1 //===-- RISCVISelLowering.cpp - RISCV DAG Lowering Implementation --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the interfaces that RISCV uses to lower LLVM code into a 10 // selection DAG. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "RISCVISelLowering.h" 15 #include "RISCV.h" 16 #include "RISCVMachineFunctionInfo.h" 17 #include "RISCVRegisterInfo.h" 18 #include "RISCVSubtarget.h" 19 #include "RISCVTargetMachine.h" 20 #include "Utils/RISCVMatInt.h" 21 #include "llvm/ADT/SmallSet.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/CodeGen/CallingConvLower.h" 24 #include "llvm/CodeGen/MachineFrameInfo.h" 25 #include "llvm/CodeGen/MachineFunction.h" 26 #include "llvm/CodeGen/MachineInstrBuilder.h" 27 #include "llvm/CodeGen/MachineRegisterInfo.h" 28 #include "llvm/CodeGen/SelectionDAGISel.h" 29 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 30 #include "llvm/CodeGen/ValueTypes.h" 31 #include "llvm/IR/DiagnosticInfo.h" 32 #include "llvm/IR/DiagnosticPrinter.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/ErrorHandling.h" 35 #include "llvm/Support/raw_ostream.h" 36 37 using namespace llvm; 38 39 #define DEBUG_TYPE "riscv-lower" 40 41 STATISTIC(NumTailCalls, "Number of tail calls"); 42 43 RISCVTargetLowering::RISCVTargetLowering(const TargetMachine &TM, 44 const RISCVSubtarget &STI) 45 : TargetLowering(TM), Subtarget(STI) { 46 47 if (Subtarget.isRV32E()) 48 report_fatal_error("Codegen not yet implemented for RV32E"); 49 50 RISCVABI::ABI ABI = Subtarget.getTargetABI(); 51 assert(ABI != RISCVABI::ABI_Unknown && "Improperly initialised target ABI"); 52 53 switch (ABI) { 54 default: 55 report_fatal_error("Don't know how to lower this ABI"); 56 case RISCVABI::ABI_ILP32: 57 case RISCVABI::ABI_ILP32F: 58 case RISCVABI::ABI_ILP32D: 59 case RISCVABI::ABI_LP64: 60 case RISCVABI::ABI_LP64F: 61 case RISCVABI::ABI_LP64D: 62 break; 63 } 64 65 MVT XLenVT = Subtarget.getXLenVT(); 66 67 // Set up the register classes. 68 addRegisterClass(XLenVT, &RISCV::GPRRegClass); 69 70 if (Subtarget.hasStdExtF()) 71 addRegisterClass(MVT::f32, &RISCV::FPR32RegClass); 72 if (Subtarget.hasStdExtD()) 73 addRegisterClass(MVT::f64, &RISCV::FPR64RegClass); 74 75 // Compute derived properties from the register classes. 76 computeRegisterProperties(STI.getRegisterInfo()); 77 78 setStackPointerRegisterToSaveRestore(RISCV::X2); 79 80 for (auto N : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}) 81 setLoadExtAction(N, XLenVT, MVT::i1, Promote); 82 83 // TODO: add all necessary setOperationAction calls. 84 setOperationAction(ISD::DYNAMIC_STACKALLOC, XLenVT, Expand); 85 86 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 87 setOperationAction(ISD::BR_CC, XLenVT, Expand); 88 setOperationAction(ISD::SELECT, XLenVT, Custom); 89 setOperationAction(ISD::SELECT_CC, XLenVT, Expand); 90 91 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); 92 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); 93 94 setOperationAction(ISD::VASTART, MVT::Other, Custom); 95 setOperationAction(ISD::VAARG, MVT::Other, Expand); 96 setOperationAction(ISD::VACOPY, MVT::Other, Expand); 97 setOperationAction(ISD::VAEND, MVT::Other, Expand); 98 99 for (auto VT : {MVT::i1, MVT::i8, MVT::i16}) 100 setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand); 101 102 if (Subtarget.is64Bit()) { 103 setOperationAction(ISD::SHL, MVT::i32, Custom); 104 setOperationAction(ISD::SRA, MVT::i32, Custom); 105 setOperationAction(ISD::SRL, MVT::i32, Custom); 106 } 107 108 if (!Subtarget.hasStdExtM()) { 109 setOperationAction(ISD::MUL, XLenVT, Expand); 110 setOperationAction(ISD::MULHS, XLenVT, Expand); 111 setOperationAction(ISD::MULHU, XLenVT, Expand); 112 setOperationAction(ISD::SDIV, XLenVT, Expand); 113 setOperationAction(ISD::UDIV, XLenVT, Expand); 114 setOperationAction(ISD::SREM, XLenVT, Expand); 115 setOperationAction(ISD::UREM, XLenVT, Expand); 116 } 117 118 if (Subtarget.is64Bit() && Subtarget.hasStdExtM()) { 119 setOperationAction(ISD::SDIV, MVT::i32, Custom); 120 setOperationAction(ISD::UDIV, MVT::i32, Custom); 121 setOperationAction(ISD::UREM, MVT::i32, Custom); 122 } 123 124 setOperationAction(ISD::SDIVREM, XLenVT, Expand); 125 setOperationAction(ISD::UDIVREM, XLenVT, Expand); 126 setOperationAction(ISD::SMUL_LOHI, XLenVT, Expand); 127 setOperationAction(ISD::UMUL_LOHI, XLenVT, Expand); 128 129 setOperationAction(ISD::SHL_PARTS, XLenVT, Custom); 130 setOperationAction(ISD::SRL_PARTS, XLenVT, Custom); 131 setOperationAction(ISD::SRA_PARTS, XLenVT, Custom); 132 133 setOperationAction(ISD::ROTL, XLenVT, Expand); 134 setOperationAction(ISD::ROTR, XLenVT, Expand); 135 setOperationAction(ISD::BSWAP, XLenVT, Expand); 136 setOperationAction(ISD::CTTZ, XLenVT, Expand); 137 setOperationAction(ISD::CTLZ, XLenVT, Expand); 138 setOperationAction(ISD::CTPOP, XLenVT, Expand); 139 140 ISD::CondCode FPCCToExtend[] = { 141 ISD::SETOGT, ISD::SETOGE, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT, 142 ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUNE, ISD::SETGT, 143 ISD::SETGE, ISD::SETNE}; 144 145 ISD::NodeType FPOpToExtend[] = { 146 ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, ISD::FREM}; 147 148 if (Subtarget.hasStdExtF()) { 149 setOperationAction(ISD::FMINNUM, MVT::f32, Legal); 150 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); 151 for (auto CC : FPCCToExtend) 152 setCondCodeAction(CC, MVT::f32, Expand); 153 setOperationAction(ISD::SELECT_CC, MVT::f32, Expand); 154 setOperationAction(ISD::SELECT, MVT::f32, Custom); 155 setOperationAction(ISD::BR_CC, MVT::f32, Expand); 156 for (auto Op : FPOpToExtend) 157 setOperationAction(Op, MVT::f32, Expand); 158 } 159 160 if (Subtarget.hasStdExtF() && Subtarget.is64Bit()) 161 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 162 163 if (Subtarget.hasStdExtD()) { 164 setOperationAction(ISD::FMINNUM, MVT::f64, Legal); 165 setOperationAction(ISD::FMAXNUM, MVT::f64, Legal); 166 for (auto CC : FPCCToExtend) 167 setCondCodeAction(CC, MVT::f64, Expand); 168 setOperationAction(ISD::SELECT_CC, MVT::f64, Expand); 169 setOperationAction(ISD::SELECT, MVT::f64, Custom); 170 setOperationAction(ISD::BR_CC, MVT::f64, Expand); 171 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 172 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 173 for (auto Op : FPOpToExtend) 174 setOperationAction(Op, MVT::f64, Expand); 175 } 176 177 setOperationAction(ISD::GlobalAddress, XLenVT, Custom); 178 setOperationAction(ISD::BlockAddress, XLenVT, Custom); 179 setOperationAction(ISD::ConstantPool, XLenVT, Custom); 180 181 setOperationAction(ISD::GlobalTLSAddress, XLenVT, Custom); 182 183 if (Subtarget.hasStdExtA()) { 184 setMaxAtomicSizeInBitsSupported(Subtarget.getXLen()); 185 setMinCmpXchgSizeInBits(32); 186 } else { 187 setMaxAtomicSizeInBitsSupported(0); 188 } 189 190 setBooleanContents(ZeroOrOneBooleanContent); 191 192 // Function alignments (log2). 193 unsigned FunctionAlignment = Subtarget.hasStdExtC() ? 1 : 2; 194 setMinFunctionAlignment(FunctionAlignment); 195 setPrefFunctionAlignment(FunctionAlignment); 196 197 // Effectively disable jump table generation. 198 setMinimumJumpTableEntries(INT_MAX); 199 } 200 201 EVT RISCVTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &, 202 EVT VT) const { 203 if (!VT.isVector()) 204 return getPointerTy(DL); 205 return VT.changeVectorElementTypeToInteger(); 206 } 207 208 bool RISCVTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 209 const CallInst &I, 210 MachineFunction &MF, 211 unsigned Intrinsic) const { 212 switch (Intrinsic) { 213 default: 214 return false; 215 case Intrinsic::riscv_masked_atomicrmw_xchg_i32: 216 case Intrinsic::riscv_masked_atomicrmw_add_i32: 217 case Intrinsic::riscv_masked_atomicrmw_sub_i32: 218 case Intrinsic::riscv_masked_atomicrmw_nand_i32: 219 case Intrinsic::riscv_masked_atomicrmw_max_i32: 220 case Intrinsic::riscv_masked_atomicrmw_min_i32: 221 case Intrinsic::riscv_masked_atomicrmw_umax_i32: 222 case Intrinsic::riscv_masked_atomicrmw_umin_i32: 223 case Intrinsic::riscv_masked_cmpxchg_i32: 224 PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType()); 225 Info.opc = ISD::INTRINSIC_W_CHAIN; 226 Info.memVT = MVT::getVT(PtrTy->getElementType()); 227 Info.ptrVal = I.getArgOperand(0); 228 Info.offset = 0; 229 Info.align = 4; 230 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore | 231 MachineMemOperand::MOVolatile; 232 return true; 233 } 234 } 235 236 bool RISCVTargetLowering::isLegalAddressingMode(const DataLayout &DL, 237 const AddrMode &AM, Type *Ty, 238 unsigned AS, 239 Instruction *I) const { 240 // No global is ever allowed as a base. 241 if (AM.BaseGV) 242 return false; 243 244 // Require a 12-bit signed offset. 245 if (!isInt<12>(AM.BaseOffs)) 246 return false; 247 248 switch (AM.Scale) { 249 case 0: // "r+i" or just "i", depending on HasBaseReg. 250 break; 251 case 1: 252 if (!AM.HasBaseReg) // allow "r+i". 253 break; 254 return false; // disallow "r+r" or "r+r+i". 255 default: 256 return false; 257 } 258 259 return true; 260 } 261 262 bool RISCVTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 263 return isInt<12>(Imm); 264 } 265 266 bool RISCVTargetLowering::isLegalAddImmediate(int64_t Imm) const { 267 return isInt<12>(Imm); 268 } 269 270 // On RV32, 64-bit integers are split into their high and low parts and held 271 // in two different registers, so the trunc is free since the low register can 272 // just be used. 273 bool RISCVTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const { 274 if (Subtarget.is64Bit() || !SrcTy->isIntegerTy() || !DstTy->isIntegerTy()) 275 return false; 276 unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); 277 unsigned DestBits = DstTy->getPrimitiveSizeInBits(); 278 return (SrcBits == 64 && DestBits == 32); 279 } 280 281 bool RISCVTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const { 282 if (Subtarget.is64Bit() || SrcVT.isVector() || DstVT.isVector() || 283 !SrcVT.isInteger() || !DstVT.isInteger()) 284 return false; 285 unsigned SrcBits = SrcVT.getSizeInBits(); 286 unsigned DestBits = DstVT.getSizeInBits(); 287 return (SrcBits == 64 && DestBits == 32); 288 } 289 290 bool RISCVTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 291 // Zexts are free if they can be combined with a load. 292 if (auto *LD = dyn_cast<LoadSDNode>(Val)) { 293 EVT MemVT = LD->getMemoryVT(); 294 if ((MemVT == MVT::i8 || MemVT == MVT::i16 || 295 (Subtarget.is64Bit() && MemVT == MVT::i32)) && 296 (LD->getExtensionType() == ISD::NON_EXTLOAD || 297 LD->getExtensionType() == ISD::ZEXTLOAD)) 298 return true; 299 } 300 301 return TargetLowering::isZExtFree(Val, VT2); 302 } 303 304 bool RISCVTargetLowering::isSExtCheaperThanZExt(EVT SrcVT, EVT DstVT) const { 305 return Subtarget.is64Bit() && SrcVT == MVT::i32 && DstVT == MVT::i64; 306 } 307 308 bool RISCVTargetLowering::hasBitPreservingFPLogic(EVT VT) const { 309 return (VT == MVT::f32 && Subtarget.hasStdExtF()) || 310 (VT == MVT::f64 && Subtarget.hasStdExtD()); 311 } 312 313 // Changes the condition code and swaps operands if necessary, so the SetCC 314 // operation matches one of the comparisons supported directly in the RISC-V 315 // ISA. 316 static void normaliseSetCC(SDValue &LHS, SDValue &RHS, ISD::CondCode &CC) { 317 switch (CC) { 318 default: 319 break; 320 case ISD::SETGT: 321 case ISD::SETLE: 322 case ISD::SETUGT: 323 case ISD::SETULE: 324 CC = ISD::getSetCCSwappedOperands(CC); 325 std::swap(LHS, RHS); 326 break; 327 } 328 } 329 330 // Return the RISC-V branch opcode that matches the given DAG integer 331 // condition code. The CondCode must be one of those supported by the RISC-V 332 // ISA (see normaliseSetCC). 333 static unsigned getBranchOpcodeForIntCondCode(ISD::CondCode CC) { 334 switch (CC) { 335 default: 336 llvm_unreachable("Unsupported CondCode"); 337 case ISD::SETEQ: 338 return RISCV::BEQ; 339 case ISD::SETNE: 340 return RISCV::BNE; 341 case ISD::SETLT: 342 return RISCV::BLT; 343 case ISD::SETGE: 344 return RISCV::BGE; 345 case ISD::SETULT: 346 return RISCV::BLTU; 347 case ISD::SETUGE: 348 return RISCV::BGEU; 349 } 350 } 351 352 SDValue RISCVTargetLowering::LowerOperation(SDValue Op, 353 SelectionDAG &DAG) const { 354 switch (Op.getOpcode()) { 355 default: 356 report_fatal_error("unimplemented operand"); 357 case ISD::GlobalAddress: 358 return lowerGlobalAddress(Op, DAG); 359 case ISD::BlockAddress: 360 return lowerBlockAddress(Op, DAG); 361 case ISD::ConstantPool: 362 return lowerConstantPool(Op, DAG); 363 case ISD::GlobalTLSAddress: 364 return lowerGlobalTLSAddress(Op, DAG); 365 case ISD::SELECT: 366 return lowerSELECT(Op, DAG); 367 case ISD::VASTART: 368 return lowerVASTART(Op, DAG); 369 case ISD::FRAMEADDR: 370 return lowerFRAMEADDR(Op, DAG); 371 case ISD::RETURNADDR: 372 return lowerRETURNADDR(Op, DAG); 373 case ISD::SHL_PARTS: 374 return lowerShiftLeftParts(Op, DAG); 375 case ISD::SRA_PARTS: 376 return lowerShiftRightParts(Op, DAG, true); 377 case ISD::SRL_PARTS: 378 return lowerShiftRightParts(Op, DAG, false); 379 case ISD::BITCAST: { 380 assert(Subtarget.is64Bit() && Subtarget.hasStdExtF() && 381 "Unexpected custom legalisation"); 382 SDLoc DL(Op); 383 SDValue Op0 = Op.getOperand(0); 384 if (Op.getValueType() != MVT::f32 || Op0.getValueType() != MVT::i32) 385 return SDValue(); 386 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); 387 SDValue FPConv = DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, NewOp0); 388 return FPConv; 389 } 390 } 391 } 392 393 static SDValue getTargetNode(GlobalAddressSDNode *N, SDLoc DL, EVT Ty, 394 SelectionDAG &DAG, unsigned Flags) { 395 return DAG.getTargetGlobalAddress(N->getGlobal(), DL, Ty, 0, Flags); 396 } 397 398 static SDValue getTargetNode(BlockAddressSDNode *N, SDLoc DL, EVT Ty, 399 SelectionDAG &DAG, unsigned Flags) { 400 return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, N->getOffset(), 401 Flags); 402 } 403 404 static SDValue getTargetNode(ConstantPoolSDNode *N, SDLoc DL, EVT Ty, 405 SelectionDAG &DAG, unsigned Flags) { 406 return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlignment(), 407 N->getOffset(), Flags); 408 } 409 410 template <class NodeTy> 411 SDValue RISCVTargetLowering::getAddr(NodeTy *N, SelectionDAG &DAG, 412 bool IsLocal) const { 413 SDLoc DL(N); 414 EVT Ty = getPointerTy(DAG.getDataLayout()); 415 416 if (isPositionIndependent()) { 417 SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0); 418 if (IsLocal) 419 // Use PC-relative addressing to access the symbol. This generates the 420 // pattern (PseudoLLA sym), which expands to (addi (auipc %pcrel_hi(sym)) 421 // %pcrel_lo(auipc)). 422 return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0); 423 424 // Use PC-relative addressing to access the GOT for this symbol, then load 425 // the address from the GOT. This generates the pattern (PseudoLA sym), 426 // which expands to (ld (addi (auipc %got_pcrel_hi(sym)) %pcrel_lo(auipc))). 427 return SDValue(DAG.getMachineNode(RISCV::PseudoLA, DL, Ty, Addr), 0); 428 } 429 430 switch (getTargetMachine().getCodeModel()) { 431 default: 432 report_fatal_error("Unsupported code model for lowering"); 433 case CodeModel::Small: { 434 // Generate a sequence for accessing addresses within the first 2 GiB of 435 // address space. This generates the pattern (addi (lui %hi(sym)) %lo(sym)). 436 SDValue AddrHi = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_HI); 437 SDValue AddrLo = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_LO); 438 SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0); 439 return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNHi, AddrLo), 0); 440 } 441 case CodeModel::Medium: { 442 // Generate a sequence for accessing addresses within any 2GiB range within 443 // the address space. This generates the pattern (PseudoLLA sym), which 444 // expands to (addi (auipc %pcrel_hi(sym)) %pcrel_lo(auipc)). 445 SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0); 446 return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0); 447 } 448 } 449 } 450 451 SDValue RISCVTargetLowering::lowerGlobalAddress(SDValue Op, 452 SelectionDAG &DAG) const { 453 SDLoc DL(Op); 454 EVT Ty = Op.getValueType(); 455 GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op); 456 int64_t Offset = N->getOffset(); 457 MVT XLenVT = Subtarget.getXLenVT(); 458 459 const GlobalValue *GV = N->getGlobal(); 460 bool IsLocal = getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV); 461 SDValue Addr = getAddr(N, DAG, IsLocal); 462 463 // In order to maximise the opportunity for common subexpression elimination, 464 // emit a separate ADD node for the global address offset instead of folding 465 // it in the global address node. Later peephole optimisations may choose to 466 // fold it back in when profitable. 467 if (Offset != 0) 468 return DAG.getNode(ISD::ADD, DL, Ty, Addr, 469 DAG.getConstant(Offset, DL, XLenVT)); 470 return Addr; 471 } 472 473 SDValue RISCVTargetLowering::lowerBlockAddress(SDValue Op, 474 SelectionDAG &DAG) const { 475 BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op); 476 477 return getAddr(N, DAG); 478 } 479 480 SDValue RISCVTargetLowering::lowerConstantPool(SDValue Op, 481 SelectionDAG &DAG) const { 482 ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op); 483 484 return getAddr(N, DAG); 485 } 486 487 SDValue RISCVTargetLowering::getStaticTLSAddr(GlobalAddressSDNode *N, 488 SelectionDAG &DAG, 489 bool UseGOT) const { 490 SDLoc DL(N); 491 EVT Ty = getPointerTy(DAG.getDataLayout()); 492 const GlobalValue *GV = N->getGlobal(); 493 MVT XLenVT = Subtarget.getXLenVT(); 494 495 if (UseGOT) { 496 // Use PC-relative addressing to access the GOT for this TLS symbol, then 497 // load the address from the GOT and add the thread pointer. This generates 498 // the pattern (PseudoLA_TLS_IE sym), which expands to 499 // (ld (auipc %tls_ie_pcrel_hi(sym)) %pcrel_lo(auipc)). 500 SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0); 501 SDValue Load = 502 SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_IE, DL, Ty, Addr), 0); 503 504 // Add the thread pointer. 505 SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT); 506 return DAG.getNode(ISD::ADD, DL, Ty, Load, TPReg); 507 } 508 509 // Generate a sequence for accessing the address relative to the thread 510 // pointer, with the appropriate adjustment for the thread pointer offset. 511 // This generates the pattern 512 // (add (add_tprel (lui %tprel_hi(sym)) tp %tprel_add(sym)) %tprel_lo(sym)) 513 SDValue AddrHi = 514 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_HI); 515 SDValue AddrAdd = 516 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_ADD); 517 SDValue AddrLo = 518 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_LO); 519 520 SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0); 521 SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT); 522 SDValue MNAdd = SDValue( 523 DAG.getMachineNode(RISCV::PseudoAddTPRel, DL, Ty, MNHi, TPReg, AddrAdd), 524 0); 525 return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNAdd, AddrLo), 0); 526 } 527 528 SDValue RISCVTargetLowering::getDynamicTLSAddr(GlobalAddressSDNode *N, 529 SelectionDAG &DAG) const { 530 SDLoc DL(N); 531 EVT Ty = getPointerTy(DAG.getDataLayout()); 532 IntegerType *CallTy = Type::getIntNTy(*DAG.getContext(), Ty.getSizeInBits()); 533 const GlobalValue *GV = N->getGlobal(); 534 535 // Use a PC-relative addressing mode to access the global dynamic GOT address. 536 // This generates the pattern (PseudoLA_TLS_GD sym), which expands to 537 // (addi (auipc %tls_gd_pcrel_hi(sym)) %pcrel_lo(auipc)). 538 SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0); 539 SDValue Load = 540 SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_GD, DL, Ty, Addr), 0); 541 542 // Prepare argument list to generate call. 543 ArgListTy Args; 544 ArgListEntry Entry; 545 Entry.Node = Load; 546 Entry.Ty = CallTy; 547 Args.push_back(Entry); 548 549 // Setup call to __tls_get_addr. 550 TargetLowering::CallLoweringInfo CLI(DAG); 551 CLI.setDebugLoc(DL) 552 .setChain(DAG.getEntryNode()) 553 .setLibCallee(CallingConv::C, CallTy, 554 DAG.getExternalSymbol("__tls_get_addr", Ty), 555 std::move(Args)); 556 557 return LowerCallTo(CLI).first; 558 } 559 560 SDValue RISCVTargetLowering::lowerGlobalTLSAddress(SDValue Op, 561 SelectionDAG &DAG) const { 562 SDLoc DL(Op); 563 EVT Ty = Op.getValueType(); 564 GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op); 565 int64_t Offset = N->getOffset(); 566 MVT XLenVT = Subtarget.getXLenVT(); 567 568 // Non-PIC TLS lowering should always use the LocalExec model. 569 TLSModel::Model Model = isPositionIndependent() 570 ? getTargetMachine().getTLSModel(N->getGlobal()) 571 : TLSModel::LocalExec; 572 573 SDValue Addr; 574 switch (Model) { 575 case TLSModel::LocalExec: 576 Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/false); 577 break; 578 case TLSModel::InitialExec: 579 Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/true); 580 break; 581 case TLSModel::LocalDynamic: 582 case TLSModel::GeneralDynamic: 583 Addr = getDynamicTLSAddr(N, DAG); 584 break; 585 } 586 587 // In order to maximise the opportunity for common subexpression elimination, 588 // emit a separate ADD node for the global address offset instead of folding 589 // it in the global address node. Later peephole optimisations may choose to 590 // fold it back in when profitable. 591 if (Offset != 0) 592 return DAG.getNode(ISD::ADD, DL, Ty, Addr, 593 DAG.getConstant(Offset, DL, XLenVT)); 594 return Addr; 595 } 596 597 SDValue RISCVTargetLowering::lowerSELECT(SDValue Op, SelectionDAG &DAG) const { 598 SDValue CondV = Op.getOperand(0); 599 SDValue TrueV = Op.getOperand(1); 600 SDValue FalseV = Op.getOperand(2); 601 SDLoc DL(Op); 602 MVT XLenVT = Subtarget.getXLenVT(); 603 604 // If the result type is XLenVT and CondV is the output of a SETCC node 605 // which also operated on XLenVT inputs, then merge the SETCC node into the 606 // lowered RISCVISD::SELECT_CC to take advantage of the integer 607 // compare+branch instructions. i.e.: 608 // (select (setcc lhs, rhs, cc), truev, falsev) 609 // -> (riscvisd::select_cc lhs, rhs, cc, truev, falsev) 610 if (Op.getSimpleValueType() == XLenVT && CondV.getOpcode() == ISD::SETCC && 611 CondV.getOperand(0).getSimpleValueType() == XLenVT) { 612 SDValue LHS = CondV.getOperand(0); 613 SDValue RHS = CondV.getOperand(1); 614 auto CC = cast<CondCodeSDNode>(CondV.getOperand(2)); 615 ISD::CondCode CCVal = CC->get(); 616 617 normaliseSetCC(LHS, RHS, CCVal); 618 619 SDValue TargetCC = DAG.getConstant(CCVal, DL, XLenVT); 620 SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue); 621 SDValue Ops[] = {LHS, RHS, TargetCC, TrueV, FalseV}; 622 return DAG.getNode(RISCVISD::SELECT_CC, DL, VTs, Ops); 623 } 624 625 // Otherwise: 626 // (select condv, truev, falsev) 627 // -> (riscvisd::select_cc condv, zero, setne, truev, falsev) 628 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 629 SDValue SetNE = DAG.getConstant(ISD::SETNE, DL, XLenVT); 630 631 SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue); 632 SDValue Ops[] = {CondV, Zero, SetNE, TrueV, FalseV}; 633 634 return DAG.getNode(RISCVISD::SELECT_CC, DL, VTs, Ops); 635 } 636 637 SDValue RISCVTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const { 638 MachineFunction &MF = DAG.getMachineFunction(); 639 RISCVMachineFunctionInfo *FuncInfo = MF.getInfo<RISCVMachineFunctionInfo>(); 640 641 SDLoc DL(Op); 642 SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), 643 getPointerTy(MF.getDataLayout())); 644 645 // vastart just stores the address of the VarArgsFrameIndex slot into the 646 // memory location argument. 647 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 648 return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1), 649 MachinePointerInfo(SV)); 650 } 651 652 SDValue RISCVTargetLowering::lowerFRAMEADDR(SDValue Op, 653 SelectionDAG &DAG) const { 654 const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo(); 655 MachineFunction &MF = DAG.getMachineFunction(); 656 MachineFrameInfo &MFI = MF.getFrameInfo(); 657 MFI.setFrameAddressIsTaken(true); 658 unsigned FrameReg = RI.getFrameRegister(MF); 659 int XLenInBytes = Subtarget.getXLen() / 8; 660 661 EVT VT = Op.getValueType(); 662 SDLoc DL(Op); 663 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, FrameReg, VT); 664 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 665 while (Depth--) { 666 int Offset = -(XLenInBytes * 2); 667 SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr, 668 DAG.getIntPtrConstant(Offset, DL)); 669 FrameAddr = 670 DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo()); 671 } 672 return FrameAddr; 673 } 674 675 SDValue RISCVTargetLowering::lowerRETURNADDR(SDValue Op, 676 SelectionDAG &DAG) const { 677 const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo(); 678 MachineFunction &MF = DAG.getMachineFunction(); 679 MachineFrameInfo &MFI = MF.getFrameInfo(); 680 MFI.setReturnAddressIsTaken(true); 681 MVT XLenVT = Subtarget.getXLenVT(); 682 int XLenInBytes = Subtarget.getXLen() / 8; 683 684 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 685 return SDValue(); 686 687 EVT VT = Op.getValueType(); 688 SDLoc DL(Op); 689 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 690 if (Depth) { 691 int Off = -XLenInBytes; 692 SDValue FrameAddr = lowerFRAMEADDR(Op, DAG); 693 SDValue Offset = DAG.getConstant(Off, DL, VT); 694 return DAG.getLoad(VT, DL, DAG.getEntryNode(), 695 DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset), 696 MachinePointerInfo()); 697 } 698 699 // Return the value of the return address register, marking it an implicit 700 // live-in. 701 unsigned Reg = MF.addLiveIn(RI.getRARegister(), getRegClassFor(XLenVT)); 702 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, XLenVT); 703 } 704 705 SDValue RISCVTargetLowering::lowerShiftLeftParts(SDValue Op, 706 SelectionDAG &DAG) const { 707 SDLoc DL(Op); 708 SDValue Lo = Op.getOperand(0); 709 SDValue Hi = Op.getOperand(1); 710 SDValue Shamt = Op.getOperand(2); 711 EVT VT = Lo.getValueType(); 712 713 // if Shamt-XLEN < 0: // Shamt < XLEN 714 // Lo = Lo << Shamt 715 // Hi = (Hi << Shamt) | ((Lo >>u 1) >>u (XLEN-1 - Shamt)) 716 // else: 717 // Lo = 0 718 // Hi = Lo << (Shamt-XLEN) 719 720 SDValue Zero = DAG.getConstant(0, DL, VT); 721 SDValue One = DAG.getConstant(1, DL, VT); 722 SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT); 723 SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT); 724 SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen); 725 SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt); 726 727 SDValue LoTrue = DAG.getNode(ISD::SHL, DL, VT, Lo, Shamt); 728 SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, VT, Lo, One); 729 SDValue ShiftRightLo = 730 DAG.getNode(ISD::SRL, DL, VT, ShiftRight1Lo, XLenMinus1Shamt); 731 SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, Hi, Shamt); 732 SDValue HiTrue = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo); 733 SDValue HiFalse = DAG.getNode(ISD::SHL, DL, VT, Lo, ShamtMinusXLen); 734 735 SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT); 736 737 Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, Zero); 738 Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse); 739 740 SDValue Parts[2] = {Lo, Hi}; 741 return DAG.getMergeValues(Parts, DL); 742 } 743 744 SDValue RISCVTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG, 745 bool IsSRA) const { 746 SDLoc DL(Op); 747 SDValue Lo = Op.getOperand(0); 748 SDValue Hi = Op.getOperand(1); 749 SDValue Shamt = Op.getOperand(2); 750 EVT VT = Lo.getValueType(); 751 752 // SRA expansion: 753 // if Shamt-XLEN < 0: // Shamt < XLEN 754 // Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt)) 755 // Hi = Hi >>s Shamt 756 // else: 757 // Lo = Hi >>s (Shamt-XLEN); 758 // Hi = Hi >>s (XLEN-1) 759 // 760 // SRL expansion: 761 // if Shamt-XLEN < 0: // Shamt < XLEN 762 // Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt)) 763 // Hi = Hi >>u Shamt 764 // else: 765 // Lo = Hi >>u (Shamt-XLEN); 766 // Hi = 0; 767 768 unsigned ShiftRightOp = IsSRA ? ISD::SRA : ISD::SRL; 769 770 SDValue Zero = DAG.getConstant(0, DL, VT); 771 SDValue One = DAG.getConstant(1, DL, VT); 772 SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT); 773 SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT); 774 SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen); 775 SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt); 776 777 SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, Lo, Shamt); 778 SDValue ShiftLeftHi1 = DAG.getNode(ISD::SHL, DL, VT, Hi, One); 779 SDValue ShiftLeftHi = 780 DAG.getNode(ISD::SHL, DL, VT, ShiftLeftHi1, XLenMinus1Shamt); 781 SDValue LoTrue = DAG.getNode(ISD::OR, DL, VT, ShiftRightLo, ShiftLeftHi); 782 SDValue HiTrue = DAG.getNode(ShiftRightOp, DL, VT, Hi, Shamt); 783 SDValue LoFalse = DAG.getNode(ShiftRightOp, DL, VT, Hi, ShamtMinusXLen); 784 SDValue HiFalse = 785 IsSRA ? DAG.getNode(ISD::SRA, DL, VT, Hi, XLenMinus1) : Zero; 786 787 SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT); 788 789 Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, LoFalse); 790 Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse); 791 792 SDValue Parts[2] = {Lo, Hi}; 793 return DAG.getMergeValues(Parts, DL); 794 } 795 796 // Returns the opcode of the target-specific SDNode that implements the 32-bit 797 // form of the given Opcode. 798 static RISCVISD::NodeType getRISCVWOpcode(unsigned Opcode) { 799 switch (Opcode) { 800 default: 801 llvm_unreachable("Unexpected opcode"); 802 case ISD::SHL: 803 return RISCVISD::SLLW; 804 case ISD::SRA: 805 return RISCVISD::SRAW; 806 case ISD::SRL: 807 return RISCVISD::SRLW; 808 case ISD::SDIV: 809 return RISCVISD::DIVW; 810 case ISD::UDIV: 811 return RISCVISD::DIVUW; 812 case ISD::UREM: 813 return RISCVISD::REMUW; 814 } 815 } 816 817 // Converts the given 32-bit operation to a target-specific SelectionDAG node. 818 // Because i32 isn't a legal type for RV64, these operations would otherwise 819 // be promoted to i64, making it difficult to select the SLLW/DIVUW/.../*W 820 // later one because the fact the operation was originally of type i32 is 821 // lost. 822 static SDValue customLegalizeToWOp(SDNode *N, SelectionDAG &DAG) { 823 SDLoc DL(N); 824 RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode()); 825 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 826 SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 827 SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1); 828 // ReplaceNodeResults requires we maintain the same type for the return value. 829 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes); 830 } 831 832 void RISCVTargetLowering::ReplaceNodeResults(SDNode *N, 833 SmallVectorImpl<SDValue> &Results, 834 SelectionDAG &DAG) const { 835 SDLoc DL(N); 836 switch (N->getOpcode()) { 837 default: 838 llvm_unreachable("Don't know how to custom type legalize this operation!"); 839 case ISD::SHL: 840 case ISD::SRA: 841 case ISD::SRL: 842 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 843 "Unexpected custom legalisation"); 844 if (N->getOperand(1).getOpcode() == ISD::Constant) 845 return; 846 Results.push_back(customLegalizeToWOp(N, DAG)); 847 break; 848 case ISD::SDIV: 849 case ISD::UDIV: 850 case ISD::UREM: 851 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 852 Subtarget.hasStdExtM() && "Unexpected custom legalisation"); 853 if (N->getOperand(0).getOpcode() == ISD::Constant || 854 N->getOperand(1).getOpcode() == ISD::Constant) 855 return; 856 Results.push_back(customLegalizeToWOp(N, DAG)); 857 break; 858 case ISD::BITCAST: { 859 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 860 Subtarget.hasStdExtF() && "Unexpected custom legalisation"); 861 SDLoc DL(N); 862 SDValue Op0 = N->getOperand(0); 863 if (Op0.getValueType() != MVT::f32) 864 return; 865 SDValue FPConv = 866 DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Op0); 867 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, FPConv)); 868 break; 869 } 870 } 871 } 872 873 SDValue RISCVTargetLowering::PerformDAGCombine(SDNode *N, 874 DAGCombinerInfo &DCI) const { 875 SelectionDAG &DAG = DCI.DAG; 876 877 switch (N->getOpcode()) { 878 default: 879 break; 880 case RISCVISD::SplitF64: { 881 SDValue Op0 = N->getOperand(0); 882 // If the input to SplitF64 is just BuildPairF64 then the operation is 883 // redundant. Instead, use BuildPairF64's operands directly. 884 if (Op0->getOpcode() == RISCVISD::BuildPairF64) 885 return DCI.CombineTo(N, Op0.getOperand(0), Op0.getOperand(1)); 886 887 SDLoc DL(N); 888 889 // It's cheaper to materialise two 32-bit integers than to load a double 890 // from the constant pool and transfer it to integer registers through the 891 // stack. 892 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op0)) { 893 APInt V = C->getValueAPF().bitcastToAPInt(); 894 SDValue Lo = DAG.getConstant(V.trunc(32), DL, MVT::i32); 895 SDValue Hi = DAG.getConstant(V.lshr(32).trunc(32), DL, MVT::i32); 896 return DCI.CombineTo(N, Lo, Hi); 897 } 898 899 // This is a target-specific version of a DAGCombine performed in 900 // DAGCombiner::visitBITCAST. It performs the equivalent of: 901 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) 902 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) 903 if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) || 904 !Op0.getNode()->hasOneUse()) 905 break; 906 SDValue NewSplitF64 = 907 DAG.getNode(RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), 908 Op0.getOperand(0)); 909 SDValue Lo = NewSplitF64.getValue(0); 910 SDValue Hi = NewSplitF64.getValue(1); 911 APInt SignBit = APInt::getSignMask(32); 912 if (Op0.getOpcode() == ISD::FNEG) { 913 SDValue NewHi = DAG.getNode(ISD::XOR, DL, MVT::i32, Hi, 914 DAG.getConstant(SignBit, DL, MVT::i32)); 915 return DCI.CombineTo(N, Lo, NewHi); 916 } 917 assert(Op0.getOpcode() == ISD::FABS); 918 SDValue NewHi = DAG.getNode(ISD::AND, DL, MVT::i32, Hi, 919 DAG.getConstant(~SignBit, DL, MVT::i32)); 920 return DCI.CombineTo(N, Lo, NewHi); 921 } 922 case RISCVISD::SLLW: 923 case RISCVISD::SRAW: 924 case RISCVISD::SRLW: { 925 // Only the lower 32 bits of LHS and lower 5 bits of RHS are read. 926 SDValue LHS = N->getOperand(0); 927 SDValue RHS = N->getOperand(1); 928 APInt LHSMask = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 32); 929 APInt RHSMask = APInt::getLowBitsSet(RHS.getValueSizeInBits(), 5); 930 if ((SimplifyDemandedBits(N->getOperand(0), LHSMask, DCI)) || 931 (SimplifyDemandedBits(N->getOperand(1), RHSMask, DCI))) 932 return SDValue(); 933 break; 934 } 935 case RISCVISD::FMV_X_ANYEXTW_RV64: { 936 SDLoc DL(N); 937 SDValue Op0 = N->getOperand(0); 938 // If the input to FMV_X_ANYEXTW_RV64 is just FMV_W_X_RV64 then the 939 // conversion is unnecessary and can be replaced with an ANY_EXTEND 940 // of the FMV_W_X_RV64 operand. 941 if (Op0->getOpcode() == RISCVISD::FMV_W_X_RV64) { 942 SDValue AExtOp = 943 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0.getOperand(0)); 944 return DCI.CombineTo(N, AExtOp); 945 } 946 947 // This is a target-specific version of a DAGCombine performed in 948 // DAGCombiner::visitBITCAST. It performs the equivalent of: 949 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) 950 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) 951 if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) || 952 !Op0.getNode()->hasOneUse()) 953 break; 954 SDValue NewFMV = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, 955 Op0.getOperand(0)); 956 APInt SignBit = APInt::getSignMask(32).sext(64); 957 if (Op0.getOpcode() == ISD::FNEG) { 958 return DCI.CombineTo(N, 959 DAG.getNode(ISD::XOR, DL, MVT::i64, NewFMV, 960 DAG.getConstant(SignBit, DL, MVT::i64))); 961 } 962 assert(Op0.getOpcode() == ISD::FABS); 963 return DCI.CombineTo(N, 964 DAG.getNode(ISD::AND, DL, MVT::i64, NewFMV, 965 DAG.getConstant(~SignBit, DL, MVT::i64))); 966 } 967 } 968 969 return SDValue(); 970 } 971 972 bool RISCVTargetLowering::isDesirableToCommuteWithShift( 973 const SDNode *N, CombineLevel Level) const { 974 // The following folds are only desirable if `(OP _, c1 << c2)` can be 975 // materialised in fewer instructions than `(OP _, c1)`: 976 // 977 // (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2) 978 // (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2) 979 SDValue N0 = N->getOperand(0); 980 MVT Ty = N0.getSimpleValueType(); 981 if (Ty.isScalarInteger() && 982 (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::OR)) { 983 auto *C1 = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 984 auto *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1)); 985 if (C1 && C2) { 986 APInt C1Int = C1->getAPIntValue(); 987 APInt ShiftedC1Int = C1Int << C2->getAPIntValue(); 988 989 // We can materialise `c1 << c2` into an add immediate, so it's "free", 990 // and the combine should happen, to potentially allow further combines 991 // later. 992 if (isLegalAddImmediate(ShiftedC1Int.getSExtValue())) 993 return true; 994 995 // We can materialise `c1` in an add immediate, so it's "free", and the 996 // combine should be prevented. 997 if (isLegalAddImmediate(C1Int.getSExtValue())) 998 return false; 999 1000 // Neither constant will fit into an immediate, so find materialisation 1001 // costs. 1002 int C1Cost = RISCVMatInt::getIntMatCost(C1Int, Ty.getSizeInBits(), 1003 Subtarget.is64Bit()); 1004 int ShiftedC1Cost = RISCVMatInt::getIntMatCost( 1005 ShiftedC1Int, Ty.getSizeInBits(), Subtarget.is64Bit()); 1006 1007 // Materialising `c1` is cheaper than materialising `c1 << c2`, so the 1008 // combine should be prevented. 1009 if (C1Cost < ShiftedC1Cost) 1010 return false; 1011 } 1012 } 1013 return true; 1014 } 1015 1016 unsigned RISCVTargetLowering::ComputeNumSignBitsForTargetNode( 1017 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 1018 unsigned Depth) const { 1019 switch (Op.getOpcode()) { 1020 default: 1021 break; 1022 case RISCVISD::SLLW: 1023 case RISCVISD::SRAW: 1024 case RISCVISD::SRLW: 1025 case RISCVISD::DIVW: 1026 case RISCVISD::DIVUW: 1027 case RISCVISD::REMUW: 1028 // TODO: As the result is sign-extended, this is conservatively correct. A 1029 // more precise answer could be calculated for SRAW depending on known 1030 // bits in the shift amount. 1031 return 33; 1032 } 1033 1034 return 1; 1035 } 1036 1037 static MachineBasicBlock *emitSplitF64Pseudo(MachineInstr &MI, 1038 MachineBasicBlock *BB) { 1039 assert(MI.getOpcode() == RISCV::SplitF64Pseudo && "Unexpected instruction"); 1040 1041 MachineFunction &MF = *BB->getParent(); 1042 DebugLoc DL = MI.getDebugLoc(); 1043 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 1044 const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo(); 1045 unsigned LoReg = MI.getOperand(0).getReg(); 1046 unsigned HiReg = MI.getOperand(1).getReg(); 1047 unsigned SrcReg = MI.getOperand(2).getReg(); 1048 const TargetRegisterClass *SrcRC = &RISCV::FPR64RegClass; 1049 int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(); 1050 1051 TII.storeRegToStackSlot(*BB, MI, SrcReg, MI.getOperand(2).isKill(), FI, SrcRC, 1052 RI); 1053 MachineMemOperand *MMO = 1054 MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(MF, FI), 1055 MachineMemOperand::MOLoad, 8, 8); 1056 BuildMI(*BB, MI, DL, TII.get(RISCV::LW), LoReg) 1057 .addFrameIndex(FI) 1058 .addImm(0) 1059 .addMemOperand(MMO); 1060 BuildMI(*BB, MI, DL, TII.get(RISCV::LW), HiReg) 1061 .addFrameIndex(FI) 1062 .addImm(4) 1063 .addMemOperand(MMO); 1064 MI.eraseFromParent(); // The pseudo instruction is gone now. 1065 return BB; 1066 } 1067 1068 static MachineBasicBlock *emitBuildPairF64Pseudo(MachineInstr &MI, 1069 MachineBasicBlock *BB) { 1070 assert(MI.getOpcode() == RISCV::BuildPairF64Pseudo && 1071 "Unexpected instruction"); 1072 1073 MachineFunction &MF = *BB->getParent(); 1074 DebugLoc DL = MI.getDebugLoc(); 1075 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 1076 const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo(); 1077 unsigned DstReg = MI.getOperand(0).getReg(); 1078 unsigned LoReg = MI.getOperand(1).getReg(); 1079 unsigned HiReg = MI.getOperand(2).getReg(); 1080 const TargetRegisterClass *DstRC = &RISCV::FPR64RegClass; 1081 int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(); 1082 1083 MachineMemOperand *MMO = 1084 MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(MF, FI), 1085 MachineMemOperand::MOStore, 8, 8); 1086 BuildMI(*BB, MI, DL, TII.get(RISCV::SW)) 1087 .addReg(LoReg, getKillRegState(MI.getOperand(1).isKill())) 1088 .addFrameIndex(FI) 1089 .addImm(0) 1090 .addMemOperand(MMO); 1091 BuildMI(*BB, MI, DL, TII.get(RISCV::SW)) 1092 .addReg(HiReg, getKillRegState(MI.getOperand(2).isKill())) 1093 .addFrameIndex(FI) 1094 .addImm(4) 1095 .addMemOperand(MMO); 1096 TII.loadRegFromStackSlot(*BB, MI, DstReg, FI, DstRC, RI); 1097 MI.eraseFromParent(); // The pseudo instruction is gone now. 1098 return BB; 1099 } 1100 1101 static bool isSelectPseudo(MachineInstr &MI) { 1102 switch (MI.getOpcode()) { 1103 default: 1104 return false; 1105 case RISCV::Select_GPR_Using_CC_GPR: 1106 case RISCV::Select_FPR32_Using_CC_GPR: 1107 case RISCV::Select_FPR64_Using_CC_GPR: 1108 return true; 1109 } 1110 } 1111 1112 static MachineBasicBlock *emitSelectPseudo(MachineInstr &MI, 1113 MachineBasicBlock *BB) { 1114 // To "insert" Select_* instructions, we actually have to insert the triangle 1115 // control-flow pattern. The incoming instructions know the destination vreg 1116 // to set, the condition code register to branch on, the true/false values to 1117 // select between, and the condcode to use to select the appropriate branch. 1118 // 1119 // We produce the following control flow: 1120 // HeadMBB 1121 // | \ 1122 // | IfFalseMBB 1123 // | / 1124 // TailMBB 1125 // 1126 // When we find a sequence of selects we attempt to optimize their emission 1127 // by sharing the control flow. Currently we only handle cases where we have 1128 // multiple selects with the exact same condition (same LHS, RHS and CC). 1129 // The selects may be interleaved with other instructions if the other 1130 // instructions meet some requirements we deem safe: 1131 // - They are debug instructions. Otherwise, 1132 // - They do not have side-effects, do not access memory and their inputs do 1133 // not depend on the results of the select pseudo-instructions. 1134 // The TrueV/FalseV operands of the selects cannot depend on the result of 1135 // previous selects in the sequence. 1136 // These conditions could be further relaxed. See the X86 target for a 1137 // related approach and more information. 1138 unsigned LHS = MI.getOperand(1).getReg(); 1139 unsigned RHS = MI.getOperand(2).getReg(); 1140 auto CC = static_cast<ISD::CondCode>(MI.getOperand(3).getImm()); 1141 1142 SmallVector<MachineInstr *, 4> SelectDebugValues; 1143 SmallSet<unsigned, 4> SelectDests; 1144 SelectDests.insert(MI.getOperand(0).getReg()); 1145 1146 MachineInstr *LastSelectPseudo = &MI; 1147 1148 for (auto E = BB->end(), SequenceMBBI = MachineBasicBlock::iterator(MI); 1149 SequenceMBBI != E; ++SequenceMBBI) { 1150 if (SequenceMBBI->isDebugInstr()) 1151 continue; 1152 else if (isSelectPseudo(*SequenceMBBI)) { 1153 if (SequenceMBBI->getOperand(1).getReg() != LHS || 1154 SequenceMBBI->getOperand(2).getReg() != RHS || 1155 SequenceMBBI->getOperand(3).getImm() != CC || 1156 SelectDests.count(SequenceMBBI->getOperand(4).getReg()) || 1157 SelectDests.count(SequenceMBBI->getOperand(5).getReg())) 1158 break; 1159 LastSelectPseudo = &*SequenceMBBI; 1160 SequenceMBBI->collectDebugValues(SelectDebugValues); 1161 SelectDests.insert(SequenceMBBI->getOperand(0).getReg()); 1162 } else { 1163 if (SequenceMBBI->hasUnmodeledSideEffects() || 1164 SequenceMBBI->mayLoadOrStore()) 1165 break; 1166 if (llvm::any_of(SequenceMBBI->operands(), [&](MachineOperand &MO) { 1167 return MO.isReg() && MO.isUse() && SelectDests.count(MO.getReg()); 1168 })) 1169 break; 1170 } 1171 } 1172 1173 const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo(); 1174 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 1175 DebugLoc DL = MI.getDebugLoc(); 1176 MachineFunction::iterator I = ++BB->getIterator(); 1177 1178 MachineBasicBlock *HeadMBB = BB; 1179 MachineFunction *F = BB->getParent(); 1180 MachineBasicBlock *TailMBB = F->CreateMachineBasicBlock(LLVM_BB); 1181 MachineBasicBlock *IfFalseMBB = F->CreateMachineBasicBlock(LLVM_BB); 1182 1183 F->insert(I, IfFalseMBB); 1184 F->insert(I, TailMBB); 1185 1186 // Transfer debug instructions associated with the selects to TailMBB. 1187 for (MachineInstr *DebugInstr : SelectDebugValues) { 1188 TailMBB->push_back(DebugInstr->removeFromParent()); 1189 } 1190 1191 // Move all instructions after the sequence to TailMBB. 1192 TailMBB->splice(TailMBB->end(), HeadMBB, 1193 std::next(LastSelectPseudo->getIterator()), HeadMBB->end()); 1194 // Update machine-CFG edges by transferring all successors of the current 1195 // block to the new block which will contain the Phi nodes for the selects. 1196 TailMBB->transferSuccessorsAndUpdatePHIs(HeadMBB); 1197 // Set the successors for HeadMBB. 1198 HeadMBB->addSuccessor(IfFalseMBB); 1199 HeadMBB->addSuccessor(TailMBB); 1200 1201 // Insert appropriate branch. 1202 unsigned Opcode = getBranchOpcodeForIntCondCode(CC); 1203 1204 BuildMI(HeadMBB, DL, TII.get(Opcode)) 1205 .addReg(LHS) 1206 .addReg(RHS) 1207 .addMBB(TailMBB); 1208 1209 // IfFalseMBB just falls through to TailMBB. 1210 IfFalseMBB->addSuccessor(TailMBB); 1211 1212 // Create PHIs for all of the select pseudo-instructions. 1213 auto SelectMBBI = MI.getIterator(); 1214 auto SelectEnd = std::next(LastSelectPseudo->getIterator()); 1215 auto InsertionPoint = TailMBB->begin(); 1216 while (SelectMBBI != SelectEnd) { 1217 auto Next = std::next(SelectMBBI); 1218 if (isSelectPseudo(*SelectMBBI)) { 1219 // %Result = phi [ %TrueValue, HeadMBB ], [ %FalseValue, IfFalseMBB ] 1220 BuildMI(*TailMBB, InsertionPoint, SelectMBBI->getDebugLoc(), 1221 TII.get(RISCV::PHI), SelectMBBI->getOperand(0).getReg()) 1222 .addReg(SelectMBBI->getOperand(4).getReg()) 1223 .addMBB(HeadMBB) 1224 .addReg(SelectMBBI->getOperand(5).getReg()) 1225 .addMBB(IfFalseMBB); 1226 SelectMBBI->eraseFromParent(); 1227 } 1228 SelectMBBI = Next; 1229 } 1230 1231 return TailMBB; 1232 } 1233 1234 MachineBasicBlock * 1235 RISCVTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 1236 MachineBasicBlock *BB) const { 1237 switch (MI.getOpcode()) { 1238 default: 1239 llvm_unreachable("Unexpected instr type to insert"); 1240 case RISCV::Select_GPR_Using_CC_GPR: 1241 case RISCV::Select_FPR32_Using_CC_GPR: 1242 case RISCV::Select_FPR64_Using_CC_GPR: 1243 return emitSelectPseudo(MI, BB); 1244 case RISCV::BuildPairF64Pseudo: 1245 return emitBuildPairF64Pseudo(MI, BB); 1246 case RISCV::SplitF64Pseudo: 1247 return emitSplitF64Pseudo(MI, BB); 1248 } 1249 } 1250 1251 // Calling Convention Implementation. 1252 // The expectations for frontend ABI lowering vary from target to target. 1253 // Ideally, an LLVM frontend would be able to avoid worrying about many ABI 1254 // details, but this is a longer term goal. For now, we simply try to keep the 1255 // role of the frontend as simple and well-defined as possible. The rules can 1256 // be summarised as: 1257 // * Never split up large scalar arguments. We handle them here. 1258 // * If a hardfloat calling convention is being used, and the struct may be 1259 // passed in a pair of registers (fp+fp, int+fp), and both registers are 1260 // available, then pass as two separate arguments. If either the GPRs or FPRs 1261 // are exhausted, then pass according to the rule below. 1262 // * If a struct could never be passed in registers or directly in a stack 1263 // slot (as it is larger than 2*XLEN and the floating point rules don't 1264 // apply), then pass it using a pointer with the byval attribute. 1265 // * If a struct is less than 2*XLEN, then coerce to either a two-element 1266 // word-sized array or a 2*XLEN scalar (depending on alignment). 1267 // * The frontend can determine whether a struct is returned by reference or 1268 // not based on its size and fields. If it will be returned by reference, the 1269 // frontend must modify the prototype so a pointer with the sret annotation is 1270 // passed as the first argument. This is not necessary for large scalar 1271 // returns. 1272 // * Struct return values and varargs should be coerced to structs containing 1273 // register-size fields in the same situations they would be for fixed 1274 // arguments. 1275 1276 static const MCPhysReg ArgGPRs[] = { 1277 RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, 1278 RISCV::X14, RISCV::X15, RISCV::X16, RISCV::X17 1279 }; 1280 static const MCPhysReg ArgFPR32s[] = { 1281 RISCV::F10_32, RISCV::F11_32, RISCV::F12_32, RISCV::F13_32, 1282 RISCV::F14_32, RISCV::F15_32, RISCV::F16_32, RISCV::F17_32 1283 }; 1284 static const MCPhysReg ArgFPR64s[] = { 1285 RISCV::F10_64, RISCV::F11_64, RISCV::F12_64, RISCV::F13_64, 1286 RISCV::F14_64, RISCV::F15_64, RISCV::F16_64, RISCV::F17_64 1287 }; 1288 1289 // Pass a 2*XLEN argument that has been split into two XLEN values through 1290 // registers or the stack as necessary. 1291 static bool CC_RISCVAssign2XLen(unsigned XLen, CCState &State, CCValAssign VA1, 1292 ISD::ArgFlagsTy ArgFlags1, unsigned ValNo2, 1293 MVT ValVT2, MVT LocVT2, 1294 ISD::ArgFlagsTy ArgFlags2) { 1295 unsigned XLenInBytes = XLen / 8; 1296 if (unsigned Reg = State.AllocateReg(ArgGPRs)) { 1297 // At least one half can be passed via register. 1298 State.addLoc(CCValAssign::getReg(VA1.getValNo(), VA1.getValVT(), Reg, 1299 VA1.getLocVT(), CCValAssign::Full)); 1300 } else { 1301 // Both halves must be passed on the stack, with proper alignment. 1302 unsigned StackAlign = std::max(XLenInBytes, ArgFlags1.getOrigAlign()); 1303 State.addLoc( 1304 CCValAssign::getMem(VA1.getValNo(), VA1.getValVT(), 1305 State.AllocateStack(XLenInBytes, StackAlign), 1306 VA1.getLocVT(), CCValAssign::Full)); 1307 State.addLoc(CCValAssign::getMem( 1308 ValNo2, ValVT2, State.AllocateStack(XLenInBytes, XLenInBytes), LocVT2, 1309 CCValAssign::Full)); 1310 return false; 1311 } 1312 1313 if (unsigned Reg = State.AllocateReg(ArgGPRs)) { 1314 // The second half can also be passed via register. 1315 State.addLoc( 1316 CCValAssign::getReg(ValNo2, ValVT2, Reg, LocVT2, CCValAssign::Full)); 1317 } else { 1318 // The second half is passed via the stack, without additional alignment. 1319 State.addLoc(CCValAssign::getMem( 1320 ValNo2, ValVT2, State.AllocateStack(XLenInBytes, XLenInBytes), LocVT2, 1321 CCValAssign::Full)); 1322 } 1323 1324 return false; 1325 } 1326 1327 // Implements the RISC-V calling convention. Returns true upon failure. 1328 static bool CC_RISCV(const DataLayout &DL, RISCVABI::ABI ABI, unsigned ValNo, 1329 MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, 1330 ISD::ArgFlagsTy ArgFlags, CCState &State, bool IsFixed, 1331 bool IsRet, Type *OrigTy) { 1332 unsigned XLen = DL.getLargestLegalIntTypeSizeInBits(); 1333 assert(XLen == 32 || XLen == 64); 1334 MVT XLenVT = XLen == 32 ? MVT::i32 : MVT::i64; 1335 1336 // Any return value split in to more than two values can't be returned 1337 // directly. 1338 if (IsRet && ValNo > 1) 1339 return true; 1340 1341 // UseGPRForF32 if targeting one of the soft-float ABIs, if passing a 1342 // variadic argument, or if no F32 argument registers are available. 1343 bool UseGPRForF32 = true; 1344 // UseGPRForF64 if targeting soft-float ABIs or an FLEN=32 ABI, if passing a 1345 // variadic argument, or if no F64 argument registers are available. 1346 bool UseGPRForF64 = true; 1347 1348 switch (ABI) { 1349 default: 1350 llvm_unreachable("Unexpected ABI"); 1351 case RISCVABI::ABI_ILP32: 1352 case RISCVABI::ABI_LP64: 1353 break; 1354 case RISCVABI::ABI_ILP32F: 1355 case RISCVABI::ABI_LP64F: 1356 UseGPRForF32 = !IsFixed; 1357 break; 1358 case RISCVABI::ABI_ILP32D: 1359 case RISCVABI::ABI_LP64D: 1360 UseGPRForF32 = !IsFixed; 1361 UseGPRForF64 = !IsFixed; 1362 break; 1363 } 1364 1365 if (State.getFirstUnallocated(ArgFPR32s) == array_lengthof(ArgFPR32s)) 1366 UseGPRForF32 = true; 1367 if (State.getFirstUnallocated(ArgFPR64s) == array_lengthof(ArgFPR64s)) 1368 UseGPRForF64 = true; 1369 1370 // From this point on, rely on UseGPRForF32, UseGPRForF64 and similar local 1371 // variables rather than directly checking against the target ABI. 1372 1373 if (UseGPRForF32 && ValVT == MVT::f32) { 1374 LocVT = XLenVT; 1375 LocInfo = CCValAssign::BCvt; 1376 } else if (UseGPRForF64 && XLen == 64 && ValVT == MVT::f64) { 1377 LocVT = MVT::i64; 1378 LocInfo = CCValAssign::BCvt; 1379 } 1380 1381 // If this is a variadic argument, the RISC-V calling convention requires 1382 // that it is assigned an 'even' or 'aligned' register if it has 8-byte 1383 // alignment (RV32) or 16-byte alignment (RV64). An aligned register should 1384 // be used regardless of whether the original argument was split during 1385 // legalisation or not. The argument will not be passed by registers if the 1386 // original type is larger than 2*XLEN, so the register alignment rule does 1387 // not apply. 1388 unsigned TwoXLenInBytes = (2 * XLen) / 8; 1389 if (!IsFixed && ArgFlags.getOrigAlign() == TwoXLenInBytes && 1390 DL.getTypeAllocSize(OrigTy) == TwoXLenInBytes) { 1391 unsigned RegIdx = State.getFirstUnallocated(ArgGPRs); 1392 // Skip 'odd' register if necessary. 1393 if (RegIdx != array_lengthof(ArgGPRs) && RegIdx % 2 == 1) 1394 State.AllocateReg(ArgGPRs); 1395 } 1396 1397 SmallVectorImpl<CCValAssign> &PendingLocs = State.getPendingLocs(); 1398 SmallVectorImpl<ISD::ArgFlagsTy> &PendingArgFlags = 1399 State.getPendingArgFlags(); 1400 1401 assert(PendingLocs.size() == PendingArgFlags.size() && 1402 "PendingLocs and PendingArgFlags out of sync"); 1403 1404 // Handle passing f64 on RV32D with a soft float ABI or when floating point 1405 // registers are exhausted. 1406 if (UseGPRForF64 && XLen == 32 && ValVT == MVT::f64) { 1407 assert(!ArgFlags.isSplit() && PendingLocs.empty() && 1408 "Can't lower f64 if it is split"); 1409 // Depending on available argument GPRS, f64 may be passed in a pair of 1410 // GPRs, split between a GPR and the stack, or passed completely on the 1411 // stack. LowerCall/LowerFormalArguments/LowerReturn must recognise these 1412 // cases. 1413 unsigned Reg = State.AllocateReg(ArgGPRs); 1414 LocVT = MVT::i32; 1415 if (!Reg) { 1416 unsigned StackOffset = State.AllocateStack(8, 8); 1417 State.addLoc( 1418 CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 1419 return false; 1420 } 1421 if (!State.AllocateReg(ArgGPRs)) 1422 State.AllocateStack(4, 4); 1423 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 1424 return false; 1425 } 1426 1427 // Split arguments might be passed indirectly, so keep track of the pending 1428 // values. 1429 if (ArgFlags.isSplit() || !PendingLocs.empty()) { 1430 LocVT = XLenVT; 1431 LocInfo = CCValAssign::Indirect; 1432 PendingLocs.push_back( 1433 CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo)); 1434 PendingArgFlags.push_back(ArgFlags); 1435 if (!ArgFlags.isSplitEnd()) { 1436 return false; 1437 } 1438 } 1439 1440 // If the split argument only had two elements, it should be passed directly 1441 // in registers or on the stack. 1442 if (ArgFlags.isSplitEnd() && PendingLocs.size() <= 2) { 1443 assert(PendingLocs.size() == 2 && "Unexpected PendingLocs.size()"); 1444 // Apply the normal calling convention rules to the first half of the 1445 // split argument. 1446 CCValAssign VA = PendingLocs[0]; 1447 ISD::ArgFlagsTy AF = PendingArgFlags[0]; 1448 PendingLocs.clear(); 1449 PendingArgFlags.clear(); 1450 return CC_RISCVAssign2XLen(XLen, State, VA, AF, ValNo, ValVT, LocVT, 1451 ArgFlags); 1452 } 1453 1454 // Allocate to a register if possible, or else a stack slot. 1455 unsigned Reg; 1456 if (ValVT == MVT::f32 && !UseGPRForF32) 1457 Reg = State.AllocateReg(ArgFPR32s, ArgFPR64s); 1458 else if (ValVT == MVT::f64 && !UseGPRForF64) 1459 Reg = State.AllocateReg(ArgFPR64s, ArgFPR32s); 1460 else 1461 Reg = State.AllocateReg(ArgGPRs); 1462 unsigned StackOffset = Reg ? 0 : State.AllocateStack(XLen / 8, XLen / 8); 1463 1464 // If we reach this point and PendingLocs is non-empty, we must be at the 1465 // end of a split argument that must be passed indirectly. 1466 if (!PendingLocs.empty()) { 1467 assert(ArgFlags.isSplitEnd() && "Expected ArgFlags.isSplitEnd()"); 1468 assert(PendingLocs.size() > 2 && "Unexpected PendingLocs.size()"); 1469 1470 for (auto &It : PendingLocs) { 1471 if (Reg) 1472 It.convertToReg(Reg); 1473 else 1474 It.convertToMem(StackOffset); 1475 State.addLoc(It); 1476 } 1477 PendingLocs.clear(); 1478 PendingArgFlags.clear(); 1479 return false; 1480 } 1481 1482 assert((!UseGPRForF32 || !UseGPRForF64 || LocVT == XLenVT) && 1483 "Expected an XLenVT at this stage"); 1484 1485 if (Reg) { 1486 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 1487 return false; 1488 } 1489 1490 // When an f32 or f64 is passed on the stack, no bit-conversion is needed. 1491 if (ValVT == MVT::f32 || ValVT == MVT::f64) { 1492 LocVT = ValVT; 1493 LocInfo = CCValAssign::Full; 1494 } 1495 State.addLoc(CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 1496 return false; 1497 } 1498 1499 void RISCVTargetLowering::analyzeInputArgs( 1500 MachineFunction &MF, CCState &CCInfo, 1501 const SmallVectorImpl<ISD::InputArg> &Ins, bool IsRet) const { 1502 unsigned NumArgs = Ins.size(); 1503 FunctionType *FType = MF.getFunction().getFunctionType(); 1504 1505 for (unsigned i = 0; i != NumArgs; ++i) { 1506 MVT ArgVT = Ins[i].VT; 1507 ISD::ArgFlagsTy ArgFlags = Ins[i].Flags; 1508 1509 Type *ArgTy = nullptr; 1510 if (IsRet) 1511 ArgTy = FType->getReturnType(); 1512 else if (Ins[i].isOrigArg()) 1513 ArgTy = FType->getParamType(Ins[i].getOrigArgIndex()); 1514 1515 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 1516 if (CC_RISCV(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full, 1517 ArgFlags, CCInfo, /*IsRet=*/true, IsRet, ArgTy)) { 1518 LLVM_DEBUG(dbgs() << "InputArg #" << i << " has unhandled type " 1519 << EVT(ArgVT).getEVTString() << '\n'); 1520 llvm_unreachable(nullptr); 1521 } 1522 } 1523 } 1524 1525 void RISCVTargetLowering::analyzeOutputArgs( 1526 MachineFunction &MF, CCState &CCInfo, 1527 const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsRet, 1528 CallLoweringInfo *CLI) const { 1529 unsigned NumArgs = Outs.size(); 1530 1531 for (unsigned i = 0; i != NumArgs; i++) { 1532 MVT ArgVT = Outs[i].VT; 1533 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 1534 Type *OrigTy = CLI ? CLI->getArgs()[Outs[i].OrigArgIndex].Ty : nullptr; 1535 1536 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 1537 if (CC_RISCV(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full, 1538 ArgFlags, CCInfo, Outs[i].IsFixed, IsRet, OrigTy)) { 1539 LLVM_DEBUG(dbgs() << "OutputArg #" << i << " has unhandled type " 1540 << EVT(ArgVT).getEVTString() << "\n"); 1541 llvm_unreachable(nullptr); 1542 } 1543 } 1544 } 1545 1546 // Convert Val to a ValVT. Should not be called for CCValAssign::Indirect 1547 // values. 1548 static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDValue Val, 1549 const CCValAssign &VA, const SDLoc &DL) { 1550 switch (VA.getLocInfo()) { 1551 default: 1552 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 1553 case CCValAssign::Full: 1554 break; 1555 case CCValAssign::BCvt: 1556 if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) { 1557 Val = DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, Val); 1558 break; 1559 } 1560 Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val); 1561 break; 1562 } 1563 return Val; 1564 } 1565 1566 // The caller is responsible for loading the full value if the argument is 1567 // passed with CCValAssign::Indirect. 1568 static SDValue unpackFromRegLoc(SelectionDAG &DAG, SDValue Chain, 1569 const CCValAssign &VA, const SDLoc &DL) { 1570 MachineFunction &MF = DAG.getMachineFunction(); 1571 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 1572 EVT LocVT = VA.getLocVT(); 1573 SDValue Val; 1574 const TargetRegisterClass *RC; 1575 1576 switch (LocVT.getSimpleVT().SimpleTy) { 1577 default: 1578 llvm_unreachable("Unexpected register type"); 1579 case MVT::i32: 1580 case MVT::i64: 1581 RC = &RISCV::GPRRegClass; 1582 break; 1583 case MVT::f32: 1584 RC = &RISCV::FPR32RegClass; 1585 break; 1586 case MVT::f64: 1587 RC = &RISCV::FPR64RegClass; 1588 break; 1589 } 1590 1591 unsigned VReg = RegInfo.createVirtualRegister(RC); 1592 RegInfo.addLiveIn(VA.getLocReg(), VReg); 1593 Val = DAG.getCopyFromReg(Chain, DL, VReg, LocVT); 1594 1595 if (VA.getLocInfo() == CCValAssign::Indirect) 1596 return Val; 1597 1598 return convertLocVTToValVT(DAG, Val, VA, DL); 1599 } 1600 1601 static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDValue Val, 1602 const CCValAssign &VA, const SDLoc &DL) { 1603 EVT LocVT = VA.getLocVT(); 1604 1605 switch (VA.getLocInfo()) { 1606 default: 1607 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 1608 case CCValAssign::Full: 1609 break; 1610 case CCValAssign::BCvt: 1611 if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) { 1612 Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Val); 1613 break; 1614 } 1615 Val = DAG.getNode(ISD::BITCAST, DL, LocVT, Val); 1616 break; 1617 } 1618 return Val; 1619 } 1620 1621 // The caller is responsible for loading the full value if the argument is 1622 // passed with CCValAssign::Indirect. 1623 static SDValue unpackFromMemLoc(SelectionDAG &DAG, SDValue Chain, 1624 const CCValAssign &VA, const SDLoc &DL) { 1625 MachineFunction &MF = DAG.getMachineFunction(); 1626 MachineFrameInfo &MFI = MF.getFrameInfo(); 1627 EVT LocVT = VA.getLocVT(); 1628 EVT ValVT = VA.getValVT(); 1629 EVT PtrVT = MVT::getIntegerVT(DAG.getDataLayout().getPointerSizeInBits(0)); 1630 int FI = MFI.CreateFixedObject(ValVT.getSizeInBits() / 8, 1631 VA.getLocMemOffset(), /*Immutable=*/true); 1632 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 1633 SDValue Val; 1634 1635 ISD::LoadExtType ExtType; 1636 switch (VA.getLocInfo()) { 1637 default: 1638 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 1639 case CCValAssign::Full: 1640 case CCValAssign::Indirect: 1641 case CCValAssign::BCvt: 1642 ExtType = ISD::NON_EXTLOAD; 1643 break; 1644 } 1645 Val = DAG.getExtLoad( 1646 ExtType, DL, LocVT, Chain, FIN, 1647 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), ValVT); 1648 return Val; 1649 } 1650 1651 static SDValue unpackF64OnRV32DSoftABI(SelectionDAG &DAG, SDValue Chain, 1652 const CCValAssign &VA, const SDLoc &DL) { 1653 assert(VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64 && 1654 "Unexpected VA"); 1655 MachineFunction &MF = DAG.getMachineFunction(); 1656 MachineFrameInfo &MFI = MF.getFrameInfo(); 1657 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 1658 1659 if (VA.isMemLoc()) { 1660 // f64 is passed on the stack. 1661 int FI = MFI.CreateFixedObject(8, VA.getLocMemOffset(), /*Immutable=*/true); 1662 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 1663 return DAG.getLoad(MVT::f64, DL, Chain, FIN, 1664 MachinePointerInfo::getFixedStack(MF, FI)); 1665 } 1666 1667 assert(VA.isRegLoc() && "Expected register VA assignment"); 1668 1669 unsigned LoVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 1670 RegInfo.addLiveIn(VA.getLocReg(), LoVReg); 1671 SDValue Lo = DAG.getCopyFromReg(Chain, DL, LoVReg, MVT::i32); 1672 SDValue Hi; 1673 if (VA.getLocReg() == RISCV::X17) { 1674 // Second half of f64 is passed on the stack. 1675 int FI = MFI.CreateFixedObject(4, 0, /*Immutable=*/true); 1676 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 1677 Hi = DAG.getLoad(MVT::i32, DL, Chain, FIN, 1678 MachinePointerInfo::getFixedStack(MF, FI)); 1679 } else { 1680 // Second half of f64 is passed in another GPR. 1681 unsigned HiVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 1682 RegInfo.addLiveIn(VA.getLocReg() + 1, HiVReg); 1683 Hi = DAG.getCopyFromReg(Chain, DL, HiVReg, MVT::i32); 1684 } 1685 return DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, Lo, Hi); 1686 } 1687 1688 // Transform physical registers into virtual registers. 1689 SDValue RISCVTargetLowering::LowerFormalArguments( 1690 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 1691 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 1692 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 1693 1694 switch (CallConv) { 1695 default: 1696 report_fatal_error("Unsupported calling convention"); 1697 case CallingConv::C: 1698 case CallingConv::Fast: 1699 break; 1700 } 1701 1702 MachineFunction &MF = DAG.getMachineFunction(); 1703 1704 const Function &Func = MF.getFunction(); 1705 if (Func.hasFnAttribute("interrupt")) { 1706 if (!Func.arg_empty()) 1707 report_fatal_error( 1708 "Functions with the interrupt attribute cannot have arguments!"); 1709 1710 StringRef Kind = 1711 MF.getFunction().getFnAttribute("interrupt").getValueAsString(); 1712 1713 if (!(Kind == "user" || Kind == "supervisor" || Kind == "machine")) 1714 report_fatal_error( 1715 "Function interrupt attribute argument not supported!"); 1716 } 1717 1718 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 1719 MVT XLenVT = Subtarget.getXLenVT(); 1720 unsigned XLenInBytes = Subtarget.getXLen() / 8; 1721 // Used with vargs to acumulate store chains. 1722 std::vector<SDValue> OutChains; 1723 1724 // Assign locations to all of the incoming arguments. 1725 SmallVector<CCValAssign, 16> ArgLocs; 1726 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 1727 analyzeInputArgs(MF, CCInfo, Ins, /*IsRet=*/false); 1728 1729 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 1730 CCValAssign &VA = ArgLocs[i]; 1731 SDValue ArgValue; 1732 // Passing f64 on RV32D with a soft float ABI must be handled as a special 1733 // case. 1734 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) 1735 ArgValue = unpackF64OnRV32DSoftABI(DAG, Chain, VA, DL); 1736 else if (VA.isRegLoc()) 1737 ArgValue = unpackFromRegLoc(DAG, Chain, VA, DL); 1738 else 1739 ArgValue = unpackFromMemLoc(DAG, Chain, VA, DL); 1740 1741 if (VA.getLocInfo() == CCValAssign::Indirect) { 1742 // If the original argument was split and passed by reference (e.g. i128 1743 // on RV32), we need to load all parts of it here (using the same 1744 // address). 1745 InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue, 1746 MachinePointerInfo())); 1747 unsigned ArgIndex = Ins[i].OrigArgIndex; 1748 assert(Ins[i].PartOffset == 0); 1749 while (i + 1 != e && Ins[i + 1].OrigArgIndex == ArgIndex) { 1750 CCValAssign &PartVA = ArgLocs[i + 1]; 1751 unsigned PartOffset = Ins[i + 1].PartOffset; 1752 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, 1753 DAG.getIntPtrConstant(PartOffset, DL)); 1754 InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address, 1755 MachinePointerInfo())); 1756 ++i; 1757 } 1758 continue; 1759 } 1760 InVals.push_back(ArgValue); 1761 } 1762 1763 if (IsVarArg) { 1764 ArrayRef<MCPhysReg> ArgRegs = makeArrayRef(ArgGPRs); 1765 unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs); 1766 const TargetRegisterClass *RC = &RISCV::GPRRegClass; 1767 MachineFrameInfo &MFI = MF.getFrameInfo(); 1768 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 1769 RISCVMachineFunctionInfo *RVFI = MF.getInfo<RISCVMachineFunctionInfo>(); 1770 1771 // Offset of the first variable argument from stack pointer, and size of 1772 // the vararg save area. For now, the varargs save area is either zero or 1773 // large enough to hold a0-a7. 1774 int VaArgOffset, VarArgsSaveSize; 1775 1776 // If all registers are allocated, then all varargs must be passed on the 1777 // stack and we don't need to save any argregs. 1778 if (ArgRegs.size() == Idx) { 1779 VaArgOffset = CCInfo.getNextStackOffset(); 1780 VarArgsSaveSize = 0; 1781 } else { 1782 VarArgsSaveSize = XLenInBytes * (ArgRegs.size() - Idx); 1783 VaArgOffset = -VarArgsSaveSize; 1784 } 1785 1786 // Record the frame index of the first variable argument 1787 // which is a value necessary to VASTART. 1788 int FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true); 1789 RVFI->setVarArgsFrameIndex(FI); 1790 1791 // If saving an odd number of registers then create an extra stack slot to 1792 // ensure that the frame pointer is 2*XLEN-aligned, which in turn ensures 1793 // offsets to even-numbered registered remain 2*XLEN-aligned. 1794 if (Idx % 2) { 1795 FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset - (int)XLenInBytes, 1796 true); 1797 VarArgsSaveSize += XLenInBytes; 1798 } 1799 1800 // Copy the integer registers that may have been used for passing varargs 1801 // to the vararg save area. 1802 for (unsigned I = Idx; I < ArgRegs.size(); 1803 ++I, VaArgOffset += XLenInBytes) { 1804 const unsigned Reg = RegInfo.createVirtualRegister(RC); 1805 RegInfo.addLiveIn(ArgRegs[I], Reg); 1806 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, XLenVT); 1807 FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true); 1808 SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 1809 SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff, 1810 MachinePointerInfo::getFixedStack(MF, FI)); 1811 cast<StoreSDNode>(Store.getNode()) 1812 ->getMemOperand() 1813 ->setValue((Value *)nullptr); 1814 OutChains.push_back(Store); 1815 } 1816 RVFI->setVarArgsSaveSize(VarArgsSaveSize); 1817 } 1818 1819 // All stores are grouped in one node to allow the matching between 1820 // the size of Ins and InVals. This only happens for vararg functions. 1821 if (!OutChains.empty()) { 1822 OutChains.push_back(Chain); 1823 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains); 1824 } 1825 1826 return Chain; 1827 } 1828 1829 /// isEligibleForTailCallOptimization - Check whether the call is eligible 1830 /// for tail call optimization. 1831 /// Note: This is modelled after ARM's IsEligibleForTailCallOptimization. 1832 bool RISCVTargetLowering::isEligibleForTailCallOptimization( 1833 CCState &CCInfo, CallLoweringInfo &CLI, MachineFunction &MF, 1834 const SmallVector<CCValAssign, 16> &ArgLocs) const { 1835 1836 auto &Callee = CLI.Callee; 1837 auto CalleeCC = CLI.CallConv; 1838 auto IsVarArg = CLI.IsVarArg; 1839 auto &Outs = CLI.Outs; 1840 auto &Caller = MF.getFunction(); 1841 auto CallerCC = Caller.getCallingConv(); 1842 1843 // Do not tail call opt functions with "disable-tail-calls" attribute. 1844 if (Caller.getFnAttribute("disable-tail-calls").getValueAsString() == "true") 1845 return false; 1846 1847 // Exception-handling functions need a special set of instructions to 1848 // indicate a return to the hardware. Tail-calling another function would 1849 // probably break this. 1850 // TODO: The "interrupt" attribute isn't currently defined by RISC-V. This 1851 // should be expanded as new function attributes are introduced. 1852 if (Caller.hasFnAttribute("interrupt")) 1853 return false; 1854 1855 // Do not tail call opt functions with varargs. 1856 if (IsVarArg) 1857 return false; 1858 1859 // Do not tail call opt if the stack is used to pass parameters. 1860 if (CCInfo.getNextStackOffset() != 0) 1861 return false; 1862 1863 // Do not tail call opt if any parameters need to be passed indirectly. 1864 // Since long doubles (fp128) and i128 are larger than 2*XLEN, they are 1865 // passed indirectly. So the address of the value will be passed in a 1866 // register, or if not available, then the address is put on the stack. In 1867 // order to pass indirectly, space on the stack often needs to be allocated 1868 // in order to store the value. In this case the CCInfo.getNextStackOffset() 1869 // != 0 check is not enough and we need to check if any CCValAssign ArgsLocs 1870 // are passed CCValAssign::Indirect. 1871 for (auto &VA : ArgLocs) 1872 if (VA.getLocInfo() == CCValAssign::Indirect) 1873 return false; 1874 1875 // Do not tail call opt if either caller or callee uses struct return 1876 // semantics. 1877 auto IsCallerStructRet = Caller.hasStructRetAttr(); 1878 auto IsCalleeStructRet = Outs.empty() ? false : Outs[0].Flags.isSRet(); 1879 if (IsCallerStructRet || IsCalleeStructRet) 1880 return false; 1881 1882 // Externally-defined functions with weak linkage should not be 1883 // tail-called. The behaviour of branch instructions in this situation (as 1884 // used for tail calls) is implementation-defined, so we cannot rely on the 1885 // linker replacing the tail call with a return. 1886 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 1887 const GlobalValue *GV = G->getGlobal(); 1888 if (GV->hasExternalWeakLinkage()) 1889 return false; 1890 } 1891 1892 // The callee has to preserve all registers the caller needs to preserve. 1893 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 1894 const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC); 1895 if (CalleeCC != CallerCC) { 1896 const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC); 1897 if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved)) 1898 return false; 1899 } 1900 1901 // Byval parameters hand the function a pointer directly into the stack area 1902 // we want to reuse during a tail call. Working around this *is* possible 1903 // but less efficient and uglier in LowerCall. 1904 for (auto &Arg : Outs) 1905 if (Arg.Flags.isByVal()) 1906 return false; 1907 1908 return true; 1909 } 1910 1911 // Lower a call to a callseq_start + CALL + callseq_end chain, and add input 1912 // and output parameter nodes. 1913 SDValue RISCVTargetLowering::LowerCall(CallLoweringInfo &CLI, 1914 SmallVectorImpl<SDValue> &InVals) const { 1915 SelectionDAG &DAG = CLI.DAG; 1916 SDLoc &DL = CLI.DL; 1917 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 1918 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 1919 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 1920 SDValue Chain = CLI.Chain; 1921 SDValue Callee = CLI.Callee; 1922 bool &IsTailCall = CLI.IsTailCall; 1923 CallingConv::ID CallConv = CLI.CallConv; 1924 bool IsVarArg = CLI.IsVarArg; 1925 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 1926 MVT XLenVT = Subtarget.getXLenVT(); 1927 1928 MachineFunction &MF = DAG.getMachineFunction(); 1929 1930 // Analyze the operands of the call, assigning locations to each operand. 1931 SmallVector<CCValAssign, 16> ArgLocs; 1932 CCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 1933 analyzeOutputArgs(MF, ArgCCInfo, Outs, /*IsRet=*/false, &CLI); 1934 1935 // Check if it's really possible to do a tail call. 1936 if (IsTailCall) 1937 IsTailCall = isEligibleForTailCallOptimization(ArgCCInfo, CLI, MF, ArgLocs); 1938 1939 if (IsTailCall) 1940 ++NumTailCalls; 1941 else if (CLI.CS && CLI.CS.isMustTailCall()) 1942 report_fatal_error("failed to perform tail call elimination on a call " 1943 "site marked musttail"); 1944 1945 // Get a count of how many bytes are to be pushed on the stack. 1946 unsigned NumBytes = ArgCCInfo.getNextStackOffset(); 1947 1948 // Create local copies for byval args 1949 SmallVector<SDValue, 8> ByValArgs; 1950 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 1951 ISD::ArgFlagsTy Flags = Outs[i].Flags; 1952 if (!Flags.isByVal()) 1953 continue; 1954 1955 SDValue Arg = OutVals[i]; 1956 unsigned Size = Flags.getByValSize(); 1957 unsigned Align = Flags.getByValAlign(); 1958 1959 int FI = MF.getFrameInfo().CreateStackObject(Size, Align, /*isSS=*/false); 1960 SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 1961 SDValue SizeNode = DAG.getConstant(Size, DL, XLenVT); 1962 1963 Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Align, 1964 /*IsVolatile=*/false, 1965 /*AlwaysInline=*/false, 1966 IsTailCall, MachinePointerInfo(), 1967 MachinePointerInfo()); 1968 ByValArgs.push_back(FIPtr); 1969 } 1970 1971 if (!IsTailCall) 1972 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, CLI.DL); 1973 1974 // Copy argument values to their designated locations. 1975 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 1976 SmallVector<SDValue, 8> MemOpChains; 1977 SDValue StackPtr; 1978 for (unsigned i = 0, j = 0, e = ArgLocs.size(); i != e; ++i) { 1979 CCValAssign &VA = ArgLocs[i]; 1980 SDValue ArgValue = OutVals[i]; 1981 ISD::ArgFlagsTy Flags = Outs[i].Flags; 1982 1983 // Handle passing f64 on RV32D with a soft float ABI as a special case. 1984 bool IsF64OnRV32DSoftABI = 1985 VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64; 1986 if (IsF64OnRV32DSoftABI && VA.isRegLoc()) { 1987 SDValue SplitF64 = DAG.getNode( 1988 RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), ArgValue); 1989 SDValue Lo = SplitF64.getValue(0); 1990 SDValue Hi = SplitF64.getValue(1); 1991 1992 unsigned RegLo = VA.getLocReg(); 1993 RegsToPass.push_back(std::make_pair(RegLo, Lo)); 1994 1995 if (RegLo == RISCV::X17) { 1996 // Second half of f64 is passed on the stack. 1997 // Work out the address of the stack slot. 1998 if (!StackPtr.getNode()) 1999 StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT); 2000 // Emit the store. 2001 MemOpChains.push_back( 2002 DAG.getStore(Chain, DL, Hi, StackPtr, MachinePointerInfo())); 2003 } else { 2004 // Second half of f64 is passed in another GPR. 2005 unsigned RegHigh = RegLo + 1; 2006 RegsToPass.push_back(std::make_pair(RegHigh, Hi)); 2007 } 2008 continue; 2009 } 2010 2011 // IsF64OnRV32DSoftABI && VA.isMemLoc() is handled below in the same way 2012 // as any other MemLoc. 2013 2014 // Promote the value if needed. 2015 // For now, only handle fully promoted and indirect arguments. 2016 if (VA.getLocInfo() == CCValAssign::Indirect) { 2017 // Store the argument in a stack slot and pass its address. 2018 SDValue SpillSlot = DAG.CreateStackTemporary(Outs[i].ArgVT); 2019 int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); 2020 MemOpChains.push_back( 2021 DAG.getStore(Chain, DL, ArgValue, SpillSlot, 2022 MachinePointerInfo::getFixedStack(MF, FI))); 2023 // If the original argument was split (e.g. i128), we need 2024 // to store all parts of it here (and pass just one address). 2025 unsigned ArgIndex = Outs[i].OrigArgIndex; 2026 assert(Outs[i].PartOffset == 0); 2027 while (i + 1 != e && Outs[i + 1].OrigArgIndex == ArgIndex) { 2028 SDValue PartValue = OutVals[i + 1]; 2029 unsigned PartOffset = Outs[i + 1].PartOffset; 2030 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, 2031 DAG.getIntPtrConstant(PartOffset, DL)); 2032 MemOpChains.push_back( 2033 DAG.getStore(Chain, DL, PartValue, Address, 2034 MachinePointerInfo::getFixedStack(MF, FI))); 2035 ++i; 2036 } 2037 ArgValue = SpillSlot; 2038 } else { 2039 ArgValue = convertValVTToLocVT(DAG, ArgValue, VA, DL); 2040 } 2041 2042 // Use local copy if it is a byval arg. 2043 if (Flags.isByVal()) 2044 ArgValue = ByValArgs[j++]; 2045 2046 if (VA.isRegLoc()) { 2047 // Queue up the argument copies and emit them at the end. 2048 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue)); 2049 } else { 2050 assert(VA.isMemLoc() && "Argument not register or memory"); 2051 assert(!IsTailCall && "Tail call not allowed if stack is used " 2052 "for passing parameters"); 2053 2054 // Work out the address of the stack slot. 2055 if (!StackPtr.getNode()) 2056 StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT); 2057 SDValue Address = 2058 DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, 2059 DAG.getIntPtrConstant(VA.getLocMemOffset(), DL)); 2060 2061 // Emit the store. 2062 MemOpChains.push_back( 2063 DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo())); 2064 } 2065 } 2066 2067 // Join the stores, which are independent of one another. 2068 if (!MemOpChains.empty()) 2069 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); 2070 2071 SDValue Glue; 2072 2073 // Build a sequence of copy-to-reg nodes, chained and glued together. 2074 for (auto &Reg : RegsToPass) { 2075 Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, Glue); 2076 Glue = Chain.getValue(1); 2077 } 2078 2079 // If the callee is a GlobalAddress/ExternalSymbol node, turn it into a 2080 // TargetGlobalAddress/TargetExternalSymbol node so that legalize won't 2081 // split it and then direct call can be matched by PseudoCALL. 2082 if (GlobalAddressSDNode *S = dyn_cast<GlobalAddressSDNode>(Callee)) { 2083 const GlobalValue *GV = S->getGlobal(); 2084 2085 unsigned OpFlags = RISCVII::MO_CALL; 2086 if (!getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV)) 2087 OpFlags = RISCVII::MO_PLT; 2088 2089 Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags); 2090 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { 2091 unsigned OpFlags = RISCVII::MO_CALL; 2092 2093 if (!getTargetMachine().shouldAssumeDSOLocal(*MF.getFunction().getParent(), 2094 nullptr)) 2095 OpFlags = RISCVII::MO_PLT; 2096 2097 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, OpFlags); 2098 } 2099 2100 // The first call operand is the chain and the second is the target address. 2101 SmallVector<SDValue, 8> Ops; 2102 Ops.push_back(Chain); 2103 Ops.push_back(Callee); 2104 2105 // Add argument registers to the end of the list so that they are 2106 // known live into the call. 2107 for (auto &Reg : RegsToPass) 2108 Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType())); 2109 2110 if (!IsTailCall) { 2111 // Add a register mask operand representing the call-preserved registers. 2112 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 2113 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv); 2114 assert(Mask && "Missing call preserved mask for calling convention"); 2115 Ops.push_back(DAG.getRegisterMask(Mask)); 2116 } 2117 2118 // Glue the call to the argument copies, if any. 2119 if (Glue.getNode()) 2120 Ops.push_back(Glue); 2121 2122 // Emit the call. 2123 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 2124 2125 if (IsTailCall) { 2126 MF.getFrameInfo().setHasTailCall(); 2127 return DAG.getNode(RISCVISD::TAIL, DL, NodeTys, Ops); 2128 } 2129 2130 Chain = DAG.getNode(RISCVISD::CALL, DL, NodeTys, Ops); 2131 Glue = Chain.getValue(1); 2132 2133 // Mark the end of the call, which is glued to the call itself. 2134 Chain = DAG.getCALLSEQ_END(Chain, 2135 DAG.getConstant(NumBytes, DL, PtrVT, true), 2136 DAG.getConstant(0, DL, PtrVT, true), 2137 Glue, DL); 2138 Glue = Chain.getValue(1); 2139 2140 // Assign locations to each value returned by this call. 2141 SmallVector<CCValAssign, 16> RVLocs; 2142 CCState RetCCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext()); 2143 analyzeInputArgs(MF, RetCCInfo, Ins, /*IsRet=*/true); 2144 2145 // Copy all of the result registers out of their specified physreg. 2146 for (auto &VA : RVLocs) { 2147 // Copy the value out 2148 SDValue RetValue = 2149 DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), Glue); 2150 // Glue the RetValue to the end of the call sequence 2151 Chain = RetValue.getValue(1); 2152 Glue = RetValue.getValue(2); 2153 2154 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { 2155 assert(VA.getLocReg() == ArgGPRs[0] && "Unexpected reg assignment"); 2156 SDValue RetValue2 = 2157 DAG.getCopyFromReg(Chain, DL, ArgGPRs[1], MVT::i32, Glue); 2158 Chain = RetValue2.getValue(1); 2159 Glue = RetValue2.getValue(2); 2160 RetValue = DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, RetValue, 2161 RetValue2); 2162 } 2163 2164 RetValue = convertLocVTToValVT(DAG, RetValue, VA, DL); 2165 2166 InVals.push_back(RetValue); 2167 } 2168 2169 return Chain; 2170 } 2171 2172 bool RISCVTargetLowering::CanLowerReturn( 2173 CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg, 2174 const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const { 2175 SmallVector<CCValAssign, 16> RVLocs; 2176 CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context); 2177 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 2178 MVT VT = Outs[i].VT; 2179 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 2180 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 2181 if (CC_RISCV(MF.getDataLayout(), ABI, i, VT, VT, CCValAssign::Full, 2182 ArgFlags, CCInfo, /*IsFixed=*/true, /*IsRet=*/true, nullptr)) 2183 return false; 2184 } 2185 return true; 2186 } 2187 2188 SDValue 2189 RISCVTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 2190 bool IsVarArg, 2191 const SmallVectorImpl<ISD::OutputArg> &Outs, 2192 const SmallVectorImpl<SDValue> &OutVals, 2193 const SDLoc &DL, SelectionDAG &DAG) const { 2194 // Stores the assignment of the return value to a location. 2195 SmallVector<CCValAssign, 16> RVLocs; 2196 2197 // Info about the registers and stack slot. 2198 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, 2199 *DAG.getContext()); 2200 2201 analyzeOutputArgs(DAG.getMachineFunction(), CCInfo, Outs, /*IsRet=*/true, 2202 nullptr); 2203 2204 SDValue Glue; 2205 SmallVector<SDValue, 4> RetOps(1, Chain); 2206 2207 // Copy the result values into the output registers. 2208 for (unsigned i = 0, e = RVLocs.size(); i < e; ++i) { 2209 SDValue Val = OutVals[i]; 2210 CCValAssign &VA = RVLocs[i]; 2211 assert(VA.isRegLoc() && "Can only return in registers!"); 2212 2213 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { 2214 // Handle returning f64 on RV32D with a soft float ABI. 2215 assert(VA.isRegLoc() && "Expected return via registers"); 2216 SDValue SplitF64 = DAG.getNode(RISCVISD::SplitF64, DL, 2217 DAG.getVTList(MVT::i32, MVT::i32), Val); 2218 SDValue Lo = SplitF64.getValue(0); 2219 SDValue Hi = SplitF64.getValue(1); 2220 unsigned RegLo = VA.getLocReg(); 2221 unsigned RegHi = RegLo + 1; 2222 Chain = DAG.getCopyToReg(Chain, DL, RegLo, Lo, Glue); 2223 Glue = Chain.getValue(1); 2224 RetOps.push_back(DAG.getRegister(RegLo, MVT::i32)); 2225 Chain = DAG.getCopyToReg(Chain, DL, RegHi, Hi, Glue); 2226 Glue = Chain.getValue(1); 2227 RetOps.push_back(DAG.getRegister(RegHi, MVT::i32)); 2228 } else { 2229 // Handle a 'normal' return. 2230 Val = convertValVTToLocVT(DAG, Val, VA, DL); 2231 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Glue); 2232 2233 // Guarantee that all emitted copies are stuck together. 2234 Glue = Chain.getValue(1); 2235 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 2236 } 2237 } 2238 2239 RetOps[0] = Chain; // Update chain. 2240 2241 // Add the glue node if we have it. 2242 if (Glue.getNode()) { 2243 RetOps.push_back(Glue); 2244 } 2245 2246 // Interrupt service routines use different return instructions. 2247 const Function &Func = DAG.getMachineFunction().getFunction(); 2248 if (Func.hasFnAttribute("interrupt")) { 2249 if (!Func.getReturnType()->isVoidTy()) 2250 report_fatal_error( 2251 "Functions with the interrupt attribute must have void return type!"); 2252 2253 MachineFunction &MF = DAG.getMachineFunction(); 2254 StringRef Kind = 2255 MF.getFunction().getFnAttribute("interrupt").getValueAsString(); 2256 2257 unsigned RetOpc; 2258 if (Kind == "user") 2259 RetOpc = RISCVISD::URET_FLAG; 2260 else if (Kind == "supervisor") 2261 RetOpc = RISCVISD::SRET_FLAG; 2262 else 2263 RetOpc = RISCVISD::MRET_FLAG; 2264 2265 return DAG.getNode(RetOpc, DL, MVT::Other, RetOps); 2266 } 2267 2268 return DAG.getNode(RISCVISD::RET_FLAG, DL, MVT::Other, RetOps); 2269 } 2270 2271 const char *RISCVTargetLowering::getTargetNodeName(unsigned Opcode) const { 2272 switch ((RISCVISD::NodeType)Opcode) { 2273 case RISCVISD::FIRST_NUMBER: 2274 break; 2275 case RISCVISD::RET_FLAG: 2276 return "RISCVISD::RET_FLAG"; 2277 case RISCVISD::URET_FLAG: 2278 return "RISCVISD::URET_FLAG"; 2279 case RISCVISD::SRET_FLAG: 2280 return "RISCVISD::SRET_FLAG"; 2281 case RISCVISD::MRET_FLAG: 2282 return "RISCVISD::MRET_FLAG"; 2283 case RISCVISD::CALL: 2284 return "RISCVISD::CALL"; 2285 case RISCVISD::SELECT_CC: 2286 return "RISCVISD::SELECT_CC"; 2287 case RISCVISD::BuildPairF64: 2288 return "RISCVISD::BuildPairF64"; 2289 case RISCVISD::SplitF64: 2290 return "RISCVISD::SplitF64"; 2291 case RISCVISD::TAIL: 2292 return "RISCVISD::TAIL"; 2293 case RISCVISD::SLLW: 2294 return "RISCVISD::SLLW"; 2295 case RISCVISD::SRAW: 2296 return "RISCVISD::SRAW"; 2297 case RISCVISD::SRLW: 2298 return "RISCVISD::SRLW"; 2299 case RISCVISD::DIVW: 2300 return "RISCVISD::DIVW"; 2301 case RISCVISD::DIVUW: 2302 return "RISCVISD::DIVUW"; 2303 case RISCVISD::REMUW: 2304 return "RISCVISD::REMUW"; 2305 case RISCVISD::FMV_W_X_RV64: 2306 return "RISCVISD::FMV_W_X_RV64"; 2307 case RISCVISD::FMV_X_ANYEXTW_RV64: 2308 return "RISCVISD::FMV_X_ANYEXTW_RV64"; 2309 } 2310 return nullptr; 2311 } 2312 2313 std::pair<unsigned, const TargetRegisterClass *> 2314 RISCVTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 2315 StringRef Constraint, 2316 MVT VT) const { 2317 // First, see if this is a constraint that directly corresponds to a 2318 // RISCV register class. 2319 if (Constraint.size() == 1) { 2320 switch (Constraint[0]) { 2321 case 'r': 2322 return std::make_pair(0U, &RISCV::GPRRegClass); 2323 default: 2324 break; 2325 } 2326 } 2327 2328 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 2329 } 2330 2331 void RISCVTargetLowering::LowerAsmOperandForConstraint( 2332 SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops, 2333 SelectionDAG &DAG) const { 2334 // Currently only support length 1 constraints. 2335 if (Constraint.length() == 1) { 2336 switch (Constraint[0]) { 2337 case 'I': 2338 // Validate & create a 12-bit signed immediate operand. 2339 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 2340 uint64_t CVal = C->getSExtValue(); 2341 if (isInt<12>(CVal)) 2342 Ops.push_back( 2343 DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT())); 2344 } 2345 return; 2346 case 'J': 2347 // Validate & create an integer zero operand. 2348 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 2349 if (C->getZExtValue() == 0) 2350 Ops.push_back( 2351 DAG.getTargetConstant(0, SDLoc(Op), Subtarget.getXLenVT())); 2352 return; 2353 case 'K': 2354 // Validate & create a 5-bit unsigned immediate operand. 2355 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 2356 uint64_t CVal = C->getZExtValue(); 2357 if (isUInt<5>(CVal)) 2358 Ops.push_back( 2359 DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT())); 2360 } 2361 return; 2362 default: 2363 break; 2364 } 2365 } 2366 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 2367 } 2368 2369 Instruction *RISCVTargetLowering::emitLeadingFence(IRBuilder<> &Builder, 2370 Instruction *Inst, 2371 AtomicOrdering Ord) const { 2372 if (isa<LoadInst>(Inst) && Ord == AtomicOrdering::SequentiallyConsistent) 2373 return Builder.CreateFence(Ord); 2374 if (isa<StoreInst>(Inst) && isReleaseOrStronger(Ord)) 2375 return Builder.CreateFence(AtomicOrdering::Release); 2376 return nullptr; 2377 } 2378 2379 Instruction *RISCVTargetLowering::emitTrailingFence(IRBuilder<> &Builder, 2380 Instruction *Inst, 2381 AtomicOrdering Ord) const { 2382 if (isa<LoadInst>(Inst) && isAcquireOrStronger(Ord)) 2383 return Builder.CreateFence(AtomicOrdering::Acquire); 2384 return nullptr; 2385 } 2386 2387 TargetLowering::AtomicExpansionKind 2388 RISCVTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { 2389 // atomicrmw {fadd,fsub} must be expanded to use compare-exchange, as floating 2390 // point operations can't be used in an lr/sc sequence without breaking the 2391 // forward-progress guarantee. 2392 if (AI->isFloatingPointOperation()) 2393 return AtomicExpansionKind::CmpXChg; 2394 2395 unsigned Size = AI->getType()->getPrimitiveSizeInBits(); 2396 if (Size == 8 || Size == 16) 2397 return AtomicExpansionKind::MaskedIntrinsic; 2398 return AtomicExpansionKind::None; 2399 } 2400 2401 static Intrinsic::ID 2402 getIntrinsicForMaskedAtomicRMWBinOp(unsigned XLen, AtomicRMWInst::BinOp BinOp) { 2403 if (XLen == 32) { 2404 switch (BinOp) { 2405 default: 2406 llvm_unreachable("Unexpected AtomicRMW BinOp"); 2407 case AtomicRMWInst::Xchg: 2408 return Intrinsic::riscv_masked_atomicrmw_xchg_i32; 2409 case AtomicRMWInst::Add: 2410 return Intrinsic::riscv_masked_atomicrmw_add_i32; 2411 case AtomicRMWInst::Sub: 2412 return Intrinsic::riscv_masked_atomicrmw_sub_i32; 2413 case AtomicRMWInst::Nand: 2414 return Intrinsic::riscv_masked_atomicrmw_nand_i32; 2415 case AtomicRMWInst::Max: 2416 return Intrinsic::riscv_masked_atomicrmw_max_i32; 2417 case AtomicRMWInst::Min: 2418 return Intrinsic::riscv_masked_atomicrmw_min_i32; 2419 case AtomicRMWInst::UMax: 2420 return Intrinsic::riscv_masked_atomicrmw_umax_i32; 2421 case AtomicRMWInst::UMin: 2422 return Intrinsic::riscv_masked_atomicrmw_umin_i32; 2423 } 2424 } 2425 2426 if (XLen == 64) { 2427 switch (BinOp) { 2428 default: 2429 llvm_unreachable("Unexpected AtomicRMW BinOp"); 2430 case AtomicRMWInst::Xchg: 2431 return Intrinsic::riscv_masked_atomicrmw_xchg_i64; 2432 case AtomicRMWInst::Add: 2433 return Intrinsic::riscv_masked_atomicrmw_add_i64; 2434 case AtomicRMWInst::Sub: 2435 return Intrinsic::riscv_masked_atomicrmw_sub_i64; 2436 case AtomicRMWInst::Nand: 2437 return Intrinsic::riscv_masked_atomicrmw_nand_i64; 2438 case AtomicRMWInst::Max: 2439 return Intrinsic::riscv_masked_atomicrmw_max_i64; 2440 case AtomicRMWInst::Min: 2441 return Intrinsic::riscv_masked_atomicrmw_min_i64; 2442 case AtomicRMWInst::UMax: 2443 return Intrinsic::riscv_masked_atomicrmw_umax_i64; 2444 case AtomicRMWInst::UMin: 2445 return Intrinsic::riscv_masked_atomicrmw_umin_i64; 2446 } 2447 } 2448 2449 llvm_unreachable("Unexpected XLen\n"); 2450 } 2451 2452 Value *RISCVTargetLowering::emitMaskedAtomicRMWIntrinsic( 2453 IRBuilder<> &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr, 2454 Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const { 2455 unsigned XLen = Subtarget.getXLen(); 2456 Value *Ordering = 2457 Builder.getIntN(XLen, static_cast<uint64_t>(AI->getOrdering())); 2458 Type *Tys[] = {AlignedAddr->getType()}; 2459 Function *LrwOpScwLoop = Intrinsic::getDeclaration( 2460 AI->getModule(), 2461 getIntrinsicForMaskedAtomicRMWBinOp(XLen, AI->getOperation()), Tys); 2462 2463 if (XLen == 64) { 2464 Incr = Builder.CreateSExt(Incr, Builder.getInt64Ty()); 2465 Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty()); 2466 ShiftAmt = Builder.CreateSExt(ShiftAmt, Builder.getInt64Ty()); 2467 } 2468 2469 Value *Result; 2470 2471 // Must pass the shift amount needed to sign extend the loaded value prior 2472 // to performing a signed comparison for min/max. ShiftAmt is the number of 2473 // bits to shift the value into position. Pass XLen-ShiftAmt-ValWidth, which 2474 // is the number of bits to left+right shift the value in order to 2475 // sign-extend. 2476 if (AI->getOperation() == AtomicRMWInst::Min || 2477 AI->getOperation() == AtomicRMWInst::Max) { 2478 const DataLayout &DL = AI->getModule()->getDataLayout(); 2479 unsigned ValWidth = 2480 DL.getTypeStoreSizeInBits(AI->getValOperand()->getType()); 2481 Value *SextShamt = 2482 Builder.CreateSub(Builder.getIntN(XLen, XLen - ValWidth), ShiftAmt); 2483 Result = Builder.CreateCall(LrwOpScwLoop, 2484 {AlignedAddr, Incr, Mask, SextShamt, Ordering}); 2485 } else { 2486 Result = 2487 Builder.CreateCall(LrwOpScwLoop, {AlignedAddr, Incr, Mask, Ordering}); 2488 } 2489 2490 if (XLen == 64) 2491 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty()); 2492 return Result; 2493 } 2494 2495 TargetLowering::AtomicExpansionKind 2496 RISCVTargetLowering::shouldExpandAtomicCmpXchgInIR( 2497 AtomicCmpXchgInst *CI) const { 2498 unsigned Size = CI->getCompareOperand()->getType()->getPrimitiveSizeInBits(); 2499 if (Size == 8 || Size == 16) 2500 return AtomicExpansionKind::MaskedIntrinsic; 2501 return AtomicExpansionKind::None; 2502 } 2503 2504 Value *RISCVTargetLowering::emitMaskedAtomicCmpXchgIntrinsic( 2505 IRBuilder<> &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr, 2506 Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const { 2507 unsigned XLen = Subtarget.getXLen(); 2508 Value *Ordering = Builder.getIntN(XLen, static_cast<uint64_t>(Ord)); 2509 Intrinsic::ID CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i32; 2510 if (XLen == 64) { 2511 CmpVal = Builder.CreateSExt(CmpVal, Builder.getInt64Ty()); 2512 NewVal = Builder.CreateSExt(NewVal, Builder.getInt64Ty()); 2513 Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty()); 2514 CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i64; 2515 } 2516 Type *Tys[] = {AlignedAddr->getType()}; 2517 Function *MaskedCmpXchg = 2518 Intrinsic::getDeclaration(CI->getModule(), CmpXchgIntrID, Tys); 2519 Value *Result = Builder.CreateCall( 2520 MaskedCmpXchg, {AlignedAddr, CmpVal, NewVal, Mask, Ordering}); 2521 if (XLen == 64) 2522 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty()); 2523 return Result; 2524 } 2525