1 //===-- RISCVISelLowering.cpp - RISCV DAG Lowering Implementation --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the interfaces that RISCV uses to lower LLVM code into a 10 // selection DAG. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "RISCVISelLowering.h" 15 #include "RISCV.h" 16 #include "RISCVMachineFunctionInfo.h" 17 #include "RISCVRegisterInfo.h" 18 #include "RISCVSubtarget.h" 19 #include "RISCVTargetMachine.h" 20 #include "Utils/RISCVMatInt.h" 21 #include "llvm/ADT/SmallSet.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/CodeGen/CallingConvLower.h" 24 #include "llvm/CodeGen/MachineFrameInfo.h" 25 #include "llvm/CodeGen/MachineFunction.h" 26 #include "llvm/CodeGen/MachineInstrBuilder.h" 27 #include "llvm/CodeGen/MachineRegisterInfo.h" 28 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 29 #include "llvm/CodeGen/ValueTypes.h" 30 #include "llvm/IR/DiagnosticInfo.h" 31 #include "llvm/IR/DiagnosticPrinter.h" 32 #include "llvm/IR/IntrinsicsRISCV.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/ErrorHandling.h" 35 #include "llvm/Support/MathExtras.h" 36 #include "llvm/Support/raw_ostream.h" 37 38 using namespace llvm; 39 40 #define DEBUG_TYPE "riscv-lower" 41 42 STATISTIC(NumTailCalls, "Number of tail calls"); 43 44 RISCVTargetLowering::RISCVTargetLowering(const TargetMachine &TM, 45 const RISCVSubtarget &STI) 46 : TargetLowering(TM), Subtarget(STI) { 47 48 if (Subtarget.isRV32E()) 49 report_fatal_error("Codegen not yet implemented for RV32E"); 50 51 RISCVABI::ABI ABI = Subtarget.getTargetABI(); 52 assert(ABI != RISCVABI::ABI_Unknown && "Improperly initialised target ABI"); 53 54 if ((ABI == RISCVABI::ABI_ILP32F || ABI == RISCVABI::ABI_LP64F) && 55 !Subtarget.hasStdExtF()) { 56 errs() << "Hard-float 'f' ABI can't be used for a target that " 57 "doesn't support the F instruction set extension (ignoring " 58 "target-abi)\n"; 59 ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32; 60 } else if ((ABI == RISCVABI::ABI_ILP32D || ABI == RISCVABI::ABI_LP64D) && 61 !Subtarget.hasStdExtD()) { 62 errs() << "Hard-float 'd' ABI can't be used for a target that " 63 "doesn't support the D instruction set extension (ignoring " 64 "target-abi)\n"; 65 ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32; 66 } 67 68 switch (ABI) { 69 default: 70 report_fatal_error("Don't know how to lower this ABI"); 71 case RISCVABI::ABI_ILP32: 72 case RISCVABI::ABI_ILP32F: 73 case RISCVABI::ABI_ILP32D: 74 case RISCVABI::ABI_LP64: 75 case RISCVABI::ABI_LP64F: 76 case RISCVABI::ABI_LP64D: 77 break; 78 } 79 80 MVT XLenVT = Subtarget.getXLenVT(); 81 82 // Set up the register classes. 83 addRegisterClass(XLenVT, &RISCV::GPRRegClass); 84 85 if (Subtarget.hasStdExtF()) 86 addRegisterClass(MVT::f32, &RISCV::FPR32RegClass); 87 if (Subtarget.hasStdExtD()) 88 addRegisterClass(MVT::f64, &RISCV::FPR64RegClass); 89 90 // Compute derived properties from the register classes. 91 computeRegisterProperties(STI.getRegisterInfo()); 92 93 setStackPointerRegisterToSaveRestore(RISCV::X2); 94 95 for (auto N : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}) 96 setLoadExtAction(N, XLenVT, MVT::i1, Promote); 97 98 // TODO: add all necessary setOperationAction calls. 99 setOperationAction(ISD::DYNAMIC_STACKALLOC, XLenVT, Expand); 100 101 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 102 setOperationAction(ISD::BR_CC, XLenVT, Expand); 103 setOperationAction(ISD::SELECT, XLenVT, Custom); 104 setOperationAction(ISD::SELECT_CC, XLenVT, Expand); 105 106 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); 107 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); 108 109 setOperationAction(ISD::VASTART, MVT::Other, Custom); 110 setOperationAction(ISD::VAARG, MVT::Other, Expand); 111 setOperationAction(ISD::VACOPY, MVT::Other, Expand); 112 setOperationAction(ISD::VAEND, MVT::Other, Expand); 113 114 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 115 if (!Subtarget.hasStdExtZbb()) { 116 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand); 117 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand); 118 } 119 120 if (Subtarget.is64Bit()) { 121 setOperationAction(ISD::ADD, MVT::i32, Custom); 122 setOperationAction(ISD::SUB, MVT::i32, Custom); 123 setOperationAction(ISD::SHL, MVT::i32, Custom); 124 setOperationAction(ISD::SRA, MVT::i32, Custom); 125 setOperationAction(ISD::SRL, MVT::i32, Custom); 126 } 127 128 if (!Subtarget.hasStdExtM()) { 129 setOperationAction(ISD::MUL, XLenVT, Expand); 130 setOperationAction(ISD::MULHS, XLenVT, Expand); 131 setOperationAction(ISD::MULHU, XLenVT, Expand); 132 setOperationAction(ISD::SDIV, XLenVT, Expand); 133 setOperationAction(ISD::UDIV, XLenVT, Expand); 134 setOperationAction(ISD::SREM, XLenVT, Expand); 135 setOperationAction(ISD::UREM, XLenVT, Expand); 136 } 137 138 if (Subtarget.is64Bit() && Subtarget.hasStdExtM()) { 139 setOperationAction(ISD::MUL, MVT::i32, Custom); 140 setOperationAction(ISD::SDIV, MVT::i32, Custom); 141 setOperationAction(ISD::UDIV, MVT::i32, Custom); 142 setOperationAction(ISD::UREM, MVT::i32, Custom); 143 } 144 145 setOperationAction(ISD::SDIVREM, XLenVT, Expand); 146 setOperationAction(ISD::UDIVREM, XLenVT, Expand); 147 setOperationAction(ISD::SMUL_LOHI, XLenVT, Expand); 148 setOperationAction(ISD::UMUL_LOHI, XLenVT, Expand); 149 150 setOperationAction(ISD::SHL_PARTS, XLenVT, Custom); 151 setOperationAction(ISD::SRL_PARTS, XLenVT, Custom); 152 setOperationAction(ISD::SRA_PARTS, XLenVT, Custom); 153 154 if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp()) { 155 if (Subtarget.is64Bit()) { 156 setOperationAction(ISD::ROTL, MVT::i32, Custom); 157 setOperationAction(ISD::ROTR, MVT::i32, Custom); 158 } 159 } else { 160 setOperationAction(ISD::ROTL, XLenVT, Expand); 161 setOperationAction(ISD::ROTR, XLenVT, Expand); 162 } 163 164 if (Subtarget.hasStdExtZbp()) { 165 setOperationAction(ISD::BITREVERSE, XLenVT, Legal); 166 167 if (Subtarget.is64Bit()) { 168 setOperationAction(ISD::BITREVERSE, MVT::i32, Custom); 169 setOperationAction(ISD::BSWAP, MVT::i32, Custom); 170 } 171 } else { 172 setOperationAction(ISD::BSWAP, XLenVT, Expand); 173 } 174 175 if (Subtarget.hasStdExtZbb()) { 176 setOperationAction(ISD::SMIN, XLenVT, Legal); 177 setOperationAction(ISD::SMAX, XLenVT, Legal); 178 setOperationAction(ISD::UMIN, XLenVT, Legal); 179 setOperationAction(ISD::UMAX, XLenVT, Legal); 180 } else { 181 setOperationAction(ISD::CTTZ, XLenVT, Expand); 182 setOperationAction(ISD::CTLZ, XLenVT, Expand); 183 setOperationAction(ISD::CTPOP, XLenVT, Expand); 184 } 185 186 if (Subtarget.hasStdExtZbt()) { 187 setOperationAction(ISD::FSHL, XLenVT, Legal); 188 setOperationAction(ISD::FSHR, XLenVT, Legal); 189 190 if (Subtarget.is64Bit()) { 191 setOperationAction(ISD::FSHL, MVT::i32, Custom); 192 setOperationAction(ISD::FSHR, MVT::i32, Custom); 193 } 194 } 195 196 ISD::CondCode FPCCToExtend[] = { 197 ISD::SETOGT, ISD::SETOGE, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT, 198 ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUNE, ISD::SETGT, 199 ISD::SETGE, ISD::SETNE}; 200 201 ISD::NodeType FPOpToExtend[] = { 202 ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, ISD::FREM, ISD::FP16_TO_FP, 203 ISD::FP_TO_FP16}; 204 205 if (Subtarget.hasStdExtF()) { 206 setOperationAction(ISD::FMINNUM, MVT::f32, Legal); 207 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); 208 for (auto CC : FPCCToExtend) 209 setCondCodeAction(CC, MVT::f32, Expand); 210 setOperationAction(ISD::SELECT_CC, MVT::f32, Expand); 211 setOperationAction(ISD::SELECT, MVT::f32, Custom); 212 setOperationAction(ISD::BR_CC, MVT::f32, Expand); 213 for (auto Op : FPOpToExtend) 214 setOperationAction(Op, MVT::f32, Expand); 215 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); 216 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 217 } 218 219 if (Subtarget.hasStdExtF() && Subtarget.is64Bit()) 220 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 221 222 if (Subtarget.hasStdExtD()) { 223 setOperationAction(ISD::FMINNUM, MVT::f64, Legal); 224 setOperationAction(ISD::FMAXNUM, MVT::f64, Legal); 225 for (auto CC : FPCCToExtend) 226 setCondCodeAction(CC, MVT::f64, Expand); 227 setOperationAction(ISD::SELECT_CC, MVT::f64, Expand); 228 setOperationAction(ISD::SELECT, MVT::f64, Custom); 229 setOperationAction(ISD::BR_CC, MVT::f64, Expand); 230 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 231 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 232 for (auto Op : FPOpToExtend) 233 setOperationAction(Op, MVT::f64, Expand); 234 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); 235 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 236 } 237 238 if (Subtarget.is64Bit()) { 239 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 240 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 241 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom); 242 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom); 243 } 244 245 setOperationAction(ISD::GlobalAddress, XLenVT, Custom); 246 setOperationAction(ISD::BlockAddress, XLenVT, Custom); 247 setOperationAction(ISD::ConstantPool, XLenVT, Custom); 248 249 setOperationAction(ISD::GlobalTLSAddress, XLenVT, Custom); 250 251 // TODO: On M-mode only targets, the cycle[h] CSR may not be present. 252 // Unfortunately this can't be determined just from the ISA naming string. 253 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, 254 Subtarget.is64Bit() ? Legal : Custom); 255 256 setOperationAction(ISD::TRAP, MVT::Other, Legal); 257 setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal); 258 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 259 260 if (Subtarget.hasStdExtA()) { 261 setMaxAtomicSizeInBitsSupported(Subtarget.getXLen()); 262 setMinCmpXchgSizeInBits(32); 263 } else { 264 setMaxAtomicSizeInBitsSupported(0); 265 } 266 267 setBooleanContents(ZeroOrOneBooleanContent); 268 269 // Function alignments. 270 const Align FunctionAlignment(Subtarget.hasStdExtC() ? 2 : 4); 271 setMinFunctionAlignment(FunctionAlignment); 272 setPrefFunctionAlignment(FunctionAlignment); 273 274 // Effectively disable jump table generation. 275 setMinimumJumpTableEntries(INT_MAX); 276 277 // Jumps are expensive, compared to logic 278 setJumpIsExpensive(); 279 280 // We can use any register for comparisons 281 setHasMultipleConditionRegisters(); 282 283 if (Subtarget.hasStdExtZbp()) { 284 setTargetDAGCombine(ISD::OR); 285 } 286 } 287 288 EVT RISCVTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &, 289 EVT VT) const { 290 if (!VT.isVector()) 291 return getPointerTy(DL); 292 return VT.changeVectorElementTypeToInteger(); 293 } 294 295 bool RISCVTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 296 const CallInst &I, 297 MachineFunction &MF, 298 unsigned Intrinsic) const { 299 switch (Intrinsic) { 300 default: 301 return false; 302 case Intrinsic::riscv_masked_atomicrmw_xchg_i32: 303 case Intrinsic::riscv_masked_atomicrmw_add_i32: 304 case Intrinsic::riscv_masked_atomicrmw_sub_i32: 305 case Intrinsic::riscv_masked_atomicrmw_nand_i32: 306 case Intrinsic::riscv_masked_atomicrmw_max_i32: 307 case Intrinsic::riscv_masked_atomicrmw_min_i32: 308 case Intrinsic::riscv_masked_atomicrmw_umax_i32: 309 case Intrinsic::riscv_masked_atomicrmw_umin_i32: 310 case Intrinsic::riscv_masked_cmpxchg_i32: 311 PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType()); 312 Info.opc = ISD::INTRINSIC_W_CHAIN; 313 Info.memVT = MVT::getVT(PtrTy->getElementType()); 314 Info.ptrVal = I.getArgOperand(0); 315 Info.offset = 0; 316 Info.align = Align(4); 317 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore | 318 MachineMemOperand::MOVolatile; 319 return true; 320 } 321 } 322 323 bool RISCVTargetLowering::isLegalAddressingMode(const DataLayout &DL, 324 const AddrMode &AM, Type *Ty, 325 unsigned AS, 326 Instruction *I) const { 327 // No global is ever allowed as a base. 328 if (AM.BaseGV) 329 return false; 330 331 // Require a 12-bit signed offset. 332 if (!isInt<12>(AM.BaseOffs)) 333 return false; 334 335 switch (AM.Scale) { 336 case 0: // "r+i" or just "i", depending on HasBaseReg. 337 break; 338 case 1: 339 if (!AM.HasBaseReg) // allow "r+i". 340 break; 341 return false; // disallow "r+r" or "r+r+i". 342 default: 343 return false; 344 } 345 346 return true; 347 } 348 349 bool RISCVTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 350 return isInt<12>(Imm); 351 } 352 353 bool RISCVTargetLowering::isLegalAddImmediate(int64_t Imm) const { 354 return isInt<12>(Imm); 355 } 356 357 // On RV32, 64-bit integers are split into their high and low parts and held 358 // in two different registers, so the trunc is free since the low register can 359 // just be used. 360 bool RISCVTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const { 361 if (Subtarget.is64Bit() || !SrcTy->isIntegerTy() || !DstTy->isIntegerTy()) 362 return false; 363 unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); 364 unsigned DestBits = DstTy->getPrimitiveSizeInBits(); 365 return (SrcBits == 64 && DestBits == 32); 366 } 367 368 bool RISCVTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const { 369 if (Subtarget.is64Bit() || SrcVT.isVector() || DstVT.isVector() || 370 !SrcVT.isInteger() || !DstVT.isInteger()) 371 return false; 372 unsigned SrcBits = SrcVT.getSizeInBits(); 373 unsigned DestBits = DstVT.getSizeInBits(); 374 return (SrcBits == 64 && DestBits == 32); 375 } 376 377 bool RISCVTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 378 // Zexts are free if they can be combined with a load. 379 if (auto *LD = dyn_cast<LoadSDNode>(Val)) { 380 EVT MemVT = LD->getMemoryVT(); 381 if ((MemVT == MVT::i8 || MemVT == MVT::i16 || 382 (Subtarget.is64Bit() && MemVT == MVT::i32)) && 383 (LD->getExtensionType() == ISD::NON_EXTLOAD || 384 LD->getExtensionType() == ISD::ZEXTLOAD)) 385 return true; 386 } 387 388 return TargetLowering::isZExtFree(Val, VT2); 389 } 390 391 bool RISCVTargetLowering::isSExtCheaperThanZExt(EVT SrcVT, EVT DstVT) const { 392 return Subtarget.is64Bit() && SrcVT == MVT::i32 && DstVT == MVT::i64; 393 } 394 395 bool RISCVTargetLowering::isCheapToSpeculateCttz() const { 396 return Subtarget.hasStdExtZbb(); 397 } 398 399 bool RISCVTargetLowering::isCheapToSpeculateCtlz() const { 400 return Subtarget.hasStdExtZbb(); 401 } 402 403 bool RISCVTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 404 bool ForCodeSize) const { 405 if (VT == MVT::f32 && !Subtarget.hasStdExtF()) 406 return false; 407 if (VT == MVT::f64 && !Subtarget.hasStdExtD()) 408 return false; 409 if (Imm.isNegZero()) 410 return false; 411 return Imm.isZero(); 412 } 413 414 bool RISCVTargetLowering::hasBitPreservingFPLogic(EVT VT) const { 415 return (VT == MVT::f32 && Subtarget.hasStdExtF()) || 416 (VT == MVT::f64 && Subtarget.hasStdExtD()); 417 } 418 419 // Changes the condition code and swaps operands if necessary, so the SetCC 420 // operation matches one of the comparisons supported directly in the RISC-V 421 // ISA. 422 static void normaliseSetCC(SDValue &LHS, SDValue &RHS, ISD::CondCode &CC) { 423 switch (CC) { 424 default: 425 break; 426 case ISD::SETGT: 427 case ISD::SETLE: 428 case ISD::SETUGT: 429 case ISD::SETULE: 430 CC = ISD::getSetCCSwappedOperands(CC); 431 std::swap(LHS, RHS); 432 break; 433 } 434 } 435 436 // Return the RISC-V branch opcode that matches the given DAG integer 437 // condition code. The CondCode must be one of those supported by the RISC-V 438 // ISA (see normaliseSetCC). 439 static unsigned getBranchOpcodeForIntCondCode(ISD::CondCode CC) { 440 switch (CC) { 441 default: 442 llvm_unreachable("Unsupported CondCode"); 443 case ISD::SETEQ: 444 return RISCV::BEQ; 445 case ISD::SETNE: 446 return RISCV::BNE; 447 case ISD::SETLT: 448 return RISCV::BLT; 449 case ISD::SETGE: 450 return RISCV::BGE; 451 case ISD::SETULT: 452 return RISCV::BLTU; 453 case ISD::SETUGE: 454 return RISCV::BGEU; 455 } 456 } 457 458 SDValue RISCVTargetLowering::LowerOperation(SDValue Op, 459 SelectionDAG &DAG) const { 460 switch (Op.getOpcode()) { 461 default: 462 report_fatal_error("unimplemented operand"); 463 case ISD::GlobalAddress: 464 return lowerGlobalAddress(Op, DAG); 465 case ISD::BlockAddress: 466 return lowerBlockAddress(Op, DAG); 467 case ISD::ConstantPool: 468 return lowerConstantPool(Op, DAG); 469 case ISD::GlobalTLSAddress: 470 return lowerGlobalTLSAddress(Op, DAG); 471 case ISD::SELECT: 472 return lowerSELECT(Op, DAG); 473 case ISD::VASTART: 474 return lowerVASTART(Op, DAG); 475 case ISD::FRAMEADDR: 476 return lowerFRAMEADDR(Op, DAG); 477 case ISD::RETURNADDR: 478 return lowerRETURNADDR(Op, DAG); 479 case ISD::SHL_PARTS: 480 return lowerShiftLeftParts(Op, DAG); 481 case ISD::SRA_PARTS: 482 return lowerShiftRightParts(Op, DAG, true); 483 case ISD::SRL_PARTS: 484 return lowerShiftRightParts(Op, DAG, false); 485 case ISD::BITCAST: { 486 assert(Subtarget.is64Bit() && Subtarget.hasStdExtF() && 487 "Unexpected custom legalisation"); 488 SDLoc DL(Op); 489 SDValue Op0 = Op.getOperand(0); 490 if (Op.getValueType() != MVT::f32 || Op0.getValueType() != MVT::i32) 491 return SDValue(); 492 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); 493 SDValue FPConv = DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, NewOp0); 494 return FPConv; 495 } 496 case ISD::INTRINSIC_WO_CHAIN: 497 return LowerINTRINSIC_WO_CHAIN(Op, DAG); 498 } 499 } 500 501 static SDValue getTargetNode(GlobalAddressSDNode *N, SDLoc DL, EVT Ty, 502 SelectionDAG &DAG, unsigned Flags) { 503 return DAG.getTargetGlobalAddress(N->getGlobal(), DL, Ty, 0, Flags); 504 } 505 506 static SDValue getTargetNode(BlockAddressSDNode *N, SDLoc DL, EVT Ty, 507 SelectionDAG &DAG, unsigned Flags) { 508 return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, N->getOffset(), 509 Flags); 510 } 511 512 static SDValue getTargetNode(ConstantPoolSDNode *N, SDLoc DL, EVT Ty, 513 SelectionDAG &DAG, unsigned Flags) { 514 return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlign(), 515 N->getOffset(), Flags); 516 } 517 518 template <class NodeTy> 519 SDValue RISCVTargetLowering::getAddr(NodeTy *N, SelectionDAG &DAG, 520 bool IsLocal) const { 521 SDLoc DL(N); 522 EVT Ty = getPointerTy(DAG.getDataLayout()); 523 524 if (isPositionIndependent()) { 525 SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0); 526 if (IsLocal) 527 // Use PC-relative addressing to access the symbol. This generates the 528 // pattern (PseudoLLA sym), which expands to (addi (auipc %pcrel_hi(sym)) 529 // %pcrel_lo(auipc)). 530 return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0); 531 532 // Use PC-relative addressing to access the GOT for this symbol, then load 533 // the address from the GOT. This generates the pattern (PseudoLA sym), 534 // which expands to (ld (addi (auipc %got_pcrel_hi(sym)) %pcrel_lo(auipc))). 535 return SDValue(DAG.getMachineNode(RISCV::PseudoLA, DL, Ty, Addr), 0); 536 } 537 538 switch (getTargetMachine().getCodeModel()) { 539 default: 540 report_fatal_error("Unsupported code model for lowering"); 541 case CodeModel::Small: { 542 // Generate a sequence for accessing addresses within the first 2 GiB of 543 // address space. This generates the pattern (addi (lui %hi(sym)) %lo(sym)). 544 SDValue AddrHi = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_HI); 545 SDValue AddrLo = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_LO); 546 SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0); 547 return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNHi, AddrLo), 0); 548 } 549 case CodeModel::Medium: { 550 // Generate a sequence for accessing addresses within any 2GiB range within 551 // the address space. This generates the pattern (PseudoLLA sym), which 552 // expands to (addi (auipc %pcrel_hi(sym)) %pcrel_lo(auipc)). 553 SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0); 554 return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0); 555 } 556 } 557 } 558 559 SDValue RISCVTargetLowering::lowerGlobalAddress(SDValue Op, 560 SelectionDAG &DAG) const { 561 SDLoc DL(Op); 562 EVT Ty = Op.getValueType(); 563 GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op); 564 int64_t Offset = N->getOffset(); 565 MVT XLenVT = Subtarget.getXLenVT(); 566 567 const GlobalValue *GV = N->getGlobal(); 568 bool IsLocal = getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV); 569 SDValue Addr = getAddr(N, DAG, IsLocal); 570 571 // In order to maximise the opportunity for common subexpression elimination, 572 // emit a separate ADD node for the global address offset instead of folding 573 // it in the global address node. Later peephole optimisations may choose to 574 // fold it back in when profitable. 575 if (Offset != 0) 576 return DAG.getNode(ISD::ADD, DL, Ty, Addr, 577 DAG.getConstant(Offset, DL, XLenVT)); 578 return Addr; 579 } 580 581 SDValue RISCVTargetLowering::lowerBlockAddress(SDValue Op, 582 SelectionDAG &DAG) const { 583 BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op); 584 585 return getAddr(N, DAG); 586 } 587 588 SDValue RISCVTargetLowering::lowerConstantPool(SDValue Op, 589 SelectionDAG &DAG) const { 590 ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op); 591 592 return getAddr(N, DAG); 593 } 594 595 SDValue RISCVTargetLowering::getStaticTLSAddr(GlobalAddressSDNode *N, 596 SelectionDAG &DAG, 597 bool UseGOT) const { 598 SDLoc DL(N); 599 EVT Ty = getPointerTy(DAG.getDataLayout()); 600 const GlobalValue *GV = N->getGlobal(); 601 MVT XLenVT = Subtarget.getXLenVT(); 602 603 if (UseGOT) { 604 // Use PC-relative addressing to access the GOT for this TLS symbol, then 605 // load the address from the GOT and add the thread pointer. This generates 606 // the pattern (PseudoLA_TLS_IE sym), which expands to 607 // (ld (auipc %tls_ie_pcrel_hi(sym)) %pcrel_lo(auipc)). 608 SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0); 609 SDValue Load = 610 SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_IE, DL, Ty, Addr), 0); 611 612 // Add the thread pointer. 613 SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT); 614 return DAG.getNode(ISD::ADD, DL, Ty, Load, TPReg); 615 } 616 617 // Generate a sequence for accessing the address relative to the thread 618 // pointer, with the appropriate adjustment for the thread pointer offset. 619 // This generates the pattern 620 // (add (add_tprel (lui %tprel_hi(sym)) tp %tprel_add(sym)) %tprel_lo(sym)) 621 SDValue AddrHi = 622 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_HI); 623 SDValue AddrAdd = 624 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_ADD); 625 SDValue AddrLo = 626 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_LO); 627 628 SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0); 629 SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT); 630 SDValue MNAdd = SDValue( 631 DAG.getMachineNode(RISCV::PseudoAddTPRel, DL, Ty, MNHi, TPReg, AddrAdd), 632 0); 633 return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNAdd, AddrLo), 0); 634 } 635 636 SDValue RISCVTargetLowering::getDynamicTLSAddr(GlobalAddressSDNode *N, 637 SelectionDAG &DAG) const { 638 SDLoc DL(N); 639 EVT Ty = getPointerTy(DAG.getDataLayout()); 640 IntegerType *CallTy = Type::getIntNTy(*DAG.getContext(), Ty.getSizeInBits()); 641 const GlobalValue *GV = N->getGlobal(); 642 643 // Use a PC-relative addressing mode to access the global dynamic GOT address. 644 // This generates the pattern (PseudoLA_TLS_GD sym), which expands to 645 // (addi (auipc %tls_gd_pcrel_hi(sym)) %pcrel_lo(auipc)). 646 SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0); 647 SDValue Load = 648 SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_GD, DL, Ty, Addr), 0); 649 650 // Prepare argument list to generate call. 651 ArgListTy Args; 652 ArgListEntry Entry; 653 Entry.Node = Load; 654 Entry.Ty = CallTy; 655 Args.push_back(Entry); 656 657 // Setup call to __tls_get_addr. 658 TargetLowering::CallLoweringInfo CLI(DAG); 659 CLI.setDebugLoc(DL) 660 .setChain(DAG.getEntryNode()) 661 .setLibCallee(CallingConv::C, CallTy, 662 DAG.getExternalSymbol("__tls_get_addr", Ty), 663 std::move(Args)); 664 665 return LowerCallTo(CLI).first; 666 } 667 668 SDValue RISCVTargetLowering::lowerGlobalTLSAddress(SDValue Op, 669 SelectionDAG &DAG) const { 670 SDLoc DL(Op); 671 EVT Ty = Op.getValueType(); 672 GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op); 673 int64_t Offset = N->getOffset(); 674 MVT XLenVT = Subtarget.getXLenVT(); 675 676 TLSModel::Model Model = getTargetMachine().getTLSModel(N->getGlobal()); 677 678 if (DAG.getMachineFunction().getFunction().getCallingConv() == 679 CallingConv::GHC) 680 report_fatal_error("In GHC calling convention TLS is not supported"); 681 682 SDValue Addr; 683 switch (Model) { 684 case TLSModel::LocalExec: 685 Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/false); 686 break; 687 case TLSModel::InitialExec: 688 Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/true); 689 break; 690 case TLSModel::LocalDynamic: 691 case TLSModel::GeneralDynamic: 692 Addr = getDynamicTLSAddr(N, DAG); 693 break; 694 } 695 696 // In order to maximise the opportunity for common subexpression elimination, 697 // emit a separate ADD node for the global address offset instead of folding 698 // it in the global address node. Later peephole optimisations may choose to 699 // fold it back in when profitable. 700 if (Offset != 0) 701 return DAG.getNode(ISD::ADD, DL, Ty, Addr, 702 DAG.getConstant(Offset, DL, XLenVT)); 703 return Addr; 704 } 705 706 SDValue RISCVTargetLowering::lowerSELECT(SDValue Op, SelectionDAG &DAG) const { 707 SDValue CondV = Op.getOperand(0); 708 SDValue TrueV = Op.getOperand(1); 709 SDValue FalseV = Op.getOperand(2); 710 SDLoc DL(Op); 711 MVT XLenVT = Subtarget.getXLenVT(); 712 713 // If the result type is XLenVT and CondV is the output of a SETCC node 714 // which also operated on XLenVT inputs, then merge the SETCC node into the 715 // lowered RISCVISD::SELECT_CC to take advantage of the integer 716 // compare+branch instructions. i.e.: 717 // (select (setcc lhs, rhs, cc), truev, falsev) 718 // -> (riscvisd::select_cc lhs, rhs, cc, truev, falsev) 719 if (Op.getSimpleValueType() == XLenVT && CondV.getOpcode() == ISD::SETCC && 720 CondV.getOperand(0).getSimpleValueType() == XLenVT) { 721 SDValue LHS = CondV.getOperand(0); 722 SDValue RHS = CondV.getOperand(1); 723 auto CC = cast<CondCodeSDNode>(CondV.getOperand(2)); 724 ISD::CondCode CCVal = CC->get(); 725 726 normaliseSetCC(LHS, RHS, CCVal); 727 728 SDValue TargetCC = DAG.getConstant(CCVal, DL, XLenVT); 729 SDValue Ops[] = {LHS, RHS, TargetCC, TrueV, FalseV}; 730 return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops); 731 } 732 733 // Otherwise: 734 // (select condv, truev, falsev) 735 // -> (riscvisd::select_cc condv, zero, setne, truev, falsev) 736 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 737 SDValue SetNE = DAG.getConstant(ISD::SETNE, DL, XLenVT); 738 739 SDValue Ops[] = {CondV, Zero, SetNE, TrueV, FalseV}; 740 741 return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops); 742 } 743 744 SDValue RISCVTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const { 745 MachineFunction &MF = DAG.getMachineFunction(); 746 RISCVMachineFunctionInfo *FuncInfo = MF.getInfo<RISCVMachineFunctionInfo>(); 747 748 SDLoc DL(Op); 749 SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), 750 getPointerTy(MF.getDataLayout())); 751 752 // vastart just stores the address of the VarArgsFrameIndex slot into the 753 // memory location argument. 754 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 755 return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1), 756 MachinePointerInfo(SV)); 757 } 758 759 SDValue RISCVTargetLowering::lowerFRAMEADDR(SDValue Op, 760 SelectionDAG &DAG) const { 761 const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo(); 762 MachineFunction &MF = DAG.getMachineFunction(); 763 MachineFrameInfo &MFI = MF.getFrameInfo(); 764 MFI.setFrameAddressIsTaken(true); 765 Register FrameReg = RI.getFrameRegister(MF); 766 int XLenInBytes = Subtarget.getXLen() / 8; 767 768 EVT VT = Op.getValueType(); 769 SDLoc DL(Op); 770 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, FrameReg, VT); 771 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 772 while (Depth--) { 773 int Offset = -(XLenInBytes * 2); 774 SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr, 775 DAG.getIntPtrConstant(Offset, DL)); 776 FrameAddr = 777 DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo()); 778 } 779 return FrameAddr; 780 } 781 782 SDValue RISCVTargetLowering::lowerRETURNADDR(SDValue Op, 783 SelectionDAG &DAG) const { 784 const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo(); 785 MachineFunction &MF = DAG.getMachineFunction(); 786 MachineFrameInfo &MFI = MF.getFrameInfo(); 787 MFI.setReturnAddressIsTaken(true); 788 MVT XLenVT = Subtarget.getXLenVT(); 789 int XLenInBytes = Subtarget.getXLen() / 8; 790 791 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 792 return SDValue(); 793 794 EVT VT = Op.getValueType(); 795 SDLoc DL(Op); 796 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 797 if (Depth) { 798 int Off = -XLenInBytes; 799 SDValue FrameAddr = lowerFRAMEADDR(Op, DAG); 800 SDValue Offset = DAG.getConstant(Off, DL, VT); 801 return DAG.getLoad(VT, DL, DAG.getEntryNode(), 802 DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset), 803 MachinePointerInfo()); 804 } 805 806 // Return the value of the return address register, marking it an implicit 807 // live-in. 808 Register Reg = MF.addLiveIn(RI.getRARegister(), getRegClassFor(XLenVT)); 809 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, XLenVT); 810 } 811 812 SDValue RISCVTargetLowering::lowerShiftLeftParts(SDValue Op, 813 SelectionDAG &DAG) const { 814 SDLoc DL(Op); 815 SDValue Lo = Op.getOperand(0); 816 SDValue Hi = Op.getOperand(1); 817 SDValue Shamt = Op.getOperand(2); 818 EVT VT = Lo.getValueType(); 819 820 // if Shamt-XLEN < 0: // Shamt < XLEN 821 // Lo = Lo << Shamt 822 // Hi = (Hi << Shamt) | ((Lo >>u 1) >>u (XLEN-1 - Shamt)) 823 // else: 824 // Lo = 0 825 // Hi = Lo << (Shamt-XLEN) 826 827 SDValue Zero = DAG.getConstant(0, DL, VT); 828 SDValue One = DAG.getConstant(1, DL, VT); 829 SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT); 830 SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT); 831 SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen); 832 SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt); 833 834 SDValue LoTrue = DAG.getNode(ISD::SHL, DL, VT, Lo, Shamt); 835 SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, VT, Lo, One); 836 SDValue ShiftRightLo = 837 DAG.getNode(ISD::SRL, DL, VT, ShiftRight1Lo, XLenMinus1Shamt); 838 SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, Hi, Shamt); 839 SDValue HiTrue = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo); 840 SDValue HiFalse = DAG.getNode(ISD::SHL, DL, VT, Lo, ShamtMinusXLen); 841 842 SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT); 843 844 Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, Zero); 845 Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse); 846 847 SDValue Parts[2] = {Lo, Hi}; 848 return DAG.getMergeValues(Parts, DL); 849 } 850 851 SDValue RISCVTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG, 852 bool IsSRA) const { 853 SDLoc DL(Op); 854 SDValue Lo = Op.getOperand(0); 855 SDValue Hi = Op.getOperand(1); 856 SDValue Shamt = Op.getOperand(2); 857 EVT VT = Lo.getValueType(); 858 859 // SRA expansion: 860 // if Shamt-XLEN < 0: // Shamt < XLEN 861 // Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt)) 862 // Hi = Hi >>s Shamt 863 // else: 864 // Lo = Hi >>s (Shamt-XLEN); 865 // Hi = Hi >>s (XLEN-1) 866 // 867 // SRL expansion: 868 // if Shamt-XLEN < 0: // Shamt < XLEN 869 // Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt)) 870 // Hi = Hi >>u Shamt 871 // else: 872 // Lo = Hi >>u (Shamt-XLEN); 873 // Hi = 0; 874 875 unsigned ShiftRightOp = IsSRA ? ISD::SRA : ISD::SRL; 876 877 SDValue Zero = DAG.getConstant(0, DL, VT); 878 SDValue One = DAG.getConstant(1, DL, VT); 879 SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT); 880 SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT); 881 SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen); 882 SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt); 883 884 SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, Lo, Shamt); 885 SDValue ShiftLeftHi1 = DAG.getNode(ISD::SHL, DL, VT, Hi, One); 886 SDValue ShiftLeftHi = 887 DAG.getNode(ISD::SHL, DL, VT, ShiftLeftHi1, XLenMinus1Shamt); 888 SDValue LoTrue = DAG.getNode(ISD::OR, DL, VT, ShiftRightLo, ShiftLeftHi); 889 SDValue HiTrue = DAG.getNode(ShiftRightOp, DL, VT, Hi, Shamt); 890 SDValue LoFalse = DAG.getNode(ShiftRightOp, DL, VT, Hi, ShamtMinusXLen); 891 SDValue HiFalse = 892 IsSRA ? DAG.getNode(ISD::SRA, DL, VT, Hi, XLenMinus1) : Zero; 893 894 SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT); 895 896 Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, LoFalse); 897 Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse); 898 899 SDValue Parts[2] = {Lo, Hi}; 900 return DAG.getMergeValues(Parts, DL); 901 } 902 903 SDValue RISCVTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 904 SelectionDAG &DAG) const { 905 unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 906 SDLoc DL(Op); 907 switch (IntNo) { 908 default: 909 return SDValue(); // Don't custom lower most intrinsics. 910 case Intrinsic::thread_pointer: { 911 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 912 return DAG.getRegister(RISCV::X4, PtrVT); 913 } 914 } 915 } 916 917 // Returns the opcode of the target-specific SDNode that implements the 32-bit 918 // form of the given Opcode. 919 static RISCVISD::NodeType getRISCVWOpcode(unsigned Opcode) { 920 switch (Opcode) { 921 default: 922 llvm_unreachable("Unexpected opcode"); 923 case ISD::SHL: 924 return RISCVISD::SLLW; 925 case ISD::SRA: 926 return RISCVISD::SRAW; 927 case ISD::SRL: 928 return RISCVISD::SRLW; 929 case ISD::SDIV: 930 return RISCVISD::DIVW; 931 case ISD::UDIV: 932 return RISCVISD::DIVUW; 933 case ISD::UREM: 934 return RISCVISD::REMUW; 935 case ISD::ROTL: 936 return RISCVISD::ROLW; 937 case ISD::ROTR: 938 return RISCVISD::RORW; 939 case RISCVISD::GREVI: 940 return RISCVISD::GREVIW; 941 case RISCVISD::GORCI: 942 return RISCVISD::GORCIW; 943 } 944 } 945 946 // Converts the given 32-bit operation to a target-specific SelectionDAG node. 947 // Because i32 isn't a legal type for RV64, these operations would otherwise 948 // be promoted to i64, making it difficult to select the SLLW/DIVUW/.../*W 949 // later one because the fact the operation was originally of type i32 is 950 // lost. 951 static SDValue customLegalizeToWOp(SDNode *N, SelectionDAG &DAG) { 952 SDLoc DL(N); 953 RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode()); 954 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 955 SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 956 SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1); 957 // ReplaceNodeResults requires we maintain the same type for the return value. 958 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes); 959 } 960 961 // Converts the given 32-bit operation to a i64 operation with signed extension 962 // semantic to reduce the signed extension instructions. 963 static SDValue customLegalizeToWOpWithSExt(SDNode *N, SelectionDAG &DAG) { 964 SDLoc DL(N); 965 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 966 SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 967 SDValue NewWOp = DAG.getNode(N->getOpcode(), DL, MVT::i64, NewOp0, NewOp1); 968 SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp, 969 DAG.getValueType(MVT::i32)); 970 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes); 971 } 972 973 void RISCVTargetLowering::ReplaceNodeResults(SDNode *N, 974 SmallVectorImpl<SDValue> &Results, 975 SelectionDAG &DAG) const { 976 SDLoc DL(N); 977 switch (N->getOpcode()) { 978 default: 979 llvm_unreachable("Don't know how to custom type legalize this operation!"); 980 case ISD::STRICT_FP_TO_SINT: 981 case ISD::STRICT_FP_TO_UINT: 982 case ISD::FP_TO_SINT: 983 case ISD::FP_TO_UINT: { 984 bool IsStrict = N->isStrictFPOpcode(); 985 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 986 "Unexpected custom legalisation"); 987 SDValue Op0 = IsStrict ? N->getOperand(1) : N->getOperand(0); 988 // If the FP type needs to be softened, emit a library call using the 'si' 989 // version. If we left it to default legalization we'd end up with 'di'. If 990 // the FP type doesn't need to be softened just let generic type 991 // legalization promote the result type. 992 if (getTypeAction(*DAG.getContext(), Op0.getValueType()) != 993 TargetLowering::TypeSoftenFloat) 994 return; 995 RTLIB::Libcall LC; 996 if (N->getOpcode() == ISD::FP_TO_SINT || 997 N->getOpcode() == ISD::STRICT_FP_TO_SINT) 998 LC = RTLIB::getFPTOSINT(Op0.getValueType(), N->getValueType(0)); 999 else 1000 LC = RTLIB::getFPTOUINT(Op0.getValueType(), N->getValueType(0)); 1001 MakeLibCallOptions CallOptions; 1002 EVT OpVT = Op0.getValueType(); 1003 CallOptions.setTypeListBeforeSoften(OpVT, N->getValueType(0), true); 1004 SDValue Chain = IsStrict ? N->getOperand(0) : SDValue(); 1005 SDValue Result; 1006 std::tie(Result, Chain) = 1007 makeLibCall(DAG, LC, N->getValueType(0), Op0, CallOptions, DL, Chain); 1008 Results.push_back(Result); 1009 if (IsStrict) 1010 Results.push_back(Chain); 1011 break; 1012 } 1013 case ISD::READCYCLECOUNTER: { 1014 assert(!Subtarget.is64Bit() && 1015 "READCYCLECOUNTER only has custom type legalization on riscv32"); 1016 1017 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other); 1018 SDValue RCW = 1019 DAG.getNode(RISCVISD::READ_CYCLE_WIDE, DL, VTs, N->getOperand(0)); 1020 1021 Results.push_back( 1022 DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, RCW, RCW.getValue(1))); 1023 Results.push_back(RCW.getValue(2)); 1024 break; 1025 } 1026 case ISD::ADD: 1027 case ISD::SUB: 1028 case ISD::MUL: 1029 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 1030 "Unexpected custom legalisation"); 1031 if (N->getOperand(1).getOpcode() == ISD::Constant) 1032 return; 1033 Results.push_back(customLegalizeToWOpWithSExt(N, DAG)); 1034 break; 1035 case ISD::SHL: 1036 case ISD::SRA: 1037 case ISD::SRL: 1038 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 1039 "Unexpected custom legalisation"); 1040 if (N->getOperand(1).getOpcode() == ISD::Constant) 1041 return; 1042 Results.push_back(customLegalizeToWOp(N, DAG)); 1043 break; 1044 case ISD::ROTL: 1045 case ISD::ROTR: 1046 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 1047 "Unexpected custom legalisation"); 1048 Results.push_back(customLegalizeToWOp(N, DAG)); 1049 break; 1050 case ISD::SDIV: 1051 case ISD::UDIV: 1052 case ISD::UREM: 1053 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 1054 Subtarget.hasStdExtM() && "Unexpected custom legalisation"); 1055 if (N->getOperand(0).getOpcode() == ISD::Constant || 1056 N->getOperand(1).getOpcode() == ISD::Constant) 1057 return; 1058 Results.push_back(customLegalizeToWOp(N, DAG)); 1059 break; 1060 case ISD::BITCAST: { 1061 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 1062 Subtarget.hasStdExtF() && "Unexpected custom legalisation"); 1063 SDValue Op0 = N->getOperand(0); 1064 if (Op0.getValueType() != MVT::f32) 1065 return; 1066 SDValue FPConv = 1067 DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Op0); 1068 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, FPConv)); 1069 break; 1070 } 1071 case RISCVISD::GREVI: 1072 case RISCVISD::GORCI: { 1073 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 1074 "Unexpected custom legalisation"); 1075 // This is similar to customLegalizeToWOp, except that we pass the second 1076 // operand (a TargetConstant) straight through: it is already of type 1077 // XLenVT. 1078 SDLoc DL(N); 1079 RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode()); 1080 SDValue NewOp0 = 1081 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 1082 SDValue NewRes = 1083 DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, N->getOperand(1)); 1084 // ReplaceNodeResults requires we maintain the same type for the return 1085 // value. 1086 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes)); 1087 break; 1088 } 1089 case ISD::BSWAP: 1090 case ISD::BITREVERSE: { 1091 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 1092 Subtarget.hasStdExtZbp() && "Unexpected custom legalisation"); 1093 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, 1094 N->getOperand(0)); 1095 unsigned Imm = N->getOpcode() == ISD::BITREVERSE ? 31 : 24; 1096 SDValue GREVIW = DAG.getNode(RISCVISD::GREVIW, DL, MVT::i64, NewOp0, 1097 DAG.getTargetConstant(Imm, DL, 1098 Subtarget.getXLenVT())); 1099 // ReplaceNodeResults requires we maintain the same type for the return 1100 // value. 1101 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, GREVIW)); 1102 break; 1103 } 1104 case ISD::FSHL: 1105 case ISD::FSHR: { 1106 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 1107 Subtarget.hasStdExtZbt() && "Unexpected custom legalisation"); 1108 SDValue NewOp0 = 1109 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 1110 SDValue NewOp1 = 1111 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 1112 SDValue NewOp2 = 1113 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 1114 // FSLW/FSRW take a 6 bit shift amount but i32 FSHL/FSHR only use 5 bits. 1115 // Mask the shift amount to 5 bits. 1116 NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2, 1117 DAG.getConstant(0x1f, DL, MVT::i64)); 1118 unsigned Opc = 1119 N->getOpcode() == ISD::FSHL ? RISCVISD::FSLW : RISCVISD::FSRW; 1120 SDValue NewOp = DAG.getNode(Opc, DL, MVT::i64, NewOp0, NewOp1, NewOp2); 1121 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewOp)); 1122 break; 1123 } 1124 } 1125 } 1126 1127 // A structure to hold one of the bit-manipulation patterns below. Together, a 1128 // SHL and non-SHL pattern may form a bit-manipulation pair on a single source: 1129 // (or (and (shl x, 1), 0xAAAAAAAA), 1130 // (and (srl x, 1), 0x55555555)) 1131 struct RISCVBitmanipPat { 1132 SDValue Op; 1133 unsigned ShAmt; 1134 bool IsSHL; 1135 1136 bool formsPairWith(const RISCVBitmanipPat &Other) const { 1137 return Op == Other.Op && ShAmt == Other.ShAmt && IsSHL != Other.IsSHL; 1138 } 1139 }; 1140 1141 // Matches any of the following bit-manipulation patterns: 1142 // (and (shl x, 1), (0x55555555 << 1)) 1143 // (and (srl x, 1), 0x55555555) 1144 // (shl (and x, 0x55555555), 1) 1145 // (srl (and x, (0x55555555 << 1)), 1) 1146 // where the shift amount and mask may vary thus: 1147 // [1] = 0x55555555 / 0xAAAAAAAA 1148 // [2] = 0x33333333 / 0xCCCCCCCC 1149 // [4] = 0x0F0F0F0F / 0xF0F0F0F0 1150 // [8] = 0x00FF00FF / 0xFF00FF00 1151 // [16] = 0x0000FFFF / 0xFFFFFFFF 1152 // [32] = 0x00000000FFFFFFFF / 0xFFFFFFFF00000000 (for RV64) 1153 static Optional<RISCVBitmanipPat> matchRISCVBitmanipPat(SDValue Op) { 1154 Optional<uint64_t> Mask; 1155 // Optionally consume a mask around the shift operation. 1156 if (Op.getOpcode() == ISD::AND && isa<ConstantSDNode>(Op.getOperand(1))) { 1157 Mask = Op.getConstantOperandVal(1); 1158 Op = Op.getOperand(0); 1159 } 1160 if (Op.getOpcode() != ISD::SHL && Op.getOpcode() != ISD::SRL) 1161 return None; 1162 bool IsSHL = Op.getOpcode() == ISD::SHL; 1163 1164 if (!isa<ConstantSDNode>(Op.getOperand(1))) 1165 return None; 1166 auto ShAmt = Op.getConstantOperandVal(1); 1167 1168 if (!isPowerOf2_64(ShAmt)) 1169 return None; 1170 1171 // These are the unshifted masks which we use to match bit-manipulation 1172 // patterns. They may be shifted left in certain circumstances. 1173 static const uint64_t BitmanipMasks[] = { 1174 0x5555555555555555ULL, 0x3333333333333333ULL, 0x0F0F0F0F0F0F0F0FULL, 1175 0x00FF00FF00FF00FFULL, 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL, 1176 }; 1177 1178 unsigned MaskIdx = Log2_64(ShAmt); 1179 if (MaskIdx >= array_lengthof(BitmanipMasks)) 1180 return None; 1181 1182 auto Src = Op.getOperand(0); 1183 1184 unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32; 1185 auto ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width); 1186 1187 // The expected mask is shifted left when the AND is found around SHL 1188 // patterns. 1189 // ((x >> 1) & 0x55555555) 1190 // ((x << 1) & 0xAAAAAAAA) 1191 bool SHLExpMask = IsSHL; 1192 1193 if (!Mask) { 1194 // Sometimes LLVM keeps the mask as an operand of the shift, typically when 1195 // the mask is all ones: consume that now. 1196 if (Src.getOpcode() == ISD::AND && isa<ConstantSDNode>(Src.getOperand(1))) { 1197 Mask = Src.getConstantOperandVal(1); 1198 Src = Src.getOperand(0); 1199 // The expected mask is now in fact shifted left for SRL, so reverse the 1200 // decision. 1201 // ((x & 0xAAAAAAAA) >> 1) 1202 // ((x & 0x55555555) << 1) 1203 SHLExpMask = !SHLExpMask; 1204 } else { 1205 // Use a default shifted mask of all-ones if there's no AND, truncated 1206 // down to the expected width. This simplifies the logic later on. 1207 Mask = maskTrailingOnes<uint64_t>(Width); 1208 *Mask &= (IsSHL ? *Mask << ShAmt : *Mask >> ShAmt); 1209 } 1210 } 1211 1212 if (SHLExpMask) 1213 ExpMask <<= ShAmt; 1214 1215 if (Mask != ExpMask) 1216 return None; 1217 1218 return RISCVBitmanipPat{Src, (unsigned)ShAmt, IsSHL}; 1219 } 1220 1221 // Match the following pattern as a GREVI(W) operation 1222 // (or (BITMANIP_SHL x), (BITMANIP_SRL x)) 1223 static SDValue combineORToGREV(SDValue Op, SelectionDAG &DAG, 1224 const RISCVSubtarget &Subtarget) { 1225 if (Op.getSimpleValueType() == Subtarget.getXLenVT() || 1226 (Subtarget.is64Bit() && Op.getSimpleValueType() == MVT::i32)) { 1227 auto LHS = matchRISCVBitmanipPat(Op.getOperand(0)); 1228 auto RHS = matchRISCVBitmanipPat(Op.getOperand(1)); 1229 if (LHS && RHS && LHS->formsPairWith(*RHS)) { 1230 SDLoc DL(Op); 1231 return DAG.getNode( 1232 RISCVISD::GREVI, DL, Op.getValueType(), LHS->Op, 1233 DAG.getTargetConstant(LHS->ShAmt, DL, Subtarget.getXLenVT())); 1234 } 1235 } 1236 return SDValue(); 1237 } 1238 1239 // Matches any the following pattern as a GORCI(W) operation 1240 // 1. (or (GREVI x, shamt), x) 1241 // 2. (or x, (GREVI x, shamt)) 1242 // 3. (or (or (BITMANIP_SHL x), x), (BITMANIP_SRL x)) 1243 // Note that with the variant of 3., 1244 // (or (or (BITMANIP_SHL x), (BITMANIP_SRL x)), x) 1245 // the inner pattern will first be matched as GREVI and then the outer 1246 // pattern will be matched to GORC via the first rule above. 1247 static SDValue combineORToGORC(SDValue Op, SelectionDAG &DAG, 1248 const RISCVSubtarget &Subtarget) { 1249 if (Op.getSimpleValueType() == Subtarget.getXLenVT() || 1250 (Subtarget.is64Bit() && Op.getSimpleValueType() == MVT::i32)) { 1251 SDLoc DL(Op); 1252 SDValue Op0 = Op.getOperand(0); 1253 SDValue Op1 = Op.getOperand(1); 1254 1255 // Check for either commutable permutation of (or (GREVI x, shamt), x) 1256 for (const auto &OpPair : 1257 {std::make_pair(Op0, Op1), std::make_pair(Op1, Op0)}) { 1258 if (OpPair.first.getOpcode() == RISCVISD::GREVI && 1259 OpPair.first.getOperand(0) == OpPair.second) 1260 return DAG.getNode(RISCVISD::GORCI, DL, Op.getValueType(), 1261 OpPair.second, OpPair.first.getOperand(1)); 1262 } 1263 1264 // OR is commutable so canonicalize its OR operand to the left 1265 if (Op0.getOpcode() != ISD::OR && Op1.getOpcode() == ISD::OR) 1266 std::swap(Op0, Op1); 1267 if (Op0.getOpcode() != ISD::OR) 1268 return SDValue(); 1269 SDValue OrOp0 = Op0.getOperand(0); 1270 SDValue OrOp1 = Op0.getOperand(1); 1271 auto LHS = matchRISCVBitmanipPat(OrOp0); 1272 // OR is commutable so swap the operands and try again: x might have been 1273 // on the left 1274 if (!LHS) { 1275 std::swap(OrOp0, OrOp1); 1276 LHS = matchRISCVBitmanipPat(OrOp0); 1277 } 1278 auto RHS = matchRISCVBitmanipPat(Op1); 1279 if (LHS && RHS && LHS->formsPairWith(*RHS) && LHS->Op == OrOp1) { 1280 return DAG.getNode( 1281 RISCVISD::GORCI, DL, Op.getValueType(), LHS->Op, 1282 DAG.getTargetConstant(LHS->ShAmt, DL, Subtarget.getXLenVT())); 1283 } 1284 } 1285 return SDValue(); 1286 } 1287 1288 SDValue RISCVTargetLowering::PerformDAGCombine(SDNode *N, 1289 DAGCombinerInfo &DCI) const { 1290 SelectionDAG &DAG = DCI.DAG; 1291 1292 switch (N->getOpcode()) { 1293 default: 1294 break; 1295 case RISCVISD::SplitF64: { 1296 SDValue Op0 = N->getOperand(0); 1297 // If the input to SplitF64 is just BuildPairF64 then the operation is 1298 // redundant. Instead, use BuildPairF64's operands directly. 1299 if (Op0->getOpcode() == RISCVISD::BuildPairF64) 1300 return DCI.CombineTo(N, Op0.getOperand(0), Op0.getOperand(1)); 1301 1302 SDLoc DL(N); 1303 1304 // It's cheaper to materialise two 32-bit integers than to load a double 1305 // from the constant pool and transfer it to integer registers through the 1306 // stack. 1307 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op0)) { 1308 APInt V = C->getValueAPF().bitcastToAPInt(); 1309 SDValue Lo = DAG.getConstant(V.trunc(32), DL, MVT::i32); 1310 SDValue Hi = DAG.getConstant(V.lshr(32).trunc(32), DL, MVT::i32); 1311 return DCI.CombineTo(N, Lo, Hi); 1312 } 1313 1314 // This is a target-specific version of a DAGCombine performed in 1315 // DAGCombiner::visitBITCAST. It performs the equivalent of: 1316 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) 1317 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) 1318 if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) || 1319 !Op0.getNode()->hasOneUse()) 1320 break; 1321 SDValue NewSplitF64 = 1322 DAG.getNode(RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), 1323 Op0.getOperand(0)); 1324 SDValue Lo = NewSplitF64.getValue(0); 1325 SDValue Hi = NewSplitF64.getValue(1); 1326 APInt SignBit = APInt::getSignMask(32); 1327 if (Op0.getOpcode() == ISD::FNEG) { 1328 SDValue NewHi = DAG.getNode(ISD::XOR, DL, MVT::i32, Hi, 1329 DAG.getConstant(SignBit, DL, MVT::i32)); 1330 return DCI.CombineTo(N, Lo, NewHi); 1331 } 1332 assert(Op0.getOpcode() == ISD::FABS); 1333 SDValue NewHi = DAG.getNode(ISD::AND, DL, MVT::i32, Hi, 1334 DAG.getConstant(~SignBit, DL, MVT::i32)); 1335 return DCI.CombineTo(N, Lo, NewHi); 1336 } 1337 case RISCVISD::SLLW: 1338 case RISCVISD::SRAW: 1339 case RISCVISD::SRLW: 1340 case RISCVISD::ROLW: 1341 case RISCVISD::RORW: { 1342 // Only the lower 32 bits of LHS and lower 5 bits of RHS are read. 1343 SDValue LHS = N->getOperand(0); 1344 SDValue RHS = N->getOperand(1); 1345 APInt LHSMask = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 32); 1346 APInt RHSMask = APInt::getLowBitsSet(RHS.getValueSizeInBits(), 5); 1347 if (SimplifyDemandedBits(N->getOperand(0), LHSMask, DCI) || 1348 SimplifyDemandedBits(N->getOperand(1), RHSMask, DCI)) { 1349 if (N->getOpcode() != ISD::DELETED_NODE) 1350 DCI.AddToWorklist(N); 1351 return SDValue(N, 0); 1352 } 1353 break; 1354 } 1355 case RISCVISD::FSLW: 1356 case RISCVISD::FSRW: { 1357 // Only the lower 32 bits of Values and lower 6 bits of shift amount are 1358 // read. 1359 SDValue Op0 = N->getOperand(0); 1360 SDValue Op1 = N->getOperand(1); 1361 SDValue ShAmt = N->getOperand(2); 1362 APInt OpMask = APInt::getLowBitsSet(Op0.getValueSizeInBits(), 32); 1363 APInt ShAmtMask = APInt::getLowBitsSet(ShAmt.getValueSizeInBits(), 6); 1364 if (SimplifyDemandedBits(Op0, OpMask, DCI) || 1365 SimplifyDemandedBits(Op1, OpMask, DCI) || 1366 SimplifyDemandedBits(ShAmt, ShAmtMask, DCI)) { 1367 if (N->getOpcode() != ISD::DELETED_NODE) 1368 DCI.AddToWorklist(N); 1369 return SDValue(N, 0); 1370 } 1371 break; 1372 } 1373 case RISCVISD::GREVIW: 1374 case RISCVISD::GORCIW: { 1375 // Only the lower 32 bits of the first operand are read 1376 SDValue Op0 = N->getOperand(0); 1377 APInt Mask = APInt::getLowBitsSet(Op0.getValueSizeInBits(), 32); 1378 if (SimplifyDemandedBits(Op0, Mask, DCI)) { 1379 if (N->getOpcode() != ISD::DELETED_NODE) 1380 DCI.AddToWorklist(N); 1381 return SDValue(N, 0); 1382 } 1383 break; 1384 } 1385 case RISCVISD::FMV_X_ANYEXTW_RV64: { 1386 SDLoc DL(N); 1387 SDValue Op0 = N->getOperand(0); 1388 // If the input to FMV_X_ANYEXTW_RV64 is just FMV_W_X_RV64 then the 1389 // conversion is unnecessary and can be replaced with an ANY_EXTEND 1390 // of the FMV_W_X_RV64 operand. 1391 if (Op0->getOpcode() == RISCVISD::FMV_W_X_RV64) { 1392 assert(Op0.getOperand(0).getValueType() == MVT::i64 && 1393 "Unexpected value type!"); 1394 return Op0.getOperand(0); 1395 } 1396 1397 // This is a target-specific version of a DAGCombine performed in 1398 // DAGCombiner::visitBITCAST. It performs the equivalent of: 1399 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) 1400 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) 1401 if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) || 1402 !Op0.getNode()->hasOneUse()) 1403 break; 1404 SDValue NewFMV = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, 1405 Op0.getOperand(0)); 1406 APInt SignBit = APInt::getSignMask(32).sext(64); 1407 if (Op0.getOpcode() == ISD::FNEG) 1408 return DAG.getNode(ISD::XOR, DL, MVT::i64, NewFMV, 1409 DAG.getConstant(SignBit, DL, MVT::i64)); 1410 1411 assert(Op0.getOpcode() == ISD::FABS); 1412 return DAG.getNode(ISD::AND, DL, MVT::i64, NewFMV, 1413 DAG.getConstant(~SignBit, DL, MVT::i64)); 1414 } 1415 case RISCVISD::GREVI: { 1416 // Combine (GREVI (GREVI x, C2), C1) -> (GREVI x, C1^C2) when C1^C2 is 1417 // non-zero, and to x when it is. Any repeated GREVI stage undoes itself. 1418 SDLoc DL(N); 1419 auto GREVSrc = N->getOperand(0); 1420 uint64_t ShAmt1 = N->getConstantOperandVal(1); 1421 if (GREVSrc->getOpcode() != RISCVISD::GREVI) 1422 break; 1423 uint64_t ShAmt2 = GREVSrc.getConstantOperandVal(1); 1424 GREVSrc = GREVSrc->getOperand(0); 1425 uint64_t CombinedShAmt = ShAmt1 ^ ShAmt2; 1426 if (CombinedShAmt == 0) 1427 return GREVSrc; 1428 return DAG.getNode( 1429 RISCVISD::GREVI, DL, N->getValueType(0), GREVSrc, 1430 DAG.getTargetConstant(CombinedShAmt, DL, Subtarget.getXLenVT())); 1431 } 1432 case ISD::OR: 1433 if (auto GREV = combineORToGREV(SDValue(N, 0), DCI.DAG, Subtarget)) 1434 return GREV; 1435 if (auto GORC = combineORToGORC(SDValue(N, 0), DCI.DAG, Subtarget)) 1436 return GORC; 1437 break; 1438 } 1439 1440 return SDValue(); 1441 } 1442 1443 bool RISCVTargetLowering::isDesirableToCommuteWithShift( 1444 const SDNode *N, CombineLevel Level) const { 1445 // The following folds are only desirable if `(OP _, c1 << c2)` can be 1446 // materialised in fewer instructions than `(OP _, c1)`: 1447 // 1448 // (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2) 1449 // (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2) 1450 SDValue N0 = N->getOperand(0); 1451 EVT Ty = N0.getValueType(); 1452 if (Ty.isScalarInteger() && 1453 (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::OR)) { 1454 auto *C1 = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 1455 auto *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1)); 1456 if (C1 && C2) { 1457 APInt C1Int = C1->getAPIntValue(); 1458 APInt ShiftedC1Int = C1Int << C2->getAPIntValue(); 1459 1460 // We can materialise `c1 << c2` into an add immediate, so it's "free", 1461 // and the combine should happen, to potentially allow further combines 1462 // later. 1463 if (ShiftedC1Int.getMinSignedBits() <= 64 && 1464 isLegalAddImmediate(ShiftedC1Int.getSExtValue())) 1465 return true; 1466 1467 // We can materialise `c1` in an add immediate, so it's "free", and the 1468 // combine should be prevented. 1469 if (C1Int.getMinSignedBits() <= 64 && 1470 isLegalAddImmediate(C1Int.getSExtValue())) 1471 return false; 1472 1473 // Neither constant will fit into an immediate, so find materialisation 1474 // costs. 1475 int C1Cost = RISCVMatInt::getIntMatCost(C1Int, Ty.getSizeInBits(), 1476 Subtarget.is64Bit()); 1477 int ShiftedC1Cost = RISCVMatInt::getIntMatCost( 1478 ShiftedC1Int, Ty.getSizeInBits(), Subtarget.is64Bit()); 1479 1480 // Materialising `c1` is cheaper than materialising `c1 << c2`, so the 1481 // combine should be prevented. 1482 if (C1Cost < ShiftedC1Cost) 1483 return false; 1484 } 1485 } 1486 return true; 1487 } 1488 1489 unsigned RISCVTargetLowering::ComputeNumSignBitsForTargetNode( 1490 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 1491 unsigned Depth) const { 1492 switch (Op.getOpcode()) { 1493 default: 1494 break; 1495 case RISCVISD::SLLW: 1496 case RISCVISD::SRAW: 1497 case RISCVISD::SRLW: 1498 case RISCVISD::DIVW: 1499 case RISCVISD::DIVUW: 1500 case RISCVISD::REMUW: 1501 case RISCVISD::ROLW: 1502 case RISCVISD::RORW: 1503 case RISCVISD::GREVIW: 1504 case RISCVISD::GORCIW: 1505 case RISCVISD::FSLW: 1506 case RISCVISD::FSRW: 1507 // TODO: As the result is sign-extended, this is conservatively correct. A 1508 // more precise answer could be calculated for SRAW depending on known 1509 // bits in the shift amount. 1510 return 33; 1511 } 1512 1513 return 1; 1514 } 1515 1516 static MachineBasicBlock *emitReadCycleWidePseudo(MachineInstr &MI, 1517 MachineBasicBlock *BB) { 1518 assert(MI.getOpcode() == RISCV::ReadCycleWide && "Unexpected instruction"); 1519 1520 // To read the 64-bit cycle CSR on a 32-bit target, we read the two halves. 1521 // Should the count have wrapped while it was being read, we need to try 1522 // again. 1523 // ... 1524 // read: 1525 // rdcycleh x3 # load high word of cycle 1526 // rdcycle x2 # load low word of cycle 1527 // rdcycleh x4 # load high word of cycle 1528 // bne x3, x4, read # check if high word reads match, otherwise try again 1529 // ... 1530 1531 MachineFunction &MF = *BB->getParent(); 1532 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 1533 MachineFunction::iterator It = ++BB->getIterator(); 1534 1535 MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB); 1536 MF.insert(It, LoopMBB); 1537 1538 MachineBasicBlock *DoneMBB = MF.CreateMachineBasicBlock(LLVM_BB); 1539 MF.insert(It, DoneMBB); 1540 1541 // Transfer the remainder of BB and its successor edges to DoneMBB. 1542 DoneMBB->splice(DoneMBB->begin(), BB, 1543 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 1544 DoneMBB->transferSuccessorsAndUpdatePHIs(BB); 1545 1546 BB->addSuccessor(LoopMBB); 1547 1548 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 1549 Register ReadAgainReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 1550 Register LoReg = MI.getOperand(0).getReg(); 1551 Register HiReg = MI.getOperand(1).getReg(); 1552 DebugLoc DL = MI.getDebugLoc(); 1553 1554 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 1555 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), HiReg) 1556 .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding) 1557 .addReg(RISCV::X0); 1558 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), LoReg) 1559 .addImm(RISCVSysReg::lookupSysRegByName("CYCLE")->Encoding) 1560 .addReg(RISCV::X0); 1561 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), ReadAgainReg) 1562 .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding) 1563 .addReg(RISCV::X0); 1564 1565 BuildMI(LoopMBB, DL, TII->get(RISCV::BNE)) 1566 .addReg(HiReg) 1567 .addReg(ReadAgainReg) 1568 .addMBB(LoopMBB); 1569 1570 LoopMBB->addSuccessor(LoopMBB); 1571 LoopMBB->addSuccessor(DoneMBB); 1572 1573 MI.eraseFromParent(); 1574 1575 return DoneMBB; 1576 } 1577 1578 static MachineBasicBlock *emitSplitF64Pseudo(MachineInstr &MI, 1579 MachineBasicBlock *BB) { 1580 assert(MI.getOpcode() == RISCV::SplitF64Pseudo && "Unexpected instruction"); 1581 1582 MachineFunction &MF = *BB->getParent(); 1583 DebugLoc DL = MI.getDebugLoc(); 1584 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 1585 const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo(); 1586 Register LoReg = MI.getOperand(0).getReg(); 1587 Register HiReg = MI.getOperand(1).getReg(); 1588 Register SrcReg = MI.getOperand(2).getReg(); 1589 const TargetRegisterClass *SrcRC = &RISCV::FPR64RegClass; 1590 int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF); 1591 1592 TII.storeRegToStackSlot(*BB, MI, SrcReg, MI.getOperand(2).isKill(), FI, SrcRC, 1593 RI); 1594 MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI); 1595 MachineMemOperand *MMOLo = 1596 MF.getMachineMemOperand(MPI, MachineMemOperand::MOLoad, 4, Align(8)); 1597 MachineMemOperand *MMOHi = MF.getMachineMemOperand( 1598 MPI.getWithOffset(4), MachineMemOperand::MOLoad, 4, Align(8)); 1599 BuildMI(*BB, MI, DL, TII.get(RISCV::LW), LoReg) 1600 .addFrameIndex(FI) 1601 .addImm(0) 1602 .addMemOperand(MMOLo); 1603 BuildMI(*BB, MI, DL, TII.get(RISCV::LW), HiReg) 1604 .addFrameIndex(FI) 1605 .addImm(4) 1606 .addMemOperand(MMOHi); 1607 MI.eraseFromParent(); // The pseudo instruction is gone now. 1608 return BB; 1609 } 1610 1611 static MachineBasicBlock *emitBuildPairF64Pseudo(MachineInstr &MI, 1612 MachineBasicBlock *BB) { 1613 assert(MI.getOpcode() == RISCV::BuildPairF64Pseudo && 1614 "Unexpected instruction"); 1615 1616 MachineFunction &MF = *BB->getParent(); 1617 DebugLoc DL = MI.getDebugLoc(); 1618 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 1619 const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo(); 1620 Register DstReg = MI.getOperand(0).getReg(); 1621 Register LoReg = MI.getOperand(1).getReg(); 1622 Register HiReg = MI.getOperand(2).getReg(); 1623 const TargetRegisterClass *DstRC = &RISCV::FPR64RegClass; 1624 int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF); 1625 1626 MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI); 1627 MachineMemOperand *MMOLo = 1628 MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Align(8)); 1629 MachineMemOperand *MMOHi = MF.getMachineMemOperand( 1630 MPI.getWithOffset(4), MachineMemOperand::MOStore, 4, Align(8)); 1631 BuildMI(*BB, MI, DL, TII.get(RISCV::SW)) 1632 .addReg(LoReg, getKillRegState(MI.getOperand(1).isKill())) 1633 .addFrameIndex(FI) 1634 .addImm(0) 1635 .addMemOperand(MMOLo); 1636 BuildMI(*BB, MI, DL, TII.get(RISCV::SW)) 1637 .addReg(HiReg, getKillRegState(MI.getOperand(2).isKill())) 1638 .addFrameIndex(FI) 1639 .addImm(4) 1640 .addMemOperand(MMOHi); 1641 TII.loadRegFromStackSlot(*BB, MI, DstReg, FI, DstRC, RI); 1642 MI.eraseFromParent(); // The pseudo instruction is gone now. 1643 return BB; 1644 } 1645 1646 static bool isSelectPseudo(MachineInstr &MI) { 1647 switch (MI.getOpcode()) { 1648 default: 1649 return false; 1650 case RISCV::Select_GPR_Using_CC_GPR: 1651 case RISCV::Select_FPR32_Using_CC_GPR: 1652 case RISCV::Select_FPR64_Using_CC_GPR: 1653 return true; 1654 } 1655 } 1656 1657 static MachineBasicBlock *emitSelectPseudo(MachineInstr &MI, 1658 MachineBasicBlock *BB) { 1659 // To "insert" Select_* instructions, we actually have to insert the triangle 1660 // control-flow pattern. The incoming instructions know the destination vreg 1661 // to set, the condition code register to branch on, the true/false values to 1662 // select between, and the condcode to use to select the appropriate branch. 1663 // 1664 // We produce the following control flow: 1665 // HeadMBB 1666 // | \ 1667 // | IfFalseMBB 1668 // | / 1669 // TailMBB 1670 // 1671 // When we find a sequence of selects we attempt to optimize their emission 1672 // by sharing the control flow. Currently we only handle cases where we have 1673 // multiple selects with the exact same condition (same LHS, RHS and CC). 1674 // The selects may be interleaved with other instructions if the other 1675 // instructions meet some requirements we deem safe: 1676 // - They are debug instructions. Otherwise, 1677 // - They do not have side-effects, do not access memory and their inputs do 1678 // not depend on the results of the select pseudo-instructions. 1679 // The TrueV/FalseV operands of the selects cannot depend on the result of 1680 // previous selects in the sequence. 1681 // These conditions could be further relaxed. See the X86 target for a 1682 // related approach and more information. 1683 Register LHS = MI.getOperand(1).getReg(); 1684 Register RHS = MI.getOperand(2).getReg(); 1685 auto CC = static_cast<ISD::CondCode>(MI.getOperand(3).getImm()); 1686 1687 SmallVector<MachineInstr *, 4> SelectDebugValues; 1688 SmallSet<Register, 4> SelectDests; 1689 SelectDests.insert(MI.getOperand(0).getReg()); 1690 1691 MachineInstr *LastSelectPseudo = &MI; 1692 1693 for (auto E = BB->end(), SequenceMBBI = MachineBasicBlock::iterator(MI); 1694 SequenceMBBI != E; ++SequenceMBBI) { 1695 if (SequenceMBBI->isDebugInstr()) 1696 continue; 1697 else if (isSelectPseudo(*SequenceMBBI)) { 1698 if (SequenceMBBI->getOperand(1).getReg() != LHS || 1699 SequenceMBBI->getOperand(2).getReg() != RHS || 1700 SequenceMBBI->getOperand(3).getImm() != CC || 1701 SelectDests.count(SequenceMBBI->getOperand(4).getReg()) || 1702 SelectDests.count(SequenceMBBI->getOperand(5).getReg())) 1703 break; 1704 LastSelectPseudo = &*SequenceMBBI; 1705 SequenceMBBI->collectDebugValues(SelectDebugValues); 1706 SelectDests.insert(SequenceMBBI->getOperand(0).getReg()); 1707 } else { 1708 if (SequenceMBBI->hasUnmodeledSideEffects() || 1709 SequenceMBBI->mayLoadOrStore()) 1710 break; 1711 if (llvm::any_of(SequenceMBBI->operands(), [&](MachineOperand &MO) { 1712 return MO.isReg() && MO.isUse() && SelectDests.count(MO.getReg()); 1713 })) 1714 break; 1715 } 1716 } 1717 1718 const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo(); 1719 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 1720 DebugLoc DL = MI.getDebugLoc(); 1721 MachineFunction::iterator I = ++BB->getIterator(); 1722 1723 MachineBasicBlock *HeadMBB = BB; 1724 MachineFunction *F = BB->getParent(); 1725 MachineBasicBlock *TailMBB = F->CreateMachineBasicBlock(LLVM_BB); 1726 MachineBasicBlock *IfFalseMBB = F->CreateMachineBasicBlock(LLVM_BB); 1727 1728 F->insert(I, IfFalseMBB); 1729 F->insert(I, TailMBB); 1730 1731 // Transfer debug instructions associated with the selects to TailMBB. 1732 for (MachineInstr *DebugInstr : SelectDebugValues) { 1733 TailMBB->push_back(DebugInstr->removeFromParent()); 1734 } 1735 1736 // Move all instructions after the sequence to TailMBB. 1737 TailMBB->splice(TailMBB->end(), HeadMBB, 1738 std::next(LastSelectPseudo->getIterator()), HeadMBB->end()); 1739 // Update machine-CFG edges by transferring all successors of the current 1740 // block to the new block which will contain the Phi nodes for the selects. 1741 TailMBB->transferSuccessorsAndUpdatePHIs(HeadMBB); 1742 // Set the successors for HeadMBB. 1743 HeadMBB->addSuccessor(IfFalseMBB); 1744 HeadMBB->addSuccessor(TailMBB); 1745 1746 // Insert appropriate branch. 1747 unsigned Opcode = getBranchOpcodeForIntCondCode(CC); 1748 1749 BuildMI(HeadMBB, DL, TII.get(Opcode)) 1750 .addReg(LHS) 1751 .addReg(RHS) 1752 .addMBB(TailMBB); 1753 1754 // IfFalseMBB just falls through to TailMBB. 1755 IfFalseMBB->addSuccessor(TailMBB); 1756 1757 // Create PHIs for all of the select pseudo-instructions. 1758 auto SelectMBBI = MI.getIterator(); 1759 auto SelectEnd = std::next(LastSelectPseudo->getIterator()); 1760 auto InsertionPoint = TailMBB->begin(); 1761 while (SelectMBBI != SelectEnd) { 1762 auto Next = std::next(SelectMBBI); 1763 if (isSelectPseudo(*SelectMBBI)) { 1764 // %Result = phi [ %TrueValue, HeadMBB ], [ %FalseValue, IfFalseMBB ] 1765 BuildMI(*TailMBB, InsertionPoint, SelectMBBI->getDebugLoc(), 1766 TII.get(RISCV::PHI), SelectMBBI->getOperand(0).getReg()) 1767 .addReg(SelectMBBI->getOperand(4).getReg()) 1768 .addMBB(HeadMBB) 1769 .addReg(SelectMBBI->getOperand(5).getReg()) 1770 .addMBB(IfFalseMBB); 1771 SelectMBBI->eraseFromParent(); 1772 } 1773 SelectMBBI = Next; 1774 } 1775 1776 F->getProperties().reset(MachineFunctionProperties::Property::NoPHIs); 1777 return TailMBB; 1778 } 1779 1780 MachineBasicBlock * 1781 RISCVTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 1782 MachineBasicBlock *BB) const { 1783 switch (MI.getOpcode()) { 1784 default: 1785 llvm_unreachable("Unexpected instr type to insert"); 1786 case RISCV::ReadCycleWide: 1787 assert(!Subtarget.is64Bit() && 1788 "ReadCycleWrite is only to be used on riscv32"); 1789 return emitReadCycleWidePseudo(MI, BB); 1790 case RISCV::Select_GPR_Using_CC_GPR: 1791 case RISCV::Select_FPR32_Using_CC_GPR: 1792 case RISCV::Select_FPR64_Using_CC_GPR: 1793 return emitSelectPseudo(MI, BB); 1794 case RISCV::BuildPairF64Pseudo: 1795 return emitBuildPairF64Pseudo(MI, BB); 1796 case RISCV::SplitF64Pseudo: 1797 return emitSplitF64Pseudo(MI, BB); 1798 } 1799 } 1800 1801 // Calling Convention Implementation. 1802 // The expectations for frontend ABI lowering vary from target to target. 1803 // Ideally, an LLVM frontend would be able to avoid worrying about many ABI 1804 // details, but this is a longer term goal. For now, we simply try to keep the 1805 // role of the frontend as simple and well-defined as possible. The rules can 1806 // be summarised as: 1807 // * Never split up large scalar arguments. We handle them here. 1808 // * If a hardfloat calling convention is being used, and the struct may be 1809 // passed in a pair of registers (fp+fp, int+fp), and both registers are 1810 // available, then pass as two separate arguments. If either the GPRs or FPRs 1811 // are exhausted, then pass according to the rule below. 1812 // * If a struct could never be passed in registers or directly in a stack 1813 // slot (as it is larger than 2*XLEN and the floating point rules don't 1814 // apply), then pass it using a pointer with the byval attribute. 1815 // * If a struct is less than 2*XLEN, then coerce to either a two-element 1816 // word-sized array or a 2*XLEN scalar (depending on alignment). 1817 // * The frontend can determine whether a struct is returned by reference or 1818 // not based on its size and fields. If it will be returned by reference, the 1819 // frontend must modify the prototype so a pointer with the sret annotation is 1820 // passed as the first argument. This is not necessary for large scalar 1821 // returns. 1822 // * Struct return values and varargs should be coerced to structs containing 1823 // register-size fields in the same situations they would be for fixed 1824 // arguments. 1825 1826 static const MCPhysReg ArgGPRs[] = { 1827 RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, 1828 RISCV::X14, RISCV::X15, RISCV::X16, RISCV::X17 1829 }; 1830 static const MCPhysReg ArgFPR32s[] = { 1831 RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, 1832 RISCV::F14_F, RISCV::F15_F, RISCV::F16_F, RISCV::F17_F 1833 }; 1834 static const MCPhysReg ArgFPR64s[] = { 1835 RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, 1836 RISCV::F14_D, RISCV::F15_D, RISCV::F16_D, RISCV::F17_D 1837 }; 1838 1839 // Pass a 2*XLEN argument that has been split into two XLEN values through 1840 // registers or the stack as necessary. 1841 static bool CC_RISCVAssign2XLen(unsigned XLen, CCState &State, CCValAssign VA1, 1842 ISD::ArgFlagsTy ArgFlags1, unsigned ValNo2, 1843 MVT ValVT2, MVT LocVT2, 1844 ISD::ArgFlagsTy ArgFlags2) { 1845 unsigned XLenInBytes = XLen / 8; 1846 if (Register Reg = State.AllocateReg(ArgGPRs)) { 1847 // At least one half can be passed via register. 1848 State.addLoc(CCValAssign::getReg(VA1.getValNo(), VA1.getValVT(), Reg, 1849 VA1.getLocVT(), CCValAssign::Full)); 1850 } else { 1851 // Both halves must be passed on the stack, with proper alignment. 1852 Align StackAlign = 1853 std::max(Align(XLenInBytes), ArgFlags1.getNonZeroOrigAlign()); 1854 State.addLoc( 1855 CCValAssign::getMem(VA1.getValNo(), VA1.getValVT(), 1856 State.AllocateStack(XLenInBytes, StackAlign), 1857 VA1.getLocVT(), CCValAssign::Full)); 1858 State.addLoc(CCValAssign::getMem( 1859 ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)), 1860 LocVT2, CCValAssign::Full)); 1861 return false; 1862 } 1863 1864 if (Register Reg = State.AllocateReg(ArgGPRs)) { 1865 // The second half can also be passed via register. 1866 State.addLoc( 1867 CCValAssign::getReg(ValNo2, ValVT2, Reg, LocVT2, CCValAssign::Full)); 1868 } else { 1869 // The second half is passed via the stack, without additional alignment. 1870 State.addLoc(CCValAssign::getMem( 1871 ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)), 1872 LocVT2, CCValAssign::Full)); 1873 } 1874 1875 return false; 1876 } 1877 1878 // Implements the RISC-V calling convention. Returns true upon failure. 1879 static bool CC_RISCV(const DataLayout &DL, RISCVABI::ABI ABI, unsigned ValNo, 1880 MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, 1881 ISD::ArgFlagsTy ArgFlags, CCState &State, bool IsFixed, 1882 bool IsRet, Type *OrigTy) { 1883 unsigned XLen = DL.getLargestLegalIntTypeSizeInBits(); 1884 assert(XLen == 32 || XLen == 64); 1885 MVT XLenVT = XLen == 32 ? MVT::i32 : MVT::i64; 1886 1887 // Any return value split in to more than two values can't be returned 1888 // directly. 1889 if (IsRet && ValNo > 1) 1890 return true; 1891 1892 // UseGPRForF32 if targeting one of the soft-float ABIs, if passing a 1893 // variadic argument, or if no F32 argument registers are available. 1894 bool UseGPRForF32 = true; 1895 // UseGPRForF64 if targeting soft-float ABIs or an FLEN=32 ABI, if passing a 1896 // variadic argument, or if no F64 argument registers are available. 1897 bool UseGPRForF64 = true; 1898 1899 switch (ABI) { 1900 default: 1901 llvm_unreachable("Unexpected ABI"); 1902 case RISCVABI::ABI_ILP32: 1903 case RISCVABI::ABI_LP64: 1904 break; 1905 case RISCVABI::ABI_ILP32F: 1906 case RISCVABI::ABI_LP64F: 1907 UseGPRForF32 = !IsFixed; 1908 break; 1909 case RISCVABI::ABI_ILP32D: 1910 case RISCVABI::ABI_LP64D: 1911 UseGPRForF32 = !IsFixed; 1912 UseGPRForF64 = !IsFixed; 1913 break; 1914 } 1915 1916 if (State.getFirstUnallocated(ArgFPR32s) == array_lengthof(ArgFPR32s)) 1917 UseGPRForF32 = true; 1918 if (State.getFirstUnallocated(ArgFPR64s) == array_lengthof(ArgFPR64s)) 1919 UseGPRForF64 = true; 1920 1921 // From this point on, rely on UseGPRForF32, UseGPRForF64 and similar local 1922 // variables rather than directly checking against the target ABI. 1923 1924 if (UseGPRForF32 && ValVT == MVT::f32) { 1925 LocVT = XLenVT; 1926 LocInfo = CCValAssign::BCvt; 1927 } else if (UseGPRForF64 && XLen == 64 && ValVT == MVT::f64) { 1928 LocVT = MVT::i64; 1929 LocInfo = CCValAssign::BCvt; 1930 } 1931 1932 // If this is a variadic argument, the RISC-V calling convention requires 1933 // that it is assigned an 'even' or 'aligned' register if it has 8-byte 1934 // alignment (RV32) or 16-byte alignment (RV64). An aligned register should 1935 // be used regardless of whether the original argument was split during 1936 // legalisation or not. The argument will not be passed by registers if the 1937 // original type is larger than 2*XLEN, so the register alignment rule does 1938 // not apply. 1939 unsigned TwoXLenInBytes = (2 * XLen) / 8; 1940 if (!IsFixed && ArgFlags.getNonZeroOrigAlign() == TwoXLenInBytes && 1941 DL.getTypeAllocSize(OrigTy) == TwoXLenInBytes) { 1942 unsigned RegIdx = State.getFirstUnallocated(ArgGPRs); 1943 // Skip 'odd' register if necessary. 1944 if (RegIdx != array_lengthof(ArgGPRs) && RegIdx % 2 == 1) 1945 State.AllocateReg(ArgGPRs); 1946 } 1947 1948 SmallVectorImpl<CCValAssign> &PendingLocs = State.getPendingLocs(); 1949 SmallVectorImpl<ISD::ArgFlagsTy> &PendingArgFlags = 1950 State.getPendingArgFlags(); 1951 1952 assert(PendingLocs.size() == PendingArgFlags.size() && 1953 "PendingLocs and PendingArgFlags out of sync"); 1954 1955 // Handle passing f64 on RV32D with a soft float ABI or when floating point 1956 // registers are exhausted. 1957 if (UseGPRForF64 && XLen == 32 && ValVT == MVT::f64) { 1958 assert(!ArgFlags.isSplit() && PendingLocs.empty() && 1959 "Can't lower f64 if it is split"); 1960 // Depending on available argument GPRS, f64 may be passed in a pair of 1961 // GPRs, split between a GPR and the stack, or passed completely on the 1962 // stack. LowerCall/LowerFormalArguments/LowerReturn must recognise these 1963 // cases. 1964 Register Reg = State.AllocateReg(ArgGPRs); 1965 LocVT = MVT::i32; 1966 if (!Reg) { 1967 unsigned StackOffset = State.AllocateStack(8, Align(8)); 1968 State.addLoc( 1969 CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 1970 return false; 1971 } 1972 if (!State.AllocateReg(ArgGPRs)) 1973 State.AllocateStack(4, Align(4)); 1974 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 1975 return false; 1976 } 1977 1978 // Split arguments might be passed indirectly, so keep track of the pending 1979 // values. 1980 if (ArgFlags.isSplit() || !PendingLocs.empty()) { 1981 LocVT = XLenVT; 1982 LocInfo = CCValAssign::Indirect; 1983 PendingLocs.push_back( 1984 CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo)); 1985 PendingArgFlags.push_back(ArgFlags); 1986 if (!ArgFlags.isSplitEnd()) { 1987 return false; 1988 } 1989 } 1990 1991 // If the split argument only had two elements, it should be passed directly 1992 // in registers or on the stack. 1993 if (ArgFlags.isSplitEnd() && PendingLocs.size() <= 2) { 1994 assert(PendingLocs.size() == 2 && "Unexpected PendingLocs.size()"); 1995 // Apply the normal calling convention rules to the first half of the 1996 // split argument. 1997 CCValAssign VA = PendingLocs[0]; 1998 ISD::ArgFlagsTy AF = PendingArgFlags[0]; 1999 PendingLocs.clear(); 2000 PendingArgFlags.clear(); 2001 return CC_RISCVAssign2XLen(XLen, State, VA, AF, ValNo, ValVT, LocVT, 2002 ArgFlags); 2003 } 2004 2005 // Allocate to a register if possible, or else a stack slot. 2006 Register Reg; 2007 if (ValVT == MVT::f32 && !UseGPRForF32) 2008 Reg = State.AllocateReg(ArgFPR32s); 2009 else if (ValVT == MVT::f64 && !UseGPRForF64) 2010 Reg = State.AllocateReg(ArgFPR64s); 2011 else 2012 Reg = State.AllocateReg(ArgGPRs); 2013 unsigned StackOffset = 2014 Reg ? 0 : State.AllocateStack(XLen / 8, Align(XLen / 8)); 2015 2016 // If we reach this point and PendingLocs is non-empty, we must be at the 2017 // end of a split argument that must be passed indirectly. 2018 if (!PendingLocs.empty()) { 2019 assert(ArgFlags.isSplitEnd() && "Expected ArgFlags.isSplitEnd()"); 2020 assert(PendingLocs.size() > 2 && "Unexpected PendingLocs.size()"); 2021 2022 for (auto &It : PendingLocs) { 2023 if (Reg) 2024 It.convertToReg(Reg); 2025 else 2026 It.convertToMem(StackOffset); 2027 State.addLoc(It); 2028 } 2029 PendingLocs.clear(); 2030 PendingArgFlags.clear(); 2031 return false; 2032 } 2033 2034 assert((!UseGPRForF32 || !UseGPRForF64 || LocVT == XLenVT) && 2035 "Expected an XLenVT at this stage"); 2036 2037 if (Reg) { 2038 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 2039 return false; 2040 } 2041 2042 // When an f32 or f64 is passed on the stack, no bit-conversion is needed. 2043 if (ValVT == MVT::f32 || ValVT == MVT::f64) { 2044 LocVT = ValVT; 2045 LocInfo = CCValAssign::Full; 2046 } 2047 State.addLoc(CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 2048 return false; 2049 } 2050 2051 void RISCVTargetLowering::analyzeInputArgs( 2052 MachineFunction &MF, CCState &CCInfo, 2053 const SmallVectorImpl<ISD::InputArg> &Ins, bool IsRet) const { 2054 unsigned NumArgs = Ins.size(); 2055 FunctionType *FType = MF.getFunction().getFunctionType(); 2056 2057 for (unsigned i = 0; i != NumArgs; ++i) { 2058 MVT ArgVT = Ins[i].VT; 2059 ISD::ArgFlagsTy ArgFlags = Ins[i].Flags; 2060 2061 Type *ArgTy = nullptr; 2062 if (IsRet) 2063 ArgTy = FType->getReturnType(); 2064 else if (Ins[i].isOrigArg()) 2065 ArgTy = FType->getParamType(Ins[i].getOrigArgIndex()); 2066 2067 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 2068 if (CC_RISCV(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full, 2069 ArgFlags, CCInfo, /*IsFixed=*/true, IsRet, ArgTy)) { 2070 LLVM_DEBUG(dbgs() << "InputArg #" << i << " has unhandled type " 2071 << EVT(ArgVT).getEVTString() << '\n'); 2072 llvm_unreachable(nullptr); 2073 } 2074 } 2075 } 2076 2077 void RISCVTargetLowering::analyzeOutputArgs( 2078 MachineFunction &MF, CCState &CCInfo, 2079 const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsRet, 2080 CallLoweringInfo *CLI) const { 2081 unsigned NumArgs = Outs.size(); 2082 2083 for (unsigned i = 0; i != NumArgs; i++) { 2084 MVT ArgVT = Outs[i].VT; 2085 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 2086 Type *OrigTy = CLI ? CLI->getArgs()[Outs[i].OrigArgIndex].Ty : nullptr; 2087 2088 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 2089 if (CC_RISCV(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full, 2090 ArgFlags, CCInfo, Outs[i].IsFixed, IsRet, OrigTy)) { 2091 LLVM_DEBUG(dbgs() << "OutputArg #" << i << " has unhandled type " 2092 << EVT(ArgVT).getEVTString() << "\n"); 2093 llvm_unreachable(nullptr); 2094 } 2095 } 2096 } 2097 2098 // Convert Val to a ValVT. Should not be called for CCValAssign::Indirect 2099 // values. 2100 static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDValue Val, 2101 const CCValAssign &VA, const SDLoc &DL) { 2102 switch (VA.getLocInfo()) { 2103 default: 2104 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 2105 case CCValAssign::Full: 2106 break; 2107 case CCValAssign::BCvt: 2108 if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) { 2109 Val = DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, Val); 2110 break; 2111 } 2112 Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val); 2113 break; 2114 } 2115 return Val; 2116 } 2117 2118 // The caller is responsible for loading the full value if the argument is 2119 // passed with CCValAssign::Indirect. 2120 static SDValue unpackFromRegLoc(SelectionDAG &DAG, SDValue Chain, 2121 const CCValAssign &VA, const SDLoc &DL) { 2122 MachineFunction &MF = DAG.getMachineFunction(); 2123 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 2124 EVT LocVT = VA.getLocVT(); 2125 SDValue Val; 2126 const TargetRegisterClass *RC; 2127 2128 switch (LocVT.getSimpleVT().SimpleTy) { 2129 default: 2130 llvm_unreachable("Unexpected register type"); 2131 case MVT::i32: 2132 case MVT::i64: 2133 RC = &RISCV::GPRRegClass; 2134 break; 2135 case MVT::f32: 2136 RC = &RISCV::FPR32RegClass; 2137 break; 2138 case MVT::f64: 2139 RC = &RISCV::FPR64RegClass; 2140 break; 2141 } 2142 2143 Register VReg = RegInfo.createVirtualRegister(RC); 2144 RegInfo.addLiveIn(VA.getLocReg(), VReg); 2145 Val = DAG.getCopyFromReg(Chain, DL, VReg, LocVT); 2146 2147 if (VA.getLocInfo() == CCValAssign::Indirect) 2148 return Val; 2149 2150 return convertLocVTToValVT(DAG, Val, VA, DL); 2151 } 2152 2153 static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDValue Val, 2154 const CCValAssign &VA, const SDLoc &DL) { 2155 EVT LocVT = VA.getLocVT(); 2156 2157 switch (VA.getLocInfo()) { 2158 default: 2159 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 2160 case CCValAssign::Full: 2161 break; 2162 case CCValAssign::BCvt: 2163 if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) { 2164 Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Val); 2165 break; 2166 } 2167 Val = DAG.getNode(ISD::BITCAST, DL, LocVT, Val); 2168 break; 2169 } 2170 return Val; 2171 } 2172 2173 // The caller is responsible for loading the full value if the argument is 2174 // passed with CCValAssign::Indirect. 2175 static SDValue unpackFromMemLoc(SelectionDAG &DAG, SDValue Chain, 2176 const CCValAssign &VA, const SDLoc &DL) { 2177 MachineFunction &MF = DAG.getMachineFunction(); 2178 MachineFrameInfo &MFI = MF.getFrameInfo(); 2179 EVT LocVT = VA.getLocVT(); 2180 EVT ValVT = VA.getValVT(); 2181 EVT PtrVT = MVT::getIntegerVT(DAG.getDataLayout().getPointerSizeInBits(0)); 2182 int FI = MFI.CreateFixedObject(ValVT.getSizeInBits() / 8, 2183 VA.getLocMemOffset(), /*Immutable=*/true); 2184 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 2185 SDValue Val; 2186 2187 ISD::LoadExtType ExtType; 2188 switch (VA.getLocInfo()) { 2189 default: 2190 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 2191 case CCValAssign::Full: 2192 case CCValAssign::Indirect: 2193 case CCValAssign::BCvt: 2194 ExtType = ISD::NON_EXTLOAD; 2195 break; 2196 } 2197 Val = DAG.getExtLoad( 2198 ExtType, DL, LocVT, Chain, FIN, 2199 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), ValVT); 2200 return Val; 2201 } 2202 2203 static SDValue unpackF64OnRV32DSoftABI(SelectionDAG &DAG, SDValue Chain, 2204 const CCValAssign &VA, const SDLoc &DL) { 2205 assert(VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64 && 2206 "Unexpected VA"); 2207 MachineFunction &MF = DAG.getMachineFunction(); 2208 MachineFrameInfo &MFI = MF.getFrameInfo(); 2209 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 2210 2211 if (VA.isMemLoc()) { 2212 // f64 is passed on the stack. 2213 int FI = MFI.CreateFixedObject(8, VA.getLocMemOffset(), /*Immutable=*/true); 2214 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 2215 return DAG.getLoad(MVT::f64, DL, Chain, FIN, 2216 MachinePointerInfo::getFixedStack(MF, FI)); 2217 } 2218 2219 assert(VA.isRegLoc() && "Expected register VA assignment"); 2220 2221 Register LoVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 2222 RegInfo.addLiveIn(VA.getLocReg(), LoVReg); 2223 SDValue Lo = DAG.getCopyFromReg(Chain, DL, LoVReg, MVT::i32); 2224 SDValue Hi; 2225 if (VA.getLocReg() == RISCV::X17) { 2226 // Second half of f64 is passed on the stack. 2227 int FI = MFI.CreateFixedObject(4, 0, /*Immutable=*/true); 2228 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 2229 Hi = DAG.getLoad(MVT::i32, DL, Chain, FIN, 2230 MachinePointerInfo::getFixedStack(MF, FI)); 2231 } else { 2232 // Second half of f64 is passed in another GPR. 2233 Register HiVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 2234 RegInfo.addLiveIn(VA.getLocReg() + 1, HiVReg); 2235 Hi = DAG.getCopyFromReg(Chain, DL, HiVReg, MVT::i32); 2236 } 2237 return DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, Lo, Hi); 2238 } 2239 2240 // FastCC has less than 1% performance improvement for some particular 2241 // benchmark. But theoretically, it may has benenfit for some cases. 2242 static bool CC_RISCV_FastCC(unsigned ValNo, MVT ValVT, MVT LocVT, 2243 CCValAssign::LocInfo LocInfo, 2244 ISD::ArgFlagsTy ArgFlags, CCState &State) { 2245 2246 if (LocVT == MVT::i32 || LocVT == MVT::i64) { 2247 // X5 and X6 might be used for save-restore libcall. 2248 static const MCPhysReg GPRList[] = { 2249 RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, RISCV::X14, 2250 RISCV::X15, RISCV::X16, RISCV::X17, RISCV::X7, RISCV::X28, 2251 RISCV::X29, RISCV::X30, RISCV::X31}; 2252 if (unsigned Reg = State.AllocateReg(GPRList)) { 2253 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 2254 return false; 2255 } 2256 } 2257 2258 if (LocVT == MVT::f32) { 2259 static const MCPhysReg FPR32List[] = { 2260 RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, RISCV::F14_F, 2261 RISCV::F15_F, RISCV::F16_F, RISCV::F17_F, RISCV::F0_F, RISCV::F1_F, 2262 RISCV::F2_F, RISCV::F3_F, RISCV::F4_F, RISCV::F5_F, RISCV::F6_F, 2263 RISCV::F7_F, RISCV::F28_F, RISCV::F29_F, RISCV::F30_F, RISCV::F31_F}; 2264 if (unsigned Reg = State.AllocateReg(FPR32List)) { 2265 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 2266 return false; 2267 } 2268 } 2269 2270 if (LocVT == MVT::f64) { 2271 static const MCPhysReg FPR64List[] = { 2272 RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, RISCV::F14_D, 2273 RISCV::F15_D, RISCV::F16_D, RISCV::F17_D, RISCV::F0_D, RISCV::F1_D, 2274 RISCV::F2_D, RISCV::F3_D, RISCV::F4_D, RISCV::F5_D, RISCV::F6_D, 2275 RISCV::F7_D, RISCV::F28_D, RISCV::F29_D, RISCV::F30_D, RISCV::F31_D}; 2276 if (unsigned Reg = State.AllocateReg(FPR64List)) { 2277 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 2278 return false; 2279 } 2280 } 2281 2282 if (LocVT == MVT::i32 || LocVT == MVT::f32) { 2283 unsigned Offset4 = State.AllocateStack(4, Align(4)); 2284 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset4, LocVT, LocInfo)); 2285 return false; 2286 } 2287 2288 if (LocVT == MVT::i64 || LocVT == MVT::f64) { 2289 unsigned Offset5 = State.AllocateStack(8, Align(8)); 2290 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset5, LocVT, LocInfo)); 2291 return false; 2292 } 2293 2294 return true; // CC didn't match. 2295 } 2296 2297 static bool CC_RISCV_GHC(unsigned ValNo, MVT ValVT, MVT LocVT, 2298 CCValAssign::LocInfo LocInfo, 2299 ISD::ArgFlagsTy ArgFlags, CCState &State) { 2300 2301 if (LocVT == MVT::i32 || LocVT == MVT::i64) { 2302 // Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, R6, R7, SpLim 2303 // s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 2304 static const MCPhysReg GPRList[] = { 2305 RISCV::X9, RISCV::X18, RISCV::X19, RISCV::X20, RISCV::X21, RISCV::X22, 2306 RISCV::X23, RISCV::X24, RISCV::X25, RISCV::X26, RISCV::X27}; 2307 if (unsigned Reg = State.AllocateReg(GPRList)) { 2308 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 2309 return false; 2310 } 2311 } 2312 2313 if (LocVT == MVT::f32) { 2314 // Pass in STG registers: F1, ..., F6 2315 // fs0 ... fs5 2316 static const MCPhysReg FPR32List[] = {RISCV::F8_F, RISCV::F9_F, 2317 RISCV::F18_F, RISCV::F19_F, 2318 RISCV::F20_F, RISCV::F21_F}; 2319 if (unsigned Reg = State.AllocateReg(FPR32List)) { 2320 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 2321 return false; 2322 } 2323 } 2324 2325 if (LocVT == MVT::f64) { 2326 // Pass in STG registers: D1, ..., D6 2327 // fs6 ... fs11 2328 static const MCPhysReg FPR64List[] = {RISCV::F22_D, RISCV::F23_D, 2329 RISCV::F24_D, RISCV::F25_D, 2330 RISCV::F26_D, RISCV::F27_D}; 2331 if (unsigned Reg = State.AllocateReg(FPR64List)) { 2332 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 2333 return false; 2334 } 2335 } 2336 2337 report_fatal_error("No registers left in GHC calling convention"); 2338 return true; 2339 } 2340 2341 // Transform physical registers into virtual registers. 2342 SDValue RISCVTargetLowering::LowerFormalArguments( 2343 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 2344 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 2345 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 2346 2347 MachineFunction &MF = DAG.getMachineFunction(); 2348 2349 switch (CallConv) { 2350 default: 2351 report_fatal_error("Unsupported calling convention"); 2352 case CallingConv::C: 2353 case CallingConv::Fast: 2354 break; 2355 case CallingConv::GHC: 2356 if (!MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtF] || 2357 !MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtD]) 2358 report_fatal_error( 2359 "GHC calling convention requires the F and D instruction set extensions"); 2360 } 2361 2362 const Function &Func = MF.getFunction(); 2363 if (Func.hasFnAttribute("interrupt")) { 2364 if (!Func.arg_empty()) 2365 report_fatal_error( 2366 "Functions with the interrupt attribute cannot have arguments!"); 2367 2368 StringRef Kind = 2369 MF.getFunction().getFnAttribute("interrupt").getValueAsString(); 2370 2371 if (!(Kind == "user" || Kind == "supervisor" || Kind == "machine")) 2372 report_fatal_error( 2373 "Function interrupt attribute argument not supported!"); 2374 } 2375 2376 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2377 MVT XLenVT = Subtarget.getXLenVT(); 2378 unsigned XLenInBytes = Subtarget.getXLen() / 8; 2379 // Used with vargs to acumulate store chains. 2380 std::vector<SDValue> OutChains; 2381 2382 // Assign locations to all of the incoming arguments. 2383 SmallVector<CCValAssign, 16> ArgLocs; 2384 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 2385 2386 if (CallConv == CallingConv::Fast) 2387 CCInfo.AnalyzeFormalArguments(Ins, CC_RISCV_FastCC); 2388 else if (CallConv == CallingConv::GHC) 2389 CCInfo.AnalyzeFormalArguments(Ins, CC_RISCV_GHC); 2390 else 2391 analyzeInputArgs(MF, CCInfo, Ins, /*IsRet=*/false); 2392 2393 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 2394 CCValAssign &VA = ArgLocs[i]; 2395 SDValue ArgValue; 2396 // Passing f64 on RV32D with a soft float ABI must be handled as a special 2397 // case. 2398 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) 2399 ArgValue = unpackF64OnRV32DSoftABI(DAG, Chain, VA, DL); 2400 else if (VA.isRegLoc()) 2401 ArgValue = unpackFromRegLoc(DAG, Chain, VA, DL); 2402 else 2403 ArgValue = unpackFromMemLoc(DAG, Chain, VA, DL); 2404 2405 if (VA.getLocInfo() == CCValAssign::Indirect) { 2406 // If the original argument was split and passed by reference (e.g. i128 2407 // on RV32), we need to load all parts of it here (using the same 2408 // address). 2409 InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue, 2410 MachinePointerInfo())); 2411 unsigned ArgIndex = Ins[i].OrigArgIndex; 2412 assert(Ins[i].PartOffset == 0); 2413 while (i + 1 != e && Ins[i + 1].OrigArgIndex == ArgIndex) { 2414 CCValAssign &PartVA = ArgLocs[i + 1]; 2415 unsigned PartOffset = Ins[i + 1].PartOffset; 2416 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, 2417 DAG.getIntPtrConstant(PartOffset, DL)); 2418 InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address, 2419 MachinePointerInfo())); 2420 ++i; 2421 } 2422 continue; 2423 } 2424 InVals.push_back(ArgValue); 2425 } 2426 2427 if (IsVarArg) { 2428 ArrayRef<MCPhysReg> ArgRegs = makeArrayRef(ArgGPRs); 2429 unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs); 2430 const TargetRegisterClass *RC = &RISCV::GPRRegClass; 2431 MachineFrameInfo &MFI = MF.getFrameInfo(); 2432 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 2433 RISCVMachineFunctionInfo *RVFI = MF.getInfo<RISCVMachineFunctionInfo>(); 2434 2435 // Offset of the first variable argument from stack pointer, and size of 2436 // the vararg save area. For now, the varargs save area is either zero or 2437 // large enough to hold a0-a7. 2438 int VaArgOffset, VarArgsSaveSize; 2439 2440 // If all registers are allocated, then all varargs must be passed on the 2441 // stack and we don't need to save any argregs. 2442 if (ArgRegs.size() == Idx) { 2443 VaArgOffset = CCInfo.getNextStackOffset(); 2444 VarArgsSaveSize = 0; 2445 } else { 2446 VarArgsSaveSize = XLenInBytes * (ArgRegs.size() - Idx); 2447 VaArgOffset = -VarArgsSaveSize; 2448 } 2449 2450 // Record the frame index of the first variable argument 2451 // which is a value necessary to VASTART. 2452 int FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true); 2453 RVFI->setVarArgsFrameIndex(FI); 2454 2455 // If saving an odd number of registers then create an extra stack slot to 2456 // ensure that the frame pointer is 2*XLEN-aligned, which in turn ensures 2457 // offsets to even-numbered registered remain 2*XLEN-aligned. 2458 if (Idx % 2) { 2459 MFI.CreateFixedObject(XLenInBytes, VaArgOffset - (int)XLenInBytes, true); 2460 VarArgsSaveSize += XLenInBytes; 2461 } 2462 2463 // Copy the integer registers that may have been used for passing varargs 2464 // to the vararg save area. 2465 for (unsigned I = Idx; I < ArgRegs.size(); 2466 ++I, VaArgOffset += XLenInBytes) { 2467 const Register Reg = RegInfo.createVirtualRegister(RC); 2468 RegInfo.addLiveIn(ArgRegs[I], Reg); 2469 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, XLenVT); 2470 FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true); 2471 SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 2472 SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff, 2473 MachinePointerInfo::getFixedStack(MF, FI)); 2474 cast<StoreSDNode>(Store.getNode()) 2475 ->getMemOperand() 2476 ->setValue((Value *)nullptr); 2477 OutChains.push_back(Store); 2478 } 2479 RVFI->setVarArgsSaveSize(VarArgsSaveSize); 2480 } 2481 2482 // All stores are grouped in one node to allow the matching between 2483 // the size of Ins and InVals. This only happens for vararg functions. 2484 if (!OutChains.empty()) { 2485 OutChains.push_back(Chain); 2486 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains); 2487 } 2488 2489 return Chain; 2490 } 2491 2492 /// isEligibleForTailCallOptimization - Check whether the call is eligible 2493 /// for tail call optimization. 2494 /// Note: This is modelled after ARM's IsEligibleForTailCallOptimization. 2495 bool RISCVTargetLowering::isEligibleForTailCallOptimization( 2496 CCState &CCInfo, CallLoweringInfo &CLI, MachineFunction &MF, 2497 const SmallVector<CCValAssign, 16> &ArgLocs) const { 2498 2499 auto &Callee = CLI.Callee; 2500 auto CalleeCC = CLI.CallConv; 2501 auto &Outs = CLI.Outs; 2502 auto &Caller = MF.getFunction(); 2503 auto CallerCC = Caller.getCallingConv(); 2504 2505 // Exception-handling functions need a special set of instructions to 2506 // indicate a return to the hardware. Tail-calling another function would 2507 // probably break this. 2508 // TODO: The "interrupt" attribute isn't currently defined by RISC-V. This 2509 // should be expanded as new function attributes are introduced. 2510 if (Caller.hasFnAttribute("interrupt")) 2511 return false; 2512 2513 // Do not tail call opt if the stack is used to pass parameters. 2514 if (CCInfo.getNextStackOffset() != 0) 2515 return false; 2516 2517 // Do not tail call opt if any parameters need to be passed indirectly. 2518 // Since long doubles (fp128) and i128 are larger than 2*XLEN, they are 2519 // passed indirectly. So the address of the value will be passed in a 2520 // register, or if not available, then the address is put on the stack. In 2521 // order to pass indirectly, space on the stack often needs to be allocated 2522 // in order to store the value. In this case the CCInfo.getNextStackOffset() 2523 // != 0 check is not enough and we need to check if any CCValAssign ArgsLocs 2524 // are passed CCValAssign::Indirect. 2525 for (auto &VA : ArgLocs) 2526 if (VA.getLocInfo() == CCValAssign::Indirect) 2527 return false; 2528 2529 // Do not tail call opt if either caller or callee uses struct return 2530 // semantics. 2531 auto IsCallerStructRet = Caller.hasStructRetAttr(); 2532 auto IsCalleeStructRet = Outs.empty() ? false : Outs[0].Flags.isSRet(); 2533 if (IsCallerStructRet || IsCalleeStructRet) 2534 return false; 2535 2536 // Externally-defined functions with weak linkage should not be 2537 // tail-called. The behaviour of branch instructions in this situation (as 2538 // used for tail calls) is implementation-defined, so we cannot rely on the 2539 // linker replacing the tail call with a return. 2540 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 2541 const GlobalValue *GV = G->getGlobal(); 2542 if (GV->hasExternalWeakLinkage()) 2543 return false; 2544 } 2545 2546 // The callee has to preserve all registers the caller needs to preserve. 2547 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 2548 const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC); 2549 if (CalleeCC != CallerCC) { 2550 const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC); 2551 if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved)) 2552 return false; 2553 } 2554 2555 // Byval parameters hand the function a pointer directly into the stack area 2556 // we want to reuse during a tail call. Working around this *is* possible 2557 // but less efficient and uglier in LowerCall. 2558 for (auto &Arg : Outs) 2559 if (Arg.Flags.isByVal()) 2560 return false; 2561 2562 return true; 2563 } 2564 2565 // Lower a call to a callseq_start + CALL + callseq_end chain, and add input 2566 // and output parameter nodes. 2567 SDValue RISCVTargetLowering::LowerCall(CallLoweringInfo &CLI, 2568 SmallVectorImpl<SDValue> &InVals) const { 2569 SelectionDAG &DAG = CLI.DAG; 2570 SDLoc &DL = CLI.DL; 2571 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 2572 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 2573 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 2574 SDValue Chain = CLI.Chain; 2575 SDValue Callee = CLI.Callee; 2576 bool &IsTailCall = CLI.IsTailCall; 2577 CallingConv::ID CallConv = CLI.CallConv; 2578 bool IsVarArg = CLI.IsVarArg; 2579 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2580 MVT XLenVT = Subtarget.getXLenVT(); 2581 2582 MachineFunction &MF = DAG.getMachineFunction(); 2583 2584 // Analyze the operands of the call, assigning locations to each operand. 2585 SmallVector<CCValAssign, 16> ArgLocs; 2586 CCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 2587 2588 if (CallConv == CallingConv::Fast) 2589 ArgCCInfo.AnalyzeCallOperands(Outs, CC_RISCV_FastCC); 2590 else if (CallConv == CallingConv::GHC) 2591 ArgCCInfo.AnalyzeCallOperands(Outs, CC_RISCV_GHC); 2592 else 2593 analyzeOutputArgs(MF, ArgCCInfo, Outs, /*IsRet=*/false, &CLI); 2594 2595 // Check if it's really possible to do a tail call. 2596 if (IsTailCall) 2597 IsTailCall = isEligibleForTailCallOptimization(ArgCCInfo, CLI, MF, ArgLocs); 2598 2599 if (IsTailCall) 2600 ++NumTailCalls; 2601 else if (CLI.CB && CLI.CB->isMustTailCall()) 2602 report_fatal_error("failed to perform tail call elimination on a call " 2603 "site marked musttail"); 2604 2605 // Get a count of how many bytes are to be pushed on the stack. 2606 unsigned NumBytes = ArgCCInfo.getNextStackOffset(); 2607 2608 // Create local copies for byval args 2609 SmallVector<SDValue, 8> ByValArgs; 2610 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 2611 ISD::ArgFlagsTy Flags = Outs[i].Flags; 2612 if (!Flags.isByVal()) 2613 continue; 2614 2615 SDValue Arg = OutVals[i]; 2616 unsigned Size = Flags.getByValSize(); 2617 Align Alignment = Flags.getNonZeroByValAlign(); 2618 2619 int FI = 2620 MF.getFrameInfo().CreateStackObject(Size, Alignment, /*isSS=*/false); 2621 SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 2622 SDValue SizeNode = DAG.getConstant(Size, DL, XLenVT); 2623 2624 Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Alignment, 2625 /*IsVolatile=*/false, 2626 /*AlwaysInline=*/false, IsTailCall, 2627 MachinePointerInfo(), MachinePointerInfo()); 2628 ByValArgs.push_back(FIPtr); 2629 } 2630 2631 if (!IsTailCall) 2632 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, CLI.DL); 2633 2634 // Copy argument values to their designated locations. 2635 SmallVector<std::pair<Register, SDValue>, 8> RegsToPass; 2636 SmallVector<SDValue, 8> MemOpChains; 2637 SDValue StackPtr; 2638 for (unsigned i = 0, j = 0, e = ArgLocs.size(); i != e; ++i) { 2639 CCValAssign &VA = ArgLocs[i]; 2640 SDValue ArgValue = OutVals[i]; 2641 ISD::ArgFlagsTy Flags = Outs[i].Flags; 2642 2643 // Handle passing f64 on RV32D with a soft float ABI as a special case. 2644 bool IsF64OnRV32DSoftABI = 2645 VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64; 2646 if (IsF64OnRV32DSoftABI && VA.isRegLoc()) { 2647 SDValue SplitF64 = DAG.getNode( 2648 RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), ArgValue); 2649 SDValue Lo = SplitF64.getValue(0); 2650 SDValue Hi = SplitF64.getValue(1); 2651 2652 Register RegLo = VA.getLocReg(); 2653 RegsToPass.push_back(std::make_pair(RegLo, Lo)); 2654 2655 if (RegLo == RISCV::X17) { 2656 // Second half of f64 is passed on the stack. 2657 // Work out the address of the stack slot. 2658 if (!StackPtr.getNode()) 2659 StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT); 2660 // Emit the store. 2661 MemOpChains.push_back( 2662 DAG.getStore(Chain, DL, Hi, StackPtr, MachinePointerInfo())); 2663 } else { 2664 // Second half of f64 is passed in another GPR. 2665 assert(RegLo < RISCV::X31 && "Invalid register pair"); 2666 Register RegHigh = RegLo + 1; 2667 RegsToPass.push_back(std::make_pair(RegHigh, Hi)); 2668 } 2669 continue; 2670 } 2671 2672 // IsF64OnRV32DSoftABI && VA.isMemLoc() is handled below in the same way 2673 // as any other MemLoc. 2674 2675 // Promote the value if needed. 2676 // For now, only handle fully promoted and indirect arguments. 2677 if (VA.getLocInfo() == CCValAssign::Indirect) { 2678 // Store the argument in a stack slot and pass its address. 2679 SDValue SpillSlot = DAG.CreateStackTemporary(Outs[i].ArgVT); 2680 int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); 2681 MemOpChains.push_back( 2682 DAG.getStore(Chain, DL, ArgValue, SpillSlot, 2683 MachinePointerInfo::getFixedStack(MF, FI))); 2684 // If the original argument was split (e.g. i128), we need 2685 // to store all parts of it here (and pass just one address). 2686 unsigned ArgIndex = Outs[i].OrigArgIndex; 2687 assert(Outs[i].PartOffset == 0); 2688 while (i + 1 != e && Outs[i + 1].OrigArgIndex == ArgIndex) { 2689 SDValue PartValue = OutVals[i + 1]; 2690 unsigned PartOffset = Outs[i + 1].PartOffset; 2691 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, 2692 DAG.getIntPtrConstant(PartOffset, DL)); 2693 MemOpChains.push_back( 2694 DAG.getStore(Chain, DL, PartValue, Address, 2695 MachinePointerInfo::getFixedStack(MF, FI))); 2696 ++i; 2697 } 2698 ArgValue = SpillSlot; 2699 } else { 2700 ArgValue = convertValVTToLocVT(DAG, ArgValue, VA, DL); 2701 } 2702 2703 // Use local copy if it is a byval arg. 2704 if (Flags.isByVal()) 2705 ArgValue = ByValArgs[j++]; 2706 2707 if (VA.isRegLoc()) { 2708 // Queue up the argument copies and emit them at the end. 2709 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue)); 2710 } else { 2711 assert(VA.isMemLoc() && "Argument not register or memory"); 2712 assert(!IsTailCall && "Tail call not allowed if stack is used " 2713 "for passing parameters"); 2714 2715 // Work out the address of the stack slot. 2716 if (!StackPtr.getNode()) 2717 StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT); 2718 SDValue Address = 2719 DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, 2720 DAG.getIntPtrConstant(VA.getLocMemOffset(), DL)); 2721 2722 // Emit the store. 2723 MemOpChains.push_back( 2724 DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo())); 2725 } 2726 } 2727 2728 // Join the stores, which are independent of one another. 2729 if (!MemOpChains.empty()) 2730 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); 2731 2732 SDValue Glue; 2733 2734 // Build a sequence of copy-to-reg nodes, chained and glued together. 2735 for (auto &Reg : RegsToPass) { 2736 Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, Glue); 2737 Glue = Chain.getValue(1); 2738 } 2739 2740 // Validate that none of the argument registers have been marked as 2741 // reserved, if so report an error. Do the same for the return address if this 2742 // is not a tailcall. 2743 validateCCReservedRegs(RegsToPass, MF); 2744 if (!IsTailCall && 2745 MF.getSubtarget<RISCVSubtarget>().isRegisterReservedByUser(RISCV::X1)) 2746 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 2747 MF.getFunction(), 2748 "Return address register required, but has been reserved."}); 2749 2750 // If the callee is a GlobalAddress/ExternalSymbol node, turn it into a 2751 // TargetGlobalAddress/TargetExternalSymbol node so that legalize won't 2752 // split it and then direct call can be matched by PseudoCALL. 2753 if (GlobalAddressSDNode *S = dyn_cast<GlobalAddressSDNode>(Callee)) { 2754 const GlobalValue *GV = S->getGlobal(); 2755 2756 unsigned OpFlags = RISCVII::MO_CALL; 2757 if (!getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV)) 2758 OpFlags = RISCVII::MO_PLT; 2759 2760 Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags); 2761 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { 2762 unsigned OpFlags = RISCVII::MO_CALL; 2763 2764 if (!getTargetMachine().shouldAssumeDSOLocal(*MF.getFunction().getParent(), 2765 nullptr)) 2766 OpFlags = RISCVII::MO_PLT; 2767 2768 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, OpFlags); 2769 } 2770 2771 // The first call operand is the chain and the second is the target address. 2772 SmallVector<SDValue, 8> Ops; 2773 Ops.push_back(Chain); 2774 Ops.push_back(Callee); 2775 2776 // Add argument registers to the end of the list so that they are 2777 // known live into the call. 2778 for (auto &Reg : RegsToPass) 2779 Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType())); 2780 2781 if (!IsTailCall) { 2782 // Add a register mask operand representing the call-preserved registers. 2783 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 2784 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv); 2785 assert(Mask && "Missing call preserved mask for calling convention"); 2786 Ops.push_back(DAG.getRegisterMask(Mask)); 2787 } 2788 2789 // Glue the call to the argument copies, if any. 2790 if (Glue.getNode()) 2791 Ops.push_back(Glue); 2792 2793 // Emit the call. 2794 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 2795 2796 if (IsTailCall) { 2797 MF.getFrameInfo().setHasTailCall(); 2798 return DAG.getNode(RISCVISD::TAIL, DL, NodeTys, Ops); 2799 } 2800 2801 Chain = DAG.getNode(RISCVISD::CALL, DL, NodeTys, Ops); 2802 DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge); 2803 Glue = Chain.getValue(1); 2804 2805 // Mark the end of the call, which is glued to the call itself. 2806 Chain = DAG.getCALLSEQ_END(Chain, 2807 DAG.getConstant(NumBytes, DL, PtrVT, true), 2808 DAG.getConstant(0, DL, PtrVT, true), 2809 Glue, DL); 2810 Glue = Chain.getValue(1); 2811 2812 // Assign locations to each value returned by this call. 2813 SmallVector<CCValAssign, 16> RVLocs; 2814 CCState RetCCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext()); 2815 analyzeInputArgs(MF, RetCCInfo, Ins, /*IsRet=*/true); 2816 2817 // Copy all of the result registers out of their specified physreg. 2818 for (auto &VA : RVLocs) { 2819 // Copy the value out 2820 SDValue RetValue = 2821 DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), Glue); 2822 // Glue the RetValue to the end of the call sequence 2823 Chain = RetValue.getValue(1); 2824 Glue = RetValue.getValue(2); 2825 2826 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { 2827 assert(VA.getLocReg() == ArgGPRs[0] && "Unexpected reg assignment"); 2828 SDValue RetValue2 = 2829 DAG.getCopyFromReg(Chain, DL, ArgGPRs[1], MVT::i32, Glue); 2830 Chain = RetValue2.getValue(1); 2831 Glue = RetValue2.getValue(2); 2832 RetValue = DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, RetValue, 2833 RetValue2); 2834 } 2835 2836 RetValue = convertLocVTToValVT(DAG, RetValue, VA, DL); 2837 2838 InVals.push_back(RetValue); 2839 } 2840 2841 return Chain; 2842 } 2843 2844 bool RISCVTargetLowering::CanLowerReturn( 2845 CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg, 2846 const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const { 2847 SmallVector<CCValAssign, 16> RVLocs; 2848 CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context); 2849 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 2850 MVT VT = Outs[i].VT; 2851 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 2852 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 2853 if (CC_RISCV(MF.getDataLayout(), ABI, i, VT, VT, CCValAssign::Full, 2854 ArgFlags, CCInfo, /*IsFixed=*/true, /*IsRet=*/true, nullptr)) 2855 return false; 2856 } 2857 return true; 2858 } 2859 2860 SDValue 2861 RISCVTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 2862 bool IsVarArg, 2863 const SmallVectorImpl<ISD::OutputArg> &Outs, 2864 const SmallVectorImpl<SDValue> &OutVals, 2865 const SDLoc &DL, SelectionDAG &DAG) const { 2866 const MachineFunction &MF = DAG.getMachineFunction(); 2867 const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>(); 2868 2869 // Stores the assignment of the return value to a location. 2870 SmallVector<CCValAssign, 16> RVLocs; 2871 2872 // Info about the registers and stack slot. 2873 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, 2874 *DAG.getContext()); 2875 2876 analyzeOutputArgs(DAG.getMachineFunction(), CCInfo, Outs, /*IsRet=*/true, 2877 nullptr); 2878 2879 if (CallConv == CallingConv::GHC && !RVLocs.empty()) 2880 report_fatal_error("GHC functions return void only"); 2881 2882 SDValue Glue; 2883 SmallVector<SDValue, 4> RetOps(1, Chain); 2884 2885 // Copy the result values into the output registers. 2886 for (unsigned i = 0, e = RVLocs.size(); i < e; ++i) { 2887 SDValue Val = OutVals[i]; 2888 CCValAssign &VA = RVLocs[i]; 2889 assert(VA.isRegLoc() && "Can only return in registers!"); 2890 2891 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { 2892 // Handle returning f64 on RV32D with a soft float ABI. 2893 assert(VA.isRegLoc() && "Expected return via registers"); 2894 SDValue SplitF64 = DAG.getNode(RISCVISD::SplitF64, DL, 2895 DAG.getVTList(MVT::i32, MVT::i32), Val); 2896 SDValue Lo = SplitF64.getValue(0); 2897 SDValue Hi = SplitF64.getValue(1); 2898 Register RegLo = VA.getLocReg(); 2899 assert(RegLo < RISCV::X31 && "Invalid register pair"); 2900 Register RegHi = RegLo + 1; 2901 2902 if (STI.isRegisterReservedByUser(RegLo) || 2903 STI.isRegisterReservedByUser(RegHi)) 2904 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 2905 MF.getFunction(), 2906 "Return value register required, but has been reserved."}); 2907 2908 Chain = DAG.getCopyToReg(Chain, DL, RegLo, Lo, Glue); 2909 Glue = Chain.getValue(1); 2910 RetOps.push_back(DAG.getRegister(RegLo, MVT::i32)); 2911 Chain = DAG.getCopyToReg(Chain, DL, RegHi, Hi, Glue); 2912 Glue = Chain.getValue(1); 2913 RetOps.push_back(DAG.getRegister(RegHi, MVT::i32)); 2914 } else { 2915 // Handle a 'normal' return. 2916 Val = convertValVTToLocVT(DAG, Val, VA, DL); 2917 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Glue); 2918 2919 if (STI.isRegisterReservedByUser(VA.getLocReg())) 2920 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 2921 MF.getFunction(), 2922 "Return value register required, but has been reserved."}); 2923 2924 // Guarantee that all emitted copies are stuck together. 2925 Glue = Chain.getValue(1); 2926 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 2927 } 2928 } 2929 2930 RetOps[0] = Chain; // Update chain. 2931 2932 // Add the glue node if we have it. 2933 if (Glue.getNode()) { 2934 RetOps.push_back(Glue); 2935 } 2936 2937 // Interrupt service routines use different return instructions. 2938 const Function &Func = DAG.getMachineFunction().getFunction(); 2939 if (Func.hasFnAttribute("interrupt")) { 2940 if (!Func.getReturnType()->isVoidTy()) 2941 report_fatal_error( 2942 "Functions with the interrupt attribute must have void return type!"); 2943 2944 MachineFunction &MF = DAG.getMachineFunction(); 2945 StringRef Kind = 2946 MF.getFunction().getFnAttribute("interrupt").getValueAsString(); 2947 2948 unsigned RetOpc; 2949 if (Kind == "user") 2950 RetOpc = RISCVISD::URET_FLAG; 2951 else if (Kind == "supervisor") 2952 RetOpc = RISCVISD::SRET_FLAG; 2953 else 2954 RetOpc = RISCVISD::MRET_FLAG; 2955 2956 return DAG.getNode(RetOpc, DL, MVT::Other, RetOps); 2957 } 2958 2959 return DAG.getNode(RISCVISD::RET_FLAG, DL, MVT::Other, RetOps); 2960 } 2961 2962 void RISCVTargetLowering::validateCCReservedRegs( 2963 const SmallVectorImpl<std::pair<llvm::Register, llvm::SDValue>> &Regs, 2964 MachineFunction &MF) const { 2965 const Function &F = MF.getFunction(); 2966 const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>(); 2967 2968 if (std::any_of(std::begin(Regs), std::end(Regs), [&STI](auto Reg) { 2969 return STI.isRegisterReservedByUser(Reg.first); 2970 })) 2971 F.getContext().diagnose(DiagnosticInfoUnsupported{ 2972 F, "Argument register required, but has been reserved."}); 2973 } 2974 2975 bool RISCVTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { 2976 return CI->isTailCall(); 2977 } 2978 2979 const char *RISCVTargetLowering::getTargetNodeName(unsigned Opcode) const { 2980 #define NODE_NAME_CASE(NODE) \ 2981 case RISCVISD::NODE: \ 2982 return "RISCVISD::" #NODE; 2983 // clang-format off 2984 switch ((RISCVISD::NodeType)Opcode) { 2985 case RISCVISD::FIRST_NUMBER: 2986 break; 2987 NODE_NAME_CASE(RET_FLAG) 2988 NODE_NAME_CASE(URET_FLAG) 2989 NODE_NAME_CASE(SRET_FLAG) 2990 NODE_NAME_CASE(MRET_FLAG) 2991 NODE_NAME_CASE(CALL) 2992 NODE_NAME_CASE(SELECT_CC) 2993 NODE_NAME_CASE(BuildPairF64) 2994 NODE_NAME_CASE(SplitF64) 2995 NODE_NAME_CASE(TAIL) 2996 NODE_NAME_CASE(SLLW) 2997 NODE_NAME_CASE(SRAW) 2998 NODE_NAME_CASE(SRLW) 2999 NODE_NAME_CASE(DIVW) 3000 NODE_NAME_CASE(DIVUW) 3001 NODE_NAME_CASE(REMUW) 3002 NODE_NAME_CASE(ROLW) 3003 NODE_NAME_CASE(RORW) 3004 NODE_NAME_CASE(FSLW) 3005 NODE_NAME_CASE(FSRW) 3006 NODE_NAME_CASE(FMV_W_X_RV64) 3007 NODE_NAME_CASE(FMV_X_ANYEXTW_RV64) 3008 NODE_NAME_CASE(READ_CYCLE_WIDE) 3009 NODE_NAME_CASE(GREVI) 3010 NODE_NAME_CASE(GREVIW) 3011 NODE_NAME_CASE(GORCI) 3012 NODE_NAME_CASE(GORCIW) 3013 } 3014 // clang-format on 3015 return nullptr; 3016 #undef NODE_NAME_CASE 3017 } 3018 3019 /// getConstraintType - Given a constraint letter, return the type of 3020 /// constraint it is for this target. 3021 RISCVTargetLowering::ConstraintType 3022 RISCVTargetLowering::getConstraintType(StringRef Constraint) const { 3023 if (Constraint.size() == 1) { 3024 switch (Constraint[0]) { 3025 default: 3026 break; 3027 case 'f': 3028 return C_RegisterClass; 3029 case 'I': 3030 case 'J': 3031 case 'K': 3032 return C_Immediate; 3033 case 'A': 3034 return C_Memory; 3035 } 3036 } 3037 return TargetLowering::getConstraintType(Constraint); 3038 } 3039 3040 std::pair<unsigned, const TargetRegisterClass *> 3041 RISCVTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 3042 StringRef Constraint, 3043 MVT VT) const { 3044 // First, see if this is a constraint that directly corresponds to a 3045 // RISCV register class. 3046 if (Constraint.size() == 1) { 3047 switch (Constraint[0]) { 3048 case 'r': 3049 return std::make_pair(0U, &RISCV::GPRRegClass); 3050 case 'f': 3051 if (Subtarget.hasStdExtF() && VT == MVT::f32) 3052 return std::make_pair(0U, &RISCV::FPR32RegClass); 3053 if (Subtarget.hasStdExtD() && VT == MVT::f64) 3054 return std::make_pair(0U, &RISCV::FPR64RegClass); 3055 break; 3056 default: 3057 break; 3058 } 3059 } 3060 3061 // Clang will correctly decode the usage of register name aliases into their 3062 // official names. However, other frontends like `rustc` do not. This allows 3063 // users of these frontends to use the ABI names for registers in LLVM-style 3064 // register constraints. 3065 unsigned XRegFromAlias = StringSwitch<unsigned>(Constraint.lower()) 3066 .Case("{zero}", RISCV::X0) 3067 .Case("{ra}", RISCV::X1) 3068 .Case("{sp}", RISCV::X2) 3069 .Case("{gp}", RISCV::X3) 3070 .Case("{tp}", RISCV::X4) 3071 .Case("{t0}", RISCV::X5) 3072 .Case("{t1}", RISCV::X6) 3073 .Case("{t2}", RISCV::X7) 3074 .Cases("{s0}", "{fp}", RISCV::X8) 3075 .Case("{s1}", RISCV::X9) 3076 .Case("{a0}", RISCV::X10) 3077 .Case("{a1}", RISCV::X11) 3078 .Case("{a2}", RISCV::X12) 3079 .Case("{a3}", RISCV::X13) 3080 .Case("{a4}", RISCV::X14) 3081 .Case("{a5}", RISCV::X15) 3082 .Case("{a6}", RISCV::X16) 3083 .Case("{a7}", RISCV::X17) 3084 .Case("{s2}", RISCV::X18) 3085 .Case("{s3}", RISCV::X19) 3086 .Case("{s4}", RISCV::X20) 3087 .Case("{s5}", RISCV::X21) 3088 .Case("{s6}", RISCV::X22) 3089 .Case("{s7}", RISCV::X23) 3090 .Case("{s8}", RISCV::X24) 3091 .Case("{s9}", RISCV::X25) 3092 .Case("{s10}", RISCV::X26) 3093 .Case("{s11}", RISCV::X27) 3094 .Case("{t3}", RISCV::X28) 3095 .Case("{t4}", RISCV::X29) 3096 .Case("{t5}", RISCV::X30) 3097 .Case("{t6}", RISCV::X31) 3098 .Default(RISCV::NoRegister); 3099 if (XRegFromAlias != RISCV::NoRegister) 3100 return std::make_pair(XRegFromAlias, &RISCV::GPRRegClass); 3101 3102 // Since TargetLowering::getRegForInlineAsmConstraint uses the name of the 3103 // TableGen record rather than the AsmName to choose registers for InlineAsm 3104 // constraints, plus we want to match those names to the widest floating point 3105 // register type available, manually select floating point registers here. 3106 // 3107 // The second case is the ABI name of the register, so that frontends can also 3108 // use the ABI names in register constraint lists. 3109 if (Subtarget.hasStdExtF() || Subtarget.hasStdExtD()) { 3110 unsigned FReg = StringSwitch<unsigned>(Constraint.lower()) 3111 .Cases("{f0}", "{ft0}", RISCV::F0_F) 3112 .Cases("{f1}", "{ft1}", RISCV::F1_F) 3113 .Cases("{f2}", "{ft2}", RISCV::F2_F) 3114 .Cases("{f3}", "{ft3}", RISCV::F3_F) 3115 .Cases("{f4}", "{ft4}", RISCV::F4_F) 3116 .Cases("{f5}", "{ft5}", RISCV::F5_F) 3117 .Cases("{f6}", "{ft6}", RISCV::F6_F) 3118 .Cases("{f7}", "{ft7}", RISCV::F7_F) 3119 .Cases("{f8}", "{fs0}", RISCV::F8_F) 3120 .Cases("{f9}", "{fs1}", RISCV::F9_F) 3121 .Cases("{f10}", "{fa0}", RISCV::F10_F) 3122 .Cases("{f11}", "{fa1}", RISCV::F11_F) 3123 .Cases("{f12}", "{fa2}", RISCV::F12_F) 3124 .Cases("{f13}", "{fa3}", RISCV::F13_F) 3125 .Cases("{f14}", "{fa4}", RISCV::F14_F) 3126 .Cases("{f15}", "{fa5}", RISCV::F15_F) 3127 .Cases("{f16}", "{fa6}", RISCV::F16_F) 3128 .Cases("{f17}", "{fa7}", RISCV::F17_F) 3129 .Cases("{f18}", "{fs2}", RISCV::F18_F) 3130 .Cases("{f19}", "{fs3}", RISCV::F19_F) 3131 .Cases("{f20}", "{fs4}", RISCV::F20_F) 3132 .Cases("{f21}", "{fs5}", RISCV::F21_F) 3133 .Cases("{f22}", "{fs6}", RISCV::F22_F) 3134 .Cases("{f23}", "{fs7}", RISCV::F23_F) 3135 .Cases("{f24}", "{fs8}", RISCV::F24_F) 3136 .Cases("{f25}", "{fs9}", RISCV::F25_F) 3137 .Cases("{f26}", "{fs10}", RISCV::F26_F) 3138 .Cases("{f27}", "{fs11}", RISCV::F27_F) 3139 .Cases("{f28}", "{ft8}", RISCV::F28_F) 3140 .Cases("{f29}", "{ft9}", RISCV::F29_F) 3141 .Cases("{f30}", "{ft10}", RISCV::F30_F) 3142 .Cases("{f31}", "{ft11}", RISCV::F31_F) 3143 .Default(RISCV::NoRegister); 3144 if (FReg != RISCV::NoRegister) { 3145 assert(RISCV::F0_F <= FReg && FReg <= RISCV::F31_F && "Unknown fp-reg"); 3146 if (Subtarget.hasStdExtD()) { 3147 unsigned RegNo = FReg - RISCV::F0_F; 3148 unsigned DReg = RISCV::F0_D + RegNo; 3149 return std::make_pair(DReg, &RISCV::FPR64RegClass); 3150 } 3151 return std::make_pair(FReg, &RISCV::FPR32RegClass); 3152 } 3153 } 3154 3155 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 3156 } 3157 3158 unsigned 3159 RISCVTargetLowering::getInlineAsmMemConstraint(StringRef ConstraintCode) const { 3160 // Currently only support length 1 constraints. 3161 if (ConstraintCode.size() == 1) { 3162 switch (ConstraintCode[0]) { 3163 case 'A': 3164 return InlineAsm::Constraint_A; 3165 default: 3166 break; 3167 } 3168 } 3169 3170 return TargetLowering::getInlineAsmMemConstraint(ConstraintCode); 3171 } 3172 3173 void RISCVTargetLowering::LowerAsmOperandForConstraint( 3174 SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops, 3175 SelectionDAG &DAG) const { 3176 // Currently only support length 1 constraints. 3177 if (Constraint.length() == 1) { 3178 switch (Constraint[0]) { 3179 case 'I': 3180 // Validate & create a 12-bit signed immediate operand. 3181 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 3182 uint64_t CVal = C->getSExtValue(); 3183 if (isInt<12>(CVal)) 3184 Ops.push_back( 3185 DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT())); 3186 } 3187 return; 3188 case 'J': 3189 // Validate & create an integer zero operand. 3190 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 3191 if (C->getZExtValue() == 0) 3192 Ops.push_back( 3193 DAG.getTargetConstant(0, SDLoc(Op), Subtarget.getXLenVT())); 3194 return; 3195 case 'K': 3196 // Validate & create a 5-bit unsigned immediate operand. 3197 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 3198 uint64_t CVal = C->getZExtValue(); 3199 if (isUInt<5>(CVal)) 3200 Ops.push_back( 3201 DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT())); 3202 } 3203 return; 3204 default: 3205 break; 3206 } 3207 } 3208 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 3209 } 3210 3211 Instruction *RISCVTargetLowering::emitLeadingFence(IRBuilder<> &Builder, 3212 Instruction *Inst, 3213 AtomicOrdering Ord) const { 3214 if (isa<LoadInst>(Inst) && Ord == AtomicOrdering::SequentiallyConsistent) 3215 return Builder.CreateFence(Ord); 3216 if (isa<StoreInst>(Inst) && isReleaseOrStronger(Ord)) 3217 return Builder.CreateFence(AtomicOrdering::Release); 3218 return nullptr; 3219 } 3220 3221 Instruction *RISCVTargetLowering::emitTrailingFence(IRBuilder<> &Builder, 3222 Instruction *Inst, 3223 AtomicOrdering Ord) const { 3224 if (isa<LoadInst>(Inst) && isAcquireOrStronger(Ord)) 3225 return Builder.CreateFence(AtomicOrdering::Acquire); 3226 return nullptr; 3227 } 3228 3229 TargetLowering::AtomicExpansionKind 3230 RISCVTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { 3231 // atomicrmw {fadd,fsub} must be expanded to use compare-exchange, as floating 3232 // point operations can't be used in an lr/sc sequence without breaking the 3233 // forward-progress guarantee. 3234 if (AI->isFloatingPointOperation()) 3235 return AtomicExpansionKind::CmpXChg; 3236 3237 unsigned Size = AI->getType()->getPrimitiveSizeInBits(); 3238 if (Size == 8 || Size == 16) 3239 return AtomicExpansionKind::MaskedIntrinsic; 3240 return AtomicExpansionKind::None; 3241 } 3242 3243 static Intrinsic::ID 3244 getIntrinsicForMaskedAtomicRMWBinOp(unsigned XLen, AtomicRMWInst::BinOp BinOp) { 3245 if (XLen == 32) { 3246 switch (BinOp) { 3247 default: 3248 llvm_unreachable("Unexpected AtomicRMW BinOp"); 3249 case AtomicRMWInst::Xchg: 3250 return Intrinsic::riscv_masked_atomicrmw_xchg_i32; 3251 case AtomicRMWInst::Add: 3252 return Intrinsic::riscv_masked_atomicrmw_add_i32; 3253 case AtomicRMWInst::Sub: 3254 return Intrinsic::riscv_masked_atomicrmw_sub_i32; 3255 case AtomicRMWInst::Nand: 3256 return Intrinsic::riscv_masked_atomicrmw_nand_i32; 3257 case AtomicRMWInst::Max: 3258 return Intrinsic::riscv_masked_atomicrmw_max_i32; 3259 case AtomicRMWInst::Min: 3260 return Intrinsic::riscv_masked_atomicrmw_min_i32; 3261 case AtomicRMWInst::UMax: 3262 return Intrinsic::riscv_masked_atomicrmw_umax_i32; 3263 case AtomicRMWInst::UMin: 3264 return Intrinsic::riscv_masked_atomicrmw_umin_i32; 3265 } 3266 } 3267 3268 if (XLen == 64) { 3269 switch (BinOp) { 3270 default: 3271 llvm_unreachable("Unexpected AtomicRMW BinOp"); 3272 case AtomicRMWInst::Xchg: 3273 return Intrinsic::riscv_masked_atomicrmw_xchg_i64; 3274 case AtomicRMWInst::Add: 3275 return Intrinsic::riscv_masked_atomicrmw_add_i64; 3276 case AtomicRMWInst::Sub: 3277 return Intrinsic::riscv_masked_atomicrmw_sub_i64; 3278 case AtomicRMWInst::Nand: 3279 return Intrinsic::riscv_masked_atomicrmw_nand_i64; 3280 case AtomicRMWInst::Max: 3281 return Intrinsic::riscv_masked_atomicrmw_max_i64; 3282 case AtomicRMWInst::Min: 3283 return Intrinsic::riscv_masked_atomicrmw_min_i64; 3284 case AtomicRMWInst::UMax: 3285 return Intrinsic::riscv_masked_atomicrmw_umax_i64; 3286 case AtomicRMWInst::UMin: 3287 return Intrinsic::riscv_masked_atomicrmw_umin_i64; 3288 } 3289 } 3290 3291 llvm_unreachable("Unexpected XLen\n"); 3292 } 3293 3294 Value *RISCVTargetLowering::emitMaskedAtomicRMWIntrinsic( 3295 IRBuilder<> &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr, 3296 Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const { 3297 unsigned XLen = Subtarget.getXLen(); 3298 Value *Ordering = 3299 Builder.getIntN(XLen, static_cast<uint64_t>(AI->getOrdering())); 3300 Type *Tys[] = {AlignedAddr->getType()}; 3301 Function *LrwOpScwLoop = Intrinsic::getDeclaration( 3302 AI->getModule(), 3303 getIntrinsicForMaskedAtomicRMWBinOp(XLen, AI->getOperation()), Tys); 3304 3305 if (XLen == 64) { 3306 Incr = Builder.CreateSExt(Incr, Builder.getInt64Ty()); 3307 Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty()); 3308 ShiftAmt = Builder.CreateSExt(ShiftAmt, Builder.getInt64Ty()); 3309 } 3310 3311 Value *Result; 3312 3313 // Must pass the shift amount needed to sign extend the loaded value prior 3314 // to performing a signed comparison for min/max. ShiftAmt is the number of 3315 // bits to shift the value into position. Pass XLen-ShiftAmt-ValWidth, which 3316 // is the number of bits to left+right shift the value in order to 3317 // sign-extend. 3318 if (AI->getOperation() == AtomicRMWInst::Min || 3319 AI->getOperation() == AtomicRMWInst::Max) { 3320 const DataLayout &DL = AI->getModule()->getDataLayout(); 3321 unsigned ValWidth = 3322 DL.getTypeStoreSizeInBits(AI->getValOperand()->getType()); 3323 Value *SextShamt = 3324 Builder.CreateSub(Builder.getIntN(XLen, XLen - ValWidth), ShiftAmt); 3325 Result = Builder.CreateCall(LrwOpScwLoop, 3326 {AlignedAddr, Incr, Mask, SextShamt, Ordering}); 3327 } else { 3328 Result = 3329 Builder.CreateCall(LrwOpScwLoop, {AlignedAddr, Incr, Mask, Ordering}); 3330 } 3331 3332 if (XLen == 64) 3333 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty()); 3334 return Result; 3335 } 3336 3337 TargetLowering::AtomicExpansionKind 3338 RISCVTargetLowering::shouldExpandAtomicCmpXchgInIR( 3339 AtomicCmpXchgInst *CI) const { 3340 unsigned Size = CI->getCompareOperand()->getType()->getPrimitiveSizeInBits(); 3341 if (Size == 8 || Size == 16) 3342 return AtomicExpansionKind::MaskedIntrinsic; 3343 return AtomicExpansionKind::None; 3344 } 3345 3346 Value *RISCVTargetLowering::emitMaskedAtomicCmpXchgIntrinsic( 3347 IRBuilder<> &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr, 3348 Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const { 3349 unsigned XLen = Subtarget.getXLen(); 3350 Value *Ordering = Builder.getIntN(XLen, static_cast<uint64_t>(Ord)); 3351 Intrinsic::ID CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i32; 3352 if (XLen == 64) { 3353 CmpVal = Builder.CreateSExt(CmpVal, Builder.getInt64Ty()); 3354 NewVal = Builder.CreateSExt(NewVal, Builder.getInt64Ty()); 3355 Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty()); 3356 CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i64; 3357 } 3358 Type *Tys[] = {AlignedAddr->getType()}; 3359 Function *MaskedCmpXchg = 3360 Intrinsic::getDeclaration(CI->getModule(), CmpXchgIntrID, Tys); 3361 Value *Result = Builder.CreateCall( 3362 MaskedCmpXchg, {AlignedAddr, CmpVal, NewVal, Mask, Ordering}); 3363 if (XLen == 64) 3364 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty()); 3365 return Result; 3366 } 3367 3368 bool RISCVTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, 3369 EVT VT) const { 3370 VT = VT.getScalarType(); 3371 3372 if (!VT.isSimple()) 3373 return false; 3374 3375 switch (VT.getSimpleVT().SimpleTy) { 3376 case MVT::f32: 3377 return Subtarget.hasStdExtF(); 3378 case MVT::f64: 3379 return Subtarget.hasStdExtD(); 3380 default: 3381 break; 3382 } 3383 3384 return false; 3385 } 3386 3387 Register RISCVTargetLowering::getExceptionPointerRegister( 3388 const Constant *PersonalityFn) const { 3389 return RISCV::X10; 3390 } 3391 3392 Register RISCVTargetLowering::getExceptionSelectorRegister( 3393 const Constant *PersonalityFn) const { 3394 return RISCV::X11; 3395 } 3396 3397 bool RISCVTargetLowering::shouldExtendTypeInLibCall(EVT Type) const { 3398 // Return false to suppress the unnecessary extensions if the LibCall 3399 // arguments or return value is f32 type for LP64 ABI. 3400 RISCVABI::ABI ABI = Subtarget.getTargetABI(); 3401 if (ABI == RISCVABI::ABI_LP64 && (Type == MVT::f32)) 3402 return false; 3403 3404 return true; 3405 } 3406 3407 bool RISCVTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT, 3408 SDValue C) const { 3409 // Check integral scalar types. 3410 if (VT.isScalarInteger()) { 3411 // Do not perform the transformation on riscv32 with the M extension. 3412 if (!Subtarget.is64Bit() && Subtarget.hasStdExtM()) 3413 return false; 3414 if (auto *ConstNode = dyn_cast<ConstantSDNode>(C.getNode())) { 3415 if (ConstNode->getAPIntValue().getBitWidth() > 8 * sizeof(int64_t)) 3416 return false; 3417 int64_t Imm = ConstNode->getSExtValue(); 3418 if (isPowerOf2_64(Imm + 1) || isPowerOf2_64(Imm - 1) || 3419 isPowerOf2_64(1 - Imm) || isPowerOf2_64(-1 - Imm)) 3420 return true; 3421 } 3422 } 3423 3424 return false; 3425 } 3426 3427 #define GET_REGISTER_MATCHER 3428 #include "RISCVGenAsmMatcher.inc" 3429 3430 Register 3431 RISCVTargetLowering::getRegisterByName(const char *RegName, LLT VT, 3432 const MachineFunction &MF) const { 3433 Register Reg = MatchRegisterAltName(RegName); 3434 if (Reg == RISCV::NoRegister) 3435 Reg = MatchRegisterName(RegName); 3436 if (Reg == RISCV::NoRegister) 3437 report_fatal_error( 3438 Twine("Invalid register name \"" + StringRef(RegName) + "\".")); 3439 BitVector ReservedRegs = Subtarget.getRegisterInfo()->getReservedRegs(MF); 3440 if (!ReservedRegs.test(Reg) && !Subtarget.isRegisterReservedByUser(Reg)) 3441 report_fatal_error(Twine("Trying to obtain non-reserved register \"" + 3442 StringRef(RegName) + "\".")); 3443 return Reg; 3444 } 3445