1 //===-- RISCVISelLowering.cpp - RISCV DAG Lowering Implementation  --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the interfaces that RISCV uses to lower LLVM code into a
10 // selection DAG.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "RISCVISelLowering.h"
15 #include "MCTargetDesc/RISCVMatInt.h"
16 #include "RISCV.h"
17 #include "RISCVMachineFunctionInfo.h"
18 #include "RISCVRegisterInfo.h"
19 #include "RISCVSubtarget.h"
20 #include "RISCVTargetMachine.h"
21 #include "llvm/ADT/SmallSet.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/CodeGen/CallingConvLower.h"
24 #include "llvm/CodeGen/MachineFrameInfo.h"
25 #include "llvm/CodeGen/MachineFunction.h"
26 #include "llvm/CodeGen/MachineInstrBuilder.h"
27 #include "llvm/CodeGen/MachineRegisterInfo.h"
28 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
29 #include "llvm/CodeGen/ValueTypes.h"
30 #include "llvm/IR/DiagnosticInfo.h"
31 #include "llvm/IR/DiagnosticPrinter.h"
32 #include "llvm/IR/IntrinsicsRISCV.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/ErrorHandling.h"
35 #include "llvm/Support/KnownBits.h"
36 #include "llvm/Support/MathExtras.h"
37 #include "llvm/Support/raw_ostream.h"
38 
39 using namespace llvm;
40 
41 #define DEBUG_TYPE "riscv-lower"
42 
43 STATISTIC(NumTailCalls, "Number of tail calls");
44 
45 RISCVTargetLowering::RISCVTargetLowering(const TargetMachine &TM,
46                                          const RISCVSubtarget &STI)
47     : TargetLowering(TM), Subtarget(STI) {
48 
49   if (Subtarget.isRV32E())
50     report_fatal_error("Codegen not yet implemented for RV32E");
51 
52   RISCVABI::ABI ABI = Subtarget.getTargetABI();
53   assert(ABI != RISCVABI::ABI_Unknown && "Improperly initialised target ABI");
54 
55   if ((ABI == RISCVABI::ABI_ILP32F || ABI == RISCVABI::ABI_LP64F) &&
56       !Subtarget.hasStdExtF()) {
57     errs() << "Hard-float 'f' ABI can't be used for a target that "
58                 "doesn't support the F instruction set extension (ignoring "
59                           "target-abi)\n";
60     ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32;
61   } else if ((ABI == RISCVABI::ABI_ILP32D || ABI == RISCVABI::ABI_LP64D) &&
62              !Subtarget.hasStdExtD()) {
63     errs() << "Hard-float 'd' ABI can't be used for a target that "
64               "doesn't support the D instruction set extension (ignoring "
65               "target-abi)\n";
66     ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32;
67   }
68 
69   switch (ABI) {
70   default:
71     report_fatal_error("Don't know how to lower this ABI");
72   case RISCVABI::ABI_ILP32:
73   case RISCVABI::ABI_ILP32F:
74   case RISCVABI::ABI_ILP32D:
75   case RISCVABI::ABI_LP64:
76   case RISCVABI::ABI_LP64F:
77   case RISCVABI::ABI_LP64D:
78     break;
79   }
80 
81   MVT XLenVT = Subtarget.getXLenVT();
82 
83   // Set up the register classes.
84   addRegisterClass(XLenVT, &RISCV::GPRRegClass);
85 
86   if (Subtarget.hasStdExtZfh())
87     addRegisterClass(MVT::f16, &RISCV::FPR16RegClass);
88   if (Subtarget.hasStdExtF())
89     addRegisterClass(MVT::f32, &RISCV::FPR32RegClass);
90   if (Subtarget.hasStdExtD())
91     addRegisterClass(MVT::f64, &RISCV::FPR64RegClass);
92 
93   static const MVT::SimpleValueType BoolVecVTs[] = {
94       MVT::nxv1i1,  MVT::nxv2i1,  MVT::nxv4i1, MVT::nxv8i1,
95       MVT::nxv16i1, MVT::nxv32i1, MVT::nxv64i1};
96   static const MVT::SimpleValueType IntVecVTs[] = {
97       MVT::nxv1i8,  MVT::nxv2i8,   MVT::nxv4i8,   MVT::nxv8i8,  MVT::nxv16i8,
98       MVT::nxv32i8, MVT::nxv64i8,  MVT::nxv1i16,  MVT::nxv2i16, MVT::nxv4i16,
99       MVT::nxv8i16, MVT::nxv16i16, MVT::nxv32i16, MVT::nxv1i32, MVT::nxv2i32,
100       MVT::nxv4i32, MVT::nxv8i32,  MVT::nxv16i32, MVT::nxv1i64, MVT::nxv2i64,
101       MVT::nxv4i64, MVT::nxv8i64};
102   static const MVT::SimpleValueType F16VecVTs[] = {
103       MVT::nxv1f16, MVT::nxv2f16,  MVT::nxv4f16,
104       MVT::nxv8f16, MVT::nxv16f16, MVT::nxv32f16};
105   static const MVT::SimpleValueType F32VecVTs[] = {
106       MVT::nxv1f32, MVT::nxv2f32, MVT::nxv4f32, MVT::nxv8f32, MVT::nxv16f32};
107   static const MVT::SimpleValueType F64VecVTs[] = {
108       MVT::nxv1f64, MVT::nxv2f64, MVT::nxv4f64, MVT::nxv8f64};
109 
110   if (Subtarget.hasStdExtV()) {
111     auto addRegClassForRVV = [this](MVT VT) {
112       unsigned Size = VT.getSizeInBits().getKnownMinValue();
113       assert(Size <= 512 && isPowerOf2_32(Size));
114       const TargetRegisterClass *RC;
115       if (Size <= 64)
116         RC = &RISCV::VRRegClass;
117       else if (Size == 128)
118         RC = &RISCV::VRM2RegClass;
119       else if (Size == 256)
120         RC = &RISCV::VRM4RegClass;
121       else
122         RC = &RISCV::VRM8RegClass;
123 
124       addRegisterClass(VT, RC);
125     };
126 
127     for (MVT VT : BoolVecVTs)
128       addRegClassForRVV(VT);
129     for (MVT VT : IntVecVTs)
130       addRegClassForRVV(VT);
131 
132     if (Subtarget.hasStdExtZfh())
133       for (MVT VT : F16VecVTs)
134         addRegClassForRVV(VT);
135 
136     if (Subtarget.hasStdExtF())
137       for (MVT VT : F32VecVTs)
138         addRegClassForRVV(VT);
139 
140     if (Subtarget.hasStdExtD())
141       for (MVT VT : F64VecVTs)
142         addRegClassForRVV(VT);
143 
144     if (Subtarget.useRVVForFixedLengthVectors()) {
145       auto addRegClassForFixedVectors = [this](MVT VT) {
146         unsigned LMul = Subtarget.getLMULForFixedLengthVector(VT);
147         const TargetRegisterClass *RC;
148         if (LMul == 1)
149           RC = &RISCV::VRRegClass;
150         else if (LMul == 2)
151           RC = &RISCV::VRM2RegClass;
152         else if (LMul == 4)
153           RC = &RISCV::VRM4RegClass;
154         else if (LMul == 8)
155           RC = &RISCV::VRM8RegClass;
156         else
157           llvm_unreachable("Unexpected LMul!");
158 
159         addRegisterClass(VT, RC);
160       };
161       for (MVT VT : MVT::integer_fixedlen_vector_valuetypes())
162         if (useRVVForFixedLengthVectorVT(VT))
163           addRegClassForFixedVectors(VT);
164 
165       for (MVT VT : MVT::fp_fixedlen_vector_valuetypes())
166         if (useRVVForFixedLengthVectorVT(VT))
167           addRegClassForFixedVectors(VT);
168     }
169   }
170 
171   // Compute derived properties from the register classes.
172   computeRegisterProperties(STI.getRegisterInfo());
173 
174   setStackPointerRegisterToSaveRestore(RISCV::X2);
175 
176   for (auto N : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD})
177     setLoadExtAction(N, XLenVT, MVT::i1, Promote);
178 
179   // TODO: add all necessary setOperationAction calls.
180   setOperationAction(ISD::DYNAMIC_STACKALLOC, XLenVT, Expand);
181 
182   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
183   setOperationAction(ISD::BR_CC, XLenVT, Expand);
184   setOperationAction(ISD::SELECT_CC, XLenVT, Expand);
185 
186   setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
187   setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
188 
189   setOperationAction(ISD::VASTART, MVT::Other, Custom);
190   setOperationAction(ISD::VAARG, MVT::Other, Expand);
191   setOperationAction(ISD::VACOPY, MVT::Other, Expand);
192   setOperationAction(ISD::VAEND, MVT::Other, Expand);
193 
194   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
195   if (!Subtarget.hasStdExtZbb()) {
196     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand);
197     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
198   }
199 
200   if (Subtarget.is64Bit()) {
201     setOperationAction(ISD::ADD, MVT::i32, Custom);
202     setOperationAction(ISD::SUB, MVT::i32, Custom);
203     setOperationAction(ISD::SHL, MVT::i32, Custom);
204     setOperationAction(ISD::SRA, MVT::i32, Custom);
205     setOperationAction(ISD::SRL, MVT::i32, Custom);
206   }
207 
208   if (!Subtarget.hasStdExtM()) {
209     setOperationAction(ISD::MUL, XLenVT, Expand);
210     setOperationAction(ISD::MULHS, XLenVT, Expand);
211     setOperationAction(ISD::MULHU, XLenVT, Expand);
212     setOperationAction(ISD::SDIV, XLenVT, Expand);
213     setOperationAction(ISD::UDIV, XLenVT, Expand);
214     setOperationAction(ISD::SREM, XLenVT, Expand);
215     setOperationAction(ISD::UREM, XLenVT, Expand);
216   }
217 
218   if (Subtarget.is64Bit() && Subtarget.hasStdExtM()) {
219     setOperationAction(ISD::MUL, MVT::i32, Custom);
220 
221     setOperationAction(ISD::SDIV, MVT::i8, Custom);
222     setOperationAction(ISD::UDIV, MVT::i8, Custom);
223     setOperationAction(ISD::UREM, MVT::i8, Custom);
224     setOperationAction(ISD::SDIV, MVT::i16, Custom);
225     setOperationAction(ISD::UDIV, MVT::i16, Custom);
226     setOperationAction(ISD::UREM, MVT::i16, Custom);
227     setOperationAction(ISD::SDIV, MVT::i32, Custom);
228     setOperationAction(ISD::UDIV, MVT::i32, Custom);
229     setOperationAction(ISD::UREM, MVT::i32, Custom);
230   }
231 
232   setOperationAction(ISD::SDIVREM, XLenVT, Expand);
233   setOperationAction(ISD::UDIVREM, XLenVT, Expand);
234   setOperationAction(ISD::SMUL_LOHI, XLenVT, Expand);
235   setOperationAction(ISD::UMUL_LOHI, XLenVT, Expand);
236 
237   setOperationAction(ISD::SHL_PARTS, XLenVT, Custom);
238   setOperationAction(ISD::SRL_PARTS, XLenVT, Custom);
239   setOperationAction(ISD::SRA_PARTS, XLenVT, Custom);
240 
241   if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp()) {
242     if (Subtarget.is64Bit()) {
243       setOperationAction(ISD::ROTL, MVT::i32, Custom);
244       setOperationAction(ISD::ROTR, MVT::i32, Custom);
245     }
246   } else {
247     setOperationAction(ISD::ROTL, XLenVT, Expand);
248     setOperationAction(ISD::ROTR, XLenVT, Expand);
249   }
250 
251   if (Subtarget.hasStdExtZbp()) {
252     // Custom lower bswap/bitreverse so we can convert them to GREVI to enable
253     // more combining.
254     setOperationAction(ISD::BITREVERSE, XLenVT, Custom);
255     setOperationAction(ISD::BSWAP, XLenVT, Custom);
256 
257     if (Subtarget.is64Bit()) {
258       setOperationAction(ISD::BITREVERSE, MVT::i32, Custom);
259       setOperationAction(ISD::BSWAP, MVT::i32, Custom);
260     }
261   } else {
262     // With Zbb we have an XLen rev8 instruction, but not GREVI. So we'll
263     // pattern match it directly in isel.
264     setOperationAction(ISD::BSWAP, XLenVT,
265                        Subtarget.hasStdExtZbb() ? Legal : Expand);
266   }
267 
268   if (Subtarget.hasStdExtZbb()) {
269     setOperationAction(ISD::SMIN, XLenVT, Legal);
270     setOperationAction(ISD::SMAX, XLenVT, Legal);
271     setOperationAction(ISD::UMIN, XLenVT, Legal);
272     setOperationAction(ISD::UMAX, XLenVT, Legal);
273   } else {
274     setOperationAction(ISD::CTTZ, XLenVT, Expand);
275     setOperationAction(ISD::CTLZ, XLenVT, Expand);
276     setOperationAction(ISD::CTPOP, XLenVT, Expand);
277   }
278 
279   if (Subtarget.hasStdExtZbt()) {
280     setOperationAction(ISD::FSHL, XLenVT, Custom);
281     setOperationAction(ISD::FSHR, XLenVT, Custom);
282     setOperationAction(ISD::SELECT, XLenVT, Legal);
283 
284     if (Subtarget.is64Bit()) {
285       setOperationAction(ISD::FSHL, MVT::i32, Custom);
286       setOperationAction(ISD::FSHR, MVT::i32, Custom);
287     }
288   } else {
289     setOperationAction(ISD::SELECT, XLenVT, Custom);
290   }
291 
292   ISD::CondCode FPCCToExpand[] = {
293       ISD::SETOGT, ISD::SETOGE, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT,
294       ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUNE, ISD::SETGT,
295       ISD::SETGE,  ISD::SETNE,  ISD::SETO,   ISD::SETUO};
296 
297   ISD::NodeType FPOpToExpand[] = {
298       ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, ISD::FREM, ISD::FP16_TO_FP,
299       ISD::FP_TO_FP16};
300 
301   if (Subtarget.hasStdExtZfh())
302     setOperationAction(ISD::BITCAST, MVT::i16, Custom);
303 
304   if (Subtarget.hasStdExtZfh()) {
305     setOperationAction(ISD::FMINNUM, MVT::f16, Legal);
306     setOperationAction(ISD::FMAXNUM, MVT::f16, Legal);
307     for (auto CC : FPCCToExpand)
308       setCondCodeAction(CC, MVT::f16, Expand);
309     setOperationAction(ISD::SELECT_CC, MVT::f16, Expand);
310     setOperationAction(ISD::SELECT, MVT::f16, Custom);
311     setOperationAction(ISD::BR_CC, MVT::f16, Expand);
312     for (auto Op : FPOpToExpand)
313       setOperationAction(Op, MVT::f16, Expand);
314   }
315 
316   if (Subtarget.hasStdExtF()) {
317     setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
318     setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
319     for (auto CC : FPCCToExpand)
320       setCondCodeAction(CC, MVT::f32, Expand);
321     setOperationAction(ISD::SELECT_CC, MVT::f32, Expand);
322     setOperationAction(ISD::SELECT, MVT::f32, Custom);
323     setOperationAction(ISD::BR_CC, MVT::f32, Expand);
324     for (auto Op : FPOpToExpand)
325       setOperationAction(Op, MVT::f32, Expand);
326     setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
327     setTruncStoreAction(MVT::f32, MVT::f16, Expand);
328   }
329 
330   if (Subtarget.hasStdExtF() && Subtarget.is64Bit())
331     setOperationAction(ISD::BITCAST, MVT::i32, Custom);
332 
333   if (Subtarget.hasStdExtD()) {
334     setOperationAction(ISD::FMINNUM, MVT::f64, Legal);
335     setOperationAction(ISD::FMAXNUM, MVT::f64, Legal);
336     for (auto CC : FPCCToExpand)
337       setCondCodeAction(CC, MVT::f64, Expand);
338     setOperationAction(ISD::SELECT_CC, MVT::f64, Expand);
339     setOperationAction(ISD::SELECT, MVT::f64, Custom);
340     setOperationAction(ISD::BR_CC, MVT::f64, Expand);
341     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
342     setTruncStoreAction(MVT::f64, MVT::f32, Expand);
343     for (auto Op : FPOpToExpand)
344       setOperationAction(Op, MVT::f64, Expand);
345     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
346     setTruncStoreAction(MVT::f64, MVT::f16, Expand);
347   }
348 
349   if (Subtarget.is64Bit()) {
350     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
351     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
352     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom);
353     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom);
354   }
355 
356   setOperationAction(ISD::GlobalAddress, XLenVT, Custom);
357   setOperationAction(ISD::BlockAddress, XLenVT, Custom);
358   setOperationAction(ISD::ConstantPool, XLenVT, Custom);
359   setOperationAction(ISD::JumpTable, XLenVT, Custom);
360 
361   setOperationAction(ISD::GlobalTLSAddress, XLenVT, Custom);
362 
363   // TODO: On M-mode only targets, the cycle[h] CSR may not be present.
364   // Unfortunately this can't be determined just from the ISA naming string.
365   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64,
366                      Subtarget.is64Bit() ? Legal : Custom);
367 
368   setOperationAction(ISD::TRAP, MVT::Other, Legal);
369   setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal);
370   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
371 
372   if (Subtarget.hasStdExtA()) {
373     setMaxAtomicSizeInBitsSupported(Subtarget.getXLen());
374     setMinCmpXchgSizeInBits(32);
375   } else {
376     setMaxAtomicSizeInBitsSupported(0);
377   }
378 
379   setBooleanContents(ZeroOrOneBooleanContent);
380 
381   if (Subtarget.hasStdExtV()) {
382     setBooleanVectorContents(ZeroOrOneBooleanContent);
383 
384     setOperationAction(ISD::VSCALE, XLenVT, Custom);
385 
386     // RVV intrinsics may have illegal operands.
387     // We also need to custom legalize vmv.x.s.
388     setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i8, Custom);
389     setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i16, Custom);
390     setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i8, Custom);
391     setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i16, Custom);
392     setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i32, Custom);
393     setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i32, Custom);
394 
395     setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
396 
397     if (Subtarget.is64Bit()) {
398       setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i64, Custom);
399       setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i64, Custom);
400     } else {
401       // We must custom-lower certain vXi64 operations on RV32 due to the vector
402       // element type being illegal.
403       setOperationAction(ISD::SPLAT_VECTOR, MVT::i64, Custom);
404       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::i64, Custom);
405       setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::i64, Custom);
406 
407       setOperationAction(ISD::VECREDUCE_ADD, MVT::i64, Custom);
408       setOperationAction(ISD::VECREDUCE_AND, MVT::i64, Custom);
409       setOperationAction(ISD::VECREDUCE_OR, MVT::i64, Custom);
410       setOperationAction(ISD::VECREDUCE_XOR, MVT::i64, Custom);
411       setOperationAction(ISD::VECREDUCE_SMAX, MVT::i64, Custom);
412       setOperationAction(ISD::VECREDUCE_SMIN, MVT::i64, Custom);
413       setOperationAction(ISD::VECREDUCE_UMAX, MVT::i64, Custom);
414       setOperationAction(ISD::VECREDUCE_UMIN, MVT::i64, Custom);
415     }
416 
417     for (MVT VT : BoolVecVTs) {
418       setOperationAction(ISD::SPLAT_VECTOR, VT, Legal);
419 
420       // Mask VTs are custom-expanded into a series of standard nodes
421       setOperationAction(ISD::TRUNCATE, VT, Custom);
422       setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
423       setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
424     }
425 
426     for (MVT VT : IntVecVTs) {
427       setOperationAction(ISD::SPLAT_VECTOR, VT, Legal);
428 
429       setOperationAction(ISD::SMIN, VT, Legal);
430       setOperationAction(ISD::SMAX, VT, Legal);
431       setOperationAction(ISD::UMIN, VT, Legal);
432       setOperationAction(ISD::UMAX, VT, Legal);
433 
434       setOperationAction(ISD::ROTL, VT, Expand);
435       setOperationAction(ISD::ROTR, VT, Expand);
436 
437       // Custom-lower extensions and truncations from/to mask types.
438       setOperationAction(ISD::ANY_EXTEND, VT, Custom);
439       setOperationAction(ISD::SIGN_EXTEND, VT, Custom);
440       setOperationAction(ISD::ZERO_EXTEND, VT, Custom);
441 
442       // RVV has native int->float & float->int conversions where the
443       // element type sizes are within one power-of-two of each other. Any
444       // wider distances between type sizes have to be lowered as sequences
445       // which progressively narrow the gap in stages.
446       setOperationAction(ISD::SINT_TO_FP, VT, Custom);
447       setOperationAction(ISD::UINT_TO_FP, VT, Custom);
448       setOperationAction(ISD::FP_TO_SINT, VT, Custom);
449       setOperationAction(ISD::FP_TO_UINT, VT, Custom);
450 
451       // Integer VTs are lowered as a series of "RISCVISD::TRUNCATE_VECTOR_VL"
452       // nodes which truncate by one power of two at a time.
453       setOperationAction(ISD::TRUNCATE, VT, Custom);
454 
455       // Custom-lower insert/extract operations to simplify patterns.
456       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
457       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
458 
459       // Custom-lower reduction operations to set up the corresponding custom
460       // nodes' operands.
461       setOperationAction(ISD::VECREDUCE_ADD, VT, Custom);
462       setOperationAction(ISD::VECREDUCE_AND, VT, Custom);
463       setOperationAction(ISD::VECREDUCE_OR, VT, Custom);
464       setOperationAction(ISD::VECREDUCE_XOR, VT, Custom);
465       setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom);
466       setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom);
467       setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom);
468       setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom);
469 
470       setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
471       setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
472     }
473 
474     // Expand various CCs to best match the RVV ISA, which natively supports UNE
475     // but no other unordered comparisons, and supports all ordered comparisons
476     // except ONE. Additionally, we expand GT,OGT,GE,OGE for optimization
477     // purposes; they are expanded to their swapped-operand CCs (LT,OLT,LE,OLE),
478     // and we pattern-match those back to the "original", swapping operands once
479     // more. This way we catch both operations and both "vf" and "fv" forms with
480     // fewer patterns.
481     ISD::CondCode VFPCCToExpand[] = {
482         ISD::SETO,   ISD::SETONE, ISD::SETUEQ, ISD::SETUGT,
483         ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUO,
484         ISD::SETGT,  ISD::SETOGT, ISD::SETGE,  ISD::SETOGE,
485     };
486 
487     // Sets common operation actions on RVV floating-point vector types.
488     const auto SetCommonVFPActions = [&](MVT VT) {
489       setOperationAction(ISD::SPLAT_VECTOR, VT, Legal);
490       // RVV has native FP_ROUND & FP_EXTEND conversions where the element type
491       // sizes are within one power-of-two of each other. Therefore conversions
492       // between vXf16 and vXf64 must be lowered as sequences which convert via
493       // vXf32.
494       setOperationAction(ISD::FP_ROUND, VT, Custom);
495       setOperationAction(ISD::FP_EXTEND, VT, Custom);
496       // Custom-lower insert/extract operations to simplify patterns.
497       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
498       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
499       // Expand various condition codes (explained above).
500       for (auto CC : VFPCCToExpand)
501         setCondCodeAction(CC, VT, Expand);
502 
503       setOperationAction(ISD::VECREDUCE_FADD, VT, Custom);
504       setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom);
505       setOperationAction(ISD::FCOPYSIGN, VT, Legal);
506 
507       setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
508       setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
509     };
510 
511     if (Subtarget.hasStdExtZfh())
512       for (MVT VT : F16VecVTs)
513         SetCommonVFPActions(VT);
514 
515     if (Subtarget.hasStdExtF())
516       for (MVT VT : F32VecVTs)
517         SetCommonVFPActions(VT);
518 
519     if (Subtarget.hasStdExtD())
520       for (MVT VT : F64VecVTs)
521         SetCommonVFPActions(VT);
522 
523     if (Subtarget.useRVVForFixedLengthVectors()) {
524       for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) {
525         if (!useRVVForFixedLengthVectorVT(VT))
526           continue;
527 
528         // By default everything must be expanded.
529         for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op)
530           setOperationAction(Op, VT, Expand);
531         for (MVT OtherVT : MVT::fixedlen_vector_valuetypes())
532           setTruncStoreAction(VT, OtherVT, Expand);
533 
534         // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed.
535         setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
536         setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
537 
538         setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
539         setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
540 
541         setOperationAction(ISD::LOAD, VT, Custom);
542         setOperationAction(ISD::STORE, VT, Custom);
543 
544         setOperationAction(ISD::SETCC, VT, Custom);
545 
546         setOperationAction(ISD::TRUNCATE, VT, Custom);
547 
548         // Operations below are different for between masks and other vectors.
549         if (VT.getVectorElementType() == MVT::i1) {
550           setOperationAction(ISD::AND, VT, Custom);
551           setOperationAction(ISD::OR, VT, Custom);
552           setOperationAction(ISD::XOR, VT, Custom);
553           continue;
554         }
555 
556         setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
557         setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
558         setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
559 
560         setOperationAction(ISD::ADD, VT, Custom);
561         setOperationAction(ISD::MUL, VT, Custom);
562         setOperationAction(ISD::SUB, VT, Custom);
563         setOperationAction(ISD::AND, VT, Custom);
564         setOperationAction(ISD::OR, VT, Custom);
565         setOperationAction(ISD::XOR, VT, Custom);
566         setOperationAction(ISD::SDIV, VT, Custom);
567         setOperationAction(ISD::SREM, VT, Custom);
568         setOperationAction(ISD::UDIV, VT, Custom);
569         setOperationAction(ISD::UREM, VT, Custom);
570         setOperationAction(ISD::SHL, VT, Custom);
571         setOperationAction(ISD::SRA, VT, Custom);
572         setOperationAction(ISD::SRL, VT, Custom);
573 
574         setOperationAction(ISD::SMIN, VT, Custom);
575         setOperationAction(ISD::SMAX, VT, Custom);
576         setOperationAction(ISD::UMIN, VT, Custom);
577         setOperationAction(ISD::UMAX, VT, Custom);
578 
579         setOperationAction(ISD::MULHS, VT, Custom);
580         setOperationAction(ISD::MULHU, VT, Custom);
581 
582         setOperationAction(ISD::SINT_TO_FP, VT, Custom);
583         setOperationAction(ISD::UINT_TO_FP, VT, Custom);
584         setOperationAction(ISD::FP_TO_SINT, VT, Custom);
585         setOperationAction(ISD::FP_TO_UINT, VT, Custom);
586 
587         setOperationAction(ISD::VSELECT, VT, Custom);
588 
589         setOperationAction(ISD::ANY_EXTEND, VT, Custom);
590         setOperationAction(ISD::SIGN_EXTEND, VT, Custom);
591         setOperationAction(ISD::ZERO_EXTEND, VT, Custom);
592 
593         setOperationAction(ISD::BITCAST, VT, Custom);
594       }
595 
596       for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) {
597         if (!useRVVForFixedLengthVectorVT(VT))
598           continue;
599 
600         // By default everything must be expanded.
601         for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op)
602           setOperationAction(Op, VT, Expand);
603         for (MVT OtherVT : MVT::fp_fixedlen_vector_valuetypes()) {
604           setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand);
605           setTruncStoreAction(VT, OtherVT, Expand);
606         }
607 
608         // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed.
609         setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
610         setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
611 
612         setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
613         setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
614         setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
615         setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
616 
617         setOperationAction(ISD::LOAD, VT, Custom);
618         setOperationAction(ISD::STORE, VT, Custom);
619         setOperationAction(ISD::FADD, VT, Custom);
620         setOperationAction(ISD::FSUB, VT, Custom);
621         setOperationAction(ISD::FMUL, VT, Custom);
622         setOperationAction(ISD::FDIV, VT, Custom);
623         setOperationAction(ISD::FNEG, VT, Custom);
624         setOperationAction(ISD::FABS, VT, Custom);
625         setOperationAction(ISD::FSQRT, VT, Custom);
626         setOperationAction(ISD::FMA, VT, Custom);
627 
628         setOperationAction(ISD::FP_ROUND, VT, Custom);
629         setOperationAction(ISD::FP_EXTEND, VT, Custom);
630 
631         for (auto CC : VFPCCToExpand)
632           setCondCodeAction(CC, VT, Expand);
633 
634         setOperationAction(ISD::VSELECT, VT, Custom);
635 
636         setOperationAction(ISD::BITCAST, VT, Custom);
637       }
638     }
639   }
640 
641   // Function alignments.
642   const Align FunctionAlignment(Subtarget.hasStdExtC() ? 2 : 4);
643   setMinFunctionAlignment(FunctionAlignment);
644   setPrefFunctionAlignment(FunctionAlignment);
645 
646   setMinimumJumpTableEntries(5);
647 
648   // Jumps are expensive, compared to logic
649   setJumpIsExpensive();
650 
651   // We can use any register for comparisons
652   setHasMultipleConditionRegisters();
653 
654   setTargetDAGCombine(ISD::SETCC);
655   if (Subtarget.hasStdExtZbp()) {
656     setTargetDAGCombine(ISD::OR);
657   }
658   if (Subtarget.hasStdExtV())
659     setTargetDAGCombine(ISD::FCOPYSIGN);
660 }
661 
662 EVT RISCVTargetLowering::getSetCCResultType(const DataLayout &DL,
663                                             LLVMContext &Context,
664                                             EVT VT) const {
665   if (!VT.isVector())
666     return getPointerTy(DL);
667   if (Subtarget.hasStdExtV() &&
668       (VT.isScalableVector() || Subtarget.useRVVForFixedLengthVectors()))
669     return EVT::getVectorVT(Context, MVT::i1, VT.getVectorElementCount());
670   return VT.changeVectorElementTypeToInteger();
671 }
672 
673 bool RISCVTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
674                                              const CallInst &I,
675                                              MachineFunction &MF,
676                                              unsigned Intrinsic) const {
677   switch (Intrinsic) {
678   default:
679     return false;
680   case Intrinsic::riscv_masked_atomicrmw_xchg_i32:
681   case Intrinsic::riscv_masked_atomicrmw_add_i32:
682   case Intrinsic::riscv_masked_atomicrmw_sub_i32:
683   case Intrinsic::riscv_masked_atomicrmw_nand_i32:
684   case Intrinsic::riscv_masked_atomicrmw_max_i32:
685   case Intrinsic::riscv_masked_atomicrmw_min_i32:
686   case Intrinsic::riscv_masked_atomicrmw_umax_i32:
687   case Intrinsic::riscv_masked_atomicrmw_umin_i32:
688   case Intrinsic::riscv_masked_cmpxchg_i32:
689     PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType());
690     Info.opc = ISD::INTRINSIC_W_CHAIN;
691     Info.memVT = MVT::getVT(PtrTy->getElementType());
692     Info.ptrVal = I.getArgOperand(0);
693     Info.offset = 0;
694     Info.align = Align(4);
695     Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore |
696                  MachineMemOperand::MOVolatile;
697     return true;
698   }
699 }
700 
701 bool RISCVTargetLowering::isLegalAddressingMode(const DataLayout &DL,
702                                                 const AddrMode &AM, Type *Ty,
703                                                 unsigned AS,
704                                                 Instruction *I) const {
705   // No global is ever allowed as a base.
706   if (AM.BaseGV)
707     return false;
708 
709   // Require a 12-bit signed offset.
710   if (!isInt<12>(AM.BaseOffs))
711     return false;
712 
713   switch (AM.Scale) {
714   case 0: // "r+i" or just "i", depending on HasBaseReg.
715     break;
716   case 1:
717     if (!AM.HasBaseReg) // allow "r+i".
718       break;
719     return false; // disallow "r+r" or "r+r+i".
720   default:
721     return false;
722   }
723 
724   return true;
725 }
726 
727 bool RISCVTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
728   return isInt<12>(Imm);
729 }
730 
731 bool RISCVTargetLowering::isLegalAddImmediate(int64_t Imm) const {
732   return isInt<12>(Imm);
733 }
734 
735 // On RV32, 64-bit integers are split into their high and low parts and held
736 // in two different registers, so the trunc is free since the low register can
737 // just be used.
738 bool RISCVTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const {
739   if (Subtarget.is64Bit() || !SrcTy->isIntegerTy() || !DstTy->isIntegerTy())
740     return false;
741   unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();
742   unsigned DestBits = DstTy->getPrimitiveSizeInBits();
743   return (SrcBits == 64 && DestBits == 32);
744 }
745 
746 bool RISCVTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const {
747   if (Subtarget.is64Bit() || SrcVT.isVector() || DstVT.isVector() ||
748       !SrcVT.isInteger() || !DstVT.isInteger())
749     return false;
750   unsigned SrcBits = SrcVT.getSizeInBits();
751   unsigned DestBits = DstVT.getSizeInBits();
752   return (SrcBits == 64 && DestBits == 32);
753 }
754 
755 bool RISCVTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
756   // Zexts are free if they can be combined with a load.
757   if (auto *LD = dyn_cast<LoadSDNode>(Val)) {
758     EVT MemVT = LD->getMemoryVT();
759     if ((MemVT == MVT::i8 || MemVT == MVT::i16 ||
760          (Subtarget.is64Bit() && MemVT == MVT::i32)) &&
761         (LD->getExtensionType() == ISD::NON_EXTLOAD ||
762          LD->getExtensionType() == ISD::ZEXTLOAD))
763       return true;
764   }
765 
766   return TargetLowering::isZExtFree(Val, VT2);
767 }
768 
769 bool RISCVTargetLowering::isSExtCheaperThanZExt(EVT SrcVT, EVT DstVT) const {
770   return Subtarget.is64Bit() && SrcVT == MVT::i32 && DstVT == MVT::i64;
771 }
772 
773 bool RISCVTargetLowering::isCheapToSpeculateCttz() const {
774   return Subtarget.hasStdExtZbb();
775 }
776 
777 bool RISCVTargetLowering::isCheapToSpeculateCtlz() const {
778   return Subtarget.hasStdExtZbb();
779 }
780 
781 bool RISCVTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
782                                        bool ForCodeSize) const {
783   if (VT == MVT::f16 && !Subtarget.hasStdExtZfh())
784     return false;
785   if (VT == MVT::f32 && !Subtarget.hasStdExtF())
786     return false;
787   if (VT == MVT::f64 && !Subtarget.hasStdExtD())
788     return false;
789   if (Imm.isNegZero())
790     return false;
791   return Imm.isZero();
792 }
793 
794 bool RISCVTargetLowering::hasBitPreservingFPLogic(EVT VT) const {
795   return (VT == MVT::f16 && Subtarget.hasStdExtZfh()) ||
796          (VT == MVT::f32 && Subtarget.hasStdExtF()) ||
797          (VT == MVT::f64 && Subtarget.hasStdExtD());
798 }
799 
800 // Changes the condition code and swaps operands if necessary, so the SetCC
801 // operation matches one of the comparisons supported directly in the RISC-V
802 // ISA.
803 static void normaliseSetCC(SDValue &LHS, SDValue &RHS, ISD::CondCode &CC) {
804   switch (CC) {
805   default:
806     break;
807   case ISD::SETGT:
808   case ISD::SETLE:
809   case ISD::SETUGT:
810   case ISD::SETULE:
811     CC = ISD::getSetCCSwappedOperands(CC);
812     std::swap(LHS, RHS);
813     break;
814   }
815 }
816 
817 // Return the RISC-V branch opcode that matches the given DAG integer
818 // condition code. The CondCode must be one of those supported by the RISC-V
819 // ISA (see normaliseSetCC).
820 static unsigned getBranchOpcodeForIntCondCode(ISD::CondCode CC) {
821   switch (CC) {
822   default:
823     llvm_unreachable("Unsupported CondCode");
824   case ISD::SETEQ:
825     return RISCV::BEQ;
826   case ISD::SETNE:
827     return RISCV::BNE;
828   case ISD::SETLT:
829     return RISCV::BLT;
830   case ISD::SETGE:
831     return RISCV::BGE;
832   case ISD::SETULT:
833     return RISCV::BLTU;
834   case ISD::SETUGE:
835     return RISCV::BGEU;
836   }
837 }
838 
839 RISCVVLMUL RISCVTargetLowering::getLMUL(MVT VT) {
840   assert(VT.isScalableVector() && "Expecting a scalable vector type");
841   unsigned KnownSize = VT.getSizeInBits().getKnownMinValue();
842   if (VT.getVectorElementType() == MVT::i1)
843     KnownSize *= 8;
844 
845   switch (KnownSize) {
846   default:
847     llvm_unreachable("Invalid LMUL.");
848   case 8:
849     return RISCVVLMUL::LMUL_F8;
850   case 16:
851     return RISCVVLMUL::LMUL_F4;
852   case 32:
853     return RISCVVLMUL::LMUL_F2;
854   case 64:
855     return RISCVVLMUL::LMUL_1;
856   case 128:
857     return RISCVVLMUL::LMUL_2;
858   case 256:
859     return RISCVVLMUL::LMUL_4;
860   case 512:
861     return RISCVVLMUL::LMUL_8;
862   }
863 }
864 
865 unsigned RISCVTargetLowering::getRegClassIDForLMUL(RISCVVLMUL LMul) {
866   switch (LMul) {
867   default:
868     llvm_unreachable("Invalid LMUL.");
869   case RISCVVLMUL::LMUL_F8:
870   case RISCVVLMUL::LMUL_F4:
871   case RISCVVLMUL::LMUL_F2:
872   case RISCVVLMUL::LMUL_1:
873     return RISCV::VRRegClassID;
874   case RISCVVLMUL::LMUL_2:
875     return RISCV::VRM2RegClassID;
876   case RISCVVLMUL::LMUL_4:
877     return RISCV::VRM4RegClassID;
878   case RISCVVLMUL::LMUL_8:
879     return RISCV::VRM8RegClassID;
880   }
881 }
882 
883 unsigned RISCVTargetLowering::getSubregIndexByMVT(MVT VT, unsigned Index) {
884   RISCVVLMUL LMUL = getLMUL(VT);
885   if (LMUL == RISCVVLMUL::LMUL_F8 || LMUL == RISCVVLMUL::LMUL_F4 ||
886       LMUL == RISCVVLMUL::LMUL_F2 || LMUL == RISCVVLMUL::LMUL_1) {
887     static_assert(RISCV::sub_vrm1_7 == RISCV::sub_vrm1_0 + 7,
888                   "Unexpected subreg numbering");
889     return RISCV::sub_vrm1_0 + Index;
890   }
891   if (LMUL == RISCVVLMUL::LMUL_2) {
892     static_assert(RISCV::sub_vrm2_3 == RISCV::sub_vrm2_0 + 3,
893                   "Unexpected subreg numbering");
894     return RISCV::sub_vrm2_0 + Index;
895   }
896   if (LMUL == RISCVVLMUL::LMUL_4) {
897     static_assert(RISCV::sub_vrm4_1 == RISCV::sub_vrm4_0 + 1,
898                   "Unexpected subreg numbering");
899     return RISCV::sub_vrm4_0 + Index;
900   }
901   llvm_unreachable("Invalid vector type.");
902 }
903 
904 unsigned RISCVTargetLowering::getRegClassIDForVecVT(MVT VT) {
905   if (VT.getVectorElementType() == MVT::i1)
906     return RISCV::VRRegClassID;
907   return getRegClassIDForLMUL(getLMUL(VT));
908 }
909 
910 // Attempt to decompose a subvector insert/extract between VecVT and
911 // SubVecVT via subregister indices. Returns the subregister index that
912 // can perform the subvector insert/extract with the given element index, as
913 // well as the index corresponding to any leftover subvectors that must be
914 // further inserted/extracted within the register class for SubVecVT.
915 std::pair<unsigned, unsigned>
916 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs(
917     MVT VecVT, MVT SubVecVT, unsigned InsertExtractIdx,
918     const RISCVRegisterInfo *TRI) {
919   static_assert((RISCV::VRM8RegClassID > RISCV::VRM4RegClassID &&
920                  RISCV::VRM4RegClassID > RISCV::VRM2RegClassID &&
921                  RISCV::VRM2RegClassID > RISCV::VRRegClassID),
922                 "Register classes not ordered");
923   unsigned VecRegClassID = getRegClassIDForVecVT(VecVT);
924   unsigned SubRegClassID = getRegClassIDForVecVT(SubVecVT);
925   // Try to compose a subregister index that takes us from the incoming
926   // LMUL>1 register class down to the outgoing one. At each step we half
927   // the LMUL:
928   //   nxv16i32@12 -> nxv2i32: sub_vrm4_1_then_sub_vrm2_1_then_sub_vrm1_0
929   // Note that this is not guaranteed to find a subregister index, such as
930   // when we are extracting from one VR type to another.
931   unsigned SubRegIdx = RISCV::NoSubRegister;
932   for (const unsigned RCID :
933        {RISCV::VRM4RegClassID, RISCV::VRM2RegClassID, RISCV::VRRegClassID})
934     if (VecRegClassID > RCID && SubRegClassID <= RCID) {
935       VecVT = VecVT.getHalfNumVectorElementsVT();
936       bool IsHi =
937           InsertExtractIdx >= VecVT.getVectorElementCount().getKnownMinValue();
938       SubRegIdx = TRI->composeSubRegIndices(SubRegIdx,
939                                             getSubregIndexByMVT(VecVT, IsHi));
940       if (IsHi)
941         InsertExtractIdx -= VecVT.getVectorElementCount().getKnownMinValue();
942     }
943   return {SubRegIdx, InsertExtractIdx};
944 }
945 
946 // Return the largest legal scalable vector type that matches VT's element type.
947 MVT RISCVTargetLowering::getContainerForFixedLengthVector(
948     const TargetLowering &TLI, MVT VT, const RISCVSubtarget &Subtarget) {
949   assert(VT.isFixedLengthVector() && TLI.isTypeLegal(VT) &&
950          "Expected legal fixed length vector!");
951 
952   unsigned LMul = Subtarget.getLMULForFixedLengthVector(VT);
953   assert(LMul <= 8 && isPowerOf2_32(LMul) && "Unexpected LMUL!");
954 
955   MVT EltVT = VT.getVectorElementType();
956   switch (EltVT.SimpleTy) {
957   default:
958     llvm_unreachable("unexpected element type for RVV container");
959   case MVT::i1: {
960     // Masks are calculated assuming 8-bit elements since that's when we need
961     // the most elements.
962     unsigned EltsPerBlock = RISCV::RVVBitsPerBlock / 8;
963     return MVT::getScalableVectorVT(MVT::i1, LMul * EltsPerBlock);
964   }
965   case MVT::i8:
966   case MVT::i16:
967   case MVT::i32:
968   case MVT::i64:
969   case MVT::f16:
970   case MVT::f32:
971   case MVT::f64: {
972     unsigned EltsPerBlock = RISCV::RVVBitsPerBlock / EltVT.getSizeInBits();
973     return MVT::getScalableVectorVT(EltVT, LMul * EltsPerBlock);
974   }
975   }
976 }
977 
978 MVT RISCVTargetLowering::getContainerForFixedLengthVector(
979     SelectionDAG &DAG, MVT VT, const RISCVSubtarget &Subtarget) {
980   return getContainerForFixedLengthVector(DAG.getTargetLoweringInfo(), VT,
981                                           Subtarget);
982 }
983 
984 MVT RISCVTargetLowering::getContainerForFixedLengthVector(MVT VT) const {
985   return getContainerForFixedLengthVector(*this, VT, getSubtarget());
986 }
987 
988 // Grow V to consume an entire RVV register.
989 static SDValue convertToScalableVector(EVT VT, SDValue V, SelectionDAG &DAG,
990                                        const RISCVSubtarget &Subtarget) {
991   assert(VT.isScalableVector() &&
992          "Expected to convert into a scalable vector!");
993   assert(V.getValueType().isFixedLengthVector() &&
994          "Expected a fixed length vector operand!");
995   SDLoc DL(V);
996   SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT());
997   return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, DAG.getUNDEF(VT), V, Zero);
998 }
999 
1000 // Shrink V so it's just big enough to maintain a VT's worth of data.
1001 static SDValue convertFromScalableVector(EVT VT, SDValue V, SelectionDAG &DAG,
1002                                          const RISCVSubtarget &Subtarget) {
1003   assert(VT.isFixedLengthVector() &&
1004          "Expected to convert into a fixed length vector!");
1005   assert(V.getValueType().isScalableVector() &&
1006          "Expected a scalable vector operand!");
1007   SDLoc DL(V);
1008   SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT());
1009   return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V, Zero);
1010 }
1011 
1012 // Gets the two common "VL" operands: an all-ones mask and the vector length.
1013 // VecVT is a vector type, either fixed-length or scalable, and ContainerVT is
1014 // the vector type that it is contained in.
1015 static std::pair<SDValue, SDValue>
1016 getDefaultVLOps(MVT VecVT, MVT ContainerVT, SDLoc DL, SelectionDAG &DAG,
1017                 const RISCVSubtarget &Subtarget) {
1018   assert(ContainerVT.isScalableVector() && "Expecting scalable container type");
1019   MVT XLenVT = Subtarget.getXLenVT();
1020   SDValue VL = VecVT.isFixedLengthVector()
1021                    ? DAG.getConstant(VecVT.getVectorNumElements(), DL, XLenVT)
1022                    : DAG.getRegister(RISCV::X0, XLenVT);
1023   MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
1024   SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
1025   return {Mask, VL};
1026 }
1027 
1028 // As above but assuming the given type is a scalable vector type.
1029 static std::pair<SDValue, SDValue>
1030 getDefaultScalableVLOps(MVT VecVT, SDLoc DL, SelectionDAG &DAG,
1031                         const RISCVSubtarget &Subtarget) {
1032   assert(VecVT.isScalableVector() && "Expecting a scalable vector");
1033   return getDefaultVLOps(VecVT, VecVT, DL, DAG, Subtarget);
1034 }
1035 
1036 // The state of RVV BUILD_VECTOR and VECTOR_SHUFFLE lowering is that very few
1037 // of either is (currently) supported. This can get us into an infinite loop
1038 // where we try to lower a BUILD_VECTOR as a VECTOR_SHUFFLE as a BUILD_VECTOR
1039 // as a ..., etc.
1040 // Until either (or both) of these can reliably lower any node, reporting that
1041 // we don't want to expand BUILD_VECTORs via VECTOR_SHUFFLEs at least breaks
1042 // the infinite loop. Note that this lowers BUILD_VECTOR through the stack,
1043 // which is not desirable.
1044 bool RISCVTargetLowering::shouldExpandBuildVectorWithShuffles(
1045     EVT VT, unsigned DefinedValues) const {
1046   return false;
1047 }
1048 
1049 static SDValue lowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG,
1050                                  const RISCVSubtarget &Subtarget) {
1051   MVT VT = Op.getSimpleValueType();
1052   assert(VT.isFixedLengthVector() && "Unexpected vector!");
1053 
1054   MVT ContainerVT =
1055       RISCVTargetLowering::getContainerForFixedLengthVector(DAG, VT, Subtarget);
1056 
1057   SDLoc DL(Op);
1058   SDValue Mask, VL;
1059   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
1060 
1061   if (VT.getVectorElementType() == MVT::i1) {
1062     if (ISD::isBuildVectorAllZeros(Op.getNode())) {
1063       SDValue VMClr = DAG.getNode(RISCVISD::VMCLR_VL, DL, ContainerVT, VL);
1064       return convertFromScalableVector(VT, VMClr, DAG, Subtarget);
1065     }
1066 
1067     if (ISD::isBuildVectorAllOnes(Op.getNode())) {
1068       SDValue VMSet = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL);
1069       return convertFromScalableVector(VT, VMSet, DAG, Subtarget);
1070     }
1071 
1072     return SDValue();
1073   }
1074 
1075   if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) {
1076     unsigned Opc = VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL
1077                                         : RISCVISD::VMV_V_X_VL;
1078     Splat = DAG.getNode(Opc, DL, ContainerVT, Splat, VL);
1079     return convertFromScalableVector(VT, Splat, DAG, Subtarget);
1080   }
1081 
1082   // Try and match an index sequence, which we can lower directly to the vid
1083   // instruction. An all-undef vector is matched by getSplatValue, above.
1084   if (VT.isInteger()) {
1085     bool IsVID = true;
1086     for (unsigned i = 0, e = Op.getNumOperands(); i < e && IsVID; i++)
1087       IsVID &= Op.getOperand(i).isUndef() ||
1088                (isa<ConstantSDNode>(Op.getOperand(i)) &&
1089                 Op.getConstantOperandVal(i) == i);
1090 
1091     if (IsVID) {
1092       SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, ContainerVT, Mask, VL);
1093       return convertFromScalableVector(VT, VID, DAG, Subtarget);
1094     }
1095   }
1096 
1097   return SDValue();
1098 }
1099 
1100 static SDValue lowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG,
1101                                    const RISCVSubtarget &Subtarget) {
1102   SDValue V1 = Op.getOperand(0);
1103   SDLoc DL(Op);
1104   MVT VT = Op.getSimpleValueType();
1105   ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
1106 
1107   if (SVN->isSplat()) {
1108     int Lane = SVN->getSplatIndex();
1109     if (Lane >= 0) {
1110       MVT ContainerVT = RISCVTargetLowering::getContainerForFixedLengthVector(
1111           DAG, VT, Subtarget);
1112 
1113       V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget);
1114       assert(Lane < (int)VT.getVectorNumElements() && "Unexpected lane!");
1115 
1116       SDValue Mask, VL;
1117       std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
1118       MVT XLenVT = Subtarget.getXLenVT();
1119       SDValue Gather =
1120           DAG.getNode(RISCVISD::VRGATHER_VX_VL, DL, ContainerVT, V1,
1121                       DAG.getConstant(Lane, DL, XLenVT), Mask, VL);
1122       return convertFromScalableVector(VT, Gather, DAG, Subtarget);
1123     }
1124   }
1125 
1126   return SDValue();
1127 }
1128 
1129 static SDValue getRVVFPExtendOrRound(SDValue Op, MVT VT, MVT ContainerVT,
1130                                      SDLoc DL, SelectionDAG &DAG,
1131                                      const RISCVSubtarget &Subtarget) {
1132   if (VT.isScalableVector())
1133     return DAG.getFPExtendOrRound(Op, DL, VT);
1134   assert(VT.isFixedLengthVector() &&
1135          "Unexpected value type for RVV FP extend/round lowering");
1136   SDValue Mask, VL;
1137   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
1138   unsigned RVVOpc = ContainerVT.bitsGT(Op.getSimpleValueType())
1139                         ? RISCVISD::FP_EXTEND_VL
1140                         : RISCVISD::FP_ROUND_VL;
1141   return DAG.getNode(RVVOpc, DL, ContainerVT, Op, Mask, VL);
1142 }
1143 
1144 SDValue RISCVTargetLowering::LowerOperation(SDValue Op,
1145                                             SelectionDAG &DAG) const {
1146   switch (Op.getOpcode()) {
1147   default:
1148     report_fatal_error("unimplemented operand");
1149   case ISD::GlobalAddress:
1150     return lowerGlobalAddress(Op, DAG);
1151   case ISD::BlockAddress:
1152     return lowerBlockAddress(Op, DAG);
1153   case ISD::ConstantPool:
1154     return lowerConstantPool(Op, DAG);
1155   case ISD::JumpTable:
1156     return lowerJumpTable(Op, DAG);
1157   case ISD::GlobalTLSAddress:
1158     return lowerGlobalTLSAddress(Op, DAG);
1159   case ISD::SELECT:
1160     return lowerSELECT(Op, DAG);
1161   case ISD::VASTART:
1162     return lowerVASTART(Op, DAG);
1163   case ISD::FRAMEADDR:
1164     return lowerFRAMEADDR(Op, DAG);
1165   case ISD::RETURNADDR:
1166     return lowerRETURNADDR(Op, DAG);
1167   case ISD::SHL_PARTS:
1168     return lowerShiftLeftParts(Op, DAG);
1169   case ISD::SRA_PARTS:
1170     return lowerShiftRightParts(Op, DAG, true);
1171   case ISD::SRL_PARTS:
1172     return lowerShiftRightParts(Op, DAG, false);
1173   case ISD::BITCAST: {
1174     SDValue Op0 = Op.getOperand(0);
1175     // We can handle fixed length vector bitcasts with a simple replacement
1176     // in isel.
1177     if (Op.getValueType().isFixedLengthVector()) {
1178       if (Op0.getValueType().isFixedLengthVector())
1179         return Op;
1180       return SDValue();
1181     }
1182     assert(((Subtarget.is64Bit() && Subtarget.hasStdExtF()) ||
1183             Subtarget.hasStdExtZfh()) &&
1184            "Unexpected custom legalisation");
1185     SDLoc DL(Op);
1186     if (Op.getValueType() == MVT::f16 && Subtarget.hasStdExtZfh()) {
1187       if (Op0.getValueType() != MVT::i16)
1188         return SDValue();
1189       SDValue NewOp0 =
1190           DAG.getNode(ISD::ANY_EXTEND, DL, Subtarget.getXLenVT(), Op0);
1191       SDValue FPConv = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, NewOp0);
1192       return FPConv;
1193     } else if (Op.getValueType() == MVT::f32 && Subtarget.is64Bit() &&
1194                Subtarget.hasStdExtF()) {
1195       if (Op0.getValueType() != MVT::i32)
1196         return SDValue();
1197       SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
1198       SDValue FPConv =
1199           DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, NewOp0);
1200       return FPConv;
1201     }
1202     return SDValue();
1203   }
1204   case ISD::INTRINSIC_WO_CHAIN:
1205     return LowerINTRINSIC_WO_CHAIN(Op, DAG);
1206   case ISD::INTRINSIC_W_CHAIN:
1207     return LowerINTRINSIC_W_CHAIN(Op, DAG);
1208   case ISD::BSWAP:
1209   case ISD::BITREVERSE: {
1210     // Convert BSWAP/BITREVERSE to GREVI to enable GREVI combinining.
1211     assert(Subtarget.hasStdExtZbp() && "Unexpected custom legalisation");
1212     MVT VT = Op.getSimpleValueType();
1213     SDLoc DL(Op);
1214     // Start with the maximum immediate value which is the bitwidth - 1.
1215     unsigned Imm = VT.getSizeInBits() - 1;
1216     // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits.
1217     if (Op.getOpcode() == ISD::BSWAP)
1218       Imm &= ~0x7U;
1219     return DAG.getNode(RISCVISD::GREVI, DL, VT, Op.getOperand(0),
1220                        DAG.getTargetConstant(Imm, DL, Subtarget.getXLenVT()));
1221   }
1222   case ISD::FSHL:
1223   case ISD::FSHR: {
1224     MVT VT = Op.getSimpleValueType();
1225     assert(VT == Subtarget.getXLenVT() && "Unexpected custom legalization");
1226     SDLoc DL(Op);
1227     // FSL/FSR take a log2(XLen)+1 bit shift amount but XLenVT FSHL/FSHR only
1228     // use log(XLen) bits. Mask the shift amount accordingly.
1229     unsigned ShAmtWidth = Subtarget.getXLen() - 1;
1230     SDValue ShAmt = DAG.getNode(ISD::AND, DL, VT, Op.getOperand(2),
1231                                 DAG.getConstant(ShAmtWidth, DL, VT));
1232     unsigned Opc = Op.getOpcode() == ISD::FSHL ? RISCVISD::FSL : RISCVISD::FSR;
1233     return DAG.getNode(Opc, DL, VT, Op.getOperand(0), Op.getOperand(1), ShAmt);
1234   }
1235   case ISD::TRUNCATE: {
1236     SDLoc DL(Op);
1237     MVT VT = Op.getSimpleValueType();
1238     // Only custom-lower vector truncates
1239     if (!VT.isVector())
1240       return Op;
1241 
1242     // Truncates to mask types are handled differently
1243     if (VT.getVectorElementType() == MVT::i1)
1244       return lowerVectorMaskTrunc(Op, DAG);
1245 
1246     // RVV only has truncates which operate from SEW*2->SEW, so lower arbitrary
1247     // truncates as a series of "RISCVISD::TRUNCATE_VECTOR_VL" nodes which
1248     // truncate by one power of two at a time.
1249     MVT DstEltVT = VT.getVectorElementType();
1250 
1251     SDValue Src = Op.getOperand(0);
1252     MVT SrcVT = Src.getSimpleValueType();
1253     MVT SrcEltVT = SrcVT.getVectorElementType();
1254 
1255     assert(DstEltVT.bitsLT(SrcEltVT) &&
1256            isPowerOf2_64(DstEltVT.getSizeInBits()) &&
1257            isPowerOf2_64(SrcEltVT.getSizeInBits()) &&
1258            "Unexpected vector truncate lowering");
1259 
1260     MVT ContainerVT = SrcVT;
1261     if (SrcVT.isFixedLengthVector()) {
1262       ContainerVT = getContainerForFixedLengthVector(SrcVT);
1263       Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget);
1264     }
1265 
1266     SDValue Result = Src;
1267     SDValue Mask, VL;
1268     std::tie(Mask, VL) =
1269         getDefaultVLOps(SrcVT, ContainerVT, DL, DAG, Subtarget);
1270     LLVMContext &Context = *DAG.getContext();
1271     const ElementCount Count = ContainerVT.getVectorElementCount();
1272     do {
1273       SrcEltVT = MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2);
1274       EVT ResultVT = EVT::getVectorVT(Context, SrcEltVT, Count);
1275       Result = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, ResultVT, Result,
1276                            Mask, VL);
1277     } while (SrcEltVT != DstEltVT);
1278 
1279     if (SrcVT.isFixedLengthVector())
1280       Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
1281 
1282     return Result;
1283   }
1284   case ISD::ANY_EXTEND:
1285   case ISD::ZERO_EXTEND:
1286     if (Op.getOperand(0).getValueType().isVector() &&
1287         Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1)
1288       return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ 1);
1289     return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VZEXT_VL);
1290   case ISD::SIGN_EXTEND:
1291     if (Op.getOperand(0).getValueType().isVector() &&
1292         Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1)
1293       return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ -1);
1294     return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VSEXT_VL);
1295   case ISD::SPLAT_VECTOR:
1296     return lowerSPLATVECTOR(Op, DAG);
1297   case ISD::INSERT_VECTOR_ELT:
1298     return lowerINSERT_VECTOR_ELT(Op, DAG);
1299   case ISD::EXTRACT_VECTOR_ELT:
1300     return lowerEXTRACT_VECTOR_ELT(Op, DAG);
1301   case ISD::VSCALE: {
1302     MVT VT = Op.getSimpleValueType();
1303     SDLoc DL(Op);
1304     SDValue VLENB = DAG.getNode(RISCVISD::READ_VLENB, DL, VT);
1305     // We define our scalable vector types for lmul=1 to use a 64 bit known
1306     // minimum size. e.g. <vscale x 2 x i32>. VLENB is in bytes so we calculate
1307     // vscale as VLENB / 8.
1308     SDValue VScale = DAG.getNode(ISD::SRL, DL, VT, VLENB,
1309                                  DAG.getConstant(3, DL, VT));
1310     return DAG.getNode(ISD::MUL, DL, VT, VScale, Op.getOperand(0));
1311   }
1312   case ISD::FP_EXTEND: {
1313     // RVV can only do fp_extend to types double the size as the source. We
1314     // custom-lower f16->f64 extensions to two hops of ISD::FP_EXTEND, going
1315     // via f32.
1316     SDLoc DL(Op);
1317     MVT VT = Op.getSimpleValueType();
1318     SDValue Src = Op.getOperand(0);
1319     MVT SrcVT = Src.getSimpleValueType();
1320 
1321     // Prepare any fixed-length vector operands.
1322     MVT ContainerVT = VT;
1323     if (SrcVT.isFixedLengthVector()) {
1324       ContainerVT = getContainerForFixedLengthVector(VT);
1325       MVT SrcContainerVT =
1326           ContainerVT.changeVectorElementType(SrcVT.getVectorElementType());
1327       Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget);
1328     }
1329 
1330     if (!VT.isVector() || VT.getVectorElementType() != MVT::f64 ||
1331         SrcVT.getVectorElementType() != MVT::f16) {
1332       // For scalable vectors, we only need to close the gap between
1333       // vXf16->vXf64.
1334       if (!VT.isFixedLengthVector())
1335         return Op;
1336       // For fixed-length vectors, lower the FP_EXTEND to a custom "VL" version.
1337       Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget);
1338       return convertFromScalableVector(VT, Src, DAG, Subtarget);
1339     }
1340 
1341     MVT InterVT = VT.changeVectorElementType(MVT::f32);
1342     MVT InterContainerVT = ContainerVT.changeVectorElementType(MVT::f32);
1343     SDValue IntermediateExtend = getRVVFPExtendOrRound(
1344         Src, InterVT, InterContainerVT, DL, DAG, Subtarget);
1345 
1346     SDValue Extend = getRVVFPExtendOrRound(IntermediateExtend, VT, ContainerVT,
1347                                            DL, DAG, Subtarget);
1348     if (VT.isFixedLengthVector())
1349       return convertFromScalableVector(VT, Extend, DAG, Subtarget);
1350     return Extend;
1351   }
1352   case ISD::FP_ROUND: {
1353     // RVV can only do fp_round to types half the size as the source. We
1354     // custom-lower f64->f16 rounds via RVV's round-to-odd float
1355     // conversion instruction.
1356     SDLoc DL(Op);
1357     MVT VT = Op.getSimpleValueType();
1358     SDValue Src = Op.getOperand(0);
1359     MVT SrcVT = Src.getSimpleValueType();
1360 
1361     // Prepare any fixed-length vector operands.
1362     MVT ContainerVT = VT;
1363     if (VT.isFixedLengthVector()) {
1364       MVT SrcContainerVT = getContainerForFixedLengthVector(SrcVT);
1365       ContainerVT =
1366           SrcContainerVT.changeVectorElementType(VT.getVectorElementType());
1367       Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget);
1368     }
1369 
1370     if (!VT.isVector() || VT.getVectorElementType() != MVT::f16 ||
1371         SrcVT.getVectorElementType() != MVT::f64) {
1372       // For scalable vectors, we only need to close the gap between
1373       // vXf64<->vXf16.
1374       if (!VT.isFixedLengthVector())
1375         return Op;
1376       // For fixed-length vectors, lower the FP_ROUND to a custom "VL" version.
1377       Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget);
1378       return convertFromScalableVector(VT, Src, DAG, Subtarget);
1379     }
1380 
1381     SDValue Mask, VL;
1382     std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
1383 
1384     MVT InterVT = ContainerVT.changeVectorElementType(MVT::f32);
1385     SDValue IntermediateRound =
1386         DAG.getNode(RISCVISD::VFNCVT_ROD_VL, DL, InterVT, Src, Mask, VL);
1387     SDValue Round = getRVVFPExtendOrRound(IntermediateRound, VT, ContainerVT,
1388                                           DL, DAG, Subtarget);
1389 
1390     if (VT.isFixedLengthVector())
1391       return convertFromScalableVector(VT, Round, DAG, Subtarget);
1392     return Round;
1393   }
1394   case ISD::FP_TO_SINT:
1395   case ISD::FP_TO_UINT:
1396   case ISD::SINT_TO_FP:
1397   case ISD::UINT_TO_FP: {
1398     // RVV can only do fp<->int conversions to types half/double the size as
1399     // the source. We custom-lower any conversions that do two hops into
1400     // sequences.
1401     MVT VT = Op.getSimpleValueType();
1402     if (!VT.isVector())
1403       return Op;
1404     SDLoc DL(Op);
1405     SDValue Src = Op.getOperand(0);
1406     MVT EltVT = VT.getVectorElementType();
1407     MVT SrcVT = Src.getSimpleValueType();
1408     MVT SrcEltVT = SrcVT.getVectorElementType();
1409     unsigned EltSize = EltVT.getSizeInBits();
1410     unsigned SrcEltSize = SrcEltVT.getSizeInBits();
1411     assert(isPowerOf2_32(EltSize) && isPowerOf2_32(SrcEltSize) &&
1412            "Unexpected vector element types");
1413 
1414     bool IsInt2FP = SrcEltVT.isInteger();
1415     // Widening conversions
1416     if (EltSize > SrcEltSize && (EltSize / SrcEltSize >= 4)) {
1417       if (IsInt2FP) {
1418         // Do a regular integer sign/zero extension then convert to float.
1419         MVT IVecVT = MVT::getVectorVT(MVT::getIntegerVT(EltVT.getSizeInBits()),
1420                                       VT.getVectorElementCount());
1421         unsigned ExtOpcode = Op.getOpcode() == ISD::UINT_TO_FP
1422                                  ? ISD::ZERO_EXTEND
1423                                  : ISD::SIGN_EXTEND;
1424         SDValue Ext = DAG.getNode(ExtOpcode, DL, IVecVT, Src);
1425         return DAG.getNode(Op.getOpcode(), DL, VT, Ext);
1426       }
1427       // FP2Int
1428       assert(SrcEltVT == MVT::f16 && "Unexpected FP_TO_[US]INT lowering");
1429       // Do one doubling fp_extend then complete the operation by converting
1430       // to int.
1431       MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount());
1432       SDValue FExt = DAG.getFPExtendOrRound(Src, DL, InterimFVT);
1433       return DAG.getNode(Op.getOpcode(), DL, VT, FExt);
1434     }
1435 
1436     // Narrowing conversions
1437     if (SrcEltSize > EltSize && (SrcEltSize / EltSize >= 4)) {
1438       if (IsInt2FP) {
1439         // One narrowing int_to_fp, then an fp_round.
1440         assert(EltVT == MVT::f16 && "Unexpected [US]_TO_FP lowering");
1441         MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount());
1442         SDValue Int2FP = DAG.getNode(Op.getOpcode(), DL, InterimFVT, Src);
1443         return DAG.getFPExtendOrRound(Int2FP, DL, VT);
1444       }
1445       // FP2Int
1446       // One narrowing fp_to_int, then truncate the integer. If the float isn't
1447       // representable by the integer, the result is poison.
1448       MVT IVecVT =
1449           MVT::getVectorVT(MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2),
1450                            VT.getVectorElementCount());
1451       SDValue FP2Int = DAG.getNode(Op.getOpcode(), DL, IVecVT, Src);
1452       return DAG.getNode(ISD::TRUNCATE, DL, VT, FP2Int);
1453     }
1454 
1455     // Scalable vectors can exit here. Patterns will handle equally-sized
1456     // conversions halving/doubling ones.
1457     if (!VT.isFixedLengthVector())
1458       return Op;
1459 
1460     // For fixed-length vectors we lower to a custom "VL" node.
1461     unsigned RVVOpc = 0;
1462     switch (Op.getOpcode()) {
1463     default:
1464       llvm_unreachable("Impossible opcode");
1465     case ISD::FP_TO_SINT:
1466       RVVOpc = RISCVISD::FP_TO_SINT_VL;
1467       break;
1468     case ISD::FP_TO_UINT:
1469       RVVOpc = RISCVISD::FP_TO_UINT_VL;
1470       break;
1471     case ISD::SINT_TO_FP:
1472       RVVOpc = RISCVISD::SINT_TO_FP_VL;
1473       break;
1474     case ISD::UINT_TO_FP:
1475       RVVOpc = RISCVISD::UINT_TO_FP_VL;
1476       break;
1477     }
1478 
1479     MVT ContainerVT, SrcContainerVT;
1480     // Derive the reference container type from the larger vector type.
1481     if (SrcEltSize > EltSize) {
1482       SrcContainerVT = getContainerForFixedLengthVector(SrcVT);
1483       ContainerVT =
1484           SrcContainerVT.changeVectorElementType(VT.getVectorElementType());
1485     } else {
1486       ContainerVT = getContainerForFixedLengthVector(VT);
1487       SrcContainerVT = ContainerVT.changeVectorElementType(SrcEltVT);
1488     }
1489 
1490     SDValue Mask, VL;
1491     std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
1492 
1493     Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget);
1494     Src = DAG.getNode(RVVOpc, DL, ContainerVT, Src, Mask, VL);
1495     return convertFromScalableVector(VT, Src, DAG, Subtarget);
1496   }
1497   case ISD::VECREDUCE_ADD:
1498   case ISD::VECREDUCE_UMAX:
1499   case ISD::VECREDUCE_SMAX:
1500   case ISD::VECREDUCE_UMIN:
1501   case ISD::VECREDUCE_SMIN:
1502   case ISD::VECREDUCE_AND:
1503   case ISD::VECREDUCE_OR:
1504   case ISD::VECREDUCE_XOR:
1505     return lowerVECREDUCE(Op, DAG);
1506   case ISD::VECREDUCE_FADD:
1507   case ISD::VECREDUCE_SEQ_FADD:
1508     return lowerFPVECREDUCE(Op, DAG);
1509   case ISD::INSERT_SUBVECTOR:
1510     return lowerINSERT_SUBVECTOR(Op, DAG);
1511   case ISD::EXTRACT_SUBVECTOR:
1512     return lowerEXTRACT_SUBVECTOR(Op, DAG);
1513   case ISD::BUILD_VECTOR:
1514     return lowerBUILD_VECTOR(Op, DAG, Subtarget);
1515   case ISD::VECTOR_SHUFFLE:
1516     return lowerVECTOR_SHUFFLE(Op, DAG, Subtarget);
1517   case ISD::CONCAT_VECTORS: {
1518     // Split CONCAT_VECTORS into a series of INSERT_SUBVECTOR nodes. This is
1519     // better than going through the stack, as the default expansion does.
1520     SDLoc DL(Op);
1521     MVT VT = Op.getSimpleValueType();
1522     assert(VT.isFixedLengthVector() && "Unexpected CONCAT_VECTORS lowering");
1523     unsigned NumOpElts =
1524         Op.getOperand(0).getSimpleValueType().getVectorNumElements();
1525     SDValue Vec = DAG.getUNDEF(VT);
1526     for (const auto &OpIdx : enumerate(Op->ops()))
1527       Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, Vec, OpIdx.value(),
1528                         DAG.getIntPtrConstant(OpIdx.index() * NumOpElts, DL));
1529     return Vec;
1530   }
1531   case ISD::LOAD:
1532     return lowerFixedLengthVectorLoadToRVV(Op, DAG);
1533   case ISD::STORE:
1534     return lowerFixedLengthVectorStoreToRVV(Op, DAG);
1535   case ISD::SETCC:
1536     return lowerFixedLengthVectorSetccToRVV(Op, DAG);
1537   case ISD::ADD:
1538     return lowerToScalableOp(Op, DAG, RISCVISD::ADD_VL);
1539   case ISD::SUB:
1540     return lowerToScalableOp(Op, DAG, RISCVISD::SUB_VL);
1541   case ISD::MUL:
1542     return lowerToScalableOp(Op, DAG, RISCVISD::MUL_VL);
1543   case ISD::MULHS:
1544     return lowerToScalableOp(Op, DAG, RISCVISD::MULHS_VL);
1545   case ISD::MULHU:
1546     return lowerToScalableOp(Op, DAG, RISCVISD::MULHU_VL);
1547   case ISD::AND:
1548     return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMAND_VL,
1549                                               RISCVISD::AND_VL);
1550   case ISD::OR:
1551     return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMOR_VL,
1552                                               RISCVISD::OR_VL);
1553   case ISD::XOR:
1554     return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMXOR_VL,
1555                                               RISCVISD::XOR_VL);
1556   case ISD::SDIV:
1557     return lowerToScalableOp(Op, DAG, RISCVISD::SDIV_VL);
1558   case ISD::SREM:
1559     return lowerToScalableOp(Op, DAG, RISCVISD::SREM_VL);
1560   case ISD::UDIV:
1561     return lowerToScalableOp(Op, DAG, RISCVISD::UDIV_VL);
1562   case ISD::UREM:
1563     return lowerToScalableOp(Op, DAG, RISCVISD::UREM_VL);
1564   case ISD::SHL:
1565     return lowerToScalableOp(Op, DAG, RISCVISD::SHL_VL);
1566   case ISD::SRA:
1567     return lowerToScalableOp(Op, DAG, RISCVISD::SRA_VL);
1568   case ISD::SRL:
1569     return lowerToScalableOp(Op, DAG, RISCVISD::SRL_VL);
1570   case ISD::FADD:
1571     return lowerToScalableOp(Op, DAG, RISCVISD::FADD_VL);
1572   case ISD::FSUB:
1573     return lowerToScalableOp(Op, DAG, RISCVISD::FSUB_VL);
1574   case ISD::FMUL:
1575     return lowerToScalableOp(Op, DAG, RISCVISD::FMUL_VL);
1576   case ISD::FDIV:
1577     return lowerToScalableOp(Op, DAG, RISCVISD::FDIV_VL);
1578   case ISD::FNEG:
1579     return lowerToScalableOp(Op, DAG, RISCVISD::FNEG_VL);
1580   case ISD::FABS:
1581     return lowerToScalableOp(Op, DAG, RISCVISD::FABS_VL);
1582   case ISD::FSQRT:
1583     return lowerToScalableOp(Op, DAG, RISCVISD::FSQRT_VL);
1584   case ISD::FMA:
1585     return lowerToScalableOp(Op, DAG, RISCVISD::FMA_VL);
1586   case ISD::SMIN:
1587     return lowerToScalableOp(Op, DAG, RISCVISD::SMIN_VL);
1588   case ISD::SMAX:
1589     return lowerToScalableOp(Op, DAG, RISCVISD::SMAX_VL);
1590   case ISD::UMIN:
1591     return lowerToScalableOp(Op, DAG, RISCVISD::UMIN_VL);
1592   case ISD::UMAX:
1593     return lowerToScalableOp(Op, DAG, RISCVISD::UMAX_VL);
1594   case ISD::VSELECT:
1595     return lowerFixedLengthVectorSelectToRVV(Op, DAG);
1596   }
1597 }
1598 
1599 static SDValue getTargetNode(GlobalAddressSDNode *N, SDLoc DL, EVT Ty,
1600                              SelectionDAG &DAG, unsigned Flags) {
1601   return DAG.getTargetGlobalAddress(N->getGlobal(), DL, Ty, 0, Flags);
1602 }
1603 
1604 static SDValue getTargetNode(BlockAddressSDNode *N, SDLoc DL, EVT Ty,
1605                              SelectionDAG &DAG, unsigned Flags) {
1606   return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, N->getOffset(),
1607                                    Flags);
1608 }
1609 
1610 static SDValue getTargetNode(ConstantPoolSDNode *N, SDLoc DL, EVT Ty,
1611                              SelectionDAG &DAG, unsigned Flags) {
1612   return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlign(),
1613                                    N->getOffset(), Flags);
1614 }
1615 
1616 static SDValue getTargetNode(JumpTableSDNode *N, SDLoc DL, EVT Ty,
1617                              SelectionDAG &DAG, unsigned Flags) {
1618   return DAG.getTargetJumpTable(N->getIndex(), Ty, Flags);
1619 }
1620 
1621 template <class NodeTy>
1622 SDValue RISCVTargetLowering::getAddr(NodeTy *N, SelectionDAG &DAG,
1623                                      bool IsLocal) const {
1624   SDLoc DL(N);
1625   EVT Ty = getPointerTy(DAG.getDataLayout());
1626 
1627   if (isPositionIndependent()) {
1628     SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0);
1629     if (IsLocal)
1630       // Use PC-relative addressing to access the symbol. This generates the
1631       // pattern (PseudoLLA sym), which expands to (addi (auipc %pcrel_hi(sym))
1632       // %pcrel_lo(auipc)).
1633       return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0);
1634 
1635     // Use PC-relative addressing to access the GOT for this symbol, then load
1636     // the address from the GOT. This generates the pattern (PseudoLA sym),
1637     // which expands to (ld (addi (auipc %got_pcrel_hi(sym)) %pcrel_lo(auipc))).
1638     return SDValue(DAG.getMachineNode(RISCV::PseudoLA, DL, Ty, Addr), 0);
1639   }
1640 
1641   switch (getTargetMachine().getCodeModel()) {
1642   default:
1643     report_fatal_error("Unsupported code model for lowering");
1644   case CodeModel::Small: {
1645     // Generate a sequence for accessing addresses within the first 2 GiB of
1646     // address space. This generates the pattern (addi (lui %hi(sym)) %lo(sym)).
1647     SDValue AddrHi = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_HI);
1648     SDValue AddrLo = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_LO);
1649     SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0);
1650     return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNHi, AddrLo), 0);
1651   }
1652   case CodeModel::Medium: {
1653     // Generate a sequence for accessing addresses within any 2GiB range within
1654     // the address space. This generates the pattern (PseudoLLA sym), which
1655     // expands to (addi (auipc %pcrel_hi(sym)) %pcrel_lo(auipc)).
1656     SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0);
1657     return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0);
1658   }
1659   }
1660 }
1661 
1662 SDValue RISCVTargetLowering::lowerGlobalAddress(SDValue Op,
1663                                                 SelectionDAG &DAG) const {
1664   SDLoc DL(Op);
1665   EVT Ty = Op.getValueType();
1666   GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op);
1667   int64_t Offset = N->getOffset();
1668   MVT XLenVT = Subtarget.getXLenVT();
1669 
1670   const GlobalValue *GV = N->getGlobal();
1671   bool IsLocal = getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV);
1672   SDValue Addr = getAddr(N, DAG, IsLocal);
1673 
1674   // In order to maximise the opportunity for common subexpression elimination,
1675   // emit a separate ADD node for the global address offset instead of folding
1676   // it in the global address node. Later peephole optimisations may choose to
1677   // fold it back in when profitable.
1678   if (Offset != 0)
1679     return DAG.getNode(ISD::ADD, DL, Ty, Addr,
1680                        DAG.getConstant(Offset, DL, XLenVT));
1681   return Addr;
1682 }
1683 
1684 SDValue RISCVTargetLowering::lowerBlockAddress(SDValue Op,
1685                                                SelectionDAG &DAG) const {
1686   BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op);
1687 
1688   return getAddr(N, DAG);
1689 }
1690 
1691 SDValue RISCVTargetLowering::lowerConstantPool(SDValue Op,
1692                                                SelectionDAG &DAG) const {
1693   ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op);
1694 
1695   return getAddr(N, DAG);
1696 }
1697 
1698 SDValue RISCVTargetLowering::lowerJumpTable(SDValue Op,
1699                                             SelectionDAG &DAG) const {
1700   JumpTableSDNode *N = cast<JumpTableSDNode>(Op);
1701 
1702   return getAddr(N, DAG);
1703 }
1704 
1705 SDValue RISCVTargetLowering::getStaticTLSAddr(GlobalAddressSDNode *N,
1706                                               SelectionDAG &DAG,
1707                                               bool UseGOT) const {
1708   SDLoc DL(N);
1709   EVT Ty = getPointerTy(DAG.getDataLayout());
1710   const GlobalValue *GV = N->getGlobal();
1711   MVT XLenVT = Subtarget.getXLenVT();
1712 
1713   if (UseGOT) {
1714     // Use PC-relative addressing to access the GOT for this TLS symbol, then
1715     // load the address from the GOT and add the thread pointer. This generates
1716     // the pattern (PseudoLA_TLS_IE sym), which expands to
1717     // (ld (auipc %tls_ie_pcrel_hi(sym)) %pcrel_lo(auipc)).
1718     SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0);
1719     SDValue Load =
1720         SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_IE, DL, Ty, Addr), 0);
1721 
1722     // Add the thread pointer.
1723     SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT);
1724     return DAG.getNode(ISD::ADD, DL, Ty, Load, TPReg);
1725   }
1726 
1727   // Generate a sequence for accessing the address relative to the thread
1728   // pointer, with the appropriate adjustment for the thread pointer offset.
1729   // This generates the pattern
1730   // (add (add_tprel (lui %tprel_hi(sym)) tp %tprel_add(sym)) %tprel_lo(sym))
1731   SDValue AddrHi =
1732       DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_HI);
1733   SDValue AddrAdd =
1734       DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_ADD);
1735   SDValue AddrLo =
1736       DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_LO);
1737 
1738   SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0);
1739   SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT);
1740   SDValue MNAdd = SDValue(
1741       DAG.getMachineNode(RISCV::PseudoAddTPRel, DL, Ty, MNHi, TPReg, AddrAdd),
1742       0);
1743   return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNAdd, AddrLo), 0);
1744 }
1745 
1746 SDValue RISCVTargetLowering::getDynamicTLSAddr(GlobalAddressSDNode *N,
1747                                                SelectionDAG &DAG) const {
1748   SDLoc DL(N);
1749   EVT Ty = getPointerTy(DAG.getDataLayout());
1750   IntegerType *CallTy = Type::getIntNTy(*DAG.getContext(), Ty.getSizeInBits());
1751   const GlobalValue *GV = N->getGlobal();
1752 
1753   // Use a PC-relative addressing mode to access the global dynamic GOT address.
1754   // This generates the pattern (PseudoLA_TLS_GD sym), which expands to
1755   // (addi (auipc %tls_gd_pcrel_hi(sym)) %pcrel_lo(auipc)).
1756   SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0);
1757   SDValue Load =
1758       SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_GD, DL, Ty, Addr), 0);
1759 
1760   // Prepare argument list to generate call.
1761   ArgListTy Args;
1762   ArgListEntry Entry;
1763   Entry.Node = Load;
1764   Entry.Ty = CallTy;
1765   Args.push_back(Entry);
1766 
1767   // Setup call to __tls_get_addr.
1768   TargetLowering::CallLoweringInfo CLI(DAG);
1769   CLI.setDebugLoc(DL)
1770       .setChain(DAG.getEntryNode())
1771       .setLibCallee(CallingConv::C, CallTy,
1772                     DAG.getExternalSymbol("__tls_get_addr", Ty),
1773                     std::move(Args));
1774 
1775   return LowerCallTo(CLI).first;
1776 }
1777 
1778 SDValue RISCVTargetLowering::lowerGlobalTLSAddress(SDValue Op,
1779                                                    SelectionDAG &DAG) const {
1780   SDLoc DL(Op);
1781   EVT Ty = Op.getValueType();
1782   GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op);
1783   int64_t Offset = N->getOffset();
1784   MVT XLenVT = Subtarget.getXLenVT();
1785 
1786   TLSModel::Model Model = getTargetMachine().getTLSModel(N->getGlobal());
1787 
1788   if (DAG.getMachineFunction().getFunction().getCallingConv() ==
1789       CallingConv::GHC)
1790     report_fatal_error("In GHC calling convention TLS is not supported");
1791 
1792   SDValue Addr;
1793   switch (Model) {
1794   case TLSModel::LocalExec:
1795     Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/false);
1796     break;
1797   case TLSModel::InitialExec:
1798     Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/true);
1799     break;
1800   case TLSModel::LocalDynamic:
1801   case TLSModel::GeneralDynamic:
1802     Addr = getDynamicTLSAddr(N, DAG);
1803     break;
1804   }
1805 
1806   // In order to maximise the opportunity for common subexpression elimination,
1807   // emit a separate ADD node for the global address offset instead of folding
1808   // it in the global address node. Later peephole optimisations may choose to
1809   // fold it back in when profitable.
1810   if (Offset != 0)
1811     return DAG.getNode(ISD::ADD, DL, Ty, Addr,
1812                        DAG.getConstant(Offset, DL, XLenVT));
1813   return Addr;
1814 }
1815 
1816 SDValue RISCVTargetLowering::lowerSELECT(SDValue Op, SelectionDAG &DAG) const {
1817   SDValue CondV = Op.getOperand(0);
1818   SDValue TrueV = Op.getOperand(1);
1819   SDValue FalseV = Op.getOperand(2);
1820   SDLoc DL(Op);
1821   MVT XLenVT = Subtarget.getXLenVT();
1822 
1823   // If the result type is XLenVT and CondV is the output of a SETCC node
1824   // which also operated on XLenVT inputs, then merge the SETCC node into the
1825   // lowered RISCVISD::SELECT_CC to take advantage of the integer
1826   // compare+branch instructions. i.e.:
1827   // (select (setcc lhs, rhs, cc), truev, falsev)
1828   // -> (riscvisd::select_cc lhs, rhs, cc, truev, falsev)
1829   if (Op.getSimpleValueType() == XLenVT && CondV.getOpcode() == ISD::SETCC &&
1830       CondV.getOperand(0).getSimpleValueType() == XLenVT) {
1831     SDValue LHS = CondV.getOperand(0);
1832     SDValue RHS = CondV.getOperand(1);
1833     auto CC = cast<CondCodeSDNode>(CondV.getOperand(2));
1834     ISD::CondCode CCVal = CC->get();
1835 
1836     normaliseSetCC(LHS, RHS, CCVal);
1837 
1838     SDValue TargetCC = DAG.getConstant(CCVal, DL, XLenVT);
1839     SDValue Ops[] = {LHS, RHS, TargetCC, TrueV, FalseV};
1840     return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops);
1841   }
1842 
1843   // Otherwise:
1844   // (select condv, truev, falsev)
1845   // -> (riscvisd::select_cc condv, zero, setne, truev, falsev)
1846   SDValue Zero = DAG.getConstant(0, DL, XLenVT);
1847   SDValue SetNE = DAG.getConstant(ISD::SETNE, DL, XLenVT);
1848 
1849   SDValue Ops[] = {CondV, Zero, SetNE, TrueV, FalseV};
1850 
1851   return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops);
1852 }
1853 
1854 SDValue RISCVTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const {
1855   MachineFunction &MF = DAG.getMachineFunction();
1856   RISCVMachineFunctionInfo *FuncInfo = MF.getInfo<RISCVMachineFunctionInfo>();
1857 
1858   SDLoc DL(Op);
1859   SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
1860                                  getPointerTy(MF.getDataLayout()));
1861 
1862   // vastart just stores the address of the VarArgsFrameIndex slot into the
1863   // memory location argument.
1864   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1865   return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1),
1866                       MachinePointerInfo(SV));
1867 }
1868 
1869 SDValue RISCVTargetLowering::lowerFRAMEADDR(SDValue Op,
1870                                             SelectionDAG &DAG) const {
1871   const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo();
1872   MachineFunction &MF = DAG.getMachineFunction();
1873   MachineFrameInfo &MFI = MF.getFrameInfo();
1874   MFI.setFrameAddressIsTaken(true);
1875   Register FrameReg = RI.getFrameRegister(MF);
1876   int XLenInBytes = Subtarget.getXLen() / 8;
1877 
1878   EVT VT = Op.getValueType();
1879   SDLoc DL(Op);
1880   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, FrameReg, VT);
1881   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
1882   while (Depth--) {
1883     int Offset = -(XLenInBytes * 2);
1884     SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr,
1885                               DAG.getIntPtrConstant(Offset, DL));
1886     FrameAddr =
1887         DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo());
1888   }
1889   return FrameAddr;
1890 }
1891 
1892 SDValue RISCVTargetLowering::lowerRETURNADDR(SDValue Op,
1893                                              SelectionDAG &DAG) const {
1894   const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo();
1895   MachineFunction &MF = DAG.getMachineFunction();
1896   MachineFrameInfo &MFI = MF.getFrameInfo();
1897   MFI.setReturnAddressIsTaken(true);
1898   MVT XLenVT = Subtarget.getXLenVT();
1899   int XLenInBytes = Subtarget.getXLen() / 8;
1900 
1901   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
1902     return SDValue();
1903 
1904   EVT VT = Op.getValueType();
1905   SDLoc DL(Op);
1906   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
1907   if (Depth) {
1908     int Off = -XLenInBytes;
1909     SDValue FrameAddr = lowerFRAMEADDR(Op, DAG);
1910     SDValue Offset = DAG.getConstant(Off, DL, VT);
1911     return DAG.getLoad(VT, DL, DAG.getEntryNode(),
1912                        DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset),
1913                        MachinePointerInfo());
1914   }
1915 
1916   // Return the value of the return address register, marking it an implicit
1917   // live-in.
1918   Register Reg = MF.addLiveIn(RI.getRARegister(), getRegClassFor(XLenVT));
1919   return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, XLenVT);
1920 }
1921 
1922 SDValue RISCVTargetLowering::lowerShiftLeftParts(SDValue Op,
1923                                                  SelectionDAG &DAG) const {
1924   SDLoc DL(Op);
1925   SDValue Lo = Op.getOperand(0);
1926   SDValue Hi = Op.getOperand(1);
1927   SDValue Shamt = Op.getOperand(2);
1928   EVT VT = Lo.getValueType();
1929 
1930   // if Shamt-XLEN < 0: // Shamt < XLEN
1931   //   Lo = Lo << Shamt
1932   //   Hi = (Hi << Shamt) | ((Lo >>u 1) >>u (XLEN-1 - Shamt))
1933   // else:
1934   //   Lo = 0
1935   //   Hi = Lo << (Shamt-XLEN)
1936 
1937   SDValue Zero = DAG.getConstant(0, DL, VT);
1938   SDValue One = DAG.getConstant(1, DL, VT);
1939   SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT);
1940   SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT);
1941   SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen);
1942   SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt);
1943 
1944   SDValue LoTrue = DAG.getNode(ISD::SHL, DL, VT, Lo, Shamt);
1945   SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, VT, Lo, One);
1946   SDValue ShiftRightLo =
1947       DAG.getNode(ISD::SRL, DL, VT, ShiftRight1Lo, XLenMinus1Shamt);
1948   SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, Hi, Shamt);
1949   SDValue HiTrue = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo);
1950   SDValue HiFalse = DAG.getNode(ISD::SHL, DL, VT, Lo, ShamtMinusXLen);
1951 
1952   SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT);
1953 
1954   Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, Zero);
1955   Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse);
1956 
1957   SDValue Parts[2] = {Lo, Hi};
1958   return DAG.getMergeValues(Parts, DL);
1959 }
1960 
1961 SDValue RISCVTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG,
1962                                                   bool IsSRA) const {
1963   SDLoc DL(Op);
1964   SDValue Lo = Op.getOperand(0);
1965   SDValue Hi = Op.getOperand(1);
1966   SDValue Shamt = Op.getOperand(2);
1967   EVT VT = Lo.getValueType();
1968 
1969   // SRA expansion:
1970   //   if Shamt-XLEN < 0: // Shamt < XLEN
1971   //     Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt))
1972   //     Hi = Hi >>s Shamt
1973   //   else:
1974   //     Lo = Hi >>s (Shamt-XLEN);
1975   //     Hi = Hi >>s (XLEN-1)
1976   //
1977   // SRL expansion:
1978   //   if Shamt-XLEN < 0: // Shamt < XLEN
1979   //     Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt))
1980   //     Hi = Hi >>u Shamt
1981   //   else:
1982   //     Lo = Hi >>u (Shamt-XLEN);
1983   //     Hi = 0;
1984 
1985   unsigned ShiftRightOp = IsSRA ? ISD::SRA : ISD::SRL;
1986 
1987   SDValue Zero = DAG.getConstant(0, DL, VT);
1988   SDValue One = DAG.getConstant(1, DL, VT);
1989   SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT);
1990   SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT);
1991   SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen);
1992   SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt);
1993 
1994   SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, Lo, Shamt);
1995   SDValue ShiftLeftHi1 = DAG.getNode(ISD::SHL, DL, VT, Hi, One);
1996   SDValue ShiftLeftHi =
1997       DAG.getNode(ISD::SHL, DL, VT, ShiftLeftHi1, XLenMinus1Shamt);
1998   SDValue LoTrue = DAG.getNode(ISD::OR, DL, VT, ShiftRightLo, ShiftLeftHi);
1999   SDValue HiTrue = DAG.getNode(ShiftRightOp, DL, VT, Hi, Shamt);
2000   SDValue LoFalse = DAG.getNode(ShiftRightOp, DL, VT, Hi, ShamtMinusXLen);
2001   SDValue HiFalse =
2002       IsSRA ? DAG.getNode(ISD::SRA, DL, VT, Hi, XLenMinus1) : Zero;
2003 
2004   SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT);
2005 
2006   Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, LoFalse);
2007   Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse);
2008 
2009   SDValue Parts[2] = {Lo, Hi};
2010   return DAG.getMergeValues(Parts, DL);
2011 }
2012 
2013 // Custom-lower a SPLAT_VECTOR where XLEN<SEW, as the SEW element type is
2014 // illegal (currently only vXi64 RV32).
2015 // FIXME: We could also catch non-constant sign-extended i32 values and lower
2016 // them to SPLAT_VECTOR_I64
2017 SDValue RISCVTargetLowering::lowerSPLATVECTOR(SDValue Op,
2018                                               SelectionDAG &DAG) const {
2019   SDLoc DL(Op);
2020   EVT VecVT = Op.getValueType();
2021   assert(!Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64 &&
2022          "Unexpected SPLAT_VECTOR lowering");
2023   SDValue SplatVal = Op.getOperand(0);
2024 
2025   // If we can prove that the value is a sign-extended 32-bit value, lower this
2026   // as a custom node in order to try and match RVV vector/scalar instructions.
2027   if (auto *CVal = dyn_cast<ConstantSDNode>(SplatVal)) {
2028     if (isInt<32>(CVal->getSExtValue()))
2029       return DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT,
2030                          DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32));
2031   }
2032 
2033   if (SplatVal.getOpcode() == ISD::SIGN_EXTEND &&
2034       SplatVal.getOperand(0).getValueType() == MVT::i32) {
2035     return DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT,
2036                        SplatVal.getOperand(0));
2037   }
2038 
2039   // Else, on RV32 we lower an i64-element SPLAT_VECTOR thus, being careful not
2040   // to accidentally sign-extend the 32-bit halves to the e64 SEW:
2041   // vmv.v.x vX, hi
2042   // vsll.vx vX, vX, /*32*/
2043   // vmv.v.x vY, lo
2044   // vsll.vx vY, vY, /*32*/
2045   // vsrl.vx vY, vY, /*32*/
2046   // vor.vv vX, vX, vY
2047   SDValue One = DAG.getConstant(1, DL, MVT::i32);
2048   SDValue Zero = DAG.getConstant(0, DL, MVT::i32);
2049   SDValue ThirtyTwoV = DAG.getConstant(32, DL, VecVT);
2050   SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, SplatVal, Zero);
2051   SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, SplatVal, One);
2052 
2053   Lo = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, Lo);
2054   Lo = DAG.getNode(ISD::SHL, DL, VecVT, Lo, ThirtyTwoV);
2055   Lo = DAG.getNode(ISD::SRL, DL, VecVT, Lo, ThirtyTwoV);
2056 
2057   if (isNullConstant(Hi))
2058     return Lo;
2059 
2060   Hi = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, Hi);
2061   Hi = DAG.getNode(ISD::SHL, DL, VecVT, Hi, ThirtyTwoV);
2062 
2063   return DAG.getNode(ISD::OR, DL, VecVT, Lo, Hi);
2064 }
2065 
2066 // Custom-lower extensions from mask vectors by using a vselect either with 1
2067 // for zero/any-extension or -1 for sign-extension:
2068 //   (vXiN = (s|z)ext vXi1:vmask) -> (vXiN = vselect vmask, (-1 or 1), 0)
2069 // Note that any-extension is lowered identically to zero-extension.
2070 SDValue RISCVTargetLowering::lowerVectorMaskExt(SDValue Op, SelectionDAG &DAG,
2071                                                 int64_t ExtTrueVal) const {
2072   SDLoc DL(Op);
2073   MVT VecVT = Op.getSimpleValueType();
2074   SDValue Src = Op.getOperand(0);
2075   // Only custom-lower extensions from mask types
2076   assert(Src.getValueType().isVector() &&
2077          Src.getValueType().getVectorElementType() == MVT::i1);
2078 
2079   MVT XLenVT = Subtarget.getXLenVT();
2080   SDValue SplatZero = DAG.getConstant(0, DL, XLenVT);
2081   SDValue SplatTrueVal = DAG.getConstant(ExtTrueVal, DL, XLenVT);
2082 
2083   if (VecVT.isScalableVector()) {
2084     // Be careful not to introduce illegal scalar types at this stage, and be
2085     // careful also about splatting constants as on RV32, vXi64 SPLAT_VECTOR is
2086     // illegal and must be expanded. Since we know that the constants are
2087     // sign-extended 32-bit values, we use SPLAT_VECTOR_I64 directly.
2088     bool IsRV32E64 =
2089         !Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64;
2090 
2091     if (!IsRV32E64) {
2092       SplatZero = DAG.getSplatVector(VecVT, DL, SplatZero);
2093       SplatTrueVal = DAG.getSplatVector(VecVT, DL, SplatTrueVal);
2094     } else {
2095       SplatZero = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, SplatZero);
2096       SplatTrueVal =
2097           DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, SplatTrueVal);
2098     }
2099 
2100     return DAG.getNode(ISD::VSELECT, DL, VecVT, Src, SplatTrueVal, SplatZero);
2101   }
2102 
2103   MVT ContainerVT = getContainerForFixedLengthVector(VecVT);
2104   MVT I1ContainerVT =
2105       MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
2106 
2107   SDValue CC = convertToScalableVector(I1ContainerVT, Src, DAG, Subtarget);
2108 
2109   SDValue Mask, VL;
2110   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
2111 
2112   SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatZero, VL);
2113   SplatTrueVal =
2114       DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatTrueVal, VL);
2115   SDValue Select = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC,
2116                                SplatTrueVal, SplatZero, VL);
2117 
2118   return convertFromScalableVector(VecVT, Select, DAG, Subtarget);
2119 }
2120 
2121 SDValue RISCVTargetLowering::lowerFixedLengthVectorExtendToRVV(
2122     SDValue Op, SelectionDAG &DAG, unsigned ExtendOpc) const {
2123   MVT ExtVT = Op.getSimpleValueType();
2124   // Only custom-lower extensions from fixed-length vector types.
2125   if (!ExtVT.isFixedLengthVector())
2126     return Op;
2127   MVT VT = Op.getOperand(0).getSimpleValueType();
2128   // Grab the canonical container type for the extended type. Infer the smaller
2129   // type from that to ensure the same number of vector elements, as we know
2130   // the LMUL will be sufficient to hold the smaller type.
2131   MVT ContainerExtVT = getContainerForFixedLengthVector(ExtVT);
2132   // Get the extended container type manually to ensure the same number of
2133   // vector elements between source and dest.
2134   MVT ContainerVT = MVT::getVectorVT(VT.getVectorElementType(),
2135                                      ContainerExtVT.getVectorElementCount());
2136 
2137   SDValue Op1 =
2138       convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget);
2139 
2140   SDLoc DL(Op);
2141   SDValue Mask, VL;
2142   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
2143 
2144   SDValue Ext = DAG.getNode(ExtendOpc, DL, ContainerExtVT, Op1, Mask, VL);
2145 
2146   return convertFromScalableVector(ExtVT, Ext, DAG, Subtarget);
2147 }
2148 
2149 // Custom-lower truncations from vectors to mask vectors by using a mask and a
2150 // setcc operation:
2151 //   (vXi1 = trunc vXiN vec) -> (vXi1 = setcc (and vec, 1), 0, ne)
2152 SDValue RISCVTargetLowering::lowerVectorMaskTrunc(SDValue Op,
2153                                                   SelectionDAG &DAG) const {
2154   SDLoc DL(Op);
2155   EVT MaskVT = Op.getValueType();
2156   // Only expect to custom-lower truncations to mask types
2157   assert(MaskVT.isVector() && MaskVT.getVectorElementType() == MVT::i1 &&
2158          "Unexpected type for vector mask lowering");
2159   SDValue Src = Op.getOperand(0);
2160   MVT VecVT = Src.getSimpleValueType();
2161 
2162   // If this is a fixed vector, we need to convert it to a scalable vector.
2163   MVT ContainerVT = VecVT;
2164   if (VecVT.isFixedLengthVector()) {
2165     ContainerVT = getContainerForFixedLengthVector(VecVT);
2166     Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget);
2167   }
2168 
2169   SDValue SplatOne = DAG.getConstant(1, DL, Subtarget.getXLenVT());
2170   SDValue SplatZero = DAG.getConstant(0, DL, Subtarget.getXLenVT());
2171 
2172   SplatOne = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatOne);
2173   SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatZero);
2174 
2175   if (VecVT.isScalableVector()) {
2176     SDValue Trunc = DAG.getNode(ISD::AND, DL, VecVT, Src, SplatOne);
2177     return DAG.getSetCC(DL, MaskVT, Trunc, SplatZero, ISD::SETNE);
2178   }
2179 
2180   SDValue Mask, VL;
2181   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
2182 
2183   MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1);
2184   SDValue Trunc =
2185       DAG.getNode(RISCVISD::AND_VL, DL, ContainerVT, Src, SplatOne, Mask, VL);
2186   Trunc = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskContainerVT, Trunc, SplatZero,
2187                       DAG.getCondCode(ISD::SETNE), Mask, VL);
2188   return convertFromScalableVector(MaskVT, Trunc, DAG, Subtarget);
2189 }
2190 
2191 SDValue RISCVTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op,
2192                                                     SelectionDAG &DAG) const {
2193   SDLoc DL(Op);
2194   MVT VecVT = Op.getSimpleValueType();
2195   SDValue Vec = Op.getOperand(0);
2196   SDValue Val = Op.getOperand(1);
2197   SDValue Idx = Op.getOperand(2);
2198 
2199   MVT ContainerVT = VecVT;
2200   // If the operand is a fixed-length vector, convert to a scalable one.
2201   if (VecVT.isFixedLengthVector()) {
2202     ContainerVT = getContainerForFixedLengthVector(VecVT);
2203     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
2204   }
2205 
2206   SDValue Mask, VL;
2207   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
2208 
2209   // Custom-legalize INSERT_VECTOR_ELT where XLEN>=SEW, so that the vector is
2210   // first slid down into position, the value is inserted into the first
2211   // position, and the vector is slid back up. We do this to simplify patterns.
2212   //   (slideup vec, (insertelt (slidedown impdef, vec, idx), val, 0), idx),
2213   if (Subtarget.is64Bit() || Val.getValueType() != MVT::i64) {
2214     if (isNullConstant(Idx))
2215       return DAG.getNode(RISCVISD::VMV_S_XF_VL, DL, ContainerVT, Vec, Val, VL);
2216     SDValue Slidedown =
2217         DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT,
2218                     DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL);
2219     SDValue InsertElt0 =
2220         DAG.getNode(RISCVISD::VMV_S_XF_VL, DL, ContainerVT, Slidedown, Val, VL);
2221     return DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec, InsertElt0,
2222                        Idx, Mask, VL);
2223   }
2224 
2225   // Custom-legalize INSERT_VECTOR_ELT where XLEN<SEW, as the SEW element type
2226   // is illegal (currently only vXi64 RV32).
2227   // Since there is no easy way of getting a single element into a vector when
2228   // XLEN<SEW, we lower the operation to the following sequence:
2229   //   splat      vVal, rVal
2230   //   vid.v      vVid
2231   //   vmseq.vx   mMask, vVid, rIdx
2232   //   vmerge.vvm vDest, vSrc, vVal, mMask
2233   // This essentially merges the original vector with the inserted element by
2234   // using a mask whose only set bit is that corresponding to the insert
2235   // index.
2236   SDValue SplattedVal = DAG.getSplatVector(ContainerVT, DL, Val);
2237   SDValue SplattedIdx =
2238       DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, Idx, VL);
2239 
2240   SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, ContainerVT, Mask, VL);
2241   auto SetCCVT =
2242       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ContainerVT);
2243   SDValue SelectCond =
2244       DAG.getNode(RISCVISD::SETCC_VL, DL, SetCCVT, VID, SplattedIdx,
2245                   DAG.getCondCode(ISD::SETEQ), Mask, VL);
2246   SDValue Select = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT,
2247                                SelectCond, SplattedVal, Vec, VL);
2248   if (!VecVT.isFixedLengthVector())
2249     return Select;
2250   return convertFromScalableVector(VecVT, Select, DAG, Subtarget);
2251 }
2252 
2253 // Custom-lower EXTRACT_VECTOR_ELT operations to slide the vector down, then
2254 // extract the first element: (extractelt (slidedown vec, idx), 0). For integer
2255 // types this is done using VMV_X_S to allow us to glean information about the
2256 // sign bits of the result.
2257 SDValue RISCVTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op,
2258                                                      SelectionDAG &DAG) const {
2259   SDLoc DL(Op);
2260   SDValue Idx = Op.getOperand(1);
2261   SDValue Vec = Op.getOperand(0);
2262   EVT EltVT = Op.getValueType();
2263   MVT VecVT = Vec.getSimpleValueType();
2264   MVT XLenVT = Subtarget.getXLenVT();
2265 
2266   // If this is a fixed vector, we need to convert it to a scalable vector.
2267   MVT ContainerVT = VecVT;
2268   if (VecVT.isFixedLengthVector()) {
2269     ContainerVT = getContainerForFixedLengthVector(VecVT);
2270     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
2271   }
2272 
2273   // If the index is 0, the vector is already in the right position.
2274   if (!isNullConstant(Idx)) {
2275     // Use a VL of 1 to avoid processing more elements than we need.
2276     SDValue VL = DAG.getConstant(1, DL, XLenVT);
2277     MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
2278     SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
2279     Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT,
2280                       DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL);
2281   }
2282 
2283   if (!EltVT.isInteger()) {
2284     // Floating-point extracts are handled in TableGen.
2285     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec,
2286                        DAG.getConstant(0, DL, XLenVT));
2287   }
2288 
2289   SDValue Elt0 = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec);
2290   return DAG.getNode(ISD::TRUNCATE, DL, EltVT, Elt0);
2291 }
2292 
2293 SDValue RISCVTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
2294                                                      SelectionDAG &DAG) const {
2295   unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
2296   SDLoc DL(Op);
2297 
2298   if (Subtarget.hasStdExtV()) {
2299     // Some RVV intrinsics may claim that they want an integer operand to be
2300     // extended.
2301     if (const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II =
2302             RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo)) {
2303       if (II->ExtendedOperand) {
2304         assert(II->ExtendedOperand < Op.getNumOperands());
2305         SmallVector<SDValue, 8> Operands(Op->op_begin(), Op->op_end());
2306         SDValue &ScalarOp = Operands[II->ExtendedOperand];
2307         EVT OpVT = ScalarOp.getValueType();
2308         if (OpVT == MVT::i8 || OpVT == MVT::i16 ||
2309             (OpVT == MVT::i32 && Subtarget.is64Bit())) {
2310           // If the operand is a constant, sign extend to increase our chances
2311           // of being able to use a .vi instruction. ANY_EXTEND would become a
2312           // a zero extend and the simm5 check in isel would fail.
2313           // FIXME: Should we ignore the upper bits in isel instead?
2314           unsigned ExtOpc = isa<ConstantSDNode>(ScalarOp) ? ISD::SIGN_EXTEND
2315                                                           : ISD::ANY_EXTEND;
2316           ScalarOp = DAG.getNode(ExtOpc, DL, Subtarget.getXLenVT(), ScalarOp);
2317           return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, Op.getValueType(),
2318                              Operands);
2319         }
2320       }
2321     }
2322   }
2323 
2324   switch (IntNo) {
2325   default:
2326     return SDValue();    // Don't custom lower most intrinsics.
2327   case Intrinsic::thread_pointer: {
2328     EVT PtrVT = getPointerTy(DAG.getDataLayout());
2329     return DAG.getRegister(RISCV::X4, PtrVT);
2330   }
2331   case Intrinsic::riscv_vmv_x_s:
2332     assert(Op.getValueType() == Subtarget.getXLenVT() && "Unexpected VT!");
2333     return DAG.getNode(RISCVISD::VMV_X_S, DL, Op.getValueType(),
2334                        Op.getOperand(1));
2335   case Intrinsic::riscv_vmv_v_x: {
2336     SDValue Scalar = DAG.getNode(ISD::ANY_EXTEND, DL, Subtarget.getXLenVT(),
2337                                  Op.getOperand(1));
2338     return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, Op.getValueType(),
2339                        Scalar, Op.getOperand(2));
2340   }
2341   case Intrinsic::riscv_vfmv_v_f:
2342     return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, Op.getValueType(),
2343                        Op.getOperand(1), Op.getOperand(2));
2344   }
2345 }
2346 
2347 SDValue RISCVTargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op,
2348                                                     SelectionDAG &DAG) const {
2349   unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
2350   SDLoc DL(Op);
2351 
2352   if (Subtarget.hasStdExtV()) {
2353     // Some RVV intrinsics may claim that they want an integer operand to be
2354     // extended.
2355     if (const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II =
2356             RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo)) {
2357       if (II->ExtendedOperand) {
2358         // The operands start from the second argument in INTRINSIC_W_CHAIN.
2359         unsigned ExtendOp = II->ExtendedOperand + 1;
2360         assert(ExtendOp < Op.getNumOperands());
2361         SmallVector<SDValue, 8> Operands(Op->op_begin(), Op->op_end());
2362         SDValue &ScalarOp = Operands[ExtendOp];
2363         EVT OpVT = ScalarOp.getValueType();
2364         if (OpVT == MVT::i8 || OpVT == MVT::i16 ||
2365             (OpVT == MVT::i32 && Subtarget.is64Bit())) {
2366           // If the operand is a constant, sign extend to increase our chances
2367           // of being able to use a .vi instruction. ANY_EXTEND would become a
2368           // a zero extend and the simm5 check in isel would fail.
2369           // FIXME: Should we ignore the upper bits in isel instead?
2370           unsigned ExtOpc = isa<ConstantSDNode>(ScalarOp) ? ISD::SIGN_EXTEND
2371                                                           : ISD::ANY_EXTEND;
2372           ScalarOp = DAG.getNode(ExtOpc, DL, Subtarget.getXLenVT(), ScalarOp);
2373           return DAG.getNode(ISD::INTRINSIC_W_CHAIN, DL, Op->getVTList(),
2374                              Operands);
2375         }
2376       }
2377     }
2378   }
2379 
2380   return SDValue(); // Don't custom lower most intrinsics.
2381 }
2382 
2383 static MVT getLMUL1VT(MVT VT) {
2384   assert(VT.getVectorElementType().getSizeInBits() <= 64 &&
2385          "Unexpected vector MVT");
2386   return MVT::getScalableVectorVT(
2387       VT.getVectorElementType(),
2388       RISCV::RVVBitsPerBlock / VT.getVectorElementType().getSizeInBits());
2389 }
2390 
2391 static unsigned getRVVReductionOp(unsigned ISDOpcode) {
2392   switch (ISDOpcode) {
2393   default:
2394     llvm_unreachable("Unhandled reduction");
2395   case ISD::VECREDUCE_ADD:
2396     return RISCVISD::VECREDUCE_ADD;
2397   case ISD::VECREDUCE_UMAX:
2398     return RISCVISD::VECREDUCE_UMAX;
2399   case ISD::VECREDUCE_SMAX:
2400     return RISCVISD::VECREDUCE_SMAX;
2401   case ISD::VECREDUCE_UMIN:
2402     return RISCVISD::VECREDUCE_UMIN;
2403   case ISD::VECREDUCE_SMIN:
2404     return RISCVISD::VECREDUCE_SMIN;
2405   case ISD::VECREDUCE_AND:
2406     return RISCVISD::VECREDUCE_AND;
2407   case ISD::VECREDUCE_OR:
2408     return RISCVISD::VECREDUCE_OR;
2409   case ISD::VECREDUCE_XOR:
2410     return RISCVISD::VECREDUCE_XOR;
2411   }
2412 }
2413 
2414 // Take a (supported) standard ISD reduction opcode and transform it to a RISCV
2415 // reduction opcode. Note that this returns a vector type, which must be
2416 // further processed to access the scalar result in element 0.
2417 SDValue RISCVTargetLowering::lowerVECREDUCE(SDValue Op,
2418                                             SelectionDAG &DAG) const {
2419   SDLoc DL(Op);
2420   assert(Op.getValueType().isSimple() &&
2421          Op.getOperand(0).getValueType().isSimple() &&
2422          "Unexpected vector-reduce lowering");
2423   MVT VecVT = Op.getOperand(0).getSimpleValueType();
2424   MVT VecEltVT = VecVT.getVectorElementType();
2425   unsigned RVVOpcode = getRVVReductionOp(Op.getOpcode());
2426   MVT M1VT = getLMUL1VT(VecVT);
2427   SDValue NeutralElem = DAG.getNeutralElement(
2428       ISD::getVecReduceBaseOpcode(Op.getOpcode()), DL, VecEltVT, SDNodeFlags());
2429   SDValue IdentitySplat = DAG.getSplatVector(M1VT, DL, NeutralElem);
2430   SDValue Reduction =
2431       DAG.getNode(RVVOpcode, DL, M1VT, Op.getOperand(0), IdentitySplat);
2432   SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction,
2433                              DAG.getConstant(0, DL, Subtarget.getXLenVT()));
2434   return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType());
2435 }
2436 
2437 // Given a reduction op, this function returns the matching reduction opcode,
2438 // the vector SDValue and the scalar SDValue required to lower this to a
2439 // RISCVISD node.
2440 static std::tuple<unsigned, SDValue, SDValue>
2441 getRVVFPReductionOpAndOperands(SDValue Op, SelectionDAG &DAG, EVT EltVT) {
2442   SDLoc DL(Op);
2443   switch (Op.getOpcode()) {
2444   default:
2445     llvm_unreachable("Unhandled reduction");
2446   case ISD::VECREDUCE_FADD:
2447     return std::make_tuple(RISCVISD::VECREDUCE_FADD, Op.getOperand(0),
2448                            DAG.getConstantFP(0.0, DL, EltVT));
2449   case ISD::VECREDUCE_SEQ_FADD:
2450     return std::make_tuple(RISCVISD::VECREDUCE_SEQ_FADD, Op.getOperand(1),
2451                            Op.getOperand(0));
2452   }
2453 }
2454 
2455 SDValue RISCVTargetLowering::lowerFPVECREDUCE(SDValue Op,
2456                                               SelectionDAG &DAG) const {
2457   SDLoc DL(Op);
2458   MVT VecEltVT = Op.getSimpleValueType();
2459 
2460   unsigned RVVOpcode;
2461   SDValue VectorVal, ScalarVal;
2462   std::tie(RVVOpcode, VectorVal, ScalarVal) =
2463       getRVVFPReductionOpAndOperands(Op, DAG, VecEltVT);
2464 
2465   MVT M1VT = getLMUL1VT(VectorVal.getSimpleValueType());
2466   SDValue ScalarSplat = DAG.getSplatVector(M1VT, DL, ScalarVal);
2467   SDValue Reduction = DAG.getNode(RVVOpcode, DL, M1VT, VectorVal, ScalarSplat);
2468   return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction,
2469                      DAG.getConstant(0, DL, Subtarget.getXLenVT()));
2470 }
2471 
2472 SDValue RISCVTargetLowering::lowerINSERT_SUBVECTOR(SDValue Op,
2473                                                    SelectionDAG &DAG) const {
2474   SDValue Vec = Op.getOperand(0);
2475   SDValue SubVec = Op.getOperand(1);
2476   MVT VecVT = Vec.getSimpleValueType();
2477   MVT SubVecVT = SubVec.getSimpleValueType();
2478 
2479   SDLoc DL(Op);
2480   MVT XLenVT = Subtarget.getXLenVT();
2481   unsigned OrigIdx = Op.getConstantOperandVal(2);
2482   const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo();
2483 
2484   // We don't have the ability to slide mask vectors up indexed by their i1
2485   // elements; the smallest we can do is i8. Often we are able to bitcast to
2486   // equivalent i8 vectors. Note that when inserting a fixed-length vector
2487   // into a scalable one, we might not necessarily have enough scalable
2488   // elements to safely divide by 8: nxv1i1 = insert nxv1i1, v4i1 is valid.
2489   if (SubVecVT.getVectorElementType() == MVT::i1 &&
2490       (OrigIdx != 0 || !Vec.isUndef())) {
2491     if (VecVT.getVectorMinNumElements() >= 8 &&
2492         SubVecVT.getVectorMinNumElements() >= 8) {
2493       assert(OrigIdx % 8 == 0 && "Invalid index");
2494       assert(VecVT.getVectorMinNumElements() % 8 == 0 &&
2495              SubVecVT.getVectorMinNumElements() % 8 == 0 &&
2496              "Unexpected mask vector lowering");
2497       OrigIdx /= 8;
2498       SubVecVT =
2499           MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8,
2500                            SubVecVT.isScalableVector());
2501       VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8,
2502                                VecVT.isScalableVector());
2503       Vec = DAG.getBitcast(VecVT, Vec);
2504       SubVec = DAG.getBitcast(SubVecVT, SubVec);
2505     } else {
2506       // We can't slide this mask vector up indexed by its i1 elements.
2507       // This poses a problem when we wish to insert a scalable vector which
2508       // can't be re-expressed as a larger type. Just choose the slow path and
2509       // extend to a larger type, then truncate back down.
2510       MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8);
2511       MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8);
2512       Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec);
2513       SubVec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtSubVecVT, SubVec);
2514       Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ExtVecVT, Vec, SubVec,
2515                         Op.getOperand(2));
2516       SDValue SplatZero = DAG.getConstant(0, DL, ExtVecVT);
2517       return DAG.getSetCC(DL, VecVT, Vec, SplatZero, ISD::SETNE);
2518     }
2519   }
2520 
2521   // If the subvector vector is a fixed-length type, we cannot use subregister
2522   // manipulation to simplify the codegen; we don't know which register of a
2523   // LMUL group contains the specific subvector as we only know the minimum
2524   // register size. Therefore we must slide the vector group up the full
2525   // amount.
2526   if (SubVecVT.isFixedLengthVector()) {
2527     if (OrigIdx == 0 && Vec.isUndef())
2528       return Op;
2529     MVT ContainerVT = VecVT;
2530     if (VecVT.isFixedLengthVector()) {
2531       ContainerVT = getContainerForFixedLengthVector(VecVT);
2532       Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
2533     }
2534     SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ContainerVT,
2535                          DAG.getUNDEF(ContainerVT), SubVec,
2536                          DAG.getConstant(0, DL, XLenVT));
2537     SDValue Mask =
2538         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first;
2539     // Set the vector length to only the number of elements we care about. Note
2540     // that for slideup this includes the offset.
2541     SDValue VL =
2542         DAG.getConstant(OrigIdx + SubVecVT.getVectorNumElements(), DL, XLenVT);
2543     SDValue SlideupAmt = DAG.getConstant(OrigIdx, DL, XLenVT);
2544     SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec,
2545                                   SubVec, SlideupAmt, Mask, VL);
2546     if (!VecVT.isFixedLengthVector())
2547       return Slideup;
2548     return convertFromScalableVector(VecVT, Slideup, DAG, Subtarget);
2549   }
2550 
2551   unsigned SubRegIdx, RemIdx;
2552   std::tie(SubRegIdx, RemIdx) =
2553       RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs(
2554           VecVT, SubVecVT, OrigIdx, TRI);
2555 
2556   RISCVVLMUL SubVecLMUL = RISCVTargetLowering::getLMUL(SubVecVT);
2557   bool IsSubVecPartReg = SubVecLMUL == RISCVVLMUL::LMUL_F2 ||
2558                          SubVecLMUL == RISCVVLMUL::LMUL_F4 ||
2559                          SubVecLMUL == RISCVVLMUL::LMUL_F8;
2560 
2561   // 1. If the Idx has been completely eliminated and this subvector's size is
2562   // a vector register or a multiple thereof, or the surrounding elements are
2563   // undef, then this is a subvector insert which naturally aligns to a vector
2564   // register. These can easily be handled using subregister manipulation.
2565   // 2. If the subvector is smaller than a vector register, then the insertion
2566   // must preserve the undisturbed elements of the register. We do this by
2567   // lowering to an EXTRACT_SUBVECTOR grabbing the nearest LMUL=1 vector type
2568   // (which resolves to a subregister copy), performing a VSLIDEUP to place the
2569   // subvector within the vector register, and an INSERT_SUBVECTOR of that
2570   // LMUL=1 type back into the larger vector (resolving to another subregister
2571   // operation). See below for how our VSLIDEUP works. We go via a LMUL=1 type
2572   // to avoid allocating a large register group to hold our subvector.
2573   if (RemIdx == 0 && (!IsSubVecPartReg || Vec.isUndef()))
2574     return Op;
2575 
2576   // VSLIDEUP works by leaving elements 0<i<OFFSET undisturbed, elements
2577   // OFFSET<=i<VL set to the "subvector" and vl<=i<VLMAX set to the tail policy
2578   // (in our case undisturbed). This means we can set up a subvector insertion
2579   // where OFFSET is the insertion offset, and the VL is the OFFSET plus the
2580   // size of the subvector.
2581   MVT InterSubVT = VecVT;
2582   SDValue AlignedExtract = Vec;
2583   unsigned AlignedIdx = OrigIdx - RemIdx;
2584   if (VecVT.bitsGT(getLMUL1VT(VecVT))) {
2585     InterSubVT = getLMUL1VT(VecVT);
2586     // Extract a subvector equal to the nearest full vector register type. This
2587     // should resolve to a EXTRACT_SUBREG instruction.
2588     AlignedExtract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec,
2589                                  DAG.getConstant(AlignedIdx, DL, XLenVT));
2590   }
2591 
2592   SDValue SlideupAmt = DAG.getConstant(RemIdx, DL, XLenVT);
2593   // For scalable vectors this must be further multiplied by vscale.
2594   SlideupAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlideupAmt);
2595 
2596   SDValue Mask, VL;
2597   std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget);
2598 
2599   // Construct the vector length corresponding to RemIdx + length(SubVecVT).
2600   VL = DAG.getConstant(SubVecVT.getVectorMinNumElements(), DL, XLenVT);
2601   VL = DAG.getNode(ISD::VSCALE, DL, XLenVT, VL);
2602   VL = DAG.getNode(ISD::ADD, DL, XLenVT, SlideupAmt, VL);
2603 
2604   SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, InterSubVT,
2605                        DAG.getUNDEF(InterSubVT), SubVec,
2606                        DAG.getConstant(0, DL, XLenVT));
2607 
2608   SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, InterSubVT,
2609                                 AlignedExtract, SubVec, SlideupAmt, Mask, VL);
2610 
2611   // If required, insert this subvector back into the correct vector register.
2612   // This should resolve to an INSERT_SUBREG instruction.
2613   if (VecVT.bitsGT(InterSubVT))
2614     Slideup = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, Vec, Slideup,
2615                           DAG.getConstant(AlignedIdx, DL, XLenVT));
2616 
2617   // We might have bitcast from a mask type: cast back to the original type if
2618   // required.
2619   return DAG.getBitcast(Op.getSimpleValueType(), Slideup);
2620 }
2621 
2622 SDValue RISCVTargetLowering::lowerEXTRACT_SUBVECTOR(SDValue Op,
2623                                                     SelectionDAG &DAG) const {
2624   SDValue Vec = Op.getOperand(0);
2625   MVT SubVecVT = Op.getSimpleValueType();
2626   MVT VecVT = Vec.getSimpleValueType();
2627 
2628   SDLoc DL(Op);
2629   MVT XLenVT = Subtarget.getXLenVT();
2630   unsigned OrigIdx = Op.getConstantOperandVal(1);
2631   const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo();
2632 
2633   // We don't have the ability to slide mask vectors down indexed by their i1
2634   // elements; the smallest we can do is i8. Often we are able to bitcast to
2635   // equivalent i8 vectors. Note that when extracting a fixed-length vector
2636   // from a scalable one, we might not necessarily have enough scalable
2637   // elements to safely divide by 8: v8i1 = extract nxv1i1 is valid.
2638   if (SubVecVT.getVectorElementType() == MVT::i1 && OrigIdx != 0) {
2639     if (VecVT.getVectorMinNumElements() >= 8 &&
2640         SubVecVT.getVectorMinNumElements() >= 8) {
2641       assert(OrigIdx % 8 == 0 && "Invalid index");
2642       assert(VecVT.getVectorMinNumElements() % 8 == 0 &&
2643              SubVecVT.getVectorMinNumElements() % 8 == 0 &&
2644              "Unexpected mask vector lowering");
2645       OrigIdx /= 8;
2646       SubVecVT =
2647           MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8,
2648                            SubVecVT.isScalableVector());
2649       VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8,
2650                                VecVT.isScalableVector());
2651       Vec = DAG.getBitcast(VecVT, Vec);
2652     } else {
2653       // We can't slide this mask vector down, indexed by its i1 elements.
2654       // This poses a problem when we wish to extract a scalable vector which
2655       // can't be re-expressed as a larger type. Just choose the slow path and
2656       // extend to a larger type, then truncate back down.
2657       // TODO: We could probably improve this when extracting certain fixed
2658       // from fixed, where we can extract as i8 and shift the correct element
2659       // right to reach the desired subvector?
2660       MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8);
2661       MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8);
2662       Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec);
2663       Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ExtSubVecVT, Vec,
2664                         Op.getOperand(1));
2665       SDValue SplatZero = DAG.getConstant(0, DL, ExtSubVecVT);
2666       return DAG.getSetCC(DL, SubVecVT, Vec, SplatZero, ISD::SETNE);
2667     }
2668   }
2669 
2670   // If the subvector vector is a fixed-length type, we cannot use subregister
2671   // manipulation to simplify the codegen; we don't know which register of a
2672   // LMUL group contains the specific subvector as we only know the minimum
2673   // register size. Therefore we must slide the vector group down the full
2674   // amount.
2675   if (SubVecVT.isFixedLengthVector()) {
2676     // With an index of 0 this is a cast-like subvector, which can be performed
2677     // with subregister operations.
2678     if (OrigIdx == 0)
2679       return Op;
2680     MVT ContainerVT = VecVT;
2681     if (VecVT.isFixedLengthVector()) {
2682       ContainerVT = getContainerForFixedLengthVector(VecVT);
2683       Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
2684     }
2685     SDValue Mask =
2686         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first;
2687     // Set the vector length to only the number of elements we care about. This
2688     // avoids sliding down elements we're going to discard straight away.
2689     SDValue VL = DAG.getConstant(SubVecVT.getVectorNumElements(), DL, XLenVT);
2690     SDValue SlidedownAmt = DAG.getConstant(OrigIdx, DL, XLenVT);
2691     SDValue Slidedown =
2692         DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT,
2693                     DAG.getUNDEF(ContainerVT), Vec, SlidedownAmt, Mask, VL);
2694     // Now we can use a cast-like subvector extract to get the result.
2695     return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown,
2696                        DAG.getConstant(0, DL, XLenVT));
2697   }
2698 
2699   unsigned SubRegIdx, RemIdx;
2700   std::tie(SubRegIdx, RemIdx) =
2701       RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs(
2702           VecVT, SubVecVT, OrigIdx, TRI);
2703 
2704   // If the Idx has been completely eliminated then this is a subvector extract
2705   // which naturally aligns to a vector register. These can easily be handled
2706   // using subregister manipulation.
2707   if (RemIdx == 0)
2708     return Op;
2709 
2710   // Else we must shift our vector register directly to extract the subvector.
2711   // Do this using VSLIDEDOWN.
2712 
2713   // If the vector type is an LMUL-group type, extract a subvector equal to the
2714   // nearest full vector register type. This should resolve to a EXTRACT_SUBREG
2715   // instruction.
2716   MVT InterSubVT = VecVT;
2717   if (VecVT.bitsGT(getLMUL1VT(VecVT))) {
2718     InterSubVT = getLMUL1VT(VecVT);
2719     Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec,
2720                       DAG.getConstant(OrigIdx - RemIdx, DL, XLenVT));
2721   }
2722 
2723   // Slide this vector register down by the desired number of elements in order
2724   // to place the desired subvector starting at element 0.
2725   SDValue SlidedownAmt = DAG.getConstant(RemIdx, DL, XLenVT);
2726   // For scalable vectors this must be further multiplied by vscale.
2727   SlidedownAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlidedownAmt);
2728 
2729   SDValue Mask, VL;
2730   std::tie(Mask, VL) = getDefaultScalableVLOps(InterSubVT, DL, DAG, Subtarget);
2731   SDValue Slidedown =
2732       DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, InterSubVT,
2733                   DAG.getUNDEF(InterSubVT), Vec, SlidedownAmt, Mask, VL);
2734 
2735   // Now the vector is in the right position, extract our final subvector. This
2736   // should resolve to a COPY.
2737   Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown,
2738                           DAG.getConstant(0, DL, XLenVT));
2739 
2740   // We might have bitcast from a mask type: cast back to the original type if
2741   // required.
2742   return DAG.getBitcast(Op.getSimpleValueType(), Slidedown);
2743 }
2744 
2745 SDValue
2746 RISCVTargetLowering::lowerFixedLengthVectorLoadToRVV(SDValue Op,
2747                                                      SelectionDAG &DAG) const {
2748   auto *Load = cast<LoadSDNode>(Op);
2749 
2750   SDLoc DL(Op);
2751   MVT VT = Op.getSimpleValueType();
2752   MVT ContainerVT = getContainerForFixedLengthVector(VT);
2753 
2754   SDValue VL =
2755       DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT());
2756 
2757   SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
2758   SDValue NewLoad = DAG.getMemIntrinsicNode(
2759       RISCVISD::VLE_VL, DL, VTs, {Load->getChain(), Load->getBasePtr(), VL},
2760       Load->getMemoryVT(), Load->getMemOperand());
2761 
2762   SDValue Result = convertFromScalableVector(VT, NewLoad, DAG, Subtarget);
2763   return DAG.getMergeValues({Result, Load->getChain()}, DL);
2764 }
2765 
2766 SDValue
2767 RISCVTargetLowering::lowerFixedLengthVectorStoreToRVV(SDValue Op,
2768                                                       SelectionDAG &DAG) const {
2769   auto *Store = cast<StoreSDNode>(Op);
2770 
2771   SDLoc DL(Op);
2772   MVT VT = Store->getValue().getSimpleValueType();
2773 
2774   // FIXME: We probably need to zero any extra bits in a byte for mask stores.
2775   // This is tricky to do.
2776 
2777   MVT ContainerVT = getContainerForFixedLengthVector(VT);
2778 
2779   SDValue VL =
2780       DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT());
2781 
2782   SDValue NewValue =
2783       convertToScalableVector(ContainerVT, Store->getValue(), DAG, Subtarget);
2784   return DAG.getMemIntrinsicNode(
2785       RISCVISD::VSE_VL, DL, DAG.getVTList(MVT::Other),
2786       {Store->getChain(), NewValue, Store->getBasePtr(), VL},
2787       Store->getMemoryVT(), Store->getMemOperand());
2788 }
2789 
2790 SDValue
2791 RISCVTargetLowering::lowerFixedLengthVectorSetccToRVV(SDValue Op,
2792                                                       SelectionDAG &DAG) const {
2793   MVT InVT = Op.getOperand(0).getSimpleValueType();
2794   MVT ContainerVT = getContainerForFixedLengthVector(InVT);
2795 
2796   MVT VT = Op.getSimpleValueType();
2797 
2798   SDValue Op1 =
2799       convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget);
2800   SDValue Op2 =
2801       convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget);
2802 
2803   SDLoc DL(Op);
2804   SDValue VL =
2805       DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT());
2806 
2807   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
2808 
2809   bool Invert = false;
2810   Optional<unsigned> LogicOpc;
2811   if (ContainerVT.isFloatingPoint()) {
2812     bool Swap = false;
2813     switch (CC) {
2814     default:
2815       break;
2816     case ISD::SETULE:
2817     case ISD::SETULT:
2818       Swap = true;
2819       LLVM_FALLTHROUGH;
2820     case ISD::SETUGE:
2821     case ISD::SETUGT:
2822       CC = getSetCCInverse(CC, ContainerVT);
2823       Invert = true;
2824       break;
2825     case ISD::SETOGE:
2826     case ISD::SETOGT:
2827     case ISD::SETGE:
2828     case ISD::SETGT:
2829       Swap = true;
2830       break;
2831     case ISD::SETUEQ:
2832       // Use !((OLT Op1, Op2) || (OLT Op2, Op1))
2833       Invert = true;
2834       LogicOpc = RISCVISD::VMOR_VL;
2835       CC = ISD::SETOLT;
2836       break;
2837     case ISD::SETONE:
2838       // Use ((OLT Op1, Op2) || (OLT Op2, Op1))
2839       LogicOpc = RISCVISD::VMOR_VL;
2840       CC = ISD::SETOLT;
2841       break;
2842     case ISD::SETO:
2843       // Use (OEQ Op1, Op1) && (OEQ Op2, Op2)
2844       LogicOpc = RISCVISD::VMAND_VL;
2845       CC = ISD::SETOEQ;
2846       break;
2847     case ISD::SETUO:
2848       // Use (UNE Op1, Op1) || (UNE Op2, Op2)
2849       LogicOpc = RISCVISD::VMOR_VL;
2850       CC = ISD::SETUNE;
2851       break;
2852     }
2853 
2854     if (Swap) {
2855       CC = getSetCCSwappedOperands(CC);
2856       std::swap(Op1, Op2);
2857     }
2858   }
2859 
2860   MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
2861   SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
2862 
2863   // There are 3 cases we need to emit.
2864   // 1. For (OEQ Op1, Op1) && (OEQ Op2, Op2) or (UNE Op1, Op1) || (UNE Op2, Op2)
2865   //    we need to compare each operand with itself.
2866   // 2. For (OLT Op1, Op2) || (OLT Op2, Op1) we need to compare Op1 and Op2 in
2867   //    both orders.
2868   // 3. For any other case we just need one compare with Op1 and Op2.
2869   SDValue Cmp;
2870   if (LogicOpc && (CC == ISD::SETOEQ || CC == ISD::SETUNE)) {
2871     Cmp = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, Op1, Op1,
2872                       DAG.getCondCode(CC), Mask, VL);
2873     SDValue Cmp2 = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, Op2, Op2,
2874                                DAG.getCondCode(CC), Mask, VL);
2875     Cmp = DAG.getNode(*LogicOpc, DL, MaskVT, Cmp, Cmp2, VL);
2876   } else {
2877     Cmp = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, Op1, Op2,
2878                       DAG.getCondCode(CC), Mask, VL);
2879     if (LogicOpc) {
2880       SDValue Cmp2 = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, Op2, Op1,
2881                                  DAG.getCondCode(CC), Mask, VL);
2882       Cmp = DAG.getNode(*LogicOpc, DL, MaskVT, Cmp, Cmp2, VL);
2883     }
2884   }
2885 
2886   if (Invert) {
2887     SDValue AllOnes = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
2888     Cmp = DAG.getNode(RISCVISD::VMXOR_VL, DL, MaskVT, Cmp, AllOnes, VL);
2889   }
2890 
2891   return convertFromScalableVector(VT, Cmp, DAG, Subtarget);
2892 }
2893 
2894 SDValue RISCVTargetLowering::lowerFixedLengthVectorLogicOpToRVV(
2895     SDValue Op, SelectionDAG &DAG, unsigned MaskOpc, unsigned VecOpc) const {
2896   MVT VT = Op.getSimpleValueType();
2897 
2898   if (VT.getVectorElementType() == MVT::i1)
2899     return lowerToScalableOp(Op, DAG, MaskOpc, /*HasMask*/ false);
2900 
2901   return lowerToScalableOp(Op, DAG, VecOpc, /*HasMask*/ true);
2902 }
2903 
2904 SDValue RISCVTargetLowering::lowerFixedLengthVectorSelectToRVV(
2905     SDValue Op, SelectionDAG &DAG) const {
2906   MVT VT = Op.getSimpleValueType();
2907   MVT ContainerVT = getContainerForFixedLengthVector(VT);
2908 
2909   MVT I1ContainerVT =
2910       MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
2911 
2912   SDValue CC =
2913       convertToScalableVector(I1ContainerVT, Op.getOperand(0), DAG, Subtarget);
2914   SDValue Op1 =
2915       convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget);
2916   SDValue Op2 =
2917       convertToScalableVector(ContainerVT, Op.getOperand(2), DAG, Subtarget);
2918 
2919   SDLoc DL(Op);
2920   SDValue Mask, VL;
2921   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
2922 
2923   SDValue Select =
2924       DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC, Op1, Op2, VL);
2925 
2926   return convertFromScalableVector(VT, Select, DAG, Subtarget);
2927 }
2928 
2929 SDValue RISCVTargetLowering::lowerToScalableOp(SDValue Op, SelectionDAG &DAG,
2930                                                unsigned NewOpc,
2931                                                bool HasMask) const {
2932   MVT VT = Op.getSimpleValueType();
2933   assert(useRVVForFixedLengthVectorVT(VT) &&
2934          "Only expected to lower fixed length vector operation!");
2935   MVT ContainerVT = getContainerForFixedLengthVector(VT);
2936 
2937   // Create list of operands by converting existing ones to scalable types.
2938   SmallVector<SDValue, 6> Ops;
2939   for (const SDValue &V : Op->op_values()) {
2940     assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!");
2941 
2942     // Pass through non-vector operands.
2943     if (!V.getValueType().isVector()) {
2944       Ops.push_back(V);
2945       continue;
2946     }
2947 
2948     // "cast" fixed length vector to a scalable vector.
2949     assert(useRVVForFixedLengthVectorVT(V.getSimpleValueType()) &&
2950            "Only fixed length vectors are supported!");
2951     Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget));
2952   }
2953 
2954   SDLoc DL(Op);
2955   SDValue Mask, VL;
2956   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
2957   if (HasMask)
2958     Ops.push_back(Mask);
2959   Ops.push_back(VL);
2960 
2961   SDValue ScalableRes = DAG.getNode(NewOpc, DL, ContainerVT, Ops);
2962   return convertFromScalableVector(VT, ScalableRes, DAG, Subtarget);
2963 }
2964 
2965 // Returns the opcode of the target-specific SDNode that implements the 32-bit
2966 // form of the given Opcode.
2967 static RISCVISD::NodeType getRISCVWOpcode(unsigned Opcode) {
2968   switch (Opcode) {
2969   default:
2970     llvm_unreachable("Unexpected opcode");
2971   case ISD::SHL:
2972     return RISCVISD::SLLW;
2973   case ISD::SRA:
2974     return RISCVISD::SRAW;
2975   case ISD::SRL:
2976     return RISCVISD::SRLW;
2977   case ISD::SDIV:
2978     return RISCVISD::DIVW;
2979   case ISD::UDIV:
2980     return RISCVISD::DIVUW;
2981   case ISD::UREM:
2982     return RISCVISD::REMUW;
2983   case ISD::ROTL:
2984     return RISCVISD::ROLW;
2985   case ISD::ROTR:
2986     return RISCVISD::RORW;
2987   case RISCVISD::GREVI:
2988     return RISCVISD::GREVIW;
2989   case RISCVISD::GORCI:
2990     return RISCVISD::GORCIW;
2991   }
2992 }
2993 
2994 // Converts the given 32-bit operation to a target-specific SelectionDAG node.
2995 // Because i32 isn't a legal type for RV64, these operations would otherwise
2996 // be promoted to i64, making it difficult to select the SLLW/DIVUW/.../*W
2997 // later one because the fact the operation was originally of type i32 is
2998 // lost.
2999 static SDValue customLegalizeToWOp(SDNode *N, SelectionDAG &DAG,
3000                                    unsigned ExtOpc = ISD::ANY_EXTEND) {
3001   SDLoc DL(N);
3002   RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode());
3003   SDValue NewOp0 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(0));
3004   SDValue NewOp1 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(1));
3005   SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1);
3006   // ReplaceNodeResults requires we maintain the same type for the return value.
3007   return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewRes);
3008 }
3009 
3010 // Converts the given 32-bit operation to a i64 operation with signed extension
3011 // semantic to reduce the signed extension instructions.
3012 static SDValue customLegalizeToWOpWithSExt(SDNode *N, SelectionDAG &DAG) {
3013   SDLoc DL(N);
3014   SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
3015   SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
3016   SDValue NewWOp = DAG.getNode(N->getOpcode(), DL, MVT::i64, NewOp0, NewOp1);
3017   SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp,
3018                                DAG.getValueType(MVT::i32));
3019   return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes);
3020 }
3021 
3022 void RISCVTargetLowering::ReplaceNodeResults(SDNode *N,
3023                                              SmallVectorImpl<SDValue> &Results,
3024                                              SelectionDAG &DAG) const {
3025   SDLoc DL(N);
3026   switch (N->getOpcode()) {
3027   default:
3028     llvm_unreachable("Don't know how to custom type legalize this operation!");
3029   case ISD::STRICT_FP_TO_SINT:
3030   case ISD::STRICT_FP_TO_UINT:
3031   case ISD::FP_TO_SINT:
3032   case ISD::FP_TO_UINT: {
3033     bool IsStrict = N->isStrictFPOpcode();
3034     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
3035            "Unexpected custom legalisation");
3036     SDValue Op0 = IsStrict ? N->getOperand(1) : N->getOperand(0);
3037     // If the FP type needs to be softened, emit a library call using the 'si'
3038     // version. If we left it to default legalization we'd end up with 'di'. If
3039     // the FP type doesn't need to be softened just let generic type
3040     // legalization promote the result type.
3041     if (getTypeAction(*DAG.getContext(), Op0.getValueType()) !=
3042         TargetLowering::TypeSoftenFloat)
3043       return;
3044     RTLIB::Libcall LC;
3045     if (N->getOpcode() == ISD::FP_TO_SINT ||
3046         N->getOpcode() == ISD::STRICT_FP_TO_SINT)
3047       LC = RTLIB::getFPTOSINT(Op0.getValueType(), N->getValueType(0));
3048     else
3049       LC = RTLIB::getFPTOUINT(Op0.getValueType(), N->getValueType(0));
3050     MakeLibCallOptions CallOptions;
3051     EVT OpVT = Op0.getValueType();
3052     CallOptions.setTypeListBeforeSoften(OpVT, N->getValueType(0), true);
3053     SDValue Chain = IsStrict ? N->getOperand(0) : SDValue();
3054     SDValue Result;
3055     std::tie(Result, Chain) =
3056         makeLibCall(DAG, LC, N->getValueType(0), Op0, CallOptions, DL, Chain);
3057     Results.push_back(Result);
3058     if (IsStrict)
3059       Results.push_back(Chain);
3060     break;
3061   }
3062   case ISD::READCYCLECOUNTER: {
3063     assert(!Subtarget.is64Bit() &&
3064            "READCYCLECOUNTER only has custom type legalization on riscv32");
3065 
3066     SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
3067     SDValue RCW =
3068         DAG.getNode(RISCVISD::READ_CYCLE_WIDE, DL, VTs, N->getOperand(0));
3069 
3070     Results.push_back(
3071         DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, RCW, RCW.getValue(1)));
3072     Results.push_back(RCW.getValue(2));
3073     break;
3074   }
3075   case ISD::ADD:
3076   case ISD::SUB:
3077   case ISD::MUL:
3078     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
3079            "Unexpected custom legalisation");
3080     if (N->getOperand(1).getOpcode() == ISD::Constant)
3081       return;
3082     Results.push_back(customLegalizeToWOpWithSExt(N, DAG));
3083     break;
3084   case ISD::SHL:
3085   case ISD::SRA:
3086   case ISD::SRL:
3087     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
3088            "Unexpected custom legalisation");
3089     if (N->getOperand(1).getOpcode() == ISD::Constant)
3090       return;
3091     Results.push_back(customLegalizeToWOp(N, DAG));
3092     break;
3093   case ISD::ROTL:
3094   case ISD::ROTR:
3095     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
3096            "Unexpected custom legalisation");
3097     Results.push_back(customLegalizeToWOp(N, DAG));
3098     break;
3099   case ISD::SDIV:
3100   case ISD::UDIV:
3101   case ISD::UREM: {
3102     MVT VT = N->getSimpleValueType(0);
3103     assert((VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) &&
3104            Subtarget.is64Bit() && Subtarget.hasStdExtM() &&
3105            "Unexpected custom legalisation");
3106     if (N->getOperand(0).getOpcode() == ISD::Constant ||
3107         N->getOperand(1).getOpcode() == ISD::Constant)
3108       return;
3109 
3110     // If the input is i32, use ANY_EXTEND since the W instructions don't read
3111     // the upper 32 bits. For other types we need to sign or zero extend
3112     // based on the opcode.
3113     unsigned ExtOpc = ISD::ANY_EXTEND;
3114     if (VT != MVT::i32)
3115       ExtOpc = N->getOpcode() == ISD::SDIV ? ISD::SIGN_EXTEND
3116                                            : ISD::ZERO_EXTEND;
3117 
3118     Results.push_back(customLegalizeToWOp(N, DAG, ExtOpc));
3119     break;
3120   }
3121   case ISD::BITCAST: {
3122     assert(((N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
3123              Subtarget.hasStdExtF()) ||
3124             (N->getValueType(0) == MVT::i16 && Subtarget.hasStdExtZfh())) &&
3125            "Unexpected custom legalisation");
3126     SDValue Op0 = N->getOperand(0);
3127     if (N->getValueType(0) == MVT::i16 && Subtarget.hasStdExtZfh()) {
3128       if (Op0.getValueType() != MVT::f16)
3129         return;
3130       SDValue FPConv =
3131           DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, Subtarget.getXLenVT(), Op0);
3132       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FPConv));
3133     } else if (N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
3134                Subtarget.hasStdExtF()) {
3135       if (Op0.getValueType() != MVT::f32)
3136         return;
3137       SDValue FPConv =
3138           DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Op0);
3139       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, FPConv));
3140     }
3141     break;
3142   }
3143   case RISCVISD::GREVI:
3144   case RISCVISD::GORCI: {
3145     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
3146            "Unexpected custom legalisation");
3147     // This is similar to customLegalizeToWOp, except that we pass the second
3148     // operand (a TargetConstant) straight through: it is already of type
3149     // XLenVT.
3150     SDLoc DL(N);
3151     RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode());
3152     SDValue NewOp0 =
3153         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
3154     SDValue NewRes =
3155         DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, N->getOperand(1));
3156     // ReplaceNodeResults requires we maintain the same type for the return
3157     // value.
3158     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes));
3159     break;
3160   }
3161   case RISCVISD::SHFLI: {
3162     // There is no SHFLIW instruction, but we can just promote the operation.
3163     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
3164            "Unexpected custom legalisation");
3165     SDLoc DL(N);
3166     SDValue NewOp0 =
3167         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
3168     SDValue NewRes =
3169         DAG.getNode(RISCVISD::SHFLI, DL, MVT::i64, NewOp0, N->getOperand(1));
3170     // ReplaceNodeResults requires we maintain the same type for the return
3171     // value.
3172     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes));
3173     break;
3174   }
3175   case ISD::BSWAP:
3176   case ISD::BITREVERSE: {
3177     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
3178            Subtarget.hasStdExtZbp() && "Unexpected custom legalisation");
3179     SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64,
3180                                  N->getOperand(0));
3181     unsigned Imm = N->getOpcode() == ISD::BITREVERSE ? 31 : 24;
3182     SDValue GREVIW = DAG.getNode(RISCVISD::GREVIW, DL, MVT::i64, NewOp0,
3183                                  DAG.getTargetConstant(Imm, DL,
3184                                                        Subtarget.getXLenVT()));
3185     // ReplaceNodeResults requires we maintain the same type for the return
3186     // value.
3187     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, GREVIW));
3188     break;
3189   }
3190   case ISD::FSHL:
3191   case ISD::FSHR: {
3192     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
3193            Subtarget.hasStdExtZbt() && "Unexpected custom legalisation");
3194     SDValue NewOp0 =
3195         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
3196     SDValue NewOp1 =
3197         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
3198     SDValue NewOp2 =
3199         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
3200     // FSLW/FSRW take a 6 bit shift amount but i32 FSHL/FSHR only use 5 bits.
3201     // Mask the shift amount to 5 bits.
3202     NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2,
3203                          DAG.getConstant(0x1f, DL, MVT::i64));
3204     unsigned Opc =
3205         N->getOpcode() == ISD::FSHL ? RISCVISD::FSLW : RISCVISD::FSRW;
3206     SDValue NewOp = DAG.getNode(Opc, DL, MVT::i64, NewOp0, NewOp1, NewOp2);
3207     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewOp));
3208     break;
3209   }
3210   case ISD::EXTRACT_VECTOR_ELT: {
3211     // Custom-legalize an EXTRACT_VECTOR_ELT where XLEN<SEW, as the SEW element
3212     // type is illegal (currently only vXi64 RV32).
3213     // With vmv.x.s, when SEW > XLEN, only the least-significant XLEN bits are
3214     // transferred to the destination register. We issue two of these from the
3215     // upper- and lower- halves of the SEW-bit vector element, slid down to the
3216     // first element.
3217     SDLoc DL(N);
3218     SDValue Vec = N->getOperand(0);
3219     SDValue Idx = N->getOperand(1);
3220 
3221     // The vector type hasn't been legalized yet so we can't issue target
3222     // specific nodes if it needs legalization.
3223     // FIXME: We would manually legalize if it's important.
3224     if (!isTypeLegal(Vec.getValueType()))
3225       return;
3226 
3227     MVT VecVT = Vec.getSimpleValueType();
3228 
3229     assert(!Subtarget.is64Bit() && N->getValueType(0) == MVT::i64 &&
3230            VecVT.getVectorElementType() == MVT::i64 &&
3231            "Unexpected EXTRACT_VECTOR_ELT legalization");
3232 
3233     // If this is a fixed vector, we need to convert it to a scalable vector.
3234     MVT ContainerVT = VecVT;
3235     if (VecVT.isFixedLengthVector()) {
3236       ContainerVT = getContainerForFixedLengthVector(VecVT);
3237       Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
3238     }
3239 
3240     MVT XLenVT = Subtarget.getXLenVT();
3241 
3242     // Use a VL of 1 to avoid processing more elements than we need.
3243     MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount());
3244     SDValue VL = DAG.getConstant(1, DL, XLenVT);
3245     SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
3246 
3247     // Unless the index is known to be 0, we must slide the vector down to get
3248     // the desired element into index 0.
3249     if (!isNullConstant(Idx)) {
3250       Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT,
3251                         DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL);
3252     }
3253 
3254     // Extract the lower XLEN bits of the correct vector element.
3255     SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec);
3256 
3257     // To extract the upper XLEN bits of the vector element, shift the first
3258     // element right by 32 bits and re-extract the lower XLEN bits.
3259     SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
3260                                      DAG.getConstant(32, DL, XLenVT), VL);
3261     SDValue LShr32 = DAG.getNode(RISCVISD::SRL_VL, DL, ContainerVT, Vec,
3262                                  ThirtyTwoV, Mask, VL);
3263 
3264     SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32);
3265 
3266     Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi));
3267     break;
3268   }
3269   case ISD::INTRINSIC_WO_CHAIN: {
3270     unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
3271     switch (IntNo) {
3272     default:
3273       llvm_unreachable(
3274           "Don't know how to custom type legalize this intrinsic!");
3275     case Intrinsic::riscv_vmv_x_s: {
3276       EVT VT = N->getValueType(0);
3277       assert((VT == MVT::i8 || VT == MVT::i16 ||
3278               (Subtarget.is64Bit() && VT == MVT::i32)) &&
3279              "Unexpected custom legalisation!");
3280       SDValue Extract = DAG.getNode(RISCVISD::VMV_X_S, DL,
3281                                     Subtarget.getXLenVT(), N->getOperand(1));
3282       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, Extract));
3283       break;
3284     }
3285     }
3286     break;
3287   }
3288   case ISD::VECREDUCE_ADD:
3289   case ISD::VECREDUCE_AND:
3290   case ISD::VECREDUCE_OR:
3291   case ISD::VECREDUCE_XOR:
3292   case ISD::VECREDUCE_SMAX:
3293   case ISD::VECREDUCE_UMAX:
3294   case ISD::VECREDUCE_SMIN:
3295   case ISD::VECREDUCE_UMIN:
3296     // The custom-lowering for these nodes returns a vector whose first element
3297     // is the result of the reduction. Extract its first element and let the
3298     // legalization for EXTRACT_VECTOR_ELT do the rest of the job.
3299     Results.push_back(lowerVECREDUCE(SDValue(N, 0), DAG));
3300     break;
3301   }
3302 }
3303 
3304 // A structure to hold one of the bit-manipulation patterns below. Together, a
3305 // SHL and non-SHL pattern may form a bit-manipulation pair on a single source:
3306 //   (or (and (shl x, 1), 0xAAAAAAAA),
3307 //       (and (srl x, 1), 0x55555555))
3308 struct RISCVBitmanipPat {
3309   SDValue Op;
3310   unsigned ShAmt;
3311   bool IsSHL;
3312 
3313   bool formsPairWith(const RISCVBitmanipPat &Other) const {
3314     return Op == Other.Op && ShAmt == Other.ShAmt && IsSHL != Other.IsSHL;
3315   }
3316 };
3317 
3318 // Matches patterns of the form
3319 //   (and (shl x, C2), (C1 << C2))
3320 //   (and (srl x, C2), C1)
3321 //   (shl (and x, C1), C2)
3322 //   (srl (and x, (C1 << C2)), C2)
3323 // Where C2 is a power of 2 and C1 has at least that many leading zeroes.
3324 // The expected masks for each shift amount are specified in BitmanipMasks where
3325 // BitmanipMasks[log2(C2)] specifies the expected C1 value.
3326 // The max allowed shift amount is either XLen/2 or XLen/4 determined by whether
3327 // BitmanipMasks contains 6 or 5 entries assuming that the maximum possible
3328 // XLen is 64.
3329 static Optional<RISCVBitmanipPat>
3330 matchRISCVBitmanipPat(SDValue Op, ArrayRef<uint64_t> BitmanipMasks) {
3331   assert((BitmanipMasks.size() == 5 || BitmanipMasks.size() == 6) &&
3332          "Unexpected number of masks");
3333   Optional<uint64_t> Mask;
3334   // Optionally consume a mask around the shift operation.
3335   if (Op.getOpcode() == ISD::AND && isa<ConstantSDNode>(Op.getOperand(1))) {
3336     Mask = Op.getConstantOperandVal(1);
3337     Op = Op.getOperand(0);
3338   }
3339   if (Op.getOpcode() != ISD::SHL && Op.getOpcode() != ISD::SRL)
3340     return None;
3341   bool IsSHL = Op.getOpcode() == ISD::SHL;
3342 
3343   if (!isa<ConstantSDNode>(Op.getOperand(1)))
3344     return None;
3345   uint64_t ShAmt = Op.getConstantOperandVal(1);
3346 
3347   unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32;
3348   if (ShAmt >= Width && !isPowerOf2_64(ShAmt))
3349     return None;
3350   // If we don't have enough masks for 64 bit, then we must be trying to
3351   // match SHFL so we're only allowed to shift 1/4 of the width.
3352   if (BitmanipMasks.size() == 5 && ShAmt >= (Width / 2))
3353     return None;
3354 
3355   SDValue Src = Op.getOperand(0);
3356 
3357   // The expected mask is shifted left when the AND is found around SHL
3358   // patterns.
3359   //   ((x >> 1) & 0x55555555)
3360   //   ((x << 1) & 0xAAAAAAAA)
3361   bool SHLExpMask = IsSHL;
3362 
3363   if (!Mask) {
3364     // Sometimes LLVM keeps the mask as an operand of the shift, typically when
3365     // the mask is all ones: consume that now.
3366     if (Src.getOpcode() == ISD::AND && isa<ConstantSDNode>(Src.getOperand(1))) {
3367       Mask = Src.getConstantOperandVal(1);
3368       Src = Src.getOperand(0);
3369       // The expected mask is now in fact shifted left for SRL, so reverse the
3370       // decision.
3371       //   ((x & 0xAAAAAAAA) >> 1)
3372       //   ((x & 0x55555555) << 1)
3373       SHLExpMask = !SHLExpMask;
3374     } else {
3375       // Use a default shifted mask of all-ones if there's no AND, truncated
3376       // down to the expected width. This simplifies the logic later on.
3377       Mask = maskTrailingOnes<uint64_t>(Width);
3378       *Mask &= (IsSHL ? *Mask << ShAmt : *Mask >> ShAmt);
3379     }
3380   }
3381 
3382   unsigned MaskIdx = Log2_32(ShAmt);
3383   uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width);
3384 
3385   if (SHLExpMask)
3386     ExpMask <<= ShAmt;
3387 
3388   if (Mask != ExpMask)
3389     return None;
3390 
3391   return RISCVBitmanipPat{Src, (unsigned)ShAmt, IsSHL};
3392 }
3393 
3394 // Matches any of the following bit-manipulation patterns:
3395 //   (and (shl x, 1), (0x55555555 << 1))
3396 //   (and (srl x, 1), 0x55555555)
3397 //   (shl (and x, 0x55555555), 1)
3398 //   (srl (and x, (0x55555555 << 1)), 1)
3399 // where the shift amount and mask may vary thus:
3400 //   [1]  = 0x55555555 / 0xAAAAAAAA
3401 //   [2]  = 0x33333333 / 0xCCCCCCCC
3402 //   [4]  = 0x0F0F0F0F / 0xF0F0F0F0
3403 //   [8]  = 0x00FF00FF / 0xFF00FF00
3404 //   [16] = 0x0000FFFF / 0xFFFFFFFF
3405 //   [32] = 0x00000000FFFFFFFF / 0xFFFFFFFF00000000 (for RV64)
3406 static Optional<RISCVBitmanipPat> matchGREVIPat(SDValue Op) {
3407   // These are the unshifted masks which we use to match bit-manipulation
3408   // patterns. They may be shifted left in certain circumstances.
3409   static const uint64_t BitmanipMasks[] = {
3410       0x5555555555555555ULL, 0x3333333333333333ULL, 0x0F0F0F0F0F0F0F0FULL,
3411       0x00FF00FF00FF00FFULL, 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL};
3412 
3413   return matchRISCVBitmanipPat(Op, BitmanipMasks);
3414 }
3415 
3416 // Match the following pattern as a GREVI(W) operation
3417 //   (or (BITMANIP_SHL x), (BITMANIP_SRL x))
3418 static SDValue combineORToGREV(SDValue Op, SelectionDAG &DAG,
3419                                const RISCVSubtarget &Subtarget) {
3420   assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson");
3421   EVT VT = Op.getValueType();
3422 
3423   if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) {
3424     auto LHS = matchGREVIPat(Op.getOperand(0));
3425     auto RHS = matchGREVIPat(Op.getOperand(1));
3426     if (LHS && RHS && LHS->formsPairWith(*RHS)) {
3427       SDLoc DL(Op);
3428       return DAG.getNode(
3429           RISCVISD::GREVI, DL, VT, LHS->Op,
3430           DAG.getTargetConstant(LHS->ShAmt, DL, Subtarget.getXLenVT()));
3431     }
3432   }
3433   return SDValue();
3434 }
3435 
3436 // Matches any the following pattern as a GORCI(W) operation
3437 // 1.  (or (GREVI x, shamt), x) if shamt is a power of 2
3438 // 2.  (or x, (GREVI x, shamt)) if shamt is a power of 2
3439 // 3.  (or (or (BITMANIP_SHL x), x), (BITMANIP_SRL x))
3440 // Note that with the variant of 3.,
3441 //     (or (or (BITMANIP_SHL x), (BITMANIP_SRL x)), x)
3442 // the inner pattern will first be matched as GREVI and then the outer
3443 // pattern will be matched to GORC via the first rule above.
3444 // 4.  (or (rotl/rotr x, bitwidth/2), x)
3445 static SDValue combineORToGORC(SDValue Op, SelectionDAG &DAG,
3446                                const RISCVSubtarget &Subtarget) {
3447   assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson");
3448   EVT VT = Op.getValueType();
3449 
3450   if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) {
3451     SDLoc DL(Op);
3452     SDValue Op0 = Op.getOperand(0);
3453     SDValue Op1 = Op.getOperand(1);
3454 
3455     auto MatchOROfReverse = [&](SDValue Reverse, SDValue X) {
3456       if (Reverse.getOpcode() == RISCVISD::GREVI && Reverse.getOperand(0) == X &&
3457           isPowerOf2_32(Reverse.getConstantOperandVal(1)))
3458         return DAG.getNode(RISCVISD::GORCI, DL, VT, X, Reverse.getOperand(1));
3459       // We can also form GORCI from ROTL/ROTR by half the bitwidth.
3460       if ((Reverse.getOpcode() == ISD::ROTL ||
3461            Reverse.getOpcode() == ISD::ROTR) &&
3462           Reverse.getOperand(0) == X &&
3463           isa<ConstantSDNode>(Reverse.getOperand(1))) {
3464         uint64_t RotAmt = Reverse.getConstantOperandVal(1);
3465         if (RotAmt == (VT.getSizeInBits() / 2))
3466           return DAG.getNode(
3467               RISCVISD::GORCI, DL, VT, X,
3468               DAG.getTargetConstant(RotAmt, DL, Subtarget.getXLenVT()));
3469       }
3470       return SDValue();
3471     };
3472 
3473     // Check for either commutable permutation of (or (GREVI x, shamt), x)
3474     if (SDValue V = MatchOROfReverse(Op0, Op1))
3475       return V;
3476     if (SDValue V = MatchOROfReverse(Op1, Op0))
3477       return V;
3478 
3479     // OR is commutable so canonicalize its OR operand to the left
3480     if (Op0.getOpcode() != ISD::OR && Op1.getOpcode() == ISD::OR)
3481       std::swap(Op0, Op1);
3482     if (Op0.getOpcode() != ISD::OR)
3483       return SDValue();
3484     SDValue OrOp0 = Op0.getOperand(0);
3485     SDValue OrOp1 = Op0.getOperand(1);
3486     auto LHS = matchGREVIPat(OrOp0);
3487     // OR is commutable so swap the operands and try again: x might have been
3488     // on the left
3489     if (!LHS) {
3490       std::swap(OrOp0, OrOp1);
3491       LHS = matchGREVIPat(OrOp0);
3492     }
3493     auto RHS = matchGREVIPat(Op1);
3494     if (LHS && RHS && LHS->formsPairWith(*RHS) && LHS->Op == OrOp1) {
3495       return DAG.getNode(
3496           RISCVISD::GORCI, DL, VT, LHS->Op,
3497           DAG.getTargetConstant(LHS->ShAmt, DL, Subtarget.getXLenVT()));
3498     }
3499   }
3500   return SDValue();
3501 }
3502 
3503 // Matches any of the following bit-manipulation patterns:
3504 //   (and (shl x, 1), (0x22222222 << 1))
3505 //   (and (srl x, 1), 0x22222222)
3506 //   (shl (and x, 0x22222222), 1)
3507 //   (srl (and x, (0x22222222 << 1)), 1)
3508 // where the shift amount and mask may vary thus:
3509 //   [1]  = 0x22222222 / 0x44444444
3510 //   [2]  = 0x0C0C0C0C / 0x3C3C3C3C
3511 //   [4]  = 0x00F000F0 / 0x0F000F00
3512 //   [8]  = 0x0000FF00 / 0x00FF0000
3513 //   [16] = 0x00000000FFFF0000 / 0x0000FFFF00000000 (for RV64)
3514 static Optional<RISCVBitmanipPat> matchSHFLPat(SDValue Op) {
3515   // These are the unshifted masks which we use to match bit-manipulation
3516   // patterns. They may be shifted left in certain circumstances.
3517   static const uint64_t BitmanipMasks[] = {
3518       0x2222222222222222ULL, 0x0C0C0C0C0C0C0C0CULL, 0x00F000F000F000F0ULL,
3519       0x0000FF000000FF00ULL, 0x00000000FFFF0000ULL};
3520 
3521   return matchRISCVBitmanipPat(Op, BitmanipMasks);
3522 }
3523 
3524 // Match (or (or (SHFL_SHL x), (SHFL_SHR x)), (SHFL_AND x)
3525 static SDValue combineORToSHFL(SDValue Op, SelectionDAG &DAG,
3526                                const RISCVSubtarget &Subtarget) {
3527   assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson");
3528   EVT VT = Op.getValueType();
3529 
3530   if (VT != MVT::i32 && VT != Subtarget.getXLenVT())
3531     return SDValue();
3532 
3533   SDValue Op0 = Op.getOperand(0);
3534   SDValue Op1 = Op.getOperand(1);
3535 
3536   // Or is commutable so canonicalize the second OR to the LHS.
3537   if (Op0.getOpcode() != ISD::OR)
3538     std::swap(Op0, Op1);
3539   if (Op0.getOpcode() != ISD::OR)
3540     return SDValue();
3541 
3542   // We found an inner OR, so our operands are the operands of the inner OR
3543   // and the other operand of the outer OR.
3544   SDValue A = Op0.getOperand(0);
3545   SDValue B = Op0.getOperand(1);
3546   SDValue C = Op1;
3547 
3548   auto Match1 = matchSHFLPat(A);
3549   auto Match2 = matchSHFLPat(B);
3550 
3551   // If neither matched, we failed.
3552   if (!Match1 && !Match2)
3553     return SDValue();
3554 
3555   // We had at least one match. if one failed, try the remaining C operand.
3556   if (!Match1) {
3557     std::swap(A, C);
3558     Match1 = matchSHFLPat(A);
3559     if (!Match1)
3560       return SDValue();
3561   } else if (!Match2) {
3562     std::swap(B, C);
3563     Match2 = matchSHFLPat(B);
3564     if (!Match2)
3565       return SDValue();
3566   }
3567   assert(Match1 && Match2);
3568 
3569   // Make sure our matches pair up.
3570   if (!Match1->formsPairWith(*Match2))
3571     return SDValue();
3572 
3573   // All the remains is to make sure C is an AND with the same input, that masks
3574   // out the bits that are being shuffled.
3575   if (C.getOpcode() != ISD::AND || !isa<ConstantSDNode>(C.getOperand(1)) ||
3576       C.getOperand(0) != Match1->Op)
3577     return SDValue();
3578 
3579   uint64_t Mask = C.getConstantOperandVal(1);
3580 
3581   static const uint64_t BitmanipMasks[] = {
3582       0x9999999999999999ULL, 0xC3C3C3C3C3C3C3C3ULL, 0xF00FF00FF00FF00FULL,
3583       0xFF0000FFFF0000FFULL, 0xFFFF00000000FFFFULL,
3584   };
3585 
3586   unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32;
3587   unsigned MaskIdx = Log2_32(Match1->ShAmt);
3588   uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width);
3589 
3590   if (Mask != ExpMask)
3591     return SDValue();
3592 
3593   SDLoc DL(Op);
3594   return DAG.getNode(
3595       RISCVISD::SHFLI, DL, VT, Match1->Op,
3596       DAG.getTargetConstant(Match1->ShAmt, DL, Subtarget.getXLenVT()));
3597 }
3598 
3599 // Combine (GREVI (GREVI x, C2), C1) -> (GREVI x, C1^C2) when C1^C2 is
3600 // non-zero, and to x when it is. Any repeated GREVI stage undoes itself.
3601 // Combine (GORCI (GORCI x, C2), C1) -> (GORCI x, C1|C2). Repeated stage does
3602 // not undo itself, but they are redundant.
3603 static SDValue combineGREVI_GORCI(SDNode *N, SelectionDAG &DAG) {
3604   unsigned ShAmt1 = N->getConstantOperandVal(1);
3605   SDValue Src = N->getOperand(0);
3606 
3607   if (Src.getOpcode() != N->getOpcode())
3608     return SDValue();
3609 
3610   unsigned ShAmt2 = Src.getConstantOperandVal(1);
3611   Src = Src.getOperand(0);
3612 
3613   unsigned CombinedShAmt;
3614   if (N->getOpcode() == RISCVISD::GORCI || N->getOpcode() == RISCVISD::GORCIW)
3615     CombinedShAmt = ShAmt1 | ShAmt2;
3616   else
3617     CombinedShAmt = ShAmt1 ^ ShAmt2;
3618 
3619   if (CombinedShAmt == 0)
3620     return Src;
3621 
3622   SDLoc DL(N);
3623   return DAG.getNode(N->getOpcode(), DL, N->getValueType(0), Src,
3624                      DAG.getTargetConstant(CombinedShAmt, DL,
3625                                            N->getOperand(1).getValueType()));
3626 }
3627 
3628 SDValue RISCVTargetLowering::PerformDAGCombine(SDNode *N,
3629                                                DAGCombinerInfo &DCI) const {
3630   SelectionDAG &DAG = DCI.DAG;
3631 
3632   switch (N->getOpcode()) {
3633   default:
3634     break;
3635   case RISCVISD::SplitF64: {
3636     SDValue Op0 = N->getOperand(0);
3637     // If the input to SplitF64 is just BuildPairF64 then the operation is
3638     // redundant. Instead, use BuildPairF64's operands directly.
3639     if (Op0->getOpcode() == RISCVISD::BuildPairF64)
3640       return DCI.CombineTo(N, Op0.getOperand(0), Op0.getOperand(1));
3641 
3642     SDLoc DL(N);
3643 
3644     // It's cheaper to materialise two 32-bit integers than to load a double
3645     // from the constant pool and transfer it to integer registers through the
3646     // stack.
3647     if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op0)) {
3648       APInt V = C->getValueAPF().bitcastToAPInt();
3649       SDValue Lo = DAG.getConstant(V.trunc(32), DL, MVT::i32);
3650       SDValue Hi = DAG.getConstant(V.lshr(32).trunc(32), DL, MVT::i32);
3651       return DCI.CombineTo(N, Lo, Hi);
3652     }
3653 
3654     // This is a target-specific version of a DAGCombine performed in
3655     // DAGCombiner::visitBITCAST. It performs the equivalent of:
3656     // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
3657     // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
3658     if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) ||
3659         !Op0.getNode()->hasOneUse())
3660       break;
3661     SDValue NewSplitF64 =
3662         DAG.getNode(RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32),
3663                     Op0.getOperand(0));
3664     SDValue Lo = NewSplitF64.getValue(0);
3665     SDValue Hi = NewSplitF64.getValue(1);
3666     APInt SignBit = APInt::getSignMask(32);
3667     if (Op0.getOpcode() == ISD::FNEG) {
3668       SDValue NewHi = DAG.getNode(ISD::XOR, DL, MVT::i32, Hi,
3669                                   DAG.getConstant(SignBit, DL, MVT::i32));
3670       return DCI.CombineTo(N, Lo, NewHi);
3671     }
3672     assert(Op0.getOpcode() == ISD::FABS);
3673     SDValue NewHi = DAG.getNode(ISD::AND, DL, MVT::i32, Hi,
3674                                 DAG.getConstant(~SignBit, DL, MVT::i32));
3675     return DCI.CombineTo(N, Lo, NewHi);
3676   }
3677   case RISCVISD::SLLW:
3678   case RISCVISD::SRAW:
3679   case RISCVISD::SRLW:
3680   case RISCVISD::ROLW:
3681   case RISCVISD::RORW: {
3682     // Only the lower 32 bits of LHS and lower 5 bits of RHS are read.
3683     SDValue LHS = N->getOperand(0);
3684     SDValue RHS = N->getOperand(1);
3685     APInt LHSMask = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 32);
3686     APInt RHSMask = APInt::getLowBitsSet(RHS.getValueSizeInBits(), 5);
3687     if (SimplifyDemandedBits(N->getOperand(0), LHSMask, DCI) ||
3688         SimplifyDemandedBits(N->getOperand(1), RHSMask, DCI)) {
3689       if (N->getOpcode() != ISD::DELETED_NODE)
3690         DCI.AddToWorklist(N);
3691       return SDValue(N, 0);
3692     }
3693     break;
3694   }
3695   case RISCVISD::FSL:
3696   case RISCVISD::FSR: {
3697     // Only the lower log2(Bitwidth)+1 bits of the the shift amount are read.
3698     SDValue ShAmt = N->getOperand(2);
3699     unsigned BitWidth = ShAmt.getValueSizeInBits();
3700     assert(isPowerOf2_32(BitWidth) && "Unexpected bit width");
3701     APInt ShAmtMask(BitWidth, (BitWidth * 2) - 1);
3702     if (SimplifyDemandedBits(ShAmt, ShAmtMask, DCI)) {
3703       if (N->getOpcode() != ISD::DELETED_NODE)
3704         DCI.AddToWorklist(N);
3705       return SDValue(N, 0);
3706     }
3707     break;
3708   }
3709   case RISCVISD::FSLW:
3710   case RISCVISD::FSRW: {
3711     // Only the lower 32 bits of Values and lower 6 bits of shift amount are
3712     // read.
3713     SDValue Op0 = N->getOperand(0);
3714     SDValue Op1 = N->getOperand(1);
3715     SDValue ShAmt = N->getOperand(2);
3716     APInt OpMask = APInt::getLowBitsSet(Op0.getValueSizeInBits(), 32);
3717     APInt ShAmtMask = APInt::getLowBitsSet(ShAmt.getValueSizeInBits(), 6);
3718     if (SimplifyDemandedBits(Op0, OpMask, DCI) ||
3719         SimplifyDemandedBits(Op1, OpMask, DCI) ||
3720         SimplifyDemandedBits(ShAmt, ShAmtMask, DCI)) {
3721       if (N->getOpcode() != ISD::DELETED_NODE)
3722         DCI.AddToWorklist(N);
3723       return SDValue(N, 0);
3724     }
3725     break;
3726   }
3727   case RISCVISD::GREVIW:
3728   case RISCVISD::GORCIW: {
3729     // Only the lower 32 bits of the first operand are read
3730     SDValue Op0 = N->getOperand(0);
3731     APInt Mask = APInt::getLowBitsSet(Op0.getValueSizeInBits(), 32);
3732     if (SimplifyDemandedBits(Op0, Mask, DCI)) {
3733       if (N->getOpcode() != ISD::DELETED_NODE)
3734         DCI.AddToWorklist(N);
3735       return SDValue(N, 0);
3736     }
3737 
3738     return combineGREVI_GORCI(N, DCI.DAG);
3739   }
3740   case RISCVISD::FMV_X_ANYEXTW_RV64: {
3741     SDLoc DL(N);
3742     SDValue Op0 = N->getOperand(0);
3743     // If the input to FMV_X_ANYEXTW_RV64 is just FMV_W_X_RV64 then the
3744     // conversion is unnecessary and can be replaced with an ANY_EXTEND
3745     // of the FMV_W_X_RV64 operand.
3746     if (Op0->getOpcode() == RISCVISD::FMV_W_X_RV64) {
3747       assert(Op0.getOperand(0).getValueType() == MVT::i64 &&
3748              "Unexpected value type!");
3749       return Op0.getOperand(0);
3750     }
3751 
3752     // This is a target-specific version of a DAGCombine performed in
3753     // DAGCombiner::visitBITCAST. It performs the equivalent of:
3754     // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
3755     // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
3756     if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) ||
3757         !Op0.getNode()->hasOneUse())
3758       break;
3759     SDValue NewFMV = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64,
3760                                  Op0.getOperand(0));
3761     APInt SignBit = APInt::getSignMask(32).sext(64);
3762     if (Op0.getOpcode() == ISD::FNEG)
3763       return DAG.getNode(ISD::XOR, DL, MVT::i64, NewFMV,
3764                          DAG.getConstant(SignBit, DL, MVT::i64));
3765 
3766     assert(Op0.getOpcode() == ISD::FABS);
3767     return DAG.getNode(ISD::AND, DL, MVT::i64, NewFMV,
3768                        DAG.getConstant(~SignBit, DL, MVT::i64));
3769   }
3770   case RISCVISD::GREVI:
3771   case RISCVISD::GORCI:
3772     return combineGREVI_GORCI(N, DCI.DAG);
3773   case ISD::OR:
3774     if (auto GREV = combineORToGREV(SDValue(N, 0), DCI.DAG, Subtarget))
3775       return GREV;
3776     if (auto GORC = combineORToGORC(SDValue(N, 0), DCI.DAG, Subtarget))
3777       return GORC;
3778     if (auto SHFL = combineORToSHFL(SDValue(N, 0), DCI.DAG, Subtarget))
3779       return SHFL;
3780     break;
3781   case RISCVISD::SELECT_CC: {
3782     // Transform
3783     SDValue LHS = N->getOperand(0);
3784     SDValue RHS = N->getOperand(1);
3785     auto CCVal = static_cast<ISD::CondCode>(N->getConstantOperandVal(2));
3786     if (!ISD::isIntEqualitySetCC(CCVal))
3787       break;
3788 
3789     // Fold (select_cc (setlt X, Y), 0, ne, trueV, falseV) ->
3790     //      (select_cc X, Y, lt, trueV, falseV)
3791     // Sometimes the setcc is introduced after select_cc has been formed.
3792     if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) &&
3793         LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) {
3794       // If we're looking for eq 0 instead of ne 0, we need to invert the
3795       // condition.
3796       bool Invert = CCVal == ISD::SETEQ;
3797       CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
3798       if (Invert)
3799         CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
3800 
3801       RHS = LHS.getOperand(1);
3802       LHS = LHS.getOperand(0);
3803       normaliseSetCC(LHS, RHS, CCVal);
3804 
3805       SDLoc DL(N);
3806       SDValue TargetCC = DAG.getConstant(CCVal, DL, Subtarget.getXLenVT());
3807       return DAG.getNode(
3808           RISCVISD::SELECT_CC, DL, N->getValueType(0),
3809           {LHS, RHS, TargetCC, N->getOperand(3), N->getOperand(4)});
3810     }
3811 
3812     // Fold (select_cc (xor X, Y), 0, eq/ne, trueV, falseV) ->
3813     //      (select_cc X, Y, eq/ne, trueV, falseV)
3814     if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS))
3815       return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), N->getValueType(0),
3816                          {LHS.getOperand(0), LHS.getOperand(1),
3817                           N->getOperand(2), N->getOperand(3),
3818                           N->getOperand(4)});
3819     // (select_cc X, 1, setne, trueV, falseV) ->
3820     // (select_cc X, 0, seteq, trueV, falseV) if we can prove X is 0/1.
3821     // This can occur when legalizing some floating point comparisons.
3822     APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1);
3823     if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) {
3824       SDLoc DL(N);
3825       CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
3826       SDValue TargetCC = DAG.getConstant(CCVal, DL, Subtarget.getXLenVT());
3827       RHS = DAG.getConstant(0, DL, LHS.getValueType());
3828       return DAG.getNode(
3829           RISCVISD::SELECT_CC, DL, N->getValueType(0),
3830           {LHS, RHS, TargetCC, N->getOperand(3), N->getOperand(4)});
3831     }
3832 
3833     break;
3834   }
3835   case ISD::SETCC: {
3836     // (setcc X, 1, setne) -> (setcc X, 0, seteq) if we can prove X is 0/1.
3837     // Comparing with 0 may allow us to fold into bnez/beqz.
3838     SDValue LHS = N->getOperand(0);
3839     SDValue RHS = N->getOperand(1);
3840     if (LHS.getValueType().isScalableVector())
3841       break;
3842     auto CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
3843     APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1);
3844     if (isOneConstant(RHS) && ISD::isIntEqualitySetCC(CC) &&
3845         DAG.MaskedValueIsZero(LHS, Mask)) {
3846       SDLoc DL(N);
3847       SDValue Zero = DAG.getConstant(0, DL, LHS.getValueType());
3848       CC = ISD::getSetCCInverse(CC, LHS.getValueType());
3849       return DAG.getSetCC(DL, N->getValueType(0), LHS, Zero, CC);
3850     }
3851     break;
3852   }
3853   case ISD::FCOPYSIGN: {
3854     EVT VT = N->getValueType(0);
3855     if (!VT.isVector())
3856       break;
3857     // There is a form of VFSGNJ which injects the negated sign of its second
3858     // operand. Try and bubble any FNEG up after the extend/round to produce
3859     // this optimized pattern. Avoid modifying cases where FP_ROUND and
3860     // TRUNC=1.
3861     SDValue In2 = N->getOperand(1);
3862     // Avoid cases where the extend/round has multiple uses, as duplicating
3863     // those is typically more expensive than removing a fneg.
3864     if (!In2.hasOneUse())
3865       break;
3866     if (In2.getOpcode() != ISD::FP_EXTEND &&
3867         (In2.getOpcode() != ISD::FP_ROUND || In2.getConstantOperandVal(1) != 0))
3868       break;
3869     In2 = In2.getOperand(0);
3870     if (In2.getOpcode() != ISD::FNEG)
3871       break;
3872     SDLoc DL(N);
3873     SDValue NewFPExtRound = DAG.getFPExtendOrRound(In2.getOperand(0), DL, VT);
3874     return DAG.getNode(ISD::FCOPYSIGN, DL, VT, N->getOperand(0),
3875                        DAG.getNode(ISD::FNEG, DL, VT, NewFPExtRound));
3876   }
3877   }
3878 
3879   return SDValue();
3880 }
3881 
3882 bool RISCVTargetLowering::isDesirableToCommuteWithShift(
3883     const SDNode *N, CombineLevel Level) const {
3884   // The following folds are only desirable if `(OP _, c1 << c2)` can be
3885   // materialised in fewer instructions than `(OP _, c1)`:
3886   //
3887   //   (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2)
3888   //   (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2)
3889   SDValue N0 = N->getOperand(0);
3890   EVT Ty = N0.getValueType();
3891   if (Ty.isScalarInteger() &&
3892       (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::OR)) {
3893     auto *C1 = dyn_cast<ConstantSDNode>(N0->getOperand(1));
3894     auto *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1));
3895     if (C1 && C2) {
3896       const APInt &C1Int = C1->getAPIntValue();
3897       APInt ShiftedC1Int = C1Int << C2->getAPIntValue();
3898 
3899       // We can materialise `c1 << c2` into an add immediate, so it's "free",
3900       // and the combine should happen, to potentially allow further combines
3901       // later.
3902       if (ShiftedC1Int.getMinSignedBits() <= 64 &&
3903           isLegalAddImmediate(ShiftedC1Int.getSExtValue()))
3904         return true;
3905 
3906       // We can materialise `c1` in an add immediate, so it's "free", and the
3907       // combine should be prevented.
3908       if (C1Int.getMinSignedBits() <= 64 &&
3909           isLegalAddImmediate(C1Int.getSExtValue()))
3910         return false;
3911 
3912       // Neither constant will fit into an immediate, so find materialisation
3913       // costs.
3914       int C1Cost = RISCVMatInt::getIntMatCost(C1Int, Ty.getSizeInBits(),
3915                                               Subtarget.is64Bit());
3916       int ShiftedC1Cost = RISCVMatInt::getIntMatCost(
3917           ShiftedC1Int, Ty.getSizeInBits(), Subtarget.is64Bit());
3918 
3919       // Materialising `c1` is cheaper than materialising `c1 << c2`, so the
3920       // combine should be prevented.
3921       if (C1Cost < ShiftedC1Cost)
3922         return false;
3923     }
3924   }
3925   return true;
3926 }
3927 
3928 bool RISCVTargetLowering::targetShrinkDemandedConstant(
3929     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
3930     TargetLoweringOpt &TLO) const {
3931   // Delay this optimization as late as possible.
3932   if (!TLO.LegalOps)
3933     return false;
3934 
3935   EVT VT = Op.getValueType();
3936   if (VT.isVector())
3937     return false;
3938 
3939   // Only handle AND for now.
3940   if (Op.getOpcode() != ISD::AND)
3941     return false;
3942 
3943   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
3944   if (!C)
3945     return false;
3946 
3947   const APInt &Mask = C->getAPIntValue();
3948 
3949   // Clear all non-demanded bits initially.
3950   APInt ShrunkMask = Mask & DemandedBits;
3951 
3952   // If the shrunk mask fits in sign extended 12 bits, let the target
3953   // independent code apply it.
3954   if (ShrunkMask.isSignedIntN(12))
3955     return false;
3956 
3957   // Try to make a smaller immediate by setting undemanded bits.
3958 
3959   // We need to be able to make a negative number through a combination of mask
3960   // and undemanded bits.
3961   APInt ExpandedMask = Mask | ~DemandedBits;
3962   if (!ExpandedMask.isNegative())
3963     return false;
3964 
3965   // What is the fewest number of bits we need to represent the negative number.
3966   unsigned MinSignedBits = ExpandedMask.getMinSignedBits();
3967 
3968   // Try to make a 12 bit negative immediate. If that fails try to make a 32
3969   // bit negative immediate unless the shrunk immediate already fits in 32 bits.
3970   APInt NewMask = ShrunkMask;
3971   if (MinSignedBits <= 12)
3972     NewMask.setBitsFrom(11);
3973   else if (MinSignedBits <= 32 && !ShrunkMask.isSignedIntN(32))
3974     NewMask.setBitsFrom(31);
3975   else
3976     return false;
3977 
3978   // Sanity check that our new mask is a subset of the demanded mask.
3979   assert(NewMask.isSubsetOf(ExpandedMask));
3980 
3981   // If we aren't changing the mask, just return true to keep it and prevent
3982   // the caller from optimizing.
3983   if (NewMask == Mask)
3984     return true;
3985 
3986   // Replace the constant with the new mask.
3987   SDLoc DL(Op);
3988   SDValue NewC = TLO.DAG.getConstant(NewMask, DL, VT);
3989   SDValue NewOp = TLO.DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), NewC);
3990   return TLO.CombineTo(Op, NewOp);
3991 }
3992 
3993 void RISCVTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
3994                                                         KnownBits &Known,
3995                                                         const APInt &DemandedElts,
3996                                                         const SelectionDAG &DAG,
3997                                                         unsigned Depth) const {
3998   unsigned BitWidth = Known.getBitWidth();
3999   unsigned Opc = Op.getOpcode();
4000   assert((Opc >= ISD::BUILTIN_OP_END ||
4001           Opc == ISD::INTRINSIC_WO_CHAIN ||
4002           Opc == ISD::INTRINSIC_W_CHAIN ||
4003           Opc == ISD::INTRINSIC_VOID) &&
4004          "Should use MaskedValueIsZero if you don't know whether Op"
4005          " is a target node!");
4006 
4007   Known.resetAll();
4008   switch (Opc) {
4009   default: break;
4010   case RISCVISD::REMUW: {
4011     KnownBits Known2;
4012     Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4013     Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
4014     // We only care about the lower 32 bits.
4015     Known = KnownBits::urem(Known.trunc(32), Known2.trunc(32));
4016     // Restore the original width by sign extending.
4017     Known = Known.sext(BitWidth);
4018     break;
4019   }
4020   case RISCVISD::DIVUW: {
4021     KnownBits Known2;
4022     Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4023     Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
4024     // We only care about the lower 32 bits.
4025     Known = KnownBits::udiv(Known.trunc(32), Known2.trunc(32));
4026     // Restore the original width by sign extending.
4027     Known = Known.sext(BitWidth);
4028     break;
4029   }
4030   case RISCVISD::READ_VLENB:
4031     // We assume VLENB is at least 8 bytes.
4032     // FIXME: The 1.0 draft spec defines minimum VLEN as 128 bits.
4033     Known.Zero.setLowBits(3);
4034     break;
4035   }
4036 }
4037 
4038 unsigned RISCVTargetLowering::ComputeNumSignBitsForTargetNode(
4039     SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
4040     unsigned Depth) const {
4041   switch (Op.getOpcode()) {
4042   default:
4043     break;
4044   case RISCVISD::SLLW:
4045   case RISCVISD::SRAW:
4046   case RISCVISD::SRLW:
4047   case RISCVISD::DIVW:
4048   case RISCVISD::DIVUW:
4049   case RISCVISD::REMUW:
4050   case RISCVISD::ROLW:
4051   case RISCVISD::RORW:
4052   case RISCVISD::GREVIW:
4053   case RISCVISD::GORCIW:
4054   case RISCVISD::FSLW:
4055   case RISCVISD::FSRW:
4056     // TODO: As the result is sign-extended, this is conservatively correct. A
4057     // more precise answer could be calculated for SRAW depending on known
4058     // bits in the shift amount.
4059     return 33;
4060   case RISCVISD::SHFLI: {
4061     // There is no SHFLIW, but a i64 SHFLI with bit 4 of the control word
4062     // cleared doesn't affect bit 31. The upper 32 bits will be shuffled, but
4063     // will stay within the upper 32 bits. If there were more than 32 sign bits
4064     // before there will be at least 33 sign bits after.
4065     if (Op.getValueType() == MVT::i64 &&
4066         (Op.getConstantOperandVal(1) & 0x10) == 0) {
4067       unsigned Tmp = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1);
4068       if (Tmp > 32)
4069         return 33;
4070     }
4071     break;
4072   }
4073   case RISCVISD::VMV_X_S:
4074     // The number of sign bits of the scalar result is computed by obtaining the
4075     // element type of the input vector operand, subtracting its width from the
4076     // XLEN, and then adding one (sign bit within the element type). If the
4077     // element type is wider than XLen, the least-significant XLEN bits are
4078     // taken.
4079     if (Op.getOperand(0).getScalarValueSizeInBits() > Subtarget.getXLen())
4080       return 1;
4081     return Subtarget.getXLen() - Op.getOperand(0).getScalarValueSizeInBits() + 1;
4082   }
4083 
4084   return 1;
4085 }
4086 
4087 static MachineBasicBlock *emitReadCycleWidePseudo(MachineInstr &MI,
4088                                                   MachineBasicBlock *BB) {
4089   assert(MI.getOpcode() == RISCV::ReadCycleWide && "Unexpected instruction");
4090 
4091   // To read the 64-bit cycle CSR on a 32-bit target, we read the two halves.
4092   // Should the count have wrapped while it was being read, we need to try
4093   // again.
4094   // ...
4095   // read:
4096   // rdcycleh x3 # load high word of cycle
4097   // rdcycle  x2 # load low word of cycle
4098   // rdcycleh x4 # load high word of cycle
4099   // bne x3, x4, read # check if high word reads match, otherwise try again
4100   // ...
4101 
4102   MachineFunction &MF = *BB->getParent();
4103   const BasicBlock *LLVM_BB = BB->getBasicBlock();
4104   MachineFunction::iterator It = ++BB->getIterator();
4105 
4106   MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB);
4107   MF.insert(It, LoopMBB);
4108 
4109   MachineBasicBlock *DoneMBB = MF.CreateMachineBasicBlock(LLVM_BB);
4110   MF.insert(It, DoneMBB);
4111 
4112   // Transfer the remainder of BB and its successor edges to DoneMBB.
4113   DoneMBB->splice(DoneMBB->begin(), BB,
4114                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
4115   DoneMBB->transferSuccessorsAndUpdatePHIs(BB);
4116 
4117   BB->addSuccessor(LoopMBB);
4118 
4119   MachineRegisterInfo &RegInfo = MF.getRegInfo();
4120   Register ReadAgainReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
4121   Register LoReg = MI.getOperand(0).getReg();
4122   Register HiReg = MI.getOperand(1).getReg();
4123   DebugLoc DL = MI.getDebugLoc();
4124 
4125   const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
4126   BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), HiReg)
4127       .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding)
4128       .addReg(RISCV::X0);
4129   BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), LoReg)
4130       .addImm(RISCVSysReg::lookupSysRegByName("CYCLE")->Encoding)
4131       .addReg(RISCV::X0);
4132   BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), ReadAgainReg)
4133       .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding)
4134       .addReg(RISCV::X0);
4135 
4136   BuildMI(LoopMBB, DL, TII->get(RISCV::BNE))
4137       .addReg(HiReg)
4138       .addReg(ReadAgainReg)
4139       .addMBB(LoopMBB);
4140 
4141   LoopMBB->addSuccessor(LoopMBB);
4142   LoopMBB->addSuccessor(DoneMBB);
4143 
4144   MI.eraseFromParent();
4145 
4146   return DoneMBB;
4147 }
4148 
4149 static MachineBasicBlock *emitSplitF64Pseudo(MachineInstr &MI,
4150                                              MachineBasicBlock *BB) {
4151   assert(MI.getOpcode() == RISCV::SplitF64Pseudo && "Unexpected instruction");
4152 
4153   MachineFunction &MF = *BB->getParent();
4154   DebugLoc DL = MI.getDebugLoc();
4155   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
4156   const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo();
4157   Register LoReg = MI.getOperand(0).getReg();
4158   Register HiReg = MI.getOperand(1).getReg();
4159   Register SrcReg = MI.getOperand(2).getReg();
4160   const TargetRegisterClass *SrcRC = &RISCV::FPR64RegClass;
4161   int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF);
4162 
4163   TII.storeRegToStackSlot(*BB, MI, SrcReg, MI.getOperand(2).isKill(), FI, SrcRC,
4164                           RI);
4165   MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI);
4166   MachineMemOperand *MMOLo =
4167       MF.getMachineMemOperand(MPI, MachineMemOperand::MOLoad, 4, Align(8));
4168   MachineMemOperand *MMOHi = MF.getMachineMemOperand(
4169       MPI.getWithOffset(4), MachineMemOperand::MOLoad, 4, Align(8));
4170   BuildMI(*BB, MI, DL, TII.get(RISCV::LW), LoReg)
4171       .addFrameIndex(FI)
4172       .addImm(0)
4173       .addMemOperand(MMOLo);
4174   BuildMI(*BB, MI, DL, TII.get(RISCV::LW), HiReg)
4175       .addFrameIndex(FI)
4176       .addImm(4)
4177       .addMemOperand(MMOHi);
4178   MI.eraseFromParent(); // The pseudo instruction is gone now.
4179   return BB;
4180 }
4181 
4182 static MachineBasicBlock *emitBuildPairF64Pseudo(MachineInstr &MI,
4183                                                  MachineBasicBlock *BB) {
4184   assert(MI.getOpcode() == RISCV::BuildPairF64Pseudo &&
4185          "Unexpected instruction");
4186 
4187   MachineFunction &MF = *BB->getParent();
4188   DebugLoc DL = MI.getDebugLoc();
4189   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
4190   const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo();
4191   Register DstReg = MI.getOperand(0).getReg();
4192   Register LoReg = MI.getOperand(1).getReg();
4193   Register HiReg = MI.getOperand(2).getReg();
4194   const TargetRegisterClass *DstRC = &RISCV::FPR64RegClass;
4195   int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF);
4196 
4197   MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI);
4198   MachineMemOperand *MMOLo =
4199       MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Align(8));
4200   MachineMemOperand *MMOHi = MF.getMachineMemOperand(
4201       MPI.getWithOffset(4), MachineMemOperand::MOStore, 4, Align(8));
4202   BuildMI(*BB, MI, DL, TII.get(RISCV::SW))
4203       .addReg(LoReg, getKillRegState(MI.getOperand(1).isKill()))
4204       .addFrameIndex(FI)
4205       .addImm(0)
4206       .addMemOperand(MMOLo);
4207   BuildMI(*BB, MI, DL, TII.get(RISCV::SW))
4208       .addReg(HiReg, getKillRegState(MI.getOperand(2).isKill()))
4209       .addFrameIndex(FI)
4210       .addImm(4)
4211       .addMemOperand(MMOHi);
4212   TII.loadRegFromStackSlot(*BB, MI, DstReg, FI, DstRC, RI);
4213   MI.eraseFromParent(); // The pseudo instruction is gone now.
4214   return BB;
4215 }
4216 
4217 static bool isSelectPseudo(MachineInstr &MI) {
4218   switch (MI.getOpcode()) {
4219   default:
4220     return false;
4221   case RISCV::Select_GPR_Using_CC_GPR:
4222   case RISCV::Select_FPR16_Using_CC_GPR:
4223   case RISCV::Select_FPR32_Using_CC_GPR:
4224   case RISCV::Select_FPR64_Using_CC_GPR:
4225     return true;
4226   }
4227 }
4228 
4229 static MachineBasicBlock *emitSelectPseudo(MachineInstr &MI,
4230                                            MachineBasicBlock *BB) {
4231   // To "insert" Select_* instructions, we actually have to insert the triangle
4232   // control-flow pattern.  The incoming instructions know the destination vreg
4233   // to set, the condition code register to branch on, the true/false values to
4234   // select between, and the condcode to use to select the appropriate branch.
4235   //
4236   // We produce the following control flow:
4237   //     HeadMBB
4238   //     |  \
4239   //     |  IfFalseMBB
4240   //     | /
4241   //    TailMBB
4242   //
4243   // When we find a sequence of selects we attempt to optimize their emission
4244   // by sharing the control flow. Currently we only handle cases where we have
4245   // multiple selects with the exact same condition (same LHS, RHS and CC).
4246   // The selects may be interleaved with other instructions if the other
4247   // instructions meet some requirements we deem safe:
4248   // - They are debug instructions. Otherwise,
4249   // - They do not have side-effects, do not access memory and their inputs do
4250   //   not depend on the results of the select pseudo-instructions.
4251   // The TrueV/FalseV operands of the selects cannot depend on the result of
4252   // previous selects in the sequence.
4253   // These conditions could be further relaxed. See the X86 target for a
4254   // related approach and more information.
4255   Register LHS = MI.getOperand(1).getReg();
4256   Register RHS = MI.getOperand(2).getReg();
4257   auto CC = static_cast<ISD::CondCode>(MI.getOperand(3).getImm());
4258 
4259   SmallVector<MachineInstr *, 4> SelectDebugValues;
4260   SmallSet<Register, 4> SelectDests;
4261   SelectDests.insert(MI.getOperand(0).getReg());
4262 
4263   MachineInstr *LastSelectPseudo = &MI;
4264 
4265   for (auto E = BB->end(), SequenceMBBI = MachineBasicBlock::iterator(MI);
4266        SequenceMBBI != E; ++SequenceMBBI) {
4267     if (SequenceMBBI->isDebugInstr())
4268       continue;
4269     else if (isSelectPseudo(*SequenceMBBI)) {
4270       if (SequenceMBBI->getOperand(1).getReg() != LHS ||
4271           SequenceMBBI->getOperand(2).getReg() != RHS ||
4272           SequenceMBBI->getOperand(3).getImm() != CC ||
4273           SelectDests.count(SequenceMBBI->getOperand(4).getReg()) ||
4274           SelectDests.count(SequenceMBBI->getOperand(5).getReg()))
4275         break;
4276       LastSelectPseudo = &*SequenceMBBI;
4277       SequenceMBBI->collectDebugValues(SelectDebugValues);
4278       SelectDests.insert(SequenceMBBI->getOperand(0).getReg());
4279     } else {
4280       if (SequenceMBBI->hasUnmodeledSideEffects() ||
4281           SequenceMBBI->mayLoadOrStore())
4282         break;
4283       if (llvm::any_of(SequenceMBBI->operands(), [&](MachineOperand &MO) {
4284             return MO.isReg() && MO.isUse() && SelectDests.count(MO.getReg());
4285           }))
4286         break;
4287     }
4288   }
4289 
4290   const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo();
4291   const BasicBlock *LLVM_BB = BB->getBasicBlock();
4292   DebugLoc DL = MI.getDebugLoc();
4293   MachineFunction::iterator I = ++BB->getIterator();
4294 
4295   MachineBasicBlock *HeadMBB = BB;
4296   MachineFunction *F = BB->getParent();
4297   MachineBasicBlock *TailMBB = F->CreateMachineBasicBlock(LLVM_BB);
4298   MachineBasicBlock *IfFalseMBB = F->CreateMachineBasicBlock(LLVM_BB);
4299 
4300   F->insert(I, IfFalseMBB);
4301   F->insert(I, TailMBB);
4302 
4303   // Transfer debug instructions associated with the selects to TailMBB.
4304   for (MachineInstr *DebugInstr : SelectDebugValues) {
4305     TailMBB->push_back(DebugInstr->removeFromParent());
4306   }
4307 
4308   // Move all instructions after the sequence to TailMBB.
4309   TailMBB->splice(TailMBB->end(), HeadMBB,
4310                   std::next(LastSelectPseudo->getIterator()), HeadMBB->end());
4311   // Update machine-CFG edges by transferring all successors of the current
4312   // block to the new block which will contain the Phi nodes for the selects.
4313   TailMBB->transferSuccessorsAndUpdatePHIs(HeadMBB);
4314   // Set the successors for HeadMBB.
4315   HeadMBB->addSuccessor(IfFalseMBB);
4316   HeadMBB->addSuccessor(TailMBB);
4317 
4318   // Insert appropriate branch.
4319   unsigned Opcode = getBranchOpcodeForIntCondCode(CC);
4320 
4321   BuildMI(HeadMBB, DL, TII.get(Opcode))
4322     .addReg(LHS)
4323     .addReg(RHS)
4324     .addMBB(TailMBB);
4325 
4326   // IfFalseMBB just falls through to TailMBB.
4327   IfFalseMBB->addSuccessor(TailMBB);
4328 
4329   // Create PHIs for all of the select pseudo-instructions.
4330   auto SelectMBBI = MI.getIterator();
4331   auto SelectEnd = std::next(LastSelectPseudo->getIterator());
4332   auto InsertionPoint = TailMBB->begin();
4333   while (SelectMBBI != SelectEnd) {
4334     auto Next = std::next(SelectMBBI);
4335     if (isSelectPseudo(*SelectMBBI)) {
4336       // %Result = phi [ %TrueValue, HeadMBB ], [ %FalseValue, IfFalseMBB ]
4337       BuildMI(*TailMBB, InsertionPoint, SelectMBBI->getDebugLoc(),
4338               TII.get(RISCV::PHI), SelectMBBI->getOperand(0).getReg())
4339           .addReg(SelectMBBI->getOperand(4).getReg())
4340           .addMBB(HeadMBB)
4341           .addReg(SelectMBBI->getOperand(5).getReg())
4342           .addMBB(IfFalseMBB);
4343       SelectMBBI->eraseFromParent();
4344     }
4345     SelectMBBI = Next;
4346   }
4347 
4348   F->getProperties().reset(MachineFunctionProperties::Property::NoPHIs);
4349   return TailMBB;
4350 }
4351 
4352 static MachineBasicBlock *addVSetVL(MachineInstr &MI, MachineBasicBlock *BB,
4353                                     int VLIndex, unsigned SEWIndex,
4354                                     RISCVVLMUL VLMul, bool ForceTailAgnostic) {
4355   MachineFunction &MF = *BB->getParent();
4356   DebugLoc DL = MI.getDebugLoc();
4357   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
4358 
4359   unsigned SEW = MI.getOperand(SEWIndex).getImm();
4360   assert(RISCVVType::isValidSEW(SEW) && "Unexpected SEW");
4361   RISCVVSEW ElementWidth = static_cast<RISCVVSEW>(Log2_32(SEW / 8));
4362 
4363   MachineRegisterInfo &MRI = MF.getRegInfo();
4364 
4365   auto BuildVSETVLI = [&]() {
4366     if (VLIndex >= 0) {
4367       Register DestReg = MRI.createVirtualRegister(&RISCV::GPRRegClass);
4368       Register VLReg = MI.getOperand(VLIndex).getReg();
4369 
4370       // VL might be a compile time constant, but isel would have to put it
4371       // in a register. See if VL comes from an ADDI X0, imm.
4372       if (VLReg.isVirtual()) {
4373         MachineInstr *Def = MRI.getVRegDef(VLReg);
4374         if (Def && Def->getOpcode() == RISCV::ADDI &&
4375             Def->getOperand(1).getReg() == RISCV::X0 &&
4376             Def->getOperand(2).isImm()) {
4377           uint64_t Imm = Def->getOperand(2).getImm();
4378           // VSETIVLI allows a 5-bit zero extended immediate.
4379           if (isUInt<5>(Imm))
4380             return BuildMI(*BB, MI, DL, TII.get(RISCV::PseudoVSETIVLI))
4381                 .addReg(DestReg, RegState::Define | RegState::Dead)
4382                 .addImm(Imm);
4383         }
4384       }
4385 
4386       return BuildMI(*BB, MI, DL, TII.get(RISCV::PseudoVSETVLI))
4387           .addReg(DestReg, RegState::Define | RegState::Dead)
4388           .addReg(VLReg);
4389     }
4390 
4391     // With no VL operator in the pseudo, do not modify VL (rd = X0, rs1 = X0).
4392     return BuildMI(*BB, MI, DL, TII.get(RISCV::PseudoVSETVLI))
4393         .addReg(RISCV::X0, RegState::Define | RegState::Dead)
4394         .addReg(RISCV::X0, RegState::Kill);
4395   };
4396 
4397   MachineInstrBuilder MIB = BuildVSETVLI();
4398 
4399   // Default to tail agnostic unless the destination is tied to a source. In
4400   // that case the user would have some control over the tail values. The tail
4401   // policy is also ignored on instructions that only update element 0 like
4402   // vmv.s.x or reductions so use agnostic there to match the common case.
4403   // FIXME: This is conservatively correct, but we might want to detect that
4404   // the input is undefined.
4405   bool TailAgnostic = true;
4406   unsigned UseOpIdx;
4407   if (!ForceTailAgnostic && MI.isRegTiedToUseOperand(0, &UseOpIdx)) {
4408     TailAgnostic = false;
4409     // If the tied operand is an IMPLICIT_DEF we can keep TailAgnostic.
4410     const MachineOperand &UseMO = MI.getOperand(UseOpIdx);
4411     MachineInstr *UseMI = MRI.getVRegDef(UseMO.getReg());
4412     if (UseMI && UseMI->isImplicitDef())
4413       TailAgnostic = true;
4414   }
4415 
4416   // For simplicity we reuse the vtype representation here.
4417   MIB.addImm(RISCVVType::encodeVTYPE(VLMul, ElementWidth,
4418                                      /*TailAgnostic*/ TailAgnostic,
4419                                      /*MaskAgnostic*/ false));
4420 
4421   // Remove (now) redundant operands from pseudo
4422   MI.getOperand(SEWIndex).setImm(-1);
4423   if (VLIndex >= 0) {
4424     MI.getOperand(VLIndex).setReg(RISCV::NoRegister);
4425     MI.getOperand(VLIndex).setIsKill(false);
4426   }
4427 
4428   return BB;
4429 }
4430 
4431 MachineBasicBlock *
4432 RISCVTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
4433                                                  MachineBasicBlock *BB) const {
4434   uint64_t TSFlags = MI.getDesc().TSFlags;
4435 
4436   if (TSFlags & RISCVII::HasSEWOpMask) {
4437     unsigned NumOperands = MI.getNumExplicitOperands();
4438     int VLIndex = (TSFlags & RISCVII::HasVLOpMask) ? NumOperands - 2 : -1;
4439     unsigned SEWIndex = NumOperands - 1;
4440     bool ForceTailAgnostic = TSFlags & RISCVII::ForceTailAgnosticMask;
4441 
4442     RISCVVLMUL VLMul = static_cast<RISCVVLMUL>((TSFlags & RISCVII::VLMulMask) >>
4443                                                RISCVII::VLMulShift);
4444     return addVSetVL(MI, BB, VLIndex, SEWIndex, VLMul, ForceTailAgnostic);
4445   }
4446 
4447   switch (MI.getOpcode()) {
4448   default:
4449     llvm_unreachable("Unexpected instr type to insert");
4450   case RISCV::ReadCycleWide:
4451     assert(!Subtarget.is64Bit() &&
4452            "ReadCycleWrite is only to be used on riscv32");
4453     return emitReadCycleWidePseudo(MI, BB);
4454   case RISCV::Select_GPR_Using_CC_GPR:
4455   case RISCV::Select_FPR16_Using_CC_GPR:
4456   case RISCV::Select_FPR32_Using_CC_GPR:
4457   case RISCV::Select_FPR64_Using_CC_GPR:
4458     return emitSelectPseudo(MI, BB);
4459   case RISCV::BuildPairF64Pseudo:
4460     return emitBuildPairF64Pseudo(MI, BB);
4461   case RISCV::SplitF64Pseudo:
4462     return emitSplitF64Pseudo(MI, BB);
4463   }
4464 }
4465 
4466 // Calling Convention Implementation.
4467 // The expectations for frontend ABI lowering vary from target to target.
4468 // Ideally, an LLVM frontend would be able to avoid worrying about many ABI
4469 // details, but this is a longer term goal. For now, we simply try to keep the
4470 // role of the frontend as simple and well-defined as possible. The rules can
4471 // be summarised as:
4472 // * Never split up large scalar arguments. We handle them here.
4473 // * If a hardfloat calling convention is being used, and the struct may be
4474 // passed in a pair of registers (fp+fp, int+fp), and both registers are
4475 // available, then pass as two separate arguments. If either the GPRs or FPRs
4476 // are exhausted, then pass according to the rule below.
4477 // * If a struct could never be passed in registers or directly in a stack
4478 // slot (as it is larger than 2*XLEN and the floating point rules don't
4479 // apply), then pass it using a pointer with the byval attribute.
4480 // * If a struct is less than 2*XLEN, then coerce to either a two-element
4481 // word-sized array or a 2*XLEN scalar (depending on alignment).
4482 // * The frontend can determine whether a struct is returned by reference or
4483 // not based on its size and fields. If it will be returned by reference, the
4484 // frontend must modify the prototype so a pointer with the sret annotation is
4485 // passed as the first argument. This is not necessary for large scalar
4486 // returns.
4487 // * Struct return values and varargs should be coerced to structs containing
4488 // register-size fields in the same situations they would be for fixed
4489 // arguments.
4490 
4491 static const MCPhysReg ArgGPRs[] = {
4492   RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13,
4493   RISCV::X14, RISCV::X15, RISCV::X16, RISCV::X17
4494 };
4495 static const MCPhysReg ArgFPR16s[] = {
4496   RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H,
4497   RISCV::F14_H, RISCV::F15_H, RISCV::F16_H, RISCV::F17_H
4498 };
4499 static const MCPhysReg ArgFPR32s[] = {
4500   RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F,
4501   RISCV::F14_F, RISCV::F15_F, RISCV::F16_F, RISCV::F17_F
4502 };
4503 static const MCPhysReg ArgFPR64s[] = {
4504   RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D,
4505   RISCV::F14_D, RISCV::F15_D, RISCV::F16_D, RISCV::F17_D
4506 };
4507 // This is an interim calling convention and it may be changed in the future.
4508 static const MCPhysReg ArgVRs[] = {
4509     RISCV::V8,  RISCV::V9,  RISCV::V10, RISCV::V11, RISCV::V12, RISCV::V13,
4510     RISCV::V14, RISCV::V15, RISCV::V16, RISCV::V17, RISCV::V18, RISCV::V19,
4511     RISCV::V20, RISCV::V21, RISCV::V22, RISCV::V23};
4512 static const MCPhysReg ArgVRM2s[] = {RISCV::V8M2,  RISCV::V10M2, RISCV::V12M2,
4513                                      RISCV::V14M2, RISCV::V16M2, RISCV::V18M2,
4514                                      RISCV::V20M2, RISCV::V22M2};
4515 static const MCPhysReg ArgVRM4s[] = {RISCV::V8M4, RISCV::V12M4, RISCV::V16M4,
4516                                      RISCV::V20M4};
4517 static const MCPhysReg ArgVRM8s[] = {RISCV::V8M8, RISCV::V16M8};
4518 
4519 // Pass a 2*XLEN argument that has been split into two XLEN values through
4520 // registers or the stack as necessary.
4521 static bool CC_RISCVAssign2XLen(unsigned XLen, CCState &State, CCValAssign VA1,
4522                                 ISD::ArgFlagsTy ArgFlags1, unsigned ValNo2,
4523                                 MVT ValVT2, MVT LocVT2,
4524                                 ISD::ArgFlagsTy ArgFlags2) {
4525   unsigned XLenInBytes = XLen / 8;
4526   if (Register Reg = State.AllocateReg(ArgGPRs)) {
4527     // At least one half can be passed via register.
4528     State.addLoc(CCValAssign::getReg(VA1.getValNo(), VA1.getValVT(), Reg,
4529                                      VA1.getLocVT(), CCValAssign::Full));
4530   } else {
4531     // Both halves must be passed on the stack, with proper alignment.
4532     Align StackAlign =
4533         std::max(Align(XLenInBytes), ArgFlags1.getNonZeroOrigAlign());
4534     State.addLoc(
4535         CCValAssign::getMem(VA1.getValNo(), VA1.getValVT(),
4536                             State.AllocateStack(XLenInBytes, StackAlign),
4537                             VA1.getLocVT(), CCValAssign::Full));
4538     State.addLoc(CCValAssign::getMem(
4539         ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)),
4540         LocVT2, CCValAssign::Full));
4541     return false;
4542   }
4543 
4544   if (Register Reg = State.AllocateReg(ArgGPRs)) {
4545     // The second half can also be passed via register.
4546     State.addLoc(
4547         CCValAssign::getReg(ValNo2, ValVT2, Reg, LocVT2, CCValAssign::Full));
4548   } else {
4549     // The second half is passed via the stack, without additional alignment.
4550     State.addLoc(CCValAssign::getMem(
4551         ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)),
4552         LocVT2, CCValAssign::Full));
4553   }
4554 
4555   return false;
4556 }
4557 
4558 // Implements the RISC-V calling convention. Returns true upon failure.
4559 static bool CC_RISCV(const DataLayout &DL, RISCVABI::ABI ABI, unsigned ValNo,
4560                      MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo,
4561                      ISD::ArgFlagsTy ArgFlags, CCState &State, bool IsFixed,
4562                      bool IsRet, Type *OrigTy, const RISCVTargetLowering &TLI,
4563                      Optional<unsigned> FirstMaskArgument) {
4564   unsigned XLen = DL.getLargestLegalIntTypeSizeInBits();
4565   assert(XLen == 32 || XLen == 64);
4566   MVT XLenVT = XLen == 32 ? MVT::i32 : MVT::i64;
4567 
4568   // Any return value split in to more than two values can't be returned
4569   // directly.
4570   if (IsRet && ValNo > 1)
4571     return true;
4572 
4573   // UseGPRForF16_F32 if targeting one of the soft-float ABIs, if passing a
4574   // variadic argument, or if no F16/F32 argument registers are available.
4575   bool UseGPRForF16_F32 = true;
4576   // UseGPRForF64 if targeting soft-float ABIs or an FLEN=32 ABI, if passing a
4577   // variadic argument, or if no F64 argument registers are available.
4578   bool UseGPRForF64 = true;
4579 
4580   switch (ABI) {
4581   default:
4582     llvm_unreachable("Unexpected ABI");
4583   case RISCVABI::ABI_ILP32:
4584   case RISCVABI::ABI_LP64:
4585     break;
4586   case RISCVABI::ABI_ILP32F:
4587   case RISCVABI::ABI_LP64F:
4588     UseGPRForF16_F32 = !IsFixed;
4589     break;
4590   case RISCVABI::ABI_ILP32D:
4591   case RISCVABI::ABI_LP64D:
4592     UseGPRForF16_F32 = !IsFixed;
4593     UseGPRForF64 = !IsFixed;
4594     break;
4595   }
4596 
4597   // FPR16, FPR32, and FPR64 alias each other.
4598   if (State.getFirstUnallocated(ArgFPR32s) == array_lengthof(ArgFPR32s)) {
4599     UseGPRForF16_F32 = true;
4600     UseGPRForF64 = true;
4601   }
4602 
4603   // From this point on, rely on UseGPRForF16_F32, UseGPRForF64 and
4604   // similar local variables rather than directly checking against the target
4605   // ABI.
4606 
4607   if (UseGPRForF16_F32 && (ValVT == MVT::f16 || ValVT == MVT::f32)) {
4608     LocVT = XLenVT;
4609     LocInfo = CCValAssign::BCvt;
4610   } else if (UseGPRForF64 && XLen == 64 && ValVT == MVT::f64) {
4611     LocVT = MVT::i64;
4612     LocInfo = CCValAssign::BCvt;
4613   }
4614 
4615   // If this is a variadic argument, the RISC-V calling convention requires
4616   // that it is assigned an 'even' or 'aligned' register if it has 8-byte
4617   // alignment (RV32) or 16-byte alignment (RV64). An aligned register should
4618   // be used regardless of whether the original argument was split during
4619   // legalisation or not. The argument will not be passed by registers if the
4620   // original type is larger than 2*XLEN, so the register alignment rule does
4621   // not apply.
4622   unsigned TwoXLenInBytes = (2 * XLen) / 8;
4623   if (!IsFixed && ArgFlags.getNonZeroOrigAlign() == TwoXLenInBytes &&
4624       DL.getTypeAllocSize(OrigTy) == TwoXLenInBytes) {
4625     unsigned RegIdx = State.getFirstUnallocated(ArgGPRs);
4626     // Skip 'odd' register if necessary.
4627     if (RegIdx != array_lengthof(ArgGPRs) && RegIdx % 2 == 1)
4628       State.AllocateReg(ArgGPRs);
4629   }
4630 
4631   SmallVectorImpl<CCValAssign> &PendingLocs = State.getPendingLocs();
4632   SmallVectorImpl<ISD::ArgFlagsTy> &PendingArgFlags =
4633       State.getPendingArgFlags();
4634 
4635   assert(PendingLocs.size() == PendingArgFlags.size() &&
4636          "PendingLocs and PendingArgFlags out of sync");
4637 
4638   // Handle passing f64 on RV32D with a soft float ABI or when floating point
4639   // registers are exhausted.
4640   if (UseGPRForF64 && XLen == 32 && ValVT == MVT::f64) {
4641     assert(!ArgFlags.isSplit() && PendingLocs.empty() &&
4642            "Can't lower f64 if it is split");
4643     // Depending on available argument GPRS, f64 may be passed in a pair of
4644     // GPRs, split between a GPR and the stack, or passed completely on the
4645     // stack. LowerCall/LowerFormalArguments/LowerReturn must recognise these
4646     // cases.
4647     Register Reg = State.AllocateReg(ArgGPRs);
4648     LocVT = MVT::i32;
4649     if (!Reg) {
4650       unsigned StackOffset = State.AllocateStack(8, Align(8));
4651       State.addLoc(
4652           CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
4653       return false;
4654     }
4655     if (!State.AllocateReg(ArgGPRs))
4656       State.AllocateStack(4, Align(4));
4657     State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
4658     return false;
4659   }
4660 
4661   // Split arguments might be passed indirectly, so keep track of the pending
4662   // values.
4663   if (ArgFlags.isSplit() || !PendingLocs.empty()) {
4664     LocVT = XLenVT;
4665     LocInfo = CCValAssign::Indirect;
4666     PendingLocs.push_back(
4667         CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo));
4668     PendingArgFlags.push_back(ArgFlags);
4669     if (!ArgFlags.isSplitEnd()) {
4670       return false;
4671     }
4672   }
4673 
4674   // If the split argument only had two elements, it should be passed directly
4675   // in registers or on the stack.
4676   if (ArgFlags.isSplitEnd() && PendingLocs.size() <= 2) {
4677     assert(PendingLocs.size() == 2 && "Unexpected PendingLocs.size()");
4678     // Apply the normal calling convention rules to the first half of the
4679     // split argument.
4680     CCValAssign VA = PendingLocs[0];
4681     ISD::ArgFlagsTy AF = PendingArgFlags[0];
4682     PendingLocs.clear();
4683     PendingArgFlags.clear();
4684     return CC_RISCVAssign2XLen(XLen, State, VA, AF, ValNo, ValVT, LocVT,
4685                                ArgFlags);
4686   }
4687 
4688   // Allocate to a register if possible, or else a stack slot.
4689   Register Reg;
4690   if (ValVT == MVT::f16 && !UseGPRForF16_F32)
4691     Reg = State.AllocateReg(ArgFPR16s);
4692   else if (ValVT == MVT::f32 && !UseGPRForF16_F32)
4693     Reg = State.AllocateReg(ArgFPR32s);
4694   else if (ValVT == MVT::f64 && !UseGPRForF64)
4695     Reg = State.AllocateReg(ArgFPR64s);
4696   else if (ValVT.isScalableVector()) {
4697     const TargetRegisterClass *RC = TLI.getRegClassFor(ValVT);
4698     if (RC == &RISCV::VRRegClass) {
4699       // Assign the first mask argument to V0.
4700       // This is an interim calling convention and it may be changed in the
4701       // future.
4702       if (FirstMaskArgument.hasValue() &&
4703           ValNo == FirstMaskArgument.getValue()) {
4704         Reg = State.AllocateReg(RISCV::V0);
4705       } else {
4706         Reg = State.AllocateReg(ArgVRs);
4707       }
4708     } else if (RC == &RISCV::VRM2RegClass) {
4709       Reg = State.AllocateReg(ArgVRM2s);
4710     } else if (RC == &RISCV::VRM4RegClass) {
4711       Reg = State.AllocateReg(ArgVRM4s);
4712     } else if (RC == &RISCV::VRM8RegClass) {
4713       Reg = State.AllocateReg(ArgVRM8s);
4714     } else {
4715       llvm_unreachable("Unhandled class register for ValueType");
4716     }
4717     if (!Reg) {
4718       LocInfo = CCValAssign::Indirect;
4719       // Try using a GPR to pass the address
4720       Reg = State.AllocateReg(ArgGPRs);
4721       LocVT = XLenVT;
4722     }
4723   } else
4724     Reg = State.AllocateReg(ArgGPRs);
4725   unsigned StackOffset =
4726       Reg ? 0 : State.AllocateStack(XLen / 8, Align(XLen / 8));
4727 
4728   // If we reach this point and PendingLocs is non-empty, we must be at the
4729   // end of a split argument that must be passed indirectly.
4730   if (!PendingLocs.empty()) {
4731     assert(ArgFlags.isSplitEnd() && "Expected ArgFlags.isSplitEnd()");
4732     assert(PendingLocs.size() > 2 && "Unexpected PendingLocs.size()");
4733 
4734     for (auto &It : PendingLocs) {
4735       if (Reg)
4736         It.convertToReg(Reg);
4737       else
4738         It.convertToMem(StackOffset);
4739       State.addLoc(It);
4740     }
4741     PendingLocs.clear();
4742     PendingArgFlags.clear();
4743     return false;
4744   }
4745 
4746   assert((!UseGPRForF16_F32 || !UseGPRForF64 || LocVT == XLenVT ||
4747           (TLI.getSubtarget().hasStdExtV() && ValVT.isScalableVector())) &&
4748          "Expected an XLenVT or scalable vector types at this stage");
4749 
4750   if (Reg) {
4751     State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
4752     return false;
4753   }
4754 
4755   // When a floating-point value is passed on the stack, no bit-conversion is
4756   // needed.
4757   if (ValVT.isFloatingPoint()) {
4758     LocVT = ValVT;
4759     LocInfo = CCValAssign::Full;
4760   }
4761   State.addLoc(CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
4762   return false;
4763 }
4764 
4765 template <typename ArgTy>
4766 static Optional<unsigned> preAssignMask(const ArgTy &Args) {
4767   for (const auto &ArgIdx : enumerate(Args)) {
4768     MVT ArgVT = ArgIdx.value().VT;
4769     if (ArgVT.isScalableVector() &&
4770         ArgVT.getVectorElementType().SimpleTy == MVT::i1)
4771       return ArgIdx.index();
4772   }
4773   return None;
4774 }
4775 
4776 void RISCVTargetLowering::analyzeInputArgs(
4777     MachineFunction &MF, CCState &CCInfo,
4778     const SmallVectorImpl<ISD::InputArg> &Ins, bool IsRet) const {
4779   unsigned NumArgs = Ins.size();
4780   FunctionType *FType = MF.getFunction().getFunctionType();
4781 
4782   Optional<unsigned> FirstMaskArgument;
4783   if (Subtarget.hasStdExtV())
4784     FirstMaskArgument = preAssignMask(Ins);
4785 
4786   for (unsigned i = 0; i != NumArgs; ++i) {
4787     MVT ArgVT = Ins[i].VT;
4788     ISD::ArgFlagsTy ArgFlags = Ins[i].Flags;
4789 
4790     Type *ArgTy = nullptr;
4791     if (IsRet)
4792       ArgTy = FType->getReturnType();
4793     else if (Ins[i].isOrigArg())
4794       ArgTy = FType->getParamType(Ins[i].getOrigArgIndex());
4795 
4796     RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
4797     if (CC_RISCV(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full,
4798                  ArgFlags, CCInfo, /*IsFixed=*/true, IsRet, ArgTy, *this,
4799                  FirstMaskArgument)) {
4800       LLVM_DEBUG(dbgs() << "InputArg #" << i << " has unhandled type "
4801                         << EVT(ArgVT).getEVTString() << '\n');
4802       llvm_unreachable(nullptr);
4803     }
4804   }
4805 }
4806 
4807 void RISCVTargetLowering::analyzeOutputArgs(
4808     MachineFunction &MF, CCState &CCInfo,
4809     const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsRet,
4810     CallLoweringInfo *CLI) const {
4811   unsigned NumArgs = Outs.size();
4812 
4813   Optional<unsigned> FirstMaskArgument;
4814   if (Subtarget.hasStdExtV())
4815     FirstMaskArgument = preAssignMask(Outs);
4816 
4817   for (unsigned i = 0; i != NumArgs; i++) {
4818     MVT ArgVT = Outs[i].VT;
4819     ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
4820     Type *OrigTy = CLI ? CLI->getArgs()[Outs[i].OrigArgIndex].Ty : nullptr;
4821 
4822     RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
4823     if (CC_RISCV(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full,
4824                  ArgFlags, CCInfo, Outs[i].IsFixed, IsRet, OrigTy, *this,
4825                  FirstMaskArgument)) {
4826       LLVM_DEBUG(dbgs() << "OutputArg #" << i << " has unhandled type "
4827                         << EVT(ArgVT).getEVTString() << "\n");
4828       llvm_unreachable(nullptr);
4829     }
4830   }
4831 }
4832 
4833 // Convert Val to a ValVT. Should not be called for CCValAssign::Indirect
4834 // values.
4835 static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDValue Val,
4836                                    const CCValAssign &VA, const SDLoc &DL) {
4837   switch (VA.getLocInfo()) {
4838   default:
4839     llvm_unreachable("Unexpected CCValAssign::LocInfo");
4840   case CCValAssign::Full:
4841     break;
4842   case CCValAssign::BCvt:
4843     if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16)
4844       Val = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, Val);
4845     else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32)
4846       Val = DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, Val);
4847     else
4848       Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val);
4849     break;
4850   }
4851   return Val;
4852 }
4853 
4854 // The caller is responsible for loading the full value if the argument is
4855 // passed with CCValAssign::Indirect.
4856 static SDValue unpackFromRegLoc(SelectionDAG &DAG, SDValue Chain,
4857                                 const CCValAssign &VA, const SDLoc &DL,
4858                                 const RISCVTargetLowering &TLI) {
4859   MachineFunction &MF = DAG.getMachineFunction();
4860   MachineRegisterInfo &RegInfo = MF.getRegInfo();
4861   EVT LocVT = VA.getLocVT();
4862   SDValue Val;
4863   const TargetRegisterClass *RC = TLI.getRegClassFor(LocVT.getSimpleVT());
4864   Register VReg = RegInfo.createVirtualRegister(RC);
4865   RegInfo.addLiveIn(VA.getLocReg(), VReg);
4866   Val = DAG.getCopyFromReg(Chain, DL, VReg, LocVT);
4867 
4868   if (VA.getLocInfo() == CCValAssign::Indirect)
4869     return Val;
4870 
4871   return convertLocVTToValVT(DAG, Val, VA, DL);
4872 }
4873 
4874 static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDValue Val,
4875                                    const CCValAssign &VA, const SDLoc &DL) {
4876   EVT LocVT = VA.getLocVT();
4877 
4878   switch (VA.getLocInfo()) {
4879   default:
4880     llvm_unreachable("Unexpected CCValAssign::LocInfo");
4881   case CCValAssign::Full:
4882     break;
4883   case CCValAssign::BCvt:
4884     if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16)
4885       Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, VA.getLocVT(), Val);
4886     else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32)
4887       Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Val);
4888     else
4889       Val = DAG.getNode(ISD::BITCAST, DL, LocVT, Val);
4890     break;
4891   }
4892   return Val;
4893 }
4894 
4895 // The caller is responsible for loading the full value if the argument is
4896 // passed with CCValAssign::Indirect.
4897 static SDValue unpackFromMemLoc(SelectionDAG &DAG, SDValue Chain,
4898                                 const CCValAssign &VA, const SDLoc &DL) {
4899   MachineFunction &MF = DAG.getMachineFunction();
4900   MachineFrameInfo &MFI = MF.getFrameInfo();
4901   EVT LocVT = VA.getLocVT();
4902   EVT ValVT = VA.getValVT();
4903   EVT PtrVT = MVT::getIntegerVT(DAG.getDataLayout().getPointerSizeInBits(0));
4904   int FI = MFI.CreateFixedObject(ValVT.getSizeInBits() / 8,
4905                                  VA.getLocMemOffset(), /*Immutable=*/true);
4906   SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4907   SDValue Val;
4908 
4909   ISD::LoadExtType ExtType;
4910   switch (VA.getLocInfo()) {
4911   default:
4912     llvm_unreachable("Unexpected CCValAssign::LocInfo");
4913   case CCValAssign::Full:
4914   case CCValAssign::Indirect:
4915   case CCValAssign::BCvt:
4916     ExtType = ISD::NON_EXTLOAD;
4917     break;
4918   }
4919   Val = DAG.getExtLoad(
4920       ExtType, DL, LocVT, Chain, FIN,
4921       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), ValVT);
4922   return Val;
4923 }
4924 
4925 static SDValue unpackF64OnRV32DSoftABI(SelectionDAG &DAG, SDValue Chain,
4926                                        const CCValAssign &VA, const SDLoc &DL) {
4927   assert(VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64 &&
4928          "Unexpected VA");
4929   MachineFunction &MF = DAG.getMachineFunction();
4930   MachineFrameInfo &MFI = MF.getFrameInfo();
4931   MachineRegisterInfo &RegInfo = MF.getRegInfo();
4932 
4933   if (VA.isMemLoc()) {
4934     // f64 is passed on the stack.
4935     int FI = MFI.CreateFixedObject(8, VA.getLocMemOffset(), /*Immutable=*/true);
4936     SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
4937     return DAG.getLoad(MVT::f64, DL, Chain, FIN,
4938                        MachinePointerInfo::getFixedStack(MF, FI));
4939   }
4940 
4941   assert(VA.isRegLoc() && "Expected register VA assignment");
4942 
4943   Register LoVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
4944   RegInfo.addLiveIn(VA.getLocReg(), LoVReg);
4945   SDValue Lo = DAG.getCopyFromReg(Chain, DL, LoVReg, MVT::i32);
4946   SDValue Hi;
4947   if (VA.getLocReg() == RISCV::X17) {
4948     // Second half of f64 is passed on the stack.
4949     int FI = MFI.CreateFixedObject(4, 0, /*Immutable=*/true);
4950     SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
4951     Hi = DAG.getLoad(MVT::i32, DL, Chain, FIN,
4952                      MachinePointerInfo::getFixedStack(MF, FI));
4953   } else {
4954     // Second half of f64 is passed in another GPR.
4955     Register HiVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
4956     RegInfo.addLiveIn(VA.getLocReg() + 1, HiVReg);
4957     Hi = DAG.getCopyFromReg(Chain, DL, HiVReg, MVT::i32);
4958   }
4959   return DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, Lo, Hi);
4960 }
4961 
4962 // FastCC has less than 1% performance improvement for some particular
4963 // benchmark. But theoretically, it may has benenfit for some cases.
4964 static bool CC_RISCV_FastCC(unsigned ValNo, MVT ValVT, MVT LocVT,
4965                             CCValAssign::LocInfo LocInfo,
4966                             ISD::ArgFlagsTy ArgFlags, CCState &State) {
4967 
4968   if (LocVT == MVT::i32 || LocVT == MVT::i64) {
4969     // X5 and X6 might be used for save-restore libcall.
4970     static const MCPhysReg GPRList[] = {
4971         RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, RISCV::X14,
4972         RISCV::X15, RISCV::X16, RISCV::X17, RISCV::X7,  RISCV::X28,
4973         RISCV::X29, RISCV::X30, RISCV::X31};
4974     if (unsigned Reg = State.AllocateReg(GPRList)) {
4975       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
4976       return false;
4977     }
4978   }
4979 
4980   if (LocVT == MVT::f16) {
4981     static const MCPhysReg FPR16List[] = {
4982         RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, RISCV::F14_H,
4983         RISCV::F15_H, RISCV::F16_H, RISCV::F17_H, RISCV::F0_H,  RISCV::F1_H,
4984         RISCV::F2_H,  RISCV::F3_H,  RISCV::F4_H,  RISCV::F5_H,  RISCV::F6_H,
4985         RISCV::F7_H,  RISCV::F28_H, RISCV::F29_H, RISCV::F30_H, RISCV::F31_H};
4986     if (unsigned Reg = State.AllocateReg(FPR16List)) {
4987       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
4988       return false;
4989     }
4990   }
4991 
4992   if (LocVT == MVT::f32) {
4993     static const MCPhysReg FPR32List[] = {
4994         RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, RISCV::F14_F,
4995         RISCV::F15_F, RISCV::F16_F, RISCV::F17_F, RISCV::F0_F,  RISCV::F1_F,
4996         RISCV::F2_F,  RISCV::F3_F,  RISCV::F4_F,  RISCV::F5_F,  RISCV::F6_F,
4997         RISCV::F7_F,  RISCV::F28_F, RISCV::F29_F, RISCV::F30_F, RISCV::F31_F};
4998     if (unsigned Reg = State.AllocateReg(FPR32List)) {
4999       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
5000       return false;
5001     }
5002   }
5003 
5004   if (LocVT == MVT::f64) {
5005     static const MCPhysReg FPR64List[] = {
5006         RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, RISCV::F14_D,
5007         RISCV::F15_D, RISCV::F16_D, RISCV::F17_D, RISCV::F0_D,  RISCV::F1_D,
5008         RISCV::F2_D,  RISCV::F3_D,  RISCV::F4_D,  RISCV::F5_D,  RISCV::F6_D,
5009         RISCV::F7_D,  RISCV::F28_D, RISCV::F29_D, RISCV::F30_D, RISCV::F31_D};
5010     if (unsigned Reg = State.AllocateReg(FPR64List)) {
5011       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
5012       return false;
5013     }
5014   }
5015 
5016   if (LocVT == MVT::i32 || LocVT == MVT::f32) {
5017     unsigned Offset4 = State.AllocateStack(4, Align(4));
5018     State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset4, LocVT, LocInfo));
5019     return false;
5020   }
5021 
5022   if (LocVT == MVT::i64 || LocVT == MVT::f64) {
5023     unsigned Offset5 = State.AllocateStack(8, Align(8));
5024     State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset5, LocVT, LocInfo));
5025     return false;
5026   }
5027 
5028   return true; // CC didn't match.
5029 }
5030 
5031 static bool CC_RISCV_GHC(unsigned ValNo, MVT ValVT, MVT LocVT,
5032                          CCValAssign::LocInfo LocInfo,
5033                          ISD::ArgFlagsTy ArgFlags, CCState &State) {
5034 
5035   if (LocVT == MVT::i32 || LocVT == MVT::i64) {
5036     // Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, R6, R7, SpLim
5037     //                        s1    s2  s3  s4  s5  s6  s7  s8  s9  s10 s11
5038     static const MCPhysReg GPRList[] = {
5039         RISCV::X9, RISCV::X18, RISCV::X19, RISCV::X20, RISCV::X21, RISCV::X22,
5040         RISCV::X23, RISCV::X24, RISCV::X25, RISCV::X26, RISCV::X27};
5041     if (unsigned Reg = State.AllocateReg(GPRList)) {
5042       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
5043       return false;
5044     }
5045   }
5046 
5047   if (LocVT == MVT::f32) {
5048     // Pass in STG registers: F1, ..., F6
5049     //                        fs0 ... fs5
5050     static const MCPhysReg FPR32List[] = {RISCV::F8_F, RISCV::F9_F,
5051                                           RISCV::F18_F, RISCV::F19_F,
5052                                           RISCV::F20_F, RISCV::F21_F};
5053     if (unsigned Reg = State.AllocateReg(FPR32List)) {
5054       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
5055       return false;
5056     }
5057   }
5058 
5059   if (LocVT == MVT::f64) {
5060     // Pass in STG registers: D1, ..., D6
5061     //                        fs6 ... fs11
5062     static const MCPhysReg FPR64List[] = {RISCV::F22_D, RISCV::F23_D,
5063                                           RISCV::F24_D, RISCV::F25_D,
5064                                           RISCV::F26_D, RISCV::F27_D};
5065     if (unsigned Reg = State.AllocateReg(FPR64List)) {
5066       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
5067       return false;
5068     }
5069   }
5070 
5071   report_fatal_error("No registers left in GHC calling convention");
5072   return true;
5073 }
5074 
5075 // Transform physical registers into virtual registers.
5076 SDValue RISCVTargetLowering::LowerFormalArguments(
5077     SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
5078     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
5079     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
5080 
5081   MachineFunction &MF = DAG.getMachineFunction();
5082 
5083   switch (CallConv) {
5084   default:
5085     report_fatal_error("Unsupported calling convention");
5086   case CallingConv::C:
5087   case CallingConv::Fast:
5088     break;
5089   case CallingConv::GHC:
5090     if (!MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtF] ||
5091         !MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtD])
5092       report_fatal_error(
5093         "GHC calling convention requires the F and D instruction set extensions");
5094   }
5095 
5096   const Function &Func = MF.getFunction();
5097   if (Func.hasFnAttribute("interrupt")) {
5098     if (!Func.arg_empty())
5099       report_fatal_error(
5100         "Functions with the interrupt attribute cannot have arguments!");
5101 
5102     StringRef Kind =
5103       MF.getFunction().getFnAttribute("interrupt").getValueAsString();
5104 
5105     if (!(Kind == "user" || Kind == "supervisor" || Kind == "machine"))
5106       report_fatal_error(
5107         "Function interrupt attribute argument not supported!");
5108   }
5109 
5110   EVT PtrVT = getPointerTy(DAG.getDataLayout());
5111   MVT XLenVT = Subtarget.getXLenVT();
5112   unsigned XLenInBytes = Subtarget.getXLen() / 8;
5113   // Used with vargs to acumulate store chains.
5114   std::vector<SDValue> OutChains;
5115 
5116   // Assign locations to all of the incoming arguments.
5117   SmallVector<CCValAssign, 16> ArgLocs;
5118   CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
5119 
5120   if (CallConv == CallingConv::Fast)
5121     CCInfo.AnalyzeFormalArguments(Ins, CC_RISCV_FastCC);
5122   else if (CallConv == CallingConv::GHC)
5123     CCInfo.AnalyzeFormalArguments(Ins, CC_RISCV_GHC);
5124   else
5125     analyzeInputArgs(MF, CCInfo, Ins, /*IsRet=*/false);
5126 
5127   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
5128     CCValAssign &VA = ArgLocs[i];
5129     SDValue ArgValue;
5130     // Passing f64 on RV32D with a soft float ABI must be handled as a special
5131     // case.
5132     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64)
5133       ArgValue = unpackF64OnRV32DSoftABI(DAG, Chain, VA, DL);
5134     else if (VA.isRegLoc())
5135       ArgValue = unpackFromRegLoc(DAG, Chain, VA, DL, *this);
5136     else
5137       ArgValue = unpackFromMemLoc(DAG, Chain, VA, DL);
5138 
5139     if (VA.getLocInfo() == CCValAssign::Indirect) {
5140       // If the original argument was split and passed by reference (e.g. i128
5141       // on RV32), we need to load all parts of it here (using the same
5142       // address).
5143       InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue,
5144                                    MachinePointerInfo()));
5145       unsigned ArgIndex = Ins[i].OrigArgIndex;
5146       assert(Ins[i].PartOffset == 0);
5147       while (i + 1 != e && Ins[i + 1].OrigArgIndex == ArgIndex) {
5148         CCValAssign &PartVA = ArgLocs[i + 1];
5149         unsigned PartOffset = Ins[i + 1].PartOffset;
5150         SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue,
5151                                       DAG.getIntPtrConstant(PartOffset, DL));
5152         InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address,
5153                                      MachinePointerInfo()));
5154         ++i;
5155       }
5156       continue;
5157     }
5158     InVals.push_back(ArgValue);
5159   }
5160 
5161   if (IsVarArg) {
5162     ArrayRef<MCPhysReg> ArgRegs = makeArrayRef(ArgGPRs);
5163     unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs);
5164     const TargetRegisterClass *RC = &RISCV::GPRRegClass;
5165     MachineFrameInfo &MFI = MF.getFrameInfo();
5166     MachineRegisterInfo &RegInfo = MF.getRegInfo();
5167     RISCVMachineFunctionInfo *RVFI = MF.getInfo<RISCVMachineFunctionInfo>();
5168 
5169     // Offset of the first variable argument from stack pointer, and size of
5170     // the vararg save area. For now, the varargs save area is either zero or
5171     // large enough to hold a0-a7.
5172     int VaArgOffset, VarArgsSaveSize;
5173 
5174     // If all registers are allocated, then all varargs must be passed on the
5175     // stack and we don't need to save any argregs.
5176     if (ArgRegs.size() == Idx) {
5177       VaArgOffset = CCInfo.getNextStackOffset();
5178       VarArgsSaveSize = 0;
5179     } else {
5180       VarArgsSaveSize = XLenInBytes * (ArgRegs.size() - Idx);
5181       VaArgOffset = -VarArgsSaveSize;
5182     }
5183 
5184     // Record the frame index of the first variable argument
5185     // which is a value necessary to VASTART.
5186     int FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true);
5187     RVFI->setVarArgsFrameIndex(FI);
5188 
5189     // If saving an odd number of registers then create an extra stack slot to
5190     // ensure that the frame pointer is 2*XLEN-aligned, which in turn ensures
5191     // offsets to even-numbered registered remain 2*XLEN-aligned.
5192     if (Idx % 2) {
5193       MFI.CreateFixedObject(XLenInBytes, VaArgOffset - (int)XLenInBytes, true);
5194       VarArgsSaveSize += XLenInBytes;
5195     }
5196 
5197     // Copy the integer registers that may have been used for passing varargs
5198     // to the vararg save area.
5199     for (unsigned I = Idx; I < ArgRegs.size();
5200          ++I, VaArgOffset += XLenInBytes) {
5201       const Register Reg = RegInfo.createVirtualRegister(RC);
5202       RegInfo.addLiveIn(ArgRegs[I], Reg);
5203       SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, XLenVT);
5204       FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true);
5205       SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
5206       SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff,
5207                                    MachinePointerInfo::getFixedStack(MF, FI));
5208       cast<StoreSDNode>(Store.getNode())
5209           ->getMemOperand()
5210           ->setValue((Value *)nullptr);
5211       OutChains.push_back(Store);
5212     }
5213     RVFI->setVarArgsSaveSize(VarArgsSaveSize);
5214   }
5215 
5216   // All stores are grouped in one node to allow the matching between
5217   // the size of Ins and InVals. This only happens for vararg functions.
5218   if (!OutChains.empty()) {
5219     OutChains.push_back(Chain);
5220     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains);
5221   }
5222 
5223   return Chain;
5224 }
5225 
5226 /// isEligibleForTailCallOptimization - Check whether the call is eligible
5227 /// for tail call optimization.
5228 /// Note: This is modelled after ARM's IsEligibleForTailCallOptimization.
5229 bool RISCVTargetLowering::isEligibleForTailCallOptimization(
5230     CCState &CCInfo, CallLoweringInfo &CLI, MachineFunction &MF,
5231     const SmallVector<CCValAssign, 16> &ArgLocs) const {
5232 
5233   auto &Callee = CLI.Callee;
5234   auto CalleeCC = CLI.CallConv;
5235   auto &Outs = CLI.Outs;
5236   auto &Caller = MF.getFunction();
5237   auto CallerCC = Caller.getCallingConv();
5238 
5239   // Exception-handling functions need a special set of instructions to
5240   // indicate a return to the hardware. Tail-calling another function would
5241   // probably break this.
5242   // TODO: The "interrupt" attribute isn't currently defined by RISC-V. This
5243   // should be expanded as new function attributes are introduced.
5244   if (Caller.hasFnAttribute("interrupt"))
5245     return false;
5246 
5247   // Do not tail call opt if the stack is used to pass parameters.
5248   if (CCInfo.getNextStackOffset() != 0)
5249     return false;
5250 
5251   // Do not tail call opt if any parameters need to be passed indirectly.
5252   // Since long doubles (fp128) and i128 are larger than 2*XLEN, they are
5253   // passed indirectly. So the address of the value will be passed in a
5254   // register, or if not available, then the address is put on the stack. In
5255   // order to pass indirectly, space on the stack often needs to be allocated
5256   // in order to store the value. In this case the CCInfo.getNextStackOffset()
5257   // != 0 check is not enough and we need to check if any CCValAssign ArgsLocs
5258   // are passed CCValAssign::Indirect.
5259   for (auto &VA : ArgLocs)
5260     if (VA.getLocInfo() == CCValAssign::Indirect)
5261       return false;
5262 
5263   // Do not tail call opt if either caller or callee uses struct return
5264   // semantics.
5265   auto IsCallerStructRet = Caller.hasStructRetAttr();
5266   auto IsCalleeStructRet = Outs.empty() ? false : Outs[0].Flags.isSRet();
5267   if (IsCallerStructRet || IsCalleeStructRet)
5268     return false;
5269 
5270   // Externally-defined functions with weak linkage should not be
5271   // tail-called. The behaviour of branch instructions in this situation (as
5272   // used for tail calls) is implementation-defined, so we cannot rely on the
5273   // linker replacing the tail call with a return.
5274   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
5275     const GlobalValue *GV = G->getGlobal();
5276     if (GV->hasExternalWeakLinkage())
5277       return false;
5278   }
5279 
5280   // The callee has to preserve all registers the caller needs to preserve.
5281   const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo();
5282   const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
5283   if (CalleeCC != CallerCC) {
5284     const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
5285     if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
5286       return false;
5287   }
5288 
5289   // Byval parameters hand the function a pointer directly into the stack area
5290   // we want to reuse during a tail call. Working around this *is* possible
5291   // but less efficient and uglier in LowerCall.
5292   for (auto &Arg : Outs)
5293     if (Arg.Flags.isByVal())
5294       return false;
5295 
5296   return true;
5297 }
5298 
5299 // Lower a call to a callseq_start + CALL + callseq_end chain, and add input
5300 // and output parameter nodes.
5301 SDValue RISCVTargetLowering::LowerCall(CallLoweringInfo &CLI,
5302                                        SmallVectorImpl<SDValue> &InVals) const {
5303   SelectionDAG &DAG = CLI.DAG;
5304   SDLoc &DL = CLI.DL;
5305   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
5306   SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
5307   SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
5308   SDValue Chain = CLI.Chain;
5309   SDValue Callee = CLI.Callee;
5310   bool &IsTailCall = CLI.IsTailCall;
5311   CallingConv::ID CallConv = CLI.CallConv;
5312   bool IsVarArg = CLI.IsVarArg;
5313   EVT PtrVT = getPointerTy(DAG.getDataLayout());
5314   MVT XLenVT = Subtarget.getXLenVT();
5315 
5316   MachineFunction &MF = DAG.getMachineFunction();
5317 
5318   // Analyze the operands of the call, assigning locations to each operand.
5319   SmallVector<CCValAssign, 16> ArgLocs;
5320   CCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
5321 
5322   if (CallConv == CallingConv::Fast)
5323     ArgCCInfo.AnalyzeCallOperands(Outs, CC_RISCV_FastCC);
5324   else if (CallConv == CallingConv::GHC)
5325     ArgCCInfo.AnalyzeCallOperands(Outs, CC_RISCV_GHC);
5326   else
5327     analyzeOutputArgs(MF, ArgCCInfo, Outs, /*IsRet=*/false, &CLI);
5328 
5329   // Check if it's really possible to do a tail call.
5330   if (IsTailCall)
5331     IsTailCall = isEligibleForTailCallOptimization(ArgCCInfo, CLI, MF, ArgLocs);
5332 
5333   if (IsTailCall)
5334     ++NumTailCalls;
5335   else if (CLI.CB && CLI.CB->isMustTailCall())
5336     report_fatal_error("failed to perform tail call elimination on a call "
5337                        "site marked musttail");
5338 
5339   // Get a count of how many bytes are to be pushed on the stack.
5340   unsigned NumBytes = ArgCCInfo.getNextStackOffset();
5341 
5342   // Create local copies for byval args
5343   SmallVector<SDValue, 8> ByValArgs;
5344   for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
5345     ISD::ArgFlagsTy Flags = Outs[i].Flags;
5346     if (!Flags.isByVal())
5347       continue;
5348 
5349     SDValue Arg = OutVals[i];
5350     unsigned Size = Flags.getByValSize();
5351     Align Alignment = Flags.getNonZeroByValAlign();
5352 
5353     int FI =
5354         MF.getFrameInfo().CreateStackObject(Size, Alignment, /*isSS=*/false);
5355     SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
5356     SDValue SizeNode = DAG.getConstant(Size, DL, XLenVT);
5357 
5358     Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Alignment,
5359                           /*IsVolatile=*/false,
5360                           /*AlwaysInline=*/false, IsTailCall,
5361                           MachinePointerInfo(), MachinePointerInfo());
5362     ByValArgs.push_back(FIPtr);
5363   }
5364 
5365   if (!IsTailCall)
5366     Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, CLI.DL);
5367 
5368   // Copy argument values to their designated locations.
5369   SmallVector<std::pair<Register, SDValue>, 8> RegsToPass;
5370   SmallVector<SDValue, 8> MemOpChains;
5371   SDValue StackPtr;
5372   for (unsigned i = 0, j = 0, e = ArgLocs.size(); i != e; ++i) {
5373     CCValAssign &VA = ArgLocs[i];
5374     SDValue ArgValue = OutVals[i];
5375     ISD::ArgFlagsTy Flags = Outs[i].Flags;
5376 
5377     // Handle passing f64 on RV32D with a soft float ABI as a special case.
5378     bool IsF64OnRV32DSoftABI =
5379         VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64;
5380     if (IsF64OnRV32DSoftABI && VA.isRegLoc()) {
5381       SDValue SplitF64 = DAG.getNode(
5382           RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), ArgValue);
5383       SDValue Lo = SplitF64.getValue(0);
5384       SDValue Hi = SplitF64.getValue(1);
5385 
5386       Register RegLo = VA.getLocReg();
5387       RegsToPass.push_back(std::make_pair(RegLo, Lo));
5388 
5389       if (RegLo == RISCV::X17) {
5390         // Second half of f64 is passed on the stack.
5391         // Work out the address of the stack slot.
5392         if (!StackPtr.getNode())
5393           StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT);
5394         // Emit the store.
5395         MemOpChains.push_back(
5396             DAG.getStore(Chain, DL, Hi, StackPtr, MachinePointerInfo()));
5397       } else {
5398         // Second half of f64 is passed in another GPR.
5399         assert(RegLo < RISCV::X31 && "Invalid register pair");
5400         Register RegHigh = RegLo + 1;
5401         RegsToPass.push_back(std::make_pair(RegHigh, Hi));
5402       }
5403       continue;
5404     }
5405 
5406     // IsF64OnRV32DSoftABI && VA.isMemLoc() is handled below in the same way
5407     // as any other MemLoc.
5408 
5409     // Promote the value if needed.
5410     // For now, only handle fully promoted and indirect arguments.
5411     if (VA.getLocInfo() == CCValAssign::Indirect) {
5412       // Store the argument in a stack slot and pass its address.
5413       SDValue SpillSlot = DAG.CreateStackTemporary(Outs[i].ArgVT);
5414       int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
5415       MemOpChains.push_back(
5416           DAG.getStore(Chain, DL, ArgValue, SpillSlot,
5417                        MachinePointerInfo::getFixedStack(MF, FI)));
5418       // If the original argument was split (e.g. i128), we need
5419       // to store all parts of it here (and pass just one address).
5420       unsigned ArgIndex = Outs[i].OrigArgIndex;
5421       assert(Outs[i].PartOffset == 0);
5422       while (i + 1 != e && Outs[i + 1].OrigArgIndex == ArgIndex) {
5423         SDValue PartValue = OutVals[i + 1];
5424         unsigned PartOffset = Outs[i + 1].PartOffset;
5425         SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot,
5426                                       DAG.getIntPtrConstant(PartOffset, DL));
5427         MemOpChains.push_back(
5428             DAG.getStore(Chain, DL, PartValue, Address,
5429                          MachinePointerInfo::getFixedStack(MF, FI)));
5430         ++i;
5431       }
5432       ArgValue = SpillSlot;
5433     } else {
5434       ArgValue = convertValVTToLocVT(DAG, ArgValue, VA, DL);
5435     }
5436 
5437     // Use local copy if it is a byval arg.
5438     if (Flags.isByVal())
5439       ArgValue = ByValArgs[j++];
5440 
5441     if (VA.isRegLoc()) {
5442       // Queue up the argument copies and emit them at the end.
5443       RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue));
5444     } else {
5445       assert(VA.isMemLoc() && "Argument not register or memory");
5446       assert(!IsTailCall && "Tail call not allowed if stack is used "
5447                             "for passing parameters");
5448 
5449       // Work out the address of the stack slot.
5450       if (!StackPtr.getNode())
5451         StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT);
5452       SDValue Address =
5453           DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr,
5454                       DAG.getIntPtrConstant(VA.getLocMemOffset(), DL));
5455 
5456       // Emit the store.
5457       MemOpChains.push_back(
5458           DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo()));
5459     }
5460   }
5461 
5462   // Join the stores, which are independent of one another.
5463   if (!MemOpChains.empty())
5464     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
5465 
5466   SDValue Glue;
5467 
5468   // Build a sequence of copy-to-reg nodes, chained and glued together.
5469   for (auto &Reg : RegsToPass) {
5470     Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, Glue);
5471     Glue = Chain.getValue(1);
5472   }
5473 
5474   // Validate that none of the argument registers have been marked as
5475   // reserved, if so report an error. Do the same for the return address if this
5476   // is not a tailcall.
5477   validateCCReservedRegs(RegsToPass, MF);
5478   if (!IsTailCall &&
5479       MF.getSubtarget<RISCVSubtarget>().isRegisterReservedByUser(RISCV::X1))
5480     MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
5481         MF.getFunction(),
5482         "Return address register required, but has been reserved."});
5483 
5484   // If the callee is a GlobalAddress/ExternalSymbol node, turn it into a
5485   // TargetGlobalAddress/TargetExternalSymbol node so that legalize won't
5486   // split it and then direct call can be matched by PseudoCALL.
5487   if (GlobalAddressSDNode *S = dyn_cast<GlobalAddressSDNode>(Callee)) {
5488     const GlobalValue *GV = S->getGlobal();
5489 
5490     unsigned OpFlags = RISCVII::MO_CALL;
5491     if (!getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV))
5492       OpFlags = RISCVII::MO_PLT;
5493 
5494     Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags);
5495   } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
5496     unsigned OpFlags = RISCVII::MO_CALL;
5497 
5498     if (!getTargetMachine().shouldAssumeDSOLocal(*MF.getFunction().getParent(),
5499                                                  nullptr))
5500       OpFlags = RISCVII::MO_PLT;
5501 
5502     Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, OpFlags);
5503   }
5504 
5505   // The first call operand is the chain and the second is the target address.
5506   SmallVector<SDValue, 8> Ops;
5507   Ops.push_back(Chain);
5508   Ops.push_back(Callee);
5509 
5510   // Add argument registers to the end of the list so that they are
5511   // known live into the call.
5512   for (auto &Reg : RegsToPass)
5513     Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType()));
5514 
5515   if (!IsTailCall) {
5516     // Add a register mask operand representing the call-preserved registers.
5517     const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
5518     const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
5519     assert(Mask && "Missing call preserved mask for calling convention");
5520     Ops.push_back(DAG.getRegisterMask(Mask));
5521   }
5522 
5523   // Glue the call to the argument copies, if any.
5524   if (Glue.getNode())
5525     Ops.push_back(Glue);
5526 
5527   // Emit the call.
5528   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
5529 
5530   if (IsTailCall) {
5531     MF.getFrameInfo().setHasTailCall();
5532     return DAG.getNode(RISCVISD::TAIL, DL, NodeTys, Ops);
5533   }
5534 
5535   Chain = DAG.getNode(RISCVISD::CALL, DL, NodeTys, Ops);
5536   DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge);
5537   Glue = Chain.getValue(1);
5538 
5539   // Mark the end of the call, which is glued to the call itself.
5540   Chain = DAG.getCALLSEQ_END(Chain,
5541                              DAG.getConstant(NumBytes, DL, PtrVT, true),
5542                              DAG.getConstant(0, DL, PtrVT, true),
5543                              Glue, DL);
5544   Glue = Chain.getValue(1);
5545 
5546   // Assign locations to each value returned by this call.
5547   SmallVector<CCValAssign, 16> RVLocs;
5548   CCState RetCCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext());
5549   analyzeInputArgs(MF, RetCCInfo, Ins, /*IsRet=*/true);
5550 
5551   // Copy all of the result registers out of their specified physreg.
5552   for (auto &VA : RVLocs) {
5553     // Copy the value out
5554     SDValue RetValue =
5555         DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), Glue);
5556     // Glue the RetValue to the end of the call sequence
5557     Chain = RetValue.getValue(1);
5558     Glue = RetValue.getValue(2);
5559 
5560     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) {
5561       assert(VA.getLocReg() == ArgGPRs[0] && "Unexpected reg assignment");
5562       SDValue RetValue2 =
5563           DAG.getCopyFromReg(Chain, DL, ArgGPRs[1], MVT::i32, Glue);
5564       Chain = RetValue2.getValue(1);
5565       Glue = RetValue2.getValue(2);
5566       RetValue = DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, RetValue,
5567                              RetValue2);
5568     }
5569 
5570     RetValue = convertLocVTToValVT(DAG, RetValue, VA, DL);
5571 
5572     InVals.push_back(RetValue);
5573   }
5574 
5575   return Chain;
5576 }
5577 
5578 bool RISCVTargetLowering::CanLowerReturn(
5579     CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg,
5580     const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const {
5581   SmallVector<CCValAssign, 16> RVLocs;
5582   CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);
5583 
5584   Optional<unsigned> FirstMaskArgument;
5585   if (Subtarget.hasStdExtV())
5586     FirstMaskArgument = preAssignMask(Outs);
5587 
5588   for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
5589     MVT VT = Outs[i].VT;
5590     ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
5591     RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
5592     if (CC_RISCV(MF.getDataLayout(), ABI, i, VT, VT, CCValAssign::Full,
5593                  ArgFlags, CCInfo, /*IsFixed=*/true, /*IsRet=*/true, nullptr,
5594                  *this, FirstMaskArgument))
5595       return false;
5596   }
5597   return true;
5598 }
5599 
5600 SDValue
5601 RISCVTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
5602                                  bool IsVarArg,
5603                                  const SmallVectorImpl<ISD::OutputArg> &Outs,
5604                                  const SmallVectorImpl<SDValue> &OutVals,
5605                                  const SDLoc &DL, SelectionDAG &DAG) const {
5606   const MachineFunction &MF = DAG.getMachineFunction();
5607   const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>();
5608 
5609   // Stores the assignment of the return value to a location.
5610   SmallVector<CCValAssign, 16> RVLocs;
5611 
5612   // Info about the registers and stack slot.
5613   CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
5614                  *DAG.getContext());
5615 
5616   analyzeOutputArgs(DAG.getMachineFunction(), CCInfo, Outs, /*IsRet=*/true,
5617                     nullptr);
5618 
5619   if (CallConv == CallingConv::GHC && !RVLocs.empty())
5620     report_fatal_error("GHC functions return void only");
5621 
5622   SDValue Glue;
5623   SmallVector<SDValue, 4> RetOps(1, Chain);
5624 
5625   // Copy the result values into the output registers.
5626   for (unsigned i = 0, e = RVLocs.size(); i < e; ++i) {
5627     SDValue Val = OutVals[i];
5628     CCValAssign &VA = RVLocs[i];
5629     assert(VA.isRegLoc() && "Can only return in registers!");
5630 
5631     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) {
5632       // Handle returning f64 on RV32D with a soft float ABI.
5633       assert(VA.isRegLoc() && "Expected return via registers");
5634       SDValue SplitF64 = DAG.getNode(RISCVISD::SplitF64, DL,
5635                                      DAG.getVTList(MVT::i32, MVT::i32), Val);
5636       SDValue Lo = SplitF64.getValue(0);
5637       SDValue Hi = SplitF64.getValue(1);
5638       Register RegLo = VA.getLocReg();
5639       assert(RegLo < RISCV::X31 && "Invalid register pair");
5640       Register RegHi = RegLo + 1;
5641 
5642       if (STI.isRegisterReservedByUser(RegLo) ||
5643           STI.isRegisterReservedByUser(RegHi))
5644         MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
5645             MF.getFunction(),
5646             "Return value register required, but has been reserved."});
5647 
5648       Chain = DAG.getCopyToReg(Chain, DL, RegLo, Lo, Glue);
5649       Glue = Chain.getValue(1);
5650       RetOps.push_back(DAG.getRegister(RegLo, MVT::i32));
5651       Chain = DAG.getCopyToReg(Chain, DL, RegHi, Hi, Glue);
5652       Glue = Chain.getValue(1);
5653       RetOps.push_back(DAG.getRegister(RegHi, MVT::i32));
5654     } else {
5655       // Handle a 'normal' return.
5656       Val = convertValVTToLocVT(DAG, Val, VA, DL);
5657       Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Glue);
5658 
5659       if (STI.isRegisterReservedByUser(VA.getLocReg()))
5660         MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
5661             MF.getFunction(),
5662             "Return value register required, but has been reserved."});
5663 
5664       // Guarantee that all emitted copies are stuck together.
5665       Glue = Chain.getValue(1);
5666       RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
5667     }
5668   }
5669 
5670   RetOps[0] = Chain; // Update chain.
5671 
5672   // Add the glue node if we have it.
5673   if (Glue.getNode()) {
5674     RetOps.push_back(Glue);
5675   }
5676 
5677   // Interrupt service routines use different return instructions.
5678   const Function &Func = DAG.getMachineFunction().getFunction();
5679   if (Func.hasFnAttribute("interrupt")) {
5680     if (!Func.getReturnType()->isVoidTy())
5681       report_fatal_error(
5682           "Functions with the interrupt attribute must have void return type!");
5683 
5684     MachineFunction &MF = DAG.getMachineFunction();
5685     StringRef Kind =
5686       MF.getFunction().getFnAttribute("interrupt").getValueAsString();
5687 
5688     unsigned RetOpc;
5689     if (Kind == "user")
5690       RetOpc = RISCVISD::URET_FLAG;
5691     else if (Kind == "supervisor")
5692       RetOpc = RISCVISD::SRET_FLAG;
5693     else
5694       RetOpc = RISCVISD::MRET_FLAG;
5695 
5696     return DAG.getNode(RetOpc, DL, MVT::Other, RetOps);
5697   }
5698 
5699   return DAG.getNode(RISCVISD::RET_FLAG, DL, MVT::Other, RetOps);
5700 }
5701 
5702 void RISCVTargetLowering::validateCCReservedRegs(
5703     const SmallVectorImpl<std::pair<llvm::Register, llvm::SDValue>> &Regs,
5704     MachineFunction &MF) const {
5705   const Function &F = MF.getFunction();
5706   const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>();
5707 
5708   if (llvm::any_of(Regs, [&STI](auto Reg) {
5709         return STI.isRegisterReservedByUser(Reg.first);
5710       }))
5711     F.getContext().diagnose(DiagnosticInfoUnsupported{
5712         F, "Argument register required, but has been reserved."});
5713 }
5714 
5715 bool RISCVTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
5716   return CI->isTailCall();
5717 }
5718 
5719 const char *RISCVTargetLowering::getTargetNodeName(unsigned Opcode) const {
5720 #define NODE_NAME_CASE(NODE)                                                   \
5721   case RISCVISD::NODE:                                                         \
5722     return "RISCVISD::" #NODE;
5723   // clang-format off
5724   switch ((RISCVISD::NodeType)Opcode) {
5725   case RISCVISD::FIRST_NUMBER:
5726     break;
5727   NODE_NAME_CASE(RET_FLAG)
5728   NODE_NAME_CASE(URET_FLAG)
5729   NODE_NAME_CASE(SRET_FLAG)
5730   NODE_NAME_CASE(MRET_FLAG)
5731   NODE_NAME_CASE(CALL)
5732   NODE_NAME_CASE(SELECT_CC)
5733   NODE_NAME_CASE(BuildPairF64)
5734   NODE_NAME_CASE(SplitF64)
5735   NODE_NAME_CASE(TAIL)
5736   NODE_NAME_CASE(SLLW)
5737   NODE_NAME_CASE(SRAW)
5738   NODE_NAME_CASE(SRLW)
5739   NODE_NAME_CASE(DIVW)
5740   NODE_NAME_CASE(DIVUW)
5741   NODE_NAME_CASE(REMUW)
5742   NODE_NAME_CASE(ROLW)
5743   NODE_NAME_CASE(RORW)
5744   NODE_NAME_CASE(FSLW)
5745   NODE_NAME_CASE(FSRW)
5746   NODE_NAME_CASE(FSL)
5747   NODE_NAME_CASE(FSR)
5748   NODE_NAME_CASE(FMV_H_X)
5749   NODE_NAME_CASE(FMV_X_ANYEXTH)
5750   NODE_NAME_CASE(FMV_W_X_RV64)
5751   NODE_NAME_CASE(FMV_X_ANYEXTW_RV64)
5752   NODE_NAME_CASE(READ_CYCLE_WIDE)
5753   NODE_NAME_CASE(GREVI)
5754   NODE_NAME_CASE(GREVIW)
5755   NODE_NAME_CASE(GORCI)
5756   NODE_NAME_CASE(GORCIW)
5757   NODE_NAME_CASE(SHFLI)
5758   NODE_NAME_CASE(VMV_V_X_VL)
5759   NODE_NAME_CASE(VFMV_V_F_VL)
5760   NODE_NAME_CASE(VMV_X_S)
5761   NODE_NAME_CASE(VMV_S_XF_VL)
5762   NODE_NAME_CASE(SPLAT_VECTOR_I64)
5763   NODE_NAME_CASE(READ_VLENB)
5764   NODE_NAME_CASE(TRUNCATE_VECTOR_VL)
5765   NODE_NAME_CASE(VLEFF)
5766   NODE_NAME_CASE(VLEFF_MASK)
5767   NODE_NAME_CASE(VSLIDEUP_VL)
5768   NODE_NAME_CASE(VSLIDEDOWN_VL)
5769   NODE_NAME_CASE(VID_VL)
5770   NODE_NAME_CASE(VFNCVT_ROD_VL)
5771   NODE_NAME_CASE(VECREDUCE_ADD)
5772   NODE_NAME_CASE(VECREDUCE_UMAX)
5773   NODE_NAME_CASE(VECREDUCE_SMAX)
5774   NODE_NAME_CASE(VECREDUCE_UMIN)
5775   NODE_NAME_CASE(VECREDUCE_SMIN)
5776   NODE_NAME_CASE(VECREDUCE_AND)
5777   NODE_NAME_CASE(VECREDUCE_OR)
5778   NODE_NAME_CASE(VECREDUCE_XOR)
5779   NODE_NAME_CASE(VECREDUCE_FADD)
5780   NODE_NAME_CASE(VECREDUCE_SEQ_FADD)
5781   NODE_NAME_CASE(ADD_VL)
5782   NODE_NAME_CASE(AND_VL)
5783   NODE_NAME_CASE(MUL_VL)
5784   NODE_NAME_CASE(OR_VL)
5785   NODE_NAME_CASE(SDIV_VL)
5786   NODE_NAME_CASE(SHL_VL)
5787   NODE_NAME_CASE(SREM_VL)
5788   NODE_NAME_CASE(SRA_VL)
5789   NODE_NAME_CASE(SRL_VL)
5790   NODE_NAME_CASE(SUB_VL)
5791   NODE_NAME_CASE(UDIV_VL)
5792   NODE_NAME_CASE(UREM_VL)
5793   NODE_NAME_CASE(XOR_VL)
5794   NODE_NAME_CASE(FADD_VL)
5795   NODE_NAME_CASE(FSUB_VL)
5796   NODE_NAME_CASE(FMUL_VL)
5797   NODE_NAME_CASE(FDIV_VL)
5798   NODE_NAME_CASE(FNEG_VL)
5799   NODE_NAME_CASE(FABS_VL)
5800   NODE_NAME_CASE(FSQRT_VL)
5801   NODE_NAME_CASE(FMA_VL)
5802   NODE_NAME_CASE(SMIN_VL)
5803   NODE_NAME_CASE(SMAX_VL)
5804   NODE_NAME_CASE(UMIN_VL)
5805   NODE_NAME_CASE(UMAX_VL)
5806   NODE_NAME_CASE(MULHS_VL)
5807   NODE_NAME_CASE(MULHU_VL)
5808   NODE_NAME_CASE(FP_TO_SINT_VL)
5809   NODE_NAME_CASE(FP_TO_UINT_VL)
5810   NODE_NAME_CASE(SINT_TO_FP_VL)
5811   NODE_NAME_CASE(UINT_TO_FP_VL)
5812   NODE_NAME_CASE(FP_EXTEND_VL)
5813   NODE_NAME_CASE(FP_ROUND_VL)
5814   NODE_NAME_CASE(SETCC_VL)
5815   NODE_NAME_CASE(VSELECT_VL)
5816   NODE_NAME_CASE(VMAND_VL)
5817   NODE_NAME_CASE(VMOR_VL)
5818   NODE_NAME_CASE(VMXOR_VL)
5819   NODE_NAME_CASE(VMCLR_VL)
5820   NODE_NAME_CASE(VMSET_VL)
5821   NODE_NAME_CASE(VRGATHER_VX_VL)
5822   NODE_NAME_CASE(VSEXT_VL)
5823   NODE_NAME_CASE(VZEXT_VL)
5824   NODE_NAME_CASE(VLE_VL)
5825   NODE_NAME_CASE(VSE_VL)
5826   }
5827   // clang-format on
5828   return nullptr;
5829 #undef NODE_NAME_CASE
5830 }
5831 
5832 /// getConstraintType - Given a constraint letter, return the type of
5833 /// constraint it is for this target.
5834 RISCVTargetLowering::ConstraintType
5835 RISCVTargetLowering::getConstraintType(StringRef Constraint) const {
5836   if (Constraint.size() == 1) {
5837     switch (Constraint[0]) {
5838     default:
5839       break;
5840     case 'f':
5841       return C_RegisterClass;
5842     case 'I':
5843     case 'J':
5844     case 'K':
5845       return C_Immediate;
5846     case 'A':
5847       return C_Memory;
5848     }
5849   }
5850   return TargetLowering::getConstraintType(Constraint);
5851 }
5852 
5853 std::pair<unsigned, const TargetRegisterClass *>
5854 RISCVTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
5855                                                   StringRef Constraint,
5856                                                   MVT VT) const {
5857   // First, see if this is a constraint that directly corresponds to a
5858   // RISCV register class.
5859   if (Constraint.size() == 1) {
5860     switch (Constraint[0]) {
5861     case 'r':
5862       return std::make_pair(0U, &RISCV::GPRRegClass);
5863     case 'f':
5864       if (Subtarget.hasStdExtZfh() && VT == MVT::f16)
5865         return std::make_pair(0U, &RISCV::FPR16RegClass);
5866       if (Subtarget.hasStdExtF() && VT == MVT::f32)
5867         return std::make_pair(0U, &RISCV::FPR32RegClass);
5868       if (Subtarget.hasStdExtD() && VT == MVT::f64)
5869         return std::make_pair(0U, &RISCV::FPR64RegClass);
5870       break;
5871     default:
5872       break;
5873     }
5874   }
5875 
5876   // Clang will correctly decode the usage of register name aliases into their
5877   // official names. However, other frontends like `rustc` do not. This allows
5878   // users of these frontends to use the ABI names for registers in LLVM-style
5879   // register constraints.
5880   unsigned XRegFromAlias = StringSwitch<unsigned>(Constraint.lower())
5881                                .Case("{zero}", RISCV::X0)
5882                                .Case("{ra}", RISCV::X1)
5883                                .Case("{sp}", RISCV::X2)
5884                                .Case("{gp}", RISCV::X3)
5885                                .Case("{tp}", RISCV::X4)
5886                                .Case("{t0}", RISCV::X5)
5887                                .Case("{t1}", RISCV::X6)
5888                                .Case("{t2}", RISCV::X7)
5889                                .Cases("{s0}", "{fp}", RISCV::X8)
5890                                .Case("{s1}", RISCV::X9)
5891                                .Case("{a0}", RISCV::X10)
5892                                .Case("{a1}", RISCV::X11)
5893                                .Case("{a2}", RISCV::X12)
5894                                .Case("{a3}", RISCV::X13)
5895                                .Case("{a4}", RISCV::X14)
5896                                .Case("{a5}", RISCV::X15)
5897                                .Case("{a6}", RISCV::X16)
5898                                .Case("{a7}", RISCV::X17)
5899                                .Case("{s2}", RISCV::X18)
5900                                .Case("{s3}", RISCV::X19)
5901                                .Case("{s4}", RISCV::X20)
5902                                .Case("{s5}", RISCV::X21)
5903                                .Case("{s6}", RISCV::X22)
5904                                .Case("{s7}", RISCV::X23)
5905                                .Case("{s8}", RISCV::X24)
5906                                .Case("{s9}", RISCV::X25)
5907                                .Case("{s10}", RISCV::X26)
5908                                .Case("{s11}", RISCV::X27)
5909                                .Case("{t3}", RISCV::X28)
5910                                .Case("{t4}", RISCV::X29)
5911                                .Case("{t5}", RISCV::X30)
5912                                .Case("{t6}", RISCV::X31)
5913                                .Default(RISCV::NoRegister);
5914   if (XRegFromAlias != RISCV::NoRegister)
5915     return std::make_pair(XRegFromAlias, &RISCV::GPRRegClass);
5916 
5917   // Since TargetLowering::getRegForInlineAsmConstraint uses the name of the
5918   // TableGen record rather than the AsmName to choose registers for InlineAsm
5919   // constraints, plus we want to match those names to the widest floating point
5920   // register type available, manually select floating point registers here.
5921   //
5922   // The second case is the ABI name of the register, so that frontends can also
5923   // use the ABI names in register constraint lists.
5924   if (Subtarget.hasStdExtF()) {
5925     unsigned FReg = StringSwitch<unsigned>(Constraint.lower())
5926                         .Cases("{f0}", "{ft0}", RISCV::F0_F)
5927                         .Cases("{f1}", "{ft1}", RISCV::F1_F)
5928                         .Cases("{f2}", "{ft2}", RISCV::F2_F)
5929                         .Cases("{f3}", "{ft3}", RISCV::F3_F)
5930                         .Cases("{f4}", "{ft4}", RISCV::F4_F)
5931                         .Cases("{f5}", "{ft5}", RISCV::F5_F)
5932                         .Cases("{f6}", "{ft6}", RISCV::F6_F)
5933                         .Cases("{f7}", "{ft7}", RISCV::F7_F)
5934                         .Cases("{f8}", "{fs0}", RISCV::F8_F)
5935                         .Cases("{f9}", "{fs1}", RISCV::F9_F)
5936                         .Cases("{f10}", "{fa0}", RISCV::F10_F)
5937                         .Cases("{f11}", "{fa1}", RISCV::F11_F)
5938                         .Cases("{f12}", "{fa2}", RISCV::F12_F)
5939                         .Cases("{f13}", "{fa3}", RISCV::F13_F)
5940                         .Cases("{f14}", "{fa4}", RISCV::F14_F)
5941                         .Cases("{f15}", "{fa5}", RISCV::F15_F)
5942                         .Cases("{f16}", "{fa6}", RISCV::F16_F)
5943                         .Cases("{f17}", "{fa7}", RISCV::F17_F)
5944                         .Cases("{f18}", "{fs2}", RISCV::F18_F)
5945                         .Cases("{f19}", "{fs3}", RISCV::F19_F)
5946                         .Cases("{f20}", "{fs4}", RISCV::F20_F)
5947                         .Cases("{f21}", "{fs5}", RISCV::F21_F)
5948                         .Cases("{f22}", "{fs6}", RISCV::F22_F)
5949                         .Cases("{f23}", "{fs7}", RISCV::F23_F)
5950                         .Cases("{f24}", "{fs8}", RISCV::F24_F)
5951                         .Cases("{f25}", "{fs9}", RISCV::F25_F)
5952                         .Cases("{f26}", "{fs10}", RISCV::F26_F)
5953                         .Cases("{f27}", "{fs11}", RISCV::F27_F)
5954                         .Cases("{f28}", "{ft8}", RISCV::F28_F)
5955                         .Cases("{f29}", "{ft9}", RISCV::F29_F)
5956                         .Cases("{f30}", "{ft10}", RISCV::F30_F)
5957                         .Cases("{f31}", "{ft11}", RISCV::F31_F)
5958                         .Default(RISCV::NoRegister);
5959     if (FReg != RISCV::NoRegister) {
5960       assert(RISCV::F0_F <= FReg && FReg <= RISCV::F31_F && "Unknown fp-reg");
5961       if (Subtarget.hasStdExtD()) {
5962         unsigned RegNo = FReg - RISCV::F0_F;
5963         unsigned DReg = RISCV::F0_D + RegNo;
5964         return std::make_pair(DReg, &RISCV::FPR64RegClass);
5965       }
5966       return std::make_pair(FReg, &RISCV::FPR32RegClass);
5967     }
5968   }
5969 
5970   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
5971 }
5972 
5973 unsigned
5974 RISCVTargetLowering::getInlineAsmMemConstraint(StringRef ConstraintCode) const {
5975   // Currently only support length 1 constraints.
5976   if (ConstraintCode.size() == 1) {
5977     switch (ConstraintCode[0]) {
5978     case 'A':
5979       return InlineAsm::Constraint_A;
5980     default:
5981       break;
5982     }
5983   }
5984 
5985   return TargetLowering::getInlineAsmMemConstraint(ConstraintCode);
5986 }
5987 
5988 void RISCVTargetLowering::LowerAsmOperandForConstraint(
5989     SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops,
5990     SelectionDAG &DAG) const {
5991   // Currently only support length 1 constraints.
5992   if (Constraint.length() == 1) {
5993     switch (Constraint[0]) {
5994     case 'I':
5995       // Validate & create a 12-bit signed immediate operand.
5996       if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
5997         uint64_t CVal = C->getSExtValue();
5998         if (isInt<12>(CVal))
5999           Ops.push_back(
6000               DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT()));
6001       }
6002       return;
6003     case 'J':
6004       // Validate & create an integer zero operand.
6005       if (auto *C = dyn_cast<ConstantSDNode>(Op))
6006         if (C->getZExtValue() == 0)
6007           Ops.push_back(
6008               DAG.getTargetConstant(0, SDLoc(Op), Subtarget.getXLenVT()));
6009       return;
6010     case 'K':
6011       // Validate & create a 5-bit unsigned immediate operand.
6012       if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
6013         uint64_t CVal = C->getZExtValue();
6014         if (isUInt<5>(CVal))
6015           Ops.push_back(
6016               DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT()));
6017       }
6018       return;
6019     default:
6020       break;
6021     }
6022   }
6023   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
6024 }
6025 
6026 Instruction *RISCVTargetLowering::emitLeadingFence(IRBuilder<> &Builder,
6027                                                    Instruction *Inst,
6028                                                    AtomicOrdering Ord) const {
6029   if (isa<LoadInst>(Inst) && Ord == AtomicOrdering::SequentiallyConsistent)
6030     return Builder.CreateFence(Ord);
6031   if (isa<StoreInst>(Inst) && isReleaseOrStronger(Ord))
6032     return Builder.CreateFence(AtomicOrdering::Release);
6033   return nullptr;
6034 }
6035 
6036 Instruction *RISCVTargetLowering::emitTrailingFence(IRBuilder<> &Builder,
6037                                                     Instruction *Inst,
6038                                                     AtomicOrdering Ord) const {
6039   if (isa<LoadInst>(Inst) && isAcquireOrStronger(Ord))
6040     return Builder.CreateFence(AtomicOrdering::Acquire);
6041   return nullptr;
6042 }
6043 
6044 TargetLowering::AtomicExpansionKind
6045 RISCVTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
6046   // atomicrmw {fadd,fsub} must be expanded to use compare-exchange, as floating
6047   // point operations can't be used in an lr/sc sequence without breaking the
6048   // forward-progress guarantee.
6049   if (AI->isFloatingPointOperation())
6050     return AtomicExpansionKind::CmpXChg;
6051 
6052   unsigned Size = AI->getType()->getPrimitiveSizeInBits();
6053   if (Size == 8 || Size == 16)
6054     return AtomicExpansionKind::MaskedIntrinsic;
6055   return AtomicExpansionKind::None;
6056 }
6057 
6058 static Intrinsic::ID
6059 getIntrinsicForMaskedAtomicRMWBinOp(unsigned XLen, AtomicRMWInst::BinOp BinOp) {
6060   if (XLen == 32) {
6061     switch (BinOp) {
6062     default:
6063       llvm_unreachable("Unexpected AtomicRMW BinOp");
6064     case AtomicRMWInst::Xchg:
6065       return Intrinsic::riscv_masked_atomicrmw_xchg_i32;
6066     case AtomicRMWInst::Add:
6067       return Intrinsic::riscv_masked_atomicrmw_add_i32;
6068     case AtomicRMWInst::Sub:
6069       return Intrinsic::riscv_masked_atomicrmw_sub_i32;
6070     case AtomicRMWInst::Nand:
6071       return Intrinsic::riscv_masked_atomicrmw_nand_i32;
6072     case AtomicRMWInst::Max:
6073       return Intrinsic::riscv_masked_atomicrmw_max_i32;
6074     case AtomicRMWInst::Min:
6075       return Intrinsic::riscv_masked_atomicrmw_min_i32;
6076     case AtomicRMWInst::UMax:
6077       return Intrinsic::riscv_masked_atomicrmw_umax_i32;
6078     case AtomicRMWInst::UMin:
6079       return Intrinsic::riscv_masked_atomicrmw_umin_i32;
6080     }
6081   }
6082 
6083   if (XLen == 64) {
6084     switch (BinOp) {
6085     default:
6086       llvm_unreachable("Unexpected AtomicRMW BinOp");
6087     case AtomicRMWInst::Xchg:
6088       return Intrinsic::riscv_masked_atomicrmw_xchg_i64;
6089     case AtomicRMWInst::Add:
6090       return Intrinsic::riscv_masked_atomicrmw_add_i64;
6091     case AtomicRMWInst::Sub:
6092       return Intrinsic::riscv_masked_atomicrmw_sub_i64;
6093     case AtomicRMWInst::Nand:
6094       return Intrinsic::riscv_masked_atomicrmw_nand_i64;
6095     case AtomicRMWInst::Max:
6096       return Intrinsic::riscv_masked_atomicrmw_max_i64;
6097     case AtomicRMWInst::Min:
6098       return Intrinsic::riscv_masked_atomicrmw_min_i64;
6099     case AtomicRMWInst::UMax:
6100       return Intrinsic::riscv_masked_atomicrmw_umax_i64;
6101     case AtomicRMWInst::UMin:
6102       return Intrinsic::riscv_masked_atomicrmw_umin_i64;
6103     }
6104   }
6105 
6106   llvm_unreachable("Unexpected XLen\n");
6107 }
6108 
6109 Value *RISCVTargetLowering::emitMaskedAtomicRMWIntrinsic(
6110     IRBuilder<> &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr,
6111     Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const {
6112   unsigned XLen = Subtarget.getXLen();
6113   Value *Ordering =
6114       Builder.getIntN(XLen, static_cast<uint64_t>(AI->getOrdering()));
6115   Type *Tys[] = {AlignedAddr->getType()};
6116   Function *LrwOpScwLoop = Intrinsic::getDeclaration(
6117       AI->getModule(),
6118       getIntrinsicForMaskedAtomicRMWBinOp(XLen, AI->getOperation()), Tys);
6119 
6120   if (XLen == 64) {
6121     Incr = Builder.CreateSExt(Incr, Builder.getInt64Ty());
6122     Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty());
6123     ShiftAmt = Builder.CreateSExt(ShiftAmt, Builder.getInt64Ty());
6124   }
6125 
6126   Value *Result;
6127 
6128   // Must pass the shift amount needed to sign extend the loaded value prior
6129   // to performing a signed comparison for min/max. ShiftAmt is the number of
6130   // bits to shift the value into position. Pass XLen-ShiftAmt-ValWidth, which
6131   // is the number of bits to left+right shift the value in order to
6132   // sign-extend.
6133   if (AI->getOperation() == AtomicRMWInst::Min ||
6134       AI->getOperation() == AtomicRMWInst::Max) {
6135     const DataLayout &DL = AI->getModule()->getDataLayout();
6136     unsigned ValWidth =
6137         DL.getTypeStoreSizeInBits(AI->getValOperand()->getType());
6138     Value *SextShamt =
6139         Builder.CreateSub(Builder.getIntN(XLen, XLen - ValWidth), ShiftAmt);
6140     Result = Builder.CreateCall(LrwOpScwLoop,
6141                                 {AlignedAddr, Incr, Mask, SextShamt, Ordering});
6142   } else {
6143     Result =
6144         Builder.CreateCall(LrwOpScwLoop, {AlignedAddr, Incr, Mask, Ordering});
6145   }
6146 
6147   if (XLen == 64)
6148     Result = Builder.CreateTrunc(Result, Builder.getInt32Ty());
6149   return Result;
6150 }
6151 
6152 TargetLowering::AtomicExpansionKind
6153 RISCVTargetLowering::shouldExpandAtomicCmpXchgInIR(
6154     AtomicCmpXchgInst *CI) const {
6155   unsigned Size = CI->getCompareOperand()->getType()->getPrimitiveSizeInBits();
6156   if (Size == 8 || Size == 16)
6157     return AtomicExpansionKind::MaskedIntrinsic;
6158   return AtomicExpansionKind::None;
6159 }
6160 
6161 Value *RISCVTargetLowering::emitMaskedAtomicCmpXchgIntrinsic(
6162     IRBuilder<> &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr,
6163     Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const {
6164   unsigned XLen = Subtarget.getXLen();
6165   Value *Ordering = Builder.getIntN(XLen, static_cast<uint64_t>(Ord));
6166   Intrinsic::ID CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i32;
6167   if (XLen == 64) {
6168     CmpVal = Builder.CreateSExt(CmpVal, Builder.getInt64Ty());
6169     NewVal = Builder.CreateSExt(NewVal, Builder.getInt64Ty());
6170     Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty());
6171     CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i64;
6172   }
6173   Type *Tys[] = {AlignedAddr->getType()};
6174   Function *MaskedCmpXchg =
6175       Intrinsic::getDeclaration(CI->getModule(), CmpXchgIntrID, Tys);
6176   Value *Result = Builder.CreateCall(
6177       MaskedCmpXchg, {AlignedAddr, CmpVal, NewVal, Mask, Ordering});
6178   if (XLen == 64)
6179     Result = Builder.CreateTrunc(Result, Builder.getInt32Ty());
6180   return Result;
6181 }
6182 
6183 bool RISCVTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF,
6184                                                      EVT VT) const {
6185   VT = VT.getScalarType();
6186 
6187   if (!VT.isSimple())
6188     return false;
6189 
6190   switch (VT.getSimpleVT().SimpleTy) {
6191   case MVT::f16:
6192     return Subtarget.hasStdExtZfh();
6193   case MVT::f32:
6194     return Subtarget.hasStdExtF();
6195   case MVT::f64:
6196     return Subtarget.hasStdExtD();
6197   default:
6198     break;
6199   }
6200 
6201   return false;
6202 }
6203 
6204 Register RISCVTargetLowering::getExceptionPointerRegister(
6205     const Constant *PersonalityFn) const {
6206   return RISCV::X10;
6207 }
6208 
6209 Register RISCVTargetLowering::getExceptionSelectorRegister(
6210     const Constant *PersonalityFn) const {
6211   return RISCV::X11;
6212 }
6213 
6214 bool RISCVTargetLowering::shouldExtendTypeInLibCall(EVT Type) const {
6215   // Return false to suppress the unnecessary extensions if the LibCall
6216   // arguments or return value is f32 type for LP64 ABI.
6217   RISCVABI::ABI ABI = Subtarget.getTargetABI();
6218   if (ABI == RISCVABI::ABI_LP64 && (Type == MVT::f32))
6219     return false;
6220 
6221   return true;
6222 }
6223 
6224 bool RISCVTargetLowering::shouldSignExtendTypeInLibCall(EVT Type, bool IsSigned) const {
6225   if (Subtarget.is64Bit() && Type == MVT::i32)
6226     return true;
6227 
6228   return IsSigned;
6229 }
6230 
6231 bool RISCVTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT,
6232                                                  SDValue C) const {
6233   // Check integral scalar types.
6234   if (VT.isScalarInteger()) {
6235     // Omit the optimization if the sub target has the M extension and the data
6236     // size exceeds XLen.
6237     if (Subtarget.hasStdExtM() && VT.getSizeInBits() > Subtarget.getXLen())
6238       return false;
6239     if (auto *ConstNode = dyn_cast<ConstantSDNode>(C.getNode())) {
6240       // Break the MUL to a SLLI and an ADD/SUB.
6241       const APInt &Imm = ConstNode->getAPIntValue();
6242       if ((Imm + 1).isPowerOf2() || (Imm - 1).isPowerOf2() ||
6243           (1 - Imm).isPowerOf2() || (-1 - Imm).isPowerOf2())
6244         return true;
6245       // Omit the following optimization if the sub target has the M extension
6246       // and the data size >= XLen.
6247       if (Subtarget.hasStdExtM() && VT.getSizeInBits() >= Subtarget.getXLen())
6248         return false;
6249       // Break the MUL to two SLLI instructions and an ADD/SUB, if Imm needs
6250       // a pair of LUI/ADDI.
6251       if (!Imm.isSignedIntN(12) && Imm.countTrailingZeros() < 12) {
6252         APInt ImmS = Imm.ashr(Imm.countTrailingZeros());
6253         if ((ImmS + 1).isPowerOf2() || (ImmS - 1).isPowerOf2() ||
6254             (1 - ImmS).isPowerOf2())
6255         return true;
6256       }
6257     }
6258   }
6259 
6260   return false;
6261 }
6262 
6263 bool RISCVTargetLowering::useRVVForFixedLengthVectorVT(MVT VT) const {
6264   if (!Subtarget.useRVVForFixedLengthVectors())
6265     return false;
6266 
6267   if (!VT.isFixedLengthVector())
6268     return false;
6269 
6270   // Don't use RVV for vectors we cannot scalarize if required.
6271   switch (VT.getVectorElementType().SimpleTy) {
6272   // i1 is supported but has different rules.
6273   default:
6274     return false;
6275   case MVT::i1:
6276     // Masks can only use a single register.
6277     if (VT.getVectorNumElements() > Subtarget.getMinRVVVectorSizeInBits())
6278       return false;
6279     break;
6280   case MVT::i8:
6281   case MVT::i16:
6282   case MVT::i32:
6283   case MVT::i64:
6284     break;
6285   case MVT::f16:
6286     if (!Subtarget.hasStdExtZfh())
6287       return false;
6288     break;
6289   case MVT::f32:
6290     if (!Subtarget.hasStdExtF())
6291       return false;
6292     break;
6293   case MVT::f64:
6294     if (!Subtarget.hasStdExtD())
6295       return false;
6296     break;
6297   }
6298 
6299   unsigned LMul = Subtarget.getLMULForFixedLengthVector(VT);
6300   // Don't use RVV for types that don't fit.
6301   if (LMul > Subtarget.getMaxLMULForFixedLengthVectors())
6302     return false;
6303 
6304   // TODO: Perhaps an artificial restriction, but worth having whilst getting
6305   // the base fixed length RVV support in place.
6306   if (!VT.isPow2VectorType())
6307     return false;
6308 
6309   return true;
6310 }
6311 
6312 bool RISCVTargetLowering::allowsMisalignedMemoryAccesses(
6313     EVT VT, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags,
6314     bool *Fast) const {
6315   if (!VT.isScalableVector())
6316     return false;
6317 
6318   EVT ElemVT = VT.getVectorElementType();
6319   if (Alignment >= ElemVT.getStoreSize()) {
6320     if (Fast)
6321       *Fast = true;
6322     return true;
6323   }
6324 
6325   return false;
6326 }
6327 
6328 #define GET_REGISTER_MATCHER
6329 #include "RISCVGenAsmMatcher.inc"
6330 
6331 Register
6332 RISCVTargetLowering::getRegisterByName(const char *RegName, LLT VT,
6333                                        const MachineFunction &MF) const {
6334   Register Reg = MatchRegisterAltName(RegName);
6335   if (Reg == RISCV::NoRegister)
6336     Reg = MatchRegisterName(RegName);
6337   if (Reg == RISCV::NoRegister)
6338     report_fatal_error(
6339         Twine("Invalid register name \"" + StringRef(RegName) + "\"."));
6340   BitVector ReservedRegs = Subtarget.getRegisterInfo()->getReservedRegs(MF);
6341   if (!ReservedRegs.test(Reg) && !Subtarget.isRegisterReservedByUser(Reg))
6342     report_fatal_error(Twine("Trying to obtain non-reserved register \"" +
6343                              StringRef(RegName) + "\"."));
6344   return Reg;
6345 }
6346 
6347 namespace llvm {
6348 namespace RISCVVIntrinsicsTable {
6349 
6350 #define GET_RISCVVIntrinsicsTable_IMPL
6351 #include "RISCVGenSearchableTables.inc"
6352 
6353 } // namespace RISCVVIntrinsicsTable
6354 
6355 } // namespace llvm
6356