // On RV32, 64-bit integers are split into their high and low parts and held 1050 // in two different registers, so the trunc is free since the low register can 1051 // just be used. 1052 bool RISCVTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const { 1053 if (Subtarget.is64Bit() || !SrcTy->isIntegerTy() || !DstTy->isIntegerTy()) 1054 return false; 1055 unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); 1056 unsigned DestBits = DstTy->getPrimitiveSizeInBits(); 1057 return (SrcBits == 64 && DestBits == 32); 1058 } 1059 1060 bool RISCVTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const { 1061 if (Subtarget.is64Bit() || SrcVT.isVector() || DstVT.isVector() || 1062 !SrcVT.isInteger() || !DstVT.isInteger()) 1063 return false; 1064 unsigned SrcBits = SrcVT.getSizeInBits(); 1065 unsigned DestBits = DstVT.getSizeInBits(); 1066 return (SrcBits == 64 && DestBits == 32); 1067 } 1068 1069 bool RISCVTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 1070 // Zexts are free if they can be combined with a load. 1071 if (auto *LD = dyn_cast<LoadSDNode>(Val)) { 1072 EVT MemVT = LD->getMemoryVT(); 1073 if ((MemVT == MVT::i8 || MemVT == MVT::i16 || 1074 (Subtarget.is64Bit() && MemVT == MVT::i32)) && 1075 (LD->getExtensionType() == ISD::NON_EXTLOAD || 1076 LD->getExtensionType() == ISD::ZEXTLOAD)) 1077 return true; 1078 } 1079 1080 return TargetLowering::isZExtFree(Val, VT2); 1081 } 1082 1083 bool RISCVTargetLowering::isSExtCheaperThanZExt(EVT SrcVT, EVT DstVT) const { 1084 return Subtarget.is64Bit() && SrcVT == MVT::i32 && DstVT == MVT::i64; 1085 } 1086 1087 bool RISCVTargetLowering::isCheapToSpeculateCttz() const { 1088 return Subtarget.hasStdExtZbb(); 1089 } 1090 1091 bool RISCVTargetLowering::isCheapToSpeculateCtlz() const { 1092 return Subtarget.hasStdExtZbb(); 1093 } 1094 1095 /// Check if sinking \p I's operands to I's basic block is profitable, because 1096 /// the operands can be folded into a target instruction, e.g. 1097 /// splats of scalars can fold into vector instructions. 1098 bool RISCVTargetLowering::shouldSinkOperands( 1099 Instruction *I, SmallVectorImpl<Use *> &Ops) const { 1100 using namespace llvm::PatternMatch; 1101 1102 if (!I->getType()->isVectorTy() || !Subtarget.hasVInstructions()) 1103 return false; 1104 1105 auto IsSinker = [&](Instruction *I, int Operand) { 1106 switch (I->getOpcode()) { 1107 case Instruction::Add: 1108 case Instruction::Sub: 1109 case Instruction::Mul: 1110 case Instruction::And: 1111 case Instruction::Or: 1112 case Instruction::Xor: 1113 case Instruction::FAdd: 1114 case Instruction::FSub: 1115 case Instruction::FMul: 1116 case Instruction::FDiv: 1117 case Instruction::ICmp: 1118 case Instruction::FCmp: 1119 return true; 1120 case Instruction::Shl: 1121 case Instruction::LShr: 1122 case Instruction::AShr: 1123 return Operand == 1; 1124 case Instruction::Call: 1125 if (auto *II = dyn_cast<IntrinsicInst>(I)) { 1126 switch (II->getIntrinsicID()) { 1127 case Intrinsic::fma: 1128 return Operand == 0 || Operand == 1; 1129 default: 1130 return false; 1131 } 1132 } 1133 return false; 1134 default: 1135 return false; 1136 } 1137 }; 1138 1139 for (auto OpIdx : enumerate(I->operands())) { 1140 if (!IsSinker(I, OpIdx.index())) 1141 continue; 1142 1143 Instruction *Op = dyn_cast<Instruction>(OpIdx.value().get()); 1144 // Make sure we are not already sinking this operand 1145 if (!Op || any_of(Ops, [&](Use *U) { return U->get() == Op; })) 1146 continue; 1147 1148 // We are looking for a splat that can be sunk. 1149 if (!match(Op, m_Shuffle(m_InsertElt(m_Undef(), m_Value(), m_ZeroInt()), 1150 m_Undef(), m_ZeroMask()))) 1151 continue; 1152 1153 // All uses of the shuffle should be sunk to avoid duplicating it across gpr 1154 // and vector registers 1155 for (Use &U : Op->uses()) { 1156 Instruction *Insn = cast<Instruction>(U.getUser()); 1157 if (!IsSinker(Insn, U.getOperandNo())) 1158 return false; 1159 } 1160 1161 Ops.push_back(&Op->getOperandUse(0)); 1162 Ops.push_back(&OpIdx.value()); 1163 } 1164 return true; 1165 } 1166 1167 bool RISCVTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 1168 bool ForCodeSize) const { 1169 if (VT == MVT::f16 && !Subtarget.hasStdExtZfh()) 1170 return false; 1171 if (VT == MVT::f32 && !Subtarget.hasStdExtF()) 1172 return false; 1173 if (VT == MVT::f64 && !Subtarget.hasStdExtD()) 1174 return false; 1175 if (Imm.isNegZero()) 1176 return false; 1177 return Imm.isZero(); 1178 } 1179 1180 bool RISCVTargetLowering::hasBitPreservingFPLogic(EVT VT) const { 1181 return (VT == MVT::f16 && Subtarget.hasStdExtZfh()) || 1182 (VT == MVT::f32 && Subtarget.hasStdExtF()) || 1183 (VT == MVT::f64 && Subtarget.hasStdExtD()); 1184 } 1185 1186 MVT RISCVTargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context, 1187 CallingConv::ID CC, 1188 EVT VT) const { 1189 // Use f32 to pass f16 if it is legal and Zfh is not enabled. We might still 1190 // end up using a GPR but that will be decided based on ABI. 1191 if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh()) 1192 return MVT::f32; 1193 1194 return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT); 1195 } 1196 1197 unsigned RISCVTargetLowering::getNumRegistersForCallingConv(LLVMContext &Context, 1198 CallingConv::ID CC, 1199 EVT VT) const { 1200 // Use f32 to pass f16 if it is legal and Zfh is not enabled. We might still 1201 // end up using a GPR but that will be decided based on ABI. 1202 if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh()) 1203 return 1; 1204 1205 return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT); 1206 } 1207 1208 // Changes the condition code and swaps operands if necessary, so the SetCC 1209 // operation matches one of the comparisons supported directly by branches 1210 // in the RISC-V ISA. May adjust compares to favor compare with 0 over compare 1211 // with 1/-1. 1212 static void translateSetCCForBranch(const SDLoc &DL, SDValue &LHS, SDValue &RHS, 1213 ISD::CondCode &CC, SelectionDAG &DAG) { 1214 // Convert X > -1 to X >= 0. 1215 if (CC == ISD::SETGT && isAllOnesConstant(RHS)) { 1216 RHS = DAG.getConstant(0, DL, RHS.getValueType()); 1217 CC = ISD::SETGE; 1218 return; 1219 } 1220 // Convert X < 1 to 0 >= X. 1221 if (CC == ISD::SETLT && isOneConstant(RHS)) { 1222 RHS = LHS; 1223 LHS = DAG.getConstant(0, DL, RHS.getValueType()); 1224 CC = ISD::SETGE; 1225 return; 1226 } 1227 1228 switch (CC) { 1229 default: 1230 break; 1231 case ISD::SETGT: 1232 case ISD::SETLE: 1233 case ISD::SETUGT: 1234 case ISD::SETULE: 1235 CC = ISD::getSetCCSwappedOperands(CC); 1236 std::swap(LHS, RHS); 1237 break; 1238 } 1239 } 1240 1241 RISCVII::VLMUL RISCVTargetLowering::getLMUL(MVT VT) { 1242 assert(VT.isScalableVector() && "Expecting a scalable vector type"); 1243 unsigned KnownSize = VT.getSizeInBits().getKnownMinValue(); 1244 if (VT.getVectorElementType() == MVT::i1) 1245 KnownSize *= 8; 1246 1247 switch (KnownSize) { 1248 default: 1249 llvm_unreachable("Invalid LMUL."); 1250 case 8: 1251 return RISCVII::VLMUL::LMUL_F8; 1252 case 16: 1253 return RISCVII::VLMUL::LMUL_F4; 1254 case 32: 1255 return RISCVII::VLMUL::LMUL_F2; 1256 case 64: 1257 return RISCVII::VLMUL::LMUL_1; 1258 case 128: 1259 return RISCVII::VLMUL::LMUL_2; 1260 case 256: 1261 return RISCVII::VLMUL::LMUL_4; 1262 case 512: 1263 return RISCVII::VLMUL::LMUL_8; 1264 } 1265 } 1266 1267 unsigned RISCVTargetLowering::getRegClassIDForLMUL(RISCVII::VLMUL LMul) { 1268 switch (LMul) { 1269 default: 1270 llvm_unreachable("Invalid LMUL."); 1271 case RISCVII::VLMUL::LMUL_F8: 1272 case RISCVII::VLMUL::LMUL_F4: 1273 case RISCVII::VLMUL::LMUL_F2: 1274 case RISCVII::VLMUL::LMUL_1: 1275 return RISCV::VRRegClassID; 1276 case RISCVII::VLMUL::LMUL_2: 1277 return RISCV::VRM2RegClassID; 1278 case RISCVII::VLMUL::LMUL_4: 1279 return RISCV::VRM4RegClassID; 1280 case RISCVII::VLMUL::LMUL_8: 1281 return RISCV::VRM8RegClassID; 1282 } 1283 } 1284 1285 unsigned RISCVTargetLowering::getSubregIndexByMVT(MVT VT, unsigned Index) { 1286 RISCVII::VLMUL LMUL = getLMUL(VT); 1287 if (LMUL == RISCVII::VLMUL::LMUL_F8 || 1288 LMUL == RISCVII::VLMUL::LMUL_F4 || 1289 LMUL == RISCVII::VLMUL::LMUL_F2 || 1290 LMUL == RISCVII::VLMUL::LMUL_1) { 1291 static_assert(RISCV::sub_vrm1_7 == RISCV::sub_vrm1_0 + 7, 1292 "Unexpected subreg numbering"); 1293 return RISCV::sub_vrm1_0 + Index; 1294 } 1295 if (LMUL == RISCVII::VLMUL::LMUL_2) { 1296 static_assert(RISCV::sub_vrm2_3 == RISCV::sub_vrm2_0 + 3, 1297 "Unexpected subreg numbering"); 1298 return RISCV::sub_vrm2_0 + Index; 1299 } 1300 if (LMUL == RISCVII::VLMUL::LMUL_4) { 1301 static_assert(RISCV::sub_vrm4_1 == RISCV::sub_vrm4_0 + 1, 1302 "Unexpected subreg numbering"); 1303 return RISCV::sub_vrm4_0 + Index; 1304 } 1305 llvm_unreachable("Invalid vector type."); 1306 } 1307 1308 unsigned RISCVTargetLowering::getRegClassIDForVecVT(MVT VT) { 1309 if (VT.getVectorElementType() == MVT::i1) 1310 return RISCV::VRRegClassID; 1311 return getRegClassIDForLMUL(getLMUL(VT)); 1312 } 1313 1314 // Attempt to decompose a subvector insert/extract between VecVT and 1315 // SubVecVT via subregister indices. Returns the subregister index that 1316 // can perform the subvector insert/extract with the given element index, as 1317 // well as the index corresponding to any leftover subvectors that must be 1318 // further inserted/extracted within the register class for SubVecVT. 1319 std::pair<unsigned, unsigned> 1320 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( 1321 MVT VecVT, MVT SubVecVT, unsigned InsertExtractIdx, 1322 const RISCVRegisterInfo *TRI) { 1323 static_assert((RISCV::VRM8RegClassID > RISCV::VRM4RegClassID && 1324 RISCV::VRM4RegClassID > RISCV::VRM2RegClassID && 1325 RISCV::VRM2RegClassID > RISCV::VRRegClassID), 1326 "Register classes not ordered"); 1327 unsigned VecRegClassID = getRegClassIDForVecVT(VecVT); 1328 unsigned SubRegClassID = getRegClassIDForVecVT(SubVecVT); 1329 // Try to compose a subregister index that takes us from the incoming 1330 // LMUL>1 register class down to the outgoing one. At each step we half 1331 // the LMUL: 1332 // nxv16i32@12 -> nxv2i32: sub_vrm4_1_then_sub_vrm2_1_then_sub_vrm1_0 1333 // Note that this is not guaranteed to find a subregister index, such as 1334 // when we are extracting from one VR type to another. 1335 unsigned SubRegIdx = RISCV::NoSubRegister; 1336 for (const unsigned RCID : 1337 {RISCV::VRM4RegClassID, RISCV::VRM2RegClassID, RISCV::VRRegClassID}) 1338 if (VecRegClassID > RCID && SubRegClassID <= RCID) { 1339 VecVT = VecVT.getHalfNumVectorElementsVT(); 1340 bool IsHi = 1341 InsertExtractIdx >= VecVT.getVectorElementCount().getKnownMinValue(); 1342 SubRegIdx = TRI->composeSubRegIndices(SubRegIdx, 1343 getSubregIndexByMVT(VecVT, IsHi)); 1344 if (IsHi) 1345 InsertExtractIdx -= VecVT.getVectorElementCount().getKnownMinValue(); 1346 } 1347 return {SubRegIdx, InsertExtractIdx}; 1348 } 1349 1350 // Permit combining of mask vectors as BUILD_VECTOR never expands to scalar 1351 // stores for those types. 1352 bool RISCVTargetLowering::mergeStoresAfterLegalization(EVT VT) const { 1353 return !Subtarget.useRVVForFixedLengthVectors() || 1354 (VT.isFixedLengthVector() && VT.getVectorElementType() == MVT::i1); 1355 } 1356 1357 bool RISCVTargetLowering::isLegalElementTypeForRVV(Type *ScalarTy) const { 1358 if (ScalarTy->isPointerTy()) 1359 return true; 1360 1361 if (ScalarTy->isIntegerTy(8) || ScalarTy->isIntegerTy(16) || 1362 ScalarTy->isIntegerTy(32)) 1363 return true; 1364 1365 if (ScalarTy->isIntegerTy(64)) 1366 return Subtarget.hasVInstructionsI64(); 1367 1368 if (ScalarTy->isHalfTy()) 1369 return Subtarget.hasVInstructionsF16(); 1370 if (ScalarTy->isFloatTy()) 1371 return Subtarget.hasVInstructionsF32(); 1372 if (ScalarTy->isDoubleTy()) 1373 return Subtarget.hasVInstructionsF64(); 1374 1375 return false; 1376 } 1377 1378 static bool useRVVForFixedLengthVectorVT(MVT VT, 1379 const RISCVSubtarget &Subtarget) { 1380 assert(VT.isFixedLengthVector() && "Expected a fixed length vector type!"); 1381 if (!Subtarget.useRVVForFixedLengthVectors()) 1382 return false; 1383 1384 // We only support a set of vector types with a consistent maximum fixed size 1385 // across all supported vector element types to avoid legalization issues. 1386 // Therefore -- since the largest is v1024i8/v512i16/etc -- the largest 1387 // fixed-length vector type we support is 1024 bytes. 1388 if (VT.getFixedSizeInBits() > 1024 * 8) 1389 return false; 1390 1391 unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits(); 1392 1393 MVT EltVT = VT.getVectorElementType(); 1394 1395 // Don't use RVV for vectors we cannot scalarize if required. 1396 switch (EltVT.SimpleTy) { 1397 // i1 is supported but has different rules. 1398 default: 1399 return false; 1400 case MVT::i1: 1401 // Masks can only use a single register. 1402 if (VT.getVectorNumElements() > MinVLen) 1403 return false; 1404 MinVLen /= 8; 1405 break; 1406 case MVT::i8: 1407 case MVT::i16: 1408 case MVT::i32: 1409 break; 1410 case MVT::i64: 1411 if (!Subtarget.hasVInstructionsI64()) 1412 return false; 1413 break; 1414 case MVT::f16: 1415 if (!Subtarget.hasVInstructionsF16()) 1416 return false; 1417 break; 1418 case MVT::f32: 1419 if (!Subtarget.hasVInstructionsF32()) 1420 return false; 1421 break; 1422 case MVT::f64: 1423 if (!Subtarget.hasVInstructionsF64()) 1424 return false; 1425 break; 1426 } 1427 1428 // Reject elements larger than ELEN. 1429 if (EltVT.getSizeInBits() > Subtarget.getMaxELENForFixedLengthVectors()) 1430 return false; 1431 1432 unsigned LMul = divideCeil(VT.getSizeInBits(), MinVLen); 1433 // Don't use RVV for types that don't fit. 1434 if (LMul > Subtarget.getMaxLMULForFixedLengthVectors()) 1435 return false; 1436 1437 // TODO: Perhaps an artificial restriction, but worth having whilst getting 1438 // the base fixed length RVV support in place. 1439 if (!VT.isPow2VectorType()) 1440 return false; 1441 1442 return true; 1443 } 1444 1445 bool RISCVTargetLowering::useRVVForFixedLengthVectorVT(MVT VT) const { 1446 return ::useRVVForFixedLengthVectorVT(VT, Subtarget); 1447 } 1448 1449 // Return the largest legal scalable vector type that matches VT's element type. 1450 static MVT getContainerForFixedLengthVector(const TargetLowering &TLI, MVT VT, 1451 const RISCVSubtarget &Subtarget) { 1452 // This may be called before legal types are setup. 1453 assert(((VT.isFixedLengthVector() && TLI.isTypeLegal(VT)) || 1454 useRVVForFixedLengthVectorVT(VT, Subtarget)) && 1455 "Expected legal fixed length vector!"); 1456 1457 unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits(); 1458 unsigned MaxELen = Subtarget.getMaxELENForFixedLengthVectors(); 1459 1460 MVT EltVT = VT.getVectorElementType(); 1461 switch (EltVT.SimpleTy) { 1462 default: 1463 llvm_unreachable("unexpected element type for RVV container"); 1464 case MVT::i1: 1465 case MVT::i8: 1466 case MVT::i16: 1467 case MVT::i32: 1468 case MVT::i64: 1469 case MVT::f16: 1470 case MVT::f32: 1471 case MVT::f64: { 1472 // We prefer to use LMUL=1 for VLEN sized types. Use fractional lmuls for 1473 // narrower types. The smallest fractional LMUL we support is 8/ELEN. Within 1474 // each fractional LMUL we support SEW between 8 and LMUL*ELEN. 1475 unsigned NumElts = 1476 (VT.getVectorNumElements() * RISCV::RVVBitsPerBlock) / MinVLen; 1477 NumElts = std::max(NumElts, RISCV::RVVBitsPerBlock / MaxELen); 1478 assert(isPowerOf2_32(NumElts) && "Expected power of 2 NumElts"); 1479 return MVT::getScalableVectorVT(EltVT, NumElts); 1480 } 1481 } 1482 } 1483 1484 static MVT getContainerForFixedLengthVector(SelectionDAG &DAG, MVT VT, 1485 const RISCVSubtarget &Subtarget) { 1486 return getContainerForFixedLengthVector(DAG.getTargetLoweringInfo(), VT, 1487 Subtarget); 1488 } 1489 1490 MVT RISCVTargetLowering::getContainerForFixedLengthVector(MVT VT) const { 1491 return ::getContainerForFixedLengthVector(*this, VT, getSubtarget()); 1492 } 1493 1494 // Grow V to consume an entire RVV register. 1495 static SDValue convertToScalableVector(EVT VT, SDValue V, SelectionDAG &DAG, 1496 const RISCVSubtarget &Subtarget) { 1497 assert(VT.isScalableVector() && 1498 "Expected to convert into a scalable vector!"); 1499 assert(V.getValueType().isFixedLengthVector() && 1500 "Expected a fixed length vector operand!"); 1501 SDLoc DL(V); 1502 SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 1503 return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, DAG.getUNDEF(VT), V, Zero); 1504 } 1505 1506 // Shrink V so it's just big enough to maintain a VT's worth of data. 1507 static SDValue convertFromScalableVector(EVT VT, SDValue V, SelectionDAG &DAG, 1508 const RISCVSubtarget &Subtarget) { 1509 assert(VT.isFixedLengthVector() && 1510 "Expected to convert into a fixed length vector!"); 1511 assert(V.getValueType().isScalableVector() && 1512 "Expected a scalable vector operand!"); 1513 SDLoc DL(V); 1514 SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 1515 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V, Zero); 1516 } 1517 1518 // Gets the two common "VL" operands: an all-ones mask and the vector length. 1519 // VecVT is a vector type, either fixed-length or scalable, and ContainerVT is 1520 // the vector type that it is contained in. 1521 static std::pair<SDValue, SDValue> 1522 getDefaultVLOps(MVT VecVT, MVT ContainerVT, SDLoc DL, SelectionDAG &DAG, 1523 const RISCVSubtarget &Subtarget) { 1524 assert(ContainerVT.isScalableVector() && "Expecting scalable container type"); 1525 MVT XLenVT = Subtarget.getXLenVT(); 1526 SDValue VL = VecVT.isFixedLengthVector() 1527 ? DAG.getConstant(VecVT.getVectorNumElements(), DL, XLenVT) 1528 : DAG.getTargetConstant(RISCV::VLMaxSentinel, DL, XLenVT); 1529 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 1530 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 1531 return {Mask, VL}; 1532 } 1533 1534 // As above but assuming the given type is a scalable vector type. 1535 static std::pair<SDValue, SDValue> 1536 getDefaultScalableVLOps(MVT VecVT, SDLoc DL, SelectionDAG &DAG, 1537 const RISCVSubtarget &Subtarget) { 1538 assert(VecVT.isScalableVector() && "Expecting a scalable vector"); 1539 return getDefaultVLOps(VecVT, VecVT, DL, DAG, Subtarget); 1540 } 1541 1542 // The state of RVV BUILD_VECTOR and VECTOR_SHUFFLE lowering is that very few 1543 // of either is (currently) supported. This can get us into an infinite loop 1544 // where we try to lower a BUILD_VECTOR as a VECTOR_SHUFFLE as a BUILD_VECTOR 1545 // as a ..., etc. 1546 // Until either (or both) of these can reliably lower any node, reporting that 1547 // we don't want to expand BUILD_VECTORs via VECTOR_SHUFFLEs at least breaks 1548 // the infinite loop. Note that this lowers BUILD_VECTOR through the stack, 1549 // which is not desirable. 1550 bool RISCVTargetLowering::shouldExpandBuildVectorWithShuffles( 1551 EVT VT, unsigned DefinedValues) const { 1552 return false; 1553 } 1554 1555 bool RISCVTargetLowering::isShuffleMaskLegal(ArrayRef<int> M, EVT VT) const { 1556 // Only splats are currently supported. 1557 if (ShuffleVectorSDNode::isSplatMask(M.data(), VT)) 1558 return true; 1559 1560 return false; 1561 } 1562 1563 static SDValue lowerFP_TO_INT_SAT(SDValue Op, SelectionDAG &DAG) { 1564 // RISCV FP-to-int conversions saturate to the destination register size, but 1565 // don't produce 0 for nan. We can use a conversion instruction and fix the 1566 // nan case with a compare and a select. 1567 SDValue Src = Op.getOperand(0); 1568 1569 EVT DstVT = Op.getValueType(); 1570 EVT SatVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1571 1572 bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT_SAT; 1573 unsigned Opc; 1574 if (SatVT == DstVT) 1575 Opc = IsSigned ? RISCVISD::FCVT_X_RTZ : RISCVISD::FCVT_XU_RTZ; 1576 else if (DstVT == MVT::i64 && SatVT == MVT::i32) 1577 Opc = IsSigned ? RISCVISD::FCVT_W_RTZ_RV64 : RISCVISD::FCVT_WU_RTZ_RV64; 1578 else 1579 return SDValue(); 1580 // FIXME: Support other SatVTs by clamping before or after the conversion. 1581 1582 SDLoc DL(Op); 1583 SDValue FpToInt = DAG.getNode(Opc, DL, DstVT, Src); 1584 1585 SDValue ZeroInt = DAG.getConstant(0, DL, DstVT); 1586 return DAG.getSelectCC(DL, Src, Src, ZeroInt, FpToInt, ISD::CondCode::SETUO); 1587 } 1588 1589 static SDValue lowerSPLAT_VECTOR(SDValue Op, SelectionDAG &DAG, 1590 const RISCVSubtarget &Subtarget) { 1591 MVT VT = Op.getSimpleValueType(); 1592 assert(VT.isFixedLengthVector() && "Unexpected vector!"); 1593 1594 MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 1595 1596 SDLoc DL(Op); 1597 SDValue Mask, VL; 1598 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 1599 1600 unsigned Opc = 1601 VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL : RISCVISD::VMV_V_X_VL; 1602 SDValue Splat = DAG.getNode(Opc, DL, ContainerVT, Op.getOperand(0), VL); 1603 return convertFromScalableVector(VT, Splat, DAG, Subtarget); 1604 } 1605 1606 struct VIDSequence { 1607 int64_t StepNumerator; 1608 unsigned StepDenominator; 1609 int64_t Addend; 1610 }; 1611 1612 // Try to match an arithmetic-sequence BUILD_VECTOR [X,X+S,X+2*S,...,X+(N-1)*S] 1613 // to the (non-zero) step S and start value X. This can be then lowered as the 1614 // RVV sequence (VID * S) + X, for example. 1615 // The step S is represented as an integer numerator divided by a positive 1616 // denominator. Note that the implementation currently only identifies 1617 // sequences in which either the numerator is +/- 1 or the denominator is 1. It 1618 // cannot detect 2/3, for example. 1619 // Note that this method will also match potentially unappealing index 1620 // sequences, like <i32 0, i32 50939494>, however it is left to the caller to 1621 // determine whether this is worth generating code for. 1622 static Optional<VIDSequence> isSimpleVIDSequence(SDValue Op) { 1623 unsigned NumElts = Op.getNumOperands(); 1624 assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unexpected BUILD_VECTOR"); 1625 if (!Op.getValueType().isInteger()) 1626 return None; 1627 1628 Optional<unsigned> SeqStepDenom; 1629 Optional<int64_t> SeqStepNum, SeqAddend; 1630 Optional<std::pair<uint64_t, unsigned>> PrevElt; 1631 unsigned EltSizeInBits = Op.getValueType().getScalarSizeInBits(); 1632 for (unsigned Idx = 0; Idx < NumElts; Idx++) { 1633 // Assume undef elements match the sequence; we just have to be careful 1634 // when interpolating across them. 1635 if (Op.getOperand(Idx).isUndef()) 1636 continue; 1637 // The BUILD_VECTOR must be all constants. 1638 if (!isa<ConstantSDNode>(Op.getOperand(Idx))) 1639 return None; 1640 1641 uint64_t Val = Op.getConstantOperandVal(Idx) & 1642 maskTrailingOnes<uint64_t>(EltSizeInBits); 1643 1644 if (PrevElt) { 1645 // Calculate the step since the last non-undef element, and ensure 1646 // it's consistent across the entire sequence. 1647 unsigned IdxDiff = Idx - PrevElt->second; 1648 int64_t ValDiff = SignExtend64(Val - PrevElt->first, EltSizeInBits); 1649 1650 // A zero-value value difference means that we're somewhere in the middle 1651 // of a fractional step, e.g. <0,0,0*,0,1,1,1,1>. Wait until we notice a 1652 // step change before evaluating the sequence. 1653 if (ValDiff != 0) { 1654 int64_t Remainder = ValDiff % IdxDiff; 1655 // Normalize the step if it's greater than 1. 1656 if (Remainder != ValDiff) { 1657 // The difference must cleanly divide the element span. 1658 if (Remainder != 0) 1659 return None; 1660 ValDiff /= IdxDiff; 1661 IdxDiff = 1; 1662 } 1663 1664 if (!SeqStepNum) 1665 SeqStepNum = ValDiff; 1666 else if (ValDiff != SeqStepNum) 1667 return None; 1668 1669 if (!SeqStepDenom) 1670 SeqStepDenom = IdxDiff; 1671 else if (IdxDiff != *SeqStepDenom) 1672 return None; 1673 } 1674 } 1675 1676 // Record and/or check any addend. 1677 if (SeqStepNum && SeqStepDenom) { 1678 uint64_t ExpectedVal = 1679 (int64_t)(Idx * (uint64_t)*SeqStepNum) / *SeqStepDenom; 1680 int64_t Addend = SignExtend64(Val - ExpectedVal, EltSizeInBits); 1681 if (!SeqAddend) 1682 SeqAddend = Addend; 1683 else if (SeqAddend != Addend) 1684 return None; 1685 } 1686 1687 // Record this non-undef element for later. 1688 if (!PrevElt || PrevElt->first != Val) 1689 PrevElt = std::make_pair(Val, Idx); 1690 } 1691 // We need to have logged both a step and an addend for this to count as 1692 // a legal index sequence. 1693 if (!SeqStepNum || !SeqStepDenom || !SeqAddend) 1694 return None; 1695 1696 return VIDSequence{*SeqStepNum, *SeqStepDenom, *SeqAddend}; 1697 } 1698 1699 static SDValue lowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG, 1700 const RISCVSubtarget &Subtarget) { 1701 MVT VT = Op.getSimpleValueType(); 1702 assert(VT.isFixedLengthVector() && "Unexpected vector!"); 1703 1704 MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 1705 1706 SDLoc DL(Op); 1707 SDValue Mask, VL; 1708 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 1709 1710 MVT XLenVT = Subtarget.getXLenVT(); 1711 unsigned NumElts = Op.getNumOperands(); 1712 1713 if (VT.getVectorElementType() == MVT::i1) { 1714 if (ISD::isBuildVectorAllZeros(Op.getNode())) { 1715 SDValue VMClr = DAG.getNode(RISCVISD::VMCLR_VL, DL, ContainerVT, VL); 1716 return convertFromScalableVector(VT, VMClr, DAG, Subtarget); 1717 } 1718 1719 if (ISD::isBuildVectorAllOnes(Op.getNode())) { 1720 SDValue VMSet = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL); 1721 return convertFromScalableVector(VT, VMSet, DAG, Subtarget); 1722 } 1723 1724 // Lower constant mask BUILD_VECTORs via an integer vector type, in 1725 // scalar integer chunks whose bit-width depends on the number of mask 1726 // bits and XLEN. 1727 // First, determine the most appropriate scalar integer type to use. This 1728 // is at most XLenVT, but may be shrunk to a smaller vector element type 1729 // according to the size of the final vector - use i8 chunks rather than 1730 // XLenVT if we're producing a v8i1. This results in more consistent 1731 // codegen across RV32 and RV64. 1732 unsigned NumViaIntegerBits = 1733 std::min(std::max(NumElts, 8u), Subtarget.getXLen()); 1734 if (ISD::isBuildVectorOfConstantSDNodes(Op.getNode())) { 1735 // If we have to use more than one INSERT_VECTOR_ELT then this 1736 // optimization is likely to increase code size; avoid peforming it in 1737 // such a case. We can use a load from a constant pool in this case. 1738 if (DAG.shouldOptForSize() && NumElts > NumViaIntegerBits) 1739 return SDValue(); 1740 // Now we can create our integer vector type. Note that it may be larger 1741 // than the resulting mask type: v4i1 would use v1i8 as its integer type. 1742 MVT IntegerViaVecVT = 1743 MVT::getVectorVT(MVT::getIntegerVT(NumViaIntegerBits), 1744 divideCeil(NumElts, NumViaIntegerBits)); 1745 1746 uint64_t Bits = 0; 1747 unsigned BitPos = 0, IntegerEltIdx = 0; 1748 SDValue Vec = DAG.getUNDEF(IntegerViaVecVT); 1749 1750 for (unsigned I = 0; I < NumElts; I++, BitPos++) { 1751 // Once we accumulate enough bits to fill our scalar type, insert into 1752 // our vector and clear our accumulated data. 1753 if (I != 0 && I % NumViaIntegerBits == 0) { 1754 if (NumViaIntegerBits <= 32) 1755 Bits = SignExtend64(Bits, 32); 1756 SDValue Elt = DAG.getConstant(Bits, DL, XLenVT); 1757 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec, 1758 Elt, DAG.getConstant(IntegerEltIdx, DL, XLenVT)); 1759 Bits = 0; 1760 BitPos = 0; 1761 IntegerEltIdx++; 1762 } 1763 SDValue V = Op.getOperand(I); 1764 bool BitValue = !V.isUndef() && cast<ConstantSDNode>(V)->getZExtValue(); 1765 Bits |= ((uint64_t)BitValue << BitPos); 1766 } 1767 1768 // Insert the (remaining) scalar value into position in our integer 1769 // vector type. 1770 if (NumViaIntegerBits <= 32) 1771 Bits = SignExtend64(Bits, 32); 1772 SDValue Elt = DAG.getConstant(Bits, DL, XLenVT); 1773 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec, Elt, 1774 DAG.getConstant(IntegerEltIdx, DL, XLenVT)); 1775 1776 if (NumElts < NumViaIntegerBits) { 1777 // If we're producing a smaller vector than our minimum legal integer 1778 // type, bitcast to the equivalent (known-legal) mask type, and extract 1779 // our final mask. 1780 assert(IntegerViaVecVT == MVT::v1i8 && "Unexpected mask vector type"); 1781 Vec = DAG.getBitcast(MVT::v8i1, Vec); 1782 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Vec, 1783 DAG.getConstant(0, DL, XLenVT)); 1784 } else { 1785 // Else we must have produced an integer type with the same size as the 1786 // mask type; bitcast for the final result. 1787 assert(VT.getSizeInBits() == IntegerViaVecVT.getSizeInBits()); 1788 Vec = DAG.getBitcast(VT, Vec); 1789 } 1790 1791 return Vec; 1792 } 1793 1794 // A BUILD_VECTOR can be lowered as a SETCC. For each fixed-length mask 1795 // vector type, we have a legal equivalently-sized i8 type, so we can use 1796 // that. 1797 MVT WideVecVT = VT.changeVectorElementType(MVT::i8); 1798 SDValue VecZero = DAG.getConstant(0, DL, WideVecVT); 1799 1800 SDValue WideVec; 1801 if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) { 1802 // For a splat, perform a scalar truncate before creating the wider 1803 // vector. 1804 assert(Splat.getValueType() == XLenVT && 1805 "Unexpected type for i1 splat value"); 1806 Splat = DAG.getNode(ISD::AND, DL, XLenVT, Splat, 1807 DAG.getConstant(1, DL, XLenVT)); 1808 WideVec = DAG.getSplatBuildVector(WideVecVT, DL, Splat); 1809 } else { 1810 SmallVector<SDValue, 8> Ops(Op->op_values()); 1811 WideVec = DAG.getBuildVector(WideVecVT, DL, Ops); 1812 SDValue VecOne = DAG.getConstant(1, DL, WideVecVT); 1813 WideVec = DAG.getNode(ISD::AND, DL, WideVecVT, WideVec, VecOne); 1814 } 1815 1816 return DAG.getSetCC(DL, VT, WideVec, VecZero, ISD::SETNE); 1817 } 1818 1819 if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) { 1820 unsigned Opc = VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL 1821 : RISCVISD::VMV_V_X_VL; 1822 Splat = DAG.getNode(Opc, DL, ContainerVT, Splat, VL); 1823 return convertFromScalableVector(VT, Splat, DAG, Subtarget); 1824 } 1825 1826 // Try and match index sequences, which we can lower to the vid instruction 1827 // with optional modifications. An all-undef vector is matched by 1828 // getSplatValue, above. 1829 if (auto SimpleVID = isSimpleVIDSequence(Op)) { 1830 int64_t StepNumerator = SimpleVID->StepNumerator; 1831 unsigned StepDenominator = SimpleVID->StepDenominator; 1832 int64_t Addend = SimpleVID->Addend; 1833 // Only emit VIDs with suitably-small steps/addends. We use imm5 is a 1834 // threshold since it's the immediate value many RVV instructions accept. 1835 if (isInt<5>(StepNumerator) && isPowerOf2_32(StepDenominator) && 1836 isInt<5>(Addend)) { 1837 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, ContainerVT, Mask, VL); 1838 // Convert right out of the scalable type so we can use standard ISD 1839 // nodes for the rest of the computation. If we used scalable types with 1840 // these, we'd lose the fixed-length vector info and generate worse 1841 // vsetvli code. 1842 VID = convertFromScalableVector(VT, VID, DAG, Subtarget); 1843 assert(StepNumerator != 0 && "Invalid step"); 1844 bool Negate = false; 1845 if (StepNumerator != 1) { 1846 int64_t SplatStepVal = StepNumerator; 1847 unsigned Opcode = ISD::MUL; 1848 if (isPowerOf2_64(std::abs(StepNumerator))) { 1849 Negate = StepNumerator < 0; 1850 Opcode = ISD::SHL; 1851 SplatStepVal = Log2_64(std::abs(StepNumerator)); 1852 } 1853 SDValue SplatStep = DAG.getSplatVector( 1854 VT, DL, DAG.getConstant(SplatStepVal, DL, XLenVT)); 1855 VID = DAG.getNode(Opcode, DL, VT, VID, SplatStep); 1856 } 1857 if (StepDenominator != 1) { 1858 SDValue SplatStep = DAG.getSplatVector( 1859 VT, DL, DAG.getConstant(Log2_64(StepDenominator), DL, XLenVT)); 1860 VID = DAG.getNode(ISD::SRL, DL, VT, VID, SplatStep); 1861 } 1862 if (Addend != 0 || Negate) { 1863 SDValue SplatAddend = 1864 DAG.getSplatVector(VT, DL, DAG.getConstant(Addend, DL, XLenVT)); 1865 VID = DAG.getNode(Negate ? ISD::SUB : ISD::ADD, DL, VT, SplatAddend, VID); 1866 } 1867 return VID; 1868 } 1869 } 1870 1871 // Attempt to detect "hidden" splats, which only reveal themselves as splats 1872 // when re-interpreted as a vector with a larger element type. For example, 1873 // v4i16 = build_vector i16 0, i16 1, i16 0, i16 1 1874 // could be instead splat as 1875 // v2i32 = build_vector i32 0x00010000, i32 0x00010000 1876 // TODO: This optimization could also work on non-constant splats, but it 1877 // would require bit-manipulation instructions to construct the splat value. 1878 SmallVector<SDValue> Sequence; 1879 unsigned EltBitSize = VT.getScalarSizeInBits(); 1880 const auto *BV = cast<BuildVectorSDNode>(Op); 1881 if (VT.isInteger() && EltBitSize < 64 && 1882 ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) && 1883 BV->getRepeatedSequence(Sequence) && 1884 (Sequence.size() * EltBitSize) <= 64) { 1885 unsigned SeqLen = Sequence.size(); 1886 MVT ViaIntVT = MVT::getIntegerVT(EltBitSize * SeqLen); 1887 MVT ViaVecVT = MVT::getVectorVT(ViaIntVT, NumElts / SeqLen); 1888 assert((ViaIntVT == MVT::i16 || ViaIntVT == MVT::i32 || 1889 ViaIntVT == MVT::i64) && 1890 "Unexpected sequence type"); 1891 1892 unsigned EltIdx = 0; 1893 uint64_t EltMask = maskTrailingOnes<uint64_t>(EltBitSize); 1894 uint64_t SplatValue = 0; 1895 // Construct the amalgamated value which can be splatted as this larger 1896 // vector type. 1897 for (const auto &SeqV : Sequence) { 1898 if (!SeqV.isUndef()) 1899 SplatValue |= ((cast<ConstantSDNode>(SeqV)->getZExtValue() & EltMask) 1900 << (EltIdx * EltBitSize)); 1901 EltIdx++; 1902 } 1903 1904 // On RV64, sign-extend from 32 to 64 bits where possible in order to 1905 // achieve better constant materializion. 1906 if (Subtarget.is64Bit() && ViaIntVT == MVT::i32) 1907 SplatValue = SignExtend64(SplatValue, 32); 1908 1909 // Since we can't introduce illegal i64 types at this stage, we can only 1910 // perform an i64 splat on RV32 if it is its own sign-extended value. That 1911 // way we can use RVV instructions to splat. 1912 assert((ViaIntVT.bitsLE(XLenVT) || 1913 (!Subtarget.is64Bit() && ViaIntVT == MVT::i64)) && 1914 "Unexpected bitcast sequence"); 1915 if (ViaIntVT.bitsLE(XLenVT) || isInt<32>(SplatValue)) { 1916 SDValue ViaVL = 1917 DAG.getConstant(ViaVecVT.getVectorNumElements(), DL, XLenVT); 1918 MVT ViaContainerVT = 1919 getContainerForFixedLengthVector(DAG, ViaVecVT, Subtarget); 1920 SDValue Splat = 1921 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ViaContainerVT, 1922 DAG.getConstant(SplatValue, DL, XLenVT), ViaVL); 1923 Splat = convertFromScalableVector(ViaVecVT, Splat, DAG, Subtarget); 1924 return DAG.getBitcast(VT, Splat); 1925 } 1926 } 1927 1928 // Try and optimize BUILD_VECTORs with "dominant values" - these are values 1929 // which constitute a large proportion of the elements. In such cases we can 1930 // splat a vector with the dominant element and make up the shortfall with 1931 // INSERT_VECTOR_ELTs. 1932 // Note that this includes vectors of 2 elements by association. The 1933 // upper-most element is the "dominant" one, allowing us to use a splat to 1934 // "insert" the upper element, and an insert of the lower element at position 1935 // 0, which improves codegen. 1936 SDValue DominantValue; 1937 unsigned MostCommonCount = 0; 1938 DenseMap<SDValue, unsigned> ValueCounts; 1939 unsigned NumUndefElts = 1940 count_if(Op->op_values(), [](const SDValue &V) { return V.isUndef(); }); 1941 1942 // Track the number of scalar loads we know we'd be inserting, estimated as 1943 // any non-zero floating-point constant. Other kinds of element are either 1944 // already in registers or are materialized on demand. The threshold at which 1945 // a vector load is more desirable than several scalar materializion and 1946 // vector-insertion instructions is not known. 1947 unsigned NumScalarLoads = 0; 1948 1949 for (SDValue V : Op->op_values()) { 1950 if (V.isUndef()) 1951 continue; 1952 1953 ValueCounts.insert(std::make_pair(V, 0)); 1954 unsigned &Count = ValueCounts[V]; 1955 1956 if (auto *CFP = dyn_cast<ConstantFPSDNode>(V)) 1957 NumScalarLoads += !CFP->isExactlyValue(+0.0); 1958 1959 // Is this value dominant? In case of a tie, prefer the highest element as 1960 // it's cheaper to insert near the beginning of a vector than it is at the 1961 // end. 1962 if (++Count >= MostCommonCount) { 1963 DominantValue = V; 1964 MostCommonCount = Count; 1965 } 1966 } 1967 1968 assert(DominantValue && "Not expecting an all-undef BUILD_VECTOR"); 1969 unsigned NumDefElts = NumElts - NumUndefElts; 1970 unsigned DominantValueCountThreshold = NumDefElts <= 2 ? 0 : NumDefElts - 2; 1971 1972 // Don't perform this optimization when optimizing for size, since 1973 // materializing elements and inserting them tends to cause code bloat. 1974 if (!DAG.shouldOptForSize() && NumScalarLoads < NumElts && 1975 ((MostCommonCount > DominantValueCountThreshold) || 1976 (ValueCounts.size() <= Log2_32(NumDefElts)))) { 1977 // Start by splatting the most common element. 1978 SDValue Vec = DAG.getSplatBuildVector(VT, DL, DominantValue); 1979 1980 DenseSet<SDValue> Processed{DominantValue}; 1981 MVT SelMaskTy = VT.changeVectorElementType(MVT::i1); 1982 for (const auto &OpIdx : enumerate(Op->ops())) { 1983 const SDValue &V = OpIdx.value(); 1984 if (V.isUndef() || !Processed.insert(V).second) 1985 continue; 1986 if (ValueCounts[V] == 1) { 1987 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Vec, V, 1988 DAG.getConstant(OpIdx.index(), DL, XLenVT)); 1989 } else { 1990 // Blend in all instances of this value using a VSELECT, using a 1991 // mask where each bit signals whether that element is the one 1992 // we're after. 1993 SmallVector<SDValue> Ops; 1994 transform(Op->op_values(), std::back_inserter(Ops), [&](SDValue V1) { 1995 return DAG.getConstant(V == V1, DL, XLenVT); 1996 }); 1997 Vec = DAG.getNode(ISD::VSELECT, DL, VT, 1998 DAG.getBuildVector(SelMaskTy, DL, Ops), 1999 DAG.getSplatBuildVector(VT, DL, V), Vec); 2000 } 2001 } 2002 2003 return Vec; 2004 } 2005 2006 return SDValue(); 2007 } 2008 2009 static SDValue splatPartsI64WithVL(const SDLoc &DL, MVT VT, SDValue Lo, 2010 SDValue Hi, SDValue VL, SelectionDAG &DAG) { 2011 if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) { 2012 int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue(); 2013 int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue(); 2014 // If Hi constant is all the same sign bit as Lo, lower this as a custom 2015 // node in order to try and match RVV vector/scalar instructions. 2016 if ((LoC >> 31) == HiC) 2017 return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Lo, VL); 2018 } 2019 2020 // Fall back to a stack store and stride x0 vector load. 2021 return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VT, Lo, Hi, VL); 2022 } 2023 2024 // Called by type legalization to handle splat of i64 on RV32. 2025 // FIXME: We can optimize this when the type has sign or zero bits in one 2026 // of the halves. 2027 static SDValue splatSplitI64WithVL(const SDLoc &DL, MVT VT, SDValue Scalar, 2028 SDValue VL, SelectionDAG &DAG) { 2029 assert(Scalar.getValueType() == MVT::i64 && "Unexpected VT!"); 2030 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 2031 DAG.getConstant(0, DL, MVT::i32)); 2032 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 2033 DAG.getConstant(1, DL, MVT::i32)); 2034 return splatPartsI64WithVL(DL, VT, Lo, Hi, VL, DAG); 2035 } 2036 2037 // This function lowers a splat of a scalar operand Splat with the vector 2038 // length VL. It ensures the final sequence is type legal, which is useful when 2039 // lowering a splat after type legalization. 2040 static SDValue lowerScalarSplat(SDValue Scalar, SDValue VL, MVT VT, SDLoc DL, 2041 SelectionDAG &DAG, 2042 const RISCVSubtarget &Subtarget) { 2043 if (VT.isFloatingPoint()) 2044 return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, VT, Scalar, VL); 2045 2046 MVT XLenVT = Subtarget.getXLenVT(); 2047 2048 // Simplest case is that the operand needs to be promoted to XLenVT. 2049 if (Scalar.getValueType().bitsLE(XLenVT)) { 2050 // If the operand is a constant, sign extend to increase our chances 2051 // of being able to use a .vi instruction. ANY_EXTEND would become a 2052 // a zero extend and the simm5 check in isel would fail. 2053 // FIXME: Should we ignore the upper bits in isel instead? 2054 unsigned ExtOpc = 2055 isa<ConstantSDNode>(Scalar) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND; 2056 Scalar = DAG.getNode(ExtOpc, DL, XLenVT, Scalar); 2057 return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Scalar, VL); 2058 } 2059 2060 assert(XLenVT == MVT::i32 && Scalar.getValueType() == MVT::i64 && 2061 "Unexpected scalar for splat lowering!"); 2062 2063 // Otherwise use the more complicated splatting algorithm. 2064 return splatSplitI64WithVL(DL, VT, Scalar, VL, DAG); 2065 } 2066 2067 static SDValue lowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG, 2068 const RISCVSubtarget &Subtarget) { 2069 SDValue V1 = Op.getOperand(0); 2070 SDValue V2 = Op.getOperand(1); 2071 SDLoc DL(Op); 2072 MVT XLenVT = Subtarget.getXLenVT(); 2073 MVT VT = Op.getSimpleValueType(); 2074 unsigned NumElts = VT.getVectorNumElements(); 2075 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode()); 2076 2077 MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 2078 2079 SDValue TrueMask, VL; 2080 std::tie(TrueMask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 2081 2082 if (SVN->isSplat()) { 2083 const int Lane = SVN->getSplatIndex(); 2084 if (Lane >= 0) { 2085 MVT SVT = VT.getVectorElementType(); 2086 2087 // Turn splatted vector load into a strided load with an X0 stride. 2088 SDValue V = V1; 2089 // Peek through CONCAT_VECTORS as VectorCombine can concat a vector 2090 // with undef. 2091 // FIXME: Peek through INSERT_SUBVECTOR, EXTRACT_SUBVECTOR, bitcasts? 2092 int Offset = Lane; 2093 if (V.getOpcode() == ISD::CONCAT_VECTORS) { 2094 int OpElements = 2095 V.getOperand(0).getSimpleValueType().getVectorNumElements(); 2096 V = V.getOperand(Offset / OpElements); 2097 Offset %= OpElements; 2098 } 2099 2100 // We need to ensure the load isn't atomic or volatile. 2101 if (ISD::isNormalLoad(V.getNode()) && cast<LoadSDNode>(V)->isSimple()) { 2102 auto *Ld = cast<LoadSDNode>(V); 2103 Offset *= SVT.getStoreSize(); 2104 SDValue NewAddr = DAG.getMemBasePlusOffset(Ld->getBasePtr(), 2105 TypeSize::Fixed(Offset), DL); 2106 2107 // If this is SEW=64 on RV32, use a strided load with a stride of x0. 2108 if (SVT.isInteger() && SVT.bitsGT(XLenVT)) { 2109 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 2110 SDValue IntID = 2111 DAG.getTargetConstant(Intrinsic::riscv_vlse, DL, XLenVT); 2112 SDValue Ops[] = {Ld->getChain(), IntID, NewAddr, 2113 DAG.getRegister(RISCV::X0, XLenVT), VL}; 2114 SDValue NewLoad = DAG.getMemIntrinsicNode( 2115 ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, SVT, 2116 DAG.getMachineFunction().getMachineMemOperand( 2117 Ld->getMemOperand(), Offset, SVT.getStoreSize())); 2118 DAG.makeEquivalentMemoryOrdering(Ld, NewLoad); 2119 return convertFromScalableVector(VT, NewLoad, DAG, Subtarget); 2120 } 2121 2122 // Otherwise use a scalar load and splat. This will give the best 2123 // opportunity to fold a splat into the operation. ISel can turn it into 2124 // the x0 strided load if we aren't able to fold away the select. 2125 if (SVT.isFloatingPoint()) 2126 V = DAG.getLoad(SVT, DL, Ld->getChain(), NewAddr, 2127 Ld->getPointerInfo().getWithOffset(Offset), 2128 Ld->getOriginalAlign(), 2129 Ld->getMemOperand()->getFlags()); 2130 else 2131 V = DAG.getExtLoad(ISD::SEXTLOAD, DL, XLenVT, Ld->getChain(), NewAddr, 2132 Ld->getPointerInfo().getWithOffset(Offset), SVT, 2133 Ld->getOriginalAlign(), 2134 Ld->getMemOperand()->getFlags()); 2135 DAG.makeEquivalentMemoryOrdering(Ld, V); 2136 2137 unsigned Opc = 2138 VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL : RISCVISD::VMV_V_X_VL; 2139 SDValue Splat = DAG.getNode(Opc, DL, ContainerVT, V, VL); 2140 return convertFromScalableVector(VT, Splat, DAG, Subtarget); 2141 } 2142 2143 V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget); 2144 assert(Lane < (int)NumElts && "Unexpected lane!"); 2145 SDValue Gather = 2146 DAG.getNode(RISCVISD::VRGATHER_VX_VL, DL, ContainerVT, V1, 2147 DAG.getConstant(Lane, DL, XLenVT), TrueMask, VL); 2148 return convertFromScalableVector(VT, Gather, DAG, Subtarget); 2149 } 2150 } 2151 2152 // Detect shuffles which can be re-expressed as vector selects; these are 2153 // shuffles in which each element in the destination is taken from an element 2154 // at the corresponding index in either source vectors. 2155 bool IsSelect = all_of(enumerate(SVN->getMask()), [&](const auto &MaskIdx) { 2156 int MaskIndex = MaskIdx.value(); 2157 return MaskIndex < 0 || MaskIdx.index() == (unsigned)MaskIndex % NumElts; 2158 }); 2159 2160 assert(!V1.isUndef() && "Unexpected shuffle canonicalization"); 2161 2162 SmallVector<SDValue> MaskVals; 2163 // As a backup, shuffles can be lowered via a vrgather instruction, possibly 2164 // merged with a second vrgather. 2165 SmallVector<SDValue> GatherIndicesLHS, GatherIndicesRHS; 2166 2167 // By default we preserve the original operand order, and use a mask to 2168 // select LHS as true and RHS as false. However, since RVV vector selects may 2169 // feature splats but only on the LHS, we may choose to invert our mask and 2170 // instead select between RHS and LHS. 2171 bool SwapOps = DAG.isSplatValue(V2) && !DAG.isSplatValue(V1); 2172 bool InvertMask = IsSelect == SwapOps; 2173 2174 // Keep a track of which non-undef indices are used by each LHS/RHS shuffle 2175 // half. 2176 DenseMap<int, unsigned> LHSIndexCounts, RHSIndexCounts; 2177 2178 // Now construct the mask that will be used by the vselect or blended 2179 // vrgather operation. For vrgathers, construct the appropriate indices into 2180 // each vector. 2181 for (int MaskIndex : SVN->getMask()) { 2182 bool SelectMaskVal = (MaskIndex < (int)NumElts) ^ InvertMask; 2183 MaskVals.push_back(DAG.getConstant(SelectMaskVal, DL, XLenVT)); 2184 if (!IsSelect) { 2185 bool IsLHSOrUndefIndex = MaskIndex < (int)NumElts; 2186 GatherIndicesLHS.push_back(IsLHSOrUndefIndex && MaskIndex >= 0 2187 ? DAG.getConstant(MaskIndex, DL, XLenVT) 2188 : DAG.getUNDEF(XLenVT)); 2189 GatherIndicesRHS.push_back( 2190 IsLHSOrUndefIndex ? DAG.getUNDEF(XLenVT) 2191 : DAG.getConstant(MaskIndex - NumElts, DL, XLenVT)); 2192 if (IsLHSOrUndefIndex && MaskIndex >= 0) 2193 ++LHSIndexCounts[MaskIndex]; 2194 if (!IsLHSOrUndefIndex) 2195 ++RHSIndexCounts[MaskIndex - NumElts]; 2196 } 2197 } 2198 2199 if (SwapOps) { 2200 std::swap(V1, V2); 2201 std::swap(GatherIndicesLHS, GatherIndicesRHS); 2202 } 2203 2204 assert(MaskVals.size() == NumElts && "Unexpected select-like shuffle"); 2205 MVT MaskVT = MVT::getVectorVT(MVT::i1, NumElts); 2206 SDValue SelectMask = DAG.getBuildVector(MaskVT, DL, MaskVals); 2207 2208 if (IsSelect) 2209 return DAG.getNode(ISD::VSELECT, DL, VT, SelectMask, V1, V2); 2210 2211 if (VT.getScalarSizeInBits() == 8 && VT.getVectorNumElements() > 256) { 2212 // On such a large vector we're unable to use i8 as the index type. 2213 // FIXME: We could promote the index to i16 and use vrgatherei16, but that 2214 // may involve vector splitting if we're already at LMUL=8, or our 2215 // user-supplied maximum fixed-length LMUL. 2216 return SDValue(); 2217 } 2218 2219 unsigned GatherVXOpc = RISCVISD::VRGATHER_VX_VL; 2220 unsigned GatherVVOpc = RISCVISD::VRGATHER_VV_VL; 2221 MVT IndexVT = VT.changeTypeToInteger(); 2222 // Since we can't introduce illegal index types at this stage, use i16 and 2223 // vrgatherei16 if the corresponding index type for plain vrgather is greater 2224 // than XLenVT. 2225 if (IndexVT.getScalarType().bitsGT(XLenVT)) { 2226 GatherVVOpc = RISCVISD::VRGATHEREI16_VV_VL; 2227 IndexVT = IndexVT.changeVectorElementType(MVT::i16); 2228 } 2229 2230 MVT IndexContainerVT = 2231 ContainerVT.changeVectorElementType(IndexVT.getScalarType()); 2232 2233 SDValue Gather; 2234 // TODO: This doesn't trigger for i64 vectors on RV32, since there we 2235 // encounter a bitcasted BUILD_VECTOR with low/high i32 values. 2236 if (SDValue SplatValue = DAG.getSplatValue(V1, /*LegalTypes*/ true)) { 2237 Gather = lowerScalarSplat(SplatValue, VL, ContainerVT, DL, DAG, Subtarget); 2238 } else { 2239 V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget); 2240 // If only one index is used, we can use a "splat" vrgather. 2241 // TODO: We can splat the most-common index and fix-up any stragglers, if 2242 // that's beneficial. 2243 if (LHSIndexCounts.size() == 1) { 2244 int SplatIndex = LHSIndexCounts.begin()->getFirst(); 2245 Gather = 2246 DAG.getNode(GatherVXOpc, DL, ContainerVT, V1, 2247 DAG.getConstant(SplatIndex, DL, XLenVT), TrueMask, VL); 2248 } else { 2249 SDValue LHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesLHS); 2250 LHSIndices = 2251 convertToScalableVector(IndexContainerVT, LHSIndices, DAG, Subtarget); 2252 2253 Gather = DAG.getNode(GatherVVOpc, DL, ContainerVT, V1, LHSIndices, 2254 TrueMask, VL); 2255 } 2256 } 2257 2258 // If a second vector operand is used by this shuffle, blend it in with an 2259 // additional vrgather. 2260 if (!V2.isUndef()) { 2261 V2 = convertToScalableVector(ContainerVT, V2, DAG, Subtarget); 2262 // If only one index is used, we can use a "splat" vrgather. 2263 // TODO: We can splat the most-common index and fix-up any stragglers, if 2264 // that's beneficial. 2265 if (RHSIndexCounts.size() == 1) { 2266 int SplatIndex = RHSIndexCounts.begin()->getFirst(); 2267 V2 = DAG.getNode(GatherVXOpc, DL, ContainerVT, V2, 2268 DAG.getConstant(SplatIndex, DL, XLenVT), TrueMask, VL); 2269 } else { 2270 SDValue RHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesRHS); 2271 RHSIndices = 2272 convertToScalableVector(IndexContainerVT, RHSIndices, DAG, Subtarget); 2273 V2 = DAG.getNode(GatherVVOpc, DL, ContainerVT, V2, RHSIndices, TrueMask, 2274 VL); 2275 } 2276 2277 MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1); 2278 SelectMask = 2279 convertToScalableVector(MaskContainerVT, SelectMask, DAG, Subtarget); 2280 2281 Gather = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, SelectMask, V2, 2282 Gather, VL); 2283 } 2284 2285 return convertFromScalableVector(VT, Gather, DAG, Subtarget); 2286 } 2287 2288 static SDValue getRVVFPExtendOrRound(SDValue Op, MVT VT, MVT ContainerVT, 2289 SDLoc DL, SelectionDAG &DAG, 2290 const RISCVSubtarget &Subtarget) { 2291 if (VT.isScalableVector()) 2292 return DAG.getFPExtendOrRound(Op, DL, VT); 2293 assert(VT.isFixedLengthVector() && 2294 "Unexpected value type for RVV FP extend/round lowering"); 2295 SDValue Mask, VL; 2296 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 2297 unsigned RVVOpc = ContainerVT.bitsGT(Op.getSimpleValueType()) 2298 ? RISCVISD::FP_EXTEND_VL 2299 : RISCVISD::FP_ROUND_VL; 2300 return DAG.getNode(RVVOpc, DL, ContainerVT, Op, Mask, VL); 2301 } 2302 2303 // While RVV has alignment restrictions, we should always be able to load as a 2304 // legal equivalently-sized byte-typed vector instead. This method is 2305 // responsible for re-expressing a ISD::LOAD via a correctly-aligned type. If 2306 // the load is already correctly-aligned, it returns SDValue(). 2307 SDValue RISCVTargetLowering::expandUnalignedRVVLoad(SDValue Op, 2308 SelectionDAG &DAG) const { 2309 auto *Load = cast<LoadSDNode>(Op); 2310 assert(Load && Load->getMemoryVT().isVector() && "Expected vector load"); 2311 2312 if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 2313 Load->getMemoryVT(), 2314 *Load->getMemOperand())) 2315 return SDValue(); 2316 2317 SDLoc DL(Op); 2318 MVT VT = Op.getSimpleValueType(); 2319 unsigned EltSizeBits = VT.getScalarSizeInBits(); 2320 assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) && 2321 "Unexpected unaligned RVV load type"); 2322 MVT NewVT = 2323 MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8)); 2324 assert(NewVT.isValid() && 2325 "Expecting equally-sized RVV vector types to be legal"); 2326 SDValue L = DAG.getLoad(NewVT, DL, Load->getChain(), Load->getBasePtr(), 2327 Load->getPointerInfo(), Load->getOriginalAlign(), 2328 Load->getMemOperand()->getFlags()); 2329 return DAG.getMergeValues({DAG.getBitcast(VT, L), L.getValue(1)}, DL); 2330 } 2331 2332 // While RVV has alignment restrictions, we should always be able to store as a 2333 // legal equivalently-sized byte-typed vector instead. This method is 2334 // responsible for re-expressing a ISD::STORE via a correctly-aligned type. It 2335 // returns SDValue() if the store is already correctly aligned. 2336 SDValue RISCVTargetLowering::expandUnalignedRVVStore(SDValue Op, 2337 SelectionDAG &DAG) const { 2338 auto *Store = cast<StoreSDNode>(Op); 2339 assert(Store && Store->getValue().getValueType().isVector() && 2340 "Expected vector store"); 2341 2342 if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 2343 Store->getMemoryVT(), 2344 *Store->getMemOperand())) 2345 return SDValue(); 2346 2347 SDLoc DL(Op); 2348 SDValue StoredVal = Store->getValue(); 2349 MVT VT = StoredVal.getSimpleValueType(); 2350 unsigned EltSizeBits = VT.getScalarSizeInBits(); 2351 assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) && 2352 "Unexpected unaligned RVV store type"); 2353 MVT NewVT = 2354 MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8)); 2355 assert(NewVT.isValid() && 2356 "Expecting equally-sized RVV vector types to be legal"); 2357 StoredVal = DAG.getBitcast(NewVT, StoredVal); 2358 return DAG.getStore(Store->getChain(), DL, StoredVal, Store->getBasePtr(), 2359 Store->getPointerInfo(), Store->getOriginalAlign(), 2360 Store->getMemOperand()->getFlags()); 2361 } 2362 2363 SDValue RISCVTargetLowering::LowerOperation(SDValue Op, 2364 SelectionDAG &DAG) const { 2365 switch (Op.getOpcode()) { 2366 default: 2367 report_fatal_error("unimplemented operand"); 2368 case ISD::GlobalAddress: 2369 return lowerGlobalAddress(Op, DAG); 2370 case ISD::BlockAddress: 2371 return lowerBlockAddress(Op, DAG); 2372 case ISD::ConstantPool: 2373 return lowerConstantPool(Op, DAG); 2374 case ISD::JumpTable: 2375 return lowerJumpTable(Op, DAG); 2376 case ISD::GlobalTLSAddress: 2377 return lowerGlobalTLSAddress(Op, DAG); 2378 case ISD::SELECT: 2379 return lowerSELECT(Op, DAG); 2380 case ISD::BRCOND: 2381 return lowerBRCOND(Op, DAG); 2382 case ISD::VASTART: 2383 return lowerVASTART(Op, DAG); 2384 case ISD::FRAMEADDR: 2385 return lowerFRAMEADDR(Op, DAG); 2386 case ISD::RETURNADDR: 2387 return lowerRETURNADDR(Op, DAG); 2388 case ISD::SHL_PARTS: 2389 return lowerShiftLeftParts(Op, DAG); 2390 case ISD::SRA_PARTS: 2391 return lowerShiftRightParts(Op, DAG, true); 2392 case ISD::SRL_PARTS: 2393 return lowerShiftRightParts(Op, DAG, false); 2394 case ISD::BITCAST: { 2395 SDLoc DL(Op); 2396 EVT VT = Op.getValueType(); 2397 SDValue Op0 = Op.getOperand(0); 2398 EVT Op0VT = Op0.getValueType(); 2399 MVT XLenVT = Subtarget.getXLenVT(); 2400 if (VT.isFixedLengthVector()) { 2401 // We can handle fixed length vector bitcasts with a simple replacement 2402 // in isel. 2403 if (Op0VT.isFixedLengthVector()) 2404 return Op; 2405 // When bitcasting from scalar to fixed-length vector, insert the scalar 2406 // into a one-element vector of the result type, and perform a vector 2407 // bitcast. 2408 if (!Op0VT.isVector()) { 2409 auto BVT = EVT::getVectorVT(*DAG.getContext(), Op0VT, 1); 2410 return DAG.getBitcast(VT, DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, BVT, 2411 DAG.getUNDEF(BVT), Op0, 2412 DAG.getConstant(0, DL, XLenVT))); 2413 } 2414 return SDValue(); 2415 } 2416 // Custom-legalize bitcasts from fixed-length vector types to scalar types 2417 // thus: bitcast the vector to a one-element vector type whose element type 2418 // is the same as the result type, and extract the first element. 2419 if (!VT.isVector() && Op0VT.isFixedLengthVector()) { 2420 LLVMContext &Context = *DAG.getContext(); 2421 SDValue BVec = DAG.getBitcast(EVT::getVectorVT(Context, VT, 1), Op0); 2422 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec, 2423 DAG.getConstant(0, DL, XLenVT)); 2424 } 2425 if (VT == MVT::f16 && Op0VT == MVT::i16 && Subtarget.hasStdExtZfh()) { 2426 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Op0); 2427 SDValue FPConv = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, NewOp0); 2428 return FPConv; 2429 } 2430 if (VT == MVT::f32 && Op0VT == MVT::i32 && Subtarget.is64Bit() && 2431 Subtarget.hasStdExtF()) { 2432 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); 2433 SDValue FPConv = 2434 DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, NewOp0); 2435 return FPConv; 2436 } 2437 return SDValue(); 2438 } 2439 case ISD::INTRINSIC_WO_CHAIN: 2440 return LowerINTRINSIC_WO_CHAIN(Op, DAG); 2441 case ISD::INTRINSIC_W_CHAIN: 2442 return LowerINTRINSIC_W_CHAIN(Op, DAG); 2443 case ISD::INTRINSIC_VOID: 2444 return LowerINTRINSIC_VOID(Op, DAG); 2445 case ISD::BSWAP: 2446 case ISD::BITREVERSE: { 2447 // Convert BSWAP/BITREVERSE to GREVI to enable GREVI combinining. 2448 assert(Subtarget.hasStdExtZbp() && "Unexpected custom legalisation"); 2449 MVT VT = Op.getSimpleValueType(); 2450 SDLoc DL(Op); 2451 // Start with the maximum immediate value which is the bitwidth - 1. 2452 unsigned Imm = VT.getSizeInBits() - 1; 2453 // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits. 2454 if (Op.getOpcode() == ISD::BSWAP) 2455 Imm &= ~0x7U; 2456 return DAG.getNode(RISCVISD::GREV, DL, VT, Op.getOperand(0), 2457 DAG.getConstant(Imm, DL, VT)); 2458 } 2459 case ISD::FSHL: 2460 case ISD::FSHR: { 2461 MVT VT = Op.getSimpleValueType(); 2462 assert(VT == Subtarget.getXLenVT() && "Unexpected custom legalization"); 2463 SDLoc DL(Op); 2464 if (Op.getOperand(2).getOpcode() == ISD::Constant) 2465 return Op; 2466 // FSL/FSR take a log2(XLen)+1 bit shift amount but XLenVT FSHL/FSHR only 2467 // use log(XLen) bits. Mask the shift amount accordingly. 2468 unsigned ShAmtWidth = Subtarget.getXLen() - 1; 2469 SDValue ShAmt = DAG.getNode(ISD::AND, DL, VT, Op.getOperand(2), 2470 DAG.getConstant(ShAmtWidth, DL, VT)); 2471 unsigned Opc = Op.getOpcode() == ISD::FSHL ? RISCVISD::FSL : RISCVISD::FSR; 2472 return DAG.getNode(Opc, DL, VT, Op.getOperand(0), Op.getOperand(1), ShAmt); 2473 } 2474 case ISD::TRUNCATE: { 2475 SDLoc DL(Op); 2476 MVT VT = Op.getSimpleValueType(); 2477 // Only custom-lower vector truncates 2478 if (!VT.isVector()) 2479 return Op; 2480 2481 // Truncates to mask types are handled differently 2482 if (VT.getVectorElementType() == MVT::i1) 2483 return lowerVectorMaskTrunc(Op, DAG); 2484 2485 // RVV only has truncates which operate from SEW*2->SEW, so lower arbitrary 2486 // truncates as a series of "RISCVISD::TRUNCATE_VECTOR_VL" nodes which 2487 // truncate by one power of two at a time. 2488 MVT DstEltVT = VT.getVectorElementType(); 2489 2490 SDValue Src = Op.getOperand(0); 2491 MVT SrcVT = Src.getSimpleValueType(); 2492 MVT SrcEltVT = SrcVT.getVectorElementType(); 2493 2494 assert(DstEltVT.bitsLT(SrcEltVT) && 2495 isPowerOf2_64(DstEltVT.getSizeInBits()) && 2496 isPowerOf2_64(SrcEltVT.getSizeInBits()) && 2497 "Unexpected vector truncate lowering"); 2498 2499 MVT ContainerVT = SrcVT; 2500 if (SrcVT.isFixedLengthVector()) { 2501 ContainerVT = getContainerForFixedLengthVector(SrcVT); 2502 Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget); 2503 } 2504 2505 SDValue Result = Src; 2506 SDValue Mask, VL; 2507 std::tie(Mask, VL) = 2508 getDefaultVLOps(SrcVT, ContainerVT, DL, DAG, Subtarget); 2509 LLVMContext &Context = *DAG.getContext(); 2510 const ElementCount Count = ContainerVT.getVectorElementCount(); 2511 do { 2512 SrcEltVT = MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2); 2513 EVT ResultVT = EVT::getVectorVT(Context, SrcEltVT, Count); 2514 Result = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, ResultVT, Result, 2515 Mask, VL); 2516 } while (SrcEltVT != DstEltVT); 2517 2518 if (SrcVT.isFixedLengthVector()) 2519 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 2520 2521 return Result; 2522 } 2523 case ISD::ANY_EXTEND: 2524 case ISD::ZERO_EXTEND: 2525 if (Op.getOperand(0).getValueType().isVector() && 2526 Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) 2527 return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ 1); 2528 return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VZEXT_VL); 2529 case ISD::SIGN_EXTEND: 2530 if (Op.getOperand(0).getValueType().isVector() && 2531 Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) 2532 return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ -1); 2533 return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VSEXT_VL); 2534 case ISD::SPLAT_VECTOR_PARTS: 2535 return lowerSPLAT_VECTOR_PARTS(Op, DAG); 2536 case ISD::INSERT_VECTOR_ELT: 2537 return lowerINSERT_VECTOR_ELT(Op, DAG); 2538 case ISD::EXTRACT_VECTOR_ELT: 2539 return lowerEXTRACT_VECTOR_ELT(Op, DAG); 2540 case ISD::VSCALE: { 2541 MVT VT = Op.getSimpleValueType(); 2542 SDLoc DL(Op); 2543 SDValue VLENB = DAG.getNode(RISCVISD::READ_VLENB, DL, VT); 2544 // We define our scalable vector types for lmul=1 to use a 64 bit known 2545 // minimum size. e.g. <vscale x 2 x i32>. VLENB is in bytes so we calculate 2546 // vscale as VLENB / 8. 2547 assert(RISCV::RVVBitsPerBlock == 64 && "Unexpected bits per block!"); 2548 if (isa<ConstantSDNode>(Op.getOperand(0))) { 2549 // We assume VLENB is a multiple of 8. We manually choose the best shift 2550 // here because SimplifyDemandedBits isn't always able to simplify it. 2551 uint64_t Val = Op.getConstantOperandVal(0); 2552 if (isPowerOf2_64(Val)) { 2553 uint64_t Log2 = Log2_64(Val); 2554 if (Log2 < 3) 2555 return DAG.getNode(ISD::SRL, DL, VT, VLENB, 2556 DAG.getConstant(3 - Log2, DL, VT)); 2557 if (Log2 > 3) 2558 return DAG.getNode(ISD::SHL, DL, VT, VLENB, 2559 DAG.getConstant(Log2 - 3, DL, VT)); 2560 return VLENB; 2561 } 2562 // If the multiplier is a multiple of 8, scale it down to avoid needing 2563 // to shift the VLENB value. 2564 if ((Val % 8) == 0) 2565 return DAG.getNode(ISD::MUL, DL, VT, VLENB, 2566 DAG.getConstant(Val / 8, DL, VT)); 2567 } 2568 2569 SDValue VScale = DAG.getNode(ISD::SRL, DL, VT, VLENB, 2570 DAG.getConstant(3, DL, VT)); 2571 return DAG.getNode(ISD::MUL, DL, VT, VScale, Op.getOperand(0)); 2572 } 2573 case ISD::FP_EXTEND: { 2574 // RVV can only do fp_extend to types double the size as the source. We 2575 // custom-lower f16->f64 extensions to two hops of ISD::FP_EXTEND, going 2576 // via f32. 2577 SDLoc DL(Op); 2578 MVT VT = Op.getSimpleValueType(); 2579 SDValue Src = Op.getOperand(0); 2580 MVT SrcVT = Src.getSimpleValueType(); 2581 2582 // Prepare any fixed-length vector operands. 2583 MVT ContainerVT = VT; 2584 if (SrcVT.isFixedLengthVector()) { 2585 ContainerVT = getContainerForFixedLengthVector(VT); 2586 MVT SrcContainerVT = 2587 ContainerVT.changeVectorElementType(SrcVT.getVectorElementType()); 2588 Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); 2589 } 2590 2591 if (!VT.isVector() || VT.getVectorElementType() != MVT::f64 || 2592 SrcVT.getVectorElementType() != MVT::f16) { 2593 // For scalable vectors, we only need to close the gap between 2594 // vXf16->vXf64. 2595 if (!VT.isFixedLengthVector()) 2596 return Op; 2597 // For fixed-length vectors, lower the FP_EXTEND to a custom "VL" version. 2598 Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget); 2599 return convertFromScalableVector(VT, Src, DAG, Subtarget); 2600 } 2601 2602 MVT InterVT = VT.changeVectorElementType(MVT::f32); 2603 MVT InterContainerVT = ContainerVT.changeVectorElementType(MVT::f32); 2604 SDValue IntermediateExtend = getRVVFPExtendOrRound( 2605 Src, InterVT, InterContainerVT, DL, DAG, Subtarget); 2606 2607 SDValue Extend = getRVVFPExtendOrRound(IntermediateExtend, VT, ContainerVT, 2608 DL, DAG, Subtarget); 2609 if (VT.isFixedLengthVector()) 2610 return convertFromScalableVector(VT, Extend, DAG, Subtarget); 2611 return Extend; 2612 } 2613 case ISD::FP_ROUND: { 2614 // RVV can only do fp_round to types half the size as the source. We 2615 // custom-lower f64->f16 rounds via RVV's round-to-odd float 2616 // conversion instruction. 2617 SDLoc DL(Op); 2618 MVT VT = Op.getSimpleValueType(); 2619 SDValue Src = Op.getOperand(0); 2620 MVT SrcVT = Src.getSimpleValueType(); 2621 2622 // Prepare any fixed-length vector operands. 2623 MVT ContainerVT = VT; 2624 if (VT.isFixedLengthVector()) { 2625 MVT SrcContainerVT = getContainerForFixedLengthVector(SrcVT); 2626 ContainerVT = 2627 SrcContainerVT.changeVectorElementType(VT.getVectorElementType()); 2628 Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); 2629 } 2630 2631 if (!VT.isVector() || VT.getVectorElementType() != MVT::f16 || 2632 SrcVT.getVectorElementType() != MVT::f64) { 2633 // For scalable vectors, we only need to close the gap between 2634 // vXf64<->vXf16. 2635 if (!VT.isFixedLengthVector()) 2636 return Op; 2637 // For fixed-length vectors, lower the FP_ROUND to a custom "VL" version. 2638 Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget); 2639 return convertFromScalableVector(VT, Src, DAG, Subtarget); 2640 } 2641 2642 SDValue Mask, VL; 2643 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 2644 2645 MVT InterVT = ContainerVT.changeVectorElementType(MVT::f32); 2646 SDValue IntermediateRound = 2647 DAG.getNode(RISCVISD::VFNCVT_ROD_VL, DL, InterVT, Src, Mask, VL); 2648 SDValue Round = getRVVFPExtendOrRound(IntermediateRound, VT, ContainerVT, 2649 DL, DAG, Subtarget); 2650 2651 if (VT.isFixedLengthVector()) 2652 return convertFromScalableVector(VT, Round, DAG, Subtarget); 2653 return Round; 2654 } 2655 case ISD::FP_TO_SINT: 2656 case ISD::FP_TO_UINT: 2657 case ISD::SINT_TO_FP: 2658 case ISD::UINT_TO_FP: { 2659 // RVV can only do fp<->int conversions to types half/double the size as 2660 // the source. We custom-lower any conversions that do two hops into 2661 // sequences. 2662 MVT VT = Op.getSimpleValueType(); 2663 if (!VT.isVector()) 2664 return Op; 2665 SDLoc DL(Op); 2666 SDValue Src = Op.getOperand(0); 2667 MVT EltVT = VT.getVectorElementType(); 2668 MVT SrcVT = Src.getSimpleValueType(); 2669 MVT SrcEltVT = SrcVT.getVectorElementType(); 2670 unsigned EltSize = EltVT.getSizeInBits(); 2671 unsigned SrcEltSize = SrcEltVT.getSizeInBits(); 2672 assert(isPowerOf2_32(EltSize) && isPowerOf2_32(SrcEltSize) && 2673 "Unexpected vector element types"); 2674 2675 bool IsInt2FP = SrcEltVT.isInteger(); 2676 // Widening conversions 2677 if (EltSize > SrcEltSize && (EltSize / SrcEltSize >= 4)) { 2678 if (IsInt2FP) { 2679 // Do a regular integer sign/zero extension then convert to float. 2680 MVT IVecVT = MVT::getVectorVT(MVT::getIntegerVT(EltVT.getSizeInBits()), 2681 VT.getVectorElementCount()); 2682 unsigned ExtOpcode = Op.getOpcode() == ISD::UINT_TO_FP 2683 ? ISD::ZERO_EXTEND 2684 : ISD::SIGN_EXTEND; 2685 SDValue Ext = DAG.getNode(ExtOpcode, DL, IVecVT, Src); 2686 return DAG.getNode(Op.getOpcode(), DL, VT, Ext); 2687 } 2688 // FP2Int 2689 assert(SrcEltVT == MVT::f16 && "Unexpected FP_TO_[US]INT lowering"); 2690 // Do one doubling fp_extend then complete the operation by converting 2691 // to int. 2692 MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount()); 2693 SDValue FExt = DAG.getFPExtendOrRound(Src, DL, InterimFVT); 2694 return DAG.getNode(Op.getOpcode(), DL, VT, FExt); 2695 } 2696 2697 // Narrowing conversions 2698 if (SrcEltSize > EltSize && (SrcEltSize / EltSize >= 4)) { 2699 if (IsInt2FP) { 2700 // One narrowing int_to_fp, then an fp_round. 2701 assert(EltVT == MVT::f16 && "Unexpected [US]_TO_FP lowering"); 2702 MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount()); 2703 SDValue Int2FP = DAG.getNode(Op.getOpcode(), DL, InterimFVT, Src); 2704 return DAG.getFPExtendOrRound(Int2FP, DL, VT); 2705 } 2706 // FP2Int 2707 // One narrowing fp_to_int, then truncate the integer. If the float isn't 2708 // representable by the integer, the result is poison. 2709 MVT IVecVT = 2710 MVT::getVectorVT(MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2), 2711 VT.getVectorElementCount()); 2712 SDValue FP2Int = DAG.getNode(Op.getOpcode(), DL, IVecVT, Src); 2713 return DAG.getNode(ISD::TRUNCATE, DL, VT, FP2Int); 2714 } 2715 2716 // Scalable vectors can exit here. Patterns will handle equally-sized 2717 // conversions halving/doubling ones. 2718 if (!VT.isFixedLengthVector()) 2719 return Op; 2720 2721 // For fixed-length vectors we lower to a custom "VL" node. 2722 unsigned RVVOpc = 0; 2723 switch (Op.getOpcode()) { 2724 default: 2725 llvm_unreachable("Impossible opcode"); 2726 case ISD::FP_TO_SINT: 2727 RVVOpc = RISCVISD::FP_TO_SINT_VL; 2728 break; 2729 case ISD::FP_TO_UINT: 2730 RVVOpc = RISCVISD::FP_TO_UINT_VL; 2731 break; 2732 case ISD::SINT_TO_FP: 2733 RVVOpc = RISCVISD::SINT_TO_FP_VL; 2734 break; 2735 case ISD::UINT_TO_FP: 2736 RVVOpc = RISCVISD::UINT_TO_FP_VL; 2737 break; 2738 } 2739 2740 MVT ContainerVT, SrcContainerVT; 2741 // Derive the reference container type from the larger vector type. 2742 if (SrcEltSize > EltSize) { 2743 SrcContainerVT = getContainerForFixedLengthVector(SrcVT); 2744 ContainerVT = 2745 SrcContainerVT.changeVectorElementType(VT.getVectorElementType()); 2746 } else { 2747 ContainerVT = getContainerForFixedLengthVector(VT); 2748 SrcContainerVT = ContainerVT.changeVectorElementType(SrcEltVT); 2749 } 2750 2751 SDValue Mask, VL; 2752 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 2753 2754 Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); 2755 Src = DAG.getNode(RVVOpc, DL, ContainerVT, Src, Mask, VL); 2756 return convertFromScalableVector(VT, Src, DAG, Subtarget); 2757 } 2758 case ISD::FP_TO_SINT_SAT: 2759 case ISD::FP_TO_UINT_SAT: 2760 return lowerFP_TO_INT_SAT(Op, DAG); 2761 case ISD::VECREDUCE_ADD: 2762 case ISD::VECREDUCE_UMAX: 2763 case ISD::VECREDUCE_SMAX: 2764 case ISD::VECREDUCE_UMIN: 2765 case ISD::VECREDUCE_SMIN: 2766 return lowerVECREDUCE(Op, DAG); 2767 case ISD::VECREDUCE_AND: 2768 case ISD::VECREDUCE_OR: 2769 case ISD::VECREDUCE_XOR: 2770 if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) 2771 return lowerVectorMaskVecReduction(Op, DAG, /*IsVP*/ false); 2772 return lowerVECREDUCE(Op, DAG); 2773 case ISD::VECREDUCE_FADD: 2774 case ISD::VECREDUCE_SEQ_FADD: 2775 case ISD::VECREDUCE_FMIN: 2776 case ISD::VECREDUCE_FMAX: 2777 return lowerFPVECREDUCE(Op, DAG); 2778 case ISD::VP_REDUCE_ADD: 2779 case ISD::VP_REDUCE_UMAX: 2780 case ISD::VP_REDUCE_SMAX: 2781 case ISD::VP_REDUCE_UMIN: 2782 case ISD::VP_REDUCE_SMIN: 2783 case ISD::VP_REDUCE_FADD: 2784 case ISD::VP_REDUCE_SEQ_FADD: 2785 case ISD::VP_REDUCE_FMIN: 2786 case ISD::VP_REDUCE_FMAX: 2787 return lowerVPREDUCE(Op, DAG); 2788 case ISD::VP_REDUCE_AND: 2789 case ISD::VP_REDUCE_OR: 2790 case ISD::VP_REDUCE_XOR: 2791 if (Op.getOperand(1).getValueType().getVectorElementType() == MVT::i1) 2792 return lowerVectorMaskVecReduction(Op, DAG, /*IsVP*/ true); 2793 return lowerVPREDUCE(Op, DAG); 2794 case ISD::INSERT_SUBVECTOR: 2795 return lowerINSERT_SUBVECTOR(Op, DAG); 2796 case ISD::EXTRACT_SUBVECTOR: 2797 return lowerEXTRACT_SUBVECTOR(Op, DAG); 2798 case ISD::STEP_VECTOR: 2799 return lowerSTEP_VECTOR(Op, DAG); 2800 case ISD::VECTOR_REVERSE: 2801 return lowerVECTOR_REVERSE(Op, DAG); 2802 case ISD::BUILD_VECTOR: 2803 return lowerBUILD_VECTOR(Op, DAG, Subtarget); 2804 case ISD::SPLAT_VECTOR: 2805 if (Op.getValueType().getVectorElementType() == MVT::i1) 2806 return lowerVectorMaskSplat(Op, DAG); 2807 return lowerSPLAT_VECTOR(Op, DAG, Subtarget); 2808 case ISD::VECTOR_SHUFFLE: 2809 return lowerVECTOR_SHUFFLE(Op, DAG, Subtarget); 2810 case ISD::CONCAT_VECTORS: { 2811 // Split CONCAT_VECTORS into a series of INSERT_SUBVECTOR nodes. This is 2812 // better than going through the stack, as the default expansion does. 2813 SDLoc DL(Op); 2814 MVT VT = Op.getSimpleValueType(); 2815 unsigned NumOpElts = 2816 Op.getOperand(0).getSimpleValueType().getVectorMinNumElements(); 2817 SDValue Vec = DAG.getUNDEF(VT); 2818 for (const auto &OpIdx : enumerate(Op->ops())) 2819 Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, Vec, OpIdx.value(), 2820 DAG.getIntPtrConstant(OpIdx.index() * NumOpElts, DL)); 2821 return Vec; 2822 } 2823 case ISD::LOAD: 2824 if (auto V = expandUnalignedRVVLoad(Op, DAG)) 2825 return V; 2826 if (Op.getValueType().isFixedLengthVector()) 2827 return lowerFixedLengthVectorLoadToRVV(Op, DAG); 2828 return Op; 2829 case ISD::STORE: 2830 if (auto V = expandUnalignedRVVStore(Op, DAG)) 2831 return V; 2832 if (Op.getOperand(1).getValueType().isFixedLengthVector()) 2833 return lowerFixedLengthVectorStoreToRVV(Op, DAG); 2834 return Op; 2835 case ISD::MLOAD: 2836 case ISD::VP_LOAD: 2837 return lowerMaskedLoad(Op, DAG); 2838 case ISD::MSTORE: 2839 case ISD::VP_STORE: 2840 return lowerMaskedStore(Op, DAG); 2841 case ISD::SETCC: 2842 return lowerFixedLengthVectorSetccToRVV(Op, DAG); 2843 case ISD::ADD: 2844 return lowerToScalableOp(Op, DAG, RISCVISD::ADD_VL); 2845 case ISD::SUB: 2846 return lowerToScalableOp(Op, DAG, RISCVISD::SUB_VL); 2847 case ISD::MUL: 2848 return lowerToScalableOp(Op, DAG, RISCVISD::MUL_VL); 2849 case ISD::MULHS: 2850 return lowerToScalableOp(Op, DAG, RISCVISD::MULHS_VL); 2851 case ISD::MULHU: 2852 return lowerToScalableOp(Op, DAG, RISCVISD::MULHU_VL); 2853 case ISD::AND: 2854 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMAND_VL, 2855 RISCVISD::AND_VL); 2856 case ISD::OR: 2857 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMOR_VL, 2858 RISCVISD::OR_VL); 2859 case ISD::XOR: 2860 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMXOR_VL, 2861 RISCVISD::XOR_VL); 2862 case ISD::SDIV: 2863 return lowerToScalableOp(Op, DAG, RISCVISD::SDIV_VL); 2864 case ISD::SREM: 2865 return lowerToScalableOp(Op, DAG, RISCVISD::SREM_VL); 2866 case ISD::UDIV: 2867 return lowerToScalableOp(Op, DAG, RISCVISD::UDIV_VL); 2868 case ISD::UREM: 2869 return lowerToScalableOp(Op, DAG, RISCVISD::UREM_VL); 2870 case ISD::SHL: 2871 case ISD::SRA: 2872 case ISD::SRL: 2873 if (Op.getSimpleValueType().isFixedLengthVector()) 2874 return lowerFixedLengthVectorShiftToRVV(Op, DAG); 2875 // This can be called for an i32 shift amount that needs to be promoted. 2876 assert(Op.getOperand(1).getValueType() == MVT::i32 && Subtarget.is64Bit() && 2877 "Unexpected custom legalisation"); 2878 return SDValue(); 2879 case ISD::SADDSAT: 2880 return lowerToScalableOp(Op, DAG, RISCVISD::SADDSAT_VL); 2881 case ISD::UADDSAT: 2882 return lowerToScalableOp(Op, DAG, RISCVISD::UADDSAT_VL); 2883 case ISD::SSUBSAT: 2884 return lowerToScalableOp(Op, DAG, RISCVISD::SSUBSAT_VL); 2885 case ISD::USUBSAT: 2886 return lowerToScalableOp(Op, DAG, RISCVISD::USUBSAT_VL); 2887 case ISD::FADD: 2888 return lowerToScalableOp(Op, DAG, RISCVISD::FADD_VL); 2889 case ISD::FSUB: 2890 return lowerToScalableOp(Op, DAG, RISCVISD::FSUB_VL); 2891 case ISD::FMUL: 2892 return lowerToScalableOp(Op, DAG, RISCVISD::FMUL_VL); 2893 case ISD::FDIV: 2894 return lowerToScalableOp(Op, DAG, RISCVISD::FDIV_VL); 2895 case ISD::FNEG: 2896 return lowerToScalableOp(Op, DAG, RISCVISD::FNEG_VL); 2897 case ISD::FABS: 2898 return lowerToScalableOp(Op, DAG, RISCVISD::FABS_VL); 2899 case ISD::FSQRT: 2900 return lowerToScalableOp(Op, DAG, RISCVISD::FSQRT_VL); 2901 case ISD::FMA: 2902 return lowerToScalableOp(Op, DAG, RISCVISD::FMA_VL); 2903 case ISD::SMIN: 2904 return lowerToScalableOp(Op, DAG, RISCVISD::SMIN_VL); 2905 case ISD::SMAX: 2906 return lowerToScalableOp(Op, DAG, RISCVISD::SMAX_VL); 2907 case ISD::UMIN: 2908 return lowerToScalableOp(Op, DAG, RISCVISD::UMIN_VL); 2909 case ISD::UMAX: 2910 return lowerToScalableOp(Op, DAG, RISCVISD::UMAX_VL); 2911 case ISD::FMINNUM: 2912 return lowerToScalableOp(Op, DAG, RISCVISD::FMINNUM_VL); 2913 case ISD::FMAXNUM: 2914 return lowerToScalableOp(Op, DAG, RISCVISD::FMAXNUM_VL); 2915 case ISD::ABS: 2916 return lowerABS(Op, DAG); 2917 case ISD::VSELECT: 2918 return lowerFixedLengthVectorSelectToRVV(Op, DAG); 2919 case ISD::FCOPYSIGN: 2920 return lowerFixedLengthVectorFCOPYSIGNToRVV(Op, DAG); 2921 case ISD::MGATHER: 2922 case ISD::VP_GATHER: 2923 return lowerMaskedGather(Op, DAG); 2924 case ISD::MSCATTER: 2925 case ISD::VP_SCATTER: 2926 return lowerMaskedScatter(Op, DAG); 2927 case ISD::FLT_ROUNDS_: 2928 return lowerGET_ROUNDING(Op, DAG); 2929 case ISD::SET_ROUNDING: 2930 return lowerSET_ROUNDING(Op, DAG); 2931 case ISD::VP_ADD: 2932 return lowerVPOp(Op, DAG, RISCVISD::ADD_VL); 2933 case ISD::VP_SUB: 2934 return lowerVPOp(Op, DAG, RISCVISD::SUB_VL); 2935 case ISD::VP_MUL: 2936 return lowerVPOp(Op, DAG, RISCVISD::MUL_VL); 2937 case ISD::VP_SDIV: 2938 return lowerVPOp(Op, DAG, RISCVISD::SDIV_VL); 2939 case ISD::VP_UDIV: 2940 return lowerVPOp(Op, DAG, RISCVISD::UDIV_VL); 2941 case ISD::VP_SREM: 2942 return lowerVPOp(Op, DAG, RISCVISD::SREM_VL); 2943 case ISD::VP_UREM: 2944 return lowerVPOp(Op, DAG, RISCVISD::UREM_VL); 2945 case ISD::VP_AND: 2946 return lowerVPOp(Op, DAG, RISCVISD::AND_VL); 2947 case ISD::VP_OR: 2948 return lowerVPOp(Op, DAG, RISCVISD::OR_VL); 2949 case ISD::VP_XOR: 2950 return lowerVPOp(Op, DAG, RISCVISD::XOR_VL); 2951 case ISD::VP_ASHR: 2952 return lowerVPOp(Op, DAG, RISCVISD::SRA_VL); 2953 case ISD::VP_LSHR: 2954 return lowerVPOp(Op, DAG, RISCVISD::SRL_VL); 2955 case ISD::VP_SHL: 2956 return lowerVPOp(Op, DAG, RISCVISD::SHL_VL); 2957 case ISD::VP_FADD: 2958 return lowerVPOp(Op, DAG, RISCVISD::FADD_VL); 2959 case ISD::VP_FSUB: 2960 return lowerVPOp(Op, DAG, RISCVISD::FSUB_VL); 2961 case ISD::VP_FMUL: 2962 return lowerVPOp(Op, DAG, RISCVISD::FMUL_VL); 2963 case ISD::VP_FDIV: 2964 return lowerVPOp(Op, DAG, RISCVISD::FDIV_VL); 2965 } 2966 } 2967 2968 static SDValue getTargetNode(GlobalAddressSDNode *N, SDLoc DL, EVT Ty, 2969 SelectionDAG &DAG, unsigned Flags) { 2970 return DAG.getTargetGlobalAddress(N->getGlobal(), DL, Ty, 0, Flags); 2971 } 2972 2973 static SDValue getTargetNode(BlockAddressSDNode *N, SDLoc DL, EVT Ty, 2974 SelectionDAG &DAG, unsigned Flags) { 2975 return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, N->getOffset(), 2976 Flags); 2977 } 2978 2979 static SDValue getTargetNode(ConstantPoolSDNode *N, SDLoc DL, EVT Ty, 2980 SelectionDAG &DAG, unsigned Flags) { 2981 return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlign(), 2982 N->getOffset(), Flags); 2983 } 2984 2985 static SDValue getTargetNode(JumpTableSDNode *N, SDLoc DL, EVT Ty, 2986 SelectionDAG &DAG, unsigned Flags) { 2987 return DAG.getTargetJumpTable(N->getIndex(), Ty, Flags); 2988 } 2989 2990 template <class NodeTy> 2991 SDValue RISCVTargetLowering::getAddr(NodeTy *N, SelectionDAG &DAG, 2992 bool IsLocal) const { 2993 SDLoc DL(N); 2994 EVT Ty = getPointerTy(DAG.getDataLayout()); 2995 2996 if (isPositionIndependent()) { 2997 SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0); 2998 if (IsLocal) 2999 // Use PC-relative addressing to access the symbol. This generates the 3000 // pattern (PseudoLLA sym), which expands to (addi (auipc %pcrel_hi(sym)) 3001 // %pcrel_lo(auipc)). 3002 return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0); 3003 3004 // Use PC-relative addressing to access the GOT for this symbol, then load 3005 // the address from the GOT. This generates the pattern (PseudoLA sym), 3006 // which expands to (ld (addi (auipc %got_pcrel_hi(sym)) %pcrel_lo(auipc))). 3007 return SDValue(DAG.getMachineNode(RISCV::PseudoLA, DL, Ty, Addr), 0); 3008 } 3009 3010 switch (getTargetMachine().getCodeModel()) { 3011 default: 3012 report_fatal_error("Unsupported code model for lowering"); 3013 case CodeModel::Small: { 3014 // Generate a sequence for accessing addresses within the first 2 GiB of 3015 // address space. This generates the pattern (addi (lui %hi(sym)) %lo(sym)). 3016 SDValue AddrHi = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_HI); 3017 SDValue AddrLo = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_LO); 3018 SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0); 3019 return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNHi, AddrLo), 0); 3020 } 3021 case CodeModel::Medium: { 3022 // Generate a sequence for accessing addresses within any 2GiB range within 3023 // the address space. This generates the pattern (PseudoLLA sym), which 3024 // expands to (addi (auipc %pcrel_hi(sym)) %pcrel_lo(auipc)). 3025 SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0); 3026 return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0); 3027 } 3028 } 3029 } 3030 3031 SDValue RISCVTargetLowering::lowerGlobalAddress(SDValue Op, 3032 SelectionDAG &DAG) const { 3033 SDLoc DL(Op); 3034 EVT Ty = Op.getValueType(); 3035 GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op); 3036 int64_t Offset = N->getOffset(); 3037 MVT XLenVT = Subtarget.getXLenVT(); 3038 3039 const GlobalValue *GV = N->getGlobal(); 3040 bool IsLocal = getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV); 3041 SDValue Addr = getAddr(N, DAG, IsLocal); 3042 3043 // In order to maximise the opportunity for common subexpression elimination, 3044 // emit a separate ADD node for the global address offset instead of folding 3045 // it in the global address node. Later peephole optimisations may choose to 3046 // fold it back in when profitable. 3047 if (Offset != 0) 3048 return DAG.getNode(ISD::ADD, DL, Ty, Addr, 3049 DAG.getConstant(Offset, DL, XLenVT)); 3050 return Addr; 3051 } 3052 3053 SDValue RISCVTargetLowering::lowerBlockAddress(SDValue Op, 3054 SelectionDAG &DAG) const { 3055 BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op); 3056 3057 return getAddr(N, DAG); 3058 } 3059 3060 SDValue RISCVTargetLowering::lowerConstantPool(SDValue Op, 3061 SelectionDAG &DAG) const { 3062 ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op); 3063 3064 return getAddr(N, DAG); 3065 } 3066 3067 SDValue RISCVTargetLowering::lowerJumpTable(SDValue Op, 3068 SelectionDAG &DAG) const { 3069 JumpTableSDNode *N = cast<JumpTableSDNode>(Op); 3070 3071 return getAddr(N, DAG); 3072 } 3073 3074 SDValue RISCVTargetLowering::getStaticTLSAddr(GlobalAddressSDNode *N, 3075 SelectionDAG &DAG, 3076 bool UseGOT) const { 3077 SDLoc DL(N); 3078 EVT Ty = getPointerTy(DAG.getDataLayout()); 3079 const GlobalValue *GV = N->getGlobal(); 3080 MVT XLenVT = Subtarget.getXLenVT(); 3081 3082 if (UseGOT) { 3083 // Use PC-relative addressing to access the GOT for this TLS symbol, then 3084 // load the address from the GOT and add the thread pointer. This generates 3085 // the pattern (PseudoLA_TLS_IE sym), which expands to 3086 // (ld (auipc %tls_ie_pcrel_hi(sym)) %pcrel_lo(auipc)). 3087 SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0); 3088 SDValue Load = 3089 SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_IE, DL, Ty, Addr), 0); 3090 3091 // Add the thread pointer. 3092 SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT); 3093 return DAG.getNode(ISD::ADD, DL, Ty, Load, TPReg); 3094 } 3095 3096 // Generate a sequence for accessing the address relative to the thread 3097 // pointer, with the appropriate adjustment for the thread pointer offset. 3098 // This generates the pattern 3099 // (add (add_tprel (lui %tprel_hi(sym)) tp %tprel_add(sym)) %tprel_lo(sym)) 3100 SDValue AddrHi = 3101 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_HI); 3102 SDValue AddrAdd = 3103 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_ADD); 3104 SDValue AddrLo = 3105 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_LO); 3106 3107 SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0); 3108 SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT); 3109 SDValue MNAdd = SDValue( 3110 DAG.getMachineNode(RISCV::PseudoAddTPRel, DL, Ty, MNHi, TPReg, AddrAdd), 3111 0); 3112 return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNAdd, AddrLo), 0); 3113 } 3114 3115 SDValue RISCVTargetLowering::getDynamicTLSAddr(GlobalAddressSDNode *N, 3116 SelectionDAG &DAG) const { 3117 SDLoc DL(N); 3118 EVT Ty = getPointerTy(DAG.getDataLayout()); 3119 IntegerType *CallTy = Type::getIntNTy(*DAG.getContext(), Ty.getSizeInBits()); 3120 const GlobalValue *GV = N->getGlobal(); 3121 3122 // Use a PC-relative addressing mode to access the global dynamic GOT address. 3123 // This generates the pattern (PseudoLA_TLS_GD sym), which expands to 3124 // (addi (auipc %tls_gd_pcrel_hi(sym)) %pcrel_lo(auipc)). 3125 SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0); 3126 SDValue Load = 3127 SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_GD, DL, Ty, Addr), 0); 3128 3129 // Prepare argument list to generate call. 3130 ArgListTy Args; 3131 ArgListEntry Entry; 3132 Entry.Node = Load; 3133 Entry.Ty = CallTy; 3134 Args.push_back(Entry); 3135 3136 // Setup call to __tls_get_addr. 3137 TargetLowering::CallLoweringInfo CLI(DAG); 3138 CLI.setDebugLoc(DL) 3139 .setChain(DAG.getEntryNode()) 3140 .setLibCallee(CallingConv::C, CallTy, 3141 DAG.getExternalSymbol("__tls_get_addr", Ty), 3142 std::move(Args)); 3143 3144 return LowerCallTo(CLI).first; 3145 } 3146 3147 SDValue RISCVTargetLowering::lowerGlobalTLSAddress(SDValue Op, 3148 SelectionDAG &DAG) const { 3149 SDLoc DL(Op); 3150 EVT Ty = Op.getValueType(); 3151 GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op); 3152 int64_t Offset = N->getOffset(); 3153 MVT XLenVT = Subtarget.getXLenVT(); 3154 3155 TLSModel::Model Model = getTargetMachine().getTLSModel(N->getGlobal()); 3156 3157 if (DAG.getMachineFunction().getFunction().getCallingConv() == 3158 CallingConv::GHC) 3159 report_fatal_error("In GHC calling convention TLS is not supported"); 3160 3161 SDValue Addr; 3162 switch (Model) { 3163 case TLSModel::LocalExec: 3164 Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/false); 3165 break; 3166 case TLSModel::InitialExec: 3167 Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/true); 3168 break; 3169 case TLSModel::LocalDynamic: 3170 case TLSModel::GeneralDynamic: 3171 Addr = getDynamicTLSAddr(N, DAG); 3172 break; 3173 } 3174 3175 // In order to maximise the opportunity for common subexpression elimination, 3176 // emit a separate ADD node for the global address offset instead of folding 3177 // it in the global address node. Later peephole optimisations may choose to 3178 // fold it back in when profitable. 3179 if (Offset != 0) 3180 return DAG.getNode(ISD::ADD, DL, Ty, Addr, 3181 DAG.getConstant(Offset, DL, XLenVT)); 3182 return Addr; 3183 } 3184 3185 SDValue RISCVTargetLowering::lowerSELECT(SDValue Op, SelectionDAG &DAG) const { 3186 SDValue CondV = Op.getOperand(0); 3187 SDValue TrueV = Op.getOperand(1); 3188 SDValue FalseV = Op.getOperand(2); 3189 SDLoc DL(Op); 3190 MVT VT = Op.getSimpleValueType(); 3191 MVT XLenVT = Subtarget.getXLenVT(); 3192 3193 // Lower vector SELECTs to VSELECTs by splatting the condition. 3194 if (VT.isVector()) { 3195 MVT SplatCondVT = VT.changeVectorElementType(MVT::i1); 3196 SDValue CondSplat = VT.isScalableVector() 3197 ? DAG.getSplatVector(SplatCondVT, DL, CondV) 3198 : DAG.getSplatBuildVector(SplatCondVT, DL, CondV); 3199 return DAG.getNode(ISD::VSELECT, DL, VT, CondSplat, TrueV, FalseV); 3200 } 3201 3202 // If the result type is XLenVT and CondV is the output of a SETCC node 3203 // which also operated on XLenVT inputs, then merge the SETCC node into the 3204 // lowered RISCVISD::SELECT_CC to take advantage of the integer 3205 // compare+branch instructions. i.e.: 3206 // (select (setcc lhs, rhs, cc), truev, falsev) 3207 // -> (riscvisd::select_cc lhs, rhs, cc, truev, falsev) 3208 if (VT == XLenVT && CondV.getOpcode() == ISD::SETCC && 3209 CondV.getOperand(0).getSimpleValueType() == XLenVT) { 3210 SDValue LHS = CondV.getOperand(0); 3211 SDValue RHS = CondV.getOperand(1); 3212 const auto *CC = cast<CondCodeSDNode>(CondV.getOperand(2)); 3213 ISD::CondCode CCVal = CC->get(); 3214 3215 // Special case for a select of 2 constants that have a diffence of 1. 3216 // Normally this is done by DAGCombine, but if the select is introduced by 3217 // type legalization or op legalization, we miss it. Restricting to SETLT 3218 // case for now because that is what signed saturating add/sub need. 3219 // FIXME: We don't need the condition to be SETLT or even a SETCC, 3220 // but we would probably want to swap the true/false values if the condition 3221 // is SETGE/SETLE to avoid an XORI. 3222 if (isa<ConstantSDNode>(TrueV) && isa<ConstantSDNode>(FalseV) && 3223 CCVal == ISD::SETLT) { 3224 const APInt &TrueVal = cast<ConstantSDNode>(TrueV)->getAPIntValue(); 3225 const APInt &FalseVal = cast<ConstantSDNode>(FalseV)->getAPIntValue(); 3226 if (TrueVal - 1 == FalseVal) 3227 return DAG.getNode(ISD::ADD, DL, Op.getValueType(), CondV, FalseV); 3228 if (TrueVal + 1 == FalseVal) 3229 return DAG.getNode(ISD::SUB, DL, Op.getValueType(), FalseV, CondV); 3230 } 3231 3232 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 3233 3234 SDValue TargetCC = DAG.getCondCode(CCVal); 3235 SDValue Ops[] = {LHS, RHS, TargetCC, TrueV, FalseV}; 3236 return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops); 3237 } 3238 3239 // Otherwise: 3240 // (select condv, truev, falsev) 3241 // -> (riscvisd::select_cc condv, zero, setne, truev, falsev) 3242 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 3243 SDValue SetNE = DAG.getCondCode(ISD::SETNE); 3244 3245 SDValue Ops[] = {CondV, Zero, SetNE, TrueV, FalseV}; 3246 3247 return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops); 3248 } 3249 3250 SDValue RISCVTargetLowering::lowerBRCOND(SDValue Op, SelectionDAG &DAG) const { 3251 SDValue CondV = Op.getOperand(1); 3252 SDLoc DL(Op); 3253 MVT XLenVT = Subtarget.getXLenVT(); 3254 3255 if (CondV.getOpcode() == ISD::SETCC && 3256 CondV.getOperand(0).getValueType() == XLenVT) { 3257 SDValue LHS = CondV.getOperand(0); 3258 SDValue RHS = CondV.getOperand(1); 3259 ISD::CondCode CCVal = cast<CondCodeSDNode>(CondV.getOperand(2))->get(); 3260 3261 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 3262 3263 SDValue TargetCC = DAG.getCondCode(CCVal); 3264 return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0), 3265 LHS, RHS, TargetCC, Op.getOperand(2)); 3266 } 3267 3268 return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0), 3269 CondV, DAG.getConstant(0, DL, XLenVT), 3270 DAG.getCondCode(ISD::SETNE), Op.getOperand(2)); 3271 } 3272 3273 SDValue RISCVTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const { 3274 MachineFunction &MF = DAG.getMachineFunction(); 3275 RISCVMachineFunctionInfo *FuncInfo = MF.getInfo<RISCVMachineFunctionInfo>(); 3276 3277 SDLoc DL(Op); 3278 SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), 3279 getPointerTy(MF.getDataLayout())); 3280 3281 // vastart just stores the address of the VarArgsFrameIndex slot into the 3282 // memory location argument. 3283 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 3284 return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1), 3285 MachinePointerInfo(SV)); 3286 } 3287 3288 SDValue RISCVTargetLowering::lowerFRAMEADDR(SDValue Op, 3289 SelectionDAG &DAG) const { 3290 const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo(); 3291 MachineFunction &MF = DAG.getMachineFunction(); 3292 MachineFrameInfo &MFI = MF.getFrameInfo(); 3293 MFI.setFrameAddressIsTaken(true); 3294 Register FrameReg = RI.getFrameRegister(MF); 3295 int XLenInBytes = Subtarget.getXLen() / 8; 3296 3297 EVT VT = Op.getValueType(); 3298 SDLoc DL(Op); 3299 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, FrameReg, VT); 3300 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 3301 while (Depth--) { 3302 int Offset = -(XLenInBytes * 2); 3303 SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr, 3304 DAG.getIntPtrConstant(Offset, DL)); 3305 FrameAddr = 3306 DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo()); 3307 } 3308 return FrameAddr; 3309 } 3310 3311 SDValue RISCVTargetLowering::lowerRETURNADDR(SDValue Op, 3312 SelectionDAG &DAG) const { 3313 const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo(); 3314 MachineFunction &MF = DAG.getMachineFunction(); 3315 MachineFrameInfo &MFI = MF.getFrameInfo(); 3316 MFI.setReturnAddressIsTaken(true); 3317 MVT XLenVT = Subtarget.getXLenVT(); 3318 int XLenInBytes = Subtarget.getXLen() / 8; 3319 3320 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 3321 return SDValue(); 3322 3323 EVT VT = Op.getValueType(); 3324 SDLoc DL(Op); 3325 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 3326 if (Depth) { 3327 int Off = -XLenInBytes; 3328 SDValue FrameAddr = lowerFRAMEADDR(Op, DAG); 3329 SDValue Offset = DAG.getConstant(Off, DL, VT); 3330 return DAG.getLoad(VT, DL, DAG.getEntryNode(), 3331 DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset), 3332 MachinePointerInfo()); 3333 } 3334 3335 // Return the value of the return address register, marking it an implicit 3336 // live-in. 3337 Register Reg = MF.addLiveIn(RI.getRARegister(), getRegClassFor(XLenVT)); 3338 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, XLenVT); 3339 } 3340 3341 SDValue RISCVTargetLowering::lowerShiftLeftParts(SDValue Op, 3342 SelectionDAG &DAG) const { 3343 SDLoc DL(Op); 3344 SDValue Lo = Op.getOperand(0); 3345 SDValue Hi = Op.getOperand(1); 3346 SDValue Shamt = Op.getOperand(2); 3347 EVT VT = Lo.getValueType(); 3348 3349 // if Shamt-XLEN < 0: // Shamt < XLEN 3350 // Lo = Lo << Shamt 3351 // Hi = (Hi << Shamt) | ((Lo >>u 1) >>u (XLEN-1 - Shamt)) 3352 // else: 3353 // Lo = 0 3354 // Hi = Lo << (Shamt-XLEN) 3355 3356 SDValue Zero = DAG.getConstant(0, DL, VT); 3357 SDValue One = DAG.getConstant(1, DL, VT); 3358 SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT); 3359 SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT); 3360 SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen); 3361 SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt); 3362 3363 SDValue LoTrue = DAG.getNode(ISD::SHL, DL, VT, Lo, Shamt); 3364 SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, VT, Lo, One); 3365 SDValue ShiftRightLo = 3366 DAG.getNode(ISD::SRL, DL, VT, ShiftRight1Lo, XLenMinus1Shamt); 3367 SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, Hi, Shamt); 3368 SDValue HiTrue = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo); 3369 SDValue HiFalse = DAG.getNode(ISD::SHL, DL, VT, Lo, ShamtMinusXLen); 3370 3371 SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT); 3372 3373 Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, Zero); 3374 Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse); 3375 3376 SDValue Parts[2] = {Lo, Hi}; 3377 return DAG.getMergeValues(Parts, DL); 3378 } 3379 3380 SDValue RISCVTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG, 3381 bool IsSRA) const { 3382 SDLoc DL(Op); 3383 SDValue Lo = Op.getOperand(0); 3384 SDValue Hi = Op.getOperand(1); 3385 SDValue Shamt = Op.getOperand(2); 3386 EVT VT = Lo.getValueType(); 3387 3388 // SRA expansion: 3389 // if Shamt-XLEN < 0: // Shamt < XLEN 3390 // Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt)) 3391 // Hi = Hi >>s Shamt 3392 // else: 3393 // Lo = Hi >>s (Shamt-XLEN); 3394 // Hi = Hi >>s (XLEN-1) 3395 // 3396 // SRL expansion: 3397 // if Shamt-XLEN < 0: // Shamt < XLEN 3398 // Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt)) 3399 // Hi = Hi >>u Shamt 3400 // else: 3401 // Lo = Hi >>u (Shamt-XLEN); 3402 // Hi = 0; 3403 3404 unsigned ShiftRightOp = IsSRA ? ISD::SRA : ISD::SRL; 3405 3406 SDValue Zero = DAG.getConstant(0, DL, VT); 3407 SDValue One = DAG.getConstant(1, DL, VT); 3408 SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT); 3409 SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT); 3410 SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen); 3411 SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt); 3412 3413 SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, Lo, Shamt); 3414 SDValue ShiftLeftHi1 = DAG.getNode(ISD::SHL, DL, VT, Hi, One); 3415 SDValue ShiftLeftHi = 3416 DAG.getNode(ISD::SHL, DL, VT, ShiftLeftHi1, XLenMinus1Shamt); 3417 SDValue LoTrue = DAG.getNode(ISD::OR, DL, VT, ShiftRightLo, ShiftLeftHi); 3418 SDValue HiTrue = DAG.getNode(ShiftRightOp, DL, VT, Hi, Shamt); 3419 SDValue LoFalse = DAG.getNode(ShiftRightOp, DL, VT, Hi, ShamtMinusXLen); 3420 SDValue HiFalse = 3421 IsSRA ? DAG.getNode(ISD::SRA, DL, VT, Hi, XLenMinus1) : Zero; 3422 3423 SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT); 3424 3425 Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, LoFalse); 3426 Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse); 3427 3428 SDValue Parts[2] = {Lo, Hi}; 3429 return DAG.getMergeValues(Parts, DL); 3430 } 3431 3432 // Lower splats of i1 types to SETCC. For each mask vector type, we have a 3433 // legal equivalently-sized i8 type, so we can use that as a go-between. 3434 SDValue RISCVTargetLowering::lowerVectorMaskSplat(SDValue Op, 3435 SelectionDAG &DAG) const { 3436 SDLoc DL(Op); 3437 MVT VT = Op.getSimpleValueType(); 3438 SDValue SplatVal = Op.getOperand(0); 3439 // All-zeros or all-ones splats are handled specially. 3440 if (ISD::isConstantSplatVectorAllOnes(Op.getNode())) { 3441 SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second; 3442 return DAG.getNode(RISCVISD::VMSET_VL, DL, VT, VL); 3443 } 3444 if (ISD::isConstantSplatVectorAllZeros(Op.getNode())) { 3445 SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second; 3446 return DAG.getNode(RISCVISD::VMCLR_VL, DL, VT, VL); 3447 } 3448 MVT XLenVT = Subtarget.getXLenVT(); 3449 assert(SplatVal.getValueType() == XLenVT && 3450 "Unexpected type for i1 splat value"); 3451 MVT InterVT = VT.changeVectorElementType(MVT::i8); 3452 SplatVal = DAG.getNode(ISD::AND, DL, XLenVT, SplatVal, 3453 DAG.getConstant(1, DL, XLenVT)); 3454 SDValue LHS = DAG.getSplatVector(InterVT, DL, SplatVal); 3455 SDValue Zero = DAG.getConstant(0, DL, InterVT); 3456 return DAG.getSetCC(DL, VT, LHS, Zero, ISD::SETNE); 3457 } 3458 3459 // Custom-lower a SPLAT_VECTOR_PARTS where XLEN<SEW, as the SEW element type is 3460 // illegal (currently only vXi64 RV32). 3461 // FIXME: We could also catch non-constant sign-extended i32 values and lower 3462 // them to SPLAT_VECTOR_I64 3463 SDValue RISCVTargetLowering::lowerSPLAT_VECTOR_PARTS(SDValue Op, 3464 SelectionDAG &DAG) const { 3465 SDLoc DL(Op); 3466 MVT VecVT = Op.getSimpleValueType(); 3467 assert(!Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64 && 3468 "Unexpected SPLAT_VECTOR_PARTS lowering"); 3469 3470 assert(Op.getNumOperands() == 2 && "Unexpected number of operands!"); 3471 SDValue Lo = Op.getOperand(0); 3472 SDValue Hi = Op.getOperand(1); 3473 3474 if (VecVT.isFixedLengthVector()) { 3475 MVT ContainerVT = getContainerForFixedLengthVector(VecVT); 3476 SDLoc DL(Op); 3477 SDValue Mask, VL; 3478 std::tie(Mask, VL) = 3479 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 3480 3481 SDValue Res = splatPartsI64WithVL(DL, ContainerVT, Lo, Hi, VL, DAG); 3482 return convertFromScalableVector(VecVT, Res, DAG, Subtarget); 3483 } 3484 3485 if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) { 3486 int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue(); 3487 int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue(); 3488 // If Hi constant is all the same sign bit as Lo, lower this as a custom 3489 // node in order to try and match RVV vector/scalar instructions. 3490 if ((LoC >> 31) == HiC) 3491 return DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, Lo); 3492 } 3493 3494 // Detect cases where Hi is (SRA Lo, 31) which means Hi is Lo sign extended. 3495 if (Hi.getOpcode() == ISD::SRA && Hi.getOperand(0) == Lo && 3496 isa<ConstantSDNode>(Hi.getOperand(1)) && 3497 Hi.getConstantOperandVal(1) == 31) 3498 return DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, Lo); 3499 3500 // Fall back to use a stack store and stride x0 vector load. Use X0 as VL. 3501 return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VecVT, Lo, Hi, 3502 DAG.getTargetConstant(RISCV::VLMaxSentinel, DL, MVT::i64)); 3503 } 3504 3505 // Custom-lower extensions from mask vectors by using a vselect either with 1 3506 // for zero/any-extension or -1 for sign-extension: 3507 // (vXiN = (s|z)ext vXi1:vmask) -> (vXiN = vselect vmask, (-1 or 1), 0) 3508 // Note that any-extension is lowered identically to zero-extension. 3509 SDValue RISCVTargetLowering::lowerVectorMaskExt(SDValue Op, SelectionDAG &DAG, 3510 int64_t ExtTrueVal) const { 3511 SDLoc DL(Op); 3512 MVT VecVT = Op.getSimpleValueType(); 3513 SDValue Src = Op.getOperand(0); 3514 // Only custom-lower extensions from mask types 3515 assert(Src.getValueType().isVector() && 3516 Src.getValueType().getVectorElementType() == MVT::i1); 3517 3518 MVT XLenVT = Subtarget.getXLenVT(); 3519 SDValue SplatZero = DAG.getConstant(0, DL, XLenVT); 3520 SDValue SplatTrueVal = DAG.getConstant(ExtTrueVal, DL, XLenVT); 3521 3522 if (VecVT.isScalableVector()) { 3523 // Be careful not to introduce illegal scalar types at this stage, and be 3524 // careful also about splatting constants as on RV32, vXi64 SPLAT_VECTOR is 3525 // illegal and must be expanded. Since we know that the constants are 3526 // sign-extended 32-bit values, we use SPLAT_VECTOR_I64 directly. 3527 bool IsRV32E64 = 3528 !Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64; 3529 3530 if (!IsRV32E64) { 3531 SplatZero = DAG.getSplatVector(VecVT, DL, SplatZero); 3532 SplatTrueVal = DAG.getSplatVector(VecVT, DL, SplatTrueVal); 3533 } else { 3534 SplatZero = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, SplatZero); 3535 SplatTrueVal = 3536 DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, SplatTrueVal); 3537 } 3538 3539 return DAG.getNode(ISD::VSELECT, DL, VecVT, Src, SplatTrueVal, SplatZero); 3540 } 3541 3542 MVT ContainerVT = getContainerForFixedLengthVector(VecVT); 3543 MVT I1ContainerVT = 3544 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 3545 3546 SDValue CC = convertToScalableVector(I1ContainerVT, Src, DAG, Subtarget); 3547 3548 SDValue Mask, VL; 3549 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 3550 3551 SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatZero, VL); 3552 SplatTrueVal = 3553 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatTrueVal, VL); 3554 SDValue Select = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC, 3555 SplatTrueVal, SplatZero, VL); 3556 3557 return convertFromScalableVector(VecVT, Select, DAG, Subtarget); 3558 } 3559 3560 SDValue RISCVTargetLowering::lowerFixedLengthVectorExtendToRVV( 3561 SDValue Op, SelectionDAG &DAG, unsigned ExtendOpc) const { 3562 MVT ExtVT = Op.getSimpleValueType(); 3563 // Only custom-lower extensions from fixed-length vector types. 3564 if (!ExtVT.isFixedLengthVector()) 3565 return Op; 3566 MVT VT = Op.getOperand(0).getSimpleValueType(); 3567 // Grab the canonical container type for the extended type. Infer the smaller 3568 // type from that to ensure the same number of vector elements, as we know 3569 // the LMUL will be sufficient to hold the smaller type. 3570 MVT ContainerExtVT = getContainerForFixedLengthVector(ExtVT); 3571 // Get the extended container type manually to ensure the same number of 3572 // vector elements between source and dest. 3573 MVT ContainerVT = MVT::getVectorVT(VT.getVectorElementType(), 3574 ContainerExtVT.getVectorElementCount()); 3575 3576 SDValue Op1 = 3577 convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget); 3578 3579 SDLoc DL(Op); 3580 SDValue Mask, VL; 3581 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 3582 3583 SDValue Ext = DAG.getNode(ExtendOpc, DL, ContainerExtVT, Op1, Mask, VL); 3584 3585 return convertFromScalableVector(ExtVT, Ext, DAG, Subtarget); 3586 } 3587 3588 // Custom-lower truncations from vectors to mask vectors by using a mask and a 3589 // setcc operation: 3590 // (vXi1 = trunc vXiN vec) -> (vXi1 = setcc (and vec, 1), 0, ne) 3591 SDValue RISCVTargetLowering::lowerVectorMaskTrunc(SDValue Op, 3592 SelectionDAG &DAG) const { 3593 SDLoc DL(Op); 3594 EVT MaskVT = Op.getValueType(); 3595 // Only expect to custom-lower truncations to mask types 3596 assert(MaskVT.isVector() && MaskVT.getVectorElementType() == MVT::i1 && 3597 "Unexpected type for vector mask lowering"); 3598 SDValue Src = Op.getOperand(0); 3599 MVT VecVT = Src.getSimpleValueType(); 3600 3601 // If this is a fixed vector, we need to convert it to a scalable vector. 3602 MVT ContainerVT = VecVT; 3603 if (VecVT.isFixedLengthVector()) { 3604 ContainerVT = getContainerForFixedLengthVector(VecVT); 3605 Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget); 3606 } 3607 3608 SDValue SplatOne = DAG.getConstant(1, DL, Subtarget.getXLenVT()); 3609 SDValue SplatZero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 3610 3611 SplatOne = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatOne); 3612 SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatZero); 3613 3614 if (VecVT.isScalableVector()) { 3615 SDValue Trunc = DAG.getNode(ISD::AND, DL, VecVT, Src, SplatOne); 3616 return DAG.getSetCC(DL, MaskVT, Trunc, SplatZero, ISD::SETNE); 3617 } 3618 3619 SDValue Mask, VL; 3620 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 3621 3622 MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1); 3623 SDValue Trunc = 3624 DAG.getNode(RISCVISD::AND_VL, DL, ContainerVT, Src, SplatOne, Mask, VL); 3625 Trunc = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskContainerVT, Trunc, SplatZero, 3626 DAG.getCondCode(ISD::SETNE), Mask, VL); 3627 return convertFromScalableVector(MaskVT, Trunc, DAG, Subtarget); 3628 } 3629 3630 // Custom-legalize INSERT_VECTOR_ELT so that the value is inserted into the 3631 // first position of a vector, and that vector is slid up to the insert index. 3632 // By limiting the active vector length to index+1 and merging with the 3633 // original vector (with an undisturbed tail policy for elements >= VL), we 3634 // achieve the desired result of leaving all elements untouched except the one 3635 // at VL-1, which is replaced with the desired value. 3636 SDValue RISCVTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op, 3637 SelectionDAG &DAG) const { 3638 SDLoc DL(Op); 3639 MVT VecVT = Op.getSimpleValueType(); 3640 SDValue Vec = Op.getOperand(0); 3641 SDValue Val = Op.getOperand(1); 3642 SDValue Idx = Op.getOperand(2); 3643 3644 if (VecVT.getVectorElementType() == MVT::i1) { 3645 // FIXME: For now we just promote to an i8 vector and insert into that, 3646 // but this is probably not optimal. 3647 MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount()); 3648 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec); 3649 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, WideVT, Vec, Val, Idx); 3650 return DAG.getNode(ISD::TRUNCATE, DL, VecVT, Vec); 3651 } 3652 3653 MVT ContainerVT = VecVT; 3654 // If the operand is a fixed-length vector, convert to a scalable one. 3655 if (VecVT.isFixedLengthVector()) { 3656 ContainerVT = getContainerForFixedLengthVector(VecVT); 3657 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 3658 } 3659 3660 MVT XLenVT = Subtarget.getXLenVT(); 3661 3662 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 3663 bool IsLegalInsert = Subtarget.is64Bit() || Val.getValueType() != MVT::i64; 3664 // Even i64-element vectors on RV32 can be lowered without scalar 3665 // legalization if the most-significant 32 bits of the value are not affected 3666 // by the sign-extension of the lower 32 bits. 3667 // TODO: We could also catch sign extensions of a 32-bit value. 3668 if (!IsLegalInsert && isa<ConstantSDNode>(Val)) { 3669 const auto *CVal = cast<ConstantSDNode>(Val); 3670 if (isInt<32>(CVal->getSExtValue())) { 3671 IsLegalInsert = true; 3672 Val = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32); 3673 } 3674 } 3675 3676 SDValue Mask, VL; 3677 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 3678 3679 SDValue ValInVec; 3680 3681 if (IsLegalInsert) { 3682 unsigned Opc = 3683 VecVT.isFloatingPoint() ? RISCVISD::VFMV_S_F_VL : RISCVISD::VMV_S_X_VL; 3684 if (isNullConstant(Idx)) { 3685 Vec = DAG.getNode(Opc, DL, ContainerVT, Vec, Val, VL); 3686 if (!VecVT.isFixedLengthVector()) 3687 return Vec; 3688 return convertFromScalableVector(VecVT, Vec, DAG, Subtarget); 3689 } 3690 ValInVec = 3691 DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), Val, VL); 3692 } else { 3693 // On RV32, i64-element vectors must be specially handled to place the 3694 // value at element 0, by using two vslide1up instructions in sequence on 3695 // the i32 split lo/hi value. Use an equivalently-sized i32 vector for 3696 // this. 3697 SDValue One = DAG.getConstant(1, DL, XLenVT); 3698 SDValue ValLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, Zero); 3699 SDValue ValHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, One); 3700 MVT I32ContainerVT = 3701 MVT::getVectorVT(MVT::i32, ContainerVT.getVectorElementCount() * 2); 3702 SDValue I32Mask = 3703 getDefaultScalableVLOps(I32ContainerVT, DL, DAG, Subtarget).first; 3704 // Limit the active VL to two. 3705 SDValue InsertI64VL = DAG.getConstant(2, DL, XLenVT); 3706 // Note: We can't pass a UNDEF to the first VSLIDE1UP_VL since an untied 3707 // undef doesn't obey the earlyclobber constraint. Just splat a zero value. 3708 ValInVec = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, I32ContainerVT, Zero, 3709 InsertI64VL); 3710 // First slide in the hi value, then the lo in underneath it. 3711 ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT, ValInVec, 3712 ValHi, I32Mask, InsertI64VL); 3713 ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT, ValInVec, 3714 ValLo, I32Mask, InsertI64VL); 3715 // Bitcast back to the right container type. 3716 ValInVec = DAG.getBitcast(ContainerVT, ValInVec); 3717 } 3718 3719 // Now that the value is in a vector, slide it into position. 3720 SDValue InsertVL = 3721 DAG.getNode(ISD::ADD, DL, XLenVT, Idx, DAG.getConstant(1, DL, XLenVT)); 3722 SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec, 3723 ValInVec, Idx, Mask, InsertVL); 3724 if (!VecVT.isFixedLengthVector()) 3725 return Slideup; 3726 return convertFromScalableVector(VecVT, Slideup, DAG, Subtarget); 3727 } 3728 3729 // Custom-lower EXTRACT_VECTOR_ELT operations to slide the vector down, then 3730 // extract the first element: (extractelt (slidedown vec, idx), 0). For integer 3731 // types this is done using VMV_X_S to allow us to glean information about the 3732 // sign bits of the result. 3733 SDValue RISCVTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op, 3734 SelectionDAG &DAG) const { 3735 SDLoc DL(Op); 3736 SDValue Idx = Op.getOperand(1); 3737 SDValue Vec = Op.getOperand(0); 3738 EVT EltVT = Op.getValueType(); 3739 MVT VecVT = Vec.getSimpleValueType(); 3740 MVT XLenVT = Subtarget.getXLenVT(); 3741 3742 if (VecVT.getVectorElementType() == MVT::i1) { 3743 // FIXME: For now we just promote to an i8 vector and extract from that, 3744 // but this is probably not optimal. 3745 MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount()); 3746 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec); 3747 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec, Idx); 3748 } 3749 3750 // If this is a fixed vector, we need to convert it to a scalable vector. 3751 MVT ContainerVT = VecVT; 3752 if (VecVT.isFixedLengthVector()) { 3753 ContainerVT = getContainerForFixedLengthVector(VecVT); 3754 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 3755 } 3756 3757 // If the index is 0, the vector is already in the right position. 3758 if (!isNullConstant(Idx)) { 3759 // Use a VL of 1 to avoid processing more elements than we need. 3760 SDValue VL = DAG.getConstant(1, DL, XLenVT); 3761 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 3762 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 3763 Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 3764 DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL); 3765 } 3766 3767 if (!EltVT.isInteger()) { 3768 // Floating-point extracts are handled in TableGen. 3769 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec, 3770 DAG.getConstant(0, DL, XLenVT)); 3771 } 3772 3773 SDValue Elt0 = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); 3774 return DAG.getNode(ISD::TRUNCATE, DL, EltVT, Elt0); 3775 } 3776 3777 // Some RVV intrinsics may claim that they want an integer operand to be 3778 // promoted or expanded. 3779 static SDValue lowerVectorIntrinsicSplats(SDValue Op, SelectionDAG &DAG, 3780 const RISCVSubtarget &Subtarget) { 3781 assert((Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3782 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN) && 3783 "Unexpected opcode"); 3784 3785 if (!Subtarget.hasVInstructions()) 3786 return SDValue(); 3787 3788 bool HasChain = Op.getOpcode() == ISD::INTRINSIC_W_CHAIN; 3789 unsigned IntNo = Op.getConstantOperandVal(HasChain ? 1 : 0); 3790 SDLoc DL(Op); 3791 3792 const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II = 3793 RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo); 3794 if (!II || !II->SplatOperand) 3795 return SDValue(); 3796 3797 unsigned SplatOp = II->SplatOperand + HasChain; 3798 assert(SplatOp < Op.getNumOperands()); 3799 3800 SmallVector<SDValue, 8> Operands(Op->op_begin(), Op->op_end()); 3801 SDValue &ScalarOp = Operands[SplatOp]; 3802 MVT OpVT = ScalarOp.getSimpleValueType(); 3803 MVT XLenVT = Subtarget.getXLenVT(); 3804 3805 // If this isn't a scalar, or its type is XLenVT we're done. 3806 if (!OpVT.isScalarInteger() || OpVT == XLenVT) 3807 return SDValue(); 3808 3809 // Simplest case is that the operand needs to be promoted to XLenVT. 3810 if (OpVT.bitsLT(XLenVT)) { 3811 // If the operand is a constant, sign extend to increase our chances 3812 // of being able to use a .vi instruction. ANY_EXTEND would become a 3813 // a zero extend and the simm5 check in isel would fail. 3814 // FIXME: Should we ignore the upper bits in isel instead? 3815 unsigned ExtOpc = 3816 isa<ConstantSDNode>(ScalarOp) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND; 3817 ScalarOp = DAG.getNode(ExtOpc, DL, XLenVT, ScalarOp); 3818 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); 3819 } 3820 3821 // Use the previous operand to get the vXi64 VT. The result might be a mask 3822 // VT for compares. Using the previous operand assumes that the previous 3823 // operand will never have a smaller element size than a scalar operand and 3824 // that a widening operation never uses SEW=64. 3825 // NOTE: If this fails the below assert, we can probably just find the 3826 // element count from any operand or result and use it to construct the VT. 3827 assert(II->SplatOperand > 1 && "Unexpected splat operand!"); 3828 MVT VT = Op.getOperand(SplatOp - 1).getSimpleValueType(); 3829 3830 // The more complex case is when the scalar is larger than XLenVT. 3831 assert(XLenVT == MVT::i32 && OpVT == MVT::i64 && 3832 VT.getVectorElementType() == MVT::i64 && "Unexpected VTs!"); 3833 3834 // If this is a sign-extended 32-bit constant, we can truncate it and rely 3835 // on the instruction to sign-extend since SEW>XLEN. 3836 if (auto *CVal = dyn_cast<ConstantSDNode>(ScalarOp)) { 3837 if (isInt<32>(CVal->getSExtValue())) { 3838 ScalarOp = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32); 3839 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); 3840 } 3841 } 3842 3843 // We need to convert the scalar to a splat vector. 3844 // FIXME: Can we implicitly truncate the scalar if it is known to 3845 // be sign extended? 3846 // VL should be the last operand. 3847 SDValue VL = Op.getOperand(Op.getNumOperands() - 1); 3848 assert(VL.getValueType() == XLenVT); 3849 ScalarOp = splatSplitI64WithVL(DL, VT, ScalarOp, VL, DAG); 3850 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); 3851 } 3852 3853 SDValue RISCVTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 3854 SelectionDAG &DAG) const { 3855 unsigned IntNo = Op.getConstantOperandVal(0); 3856 SDLoc DL(Op); 3857 MVT XLenVT = Subtarget.getXLenVT(); 3858 3859 switch (IntNo) { 3860 default: 3861 break; // Don't custom lower most intrinsics. 3862 case Intrinsic::thread_pointer: { 3863 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3864 return DAG.getRegister(RISCV::X4, PtrVT); 3865 } 3866 case Intrinsic::riscv_orc_b: 3867 // Lower to the GORCI encoding for orc.b. 3868 return DAG.getNode(RISCVISD::GORC, DL, XLenVT, Op.getOperand(1), 3869 DAG.getConstant(7, DL, XLenVT)); 3870 case Intrinsic::riscv_grev: 3871 case Intrinsic::riscv_gorc: { 3872 unsigned Opc = 3873 IntNo == Intrinsic::riscv_grev ? RISCVISD::GREV : RISCVISD::GORC; 3874 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2)); 3875 } 3876 case Intrinsic::riscv_shfl: 3877 case Intrinsic::riscv_unshfl: { 3878 unsigned Opc = 3879 IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL; 3880 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2)); 3881 } 3882 case Intrinsic::riscv_bcompress: 3883 case Intrinsic::riscv_bdecompress: { 3884 unsigned Opc = IntNo == Intrinsic::riscv_bcompress ? RISCVISD::BCOMPRESS 3885 : RISCVISD::BDECOMPRESS; 3886 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2)); 3887 } 3888 case Intrinsic::riscv_vmv_x_s: 3889 assert(Op.getValueType() == XLenVT && "Unexpected VT!"); 3890 return DAG.getNode(RISCVISD::VMV_X_S, DL, Op.getValueType(), 3891 Op.getOperand(1)); 3892 case Intrinsic::riscv_vmv_v_x: 3893 return lowerScalarSplat(Op.getOperand(1), Op.getOperand(2), 3894 Op.getSimpleValueType(), DL, DAG, Subtarget); 3895 case Intrinsic::riscv_vfmv_v_f: 3896 return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, Op.getValueType(), 3897 Op.getOperand(1), Op.getOperand(2)); 3898 case Intrinsic::riscv_vmv_s_x: { 3899 SDValue Scalar = Op.getOperand(2); 3900 3901 if (Scalar.getValueType().bitsLE(XLenVT)) { 3902 Scalar = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Scalar); 3903 return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, Op.getValueType(), 3904 Op.getOperand(1), Scalar, Op.getOperand(3)); 3905 } 3906 3907 assert(Scalar.getValueType() == MVT::i64 && "Unexpected scalar VT!"); 3908 3909 // This is an i64 value that lives in two scalar registers. We have to 3910 // insert this in a convoluted way. First we build vXi64 splat containing 3911 // the/ two values that we assemble using some bit math. Next we'll use 3912 // vid.v and vmseq to build a mask with bit 0 set. Then we'll use that mask 3913 // to merge element 0 from our splat into the source vector. 3914 // FIXME: This is probably not the best way to do this, but it is 3915 // consistent with INSERT_VECTOR_ELT lowering so it is a good starting 3916 // point. 3917 // sw lo, (a0) 3918 // sw hi, 4(a0) 3919 // vlse vX, (a0) 3920 // 3921 // vid.v vVid 3922 // vmseq.vx mMask, vVid, 0 3923 // vmerge.vvm vDest, vSrc, vVal, mMask 3924 MVT VT = Op.getSimpleValueType(); 3925 SDValue Vec = Op.getOperand(1); 3926 SDValue VL = Op.getOperand(3); 3927 3928 SDValue SplattedVal = splatSplitI64WithVL(DL, VT, Scalar, VL, DAG); 3929 SDValue SplattedIdx = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, 3930 DAG.getConstant(0, DL, MVT::i32), VL); 3931 3932 MVT MaskVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount()); 3933 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 3934 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL); 3935 SDValue SelectCond = 3936 DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, VID, SplattedIdx, 3937 DAG.getCondCode(ISD::SETEQ), Mask, VL); 3938 return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, SelectCond, SplattedVal, 3939 Vec, VL); 3940 } 3941 case Intrinsic::riscv_vslide1up: 3942 case Intrinsic::riscv_vslide1down: 3943 case Intrinsic::riscv_vslide1up_mask: 3944 case Intrinsic::riscv_vslide1down_mask: { 3945 // We need to special case these when the scalar is larger than XLen. 3946 unsigned NumOps = Op.getNumOperands(); 3947 bool IsMasked = NumOps == 7; 3948 unsigned OpOffset = IsMasked ? 1 : 0; 3949 SDValue Scalar = Op.getOperand(2 + OpOffset); 3950 if (Scalar.getValueType().bitsLE(XLenVT)) 3951 break; 3952 3953 // Splatting a sign extended constant is fine. 3954 if (auto *CVal = dyn_cast<ConstantSDNode>(Scalar)) 3955 if (isInt<32>(CVal->getSExtValue())) 3956 break; 3957 3958 MVT VT = Op.getSimpleValueType(); 3959 assert(VT.getVectorElementType() == MVT::i64 && 3960 Scalar.getValueType() == MVT::i64 && "Unexpected VTs"); 3961 3962 // Convert the vector source to the equivalent nxvXi32 vector. 3963 MVT I32VT = MVT::getVectorVT(MVT::i32, VT.getVectorElementCount() * 2); 3964 SDValue Vec = DAG.getBitcast(I32VT, Op.getOperand(1 + OpOffset)); 3965 3966 SDValue ScalarLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 3967 DAG.getConstant(0, DL, XLenVT)); 3968 SDValue ScalarHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 3969 DAG.getConstant(1, DL, XLenVT)); 3970 3971 // Double the VL since we halved SEW. 3972 SDValue VL = Op.getOperand(NumOps - (1 + OpOffset)); 3973 SDValue I32VL = 3974 DAG.getNode(ISD::SHL, DL, XLenVT, VL, DAG.getConstant(1, DL, XLenVT)); 3975 3976 MVT I32MaskVT = MVT::getVectorVT(MVT::i1, I32VT.getVectorElementCount()); 3977 SDValue I32Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, I32MaskVT, VL); 3978 3979 // Shift the two scalar parts in using SEW=32 slide1up/slide1down 3980 // instructions. 3981 if (IntNo == Intrinsic::riscv_vslide1up || 3982 IntNo == Intrinsic::riscv_vslide1up_mask) { 3983 Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Vec, ScalarHi, 3984 I32Mask, I32VL); 3985 Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Vec, ScalarLo, 3986 I32Mask, I32VL); 3987 } else { 3988 Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Vec, ScalarLo, 3989 I32Mask, I32VL); 3990 Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Vec, ScalarHi, 3991 I32Mask, I32VL); 3992 } 3993 3994 // Convert back to nxvXi64. 3995 Vec = DAG.getBitcast(VT, Vec); 3996 3997 if (!IsMasked) 3998 return Vec; 3999 4000 // Apply mask after the operation. 4001 SDValue Mask = Op.getOperand(NumOps - 3); 4002 SDValue MaskedOff = Op.getOperand(1); 4003 return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, Mask, Vec, MaskedOff, VL); 4004 } 4005 } 4006 4007 return lowerVectorIntrinsicSplats(Op, DAG, Subtarget); 4008 } 4009 4010 SDValue RISCVTargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op, 4011 SelectionDAG &DAG) const { 4012 unsigned IntNo = Op.getConstantOperandVal(1); 4013 switch (IntNo) { 4014 default: 4015 break; 4016 case Intrinsic::riscv_masked_strided_load: { 4017 SDLoc DL(Op); 4018 MVT XLenVT = Subtarget.getXLenVT(); 4019 4020 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 4021 // the selection of the masked intrinsics doesn't do this for us. 4022 SDValue Mask = Op.getOperand(5); 4023 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 4024 4025 MVT VT = Op->getSimpleValueType(0); 4026 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4027 4028 SDValue PassThru = Op.getOperand(2); 4029 if (!IsUnmasked) { 4030 MVT MaskVT = 4031 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4032 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 4033 PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget); 4034 } 4035 4036 SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT); 4037 4038 SDValue IntID = DAG.getTargetConstant( 4039 IsUnmasked ? Intrinsic::riscv_vlse : Intrinsic::riscv_vlse_mask, DL, 4040 XLenVT); 4041 4042 auto *Load = cast<MemIntrinsicSDNode>(Op); 4043 SmallVector<SDValue, 8> Ops{Load->getChain(), IntID}; 4044 if (!IsUnmasked) 4045 Ops.push_back(PassThru); 4046 Ops.push_back(Op.getOperand(3)); // Ptr 4047 Ops.push_back(Op.getOperand(4)); // Stride 4048 if (!IsUnmasked) 4049 Ops.push_back(Mask); 4050 Ops.push_back(VL); 4051 if (!IsUnmasked) { 4052 SDValue Policy = DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT); 4053 Ops.push_back(Policy); 4054 } 4055 4056 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 4057 SDValue Result = 4058 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, 4059 Load->getMemoryVT(), Load->getMemOperand()); 4060 SDValue Chain = Result.getValue(1); 4061 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 4062 return DAG.getMergeValues({Result, Chain}, DL); 4063 } 4064 } 4065 4066 return lowerVectorIntrinsicSplats(Op, DAG, Subtarget); 4067 } 4068 4069 SDValue RISCVTargetLowering::LowerINTRINSIC_VOID(SDValue Op, 4070 SelectionDAG &DAG) const { 4071 unsigned IntNo = Op.getConstantOperandVal(1); 4072 switch (IntNo) { 4073 default: 4074 break; 4075 case Intrinsic::riscv_masked_strided_store: { 4076 SDLoc DL(Op); 4077 MVT XLenVT = Subtarget.getXLenVT(); 4078 4079 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 4080 // the selection of the masked intrinsics doesn't do this for us. 4081 SDValue Mask = Op.getOperand(5); 4082 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 4083 4084 SDValue Val = Op.getOperand(2); 4085 MVT VT = Val.getSimpleValueType(); 4086 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4087 4088 Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget); 4089 if (!IsUnmasked) { 4090 MVT MaskVT = 4091 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4092 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 4093 } 4094 4095 SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT); 4096 4097 SDValue IntID = DAG.getTargetConstant( 4098 IsUnmasked ? Intrinsic::riscv_vsse : Intrinsic::riscv_vsse_mask, DL, 4099 XLenVT); 4100 4101 auto *Store = cast<MemIntrinsicSDNode>(Op); 4102 SmallVector<SDValue, 8> Ops{Store->getChain(), IntID}; 4103 Ops.push_back(Val); 4104 Ops.push_back(Op.getOperand(3)); // Ptr 4105 Ops.push_back(Op.getOperand(4)); // Stride 4106 if (!IsUnmasked) 4107 Ops.push_back(Mask); 4108 Ops.push_back(VL); 4109 4110 return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, Store->getVTList(), 4111 Ops, Store->getMemoryVT(), 4112 Store->getMemOperand()); 4113 } 4114 } 4115 4116 return SDValue(); 4117 } 4118 4119 static MVT getLMUL1VT(MVT VT) { 4120 assert(VT.getVectorElementType().getSizeInBits() <= 64 && 4121 "Unexpected vector MVT"); 4122 return MVT::getScalableVectorVT( 4123 VT.getVectorElementType(), 4124 RISCV::RVVBitsPerBlock / VT.getVectorElementType().getSizeInBits()); 4125 } 4126 4127 static unsigned getRVVReductionOp(unsigned ISDOpcode) { 4128 switch (ISDOpcode) { 4129 default: 4130 llvm_unreachable("Unhandled reduction"); 4131 case ISD::VECREDUCE_ADD: 4132 return RISCVISD::VECREDUCE_ADD_VL; 4133 case ISD::VECREDUCE_UMAX: 4134 return RISCVISD::VECREDUCE_UMAX_VL; 4135 case ISD::VECREDUCE_SMAX: 4136 return RISCVISD::VECREDUCE_SMAX_VL; 4137 case ISD::VECREDUCE_UMIN: 4138 return RISCVISD::VECREDUCE_UMIN_VL; 4139 case ISD::VECREDUCE_SMIN: 4140 return RISCVISD::VECREDUCE_SMIN_VL; 4141 case ISD::VECREDUCE_AND: 4142 return RISCVISD::VECREDUCE_AND_VL; 4143 case ISD::VECREDUCE_OR: 4144 return RISCVISD::VECREDUCE_OR_VL; 4145 case ISD::VECREDUCE_XOR: 4146 return RISCVISD::VECREDUCE_XOR_VL; 4147 } 4148 } 4149 4150 SDValue RISCVTargetLowering::lowerVectorMaskVecReduction(SDValue Op, 4151 SelectionDAG &DAG, 4152 bool IsVP) const { 4153 SDLoc DL(Op); 4154 SDValue Vec = Op.getOperand(IsVP ? 1 : 0); 4155 MVT VecVT = Vec.getSimpleValueType(); 4156 assert((Op.getOpcode() == ISD::VECREDUCE_AND || 4157 Op.getOpcode() == ISD::VECREDUCE_OR || 4158 Op.getOpcode() == ISD::VECREDUCE_XOR || 4159 Op.getOpcode() == ISD::VP_REDUCE_AND || 4160 Op.getOpcode() == ISD::VP_REDUCE_OR || 4161 Op.getOpcode() == ISD::VP_REDUCE_XOR) && 4162 "Unexpected reduction lowering"); 4163 4164 MVT XLenVT = Subtarget.getXLenVT(); 4165 assert(Op.getValueType() == XLenVT && 4166 "Expected reduction output to be legalized to XLenVT"); 4167 4168 MVT ContainerVT = VecVT; 4169 if (VecVT.isFixedLengthVector()) { 4170 ContainerVT = getContainerForFixedLengthVector(VecVT); 4171 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 4172 } 4173 4174 SDValue Mask, VL; 4175 if (IsVP) { 4176 Mask = Op.getOperand(2); 4177 VL = Op.getOperand(3); 4178 } else { 4179 std::tie(Mask, VL) = 4180 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 4181 } 4182 4183 unsigned BaseOpc; 4184 ISD::CondCode CC; 4185 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 4186 4187 switch (Op.getOpcode()) { 4188 default: 4189 llvm_unreachable("Unhandled reduction"); 4190 case ISD::VECREDUCE_AND: 4191 case ISD::VP_REDUCE_AND: { 4192 // vpopc ~x == 0 4193 SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL); 4194 Vec = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Vec, TrueMask, VL); 4195 Vec = DAG.getNode(RISCVISD::VPOPC_VL, DL, XLenVT, Vec, Mask, VL); 4196 CC = ISD::SETEQ; 4197 BaseOpc = ISD::AND; 4198 break; 4199 } 4200 case ISD::VECREDUCE_OR: 4201 case ISD::VP_REDUCE_OR: 4202 // vpopc x != 0 4203 Vec = DAG.getNode(RISCVISD::VPOPC_VL, DL, XLenVT, Vec, Mask, VL); 4204 CC = ISD::SETNE; 4205 BaseOpc = ISD::OR; 4206 break; 4207 case ISD::VECREDUCE_XOR: 4208 case ISD::VP_REDUCE_XOR: { 4209 // ((vpopc x) & 1) != 0 4210 SDValue One = DAG.getConstant(1, DL, XLenVT); 4211 Vec = DAG.getNode(RISCVISD::VPOPC_VL, DL, XLenVT, Vec, Mask, VL); 4212 Vec = DAG.getNode(ISD::AND, DL, XLenVT, Vec, One); 4213 CC = ISD::SETNE; 4214 BaseOpc = ISD::XOR; 4215 break; 4216 } 4217 } 4218 4219 SDValue SetCC = DAG.getSetCC(DL, XLenVT, Vec, Zero, CC); 4220 4221 if (!IsVP) 4222 return SetCC; 4223 4224 // Now include the start value in the operation. 4225 // Note that we must return the start value when no elements are operated 4226 // upon. The vpopc instructions we've emitted in each case above will return 4227 // 0 for an inactive vector, and so we've already received the neutral value: 4228 // AND gives us (0 == 0) -> 1 and OR/XOR give us (0 != 0) -> 0. Therefore we 4229 // can simply include the start value. 4230 return DAG.getNode(BaseOpc, DL, XLenVT, SetCC, Op.getOperand(0)); 4231 } 4232 4233 SDValue RISCVTargetLowering::lowerVECREDUCE(SDValue Op, 4234 SelectionDAG &DAG) const { 4235 SDLoc DL(Op); 4236 SDValue Vec = Op.getOperand(0); 4237 EVT VecEVT = Vec.getValueType(); 4238 4239 unsigned BaseOpc = ISD::getVecReduceBaseOpcode(Op.getOpcode()); 4240 4241 // Due to ordering in legalize types we may have a vector type that needs to 4242 // be split. Do that manually so we can get down to a legal type. 4243 while (getTypeAction(*DAG.getContext(), VecEVT) == 4244 TargetLowering::TypeSplitVector) { 4245 SDValue Lo, Hi; 4246 std::tie(Lo, Hi) = DAG.SplitVector(Vec, DL); 4247 VecEVT = Lo.getValueType(); 4248 Vec = DAG.getNode(BaseOpc, DL, VecEVT, Lo, Hi); 4249 } 4250 4251 // TODO: The type may need to be widened rather than split. Or widened before 4252 // it can be split. 4253 if (!isTypeLegal(VecEVT)) 4254 return SDValue(); 4255 4256 MVT VecVT = VecEVT.getSimpleVT(); 4257 MVT VecEltVT = VecVT.getVectorElementType(); 4258 unsigned RVVOpcode = getRVVReductionOp(Op.getOpcode()); 4259 4260 MVT ContainerVT = VecVT; 4261 if (VecVT.isFixedLengthVector()) { 4262 ContainerVT = getContainerForFixedLengthVector(VecVT); 4263 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 4264 } 4265 4266 MVT M1VT = getLMUL1VT(ContainerVT); 4267 4268 SDValue Mask, VL; 4269 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 4270 4271 // FIXME: This is a VLMAX splat which might be too large and can prevent 4272 // vsetvli removal. 4273 SDValue NeutralElem = 4274 DAG.getNeutralElement(BaseOpc, DL, VecEltVT, SDNodeFlags()); 4275 SDValue IdentitySplat = DAG.getSplatVector(M1VT, DL, NeutralElem); 4276 SDValue Reduction = DAG.getNode(RVVOpcode, DL, M1VT, DAG.getUNDEF(M1VT), Vec, 4277 IdentitySplat, Mask, VL); 4278 SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction, 4279 DAG.getConstant(0, DL, Subtarget.getXLenVT())); 4280 return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType()); 4281 } 4282 4283 // Given a reduction op, this function returns the matching reduction opcode, 4284 // the vector SDValue and the scalar SDValue required to lower this to a 4285 // RISCVISD node. 4286 static std::tuple<unsigned, SDValue, SDValue> 4287 getRVVFPReductionOpAndOperands(SDValue Op, SelectionDAG &DAG, EVT EltVT) { 4288 SDLoc DL(Op); 4289 auto Flags = Op->getFlags(); 4290 unsigned Opcode = Op.getOpcode(); 4291 unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Opcode); 4292 switch (Opcode) { 4293 default: 4294 llvm_unreachable("Unhandled reduction"); 4295 case ISD::VECREDUCE_FADD: 4296 return std::make_tuple(RISCVISD::VECREDUCE_FADD_VL, Op.getOperand(0), 4297 DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags)); 4298 case ISD::VECREDUCE_SEQ_FADD: 4299 return std::make_tuple(RISCVISD::VECREDUCE_SEQ_FADD_VL, Op.getOperand(1), 4300 Op.getOperand(0)); 4301 case ISD::VECREDUCE_FMIN: 4302 return std::make_tuple(RISCVISD::VECREDUCE_FMIN_VL, Op.getOperand(0), 4303 DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags)); 4304 case ISD::VECREDUCE_FMAX: 4305 return std::make_tuple(RISCVISD::VECREDUCE_FMAX_VL, Op.getOperand(0), 4306 DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags)); 4307 } 4308 } 4309 4310 SDValue RISCVTargetLowering::lowerFPVECREDUCE(SDValue Op, 4311 SelectionDAG &DAG) const { 4312 SDLoc DL(Op); 4313 MVT VecEltVT = Op.getSimpleValueType(); 4314 4315 unsigned RVVOpcode; 4316 SDValue VectorVal, ScalarVal; 4317 std::tie(RVVOpcode, VectorVal, ScalarVal) = 4318 getRVVFPReductionOpAndOperands(Op, DAG, VecEltVT); 4319 MVT VecVT = VectorVal.getSimpleValueType(); 4320 4321 MVT ContainerVT = VecVT; 4322 if (VecVT.isFixedLengthVector()) { 4323 ContainerVT = getContainerForFixedLengthVector(VecVT); 4324 VectorVal = convertToScalableVector(ContainerVT, VectorVal, DAG, Subtarget); 4325 } 4326 4327 MVT M1VT = getLMUL1VT(VectorVal.getSimpleValueType()); 4328 4329 SDValue Mask, VL; 4330 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 4331 4332 // FIXME: This is a VLMAX splat which might be too large and can prevent 4333 // vsetvli removal. 4334 SDValue ScalarSplat = DAG.getSplatVector(M1VT, DL, ScalarVal); 4335 SDValue Reduction = DAG.getNode(RVVOpcode, DL, M1VT, DAG.getUNDEF(M1VT), 4336 VectorVal, ScalarSplat, Mask, VL); 4337 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction, 4338 DAG.getConstant(0, DL, Subtarget.getXLenVT())); 4339 } 4340 4341 static unsigned getRVVVPReductionOp(unsigned ISDOpcode) { 4342 switch (ISDOpcode) { 4343 default: 4344 llvm_unreachable("Unhandled reduction"); 4345 case ISD::VP_REDUCE_ADD: 4346 return RISCVISD::VECREDUCE_ADD_VL; 4347 case ISD::VP_REDUCE_UMAX: 4348 return RISCVISD::VECREDUCE_UMAX_VL; 4349 case ISD::VP_REDUCE_SMAX: 4350 return RISCVISD::VECREDUCE_SMAX_VL; 4351 case ISD::VP_REDUCE_UMIN: 4352 return RISCVISD::VECREDUCE_UMIN_VL; 4353 case ISD::VP_REDUCE_SMIN: 4354 return RISCVISD::VECREDUCE_SMIN_VL; 4355 case ISD::VP_REDUCE_AND: 4356 return RISCVISD::VECREDUCE_AND_VL; 4357 case ISD::VP_REDUCE_OR: 4358 return RISCVISD::VECREDUCE_OR_VL; 4359 case ISD::VP_REDUCE_XOR: 4360 return RISCVISD::VECREDUCE_XOR_VL; 4361 case ISD::VP_REDUCE_FADD: 4362 return RISCVISD::VECREDUCE_FADD_VL; 4363 case ISD::VP_REDUCE_SEQ_FADD: 4364 return RISCVISD::VECREDUCE_SEQ_FADD_VL; 4365 case ISD::VP_REDUCE_FMAX: 4366 return RISCVISD::VECREDUCE_FMAX_VL; 4367 case ISD::VP_REDUCE_FMIN: 4368 return RISCVISD::VECREDUCE_FMIN_VL; 4369 } 4370 } 4371 4372 SDValue RISCVTargetLowering::lowerVPREDUCE(SDValue Op, 4373 SelectionDAG &DAG) const { 4374 SDLoc DL(Op); 4375 SDValue Vec = Op.getOperand(1); 4376 EVT VecEVT = Vec.getValueType(); 4377 4378 // TODO: The type may need to be widened rather than split. Or widened before 4379 // it can be split. 4380 if (!isTypeLegal(VecEVT)) 4381 return SDValue(); 4382 4383 MVT VecVT = VecEVT.getSimpleVT(); 4384 MVT VecEltVT = VecVT.getVectorElementType(); 4385 unsigned RVVOpcode = getRVVVPReductionOp(Op.getOpcode()); 4386 4387 MVT ContainerVT = VecVT; 4388 if (VecVT.isFixedLengthVector()) { 4389 ContainerVT = getContainerForFixedLengthVector(VecVT); 4390 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 4391 } 4392 4393 SDValue VL = Op.getOperand(3); 4394 SDValue Mask = Op.getOperand(2); 4395 4396 MVT M1VT = getLMUL1VT(ContainerVT); 4397 MVT XLenVT = Subtarget.getXLenVT(); 4398 MVT ResVT = !VecVT.isInteger() || VecEltVT.bitsGE(XLenVT) ? VecEltVT : XLenVT; 4399 4400 // FIXME: This is a VLMAX splat which might be too large and can prevent 4401 // vsetvli removal. 4402 SDValue StartSplat = DAG.getSplatVector(M1VT, DL, Op.getOperand(0)); 4403 SDValue Reduction = 4404 DAG.getNode(RVVOpcode, DL, M1VT, StartSplat, Vec, StartSplat, Mask, VL); 4405 SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Reduction, 4406 DAG.getConstant(0, DL, Subtarget.getXLenVT())); 4407 if (!VecVT.isInteger()) 4408 return Elt0; 4409 return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType()); 4410 } 4411 4412 SDValue RISCVTargetLowering::lowerINSERT_SUBVECTOR(SDValue Op, 4413 SelectionDAG &DAG) const { 4414 SDValue Vec = Op.getOperand(0); 4415 SDValue SubVec = Op.getOperand(1); 4416 MVT VecVT = Vec.getSimpleValueType(); 4417 MVT SubVecVT = SubVec.getSimpleValueType(); 4418 4419 SDLoc DL(Op); 4420 MVT XLenVT = Subtarget.getXLenVT(); 4421 unsigned OrigIdx = Op.getConstantOperandVal(2); 4422 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 4423 4424 // We don't have the ability to slide mask vectors up indexed by their i1 4425 // elements; the smallest we can do is i8. Often we are able to bitcast to 4426 // equivalent i8 vectors. Note that when inserting a fixed-length vector 4427 // into a scalable one, we might not necessarily have enough scalable 4428 // elements to safely divide by 8: nxv1i1 = insert nxv1i1, v4i1 is valid. 4429 if (SubVecVT.getVectorElementType() == MVT::i1 && 4430 (OrigIdx != 0 || !Vec.isUndef())) { 4431 if (VecVT.getVectorMinNumElements() >= 8 && 4432 SubVecVT.getVectorMinNumElements() >= 8) { 4433 assert(OrigIdx % 8 == 0 && "Invalid index"); 4434 assert(VecVT.getVectorMinNumElements() % 8 == 0 && 4435 SubVecVT.getVectorMinNumElements() % 8 == 0 && 4436 "Unexpected mask vector lowering"); 4437 OrigIdx /= 8; 4438 SubVecVT = 4439 MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8, 4440 SubVecVT.isScalableVector()); 4441 VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8, 4442 VecVT.isScalableVector()); 4443 Vec = DAG.getBitcast(VecVT, Vec); 4444 SubVec = DAG.getBitcast(SubVecVT, SubVec); 4445 } else { 4446 // We can't slide this mask vector up indexed by its i1 elements. 4447 // This poses a problem when we wish to insert a scalable vector which 4448 // can't be re-expressed as a larger type. Just choose the slow path and 4449 // extend to a larger type, then truncate back down. 4450 MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8); 4451 MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8); 4452 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec); 4453 SubVec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtSubVecVT, SubVec); 4454 Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ExtVecVT, Vec, SubVec, 4455 Op.getOperand(2)); 4456 SDValue SplatZero = DAG.getConstant(0, DL, ExtVecVT); 4457 return DAG.getSetCC(DL, VecVT, Vec, SplatZero, ISD::SETNE); 4458 } 4459 } 4460 4461 // If the subvector vector is a fixed-length type, we cannot use subregister 4462 // manipulation to simplify the codegen; we don't know which register of a 4463 // LMUL group contains the specific subvector as we only know the minimum 4464 // register size. Therefore we must slide the vector group up the full 4465 // amount. 4466 if (SubVecVT.isFixedLengthVector()) { 4467 if (OrigIdx == 0 && Vec.isUndef()) 4468 return Op; 4469 MVT ContainerVT = VecVT; 4470 if (VecVT.isFixedLengthVector()) { 4471 ContainerVT = getContainerForFixedLengthVector(VecVT); 4472 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 4473 } 4474 SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ContainerVT, 4475 DAG.getUNDEF(ContainerVT), SubVec, 4476 DAG.getConstant(0, DL, XLenVT)); 4477 SDValue Mask = 4478 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first; 4479 // Set the vector length to only the number of elements we care about. Note 4480 // that for slideup this includes the offset. 4481 SDValue VL = 4482 DAG.getConstant(OrigIdx + SubVecVT.getVectorNumElements(), DL, XLenVT); 4483 SDValue SlideupAmt = DAG.getConstant(OrigIdx, DL, XLenVT); 4484 SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec, 4485 SubVec, SlideupAmt, Mask, VL); 4486 if (VecVT.isFixedLengthVector()) 4487 Slideup = convertFromScalableVector(VecVT, Slideup, DAG, Subtarget); 4488 return DAG.getBitcast(Op.getValueType(), Slideup); 4489 } 4490 4491 unsigned SubRegIdx, RemIdx; 4492 std::tie(SubRegIdx, RemIdx) = 4493 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( 4494 VecVT, SubVecVT, OrigIdx, TRI); 4495 4496 RISCVII::VLMUL SubVecLMUL = RISCVTargetLowering::getLMUL(SubVecVT); 4497 bool IsSubVecPartReg = SubVecLMUL == RISCVII::VLMUL::LMUL_F2 || 4498 SubVecLMUL == RISCVII::VLMUL::LMUL_F4 || 4499 SubVecLMUL == RISCVII::VLMUL::LMUL_F8; 4500 4501 // 1. If the Idx has been completely eliminated and this subvector's size is 4502 // a vector register or a multiple thereof, or the surrounding elements are 4503 // undef, then this is a subvector insert which naturally aligns to a vector 4504 // register. These can easily be handled using subregister manipulation. 4505 // 2. If the subvector is smaller than a vector register, then the insertion 4506 // must preserve the undisturbed elements of the register. We do this by 4507 // lowering to an EXTRACT_SUBVECTOR grabbing the nearest LMUL=1 vector type 4508 // (which resolves to a subregister copy), performing a VSLIDEUP to place the 4509 // subvector within the vector register, and an INSERT_SUBVECTOR of that 4510 // LMUL=1 type back into the larger vector (resolving to another subregister 4511 // operation). See below for how our VSLIDEUP works. We go via a LMUL=1 type 4512 // to avoid allocating a large register group to hold our subvector. 4513 if (RemIdx == 0 && (!IsSubVecPartReg || Vec.isUndef())) 4514 return Op; 4515 4516 // VSLIDEUP works by leaving elements 0<i<OFFSET undisturbed, elements 4517 // OFFSET<=i<VL set to the "subvector" and vl<=i<VLMAX set to the tail policy 4518 // (in our case undisturbed). This means we can set up a subvector insertion 4519 // where OFFSET is the insertion offset, and the VL is the OFFSET plus the 4520 // size of the subvector. 4521 MVT InterSubVT = VecVT; 4522 SDValue AlignedExtract = Vec; 4523 unsigned AlignedIdx = OrigIdx - RemIdx; 4524 if (VecVT.bitsGT(getLMUL1VT(VecVT))) { 4525 InterSubVT = getLMUL1VT(VecVT); 4526 // Extract a subvector equal to the nearest full vector register type. This 4527 // should resolve to a EXTRACT_SUBREG instruction. 4528 AlignedExtract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec, 4529 DAG.getConstant(AlignedIdx, DL, XLenVT)); 4530 } 4531 4532 SDValue SlideupAmt = DAG.getConstant(RemIdx, DL, XLenVT); 4533 // For scalable vectors this must be further multiplied by vscale. 4534 SlideupAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlideupAmt); 4535 4536 SDValue Mask, VL; 4537 std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget); 4538 4539 // Construct the vector length corresponding to RemIdx + length(SubVecVT). 4540 VL = DAG.getConstant(SubVecVT.getVectorMinNumElements(), DL, XLenVT); 4541 VL = DAG.getNode(ISD::VSCALE, DL, XLenVT, VL); 4542 VL = DAG.getNode(ISD::ADD, DL, XLenVT, SlideupAmt, VL); 4543 4544 SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, InterSubVT, 4545 DAG.getUNDEF(InterSubVT), SubVec, 4546 DAG.getConstant(0, DL, XLenVT)); 4547 4548 SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, InterSubVT, 4549 AlignedExtract, SubVec, SlideupAmt, Mask, VL); 4550 4551 // If required, insert this subvector back into the correct vector register. 4552 // This should resolve to an INSERT_SUBREG instruction. 4553 if (VecVT.bitsGT(InterSubVT)) 4554 Slideup = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, Vec, Slideup, 4555 DAG.getConstant(AlignedIdx, DL, XLenVT)); 4556 4557 // We might have bitcast from a mask type: cast back to the original type if 4558 // required. 4559 return DAG.getBitcast(Op.getSimpleValueType(), Slideup); 4560 } 4561 4562 SDValue RISCVTargetLowering::lowerEXTRACT_SUBVECTOR(SDValue Op, 4563 SelectionDAG &DAG) const { 4564 SDValue Vec = Op.getOperand(0); 4565 MVT SubVecVT = Op.getSimpleValueType(); 4566 MVT VecVT = Vec.getSimpleValueType(); 4567 4568 SDLoc DL(Op); 4569 MVT XLenVT = Subtarget.getXLenVT(); 4570 unsigned OrigIdx = Op.getConstantOperandVal(1); 4571 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 4572 4573 // We don't have the ability to slide mask vectors down indexed by their i1 4574 // elements; the smallest we can do is i8. Often we are able to bitcast to 4575 // equivalent i8 vectors. Note that when extracting a fixed-length vector 4576 // from a scalable one, we might not necessarily have enough scalable 4577 // elements to safely divide by 8: v8i1 = extract nxv1i1 is valid. 4578 if (SubVecVT.getVectorElementType() == MVT::i1 && OrigIdx != 0) { 4579 if (VecVT.getVectorMinNumElements() >= 8 && 4580 SubVecVT.getVectorMinNumElements() >= 8) { 4581 assert(OrigIdx % 8 == 0 && "Invalid index"); 4582 assert(VecVT.getVectorMinNumElements() % 8 == 0 && 4583 SubVecVT.getVectorMinNumElements() % 8 == 0 && 4584 "Unexpected mask vector lowering"); 4585 OrigIdx /= 8; 4586 SubVecVT = 4587 MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8, 4588 SubVecVT.isScalableVector()); 4589 VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8, 4590 VecVT.isScalableVector()); 4591 Vec = DAG.getBitcast(VecVT, Vec); 4592 } else { 4593 // We can't slide this mask vector down, indexed by its i1 elements. 4594 // This poses a problem when we wish to extract a scalable vector which 4595 // can't be re-expressed as a larger type. Just choose the slow path and 4596 // extend to a larger type, then truncate back down. 4597 // TODO: We could probably improve this when extracting certain fixed 4598 // from fixed, where we can extract as i8 and shift the correct element 4599 // right to reach the desired subvector? 4600 MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8); 4601 MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8); 4602 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec); 4603 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ExtSubVecVT, Vec, 4604 Op.getOperand(1)); 4605 SDValue SplatZero = DAG.getConstant(0, DL, ExtSubVecVT); 4606 return DAG.getSetCC(DL, SubVecVT, Vec, SplatZero, ISD::SETNE); 4607 } 4608 } 4609 4610 // If the subvector vector is a fixed-length type, we cannot use subregister 4611 // manipulation to simplify the codegen; we don't know which register of a 4612 // LMUL group contains the specific subvector as we only know the minimum 4613 // register size. Therefore we must slide the vector group down the full 4614 // amount. 4615 if (SubVecVT.isFixedLengthVector()) { 4616 // With an index of 0 this is a cast-like subvector, which can be performed 4617 // with subregister operations. 4618 if (OrigIdx == 0) 4619 return Op; 4620 MVT ContainerVT = VecVT; 4621 if (VecVT.isFixedLengthVector()) { 4622 ContainerVT = getContainerForFixedLengthVector(VecVT); 4623 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 4624 } 4625 SDValue Mask = 4626 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first; 4627 // Set the vector length to only the number of elements we care about. This 4628 // avoids sliding down elements we're going to discard straight away. 4629 SDValue VL = DAG.getConstant(SubVecVT.getVectorNumElements(), DL, XLenVT); 4630 SDValue SlidedownAmt = DAG.getConstant(OrigIdx, DL, XLenVT); 4631 SDValue Slidedown = 4632 DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 4633 DAG.getUNDEF(ContainerVT), Vec, SlidedownAmt, Mask, VL); 4634 // Now we can use a cast-like subvector extract to get the result. 4635 Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown, 4636 DAG.getConstant(0, DL, XLenVT)); 4637 return DAG.getBitcast(Op.getValueType(), Slidedown); 4638 } 4639 4640 unsigned SubRegIdx, RemIdx; 4641 std::tie(SubRegIdx, RemIdx) = 4642 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( 4643 VecVT, SubVecVT, OrigIdx, TRI); 4644 4645 // If the Idx has been completely eliminated then this is a subvector extract 4646 // which naturally aligns to a vector register. These can easily be handled 4647 // using subregister manipulation. 4648 if (RemIdx == 0) 4649 return Op; 4650 4651 // Else we must shift our vector register directly to extract the subvector. 4652 // Do this using VSLIDEDOWN. 4653 4654 // If the vector type is an LMUL-group type, extract a subvector equal to the 4655 // nearest full vector register type. This should resolve to a EXTRACT_SUBREG 4656 // instruction. 4657 MVT InterSubVT = VecVT; 4658 if (VecVT.bitsGT(getLMUL1VT(VecVT))) { 4659 InterSubVT = getLMUL1VT(VecVT); 4660 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec, 4661 DAG.getConstant(OrigIdx - RemIdx, DL, XLenVT)); 4662 } 4663 4664 // Slide this vector register down by the desired number of elements in order 4665 // to place the desired subvector starting at element 0. 4666 SDValue SlidedownAmt = DAG.getConstant(RemIdx, DL, XLenVT); 4667 // For scalable vectors this must be further multiplied by vscale. 4668 SlidedownAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlidedownAmt); 4669 4670 SDValue Mask, VL; 4671 std::tie(Mask, VL) = getDefaultScalableVLOps(InterSubVT, DL, DAG, Subtarget); 4672 SDValue Slidedown = 4673 DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, InterSubVT, 4674 DAG.getUNDEF(InterSubVT), Vec, SlidedownAmt, Mask, VL); 4675 4676 // Now the vector is in the right position, extract our final subvector. This 4677 // should resolve to a COPY. 4678 Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown, 4679 DAG.getConstant(0, DL, XLenVT)); 4680 4681 // We might have bitcast from a mask type: cast back to the original type if 4682 // required. 4683 return DAG.getBitcast(Op.getSimpleValueType(), Slidedown); 4684 } 4685 4686 // Lower step_vector to the vid instruction. Any non-identity step value must 4687 // be accounted for my manual expansion. 4688 SDValue RISCVTargetLowering::lowerSTEP_VECTOR(SDValue Op, 4689 SelectionDAG &DAG) const { 4690 SDLoc DL(Op); 4691 MVT VT = Op.getSimpleValueType(); 4692 MVT XLenVT = Subtarget.getXLenVT(); 4693 SDValue Mask, VL; 4694 std::tie(Mask, VL) = getDefaultScalableVLOps(VT, DL, DAG, Subtarget); 4695 SDValue StepVec = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL); 4696 uint64_t StepValImm = Op.getConstantOperandVal(0); 4697 if (StepValImm != 1) { 4698 if (isPowerOf2_64(StepValImm)) { 4699 SDValue StepVal = 4700 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, 4701 DAG.getConstant(Log2_64(StepValImm), DL, XLenVT)); 4702 StepVec = DAG.getNode(ISD::SHL, DL, VT, StepVec, StepVal); 4703 } else { 4704 SDValue StepVal = lowerScalarSplat( 4705 DAG.getConstant(StepValImm, DL, VT.getVectorElementType()), VL, VT, 4706 DL, DAG, Subtarget); 4707 StepVec = DAG.getNode(ISD::MUL, DL, VT, StepVec, StepVal); 4708 } 4709 } 4710 return StepVec; 4711 } 4712 4713 // Implement vector_reverse using vrgather.vv with indices determined by 4714 // subtracting the id of each element from (VLMAX-1). This will convert 4715 // the indices like so: 4716 // (0, 1,..., VLMAX-2, VLMAX-1) -> (VLMAX-1, VLMAX-2,..., 1, 0). 4717 // TODO: This code assumes VLMAX <= 65536 for LMUL=8 SEW=16. 4718 SDValue RISCVTargetLowering::lowerVECTOR_REVERSE(SDValue Op, 4719 SelectionDAG &DAG) const { 4720 SDLoc DL(Op); 4721 MVT VecVT = Op.getSimpleValueType(); 4722 unsigned EltSize = VecVT.getScalarSizeInBits(); 4723 unsigned MinSize = VecVT.getSizeInBits().getKnownMinValue(); 4724 4725 unsigned MaxVLMAX = 0; 4726 unsigned VectorBitsMax = Subtarget.getMaxRVVVectorSizeInBits(); 4727 if (VectorBitsMax != 0) 4728 MaxVLMAX = ((VectorBitsMax / EltSize) * MinSize) / RISCV::RVVBitsPerBlock; 4729 4730 unsigned GatherOpc = RISCVISD::VRGATHER_VV_VL; 4731 MVT IntVT = VecVT.changeVectorElementTypeToInteger(); 4732 4733 // If this is SEW=8 and VLMAX is unknown or more than 256, we need 4734 // to use vrgatherei16.vv. 4735 // TODO: It's also possible to use vrgatherei16.vv for other types to 4736 // decrease register width for the index calculation. 4737 if ((MaxVLMAX == 0 || MaxVLMAX > 256) && EltSize == 8) { 4738 // If this is LMUL=8, we have to split before can use vrgatherei16.vv. 4739 // Reverse each half, then reassemble them in reverse order. 4740 // NOTE: It's also possible that after splitting that VLMAX no longer 4741 // requires vrgatherei16.vv. 4742 if (MinSize == (8 * RISCV::RVVBitsPerBlock)) { 4743 SDValue Lo, Hi; 4744 std::tie(Lo, Hi) = DAG.SplitVectorOperand(Op.getNode(), 0); 4745 EVT LoVT, HiVT; 4746 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VecVT); 4747 Lo = DAG.getNode(ISD::VECTOR_REVERSE, DL, LoVT, Lo); 4748 Hi = DAG.getNode(ISD::VECTOR_REVERSE, DL, HiVT, Hi); 4749 // Reassemble the low and high pieces reversed. 4750 // FIXME: This is a CONCAT_VECTORS. 4751 SDValue Res = 4752 DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, DAG.getUNDEF(VecVT), Hi, 4753 DAG.getIntPtrConstant(0, DL)); 4754 return DAG.getNode( 4755 ISD::INSERT_SUBVECTOR, DL, VecVT, Res, Lo, 4756 DAG.getIntPtrConstant(LoVT.getVectorMinNumElements(), DL)); 4757 } 4758 4759 // Just promote the int type to i16 which will double the LMUL. 4760 IntVT = MVT::getVectorVT(MVT::i16, VecVT.getVectorElementCount()); 4761 GatherOpc = RISCVISD::VRGATHEREI16_VV_VL; 4762 } 4763 4764 MVT XLenVT = Subtarget.getXLenVT(); 4765 SDValue Mask, VL; 4766 std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget); 4767 4768 // Calculate VLMAX-1 for the desired SEW. 4769 unsigned MinElts = VecVT.getVectorMinNumElements(); 4770 SDValue VLMax = DAG.getNode(ISD::VSCALE, DL, XLenVT, 4771 DAG.getConstant(MinElts, DL, XLenVT)); 4772 SDValue VLMinus1 = 4773 DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, DAG.getConstant(1, DL, XLenVT)); 4774 4775 // Splat VLMAX-1 taking care to handle SEW==64 on RV32. 4776 bool IsRV32E64 = 4777 !Subtarget.is64Bit() && IntVT.getVectorElementType() == MVT::i64; 4778 SDValue SplatVL; 4779 if (!IsRV32E64) 4780 SplatVL = DAG.getSplatVector(IntVT, DL, VLMinus1); 4781 else 4782 SplatVL = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, IntVT, VLMinus1); 4783 4784 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, IntVT, Mask, VL); 4785 SDValue Indices = 4786 DAG.getNode(RISCVISD::SUB_VL, DL, IntVT, SplatVL, VID, Mask, VL); 4787 4788 return DAG.getNode(GatherOpc, DL, VecVT, Op.getOperand(0), Indices, Mask, VL); 4789 } 4790 4791 SDValue 4792 RISCVTargetLowering::lowerFixedLengthVectorLoadToRVV(SDValue Op, 4793 SelectionDAG &DAG) const { 4794 SDLoc DL(Op); 4795 auto *Load = cast<LoadSDNode>(Op); 4796 4797 assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 4798 Load->getMemoryVT(), 4799 *Load->getMemOperand()) && 4800 "Expecting a correctly-aligned load"); 4801 4802 MVT VT = Op.getSimpleValueType(); 4803 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4804 4805 SDValue VL = 4806 DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT()); 4807 4808 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 4809 SDValue NewLoad = DAG.getMemIntrinsicNode( 4810 RISCVISD::VLE_VL, DL, VTs, {Load->getChain(), Load->getBasePtr(), VL}, 4811 Load->getMemoryVT(), Load->getMemOperand()); 4812 4813 SDValue Result = convertFromScalableVector(VT, NewLoad, DAG, Subtarget); 4814 return DAG.getMergeValues({Result, Load->getChain()}, DL); 4815 } 4816 4817 SDValue 4818 RISCVTargetLowering::lowerFixedLengthVectorStoreToRVV(SDValue Op, 4819 SelectionDAG &DAG) const { 4820 SDLoc DL(Op); 4821 auto *Store = cast<StoreSDNode>(Op); 4822 4823 assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 4824 Store->getMemoryVT(), 4825 *Store->getMemOperand()) && 4826 "Expecting a correctly-aligned store"); 4827 4828 SDValue StoreVal = Store->getValue(); 4829 MVT VT = StoreVal.getSimpleValueType(); 4830 4831 // If the size less than a byte, we need to pad with zeros to make a byte. 4832 if (VT.getVectorElementType() == MVT::i1 && VT.getVectorNumElements() < 8) { 4833 VT = MVT::v8i1; 4834 StoreVal = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, 4835 DAG.getConstant(0, DL, VT), StoreVal, 4836 DAG.getIntPtrConstant(0, DL)); 4837 } 4838 4839 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4840 4841 SDValue VL = 4842 DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT()); 4843 4844 SDValue NewValue = 4845 convertToScalableVector(ContainerVT, StoreVal, DAG, Subtarget); 4846 return DAG.getMemIntrinsicNode( 4847 RISCVISD::VSE_VL, DL, DAG.getVTList(MVT::Other), 4848 {Store->getChain(), NewValue, Store->getBasePtr(), VL}, 4849 Store->getMemoryVT(), Store->getMemOperand()); 4850 } 4851 4852 SDValue RISCVTargetLowering::lowerMaskedLoad(SDValue Op, 4853 SelectionDAG &DAG) const { 4854 SDLoc DL(Op); 4855 MVT VT = Op.getSimpleValueType(); 4856 4857 const auto *MemSD = cast<MemSDNode>(Op); 4858 EVT MemVT = MemSD->getMemoryVT(); 4859 MachineMemOperand *MMO = MemSD->getMemOperand(); 4860 SDValue Chain = MemSD->getChain(); 4861 SDValue BasePtr = MemSD->getBasePtr(); 4862 4863 SDValue Mask, PassThru, VL; 4864 if (const auto *VPLoad = dyn_cast<VPLoadSDNode>(Op)) { 4865 Mask = VPLoad->getMask(); 4866 PassThru = DAG.getUNDEF(VT); 4867 VL = VPLoad->getVectorLength(); 4868 } else { 4869 const auto *MLoad = cast<MaskedLoadSDNode>(Op); 4870 Mask = MLoad->getMask(); 4871 PassThru = MLoad->getPassThru(); 4872 } 4873 4874 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 4875 4876 MVT XLenVT = Subtarget.getXLenVT(); 4877 4878 MVT ContainerVT = VT; 4879 if (VT.isFixedLengthVector()) { 4880 ContainerVT = getContainerForFixedLengthVector(VT); 4881 PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget); 4882 if (!IsUnmasked) { 4883 MVT MaskVT = 4884 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4885 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 4886 } 4887 } 4888 4889 if (!VL) 4890 VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; 4891 4892 unsigned IntID = 4893 IsUnmasked ? Intrinsic::riscv_vle : Intrinsic::riscv_vle_mask; 4894 SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)}; 4895 if (!IsUnmasked) 4896 Ops.push_back(PassThru); 4897 Ops.push_back(BasePtr); 4898 if (!IsUnmasked) 4899 Ops.push_back(Mask); 4900 Ops.push_back(VL); 4901 if (!IsUnmasked) 4902 Ops.push_back(DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT)); 4903 4904 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 4905 4906 SDValue Result = 4907 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, MemVT, MMO); 4908 Chain = Result.getValue(1); 4909 4910 if (VT.isFixedLengthVector()) 4911 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 4912 4913 return DAG.getMergeValues({Result, Chain}, DL); 4914 } 4915 4916 SDValue RISCVTargetLowering::lowerMaskedStore(SDValue Op, 4917 SelectionDAG &DAG) const { 4918 SDLoc DL(Op); 4919 4920 const auto *MemSD = cast<MemSDNode>(Op); 4921 EVT MemVT = MemSD->getMemoryVT(); 4922 MachineMemOperand *MMO = MemSD->getMemOperand(); 4923 SDValue Chain = MemSD->getChain(); 4924 SDValue BasePtr = MemSD->getBasePtr(); 4925 SDValue Val, Mask, VL; 4926 4927 if (const auto *VPStore = dyn_cast<VPStoreSDNode>(Op)) { 4928 Val = VPStore->getValue(); 4929 Mask = VPStore->getMask(); 4930 VL = VPStore->getVectorLength(); 4931 } else { 4932 const auto *MStore = cast<MaskedStoreSDNode>(Op); 4933 Val = MStore->getValue(); 4934 Mask = MStore->getMask(); 4935 } 4936 4937 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 4938 4939 MVT VT = Val.getSimpleValueType(); 4940 MVT XLenVT = Subtarget.getXLenVT(); 4941 4942 MVT ContainerVT = VT; 4943 if (VT.isFixedLengthVector()) { 4944 ContainerVT = getContainerForFixedLengthVector(VT); 4945 4946 Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget); 4947 if (!IsUnmasked) { 4948 MVT MaskVT = 4949 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4950 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 4951 } 4952 } 4953 4954 if (!VL) 4955 VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; 4956 4957 unsigned IntID = 4958 IsUnmasked ? Intrinsic::riscv_vse : Intrinsic::riscv_vse_mask; 4959 SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)}; 4960 Ops.push_back(Val); 4961 Ops.push_back(BasePtr); 4962 if (!IsUnmasked) 4963 Ops.push_back(Mask); 4964 Ops.push_back(VL); 4965 4966 return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, 4967 DAG.getVTList(MVT::Other), Ops, MemVT, MMO); 4968 } 4969 4970 SDValue 4971 RISCVTargetLowering::lowerFixedLengthVectorSetccToRVV(SDValue Op, 4972 SelectionDAG &DAG) const { 4973 MVT InVT = Op.getOperand(0).getSimpleValueType(); 4974 MVT ContainerVT = getContainerForFixedLengthVector(InVT); 4975 4976 MVT VT = Op.getSimpleValueType(); 4977 4978 SDValue Op1 = 4979 convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget); 4980 SDValue Op2 = 4981 convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget); 4982 4983 SDLoc DL(Op); 4984 SDValue VL = 4985 DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT()); 4986 4987 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4988 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 4989 4990 SDValue Cmp = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, Op1, Op2, 4991 Op.getOperand(2), Mask, VL); 4992 4993 return convertFromScalableVector(VT, Cmp, DAG, Subtarget); 4994 } 4995 4996 SDValue RISCVTargetLowering::lowerFixedLengthVectorLogicOpToRVV( 4997 SDValue Op, SelectionDAG &DAG, unsigned MaskOpc, unsigned VecOpc) const { 4998 MVT VT = Op.getSimpleValueType(); 4999 5000 if (VT.getVectorElementType() == MVT::i1) 5001 return lowerToScalableOp(Op, DAG, MaskOpc, /*HasMask*/ false); 5002 5003 return lowerToScalableOp(Op, DAG, VecOpc, /*HasMask*/ true); 5004 } 5005 5006 SDValue 5007 RISCVTargetLowering::lowerFixedLengthVectorShiftToRVV(SDValue Op, 5008 SelectionDAG &DAG) const { 5009 unsigned Opc; 5010 switch (Op.getOpcode()) { 5011 default: llvm_unreachable("Unexpected opcode!"); 5012 case ISD::SHL: Opc = RISCVISD::SHL_VL; break; 5013 case ISD::SRA: Opc = RISCVISD::SRA_VL; break; 5014 case ISD::SRL: Opc = RISCVISD::SRL_VL; break; 5015 } 5016 5017 return lowerToScalableOp(Op, DAG, Opc); 5018 } 5019 5020 // Lower vector ABS to smax(X, sub(0, X)). 5021 SDValue RISCVTargetLowering::lowerABS(SDValue Op, SelectionDAG &DAG) const { 5022 SDLoc DL(Op); 5023 MVT VT = Op.getSimpleValueType(); 5024 SDValue X = Op.getOperand(0); 5025 5026 assert(VT.isFixedLengthVector() && "Unexpected type"); 5027 5028 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5029 X = convertToScalableVector(ContainerVT, X, DAG, Subtarget); 5030 5031 SDValue Mask, VL; 5032 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 5033 5034 SDValue SplatZero = 5035 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, 5036 DAG.getConstant(0, DL, Subtarget.getXLenVT())); 5037 SDValue NegX = 5038 DAG.getNode(RISCVISD::SUB_VL, DL, ContainerVT, SplatZero, X, Mask, VL); 5039 SDValue Max = 5040 DAG.getNode(RISCVISD::SMAX_VL, DL, ContainerVT, X, NegX, Mask, VL); 5041 5042 return convertFromScalableVector(VT, Max, DAG, Subtarget); 5043 } 5044 5045 SDValue RISCVTargetLowering::lowerFixedLengthVectorFCOPYSIGNToRVV( 5046 SDValue Op, SelectionDAG &DAG) const { 5047 SDLoc DL(Op); 5048 MVT VT = Op.getSimpleValueType(); 5049 SDValue Mag = Op.getOperand(0); 5050 SDValue Sign = Op.getOperand(1); 5051 assert(Mag.getValueType() == Sign.getValueType() && 5052 "Can only handle COPYSIGN with matching types."); 5053 5054 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5055 Mag = convertToScalableVector(ContainerVT, Mag, DAG, Subtarget); 5056 Sign = convertToScalableVector(ContainerVT, Sign, DAG, Subtarget); 5057 5058 SDValue Mask, VL; 5059 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 5060 5061 SDValue CopySign = 5062 DAG.getNode(RISCVISD::FCOPYSIGN_VL, DL, ContainerVT, Mag, Sign, Mask, VL); 5063 5064 return convertFromScalableVector(VT, CopySign, DAG, Subtarget); 5065 } 5066 5067 SDValue RISCVTargetLowering::lowerFixedLengthVectorSelectToRVV( 5068 SDValue Op, SelectionDAG &DAG) const { 5069 MVT VT = Op.getSimpleValueType(); 5070 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5071 5072 MVT I1ContainerVT = 5073 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 5074 5075 SDValue CC = 5076 convertToScalableVector(I1ContainerVT, Op.getOperand(0), DAG, Subtarget); 5077 SDValue Op1 = 5078 convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget); 5079 SDValue Op2 = 5080 convertToScalableVector(ContainerVT, Op.getOperand(2), DAG, Subtarget); 5081 5082 SDLoc DL(Op); 5083 SDValue Mask, VL; 5084 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 5085 5086 SDValue Select = 5087 DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC, Op1, Op2, VL); 5088 5089 return convertFromScalableVector(VT, Select, DAG, Subtarget); 5090 } 5091 5092 SDValue RISCVTargetLowering::lowerToScalableOp(SDValue Op, SelectionDAG &DAG, 5093 unsigned NewOpc, 5094 bool HasMask) const { 5095 MVT VT = Op.getSimpleValueType(); 5096 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5097 5098 // Create list of operands by converting existing ones to scalable types. 5099 SmallVector<SDValue, 6> Ops; 5100 for (const SDValue &V : Op->op_values()) { 5101 assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!"); 5102 5103 // Pass through non-vector operands. 5104 if (!V.getValueType().isVector()) { 5105 Ops.push_back(V); 5106 continue; 5107 } 5108 5109 // "cast" fixed length vector to a scalable vector. 5110 assert(useRVVForFixedLengthVectorVT(V.getSimpleValueType()) && 5111 "Only fixed length vectors are supported!"); 5112 Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget)); 5113 } 5114 5115 SDLoc DL(Op); 5116 SDValue Mask, VL; 5117 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 5118 if (HasMask) 5119 Ops.push_back(Mask); 5120 Ops.push_back(VL); 5121 5122 SDValue ScalableRes = DAG.getNode(NewOpc, DL, ContainerVT, Ops); 5123 return convertFromScalableVector(VT, ScalableRes, DAG, Subtarget); 5124 } 5125 5126 // Lower a VP_* ISD node to the corresponding RISCVISD::*_VL node: 5127 // * Operands of each node are assumed to be in the same order. 5128 // * The EVL operand is promoted from i32 to i64 on RV64. 5129 // * Fixed-length vectors are converted to their scalable-vector container 5130 // types. 5131 SDValue RISCVTargetLowering::lowerVPOp(SDValue Op, SelectionDAG &DAG, 5132 unsigned RISCVISDOpc) const { 5133 SDLoc DL(Op); 5134 MVT VT = Op.getSimpleValueType(); 5135 SmallVector<SDValue, 4> Ops; 5136 5137 for (const auto &OpIdx : enumerate(Op->ops())) { 5138 SDValue V = OpIdx.value(); 5139 assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!"); 5140 // Pass through operands which aren't fixed-length vectors. 5141 if (!V.getValueType().isFixedLengthVector()) { 5142 Ops.push_back(V); 5143 continue; 5144 } 5145 // "cast" fixed length vector to a scalable vector. 5146 MVT OpVT = V.getSimpleValueType(); 5147 MVT ContainerVT = getContainerForFixedLengthVector(OpVT); 5148 assert(useRVVForFixedLengthVectorVT(OpVT) && 5149 "Only fixed length vectors are supported!"); 5150 Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget)); 5151 } 5152 5153 if (!VT.isFixedLengthVector()) 5154 return DAG.getNode(RISCVISDOpc, DL, VT, Ops); 5155 5156 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5157 5158 SDValue VPOp = DAG.getNode(RISCVISDOpc, DL, ContainerVT, Ops); 5159 5160 return convertFromScalableVector(VT, VPOp, DAG, Subtarget); 5161 } 5162 5163 // Custom lower MGATHER/VP_GATHER to a legalized form for RVV. It will then be 5164 // matched to a RVV indexed load. The RVV indexed load instructions only 5165 // support the "unsigned unscaled" addressing mode; indices are implicitly 5166 // zero-extended or truncated to XLEN and are treated as byte offsets. Any 5167 // signed or scaled indexing is extended to the XLEN value type and scaled 5168 // accordingly. 5169 SDValue RISCVTargetLowering::lowerMaskedGather(SDValue Op, 5170 SelectionDAG &DAG) const { 5171 SDLoc DL(Op); 5172 MVT VT = Op.getSimpleValueType(); 5173 5174 const auto *MemSD = cast<MemSDNode>(Op.getNode()); 5175 EVT MemVT = MemSD->getMemoryVT(); 5176 MachineMemOperand *MMO = MemSD->getMemOperand(); 5177 SDValue Chain = MemSD->getChain(); 5178 SDValue BasePtr = MemSD->getBasePtr(); 5179 5180 ISD::LoadExtType LoadExtType; 5181 SDValue Index, Mask, PassThru, VL; 5182 5183 if (auto *VPGN = dyn_cast<VPGatherSDNode>(Op.getNode())) { 5184 Index = VPGN->getIndex(); 5185 Mask = VPGN->getMask(); 5186 PassThru = DAG.getUNDEF(VT); 5187 VL = VPGN->getVectorLength(); 5188 // VP doesn't support extending loads. 5189 LoadExtType = ISD::NON_EXTLOAD; 5190 } else { 5191 // Else it must be a MGATHER. 5192 auto *MGN = cast<MaskedGatherSDNode>(Op.getNode()); 5193 Index = MGN->getIndex(); 5194 Mask = MGN->getMask(); 5195 PassThru = MGN->getPassThru(); 5196 LoadExtType = MGN->getExtensionType(); 5197 } 5198 5199 MVT IndexVT = Index.getSimpleValueType(); 5200 MVT XLenVT = Subtarget.getXLenVT(); 5201 5202 assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() && 5203 "Unexpected VTs!"); 5204 assert(BasePtr.getSimpleValueType() == XLenVT && "Unexpected pointer type"); 5205 // Targets have to explicitly opt-in for extending vector loads. 5206 assert(LoadExtType == ISD::NON_EXTLOAD && 5207 "Unexpected extending MGATHER/VP_GATHER"); 5208 (void)LoadExtType; 5209 5210 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 5211 // the selection of the masked intrinsics doesn't do this for us. 5212 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 5213 5214 MVT ContainerVT = VT; 5215 if (VT.isFixedLengthVector()) { 5216 // We need to use the larger of the result and index type to determine the 5217 // scalable type to use so we don't increase LMUL for any operand/result. 5218 if (VT.bitsGE(IndexVT)) { 5219 ContainerVT = getContainerForFixedLengthVector(VT); 5220 IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(), 5221 ContainerVT.getVectorElementCount()); 5222 } else { 5223 IndexVT = getContainerForFixedLengthVector(IndexVT); 5224 ContainerVT = MVT::getVectorVT(ContainerVT.getVectorElementType(), 5225 IndexVT.getVectorElementCount()); 5226 } 5227 5228 Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget); 5229 5230 if (!IsUnmasked) { 5231 MVT MaskVT = 5232 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 5233 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 5234 PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget); 5235 } 5236 } 5237 5238 if (!VL) 5239 VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; 5240 5241 unsigned IntID = 5242 IsUnmasked ? Intrinsic::riscv_vluxei : Intrinsic::riscv_vluxei_mask; 5243 SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)}; 5244 if (!IsUnmasked) 5245 Ops.push_back(PassThru); 5246 Ops.push_back(BasePtr); 5247 Ops.push_back(Index); 5248 if (!IsUnmasked) 5249 Ops.push_back(Mask); 5250 Ops.push_back(VL); 5251 if (!IsUnmasked) 5252 Ops.push_back(DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT)); 5253 5254 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 5255 SDValue Result = 5256 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, MemVT, MMO); 5257 Chain = Result.getValue(1); 5258 5259 if (VT.isFixedLengthVector()) 5260 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 5261 5262 return DAG.getMergeValues({Result, Chain}, DL); 5263 } 5264 5265 // Custom lower MSCATTER/VP_SCATTER to a legalized form for RVV. It will then be 5266 // matched to a RVV indexed store. The RVV indexed store instructions only 5267 // support the "unsigned unscaled" addressing mode; indices are implicitly 5268 // zero-extended or truncated to XLEN and are treated as byte offsets. Any 5269 // signed or scaled indexing is extended to the XLEN value type and scaled 5270 // accordingly. 5271 SDValue RISCVTargetLowering::lowerMaskedScatter(SDValue Op, 5272 SelectionDAG &DAG) const { 5273 SDLoc DL(Op); 5274 const auto *MemSD = cast<MemSDNode>(Op.getNode()); 5275 EVT MemVT = MemSD->getMemoryVT(); 5276 MachineMemOperand *MMO = MemSD->getMemOperand(); 5277 SDValue Chain = MemSD->getChain(); 5278 SDValue BasePtr = MemSD->getBasePtr(); 5279 5280 bool IsTruncatingStore = false; 5281 SDValue Index, Mask, Val, VL; 5282 5283 if (auto *VPSN = dyn_cast<VPScatterSDNode>(Op.getNode())) { 5284 Index = VPSN->getIndex(); 5285 Mask = VPSN->getMask(); 5286 Val = VPSN->getValue(); 5287 VL = VPSN->getVectorLength(); 5288 // VP doesn't support truncating stores. 5289 IsTruncatingStore = false; 5290 } else { 5291 // Else it must be a MSCATTER. 5292 auto *MSN = cast<MaskedScatterSDNode>(Op.getNode()); 5293 Index = MSN->getIndex(); 5294 Mask = MSN->getMask(); 5295 Val = MSN->getValue(); 5296 IsTruncatingStore = MSN->isTruncatingStore(); 5297 } 5298 5299 MVT VT = Val.getSimpleValueType(); 5300 MVT IndexVT = Index.getSimpleValueType(); 5301 MVT XLenVT = Subtarget.getXLenVT(); 5302 5303 assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() && 5304 "Unexpected VTs!"); 5305 assert(BasePtr.getSimpleValueType() == XLenVT && "Unexpected pointer type"); 5306 // Targets have to explicitly opt-in for extending vector loads and 5307 // truncating vector stores. 5308 assert(!IsTruncatingStore && "Unexpected truncating MSCATTER/VP_SCATTER"); 5309 (void)IsTruncatingStore; 5310 5311 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 5312 // the selection of the masked intrinsics doesn't do this for us. 5313 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 5314 5315 MVT ContainerVT = VT; 5316 if (VT.isFixedLengthVector()) { 5317 // We need to use the larger of the value and index type to determine the 5318 // scalable type to use so we don't increase LMUL for any operand/result. 5319 if (VT.bitsGE(IndexVT)) { 5320 ContainerVT = getContainerForFixedLengthVector(VT); 5321 IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(), 5322 ContainerVT.getVectorElementCount()); 5323 } else { 5324 IndexVT = getContainerForFixedLengthVector(IndexVT); 5325 ContainerVT = MVT::getVectorVT(VT.getVectorElementType(), 5326 IndexVT.getVectorElementCount()); 5327 } 5328 5329 Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget); 5330 Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget); 5331 5332 if (!IsUnmasked) { 5333 MVT MaskVT = 5334 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 5335 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 5336 } 5337 } 5338 5339 if (!VL) 5340 VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; 5341 5342 unsigned IntID = 5343 IsUnmasked ? Intrinsic::riscv_vsoxei : Intrinsic::riscv_vsoxei_mask; 5344 SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)}; 5345 Ops.push_back(Val); 5346 Ops.push_back(BasePtr); 5347 Ops.push_back(Index); 5348 if (!IsUnmasked) 5349 Ops.push_back(Mask); 5350 Ops.push_back(VL); 5351 5352 return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, 5353 DAG.getVTList(MVT::Other), Ops, MemVT, MMO); 5354 } 5355 5356 SDValue RISCVTargetLowering::lowerGET_ROUNDING(SDValue Op, 5357 SelectionDAG &DAG) const { 5358 const MVT XLenVT = Subtarget.getXLenVT(); 5359 SDLoc DL(Op); 5360 SDValue Chain = Op->getOperand(0); 5361 SDValue SysRegNo = DAG.getConstant( 5362 RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT); 5363 SDVTList VTs = DAG.getVTList(XLenVT, MVT::Other); 5364 SDValue RM = DAG.getNode(RISCVISD::READ_CSR, DL, VTs, Chain, SysRegNo); 5365 5366 // Encoding used for rounding mode in RISCV differs from that used in 5367 // FLT_ROUNDS. To convert it the RISCV rounding mode is used as an index in a 5368 // table, which consists of a sequence of 4-bit fields, each representing 5369 // corresponding FLT_ROUNDS mode. 5370 static const int Table = 5371 (int(RoundingMode::NearestTiesToEven) << 4 * RISCVFPRndMode::RNE) | 5372 (int(RoundingMode::TowardZero) << 4 * RISCVFPRndMode::RTZ) | 5373 (int(RoundingMode::TowardNegative) << 4 * RISCVFPRndMode::RDN) | 5374 (int(RoundingMode::TowardPositive) << 4 * RISCVFPRndMode::RUP) | 5375 (int(RoundingMode::NearestTiesToAway) << 4 * RISCVFPRndMode::RMM); 5376 5377 SDValue Shift = 5378 DAG.getNode(ISD::SHL, DL, XLenVT, RM, DAG.getConstant(2, DL, XLenVT)); 5379 SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT, 5380 DAG.getConstant(Table, DL, XLenVT), Shift); 5381 SDValue Masked = DAG.getNode(ISD::AND, DL, XLenVT, Shifted, 5382 DAG.getConstant(7, DL, XLenVT)); 5383 5384 return DAG.getMergeValues({Masked, Chain}, DL); 5385 } 5386 5387 SDValue RISCVTargetLowering::lowerSET_ROUNDING(SDValue Op, 5388 SelectionDAG &DAG) const { 5389 const MVT XLenVT = Subtarget.getXLenVT(); 5390 SDLoc DL(Op); 5391 SDValue Chain = Op->getOperand(0); 5392 SDValue RMValue = Op->getOperand(1); 5393 SDValue SysRegNo = DAG.getConstant( 5394 RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT); 5395 5396 // Encoding used for rounding mode in RISCV differs from that used in 5397 // FLT_ROUNDS. To convert it the C rounding mode is used as an index in 5398 // a table, which consists of a sequence of 4-bit fields, each representing 5399 // corresponding RISCV mode. 5400 static const unsigned Table = 5401 (RISCVFPRndMode::RNE << 4 * int(RoundingMode::NearestTiesToEven)) | 5402 (RISCVFPRndMode::RTZ << 4 * int(RoundingMode::TowardZero)) | 5403 (RISCVFPRndMode::RDN << 4 * int(RoundingMode::TowardNegative)) | 5404 (RISCVFPRndMode::RUP << 4 * int(RoundingMode::TowardPositive)) | 5405 (RISCVFPRndMode::RMM << 4 * int(RoundingMode::NearestTiesToAway)); 5406 5407 SDValue Shift = DAG.getNode(ISD::SHL, DL, XLenVT, RMValue, 5408 DAG.getConstant(2, DL, XLenVT)); 5409 SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT, 5410 DAG.getConstant(Table, DL, XLenVT), Shift); 5411 RMValue = DAG.getNode(ISD::AND, DL, XLenVT, Shifted, 5412 DAG.getConstant(0x7, DL, XLenVT)); 5413 return DAG.getNode(RISCVISD::WRITE_CSR, DL, MVT::Other, Chain, SysRegNo, 5414 RMValue); 5415 } 5416 5417 // Returns the opcode of the target-specific SDNode that implements the 32-bit 5418 // form of the given Opcode. 5419 static RISCVISD::NodeType getRISCVWOpcode(unsigned Opcode) { 5420 switch (Opcode) { 5421 default: 5422 llvm_unreachable("Unexpected opcode"); 5423 case ISD::SHL: 5424 return RISCVISD::SLLW; 5425 case ISD::SRA: 5426 return RISCVISD::SRAW; 5427 case ISD::SRL: 5428 return RISCVISD::SRLW; 5429 case ISD::SDIV: 5430 return RISCVISD::DIVW; 5431 case ISD::UDIV: 5432 return RISCVISD::DIVUW; 5433 case ISD::UREM: 5434 return RISCVISD::REMUW; 5435 case ISD::ROTL: 5436 return RISCVISD::ROLW; 5437 case ISD::ROTR: 5438 return RISCVISD::RORW; 5439 case RISCVISD::GREV: 5440 return RISCVISD::GREVW; 5441 case RISCVISD::GORC: 5442 return RISCVISD::GORCW; 5443 } 5444 } 5445 5446 // Converts the given i8/i16/i32 operation to a target-specific SelectionDAG 5447 // node. Because i8/i16/i32 isn't a legal type for RV64, these operations would 5448 // otherwise be promoted to i64, making it difficult to select the 5449 // SLLW/DIVUW/.../*W later one because the fact the operation was originally of 5450 // type i8/i16/i32 is lost. 5451 static SDValue customLegalizeToWOp(SDNode *N, SelectionDAG &DAG, 5452 unsigned ExtOpc = ISD::ANY_EXTEND) { 5453 SDLoc DL(N); 5454 RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode()); 5455 SDValue NewOp0 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(0)); 5456 SDValue NewOp1 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(1)); 5457 SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1); 5458 // ReplaceNodeResults requires we maintain the same type for the return value. 5459 return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewRes); 5460 } 5461 5462 // Converts the given 32-bit operation to a i64 operation with signed extension 5463 // semantic to reduce the signed extension instructions. 5464 static SDValue customLegalizeToWOpWithSExt(SDNode *N, SelectionDAG &DAG) { 5465 SDLoc DL(N); 5466 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 5467 SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 5468 SDValue NewWOp = DAG.getNode(N->getOpcode(), DL, MVT::i64, NewOp0, NewOp1); 5469 SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp, 5470 DAG.getValueType(MVT::i32)); 5471 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes); 5472 } 5473 5474 void RISCVTargetLowering::ReplaceNodeResults(SDNode *N, 5475 SmallVectorImpl<SDValue> &Results, 5476 SelectionDAG &DAG) const { 5477 SDLoc DL(N); 5478 switch (N->getOpcode()) { 5479 default: 5480 llvm_unreachable("Don't know how to custom type legalize this operation!"); 5481 case ISD::STRICT_FP_TO_SINT: 5482 case ISD::STRICT_FP_TO_UINT: 5483 case ISD::FP_TO_SINT: 5484 case ISD::FP_TO_UINT: { 5485 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5486 "Unexpected custom legalisation"); 5487 bool IsStrict = N->isStrictFPOpcode(); 5488 bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT || 5489 N->getOpcode() == ISD::STRICT_FP_TO_SINT; 5490 SDValue Op0 = IsStrict ? N->getOperand(1) : N->getOperand(0); 5491 if (getTypeAction(*DAG.getContext(), Op0.getValueType()) != 5492 TargetLowering::TypeSoftenFloat) { 5493 // FIXME: Support strict FP. 5494 if (IsStrict) 5495 return; 5496 if (!isTypeLegal(Op0.getValueType())) 5497 return; 5498 unsigned Opc = 5499 IsSigned ? RISCVISD::FCVT_W_RTZ_RV64 : RISCVISD::FCVT_WU_RTZ_RV64; 5500 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, Op0); 5501 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 5502 return; 5503 } 5504 // If the FP type needs to be softened, emit a library call using the 'si' 5505 // version. If we left it to default legalization we'd end up with 'di'. If 5506 // the FP type doesn't need to be softened just let generic type 5507 // legalization promote the result type. 5508 RTLIB::Libcall LC; 5509 if (IsSigned) 5510 LC = RTLIB::getFPTOSINT(Op0.getValueType(), N->getValueType(0)); 5511 else 5512 LC = RTLIB::getFPTOUINT(Op0.getValueType(), N->getValueType(0)); 5513 MakeLibCallOptions CallOptions; 5514 EVT OpVT = Op0.getValueType(); 5515 CallOptions.setTypeListBeforeSoften(OpVT, N->getValueType(0), true); 5516 SDValue Chain = IsStrict ? N->getOperand(0) : SDValue(); 5517 SDValue Result; 5518 std::tie(Result, Chain) = 5519 makeLibCall(DAG, LC, N->getValueType(0), Op0, CallOptions, DL, Chain); 5520 Results.push_back(Result); 5521 if (IsStrict) 5522 Results.push_back(Chain); 5523 break; 5524 } 5525 case ISD::READCYCLECOUNTER: { 5526 assert(!Subtarget.is64Bit() && 5527 "READCYCLECOUNTER only has custom type legalization on riscv32"); 5528 5529 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other); 5530 SDValue RCW = 5531 DAG.getNode(RISCVISD::READ_CYCLE_WIDE, DL, VTs, N->getOperand(0)); 5532 5533 Results.push_back( 5534 DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, RCW, RCW.getValue(1))); 5535 Results.push_back(RCW.getValue(2)); 5536 break; 5537 } 5538 case ISD::MUL: { 5539 unsigned Size = N->getSimpleValueType(0).getSizeInBits(); 5540 unsigned XLen = Subtarget.getXLen(); 5541 // This multiply needs to be expanded, try to use MULHSU+MUL if possible. 5542 if (Size > XLen) { 5543 assert(Size == (XLen * 2) && "Unexpected custom legalisation"); 5544 SDValue LHS = N->getOperand(0); 5545 SDValue RHS = N->getOperand(1); 5546 APInt HighMask = APInt::getHighBitsSet(Size, XLen); 5547 5548 bool LHSIsU = DAG.MaskedValueIsZero(LHS, HighMask); 5549 bool RHSIsU = DAG.MaskedValueIsZero(RHS, HighMask); 5550 // We need exactly one side to be unsigned. 5551 if (LHSIsU == RHSIsU) 5552 return; 5553 5554 auto MakeMULPair = [&](SDValue S, SDValue U) { 5555 MVT XLenVT = Subtarget.getXLenVT(); 5556 S = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, S); 5557 U = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, U); 5558 SDValue Lo = DAG.getNode(ISD::MUL, DL, XLenVT, S, U); 5559 SDValue Hi = DAG.getNode(RISCVISD::MULHSU, DL, XLenVT, S, U); 5560 return DAG.getNode(ISD::BUILD_PAIR, DL, N->getValueType(0), Lo, Hi); 5561 }; 5562 5563 bool LHSIsS = DAG.ComputeNumSignBits(LHS) > XLen; 5564 bool RHSIsS = DAG.ComputeNumSignBits(RHS) > XLen; 5565 5566 // The other operand should be signed, but still prefer MULH when 5567 // possible. 5568 if (RHSIsU && LHSIsS && !RHSIsS) 5569 Results.push_back(MakeMULPair(LHS, RHS)); 5570 else if (LHSIsU && RHSIsS && !LHSIsS) 5571 Results.push_back(MakeMULPair(RHS, LHS)); 5572 5573 return; 5574 } 5575 LLVM_FALLTHROUGH; 5576 } 5577 case ISD::ADD: 5578 case ISD::SUB: 5579 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5580 "Unexpected custom legalisation"); 5581 Results.push_back(customLegalizeToWOpWithSExt(N, DAG)); 5582 break; 5583 case ISD::SHL: 5584 case ISD::SRA: 5585 case ISD::SRL: 5586 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5587 "Unexpected custom legalisation"); 5588 if (N->getOperand(1).getOpcode() != ISD::Constant) { 5589 Results.push_back(customLegalizeToWOp(N, DAG)); 5590 break; 5591 } 5592 5593 // Custom legalize ISD::SHL by placing a SIGN_EXTEND_INREG after. This is 5594 // similar to customLegalizeToWOpWithSExt, but we must zero_extend the 5595 // shift amount. 5596 if (N->getOpcode() == ISD::SHL) { 5597 SDLoc DL(N); 5598 SDValue NewOp0 = 5599 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 5600 SDValue NewOp1 = 5601 DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1)); 5602 SDValue NewWOp = DAG.getNode(ISD::SHL, DL, MVT::i64, NewOp0, NewOp1); 5603 SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp, 5604 DAG.getValueType(MVT::i32)); 5605 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes)); 5606 } 5607 5608 break; 5609 case ISD::ROTL: 5610 case ISD::ROTR: 5611 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5612 "Unexpected custom legalisation"); 5613 Results.push_back(customLegalizeToWOp(N, DAG)); 5614 break; 5615 case ISD::CTTZ: 5616 case ISD::CTTZ_ZERO_UNDEF: 5617 case ISD::CTLZ: 5618 case ISD::CTLZ_ZERO_UNDEF: { 5619 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5620 "Unexpected custom legalisation"); 5621 5622 SDValue NewOp0 = 5623 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 5624 bool IsCTZ = 5625 N->getOpcode() == ISD::CTTZ || N->getOpcode() == ISD::CTTZ_ZERO_UNDEF; 5626 unsigned Opc = IsCTZ ? RISCVISD::CTZW : RISCVISD::CLZW; 5627 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp0); 5628 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 5629 return; 5630 } 5631 case ISD::SDIV: 5632 case ISD::UDIV: 5633 case ISD::UREM: { 5634 MVT VT = N->getSimpleValueType(0); 5635 assert((VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) && 5636 Subtarget.is64Bit() && Subtarget.hasStdExtM() && 5637 "Unexpected custom legalisation"); 5638 // Don't promote division/remainder by constant since we should expand those 5639 // to multiply by magic constant. 5640 // FIXME: What if the expansion is disabled for minsize. 5641 if (N->getOperand(1).getOpcode() == ISD::Constant) 5642 return; 5643 5644 // If the input is i32, use ANY_EXTEND since the W instructions don't read 5645 // the upper 32 bits. For other types we need to sign or zero extend 5646 // based on the opcode. 5647 unsigned ExtOpc = ISD::ANY_EXTEND; 5648 if (VT != MVT::i32) 5649 ExtOpc = N->getOpcode() == ISD::SDIV ? ISD::SIGN_EXTEND 5650 : ISD::ZERO_EXTEND; 5651 5652 Results.push_back(customLegalizeToWOp(N, DAG, ExtOpc)); 5653 break; 5654 } 5655 case ISD::UADDO: 5656 case ISD::USUBO: { 5657 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5658 "Unexpected custom legalisation"); 5659 bool IsAdd = N->getOpcode() == ISD::UADDO; 5660 // Create an ADDW or SUBW. 5661 SDValue LHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 5662 SDValue RHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 5663 SDValue Res = 5664 DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, DL, MVT::i64, LHS, RHS); 5665 Res = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Res, 5666 DAG.getValueType(MVT::i32)); 5667 5668 // Sign extend the LHS and perform an unsigned compare with the ADDW result. 5669 // Since the inputs are sign extended from i32, this is equivalent to 5670 // comparing the lower 32 bits. 5671 LHS = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0)); 5672 SDValue Overflow = DAG.getSetCC(DL, N->getValueType(1), Res, LHS, 5673 IsAdd ? ISD::SETULT : ISD::SETUGT); 5674 5675 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 5676 Results.push_back(Overflow); 5677 return; 5678 } 5679 case ISD::UADDSAT: 5680 case ISD::USUBSAT: { 5681 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5682 "Unexpected custom legalisation"); 5683 if (Subtarget.hasStdExtZbb()) { 5684 // With Zbb we can sign extend and let LegalizeDAG use minu/maxu. Using 5685 // sign extend allows overflow of the lower 32 bits to be detected on 5686 // the promoted size. 5687 SDValue LHS = 5688 DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0)); 5689 SDValue RHS = 5690 DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(1)); 5691 SDValue Res = DAG.getNode(N->getOpcode(), DL, MVT::i64, LHS, RHS); 5692 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 5693 return; 5694 } 5695 5696 // Without Zbb, expand to UADDO/USUBO+select which will trigger our custom 5697 // promotion for UADDO/USUBO. 5698 Results.push_back(expandAddSubSat(N, DAG)); 5699 return; 5700 } 5701 case ISD::BITCAST: { 5702 EVT VT = N->getValueType(0); 5703 assert(VT.isInteger() && !VT.isVector() && "Unexpected VT!"); 5704 SDValue Op0 = N->getOperand(0); 5705 EVT Op0VT = Op0.getValueType(); 5706 MVT XLenVT = Subtarget.getXLenVT(); 5707 if (VT == MVT::i16 && Op0VT == MVT::f16 && Subtarget.hasStdExtZfh()) { 5708 SDValue FPConv = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, XLenVT, Op0); 5709 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FPConv)); 5710 } else if (VT == MVT::i32 && Op0VT == MVT::f32 && Subtarget.is64Bit() && 5711 Subtarget.hasStdExtF()) { 5712 SDValue FPConv = 5713 DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Op0); 5714 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, FPConv)); 5715 } else if (!VT.isVector() && Op0VT.isFixedLengthVector() && 5716 isTypeLegal(Op0VT)) { 5717 // Custom-legalize bitcasts from fixed-length vector types to illegal 5718 // scalar types in order to improve codegen. Bitcast the vector to a 5719 // one-element vector type whose element type is the same as the result 5720 // type, and extract the first element. 5721 LLVMContext &Context = *DAG.getContext(); 5722 SDValue BVec = DAG.getBitcast(EVT::getVectorVT(Context, VT, 1), Op0); 5723 Results.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec, 5724 DAG.getConstant(0, DL, XLenVT))); 5725 } 5726 break; 5727 } 5728 case RISCVISD::GREV: 5729 case RISCVISD::GORC: { 5730 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5731 "Unexpected custom legalisation"); 5732 assert(isa<ConstantSDNode>(N->getOperand(1)) && "Expected constant"); 5733 // This is similar to customLegalizeToWOp, except that we pass the second 5734 // operand (a TargetConstant) straight through: it is already of type 5735 // XLenVT. 5736 RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode()); 5737 SDValue NewOp0 = 5738 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 5739 SDValue NewOp1 = 5740 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 5741 SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1); 5742 // ReplaceNodeResults requires we maintain the same type for the return 5743 // value. 5744 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes)); 5745 break; 5746 } 5747 case RISCVISD::SHFL: { 5748 // There is no SHFLIW instruction, but we can just promote the operation. 5749 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5750 "Unexpected custom legalisation"); 5751 assert(isa<ConstantSDNode>(N->getOperand(1)) && "Expected constant"); 5752 SDValue NewOp0 = 5753 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 5754 SDValue NewOp1 = 5755 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 5756 SDValue NewRes = DAG.getNode(RISCVISD::SHFL, DL, MVT::i64, NewOp0, NewOp1); 5757 // ReplaceNodeResults requires we maintain the same type for the return 5758 // value. 5759 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes)); 5760 break; 5761 } 5762 case ISD::BSWAP: 5763 case ISD::BITREVERSE: { 5764 MVT VT = N->getSimpleValueType(0); 5765 MVT XLenVT = Subtarget.getXLenVT(); 5766 assert((VT == MVT::i8 || VT == MVT::i16 || 5767 (VT == MVT::i32 && Subtarget.is64Bit())) && 5768 Subtarget.hasStdExtZbp() && "Unexpected custom legalisation"); 5769 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, N->getOperand(0)); 5770 unsigned Imm = VT.getSizeInBits() - 1; 5771 // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits. 5772 if (N->getOpcode() == ISD::BSWAP) 5773 Imm &= ~0x7U; 5774 unsigned Opc = Subtarget.is64Bit() ? RISCVISD::GREVW : RISCVISD::GREV; 5775 SDValue GREVI = 5776 DAG.getNode(Opc, DL, XLenVT, NewOp0, DAG.getConstant(Imm, DL, XLenVT)); 5777 // ReplaceNodeResults requires we maintain the same type for the return 5778 // value. 5779 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, GREVI)); 5780 break; 5781 } 5782 case ISD::FSHL: 5783 case ISD::FSHR: { 5784 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5785 Subtarget.hasStdExtZbt() && "Unexpected custom legalisation"); 5786 SDValue NewOp0 = 5787 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 5788 SDValue NewOp1 = 5789 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 5790 SDValue NewOp2 = 5791 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 5792 // FSLW/FSRW take a 6 bit shift amount but i32 FSHL/FSHR only use 5 bits. 5793 // Mask the shift amount to 5 bits. 5794 NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2, 5795 DAG.getConstant(0x1f, DL, MVT::i64)); 5796 unsigned Opc = 5797 N->getOpcode() == ISD::FSHL ? RISCVISD::FSLW : RISCVISD::FSRW; 5798 SDValue NewOp = DAG.getNode(Opc, DL, MVT::i64, NewOp0, NewOp1, NewOp2); 5799 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewOp)); 5800 break; 5801 } 5802 case ISD::EXTRACT_VECTOR_ELT: { 5803 // Custom-legalize an EXTRACT_VECTOR_ELT where XLEN<SEW, as the SEW element 5804 // type is illegal (currently only vXi64 RV32). 5805 // With vmv.x.s, when SEW > XLEN, only the least-significant XLEN bits are 5806 // transferred to the destination register. We issue two of these from the 5807 // upper- and lower- halves of the SEW-bit vector element, slid down to the 5808 // first element. 5809 SDValue Vec = N->getOperand(0); 5810 SDValue Idx = N->getOperand(1); 5811 5812 // The vector type hasn't been legalized yet so we can't issue target 5813 // specific nodes if it needs legalization. 5814 // FIXME: We would manually legalize if it's important. 5815 if (!isTypeLegal(Vec.getValueType())) 5816 return; 5817 5818 MVT VecVT = Vec.getSimpleValueType(); 5819 5820 assert(!Subtarget.is64Bit() && N->getValueType(0) == MVT::i64 && 5821 VecVT.getVectorElementType() == MVT::i64 && 5822 "Unexpected EXTRACT_VECTOR_ELT legalization"); 5823 5824 // If this is a fixed vector, we need to convert it to a scalable vector. 5825 MVT ContainerVT = VecVT; 5826 if (VecVT.isFixedLengthVector()) { 5827 ContainerVT = getContainerForFixedLengthVector(VecVT); 5828 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 5829 } 5830 5831 MVT XLenVT = Subtarget.getXLenVT(); 5832 5833 // Use a VL of 1 to avoid processing more elements than we need. 5834 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 5835 SDValue VL = DAG.getConstant(1, DL, XLenVT); 5836 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 5837 5838 // Unless the index is known to be 0, we must slide the vector down to get 5839 // the desired element into index 0. 5840 if (!isNullConstant(Idx)) { 5841 Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 5842 DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL); 5843 } 5844 5845 // Extract the lower XLEN bits of the correct vector element. 5846 SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); 5847 5848 // To extract the upper XLEN bits of the vector element, shift the first 5849 // element right by 32 bits and re-extract the lower XLEN bits. 5850 SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, 5851 DAG.getConstant(32, DL, XLenVT), VL); 5852 SDValue LShr32 = DAG.getNode(RISCVISD::SRL_VL, DL, ContainerVT, Vec, 5853 ThirtyTwoV, Mask, VL); 5854 5855 SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32); 5856 5857 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi)); 5858 break; 5859 } 5860 case ISD::INTRINSIC_WO_CHAIN: { 5861 unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 5862 switch (IntNo) { 5863 default: 5864 llvm_unreachable( 5865 "Don't know how to custom type legalize this intrinsic!"); 5866 case Intrinsic::riscv_orc_b: { 5867 // Lower to the GORCI encoding for orc.b with the operand extended. 5868 SDValue NewOp = 5869 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 5870 // If Zbp is enabled, use GORCIW which will sign extend the result. 5871 unsigned Opc = 5872 Subtarget.hasStdExtZbp() ? RISCVISD::GORCW : RISCVISD::GORC; 5873 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp, 5874 DAG.getConstant(7, DL, MVT::i64)); 5875 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 5876 return; 5877 } 5878 case Intrinsic::riscv_grev: 5879 case Intrinsic::riscv_gorc: { 5880 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5881 "Unexpected custom legalisation"); 5882 SDValue NewOp1 = 5883 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 5884 SDValue NewOp2 = 5885 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 5886 unsigned Opc = 5887 IntNo == Intrinsic::riscv_grev ? RISCVISD::GREVW : RISCVISD::GORCW; 5888 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2); 5889 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 5890 break; 5891 } 5892 case Intrinsic::riscv_shfl: 5893 case Intrinsic::riscv_unshfl: { 5894 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5895 "Unexpected custom legalisation"); 5896 SDValue NewOp1 = 5897 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 5898 SDValue NewOp2 = 5899 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 5900 unsigned Opc = 5901 IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFLW : RISCVISD::UNSHFLW; 5902 if (isa<ConstantSDNode>(N->getOperand(2))) { 5903 NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2, 5904 DAG.getConstant(0xf, DL, MVT::i64)); 5905 Opc = 5906 IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL; 5907 } 5908 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2); 5909 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 5910 break; 5911 } 5912 case Intrinsic::riscv_bcompress: 5913 case Intrinsic::riscv_bdecompress: { 5914 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5915 "Unexpected custom legalisation"); 5916 SDValue NewOp1 = 5917 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 5918 SDValue NewOp2 = 5919 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 5920 unsigned Opc = IntNo == Intrinsic::riscv_bcompress 5921 ? RISCVISD::BCOMPRESSW 5922 : RISCVISD::BDECOMPRESSW; 5923 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2); 5924 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 5925 break; 5926 } 5927 case Intrinsic::riscv_vmv_x_s: { 5928 EVT VT = N->getValueType(0); 5929 MVT XLenVT = Subtarget.getXLenVT(); 5930 if (VT.bitsLT(XLenVT)) { 5931 // Simple case just extract using vmv.x.s and truncate. 5932 SDValue Extract = DAG.getNode(RISCVISD::VMV_X_S, DL, 5933 Subtarget.getXLenVT(), N->getOperand(1)); 5934 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, Extract)); 5935 return; 5936 } 5937 5938 assert(VT == MVT::i64 && !Subtarget.is64Bit() && 5939 "Unexpected custom legalization"); 5940 5941 // We need to do the move in two steps. 5942 SDValue Vec = N->getOperand(1); 5943 MVT VecVT = Vec.getSimpleValueType(); 5944 5945 // First extract the lower XLEN bits of the element. 5946 SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); 5947 5948 // To extract the upper XLEN bits of the vector element, shift the first 5949 // element right by 32 bits and re-extract the lower XLEN bits. 5950 SDValue VL = DAG.getConstant(1, DL, XLenVT); 5951 MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount()); 5952 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 5953 SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, 5954 DAG.getConstant(32, DL, XLenVT), VL); 5955 SDValue LShr32 = 5956 DAG.getNode(RISCVISD::SRL_VL, DL, VecVT, Vec, ThirtyTwoV, Mask, VL); 5957 SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32); 5958 5959 Results.push_back( 5960 DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi)); 5961 break; 5962 } 5963 } 5964 break; 5965 } 5966 case ISD::VECREDUCE_ADD: 5967 case ISD::VECREDUCE_AND: 5968 case ISD::VECREDUCE_OR: 5969 case ISD::VECREDUCE_XOR: 5970 case ISD::VECREDUCE_SMAX: 5971 case ISD::VECREDUCE_UMAX: 5972 case ISD::VECREDUCE_SMIN: 5973 case ISD::VECREDUCE_UMIN: 5974 if (SDValue V = lowerVECREDUCE(SDValue(N, 0), DAG)) 5975 Results.push_back(V); 5976 break; 5977 case ISD::VP_REDUCE_ADD: 5978 case ISD::VP_REDUCE_AND: 5979 case ISD::VP_REDUCE_OR: 5980 case ISD::VP_REDUCE_XOR: 5981 case ISD::VP_REDUCE_SMAX: 5982 case ISD::VP_REDUCE_UMAX: 5983 case ISD::VP_REDUCE_SMIN: 5984 case ISD::VP_REDUCE_UMIN: 5985 if (SDValue V = lowerVPREDUCE(SDValue(N, 0), DAG)) 5986 Results.push_back(V); 5987 break; 5988 case ISD::FLT_ROUNDS_: { 5989 SDVTList VTs = DAG.getVTList(Subtarget.getXLenVT(), MVT::Other); 5990 SDValue Res = DAG.getNode(ISD::FLT_ROUNDS_, DL, VTs, N->getOperand(0)); 5991 Results.push_back(Res.getValue(0)); 5992 Results.push_back(Res.getValue(1)); 5993 break; 5994 } 5995 } 5996 } 5997 5998 // A structure to hold one of the bit-manipulation patterns below. Together, a 5999 // SHL and non-SHL pattern may form a bit-manipulation pair on a single source: 6000 // (or (and (shl x, 1), 0xAAAAAAAA), 6001 // (and (srl x, 1), 0x55555555)) 6002 struct RISCVBitmanipPat { 6003 SDValue Op; 6004 unsigned ShAmt; 6005 bool IsSHL; 6006 6007 bool formsPairWith(const RISCVBitmanipPat &Other) const { 6008 return Op == Other.Op && ShAmt == Other.ShAmt && IsSHL != Other.IsSHL; 6009 } 6010 }; 6011 6012 // Matches patterns of the form 6013 // (and (shl x, C2), (C1 << C2)) 6014 // (and (srl x, C2), C1) 6015 // (shl (and x, C1), C2) 6016 // (srl (and x, (C1 << C2)), C2) 6017 // Where C2 is a power of 2 and C1 has at least that many leading zeroes. 6018 // The expected masks for each shift amount are specified in BitmanipMasks where 6019 // BitmanipMasks[log2(C2)] specifies the expected C1 value. 6020 // The max allowed shift amount is either XLen/2 or XLen/4 determined by whether 6021 // BitmanipMasks contains 6 or 5 entries assuming that the maximum possible 6022 // XLen is 64. 6023 static Optional<RISCVBitmanipPat> 6024 matchRISCVBitmanipPat(SDValue Op, ArrayRef<uint64_t> BitmanipMasks) { 6025 assert((BitmanipMasks.size() == 5 || BitmanipMasks.size() == 6) && 6026 "Unexpected number of masks"); 6027 Optional<uint64_t> Mask; 6028 // Optionally consume a mask around the shift operation. 6029 if (Op.getOpcode() == ISD::AND && isa<ConstantSDNode>(Op.getOperand(1))) { 6030 Mask = Op.getConstantOperandVal(1); 6031 Op = Op.getOperand(0); 6032 } 6033 if (Op.getOpcode() != ISD::SHL && Op.getOpcode() != ISD::SRL) 6034 return None; 6035 bool IsSHL = Op.getOpcode() == ISD::SHL; 6036 6037 if (!isa<ConstantSDNode>(Op.getOperand(1))) 6038 return None; 6039 uint64_t ShAmt = Op.getConstantOperandVal(1); 6040 6041 unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32; 6042 if (ShAmt >= Width || !isPowerOf2_64(ShAmt)) 6043 return None; 6044 // If we don't have enough masks for 64 bit, then we must be trying to 6045 // match SHFL so we're only allowed to shift 1/4 of the width. 6046 if (BitmanipMasks.size() == 5 && ShAmt >= (Width / 2)) 6047 return None; 6048 6049 SDValue Src = Op.getOperand(0); 6050 6051 // The expected mask is shifted left when the AND is found around SHL 6052 // patterns. 6053 // ((x >> 1) & 0x55555555) 6054 // ((x << 1) & 0xAAAAAAAA) 6055 bool SHLExpMask = IsSHL; 6056 6057 if (!Mask) { 6058 // Sometimes LLVM keeps the mask as an operand of the shift, typically when 6059 // the mask is all ones: consume that now. 6060 if (Src.getOpcode() == ISD::AND && isa<ConstantSDNode>(Src.getOperand(1))) { 6061 Mask = Src.getConstantOperandVal(1); 6062 Src = Src.getOperand(0); 6063 // The expected mask is now in fact shifted left for SRL, so reverse the 6064 // decision. 6065 // ((x & 0xAAAAAAAA) >> 1) 6066 // ((x & 0x55555555) << 1) 6067 SHLExpMask = !SHLExpMask; 6068 } else { 6069 // Use a default shifted mask of all-ones if there's no AND, truncated 6070 // down to the expected width. This simplifies the logic later on. 6071 Mask = maskTrailingOnes<uint64_t>(Width); 6072 *Mask &= (IsSHL ? *Mask << ShAmt : *Mask >> ShAmt); 6073 } 6074 } 6075 6076 unsigned MaskIdx = Log2_32(ShAmt); 6077 uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width); 6078 6079 if (SHLExpMask) 6080 ExpMask <<= ShAmt; 6081 6082 if (Mask != ExpMask) 6083 return None; 6084 6085 return RISCVBitmanipPat{Src, (unsigned)ShAmt, IsSHL}; 6086 } 6087 6088 // Matches any of the following bit-manipulation patterns: 6089 // (and (shl x, 1), (0x55555555 << 1)) 6090 // (and (srl x, 1), 0x55555555) 6091 // (shl (and x, 0x55555555), 1) 6092 // (srl (and x, (0x55555555 << 1)), 1) 6093 // where the shift amount and mask may vary thus: 6094 // [1] = 0x55555555 / 0xAAAAAAAA 6095 // [2] = 0x33333333 / 0xCCCCCCCC 6096 // [4] = 0x0F0F0F0F / 0xF0F0F0F0 6097 // [8] = 0x00FF00FF / 0xFF00FF00 6098 // [16] = 0x0000FFFF / 0xFFFFFFFF 6099 // [32] = 0x00000000FFFFFFFF / 0xFFFFFFFF00000000 (for RV64) 6100 static Optional<RISCVBitmanipPat> matchGREVIPat(SDValue Op) { 6101 // These are the unshifted masks which we use to match bit-manipulation 6102 // patterns. They may be shifted left in certain circumstances. 6103 static const uint64_t BitmanipMasks[] = { 6104 0x5555555555555555ULL, 0x3333333333333333ULL, 0x0F0F0F0F0F0F0F0FULL, 6105 0x00FF00FF00FF00FFULL, 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL}; 6106 6107 return matchRISCVBitmanipPat(Op, BitmanipMasks); 6108 } 6109 6110 // Match the following pattern as a GREVI(W) operation 6111 // (or (BITMANIP_SHL x), (BITMANIP_SRL x)) 6112 static SDValue combineORToGREV(SDValue Op, SelectionDAG &DAG, 6113 const RISCVSubtarget &Subtarget) { 6114 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson"); 6115 EVT VT = Op.getValueType(); 6116 6117 if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) { 6118 auto LHS = matchGREVIPat(Op.getOperand(0)); 6119 auto RHS = matchGREVIPat(Op.getOperand(1)); 6120 if (LHS && RHS && LHS->formsPairWith(*RHS)) { 6121 SDLoc DL(Op); 6122 return DAG.getNode(RISCVISD::GREV, DL, VT, LHS->Op, 6123 DAG.getConstant(LHS->ShAmt, DL, VT)); 6124 } 6125 } 6126 return SDValue(); 6127 } 6128 6129 // Matches any the following pattern as a GORCI(W) operation 6130 // 1. (or (GREVI x, shamt), x) if shamt is a power of 2 6131 // 2. (or x, (GREVI x, shamt)) if shamt is a power of 2 6132 // 3. (or (or (BITMANIP_SHL x), x), (BITMANIP_SRL x)) 6133 // Note that with the variant of 3., 6134 // (or (or (BITMANIP_SHL x), (BITMANIP_SRL x)), x) 6135 // the inner pattern will first be matched as GREVI and then the outer 6136 // pattern will be matched to GORC via the first rule above. 6137 // 4. (or (rotl/rotr x, bitwidth/2), x) 6138 static SDValue combineORToGORC(SDValue Op, SelectionDAG &DAG, 6139 const RISCVSubtarget &Subtarget) { 6140 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson"); 6141 EVT VT = Op.getValueType(); 6142 6143 if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) { 6144 SDLoc DL(Op); 6145 SDValue Op0 = Op.getOperand(0); 6146 SDValue Op1 = Op.getOperand(1); 6147 6148 auto MatchOROfReverse = [&](SDValue Reverse, SDValue X) { 6149 if (Reverse.getOpcode() == RISCVISD::GREV && Reverse.getOperand(0) == X && 6150 isa<ConstantSDNode>(Reverse.getOperand(1)) && 6151 isPowerOf2_32(Reverse.getConstantOperandVal(1))) 6152 return DAG.getNode(RISCVISD::GORC, DL, VT, X, Reverse.getOperand(1)); 6153 // We can also form GORCI from ROTL/ROTR by half the bitwidth. 6154 if ((Reverse.getOpcode() == ISD::ROTL || 6155 Reverse.getOpcode() == ISD::ROTR) && 6156 Reverse.getOperand(0) == X && 6157 isa<ConstantSDNode>(Reverse.getOperand(1))) { 6158 uint64_t RotAmt = Reverse.getConstantOperandVal(1); 6159 if (RotAmt == (VT.getSizeInBits() / 2)) 6160 return DAG.getNode(RISCVISD::GORC, DL, VT, X, 6161 DAG.getConstant(RotAmt, DL, VT)); 6162 } 6163 return SDValue(); 6164 }; 6165 6166 // Check for either commutable permutation of (or (GREVI x, shamt), x) 6167 if (SDValue V = MatchOROfReverse(Op0, Op1)) 6168 return V; 6169 if (SDValue V = MatchOROfReverse(Op1, Op0)) 6170 return V; 6171 6172 // OR is commutable so canonicalize its OR operand to the left 6173 if (Op0.getOpcode() != ISD::OR && Op1.getOpcode() == ISD::OR) 6174 std::swap(Op0, Op1); 6175 if (Op0.getOpcode() != ISD::OR) 6176 return SDValue(); 6177 SDValue OrOp0 = Op0.getOperand(0); 6178 SDValue OrOp1 = Op0.getOperand(1); 6179 auto LHS = matchGREVIPat(OrOp0); 6180 // OR is commutable so swap the operands and try again: x might have been 6181 // on the left 6182 if (!LHS) { 6183 std::swap(OrOp0, OrOp1); 6184 LHS = matchGREVIPat(OrOp0); 6185 } 6186 auto RHS = matchGREVIPat(Op1); 6187 if (LHS && RHS && LHS->formsPairWith(*RHS) && LHS->Op == OrOp1) { 6188 return DAG.getNode(RISCVISD::GORC, DL, VT, LHS->Op, 6189 DAG.getConstant(LHS->ShAmt, DL, VT)); 6190 } 6191 } 6192 return SDValue(); 6193 } 6194 6195 // Matches any of the following bit-manipulation patterns: 6196 // (and (shl x, 1), (0x22222222 << 1)) 6197 // (and (srl x, 1), 0x22222222) 6198 // (shl (and x, 0x22222222), 1) 6199 // (srl (and x, (0x22222222 << 1)), 1) 6200 // where the shift amount and mask may vary thus: 6201 // [1] = 0x22222222 / 0x44444444 6202 // [2] = 0x0C0C0C0C / 0x3C3C3C3C 6203 // [4] = 0x00F000F0 / 0x0F000F00 6204 // [8] = 0x0000FF00 / 0x00FF0000 6205 // [16] = 0x00000000FFFF0000 / 0x0000FFFF00000000 (for RV64) 6206 static Optional<RISCVBitmanipPat> matchSHFLPat(SDValue Op) { 6207 // These are the unshifted masks which we use to match bit-manipulation 6208 // patterns. They may be shifted left in certain circumstances. 6209 static const uint64_t BitmanipMasks[] = { 6210 0x2222222222222222ULL, 0x0C0C0C0C0C0C0C0CULL, 0x00F000F000F000F0ULL, 6211 0x0000FF000000FF00ULL, 0x00000000FFFF0000ULL}; 6212 6213 return matchRISCVBitmanipPat(Op, BitmanipMasks); 6214 } 6215 6216 // Match (or (or (SHFL_SHL x), (SHFL_SHR x)), (SHFL_AND x) 6217 static SDValue combineORToSHFL(SDValue Op, SelectionDAG &DAG, 6218 const RISCVSubtarget &Subtarget) { 6219 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson"); 6220 EVT VT = Op.getValueType(); 6221 6222 if (VT != MVT::i32 && VT != Subtarget.getXLenVT()) 6223 return SDValue(); 6224 6225 SDValue Op0 = Op.getOperand(0); 6226 SDValue Op1 = Op.getOperand(1); 6227 6228 // Or is commutable so canonicalize the second OR to the LHS. 6229 if (Op0.getOpcode() != ISD::OR) 6230 std::swap(Op0, Op1); 6231 if (Op0.getOpcode() != ISD::OR) 6232 return SDValue(); 6233 6234 // We found an inner OR, so our operands are the operands of the inner OR 6235 // and the other operand of the outer OR. 6236 SDValue A = Op0.getOperand(0); 6237 SDValue B = Op0.getOperand(1); 6238 SDValue C = Op1; 6239 6240 auto Match1 = matchSHFLPat(A); 6241 auto Match2 = matchSHFLPat(B); 6242 6243 // If neither matched, we failed. 6244 if (!Match1 && !Match2) 6245 return SDValue(); 6246 6247 // We had at least one match. if one failed, try the remaining C operand. 6248 if (!Match1) { 6249 std::swap(A, C); 6250 Match1 = matchSHFLPat(A); 6251 if (!Match1) 6252 return SDValue(); 6253 } else if (!Match2) { 6254 std::swap(B, C); 6255 Match2 = matchSHFLPat(B); 6256 if (!Match2) 6257 return SDValue(); 6258 } 6259 assert(Match1 && Match2); 6260 6261 // Make sure our matches pair up. 6262 if (!Match1->formsPairWith(*Match2)) 6263 return SDValue(); 6264 6265 // All the remains is to make sure C is an AND with the same input, that masks 6266 // out the bits that are being shuffled. 6267 if (C.getOpcode() != ISD::AND || !isa<ConstantSDNode>(C.getOperand(1)) || 6268 C.getOperand(0) != Match1->Op) 6269 return SDValue(); 6270 6271 uint64_t Mask = C.getConstantOperandVal(1); 6272 6273 static const uint64_t BitmanipMasks[] = { 6274 0x9999999999999999ULL, 0xC3C3C3C3C3C3C3C3ULL, 0xF00FF00FF00FF00FULL, 6275 0xFF0000FFFF0000FFULL, 0xFFFF00000000FFFFULL, 6276 }; 6277 6278 unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32; 6279 unsigned MaskIdx = Log2_32(Match1->ShAmt); 6280 uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width); 6281 6282 if (Mask != ExpMask) 6283 return SDValue(); 6284 6285 SDLoc DL(Op); 6286 return DAG.getNode(RISCVISD::SHFL, DL, VT, Match1->Op, 6287 DAG.getConstant(Match1->ShAmt, DL, VT)); 6288 } 6289 6290 // Optimize (add (shl x, c0), (shl y, c1)) -> 6291 // (SLLI (SH*ADD x, y), c0), if c1-c0 equals to [1|2|3]. 6292 static SDValue transformAddShlImm(SDNode *N, SelectionDAG &DAG, 6293 const RISCVSubtarget &Subtarget) { 6294 // Perform this optimization only in the zba extension. 6295 if (!Subtarget.hasStdExtZba()) 6296 return SDValue(); 6297 6298 // Skip for vector types and larger types. 6299 EVT VT = N->getValueType(0); 6300 if (VT.isVector() || VT.getSizeInBits() > Subtarget.getXLen()) 6301 return SDValue(); 6302 6303 // The two operand nodes must be SHL and have no other use. 6304 SDValue N0 = N->getOperand(0); 6305 SDValue N1 = N->getOperand(1); 6306 if (N0->getOpcode() != ISD::SHL || N1->getOpcode() != ISD::SHL || 6307 !N0->hasOneUse() || !N1->hasOneUse()) 6308 return SDValue(); 6309 6310 // Check c0 and c1. 6311 auto *N0C = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 6312 auto *N1C = dyn_cast<ConstantSDNode>(N1->getOperand(1)); 6313 if (!N0C || !N1C) 6314 return SDValue(); 6315 int64_t C0 = N0C->getSExtValue(); 6316 int64_t C1 = N1C->getSExtValue(); 6317 if (C0 <= 0 || C1 <= 0) 6318 return SDValue(); 6319 6320 // Skip if SH1ADD/SH2ADD/SH3ADD are not applicable. 6321 int64_t Bits = std::min(C0, C1); 6322 int64_t Diff = std::abs(C0 - C1); 6323 if (Diff != 1 && Diff != 2 && Diff != 3) 6324 return SDValue(); 6325 6326 // Build nodes. 6327 SDLoc DL(N); 6328 SDValue NS = (C0 < C1) ? N0->getOperand(0) : N1->getOperand(0); 6329 SDValue NL = (C0 > C1) ? N0->getOperand(0) : N1->getOperand(0); 6330 SDValue NA0 = 6331 DAG.getNode(ISD::SHL, DL, VT, NL, DAG.getConstant(Diff, DL, VT)); 6332 SDValue NA1 = DAG.getNode(ISD::ADD, DL, VT, NA0, NS); 6333 return DAG.getNode(ISD::SHL, DL, VT, NA1, DAG.getConstant(Bits, DL, VT)); 6334 } 6335 6336 // Combine (GREVI (GREVI x, C2), C1) -> (GREVI x, C1^C2) when C1^C2 is 6337 // non-zero, and to x when it is. Any repeated GREVI stage undoes itself. 6338 // Combine (GORCI (GORCI x, C2), C1) -> (GORCI x, C1|C2). Repeated stage does 6339 // not undo itself, but they are redundant. 6340 static SDValue combineGREVI_GORCI(SDNode *N, SelectionDAG &DAG) { 6341 SDValue Src = N->getOperand(0); 6342 6343 if (Src.getOpcode() != N->getOpcode()) 6344 return SDValue(); 6345 6346 if (!isa<ConstantSDNode>(N->getOperand(1)) || 6347 !isa<ConstantSDNode>(Src.getOperand(1))) 6348 return SDValue(); 6349 6350 unsigned ShAmt1 = N->getConstantOperandVal(1); 6351 unsigned ShAmt2 = Src.getConstantOperandVal(1); 6352 Src = Src.getOperand(0); 6353 6354 unsigned CombinedShAmt; 6355 if (N->getOpcode() == RISCVISD::GORC || N->getOpcode() == RISCVISD::GORCW) 6356 CombinedShAmt = ShAmt1 | ShAmt2; 6357 else 6358 CombinedShAmt = ShAmt1 ^ ShAmt2; 6359 6360 if (CombinedShAmt == 0) 6361 return Src; 6362 6363 SDLoc DL(N); 6364 return DAG.getNode( 6365 N->getOpcode(), DL, N->getValueType(0), Src, 6366 DAG.getConstant(CombinedShAmt, DL, N->getOperand(1).getValueType())); 6367 } 6368 6369 // Combine a constant select operand into its use: 6370 // 6371 // (and (select cond, -1, c), x) 6372 // -> (select cond, x, (and x, c)) [AllOnes=1] 6373 // (or (select cond, 0, c), x) 6374 // -> (select cond, x, (or x, c)) [AllOnes=0] 6375 // (xor (select cond, 0, c), x) 6376 // -> (select cond, x, (xor x, c)) [AllOnes=0] 6377 // (add (select cond, 0, c), x) 6378 // -> (select cond, x, (add x, c)) [AllOnes=0] 6379 // (sub x, (select cond, 0, c)) 6380 // -> (select cond, x, (sub x, c)) [AllOnes=0] 6381 static SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp, 6382 SelectionDAG &DAG, bool AllOnes) { 6383 EVT VT = N->getValueType(0); 6384 6385 // Skip vectors. 6386 if (VT.isVector()) 6387 return SDValue(); 6388 6389 if ((Slct.getOpcode() != ISD::SELECT && 6390 Slct.getOpcode() != RISCVISD::SELECT_CC) || 6391 !Slct.hasOneUse()) 6392 return SDValue(); 6393 6394 auto isZeroOrAllOnes = [](SDValue N, bool AllOnes) { 6395 return AllOnes ? isAllOnesConstant(N) : isNullConstant(N); 6396 }; 6397 6398 bool SwapSelectOps; 6399 unsigned OpOffset = Slct.getOpcode() == RISCVISD::SELECT_CC ? 2 : 0; 6400 SDValue TrueVal = Slct.getOperand(1 + OpOffset); 6401 SDValue FalseVal = Slct.getOperand(2 + OpOffset); 6402 SDValue NonConstantVal; 6403 if (isZeroOrAllOnes(TrueVal, AllOnes)) { 6404 SwapSelectOps = false; 6405 NonConstantVal = FalseVal; 6406 } else if (isZeroOrAllOnes(FalseVal, AllOnes)) { 6407 SwapSelectOps = true; 6408 NonConstantVal = TrueVal; 6409 } else 6410 return SDValue(); 6411 6412 // Slct is now know to be the desired identity constant when CC is true. 6413 TrueVal = OtherOp; 6414 FalseVal = DAG.getNode(N->getOpcode(), SDLoc(N), VT, OtherOp, NonConstantVal); 6415 // Unless SwapSelectOps says the condition should be false. 6416 if (SwapSelectOps) 6417 std::swap(TrueVal, FalseVal); 6418 6419 if (Slct.getOpcode() == RISCVISD::SELECT_CC) 6420 return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), VT, 6421 {Slct.getOperand(0), Slct.getOperand(1), 6422 Slct.getOperand(2), TrueVal, FalseVal}); 6423 6424 return DAG.getNode(ISD::SELECT, SDLoc(N), VT, 6425 {Slct.getOperand(0), TrueVal, FalseVal}); 6426 } 6427 6428 // Attempt combineSelectAndUse on each operand of a commutative operator N. 6429 static SDValue combineSelectAndUseCommutative(SDNode *N, SelectionDAG &DAG, 6430 bool AllOnes) { 6431 SDValue N0 = N->getOperand(0); 6432 SDValue N1 = N->getOperand(1); 6433 if (SDValue Result = combineSelectAndUse(N, N0, N1, DAG, AllOnes)) 6434 return Result; 6435 if (SDValue Result = combineSelectAndUse(N, N1, N0, DAG, AllOnes)) 6436 return Result; 6437 return SDValue(); 6438 } 6439 6440 // Transform (add (mul x, c0), c1) -> 6441 // (add (mul (add x, c1/c0), c0), c1%c0). 6442 // if c1/c0 and c1%c0 are simm12, while c1 is not. 6443 // Or transform (add (mul x, c0), c1) -> 6444 // (mul (add x, c1/c0), c0). 6445 // if c1%c0 is zero, and c1/c0 is simm12 while c1 is not. 6446 static SDValue transformAddImmMulImm(SDNode *N, SelectionDAG &DAG, 6447 const RISCVSubtarget &Subtarget) { 6448 // Skip for vector types and larger types. 6449 EVT VT = N->getValueType(0); 6450 if (VT.isVector() || VT.getSizeInBits() > Subtarget.getXLen()) 6451 return SDValue(); 6452 // The first operand node must be a MUL and has no other use. 6453 SDValue N0 = N->getOperand(0); 6454 if (!N0->hasOneUse() || N0->getOpcode() != ISD::MUL) 6455 return SDValue(); 6456 // Check if c0 and c1 match above conditions. 6457 auto *N0C = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 6458 auto *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1)); 6459 if (!N0C || !N1C) 6460 return SDValue(); 6461 int64_t C0 = N0C->getSExtValue(); 6462 int64_t C1 = N1C->getSExtValue(); 6463 if (C0 == -1 || C0 == 0 || C0 == 1 || (C1 / C0) == 0 || isInt<12>(C1) || 6464 !isInt<12>(C1 % C0) || !isInt<12>(C1 / C0)) 6465 return SDValue(); 6466 // If C0 * (C1 / C0) is a 12-bit integer, this transform will be reversed. 6467 if (isInt<12>(C0 * (C1 / C0))) 6468 return SDValue(); 6469 // Build new nodes (add (mul (add x, c1/c0), c0), c1%c0). 6470 SDLoc DL(N); 6471 SDValue New0 = DAG.getNode(ISD::ADD, DL, VT, N0->getOperand(0), 6472 DAG.getConstant(C1 / C0, DL, VT)); 6473 SDValue New1 = 6474 DAG.getNode(ISD::MUL, DL, VT, New0, DAG.getConstant(C0, DL, VT)); 6475 if ((C1 % C0) == 0) 6476 return New1; 6477 return DAG.getNode(ISD::ADD, DL, VT, New1, DAG.getConstant(C1 % C0, DL, VT)); 6478 } 6479 6480 static SDValue performADDCombine(SDNode *N, SelectionDAG &DAG, 6481 const RISCVSubtarget &Subtarget) { 6482 // Transform (add (mul x, c0), c1) -> 6483 // (add (mul (add x, c1/c0), c0), c1%c0). 6484 // if c1/c0 and c1%c0 are simm12, while c1 is not. 6485 // Or transform (add (mul x, c0), c1) -> 6486 // (mul (add x, c1/c0), c0). 6487 // if c1%c0 is zero, and c1/c0 is simm12 while c1 is not. 6488 if (SDValue V = transformAddImmMulImm(N, DAG, Subtarget)) 6489 return V; 6490 // Fold (add (shl x, c0), (shl y, c1)) -> 6491 // (SLLI (SH*ADD x, y), c0), if c1-c0 equals to [1|2|3]. 6492 if (SDValue V = transformAddShlImm(N, DAG, Subtarget)) 6493 return V; 6494 // fold (add (select lhs, rhs, cc, 0, y), x) -> 6495 // (select lhs, rhs, cc, x, (add x, y)) 6496 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false); 6497 } 6498 6499 static SDValue performSUBCombine(SDNode *N, SelectionDAG &DAG) { 6500 // fold (sub x, (select lhs, rhs, cc, 0, y)) -> 6501 // (select lhs, rhs, cc, x, (sub x, y)) 6502 SDValue N0 = N->getOperand(0); 6503 SDValue N1 = N->getOperand(1); 6504 return combineSelectAndUse(N, N1, N0, DAG, /*AllOnes*/ false); 6505 } 6506 6507 static SDValue performANDCombine(SDNode *N, SelectionDAG &DAG) { 6508 // fold (and (select lhs, rhs, cc, -1, y), x) -> 6509 // (select lhs, rhs, cc, x, (and x, y)) 6510 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ true); 6511 } 6512 6513 static SDValue performORCombine(SDNode *N, SelectionDAG &DAG, 6514 const RISCVSubtarget &Subtarget) { 6515 if (Subtarget.hasStdExtZbp()) { 6516 if (auto GREV = combineORToGREV(SDValue(N, 0), DAG, Subtarget)) 6517 return GREV; 6518 if (auto GORC = combineORToGORC(SDValue(N, 0), DAG, Subtarget)) 6519 return GORC; 6520 if (auto SHFL = combineORToSHFL(SDValue(N, 0), DAG, Subtarget)) 6521 return SHFL; 6522 } 6523 6524 // fold (or (select cond, 0, y), x) -> 6525 // (select cond, x, (or x, y)) 6526 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false); 6527 } 6528 6529 static SDValue performXORCombine(SDNode *N, SelectionDAG &DAG) { 6530 // fold (xor (select cond, 0, y), x) -> 6531 // (select cond, x, (xor x, y)) 6532 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false); 6533 } 6534 6535 // Attempt to turn ANY_EXTEND into SIGN_EXTEND if the input to the ANY_EXTEND 6536 // has users that require SIGN_EXTEND and the SIGN_EXTEND can be done for free 6537 // by an instruction like ADDW/SUBW/MULW. Without this the ANY_EXTEND would be 6538 // removed during type legalization leaving an ADD/SUB/MUL use that won't use 6539 // ADDW/SUBW/MULW. 6540 static SDValue performANY_EXTENDCombine(SDNode *N, 6541 TargetLowering::DAGCombinerInfo &DCI, 6542 const RISCVSubtarget &Subtarget) { 6543 if (!Subtarget.is64Bit()) 6544 return SDValue(); 6545 6546 SelectionDAG &DAG = DCI.DAG; 6547 6548 SDValue Src = N->getOperand(0); 6549 EVT VT = N->getValueType(0); 6550 if (VT != MVT::i64 || Src.getValueType() != MVT::i32) 6551 return SDValue(); 6552 6553 // The opcode must be one that can implicitly sign_extend. 6554 // FIXME: Additional opcodes. 6555 switch (Src.getOpcode()) { 6556 default: 6557 return SDValue(); 6558 case ISD::MUL: 6559 if (!Subtarget.hasStdExtM()) 6560 return SDValue(); 6561 LLVM_FALLTHROUGH; 6562 case ISD::ADD: 6563 case ISD::SUB: 6564 break; 6565 } 6566 6567 // Only handle cases where the result is used by a CopyToReg. That likely 6568 // means the value is a liveout of the basic block. This helps prevent 6569 // infinite combine loops like PR51206. 6570 if (none_of(N->uses(), 6571 [](SDNode *User) { return User->getOpcode() == ISD::CopyToReg; })) 6572 return SDValue(); 6573 6574 SmallVector<SDNode *, 4> SetCCs; 6575 for (SDNode::use_iterator UI = Src.getNode()->use_begin(), 6576 UE = Src.getNode()->use_end(); 6577 UI != UE; ++UI) { 6578 SDNode *User = *UI; 6579 if (User == N) 6580 continue; 6581 if (UI.getUse().getResNo() != Src.getResNo()) 6582 continue; 6583 // All i32 setccs are legalized by sign extending operands. 6584 if (User->getOpcode() == ISD::SETCC) { 6585 SetCCs.push_back(User); 6586 continue; 6587 } 6588 // We don't know if we can extend this user. 6589 break; 6590 } 6591 6592 // If we don't have any SetCCs, this isn't worthwhile. 6593 if (SetCCs.empty()) 6594 return SDValue(); 6595 6596 SDLoc DL(N); 6597 SDValue SExt = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Src); 6598 DCI.CombineTo(N, SExt); 6599 6600 // Promote all the setccs. 6601 for (SDNode *SetCC : SetCCs) { 6602 SmallVector<SDValue, 4> Ops; 6603 6604 for (unsigned j = 0; j != 2; ++j) { 6605 SDValue SOp = SetCC->getOperand(j); 6606 if (SOp == Src) 6607 Ops.push_back(SExt); 6608 else 6609 Ops.push_back(DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, SOp)); 6610 } 6611 6612 Ops.push_back(SetCC->getOperand(2)); 6613 DCI.CombineTo(SetCC, 6614 DAG.getNode(ISD::SETCC, DL, SetCC->getValueType(0), Ops)); 6615 } 6616 return SDValue(N, 0); 6617 } 6618 6619 // Try to form VWMUL or VWMULU. 6620 // FIXME: Support VWMULSU. 6621 static SDValue combineMUL_VLToVWMUL(SDNode *N, SDValue Op0, SDValue Op1, 6622 SelectionDAG &DAG) { 6623 assert(N->getOpcode() == RISCVISD::MUL_VL && "Unexpected opcode"); 6624 bool IsSignExt = Op0.getOpcode() == RISCVISD::VSEXT_VL; 6625 bool IsZeroExt = Op0.getOpcode() == RISCVISD::VZEXT_VL; 6626 if ((!IsSignExt && !IsZeroExt) || !Op0.hasOneUse()) 6627 return SDValue(); 6628 6629 SDValue Mask = N->getOperand(2); 6630 SDValue VL = N->getOperand(3); 6631 6632 // Make sure the mask and VL match. 6633 if (Op0.getOperand(1) != Mask || Op0.getOperand(2) != VL) 6634 return SDValue(); 6635 6636 MVT VT = N->getSimpleValueType(0); 6637 6638 // Determine the narrow size for a widening multiply. 6639 unsigned NarrowSize = VT.getScalarSizeInBits() / 2; 6640 MVT NarrowVT = MVT::getVectorVT(MVT::getIntegerVT(NarrowSize), 6641 VT.getVectorElementCount()); 6642 6643 SDLoc DL(N); 6644 6645 // See if the other operand is the same opcode. 6646 if (Op0.getOpcode() == Op1.getOpcode()) { 6647 if (!Op1.hasOneUse()) 6648 return SDValue(); 6649 6650 // Make sure the mask and VL match. 6651 if (Op1.getOperand(1) != Mask || Op1.getOperand(2) != VL) 6652 return SDValue(); 6653 6654 Op1 = Op1.getOperand(0); 6655 } else if (Op1.getOpcode() == RISCVISD::VMV_V_X_VL) { 6656 // The operand is a splat of a scalar. 6657 6658 // The VL must be the same. 6659 if (Op1.getOperand(1) != VL) 6660 return SDValue(); 6661 6662 // Get the scalar value. 6663 Op1 = Op1.getOperand(0); 6664 6665 // See if have enough sign bits or zero bits in the scalar to use a 6666 // widening multiply by splatting to smaller element size. 6667 unsigned EltBits = VT.getScalarSizeInBits(); 6668 unsigned ScalarBits = Op1.getValueSizeInBits(); 6669 // Make sure we're getting all element bits from the scalar register. 6670 // FIXME: Support implicit sign extension of vmv.v.x? 6671 if (ScalarBits < EltBits) 6672 return SDValue(); 6673 6674 if (IsSignExt) { 6675 if (DAG.ComputeNumSignBits(Op1) <= (ScalarBits - NarrowSize)) 6676 return SDValue(); 6677 } else { 6678 APInt Mask = APInt::getBitsSetFrom(ScalarBits, NarrowSize); 6679 if (!DAG.MaskedValueIsZero(Op1, Mask)) 6680 return SDValue(); 6681 } 6682 6683 Op1 = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, NarrowVT, Op1, VL); 6684 } else 6685 return SDValue(); 6686 6687 Op0 = Op0.getOperand(0); 6688 6689 // Re-introduce narrower extends if needed. 6690 unsigned ExtOpc = IsSignExt ? RISCVISD::VSEXT_VL : RISCVISD::VZEXT_VL; 6691 if (Op0.getValueType() != NarrowVT) 6692 Op0 = DAG.getNode(ExtOpc, DL, NarrowVT, Op0, Mask, VL); 6693 if (Op1.getValueType() != NarrowVT) 6694 Op1 = DAG.getNode(ExtOpc, DL, NarrowVT, Op1, Mask, VL); 6695 6696 unsigned WMulOpc = IsSignExt ? RISCVISD::VWMUL_VL : RISCVISD::VWMULU_VL; 6697 return DAG.getNode(WMulOpc, DL, VT, Op0, Op1, Mask, VL); 6698 } 6699 6700 SDValue RISCVTargetLowering::PerformDAGCombine(SDNode *N, 6701 DAGCombinerInfo &DCI) const { 6702 SelectionDAG &DAG = DCI.DAG; 6703 6704 // Helper to call SimplifyDemandedBits on an operand of N where only some low 6705 // bits are demanded. N will be added to the Worklist if it was not deleted. 6706 // Caller should return SDValue(N, 0) if this returns true. 6707 auto SimplifyDemandedLowBitsHelper = [&](unsigned OpNo, unsigned LowBits) { 6708 SDValue Op = N->getOperand(OpNo); 6709 APInt Mask = APInt::getLowBitsSet(Op.getValueSizeInBits(), LowBits); 6710 if (!SimplifyDemandedBits(Op, Mask, DCI)) 6711 return false; 6712 6713 if (N->getOpcode() != ISD::DELETED_NODE) 6714 DCI.AddToWorklist(N); 6715 return true; 6716 }; 6717 6718 switch (N->getOpcode()) { 6719 default: 6720 break; 6721 case RISCVISD::SplitF64: { 6722 SDValue Op0 = N->getOperand(0); 6723 // If the input to SplitF64 is just BuildPairF64 then the operation is 6724 // redundant. Instead, use BuildPairF64's operands directly. 6725 if (Op0->getOpcode() == RISCVISD::BuildPairF64) 6726 return DCI.CombineTo(N, Op0.getOperand(0), Op0.getOperand(1)); 6727 6728 SDLoc DL(N); 6729 6730 // It's cheaper to materialise two 32-bit integers than to load a double 6731 // from the constant pool and transfer it to integer registers through the 6732 // stack. 6733 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op0)) { 6734 APInt V = C->getValueAPF().bitcastToAPInt(); 6735 SDValue Lo = DAG.getConstant(V.trunc(32), DL, MVT::i32); 6736 SDValue Hi = DAG.getConstant(V.lshr(32).trunc(32), DL, MVT::i32); 6737 return DCI.CombineTo(N, Lo, Hi); 6738 } 6739 6740 // This is a target-specific version of a DAGCombine performed in 6741 // DAGCombiner::visitBITCAST. It performs the equivalent of: 6742 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) 6743 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) 6744 if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) || 6745 !Op0.getNode()->hasOneUse()) 6746 break; 6747 SDValue NewSplitF64 = 6748 DAG.getNode(RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), 6749 Op0.getOperand(0)); 6750 SDValue Lo = NewSplitF64.getValue(0); 6751 SDValue Hi = NewSplitF64.getValue(1); 6752 APInt SignBit = APInt::getSignMask(32); 6753 if (Op0.getOpcode() == ISD::FNEG) { 6754 SDValue NewHi = DAG.getNode(ISD::XOR, DL, MVT::i32, Hi, 6755 DAG.getConstant(SignBit, DL, MVT::i32)); 6756 return DCI.CombineTo(N, Lo, NewHi); 6757 } 6758 assert(Op0.getOpcode() == ISD::FABS); 6759 SDValue NewHi = DAG.getNode(ISD::AND, DL, MVT::i32, Hi, 6760 DAG.getConstant(~SignBit, DL, MVT::i32)); 6761 return DCI.CombineTo(N, Lo, NewHi); 6762 } 6763 case RISCVISD::SLLW: 6764 case RISCVISD::SRAW: 6765 case RISCVISD::SRLW: 6766 case RISCVISD::ROLW: 6767 case RISCVISD::RORW: { 6768 // Only the lower 32 bits of LHS and lower 5 bits of RHS are read. 6769 if (SimplifyDemandedLowBitsHelper(0, 32) || 6770 SimplifyDemandedLowBitsHelper(1, 5)) 6771 return SDValue(N, 0); 6772 break; 6773 } 6774 case RISCVISD::CLZW: 6775 case RISCVISD::CTZW: { 6776 // Only the lower 32 bits of the first operand are read 6777 if (SimplifyDemandedLowBitsHelper(0, 32)) 6778 return SDValue(N, 0); 6779 break; 6780 } 6781 case RISCVISD::FSL: 6782 case RISCVISD::FSR: { 6783 // Only the lower log2(Bitwidth)+1 bits of the the shift amount are read. 6784 unsigned BitWidth = N->getOperand(2).getValueSizeInBits(); 6785 assert(isPowerOf2_32(BitWidth) && "Unexpected bit width"); 6786 if (SimplifyDemandedLowBitsHelper(2, Log2_32(BitWidth) + 1)) 6787 return SDValue(N, 0); 6788 break; 6789 } 6790 case RISCVISD::FSLW: 6791 case RISCVISD::FSRW: { 6792 // Only the lower 32 bits of Values and lower 6 bits of shift amount are 6793 // read. 6794 if (SimplifyDemandedLowBitsHelper(0, 32) || 6795 SimplifyDemandedLowBitsHelper(1, 32) || 6796 SimplifyDemandedLowBitsHelper(2, 6)) 6797 return SDValue(N, 0); 6798 break; 6799 } 6800 case RISCVISD::GREV: 6801 case RISCVISD::GORC: { 6802 // Only the lower log2(Bitwidth) bits of the the shift amount are read. 6803 unsigned BitWidth = N->getOperand(1).getValueSizeInBits(); 6804 assert(isPowerOf2_32(BitWidth) && "Unexpected bit width"); 6805 if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth))) 6806 return SDValue(N, 0); 6807 6808 return combineGREVI_GORCI(N, DCI.DAG); 6809 } 6810 case RISCVISD::GREVW: 6811 case RISCVISD::GORCW: { 6812 // Only the lower 32 bits of LHS and lower 5 bits of RHS are read. 6813 if (SimplifyDemandedLowBitsHelper(0, 32) || 6814 SimplifyDemandedLowBitsHelper(1, 5)) 6815 return SDValue(N, 0); 6816 6817 return combineGREVI_GORCI(N, DCI.DAG); 6818 } 6819 case RISCVISD::SHFL: 6820 case RISCVISD::UNSHFL: { 6821 // Only the lower log2(Bitwidth)-1 bits of the the shift amount are read. 6822 unsigned BitWidth = N->getOperand(1).getValueSizeInBits(); 6823 assert(isPowerOf2_32(BitWidth) && "Unexpected bit width"); 6824 if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth) - 1)) 6825 return SDValue(N, 0); 6826 6827 break; 6828 } 6829 case RISCVISD::SHFLW: 6830 case RISCVISD::UNSHFLW: { 6831 // Only the lower 32 bits of LHS and lower 4 bits of RHS are read. 6832 SDValue LHS = N->getOperand(0); 6833 SDValue RHS = N->getOperand(1); 6834 APInt LHSMask = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 32); 6835 APInt RHSMask = APInt::getLowBitsSet(RHS.getValueSizeInBits(), 4); 6836 if (SimplifyDemandedLowBitsHelper(0, 32) || 6837 SimplifyDemandedLowBitsHelper(1, 4)) 6838 return SDValue(N, 0); 6839 6840 break; 6841 } 6842 case RISCVISD::BCOMPRESSW: 6843 case RISCVISD::BDECOMPRESSW: { 6844 // Only the lower 32 bits of LHS and RHS are read. 6845 if (SimplifyDemandedLowBitsHelper(0, 32) || 6846 SimplifyDemandedLowBitsHelper(1, 32)) 6847 return SDValue(N, 0); 6848 6849 break; 6850 } 6851 case RISCVISD::FMV_X_ANYEXTH: 6852 case RISCVISD::FMV_X_ANYEXTW_RV64: { 6853 SDLoc DL(N); 6854 SDValue Op0 = N->getOperand(0); 6855 MVT VT = N->getSimpleValueType(0); 6856 // If the input to FMV_X_ANYEXTW_RV64 is just FMV_W_X_RV64 then the 6857 // conversion is unnecessary and can be replaced with the FMV_W_X_RV64 6858 // operand. Similar for FMV_X_ANYEXTH and FMV_H_X. 6859 if ((N->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64 && 6860 Op0->getOpcode() == RISCVISD::FMV_W_X_RV64) || 6861 (N->getOpcode() == RISCVISD::FMV_X_ANYEXTH && 6862 Op0->getOpcode() == RISCVISD::FMV_H_X)) { 6863 assert(Op0.getOperand(0).getValueType() == VT && 6864 "Unexpected value type!"); 6865 return Op0.getOperand(0); 6866 } 6867 6868 // This is a target-specific version of a DAGCombine performed in 6869 // DAGCombiner::visitBITCAST. It performs the equivalent of: 6870 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) 6871 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) 6872 if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) || 6873 !Op0.getNode()->hasOneUse()) 6874 break; 6875 SDValue NewFMV = DAG.getNode(N->getOpcode(), DL, VT, Op0.getOperand(0)); 6876 unsigned FPBits = N->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64 ? 32 : 16; 6877 APInt SignBit = APInt::getSignMask(FPBits).sextOrSelf(VT.getSizeInBits()); 6878 if (Op0.getOpcode() == ISD::FNEG) 6879 return DAG.getNode(ISD::XOR, DL, VT, NewFMV, 6880 DAG.getConstant(SignBit, DL, VT)); 6881 6882 assert(Op0.getOpcode() == ISD::FABS); 6883 return DAG.getNode(ISD::AND, DL, VT, NewFMV, 6884 DAG.getConstant(~SignBit, DL, VT)); 6885 } 6886 case ISD::ADD: 6887 return performADDCombine(N, DAG, Subtarget); 6888 case ISD::SUB: 6889 return performSUBCombine(N, DAG); 6890 case ISD::AND: 6891 return performANDCombine(N, DAG); 6892 case ISD::OR: 6893 return performORCombine(N, DAG, Subtarget); 6894 case ISD::XOR: 6895 return performXORCombine(N, DAG); 6896 case ISD::ANY_EXTEND: 6897 return performANY_EXTENDCombine(N, DCI, Subtarget); 6898 case ISD::ZERO_EXTEND: 6899 // Fold (zero_extend (fp_to_uint X)) to prevent forming fcvt+zexti32 during 6900 // type legalization. This is safe because fp_to_uint produces poison if 6901 // it overflows. 6902 if (N->getValueType(0) == MVT::i64 && Subtarget.is64Bit() && 6903 N->getOperand(0).getOpcode() == ISD::FP_TO_UINT && 6904 isTypeLegal(N->getOperand(0).getOperand(0).getValueType())) 6905 return DAG.getNode(ISD::FP_TO_UINT, SDLoc(N), MVT::i64, 6906 N->getOperand(0).getOperand(0)); 6907 return SDValue(); 6908 case RISCVISD::SELECT_CC: { 6909 // Transform 6910 SDValue LHS = N->getOperand(0); 6911 SDValue RHS = N->getOperand(1); 6912 SDValue TrueV = N->getOperand(3); 6913 SDValue FalseV = N->getOperand(4); 6914 6915 // If the True and False values are the same, we don't need a select_cc. 6916 if (TrueV == FalseV) 6917 return TrueV; 6918 6919 ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(2))->get(); 6920 if (!ISD::isIntEqualitySetCC(CCVal)) 6921 break; 6922 6923 // Fold (select_cc (setlt X, Y), 0, ne, trueV, falseV) -> 6924 // (select_cc X, Y, lt, trueV, falseV) 6925 // Sometimes the setcc is introduced after select_cc has been formed. 6926 if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) && 6927 LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) { 6928 // If we're looking for eq 0 instead of ne 0, we need to invert the 6929 // condition. 6930 bool Invert = CCVal == ISD::SETEQ; 6931 CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get(); 6932 if (Invert) 6933 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 6934 6935 SDLoc DL(N); 6936 RHS = LHS.getOperand(1); 6937 LHS = LHS.getOperand(0); 6938 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 6939 6940 SDValue TargetCC = DAG.getCondCode(CCVal); 6941 return DAG.getNode(RISCVISD::SELECT_CC, DL, N->getValueType(0), 6942 {LHS, RHS, TargetCC, TrueV, FalseV}); 6943 } 6944 6945 // Fold (select_cc (xor X, Y), 0, eq/ne, trueV, falseV) -> 6946 // (select_cc X, Y, eq/ne, trueV, falseV) 6947 if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS)) 6948 return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), N->getValueType(0), 6949 {LHS.getOperand(0), LHS.getOperand(1), 6950 N->getOperand(2), TrueV, FalseV}); 6951 // (select_cc X, 1, setne, trueV, falseV) -> 6952 // (select_cc X, 0, seteq, trueV, falseV) if we can prove X is 0/1. 6953 // This can occur when legalizing some floating point comparisons. 6954 APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1); 6955 if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) { 6956 SDLoc DL(N); 6957 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 6958 SDValue TargetCC = DAG.getCondCode(CCVal); 6959 RHS = DAG.getConstant(0, DL, LHS.getValueType()); 6960 return DAG.getNode(RISCVISD::SELECT_CC, DL, N->getValueType(0), 6961 {LHS, RHS, TargetCC, TrueV, FalseV}); 6962 } 6963 6964 break; 6965 } 6966 case RISCVISD::BR_CC: { 6967 SDValue LHS = N->getOperand(1); 6968 SDValue RHS = N->getOperand(2); 6969 ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(3))->get(); 6970 if (!ISD::isIntEqualitySetCC(CCVal)) 6971 break; 6972 6973 // Fold (br_cc (setlt X, Y), 0, ne, dest) -> 6974 // (br_cc X, Y, lt, dest) 6975 // Sometimes the setcc is introduced after br_cc has been formed. 6976 if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) && 6977 LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) { 6978 // If we're looking for eq 0 instead of ne 0, we need to invert the 6979 // condition. 6980 bool Invert = CCVal == ISD::SETEQ; 6981 CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get(); 6982 if (Invert) 6983 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 6984 6985 SDLoc DL(N); 6986 RHS = LHS.getOperand(1); 6987 LHS = LHS.getOperand(0); 6988 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 6989 6990 return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0), 6991 N->getOperand(0), LHS, RHS, DAG.getCondCode(CCVal), 6992 N->getOperand(4)); 6993 } 6994 6995 // Fold (br_cc (xor X, Y), 0, eq/ne, dest) -> 6996 // (br_cc X, Y, eq/ne, trueV, falseV) 6997 if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS)) 6998 return DAG.getNode(RISCVISD::BR_CC, SDLoc(N), N->getValueType(0), 6999 N->getOperand(0), LHS.getOperand(0), LHS.getOperand(1), 7000 N->getOperand(3), N->getOperand(4)); 7001 7002 // (br_cc X, 1, setne, br_cc) -> 7003 // (br_cc X, 0, seteq, br_cc) if we can prove X is 0/1. 7004 // This can occur when legalizing some floating point comparisons. 7005 APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1); 7006 if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) { 7007 SDLoc DL(N); 7008 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 7009 SDValue TargetCC = DAG.getCondCode(CCVal); 7010 RHS = DAG.getConstant(0, DL, LHS.getValueType()); 7011 return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0), 7012 N->getOperand(0), LHS, RHS, TargetCC, 7013 N->getOperand(4)); 7014 } 7015 break; 7016 } 7017 case ISD::FCOPYSIGN: { 7018 EVT VT = N->getValueType(0); 7019 if (!VT.isVector()) 7020 break; 7021 // There is a form of VFSGNJ which injects the negated sign of its second 7022 // operand. Try and bubble any FNEG up after the extend/round to produce 7023 // this optimized pattern. Avoid modifying cases where FP_ROUND and 7024 // TRUNC=1. 7025 SDValue In2 = N->getOperand(1); 7026 // Avoid cases where the extend/round has multiple uses, as duplicating 7027 // those is typically more expensive than removing a fneg. 7028 if (!In2.hasOneUse()) 7029 break; 7030 if (In2.getOpcode() != ISD::FP_EXTEND && 7031 (In2.getOpcode() != ISD::FP_ROUND || In2.getConstantOperandVal(1) != 0)) 7032 break; 7033 In2 = In2.getOperand(0); 7034 if (In2.getOpcode() != ISD::FNEG) 7035 break; 7036 SDLoc DL(N); 7037 SDValue NewFPExtRound = DAG.getFPExtendOrRound(In2.getOperand(0), DL, VT); 7038 return DAG.getNode(ISD::FCOPYSIGN, DL, VT, N->getOperand(0), 7039 DAG.getNode(ISD::FNEG, DL, VT, NewFPExtRound)); 7040 } 7041 case ISD::MGATHER: 7042 case ISD::MSCATTER: 7043 case ISD::VP_GATHER: 7044 case ISD::VP_SCATTER: { 7045 if (!DCI.isBeforeLegalize()) 7046 break; 7047 SDValue Index, ScaleOp; 7048 bool IsIndexScaled = false; 7049 bool IsIndexSigned = false; 7050 if (const auto *VPGSN = dyn_cast<VPGatherScatterSDNode>(N)) { 7051 Index = VPGSN->getIndex(); 7052 ScaleOp = VPGSN->getScale(); 7053 IsIndexScaled = VPGSN->isIndexScaled(); 7054 IsIndexSigned = VPGSN->isIndexSigned(); 7055 } else { 7056 const auto *MGSN = cast<MaskedGatherScatterSDNode>(N); 7057 Index = MGSN->getIndex(); 7058 ScaleOp = MGSN->getScale(); 7059 IsIndexScaled = MGSN->isIndexScaled(); 7060 IsIndexSigned = MGSN->isIndexSigned(); 7061 } 7062 EVT IndexVT = Index.getValueType(); 7063 MVT XLenVT = Subtarget.getXLenVT(); 7064 // RISCV indexed loads only support the "unsigned unscaled" addressing 7065 // mode, so anything else must be manually legalized. 7066 bool NeedsIdxLegalization = 7067 IsIndexScaled || 7068 (IsIndexSigned && IndexVT.getVectorElementType().bitsLT(XLenVT)); 7069 if (!NeedsIdxLegalization) 7070 break; 7071 7072 SDLoc DL(N); 7073 7074 // Any index legalization should first promote to XLenVT, so we don't lose 7075 // bits when scaling. This may create an illegal index type so we let 7076 // LLVM's legalization take care of the splitting. 7077 // FIXME: LLVM can't split VP_GATHER or VP_SCATTER yet. 7078 if (IndexVT.getVectorElementType().bitsLT(XLenVT)) { 7079 IndexVT = IndexVT.changeVectorElementType(XLenVT); 7080 Index = DAG.getNode(IsIndexSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, 7081 DL, IndexVT, Index); 7082 } 7083 7084 unsigned Scale = cast<ConstantSDNode>(ScaleOp)->getZExtValue(); 7085 if (IsIndexScaled && Scale != 1) { 7086 // Manually scale the indices by the element size. 7087 // TODO: Sanitize the scale operand here? 7088 // TODO: For VP nodes, should we use VP_SHL here? 7089 assert(isPowerOf2_32(Scale) && "Expecting power-of-two types"); 7090 SDValue SplatScale = DAG.getConstant(Log2_32(Scale), DL, IndexVT); 7091 Index = DAG.getNode(ISD::SHL, DL, IndexVT, Index, SplatScale); 7092 } 7093 7094 ISD::MemIndexType NewIndexTy = ISD::UNSIGNED_UNSCALED; 7095 if (const auto *VPGN = dyn_cast<VPGatherSDNode>(N)) 7096 return DAG.getGatherVP(N->getVTList(), VPGN->getMemoryVT(), DL, 7097 {VPGN->getChain(), VPGN->getBasePtr(), Index, 7098 VPGN->getScale(), VPGN->getMask(), 7099 VPGN->getVectorLength()}, 7100 VPGN->getMemOperand(), NewIndexTy); 7101 if (const auto *VPSN = dyn_cast<VPScatterSDNode>(N)) 7102 return DAG.getScatterVP(N->getVTList(), VPSN->getMemoryVT(), DL, 7103 {VPSN->getChain(), VPSN->getValue(), 7104 VPSN->getBasePtr(), Index, VPSN->getScale(), 7105 VPSN->getMask(), VPSN->getVectorLength()}, 7106 VPSN->getMemOperand(), NewIndexTy); 7107 if (const auto *MGN = dyn_cast<MaskedGatherSDNode>(N)) 7108 return DAG.getMaskedGather( 7109 N->getVTList(), MGN->getMemoryVT(), DL, 7110 {MGN->getChain(), MGN->getPassThru(), MGN->getMask(), 7111 MGN->getBasePtr(), Index, MGN->getScale()}, 7112 MGN->getMemOperand(), NewIndexTy, MGN->getExtensionType()); 7113 const auto *MSN = cast<MaskedScatterSDNode>(N); 7114 return DAG.getMaskedScatter( 7115 N->getVTList(), MSN->getMemoryVT(), DL, 7116 {MSN->getChain(), MSN->getValue(), MSN->getMask(), MSN->getBasePtr(), 7117 Index, MSN->getScale()}, 7118 MSN->getMemOperand(), NewIndexTy, MSN->isTruncatingStore()); 7119 } 7120 case RISCVISD::SRA_VL: 7121 case RISCVISD::SRL_VL: 7122 case RISCVISD::SHL_VL: { 7123 SDValue ShAmt = N->getOperand(1); 7124 if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) { 7125 // We don't need the upper 32 bits of a 64-bit element for a shift amount. 7126 SDLoc DL(N); 7127 SDValue VL = N->getOperand(3); 7128 EVT VT = N->getValueType(0); 7129 ShAmt = 7130 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, ShAmt.getOperand(0), VL); 7131 return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt, 7132 N->getOperand(2), N->getOperand(3)); 7133 } 7134 break; 7135 } 7136 case ISD::SRA: 7137 case ISD::SRL: 7138 case ISD::SHL: { 7139 SDValue ShAmt = N->getOperand(1); 7140 if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) { 7141 // We don't need the upper 32 bits of a 64-bit element for a shift amount. 7142 SDLoc DL(N); 7143 EVT VT = N->getValueType(0); 7144 ShAmt = 7145 DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VT, ShAmt.getOperand(0)); 7146 return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt); 7147 } 7148 break; 7149 } 7150 case RISCVISD::MUL_VL: { 7151 SDValue Op0 = N->getOperand(0); 7152 SDValue Op1 = N->getOperand(1); 7153 if (SDValue V = combineMUL_VLToVWMUL(N, Op0, Op1, DAG)) 7154 return V; 7155 if (SDValue V = combineMUL_VLToVWMUL(N, Op1, Op0, DAG)) 7156 return V; 7157 return SDValue(); 7158 } 7159 case ISD::STORE: { 7160 auto *Store = cast<StoreSDNode>(N); 7161 SDValue Val = Store->getValue(); 7162 // Combine store of vmv.x.s to vse with VL of 1. 7163 // FIXME: Support FP. 7164 if (Val.getOpcode() == RISCVISD::VMV_X_S) { 7165 SDValue Src = Val.getOperand(0); 7166 EVT VecVT = Src.getValueType(); 7167 EVT MemVT = Store->getMemoryVT(); 7168 // The memory VT and the element type must match. 7169 if (VecVT.getVectorElementType() == MemVT) { 7170 SDLoc DL(N); 7171 MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount()); 7172 return DAG.getStoreVP(Store->getChain(), DL, Src, Store->getBasePtr(), 7173 DAG.getConstant(1, DL, MaskVT), 7174 DAG.getConstant(1, DL, Subtarget.getXLenVT()), 7175 Store->getPointerInfo(), 7176 Store->getOriginalAlign(), 7177 Store->getMemOperand()->getFlags()); 7178 } 7179 } 7180 7181 break; 7182 } 7183 } 7184 7185 return SDValue(); 7186 } 7187 7188 bool RISCVTargetLowering::isDesirableToCommuteWithShift( 7189 const SDNode *N, CombineLevel Level) const { 7190 // The following folds are only desirable if `(OP _, c1 << c2)` can be 7191 // materialised in fewer instructions than `(OP _, c1)`: 7192 // 7193 // (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2) 7194 // (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2) 7195 SDValue N0 = N->getOperand(0); 7196 EVT Ty = N0.getValueType(); 7197 if (Ty.isScalarInteger() && 7198 (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::OR)) { 7199 auto *C1 = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 7200 auto *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1)); 7201 if (C1 && C2) { 7202 const APInt &C1Int = C1->getAPIntValue(); 7203 APInt ShiftedC1Int = C1Int << C2->getAPIntValue(); 7204 7205 // We can materialise `c1 << c2` into an add immediate, so it's "free", 7206 // and the combine should happen, to potentially allow further combines 7207 // later. 7208 if (ShiftedC1Int.getMinSignedBits() <= 64 && 7209 isLegalAddImmediate(ShiftedC1Int.getSExtValue())) 7210 return true; 7211 7212 // We can materialise `c1` in an add immediate, so it's "free", and the 7213 // combine should be prevented. 7214 if (C1Int.getMinSignedBits() <= 64 && 7215 isLegalAddImmediate(C1Int.getSExtValue())) 7216 return false; 7217 7218 // Neither constant will fit into an immediate, so find materialisation 7219 // costs. 7220 int C1Cost = RISCVMatInt::getIntMatCost(C1Int, Ty.getSizeInBits(), 7221 Subtarget.getFeatureBits(), 7222 /*CompressionCost*/true); 7223 int ShiftedC1Cost = RISCVMatInt::getIntMatCost( 7224 ShiftedC1Int, Ty.getSizeInBits(), Subtarget.getFeatureBits(), 7225 /*CompressionCost*/true); 7226 7227 // Materialising `c1` is cheaper than materialising `c1 << c2`, so the 7228 // combine should be prevented. 7229 if (C1Cost < ShiftedC1Cost) 7230 return false; 7231 } 7232 } 7233 return true; 7234 } 7235 7236 bool RISCVTargetLowering::targetShrinkDemandedConstant( 7237 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 7238 TargetLoweringOpt &TLO) const { 7239 // Delay this optimization as late as possible. 7240 if (!TLO.LegalOps) 7241 return false; 7242 7243 EVT VT = Op.getValueType(); 7244 if (VT.isVector()) 7245 return false; 7246 7247 // Only handle AND for now. 7248 if (Op.getOpcode() != ISD::AND) 7249 return false; 7250 7251 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 7252 if (!C) 7253 return false; 7254 7255 const APInt &Mask = C->getAPIntValue(); 7256 7257 // Clear all non-demanded bits initially. 7258 APInt ShrunkMask = Mask & DemandedBits; 7259 7260 // Try to make a smaller immediate by setting undemanded bits. 7261 7262 APInt ExpandedMask = Mask | ~DemandedBits; 7263 7264 auto IsLegalMask = [ShrunkMask, ExpandedMask](const APInt &Mask) -> bool { 7265 return ShrunkMask.isSubsetOf(Mask) && Mask.isSubsetOf(ExpandedMask); 7266 }; 7267 auto UseMask = [Mask, Op, VT, &TLO](const APInt &NewMask) -> bool { 7268 if (NewMask == Mask) 7269 return true; 7270 SDLoc DL(Op); 7271 SDValue NewC = TLO.DAG.getConstant(NewMask, DL, VT); 7272 SDValue NewOp = TLO.DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), NewC); 7273 return TLO.CombineTo(Op, NewOp); 7274 }; 7275 7276 // If the shrunk mask fits in sign extended 12 bits, let the target 7277 // independent code apply it. 7278 if (ShrunkMask.isSignedIntN(12)) 7279 return false; 7280 7281 // Preserve (and X, 0xffff) when zext.h is supported. 7282 if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp()) { 7283 APInt NewMask = APInt(Mask.getBitWidth(), 0xffff); 7284 if (IsLegalMask(NewMask)) 7285 return UseMask(NewMask); 7286 } 7287 7288 // Try to preserve (and X, 0xffffffff), the (zext_inreg X, i32) pattern. 7289 if (VT == MVT::i64) { 7290 APInt NewMask = APInt(64, 0xffffffff); 7291 if (IsLegalMask(NewMask)) 7292 return UseMask(NewMask); 7293 } 7294 7295 // For the remaining optimizations, we need to be able to make a negative 7296 // number through a combination of mask and undemanded bits. 7297 if (!ExpandedMask.isNegative()) 7298 return false; 7299 7300 // What is the fewest number of bits we need to represent the negative number. 7301 unsigned MinSignedBits = ExpandedMask.getMinSignedBits(); 7302 7303 // Try to make a 12 bit negative immediate. If that fails try to make a 32 7304 // bit negative immediate unless the shrunk immediate already fits in 32 bits. 7305 APInt NewMask = ShrunkMask; 7306 if (MinSignedBits <= 12) 7307 NewMask.setBitsFrom(11); 7308 else if (MinSignedBits <= 32 && !ShrunkMask.isSignedIntN(32)) 7309 NewMask.setBitsFrom(31); 7310 else 7311 return false; 7312 7313 // Sanity check that our new mask is a subset of the demanded mask. 7314 assert(IsLegalMask(NewMask)); 7315 return UseMask(NewMask); 7316 } 7317 7318 static void computeGREV(APInt &Src, unsigned ShAmt) { 7319 ShAmt &= Src.getBitWidth() - 1; 7320 uint64_t x = Src.getZExtValue(); 7321 if (ShAmt & 1) 7322 x = ((x & 0x5555555555555555LL) << 1) | ((x & 0xAAAAAAAAAAAAAAAALL) >> 1); 7323 if (ShAmt & 2) 7324 x = ((x & 0x3333333333333333LL) << 2) | ((x & 0xCCCCCCCCCCCCCCCCLL) >> 2); 7325 if (ShAmt & 4) 7326 x = ((x & 0x0F0F0F0F0F0F0F0FLL) << 4) | ((x & 0xF0F0F0F0F0F0F0F0LL) >> 4); 7327 if (ShAmt & 8) 7328 x = ((x & 0x00FF00FF00FF00FFLL) << 8) | ((x & 0xFF00FF00FF00FF00LL) >> 8); 7329 if (ShAmt & 16) 7330 x = ((x & 0x0000FFFF0000FFFFLL) << 16) | ((x & 0xFFFF0000FFFF0000LL) >> 16); 7331 if (ShAmt & 32) 7332 x = ((x & 0x00000000FFFFFFFFLL) << 32) | ((x & 0xFFFFFFFF00000000LL) >> 32); 7333 Src = x; 7334 } 7335 7336 void RISCVTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 7337 KnownBits &Known, 7338 const APInt &DemandedElts, 7339 const SelectionDAG &DAG, 7340 unsigned Depth) const { 7341 unsigned BitWidth = Known.getBitWidth(); 7342 unsigned Opc = Op.getOpcode(); 7343 assert((Opc >= ISD::BUILTIN_OP_END || 7344 Opc == ISD::INTRINSIC_WO_CHAIN || 7345 Opc == ISD::INTRINSIC_W_CHAIN || 7346 Opc == ISD::INTRINSIC_VOID) && 7347 "Should use MaskedValueIsZero if you don't know whether Op" 7348 " is a target node!"); 7349 7350 Known.resetAll(); 7351 switch (Opc) { 7352 default: break; 7353 case RISCVISD::SELECT_CC: { 7354 Known = DAG.computeKnownBits(Op.getOperand(4), Depth + 1); 7355 // If we don't know any bits, early out. 7356 if (Known.isUnknown()) 7357 break; 7358 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(3), Depth + 1); 7359 7360 // Only known if known in both the LHS and RHS. 7361 Known = KnownBits::commonBits(Known, Known2); 7362 break; 7363 } 7364 case RISCVISD::REMUW: { 7365 KnownBits Known2; 7366 Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 7367 Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 7368 // We only care about the lower 32 bits. 7369 Known = KnownBits::urem(Known.trunc(32), Known2.trunc(32)); 7370 // Restore the original width by sign extending. 7371 Known = Known.sext(BitWidth); 7372 break; 7373 } 7374 case RISCVISD::DIVUW: { 7375 KnownBits Known2; 7376 Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 7377 Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 7378 // We only care about the lower 32 bits. 7379 Known = KnownBits::udiv(Known.trunc(32), Known2.trunc(32)); 7380 // Restore the original width by sign extending. 7381 Known = Known.sext(BitWidth); 7382 break; 7383 } 7384 case RISCVISD::CTZW: { 7385 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 7386 unsigned PossibleTZ = Known2.trunc(32).countMaxTrailingZeros(); 7387 unsigned LowBits = Log2_32(PossibleTZ) + 1; 7388 Known.Zero.setBitsFrom(LowBits); 7389 break; 7390 } 7391 case RISCVISD::CLZW: { 7392 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 7393 unsigned PossibleLZ = Known2.trunc(32).countMaxLeadingZeros(); 7394 unsigned LowBits = Log2_32(PossibleLZ) + 1; 7395 Known.Zero.setBitsFrom(LowBits); 7396 break; 7397 } 7398 case RISCVISD::GREV: 7399 case RISCVISD::GREVW: { 7400 if (auto *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 7401 Known = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 7402 if (Opc == RISCVISD::GREVW) 7403 Known = Known.trunc(32); 7404 unsigned ShAmt = C->getZExtValue(); 7405 computeGREV(Known.Zero, ShAmt); 7406 computeGREV(Known.One, ShAmt); 7407 if (Opc == RISCVISD::GREVW) 7408 Known = Known.sext(BitWidth); 7409 } 7410 break; 7411 } 7412 case RISCVISD::READ_VLENB: 7413 // We assume VLENB is at least 16 bytes. 7414 Known.Zero.setLowBits(4); 7415 // We assume VLENB is no more than 65536 / 8 bytes. 7416 Known.Zero.setBitsFrom(14); 7417 break; 7418 case ISD::INTRINSIC_W_CHAIN: { 7419 unsigned IntNo = Op.getConstantOperandVal(1); 7420 switch (IntNo) { 7421 default: 7422 // We can't do anything for most intrinsics. 7423 break; 7424 case Intrinsic::riscv_vsetvli: 7425 case Intrinsic::riscv_vsetvlimax: 7426 // Assume that VL output is positive and would fit in an int32_t. 7427 // TODO: VLEN might be capped at 16 bits in a future V spec update. 7428 if (BitWidth >= 32) 7429 Known.Zero.setBitsFrom(31); 7430 break; 7431 } 7432 break; 7433 } 7434 } 7435 } 7436 7437 unsigned RISCVTargetLowering::ComputeNumSignBitsForTargetNode( 7438 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 7439 unsigned Depth) const { 7440 switch (Op.getOpcode()) { 7441 default: 7442 break; 7443 case RISCVISD::SELECT_CC: { 7444 unsigned Tmp = DAG.ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth + 1); 7445 if (Tmp == 1) return 1; // Early out. 7446 unsigned Tmp2 = DAG.ComputeNumSignBits(Op.getOperand(4), DemandedElts, Depth + 1); 7447 return std::min(Tmp, Tmp2); 7448 } 7449 case RISCVISD::SLLW: 7450 case RISCVISD::SRAW: 7451 case RISCVISD::SRLW: 7452 case RISCVISD::DIVW: 7453 case RISCVISD::DIVUW: 7454 case RISCVISD::REMUW: 7455 case RISCVISD::ROLW: 7456 case RISCVISD::RORW: 7457 case RISCVISD::GREVW: 7458 case RISCVISD::GORCW: 7459 case RISCVISD::FSLW: 7460 case RISCVISD::FSRW: 7461 case RISCVISD::SHFLW: 7462 case RISCVISD::UNSHFLW: 7463 case RISCVISD::BCOMPRESSW: 7464 case RISCVISD::BDECOMPRESSW: 7465 case RISCVISD::FCVT_W_RTZ_RV64: 7466 case RISCVISD::FCVT_WU_RTZ_RV64: 7467 // TODO: As the result is sign-extended, this is conservatively correct. A 7468 // more precise answer could be calculated for SRAW depending on known 7469 // bits in the shift amount. 7470 return 33; 7471 case RISCVISD::SHFL: 7472 case RISCVISD::UNSHFL: { 7473 // There is no SHFLIW, but a i64 SHFLI with bit 4 of the control word 7474 // cleared doesn't affect bit 31. The upper 32 bits will be shuffled, but 7475 // will stay within the upper 32 bits. If there were more than 32 sign bits 7476 // before there will be at least 33 sign bits after. 7477 if (Op.getValueType() == MVT::i64 && 7478 isa<ConstantSDNode>(Op.getOperand(1)) && 7479 (Op.getConstantOperandVal(1) & 0x10) == 0) { 7480 unsigned Tmp = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1); 7481 if (Tmp > 32) 7482 return 33; 7483 } 7484 break; 7485 } 7486 case RISCVISD::VMV_X_S: 7487 // The number of sign bits of the scalar result is computed by obtaining the 7488 // element type of the input vector operand, subtracting its width from the 7489 // XLEN, and then adding one (sign bit within the element type). If the 7490 // element type is wider than XLen, the least-significant XLEN bits are 7491 // taken. 7492 if (Op.getOperand(0).getScalarValueSizeInBits() > Subtarget.getXLen()) 7493 return 1; 7494 return Subtarget.getXLen() - Op.getOperand(0).getScalarValueSizeInBits() + 1; 7495 } 7496 7497 return 1; 7498 } 7499 7500 static MachineBasicBlock *emitReadCycleWidePseudo(MachineInstr &MI, 7501 MachineBasicBlock *BB) { 7502 assert(MI.getOpcode() == RISCV::ReadCycleWide && "Unexpected instruction"); 7503 7504 // To read the 64-bit cycle CSR on a 32-bit target, we read the two halves. 7505 // Should the count have wrapped while it was being read, we need to try 7506 // again. 7507 // ... 7508 // read: 7509 // rdcycleh x3 # load high word of cycle 7510 // rdcycle x2 # load low word of cycle 7511 // rdcycleh x4 # load high word of cycle 7512 // bne x3, x4, read # check if high word reads match, otherwise try again 7513 // ... 7514 7515 MachineFunction &MF = *BB->getParent(); 7516 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 7517 MachineFunction::iterator It = ++BB->getIterator(); 7518 7519 MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB); 7520 MF.insert(It, LoopMBB); 7521 7522 MachineBasicBlock *DoneMBB = MF.CreateMachineBasicBlock(LLVM_BB); 7523 MF.insert(It, DoneMBB); 7524 7525 // Transfer the remainder of BB and its successor edges to DoneMBB. 7526 DoneMBB->splice(DoneMBB->begin(), BB, 7527 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 7528 DoneMBB->transferSuccessorsAndUpdatePHIs(BB); 7529 7530 BB->addSuccessor(LoopMBB); 7531 7532 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 7533 Register ReadAgainReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 7534 Register LoReg = MI.getOperand(0).getReg(); 7535 Register HiReg = MI.getOperand(1).getReg(); 7536 DebugLoc DL = MI.getDebugLoc(); 7537 7538 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 7539 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), HiReg) 7540 .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding) 7541 .addReg(RISCV::X0); 7542 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), LoReg) 7543 .addImm(RISCVSysReg::lookupSysRegByName("CYCLE")->Encoding) 7544 .addReg(RISCV::X0); 7545 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), ReadAgainReg) 7546 .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding) 7547 .addReg(RISCV::X0); 7548 7549 BuildMI(LoopMBB, DL, TII->get(RISCV::BNE)) 7550 .addReg(HiReg) 7551 .addReg(ReadAgainReg) 7552 .addMBB(LoopMBB); 7553 7554 LoopMBB->addSuccessor(LoopMBB); 7555 LoopMBB->addSuccessor(DoneMBB); 7556 7557 MI.eraseFromParent(); 7558 7559 return DoneMBB; 7560 } 7561 7562 static MachineBasicBlock *emitSplitF64Pseudo(MachineInstr &MI, 7563 MachineBasicBlock *BB) { 7564 assert(MI.getOpcode() == RISCV::SplitF64Pseudo && "Unexpected instruction"); 7565 7566 MachineFunction &MF = *BB->getParent(); 7567 DebugLoc DL = MI.getDebugLoc(); 7568 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 7569 const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo(); 7570 Register LoReg = MI.getOperand(0).getReg(); 7571 Register HiReg = MI.getOperand(1).getReg(); 7572 Register SrcReg = MI.getOperand(2).getReg(); 7573 const TargetRegisterClass *SrcRC = &RISCV::FPR64RegClass; 7574 int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF); 7575 7576 TII.storeRegToStackSlot(*BB, MI, SrcReg, MI.getOperand(2).isKill(), FI, SrcRC, 7577 RI); 7578 MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI); 7579 MachineMemOperand *MMOLo = 7580 MF.getMachineMemOperand(MPI, MachineMemOperand::MOLoad, 4, Align(8)); 7581 MachineMemOperand *MMOHi = MF.getMachineMemOperand( 7582 MPI.getWithOffset(4), MachineMemOperand::MOLoad, 4, Align(8)); 7583 BuildMI(*BB, MI, DL, TII.get(RISCV::LW), LoReg) 7584 .addFrameIndex(FI) 7585 .addImm(0) 7586 .addMemOperand(MMOLo); 7587 BuildMI(*BB, MI, DL, TII.get(RISCV::LW), HiReg) 7588 .addFrameIndex(FI) 7589 .addImm(4) 7590 .addMemOperand(MMOHi); 7591 MI.eraseFromParent(); // The pseudo instruction is gone now. 7592 return BB; 7593 } 7594 7595 static MachineBasicBlock *emitBuildPairF64Pseudo(MachineInstr &MI, 7596 MachineBasicBlock *BB) { 7597 assert(MI.getOpcode() == RISCV::BuildPairF64Pseudo && 7598 "Unexpected instruction"); 7599 7600 MachineFunction &MF = *BB->getParent(); 7601 DebugLoc DL = MI.getDebugLoc(); 7602 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 7603 const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo(); 7604 Register DstReg = MI.getOperand(0).getReg(); 7605 Register LoReg = MI.getOperand(1).getReg(); 7606 Register HiReg = MI.getOperand(2).getReg(); 7607 const TargetRegisterClass *DstRC = &RISCV::FPR64RegClass; 7608 int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF); 7609 7610 MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI); 7611 MachineMemOperand *MMOLo = 7612 MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Align(8)); 7613 MachineMemOperand *MMOHi = MF.getMachineMemOperand( 7614 MPI.getWithOffset(4), MachineMemOperand::MOStore, 4, Align(8)); 7615 BuildMI(*BB, MI, DL, TII.get(RISCV::SW)) 7616 .addReg(LoReg, getKillRegState(MI.getOperand(1).isKill())) 7617 .addFrameIndex(FI) 7618 .addImm(0) 7619 .addMemOperand(MMOLo); 7620 BuildMI(*BB, MI, DL, TII.get(RISCV::SW)) 7621 .addReg(HiReg, getKillRegState(MI.getOperand(2).isKill())) 7622 .addFrameIndex(FI) 7623 .addImm(4) 7624 .addMemOperand(MMOHi); 7625 TII.loadRegFromStackSlot(*BB, MI, DstReg, FI, DstRC, RI); 7626 MI.eraseFromParent(); // The pseudo instruction is gone now. 7627 return BB; 7628 } 7629 7630 static bool isSelectPseudo(MachineInstr &MI) { 7631 switch (MI.getOpcode()) { 7632 default: 7633 return false; 7634 case RISCV::Select_GPR_Using_CC_GPR: 7635 case RISCV::Select_FPR16_Using_CC_GPR: 7636 case RISCV::Select_FPR32_Using_CC_GPR: 7637 case RISCV::Select_FPR64_Using_CC_GPR: 7638 return true; 7639 } 7640 } 7641 7642 static MachineBasicBlock *emitSelectPseudo(MachineInstr &MI, 7643 MachineBasicBlock *BB, 7644 const RISCVSubtarget &Subtarget) { 7645 // To "insert" Select_* instructions, we actually have to insert the triangle 7646 // control-flow pattern. The incoming instructions know the destination vreg 7647 // to set, the condition code register to branch on, the true/false values to 7648 // select between, and the condcode to use to select the appropriate branch. 7649 // 7650 // We produce the following control flow: 7651 // HeadMBB 7652 // | \ 7653 // | IfFalseMBB 7654 // | / 7655 // TailMBB 7656 // 7657 // When we find a sequence of selects we attempt to optimize their emission 7658 // by sharing the control flow. Currently we only handle cases where we have 7659 // multiple selects with the exact same condition (same LHS, RHS and CC). 7660 // The selects may be interleaved with other instructions if the other 7661 // instructions meet some requirements we deem safe: 7662 // - They are debug instructions. Otherwise, 7663 // - They do not have side-effects, do not access memory and their inputs do 7664 // not depend on the results of the select pseudo-instructions. 7665 // The TrueV/FalseV operands of the selects cannot depend on the result of 7666 // previous selects in the sequence. 7667 // These conditions could be further relaxed. See the X86 target for a 7668 // related approach and more information. 7669 Register LHS = MI.getOperand(1).getReg(); 7670 Register RHS = MI.getOperand(2).getReg(); 7671 auto CC = static_cast<RISCVCC::CondCode>(MI.getOperand(3).getImm()); 7672 7673 SmallVector<MachineInstr *, 4> SelectDebugValues; 7674 SmallSet<Register, 4> SelectDests; 7675 SelectDests.insert(MI.getOperand(0).getReg()); 7676 7677 MachineInstr *LastSelectPseudo = &MI; 7678 7679 for (auto E = BB->end(), SequenceMBBI = MachineBasicBlock::iterator(MI); 7680 SequenceMBBI != E; ++SequenceMBBI) { 7681 if (SequenceMBBI->isDebugInstr()) 7682 continue; 7683 else if (isSelectPseudo(*SequenceMBBI)) { 7684 if (SequenceMBBI->getOperand(1).getReg() != LHS || 7685 SequenceMBBI->getOperand(2).getReg() != RHS || 7686 SequenceMBBI->getOperand(3).getImm() != CC || 7687 SelectDests.count(SequenceMBBI->getOperand(4).getReg()) || 7688 SelectDests.count(SequenceMBBI->getOperand(5).getReg())) 7689 break; 7690 LastSelectPseudo = &*SequenceMBBI; 7691 SequenceMBBI->collectDebugValues(SelectDebugValues); 7692 SelectDests.insert(SequenceMBBI->getOperand(0).getReg()); 7693 } else { 7694 if (SequenceMBBI->hasUnmodeledSideEffects() || 7695 SequenceMBBI->mayLoadOrStore()) 7696 break; 7697 if (llvm::any_of(SequenceMBBI->operands(), [&](MachineOperand &MO) { 7698 return MO.isReg() && MO.isUse() && SelectDests.count(MO.getReg()); 7699 })) 7700 break; 7701 } 7702 } 7703 7704 const RISCVInstrInfo &TII = *Subtarget.getInstrInfo(); 7705 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 7706 DebugLoc DL = MI.getDebugLoc(); 7707 MachineFunction::iterator I = ++BB->getIterator(); 7708 7709 MachineBasicBlock *HeadMBB = BB; 7710 MachineFunction *F = BB->getParent(); 7711 MachineBasicBlock *TailMBB = F->CreateMachineBasicBlock(LLVM_BB); 7712 MachineBasicBlock *IfFalseMBB = F->CreateMachineBasicBlock(LLVM_BB); 7713 7714 F->insert(I, IfFalseMBB); 7715 F->insert(I, TailMBB); 7716 7717 // Transfer debug instructions associated with the selects to TailMBB. 7718 for (MachineInstr *DebugInstr : SelectDebugValues) { 7719 TailMBB->push_back(DebugInstr->removeFromParent()); 7720 } 7721 7722 // Move all instructions after the sequence to TailMBB. 7723 TailMBB->splice(TailMBB->end(), HeadMBB, 7724 std::next(LastSelectPseudo->getIterator()), HeadMBB->end()); 7725 // Update machine-CFG edges by transferring all successors of the current 7726 // block to the new block which will contain the Phi nodes for the selects. 7727 TailMBB->transferSuccessorsAndUpdatePHIs(HeadMBB); 7728 // Set the successors for HeadMBB. 7729 HeadMBB->addSuccessor(IfFalseMBB); 7730 HeadMBB->addSuccessor(TailMBB); 7731 7732 // Insert appropriate branch. 7733 BuildMI(HeadMBB, DL, TII.getBrCond(CC)) 7734 .addReg(LHS) 7735 .addReg(RHS) 7736 .addMBB(TailMBB); 7737 7738 // IfFalseMBB just falls through to TailMBB. 7739 IfFalseMBB->addSuccessor(TailMBB); 7740 7741 // Create PHIs for all of the select pseudo-instructions. 7742 auto SelectMBBI = MI.getIterator(); 7743 auto SelectEnd = std::next(LastSelectPseudo->getIterator()); 7744 auto InsertionPoint = TailMBB->begin(); 7745 while (SelectMBBI != SelectEnd) { 7746 auto Next = std::next(SelectMBBI); 7747 if (isSelectPseudo(*SelectMBBI)) { 7748 // %Result = phi [ %TrueValue, HeadMBB ], [ %FalseValue, IfFalseMBB ] 7749 BuildMI(*TailMBB, InsertionPoint, SelectMBBI->getDebugLoc(), 7750 TII.get(RISCV::PHI), SelectMBBI->getOperand(0).getReg()) 7751 .addReg(SelectMBBI->getOperand(4).getReg()) 7752 .addMBB(HeadMBB) 7753 .addReg(SelectMBBI->getOperand(5).getReg()) 7754 .addMBB(IfFalseMBB); 7755 SelectMBBI->eraseFromParent(); 7756 } 7757 SelectMBBI = Next; 7758 } 7759 7760 F->getProperties().reset(MachineFunctionProperties::Property::NoPHIs); 7761 return TailMBB; 7762 } 7763 7764 MachineBasicBlock * 7765 RISCVTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 7766 MachineBasicBlock *BB) const { 7767 switch (MI.getOpcode()) { 7768 default: 7769 llvm_unreachable("Unexpected instr type to insert"); 7770 case RISCV::ReadCycleWide: 7771 assert(!Subtarget.is64Bit() && 7772 "ReadCycleWrite is only to be used on riscv32"); 7773 return emitReadCycleWidePseudo(MI, BB); 7774 case RISCV::Select_GPR_Using_CC_GPR: 7775 case RISCV::Select_FPR16_Using_CC_GPR: 7776 case RISCV::Select_FPR32_Using_CC_GPR: 7777 case RISCV::Select_FPR64_Using_CC_GPR: 7778 return emitSelectPseudo(MI, BB, Subtarget); 7779 case RISCV::BuildPairF64Pseudo: 7780 return emitBuildPairF64Pseudo(MI, BB); 7781 case RISCV::SplitF64Pseudo: 7782 return emitSplitF64Pseudo(MI, BB); 7783 } 7784 } 7785 7786 // Calling Convention Implementation. 7787 // The expectations for frontend ABI lowering vary from target to target. 7788 // Ideally, an LLVM frontend would be able to avoid worrying about many ABI 7789 // details, but this is a longer term goal. For now, we simply try to keep the 7790 // role of the frontend as simple and well-defined as possible. The rules can 7791 // be summarised as: 7792 // * Never split up large scalar arguments. We handle them here. 7793 // * If a hardfloat calling convention is being used, and the struct may be 7794 // passed in a pair of registers (fp+fp, int+fp), and both registers are 7795 // available, then pass as two separate arguments. If either the GPRs or FPRs 7796 // are exhausted, then pass according to the rule below. 7797 // * If a struct could never be passed in registers or directly in a stack 7798 // slot (as it is larger than 2*XLEN and the floating point rules don't 7799 // apply), then pass it using a pointer with the byval attribute. 7800 // * If a struct is less than 2*XLEN, then coerce to either a two-element 7801 // word-sized array or a 2*XLEN scalar (depending on alignment). 7802 // * The frontend can determine whether a struct is returned by reference or 7803 // not based on its size and fields. If it will be returned by reference, the 7804 // frontend must modify the prototype so a pointer with the sret annotation is 7805 // passed as the first argument. This is not necessary for large scalar 7806 // returns. 7807 // * Struct return values and varargs should be coerced to structs containing 7808 // register-size fields in the same situations they would be for fixed 7809 // arguments. 7810 7811 static const MCPhysReg ArgGPRs[] = { 7812 RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, 7813 RISCV::X14, RISCV::X15, RISCV::X16, RISCV::X17 7814 }; 7815 static const MCPhysReg ArgFPR16s[] = { 7816 RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, 7817 RISCV::F14_H, RISCV::F15_H, RISCV::F16_H, RISCV::F17_H 7818 }; 7819 static const MCPhysReg ArgFPR32s[] = { 7820 RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, 7821 RISCV::F14_F, RISCV::F15_F, RISCV::F16_F, RISCV::F17_F 7822 }; 7823 static const MCPhysReg ArgFPR64s[] = { 7824 RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, 7825 RISCV::F14_D, RISCV::F15_D, RISCV::F16_D, RISCV::F17_D 7826 }; 7827 // This is an interim calling convention and it may be changed in the future. 7828 static const MCPhysReg ArgVRs[] = { 7829 RISCV::V8, RISCV::V9, RISCV::V10, RISCV::V11, RISCV::V12, RISCV::V13, 7830 RISCV::V14, RISCV::V15, RISCV::V16, RISCV::V17, RISCV::V18, RISCV::V19, 7831 RISCV::V20, RISCV::V21, RISCV::V22, RISCV::V23}; 7832 static const MCPhysReg ArgVRM2s[] = {RISCV::V8M2, RISCV::V10M2, RISCV::V12M2, 7833 RISCV::V14M2, RISCV::V16M2, RISCV::V18M2, 7834 RISCV::V20M2, RISCV::V22M2}; 7835 static const MCPhysReg ArgVRM4s[] = {RISCV::V8M4, RISCV::V12M4, RISCV::V16M4, 7836 RISCV::V20M4}; 7837 static const MCPhysReg ArgVRM8s[] = {RISCV::V8M8, RISCV::V16M8}; 7838 7839 // Pass a 2*XLEN argument that has been split into two XLEN values through 7840 // registers or the stack as necessary. 7841 static bool CC_RISCVAssign2XLen(unsigned XLen, CCState &State, CCValAssign VA1, 7842 ISD::ArgFlagsTy ArgFlags1, unsigned ValNo2, 7843 MVT ValVT2, MVT LocVT2, 7844 ISD::ArgFlagsTy ArgFlags2) { 7845 unsigned XLenInBytes = XLen / 8; 7846 if (Register Reg = State.AllocateReg(ArgGPRs)) { 7847 // At least one half can be passed via register. 7848 State.addLoc(CCValAssign::getReg(VA1.getValNo(), VA1.getValVT(), Reg, 7849 VA1.getLocVT(), CCValAssign::Full)); 7850 } else { 7851 // Both halves must be passed on the stack, with proper alignment. 7852 Align StackAlign = 7853 std::max(Align(XLenInBytes), ArgFlags1.getNonZeroOrigAlign()); 7854 State.addLoc( 7855 CCValAssign::getMem(VA1.getValNo(), VA1.getValVT(), 7856 State.AllocateStack(XLenInBytes, StackAlign), 7857 VA1.getLocVT(), CCValAssign::Full)); 7858 State.addLoc(CCValAssign::getMem( 7859 ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)), 7860 LocVT2, CCValAssign::Full)); 7861 return false; 7862 } 7863 7864 if (Register Reg = State.AllocateReg(ArgGPRs)) { 7865 // The second half can also be passed via register. 7866 State.addLoc( 7867 CCValAssign::getReg(ValNo2, ValVT2, Reg, LocVT2, CCValAssign::Full)); 7868 } else { 7869 // The second half is passed via the stack, without additional alignment. 7870 State.addLoc(CCValAssign::getMem( 7871 ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)), 7872 LocVT2, CCValAssign::Full)); 7873 } 7874 7875 return false; 7876 } 7877 7878 static unsigned allocateRVVReg(MVT ValVT, unsigned ValNo, 7879 Optional<unsigned> FirstMaskArgument, 7880 CCState &State, const RISCVTargetLowering &TLI) { 7881 const TargetRegisterClass *RC = TLI.getRegClassFor(ValVT); 7882 if (RC == &RISCV::VRRegClass) { 7883 // Assign the first mask argument to V0. 7884 // This is an interim calling convention and it may be changed in the 7885 // future. 7886 if (FirstMaskArgument.hasValue() && ValNo == FirstMaskArgument.getValue()) 7887 return State.AllocateReg(RISCV::V0); 7888 return State.AllocateReg(ArgVRs); 7889 } 7890 if (RC == &RISCV::VRM2RegClass) 7891 return State.AllocateReg(ArgVRM2s); 7892 if (RC == &RISCV::VRM4RegClass) 7893 return State.AllocateReg(ArgVRM4s); 7894 if (RC == &RISCV::VRM8RegClass) 7895 return State.AllocateReg(ArgVRM8s); 7896 llvm_unreachable("Unhandled register class for ValueType"); 7897 } 7898 7899 // Implements the RISC-V calling convention. Returns true upon failure. 7900 static bool CC_RISCV(const DataLayout &DL, RISCVABI::ABI ABI, unsigned ValNo, 7901 MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, 7902 ISD::ArgFlagsTy ArgFlags, CCState &State, bool IsFixed, 7903 bool IsRet, Type *OrigTy, const RISCVTargetLowering &TLI, 7904 Optional<unsigned> FirstMaskArgument) { 7905 unsigned XLen = DL.getLargestLegalIntTypeSizeInBits(); 7906 assert(XLen == 32 || XLen == 64); 7907 MVT XLenVT = XLen == 32 ? MVT::i32 : MVT::i64; 7908 7909 // Any return value split in to more than two values can't be returned 7910 // directly. Vectors are returned via the available vector registers. 7911 if (!LocVT.isVector() && IsRet && ValNo > 1) 7912 return true; 7913 7914 // UseGPRForF16_F32 if targeting one of the soft-float ABIs, if passing a 7915 // variadic argument, or if no F16/F32 argument registers are available. 7916 bool UseGPRForF16_F32 = true; 7917 // UseGPRForF64 if targeting soft-float ABIs or an FLEN=32 ABI, if passing a 7918 // variadic argument, or if no F64 argument registers are available. 7919 bool UseGPRForF64 = true; 7920 7921 switch (ABI) { 7922 default: 7923 llvm_unreachable("Unexpected ABI"); 7924 case RISCVABI::ABI_ILP32: 7925 case RISCVABI::ABI_LP64: 7926 break; 7927 case RISCVABI::ABI_ILP32F: 7928 case RISCVABI::ABI_LP64F: 7929 UseGPRForF16_F32 = !IsFixed; 7930 break; 7931 case RISCVABI::ABI_ILP32D: 7932 case RISCVABI::ABI_LP64D: 7933 UseGPRForF16_F32 = !IsFixed; 7934 UseGPRForF64 = !IsFixed; 7935 break; 7936 } 7937 7938 // FPR16, FPR32, and FPR64 alias each other. 7939 if (State.getFirstUnallocated(ArgFPR32s) == array_lengthof(ArgFPR32s)) { 7940 UseGPRForF16_F32 = true; 7941 UseGPRForF64 = true; 7942 } 7943 7944 // From this point on, rely on UseGPRForF16_F32, UseGPRForF64 and 7945 // similar local variables rather than directly checking against the target 7946 // ABI. 7947 7948 if (UseGPRForF16_F32 && (ValVT == MVT::f16 || ValVT == MVT::f32)) { 7949 LocVT = XLenVT; 7950 LocInfo = CCValAssign::BCvt; 7951 } else if (UseGPRForF64 && XLen == 64 && ValVT == MVT::f64) { 7952 LocVT = MVT::i64; 7953 LocInfo = CCValAssign::BCvt; 7954 } 7955 7956 // If this is a variadic argument, the RISC-V calling convention requires 7957 // that it is assigned an 'even' or 'aligned' register if it has 8-byte 7958 // alignment (RV32) or 16-byte alignment (RV64). An aligned register should 7959 // be used regardless of whether the original argument was split during 7960 // legalisation or not. The argument will not be passed by registers if the 7961 // original type is larger than 2*XLEN, so the register alignment rule does 7962 // not apply. 7963 unsigned TwoXLenInBytes = (2 * XLen) / 8; 7964 if (!IsFixed && ArgFlags.getNonZeroOrigAlign() == TwoXLenInBytes && 7965 DL.getTypeAllocSize(OrigTy) == TwoXLenInBytes) { 7966 unsigned RegIdx = State.getFirstUnallocated(ArgGPRs); 7967 // Skip 'odd' register if necessary. 7968 if (RegIdx != array_lengthof(ArgGPRs) && RegIdx % 2 == 1) 7969 State.AllocateReg(ArgGPRs); 7970 } 7971 7972 SmallVectorImpl<CCValAssign> &PendingLocs = State.getPendingLocs(); 7973 SmallVectorImpl<ISD::ArgFlagsTy> &PendingArgFlags = 7974 State.getPendingArgFlags(); 7975 7976 assert(PendingLocs.size() == PendingArgFlags.size() && 7977 "PendingLocs and PendingArgFlags out of sync"); 7978 7979 // Handle passing f64 on RV32D with a soft float ABI or when floating point 7980 // registers are exhausted. 7981 if (UseGPRForF64 && XLen == 32 && ValVT == MVT::f64) { 7982 assert(!ArgFlags.isSplit() && PendingLocs.empty() && 7983 "Can't lower f64 if it is split"); 7984 // Depending on available argument GPRS, f64 may be passed in a pair of 7985 // GPRs, split between a GPR and the stack, or passed completely on the 7986 // stack. LowerCall/LowerFormalArguments/LowerReturn must recognise these 7987 // cases. 7988 Register Reg = State.AllocateReg(ArgGPRs); 7989 LocVT = MVT::i32; 7990 if (!Reg) { 7991 unsigned StackOffset = State.AllocateStack(8, Align(8)); 7992 State.addLoc( 7993 CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 7994 return false; 7995 } 7996 if (!State.AllocateReg(ArgGPRs)) 7997 State.AllocateStack(4, Align(4)); 7998 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 7999 return false; 8000 } 8001 8002 // Fixed-length vectors are located in the corresponding scalable-vector 8003 // container types. 8004 if (ValVT.isFixedLengthVector()) 8005 LocVT = TLI.getContainerForFixedLengthVector(LocVT); 8006 8007 // Split arguments might be passed indirectly, so keep track of the pending 8008 // values. Split vectors are passed via a mix of registers and indirectly, so 8009 // treat them as we would any other argument. 8010 if (ValVT.isScalarInteger() && (ArgFlags.isSplit() || !PendingLocs.empty())) { 8011 LocVT = XLenVT; 8012 LocInfo = CCValAssign::Indirect; 8013 PendingLocs.push_back( 8014 CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo)); 8015 PendingArgFlags.push_back(ArgFlags); 8016 if (!ArgFlags.isSplitEnd()) { 8017 return false; 8018 } 8019 } 8020 8021 // If the split argument only had two elements, it should be passed directly 8022 // in registers or on the stack. 8023 if (ValVT.isScalarInteger() && ArgFlags.isSplitEnd() && 8024 PendingLocs.size() <= 2) { 8025 assert(PendingLocs.size() == 2 && "Unexpected PendingLocs.size()"); 8026 // Apply the normal calling convention rules to the first half of the 8027 // split argument. 8028 CCValAssign VA = PendingLocs[0]; 8029 ISD::ArgFlagsTy AF = PendingArgFlags[0]; 8030 PendingLocs.clear(); 8031 PendingArgFlags.clear(); 8032 return CC_RISCVAssign2XLen(XLen, State, VA, AF, ValNo, ValVT, LocVT, 8033 ArgFlags); 8034 } 8035 8036 // Allocate to a register if possible, or else a stack slot. 8037 Register Reg; 8038 unsigned StoreSizeBytes = XLen / 8; 8039 Align StackAlign = Align(XLen / 8); 8040 8041 if (ValVT == MVT::f16 && !UseGPRForF16_F32) 8042 Reg = State.AllocateReg(ArgFPR16s); 8043 else if (ValVT == MVT::f32 && !UseGPRForF16_F32) 8044 Reg = State.AllocateReg(ArgFPR32s); 8045 else if (ValVT == MVT::f64 && !UseGPRForF64) 8046 Reg = State.AllocateReg(ArgFPR64s); 8047 else if (ValVT.isVector()) { 8048 Reg = allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI); 8049 if (!Reg) { 8050 // For return values, the vector must be passed fully via registers or 8051 // via the stack. 8052 // FIXME: The proposed vector ABI only mandates v8-v15 for return values, 8053 // but we're using all of them. 8054 if (IsRet) 8055 return true; 8056 // Try using a GPR to pass the address 8057 if ((Reg = State.AllocateReg(ArgGPRs))) { 8058 LocVT = XLenVT; 8059 LocInfo = CCValAssign::Indirect; 8060 } else if (ValVT.isScalableVector()) { 8061 report_fatal_error("Unable to pass scalable vector types on the stack"); 8062 } else { 8063 // Pass fixed-length vectors on the stack. 8064 LocVT = ValVT; 8065 StoreSizeBytes = ValVT.getStoreSize(); 8066 // Align vectors to their element sizes, being careful for vXi1 8067 // vectors. 8068 StackAlign = MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne(); 8069 } 8070 } 8071 } else { 8072 Reg = State.AllocateReg(ArgGPRs); 8073 } 8074 8075 unsigned StackOffset = 8076 Reg ? 0 : State.AllocateStack(StoreSizeBytes, StackAlign); 8077 8078 // If we reach this point and PendingLocs is non-empty, we must be at the 8079 // end of a split argument that must be passed indirectly. 8080 if (!PendingLocs.empty()) { 8081 assert(ArgFlags.isSplitEnd() && "Expected ArgFlags.isSplitEnd()"); 8082 assert(PendingLocs.size() > 2 && "Unexpected PendingLocs.size()"); 8083 8084 for (auto &It : PendingLocs) { 8085 if (Reg) 8086 It.convertToReg(Reg); 8087 else 8088 It.convertToMem(StackOffset); 8089 State.addLoc(It); 8090 } 8091 PendingLocs.clear(); 8092 PendingArgFlags.clear(); 8093 return false; 8094 } 8095 8096 assert((!UseGPRForF16_F32 || !UseGPRForF64 || LocVT == XLenVT || 8097 (TLI.getSubtarget().hasVInstructions() && ValVT.isVector())) && 8098 "Expected an XLenVT or vector types at this stage"); 8099 8100 if (Reg) { 8101 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 8102 return false; 8103 } 8104 8105 // When a floating-point value is passed on the stack, no bit-conversion is 8106 // needed. 8107 if (ValVT.isFloatingPoint()) { 8108 LocVT = ValVT; 8109 LocInfo = CCValAssign::Full; 8110 } 8111 State.addLoc(CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 8112 return false; 8113 } 8114 8115 template <typename ArgTy> 8116 static Optional<unsigned> preAssignMask(const ArgTy &Args) { 8117 for (const auto &ArgIdx : enumerate(Args)) { 8118 MVT ArgVT = ArgIdx.value().VT; 8119 if (ArgVT.isVector() && ArgVT.getVectorElementType() == MVT::i1) 8120 return ArgIdx.index(); 8121 } 8122 return None; 8123 } 8124 8125 void RISCVTargetLowering::analyzeInputArgs( 8126 MachineFunction &MF, CCState &CCInfo, 8127 const SmallVectorImpl<ISD::InputArg> &Ins, bool IsRet, 8128 RISCVCCAssignFn Fn) const { 8129 unsigned NumArgs = Ins.size(); 8130 FunctionType *FType = MF.getFunction().getFunctionType(); 8131 8132 Optional<unsigned> FirstMaskArgument; 8133 if (Subtarget.hasVInstructions()) 8134 FirstMaskArgument = preAssignMask(Ins); 8135 8136 for (unsigned i = 0; i != NumArgs; ++i) { 8137 MVT ArgVT = Ins[i].VT; 8138 ISD::ArgFlagsTy ArgFlags = Ins[i].Flags; 8139 8140 Type *ArgTy = nullptr; 8141 if (IsRet) 8142 ArgTy = FType->getReturnType(); 8143 else if (Ins[i].isOrigArg()) 8144 ArgTy = FType->getParamType(Ins[i].getOrigArgIndex()); 8145 8146 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 8147 if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full, 8148 ArgFlags, CCInfo, /*IsFixed=*/true, IsRet, ArgTy, *this, 8149 FirstMaskArgument)) { 8150 LLVM_DEBUG(dbgs() << "InputArg #" << i << " has unhandled type " 8151 << EVT(ArgVT).getEVTString() << '\n'); 8152 llvm_unreachable(nullptr); 8153 } 8154 } 8155 } 8156 8157 void RISCVTargetLowering::analyzeOutputArgs( 8158 MachineFunction &MF, CCState &CCInfo, 8159 const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsRet, 8160 CallLoweringInfo *CLI, RISCVCCAssignFn Fn) const { 8161 unsigned NumArgs = Outs.size(); 8162 8163 Optional<unsigned> FirstMaskArgument; 8164 if (Subtarget.hasVInstructions()) 8165 FirstMaskArgument = preAssignMask(Outs); 8166 8167 for (unsigned i = 0; i != NumArgs; i++) { 8168 MVT ArgVT = Outs[i].VT; 8169 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 8170 Type *OrigTy = CLI ? CLI->getArgs()[Outs[i].OrigArgIndex].Ty : nullptr; 8171 8172 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 8173 if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full, 8174 ArgFlags, CCInfo, Outs[i].IsFixed, IsRet, OrigTy, *this, 8175 FirstMaskArgument)) { 8176 LLVM_DEBUG(dbgs() << "OutputArg #" << i << " has unhandled type " 8177 << EVT(ArgVT).getEVTString() << "\n"); 8178 llvm_unreachable(nullptr); 8179 } 8180 } 8181 } 8182 8183 // Convert Val to a ValVT. Should not be called for CCValAssign::Indirect 8184 // values. 8185 static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDValue Val, 8186 const CCValAssign &VA, const SDLoc &DL, 8187 const RISCVSubtarget &Subtarget) { 8188 switch (VA.getLocInfo()) { 8189 default: 8190 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 8191 case CCValAssign::Full: 8192 if (VA.getValVT().isFixedLengthVector() && VA.getLocVT().isScalableVector()) 8193 Val = convertFromScalableVector(VA.getValVT(), Val, DAG, Subtarget); 8194 break; 8195 case CCValAssign::BCvt: 8196 if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16) 8197 Val = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, Val); 8198 else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) 8199 Val = DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, Val); 8200 else 8201 Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val); 8202 break; 8203 } 8204 return Val; 8205 } 8206 8207 // The caller is responsible for loading the full value if the argument is 8208 // passed with CCValAssign::Indirect. 8209 static SDValue unpackFromRegLoc(SelectionDAG &DAG, SDValue Chain, 8210 const CCValAssign &VA, const SDLoc &DL, 8211 const RISCVTargetLowering &TLI) { 8212 MachineFunction &MF = DAG.getMachineFunction(); 8213 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 8214 EVT LocVT = VA.getLocVT(); 8215 SDValue Val; 8216 const TargetRegisterClass *RC = TLI.getRegClassFor(LocVT.getSimpleVT()); 8217 Register VReg = RegInfo.createVirtualRegister(RC); 8218 RegInfo.addLiveIn(VA.getLocReg(), VReg); 8219 Val = DAG.getCopyFromReg(Chain, DL, VReg, LocVT); 8220 8221 if (VA.getLocInfo() == CCValAssign::Indirect) 8222 return Val; 8223 8224 return convertLocVTToValVT(DAG, Val, VA, DL, TLI.getSubtarget()); 8225 } 8226 8227 static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDValue Val, 8228 const CCValAssign &VA, const SDLoc &DL, 8229 const RISCVSubtarget &Subtarget) { 8230 EVT LocVT = VA.getLocVT(); 8231 8232 switch (VA.getLocInfo()) { 8233 default: 8234 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 8235 case CCValAssign::Full: 8236 if (VA.getValVT().isFixedLengthVector() && LocVT.isScalableVector()) 8237 Val = convertToScalableVector(LocVT, Val, DAG, Subtarget); 8238 break; 8239 case CCValAssign::BCvt: 8240 if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16) 8241 Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, VA.getLocVT(), Val); 8242 else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) 8243 Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Val); 8244 else 8245 Val = DAG.getNode(ISD::BITCAST, DL, LocVT, Val); 8246 break; 8247 } 8248 return Val; 8249 } 8250 8251 // The caller is responsible for loading the full value if the argument is 8252 // passed with CCValAssign::Indirect. 8253 static SDValue unpackFromMemLoc(SelectionDAG &DAG, SDValue Chain, 8254 const CCValAssign &VA, const SDLoc &DL) { 8255 MachineFunction &MF = DAG.getMachineFunction(); 8256 MachineFrameInfo &MFI = MF.getFrameInfo(); 8257 EVT LocVT = VA.getLocVT(); 8258 EVT ValVT = VA.getValVT(); 8259 EVT PtrVT = MVT::getIntegerVT(DAG.getDataLayout().getPointerSizeInBits(0)); 8260 int FI = MFI.CreateFixedObject(ValVT.getStoreSize(), VA.getLocMemOffset(), 8261 /*Immutable=*/true); 8262 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 8263 SDValue Val; 8264 8265 ISD::LoadExtType ExtType; 8266 switch (VA.getLocInfo()) { 8267 default: 8268 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 8269 case CCValAssign::Full: 8270 case CCValAssign::Indirect: 8271 case CCValAssign::BCvt: 8272 ExtType = ISD::NON_EXTLOAD; 8273 break; 8274 } 8275 Val = DAG.getExtLoad( 8276 ExtType, DL, LocVT, Chain, FIN, 8277 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), ValVT); 8278 return Val; 8279 } 8280 8281 static SDValue unpackF64OnRV32DSoftABI(SelectionDAG &DAG, SDValue Chain, 8282 const CCValAssign &VA, const SDLoc &DL) { 8283 assert(VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64 && 8284 "Unexpected VA"); 8285 MachineFunction &MF = DAG.getMachineFunction(); 8286 MachineFrameInfo &MFI = MF.getFrameInfo(); 8287 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 8288 8289 if (VA.isMemLoc()) { 8290 // f64 is passed on the stack. 8291 int FI = MFI.CreateFixedObject(8, VA.getLocMemOffset(), /*Immutable=*/true); 8292 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 8293 return DAG.getLoad(MVT::f64, DL, Chain, FIN, 8294 MachinePointerInfo::getFixedStack(MF, FI)); 8295 } 8296 8297 assert(VA.isRegLoc() && "Expected register VA assignment"); 8298 8299 Register LoVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 8300 RegInfo.addLiveIn(VA.getLocReg(), LoVReg); 8301 SDValue Lo = DAG.getCopyFromReg(Chain, DL, LoVReg, MVT::i32); 8302 SDValue Hi; 8303 if (VA.getLocReg() == RISCV::X17) { 8304 // Second half of f64 is passed on the stack. 8305 int FI = MFI.CreateFixedObject(4, 0, /*Immutable=*/true); 8306 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 8307 Hi = DAG.getLoad(MVT::i32, DL, Chain, FIN, 8308 MachinePointerInfo::getFixedStack(MF, FI)); 8309 } else { 8310 // Second half of f64 is passed in another GPR. 8311 Register HiVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 8312 RegInfo.addLiveIn(VA.getLocReg() + 1, HiVReg); 8313 Hi = DAG.getCopyFromReg(Chain, DL, HiVReg, MVT::i32); 8314 } 8315 return DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, Lo, Hi); 8316 } 8317 8318 // FastCC has less than 1% performance improvement for some particular 8319 // benchmark. But theoretically, it may has benenfit for some cases. 8320 static bool CC_RISCV_FastCC(const DataLayout &DL, RISCVABI::ABI ABI, 8321 unsigned ValNo, MVT ValVT, MVT LocVT, 8322 CCValAssign::LocInfo LocInfo, 8323 ISD::ArgFlagsTy ArgFlags, CCState &State, 8324 bool IsFixed, bool IsRet, Type *OrigTy, 8325 const RISCVTargetLowering &TLI, 8326 Optional<unsigned> FirstMaskArgument) { 8327 8328 // X5 and X6 might be used for save-restore libcall. 8329 static const MCPhysReg GPRList[] = { 8330 RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, RISCV::X14, 8331 RISCV::X15, RISCV::X16, RISCV::X17, RISCV::X7, RISCV::X28, 8332 RISCV::X29, RISCV::X30, RISCV::X31}; 8333 8334 if (LocVT == MVT::i32 || LocVT == MVT::i64) { 8335 if (unsigned Reg = State.AllocateReg(GPRList)) { 8336 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 8337 return false; 8338 } 8339 } 8340 8341 if (LocVT == MVT::f16) { 8342 static const MCPhysReg FPR16List[] = { 8343 RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, RISCV::F14_H, 8344 RISCV::F15_H, RISCV::F16_H, RISCV::F17_H, RISCV::F0_H, RISCV::F1_H, 8345 RISCV::F2_H, RISCV::F3_H, RISCV::F4_H, RISCV::F5_H, RISCV::F6_H, 8346 RISCV::F7_H, RISCV::F28_H, RISCV::F29_H, RISCV::F30_H, RISCV::F31_H}; 8347 if (unsigned Reg = State.AllocateReg(FPR16List)) { 8348 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 8349 return false; 8350 } 8351 } 8352 8353 if (LocVT == MVT::f32) { 8354 static const MCPhysReg FPR32List[] = { 8355 RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, RISCV::F14_F, 8356 RISCV::F15_F, RISCV::F16_F, RISCV::F17_F, RISCV::F0_F, RISCV::F1_F, 8357 RISCV::F2_F, RISCV::F3_F, RISCV::F4_F, RISCV::F5_F, RISCV::F6_F, 8358 RISCV::F7_F, RISCV::F28_F, RISCV::F29_F, RISCV::F30_F, RISCV::F31_F}; 8359 if (unsigned Reg = State.AllocateReg(FPR32List)) { 8360 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 8361 return false; 8362 } 8363 } 8364 8365 if (LocVT == MVT::f64) { 8366 static const MCPhysReg FPR64List[] = { 8367 RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, RISCV::F14_D, 8368 RISCV::F15_D, RISCV::F16_D, RISCV::F17_D, RISCV::F0_D, RISCV::F1_D, 8369 RISCV::F2_D, RISCV::F3_D, RISCV::F4_D, RISCV::F5_D, RISCV::F6_D, 8370 RISCV::F7_D, RISCV::F28_D, RISCV::F29_D, RISCV::F30_D, RISCV::F31_D}; 8371 if (unsigned Reg = State.AllocateReg(FPR64List)) { 8372 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 8373 return false; 8374 } 8375 } 8376 8377 if (LocVT == MVT::i32 || LocVT == MVT::f32) { 8378 unsigned Offset4 = State.AllocateStack(4, Align(4)); 8379 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset4, LocVT, LocInfo)); 8380 return false; 8381 } 8382 8383 if (LocVT == MVT::i64 || LocVT == MVT::f64) { 8384 unsigned Offset5 = State.AllocateStack(8, Align(8)); 8385 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset5, LocVT, LocInfo)); 8386 return false; 8387 } 8388 8389 if (LocVT.isVector()) { 8390 if (unsigned Reg = 8391 allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI)) { 8392 // Fixed-length vectors are located in the corresponding scalable-vector 8393 // container types. 8394 if (ValVT.isFixedLengthVector()) 8395 LocVT = TLI.getContainerForFixedLengthVector(LocVT); 8396 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 8397 } else { 8398 // Try and pass the address via a "fast" GPR. 8399 if (unsigned GPRReg = State.AllocateReg(GPRList)) { 8400 LocInfo = CCValAssign::Indirect; 8401 LocVT = TLI.getSubtarget().getXLenVT(); 8402 State.addLoc(CCValAssign::getReg(ValNo, ValVT, GPRReg, LocVT, LocInfo)); 8403 } else if (ValVT.isFixedLengthVector()) { 8404 auto StackAlign = 8405 MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne(); 8406 unsigned StackOffset = 8407 State.AllocateStack(ValVT.getStoreSize(), StackAlign); 8408 State.addLoc( 8409 CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 8410 } else { 8411 // Can't pass scalable vectors on the stack. 8412 return true; 8413 } 8414 } 8415 8416 return false; 8417 } 8418 8419 return true; // CC didn't match. 8420 } 8421 8422 static bool CC_RISCV_GHC(unsigned ValNo, MVT ValVT, MVT LocVT, 8423 CCValAssign::LocInfo LocInfo, 8424 ISD::ArgFlagsTy ArgFlags, CCState &State) { 8425 8426 if (LocVT == MVT::i32 || LocVT == MVT::i64) { 8427 // Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, R6, R7, SpLim 8428 // s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 8429 static const MCPhysReg GPRList[] = { 8430 RISCV::X9, RISCV::X18, RISCV::X19, RISCV::X20, RISCV::X21, RISCV::X22, 8431 RISCV::X23, RISCV::X24, RISCV::X25, RISCV::X26, RISCV::X27}; 8432 if (unsigned Reg = State.AllocateReg(GPRList)) { 8433 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 8434 return false; 8435 } 8436 } 8437 8438 if (LocVT == MVT::f32) { 8439 // Pass in STG registers: F1, ..., F6 8440 // fs0 ... fs5 8441 static const MCPhysReg FPR32List[] = {RISCV::F8_F, RISCV::F9_F, 8442 RISCV::F18_F, RISCV::F19_F, 8443 RISCV::F20_F, RISCV::F21_F}; 8444 if (unsigned Reg = State.AllocateReg(FPR32List)) { 8445 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 8446 return false; 8447 } 8448 } 8449 8450 if (LocVT == MVT::f64) { 8451 // Pass in STG registers: D1, ..., D6 8452 // fs6 ... fs11 8453 static const MCPhysReg FPR64List[] = {RISCV::F22_D, RISCV::F23_D, 8454 RISCV::F24_D, RISCV::F25_D, 8455 RISCV::F26_D, RISCV::F27_D}; 8456 if (unsigned Reg = State.AllocateReg(FPR64List)) { 8457 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 8458 return false; 8459 } 8460 } 8461 8462 report_fatal_error("No registers left in GHC calling convention"); 8463 return true; 8464 } 8465 8466 // Transform physical registers into virtual registers. 8467 SDValue RISCVTargetLowering::LowerFormalArguments( 8468 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 8469 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 8470 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 8471 8472 MachineFunction &MF = DAG.getMachineFunction(); 8473 8474 switch (CallConv) { 8475 default: 8476 report_fatal_error("Unsupported calling convention"); 8477 case CallingConv::C: 8478 case CallingConv::Fast: 8479 break; 8480 case CallingConv::GHC: 8481 if (!MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtF] || 8482 !MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtD]) 8483 report_fatal_error( 8484 "GHC calling convention requires the F and D instruction set extensions"); 8485 } 8486 8487 const Function &Func = MF.getFunction(); 8488 if (Func.hasFnAttribute("interrupt")) { 8489 if (!Func.arg_empty()) 8490 report_fatal_error( 8491 "Functions with the interrupt attribute cannot have arguments!"); 8492 8493 StringRef Kind = 8494 MF.getFunction().getFnAttribute("interrupt").getValueAsString(); 8495 8496 if (!(Kind == "user" || Kind == "supervisor" || Kind == "machine")) 8497 report_fatal_error( 8498 "Function interrupt attribute argument not supported!"); 8499 } 8500 8501 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 8502 MVT XLenVT = Subtarget.getXLenVT(); 8503 unsigned XLenInBytes = Subtarget.getXLen() / 8; 8504 // Used with vargs to acumulate store chains. 8505 std::vector<SDValue> OutChains; 8506 8507 // Assign locations to all of the incoming arguments. 8508 SmallVector<CCValAssign, 16> ArgLocs; 8509 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 8510 8511 if (CallConv == CallingConv::GHC) 8512 CCInfo.AnalyzeFormalArguments(Ins, CC_RISCV_GHC); 8513 else 8514 analyzeInputArgs(MF, CCInfo, Ins, /*IsRet=*/false, 8515 CallConv == CallingConv::Fast ? CC_RISCV_FastCC 8516 : CC_RISCV); 8517 8518 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 8519 CCValAssign &VA = ArgLocs[i]; 8520 SDValue ArgValue; 8521 // Passing f64 on RV32D with a soft float ABI must be handled as a special 8522 // case. 8523 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) 8524 ArgValue = unpackF64OnRV32DSoftABI(DAG, Chain, VA, DL); 8525 else if (VA.isRegLoc()) 8526 ArgValue = unpackFromRegLoc(DAG, Chain, VA, DL, *this); 8527 else 8528 ArgValue = unpackFromMemLoc(DAG, Chain, VA, DL); 8529 8530 if (VA.getLocInfo() == CCValAssign::Indirect) { 8531 // If the original argument was split and passed by reference (e.g. i128 8532 // on RV32), we need to load all parts of it here (using the same 8533 // address). Vectors may be partly split to registers and partly to the 8534 // stack, in which case the base address is partly offset and subsequent 8535 // stores are relative to that. 8536 InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue, 8537 MachinePointerInfo())); 8538 unsigned ArgIndex = Ins[i].OrigArgIndex; 8539 unsigned ArgPartOffset = Ins[i].PartOffset; 8540 assert(VA.getValVT().isVector() || ArgPartOffset == 0); 8541 while (i + 1 != e && Ins[i + 1].OrigArgIndex == ArgIndex) { 8542 CCValAssign &PartVA = ArgLocs[i + 1]; 8543 unsigned PartOffset = Ins[i + 1].PartOffset - ArgPartOffset; 8544 SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL); 8545 if (PartVA.getValVT().isScalableVector()) 8546 Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset); 8547 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, Offset); 8548 InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address, 8549 MachinePointerInfo())); 8550 ++i; 8551 } 8552 continue; 8553 } 8554 InVals.push_back(ArgValue); 8555 } 8556 8557 if (IsVarArg) { 8558 ArrayRef<MCPhysReg> ArgRegs = makeArrayRef(ArgGPRs); 8559 unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs); 8560 const TargetRegisterClass *RC = &RISCV::GPRRegClass; 8561 MachineFrameInfo &MFI = MF.getFrameInfo(); 8562 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 8563 RISCVMachineFunctionInfo *RVFI = MF.getInfo<RISCVMachineFunctionInfo>(); 8564 8565 // Offset of the first variable argument from stack pointer, and size of 8566 // the vararg save area. For now, the varargs save area is either zero or 8567 // large enough to hold a0-a7. 8568 int VaArgOffset, VarArgsSaveSize; 8569 8570 // If all registers are allocated, then all varargs must be passed on the 8571 // stack and we don't need to save any argregs. 8572 if (ArgRegs.size() == Idx) { 8573 VaArgOffset = CCInfo.getNextStackOffset(); 8574 VarArgsSaveSize = 0; 8575 } else { 8576 VarArgsSaveSize = XLenInBytes * (ArgRegs.size() - Idx); 8577 VaArgOffset = -VarArgsSaveSize; 8578 } 8579 8580 // Record the frame index of the first variable argument 8581 // which is a value necessary to VASTART. 8582 int FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true); 8583 RVFI->setVarArgsFrameIndex(FI); 8584 8585 // If saving an odd number of registers then create an extra stack slot to 8586 // ensure that the frame pointer is 2*XLEN-aligned, which in turn ensures 8587 // offsets to even-numbered registered remain 2*XLEN-aligned. 8588 if (Idx % 2) { 8589 MFI.CreateFixedObject(XLenInBytes, VaArgOffset - (int)XLenInBytes, true); 8590 VarArgsSaveSize += XLenInBytes; 8591 } 8592 8593 // Copy the integer registers that may have been used for passing varargs 8594 // to the vararg save area. 8595 for (unsigned I = Idx; I < ArgRegs.size(); 8596 ++I, VaArgOffset += XLenInBytes) { 8597 const Register Reg = RegInfo.createVirtualRegister(RC); 8598 RegInfo.addLiveIn(ArgRegs[I], Reg); 8599 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, XLenVT); 8600 FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true); 8601 SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 8602 SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff, 8603 MachinePointerInfo::getFixedStack(MF, FI)); 8604 cast<StoreSDNode>(Store.getNode()) 8605 ->getMemOperand() 8606 ->setValue((Value *)nullptr); 8607 OutChains.push_back(Store); 8608 } 8609 RVFI->setVarArgsSaveSize(VarArgsSaveSize); 8610 } 8611 8612 // All stores are grouped in one node to allow the matching between 8613 // the size of Ins and InVals. This only happens for vararg functions. 8614 if (!OutChains.empty()) { 8615 OutChains.push_back(Chain); 8616 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains); 8617 } 8618 8619 return Chain; 8620 } 8621 8622 /// isEligibleForTailCallOptimization - Check whether the call is eligible 8623 /// for tail call optimization. 8624 /// Note: This is modelled after ARM's IsEligibleForTailCallOptimization. 8625 bool RISCVTargetLowering::isEligibleForTailCallOptimization( 8626 CCState &CCInfo, CallLoweringInfo &CLI, MachineFunction &MF, 8627 const SmallVector<CCValAssign, 16> &ArgLocs) const { 8628 8629 auto &Callee = CLI.Callee; 8630 auto CalleeCC = CLI.CallConv; 8631 auto &Outs = CLI.Outs; 8632 auto &Caller = MF.getFunction(); 8633 auto CallerCC = Caller.getCallingConv(); 8634 8635 // Exception-handling functions need a special set of instructions to 8636 // indicate a return to the hardware. Tail-calling another function would 8637 // probably break this. 8638 // TODO: The "interrupt" attribute isn't currently defined by RISC-V. This 8639 // should be expanded as new function attributes are introduced. 8640 if (Caller.hasFnAttribute("interrupt")) 8641 return false; 8642 8643 // Do not tail call opt if the stack is used to pass parameters. 8644 if (CCInfo.getNextStackOffset() != 0) 8645 return false; 8646 8647 // Do not tail call opt if any parameters need to be passed indirectly. 8648 // Since long doubles (fp128) and i128 are larger than 2*XLEN, they are 8649 // passed indirectly. So the address of the value will be passed in a 8650 // register, or if not available, then the address is put on the stack. In 8651 // order to pass indirectly, space on the stack often needs to be allocated 8652 // in order to store the value. In this case the CCInfo.getNextStackOffset() 8653 // != 0 check is not enough and we need to check if any CCValAssign ArgsLocs 8654 // are passed CCValAssign::Indirect. 8655 for (auto &VA : ArgLocs) 8656 if (VA.getLocInfo() == CCValAssign::Indirect) 8657 return false; 8658 8659 // Do not tail call opt if either caller or callee uses struct return 8660 // semantics. 8661 auto IsCallerStructRet = Caller.hasStructRetAttr(); 8662 auto IsCalleeStructRet = Outs.empty() ? false : Outs[0].Flags.isSRet(); 8663 if (IsCallerStructRet || IsCalleeStructRet) 8664 return false; 8665 8666 // Externally-defined functions with weak linkage should not be 8667 // tail-called. The behaviour of branch instructions in this situation (as 8668 // used for tail calls) is implementation-defined, so we cannot rely on the 8669 // linker replacing the tail call with a return. 8670 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 8671 const GlobalValue *GV = G->getGlobal(); 8672 if (GV->hasExternalWeakLinkage()) 8673 return false; 8674 } 8675 8676 // The callee has to preserve all registers the caller needs to preserve. 8677 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 8678 const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC); 8679 if (CalleeCC != CallerCC) { 8680 const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC); 8681 if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved)) 8682 return false; 8683 } 8684 8685 // Byval parameters hand the function a pointer directly into the stack area 8686 // we want to reuse during a tail call. Working around this *is* possible 8687 // but less efficient and uglier in LowerCall. 8688 for (auto &Arg : Outs) 8689 if (Arg.Flags.isByVal()) 8690 return false; 8691 8692 return true; 8693 } 8694 8695 static Align getPrefTypeAlign(EVT VT, SelectionDAG &DAG) { 8696 return DAG.getDataLayout().getPrefTypeAlign( 8697 VT.getTypeForEVT(*DAG.getContext())); 8698 } 8699 8700 // Lower a call to a callseq_start + CALL + callseq_end chain, and add input 8701 // and output parameter nodes. 8702 SDValue RISCVTargetLowering::LowerCall(CallLoweringInfo &CLI, 8703 SmallVectorImpl<SDValue> &InVals) const { 8704 SelectionDAG &DAG = CLI.DAG; 8705 SDLoc &DL = CLI.DL; 8706 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 8707 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 8708 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 8709 SDValue Chain = CLI.Chain; 8710 SDValue Callee = CLI.Callee; 8711 bool &IsTailCall = CLI.IsTailCall; 8712 CallingConv::ID CallConv = CLI.CallConv; 8713 bool IsVarArg = CLI.IsVarArg; 8714 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 8715 MVT XLenVT = Subtarget.getXLenVT(); 8716 8717 MachineFunction &MF = DAG.getMachineFunction(); 8718 8719 // Analyze the operands of the call, assigning locations to each operand. 8720 SmallVector<CCValAssign, 16> ArgLocs; 8721 CCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 8722 8723 if (CallConv == CallingConv::GHC) 8724 ArgCCInfo.AnalyzeCallOperands(Outs, CC_RISCV_GHC); 8725 else 8726 analyzeOutputArgs(MF, ArgCCInfo, Outs, /*IsRet=*/false, &CLI, 8727 CallConv == CallingConv::Fast ? CC_RISCV_FastCC 8728 : CC_RISCV); 8729 8730 // Check if it's really possible to do a tail call. 8731 if (IsTailCall) 8732 IsTailCall = isEligibleForTailCallOptimization(ArgCCInfo, CLI, MF, ArgLocs); 8733 8734 if (IsTailCall) 8735 ++NumTailCalls; 8736 else if (CLI.CB && CLI.CB->isMustTailCall()) 8737 report_fatal_error("failed to perform tail call elimination on a call " 8738 "site marked musttail"); 8739 8740 // Get a count of how many bytes are to be pushed on the stack. 8741 unsigned NumBytes = ArgCCInfo.getNextStackOffset(); 8742 8743 // Create local copies for byval args 8744 SmallVector<SDValue, 8> ByValArgs; 8745 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 8746 ISD::ArgFlagsTy Flags = Outs[i].Flags; 8747 if (!Flags.isByVal()) 8748 continue; 8749 8750 SDValue Arg = OutVals[i]; 8751 unsigned Size = Flags.getByValSize(); 8752 Align Alignment = Flags.getNonZeroByValAlign(); 8753 8754 int FI = 8755 MF.getFrameInfo().CreateStackObject(Size, Alignment, /*isSS=*/false); 8756 SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 8757 SDValue SizeNode = DAG.getConstant(Size, DL, XLenVT); 8758 8759 Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Alignment, 8760 /*IsVolatile=*/false, 8761 /*AlwaysInline=*/false, IsTailCall, 8762 MachinePointerInfo(), MachinePointerInfo()); 8763 ByValArgs.push_back(FIPtr); 8764 } 8765 8766 if (!IsTailCall) 8767 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, CLI.DL); 8768 8769 // Copy argument values to their designated locations. 8770 SmallVector<std::pair<Register, SDValue>, 8> RegsToPass; 8771 SmallVector<SDValue, 8> MemOpChains; 8772 SDValue StackPtr; 8773 for (unsigned i = 0, j = 0, e = ArgLocs.size(); i != e; ++i) { 8774 CCValAssign &VA = ArgLocs[i]; 8775 SDValue ArgValue = OutVals[i]; 8776 ISD::ArgFlagsTy Flags = Outs[i].Flags; 8777 8778 // Handle passing f64 on RV32D with a soft float ABI as a special case. 8779 bool IsF64OnRV32DSoftABI = 8780 VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64; 8781 if (IsF64OnRV32DSoftABI && VA.isRegLoc()) { 8782 SDValue SplitF64 = DAG.getNode( 8783 RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), ArgValue); 8784 SDValue Lo = SplitF64.getValue(0); 8785 SDValue Hi = SplitF64.getValue(1); 8786 8787 Register RegLo = VA.getLocReg(); 8788 RegsToPass.push_back(std::make_pair(RegLo, Lo)); 8789 8790 if (RegLo == RISCV::X17) { 8791 // Second half of f64 is passed on the stack. 8792 // Work out the address of the stack slot. 8793 if (!StackPtr.getNode()) 8794 StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT); 8795 // Emit the store. 8796 MemOpChains.push_back( 8797 DAG.getStore(Chain, DL, Hi, StackPtr, MachinePointerInfo())); 8798 } else { 8799 // Second half of f64 is passed in another GPR. 8800 assert(RegLo < RISCV::X31 && "Invalid register pair"); 8801 Register RegHigh = RegLo + 1; 8802 RegsToPass.push_back(std::make_pair(RegHigh, Hi)); 8803 } 8804 continue; 8805 } 8806 8807 // IsF64OnRV32DSoftABI && VA.isMemLoc() is handled below in the same way 8808 // as any other MemLoc. 8809 8810 // Promote the value if needed. 8811 // For now, only handle fully promoted and indirect arguments. 8812 if (VA.getLocInfo() == CCValAssign::Indirect) { 8813 // Store the argument in a stack slot and pass its address. 8814 Align StackAlign = 8815 std::max(getPrefTypeAlign(Outs[i].ArgVT, DAG), 8816 getPrefTypeAlign(ArgValue.getValueType(), DAG)); 8817 TypeSize StoredSize = ArgValue.getValueType().getStoreSize(); 8818 // If the original argument was split (e.g. i128), we need 8819 // to store the required parts of it here (and pass just one address). 8820 // Vectors may be partly split to registers and partly to the stack, in 8821 // which case the base address is partly offset and subsequent stores are 8822 // relative to that. 8823 unsigned ArgIndex = Outs[i].OrigArgIndex; 8824 unsigned ArgPartOffset = Outs[i].PartOffset; 8825 assert(VA.getValVT().isVector() || ArgPartOffset == 0); 8826 // Calculate the total size to store. We don't have access to what we're 8827 // actually storing other than performing the loop and collecting the 8828 // info. 8829 SmallVector<std::pair<SDValue, SDValue>> Parts; 8830 while (i + 1 != e && Outs[i + 1].OrigArgIndex == ArgIndex) { 8831 SDValue PartValue = OutVals[i + 1]; 8832 unsigned PartOffset = Outs[i + 1].PartOffset - ArgPartOffset; 8833 SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL); 8834 EVT PartVT = PartValue.getValueType(); 8835 if (PartVT.isScalableVector()) 8836 Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset); 8837 StoredSize += PartVT.getStoreSize(); 8838 StackAlign = std::max(StackAlign, getPrefTypeAlign(PartVT, DAG)); 8839 Parts.push_back(std::make_pair(PartValue, Offset)); 8840 ++i; 8841 } 8842 SDValue SpillSlot = DAG.CreateStackTemporary(StoredSize, StackAlign); 8843 int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); 8844 MemOpChains.push_back( 8845 DAG.getStore(Chain, DL, ArgValue, SpillSlot, 8846 MachinePointerInfo::getFixedStack(MF, FI))); 8847 for (const auto &Part : Parts) { 8848 SDValue PartValue = Part.first; 8849 SDValue PartOffset = Part.second; 8850 SDValue Address = 8851 DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, PartOffset); 8852 MemOpChains.push_back( 8853 DAG.getStore(Chain, DL, PartValue, Address, 8854 MachinePointerInfo::getFixedStack(MF, FI))); 8855 } 8856 ArgValue = SpillSlot; 8857 } else { 8858 ArgValue = convertValVTToLocVT(DAG, ArgValue, VA, DL, Subtarget); 8859 } 8860 8861 // Use local copy if it is a byval arg. 8862 if (Flags.isByVal()) 8863 ArgValue = ByValArgs[j++]; 8864 8865 if (VA.isRegLoc()) { 8866 // Queue up the argument copies and emit them at the end. 8867 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue)); 8868 } else { 8869 assert(VA.isMemLoc() && "Argument not register or memory"); 8870 assert(!IsTailCall && "Tail call not allowed if stack is used " 8871 "for passing parameters"); 8872 8873 // Work out the address of the stack slot. 8874 if (!StackPtr.getNode()) 8875 StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT); 8876 SDValue Address = 8877 DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, 8878 DAG.getIntPtrConstant(VA.getLocMemOffset(), DL)); 8879 8880 // Emit the store. 8881 MemOpChains.push_back( 8882 DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo())); 8883 } 8884 } 8885 8886 // Join the stores, which are independent of one another. 8887 if (!MemOpChains.empty()) 8888 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); 8889 8890 SDValue Glue; 8891 8892 // Build a sequence of copy-to-reg nodes, chained and glued together. 8893 for (auto &Reg : RegsToPass) { 8894 Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, Glue); 8895 Glue = Chain.getValue(1); 8896 } 8897 8898 // Validate that none of the argument registers have been marked as 8899 // reserved, if so report an error. Do the same for the return address if this 8900 // is not a tailcall. 8901 validateCCReservedRegs(RegsToPass, MF); 8902 if (!IsTailCall && 8903 MF.getSubtarget<RISCVSubtarget>().isRegisterReservedByUser(RISCV::X1)) 8904 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 8905 MF.getFunction(), 8906 "Return address register required, but has been reserved."}); 8907 8908 // If the callee is a GlobalAddress/ExternalSymbol node, turn it into a 8909 // TargetGlobalAddress/TargetExternalSymbol node so that legalize won't 8910 // split it and then direct call can be matched by PseudoCALL. 8911 if (GlobalAddressSDNode *S = dyn_cast<GlobalAddressSDNode>(Callee)) { 8912 const GlobalValue *GV = S->getGlobal(); 8913 8914 unsigned OpFlags = RISCVII::MO_CALL; 8915 if (!getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV)) 8916 OpFlags = RISCVII::MO_PLT; 8917 8918 Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags); 8919 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { 8920 unsigned OpFlags = RISCVII::MO_CALL; 8921 8922 if (!getTargetMachine().shouldAssumeDSOLocal(*MF.getFunction().getParent(), 8923 nullptr)) 8924 OpFlags = RISCVII::MO_PLT; 8925 8926 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, OpFlags); 8927 } 8928 8929 // The first call operand is the chain and the second is the target address. 8930 SmallVector<SDValue, 8> Ops; 8931 Ops.push_back(Chain); 8932 Ops.push_back(Callee); 8933 8934 // Add argument registers to the end of the list so that they are 8935 // known live into the call. 8936 for (auto &Reg : RegsToPass) 8937 Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType())); 8938 8939 if (!IsTailCall) { 8940 // Add a register mask operand representing the call-preserved registers. 8941 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 8942 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv); 8943 assert(Mask && "Missing call preserved mask for calling convention"); 8944 Ops.push_back(DAG.getRegisterMask(Mask)); 8945 } 8946 8947 // Glue the call to the argument copies, if any. 8948 if (Glue.getNode()) 8949 Ops.push_back(Glue); 8950 8951 // Emit the call. 8952 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 8953 8954 if (IsTailCall) { 8955 MF.getFrameInfo().setHasTailCall(); 8956 return DAG.getNode(RISCVISD::TAIL, DL, NodeTys, Ops); 8957 } 8958 8959 Chain = DAG.getNode(RISCVISD::CALL, DL, NodeTys, Ops); 8960 DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge); 8961 Glue = Chain.getValue(1); 8962 8963 // Mark the end of the call, which is glued to the call itself. 8964 Chain = DAG.getCALLSEQ_END(Chain, 8965 DAG.getConstant(NumBytes, DL, PtrVT, true), 8966 DAG.getConstant(0, DL, PtrVT, true), 8967 Glue, DL); 8968 Glue = Chain.getValue(1); 8969 8970 // Assign locations to each value returned by this call. 8971 SmallVector<CCValAssign, 16> RVLocs; 8972 CCState RetCCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext()); 8973 analyzeInputArgs(MF, RetCCInfo, Ins, /*IsRet=*/true, CC_RISCV); 8974 8975 // Copy all of the result registers out of their specified physreg. 8976 for (auto &VA : RVLocs) { 8977 // Copy the value out 8978 SDValue RetValue = 8979 DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), Glue); 8980 // Glue the RetValue to the end of the call sequence 8981 Chain = RetValue.getValue(1); 8982 Glue = RetValue.getValue(2); 8983 8984 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { 8985 assert(VA.getLocReg() == ArgGPRs[0] && "Unexpected reg assignment"); 8986 SDValue RetValue2 = 8987 DAG.getCopyFromReg(Chain, DL, ArgGPRs[1], MVT::i32, Glue); 8988 Chain = RetValue2.getValue(1); 8989 Glue = RetValue2.getValue(2); 8990 RetValue = DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, RetValue, 8991 RetValue2); 8992 } 8993 8994 RetValue = convertLocVTToValVT(DAG, RetValue, VA, DL, Subtarget); 8995 8996 InVals.push_back(RetValue); 8997 } 8998 8999 return Chain; 9000 } 9001 9002 bool RISCVTargetLowering::CanLowerReturn( 9003 CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg, 9004 const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const { 9005 SmallVector<CCValAssign, 16> RVLocs; 9006 CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context); 9007 9008 Optional<unsigned> FirstMaskArgument; 9009 if (Subtarget.hasVInstructions()) 9010 FirstMaskArgument = preAssignMask(Outs); 9011 9012 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 9013 MVT VT = Outs[i].VT; 9014 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 9015 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 9016 if (CC_RISCV(MF.getDataLayout(), ABI, i, VT, VT, CCValAssign::Full, 9017 ArgFlags, CCInfo, /*IsFixed=*/true, /*IsRet=*/true, nullptr, 9018 *this, FirstMaskArgument)) 9019 return false; 9020 } 9021 return true; 9022 } 9023 9024 SDValue 9025 RISCVTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 9026 bool IsVarArg, 9027 const SmallVectorImpl<ISD::OutputArg> &Outs, 9028 const SmallVectorImpl<SDValue> &OutVals, 9029 const SDLoc &DL, SelectionDAG &DAG) const { 9030 const MachineFunction &MF = DAG.getMachineFunction(); 9031 const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>(); 9032 9033 // Stores the assignment of the return value to a location. 9034 SmallVector<CCValAssign, 16> RVLocs; 9035 9036 // Info about the registers and stack slot. 9037 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, 9038 *DAG.getContext()); 9039 9040 analyzeOutputArgs(DAG.getMachineFunction(), CCInfo, Outs, /*IsRet=*/true, 9041 nullptr, CC_RISCV); 9042 9043 if (CallConv == CallingConv::GHC && !RVLocs.empty()) 9044 report_fatal_error("GHC functions return void only"); 9045 9046 SDValue Glue; 9047 SmallVector<SDValue, 4> RetOps(1, Chain); 9048 9049 // Copy the result values into the output registers. 9050 for (unsigned i = 0, e = RVLocs.size(); i < e; ++i) { 9051 SDValue Val = OutVals[i]; 9052 CCValAssign &VA = RVLocs[i]; 9053 assert(VA.isRegLoc() && "Can only return in registers!"); 9054 9055 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { 9056 // Handle returning f64 on RV32D with a soft float ABI. 9057 assert(VA.isRegLoc() && "Expected return via registers"); 9058 SDValue SplitF64 = DAG.getNode(RISCVISD::SplitF64, DL, 9059 DAG.getVTList(MVT::i32, MVT::i32), Val); 9060 SDValue Lo = SplitF64.getValue(0); 9061 SDValue Hi = SplitF64.getValue(1); 9062 Register RegLo = VA.getLocReg(); 9063 assert(RegLo < RISCV::X31 && "Invalid register pair"); 9064 Register RegHi = RegLo + 1; 9065 9066 if (STI.isRegisterReservedByUser(RegLo) || 9067 STI.isRegisterReservedByUser(RegHi)) 9068 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 9069 MF.getFunction(), 9070 "Return value register required, but has been reserved."}); 9071 9072 Chain = DAG.getCopyToReg(Chain, DL, RegLo, Lo, Glue); 9073 Glue = Chain.getValue(1); 9074 RetOps.push_back(DAG.getRegister(RegLo, MVT::i32)); 9075 Chain = DAG.getCopyToReg(Chain, DL, RegHi, Hi, Glue); 9076 Glue = Chain.getValue(1); 9077 RetOps.push_back(DAG.getRegister(RegHi, MVT::i32)); 9078 } else { 9079 // Handle a 'normal' return. 9080 Val = convertValVTToLocVT(DAG, Val, VA, DL, Subtarget); 9081 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Glue); 9082 9083 if (STI.isRegisterReservedByUser(VA.getLocReg())) 9084 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 9085 MF.getFunction(), 9086 "Return value register required, but has been reserved."}); 9087 9088 // Guarantee that all emitted copies are stuck together. 9089 Glue = Chain.getValue(1); 9090 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 9091 } 9092 } 9093 9094 RetOps[0] = Chain; // Update chain. 9095 9096 // Add the glue node if we have it. 9097 if (Glue.getNode()) { 9098 RetOps.push_back(Glue); 9099 } 9100 9101 unsigned RetOpc = RISCVISD::RET_FLAG; 9102 // Interrupt service routines use different return instructions. 9103 const Function &Func = DAG.getMachineFunction().getFunction(); 9104 if (Func.hasFnAttribute("interrupt")) { 9105 if (!Func.getReturnType()->isVoidTy()) 9106 report_fatal_error( 9107 "Functions with the interrupt attribute must have void return type!"); 9108 9109 MachineFunction &MF = DAG.getMachineFunction(); 9110 StringRef Kind = 9111 MF.getFunction().getFnAttribute("interrupt").getValueAsString(); 9112 9113 if (Kind == "user") 9114 RetOpc = RISCVISD::URET_FLAG; 9115 else if (Kind == "supervisor") 9116 RetOpc = RISCVISD::SRET_FLAG; 9117 else 9118 RetOpc = RISCVISD::MRET_FLAG; 9119 } 9120 9121 return DAG.getNode(RetOpc, DL, MVT::Other, RetOps); 9122 } 9123 9124 void RISCVTargetLowering::validateCCReservedRegs( 9125 const SmallVectorImpl<std::pair<llvm::Register, llvm::SDValue>> &Regs, 9126 MachineFunction &MF) const { 9127 const Function &F = MF.getFunction(); 9128 const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>(); 9129 9130 if (llvm::any_of(Regs, [&STI](auto Reg) { 9131 return STI.isRegisterReservedByUser(Reg.first); 9132 })) 9133 F.getContext().diagnose(DiagnosticInfoUnsupported{ 9134 F, "Argument register required, but has been reserved."}); 9135 } 9136 9137 bool RISCVTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { 9138 return CI->isTailCall(); 9139 } 9140 9141 const char *RISCVTargetLowering::getTargetNodeName(unsigned Opcode) const { 9142 #define NODE_NAME_CASE(NODE) \ 9143 case RISCVISD::NODE: \ 9144 return "RISCVISD::" #NODE; 9145 // clang-format off 9146 switch ((RISCVISD::NodeType)Opcode) { 9147 case RISCVISD::FIRST_NUMBER: 9148 break; 9149 NODE_NAME_CASE(RET_FLAG) 9150 NODE_NAME_CASE(URET_FLAG) 9151 NODE_NAME_CASE(SRET_FLAG) 9152 NODE_NAME_CASE(MRET_FLAG) 9153 NODE_NAME_CASE(CALL) 9154 NODE_NAME_CASE(SELECT_CC) 9155 NODE_NAME_CASE(BR_CC) 9156 NODE_NAME_CASE(BuildPairF64) 9157 NODE_NAME_CASE(SplitF64) 9158 NODE_NAME_CASE(TAIL) 9159 NODE_NAME_CASE(MULHSU) 9160 NODE_NAME_CASE(SLLW) 9161 NODE_NAME_CASE(SRAW) 9162 NODE_NAME_CASE(SRLW) 9163 NODE_NAME_CASE(DIVW) 9164 NODE_NAME_CASE(DIVUW) 9165 NODE_NAME_CASE(REMUW) 9166 NODE_NAME_CASE(ROLW) 9167 NODE_NAME_CASE(RORW) 9168 NODE_NAME_CASE(CLZW) 9169 NODE_NAME_CASE(CTZW) 9170 NODE_NAME_CASE(FSLW) 9171 NODE_NAME_CASE(FSRW) 9172 NODE_NAME_CASE(FSL) 9173 NODE_NAME_CASE(FSR) 9174 NODE_NAME_CASE(FMV_H_X) 9175 NODE_NAME_CASE(FMV_X_ANYEXTH) 9176 NODE_NAME_CASE(FMV_W_X_RV64) 9177 NODE_NAME_CASE(FMV_X_ANYEXTW_RV64) 9178 NODE_NAME_CASE(FCVT_X_RTZ) 9179 NODE_NAME_CASE(FCVT_XU_RTZ) 9180 NODE_NAME_CASE(FCVT_W_RTZ_RV64) 9181 NODE_NAME_CASE(FCVT_WU_RTZ_RV64) 9182 NODE_NAME_CASE(READ_CYCLE_WIDE) 9183 NODE_NAME_CASE(GREV) 9184 NODE_NAME_CASE(GREVW) 9185 NODE_NAME_CASE(GORC) 9186 NODE_NAME_CASE(GORCW) 9187 NODE_NAME_CASE(SHFL) 9188 NODE_NAME_CASE(SHFLW) 9189 NODE_NAME_CASE(UNSHFL) 9190 NODE_NAME_CASE(UNSHFLW) 9191 NODE_NAME_CASE(BCOMPRESS) 9192 NODE_NAME_CASE(BCOMPRESSW) 9193 NODE_NAME_CASE(BDECOMPRESS) 9194 NODE_NAME_CASE(BDECOMPRESSW) 9195 NODE_NAME_CASE(VMV_V_X_VL) 9196 NODE_NAME_CASE(VFMV_V_F_VL) 9197 NODE_NAME_CASE(VMV_X_S) 9198 NODE_NAME_CASE(VMV_S_X_VL) 9199 NODE_NAME_CASE(VFMV_S_F_VL) 9200 NODE_NAME_CASE(SPLAT_VECTOR_I64) 9201 NODE_NAME_CASE(SPLAT_VECTOR_SPLIT_I64_VL) 9202 NODE_NAME_CASE(READ_VLENB) 9203 NODE_NAME_CASE(TRUNCATE_VECTOR_VL) 9204 NODE_NAME_CASE(VSLIDEUP_VL) 9205 NODE_NAME_CASE(VSLIDE1UP_VL) 9206 NODE_NAME_CASE(VSLIDEDOWN_VL) 9207 NODE_NAME_CASE(VSLIDE1DOWN_VL) 9208 NODE_NAME_CASE(VID_VL) 9209 NODE_NAME_CASE(VFNCVT_ROD_VL) 9210 NODE_NAME_CASE(VECREDUCE_ADD_VL) 9211 NODE_NAME_CASE(VECREDUCE_UMAX_VL) 9212 NODE_NAME_CASE(VECREDUCE_SMAX_VL) 9213 NODE_NAME_CASE(VECREDUCE_UMIN_VL) 9214 NODE_NAME_CASE(VECREDUCE_SMIN_VL) 9215 NODE_NAME_CASE(VECREDUCE_AND_VL) 9216 NODE_NAME_CASE(VECREDUCE_OR_VL) 9217 NODE_NAME_CASE(VECREDUCE_XOR_VL) 9218 NODE_NAME_CASE(VECREDUCE_FADD_VL) 9219 NODE_NAME_CASE(VECREDUCE_SEQ_FADD_VL) 9220 NODE_NAME_CASE(VECREDUCE_FMIN_VL) 9221 NODE_NAME_CASE(VECREDUCE_FMAX_VL) 9222 NODE_NAME_CASE(ADD_VL) 9223 NODE_NAME_CASE(AND_VL) 9224 NODE_NAME_CASE(MUL_VL) 9225 NODE_NAME_CASE(OR_VL) 9226 NODE_NAME_CASE(SDIV_VL) 9227 NODE_NAME_CASE(SHL_VL) 9228 NODE_NAME_CASE(SREM_VL) 9229 NODE_NAME_CASE(SRA_VL) 9230 NODE_NAME_CASE(SRL_VL) 9231 NODE_NAME_CASE(SUB_VL) 9232 NODE_NAME_CASE(UDIV_VL) 9233 NODE_NAME_CASE(UREM_VL) 9234 NODE_NAME_CASE(XOR_VL) 9235 NODE_NAME_CASE(SADDSAT_VL) 9236 NODE_NAME_CASE(UADDSAT_VL) 9237 NODE_NAME_CASE(SSUBSAT_VL) 9238 NODE_NAME_CASE(USUBSAT_VL) 9239 NODE_NAME_CASE(FADD_VL) 9240 NODE_NAME_CASE(FSUB_VL) 9241 NODE_NAME_CASE(FMUL_VL) 9242 NODE_NAME_CASE(FDIV_VL) 9243 NODE_NAME_CASE(FNEG_VL) 9244 NODE_NAME_CASE(FABS_VL) 9245 NODE_NAME_CASE(FSQRT_VL) 9246 NODE_NAME_CASE(FMA_VL) 9247 NODE_NAME_CASE(FCOPYSIGN_VL) 9248 NODE_NAME_CASE(SMIN_VL) 9249 NODE_NAME_CASE(SMAX_VL) 9250 NODE_NAME_CASE(UMIN_VL) 9251 NODE_NAME_CASE(UMAX_VL) 9252 NODE_NAME_CASE(FMINNUM_VL) 9253 NODE_NAME_CASE(FMAXNUM_VL) 9254 NODE_NAME_CASE(MULHS_VL) 9255 NODE_NAME_CASE(MULHU_VL) 9256 NODE_NAME_CASE(FP_TO_SINT_VL) 9257 NODE_NAME_CASE(FP_TO_UINT_VL) 9258 NODE_NAME_CASE(SINT_TO_FP_VL) 9259 NODE_NAME_CASE(UINT_TO_FP_VL) 9260 NODE_NAME_CASE(FP_EXTEND_VL) 9261 NODE_NAME_CASE(FP_ROUND_VL) 9262 NODE_NAME_CASE(VWMUL_VL) 9263 NODE_NAME_CASE(VWMULU_VL) 9264 NODE_NAME_CASE(SETCC_VL) 9265 NODE_NAME_CASE(VSELECT_VL) 9266 NODE_NAME_CASE(VMAND_VL) 9267 NODE_NAME_CASE(VMOR_VL) 9268 NODE_NAME_CASE(VMXOR_VL) 9269 NODE_NAME_CASE(VMCLR_VL) 9270 NODE_NAME_CASE(VMSET_VL) 9271 NODE_NAME_CASE(VRGATHER_VX_VL) 9272 NODE_NAME_CASE(VRGATHER_VV_VL) 9273 NODE_NAME_CASE(VRGATHEREI16_VV_VL) 9274 NODE_NAME_CASE(VSEXT_VL) 9275 NODE_NAME_CASE(VZEXT_VL) 9276 NODE_NAME_CASE(VPOPC_VL) 9277 NODE_NAME_CASE(VLE_VL) 9278 NODE_NAME_CASE(VSE_VL) 9279 NODE_NAME_CASE(READ_CSR) 9280 NODE_NAME_CASE(WRITE_CSR) 9281 NODE_NAME_CASE(SWAP_CSR) 9282 } 9283 // clang-format on 9284 return nullptr; 9285 #undef NODE_NAME_CASE 9286 } 9287 9288 /// getConstraintType - Given a constraint letter, return the type of 9289 /// constraint it is for this target. 9290 RISCVTargetLowering::ConstraintType 9291 RISCVTargetLowering::getConstraintType(StringRef Constraint) const { 9292 if (Constraint.size() == 1) { 9293 switch (Constraint[0]) { 9294 default: 9295 break; 9296 case 'f': 9297 return C_RegisterClass; 9298 case 'I': 9299 case 'J': 9300 case 'K': 9301 return C_Immediate; 9302 case 'A': 9303 return C_Memory; 9304 case 'S': // A symbolic address 9305 return C_Other; 9306 } 9307 } else { 9308 if (Constraint == "vr" || Constraint == "vm") 9309 return C_RegisterClass; 9310 } 9311 return TargetLowering::getConstraintType(Constraint); 9312 } 9313 9314 std::pair<unsigned, const TargetRegisterClass *> 9315 RISCVTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 9316 StringRef Constraint, 9317 MVT VT) const { 9318 // First, see if this is a constraint that directly corresponds to a 9319 // RISCV register class. 9320 if (Constraint.size() == 1) { 9321 switch (Constraint[0]) { 9322 case 'r': 9323 return std::make_pair(0U, &RISCV::GPRRegClass); 9324 case 'f': 9325 if (Subtarget.hasStdExtZfh() && VT == MVT::f16) 9326 return std::make_pair(0U, &RISCV::FPR16RegClass); 9327 if (Subtarget.hasStdExtF() && VT == MVT::f32) 9328 return std::make_pair(0U, &RISCV::FPR32RegClass); 9329 if (Subtarget.hasStdExtD() && VT == MVT::f64) 9330 return std::make_pair(0U, &RISCV::FPR64RegClass); 9331 break; 9332 default: 9333 break; 9334 } 9335 } else { 9336 if (Constraint == "vr") { 9337 for (const auto *RC : {&RISCV::VRRegClass, &RISCV::VRM2RegClass, 9338 &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) { 9339 if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy)) 9340 return std::make_pair(0U, RC); 9341 } 9342 } else if (Constraint == "vm") { 9343 if (TRI->isTypeLegalForClass(RISCV::VMRegClass, VT.SimpleTy)) 9344 return std::make_pair(0U, &RISCV::VMRegClass); 9345 } 9346 } 9347 9348 // Clang will correctly decode the usage of register name aliases into their 9349 // official names. However, other frontends like `rustc` do not. This allows 9350 // users of these frontends to use the ABI names for registers in LLVM-style 9351 // register constraints. 9352 unsigned XRegFromAlias = StringSwitch<unsigned>(Constraint.lower()) 9353 .Case("{zero}", RISCV::X0) 9354 .Case("{ra}", RISCV::X1) 9355 .Case("{sp}", RISCV::X2) 9356 .Case("{gp}", RISCV::X3) 9357 .Case("{tp}", RISCV::X4) 9358 .Case("{t0}", RISCV::X5) 9359 .Case("{t1}", RISCV::X6) 9360 .Case("{t2}", RISCV::X7) 9361 .Cases("{s0}", "{fp}", RISCV::X8) 9362 .Case("{s1}", RISCV::X9) 9363 .Case("{a0}", RISCV::X10) 9364 .Case("{a1}", RISCV::X11) 9365 .Case("{a2}", RISCV::X12) 9366 .Case("{a3}", RISCV::X13) 9367 .Case("{a4}", RISCV::X14) 9368 .Case("{a5}", RISCV::X15) 9369 .Case("{a6}", RISCV::X16) 9370 .Case("{a7}", RISCV::X17) 9371 .Case("{s2}", RISCV::X18) 9372 .Case("{s3}", RISCV::X19) 9373 .Case("{s4}", RISCV::X20) 9374 .Case("{s5}", RISCV::X21) 9375 .Case("{s6}", RISCV::X22) 9376 .Case("{s7}", RISCV::X23) 9377 .Case("{s8}", RISCV::X24) 9378 .Case("{s9}", RISCV::X25) 9379 .Case("{s10}", RISCV::X26) 9380 .Case("{s11}", RISCV::X27) 9381 .Case("{t3}", RISCV::X28) 9382 .Case("{t4}", RISCV::X29) 9383 .Case("{t5}", RISCV::X30) 9384 .Case("{t6}", RISCV::X31) 9385 .Default(RISCV::NoRegister); 9386 if (XRegFromAlias != RISCV::NoRegister) 9387 return std::make_pair(XRegFromAlias, &RISCV::GPRRegClass); 9388 9389 // Since TargetLowering::getRegForInlineAsmConstraint uses the name of the 9390 // TableGen record rather than the AsmName to choose registers for InlineAsm 9391 // constraints, plus we want to match those names to the widest floating point 9392 // register type available, manually select floating point registers here. 9393 // 9394 // The second case is the ABI name of the register, so that frontends can also 9395 // use the ABI names in register constraint lists. 9396 if (Subtarget.hasStdExtF()) { 9397 unsigned FReg = StringSwitch<unsigned>(Constraint.lower()) 9398 .Cases("{f0}", "{ft0}", RISCV::F0_F) 9399 .Cases("{f1}", "{ft1}", RISCV::F1_F) 9400 .Cases("{f2}", "{ft2}", RISCV::F2_F) 9401 .Cases("{f3}", "{ft3}", RISCV::F3_F) 9402 .Cases("{f4}", "{ft4}", RISCV::F4_F) 9403 .Cases("{f5}", "{ft5}", RISCV::F5_F) 9404 .Cases("{f6}", "{ft6}", RISCV::F6_F) 9405 .Cases("{f7}", "{ft7}", RISCV::F7_F) 9406 .Cases("{f8}", "{fs0}", RISCV::F8_F) 9407 .Cases("{f9}", "{fs1}", RISCV::F9_F) 9408 .Cases("{f10}", "{fa0}", RISCV::F10_F) 9409 .Cases("{f11}", "{fa1}", RISCV::F11_F) 9410 .Cases("{f12}", "{fa2}", RISCV::F12_F) 9411 .Cases("{f13}", "{fa3}", RISCV::F13_F) 9412 .Cases("{f14}", "{fa4}", RISCV::F14_F) 9413 .Cases("{f15}", "{fa5}", RISCV::F15_F) 9414 .Cases("{f16}", "{fa6}", RISCV::F16_F) 9415 .Cases("{f17}", "{fa7}", RISCV::F17_F) 9416 .Cases("{f18}", "{fs2}", RISCV::F18_F) 9417 .Cases("{f19}", "{fs3}", RISCV::F19_F) 9418 .Cases("{f20}", "{fs4}", RISCV::F20_F) 9419 .Cases("{f21}", "{fs5}", RISCV::F21_F) 9420 .Cases("{f22}", "{fs6}", RISCV::F22_F) 9421 .Cases("{f23}", "{fs7}", RISCV::F23_F) 9422 .Cases("{f24}", "{fs8}", RISCV::F24_F) 9423 .Cases("{f25}", "{fs9}", RISCV::F25_F) 9424 .Cases("{f26}", "{fs10}", RISCV::F26_F) 9425 .Cases("{f27}", "{fs11}", RISCV::F27_F) 9426 .Cases("{f28}", "{ft8}", RISCV::F28_F) 9427 .Cases("{f29}", "{ft9}", RISCV::F29_F) 9428 .Cases("{f30}", "{ft10}", RISCV::F30_F) 9429 .Cases("{f31}", "{ft11}", RISCV::F31_F) 9430 .Default(RISCV::NoRegister); 9431 if (FReg != RISCV::NoRegister) { 9432 assert(RISCV::F0_F <= FReg && FReg <= RISCV::F31_F && "Unknown fp-reg"); 9433 if (Subtarget.hasStdExtD()) { 9434 unsigned RegNo = FReg - RISCV::F0_F; 9435 unsigned DReg = RISCV::F0_D + RegNo; 9436 return std::make_pair(DReg, &RISCV::FPR64RegClass); 9437 } 9438 return std::make_pair(FReg, &RISCV::FPR32RegClass); 9439 } 9440 } 9441 9442 if (Subtarget.hasVInstructions()) { 9443 Register VReg = StringSwitch<Register>(Constraint.lower()) 9444 .Case("{v0}", RISCV::V0) 9445 .Case("{v1}", RISCV::V1) 9446 .Case("{v2}", RISCV::V2) 9447 .Case("{v3}", RISCV::V3) 9448 .Case("{v4}", RISCV::V4) 9449 .Case("{v5}", RISCV::V5) 9450 .Case("{v6}", RISCV::V6) 9451 .Case("{v7}", RISCV::V7) 9452 .Case("{v8}", RISCV::V8) 9453 .Case("{v9}", RISCV::V9) 9454 .Case("{v10}", RISCV::V10) 9455 .Case("{v11}", RISCV::V11) 9456 .Case("{v12}", RISCV::V12) 9457 .Case("{v13}", RISCV::V13) 9458 .Case("{v14}", RISCV::V14) 9459 .Case("{v15}", RISCV::V15) 9460 .Case("{v16}", RISCV::V16) 9461 .Case("{v17}", RISCV::V17) 9462 .Case("{v18}", RISCV::V18) 9463 .Case("{v19}", RISCV::V19) 9464 .Case("{v20}", RISCV::V20) 9465 .Case("{v21}", RISCV::V21) 9466 .Case("{v22}", RISCV::V22) 9467 .Case("{v23}", RISCV::V23) 9468 .Case("{v24}", RISCV::V24) 9469 .Case("{v25}", RISCV::V25) 9470 .Case("{v26}", RISCV::V26) 9471 .Case("{v27}", RISCV::V27) 9472 .Case("{v28}", RISCV::V28) 9473 .Case("{v29}", RISCV::V29) 9474 .Case("{v30}", RISCV::V30) 9475 .Case("{v31}", RISCV::V31) 9476 .Default(RISCV::NoRegister); 9477 if (VReg != RISCV::NoRegister) { 9478 if (TRI->isTypeLegalForClass(RISCV::VMRegClass, VT.SimpleTy)) 9479 return std::make_pair(VReg, &RISCV::VMRegClass); 9480 if (TRI->isTypeLegalForClass(RISCV::VRRegClass, VT.SimpleTy)) 9481 return std::make_pair(VReg, &RISCV::VRRegClass); 9482 for (const auto *RC : 9483 {&RISCV::VRM2RegClass, &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) { 9484 if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy)) { 9485 VReg = TRI->getMatchingSuperReg(VReg, RISCV::sub_vrm1_0, RC); 9486 return std::make_pair(VReg, RC); 9487 } 9488 } 9489 } 9490 } 9491 9492 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 9493 } 9494 9495 unsigned 9496 RISCVTargetLowering::getInlineAsmMemConstraint(StringRef ConstraintCode) const { 9497 // Currently only support length 1 constraints. 9498 if (ConstraintCode.size() == 1) { 9499 switch (ConstraintCode[0]) { 9500 case 'A': 9501 return InlineAsm::Constraint_A; 9502 default: 9503 break; 9504 } 9505 } 9506 9507 return TargetLowering::getInlineAsmMemConstraint(ConstraintCode); 9508 } 9509 9510 void RISCVTargetLowering::LowerAsmOperandForConstraint( 9511 SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops, 9512 SelectionDAG &DAG) const { 9513 // Currently only support length 1 constraints. 9514 if (Constraint.length() == 1) { 9515 switch (Constraint[0]) { 9516 case 'I': 9517 // Validate & create a 12-bit signed immediate operand. 9518 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 9519 uint64_t CVal = C->getSExtValue(); 9520 if (isInt<12>(CVal)) 9521 Ops.push_back( 9522 DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT())); 9523 } 9524 return; 9525 case 'J': 9526 // Validate & create an integer zero operand. 9527 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 9528 if (C->getZExtValue() == 0) 9529 Ops.push_back( 9530 DAG.getTargetConstant(0, SDLoc(Op), Subtarget.getXLenVT())); 9531 return; 9532 case 'K': 9533 // Validate & create a 5-bit unsigned immediate operand. 9534 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 9535 uint64_t CVal = C->getZExtValue(); 9536 if (isUInt<5>(CVal)) 9537 Ops.push_back( 9538 DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT())); 9539 } 9540 return; 9541 case 'S': 9542 if (const auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) { 9543 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op), 9544 GA->getValueType(0))); 9545 } else if (const auto *BA = dyn_cast<BlockAddressSDNode>(Op)) { 9546 Ops.push_back(DAG.getTargetBlockAddress(BA->getBlockAddress(), 9547 BA->getValueType(0))); 9548 } 9549 return; 9550 default: 9551 break; 9552 } 9553 } 9554 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 9555 } 9556 9557 Instruction *RISCVTargetLowering::emitLeadingFence(IRBuilderBase &Builder, 9558 Instruction *Inst, 9559 AtomicOrdering Ord) const { 9560 if (isa<LoadInst>(Inst) && Ord == AtomicOrdering::SequentiallyConsistent) 9561 return Builder.CreateFence(Ord); 9562 if (isa<StoreInst>(Inst) && isReleaseOrStronger(Ord)) 9563 return Builder.CreateFence(AtomicOrdering::Release); 9564 return nullptr; 9565 } 9566 9567 Instruction *RISCVTargetLowering::emitTrailingFence(IRBuilderBase &Builder, 9568 Instruction *Inst, 9569 AtomicOrdering Ord) const { 9570 if (isa<LoadInst>(Inst) && isAcquireOrStronger(Ord)) 9571 return Builder.CreateFence(AtomicOrdering::Acquire); 9572 return nullptr; 9573 } 9574 9575 TargetLowering::AtomicExpansionKind 9576 RISCVTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { 9577 // atomicrmw {fadd,fsub} must be expanded to use compare-exchange, as floating 9578 // point operations can't be used in an lr/sc sequence without breaking the 9579 // forward-progress guarantee. 9580 if (AI->isFloatingPointOperation()) 9581 return AtomicExpansionKind::CmpXChg; 9582 9583 unsigned Size = AI->getType()->getPrimitiveSizeInBits(); 9584 if (Size == 8 || Size == 16) 9585 return AtomicExpansionKind::MaskedIntrinsic; 9586 return AtomicExpansionKind::None; 9587 } 9588 9589 static Intrinsic::ID 9590 getIntrinsicForMaskedAtomicRMWBinOp(unsigned XLen, AtomicRMWInst::BinOp BinOp) { 9591 if (XLen == 32) { 9592 switch (BinOp) { 9593 default: 9594 llvm_unreachable("Unexpected AtomicRMW BinOp"); 9595 case AtomicRMWInst::Xchg: 9596 return Intrinsic::riscv_masked_atomicrmw_xchg_i32; 9597 case AtomicRMWInst::Add: 9598 return Intrinsic::riscv_masked_atomicrmw_add_i32; 9599 case AtomicRMWInst::Sub: 9600 return Intrinsic::riscv_masked_atomicrmw_sub_i32; 9601 case AtomicRMWInst::Nand: 9602 return Intrinsic::riscv_masked_atomicrmw_nand_i32; 9603 case AtomicRMWInst::Max: 9604 return Intrinsic::riscv_masked_atomicrmw_max_i32; 9605 case AtomicRMWInst::Min: 9606 return Intrinsic::riscv_masked_atomicrmw_min_i32; 9607 case AtomicRMWInst::UMax: 9608 return Intrinsic::riscv_masked_atomicrmw_umax_i32; 9609 case AtomicRMWInst::UMin: 9610 return Intrinsic::riscv_masked_atomicrmw_umin_i32; 9611 } 9612 } 9613 9614 if (XLen == 64) { 9615 switch (BinOp) { 9616 default: 9617 llvm_unreachable("Unexpected AtomicRMW BinOp"); 9618 case AtomicRMWInst::Xchg: 9619 return Intrinsic::riscv_masked_atomicrmw_xchg_i64; 9620 case AtomicRMWInst::Add: 9621 return Intrinsic::riscv_masked_atomicrmw_add_i64; 9622 case AtomicRMWInst::Sub: 9623 return Intrinsic::riscv_masked_atomicrmw_sub_i64; 9624 case AtomicRMWInst::Nand: 9625 return Intrinsic::riscv_masked_atomicrmw_nand_i64; 9626 case AtomicRMWInst::Max: 9627 return Intrinsic::riscv_masked_atomicrmw_max_i64; 9628 case AtomicRMWInst::Min: 9629 return Intrinsic::riscv_masked_atomicrmw_min_i64; 9630 case AtomicRMWInst::UMax: 9631 return Intrinsic::riscv_masked_atomicrmw_umax_i64; 9632 case AtomicRMWInst::UMin: 9633 return Intrinsic::riscv_masked_atomicrmw_umin_i64; 9634 } 9635 } 9636 9637 llvm_unreachable("Unexpected XLen\n"); 9638 } 9639 9640 Value *RISCVTargetLowering::emitMaskedAtomicRMWIntrinsic( 9641 IRBuilderBase &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr, 9642 Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const { 9643 unsigned XLen = Subtarget.getXLen(); 9644 Value *Ordering = 9645 Builder.getIntN(XLen, static_cast<uint64_t>(AI->getOrdering())); 9646 Type *Tys[] = {AlignedAddr->getType()}; 9647 Function *LrwOpScwLoop = Intrinsic::getDeclaration( 9648 AI->getModule(), 9649 getIntrinsicForMaskedAtomicRMWBinOp(XLen, AI->getOperation()), Tys); 9650 9651 if (XLen == 64) { 9652 Incr = Builder.CreateSExt(Incr, Builder.getInt64Ty()); 9653 Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty()); 9654 ShiftAmt = Builder.CreateSExt(ShiftAmt, Builder.getInt64Ty()); 9655 } 9656 9657 Value *Result; 9658 9659 // Must pass the shift amount needed to sign extend the loaded value prior 9660 // to performing a signed comparison for min/max. ShiftAmt is the number of 9661 // bits to shift the value into position. Pass XLen-ShiftAmt-ValWidth, which 9662 // is the number of bits to left+right shift the value in order to 9663 // sign-extend. 9664 if (AI->getOperation() == AtomicRMWInst::Min || 9665 AI->getOperation() == AtomicRMWInst::Max) { 9666 const DataLayout &DL = AI->getModule()->getDataLayout(); 9667 unsigned ValWidth = 9668 DL.getTypeStoreSizeInBits(AI->getValOperand()->getType()); 9669 Value *SextShamt = 9670 Builder.CreateSub(Builder.getIntN(XLen, XLen - ValWidth), ShiftAmt); 9671 Result = Builder.CreateCall(LrwOpScwLoop, 9672 {AlignedAddr, Incr, Mask, SextShamt, Ordering}); 9673 } else { 9674 Result = 9675 Builder.CreateCall(LrwOpScwLoop, {AlignedAddr, Incr, Mask, Ordering}); 9676 } 9677 9678 if (XLen == 64) 9679 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty()); 9680 return Result; 9681 } 9682 9683 TargetLowering::AtomicExpansionKind 9684 RISCVTargetLowering::shouldExpandAtomicCmpXchgInIR( 9685 AtomicCmpXchgInst *CI) const { 9686 unsigned Size = CI->getCompareOperand()->getType()->getPrimitiveSizeInBits(); 9687 if (Size == 8 || Size == 16) 9688 return AtomicExpansionKind::MaskedIntrinsic; 9689 return AtomicExpansionKind::None; 9690 } 9691 9692 Value *RISCVTargetLowering::emitMaskedAtomicCmpXchgIntrinsic( 9693 IRBuilderBase &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr, 9694 Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const { 9695 unsigned XLen = Subtarget.getXLen(); 9696 Value *Ordering = Builder.getIntN(XLen, static_cast<uint64_t>(Ord)); 9697 Intrinsic::ID CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i32; 9698 if (XLen == 64) { 9699 CmpVal = Builder.CreateSExt(CmpVal, Builder.getInt64Ty()); 9700 NewVal = Builder.CreateSExt(NewVal, Builder.getInt64Ty()); 9701 Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty()); 9702 CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i64; 9703 } 9704 Type *Tys[] = {AlignedAddr->getType()}; 9705 Function *MaskedCmpXchg = 9706 Intrinsic::getDeclaration(CI->getModule(), CmpXchgIntrID, Tys); 9707 Value *Result = Builder.CreateCall( 9708 MaskedCmpXchg, {AlignedAddr, CmpVal, NewVal, Mask, Ordering}); 9709 if (XLen == 64) 9710 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty()); 9711 return Result; 9712 } 9713 9714 bool RISCVTargetLowering::shouldRemoveExtendFromGSIndex(EVT VT) const { 9715 return false; 9716 } 9717 9718 bool RISCVTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, 9719 EVT VT) const { 9720 VT = VT.getScalarType(); 9721 9722 if (!VT.isSimple()) 9723 return false; 9724 9725 switch (VT.getSimpleVT().SimpleTy) { 9726 case MVT::f16: 9727 return Subtarget.hasStdExtZfh(); 9728 case MVT::f32: 9729 return Subtarget.hasStdExtF(); 9730 case MVT::f64: 9731 return Subtarget.hasStdExtD(); 9732 default: 9733 break; 9734 } 9735 9736 return false; 9737 } 9738 9739 Register RISCVTargetLowering::getExceptionPointerRegister( 9740 const Constant *PersonalityFn) const { 9741 return RISCV::X10; 9742 } 9743 9744 Register RISCVTargetLowering::getExceptionSelectorRegister( 9745 const Constant *PersonalityFn) const { 9746 return RISCV::X11; 9747 } 9748 9749 bool RISCVTargetLowering::shouldExtendTypeInLibCall(EVT Type) const { 9750 // Return false to suppress the unnecessary extensions if the LibCall 9751 // arguments or return value is f32 type for LP64 ABI. 9752 RISCVABI::ABI ABI = Subtarget.getTargetABI(); 9753 if (ABI == RISCVABI::ABI_LP64 && (Type == MVT::f32)) 9754 return false; 9755 9756 return true; 9757 } 9758 9759 bool RISCVTargetLowering::shouldSignExtendTypeInLibCall(EVT Type, bool IsSigned) const { 9760 if (Subtarget.is64Bit() && Type == MVT::i32) 9761 return true; 9762 9763 return IsSigned; 9764 } 9765 9766 bool RISCVTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT, 9767 SDValue C) const { 9768 // Check integral scalar types. 9769 if (VT.isScalarInteger()) { 9770 // Omit the optimization if the sub target has the M extension and the data 9771 // size exceeds XLen. 9772 if (Subtarget.hasStdExtM() && VT.getSizeInBits() > Subtarget.getXLen()) 9773 return false; 9774 if (auto *ConstNode = dyn_cast<ConstantSDNode>(C.getNode())) { 9775 // Break the MUL to a SLLI and an ADD/SUB. 9776 const APInt &Imm = ConstNode->getAPIntValue(); 9777 if ((Imm + 1).isPowerOf2() || (Imm - 1).isPowerOf2() || 9778 (1 - Imm).isPowerOf2() || (-1 - Imm).isPowerOf2()) 9779 return true; 9780 // Optimize the MUL to (SH*ADD x, (SLLI x, bits)) if Imm is not simm12. 9781 if (Subtarget.hasStdExtZba() && !Imm.isSignedIntN(12) && 9782 ((Imm - 2).isPowerOf2() || (Imm - 4).isPowerOf2() || 9783 (Imm - 8).isPowerOf2())) 9784 return true; 9785 // Omit the following optimization if the sub target has the M extension 9786 // and the data size >= XLen. 9787 if (Subtarget.hasStdExtM() && VT.getSizeInBits() >= Subtarget.getXLen()) 9788 return false; 9789 // Break the MUL to two SLLI instructions and an ADD/SUB, if Imm needs 9790 // a pair of LUI/ADDI. 9791 if (!Imm.isSignedIntN(12) && Imm.countTrailingZeros() < 12) { 9792 APInt ImmS = Imm.ashr(Imm.countTrailingZeros()); 9793 if ((ImmS + 1).isPowerOf2() || (ImmS - 1).isPowerOf2() || 9794 (1 - ImmS).isPowerOf2()) 9795 return true; 9796 } 9797 } 9798 } 9799 9800 return false; 9801 } 9802 9803 bool RISCVTargetLowering::isMulAddWithConstProfitable( 9804 const SDValue &AddNode, const SDValue &ConstNode) const { 9805 // Let the DAGCombiner decide for vectors. 9806 EVT VT = AddNode.getValueType(); 9807 if (VT.isVector()) 9808 return true; 9809 9810 // Let the DAGCombiner decide for larger types. 9811 if (VT.getScalarSizeInBits() > Subtarget.getXLen()) 9812 return true; 9813 9814 // It is worse if c1 is simm12 while c1*c2 is not. 9815 ConstantSDNode *C1Node = cast<ConstantSDNode>(AddNode.getOperand(1)); 9816 ConstantSDNode *C2Node = cast<ConstantSDNode>(ConstNode); 9817 const APInt &C1 = C1Node->getAPIntValue(); 9818 const APInt &C2 = C2Node->getAPIntValue(); 9819 if (C1.isSignedIntN(12) && !(C1 * C2).isSignedIntN(12)) 9820 return false; 9821 9822 // Default to true and let the DAGCombiner decide. 9823 return true; 9824 } 9825 9826 bool RISCVTargetLowering::allowsMisalignedMemoryAccesses( 9827 EVT VT, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags, 9828 bool *Fast) const { 9829 if (!VT.isVector()) 9830 return false; 9831 9832 EVT ElemVT = VT.getVectorElementType(); 9833 if (Alignment >= ElemVT.getStoreSize()) { 9834 if (Fast) 9835 *Fast = true; 9836 return true; 9837 } 9838 9839 return false; 9840 } 9841 9842 bool RISCVTargetLowering::splitValueIntoRegisterParts( 9843 SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts, 9844 unsigned NumParts, MVT PartVT, Optional<CallingConv::ID> CC) const { 9845 bool IsABIRegCopy = CC.hasValue(); 9846 EVT ValueVT = Val.getValueType(); 9847 if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) { 9848 // Cast the f16 to i16, extend to i32, pad with ones to make a float nan, 9849 // and cast to f32. 9850 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i16, Val); 9851 Val = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Val); 9852 Val = DAG.getNode(ISD::OR, DL, MVT::i32, Val, 9853 DAG.getConstant(0xFFFF0000, DL, MVT::i32)); 9854 Val = DAG.getNode(ISD::BITCAST, DL, MVT::f32, Val); 9855 Parts[0] = Val; 9856 return true; 9857 } 9858 9859 if (ValueVT.isScalableVector() && PartVT.isScalableVector()) { 9860 LLVMContext &Context = *DAG.getContext(); 9861 EVT ValueEltVT = ValueVT.getVectorElementType(); 9862 EVT PartEltVT = PartVT.getVectorElementType(); 9863 unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize(); 9864 unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize(); 9865 if (PartVTBitSize % ValueVTBitSize == 0) { 9866 // If the element types are different, bitcast to the same element type of 9867 // PartVT first. 9868 if (ValueEltVT != PartEltVT) { 9869 unsigned Count = ValueVTBitSize / PartEltVT.getSizeInBits(); 9870 assert(Count != 0 && "The number of element should not be zero."); 9871 EVT SameEltTypeVT = 9872 EVT::getVectorVT(Context, PartEltVT, Count, /*IsScalable=*/true); 9873 Val = DAG.getNode(ISD::BITCAST, DL, SameEltTypeVT, Val); 9874 } 9875 Val = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT), 9876 Val, DAG.getConstant(0, DL, Subtarget.getXLenVT())); 9877 Parts[0] = Val; 9878 return true; 9879 } 9880 } 9881 return false; 9882 } 9883 9884 SDValue RISCVTargetLowering::joinRegisterPartsIntoValue( 9885 SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts, 9886 MVT PartVT, EVT ValueVT, Optional<CallingConv::ID> CC) const { 9887 bool IsABIRegCopy = CC.hasValue(); 9888 if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) { 9889 SDValue Val = Parts[0]; 9890 9891 // Cast the f32 to i32, truncate to i16, and cast back to f16. 9892 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Val); 9893 Val = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Val); 9894 Val = DAG.getNode(ISD::BITCAST, DL, MVT::f16, Val); 9895 return Val; 9896 } 9897 9898 if (ValueVT.isScalableVector() && PartVT.isScalableVector()) { 9899 LLVMContext &Context = *DAG.getContext(); 9900 SDValue Val = Parts[0]; 9901 EVT ValueEltVT = ValueVT.getVectorElementType(); 9902 EVT PartEltVT = PartVT.getVectorElementType(); 9903 unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize(); 9904 unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize(); 9905 if (PartVTBitSize % ValueVTBitSize == 0) { 9906 EVT SameEltTypeVT = ValueVT; 9907 // If the element types are different, convert it to the same element type 9908 // of PartVT. 9909 if (ValueEltVT != PartEltVT) { 9910 unsigned Count = ValueVTBitSize / PartEltVT.getSizeInBits(); 9911 assert(Count != 0 && "The number of element should not be zero."); 9912 SameEltTypeVT = 9913 EVT::getVectorVT(Context, PartEltVT, Count, /*IsScalable=*/true); 9914 } 9915 Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SameEltTypeVT, Val, 9916 DAG.getConstant(0, DL, Subtarget.getXLenVT())); 9917 if (ValueEltVT != PartEltVT) 9918 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 9919 return Val; 9920 } 9921 } 9922 return SDValue(); 9923 } 9924 9925 #define GET_REGISTER_MATCHER 9926 #include "RISCVGenAsmMatcher.inc" 9927 9928 Register 9929 RISCVTargetLowering::getRegisterByName(const char *RegName, LLT VT, 9930 const MachineFunction &MF) const { 9931 Register Reg = MatchRegisterAltName(RegName); 9932 if (Reg == RISCV::NoRegister) 9933 Reg = MatchRegisterName(RegName); 9934 if (Reg == RISCV::NoRegister) 9935 report_fatal_error( 9936 Twine("Invalid register name \"" + StringRef(RegName) + "\".")); 9937 BitVector ReservedRegs = Subtarget.getRegisterInfo()->getReservedRegs(MF); 9938 if (!ReservedRegs.test(Reg) && !Subtarget.isRegisterReservedByUser(Reg)) 9939 report_fatal_error(Twine("Trying to obtain non-reserved register \"" + 9940 StringRef(RegName) + "\".")); 9941 return Reg; 9942 } 9943 9944 namespace llvm { 9945 namespace RISCVVIntrinsicsTable { 9946 9947 #define GET_RISCVVIntrinsicsTable_IMPL 9948 #include "RISCVGenSearchableTables.inc" 9949 9950 } // namespace RISCVVIntrinsicsTable 9951 9952 } // namespace llvm 9953