1 //===-- RISCVISelLowering.cpp - RISCV DAG Lowering Implementation --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the interfaces that RISCV uses to lower LLVM code into a 10 // selection DAG. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "RISCVISelLowering.h" 15 #include "MCTargetDesc/RISCVMatInt.h" 16 #include "RISCV.h" 17 #include "RISCVMachineFunctionInfo.h" 18 #include "RISCVRegisterInfo.h" 19 #include "RISCVSubtarget.h" 20 #include "RISCVTargetMachine.h" 21 #include "llvm/ADT/SmallSet.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Analysis/MemoryLocation.h" 24 #include "llvm/CodeGen/MachineFrameInfo.h" 25 #include "llvm/CodeGen/MachineFunction.h" 26 #include "llvm/CodeGen/MachineInstrBuilder.h" 27 #include "llvm/CodeGen/MachineRegisterInfo.h" 28 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 29 #include "llvm/CodeGen/ValueTypes.h" 30 #include "llvm/IR/DiagnosticInfo.h" 31 #include "llvm/IR/DiagnosticPrinter.h" 32 #include "llvm/IR/IRBuilder.h" 33 #include "llvm/IR/IntrinsicsRISCV.h" 34 #include "llvm/IR/PatternMatch.h" 35 #include "llvm/Support/Debug.h" 36 #include "llvm/Support/ErrorHandling.h" 37 #include "llvm/Support/KnownBits.h" 38 #include "llvm/Support/MathExtras.h" 39 #include "llvm/Support/raw_ostream.h" 40 41 using namespace llvm; 42 43 #define DEBUG_TYPE "riscv-lower" 44 45 STATISTIC(NumTailCalls, "Number of tail calls"); 46 47 RISCVTargetLowering::RISCVTargetLowering(const TargetMachine &TM, 48 const RISCVSubtarget &STI) 49 : TargetLowering(TM), Subtarget(STI) { 50 51 if (Subtarget.isRV32E()) 52 report_fatal_error("Codegen not yet implemented for RV32E"); 53 54 RISCVABI::ABI ABI = Subtarget.getTargetABI(); 55 assert(ABI != RISCVABI::ABI_Unknown && "Improperly initialised target ABI"); 56 57 if ((ABI == RISCVABI::ABI_ILP32F || ABI == RISCVABI::ABI_LP64F) && 58 !Subtarget.hasStdExtF()) { 59 errs() << "Hard-float 'f' ABI can't be used for a target that " 60 "doesn't support the F instruction set extension (ignoring " 61 "target-abi)\n"; 62 ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32; 63 } else if ((ABI == RISCVABI::ABI_ILP32D || ABI == RISCVABI::ABI_LP64D) && 64 !Subtarget.hasStdExtD()) { 65 errs() << "Hard-float 'd' ABI can't be used for a target that " 66 "doesn't support the D instruction set extension (ignoring " 67 "target-abi)\n"; 68 ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32; 69 } 70 71 switch (ABI) { 72 default: 73 report_fatal_error("Don't know how to lower this ABI"); 74 case RISCVABI::ABI_ILP32: 75 case RISCVABI::ABI_ILP32F: 76 case RISCVABI::ABI_ILP32D: 77 case RISCVABI::ABI_LP64: 78 case RISCVABI::ABI_LP64F: 79 case RISCVABI::ABI_LP64D: 80 break; 81 } 82 83 MVT XLenVT = Subtarget.getXLenVT(); 84 85 // Set up the register classes. 86 addRegisterClass(XLenVT, &RISCV::GPRRegClass); 87 88 if (Subtarget.hasStdExtZfh()) 89 addRegisterClass(MVT::f16, &RISCV::FPR16RegClass); 90 if (Subtarget.hasStdExtF()) 91 addRegisterClass(MVT::f32, &RISCV::FPR32RegClass); 92 if (Subtarget.hasStdExtD()) 93 addRegisterClass(MVT::f64, &RISCV::FPR64RegClass); 94 95 static const MVT::SimpleValueType BoolVecVTs[] = { 96 MVT::nxv1i1, MVT::nxv2i1, MVT::nxv4i1, MVT::nxv8i1, 97 MVT::nxv16i1, MVT::nxv32i1, MVT::nxv64i1}; 98 static const MVT::SimpleValueType IntVecVTs[] = { 99 MVT::nxv1i8, MVT::nxv2i8, MVT::nxv4i8, MVT::nxv8i8, MVT::nxv16i8, 100 MVT::nxv32i8, MVT::nxv64i8, MVT::nxv1i16, MVT::nxv2i16, MVT::nxv4i16, 101 MVT::nxv8i16, MVT::nxv16i16, MVT::nxv32i16, MVT::nxv1i32, MVT::nxv2i32, 102 MVT::nxv4i32, MVT::nxv8i32, MVT::nxv16i32, MVT::nxv1i64, MVT::nxv2i64, 103 MVT::nxv4i64, MVT::nxv8i64}; 104 static const MVT::SimpleValueType F16VecVTs[] = { 105 MVT::nxv1f16, MVT::nxv2f16, MVT::nxv4f16, 106 MVT::nxv8f16, MVT::nxv16f16, MVT::nxv32f16}; 107 static const MVT::SimpleValueType F32VecVTs[] = { 108 MVT::nxv1f32, MVT::nxv2f32, MVT::nxv4f32, MVT::nxv8f32, MVT::nxv16f32}; 109 static const MVT::SimpleValueType F64VecVTs[] = { 110 MVT::nxv1f64, MVT::nxv2f64, MVT::nxv4f64, MVT::nxv8f64}; 111 112 if (Subtarget.hasStdExtV()) { 113 auto addRegClassForRVV = [this](MVT VT) { 114 unsigned Size = VT.getSizeInBits().getKnownMinValue(); 115 assert(Size <= 512 && isPowerOf2_32(Size)); 116 const TargetRegisterClass *RC; 117 if (Size <= 64) 118 RC = &RISCV::VRRegClass; 119 else if (Size == 128) 120 RC = &RISCV::VRM2RegClass; 121 else if (Size == 256) 122 RC = &RISCV::VRM4RegClass; 123 else 124 RC = &RISCV::VRM8RegClass; 125 126 addRegisterClass(VT, RC); 127 }; 128 129 for (MVT VT : BoolVecVTs) 130 addRegClassForRVV(VT); 131 for (MVT VT : IntVecVTs) 132 addRegClassForRVV(VT); 133 134 if (Subtarget.hasStdExtZfh()) 135 for (MVT VT : F16VecVTs) 136 addRegClassForRVV(VT); 137 138 if (Subtarget.hasStdExtF()) 139 for (MVT VT : F32VecVTs) 140 addRegClassForRVV(VT); 141 142 if (Subtarget.hasStdExtD()) 143 for (MVT VT : F64VecVTs) 144 addRegClassForRVV(VT); 145 146 if (Subtarget.useRVVForFixedLengthVectors()) { 147 auto addRegClassForFixedVectors = [this](MVT VT) { 148 MVT ContainerVT = getContainerForFixedLengthVector(VT); 149 unsigned RCID = getRegClassIDForVecVT(ContainerVT); 150 const RISCVRegisterInfo &TRI = *Subtarget.getRegisterInfo(); 151 addRegisterClass(VT, TRI.getRegClass(RCID)); 152 }; 153 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) 154 if (useRVVForFixedLengthVectorVT(VT)) 155 addRegClassForFixedVectors(VT); 156 157 for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) 158 if (useRVVForFixedLengthVectorVT(VT)) 159 addRegClassForFixedVectors(VT); 160 } 161 } 162 163 // Compute derived properties from the register classes. 164 computeRegisterProperties(STI.getRegisterInfo()); 165 166 setStackPointerRegisterToSaveRestore(RISCV::X2); 167 168 for (auto N : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}) 169 setLoadExtAction(N, XLenVT, MVT::i1, Promote); 170 171 // TODO: add all necessary setOperationAction calls. 172 setOperationAction(ISD::DYNAMIC_STACKALLOC, XLenVT, Expand); 173 174 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 175 setOperationAction(ISD::BR_CC, XLenVT, Expand); 176 setOperationAction(ISD::BRCOND, MVT::Other, Custom); 177 setOperationAction(ISD::SELECT_CC, XLenVT, Expand); 178 179 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); 180 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); 181 182 setOperationAction(ISD::VASTART, MVT::Other, Custom); 183 setOperationAction(ISD::VAARG, MVT::Other, Expand); 184 setOperationAction(ISD::VACOPY, MVT::Other, Expand); 185 setOperationAction(ISD::VAEND, MVT::Other, Expand); 186 187 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 188 if (!Subtarget.hasStdExtZbb()) { 189 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand); 190 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand); 191 } 192 193 if (Subtarget.is64Bit()) { 194 setOperationAction(ISD::ADD, MVT::i32, Custom); 195 setOperationAction(ISD::SUB, MVT::i32, Custom); 196 setOperationAction(ISD::SHL, MVT::i32, Custom); 197 setOperationAction(ISD::SRA, MVT::i32, Custom); 198 setOperationAction(ISD::SRL, MVT::i32, Custom); 199 200 setOperationAction(ISD::UADDO, MVT::i32, Custom); 201 setOperationAction(ISD::USUBO, MVT::i32, Custom); 202 setOperationAction(ISD::UADDSAT, MVT::i32, Custom); 203 setOperationAction(ISD::USUBSAT, MVT::i32, Custom); 204 } else { 205 setLibcallName(RTLIB::SHL_I128, nullptr); 206 setLibcallName(RTLIB::SRL_I128, nullptr); 207 setLibcallName(RTLIB::SRA_I128, nullptr); 208 setLibcallName(RTLIB::MUL_I128, nullptr); 209 setLibcallName(RTLIB::MULO_I64, nullptr); 210 } 211 212 if (!Subtarget.hasStdExtM()) { 213 setOperationAction(ISD::MUL, XLenVT, Expand); 214 setOperationAction(ISD::MULHS, XLenVT, Expand); 215 setOperationAction(ISD::MULHU, XLenVT, Expand); 216 setOperationAction(ISD::SDIV, XLenVT, Expand); 217 setOperationAction(ISD::UDIV, XLenVT, Expand); 218 setOperationAction(ISD::SREM, XLenVT, Expand); 219 setOperationAction(ISD::UREM, XLenVT, Expand); 220 } else { 221 if (Subtarget.is64Bit()) { 222 setOperationAction(ISD::MUL, MVT::i32, Custom); 223 setOperationAction(ISD::MUL, MVT::i128, Custom); 224 225 setOperationAction(ISD::SDIV, MVT::i8, Custom); 226 setOperationAction(ISD::UDIV, MVT::i8, Custom); 227 setOperationAction(ISD::UREM, MVT::i8, Custom); 228 setOperationAction(ISD::SDIV, MVT::i16, Custom); 229 setOperationAction(ISD::UDIV, MVT::i16, Custom); 230 setOperationAction(ISD::UREM, MVT::i16, Custom); 231 setOperationAction(ISD::SDIV, MVT::i32, Custom); 232 setOperationAction(ISD::UDIV, MVT::i32, Custom); 233 setOperationAction(ISD::UREM, MVT::i32, Custom); 234 } else { 235 setOperationAction(ISD::MUL, MVT::i64, Custom); 236 } 237 } 238 239 setOperationAction(ISD::SDIVREM, XLenVT, Expand); 240 setOperationAction(ISD::UDIVREM, XLenVT, Expand); 241 setOperationAction(ISD::SMUL_LOHI, XLenVT, Expand); 242 setOperationAction(ISD::UMUL_LOHI, XLenVT, Expand); 243 244 setOperationAction(ISD::SHL_PARTS, XLenVT, Custom); 245 setOperationAction(ISD::SRL_PARTS, XLenVT, Custom); 246 setOperationAction(ISD::SRA_PARTS, XLenVT, Custom); 247 248 if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp()) { 249 if (Subtarget.is64Bit()) { 250 setOperationAction(ISD::ROTL, MVT::i32, Custom); 251 setOperationAction(ISD::ROTR, MVT::i32, Custom); 252 } 253 } else { 254 setOperationAction(ISD::ROTL, XLenVT, Expand); 255 setOperationAction(ISD::ROTR, XLenVT, Expand); 256 } 257 258 if (Subtarget.hasStdExtZbp()) { 259 // Custom lower bswap/bitreverse so we can convert them to GREVI to enable 260 // more combining. 261 setOperationAction(ISD::BITREVERSE, XLenVT, Custom); 262 setOperationAction(ISD::BSWAP, XLenVT, Custom); 263 setOperationAction(ISD::BITREVERSE, MVT::i8, Custom); 264 // BSWAP i8 doesn't exist. 265 setOperationAction(ISD::BITREVERSE, MVT::i16, Custom); 266 setOperationAction(ISD::BSWAP, MVT::i16, Custom); 267 268 if (Subtarget.is64Bit()) { 269 setOperationAction(ISD::BITREVERSE, MVT::i32, Custom); 270 setOperationAction(ISD::BSWAP, MVT::i32, Custom); 271 } 272 } else { 273 // With Zbb we have an XLen rev8 instruction, but not GREVI. So we'll 274 // pattern match it directly in isel. 275 setOperationAction(ISD::BSWAP, XLenVT, 276 Subtarget.hasStdExtZbb() ? Legal : Expand); 277 } 278 279 if (Subtarget.hasStdExtZbb()) { 280 setOperationAction(ISD::SMIN, XLenVT, Legal); 281 setOperationAction(ISD::SMAX, XLenVT, Legal); 282 setOperationAction(ISD::UMIN, XLenVT, Legal); 283 setOperationAction(ISD::UMAX, XLenVT, Legal); 284 285 if (Subtarget.is64Bit()) { 286 setOperationAction(ISD::CTTZ, MVT::i32, Custom); 287 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Custom); 288 setOperationAction(ISD::CTLZ, MVT::i32, Custom); 289 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom); 290 } 291 } else { 292 setOperationAction(ISD::CTTZ, XLenVT, Expand); 293 setOperationAction(ISD::CTLZ, XLenVT, Expand); 294 setOperationAction(ISD::CTPOP, XLenVT, Expand); 295 } 296 297 if (Subtarget.hasStdExtZbt()) { 298 setOperationAction(ISD::FSHL, XLenVT, Custom); 299 setOperationAction(ISD::FSHR, XLenVT, Custom); 300 setOperationAction(ISD::SELECT, XLenVT, Legal); 301 302 if (Subtarget.is64Bit()) { 303 setOperationAction(ISD::FSHL, MVT::i32, Custom); 304 setOperationAction(ISD::FSHR, MVT::i32, Custom); 305 } 306 } else { 307 setOperationAction(ISD::SELECT, XLenVT, Custom); 308 } 309 310 static const ISD::CondCode FPCCToExpand[] = { 311 ISD::SETOGT, ISD::SETOGE, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT, 312 ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUNE, ISD::SETGT, 313 ISD::SETGE, ISD::SETNE, ISD::SETO, ISD::SETUO}; 314 315 static const ISD::NodeType FPOpToExpand[] = { 316 ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, 317 ISD::FREM, ISD::FP16_TO_FP, ISD::FP_TO_FP16}; 318 319 if (Subtarget.hasStdExtZfh()) 320 setOperationAction(ISD::BITCAST, MVT::i16, Custom); 321 322 if (Subtarget.hasStdExtZfh()) { 323 setOperationAction(ISD::FMINNUM, MVT::f16, Legal); 324 setOperationAction(ISD::FMAXNUM, MVT::f16, Legal); 325 setOperationAction(ISD::LRINT, MVT::f16, Legal); 326 setOperationAction(ISD::LLRINT, MVT::f16, Legal); 327 setOperationAction(ISD::LROUND, MVT::f16, Legal); 328 setOperationAction(ISD::LLROUND, MVT::f16, Legal); 329 for (auto CC : FPCCToExpand) 330 setCondCodeAction(CC, MVT::f16, Expand); 331 setOperationAction(ISD::SELECT_CC, MVT::f16, Expand); 332 setOperationAction(ISD::SELECT, MVT::f16, Custom); 333 setOperationAction(ISD::BR_CC, MVT::f16, Expand); 334 for (auto Op : FPOpToExpand) 335 setOperationAction(Op, MVT::f16, Expand); 336 } 337 338 if (Subtarget.hasStdExtF()) { 339 setOperationAction(ISD::FMINNUM, MVT::f32, Legal); 340 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); 341 setOperationAction(ISD::LRINT, MVT::f32, Legal); 342 setOperationAction(ISD::LLRINT, MVT::f32, Legal); 343 setOperationAction(ISD::LROUND, MVT::f32, Legal); 344 setOperationAction(ISD::LLROUND, MVT::f32, Legal); 345 for (auto CC : FPCCToExpand) 346 setCondCodeAction(CC, MVT::f32, Expand); 347 setOperationAction(ISD::SELECT_CC, MVT::f32, Expand); 348 setOperationAction(ISD::SELECT, MVT::f32, Custom); 349 setOperationAction(ISD::BR_CC, MVT::f32, Expand); 350 for (auto Op : FPOpToExpand) 351 setOperationAction(Op, MVT::f32, Expand); 352 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); 353 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 354 } 355 356 if (Subtarget.hasStdExtF() && Subtarget.is64Bit()) 357 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 358 359 if (Subtarget.hasStdExtD()) { 360 setOperationAction(ISD::FMINNUM, MVT::f64, Legal); 361 setOperationAction(ISD::FMAXNUM, MVT::f64, Legal); 362 setOperationAction(ISD::LRINT, MVT::f64, Legal); 363 setOperationAction(ISD::LLRINT, MVT::f64, Legal); 364 setOperationAction(ISD::LROUND, MVT::f64, Legal); 365 setOperationAction(ISD::LLROUND, MVT::f64, Legal); 366 for (auto CC : FPCCToExpand) 367 setCondCodeAction(CC, MVT::f64, Expand); 368 setOperationAction(ISD::SELECT_CC, MVT::f64, Expand); 369 setOperationAction(ISD::SELECT, MVT::f64, Custom); 370 setOperationAction(ISD::BR_CC, MVT::f64, Expand); 371 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 372 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 373 for (auto Op : FPOpToExpand) 374 setOperationAction(Op, MVT::f64, Expand); 375 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); 376 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 377 } 378 379 if (Subtarget.is64Bit()) { 380 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 381 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 382 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom); 383 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom); 384 } 385 386 if (Subtarget.hasStdExtF()) { 387 setOperationAction(ISD::FP_TO_UINT_SAT, XLenVT, Custom); 388 setOperationAction(ISD::FP_TO_SINT_SAT, XLenVT, Custom); 389 390 setOperationAction(ISD::FLT_ROUNDS_, XLenVT, Custom); 391 setOperationAction(ISD::SET_ROUNDING, MVT::Other, Custom); 392 } 393 394 setOperationAction(ISD::GlobalAddress, XLenVT, Custom); 395 setOperationAction(ISD::BlockAddress, XLenVT, Custom); 396 setOperationAction(ISD::ConstantPool, XLenVT, Custom); 397 setOperationAction(ISD::JumpTable, XLenVT, Custom); 398 399 setOperationAction(ISD::GlobalTLSAddress, XLenVT, Custom); 400 401 // TODO: On M-mode only targets, the cycle[h] CSR may not be present. 402 // Unfortunately this can't be determined just from the ISA naming string. 403 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, 404 Subtarget.is64Bit() ? Legal : Custom); 405 406 setOperationAction(ISD::TRAP, MVT::Other, Legal); 407 setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal); 408 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 409 if (Subtarget.is64Bit()) 410 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i32, Custom); 411 412 if (Subtarget.hasStdExtA()) { 413 setMaxAtomicSizeInBitsSupported(Subtarget.getXLen()); 414 setMinCmpXchgSizeInBits(32); 415 } else { 416 setMaxAtomicSizeInBitsSupported(0); 417 } 418 419 setBooleanContents(ZeroOrOneBooleanContent); 420 421 if (Subtarget.hasStdExtV()) { 422 setBooleanVectorContents(ZeroOrOneBooleanContent); 423 424 setOperationAction(ISD::VSCALE, XLenVT, Custom); 425 426 // RVV intrinsics may have illegal operands. 427 // We also need to custom legalize vmv.x.s. 428 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i8, Custom); 429 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i16, Custom); 430 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i8, Custom); 431 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i16, Custom); 432 if (Subtarget.is64Bit()) { 433 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i32, Custom); 434 } else { 435 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i64, Custom); 436 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i64, Custom); 437 } 438 439 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom); 440 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); 441 442 static const unsigned IntegerVPOps[] = { 443 ISD::VP_ADD, ISD::VP_SUB, ISD::VP_MUL, 444 ISD::VP_SDIV, ISD::VP_UDIV, ISD::VP_SREM, 445 ISD::VP_UREM, ISD::VP_AND, ISD::VP_OR, 446 ISD::VP_XOR, ISD::VP_ASHR, ISD::VP_LSHR, 447 ISD::VP_SHL, ISD::VP_REDUCE_ADD, ISD::VP_REDUCE_AND, 448 ISD::VP_REDUCE_OR, ISD::VP_REDUCE_XOR, ISD::VP_REDUCE_SMAX, 449 ISD::VP_REDUCE_SMIN, ISD::VP_REDUCE_UMAX, ISD::VP_REDUCE_UMIN}; 450 451 static const unsigned FloatingPointVPOps[] = { 452 ISD::VP_FADD, ISD::VP_FSUB, ISD::VP_FMUL, 453 ISD::VP_FDIV, ISD::VP_REDUCE_FADD, ISD::VP_REDUCE_SEQ_FADD, 454 ISD::VP_REDUCE_FMIN, ISD::VP_REDUCE_FMAX}; 455 456 if (!Subtarget.is64Bit()) { 457 // We must custom-lower certain vXi64 operations on RV32 due to the vector 458 // element type being illegal. 459 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::i64, Custom); 460 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::i64, Custom); 461 462 setOperationAction(ISD::VECREDUCE_ADD, MVT::i64, Custom); 463 setOperationAction(ISD::VECREDUCE_AND, MVT::i64, Custom); 464 setOperationAction(ISD::VECREDUCE_OR, MVT::i64, Custom); 465 setOperationAction(ISD::VECREDUCE_XOR, MVT::i64, Custom); 466 setOperationAction(ISD::VECREDUCE_SMAX, MVT::i64, Custom); 467 setOperationAction(ISD::VECREDUCE_SMIN, MVT::i64, Custom); 468 setOperationAction(ISD::VECREDUCE_UMAX, MVT::i64, Custom); 469 setOperationAction(ISD::VECREDUCE_UMIN, MVT::i64, Custom); 470 471 setOperationAction(ISD::VP_REDUCE_ADD, MVT::i64, Custom); 472 setOperationAction(ISD::VP_REDUCE_AND, MVT::i64, Custom); 473 setOperationAction(ISD::VP_REDUCE_OR, MVT::i64, Custom); 474 setOperationAction(ISD::VP_REDUCE_XOR, MVT::i64, Custom); 475 setOperationAction(ISD::VP_REDUCE_SMAX, MVT::i64, Custom); 476 setOperationAction(ISD::VP_REDUCE_SMIN, MVT::i64, Custom); 477 setOperationAction(ISD::VP_REDUCE_UMAX, MVT::i64, Custom); 478 setOperationAction(ISD::VP_REDUCE_UMIN, MVT::i64, Custom); 479 } 480 481 for (MVT VT : BoolVecVTs) { 482 setOperationAction(ISD::SPLAT_VECTOR, VT, Custom); 483 484 // Mask VTs are custom-expanded into a series of standard nodes 485 setOperationAction(ISD::TRUNCATE, VT, Custom); 486 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 487 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 488 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 489 490 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 491 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 492 493 setOperationAction(ISD::SELECT, VT, Custom); 494 setOperationAction(ISD::SELECT_CC, VT, Expand); 495 setOperationAction(ISD::VSELECT, VT, Expand); 496 497 setOperationAction(ISD::VECREDUCE_AND, VT, Custom); 498 setOperationAction(ISD::VECREDUCE_OR, VT, Custom); 499 setOperationAction(ISD::VECREDUCE_XOR, VT, Custom); 500 501 setOperationAction(ISD::VP_REDUCE_AND, VT, Custom); 502 setOperationAction(ISD::VP_REDUCE_OR, VT, Custom); 503 setOperationAction(ISD::VP_REDUCE_XOR, VT, Custom); 504 505 // RVV has native int->float & float->int conversions where the 506 // element type sizes are within one power-of-two of each other. Any 507 // wider distances between type sizes have to be lowered as sequences 508 // which progressively narrow the gap in stages. 509 setOperationAction(ISD::SINT_TO_FP, VT, Custom); 510 setOperationAction(ISD::UINT_TO_FP, VT, Custom); 511 setOperationAction(ISD::FP_TO_SINT, VT, Custom); 512 setOperationAction(ISD::FP_TO_UINT, VT, Custom); 513 514 // Expand all extending loads to types larger than this, and truncating 515 // stores from types larger than this. 516 for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) { 517 setTruncStoreAction(OtherVT, VT, Expand); 518 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 519 setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand); 520 setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand); 521 } 522 } 523 524 for (MVT VT : IntVecVTs) { 525 setOperationAction(ISD::SPLAT_VECTOR, VT, Legal); 526 setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom); 527 528 setOperationAction(ISD::SMIN, VT, Legal); 529 setOperationAction(ISD::SMAX, VT, Legal); 530 setOperationAction(ISD::UMIN, VT, Legal); 531 setOperationAction(ISD::UMAX, VT, Legal); 532 533 setOperationAction(ISD::ROTL, VT, Expand); 534 setOperationAction(ISD::ROTR, VT, Expand); 535 536 // Custom-lower extensions and truncations from/to mask types. 537 setOperationAction(ISD::ANY_EXTEND, VT, Custom); 538 setOperationAction(ISD::SIGN_EXTEND, VT, Custom); 539 setOperationAction(ISD::ZERO_EXTEND, VT, Custom); 540 541 // RVV has native int->float & float->int conversions where the 542 // element type sizes are within one power-of-two of each other. Any 543 // wider distances between type sizes have to be lowered as sequences 544 // which progressively narrow the gap in stages. 545 setOperationAction(ISD::SINT_TO_FP, VT, Custom); 546 setOperationAction(ISD::UINT_TO_FP, VT, Custom); 547 setOperationAction(ISD::FP_TO_SINT, VT, Custom); 548 setOperationAction(ISD::FP_TO_UINT, VT, Custom); 549 550 setOperationAction(ISD::SADDSAT, VT, Legal); 551 setOperationAction(ISD::UADDSAT, VT, Legal); 552 setOperationAction(ISD::SSUBSAT, VT, Legal); 553 setOperationAction(ISD::USUBSAT, VT, Legal); 554 555 // Integer VTs are lowered as a series of "RISCVISD::TRUNCATE_VECTOR_VL" 556 // nodes which truncate by one power of two at a time. 557 setOperationAction(ISD::TRUNCATE, VT, Custom); 558 559 // Custom-lower insert/extract operations to simplify patterns. 560 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 561 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 562 563 // Custom-lower reduction operations to set up the corresponding custom 564 // nodes' operands. 565 setOperationAction(ISD::VECREDUCE_ADD, VT, Custom); 566 setOperationAction(ISD::VECREDUCE_AND, VT, Custom); 567 setOperationAction(ISD::VECREDUCE_OR, VT, Custom); 568 setOperationAction(ISD::VECREDUCE_XOR, VT, Custom); 569 setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom); 570 setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom); 571 setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom); 572 setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom); 573 574 for (unsigned VPOpc : IntegerVPOps) 575 setOperationAction(VPOpc, VT, Custom); 576 577 setOperationAction(ISD::LOAD, VT, Custom); 578 setOperationAction(ISD::STORE, VT, Custom); 579 580 setOperationAction(ISD::MLOAD, VT, Custom); 581 setOperationAction(ISD::MSTORE, VT, Custom); 582 setOperationAction(ISD::MGATHER, VT, Custom); 583 setOperationAction(ISD::MSCATTER, VT, Custom); 584 585 setOperationAction(ISD::VP_LOAD, VT, Custom); 586 setOperationAction(ISD::VP_STORE, VT, Custom); 587 setOperationAction(ISD::VP_GATHER, VT, Custom); 588 setOperationAction(ISD::VP_SCATTER, VT, Custom); 589 590 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 591 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 592 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 593 594 setOperationAction(ISD::SELECT, VT, Custom); 595 setOperationAction(ISD::SELECT_CC, VT, Expand); 596 597 setOperationAction(ISD::STEP_VECTOR, VT, Custom); 598 setOperationAction(ISD::VECTOR_REVERSE, VT, Custom); 599 600 for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) { 601 setTruncStoreAction(VT, OtherVT, Expand); 602 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 603 setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand); 604 setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand); 605 } 606 } 607 608 // Expand various CCs to best match the RVV ISA, which natively supports UNE 609 // but no other unordered comparisons, and supports all ordered comparisons 610 // except ONE. Additionally, we expand GT,OGT,GE,OGE for optimization 611 // purposes; they are expanded to their swapped-operand CCs (LT,OLT,LE,OLE), 612 // and we pattern-match those back to the "original", swapping operands once 613 // more. This way we catch both operations and both "vf" and "fv" forms with 614 // fewer patterns. 615 static const ISD::CondCode VFPCCToExpand[] = { 616 ISD::SETO, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT, 617 ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUO, 618 ISD::SETGT, ISD::SETOGT, ISD::SETGE, ISD::SETOGE, 619 }; 620 621 // Sets common operation actions on RVV floating-point vector types. 622 const auto SetCommonVFPActions = [&](MVT VT) { 623 setOperationAction(ISD::SPLAT_VECTOR, VT, Legal); 624 // RVV has native FP_ROUND & FP_EXTEND conversions where the element type 625 // sizes are within one power-of-two of each other. Therefore conversions 626 // between vXf16 and vXf64 must be lowered as sequences which convert via 627 // vXf32. 628 setOperationAction(ISD::FP_ROUND, VT, Custom); 629 setOperationAction(ISD::FP_EXTEND, VT, Custom); 630 // Custom-lower insert/extract operations to simplify patterns. 631 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 632 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 633 // Expand various condition codes (explained above). 634 for (auto CC : VFPCCToExpand) 635 setCondCodeAction(CC, VT, Expand); 636 637 setOperationAction(ISD::FMINNUM, VT, Legal); 638 setOperationAction(ISD::FMAXNUM, VT, Legal); 639 640 setOperationAction(ISD::VECREDUCE_FADD, VT, Custom); 641 setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom); 642 setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom); 643 setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom); 644 645 setOperationAction(ISD::FCOPYSIGN, VT, Legal); 646 647 setOperationAction(ISD::LOAD, VT, Custom); 648 setOperationAction(ISD::STORE, VT, Custom); 649 650 setOperationAction(ISD::MLOAD, VT, Custom); 651 setOperationAction(ISD::MSTORE, VT, Custom); 652 setOperationAction(ISD::MGATHER, VT, Custom); 653 setOperationAction(ISD::MSCATTER, VT, Custom); 654 655 setOperationAction(ISD::VP_LOAD, VT, Custom); 656 setOperationAction(ISD::VP_STORE, VT, Custom); 657 setOperationAction(ISD::VP_GATHER, VT, Custom); 658 setOperationAction(ISD::VP_SCATTER, VT, Custom); 659 660 setOperationAction(ISD::SELECT, VT, Custom); 661 setOperationAction(ISD::SELECT_CC, VT, Expand); 662 663 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 664 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 665 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 666 667 setOperationAction(ISD::VECTOR_REVERSE, VT, Custom); 668 669 for (unsigned VPOpc : FloatingPointVPOps) 670 setOperationAction(VPOpc, VT, Custom); 671 }; 672 673 // Sets common extload/truncstore actions on RVV floating-point vector 674 // types. 675 const auto SetCommonVFPExtLoadTruncStoreActions = 676 [&](MVT VT, ArrayRef<MVT::SimpleValueType> SmallerVTs) { 677 for (auto SmallVT : SmallerVTs) { 678 setTruncStoreAction(VT, SmallVT, Expand); 679 setLoadExtAction(ISD::EXTLOAD, VT, SmallVT, Expand); 680 } 681 }; 682 683 if (Subtarget.hasStdExtZfh()) 684 for (MVT VT : F16VecVTs) 685 SetCommonVFPActions(VT); 686 687 for (MVT VT : F32VecVTs) { 688 if (Subtarget.hasStdExtF()) 689 SetCommonVFPActions(VT); 690 SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs); 691 } 692 693 for (MVT VT : F64VecVTs) { 694 if (Subtarget.hasStdExtD()) 695 SetCommonVFPActions(VT); 696 SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs); 697 SetCommonVFPExtLoadTruncStoreActions(VT, F32VecVTs); 698 } 699 700 if (Subtarget.useRVVForFixedLengthVectors()) { 701 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) { 702 if (!useRVVForFixedLengthVectorVT(VT)) 703 continue; 704 705 // By default everything must be expanded. 706 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) 707 setOperationAction(Op, VT, Expand); 708 for (MVT OtherVT : MVT::integer_fixedlen_vector_valuetypes()) { 709 setTruncStoreAction(VT, OtherVT, Expand); 710 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 711 setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand); 712 setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand); 713 } 714 715 // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed. 716 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 717 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 718 719 setOperationAction(ISD::BUILD_VECTOR, VT, Custom); 720 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 721 722 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 723 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 724 725 setOperationAction(ISD::LOAD, VT, Custom); 726 setOperationAction(ISD::STORE, VT, Custom); 727 728 setOperationAction(ISD::SETCC, VT, Custom); 729 730 setOperationAction(ISD::SELECT, VT, Custom); 731 732 setOperationAction(ISD::TRUNCATE, VT, Custom); 733 734 setOperationAction(ISD::BITCAST, VT, Custom); 735 736 setOperationAction(ISD::VECREDUCE_AND, VT, Custom); 737 setOperationAction(ISD::VECREDUCE_OR, VT, Custom); 738 setOperationAction(ISD::VECREDUCE_XOR, VT, Custom); 739 740 setOperationAction(ISD::VP_REDUCE_AND, VT, Custom); 741 setOperationAction(ISD::VP_REDUCE_OR, VT, Custom); 742 setOperationAction(ISD::VP_REDUCE_XOR, VT, Custom); 743 744 setOperationAction(ISD::SINT_TO_FP, VT, Custom); 745 setOperationAction(ISD::UINT_TO_FP, VT, Custom); 746 setOperationAction(ISD::FP_TO_SINT, VT, Custom); 747 setOperationAction(ISD::FP_TO_UINT, VT, Custom); 748 749 // Operations below are different for between masks and other vectors. 750 if (VT.getVectorElementType() == MVT::i1) { 751 setOperationAction(ISD::AND, VT, Custom); 752 setOperationAction(ISD::OR, VT, Custom); 753 setOperationAction(ISD::XOR, VT, Custom); 754 continue; 755 } 756 757 // Use SPLAT_VECTOR to prevent type legalization from destroying the 758 // splats when type legalizing i64 scalar on RV32. 759 // FIXME: Use SPLAT_VECTOR for all types? DAGCombine probably needs 760 // improvements first. 761 if (!Subtarget.is64Bit() && VT.getVectorElementType() == MVT::i64) { 762 setOperationAction(ISD::SPLAT_VECTOR, VT, Custom); 763 setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom); 764 } 765 766 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); 767 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 768 769 setOperationAction(ISD::MLOAD, VT, Custom); 770 setOperationAction(ISD::MSTORE, VT, Custom); 771 setOperationAction(ISD::MGATHER, VT, Custom); 772 setOperationAction(ISD::MSCATTER, VT, Custom); 773 774 setOperationAction(ISD::VP_LOAD, VT, Custom); 775 setOperationAction(ISD::VP_STORE, VT, Custom); 776 setOperationAction(ISD::VP_GATHER, VT, Custom); 777 setOperationAction(ISD::VP_SCATTER, VT, Custom); 778 779 setOperationAction(ISD::ADD, VT, Custom); 780 setOperationAction(ISD::MUL, VT, Custom); 781 setOperationAction(ISD::SUB, VT, Custom); 782 setOperationAction(ISD::AND, VT, Custom); 783 setOperationAction(ISD::OR, VT, Custom); 784 setOperationAction(ISD::XOR, VT, Custom); 785 setOperationAction(ISD::SDIV, VT, Custom); 786 setOperationAction(ISD::SREM, VT, Custom); 787 setOperationAction(ISD::UDIV, VT, Custom); 788 setOperationAction(ISD::UREM, VT, Custom); 789 setOperationAction(ISD::SHL, VT, Custom); 790 setOperationAction(ISD::SRA, VT, Custom); 791 setOperationAction(ISD::SRL, VT, Custom); 792 793 setOperationAction(ISD::SMIN, VT, Custom); 794 setOperationAction(ISD::SMAX, VT, Custom); 795 setOperationAction(ISD::UMIN, VT, Custom); 796 setOperationAction(ISD::UMAX, VT, Custom); 797 setOperationAction(ISD::ABS, VT, Custom); 798 799 setOperationAction(ISD::MULHS, VT, Custom); 800 setOperationAction(ISD::MULHU, VT, Custom); 801 802 setOperationAction(ISD::SADDSAT, VT, Custom); 803 setOperationAction(ISD::UADDSAT, VT, Custom); 804 setOperationAction(ISD::SSUBSAT, VT, Custom); 805 setOperationAction(ISD::USUBSAT, VT, Custom); 806 807 setOperationAction(ISD::VSELECT, VT, Custom); 808 setOperationAction(ISD::SELECT_CC, VT, Expand); 809 810 setOperationAction(ISD::ANY_EXTEND, VT, Custom); 811 setOperationAction(ISD::SIGN_EXTEND, VT, Custom); 812 setOperationAction(ISD::ZERO_EXTEND, VT, Custom); 813 814 // Custom-lower reduction operations to set up the corresponding custom 815 // nodes' operands. 816 setOperationAction(ISD::VECREDUCE_ADD, VT, Custom); 817 setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom); 818 setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom); 819 setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom); 820 setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom); 821 822 for (unsigned VPOpc : IntegerVPOps) 823 setOperationAction(VPOpc, VT, Custom); 824 } 825 826 for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) { 827 if (!useRVVForFixedLengthVectorVT(VT)) 828 continue; 829 830 // By default everything must be expanded. 831 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) 832 setOperationAction(Op, VT, Expand); 833 for (MVT OtherVT : MVT::fp_fixedlen_vector_valuetypes()) { 834 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 835 setTruncStoreAction(VT, OtherVT, Expand); 836 } 837 838 // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed. 839 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 840 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 841 842 setOperationAction(ISD::BUILD_VECTOR, VT, Custom); 843 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 844 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); 845 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 846 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 847 848 setOperationAction(ISD::LOAD, VT, Custom); 849 setOperationAction(ISD::STORE, VT, Custom); 850 setOperationAction(ISD::MLOAD, VT, Custom); 851 setOperationAction(ISD::MSTORE, VT, Custom); 852 setOperationAction(ISD::MGATHER, VT, Custom); 853 setOperationAction(ISD::MSCATTER, VT, Custom); 854 855 setOperationAction(ISD::VP_LOAD, VT, Custom); 856 setOperationAction(ISD::VP_STORE, VT, Custom); 857 setOperationAction(ISD::VP_GATHER, VT, Custom); 858 setOperationAction(ISD::VP_SCATTER, VT, Custom); 859 860 setOperationAction(ISD::FADD, VT, Custom); 861 setOperationAction(ISD::FSUB, VT, Custom); 862 setOperationAction(ISD::FMUL, VT, Custom); 863 setOperationAction(ISD::FDIV, VT, Custom); 864 setOperationAction(ISD::FNEG, VT, Custom); 865 setOperationAction(ISD::FABS, VT, Custom); 866 setOperationAction(ISD::FCOPYSIGN, VT, Custom); 867 setOperationAction(ISD::FSQRT, VT, Custom); 868 setOperationAction(ISD::FMA, VT, Custom); 869 setOperationAction(ISD::FMINNUM, VT, Custom); 870 setOperationAction(ISD::FMAXNUM, VT, Custom); 871 872 setOperationAction(ISD::FP_ROUND, VT, Custom); 873 setOperationAction(ISD::FP_EXTEND, VT, Custom); 874 875 for (auto CC : VFPCCToExpand) 876 setCondCodeAction(CC, VT, Expand); 877 878 setOperationAction(ISD::VSELECT, VT, Custom); 879 setOperationAction(ISD::SELECT, VT, Custom); 880 setOperationAction(ISD::SELECT_CC, VT, Expand); 881 882 setOperationAction(ISD::BITCAST, VT, Custom); 883 884 setOperationAction(ISD::VECREDUCE_FADD, VT, Custom); 885 setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom); 886 setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom); 887 setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom); 888 889 for (unsigned VPOpc : FloatingPointVPOps) 890 setOperationAction(VPOpc, VT, Custom); 891 } 892 893 // Custom-legalize bitcasts from fixed-length vectors to scalar types. 894 setOperationAction(ISD::BITCAST, MVT::i8, Custom); 895 setOperationAction(ISD::BITCAST, MVT::i16, Custom); 896 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 897 setOperationAction(ISD::BITCAST, MVT::i64, Custom); 898 setOperationAction(ISD::BITCAST, MVT::f16, Custom); 899 setOperationAction(ISD::BITCAST, MVT::f32, Custom); 900 setOperationAction(ISD::BITCAST, MVT::f64, Custom); 901 } 902 } 903 904 // Function alignments. 905 const Align FunctionAlignment(Subtarget.hasStdExtC() ? 2 : 4); 906 setMinFunctionAlignment(FunctionAlignment); 907 setPrefFunctionAlignment(FunctionAlignment); 908 909 setMinimumJumpTableEntries(5); 910 911 // Jumps are expensive, compared to logic 912 setJumpIsExpensive(); 913 914 // We can use any register for comparisons 915 setHasMultipleConditionRegisters(); 916 917 setTargetDAGCombine(ISD::ADD); 918 setTargetDAGCombine(ISD::SUB); 919 setTargetDAGCombine(ISD::AND); 920 setTargetDAGCombine(ISD::OR); 921 setTargetDAGCombine(ISD::XOR); 922 setTargetDAGCombine(ISD::ANY_EXTEND); 923 setTargetDAGCombine(ISD::ZERO_EXTEND); 924 if (Subtarget.hasStdExtV()) { 925 setTargetDAGCombine(ISD::FCOPYSIGN); 926 setTargetDAGCombine(ISD::MGATHER); 927 setTargetDAGCombine(ISD::MSCATTER); 928 setTargetDAGCombine(ISD::VP_GATHER); 929 setTargetDAGCombine(ISD::VP_SCATTER); 930 setTargetDAGCombine(ISD::SRA); 931 setTargetDAGCombine(ISD::SRL); 932 setTargetDAGCombine(ISD::SHL); 933 setTargetDAGCombine(ISD::STORE); 934 } 935 } 936 937 EVT RISCVTargetLowering::getSetCCResultType(const DataLayout &DL, 938 LLVMContext &Context, 939 EVT VT) const { 940 if (!VT.isVector()) 941 return getPointerTy(DL); 942 if (Subtarget.hasStdExtV() && 943 (VT.isScalableVector() || Subtarget.useRVVForFixedLengthVectors())) 944 return EVT::getVectorVT(Context, MVT::i1, VT.getVectorElementCount()); 945 return VT.changeVectorElementTypeToInteger(); 946 } 947 948 MVT RISCVTargetLowering::getVPExplicitVectorLengthTy() const { 949 return Subtarget.getXLenVT(); 950 } 951 952 bool RISCVTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 953 const CallInst &I, 954 MachineFunction &MF, 955 unsigned Intrinsic) const { 956 switch (Intrinsic) { 957 default: 958 return false; 959 case Intrinsic::riscv_masked_atomicrmw_xchg_i32: 960 case Intrinsic::riscv_masked_atomicrmw_add_i32: 961 case Intrinsic::riscv_masked_atomicrmw_sub_i32: 962 case Intrinsic::riscv_masked_atomicrmw_nand_i32: 963 case Intrinsic::riscv_masked_atomicrmw_max_i32: 964 case Intrinsic::riscv_masked_atomicrmw_min_i32: 965 case Intrinsic::riscv_masked_atomicrmw_umax_i32: 966 case Intrinsic::riscv_masked_atomicrmw_umin_i32: 967 case Intrinsic::riscv_masked_cmpxchg_i32: { 968 PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType()); 969 Info.opc = ISD::INTRINSIC_W_CHAIN; 970 Info.memVT = MVT::getVT(PtrTy->getElementType()); 971 Info.ptrVal = I.getArgOperand(0); 972 Info.offset = 0; 973 Info.align = Align(4); 974 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore | 975 MachineMemOperand::MOVolatile; 976 return true; 977 } 978 case Intrinsic::riscv_masked_strided_load: 979 Info.opc = ISD::INTRINSIC_W_CHAIN; 980 Info.ptrVal = I.getArgOperand(1); 981 Info.memVT = MVT::getVT(I.getType()->getScalarType()); 982 Info.align = Align(I.getType()->getScalarSizeInBits() / 8); 983 Info.size = MemoryLocation::UnknownSize; 984 Info.flags |= MachineMemOperand::MOLoad; 985 return true; 986 case Intrinsic::riscv_masked_strided_store: 987 Info.opc = ISD::INTRINSIC_VOID; 988 Info.ptrVal = I.getArgOperand(1); 989 Info.memVT = MVT::getVT(I.getArgOperand(0)->getType()->getScalarType()); 990 Info.align = 991 Align(I.getArgOperand(0)->getType()->getScalarSizeInBits() / 8); 992 Info.size = MemoryLocation::UnknownSize; 993 Info.flags |= MachineMemOperand::MOStore; 994 return true; 995 } 996 } 997 998 bool RISCVTargetLowering::isLegalAddressingMode(const DataLayout &DL, 999 const AddrMode &AM, Type *Ty, 1000 unsigned AS, 1001 Instruction *I) const { 1002 // No global is ever allowed as a base. 1003 if (AM.BaseGV) 1004 return false; 1005 1006 // Require a 12-bit signed offset. 1007 if (!isInt<12>(AM.BaseOffs)) 1008 return false; 1009 1010 switch (AM.Scale) { 1011 case 0: // "r+i" or just "i", depending on HasBaseReg. 1012 break; 1013 case 1: 1014 if (!AM.HasBaseReg) // allow "r+i". 1015 break; 1016 return false; // disallow "r+r" or "r+r+i". 1017 default: 1018 return false; 1019 } 1020 1021 return true; 1022 } 1023 1024 bool RISCVTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 1025 return isInt<12>(Imm); 1026 } 1027 1028 bool RISCVTargetLowering::isLegalAddImmediate(int64_t Imm) const { 1029 return isInt<12>(Imm); 1030 } 1031 1032 // On RV32, 64-bit integers are split into their high and low parts and held 1033 // in two different registers, so the trunc is free since the low register can 1034 // just be used. 1035 bool RISCVTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const { 1036 if (Subtarget.is64Bit() || !SrcTy->isIntegerTy() || !DstTy->isIntegerTy()) 1037 return false; 1038 unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); 1039 unsigned DestBits = DstTy->getPrimitiveSizeInBits(); 1040 return (SrcBits == 64 && DestBits == 32); 1041 } 1042 1043 bool RISCVTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const { 1044 if (Subtarget.is64Bit() || SrcVT.isVector() || DstVT.isVector() || 1045 !SrcVT.isInteger() || !DstVT.isInteger()) 1046 return false; 1047 unsigned SrcBits = SrcVT.getSizeInBits(); 1048 unsigned DestBits = DstVT.getSizeInBits(); 1049 return (SrcBits == 64 && DestBits == 32); 1050 } 1051 1052 bool RISCVTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 1053 // Zexts are free if they can be combined with a load. 1054 if (auto *LD = dyn_cast<LoadSDNode>(Val)) { 1055 EVT MemVT = LD->getMemoryVT(); 1056 if ((MemVT == MVT::i8 || MemVT == MVT::i16 || 1057 (Subtarget.is64Bit() && MemVT == MVT::i32)) && 1058 (LD->getExtensionType() == ISD::NON_EXTLOAD || 1059 LD->getExtensionType() == ISD::ZEXTLOAD)) 1060 return true; 1061 } 1062 1063 return TargetLowering::isZExtFree(Val, VT2); 1064 } 1065 1066 bool RISCVTargetLowering::isSExtCheaperThanZExt(EVT SrcVT, EVT DstVT) const { 1067 return Subtarget.is64Bit() && SrcVT == MVT::i32 && DstVT == MVT::i64; 1068 } 1069 1070 bool RISCVTargetLowering::isCheapToSpeculateCttz() const { 1071 return Subtarget.hasStdExtZbb(); 1072 } 1073 1074 bool RISCVTargetLowering::isCheapToSpeculateCtlz() const { 1075 return Subtarget.hasStdExtZbb(); 1076 } 1077 1078 /// Check if sinking \p I's operands to I's basic block is profitable, because 1079 /// the operands can be folded into a target instruction, e.g. 1080 /// splats of scalars can fold into vector instructions. 1081 bool RISCVTargetLowering::shouldSinkOperands( 1082 Instruction *I, SmallVectorImpl<Use *> &Ops) const { 1083 using namespace llvm::PatternMatch; 1084 1085 if (!I->getType()->isVectorTy() || !Subtarget.hasStdExtV()) 1086 return false; 1087 1088 auto IsSinker = [&](Instruction *I, int Operand) { 1089 switch (I->getOpcode()) { 1090 case Instruction::Add: 1091 case Instruction::Sub: 1092 case Instruction::Mul: 1093 case Instruction::And: 1094 case Instruction::Or: 1095 case Instruction::Xor: 1096 case Instruction::FAdd: 1097 case Instruction::FSub: 1098 case Instruction::FMul: 1099 case Instruction::FDiv: 1100 return true; 1101 case Instruction::Shl: 1102 case Instruction::LShr: 1103 case Instruction::AShr: 1104 return Operand == 1; 1105 case Instruction::Call: 1106 if (auto *II = dyn_cast<IntrinsicInst>(I)) { 1107 switch (II->getIntrinsicID()) { 1108 case Intrinsic::fma: 1109 return Operand == 0 || Operand == 1; 1110 default: 1111 return false; 1112 } 1113 } 1114 return false; 1115 default: 1116 return false; 1117 } 1118 }; 1119 1120 for (auto OpIdx : enumerate(I->operands())) { 1121 if (!IsSinker(I, OpIdx.index())) 1122 continue; 1123 1124 Instruction *Op = dyn_cast<Instruction>(OpIdx.value().get()); 1125 // Make sure we are not already sinking this operand 1126 if (!Op || any_of(Ops, [&](Use *U) { return U->get() == Op; })) 1127 continue; 1128 1129 // We are looking for a splat that can be sunk. 1130 if (!match(Op, m_Shuffle(m_InsertElt(m_Undef(), m_Value(), m_ZeroInt()), 1131 m_Undef(), m_ZeroMask()))) 1132 continue; 1133 1134 // All uses of the shuffle should be sunk to avoid duplicating it across gpr 1135 // and vector registers 1136 for (Use &U : Op->uses()) { 1137 Instruction *Insn = cast<Instruction>(U.getUser()); 1138 if (!IsSinker(Insn, U.getOperandNo())) 1139 return false; 1140 } 1141 1142 Ops.push_back(&Op->getOperandUse(0)); 1143 Ops.push_back(&OpIdx.value()); 1144 } 1145 return true; 1146 } 1147 1148 bool RISCVTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 1149 bool ForCodeSize) const { 1150 if (VT == MVT::f16 && !Subtarget.hasStdExtZfh()) 1151 return false; 1152 if (VT == MVT::f32 && !Subtarget.hasStdExtF()) 1153 return false; 1154 if (VT == MVT::f64 && !Subtarget.hasStdExtD()) 1155 return false; 1156 if (Imm.isNegZero()) 1157 return false; 1158 return Imm.isZero(); 1159 } 1160 1161 bool RISCVTargetLowering::hasBitPreservingFPLogic(EVT VT) const { 1162 return (VT == MVT::f16 && Subtarget.hasStdExtZfh()) || 1163 (VT == MVT::f32 && Subtarget.hasStdExtF()) || 1164 (VT == MVT::f64 && Subtarget.hasStdExtD()); 1165 } 1166 1167 MVT RISCVTargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context, 1168 CallingConv::ID CC, 1169 EVT VT) const { 1170 // Use f32 to pass f16 if it is legal and Zfh is not enabled. We might still 1171 // end up using a GPR but that will be decided based on ABI. 1172 if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh()) 1173 return MVT::f32; 1174 1175 return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT); 1176 } 1177 1178 unsigned RISCVTargetLowering::getNumRegistersForCallingConv(LLVMContext &Context, 1179 CallingConv::ID CC, 1180 EVT VT) const { 1181 // Use f32 to pass f16 if it is legal and Zfh is not enabled. We might still 1182 // end up using a GPR but that will be decided based on ABI. 1183 if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh()) 1184 return 1; 1185 1186 return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT); 1187 } 1188 1189 // Changes the condition code and swaps operands if necessary, so the SetCC 1190 // operation matches one of the comparisons supported directly by branches 1191 // in the RISC-V ISA. May adjust compares to favor compare with 0 over compare 1192 // with 1/-1. 1193 static void translateSetCCForBranch(const SDLoc &DL, SDValue &LHS, SDValue &RHS, 1194 ISD::CondCode &CC, SelectionDAG &DAG) { 1195 // Convert X > -1 to X >= 0. 1196 if (CC == ISD::SETGT && isAllOnesConstant(RHS)) { 1197 RHS = DAG.getConstant(0, DL, RHS.getValueType()); 1198 CC = ISD::SETGE; 1199 return; 1200 } 1201 // Convert X < 1 to 0 >= X. 1202 if (CC == ISD::SETLT && isOneConstant(RHS)) { 1203 RHS = LHS; 1204 LHS = DAG.getConstant(0, DL, RHS.getValueType()); 1205 CC = ISD::SETGE; 1206 return; 1207 } 1208 1209 switch (CC) { 1210 default: 1211 break; 1212 case ISD::SETGT: 1213 case ISD::SETLE: 1214 case ISD::SETUGT: 1215 case ISD::SETULE: 1216 CC = ISD::getSetCCSwappedOperands(CC); 1217 std::swap(LHS, RHS); 1218 break; 1219 } 1220 } 1221 1222 RISCVII::VLMUL RISCVTargetLowering::getLMUL(MVT VT) { 1223 assert(VT.isScalableVector() && "Expecting a scalable vector type"); 1224 unsigned KnownSize = VT.getSizeInBits().getKnownMinValue(); 1225 if (VT.getVectorElementType() == MVT::i1) 1226 KnownSize *= 8; 1227 1228 switch (KnownSize) { 1229 default: 1230 llvm_unreachable("Invalid LMUL."); 1231 case 8: 1232 return RISCVII::VLMUL::LMUL_F8; 1233 case 16: 1234 return RISCVII::VLMUL::LMUL_F4; 1235 case 32: 1236 return RISCVII::VLMUL::LMUL_F2; 1237 case 64: 1238 return RISCVII::VLMUL::LMUL_1; 1239 case 128: 1240 return RISCVII::VLMUL::LMUL_2; 1241 case 256: 1242 return RISCVII::VLMUL::LMUL_4; 1243 case 512: 1244 return RISCVII::VLMUL::LMUL_8; 1245 } 1246 } 1247 1248 unsigned RISCVTargetLowering::getRegClassIDForLMUL(RISCVII::VLMUL LMul) { 1249 switch (LMul) { 1250 default: 1251 llvm_unreachable("Invalid LMUL."); 1252 case RISCVII::VLMUL::LMUL_F8: 1253 case RISCVII::VLMUL::LMUL_F4: 1254 case RISCVII::VLMUL::LMUL_F2: 1255 case RISCVII::VLMUL::LMUL_1: 1256 return RISCV::VRRegClassID; 1257 case RISCVII::VLMUL::LMUL_2: 1258 return RISCV::VRM2RegClassID; 1259 case RISCVII::VLMUL::LMUL_4: 1260 return RISCV::VRM4RegClassID; 1261 case RISCVII::VLMUL::LMUL_8: 1262 return RISCV::VRM8RegClassID; 1263 } 1264 } 1265 1266 unsigned RISCVTargetLowering::getSubregIndexByMVT(MVT VT, unsigned Index) { 1267 RISCVII::VLMUL LMUL = getLMUL(VT); 1268 if (LMUL == RISCVII::VLMUL::LMUL_F8 || 1269 LMUL == RISCVII::VLMUL::LMUL_F4 || 1270 LMUL == RISCVII::VLMUL::LMUL_F2 || 1271 LMUL == RISCVII::VLMUL::LMUL_1) { 1272 static_assert(RISCV::sub_vrm1_7 == RISCV::sub_vrm1_0 + 7, 1273 "Unexpected subreg numbering"); 1274 return RISCV::sub_vrm1_0 + Index; 1275 } 1276 if (LMUL == RISCVII::VLMUL::LMUL_2) { 1277 static_assert(RISCV::sub_vrm2_3 == RISCV::sub_vrm2_0 + 3, 1278 "Unexpected subreg numbering"); 1279 return RISCV::sub_vrm2_0 + Index; 1280 } 1281 if (LMUL == RISCVII::VLMUL::LMUL_4) { 1282 static_assert(RISCV::sub_vrm4_1 == RISCV::sub_vrm4_0 + 1, 1283 "Unexpected subreg numbering"); 1284 return RISCV::sub_vrm4_0 + Index; 1285 } 1286 llvm_unreachable("Invalid vector type."); 1287 } 1288 1289 unsigned RISCVTargetLowering::getRegClassIDForVecVT(MVT VT) { 1290 if (VT.getVectorElementType() == MVT::i1) 1291 return RISCV::VRRegClassID; 1292 return getRegClassIDForLMUL(getLMUL(VT)); 1293 } 1294 1295 // Attempt to decompose a subvector insert/extract between VecVT and 1296 // SubVecVT via subregister indices. Returns the subregister index that 1297 // can perform the subvector insert/extract with the given element index, as 1298 // well as the index corresponding to any leftover subvectors that must be 1299 // further inserted/extracted within the register class for SubVecVT. 1300 std::pair<unsigned, unsigned> 1301 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( 1302 MVT VecVT, MVT SubVecVT, unsigned InsertExtractIdx, 1303 const RISCVRegisterInfo *TRI) { 1304 static_assert((RISCV::VRM8RegClassID > RISCV::VRM4RegClassID && 1305 RISCV::VRM4RegClassID > RISCV::VRM2RegClassID && 1306 RISCV::VRM2RegClassID > RISCV::VRRegClassID), 1307 "Register classes not ordered"); 1308 unsigned VecRegClassID = getRegClassIDForVecVT(VecVT); 1309 unsigned SubRegClassID = getRegClassIDForVecVT(SubVecVT); 1310 // Try to compose a subregister index that takes us from the incoming 1311 // LMUL>1 register class down to the outgoing one. At each step we half 1312 // the LMUL: 1313 // nxv16i32@12 -> nxv2i32: sub_vrm4_1_then_sub_vrm2_1_then_sub_vrm1_0 1314 // Note that this is not guaranteed to find a subregister index, such as 1315 // when we are extracting from one VR type to another. 1316 unsigned SubRegIdx = RISCV::NoSubRegister; 1317 for (const unsigned RCID : 1318 {RISCV::VRM4RegClassID, RISCV::VRM2RegClassID, RISCV::VRRegClassID}) 1319 if (VecRegClassID > RCID && SubRegClassID <= RCID) { 1320 VecVT = VecVT.getHalfNumVectorElementsVT(); 1321 bool IsHi = 1322 InsertExtractIdx >= VecVT.getVectorElementCount().getKnownMinValue(); 1323 SubRegIdx = TRI->composeSubRegIndices(SubRegIdx, 1324 getSubregIndexByMVT(VecVT, IsHi)); 1325 if (IsHi) 1326 InsertExtractIdx -= VecVT.getVectorElementCount().getKnownMinValue(); 1327 } 1328 return {SubRegIdx, InsertExtractIdx}; 1329 } 1330 1331 // Permit combining of mask vectors as BUILD_VECTOR never expands to scalar 1332 // stores for those types. 1333 bool RISCVTargetLowering::mergeStoresAfterLegalization(EVT VT) const { 1334 return !Subtarget.useRVVForFixedLengthVectors() || 1335 (VT.isFixedLengthVector() && VT.getVectorElementType() == MVT::i1); 1336 } 1337 1338 bool RISCVTargetLowering::isLegalElementTypeForRVV(Type *ScalarTy) const { 1339 if (ScalarTy->isPointerTy()) 1340 return true; 1341 1342 if (ScalarTy->isIntegerTy(8) || ScalarTy->isIntegerTy(16) || 1343 ScalarTy->isIntegerTy(32) || ScalarTy->isIntegerTy(64)) 1344 return true; 1345 1346 if (ScalarTy->isHalfTy()) 1347 return Subtarget.hasStdExtZfh(); 1348 if (ScalarTy->isFloatTy()) 1349 return Subtarget.hasStdExtF(); 1350 if (ScalarTy->isDoubleTy()) 1351 return Subtarget.hasStdExtD(); 1352 1353 return false; 1354 } 1355 1356 static bool useRVVForFixedLengthVectorVT(MVT VT, 1357 const RISCVSubtarget &Subtarget) { 1358 assert(VT.isFixedLengthVector() && "Expected a fixed length vector type!"); 1359 if (!Subtarget.useRVVForFixedLengthVectors()) 1360 return false; 1361 1362 // We only support a set of vector types with a consistent maximum fixed size 1363 // across all supported vector element types to avoid legalization issues. 1364 // Therefore -- since the largest is v1024i8/v512i16/etc -- the largest 1365 // fixed-length vector type we support is 1024 bytes. 1366 if (VT.getFixedSizeInBits() > 1024 * 8) 1367 return false; 1368 1369 unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits(); 1370 1371 MVT EltVT = VT.getVectorElementType(); 1372 1373 // Don't use RVV for vectors we cannot scalarize if required. 1374 switch (EltVT.SimpleTy) { 1375 // i1 is supported but has different rules. 1376 default: 1377 return false; 1378 case MVT::i1: 1379 // Masks can only use a single register. 1380 if (VT.getVectorNumElements() > MinVLen) 1381 return false; 1382 MinVLen /= 8; 1383 break; 1384 case MVT::i8: 1385 case MVT::i16: 1386 case MVT::i32: 1387 case MVT::i64: 1388 break; 1389 case MVT::f16: 1390 if (!Subtarget.hasStdExtZfh()) 1391 return false; 1392 break; 1393 case MVT::f32: 1394 if (!Subtarget.hasStdExtF()) 1395 return false; 1396 break; 1397 case MVT::f64: 1398 if (!Subtarget.hasStdExtD()) 1399 return false; 1400 break; 1401 } 1402 1403 // Reject elements larger than ELEN. 1404 if (EltVT.getSizeInBits() > Subtarget.getMaxELENForFixedLengthVectors()) 1405 return false; 1406 1407 unsigned LMul = divideCeil(VT.getSizeInBits(), MinVLen); 1408 // Don't use RVV for types that don't fit. 1409 if (LMul > Subtarget.getMaxLMULForFixedLengthVectors()) 1410 return false; 1411 1412 // TODO: Perhaps an artificial restriction, but worth having whilst getting 1413 // the base fixed length RVV support in place. 1414 if (!VT.isPow2VectorType()) 1415 return false; 1416 1417 return true; 1418 } 1419 1420 bool RISCVTargetLowering::useRVVForFixedLengthVectorVT(MVT VT) const { 1421 return ::useRVVForFixedLengthVectorVT(VT, Subtarget); 1422 } 1423 1424 // Return the largest legal scalable vector type that matches VT's element type. 1425 static MVT getContainerForFixedLengthVector(const TargetLowering &TLI, MVT VT, 1426 const RISCVSubtarget &Subtarget) { 1427 // This may be called before legal types are setup. 1428 assert(((VT.isFixedLengthVector() && TLI.isTypeLegal(VT)) || 1429 useRVVForFixedLengthVectorVT(VT, Subtarget)) && 1430 "Expected legal fixed length vector!"); 1431 1432 unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits(); 1433 unsigned MaxELen = Subtarget.getMaxELENForFixedLengthVectors(); 1434 1435 MVT EltVT = VT.getVectorElementType(); 1436 switch (EltVT.SimpleTy) { 1437 default: 1438 llvm_unreachable("unexpected element type for RVV container"); 1439 case MVT::i1: 1440 case MVT::i8: 1441 case MVT::i16: 1442 case MVT::i32: 1443 case MVT::i64: 1444 case MVT::f16: 1445 case MVT::f32: 1446 case MVT::f64: { 1447 // We prefer to use LMUL=1 for VLEN sized types. Use fractional lmuls for 1448 // narrower types. The smallest fractional LMUL we support is 8/ELEN. Within 1449 // each fractional LMUL we support SEW between 8 and LMUL*ELEN. 1450 unsigned NumElts = 1451 (VT.getVectorNumElements() * RISCV::RVVBitsPerBlock) / MinVLen; 1452 NumElts = std::max(NumElts, RISCV::RVVBitsPerBlock / MaxELen); 1453 assert(isPowerOf2_32(NumElts) && "Expected power of 2 NumElts"); 1454 return MVT::getScalableVectorVT(EltVT, NumElts); 1455 } 1456 } 1457 } 1458 1459 static MVT getContainerForFixedLengthVector(SelectionDAG &DAG, MVT VT, 1460 const RISCVSubtarget &Subtarget) { 1461 return getContainerForFixedLengthVector(DAG.getTargetLoweringInfo(), VT, 1462 Subtarget); 1463 } 1464 1465 MVT RISCVTargetLowering::getContainerForFixedLengthVector(MVT VT) const { 1466 return ::getContainerForFixedLengthVector(*this, VT, getSubtarget()); 1467 } 1468 1469 // Grow V to consume an entire RVV register. 1470 static SDValue convertToScalableVector(EVT VT, SDValue V, SelectionDAG &DAG, 1471 const RISCVSubtarget &Subtarget) { 1472 assert(VT.isScalableVector() && 1473 "Expected to convert into a scalable vector!"); 1474 assert(V.getValueType().isFixedLengthVector() && 1475 "Expected a fixed length vector operand!"); 1476 SDLoc DL(V); 1477 SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 1478 return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, DAG.getUNDEF(VT), V, Zero); 1479 } 1480 1481 // Shrink V so it's just big enough to maintain a VT's worth of data. 1482 static SDValue convertFromScalableVector(EVT VT, SDValue V, SelectionDAG &DAG, 1483 const RISCVSubtarget &Subtarget) { 1484 assert(VT.isFixedLengthVector() && 1485 "Expected to convert into a fixed length vector!"); 1486 assert(V.getValueType().isScalableVector() && 1487 "Expected a scalable vector operand!"); 1488 SDLoc DL(V); 1489 SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 1490 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V, Zero); 1491 } 1492 1493 // Gets the two common "VL" operands: an all-ones mask and the vector length. 1494 // VecVT is a vector type, either fixed-length or scalable, and ContainerVT is 1495 // the vector type that it is contained in. 1496 static std::pair<SDValue, SDValue> 1497 getDefaultVLOps(MVT VecVT, MVT ContainerVT, SDLoc DL, SelectionDAG &DAG, 1498 const RISCVSubtarget &Subtarget) { 1499 assert(ContainerVT.isScalableVector() && "Expecting scalable container type"); 1500 MVT XLenVT = Subtarget.getXLenVT(); 1501 SDValue VL = VecVT.isFixedLengthVector() 1502 ? DAG.getConstant(VecVT.getVectorNumElements(), DL, XLenVT) 1503 : DAG.getTargetConstant(RISCV::VLMaxSentinel, DL, XLenVT); 1504 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 1505 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 1506 return {Mask, VL}; 1507 } 1508 1509 // As above but assuming the given type is a scalable vector type. 1510 static std::pair<SDValue, SDValue> 1511 getDefaultScalableVLOps(MVT VecVT, SDLoc DL, SelectionDAG &DAG, 1512 const RISCVSubtarget &Subtarget) { 1513 assert(VecVT.isScalableVector() && "Expecting a scalable vector"); 1514 return getDefaultVLOps(VecVT, VecVT, DL, DAG, Subtarget); 1515 } 1516 1517 // The state of RVV BUILD_VECTOR and VECTOR_SHUFFLE lowering is that very few 1518 // of either is (currently) supported. This can get us into an infinite loop 1519 // where we try to lower a BUILD_VECTOR as a VECTOR_SHUFFLE as a BUILD_VECTOR 1520 // as a ..., etc. 1521 // Until either (or both) of these can reliably lower any node, reporting that 1522 // we don't want to expand BUILD_VECTORs via VECTOR_SHUFFLEs at least breaks 1523 // the infinite loop. Note that this lowers BUILD_VECTOR through the stack, 1524 // which is not desirable. 1525 bool RISCVTargetLowering::shouldExpandBuildVectorWithShuffles( 1526 EVT VT, unsigned DefinedValues) const { 1527 return false; 1528 } 1529 1530 bool RISCVTargetLowering::isShuffleMaskLegal(ArrayRef<int> M, EVT VT) const { 1531 // Only splats are currently supported. 1532 if (ShuffleVectorSDNode::isSplatMask(M.data(), VT)) 1533 return true; 1534 1535 return false; 1536 } 1537 1538 static SDValue lowerFP_TO_INT_SAT(SDValue Op, SelectionDAG &DAG) { 1539 // RISCV FP-to-int conversions saturate to the destination register size, but 1540 // don't produce 0 for nan. We can use a conversion instruction and fix the 1541 // nan case with a compare and a select. 1542 SDValue Src = Op.getOperand(0); 1543 1544 EVT DstVT = Op.getValueType(); 1545 EVT SatVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1546 1547 bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT_SAT; 1548 unsigned Opc; 1549 if (SatVT == DstVT) 1550 Opc = IsSigned ? RISCVISD::FCVT_X_RTZ : RISCVISD::FCVT_XU_RTZ; 1551 else if (DstVT == MVT::i64 && SatVT == MVT::i32) 1552 Opc = IsSigned ? RISCVISD::FCVT_W_RTZ_RV64 : RISCVISD::FCVT_WU_RTZ_RV64; 1553 else 1554 return SDValue(); 1555 // FIXME: Support other SatVTs by clamping before or after the conversion. 1556 1557 SDLoc DL(Op); 1558 SDValue FpToInt = DAG.getNode(Opc, DL, DstVT, Src); 1559 1560 SDValue ZeroInt = DAG.getConstant(0, DL, DstVT); 1561 return DAG.getSelectCC(DL, Src, Src, ZeroInt, FpToInt, ISD::CondCode::SETUO); 1562 } 1563 1564 static SDValue lowerSPLAT_VECTOR(SDValue Op, SelectionDAG &DAG, 1565 const RISCVSubtarget &Subtarget) { 1566 MVT VT = Op.getSimpleValueType(); 1567 assert(VT.isFixedLengthVector() && "Unexpected vector!"); 1568 1569 MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 1570 1571 SDLoc DL(Op); 1572 SDValue Mask, VL; 1573 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 1574 1575 unsigned Opc = 1576 VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL : RISCVISD::VMV_V_X_VL; 1577 SDValue Splat = DAG.getNode(Opc, DL, ContainerVT, Op.getOperand(0), VL); 1578 return convertFromScalableVector(VT, Splat, DAG, Subtarget); 1579 } 1580 1581 struct VIDSequence { 1582 int64_t StepNumerator; 1583 unsigned StepDenominator; 1584 int64_t Addend; 1585 }; 1586 1587 // Try to match an arithmetic-sequence BUILD_VECTOR [X,X+S,X+2*S,...,X+(N-1)*S] 1588 // to the (non-zero) step S and start value X. This can be then lowered as the 1589 // RVV sequence (VID * S) + X, for example. 1590 // The step S is represented as an integer numerator divided by a positive 1591 // denominator. Note that the implementation currently only identifies 1592 // sequences in which either the numerator is +/- 1 or the denominator is 1. It 1593 // cannot detect 2/3, for example. 1594 // Note that this method will also match potentially unappealing index 1595 // sequences, like <i32 0, i32 50939494>, however it is left to the caller to 1596 // determine whether this is worth generating code for. 1597 static Optional<VIDSequence> isSimpleVIDSequence(SDValue Op) { 1598 unsigned NumElts = Op.getNumOperands(); 1599 assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unexpected BUILD_VECTOR"); 1600 if (!Op.getValueType().isInteger()) 1601 return None; 1602 1603 Optional<unsigned> SeqStepDenom; 1604 Optional<int64_t> SeqStepNum, SeqAddend; 1605 Optional<std::pair<uint64_t, unsigned>> PrevElt; 1606 unsigned EltSizeInBits = Op.getValueType().getScalarSizeInBits(); 1607 for (unsigned Idx = 0; Idx < NumElts; Idx++) { 1608 // Assume undef elements match the sequence; we just have to be careful 1609 // when interpolating across them. 1610 if (Op.getOperand(Idx).isUndef()) 1611 continue; 1612 // The BUILD_VECTOR must be all constants. 1613 if (!isa<ConstantSDNode>(Op.getOperand(Idx))) 1614 return None; 1615 1616 uint64_t Val = Op.getConstantOperandVal(Idx) & 1617 maskTrailingOnes<uint64_t>(EltSizeInBits); 1618 1619 if (PrevElt) { 1620 // Calculate the step since the last non-undef element, and ensure 1621 // it's consistent across the entire sequence. 1622 unsigned IdxDiff = Idx - PrevElt->second; 1623 int64_t ValDiff = SignExtend64(Val - PrevElt->first, EltSizeInBits); 1624 1625 // A zero-value value difference means that we're somewhere in the middle 1626 // of a fractional step, e.g. <0,0,0*,0,1,1,1,1>. Wait until we notice a 1627 // step change before evaluating the sequence. 1628 if (ValDiff != 0) { 1629 int64_t Remainder = ValDiff % IdxDiff; 1630 // Normalize the step if it's greater than 1. 1631 if (Remainder != ValDiff) { 1632 // The difference must cleanly divide the element span. 1633 if (Remainder != 0) 1634 return None; 1635 ValDiff /= IdxDiff; 1636 IdxDiff = 1; 1637 } 1638 1639 if (!SeqStepNum) 1640 SeqStepNum = ValDiff; 1641 else if (ValDiff != SeqStepNum) 1642 return None; 1643 1644 if (!SeqStepDenom) 1645 SeqStepDenom = IdxDiff; 1646 else if (IdxDiff != *SeqStepDenom) 1647 return None; 1648 } 1649 } 1650 1651 // Record and/or check any addend. 1652 if (SeqStepNum && SeqStepDenom) { 1653 uint64_t ExpectedVal = 1654 (int64_t)(Idx * (uint64_t)*SeqStepNum) / *SeqStepDenom; 1655 int64_t Addend = SignExtend64(Val - ExpectedVal, EltSizeInBits); 1656 if (!SeqAddend) 1657 SeqAddend = Addend; 1658 else if (SeqAddend != Addend) 1659 return None; 1660 } 1661 1662 // Record this non-undef element for later. 1663 if (!PrevElt || PrevElt->first != Val) 1664 PrevElt = std::make_pair(Val, Idx); 1665 } 1666 // We need to have logged both a step and an addend for this to count as 1667 // a legal index sequence. 1668 if (!SeqStepNum || !SeqStepDenom || !SeqAddend) 1669 return None; 1670 1671 return VIDSequence{*SeqStepNum, *SeqStepDenom, *SeqAddend}; 1672 } 1673 1674 static SDValue lowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG, 1675 const RISCVSubtarget &Subtarget) { 1676 MVT VT = Op.getSimpleValueType(); 1677 assert(VT.isFixedLengthVector() && "Unexpected vector!"); 1678 1679 MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 1680 1681 SDLoc DL(Op); 1682 SDValue Mask, VL; 1683 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 1684 1685 MVT XLenVT = Subtarget.getXLenVT(); 1686 unsigned NumElts = Op.getNumOperands(); 1687 1688 if (VT.getVectorElementType() == MVT::i1) { 1689 if (ISD::isBuildVectorAllZeros(Op.getNode())) { 1690 SDValue VMClr = DAG.getNode(RISCVISD::VMCLR_VL, DL, ContainerVT, VL); 1691 return convertFromScalableVector(VT, VMClr, DAG, Subtarget); 1692 } 1693 1694 if (ISD::isBuildVectorAllOnes(Op.getNode())) { 1695 SDValue VMSet = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL); 1696 return convertFromScalableVector(VT, VMSet, DAG, Subtarget); 1697 } 1698 1699 // Lower constant mask BUILD_VECTORs via an integer vector type, in 1700 // scalar integer chunks whose bit-width depends on the number of mask 1701 // bits and XLEN. 1702 // First, determine the most appropriate scalar integer type to use. This 1703 // is at most XLenVT, but may be shrunk to a smaller vector element type 1704 // according to the size of the final vector - use i8 chunks rather than 1705 // XLenVT if we're producing a v8i1. This results in more consistent 1706 // codegen across RV32 and RV64. 1707 unsigned NumViaIntegerBits = 1708 std::min(std::max(NumElts, 8u), Subtarget.getXLen()); 1709 if (ISD::isBuildVectorOfConstantSDNodes(Op.getNode())) { 1710 // If we have to use more than one INSERT_VECTOR_ELT then this 1711 // optimization is likely to increase code size; avoid peforming it in 1712 // such a case. We can use a load from a constant pool in this case. 1713 if (DAG.shouldOptForSize() && NumElts > NumViaIntegerBits) 1714 return SDValue(); 1715 // Now we can create our integer vector type. Note that it may be larger 1716 // than the resulting mask type: v4i1 would use v1i8 as its integer type. 1717 MVT IntegerViaVecVT = 1718 MVT::getVectorVT(MVT::getIntegerVT(NumViaIntegerBits), 1719 divideCeil(NumElts, NumViaIntegerBits)); 1720 1721 uint64_t Bits = 0; 1722 unsigned BitPos = 0, IntegerEltIdx = 0; 1723 SDValue Vec = DAG.getUNDEF(IntegerViaVecVT); 1724 1725 for (unsigned I = 0; I < NumElts; I++, BitPos++) { 1726 // Once we accumulate enough bits to fill our scalar type, insert into 1727 // our vector and clear our accumulated data. 1728 if (I != 0 && I % NumViaIntegerBits == 0) { 1729 if (NumViaIntegerBits <= 32) 1730 Bits = SignExtend64(Bits, 32); 1731 SDValue Elt = DAG.getConstant(Bits, DL, XLenVT); 1732 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec, 1733 Elt, DAG.getConstant(IntegerEltIdx, DL, XLenVT)); 1734 Bits = 0; 1735 BitPos = 0; 1736 IntegerEltIdx++; 1737 } 1738 SDValue V = Op.getOperand(I); 1739 bool BitValue = !V.isUndef() && cast<ConstantSDNode>(V)->getZExtValue(); 1740 Bits |= ((uint64_t)BitValue << BitPos); 1741 } 1742 1743 // Insert the (remaining) scalar value into position in our integer 1744 // vector type. 1745 if (NumViaIntegerBits <= 32) 1746 Bits = SignExtend64(Bits, 32); 1747 SDValue Elt = DAG.getConstant(Bits, DL, XLenVT); 1748 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec, Elt, 1749 DAG.getConstant(IntegerEltIdx, DL, XLenVT)); 1750 1751 if (NumElts < NumViaIntegerBits) { 1752 // If we're producing a smaller vector than our minimum legal integer 1753 // type, bitcast to the equivalent (known-legal) mask type, and extract 1754 // our final mask. 1755 assert(IntegerViaVecVT == MVT::v1i8 && "Unexpected mask vector type"); 1756 Vec = DAG.getBitcast(MVT::v8i1, Vec); 1757 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Vec, 1758 DAG.getConstant(0, DL, XLenVT)); 1759 } else { 1760 // Else we must have produced an integer type with the same size as the 1761 // mask type; bitcast for the final result. 1762 assert(VT.getSizeInBits() == IntegerViaVecVT.getSizeInBits()); 1763 Vec = DAG.getBitcast(VT, Vec); 1764 } 1765 1766 return Vec; 1767 } 1768 1769 // A BUILD_VECTOR can be lowered as a SETCC. For each fixed-length mask 1770 // vector type, we have a legal equivalently-sized i8 type, so we can use 1771 // that. 1772 MVT WideVecVT = VT.changeVectorElementType(MVT::i8); 1773 SDValue VecZero = DAG.getConstant(0, DL, WideVecVT); 1774 1775 SDValue WideVec; 1776 if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) { 1777 // For a splat, perform a scalar truncate before creating the wider 1778 // vector. 1779 assert(Splat.getValueType() == XLenVT && 1780 "Unexpected type for i1 splat value"); 1781 Splat = DAG.getNode(ISD::AND, DL, XLenVT, Splat, 1782 DAG.getConstant(1, DL, XLenVT)); 1783 WideVec = DAG.getSplatBuildVector(WideVecVT, DL, Splat); 1784 } else { 1785 SmallVector<SDValue, 8> Ops(Op->op_values()); 1786 WideVec = DAG.getBuildVector(WideVecVT, DL, Ops); 1787 SDValue VecOne = DAG.getConstant(1, DL, WideVecVT); 1788 WideVec = DAG.getNode(ISD::AND, DL, WideVecVT, WideVec, VecOne); 1789 } 1790 1791 return DAG.getSetCC(DL, VT, WideVec, VecZero, ISD::SETNE); 1792 } 1793 1794 if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) { 1795 unsigned Opc = VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL 1796 : RISCVISD::VMV_V_X_VL; 1797 Splat = DAG.getNode(Opc, DL, ContainerVT, Splat, VL); 1798 return convertFromScalableVector(VT, Splat, DAG, Subtarget); 1799 } 1800 1801 // Try and match index sequences, which we can lower to the vid instruction 1802 // with optional modifications. An all-undef vector is matched by 1803 // getSplatValue, above. 1804 if (auto SimpleVID = isSimpleVIDSequence(Op)) { 1805 int64_t StepNumerator = SimpleVID->StepNumerator; 1806 unsigned StepDenominator = SimpleVID->StepDenominator; 1807 int64_t Addend = SimpleVID->Addend; 1808 // Only emit VIDs with suitably-small steps/addends. We use imm5 is a 1809 // threshold since it's the immediate value many RVV instructions accept. 1810 if (isInt<5>(StepNumerator) && isPowerOf2_32(StepDenominator) && 1811 isInt<5>(Addend)) { 1812 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, ContainerVT, Mask, VL); 1813 // Convert right out of the scalable type so we can use standard ISD 1814 // nodes for the rest of the computation. If we used scalable types with 1815 // these, we'd lose the fixed-length vector info and generate worse 1816 // vsetvli code. 1817 VID = convertFromScalableVector(VT, VID, DAG, Subtarget); 1818 assert(StepNumerator != 0 && "Invalid step"); 1819 bool Negate = false; 1820 if (StepNumerator != 1) { 1821 int64_t SplatStepVal = StepNumerator; 1822 unsigned Opcode = ISD::MUL; 1823 if (isPowerOf2_64(std::abs(StepNumerator))) { 1824 Negate = StepNumerator < 0; 1825 Opcode = ISD::SHL; 1826 SplatStepVal = Log2_64(std::abs(StepNumerator)); 1827 } 1828 SDValue SplatStep = DAG.getSplatVector( 1829 VT, DL, DAG.getConstant(SplatStepVal, DL, XLenVT)); 1830 VID = DAG.getNode(Opcode, DL, VT, VID, SplatStep); 1831 } 1832 if (StepDenominator != 1) { 1833 SDValue SplatStep = DAG.getSplatVector( 1834 VT, DL, DAG.getConstant(Log2_64(StepDenominator), DL, XLenVT)); 1835 VID = DAG.getNode(ISD::SRL, DL, VT, VID, SplatStep); 1836 } 1837 if (Addend != 0 || Negate) { 1838 SDValue SplatAddend = 1839 DAG.getSplatVector(VT, DL, DAG.getConstant(Addend, DL, XLenVT)); 1840 VID = DAG.getNode(Negate ? ISD::SUB : ISD::ADD, DL, VT, SplatAddend, VID); 1841 } 1842 return VID; 1843 } 1844 } 1845 1846 // Attempt to detect "hidden" splats, which only reveal themselves as splats 1847 // when re-interpreted as a vector with a larger element type. For example, 1848 // v4i16 = build_vector i16 0, i16 1, i16 0, i16 1 1849 // could be instead splat as 1850 // v2i32 = build_vector i32 0x00010000, i32 0x00010000 1851 // TODO: This optimization could also work on non-constant splats, but it 1852 // would require bit-manipulation instructions to construct the splat value. 1853 SmallVector<SDValue> Sequence; 1854 unsigned EltBitSize = VT.getScalarSizeInBits(); 1855 const auto *BV = cast<BuildVectorSDNode>(Op); 1856 if (VT.isInteger() && EltBitSize < 64 && 1857 ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) && 1858 BV->getRepeatedSequence(Sequence) && 1859 (Sequence.size() * EltBitSize) <= 64) { 1860 unsigned SeqLen = Sequence.size(); 1861 MVT ViaIntVT = MVT::getIntegerVT(EltBitSize * SeqLen); 1862 MVT ViaVecVT = MVT::getVectorVT(ViaIntVT, NumElts / SeqLen); 1863 assert((ViaIntVT == MVT::i16 || ViaIntVT == MVT::i32 || 1864 ViaIntVT == MVT::i64) && 1865 "Unexpected sequence type"); 1866 1867 unsigned EltIdx = 0; 1868 uint64_t EltMask = maskTrailingOnes<uint64_t>(EltBitSize); 1869 uint64_t SplatValue = 0; 1870 // Construct the amalgamated value which can be splatted as this larger 1871 // vector type. 1872 for (const auto &SeqV : Sequence) { 1873 if (!SeqV.isUndef()) 1874 SplatValue |= ((cast<ConstantSDNode>(SeqV)->getZExtValue() & EltMask) 1875 << (EltIdx * EltBitSize)); 1876 EltIdx++; 1877 } 1878 1879 // On RV64, sign-extend from 32 to 64 bits where possible in order to 1880 // achieve better constant materializion. 1881 if (Subtarget.is64Bit() && ViaIntVT == MVT::i32) 1882 SplatValue = SignExtend64(SplatValue, 32); 1883 1884 // Since we can't introduce illegal i64 types at this stage, we can only 1885 // perform an i64 splat on RV32 if it is its own sign-extended value. That 1886 // way we can use RVV instructions to splat. 1887 assert((ViaIntVT.bitsLE(XLenVT) || 1888 (!Subtarget.is64Bit() && ViaIntVT == MVT::i64)) && 1889 "Unexpected bitcast sequence"); 1890 if (ViaIntVT.bitsLE(XLenVT) || isInt<32>(SplatValue)) { 1891 SDValue ViaVL = 1892 DAG.getConstant(ViaVecVT.getVectorNumElements(), DL, XLenVT); 1893 MVT ViaContainerVT = 1894 getContainerForFixedLengthVector(DAG, ViaVecVT, Subtarget); 1895 SDValue Splat = 1896 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ViaContainerVT, 1897 DAG.getConstant(SplatValue, DL, XLenVT), ViaVL); 1898 Splat = convertFromScalableVector(ViaVecVT, Splat, DAG, Subtarget); 1899 return DAG.getBitcast(VT, Splat); 1900 } 1901 } 1902 1903 // Try and optimize BUILD_VECTORs with "dominant values" - these are values 1904 // which constitute a large proportion of the elements. In such cases we can 1905 // splat a vector with the dominant element and make up the shortfall with 1906 // INSERT_VECTOR_ELTs. 1907 // Note that this includes vectors of 2 elements by association. The 1908 // upper-most element is the "dominant" one, allowing us to use a splat to 1909 // "insert" the upper element, and an insert of the lower element at position 1910 // 0, which improves codegen. 1911 SDValue DominantValue; 1912 unsigned MostCommonCount = 0; 1913 DenseMap<SDValue, unsigned> ValueCounts; 1914 unsigned NumUndefElts = 1915 count_if(Op->op_values(), [](const SDValue &V) { return V.isUndef(); }); 1916 1917 // Track the number of scalar loads we know we'd be inserting, estimated as 1918 // any non-zero floating-point constant. Other kinds of element are either 1919 // already in registers or are materialized on demand. The threshold at which 1920 // a vector load is more desirable than several scalar materializion and 1921 // vector-insertion instructions is not known. 1922 unsigned NumScalarLoads = 0; 1923 1924 for (SDValue V : Op->op_values()) { 1925 if (V.isUndef()) 1926 continue; 1927 1928 ValueCounts.insert(std::make_pair(V, 0)); 1929 unsigned &Count = ValueCounts[V]; 1930 1931 if (auto *CFP = dyn_cast<ConstantFPSDNode>(V)) 1932 NumScalarLoads += !CFP->isExactlyValue(+0.0); 1933 1934 // Is this value dominant? In case of a tie, prefer the highest element as 1935 // it's cheaper to insert near the beginning of a vector than it is at the 1936 // end. 1937 if (++Count >= MostCommonCount) { 1938 DominantValue = V; 1939 MostCommonCount = Count; 1940 } 1941 } 1942 1943 assert(DominantValue && "Not expecting an all-undef BUILD_VECTOR"); 1944 unsigned NumDefElts = NumElts - NumUndefElts; 1945 unsigned DominantValueCountThreshold = NumDefElts <= 2 ? 0 : NumDefElts - 2; 1946 1947 // Don't perform this optimization when optimizing for size, since 1948 // materializing elements and inserting them tends to cause code bloat. 1949 if (!DAG.shouldOptForSize() && NumScalarLoads < NumElts && 1950 ((MostCommonCount > DominantValueCountThreshold) || 1951 (ValueCounts.size() <= Log2_32(NumDefElts)))) { 1952 // Start by splatting the most common element. 1953 SDValue Vec = DAG.getSplatBuildVector(VT, DL, DominantValue); 1954 1955 DenseSet<SDValue> Processed{DominantValue}; 1956 MVT SelMaskTy = VT.changeVectorElementType(MVT::i1); 1957 for (const auto &OpIdx : enumerate(Op->ops())) { 1958 const SDValue &V = OpIdx.value(); 1959 if (V.isUndef() || !Processed.insert(V).second) 1960 continue; 1961 if (ValueCounts[V] == 1) { 1962 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Vec, V, 1963 DAG.getConstant(OpIdx.index(), DL, XLenVT)); 1964 } else { 1965 // Blend in all instances of this value using a VSELECT, using a 1966 // mask where each bit signals whether that element is the one 1967 // we're after. 1968 SmallVector<SDValue> Ops; 1969 transform(Op->op_values(), std::back_inserter(Ops), [&](SDValue V1) { 1970 return DAG.getConstant(V == V1, DL, XLenVT); 1971 }); 1972 Vec = DAG.getNode(ISD::VSELECT, DL, VT, 1973 DAG.getBuildVector(SelMaskTy, DL, Ops), 1974 DAG.getSplatBuildVector(VT, DL, V), Vec); 1975 } 1976 } 1977 1978 return Vec; 1979 } 1980 1981 return SDValue(); 1982 } 1983 1984 static SDValue splatPartsI64WithVL(const SDLoc &DL, MVT VT, SDValue Lo, 1985 SDValue Hi, SDValue VL, SelectionDAG &DAG) { 1986 if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) { 1987 int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue(); 1988 int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue(); 1989 // If Hi constant is all the same sign bit as Lo, lower this as a custom 1990 // node in order to try and match RVV vector/scalar instructions. 1991 if ((LoC >> 31) == HiC) 1992 return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Lo, VL); 1993 } 1994 1995 // Fall back to a stack store and stride x0 vector load. 1996 return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VT, Lo, Hi, VL); 1997 } 1998 1999 // Called by type legalization to handle splat of i64 on RV32. 2000 // FIXME: We can optimize this when the type has sign or zero bits in one 2001 // of the halves. 2002 static SDValue splatSplitI64WithVL(const SDLoc &DL, MVT VT, SDValue Scalar, 2003 SDValue VL, SelectionDAG &DAG) { 2004 assert(Scalar.getValueType() == MVT::i64 && "Unexpected VT!"); 2005 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 2006 DAG.getConstant(0, DL, MVT::i32)); 2007 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 2008 DAG.getConstant(1, DL, MVT::i32)); 2009 return splatPartsI64WithVL(DL, VT, Lo, Hi, VL, DAG); 2010 } 2011 2012 // This function lowers a splat of a scalar operand Splat with the vector 2013 // length VL. It ensures the final sequence is type legal, which is useful when 2014 // lowering a splat after type legalization. 2015 static SDValue lowerScalarSplat(SDValue Scalar, SDValue VL, MVT VT, SDLoc DL, 2016 SelectionDAG &DAG, 2017 const RISCVSubtarget &Subtarget) { 2018 if (VT.isFloatingPoint()) 2019 return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, VT, Scalar, VL); 2020 2021 MVT XLenVT = Subtarget.getXLenVT(); 2022 2023 // Simplest case is that the operand needs to be promoted to XLenVT. 2024 if (Scalar.getValueType().bitsLE(XLenVT)) { 2025 // If the operand is a constant, sign extend to increase our chances 2026 // of being able to use a .vi instruction. ANY_EXTEND would become a 2027 // a zero extend and the simm5 check in isel would fail. 2028 // FIXME: Should we ignore the upper bits in isel instead? 2029 unsigned ExtOpc = 2030 isa<ConstantSDNode>(Scalar) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND; 2031 Scalar = DAG.getNode(ExtOpc, DL, XLenVT, Scalar); 2032 return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Scalar, VL); 2033 } 2034 2035 assert(XLenVT == MVT::i32 && Scalar.getValueType() == MVT::i64 && 2036 "Unexpected scalar for splat lowering!"); 2037 2038 // Otherwise use the more complicated splatting algorithm. 2039 return splatSplitI64WithVL(DL, VT, Scalar, VL, DAG); 2040 } 2041 2042 static SDValue lowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG, 2043 const RISCVSubtarget &Subtarget) { 2044 SDValue V1 = Op.getOperand(0); 2045 SDValue V2 = Op.getOperand(1); 2046 SDLoc DL(Op); 2047 MVT XLenVT = Subtarget.getXLenVT(); 2048 MVT VT = Op.getSimpleValueType(); 2049 unsigned NumElts = VT.getVectorNumElements(); 2050 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode()); 2051 2052 MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 2053 2054 SDValue TrueMask, VL; 2055 std::tie(TrueMask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 2056 2057 if (SVN->isSplat()) { 2058 const int Lane = SVN->getSplatIndex(); 2059 if (Lane >= 0) { 2060 MVT SVT = VT.getVectorElementType(); 2061 2062 // Turn splatted vector load into a strided load with an X0 stride. 2063 SDValue V = V1; 2064 // Peek through CONCAT_VECTORS as VectorCombine can concat a vector 2065 // with undef. 2066 // FIXME: Peek through INSERT_SUBVECTOR, EXTRACT_SUBVECTOR, bitcasts? 2067 int Offset = Lane; 2068 if (V.getOpcode() == ISD::CONCAT_VECTORS) { 2069 int OpElements = 2070 V.getOperand(0).getSimpleValueType().getVectorNumElements(); 2071 V = V.getOperand(Offset / OpElements); 2072 Offset %= OpElements; 2073 } 2074 2075 // We need to ensure the load isn't atomic or volatile. 2076 if (ISD::isNormalLoad(V.getNode()) && cast<LoadSDNode>(V)->isSimple()) { 2077 auto *Ld = cast<LoadSDNode>(V); 2078 Offset *= SVT.getStoreSize(); 2079 SDValue NewAddr = DAG.getMemBasePlusOffset(Ld->getBasePtr(), 2080 TypeSize::Fixed(Offset), DL); 2081 2082 // If this is SEW=64 on RV32, use a strided load with a stride of x0. 2083 if (SVT.isInteger() && SVT.bitsGT(XLenVT)) { 2084 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 2085 SDValue IntID = 2086 DAG.getTargetConstant(Intrinsic::riscv_vlse, DL, XLenVT); 2087 SDValue Ops[] = {Ld->getChain(), IntID, NewAddr, 2088 DAG.getRegister(RISCV::X0, XLenVT), VL}; 2089 SDValue NewLoad = DAG.getMemIntrinsicNode( 2090 ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, SVT, 2091 DAG.getMachineFunction().getMachineMemOperand( 2092 Ld->getMemOperand(), Offset, SVT.getStoreSize())); 2093 DAG.makeEquivalentMemoryOrdering(Ld, NewLoad); 2094 return convertFromScalableVector(VT, NewLoad, DAG, Subtarget); 2095 } 2096 2097 // Otherwise use a scalar load and splat. This will give the best 2098 // opportunity to fold a splat into the operation. ISel can turn it into 2099 // the x0 strided load if we aren't able to fold away the select. 2100 if (SVT.isFloatingPoint()) 2101 V = DAG.getLoad(SVT, DL, Ld->getChain(), NewAddr, 2102 Ld->getPointerInfo().getWithOffset(Offset), 2103 Ld->getOriginalAlign(), 2104 Ld->getMemOperand()->getFlags()); 2105 else 2106 V = DAG.getExtLoad(ISD::SEXTLOAD, DL, XLenVT, Ld->getChain(), NewAddr, 2107 Ld->getPointerInfo().getWithOffset(Offset), SVT, 2108 Ld->getOriginalAlign(), 2109 Ld->getMemOperand()->getFlags()); 2110 DAG.makeEquivalentMemoryOrdering(Ld, V); 2111 2112 unsigned Opc = 2113 VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL : RISCVISD::VMV_V_X_VL; 2114 SDValue Splat = DAG.getNode(Opc, DL, ContainerVT, V, VL); 2115 return convertFromScalableVector(VT, Splat, DAG, Subtarget); 2116 } 2117 2118 V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget); 2119 assert(Lane < (int)NumElts && "Unexpected lane!"); 2120 SDValue Gather = 2121 DAG.getNode(RISCVISD::VRGATHER_VX_VL, DL, ContainerVT, V1, 2122 DAG.getConstant(Lane, DL, XLenVT), TrueMask, VL); 2123 return convertFromScalableVector(VT, Gather, DAG, Subtarget); 2124 } 2125 } 2126 2127 // Detect shuffles which can be re-expressed as vector selects; these are 2128 // shuffles in which each element in the destination is taken from an element 2129 // at the corresponding index in either source vectors. 2130 bool IsSelect = all_of(enumerate(SVN->getMask()), [&](const auto &MaskIdx) { 2131 int MaskIndex = MaskIdx.value(); 2132 return MaskIndex < 0 || MaskIdx.index() == (unsigned)MaskIndex % NumElts; 2133 }); 2134 2135 assert(!V1.isUndef() && "Unexpected shuffle canonicalization"); 2136 2137 SmallVector<SDValue> MaskVals; 2138 // As a backup, shuffles can be lowered via a vrgather instruction, possibly 2139 // merged with a second vrgather. 2140 SmallVector<SDValue> GatherIndicesLHS, GatherIndicesRHS; 2141 2142 // By default we preserve the original operand order, and use a mask to 2143 // select LHS as true and RHS as false. However, since RVV vector selects may 2144 // feature splats but only on the LHS, we may choose to invert our mask and 2145 // instead select between RHS and LHS. 2146 bool SwapOps = DAG.isSplatValue(V2) && !DAG.isSplatValue(V1); 2147 bool InvertMask = IsSelect == SwapOps; 2148 2149 // Keep a track of which non-undef indices are used by each LHS/RHS shuffle 2150 // half. 2151 DenseMap<int, unsigned> LHSIndexCounts, RHSIndexCounts; 2152 2153 // Now construct the mask that will be used by the vselect or blended 2154 // vrgather operation. For vrgathers, construct the appropriate indices into 2155 // each vector. 2156 for (int MaskIndex : SVN->getMask()) { 2157 bool SelectMaskVal = (MaskIndex < (int)NumElts) ^ InvertMask; 2158 MaskVals.push_back(DAG.getConstant(SelectMaskVal, DL, XLenVT)); 2159 if (!IsSelect) { 2160 bool IsLHSOrUndefIndex = MaskIndex < (int)NumElts; 2161 GatherIndicesLHS.push_back(IsLHSOrUndefIndex && MaskIndex >= 0 2162 ? DAG.getConstant(MaskIndex, DL, XLenVT) 2163 : DAG.getUNDEF(XLenVT)); 2164 GatherIndicesRHS.push_back( 2165 IsLHSOrUndefIndex ? DAG.getUNDEF(XLenVT) 2166 : DAG.getConstant(MaskIndex - NumElts, DL, XLenVT)); 2167 if (IsLHSOrUndefIndex && MaskIndex >= 0) 2168 ++LHSIndexCounts[MaskIndex]; 2169 if (!IsLHSOrUndefIndex) 2170 ++RHSIndexCounts[MaskIndex - NumElts]; 2171 } 2172 } 2173 2174 if (SwapOps) { 2175 std::swap(V1, V2); 2176 std::swap(GatherIndicesLHS, GatherIndicesRHS); 2177 } 2178 2179 assert(MaskVals.size() == NumElts && "Unexpected select-like shuffle"); 2180 MVT MaskVT = MVT::getVectorVT(MVT::i1, NumElts); 2181 SDValue SelectMask = DAG.getBuildVector(MaskVT, DL, MaskVals); 2182 2183 if (IsSelect) 2184 return DAG.getNode(ISD::VSELECT, DL, VT, SelectMask, V1, V2); 2185 2186 if (VT.getScalarSizeInBits() == 8 && VT.getVectorNumElements() > 256) { 2187 // On such a large vector we're unable to use i8 as the index type. 2188 // FIXME: We could promote the index to i16 and use vrgatherei16, but that 2189 // may involve vector splitting if we're already at LMUL=8, or our 2190 // user-supplied maximum fixed-length LMUL. 2191 return SDValue(); 2192 } 2193 2194 unsigned GatherVXOpc = RISCVISD::VRGATHER_VX_VL; 2195 unsigned GatherVVOpc = RISCVISD::VRGATHER_VV_VL; 2196 MVT IndexVT = VT.changeTypeToInteger(); 2197 // Since we can't introduce illegal index types at this stage, use i16 and 2198 // vrgatherei16 if the corresponding index type for plain vrgather is greater 2199 // than XLenVT. 2200 if (IndexVT.getScalarType().bitsGT(XLenVT)) { 2201 GatherVVOpc = RISCVISD::VRGATHEREI16_VV_VL; 2202 IndexVT = IndexVT.changeVectorElementType(MVT::i16); 2203 } 2204 2205 MVT IndexContainerVT = 2206 ContainerVT.changeVectorElementType(IndexVT.getScalarType()); 2207 2208 SDValue Gather; 2209 // TODO: This doesn't trigger for i64 vectors on RV32, since there we 2210 // encounter a bitcasted BUILD_VECTOR with low/high i32 values. 2211 if (SDValue SplatValue = DAG.getSplatValue(V1, /*LegalTypes*/ true)) { 2212 Gather = lowerScalarSplat(SplatValue, VL, ContainerVT, DL, DAG, Subtarget); 2213 } else { 2214 V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget); 2215 // If only one index is used, we can use a "splat" vrgather. 2216 // TODO: We can splat the most-common index and fix-up any stragglers, if 2217 // that's beneficial. 2218 if (LHSIndexCounts.size() == 1) { 2219 int SplatIndex = LHSIndexCounts.begin()->getFirst(); 2220 Gather = 2221 DAG.getNode(GatherVXOpc, DL, ContainerVT, V1, 2222 DAG.getConstant(SplatIndex, DL, XLenVT), TrueMask, VL); 2223 } else { 2224 SDValue LHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesLHS); 2225 LHSIndices = 2226 convertToScalableVector(IndexContainerVT, LHSIndices, DAG, Subtarget); 2227 2228 Gather = DAG.getNode(GatherVVOpc, DL, ContainerVT, V1, LHSIndices, 2229 TrueMask, VL); 2230 } 2231 } 2232 2233 // If a second vector operand is used by this shuffle, blend it in with an 2234 // additional vrgather. 2235 if (!V2.isUndef()) { 2236 V2 = convertToScalableVector(ContainerVT, V2, DAG, Subtarget); 2237 // If only one index is used, we can use a "splat" vrgather. 2238 // TODO: We can splat the most-common index and fix-up any stragglers, if 2239 // that's beneficial. 2240 if (RHSIndexCounts.size() == 1) { 2241 int SplatIndex = RHSIndexCounts.begin()->getFirst(); 2242 V2 = DAG.getNode(GatherVXOpc, DL, ContainerVT, V2, 2243 DAG.getConstant(SplatIndex, DL, XLenVT), TrueMask, VL); 2244 } else { 2245 SDValue RHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesRHS); 2246 RHSIndices = 2247 convertToScalableVector(IndexContainerVT, RHSIndices, DAG, Subtarget); 2248 V2 = DAG.getNode(GatherVVOpc, DL, ContainerVT, V2, RHSIndices, TrueMask, 2249 VL); 2250 } 2251 2252 MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1); 2253 SelectMask = 2254 convertToScalableVector(MaskContainerVT, SelectMask, DAG, Subtarget); 2255 2256 Gather = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, SelectMask, V2, 2257 Gather, VL); 2258 } 2259 2260 return convertFromScalableVector(VT, Gather, DAG, Subtarget); 2261 } 2262 2263 static SDValue getRVVFPExtendOrRound(SDValue Op, MVT VT, MVT ContainerVT, 2264 SDLoc DL, SelectionDAG &DAG, 2265 const RISCVSubtarget &Subtarget) { 2266 if (VT.isScalableVector()) 2267 return DAG.getFPExtendOrRound(Op, DL, VT); 2268 assert(VT.isFixedLengthVector() && 2269 "Unexpected value type for RVV FP extend/round lowering"); 2270 SDValue Mask, VL; 2271 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 2272 unsigned RVVOpc = ContainerVT.bitsGT(Op.getSimpleValueType()) 2273 ? RISCVISD::FP_EXTEND_VL 2274 : RISCVISD::FP_ROUND_VL; 2275 return DAG.getNode(RVVOpc, DL, ContainerVT, Op, Mask, VL); 2276 } 2277 2278 // While RVV has alignment restrictions, we should always be able to load as a 2279 // legal equivalently-sized byte-typed vector instead. This method is 2280 // responsible for re-expressing a ISD::LOAD via a correctly-aligned type. If 2281 // the load is already correctly-aligned, it returns SDValue(). 2282 SDValue RISCVTargetLowering::expandUnalignedRVVLoad(SDValue Op, 2283 SelectionDAG &DAG) const { 2284 auto *Load = cast<LoadSDNode>(Op); 2285 assert(Load && Load->getMemoryVT().isVector() && "Expected vector load"); 2286 2287 if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 2288 Load->getMemoryVT(), 2289 *Load->getMemOperand())) 2290 return SDValue(); 2291 2292 SDLoc DL(Op); 2293 MVT VT = Op.getSimpleValueType(); 2294 unsigned EltSizeBits = VT.getScalarSizeInBits(); 2295 assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) && 2296 "Unexpected unaligned RVV load type"); 2297 MVT NewVT = 2298 MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8)); 2299 assert(NewVT.isValid() && 2300 "Expecting equally-sized RVV vector types to be legal"); 2301 SDValue L = DAG.getLoad(NewVT, DL, Load->getChain(), Load->getBasePtr(), 2302 Load->getPointerInfo(), Load->getOriginalAlign(), 2303 Load->getMemOperand()->getFlags()); 2304 return DAG.getMergeValues({DAG.getBitcast(VT, L), L.getValue(1)}, DL); 2305 } 2306 2307 // While RVV has alignment restrictions, we should always be able to store as a 2308 // legal equivalently-sized byte-typed vector instead. This method is 2309 // responsible for re-expressing a ISD::STORE via a correctly-aligned type. It 2310 // returns SDValue() if the store is already correctly aligned. 2311 SDValue RISCVTargetLowering::expandUnalignedRVVStore(SDValue Op, 2312 SelectionDAG &DAG) const { 2313 auto *Store = cast<StoreSDNode>(Op); 2314 assert(Store && Store->getValue().getValueType().isVector() && 2315 "Expected vector store"); 2316 2317 if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 2318 Store->getMemoryVT(), 2319 *Store->getMemOperand())) 2320 return SDValue(); 2321 2322 SDLoc DL(Op); 2323 SDValue StoredVal = Store->getValue(); 2324 MVT VT = StoredVal.getSimpleValueType(); 2325 unsigned EltSizeBits = VT.getScalarSizeInBits(); 2326 assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) && 2327 "Unexpected unaligned RVV store type"); 2328 MVT NewVT = 2329 MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8)); 2330 assert(NewVT.isValid() && 2331 "Expecting equally-sized RVV vector types to be legal"); 2332 StoredVal = DAG.getBitcast(NewVT, StoredVal); 2333 return DAG.getStore(Store->getChain(), DL, StoredVal, Store->getBasePtr(), 2334 Store->getPointerInfo(), Store->getOriginalAlign(), 2335 Store->getMemOperand()->getFlags()); 2336 } 2337 2338 SDValue RISCVTargetLowering::LowerOperation(SDValue Op, 2339 SelectionDAG &DAG) const { 2340 switch (Op.getOpcode()) { 2341 default: 2342 report_fatal_error("unimplemented operand"); 2343 case ISD::GlobalAddress: 2344 return lowerGlobalAddress(Op, DAG); 2345 case ISD::BlockAddress: 2346 return lowerBlockAddress(Op, DAG); 2347 case ISD::ConstantPool: 2348 return lowerConstantPool(Op, DAG); 2349 case ISD::JumpTable: 2350 return lowerJumpTable(Op, DAG); 2351 case ISD::GlobalTLSAddress: 2352 return lowerGlobalTLSAddress(Op, DAG); 2353 case ISD::SELECT: 2354 return lowerSELECT(Op, DAG); 2355 case ISD::BRCOND: 2356 return lowerBRCOND(Op, DAG); 2357 case ISD::VASTART: 2358 return lowerVASTART(Op, DAG); 2359 case ISD::FRAMEADDR: 2360 return lowerFRAMEADDR(Op, DAG); 2361 case ISD::RETURNADDR: 2362 return lowerRETURNADDR(Op, DAG); 2363 case ISD::SHL_PARTS: 2364 return lowerShiftLeftParts(Op, DAG); 2365 case ISD::SRA_PARTS: 2366 return lowerShiftRightParts(Op, DAG, true); 2367 case ISD::SRL_PARTS: 2368 return lowerShiftRightParts(Op, DAG, false); 2369 case ISD::BITCAST: { 2370 SDLoc DL(Op); 2371 EVT VT = Op.getValueType(); 2372 SDValue Op0 = Op.getOperand(0); 2373 EVT Op0VT = Op0.getValueType(); 2374 MVT XLenVT = Subtarget.getXLenVT(); 2375 if (VT.isFixedLengthVector()) { 2376 // We can handle fixed length vector bitcasts with a simple replacement 2377 // in isel. 2378 if (Op0VT.isFixedLengthVector()) 2379 return Op; 2380 // When bitcasting from scalar to fixed-length vector, insert the scalar 2381 // into a one-element vector of the result type, and perform a vector 2382 // bitcast. 2383 if (!Op0VT.isVector()) { 2384 auto BVT = EVT::getVectorVT(*DAG.getContext(), Op0VT, 1); 2385 return DAG.getBitcast(VT, DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, BVT, 2386 DAG.getUNDEF(BVT), Op0, 2387 DAG.getConstant(0, DL, XLenVT))); 2388 } 2389 return SDValue(); 2390 } 2391 // Custom-legalize bitcasts from fixed-length vector types to scalar types 2392 // thus: bitcast the vector to a one-element vector type whose element type 2393 // is the same as the result type, and extract the first element. 2394 if (!VT.isVector() && Op0VT.isFixedLengthVector()) { 2395 LLVMContext &Context = *DAG.getContext(); 2396 SDValue BVec = DAG.getBitcast(EVT::getVectorVT(Context, VT, 1), Op0); 2397 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec, 2398 DAG.getConstant(0, DL, XLenVT)); 2399 } 2400 if (VT == MVT::f16 && Op0VT == MVT::i16 && Subtarget.hasStdExtZfh()) { 2401 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Op0); 2402 SDValue FPConv = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, NewOp0); 2403 return FPConv; 2404 } 2405 if (VT == MVT::f32 && Op0VT == MVT::i32 && Subtarget.is64Bit() && 2406 Subtarget.hasStdExtF()) { 2407 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); 2408 SDValue FPConv = 2409 DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, NewOp0); 2410 return FPConv; 2411 } 2412 return SDValue(); 2413 } 2414 case ISD::INTRINSIC_WO_CHAIN: 2415 return LowerINTRINSIC_WO_CHAIN(Op, DAG); 2416 case ISD::INTRINSIC_W_CHAIN: 2417 return LowerINTRINSIC_W_CHAIN(Op, DAG); 2418 case ISD::INTRINSIC_VOID: 2419 return LowerINTRINSIC_VOID(Op, DAG); 2420 case ISD::BSWAP: 2421 case ISD::BITREVERSE: { 2422 // Convert BSWAP/BITREVERSE to GREVI to enable GREVI combinining. 2423 assert(Subtarget.hasStdExtZbp() && "Unexpected custom legalisation"); 2424 MVT VT = Op.getSimpleValueType(); 2425 SDLoc DL(Op); 2426 // Start with the maximum immediate value which is the bitwidth - 1. 2427 unsigned Imm = VT.getSizeInBits() - 1; 2428 // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits. 2429 if (Op.getOpcode() == ISD::BSWAP) 2430 Imm &= ~0x7U; 2431 return DAG.getNode(RISCVISD::GREV, DL, VT, Op.getOperand(0), 2432 DAG.getConstant(Imm, DL, VT)); 2433 } 2434 case ISD::FSHL: 2435 case ISD::FSHR: { 2436 MVT VT = Op.getSimpleValueType(); 2437 assert(VT == Subtarget.getXLenVT() && "Unexpected custom legalization"); 2438 SDLoc DL(Op); 2439 if (Op.getOperand(2).getOpcode() == ISD::Constant) 2440 return Op; 2441 // FSL/FSR take a log2(XLen)+1 bit shift amount but XLenVT FSHL/FSHR only 2442 // use log(XLen) bits. Mask the shift amount accordingly. 2443 unsigned ShAmtWidth = Subtarget.getXLen() - 1; 2444 SDValue ShAmt = DAG.getNode(ISD::AND, DL, VT, Op.getOperand(2), 2445 DAG.getConstant(ShAmtWidth, DL, VT)); 2446 unsigned Opc = Op.getOpcode() == ISD::FSHL ? RISCVISD::FSL : RISCVISD::FSR; 2447 return DAG.getNode(Opc, DL, VT, Op.getOperand(0), Op.getOperand(1), ShAmt); 2448 } 2449 case ISD::TRUNCATE: { 2450 SDLoc DL(Op); 2451 MVT VT = Op.getSimpleValueType(); 2452 // Only custom-lower vector truncates 2453 if (!VT.isVector()) 2454 return Op; 2455 2456 // Truncates to mask types are handled differently 2457 if (VT.getVectorElementType() == MVT::i1) 2458 return lowerVectorMaskTrunc(Op, DAG); 2459 2460 // RVV only has truncates which operate from SEW*2->SEW, so lower arbitrary 2461 // truncates as a series of "RISCVISD::TRUNCATE_VECTOR_VL" nodes which 2462 // truncate by one power of two at a time. 2463 MVT DstEltVT = VT.getVectorElementType(); 2464 2465 SDValue Src = Op.getOperand(0); 2466 MVT SrcVT = Src.getSimpleValueType(); 2467 MVT SrcEltVT = SrcVT.getVectorElementType(); 2468 2469 assert(DstEltVT.bitsLT(SrcEltVT) && 2470 isPowerOf2_64(DstEltVT.getSizeInBits()) && 2471 isPowerOf2_64(SrcEltVT.getSizeInBits()) && 2472 "Unexpected vector truncate lowering"); 2473 2474 MVT ContainerVT = SrcVT; 2475 if (SrcVT.isFixedLengthVector()) { 2476 ContainerVT = getContainerForFixedLengthVector(SrcVT); 2477 Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget); 2478 } 2479 2480 SDValue Result = Src; 2481 SDValue Mask, VL; 2482 std::tie(Mask, VL) = 2483 getDefaultVLOps(SrcVT, ContainerVT, DL, DAG, Subtarget); 2484 LLVMContext &Context = *DAG.getContext(); 2485 const ElementCount Count = ContainerVT.getVectorElementCount(); 2486 do { 2487 SrcEltVT = MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2); 2488 EVT ResultVT = EVT::getVectorVT(Context, SrcEltVT, Count); 2489 Result = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, ResultVT, Result, 2490 Mask, VL); 2491 } while (SrcEltVT != DstEltVT); 2492 2493 if (SrcVT.isFixedLengthVector()) 2494 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 2495 2496 return Result; 2497 } 2498 case ISD::ANY_EXTEND: 2499 case ISD::ZERO_EXTEND: 2500 if (Op.getOperand(0).getValueType().isVector() && 2501 Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) 2502 return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ 1); 2503 return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VZEXT_VL); 2504 case ISD::SIGN_EXTEND: 2505 if (Op.getOperand(0).getValueType().isVector() && 2506 Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) 2507 return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ -1); 2508 return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VSEXT_VL); 2509 case ISD::SPLAT_VECTOR_PARTS: 2510 return lowerSPLAT_VECTOR_PARTS(Op, DAG); 2511 case ISD::INSERT_VECTOR_ELT: 2512 return lowerINSERT_VECTOR_ELT(Op, DAG); 2513 case ISD::EXTRACT_VECTOR_ELT: 2514 return lowerEXTRACT_VECTOR_ELT(Op, DAG); 2515 case ISD::VSCALE: { 2516 MVT VT = Op.getSimpleValueType(); 2517 SDLoc DL(Op); 2518 SDValue VLENB = DAG.getNode(RISCVISD::READ_VLENB, DL, VT); 2519 // We define our scalable vector types for lmul=1 to use a 64 bit known 2520 // minimum size. e.g. <vscale x 2 x i32>. VLENB is in bytes so we calculate 2521 // vscale as VLENB / 8. 2522 assert(RISCV::RVVBitsPerBlock == 64 && "Unexpected bits per block!"); 2523 if (isa<ConstantSDNode>(Op.getOperand(0))) { 2524 // We assume VLENB is a multiple of 8. We manually choose the best shift 2525 // here because SimplifyDemandedBits isn't always able to simplify it. 2526 uint64_t Val = Op.getConstantOperandVal(0); 2527 if (isPowerOf2_64(Val)) { 2528 uint64_t Log2 = Log2_64(Val); 2529 if (Log2 < 3) 2530 return DAG.getNode(ISD::SRL, DL, VT, VLENB, 2531 DAG.getConstant(3 - Log2, DL, VT)); 2532 if (Log2 > 3) 2533 return DAG.getNode(ISD::SHL, DL, VT, VLENB, 2534 DAG.getConstant(Log2 - 3, DL, VT)); 2535 return VLENB; 2536 } 2537 // If the multiplier is a multiple of 8, scale it down to avoid needing 2538 // to shift the VLENB value. 2539 if ((Val % 8) == 0) 2540 return DAG.getNode(ISD::MUL, DL, VT, VLENB, 2541 DAG.getConstant(Val / 8, DL, VT)); 2542 } 2543 2544 SDValue VScale = DAG.getNode(ISD::SRL, DL, VT, VLENB, 2545 DAG.getConstant(3, DL, VT)); 2546 return DAG.getNode(ISD::MUL, DL, VT, VScale, Op.getOperand(0)); 2547 } 2548 case ISD::FP_EXTEND: { 2549 // RVV can only do fp_extend to types double the size as the source. We 2550 // custom-lower f16->f64 extensions to two hops of ISD::FP_EXTEND, going 2551 // via f32. 2552 SDLoc DL(Op); 2553 MVT VT = Op.getSimpleValueType(); 2554 SDValue Src = Op.getOperand(0); 2555 MVT SrcVT = Src.getSimpleValueType(); 2556 2557 // Prepare any fixed-length vector operands. 2558 MVT ContainerVT = VT; 2559 if (SrcVT.isFixedLengthVector()) { 2560 ContainerVT = getContainerForFixedLengthVector(VT); 2561 MVT SrcContainerVT = 2562 ContainerVT.changeVectorElementType(SrcVT.getVectorElementType()); 2563 Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); 2564 } 2565 2566 if (!VT.isVector() || VT.getVectorElementType() != MVT::f64 || 2567 SrcVT.getVectorElementType() != MVT::f16) { 2568 // For scalable vectors, we only need to close the gap between 2569 // vXf16->vXf64. 2570 if (!VT.isFixedLengthVector()) 2571 return Op; 2572 // For fixed-length vectors, lower the FP_EXTEND to a custom "VL" version. 2573 Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget); 2574 return convertFromScalableVector(VT, Src, DAG, Subtarget); 2575 } 2576 2577 MVT InterVT = VT.changeVectorElementType(MVT::f32); 2578 MVT InterContainerVT = ContainerVT.changeVectorElementType(MVT::f32); 2579 SDValue IntermediateExtend = getRVVFPExtendOrRound( 2580 Src, InterVT, InterContainerVT, DL, DAG, Subtarget); 2581 2582 SDValue Extend = getRVVFPExtendOrRound(IntermediateExtend, VT, ContainerVT, 2583 DL, DAG, Subtarget); 2584 if (VT.isFixedLengthVector()) 2585 return convertFromScalableVector(VT, Extend, DAG, Subtarget); 2586 return Extend; 2587 } 2588 case ISD::FP_ROUND: { 2589 // RVV can only do fp_round to types half the size as the source. We 2590 // custom-lower f64->f16 rounds via RVV's round-to-odd float 2591 // conversion instruction. 2592 SDLoc DL(Op); 2593 MVT VT = Op.getSimpleValueType(); 2594 SDValue Src = Op.getOperand(0); 2595 MVT SrcVT = Src.getSimpleValueType(); 2596 2597 // Prepare any fixed-length vector operands. 2598 MVT ContainerVT = VT; 2599 if (VT.isFixedLengthVector()) { 2600 MVT SrcContainerVT = getContainerForFixedLengthVector(SrcVT); 2601 ContainerVT = 2602 SrcContainerVT.changeVectorElementType(VT.getVectorElementType()); 2603 Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); 2604 } 2605 2606 if (!VT.isVector() || VT.getVectorElementType() != MVT::f16 || 2607 SrcVT.getVectorElementType() != MVT::f64) { 2608 // For scalable vectors, we only need to close the gap between 2609 // vXf64<->vXf16. 2610 if (!VT.isFixedLengthVector()) 2611 return Op; 2612 // For fixed-length vectors, lower the FP_ROUND to a custom "VL" version. 2613 Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget); 2614 return convertFromScalableVector(VT, Src, DAG, Subtarget); 2615 } 2616 2617 SDValue Mask, VL; 2618 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 2619 2620 MVT InterVT = ContainerVT.changeVectorElementType(MVT::f32); 2621 SDValue IntermediateRound = 2622 DAG.getNode(RISCVISD::VFNCVT_ROD_VL, DL, InterVT, Src, Mask, VL); 2623 SDValue Round = getRVVFPExtendOrRound(IntermediateRound, VT, ContainerVT, 2624 DL, DAG, Subtarget); 2625 2626 if (VT.isFixedLengthVector()) 2627 return convertFromScalableVector(VT, Round, DAG, Subtarget); 2628 return Round; 2629 } 2630 case ISD::FP_TO_SINT: 2631 case ISD::FP_TO_UINT: 2632 case ISD::SINT_TO_FP: 2633 case ISD::UINT_TO_FP: { 2634 // RVV can only do fp<->int conversions to types half/double the size as 2635 // the source. We custom-lower any conversions that do two hops into 2636 // sequences. 2637 MVT VT = Op.getSimpleValueType(); 2638 if (!VT.isVector()) 2639 return Op; 2640 SDLoc DL(Op); 2641 SDValue Src = Op.getOperand(0); 2642 MVT EltVT = VT.getVectorElementType(); 2643 MVT SrcVT = Src.getSimpleValueType(); 2644 MVT SrcEltVT = SrcVT.getVectorElementType(); 2645 unsigned EltSize = EltVT.getSizeInBits(); 2646 unsigned SrcEltSize = SrcEltVT.getSizeInBits(); 2647 assert(isPowerOf2_32(EltSize) && isPowerOf2_32(SrcEltSize) && 2648 "Unexpected vector element types"); 2649 2650 bool IsInt2FP = SrcEltVT.isInteger(); 2651 // Widening conversions 2652 if (EltSize > SrcEltSize && (EltSize / SrcEltSize >= 4)) { 2653 if (IsInt2FP) { 2654 // Do a regular integer sign/zero extension then convert to float. 2655 MVT IVecVT = MVT::getVectorVT(MVT::getIntegerVT(EltVT.getSizeInBits()), 2656 VT.getVectorElementCount()); 2657 unsigned ExtOpcode = Op.getOpcode() == ISD::UINT_TO_FP 2658 ? ISD::ZERO_EXTEND 2659 : ISD::SIGN_EXTEND; 2660 SDValue Ext = DAG.getNode(ExtOpcode, DL, IVecVT, Src); 2661 return DAG.getNode(Op.getOpcode(), DL, VT, Ext); 2662 } 2663 // FP2Int 2664 assert(SrcEltVT == MVT::f16 && "Unexpected FP_TO_[US]INT lowering"); 2665 // Do one doubling fp_extend then complete the operation by converting 2666 // to int. 2667 MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount()); 2668 SDValue FExt = DAG.getFPExtendOrRound(Src, DL, InterimFVT); 2669 return DAG.getNode(Op.getOpcode(), DL, VT, FExt); 2670 } 2671 2672 // Narrowing conversions 2673 if (SrcEltSize > EltSize && (SrcEltSize / EltSize >= 4)) { 2674 if (IsInt2FP) { 2675 // One narrowing int_to_fp, then an fp_round. 2676 assert(EltVT == MVT::f16 && "Unexpected [US]_TO_FP lowering"); 2677 MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount()); 2678 SDValue Int2FP = DAG.getNode(Op.getOpcode(), DL, InterimFVT, Src); 2679 return DAG.getFPExtendOrRound(Int2FP, DL, VT); 2680 } 2681 // FP2Int 2682 // One narrowing fp_to_int, then truncate the integer. If the float isn't 2683 // representable by the integer, the result is poison. 2684 MVT IVecVT = 2685 MVT::getVectorVT(MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2), 2686 VT.getVectorElementCount()); 2687 SDValue FP2Int = DAG.getNode(Op.getOpcode(), DL, IVecVT, Src); 2688 return DAG.getNode(ISD::TRUNCATE, DL, VT, FP2Int); 2689 } 2690 2691 // Scalable vectors can exit here. Patterns will handle equally-sized 2692 // conversions halving/doubling ones. 2693 if (!VT.isFixedLengthVector()) 2694 return Op; 2695 2696 // For fixed-length vectors we lower to a custom "VL" node. 2697 unsigned RVVOpc = 0; 2698 switch (Op.getOpcode()) { 2699 default: 2700 llvm_unreachable("Impossible opcode"); 2701 case ISD::FP_TO_SINT: 2702 RVVOpc = RISCVISD::FP_TO_SINT_VL; 2703 break; 2704 case ISD::FP_TO_UINT: 2705 RVVOpc = RISCVISD::FP_TO_UINT_VL; 2706 break; 2707 case ISD::SINT_TO_FP: 2708 RVVOpc = RISCVISD::SINT_TO_FP_VL; 2709 break; 2710 case ISD::UINT_TO_FP: 2711 RVVOpc = RISCVISD::UINT_TO_FP_VL; 2712 break; 2713 } 2714 2715 MVT ContainerVT, SrcContainerVT; 2716 // Derive the reference container type from the larger vector type. 2717 if (SrcEltSize > EltSize) { 2718 SrcContainerVT = getContainerForFixedLengthVector(SrcVT); 2719 ContainerVT = 2720 SrcContainerVT.changeVectorElementType(VT.getVectorElementType()); 2721 } else { 2722 ContainerVT = getContainerForFixedLengthVector(VT); 2723 SrcContainerVT = ContainerVT.changeVectorElementType(SrcEltVT); 2724 } 2725 2726 SDValue Mask, VL; 2727 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 2728 2729 Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); 2730 Src = DAG.getNode(RVVOpc, DL, ContainerVT, Src, Mask, VL); 2731 return convertFromScalableVector(VT, Src, DAG, Subtarget); 2732 } 2733 case ISD::FP_TO_SINT_SAT: 2734 case ISD::FP_TO_UINT_SAT: 2735 return lowerFP_TO_INT_SAT(Op, DAG); 2736 case ISD::VECREDUCE_ADD: 2737 case ISD::VECREDUCE_UMAX: 2738 case ISD::VECREDUCE_SMAX: 2739 case ISD::VECREDUCE_UMIN: 2740 case ISD::VECREDUCE_SMIN: 2741 return lowerVECREDUCE(Op, DAG); 2742 case ISD::VECREDUCE_AND: 2743 case ISD::VECREDUCE_OR: 2744 case ISD::VECREDUCE_XOR: 2745 if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) 2746 return lowerVectorMaskVecReduction(Op, DAG, /*IsVP*/ false); 2747 return lowerVECREDUCE(Op, DAG); 2748 case ISD::VECREDUCE_FADD: 2749 case ISD::VECREDUCE_SEQ_FADD: 2750 case ISD::VECREDUCE_FMIN: 2751 case ISD::VECREDUCE_FMAX: 2752 return lowerFPVECREDUCE(Op, DAG); 2753 case ISD::VP_REDUCE_ADD: 2754 case ISD::VP_REDUCE_UMAX: 2755 case ISD::VP_REDUCE_SMAX: 2756 case ISD::VP_REDUCE_UMIN: 2757 case ISD::VP_REDUCE_SMIN: 2758 case ISD::VP_REDUCE_FADD: 2759 case ISD::VP_REDUCE_SEQ_FADD: 2760 case ISD::VP_REDUCE_FMIN: 2761 case ISD::VP_REDUCE_FMAX: 2762 return lowerVPREDUCE(Op, DAG); 2763 case ISD::VP_REDUCE_AND: 2764 case ISD::VP_REDUCE_OR: 2765 case ISD::VP_REDUCE_XOR: 2766 if (Op.getOperand(1).getValueType().getVectorElementType() == MVT::i1) 2767 return lowerVectorMaskVecReduction(Op, DAG, /*IsVP*/ true); 2768 return lowerVPREDUCE(Op, DAG); 2769 case ISD::INSERT_SUBVECTOR: 2770 return lowerINSERT_SUBVECTOR(Op, DAG); 2771 case ISD::EXTRACT_SUBVECTOR: 2772 return lowerEXTRACT_SUBVECTOR(Op, DAG); 2773 case ISD::STEP_VECTOR: 2774 return lowerSTEP_VECTOR(Op, DAG); 2775 case ISD::VECTOR_REVERSE: 2776 return lowerVECTOR_REVERSE(Op, DAG); 2777 case ISD::BUILD_VECTOR: 2778 return lowerBUILD_VECTOR(Op, DAG, Subtarget); 2779 case ISD::SPLAT_VECTOR: 2780 if (Op.getValueType().getVectorElementType() == MVT::i1) 2781 return lowerVectorMaskSplat(Op, DAG); 2782 return lowerSPLAT_VECTOR(Op, DAG, Subtarget); 2783 case ISD::VECTOR_SHUFFLE: 2784 return lowerVECTOR_SHUFFLE(Op, DAG, Subtarget); 2785 case ISD::CONCAT_VECTORS: { 2786 // Split CONCAT_VECTORS into a series of INSERT_SUBVECTOR nodes. This is 2787 // better than going through the stack, as the default expansion does. 2788 SDLoc DL(Op); 2789 MVT VT = Op.getSimpleValueType(); 2790 unsigned NumOpElts = 2791 Op.getOperand(0).getSimpleValueType().getVectorMinNumElements(); 2792 SDValue Vec = DAG.getUNDEF(VT); 2793 for (const auto &OpIdx : enumerate(Op->ops())) 2794 Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, Vec, OpIdx.value(), 2795 DAG.getIntPtrConstant(OpIdx.index() * NumOpElts, DL)); 2796 return Vec; 2797 } 2798 case ISD::LOAD: 2799 if (auto V = expandUnalignedRVVLoad(Op, DAG)) 2800 return V; 2801 if (Op.getValueType().isFixedLengthVector()) 2802 return lowerFixedLengthVectorLoadToRVV(Op, DAG); 2803 return Op; 2804 case ISD::STORE: 2805 if (auto V = expandUnalignedRVVStore(Op, DAG)) 2806 return V; 2807 if (Op.getOperand(1).getValueType().isFixedLengthVector()) 2808 return lowerFixedLengthVectorStoreToRVV(Op, DAG); 2809 return Op; 2810 case ISD::MLOAD: 2811 case ISD::VP_LOAD: 2812 return lowerMaskedLoad(Op, DAG); 2813 case ISD::MSTORE: 2814 case ISD::VP_STORE: 2815 return lowerMaskedStore(Op, DAG); 2816 case ISD::SETCC: 2817 return lowerFixedLengthVectorSetccToRVV(Op, DAG); 2818 case ISD::ADD: 2819 return lowerToScalableOp(Op, DAG, RISCVISD::ADD_VL); 2820 case ISD::SUB: 2821 return lowerToScalableOp(Op, DAG, RISCVISD::SUB_VL); 2822 case ISD::MUL: 2823 return lowerToScalableOp(Op, DAG, RISCVISD::MUL_VL); 2824 case ISD::MULHS: 2825 return lowerToScalableOp(Op, DAG, RISCVISD::MULHS_VL); 2826 case ISD::MULHU: 2827 return lowerToScalableOp(Op, DAG, RISCVISD::MULHU_VL); 2828 case ISD::AND: 2829 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMAND_VL, 2830 RISCVISD::AND_VL); 2831 case ISD::OR: 2832 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMOR_VL, 2833 RISCVISD::OR_VL); 2834 case ISD::XOR: 2835 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMXOR_VL, 2836 RISCVISD::XOR_VL); 2837 case ISD::SDIV: 2838 return lowerToScalableOp(Op, DAG, RISCVISD::SDIV_VL); 2839 case ISD::SREM: 2840 return lowerToScalableOp(Op, DAG, RISCVISD::SREM_VL); 2841 case ISD::UDIV: 2842 return lowerToScalableOp(Op, DAG, RISCVISD::UDIV_VL); 2843 case ISD::UREM: 2844 return lowerToScalableOp(Op, DAG, RISCVISD::UREM_VL); 2845 case ISD::SHL: 2846 case ISD::SRA: 2847 case ISD::SRL: 2848 if (Op.getSimpleValueType().isFixedLengthVector()) 2849 return lowerFixedLengthVectorShiftToRVV(Op, DAG); 2850 // This can be called for an i32 shift amount that needs to be promoted. 2851 assert(Op.getOperand(1).getValueType() == MVT::i32 && Subtarget.is64Bit() && 2852 "Unexpected custom legalisation"); 2853 return SDValue(); 2854 case ISD::SADDSAT: 2855 return lowerToScalableOp(Op, DAG, RISCVISD::SADDSAT_VL); 2856 case ISD::UADDSAT: 2857 return lowerToScalableOp(Op, DAG, RISCVISD::UADDSAT_VL); 2858 case ISD::SSUBSAT: 2859 return lowerToScalableOp(Op, DAG, RISCVISD::SSUBSAT_VL); 2860 case ISD::USUBSAT: 2861 return lowerToScalableOp(Op, DAG, RISCVISD::USUBSAT_VL); 2862 case ISD::FADD: 2863 return lowerToScalableOp(Op, DAG, RISCVISD::FADD_VL); 2864 case ISD::FSUB: 2865 return lowerToScalableOp(Op, DAG, RISCVISD::FSUB_VL); 2866 case ISD::FMUL: 2867 return lowerToScalableOp(Op, DAG, RISCVISD::FMUL_VL); 2868 case ISD::FDIV: 2869 return lowerToScalableOp(Op, DAG, RISCVISD::FDIV_VL); 2870 case ISD::FNEG: 2871 return lowerToScalableOp(Op, DAG, RISCVISD::FNEG_VL); 2872 case ISD::FABS: 2873 return lowerToScalableOp(Op, DAG, RISCVISD::FABS_VL); 2874 case ISD::FSQRT: 2875 return lowerToScalableOp(Op, DAG, RISCVISD::FSQRT_VL); 2876 case ISD::FMA: 2877 return lowerToScalableOp(Op, DAG, RISCVISD::FMA_VL); 2878 case ISD::SMIN: 2879 return lowerToScalableOp(Op, DAG, RISCVISD::SMIN_VL); 2880 case ISD::SMAX: 2881 return lowerToScalableOp(Op, DAG, RISCVISD::SMAX_VL); 2882 case ISD::UMIN: 2883 return lowerToScalableOp(Op, DAG, RISCVISD::UMIN_VL); 2884 case ISD::UMAX: 2885 return lowerToScalableOp(Op, DAG, RISCVISD::UMAX_VL); 2886 case ISD::FMINNUM: 2887 return lowerToScalableOp(Op, DAG, RISCVISD::FMINNUM_VL); 2888 case ISD::FMAXNUM: 2889 return lowerToScalableOp(Op, DAG, RISCVISD::FMAXNUM_VL); 2890 case ISD::ABS: 2891 return lowerABS(Op, DAG); 2892 case ISD::VSELECT: 2893 return lowerFixedLengthVectorSelectToRVV(Op, DAG); 2894 case ISD::FCOPYSIGN: 2895 return lowerFixedLengthVectorFCOPYSIGNToRVV(Op, DAG); 2896 case ISD::MGATHER: 2897 case ISD::VP_GATHER: 2898 return lowerMaskedGather(Op, DAG); 2899 case ISD::MSCATTER: 2900 case ISD::VP_SCATTER: 2901 return lowerMaskedScatter(Op, DAG); 2902 case ISD::FLT_ROUNDS_: 2903 return lowerGET_ROUNDING(Op, DAG); 2904 case ISD::SET_ROUNDING: 2905 return lowerSET_ROUNDING(Op, DAG); 2906 case ISD::VP_ADD: 2907 return lowerVPOp(Op, DAG, RISCVISD::ADD_VL); 2908 case ISD::VP_SUB: 2909 return lowerVPOp(Op, DAG, RISCVISD::SUB_VL); 2910 case ISD::VP_MUL: 2911 return lowerVPOp(Op, DAG, RISCVISD::MUL_VL); 2912 case ISD::VP_SDIV: 2913 return lowerVPOp(Op, DAG, RISCVISD::SDIV_VL); 2914 case ISD::VP_UDIV: 2915 return lowerVPOp(Op, DAG, RISCVISD::UDIV_VL); 2916 case ISD::VP_SREM: 2917 return lowerVPOp(Op, DAG, RISCVISD::SREM_VL); 2918 case ISD::VP_UREM: 2919 return lowerVPOp(Op, DAG, RISCVISD::UREM_VL); 2920 case ISD::VP_AND: 2921 return lowerVPOp(Op, DAG, RISCVISD::AND_VL); 2922 case ISD::VP_OR: 2923 return lowerVPOp(Op, DAG, RISCVISD::OR_VL); 2924 case ISD::VP_XOR: 2925 return lowerVPOp(Op, DAG, RISCVISD::XOR_VL); 2926 case ISD::VP_ASHR: 2927 return lowerVPOp(Op, DAG, RISCVISD::SRA_VL); 2928 case ISD::VP_LSHR: 2929 return lowerVPOp(Op, DAG, RISCVISD::SRL_VL); 2930 case ISD::VP_SHL: 2931 return lowerVPOp(Op, DAG, RISCVISD::SHL_VL); 2932 case ISD::VP_FADD: 2933 return lowerVPOp(Op, DAG, RISCVISD::FADD_VL); 2934 case ISD::VP_FSUB: 2935 return lowerVPOp(Op, DAG, RISCVISD::FSUB_VL); 2936 case ISD::VP_FMUL: 2937 return lowerVPOp(Op, DAG, RISCVISD::FMUL_VL); 2938 case ISD::VP_FDIV: 2939 return lowerVPOp(Op, DAG, RISCVISD::FDIV_VL); 2940 } 2941 } 2942 2943 static SDValue getTargetNode(GlobalAddressSDNode *N, SDLoc DL, EVT Ty, 2944 SelectionDAG &DAG, unsigned Flags) { 2945 return DAG.getTargetGlobalAddress(N->getGlobal(), DL, Ty, 0, Flags); 2946 } 2947 2948 static SDValue getTargetNode(BlockAddressSDNode *N, SDLoc DL, EVT Ty, 2949 SelectionDAG &DAG, unsigned Flags) { 2950 return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, N->getOffset(), 2951 Flags); 2952 } 2953 2954 static SDValue getTargetNode(ConstantPoolSDNode *N, SDLoc DL, EVT Ty, 2955 SelectionDAG &DAG, unsigned Flags) { 2956 return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlign(), 2957 N->getOffset(), Flags); 2958 } 2959 2960 static SDValue getTargetNode(JumpTableSDNode *N, SDLoc DL, EVT Ty, 2961 SelectionDAG &DAG, unsigned Flags) { 2962 return DAG.getTargetJumpTable(N->getIndex(), Ty, Flags); 2963 } 2964 2965 template <class NodeTy> 2966 SDValue RISCVTargetLowering::getAddr(NodeTy *N, SelectionDAG &DAG, 2967 bool IsLocal) const { 2968 SDLoc DL(N); 2969 EVT Ty = getPointerTy(DAG.getDataLayout()); 2970 2971 if (isPositionIndependent()) { 2972 SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0); 2973 if (IsLocal) 2974 // Use PC-relative addressing to access the symbol. This generates the 2975 // pattern (PseudoLLA sym), which expands to (addi (auipc %pcrel_hi(sym)) 2976 // %pcrel_lo(auipc)). 2977 return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0); 2978 2979 // Use PC-relative addressing to access the GOT for this symbol, then load 2980 // the address from the GOT. This generates the pattern (PseudoLA sym), 2981 // which expands to (ld (addi (auipc %got_pcrel_hi(sym)) %pcrel_lo(auipc))). 2982 return SDValue(DAG.getMachineNode(RISCV::PseudoLA, DL, Ty, Addr), 0); 2983 } 2984 2985 switch (getTargetMachine().getCodeModel()) { 2986 default: 2987 report_fatal_error("Unsupported code model for lowering"); 2988 case CodeModel::Small: { 2989 // Generate a sequence for accessing addresses within the first 2 GiB of 2990 // address space. This generates the pattern (addi (lui %hi(sym)) %lo(sym)). 2991 SDValue AddrHi = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_HI); 2992 SDValue AddrLo = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_LO); 2993 SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0); 2994 return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNHi, AddrLo), 0); 2995 } 2996 case CodeModel::Medium: { 2997 // Generate a sequence for accessing addresses within any 2GiB range within 2998 // the address space. This generates the pattern (PseudoLLA sym), which 2999 // expands to (addi (auipc %pcrel_hi(sym)) %pcrel_lo(auipc)). 3000 SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0); 3001 return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0); 3002 } 3003 } 3004 } 3005 3006 SDValue RISCVTargetLowering::lowerGlobalAddress(SDValue Op, 3007 SelectionDAG &DAG) const { 3008 SDLoc DL(Op); 3009 EVT Ty = Op.getValueType(); 3010 GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op); 3011 int64_t Offset = N->getOffset(); 3012 MVT XLenVT = Subtarget.getXLenVT(); 3013 3014 const GlobalValue *GV = N->getGlobal(); 3015 bool IsLocal = getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV); 3016 SDValue Addr = getAddr(N, DAG, IsLocal); 3017 3018 // In order to maximise the opportunity for common subexpression elimination, 3019 // emit a separate ADD node for the global address offset instead of folding 3020 // it in the global address node. Later peephole optimisations may choose to 3021 // fold it back in when profitable. 3022 if (Offset != 0) 3023 return DAG.getNode(ISD::ADD, DL, Ty, Addr, 3024 DAG.getConstant(Offset, DL, XLenVT)); 3025 return Addr; 3026 } 3027 3028 SDValue RISCVTargetLowering::lowerBlockAddress(SDValue Op, 3029 SelectionDAG &DAG) const { 3030 BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op); 3031 3032 return getAddr(N, DAG); 3033 } 3034 3035 SDValue RISCVTargetLowering::lowerConstantPool(SDValue Op, 3036 SelectionDAG &DAG) const { 3037 ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op); 3038 3039 return getAddr(N, DAG); 3040 } 3041 3042 SDValue RISCVTargetLowering::lowerJumpTable(SDValue Op, 3043 SelectionDAG &DAG) const { 3044 JumpTableSDNode *N = cast<JumpTableSDNode>(Op); 3045 3046 return getAddr(N, DAG); 3047 } 3048 3049 SDValue RISCVTargetLowering::getStaticTLSAddr(GlobalAddressSDNode *N, 3050 SelectionDAG &DAG, 3051 bool UseGOT) const { 3052 SDLoc DL(N); 3053 EVT Ty = getPointerTy(DAG.getDataLayout()); 3054 const GlobalValue *GV = N->getGlobal(); 3055 MVT XLenVT = Subtarget.getXLenVT(); 3056 3057 if (UseGOT) { 3058 // Use PC-relative addressing to access the GOT for this TLS symbol, then 3059 // load the address from the GOT and add the thread pointer. This generates 3060 // the pattern (PseudoLA_TLS_IE sym), which expands to 3061 // (ld (auipc %tls_ie_pcrel_hi(sym)) %pcrel_lo(auipc)). 3062 SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0); 3063 SDValue Load = 3064 SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_IE, DL, Ty, Addr), 0); 3065 3066 // Add the thread pointer. 3067 SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT); 3068 return DAG.getNode(ISD::ADD, DL, Ty, Load, TPReg); 3069 } 3070 3071 // Generate a sequence for accessing the address relative to the thread 3072 // pointer, with the appropriate adjustment for the thread pointer offset. 3073 // This generates the pattern 3074 // (add (add_tprel (lui %tprel_hi(sym)) tp %tprel_add(sym)) %tprel_lo(sym)) 3075 SDValue AddrHi = 3076 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_HI); 3077 SDValue AddrAdd = 3078 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_ADD); 3079 SDValue AddrLo = 3080 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_LO); 3081 3082 SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0); 3083 SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT); 3084 SDValue MNAdd = SDValue( 3085 DAG.getMachineNode(RISCV::PseudoAddTPRel, DL, Ty, MNHi, TPReg, AddrAdd), 3086 0); 3087 return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNAdd, AddrLo), 0); 3088 } 3089 3090 SDValue RISCVTargetLowering::getDynamicTLSAddr(GlobalAddressSDNode *N, 3091 SelectionDAG &DAG) const { 3092 SDLoc DL(N); 3093 EVT Ty = getPointerTy(DAG.getDataLayout()); 3094 IntegerType *CallTy = Type::getIntNTy(*DAG.getContext(), Ty.getSizeInBits()); 3095 const GlobalValue *GV = N->getGlobal(); 3096 3097 // Use a PC-relative addressing mode to access the global dynamic GOT address. 3098 // This generates the pattern (PseudoLA_TLS_GD sym), which expands to 3099 // (addi (auipc %tls_gd_pcrel_hi(sym)) %pcrel_lo(auipc)). 3100 SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0); 3101 SDValue Load = 3102 SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_GD, DL, Ty, Addr), 0); 3103 3104 // Prepare argument list to generate call. 3105 ArgListTy Args; 3106 ArgListEntry Entry; 3107 Entry.Node = Load; 3108 Entry.Ty = CallTy; 3109 Args.push_back(Entry); 3110 3111 // Setup call to __tls_get_addr. 3112 TargetLowering::CallLoweringInfo CLI(DAG); 3113 CLI.setDebugLoc(DL) 3114 .setChain(DAG.getEntryNode()) 3115 .setLibCallee(CallingConv::C, CallTy, 3116 DAG.getExternalSymbol("__tls_get_addr", Ty), 3117 std::move(Args)); 3118 3119 return LowerCallTo(CLI).first; 3120 } 3121 3122 SDValue RISCVTargetLowering::lowerGlobalTLSAddress(SDValue Op, 3123 SelectionDAG &DAG) const { 3124 SDLoc DL(Op); 3125 EVT Ty = Op.getValueType(); 3126 GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op); 3127 int64_t Offset = N->getOffset(); 3128 MVT XLenVT = Subtarget.getXLenVT(); 3129 3130 TLSModel::Model Model = getTargetMachine().getTLSModel(N->getGlobal()); 3131 3132 if (DAG.getMachineFunction().getFunction().getCallingConv() == 3133 CallingConv::GHC) 3134 report_fatal_error("In GHC calling convention TLS is not supported"); 3135 3136 SDValue Addr; 3137 switch (Model) { 3138 case TLSModel::LocalExec: 3139 Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/false); 3140 break; 3141 case TLSModel::InitialExec: 3142 Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/true); 3143 break; 3144 case TLSModel::LocalDynamic: 3145 case TLSModel::GeneralDynamic: 3146 Addr = getDynamicTLSAddr(N, DAG); 3147 break; 3148 } 3149 3150 // In order to maximise the opportunity for common subexpression elimination, 3151 // emit a separate ADD node for the global address offset instead of folding 3152 // it in the global address node. Later peephole optimisations may choose to 3153 // fold it back in when profitable. 3154 if (Offset != 0) 3155 return DAG.getNode(ISD::ADD, DL, Ty, Addr, 3156 DAG.getConstant(Offset, DL, XLenVT)); 3157 return Addr; 3158 } 3159 3160 SDValue RISCVTargetLowering::lowerSELECT(SDValue Op, SelectionDAG &DAG) const { 3161 SDValue CondV = Op.getOperand(0); 3162 SDValue TrueV = Op.getOperand(1); 3163 SDValue FalseV = Op.getOperand(2); 3164 SDLoc DL(Op); 3165 MVT VT = Op.getSimpleValueType(); 3166 MVT XLenVT = Subtarget.getXLenVT(); 3167 3168 // Lower vector SELECTs to VSELECTs by splatting the condition. 3169 if (VT.isVector()) { 3170 MVT SplatCondVT = VT.changeVectorElementType(MVT::i1); 3171 SDValue CondSplat = VT.isScalableVector() 3172 ? DAG.getSplatVector(SplatCondVT, DL, CondV) 3173 : DAG.getSplatBuildVector(SplatCondVT, DL, CondV); 3174 return DAG.getNode(ISD::VSELECT, DL, VT, CondSplat, TrueV, FalseV); 3175 } 3176 3177 // If the result type is XLenVT and CondV is the output of a SETCC node 3178 // which also operated on XLenVT inputs, then merge the SETCC node into the 3179 // lowered RISCVISD::SELECT_CC to take advantage of the integer 3180 // compare+branch instructions. i.e.: 3181 // (select (setcc lhs, rhs, cc), truev, falsev) 3182 // -> (riscvisd::select_cc lhs, rhs, cc, truev, falsev) 3183 if (VT == XLenVT && CondV.getOpcode() == ISD::SETCC && 3184 CondV.getOperand(0).getSimpleValueType() == XLenVT) { 3185 SDValue LHS = CondV.getOperand(0); 3186 SDValue RHS = CondV.getOperand(1); 3187 const auto *CC = cast<CondCodeSDNode>(CondV.getOperand(2)); 3188 ISD::CondCode CCVal = CC->get(); 3189 3190 // Special case for a select of 2 constants that have a diffence of 1. 3191 // Normally this is done by DAGCombine, but if the select is introduced by 3192 // type legalization or op legalization, we miss it. Restricting to SETLT 3193 // case for now because that is what signed saturating add/sub need. 3194 // FIXME: We don't need the condition to be SETLT or even a SETCC, 3195 // but we would probably want to swap the true/false values if the condition 3196 // is SETGE/SETLE to avoid an XORI. 3197 if (isa<ConstantSDNode>(TrueV) && isa<ConstantSDNode>(FalseV) && 3198 CCVal == ISD::SETLT) { 3199 const APInt &TrueVal = cast<ConstantSDNode>(TrueV)->getAPIntValue(); 3200 const APInt &FalseVal = cast<ConstantSDNode>(FalseV)->getAPIntValue(); 3201 if (TrueVal - 1 == FalseVal) 3202 return DAG.getNode(ISD::ADD, DL, Op.getValueType(), CondV, FalseV); 3203 if (TrueVal + 1 == FalseVal) 3204 return DAG.getNode(ISD::SUB, DL, Op.getValueType(), FalseV, CondV); 3205 } 3206 3207 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 3208 3209 SDValue TargetCC = DAG.getCondCode(CCVal); 3210 SDValue Ops[] = {LHS, RHS, TargetCC, TrueV, FalseV}; 3211 return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops); 3212 } 3213 3214 // Otherwise: 3215 // (select condv, truev, falsev) 3216 // -> (riscvisd::select_cc condv, zero, setne, truev, falsev) 3217 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 3218 SDValue SetNE = DAG.getCondCode(ISD::SETNE); 3219 3220 SDValue Ops[] = {CondV, Zero, SetNE, TrueV, FalseV}; 3221 3222 return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops); 3223 } 3224 3225 SDValue RISCVTargetLowering::lowerBRCOND(SDValue Op, SelectionDAG &DAG) const { 3226 SDValue CondV = Op.getOperand(1); 3227 SDLoc DL(Op); 3228 MVT XLenVT = Subtarget.getXLenVT(); 3229 3230 if (CondV.getOpcode() == ISD::SETCC && 3231 CondV.getOperand(0).getValueType() == XLenVT) { 3232 SDValue LHS = CondV.getOperand(0); 3233 SDValue RHS = CondV.getOperand(1); 3234 ISD::CondCode CCVal = cast<CondCodeSDNode>(CondV.getOperand(2))->get(); 3235 3236 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 3237 3238 SDValue TargetCC = DAG.getCondCode(CCVal); 3239 return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0), 3240 LHS, RHS, TargetCC, Op.getOperand(2)); 3241 } 3242 3243 return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0), 3244 CondV, DAG.getConstant(0, DL, XLenVT), 3245 DAG.getCondCode(ISD::SETNE), Op.getOperand(2)); 3246 } 3247 3248 SDValue RISCVTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const { 3249 MachineFunction &MF = DAG.getMachineFunction(); 3250 RISCVMachineFunctionInfo *FuncInfo = MF.getInfo<RISCVMachineFunctionInfo>(); 3251 3252 SDLoc DL(Op); 3253 SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), 3254 getPointerTy(MF.getDataLayout())); 3255 3256 // vastart just stores the address of the VarArgsFrameIndex slot into the 3257 // memory location argument. 3258 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 3259 return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1), 3260 MachinePointerInfo(SV)); 3261 } 3262 3263 SDValue RISCVTargetLowering::lowerFRAMEADDR(SDValue Op, 3264 SelectionDAG &DAG) const { 3265 const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo(); 3266 MachineFunction &MF = DAG.getMachineFunction(); 3267 MachineFrameInfo &MFI = MF.getFrameInfo(); 3268 MFI.setFrameAddressIsTaken(true); 3269 Register FrameReg = RI.getFrameRegister(MF); 3270 int XLenInBytes = Subtarget.getXLen() / 8; 3271 3272 EVT VT = Op.getValueType(); 3273 SDLoc DL(Op); 3274 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, FrameReg, VT); 3275 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 3276 while (Depth--) { 3277 int Offset = -(XLenInBytes * 2); 3278 SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr, 3279 DAG.getIntPtrConstant(Offset, DL)); 3280 FrameAddr = 3281 DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo()); 3282 } 3283 return FrameAddr; 3284 } 3285 3286 SDValue RISCVTargetLowering::lowerRETURNADDR(SDValue Op, 3287 SelectionDAG &DAG) const { 3288 const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo(); 3289 MachineFunction &MF = DAG.getMachineFunction(); 3290 MachineFrameInfo &MFI = MF.getFrameInfo(); 3291 MFI.setReturnAddressIsTaken(true); 3292 MVT XLenVT = Subtarget.getXLenVT(); 3293 int XLenInBytes = Subtarget.getXLen() / 8; 3294 3295 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 3296 return SDValue(); 3297 3298 EVT VT = Op.getValueType(); 3299 SDLoc DL(Op); 3300 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 3301 if (Depth) { 3302 int Off = -XLenInBytes; 3303 SDValue FrameAddr = lowerFRAMEADDR(Op, DAG); 3304 SDValue Offset = DAG.getConstant(Off, DL, VT); 3305 return DAG.getLoad(VT, DL, DAG.getEntryNode(), 3306 DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset), 3307 MachinePointerInfo()); 3308 } 3309 3310 // Return the value of the return address register, marking it an implicit 3311 // live-in. 3312 Register Reg = MF.addLiveIn(RI.getRARegister(), getRegClassFor(XLenVT)); 3313 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, XLenVT); 3314 } 3315 3316 SDValue RISCVTargetLowering::lowerShiftLeftParts(SDValue Op, 3317 SelectionDAG &DAG) const { 3318 SDLoc DL(Op); 3319 SDValue Lo = Op.getOperand(0); 3320 SDValue Hi = Op.getOperand(1); 3321 SDValue Shamt = Op.getOperand(2); 3322 EVT VT = Lo.getValueType(); 3323 3324 // if Shamt-XLEN < 0: // Shamt < XLEN 3325 // Lo = Lo << Shamt 3326 // Hi = (Hi << Shamt) | ((Lo >>u 1) >>u (XLEN-1 - Shamt)) 3327 // else: 3328 // Lo = 0 3329 // Hi = Lo << (Shamt-XLEN) 3330 3331 SDValue Zero = DAG.getConstant(0, DL, VT); 3332 SDValue One = DAG.getConstant(1, DL, VT); 3333 SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT); 3334 SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT); 3335 SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen); 3336 SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt); 3337 3338 SDValue LoTrue = DAG.getNode(ISD::SHL, DL, VT, Lo, Shamt); 3339 SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, VT, Lo, One); 3340 SDValue ShiftRightLo = 3341 DAG.getNode(ISD::SRL, DL, VT, ShiftRight1Lo, XLenMinus1Shamt); 3342 SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, Hi, Shamt); 3343 SDValue HiTrue = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo); 3344 SDValue HiFalse = DAG.getNode(ISD::SHL, DL, VT, Lo, ShamtMinusXLen); 3345 3346 SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT); 3347 3348 Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, Zero); 3349 Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse); 3350 3351 SDValue Parts[2] = {Lo, Hi}; 3352 return DAG.getMergeValues(Parts, DL); 3353 } 3354 3355 SDValue RISCVTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG, 3356 bool IsSRA) const { 3357 SDLoc DL(Op); 3358 SDValue Lo = Op.getOperand(0); 3359 SDValue Hi = Op.getOperand(1); 3360 SDValue Shamt = Op.getOperand(2); 3361 EVT VT = Lo.getValueType(); 3362 3363 // SRA expansion: 3364 // if Shamt-XLEN < 0: // Shamt < XLEN 3365 // Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt)) 3366 // Hi = Hi >>s Shamt 3367 // else: 3368 // Lo = Hi >>s (Shamt-XLEN); 3369 // Hi = Hi >>s (XLEN-1) 3370 // 3371 // SRL expansion: 3372 // if Shamt-XLEN < 0: // Shamt < XLEN 3373 // Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt)) 3374 // Hi = Hi >>u Shamt 3375 // else: 3376 // Lo = Hi >>u (Shamt-XLEN); 3377 // Hi = 0; 3378 3379 unsigned ShiftRightOp = IsSRA ? ISD::SRA : ISD::SRL; 3380 3381 SDValue Zero = DAG.getConstant(0, DL, VT); 3382 SDValue One = DAG.getConstant(1, DL, VT); 3383 SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT); 3384 SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT); 3385 SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen); 3386 SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt); 3387 3388 SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, Lo, Shamt); 3389 SDValue ShiftLeftHi1 = DAG.getNode(ISD::SHL, DL, VT, Hi, One); 3390 SDValue ShiftLeftHi = 3391 DAG.getNode(ISD::SHL, DL, VT, ShiftLeftHi1, XLenMinus1Shamt); 3392 SDValue LoTrue = DAG.getNode(ISD::OR, DL, VT, ShiftRightLo, ShiftLeftHi); 3393 SDValue HiTrue = DAG.getNode(ShiftRightOp, DL, VT, Hi, Shamt); 3394 SDValue LoFalse = DAG.getNode(ShiftRightOp, DL, VT, Hi, ShamtMinusXLen); 3395 SDValue HiFalse = 3396 IsSRA ? DAG.getNode(ISD::SRA, DL, VT, Hi, XLenMinus1) : Zero; 3397 3398 SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT); 3399 3400 Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, LoFalse); 3401 Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse); 3402 3403 SDValue Parts[2] = {Lo, Hi}; 3404 return DAG.getMergeValues(Parts, DL); 3405 } 3406 3407 // Lower splats of i1 types to SETCC. For each mask vector type, we have a 3408 // legal equivalently-sized i8 type, so we can use that as a go-between. 3409 SDValue RISCVTargetLowering::lowerVectorMaskSplat(SDValue Op, 3410 SelectionDAG &DAG) const { 3411 SDLoc DL(Op); 3412 MVT VT = Op.getSimpleValueType(); 3413 SDValue SplatVal = Op.getOperand(0); 3414 // All-zeros or all-ones splats are handled specially. 3415 if (ISD::isConstantSplatVectorAllOnes(Op.getNode())) { 3416 SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second; 3417 return DAG.getNode(RISCVISD::VMSET_VL, DL, VT, VL); 3418 } 3419 if (ISD::isConstantSplatVectorAllZeros(Op.getNode())) { 3420 SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second; 3421 return DAG.getNode(RISCVISD::VMCLR_VL, DL, VT, VL); 3422 } 3423 MVT XLenVT = Subtarget.getXLenVT(); 3424 assert(SplatVal.getValueType() == XLenVT && 3425 "Unexpected type for i1 splat value"); 3426 MVT InterVT = VT.changeVectorElementType(MVT::i8); 3427 SplatVal = DAG.getNode(ISD::AND, DL, XLenVT, SplatVal, 3428 DAG.getConstant(1, DL, XLenVT)); 3429 SDValue LHS = DAG.getSplatVector(InterVT, DL, SplatVal); 3430 SDValue Zero = DAG.getConstant(0, DL, InterVT); 3431 return DAG.getSetCC(DL, VT, LHS, Zero, ISD::SETNE); 3432 } 3433 3434 // Custom-lower a SPLAT_VECTOR_PARTS where XLEN<SEW, as the SEW element type is 3435 // illegal (currently only vXi64 RV32). 3436 // FIXME: We could also catch non-constant sign-extended i32 values and lower 3437 // them to SPLAT_VECTOR_I64 3438 SDValue RISCVTargetLowering::lowerSPLAT_VECTOR_PARTS(SDValue Op, 3439 SelectionDAG &DAG) const { 3440 SDLoc DL(Op); 3441 MVT VecVT = Op.getSimpleValueType(); 3442 assert(!Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64 && 3443 "Unexpected SPLAT_VECTOR_PARTS lowering"); 3444 3445 assert(Op.getNumOperands() == 2 && "Unexpected number of operands!"); 3446 SDValue Lo = Op.getOperand(0); 3447 SDValue Hi = Op.getOperand(1); 3448 3449 if (VecVT.isFixedLengthVector()) { 3450 MVT ContainerVT = getContainerForFixedLengthVector(VecVT); 3451 SDLoc DL(Op); 3452 SDValue Mask, VL; 3453 std::tie(Mask, VL) = 3454 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 3455 3456 SDValue Res = splatPartsI64WithVL(DL, ContainerVT, Lo, Hi, VL, DAG); 3457 return convertFromScalableVector(VecVT, Res, DAG, Subtarget); 3458 } 3459 3460 if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) { 3461 int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue(); 3462 int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue(); 3463 // If Hi constant is all the same sign bit as Lo, lower this as a custom 3464 // node in order to try and match RVV vector/scalar instructions. 3465 if ((LoC >> 31) == HiC) 3466 return DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, Lo); 3467 } 3468 3469 // Detect cases where Hi is (SRA Lo, 31) which means Hi is Lo sign extended. 3470 if (Hi.getOpcode() == ISD::SRA && Hi.getOperand(0) == Lo && 3471 isa<ConstantSDNode>(Hi.getOperand(1)) && 3472 Hi.getConstantOperandVal(1) == 31) 3473 return DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, Lo); 3474 3475 // Fall back to use a stack store and stride x0 vector load. Use X0 as VL. 3476 return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VecVT, Lo, Hi, 3477 DAG.getTargetConstant(RISCV::VLMaxSentinel, DL, MVT::i64)); 3478 } 3479 3480 // Custom-lower extensions from mask vectors by using a vselect either with 1 3481 // for zero/any-extension or -1 for sign-extension: 3482 // (vXiN = (s|z)ext vXi1:vmask) -> (vXiN = vselect vmask, (-1 or 1), 0) 3483 // Note that any-extension is lowered identically to zero-extension. 3484 SDValue RISCVTargetLowering::lowerVectorMaskExt(SDValue Op, SelectionDAG &DAG, 3485 int64_t ExtTrueVal) const { 3486 SDLoc DL(Op); 3487 MVT VecVT = Op.getSimpleValueType(); 3488 SDValue Src = Op.getOperand(0); 3489 // Only custom-lower extensions from mask types 3490 assert(Src.getValueType().isVector() && 3491 Src.getValueType().getVectorElementType() == MVT::i1); 3492 3493 MVT XLenVT = Subtarget.getXLenVT(); 3494 SDValue SplatZero = DAG.getConstant(0, DL, XLenVT); 3495 SDValue SplatTrueVal = DAG.getConstant(ExtTrueVal, DL, XLenVT); 3496 3497 if (VecVT.isScalableVector()) { 3498 // Be careful not to introduce illegal scalar types at this stage, and be 3499 // careful also about splatting constants as on RV32, vXi64 SPLAT_VECTOR is 3500 // illegal and must be expanded. Since we know that the constants are 3501 // sign-extended 32-bit values, we use SPLAT_VECTOR_I64 directly. 3502 bool IsRV32E64 = 3503 !Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64; 3504 3505 if (!IsRV32E64) { 3506 SplatZero = DAG.getSplatVector(VecVT, DL, SplatZero); 3507 SplatTrueVal = DAG.getSplatVector(VecVT, DL, SplatTrueVal); 3508 } else { 3509 SplatZero = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, SplatZero); 3510 SplatTrueVal = 3511 DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, SplatTrueVal); 3512 } 3513 3514 return DAG.getNode(ISD::VSELECT, DL, VecVT, Src, SplatTrueVal, SplatZero); 3515 } 3516 3517 MVT ContainerVT = getContainerForFixedLengthVector(VecVT); 3518 MVT I1ContainerVT = 3519 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 3520 3521 SDValue CC = convertToScalableVector(I1ContainerVT, Src, DAG, Subtarget); 3522 3523 SDValue Mask, VL; 3524 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 3525 3526 SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatZero, VL); 3527 SplatTrueVal = 3528 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatTrueVal, VL); 3529 SDValue Select = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC, 3530 SplatTrueVal, SplatZero, VL); 3531 3532 return convertFromScalableVector(VecVT, Select, DAG, Subtarget); 3533 } 3534 3535 SDValue RISCVTargetLowering::lowerFixedLengthVectorExtendToRVV( 3536 SDValue Op, SelectionDAG &DAG, unsigned ExtendOpc) const { 3537 MVT ExtVT = Op.getSimpleValueType(); 3538 // Only custom-lower extensions from fixed-length vector types. 3539 if (!ExtVT.isFixedLengthVector()) 3540 return Op; 3541 MVT VT = Op.getOperand(0).getSimpleValueType(); 3542 // Grab the canonical container type for the extended type. Infer the smaller 3543 // type from that to ensure the same number of vector elements, as we know 3544 // the LMUL will be sufficient to hold the smaller type. 3545 MVT ContainerExtVT = getContainerForFixedLengthVector(ExtVT); 3546 // Get the extended container type manually to ensure the same number of 3547 // vector elements between source and dest. 3548 MVT ContainerVT = MVT::getVectorVT(VT.getVectorElementType(), 3549 ContainerExtVT.getVectorElementCount()); 3550 3551 SDValue Op1 = 3552 convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget); 3553 3554 SDLoc DL(Op); 3555 SDValue Mask, VL; 3556 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 3557 3558 SDValue Ext = DAG.getNode(ExtendOpc, DL, ContainerExtVT, Op1, Mask, VL); 3559 3560 return convertFromScalableVector(ExtVT, Ext, DAG, Subtarget); 3561 } 3562 3563 // Custom-lower truncations from vectors to mask vectors by using a mask and a 3564 // setcc operation: 3565 // (vXi1 = trunc vXiN vec) -> (vXi1 = setcc (and vec, 1), 0, ne) 3566 SDValue RISCVTargetLowering::lowerVectorMaskTrunc(SDValue Op, 3567 SelectionDAG &DAG) const { 3568 SDLoc DL(Op); 3569 EVT MaskVT = Op.getValueType(); 3570 // Only expect to custom-lower truncations to mask types 3571 assert(MaskVT.isVector() && MaskVT.getVectorElementType() == MVT::i1 && 3572 "Unexpected type for vector mask lowering"); 3573 SDValue Src = Op.getOperand(0); 3574 MVT VecVT = Src.getSimpleValueType(); 3575 3576 // If this is a fixed vector, we need to convert it to a scalable vector. 3577 MVT ContainerVT = VecVT; 3578 if (VecVT.isFixedLengthVector()) { 3579 ContainerVT = getContainerForFixedLengthVector(VecVT); 3580 Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget); 3581 } 3582 3583 SDValue SplatOne = DAG.getConstant(1, DL, Subtarget.getXLenVT()); 3584 SDValue SplatZero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 3585 3586 SplatOne = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatOne); 3587 SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatZero); 3588 3589 if (VecVT.isScalableVector()) { 3590 SDValue Trunc = DAG.getNode(ISD::AND, DL, VecVT, Src, SplatOne); 3591 return DAG.getSetCC(DL, MaskVT, Trunc, SplatZero, ISD::SETNE); 3592 } 3593 3594 SDValue Mask, VL; 3595 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 3596 3597 MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1); 3598 SDValue Trunc = 3599 DAG.getNode(RISCVISD::AND_VL, DL, ContainerVT, Src, SplatOne, Mask, VL); 3600 Trunc = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskContainerVT, Trunc, SplatZero, 3601 DAG.getCondCode(ISD::SETNE), Mask, VL); 3602 return convertFromScalableVector(MaskVT, Trunc, DAG, Subtarget); 3603 } 3604 3605 // Custom-legalize INSERT_VECTOR_ELT so that the value is inserted into the 3606 // first position of a vector, and that vector is slid up to the insert index. 3607 // By limiting the active vector length to index+1 and merging with the 3608 // original vector (with an undisturbed tail policy for elements >= VL), we 3609 // achieve the desired result of leaving all elements untouched except the one 3610 // at VL-1, which is replaced with the desired value. 3611 SDValue RISCVTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op, 3612 SelectionDAG &DAG) const { 3613 SDLoc DL(Op); 3614 MVT VecVT = Op.getSimpleValueType(); 3615 SDValue Vec = Op.getOperand(0); 3616 SDValue Val = Op.getOperand(1); 3617 SDValue Idx = Op.getOperand(2); 3618 3619 if (VecVT.getVectorElementType() == MVT::i1) { 3620 // FIXME: For now we just promote to an i8 vector and insert into that, 3621 // but this is probably not optimal. 3622 MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount()); 3623 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec); 3624 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, WideVT, Vec, Val, Idx); 3625 return DAG.getNode(ISD::TRUNCATE, DL, VecVT, Vec); 3626 } 3627 3628 MVT ContainerVT = VecVT; 3629 // If the operand is a fixed-length vector, convert to a scalable one. 3630 if (VecVT.isFixedLengthVector()) { 3631 ContainerVT = getContainerForFixedLengthVector(VecVT); 3632 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 3633 } 3634 3635 MVT XLenVT = Subtarget.getXLenVT(); 3636 3637 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 3638 bool IsLegalInsert = Subtarget.is64Bit() || Val.getValueType() != MVT::i64; 3639 // Even i64-element vectors on RV32 can be lowered without scalar 3640 // legalization if the most-significant 32 bits of the value are not affected 3641 // by the sign-extension of the lower 32 bits. 3642 // TODO: We could also catch sign extensions of a 32-bit value. 3643 if (!IsLegalInsert && isa<ConstantSDNode>(Val)) { 3644 const auto *CVal = cast<ConstantSDNode>(Val); 3645 if (isInt<32>(CVal->getSExtValue())) { 3646 IsLegalInsert = true; 3647 Val = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32); 3648 } 3649 } 3650 3651 SDValue Mask, VL; 3652 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 3653 3654 SDValue ValInVec; 3655 3656 if (IsLegalInsert) { 3657 unsigned Opc = 3658 VecVT.isFloatingPoint() ? RISCVISD::VFMV_S_F_VL : RISCVISD::VMV_S_X_VL; 3659 if (isNullConstant(Idx)) { 3660 Vec = DAG.getNode(Opc, DL, ContainerVT, Vec, Val, VL); 3661 if (!VecVT.isFixedLengthVector()) 3662 return Vec; 3663 return convertFromScalableVector(VecVT, Vec, DAG, Subtarget); 3664 } 3665 ValInVec = 3666 DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), Val, VL); 3667 } else { 3668 // On RV32, i64-element vectors must be specially handled to place the 3669 // value at element 0, by using two vslide1up instructions in sequence on 3670 // the i32 split lo/hi value. Use an equivalently-sized i32 vector for 3671 // this. 3672 SDValue One = DAG.getConstant(1, DL, XLenVT); 3673 SDValue ValLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, Zero); 3674 SDValue ValHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, One); 3675 MVT I32ContainerVT = 3676 MVT::getVectorVT(MVT::i32, ContainerVT.getVectorElementCount() * 2); 3677 SDValue I32Mask = 3678 getDefaultScalableVLOps(I32ContainerVT, DL, DAG, Subtarget).first; 3679 // Limit the active VL to two. 3680 SDValue InsertI64VL = DAG.getConstant(2, DL, XLenVT); 3681 // Note: We can't pass a UNDEF to the first VSLIDE1UP_VL since an untied 3682 // undef doesn't obey the earlyclobber constraint. Just splat a zero value. 3683 ValInVec = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, I32ContainerVT, Zero, 3684 InsertI64VL); 3685 // First slide in the hi value, then the lo in underneath it. 3686 ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT, ValInVec, 3687 ValHi, I32Mask, InsertI64VL); 3688 ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT, ValInVec, 3689 ValLo, I32Mask, InsertI64VL); 3690 // Bitcast back to the right container type. 3691 ValInVec = DAG.getBitcast(ContainerVT, ValInVec); 3692 } 3693 3694 // Now that the value is in a vector, slide it into position. 3695 SDValue InsertVL = 3696 DAG.getNode(ISD::ADD, DL, XLenVT, Idx, DAG.getConstant(1, DL, XLenVT)); 3697 SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec, 3698 ValInVec, Idx, Mask, InsertVL); 3699 if (!VecVT.isFixedLengthVector()) 3700 return Slideup; 3701 return convertFromScalableVector(VecVT, Slideup, DAG, Subtarget); 3702 } 3703 3704 // Custom-lower EXTRACT_VECTOR_ELT operations to slide the vector down, then 3705 // extract the first element: (extractelt (slidedown vec, idx), 0). For integer 3706 // types this is done using VMV_X_S to allow us to glean information about the 3707 // sign bits of the result. 3708 SDValue RISCVTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op, 3709 SelectionDAG &DAG) const { 3710 SDLoc DL(Op); 3711 SDValue Idx = Op.getOperand(1); 3712 SDValue Vec = Op.getOperand(0); 3713 EVT EltVT = Op.getValueType(); 3714 MVT VecVT = Vec.getSimpleValueType(); 3715 MVT XLenVT = Subtarget.getXLenVT(); 3716 3717 if (VecVT.getVectorElementType() == MVT::i1) { 3718 // FIXME: For now we just promote to an i8 vector and extract from that, 3719 // but this is probably not optimal. 3720 MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount()); 3721 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec); 3722 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec, Idx); 3723 } 3724 3725 // If this is a fixed vector, we need to convert it to a scalable vector. 3726 MVT ContainerVT = VecVT; 3727 if (VecVT.isFixedLengthVector()) { 3728 ContainerVT = getContainerForFixedLengthVector(VecVT); 3729 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 3730 } 3731 3732 // If the index is 0, the vector is already in the right position. 3733 if (!isNullConstant(Idx)) { 3734 // Use a VL of 1 to avoid processing more elements than we need. 3735 SDValue VL = DAG.getConstant(1, DL, XLenVT); 3736 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 3737 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 3738 Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 3739 DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL); 3740 } 3741 3742 if (!EltVT.isInteger()) { 3743 // Floating-point extracts are handled in TableGen. 3744 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec, 3745 DAG.getConstant(0, DL, XLenVT)); 3746 } 3747 3748 SDValue Elt0 = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); 3749 return DAG.getNode(ISD::TRUNCATE, DL, EltVT, Elt0); 3750 } 3751 3752 // Some RVV intrinsics may claim that they want an integer operand to be 3753 // promoted or expanded. 3754 static SDValue lowerVectorIntrinsicSplats(SDValue Op, SelectionDAG &DAG, 3755 const RISCVSubtarget &Subtarget) { 3756 assert((Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3757 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN) && 3758 "Unexpected opcode"); 3759 3760 if (!Subtarget.hasStdExtV()) 3761 return SDValue(); 3762 3763 bool HasChain = Op.getOpcode() == ISD::INTRINSIC_W_CHAIN; 3764 unsigned IntNo = Op.getConstantOperandVal(HasChain ? 1 : 0); 3765 SDLoc DL(Op); 3766 3767 const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II = 3768 RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo); 3769 if (!II || !II->SplatOperand) 3770 return SDValue(); 3771 3772 unsigned SplatOp = II->SplatOperand + HasChain; 3773 assert(SplatOp < Op.getNumOperands()); 3774 3775 SmallVector<SDValue, 8> Operands(Op->op_begin(), Op->op_end()); 3776 SDValue &ScalarOp = Operands[SplatOp]; 3777 MVT OpVT = ScalarOp.getSimpleValueType(); 3778 MVT XLenVT = Subtarget.getXLenVT(); 3779 3780 // If this isn't a scalar, or its type is XLenVT we're done. 3781 if (!OpVT.isScalarInteger() || OpVT == XLenVT) 3782 return SDValue(); 3783 3784 // Simplest case is that the operand needs to be promoted to XLenVT. 3785 if (OpVT.bitsLT(XLenVT)) { 3786 // If the operand is a constant, sign extend to increase our chances 3787 // of being able to use a .vi instruction. ANY_EXTEND would become a 3788 // a zero extend and the simm5 check in isel would fail. 3789 // FIXME: Should we ignore the upper bits in isel instead? 3790 unsigned ExtOpc = 3791 isa<ConstantSDNode>(ScalarOp) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND; 3792 ScalarOp = DAG.getNode(ExtOpc, DL, XLenVT, ScalarOp); 3793 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); 3794 } 3795 3796 // Use the previous operand to get the vXi64 VT. The result might be a mask 3797 // VT for compares. Using the previous operand assumes that the previous 3798 // operand will never have a smaller element size than a scalar operand and 3799 // that a widening operation never uses SEW=64. 3800 // NOTE: If this fails the below assert, we can probably just find the 3801 // element count from any operand or result and use it to construct the VT. 3802 assert(II->SplatOperand > 1 && "Unexpected splat operand!"); 3803 MVT VT = Op.getOperand(SplatOp - 1).getSimpleValueType(); 3804 3805 // The more complex case is when the scalar is larger than XLenVT. 3806 assert(XLenVT == MVT::i32 && OpVT == MVT::i64 && 3807 VT.getVectorElementType() == MVT::i64 && "Unexpected VTs!"); 3808 3809 // If this is a sign-extended 32-bit constant, we can truncate it and rely 3810 // on the instruction to sign-extend since SEW>XLEN. 3811 if (auto *CVal = dyn_cast<ConstantSDNode>(ScalarOp)) { 3812 if (isInt<32>(CVal->getSExtValue())) { 3813 ScalarOp = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32); 3814 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); 3815 } 3816 } 3817 3818 // We need to convert the scalar to a splat vector. 3819 // FIXME: Can we implicitly truncate the scalar if it is known to 3820 // be sign extended? 3821 // VL should be the last operand. 3822 SDValue VL = Op.getOperand(Op.getNumOperands() - 1); 3823 assert(VL.getValueType() == XLenVT); 3824 ScalarOp = splatSplitI64WithVL(DL, VT, ScalarOp, VL, DAG); 3825 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); 3826 } 3827 3828 SDValue RISCVTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 3829 SelectionDAG &DAG) const { 3830 unsigned IntNo = Op.getConstantOperandVal(0); 3831 SDLoc DL(Op); 3832 MVT XLenVT = Subtarget.getXLenVT(); 3833 3834 switch (IntNo) { 3835 default: 3836 break; // Don't custom lower most intrinsics. 3837 case Intrinsic::thread_pointer: { 3838 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3839 return DAG.getRegister(RISCV::X4, PtrVT); 3840 } 3841 case Intrinsic::riscv_orc_b: 3842 // Lower to the GORCI encoding for orc.b. 3843 return DAG.getNode(RISCVISD::GORC, DL, XLenVT, Op.getOperand(1), 3844 DAG.getConstant(7, DL, XLenVT)); 3845 case Intrinsic::riscv_grev: 3846 case Intrinsic::riscv_gorc: { 3847 unsigned Opc = 3848 IntNo == Intrinsic::riscv_grev ? RISCVISD::GREV : RISCVISD::GORC; 3849 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2)); 3850 } 3851 case Intrinsic::riscv_shfl: 3852 case Intrinsic::riscv_unshfl: { 3853 unsigned Opc = 3854 IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL; 3855 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2)); 3856 } 3857 case Intrinsic::riscv_bcompress: 3858 case Intrinsic::riscv_bdecompress: { 3859 unsigned Opc = IntNo == Intrinsic::riscv_bcompress ? RISCVISD::BCOMPRESS 3860 : RISCVISD::BDECOMPRESS; 3861 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2)); 3862 } 3863 case Intrinsic::riscv_vmv_x_s: 3864 assert(Op.getValueType() == XLenVT && "Unexpected VT!"); 3865 return DAG.getNode(RISCVISD::VMV_X_S, DL, Op.getValueType(), 3866 Op.getOperand(1)); 3867 case Intrinsic::riscv_vmv_v_x: 3868 return lowerScalarSplat(Op.getOperand(1), Op.getOperand(2), 3869 Op.getSimpleValueType(), DL, DAG, Subtarget); 3870 case Intrinsic::riscv_vfmv_v_f: 3871 return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, Op.getValueType(), 3872 Op.getOperand(1), Op.getOperand(2)); 3873 case Intrinsic::riscv_vmv_s_x: { 3874 SDValue Scalar = Op.getOperand(2); 3875 3876 if (Scalar.getValueType().bitsLE(XLenVT)) { 3877 Scalar = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Scalar); 3878 return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, Op.getValueType(), 3879 Op.getOperand(1), Scalar, Op.getOperand(3)); 3880 } 3881 3882 assert(Scalar.getValueType() == MVT::i64 && "Unexpected scalar VT!"); 3883 3884 // This is an i64 value that lives in two scalar registers. We have to 3885 // insert this in a convoluted way. First we build vXi64 splat containing 3886 // the/ two values that we assemble using some bit math. Next we'll use 3887 // vid.v and vmseq to build a mask with bit 0 set. Then we'll use that mask 3888 // to merge element 0 from our splat into the source vector. 3889 // FIXME: This is probably not the best way to do this, but it is 3890 // consistent with INSERT_VECTOR_ELT lowering so it is a good starting 3891 // point. 3892 // sw lo, (a0) 3893 // sw hi, 4(a0) 3894 // vlse vX, (a0) 3895 // 3896 // vid.v vVid 3897 // vmseq.vx mMask, vVid, 0 3898 // vmerge.vvm vDest, vSrc, vVal, mMask 3899 MVT VT = Op.getSimpleValueType(); 3900 SDValue Vec = Op.getOperand(1); 3901 SDValue VL = Op.getOperand(3); 3902 3903 SDValue SplattedVal = splatSplitI64WithVL(DL, VT, Scalar, VL, DAG); 3904 SDValue SplattedIdx = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, 3905 DAG.getConstant(0, DL, MVT::i32), VL); 3906 3907 MVT MaskVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount()); 3908 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 3909 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL); 3910 SDValue SelectCond = 3911 DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, VID, SplattedIdx, 3912 DAG.getCondCode(ISD::SETEQ), Mask, VL); 3913 return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, SelectCond, SplattedVal, 3914 Vec, VL); 3915 } 3916 case Intrinsic::riscv_vslide1up: 3917 case Intrinsic::riscv_vslide1down: 3918 case Intrinsic::riscv_vslide1up_mask: 3919 case Intrinsic::riscv_vslide1down_mask: { 3920 // We need to special case these when the scalar is larger than XLen. 3921 unsigned NumOps = Op.getNumOperands(); 3922 bool IsMasked = NumOps == 7; 3923 unsigned OpOffset = IsMasked ? 1 : 0; 3924 SDValue Scalar = Op.getOperand(2 + OpOffset); 3925 if (Scalar.getValueType().bitsLE(XLenVT)) 3926 break; 3927 3928 // Splatting a sign extended constant is fine. 3929 if (auto *CVal = dyn_cast<ConstantSDNode>(Scalar)) 3930 if (isInt<32>(CVal->getSExtValue())) 3931 break; 3932 3933 MVT VT = Op.getSimpleValueType(); 3934 assert(VT.getVectorElementType() == MVT::i64 && 3935 Scalar.getValueType() == MVT::i64 && "Unexpected VTs"); 3936 3937 // Convert the vector source to the equivalent nxvXi32 vector. 3938 MVT I32VT = MVT::getVectorVT(MVT::i32, VT.getVectorElementCount() * 2); 3939 SDValue Vec = DAG.getBitcast(I32VT, Op.getOperand(1 + OpOffset)); 3940 3941 SDValue ScalarLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 3942 DAG.getConstant(0, DL, XLenVT)); 3943 SDValue ScalarHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 3944 DAG.getConstant(1, DL, XLenVT)); 3945 3946 // Double the VL since we halved SEW. 3947 SDValue VL = Op.getOperand(NumOps - (1 + OpOffset)); 3948 SDValue I32VL = 3949 DAG.getNode(ISD::SHL, DL, XLenVT, VL, DAG.getConstant(1, DL, XLenVT)); 3950 3951 MVT I32MaskVT = MVT::getVectorVT(MVT::i1, I32VT.getVectorElementCount()); 3952 SDValue I32Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, I32MaskVT, VL); 3953 3954 // Shift the two scalar parts in using SEW=32 slide1up/slide1down 3955 // instructions. 3956 if (IntNo == Intrinsic::riscv_vslide1up || 3957 IntNo == Intrinsic::riscv_vslide1up_mask) { 3958 Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Vec, ScalarHi, 3959 I32Mask, I32VL); 3960 Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Vec, ScalarLo, 3961 I32Mask, I32VL); 3962 } else { 3963 Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Vec, ScalarLo, 3964 I32Mask, I32VL); 3965 Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Vec, ScalarHi, 3966 I32Mask, I32VL); 3967 } 3968 3969 // Convert back to nxvXi64. 3970 Vec = DAG.getBitcast(VT, Vec); 3971 3972 if (!IsMasked) 3973 return Vec; 3974 3975 // Apply mask after the operation. 3976 SDValue Mask = Op.getOperand(NumOps - 3); 3977 SDValue MaskedOff = Op.getOperand(1); 3978 return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, Mask, Vec, MaskedOff, VL); 3979 } 3980 } 3981 3982 return lowerVectorIntrinsicSplats(Op, DAG, Subtarget); 3983 } 3984 3985 SDValue RISCVTargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op, 3986 SelectionDAG &DAG) const { 3987 unsigned IntNo = Op.getConstantOperandVal(1); 3988 switch (IntNo) { 3989 default: 3990 break; 3991 case Intrinsic::riscv_masked_strided_load: { 3992 SDLoc DL(Op); 3993 MVT XLenVT = Subtarget.getXLenVT(); 3994 3995 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 3996 // the selection of the masked intrinsics doesn't do this for us. 3997 SDValue Mask = Op.getOperand(5); 3998 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 3999 4000 MVT VT = Op->getSimpleValueType(0); 4001 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4002 4003 SDValue PassThru = Op.getOperand(2); 4004 if (!IsUnmasked) { 4005 MVT MaskVT = 4006 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4007 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 4008 PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget); 4009 } 4010 4011 SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT); 4012 4013 SDValue IntID = DAG.getTargetConstant( 4014 IsUnmasked ? Intrinsic::riscv_vlse : Intrinsic::riscv_vlse_mask, DL, 4015 XLenVT); 4016 4017 auto *Load = cast<MemIntrinsicSDNode>(Op); 4018 SmallVector<SDValue, 8> Ops{Load->getChain(), IntID}; 4019 if (!IsUnmasked) 4020 Ops.push_back(PassThru); 4021 Ops.push_back(Op.getOperand(3)); // Ptr 4022 Ops.push_back(Op.getOperand(4)); // Stride 4023 if (!IsUnmasked) 4024 Ops.push_back(Mask); 4025 Ops.push_back(VL); 4026 if (!IsUnmasked) { 4027 SDValue Policy = DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT); 4028 Ops.push_back(Policy); 4029 } 4030 4031 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 4032 SDValue Result = 4033 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, 4034 Load->getMemoryVT(), Load->getMemOperand()); 4035 SDValue Chain = Result.getValue(1); 4036 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 4037 return DAG.getMergeValues({Result, Chain}, DL); 4038 } 4039 } 4040 4041 return lowerVectorIntrinsicSplats(Op, DAG, Subtarget); 4042 } 4043 4044 SDValue RISCVTargetLowering::LowerINTRINSIC_VOID(SDValue Op, 4045 SelectionDAG &DAG) const { 4046 unsigned IntNo = Op.getConstantOperandVal(1); 4047 switch (IntNo) { 4048 default: 4049 break; 4050 case Intrinsic::riscv_masked_strided_store: { 4051 SDLoc DL(Op); 4052 MVT XLenVT = Subtarget.getXLenVT(); 4053 4054 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 4055 // the selection of the masked intrinsics doesn't do this for us. 4056 SDValue Mask = Op.getOperand(5); 4057 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 4058 4059 SDValue Val = Op.getOperand(2); 4060 MVT VT = Val.getSimpleValueType(); 4061 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4062 4063 Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget); 4064 if (!IsUnmasked) { 4065 MVT MaskVT = 4066 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4067 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 4068 } 4069 4070 SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT); 4071 4072 SDValue IntID = DAG.getTargetConstant( 4073 IsUnmasked ? Intrinsic::riscv_vsse : Intrinsic::riscv_vsse_mask, DL, 4074 XLenVT); 4075 4076 auto *Store = cast<MemIntrinsicSDNode>(Op); 4077 SmallVector<SDValue, 8> Ops{Store->getChain(), IntID}; 4078 Ops.push_back(Val); 4079 Ops.push_back(Op.getOperand(3)); // Ptr 4080 Ops.push_back(Op.getOperand(4)); // Stride 4081 if (!IsUnmasked) 4082 Ops.push_back(Mask); 4083 Ops.push_back(VL); 4084 4085 return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, Store->getVTList(), 4086 Ops, Store->getMemoryVT(), 4087 Store->getMemOperand()); 4088 } 4089 } 4090 4091 return SDValue(); 4092 } 4093 4094 static MVT getLMUL1VT(MVT VT) { 4095 assert(VT.getVectorElementType().getSizeInBits() <= 64 && 4096 "Unexpected vector MVT"); 4097 return MVT::getScalableVectorVT( 4098 VT.getVectorElementType(), 4099 RISCV::RVVBitsPerBlock / VT.getVectorElementType().getSizeInBits()); 4100 } 4101 4102 static unsigned getRVVReductionOp(unsigned ISDOpcode) { 4103 switch (ISDOpcode) { 4104 default: 4105 llvm_unreachable("Unhandled reduction"); 4106 case ISD::VECREDUCE_ADD: 4107 return RISCVISD::VECREDUCE_ADD_VL; 4108 case ISD::VECREDUCE_UMAX: 4109 return RISCVISD::VECREDUCE_UMAX_VL; 4110 case ISD::VECREDUCE_SMAX: 4111 return RISCVISD::VECREDUCE_SMAX_VL; 4112 case ISD::VECREDUCE_UMIN: 4113 return RISCVISD::VECREDUCE_UMIN_VL; 4114 case ISD::VECREDUCE_SMIN: 4115 return RISCVISD::VECREDUCE_SMIN_VL; 4116 case ISD::VECREDUCE_AND: 4117 return RISCVISD::VECREDUCE_AND_VL; 4118 case ISD::VECREDUCE_OR: 4119 return RISCVISD::VECREDUCE_OR_VL; 4120 case ISD::VECREDUCE_XOR: 4121 return RISCVISD::VECREDUCE_XOR_VL; 4122 } 4123 } 4124 4125 SDValue RISCVTargetLowering::lowerVectorMaskVecReduction(SDValue Op, 4126 SelectionDAG &DAG, 4127 bool IsVP) const { 4128 SDLoc DL(Op); 4129 SDValue Vec = Op.getOperand(IsVP ? 1 : 0); 4130 MVT VecVT = Vec.getSimpleValueType(); 4131 assert((Op.getOpcode() == ISD::VECREDUCE_AND || 4132 Op.getOpcode() == ISD::VECREDUCE_OR || 4133 Op.getOpcode() == ISD::VECREDUCE_XOR || 4134 Op.getOpcode() == ISD::VP_REDUCE_AND || 4135 Op.getOpcode() == ISD::VP_REDUCE_OR || 4136 Op.getOpcode() == ISD::VP_REDUCE_XOR) && 4137 "Unexpected reduction lowering"); 4138 4139 MVT XLenVT = Subtarget.getXLenVT(); 4140 assert(Op.getValueType() == XLenVT && 4141 "Expected reduction output to be legalized to XLenVT"); 4142 4143 MVT ContainerVT = VecVT; 4144 if (VecVT.isFixedLengthVector()) { 4145 ContainerVT = getContainerForFixedLengthVector(VecVT); 4146 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 4147 } 4148 4149 SDValue Mask, VL; 4150 if (IsVP) { 4151 Mask = Op.getOperand(2); 4152 VL = Op.getOperand(3); 4153 } else { 4154 std::tie(Mask, VL) = 4155 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 4156 } 4157 4158 unsigned BaseOpc; 4159 ISD::CondCode CC; 4160 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 4161 4162 switch (Op.getOpcode()) { 4163 default: 4164 llvm_unreachable("Unhandled reduction"); 4165 case ISD::VECREDUCE_AND: 4166 case ISD::VP_REDUCE_AND: { 4167 // vpopc ~x == 0 4168 SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL); 4169 Vec = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Vec, TrueMask, VL); 4170 Vec = DAG.getNode(RISCVISD::VPOPC_VL, DL, XLenVT, Vec, Mask, VL); 4171 CC = ISD::SETEQ; 4172 BaseOpc = ISD::AND; 4173 break; 4174 } 4175 case ISD::VECREDUCE_OR: 4176 case ISD::VP_REDUCE_OR: 4177 // vpopc x != 0 4178 Vec = DAG.getNode(RISCVISD::VPOPC_VL, DL, XLenVT, Vec, Mask, VL); 4179 CC = ISD::SETNE; 4180 BaseOpc = ISD::OR; 4181 break; 4182 case ISD::VECREDUCE_XOR: 4183 case ISD::VP_REDUCE_XOR: { 4184 // ((vpopc x) & 1) != 0 4185 SDValue One = DAG.getConstant(1, DL, XLenVT); 4186 Vec = DAG.getNode(RISCVISD::VPOPC_VL, DL, XLenVT, Vec, Mask, VL); 4187 Vec = DAG.getNode(ISD::AND, DL, XLenVT, Vec, One); 4188 CC = ISD::SETNE; 4189 BaseOpc = ISD::XOR; 4190 break; 4191 } 4192 } 4193 4194 SDValue SetCC = DAG.getSetCC(DL, XLenVT, Vec, Zero, CC); 4195 4196 if (!IsVP) 4197 return SetCC; 4198 4199 // Now include the start value in the operation. 4200 // Note that we must return the start value when no elements are operated 4201 // upon. The vpopc instructions we've emitted in each case above will return 4202 // 0 for an inactive vector, and so we've already received the neutral value: 4203 // AND gives us (0 == 0) -> 1 and OR/XOR give us (0 != 0) -> 0. Therefore we 4204 // can simply include the start value. 4205 return DAG.getNode(BaseOpc, DL, XLenVT, SetCC, Op.getOperand(0)); 4206 } 4207 4208 SDValue RISCVTargetLowering::lowerVECREDUCE(SDValue Op, 4209 SelectionDAG &DAG) const { 4210 SDLoc DL(Op); 4211 SDValue Vec = Op.getOperand(0); 4212 EVT VecEVT = Vec.getValueType(); 4213 4214 unsigned BaseOpc = ISD::getVecReduceBaseOpcode(Op.getOpcode()); 4215 4216 // Due to ordering in legalize types we may have a vector type that needs to 4217 // be split. Do that manually so we can get down to a legal type. 4218 while (getTypeAction(*DAG.getContext(), VecEVT) == 4219 TargetLowering::TypeSplitVector) { 4220 SDValue Lo, Hi; 4221 std::tie(Lo, Hi) = DAG.SplitVector(Vec, DL); 4222 VecEVT = Lo.getValueType(); 4223 Vec = DAG.getNode(BaseOpc, DL, VecEVT, Lo, Hi); 4224 } 4225 4226 // TODO: The type may need to be widened rather than split. Or widened before 4227 // it can be split. 4228 if (!isTypeLegal(VecEVT)) 4229 return SDValue(); 4230 4231 MVT VecVT = VecEVT.getSimpleVT(); 4232 MVT VecEltVT = VecVT.getVectorElementType(); 4233 unsigned RVVOpcode = getRVVReductionOp(Op.getOpcode()); 4234 4235 MVT ContainerVT = VecVT; 4236 if (VecVT.isFixedLengthVector()) { 4237 ContainerVT = getContainerForFixedLengthVector(VecVT); 4238 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 4239 } 4240 4241 MVT M1VT = getLMUL1VT(ContainerVT); 4242 4243 SDValue Mask, VL; 4244 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 4245 4246 // FIXME: This is a VLMAX splat which might be too large and can prevent 4247 // vsetvli removal. 4248 SDValue NeutralElem = 4249 DAG.getNeutralElement(BaseOpc, DL, VecEltVT, SDNodeFlags()); 4250 SDValue IdentitySplat = DAG.getSplatVector(M1VT, DL, NeutralElem); 4251 SDValue Reduction = DAG.getNode(RVVOpcode, DL, M1VT, DAG.getUNDEF(M1VT), Vec, 4252 IdentitySplat, Mask, VL); 4253 SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction, 4254 DAG.getConstant(0, DL, Subtarget.getXLenVT())); 4255 return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType()); 4256 } 4257 4258 // Given a reduction op, this function returns the matching reduction opcode, 4259 // the vector SDValue and the scalar SDValue required to lower this to a 4260 // RISCVISD node. 4261 static std::tuple<unsigned, SDValue, SDValue> 4262 getRVVFPReductionOpAndOperands(SDValue Op, SelectionDAG &DAG, EVT EltVT) { 4263 SDLoc DL(Op); 4264 auto Flags = Op->getFlags(); 4265 unsigned Opcode = Op.getOpcode(); 4266 unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Opcode); 4267 switch (Opcode) { 4268 default: 4269 llvm_unreachable("Unhandled reduction"); 4270 case ISD::VECREDUCE_FADD: 4271 return std::make_tuple(RISCVISD::VECREDUCE_FADD_VL, Op.getOperand(0), 4272 DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags)); 4273 case ISD::VECREDUCE_SEQ_FADD: 4274 return std::make_tuple(RISCVISD::VECREDUCE_SEQ_FADD_VL, Op.getOperand(1), 4275 Op.getOperand(0)); 4276 case ISD::VECREDUCE_FMIN: 4277 return std::make_tuple(RISCVISD::VECREDUCE_FMIN_VL, Op.getOperand(0), 4278 DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags)); 4279 case ISD::VECREDUCE_FMAX: 4280 return std::make_tuple(RISCVISD::VECREDUCE_FMAX_VL, Op.getOperand(0), 4281 DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags)); 4282 } 4283 } 4284 4285 SDValue RISCVTargetLowering::lowerFPVECREDUCE(SDValue Op, 4286 SelectionDAG &DAG) const { 4287 SDLoc DL(Op); 4288 MVT VecEltVT = Op.getSimpleValueType(); 4289 4290 unsigned RVVOpcode; 4291 SDValue VectorVal, ScalarVal; 4292 std::tie(RVVOpcode, VectorVal, ScalarVal) = 4293 getRVVFPReductionOpAndOperands(Op, DAG, VecEltVT); 4294 MVT VecVT = VectorVal.getSimpleValueType(); 4295 4296 MVT ContainerVT = VecVT; 4297 if (VecVT.isFixedLengthVector()) { 4298 ContainerVT = getContainerForFixedLengthVector(VecVT); 4299 VectorVal = convertToScalableVector(ContainerVT, VectorVal, DAG, Subtarget); 4300 } 4301 4302 MVT M1VT = getLMUL1VT(VectorVal.getSimpleValueType()); 4303 4304 SDValue Mask, VL; 4305 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 4306 4307 // FIXME: This is a VLMAX splat which might be too large and can prevent 4308 // vsetvli removal. 4309 SDValue ScalarSplat = DAG.getSplatVector(M1VT, DL, ScalarVal); 4310 SDValue Reduction = DAG.getNode(RVVOpcode, DL, M1VT, DAG.getUNDEF(M1VT), 4311 VectorVal, ScalarSplat, Mask, VL); 4312 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction, 4313 DAG.getConstant(0, DL, Subtarget.getXLenVT())); 4314 } 4315 4316 static unsigned getRVVVPReductionOp(unsigned ISDOpcode) { 4317 switch (ISDOpcode) { 4318 default: 4319 llvm_unreachable("Unhandled reduction"); 4320 case ISD::VP_REDUCE_ADD: 4321 return RISCVISD::VECREDUCE_ADD_VL; 4322 case ISD::VP_REDUCE_UMAX: 4323 return RISCVISD::VECREDUCE_UMAX_VL; 4324 case ISD::VP_REDUCE_SMAX: 4325 return RISCVISD::VECREDUCE_SMAX_VL; 4326 case ISD::VP_REDUCE_UMIN: 4327 return RISCVISD::VECREDUCE_UMIN_VL; 4328 case ISD::VP_REDUCE_SMIN: 4329 return RISCVISD::VECREDUCE_SMIN_VL; 4330 case ISD::VP_REDUCE_AND: 4331 return RISCVISD::VECREDUCE_AND_VL; 4332 case ISD::VP_REDUCE_OR: 4333 return RISCVISD::VECREDUCE_OR_VL; 4334 case ISD::VP_REDUCE_XOR: 4335 return RISCVISD::VECREDUCE_XOR_VL; 4336 case ISD::VP_REDUCE_FADD: 4337 return RISCVISD::VECREDUCE_FADD_VL; 4338 case ISD::VP_REDUCE_SEQ_FADD: 4339 return RISCVISD::VECREDUCE_SEQ_FADD_VL; 4340 case ISD::VP_REDUCE_FMAX: 4341 return RISCVISD::VECREDUCE_FMAX_VL; 4342 case ISD::VP_REDUCE_FMIN: 4343 return RISCVISD::VECREDUCE_FMIN_VL; 4344 } 4345 } 4346 4347 SDValue RISCVTargetLowering::lowerVPREDUCE(SDValue Op, 4348 SelectionDAG &DAG) const { 4349 SDLoc DL(Op); 4350 SDValue Vec = Op.getOperand(1); 4351 EVT VecEVT = Vec.getValueType(); 4352 4353 // TODO: The type may need to be widened rather than split. Or widened before 4354 // it can be split. 4355 if (!isTypeLegal(VecEVT)) 4356 return SDValue(); 4357 4358 MVT VecVT = VecEVT.getSimpleVT(); 4359 MVT VecEltVT = VecVT.getVectorElementType(); 4360 unsigned RVVOpcode = getRVVVPReductionOp(Op.getOpcode()); 4361 4362 MVT ContainerVT = VecVT; 4363 if (VecVT.isFixedLengthVector()) { 4364 ContainerVT = getContainerForFixedLengthVector(VecVT); 4365 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 4366 } 4367 4368 SDValue VL = Op.getOperand(3); 4369 SDValue Mask = Op.getOperand(2); 4370 4371 MVT M1VT = getLMUL1VT(ContainerVT); 4372 MVT XLenVT = Subtarget.getXLenVT(); 4373 MVT ResVT = !VecVT.isInteger() || VecEltVT.bitsGE(XLenVT) ? VecEltVT : XLenVT; 4374 4375 // FIXME: This is a VLMAX splat which might be too large and can prevent 4376 // vsetvli removal. 4377 SDValue StartSplat = DAG.getSplatVector(M1VT, DL, Op.getOperand(0)); 4378 SDValue Reduction = 4379 DAG.getNode(RVVOpcode, DL, M1VT, StartSplat, Vec, StartSplat, Mask, VL); 4380 SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Reduction, 4381 DAG.getConstant(0, DL, Subtarget.getXLenVT())); 4382 if (!VecVT.isInteger()) 4383 return Elt0; 4384 return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType()); 4385 } 4386 4387 SDValue RISCVTargetLowering::lowerINSERT_SUBVECTOR(SDValue Op, 4388 SelectionDAG &DAG) const { 4389 SDValue Vec = Op.getOperand(0); 4390 SDValue SubVec = Op.getOperand(1); 4391 MVT VecVT = Vec.getSimpleValueType(); 4392 MVT SubVecVT = SubVec.getSimpleValueType(); 4393 4394 SDLoc DL(Op); 4395 MVT XLenVT = Subtarget.getXLenVT(); 4396 unsigned OrigIdx = Op.getConstantOperandVal(2); 4397 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 4398 4399 // We don't have the ability to slide mask vectors up indexed by their i1 4400 // elements; the smallest we can do is i8. Often we are able to bitcast to 4401 // equivalent i8 vectors. Note that when inserting a fixed-length vector 4402 // into a scalable one, we might not necessarily have enough scalable 4403 // elements to safely divide by 8: nxv1i1 = insert nxv1i1, v4i1 is valid. 4404 if (SubVecVT.getVectorElementType() == MVT::i1 && 4405 (OrigIdx != 0 || !Vec.isUndef())) { 4406 if (VecVT.getVectorMinNumElements() >= 8 && 4407 SubVecVT.getVectorMinNumElements() >= 8) { 4408 assert(OrigIdx % 8 == 0 && "Invalid index"); 4409 assert(VecVT.getVectorMinNumElements() % 8 == 0 && 4410 SubVecVT.getVectorMinNumElements() % 8 == 0 && 4411 "Unexpected mask vector lowering"); 4412 OrigIdx /= 8; 4413 SubVecVT = 4414 MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8, 4415 SubVecVT.isScalableVector()); 4416 VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8, 4417 VecVT.isScalableVector()); 4418 Vec = DAG.getBitcast(VecVT, Vec); 4419 SubVec = DAG.getBitcast(SubVecVT, SubVec); 4420 } else { 4421 // We can't slide this mask vector up indexed by its i1 elements. 4422 // This poses a problem when we wish to insert a scalable vector which 4423 // can't be re-expressed as a larger type. Just choose the slow path and 4424 // extend to a larger type, then truncate back down. 4425 MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8); 4426 MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8); 4427 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec); 4428 SubVec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtSubVecVT, SubVec); 4429 Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ExtVecVT, Vec, SubVec, 4430 Op.getOperand(2)); 4431 SDValue SplatZero = DAG.getConstant(0, DL, ExtVecVT); 4432 return DAG.getSetCC(DL, VecVT, Vec, SplatZero, ISD::SETNE); 4433 } 4434 } 4435 4436 // If the subvector vector is a fixed-length type, we cannot use subregister 4437 // manipulation to simplify the codegen; we don't know which register of a 4438 // LMUL group contains the specific subvector as we only know the minimum 4439 // register size. Therefore we must slide the vector group up the full 4440 // amount. 4441 if (SubVecVT.isFixedLengthVector()) { 4442 if (OrigIdx == 0 && Vec.isUndef()) 4443 return Op; 4444 MVT ContainerVT = VecVT; 4445 if (VecVT.isFixedLengthVector()) { 4446 ContainerVT = getContainerForFixedLengthVector(VecVT); 4447 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 4448 } 4449 SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ContainerVT, 4450 DAG.getUNDEF(ContainerVT), SubVec, 4451 DAG.getConstant(0, DL, XLenVT)); 4452 SDValue Mask = 4453 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first; 4454 // Set the vector length to only the number of elements we care about. Note 4455 // that for slideup this includes the offset. 4456 SDValue VL = 4457 DAG.getConstant(OrigIdx + SubVecVT.getVectorNumElements(), DL, XLenVT); 4458 SDValue SlideupAmt = DAG.getConstant(OrigIdx, DL, XLenVT); 4459 SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec, 4460 SubVec, SlideupAmt, Mask, VL); 4461 if (VecVT.isFixedLengthVector()) 4462 Slideup = convertFromScalableVector(VecVT, Slideup, DAG, Subtarget); 4463 return DAG.getBitcast(Op.getValueType(), Slideup); 4464 } 4465 4466 unsigned SubRegIdx, RemIdx; 4467 std::tie(SubRegIdx, RemIdx) = 4468 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( 4469 VecVT, SubVecVT, OrigIdx, TRI); 4470 4471 RISCVII::VLMUL SubVecLMUL = RISCVTargetLowering::getLMUL(SubVecVT); 4472 bool IsSubVecPartReg = SubVecLMUL == RISCVII::VLMUL::LMUL_F2 || 4473 SubVecLMUL == RISCVII::VLMUL::LMUL_F4 || 4474 SubVecLMUL == RISCVII::VLMUL::LMUL_F8; 4475 4476 // 1. If the Idx has been completely eliminated and this subvector's size is 4477 // a vector register or a multiple thereof, or the surrounding elements are 4478 // undef, then this is a subvector insert which naturally aligns to a vector 4479 // register. These can easily be handled using subregister manipulation. 4480 // 2. If the subvector is smaller than a vector register, then the insertion 4481 // must preserve the undisturbed elements of the register. We do this by 4482 // lowering to an EXTRACT_SUBVECTOR grabbing the nearest LMUL=1 vector type 4483 // (which resolves to a subregister copy), performing a VSLIDEUP to place the 4484 // subvector within the vector register, and an INSERT_SUBVECTOR of that 4485 // LMUL=1 type back into the larger vector (resolving to another subregister 4486 // operation). See below for how our VSLIDEUP works. We go via a LMUL=1 type 4487 // to avoid allocating a large register group to hold our subvector. 4488 if (RemIdx == 0 && (!IsSubVecPartReg || Vec.isUndef())) 4489 return Op; 4490 4491 // VSLIDEUP works by leaving elements 0<i<OFFSET undisturbed, elements 4492 // OFFSET<=i<VL set to the "subvector" and vl<=i<VLMAX set to the tail policy 4493 // (in our case undisturbed). This means we can set up a subvector insertion 4494 // where OFFSET is the insertion offset, and the VL is the OFFSET plus the 4495 // size of the subvector. 4496 MVT InterSubVT = VecVT; 4497 SDValue AlignedExtract = Vec; 4498 unsigned AlignedIdx = OrigIdx - RemIdx; 4499 if (VecVT.bitsGT(getLMUL1VT(VecVT))) { 4500 InterSubVT = getLMUL1VT(VecVT); 4501 // Extract a subvector equal to the nearest full vector register type. This 4502 // should resolve to a EXTRACT_SUBREG instruction. 4503 AlignedExtract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec, 4504 DAG.getConstant(AlignedIdx, DL, XLenVT)); 4505 } 4506 4507 SDValue SlideupAmt = DAG.getConstant(RemIdx, DL, XLenVT); 4508 // For scalable vectors this must be further multiplied by vscale. 4509 SlideupAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlideupAmt); 4510 4511 SDValue Mask, VL; 4512 std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget); 4513 4514 // Construct the vector length corresponding to RemIdx + length(SubVecVT). 4515 VL = DAG.getConstant(SubVecVT.getVectorMinNumElements(), DL, XLenVT); 4516 VL = DAG.getNode(ISD::VSCALE, DL, XLenVT, VL); 4517 VL = DAG.getNode(ISD::ADD, DL, XLenVT, SlideupAmt, VL); 4518 4519 SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, InterSubVT, 4520 DAG.getUNDEF(InterSubVT), SubVec, 4521 DAG.getConstant(0, DL, XLenVT)); 4522 4523 SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, InterSubVT, 4524 AlignedExtract, SubVec, SlideupAmt, Mask, VL); 4525 4526 // If required, insert this subvector back into the correct vector register. 4527 // This should resolve to an INSERT_SUBREG instruction. 4528 if (VecVT.bitsGT(InterSubVT)) 4529 Slideup = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, Vec, Slideup, 4530 DAG.getConstant(AlignedIdx, DL, XLenVT)); 4531 4532 // We might have bitcast from a mask type: cast back to the original type if 4533 // required. 4534 return DAG.getBitcast(Op.getSimpleValueType(), Slideup); 4535 } 4536 4537 SDValue RISCVTargetLowering::lowerEXTRACT_SUBVECTOR(SDValue Op, 4538 SelectionDAG &DAG) const { 4539 SDValue Vec = Op.getOperand(0); 4540 MVT SubVecVT = Op.getSimpleValueType(); 4541 MVT VecVT = Vec.getSimpleValueType(); 4542 4543 SDLoc DL(Op); 4544 MVT XLenVT = Subtarget.getXLenVT(); 4545 unsigned OrigIdx = Op.getConstantOperandVal(1); 4546 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 4547 4548 // We don't have the ability to slide mask vectors down indexed by their i1 4549 // elements; the smallest we can do is i8. Often we are able to bitcast to 4550 // equivalent i8 vectors. Note that when extracting a fixed-length vector 4551 // from a scalable one, we might not necessarily have enough scalable 4552 // elements to safely divide by 8: v8i1 = extract nxv1i1 is valid. 4553 if (SubVecVT.getVectorElementType() == MVT::i1 && OrigIdx != 0) { 4554 if (VecVT.getVectorMinNumElements() >= 8 && 4555 SubVecVT.getVectorMinNumElements() >= 8) { 4556 assert(OrigIdx % 8 == 0 && "Invalid index"); 4557 assert(VecVT.getVectorMinNumElements() % 8 == 0 && 4558 SubVecVT.getVectorMinNumElements() % 8 == 0 && 4559 "Unexpected mask vector lowering"); 4560 OrigIdx /= 8; 4561 SubVecVT = 4562 MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8, 4563 SubVecVT.isScalableVector()); 4564 VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8, 4565 VecVT.isScalableVector()); 4566 Vec = DAG.getBitcast(VecVT, Vec); 4567 } else { 4568 // We can't slide this mask vector down, indexed by its i1 elements. 4569 // This poses a problem when we wish to extract a scalable vector which 4570 // can't be re-expressed as a larger type. Just choose the slow path and 4571 // extend to a larger type, then truncate back down. 4572 // TODO: We could probably improve this when extracting certain fixed 4573 // from fixed, where we can extract as i8 and shift the correct element 4574 // right to reach the desired subvector? 4575 MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8); 4576 MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8); 4577 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec); 4578 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ExtSubVecVT, Vec, 4579 Op.getOperand(1)); 4580 SDValue SplatZero = DAG.getConstant(0, DL, ExtSubVecVT); 4581 return DAG.getSetCC(DL, SubVecVT, Vec, SplatZero, ISD::SETNE); 4582 } 4583 } 4584 4585 // If the subvector vector is a fixed-length type, we cannot use subregister 4586 // manipulation to simplify the codegen; we don't know which register of a 4587 // LMUL group contains the specific subvector as we only know the minimum 4588 // register size. Therefore we must slide the vector group down the full 4589 // amount. 4590 if (SubVecVT.isFixedLengthVector()) { 4591 // With an index of 0 this is a cast-like subvector, which can be performed 4592 // with subregister operations. 4593 if (OrigIdx == 0) 4594 return Op; 4595 MVT ContainerVT = VecVT; 4596 if (VecVT.isFixedLengthVector()) { 4597 ContainerVT = getContainerForFixedLengthVector(VecVT); 4598 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 4599 } 4600 SDValue Mask = 4601 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first; 4602 // Set the vector length to only the number of elements we care about. This 4603 // avoids sliding down elements we're going to discard straight away. 4604 SDValue VL = DAG.getConstant(SubVecVT.getVectorNumElements(), DL, XLenVT); 4605 SDValue SlidedownAmt = DAG.getConstant(OrigIdx, DL, XLenVT); 4606 SDValue Slidedown = 4607 DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 4608 DAG.getUNDEF(ContainerVT), Vec, SlidedownAmt, Mask, VL); 4609 // Now we can use a cast-like subvector extract to get the result. 4610 Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown, 4611 DAG.getConstant(0, DL, XLenVT)); 4612 return DAG.getBitcast(Op.getValueType(), Slidedown); 4613 } 4614 4615 unsigned SubRegIdx, RemIdx; 4616 std::tie(SubRegIdx, RemIdx) = 4617 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( 4618 VecVT, SubVecVT, OrigIdx, TRI); 4619 4620 // If the Idx has been completely eliminated then this is a subvector extract 4621 // which naturally aligns to a vector register. These can easily be handled 4622 // using subregister manipulation. 4623 if (RemIdx == 0) 4624 return Op; 4625 4626 // Else we must shift our vector register directly to extract the subvector. 4627 // Do this using VSLIDEDOWN. 4628 4629 // If the vector type is an LMUL-group type, extract a subvector equal to the 4630 // nearest full vector register type. This should resolve to a EXTRACT_SUBREG 4631 // instruction. 4632 MVT InterSubVT = VecVT; 4633 if (VecVT.bitsGT(getLMUL1VT(VecVT))) { 4634 InterSubVT = getLMUL1VT(VecVT); 4635 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec, 4636 DAG.getConstant(OrigIdx - RemIdx, DL, XLenVT)); 4637 } 4638 4639 // Slide this vector register down by the desired number of elements in order 4640 // to place the desired subvector starting at element 0. 4641 SDValue SlidedownAmt = DAG.getConstant(RemIdx, DL, XLenVT); 4642 // For scalable vectors this must be further multiplied by vscale. 4643 SlidedownAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlidedownAmt); 4644 4645 SDValue Mask, VL; 4646 std::tie(Mask, VL) = getDefaultScalableVLOps(InterSubVT, DL, DAG, Subtarget); 4647 SDValue Slidedown = 4648 DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, InterSubVT, 4649 DAG.getUNDEF(InterSubVT), Vec, SlidedownAmt, Mask, VL); 4650 4651 // Now the vector is in the right position, extract our final subvector. This 4652 // should resolve to a COPY. 4653 Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown, 4654 DAG.getConstant(0, DL, XLenVT)); 4655 4656 // We might have bitcast from a mask type: cast back to the original type if 4657 // required. 4658 return DAG.getBitcast(Op.getSimpleValueType(), Slidedown); 4659 } 4660 4661 // Lower step_vector to the vid instruction. Any non-identity step value must 4662 // be accounted for my manual expansion. 4663 SDValue RISCVTargetLowering::lowerSTEP_VECTOR(SDValue Op, 4664 SelectionDAG &DAG) const { 4665 SDLoc DL(Op); 4666 MVT VT = Op.getSimpleValueType(); 4667 MVT XLenVT = Subtarget.getXLenVT(); 4668 SDValue Mask, VL; 4669 std::tie(Mask, VL) = getDefaultScalableVLOps(VT, DL, DAG, Subtarget); 4670 SDValue StepVec = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL); 4671 uint64_t StepValImm = Op.getConstantOperandVal(0); 4672 if (StepValImm != 1) { 4673 if (isPowerOf2_64(StepValImm)) { 4674 SDValue StepVal = 4675 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, 4676 DAG.getConstant(Log2_64(StepValImm), DL, XLenVT)); 4677 StepVec = DAG.getNode(ISD::SHL, DL, VT, StepVec, StepVal); 4678 } else { 4679 SDValue StepVal = lowerScalarSplat( 4680 DAG.getConstant(StepValImm, DL, VT.getVectorElementType()), VL, VT, 4681 DL, DAG, Subtarget); 4682 StepVec = DAG.getNode(ISD::MUL, DL, VT, StepVec, StepVal); 4683 } 4684 } 4685 return StepVec; 4686 } 4687 4688 // Implement vector_reverse using vrgather.vv with indices determined by 4689 // subtracting the id of each element from (VLMAX-1). This will convert 4690 // the indices like so: 4691 // (0, 1,..., VLMAX-2, VLMAX-1) -> (VLMAX-1, VLMAX-2,..., 1, 0). 4692 // TODO: This code assumes VLMAX <= 65536 for LMUL=8 SEW=16. 4693 SDValue RISCVTargetLowering::lowerVECTOR_REVERSE(SDValue Op, 4694 SelectionDAG &DAG) const { 4695 SDLoc DL(Op); 4696 MVT VecVT = Op.getSimpleValueType(); 4697 unsigned EltSize = VecVT.getScalarSizeInBits(); 4698 unsigned MinSize = VecVT.getSizeInBits().getKnownMinValue(); 4699 4700 unsigned MaxVLMAX = 0; 4701 unsigned VectorBitsMax = Subtarget.getMaxRVVVectorSizeInBits(); 4702 if (VectorBitsMax != 0) 4703 MaxVLMAX = ((VectorBitsMax / EltSize) * MinSize) / RISCV::RVVBitsPerBlock; 4704 4705 unsigned GatherOpc = RISCVISD::VRGATHER_VV_VL; 4706 MVT IntVT = VecVT.changeVectorElementTypeToInteger(); 4707 4708 // If this is SEW=8 and VLMAX is unknown or more than 256, we need 4709 // to use vrgatherei16.vv. 4710 // TODO: It's also possible to use vrgatherei16.vv for other types to 4711 // decrease register width for the index calculation. 4712 if ((MaxVLMAX == 0 || MaxVLMAX > 256) && EltSize == 8) { 4713 // If this is LMUL=8, we have to split before can use vrgatherei16.vv. 4714 // Reverse each half, then reassemble them in reverse order. 4715 // NOTE: It's also possible that after splitting that VLMAX no longer 4716 // requires vrgatherei16.vv. 4717 if (MinSize == (8 * RISCV::RVVBitsPerBlock)) { 4718 SDValue Lo, Hi; 4719 std::tie(Lo, Hi) = DAG.SplitVectorOperand(Op.getNode(), 0); 4720 EVT LoVT, HiVT; 4721 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VecVT); 4722 Lo = DAG.getNode(ISD::VECTOR_REVERSE, DL, LoVT, Lo); 4723 Hi = DAG.getNode(ISD::VECTOR_REVERSE, DL, HiVT, Hi); 4724 // Reassemble the low and high pieces reversed. 4725 // FIXME: This is a CONCAT_VECTORS. 4726 SDValue Res = 4727 DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, DAG.getUNDEF(VecVT), Hi, 4728 DAG.getIntPtrConstant(0, DL)); 4729 return DAG.getNode( 4730 ISD::INSERT_SUBVECTOR, DL, VecVT, Res, Lo, 4731 DAG.getIntPtrConstant(LoVT.getVectorMinNumElements(), DL)); 4732 } 4733 4734 // Just promote the int type to i16 which will double the LMUL. 4735 IntVT = MVT::getVectorVT(MVT::i16, VecVT.getVectorElementCount()); 4736 GatherOpc = RISCVISD::VRGATHEREI16_VV_VL; 4737 } 4738 4739 MVT XLenVT = Subtarget.getXLenVT(); 4740 SDValue Mask, VL; 4741 std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget); 4742 4743 // Calculate VLMAX-1 for the desired SEW. 4744 unsigned MinElts = VecVT.getVectorMinNumElements(); 4745 SDValue VLMax = DAG.getNode(ISD::VSCALE, DL, XLenVT, 4746 DAG.getConstant(MinElts, DL, XLenVT)); 4747 SDValue VLMinus1 = 4748 DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, DAG.getConstant(1, DL, XLenVT)); 4749 4750 // Splat VLMAX-1 taking care to handle SEW==64 on RV32. 4751 bool IsRV32E64 = 4752 !Subtarget.is64Bit() && IntVT.getVectorElementType() == MVT::i64; 4753 SDValue SplatVL; 4754 if (!IsRV32E64) 4755 SplatVL = DAG.getSplatVector(IntVT, DL, VLMinus1); 4756 else 4757 SplatVL = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, IntVT, VLMinus1); 4758 4759 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, IntVT, Mask, VL); 4760 SDValue Indices = 4761 DAG.getNode(RISCVISD::SUB_VL, DL, IntVT, SplatVL, VID, Mask, VL); 4762 4763 return DAG.getNode(GatherOpc, DL, VecVT, Op.getOperand(0), Indices, Mask, VL); 4764 } 4765 4766 SDValue 4767 RISCVTargetLowering::lowerFixedLengthVectorLoadToRVV(SDValue Op, 4768 SelectionDAG &DAG) const { 4769 SDLoc DL(Op); 4770 auto *Load = cast<LoadSDNode>(Op); 4771 4772 assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 4773 Load->getMemoryVT(), 4774 *Load->getMemOperand()) && 4775 "Expecting a correctly-aligned load"); 4776 4777 MVT VT = Op.getSimpleValueType(); 4778 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4779 4780 SDValue VL = 4781 DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT()); 4782 4783 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 4784 SDValue NewLoad = DAG.getMemIntrinsicNode( 4785 RISCVISD::VLE_VL, DL, VTs, {Load->getChain(), Load->getBasePtr(), VL}, 4786 Load->getMemoryVT(), Load->getMemOperand()); 4787 4788 SDValue Result = convertFromScalableVector(VT, NewLoad, DAG, Subtarget); 4789 return DAG.getMergeValues({Result, Load->getChain()}, DL); 4790 } 4791 4792 SDValue 4793 RISCVTargetLowering::lowerFixedLengthVectorStoreToRVV(SDValue Op, 4794 SelectionDAG &DAG) const { 4795 SDLoc DL(Op); 4796 auto *Store = cast<StoreSDNode>(Op); 4797 4798 assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 4799 Store->getMemoryVT(), 4800 *Store->getMemOperand()) && 4801 "Expecting a correctly-aligned store"); 4802 4803 SDValue StoreVal = Store->getValue(); 4804 MVT VT = StoreVal.getSimpleValueType(); 4805 4806 // If the size less than a byte, we need to pad with zeros to make a byte. 4807 if (VT.getVectorElementType() == MVT::i1 && VT.getVectorNumElements() < 8) { 4808 VT = MVT::v8i1; 4809 StoreVal = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, 4810 DAG.getConstant(0, DL, VT), StoreVal, 4811 DAG.getIntPtrConstant(0, DL)); 4812 } 4813 4814 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4815 4816 SDValue VL = 4817 DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT()); 4818 4819 SDValue NewValue = 4820 convertToScalableVector(ContainerVT, StoreVal, DAG, Subtarget); 4821 return DAG.getMemIntrinsicNode( 4822 RISCVISD::VSE_VL, DL, DAG.getVTList(MVT::Other), 4823 {Store->getChain(), NewValue, Store->getBasePtr(), VL}, 4824 Store->getMemoryVT(), Store->getMemOperand()); 4825 } 4826 4827 SDValue RISCVTargetLowering::lowerMaskedLoad(SDValue Op, 4828 SelectionDAG &DAG) const { 4829 SDLoc DL(Op); 4830 MVT VT = Op.getSimpleValueType(); 4831 4832 const auto *MemSD = cast<MemSDNode>(Op); 4833 EVT MemVT = MemSD->getMemoryVT(); 4834 MachineMemOperand *MMO = MemSD->getMemOperand(); 4835 SDValue Chain = MemSD->getChain(); 4836 SDValue BasePtr = MemSD->getBasePtr(); 4837 4838 SDValue Mask, PassThru, VL; 4839 if (const auto *VPLoad = dyn_cast<VPLoadSDNode>(Op)) { 4840 Mask = VPLoad->getMask(); 4841 PassThru = DAG.getUNDEF(VT); 4842 VL = VPLoad->getVectorLength(); 4843 } else { 4844 const auto *MLoad = cast<MaskedLoadSDNode>(Op); 4845 Mask = MLoad->getMask(); 4846 PassThru = MLoad->getPassThru(); 4847 } 4848 4849 MVT XLenVT = Subtarget.getXLenVT(); 4850 4851 MVT ContainerVT = VT; 4852 if (VT.isFixedLengthVector()) { 4853 ContainerVT = getContainerForFixedLengthVector(VT); 4854 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4855 4856 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 4857 PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget); 4858 } 4859 4860 if (!VL) 4861 VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; 4862 4863 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 4864 SDValue IntID = DAG.getTargetConstant(Intrinsic::riscv_vle_mask, DL, XLenVT); 4865 SDValue Policy = DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT); 4866 SDValue Ops[] = {Chain, IntID, PassThru, BasePtr, Mask, VL, Policy}; 4867 SDValue Result = 4868 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, MemVT, MMO); 4869 Chain = Result.getValue(1); 4870 4871 if (VT.isFixedLengthVector()) 4872 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 4873 4874 return DAG.getMergeValues({Result, Chain}, DL); 4875 } 4876 4877 SDValue RISCVTargetLowering::lowerMaskedStore(SDValue Op, 4878 SelectionDAG &DAG) const { 4879 SDLoc DL(Op); 4880 4881 const auto *MemSD = cast<MemSDNode>(Op); 4882 EVT MemVT = MemSD->getMemoryVT(); 4883 MachineMemOperand *MMO = MemSD->getMemOperand(); 4884 SDValue Chain = MemSD->getChain(); 4885 SDValue BasePtr = MemSD->getBasePtr(); 4886 SDValue Val, Mask, VL; 4887 4888 if (const auto *VPStore = dyn_cast<VPStoreSDNode>(Op)) { 4889 Val = VPStore->getValue(); 4890 Mask = VPStore->getMask(); 4891 VL = VPStore->getVectorLength(); 4892 } else { 4893 const auto *MStore = cast<MaskedStoreSDNode>(Op); 4894 Val = MStore->getValue(); 4895 Mask = MStore->getMask(); 4896 } 4897 4898 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 4899 4900 MVT VT = Val.getSimpleValueType(); 4901 MVT XLenVT = Subtarget.getXLenVT(); 4902 4903 MVT ContainerVT = VT; 4904 if (VT.isFixedLengthVector()) { 4905 ContainerVT = getContainerForFixedLengthVector(VT); 4906 4907 Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget); 4908 if (!IsUnmasked) { 4909 MVT MaskVT = 4910 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4911 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 4912 } 4913 } 4914 4915 if (!VL) 4916 VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; 4917 4918 unsigned IntID = 4919 IsUnmasked ? Intrinsic::riscv_vse : Intrinsic::riscv_vse_mask; 4920 SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)}; 4921 Ops.push_back(Val); 4922 Ops.push_back(BasePtr); 4923 if (!IsUnmasked) 4924 Ops.push_back(Mask); 4925 Ops.push_back(VL); 4926 4927 return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, 4928 DAG.getVTList(MVT::Other), Ops, MemVT, MMO); 4929 } 4930 4931 SDValue 4932 RISCVTargetLowering::lowerFixedLengthVectorSetccToRVV(SDValue Op, 4933 SelectionDAG &DAG) const { 4934 MVT InVT = Op.getOperand(0).getSimpleValueType(); 4935 MVT ContainerVT = getContainerForFixedLengthVector(InVT); 4936 4937 MVT VT = Op.getSimpleValueType(); 4938 4939 SDValue Op1 = 4940 convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget); 4941 SDValue Op2 = 4942 convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget); 4943 4944 SDLoc DL(Op); 4945 SDValue VL = 4946 DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT()); 4947 4948 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4949 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 4950 4951 SDValue Cmp = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, Op1, Op2, 4952 Op.getOperand(2), Mask, VL); 4953 4954 return convertFromScalableVector(VT, Cmp, DAG, Subtarget); 4955 } 4956 4957 SDValue RISCVTargetLowering::lowerFixedLengthVectorLogicOpToRVV( 4958 SDValue Op, SelectionDAG &DAG, unsigned MaskOpc, unsigned VecOpc) const { 4959 MVT VT = Op.getSimpleValueType(); 4960 4961 if (VT.getVectorElementType() == MVT::i1) 4962 return lowerToScalableOp(Op, DAG, MaskOpc, /*HasMask*/ false); 4963 4964 return lowerToScalableOp(Op, DAG, VecOpc, /*HasMask*/ true); 4965 } 4966 4967 SDValue 4968 RISCVTargetLowering::lowerFixedLengthVectorShiftToRVV(SDValue Op, 4969 SelectionDAG &DAG) const { 4970 unsigned Opc; 4971 switch (Op.getOpcode()) { 4972 default: llvm_unreachable("Unexpected opcode!"); 4973 case ISD::SHL: Opc = RISCVISD::SHL_VL; break; 4974 case ISD::SRA: Opc = RISCVISD::SRA_VL; break; 4975 case ISD::SRL: Opc = RISCVISD::SRL_VL; break; 4976 } 4977 4978 return lowerToScalableOp(Op, DAG, Opc); 4979 } 4980 4981 // Lower vector ABS to smax(X, sub(0, X)). 4982 SDValue RISCVTargetLowering::lowerABS(SDValue Op, SelectionDAG &DAG) const { 4983 SDLoc DL(Op); 4984 MVT VT = Op.getSimpleValueType(); 4985 SDValue X = Op.getOperand(0); 4986 4987 assert(VT.isFixedLengthVector() && "Unexpected type"); 4988 4989 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4990 X = convertToScalableVector(ContainerVT, X, DAG, Subtarget); 4991 4992 SDValue Mask, VL; 4993 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 4994 4995 SDValue SplatZero = 4996 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, 4997 DAG.getConstant(0, DL, Subtarget.getXLenVT())); 4998 SDValue NegX = 4999 DAG.getNode(RISCVISD::SUB_VL, DL, ContainerVT, SplatZero, X, Mask, VL); 5000 SDValue Max = 5001 DAG.getNode(RISCVISD::SMAX_VL, DL, ContainerVT, X, NegX, Mask, VL); 5002 5003 return convertFromScalableVector(VT, Max, DAG, Subtarget); 5004 } 5005 5006 SDValue RISCVTargetLowering::lowerFixedLengthVectorFCOPYSIGNToRVV( 5007 SDValue Op, SelectionDAG &DAG) const { 5008 SDLoc DL(Op); 5009 MVT VT = Op.getSimpleValueType(); 5010 SDValue Mag = Op.getOperand(0); 5011 SDValue Sign = Op.getOperand(1); 5012 assert(Mag.getValueType() == Sign.getValueType() && 5013 "Can only handle COPYSIGN with matching types."); 5014 5015 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5016 Mag = convertToScalableVector(ContainerVT, Mag, DAG, Subtarget); 5017 Sign = convertToScalableVector(ContainerVT, Sign, DAG, Subtarget); 5018 5019 SDValue Mask, VL; 5020 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 5021 5022 SDValue CopySign = 5023 DAG.getNode(RISCVISD::FCOPYSIGN_VL, DL, ContainerVT, Mag, Sign, Mask, VL); 5024 5025 return convertFromScalableVector(VT, CopySign, DAG, Subtarget); 5026 } 5027 5028 SDValue RISCVTargetLowering::lowerFixedLengthVectorSelectToRVV( 5029 SDValue Op, SelectionDAG &DAG) const { 5030 MVT VT = Op.getSimpleValueType(); 5031 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5032 5033 MVT I1ContainerVT = 5034 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 5035 5036 SDValue CC = 5037 convertToScalableVector(I1ContainerVT, Op.getOperand(0), DAG, Subtarget); 5038 SDValue Op1 = 5039 convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget); 5040 SDValue Op2 = 5041 convertToScalableVector(ContainerVT, Op.getOperand(2), DAG, Subtarget); 5042 5043 SDLoc DL(Op); 5044 SDValue Mask, VL; 5045 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 5046 5047 SDValue Select = 5048 DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC, Op1, Op2, VL); 5049 5050 return convertFromScalableVector(VT, Select, DAG, Subtarget); 5051 } 5052 5053 SDValue RISCVTargetLowering::lowerToScalableOp(SDValue Op, SelectionDAG &DAG, 5054 unsigned NewOpc, 5055 bool HasMask) const { 5056 MVT VT = Op.getSimpleValueType(); 5057 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5058 5059 // Create list of operands by converting existing ones to scalable types. 5060 SmallVector<SDValue, 6> Ops; 5061 for (const SDValue &V : Op->op_values()) { 5062 assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!"); 5063 5064 // Pass through non-vector operands. 5065 if (!V.getValueType().isVector()) { 5066 Ops.push_back(V); 5067 continue; 5068 } 5069 5070 // "cast" fixed length vector to a scalable vector. 5071 assert(useRVVForFixedLengthVectorVT(V.getSimpleValueType()) && 5072 "Only fixed length vectors are supported!"); 5073 Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget)); 5074 } 5075 5076 SDLoc DL(Op); 5077 SDValue Mask, VL; 5078 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 5079 if (HasMask) 5080 Ops.push_back(Mask); 5081 Ops.push_back(VL); 5082 5083 SDValue ScalableRes = DAG.getNode(NewOpc, DL, ContainerVT, Ops); 5084 return convertFromScalableVector(VT, ScalableRes, DAG, Subtarget); 5085 } 5086 5087 // Lower a VP_* ISD node to the corresponding RISCVISD::*_VL node: 5088 // * Operands of each node are assumed to be in the same order. 5089 // * The EVL operand is promoted from i32 to i64 on RV64. 5090 // * Fixed-length vectors are converted to their scalable-vector container 5091 // types. 5092 SDValue RISCVTargetLowering::lowerVPOp(SDValue Op, SelectionDAG &DAG, 5093 unsigned RISCVISDOpc) const { 5094 SDLoc DL(Op); 5095 MVT VT = Op.getSimpleValueType(); 5096 SmallVector<SDValue, 4> Ops; 5097 5098 for (const auto &OpIdx : enumerate(Op->ops())) { 5099 SDValue V = OpIdx.value(); 5100 assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!"); 5101 // Pass through operands which aren't fixed-length vectors. 5102 if (!V.getValueType().isFixedLengthVector()) { 5103 Ops.push_back(V); 5104 continue; 5105 } 5106 // "cast" fixed length vector to a scalable vector. 5107 MVT OpVT = V.getSimpleValueType(); 5108 MVT ContainerVT = getContainerForFixedLengthVector(OpVT); 5109 assert(useRVVForFixedLengthVectorVT(OpVT) && 5110 "Only fixed length vectors are supported!"); 5111 Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget)); 5112 } 5113 5114 if (!VT.isFixedLengthVector()) 5115 return DAG.getNode(RISCVISDOpc, DL, VT, Ops); 5116 5117 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5118 5119 SDValue VPOp = DAG.getNode(RISCVISDOpc, DL, ContainerVT, Ops); 5120 5121 return convertFromScalableVector(VT, VPOp, DAG, Subtarget); 5122 } 5123 5124 // Custom lower MGATHER/VP_GATHER to a legalized form for RVV. It will then be 5125 // matched to a RVV indexed load. The RVV indexed load instructions only 5126 // support the "unsigned unscaled" addressing mode; indices are implicitly 5127 // zero-extended or truncated to XLEN and are treated as byte offsets. Any 5128 // signed or scaled indexing is extended to the XLEN value type and scaled 5129 // accordingly. 5130 SDValue RISCVTargetLowering::lowerMaskedGather(SDValue Op, 5131 SelectionDAG &DAG) const { 5132 SDLoc DL(Op); 5133 MVT VT = Op.getSimpleValueType(); 5134 5135 const auto *MemSD = cast<MemSDNode>(Op.getNode()); 5136 EVT MemVT = MemSD->getMemoryVT(); 5137 MachineMemOperand *MMO = MemSD->getMemOperand(); 5138 SDValue Chain = MemSD->getChain(); 5139 SDValue BasePtr = MemSD->getBasePtr(); 5140 5141 ISD::LoadExtType LoadExtType; 5142 SDValue Index, Mask, PassThru, VL; 5143 5144 if (auto *VPGN = dyn_cast<VPGatherSDNode>(Op.getNode())) { 5145 Index = VPGN->getIndex(); 5146 Mask = VPGN->getMask(); 5147 PassThru = DAG.getUNDEF(VT); 5148 VL = VPGN->getVectorLength(); 5149 // VP doesn't support extending loads. 5150 LoadExtType = ISD::NON_EXTLOAD; 5151 } else { 5152 // Else it must be a MGATHER. 5153 auto *MGN = cast<MaskedGatherSDNode>(Op.getNode()); 5154 Index = MGN->getIndex(); 5155 Mask = MGN->getMask(); 5156 PassThru = MGN->getPassThru(); 5157 LoadExtType = MGN->getExtensionType(); 5158 } 5159 5160 MVT IndexVT = Index.getSimpleValueType(); 5161 MVT XLenVT = Subtarget.getXLenVT(); 5162 5163 assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() && 5164 "Unexpected VTs!"); 5165 assert(BasePtr.getSimpleValueType() == XLenVT && "Unexpected pointer type"); 5166 // Targets have to explicitly opt-in for extending vector loads. 5167 assert(LoadExtType == ISD::NON_EXTLOAD && 5168 "Unexpected extending MGATHER/VP_GATHER"); 5169 (void)LoadExtType; 5170 5171 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 5172 // the selection of the masked intrinsics doesn't do this for us. 5173 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 5174 5175 MVT ContainerVT = VT; 5176 if (VT.isFixedLengthVector()) { 5177 // We need to use the larger of the result and index type to determine the 5178 // scalable type to use so we don't increase LMUL for any operand/result. 5179 if (VT.bitsGE(IndexVT)) { 5180 ContainerVT = getContainerForFixedLengthVector(VT); 5181 IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(), 5182 ContainerVT.getVectorElementCount()); 5183 } else { 5184 IndexVT = getContainerForFixedLengthVector(IndexVT); 5185 ContainerVT = MVT::getVectorVT(ContainerVT.getVectorElementType(), 5186 IndexVT.getVectorElementCount()); 5187 } 5188 5189 Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget); 5190 5191 if (!IsUnmasked) { 5192 MVT MaskVT = 5193 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 5194 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 5195 PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget); 5196 } 5197 } 5198 5199 if (!VL) 5200 VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; 5201 5202 unsigned IntID = 5203 IsUnmasked ? Intrinsic::riscv_vluxei : Intrinsic::riscv_vluxei_mask; 5204 SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)}; 5205 if (!IsUnmasked) 5206 Ops.push_back(PassThru); 5207 Ops.push_back(BasePtr); 5208 Ops.push_back(Index); 5209 if (!IsUnmasked) 5210 Ops.push_back(Mask); 5211 Ops.push_back(VL); 5212 if (!IsUnmasked) 5213 Ops.push_back(DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT)); 5214 5215 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 5216 SDValue Result = 5217 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, MemVT, MMO); 5218 Chain = Result.getValue(1); 5219 5220 if (VT.isFixedLengthVector()) 5221 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 5222 5223 return DAG.getMergeValues({Result, Chain}, DL); 5224 } 5225 5226 // Custom lower MSCATTER/VP_SCATTER to a legalized form for RVV. It will then be 5227 // matched to a RVV indexed store. The RVV indexed store instructions only 5228 // support the "unsigned unscaled" addressing mode; indices are implicitly 5229 // zero-extended or truncated to XLEN and are treated as byte offsets. Any 5230 // signed or scaled indexing is extended to the XLEN value type and scaled 5231 // accordingly. 5232 SDValue RISCVTargetLowering::lowerMaskedScatter(SDValue Op, 5233 SelectionDAG &DAG) const { 5234 SDLoc DL(Op); 5235 const auto *MemSD = cast<MemSDNode>(Op.getNode()); 5236 EVT MemVT = MemSD->getMemoryVT(); 5237 MachineMemOperand *MMO = MemSD->getMemOperand(); 5238 SDValue Chain = MemSD->getChain(); 5239 SDValue BasePtr = MemSD->getBasePtr(); 5240 5241 bool IsTruncatingStore = false; 5242 SDValue Index, Mask, Val, VL; 5243 5244 if (auto *VPSN = dyn_cast<VPScatterSDNode>(Op.getNode())) { 5245 Index = VPSN->getIndex(); 5246 Mask = VPSN->getMask(); 5247 Val = VPSN->getValue(); 5248 VL = VPSN->getVectorLength(); 5249 // VP doesn't support truncating stores. 5250 IsTruncatingStore = false; 5251 } else { 5252 // Else it must be a MSCATTER. 5253 auto *MSN = cast<MaskedScatterSDNode>(Op.getNode()); 5254 Index = MSN->getIndex(); 5255 Mask = MSN->getMask(); 5256 Val = MSN->getValue(); 5257 IsTruncatingStore = MSN->isTruncatingStore(); 5258 } 5259 5260 MVT VT = Val.getSimpleValueType(); 5261 MVT IndexVT = Index.getSimpleValueType(); 5262 MVT XLenVT = Subtarget.getXLenVT(); 5263 5264 assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() && 5265 "Unexpected VTs!"); 5266 assert(BasePtr.getSimpleValueType() == XLenVT && "Unexpected pointer type"); 5267 // Targets have to explicitly opt-in for extending vector loads and 5268 // truncating vector stores. 5269 assert(!IsTruncatingStore && "Unexpected truncating MSCATTER/VP_SCATTER"); 5270 (void)IsTruncatingStore; 5271 5272 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 5273 // the selection of the masked intrinsics doesn't do this for us. 5274 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 5275 5276 MVT ContainerVT = VT; 5277 if (VT.isFixedLengthVector()) { 5278 // We need to use the larger of the value and index type to determine the 5279 // scalable type to use so we don't increase LMUL for any operand/result. 5280 if (VT.bitsGE(IndexVT)) { 5281 ContainerVT = getContainerForFixedLengthVector(VT); 5282 IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(), 5283 ContainerVT.getVectorElementCount()); 5284 } else { 5285 IndexVT = getContainerForFixedLengthVector(IndexVT); 5286 ContainerVT = MVT::getVectorVT(VT.getVectorElementType(), 5287 IndexVT.getVectorElementCount()); 5288 } 5289 5290 Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget); 5291 Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget); 5292 5293 if (!IsUnmasked) { 5294 MVT MaskVT = 5295 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 5296 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 5297 } 5298 } 5299 5300 if (!VL) 5301 VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; 5302 5303 unsigned IntID = 5304 IsUnmasked ? Intrinsic::riscv_vsoxei : Intrinsic::riscv_vsoxei_mask; 5305 SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)}; 5306 Ops.push_back(Val); 5307 Ops.push_back(BasePtr); 5308 Ops.push_back(Index); 5309 if (!IsUnmasked) 5310 Ops.push_back(Mask); 5311 Ops.push_back(VL); 5312 5313 return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, 5314 DAG.getVTList(MVT::Other), Ops, MemVT, MMO); 5315 } 5316 5317 SDValue RISCVTargetLowering::lowerGET_ROUNDING(SDValue Op, 5318 SelectionDAG &DAG) const { 5319 const MVT XLenVT = Subtarget.getXLenVT(); 5320 SDLoc DL(Op); 5321 SDValue Chain = Op->getOperand(0); 5322 SDValue SysRegNo = DAG.getConstant( 5323 RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT); 5324 SDVTList VTs = DAG.getVTList(XLenVT, MVT::Other); 5325 SDValue RM = DAG.getNode(RISCVISD::READ_CSR, DL, VTs, Chain, SysRegNo); 5326 5327 // Encoding used for rounding mode in RISCV differs from that used in 5328 // FLT_ROUNDS. To convert it the RISCV rounding mode is used as an index in a 5329 // table, which consists of a sequence of 4-bit fields, each representing 5330 // corresponding FLT_ROUNDS mode. 5331 static const int Table = 5332 (int(RoundingMode::NearestTiesToEven) << 4 * RISCVFPRndMode::RNE) | 5333 (int(RoundingMode::TowardZero) << 4 * RISCVFPRndMode::RTZ) | 5334 (int(RoundingMode::TowardNegative) << 4 * RISCVFPRndMode::RDN) | 5335 (int(RoundingMode::TowardPositive) << 4 * RISCVFPRndMode::RUP) | 5336 (int(RoundingMode::NearestTiesToAway) << 4 * RISCVFPRndMode::RMM); 5337 5338 SDValue Shift = 5339 DAG.getNode(ISD::SHL, DL, XLenVT, RM, DAG.getConstant(2, DL, XLenVT)); 5340 SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT, 5341 DAG.getConstant(Table, DL, XLenVT), Shift); 5342 SDValue Masked = DAG.getNode(ISD::AND, DL, XLenVT, Shifted, 5343 DAG.getConstant(7, DL, XLenVT)); 5344 5345 return DAG.getMergeValues({Masked, Chain}, DL); 5346 } 5347 5348 SDValue RISCVTargetLowering::lowerSET_ROUNDING(SDValue Op, 5349 SelectionDAG &DAG) const { 5350 const MVT XLenVT = Subtarget.getXLenVT(); 5351 SDLoc DL(Op); 5352 SDValue Chain = Op->getOperand(0); 5353 SDValue RMValue = Op->getOperand(1); 5354 SDValue SysRegNo = DAG.getConstant( 5355 RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT); 5356 5357 // Encoding used for rounding mode in RISCV differs from that used in 5358 // FLT_ROUNDS. To convert it the C rounding mode is used as an index in 5359 // a table, which consists of a sequence of 4-bit fields, each representing 5360 // corresponding RISCV mode. 5361 static const unsigned Table = 5362 (RISCVFPRndMode::RNE << 4 * int(RoundingMode::NearestTiesToEven)) | 5363 (RISCVFPRndMode::RTZ << 4 * int(RoundingMode::TowardZero)) | 5364 (RISCVFPRndMode::RDN << 4 * int(RoundingMode::TowardNegative)) | 5365 (RISCVFPRndMode::RUP << 4 * int(RoundingMode::TowardPositive)) | 5366 (RISCVFPRndMode::RMM << 4 * int(RoundingMode::NearestTiesToAway)); 5367 5368 SDValue Shift = DAG.getNode(ISD::SHL, DL, XLenVT, RMValue, 5369 DAG.getConstant(2, DL, XLenVT)); 5370 SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT, 5371 DAG.getConstant(Table, DL, XLenVT), Shift); 5372 RMValue = DAG.getNode(ISD::AND, DL, XLenVT, Shifted, 5373 DAG.getConstant(0x7, DL, XLenVT)); 5374 return DAG.getNode(RISCVISD::WRITE_CSR, DL, MVT::Other, Chain, SysRegNo, 5375 RMValue); 5376 } 5377 5378 // Returns the opcode of the target-specific SDNode that implements the 32-bit 5379 // form of the given Opcode. 5380 static RISCVISD::NodeType getRISCVWOpcode(unsigned Opcode) { 5381 switch (Opcode) { 5382 default: 5383 llvm_unreachable("Unexpected opcode"); 5384 case ISD::SHL: 5385 return RISCVISD::SLLW; 5386 case ISD::SRA: 5387 return RISCVISD::SRAW; 5388 case ISD::SRL: 5389 return RISCVISD::SRLW; 5390 case ISD::SDIV: 5391 return RISCVISD::DIVW; 5392 case ISD::UDIV: 5393 return RISCVISD::DIVUW; 5394 case ISD::UREM: 5395 return RISCVISD::REMUW; 5396 case ISD::ROTL: 5397 return RISCVISD::ROLW; 5398 case ISD::ROTR: 5399 return RISCVISD::RORW; 5400 case RISCVISD::GREV: 5401 return RISCVISD::GREVW; 5402 case RISCVISD::GORC: 5403 return RISCVISD::GORCW; 5404 } 5405 } 5406 5407 // Converts the given i8/i16/i32 operation to a target-specific SelectionDAG 5408 // node. Because i8/i16/i32 isn't a legal type for RV64, these operations would 5409 // otherwise be promoted to i64, making it difficult to select the 5410 // SLLW/DIVUW/.../*W later one because the fact the operation was originally of 5411 // type i8/i16/i32 is lost. 5412 static SDValue customLegalizeToWOp(SDNode *N, SelectionDAG &DAG, 5413 unsigned ExtOpc = ISD::ANY_EXTEND) { 5414 SDLoc DL(N); 5415 RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode()); 5416 SDValue NewOp0 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(0)); 5417 SDValue NewOp1 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(1)); 5418 SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1); 5419 // ReplaceNodeResults requires we maintain the same type for the return value. 5420 return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewRes); 5421 } 5422 5423 // Converts the given 32-bit operation to a i64 operation with signed extension 5424 // semantic to reduce the signed extension instructions. 5425 static SDValue customLegalizeToWOpWithSExt(SDNode *N, SelectionDAG &DAG) { 5426 SDLoc DL(N); 5427 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 5428 SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 5429 SDValue NewWOp = DAG.getNode(N->getOpcode(), DL, MVT::i64, NewOp0, NewOp1); 5430 SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp, 5431 DAG.getValueType(MVT::i32)); 5432 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes); 5433 } 5434 5435 void RISCVTargetLowering::ReplaceNodeResults(SDNode *N, 5436 SmallVectorImpl<SDValue> &Results, 5437 SelectionDAG &DAG) const { 5438 SDLoc DL(N); 5439 switch (N->getOpcode()) { 5440 default: 5441 llvm_unreachable("Don't know how to custom type legalize this operation!"); 5442 case ISD::STRICT_FP_TO_SINT: 5443 case ISD::STRICT_FP_TO_UINT: 5444 case ISD::FP_TO_SINT: 5445 case ISD::FP_TO_UINT: { 5446 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5447 "Unexpected custom legalisation"); 5448 bool IsStrict = N->isStrictFPOpcode(); 5449 bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT || 5450 N->getOpcode() == ISD::STRICT_FP_TO_SINT; 5451 SDValue Op0 = IsStrict ? N->getOperand(1) : N->getOperand(0); 5452 if (getTypeAction(*DAG.getContext(), Op0.getValueType()) != 5453 TargetLowering::TypeSoftenFloat) { 5454 // FIXME: Support strict FP. 5455 if (IsStrict) 5456 return; 5457 if (!isTypeLegal(Op0.getValueType())) 5458 return; 5459 unsigned Opc = 5460 IsSigned ? RISCVISD::FCVT_W_RTZ_RV64 : RISCVISD::FCVT_WU_RTZ_RV64; 5461 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, Op0); 5462 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 5463 return; 5464 } 5465 // If the FP type needs to be softened, emit a library call using the 'si' 5466 // version. If we left it to default legalization we'd end up with 'di'. If 5467 // the FP type doesn't need to be softened just let generic type 5468 // legalization promote the result type. 5469 RTLIB::Libcall LC; 5470 if (IsSigned) 5471 LC = RTLIB::getFPTOSINT(Op0.getValueType(), N->getValueType(0)); 5472 else 5473 LC = RTLIB::getFPTOUINT(Op0.getValueType(), N->getValueType(0)); 5474 MakeLibCallOptions CallOptions; 5475 EVT OpVT = Op0.getValueType(); 5476 CallOptions.setTypeListBeforeSoften(OpVT, N->getValueType(0), true); 5477 SDValue Chain = IsStrict ? N->getOperand(0) : SDValue(); 5478 SDValue Result; 5479 std::tie(Result, Chain) = 5480 makeLibCall(DAG, LC, N->getValueType(0), Op0, CallOptions, DL, Chain); 5481 Results.push_back(Result); 5482 if (IsStrict) 5483 Results.push_back(Chain); 5484 break; 5485 } 5486 case ISD::READCYCLECOUNTER: { 5487 assert(!Subtarget.is64Bit() && 5488 "READCYCLECOUNTER only has custom type legalization on riscv32"); 5489 5490 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other); 5491 SDValue RCW = 5492 DAG.getNode(RISCVISD::READ_CYCLE_WIDE, DL, VTs, N->getOperand(0)); 5493 5494 Results.push_back( 5495 DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, RCW, RCW.getValue(1))); 5496 Results.push_back(RCW.getValue(2)); 5497 break; 5498 } 5499 case ISD::MUL: { 5500 unsigned Size = N->getSimpleValueType(0).getSizeInBits(); 5501 unsigned XLen = Subtarget.getXLen(); 5502 // This multiply needs to be expanded, try to use MULHSU+MUL if possible. 5503 if (Size > XLen) { 5504 assert(Size == (XLen * 2) && "Unexpected custom legalisation"); 5505 SDValue LHS = N->getOperand(0); 5506 SDValue RHS = N->getOperand(1); 5507 APInt HighMask = APInt::getHighBitsSet(Size, XLen); 5508 5509 bool LHSIsU = DAG.MaskedValueIsZero(LHS, HighMask); 5510 bool RHSIsU = DAG.MaskedValueIsZero(RHS, HighMask); 5511 // We need exactly one side to be unsigned. 5512 if (LHSIsU == RHSIsU) 5513 return; 5514 5515 auto MakeMULPair = [&](SDValue S, SDValue U) { 5516 MVT XLenVT = Subtarget.getXLenVT(); 5517 S = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, S); 5518 U = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, U); 5519 SDValue Lo = DAG.getNode(ISD::MUL, DL, XLenVT, S, U); 5520 SDValue Hi = DAG.getNode(RISCVISD::MULHSU, DL, XLenVT, S, U); 5521 return DAG.getNode(ISD::BUILD_PAIR, DL, N->getValueType(0), Lo, Hi); 5522 }; 5523 5524 bool LHSIsS = DAG.ComputeNumSignBits(LHS) > XLen; 5525 bool RHSIsS = DAG.ComputeNumSignBits(RHS) > XLen; 5526 5527 // The other operand should be signed, but still prefer MULH when 5528 // possible. 5529 if (RHSIsU && LHSIsS && !RHSIsS) 5530 Results.push_back(MakeMULPair(LHS, RHS)); 5531 else if (LHSIsU && RHSIsS && !LHSIsS) 5532 Results.push_back(MakeMULPair(RHS, LHS)); 5533 5534 return; 5535 } 5536 LLVM_FALLTHROUGH; 5537 } 5538 case ISD::ADD: 5539 case ISD::SUB: 5540 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5541 "Unexpected custom legalisation"); 5542 Results.push_back(customLegalizeToWOpWithSExt(N, DAG)); 5543 break; 5544 case ISD::SHL: 5545 case ISD::SRA: 5546 case ISD::SRL: 5547 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5548 "Unexpected custom legalisation"); 5549 if (N->getOperand(1).getOpcode() != ISD::Constant) { 5550 Results.push_back(customLegalizeToWOp(N, DAG)); 5551 break; 5552 } 5553 5554 // Custom legalize ISD::SHL by placing a SIGN_EXTEND_INREG after. This is 5555 // similar to customLegalizeToWOpWithSExt, but we must zero_extend the 5556 // shift amount. 5557 if (N->getOpcode() == ISD::SHL) { 5558 SDLoc DL(N); 5559 SDValue NewOp0 = 5560 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 5561 SDValue NewOp1 = 5562 DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1)); 5563 SDValue NewWOp = DAG.getNode(ISD::SHL, DL, MVT::i64, NewOp0, NewOp1); 5564 SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp, 5565 DAG.getValueType(MVT::i32)); 5566 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes)); 5567 } 5568 5569 break; 5570 case ISD::ROTL: 5571 case ISD::ROTR: 5572 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5573 "Unexpected custom legalisation"); 5574 Results.push_back(customLegalizeToWOp(N, DAG)); 5575 break; 5576 case ISD::CTTZ: 5577 case ISD::CTTZ_ZERO_UNDEF: 5578 case ISD::CTLZ: 5579 case ISD::CTLZ_ZERO_UNDEF: { 5580 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5581 "Unexpected custom legalisation"); 5582 5583 SDValue NewOp0 = 5584 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 5585 bool IsCTZ = 5586 N->getOpcode() == ISD::CTTZ || N->getOpcode() == ISD::CTTZ_ZERO_UNDEF; 5587 unsigned Opc = IsCTZ ? RISCVISD::CTZW : RISCVISD::CLZW; 5588 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp0); 5589 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 5590 return; 5591 } 5592 case ISD::SDIV: 5593 case ISD::UDIV: 5594 case ISD::UREM: { 5595 MVT VT = N->getSimpleValueType(0); 5596 assert((VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) && 5597 Subtarget.is64Bit() && Subtarget.hasStdExtM() && 5598 "Unexpected custom legalisation"); 5599 // Don't promote division/remainder by constant since we should expand those 5600 // to multiply by magic constant. 5601 // FIXME: What if the expansion is disabled for minsize. 5602 if (N->getOperand(1).getOpcode() == ISD::Constant) 5603 return; 5604 5605 // If the input is i32, use ANY_EXTEND since the W instructions don't read 5606 // the upper 32 bits. For other types we need to sign or zero extend 5607 // based on the opcode. 5608 unsigned ExtOpc = ISD::ANY_EXTEND; 5609 if (VT != MVT::i32) 5610 ExtOpc = N->getOpcode() == ISD::SDIV ? ISD::SIGN_EXTEND 5611 : ISD::ZERO_EXTEND; 5612 5613 Results.push_back(customLegalizeToWOp(N, DAG, ExtOpc)); 5614 break; 5615 } 5616 case ISD::UADDO: 5617 case ISD::USUBO: { 5618 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5619 "Unexpected custom legalisation"); 5620 bool IsAdd = N->getOpcode() == ISD::UADDO; 5621 // Create an ADDW or SUBW. 5622 SDValue LHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 5623 SDValue RHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 5624 SDValue Res = 5625 DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, DL, MVT::i64, LHS, RHS); 5626 Res = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Res, 5627 DAG.getValueType(MVT::i32)); 5628 5629 // Sign extend the LHS and perform an unsigned compare with the ADDW result. 5630 // Since the inputs are sign extended from i32, this is equivalent to 5631 // comparing the lower 32 bits. 5632 LHS = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0)); 5633 SDValue Overflow = DAG.getSetCC(DL, N->getValueType(1), Res, LHS, 5634 IsAdd ? ISD::SETULT : ISD::SETUGT); 5635 5636 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 5637 Results.push_back(Overflow); 5638 return; 5639 } 5640 case ISD::UADDSAT: 5641 case ISD::USUBSAT: { 5642 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5643 "Unexpected custom legalisation"); 5644 if (Subtarget.hasStdExtZbb()) { 5645 // With Zbb we can sign extend and let LegalizeDAG use minu/maxu. Using 5646 // sign extend allows overflow of the lower 32 bits to be detected on 5647 // the promoted size. 5648 SDValue LHS = 5649 DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0)); 5650 SDValue RHS = 5651 DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(1)); 5652 SDValue Res = DAG.getNode(N->getOpcode(), DL, MVT::i64, LHS, RHS); 5653 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 5654 return; 5655 } 5656 5657 // Without Zbb, expand to UADDO/USUBO+select which will trigger our custom 5658 // promotion for UADDO/USUBO. 5659 Results.push_back(expandAddSubSat(N, DAG)); 5660 return; 5661 } 5662 case ISD::BITCAST: { 5663 EVT VT = N->getValueType(0); 5664 assert(VT.isInteger() && !VT.isVector() && "Unexpected VT!"); 5665 SDValue Op0 = N->getOperand(0); 5666 EVT Op0VT = Op0.getValueType(); 5667 MVT XLenVT = Subtarget.getXLenVT(); 5668 if (VT == MVT::i16 && Op0VT == MVT::f16 && Subtarget.hasStdExtZfh()) { 5669 SDValue FPConv = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, XLenVT, Op0); 5670 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FPConv)); 5671 } else if (VT == MVT::i32 && Op0VT == MVT::f32 && Subtarget.is64Bit() && 5672 Subtarget.hasStdExtF()) { 5673 SDValue FPConv = 5674 DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Op0); 5675 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, FPConv)); 5676 } else if (!VT.isVector() && Op0VT.isFixedLengthVector() && 5677 isTypeLegal(Op0VT)) { 5678 // Custom-legalize bitcasts from fixed-length vector types to illegal 5679 // scalar types in order to improve codegen. Bitcast the vector to a 5680 // one-element vector type whose element type is the same as the result 5681 // type, and extract the first element. 5682 LLVMContext &Context = *DAG.getContext(); 5683 SDValue BVec = DAG.getBitcast(EVT::getVectorVT(Context, VT, 1), Op0); 5684 Results.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec, 5685 DAG.getConstant(0, DL, XLenVT))); 5686 } 5687 break; 5688 } 5689 case RISCVISD::GREV: 5690 case RISCVISD::GORC: { 5691 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5692 "Unexpected custom legalisation"); 5693 assert(isa<ConstantSDNode>(N->getOperand(1)) && "Expected constant"); 5694 // This is similar to customLegalizeToWOp, except that we pass the second 5695 // operand (a TargetConstant) straight through: it is already of type 5696 // XLenVT. 5697 RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode()); 5698 SDValue NewOp0 = 5699 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 5700 SDValue NewOp1 = 5701 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 5702 SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1); 5703 // ReplaceNodeResults requires we maintain the same type for the return 5704 // value. 5705 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes)); 5706 break; 5707 } 5708 case RISCVISD::SHFL: { 5709 // There is no SHFLIW instruction, but we can just promote the operation. 5710 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5711 "Unexpected custom legalisation"); 5712 assert(isa<ConstantSDNode>(N->getOperand(1)) && "Expected constant"); 5713 SDValue NewOp0 = 5714 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 5715 SDValue NewOp1 = 5716 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 5717 SDValue NewRes = DAG.getNode(RISCVISD::SHFL, DL, MVT::i64, NewOp0, NewOp1); 5718 // ReplaceNodeResults requires we maintain the same type for the return 5719 // value. 5720 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes)); 5721 break; 5722 } 5723 case ISD::BSWAP: 5724 case ISD::BITREVERSE: { 5725 MVT VT = N->getSimpleValueType(0); 5726 MVT XLenVT = Subtarget.getXLenVT(); 5727 assert((VT == MVT::i8 || VT == MVT::i16 || 5728 (VT == MVT::i32 && Subtarget.is64Bit())) && 5729 Subtarget.hasStdExtZbp() && "Unexpected custom legalisation"); 5730 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, N->getOperand(0)); 5731 unsigned Imm = VT.getSizeInBits() - 1; 5732 // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits. 5733 if (N->getOpcode() == ISD::BSWAP) 5734 Imm &= ~0x7U; 5735 unsigned Opc = Subtarget.is64Bit() ? RISCVISD::GREVW : RISCVISD::GREV; 5736 SDValue GREVI = 5737 DAG.getNode(Opc, DL, XLenVT, NewOp0, DAG.getConstant(Imm, DL, XLenVT)); 5738 // ReplaceNodeResults requires we maintain the same type for the return 5739 // value. 5740 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, GREVI)); 5741 break; 5742 } 5743 case ISD::FSHL: 5744 case ISD::FSHR: { 5745 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5746 Subtarget.hasStdExtZbt() && "Unexpected custom legalisation"); 5747 SDValue NewOp0 = 5748 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 5749 SDValue NewOp1 = 5750 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 5751 SDValue NewOp2 = 5752 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 5753 // FSLW/FSRW take a 6 bit shift amount but i32 FSHL/FSHR only use 5 bits. 5754 // Mask the shift amount to 5 bits. 5755 NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2, 5756 DAG.getConstant(0x1f, DL, MVT::i64)); 5757 unsigned Opc = 5758 N->getOpcode() == ISD::FSHL ? RISCVISD::FSLW : RISCVISD::FSRW; 5759 SDValue NewOp = DAG.getNode(Opc, DL, MVT::i64, NewOp0, NewOp1, NewOp2); 5760 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewOp)); 5761 break; 5762 } 5763 case ISD::EXTRACT_VECTOR_ELT: { 5764 // Custom-legalize an EXTRACT_VECTOR_ELT where XLEN<SEW, as the SEW element 5765 // type is illegal (currently only vXi64 RV32). 5766 // With vmv.x.s, when SEW > XLEN, only the least-significant XLEN bits are 5767 // transferred to the destination register. We issue two of these from the 5768 // upper- and lower- halves of the SEW-bit vector element, slid down to the 5769 // first element. 5770 SDValue Vec = N->getOperand(0); 5771 SDValue Idx = N->getOperand(1); 5772 5773 // The vector type hasn't been legalized yet so we can't issue target 5774 // specific nodes if it needs legalization. 5775 // FIXME: We would manually legalize if it's important. 5776 if (!isTypeLegal(Vec.getValueType())) 5777 return; 5778 5779 MVT VecVT = Vec.getSimpleValueType(); 5780 5781 assert(!Subtarget.is64Bit() && N->getValueType(0) == MVT::i64 && 5782 VecVT.getVectorElementType() == MVT::i64 && 5783 "Unexpected EXTRACT_VECTOR_ELT legalization"); 5784 5785 // If this is a fixed vector, we need to convert it to a scalable vector. 5786 MVT ContainerVT = VecVT; 5787 if (VecVT.isFixedLengthVector()) { 5788 ContainerVT = getContainerForFixedLengthVector(VecVT); 5789 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 5790 } 5791 5792 MVT XLenVT = Subtarget.getXLenVT(); 5793 5794 // Use a VL of 1 to avoid processing more elements than we need. 5795 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 5796 SDValue VL = DAG.getConstant(1, DL, XLenVT); 5797 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 5798 5799 // Unless the index is known to be 0, we must slide the vector down to get 5800 // the desired element into index 0. 5801 if (!isNullConstant(Idx)) { 5802 Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 5803 DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL); 5804 } 5805 5806 // Extract the lower XLEN bits of the correct vector element. 5807 SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); 5808 5809 // To extract the upper XLEN bits of the vector element, shift the first 5810 // element right by 32 bits and re-extract the lower XLEN bits. 5811 SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, 5812 DAG.getConstant(32, DL, XLenVT), VL); 5813 SDValue LShr32 = DAG.getNode(RISCVISD::SRL_VL, DL, ContainerVT, Vec, 5814 ThirtyTwoV, Mask, VL); 5815 5816 SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32); 5817 5818 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi)); 5819 break; 5820 } 5821 case ISD::INTRINSIC_WO_CHAIN: { 5822 unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 5823 switch (IntNo) { 5824 default: 5825 llvm_unreachable( 5826 "Don't know how to custom type legalize this intrinsic!"); 5827 case Intrinsic::riscv_orc_b: { 5828 // Lower to the GORCI encoding for orc.b with the operand extended. 5829 SDValue NewOp = 5830 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 5831 // If Zbp is enabled, use GORCIW which will sign extend the result. 5832 unsigned Opc = 5833 Subtarget.hasStdExtZbp() ? RISCVISD::GORCW : RISCVISD::GORC; 5834 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp, 5835 DAG.getConstant(7, DL, MVT::i64)); 5836 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 5837 return; 5838 } 5839 case Intrinsic::riscv_grev: 5840 case Intrinsic::riscv_gorc: { 5841 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5842 "Unexpected custom legalisation"); 5843 SDValue NewOp1 = 5844 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 5845 SDValue NewOp2 = 5846 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 5847 unsigned Opc = 5848 IntNo == Intrinsic::riscv_grev ? RISCVISD::GREVW : RISCVISD::GORCW; 5849 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2); 5850 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 5851 break; 5852 } 5853 case Intrinsic::riscv_shfl: 5854 case Intrinsic::riscv_unshfl: { 5855 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5856 "Unexpected custom legalisation"); 5857 SDValue NewOp1 = 5858 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 5859 SDValue NewOp2 = 5860 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 5861 unsigned Opc = 5862 IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFLW : RISCVISD::UNSHFLW; 5863 if (isa<ConstantSDNode>(N->getOperand(2))) { 5864 NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2, 5865 DAG.getConstant(0xf, DL, MVT::i64)); 5866 Opc = 5867 IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL; 5868 } 5869 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2); 5870 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 5871 break; 5872 } 5873 case Intrinsic::riscv_bcompress: 5874 case Intrinsic::riscv_bdecompress: { 5875 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5876 "Unexpected custom legalisation"); 5877 SDValue NewOp1 = 5878 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 5879 SDValue NewOp2 = 5880 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 5881 unsigned Opc = IntNo == Intrinsic::riscv_bcompress 5882 ? RISCVISD::BCOMPRESSW 5883 : RISCVISD::BDECOMPRESSW; 5884 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2); 5885 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 5886 break; 5887 } 5888 case Intrinsic::riscv_vmv_x_s: { 5889 EVT VT = N->getValueType(0); 5890 MVT XLenVT = Subtarget.getXLenVT(); 5891 if (VT.bitsLT(XLenVT)) { 5892 // Simple case just extract using vmv.x.s and truncate. 5893 SDValue Extract = DAG.getNode(RISCVISD::VMV_X_S, DL, 5894 Subtarget.getXLenVT(), N->getOperand(1)); 5895 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, Extract)); 5896 return; 5897 } 5898 5899 assert(VT == MVT::i64 && !Subtarget.is64Bit() && 5900 "Unexpected custom legalization"); 5901 5902 // We need to do the move in two steps. 5903 SDValue Vec = N->getOperand(1); 5904 MVT VecVT = Vec.getSimpleValueType(); 5905 5906 // First extract the lower XLEN bits of the element. 5907 SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); 5908 5909 // To extract the upper XLEN bits of the vector element, shift the first 5910 // element right by 32 bits and re-extract the lower XLEN bits. 5911 SDValue VL = DAG.getConstant(1, DL, XLenVT); 5912 MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount()); 5913 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 5914 SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, 5915 DAG.getConstant(32, DL, XLenVT), VL); 5916 SDValue LShr32 = 5917 DAG.getNode(RISCVISD::SRL_VL, DL, VecVT, Vec, ThirtyTwoV, Mask, VL); 5918 SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32); 5919 5920 Results.push_back( 5921 DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi)); 5922 break; 5923 } 5924 } 5925 break; 5926 } 5927 case ISD::VECREDUCE_ADD: 5928 case ISD::VECREDUCE_AND: 5929 case ISD::VECREDUCE_OR: 5930 case ISD::VECREDUCE_XOR: 5931 case ISD::VECREDUCE_SMAX: 5932 case ISD::VECREDUCE_UMAX: 5933 case ISD::VECREDUCE_SMIN: 5934 case ISD::VECREDUCE_UMIN: 5935 if (SDValue V = lowerVECREDUCE(SDValue(N, 0), DAG)) 5936 Results.push_back(V); 5937 break; 5938 case ISD::VP_REDUCE_ADD: 5939 case ISD::VP_REDUCE_AND: 5940 case ISD::VP_REDUCE_OR: 5941 case ISD::VP_REDUCE_XOR: 5942 case ISD::VP_REDUCE_SMAX: 5943 case ISD::VP_REDUCE_UMAX: 5944 case ISD::VP_REDUCE_SMIN: 5945 case ISD::VP_REDUCE_UMIN: 5946 if (SDValue V = lowerVPREDUCE(SDValue(N, 0), DAG)) 5947 Results.push_back(V); 5948 break; 5949 case ISD::FLT_ROUNDS_: { 5950 SDVTList VTs = DAG.getVTList(Subtarget.getXLenVT(), MVT::Other); 5951 SDValue Res = DAG.getNode(ISD::FLT_ROUNDS_, DL, VTs, N->getOperand(0)); 5952 Results.push_back(Res.getValue(0)); 5953 Results.push_back(Res.getValue(1)); 5954 break; 5955 } 5956 } 5957 } 5958 5959 // A structure to hold one of the bit-manipulation patterns below. Together, a 5960 // SHL and non-SHL pattern may form a bit-manipulation pair on a single source: 5961 // (or (and (shl x, 1), 0xAAAAAAAA), 5962 // (and (srl x, 1), 0x55555555)) 5963 struct RISCVBitmanipPat { 5964 SDValue Op; 5965 unsigned ShAmt; 5966 bool IsSHL; 5967 5968 bool formsPairWith(const RISCVBitmanipPat &Other) const { 5969 return Op == Other.Op && ShAmt == Other.ShAmt && IsSHL != Other.IsSHL; 5970 } 5971 }; 5972 5973 // Matches patterns of the form 5974 // (and (shl x, C2), (C1 << C2)) 5975 // (and (srl x, C2), C1) 5976 // (shl (and x, C1), C2) 5977 // (srl (and x, (C1 << C2)), C2) 5978 // Where C2 is a power of 2 and C1 has at least that many leading zeroes. 5979 // The expected masks for each shift amount are specified in BitmanipMasks where 5980 // BitmanipMasks[log2(C2)] specifies the expected C1 value. 5981 // The max allowed shift amount is either XLen/2 or XLen/4 determined by whether 5982 // BitmanipMasks contains 6 or 5 entries assuming that the maximum possible 5983 // XLen is 64. 5984 static Optional<RISCVBitmanipPat> 5985 matchRISCVBitmanipPat(SDValue Op, ArrayRef<uint64_t> BitmanipMasks) { 5986 assert((BitmanipMasks.size() == 5 || BitmanipMasks.size() == 6) && 5987 "Unexpected number of masks"); 5988 Optional<uint64_t> Mask; 5989 // Optionally consume a mask around the shift operation. 5990 if (Op.getOpcode() == ISD::AND && isa<ConstantSDNode>(Op.getOperand(1))) { 5991 Mask = Op.getConstantOperandVal(1); 5992 Op = Op.getOperand(0); 5993 } 5994 if (Op.getOpcode() != ISD::SHL && Op.getOpcode() != ISD::SRL) 5995 return None; 5996 bool IsSHL = Op.getOpcode() == ISD::SHL; 5997 5998 if (!isa<ConstantSDNode>(Op.getOperand(1))) 5999 return None; 6000 uint64_t ShAmt = Op.getConstantOperandVal(1); 6001 6002 unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32; 6003 if (ShAmt >= Width || !isPowerOf2_64(ShAmt)) 6004 return None; 6005 // If we don't have enough masks for 64 bit, then we must be trying to 6006 // match SHFL so we're only allowed to shift 1/4 of the width. 6007 if (BitmanipMasks.size() == 5 && ShAmt >= (Width / 2)) 6008 return None; 6009 6010 SDValue Src = Op.getOperand(0); 6011 6012 // The expected mask is shifted left when the AND is found around SHL 6013 // patterns. 6014 // ((x >> 1) & 0x55555555) 6015 // ((x << 1) & 0xAAAAAAAA) 6016 bool SHLExpMask = IsSHL; 6017 6018 if (!Mask) { 6019 // Sometimes LLVM keeps the mask as an operand of the shift, typically when 6020 // the mask is all ones: consume that now. 6021 if (Src.getOpcode() == ISD::AND && isa<ConstantSDNode>(Src.getOperand(1))) { 6022 Mask = Src.getConstantOperandVal(1); 6023 Src = Src.getOperand(0); 6024 // The expected mask is now in fact shifted left for SRL, so reverse the 6025 // decision. 6026 // ((x & 0xAAAAAAAA) >> 1) 6027 // ((x & 0x55555555) << 1) 6028 SHLExpMask = !SHLExpMask; 6029 } else { 6030 // Use a default shifted mask of all-ones if there's no AND, truncated 6031 // down to the expected width. This simplifies the logic later on. 6032 Mask = maskTrailingOnes<uint64_t>(Width); 6033 *Mask &= (IsSHL ? *Mask << ShAmt : *Mask >> ShAmt); 6034 } 6035 } 6036 6037 unsigned MaskIdx = Log2_32(ShAmt); 6038 uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width); 6039 6040 if (SHLExpMask) 6041 ExpMask <<= ShAmt; 6042 6043 if (Mask != ExpMask) 6044 return None; 6045 6046 return RISCVBitmanipPat{Src, (unsigned)ShAmt, IsSHL}; 6047 } 6048 6049 // Matches any of the following bit-manipulation patterns: 6050 // (and (shl x, 1), (0x55555555 << 1)) 6051 // (and (srl x, 1), 0x55555555) 6052 // (shl (and x, 0x55555555), 1) 6053 // (srl (and x, (0x55555555 << 1)), 1) 6054 // where the shift amount and mask may vary thus: 6055 // [1] = 0x55555555 / 0xAAAAAAAA 6056 // [2] = 0x33333333 / 0xCCCCCCCC 6057 // [4] = 0x0F0F0F0F / 0xF0F0F0F0 6058 // [8] = 0x00FF00FF / 0xFF00FF00 6059 // [16] = 0x0000FFFF / 0xFFFFFFFF 6060 // [32] = 0x00000000FFFFFFFF / 0xFFFFFFFF00000000 (for RV64) 6061 static Optional<RISCVBitmanipPat> matchGREVIPat(SDValue Op) { 6062 // These are the unshifted masks which we use to match bit-manipulation 6063 // patterns. They may be shifted left in certain circumstances. 6064 static const uint64_t BitmanipMasks[] = { 6065 0x5555555555555555ULL, 0x3333333333333333ULL, 0x0F0F0F0F0F0F0F0FULL, 6066 0x00FF00FF00FF00FFULL, 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL}; 6067 6068 return matchRISCVBitmanipPat(Op, BitmanipMasks); 6069 } 6070 6071 // Match the following pattern as a GREVI(W) operation 6072 // (or (BITMANIP_SHL x), (BITMANIP_SRL x)) 6073 static SDValue combineORToGREV(SDValue Op, SelectionDAG &DAG, 6074 const RISCVSubtarget &Subtarget) { 6075 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson"); 6076 EVT VT = Op.getValueType(); 6077 6078 if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) { 6079 auto LHS = matchGREVIPat(Op.getOperand(0)); 6080 auto RHS = matchGREVIPat(Op.getOperand(1)); 6081 if (LHS && RHS && LHS->formsPairWith(*RHS)) { 6082 SDLoc DL(Op); 6083 return DAG.getNode(RISCVISD::GREV, DL, VT, LHS->Op, 6084 DAG.getConstant(LHS->ShAmt, DL, VT)); 6085 } 6086 } 6087 return SDValue(); 6088 } 6089 6090 // Matches any the following pattern as a GORCI(W) operation 6091 // 1. (or (GREVI x, shamt), x) if shamt is a power of 2 6092 // 2. (or x, (GREVI x, shamt)) if shamt is a power of 2 6093 // 3. (or (or (BITMANIP_SHL x), x), (BITMANIP_SRL x)) 6094 // Note that with the variant of 3., 6095 // (or (or (BITMANIP_SHL x), (BITMANIP_SRL x)), x) 6096 // the inner pattern will first be matched as GREVI and then the outer 6097 // pattern will be matched to GORC via the first rule above. 6098 // 4. (or (rotl/rotr x, bitwidth/2), x) 6099 static SDValue combineORToGORC(SDValue Op, SelectionDAG &DAG, 6100 const RISCVSubtarget &Subtarget) { 6101 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson"); 6102 EVT VT = Op.getValueType(); 6103 6104 if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) { 6105 SDLoc DL(Op); 6106 SDValue Op0 = Op.getOperand(0); 6107 SDValue Op1 = Op.getOperand(1); 6108 6109 auto MatchOROfReverse = [&](SDValue Reverse, SDValue X) { 6110 if (Reverse.getOpcode() == RISCVISD::GREV && Reverse.getOperand(0) == X && 6111 isa<ConstantSDNode>(Reverse.getOperand(1)) && 6112 isPowerOf2_32(Reverse.getConstantOperandVal(1))) 6113 return DAG.getNode(RISCVISD::GORC, DL, VT, X, Reverse.getOperand(1)); 6114 // We can also form GORCI from ROTL/ROTR by half the bitwidth. 6115 if ((Reverse.getOpcode() == ISD::ROTL || 6116 Reverse.getOpcode() == ISD::ROTR) && 6117 Reverse.getOperand(0) == X && 6118 isa<ConstantSDNode>(Reverse.getOperand(1))) { 6119 uint64_t RotAmt = Reverse.getConstantOperandVal(1); 6120 if (RotAmt == (VT.getSizeInBits() / 2)) 6121 return DAG.getNode(RISCVISD::GORC, DL, VT, X, 6122 DAG.getConstant(RotAmt, DL, VT)); 6123 } 6124 return SDValue(); 6125 }; 6126 6127 // Check for either commutable permutation of (or (GREVI x, shamt), x) 6128 if (SDValue V = MatchOROfReverse(Op0, Op1)) 6129 return V; 6130 if (SDValue V = MatchOROfReverse(Op1, Op0)) 6131 return V; 6132 6133 // OR is commutable so canonicalize its OR operand to the left 6134 if (Op0.getOpcode() != ISD::OR && Op1.getOpcode() == ISD::OR) 6135 std::swap(Op0, Op1); 6136 if (Op0.getOpcode() != ISD::OR) 6137 return SDValue(); 6138 SDValue OrOp0 = Op0.getOperand(0); 6139 SDValue OrOp1 = Op0.getOperand(1); 6140 auto LHS = matchGREVIPat(OrOp0); 6141 // OR is commutable so swap the operands and try again: x might have been 6142 // on the left 6143 if (!LHS) { 6144 std::swap(OrOp0, OrOp1); 6145 LHS = matchGREVIPat(OrOp0); 6146 } 6147 auto RHS = matchGREVIPat(Op1); 6148 if (LHS && RHS && LHS->formsPairWith(*RHS) && LHS->Op == OrOp1) { 6149 return DAG.getNode(RISCVISD::GORC, DL, VT, LHS->Op, 6150 DAG.getConstant(LHS->ShAmt, DL, VT)); 6151 } 6152 } 6153 return SDValue(); 6154 } 6155 6156 // Matches any of the following bit-manipulation patterns: 6157 // (and (shl x, 1), (0x22222222 << 1)) 6158 // (and (srl x, 1), 0x22222222) 6159 // (shl (and x, 0x22222222), 1) 6160 // (srl (and x, (0x22222222 << 1)), 1) 6161 // where the shift amount and mask may vary thus: 6162 // [1] = 0x22222222 / 0x44444444 6163 // [2] = 0x0C0C0C0C / 0x3C3C3C3C 6164 // [4] = 0x00F000F0 / 0x0F000F00 6165 // [8] = 0x0000FF00 / 0x00FF0000 6166 // [16] = 0x00000000FFFF0000 / 0x0000FFFF00000000 (for RV64) 6167 static Optional<RISCVBitmanipPat> matchSHFLPat(SDValue Op) { 6168 // These are the unshifted masks which we use to match bit-manipulation 6169 // patterns. They may be shifted left in certain circumstances. 6170 static const uint64_t BitmanipMasks[] = { 6171 0x2222222222222222ULL, 0x0C0C0C0C0C0C0C0CULL, 0x00F000F000F000F0ULL, 6172 0x0000FF000000FF00ULL, 0x00000000FFFF0000ULL}; 6173 6174 return matchRISCVBitmanipPat(Op, BitmanipMasks); 6175 } 6176 6177 // Match (or (or (SHFL_SHL x), (SHFL_SHR x)), (SHFL_AND x) 6178 static SDValue combineORToSHFL(SDValue Op, SelectionDAG &DAG, 6179 const RISCVSubtarget &Subtarget) { 6180 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson"); 6181 EVT VT = Op.getValueType(); 6182 6183 if (VT != MVT::i32 && VT != Subtarget.getXLenVT()) 6184 return SDValue(); 6185 6186 SDValue Op0 = Op.getOperand(0); 6187 SDValue Op1 = Op.getOperand(1); 6188 6189 // Or is commutable so canonicalize the second OR to the LHS. 6190 if (Op0.getOpcode() != ISD::OR) 6191 std::swap(Op0, Op1); 6192 if (Op0.getOpcode() != ISD::OR) 6193 return SDValue(); 6194 6195 // We found an inner OR, so our operands are the operands of the inner OR 6196 // and the other operand of the outer OR. 6197 SDValue A = Op0.getOperand(0); 6198 SDValue B = Op0.getOperand(1); 6199 SDValue C = Op1; 6200 6201 auto Match1 = matchSHFLPat(A); 6202 auto Match2 = matchSHFLPat(B); 6203 6204 // If neither matched, we failed. 6205 if (!Match1 && !Match2) 6206 return SDValue(); 6207 6208 // We had at least one match. if one failed, try the remaining C operand. 6209 if (!Match1) { 6210 std::swap(A, C); 6211 Match1 = matchSHFLPat(A); 6212 if (!Match1) 6213 return SDValue(); 6214 } else if (!Match2) { 6215 std::swap(B, C); 6216 Match2 = matchSHFLPat(B); 6217 if (!Match2) 6218 return SDValue(); 6219 } 6220 assert(Match1 && Match2); 6221 6222 // Make sure our matches pair up. 6223 if (!Match1->formsPairWith(*Match2)) 6224 return SDValue(); 6225 6226 // All the remains is to make sure C is an AND with the same input, that masks 6227 // out the bits that are being shuffled. 6228 if (C.getOpcode() != ISD::AND || !isa<ConstantSDNode>(C.getOperand(1)) || 6229 C.getOperand(0) != Match1->Op) 6230 return SDValue(); 6231 6232 uint64_t Mask = C.getConstantOperandVal(1); 6233 6234 static const uint64_t BitmanipMasks[] = { 6235 0x9999999999999999ULL, 0xC3C3C3C3C3C3C3C3ULL, 0xF00FF00FF00FF00FULL, 6236 0xFF0000FFFF0000FFULL, 0xFFFF00000000FFFFULL, 6237 }; 6238 6239 unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32; 6240 unsigned MaskIdx = Log2_32(Match1->ShAmt); 6241 uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width); 6242 6243 if (Mask != ExpMask) 6244 return SDValue(); 6245 6246 SDLoc DL(Op); 6247 return DAG.getNode(RISCVISD::SHFL, DL, VT, Match1->Op, 6248 DAG.getConstant(Match1->ShAmt, DL, VT)); 6249 } 6250 6251 // Optimize (add (shl x, c0), (shl y, c1)) -> 6252 // (SLLI (SH*ADD x, y), c0), if c1-c0 equals to [1|2|3]. 6253 static SDValue transformAddShlImm(SDNode *N, SelectionDAG &DAG, 6254 const RISCVSubtarget &Subtarget) { 6255 // Perform this optimization only in the zba extension. 6256 if (!Subtarget.hasStdExtZba()) 6257 return SDValue(); 6258 6259 // Skip for vector types and larger types. 6260 EVT VT = N->getValueType(0); 6261 if (VT.isVector() || VT.getSizeInBits() > Subtarget.getXLen()) 6262 return SDValue(); 6263 6264 // The two operand nodes must be SHL and have no other use. 6265 SDValue N0 = N->getOperand(0); 6266 SDValue N1 = N->getOperand(1); 6267 if (N0->getOpcode() != ISD::SHL || N1->getOpcode() != ISD::SHL || 6268 !N0->hasOneUse() || !N1->hasOneUse()) 6269 return SDValue(); 6270 6271 // Check c0 and c1. 6272 auto *N0C = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 6273 auto *N1C = dyn_cast<ConstantSDNode>(N1->getOperand(1)); 6274 if (!N0C || !N1C) 6275 return SDValue(); 6276 int64_t C0 = N0C->getSExtValue(); 6277 int64_t C1 = N1C->getSExtValue(); 6278 if (C0 <= 0 || C1 <= 0) 6279 return SDValue(); 6280 6281 // Skip if SH1ADD/SH2ADD/SH3ADD are not applicable. 6282 int64_t Bits = std::min(C0, C1); 6283 int64_t Diff = std::abs(C0 - C1); 6284 if (Diff != 1 && Diff != 2 && Diff != 3) 6285 return SDValue(); 6286 6287 // Build nodes. 6288 SDLoc DL(N); 6289 SDValue NS = (C0 < C1) ? N0->getOperand(0) : N1->getOperand(0); 6290 SDValue NL = (C0 > C1) ? N0->getOperand(0) : N1->getOperand(0); 6291 SDValue NA0 = 6292 DAG.getNode(ISD::SHL, DL, VT, NL, DAG.getConstant(Diff, DL, VT)); 6293 SDValue NA1 = DAG.getNode(ISD::ADD, DL, VT, NA0, NS); 6294 return DAG.getNode(ISD::SHL, DL, VT, NA1, DAG.getConstant(Bits, DL, VT)); 6295 } 6296 6297 // Combine (GREVI (GREVI x, C2), C1) -> (GREVI x, C1^C2) when C1^C2 is 6298 // non-zero, and to x when it is. Any repeated GREVI stage undoes itself. 6299 // Combine (GORCI (GORCI x, C2), C1) -> (GORCI x, C1|C2). Repeated stage does 6300 // not undo itself, but they are redundant. 6301 static SDValue combineGREVI_GORCI(SDNode *N, SelectionDAG &DAG) { 6302 SDValue Src = N->getOperand(0); 6303 6304 if (Src.getOpcode() != N->getOpcode()) 6305 return SDValue(); 6306 6307 if (!isa<ConstantSDNode>(N->getOperand(1)) || 6308 !isa<ConstantSDNode>(Src.getOperand(1))) 6309 return SDValue(); 6310 6311 unsigned ShAmt1 = N->getConstantOperandVal(1); 6312 unsigned ShAmt2 = Src.getConstantOperandVal(1); 6313 Src = Src.getOperand(0); 6314 6315 unsigned CombinedShAmt; 6316 if (N->getOpcode() == RISCVISD::GORC || N->getOpcode() == RISCVISD::GORCW) 6317 CombinedShAmt = ShAmt1 | ShAmt2; 6318 else 6319 CombinedShAmt = ShAmt1 ^ ShAmt2; 6320 6321 if (CombinedShAmt == 0) 6322 return Src; 6323 6324 SDLoc DL(N); 6325 return DAG.getNode( 6326 N->getOpcode(), DL, N->getValueType(0), Src, 6327 DAG.getConstant(CombinedShAmt, DL, N->getOperand(1).getValueType())); 6328 } 6329 6330 // Combine a constant select operand into its use: 6331 // 6332 // (and (select cond, -1, c), x) 6333 // -> (select cond, x, (and x, c)) [AllOnes=1] 6334 // (or (select cond, 0, c), x) 6335 // -> (select cond, x, (or x, c)) [AllOnes=0] 6336 // (xor (select cond, 0, c), x) 6337 // -> (select cond, x, (xor x, c)) [AllOnes=0] 6338 // (add (select cond, 0, c), x) 6339 // -> (select cond, x, (add x, c)) [AllOnes=0] 6340 // (sub x, (select cond, 0, c)) 6341 // -> (select cond, x, (sub x, c)) [AllOnes=0] 6342 static SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp, 6343 SelectionDAG &DAG, bool AllOnes) { 6344 EVT VT = N->getValueType(0); 6345 6346 // Skip vectors. 6347 if (VT.isVector()) 6348 return SDValue(); 6349 6350 if ((Slct.getOpcode() != ISD::SELECT && 6351 Slct.getOpcode() != RISCVISD::SELECT_CC) || 6352 !Slct.hasOneUse()) 6353 return SDValue(); 6354 6355 auto isZeroOrAllOnes = [](SDValue N, bool AllOnes) { 6356 return AllOnes ? isAllOnesConstant(N) : isNullConstant(N); 6357 }; 6358 6359 bool SwapSelectOps; 6360 unsigned OpOffset = Slct.getOpcode() == RISCVISD::SELECT_CC ? 2 : 0; 6361 SDValue TrueVal = Slct.getOperand(1 + OpOffset); 6362 SDValue FalseVal = Slct.getOperand(2 + OpOffset); 6363 SDValue NonConstantVal; 6364 if (isZeroOrAllOnes(TrueVal, AllOnes)) { 6365 SwapSelectOps = false; 6366 NonConstantVal = FalseVal; 6367 } else if (isZeroOrAllOnes(FalseVal, AllOnes)) { 6368 SwapSelectOps = true; 6369 NonConstantVal = TrueVal; 6370 } else 6371 return SDValue(); 6372 6373 // Slct is now know to be the desired identity constant when CC is true. 6374 TrueVal = OtherOp; 6375 FalseVal = DAG.getNode(N->getOpcode(), SDLoc(N), VT, OtherOp, NonConstantVal); 6376 // Unless SwapSelectOps says the condition should be false. 6377 if (SwapSelectOps) 6378 std::swap(TrueVal, FalseVal); 6379 6380 if (Slct.getOpcode() == RISCVISD::SELECT_CC) 6381 return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), VT, 6382 {Slct.getOperand(0), Slct.getOperand(1), 6383 Slct.getOperand(2), TrueVal, FalseVal}); 6384 6385 return DAG.getNode(ISD::SELECT, SDLoc(N), VT, 6386 {Slct.getOperand(0), TrueVal, FalseVal}); 6387 } 6388 6389 // Attempt combineSelectAndUse on each operand of a commutative operator N. 6390 static SDValue combineSelectAndUseCommutative(SDNode *N, SelectionDAG &DAG, 6391 bool AllOnes) { 6392 SDValue N0 = N->getOperand(0); 6393 SDValue N1 = N->getOperand(1); 6394 if (SDValue Result = combineSelectAndUse(N, N0, N1, DAG, AllOnes)) 6395 return Result; 6396 if (SDValue Result = combineSelectAndUse(N, N1, N0, DAG, AllOnes)) 6397 return Result; 6398 return SDValue(); 6399 } 6400 6401 // Transform (add (mul x, c0), c1) -> 6402 // (add (mul (add x, c1/c0), c0), c1%c0). 6403 // if c1/c0 and c1%c0 are simm12, while c1 is not. 6404 // Or transform (add (mul x, c0), c1) -> 6405 // (mul (add x, c1/c0), c0). 6406 // if c1%c0 is zero, and c1/c0 is simm12 while c1 is not. 6407 static SDValue transformAddImmMulImm(SDNode *N, SelectionDAG &DAG, 6408 const RISCVSubtarget &Subtarget) { 6409 // Skip for vector types and larger types. 6410 EVT VT = N->getValueType(0); 6411 if (VT.isVector() || VT.getSizeInBits() > Subtarget.getXLen()) 6412 return SDValue(); 6413 // The first operand node must be a MUL and has no other use. 6414 SDValue N0 = N->getOperand(0); 6415 if (!N0->hasOneUse() || N0->getOpcode() != ISD::MUL) 6416 return SDValue(); 6417 // Check if c0 and c1 match above conditions. 6418 auto *N0C = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 6419 auto *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1)); 6420 if (!N0C || !N1C) 6421 return SDValue(); 6422 int64_t C0 = N0C->getSExtValue(); 6423 int64_t C1 = N1C->getSExtValue(); 6424 if (C0 == -1 || C0 == 0 || C0 == 1 || (C1 / C0) == 0 || isInt<12>(C1) || 6425 !isInt<12>(C1 % C0) || !isInt<12>(C1 / C0)) 6426 return SDValue(); 6427 // If C0 * (C1 / C0) is a 12-bit integer, this transform will be reversed. 6428 if (isInt<12>(C0 * (C1 / C0))) 6429 return SDValue(); 6430 // Build new nodes (add (mul (add x, c1/c0), c0), c1%c0). 6431 SDLoc DL(N); 6432 SDValue New0 = DAG.getNode(ISD::ADD, DL, VT, N0->getOperand(0), 6433 DAG.getConstant(C1 / C0, DL, VT)); 6434 SDValue New1 = 6435 DAG.getNode(ISD::MUL, DL, VT, New0, DAG.getConstant(C0, DL, VT)); 6436 if ((C1 % C0) == 0) 6437 return New1; 6438 return DAG.getNode(ISD::ADD, DL, VT, New1, DAG.getConstant(C1 % C0, DL, VT)); 6439 } 6440 6441 static SDValue performADDCombine(SDNode *N, SelectionDAG &DAG, 6442 const RISCVSubtarget &Subtarget) { 6443 // Transform (add (mul x, c0), c1) -> 6444 // (add (mul (add x, c1/c0), c0), c1%c0). 6445 // if c1/c0 and c1%c0 are simm12, while c1 is not. 6446 // Or transform (add (mul x, c0), c1) -> 6447 // (mul (add x, c1/c0), c0). 6448 // if c1%c0 is zero, and c1/c0 is simm12 while c1 is not. 6449 if (SDValue V = transformAddImmMulImm(N, DAG, Subtarget)) 6450 return V; 6451 // Fold (add (shl x, c0), (shl y, c1)) -> 6452 // (SLLI (SH*ADD x, y), c0), if c1-c0 equals to [1|2|3]. 6453 if (SDValue V = transformAddShlImm(N, DAG, Subtarget)) 6454 return V; 6455 // fold (add (select lhs, rhs, cc, 0, y), x) -> 6456 // (select lhs, rhs, cc, x, (add x, y)) 6457 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false); 6458 } 6459 6460 static SDValue performSUBCombine(SDNode *N, SelectionDAG &DAG) { 6461 // fold (sub x, (select lhs, rhs, cc, 0, y)) -> 6462 // (select lhs, rhs, cc, x, (sub x, y)) 6463 SDValue N0 = N->getOperand(0); 6464 SDValue N1 = N->getOperand(1); 6465 return combineSelectAndUse(N, N1, N0, DAG, /*AllOnes*/ false); 6466 } 6467 6468 static SDValue performANDCombine(SDNode *N, SelectionDAG &DAG) { 6469 // fold (and (select lhs, rhs, cc, -1, y), x) -> 6470 // (select lhs, rhs, cc, x, (and x, y)) 6471 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ true); 6472 } 6473 6474 static SDValue performORCombine(SDNode *N, SelectionDAG &DAG, 6475 const RISCVSubtarget &Subtarget) { 6476 if (Subtarget.hasStdExtZbp()) { 6477 if (auto GREV = combineORToGREV(SDValue(N, 0), DAG, Subtarget)) 6478 return GREV; 6479 if (auto GORC = combineORToGORC(SDValue(N, 0), DAG, Subtarget)) 6480 return GORC; 6481 if (auto SHFL = combineORToSHFL(SDValue(N, 0), DAG, Subtarget)) 6482 return SHFL; 6483 } 6484 6485 // fold (or (select cond, 0, y), x) -> 6486 // (select cond, x, (or x, y)) 6487 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false); 6488 } 6489 6490 static SDValue performXORCombine(SDNode *N, SelectionDAG &DAG) { 6491 // fold (xor (select cond, 0, y), x) -> 6492 // (select cond, x, (xor x, y)) 6493 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false); 6494 } 6495 6496 // Attempt to turn ANY_EXTEND into SIGN_EXTEND if the input to the ANY_EXTEND 6497 // has users that require SIGN_EXTEND and the SIGN_EXTEND can be done for free 6498 // by an instruction like ADDW/SUBW/MULW. Without this the ANY_EXTEND would be 6499 // removed during type legalization leaving an ADD/SUB/MUL use that won't use 6500 // ADDW/SUBW/MULW. 6501 static SDValue performANY_EXTENDCombine(SDNode *N, 6502 TargetLowering::DAGCombinerInfo &DCI, 6503 const RISCVSubtarget &Subtarget) { 6504 if (!Subtarget.is64Bit()) 6505 return SDValue(); 6506 6507 SelectionDAG &DAG = DCI.DAG; 6508 6509 SDValue Src = N->getOperand(0); 6510 EVT VT = N->getValueType(0); 6511 if (VT != MVT::i64 || Src.getValueType() != MVT::i32) 6512 return SDValue(); 6513 6514 // The opcode must be one that can implicitly sign_extend. 6515 // FIXME: Additional opcodes. 6516 switch (Src.getOpcode()) { 6517 default: 6518 return SDValue(); 6519 case ISD::MUL: 6520 if (!Subtarget.hasStdExtM()) 6521 return SDValue(); 6522 LLVM_FALLTHROUGH; 6523 case ISD::ADD: 6524 case ISD::SUB: 6525 break; 6526 } 6527 6528 // Only handle cases where the result is used by a CopyToReg. That likely 6529 // means the value is a liveout of the basic block. This helps prevent 6530 // infinite combine loops like PR51206. 6531 if (none_of(N->uses(), 6532 [](SDNode *User) { return User->getOpcode() == ISD::CopyToReg; })) 6533 return SDValue(); 6534 6535 SmallVector<SDNode *, 4> SetCCs; 6536 for (SDNode::use_iterator UI = Src.getNode()->use_begin(), 6537 UE = Src.getNode()->use_end(); 6538 UI != UE; ++UI) { 6539 SDNode *User = *UI; 6540 if (User == N) 6541 continue; 6542 if (UI.getUse().getResNo() != Src.getResNo()) 6543 continue; 6544 // All i32 setccs are legalized by sign extending operands. 6545 if (User->getOpcode() == ISD::SETCC) { 6546 SetCCs.push_back(User); 6547 continue; 6548 } 6549 // We don't know if we can extend this user. 6550 break; 6551 } 6552 6553 // If we don't have any SetCCs, this isn't worthwhile. 6554 if (SetCCs.empty()) 6555 return SDValue(); 6556 6557 SDLoc DL(N); 6558 SDValue SExt = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Src); 6559 DCI.CombineTo(N, SExt); 6560 6561 // Promote all the setccs. 6562 for (SDNode *SetCC : SetCCs) { 6563 SmallVector<SDValue, 4> Ops; 6564 6565 for (unsigned j = 0; j != 2; ++j) { 6566 SDValue SOp = SetCC->getOperand(j); 6567 if (SOp == Src) 6568 Ops.push_back(SExt); 6569 else 6570 Ops.push_back(DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, SOp)); 6571 } 6572 6573 Ops.push_back(SetCC->getOperand(2)); 6574 DCI.CombineTo(SetCC, 6575 DAG.getNode(ISD::SETCC, DL, SetCC->getValueType(0), Ops)); 6576 } 6577 return SDValue(N, 0); 6578 } 6579 6580 // Try to form VWMUL or VWMULU. 6581 // FIXME: Support VWMULSU. 6582 static SDValue combineMUL_VLToVWMUL(SDNode *N, SDValue Op0, SDValue Op1, 6583 SelectionDAG &DAG) { 6584 assert(N->getOpcode() == RISCVISD::MUL_VL && "Unexpected opcode"); 6585 bool IsSignExt = Op0.getOpcode() == RISCVISD::VSEXT_VL; 6586 bool IsZeroExt = Op0.getOpcode() == RISCVISD::VZEXT_VL; 6587 if ((!IsSignExt && !IsZeroExt) || !Op0.hasOneUse()) 6588 return SDValue(); 6589 6590 SDValue Mask = N->getOperand(2); 6591 SDValue VL = N->getOperand(3); 6592 6593 // Make sure the mask and VL match. 6594 if (Op0.getOperand(1) != Mask || Op0.getOperand(2) != VL) 6595 return SDValue(); 6596 6597 MVT VT = N->getSimpleValueType(0); 6598 6599 // Determine the narrow size for a widening multiply. 6600 unsigned NarrowSize = VT.getScalarSizeInBits() / 2; 6601 MVT NarrowVT = MVT::getVectorVT(MVT::getIntegerVT(NarrowSize), 6602 VT.getVectorElementCount()); 6603 6604 SDLoc DL(N); 6605 6606 // See if the other operand is the same opcode. 6607 if (Op0.getOpcode() == Op1.getOpcode()) { 6608 if (!Op1.hasOneUse()) 6609 return SDValue(); 6610 6611 // Make sure the mask and VL match. 6612 if (Op1.getOperand(1) != Mask || Op1.getOperand(2) != VL) 6613 return SDValue(); 6614 6615 Op1 = Op1.getOperand(0); 6616 } else if (Op1.getOpcode() == RISCVISD::VMV_V_X_VL) { 6617 // The operand is a splat of a scalar. 6618 6619 // The VL must be the same. 6620 if (Op1.getOperand(1) != VL) 6621 return SDValue(); 6622 6623 // Get the scalar value. 6624 Op1 = Op1.getOperand(0); 6625 6626 // See if have enough sign bits or zero bits in the scalar to use a 6627 // widening multiply by splatting to smaller element size. 6628 unsigned EltBits = VT.getScalarSizeInBits(); 6629 unsigned ScalarBits = Op1.getValueSizeInBits(); 6630 // Make sure we're getting all element bits from the scalar register. 6631 // FIXME: Support implicit sign extension of vmv.v.x? 6632 if (ScalarBits < EltBits) 6633 return SDValue(); 6634 6635 if (IsSignExt) { 6636 if (DAG.ComputeNumSignBits(Op1) <= (ScalarBits - NarrowSize)) 6637 return SDValue(); 6638 } else { 6639 APInt Mask = APInt::getBitsSetFrom(ScalarBits, NarrowSize); 6640 if (!DAG.MaskedValueIsZero(Op1, Mask)) 6641 return SDValue(); 6642 } 6643 6644 Op1 = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, NarrowVT, Op1, VL); 6645 } else 6646 return SDValue(); 6647 6648 Op0 = Op0.getOperand(0); 6649 6650 // Re-introduce narrower extends if needed. 6651 unsigned ExtOpc = IsSignExt ? RISCVISD::VSEXT_VL : RISCVISD::VZEXT_VL; 6652 if (Op0.getValueType() != NarrowVT) 6653 Op0 = DAG.getNode(ExtOpc, DL, NarrowVT, Op0, Mask, VL); 6654 if (Op1.getValueType() != NarrowVT) 6655 Op1 = DAG.getNode(ExtOpc, DL, NarrowVT, Op1, Mask, VL); 6656 6657 unsigned WMulOpc = IsSignExt ? RISCVISD::VWMUL_VL : RISCVISD::VWMULU_VL; 6658 return DAG.getNode(WMulOpc, DL, VT, Op0, Op1, Mask, VL); 6659 } 6660 6661 SDValue RISCVTargetLowering::PerformDAGCombine(SDNode *N, 6662 DAGCombinerInfo &DCI) const { 6663 SelectionDAG &DAG = DCI.DAG; 6664 6665 // Helper to call SimplifyDemandedBits on an operand of N where only some low 6666 // bits are demanded. N will be added to the Worklist if it was not deleted. 6667 // Caller should return SDValue(N, 0) if this returns true. 6668 auto SimplifyDemandedLowBitsHelper = [&](unsigned OpNo, unsigned LowBits) { 6669 SDValue Op = N->getOperand(OpNo); 6670 APInt Mask = APInt::getLowBitsSet(Op.getValueSizeInBits(), LowBits); 6671 if (!SimplifyDemandedBits(Op, Mask, DCI)) 6672 return false; 6673 6674 if (N->getOpcode() != ISD::DELETED_NODE) 6675 DCI.AddToWorklist(N); 6676 return true; 6677 }; 6678 6679 switch (N->getOpcode()) { 6680 default: 6681 break; 6682 case RISCVISD::SplitF64: { 6683 SDValue Op0 = N->getOperand(0); 6684 // If the input to SplitF64 is just BuildPairF64 then the operation is 6685 // redundant. Instead, use BuildPairF64's operands directly. 6686 if (Op0->getOpcode() == RISCVISD::BuildPairF64) 6687 return DCI.CombineTo(N, Op0.getOperand(0), Op0.getOperand(1)); 6688 6689 SDLoc DL(N); 6690 6691 // It's cheaper to materialise two 32-bit integers than to load a double 6692 // from the constant pool and transfer it to integer registers through the 6693 // stack. 6694 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op0)) { 6695 APInt V = C->getValueAPF().bitcastToAPInt(); 6696 SDValue Lo = DAG.getConstant(V.trunc(32), DL, MVT::i32); 6697 SDValue Hi = DAG.getConstant(V.lshr(32).trunc(32), DL, MVT::i32); 6698 return DCI.CombineTo(N, Lo, Hi); 6699 } 6700 6701 // This is a target-specific version of a DAGCombine performed in 6702 // DAGCombiner::visitBITCAST. It performs the equivalent of: 6703 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) 6704 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) 6705 if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) || 6706 !Op0.getNode()->hasOneUse()) 6707 break; 6708 SDValue NewSplitF64 = 6709 DAG.getNode(RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), 6710 Op0.getOperand(0)); 6711 SDValue Lo = NewSplitF64.getValue(0); 6712 SDValue Hi = NewSplitF64.getValue(1); 6713 APInt SignBit = APInt::getSignMask(32); 6714 if (Op0.getOpcode() == ISD::FNEG) { 6715 SDValue NewHi = DAG.getNode(ISD::XOR, DL, MVT::i32, Hi, 6716 DAG.getConstant(SignBit, DL, MVT::i32)); 6717 return DCI.CombineTo(N, Lo, NewHi); 6718 } 6719 assert(Op0.getOpcode() == ISD::FABS); 6720 SDValue NewHi = DAG.getNode(ISD::AND, DL, MVT::i32, Hi, 6721 DAG.getConstant(~SignBit, DL, MVT::i32)); 6722 return DCI.CombineTo(N, Lo, NewHi); 6723 } 6724 case RISCVISD::SLLW: 6725 case RISCVISD::SRAW: 6726 case RISCVISD::SRLW: 6727 case RISCVISD::ROLW: 6728 case RISCVISD::RORW: { 6729 // Only the lower 32 bits of LHS and lower 5 bits of RHS are read. 6730 if (SimplifyDemandedLowBitsHelper(0, 32) || 6731 SimplifyDemandedLowBitsHelper(1, 5)) 6732 return SDValue(N, 0); 6733 break; 6734 } 6735 case RISCVISD::CLZW: 6736 case RISCVISD::CTZW: { 6737 // Only the lower 32 bits of the first operand are read 6738 if (SimplifyDemandedLowBitsHelper(0, 32)) 6739 return SDValue(N, 0); 6740 break; 6741 } 6742 case RISCVISD::FSL: 6743 case RISCVISD::FSR: { 6744 // Only the lower log2(Bitwidth)+1 bits of the the shift amount are read. 6745 unsigned BitWidth = N->getOperand(2).getValueSizeInBits(); 6746 assert(isPowerOf2_32(BitWidth) && "Unexpected bit width"); 6747 if (SimplifyDemandedLowBitsHelper(2, Log2_32(BitWidth) + 1)) 6748 return SDValue(N, 0); 6749 break; 6750 } 6751 case RISCVISD::FSLW: 6752 case RISCVISD::FSRW: { 6753 // Only the lower 32 bits of Values and lower 6 bits of shift amount are 6754 // read. 6755 if (SimplifyDemandedLowBitsHelper(0, 32) || 6756 SimplifyDemandedLowBitsHelper(1, 32) || 6757 SimplifyDemandedLowBitsHelper(2, 6)) 6758 return SDValue(N, 0); 6759 break; 6760 } 6761 case RISCVISD::GREV: 6762 case RISCVISD::GORC: { 6763 // Only the lower log2(Bitwidth) bits of the the shift amount are read. 6764 unsigned BitWidth = N->getOperand(1).getValueSizeInBits(); 6765 assert(isPowerOf2_32(BitWidth) && "Unexpected bit width"); 6766 if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth))) 6767 return SDValue(N, 0); 6768 6769 return combineGREVI_GORCI(N, DCI.DAG); 6770 } 6771 case RISCVISD::GREVW: 6772 case RISCVISD::GORCW: { 6773 // Only the lower 32 bits of LHS and lower 5 bits of RHS are read. 6774 if (SimplifyDemandedLowBitsHelper(0, 32) || 6775 SimplifyDemandedLowBitsHelper(1, 5)) 6776 return SDValue(N, 0); 6777 6778 return combineGREVI_GORCI(N, DCI.DAG); 6779 } 6780 case RISCVISD::SHFL: 6781 case RISCVISD::UNSHFL: { 6782 // Only the lower log2(Bitwidth)-1 bits of the the shift amount are read. 6783 unsigned BitWidth = N->getOperand(1).getValueSizeInBits(); 6784 assert(isPowerOf2_32(BitWidth) && "Unexpected bit width"); 6785 if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth) - 1)) 6786 return SDValue(N, 0); 6787 6788 break; 6789 } 6790 case RISCVISD::SHFLW: 6791 case RISCVISD::UNSHFLW: { 6792 // Only the lower 32 bits of LHS and lower 4 bits of RHS are read. 6793 SDValue LHS = N->getOperand(0); 6794 SDValue RHS = N->getOperand(1); 6795 APInt LHSMask = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 32); 6796 APInt RHSMask = APInt::getLowBitsSet(RHS.getValueSizeInBits(), 4); 6797 if (SimplifyDemandedLowBitsHelper(0, 32) || 6798 SimplifyDemandedLowBitsHelper(1, 4)) 6799 return SDValue(N, 0); 6800 6801 break; 6802 } 6803 case RISCVISD::BCOMPRESSW: 6804 case RISCVISD::BDECOMPRESSW: { 6805 // Only the lower 32 bits of LHS and RHS are read. 6806 if (SimplifyDemandedLowBitsHelper(0, 32) || 6807 SimplifyDemandedLowBitsHelper(1, 32)) 6808 return SDValue(N, 0); 6809 6810 break; 6811 } 6812 case RISCVISD::FMV_X_ANYEXTH: 6813 case RISCVISD::FMV_X_ANYEXTW_RV64: { 6814 SDLoc DL(N); 6815 SDValue Op0 = N->getOperand(0); 6816 MVT VT = N->getSimpleValueType(0); 6817 // If the input to FMV_X_ANYEXTW_RV64 is just FMV_W_X_RV64 then the 6818 // conversion is unnecessary and can be replaced with the FMV_W_X_RV64 6819 // operand. Similar for FMV_X_ANYEXTH and FMV_H_X. 6820 if ((N->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64 && 6821 Op0->getOpcode() == RISCVISD::FMV_W_X_RV64) || 6822 (N->getOpcode() == RISCVISD::FMV_X_ANYEXTH && 6823 Op0->getOpcode() == RISCVISD::FMV_H_X)) { 6824 assert(Op0.getOperand(0).getValueType() == VT && 6825 "Unexpected value type!"); 6826 return Op0.getOperand(0); 6827 } 6828 6829 // This is a target-specific version of a DAGCombine performed in 6830 // DAGCombiner::visitBITCAST. It performs the equivalent of: 6831 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) 6832 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) 6833 if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) || 6834 !Op0.getNode()->hasOneUse()) 6835 break; 6836 SDValue NewFMV = DAG.getNode(N->getOpcode(), DL, VT, Op0.getOperand(0)); 6837 unsigned FPBits = N->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64 ? 32 : 16; 6838 APInt SignBit = APInt::getSignMask(FPBits).sextOrSelf(VT.getSizeInBits()); 6839 if (Op0.getOpcode() == ISD::FNEG) 6840 return DAG.getNode(ISD::XOR, DL, VT, NewFMV, 6841 DAG.getConstant(SignBit, DL, VT)); 6842 6843 assert(Op0.getOpcode() == ISD::FABS); 6844 return DAG.getNode(ISD::AND, DL, VT, NewFMV, 6845 DAG.getConstant(~SignBit, DL, VT)); 6846 } 6847 case ISD::ADD: 6848 return performADDCombine(N, DAG, Subtarget); 6849 case ISD::SUB: 6850 return performSUBCombine(N, DAG); 6851 case ISD::AND: 6852 return performANDCombine(N, DAG); 6853 case ISD::OR: 6854 return performORCombine(N, DAG, Subtarget); 6855 case ISD::XOR: 6856 return performXORCombine(N, DAG); 6857 case ISD::ANY_EXTEND: 6858 return performANY_EXTENDCombine(N, DCI, Subtarget); 6859 case ISD::ZERO_EXTEND: 6860 // Fold (zero_extend (fp_to_uint X)) to prevent forming fcvt+zexti32 during 6861 // type legalization. This is safe because fp_to_uint produces poison if 6862 // it overflows. 6863 if (N->getValueType(0) == MVT::i64 && Subtarget.is64Bit() && 6864 N->getOperand(0).getOpcode() == ISD::FP_TO_UINT && 6865 isTypeLegal(N->getOperand(0).getOperand(0).getValueType())) 6866 return DAG.getNode(ISD::FP_TO_UINT, SDLoc(N), MVT::i64, 6867 N->getOperand(0).getOperand(0)); 6868 return SDValue(); 6869 case RISCVISD::SELECT_CC: { 6870 // Transform 6871 SDValue LHS = N->getOperand(0); 6872 SDValue RHS = N->getOperand(1); 6873 SDValue TrueV = N->getOperand(3); 6874 SDValue FalseV = N->getOperand(4); 6875 6876 // If the True and False values are the same, we don't need a select_cc. 6877 if (TrueV == FalseV) 6878 return TrueV; 6879 6880 ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(2))->get(); 6881 if (!ISD::isIntEqualitySetCC(CCVal)) 6882 break; 6883 6884 // Fold (select_cc (setlt X, Y), 0, ne, trueV, falseV) -> 6885 // (select_cc X, Y, lt, trueV, falseV) 6886 // Sometimes the setcc is introduced after select_cc has been formed. 6887 if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) && 6888 LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) { 6889 // If we're looking for eq 0 instead of ne 0, we need to invert the 6890 // condition. 6891 bool Invert = CCVal == ISD::SETEQ; 6892 CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get(); 6893 if (Invert) 6894 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 6895 6896 SDLoc DL(N); 6897 RHS = LHS.getOperand(1); 6898 LHS = LHS.getOperand(0); 6899 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 6900 6901 SDValue TargetCC = DAG.getCondCode(CCVal); 6902 return DAG.getNode(RISCVISD::SELECT_CC, DL, N->getValueType(0), 6903 {LHS, RHS, TargetCC, TrueV, FalseV}); 6904 } 6905 6906 // Fold (select_cc (xor X, Y), 0, eq/ne, trueV, falseV) -> 6907 // (select_cc X, Y, eq/ne, trueV, falseV) 6908 if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS)) 6909 return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), N->getValueType(0), 6910 {LHS.getOperand(0), LHS.getOperand(1), 6911 N->getOperand(2), TrueV, FalseV}); 6912 // (select_cc X, 1, setne, trueV, falseV) -> 6913 // (select_cc X, 0, seteq, trueV, falseV) if we can prove X is 0/1. 6914 // This can occur when legalizing some floating point comparisons. 6915 APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1); 6916 if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) { 6917 SDLoc DL(N); 6918 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 6919 SDValue TargetCC = DAG.getCondCode(CCVal); 6920 RHS = DAG.getConstant(0, DL, LHS.getValueType()); 6921 return DAG.getNode(RISCVISD::SELECT_CC, DL, N->getValueType(0), 6922 {LHS, RHS, TargetCC, TrueV, FalseV}); 6923 } 6924 6925 break; 6926 } 6927 case RISCVISD::BR_CC: { 6928 SDValue LHS = N->getOperand(1); 6929 SDValue RHS = N->getOperand(2); 6930 ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(3))->get(); 6931 if (!ISD::isIntEqualitySetCC(CCVal)) 6932 break; 6933 6934 // Fold (br_cc (setlt X, Y), 0, ne, dest) -> 6935 // (br_cc X, Y, lt, dest) 6936 // Sometimes the setcc is introduced after br_cc has been formed. 6937 if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) && 6938 LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) { 6939 // If we're looking for eq 0 instead of ne 0, we need to invert the 6940 // condition. 6941 bool Invert = CCVal == ISD::SETEQ; 6942 CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get(); 6943 if (Invert) 6944 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 6945 6946 SDLoc DL(N); 6947 RHS = LHS.getOperand(1); 6948 LHS = LHS.getOperand(0); 6949 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 6950 6951 return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0), 6952 N->getOperand(0), LHS, RHS, DAG.getCondCode(CCVal), 6953 N->getOperand(4)); 6954 } 6955 6956 // Fold (br_cc (xor X, Y), 0, eq/ne, dest) -> 6957 // (br_cc X, Y, eq/ne, trueV, falseV) 6958 if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS)) 6959 return DAG.getNode(RISCVISD::BR_CC, SDLoc(N), N->getValueType(0), 6960 N->getOperand(0), LHS.getOperand(0), LHS.getOperand(1), 6961 N->getOperand(3), N->getOperand(4)); 6962 6963 // (br_cc X, 1, setne, br_cc) -> 6964 // (br_cc X, 0, seteq, br_cc) if we can prove X is 0/1. 6965 // This can occur when legalizing some floating point comparisons. 6966 APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1); 6967 if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) { 6968 SDLoc DL(N); 6969 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 6970 SDValue TargetCC = DAG.getCondCode(CCVal); 6971 RHS = DAG.getConstant(0, DL, LHS.getValueType()); 6972 return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0), 6973 N->getOperand(0), LHS, RHS, TargetCC, 6974 N->getOperand(4)); 6975 } 6976 break; 6977 } 6978 case ISD::FCOPYSIGN: { 6979 EVT VT = N->getValueType(0); 6980 if (!VT.isVector()) 6981 break; 6982 // There is a form of VFSGNJ which injects the negated sign of its second 6983 // operand. Try and bubble any FNEG up after the extend/round to produce 6984 // this optimized pattern. Avoid modifying cases where FP_ROUND and 6985 // TRUNC=1. 6986 SDValue In2 = N->getOperand(1); 6987 // Avoid cases where the extend/round has multiple uses, as duplicating 6988 // those is typically more expensive than removing a fneg. 6989 if (!In2.hasOneUse()) 6990 break; 6991 if (In2.getOpcode() != ISD::FP_EXTEND && 6992 (In2.getOpcode() != ISD::FP_ROUND || In2.getConstantOperandVal(1) != 0)) 6993 break; 6994 In2 = In2.getOperand(0); 6995 if (In2.getOpcode() != ISD::FNEG) 6996 break; 6997 SDLoc DL(N); 6998 SDValue NewFPExtRound = DAG.getFPExtendOrRound(In2.getOperand(0), DL, VT); 6999 return DAG.getNode(ISD::FCOPYSIGN, DL, VT, N->getOperand(0), 7000 DAG.getNode(ISD::FNEG, DL, VT, NewFPExtRound)); 7001 } 7002 case ISD::MGATHER: 7003 case ISD::MSCATTER: 7004 case ISD::VP_GATHER: 7005 case ISD::VP_SCATTER: { 7006 if (!DCI.isBeforeLegalize()) 7007 break; 7008 SDValue Index, ScaleOp; 7009 bool IsIndexScaled = false; 7010 bool IsIndexSigned = false; 7011 if (const auto *VPGSN = dyn_cast<VPGatherScatterSDNode>(N)) { 7012 Index = VPGSN->getIndex(); 7013 ScaleOp = VPGSN->getScale(); 7014 IsIndexScaled = VPGSN->isIndexScaled(); 7015 IsIndexSigned = VPGSN->isIndexSigned(); 7016 } else { 7017 const auto *MGSN = cast<MaskedGatherScatterSDNode>(N); 7018 Index = MGSN->getIndex(); 7019 ScaleOp = MGSN->getScale(); 7020 IsIndexScaled = MGSN->isIndexScaled(); 7021 IsIndexSigned = MGSN->isIndexSigned(); 7022 } 7023 EVT IndexVT = Index.getValueType(); 7024 MVT XLenVT = Subtarget.getXLenVT(); 7025 // RISCV indexed loads only support the "unsigned unscaled" addressing 7026 // mode, so anything else must be manually legalized. 7027 bool NeedsIdxLegalization = 7028 IsIndexScaled || 7029 (IsIndexSigned && IndexVT.getVectorElementType().bitsLT(XLenVT)); 7030 if (!NeedsIdxLegalization) 7031 break; 7032 7033 SDLoc DL(N); 7034 7035 // Any index legalization should first promote to XLenVT, so we don't lose 7036 // bits when scaling. This may create an illegal index type so we let 7037 // LLVM's legalization take care of the splitting. 7038 // FIXME: LLVM can't split VP_GATHER or VP_SCATTER yet. 7039 if (IndexVT.getVectorElementType().bitsLT(XLenVT)) { 7040 IndexVT = IndexVT.changeVectorElementType(XLenVT); 7041 Index = DAG.getNode(IsIndexSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, 7042 DL, IndexVT, Index); 7043 } 7044 7045 unsigned Scale = cast<ConstantSDNode>(ScaleOp)->getZExtValue(); 7046 if (IsIndexScaled && Scale != 1) { 7047 // Manually scale the indices by the element size. 7048 // TODO: Sanitize the scale operand here? 7049 // TODO: For VP nodes, should we use VP_SHL here? 7050 assert(isPowerOf2_32(Scale) && "Expecting power-of-two types"); 7051 SDValue SplatScale = DAG.getConstant(Log2_32(Scale), DL, IndexVT); 7052 Index = DAG.getNode(ISD::SHL, DL, IndexVT, Index, SplatScale); 7053 } 7054 7055 ISD::MemIndexType NewIndexTy = ISD::UNSIGNED_UNSCALED; 7056 if (const auto *VPGN = dyn_cast<VPGatherSDNode>(N)) 7057 return DAG.getGatherVP(N->getVTList(), VPGN->getMemoryVT(), DL, 7058 {VPGN->getChain(), VPGN->getBasePtr(), Index, 7059 VPGN->getScale(), VPGN->getMask(), 7060 VPGN->getVectorLength()}, 7061 VPGN->getMemOperand(), NewIndexTy); 7062 if (const auto *VPSN = dyn_cast<VPScatterSDNode>(N)) 7063 return DAG.getScatterVP(N->getVTList(), VPSN->getMemoryVT(), DL, 7064 {VPSN->getChain(), VPSN->getValue(), 7065 VPSN->getBasePtr(), Index, VPSN->getScale(), 7066 VPSN->getMask(), VPSN->getVectorLength()}, 7067 VPSN->getMemOperand(), NewIndexTy); 7068 if (const auto *MGN = dyn_cast<MaskedGatherSDNode>(N)) 7069 return DAG.getMaskedGather( 7070 N->getVTList(), MGN->getMemoryVT(), DL, 7071 {MGN->getChain(), MGN->getPassThru(), MGN->getMask(), 7072 MGN->getBasePtr(), Index, MGN->getScale()}, 7073 MGN->getMemOperand(), NewIndexTy, MGN->getExtensionType()); 7074 const auto *MSN = cast<MaskedScatterSDNode>(N); 7075 return DAG.getMaskedScatter( 7076 N->getVTList(), MSN->getMemoryVT(), DL, 7077 {MSN->getChain(), MSN->getValue(), MSN->getMask(), MSN->getBasePtr(), 7078 Index, MSN->getScale()}, 7079 MSN->getMemOperand(), NewIndexTy, MSN->isTruncatingStore()); 7080 } 7081 case RISCVISD::SRA_VL: 7082 case RISCVISD::SRL_VL: 7083 case RISCVISD::SHL_VL: { 7084 SDValue ShAmt = N->getOperand(1); 7085 if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) { 7086 // We don't need the upper 32 bits of a 64-bit element for a shift amount. 7087 SDLoc DL(N); 7088 SDValue VL = N->getOperand(3); 7089 EVT VT = N->getValueType(0); 7090 ShAmt = 7091 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, ShAmt.getOperand(0), VL); 7092 return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt, 7093 N->getOperand(2), N->getOperand(3)); 7094 } 7095 break; 7096 } 7097 case ISD::SRA: 7098 case ISD::SRL: 7099 case ISD::SHL: { 7100 SDValue ShAmt = N->getOperand(1); 7101 if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) { 7102 // We don't need the upper 32 bits of a 64-bit element for a shift amount. 7103 SDLoc DL(N); 7104 EVT VT = N->getValueType(0); 7105 ShAmt = 7106 DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VT, ShAmt.getOperand(0)); 7107 return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt); 7108 } 7109 break; 7110 } 7111 case RISCVISD::MUL_VL: { 7112 SDValue Op0 = N->getOperand(0); 7113 SDValue Op1 = N->getOperand(1); 7114 if (SDValue V = combineMUL_VLToVWMUL(N, Op0, Op1, DAG)) 7115 return V; 7116 if (SDValue V = combineMUL_VLToVWMUL(N, Op1, Op0, DAG)) 7117 return V; 7118 return SDValue(); 7119 } 7120 case ISD::STORE: { 7121 auto *Store = cast<StoreSDNode>(N); 7122 SDValue Val = Store->getValue(); 7123 // Combine store of vmv.x.s to vse with VL of 1. 7124 // FIXME: Support FP. 7125 if (Val.getOpcode() == RISCVISD::VMV_X_S) { 7126 SDValue Src = Val.getOperand(0); 7127 EVT VecVT = Src.getValueType(); 7128 EVT MemVT = Store->getMemoryVT(); 7129 // The memory VT and the element type must match. 7130 if (VecVT.getVectorElementType() == MemVT) { 7131 SDLoc DL(N); 7132 MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount()); 7133 return DAG.getStoreVP(Store->getChain(), DL, Src, Store->getBasePtr(), 7134 DAG.getConstant(1, DL, MaskVT), 7135 DAG.getConstant(1, DL, Subtarget.getXLenVT()), 7136 Store->getPointerInfo(), 7137 Store->getOriginalAlign(), 7138 Store->getMemOperand()->getFlags()); 7139 } 7140 } 7141 7142 break; 7143 } 7144 } 7145 7146 return SDValue(); 7147 } 7148 7149 bool RISCVTargetLowering::isDesirableToCommuteWithShift( 7150 const SDNode *N, CombineLevel Level) const { 7151 // The following folds are only desirable if `(OP _, c1 << c2)` can be 7152 // materialised in fewer instructions than `(OP _, c1)`: 7153 // 7154 // (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2) 7155 // (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2) 7156 SDValue N0 = N->getOperand(0); 7157 EVT Ty = N0.getValueType(); 7158 if (Ty.isScalarInteger() && 7159 (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::OR)) { 7160 auto *C1 = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 7161 auto *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1)); 7162 if (C1 && C2) { 7163 const APInt &C1Int = C1->getAPIntValue(); 7164 APInt ShiftedC1Int = C1Int << C2->getAPIntValue(); 7165 7166 // We can materialise `c1 << c2` into an add immediate, so it's "free", 7167 // and the combine should happen, to potentially allow further combines 7168 // later. 7169 if (ShiftedC1Int.getMinSignedBits() <= 64 && 7170 isLegalAddImmediate(ShiftedC1Int.getSExtValue())) 7171 return true; 7172 7173 // We can materialise `c1` in an add immediate, so it's "free", and the 7174 // combine should be prevented. 7175 if (C1Int.getMinSignedBits() <= 64 && 7176 isLegalAddImmediate(C1Int.getSExtValue())) 7177 return false; 7178 7179 // Neither constant will fit into an immediate, so find materialisation 7180 // costs. 7181 int C1Cost = RISCVMatInt::getIntMatCost(C1Int, Ty.getSizeInBits(), 7182 Subtarget.getFeatureBits(), 7183 /*CompressionCost*/true); 7184 int ShiftedC1Cost = RISCVMatInt::getIntMatCost( 7185 ShiftedC1Int, Ty.getSizeInBits(), Subtarget.getFeatureBits(), 7186 /*CompressionCost*/true); 7187 7188 // Materialising `c1` is cheaper than materialising `c1 << c2`, so the 7189 // combine should be prevented. 7190 if (C1Cost < ShiftedC1Cost) 7191 return false; 7192 } 7193 } 7194 return true; 7195 } 7196 7197 bool RISCVTargetLowering::targetShrinkDemandedConstant( 7198 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 7199 TargetLoweringOpt &TLO) const { 7200 // Delay this optimization as late as possible. 7201 if (!TLO.LegalOps) 7202 return false; 7203 7204 EVT VT = Op.getValueType(); 7205 if (VT.isVector()) 7206 return false; 7207 7208 // Only handle AND for now. 7209 if (Op.getOpcode() != ISD::AND) 7210 return false; 7211 7212 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 7213 if (!C) 7214 return false; 7215 7216 const APInt &Mask = C->getAPIntValue(); 7217 7218 // Clear all non-demanded bits initially. 7219 APInt ShrunkMask = Mask & DemandedBits; 7220 7221 // Try to make a smaller immediate by setting undemanded bits. 7222 7223 APInt ExpandedMask = Mask | ~DemandedBits; 7224 7225 auto IsLegalMask = [ShrunkMask, ExpandedMask](const APInt &Mask) -> bool { 7226 return ShrunkMask.isSubsetOf(Mask) && Mask.isSubsetOf(ExpandedMask); 7227 }; 7228 auto UseMask = [Mask, Op, VT, &TLO](const APInt &NewMask) -> bool { 7229 if (NewMask == Mask) 7230 return true; 7231 SDLoc DL(Op); 7232 SDValue NewC = TLO.DAG.getConstant(NewMask, DL, VT); 7233 SDValue NewOp = TLO.DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), NewC); 7234 return TLO.CombineTo(Op, NewOp); 7235 }; 7236 7237 // If the shrunk mask fits in sign extended 12 bits, let the target 7238 // independent code apply it. 7239 if (ShrunkMask.isSignedIntN(12)) 7240 return false; 7241 7242 // Preserve (and X, 0xffff) when zext.h is supported. 7243 if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp()) { 7244 APInt NewMask = APInt(Mask.getBitWidth(), 0xffff); 7245 if (IsLegalMask(NewMask)) 7246 return UseMask(NewMask); 7247 } 7248 7249 // Try to preserve (and X, 0xffffffff), the (zext_inreg X, i32) pattern. 7250 if (VT == MVT::i64) { 7251 APInt NewMask = APInt(64, 0xffffffff); 7252 if (IsLegalMask(NewMask)) 7253 return UseMask(NewMask); 7254 } 7255 7256 // For the remaining optimizations, we need to be able to make a negative 7257 // number through a combination of mask and undemanded bits. 7258 if (!ExpandedMask.isNegative()) 7259 return false; 7260 7261 // What is the fewest number of bits we need to represent the negative number. 7262 unsigned MinSignedBits = ExpandedMask.getMinSignedBits(); 7263 7264 // Try to make a 12 bit negative immediate. If that fails try to make a 32 7265 // bit negative immediate unless the shrunk immediate already fits in 32 bits. 7266 APInt NewMask = ShrunkMask; 7267 if (MinSignedBits <= 12) 7268 NewMask.setBitsFrom(11); 7269 else if (MinSignedBits <= 32 && !ShrunkMask.isSignedIntN(32)) 7270 NewMask.setBitsFrom(31); 7271 else 7272 return false; 7273 7274 // Sanity check that our new mask is a subset of the demanded mask. 7275 assert(IsLegalMask(NewMask)); 7276 return UseMask(NewMask); 7277 } 7278 7279 static void computeGREV(APInt &Src, unsigned ShAmt) { 7280 ShAmt &= Src.getBitWidth() - 1; 7281 uint64_t x = Src.getZExtValue(); 7282 if (ShAmt & 1) 7283 x = ((x & 0x5555555555555555LL) << 1) | ((x & 0xAAAAAAAAAAAAAAAALL) >> 1); 7284 if (ShAmt & 2) 7285 x = ((x & 0x3333333333333333LL) << 2) | ((x & 0xCCCCCCCCCCCCCCCCLL) >> 2); 7286 if (ShAmt & 4) 7287 x = ((x & 0x0F0F0F0F0F0F0F0FLL) << 4) | ((x & 0xF0F0F0F0F0F0F0F0LL) >> 4); 7288 if (ShAmt & 8) 7289 x = ((x & 0x00FF00FF00FF00FFLL) << 8) | ((x & 0xFF00FF00FF00FF00LL) >> 8); 7290 if (ShAmt & 16) 7291 x = ((x & 0x0000FFFF0000FFFFLL) << 16) | ((x & 0xFFFF0000FFFF0000LL) >> 16); 7292 if (ShAmt & 32) 7293 x = ((x & 0x00000000FFFFFFFFLL) << 32) | ((x & 0xFFFFFFFF00000000LL) >> 32); 7294 Src = x; 7295 } 7296 7297 void RISCVTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 7298 KnownBits &Known, 7299 const APInt &DemandedElts, 7300 const SelectionDAG &DAG, 7301 unsigned Depth) const { 7302 unsigned BitWidth = Known.getBitWidth(); 7303 unsigned Opc = Op.getOpcode(); 7304 assert((Opc >= ISD::BUILTIN_OP_END || 7305 Opc == ISD::INTRINSIC_WO_CHAIN || 7306 Opc == ISD::INTRINSIC_W_CHAIN || 7307 Opc == ISD::INTRINSIC_VOID) && 7308 "Should use MaskedValueIsZero if you don't know whether Op" 7309 " is a target node!"); 7310 7311 Known.resetAll(); 7312 switch (Opc) { 7313 default: break; 7314 case RISCVISD::SELECT_CC: { 7315 Known = DAG.computeKnownBits(Op.getOperand(4), Depth + 1); 7316 // If we don't know any bits, early out. 7317 if (Known.isUnknown()) 7318 break; 7319 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(3), Depth + 1); 7320 7321 // Only known if known in both the LHS and RHS. 7322 Known = KnownBits::commonBits(Known, Known2); 7323 break; 7324 } 7325 case RISCVISD::REMUW: { 7326 KnownBits Known2; 7327 Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 7328 Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 7329 // We only care about the lower 32 bits. 7330 Known = KnownBits::urem(Known.trunc(32), Known2.trunc(32)); 7331 // Restore the original width by sign extending. 7332 Known = Known.sext(BitWidth); 7333 break; 7334 } 7335 case RISCVISD::DIVUW: { 7336 KnownBits Known2; 7337 Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 7338 Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 7339 // We only care about the lower 32 bits. 7340 Known = KnownBits::udiv(Known.trunc(32), Known2.trunc(32)); 7341 // Restore the original width by sign extending. 7342 Known = Known.sext(BitWidth); 7343 break; 7344 } 7345 case RISCVISD::CTZW: { 7346 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 7347 unsigned PossibleTZ = Known2.trunc(32).countMaxTrailingZeros(); 7348 unsigned LowBits = Log2_32(PossibleTZ) + 1; 7349 Known.Zero.setBitsFrom(LowBits); 7350 break; 7351 } 7352 case RISCVISD::CLZW: { 7353 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 7354 unsigned PossibleLZ = Known2.trunc(32).countMaxLeadingZeros(); 7355 unsigned LowBits = Log2_32(PossibleLZ) + 1; 7356 Known.Zero.setBitsFrom(LowBits); 7357 break; 7358 } 7359 case RISCVISD::GREV: 7360 case RISCVISD::GREVW: { 7361 if (auto *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 7362 Known = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 7363 if (Opc == RISCVISD::GREVW) 7364 Known = Known.trunc(32); 7365 unsigned ShAmt = C->getZExtValue(); 7366 computeGREV(Known.Zero, ShAmt); 7367 computeGREV(Known.One, ShAmt); 7368 if (Opc == RISCVISD::GREVW) 7369 Known = Known.sext(BitWidth); 7370 } 7371 break; 7372 } 7373 case RISCVISD::READ_VLENB: 7374 // We assume VLENB is at least 16 bytes. 7375 Known.Zero.setLowBits(4); 7376 // We assume VLENB is no more than 65536 / 8 bytes. 7377 Known.Zero.setBitsFrom(14); 7378 break; 7379 case ISD::INTRINSIC_W_CHAIN: { 7380 unsigned IntNo = Op.getConstantOperandVal(1); 7381 switch (IntNo) { 7382 default: 7383 // We can't do anything for most intrinsics. 7384 break; 7385 case Intrinsic::riscv_vsetvli: 7386 case Intrinsic::riscv_vsetvlimax: 7387 // Assume that VL output is positive and would fit in an int32_t. 7388 // TODO: VLEN might be capped at 16 bits in a future V spec update. 7389 if (BitWidth >= 32) 7390 Known.Zero.setBitsFrom(31); 7391 break; 7392 } 7393 break; 7394 } 7395 } 7396 } 7397 7398 unsigned RISCVTargetLowering::ComputeNumSignBitsForTargetNode( 7399 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 7400 unsigned Depth) const { 7401 switch (Op.getOpcode()) { 7402 default: 7403 break; 7404 case RISCVISD::SELECT_CC: { 7405 unsigned Tmp = DAG.ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth + 1); 7406 if (Tmp == 1) return 1; // Early out. 7407 unsigned Tmp2 = DAG.ComputeNumSignBits(Op.getOperand(4), DemandedElts, Depth + 1); 7408 return std::min(Tmp, Tmp2); 7409 } 7410 case RISCVISD::SLLW: 7411 case RISCVISD::SRAW: 7412 case RISCVISD::SRLW: 7413 case RISCVISD::DIVW: 7414 case RISCVISD::DIVUW: 7415 case RISCVISD::REMUW: 7416 case RISCVISD::ROLW: 7417 case RISCVISD::RORW: 7418 case RISCVISD::GREVW: 7419 case RISCVISD::GORCW: 7420 case RISCVISD::FSLW: 7421 case RISCVISD::FSRW: 7422 case RISCVISD::SHFLW: 7423 case RISCVISD::UNSHFLW: 7424 case RISCVISD::BCOMPRESSW: 7425 case RISCVISD::BDECOMPRESSW: 7426 case RISCVISD::FCVT_W_RTZ_RV64: 7427 case RISCVISD::FCVT_WU_RTZ_RV64: 7428 // TODO: As the result is sign-extended, this is conservatively correct. A 7429 // more precise answer could be calculated for SRAW depending on known 7430 // bits in the shift amount. 7431 return 33; 7432 case RISCVISD::SHFL: 7433 case RISCVISD::UNSHFL: { 7434 // There is no SHFLIW, but a i64 SHFLI with bit 4 of the control word 7435 // cleared doesn't affect bit 31. The upper 32 bits will be shuffled, but 7436 // will stay within the upper 32 bits. If there were more than 32 sign bits 7437 // before there will be at least 33 sign bits after. 7438 if (Op.getValueType() == MVT::i64 && 7439 isa<ConstantSDNode>(Op.getOperand(1)) && 7440 (Op.getConstantOperandVal(1) & 0x10) == 0) { 7441 unsigned Tmp = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1); 7442 if (Tmp > 32) 7443 return 33; 7444 } 7445 break; 7446 } 7447 case RISCVISD::VMV_X_S: 7448 // The number of sign bits of the scalar result is computed by obtaining the 7449 // element type of the input vector operand, subtracting its width from the 7450 // XLEN, and then adding one (sign bit within the element type). If the 7451 // element type is wider than XLen, the least-significant XLEN bits are 7452 // taken. 7453 if (Op.getOperand(0).getScalarValueSizeInBits() > Subtarget.getXLen()) 7454 return 1; 7455 return Subtarget.getXLen() - Op.getOperand(0).getScalarValueSizeInBits() + 1; 7456 } 7457 7458 return 1; 7459 } 7460 7461 static MachineBasicBlock *emitReadCycleWidePseudo(MachineInstr &MI, 7462 MachineBasicBlock *BB) { 7463 assert(MI.getOpcode() == RISCV::ReadCycleWide && "Unexpected instruction"); 7464 7465 // To read the 64-bit cycle CSR on a 32-bit target, we read the two halves. 7466 // Should the count have wrapped while it was being read, we need to try 7467 // again. 7468 // ... 7469 // read: 7470 // rdcycleh x3 # load high word of cycle 7471 // rdcycle x2 # load low word of cycle 7472 // rdcycleh x4 # load high word of cycle 7473 // bne x3, x4, read # check if high word reads match, otherwise try again 7474 // ... 7475 7476 MachineFunction &MF = *BB->getParent(); 7477 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 7478 MachineFunction::iterator It = ++BB->getIterator(); 7479 7480 MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB); 7481 MF.insert(It, LoopMBB); 7482 7483 MachineBasicBlock *DoneMBB = MF.CreateMachineBasicBlock(LLVM_BB); 7484 MF.insert(It, DoneMBB); 7485 7486 // Transfer the remainder of BB and its successor edges to DoneMBB. 7487 DoneMBB->splice(DoneMBB->begin(), BB, 7488 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 7489 DoneMBB->transferSuccessorsAndUpdatePHIs(BB); 7490 7491 BB->addSuccessor(LoopMBB); 7492 7493 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 7494 Register ReadAgainReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 7495 Register LoReg = MI.getOperand(0).getReg(); 7496 Register HiReg = MI.getOperand(1).getReg(); 7497 DebugLoc DL = MI.getDebugLoc(); 7498 7499 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 7500 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), HiReg) 7501 .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding) 7502 .addReg(RISCV::X0); 7503 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), LoReg) 7504 .addImm(RISCVSysReg::lookupSysRegByName("CYCLE")->Encoding) 7505 .addReg(RISCV::X0); 7506 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), ReadAgainReg) 7507 .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding) 7508 .addReg(RISCV::X0); 7509 7510 BuildMI(LoopMBB, DL, TII->get(RISCV::BNE)) 7511 .addReg(HiReg) 7512 .addReg(ReadAgainReg) 7513 .addMBB(LoopMBB); 7514 7515 LoopMBB->addSuccessor(LoopMBB); 7516 LoopMBB->addSuccessor(DoneMBB); 7517 7518 MI.eraseFromParent(); 7519 7520 return DoneMBB; 7521 } 7522 7523 static MachineBasicBlock *emitSplitF64Pseudo(MachineInstr &MI, 7524 MachineBasicBlock *BB) { 7525 assert(MI.getOpcode() == RISCV::SplitF64Pseudo && "Unexpected instruction"); 7526 7527 MachineFunction &MF = *BB->getParent(); 7528 DebugLoc DL = MI.getDebugLoc(); 7529 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 7530 const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo(); 7531 Register LoReg = MI.getOperand(0).getReg(); 7532 Register HiReg = MI.getOperand(1).getReg(); 7533 Register SrcReg = MI.getOperand(2).getReg(); 7534 const TargetRegisterClass *SrcRC = &RISCV::FPR64RegClass; 7535 int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF); 7536 7537 TII.storeRegToStackSlot(*BB, MI, SrcReg, MI.getOperand(2).isKill(), FI, SrcRC, 7538 RI); 7539 MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI); 7540 MachineMemOperand *MMOLo = 7541 MF.getMachineMemOperand(MPI, MachineMemOperand::MOLoad, 4, Align(8)); 7542 MachineMemOperand *MMOHi = MF.getMachineMemOperand( 7543 MPI.getWithOffset(4), MachineMemOperand::MOLoad, 4, Align(8)); 7544 BuildMI(*BB, MI, DL, TII.get(RISCV::LW), LoReg) 7545 .addFrameIndex(FI) 7546 .addImm(0) 7547 .addMemOperand(MMOLo); 7548 BuildMI(*BB, MI, DL, TII.get(RISCV::LW), HiReg) 7549 .addFrameIndex(FI) 7550 .addImm(4) 7551 .addMemOperand(MMOHi); 7552 MI.eraseFromParent(); // The pseudo instruction is gone now. 7553 return BB; 7554 } 7555 7556 static MachineBasicBlock *emitBuildPairF64Pseudo(MachineInstr &MI, 7557 MachineBasicBlock *BB) { 7558 assert(MI.getOpcode() == RISCV::BuildPairF64Pseudo && 7559 "Unexpected instruction"); 7560 7561 MachineFunction &MF = *BB->getParent(); 7562 DebugLoc DL = MI.getDebugLoc(); 7563 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 7564 const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo(); 7565 Register DstReg = MI.getOperand(0).getReg(); 7566 Register LoReg = MI.getOperand(1).getReg(); 7567 Register HiReg = MI.getOperand(2).getReg(); 7568 const TargetRegisterClass *DstRC = &RISCV::FPR64RegClass; 7569 int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF); 7570 7571 MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI); 7572 MachineMemOperand *MMOLo = 7573 MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Align(8)); 7574 MachineMemOperand *MMOHi = MF.getMachineMemOperand( 7575 MPI.getWithOffset(4), MachineMemOperand::MOStore, 4, Align(8)); 7576 BuildMI(*BB, MI, DL, TII.get(RISCV::SW)) 7577 .addReg(LoReg, getKillRegState(MI.getOperand(1).isKill())) 7578 .addFrameIndex(FI) 7579 .addImm(0) 7580 .addMemOperand(MMOLo); 7581 BuildMI(*BB, MI, DL, TII.get(RISCV::SW)) 7582 .addReg(HiReg, getKillRegState(MI.getOperand(2).isKill())) 7583 .addFrameIndex(FI) 7584 .addImm(4) 7585 .addMemOperand(MMOHi); 7586 TII.loadRegFromStackSlot(*BB, MI, DstReg, FI, DstRC, RI); 7587 MI.eraseFromParent(); // The pseudo instruction is gone now. 7588 return BB; 7589 } 7590 7591 static bool isSelectPseudo(MachineInstr &MI) { 7592 switch (MI.getOpcode()) { 7593 default: 7594 return false; 7595 case RISCV::Select_GPR_Using_CC_GPR: 7596 case RISCV::Select_FPR16_Using_CC_GPR: 7597 case RISCV::Select_FPR32_Using_CC_GPR: 7598 case RISCV::Select_FPR64_Using_CC_GPR: 7599 return true; 7600 } 7601 } 7602 7603 static MachineBasicBlock *emitSelectPseudo(MachineInstr &MI, 7604 MachineBasicBlock *BB, 7605 const RISCVSubtarget &Subtarget) { 7606 // To "insert" Select_* instructions, we actually have to insert the triangle 7607 // control-flow pattern. The incoming instructions know the destination vreg 7608 // to set, the condition code register to branch on, the true/false values to 7609 // select between, and the condcode to use to select the appropriate branch. 7610 // 7611 // We produce the following control flow: 7612 // HeadMBB 7613 // | \ 7614 // | IfFalseMBB 7615 // | / 7616 // TailMBB 7617 // 7618 // When we find a sequence of selects we attempt to optimize their emission 7619 // by sharing the control flow. Currently we only handle cases where we have 7620 // multiple selects with the exact same condition (same LHS, RHS and CC). 7621 // The selects may be interleaved with other instructions if the other 7622 // instructions meet some requirements we deem safe: 7623 // - They are debug instructions. Otherwise, 7624 // - They do not have side-effects, do not access memory and their inputs do 7625 // not depend on the results of the select pseudo-instructions. 7626 // The TrueV/FalseV operands of the selects cannot depend on the result of 7627 // previous selects in the sequence. 7628 // These conditions could be further relaxed. See the X86 target for a 7629 // related approach and more information. 7630 Register LHS = MI.getOperand(1).getReg(); 7631 Register RHS = MI.getOperand(2).getReg(); 7632 auto CC = static_cast<RISCVCC::CondCode>(MI.getOperand(3).getImm()); 7633 7634 SmallVector<MachineInstr *, 4> SelectDebugValues; 7635 SmallSet<Register, 4> SelectDests; 7636 SelectDests.insert(MI.getOperand(0).getReg()); 7637 7638 MachineInstr *LastSelectPseudo = &MI; 7639 7640 for (auto E = BB->end(), SequenceMBBI = MachineBasicBlock::iterator(MI); 7641 SequenceMBBI != E; ++SequenceMBBI) { 7642 if (SequenceMBBI->isDebugInstr()) 7643 continue; 7644 else if (isSelectPseudo(*SequenceMBBI)) { 7645 if (SequenceMBBI->getOperand(1).getReg() != LHS || 7646 SequenceMBBI->getOperand(2).getReg() != RHS || 7647 SequenceMBBI->getOperand(3).getImm() != CC || 7648 SelectDests.count(SequenceMBBI->getOperand(4).getReg()) || 7649 SelectDests.count(SequenceMBBI->getOperand(5).getReg())) 7650 break; 7651 LastSelectPseudo = &*SequenceMBBI; 7652 SequenceMBBI->collectDebugValues(SelectDebugValues); 7653 SelectDests.insert(SequenceMBBI->getOperand(0).getReg()); 7654 } else { 7655 if (SequenceMBBI->hasUnmodeledSideEffects() || 7656 SequenceMBBI->mayLoadOrStore()) 7657 break; 7658 if (llvm::any_of(SequenceMBBI->operands(), [&](MachineOperand &MO) { 7659 return MO.isReg() && MO.isUse() && SelectDests.count(MO.getReg()); 7660 })) 7661 break; 7662 } 7663 } 7664 7665 const RISCVInstrInfo &TII = *Subtarget.getInstrInfo(); 7666 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 7667 DebugLoc DL = MI.getDebugLoc(); 7668 MachineFunction::iterator I = ++BB->getIterator(); 7669 7670 MachineBasicBlock *HeadMBB = BB; 7671 MachineFunction *F = BB->getParent(); 7672 MachineBasicBlock *TailMBB = F->CreateMachineBasicBlock(LLVM_BB); 7673 MachineBasicBlock *IfFalseMBB = F->CreateMachineBasicBlock(LLVM_BB); 7674 7675 F->insert(I, IfFalseMBB); 7676 F->insert(I, TailMBB); 7677 7678 // Transfer debug instructions associated with the selects to TailMBB. 7679 for (MachineInstr *DebugInstr : SelectDebugValues) { 7680 TailMBB->push_back(DebugInstr->removeFromParent()); 7681 } 7682 7683 // Move all instructions after the sequence to TailMBB. 7684 TailMBB->splice(TailMBB->end(), HeadMBB, 7685 std::next(LastSelectPseudo->getIterator()), HeadMBB->end()); 7686 // Update machine-CFG edges by transferring all successors of the current 7687 // block to the new block which will contain the Phi nodes for the selects. 7688 TailMBB->transferSuccessorsAndUpdatePHIs(HeadMBB); 7689 // Set the successors for HeadMBB. 7690 HeadMBB->addSuccessor(IfFalseMBB); 7691 HeadMBB->addSuccessor(TailMBB); 7692 7693 // Insert appropriate branch. 7694 BuildMI(HeadMBB, DL, TII.getBrCond(CC)) 7695 .addReg(LHS) 7696 .addReg(RHS) 7697 .addMBB(TailMBB); 7698 7699 // IfFalseMBB just falls through to TailMBB. 7700 IfFalseMBB->addSuccessor(TailMBB); 7701 7702 // Create PHIs for all of the select pseudo-instructions. 7703 auto SelectMBBI = MI.getIterator(); 7704 auto SelectEnd = std::next(LastSelectPseudo->getIterator()); 7705 auto InsertionPoint = TailMBB->begin(); 7706 while (SelectMBBI != SelectEnd) { 7707 auto Next = std::next(SelectMBBI); 7708 if (isSelectPseudo(*SelectMBBI)) { 7709 // %Result = phi [ %TrueValue, HeadMBB ], [ %FalseValue, IfFalseMBB ] 7710 BuildMI(*TailMBB, InsertionPoint, SelectMBBI->getDebugLoc(), 7711 TII.get(RISCV::PHI), SelectMBBI->getOperand(0).getReg()) 7712 .addReg(SelectMBBI->getOperand(4).getReg()) 7713 .addMBB(HeadMBB) 7714 .addReg(SelectMBBI->getOperand(5).getReg()) 7715 .addMBB(IfFalseMBB); 7716 SelectMBBI->eraseFromParent(); 7717 } 7718 SelectMBBI = Next; 7719 } 7720 7721 F->getProperties().reset(MachineFunctionProperties::Property::NoPHIs); 7722 return TailMBB; 7723 } 7724 7725 MachineBasicBlock * 7726 RISCVTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 7727 MachineBasicBlock *BB) const { 7728 switch (MI.getOpcode()) { 7729 default: 7730 llvm_unreachable("Unexpected instr type to insert"); 7731 case RISCV::ReadCycleWide: 7732 assert(!Subtarget.is64Bit() && 7733 "ReadCycleWrite is only to be used on riscv32"); 7734 return emitReadCycleWidePseudo(MI, BB); 7735 case RISCV::Select_GPR_Using_CC_GPR: 7736 case RISCV::Select_FPR16_Using_CC_GPR: 7737 case RISCV::Select_FPR32_Using_CC_GPR: 7738 case RISCV::Select_FPR64_Using_CC_GPR: 7739 return emitSelectPseudo(MI, BB, Subtarget); 7740 case RISCV::BuildPairF64Pseudo: 7741 return emitBuildPairF64Pseudo(MI, BB); 7742 case RISCV::SplitF64Pseudo: 7743 return emitSplitF64Pseudo(MI, BB); 7744 } 7745 } 7746 7747 // Calling Convention Implementation. 7748 // The expectations for frontend ABI lowering vary from target to target. 7749 // Ideally, an LLVM frontend would be able to avoid worrying about many ABI 7750 // details, but this is a longer term goal. For now, we simply try to keep the 7751 // role of the frontend as simple and well-defined as possible. The rules can 7752 // be summarised as: 7753 // * Never split up large scalar arguments. We handle them here. 7754 // * If a hardfloat calling convention is being used, and the struct may be 7755 // passed in a pair of registers (fp+fp, int+fp), and both registers are 7756 // available, then pass as two separate arguments. If either the GPRs or FPRs 7757 // are exhausted, then pass according to the rule below. 7758 // * If a struct could never be passed in registers or directly in a stack 7759 // slot (as it is larger than 2*XLEN and the floating point rules don't 7760 // apply), then pass it using a pointer with the byval attribute. 7761 // * If a struct is less than 2*XLEN, then coerce to either a two-element 7762 // word-sized array or a 2*XLEN scalar (depending on alignment). 7763 // * The frontend can determine whether a struct is returned by reference or 7764 // not based on its size and fields. If it will be returned by reference, the 7765 // frontend must modify the prototype so a pointer with the sret annotation is 7766 // passed as the first argument. This is not necessary for large scalar 7767 // returns. 7768 // * Struct return values and varargs should be coerced to structs containing 7769 // register-size fields in the same situations they would be for fixed 7770 // arguments. 7771 7772 static const MCPhysReg ArgGPRs[] = { 7773 RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, 7774 RISCV::X14, RISCV::X15, RISCV::X16, RISCV::X17 7775 }; 7776 static const MCPhysReg ArgFPR16s[] = { 7777 RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, 7778 RISCV::F14_H, RISCV::F15_H, RISCV::F16_H, RISCV::F17_H 7779 }; 7780 static const MCPhysReg ArgFPR32s[] = { 7781 RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, 7782 RISCV::F14_F, RISCV::F15_F, RISCV::F16_F, RISCV::F17_F 7783 }; 7784 static const MCPhysReg ArgFPR64s[] = { 7785 RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, 7786 RISCV::F14_D, RISCV::F15_D, RISCV::F16_D, RISCV::F17_D 7787 }; 7788 // This is an interim calling convention and it may be changed in the future. 7789 static const MCPhysReg ArgVRs[] = { 7790 RISCV::V8, RISCV::V9, RISCV::V10, RISCV::V11, RISCV::V12, RISCV::V13, 7791 RISCV::V14, RISCV::V15, RISCV::V16, RISCV::V17, RISCV::V18, RISCV::V19, 7792 RISCV::V20, RISCV::V21, RISCV::V22, RISCV::V23}; 7793 static const MCPhysReg ArgVRM2s[] = {RISCV::V8M2, RISCV::V10M2, RISCV::V12M2, 7794 RISCV::V14M2, RISCV::V16M2, RISCV::V18M2, 7795 RISCV::V20M2, RISCV::V22M2}; 7796 static const MCPhysReg ArgVRM4s[] = {RISCV::V8M4, RISCV::V12M4, RISCV::V16M4, 7797 RISCV::V20M4}; 7798 static const MCPhysReg ArgVRM8s[] = {RISCV::V8M8, RISCV::V16M8}; 7799 7800 // Pass a 2*XLEN argument that has been split into two XLEN values through 7801 // registers or the stack as necessary. 7802 static bool CC_RISCVAssign2XLen(unsigned XLen, CCState &State, CCValAssign VA1, 7803 ISD::ArgFlagsTy ArgFlags1, unsigned ValNo2, 7804 MVT ValVT2, MVT LocVT2, 7805 ISD::ArgFlagsTy ArgFlags2) { 7806 unsigned XLenInBytes = XLen / 8; 7807 if (Register Reg = State.AllocateReg(ArgGPRs)) { 7808 // At least one half can be passed via register. 7809 State.addLoc(CCValAssign::getReg(VA1.getValNo(), VA1.getValVT(), Reg, 7810 VA1.getLocVT(), CCValAssign::Full)); 7811 } else { 7812 // Both halves must be passed on the stack, with proper alignment. 7813 Align StackAlign = 7814 std::max(Align(XLenInBytes), ArgFlags1.getNonZeroOrigAlign()); 7815 State.addLoc( 7816 CCValAssign::getMem(VA1.getValNo(), VA1.getValVT(), 7817 State.AllocateStack(XLenInBytes, StackAlign), 7818 VA1.getLocVT(), CCValAssign::Full)); 7819 State.addLoc(CCValAssign::getMem( 7820 ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)), 7821 LocVT2, CCValAssign::Full)); 7822 return false; 7823 } 7824 7825 if (Register Reg = State.AllocateReg(ArgGPRs)) { 7826 // The second half can also be passed via register. 7827 State.addLoc( 7828 CCValAssign::getReg(ValNo2, ValVT2, Reg, LocVT2, CCValAssign::Full)); 7829 } else { 7830 // The second half is passed via the stack, without additional alignment. 7831 State.addLoc(CCValAssign::getMem( 7832 ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)), 7833 LocVT2, CCValAssign::Full)); 7834 } 7835 7836 return false; 7837 } 7838 7839 static unsigned allocateRVVReg(MVT ValVT, unsigned ValNo, 7840 Optional<unsigned> FirstMaskArgument, 7841 CCState &State, const RISCVTargetLowering &TLI) { 7842 const TargetRegisterClass *RC = TLI.getRegClassFor(ValVT); 7843 if (RC == &RISCV::VRRegClass) { 7844 // Assign the first mask argument to V0. 7845 // This is an interim calling convention and it may be changed in the 7846 // future. 7847 if (FirstMaskArgument.hasValue() && ValNo == FirstMaskArgument.getValue()) 7848 return State.AllocateReg(RISCV::V0); 7849 return State.AllocateReg(ArgVRs); 7850 } 7851 if (RC == &RISCV::VRM2RegClass) 7852 return State.AllocateReg(ArgVRM2s); 7853 if (RC == &RISCV::VRM4RegClass) 7854 return State.AllocateReg(ArgVRM4s); 7855 if (RC == &RISCV::VRM8RegClass) 7856 return State.AllocateReg(ArgVRM8s); 7857 llvm_unreachable("Unhandled register class for ValueType"); 7858 } 7859 7860 // Implements the RISC-V calling convention. Returns true upon failure. 7861 static bool CC_RISCV(const DataLayout &DL, RISCVABI::ABI ABI, unsigned ValNo, 7862 MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, 7863 ISD::ArgFlagsTy ArgFlags, CCState &State, bool IsFixed, 7864 bool IsRet, Type *OrigTy, const RISCVTargetLowering &TLI, 7865 Optional<unsigned> FirstMaskArgument) { 7866 unsigned XLen = DL.getLargestLegalIntTypeSizeInBits(); 7867 assert(XLen == 32 || XLen == 64); 7868 MVT XLenVT = XLen == 32 ? MVT::i32 : MVT::i64; 7869 7870 // Any return value split in to more than two values can't be returned 7871 // directly. Vectors are returned via the available vector registers. 7872 if (!LocVT.isVector() && IsRet && ValNo > 1) 7873 return true; 7874 7875 // UseGPRForF16_F32 if targeting one of the soft-float ABIs, if passing a 7876 // variadic argument, or if no F16/F32 argument registers are available. 7877 bool UseGPRForF16_F32 = true; 7878 // UseGPRForF64 if targeting soft-float ABIs or an FLEN=32 ABI, if passing a 7879 // variadic argument, or if no F64 argument registers are available. 7880 bool UseGPRForF64 = true; 7881 7882 switch (ABI) { 7883 default: 7884 llvm_unreachable("Unexpected ABI"); 7885 case RISCVABI::ABI_ILP32: 7886 case RISCVABI::ABI_LP64: 7887 break; 7888 case RISCVABI::ABI_ILP32F: 7889 case RISCVABI::ABI_LP64F: 7890 UseGPRForF16_F32 = !IsFixed; 7891 break; 7892 case RISCVABI::ABI_ILP32D: 7893 case RISCVABI::ABI_LP64D: 7894 UseGPRForF16_F32 = !IsFixed; 7895 UseGPRForF64 = !IsFixed; 7896 break; 7897 } 7898 7899 // FPR16, FPR32, and FPR64 alias each other. 7900 if (State.getFirstUnallocated(ArgFPR32s) == array_lengthof(ArgFPR32s)) { 7901 UseGPRForF16_F32 = true; 7902 UseGPRForF64 = true; 7903 } 7904 7905 // From this point on, rely on UseGPRForF16_F32, UseGPRForF64 and 7906 // similar local variables rather than directly checking against the target 7907 // ABI. 7908 7909 if (UseGPRForF16_F32 && (ValVT == MVT::f16 || ValVT == MVT::f32)) { 7910 LocVT = XLenVT; 7911 LocInfo = CCValAssign::BCvt; 7912 } else if (UseGPRForF64 && XLen == 64 && ValVT == MVT::f64) { 7913 LocVT = MVT::i64; 7914 LocInfo = CCValAssign::BCvt; 7915 } 7916 7917 // If this is a variadic argument, the RISC-V calling convention requires 7918 // that it is assigned an 'even' or 'aligned' register if it has 8-byte 7919 // alignment (RV32) or 16-byte alignment (RV64). An aligned register should 7920 // be used regardless of whether the original argument was split during 7921 // legalisation or not. The argument will not be passed by registers if the 7922 // original type is larger than 2*XLEN, so the register alignment rule does 7923 // not apply. 7924 unsigned TwoXLenInBytes = (2 * XLen) / 8; 7925 if (!IsFixed && ArgFlags.getNonZeroOrigAlign() == TwoXLenInBytes && 7926 DL.getTypeAllocSize(OrigTy) == TwoXLenInBytes) { 7927 unsigned RegIdx = State.getFirstUnallocated(ArgGPRs); 7928 // Skip 'odd' register if necessary. 7929 if (RegIdx != array_lengthof(ArgGPRs) && RegIdx % 2 == 1) 7930 State.AllocateReg(ArgGPRs); 7931 } 7932 7933 SmallVectorImpl<CCValAssign> &PendingLocs = State.getPendingLocs(); 7934 SmallVectorImpl<ISD::ArgFlagsTy> &PendingArgFlags = 7935 State.getPendingArgFlags(); 7936 7937 assert(PendingLocs.size() == PendingArgFlags.size() && 7938 "PendingLocs and PendingArgFlags out of sync"); 7939 7940 // Handle passing f64 on RV32D with a soft float ABI or when floating point 7941 // registers are exhausted. 7942 if (UseGPRForF64 && XLen == 32 && ValVT == MVT::f64) { 7943 assert(!ArgFlags.isSplit() && PendingLocs.empty() && 7944 "Can't lower f64 if it is split"); 7945 // Depending on available argument GPRS, f64 may be passed in a pair of 7946 // GPRs, split between a GPR and the stack, or passed completely on the 7947 // stack. LowerCall/LowerFormalArguments/LowerReturn must recognise these 7948 // cases. 7949 Register Reg = State.AllocateReg(ArgGPRs); 7950 LocVT = MVT::i32; 7951 if (!Reg) { 7952 unsigned StackOffset = State.AllocateStack(8, Align(8)); 7953 State.addLoc( 7954 CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 7955 return false; 7956 } 7957 if (!State.AllocateReg(ArgGPRs)) 7958 State.AllocateStack(4, Align(4)); 7959 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 7960 return false; 7961 } 7962 7963 // Fixed-length vectors are located in the corresponding scalable-vector 7964 // container types. 7965 if (ValVT.isFixedLengthVector()) 7966 LocVT = TLI.getContainerForFixedLengthVector(LocVT); 7967 7968 // Split arguments might be passed indirectly, so keep track of the pending 7969 // values. Split vectors are passed via a mix of registers and indirectly, so 7970 // treat them as we would any other argument. 7971 if (ValVT.isScalarInteger() && (ArgFlags.isSplit() || !PendingLocs.empty())) { 7972 LocVT = XLenVT; 7973 LocInfo = CCValAssign::Indirect; 7974 PendingLocs.push_back( 7975 CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo)); 7976 PendingArgFlags.push_back(ArgFlags); 7977 if (!ArgFlags.isSplitEnd()) { 7978 return false; 7979 } 7980 } 7981 7982 // If the split argument only had two elements, it should be passed directly 7983 // in registers or on the stack. 7984 if (ValVT.isScalarInteger() && ArgFlags.isSplitEnd() && 7985 PendingLocs.size() <= 2) { 7986 assert(PendingLocs.size() == 2 && "Unexpected PendingLocs.size()"); 7987 // Apply the normal calling convention rules to the first half of the 7988 // split argument. 7989 CCValAssign VA = PendingLocs[0]; 7990 ISD::ArgFlagsTy AF = PendingArgFlags[0]; 7991 PendingLocs.clear(); 7992 PendingArgFlags.clear(); 7993 return CC_RISCVAssign2XLen(XLen, State, VA, AF, ValNo, ValVT, LocVT, 7994 ArgFlags); 7995 } 7996 7997 // Allocate to a register if possible, or else a stack slot. 7998 Register Reg; 7999 unsigned StoreSizeBytes = XLen / 8; 8000 Align StackAlign = Align(XLen / 8); 8001 8002 if (ValVT == MVT::f16 && !UseGPRForF16_F32) 8003 Reg = State.AllocateReg(ArgFPR16s); 8004 else if (ValVT == MVT::f32 && !UseGPRForF16_F32) 8005 Reg = State.AllocateReg(ArgFPR32s); 8006 else if (ValVT == MVT::f64 && !UseGPRForF64) 8007 Reg = State.AllocateReg(ArgFPR64s); 8008 else if (ValVT.isVector()) { 8009 Reg = allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI); 8010 if (!Reg) { 8011 // For return values, the vector must be passed fully via registers or 8012 // via the stack. 8013 // FIXME: The proposed vector ABI only mandates v8-v15 for return values, 8014 // but we're using all of them. 8015 if (IsRet) 8016 return true; 8017 // Try using a GPR to pass the address 8018 if ((Reg = State.AllocateReg(ArgGPRs))) { 8019 LocVT = XLenVT; 8020 LocInfo = CCValAssign::Indirect; 8021 } else if (ValVT.isScalableVector()) { 8022 report_fatal_error("Unable to pass scalable vector types on the stack"); 8023 } else { 8024 // Pass fixed-length vectors on the stack. 8025 LocVT = ValVT; 8026 StoreSizeBytes = ValVT.getStoreSize(); 8027 // Align vectors to their element sizes, being careful for vXi1 8028 // vectors. 8029 StackAlign = MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne(); 8030 } 8031 } 8032 } else { 8033 Reg = State.AllocateReg(ArgGPRs); 8034 } 8035 8036 unsigned StackOffset = 8037 Reg ? 0 : State.AllocateStack(StoreSizeBytes, StackAlign); 8038 8039 // If we reach this point and PendingLocs is non-empty, we must be at the 8040 // end of a split argument that must be passed indirectly. 8041 if (!PendingLocs.empty()) { 8042 assert(ArgFlags.isSplitEnd() && "Expected ArgFlags.isSplitEnd()"); 8043 assert(PendingLocs.size() > 2 && "Unexpected PendingLocs.size()"); 8044 8045 for (auto &It : PendingLocs) { 8046 if (Reg) 8047 It.convertToReg(Reg); 8048 else 8049 It.convertToMem(StackOffset); 8050 State.addLoc(It); 8051 } 8052 PendingLocs.clear(); 8053 PendingArgFlags.clear(); 8054 return false; 8055 } 8056 8057 assert((!UseGPRForF16_F32 || !UseGPRForF64 || LocVT == XLenVT || 8058 (TLI.getSubtarget().hasStdExtV() && ValVT.isVector())) && 8059 "Expected an XLenVT or vector types at this stage"); 8060 8061 if (Reg) { 8062 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 8063 return false; 8064 } 8065 8066 // When a floating-point value is passed on the stack, no bit-conversion is 8067 // needed. 8068 if (ValVT.isFloatingPoint()) { 8069 LocVT = ValVT; 8070 LocInfo = CCValAssign::Full; 8071 } 8072 State.addLoc(CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 8073 return false; 8074 } 8075 8076 template <typename ArgTy> 8077 static Optional<unsigned> preAssignMask(const ArgTy &Args) { 8078 for (const auto &ArgIdx : enumerate(Args)) { 8079 MVT ArgVT = ArgIdx.value().VT; 8080 if (ArgVT.isVector() && ArgVT.getVectorElementType() == MVT::i1) 8081 return ArgIdx.index(); 8082 } 8083 return None; 8084 } 8085 8086 void RISCVTargetLowering::analyzeInputArgs( 8087 MachineFunction &MF, CCState &CCInfo, 8088 const SmallVectorImpl<ISD::InputArg> &Ins, bool IsRet, 8089 RISCVCCAssignFn Fn) const { 8090 unsigned NumArgs = Ins.size(); 8091 FunctionType *FType = MF.getFunction().getFunctionType(); 8092 8093 Optional<unsigned> FirstMaskArgument; 8094 if (Subtarget.hasStdExtV()) 8095 FirstMaskArgument = preAssignMask(Ins); 8096 8097 for (unsigned i = 0; i != NumArgs; ++i) { 8098 MVT ArgVT = Ins[i].VT; 8099 ISD::ArgFlagsTy ArgFlags = Ins[i].Flags; 8100 8101 Type *ArgTy = nullptr; 8102 if (IsRet) 8103 ArgTy = FType->getReturnType(); 8104 else if (Ins[i].isOrigArg()) 8105 ArgTy = FType->getParamType(Ins[i].getOrigArgIndex()); 8106 8107 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 8108 if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full, 8109 ArgFlags, CCInfo, /*IsFixed=*/true, IsRet, ArgTy, *this, 8110 FirstMaskArgument)) { 8111 LLVM_DEBUG(dbgs() << "InputArg #" << i << " has unhandled type " 8112 << EVT(ArgVT).getEVTString() << '\n'); 8113 llvm_unreachable(nullptr); 8114 } 8115 } 8116 } 8117 8118 void RISCVTargetLowering::analyzeOutputArgs( 8119 MachineFunction &MF, CCState &CCInfo, 8120 const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsRet, 8121 CallLoweringInfo *CLI, RISCVCCAssignFn Fn) const { 8122 unsigned NumArgs = Outs.size(); 8123 8124 Optional<unsigned> FirstMaskArgument; 8125 if (Subtarget.hasStdExtV()) 8126 FirstMaskArgument = preAssignMask(Outs); 8127 8128 for (unsigned i = 0; i != NumArgs; i++) { 8129 MVT ArgVT = Outs[i].VT; 8130 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 8131 Type *OrigTy = CLI ? CLI->getArgs()[Outs[i].OrigArgIndex].Ty : nullptr; 8132 8133 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 8134 if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full, 8135 ArgFlags, CCInfo, Outs[i].IsFixed, IsRet, OrigTy, *this, 8136 FirstMaskArgument)) { 8137 LLVM_DEBUG(dbgs() << "OutputArg #" << i << " has unhandled type " 8138 << EVT(ArgVT).getEVTString() << "\n"); 8139 llvm_unreachable(nullptr); 8140 } 8141 } 8142 } 8143 8144 // Convert Val to a ValVT. Should not be called for CCValAssign::Indirect 8145 // values. 8146 static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDValue Val, 8147 const CCValAssign &VA, const SDLoc &DL, 8148 const RISCVSubtarget &Subtarget) { 8149 switch (VA.getLocInfo()) { 8150 default: 8151 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 8152 case CCValAssign::Full: 8153 if (VA.getValVT().isFixedLengthVector() && VA.getLocVT().isScalableVector()) 8154 Val = convertFromScalableVector(VA.getValVT(), Val, DAG, Subtarget); 8155 break; 8156 case CCValAssign::BCvt: 8157 if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16) 8158 Val = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, Val); 8159 else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) 8160 Val = DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, Val); 8161 else 8162 Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val); 8163 break; 8164 } 8165 return Val; 8166 } 8167 8168 // The caller is responsible for loading the full value if the argument is 8169 // passed with CCValAssign::Indirect. 8170 static SDValue unpackFromRegLoc(SelectionDAG &DAG, SDValue Chain, 8171 const CCValAssign &VA, const SDLoc &DL, 8172 const RISCVTargetLowering &TLI) { 8173 MachineFunction &MF = DAG.getMachineFunction(); 8174 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 8175 EVT LocVT = VA.getLocVT(); 8176 SDValue Val; 8177 const TargetRegisterClass *RC = TLI.getRegClassFor(LocVT.getSimpleVT()); 8178 Register VReg = RegInfo.createVirtualRegister(RC); 8179 RegInfo.addLiveIn(VA.getLocReg(), VReg); 8180 Val = DAG.getCopyFromReg(Chain, DL, VReg, LocVT); 8181 8182 if (VA.getLocInfo() == CCValAssign::Indirect) 8183 return Val; 8184 8185 return convertLocVTToValVT(DAG, Val, VA, DL, TLI.getSubtarget()); 8186 } 8187 8188 static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDValue Val, 8189 const CCValAssign &VA, const SDLoc &DL, 8190 const RISCVSubtarget &Subtarget) { 8191 EVT LocVT = VA.getLocVT(); 8192 8193 switch (VA.getLocInfo()) { 8194 default: 8195 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 8196 case CCValAssign::Full: 8197 if (VA.getValVT().isFixedLengthVector() && LocVT.isScalableVector()) 8198 Val = convertToScalableVector(LocVT, Val, DAG, Subtarget); 8199 break; 8200 case CCValAssign::BCvt: 8201 if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16) 8202 Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, VA.getLocVT(), Val); 8203 else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) 8204 Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Val); 8205 else 8206 Val = DAG.getNode(ISD::BITCAST, DL, LocVT, Val); 8207 break; 8208 } 8209 return Val; 8210 } 8211 8212 // The caller is responsible for loading the full value if the argument is 8213 // passed with CCValAssign::Indirect. 8214 static SDValue unpackFromMemLoc(SelectionDAG &DAG, SDValue Chain, 8215 const CCValAssign &VA, const SDLoc &DL) { 8216 MachineFunction &MF = DAG.getMachineFunction(); 8217 MachineFrameInfo &MFI = MF.getFrameInfo(); 8218 EVT LocVT = VA.getLocVT(); 8219 EVT ValVT = VA.getValVT(); 8220 EVT PtrVT = MVT::getIntegerVT(DAG.getDataLayout().getPointerSizeInBits(0)); 8221 int FI = MFI.CreateFixedObject(ValVT.getStoreSize(), VA.getLocMemOffset(), 8222 /*Immutable=*/true); 8223 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 8224 SDValue Val; 8225 8226 ISD::LoadExtType ExtType; 8227 switch (VA.getLocInfo()) { 8228 default: 8229 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 8230 case CCValAssign::Full: 8231 case CCValAssign::Indirect: 8232 case CCValAssign::BCvt: 8233 ExtType = ISD::NON_EXTLOAD; 8234 break; 8235 } 8236 Val = DAG.getExtLoad( 8237 ExtType, DL, LocVT, Chain, FIN, 8238 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), ValVT); 8239 return Val; 8240 } 8241 8242 static SDValue unpackF64OnRV32DSoftABI(SelectionDAG &DAG, SDValue Chain, 8243 const CCValAssign &VA, const SDLoc &DL) { 8244 assert(VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64 && 8245 "Unexpected VA"); 8246 MachineFunction &MF = DAG.getMachineFunction(); 8247 MachineFrameInfo &MFI = MF.getFrameInfo(); 8248 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 8249 8250 if (VA.isMemLoc()) { 8251 // f64 is passed on the stack. 8252 int FI = MFI.CreateFixedObject(8, VA.getLocMemOffset(), /*Immutable=*/true); 8253 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 8254 return DAG.getLoad(MVT::f64, DL, Chain, FIN, 8255 MachinePointerInfo::getFixedStack(MF, FI)); 8256 } 8257 8258 assert(VA.isRegLoc() && "Expected register VA assignment"); 8259 8260 Register LoVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 8261 RegInfo.addLiveIn(VA.getLocReg(), LoVReg); 8262 SDValue Lo = DAG.getCopyFromReg(Chain, DL, LoVReg, MVT::i32); 8263 SDValue Hi; 8264 if (VA.getLocReg() == RISCV::X17) { 8265 // Second half of f64 is passed on the stack. 8266 int FI = MFI.CreateFixedObject(4, 0, /*Immutable=*/true); 8267 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 8268 Hi = DAG.getLoad(MVT::i32, DL, Chain, FIN, 8269 MachinePointerInfo::getFixedStack(MF, FI)); 8270 } else { 8271 // Second half of f64 is passed in another GPR. 8272 Register HiVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 8273 RegInfo.addLiveIn(VA.getLocReg() + 1, HiVReg); 8274 Hi = DAG.getCopyFromReg(Chain, DL, HiVReg, MVT::i32); 8275 } 8276 return DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, Lo, Hi); 8277 } 8278 8279 // FastCC has less than 1% performance improvement for some particular 8280 // benchmark. But theoretically, it may has benenfit for some cases. 8281 static bool CC_RISCV_FastCC(const DataLayout &DL, RISCVABI::ABI ABI, 8282 unsigned ValNo, MVT ValVT, MVT LocVT, 8283 CCValAssign::LocInfo LocInfo, 8284 ISD::ArgFlagsTy ArgFlags, CCState &State, 8285 bool IsFixed, bool IsRet, Type *OrigTy, 8286 const RISCVTargetLowering &TLI, 8287 Optional<unsigned> FirstMaskArgument) { 8288 8289 // X5 and X6 might be used for save-restore libcall. 8290 static const MCPhysReg GPRList[] = { 8291 RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, RISCV::X14, 8292 RISCV::X15, RISCV::X16, RISCV::X17, RISCV::X7, RISCV::X28, 8293 RISCV::X29, RISCV::X30, RISCV::X31}; 8294 8295 if (LocVT == MVT::i32 || LocVT == MVT::i64) { 8296 if (unsigned Reg = State.AllocateReg(GPRList)) { 8297 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 8298 return false; 8299 } 8300 } 8301 8302 if (LocVT == MVT::f16) { 8303 static const MCPhysReg FPR16List[] = { 8304 RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, RISCV::F14_H, 8305 RISCV::F15_H, RISCV::F16_H, RISCV::F17_H, RISCV::F0_H, RISCV::F1_H, 8306 RISCV::F2_H, RISCV::F3_H, RISCV::F4_H, RISCV::F5_H, RISCV::F6_H, 8307 RISCV::F7_H, RISCV::F28_H, RISCV::F29_H, RISCV::F30_H, RISCV::F31_H}; 8308 if (unsigned Reg = State.AllocateReg(FPR16List)) { 8309 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 8310 return false; 8311 } 8312 } 8313 8314 if (LocVT == MVT::f32) { 8315 static const MCPhysReg FPR32List[] = { 8316 RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, RISCV::F14_F, 8317 RISCV::F15_F, RISCV::F16_F, RISCV::F17_F, RISCV::F0_F, RISCV::F1_F, 8318 RISCV::F2_F, RISCV::F3_F, RISCV::F4_F, RISCV::F5_F, RISCV::F6_F, 8319 RISCV::F7_F, RISCV::F28_F, RISCV::F29_F, RISCV::F30_F, RISCV::F31_F}; 8320 if (unsigned Reg = State.AllocateReg(FPR32List)) { 8321 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 8322 return false; 8323 } 8324 } 8325 8326 if (LocVT == MVT::f64) { 8327 static const MCPhysReg FPR64List[] = { 8328 RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, RISCV::F14_D, 8329 RISCV::F15_D, RISCV::F16_D, RISCV::F17_D, RISCV::F0_D, RISCV::F1_D, 8330 RISCV::F2_D, RISCV::F3_D, RISCV::F4_D, RISCV::F5_D, RISCV::F6_D, 8331 RISCV::F7_D, RISCV::F28_D, RISCV::F29_D, RISCV::F30_D, RISCV::F31_D}; 8332 if (unsigned Reg = State.AllocateReg(FPR64List)) { 8333 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 8334 return false; 8335 } 8336 } 8337 8338 if (LocVT == MVT::i32 || LocVT == MVT::f32) { 8339 unsigned Offset4 = State.AllocateStack(4, Align(4)); 8340 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset4, LocVT, LocInfo)); 8341 return false; 8342 } 8343 8344 if (LocVT == MVT::i64 || LocVT == MVT::f64) { 8345 unsigned Offset5 = State.AllocateStack(8, Align(8)); 8346 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset5, LocVT, LocInfo)); 8347 return false; 8348 } 8349 8350 if (LocVT.isVector()) { 8351 if (unsigned Reg = 8352 allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI)) { 8353 // Fixed-length vectors are located in the corresponding scalable-vector 8354 // container types. 8355 if (ValVT.isFixedLengthVector()) 8356 LocVT = TLI.getContainerForFixedLengthVector(LocVT); 8357 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 8358 } else { 8359 // Try and pass the address via a "fast" GPR. 8360 if (unsigned GPRReg = State.AllocateReg(GPRList)) { 8361 LocInfo = CCValAssign::Indirect; 8362 LocVT = TLI.getSubtarget().getXLenVT(); 8363 State.addLoc(CCValAssign::getReg(ValNo, ValVT, GPRReg, LocVT, LocInfo)); 8364 } else if (ValVT.isFixedLengthVector()) { 8365 auto StackAlign = 8366 MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne(); 8367 unsigned StackOffset = 8368 State.AllocateStack(ValVT.getStoreSize(), StackAlign); 8369 State.addLoc( 8370 CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 8371 } else { 8372 // Can't pass scalable vectors on the stack. 8373 return true; 8374 } 8375 } 8376 8377 return false; 8378 } 8379 8380 return true; // CC didn't match. 8381 } 8382 8383 static bool CC_RISCV_GHC(unsigned ValNo, MVT ValVT, MVT LocVT, 8384 CCValAssign::LocInfo LocInfo, 8385 ISD::ArgFlagsTy ArgFlags, CCState &State) { 8386 8387 if (LocVT == MVT::i32 || LocVT == MVT::i64) { 8388 // Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, R6, R7, SpLim 8389 // s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 8390 static const MCPhysReg GPRList[] = { 8391 RISCV::X9, RISCV::X18, RISCV::X19, RISCV::X20, RISCV::X21, RISCV::X22, 8392 RISCV::X23, RISCV::X24, RISCV::X25, RISCV::X26, RISCV::X27}; 8393 if (unsigned Reg = State.AllocateReg(GPRList)) { 8394 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 8395 return false; 8396 } 8397 } 8398 8399 if (LocVT == MVT::f32) { 8400 // Pass in STG registers: F1, ..., F6 8401 // fs0 ... fs5 8402 static const MCPhysReg FPR32List[] = {RISCV::F8_F, RISCV::F9_F, 8403 RISCV::F18_F, RISCV::F19_F, 8404 RISCV::F20_F, RISCV::F21_F}; 8405 if (unsigned Reg = State.AllocateReg(FPR32List)) { 8406 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 8407 return false; 8408 } 8409 } 8410 8411 if (LocVT == MVT::f64) { 8412 // Pass in STG registers: D1, ..., D6 8413 // fs6 ... fs11 8414 static const MCPhysReg FPR64List[] = {RISCV::F22_D, RISCV::F23_D, 8415 RISCV::F24_D, RISCV::F25_D, 8416 RISCV::F26_D, RISCV::F27_D}; 8417 if (unsigned Reg = State.AllocateReg(FPR64List)) { 8418 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 8419 return false; 8420 } 8421 } 8422 8423 report_fatal_error("No registers left in GHC calling convention"); 8424 return true; 8425 } 8426 8427 // Transform physical registers into virtual registers. 8428 SDValue RISCVTargetLowering::LowerFormalArguments( 8429 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 8430 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 8431 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 8432 8433 MachineFunction &MF = DAG.getMachineFunction(); 8434 8435 switch (CallConv) { 8436 default: 8437 report_fatal_error("Unsupported calling convention"); 8438 case CallingConv::C: 8439 case CallingConv::Fast: 8440 break; 8441 case CallingConv::GHC: 8442 if (!MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtF] || 8443 !MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtD]) 8444 report_fatal_error( 8445 "GHC calling convention requires the F and D instruction set extensions"); 8446 } 8447 8448 const Function &Func = MF.getFunction(); 8449 if (Func.hasFnAttribute("interrupt")) { 8450 if (!Func.arg_empty()) 8451 report_fatal_error( 8452 "Functions with the interrupt attribute cannot have arguments!"); 8453 8454 StringRef Kind = 8455 MF.getFunction().getFnAttribute("interrupt").getValueAsString(); 8456 8457 if (!(Kind == "user" || Kind == "supervisor" || Kind == "machine")) 8458 report_fatal_error( 8459 "Function interrupt attribute argument not supported!"); 8460 } 8461 8462 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 8463 MVT XLenVT = Subtarget.getXLenVT(); 8464 unsigned XLenInBytes = Subtarget.getXLen() / 8; 8465 // Used with vargs to acumulate store chains. 8466 std::vector<SDValue> OutChains; 8467 8468 // Assign locations to all of the incoming arguments. 8469 SmallVector<CCValAssign, 16> ArgLocs; 8470 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 8471 8472 if (CallConv == CallingConv::GHC) 8473 CCInfo.AnalyzeFormalArguments(Ins, CC_RISCV_GHC); 8474 else 8475 analyzeInputArgs(MF, CCInfo, Ins, /*IsRet=*/false, 8476 CallConv == CallingConv::Fast ? CC_RISCV_FastCC 8477 : CC_RISCV); 8478 8479 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 8480 CCValAssign &VA = ArgLocs[i]; 8481 SDValue ArgValue; 8482 // Passing f64 on RV32D with a soft float ABI must be handled as a special 8483 // case. 8484 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) 8485 ArgValue = unpackF64OnRV32DSoftABI(DAG, Chain, VA, DL); 8486 else if (VA.isRegLoc()) 8487 ArgValue = unpackFromRegLoc(DAG, Chain, VA, DL, *this); 8488 else 8489 ArgValue = unpackFromMemLoc(DAG, Chain, VA, DL); 8490 8491 if (VA.getLocInfo() == CCValAssign::Indirect) { 8492 // If the original argument was split and passed by reference (e.g. i128 8493 // on RV32), we need to load all parts of it here (using the same 8494 // address). Vectors may be partly split to registers and partly to the 8495 // stack, in which case the base address is partly offset and subsequent 8496 // stores are relative to that. 8497 InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue, 8498 MachinePointerInfo())); 8499 unsigned ArgIndex = Ins[i].OrigArgIndex; 8500 unsigned ArgPartOffset = Ins[i].PartOffset; 8501 assert(VA.getValVT().isVector() || ArgPartOffset == 0); 8502 while (i + 1 != e && Ins[i + 1].OrigArgIndex == ArgIndex) { 8503 CCValAssign &PartVA = ArgLocs[i + 1]; 8504 unsigned PartOffset = Ins[i + 1].PartOffset - ArgPartOffset; 8505 SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL); 8506 if (PartVA.getValVT().isScalableVector()) 8507 Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset); 8508 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, Offset); 8509 InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address, 8510 MachinePointerInfo())); 8511 ++i; 8512 } 8513 continue; 8514 } 8515 InVals.push_back(ArgValue); 8516 } 8517 8518 if (IsVarArg) { 8519 ArrayRef<MCPhysReg> ArgRegs = makeArrayRef(ArgGPRs); 8520 unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs); 8521 const TargetRegisterClass *RC = &RISCV::GPRRegClass; 8522 MachineFrameInfo &MFI = MF.getFrameInfo(); 8523 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 8524 RISCVMachineFunctionInfo *RVFI = MF.getInfo<RISCVMachineFunctionInfo>(); 8525 8526 // Offset of the first variable argument from stack pointer, and size of 8527 // the vararg save area. For now, the varargs save area is either zero or 8528 // large enough to hold a0-a7. 8529 int VaArgOffset, VarArgsSaveSize; 8530 8531 // If all registers are allocated, then all varargs must be passed on the 8532 // stack and we don't need to save any argregs. 8533 if (ArgRegs.size() == Idx) { 8534 VaArgOffset = CCInfo.getNextStackOffset(); 8535 VarArgsSaveSize = 0; 8536 } else { 8537 VarArgsSaveSize = XLenInBytes * (ArgRegs.size() - Idx); 8538 VaArgOffset = -VarArgsSaveSize; 8539 } 8540 8541 // Record the frame index of the first variable argument 8542 // which is a value necessary to VASTART. 8543 int FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true); 8544 RVFI->setVarArgsFrameIndex(FI); 8545 8546 // If saving an odd number of registers then create an extra stack slot to 8547 // ensure that the frame pointer is 2*XLEN-aligned, which in turn ensures 8548 // offsets to even-numbered registered remain 2*XLEN-aligned. 8549 if (Idx % 2) { 8550 MFI.CreateFixedObject(XLenInBytes, VaArgOffset - (int)XLenInBytes, true); 8551 VarArgsSaveSize += XLenInBytes; 8552 } 8553 8554 // Copy the integer registers that may have been used for passing varargs 8555 // to the vararg save area. 8556 for (unsigned I = Idx; I < ArgRegs.size(); 8557 ++I, VaArgOffset += XLenInBytes) { 8558 const Register Reg = RegInfo.createVirtualRegister(RC); 8559 RegInfo.addLiveIn(ArgRegs[I], Reg); 8560 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, XLenVT); 8561 FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true); 8562 SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 8563 SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff, 8564 MachinePointerInfo::getFixedStack(MF, FI)); 8565 cast<StoreSDNode>(Store.getNode()) 8566 ->getMemOperand() 8567 ->setValue((Value *)nullptr); 8568 OutChains.push_back(Store); 8569 } 8570 RVFI->setVarArgsSaveSize(VarArgsSaveSize); 8571 } 8572 8573 // All stores are grouped in one node to allow the matching between 8574 // the size of Ins and InVals. This only happens for vararg functions. 8575 if (!OutChains.empty()) { 8576 OutChains.push_back(Chain); 8577 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains); 8578 } 8579 8580 return Chain; 8581 } 8582 8583 /// isEligibleForTailCallOptimization - Check whether the call is eligible 8584 /// for tail call optimization. 8585 /// Note: This is modelled after ARM's IsEligibleForTailCallOptimization. 8586 bool RISCVTargetLowering::isEligibleForTailCallOptimization( 8587 CCState &CCInfo, CallLoweringInfo &CLI, MachineFunction &MF, 8588 const SmallVector<CCValAssign, 16> &ArgLocs) const { 8589 8590 auto &Callee = CLI.Callee; 8591 auto CalleeCC = CLI.CallConv; 8592 auto &Outs = CLI.Outs; 8593 auto &Caller = MF.getFunction(); 8594 auto CallerCC = Caller.getCallingConv(); 8595 8596 // Exception-handling functions need a special set of instructions to 8597 // indicate a return to the hardware. Tail-calling another function would 8598 // probably break this. 8599 // TODO: The "interrupt" attribute isn't currently defined by RISC-V. This 8600 // should be expanded as new function attributes are introduced. 8601 if (Caller.hasFnAttribute("interrupt")) 8602 return false; 8603 8604 // Do not tail call opt if the stack is used to pass parameters. 8605 if (CCInfo.getNextStackOffset() != 0) 8606 return false; 8607 8608 // Do not tail call opt if any parameters need to be passed indirectly. 8609 // Since long doubles (fp128) and i128 are larger than 2*XLEN, they are 8610 // passed indirectly. So the address of the value will be passed in a 8611 // register, or if not available, then the address is put on the stack. In 8612 // order to pass indirectly, space on the stack often needs to be allocated 8613 // in order to store the value. In this case the CCInfo.getNextStackOffset() 8614 // != 0 check is not enough and we need to check if any CCValAssign ArgsLocs 8615 // are passed CCValAssign::Indirect. 8616 for (auto &VA : ArgLocs) 8617 if (VA.getLocInfo() == CCValAssign::Indirect) 8618 return false; 8619 8620 // Do not tail call opt if either caller or callee uses struct return 8621 // semantics. 8622 auto IsCallerStructRet = Caller.hasStructRetAttr(); 8623 auto IsCalleeStructRet = Outs.empty() ? false : Outs[0].Flags.isSRet(); 8624 if (IsCallerStructRet || IsCalleeStructRet) 8625 return false; 8626 8627 // Externally-defined functions with weak linkage should not be 8628 // tail-called. The behaviour of branch instructions in this situation (as 8629 // used for tail calls) is implementation-defined, so we cannot rely on the 8630 // linker replacing the tail call with a return. 8631 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 8632 const GlobalValue *GV = G->getGlobal(); 8633 if (GV->hasExternalWeakLinkage()) 8634 return false; 8635 } 8636 8637 // The callee has to preserve all registers the caller needs to preserve. 8638 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 8639 const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC); 8640 if (CalleeCC != CallerCC) { 8641 const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC); 8642 if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved)) 8643 return false; 8644 } 8645 8646 // Byval parameters hand the function a pointer directly into the stack area 8647 // we want to reuse during a tail call. Working around this *is* possible 8648 // but less efficient and uglier in LowerCall. 8649 for (auto &Arg : Outs) 8650 if (Arg.Flags.isByVal()) 8651 return false; 8652 8653 return true; 8654 } 8655 8656 static Align getPrefTypeAlign(EVT VT, SelectionDAG &DAG) { 8657 return DAG.getDataLayout().getPrefTypeAlign( 8658 VT.getTypeForEVT(*DAG.getContext())); 8659 } 8660 8661 // Lower a call to a callseq_start + CALL + callseq_end chain, and add input 8662 // and output parameter nodes. 8663 SDValue RISCVTargetLowering::LowerCall(CallLoweringInfo &CLI, 8664 SmallVectorImpl<SDValue> &InVals) const { 8665 SelectionDAG &DAG = CLI.DAG; 8666 SDLoc &DL = CLI.DL; 8667 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 8668 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 8669 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 8670 SDValue Chain = CLI.Chain; 8671 SDValue Callee = CLI.Callee; 8672 bool &IsTailCall = CLI.IsTailCall; 8673 CallingConv::ID CallConv = CLI.CallConv; 8674 bool IsVarArg = CLI.IsVarArg; 8675 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 8676 MVT XLenVT = Subtarget.getXLenVT(); 8677 8678 MachineFunction &MF = DAG.getMachineFunction(); 8679 8680 // Analyze the operands of the call, assigning locations to each operand. 8681 SmallVector<CCValAssign, 16> ArgLocs; 8682 CCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 8683 8684 if (CallConv == CallingConv::GHC) 8685 ArgCCInfo.AnalyzeCallOperands(Outs, CC_RISCV_GHC); 8686 else 8687 analyzeOutputArgs(MF, ArgCCInfo, Outs, /*IsRet=*/false, &CLI, 8688 CallConv == CallingConv::Fast ? CC_RISCV_FastCC 8689 : CC_RISCV); 8690 8691 // Check if it's really possible to do a tail call. 8692 if (IsTailCall) 8693 IsTailCall = isEligibleForTailCallOptimization(ArgCCInfo, CLI, MF, ArgLocs); 8694 8695 if (IsTailCall) 8696 ++NumTailCalls; 8697 else if (CLI.CB && CLI.CB->isMustTailCall()) 8698 report_fatal_error("failed to perform tail call elimination on a call " 8699 "site marked musttail"); 8700 8701 // Get a count of how many bytes are to be pushed on the stack. 8702 unsigned NumBytes = ArgCCInfo.getNextStackOffset(); 8703 8704 // Create local copies for byval args 8705 SmallVector<SDValue, 8> ByValArgs; 8706 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 8707 ISD::ArgFlagsTy Flags = Outs[i].Flags; 8708 if (!Flags.isByVal()) 8709 continue; 8710 8711 SDValue Arg = OutVals[i]; 8712 unsigned Size = Flags.getByValSize(); 8713 Align Alignment = Flags.getNonZeroByValAlign(); 8714 8715 int FI = 8716 MF.getFrameInfo().CreateStackObject(Size, Alignment, /*isSS=*/false); 8717 SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 8718 SDValue SizeNode = DAG.getConstant(Size, DL, XLenVT); 8719 8720 Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Alignment, 8721 /*IsVolatile=*/false, 8722 /*AlwaysInline=*/false, IsTailCall, 8723 MachinePointerInfo(), MachinePointerInfo()); 8724 ByValArgs.push_back(FIPtr); 8725 } 8726 8727 if (!IsTailCall) 8728 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, CLI.DL); 8729 8730 // Copy argument values to their designated locations. 8731 SmallVector<std::pair<Register, SDValue>, 8> RegsToPass; 8732 SmallVector<SDValue, 8> MemOpChains; 8733 SDValue StackPtr; 8734 for (unsigned i = 0, j = 0, e = ArgLocs.size(); i != e; ++i) { 8735 CCValAssign &VA = ArgLocs[i]; 8736 SDValue ArgValue = OutVals[i]; 8737 ISD::ArgFlagsTy Flags = Outs[i].Flags; 8738 8739 // Handle passing f64 on RV32D with a soft float ABI as a special case. 8740 bool IsF64OnRV32DSoftABI = 8741 VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64; 8742 if (IsF64OnRV32DSoftABI && VA.isRegLoc()) { 8743 SDValue SplitF64 = DAG.getNode( 8744 RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), ArgValue); 8745 SDValue Lo = SplitF64.getValue(0); 8746 SDValue Hi = SplitF64.getValue(1); 8747 8748 Register RegLo = VA.getLocReg(); 8749 RegsToPass.push_back(std::make_pair(RegLo, Lo)); 8750 8751 if (RegLo == RISCV::X17) { 8752 // Second half of f64 is passed on the stack. 8753 // Work out the address of the stack slot. 8754 if (!StackPtr.getNode()) 8755 StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT); 8756 // Emit the store. 8757 MemOpChains.push_back( 8758 DAG.getStore(Chain, DL, Hi, StackPtr, MachinePointerInfo())); 8759 } else { 8760 // Second half of f64 is passed in another GPR. 8761 assert(RegLo < RISCV::X31 && "Invalid register pair"); 8762 Register RegHigh = RegLo + 1; 8763 RegsToPass.push_back(std::make_pair(RegHigh, Hi)); 8764 } 8765 continue; 8766 } 8767 8768 // IsF64OnRV32DSoftABI && VA.isMemLoc() is handled below in the same way 8769 // as any other MemLoc. 8770 8771 // Promote the value if needed. 8772 // For now, only handle fully promoted and indirect arguments. 8773 if (VA.getLocInfo() == CCValAssign::Indirect) { 8774 // Store the argument in a stack slot and pass its address. 8775 Align StackAlign = 8776 std::max(getPrefTypeAlign(Outs[i].ArgVT, DAG), 8777 getPrefTypeAlign(ArgValue.getValueType(), DAG)); 8778 TypeSize StoredSize = ArgValue.getValueType().getStoreSize(); 8779 // If the original argument was split (e.g. i128), we need 8780 // to store the required parts of it here (and pass just one address). 8781 // Vectors may be partly split to registers and partly to the stack, in 8782 // which case the base address is partly offset and subsequent stores are 8783 // relative to that. 8784 unsigned ArgIndex = Outs[i].OrigArgIndex; 8785 unsigned ArgPartOffset = Outs[i].PartOffset; 8786 assert(VA.getValVT().isVector() || ArgPartOffset == 0); 8787 // Calculate the total size to store. We don't have access to what we're 8788 // actually storing other than performing the loop and collecting the 8789 // info. 8790 SmallVector<std::pair<SDValue, SDValue>> Parts; 8791 while (i + 1 != e && Outs[i + 1].OrigArgIndex == ArgIndex) { 8792 SDValue PartValue = OutVals[i + 1]; 8793 unsigned PartOffset = Outs[i + 1].PartOffset - ArgPartOffset; 8794 SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL); 8795 EVT PartVT = PartValue.getValueType(); 8796 if (PartVT.isScalableVector()) 8797 Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset); 8798 StoredSize += PartVT.getStoreSize(); 8799 StackAlign = std::max(StackAlign, getPrefTypeAlign(PartVT, DAG)); 8800 Parts.push_back(std::make_pair(PartValue, Offset)); 8801 ++i; 8802 } 8803 SDValue SpillSlot = DAG.CreateStackTemporary(StoredSize, StackAlign); 8804 int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); 8805 MemOpChains.push_back( 8806 DAG.getStore(Chain, DL, ArgValue, SpillSlot, 8807 MachinePointerInfo::getFixedStack(MF, FI))); 8808 for (const auto &Part : Parts) { 8809 SDValue PartValue = Part.first; 8810 SDValue PartOffset = Part.second; 8811 SDValue Address = 8812 DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, PartOffset); 8813 MemOpChains.push_back( 8814 DAG.getStore(Chain, DL, PartValue, Address, 8815 MachinePointerInfo::getFixedStack(MF, FI))); 8816 } 8817 ArgValue = SpillSlot; 8818 } else { 8819 ArgValue = convertValVTToLocVT(DAG, ArgValue, VA, DL, Subtarget); 8820 } 8821 8822 // Use local copy if it is a byval arg. 8823 if (Flags.isByVal()) 8824 ArgValue = ByValArgs[j++]; 8825 8826 if (VA.isRegLoc()) { 8827 // Queue up the argument copies and emit them at the end. 8828 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue)); 8829 } else { 8830 assert(VA.isMemLoc() && "Argument not register or memory"); 8831 assert(!IsTailCall && "Tail call not allowed if stack is used " 8832 "for passing parameters"); 8833 8834 // Work out the address of the stack slot. 8835 if (!StackPtr.getNode()) 8836 StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT); 8837 SDValue Address = 8838 DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, 8839 DAG.getIntPtrConstant(VA.getLocMemOffset(), DL)); 8840 8841 // Emit the store. 8842 MemOpChains.push_back( 8843 DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo())); 8844 } 8845 } 8846 8847 // Join the stores, which are independent of one another. 8848 if (!MemOpChains.empty()) 8849 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); 8850 8851 SDValue Glue; 8852 8853 // Build a sequence of copy-to-reg nodes, chained and glued together. 8854 for (auto &Reg : RegsToPass) { 8855 Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, Glue); 8856 Glue = Chain.getValue(1); 8857 } 8858 8859 // Validate that none of the argument registers have been marked as 8860 // reserved, if so report an error. Do the same for the return address if this 8861 // is not a tailcall. 8862 validateCCReservedRegs(RegsToPass, MF); 8863 if (!IsTailCall && 8864 MF.getSubtarget<RISCVSubtarget>().isRegisterReservedByUser(RISCV::X1)) 8865 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 8866 MF.getFunction(), 8867 "Return address register required, but has been reserved."}); 8868 8869 // If the callee is a GlobalAddress/ExternalSymbol node, turn it into a 8870 // TargetGlobalAddress/TargetExternalSymbol node so that legalize won't 8871 // split it and then direct call can be matched by PseudoCALL. 8872 if (GlobalAddressSDNode *S = dyn_cast<GlobalAddressSDNode>(Callee)) { 8873 const GlobalValue *GV = S->getGlobal(); 8874 8875 unsigned OpFlags = RISCVII::MO_CALL; 8876 if (!getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV)) 8877 OpFlags = RISCVII::MO_PLT; 8878 8879 Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags); 8880 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { 8881 unsigned OpFlags = RISCVII::MO_CALL; 8882 8883 if (!getTargetMachine().shouldAssumeDSOLocal(*MF.getFunction().getParent(), 8884 nullptr)) 8885 OpFlags = RISCVII::MO_PLT; 8886 8887 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, OpFlags); 8888 } 8889 8890 // The first call operand is the chain and the second is the target address. 8891 SmallVector<SDValue, 8> Ops; 8892 Ops.push_back(Chain); 8893 Ops.push_back(Callee); 8894 8895 // Add argument registers to the end of the list so that they are 8896 // known live into the call. 8897 for (auto &Reg : RegsToPass) 8898 Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType())); 8899 8900 if (!IsTailCall) { 8901 // Add a register mask operand representing the call-preserved registers. 8902 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 8903 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv); 8904 assert(Mask && "Missing call preserved mask for calling convention"); 8905 Ops.push_back(DAG.getRegisterMask(Mask)); 8906 } 8907 8908 // Glue the call to the argument copies, if any. 8909 if (Glue.getNode()) 8910 Ops.push_back(Glue); 8911 8912 // Emit the call. 8913 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 8914 8915 if (IsTailCall) { 8916 MF.getFrameInfo().setHasTailCall(); 8917 return DAG.getNode(RISCVISD::TAIL, DL, NodeTys, Ops); 8918 } 8919 8920 Chain = DAG.getNode(RISCVISD::CALL, DL, NodeTys, Ops); 8921 DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge); 8922 Glue = Chain.getValue(1); 8923 8924 // Mark the end of the call, which is glued to the call itself. 8925 Chain = DAG.getCALLSEQ_END(Chain, 8926 DAG.getConstant(NumBytes, DL, PtrVT, true), 8927 DAG.getConstant(0, DL, PtrVT, true), 8928 Glue, DL); 8929 Glue = Chain.getValue(1); 8930 8931 // Assign locations to each value returned by this call. 8932 SmallVector<CCValAssign, 16> RVLocs; 8933 CCState RetCCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext()); 8934 analyzeInputArgs(MF, RetCCInfo, Ins, /*IsRet=*/true, CC_RISCV); 8935 8936 // Copy all of the result registers out of their specified physreg. 8937 for (auto &VA : RVLocs) { 8938 // Copy the value out 8939 SDValue RetValue = 8940 DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), Glue); 8941 // Glue the RetValue to the end of the call sequence 8942 Chain = RetValue.getValue(1); 8943 Glue = RetValue.getValue(2); 8944 8945 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { 8946 assert(VA.getLocReg() == ArgGPRs[0] && "Unexpected reg assignment"); 8947 SDValue RetValue2 = 8948 DAG.getCopyFromReg(Chain, DL, ArgGPRs[1], MVT::i32, Glue); 8949 Chain = RetValue2.getValue(1); 8950 Glue = RetValue2.getValue(2); 8951 RetValue = DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, RetValue, 8952 RetValue2); 8953 } 8954 8955 RetValue = convertLocVTToValVT(DAG, RetValue, VA, DL, Subtarget); 8956 8957 InVals.push_back(RetValue); 8958 } 8959 8960 return Chain; 8961 } 8962 8963 bool RISCVTargetLowering::CanLowerReturn( 8964 CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg, 8965 const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const { 8966 SmallVector<CCValAssign, 16> RVLocs; 8967 CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context); 8968 8969 Optional<unsigned> FirstMaskArgument; 8970 if (Subtarget.hasStdExtV()) 8971 FirstMaskArgument = preAssignMask(Outs); 8972 8973 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 8974 MVT VT = Outs[i].VT; 8975 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 8976 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 8977 if (CC_RISCV(MF.getDataLayout(), ABI, i, VT, VT, CCValAssign::Full, 8978 ArgFlags, CCInfo, /*IsFixed=*/true, /*IsRet=*/true, nullptr, 8979 *this, FirstMaskArgument)) 8980 return false; 8981 } 8982 return true; 8983 } 8984 8985 SDValue 8986 RISCVTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 8987 bool IsVarArg, 8988 const SmallVectorImpl<ISD::OutputArg> &Outs, 8989 const SmallVectorImpl<SDValue> &OutVals, 8990 const SDLoc &DL, SelectionDAG &DAG) const { 8991 const MachineFunction &MF = DAG.getMachineFunction(); 8992 const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>(); 8993 8994 // Stores the assignment of the return value to a location. 8995 SmallVector<CCValAssign, 16> RVLocs; 8996 8997 // Info about the registers and stack slot. 8998 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, 8999 *DAG.getContext()); 9000 9001 analyzeOutputArgs(DAG.getMachineFunction(), CCInfo, Outs, /*IsRet=*/true, 9002 nullptr, CC_RISCV); 9003 9004 if (CallConv == CallingConv::GHC && !RVLocs.empty()) 9005 report_fatal_error("GHC functions return void only"); 9006 9007 SDValue Glue; 9008 SmallVector<SDValue, 4> RetOps(1, Chain); 9009 9010 // Copy the result values into the output registers. 9011 for (unsigned i = 0, e = RVLocs.size(); i < e; ++i) { 9012 SDValue Val = OutVals[i]; 9013 CCValAssign &VA = RVLocs[i]; 9014 assert(VA.isRegLoc() && "Can only return in registers!"); 9015 9016 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { 9017 // Handle returning f64 on RV32D with a soft float ABI. 9018 assert(VA.isRegLoc() && "Expected return via registers"); 9019 SDValue SplitF64 = DAG.getNode(RISCVISD::SplitF64, DL, 9020 DAG.getVTList(MVT::i32, MVT::i32), Val); 9021 SDValue Lo = SplitF64.getValue(0); 9022 SDValue Hi = SplitF64.getValue(1); 9023 Register RegLo = VA.getLocReg(); 9024 assert(RegLo < RISCV::X31 && "Invalid register pair"); 9025 Register RegHi = RegLo + 1; 9026 9027 if (STI.isRegisterReservedByUser(RegLo) || 9028 STI.isRegisterReservedByUser(RegHi)) 9029 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 9030 MF.getFunction(), 9031 "Return value register required, but has been reserved."}); 9032 9033 Chain = DAG.getCopyToReg(Chain, DL, RegLo, Lo, Glue); 9034 Glue = Chain.getValue(1); 9035 RetOps.push_back(DAG.getRegister(RegLo, MVT::i32)); 9036 Chain = DAG.getCopyToReg(Chain, DL, RegHi, Hi, Glue); 9037 Glue = Chain.getValue(1); 9038 RetOps.push_back(DAG.getRegister(RegHi, MVT::i32)); 9039 } else { 9040 // Handle a 'normal' return. 9041 Val = convertValVTToLocVT(DAG, Val, VA, DL, Subtarget); 9042 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Glue); 9043 9044 if (STI.isRegisterReservedByUser(VA.getLocReg())) 9045 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 9046 MF.getFunction(), 9047 "Return value register required, but has been reserved."}); 9048 9049 // Guarantee that all emitted copies are stuck together. 9050 Glue = Chain.getValue(1); 9051 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 9052 } 9053 } 9054 9055 RetOps[0] = Chain; // Update chain. 9056 9057 // Add the glue node if we have it. 9058 if (Glue.getNode()) { 9059 RetOps.push_back(Glue); 9060 } 9061 9062 unsigned RetOpc = RISCVISD::RET_FLAG; 9063 // Interrupt service routines use different return instructions. 9064 const Function &Func = DAG.getMachineFunction().getFunction(); 9065 if (Func.hasFnAttribute("interrupt")) { 9066 if (!Func.getReturnType()->isVoidTy()) 9067 report_fatal_error( 9068 "Functions with the interrupt attribute must have void return type!"); 9069 9070 MachineFunction &MF = DAG.getMachineFunction(); 9071 StringRef Kind = 9072 MF.getFunction().getFnAttribute("interrupt").getValueAsString(); 9073 9074 if (Kind == "user") 9075 RetOpc = RISCVISD::URET_FLAG; 9076 else if (Kind == "supervisor") 9077 RetOpc = RISCVISD::SRET_FLAG; 9078 else 9079 RetOpc = RISCVISD::MRET_FLAG; 9080 } 9081 9082 return DAG.getNode(RetOpc, DL, MVT::Other, RetOps); 9083 } 9084 9085 void RISCVTargetLowering::validateCCReservedRegs( 9086 const SmallVectorImpl<std::pair<llvm::Register, llvm::SDValue>> &Regs, 9087 MachineFunction &MF) const { 9088 const Function &F = MF.getFunction(); 9089 const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>(); 9090 9091 if (llvm::any_of(Regs, [&STI](auto Reg) { 9092 return STI.isRegisterReservedByUser(Reg.first); 9093 })) 9094 F.getContext().diagnose(DiagnosticInfoUnsupported{ 9095 F, "Argument register required, but has been reserved."}); 9096 } 9097 9098 bool RISCVTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { 9099 return CI->isTailCall(); 9100 } 9101 9102 const char *RISCVTargetLowering::getTargetNodeName(unsigned Opcode) const { 9103 #define NODE_NAME_CASE(NODE) \ 9104 case RISCVISD::NODE: \ 9105 return "RISCVISD::" #NODE; 9106 // clang-format off 9107 switch ((RISCVISD::NodeType)Opcode) { 9108 case RISCVISD::FIRST_NUMBER: 9109 break; 9110 NODE_NAME_CASE(RET_FLAG) 9111 NODE_NAME_CASE(URET_FLAG) 9112 NODE_NAME_CASE(SRET_FLAG) 9113 NODE_NAME_CASE(MRET_FLAG) 9114 NODE_NAME_CASE(CALL) 9115 NODE_NAME_CASE(SELECT_CC) 9116 NODE_NAME_CASE(BR_CC) 9117 NODE_NAME_CASE(BuildPairF64) 9118 NODE_NAME_CASE(SplitF64) 9119 NODE_NAME_CASE(TAIL) 9120 NODE_NAME_CASE(MULHSU) 9121 NODE_NAME_CASE(SLLW) 9122 NODE_NAME_CASE(SRAW) 9123 NODE_NAME_CASE(SRLW) 9124 NODE_NAME_CASE(DIVW) 9125 NODE_NAME_CASE(DIVUW) 9126 NODE_NAME_CASE(REMUW) 9127 NODE_NAME_CASE(ROLW) 9128 NODE_NAME_CASE(RORW) 9129 NODE_NAME_CASE(CLZW) 9130 NODE_NAME_CASE(CTZW) 9131 NODE_NAME_CASE(FSLW) 9132 NODE_NAME_CASE(FSRW) 9133 NODE_NAME_CASE(FSL) 9134 NODE_NAME_CASE(FSR) 9135 NODE_NAME_CASE(FMV_H_X) 9136 NODE_NAME_CASE(FMV_X_ANYEXTH) 9137 NODE_NAME_CASE(FMV_W_X_RV64) 9138 NODE_NAME_CASE(FMV_X_ANYEXTW_RV64) 9139 NODE_NAME_CASE(FCVT_X_RTZ) 9140 NODE_NAME_CASE(FCVT_XU_RTZ) 9141 NODE_NAME_CASE(FCVT_W_RTZ_RV64) 9142 NODE_NAME_CASE(FCVT_WU_RTZ_RV64) 9143 NODE_NAME_CASE(READ_CYCLE_WIDE) 9144 NODE_NAME_CASE(GREV) 9145 NODE_NAME_CASE(GREVW) 9146 NODE_NAME_CASE(GORC) 9147 NODE_NAME_CASE(GORCW) 9148 NODE_NAME_CASE(SHFL) 9149 NODE_NAME_CASE(SHFLW) 9150 NODE_NAME_CASE(UNSHFL) 9151 NODE_NAME_CASE(UNSHFLW) 9152 NODE_NAME_CASE(BCOMPRESS) 9153 NODE_NAME_CASE(BCOMPRESSW) 9154 NODE_NAME_CASE(BDECOMPRESS) 9155 NODE_NAME_CASE(BDECOMPRESSW) 9156 NODE_NAME_CASE(VMV_V_X_VL) 9157 NODE_NAME_CASE(VFMV_V_F_VL) 9158 NODE_NAME_CASE(VMV_X_S) 9159 NODE_NAME_CASE(VMV_S_X_VL) 9160 NODE_NAME_CASE(VFMV_S_F_VL) 9161 NODE_NAME_CASE(SPLAT_VECTOR_I64) 9162 NODE_NAME_CASE(SPLAT_VECTOR_SPLIT_I64_VL) 9163 NODE_NAME_CASE(READ_VLENB) 9164 NODE_NAME_CASE(TRUNCATE_VECTOR_VL) 9165 NODE_NAME_CASE(VSLIDEUP_VL) 9166 NODE_NAME_CASE(VSLIDE1UP_VL) 9167 NODE_NAME_CASE(VSLIDEDOWN_VL) 9168 NODE_NAME_CASE(VSLIDE1DOWN_VL) 9169 NODE_NAME_CASE(VID_VL) 9170 NODE_NAME_CASE(VFNCVT_ROD_VL) 9171 NODE_NAME_CASE(VECREDUCE_ADD_VL) 9172 NODE_NAME_CASE(VECREDUCE_UMAX_VL) 9173 NODE_NAME_CASE(VECREDUCE_SMAX_VL) 9174 NODE_NAME_CASE(VECREDUCE_UMIN_VL) 9175 NODE_NAME_CASE(VECREDUCE_SMIN_VL) 9176 NODE_NAME_CASE(VECREDUCE_AND_VL) 9177 NODE_NAME_CASE(VECREDUCE_OR_VL) 9178 NODE_NAME_CASE(VECREDUCE_XOR_VL) 9179 NODE_NAME_CASE(VECREDUCE_FADD_VL) 9180 NODE_NAME_CASE(VECREDUCE_SEQ_FADD_VL) 9181 NODE_NAME_CASE(VECREDUCE_FMIN_VL) 9182 NODE_NAME_CASE(VECREDUCE_FMAX_VL) 9183 NODE_NAME_CASE(ADD_VL) 9184 NODE_NAME_CASE(AND_VL) 9185 NODE_NAME_CASE(MUL_VL) 9186 NODE_NAME_CASE(OR_VL) 9187 NODE_NAME_CASE(SDIV_VL) 9188 NODE_NAME_CASE(SHL_VL) 9189 NODE_NAME_CASE(SREM_VL) 9190 NODE_NAME_CASE(SRA_VL) 9191 NODE_NAME_CASE(SRL_VL) 9192 NODE_NAME_CASE(SUB_VL) 9193 NODE_NAME_CASE(UDIV_VL) 9194 NODE_NAME_CASE(UREM_VL) 9195 NODE_NAME_CASE(XOR_VL) 9196 NODE_NAME_CASE(SADDSAT_VL) 9197 NODE_NAME_CASE(UADDSAT_VL) 9198 NODE_NAME_CASE(SSUBSAT_VL) 9199 NODE_NAME_CASE(USUBSAT_VL) 9200 NODE_NAME_CASE(FADD_VL) 9201 NODE_NAME_CASE(FSUB_VL) 9202 NODE_NAME_CASE(FMUL_VL) 9203 NODE_NAME_CASE(FDIV_VL) 9204 NODE_NAME_CASE(FNEG_VL) 9205 NODE_NAME_CASE(FABS_VL) 9206 NODE_NAME_CASE(FSQRT_VL) 9207 NODE_NAME_CASE(FMA_VL) 9208 NODE_NAME_CASE(FCOPYSIGN_VL) 9209 NODE_NAME_CASE(SMIN_VL) 9210 NODE_NAME_CASE(SMAX_VL) 9211 NODE_NAME_CASE(UMIN_VL) 9212 NODE_NAME_CASE(UMAX_VL) 9213 NODE_NAME_CASE(FMINNUM_VL) 9214 NODE_NAME_CASE(FMAXNUM_VL) 9215 NODE_NAME_CASE(MULHS_VL) 9216 NODE_NAME_CASE(MULHU_VL) 9217 NODE_NAME_CASE(FP_TO_SINT_VL) 9218 NODE_NAME_CASE(FP_TO_UINT_VL) 9219 NODE_NAME_CASE(SINT_TO_FP_VL) 9220 NODE_NAME_CASE(UINT_TO_FP_VL) 9221 NODE_NAME_CASE(FP_EXTEND_VL) 9222 NODE_NAME_CASE(FP_ROUND_VL) 9223 NODE_NAME_CASE(VWMUL_VL) 9224 NODE_NAME_CASE(VWMULU_VL) 9225 NODE_NAME_CASE(SETCC_VL) 9226 NODE_NAME_CASE(VSELECT_VL) 9227 NODE_NAME_CASE(VMAND_VL) 9228 NODE_NAME_CASE(VMOR_VL) 9229 NODE_NAME_CASE(VMXOR_VL) 9230 NODE_NAME_CASE(VMCLR_VL) 9231 NODE_NAME_CASE(VMSET_VL) 9232 NODE_NAME_CASE(VRGATHER_VX_VL) 9233 NODE_NAME_CASE(VRGATHER_VV_VL) 9234 NODE_NAME_CASE(VRGATHEREI16_VV_VL) 9235 NODE_NAME_CASE(VSEXT_VL) 9236 NODE_NAME_CASE(VZEXT_VL) 9237 NODE_NAME_CASE(VPOPC_VL) 9238 NODE_NAME_CASE(VLE_VL) 9239 NODE_NAME_CASE(VSE_VL) 9240 NODE_NAME_CASE(READ_CSR) 9241 NODE_NAME_CASE(WRITE_CSR) 9242 NODE_NAME_CASE(SWAP_CSR) 9243 } 9244 // clang-format on 9245 return nullptr; 9246 #undef NODE_NAME_CASE 9247 } 9248 9249 /// getConstraintType - Given a constraint letter, return the type of 9250 /// constraint it is for this target. 9251 RISCVTargetLowering::ConstraintType 9252 RISCVTargetLowering::getConstraintType(StringRef Constraint) const { 9253 if (Constraint.size() == 1) { 9254 switch (Constraint[0]) { 9255 default: 9256 break; 9257 case 'f': 9258 return C_RegisterClass; 9259 case 'I': 9260 case 'J': 9261 case 'K': 9262 return C_Immediate; 9263 case 'A': 9264 return C_Memory; 9265 case 'S': // A symbolic address 9266 return C_Other; 9267 } 9268 } else { 9269 if (Constraint == "vr" || Constraint == "vm") 9270 return C_RegisterClass; 9271 } 9272 return TargetLowering::getConstraintType(Constraint); 9273 } 9274 9275 std::pair<unsigned, const TargetRegisterClass *> 9276 RISCVTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 9277 StringRef Constraint, 9278 MVT VT) const { 9279 // First, see if this is a constraint that directly corresponds to a 9280 // RISCV register class. 9281 if (Constraint.size() == 1) { 9282 switch (Constraint[0]) { 9283 case 'r': 9284 return std::make_pair(0U, &RISCV::GPRRegClass); 9285 case 'f': 9286 if (Subtarget.hasStdExtZfh() && VT == MVT::f16) 9287 return std::make_pair(0U, &RISCV::FPR16RegClass); 9288 if (Subtarget.hasStdExtF() && VT == MVT::f32) 9289 return std::make_pair(0U, &RISCV::FPR32RegClass); 9290 if (Subtarget.hasStdExtD() && VT == MVT::f64) 9291 return std::make_pair(0U, &RISCV::FPR64RegClass); 9292 break; 9293 default: 9294 break; 9295 } 9296 } else { 9297 if (Constraint == "vr") { 9298 for (const auto *RC : {&RISCV::VRRegClass, &RISCV::VRM2RegClass, 9299 &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) { 9300 if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy)) 9301 return std::make_pair(0U, RC); 9302 } 9303 } else if (Constraint == "vm") { 9304 if (TRI->isTypeLegalForClass(RISCV::VMRegClass, VT.SimpleTy)) 9305 return std::make_pair(0U, &RISCV::VMRegClass); 9306 } 9307 } 9308 9309 // Clang will correctly decode the usage of register name aliases into their 9310 // official names. However, other frontends like `rustc` do not. This allows 9311 // users of these frontends to use the ABI names for registers in LLVM-style 9312 // register constraints. 9313 unsigned XRegFromAlias = StringSwitch<unsigned>(Constraint.lower()) 9314 .Case("{zero}", RISCV::X0) 9315 .Case("{ra}", RISCV::X1) 9316 .Case("{sp}", RISCV::X2) 9317 .Case("{gp}", RISCV::X3) 9318 .Case("{tp}", RISCV::X4) 9319 .Case("{t0}", RISCV::X5) 9320 .Case("{t1}", RISCV::X6) 9321 .Case("{t2}", RISCV::X7) 9322 .Cases("{s0}", "{fp}", RISCV::X8) 9323 .Case("{s1}", RISCV::X9) 9324 .Case("{a0}", RISCV::X10) 9325 .Case("{a1}", RISCV::X11) 9326 .Case("{a2}", RISCV::X12) 9327 .Case("{a3}", RISCV::X13) 9328 .Case("{a4}", RISCV::X14) 9329 .Case("{a5}", RISCV::X15) 9330 .Case("{a6}", RISCV::X16) 9331 .Case("{a7}", RISCV::X17) 9332 .Case("{s2}", RISCV::X18) 9333 .Case("{s3}", RISCV::X19) 9334 .Case("{s4}", RISCV::X20) 9335 .Case("{s5}", RISCV::X21) 9336 .Case("{s6}", RISCV::X22) 9337 .Case("{s7}", RISCV::X23) 9338 .Case("{s8}", RISCV::X24) 9339 .Case("{s9}", RISCV::X25) 9340 .Case("{s10}", RISCV::X26) 9341 .Case("{s11}", RISCV::X27) 9342 .Case("{t3}", RISCV::X28) 9343 .Case("{t4}", RISCV::X29) 9344 .Case("{t5}", RISCV::X30) 9345 .Case("{t6}", RISCV::X31) 9346 .Default(RISCV::NoRegister); 9347 if (XRegFromAlias != RISCV::NoRegister) 9348 return std::make_pair(XRegFromAlias, &RISCV::GPRRegClass); 9349 9350 // Since TargetLowering::getRegForInlineAsmConstraint uses the name of the 9351 // TableGen record rather than the AsmName to choose registers for InlineAsm 9352 // constraints, plus we want to match those names to the widest floating point 9353 // register type available, manually select floating point registers here. 9354 // 9355 // The second case is the ABI name of the register, so that frontends can also 9356 // use the ABI names in register constraint lists. 9357 if (Subtarget.hasStdExtF()) { 9358 unsigned FReg = StringSwitch<unsigned>(Constraint.lower()) 9359 .Cases("{f0}", "{ft0}", RISCV::F0_F) 9360 .Cases("{f1}", "{ft1}", RISCV::F1_F) 9361 .Cases("{f2}", "{ft2}", RISCV::F2_F) 9362 .Cases("{f3}", "{ft3}", RISCV::F3_F) 9363 .Cases("{f4}", "{ft4}", RISCV::F4_F) 9364 .Cases("{f5}", "{ft5}", RISCV::F5_F) 9365 .Cases("{f6}", "{ft6}", RISCV::F6_F) 9366 .Cases("{f7}", "{ft7}", RISCV::F7_F) 9367 .Cases("{f8}", "{fs0}", RISCV::F8_F) 9368 .Cases("{f9}", "{fs1}", RISCV::F9_F) 9369 .Cases("{f10}", "{fa0}", RISCV::F10_F) 9370 .Cases("{f11}", "{fa1}", RISCV::F11_F) 9371 .Cases("{f12}", "{fa2}", RISCV::F12_F) 9372 .Cases("{f13}", "{fa3}", RISCV::F13_F) 9373 .Cases("{f14}", "{fa4}", RISCV::F14_F) 9374 .Cases("{f15}", "{fa5}", RISCV::F15_F) 9375 .Cases("{f16}", "{fa6}", RISCV::F16_F) 9376 .Cases("{f17}", "{fa7}", RISCV::F17_F) 9377 .Cases("{f18}", "{fs2}", RISCV::F18_F) 9378 .Cases("{f19}", "{fs3}", RISCV::F19_F) 9379 .Cases("{f20}", "{fs4}", RISCV::F20_F) 9380 .Cases("{f21}", "{fs5}", RISCV::F21_F) 9381 .Cases("{f22}", "{fs6}", RISCV::F22_F) 9382 .Cases("{f23}", "{fs7}", RISCV::F23_F) 9383 .Cases("{f24}", "{fs8}", RISCV::F24_F) 9384 .Cases("{f25}", "{fs9}", RISCV::F25_F) 9385 .Cases("{f26}", "{fs10}", RISCV::F26_F) 9386 .Cases("{f27}", "{fs11}", RISCV::F27_F) 9387 .Cases("{f28}", "{ft8}", RISCV::F28_F) 9388 .Cases("{f29}", "{ft9}", RISCV::F29_F) 9389 .Cases("{f30}", "{ft10}", RISCV::F30_F) 9390 .Cases("{f31}", "{ft11}", RISCV::F31_F) 9391 .Default(RISCV::NoRegister); 9392 if (FReg != RISCV::NoRegister) { 9393 assert(RISCV::F0_F <= FReg && FReg <= RISCV::F31_F && "Unknown fp-reg"); 9394 if (Subtarget.hasStdExtD()) { 9395 unsigned RegNo = FReg - RISCV::F0_F; 9396 unsigned DReg = RISCV::F0_D + RegNo; 9397 return std::make_pair(DReg, &RISCV::FPR64RegClass); 9398 } 9399 return std::make_pair(FReg, &RISCV::FPR32RegClass); 9400 } 9401 } 9402 9403 if (Subtarget.hasStdExtV()) { 9404 Register VReg = StringSwitch<Register>(Constraint.lower()) 9405 .Case("{v0}", RISCV::V0) 9406 .Case("{v1}", RISCV::V1) 9407 .Case("{v2}", RISCV::V2) 9408 .Case("{v3}", RISCV::V3) 9409 .Case("{v4}", RISCV::V4) 9410 .Case("{v5}", RISCV::V5) 9411 .Case("{v6}", RISCV::V6) 9412 .Case("{v7}", RISCV::V7) 9413 .Case("{v8}", RISCV::V8) 9414 .Case("{v9}", RISCV::V9) 9415 .Case("{v10}", RISCV::V10) 9416 .Case("{v11}", RISCV::V11) 9417 .Case("{v12}", RISCV::V12) 9418 .Case("{v13}", RISCV::V13) 9419 .Case("{v14}", RISCV::V14) 9420 .Case("{v15}", RISCV::V15) 9421 .Case("{v16}", RISCV::V16) 9422 .Case("{v17}", RISCV::V17) 9423 .Case("{v18}", RISCV::V18) 9424 .Case("{v19}", RISCV::V19) 9425 .Case("{v20}", RISCV::V20) 9426 .Case("{v21}", RISCV::V21) 9427 .Case("{v22}", RISCV::V22) 9428 .Case("{v23}", RISCV::V23) 9429 .Case("{v24}", RISCV::V24) 9430 .Case("{v25}", RISCV::V25) 9431 .Case("{v26}", RISCV::V26) 9432 .Case("{v27}", RISCV::V27) 9433 .Case("{v28}", RISCV::V28) 9434 .Case("{v29}", RISCV::V29) 9435 .Case("{v30}", RISCV::V30) 9436 .Case("{v31}", RISCV::V31) 9437 .Default(RISCV::NoRegister); 9438 if (VReg != RISCV::NoRegister) { 9439 if (TRI->isTypeLegalForClass(RISCV::VMRegClass, VT.SimpleTy)) 9440 return std::make_pair(VReg, &RISCV::VMRegClass); 9441 if (TRI->isTypeLegalForClass(RISCV::VRRegClass, VT.SimpleTy)) 9442 return std::make_pair(VReg, &RISCV::VRRegClass); 9443 for (const auto *RC : 9444 {&RISCV::VRM2RegClass, &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) { 9445 if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy)) { 9446 VReg = TRI->getMatchingSuperReg(VReg, RISCV::sub_vrm1_0, RC); 9447 return std::make_pair(VReg, RC); 9448 } 9449 } 9450 } 9451 } 9452 9453 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 9454 } 9455 9456 unsigned 9457 RISCVTargetLowering::getInlineAsmMemConstraint(StringRef ConstraintCode) const { 9458 // Currently only support length 1 constraints. 9459 if (ConstraintCode.size() == 1) { 9460 switch (ConstraintCode[0]) { 9461 case 'A': 9462 return InlineAsm::Constraint_A; 9463 default: 9464 break; 9465 } 9466 } 9467 9468 return TargetLowering::getInlineAsmMemConstraint(ConstraintCode); 9469 } 9470 9471 void RISCVTargetLowering::LowerAsmOperandForConstraint( 9472 SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops, 9473 SelectionDAG &DAG) const { 9474 // Currently only support length 1 constraints. 9475 if (Constraint.length() == 1) { 9476 switch (Constraint[0]) { 9477 case 'I': 9478 // Validate & create a 12-bit signed immediate operand. 9479 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 9480 uint64_t CVal = C->getSExtValue(); 9481 if (isInt<12>(CVal)) 9482 Ops.push_back( 9483 DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT())); 9484 } 9485 return; 9486 case 'J': 9487 // Validate & create an integer zero operand. 9488 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 9489 if (C->getZExtValue() == 0) 9490 Ops.push_back( 9491 DAG.getTargetConstant(0, SDLoc(Op), Subtarget.getXLenVT())); 9492 return; 9493 case 'K': 9494 // Validate & create a 5-bit unsigned immediate operand. 9495 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 9496 uint64_t CVal = C->getZExtValue(); 9497 if (isUInt<5>(CVal)) 9498 Ops.push_back( 9499 DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT())); 9500 } 9501 return; 9502 case 'S': 9503 if (const auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) { 9504 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op), 9505 GA->getValueType(0))); 9506 } else if (const auto *BA = dyn_cast<BlockAddressSDNode>(Op)) { 9507 Ops.push_back(DAG.getTargetBlockAddress(BA->getBlockAddress(), 9508 BA->getValueType(0))); 9509 } 9510 return; 9511 default: 9512 break; 9513 } 9514 } 9515 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 9516 } 9517 9518 Instruction *RISCVTargetLowering::emitLeadingFence(IRBuilderBase &Builder, 9519 Instruction *Inst, 9520 AtomicOrdering Ord) const { 9521 if (isa<LoadInst>(Inst) && Ord == AtomicOrdering::SequentiallyConsistent) 9522 return Builder.CreateFence(Ord); 9523 if (isa<StoreInst>(Inst) && isReleaseOrStronger(Ord)) 9524 return Builder.CreateFence(AtomicOrdering::Release); 9525 return nullptr; 9526 } 9527 9528 Instruction *RISCVTargetLowering::emitTrailingFence(IRBuilderBase &Builder, 9529 Instruction *Inst, 9530 AtomicOrdering Ord) const { 9531 if (isa<LoadInst>(Inst) && isAcquireOrStronger(Ord)) 9532 return Builder.CreateFence(AtomicOrdering::Acquire); 9533 return nullptr; 9534 } 9535 9536 TargetLowering::AtomicExpansionKind 9537 RISCVTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { 9538 // atomicrmw {fadd,fsub} must be expanded to use compare-exchange, as floating 9539 // point operations can't be used in an lr/sc sequence without breaking the 9540 // forward-progress guarantee. 9541 if (AI->isFloatingPointOperation()) 9542 return AtomicExpansionKind::CmpXChg; 9543 9544 unsigned Size = AI->getType()->getPrimitiveSizeInBits(); 9545 if (Size == 8 || Size == 16) 9546 return AtomicExpansionKind::MaskedIntrinsic; 9547 return AtomicExpansionKind::None; 9548 } 9549 9550 static Intrinsic::ID 9551 getIntrinsicForMaskedAtomicRMWBinOp(unsigned XLen, AtomicRMWInst::BinOp BinOp) { 9552 if (XLen == 32) { 9553 switch (BinOp) { 9554 default: 9555 llvm_unreachable("Unexpected AtomicRMW BinOp"); 9556 case AtomicRMWInst::Xchg: 9557 return Intrinsic::riscv_masked_atomicrmw_xchg_i32; 9558 case AtomicRMWInst::Add: 9559 return Intrinsic::riscv_masked_atomicrmw_add_i32; 9560 case AtomicRMWInst::Sub: 9561 return Intrinsic::riscv_masked_atomicrmw_sub_i32; 9562 case AtomicRMWInst::Nand: 9563 return Intrinsic::riscv_masked_atomicrmw_nand_i32; 9564 case AtomicRMWInst::Max: 9565 return Intrinsic::riscv_masked_atomicrmw_max_i32; 9566 case AtomicRMWInst::Min: 9567 return Intrinsic::riscv_masked_atomicrmw_min_i32; 9568 case AtomicRMWInst::UMax: 9569 return Intrinsic::riscv_masked_atomicrmw_umax_i32; 9570 case AtomicRMWInst::UMin: 9571 return Intrinsic::riscv_masked_atomicrmw_umin_i32; 9572 } 9573 } 9574 9575 if (XLen == 64) { 9576 switch (BinOp) { 9577 default: 9578 llvm_unreachable("Unexpected AtomicRMW BinOp"); 9579 case AtomicRMWInst::Xchg: 9580 return Intrinsic::riscv_masked_atomicrmw_xchg_i64; 9581 case AtomicRMWInst::Add: 9582 return Intrinsic::riscv_masked_atomicrmw_add_i64; 9583 case AtomicRMWInst::Sub: 9584 return Intrinsic::riscv_masked_atomicrmw_sub_i64; 9585 case AtomicRMWInst::Nand: 9586 return Intrinsic::riscv_masked_atomicrmw_nand_i64; 9587 case AtomicRMWInst::Max: 9588 return Intrinsic::riscv_masked_atomicrmw_max_i64; 9589 case AtomicRMWInst::Min: 9590 return Intrinsic::riscv_masked_atomicrmw_min_i64; 9591 case AtomicRMWInst::UMax: 9592 return Intrinsic::riscv_masked_atomicrmw_umax_i64; 9593 case AtomicRMWInst::UMin: 9594 return Intrinsic::riscv_masked_atomicrmw_umin_i64; 9595 } 9596 } 9597 9598 llvm_unreachable("Unexpected XLen\n"); 9599 } 9600 9601 Value *RISCVTargetLowering::emitMaskedAtomicRMWIntrinsic( 9602 IRBuilderBase &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr, 9603 Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const { 9604 unsigned XLen = Subtarget.getXLen(); 9605 Value *Ordering = 9606 Builder.getIntN(XLen, static_cast<uint64_t>(AI->getOrdering())); 9607 Type *Tys[] = {AlignedAddr->getType()}; 9608 Function *LrwOpScwLoop = Intrinsic::getDeclaration( 9609 AI->getModule(), 9610 getIntrinsicForMaskedAtomicRMWBinOp(XLen, AI->getOperation()), Tys); 9611 9612 if (XLen == 64) { 9613 Incr = Builder.CreateSExt(Incr, Builder.getInt64Ty()); 9614 Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty()); 9615 ShiftAmt = Builder.CreateSExt(ShiftAmt, Builder.getInt64Ty()); 9616 } 9617 9618 Value *Result; 9619 9620 // Must pass the shift amount needed to sign extend the loaded value prior 9621 // to performing a signed comparison for min/max. ShiftAmt is the number of 9622 // bits to shift the value into position. Pass XLen-ShiftAmt-ValWidth, which 9623 // is the number of bits to left+right shift the value in order to 9624 // sign-extend. 9625 if (AI->getOperation() == AtomicRMWInst::Min || 9626 AI->getOperation() == AtomicRMWInst::Max) { 9627 const DataLayout &DL = AI->getModule()->getDataLayout(); 9628 unsigned ValWidth = 9629 DL.getTypeStoreSizeInBits(AI->getValOperand()->getType()); 9630 Value *SextShamt = 9631 Builder.CreateSub(Builder.getIntN(XLen, XLen - ValWidth), ShiftAmt); 9632 Result = Builder.CreateCall(LrwOpScwLoop, 9633 {AlignedAddr, Incr, Mask, SextShamt, Ordering}); 9634 } else { 9635 Result = 9636 Builder.CreateCall(LrwOpScwLoop, {AlignedAddr, Incr, Mask, Ordering}); 9637 } 9638 9639 if (XLen == 64) 9640 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty()); 9641 return Result; 9642 } 9643 9644 TargetLowering::AtomicExpansionKind 9645 RISCVTargetLowering::shouldExpandAtomicCmpXchgInIR( 9646 AtomicCmpXchgInst *CI) const { 9647 unsigned Size = CI->getCompareOperand()->getType()->getPrimitiveSizeInBits(); 9648 if (Size == 8 || Size == 16) 9649 return AtomicExpansionKind::MaskedIntrinsic; 9650 return AtomicExpansionKind::None; 9651 } 9652 9653 Value *RISCVTargetLowering::emitMaskedAtomicCmpXchgIntrinsic( 9654 IRBuilderBase &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr, 9655 Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const { 9656 unsigned XLen = Subtarget.getXLen(); 9657 Value *Ordering = Builder.getIntN(XLen, static_cast<uint64_t>(Ord)); 9658 Intrinsic::ID CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i32; 9659 if (XLen == 64) { 9660 CmpVal = Builder.CreateSExt(CmpVal, Builder.getInt64Ty()); 9661 NewVal = Builder.CreateSExt(NewVal, Builder.getInt64Ty()); 9662 Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty()); 9663 CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i64; 9664 } 9665 Type *Tys[] = {AlignedAddr->getType()}; 9666 Function *MaskedCmpXchg = 9667 Intrinsic::getDeclaration(CI->getModule(), CmpXchgIntrID, Tys); 9668 Value *Result = Builder.CreateCall( 9669 MaskedCmpXchg, {AlignedAddr, CmpVal, NewVal, Mask, Ordering}); 9670 if (XLen == 64) 9671 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty()); 9672 return Result; 9673 } 9674 9675 bool RISCVTargetLowering::shouldRemoveExtendFromGSIndex(EVT VT) const { 9676 return false; 9677 } 9678 9679 bool RISCVTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, 9680 EVT VT) const { 9681 VT = VT.getScalarType(); 9682 9683 if (!VT.isSimple()) 9684 return false; 9685 9686 switch (VT.getSimpleVT().SimpleTy) { 9687 case MVT::f16: 9688 return Subtarget.hasStdExtZfh(); 9689 case MVT::f32: 9690 return Subtarget.hasStdExtF(); 9691 case MVT::f64: 9692 return Subtarget.hasStdExtD(); 9693 default: 9694 break; 9695 } 9696 9697 return false; 9698 } 9699 9700 Register RISCVTargetLowering::getExceptionPointerRegister( 9701 const Constant *PersonalityFn) const { 9702 return RISCV::X10; 9703 } 9704 9705 Register RISCVTargetLowering::getExceptionSelectorRegister( 9706 const Constant *PersonalityFn) const { 9707 return RISCV::X11; 9708 } 9709 9710 bool RISCVTargetLowering::shouldExtendTypeInLibCall(EVT Type) const { 9711 // Return false to suppress the unnecessary extensions if the LibCall 9712 // arguments or return value is f32 type for LP64 ABI. 9713 RISCVABI::ABI ABI = Subtarget.getTargetABI(); 9714 if (ABI == RISCVABI::ABI_LP64 && (Type == MVT::f32)) 9715 return false; 9716 9717 return true; 9718 } 9719 9720 bool RISCVTargetLowering::shouldSignExtendTypeInLibCall(EVT Type, bool IsSigned) const { 9721 if (Subtarget.is64Bit() && Type == MVT::i32) 9722 return true; 9723 9724 return IsSigned; 9725 } 9726 9727 bool RISCVTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT, 9728 SDValue C) const { 9729 // Check integral scalar types. 9730 if (VT.isScalarInteger()) { 9731 // Omit the optimization if the sub target has the M extension and the data 9732 // size exceeds XLen. 9733 if (Subtarget.hasStdExtM() && VT.getSizeInBits() > Subtarget.getXLen()) 9734 return false; 9735 if (auto *ConstNode = dyn_cast<ConstantSDNode>(C.getNode())) { 9736 // Break the MUL to a SLLI and an ADD/SUB. 9737 const APInt &Imm = ConstNode->getAPIntValue(); 9738 if ((Imm + 1).isPowerOf2() || (Imm - 1).isPowerOf2() || 9739 (1 - Imm).isPowerOf2() || (-1 - Imm).isPowerOf2()) 9740 return true; 9741 // Optimize the MUL to (SH*ADD x, (SLLI x, bits)) if Imm is not simm12. 9742 if (Subtarget.hasStdExtZba() && !Imm.isSignedIntN(12) && 9743 ((Imm - 2).isPowerOf2() || (Imm - 4).isPowerOf2() || 9744 (Imm - 8).isPowerOf2())) 9745 return true; 9746 // Omit the following optimization if the sub target has the M extension 9747 // and the data size >= XLen. 9748 if (Subtarget.hasStdExtM() && VT.getSizeInBits() >= Subtarget.getXLen()) 9749 return false; 9750 // Break the MUL to two SLLI instructions and an ADD/SUB, if Imm needs 9751 // a pair of LUI/ADDI. 9752 if (!Imm.isSignedIntN(12) && Imm.countTrailingZeros() < 12) { 9753 APInt ImmS = Imm.ashr(Imm.countTrailingZeros()); 9754 if ((ImmS + 1).isPowerOf2() || (ImmS - 1).isPowerOf2() || 9755 (1 - ImmS).isPowerOf2()) 9756 return true; 9757 } 9758 } 9759 } 9760 9761 return false; 9762 } 9763 9764 bool RISCVTargetLowering::isMulAddWithConstProfitable( 9765 const SDValue &AddNode, const SDValue &ConstNode) const { 9766 // Let the DAGCombiner decide for vectors. 9767 EVT VT = AddNode.getValueType(); 9768 if (VT.isVector()) 9769 return true; 9770 9771 // Let the DAGCombiner decide for larger types. 9772 if (VT.getScalarSizeInBits() > Subtarget.getXLen()) 9773 return true; 9774 9775 // It is worse if c1 is simm12 while c1*c2 is not. 9776 ConstantSDNode *C1Node = cast<ConstantSDNode>(AddNode.getOperand(1)); 9777 ConstantSDNode *C2Node = cast<ConstantSDNode>(ConstNode); 9778 const APInt &C1 = C1Node->getAPIntValue(); 9779 const APInt &C2 = C2Node->getAPIntValue(); 9780 if (C1.isSignedIntN(12) && !(C1 * C2).isSignedIntN(12)) 9781 return false; 9782 9783 // Default to true and let the DAGCombiner decide. 9784 return true; 9785 } 9786 9787 bool RISCVTargetLowering::allowsMisalignedMemoryAccesses( 9788 EVT VT, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags, 9789 bool *Fast) const { 9790 if (!VT.isVector()) 9791 return false; 9792 9793 EVT ElemVT = VT.getVectorElementType(); 9794 if (Alignment >= ElemVT.getStoreSize()) { 9795 if (Fast) 9796 *Fast = true; 9797 return true; 9798 } 9799 9800 return false; 9801 } 9802 9803 bool RISCVTargetLowering::splitValueIntoRegisterParts( 9804 SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts, 9805 unsigned NumParts, MVT PartVT, Optional<CallingConv::ID> CC) const { 9806 bool IsABIRegCopy = CC.hasValue(); 9807 EVT ValueVT = Val.getValueType(); 9808 if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) { 9809 // Cast the f16 to i16, extend to i32, pad with ones to make a float nan, 9810 // and cast to f32. 9811 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i16, Val); 9812 Val = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Val); 9813 Val = DAG.getNode(ISD::OR, DL, MVT::i32, Val, 9814 DAG.getConstant(0xFFFF0000, DL, MVT::i32)); 9815 Val = DAG.getNode(ISD::BITCAST, DL, MVT::f32, Val); 9816 Parts[0] = Val; 9817 return true; 9818 } 9819 9820 if (ValueVT.isScalableVector() && PartVT.isScalableVector()) { 9821 LLVMContext &Context = *DAG.getContext(); 9822 EVT ValueEltVT = ValueVT.getVectorElementType(); 9823 EVT PartEltVT = PartVT.getVectorElementType(); 9824 unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize(); 9825 unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize(); 9826 if (PartVTBitSize % ValueVTBitSize == 0) { 9827 // If the element types are different, bitcast to the same element type of 9828 // PartVT first. 9829 if (ValueEltVT != PartEltVT) { 9830 unsigned Count = ValueVTBitSize / PartEltVT.getSizeInBits(); 9831 assert(Count != 0 && "The number of element should not be zero."); 9832 EVT SameEltTypeVT = 9833 EVT::getVectorVT(Context, PartEltVT, Count, /*IsScalable=*/true); 9834 Val = DAG.getNode(ISD::BITCAST, DL, SameEltTypeVT, Val); 9835 } 9836 Val = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT), 9837 Val, DAG.getConstant(0, DL, Subtarget.getXLenVT())); 9838 Parts[0] = Val; 9839 return true; 9840 } 9841 } 9842 return false; 9843 } 9844 9845 SDValue RISCVTargetLowering::joinRegisterPartsIntoValue( 9846 SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts, 9847 MVT PartVT, EVT ValueVT, Optional<CallingConv::ID> CC) const { 9848 bool IsABIRegCopy = CC.hasValue(); 9849 if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) { 9850 SDValue Val = Parts[0]; 9851 9852 // Cast the f32 to i32, truncate to i16, and cast back to f16. 9853 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Val); 9854 Val = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Val); 9855 Val = DAG.getNode(ISD::BITCAST, DL, MVT::f16, Val); 9856 return Val; 9857 } 9858 9859 if (ValueVT.isScalableVector() && PartVT.isScalableVector()) { 9860 LLVMContext &Context = *DAG.getContext(); 9861 SDValue Val = Parts[0]; 9862 EVT ValueEltVT = ValueVT.getVectorElementType(); 9863 EVT PartEltVT = PartVT.getVectorElementType(); 9864 unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize(); 9865 unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize(); 9866 if (PartVTBitSize % ValueVTBitSize == 0) { 9867 EVT SameEltTypeVT = ValueVT; 9868 // If the element types are different, convert it to the same element type 9869 // of PartVT. 9870 if (ValueEltVT != PartEltVT) { 9871 unsigned Count = ValueVTBitSize / PartEltVT.getSizeInBits(); 9872 assert(Count != 0 && "The number of element should not be zero."); 9873 SameEltTypeVT = 9874 EVT::getVectorVT(Context, PartEltVT, Count, /*IsScalable=*/true); 9875 } 9876 Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SameEltTypeVT, Val, 9877 DAG.getConstant(0, DL, Subtarget.getXLenVT())); 9878 if (ValueEltVT != PartEltVT) 9879 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 9880 return Val; 9881 } 9882 } 9883 return SDValue(); 9884 } 9885 9886 #define GET_REGISTER_MATCHER 9887 #include "RISCVGenAsmMatcher.inc" 9888 9889 Register 9890 RISCVTargetLowering::getRegisterByName(const char *RegName, LLT VT, 9891 const MachineFunction &MF) const { 9892 Register Reg = MatchRegisterAltName(RegName); 9893 if (Reg == RISCV::NoRegister) 9894 Reg = MatchRegisterName(RegName); 9895 if (Reg == RISCV::NoRegister) 9896 report_fatal_error( 9897 Twine("Invalid register name \"" + StringRef(RegName) + "\".")); 9898 BitVector ReservedRegs = Subtarget.getRegisterInfo()->getReservedRegs(MF); 9899 if (!ReservedRegs.test(Reg) && !Subtarget.isRegisterReservedByUser(Reg)) 9900 report_fatal_error(Twine("Trying to obtain non-reserved register \"" + 9901 StringRef(RegName) + "\".")); 9902 return Reg; 9903 } 9904 9905 namespace llvm { 9906 namespace RISCVVIntrinsicsTable { 9907 9908 #define GET_RISCVVIntrinsicsTable_IMPL 9909 #include "RISCVGenSearchableTables.inc" 9910 9911 } // namespace RISCVVIntrinsicsTable 9912 9913 } // namespace llvm 9914