1 //===-- RISCVISelLowering.cpp - RISCV DAG Lowering Implementation --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the interfaces that RISCV uses to lower LLVM code into a 10 // selection DAG. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "RISCVISelLowering.h" 15 #include "MCTargetDesc/RISCVMatInt.h" 16 #include "RISCV.h" 17 #include "RISCVMachineFunctionInfo.h" 18 #include "RISCVRegisterInfo.h" 19 #include "RISCVSubtarget.h" 20 #include "RISCVTargetMachine.h" 21 #include "llvm/ADT/SmallSet.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Analysis/MemoryLocation.h" 24 #include "llvm/CodeGen/MachineFrameInfo.h" 25 #include "llvm/CodeGen/MachineFunction.h" 26 #include "llvm/CodeGen/MachineInstrBuilder.h" 27 #include "llvm/CodeGen/MachineJumpTableInfo.h" 28 #include "llvm/CodeGen/MachineRegisterInfo.h" 29 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 30 #include "llvm/CodeGen/ValueTypes.h" 31 #include "llvm/IR/DiagnosticInfo.h" 32 #include "llvm/IR/DiagnosticPrinter.h" 33 #include "llvm/IR/IRBuilder.h" 34 #include "llvm/IR/IntrinsicsRISCV.h" 35 #include "llvm/IR/PatternMatch.h" 36 #include "llvm/Support/Debug.h" 37 #include "llvm/Support/ErrorHandling.h" 38 #include "llvm/Support/KnownBits.h" 39 #include "llvm/Support/MathExtras.h" 40 #include "llvm/Support/raw_ostream.h" 41 42 using namespace llvm; 43 44 #define DEBUG_TYPE "riscv-lower" 45 46 STATISTIC(NumTailCalls, "Number of tail calls"); 47 48 RISCVTargetLowering::RISCVTargetLowering(const TargetMachine &TM, 49 const RISCVSubtarget &STI) 50 : TargetLowering(TM), Subtarget(STI) { 51 52 if (Subtarget.isRV32E()) 53 report_fatal_error("Codegen not yet implemented for RV32E"); 54 55 RISCVABI::ABI ABI = Subtarget.getTargetABI(); 56 assert(ABI != RISCVABI::ABI_Unknown && "Improperly initialised target ABI"); 57 58 if ((ABI == RISCVABI::ABI_ILP32F || ABI == RISCVABI::ABI_LP64F) && 59 !Subtarget.hasStdExtF()) { 60 errs() << "Hard-float 'f' ABI can't be used for a target that " 61 "doesn't support the F instruction set extension (ignoring " 62 "target-abi)\n"; 63 ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32; 64 } else if ((ABI == RISCVABI::ABI_ILP32D || ABI == RISCVABI::ABI_LP64D) && 65 !Subtarget.hasStdExtD()) { 66 errs() << "Hard-float 'd' ABI can't be used for a target that " 67 "doesn't support the D instruction set extension (ignoring " 68 "target-abi)\n"; 69 ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32; 70 } 71 72 switch (ABI) { 73 default: 74 report_fatal_error("Don't know how to lower this ABI"); 75 case RISCVABI::ABI_ILP32: 76 case RISCVABI::ABI_ILP32F: 77 case RISCVABI::ABI_ILP32D: 78 case RISCVABI::ABI_LP64: 79 case RISCVABI::ABI_LP64F: 80 case RISCVABI::ABI_LP64D: 81 break; 82 } 83 84 MVT XLenVT = Subtarget.getXLenVT(); 85 86 // Set up the register classes. 87 addRegisterClass(XLenVT, &RISCV::GPRRegClass); 88 89 if (Subtarget.hasStdExtZfh()) 90 addRegisterClass(MVT::f16, &RISCV::FPR16RegClass); 91 if (Subtarget.hasStdExtF()) 92 addRegisterClass(MVT::f32, &RISCV::FPR32RegClass); 93 if (Subtarget.hasStdExtD()) 94 addRegisterClass(MVT::f64, &RISCV::FPR64RegClass); 95 96 static const MVT::SimpleValueType BoolVecVTs[] = { 97 MVT::nxv1i1, MVT::nxv2i1, MVT::nxv4i1, MVT::nxv8i1, 98 MVT::nxv16i1, MVT::nxv32i1, MVT::nxv64i1}; 99 static const MVT::SimpleValueType IntVecVTs[] = { 100 MVT::nxv1i8, MVT::nxv2i8, MVT::nxv4i8, MVT::nxv8i8, MVT::nxv16i8, 101 MVT::nxv32i8, MVT::nxv64i8, MVT::nxv1i16, MVT::nxv2i16, MVT::nxv4i16, 102 MVT::nxv8i16, MVT::nxv16i16, MVT::nxv32i16, MVT::nxv1i32, MVT::nxv2i32, 103 MVT::nxv4i32, MVT::nxv8i32, MVT::nxv16i32, MVT::nxv1i64, MVT::nxv2i64, 104 MVT::nxv4i64, MVT::nxv8i64}; 105 static const MVT::SimpleValueType F16VecVTs[] = { 106 MVT::nxv1f16, MVT::nxv2f16, MVT::nxv4f16, 107 MVT::nxv8f16, MVT::nxv16f16, MVT::nxv32f16}; 108 static const MVT::SimpleValueType F32VecVTs[] = { 109 MVT::nxv1f32, MVT::nxv2f32, MVT::nxv4f32, MVT::nxv8f32, MVT::nxv16f32}; 110 static const MVT::SimpleValueType F64VecVTs[] = { 111 MVT::nxv1f64, MVT::nxv2f64, MVT::nxv4f64, MVT::nxv8f64}; 112 113 if (Subtarget.hasVInstructions()) { 114 auto addRegClassForRVV = [this](MVT VT) { 115 unsigned Size = VT.getSizeInBits().getKnownMinValue(); 116 assert(Size <= 512 && isPowerOf2_32(Size)); 117 const TargetRegisterClass *RC; 118 if (Size <= 64) 119 RC = &RISCV::VRRegClass; 120 else if (Size == 128) 121 RC = &RISCV::VRM2RegClass; 122 else if (Size == 256) 123 RC = &RISCV::VRM4RegClass; 124 else 125 RC = &RISCV::VRM8RegClass; 126 127 addRegisterClass(VT, RC); 128 }; 129 130 for (MVT VT : BoolVecVTs) 131 addRegClassForRVV(VT); 132 for (MVT VT : IntVecVTs) { 133 if (VT.getVectorElementType() == MVT::i64 && 134 !Subtarget.hasVInstructionsI64()) 135 continue; 136 addRegClassForRVV(VT); 137 } 138 139 if (Subtarget.hasVInstructionsF16()) 140 for (MVT VT : F16VecVTs) 141 addRegClassForRVV(VT); 142 143 if (Subtarget.hasVInstructionsF32()) 144 for (MVT VT : F32VecVTs) 145 addRegClassForRVV(VT); 146 147 if (Subtarget.hasVInstructionsF64()) 148 for (MVT VT : F64VecVTs) 149 addRegClassForRVV(VT); 150 151 if (Subtarget.useRVVForFixedLengthVectors()) { 152 auto addRegClassForFixedVectors = [this](MVT VT) { 153 MVT ContainerVT = getContainerForFixedLengthVector(VT); 154 unsigned RCID = getRegClassIDForVecVT(ContainerVT); 155 const RISCVRegisterInfo &TRI = *Subtarget.getRegisterInfo(); 156 addRegisterClass(VT, TRI.getRegClass(RCID)); 157 }; 158 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) 159 if (useRVVForFixedLengthVectorVT(VT)) 160 addRegClassForFixedVectors(VT); 161 162 for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) 163 if (useRVVForFixedLengthVectorVT(VT)) 164 addRegClassForFixedVectors(VT); 165 } 166 } 167 168 // Compute derived properties from the register classes. 169 computeRegisterProperties(STI.getRegisterInfo()); 170 171 setStackPointerRegisterToSaveRestore(RISCV::X2); 172 173 for (auto N : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}) 174 setLoadExtAction(N, XLenVT, MVT::i1, Promote); 175 176 // TODO: add all necessary setOperationAction calls. 177 setOperationAction(ISD::DYNAMIC_STACKALLOC, XLenVT, Expand); 178 179 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 180 setOperationAction(ISD::BR_CC, XLenVT, Expand); 181 setOperationAction(ISD::BRCOND, MVT::Other, Custom); 182 setOperationAction(ISD::SELECT_CC, XLenVT, Expand); 183 184 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); 185 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); 186 187 setOperationAction(ISD::VASTART, MVT::Other, Custom); 188 setOperationAction(ISD::VAARG, MVT::Other, Expand); 189 setOperationAction(ISD::VACOPY, MVT::Other, Expand); 190 setOperationAction(ISD::VAEND, MVT::Other, Expand); 191 192 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 193 if (!Subtarget.hasStdExtZbb()) { 194 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand); 195 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand); 196 } 197 198 if (Subtarget.is64Bit()) { 199 setOperationAction(ISD::ADD, MVT::i32, Custom); 200 setOperationAction(ISD::SUB, MVT::i32, Custom); 201 setOperationAction(ISD::SHL, MVT::i32, Custom); 202 setOperationAction(ISD::SRA, MVT::i32, Custom); 203 setOperationAction(ISD::SRL, MVT::i32, Custom); 204 205 setOperationAction(ISD::UADDO, MVT::i32, Custom); 206 setOperationAction(ISD::USUBO, MVT::i32, Custom); 207 setOperationAction(ISD::UADDSAT, MVT::i32, Custom); 208 setOperationAction(ISD::USUBSAT, MVT::i32, Custom); 209 } else { 210 setLibcallName(RTLIB::SHL_I128, nullptr); 211 setLibcallName(RTLIB::SRL_I128, nullptr); 212 setLibcallName(RTLIB::SRA_I128, nullptr); 213 setLibcallName(RTLIB::MUL_I128, nullptr); 214 setLibcallName(RTLIB::MULO_I64, nullptr); 215 } 216 217 if (!Subtarget.hasStdExtM()) { 218 setOperationAction(ISD::MUL, XLenVT, Expand); 219 setOperationAction(ISD::MULHS, XLenVT, Expand); 220 setOperationAction(ISD::MULHU, XLenVT, Expand); 221 setOperationAction(ISD::SDIV, XLenVT, Expand); 222 setOperationAction(ISD::UDIV, XLenVT, Expand); 223 setOperationAction(ISD::SREM, XLenVT, Expand); 224 setOperationAction(ISD::UREM, XLenVT, Expand); 225 } else { 226 if (Subtarget.is64Bit()) { 227 setOperationAction(ISD::MUL, MVT::i32, Custom); 228 setOperationAction(ISD::MUL, MVT::i128, Custom); 229 230 setOperationAction(ISD::SDIV, MVT::i8, Custom); 231 setOperationAction(ISD::UDIV, MVT::i8, Custom); 232 setOperationAction(ISD::UREM, MVT::i8, Custom); 233 setOperationAction(ISD::SDIV, MVT::i16, Custom); 234 setOperationAction(ISD::UDIV, MVT::i16, Custom); 235 setOperationAction(ISD::UREM, MVT::i16, Custom); 236 setOperationAction(ISD::SDIV, MVT::i32, Custom); 237 setOperationAction(ISD::UDIV, MVT::i32, Custom); 238 setOperationAction(ISD::UREM, MVT::i32, Custom); 239 } else { 240 setOperationAction(ISD::MUL, MVT::i64, Custom); 241 } 242 } 243 244 setOperationAction(ISD::SDIVREM, XLenVT, Expand); 245 setOperationAction(ISD::UDIVREM, XLenVT, Expand); 246 setOperationAction(ISD::SMUL_LOHI, XLenVT, Expand); 247 setOperationAction(ISD::UMUL_LOHI, XLenVT, Expand); 248 249 setOperationAction(ISD::SHL_PARTS, XLenVT, Custom); 250 setOperationAction(ISD::SRL_PARTS, XLenVT, Custom); 251 setOperationAction(ISD::SRA_PARTS, XLenVT, Custom); 252 253 if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp() || 254 Subtarget.hasStdExtZbkb()) { 255 if (Subtarget.is64Bit()) { 256 setOperationAction(ISD::ROTL, MVT::i32, Custom); 257 setOperationAction(ISD::ROTR, MVT::i32, Custom); 258 } 259 } else { 260 setOperationAction(ISD::ROTL, XLenVT, Expand); 261 setOperationAction(ISD::ROTR, XLenVT, Expand); 262 } 263 264 if (Subtarget.hasStdExtZbp()) { 265 // Custom lower bswap/bitreverse so we can convert them to GREVI to enable 266 // more combining. 267 setOperationAction(ISD::BITREVERSE, XLenVT, Custom); 268 setOperationAction(ISD::BSWAP, XLenVT, Custom); 269 setOperationAction(ISD::BITREVERSE, MVT::i8, Custom); 270 // BSWAP i8 doesn't exist. 271 setOperationAction(ISD::BITREVERSE, MVT::i16, Custom); 272 setOperationAction(ISD::BSWAP, MVT::i16, Custom); 273 274 if (Subtarget.is64Bit()) { 275 setOperationAction(ISD::BITREVERSE, MVT::i32, Custom); 276 setOperationAction(ISD::BSWAP, MVT::i32, Custom); 277 } 278 } else { 279 // With Zbb we have an XLen rev8 instruction, but not GREVI. So we'll 280 // pattern match it directly in isel. 281 setOperationAction(ISD::BSWAP, XLenVT, 282 (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbkb()) 283 ? Legal 284 : Expand); 285 // Zbkb can use rev8+brev8 to implement bitreverse. 286 setOperationAction(ISD::BITREVERSE, XLenVT, 287 Subtarget.hasStdExtZbkb() ? Custom : Expand); 288 } 289 290 if (Subtarget.hasStdExtZbb()) { 291 setOperationAction(ISD::SMIN, XLenVT, Legal); 292 setOperationAction(ISD::SMAX, XLenVT, Legal); 293 setOperationAction(ISD::UMIN, XLenVT, Legal); 294 setOperationAction(ISD::UMAX, XLenVT, Legal); 295 296 if (Subtarget.is64Bit()) { 297 setOperationAction(ISD::CTTZ, MVT::i32, Custom); 298 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Custom); 299 setOperationAction(ISD::CTLZ, MVT::i32, Custom); 300 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom); 301 } 302 } else { 303 setOperationAction(ISD::CTTZ, XLenVT, Expand); 304 setOperationAction(ISD::CTLZ, XLenVT, Expand); 305 setOperationAction(ISD::CTPOP, XLenVT, Expand); 306 } 307 308 if (Subtarget.hasStdExtZbt()) { 309 setOperationAction(ISD::FSHL, XLenVT, Custom); 310 setOperationAction(ISD::FSHR, XLenVT, Custom); 311 setOperationAction(ISD::SELECT, XLenVT, Legal); 312 313 if (Subtarget.is64Bit()) { 314 setOperationAction(ISD::FSHL, MVT::i32, Custom); 315 setOperationAction(ISD::FSHR, MVT::i32, Custom); 316 } 317 } else { 318 setOperationAction(ISD::SELECT, XLenVT, Custom); 319 } 320 321 static const ISD::CondCode FPCCToExpand[] = { 322 ISD::SETOGT, ISD::SETOGE, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT, 323 ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUNE, ISD::SETGT, 324 ISD::SETGE, ISD::SETNE, ISD::SETO, ISD::SETUO}; 325 326 static const ISD::NodeType FPOpToExpand[] = { 327 ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, 328 ISD::FREM, ISD::FP16_TO_FP, ISD::FP_TO_FP16}; 329 330 if (Subtarget.hasStdExtZfh()) 331 setOperationAction(ISD::BITCAST, MVT::i16, Custom); 332 333 if (Subtarget.hasStdExtZfh()) { 334 setOperationAction(ISD::FMINNUM, MVT::f16, Legal); 335 setOperationAction(ISD::FMAXNUM, MVT::f16, Legal); 336 setOperationAction(ISD::LRINT, MVT::f16, Legal); 337 setOperationAction(ISD::LLRINT, MVT::f16, Legal); 338 setOperationAction(ISD::LROUND, MVT::f16, Legal); 339 setOperationAction(ISD::LLROUND, MVT::f16, Legal); 340 setOperationAction(ISD::STRICT_LRINT, MVT::f16, Legal); 341 setOperationAction(ISD::STRICT_LLRINT, MVT::f16, Legal); 342 setOperationAction(ISD::STRICT_LROUND, MVT::f16, Legal); 343 setOperationAction(ISD::STRICT_LLROUND, MVT::f16, Legal); 344 setOperationAction(ISD::STRICT_FADD, MVT::f16, Legal); 345 setOperationAction(ISD::STRICT_FMA, MVT::f16, Legal); 346 setOperationAction(ISD::STRICT_FSUB, MVT::f16, Legal); 347 setOperationAction(ISD::STRICT_FMUL, MVT::f16, Legal); 348 setOperationAction(ISD::STRICT_FDIV, MVT::f16, Legal); 349 setOperationAction(ISD::STRICT_FP_ROUND, MVT::f16, Legal); 350 setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f32, Legal); 351 setOperationAction(ISD::STRICT_FSQRT, MVT::f16, Legal); 352 setOperationAction(ISD::STRICT_FSETCC, MVT::f16, Legal); 353 setOperationAction(ISD::STRICT_FSETCCS, MVT::f16, Legal); 354 for (auto CC : FPCCToExpand) 355 setCondCodeAction(CC, MVT::f16, Expand); 356 setOperationAction(ISD::SELECT_CC, MVT::f16, Expand); 357 setOperationAction(ISD::SELECT, MVT::f16, Custom); 358 setOperationAction(ISD::BR_CC, MVT::f16, Expand); 359 360 setOperationAction(ISD::FREM, MVT::f16, Promote); 361 setOperationAction(ISD::FCEIL, MVT::f16, Promote); 362 setOperationAction(ISD::FFLOOR, MVT::f16, Promote); 363 setOperationAction(ISD::FNEARBYINT, MVT::f16, Promote); 364 setOperationAction(ISD::FRINT, MVT::f16, Promote); 365 setOperationAction(ISD::FROUND, MVT::f16, Promote); 366 setOperationAction(ISD::FROUNDEVEN, MVT::f16, Promote); 367 setOperationAction(ISD::FTRUNC, MVT::f16, Promote); 368 setOperationAction(ISD::FPOW, MVT::f16, Promote); 369 setOperationAction(ISD::FPOWI, MVT::f16, Promote); 370 setOperationAction(ISD::FCOS, MVT::f16, Promote); 371 setOperationAction(ISD::FSIN, MVT::f16, Promote); 372 setOperationAction(ISD::FSINCOS, MVT::f16, Promote); 373 setOperationAction(ISD::FEXP, MVT::f16, Promote); 374 setOperationAction(ISD::FEXP2, MVT::f16, Promote); 375 setOperationAction(ISD::FLOG, MVT::f16, Promote); 376 setOperationAction(ISD::FLOG2, MVT::f16, Promote); 377 setOperationAction(ISD::FLOG10, MVT::f16, Promote); 378 379 // FIXME: Need to promote f16 STRICT_* to f32 libcalls, but we don't have 380 // complete support for all operations in LegalizeDAG. 381 382 // We need to custom promote this. 383 if (Subtarget.is64Bit()) 384 setOperationAction(ISD::FPOWI, MVT::i32, Custom); 385 } 386 387 if (Subtarget.hasStdExtF()) { 388 setOperationAction(ISD::FMINNUM, MVT::f32, Legal); 389 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); 390 setOperationAction(ISD::LRINT, MVT::f32, Legal); 391 setOperationAction(ISD::LLRINT, MVT::f32, Legal); 392 setOperationAction(ISD::LROUND, MVT::f32, Legal); 393 setOperationAction(ISD::LLROUND, MVT::f32, Legal); 394 setOperationAction(ISD::STRICT_LRINT, MVT::f32, Legal); 395 setOperationAction(ISD::STRICT_LLRINT, MVT::f32, Legal); 396 setOperationAction(ISD::STRICT_LROUND, MVT::f32, Legal); 397 setOperationAction(ISD::STRICT_LLROUND, MVT::f32, Legal); 398 setOperationAction(ISD::STRICT_FADD, MVT::f32, Legal); 399 setOperationAction(ISD::STRICT_FMA, MVT::f32, Legal); 400 setOperationAction(ISD::STRICT_FSUB, MVT::f32, Legal); 401 setOperationAction(ISD::STRICT_FMUL, MVT::f32, Legal); 402 setOperationAction(ISD::STRICT_FDIV, MVT::f32, Legal); 403 setOperationAction(ISD::STRICT_FSQRT, MVT::f32, Legal); 404 setOperationAction(ISD::STRICT_FSETCC, MVT::f32, Legal); 405 setOperationAction(ISD::STRICT_FSETCCS, MVT::f32, Legal); 406 for (auto CC : FPCCToExpand) 407 setCondCodeAction(CC, MVT::f32, Expand); 408 setOperationAction(ISD::SELECT_CC, MVT::f32, Expand); 409 setOperationAction(ISD::SELECT, MVT::f32, Custom); 410 setOperationAction(ISD::BR_CC, MVT::f32, Expand); 411 for (auto Op : FPOpToExpand) 412 setOperationAction(Op, MVT::f32, Expand); 413 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); 414 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 415 } 416 417 if (Subtarget.hasStdExtF() && Subtarget.is64Bit()) 418 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 419 420 if (Subtarget.hasStdExtD()) { 421 setOperationAction(ISD::FMINNUM, MVT::f64, Legal); 422 setOperationAction(ISD::FMAXNUM, MVT::f64, Legal); 423 setOperationAction(ISD::LRINT, MVT::f64, Legal); 424 setOperationAction(ISD::LLRINT, MVT::f64, Legal); 425 setOperationAction(ISD::LROUND, MVT::f64, Legal); 426 setOperationAction(ISD::LLROUND, MVT::f64, Legal); 427 setOperationAction(ISD::STRICT_LRINT, MVT::f64, Legal); 428 setOperationAction(ISD::STRICT_LLRINT, MVT::f64, Legal); 429 setOperationAction(ISD::STRICT_LROUND, MVT::f64, Legal); 430 setOperationAction(ISD::STRICT_LLROUND, MVT::f64, Legal); 431 setOperationAction(ISD::STRICT_FMA, MVT::f64, Legal); 432 setOperationAction(ISD::STRICT_FADD, MVT::f64, Legal); 433 setOperationAction(ISD::STRICT_FSUB, MVT::f64, Legal); 434 setOperationAction(ISD::STRICT_FMUL, MVT::f64, Legal); 435 setOperationAction(ISD::STRICT_FDIV, MVT::f64, Legal); 436 setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal); 437 setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f64, Legal); 438 setOperationAction(ISD::STRICT_FSQRT, MVT::f64, Legal); 439 setOperationAction(ISD::STRICT_FSETCC, MVT::f64, Legal); 440 setOperationAction(ISD::STRICT_FSETCCS, MVT::f64, Legal); 441 for (auto CC : FPCCToExpand) 442 setCondCodeAction(CC, MVT::f64, Expand); 443 setOperationAction(ISD::SELECT_CC, MVT::f64, Expand); 444 setOperationAction(ISD::SELECT, MVT::f64, Custom); 445 setOperationAction(ISD::BR_CC, MVT::f64, Expand); 446 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 447 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 448 for (auto Op : FPOpToExpand) 449 setOperationAction(Op, MVT::f64, Expand); 450 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); 451 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 452 } 453 454 if (Subtarget.is64Bit()) { 455 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 456 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 457 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom); 458 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom); 459 } 460 461 if (Subtarget.hasStdExtF()) { 462 setOperationAction(ISD::FP_TO_UINT_SAT, XLenVT, Custom); 463 setOperationAction(ISD::FP_TO_SINT_SAT, XLenVT, Custom); 464 465 setOperationAction(ISD::STRICT_FP_TO_UINT, XLenVT, Legal); 466 setOperationAction(ISD::STRICT_FP_TO_SINT, XLenVT, Legal); 467 setOperationAction(ISD::STRICT_UINT_TO_FP, XLenVT, Legal); 468 setOperationAction(ISD::STRICT_SINT_TO_FP, XLenVT, Legal); 469 470 setOperationAction(ISD::FLT_ROUNDS_, XLenVT, Custom); 471 setOperationAction(ISD::SET_ROUNDING, MVT::Other, Custom); 472 } 473 474 setOperationAction(ISD::GlobalAddress, XLenVT, Custom); 475 setOperationAction(ISD::BlockAddress, XLenVT, Custom); 476 setOperationAction(ISD::ConstantPool, XLenVT, Custom); 477 setOperationAction(ISD::JumpTable, XLenVT, Custom); 478 479 setOperationAction(ISD::GlobalTLSAddress, XLenVT, Custom); 480 481 // TODO: On M-mode only targets, the cycle[h] CSR may not be present. 482 // Unfortunately this can't be determined just from the ISA naming string. 483 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, 484 Subtarget.is64Bit() ? Legal : Custom); 485 486 setOperationAction(ISD::TRAP, MVT::Other, Legal); 487 setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal); 488 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 489 if (Subtarget.is64Bit()) 490 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i32, Custom); 491 492 if (Subtarget.hasStdExtA()) { 493 setMaxAtomicSizeInBitsSupported(Subtarget.getXLen()); 494 setMinCmpXchgSizeInBits(32); 495 } else { 496 setMaxAtomicSizeInBitsSupported(0); 497 } 498 499 setBooleanContents(ZeroOrOneBooleanContent); 500 501 if (Subtarget.hasVInstructions()) { 502 setBooleanVectorContents(ZeroOrOneBooleanContent); 503 504 setOperationAction(ISD::VSCALE, XLenVT, Custom); 505 506 // RVV intrinsics may have illegal operands. 507 // We also need to custom legalize vmv.x.s. 508 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i8, Custom); 509 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i16, Custom); 510 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i8, Custom); 511 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i16, Custom); 512 if (Subtarget.is64Bit()) { 513 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i32, Custom); 514 } else { 515 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i64, Custom); 516 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i64, Custom); 517 } 518 519 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom); 520 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); 521 522 static const unsigned IntegerVPOps[] = { 523 ISD::VP_ADD, ISD::VP_SUB, ISD::VP_MUL, 524 ISD::VP_SDIV, ISD::VP_UDIV, ISD::VP_SREM, 525 ISD::VP_UREM, ISD::VP_AND, ISD::VP_OR, 526 ISD::VP_XOR, ISD::VP_ASHR, ISD::VP_LSHR, 527 ISD::VP_SHL, ISD::VP_REDUCE_ADD, ISD::VP_REDUCE_AND, 528 ISD::VP_REDUCE_OR, ISD::VP_REDUCE_XOR, ISD::VP_REDUCE_SMAX, 529 ISD::VP_REDUCE_SMIN, ISD::VP_REDUCE_UMAX, ISD::VP_REDUCE_UMIN, 530 ISD::VP_MERGE, ISD::VP_SELECT}; 531 532 static const unsigned FloatingPointVPOps[] = { 533 ISD::VP_FADD, ISD::VP_FSUB, ISD::VP_FMUL, 534 ISD::VP_FDIV, ISD::VP_FNEG, ISD::VP_FMA, 535 ISD::VP_REDUCE_FADD, ISD::VP_REDUCE_SEQ_FADD, ISD::VP_REDUCE_FMIN, 536 ISD::VP_REDUCE_FMAX, ISD::VP_MERGE, ISD::VP_SELECT}; 537 538 if (!Subtarget.is64Bit()) { 539 // We must custom-lower certain vXi64 operations on RV32 due to the vector 540 // element type being illegal. 541 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::i64, Custom); 542 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::i64, Custom); 543 544 setOperationAction(ISD::VECREDUCE_ADD, MVT::i64, Custom); 545 setOperationAction(ISD::VECREDUCE_AND, MVT::i64, Custom); 546 setOperationAction(ISD::VECREDUCE_OR, MVT::i64, Custom); 547 setOperationAction(ISD::VECREDUCE_XOR, MVT::i64, Custom); 548 setOperationAction(ISD::VECREDUCE_SMAX, MVT::i64, Custom); 549 setOperationAction(ISD::VECREDUCE_SMIN, MVT::i64, Custom); 550 setOperationAction(ISD::VECREDUCE_UMAX, MVT::i64, Custom); 551 setOperationAction(ISD::VECREDUCE_UMIN, MVT::i64, Custom); 552 553 setOperationAction(ISD::VP_REDUCE_ADD, MVT::i64, Custom); 554 setOperationAction(ISD::VP_REDUCE_AND, MVT::i64, Custom); 555 setOperationAction(ISD::VP_REDUCE_OR, MVT::i64, Custom); 556 setOperationAction(ISD::VP_REDUCE_XOR, MVT::i64, Custom); 557 setOperationAction(ISD::VP_REDUCE_SMAX, MVT::i64, Custom); 558 setOperationAction(ISD::VP_REDUCE_SMIN, MVT::i64, Custom); 559 setOperationAction(ISD::VP_REDUCE_UMAX, MVT::i64, Custom); 560 setOperationAction(ISD::VP_REDUCE_UMIN, MVT::i64, Custom); 561 } 562 563 for (MVT VT : BoolVecVTs) { 564 setOperationAction(ISD::SPLAT_VECTOR, VT, Custom); 565 566 // Mask VTs are custom-expanded into a series of standard nodes 567 setOperationAction(ISD::TRUNCATE, VT, Custom); 568 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 569 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 570 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 571 572 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 573 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 574 575 setOperationAction(ISD::SELECT, VT, Custom); 576 setOperationAction(ISD::SELECT_CC, VT, Expand); 577 setOperationAction(ISD::VSELECT, VT, Expand); 578 setOperationAction(ISD::VP_MERGE, VT, Expand); 579 setOperationAction(ISD::VP_SELECT, VT, Expand); 580 581 setOperationAction(ISD::VP_AND, VT, Custom); 582 setOperationAction(ISD::VP_OR, VT, Custom); 583 setOperationAction(ISD::VP_XOR, VT, Custom); 584 585 setOperationAction(ISD::VECREDUCE_AND, VT, Custom); 586 setOperationAction(ISD::VECREDUCE_OR, VT, Custom); 587 setOperationAction(ISD::VECREDUCE_XOR, VT, Custom); 588 589 setOperationAction(ISD::VP_REDUCE_AND, VT, Custom); 590 setOperationAction(ISD::VP_REDUCE_OR, VT, Custom); 591 setOperationAction(ISD::VP_REDUCE_XOR, VT, Custom); 592 593 // RVV has native int->float & float->int conversions where the 594 // element type sizes are within one power-of-two of each other. Any 595 // wider distances between type sizes have to be lowered as sequences 596 // which progressively narrow the gap in stages. 597 setOperationAction(ISD::SINT_TO_FP, VT, Custom); 598 setOperationAction(ISD::UINT_TO_FP, VT, Custom); 599 setOperationAction(ISD::FP_TO_SINT, VT, Custom); 600 setOperationAction(ISD::FP_TO_UINT, VT, Custom); 601 602 // Expand all extending loads to types larger than this, and truncating 603 // stores from types larger than this. 604 for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) { 605 setTruncStoreAction(OtherVT, VT, Expand); 606 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 607 setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand); 608 setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand); 609 } 610 } 611 612 for (MVT VT : IntVecVTs) { 613 if (VT.getVectorElementType() == MVT::i64 && 614 !Subtarget.hasVInstructionsI64()) 615 continue; 616 617 setOperationAction(ISD::SPLAT_VECTOR, VT, Legal); 618 setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom); 619 620 // Vectors implement MULHS/MULHU. 621 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 622 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 623 624 // nxvXi64 MULHS/MULHU requires the V extension instead of Zve64*. 625 if (VT.getVectorElementType() == MVT::i64 && !Subtarget.hasStdExtV()) { 626 setOperationAction(ISD::MULHU, VT, Expand); 627 setOperationAction(ISD::MULHS, VT, Expand); 628 } 629 630 setOperationAction(ISD::SMIN, VT, Legal); 631 setOperationAction(ISD::SMAX, VT, Legal); 632 setOperationAction(ISD::UMIN, VT, Legal); 633 setOperationAction(ISD::UMAX, VT, Legal); 634 635 setOperationAction(ISD::ROTL, VT, Expand); 636 setOperationAction(ISD::ROTR, VT, Expand); 637 638 setOperationAction(ISD::CTTZ, VT, Expand); 639 setOperationAction(ISD::CTLZ, VT, Expand); 640 setOperationAction(ISD::CTPOP, VT, Expand); 641 642 setOperationAction(ISD::BSWAP, VT, Expand); 643 644 // Custom-lower extensions and truncations from/to mask types. 645 setOperationAction(ISD::ANY_EXTEND, VT, Custom); 646 setOperationAction(ISD::SIGN_EXTEND, VT, Custom); 647 setOperationAction(ISD::ZERO_EXTEND, VT, Custom); 648 649 // RVV has native int->float & float->int conversions where the 650 // element type sizes are within one power-of-two of each other. Any 651 // wider distances between type sizes have to be lowered as sequences 652 // which progressively narrow the gap in stages. 653 setOperationAction(ISD::SINT_TO_FP, VT, Custom); 654 setOperationAction(ISD::UINT_TO_FP, VT, Custom); 655 setOperationAction(ISD::FP_TO_SINT, VT, Custom); 656 setOperationAction(ISD::FP_TO_UINT, VT, Custom); 657 658 setOperationAction(ISD::SADDSAT, VT, Legal); 659 setOperationAction(ISD::UADDSAT, VT, Legal); 660 setOperationAction(ISD::SSUBSAT, VT, Legal); 661 setOperationAction(ISD::USUBSAT, VT, Legal); 662 663 // Integer VTs are lowered as a series of "RISCVISD::TRUNCATE_VECTOR_VL" 664 // nodes which truncate by one power of two at a time. 665 setOperationAction(ISD::TRUNCATE, VT, Custom); 666 667 // Custom-lower insert/extract operations to simplify patterns. 668 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 669 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 670 671 // Custom-lower reduction operations to set up the corresponding custom 672 // nodes' operands. 673 setOperationAction(ISD::VECREDUCE_ADD, VT, Custom); 674 setOperationAction(ISD::VECREDUCE_AND, VT, Custom); 675 setOperationAction(ISD::VECREDUCE_OR, VT, Custom); 676 setOperationAction(ISD::VECREDUCE_XOR, VT, Custom); 677 setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom); 678 setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom); 679 setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom); 680 setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom); 681 682 for (unsigned VPOpc : IntegerVPOps) 683 setOperationAction(VPOpc, VT, Custom); 684 685 setOperationAction(ISD::LOAD, VT, Custom); 686 setOperationAction(ISD::STORE, VT, Custom); 687 688 setOperationAction(ISD::MLOAD, VT, Custom); 689 setOperationAction(ISD::MSTORE, VT, Custom); 690 setOperationAction(ISD::MGATHER, VT, Custom); 691 setOperationAction(ISD::MSCATTER, VT, Custom); 692 693 setOperationAction(ISD::VP_LOAD, VT, Custom); 694 setOperationAction(ISD::VP_STORE, VT, Custom); 695 setOperationAction(ISD::VP_GATHER, VT, Custom); 696 setOperationAction(ISD::VP_SCATTER, VT, Custom); 697 698 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 699 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 700 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 701 702 setOperationAction(ISD::SELECT, VT, Custom); 703 setOperationAction(ISD::SELECT_CC, VT, Expand); 704 705 setOperationAction(ISD::STEP_VECTOR, VT, Custom); 706 setOperationAction(ISD::VECTOR_REVERSE, VT, Custom); 707 708 for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) { 709 setTruncStoreAction(VT, OtherVT, Expand); 710 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 711 setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand); 712 setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand); 713 } 714 715 // Lower CTLZ_ZERO_UNDEF and CTTZ_ZERO_UNDEF if we have a floating point 716 // type that can represent the value exactly. 717 if (VT.getVectorElementType() != MVT::i64) { 718 MVT FloatEltVT = 719 VT.getVectorElementType() == MVT::i32 ? MVT::f64 : MVT::f32; 720 EVT FloatVT = MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount()); 721 if (isTypeLegal(FloatVT)) { 722 setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Custom); 723 setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Custom); 724 } 725 } 726 } 727 728 // Expand various CCs to best match the RVV ISA, which natively supports UNE 729 // but no other unordered comparisons, and supports all ordered comparisons 730 // except ONE. Additionally, we expand GT,OGT,GE,OGE for optimization 731 // purposes; they are expanded to their swapped-operand CCs (LT,OLT,LE,OLE), 732 // and we pattern-match those back to the "original", swapping operands once 733 // more. This way we catch both operations and both "vf" and "fv" forms with 734 // fewer patterns. 735 static const ISD::CondCode VFPCCToExpand[] = { 736 ISD::SETO, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT, 737 ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUO, 738 ISD::SETGT, ISD::SETOGT, ISD::SETGE, ISD::SETOGE, 739 }; 740 741 // Sets common operation actions on RVV floating-point vector types. 742 const auto SetCommonVFPActions = [&](MVT VT) { 743 setOperationAction(ISD::SPLAT_VECTOR, VT, Legal); 744 // RVV has native FP_ROUND & FP_EXTEND conversions where the element type 745 // sizes are within one power-of-two of each other. Therefore conversions 746 // between vXf16 and vXf64 must be lowered as sequences which convert via 747 // vXf32. 748 setOperationAction(ISD::FP_ROUND, VT, Custom); 749 setOperationAction(ISD::FP_EXTEND, VT, Custom); 750 // Custom-lower insert/extract operations to simplify patterns. 751 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 752 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 753 // Expand various condition codes (explained above). 754 for (auto CC : VFPCCToExpand) 755 setCondCodeAction(CC, VT, Expand); 756 757 setOperationAction(ISD::FMINNUM, VT, Legal); 758 setOperationAction(ISD::FMAXNUM, VT, Legal); 759 760 setOperationAction(ISD::FTRUNC, VT, Custom); 761 setOperationAction(ISD::FCEIL, VT, Custom); 762 setOperationAction(ISD::FFLOOR, VT, Custom); 763 setOperationAction(ISD::FROUND, VT, Custom); 764 765 setOperationAction(ISD::VECREDUCE_FADD, VT, Custom); 766 setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom); 767 setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom); 768 setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom); 769 770 setOperationAction(ISD::FCOPYSIGN, VT, Legal); 771 772 setOperationAction(ISD::LOAD, VT, Custom); 773 setOperationAction(ISD::STORE, VT, Custom); 774 775 setOperationAction(ISD::MLOAD, VT, Custom); 776 setOperationAction(ISD::MSTORE, VT, Custom); 777 setOperationAction(ISD::MGATHER, VT, Custom); 778 setOperationAction(ISD::MSCATTER, VT, Custom); 779 780 setOperationAction(ISD::VP_LOAD, VT, Custom); 781 setOperationAction(ISD::VP_STORE, VT, Custom); 782 setOperationAction(ISD::VP_GATHER, VT, Custom); 783 setOperationAction(ISD::VP_SCATTER, VT, Custom); 784 785 setOperationAction(ISD::SELECT, VT, Custom); 786 setOperationAction(ISD::SELECT_CC, VT, Expand); 787 788 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 789 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 790 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 791 792 setOperationAction(ISD::VECTOR_REVERSE, VT, Custom); 793 794 for (unsigned VPOpc : FloatingPointVPOps) 795 setOperationAction(VPOpc, VT, Custom); 796 }; 797 798 // Sets common extload/truncstore actions on RVV floating-point vector 799 // types. 800 const auto SetCommonVFPExtLoadTruncStoreActions = 801 [&](MVT VT, ArrayRef<MVT::SimpleValueType> SmallerVTs) { 802 for (auto SmallVT : SmallerVTs) { 803 setTruncStoreAction(VT, SmallVT, Expand); 804 setLoadExtAction(ISD::EXTLOAD, VT, SmallVT, Expand); 805 } 806 }; 807 808 if (Subtarget.hasVInstructionsF16()) 809 for (MVT VT : F16VecVTs) 810 SetCommonVFPActions(VT); 811 812 for (MVT VT : F32VecVTs) { 813 if (Subtarget.hasVInstructionsF32()) 814 SetCommonVFPActions(VT); 815 SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs); 816 } 817 818 for (MVT VT : F64VecVTs) { 819 if (Subtarget.hasVInstructionsF64()) 820 SetCommonVFPActions(VT); 821 SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs); 822 SetCommonVFPExtLoadTruncStoreActions(VT, F32VecVTs); 823 } 824 825 if (Subtarget.useRVVForFixedLengthVectors()) { 826 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) { 827 if (!useRVVForFixedLengthVectorVT(VT)) 828 continue; 829 830 // By default everything must be expanded. 831 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) 832 setOperationAction(Op, VT, Expand); 833 for (MVT OtherVT : MVT::integer_fixedlen_vector_valuetypes()) { 834 setTruncStoreAction(VT, OtherVT, Expand); 835 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 836 setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand); 837 setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand); 838 } 839 840 // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed. 841 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 842 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 843 844 setOperationAction(ISD::BUILD_VECTOR, VT, Custom); 845 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 846 847 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 848 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 849 850 setOperationAction(ISD::LOAD, VT, Custom); 851 setOperationAction(ISD::STORE, VT, Custom); 852 853 setOperationAction(ISD::SETCC, VT, Custom); 854 855 setOperationAction(ISD::SELECT, VT, Custom); 856 857 setOperationAction(ISD::TRUNCATE, VT, Custom); 858 859 setOperationAction(ISD::BITCAST, VT, Custom); 860 861 setOperationAction(ISD::VECREDUCE_AND, VT, Custom); 862 setOperationAction(ISD::VECREDUCE_OR, VT, Custom); 863 setOperationAction(ISD::VECREDUCE_XOR, VT, Custom); 864 865 setOperationAction(ISD::VP_REDUCE_AND, VT, Custom); 866 setOperationAction(ISD::VP_REDUCE_OR, VT, Custom); 867 setOperationAction(ISD::VP_REDUCE_XOR, VT, Custom); 868 869 setOperationAction(ISD::SINT_TO_FP, VT, Custom); 870 setOperationAction(ISD::UINT_TO_FP, VT, Custom); 871 setOperationAction(ISD::FP_TO_SINT, VT, Custom); 872 setOperationAction(ISD::FP_TO_UINT, VT, Custom); 873 874 // Operations below are different for between masks and other vectors. 875 if (VT.getVectorElementType() == MVT::i1) { 876 setOperationAction(ISD::VP_AND, VT, Custom); 877 setOperationAction(ISD::VP_OR, VT, Custom); 878 setOperationAction(ISD::VP_XOR, VT, Custom); 879 setOperationAction(ISD::AND, VT, Custom); 880 setOperationAction(ISD::OR, VT, Custom); 881 setOperationAction(ISD::XOR, VT, Custom); 882 continue; 883 } 884 885 // Use SPLAT_VECTOR to prevent type legalization from destroying the 886 // splats when type legalizing i64 scalar on RV32. 887 // FIXME: Use SPLAT_VECTOR for all types? DAGCombine probably needs 888 // improvements first. 889 if (!Subtarget.is64Bit() && VT.getVectorElementType() == MVT::i64) { 890 setOperationAction(ISD::SPLAT_VECTOR, VT, Custom); 891 setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom); 892 } 893 894 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); 895 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 896 897 setOperationAction(ISD::MLOAD, VT, Custom); 898 setOperationAction(ISD::MSTORE, VT, Custom); 899 setOperationAction(ISD::MGATHER, VT, Custom); 900 setOperationAction(ISD::MSCATTER, VT, Custom); 901 902 setOperationAction(ISD::VP_LOAD, VT, Custom); 903 setOperationAction(ISD::VP_STORE, VT, Custom); 904 setOperationAction(ISD::VP_GATHER, VT, Custom); 905 setOperationAction(ISD::VP_SCATTER, VT, Custom); 906 907 setOperationAction(ISD::ADD, VT, Custom); 908 setOperationAction(ISD::MUL, VT, Custom); 909 setOperationAction(ISD::SUB, VT, Custom); 910 setOperationAction(ISD::AND, VT, Custom); 911 setOperationAction(ISD::OR, VT, Custom); 912 setOperationAction(ISD::XOR, VT, Custom); 913 setOperationAction(ISD::SDIV, VT, Custom); 914 setOperationAction(ISD::SREM, VT, Custom); 915 setOperationAction(ISD::UDIV, VT, Custom); 916 setOperationAction(ISD::UREM, VT, Custom); 917 setOperationAction(ISD::SHL, VT, Custom); 918 setOperationAction(ISD::SRA, VT, Custom); 919 setOperationAction(ISD::SRL, VT, Custom); 920 921 setOperationAction(ISD::SMIN, VT, Custom); 922 setOperationAction(ISD::SMAX, VT, Custom); 923 setOperationAction(ISD::UMIN, VT, Custom); 924 setOperationAction(ISD::UMAX, VT, Custom); 925 setOperationAction(ISD::ABS, VT, Custom); 926 927 // vXi64 MULHS/MULHU requires the V extension instead of Zve64*. 928 if (VT.getVectorElementType() != MVT::i64 || Subtarget.hasStdExtV()) { 929 setOperationAction(ISD::MULHS, VT, Custom); 930 setOperationAction(ISD::MULHU, VT, Custom); 931 } 932 933 setOperationAction(ISD::SADDSAT, VT, Custom); 934 setOperationAction(ISD::UADDSAT, VT, Custom); 935 setOperationAction(ISD::SSUBSAT, VT, Custom); 936 setOperationAction(ISD::USUBSAT, VT, Custom); 937 938 setOperationAction(ISD::VSELECT, VT, Custom); 939 setOperationAction(ISD::SELECT_CC, VT, Expand); 940 941 setOperationAction(ISD::ANY_EXTEND, VT, Custom); 942 setOperationAction(ISD::SIGN_EXTEND, VT, Custom); 943 setOperationAction(ISD::ZERO_EXTEND, VT, Custom); 944 945 // Custom-lower reduction operations to set up the corresponding custom 946 // nodes' operands. 947 setOperationAction(ISD::VECREDUCE_ADD, VT, Custom); 948 setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom); 949 setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom); 950 setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom); 951 setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom); 952 953 for (unsigned VPOpc : IntegerVPOps) 954 setOperationAction(VPOpc, VT, Custom); 955 956 // Lower CTLZ_ZERO_UNDEF and CTTZ_ZERO_UNDEF if we have a floating point 957 // type that can represent the value exactly. 958 if (VT.getVectorElementType() != MVT::i64) { 959 MVT FloatEltVT = 960 VT.getVectorElementType() == MVT::i32 ? MVT::f64 : MVT::f32; 961 EVT FloatVT = 962 MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount()); 963 if (isTypeLegal(FloatVT)) { 964 setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Custom); 965 setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Custom); 966 } 967 } 968 } 969 970 for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) { 971 if (!useRVVForFixedLengthVectorVT(VT)) 972 continue; 973 974 // By default everything must be expanded. 975 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) 976 setOperationAction(Op, VT, Expand); 977 for (MVT OtherVT : MVT::fp_fixedlen_vector_valuetypes()) { 978 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 979 setTruncStoreAction(VT, OtherVT, Expand); 980 } 981 982 // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed. 983 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 984 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 985 986 setOperationAction(ISD::BUILD_VECTOR, VT, Custom); 987 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 988 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); 989 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 990 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 991 992 setOperationAction(ISD::LOAD, VT, Custom); 993 setOperationAction(ISD::STORE, VT, Custom); 994 setOperationAction(ISD::MLOAD, VT, Custom); 995 setOperationAction(ISD::MSTORE, VT, Custom); 996 setOperationAction(ISD::MGATHER, VT, Custom); 997 setOperationAction(ISD::MSCATTER, VT, Custom); 998 999 setOperationAction(ISD::VP_LOAD, VT, Custom); 1000 setOperationAction(ISD::VP_STORE, VT, Custom); 1001 setOperationAction(ISD::VP_GATHER, VT, Custom); 1002 setOperationAction(ISD::VP_SCATTER, VT, Custom); 1003 1004 setOperationAction(ISD::FADD, VT, Custom); 1005 setOperationAction(ISD::FSUB, VT, Custom); 1006 setOperationAction(ISD::FMUL, VT, Custom); 1007 setOperationAction(ISD::FDIV, VT, Custom); 1008 setOperationAction(ISD::FNEG, VT, Custom); 1009 setOperationAction(ISD::FABS, VT, Custom); 1010 setOperationAction(ISD::FCOPYSIGN, VT, Custom); 1011 setOperationAction(ISD::FSQRT, VT, Custom); 1012 setOperationAction(ISD::FMA, VT, Custom); 1013 setOperationAction(ISD::FMINNUM, VT, Custom); 1014 setOperationAction(ISD::FMAXNUM, VT, Custom); 1015 1016 setOperationAction(ISD::FP_ROUND, VT, Custom); 1017 setOperationAction(ISD::FP_EXTEND, VT, Custom); 1018 1019 setOperationAction(ISD::FTRUNC, VT, Custom); 1020 setOperationAction(ISD::FCEIL, VT, Custom); 1021 setOperationAction(ISD::FFLOOR, VT, Custom); 1022 setOperationAction(ISD::FROUND, VT, Custom); 1023 1024 for (auto CC : VFPCCToExpand) 1025 setCondCodeAction(CC, VT, Expand); 1026 1027 setOperationAction(ISD::VSELECT, VT, Custom); 1028 setOperationAction(ISD::SELECT, VT, Custom); 1029 setOperationAction(ISD::SELECT_CC, VT, Expand); 1030 1031 setOperationAction(ISD::BITCAST, VT, Custom); 1032 1033 setOperationAction(ISD::VECREDUCE_FADD, VT, Custom); 1034 setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom); 1035 setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom); 1036 setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom); 1037 1038 for (unsigned VPOpc : FloatingPointVPOps) 1039 setOperationAction(VPOpc, VT, Custom); 1040 } 1041 1042 // Custom-legalize bitcasts from fixed-length vectors to scalar types. 1043 setOperationAction(ISD::BITCAST, MVT::i8, Custom); 1044 setOperationAction(ISD::BITCAST, MVT::i16, Custom); 1045 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 1046 setOperationAction(ISD::BITCAST, MVT::i64, Custom); 1047 if (Subtarget.hasStdExtZfh()) 1048 setOperationAction(ISD::BITCAST, MVT::f16, Custom); 1049 if (Subtarget.hasStdExtF()) 1050 setOperationAction(ISD::BITCAST, MVT::f32, Custom); 1051 if (Subtarget.hasStdExtD()) 1052 setOperationAction(ISD::BITCAST, MVT::f64, Custom); 1053 } 1054 } 1055 1056 // Function alignments. 1057 const Align FunctionAlignment(Subtarget.hasStdExtC() ? 2 : 4); 1058 setMinFunctionAlignment(FunctionAlignment); 1059 setPrefFunctionAlignment(FunctionAlignment); 1060 1061 setMinimumJumpTableEntries(5); 1062 1063 // Jumps are expensive, compared to logic 1064 setJumpIsExpensive(); 1065 1066 setTargetDAGCombine(ISD::ADD); 1067 setTargetDAGCombine(ISD::SUB); 1068 setTargetDAGCombine(ISD::AND); 1069 setTargetDAGCombine(ISD::OR); 1070 setTargetDAGCombine(ISD::XOR); 1071 setTargetDAGCombine(ISD::ROTL); 1072 setTargetDAGCombine(ISD::ROTR); 1073 setTargetDAGCombine(ISD::ANY_EXTEND); 1074 if (Subtarget.hasStdExtF()) { 1075 setTargetDAGCombine(ISD::ZERO_EXTEND); 1076 setTargetDAGCombine(ISD::FP_TO_SINT); 1077 setTargetDAGCombine(ISD::FP_TO_UINT); 1078 setTargetDAGCombine(ISD::FP_TO_SINT_SAT); 1079 setTargetDAGCombine(ISD::FP_TO_UINT_SAT); 1080 } 1081 if (Subtarget.hasVInstructions()) { 1082 setTargetDAGCombine(ISD::FCOPYSIGN); 1083 setTargetDAGCombine(ISD::MGATHER); 1084 setTargetDAGCombine(ISD::MSCATTER); 1085 setTargetDAGCombine(ISD::VP_GATHER); 1086 setTargetDAGCombine(ISD::VP_SCATTER); 1087 setTargetDAGCombine(ISD::SRA); 1088 setTargetDAGCombine(ISD::SRL); 1089 setTargetDAGCombine(ISD::SHL); 1090 setTargetDAGCombine(ISD::STORE); 1091 setTargetDAGCombine(ISD::SPLAT_VECTOR); 1092 } 1093 1094 setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2"); 1095 setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2"); 1096 } 1097 1098 EVT RISCVTargetLowering::getSetCCResultType(const DataLayout &DL, 1099 LLVMContext &Context, 1100 EVT VT) const { 1101 if (!VT.isVector()) 1102 return getPointerTy(DL); 1103 if (Subtarget.hasVInstructions() && 1104 (VT.isScalableVector() || Subtarget.useRVVForFixedLengthVectors())) 1105 return EVT::getVectorVT(Context, MVT::i1, VT.getVectorElementCount()); 1106 return VT.changeVectorElementTypeToInteger(); 1107 } 1108 1109 MVT RISCVTargetLowering::getVPExplicitVectorLengthTy() const { 1110 return Subtarget.getXLenVT(); 1111 } 1112 1113 bool RISCVTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 1114 const CallInst &I, 1115 MachineFunction &MF, 1116 unsigned Intrinsic) const { 1117 auto &DL = I.getModule()->getDataLayout(); 1118 switch (Intrinsic) { 1119 default: 1120 return false; 1121 case Intrinsic::riscv_masked_atomicrmw_xchg_i32: 1122 case Intrinsic::riscv_masked_atomicrmw_add_i32: 1123 case Intrinsic::riscv_masked_atomicrmw_sub_i32: 1124 case Intrinsic::riscv_masked_atomicrmw_nand_i32: 1125 case Intrinsic::riscv_masked_atomicrmw_max_i32: 1126 case Intrinsic::riscv_masked_atomicrmw_min_i32: 1127 case Intrinsic::riscv_masked_atomicrmw_umax_i32: 1128 case Intrinsic::riscv_masked_atomicrmw_umin_i32: 1129 case Intrinsic::riscv_masked_cmpxchg_i32: 1130 Info.opc = ISD::INTRINSIC_W_CHAIN; 1131 Info.memVT = MVT::i32; 1132 Info.ptrVal = I.getArgOperand(0); 1133 Info.offset = 0; 1134 Info.align = Align(4); 1135 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore | 1136 MachineMemOperand::MOVolatile; 1137 return true; 1138 case Intrinsic::riscv_masked_strided_load: 1139 Info.opc = ISD::INTRINSIC_W_CHAIN; 1140 Info.ptrVal = I.getArgOperand(1); 1141 Info.memVT = getValueType(DL, I.getType()->getScalarType()); 1142 Info.align = Align(DL.getTypeSizeInBits(I.getType()->getScalarType()) / 8); 1143 Info.size = MemoryLocation::UnknownSize; 1144 Info.flags |= MachineMemOperand::MOLoad; 1145 return true; 1146 case Intrinsic::riscv_masked_strided_store: 1147 Info.opc = ISD::INTRINSIC_VOID; 1148 Info.ptrVal = I.getArgOperand(1); 1149 Info.memVT = 1150 getValueType(DL, I.getArgOperand(0)->getType()->getScalarType()); 1151 Info.align = Align( 1152 DL.getTypeSizeInBits(I.getArgOperand(0)->getType()->getScalarType()) / 1153 8); 1154 Info.size = MemoryLocation::UnknownSize; 1155 Info.flags |= MachineMemOperand::MOStore; 1156 return true; 1157 } 1158 } 1159 1160 bool RISCVTargetLowering::isLegalAddressingMode(const DataLayout &DL, 1161 const AddrMode &AM, Type *Ty, 1162 unsigned AS, 1163 Instruction *I) const { 1164 // No global is ever allowed as a base. 1165 if (AM.BaseGV) 1166 return false; 1167 1168 // Require a 12-bit signed offset. 1169 if (!isInt<12>(AM.BaseOffs)) 1170 return false; 1171 1172 switch (AM.Scale) { 1173 case 0: // "r+i" or just "i", depending on HasBaseReg. 1174 break; 1175 case 1: 1176 if (!AM.HasBaseReg) // allow "r+i". 1177 break; 1178 return false; // disallow "r+r" or "r+r+i". 1179 default: 1180 return false; 1181 } 1182 1183 return true; 1184 } 1185 1186 bool RISCVTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 1187 return isInt<12>(Imm); 1188 } 1189 1190 bool RISCVTargetLowering::isLegalAddImmediate(int64_t Imm) const { 1191 return isInt<12>(Imm); 1192 } 1193 1194 // On RV32, 64-bit integers are split into their high and low parts and held 1195 // in two different registers, so the trunc is free since the low register can 1196 // just be used. 1197 bool RISCVTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const { 1198 if (Subtarget.is64Bit() || !SrcTy->isIntegerTy() || !DstTy->isIntegerTy()) 1199 return false; 1200 unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); 1201 unsigned DestBits = DstTy->getPrimitiveSizeInBits(); 1202 return (SrcBits == 64 && DestBits == 32); 1203 } 1204 1205 bool RISCVTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const { 1206 if (Subtarget.is64Bit() || SrcVT.isVector() || DstVT.isVector() || 1207 !SrcVT.isInteger() || !DstVT.isInteger()) 1208 return false; 1209 unsigned SrcBits = SrcVT.getSizeInBits(); 1210 unsigned DestBits = DstVT.getSizeInBits(); 1211 return (SrcBits == 64 && DestBits == 32); 1212 } 1213 1214 bool RISCVTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 1215 // Zexts are free if they can be combined with a load. 1216 // Don't advertise i32->i64 zextload as being free for RV64. It interacts 1217 // poorly with type legalization of compares preferring sext. 1218 if (auto *LD = dyn_cast<LoadSDNode>(Val)) { 1219 EVT MemVT = LD->getMemoryVT(); 1220 if ((MemVT == MVT::i8 || MemVT == MVT::i16) && 1221 (LD->getExtensionType() == ISD::NON_EXTLOAD || 1222 LD->getExtensionType() == ISD::ZEXTLOAD)) 1223 return true; 1224 } 1225 1226 return TargetLowering::isZExtFree(Val, VT2); 1227 } 1228 1229 bool RISCVTargetLowering::isSExtCheaperThanZExt(EVT SrcVT, EVT DstVT) const { 1230 return Subtarget.is64Bit() && SrcVT == MVT::i32 && DstVT == MVT::i64; 1231 } 1232 1233 bool RISCVTargetLowering::isCheapToSpeculateCttz() const { 1234 return Subtarget.hasStdExtZbb(); 1235 } 1236 1237 bool RISCVTargetLowering::isCheapToSpeculateCtlz() const { 1238 return Subtarget.hasStdExtZbb(); 1239 } 1240 1241 bool RISCVTargetLowering::hasAndNotCompare(SDValue Y) const { 1242 EVT VT = Y.getValueType(); 1243 1244 // FIXME: Support vectors once we have tests. 1245 if (VT.isVector()) 1246 return false; 1247 1248 return (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp() || 1249 Subtarget.hasStdExtZbkb()) && 1250 !isa<ConstantSDNode>(Y); 1251 } 1252 1253 /// Check if sinking \p I's operands to I's basic block is profitable, because 1254 /// the operands can be folded into a target instruction, e.g. 1255 /// splats of scalars can fold into vector instructions. 1256 bool RISCVTargetLowering::shouldSinkOperands( 1257 Instruction *I, SmallVectorImpl<Use *> &Ops) const { 1258 using namespace llvm::PatternMatch; 1259 1260 if (!I->getType()->isVectorTy() || !Subtarget.hasVInstructions()) 1261 return false; 1262 1263 auto IsSinker = [&](Instruction *I, int Operand) { 1264 switch (I->getOpcode()) { 1265 case Instruction::Add: 1266 case Instruction::Sub: 1267 case Instruction::Mul: 1268 case Instruction::And: 1269 case Instruction::Or: 1270 case Instruction::Xor: 1271 case Instruction::FAdd: 1272 case Instruction::FSub: 1273 case Instruction::FMul: 1274 case Instruction::FDiv: 1275 case Instruction::ICmp: 1276 case Instruction::FCmp: 1277 return true; 1278 case Instruction::Shl: 1279 case Instruction::LShr: 1280 case Instruction::AShr: 1281 case Instruction::UDiv: 1282 case Instruction::SDiv: 1283 case Instruction::URem: 1284 case Instruction::SRem: 1285 return Operand == 1; 1286 case Instruction::Call: 1287 if (auto *II = dyn_cast<IntrinsicInst>(I)) { 1288 switch (II->getIntrinsicID()) { 1289 case Intrinsic::fma: 1290 return Operand == 0 || Operand == 1; 1291 // FIXME: Our patterns can only match vx/vf instructions when the splat 1292 // it on the RHS, because TableGen doesn't recognize our VP operations 1293 // as commutative. 1294 case Intrinsic::vp_add: 1295 case Intrinsic::vp_mul: 1296 case Intrinsic::vp_and: 1297 case Intrinsic::vp_or: 1298 case Intrinsic::vp_xor: 1299 case Intrinsic::vp_fadd: 1300 case Intrinsic::vp_fmul: 1301 case Intrinsic::vp_shl: 1302 case Intrinsic::vp_lshr: 1303 case Intrinsic::vp_ashr: 1304 case Intrinsic::vp_udiv: 1305 case Intrinsic::vp_sdiv: 1306 case Intrinsic::vp_urem: 1307 case Intrinsic::vp_srem: 1308 return Operand == 1; 1309 // ... with the exception of vp.sub/vp.fsub/vp.fdiv, which have 1310 // explicit patterns for both LHS and RHS (as 'vr' versions). 1311 case Intrinsic::vp_sub: 1312 case Intrinsic::vp_fsub: 1313 case Intrinsic::vp_fdiv: 1314 return Operand == 0 || Operand == 1; 1315 default: 1316 return false; 1317 } 1318 } 1319 return false; 1320 default: 1321 return false; 1322 } 1323 }; 1324 1325 for (auto OpIdx : enumerate(I->operands())) { 1326 if (!IsSinker(I, OpIdx.index())) 1327 continue; 1328 1329 Instruction *Op = dyn_cast<Instruction>(OpIdx.value().get()); 1330 // Make sure we are not already sinking this operand 1331 if (!Op || any_of(Ops, [&](Use *U) { return U->get() == Op; })) 1332 continue; 1333 1334 // We are looking for a splat that can be sunk. 1335 if (!match(Op, m_Shuffle(m_InsertElt(m_Undef(), m_Value(), m_ZeroInt()), 1336 m_Undef(), m_ZeroMask()))) 1337 continue; 1338 1339 // All uses of the shuffle should be sunk to avoid duplicating it across gpr 1340 // and vector registers 1341 for (Use &U : Op->uses()) { 1342 Instruction *Insn = cast<Instruction>(U.getUser()); 1343 if (!IsSinker(Insn, U.getOperandNo())) 1344 return false; 1345 } 1346 1347 Ops.push_back(&Op->getOperandUse(0)); 1348 Ops.push_back(&OpIdx.value()); 1349 } 1350 return true; 1351 } 1352 1353 bool RISCVTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 1354 bool ForCodeSize) const { 1355 // FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin. 1356 if (VT == MVT::f16 && !Subtarget.hasStdExtZfh()) 1357 return false; 1358 if (VT == MVT::f32 && !Subtarget.hasStdExtF()) 1359 return false; 1360 if (VT == MVT::f64 && !Subtarget.hasStdExtD()) 1361 return false; 1362 return Imm.isZero(); 1363 } 1364 1365 bool RISCVTargetLowering::hasBitPreservingFPLogic(EVT VT) const { 1366 return (VT == MVT::f16 && Subtarget.hasStdExtZfh()) || 1367 (VT == MVT::f32 && Subtarget.hasStdExtF()) || 1368 (VT == MVT::f64 && Subtarget.hasStdExtD()); 1369 } 1370 1371 MVT RISCVTargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context, 1372 CallingConv::ID CC, 1373 EVT VT) const { 1374 // Use f32 to pass f16 if it is legal and Zfh is not enabled. 1375 // We might still end up using a GPR but that will be decided based on ABI. 1376 // FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin. 1377 if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh()) 1378 return MVT::f32; 1379 1380 return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT); 1381 } 1382 1383 unsigned RISCVTargetLowering::getNumRegistersForCallingConv(LLVMContext &Context, 1384 CallingConv::ID CC, 1385 EVT VT) const { 1386 // Use f32 to pass f16 if it is legal and Zfh is not enabled. 1387 // We might still end up using a GPR but that will be decided based on ABI. 1388 // FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin. 1389 if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh()) 1390 return 1; 1391 1392 return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT); 1393 } 1394 1395 // Changes the condition code and swaps operands if necessary, so the SetCC 1396 // operation matches one of the comparisons supported directly by branches 1397 // in the RISC-V ISA. May adjust compares to favor compare with 0 over compare 1398 // with 1/-1. 1399 static void translateSetCCForBranch(const SDLoc &DL, SDValue &LHS, SDValue &RHS, 1400 ISD::CondCode &CC, SelectionDAG &DAG) { 1401 // Convert X > -1 to X >= 0. 1402 if (CC == ISD::SETGT && isAllOnesConstant(RHS)) { 1403 RHS = DAG.getConstant(0, DL, RHS.getValueType()); 1404 CC = ISD::SETGE; 1405 return; 1406 } 1407 // Convert X < 1 to 0 >= X. 1408 if (CC == ISD::SETLT && isOneConstant(RHS)) { 1409 RHS = LHS; 1410 LHS = DAG.getConstant(0, DL, RHS.getValueType()); 1411 CC = ISD::SETGE; 1412 return; 1413 } 1414 1415 switch (CC) { 1416 default: 1417 break; 1418 case ISD::SETGT: 1419 case ISD::SETLE: 1420 case ISD::SETUGT: 1421 case ISD::SETULE: 1422 CC = ISD::getSetCCSwappedOperands(CC); 1423 std::swap(LHS, RHS); 1424 break; 1425 } 1426 } 1427 1428 RISCVII::VLMUL RISCVTargetLowering::getLMUL(MVT VT) { 1429 assert(VT.isScalableVector() && "Expecting a scalable vector type"); 1430 unsigned KnownSize = VT.getSizeInBits().getKnownMinValue(); 1431 if (VT.getVectorElementType() == MVT::i1) 1432 KnownSize *= 8; 1433 1434 switch (KnownSize) { 1435 default: 1436 llvm_unreachable("Invalid LMUL."); 1437 case 8: 1438 return RISCVII::VLMUL::LMUL_F8; 1439 case 16: 1440 return RISCVII::VLMUL::LMUL_F4; 1441 case 32: 1442 return RISCVII::VLMUL::LMUL_F2; 1443 case 64: 1444 return RISCVII::VLMUL::LMUL_1; 1445 case 128: 1446 return RISCVII::VLMUL::LMUL_2; 1447 case 256: 1448 return RISCVII::VLMUL::LMUL_4; 1449 case 512: 1450 return RISCVII::VLMUL::LMUL_8; 1451 } 1452 } 1453 1454 unsigned RISCVTargetLowering::getRegClassIDForLMUL(RISCVII::VLMUL LMul) { 1455 switch (LMul) { 1456 default: 1457 llvm_unreachable("Invalid LMUL."); 1458 case RISCVII::VLMUL::LMUL_F8: 1459 case RISCVII::VLMUL::LMUL_F4: 1460 case RISCVII::VLMUL::LMUL_F2: 1461 case RISCVII::VLMUL::LMUL_1: 1462 return RISCV::VRRegClassID; 1463 case RISCVII::VLMUL::LMUL_2: 1464 return RISCV::VRM2RegClassID; 1465 case RISCVII::VLMUL::LMUL_4: 1466 return RISCV::VRM4RegClassID; 1467 case RISCVII::VLMUL::LMUL_8: 1468 return RISCV::VRM8RegClassID; 1469 } 1470 } 1471 1472 unsigned RISCVTargetLowering::getSubregIndexByMVT(MVT VT, unsigned Index) { 1473 RISCVII::VLMUL LMUL = getLMUL(VT); 1474 if (LMUL == RISCVII::VLMUL::LMUL_F8 || 1475 LMUL == RISCVII::VLMUL::LMUL_F4 || 1476 LMUL == RISCVII::VLMUL::LMUL_F2 || 1477 LMUL == RISCVII::VLMUL::LMUL_1) { 1478 static_assert(RISCV::sub_vrm1_7 == RISCV::sub_vrm1_0 + 7, 1479 "Unexpected subreg numbering"); 1480 return RISCV::sub_vrm1_0 + Index; 1481 } 1482 if (LMUL == RISCVII::VLMUL::LMUL_2) { 1483 static_assert(RISCV::sub_vrm2_3 == RISCV::sub_vrm2_0 + 3, 1484 "Unexpected subreg numbering"); 1485 return RISCV::sub_vrm2_0 + Index; 1486 } 1487 if (LMUL == RISCVII::VLMUL::LMUL_4) { 1488 static_assert(RISCV::sub_vrm4_1 == RISCV::sub_vrm4_0 + 1, 1489 "Unexpected subreg numbering"); 1490 return RISCV::sub_vrm4_0 + Index; 1491 } 1492 llvm_unreachable("Invalid vector type."); 1493 } 1494 1495 unsigned RISCVTargetLowering::getRegClassIDForVecVT(MVT VT) { 1496 if (VT.getVectorElementType() == MVT::i1) 1497 return RISCV::VRRegClassID; 1498 return getRegClassIDForLMUL(getLMUL(VT)); 1499 } 1500 1501 // Attempt to decompose a subvector insert/extract between VecVT and 1502 // SubVecVT via subregister indices. Returns the subregister index that 1503 // can perform the subvector insert/extract with the given element index, as 1504 // well as the index corresponding to any leftover subvectors that must be 1505 // further inserted/extracted within the register class for SubVecVT. 1506 std::pair<unsigned, unsigned> 1507 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( 1508 MVT VecVT, MVT SubVecVT, unsigned InsertExtractIdx, 1509 const RISCVRegisterInfo *TRI) { 1510 static_assert((RISCV::VRM8RegClassID > RISCV::VRM4RegClassID && 1511 RISCV::VRM4RegClassID > RISCV::VRM2RegClassID && 1512 RISCV::VRM2RegClassID > RISCV::VRRegClassID), 1513 "Register classes not ordered"); 1514 unsigned VecRegClassID = getRegClassIDForVecVT(VecVT); 1515 unsigned SubRegClassID = getRegClassIDForVecVT(SubVecVT); 1516 // Try to compose a subregister index that takes us from the incoming 1517 // LMUL>1 register class down to the outgoing one. At each step we half 1518 // the LMUL: 1519 // nxv16i32@12 -> nxv2i32: sub_vrm4_1_then_sub_vrm2_1_then_sub_vrm1_0 1520 // Note that this is not guaranteed to find a subregister index, such as 1521 // when we are extracting from one VR type to another. 1522 unsigned SubRegIdx = RISCV::NoSubRegister; 1523 for (const unsigned RCID : 1524 {RISCV::VRM4RegClassID, RISCV::VRM2RegClassID, RISCV::VRRegClassID}) 1525 if (VecRegClassID > RCID && SubRegClassID <= RCID) { 1526 VecVT = VecVT.getHalfNumVectorElementsVT(); 1527 bool IsHi = 1528 InsertExtractIdx >= VecVT.getVectorElementCount().getKnownMinValue(); 1529 SubRegIdx = TRI->composeSubRegIndices(SubRegIdx, 1530 getSubregIndexByMVT(VecVT, IsHi)); 1531 if (IsHi) 1532 InsertExtractIdx -= VecVT.getVectorElementCount().getKnownMinValue(); 1533 } 1534 return {SubRegIdx, InsertExtractIdx}; 1535 } 1536 1537 // Permit combining of mask vectors as BUILD_VECTOR never expands to scalar 1538 // stores for those types. 1539 bool RISCVTargetLowering::mergeStoresAfterLegalization(EVT VT) const { 1540 return !Subtarget.useRVVForFixedLengthVectors() || 1541 (VT.isFixedLengthVector() && VT.getVectorElementType() == MVT::i1); 1542 } 1543 1544 bool RISCVTargetLowering::isLegalElementTypeForRVV(Type *ScalarTy) const { 1545 if (ScalarTy->isPointerTy()) 1546 return true; 1547 1548 if (ScalarTy->isIntegerTy(8) || ScalarTy->isIntegerTy(16) || 1549 ScalarTy->isIntegerTy(32)) 1550 return true; 1551 1552 if (ScalarTy->isIntegerTy(64)) 1553 return Subtarget.hasVInstructionsI64(); 1554 1555 if (ScalarTy->isHalfTy()) 1556 return Subtarget.hasVInstructionsF16(); 1557 if (ScalarTy->isFloatTy()) 1558 return Subtarget.hasVInstructionsF32(); 1559 if (ScalarTy->isDoubleTy()) 1560 return Subtarget.hasVInstructionsF64(); 1561 1562 return false; 1563 } 1564 1565 static SDValue getVLOperand(SDValue Op) { 1566 assert((Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 1567 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN) && 1568 "Unexpected opcode"); 1569 bool HasChain = Op.getOpcode() == ISD::INTRINSIC_W_CHAIN; 1570 unsigned IntNo = Op.getConstantOperandVal(HasChain ? 1 : 0); 1571 const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II = 1572 RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo); 1573 if (!II) 1574 return SDValue(); 1575 return Op.getOperand(II->VLOperand + 1 + HasChain); 1576 } 1577 1578 static bool useRVVForFixedLengthVectorVT(MVT VT, 1579 const RISCVSubtarget &Subtarget) { 1580 assert(VT.isFixedLengthVector() && "Expected a fixed length vector type!"); 1581 if (!Subtarget.useRVVForFixedLengthVectors()) 1582 return false; 1583 1584 // We only support a set of vector types with a consistent maximum fixed size 1585 // across all supported vector element types to avoid legalization issues. 1586 // Therefore -- since the largest is v1024i8/v512i16/etc -- the largest 1587 // fixed-length vector type we support is 1024 bytes. 1588 if (VT.getFixedSizeInBits() > 1024 * 8) 1589 return false; 1590 1591 unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits(); 1592 1593 MVT EltVT = VT.getVectorElementType(); 1594 1595 // Don't use RVV for vectors we cannot scalarize if required. 1596 switch (EltVT.SimpleTy) { 1597 // i1 is supported but has different rules. 1598 default: 1599 return false; 1600 case MVT::i1: 1601 // Masks can only use a single register. 1602 if (VT.getVectorNumElements() > MinVLen) 1603 return false; 1604 MinVLen /= 8; 1605 break; 1606 case MVT::i8: 1607 case MVT::i16: 1608 case MVT::i32: 1609 break; 1610 case MVT::i64: 1611 if (!Subtarget.hasVInstructionsI64()) 1612 return false; 1613 break; 1614 case MVT::f16: 1615 if (!Subtarget.hasVInstructionsF16()) 1616 return false; 1617 break; 1618 case MVT::f32: 1619 if (!Subtarget.hasVInstructionsF32()) 1620 return false; 1621 break; 1622 case MVT::f64: 1623 if (!Subtarget.hasVInstructionsF64()) 1624 return false; 1625 break; 1626 } 1627 1628 // Reject elements larger than ELEN. 1629 if (EltVT.getSizeInBits() > Subtarget.getMaxELENForFixedLengthVectors()) 1630 return false; 1631 1632 unsigned LMul = divideCeil(VT.getSizeInBits(), MinVLen); 1633 // Don't use RVV for types that don't fit. 1634 if (LMul > Subtarget.getMaxLMULForFixedLengthVectors()) 1635 return false; 1636 1637 // TODO: Perhaps an artificial restriction, but worth having whilst getting 1638 // the base fixed length RVV support in place. 1639 if (!VT.isPow2VectorType()) 1640 return false; 1641 1642 return true; 1643 } 1644 1645 bool RISCVTargetLowering::useRVVForFixedLengthVectorVT(MVT VT) const { 1646 return ::useRVVForFixedLengthVectorVT(VT, Subtarget); 1647 } 1648 1649 // Return the largest legal scalable vector type that matches VT's element type. 1650 static MVT getContainerForFixedLengthVector(const TargetLowering &TLI, MVT VT, 1651 const RISCVSubtarget &Subtarget) { 1652 // This may be called before legal types are setup. 1653 assert(((VT.isFixedLengthVector() && TLI.isTypeLegal(VT)) || 1654 useRVVForFixedLengthVectorVT(VT, Subtarget)) && 1655 "Expected legal fixed length vector!"); 1656 1657 unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits(); 1658 unsigned MaxELen = Subtarget.getMaxELENForFixedLengthVectors(); 1659 1660 MVT EltVT = VT.getVectorElementType(); 1661 switch (EltVT.SimpleTy) { 1662 default: 1663 llvm_unreachable("unexpected element type for RVV container"); 1664 case MVT::i1: 1665 case MVT::i8: 1666 case MVT::i16: 1667 case MVT::i32: 1668 case MVT::i64: 1669 case MVT::f16: 1670 case MVT::f32: 1671 case MVT::f64: { 1672 // We prefer to use LMUL=1 for VLEN sized types. Use fractional lmuls for 1673 // narrower types. The smallest fractional LMUL we support is 8/ELEN. Within 1674 // each fractional LMUL we support SEW between 8 and LMUL*ELEN. 1675 unsigned NumElts = 1676 (VT.getVectorNumElements() * RISCV::RVVBitsPerBlock) / MinVLen; 1677 NumElts = std::max(NumElts, RISCV::RVVBitsPerBlock / MaxELen); 1678 assert(isPowerOf2_32(NumElts) && "Expected power of 2 NumElts"); 1679 return MVT::getScalableVectorVT(EltVT, NumElts); 1680 } 1681 } 1682 } 1683 1684 static MVT getContainerForFixedLengthVector(SelectionDAG &DAG, MVT VT, 1685 const RISCVSubtarget &Subtarget) { 1686 return getContainerForFixedLengthVector(DAG.getTargetLoweringInfo(), VT, 1687 Subtarget); 1688 } 1689 1690 MVT RISCVTargetLowering::getContainerForFixedLengthVector(MVT VT) const { 1691 return ::getContainerForFixedLengthVector(*this, VT, getSubtarget()); 1692 } 1693 1694 // Grow V to consume an entire RVV register. 1695 static SDValue convertToScalableVector(EVT VT, SDValue V, SelectionDAG &DAG, 1696 const RISCVSubtarget &Subtarget) { 1697 assert(VT.isScalableVector() && 1698 "Expected to convert into a scalable vector!"); 1699 assert(V.getValueType().isFixedLengthVector() && 1700 "Expected a fixed length vector operand!"); 1701 SDLoc DL(V); 1702 SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 1703 return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, DAG.getUNDEF(VT), V, Zero); 1704 } 1705 1706 // Shrink V so it's just big enough to maintain a VT's worth of data. 1707 static SDValue convertFromScalableVector(EVT VT, SDValue V, SelectionDAG &DAG, 1708 const RISCVSubtarget &Subtarget) { 1709 assert(VT.isFixedLengthVector() && 1710 "Expected to convert into a fixed length vector!"); 1711 assert(V.getValueType().isScalableVector() && 1712 "Expected a scalable vector operand!"); 1713 SDLoc DL(V); 1714 SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 1715 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V, Zero); 1716 } 1717 1718 // Gets the two common "VL" operands: an all-ones mask and the vector length. 1719 // VecVT is a vector type, either fixed-length or scalable, and ContainerVT is 1720 // the vector type that it is contained in. 1721 static std::pair<SDValue, SDValue> 1722 getDefaultVLOps(MVT VecVT, MVT ContainerVT, SDLoc DL, SelectionDAG &DAG, 1723 const RISCVSubtarget &Subtarget) { 1724 assert(ContainerVT.isScalableVector() && "Expecting scalable container type"); 1725 MVT XLenVT = Subtarget.getXLenVT(); 1726 SDValue VL = VecVT.isFixedLengthVector() 1727 ? DAG.getConstant(VecVT.getVectorNumElements(), DL, XLenVT) 1728 : DAG.getRegister(RISCV::X0, XLenVT); 1729 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 1730 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 1731 return {Mask, VL}; 1732 } 1733 1734 // As above but assuming the given type is a scalable vector type. 1735 static std::pair<SDValue, SDValue> 1736 getDefaultScalableVLOps(MVT VecVT, SDLoc DL, SelectionDAG &DAG, 1737 const RISCVSubtarget &Subtarget) { 1738 assert(VecVT.isScalableVector() && "Expecting a scalable vector"); 1739 return getDefaultVLOps(VecVT, VecVT, DL, DAG, Subtarget); 1740 } 1741 1742 // The state of RVV BUILD_VECTOR and VECTOR_SHUFFLE lowering is that very few 1743 // of either is (currently) supported. This can get us into an infinite loop 1744 // where we try to lower a BUILD_VECTOR as a VECTOR_SHUFFLE as a BUILD_VECTOR 1745 // as a ..., etc. 1746 // Until either (or both) of these can reliably lower any node, reporting that 1747 // we don't want to expand BUILD_VECTORs via VECTOR_SHUFFLEs at least breaks 1748 // the infinite loop. Note that this lowers BUILD_VECTOR through the stack, 1749 // which is not desirable. 1750 bool RISCVTargetLowering::shouldExpandBuildVectorWithShuffles( 1751 EVT VT, unsigned DefinedValues) const { 1752 return false; 1753 } 1754 1755 static SDValue lowerFP_TO_INT_SAT(SDValue Op, SelectionDAG &DAG, 1756 const RISCVSubtarget &Subtarget) { 1757 // RISCV FP-to-int conversions saturate to the destination register size, but 1758 // don't produce 0 for nan. We can use a conversion instruction and fix the 1759 // nan case with a compare and a select. 1760 SDValue Src = Op.getOperand(0); 1761 1762 EVT DstVT = Op.getValueType(); 1763 EVT SatVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1764 1765 bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT_SAT; 1766 unsigned Opc; 1767 if (SatVT == DstVT) 1768 Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU; 1769 else if (DstVT == MVT::i64 && SatVT == MVT::i32) 1770 Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64; 1771 else 1772 return SDValue(); 1773 // FIXME: Support other SatVTs by clamping before or after the conversion. 1774 1775 SDLoc DL(Op); 1776 SDValue FpToInt = DAG.getNode( 1777 Opc, DL, DstVT, Src, 1778 DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, Subtarget.getXLenVT())); 1779 1780 SDValue ZeroInt = DAG.getConstant(0, DL, DstVT); 1781 return DAG.getSelectCC(DL, Src, Src, ZeroInt, FpToInt, ISD::CondCode::SETUO); 1782 } 1783 1784 // Expand vector FTRUNC, FCEIL, and FFLOOR by converting to the integer domain 1785 // and back. Taking care to avoid converting values that are nan or already 1786 // correct. 1787 // TODO: Floor and ceil could be shorter by changing rounding mode, but we don't 1788 // have FRM dependencies modeled yet. 1789 static SDValue lowerFTRUNC_FCEIL_FFLOOR(SDValue Op, SelectionDAG &DAG) { 1790 MVT VT = Op.getSimpleValueType(); 1791 assert(VT.isVector() && "Unexpected type"); 1792 1793 SDLoc DL(Op); 1794 1795 // Freeze the source since we are increasing the number of uses. 1796 SDValue Src = DAG.getNode(ISD::FREEZE, DL, VT, Op.getOperand(0)); 1797 1798 // Truncate to integer and convert back to FP. 1799 MVT IntVT = VT.changeVectorElementTypeToInteger(); 1800 SDValue Truncated = DAG.getNode(ISD::FP_TO_SINT, DL, IntVT, Src); 1801 Truncated = DAG.getNode(ISD::SINT_TO_FP, DL, VT, Truncated); 1802 1803 MVT SetccVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount()); 1804 1805 if (Op.getOpcode() == ISD::FCEIL) { 1806 // If the truncated value is the greater than or equal to the original 1807 // value, we've computed the ceil. Otherwise, we went the wrong way and 1808 // need to increase by 1. 1809 // FIXME: This should use a masked operation. Handle here or in isel? 1810 SDValue Adjust = DAG.getNode(ISD::FADD, DL, VT, Truncated, 1811 DAG.getConstantFP(1.0, DL, VT)); 1812 SDValue NeedAdjust = DAG.getSetCC(DL, SetccVT, Truncated, Src, ISD::SETOLT); 1813 Truncated = DAG.getSelect(DL, VT, NeedAdjust, Adjust, Truncated); 1814 } else if (Op.getOpcode() == ISD::FFLOOR) { 1815 // If the truncated value is the less than or equal to the original value, 1816 // we've computed the floor. Otherwise, we went the wrong way and need to 1817 // decrease by 1. 1818 // FIXME: This should use a masked operation. Handle here or in isel? 1819 SDValue Adjust = DAG.getNode(ISD::FSUB, DL, VT, Truncated, 1820 DAG.getConstantFP(1.0, DL, VT)); 1821 SDValue NeedAdjust = DAG.getSetCC(DL, SetccVT, Truncated, Src, ISD::SETOGT); 1822 Truncated = DAG.getSelect(DL, VT, NeedAdjust, Adjust, Truncated); 1823 } 1824 1825 // Restore the original sign so that -0.0 is preserved. 1826 Truncated = DAG.getNode(ISD::FCOPYSIGN, DL, VT, Truncated, Src); 1827 1828 // Determine the largest integer that can be represented exactly. This and 1829 // values larger than it don't have any fractional bits so don't need to 1830 // be converted. 1831 const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT); 1832 unsigned Precision = APFloat::semanticsPrecision(FltSem); 1833 APFloat MaxVal = APFloat(FltSem); 1834 MaxVal.convertFromAPInt(APInt::getOneBitSet(Precision, Precision - 1), 1835 /*IsSigned*/ false, APFloat::rmNearestTiesToEven); 1836 SDValue MaxValNode = DAG.getConstantFP(MaxVal, DL, VT); 1837 1838 // If abs(Src) was larger than MaxVal or nan, keep it. 1839 SDValue Abs = DAG.getNode(ISD::FABS, DL, VT, Src); 1840 SDValue Setcc = DAG.getSetCC(DL, SetccVT, Abs, MaxValNode, ISD::SETOLT); 1841 return DAG.getSelect(DL, VT, Setcc, Truncated, Src); 1842 } 1843 1844 // ISD::FROUND is defined to round to nearest with ties rounding away from 0. 1845 // This mode isn't supported in vector hardware on RISCV. But as long as we 1846 // aren't compiling with trapping math, we can emulate this with 1847 // floor(X + copysign(nextafter(0.5, 0.0), X)). 1848 // FIXME: Could be shorter by changing rounding mode, but we don't have FRM 1849 // dependencies modeled yet. 1850 // FIXME: Use masked operations to avoid final merge. 1851 static SDValue lowerFROUND(SDValue Op, SelectionDAG &DAG) { 1852 MVT VT = Op.getSimpleValueType(); 1853 assert(VT.isVector() && "Unexpected type"); 1854 1855 SDLoc DL(Op); 1856 1857 // Freeze the source since we are increasing the number of uses. 1858 SDValue Src = DAG.getNode(ISD::FREEZE, DL, VT, Op.getOperand(0)); 1859 1860 // We do the conversion on the absolute value and fix the sign at the end. 1861 SDValue Abs = DAG.getNode(ISD::FABS, DL, VT, Src); 1862 1863 const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT); 1864 bool Ignored; 1865 APFloat Point5Pred = APFloat(0.5f); 1866 Point5Pred.convert(FltSem, APFloat::rmNearestTiesToEven, &Ignored); 1867 Point5Pred.next(/*nextDown*/ true); 1868 1869 // Add the adjustment. 1870 SDValue Adjust = DAG.getNode(ISD::FADD, DL, VT, Abs, 1871 DAG.getConstantFP(Point5Pred, DL, VT)); 1872 1873 // Truncate to integer and convert back to fp. 1874 MVT IntVT = VT.changeVectorElementTypeToInteger(); 1875 SDValue Truncated = DAG.getNode(ISD::FP_TO_SINT, DL, IntVT, Adjust); 1876 Truncated = DAG.getNode(ISD::SINT_TO_FP, DL, VT, Truncated); 1877 1878 // Restore the original sign. 1879 Truncated = DAG.getNode(ISD::FCOPYSIGN, DL, VT, Truncated, Src); 1880 1881 // Determine the largest integer that can be represented exactly. This and 1882 // values larger than it don't have any fractional bits so don't need to 1883 // be converted. 1884 unsigned Precision = APFloat::semanticsPrecision(FltSem); 1885 APFloat MaxVal = APFloat(FltSem); 1886 MaxVal.convertFromAPInt(APInt::getOneBitSet(Precision, Precision - 1), 1887 /*IsSigned*/ false, APFloat::rmNearestTiesToEven); 1888 SDValue MaxValNode = DAG.getConstantFP(MaxVal, DL, VT); 1889 1890 // If abs(Src) was larger than MaxVal or nan, keep it. 1891 MVT SetccVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount()); 1892 SDValue Setcc = DAG.getSetCC(DL, SetccVT, Abs, MaxValNode, ISD::SETOLT); 1893 return DAG.getSelect(DL, VT, Setcc, Truncated, Src); 1894 } 1895 1896 static SDValue lowerSPLAT_VECTOR(SDValue Op, SelectionDAG &DAG, 1897 const RISCVSubtarget &Subtarget) { 1898 MVT VT = Op.getSimpleValueType(); 1899 assert(VT.isFixedLengthVector() && "Unexpected vector!"); 1900 1901 MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 1902 1903 SDLoc DL(Op); 1904 SDValue Mask, VL; 1905 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 1906 1907 unsigned Opc = 1908 VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL : RISCVISD::VMV_V_X_VL; 1909 SDValue Splat = DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), 1910 Op.getOperand(0), VL); 1911 return convertFromScalableVector(VT, Splat, DAG, Subtarget); 1912 } 1913 1914 struct VIDSequence { 1915 int64_t StepNumerator; 1916 unsigned StepDenominator; 1917 int64_t Addend; 1918 }; 1919 1920 // Try to match an arithmetic-sequence BUILD_VECTOR [X,X+S,X+2*S,...,X+(N-1)*S] 1921 // to the (non-zero) step S and start value X. This can be then lowered as the 1922 // RVV sequence (VID * S) + X, for example. 1923 // The step S is represented as an integer numerator divided by a positive 1924 // denominator. Note that the implementation currently only identifies 1925 // sequences in which either the numerator is +/- 1 or the denominator is 1. It 1926 // cannot detect 2/3, for example. 1927 // Note that this method will also match potentially unappealing index 1928 // sequences, like <i32 0, i32 50939494>, however it is left to the caller to 1929 // determine whether this is worth generating code for. 1930 static Optional<VIDSequence> isSimpleVIDSequence(SDValue Op) { 1931 unsigned NumElts = Op.getNumOperands(); 1932 assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unexpected BUILD_VECTOR"); 1933 if (!Op.getValueType().isInteger()) 1934 return None; 1935 1936 Optional<unsigned> SeqStepDenom; 1937 Optional<int64_t> SeqStepNum, SeqAddend; 1938 Optional<std::pair<uint64_t, unsigned>> PrevElt; 1939 unsigned EltSizeInBits = Op.getValueType().getScalarSizeInBits(); 1940 for (unsigned Idx = 0; Idx < NumElts; Idx++) { 1941 // Assume undef elements match the sequence; we just have to be careful 1942 // when interpolating across them. 1943 if (Op.getOperand(Idx).isUndef()) 1944 continue; 1945 // The BUILD_VECTOR must be all constants. 1946 if (!isa<ConstantSDNode>(Op.getOperand(Idx))) 1947 return None; 1948 1949 uint64_t Val = Op.getConstantOperandVal(Idx) & 1950 maskTrailingOnes<uint64_t>(EltSizeInBits); 1951 1952 if (PrevElt) { 1953 // Calculate the step since the last non-undef element, and ensure 1954 // it's consistent across the entire sequence. 1955 unsigned IdxDiff = Idx - PrevElt->second; 1956 int64_t ValDiff = SignExtend64(Val - PrevElt->first, EltSizeInBits); 1957 1958 // A zero-value value difference means that we're somewhere in the middle 1959 // of a fractional step, e.g. <0,0,0*,0,1,1,1,1>. Wait until we notice a 1960 // step change before evaluating the sequence. 1961 if (ValDiff != 0) { 1962 int64_t Remainder = ValDiff % IdxDiff; 1963 // Normalize the step if it's greater than 1. 1964 if (Remainder != ValDiff) { 1965 // The difference must cleanly divide the element span. 1966 if (Remainder != 0) 1967 return None; 1968 ValDiff /= IdxDiff; 1969 IdxDiff = 1; 1970 } 1971 1972 if (!SeqStepNum) 1973 SeqStepNum = ValDiff; 1974 else if (ValDiff != SeqStepNum) 1975 return None; 1976 1977 if (!SeqStepDenom) 1978 SeqStepDenom = IdxDiff; 1979 else if (IdxDiff != *SeqStepDenom) 1980 return None; 1981 } 1982 } 1983 1984 // Record and/or check any addend. 1985 if (SeqStepNum && SeqStepDenom) { 1986 uint64_t ExpectedVal = 1987 (int64_t)(Idx * (uint64_t)*SeqStepNum) / *SeqStepDenom; 1988 int64_t Addend = SignExtend64(Val - ExpectedVal, EltSizeInBits); 1989 if (!SeqAddend) 1990 SeqAddend = Addend; 1991 else if (SeqAddend != Addend) 1992 return None; 1993 } 1994 1995 // Record this non-undef element for later. 1996 if (!PrevElt || PrevElt->first != Val) 1997 PrevElt = std::make_pair(Val, Idx); 1998 } 1999 // We need to have logged both a step and an addend for this to count as 2000 // a legal index sequence. 2001 if (!SeqStepNum || !SeqStepDenom || !SeqAddend) 2002 return None; 2003 2004 return VIDSequence{*SeqStepNum, *SeqStepDenom, *SeqAddend}; 2005 } 2006 2007 // Match a splatted value (SPLAT_VECTOR/BUILD_VECTOR) of an EXTRACT_VECTOR_ELT 2008 // and lower it as a VRGATHER_VX_VL from the source vector. 2009 static SDValue matchSplatAsGather(SDValue SplatVal, MVT VT, const SDLoc &DL, 2010 SelectionDAG &DAG, 2011 const RISCVSubtarget &Subtarget) { 2012 if (SplatVal.getOpcode() != ISD::EXTRACT_VECTOR_ELT) 2013 return SDValue(); 2014 SDValue Vec = SplatVal.getOperand(0); 2015 // Only perform this optimization on vectors of the same size for simplicity. 2016 if (Vec.getValueType() != VT) 2017 return SDValue(); 2018 SDValue Idx = SplatVal.getOperand(1); 2019 // The index must be a legal type. 2020 if (Idx.getValueType() != Subtarget.getXLenVT()) 2021 return SDValue(); 2022 2023 MVT ContainerVT = VT; 2024 if (VT.isFixedLengthVector()) { 2025 ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 2026 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 2027 } 2028 2029 SDValue Mask, VL; 2030 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 2031 2032 SDValue Gather = DAG.getNode(RISCVISD::VRGATHER_VX_VL, DL, ContainerVT, Vec, 2033 Idx, Mask, VL); 2034 2035 if (!VT.isFixedLengthVector()) 2036 return Gather; 2037 2038 return convertFromScalableVector(VT, Gather, DAG, Subtarget); 2039 } 2040 2041 static SDValue lowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG, 2042 const RISCVSubtarget &Subtarget) { 2043 MVT VT = Op.getSimpleValueType(); 2044 assert(VT.isFixedLengthVector() && "Unexpected vector!"); 2045 2046 MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 2047 2048 SDLoc DL(Op); 2049 SDValue Mask, VL; 2050 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 2051 2052 MVT XLenVT = Subtarget.getXLenVT(); 2053 unsigned NumElts = Op.getNumOperands(); 2054 2055 if (VT.getVectorElementType() == MVT::i1) { 2056 if (ISD::isBuildVectorAllZeros(Op.getNode())) { 2057 SDValue VMClr = DAG.getNode(RISCVISD::VMCLR_VL, DL, ContainerVT, VL); 2058 return convertFromScalableVector(VT, VMClr, DAG, Subtarget); 2059 } 2060 2061 if (ISD::isBuildVectorAllOnes(Op.getNode())) { 2062 SDValue VMSet = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL); 2063 return convertFromScalableVector(VT, VMSet, DAG, Subtarget); 2064 } 2065 2066 // Lower constant mask BUILD_VECTORs via an integer vector type, in 2067 // scalar integer chunks whose bit-width depends on the number of mask 2068 // bits and XLEN. 2069 // First, determine the most appropriate scalar integer type to use. This 2070 // is at most XLenVT, but may be shrunk to a smaller vector element type 2071 // according to the size of the final vector - use i8 chunks rather than 2072 // XLenVT if we're producing a v8i1. This results in more consistent 2073 // codegen across RV32 and RV64. 2074 unsigned NumViaIntegerBits = 2075 std::min(std::max(NumElts, 8u), Subtarget.getXLen()); 2076 NumViaIntegerBits = std::min(NumViaIntegerBits, 2077 Subtarget.getMaxELENForFixedLengthVectors()); 2078 if (ISD::isBuildVectorOfConstantSDNodes(Op.getNode())) { 2079 // If we have to use more than one INSERT_VECTOR_ELT then this 2080 // optimization is likely to increase code size; avoid peforming it in 2081 // such a case. We can use a load from a constant pool in this case. 2082 if (DAG.shouldOptForSize() && NumElts > NumViaIntegerBits) 2083 return SDValue(); 2084 // Now we can create our integer vector type. Note that it may be larger 2085 // than the resulting mask type: v4i1 would use v1i8 as its integer type. 2086 MVT IntegerViaVecVT = 2087 MVT::getVectorVT(MVT::getIntegerVT(NumViaIntegerBits), 2088 divideCeil(NumElts, NumViaIntegerBits)); 2089 2090 uint64_t Bits = 0; 2091 unsigned BitPos = 0, IntegerEltIdx = 0; 2092 SDValue Vec = DAG.getUNDEF(IntegerViaVecVT); 2093 2094 for (unsigned I = 0; I < NumElts; I++, BitPos++) { 2095 // Once we accumulate enough bits to fill our scalar type, insert into 2096 // our vector and clear our accumulated data. 2097 if (I != 0 && I % NumViaIntegerBits == 0) { 2098 if (NumViaIntegerBits <= 32) 2099 Bits = SignExtend64(Bits, 32); 2100 SDValue Elt = DAG.getConstant(Bits, DL, XLenVT); 2101 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec, 2102 Elt, DAG.getConstant(IntegerEltIdx, DL, XLenVT)); 2103 Bits = 0; 2104 BitPos = 0; 2105 IntegerEltIdx++; 2106 } 2107 SDValue V = Op.getOperand(I); 2108 bool BitValue = !V.isUndef() && cast<ConstantSDNode>(V)->getZExtValue(); 2109 Bits |= ((uint64_t)BitValue << BitPos); 2110 } 2111 2112 // Insert the (remaining) scalar value into position in our integer 2113 // vector type. 2114 if (NumViaIntegerBits <= 32) 2115 Bits = SignExtend64(Bits, 32); 2116 SDValue Elt = DAG.getConstant(Bits, DL, XLenVT); 2117 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec, Elt, 2118 DAG.getConstant(IntegerEltIdx, DL, XLenVT)); 2119 2120 if (NumElts < NumViaIntegerBits) { 2121 // If we're producing a smaller vector than our minimum legal integer 2122 // type, bitcast to the equivalent (known-legal) mask type, and extract 2123 // our final mask. 2124 assert(IntegerViaVecVT == MVT::v1i8 && "Unexpected mask vector type"); 2125 Vec = DAG.getBitcast(MVT::v8i1, Vec); 2126 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Vec, 2127 DAG.getConstant(0, DL, XLenVT)); 2128 } else { 2129 // Else we must have produced an integer type with the same size as the 2130 // mask type; bitcast for the final result. 2131 assert(VT.getSizeInBits() == IntegerViaVecVT.getSizeInBits()); 2132 Vec = DAG.getBitcast(VT, Vec); 2133 } 2134 2135 return Vec; 2136 } 2137 2138 // A BUILD_VECTOR can be lowered as a SETCC. For each fixed-length mask 2139 // vector type, we have a legal equivalently-sized i8 type, so we can use 2140 // that. 2141 MVT WideVecVT = VT.changeVectorElementType(MVT::i8); 2142 SDValue VecZero = DAG.getConstant(0, DL, WideVecVT); 2143 2144 SDValue WideVec; 2145 if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) { 2146 // For a splat, perform a scalar truncate before creating the wider 2147 // vector. 2148 assert(Splat.getValueType() == XLenVT && 2149 "Unexpected type for i1 splat value"); 2150 Splat = DAG.getNode(ISD::AND, DL, XLenVT, Splat, 2151 DAG.getConstant(1, DL, XLenVT)); 2152 WideVec = DAG.getSplatBuildVector(WideVecVT, DL, Splat); 2153 } else { 2154 SmallVector<SDValue, 8> Ops(Op->op_values()); 2155 WideVec = DAG.getBuildVector(WideVecVT, DL, Ops); 2156 SDValue VecOne = DAG.getConstant(1, DL, WideVecVT); 2157 WideVec = DAG.getNode(ISD::AND, DL, WideVecVT, WideVec, VecOne); 2158 } 2159 2160 return DAG.getSetCC(DL, VT, WideVec, VecZero, ISD::SETNE); 2161 } 2162 2163 if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) { 2164 if (auto Gather = matchSplatAsGather(Splat, VT, DL, DAG, Subtarget)) 2165 return Gather; 2166 unsigned Opc = VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL 2167 : RISCVISD::VMV_V_X_VL; 2168 Splat = 2169 DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), Splat, VL); 2170 return convertFromScalableVector(VT, Splat, DAG, Subtarget); 2171 } 2172 2173 // Try and match index sequences, which we can lower to the vid instruction 2174 // with optional modifications. An all-undef vector is matched by 2175 // getSplatValue, above. 2176 if (auto SimpleVID = isSimpleVIDSequence(Op)) { 2177 int64_t StepNumerator = SimpleVID->StepNumerator; 2178 unsigned StepDenominator = SimpleVID->StepDenominator; 2179 int64_t Addend = SimpleVID->Addend; 2180 2181 assert(StepNumerator != 0 && "Invalid step"); 2182 bool Negate = false; 2183 int64_t SplatStepVal = StepNumerator; 2184 unsigned StepOpcode = ISD::MUL; 2185 if (StepNumerator != 1) { 2186 if (isPowerOf2_64(std::abs(StepNumerator))) { 2187 Negate = StepNumerator < 0; 2188 StepOpcode = ISD::SHL; 2189 SplatStepVal = Log2_64(std::abs(StepNumerator)); 2190 } 2191 } 2192 2193 // Only emit VIDs with suitably-small steps/addends. We use imm5 is a 2194 // threshold since it's the immediate value many RVV instructions accept. 2195 // There is no vmul.vi instruction so ensure multiply constant can fit in 2196 // a single addi instruction. 2197 if (((StepOpcode == ISD::MUL && isInt<12>(SplatStepVal)) || 2198 (StepOpcode == ISD::SHL && isUInt<5>(SplatStepVal))) && 2199 isPowerOf2_32(StepDenominator) && isInt<5>(Addend)) { 2200 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, ContainerVT, Mask, VL); 2201 // Convert right out of the scalable type so we can use standard ISD 2202 // nodes for the rest of the computation. If we used scalable types with 2203 // these, we'd lose the fixed-length vector info and generate worse 2204 // vsetvli code. 2205 VID = convertFromScalableVector(VT, VID, DAG, Subtarget); 2206 if ((StepOpcode == ISD::MUL && SplatStepVal != 1) || 2207 (StepOpcode == ISD::SHL && SplatStepVal != 0)) { 2208 SDValue SplatStep = DAG.getSplatVector( 2209 VT, DL, DAG.getConstant(SplatStepVal, DL, XLenVT)); 2210 VID = DAG.getNode(StepOpcode, DL, VT, VID, SplatStep); 2211 } 2212 if (StepDenominator != 1) { 2213 SDValue SplatStep = DAG.getSplatVector( 2214 VT, DL, DAG.getConstant(Log2_64(StepDenominator), DL, XLenVT)); 2215 VID = DAG.getNode(ISD::SRL, DL, VT, VID, SplatStep); 2216 } 2217 if (Addend != 0 || Negate) { 2218 SDValue SplatAddend = 2219 DAG.getSplatVector(VT, DL, DAG.getConstant(Addend, DL, XLenVT)); 2220 VID = DAG.getNode(Negate ? ISD::SUB : ISD::ADD, DL, VT, SplatAddend, VID); 2221 } 2222 return VID; 2223 } 2224 } 2225 2226 // Attempt to detect "hidden" splats, which only reveal themselves as splats 2227 // when re-interpreted as a vector with a larger element type. For example, 2228 // v4i16 = build_vector i16 0, i16 1, i16 0, i16 1 2229 // could be instead splat as 2230 // v2i32 = build_vector i32 0x00010000, i32 0x00010000 2231 // TODO: This optimization could also work on non-constant splats, but it 2232 // would require bit-manipulation instructions to construct the splat value. 2233 SmallVector<SDValue> Sequence; 2234 unsigned EltBitSize = VT.getScalarSizeInBits(); 2235 const auto *BV = cast<BuildVectorSDNode>(Op); 2236 if (VT.isInteger() && EltBitSize < 64 && 2237 ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) && 2238 BV->getRepeatedSequence(Sequence) && 2239 (Sequence.size() * EltBitSize) <= 64) { 2240 unsigned SeqLen = Sequence.size(); 2241 MVT ViaIntVT = MVT::getIntegerVT(EltBitSize * SeqLen); 2242 MVT ViaVecVT = MVT::getVectorVT(ViaIntVT, NumElts / SeqLen); 2243 assert((ViaIntVT == MVT::i16 || ViaIntVT == MVT::i32 || 2244 ViaIntVT == MVT::i64) && 2245 "Unexpected sequence type"); 2246 2247 unsigned EltIdx = 0; 2248 uint64_t EltMask = maskTrailingOnes<uint64_t>(EltBitSize); 2249 uint64_t SplatValue = 0; 2250 // Construct the amalgamated value which can be splatted as this larger 2251 // vector type. 2252 for (const auto &SeqV : Sequence) { 2253 if (!SeqV.isUndef()) 2254 SplatValue |= ((cast<ConstantSDNode>(SeqV)->getZExtValue() & EltMask) 2255 << (EltIdx * EltBitSize)); 2256 EltIdx++; 2257 } 2258 2259 // On RV64, sign-extend from 32 to 64 bits where possible in order to 2260 // achieve better constant materializion. 2261 if (Subtarget.is64Bit() && ViaIntVT == MVT::i32) 2262 SplatValue = SignExtend64(SplatValue, 32); 2263 2264 // Since we can't introduce illegal i64 types at this stage, we can only 2265 // perform an i64 splat on RV32 if it is its own sign-extended value. That 2266 // way we can use RVV instructions to splat. 2267 assert((ViaIntVT.bitsLE(XLenVT) || 2268 (!Subtarget.is64Bit() && ViaIntVT == MVT::i64)) && 2269 "Unexpected bitcast sequence"); 2270 if (ViaIntVT.bitsLE(XLenVT) || isInt<32>(SplatValue)) { 2271 SDValue ViaVL = 2272 DAG.getConstant(ViaVecVT.getVectorNumElements(), DL, XLenVT); 2273 MVT ViaContainerVT = 2274 getContainerForFixedLengthVector(DAG, ViaVecVT, Subtarget); 2275 SDValue Splat = 2276 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ViaContainerVT, 2277 DAG.getUNDEF(ViaContainerVT), 2278 DAG.getConstant(SplatValue, DL, XLenVT), ViaVL); 2279 Splat = convertFromScalableVector(ViaVecVT, Splat, DAG, Subtarget); 2280 return DAG.getBitcast(VT, Splat); 2281 } 2282 } 2283 2284 // Try and optimize BUILD_VECTORs with "dominant values" - these are values 2285 // which constitute a large proportion of the elements. In such cases we can 2286 // splat a vector with the dominant element and make up the shortfall with 2287 // INSERT_VECTOR_ELTs. 2288 // Note that this includes vectors of 2 elements by association. The 2289 // upper-most element is the "dominant" one, allowing us to use a splat to 2290 // "insert" the upper element, and an insert of the lower element at position 2291 // 0, which improves codegen. 2292 SDValue DominantValue; 2293 unsigned MostCommonCount = 0; 2294 DenseMap<SDValue, unsigned> ValueCounts; 2295 unsigned NumUndefElts = 2296 count_if(Op->op_values(), [](const SDValue &V) { return V.isUndef(); }); 2297 2298 // Track the number of scalar loads we know we'd be inserting, estimated as 2299 // any non-zero floating-point constant. Other kinds of element are either 2300 // already in registers or are materialized on demand. The threshold at which 2301 // a vector load is more desirable than several scalar materializion and 2302 // vector-insertion instructions is not known. 2303 unsigned NumScalarLoads = 0; 2304 2305 for (SDValue V : Op->op_values()) { 2306 if (V.isUndef()) 2307 continue; 2308 2309 ValueCounts.insert(std::make_pair(V, 0)); 2310 unsigned &Count = ValueCounts[V]; 2311 2312 if (auto *CFP = dyn_cast<ConstantFPSDNode>(V)) 2313 NumScalarLoads += !CFP->isExactlyValue(+0.0); 2314 2315 // Is this value dominant? In case of a tie, prefer the highest element as 2316 // it's cheaper to insert near the beginning of a vector than it is at the 2317 // end. 2318 if (++Count >= MostCommonCount) { 2319 DominantValue = V; 2320 MostCommonCount = Count; 2321 } 2322 } 2323 2324 assert(DominantValue && "Not expecting an all-undef BUILD_VECTOR"); 2325 unsigned NumDefElts = NumElts - NumUndefElts; 2326 unsigned DominantValueCountThreshold = NumDefElts <= 2 ? 0 : NumDefElts - 2; 2327 2328 // Don't perform this optimization when optimizing for size, since 2329 // materializing elements and inserting them tends to cause code bloat. 2330 if (!DAG.shouldOptForSize() && NumScalarLoads < NumElts && 2331 ((MostCommonCount > DominantValueCountThreshold) || 2332 (ValueCounts.size() <= Log2_32(NumDefElts)))) { 2333 // Start by splatting the most common element. 2334 SDValue Vec = DAG.getSplatBuildVector(VT, DL, DominantValue); 2335 2336 DenseSet<SDValue> Processed{DominantValue}; 2337 MVT SelMaskTy = VT.changeVectorElementType(MVT::i1); 2338 for (const auto &OpIdx : enumerate(Op->ops())) { 2339 const SDValue &V = OpIdx.value(); 2340 if (V.isUndef() || !Processed.insert(V).second) 2341 continue; 2342 if (ValueCounts[V] == 1) { 2343 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Vec, V, 2344 DAG.getConstant(OpIdx.index(), DL, XLenVT)); 2345 } else { 2346 // Blend in all instances of this value using a VSELECT, using a 2347 // mask where each bit signals whether that element is the one 2348 // we're after. 2349 SmallVector<SDValue> Ops; 2350 transform(Op->op_values(), std::back_inserter(Ops), [&](SDValue V1) { 2351 return DAG.getConstant(V == V1, DL, XLenVT); 2352 }); 2353 Vec = DAG.getNode(ISD::VSELECT, DL, VT, 2354 DAG.getBuildVector(SelMaskTy, DL, Ops), 2355 DAG.getSplatBuildVector(VT, DL, V), Vec); 2356 } 2357 } 2358 2359 return Vec; 2360 } 2361 2362 return SDValue(); 2363 } 2364 2365 static SDValue splatPartsI64WithVL(const SDLoc &DL, MVT VT, SDValue Passthru, 2366 SDValue Lo, SDValue Hi, SDValue VL, 2367 SelectionDAG &DAG) { 2368 bool HasPassthru = Passthru && !Passthru.isUndef(); 2369 if (!HasPassthru && !Passthru) 2370 Passthru = DAG.getUNDEF(VT); 2371 if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) { 2372 int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue(); 2373 int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue(); 2374 // If Hi constant is all the same sign bit as Lo, lower this as a custom 2375 // node in order to try and match RVV vector/scalar instructions. 2376 if ((LoC >> 31) == HiC) 2377 return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Passthru, Lo, VL); 2378 2379 // If vl is equal to XLEN_MAX and Hi constant is equal to Lo, we could use 2380 // vmv.v.x whose EEW = 32 to lower it. 2381 auto *Const = dyn_cast<ConstantSDNode>(VL); 2382 if (LoC == HiC && Const && Const->isAllOnesValue()) { 2383 MVT InterVT = MVT::getVectorVT(MVT::i32, VT.getVectorElementCount() * 2); 2384 // TODO: if vl <= min(VLMAX), we can also do this. But we could not 2385 // access the subtarget here now. 2386 auto InterVec = DAG.getNode( 2387 RISCVISD::VMV_V_X_VL, DL, InterVT, DAG.getUNDEF(InterVT), Lo, 2388 DAG.getRegister(RISCV::X0, MVT::i32)); 2389 return DAG.getNode(ISD::BITCAST, DL, VT, InterVec); 2390 } 2391 } 2392 2393 // Fall back to a stack store and stride x0 vector load. 2394 return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VT, Passthru, Lo, 2395 Hi, VL); 2396 } 2397 2398 // Called by type legalization to handle splat of i64 on RV32. 2399 // FIXME: We can optimize this when the type has sign or zero bits in one 2400 // of the halves. 2401 static SDValue splatSplitI64WithVL(const SDLoc &DL, MVT VT, SDValue Passthru, 2402 SDValue Scalar, SDValue VL, 2403 SelectionDAG &DAG) { 2404 assert(Scalar.getValueType() == MVT::i64 && "Unexpected VT!"); 2405 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 2406 DAG.getConstant(0, DL, MVT::i32)); 2407 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 2408 DAG.getConstant(1, DL, MVT::i32)); 2409 return splatPartsI64WithVL(DL, VT, Passthru, Lo, Hi, VL, DAG); 2410 } 2411 2412 // This function lowers a splat of a scalar operand Splat with the vector 2413 // length VL. It ensures the final sequence is type legal, which is useful when 2414 // lowering a splat after type legalization. 2415 static SDValue lowerScalarSplat(SDValue Passthru, SDValue Scalar, SDValue VL, 2416 MVT VT, SDLoc DL, SelectionDAG &DAG, 2417 const RISCVSubtarget &Subtarget) { 2418 bool HasPassthru = Passthru && !Passthru.isUndef(); 2419 if (!HasPassthru && !Passthru) 2420 Passthru = DAG.getUNDEF(VT); 2421 if (VT.isFloatingPoint()) { 2422 // If VL is 1, we could use vfmv.s.f. 2423 if (isOneConstant(VL)) 2424 return DAG.getNode(RISCVISD::VFMV_S_F_VL, DL, VT, Passthru, Scalar, VL); 2425 return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, VT, Passthru, Scalar, VL); 2426 } 2427 2428 MVT XLenVT = Subtarget.getXLenVT(); 2429 2430 // Simplest case is that the operand needs to be promoted to XLenVT. 2431 if (Scalar.getValueType().bitsLE(XLenVT)) { 2432 // If the operand is a constant, sign extend to increase our chances 2433 // of being able to use a .vi instruction. ANY_EXTEND would become a 2434 // a zero extend and the simm5 check in isel would fail. 2435 // FIXME: Should we ignore the upper bits in isel instead? 2436 unsigned ExtOpc = 2437 isa<ConstantSDNode>(Scalar) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND; 2438 Scalar = DAG.getNode(ExtOpc, DL, XLenVT, Scalar); 2439 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Scalar); 2440 // If VL is 1 and the scalar value won't benefit from immediate, we could 2441 // use vmv.s.x. 2442 if (isOneConstant(VL) && 2443 (!Const || isNullConstant(Scalar) || !isInt<5>(Const->getSExtValue()))) 2444 return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, VT, Passthru, Scalar, VL); 2445 return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Passthru, Scalar, VL); 2446 } 2447 2448 assert(XLenVT == MVT::i32 && Scalar.getValueType() == MVT::i64 && 2449 "Unexpected scalar for splat lowering!"); 2450 2451 if (isOneConstant(VL) && isNullConstant(Scalar)) 2452 return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, VT, Passthru, 2453 DAG.getConstant(0, DL, XLenVT), VL); 2454 2455 // Otherwise use the more complicated splatting algorithm. 2456 return splatSplitI64WithVL(DL, VT, Passthru, Scalar, VL, DAG); 2457 } 2458 2459 static bool isInterleaveShuffle(ArrayRef<int> Mask, MVT VT, bool &SwapSources, 2460 const RISCVSubtarget &Subtarget) { 2461 // We need to be able to widen elements to the next larger integer type. 2462 if (VT.getScalarSizeInBits() >= Subtarget.getMaxELENForFixedLengthVectors()) 2463 return false; 2464 2465 int Size = Mask.size(); 2466 assert(Size == (int)VT.getVectorNumElements() && "Unexpected mask size"); 2467 2468 int Srcs[] = {-1, -1}; 2469 for (int i = 0; i != Size; ++i) { 2470 // Ignore undef elements. 2471 if (Mask[i] < 0) 2472 continue; 2473 2474 // Is this an even or odd element. 2475 int Pol = i % 2; 2476 2477 // Ensure we consistently use the same source for this element polarity. 2478 int Src = Mask[i] / Size; 2479 if (Srcs[Pol] < 0) 2480 Srcs[Pol] = Src; 2481 if (Srcs[Pol] != Src) 2482 return false; 2483 2484 // Make sure the element within the source is appropriate for this element 2485 // in the destination. 2486 int Elt = Mask[i] % Size; 2487 if (Elt != i / 2) 2488 return false; 2489 } 2490 2491 // We need to find a source for each polarity and they can't be the same. 2492 if (Srcs[0] < 0 || Srcs[1] < 0 || Srcs[0] == Srcs[1]) 2493 return false; 2494 2495 // Swap the sources if the second source was in the even polarity. 2496 SwapSources = Srcs[0] > Srcs[1]; 2497 2498 return true; 2499 } 2500 2501 /// Match shuffles that concatenate two vectors, rotate the concatenation, 2502 /// and then extract the original number of elements from the rotated result. 2503 /// This is equivalent to vector.splice or X86's PALIGNR instruction. The 2504 /// returned rotation amount is for a rotate right, where elements move from 2505 /// higher elements to lower elements. \p LoSrc indicates the first source 2506 /// vector of the rotate or -1 for undef. \p HiSrc indicates the second vector 2507 /// of the rotate or -1 for undef. At least one of \p LoSrc and \p HiSrc will be 2508 /// 0 or 1 if a rotation is found. 2509 /// 2510 /// NOTE: We talk about rotate to the right which matches how bit shift and 2511 /// rotate instructions are described where LSBs are on the right, but LLVM IR 2512 /// and the table below write vectors with the lowest elements on the left. 2513 static int isElementRotate(int &LoSrc, int &HiSrc, ArrayRef<int> Mask) { 2514 int Size = Mask.size(); 2515 2516 // We need to detect various ways of spelling a rotation: 2517 // [11, 12, 13, 14, 15, 0, 1, 2] 2518 // [-1, 12, 13, 14, -1, -1, 1, -1] 2519 // [-1, -1, -1, -1, -1, -1, 1, 2] 2520 // [ 3, 4, 5, 6, 7, 8, 9, 10] 2521 // [-1, 4, 5, 6, -1, -1, 9, -1] 2522 // [-1, 4, 5, 6, -1, -1, -1, -1] 2523 int Rotation = 0; 2524 LoSrc = -1; 2525 HiSrc = -1; 2526 for (int i = 0; i != Size; ++i) { 2527 int M = Mask[i]; 2528 if (M < 0) 2529 continue; 2530 2531 // Determine where a rotate vector would have started. 2532 int StartIdx = i - (M % Size); 2533 // The identity rotation isn't interesting, stop. 2534 if (StartIdx == 0) 2535 return -1; 2536 2537 // If we found the tail of a vector the rotation must be the missing 2538 // front. If we found the head of a vector, it must be how much of the 2539 // head. 2540 int CandidateRotation = StartIdx < 0 ? -StartIdx : Size - StartIdx; 2541 2542 if (Rotation == 0) 2543 Rotation = CandidateRotation; 2544 else if (Rotation != CandidateRotation) 2545 // The rotations don't match, so we can't match this mask. 2546 return -1; 2547 2548 // Compute which value this mask is pointing at. 2549 int MaskSrc = M < Size ? 0 : 1; 2550 2551 // Compute which of the two target values this index should be assigned to. 2552 // This reflects whether the high elements are remaining or the low elemnts 2553 // are remaining. 2554 int &TargetSrc = StartIdx < 0 ? HiSrc : LoSrc; 2555 2556 // Either set up this value if we've not encountered it before, or check 2557 // that it remains consistent. 2558 if (TargetSrc < 0) 2559 TargetSrc = MaskSrc; 2560 else if (TargetSrc != MaskSrc) 2561 // This may be a rotation, but it pulls from the inputs in some 2562 // unsupported interleaving. 2563 return -1; 2564 } 2565 2566 // Check that we successfully analyzed the mask, and normalize the results. 2567 assert(Rotation != 0 && "Failed to locate a viable rotation!"); 2568 assert((LoSrc >= 0 || HiSrc >= 0) && 2569 "Failed to find a rotated input vector!"); 2570 2571 return Rotation; 2572 } 2573 2574 static SDValue lowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG, 2575 const RISCVSubtarget &Subtarget) { 2576 SDValue V1 = Op.getOperand(0); 2577 SDValue V2 = Op.getOperand(1); 2578 SDLoc DL(Op); 2579 MVT XLenVT = Subtarget.getXLenVT(); 2580 MVT VT = Op.getSimpleValueType(); 2581 unsigned NumElts = VT.getVectorNumElements(); 2582 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode()); 2583 2584 MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 2585 2586 SDValue TrueMask, VL; 2587 std::tie(TrueMask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 2588 2589 if (SVN->isSplat()) { 2590 const int Lane = SVN->getSplatIndex(); 2591 if (Lane >= 0) { 2592 MVT SVT = VT.getVectorElementType(); 2593 2594 // Turn splatted vector load into a strided load with an X0 stride. 2595 SDValue V = V1; 2596 // Peek through CONCAT_VECTORS as VectorCombine can concat a vector 2597 // with undef. 2598 // FIXME: Peek through INSERT_SUBVECTOR, EXTRACT_SUBVECTOR, bitcasts? 2599 int Offset = Lane; 2600 if (V.getOpcode() == ISD::CONCAT_VECTORS) { 2601 int OpElements = 2602 V.getOperand(0).getSimpleValueType().getVectorNumElements(); 2603 V = V.getOperand(Offset / OpElements); 2604 Offset %= OpElements; 2605 } 2606 2607 // We need to ensure the load isn't atomic or volatile. 2608 if (ISD::isNormalLoad(V.getNode()) && cast<LoadSDNode>(V)->isSimple()) { 2609 auto *Ld = cast<LoadSDNode>(V); 2610 Offset *= SVT.getStoreSize(); 2611 SDValue NewAddr = DAG.getMemBasePlusOffset(Ld->getBasePtr(), 2612 TypeSize::Fixed(Offset), DL); 2613 2614 // If this is SEW=64 on RV32, use a strided load with a stride of x0. 2615 if (SVT.isInteger() && SVT.bitsGT(XLenVT)) { 2616 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 2617 SDValue IntID = 2618 DAG.getTargetConstant(Intrinsic::riscv_vlse, DL, XLenVT); 2619 SDValue Ops[] = {Ld->getChain(), 2620 IntID, 2621 DAG.getUNDEF(ContainerVT), 2622 NewAddr, 2623 DAG.getRegister(RISCV::X0, XLenVT), 2624 VL}; 2625 SDValue NewLoad = DAG.getMemIntrinsicNode( 2626 ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, SVT, 2627 DAG.getMachineFunction().getMachineMemOperand( 2628 Ld->getMemOperand(), Offset, SVT.getStoreSize())); 2629 DAG.makeEquivalentMemoryOrdering(Ld, NewLoad); 2630 return convertFromScalableVector(VT, NewLoad, DAG, Subtarget); 2631 } 2632 2633 // Otherwise use a scalar load and splat. This will give the best 2634 // opportunity to fold a splat into the operation. ISel can turn it into 2635 // the x0 strided load if we aren't able to fold away the select. 2636 if (SVT.isFloatingPoint()) 2637 V = DAG.getLoad(SVT, DL, Ld->getChain(), NewAddr, 2638 Ld->getPointerInfo().getWithOffset(Offset), 2639 Ld->getOriginalAlign(), 2640 Ld->getMemOperand()->getFlags()); 2641 else 2642 V = DAG.getExtLoad(ISD::SEXTLOAD, DL, XLenVT, Ld->getChain(), NewAddr, 2643 Ld->getPointerInfo().getWithOffset(Offset), SVT, 2644 Ld->getOriginalAlign(), 2645 Ld->getMemOperand()->getFlags()); 2646 DAG.makeEquivalentMemoryOrdering(Ld, V); 2647 2648 unsigned Opc = 2649 VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL : RISCVISD::VMV_V_X_VL; 2650 SDValue Splat = 2651 DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), V, VL); 2652 return convertFromScalableVector(VT, Splat, DAG, Subtarget); 2653 } 2654 2655 V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget); 2656 assert(Lane < (int)NumElts && "Unexpected lane!"); 2657 SDValue Gather = 2658 DAG.getNode(RISCVISD::VRGATHER_VX_VL, DL, ContainerVT, V1, 2659 DAG.getConstant(Lane, DL, XLenVT), TrueMask, VL); 2660 return convertFromScalableVector(VT, Gather, DAG, Subtarget); 2661 } 2662 } 2663 2664 ArrayRef<int> Mask = SVN->getMask(); 2665 2666 // Lower rotations to a SLIDEDOWN and a SLIDEUP. One of the source vectors may 2667 // be undef which can be handled with a single SLIDEDOWN/UP. 2668 int LoSrc, HiSrc; 2669 int Rotation = isElementRotate(LoSrc, HiSrc, Mask); 2670 if (Rotation > 0) { 2671 SDValue LoV, HiV; 2672 if (LoSrc >= 0) { 2673 LoV = LoSrc == 0 ? V1 : V2; 2674 LoV = convertToScalableVector(ContainerVT, LoV, DAG, Subtarget); 2675 } 2676 if (HiSrc >= 0) { 2677 HiV = HiSrc == 0 ? V1 : V2; 2678 HiV = convertToScalableVector(ContainerVT, HiV, DAG, Subtarget); 2679 } 2680 2681 // We found a rotation. We need to slide HiV down by Rotation. Then we need 2682 // to slide LoV up by (NumElts - Rotation). 2683 unsigned InvRotate = NumElts - Rotation; 2684 2685 SDValue Res = DAG.getUNDEF(ContainerVT); 2686 if (HiV) { 2687 // If we are doing a SLIDEDOWN+SLIDEUP, reduce the VL for the SLIDEDOWN. 2688 // FIXME: If we are only doing a SLIDEDOWN, don't reduce the VL as it 2689 // causes multiple vsetvlis in some test cases such as lowering 2690 // reduce.mul 2691 SDValue DownVL = VL; 2692 if (LoV) 2693 DownVL = DAG.getConstant(InvRotate, DL, XLenVT); 2694 Res = 2695 DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, Res, HiV, 2696 DAG.getConstant(Rotation, DL, XLenVT), TrueMask, DownVL); 2697 } 2698 if (LoV) 2699 Res = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Res, LoV, 2700 DAG.getConstant(InvRotate, DL, XLenVT), TrueMask, VL); 2701 2702 return convertFromScalableVector(VT, Res, DAG, Subtarget); 2703 } 2704 2705 // Detect an interleave shuffle and lower to 2706 // (vmaccu.vx (vwaddu.vx lohalf(V1), lohalf(V2)), lohalf(V2), (2^eltbits - 1)) 2707 bool SwapSources; 2708 if (isInterleaveShuffle(Mask, VT, SwapSources, Subtarget)) { 2709 // Swap sources if needed. 2710 if (SwapSources) 2711 std::swap(V1, V2); 2712 2713 // Extract the lower half of the vectors. 2714 MVT HalfVT = VT.getHalfNumVectorElementsVT(); 2715 V1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, V1, 2716 DAG.getConstant(0, DL, XLenVT)); 2717 V2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, V2, 2718 DAG.getConstant(0, DL, XLenVT)); 2719 2720 // Double the element width and halve the number of elements in an int type. 2721 unsigned EltBits = VT.getScalarSizeInBits(); 2722 MVT WideIntEltVT = MVT::getIntegerVT(EltBits * 2); 2723 MVT WideIntVT = 2724 MVT::getVectorVT(WideIntEltVT, VT.getVectorNumElements() / 2); 2725 // Convert this to a scalable vector. We need to base this on the 2726 // destination size to ensure there's always a type with a smaller LMUL. 2727 MVT WideIntContainerVT = 2728 getContainerForFixedLengthVector(DAG, WideIntVT, Subtarget); 2729 2730 // Convert sources to scalable vectors with the same element count as the 2731 // larger type. 2732 MVT HalfContainerVT = MVT::getVectorVT( 2733 VT.getVectorElementType(), WideIntContainerVT.getVectorElementCount()); 2734 V1 = convertToScalableVector(HalfContainerVT, V1, DAG, Subtarget); 2735 V2 = convertToScalableVector(HalfContainerVT, V2, DAG, Subtarget); 2736 2737 // Cast sources to integer. 2738 MVT IntEltVT = MVT::getIntegerVT(EltBits); 2739 MVT IntHalfVT = 2740 MVT::getVectorVT(IntEltVT, HalfContainerVT.getVectorElementCount()); 2741 V1 = DAG.getBitcast(IntHalfVT, V1); 2742 V2 = DAG.getBitcast(IntHalfVT, V2); 2743 2744 // Freeze V2 since we use it twice and we need to be sure that the add and 2745 // multiply see the same value. 2746 V2 = DAG.getNode(ISD::FREEZE, DL, IntHalfVT, V2); 2747 2748 // Recreate TrueMask using the widened type's element count. 2749 MVT MaskVT = 2750 MVT::getVectorVT(MVT::i1, HalfContainerVT.getVectorElementCount()); 2751 TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 2752 2753 // Widen V1 and V2 with 0s and add one copy of V2 to V1. 2754 SDValue Add = DAG.getNode(RISCVISD::VWADDU_VL, DL, WideIntContainerVT, V1, 2755 V2, TrueMask, VL); 2756 // Create 2^eltbits - 1 copies of V2 by multiplying by the largest integer. 2757 SDValue Multiplier = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, IntHalfVT, 2758 DAG.getUNDEF(IntHalfVT), 2759 DAG.getAllOnesConstant(DL, XLenVT)); 2760 SDValue WidenMul = DAG.getNode(RISCVISD::VWMULU_VL, DL, WideIntContainerVT, 2761 V2, Multiplier, TrueMask, VL); 2762 // Add the new copies to our previous addition giving us 2^eltbits copies of 2763 // V2. This is equivalent to shifting V2 left by eltbits. This should 2764 // combine with the vwmulu.vv above to form vwmaccu.vv. 2765 Add = DAG.getNode(RISCVISD::ADD_VL, DL, WideIntContainerVT, Add, WidenMul, 2766 TrueMask, VL); 2767 // Cast back to ContainerVT. We need to re-create a new ContainerVT in case 2768 // WideIntContainerVT is a larger fractional LMUL than implied by the fixed 2769 // vector VT. 2770 ContainerVT = 2771 MVT::getVectorVT(VT.getVectorElementType(), 2772 WideIntContainerVT.getVectorElementCount() * 2); 2773 Add = DAG.getBitcast(ContainerVT, Add); 2774 return convertFromScalableVector(VT, Add, DAG, Subtarget); 2775 } 2776 2777 // Detect shuffles which can be re-expressed as vector selects; these are 2778 // shuffles in which each element in the destination is taken from an element 2779 // at the corresponding index in either source vectors. 2780 bool IsSelect = all_of(enumerate(Mask), [&](const auto &MaskIdx) { 2781 int MaskIndex = MaskIdx.value(); 2782 return MaskIndex < 0 || MaskIdx.index() == (unsigned)MaskIndex % NumElts; 2783 }); 2784 2785 assert(!V1.isUndef() && "Unexpected shuffle canonicalization"); 2786 2787 SmallVector<SDValue> MaskVals; 2788 // As a backup, shuffles can be lowered via a vrgather instruction, possibly 2789 // merged with a second vrgather. 2790 SmallVector<SDValue> GatherIndicesLHS, GatherIndicesRHS; 2791 2792 // By default we preserve the original operand order, and use a mask to 2793 // select LHS as true and RHS as false. However, since RVV vector selects may 2794 // feature splats but only on the LHS, we may choose to invert our mask and 2795 // instead select between RHS and LHS. 2796 bool SwapOps = DAG.isSplatValue(V2) && !DAG.isSplatValue(V1); 2797 bool InvertMask = IsSelect == SwapOps; 2798 2799 // Keep a track of which non-undef indices are used by each LHS/RHS shuffle 2800 // half. 2801 DenseMap<int, unsigned> LHSIndexCounts, RHSIndexCounts; 2802 2803 // Now construct the mask that will be used by the vselect or blended 2804 // vrgather operation. For vrgathers, construct the appropriate indices into 2805 // each vector. 2806 for (int MaskIndex : Mask) { 2807 bool SelectMaskVal = (MaskIndex < (int)NumElts) ^ InvertMask; 2808 MaskVals.push_back(DAG.getConstant(SelectMaskVal, DL, XLenVT)); 2809 if (!IsSelect) { 2810 bool IsLHSOrUndefIndex = MaskIndex < (int)NumElts; 2811 GatherIndicesLHS.push_back(IsLHSOrUndefIndex && MaskIndex >= 0 2812 ? DAG.getConstant(MaskIndex, DL, XLenVT) 2813 : DAG.getUNDEF(XLenVT)); 2814 GatherIndicesRHS.push_back( 2815 IsLHSOrUndefIndex ? DAG.getUNDEF(XLenVT) 2816 : DAG.getConstant(MaskIndex - NumElts, DL, XLenVT)); 2817 if (IsLHSOrUndefIndex && MaskIndex >= 0) 2818 ++LHSIndexCounts[MaskIndex]; 2819 if (!IsLHSOrUndefIndex) 2820 ++RHSIndexCounts[MaskIndex - NumElts]; 2821 } 2822 } 2823 2824 if (SwapOps) { 2825 std::swap(V1, V2); 2826 std::swap(GatherIndicesLHS, GatherIndicesRHS); 2827 } 2828 2829 assert(MaskVals.size() == NumElts && "Unexpected select-like shuffle"); 2830 MVT MaskVT = MVT::getVectorVT(MVT::i1, NumElts); 2831 SDValue SelectMask = DAG.getBuildVector(MaskVT, DL, MaskVals); 2832 2833 if (IsSelect) 2834 return DAG.getNode(ISD::VSELECT, DL, VT, SelectMask, V1, V2); 2835 2836 if (VT.getScalarSizeInBits() == 8 && VT.getVectorNumElements() > 256) { 2837 // On such a large vector we're unable to use i8 as the index type. 2838 // FIXME: We could promote the index to i16 and use vrgatherei16, but that 2839 // may involve vector splitting if we're already at LMUL=8, or our 2840 // user-supplied maximum fixed-length LMUL. 2841 return SDValue(); 2842 } 2843 2844 unsigned GatherVXOpc = RISCVISD::VRGATHER_VX_VL; 2845 unsigned GatherVVOpc = RISCVISD::VRGATHER_VV_VL; 2846 MVT IndexVT = VT.changeTypeToInteger(); 2847 // Since we can't introduce illegal index types at this stage, use i16 and 2848 // vrgatherei16 if the corresponding index type for plain vrgather is greater 2849 // than XLenVT. 2850 if (IndexVT.getScalarType().bitsGT(XLenVT)) { 2851 GatherVVOpc = RISCVISD::VRGATHEREI16_VV_VL; 2852 IndexVT = IndexVT.changeVectorElementType(MVT::i16); 2853 } 2854 2855 MVT IndexContainerVT = 2856 ContainerVT.changeVectorElementType(IndexVT.getScalarType()); 2857 2858 SDValue Gather; 2859 // TODO: This doesn't trigger for i64 vectors on RV32, since there we 2860 // encounter a bitcasted BUILD_VECTOR with low/high i32 values. 2861 if (SDValue SplatValue = DAG.getSplatValue(V1, /*LegalTypes*/ true)) { 2862 Gather = lowerScalarSplat(SDValue(), SplatValue, VL, ContainerVT, DL, DAG, 2863 Subtarget); 2864 } else { 2865 V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget); 2866 // If only one index is used, we can use a "splat" vrgather. 2867 // TODO: We can splat the most-common index and fix-up any stragglers, if 2868 // that's beneficial. 2869 if (LHSIndexCounts.size() == 1) { 2870 int SplatIndex = LHSIndexCounts.begin()->getFirst(); 2871 Gather = 2872 DAG.getNode(GatherVXOpc, DL, ContainerVT, V1, 2873 DAG.getConstant(SplatIndex, DL, XLenVT), TrueMask, VL); 2874 } else { 2875 SDValue LHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesLHS); 2876 LHSIndices = 2877 convertToScalableVector(IndexContainerVT, LHSIndices, DAG, Subtarget); 2878 2879 Gather = DAG.getNode(GatherVVOpc, DL, ContainerVT, V1, LHSIndices, 2880 TrueMask, VL); 2881 } 2882 } 2883 2884 // If a second vector operand is used by this shuffle, blend it in with an 2885 // additional vrgather. 2886 if (!V2.isUndef()) { 2887 V2 = convertToScalableVector(ContainerVT, V2, DAG, Subtarget); 2888 // If only one index is used, we can use a "splat" vrgather. 2889 // TODO: We can splat the most-common index and fix-up any stragglers, if 2890 // that's beneficial. 2891 if (RHSIndexCounts.size() == 1) { 2892 int SplatIndex = RHSIndexCounts.begin()->getFirst(); 2893 V2 = DAG.getNode(GatherVXOpc, DL, ContainerVT, V2, 2894 DAG.getConstant(SplatIndex, DL, XLenVT), TrueMask, VL); 2895 } else { 2896 SDValue RHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesRHS); 2897 RHSIndices = 2898 convertToScalableVector(IndexContainerVT, RHSIndices, DAG, Subtarget); 2899 V2 = DAG.getNode(GatherVVOpc, DL, ContainerVT, V2, RHSIndices, TrueMask, 2900 VL); 2901 } 2902 2903 MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1); 2904 SelectMask = 2905 convertToScalableVector(MaskContainerVT, SelectMask, DAG, Subtarget); 2906 2907 Gather = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, SelectMask, V2, 2908 Gather, VL); 2909 } 2910 2911 return convertFromScalableVector(VT, Gather, DAG, Subtarget); 2912 } 2913 2914 bool RISCVTargetLowering::isShuffleMaskLegal(ArrayRef<int> M, EVT VT) const { 2915 // Support splats for any type. These should type legalize well. 2916 if (ShuffleVectorSDNode::isSplatMask(M.data(), VT)) 2917 return true; 2918 2919 // Only support legal VTs for other shuffles for now. 2920 if (!isTypeLegal(VT)) 2921 return false; 2922 2923 MVT SVT = VT.getSimpleVT(); 2924 2925 bool SwapSources; 2926 int LoSrc, HiSrc; 2927 return (isElementRotate(LoSrc, HiSrc, M) > 0) || 2928 isInterleaveShuffle(M, SVT, SwapSources, Subtarget); 2929 } 2930 2931 static SDValue getRVVFPExtendOrRound(SDValue Op, MVT VT, MVT ContainerVT, 2932 SDLoc DL, SelectionDAG &DAG, 2933 const RISCVSubtarget &Subtarget) { 2934 if (VT.isScalableVector()) 2935 return DAG.getFPExtendOrRound(Op, DL, VT); 2936 assert(VT.isFixedLengthVector() && 2937 "Unexpected value type for RVV FP extend/round lowering"); 2938 SDValue Mask, VL; 2939 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 2940 unsigned RVVOpc = ContainerVT.bitsGT(Op.getSimpleValueType()) 2941 ? RISCVISD::FP_EXTEND_VL 2942 : RISCVISD::FP_ROUND_VL; 2943 return DAG.getNode(RVVOpc, DL, ContainerVT, Op, Mask, VL); 2944 } 2945 2946 // Lower CTLZ_ZERO_UNDEF or CTTZ_ZERO_UNDEF by converting to FP and extracting 2947 // the exponent. 2948 static SDValue lowerCTLZ_CTTZ_ZERO_UNDEF(SDValue Op, SelectionDAG &DAG) { 2949 MVT VT = Op.getSimpleValueType(); 2950 unsigned EltSize = VT.getScalarSizeInBits(); 2951 SDValue Src = Op.getOperand(0); 2952 SDLoc DL(Op); 2953 2954 // We need a FP type that can represent the value. 2955 // TODO: Use f16 for i8 when possible? 2956 MVT FloatEltVT = EltSize == 32 ? MVT::f64 : MVT::f32; 2957 MVT FloatVT = MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount()); 2958 2959 // Legal types should have been checked in the RISCVTargetLowering 2960 // constructor. 2961 // TODO: Splitting may make sense in some cases. 2962 assert(DAG.getTargetLoweringInfo().isTypeLegal(FloatVT) && 2963 "Expected legal float type!"); 2964 2965 // For CTTZ_ZERO_UNDEF, we need to extract the lowest set bit using X & -X. 2966 // The trailing zero count is equal to log2 of this single bit value. 2967 if (Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF) { 2968 SDValue Neg = 2969 DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Src); 2970 Src = DAG.getNode(ISD::AND, DL, VT, Src, Neg); 2971 } 2972 2973 // We have a legal FP type, convert to it. 2974 SDValue FloatVal = DAG.getNode(ISD::UINT_TO_FP, DL, FloatVT, Src); 2975 // Bitcast to integer and shift the exponent to the LSB. 2976 EVT IntVT = FloatVT.changeVectorElementTypeToInteger(); 2977 SDValue Bitcast = DAG.getBitcast(IntVT, FloatVal); 2978 unsigned ShiftAmt = FloatEltVT == MVT::f64 ? 52 : 23; 2979 SDValue Shift = DAG.getNode(ISD::SRL, DL, IntVT, Bitcast, 2980 DAG.getConstant(ShiftAmt, DL, IntVT)); 2981 // Truncate back to original type to allow vnsrl. 2982 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, VT, Shift); 2983 // The exponent contains log2 of the value in biased form. 2984 unsigned ExponentBias = FloatEltVT == MVT::f64 ? 1023 : 127; 2985 2986 // For trailing zeros, we just need to subtract the bias. 2987 if (Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF) 2988 return DAG.getNode(ISD::SUB, DL, VT, Trunc, 2989 DAG.getConstant(ExponentBias, DL, VT)); 2990 2991 // For leading zeros, we need to remove the bias and convert from log2 to 2992 // leading zeros. We can do this by subtracting from (Bias + (EltSize - 1)). 2993 unsigned Adjust = ExponentBias + (EltSize - 1); 2994 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(Adjust, DL, VT), Trunc); 2995 } 2996 2997 // While RVV has alignment restrictions, we should always be able to load as a 2998 // legal equivalently-sized byte-typed vector instead. This method is 2999 // responsible for re-expressing a ISD::LOAD via a correctly-aligned type. If 3000 // the load is already correctly-aligned, it returns SDValue(). 3001 SDValue RISCVTargetLowering::expandUnalignedRVVLoad(SDValue Op, 3002 SelectionDAG &DAG) const { 3003 auto *Load = cast<LoadSDNode>(Op); 3004 assert(Load && Load->getMemoryVT().isVector() && "Expected vector load"); 3005 3006 if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 3007 Load->getMemoryVT(), 3008 *Load->getMemOperand())) 3009 return SDValue(); 3010 3011 SDLoc DL(Op); 3012 MVT VT = Op.getSimpleValueType(); 3013 unsigned EltSizeBits = VT.getScalarSizeInBits(); 3014 assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) && 3015 "Unexpected unaligned RVV load type"); 3016 MVT NewVT = 3017 MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8)); 3018 assert(NewVT.isValid() && 3019 "Expecting equally-sized RVV vector types to be legal"); 3020 SDValue L = DAG.getLoad(NewVT, DL, Load->getChain(), Load->getBasePtr(), 3021 Load->getPointerInfo(), Load->getOriginalAlign(), 3022 Load->getMemOperand()->getFlags()); 3023 return DAG.getMergeValues({DAG.getBitcast(VT, L), L.getValue(1)}, DL); 3024 } 3025 3026 // While RVV has alignment restrictions, we should always be able to store as a 3027 // legal equivalently-sized byte-typed vector instead. This method is 3028 // responsible for re-expressing a ISD::STORE via a correctly-aligned type. It 3029 // returns SDValue() if the store is already correctly aligned. 3030 SDValue RISCVTargetLowering::expandUnalignedRVVStore(SDValue Op, 3031 SelectionDAG &DAG) const { 3032 auto *Store = cast<StoreSDNode>(Op); 3033 assert(Store && Store->getValue().getValueType().isVector() && 3034 "Expected vector store"); 3035 3036 if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 3037 Store->getMemoryVT(), 3038 *Store->getMemOperand())) 3039 return SDValue(); 3040 3041 SDLoc DL(Op); 3042 SDValue StoredVal = Store->getValue(); 3043 MVT VT = StoredVal.getSimpleValueType(); 3044 unsigned EltSizeBits = VT.getScalarSizeInBits(); 3045 assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) && 3046 "Unexpected unaligned RVV store type"); 3047 MVT NewVT = 3048 MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8)); 3049 assert(NewVT.isValid() && 3050 "Expecting equally-sized RVV vector types to be legal"); 3051 StoredVal = DAG.getBitcast(NewVT, StoredVal); 3052 return DAG.getStore(Store->getChain(), DL, StoredVal, Store->getBasePtr(), 3053 Store->getPointerInfo(), Store->getOriginalAlign(), 3054 Store->getMemOperand()->getFlags()); 3055 } 3056 3057 SDValue RISCVTargetLowering::LowerOperation(SDValue Op, 3058 SelectionDAG &DAG) const { 3059 switch (Op.getOpcode()) { 3060 default: 3061 report_fatal_error("unimplemented operand"); 3062 case ISD::GlobalAddress: 3063 return lowerGlobalAddress(Op, DAG); 3064 case ISD::BlockAddress: 3065 return lowerBlockAddress(Op, DAG); 3066 case ISD::ConstantPool: 3067 return lowerConstantPool(Op, DAG); 3068 case ISD::JumpTable: 3069 return lowerJumpTable(Op, DAG); 3070 case ISD::GlobalTLSAddress: 3071 return lowerGlobalTLSAddress(Op, DAG); 3072 case ISD::SELECT: 3073 return lowerSELECT(Op, DAG); 3074 case ISD::BRCOND: 3075 return lowerBRCOND(Op, DAG); 3076 case ISD::VASTART: 3077 return lowerVASTART(Op, DAG); 3078 case ISD::FRAMEADDR: 3079 return lowerFRAMEADDR(Op, DAG); 3080 case ISD::RETURNADDR: 3081 return lowerRETURNADDR(Op, DAG); 3082 case ISD::SHL_PARTS: 3083 return lowerShiftLeftParts(Op, DAG); 3084 case ISD::SRA_PARTS: 3085 return lowerShiftRightParts(Op, DAG, true); 3086 case ISD::SRL_PARTS: 3087 return lowerShiftRightParts(Op, DAG, false); 3088 case ISD::BITCAST: { 3089 SDLoc DL(Op); 3090 EVT VT = Op.getValueType(); 3091 SDValue Op0 = Op.getOperand(0); 3092 EVT Op0VT = Op0.getValueType(); 3093 MVT XLenVT = Subtarget.getXLenVT(); 3094 if (VT.isFixedLengthVector()) { 3095 // We can handle fixed length vector bitcasts with a simple replacement 3096 // in isel. 3097 if (Op0VT.isFixedLengthVector()) 3098 return Op; 3099 // When bitcasting from scalar to fixed-length vector, insert the scalar 3100 // into a one-element vector of the result type, and perform a vector 3101 // bitcast. 3102 if (!Op0VT.isVector()) { 3103 EVT BVT = EVT::getVectorVT(*DAG.getContext(), Op0VT, 1); 3104 if (!isTypeLegal(BVT)) 3105 return SDValue(); 3106 return DAG.getBitcast(VT, DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, BVT, 3107 DAG.getUNDEF(BVT), Op0, 3108 DAG.getConstant(0, DL, XLenVT))); 3109 } 3110 return SDValue(); 3111 } 3112 // Custom-legalize bitcasts from fixed-length vector types to scalar types 3113 // thus: bitcast the vector to a one-element vector type whose element type 3114 // is the same as the result type, and extract the first element. 3115 if (!VT.isVector() && Op0VT.isFixedLengthVector()) { 3116 EVT BVT = EVT::getVectorVT(*DAG.getContext(), VT, 1); 3117 if (!isTypeLegal(BVT)) 3118 return SDValue(); 3119 SDValue BVec = DAG.getBitcast(BVT, Op0); 3120 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec, 3121 DAG.getConstant(0, DL, XLenVT)); 3122 } 3123 if (VT == MVT::f16 && Op0VT == MVT::i16 && Subtarget.hasStdExtZfh()) { 3124 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Op0); 3125 SDValue FPConv = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, NewOp0); 3126 return FPConv; 3127 } 3128 if (VT == MVT::f32 && Op0VT == MVT::i32 && Subtarget.is64Bit() && 3129 Subtarget.hasStdExtF()) { 3130 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); 3131 SDValue FPConv = 3132 DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, NewOp0); 3133 return FPConv; 3134 } 3135 return SDValue(); 3136 } 3137 case ISD::INTRINSIC_WO_CHAIN: 3138 return LowerINTRINSIC_WO_CHAIN(Op, DAG); 3139 case ISD::INTRINSIC_W_CHAIN: 3140 return LowerINTRINSIC_W_CHAIN(Op, DAG); 3141 case ISD::INTRINSIC_VOID: 3142 return LowerINTRINSIC_VOID(Op, DAG); 3143 case ISD::BSWAP: 3144 case ISD::BITREVERSE: { 3145 MVT VT = Op.getSimpleValueType(); 3146 SDLoc DL(Op); 3147 if (Subtarget.hasStdExtZbp()) { 3148 // Convert BSWAP/BITREVERSE to GREVI to enable GREVI combinining. 3149 // Start with the maximum immediate value which is the bitwidth - 1. 3150 unsigned Imm = VT.getSizeInBits() - 1; 3151 // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits. 3152 if (Op.getOpcode() == ISD::BSWAP) 3153 Imm &= ~0x7U; 3154 return DAG.getNode(RISCVISD::GREV, DL, VT, Op.getOperand(0), 3155 DAG.getConstant(Imm, DL, VT)); 3156 } 3157 assert(Subtarget.hasStdExtZbkb() && "Unexpected custom legalization"); 3158 assert(Op.getOpcode() == ISD::BITREVERSE && "Unexpected opcode"); 3159 // Expand bitreverse to a bswap(rev8) followed by brev8. 3160 SDValue BSwap = DAG.getNode(ISD::BSWAP, DL, VT, Op.getOperand(0)); 3161 // We use the Zbp grevi encoding for rev.b/brev8 which will be recognized 3162 // as brev8 by an isel pattern. 3163 return DAG.getNode(RISCVISD::GREV, DL, VT, BSwap, 3164 DAG.getConstant(7, DL, VT)); 3165 } 3166 case ISD::FSHL: 3167 case ISD::FSHR: { 3168 MVT VT = Op.getSimpleValueType(); 3169 assert(VT == Subtarget.getXLenVT() && "Unexpected custom legalization"); 3170 SDLoc DL(Op); 3171 // FSL/FSR take a log2(XLen)+1 bit shift amount but XLenVT FSHL/FSHR only 3172 // use log(XLen) bits. Mask the shift amount accordingly to prevent 3173 // accidentally setting the extra bit. 3174 unsigned ShAmtWidth = Subtarget.getXLen() - 1; 3175 SDValue ShAmt = DAG.getNode(ISD::AND, DL, VT, Op.getOperand(2), 3176 DAG.getConstant(ShAmtWidth, DL, VT)); 3177 // fshl and fshr concatenate their operands in the same order. fsr and fsl 3178 // instruction use different orders. fshl will return its first operand for 3179 // shift of zero, fshr will return its second operand. fsl and fsr both 3180 // return rs1 so the ISD nodes need to have different operand orders. 3181 // Shift amount is in rs2. 3182 SDValue Op0 = Op.getOperand(0); 3183 SDValue Op1 = Op.getOperand(1); 3184 unsigned Opc = RISCVISD::FSL; 3185 if (Op.getOpcode() == ISD::FSHR) { 3186 std::swap(Op0, Op1); 3187 Opc = RISCVISD::FSR; 3188 } 3189 return DAG.getNode(Opc, DL, VT, Op0, Op1, ShAmt); 3190 } 3191 case ISD::TRUNCATE: { 3192 SDLoc DL(Op); 3193 MVT VT = Op.getSimpleValueType(); 3194 // Only custom-lower vector truncates 3195 if (!VT.isVector()) 3196 return Op; 3197 3198 // Truncates to mask types are handled differently 3199 if (VT.getVectorElementType() == MVT::i1) 3200 return lowerVectorMaskTrunc(Op, DAG); 3201 3202 // RVV only has truncates which operate from SEW*2->SEW, so lower arbitrary 3203 // truncates as a series of "RISCVISD::TRUNCATE_VECTOR_VL" nodes which 3204 // truncate by one power of two at a time. 3205 MVT DstEltVT = VT.getVectorElementType(); 3206 3207 SDValue Src = Op.getOperand(0); 3208 MVT SrcVT = Src.getSimpleValueType(); 3209 MVT SrcEltVT = SrcVT.getVectorElementType(); 3210 3211 assert(DstEltVT.bitsLT(SrcEltVT) && 3212 isPowerOf2_64(DstEltVT.getSizeInBits()) && 3213 isPowerOf2_64(SrcEltVT.getSizeInBits()) && 3214 "Unexpected vector truncate lowering"); 3215 3216 MVT ContainerVT = SrcVT; 3217 if (SrcVT.isFixedLengthVector()) { 3218 ContainerVT = getContainerForFixedLengthVector(SrcVT); 3219 Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget); 3220 } 3221 3222 SDValue Result = Src; 3223 SDValue Mask, VL; 3224 std::tie(Mask, VL) = 3225 getDefaultVLOps(SrcVT, ContainerVT, DL, DAG, Subtarget); 3226 LLVMContext &Context = *DAG.getContext(); 3227 const ElementCount Count = ContainerVT.getVectorElementCount(); 3228 do { 3229 SrcEltVT = MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2); 3230 EVT ResultVT = EVT::getVectorVT(Context, SrcEltVT, Count); 3231 Result = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, ResultVT, Result, 3232 Mask, VL); 3233 } while (SrcEltVT != DstEltVT); 3234 3235 if (SrcVT.isFixedLengthVector()) 3236 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 3237 3238 return Result; 3239 } 3240 case ISD::ANY_EXTEND: 3241 case ISD::ZERO_EXTEND: 3242 if (Op.getOperand(0).getValueType().isVector() && 3243 Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) 3244 return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ 1); 3245 return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VZEXT_VL); 3246 case ISD::SIGN_EXTEND: 3247 if (Op.getOperand(0).getValueType().isVector() && 3248 Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) 3249 return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ -1); 3250 return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VSEXT_VL); 3251 case ISD::SPLAT_VECTOR_PARTS: 3252 return lowerSPLAT_VECTOR_PARTS(Op, DAG); 3253 case ISD::INSERT_VECTOR_ELT: 3254 return lowerINSERT_VECTOR_ELT(Op, DAG); 3255 case ISD::EXTRACT_VECTOR_ELT: 3256 return lowerEXTRACT_VECTOR_ELT(Op, DAG); 3257 case ISD::VSCALE: { 3258 MVT VT = Op.getSimpleValueType(); 3259 SDLoc DL(Op); 3260 SDValue VLENB = DAG.getNode(RISCVISD::READ_VLENB, DL, VT); 3261 // We define our scalable vector types for lmul=1 to use a 64 bit known 3262 // minimum size. e.g. <vscale x 2 x i32>. VLENB is in bytes so we calculate 3263 // vscale as VLENB / 8. 3264 static_assert(RISCV::RVVBitsPerBlock == 64, "Unexpected bits per block!"); 3265 if (Subtarget.getMinVLen() < RISCV::RVVBitsPerBlock) 3266 report_fatal_error("Support for VLEN==32 is incomplete."); 3267 if (isa<ConstantSDNode>(Op.getOperand(0))) { 3268 // We assume VLENB is a multiple of 8. We manually choose the best shift 3269 // here because SimplifyDemandedBits isn't always able to simplify it. 3270 uint64_t Val = Op.getConstantOperandVal(0); 3271 if (isPowerOf2_64(Val)) { 3272 uint64_t Log2 = Log2_64(Val); 3273 if (Log2 < 3) 3274 return DAG.getNode(ISD::SRL, DL, VT, VLENB, 3275 DAG.getConstant(3 - Log2, DL, VT)); 3276 if (Log2 > 3) 3277 return DAG.getNode(ISD::SHL, DL, VT, VLENB, 3278 DAG.getConstant(Log2 - 3, DL, VT)); 3279 return VLENB; 3280 } 3281 // If the multiplier is a multiple of 8, scale it down to avoid needing 3282 // to shift the VLENB value. 3283 if ((Val % 8) == 0) 3284 return DAG.getNode(ISD::MUL, DL, VT, VLENB, 3285 DAG.getConstant(Val / 8, DL, VT)); 3286 } 3287 3288 SDValue VScale = DAG.getNode(ISD::SRL, DL, VT, VLENB, 3289 DAG.getConstant(3, DL, VT)); 3290 return DAG.getNode(ISD::MUL, DL, VT, VScale, Op.getOperand(0)); 3291 } 3292 case ISD::FPOWI: { 3293 // Custom promote f16 powi with illegal i32 integer type on RV64. Once 3294 // promoted this will be legalized into a libcall by LegalizeIntegerTypes. 3295 if (Op.getValueType() == MVT::f16 && Subtarget.is64Bit() && 3296 Op.getOperand(1).getValueType() == MVT::i32) { 3297 SDLoc DL(Op); 3298 SDValue Op0 = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Op.getOperand(0)); 3299 SDValue Powi = 3300 DAG.getNode(ISD::FPOWI, DL, MVT::f32, Op0, Op.getOperand(1)); 3301 return DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, Powi, 3302 DAG.getIntPtrConstant(0, DL)); 3303 } 3304 return SDValue(); 3305 } 3306 case ISD::FP_EXTEND: { 3307 // RVV can only do fp_extend to types double the size as the source. We 3308 // custom-lower f16->f64 extensions to two hops of ISD::FP_EXTEND, going 3309 // via f32. 3310 SDLoc DL(Op); 3311 MVT VT = Op.getSimpleValueType(); 3312 SDValue Src = Op.getOperand(0); 3313 MVT SrcVT = Src.getSimpleValueType(); 3314 3315 // Prepare any fixed-length vector operands. 3316 MVT ContainerVT = VT; 3317 if (SrcVT.isFixedLengthVector()) { 3318 ContainerVT = getContainerForFixedLengthVector(VT); 3319 MVT SrcContainerVT = 3320 ContainerVT.changeVectorElementType(SrcVT.getVectorElementType()); 3321 Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); 3322 } 3323 3324 if (!VT.isVector() || VT.getVectorElementType() != MVT::f64 || 3325 SrcVT.getVectorElementType() != MVT::f16) { 3326 // For scalable vectors, we only need to close the gap between 3327 // vXf16->vXf64. 3328 if (!VT.isFixedLengthVector()) 3329 return Op; 3330 // For fixed-length vectors, lower the FP_EXTEND to a custom "VL" version. 3331 Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget); 3332 return convertFromScalableVector(VT, Src, DAG, Subtarget); 3333 } 3334 3335 MVT InterVT = VT.changeVectorElementType(MVT::f32); 3336 MVT InterContainerVT = ContainerVT.changeVectorElementType(MVT::f32); 3337 SDValue IntermediateExtend = getRVVFPExtendOrRound( 3338 Src, InterVT, InterContainerVT, DL, DAG, Subtarget); 3339 3340 SDValue Extend = getRVVFPExtendOrRound(IntermediateExtend, VT, ContainerVT, 3341 DL, DAG, Subtarget); 3342 if (VT.isFixedLengthVector()) 3343 return convertFromScalableVector(VT, Extend, DAG, Subtarget); 3344 return Extend; 3345 } 3346 case ISD::FP_ROUND: { 3347 // RVV can only do fp_round to types half the size as the source. We 3348 // custom-lower f64->f16 rounds via RVV's round-to-odd float 3349 // conversion instruction. 3350 SDLoc DL(Op); 3351 MVT VT = Op.getSimpleValueType(); 3352 SDValue Src = Op.getOperand(0); 3353 MVT SrcVT = Src.getSimpleValueType(); 3354 3355 // Prepare any fixed-length vector operands. 3356 MVT ContainerVT = VT; 3357 if (VT.isFixedLengthVector()) { 3358 MVT SrcContainerVT = getContainerForFixedLengthVector(SrcVT); 3359 ContainerVT = 3360 SrcContainerVT.changeVectorElementType(VT.getVectorElementType()); 3361 Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); 3362 } 3363 3364 if (!VT.isVector() || VT.getVectorElementType() != MVT::f16 || 3365 SrcVT.getVectorElementType() != MVT::f64) { 3366 // For scalable vectors, we only need to close the gap between 3367 // vXf64<->vXf16. 3368 if (!VT.isFixedLengthVector()) 3369 return Op; 3370 // For fixed-length vectors, lower the FP_ROUND to a custom "VL" version. 3371 Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget); 3372 return convertFromScalableVector(VT, Src, DAG, Subtarget); 3373 } 3374 3375 SDValue Mask, VL; 3376 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 3377 3378 MVT InterVT = ContainerVT.changeVectorElementType(MVT::f32); 3379 SDValue IntermediateRound = 3380 DAG.getNode(RISCVISD::VFNCVT_ROD_VL, DL, InterVT, Src, Mask, VL); 3381 SDValue Round = getRVVFPExtendOrRound(IntermediateRound, VT, ContainerVT, 3382 DL, DAG, Subtarget); 3383 3384 if (VT.isFixedLengthVector()) 3385 return convertFromScalableVector(VT, Round, DAG, Subtarget); 3386 return Round; 3387 } 3388 case ISD::FP_TO_SINT: 3389 case ISD::FP_TO_UINT: 3390 case ISD::SINT_TO_FP: 3391 case ISD::UINT_TO_FP: { 3392 // RVV can only do fp<->int conversions to types half/double the size as 3393 // the source. We custom-lower any conversions that do two hops into 3394 // sequences. 3395 MVT VT = Op.getSimpleValueType(); 3396 if (!VT.isVector()) 3397 return Op; 3398 SDLoc DL(Op); 3399 SDValue Src = Op.getOperand(0); 3400 MVT EltVT = VT.getVectorElementType(); 3401 MVT SrcVT = Src.getSimpleValueType(); 3402 MVT SrcEltVT = SrcVT.getVectorElementType(); 3403 unsigned EltSize = EltVT.getSizeInBits(); 3404 unsigned SrcEltSize = SrcEltVT.getSizeInBits(); 3405 assert(isPowerOf2_32(EltSize) && isPowerOf2_32(SrcEltSize) && 3406 "Unexpected vector element types"); 3407 3408 bool IsInt2FP = SrcEltVT.isInteger(); 3409 // Widening conversions 3410 if (EltSize > SrcEltSize && (EltSize / SrcEltSize >= 4)) { 3411 if (IsInt2FP) { 3412 // Do a regular integer sign/zero extension then convert to float. 3413 MVT IVecVT = MVT::getVectorVT(MVT::getIntegerVT(EltVT.getSizeInBits()), 3414 VT.getVectorElementCount()); 3415 unsigned ExtOpcode = Op.getOpcode() == ISD::UINT_TO_FP 3416 ? ISD::ZERO_EXTEND 3417 : ISD::SIGN_EXTEND; 3418 SDValue Ext = DAG.getNode(ExtOpcode, DL, IVecVT, Src); 3419 return DAG.getNode(Op.getOpcode(), DL, VT, Ext); 3420 } 3421 // FP2Int 3422 assert(SrcEltVT == MVT::f16 && "Unexpected FP_TO_[US]INT lowering"); 3423 // Do one doubling fp_extend then complete the operation by converting 3424 // to int. 3425 MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount()); 3426 SDValue FExt = DAG.getFPExtendOrRound(Src, DL, InterimFVT); 3427 return DAG.getNode(Op.getOpcode(), DL, VT, FExt); 3428 } 3429 3430 // Narrowing conversions 3431 if (SrcEltSize > EltSize && (SrcEltSize / EltSize >= 4)) { 3432 if (IsInt2FP) { 3433 // One narrowing int_to_fp, then an fp_round. 3434 assert(EltVT == MVT::f16 && "Unexpected [US]_TO_FP lowering"); 3435 MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount()); 3436 SDValue Int2FP = DAG.getNode(Op.getOpcode(), DL, InterimFVT, Src); 3437 return DAG.getFPExtendOrRound(Int2FP, DL, VT); 3438 } 3439 // FP2Int 3440 // One narrowing fp_to_int, then truncate the integer. If the float isn't 3441 // representable by the integer, the result is poison. 3442 MVT IVecVT = 3443 MVT::getVectorVT(MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2), 3444 VT.getVectorElementCount()); 3445 SDValue FP2Int = DAG.getNode(Op.getOpcode(), DL, IVecVT, Src); 3446 return DAG.getNode(ISD::TRUNCATE, DL, VT, FP2Int); 3447 } 3448 3449 // Scalable vectors can exit here. Patterns will handle equally-sized 3450 // conversions halving/doubling ones. 3451 if (!VT.isFixedLengthVector()) 3452 return Op; 3453 3454 // For fixed-length vectors we lower to a custom "VL" node. 3455 unsigned RVVOpc = 0; 3456 switch (Op.getOpcode()) { 3457 default: 3458 llvm_unreachable("Impossible opcode"); 3459 case ISD::FP_TO_SINT: 3460 RVVOpc = RISCVISD::FP_TO_SINT_VL; 3461 break; 3462 case ISD::FP_TO_UINT: 3463 RVVOpc = RISCVISD::FP_TO_UINT_VL; 3464 break; 3465 case ISD::SINT_TO_FP: 3466 RVVOpc = RISCVISD::SINT_TO_FP_VL; 3467 break; 3468 case ISD::UINT_TO_FP: 3469 RVVOpc = RISCVISD::UINT_TO_FP_VL; 3470 break; 3471 } 3472 3473 MVT ContainerVT, SrcContainerVT; 3474 // Derive the reference container type from the larger vector type. 3475 if (SrcEltSize > EltSize) { 3476 SrcContainerVT = getContainerForFixedLengthVector(SrcVT); 3477 ContainerVT = 3478 SrcContainerVT.changeVectorElementType(VT.getVectorElementType()); 3479 } else { 3480 ContainerVT = getContainerForFixedLengthVector(VT); 3481 SrcContainerVT = ContainerVT.changeVectorElementType(SrcEltVT); 3482 } 3483 3484 SDValue Mask, VL; 3485 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 3486 3487 Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); 3488 Src = DAG.getNode(RVVOpc, DL, ContainerVT, Src, Mask, VL); 3489 return convertFromScalableVector(VT, Src, DAG, Subtarget); 3490 } 3491 case ISD::FP_TO_SINT_SAT: 3492 case ISD::FP_TO_UINT_SAT: 3493 return lowerFP_TO_INT_SAT(Op, DAG, Subtarget); 3494 case ISD::FTRUNC: 3495 case ISD::FCEIL: 3496 case ISD::FFLOOR: 3497 return lowerFTRUNC_FCEIL_FFLOOR(Op, DAG); 3498 case ISD::FROUND: 3499 return lowerFROUND(Op, DAG); 3500 case ISD::VECREDUCE_ADD: 3501 case ISD::VECREDUCE_UMAX: 3502 case ISD::VECREDUCE_SMAX: 3503 case ISD::VECREDUCE_UMIN: 3504 case ISD::VECREDUCE_SMIN: 3505 return lowerVECREDUCE(Op, DAG); 3506 case ISD::VECREDUCE_AND: 3507 case ISD::VECREDUCE_OR: 3508 case ISD::VECREDUCE_XOR: 3509 if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) 3510 return lowerVectorMaskVecReduction(Op, DAG, /*IsVP*/ false); 3511 return lowerVECREDUCE(Op, DAG); 3512 case ISD::VECREDUCE_FADD: 3513 case ISD::VECREDUCE_SEQ_FADD: 3514 case ISD::VECREDUCE_FMIN: 3515 case ISD::VECREDUCE_FMAX: 3516 return lowerFPVECREDUCE(Op, DAG); 3517 case ISD::VP_REDUCE_ADD: 3518 case ISD::VP_REDUCE_UMAX: 3519 case ISD::VP_REDUCE_SMAX: 3520 case ISD::VP_REDUCE_UMIN: 3521 case ISD::VP_REDUCE_SMIN: 3522 case ISD::VP_REDUCE_FADD: 3523 case ISD::VP_REDUCE_SEQ_FADD: 3524 case ISD::VP_REDUCE_FMIN: 3525 case ISD::VP_REDUCE_FMAX: 3526 return lowerVPREDUCE(Op, DAG); 3527 case ISD::VP_REDUCE_AND: 3528 case ISD::VP_REDUCE_OR: 3529 case ISD::VP_REDUCE_XOR: 3530 if (Op.getOperand(1).getValueType().getVectorElementType() == MVT::i1) 3531 return lowerVectorMaskVecReduction(Op, DAG, /*IsVP*/ true); 3532 return lowerVPREDUCE(Op, DAG); 3533 case ISD::INSERT_SUBVECTOR: 3534 return lowerINSERT_SUBVECTOR(Op, DAG); 3535 case ISD::EXTRACT_SUBVECTOR: 3536 return lowerEXTRACT_SUBVECTOR(Op, DAG); 3537 case ISD::STEP_VECTOR: 3538 return lowerSTEP_VECTOR(Op, DAG); 3539 case ISD::VECTOR_REVERSE: 3540 return lowerVECTOR_REVERSE(Op, DAG); 3541 case ISD::BUILD_VECTOR: 3542 return lowerBUILD_VECTOR(Op, DAG, Subtarget); 3543 case ISD::SPLAT_VECTOR: 3544 if (Op.getValueType().getVectorElementType() == MVT::i1) 3545 return lowerVectorMaskSplat(Op, DAG); 3546 return lowerSPLAT_VECTOR(Op, DAG, Subtarget); 3547 case ISD::VECTOR_SHUFFLE: 3548 return lowerVECTOR_SHUFFLE(Op, DAG, Subtarget); 3549 case ISD::CONCAT_VECTORS: { 3550 // Split CONCAT_VECTORS into a series of INSERT_SUBVECTOR nodes. This is 3551 // better than going through the stack, as the default expansion does. 3552 SDLoc DL(Op); 3553 MVT VT = Op.getSimpleValueType(); 3554 unsigned NumOpElts = 3555 Op.getOperand(0).getSimpleValueType().getVectorMinNumElements(); 3556 SDValue Vec = DAG.getUNDEF(VT); 3557 for (const auto &OpIdx : enumerate(Op->ops())) { 3558 SDValue SubVec = OpIdx.value(); 3559 // Don't insert undef subvectors. 3560 if (SubVec.isUndef()) 3561 continue; 3562 Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, Vec, SubVec, 3563 DAG.getIntPtrConstant(OpIdx.index() * NumOpElts, DL)); 3564 } 3565 return Vec; 3566 } 3567 case ISD::LOAD: 3568 if (auto V = expandUnalignedRVVLoad(Op, DAG)) 3569 return V; 3570 if (Op.getValueType().isFixedLengthVector()) 3571 return lowerFixedLengthVectorLoadToRVV(Op, DAG); 3572 return Op; 3573 case ISD::STORE: 3574 if (auto V = expandUnalignedRVVStore(Op, DAG)) 3575 return V; 3576 if (Op.getOperand(1).getValueType().isFixedLengthVector()) 3577 return lowerFixedLengthVectorStoreToRVV(Op, DAG); 3578 return Op; 3579 case ISD::MLOAD: 3580 case ISD::VP_LOAD: 3581 return lowerMaskedLoad(Op, DAG); 3582 case ISD::MSTORE: 3583 case ISD::VP_STORE: 3584 return lowerMaskedStore(Op, DAG); 3585 case ISD::SETCC: 3586 return lowerFixedLengthVectorSetccToRVV(Op, DAG); 3587 case ISD::ADD: 3588 return lowerToScalableOp(Op, DAG, RISCVISD::ADD_VL); 3589 case ISD::SUB: 3590 return lowerToScalableOp(Op, DAG, RISCVISD::SUB_VL); 3591 case ISD::MUL: 3592 return lowerToScalableOp(Op, DAG, RISCVISD::MUL_VL); 3593 case ISD::MULHS: 3594 return lowerToScalableOp(Op, DAG, RISCVISD::MULHS_VL); 3595 case ISD::MULHU: 3596 return lowerToScalableOp(Op, DAG, RISCVISD::MULHU_VL); 3597 case ISD::AND: 3598 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMAND_VL, 3599 RISCVISD::AND_VL); 3600 case ISD::OR: 3601 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMOR_VL, 3602 RISCVISD::OR_VL); 3603 case ISD::XOR: 3604 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMXOR_VL, 3605 RISCVISD::XOR_VL); 3606 case ISD::SDIV: 3607 return lowerToScalableOp(Op, DAG, RISCVISD::SDIV_VL); 3608 case ISD::SREM: 3609 return lowerToScalableOp(Op, DAG, RISCVISD::SREM_VL); 3610 case ISD::UDIV: 3611 return lowerToScalableOp(Op, DAG, RISCVISD::UDIV_VL); 3612 case ISD::UREM: 3613 return lowerToScalableOp(Op, DAG, RISCVISD::UREM_VL); 3614 case ISD::SHL: 3615 case ISD::SRA: 3616 case ISD::SRL: 3617 if (Op.getSimpleValueType().isFixedLengthVector()) 3618 return lowerFixedLengthVectorShiftToRVV(Op, DAG); 3619 // This can be called for an i32 shift amount that needs to be promoted. 3620 assert(Op.getOperand(1).getValueType() == MVT::i32 && Subtarget.is64Bit() && 3621 "Unexpected custom legalisation"); 3622 return SDValue(); 3623 case ISD::SADDSAT: 3624 return lowerToScalableOp(Op, DAG, RISCVISD::SADDSAT_VL); 3625 case ISD::UADDSAT: 3626 return lowerToScalableOp(Op, DAG, RISCVISD::UADDSAT_VL); 3627 case ISD::SSUBSAT: 3628 return lowerToScalableOp(Op, DAG, RISCVISD::SSUBSAT_VL); 3629 case ISD::USUBSAT: 3630 return lowerToScalableOp(Op, DAG, RISCVISD::USUBSAT_VL); 3631 case ISD::FADD: 3632 return lowerToScalableOp(Op, DAG, RISCVISD::FADD_VL); 3633 case ISD::FSUB: 3634 return lowerToScalableOp(Op, DAG, RISCVISD::FSUB_VL); 3635 case ISD::FMUL: 3636 return lowerToScalableOp(Op, DAG, RISCVISD::FMUL_VL); 3637 case ISD::FDIV: 3638 return lowerToScalableOp(Op, DAG, RISCVISD::FDIV_VL); 3639 case ISD::FNEG: 3640 return lowerToScalableOp(Op, DAG, RISCVISD::FNEG_VL); 3641 case ISD::FABS: 3642 return lowerToScalableOp(Op, DAG, RISCVISD::FABS_VL); 3643 case ISD::FSQRT: 3644 return lowerToScalableOp(Op, DAG, RISCVISD::FSQRT_VL); 3645 case ISD::FMA: 3646 return lowerToScalableOp(Op, DAG, RISCVISD::FMA_VL); 3647 case ISD::SMIN: 3648 return lowerToScalableOp(Op, DAG, RISCVISD::SMIN_VL); 3649 case ISD::SMAX: 3650 return lowerToScalableOp(Op, DAG, RISCVISD::SMAX_VL); 3651 case ISD::UMIN: 3652 return lowerToScalableOp(Op, DAG, RISCVISD::UMIN_VL); 3653 case ISD::UMAX: 3654 return lowerToScalableOp(Op, DAG, RISCVISD::UMAX_VL); 3655 case ISD::FMINNUM: 3656 return lowerToScalableOp(Op, DAG, RISCVISD::FMINNUM_VL); 3657 case ISD::FMAXNUM: 3658 return lowerToScalableOp(Op, DAG, RISCVISD::FMAXNUM_VL); 3659 case ISD::ABS: 3660 return lowerABS(Op, DAG); 3661 case ISD::CTLZ_ZERO_UNDEF: 3662 case ISD::CTTZ_ZERO_UNDEF: 3663 return lowerCTLZ_CTTZ_ZERO_UNDEF(Op, DAG); 3664 case ISD::VSELECT: 3665 return lowerFixedLengthVectorSelectToRVV(Op, DAG); 3666 case ISD::FCOPYSIGN: 3667 return lowerFixedLengthVectorFCOPYSIGNToRVV(Op, DAG); 3668 case ISD::MGATHER: 3669 case ISD::VP_GATHER: 3670 return lowerMaskedGather(Op, DAG); 3671 case ISD::MSCATTER: 3672 case ISD::VP_SCATTER: 3673 return lowerMaskedScatter(Op, DAG); 3674 case ISD::FLT_ROUNDS_: 3675 return lowerGET_ROUNDING(Op, DAG); 3676 case ISD::SET_ROUNDING: 3677 return lowerSET_ROUNDING(Op, DAG); 3678 case ISD::VP_SELECT: 3679 return lowerVPOp(Op, DAG, RISCVISD::VSELECT_VL); 3680 case ISD::VP_MERGE: 3681 return lowerVPOp(Op, DAG, RISCVISD::VP_MERGE_VL); 3682 case ISD::VP_ADD: 3683 return lowerVPOp(Op, DAG, RISCVISD::ADD_VL); 3684 case ISD::VP_SUB: 3685 return lowerVPOp(Op, DAG, RISCVISD::SUB_VL); 3686 case ISD::VP_MUL: 3687 return lowerVPOp(Op, DAG, RISCVISD::MUL_VL); 3688 case ISD::VP_SDIV: 3689 return lowerVPOp(Op, DAG, RISCVISD::SDIV_VL); 3690 case ISD::VP_UDIV: 3691 return lowerVPOp(Op, DAG, RISCVISD::UDIV_VL); 3692 case ISD::VP_SREM: 3693 return lowerVPOp(Op, DAG, RISCVISD::SREM_VL); 3694 case ISD::VP_UREM: 3695 return lowerVPOp(Op, DAG, RISCVISD::UREM_VL); 3696 case ISD::VP_AND: 3697 return lowerLogicVPOp(Op, DAG, RISCVISD::VMAND_VL, RISCVISD::AND_VL); 3698 case ISD::VP_OR: 3699 return lowerLogicVPOp(Op, DAG, RISCVISD::VMOR_VL, RISCVISD::OR_VL); 3700 case ISD::VP_XOR: 3701 return lowerLogicVPOp(Op, DAG, RISCVISD::VMXOR_VL, RISCVISD::XOR_VL); 3702 case ISD::VP_ASHR: 3703 return lowerVPOp(Op, DAG, RISCVISD::SRA_VL); 3704 case ISD::VP_LSHR: 3705 return lowerVPOp(Op, DAG, RISCVISD::SRL_VL); 3706 case ISD::VP_SHL: 3707 return lowerVPOp(Op, DAG, RISCVISD::SHL_VL); 3708 case ISD::VP_FADD: 3709 return lowerVPOp(Op, DAG, RISCVISD::FADD_VL); 3710 case ISD::VP_FSUB: 3711 return lowerVPOp(Op, DAG, RISCVISD::FSUB_VL); 3712 case ISD::VP_FMUL: 3713 return lowerVPOp(Op, DAG, RISCVISD::FMUL_VL); 3714 case ISD::VP_FDIV: 3715 return lowerVPOp(Op, DAG, RISCVISD::FDIV_VL); 3716 case ISD::VP_FNEG: 3717 return lowerVPOp(Op, DAG, RISCVISD::FNEG_VL); 3718 case ISD::VP_FMA: 3719 return lowerVPOp(Op, DAG, RISCVISD::FMA_VL); 3720 } 3721 } 3722 3723 static SDValue getTargetNode(GlobalAddressSDNode *N, SDLoc DL, EVT Ty, 3724 SelectionDAG &DAG, unsigned Flags) { 3725 return DAG.getTargetGlobalAddress(N->getGlobal(), DL, Ty, 0, Flags); 3726 } 3727 3728 static SDValue getTargetNode(BlockAddressSDNode *N, SDLoc DL, EVT Ty, 3729 SelectionDAG &DAG, unsigned Flags) { 3730 return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, N->getOffset(), 3731 Flags); 3732 } 3733 3734 static SDValue getTargetNode(ConstantPoolSDNode *N, SDLoc DL, EVT Ty, 3735 SelectionDAG &DAG, unsigned Flags) { 3736 return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlign(), 3737 N->getOffset(), Flags); 3738 } 3739 3740 static SDValue getTargetNode(JumpTableSDNode *N, SDLoc DL, EVT Ty, 3741 SelectionDAG &DAG, unsigned Flags) { 3742 return DAG.getTargetJumpTable(N->getIndex(), Ty, Flags); 3743 } 3744 3745 template <class NodeTy> 3746 SDValue RISCVTargetLowering::getAddr(NodeTy *N, SelectionDAG &DAG, 3747 bool IsLocal) const { 3748 SDLoc DL(N); 3749 EVT Ty = getPointerTy(DAG.getDataLayout()); 3750 3751 if (isPositionIndependent()) { 3752 SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0); 3753 if (IsLocal) 3754 // Use PC-relative addressing to access the symbol. This generates the 3755 // pattern (PseudoLLA sym), which expands to (addi (auipc %pcrel_hi(sym)) 3756 // %pcrel_lo(auipc)). 3757 return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0); 3758 3759 // Use PC-relative addressing to access the GOT for this symbol, then load 3760 // the address from the GOT. This generates the pattern (PseudoLA sym), 3761 // which expands to (ld (addi (auipc %got_pcrel_hi(sym)) %pcrel_lo(auipc))). 3762 return SDValue(DAG.getMachineNode(RISCV::PseudoLA, DL, Ty, Addr), 0); 3763 } 3764 3765 switch (getTargetMachine().getCodeModel()) { 3766 default: 3767 report_fatal_error("Unsupported code model for lowering"); 3768 case CodeModel::Small: { 3769 // Generate a sequence for accessing addresses within the first 2 GiB of 3770 // address space. This generates the pattern (addi (lui %hi(sym)) %lo(sym)). 3771 SDValue AddrHi = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_HI); 3772 SDValue AddrLo = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_LO); 3773 SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0); 3774 return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNHi, AddrLo), 0); 3775 } 3776 case CodeModel::Medium: { 3777 // Generate a sequence for accessing addresses within any 2GiB range within 3778 // the address space. This generates the pattern (PseudoLLA sym), which 3779 // expands to (addi (auipc %pcrel_hi(sym)) %pcrel_lo(auipc)). 3780 SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0); 3781 return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0); 3782 } 3783 } 3784 } 3785 3786 SDValue RISCVTargetLowering::lowerGlobalAddress(SDValue Op, 3787 SelectionDAG &DAG) const { 3788 SDLoc DL(Op); 3789 EVT Ty = Op.getValueType(); 3790 GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op); 3791 int64_t Offset = N->getOffset(); 3792 MVT XLenVT = Subtarget.getXLenVT(); 3793 3794 const GlobalValue *GV = N->getGlobal(); 3795 bool IsLocal = getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV); 3796 SDValue Addr = getAddr(N, DAG, IsLocal); 3797 3798 // In order to maximise the opportunity for common subexpression elimination, 3799 // emit a separate ADD node for the global address offset instead of folding 3800 // it in the global address node. Later peephole optimisations may choose to 3801 // fold it back in when profitable. 3802 if (Offset != 0) 3803 return DAG.getNode(ISD::ADD, DL, Ty, Addr, 3804 DAG.getConstant(Offset, DL, XLenVT)); 3805 return Addr; 3806 } 3807 3808 SDValue RISCVTargetLowering::lowerBlockAddress(SDValue Op, 3809 SelectionDAG &DAG) const { 3810 BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op); 3811 3812 return getAddr(N, DAG); 3813 } 3814 3815 SDValue RISCVTargetLowering::lowerConstantPool(SDValue Op, 3816 SelectionDAG &DAG) const { 3817 ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op); 3818 3819 return getAddr(N, DAG); 3820 } 3821 3822 SDValue RISCVTargetLowering::lowerJumpTable(SDValue Op, 3823 SelectionDAG &DAG) const { 3824 JumpTableSDNode *N = cast<JumpTableSDNode>(Op); 3825 3826 return getAddr(N, DAG); 3827 } 3828 3829 SDValue RISCVTargetLowering::getStaticTLSAddr(GlobalAddressSDNode *N, 3830 SelectionDAG &DAG, 3831 bool UseGOT) const { 3832 SDLoc DL(N); 3833 EVT Ty = getPointerTy(DAG.getDataLayout()); 3834 const GlobalValue *GV = N->getGlobal(); 3835 MVT XLenVT = Subtarget.getXLenVT(); 3836 3837 if (UseGOT) { 3838 // Use PC-relative addressing to access the GOT for this TLS symbol, then 3839 // load the address from the GOT and add the thread pointer. This generates 3840 // the pattern (PseudoLA_TLS_IE sym), which expands to 3841 // (ld (auipc %tls_ie_pcrel_hi(sym)) %pcrel_lo(auipc)). 3842 SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0); 3843 SDValue Load = 3844 SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_IE, DL, Ty, Addr), 0); 3845 3846 // Add the thread pointer. 3847 SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT); 3848 return DAG.getNode(ISD::ADD, DL, Ty, Load, TPReg); 3849 } 3850 3851 // Generate a sequence for accessing the address relative to the thread 3852 // pointer, with the appropriate adjustment for the thread pointer offset. 3853 // This generates the pattern 3854 // (add (add_tprel (lui %tprel_hi(sym)) tp %tprel_add(sym)) %tprel_lo(sym)) 3855 SDValue AddrHi = 3856 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_HI); 3857 SDValue AddrAdd = 3858 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_ADD); 3859 SDValue AddrLo = 3860 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_LO); 3861 3862 SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0); 3863 SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT); 3864 SDValue MNAdd = SDValue( 3865 DAG.getMachineNode(RISCV::PseudoAddTPRel, DL, Ty, MNHi, TPReg, AddrAdd), 3866 0); 3867 return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNAdd, AddrLo), 0); 3868 } 3869 3870 SDValue RISCVTargetLowering::getDynamicTLSAddr(GlobalAddressSDNode *N, 3871 SelectionDAG &DAG) const { 3872 SDLoc DL(N); 3873 EVT Ty = getPointerTy(DAG.getDataLayout()); 3874 IntegerType *CallTy = Type::getIntNTy(*DAG.getContext(), Ty.getSizeInBits()); 3875 const GlobalValue *GV = N->getGlobal(); 3876 3877 // Use a PC-relative addressing mode to access the global dynamic GOT address. 3878 // This generates the pattern (PseudoLA_TLS_GD sym), which expands to 3879 // (addi (auipc %tls_gd_pcrel_hi(sym)) %pcrel_lo(auipc)). 3880 SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0); 3881 SDValue Load = 3882 SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_GD, DL, Ty, Addr), 0); 3883 3884 // Prepare argument list to generate call. 3885 ArgListTy Args; 3886 ArgListEntry Entry; 3887 Entry.Node = Load; 3888 Entry.Ty = CallTy; 3889 Args.push_back(Entry); 3890 3891 // Setup call to __tls_get_addr. 3892 TargetLowering::CallLoweringInfo CLI(DAG); 3893 CLI.setDebugLoc(DL) 3894 .setChain(DAG.getEntryNode()) 3895 .setLibCallee(CallingConv::C, CallTy, 3896 DAG.getExternalSymbol("__tls_get_addr", Ty), 3897 std::move(Args)); 3898 3899 return LowerCallTo(CLI).first; 3900 } 3901 3902 SDValue RISCVTargetLowering::lowerGlobalTLSAddress(SDValue Op, 3903 SelectionDAG &DAG) const { 3904 SDLoc DL(Op); 3905 EVT Ty = Op.getValueType(); 3906 GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op); 3907 int64_t Offset = N->getOffset(); 3908 MVT XLenVT = Subtarget.getXLenVT(); 3909 3910 TLSModel::Model Model = getTargetMachine().getTLSModel(N->getGlobal()); 3911 3912 if (DAG.getMachineFunction().getFunction().getCallingConv() == 3913 CallingConv::GHC) 3914 report_fatal_error("In GHC calling convention TLS is not supported"); 3915 3916 SDValue Addr; 3917 switch (Model) { 3918 case TLSModel::LocalExec: 3919 Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/false); 3920 break; 3921 case TLSModel::InitialExec: 3922 Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/true); 3923 break; 3924 case TLSModel::LocalDynamic: 3925 case TLSModel::GeneralDynamic: 3926 Addr = getDynamicTLSAddr(N, DAG); 3927 break; 3928 } 3929 3930 // In order to maximise the opportunity for common subexpression elimination, 3931 // emit a separate ADD node for the global address offset instead of folding 3932 // it in the global address node. Later peephole optimisations may choose to 3933 // fold it back in when profitable. 3934 if (Offset != 0) 3935 return DAG.getNode(ISD::ADD, DL, Ty, Addr, 3936 DAG.getConstant(Offset, DL, XLenVT)); 3937 return Addr; 3938 } 3939 3940 SDValue RISCVTargetLowering::lowerSELECT(SDValue Op, SelectionDAG &DAG) const { 3941 SDValue CondV = Op.getOperand(0); 3942 SDValue TrueV = Op.getOperand(1); 3943 SDValue FalseV = Op.getOperand(2); 3944 SDLoc DL(Op); 3945 MVT VT = Op.getSimpleValueType(); 3946 MVT XLenVT = Subtarget.getXLenVT(); 3947 3948 // Lower vector SELECTs to VSELECTs by splatting the condition. 3949 if (VT.isVector()) { 3950 MVT SplatCondVT = VT.changeVectorElementType(MVT::i1); 3951 SDValue CondSplat = VT.isScalableVector() 3952 ? DAG.getSplatVector(SplatCondVT, DL, CondV) 3953 : DAG.getSplatBuildVector(SplatCondVT, DL, CondV); 3954 return DAG.getNode(ISD::VSELECT, DL, VT, CondSplat, TrueV, FalseV); 3955 } 3956 3957 // If the result type is XLenVT and CondV is the output of a SETCC node 3958 // which also operated on XLenVT inputs, then merge the SETCC node into the 3959 // lowered RISCVISD::SELECT_CC to take advantage of the integer 3960 // compare+branch instructions. i.e.: 3961 // (select (setcc lhs, rhs, cc), truev, falsev) 3962 // -> (riscvisd::select_cc lhs, rhs, cc, truev, falsev) 3963 if (VT == XLenVT && CondV.getOpcode() == ISD::SETCC && 3964 CondV.getOperand(0).getSimpleValueType() == XLenVT) { 3965 SDValue LHS = CondV.getOperand(0); 3966 SDValue RHS = CondV.getOperand(1); 3967 const auto *CC = cast<CondCodeSDNode>(CondV.getOperand(2)); 3968 ISD::CondCode CCVal = CC->get(); 3969 3970 // Special case for a select of 2 constants that have a diffence of 1. 3971 // Normally this is done by DAGCombine, but if the select is introduced by 3972 // type legalization or op legalization, we miss it. Restricting to SETLT 3973 // case for now because that is what signed saturating add/sub need. 3974 // FIXME: We don't need the condition to be SETLT or even a SETCC, 3975 // but we would probably want to swap the true/false values if the condition 3976 // is SETGE/SETLE to avoid an XORI. 3977 if (isa<ConstantSDNode>(TrueV) && isa<ConstantSDNode>(FalseV) && 3978 CCVal == ISD::SETLT) { 3979 const APInt &TrueVal = cast<ConstantSDNode>(TrueV)->getAPIntValue(); 3980 const APInt &FalseVal = cast<ConstantSDNode>(FalseV)->getAPIntValue(); 3981 if (TrueVal - 1 == FalseVal) 3982 return DAG.getNode(ISD::ADD, DL, Op.getValueType(), CondV, FalseV); 3983 if (TrueVal + 1 == FalseVal) 3984 return DAG.getNode(ISD::SUB, DL, Op.getValueType(), FalseV, CondV); 3985 } 3986 3987 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 3988 3989 SDValue TargetCC = DAG.getCondCode(CCVal); 3990 SDValue Ops[] = {LHS, RHS, TargetCC, TrueV, FalseV}; 3991 return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops); 3992 } 3993 3994 // Otherwise: 3995 // (select condv, truev, falsev) 3996 // -> (riscvisd::select_cc condv, zero, setne, truev, falsev) 3997 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 3998 SDValue SetNE = DAG.getCondCode(ISD::SETNE); 3999 4000 SDValue Ops[] = {CondV, Zero, SetNE, TrueV, FalseV}; 4001 4002 return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops); 4003 } 4004 4005 SDValue RISCVTargetLowering::lowerBRCOND(SDValue Op, SelectionDAG &DAG) const { 4006 SDValue CondV = Op.getOperand(1); 4007 SDLoc DL(Op); 4008 MVT XLenVT = Subtarget.getXLenVT(); 4009 4010 if (CondV.getOpcode() == ISD::SETCC && 4011 CondV.getOperand(0).getValueType() == XLenVT) { 4012 SDValue LHS = CondV.getOperand(0); 4013 SDValue RHS = CondV.getOperand(1); 4014 ISD::CondCode CCVal = cast<CondCodeSDNode>(CondV.getOperand(2))->get(); 4015 4016 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 4017 4018 SDValue TargetCC = DAG.getCondCode(CCVal); 4019 return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0), 4020 LHS, RHS, TargetCC, Op.getOperand(2)); 4021 } 4022 4023 return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0), 4024 CondV, DAG.getConstant(0, DL, XLenVT), 4025 DAG.getCondCode(ISD::SETNE), Op.getOperand(2)); 4026 } 4027 4028 SDValue RISCVTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const { 4029 MachineFunction &MF = DAG.getMachineFunction(); 4030 RISCVMachineFunctionInfo *FuncInfo = MF.getInfo<RISCVMachineFunctionInfo>(); 4031 4032 SDLoc DL(Op); 4033 SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), 4034 getPointerTy(MF.getDataLayout())); 4035 4036 // vastart just stores the address of the VarArgsFrameIndex slot into the 4037 // memory location argument. 4038 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 4039 return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1), 4040 MachinePointerInfo(SV)); 4041 } 4042 4043 SDValue RISCVTargetLowering::lowerFRAMEADDR(SDValue Op, 4044 SelectionDAG &DAG) const { 4045 const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo(); 4046 MachineFunction &MF = DAG.getMachineFunction(); 4047 MachineFrameInfo &MFI = MF.getFrameInfo(); 4048 MFI.setFrameAddressIsTaken(true); 4049 Register FrameReg = RI.getFrameRegister(MF); 4050 int XLenInBytes = Subtarget.getXLen() / 8; 4051 4052 EVT VT = Op.getValueType(); 4053 SDLoc DL(Op); 4054 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, FrameReg, VT); 4055 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 4056 while (Depth--) { 4057 int Offset = -(XLenInBytes * 2); 4058 SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr, 4059 DAG.getIntPtrConstant(Offset, DL)); 4060 FrameAddr = 4061 DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo()); 4062 } 4063 return FrameAddr; 4064 } 4065 4066 SDValue RISCVTargetLowering::lowerRETURNADDR(SDValue Op, 4067 SelectionDAG &DAG) const { 4068 const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo(); 4069 MachineFunction &MF = DAG.getMachineFunction(); 4070 MachineFrameInfo &MFI = MF.getFrameInfo(); 4071 MFI.setReturnAddressIsTaken(true); 4072 MVT XLenVT = Subtarget.getXLenVT(); 4073 int XLenInBytes = Subtarget.getXLen() / 8; 4074 4075 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 4076 return SDValue(); 4077 4078 EVT VT = Op.getValueType(); 4079 SDLoc DL(Op); 4080 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 4081 if (Depth) { 4082 int Off = -XLenInBytes; 4083 SDValue FrameAddr = lowerFRAMEADDR(Op, DAG); 4084 SDValue Offset = DAG.getConstant(Off, DL, VT); 4085 return DAG.getLoad(VT, DL, DAG.getEntryNode(), 4086 DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset), 4087 MachinePointerInfo()); 4088 } 4089 4090 // Return the value of the return address register, marking it an implicit 4091 // live-in. 4092 Register Reg = MF.addLiveIn(RI.getRARegister(), getRegClassFor(XLenVT)); 4093 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, XLenVT); 4094 } 4095 4096 SDValue RISCVTargetLowering::lowerShiftLeftParts(SDValue Op, 4097 SelectionDAG &DAG) const { 4098 SDLoc DL(Op); 4099 SDValue Lo = Op.getOperand(0); 4100 SDValue Hi = Op.getOperand(1); 4101 SDValue Shamt = Op.getOperand(2); 4102 EVT VT = Lo.getValueType(); 4103 4104 // if Shamt-XLEN < 0: // Shamt < XLEN 4105 // Lo = Lo << Shamt 4106 // Hi = (Hi << Shamt) | ((Lo >>u 1) >>u (XLEN-1 ^ Shamt)) 4107 // else: 4108 // Lo = 0 4109 // Hi = Lo << (Shamt-XLEN) 4110 4111 SDValue Zero = DAG.getConstant(0, DL, VT); 4112 SDValue One = DAG.getConstant(1, DL, VT); 4113 SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT); 4114 SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT); 4115 SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen); 4116 SDValue XLenMinus1Shamt = DAG.getNode(ISD::XOR, DL, VT, Shamt, XLenMinus1); 4117 4118 SDValue LoTrue = DAG.getNode(ISD::SHL, DL, VT, Lo, Shamt); 4119 SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, VT, Lo, One); 4120 SDValue ShiftRightLo = 4121 DAG.getNode(ISD::SRL, DL, VT, ShiftRight1Lo, XLenMinus1Shamt); 4122 SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, Hi, Shamt); 4123 SDValue HiTrue = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo); 4124 SDValue HiFalse = DAG.getNode(ISD::SHL, DL, VT, Lo, ShamtMinusXLen); 4125 4126 SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT); 4127 4128 Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, Zero); 4129 Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse); 4130 4131 SDValue Parts[2] = {Lo, Hi}; 4132 return DAG.getMergeValues(Parts, DL); 4133 } 4134 4135 SDValue RISCVTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG, 4136 bool IsSRA) const { 4137 SDLoc DL(Op); 4138 SDValue Lo = Op.getOperand(0); 4139 SDValue Hi = Op.getOperand(1); 4140 SDValue Shamt = Op.getOperand(2); 4141 EVT VT = Lo.getValueType(); 4142 4143 // SRA expansion: 4144 // if Shamt-XLEN < 0: // Shamt < XLEN 4145 // Lo = (Lo >>u Shamt) | ((Hi << 1) << (ShAmt ^ XLEN-1)) 4146 // Hi = Hi >>s Shamt 4147 // else: 4148 // Lo = Hi >>s (Shamt-XLEN); 4149 // Hi = Hi >>s (XLEN-1) 4150 // 4151 // SRL expansion: 4152 // if Shamt-XLEN < 0: // Shamt < XLEN 4153 // Lo = (Lo >>u Shamt) | ((Hi << 1) << (ShAmt ^ XLEN-1)) 4154 // Hi = Hi >>u Shamt 4155 // else: 4156 // Lo = Hi >>u (Shamt-XLEN); 4157 // Hi = 0; 4158 4159 unsigned ShiftRightOp = IsSRA ? ISD::SRA : ISD::SRL; 4160 4161 SDValue Zero = DAG.getConstant(0, DL, VT); 4162 SDValue One = DAG.getConstant(1, DL, VT); 4163 SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT); 4164 SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT); 4165 SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen); 4166 SDValue XLenMinus1Shamt = DAG.getNode(ISD::XOR, DL, VT, Shamt, XLenMinus1); 4167 4168 SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, Lo, Shamt); 4169 SDValue ShiftLeftHi1 = DAG.getNode(ISD::SHL, DL, VT, Hi, One); 4170 SDValue ShiftLeftHi = 4171 DAG.getNode(ISD::SHL, DL, VT, ShiftLeftHi1, XLenMinus1Shamt); 4172 SDValue LoTrue = DAG.getNode(ISD::OR, DL, VT, ShiftRightLo, ShiftLeftHi); 4173 SDValue HiTrue = DAG.getNode(ShiftRightOp, DL, VT, Hi, Shamt); 4174 SDValue LoFalse = DAG.getNode(ShiftRightOp, DL, VT, Hi, ShamtMinusXLen); 4175 SDValue HiFalse = 4176 IsSRA ? DAG.getNode(ISD::SRA, DL, VT, Hi, XLenMinus1) : Zero; 4177 4178 SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT); 4179 4180 Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, LoFalse); 4181 Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse); 4182 4183 SDValue Parts[2] = {Lo, Hi}; 4184 return DAG.getMergeValues(Parts, DL); 4185 } 4186 4187 // Lower splats of i1 types to SETCC. For each mask vector type, we have a 4188 // legal equivalently-sized i8 type, so we can use that as a go-between. 4189 SDValue RISCVTargetLowering::lowerVectorMaskSplat(SDValue Op, 4190 SelectionDAG &DAG) const { 4191 SDLoc DL(Op); 4192 MVT VT = Op.getSimpleValueType(); 4193 SDValue SplatVal = Op.getOperand(0); 4194 // All-zeros or all-ones splats are handled specially. 4195 if (ISD::isConstantSplatVectorAllOnes(Op.getNode())) { 4196 SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second; 4197 return DAG.getNode(RISCVISD::VMSET_VL, DL, VT, VL); 4198 } 4199 if (ISD::isConstantSplatVectorAllZeros(Op.getNode())) { 4200 SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second; 4201 return DAG.getNode(RISCVISD::VMCLR_VL, DL, VT, VL); 4202 } 4203 MVT XLenVT = Subtarget.getXLenVT(); 4204 assert(SplatVal.getValueType() == XLenVT && 4205 "Unexpected type for i1 splat value"); 4206 MVT InterVT = VT.changeVectorElementType(MVT::i8); 4207 SplatVal = DAG.getNode(ISD::AND, DL, XLenVT, SplatVal, 4208 DAG.getConstant(1, DL, XLenVT)); 4209 SDValue LHS = DAG.getSplatVector(InterVT, DL, SplatVal); 4210 SDValue Zero = DAG.getConstant(0, DL, InterVT); 4211 return DAG.getSetCC(DL, VT, LHS, Zero, ISD::SETNE); 4212 } 4213 4214 // Custom-lower a SPLAT_VECTOR_PARTS where XLEN<SEW, as the SEW element type is 4215 // illegal (currently only vXi64 RV32). 4216 // FIXME: We could also catch non-constant sign-extended i32 values and lower 4217 // them to VMV_V_X_VL. 4218 SDValue RISCVTargetLowering::lowerSPLAT_VECTOR_PARTS(SDValue Op, 4219 SelectionDAG &DAG) const { 4220 SDLoc DL(Op); 4221 MVT VecVT = Op.getSimpleValueType(); 4222 assert(!Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64 && 4223 "Unexpected SPLAT_VECTOR_PARTS lowering"); 4224 4225 assert(Op.getNumOperands() == 2 && "Unexpected number of operands!"); 4226 SDValue Lo = Op.getOperand(0); 4227 SDValue Hi = Op.getOperand(1); 4228 4229 if (VecVT.isFixedLengthVector()) { 4230 MVT ContainerVT = getContainerForFixedLengthVector(VecVT); 4231 SDLoc DL(Op); 4232 SDValue Mask, VL; 4233 std::tie(Mask, VL) = 4234 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 4235 4236 SDValue Res = 4237 splatPartsI64WithVL(DL, ContainerVT, SDValue(), Lo, Hi, VL, DAG); 4238 return convertFromScalableVector(VecVT, Res, DAG, Subtarget); 4239 } 4240 4241 if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) { 4242 int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue(); 4243 int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue(); 4244 // If Hi constant is all the same sign bit as Lo, lower this as a custom 4245 // node in order to try and match RVV vector/scalar instructions. 4246 if ((LoC >> 31) == HiC) 4247 return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, DAG.getUNDEF(VecVT), 4248 Lo, DAG.getRegister(RISCV::X0, MVT::i32)); 4249 } 4250 4251 // Detect cases where Hi is (SRA Lo, 31) which means Hi is Lo sign extended. 4252 if (Hi.getOpcode() == ISD::SRA && Hi.getOperand(0) == Lo && 4253 isa<ConstantSDNode>(Hi.getOperand(1)) && 4254 Hi.getConstantOperandVal(1) == 31) 4255 return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, DAG.getUNDEF(VecVT), Lo, 4256 DAG.getRegister(RISCV::X0, MVT::i32)); 4257 4258 // Fall back to use a stack store and stride x0 vector load. Use X0 as VL. 4259 return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VecVT, 4260 DAG.getUNDEF(VecVT), Lo, Hi, 4261 DAG.getRegister(RISCV::X0, MVT::i32)); 4262 } 4263 4264 // Custom-lower extensions from mask vectors by using a vselect either with 1 4265 // for zero/any-extension or -1 for sign-extension: 4266 // (vXiN = (s|z)ext vXi1:vmask) -> (vXiN = vselect vmask, (-1 or 1), 0) 4267 // Note that any-extension is lowered identically to zero-extension. 4268 SDValue RISCVTargetLowering::lowerVectorMaskExt(SDValue Op, SelectionDAG &DAG, 4269 int64_t ExtTrueVal) const { 4270 SDLoc DL(Op); 4271 MVT VecVT = Op.getSimpleValueType(); 4272 SDValue Src = Op.getOperand(0); 4273 // Only custom-lower extensions from mask types 4274 assert(Src.getValueType().isVector() && 4275 Src.getValueType().getVectorElementType() == MVT::i1); 4276 4277 MVT XLenVT = Subtarget.getXLenVT(); 4278 SDValue SplatZero = DAG.getConstant(0, DL, XLenVT); 4279 SDValue SplatTrueVal = DAG.getConstant(ExtTrueVal, DL, XLenVT); 4280 4281 if (VecVT.isScalableVector()) { 4282 // Be careful not to introduce illegal scalar types at this stage, and be 4283 // careful also about splatting constants as on RV32, vXi64 SPLAT_VECTOR is 4284 // illegal and must be expanded. Since we know that the constants are 4285 // sign-extended 32-bit values, we use VMV_V_X_VL directly. 4286 bool IsRV32E64 = 4287 !Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64; 4288 4289 if (!IsRV32E64) { 4290 SplatZero = DAG.getSplatVector(VecVT, DL, SplatZero); 4291 SplatTrueVal = DAG.getSplatVector(VecVT, DL, SplatTrueVal); 4292 } else { 4293 SplatZero = 4294 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, DAG.getUNDEF(VecVT), 4295 SplatZero, DAG.getRegister(RISCV::X0, XLenVT)); 4296 SplatTrueVal = 4297 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, DAG.getUNDEF(VecVT), 4298 SplatTrueVal, DAG.getRegister(RISCV::X0, XLenVT)); 4299 } 4300 4301 return DAG.getNode(ISD::VSELECT, DL, VecVT, Src, SplatTrueVal, SplatZero); 4302 } 4303 4304 MVT ContainerVT = getContainerForFixedLengthVector(VecVT); 4305 MVT I1ContainerVT = 4306 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4307 4308 SDValue CC = convertToScalableVector(I1ContainerVT, Src, DAG, Subtarget); 4309 4310 SDValue Mask, VL; 4311 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 4312 4313 SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, 4314 DAG.getUNDEF(ContainerVT), SplatZero, VL); 4315 SplatTrueVal = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, 4316 DAG.getUNDEF(ContainerVT), SplatTrueVal, VL); 4317 SDValue Select = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC, 4318 SplatTrueVal, SplatZero, VL); 4319 4320 return convertFromScalableVector(VecVT, Select, DAG, Subtarget); 4321 } 4322 4323 SDValue RISCVTargetLowering::lowerFixedLengthVectorExtendToRVV( 4324 SDValue Op, SelectionDAG &DAG, unsigned ExtendOpc) const { 4325 MVT ExtVT = Op.getSimpleValueType(); 4326 // Only custom-lower extensions from fixed-length vector types. 4327 if (!ExtVT.isFixedLengthVector()) 4328 return Op; 4329 MVT VT = Op.getOperand(0).getSimpleValueType(); 4330 // Grab the canonical container type for the extended type. Infer the smaller 4331 // type from that to ensure the same number of vector elements, as we know 4332 // the LMUL will be sufficient to hold the smaller type. 4333 MVT ContainerExtVT = getContainerForFixedLengthVector(ExtVT); 4334 // Get the extended container type manually to ensure the same number of 4335 // vector elements between source and dest. 4336 MVT ContainerVT = MVT::getVectorVT(VT.getVectorElementType(), 4337 ContainerExtVT.getVectorElementCount()); 4338 4339 SDValue Op1 = 4340 convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget); 4341 4342 SDLoc DL(Op); 4343 SDValue Mask, VL; 4344 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 4345 4346 SDValue Ext = DAG.getNode(ExtendOpc, DL, ContainerExtVT, Op1, Mask, VL); 4347 4348 return convertFromScalableVector(ExtVT, Ext, DAG, Subtarget); 4349 } 4350 4351 // Custom-lower truncations from vectors to mask vectors by using a mask and a 4352 // setcc operation: 4353 // (vXi1 = trunc vXiN vec) -> (vXi1 = setcc (and vec, 1), 0, ne) 4354 SDValue RISCVTargetLowering::lowerVectorMaskTrunc(SDValue Op, 4355 SelectionDAG &DAG) const { 4356 SDLoc DL(Op); 4357 EVT MaskVT = Op.getValueType(); 4358 // Only expect to custom-lower truncations to mask types 4359 assert(MaskVT.isVector() && MaskVT.getVectorElementType() == MVT::i1 && 4360 "Unexpected type for vector mask lowering"); 4361 SDValue Src = Op.getOperand(0); 4362 MVT VecVT = Src.getSimpleValueType(); 4363 4364 // If this is a fixed vector, we need to convert it to a scalable vector. 4365 MVT ContainerVT = VecVT; 4366 if (VecVT.isFixedLengthVector()) { 4367 ContainerVT = getContainerForFixedLengthVector(VecVT); 4368 Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget); 4369 } 4370 4371 SDValue SplatOne = DAG.getConstant(1, DL, Subtarget.getXLenVT()); 4372 SDValue SplatZero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 4373 4374 SplatOne = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, 4375 DAG.getUNDEF(ContainerVT), SplatOne); 4376 SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, 4377 DAG.getUNDEF(ContainerVT), SplatZero); 4378 4379 if (VecVT.isScalableVector()) { 4380 SDValue Trunc = DAG.getNode(ISD::AND, DL, VecVT, Src, SplatOne); 4381 return DAG.getSetCC(DL, MaskVT, Trunc, SplatZero, ISD::SETNE); 4382 } 4383 4384 SDValue Mask, VL; 4385 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 4386 4387 MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1); 4388 SDValue Trunc = 4389 DAG.getNode(RISCVISD::AND_VL, DL, ContainerVT, Src, SplatOne, Mask, VL); 4390 Trunc = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskContainerVT, Trunc, SplatZero, 4391 DAG.getCondCode(ISD::SETNE), Mask, VL); 4392 return convertFromScalableVector(MaskVT, Trunc, DAG, Subtarget); 4393 } 4394 4395 // Custom-legalize INSERT_VECTOR_ELT so that the value is inserted into the 4396 // first position of a vector, and that vector is slid up to the insert index. 4397 // By limiting the active vector length to index+1 and merging with the 4398 // original vector (with an undisturbed tail policy for elements >= VL), we 4399 // achieve the desired result of leaving all elements untouched except the one 4400 // at VL-1, which is replaced with the desired value. 4401 SDValue RISCVTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op, 4402 SelectionDAG &DAG) const { 4403 SDLoc DL(Op); 4404 MVT VecVT = Op.getSimpleValueType(); 4405 SDValue Vec = Op.getOperand(0); 4406 SDValue Val = Op.getOperand(1); 4407 SDValue Idx = Op.getOperand(2); 4408 4409 if (VecVT.getVectorElementType() == MVT::i1) { 4410 // FIXME: For now we just promote to an i8 vector and insert into that, 4411 // but this is probably not optimal. 4412 MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount()); 4413 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec); 4414 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, WideVT, Vec, Val, Idx); 4415 return DAG.getNode(ISD::TRUNCATE, DL, VecVT, Vec); 4416 } 4417 4418 MVT ContainerVT = VecVT; 4419 // If the operand is a fixed-length vector, convert to a scalable one. 4420 if (VecVT.isFixedLengthVector()) { 4421 ContainerVT = getContainerForFixedLengthVector(VecVT); 4422 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 4423 } 4424 4425 MVT XLenVT = Subtarget.getXLenVT(); 4426 4427 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 4428 bool IsLegalInsert = Subtarget.is64Bit() || Val.getValueType() != MVT::i64; 4429 // Even i64-element vectors on RV32 can be lowered without scalar 4430 // legalization if the most-significant 32 bits of the value are not affected 4431 // by the sign-extension of the lower 32 bits. 4432 // TODO: We could also catch sign extensions of a 32-bit value. 4433 if (!IsLegalInsert && isa<ConstantSDNode>(Val)) { 4434 const auto *CVal = cast<ConstantSDNode>(Val); 4435 if (isInt<32>(CVal->getSExtValue())) { 4436 IsLegalInsert = true; 4437 Val = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32); 4438 } 4439 } 4440 4441 SDValue Mask, VL; 4442 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 4443 4444 SDValue ValInVec; 4445 4446 if (IsLegalInsert) { 4447 unsigned Opc = 4448 VecVT.isFloatingPoint() ? RISCVISD::VFMV_S_F_VL : RISCVISD::VMV_S_X_VL; 4449 if (isNullConstant(Idx)) { 4450 Vec = DAG.getNode(Opc, DL, ContainerVT, Vec, Val, VL); 4451 if (!VecVT.isFixedLengthVector()) 4452 return Vec; 4453 return convertFromScalableVector(VecVT, Vec, DAG, Subtarget); 4454 } 4455 ValInVec = 4456 DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), Val, VL); 4457 } else { 4458 // On RV32, i64-element vectors must be specially handled to place the 4459 // value at element 0, by using two vslide1up instructions in sequence on 4460 // the i32 split lo/hi value. Use an equivalently-sized i32 vector for 4461 // this. 4462 SDValue One = DAG.getConstant(1, DL, XLenVT); 4463 SDValue ValLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, Zero); 4464 SDValue ValHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, One); 4465 MVT I32ContainerVT = 4466 MVT::getVectorVT(MVT::i32, ContainerVT.getVectorElementCount() * 2); 4467 SDValue I32Mask = 4468 getDefaultScalableVLOps(I32ContainerVT, DL, DAG, Subtarget).first; 4469 // Limit the active VL to two. 4470 SDValue InsertI64VL = DAG.getConstant(2, DL, XLenVT); 4471 // Note: We can't pass a UNDEF to the first VSLIDE1UP_VL since an untied 4472 // undef doesn't obey the earlyclobber constraint. Just splat a zero value. 4473 ValInVec = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, I32ContainerVT, 4474 DAG.getUNDEF(I32ContainerVT), Zero, InsertI64VL); 4475 // First slide in the hi value, then the lo in underneath it. 4476 ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT, 4477 DAG.getUNDEF(I32ContainerVT), ValInVec, ValHi, 4478 I32Mask, InsertI64VL); 4479 ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT, 4480 DAG.getUNDEF(I32ContainerVT), ValInVec, ValLo, 4481 I32Mask, InsertI64VL); 4482 // Bitcast back to the right container type. 4483 ValInVec = DAG.getBitcast(ContainerVT, ValInVec); 4484 } 4485 4486 // Now that the value is in a vector, slide it into position. 4487 SDValue InsertVL = 4488 DAG.getNode(ISD::ADD, DL, XLenVT, Idx, DAG.getConstant(1, DL, XLenVT)); 4489 SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec, 4490 ValInVec, Idx, Mask, InsertVL); 4491 if (!VecVT.isFixedLengthVector()) 4492 return Slideup; 4493 return convertFromScalableVector(VecVT, Slideup, DAG, Subtarget); 4494 } 4495 4496 // Custom-lower EXTRACT_VECTOR_ELT operations to slide the vector down, then 4497 // extract the first element: (extractelt (slidedown vec, idx), 0). For integer 4498 // types this is done using VMV_X_S to allow us to glean information about the 4499 // sign bits of the result. 4500 SDValue RISCVTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op, 4501 SelectionDAG &DAG) const { 4502 SDLoc DL(Op); 4503 SDValue Idx = Op.getOperand(1); 4504 SDValue Vec = Op.getOperand(0); 4505 EVT EltVT = Op.getValueType(); 4506 MVT VecVT = Vec.getSimpleValueType(); 4507 MVT XLenVT = Subtarget.getXLenVT(); 4508 4509 if (VecVT.getVectorElementType() == MVT::i1) { 4510 if (VecVT.isFixedLengthVector()) { 4511 unsigned NumElts = VecVT.getVectorNumElements(); 4512 if (NumElts >= 8) { 4513 MVT WideEltVT; 4514 unsigned WidenVecLen; 4515 SDValue ExtractElementIdx; 4516 SDValue ExtractBitIdx; 4517 unsigned MaxEEW = Subtarget.getMaxELENForFixedLengthVectors(); 4518 MVT LargestEltVT = MVT::getIntegerVT( 4519 std::min(MaxEEW, unsigned(XLenVT.getSizeInBits()))); 4520 if (NumElts <= LargestEltVT.getSizeInBits()) { 4521 assert(isPowerOf2_32(NumElts) && 4522 "the number of elements should be power of 2"); 4523 WideEltVT = MVT::getIntegerVT(NumElts); 4524 WidenVecLen = 1; 4525 ExtractElementIdx = DAG.getConstant(0, DL, XLenVT); 4526 ExtractBitIdx = Idx; 4527 } else { 4528 WideEltVT = LargestEltVT; 4529 WidenVecLen = NumElts / WideEltVT.getSizeInBits(); 4530 // extract element index = index / element width 4531 ExtractElementIdx = DAG.getNode( 4532 ISD::SRL, DL, XLenVT, Idx, 4533 DAG.getConstant(Log2_64(WideEltVT.getSizeInBits()), DL, XLenVT)); 4534 // mask bit index = index % element width 4535 ExtractBitIdx = DAG.getNode( 4536 ISD::AND, DL, XLenVT, Idx, 4537 DAG.getConstant(WideEltVT.getSizeInBits() - 1, DL, XLenVT)); 4538 } 4539 MVT WideVT = MVT::getVectorVT(WideEltVT, WidenVecLen); 4540 Vec = DAG.getNode(ISD::BITCAST, DL, WideVT, Vec); 4541 SDValue ExtractElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, XLenVT, 4542 Vec, ExtractElementIdx); 4543 // Extract the bit from GPR. 4544 SDValue ShiftRight = 4545 DAG.getNode(ISD::SRL, DL, XLenVT, ExtractElt, ExtractBitIdx); 4546 return DAG.getNode(ISD::AND, DL, XLenVT, ShiftRight, 4547 DAG.getConstant(1, DL, XLenVT)); 4548 } 4549 } 4550 // Otherwise, promote to an i8 vector and extract from that. 4551 MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount()); 4552 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec); 4553 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec, Idx); 4554 } 4555 4556 // If this is a fixed vector, we need to convert it to a scalable vector. 4557 MVT ContainerVT = VecVT; 4558 if (VecVT.isFixedLengthVector()) { 4559 ContainerVT = getContainerForFixedLengthVector(VecVT); 4560 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 4561 } 4562 4563 // If the index is 0, the vector is already in the right position. 4564 if (!isNullConstant(Idx)) { 4565 // Use a VL of 1 to avoid processing more elements than we need. 4566 SDValue VL = DAG.getConstant(1, DL, XLenVT); 4567 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4568 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 4569 Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 4570 DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL); 4571 } 4572 4573 if (!EltVT.isInteger()) { 4574 // Floating-point extracts are handled in TableGen. 4575 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec, 4576 DAG.getConstant(0, DL, XLenVT)); 4577 } 4578 4579 SDValue Elt0 = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); 4580 return DAG.getNode(ISD::TRUNCATE, DL, EltVT, Elt0); 4581 } 4582 4583 // Some RVV intrinsics may claim that they want an integer operand to be 4584 // promoted or expanded. 4585 static SDValue lowerVectorIntrinsicSplats(SDValue Op, SelectionDAG &DAG, 4586 const RISCVSubtarget &Subtarget) { 4587 assert((Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 4588 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN) && 4589 "Unexpected opcode"); 4590 4591 if (!Subtarget.hasVInstructions()) 4592 return SDValue(); 4593 4594 bool HasChain = Op.getOpcode() == ISD::INTRINSIC_W_CHAIN; 4595 unsigned IntNo = Op.getConstantOperandVal(HasChain ? 1 : 0); 4596 SDLoc DL(Op); 4597 4598 const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II = 4599 RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo); 4600 if (!II || !II->hasSplatOperand()) 4601 return SDValue(); 4602 4603 unsigned SplatOp = II->SplatOperand + 1 + HasChain; 4604 assert(SplatOp < Op.getNumOperands()); 4605 4606 SmallVector<SDValue, 8> Operands(Op->op_begin(), Op->op_end()); 4607 SDValue &ScalarOp = Operands[SplatOp]; 4608 MVT OpVT = ScalarOp.getSimpleValueType(); 4609 MVT XLenVT = Subtarget.getXLenVT(); 4610 4611 // If this isn't a scalar, or its type is XLenVT we're done. 4612 if (!OpVT.isScalarInteger() || OpVT == XLenVT) 4613 return SDValue(); 4614 4615 // Simplest case is that the operand needs to be promoted to XLenVT. 4616 if (OpVT.bitsLT(XLenVT)) { 4617 // If the operand is a constant, sign extend to increase our chances 4618 // of being able to use a .vi instruction. ANY_EXTEND would become a 4619 // a zero extend and the simm5 check in isel would fail. 4620 // FIXME: Should we ignore the upper bits in isel instead? 4621 unsigned ExtOpc = 4622 isa<ConstantSDNode>(ScalarOp) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND; 4623 ScalarOp = DAG.getNode(ExtOpc, DL, XLenVT, ScalarOp); 4624 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); 4625 } 4626 4627 // Use the previous operand to get the vXi64 VT. The result might be a mask 4628 // VT for compares. Using the previous operand assumes that the previous 4629 // operand will never have a smaller element size than a scalar operand and 4630 // that a widening operation never uses SEW=64. 4631 // NOTE: If this fails the below assert, we can probably just find the 4632 // element count from any operand or result and use it to construct the VT. 4633 assert(II->SplatOperand > 0 && "Unexpected splat operand!"); 4634 MVT VT = Op.getOperand(SplatOp - 1).getSimpleValueType(); 4635 4636 // The more complex case is when the scalar is larger than XLenVT. 4637 assert(XLenVT == MVT::i32 && OpVT == MVT::i64 && 4638 VT.getVectorElementType() == MVT::i64 && "Unexpected VTs!"); 4639 4640 // If this is a sign-extended 32-bit constant, we can truncate it and rely 4641 // on the instruction to sign-extend since SEW>XLEN. 4642 if (auto *CVal = dyn_cast<ConstantSDNode>(ScalarOp)) { 4643 if (isInt<32>(CVal->getSExtValue())) { 4644 ScalarOp = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32); 4645 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); 4646 } 4647 } 4648 4649 // We need to convert the scalar to a splat vector. 4650 // FIXME: Can we implicitly truncate the scalar if it is known to 4651 // be sign extended? 4652 SDValue VL = getVLOperand(Op); 4653 assert(VL.getValueType() == XLenVT); 4654 ScalarOp = splatSplitI64WithVL(DL, VT, SDValue(), ScalarOp, VL, DAG); 4655 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); 4656 } 4657 4658 SDValue RISCVTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 4659 SelectionDAG &DAG) const { 4660 unsigned IntNo = Op.getConstantOperandVal(0); 4661 SDLoc DL(Op); 4662 MVT XLenVT = Subtarget.getXLenVT(); 4663 4664 switch (IntNo) { 4665 default: 4666 break; // Don't custom lower most intrinsics. 4667 case Intrinsic::thread_pointer: { 4668 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 4669 return DAG.getRegister(RISCV::X4, PtrVT); 4670 } 4671 case Intrinsic::riscv_orc_b: 4672 case Intrinsic::riscv_brev8: { 4673 // Lower to the GORCI encoding for orc.b or the GREVI encoding for brev8. 4674 unsigned Opc = 4675 IntNo == Intrinsic::riscv_brev8 ? RISCVISD::GREV : RISCVISD::GORC; 4676 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), 4677 DAG.getConstant(7, DL, XLenVT)); 4678 } 4679 case Intrinsic::riscv_grev: 4680 case Intrinsic::riscv_gorc: { 4681 unsigned Opc = 4682 IntNo == Intrinsic::riscv_grev ? RISCVISD::GREV : RISCVISD::GORC; 4683 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2)); 4684 } 4685 case Intrinsic::riscv_zip: 4686 case Intrinsic::riscv_unzip: { 4687 // Lower to the SHFLI encoding for zip or the UNSHFLI encoding for unzip. 4688 // For i32 the immdiate is 15. For i64 the immediate is 31. 4689 unsigned Opc = 4690 IntNo == Intrinsic::riscv_zip ? RISCVISD::SHFL : RISCVISD::UNSHFL; 4691 unsigned BitWidth = Op.getValueSizeInBits(); 4692 assert(isPowerOf2_32(BitWidth) && BitWidth >= 2 && "Unexpected bit width"); 4693 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), 4694 DAG.getConstant((BitWidth / 2) - 1, DL, XLenVT)); 4695 } 4696 case Intrinsic::riscv_shfl: 4697 case Intrinsic::riscv_unshfl: { 4698 unsigned Opc = 4699 IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL; 4700 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2)); 4701 } 4702 case Intrinsic::riscv_bcompress: 4703 case Intrinsic::riscv_bdecompress: { 4704 unsigned Opc = IntNo == Intrinsic::riscv_bcompress ? RISCVISD::BCOMPRESS 4705 : RISCVISD::BDECOMPRESS; 4706 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2)); 4707 } 4708 case Intrinsic::riscv_bfp: 4709 return DAG.getNode(RISCVISD::BFP, DL, XLenVT, Op.getOperand(1), 4710 Op.getOperand(2)); 4711 case Intrinsic::riscv_fsl: 4712 return DAG.getNode(RISCVISD::FSL, DL, XLenVT, Op.getOperand(1), 4713 Op.getOperand(2), Op.getOperand(3)); 4714 case Intrinsic::riscv_fsr: 4715 return DAG.getNode(RISCVISD::FSR, DL, XLenVT, Op.getOperand(1), 4716 Op.getOperand(2), Op.getOperand(3)); 4717 case Intrinsic::riscv_vmv_x_s: 4718 assert(Op.getValueType() == XLenVT && "Unexpected VT!"); 4719 return DAG.getNode(RISCVISD::VMV_X_S, DL, Op.getValueType(), 4720 Op.getOperand(1)); 4721 case Intrinsic::riscv_vmv_v_x: 4722 return lowerScalarSplat(Op.getOperand(1), Op.getOperand(2), 4723 Op.getOperand(3), Op.getSimpleValueType(), DL, DAG, 4724 Subtarget); 4725 case Intrinsic::riscv_vfmv_v_f: 4726 return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, Op.getValueType(), 4727 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 4728 case Intrinsic::riscv_vmv_s_x: { 4729 SDValue Scalar = Op.getOperand(2); 4730 4731 if (Scalar.getValueType().bitsLE(XLenVT)) { 4732 Scalar = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Scalar); 4733 return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, Op.getValueType(), 4734 Op.getOperand(1), Scalar, Op.getOperand(3)); 4735 } 4736 4737 assert(Scalar.getValueType() == MVT::i64 && "Unexpected scalar VT!"); 4738 4739 // This is an i64 value that lives in two scalar registers. We have to 4740 // insert this in a convoluted way. First we build vXi64 splat containing 4741 // the/ two values that we assemble using some bit math. Next we'll use 4742 // vid.v and vmseq to build a mask with bit 0 set. Then we'll use that mask 4743 // to merge element 0 from our splat into the source vector. 4744 // FIXME: This is probably not the best way to do this, but it is 4745 // consistent with INSERT_VECTOR_ELT lowering so it is a good starting 4746 // point. 4747 // sw lo, (a0) 4748 // sw hi, 4(a0) 4749 // vlse vX, (a0) 4750 // 4751 // vid.v vVid 4752 // vmseq.vx mMask, vVid, 0 4753 // vmerge.vvm vDest, vSrc, vVal, mMask 4754 MVT VT = Op.getSimpleValueType(); 4755 SDValue Vec = Op.getOperand(1); 4756 SDValue VL = getVLOperand(Op); 4757 4758 SDValue SplattedVal = splatSplitI64WithVL(DL, VT, SDValue(), Scalar, VL, DAG); 4759 SDValue SplattedIdx = 4760 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, DAG.getUNDEF(VT), 4761 DAG.getConstant(0, DL, MVT::i32), VL); 4762 4763 MVT MaskVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount()); 4764 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 4765 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL); 4766 SDValue SelectCond = 4767 DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, VID, SplattedIdx, 4768 DAG.getCondCode(ISD::SETEQ), Mask, VL); 4769 return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, SelectCond, SplattedVal, 4770 Vec, VL); 4771 } 4772 case Intrinsic::riscv_vslide1up: 4773 case Intrinsic::riscv_vslide1down: 4774 case Intrinsic::riscv_vslide1up_mask: 4775 case Intrinsic::riscv_vslide1down_mask: { 4776 // We need to special case these when the scalar is larger than XLen. 4777 unsigned NumOps = Op.getNumOperands(); 4778 bool IsMasked = NumOps == 7; 4779 SDValue Scalar = Op.getOperand(3); 4780 if (Scalar.getValueType().bitsLE(XLenVT)) 4781 break; 4782 4783 // Splatting a sign extended constant is fine. 4784 if (auto *CVal = dyn_cast<ConstantSDNode>(Scalar)) 4785 if (isInt<32>(CVal->getSExtValue())) 4786 break; 4787 4788 MVT VT = Op.getSimpleValueType(); 4789 assert(VT.getVectorElementType() == MVT::i64 && 4790 Scalar.getValueType() == MVT::i64 && "Unexpected VTs"); 4791 4792 // Convert the vector source to the equivalent nxvXi32 vector. 4793 MVT I32VT = MVT::getVectorVT(MVT::i32, VT.getVectorElementCount() * 2); 4794 SDValue Vec = DAG.getBitcast(I32VT, Op.getOperand(2)); 4795 4796 SDValue ScalarLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 4797 DAG.getConstant(0, DL, XLenVT)); 4798 SDValue ScalarHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 4799 DAG.getConstant(1, DL, XLenVT)); 4800 4801 // Double the VL since we halved SEW. 4802 SDValue VL = getVLOperand(Op); 4803 SDValue I32VL = 4804 DAG.getNode(ISD::SHL, DL, XLenVT, VL, DAG.getConstant(1, DL, XLenVT)); 4805 4806 MVT I32MaskVT = MVT::getVectorVT(MVT::i1, I32VT.getVectorElementCount()); 4807 SDValue I32Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, I32MaskVT, VL); 4808 4809 // Shift the two scalar parts in using SEW=32 slide1up/slide1down 4810 // instructions. 4811 SDValue Passthru = DAG.getBitcast(I32VT, Op.getOperand(1)); 4812 if (!IsMasked) { 4813 if (IntNo == Intrinsic::riscv_vslide1up) { 4814 Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Passthru, Vec, 4815 ScalarHi, I32Mask, I32VL); 4816 Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Passthru, Vec, 4817 ScalarLo, I32Mask, I32VL); 4818 } else { 4819 Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Passthru, Vec, 4820 ScalarLo, I32Mask, I32VL); 4821 Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Passthru, Vec, 4822 ScalarHi, I32Mask, I32VL); 4823 } 4824 } else { 4825 // TODO Those VSLIDE1 could be TAMA because we use vmerge to select 4826 // maskedoff 4827 SDValue Undef = DAG.getUNDEF(I32VT); 4828 if (IntNo == Intrinsic::riscv_vslide1up_mask) { 4829 Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Undef, Vec, 4830 ScalarHi, I32Mask, I32VL); 4831 Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Undef, Vec, 4832 ScalarLo, I32Mask, I32VL); 4833 } else { 4834 Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Undef, Vec, 4835 ScalarLo, I32Mask, I32VL); 4836 Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Undef, Vec, 4837 ScalarHi, I32Mask, I32VL); 4838 } 4839 } 4840 4841 // Convert back to nxvXi64. 4842 Vec = DAG.getBitcast(VT, Vec); 4843 4844 if (!IsMasked) 4845 return Vec; 4846 // Apply mask after the operation. 4847 SDValue Mask = Op.getOperand(NumOps - 3); 4848 SDValue MaskedOff = Op.getOperand(1); 4849 // Assume Policy operand is the last operand. 4850 uint64_t Policy = Op.getConstantOperandVal(NumOps - 1); 4851 // We don't need to select maskedoff if it's undef. 4852 if (MaskedOff.isUndef()) 4853 return Vec; 4854 // TAMU 4855 if (Policy == RISCVII::TAIL_AGNOSTIC) 4856 return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, Mask, Vec, MaskedOff, 4857 VL); 4858 // TUMA or TUMU: Currently we always emit tumu policy regardless of tuma. 4859 // It's fine because vmerge does not care mask policy. 4860 return DAG.getNode(RISCVISD::VP_MERGE_VL, DL, VT, Mask, Vec, MaskedOff, VL); 4861 } 4862 } 4863 4864 return lowerVectorIntrinsicSplats(Op, DAG, Subtarget); 4865 } 4866 4867 SDValue RISCVTargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op, 4868 SelectionDAG &DAG) const { 4869 unsigned IntNo = Op.getConstantOperandVal(1); 4870 switch (IntNo) { 4871 default: 4872 break; 4873 case Intrinsic::riscv_masked_strided_load: { 4874 SDLoc DL(Op); 4875 MVT XLenVT = Subtarget.getXLenVT(); 4876 4877 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 4878 // the selection of the masked intrinsics doesn't do this for us. 4879 SDValue Mask = Op.getOperand(5); 4880 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 4881 4882 MVT VT = Op->getSimpleValueType(0); 4883 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4884 4885 SDValue PassThru = Op.getOperand(2); 4886 if (!IsUnmasked) { 4887 MVT MaskVT = 4888 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4889 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 4890 PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget); 4891 } 4892 4893 SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT); 4894 4895 SDValue IntID = DAG.getTargetConstant( 4896 IsUnmasked ? Intrinsic::riscv_vlse : Intrinsic::riscv_vlse_mask, DL, 4897 XLenVT); 4898 4899 auto *Load = cast<MemIntrinsicSDNode>(Op); 4900 SmallVector<SDValue, 8> Ops{Load->getChain(), IntID}; 4901 if (IsUnmasked) 4902 Ops.push_back(DAG.getUNDEF(ContainerVT)); 4903 else 4904 Ops.push_back(PassThru); 4905 Ops.push_back(Op.getOperand(3)); // Ptr 4906 Ops.push_back(Op.getOperand(4)); // Stride 4907 if (!IsUnmasked) 4908 Ops.push_back(Mask); 4909 Ops.push_back(VL); 4910 if (!IsUnmasked) { 4911 SDValue Policy = DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT); 4912 Ops.push_back(Policy); 4913 } 4914 4915 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 4916 SDValue Result = 4917 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, 4918 Load->getMemoryVT(), Load->getMemOperand()); 4919 SDValue Chain = Result.getValue(1); 4920 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 4921 return DAG.getMergeValues({Result, Chain}, DL); 4922 } 4923 } 4924 4925 return lowerVectorIntrinsicSplats(Op, DAG, Subtarget); 4926 } 4927 4928 SDValue RISCVTargetLowering::LowerINTRINSIC_VOID(SDValue Op, 4929 SelectionDAG &DAG) const { 4930 unsigned IntNo = Op.getConstantOperandVal(1); 4931 switch (IntNo) { 4932 default: 4933 break; 4934 case Intrinsic::riscv_masked_strided_store: { 4935 SDLoc DL(Op); 4936 MVT XLenVT = Subtarget.getXLenVT(); 4937 4938 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 4939 // the selection of the masked intrinsics doesn't do this for us. 4940 SDValue Mask = Op.getOperand(5); 4941 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 4942 4943 SDValue Val = Op.getOperand(2); 4944 MVT VT = Val.getSimpleValueType(); 4945 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4946 4947 Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget); 4948 if (!IsUnmasked) { 4949 MVT MaskVT = 4950 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4951 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 4952 } 4953 4954 SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT); 4955 4956 SDValue IntID = DAG.getTargetConstant( 4957 IsUnmasked ? Intrinsic::riscv_vsse : Intrinsic::riscv_vsse_mask, DL, 4958 XLenVT); 4959 4960 auto *Store = cast<MemIntrinsicSDNode>(Op); 4961 SmallVector<SDValue, 8> Ops{Store->getChain(), IntID}; 4962 Ops.push_back(Val); 4963 Ops.push_back(Op.getOperand(3)); // Ptr 4964 Ops.push_back(Op.getOperand(4)); // Stride 4965 if (!IsUnmasked) 4966 Ops.push_back(Mask); 4967 Ops.push_back(VL); 4968 4969 return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, Store->getVTList(), 4970 Ops, Store->getMemoryVT(), 4971 Store->getMemOperand()); 4972 } 4973 } 4974 4975 return SDValue(); 4976 } 4977 4978 static MVT getLMUL1VT(MVT VT) { 4979 assert(VT.getVectorElementType().getSizeInBits() <= 64 && 4980 "Unexpected vector MVT"); 4981 return MVT::getScalableVectorVT( 4982 VT.getVectorElementType(), 4983 RISCV::RVVBitsPerBlock / VT.getVectorElementType().getSizeInBits()); 4984 } 4985 4986 static unsigned getRVVReductionOp(unsigned ISDOpcode) { 4987 switch (ISDOpcode) { 4988 default: 4989 llvm_unreachable("Unhandled reduction"); 4990 case ISD::VECREDUCE_ADD: 4991 return RISCVISD::VECREDUCE_ADD_VL; 4992 case ISD::VECREDUCE_UMAX: 4993 return RISCVISD::VECREDUCE_UMAX_VL; 4994 case ISD::VECREDUCE_SMAX: 4995 return RISCVISD::VECREDUCE_SMAX_VL; 4996 case ISD::VECREDUCE_UMIN: 4997 return RISCVISD::VECREDUCE_UMIN_VL; 4998 case ISD::VECREDUCE_SMIN: 4999 return RISCVISD::VECREDUCE_SMIN_VL; 5000 case ISD::VECREDUCE_AND: 5001 return RISCVISD::VECREDUCE_AND_VL; 5002 case ISD::VECREDUCE_OR: 5003 return RISCVISD::VECREDUCE_OR_VL; 5004 case ISD::VECREDUCE_XOR: 5005 return RISCVISD::VECREDUCE_XOR_VL; 5006 } 5007 } 5008 5009 SDValue RISCVTargetLowering::lowerVectorMaskVecReduction(SDValue Op, 5010 SelectionDAG &DAG, 5011 bool IsVP) const { 5012 SDLoc DL(Op); 5013 SDValue Vec = Op.getOperand(IsVP ? 1 : 0); 5014 MVT VecVT = Vec.getSimpleValueType(); 5015 assert((Op.getOpcode() == ISD::VECREDUCE_AND || 5016 Op.getOpcode() == ISD::VECREDUCE_OR || 5017 Op.getOpcode() == ISD::VECREDUCE_XOR || 5018 Op.getOpcode() == ISD::VP_REDUCE_AND || 5019 Op.getOpcode() == ISD::VP_REDUCE_OR || 5020 Op.getOpcode() == ISD::VP_REDUCE_XOR) && 5021 "Unexpected reduction lowering"); 5022 5023 MVT XLenVT = Subtarget.getXLenVT(); 5024 assert(Op.getValueType() == XLenVT && 5025 "Expected reduction output to be legalized to XLenVT"); 5026 5027 MVT ContainerVT = VecVT; 5028 if (VecVT.isFixedLengthVector()) { 5029 ContainerVT = getContainerForFixedLengthVector(VecVT); 5030 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 5031 } 5032 5033 SDValue Mask, VL; 5034 if (IsVP) { 5035 Mask = Op.getOperand(2); 5036 VL = Op.getOperand(3); 5037 } else { 5038 std::tie(Mask, VL) = 5039 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 5040 } 5041 5042 unsigned BaseOpc; 5043 ISD::CondCode CC; 5044 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 5045 5046 switch (Op.getOpcode()) { 5047 default: 5048 llvm_unreachable("Unhandled reduction"); 5049 case ISD::VECREDUCE_AND: 5050 case ISD::VP_REDUCE_AND: { 5051 // vcpop ~x == 0 5052 SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL); 5053 Vec = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Vec, TrueMask, VL); 5054 Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL); 5055 CC = ISD::SETEQ; 5056 BaseOpc = ISD::AND; 5057 break; 5058 } 5059 case ISD::VECREDUCE_OR: 5060 case ISD::VP_REDUCE_OR: 5061 // vcpop x != 0 5062 Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL); 5063 CC = ISD::SETNE; 5064 BaseOpc = ISD::OR; 5065 break; 5066 case ISD::VECREDUCE_XOR: 5067 case ISD::VP_REDUCE_XOR: { 5068 // ((vcpop x) & 1) != 0 5069 SDValue One = DAG.getConstant(1, DL, XLenVT); 5070 Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL); 5071 Vec = DAG.getNode(ISD::AND, DL, XLenVT, Vec, One); 5072 CC = ISD::SETNE; 5073 BaseOpc = ISD::XOR; 5074 break; 5075 } 5076 } 5077 5078 SDValue SetCC = DAG.getSetCC(DL, XLenVT, Vec, Zero, CC); 5079 5080 if (!IsVP) 5081 return SetCC; 5082 5083 // Now include the start value in the operation. 5084 // Note that we must return the start value when no elements are operated 5085 // upon. The vcpop instructions we've emitted in each case above will return 5086 // 0 for an inactive vector, and so we've already received the neutral value: 5087 // AND gives us (0 == 0) -> 1 and OR/XOR give us (0 != 0) -> 0. Therefore we 5088 // can simply include the start value. 5089 return DAG.getNode(BaseOpc, DL, XLenVT, SetCC, Op.getOperand(0)); 5090 } 5091 5092 SDValue RISCVTargetLowering::lowerVECREDUCE(SDValue Op, 5093 SelectionDAG &DAG) const { 5094 SDLoc DL(Op); 5095 SDValue Vec = Op.getOperand(0); 5096 EVT VecEVT = Vec.getValueType(); 5097 5098 unsigned BaseOpc = ISD::getVecReduceBaseOpcode(Op.getOpcode()); 5099 5100 // Due to ordering in legalize types we may have a vector type that needs to 5101 // be split. Do that manually so we can get down to a legal type. 5102 while (getTypeAction(*DAG.getContext(), VecEVT) == 5103 TargetLowering::TypeSplitVector) { 5104 SDValue Lo, Hi; 5105 std::tie(Lo, Hi) = DAG.SplitVector(Vec, DL); 5106 VecEVT = Lo.getValueType(); 5107 Vec = DAG.getNode(BaseOpc, DL, VecEVT, Lo, Hi); 5108 } 5109 5110 // TODO: The type may need to be widened rather than split. Or widened before 5111 // it can be split. 5112 if (!isTypeLegal(VecEVT)) 5113 return SDValue(); 5114 5115 MVT VecVT = VecEVT.getSimpleVT(); 5116 MVT VecEltVT = VecVT.getVectorElementType(); 5117 unsigned RVVOpcode = getRVVReductionOp(Op.getOpcode()); 5118 5119 MVT ContainerVT = VecVT; 5120 if (VecVT.isFixedLengthVector()) { 5121 ContainerVT = getContainerForFixedLengthVector(VecVT); 5122 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 5123 } 5124 5125 MVT M1VT = getLMUL1VT(ContainerVT); 5126 MVT XLenVT = Subtarget.getXLenVT(); 5127 5128 SDValue Mask, VL; 5129 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 5130 5131 SDValue NeutralElem = 5132 DAG.getNeutralElement(BaseOpc, DL, VecEltVT, SDNodeFlags()); 5133 SDValue IdentitySplat = 5134 lowerScalarSplat(SDValue(), NeutralElem, DAG.getConstant(1, DL, XLenVT), 5135 M1VT, DL, DAG, Subtarget); 5136 SDValue Reduction = DAG.getNode(RVVOpcode, DL, M1VT, DAG.getUNDEF(M1VT), Vec, 5137 IdentitySplat, Mask, VL); 5138 SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction, 5139 DAG.getConstant(0, DL, XLenVT)); 5140 return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType()); 5141 } 5142 5143 // Given a reduction op, this function returns the matching reduction opcode, 5144 // the vector SDValue and the scalar SDValue required to lower this to a 5145 // RISCVISD node. 5146 static std::tuple<unsigned, SDValue, SDValue> 5147 getRVVFPReductionOpAndOperands(SDValue Op, SelectionDAG &DAG, EVT EltVT) { 5148 SDLoc DL(Op); 5149 auto Flags = Op->getFlags(); 5150 unsigned Opcode = Op.getOpcode(); 5151 unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Opcode); 5152 switch (Opcode) { 5153 default: 5154 llvm_unreachable("Unhandled reduction"); 5155 case ISD::VECREDUCE_FADD: { 5156 // Use positive zero if we can. It is cheaper to materialize. 5157 SDValue Zero = 5158 DAG.getConstantFP(Flags.hasNoSignedZeros() ? 0.0 : -0.0, DL, EltVT); 5159 return std::make_tuple(RISCVISD::VECREDUCE_FADD_VL, Op.getOperand(0), Zero); 5160 } 5161 case ISD::VECREDUCE_SEQ_FADD: 5162 return std::make_tuple(RISCVISD::VECREDUCE_SEQ_FADD_VL, Op.getOperand(1), 5163 Op.getOperand(0)); 5164 case ISD::VECREDUCE_FMIN: 5165 return std::make_tuple(RISCVISD::VECREDUCE_FMIN_VL, Op.getOperand(0), 5166 DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags)); 5167 case ISD::VECREDUCE_FMAX: 5168 return std::make_tuple(RISCVISD::VECREDUCE_FMAX_VL, Op.getOperand(0), 5169 DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags)); 5170 } 5171 } 5172 5173 SDValue RISCVTargetLowering::lowerFPVECREDUCE(SDValue Op, 5174 SelectionDAG &DAG) const { 5175 SDLoc DL(Op); 5176 MVT VecEltVT = Op.getSimpleValueType(); 5177 5178 unsigned RVVOpcode; 5179 SDValue VectorVal, ScalarVal; 5180 std::tie(RVVOpcode, VectorVal, ScalarVal) = 5181 getRVVFPReductionOpAndOperands(Op, DAG, VecEltVT); 5182 MVT VecVT = VectorVal.getSimpleValueType(); 5183 5184 MVT ContainerVT = VecVT; 5185 if (VecVT.isFixedLengthVector()) { 5186 ContainerVT = getContainerForFixedLengthVector(VecVT); 5187 VectorVal = convertToScalableVector(ContainerVT, VectorVal, DAG, Subtarget); 5188 } 5189 5190 MVT M1VT = getLMUL1VT(VectorVal.getSimpleValueType()); 5191 MVT XLenVT = Subtarget.getXLenVT(); 5192 5193 SDValue Mask, VL; 5194 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 5195 5196 SDValue ScalarSplat = 5197 lowerScalarSplat(SDValue(), ScalarVal, DAG.getConstant(1, DL, XLenVT), 5198 M1VT, DL, DAG, Subtarget); 5199 SDValue Reduction = DAG.getNode(RVVOpcode, DL, M1VT, DAG.getUNDEF(M1VT), 5200 VectorVal, ScalarSplat, Mask, VL); 5201 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction, 5202 DAG.getConstant(0, DL, XLenVT)); 5203 } 5204 5205 static unsigned getRVVVPReductionOp(unsigned ISDOpcode) { 5206 switch (ISDOpcode) { 5207 default: 5208 llvm_unreachable("Unhandled reduction"); 5209 case ISD::VP_REDUCE_ADD: 5210 return RISCVISD::VECREDUCE_ADD_VL; 5211 case ISD::VP_REDUCE_UMAX: 5212 return RISCVISD::VECREDUCE_UMAX_VL; 5213 case ISD::VP_REDUCE_SMAX: 5214 return RISCVISD::VECREDUCE_SMAX_VL; 5215 case ISD::VP_REDUCE_UMIN: 5216 return RISCVISD::VECREDUCE_UMIN_VL; 5217 case ISD::VP_REDUCE_SMIN: 5218 return RISCVISD::VECREDUCE_SMIN_VL; 5219 case ISD::VP_REDUCE_AND: 5220 return RISCVISD::VECREDUCE_AND_VL; 5221 case ISD::VP_REDUCE_OR: 5222 return RISCVISD::VECREDUCE_OR_VL; 5223 case ISD::VP_REDUCE_XOR: 5224 return RISCVISD::VECREDUCE_XOR_VL; 5225 case ISD::VP_REDUCE_FADD: 5226 return RISCVISD::VECREDUCE_FADD_VL; 5227 case ISD::VP_REDUCE_SEQ_FADD: 5228 return RISCVISD::VECREDUCE_SEQ_FADD_VL; 5229 case ISD::VP_REDUCE_FMAX: 5230 return RISCVISD::VECREDUCE_FMAX_VL; 5231 case ISD::VP_REDUCE_FMIN: 5232 return RISCVISD::VECREDUCE_FMIN_VL; 5233 } 5234 } 5235 5236 SDValue RISCVTargetLowering::lowerVPREDUCE(SDValue Op, 5237 SelectionDAG &DAG) const { 5238 SDLoc DL(Op); 5239 SDValue Vec = Op.getOperand(1); 5240 EVT VecEVT = Vec.getValueType(); 5241 5242 // TODO: The type may need to be widened rather than split. Or widened before 5243 // it can be split. 5244 if (!isTypeLegal(VecEVT)) 5245 return SDValue(); 5246 5247 MVT VecVT = VecEVT.getSimpleVT(); 5248 MVT VecEltVT = VecVT.getVectorElementType(); 5249 unsigned RVVOpcode = getRVVVPReductionOp(Op.getOpcode()); 5250 5251 MVT ContainerVT = VecVT; 5252 if (VecVT.isFixedLengthVector()) { 5253 ContainerVT = getContainerForFixedLengthVector(VecVT); 5254 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 5255 } 5256 5257 SDValue VL = Op.getOperand(3); 5258 SDValue Mask = Op.getOperand(2); 5259 5260 MVT M1VT = getLMUL1VT(ContainerVT); 5261 MVT XLenVT = Subtarget.getXLenVT(); 5262 MVT ResVT = !VecVT.isInteger() || VecEltVT.bitsGE(XLenVT) ? VecEltVT : XLenVT; 5263 5264 SDValue StartSplat = lowerScalarSplat(SDValue(), Op.getOperand(0), 5265 DAG.getConstant(1, DL, XLenVT), M1VT, 5266 DL, DAG, Subtarget); 5267 SDValue Reduction = 5268 DAG.getNode(RVVOpcode, DL, M1VT, StartSplat, Vec, StartSplat, Mask, VL); 5269 SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Reduction, 5270 DAG.getConstant(0, DL, XLenVT)); 5271 if (!VecVT.isInteger()) 5272 return Elt0; 5273 return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType()); 5274 } 5275 5276 SDValue RISCVTargetLowering::lowerINSERT_SUBVECTOR(SDValue Op, 5277 SelectionDAG &DAG) const { 5278 SDValue Vec = Op.getOperand(0); 5279 SDValue SubVec = Op.getOperand(1); 5280 MVT VecVT = Vec.getSimpleValueType(); 5281 MVT SubVecVT = SubVec.getSimpleValueType(); 5282 5283 SDLoc DL(Op); 5284 MVT XLenVT = Subtarget.getXLenVT(); 5285 unsigned OrigIdx = Op.getConstantOperandVal(2); 5286 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 5287 5288 // We don't have the ability to slide mask vectors up indexed by their i1 5289 // elements; the smallest we can do is i8. Often we are able to bitcast to 5290 // equivalent i8 vectors. Note that when inserting a fixed-length vector 5291 // into a scalable one, we might not necessarily have enough scalable 5292 // elements to safely divide by 8: nxv1i1 = insert nxv1i1, v4i1 is valid. 5293 if (SubVecVT.getVectorElementType() == MVT::i1 && 5294 (OrigIdx != 0 || !Vec.isUndef())) { 5295 if (VecVT.getVectorMinNumElements() >= 8 && 5296 SubVecVT.getVectorMinNumElements() >= 8) { 5297 assert(OrigIdx % 8 == 0 && "Invalid index"); 5298 assert(VecVT.getVectorMinNumElements() % 8 == 0 && 5299 SubVecVT.getVectorMinNumElements() % 8 == 0 && 5300 "Unexpected mask vector lowering"); 5301 OrigIdx /= 8; 5302 SubVecVT = 5303 MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8, 5304 SubVecVT.isScalableVector()); 5305 VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8, 5306 VecVT.isScalableVector()); 5307 Vec = DAG.getBitcast(VecVT, Vec); 5308 SubVec = DAG.getBitcast(SubVecVT, SubVec); 5309 } else { 5310 // We can't slide this mask vector up indexed by its i1 elements. 5311 // This poses a problem when we wish to insert a scalable vector which 5312 // can't be re-expressed as a larger type. Just choose the slow path and 5313 // extend to a larger type, then truncate back down. 5314 MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8); 5315 MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8); 5316 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec); 5317 SubVec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtSubVecVT, SubVec); 5318 Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ExtVecVT, Vec, SubVec, 5319 Op.getOperand(2)); 5320 SDValue SplatZero = DAG.getConstant(0, DL, ExtVecVT); 5321 return DAG.getSetCC(DL, VecVT, Vec, SplatZero, ISD::SETNE); 5322 } 5323 } 5324 5325 // If the subvector vector is a fixed-length type, we cannot use subregister 5326 // manipulation to simplify the codegen; we don't know which register of a 5327 // LMUL group contains the specific subvector as we only know the minimum 5328 // register size. Therefore we must slide the vector group up the full 5329 // amount. 5330 if (SubVecVT.isFixedLengthVector()) { 5331 if (OrigIdx == 0 && Vec.isUndef() && !VecVT.isFixedLengthVector()) 5332 return Op; 5333 MVT ContainerVT = VecVT; 5334 if (VecVT.isFixedLengthVector()) { 5335 ContainerVT = getContainerForFixedLengthVector(VecVT); 5336 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 5337 } 5338 SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ContainerVT, 5339 DAG.getUNDEF(ContainerVT), SubVec, 5340 DAG.getConstant(0, DL, XLenVT)); 5341 if (OrigIdx == 0 && Vec.isUndef() && VecVT.isFixedLengthVector()) { 5342 SubVec = convertFromScalableVector(VecVT, SubVec, DAG, Subtarget); 5343 return DAG.getBitcast(Op.getValueType(), SubVec); 5344 } 5345 SDValue Mask = 5346 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first; 5347 // Set the vector length to only the number of elements we care about. Note 5348 // that for slideup this includes the offset. 5349 SDValue VL = 5350 DAG.getConstant(OrigIdx + SubVecVT.getVectorNumElements(), DL, XLenVT); 5351 SDValue SlideupAmt = DAG.getConstant(OrigIdx, DL, XLenVT); 5352 SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec, 5353 SubVec, SlideupAmt, Mask, VL); 5354 if (VecVT.isFixedLengthVector()) 5355 Slideup = convertFromScalableVector(VecVT, Slideup, DAG, Subtarget); 5356 return DAG.getBitcast(Op.getValueType(), Slideup); 5357 } 5358 5359 unsigned SubRegIdx, RemIdx; 5360 std::tie(SubRegIdx, RemIdx) = 5361 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( 5362 VecVT, SubVecVT, OrigIdx, TRI); 5363 5364 RISCVII::VLMUL SubVecLMUL = RISCVTargetLowering::getLMUL(SubVecVT); 5365 bool IsSubVecPartReg = SubVecLMUL == RISCVII::VLMUL::LMUL_F2 || 5366 SubVecLMUL == RISCVII::VLMUL::LMUL_F4 || 5367 SubVecLMUL == RISCVII::VLMUL::LMUL_F8; 5368 5369 // 1. If the Idx has been completely eliminated and this subvector's size is 5370 // a vector register or a multiple thereof, or the surrounding elements are 5371 // undef, then this is a subvector insert which naturally aligns to a vector 5372 // register. These can easily be handled using subregister manipulation. 5373 // 2. If the subvector is smaller than a vector register, then the insertion 5374 // must preserve the undisturbed elements of the register. We do this by 5375 // lowering to an EXTRACT_SUBVECTOR grabbing the nearest LMUL=1 vector type 5376 // (which resolves to a subregister copy), performing a VSLIDEUP to place the 5377 // subvector within the vector register, and an INSERT_SUBVECTOR of that 5378 // LMUL=1 type back into the larger vector (resolving to another subregister 5379 // operation). See below for how our VSLIDEUP works. We go via a LMUL=1 type 5380 // to avoid allocating a large register group to hold our subvector. 5381 if (RemIdx == 0 && (!IsSubVecPartReg || Vec.isUndef())) 5382 return Op; 5383 5384 // VSLIDEUP works by leaving elements 0<i<OFFSET undisturbed, elements 5385 // OFFSET<=i<VL set to the "subvector" and vl<=i<VLMAX set to the tail policy 5386 // (in our case undisturbed). This means we can set up a subvector insertion 5387 // where OFFSET is the insertion offset, and the VL is the OFFSET plus the 5388 // size of the subvector. 5389 MVT InterSubVT = VecVT; 5390 SDValue AlignedExtract = Vec; 5391 unsigned AlignedIdx = OrigIdx - RemIdx; 5392 if (VecVT.bitsGT(getLMUL1VT(VecVT))) { 5393 InterSubVT = getLMUL1VT(VecVT); 5394 // Extract a subvector equal to the nearest full vector register type. This 5395 // should resolve to a EXTRACT_SUBREG instruction. 5396 AlignedExtract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec, 5397 DAG.getConstant(AlignedIdx, DL, XLenVT)); 5398 } 5399 5400 SDValue SlideupAmt = DAG.getConstant(RemIdx, DL, XLenVT); 5401 // For scalable vectors this must be further multiplied by vscale. 5402 SlideupAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlideupAmt); 5403 5404 SDValue Mask, VL; 5405 std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget); 5406 5407 // Construct the vector length corresponding to RemIdx + length(SubVecVT). 5408 VL = DAG.getConstant(SubVecVT.getVectorMinNumElements(), DL, XLenVT); 5409 VL = DAG.getNode(ISD::VSCALE, DL, XLenVT, VL); 5410 VL = DAG.getNode(ISD::ADD, DL, XLenVT, SlideupAmt, VL); 5411 5412 SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, InterSubVT, 5413 DAG.getUNDEF(InterSubVT), SubVec, 5414 DAG.getConstant(0, DL, XLenVT)); 5415 5416 SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, InterSubVT, 5417 AlignedExtract, SubVec, SlideupAmt, Mask, VL); 5418 5419 // If required, insert this subvector back into the correct vector register. 5420 // This should resolve to an INSERT_SUBREG instruction. 5421 if (VecVT.bitsGT(InterSubVT)) 5422 Slideup = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, Vec, Slideup, 5423 DAG.getConstant(AlignedIdx, DL, XLenVT)); 5424 5425 // We might have bitcast from a mask type: cast back to the original type if 5426 // required. 5427 return DAG.getBitcast(Op.getSimpleValueType(), Slideup); 5428 } 5429 5430 SDValue RISCVTargetLowering::lowerEXTRACT_SUBVECTOR(SDValue Op, 5431 SelectionDAG &DAG) const { 5432 SDValue Vec = Op.getOperand(0); 5433 MVT SubVecVT = Op.getSimpleValueType(); 5434 MVT VecVT = Vec.getSimpleValueType(); 5435 5436 SDLoc DL(Op); 5437 MVT XLenVT = Subtarget.getXLenVT(); 5438 unsigned OrigIdx = Op.getConstantOperandVal(1); 5439 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 5440 5441 // We don't have the ability to slide mask vectors down indexed by their i1 5442 // elements; the smallest we can do is i8. Often we are able to bitcast to 5443 // equivalent i8 vectors. Note that when extracting a fixed-length vector 5444 // from a scalable one, we might not necessarily have enough scalable 5445 // elements to safely divide by 8: v8i1 = extract nxv1i1 is valid. 5446 if (SubVecVT.getVectorElementType() == MVT::i1 && OrigIdx != 0) { 5447 if (VecVT.getVectorMinNumElements() >= 8 && 5448 SubVecVT.getVectorMinNumElements() >= 8) { 5449 assert(OrigIdx % 8 == 0 && "Invalid index"); 5450 assert(VecVT.getVectorMinNumElements() % 8 == 0 && 5451 SubVecVT.getVectorMinNumElements() % 8 == 0 && 5452 "Unexpected mask vector lowering"); 5453 OrigIdx /= 8; 5454 SubVecVT = 5455 MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8, 5456 SubVecVT.isScalableVector()); 5457 VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8, 5458 VecVT.isScalableVector()); 5459 Vec = DAG.getBitcast(VecVT, Vec); 5460 } else { 5461 // We can't slide this mask vector down, indexed by its i1 elements. 5462 // This poses a problem when we wish to extract a scalable vector which 5463 // can't be re-expressed as a larger type. Just choose the slow path and 5464 // extend to a larger type, then truncate back down. 5465 // TODO: We could probably improve this when extracting certain fixed 5466 // from fixed, where we can extract as i8 and shift the correct element 5467 // right to reach the desired subvector? 5468 MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8); 5469 MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8); 5470 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec); 5471 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ExtSubVecVT, Vec, 5472 Op.getOperand(1)); 5473 SDValue SplatZero = DAG.getConstant(0, DL, ExtSubVecVT); 5474 return DAG.getSetCC(DL, SubVecVT, Vec, SplatZero, ISD::SETNE); 5475 } 5476 } 5477 5478 // If the subvector vector is a fixed-length type, we cannot use subregister 5479 // manipulation to simplify the codegen; we don't know which register of a 5480 // LMUL group contains the specific subvector as we only know the minimum 5481 // register size. Therefore we must slide the vector group down the full 5482 // amount. 5483 if (SubVecVT.isFixedLengthVector()) { 5484 // With an index of 0 this is a cast-like subvector, which can be performed 5485 // with subregister operations. 5486 if (OrigIdx == 0) 5487 return Op; 5488 MVT ContainerVT = VecVT; 5489 if (VecVT.isFixedLengthVector()) { 5490 ContainerVT = getContainerForFixedLengthVector(VecVT); 5491 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 5492 } 5493 SDValue Mask = 5494 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first; 5495 // Set the vector length to only the number of elements we care about. This 5496 // avoids sliding down elements we're going to discard straight away. 5497 SDValue VL = DAG.getConstant(SubVecVT.getVectorNumElements(), DL, XLenVT); 5498 SDValue SlidedownAmt = DAG.getConstant(OrigIdx, DL, XLenVT); 5499 SDValue Slidedown = 5500 DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 5501 DAG.getUNDEF(ContainerVT), Vec, SlidedownAmt, Mask, VL); 5502 // Now we can use a cast-like subvector extract to get the result. 5503 Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown, 5504 DAG.getConstant(0, DL, XLenVT)); 5505 return DAG.getBitcast(Op.getValueType(), Slidedown); 5506 } 5507 5508 unsigned SubRegIdx, RemIdx; 5509 std::tie(SubRegIdx, RemIdx) = 5510 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( 5511 VecVT, SubVecVT, OrigIdx, TRI); 5512 5513 // If the Idx has been completely eliminated then this is a subvector extract 5514 // which naturally aligns to a vector register. These can easily be handled 5515 // using subregister manipulation. 5516 if (RemIdx == 0) 5517 return Op; 5518 5519 // Else we must shift our vector register directly to extract the subvector. 5520 // Do this using VSLIDEDOWN. 5521 5522 // If the vector type is an LMUL-group type, extract a subvector equal to the 5523 // nearest full vector register type. This should resolve to a EXTRACT_SUBREG 5524 // instruction. 5525 MVT InterSubVT = VecVT; 5526 if (VecVT.bitsGT(getLMUL1VT(VecVT))) { 5527 InterSubVT = getLMUL1VT(VecVT); 5528 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec, 5529 DAG.getConstant(OrigIdx - RemIdx, DL, XLenVT)); 5530 } 5531 5532 // Slide this vector register down by the desired number of elements in order 5533 // to place the desired subvector starting at element 0. 5534 SDValue SlidedownAmt = DAG.getConstant(RemIdx, DL, XLenVT); 5535 // For scalable vectors this must be further multiplied by vscale. 5536 SlidedownAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlidedownAmt); 5537 5538 SDValue Mask, VL; 5539 std::tie(Mask, VL) = getDefaultScalableVLOps(InterSubVT, DL, DAG, Subtarget); 5540 SDValue Slidedown = 5541 DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, InterSubVT, 5542 DAG.getUNDEF(InterSubVT), Vec, SlidedownAmt, Mask, VL); 5543 5544 // Now the vector is in the right position, extract our final subvector. This 5545 // should resolve to a COPY. 5546 Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown, 5547 DAG.getConstant(0, DL, XLenVT)); 5548 5549 // We might have bitcast from a mask type: cast back to the original type if 5550 // required. 5551 return DAG.getBitcast(Op.getSimpleValueType(), Slidedown); 5552 } 5553 5554 // Lower step_vector to the vid instruction. Any non-identity step value must 5555 // be accounted for my manual expansion. 5556 SDValue RISCVTargetLowering::lowerSTEP_VECTOR(SDValue Op, 5557 SelectionDAG &DAG) const { 5558 SDLoc DL(Op); 5559 MVT VT = Op.getSimpleValueType(); 5560 MVT XLenVT = Subtarget.getXLenVT(); 5561 SDValue Mask, VL; 5562 std::tie(Mask, VL) = getDefaultScalableVLOps(VT, DL, DAG, Subtarget); 5563 SDValue StepVec = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL); 5564 uint64_t StepValImm = Op.getConstantOperandVal(0); 5565 if (StepValImm != 1) { 5566 if (isPowerOf2_64(StepValImm)) { 5567 SDValue StepVal = 5568 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, DAG.getUNDEF(VT), 5569 DAG.getConstant(Log2_64(StepValImm), DL, XLenVT)); 5570 StepVec = DAG.getNode(ISD::SHL, DL, VT, StepVec, StepVal); 5571 } else { 5572 SDValue StepVal = lowerScalarSplat( 5573 SDValue(), DAG.getConstant(StepValImm, DL, VT.getVectorElementType()), 5574 VL, VT, DL, DAG, Subtarget); 5575 StepVec = DAG.getNode(ISD::MUL, DL, VT, StepVec, StepVal); 5576 } 5577 } 5578 return StepVec; 5579 } 5580 5581 // Implement vector_reverse using vrgather.vv with indices determined by 5582 // subtracting the id of each element from (VLMAX-1). This will convert 5583 // the indices like so: 5584 // (0, 1,..., VLMAX-2, VLMAX-1) -> (VLMAX-1, VLMAX-2,..., 1, 0). 5585 // TODO: This code assumes VLMAX <= 65536 for LMUL=8 SEW=16. 5586 SDValue RISCVTargetLowering::lowerVECTOR_REVERSE(SDValue Op, 5587 SelectionDAG &DAG) const { 5588 SDLoc DL(Op); 5589 MVT VecVT = Op.getSimpleValueType(); 5590 unsigned EltSize = VecVT.getScalarSizeInBits(); 5591 unsigned MinSize = VecVT.getSizeInBits().getKnownMinValue(); 5592 5593 unsigned MaxVLMAX = 0; 5594 unsigned VectorBitsMax = Subtarget.getMaxRVVVectorSizeInBits(); 5595 if (VectorBitsMax != 0) 5596 MaxVLMAX = ((VectorBitsMax / EltSize) * MinSize) / RISCV::RVVBitsPerBlock; 5597 5598 unsigned GatherOpc = RISCVISD::VRGATHER_VV_VL; 5599 MVT IntVT = VecVT.changeVectorElementTypeToInteger(); 5600 5601 // If this is SEW=8 and VLMAX is unknown or more than 256, we need 5602 // to use vrgatherei16.vv. 5603 // TODO: It's also possible to use vrgatherei16.vv for other types to 5604 // decrease register width for the index calculation. 5605 if ((MaxVLMAX == 0 || MaxVLMAX > 256) && EltSize == 8) { 5606 // If this is LMUL=8, we have to split before can use vrgatherei16.vv. 5607 // Reverse each half, then reassemble them in reverse order. 5608 // NOTE: It's also possible that after splitting that VLMAX no longer 5609 // requires vrgatherei16.vv. 5610 if (MinSize == (8 * RISCV::RVVBitsPerBlock)) { 5611 SDValue Lo, Hi; 5612 std::tie(Lo, Hi) = DAG.SplitVectorOperand(Op.getNode(), 0); 5613 EVT LoVT, HiVT; 5614 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VecVT); 5615 Lo = DAG.getNode(ISD::VECTOR_REVERSE, DL, LoVT, Lo); 5616 Hi = DAG.getNode(ISD::VECTOR_REVERSE, DL, HiVT, Hi); 5617 // Reassemble the low and high pieces reversed. 5618 // FIXME: This is a CONCAT_VECTORS. 5619 SDValue Res = 5620 DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, DAG.getUNDEF(VecVT), Hi, 5621 DAG.getIntPtrConstant(0, DL)); 5622 return DAG.getNode( 5623 ISD::INSERT_SUBVECTOR, DL, VecVT, Res, Lo, 5624 DAG.getIntPtrConstant(LoVT.getVectorMinNumElements(), DL)); 5625 } 5626 5627 // Just promote the int type to i16 which will double the LMUL. 5628 IntVT = MVT::getVectorVT(MVT::i16, VecVT.getVectorElementCount()); 5629 GatherOpc = RISCVISD::VRGATHEREI16_VV_VL; 5630 } 5631 5632 MVT XLenVT = Subtarget.getXLenVT(); 5633 SDValue Mask, VL; 5634 std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget); 5635 5636 // Calculate VLMAX-1 for the desired SEW. 5637 unsigned MinElts = VecVT.getVectorMinNumElements(); 5638 SDValue VLMax = DAG.getNode(ISD::VSCALE, DL, XLenVT, 5639 DAG.getConstant(MinElts, DL, XLenVT)); 5640 SDValue VLMinus1 = 5641 DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, DAG.getConstant(1, DL, XLenVT)); 5642 5643 // Splat VLMAX-1 taking care to handle SEW==64 on RV32. 5644 bool IsRV32E64 = 5645 !Subtarget.is64Bit() && IntVT.getVectorElementType() == MVT::i64; 5646 SDValue SplatVL; 5647 if (!IsRV32E64) 5648 SplatVL = DAG.getSplatVector(IntVT, DL, VLMinus1); 5649 else 5650 SplatVL = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, IntVT, DAG.getUNDEF(IntVT), 5651 VLMinus1, DAG.getRegister(RISCV::X0, XLenVT)); 5652 5653 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, IntVT, Mask, VL); 5654 SDValue Indices = 5655 DAG.getNode(RISCVISD::SUB_VL, DL, IntVT, SplatVL, VID, Mask, VL); 5656 5657 return DAG.getNode(GatherOpc, DL, VecVT, Op.getOperand(0), Indices, Mask, VL); 5658 } 5659 5660 SDValue 5661 RISCVTargetLowering::lowerFixedLengthVectorLoadToRVV(SDValue Op, 5662 SelectionDAG &DAG) const { 5663 SDLoc DL(Op); 5664 auto *Load = cast<LoadSDNode>(Op); 5665 5666 assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 5667 Load->getMemoryVT(), 5668 *Load->getMemOperand()) && 5669 "Expecting a correctly-aligned load"); 5670 5671 MVT VT = Op.getSimpleValueType(); 5672 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5673 5674 SDValue VL = 5675 DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT()); 5676 5677 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 5678 SDValue NewLoad = DAG.getMemIntrinsicNode( 5679 RISCVISD::VLE_VL, DL, VTs, {Load->getChain(), Load->getBasePtr(), VL}, 5680 Load->getMemoryVT(), Load->getMemOperand()); 5681 5682 SDValue Result = convertFromScalableVector(VT, NewLoad, DAG, Subtarget); 5683 return DAG.getMergeValues({Result, Load->getChain()}, DL); 5684 } 5685 5686 SDValue 5687 RISCVTargetLowering::lowerFixedLengthVectorStoreToRVV(SDValue Op, 5688 SelectionDAG &DAG) const { 5689 SDLoc DL(Op); 5690 auto *Store = cast<StoreSDNode>(Op); 5691 5692 assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 5693 Store->getMemoryVT(), 5694 *Store->getMemOperand()) && 5695 "Expecting a correctly-aligned store"); 5696 5697 SDValue StoreVal = Store->getValue(); 5698 MVT VT = StoreVal.getSimpleValueType(); 5699 5700 // If the size less than a byte, we need to pad with zeros to make a byte. 5701 if (VT.getVectorElementType() == MVT::i1 && VT.getVectorNumElements() < 8) { 5702 VT = MVT::v8i1; 5703 StoreVal = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, 5704 DAG.getConstant(0, DL, VT), StoreVal, 5705 DAG.getIntPtrConstant(0, DL)); 5706 } 5707 5708 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5709 5710 SDValue VL = 5711 DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT()); 5712 5713 SDValue NewValue = 5714 convertToScalableVector(ContainerVT, StoreVal, DAG, Subtarget); 5715 return DAG.getMemIntrinsicNode( 5716 RISCVISD::VSE_VL, DL, DAG.getVTList(MVT::Other), 5717 {Store->getChain(), NewValue, Store->getBasePtr(), VL}, 5718 Store->getMemoryVT(), Store->getMemOperand()); 5719 } 5720 5721 SDValue RISCVTargetLowering::lowerMaskedLoad(SDValue Op, 5722 SelectionDAG &DAG) const { 5723 SDLoc DL(Op); 5724 MVT VT = Op.getSimpleValueType(); 5725 5726 const auto *MemSD = cast<MemSDNode>(Op); 5727 EVT MemVT = MemSD->getMemoryVT(); 5728 MachineMemOperand *MMO = MemSD->getMemOperand(); 5729 SDValue Chain = MemSD->getChain(); 5730 SDValue BasePtr = MemSD->getBasePtr(); 5731 5732 SDValue Mask, PassThru, VL; 5733 if (const auto *VPLoad = dyn_cast<VPLoadSDNode>(Op)) { 5734 Mask = VPLoad->getMask(); 5735 PassThru = DAG.getUNDEF(VT); 5736 VL = VPLoad->getVectorLength(); 5737 } else { 5738 const auto *MLoad = cast<MaskedLoadSDNode>(Op); 5739 Mask = MLoad->getMask(); 5740 PassThru = MLoad->getPassThru(); 5741 } 5742 5743 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 5744 5745 MVT XLenVT = Subtarget.getXLenVT(); 5746 5747 MVT ContainerVT = VT; 5748 if (VT.isFixedLengthVector()) { 5749 ContainerVT = getContainerForFixedLengthVector(VT); 5750 PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget); 5751 if (!IsUnmasked) { 5752 MVT MaskVT = 5753 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 5754 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 5755 } 5756 } 5757 5758 if (!VL) 5759 VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; 5760 5761 unsigned IntID = 5762 IsUnmasked ? Intrinsic::riscv_vle : Intrinsic::riscv_vle_mask; 5763 SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)}; 5764 if (IsUnmasked) 5765 Ops.push_back(DAG.getUNDEF(ContainerVT)); 5766 else 5767 Ops.push_back(PassThru); 5768 Ops.push_back(BasePtr); 5769 if (!IsUnmasked) 5770 Ops.push_back(Mask); 5771 Ops.push_back(VL); 5772 if (!IsUnmasked) 5773 Ops.push_back(DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT)); 5774 5775 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 5776 5777 SDValue Result = 5778 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, MemVT, MMO); 5779 Chain = Result.getValue(1); 5780 5781 if (VT.isFixedLengthVector()) 5782 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 5783 5784 return DAG.getMergeValues({Result, Chain}, DL); 5785 } 5786 5787 SDValue RISCVTargetLowering::lowerMaskedStore(SDValue Op, 5788 SelectionDAG &DAG) const { 5789 SDLoc DL(Op); 5790 5791 const auto *MemSD = cast<MemSDNode>(Op); 5792 EVT MemVT = MemSD->getMemoryVT(); 5793 MachineMemOperand *MMO = MemSD->getMemOperand(); 5794 SDValue Chain = MemSD->getChain(); 5795 SDValue BasePtr = MemSD->getBasePtr(); 5796 SDValue Val, Mask, VL; 5797 5798 if (const auto *VPStore = dyn_cast<VPStoreSDNode>(Op)) { 5799 Val = VPStore->getValue(); 5800 Mask = VPStore->getMask(); 5801 VL = VPStore->getVectorLength(); 5802 } else { 5803 const auto *MStore = cast<MaskedStoreSDNode>(Op); 5804 Val = MStore->getValue(); 5805 Mask = MStore->getMask(); 5806 } 5807 5808 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 5809 5810 MVT VT = Val.getSimpleValueType(); 5811 MVT XLenVT = Subtarget.getXLenVT(); 5812 5813 MVT ContainerVT = VT; 5814 if (VT.isFixedLengthVector()) { 5815 ContainerVT = getContainerForFixedLengthVector(VT); 5816 5817 Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget); 5818 if (!IsUnmasked) { 5819 MVT MaskVT = 5820 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 5821 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 5822 } 5823 } 5824 5825 if (!VL) 5826 VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; 5827 5828 unsigned IntID = 5829 IsUnmasked ? Intrinsic::riscv_vse : Intrinsic::riscv_vse_mask; 5830 SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)}; 5831 Ops.push_back(Val); 5832 Ops.push_back(BasePtr); 5833 if (!IsUnmasked) 5834 Ops.push_back(Mask); 5835 Ops.push_back(VL); 5836 5837 return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, 5838 DAG.getVTList(MVT::Other), Ops, MemVT, MMO); 5839 } 5840 5841 SDValue 5842 RISCVTargetLowering::lowerFixedLengthVectorSetccToRVV(SDValue Op, 5843 SelectionDAG &DAG) const { 5844 MVT InVT = Op.getOperand(0).getSimpleValueType(); 5845 MVT ContainerVT = getContainerForFixedLengthVector(InVT); 5846 5847 MVT VT = Op.getSimpleValueType(); 5848 5849 SDValue Op1 = 5850 convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget); 5851 SDValue Op2 = 5852 convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget); 5853 5854 SDLoc DL(Op); 5855 SDValue VL = 5856 DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT()); 5857 5858 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 5859 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 5860 5861 SDValue Cmp = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, Op1, Op2, 5862 Op.getOperand(2), Mask, VL); 5863 5864 return convertFromScalableVector(VT, Cmp, DAG, Subtarget); 5865 } 5866 5867 SDValue RISCVTargetLowering::lowerFixedLengthVectorLogicOpToRVV( 5868 SDValue Op, SelectionDAG &DAG, unsigned MaskOpc, unsigned VecOpc) const { 5869 MVT VT = Op.getSimpleValueType(); 5870 5871 if (VT.getVectorElementType() == MVT::i1) 5872 return lowerToScalableOp(Op, DAG, MaskOpc, /*HasMask*/ false); 5873 5874 return lowerToScalableOp(Op, DAG, VecOpc, /*HasMask*/ true); 5875 } 5876 5877 SDValue 5878 RISCVTargetLowering::lowerFixedLengthVectorShiftToRVV(SDValue Op, 5879 SelectionDAG &DAG) const { 5880 unsigned Opc; 5881 switch (Op.getOpcode()) { 5882 default: llvm_unreachable("Unexpected opcode!"); 5883 case ISD::SHL: Opc = RISCVISD::SHL_VL; break; 5884 case ISD::SRA: Opc = RISCVISD::SRA_VL; break; 5885 case ISD::SRL: Opc = RISCVISD::SRL_VL; break; 5886 } 5887 5888 return lowerToScalableOp(Op, DAG, Opc); 5889 } 5890 5891 // Lower vector ABS to smax(X, sub(0, X)). 5892 SDValue RISCVTargetLowering::lowerABS(SDValue Op, SelectionDAG &DAG) const { 5893 SDLoc DL(Op); 5894 MVT VT = Op.getSimpleValueType(); 5895 SDValue X = Op.getOperand(0); 5896 5897 assert(VT.isFixedLengthVector() && "Unexpected type"); 5898 5899 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5900 X = convertToScalableVector(ContainerVT, X, DAG, Subtarget); 5901 5902 SDValue Mask, VL; 5903 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 5904 5905 SDValue SplatZero = DAG.getNode( 5906 RISCVISD::VMV_V_X_VL, DL, ContainerVT, DAG.getUNDEF(ContainerVT), 5907 DAG.getConstant(0, DL, Subtarget.getXLenVT())); 5908 SDValue NegX = 5909 DAG.getNode(RISCVISD::SUB_VL, DL, ContainerVT, SplatZero, X, Mask, VL); 5910 SDValue Max = 5911 DAG.getNode(RISCVISD::SMAX_VL, DL, ContainerVT, X, NegX, Mask, VL); 5912 5913 return convertFromScalableVector(VT, Max, DAG, Subtarget); 5914 } 5915 5916 SDValue RISCVTargetLowering::lowerFixedLengthVectorFCOPYSIGNToRVV( 5917 SDValue Op, SelectionDAG &DAG) const { 5918 SDLoc DL(Op); 5919 MVT VT = Op.getSimpleValueType(); 5920 SDValue Mag = Op.getOperand(0); 5921 SDValue Sign = Op.getOperand(1); 5922 assert(Mag.getValueType() == Sign.getValueType() && 5923 "Can only handle COPYSIGN with matching types."); 5924 5925 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5926 Mag = convertToScalableVector(ContainerVT, Mag, DAG, Subtarget); 5927 Sign = convertToScalableVector(ContainerVT, Sign, DAG, Subtarget); 5928 5929 SDValue Mask, VL; 5930 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 5931 5932 SDValue CopySign = 5933 DAG.getNode(RISCVISD::FCOPYSIGN_VL, DL, ContainerVT, Mag, Sign, Mask, VL); 5934 5935 return convertFromScalableVector(VT, CopySign, DAG, Subtarget); 5936 } 5937 5938 SDValue RISCVTargetLowering::lowerFixedLengthVectorSelectToRVV( 5939 SDValue Op, SelectionDAG &DAG) const { 5940 MVT VT = Op.getSimpleValueType(); 5941 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5942 5943 MVT I1ContainerVT = 5944 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 5945 5946 SDValue CC = 5947 convertToScalableVector(I1ContainerVT, Op.getOperand(0), DAG, Subtarget); 5948 SDValue Op1 = 5949 convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget); 5950 SDValue Op2 = 5951 convertToScalableVector(ContainerVT, Op.getOperand(2), DAG, Subtarget); 5952 5953 SDLoc DL(Op); 5954 SDValue Mask, VL; 5955 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 5956 5957 SDValue Select = 5958 DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC, Op1, Op2, VL); 5959 5960 return convertFromScalableVector(VT, Select, DAG, Subtarget); 5961 } 5962 5963 SDValue RISCVTargetLowering::lowerToScalableOp(SDValue Op, SelectionDAG &DAG, 5964 unsigned NewOpc, 5965 bool HasMask) const { 5966 MVT VT = Op.getSimpleValueType(); 5967 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5968 5969 // Create list of operands by converting existing ones to scalable types. 5970 SmallVector<SDValue, 6> Ops; 5971 for (const SDValue &V : Op->op_values()) { 5972 assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!"); 5973 5974 // Pass through non-vector operands. 5975 if (!V.getValueType().isVector()) { 5976 Ops.push_back(V); 5977 continue; 5978 } 5979 5980 // "cast" fixed length vector to a scalable vector. 5981 assert(useRVVForFixedLengthVectorVT(V.getSimpleValueType()) && 5982 "Only fixed length vectors are supported!"); 5983 Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget)); 5984 } 5985 5986 SDLoc DL(Op); 5987 SDValue Mask, VL; 5988 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 5989 if (HasMask) 5990 Ops.push_back(Mask); 5991 Ops.push_back(VL); 5992 5993 SDValue ScalableRes = DAG.getNode(NewOpc, DL, ContainerVT, Ops); 5994 return convertFromScalableVector(VT, ScalableRes, DAG, Subtarget); 5995 } 5996 5997 // Lower a VP_* ISD node to the corresponding RISCVISD::*_VL node: 5998 // * Operands of each node are assumed to be in the same order. 5999 // * The EVL operand is promoted from i32 to i64 on RV64. 6000 // * Fixed-length vectors are converted to their scalable-vector container 6001 // types. 6002 SDValue RISCVTargetLowering::lowerVPOp(SDValue Op, SelectionDAG &DAG, 6003 unsigned RISCVISDOpc) const { 6004 SDLoc DL(Op); 6005 MVT VT = Op.getSimpleValueType(); 6006 SmallVector<SDValue, 4> Ops; 6007 6008 for (const auto &OpIdx : enumerate(Op->ops())) { 6009 SDValue V = OpIdx.value(); 6010 assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!"); 6011 // Pass through operands which aren't fixed-length vectors. 6012 if (!V.getValueType().isFixedLengthVector()) { 6013 Ops.push_back(V); 6014 continue; 6015 } 6016 // "cast" fixed length vector to a scalable vector. 6017 MVT OpVT = V.getSimpleValueType(); 6018 MVT ContainerVT = getContainerForFixedLengthVector(OpVT); 6019 assert(useRVVForFixedLengthVectorVT(OpVT) && 6020 "Only fixed length vectors are supported!"); 6021 Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget)); 6022 } 6023 6024 if (!VT.isFixedLengthVector()) 6025 return DAG.getNode(RISCVISDOpc, DL, VT, Ops); 6026 6027 MVT ContainerVT = getContainerForFixedLengthVector(VT); 6028 6029 SDValue VPOp = DAG.getNode(RISCVISDOpc, DL, ContainerVT, Ops); 6030 6031 return convertFromScalableVector(VT, VPOp, DAG, Subtarget); 6032 } 6033 6034 SDValue RISCVTargetLowering::lowerLogicVPOp(SDValue Op, SelectionDAG &DAG, 6035 unsigned MaskOpc, 6036 unsigned VecOpc) const { 6037 MVT VT = Op.getSimpleValueType(); 6038 if (VT.getVectorElementType() != MVT::i1) 6039 return lowerVPOp(Op, DAG, VecOpc); 6040 6041 // It is safe to drop mask parameter as masked-off elements are undef. 6042 SDValue Op1 = Op->getOperand(0); 6043 SDValue Op2 = Op->getOperand(1); 6044 SDValue VL = Op->getOperand(3); 6045 6046 MVT ContainerVT = VT; 6047 const bool IsFixed = VT.isFixedLengthVector(); 6048 if (IsFixed) { 6049 ContainerVT = getContainerForFixedLengthVector(VT); 6050 Op1 = convertToScalableVector(ContainerVT, Op1, DAG, Subtarget); 6051 Op2 = convertToScalableVector(ContainerVT, Op2, DAG, Subtarget); 6052 } 6053 6054 SDLoc DL(Op); 6055 SDValue Val = DAG.getNode(MaskOpc, DL, ContainerVT, Op1, Op2, VL); 6056 if (!IsFixed) 6057 return Val; 6058 return convertFromScalableVector(VT, Val, DAG, Subtarget); 6059 } 6060 6061 // Custom lower MGATHER/VP_GATHER to a legalized form for RVV. It will then be 6062 // matched to a RVV indexed load. The RVV indexed load instructions only 6063 // support the "unsigned unscaled" addressing mode; indices are implicitly 6064 // zero-extended or truncated to XLEN and are treated as byte offsets. Any 6065 // signed or scaled indexing is extended to the XLEN value type and scaled 6066 // accordingly. 6067 SDValue RISCVTargetLowering::lowerMaskedGather(SDValue Op, 6068 SelectionDAG &DAG) const { 6069 SDLoc DL(Op); 6070 MVT VT = Op.getSimpleValueType(); 6071 6072 const auto *MemSD = cast<MemSDNode>(Op.getNode()); 6073 EVT MemVT = MemSD->getMemoryVT(); 6074 MachineMemOperand *MMO = MemSD->getMemOperand(); 6075 SDValue Chain = MemSD->getChain(); 6076 SDValue BasePtr = MemSD->getBasePtr(); 6077 6078 ISD::LoadExtType LoadExtType; 6079 SDValue Index, Mask, PassThru, VL; 6080 6081 if (auto *VPGN = dyn_cast<VPGatherSDNode>(Op.getNode())) { 6082 Index = VPGN->getIndex(); 6083 Mask = VPGN->getMask(); 6084 PassThru = DAG.getUNDEF(VT); 6085 VL = VPGN->getVectorLength(); 6086 // VP doesn't support extending loads. 6087 LoadExtType = ISD::NON_EXTLOAD; 6088 } else { 6089 // Else it must be a MGATHER. 6090 auto *MGN = cast<MaskedGatherSDNode>(Op.getNode()); 6091 Index = MGN->getIndex(); 6092 Mask = MGN->getMask(); 6093 PassThru = MGN->getPassThru(); 6094 LoadExtType = MGN->getExtensionType(); 6095 } 6096 6097 MVT IndexVT = Index.getSimpleValueType(); 6098 MVT XLenVT = Subtarget.getXLenVT(); 6099 6100 assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() && 6101 "Unexpected VTs!"); 6102 assert(BasePtr.getSimpleValueType() == XLenVT && "Unexpected pointer type"); 6103 // Targets have to explicitly opt-in for extending vector loads. 6104 assert(LoadExtType == ISD::NON_EXTLOAD && 6105 "Unexpected extending MGATHER/VP_GATHER"); 6106 (void)LoadExtType; 6107 6108 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 6109 // the selection of the masked intrinsics doesn't do this for us. 6110 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 6111 6112 MVT ContainerVT = VT; 6113 if (VT.isFixedLengthVector()) { 6114 // We need to use the larger of the result and index type to determine the 6115 // scalable type to use so we don't increase LMUL for any operand/result. 6116 if (VT.bitsGE(IndexVT)) { 6117 ContainerVT = getContainerForFixedLengthVector(VT); 6118 IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(), 6119 ContainerVT.getVectorElementCount()); 6120 } else { 6121 IndexVT = getContainerForFixedLengthVector(IndexVT); 6122 ContainerVT = MVT::getVectorVT(ContainerVT.getVectorElementType(), 6123 IndexVT.getVectorElementCount()); 6124 } 6125 6126 Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget); 6127 6128 if (!IsUnmasked) { 6129 MVT MaskVT = 6130 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 6131 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 6132 PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget); 6133 } 6134 } 6135 6136 if (!VL) 6137 VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; 6138 6139 if (XLenVT == MVT::i32 && IndexVT.getVectorElementType().bitsGT(XLenVT)) { 6140 IndexVT = IndexVT.changeVectorElementType(XLenVT); 6141 SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, Mask.getValueType(), 6142 VL); 6143 Index = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, IndexVT, Index, 6144 TrueMask, VL); 6145 } 6146 6147 unsigned IntID = 6148 IsUnmasked ? Intrinsic::riscv_vluxei : Intrinsic::riscv_vluxei_mask; 6149 SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)}; 6150 if (IsUnmasked) 6151 Ops.push_back(DAG.getUNDEF(ContainerVT)); 6152 else 6153 Ops.push_back(PassThru); 6154 Ops.push_back(BasePtr); 6155 Ops.push_back(Index); 6156 if (!IsUnmasked) 6157 Ops.push_back(Mask); 6158 Ops.push_back(VL); 6159 if (!IsUnmasked) 6160 Ops.push_back(DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT)); 6161 6162 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 6163 SDValue Result = 6164 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, MemVT, MMO); 6165 Chain = Result.getValue(1); 6166 6167 if (VT.isFixedLengthVector()) 6168 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 6169 6170 return DAG.getMergeValues({Result, Chain}, DL); 6171 } 6172 6173 // Custom lower MSCATTER/VP_SCATTER to a legalized form for RVV. It will then be 6174 // matched to a RVV indexed store. The RVV indexed store instructions only 6175 // support the "unsigned unscaled" addressing mode; indices are implicitly 6176 // zero-extended or truncated to XLEN and are treated as byte offsets. Any 6177 // signed or scaled indexing is extended to the XLEN value type and scaled 6178 // accordingly. 6179 SDValue RISCVTargetLowering::lowerMaskedScatter(SDValue Op, 6180 SelectionDAG &DAG) const { 6181 SDLoc DL(Op); 6182 const auto *MemSD = cast<MemSDNode>(Op.getNode()); 6183 EVT MemVT = MemSD->getMemoryVT(); 6184 MachineMemOperand *MMO = MemSD->getMemOperand(); 6185 SDValue Chain = MemSD->getChain(); 6186 SDValue BasePtr = MemSD->getBasePtr(); 6187 6188 bool IsTruncatingStore = false; 6189 SDValue Index, Mask, Val, VL; 6190 6191 if (auto *VPSN = dyn_cast<VPScatterSDNode>(Op.getNode())) { 6192 Index = VPSN->getIndex(); 6193 Mask = VPSN->getMask(); 6194 Val = VPSN->getValue(); 6195 VL = VPSN->getVectorLength(); 6196 // VP doesn't support truncating stores. 6197 IsTruncatingStore = false; 6198 } else { 6199 // Else it must be a MSCATTER. 6200 auto *MSN = cast<MaskedScatterSDNode>(Op.getNode()); 6201 Index = MSN->getIndex(); 6202 Mask = MSN->getMask(); 6203 Val = MSN->getValue(); 6204 IsTruncatingStore = MSN->isTruncatingStore(); 6205 } 6206 6207 MVT VT = Val.getSimpleValueType(); 6208 MVT IndexVT = Index.getSimpleValueType(); 6209 MVT XLenVT = Subtarget.getXLenVT(); 6210 6211 assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() && 6212 "Unexpected VTs!"); 6213 assert(BasePtr.getSimpleValueType() == XLenVT && "Unexpected pointer type"); 6214 // Targets have to explicitly opt-in for extending vector loads and 6215 // truncating vector stores. 6216 assert(!IsTruncatingStore && "Unexpected truncating MSCATTER/VP_SCATTER"); 6217 (void)IsTruncatingStore; 6218 6219 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 6220 // the selection of the masked intrinsics doesn't do this for us. 6221 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 6222 6223 MVT ContainerVT = VT; 6224 if (VT.isFixedLengthVector()) { 6225 // We need to use the larger of the value and index type to determine the 6226 // scalable type to use so we don't increase LMUL for any operand/result. 6227 if (VT.bitsGE(IndexVT)) { 6228 ContainerVT = getContainerForFixedLengthVector(VT); 6229 IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(), 6230 ContainerVT.getVectorElementCount()); 6231 } else { 6232 IndexVT = getContainerForFixedLengthVector(IndexVT); 6233 ContainerVT = MVT::getVectorVT(VT.getVectorElementType(), 6234 IndexVT.getVectorElementCount()); 6235 } 6236 6237 Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget); 6238 Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget); 6239 6240 if (!IsUnmasked) { 6241 MVT MaskVT = 6242 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 6243 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 6244 } 6245 } 6246 6247 if (!VL) 6248 VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; 6249 6250 if (XLenVT == MVT::i32 && IndexVT.getVectorElementType().bitsGT(XLenVT)) { 6251 IndexVT = IndexVT.changeVectorElementType(XLenVT); 6252 SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, Mask.getValueType(), 6253 VL); 6254 Index = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, IndexVT, Index, 6255 TrueMask, VL); 6256 } 6257 6258 unsigned IntID = 6259 IsUnmasked ? Intrinsic::riscv_vsoxei : Intrinsic::riscv_vsoxei_mask; 6260 SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)}; 6261 Ops.push_back(Val); 6262 Ops.push_back(BasePtr); 6263 Ops.push_back(Index); 6264 if (!IsUnmasked) 6265 Ops.push_back(Mask); 6266 Ops.push_back(VL); 6267 6268 return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, 6269 DAG.getVTList(MVT::Other), Ops, MemVT, MMO); 6270 } 6271 6272 SDValue RISCVTargetLowering::lowerGET_ROUNDING(SDValue Op, 6273 SelectionDAG &DAG) const { 6274 const MVT XLenVT = Subtarget.getXLenVT(); 6275 SDLoc DL(Op); 6276 SDValue Chain = Op->getOperand(0); 6277 SDValue SysRegNo = DAG.getTargetConstant( 6278 RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT); 6279 SDVTList VTs = DAG.getVTList(XLenVT, MVT::Other); 6280 SDValue RM = DAG.getNode(RISCVISD::READ_CSR, DL, VTs, Chain, SysRegNo); 6281 6282 // Encoding used for rounding mode in RISCV differs from that used in 6283 // FLT_ROUNDS. To convert it the RISCV rounding mode is used as an index in a 6284 // table, which consists of a sequence of 4-bit fields, each representing 6285 // corresponding FLT_ROUNDS mode. 6286 static const int Table = 6287 (int(RoundingMode::NearestTiesToEven) << 4 * RISCVFPRndMode::RNE) | 6288 (int(RoundingMode::TowardZero) << 4 * RISCVFPRndMode::RTZ) | 6289 (int(RoundingMode::TowardNegative) << 4 * RISCVFPRndMode::RDN) | 6290 (int(RoundingMode::TowardPositive) << 4 * RISCVFPRndMode::RUP) | 6291 (int(RoundingMode::NearestTiesToAway) << 4 * RISCVFPRndMode::RMM); 6292 6293 SDValue Shift = 6294 DAG.getNode(ISD::SHL, DL, XLenVT, RM, DAG.getConstant(2, DL, XLenVT)); 6295 SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT, 6296 DAG.getConstant(Table, DL, XLenVT), Shift); 6297 SDValue Masked = DAG.getNode(ISD::AND, DL, XLenVT, Shifted, 6298 DAG.getConstant(7, DL, XLenVT)); 6299 6300 return DAG.getMergeValues({Masked, Chain}, DL); 6301 } 6302 6303 SDValue RISCVTargetLowering::lowerSET_ROUNDING(SDValue Op, 6304 SelectionDAG &DAG) const { 6305 const MVT XLenVT = Subtarget.getXLenVT(); 6306 SDLoc DL(Op); 6307 SDValue Chain = Op->getOperand(0); 6308 SDValue RMValue = Op->getOperand(1); 6309 SDValue SysRegNo = DAG.getTargetConstant( 6310 RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT); 6311 6312 // Encoding used for rounding mode in RISCV differs from that used in 6313 // FLT_ROUNDS. To convert it the C rounding mode is used as an index in 6314 // a table, which consists of a sequence of 4-bit fields, each representing 6315 // corresponding RISCV mode. 6316 static const unsigned Table = 6317 (RISCVFPRndMode::RNE << 4 * int(RoundingMode::NearestTiesToEven)) | 6318 (RISCVFPRndMode::RTZ << 4 * int(RoundingMode::TowardZero)) | 6319 (RISCVFPRndMode::RDN << 4 * int(RoundingMode::TowardNegative)) | 6320 (RISCVFPRndMode::RUP << 4 * int(RoundingMode::TowardPositive)) | 6321 (RISCVFPRndMode::RMM << 4 * int(RoundingMode::NearestTiesToAway)); 6322 6323 SDValue Shift = DAG.getNode(ISD::SHL, DL, XLenVT, RMValue, 6324 DAG.getConstant(2, DL, XLenVT)); 6325 SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT, 6326 DAG.getConstant(Table, DL, XLenVT), Shift); 6327 RMValue = DAG.getNode(ISD::AND, DL, XLenVT, Shifted, 6328 DAG.getConstant(0x7, DL, XLenVT)); 6329 return DAG.getNode(RISCVISD::WRITE_CSR, DL, MVT::Other, Chain, SysRegNo, 6330 RMValue); 6331 } 6332 6333 static RISCVISD::NodeType getRISCVWOpcodeByIntr(unsigned IntNo) { 6334 switch (IntNo) { 6335 default: 6336 llvm_unreachable("Unexpected Intrinsic"); 6337 case Intrinsic::riscv_grev: 6338 return RISCVISD::GREVW; 6339 case Intrinsic::riscv_gorc: 6340 return RISCVISD::GORCW; 6341 case Intrinsic::riscv_bcompress: 6342 return RISCVISD::BCOMPRESSW; 6343 case Intrinsic::riscv_bdecompress: 6344 return RISCVISD::BDECOMPRESSW; 6345 case Intrinsic::riscv_bfp: 6346 return RISCVISD::BFPW; 6347 case Intrinsic::riscv_fsl: 6348 return RISCVISD::FSLW; 6349 case Intrinsic::riscv_fsr: 6350 return RISCVISD::FSRW; 6351 } 6352 } 6353 6354 // Converts the given intrinsic to a i64 operation with any extension. 6355 static SDValue customLegalizeToWOpByIntr(SDNode *N, SelectionDAG &DAG, 6356 unsigned IntNo) { 6357 SDLoc DL(N); 6358 RISCVISD::NodeType WOpcode = getRISCVWOpcodeByIntr(IntNo); 6359 SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6360 SDValue NewOp2 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 6361 SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp1, NewOp2); 6362 // ReplaceNodeResults requires we maintain the same type for the return value. 6363 return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewRes); 6364 } 6365 6366 // Returns the opcode of the target-specific SDNode that implements the 32-bit 6367 // form of the given Opcode. 6368 static RISCVISD::NodeType getRISCVWOpcode(unsigned Opcode) { 6369 switch (Opcode) { 6370 default: 6371 llvm_unreachable("Unexpected opcode"); 6372 case ISD::SHL: 6373 return RISCVISD::SLLW; 6374 case ISD::SRA: 6375 return RISCVISD::SRAW; 6376 case ISD::SRL: 6377 return RISCVISD::SRLW; 6378 case ISD::SDIV: 6379 return RISCVISD::DIVW; 6380 case ISD::UDIV: 6381 return RISCVISD::DIVUW; 6382 case ISD::UREM: 6383 return RISCVISD::REMUW; 6384 case ISD::ROTL: 6385 return RISCVISD::ROLW; 6386 case ISD::ROTR: 6387 return RISCVISD::RORW; 6388 case RISCVISD::GREV: 6389 return RISCVISD::GREVW; 6390 case RISCVISD::GORC: 6391 return RISCVISD::GORCW; 6392 } 6393 } 6394 6395 // Converts the given i8/i16/i32 operation to a target-specific SelectionDAG 6396 // node. Because i8/i16/i32 isn't a legal type for RV64, these operations would 6397 // otherwise be promoted to i64, making it difficult to select the 6398 // SLLW/DIVUW/.../*W later one because the fact the operation was originally of 6399 // type i8/i16/i32 is lost. 6400 static SDValue customLegalizeToWOp(SDNode *N, SelectionDAG &DAG, 6401 unsigned ExtOpc = ISD::ANY_EXTEND) { 6402 SDLoc DL(N); 6403 RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode()); 6404 SDValue NewOp0 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(0)); 6405 SDValue NewOp1 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(1)); 6406 SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1); 6407 // ReplaceNodeResults requires we maintain the same type for the return value. 6408 return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewRes); 6409 } 6410 6411 // Converts the given 32-bit operation to a i64 operation with signed extension 6412 // semantic to reduce the signed extension instructions. 6413 static SDValue customLegalizeToWOpWithSExt(SDNode *N, SelectionDAG &DAG) { 6414 SDLoc DL(N); 6415 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 6416 SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6417 SDValue NewWOp = DAG.getNode(N->getOpcode(), DL, MVT::i64, NewOp0, NewOp1); 6418 SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp, 6419 DAG.getValueType(MVT::i32)); 6420 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes); 6421 } 6422 6423 void RISCVTargetLowering::ReplaceNodeResults(SDNode *N, 6424 SmallVectorImpl<SDValue> &Results, 6425 SelectionDAG &DAG) const { 6426 SDLoc DL(N); 6427 switch (N->getOpcode()) { 6428 default: 6429 llvm_unreachable("Don't know how to custom type legalize this operation!"); 6430 case ISD::STRICT_FP_TO_SINT: 6431 case ISD::STRICT_FP_TO_UINT: 6432 case ISD::FP_TO_SINT: 6433 case ISD::FP_TO_UINT: { 6434 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6435 "Unexpected custom legalisation"); 6436 bool IsStrict = N->isStrictFPOpcode(); 6437 bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT || 6438 N->getOpcode() == ISD::STRICT_FP_TO_SINT; 6439 SDValue Op0 = IsStrict ? N->getOperand(1) : N->getOperand(0); 6440 if (getTypeAction(*DAG.getContext(), Op0.getValueType()) != 6441 TargetLowering::TypeSoftenFloat) { 6442 if (!isTypeLegal(Op0.getValueType())) 6443 return; 6444 if (IsStrict) { 6445 unsigned Opc = IsSigned ? RISCVISD::STRICT_FCVT_W_RV64 6446 : RISCVISD::STRICT_FCVT_WU_RV64; 6447 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other); 6448 SDValue Res = DAG.getNode( 6449 Opc, DL, VTs, N->getOperand(0), Op0, 6450 DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, MVT::i64)); 6451 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6452 Results.push_back(Res.getValue(1)); 6453 return; 6454 } 6455 unsigned Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64; 6456 SDValue Res = 6457 DAG.getNode(Opc, DL, MVT::i64, Op0, 6458 DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, MVT::i64)); 6459 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6460 return; 6461 } 6462 // If the FP type needs to be softened, emit a library call using the 'si' 6463 // version. If we left it to default legalization we'd end up with 'di'. If 6464 // the FP type doesn't need to be softened just let generic type 6465 // legalization promote the result type. 6466 RTLIB::Libcall LC; 6467 if (IsSigned) 6468 LC = RTLIB::getFPTOSINT(Op0.getValueType(), N->getValueType(0)); 6469 else 6470 LC = RTLIB::getFPTOUINT(Op0.getValueType(), N->getValueType(0)); 6471 MakeLibCallOptions CallOptions; 6472 EVT OpVT = Op0.getValueType(); 6473 CallOptions.setTypeListBeforeSoften(OpVT, N->getValueType(0), true); 6474 SDValue Chain = IsStrict ? N->getOperand(0) : SDValue(); 6475 SDValue Result; 6476 std::tie(Result, Chain) = 6477 makeLibCall(DAG, LC, N->getValueType(0), Op0, CallOptions, DL, Chain); 6478 Results.push_back(Result); 6479 if (IsStrict) 6480 Results.push_back(Chain); 6481 break; 6482 } 6483 case ISD::READCYCLECOUNTER: { 6484 assert(!Subtarget.is64Bit() && 6485 "READCYCLECOUNTER only has custom type legalization on riscv32"); 6486 6487 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other); 6488 SDValue RCW = 6489 DAG.getNode(RISCVISD::READ_CYCLE_WIDE, DL, VTs, N->getOperand(0)); 6490 6491 Results.push_back( 6492 DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, RCW, RCW.getValue(1))); 6493 Results.push_back(RCW.getValue(2)); 6494 break; 6495 } 6496 case ISD::MUL: { 6497 unsigned Size = N->getSimpleValueType(0).getSizeInBits(); 6498 unsigned XLen = Subtarget.getXLen(); 6499 // This multiply needs to be expanded, try to use MULHSU+MUL if possible. 6500 if (Size > XLen) { 6501 assert(Size == (XLen * 2) && "Unexpected custom legalisation"); 6502 SDValue LHS = N->getOperand(0); 6503 SDValue RHS = N->getOperand(1); 6504 APInt HighMask = APInt::getHighBitsSet(Size, XLen); 6505 6506 bool LHSIsU = DAG.MaskedValueIsZero(LHS, HighMask); 6507 bool RHSIsU = DAG.MaskedValueIsZero(RHS, HighMask); 6508 // We need exactly one side to be unsigned. 6509 if (LHSIsU == RHSIsU) 6510 return; 6511 6512 auto MakeMULPair = [&](SDValue S, SDValue U) { 6513 MVT XLenVT = Subtarget.getXLenVT(); 6514 S = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, S); 6515 U = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, U); 6516 SDValue Lo = DAG.getNode(ISD::MUL, DL, XLenVT, S, U); 6517 SDValue Hi = DAG.getNode(RISCVISD::MULHSU, DL, XLenVT, S, U); 6518 return DAG.getNode(ISD::BUILD_PAIR, DL, N->getValueType(0), Lo, Hi); 6519 }; 6520 6521 bool LHSIsS = DAG.ComputeNumSignBits(LHS) > XLen; 6522 bool RHSIsS = DAG.ComputeNumSignBits(RHS) > XLen; 6523 6524 // The other operand should be signed, but still prefer MULH when 6525 // possible. 6526 if (RHSIsU && LHSIsS && !RHSIsS) 6527 Results.push_back(MakeMULPair(LHS, RHS)); 6528 else if (LHSIsU && RHSIsS && !LHSIsS) 6529 Results.push_back(MakeMULPair(RHS, LHS)); 6530 6531 return; 6532 } 6533 LLVM_FALLTHROUGH; 6534 } 6535 case ISD::ADD: 6536 case ISD::SUB: 6537 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6538 "Unexpected custom legalisation"); 6539 Results.push_back(customLegalizeToWOpWithSExt(N, DAG)); 6540 break; 6541 case ISD::SHL: 6542 case ISD::SRA: 6543 case ISD::SRL: 6544 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6545 "Unexpected custom legalisation"); 6546 if (N->getOperand(1).getOpcode() != ISD::Constant) { 6547 Results.push_back(customLegalizeToWOp(N, DAG)); 6548 break; 6549 } 6550 6551 // Custom legalize ISD::SHL by placing a SIGN_EXTEND_INREG after. This is 6552 // similar to customLegalizeToWOpWithSExt, but we must zero_extend the 6553 // shift amount. 6554 if (N->getOpcode() == ISD::SHL) { 6555 SDLoc DL(N); 6556 SDValue NewOp0 = 6557 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 6558 SDValue NewOp1 = 6559 DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1)); 6560 SDValue NewWOp = DAG.getNode(ISD::SHL, DL, MVT::i64, NewOp0, NewOp1); 6561 SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp, 6562 DAG.getValueType(MVT::i32)); 6563 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes)); 6564 } 6565 6566 break; 6567 case ISD::ROTL: 6568 case ISD::ROTR: 6569 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6570 "Unexpected custom legalisation"); 6571 Results.push_back(customLegalizeToWOp(N, DAG)); 6572 break; 6573 case ISD::CTTZ: 6574 case ISD::CTTZ_ZERO_UNDEF: 6575 case ISD::CTLZ: 6576 case ISD::CTLZ_ZERO_UNDEF: { 6577 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6578 "Unexpected custom legalisation"); 6579 6580 SDValue NewOp0 = 6581 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 6582 bool IsCTZ = 6583 N->getOpcode() == ISD::CTTZ || N->getOpcode() == ISD::CTTZ_ZERO_UNDEF; 6584 unsigned Opc = IsCTZ ? RISCVISD::CTZW : RISCVISD::CLZW; 6585 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp0); 6586 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6587 return; 6588 } 6589 case ISD::SDIV: 6590 case ISD::UDIV: 6591 case ISD::UREM: { 6592 MVT VT = N->getSimpleValueType(0); 6593 assert((VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) && 6594 Subtarget.is64Bit() && Subtarget.hasStdExtM() && 6595 "Unexpected custom legalisation"); 6596 // Don't promote division/remainder by constant since we should expand those 6597 // to multiply by magic constant. 6598 // FIXME: What if the expansion is disabled for minsize. 6599 if (N->getOperand(1).getOpcode() == ISD::Constant) 6600 return; 6601 6602 // If the input is i32, use ANY_EXTEND since the W instructions don't read 6603 // the upper 32 bits. For other types we need to sign or zero extend 6604 // based on the opcode. 6605 unsigned ExtOpc = ISD::ANY_EXTEND; 6606 if (VT != MVT::i32) 6607 ExtOpc = N->getOpcode() == ISD::SDIV ? ISD::SIGN_EXTEND 6608 : ISD::ZERO_EXTEND; 6609 6610 Results.push_back(customLegalizeToWOp(N, DAG, ExtOpc)); 6611 break; 6612 } 6613 case ISD::UADDO: 6614 case ISD::USUBO: { 6615 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6616 "Unexpected custom legalisation"); 6617 bool IsAdd = N->getOpcode() == ISD::UADDO; 6618 // Create an ADDW or SUBW. 6619 SDValue LHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 6620 SDValue RHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6621 SDValue Res = 6622 DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, DL, MVT::i64, LHS, RHS); 6623 Res = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Res, 6624 DAG.getValueType(MVT::i32)); 6625 6626 // Sign extend the LHS and perform an unsigned compare with the ADDW result. 6627 // Since the inputs are sign extended from i32, this is equivalent to 6628 // comparing the lower 32 bits. 6629 LHS = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0)); 6630 SDValue Overflow = DAG.getSetCC(DL, N->getValueType(1), Res, LHS, 6631 IsAdd ? ISD::SETULT : ISD::SETUGT); 6632 6633 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6634 Results.push_back(Overflow); 6635 return; 6636 } 6637 case ISD::UADDSAT: 6638 case ISD::USUBSAT: { 6639 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6640 "Unexpected custom legalisation"); 6641 if (Subtarget.hasStdExtZbb()) { 6642 // With Zbb we can sign extend and let LegalizeDAG use minu/maxu. Using 6643 // sign extend allows overflow of the lower 32 bits to be detected on 6644 // the promoted size. 6645 SDValue LHS = 6646 DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0)); 6647 SDValue RHS = 6648 DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(1)); 6649 SDValue Res = DAG.getNode(N->getOpcode(), DL, MVT::i64, LHS, RHS); 6650 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6651 return; 6652 } 6653 6654 // Without Zbb, expand to UADDO/USUBO+select which will trigger our custom 6655 // promotion for UADDO/USUBO. 6656 Results.push_back(expandAddSubSat(N, DAG)); 6657 return; 6658 } 6659 case ISD::BITCAST: { 6660 EVT VT = N->getValueType(0); 6661 assert(VT.isInteger() && !VT.isVector() && "Unexpected VT!"); 6662 SDValue Op0 = N->getOperand(0); 6663 EVT Op0VT = Op0.getValueType(); 6664 MVT XLenVT = Subtarget.getXLenVT(); 6665 if (VT == MVT::i16 && Op0VT == MVT::f16 && Subtarget.hasStdExtZfh()) { 6666 SDValue FPConv = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, XLenVT, Op0); 6667 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FPConv)); 6668 } else if (VT == MVT::i32 && Op0VT == MVT::f32 && Subtarget.is64Bit() && 6669 Subtarget.hasStdExtF()) { 6670 SDValue FPConv = 6671 DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Op0); 6672 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, FPConv)); 6673 } else if (!VT.isVector() && Op0VT.isFixedLengthVector() && 6674 isTypeLegal(Op0VT)) { 6675 // Custom-legalize bitcasts from fixed-length vector types to illegal 6676 // scalar types in order to improve codegen. Bitcast the vector to a 6677 // one-element vector type whose element type is the same as the result 6678 // type, and extract the first element. 6679 EVT BVT = EVT::getVectorVT(*DAG.getContext(), VT, 1); 6680 if (isTypeLegal(BVT)) { 6681 SDValue BVec = DAG.getBitcast(BVT, Op0); 6682 Results.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec, 6683 DAG.getConstant(0, DL, XLenVT))); 6684 } 6685 } 6686 break; 6687 } 6688 case RISCVISD::GREV: 6689 case RISCVISD::GORC: { 6690 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6691 "Unexpected custom legalisation"); 6692 assert(isa<ConstantSDNode>(N->getOperand(1)) && "Expected constant"); 6693 // This is similar to customLegalizeToWOp, except that we pass the second 6694 // operand (a TargetConstant) straight through: it is already of type 6695 // XLenVT. 6696 RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode()); 6697 SDValue NewOp0 = 6698 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 6699 SDValue NewOp1 = 6700 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6701 SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1); 6702 // ReplaceNodeResults requires we maintain the same type for the return 6703 // value. 6704 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes)); 6705 break; 6706 } 6707 case RISCVISD::SHFL: { 6708 // There is no SHFLIW instruction, but we can just promote the operation. 6709 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6710 "Unexpected custom legalisation"); 6711 assert(isa<ConstantSDNode>(N->getOperand(1)) && "Expected constant"); 6712 SDValue NewOp0 = 6713 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 6714 SDValue NewOp1 = 6715 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6716 SDValue NewRes = DAG.getNode(RISCVISD::SHFL, DL, MVT::i64, NewOp0, NewOp1); 6717 // ReplaceNodeResults requires we maintain the same type for the return 6718 // value. 6719 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes)); 6720 break; 6721 } 6722 case ISD::BSWAP: 6723 case ISD::BITREVERSE: { 6724 MVT VT = N->getSimpleValueType(0); 6725 MVT XLenVT = Subtarget.getXLenVT(); 6726 assert((VT == MVT::i8 || VT == MVT::i16 || 6727 (VT == MVT::i32 && Subtarget.is64Bit())) && 6728 Subtarget.hasStdExtZbp() && "Unexpected custom legalisation"); 6729 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, N->getOperand(0)); 6730 unsigned Imm = VT.getSizeInBits() - 1; 6731 // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits. 6732 if (N->getOpcode() == ISD::BSWAP) 6733 Imm &= ~0x7U; 6734 unsigned Opc = Subtarget.is64Bit() ? RISCVISD::GREVW : RISCVISD::GREV; 6735 SDValue GREVI = 6736 DAG.getNode(Opc, DL, XLenVT, NewOp0, DAG.getConstant(Imm, DL, XLenVT)); 6737 // ReplaceNodeResults requires we maintain the same type for the return 6738 // value. 6739 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, GREVI)); 6740 break; 6741 } 6742 case ISD::FSHL: 6743 case ISD::FSHR: { 6744 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6745 Subtarget.hasStdExtZbt() && "Unexpected custom legalisation"); 6746 SDValue NewOp0 = 6747 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 6748 SDValue NewOp1 = 6749 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6750 SDValue NewShAmt = 6751 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 6752 // FSLW/FSRW take a 6 bit shift amount but i32 FSHL/FSHR only use 5 bits. 6753 // Mask the shift amount to 5 bits to prevent accidentally setting bit 5. 6754 NewShAmt = DAG.getNode(ISD::AND, DL, MVT::i64, NewShAmt, 6755 DAG.getConstant(0x1f, DL, MVT::i64)); 6756 // fshl and fshr concatenate their operands in the same order. fsrw and fslw 6757 // instruction use different orders. fshl will return its first operand for 6758 // shift of zero, fshr will return its second operand. fsl and fsr both 6759 // return rs1 so the ISD nodes need to have different operand orders. 6760 // Shift amount is in rs2. 6761 unsigned Opc = RISCVISD::FSLW; 6762 if (N->getOpcode() == ISD::FSHR) { 6763 std::swap(NewOp0, NewOp1); 6764 Opc = RISCVISD::FSRW; 6765 } 6766 SDValue NewOp = DAG.getNode(Opc, DL, MVT::i64, NewOp0, NewOp1, NewShAmt); 6767 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewOp)); 6768 break; 6769 } 6770 case ISD::EXTRACT_VECTOR_ELT: { 6771 // Custom-legalize an EXTRACT_VECTOR_ELT where XLEN<SEW, as the SEW element 6772 // type is illegal (currently only vXi64 RV32). 6773 // With vmv.x.s, when SEW > XLEN, only the least-significant XLEN bits are 6774 // transferred to the destination register. We issue two of these from the 6775 // upper- and lower- halves of the SEW-bit vector element, slid down to the 6776 // first element. 6777 SDValue Vec = N->getOperand(0); 6778 SDValue Idx = N->getOperand(1); 6779 6780 // The vector type hasn't been legalized yet so we can't issue target 6781 // specific nodes if it needs legalization. 6782 // FIXME: We would manually legalize if it's important. 6783 if (!isTypeLegal(Vec.getValueType())) 6784 return; 6785 6786 MVT VecVT = Vec.getSimpleValueType(); 6787 6788 assert(!Subtarget.is64Bit() && N->getValueType(0) == MVT::i64 && 6789 VecVT.getVectorElementType() == MVT::i64 && 6790 "Unexpected EXTRACT_VECTOR_ELT legalization"); 6791 6792 // If this is a fixed vector, we need to convert it to a scalable vector. 6793 MVT ContainerVT = VecVT; 6794 if (VecVT.isFixedLengthVector()) { 6795 ContainerVT = getContainerForFixedLengthVector(VecVT); 6796 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 6797 } 6798 6799 MVT XLenVT = Subtarget.getXLenVT(); 6800 6801 // Use a VL of 1 to avoid processing more elements than we need. 6802 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 6803 SDValue VL = DAG.getConstant(1, DL, XLenVT); 6804 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 6805 6806 // Unless the index is known to be 0, we must slide the vector down to get 6807 // the desired element into index 0. 6808 if (!isNullConstant(Idx)) { 6809 Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 6810 DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL); 6811 } 6812 6813 // Extract the lower XLEN bits of the correct vector element. 6814 SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); 6815 6816 // To extract the upper XLEN bits of the vector element, shift the first 6817 // element right by 32 bits and re-extract the lower XLEN bits. 6818 SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, 6819 DAG.getUNDEF(ContainerVT), 6820 DAG.getConstant(32, DL, XLenVT), VL); 6821 SDValue LShr32 = DAG.getNode(RISCVISD::SRL_VL, DL, ContainerVT, Vec, 6822 ThirtyTwoV, Mask, VL); 6823 6824 SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32); 6825 6826 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi)); 6827 break; 6828 } 6829 case ISD::INTRINSIC_WO_CHAIN: { 6830 unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 6831 switch (IntNo) { 6832 default: 6833 llvm_unreachable( 6834 "Don't know how to custom type legalize this intrinsic!"); 6835 case Intrinsic::riscv_grev: 6836 case Intrinsic::riscv_gorc: 6837 case Intrinsic::riscv_bcompress: 6838 case Intrinsic::riscv_bdecompress: 6839 case Intrinsic::riscv_bfp: { 6840 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6841 "Unexpected custom legalisation"); 6842 Results.push_back(customLegalizeToWOpByIntr(N, DAG, IntNo)); 6843 break; 6844 } 6845 case Intrinsic::riscv_fsl: 6846 case Intrinsic::riscv_fsr: { 6847 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6848 "Unexpected custom legalisation"); 6849 SDValue NewOp1 = 6850 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6851 SDValue NewOp2 = 6852 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 6853 SDValue NewOp3 = 6854 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(3)); 6855 unsigned Opc = getRISCVWOpcodeByIntr(IntNo); 6856 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2, NewOp3); 6857 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6858 break; 6859 } 6860 case Intrinsic::riscv_orc_b: { 6861 // Lower to the GORCI encoding for orc.b with the operand extended. 6862 SDValue NewOp = 6863 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6864 // If Zbp is enabled, use GORCIW which will sign extend the result. 6865 unsigned Opc = 6866 Subtarget.hasStdExtZbp() ? RISCVISD::GORCW : RISCVISD::GORC; 6867 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp, 6868 DAG.getConstant(7, DL, MVT::i64)); 6869 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6870 return; 6871 } 6872 case Intrinsic::riscv_shfl: 6873 case Intrinsic::riscv_unshfl: { 6874 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6875 "Unexpected custom legalisation"); 6876 SDValue NewOp1 = 6877 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6878 SDValue NewOp2 = 6879 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 6880 unsigned Opc = 6881 IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFLW : RISCVISD::UNSHFLW; 6882 // There is no (UN)SHFLIW. If the control word is a constant, we can use 6883 // (UN)SHFLI with bit 4 of the control word cleared. The upper 32 bit half 6884 // will be shuffled the same way as the lower 32 bit half, but the two 6885 // halves won't cross. 6886 if (isa<ConstantSDNode>(NewOp2)) { 6887 NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2, 6888 DAG.getConstant(0xf, DL, MVT::i64)); 6889 Opc = 6890 IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL; 6891 } 6892 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2); 6893 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6894 break; 6895 } 6896 case Intrinsic::riscv_vmv_x_s: { 6897 EVT VT = N->getValueType(0); 6898 MVT XLenVT = Subtarget.getXLenVT(); 6899 if (VT.bitsLT(XLenVT)) { 6900 // Simple case just extract using vmv.x.s and truncate. 6901 SDValue Extract = DAG.getNode(RISCVISD::VMV_X_S, DL, 6902 Subtarget.getXLenVT(), N->getOperand(1)); 6903 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, Extract)); 6904 return; 6905 } 6906 6907 assert(VT == MVT::i64 && !Subtarget.is64Bit() && 6908 "Unexpected custom legalization"); 6909 6910 // We need to do the move in two steps. 6911 SDValue Vec = N->getOperand(1); 6912 MVT VecVT = Vec.getSimpleValueType(); 6913 6914 // First extract the lower XLEN bits of the element. 6915 SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); 6916 6917 // To extract the upper XLEN bits of the vector element, shift the first 6918 // element right by 32 bits and re-extract the lower XLEN bits. 6919 SDValue VL = DAG.getConstant(1, DL, XLenVT); 6920 MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount()); 6921 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 6922 SDValue ThirtyTwoV = 6923 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, DAG.getUNDEF(VecVT), 6924 DAG.getConstant(32, DL, XLenVT), VL); 6925 SDValue LShr32 = 6926 DAG.getNode(RISCVISD::SRL_VL, DL, VecVT, Vec, ThirtyTwoV, Mask, VL); 6927 SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32); 6928 6929 Results.push_back( 6930 DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi)); 6931 break; 6932 } 6933 } 6934 break; 6935 } 6936 case ISD::VECREDUCE_ADD: 6937 case ISD::VECREDUCE_AND: 6938 case ISD::VECREDUCE_OR: 6939 case ISD::VECREDUCE_XOR: 6940 case ISD::VECREDUCE_SMAX: 6941 case ISD::VECREDUCE_UMAX: 6942 case ISD::VECREDUCE_SMIN: 6943 case ISD::VECREDUCE_UMIN: 6944 if (SDValue V = lowerVECREDUCE(SDValue(N, 0), DAG)) 6945 Results.push_back(V); 6946 break; 6947 case ISD::VP_REDUCE_ADD: 6948 case ISD::VP_REDUCE_AND: 6949 case ISD::VP_REDUCE_OR: 6950 case ISD::VP_REDUCE_XOR: 6951 case ISD::VP_REDUCE_SMAX: 6952 case ISD::VP_REDUCE_UMAX: 6953 case ISD::VP_REDUCE_SMIN: 6954 case ISD::VP_REDUCE_UMIN: 6955 if (SDValue V = lowerVPREDUCE(SDValue(N, 0), DAG)) 6956 Results.push_back(V); 6957 break; 6958 case ISD::FLT_ROUNDS_: { 6959 SDVTList VTs = DAG.getVTList(Subtarget.getXLenVT(), MVT::Other); 6960 SDValue Res = DAG.getNode(ISD::FLT_ROUNDS_, DL, VTs, N->getOperand(0)); 6961 Results.push_back(Res.getValue(0)); 6962 Results.push_back(Res.getValue(1)); 6963 break; 6964 } 6965 } 6966 } 6967 6968 // A structure to hold one of the bit-manipulation patterns below. Together, a 6969 // SHL and non-SHL pattern may form a bit-manipulation pair on a single source: 6970 // (or (and (shl x, 1), 0xAAAAAAAA), 6971 // (and (srl x, 1), 0x55555555)) 6972 struct RISCVBitmanipPat { 6973 SDValue Op; 6974 unsigned ShAmt; 6975 bool IsSHL; 6976 6977 bool formsPairWith(const RISCVBitmanipPat &Other) const { 6978 return Op == Other.Op && ShAmt == Other.ShAmt && IsSHL != Other.IsSHL; 6979 } 6980 }; 6981 6982 // Matches patterns of the form 6983 // (and (shl x, C2), (C1 << C2)) 6984 // (and (srl x, C2), C1) 6985 // (shl (and x, C1), C2) 6986 // (srl (and x, (C1 << C2)), C2) 6987 // Where C2 is a power of 2 and C1 has at least that many leading zeroes. 6988 // The expected masks for each shift amount are specified in BitmanipMasks where 6989 // BitmanipMasks[log2(C2)] specifies the expected C1 value. 6990 // The max allowed shift amount is either XLen/2 or XLen/4 determined by whether 6991 // BitmanipMasks contains 6 or 5 entries assuming that the maximum possible 6992 // XLen is 64. 6993 static Optional<RISCVBitmanipPat> 6994 matchRISCVBitmanipPat(SDValue Op, ArrayRef<uint64_t> BitmanipMasks) { 6995 assert((BitmanipMasks.size() == 5 || BitmanipMasks.size() == 6) && 6996 "Unexpected number of masks"); 6997 Optional<uint64_t> Mask; 6998 // Optionally consume a mask around the shift operation. 6999 if (Op.getOpcode() == ISD::AND && isa<ConstantSDNode>(Op.getOperand(1))) { 7000 Mask = Op.getConstantOperandVal(1); 7001 Op = Op.getOperand(0); 7002 } 7003 if (Op.getOpcode() != ISD::SHL && Op.getOpcode() != ISD::SRL) 7004 return None; 7005 bool IsSHL = Op.getOpcode() == ISD::SHL; 7006 7007 if (!isa<ConstantSDNode>(Op.getOperand(1))) 7008 return None; 7009 uint64_t ShAmt = Op.getConstantOperandVal(1); 7010 7011 unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32; 7012 if (ShAmt >= Width || !isPowerOf2_64(ShAmt)) 7013 return None; 7014 // If we don't have enough masks for 64 bit, then we must be trying to 7015 // match SHFL so we're only allowed to shift 1/4 of the width. 7016 if (BitmanipMasks.size() == 5 && ShAmt >= (Width / 2)) 7017 return None; 7018 7019 SDValue Src = Op.getOperand(0); 7020 7021 // The expected mask is shifted left when the AND is found around SHL 7022 // patterns. 7023 // ((x >> 1) & 0x55555555) 7024 // ((x << 1) & 0xAAAAAAAA) 7025 bool SHLExpMask = IsSHL; 7026 7027 if (!Mask) { 7028 // Sometimes LLVM keeps the mask as an operand of the shift, typically when 7029 // the mask is all ones: consume that now. 7030 if (Src.getOpcode() == ISD::AND && isa<ConstantSDNode>(Src.getOperand(1))) { 7031 Mask = Src.getConstantOperandVal(1); 7032 Src = Src.getOperand(0); 7033 // The expected mask is now in fact shifted left for SRL, so reverse the 7034 // decision. 7035 // ((x & 0xAAAAAAAA) >> 1) 7036 // ((x & 0x55555555) << 1) 7037 SHLExpMask = !SHLExpMask; 7038 } else { 7039 // Use a default shifted mask of all-ones if there's no AND, truncated 7040 // down to the expected width. This simplifies the logic later on. 7041 Mask = maskTrailingOnes<uint64_t>(Width); 7042 *Mask &= (IsSHL ? *Mask << ShAmt : *Mask >> ShAmt); 7043 } 7044 } 7045 7046 unsigned MaskIdx = Log2_32(ShAmt); 7047 uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width); 7048 7049 if (SHLExpMask) 7050 ExpMask <<= ShAmt; 7051 7052 if (Mask != ExpMask) 7053 return None; 7054 7055 return RISCVBitmanipPat{Src, (unsigned)ShAmt, IsSHL}; 7056 } 7057 7058 // Matches any of the following bit-manipulation patterns: 7059 // (and (shl x, 1), (0x55555555 << 1)) 7060 // (and (srl x, 1), 0x55555555) 7061 // (shl (and x, 0x55555555), 1) 7062 // (srl (and x, (0x55555555 << 1)), 1) 7063 // where the shift amount and mask may vary thus: 7064 // [1] = 0x55555555 / 0xAAAAAAAA 7065 // [2] = 0x33333333 / 0xCCCCCCCC 7066 // [4] = 0x0F0F0F0F / 0xF0F0F0F0 7067 // [8] = 0x00FF00FF / 0xFF00FF00 7068 // [16] = 0x0000FFFF / 0xFFFFFFFF 7069 // [32] = 0x00000000FFFFFFFF / 0xFFFFFFFF00000000 (for RV64) 7070 static Optional<RISCVBitmanipPat> matchGREVIPat(SDValue Op) { 7071 // These are the unshifted masks which we use to match bit-manipulation 7072 // patterns. They may be shifted left in certain circumstances. 7073 static const uint64_t BitmanipMasks[] = { 7074 0x5555555555555555ULL, 0x3333333333333333ULL, 0x0F0F0F0F0F0F0F0FULL, 7075 0x00FF00FF00FF00FFULL, 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL}; 7076 7077 return matchRISCVBitmanipPat(Op, BitmanipMasks); 7078 } 7079 7080 // Match the following pattern as a GREVI(W) operation 7081 // (or (BITMANIP_SHL x), (BITMANIP_SRL x)) 7082 static SDValue combineORToGREV(SDValue Op, SelectionDAG &DAG, 7083 const RISCVSubtarget &Subtarget) { 7084 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson"); 7085 EVT VT = Op.getValueType(); 7086 7087 if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) { 7088 auto LHS = matchGREVIPat(Op.getOperand(0)); 7089 auto RHS = matchGREVIPat(Op.getOperand(1)); 7090 if (LHS && RHS && LHS->formsPairWith(*RHS)) { 7091 SDLoc DL(Op); 7092 return DAG.getNode(RISCVISD::GREV, DL, VT, LHS->Op, 7093 DAG.getConstant(LHS->ShAmt, DL, VT)); 7094 } 7095 } 7096 return SDValue(); 7097 } 7098 7099 // Matches any the following pattern as a GORCI(W) operation 7100 // 1. (or (GREVI x, shamt), x) if shamt is a power of 2 7101 // 2. (or x, (GREVI x, shamt)) if shamt is a power of 2 7102 // 3. (or (or (BITMANIP_SHL x), x), (BITMANIP_SRL x)) 7103 // Note that with the variant of 3., 7104 // (or (or (BITMANIP_SHL x), (BITMANIP_SRL x)), x) 7105 // the inner pattern will first be matched as GREVI and then the outer 7106 // pattern will be matched to GORC via the first rule above. 7107 // 4. (or (rotl/rotr x, bitwidth/2), x) 7108 static SDValue combineORToGORC(SDValue Op, SelectionDAG &DAG, 7109 const RISCVSubtarget &Subtarget) { 7110 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson"); 7111 EVT VT = Op.getValueType(); 7112 7113 if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) { 7114 SDLoc DL(Op); 7115 SDValue Op0 = Op.getOperand(0); 7116 SDValue Op1 = Op.getOperand(1); 7117 7118 auto MatchOROfReverse = [&](SDValue Reverse, SDValue X) { 7119 if (Reverse.getOpcode() == RISCVISD::GREV && Reverse.getOperand(0) == X && 7120 isa<ConstantSDNode>(Reverse.getOperand(1)) && 7121 isPowerOf2_32(Reverse.getConstantOperandVal(1))) 7122 return DAG.getNode(RISCVISD::GORC, DL, VT, X, Reverse.getOperand(1)); 7123 // We can also form GORCI from ROTL/ROTR by half the bitwidth. 7124 if ((Reverse.getOpcode() == ISD::ROTL || 7125 Reverse.getOpcode() == ISD::ROTR) && 7126 Reverse.getOperand(0) == X && 7127 isa<ConstantSDNode>(Reverse.getOperand(1))) { 7128 uint64_t RotAmt = Reverse.getConstantOperandVal(1); 7129 if (RotAmt == (VT.getSizeInBits() / 2)) 7130 return DAG.getNode(RISCVISD::GORC, DL, VT, X, 7131 DAG.getConstant(RotAmt, DL, VT)); 7132 } 7133 return SDValue(); 7134 }; 7135 7136 // Check for either commutable permutation of (or (GREVI x, shamt), x) 7137 if (SDValue V = MatchOROfReverse(Op0, Op1)) 7138 return V; 7139 if (SDValue V = MatchOROfReverse(Op1, Op0)) 7140 return V; 7141 7142 // OR is commutable so canonicalize its OR operand to the left 7143 if (Op0.getOpcode() != ISD::OR && Op1.getOpcode() == ISD::OR) 7144 std::swap(Op0, Op1); 7145 if (Op0.getOpcode() != ISD::OR) 7146 return SDValue(); 7147 SDValue OrOp0 = Op0.getOperand(0); 7148 SDValue OrOp1 = Op0.getOperand(1); 7149 auto LHS = matchGREVIPat(OrOp0); 7150 // OR is commutable so swap the operands and try again: x might have been 7151 // on the left 7152 if (!LHS) { 7153 std::swap(OrOp0, OrOp1); 7154 LHS = matchGREVIPat(OrOp0); 7155 } 7156 auto RHS = matchGREVIPat(Op1); 7157 if (LHS && RHS && LHS->formsPairWith(*RHS) && LHS->Op == OrOp1) { 7158 return DAG.getNode(RISCVISD::GORC, DL, VT, LHS->Op, 7159 DAG.getConstant(LHS->ShAmt, DL, VT)); 7160 } 7161 } 7162 return SDValue(); 7163 } 7164 7165 // Matches any of the following bit-manipulation patterns: 7166 // (and (shl x, 1), (0x22222222 << 1)) 7167 // (and (srl x, 1), 0x22222222) 7168 // (shl (and x, 0x22222222), 1) 7169 // (srl (and x, (0x22222222 << 1)), 1) 7170 // where the shift amount and mask may vary thus: 7171 // [1] = 0x22222222 / 0x44444444 7172 // [2] = 0x0C0C0C0C / 0x3C3C3C3C 7173 // [4] = 0x00F000F0 / 0x0F000F00 7174 // [8] = 0x0000FF00 / 0x00FF0000 7175 // [16] = 0x00000000FFFF0000 / 0x0000FFFF00000000 (for RV64) 7176 static Optional<RISCVBitmanipPat> matchSHFLPat(SDValue Op) { 7177 // These are the unshifted masks which we use to match bit-manipulation 7178 // patterns. They may be shifted left in certain circumstances. 7179 static const uint64_t BitmanipMasks[] = { 7180 0x2222222222222222ULL, 0x0C0C0C0C0C0C0C0CULL, 0x00F000F000F000F0ULL, 7181 0x0000FF000000FF00ULL, 0x00000000FFFF0000ULL}; 7182 7183 return matchRISCVBitmanipPat(Op, BitmanipMasks); 7184 } 7185 7186 // Match (or (or (SHFL_SHL x), (SHFL_SHR x)), (SHFL_AND x) 7187 static SDValue combineORToSHFL(SDValue Op, SelectionDAG &DAG, 7188 const RISCVSubtarget &Subtarget) { 7189 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson"); 7190 EVT VT = Op.getValueType(); 7191 7192 if (VT != MVT::i32 && VT != Subtarget.getXLenVT()) 7193 return SDValue(); 7194 7195 SDValue Op0 = Op.getOperand(0); 7196 SDValue Op1 = Op.getOperand(1); 7197 7198 // Or is commutable so canonicalize the second OR to the LHS. 7199 if (Op0.getOpcode() != ISD::OR) 7200 std::swap(Op0, Op1); 7201 if (Op0.getOpcode() != ISD::OR) 7202 return SDValue(); 7203 7204 // We found an inner OR, so our operands are the operands of the inner OR 7205 // and the other operand of the outer OR. 7206 SDValue A = Op0.getOperand(0); 7207 SDValue B = Op0.getOperand(1); 7208 SDValue C = Op1; 7209 7210 auto Match1 = matchSHFLPat(A); 7211 auto Match2 = matchSHFLPat(B); 7212 7213 // If neither matched, we failed. 7214 if (!Match1 && !Match2) 7215 return SDValue(); 7216 7217 // We had at least one match. if one failed, try the remaining C operand. 7218 if (!Match1) { 7219 std::swap(A, C); 7220 Match1 = matchSHFLPat(A); 7221 if (!Match1) 7222 return SDValue(); 7223 } else if (!Match2) { 7224 std::swap(B, C); 7225 Match2 = matchSHFLPat(B); 7226 if (!Match2) 7227 return SDValue(); 7228 } 7229 assert(Match1 && Match2); 7230 7231 // Make sure our matches pair up. 7232 if (!Match1->formsPairWith(*Match2)) 7233 return SDValue(); 7234 7235 // All the remains is to make sure C is an AND with the same input, that masks 7236 // out the bits that are being shuffled. 7237 if (C.getOpcode() != ISD::AND || !isa<ConstantSDNode>(C.getOperand(1)) || 7238 C.getOperand(0) != Match1->Op) 7239 return SDValue(); 7240 7241 uint64_t Mask = C.getConstantOperandVal(1); 7242 7243 static const uint64_t BitmanipMasks[] = { 7244 0x9999999999999999ULL, 0xC3C3C3C3C3C3C3C3ULL, 0xF00FF00FF00FF00FULL, 7245 0xFF0000FFFF0000FFULL, 0xFFFF00000000FFFFULL, 7246 }; 7247 7248 unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32; 7249 unsigned MaskIdx = Log2_32(Match1->ShAmt); 7250 uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width); 7251 7252 if (Mask != ExpMask) 7253 return SDValue(); 7254 7255 SDLoc DL(Op); 7256 return DAG.getNode(RISCVISD::SHFL, DL, VT, Match1->Op, 7257 DAG.getConstant(Match1->ShAmt, DL, VT)); 7258 } 7259 7260 // Optimize (add (shl x, c0), (shl y, c1)) -> 7261 // (SLLI (SH*ADD x, y), c0), if c1-c0 equals to [1|2|3]. 7262 static SDValue transformAddShlImm(SDNode *N, SelectionDAG &DAG, 7263 const RISCVSubtarget &Subtarget) { 7264 // Perform this optimization only in the zba extension. 7265 if (!Subtarget.hasStdExtZba()) 7266 return SDValue(); 7267 7268 // Skip for vector types and larger types. 7269 EVT VT = N->getValueType(0); 7270 if (VT.isVector() || VT.getSizeInBits() > Subtarget.getXLen()) 7271 return SDValue(); 7272 7273 // The two operand nodes must be SHL and have no other use. 7274 SDValue N0 = N->getOperand(0); 7275 SDValue N1 = N->getOperand(1); 7276 if (N0->getOpcode() != ISD::SHL || N1->getOpcode() != ISD::SHL || 7277 !N0->hasOneUse() || !N1->hasOneUse()) 7278 return SDValue(); 7279 7280 // Check c0 and c1. 7281 auto *N0C = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 7282 auto *N1C = dyn_cast<ConstantSDNode>(N1->getOperand(1)); 7283 if (!N0C || !N1C) 7284 return SDValue(); 7285 int64_t C0 = N0C->getSExtValue(); 7286 int64_t C1 = N1C->getSExtValue(); 7287 if (C0 <= 0 || C1 <= 0) 7288 return SDValue(); 7289 7290 // Skip if SH1ADD/SH2ADD/SH3ADD are not applicable. 7291 int64_t Bits = std::min(C0, C1); 7292 int64_t Diff = std::abs(C0 - C1); 7293 if (Diff != 1 && Diff != 2 && Diff != 3) 7294 return SDValue(); 7295 7296 // Build nodes. 7297 SDLoc DL(N); 7298 SDValue NS = (C0 < C1) ? N0->getOperand(0) : N1->getOperand(0); 7299 SDValue NL = (C0 > C1) ? N0->getOperand(0) : N1->getOperand(0); 7300 SDValue NA0 = 7301 DAG.getNode(ISD::SHL, DL, VT, NL, DAG.getConstant(Diff, DL, VT)); 7302 SDValue NA1 = DAG.getNode(ISD::ADD, DL, VT, NA0, NS); 7303 return DAG.getNode(ISD::SHL, DL, VT, NA1, DAG.getConstant(Bits, DL, VT)); 7304 } 7305 7306 // Combine 7307 // ROTR ((GREV x, 24), 16) -> (GREVI x, 8) 7308 // ROTL ((GREV x, 24), 16) -> (GREVI x, 8) 7309 // RORW ((GREVW x, 24), 16) -> (GREVIW x, 8) 7310 // ROLW ((GREVW x, 24), 16) -> (GREVIW x, 8) 7311 static SDValue combineROTR_ROTL_RORW_ROLW(SDNode *N, SelectionDAG &DAG) { 7312 SDValue Src = N->getOperand(0); 7313 SDLoc DL(N); 7314 unsigned Opc; 7315 7316 if ((N->getOpcode() == ISD::ROTR || N->getOpcode() == ISD::ROTL) && 7317 Src.getOpcode() == RISCVISD::GREV) 7318 Opc = RISCVISD::GREV; 7319 else if ((N->getOpcode() == RISCVISD::RORW || 7320 N->getOpcode() == RISCVISD::ROLW) && 7321 Src.getOpcode() == RISCVISD::GREVW) 7322 Opc = RISCVISD::GREVW; 7323 else 7324 return SDValue(); 7325 7326 if (!isa<ConstantSDNode>(N->getOperand(1)) || 7327 !isa<ConstantSDNode>(Src.getOperand(1))) 7328 return SDValue(); 7329 7330 unsigned ShAmt1 = N->getConstantOperandVal(1); 7331 unsigned ShAmt2 = Src.getConstantOperandVal(1); 7332 if (ShAmt1 != 16 && ShAmt2 != 24) 7333 return SDValue(); 7334 7335 Src = Src.getOperand(0); 7336 return DAG.getNode(Opc, DL, N->getValueType(0), Src, 7337 DAG.getConstant(8, DL, N->getOperand(1).getValueType())); 7338 } 7339 7340 // Combine (GREVI (GREVI x, C2), C1) -> (GREVI x, C1^C2) when C1^C2 is 7341 // non-zero, and to x when it is. Any repeated GREVI stage undoes itself. 7342 // Combine (GORCI (GORCI x, C2), C1) -> (GORCI x, C1|C2). Repeated stage does 7343 // not undo itself, but they are redundant. 7344 static SDValue combineGREVI_GORCI(SDNode *N, SelectionDAG &DAG) { 7345 SDValue Src = N->getOperand(0); 7346 7347 if (Src.getOpcode() != N->getOpcode()) 7348 return SDValue(); 7349 7350 if (!isa<ConstantSDNode>(N->getOperand(1)) || 7351 !isa<ConstantSDNode>(Src.getOperand(1))) 7352 return SDValue(); 7353 7354 unsigned ShAmt1 = N->getConstantOperandVal(1); 7355 unsigned ShAmt2 = Src.getConstantOperandVal(1); 7356 Src = Src.getOperand(0); 7357 7358 unsigned CombinedShAmt; 7359 if (N->getOpcode() == RISCVISD::GORC || N->getOpcode() == RISCVISD::GORCW) 7360 CombinedShAmt = ShAmt1 | ShAmt2; 7361 else 7362 CombinedShAmt = ShAmt1 ^ ShAmt2; 7363 7364 if (CombinedShAmt == 0) 7365 return Src; 7366 7367 SDLoc DL(N); 7368 return DAG.getNode( 7369 N->getOpcode(), DL, N->getValueType(0), Src, 7370 DAG.getConstant(CombinedShAmt, DL, N->getOperand(1).getValueType())); 7371 } 7372 7373 // Combine a constant select operand into its use: 7374 // 7375 // (and (select cond, -1, c), x) 7376 // -> (select cond, x, (and x, c)) [AllOnes=1] 7377 // (or (select cond, 0, c), x) 7378 // -> (select cond, x, (or x, c)) [AllOnes=0] 7379 // (xor (select cond, 0, c), x) 7380 // -> (select cond, x, (xor x, c)) [AllOnes=0] 7381 // (add (select cond, 0, c), x) 7382 // -> (select cond, x, (add x, c)) [AllOnes=0] 7383 // (sub x, (select cond, 0, c)) 7384 // -> (select cond, x, (sub x, c)) [AllOnes=0] 7385 static SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp, 7386 SelectionDAG &DAG, bool AllOnes) { 7387 EVT VT = N->getValueType(0); 7388 7389 // Skip vectors. 7390 if (VT.isVector()) 7391 return SDValue(); 7392 7393 if ((Slct.getOpcode() != ISD::SELECT && 7394 Slct.getOpcode() != RISCVISD::SELECT_CC) || 7395 !Slct.hasOneUse()) 7396 return SDValue(); 7397 7398 auto isZeroOrAllOnes = [](SDValue N, bool AllOnes) { 7399 return AllOnes ? isAllOnesConstant(N) : isNullConstant(N); 7400 }; 7401 7402 bool SwapSelectOps; 7403 unsigned OpOffset = Slct.getOpcode() == RISCVISD::SELECT_CC ? 2 : 0; 7404 SDValue TrueVal = Slct.getOperand(1 + OpOffset); 7405 SDValue FalseVal = Slct.getOperand(2 + OpOffset); 7406 SDValue NonConstantVal; 7407 if (isZeroOrAllOnes(TrueVal, AllOnes)) { 7408 SwapSelectOps = false; 7409 NonConstantVal = FalseVal; 7410 } else if (isZeroOrAllOnes(FalseVal, AllOnes)) { 7411 SwapSelectOps = true; 7412 NonConstantVal = TrueVal; 7413 } else 7414 return SDValue(); 7415 7416 // Slct is now know to be the desired identity constant when CC is true. 7417 TrueVal = OtherOp; 7418 FalseVal = DAG.getNode(N->getOpcode(), SDLoc(N), VT, OtherOp, NonConstantVal); 7419 // Unless SwapSelectOps says the condition should be false. 7420 if (SwapSelectOps) 7421 std::swap(TrueVal, FalseVal); 7422 7423 if (Slct.getOpcode() == RISCVISD::SELECT_CC) 7424 return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), VT, 7425 {Slct.getOperand(0), Slct.getOperand(1), 7426 Slct.getOperand(2), TrueVal, FalseVal}); 7427 7428 return DAG.getNode(ISD::SELECT, SDLoc(N), VT, 7429 {Slct.getOperand(0), TrueVal, FalseVal}); 7430 } 7431 7432 // Attempt combineSelectAndUse on each operand of a commutative operator N. 7433 static SDValue combineSelectAndUseCommutative(SDNode *N, SelectionDAG &DAG, 7434 bool AllOnes) { 7435 SDValue N0 = N->getOperand(0); 7436 SDValue N1 = N->getOperand(1); 7437 if (SDValue Result = combineSelectAndUse(N, N0, N1, DAG, AllOnes)) 7438 return Result; 7439 if (SDValue Result = combineSelectAndUse(N, N1, N0, DAG, AllOnes)) 7440 return Result; 7441 return SDValue(); 7442 } 7443 7444 // Transform (add (mul x, c0), c1) -> 7445 // (add (mul (add x, c1/c0), c0), c1%c0). 7446 // if c1/c0 and c1%c0 are simm12, while c1 is not. A special corner case 7447 // that should be excluded is when c0*(c1/c0) is simm12, which will lead 7448 // to an infinite loop in DAGCombine if transformed. 7449 // Or transform (add (mul x, c0), c1) -> 7450 // (add (mul (add x, c1/c0+1), c0), c1%c0-c0), 7451 // if c1/c0+1 and c1%c0-c0 are simm12, while c1 is not. A special corner 7452 // case that should be excluded is when c0*(c1/c0+1) is simm12, which will 7453 // lead to an infinite loop in DAGCombine if transformed. 7454 // Or transform (add (mul x, c0), c1) -> 7455 // (add (mul (add x, c1/c0-1), c0), c1%c0+c0), 7456 // if c1/c0-1 and c1%c0+c0 are simm12, while c1 is not. A special corner 7457 // case that should be excluded is when c0*(c1/c0-1) is simm12, which will 7458 // lead to an infinite loop in DAGCombine if transformed. 7459 // Or transform (add (mul x, c0), c1) -> 7460 // (mul (add x, c1/c0), c0). 7461 // if c1%c0 is zero, and c1/c0 is simm12 while c1 is not. 7462 static SDValue transformAddImmMulImm(SDNode *N, SelectionDAG &DAG, 7463 const RISCVSubtarget &Subtarget) { 7464 // Skip for vector types and larger types. 7465 EVT VT = N->getValueType(0); 7466 if (VT.isVector() || VT.getSizeInBits() > Subtarget.getXLen()) 7467 return SDValue(); 7468 // The first operand node must be a MUL and has no other use. 7469 SDValue N0 = N->getOperand(0); 7470 if (!N0->hasOneUse() || N0->getOpcode() != ISD::MUL) 7471 return SDValue(); 7472 // Check if c0 and c1 match above conditions. 7473 auto *N0C = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 7474 auto *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1)); 7475 if (!N0C || !N1C) 7476 return SDValue(); 7477 int64_t C0 = N0C->getSExtValue(); 7478 int64_t C1 = N1C->getSExtValue(); 7479 int64_t CA, CB; 7480 if (C0 == -1 || C0 == 0 || C0 == 1 || isInt<12>(C1)) 7481 return SDValue(); 7482 // Search for proper CA (non-zero) and CB that both are simm12. 7483 if ((C1 / C0) != 0 && isInt<12>(C1 / C0) && isInt<12>(C1 % C0) && 7484 !isInt<12>(C0 * (C1 / C0))) { 7485 CA = C1 / C0; 7486 CB = C1 % C0; 7487 } else if ((C1 / C0 + 1) != 0 && isInt<12>(C1 / C0 + 1) && 7488 isInt<12>(C1 % C0 - C0) && !isInt<12>(C0 * (C1 / C0 + 1))) { 7489 CA = C1 / C0 + 1; 7490 CB = C1 % C0 - C0; 7491 } else if ((C1 / C0 - 1) != 0 && isInt<12>(C1 / C0 - 1) && 7492 isInt<12>(C1 % C0 + C0) && !isInt<12>(C0 * (C1 / C0 - 1))) { 7493 CA = C1 / C0 - 1; 7494 CB = C1 % C0 + C0; 7495 } else 7496 return SDValue(); 7497 // Build new nodes (add (mul (add x, c1/c0), c0), c1%c0). 7498 SDLoc DL(N); 7499 SDValue New0 = DAG.getNode(ISD::ADD, DL, VT, N0->getOperand(0), 7500 DAG.getConstant(CA, DL, VT)); 7501 SDValue New1 = 7502 DAG.getNode(ISD::MUL, DL, VT, New0, DAG.getConstant(C0, DL, VT)); 7503 return DAG.getNode(ISD::ADD, DL, VT, New1, DAG.getConstant(CB, DL, VT)); 7504 } 7505 7506 static SDValue performADDCombine(SDNode *N, SelectionDAG &DAG, 7507 const RISCVSubtarget &Subtarget) { 7508 if (SDValue V = transformAddImmMulImm(N, DAG, Subtarget)) 7509 return V; 7510 if (SDValue V = transformAddShlImm(N, DAG, Subtarget)) 7511 return V; 7512 // fold (add (select lhs, rhs, cc, 0, y), x) -> 7513 // (select lhs, rhs, cc, x, (add x, y)) 7514 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false); 7515 } 7516 7517 static SDValue performSUBCombine(SDNode *N, SelectionDAG &DAG) { 7518 // fold (sub x, (select lhs, rhs, cc, 0, y)) -> 7519 // (select lhs, rhs, cc, x, (sub x, y)) 7520 SDValue N0 = N->getOperand(0); 7521 SDValue N1 = N->getOperand(1); 7522 return combineSelectAndUse(N, N1, N0, DAG, /*AllOnes*/ false); 7523 } 7524 7525 static SDValue performANDCombine(SDNode *N, SelectionDAG &DAG) { 7526 // fold (and (select lhs, rhs, cc, -1, y), x) -> 7527 // (select lhs, rhs, cc, x, (and x, y)) 7528 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ true); 7529 } 7530 7531 static SDValue performORCombine(SDNode *N, SelectionDAG &DAG, 7532 const RISCVSubtarget &Subtarget) { 7533 if (Subtarget.hasStdExtZbp()) { 7534 if (auto GREV = combineORToGREV(SDValue(N, 0), DAG, Subtarget)) 7535 return GREV; 7536 if (auto GORC = combineORToGORC(SDValue(N, 0), DAG, Subtarget)) 7537 return GORC; 7538 if (auto SHFL = combineORToSHFL(SDValue(N, 0), DAG, Subtarget)) 7539 return SHFL; 7540 } 7541 7542 // fold (or (select cond, 0, y), x) -> 7543 // (select cond, x, (or x, y)) 7544 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false); 7545 } 7546 7547 static SDValue performXORCombine(SDNode *N, SelectionDAG &DAG) { 7548 // fold (xor (select cond, 0, y), x) -> 7549 // (select cond, x, (xor x, y)) 7550 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false); 7551 } 7552 7553 // Attempt to turn ANY_EXTEND into SIGN_EXTEND if the input to the ANY_EXTEND 7554 // has users that require SIGN_EXTEND and the SIGN_EXTEND can be done for free 7555 // by an instruction like ADDW/SUBW/MULW. Without this the ANY_EXTEND would be 7556 // removed during type legalization leaving an ADD/SUB/MUL use that won't use 7557 // ADDW/SUBW/MULW. 7558 static SDValue performANY_EXTENDCombine(SDNode *N, 7559 TargetLowering::DAGCombinerInfo &DCI, 7560 const RISCVSubtarget &Subtarget) { 7561 if (!Subtarget.is64Bit()) 7562 return SDValue(); 7563 7564 SelectionDAG &DAG = DCI.DAG; 7565 7566 SDValue Src = N->getOperand(0); 7567 EVT VT = N->getValueType(0); 7568 if (VT != MVT::i64 || Src.getValueType() != MVT::i32) 7569 return SDValue(); 7570 7571 // The opcode must be one that can implicitly sign_extend. 7572 // FIXME: Additional opcodes. 7573 switch (Src.getOpcode()) { 7574 default: 7575 return SDValue(); 7576 case ISD::MUL: 7577 if (!Subtarget.hasStdExtM()) 7578 return SDValue(); 7579 LLVM_FALLTHROUGH; 7580 case ISD::ADD: 7581 case ISD::SUB: 7582 break; 7583 } 7584 7585 // Only handle cases where the result is used by a CopyToReg. That likely 7586 // means the value is a liveout of the basic block. This helps prevent 7587 // infinite combine loops like PR51206. 7588 if (none_of(N->uses(), 7589 [](SDNode *User) { return User->getOpcode() == ISD::CopyToReg; })) 7590 return SDValue(); 7591 7592 SmallVector<SDNode *, 4> SetCCs; 7593 for (SDNode::use_iterator UI = Src.getNode()->use_begin(), 7594 UE = Src.getNode()->use_end(); 7595 UI != UE; ++UI) { 7596 SDNode *User = *UI; 7597 if (User == N) 7598 continue; 7599 if (UI.getUse().getResNo() != Src.getResNo()) 7600 continue; 7601 // All i32 setccs are legalized by sign extending operands. 7602 if (User->getOpcode() == ISD::SETCC) { 7603 SetCCs.push_back(User); 7604 continue; 7605 } 7606 // We don't know if we can extend this user. 7607 break; 7608 } 7609 7610 // If we don't have any SetCCs, this isn't worthwhile. 7611 if (SetCCs.empty()) 7612 return SDValue(); 7613 7614 SDLoc DL(N); 7615 SDValue SExt = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Src); 7616 DCI.CombineTo(N, SExt); 7617 7618 // Promote all the setccs. 7619 for (SDNode *SetCC : SetCCs) { 7620 SmallVector<SDValue, 4> Ops; 7621 7622 for (unsigned j = 0; j != 2; ++j) { 7623 SDValue SOp = SetCC->getOperand(j); 7624 if (SOp == Src) 7625 Ops.push_back(SExt); 7626 else 7627 Ops.push_back(DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, SOp)); 7628 } 7629 7630 Ops.push_back(SetCC->getOperand(2)); 7631 DCI.CombineTo(SetCC, 7632 DAG.getNode(ISD::SETCC, DL, SetCC->getValueType(0), Ops)); 7633 } 7634 return SDValue(N, 0); 7635 } 7636 7637 // Try to form vwadd(u).wv/wx or vwsub(u).wv/wx. It might later be optimized to 7638 // vwadd(u).vv/vx or vwsub(u).vv/vx. 7639 static SDValue combineADDSUB_VLToVWADDSUB_VL(SDNode *N, SelectionDAG &DAG, 7640 bool Commute = false) { 7641 assert((N->getOpcode() == RISCVISD::ADD_VL || 7642 N->getOpcode() == RISCVISD::SUB_VL) && 7643 "Unexpected opcode"); 7644 bool IsAdd = N->getOpcode() == RISCVISD::ADD_VL; 7645 SDValue Op0 = N->getOperand(0); 7646 SDValue Op1 = N->getOperand(1); 7647 if (Commute) 7648 std::swap(Op0, Op1); 7649 7650 MVT VT = N->getSimpleValueType(0); 7651 7652 // Determine the narrow size for a widening add/sub. 7653 unsigned NarrowSize = VT.getScalarSizeInBits() / 2; 7654 MVT NarrowVT = MVT::getVectorVT(MVT::getIntegerVT(NarrowSize), 7655 VT.getVectorElementCount()); 7656 7657 SDValue Mask = N->getOperand(2); 7658 SDValue VL = N->getOperand(3); 7659 7660 SDLoc DL(N); 7661 7662 // If the RHS is a sext or zext, we can form a widening op. 7663 if ((Op1.getOpcode() == RISCVISD::VZEXT_VL || 7664 Op1.getOpcode() == RISCVISD::VSEXT_VL) && 7665 Op1.hasOneUse() && Op1.getOperand(1) == Mask && Op1.getOperand(2) == VL) { 7666 unsigned ExtOpc = Op1.getOpcode(); 7667 Op1 = Op1.getOperand(0); 7668 // Re-introduce narrower extends if needed. 7669 if (Op1.getValueType() != NarrowVT) 7670 Op1 = DAG.getNode(ExtOpc, DL, NarrowVT, Op1, Mask, VL); 7671 7672 unsigned WOpc; 7673 if (ExtOpc == RISCVISD::VSEXT_VL) 7674 WOpc = IsAdd ? RISCVISD::VWADD_W_VL : RISCVISD::VWSUB_W_VL; 7675 else 7676 WOpc = IsAdd ? RISCVISD::VWADDU_W_VL : RISCVISD::VWSUBU_W_VL; 7677 7678 return DAG.getNode(WOpc, DL, VT, Op0, Op1, Mask, VL); 7679 } 7680 7681 // FIXME: Is it useful to form a vwadd.wx or vwsub.wx if it removes a scalar 7682 // sext/zext? 7683 7684 return SDValue(); 7685 } 7686 7687 // Try to convert vwadd(u).wv/wx or vwsub(u).wv/wx to vwadd(u).vv/vx or 7688 // vwsub(u).vv/vx. 7689 static SDValue combineVWADD_W_VL_VWSUB_W_VL(SDNode *N, SelectionDAG &DAG) { 7690 SDValue Op0 = N->getOperand(0); 7691 SDValue Op1 = N->getOperand(1); 7692 SDValue Mask = N->getOperand(2); 7693 SDValue VL = N->getOperand(3); 7694 7695 MVT VT = N->getSimpleValueType(0); 7696 MVT NarrowVT = Op1.getSimpleValueType(); 7697 unsigned NarrowSize = NarrowVT.getScalarSizeInBits(); 7698 7699 unsigned VOpc; 7700 switch (N->getOpcode()) { 7701 default: llvm_unreachable("Unexpected opcode"); 7702 case RISCVISD::VWADD_W_VL: VOpc = RISCVISD::VWADD_VL; break; 7703 case RISCVISD::VWSUB_W_VL: VOpc = RISCVISD::VWSUB_VL; break; 7704 case RISCVISD::VWADDU_W_VL: VOpc = RISCVISD::VWADDU_VL; break; 7705 case RISCVISD::VWSUBU_W_VL: VOpc = RISCVISD::VWSUBU_VL; break; 7706 } 7707 7708 bool IsSigned = N->getOpcode() == RISCVISD::VWADD_W_VL || 7709 N->getOpcode() == RISCVISD::VWSUB_W_VL; 7710 7711 SDLoc DL(N); 7712 7713 // If the LHS is a sext or zext, we can narrow this op to the same size as 7714 // the RHS. 7715 if (((Op0.getOpcode() == RISCVISD::VZEXT_VL && !IsSigned) || 7716 (Op0.getOpcode() == RISCVISD::VSEXT_VL && IsSigned)) && 7717 Op0.hasOneUse() && Op0.getOperand(1) == Mask && Op0.getOperand(2) == VL) { 7718 unsigned ExtOpc = Op0.getOpcode(); 7719 Op0 = Op0.getOperand(0); 7720 // Re-introduce narrower extends if needed. 7721 if (Op0.getValueType() != NarrowVT) 7722 Op0 = DAG.getNode(ExtOpc, DL, NarrowVT, Op0, Mask, VL); 7723 return DAG.getNode(VOpc, DL, VT, Op0, Op1, Mask, VL); 7724 } 7725 7726 bool IsAdd = N->getOpcode() == RISCVISD::VWADD_W_VL || 7727 N->getOpcode() == RISCVISD::VWADDU_W_VL; 7728 7729 // Look for splats on the left hand side of a vwadd(u).wv. We might be able 7730 // to commute and use a vwadd(u).vx instead. 7731 if (IsAdd && Op0.getOpcode() == RISCVISD::VMV_V_X_VL && 7732 Op0.getOperand(0).isUndef() && Op0.getOperand(2) == VL) { 7733 Op0 = Op0.getOperand(1); 7734 7735 // See if have enough sign bits or zero bits in the scalar to use a 7736 // widening add/sub by splatting to smaller element size. 7737 unsigned EltBits = VT.getScalarSizeInBits(); 7738 unsigned ScalarBits = Op0.getValueSizeInBits(); 7739 // Make sure we're getting all element bits from the scalar register. 7740 // FIXME: Support implicit sign extension of vmv.v.x? 7741 if (ScalarBits < EltBits) 7742 return SDValue(); 7743 7744 if (IsSigned) { 7745 if (DAG.ComputeNumSignBits(Op0) <= (ScalarBits - NarrowSize)) 7746 return SDValue(); 7747 } else { 7748 APInt Mask = APInt::getBitsSetFrom(ScalarBits, NarrowSize); 7749 if (!DAG.MaskedValueIsZero(Op0, Mask)) 7750 return SDValue(); 7751 } 7752 7753 Op0 = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, NarrowVT, 7754 DAG.getUNDEF(NarrowVT), Op0, VL); 7755 return DAG.getNode(VOpc, DL, VT, Op1, Op0, Mask, VL); 7756 } 7757 7758 return SDValue(); 7759 } 7760 7761 // Try to form VWMUL, VWMULU or VWMULSU. 7762 // TODO: Support VWMULSU.vx with a sign extend Op and a splat of scalar Op. 7763 static SDValue combineMUL_VLToVWMUL_VL(SDNode *N, SelectionDAG &DAG, 7764 bool Commute) { 7765 assert(N->getOpcode() == RISCVISD::MUL_VL && "Unexpected opcode"); 7766 SDValue Op0 = N->getOperand(0); 7767 SDValue Op1 = N->getOperand(1); 7768 if (Commute) 7769 std::swap(Op0, Op1); 7770 7771 bool IsSignExt = Op0.getOpcode() == RISCVISD::VSEXT_VL; 7772 bool IsZeroExt = Op0.getOpcode() == RISCVISD::VZEXT_VL; 7773 bool IsVWMULSU = IsSignExt && Op1.getOpcode() == RISCVISD::VZEXT_VL; 7774 if ((!IsSignExt && !IsZeroExt) || !Op0.hasOneUse()) 7775 return SDValue(); 7776 7777 SDValue Mask = N->getOperand(2); 7778 SDValue VL = N->getOperand(3); 7779 7780 // Make sure the mask and VL match. 7781 if (Op0.getOperand(1) != Mask || Op0.getOperand(2) != VL) 7782 return SDValue(); 7783 7784 MVT VT = N->getSimpleValueType(0); 7785 7786 // Determine the narrow size for a widening multiply. 7787 unsigned NarrowSize = VT.getScalarSizeInBits() / 2; 7788 MVT NarrowVT = MVT::getVectorVT(MVT::getIntegerVT(NarrowSize), 7789 VT.getVectorElementCount()); 7790 7791 SDLoc DL(N); 7792 7793 // See if the other operand is the same opcode. 7794 if (IsVWMULSU || Op0.getOpcode() == Op1.getOpcode()) { 7795 if (!Op1.hasOneUse()) 7796 return SDValue(); 7797 7798 // Make sure the mask and VL match. 7799 if (Op1.getOperand(1) != Mask || Op1.getOperand(2) != VL) 7800 return SDValue(); 7801 7802 Op1 = Op1.getOperand(0); 7803 } else if (Op1.getOpcode() == RISCVISD::VMV_V_X_VL) { 7804 // The operand is a splat of a scalar. 7805 7806 // The pasthru must be undef for tail agnostic 7807 if (!Op1.getOperand(0).isUndef()) 7808 return SDValue(); 7809 // The VL must be the same. 7810 if (Op1.getOperand(2) != VL) 7811 return SDValue(); 7812 7813 // Get the scalar value. 7814 Op1 = Op1.getOperand(1); 7815 7816 // See if have enough sign bits or zero bits in the scalar to use a 7817 // widening multiply by splatting to smaller element size. 7818 unsigned EltBits = VT.getScalarSizeInBits(); 7819 unsigned ScalarBits = Op1.getValueSizeInBits(); 7820 // Make sure we're getting all element bits from the scalar register. 7821 // FIXME: Support implicit sign extension of vmv.v.x? 7822 if (ScalarBits < EltBits) 7823 return SDValue(); 7824 7825 // If the LHS is a sign extend, try to use vwmul. 7826 if (IsSignExt && DAG.ComputeNumSignBits(Op1) > (ScalarBits - NarrowSize)) { 7827 // Can use vwmul. 7828 } else { 7829 // Otherwise try to use vwmulu or vwmulsu. 7830 APInt Mask = APInt::getBitsSetFrom(ScalarBits, NarrowSize); 7831 if (DAG.MaskedValueIsZero(Op1, Mask)) 7832 IsVWMULSU = IsSignExt; 7833 else 7834 return SDValue(); 7835 } 7836 7837 Op1 = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, NarrowVT, 7838 DAG.getUNDEF(NarrowVT), Op1, VL); 7839 } else 7840 return SDValue(); 7841 7842 Op0 = Op0.getOperand(0); 7843 7844 // Re-introduce narrower extends if needed. 7845 unsigned ExtOpc = IsSignExt ? RISCVISD::VSEXT_VL : RISCVISD::VZEXT_VL; 7846 if (Op0.getValueType() != NarrowVT) 7847 Op0 = DAG.getNode(ExtOpc, DL, NarrowVT, Op0, Mask, VL); 7848 // vwmulsu requires second operand to be zero extended. 7849 ExtOpc = IsVWMULSU ? RISCVISD::VZEXT_VL : ExtOpc; 7850 if (Op1.getValueType() != NarrowVT) 7851 Op1 = DAG.getNode(ExtOpc, DL, NarrowVT, Op1, Mask, VL); 7852 7853 unsigned WMulOpc = RISCVISD::VWMULSU_VL; 7854 if (!IsVWMULSU) 7855 WMulOpc = IsSignExt ? RISCVISD::VWMUL_VL : RISCVISD::VWMULU_VL; 7856 return DAG.getNode(WMulOpc, DL, VT, Op0, Op1, Mask, VL); 7857 } 7858 7859 static RISCVFPRndMode::RoundingMode matchRoundingOp(SDValue Op) { 7860 switch (Op.getOpcode()) { 7861 case ISD::FROUNDEVEN: return RISCVFPRndMode::RNE; 7862 case ISD::FTRUNC: return RISCVFPRndMode::RTZ; 7863 case ISD::FFLOOR: return RISCVFPRndMode::RDN; 7864 case ISD::FCEIL: return RISCVFPRndMode::RUP; 7865 case ISD::FROUND: return RISCVFPRndMode::RMM; 7866 } 7867 7868 return RISCVFPRndMode::Invalid; 7869 } 7870 7871 // Fold 7872 // (fp_to_int (froundeven X)) -> fcvt X, rne 7873 // (fp_to_int (ftrunc X)) -> fcvt X, rtz 7874 // (fp_to_int (ffloor X)) -> fcvt X, rdn 7875 // (fp_to_int (fceil X)) -> fcvt X, rup 7876 // (fp_to_int (fround X)) -> fcvt X, rmm 7877 static SDValue performFP_TO_INTCombine(SDNode *N, 7878 TargetLowering::DAGCombinerInfo &DCI, 7879 const RISCVSubtarget &Subtarget) { 7880 SelectionDAG &DAG = DCI.DAG; 7881 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7882 MVT XLenVT = Subtarget.getXLenVT(); 7883 7884 // Only handle XLen or i32 types. Other types narrower than XLen will 7885 // eventually be legalized to XLenVT. 7886 EVT VT = N->getValueType(0); 7887 if (VT != MVT::i32 && VT != XLenVT) 7888 return SDValue(); 7889 7890 SDValue Src = N->getOperand(0); 7891 7892 // Ensure the FP type is also legal. 7893 if (!TLI.isTypeLegal(Src.getValueType())) 7894 return SDValue(); 7895 7896 // Don't do this for f16 with Zfhmin and not Zfh. 7897 if (Src.getValueType() == MVT::f16 && !Subtarget.hasStdExtZfh()) 7898 return SDValue(); 7899 7900 RISCVFPRndMode::RoundingMode FRM = matchRoundingOp(Src); 7901 if (FRM == RISCVFPRndMode::Invalid) 7902 return SDValue(); 7903 7904 bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT; 7905 7906 unsigned Opc; 7907 if (VT == XLenVT) 7908 Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU; 7909 else 7910 Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64; 7911 7912 SDLoc DL(N); 7913 SDValue FpToInt = DAG.getNode(Opc, DL, XLenVT, Src.getOperand(0), 7914 DAG.getTargetConstant(FRM, DL, XLenVT)); 7915 return DAG.getNode(ISD::TRUNCATE, DL, VT, FpToInt); 7916 } 7917 7918 // Fold 7919 // (fp_to_int_sat (froundeven X)) -> (select X == nan, 0, (fcvt X, rne)) 7920 // (fp_to_int_sat (ftrunc X)) -> (select X == nan, 0, (fcvt X, rtz)) 7921 // (fp_to_int_sat (ffloor X)) -> (select X == nan, 0, (fcvt X, rdn)) 7922 // (fp_to_int_sat (fceil X)) -> (select X == nan, 0, (fcvt X, rup)) 7923 // (fp_to_int_sat (fround X)) -> (select X == nan, 0, (fcvt X, rmm)) 7924 static SDValue performFP_TO_INT_SATCombine(SDNode *N, 7925 TargetLowering::DAGCombinerInfo &DCI, 7926 const RISCVSubtarget &Subtarget) { 7927 SelectionDAG &DAG = DCI.DAG; 7928 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7929 MVT XLenVT = Subtarget.getXLenVT(); 7930 7931 // Only handle XLen types. Other types narrower than XLen will eventually be 7932 // legalized to XLenVT. 7933 EVT DstVT = N->getValueType(0); 7934 if (DstVT != XLenVT) 7935 return SDValue(); 7936 7937 SDValue Src = N->getOperand(0); 7938 7939 // Ensure the FP type is also legal. 7940 if (!TLI.isTypeLegal(Src.getValueType())) 7941 return SDValue(); 7942 7943 // Don't do this for f16 with Zfhmin and not Zfh. 7944 if (Src.getValueType() == MVT::f16 && !Subtarget.hasStdExtZfh()) 7945 return SDValue(); 7946 7947 EVT SatVT = cast<VTSDNode>(N->getOperand(1))->getVT(); 7948 7949 RISCVFPRndMode::RoundingMode FRM = matchRoundingOp(Src); 7950 if (FRM == RISCVFPRndMode::Invalid) 7951 return SDValue(); 7952 7953 bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT_SAT; 7954 7955 unsigned Opc; 7956 if (SatVT == DstVT) 7957 Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU; 7958 else if (DstVT == MVT::i64 && SatVT == MVT::i32) 7959 Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64; 7960 else 7961 return SDValue(); 7962 // FIXME: Support other SatVTs by clamping before or after the conversion. 7963 7964 Src = Src.getOperand(0); 7965 7966 SDLoc DL(N); 7967 SDValue FpToInt = DAG.getNode(Opc, DL, XLenVT, Src, 7968 DAG.getTargetConstant(FRM, DL, XLenVT)); 7969 7970 // RISCV FP-to-int conversions saturate to the destination register size, but 7971 // don't produce 0 for nan. 7972 SDValue ZeroInt = DAG.getConstant(0, DL, DstVT); 7973 return DAG.getSelectCC(DL, Src, Src, ZeroInt, FpToInt, ISD::CondCode::SETUO); 7974 } 7975 7976 SDValue RISCVTargetLowering::PerformDAGCombine(SDNode *N, 7977 DAGCombinerInfo &DCI) const { 7978 SelectionDAG &DAG = DCI.DAG; 7979 7980 // Helper to call SimplifyDemandedBits on an operand of N where only some low 7981 // bits are demanded. N will be added to the Worklist if it was not deleted. 7982 // Caller should return SDValue(N, 0) if this returns true. 7983 auto SimplifyDemandedLowBitsHelper = [&](unsigned OpNo, unsigned LowBits) { 7984 SDValue Op = N->getOperand(OpNo); 7985 APInt Mask = APInt::getLowBitsSet(Op.getValueSizeInBits(), LowBits); 7986 if (!SimplifyDemandedBits(Op, Mask, DCI)) 7987 return false; 7988 7989 if (N->getOpcode() != ISD::DELETED_NODE) 7990 DCI.AddToWorklist(N); 7991 return true; 7992 }; 7993 7994 switch (N->getOpcode()) { 7995 default: 7996 break; 7997 case RISCVISD::SplitF64: { 7998 SDValue Op0 = N->getOperand(0); 7999 // If the input to SplitF64 is just BuildPairF64 then the operation is 8000 // redundant. Instead, use BuildPairF64's operands directly. 8001 if (Op0->getOpcode() == RISCVISD::BuildPairF64) 8002 return DCI.CombineTo(N, Op0.getOperand(0), Op0.getOperand(1)); 8003 8004 if (Op0->isUndef()) { 8005 SDValue Lo = DAG.getUNDEF(MVT::i32); 8006 SDValue Hi = DAG.getUNDEF(MVT::i32); 8007 return DCI.CombineTo(N, Lo, Hi); 8008 } 8009 8010 SDLoc DL(N); 8011 8012 // It's cheaper to materialise two 32-bit integers than to load a double 8013 // from the constant pool and transfer it to integer registers through the 8014 // stack. 8015 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op0)) { 8016 APInt V = C->getValueAPF().bitcastToAPInt(); 8017 SDValue Lo = DAG.getConstant(V.trunc(32), DL, MVT::i32); 8018 SDValue Hi = DAG.getConstant(V.lshr(32).trunc(32), DL, MVT::i32); 8019 return DCI.CombineTo(N, Lo, Hi); 8020 } 8021 8022 // This is a target-specific version of a DAGCombine performed in 8023 // DAGCombiner::visitBITCAST. It performs the equivalent of: 8024 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) 8025 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) 8026 if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) || 8027 !Op0.getNode()->hasOneUse()) 8028 break; 8029 SDValue NewSplitF64 = 8030 DAG.getNode(RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), 8031 Op0.getOperand(0)); 8032 SDValue Lo = NewSplitF64.getValue(0); 8033 SDValue Hi = NewSplitF64.getValue(1); 8034 APInt SignBit = APInt::getSignMask(32); 8035 if (Op0.getOpcode() == ISD::FNEG) { 8036 SDValue NewHi = DAG.getNode(ISD::XOR, DL, MVT::i32, Hi, 8037 DAG.getConstant(SignBit, DL, MVT::i32)); 8038 return DCI.CombineTo(N, Lo, NewHi); 8039 } 8040 assert(Op0.getOpcode() == ISD::FABS); 8041 SDValue NewHi = DAG.getNode(ISD::AND, DL, MVT::i32, Hi, 8042 DAG.getConstant(~SignBit, DL, MVT::i32)); 8043 return DCI.CombineTo(N, Lo, NewHi); 8044 } 8045 case RISCVISD::SLLW: 8046 case RISCVISD::SRAW: 8047 case RISCVISD::SRLW: 8048 case RISCVISD::ROLW: 8049 case RISCVISD::RORW: { 8050 // Only the lower 32 bits of LHS and lower 5 bits of RHS are read. 8051 if (SimplifyDemandedLowBitsHelper(0, 32) || 8052 SimplifyDemandedLowBitsHelper(1, 5)) 8053 return SDValue(N, 0); 8054 8055 return combineROTR_ROTL_RORW_ROLW(N, DAG); 8056 } 8057 case ISD::ROTR: 8058 case ISD::ROTL: 8059 return combineROTR_ROTL_RORW_ROLW(N, DAG); 8060 case RISCVISD::CLZW: 8061 case RISCVISD::CTZW: { 8062 // Only the lower 32 bits of the first operand are read 8063 if (SimplifyDemandedLowBitsHelper(0, 32)) 8064 return SDValue(N, 0); 8065 break; 8066 } 8067 case RISCVISD::GREV: 8068 case RISCVISD::GORC: { 8069 // Only the lower log2(Bitwidth) bits of the the shift amount are read. 8070 unsigned BitWidth = N->getOperand(1).getValueSizeInBits(); 8071 assert(isPowerOf2_32(BitWidth) && "Unexpected bit width"); 8072 if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth))) 8073 return SDValue(N, 0); 8074 8075 return combineGREVI_GORCI(N, DAG); 8076 } 8077 case RISCVISD::GREVW: 8078 case RISCVISD::GORCW: { 8079 // Only the lower 32 bits of LHS and lower 5 bits of RHS are read. 8080 if (SimplifyDemandedLowBitsHelper(0, 32) || 8081 SimplifyDemandedLowBitsHelper(1, 5)) 8082 return SDValue(N, 0); 8083 8084 return combineGREVI_GORCI(N, DAG); 8085 } 8086 case RISCVISD::SHFL: 8087 case RISCVISD::UNSHFL: { 8088 // Only the lower log2(Bitwidth)-1 bits of the the shift amount are read. 8089 unsigned BitWidth = N->getOperand(1).getValueSizeInBits(); 8090 assert(isPowerOf2_32(BitWidth) && "Unexpected bit width"); 8091 if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth) - 1)) 8092 return SDValue(N, 0); 8093 8094 break; 8095 } 8096 case RISCVISD::SHFLW: 8097 case RISCVISD::UNSHFLW: { 8098 // Only the lower 32 bits of LHS and lower 4 bits of RHS are read. 8099 if (SimplifyDemandedLowBitsHelper(0, 32) || 8100 SimplifyDemandedLowBitsHelper(1, 4)) 8101 return SDValue(N, 0); 8102 8103 break; 8104 } 8105 case RISCVISD::BCOMPRESSW: 8106 case RISCVISD::BDECOMPRESSW: { 8107 // Only the lower 32 bits of LHS and RHS are read. 8108 if (SimplifyDemandedLowBitsHelper(0, 32) || 8109 SimplifyDemandedLowBitsHelper(1, 32)) 8110 return SDValue(N, 0); 8111 8112 break; 8113 } 8114 case RISCVISD::FMV_X_ANYEXTH: 8115 case RISCVISD::FMV_X_ANYEXTW_RV64: { 8116 SDLoc DL(N); 8117 SDValue Op0 = N->getOperand(0); 8118 MVT VT = N->getSimpleValueType(0); 8119 // If the input to FMV_X_ANYEXTW_RV64 is just FMV_W_X_RV64 then the 8120 // conversion is unnecessary and can be replaced with the FMV_W_X_RV64 8121 // operand. Similar for FMV_X_ANYEXTH and FMV_H_X. 8122 if ((N->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64 && 8123 Op0->getOpcode() == RISCVISD::FMV_W_X_RV64) || 8124 (N->getOpcode() == RISCVISD::FMV_X_ANYEXTH && 8125 Op0->getOpcode() == RISCVISD::FMV_H_X)) { 8126 assert(Op0.getOperand(0).getValueType() == VT && 8127 "Unexpected value type!"); 8128 return Op0.getOperand(0); 8129 } 8130 8131 // This is a target-specific version of a DAGCombine performed in 8132 // DAGCombiner::visitBITCAST. It performs the equivalent of: 8133 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) 8134 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) 8135 if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) || 8136 !Op0.getNode()->hasOneUse()) 8137 break; 8138 SDValue NewFMV = DAG.getNode(N->getOpcode(), DL, VT, Op0.getOperand(0)); 8139 unsigned FPBits = N->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64 ? 32 : 16; 8140 APInt SignBit = APInt::getSignMask(FPBits).sextOrSelf(VT.getSizeInBits()); 8141 if (Op0.getOpcode() == ISD::FNEG) 8142 return DAG.getNode(ISD::XOR, DL, VT, NewFMV, 8143 DAG.getConstant(SignBit, DL, VT)); 8144 8145 assert(Op0.getOpcode() == ISD::FABS); 8146 return DAG.getNode(ISD::AND, DL, VT, NewFMV, 8147 DAG.getConstant(~SignBit, DL, VT)); 8148 } 8149 case ISD::ADD: 8150 return performADDCombine(N, DAG, Subtarget); 8151 case ISD::SUB: 8152 return performSUBCombine(N, DAG); 8153 case ISD::AND: 8154 return performANDCombine(N, DAG); 8155 case ISD::OR: 8156 return performORCombine(N, DAG, Subtarget); 8157 case ISD::XOR: 8158 return performXORCombine(N, DAG); 8159 case ISD::ANY_EXTEND: 8160 return performANY_EXTENDCombine(N, DCI, Subtarget); 8161 case ISD::ZERO_EXTEND: 8162 // Fold (zero_extend (fp_to_uint X)) to prevent forming fcvt+zexti32 during 8163 // type legalization. This is safe because fp_to_uint produces poison if 8164 // it overflows. 8165 if (N->getValueType(0) == MVT::i64 && Subtarget.is64Bit()) { 8166 SDValue Src = N->getOperand(0); 8167 if (Src.getOpcode() == ISD::FP_TO_UINT && 8168 isTypeLegal(Src.getOperand(0).getValueType())) 8169 return DAG.getNode(ISD::FP_TO_UINT, SDLoc(N), MVT::i64, 8170 Src.getOperand(0)); 8171 if (Src.getOpcode() == ISD::STRICT_FP_TO_UINT && Src.hasOneUse() && 8172 isTypeLegal(Src.getOperand(1).getValueType())) { 8173 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other); 8174 SDValue Res = DAG.getNode(ISD::STRICT_FP_TO_UINT, SDLoc(N), VTs, 8175 Src.getOperand(0), Src.getOperand(1)); 8176 DCI.CombineTo(N, Res); 8177 DAG.ReplaceAllUsesOfValueWith(Src.getValue(1), Res.getValue(1)); 8178 DCI.recursivelyDeleteUnusedNodes(Src.getNode()); 8179 return SDValue(N, 0); // Return N so it doesn't get rechecked. 8180 } 8181 } 8182 return SDValue(); 8183 case RISCVISD::SELECT_CC: { 8184 // Transform 8185 SDValue LHS = N->getOperand(0); 8186 SDValue RHS = N->getOperand(1); 8187 SDValue TrueV = N->getOperand(3); 8188 SDValue FalseV = N->getOperand(4); 8189 8190 // If the True and False values are the same, we don't need a select_cc. 8191 if (TrueV == FalseV) 8192 return TrueV; 8193 8194 ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(2))->get(); 8195 if (!ISD::isIntEqualitySetCC(CCVal)) 8196 break; 8197 8198 // Fold (select_cc (setlt X, Y), 0, ne, trueV, falseV) -> 8199 // (select_cc X, Y, lt, trueV, falseV) 8200 // Sometimes the setcc is introduced after select_cc has been formed. 8201 if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) && 8202 LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) { 8203 // If we're looking for eq 0 instead of ne 0, we need to invert the 8204 // condition. 8205 bool Invert = CCVal == ISD::SETEQ; 8206 CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get(); 8207 if (Invert) 8208 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 8209 8210 SDLoc DL(N); 8211 RHS = LHS.getOperand(1); 8212 LHS = LHS.getOperand(0); 8213 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 8214 8215 SDValue TargetCC = DAG.getCondCode(CCVal); 8216 return DAG.getNode(RISCVISD::SELECT_CC, DL, N->getValueType(0), 8217 {LHS, RHS, TargetCC, TrueV, FalseV}); 8218 } 8219 8220 // Fold (select_cc (xor X, Y), 0, eq/ne, trueV, falseV) -> 8221 // (select_cc X, Y, eq/ne, trueV, falseV) 8222 if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS)) 8223 return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), N->getValueType(0), 8224 {LHS.getOperand(0), LHS.getOperand(1), 8225 N->getOperand(2), TrueV, FalseV}); 8226 // (select_cc X, 1, setne, trueV, falseV) -> 8227 // (select_cc X, 0, seteq, trueV, falseV) if we can prove X is 0/1. 8228 // This can occur when legalizing some floating point comparisons. 8229 APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1); 8230 if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) { 8231 SDLoc DL(N); 8232 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 8233 SDValue TargetCC = DAG.getCondCode(CCVal); 8234 RHS = DAG.getConstant(0, DL, LHS.getValueType()); 8235 return DAG.getNode(RISCVISD::SELECT_CC, DL, N->getValueType(0), 8236 {LHS, RHS, TargetCC, TrueV, FalseV}); 8237 } 8238 8239 break; 8240 } 8241 case RISCVISD::BR_CC: { 8242 SDValue LHS = N->getOperand(1); 8243 SDValue RHS = N->getOperand(2); 8244 ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(3))->get(); 8245 if (!ISD::isIntEqualitySetCC(CCVal)) 8246 break; 8247 8248 // Fold (br_cc (setlt X, Y), 0, ne, dest) -> 8249 // (br_cc X, Y, lt, dest) 8250 // Sometimes the setcc is introduced after br_cc has been formed. 8251 if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) && 8252 LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) { 8253 // If we're looking for eq 0 instead of ne 0, we need to invert the 8254 // condition. 8255 bool Invert = CCVal == ISD::SETEQ; 8256 CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get(); 8257 if (Invert) 8258 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 8259 8260 SDLoc DL(N); 8261 RHS = LHS.getOperand(1); 8262 LHS = LHS.getOperand(0); 8263 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 8264 8265 return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0), 8266 N->getOperand(0), LHS, RHS, DAG.getCondCode(CCVal), 8267 N->getOperand(4)); 8268 } 8269 8270 // Fold (br_cc (xor X, Y), 0, eq/ne, dest) -> 8271 // (br_cc X, Y, eq/ne, trueV, falseV) 8272 if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS)) 8273 return DAG.getNode(RISCVISD::BR_CC, SDLoc(N), N->getValueType(0), 8274 N->getOperand(0), LHS.getOperand(0), LHS.getOperand(1), 8275 N->getOperand(3), N->getOperand(4)); 8276 8277 // (br_cc X, 1, setne, br_cc) -> 8278 // (br_cc X, 0, seteq, br_cc) if we can prove X is 0/1. 8279 // This can occur when legalizing some floating point comparisons. 8280 APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1); 8281 if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) { 8282 SDLoc DL(N); 8283 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 8284 SDValue TargetCC = DAG.getCondCode(CCVal); 8285 RHS = DAG.getConstant(0, DL, LHS.getValueType()); 8286 return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0), 8287 N->getOperand(0), LHS, RHS, TargetCC, 8288 N->getOperand(4)); 8289 } 8290 break; 8291 } 8292 case ISD::FP_TO_SINT: 8293 case ISD::FP_TO_UINT: 8294 return performFP_TO_INTCombine(N, DCI, Subtarget); 8295 case ISD::FP_TO_SINT_SAT: 8296 case ISD::FP_TO_UINT_SAT: 8297 return performFP_TO_INT_SATCombine(N, DCI, Subtarget); 8298 case ISD::FCOPYSIGN: { 8299 EVT VT = N->getValueType(0); 8300 if (!VT.isVector()) 8301 break; 8302 // There is a form of VFSGNJ which injects the negated sign of its second 8303 // operand. Try and bubble any FNEG up after the extend/round to produce 8304 // this optimized pattern. Avoid modifying cases where FP_ROUND and 8305 // TRUNC=1. 8306 SDValue In2 = N->getOperand(1); 8307 // Avoid cases where the extend/round has multiple uses, as duplicating 8308 // those is typically more expensive than removing a fneg. 8309 if (!In2.hasOneUse()) 8310 break; 8311 if (In2.getOpcode() != ISD::FP_EXTEND && 8312 (In2.getOpcode() != ISD::FP_ROUND || In2.getConstantOperandVal(1) != 0)) 8313 break; 8314 In2 = In2.getOperand(0); 8315 if (In2.getOpcode() != ISD::FNEG) 8316 break; 8317 SDLoc DL(N); 8318 SDValue NewFPExtRound = DAG.getFPExtendOrRound(In2.getOperand(0), DL, VT); 8319 return DAG.getNode(ISD::FCOPYSIGN, DL, VT, N->getOperand(0), 8320 DAG.getNode(ISD::FNEG, DL, VT, NewFPExtRound)); 8321 } 8322 case ISD::MGATHER: 8323 case ISD::MSCATTER: 8324 case ISD::VP_GATHER: 8325 case ISD::VP_SCATTER: { 8326 if (!DCI.isBeforeLegalize()) 8327 break; 8328 SDValue Index, ScaleOp; 8329 bool IsIndexScaled = false; 8330 bool IsIndexSigned = false; 8331 if (const auto *VPGSN = dyn_cast<VPGatherScatterSDNode>(N)) { 8332 Index = VPGSN->getIndex(); 8333 ScaleOp = VPGSN->getScale(); 8334 IsIndexScaled = VPGSN->isIndexScaled(); 8335 IsIndexSigned = VPGSN->isIndexSigned(); 8336 } else { 8337 const auto *MGSN = cast<MaskedGatherScatterSDNode>(N); 8338 Index = MGSN->getIndex(); 8339 ScaleOp = MGSN->getScale(); 8340 IsIndexScaled = MGSN->isIndexScaled(); 8341 IsIndexSigned = MGSN->isIndexSigned(); 8342 } 8343 EVT IndexVT = Index.getValueType(); 8344 MVT XLenVT = Subtarget.getXLenVT(); 8345 // RISCV indexed loads only support the "unsigned unscaled" addressing 8346 // mode, so anything else must be manually legalized. 8347 bool NeedsIdxLegalization = 8348 IsIndexScaled || 8349 (IsIndexSigned && IndexVT.getVectorElementType().bitsLT(XLenVT)); 8350 if (!NeedsIdxLegalization) 8351 break; 8352 8353 SDLoc DL(N); 8354 8355 // Any index legalization should first promote to XLenVT, so we don't lose 8356 // bits when scaling. This may create an illegal index type so we let 8357 // LLVM's legalization take care of the splitting. 8358 // FIXME: LLVM can't split VP_GATHER or VP_SCATTER yet. 8359 if (IndexVT.getVectorElementType().bitsLT(XLenVT)) { 8360 IndexVT = IndexVT.changeVectorElementType(XLenVT); 8361 Index = DAG.getNode(IsIndexSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, 8362 DL, IndexVT, Index); 8363 } 8364 8365 unsigned Scale = cast<ConstantSDNode>(ScaleOp)->getZExtValue(); 8366 if (IsIndexScaled && Scale != 1) { 8367 // Manually scale the indices by the element size. 8368 // TODO: Sanitize the scale operand here? 8369 // TODO: For VP nodes, should we use VP_SHL here? 8370 assert(isPowerOf2_32(Scale) && "Expecting power-of-two types"); 8371 SDValue SplatScale = DAG.getConstant(Log2_32(Scale), DL, IndexVT); 8372 Index = DAG.getNode(ISD::SHL, DL, IndexVT, Index, SplatScale); 8373 } 8374 8375 ISD::MemIndexType NewIndexTy = ISD::UNSIGNED_UNSCALED; 8376 if (const auto *VPGN = dyn_cast<VPGatherSDNode>(N)) 8377 return DAG.getGatherVP(N->getVTList(), VPGN->getMemoryVT(), DL, 8378 {VPGN->getChain(), VPGN->getBasePtr(), Index, 8379 VPGN->getScale(), VPGN->getMask(), 8380 VPGN->getVectorLength()}, 8381 VPGN->getMemOperand(), NewIndexTy); 8382 if (const auto *VPSN = dyn_cast<VPScatterSDNode>(N)) 8383 return DAG.getScatterVP(N->getVTList(), VPSN->getMemoryVT(), DL, 8384 {VPSN->getChain(), VPSN->getValue(), 8385 VPSN->getBasePtr(), Index, VPSN->getScale(), 8386 VPSN->getMask(), VPSN->getVectorLength()}, 8387 VPSN->getMemOperand(), NewIndexTy); 8388 if (const auto *MGN = dyn_cast<MaskedGatherSDNode>(N)) 8389 return DAG.getMaskedGather( 8390 N->getVTList(), MGN->getMemoryVT(), DL, 8391 {MGN->getChain(), MGN->getPassThru(), MGN->getMask(), 8392 MGN->getBasePtr(), Index, MGN->getScale()}, 8393 MGN->getMemOperand(), NewIndexTy, MGN->getExtensionType()); 8394 const auto *MSN = cast<MaskedScatterSDNode>(N); 8395 return DAG.getMaskedScatter( 8396 N->getVTList(), MSN->getMemoryVT(), DL, 8397 {MSN->getChain(), MSN->getValue(), MSN->getMask(), MSN->getBasePtr(), 8398 Index, MSN->getScale()}, 8399 MSN->getMemOperand(), NewIndexTy, MSN->isTruncatingStore()); 8400 } 8401 case RISCVISD::SRA_VL: 8402 case RISCVISD::SRL_VL: 8403 case RISCVISD::SHL_VL: { 8404 SDValue ShAmt = N->getOperand(1); 8405 if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) { 8406 // We don't need the upper 32 bits of a 64-bit element for a shift amount. 8407 SDLoc DL(N); 8408 SDValue VL = N->getOperand(3); 8409 EVT VT = N->getValueType(0); 8410 ShAmt = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, DAG.getUNDEF(VT), 8411 ShAmt.getOperand(1), VL); 8412 return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt, 8413 N->getOperand(2), N->getOperand(3)); 8414 } 8415 break; 8416 } 8417 case ISD::SRA: 8418 case ISD::SRL: 8419 case ISD::SHL: { 8420 SDValue ShAmt = N->getOperand(1); 8421 if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) { 8422 // We don't need the upper 32 bits of a 64-bit element for a shift amount. 8423 SDLoc DL(N); 8424 EVT VT = N->getValueType(0); 8425 ShAmt = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, DAG.getUNDEF(VT), 8426 ShAmt.getOperand(1), 8427 DAG.getRegister(RISCV::X0, Subtarget.getXLenVT())); 8428 return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt); 8429 } 8430 break; 8431 } 8432 case RISCVISD::ADD_VL: 8433 if (SDValue V = combineADDSUB_VLToVWADDSUB_VL(N, DAG, /*Commute*/ false)) 8434 return V; 8435 return combineADDSUB_VLToVWADDSUB_VL(N, DAG, /*Commute*/ true); 8436 case RISCVISD::SUB_VL: 8437 return combineADDSUB_VLToVWADDSUB_VL(N, DAG); 8438 case RISCVISD::VWADD_W_VL: 8439 case RISCVISD::VWADDU_W_VL: 8440 case RISCVISD::VWSUB_W_VL: 8441 case RISCVISD::VWSUBU_W_VL: 8442 return combineVWADD_W_VL_VWSUB_W_VL(N, DAG); 8443 case RISCVISD::MUL_VL: 8444 if (SDValue V = combineMUL_VLToVWMUL_VL(N, DAG, /*Commute*/ false)) 8445 return V; 8446 // Mul is commutative. 8447 return combineMUL_VLToVWMUL_VL(N, DAG, /*Commute*/ true); 8448 case ISD::STORE: { 8449 auto *Store = cast<StoreSDNode>(N); 8450 SDValue Val = Store->getValue(); 8451 // Combine store of vmv.x.s to vse with VL of 1. 8452 // FIXME: Support FP. 8453 if (Val.getOpcode() == RISCVISD::VMV_X_S) { 8454 SDValue Src = Val.getOperand(0); 8455 EVT VecVT = Src.getValueType(); 8456 EVT MemVT = Store->getMemoryVT(); 8457 // The memory VT and the element type must match. 8458 if (VecVT.getVectorElementType() == MemVT) { 8459 SDLoc DL(N); 8460 MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount()); 8461 return DAG.getStoreVP( 8462 Store->getChain(), DL, Src, Store->getBasePtr(), Store->getOffset(), 8463 DAG.getConstant(1, DL, MaskVT), 8464 DAG.getConstant(1, DL, Subtarget.getXLenVT()), MemVT, 8465 Store->getMemOperand(), Store->getAddressingMode(), 8466 Store->isTruncatingStore(), /*IsCompress*/ false); 8467 } 8468 } 8469 8470 break; 8471 } 8472 case ISD::SPLAT_VECTOR: { 8473 EVT VT = N->getValueType(0); 8474 // Only perform this combine on legal MVT types. 8475 if (!isTypeLegal(VT)) 8476 break; 8477 if (auto Gather = matchSplatAsGather(N->getOperand(0), VT.getSimpleVT(), N, 8478 DAG, Subtarget)) 8479 return Gather; 8480 break; 8481 } 8482 case RISCVISD::VMV_V_X_VL: { 8483 // Tail agnostic VMV.V.X only demands the vector element bitwidth from the 8484 // scalar input. 8485 unsigned ScalarSize = N->getOperand(1).getValueSizeInBits(); 8486 unsigned EltWidth = N->getValueType(0).getScalarSizeInBits(); 8487 if (ScalarSize > EltWidth && N->getOperand(0).isUndef()) 8488 if (SimplifyDemandedLowBitsHelper(1, EltWidth)) 8489 return SDValue(N, 0); 8490 8491 break; 8492 } 8493 } 8494 8495 return SDValue(); 8496 } 8497 8498 bool RISCVTargetLowering::isDesirableToCommuteWithShift( 8499 const SDNode *N, CombineLevel Level) const { 8500 // The following folds are only desirable if `(OP _, c1 << c2)` can be 8501 // materialised in fewer instructions than `(OP _, c1)`: 8502 // 8503 // (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2) 8504 // (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2) 8505 SDValue N0 = N->getOperand(0); 8506 EVT Ty = N0.getValueType(); 8507 if (Ty.isScalarInteger() && 8508 (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::OR)) { 8509 auto *C1 = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 8510 auto *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1)); 8511 if (C1 && C2) { 8512 const APInt &C1Int = C1->getAPIntValue(); 8513 APInt ShiftedC1Int = C1Int << C2->getAPIntValue(); 8514 8515 // We can materialise `c1 << c2` into an add immediate, so it's "free", 8516 // and the combine should happen, to potentially allow further combines 8517 // later. 8518 if (ShiftedC1Int.getMinSignedBits() <= 64 && 8519 isLegalAddImmediate(ShiftedC1Int.getSExtValue())) 8520 return true; 8521 8522 // We can materialise `c1` in an add immediate, so it's "free", and the 8523 // combine should be prevented. 8524 if (C1Int.getMinSignedBits() <= 64 && 8525 isLegalAddImmediate(C1Int.getSExtValue())) 8526 return false; 8527 8528 // Neither constant will fit into an immediate, so find materialisation 8529 // costs. 8530 int C1Cost = RISCVMatInt::getIntMatCost(C1Int, Ty.getSizeInBits(), 8531 Subtarget.getFeatureBits(), 8532 /*CompressionCost*/true); 8533 int ShiftedC1Cost = RISCVMatInt::getIntMatCost( 8534 ShiftedC1Int, Ty.getSizeInBits(), Subtarget.getFeatureBits(), 8535 /*CompressionCost*/true); 8536 8537 // Materialising `c1` is cheaper than materialising `c1 << c2`, so the 8538 // combine should be prevented. 8539 if (C1Cost < ShiftedC1Cost) 8540 return false; 8541 } 8542 } 8543 return true; 8544 } 8545 8546 bool RISCVTargetLowering::targetShrinkDemandedConstant( 8547 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 8548 TargetLoweringOpt &TLO) const { 8549 // Delay this optimization as late as possible. 8550 if (!TLO.LegalOps) 8551 return false; 8552 8553 EVT VT = Op.getValueType(); 8554 if (VT.isVector()) 8555 return false; 8556 8557 // Only handle AND for now. 8558 if (Op.getOpcode() != ISD::AND) 8559 return false; 8560 8561 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 8562 if (!C) 8563 return false; 8564 8565 const APInt &Mask = C->getAPIntValue(); 8566 8567 // Clear all non-demanded bits initially. 8568 APInt ShrunkMask = Mask & DemandedBits; 8569 8570 // Try to make a smaller immediate by setting undemanded bits. 8571 8572 APInt ExpandedMask = Mask | ~DemandedBits; 8573 8574 auto IsLegalMask = [ShrunkMask, ExpandedMask](const APInt &Mask) -> bool { 8575 return ShrunkMask.isSubsetOf(Mask) && Mask.isSubsetOf(ExpandedMask); 8576 }; 8577 auto UseMask = [Mask, Op, VT, &TLO](const APInt &NewMask) -> bool { 8578 if (NewMask == Mask) 8579 return true; 8580 SDLoc DL(Op); 8581 SDValue NewC = TLO.DAG.getConstant(NewMask, DL, VT); 8582 SDValue NewOp = TLO.DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), NewC); 8583 return TLO.CombineTo(Op, NewOp); 8584 }; 8585 8586 // If the shrunk mask fits in sign extended 12 bits, let the target 8587 // independent code apply it. 8588 if (ShrunkMask.isSignedIntN(12)) 8589 return false; 8590 8591 // Preserve (and X, 0xffff) when zext.h is supported. 8592 if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp()) { 8593 APInt NewMask = APInt(Mask.getBitWidth(), 0xffff); 8594 if (IsLegalMask(NewMask)) 8595 return UseMask(NewMask); 8596 } 8597 8598 // Try to preserve (and X, 0xffffffff), the (zext_inreg X, i32) pattern. 8599 if (VT == MVT::i64) { 8600 APInt NewMask = APInt(64, 0xffffffff); 8601 if (IsLegalMask(NewMask)) 8602 return UseMask(NewMask); 8603 } 8604 8605 // For the remaining optimizations, we need to be able to make a negative 8606 // number through a combination of mask and undemanded bits. 8607 if (!ExpandedMask.isNegative()) 8608 return false; 8609 8610 // What is the fewest number of bits we need to represent the negative number. 8611 unsigned MinSignedBits = ExpandedMask.getMinSignedBits(); 8612 8613 // Try to make a 12 bit negative immediate. If that fails try to make a 32 8614 // bit negative immediate unless the shrunk immediate already fits in 32 bits. 8615 APInt NewMask = ShrunkMask; 8616 if (MinSignedBits <= 12) 8617 NewMask.setBitsFrom(11); 8618 else if (MinSignedBits <= 32 && !ShrunkMask.isSignedIntN(32)) 8619 NewMask.setBitsFrom(31); 8620 else 8621 return false; 8622 8623 // Check that our new mask is a subset of the demanded mask. 8624 assert(IsLegalMask(NewMask)); 8625 return UseMask(NewMask); 8626 } 8627 8628 static void computeGREV(APInt &Src, unsigned ShAmt) { 8629 ShAmt &= Src.getBitWidth() - 1; 8630 uint64_t x = Src.getZExtValue(); 8631 if (ShAmt & 1) 8632 x = ((x & 0x5555555555555555LL) << 1) | ((x & 0xAAAAAAAAAAAAAAAALL) >> 1); 8633 if (ShAmt & 2) 8634 x = ((x & 0x3333333333333333LL) << 2) | ((x & 0xCCCCCCCCCCCCCCCCLL) >> 2); 8635 if (ShAmt & 4) 8636 x = ((x & 0x0F0F0F0F0F0F0F0FLL) << 4) | ((x & 0xF0F0F0F0F0F0F0F0LL) >> 4); 8637 if (ShAmt & 8) 8638 x = ((x & 0x00FF00FF00FF00FFLL) << 8) | ((x & 0xFF00FF00FF00FF00LL) >> 8); 8639 if (ShAmt & 16) 8640 x = ((x & 0x0000FFFF0000FFFFLL) << 16) | ((x & 0xFFFF0000FFFF0000LL) >> 16); 8641 if (ShAmt & 32) 8642 x = ((x & 0x00000000FFFFFFFFLL) << 32) | ((x & 0xFFFFFFFF00000000LL) >> 32); 8643 Src = x; 8644 } 8645 8646 void RISCVTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 8647 KnownBits &Known, 8648 const APInt &DemandedElts, 8649 const SelectionDAG &DAG, 8650 unsigned Depth) const { 8651 unsigned BitWidth = Known.getBitWidth(); 8652 unsigned Opc = Op.getOpcode(); 8653 assert((Opc >= ISD::BUILTIN_OP_END || 8654 Opc == ISD::INTRINSIC_WO_CHAIN || 8655 Opc == ISD::INTRINSIC_W_CHAIN || 8656 Opc == ISD::INTRINSIC_VOID) && 8657 "Should use MaskedValueIsZero if you don't know whether Op" 8658 " is a target node!"); 8659 8660 Known.resetAll(); 8661 switch (Opc) { 8662 default: break; 8663 case RISCVISD::SELECT_CC: { 8664 Known = DAG.computeKnownBits(Op.getOperand(4), Depth + 1); 8665 // If we don't know any bits, early out. 8666 if (Known.isUnknown()) 8667 break; 8668 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(3), Depth + 1); 8669 8670 // Only known if known in both the LHS and RHS. 8671 Known = KnownBits::commonBits(Known, Known2); 8672 break; 8673 } 8674 case RISCVISD::REMUW: { 8675 KnownBits Known2; 8676 Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 8677 Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 8678 // We only care about the lower 32 bits. 8679 Known = KnownBits::urem(Known.trunc(32), Known2.trunc(32)); 8680 // Restore the original width by sign extending. 8681 Known = Known.sext(BitWidth); 8682 break; 8683 } 8684 case RISCVISD::DIVUW: { 8685 KnownBits Known2; 8686 Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 8687 Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 8688 // We only care about the lower 32 bits. 8689 Known = KnownBits::udiv(Known.trunc(32), Known2.trunc(32)); 8690 // Restore the original width by sign extending. 8691 Known = Known.sext(BitWidth); 8692 break; 8693 } 8694 case RISCVISD::CTZW: { 8695 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 8696 unsigned PossibleTZ = Known2.trunc(32).countMaxTrailingZeros(); 8697 unsigned LowBits = Log2_32(PossibleTZ) + 1; 8698 Known.Zero.setBitsFrom(LowBits); 8699 break; 8700 } 8701 case RISCVISD::CLZW: { 8702 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 8703 unsigned PossibleLZ = Known2.trunc(32).countMaxLeadingZeros(); 8704 unsigned LowBits = Log2_32(PossibleLZ) + 1; 8705 Known.Zero.setBitsFrom(LowBits); 8706 break; 8707 } 8708 case RISCVISD::GREV: 8709 case RISCVISD::GREVW: { 8710 if (auto *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 8711 Known = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 8712 if (Opc == RISCVISD::GREVW) 8713 Known = Known.trunc(32); 8714 unsigned ShAmt = C->getZExtValue(); 8715 computeGREV(Known.Zero, ShAmt); 8716 computeGREV(Known.One, ShAmt); 8717 if (Opc == RISCVISD::GREVW) 8718 Known = Known.sext(BitWidth); 8719 } 8720 break; 8721 } 8722 case RISCVISD::READ_VLENB: { 8723 // If we know the minimum VLen from Zvl extensions, we can use that to 8724 // determine the trailing zeros of VLENB. 8725 // FIXME: Limit to 128 bit vectors until we have more testing. 8726 unsigned MinVLenB = std::min(128U, Subtarget.getMinVLen()) / 8; 8727 if (MinVLenB > 0) 8728 Known.Zero.setLowBits(Log2_32(MinVLenB)); 8729 // We assume VLENB is no more than 65536 / 8 bytes. 8730 Known.Zero.setBitsFrom(14); 8731 break; 8732 } 8733 case ISD::INTRINSIC_W_CHAIN: 8734 case ISD::INTRINSIC_WO_CHAIN: { 8735 unsigned IntNo = 8736 Op.getConstantOperandVal(Opc == ISD::INTRINSIC_WO_CHAIN ? 0 : 1); 8737 switch (IntNo) { 8738 default: 8739 // We can't do anything for most intrinsics. 8740 break; 8741 case Intrinsic::riscv_vsetvli: 8742 case Intrinsic::riscv_vsetvlimax: 8743 case Intrinsic::riscv_vsetvli_opt: 8744 case Intrinsic::riscv_vsetvlimax_opt: 8745 // Assume that VL output is positive and would fit in an int32_t. 8746 // TODO: VLEN might be capped at 16 bits in a future V spec update. 8747 if (BitWidth >= 32) 8748 Known.Zero.setBitsFrom(31); 8749 break; 8750 } 8751 break; 8752 } 8753 } 8754 } 8755 8756 unsigned RISCVTargetLowering::ComputeNumSignBitsForTargetNode( 8757 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 8758 unsigned Depth) const { 8759 switch (Op.getOpcode()) { 8760 default: 8761 break; 8762 case RISCVISD::SELECT_CC: { 8763 unsigned Tmp = 8764 DAG.ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth + 1); 8765 if (Tmp == 1) return 1; // Early out. 8766 unsigned Tmp2 = 8767 DAG.ComputeNumSignBits(Op.getOperand(4), DemandedElts, Depth + 1); 8768 return std::min(Tmp, Tmp2); 8769 } 8770 case RISCVISD::SLLW: 8771 case RISCVISD::SRAW: 8772 case RISCVISD::SRLW: 8773 case RISCVISD::DIVW: 8774 case RISCVISD::DIVUW: 8775 case RISCVISD::REMUW: 8776 case RISCVISD::ROLW: 8777 case RISCVISD::RORW: 8778 case RISCVISD::GREVW: 8779 case RISCVISD::GORCW: 8780 case RISCVISD::FSLW: 8781 case RISCVISD::FSRW: 8782 case RISCVISD::SHFLW: 8783 case RISCVISD::UNSHFLW: 8784 case RISCVISD::BCOMPRESSW: 8785 case RISCVISD::BDECOMPRESSW: 8786 case RISCVISD::BFPW: 8787 case RISCVISD::FCVT_W_RV64: 8788 case RISCVISD::FCVT_WU_RV64: 8789 case RISCVISD::STRICT_FCVT_W_RV64: 8790 case RISCVISD::STRICT_FCVT_WU_RV64: 8791 // TODO: As the result is sign-extended, this is conservatively correct. A 8792 // more precise answer could be calculated for SRAW depending on known 8793 // bits in the shift amount. 8794 return 33; 8795 case RISCVISD::SHFL: 8796 case RISCVISD::UNSHFL: { 8797 // There is no SHFLIW, but a i64 SHFLI with bit 4 of the control word 8798 // cleared doesn't affect bit 31. The upper 32 bits will be shuffled, but 8799 // will stay within the upper 32 bits. If there were more than 32 sign bits 8800 // before there will be at least 33 sign bits after. 8801 if (Op.getValueType() == MVT::i64 && 8802 isa<ConstantSDNode>(Op.getOperand(1)) && 8803 (Op.getConstantOperandVal(1) & 0x10) == 0) { 8804 unsigned Tmp = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1); 8805 if (Tmp > 32) 8806 return 33; 8807 } 8808 break; 8809 } 8810 case RISCVISD::VMV_X_S: { 8811 // The number of sign bits of the scalar result is computed by obtaining the 8812 // element type of the input vector operand, subtracting its width from the 8813 // XLEN, and then adding one (sign bit within the element type). If the 8814 // element type is wider than XLen, the least-significant XLEN bits are 8815 // taken. 8816 unsigned XLen = Subtarget.getXLen(); 8817 unsigned EltBits = Op.getOperand(0).getScalarValueSizeInBits(); 8818 if (EltBits <= XLen) 8819 return XLen - EltBits + 1; 8820 break; 8821 } 8822 } 8823 8824 return 1; 8825 } 8826 8827 static MachineBasicBlock *emitReadCycleWidePseudo(MachineInstr &MI, 8828 MachineBasicBlock *BB) { 8829 assert(MI.getOpcode() == RISCV::ReadCycleWide && "Unexpected instruction"); 8830 8831 // To read the 64-bit cycle CSR on a 32-bit target, we read the two halves. 8832 // Should the count have wrapped while it was being read, we need to try 8833 // again. 8834 // ... 8835 // read: 8836 // rdcycleh x3 # load high word of cycle 8837 // rdcycle x2 # load low word of cycle 8838 // rdcycleh x4 # load high word of cycle 8839 // bne x3, x4, read # check if high word reads match, otherwise try again 8840 // ... 8841 8842 MachineFunction &MF = *BB->getParent(); 8843 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 8844 MachineFunction::iterator It = ++BB->getIterator(); 8845 8846 MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB); 8847 MF.insert(It, LoopMBB); 8848 8849 MachineBasicBlock *DoneMBB = MF.CreateMachineBasicBlock(LLVM_BB); 8850 MF.insert(It, DoneMBB); 8851 8852 // Transfer the remainder of BB and its successor edges to DoneMBB. 8853 DoneMBB->splice(DoneMBB->begin(), BB, 8854 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 8855 DoneMBB->transferSuccessorsAndUpdatePHIs(BB); 8856 8857 BB->addSuccessor(LoopMBB); 8858 8859 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 8860 Register ReadAgainReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 8861 Register LoReg = MI.getOperand(0).getReg(); 8862 Register HiReg = MI.getOperand(1).getReg(); 8863 DebugLoc DL = MI.getDebugLoc(); 8864 8865 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 8866 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), HiReg) 8867 .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding) 8868 .addReg(RISCV::X0); 8869 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), LoReg) 8870 .addImm(RISCVSysReg::lookupSysRegByName("CYCLE")->Encoding) 8871 .addReg(RISCV::X0); 8872 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), ReadAgainReg) 8873 .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding) 8874 .addReg(RISCV::X0); 8875 8876 BuildMI(LoopMBB, DL, TII->get(RISCV::BNE)) 8877 .addReg(HiReg) 8878 .addReg(ReadAgainReg) 8879 .addMBB(LoopMBB); 8880 8881 LoopMBB->addSuccessor(LoopMBB); 8882 LoopMBB->addSuccessor(DoneMBB); 8883 8884 MI.eraseFromParent(); 8885 8886 return DoneMBB; 8887 } 8888 8889 static MachineBasicBlock *emitSplitF64Pseudo(MachineInstr &MI, 8890 MachineBasicBlock *BB) { 8891 assert(MI.getOpcode() == RISCV::SplitF64Pseudo && "Unexpected instruction"); 8892 8893 MachineFunction &MF = *BB->getParent(); 8894 DebugLoc DL = MI.getDebugLoc(); 8895 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 8896 const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo(); 8897 Register LoReg = MI.getOperand(0).getReg(); 8898 Register HiReg = MI.getOperand(1).getReg(); 8899 Register SrcReg = MI.getOperand(2).getReg(); 8900 const TargetRegisterClass *SrcRC = &RISCV::FPR64RegClass; 8901 int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF); 8902 8903 TII.storeRegToStackSlot(*BB, MI, SrcReg, MI.getOperand(2).isKill(), FI, SrcRC, 8904 RI); 8905 MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI); 8906 MachineMemOperand *MMOLo = 8907 MF.getMachineMemOperand(MPI, MachineMemOperand::MOLoad, 4, Align(8)); 8908 MachineMemOperand *MMOHi = MF.getMachineMemOperand( 8909 MPI.getWithOffset(4), MachineMemOperand::MOLoad, 4, Align(8)); 8910 BuildMI(*BB, MI, DL, TII.get(RISCV::LW), LoReg) 8911 .addFrameIndex(FI) 8912 .addImm(0) 8913 .addMemOperand(MMOLo); 8914 BuildMI(*BB, MI, DL, TII.get(RISCV::LW), HiReg) 8915 .addFrameIndex(FI) 8916 .addImm(4) 8917 .addMemOperand(MMOHi); 8918 MI.eraseFromParent(); // The pseudo instruction is gone now. 8919 return BB; 8920 } 8921 8922 static MachineBasicBlock *emitBuildPairF64Pseudo(MachineInstr &MI, 8923 MachineBasicBlock *BB) { 8924 assert(MI.getOpcode() == RISCV::BuildPairF64Pseudo && 8925 "Unexpected instruction"); 8926 8927 MachineFunction &MF = *BB->getParent(); 8928 DebugLoc DL = MI.getDebugLoc(); 8929 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 8930 const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo(); 8931 Register DstReg = MI.getOperand(0).getReg(); 8932 Register LoReg = MI.getOperand(1).getReg(); 8933 Register HiReg = MI.getOperand(2).getReg(); 8934 const TargetRegisterClass *DstRC = &RISCV::FPR64RegClass; 8935 int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF); 8936 8937 MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI); 8938 MachineMemOperand *MMOLo = 8939 MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Align(8)); 8940 MachineMemOperand *MMOHi = MF.getMachineMemOperand( 8941 MPI.getWithOffset(4), MachineMemOperand::MOStore, 4, Align(8)); 8942 BuildMI(*BB, MI, DL, TII.get(RISCV::SW)) 8943 .addReg(LoReg, getKillRegState(MI.getOperand(1).isKill())) 8944 .addFrameIndex(FI) 8945 .addImm(0) 8946 .addMemOperand(MMOLo); 8947 BuildMI(*BB, MI, DL, TII.get(RISCV::SW)) 8948 .addReg(HiReg, getKillRegState(MI.getOperand(2).isKill())) 8949 .addFrameIndex(FI) 8950 .addImm(4) 8951 .addMemOperand(MMOHi); 8952 TII.loadRegFromStackSlot(*BB, MI, DstReg, FI, DstRC, RI); 8953 MI.eraseFromParent(); // The pseudo instruction is gone now. 8954 return BB; 8955 } 8956 8957 static bool isSelectPseudo(MachineInstr &MI) { 8958 switch (MI.getOpcode()) { 8959 default: 8960 return false; 8961 case RISCV::Select_GPR_Using_CC_GPR: 8962 case RISCV::Select_FPR16_Using_CC_GPR: 8963 case RISCV::Select_FPR32_Using_CC_GPR: 8964 case RISCV::Select_FPR64_Using_CC_GPR: 8965 return true; 8966 } 8967 } 8968 8969 static MachineBasicBlock *emitQuietFCMP(MachineInstr &MI, MachineBasicBlock *BB, 8970 unsigned RelOpcode, unsigned EqOpcode, 8971 const RISCVSubtarget &Subtarget) { 8972 DebugLoc DL = MI.getDebugLoc(); 8973 Register DstReg = MI.getOperand(0).getReg(); 8974 Register Src1Reg = MI.getOperand(1).getReg(); 8975 Register Src2Reg = MI.getOperand(2).getReg(); 8976 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); 8977 Register SavedFFlags = MRI.createVirtualRegister(&RISCV::GPRRegClass); 8978 const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo(); 8979 8980 // Save the current FFLAGS. 8981 BuildMI(*BB, MI, DL, TII.get(RISCV::ReadFFLAGS), SavedFFlags); 8982 8983 auto MIB = BuildMI(*BB, MI, DL, TII.get(RelOpcode), DstReg) 8984 .addReg(Src1Reg) 8985 .addReg(Src2Reg); 8986 if (MI.getFlag(MachineInstr::MIFlag::NoFPExcept)) 8987 MIB->setFlag(MachineInstr::MIFlag::NoFPExcept); 8988 8989 // Restore the FFLAGS. 8990 BuildMI(*BB, MI, DL, TII.get(RISCV::WriteFFLAGS)) 8991 .addReg(SavedFFlags, RegState::Kill); 8992 8993 // Issue a dummy FEQ opcode to raise exception for signaling NaNs. 8994 auto MIB2 = BuildMI(*BB, MI, DL, TII.get(EqOpcode), RISCV::X0) 8995 .addReg(Src1Reg, getKillRegState(MI.getOperand(1).isKill())) 8996 .addReg(Src2Reg, getKillRegState(MI.getOperand(2).isKill())); 8997 if (MI.getFlag(MachineInstr::MIFlag::NoFPExcept)) 8998 MIB2->setFlag(MachineInstr::MIFlag::NoFPExcept); 8999 9000 // Erase the pseudoinstruction. 9001 MI.eraseFromParent(); 9002 return BB; 9003 } 9004 9005 static MachineBasicBlock *emitSelectPseudo(MachineInstr &MI, 9006 MachineBasicBlock *BB, 9007 const RISCVSubtarget &Subtarget) { 9008 // To "insert" Select_* instructions, we actually have to insert the triangle 9009 // control-flow pattern. The incoming instructions know the destination vreg 9010 // to set, the condition code register to branch on, the true/false values to 9011 // select between, and the condcode to use to select the appropriate branch. 9012 // 9013 // We produce the following control flow: 9014 // HeadMBB 9015 // | \ 9016 // | IfFalseMBB 9017 // | / 9018 // TailMBB 9019 // 9020 // When we find a sequence of selects we attempt to optimize their emission 9021 // by sharing the control flow. Currently we only handle cases where we have 9022 // multiple selects with the exact same condition (same LHS, RHS and CC). 9023 // The selects may be interleaved with other instructions if the other 9024 // instructions meet some requirements we deem safe: 9025 // - They are debug instructions. Otherwise, 9026 // - They do not have side-effects, do not access memory and their inputs do 9027 // not depend on the results of the select pseudo-instructions. 9028 // The TrueV/FalseV operands of the selects cannot depend on the result of 9029 // previous selects in the sequence. 9030 // These conditions could be further relaxed. See the X86 target for a 9031 // related approach and more information. 9032 Register LHS = MI.getOperand(1).getReg(); 9033 Register RHS = MI.getOperand(2).getReg(); 9034 auto CC = static_cast<RISCVCC::CondCode>(MI.getOperand(3).getImm()); 9035 9036 SmallVector<MachineInstr *, 4> SelectDebugValues; 9037 SmallSet<Register, 4> SelectDests; 9038 SelectDests.insert(MI.getOperand(0).getReg()); 9039 9040 MachineInstr *LastSelectPseudo = &MI; 9041 9042 for (auto E = BB->end(), SequenceMBBI = MachineBasicBlock::iterator(MI); 9043 SequenceMBBI != E; ++SequenceMBBI) { 9044 if (SequenceMBBI->isDebugInstr()) 9045 continue; 9046 else if (isSelectPseudo(*SequenceMBBI)) { 9047 if (SequenceMBBI->getOperand(1).getReg() != LHS || 9048 SequenceMBBI->getOperand(2).getReg() != RHS || 9049 SequenceMBBI->getOperand(3).getImm() != CC || 9050 SelectDests.count(SequenceMBBI->getOperand(4).getReg()) || 9051 SelectDests.count(SequenceMBBI->getOperand(5).getReg())) 9052 break; 9053 LastSelectPseudo = &*SequenceMBBI; 9054 SequenceMBBI->collectDebugValues(SelectDebugValues); 9055 SelectDests.insert(SequenceMBBI->getOperand(0).getReg()); 9056 } else { 9057 if (SequenceMBBI->hasUnmodeledSideEffects() || 9058 SequenceMBBI->mayLoadOrStore()) 9059 break; 9060 if (llvm::any_of(SequenceMBBI->operands(), [&](MachineOperand &MO) { 9061 return MO.isReg() && MO.isUse() && SelectDests.count(MO.getReg()); 9062 })) 9063 break; 9064 } 9065 } 9066 9067 const RISCVInstrInfo &TII = *Subtarget.getInstrInfo(); 9068 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 9069 DebugLoc DL = MI.getDebugLoc(); 9070 MachineFunction::iterator I = ++BB->getIterator(); 9071 9072 MachineBasicBlock *HeadMBB = BB; 9073 MachineFunction *F = BB->getParent(); 9074 MachineBasicBlock *TailMBB = F->CreateMachineBasicBlock(LLVM_BB); 9075 MachineBasicBlock *IfFalseMBB = F->CreateMachineBasicBlock(LLVM_BB); 9076 9077 F->insert(I, IfFalseMBB); 9078 F->insert(I, TailMBB); 9079 9080 // Transfer debug instructions associated with the selects to TailMBB. 9081 for (MachineInstr *DebugInstr : SelectDebugValues) { 9082 TailMBB->push_back(DebugInstr->removeFromParent()); 9083 } 9084 9085 // Move all instructions after the sequence to TailMBB. 9086 TailMBB->splice(TailMBB->end(), HeadMBB, 9087 std::next(LastSelectPseudo->getIterator()), HeadMBB->end()); 9088 // Update machine-CFG edges by transferring all successors of the current 9089 // block to the new block which will contain the Phi nodes for the selects. 9090 TailMBB->transferSuccessorsAndUpdatePHIs(HeadMBB); 9091 // Set the successors for HeadMBB. 9092 HeadMBB->addSuccessor(IfFalseMBB); 9093 HeadMBB->addSuccessor(TailMBB); 9094 9095 // Insert appropriate branch. 9096 BuildMI(HeadMBB, DL, TII.getBrCond(CC)) 9097 .addReg(LHS) 9098 .addReg(RHS) 9099 .addMBB(TailMBB); 9100 9101 // IfFalseMBB just falls through to TailMBB. 9102 IfFalseMBB->addSuccessor(TailMBB); 9103 9104 // Create PHIs for all of the select pseudo-instructions. 9105 auto SelectMBBI = MI.getIterator(); 9106 auto SelectEnd = std::next(LastSelectPseudo->getIterator()); 9107 auto InsertionPoint = TailMBB->begin(); 9108 while (SelectMBBI != SelectEnd) { 9109 auto Next = std::next(SelectMBBI); 9110 if (isSelectPseudo(*SelectMBBI)) { 9111 // %Result = phi [ %TrueValue, HeadMBB ], [ %FalseValue, IfFalseMBB ] 9112 BuildMI(*TailMBB, InsertionPoint, SelectMBBI->getDebugLoc(), 9113 TII.get(RISCV::PHI), SelectMBBI->getOperand(0).getReg()) 9114 .addReg(SelectMBBI->getOperand(4).getReg()) 9115 .addMBB(HeadMBB) 9116 .addReg(SelectMBBI->getOperand(5).getReg()) 9117 .addMBB(IfFalseMBB); 9118 SelectMBBI->eraseFromParent(); 9119 } 9120 SelectMBBI = Next; 9121 } 9122 9123 F->getProperties().reset(MachineFunctionProperties::Property::NoPHIs); 9124 return TailMBB; 9125 } 9126 9127 MachineBasicBlock * 9128 RISCVTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 9129 MachineBasicBlock *BB) const { 9130 switch (MI.getOpcode()) { 9131 default: 9132 llvm_unreachable("Unexpected instr type to insert"); 9133 case RISCV::ReadCycleWide: 9134 assert(!Subtarget.is64Bit() && 9135 "ReadCycleWrite is only to be used on riscv32"); 9136 return emitReadCycleWidePseudo(MI, BB); 9137 case RISCV::Select_GPR_Using_CC_GPR: 9138 case RISCV::Select_FPR16_Using_CC_GPR: 9139 case RISCV::Select_FPR32_Using_CC_GPR: 9140 case RISCV::Select_FPR64_Using_CC_GPR: 9141 return emitSelectPseudo(MI, BB, Subtarget); 9142 case RISCV::BuildPairF64Pseudo: 9143 return emitBuildPairF64Pseudo(MI, BB); 9144 case RISCV::SplitF64Pseudo: 9145 return emitSplitF64Pseudo(MI, BB); 9146 case RISCV::PseudoQuietFLE_H: 9147 return emitQuietFCMP(MI, BB, RISCV::FLE_H, RISCV::FEQ_H, Subtarget); 9148 case RISCV::PseudoQuietFLT_H: 9149 return emitQuietFCMP(MI, BB, RISCV::FLT_H, RISCV::FEQ_H, Subtarget); 9150 case RISCV::PseudoQuietFLE_S: 9151 return emitQuietFCMP(MI, BB, RISCV::FLE_S, RISCV::FEQ_S, Subtarget); 9152 case RISCV::PseudoQuietFLT_S: 9153 return emitQuietFCMP(MI, BB, RISCV::FLT_S, RISCV::FEQ_S, Subtarget); 9154 case RISCV::PseudoQuietFLE_D: 9155 return emitQuietFCMP(MI, BB, RISCV::FLE_D, RISCV::FEQ_D, Subtarget); 9156 case RISCV::PseudoQuietFLT_D: 9157 return emitQuietFCMP(MI, BB, RISCV::FLT_D, RISCV::FEQ_D, Subtarget); 9158 } 9159 } 9160 9161 void RISCVTargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI, 9162 SDNode *Node) const { 9163 // Add FRM dependency to any instructions with dynamic rounding mode. 9164 unsigned Opc = MI.getOpcode(); 9165 auto Idx = RISCV::getNamedOperandIdx(Opc, RISCV::OpName::frm); 9166 if (Idx < 0) 9167 return; 9168 if (MI.getOperand(Idx).getImm() != RISCVFPRndMode::DYN) 9169 return; 9170 // If the instruction already reads FRM, don't add another read. 9171 if (MI.readsRegister(RISCV::FRM)) 9172 return; 9173 MI.addOperand( 9174 MachineOperand::CreateReg(RISCV::FRM, /*isDef*/ false, /*isImp*/ true)); 9175 } 9176 9177 // Calling Convention Implementation. 9178 // The expectations for frontend ABI lowering vary from target to target. 9179 // Ideally, an LLVM frontend would be able to avoid worrying about many ABI 9180 // details, but this is a longer term goal. For now, we simply try to keep the 9181 // role of the frontend as simple and well-defined as possible. The rules can 9182 // be summarised as: 9183 // * Never split up large scalar arguments. We handle them here. 9184 // * If a hardfloat calling convention is being used, and the struct may be 9185 // passed in a pair of registers (fp+fp, int+fp), and both registers are 9186 // available, then pass as two separate arguments. If either the GPRs or FPRs 9187 // are exhausted, then pass according to the rule below. 9188 // * If a struct could never be passed in registers or directly in a stack 9189 // slot (as it is larger than 2*XLEN and the floating point rules don't 9190 // apply), then pass it using a pointer with the byval attribute. 9191 // * If a struct is less than 2*XLEN, then coerce to either a two-element 9192 // word-sized array or a 2*XLEN scalar (depending on alignment). 9193 // * The frontend can determine whether a struct is returned by reference or 9194 // not based on its size and fields. If it will be returned by reference, the 9195 // frontend must modify the prototype so a pointer with the sret annotation is 9196 // passed as the first argument. This is not necessary for large scalar 9197 // returns. 9198 // * Struct return values and varargs should be coerced to structs containing 9199 // register-size fields in the same situations they would be for fixed 9200 // arguments. 9201 9202 static const MCPhysReg ArgGPRs[] = { 9203 RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, 9204 RISCV::X14, RISCV::X15, RISCV::X16, RISCV::X17 9205 }; 9206 static const MCPhysReg ArgFPR16s[] = { 9207 RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, 9208 RISCV::F14_H, RISCV::F15_H, RISCV::F16_H, RISCV::F17_H 9209 }; 9210 static const MCPhysReg ArgFPR32s[] = { 9211 RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, 9212 RISCV::F14_F, RISCV::F15_F, RISCV::F16_F, RISCV::F17_F 9213 }; 9214 static const MCPhysReg ArgFPR64s[] = { 9215 RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, 9216 RISCV::F14_D, RISCV::F15_D, RISCV::F16_D, RISCV::F17_D 9217 }; 9218 // This is an interim calling convention and it may be changed in the future. 9219 static const MCPhysReg ArgVRs[] = { 9220 RISCV::V8, RISCV::V9, RISCV::V10, RISCV::V11, RISCV::V12, RISCV::V13, 9221 RISCV::V14, RISCV::V15, RISCV::V16, RISCV::V17, RISCV::V18, RISCV::V19, 9222 RISCV::V20, RISCV::V21, RISCV::V22, RISCV::V23}; 9223 static const MCPhysReg ArgVRM2s[] = {RISCV::V8M2, RISCV::V10M2, RISCV::V12M2, 9224 RISCV::V14M2, RISCV::V16M2, RISCV::V18M2, 9225 RISCV::V20M2, RISCV::V22M2}; 9226 static const MCPhysReg ArgVRM4s[] = {RISCV::V8M4, RISCV::V12M4, RISCV::V16M4, 9227 RISCV::V20M4}; 9228 static const MCPhysReg ArgVRM8s[] = {RISCV::V8M8, RISCV::V16M8}; 9229 9230 // Pass a 2*XLEN argument that has been split into two XLEN values through 9231 // registers or the stack as necessary. 9232 static bool CC_RISCVAssign2XLen(unsigned XLen, CCState &State, CCValAssign VA1, 9233 ISD::ArgFlagsTy ArgFlags1, unsigned ValNo2, 9234 MVT ValVT2, MVT LocVT2, 9235 ISD::ArgFlagsTy ArgFlags2) { 9236 unsigned XLenInBytes = XLen / 8; 9237 if (Register Reg = State.AllocateReg(ArgGPRs)) { 9238 // At least one half can be passed via register. 9239 State.addLoc(CCValAssign::getReg(VA1.getValNo(), VA1.getValVT(), Reg, 9240 VA1.getLocVT(), CCValAssign::Full)); 9241 } else { 9242 // Both halves must be passed on the stack, with proper alignment. 9243 Align StackAlign = 9244 std::max(Align(XLenInBytes), ArgFlags1.getNonZeroOrigAlign()); 9245 State.addLoc( 9246 CCValAssign::getMem(VA1.getValNo(), VA1.getValVT(), 9247 State.AllocateStack(XLenInBytes, StackAlign), 9248 VA1.getLocVT(), CCValAssign::Full)); 9249 State.addLoc(CCValAssign::getMem( 9250 ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)), 9251 LocVT2, CCValAssign::Full)); 9252 return false; 9253 } 9254 9255 if (Register Reg = State.AllocateReg(ArgGPRs)) { 9256 // The second half can also be passed via register. 9257 State.addLoc( 9258 CCValAssign::getReg(ValNo2, ValVT2, Reg, LocVT2, CCValAssign::Full)); 9259 } else { 9260 // The second half is passed via the stack, without additional alignment. 9261 State.addLoc(CCValAssign::getMem( 9262 ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)), 9263 LocVT2, CCValAssign::Full)); 9264 } 9265 9266 return false; 9267 } 9268 9269 static unsigned allocateRVVReg(MVT ValVT, unsigned ValNo, 9270 Optional<unsigned> FirstMaskArgument, 9271 CCState &State, const RISCVTargetLowering &TLI) { 9272 const TargetRegisterClass *RC = TLI.getRegClassFor(ValVT); 9273 if (RC == &RISCV::VRRegClass) { 9274 // Assign the first mask argument to V0. 9275 // This is an interim calling convention and it may be changed in the 9276 // future. 9277 if (FirstMaskArgument.hasValue() && ValNo == FirstMaskArgument.getValue()) 9278 return State.AllocateReg(RISCV::V0); 9279 return State.AllocateReg(ArgVRs); 9280 } 9281 if (RC == &RISCV::VRM2RegClass) 9282 return State.AllocateReg(ArgVRM2s); 9283 if (RC == &RISCV::VRM4RegClass) 9284 return State.AllocateReg(ArgVRM4s); 9285 if (RC == &RISCV::VRM8RegClass) 9286 return State.AllocateReg(ArgVRM8s); 9287 llvm_unreachable("Unhandled register class for ValueType"); 9288 } 9289 9290 // Implements the RISC-V calling convention. Returns true upon failure. 9291 static bool CC_RISCV(const DataLayout &DL, RISCVABI::ABI ABI, unsigned ValNo, 9292 MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, 9293 ISD::ArgFlagsTy ArgFlags, CCState &State, bool IsFixed, 9294 bool IsRet, Type *OrigTy, const RISCVTargetLowering &TLI, 9295 Optional<unsigned> FirstMaskArgument) { 9296 unsigned XLen = DL.getLargestLegalIntTypeSizeInBits(); 9297 assert(XLen == 32 || XLen == 64); 9298 MVT XLenVT = XLen == 32 ? MVT::i32 : MVT::i64; 9299 9300 // Any return value split in to more than two values can't be returned 9301 // directly. Vectors are returned via the available vector registers. 9302 if (!LocVT.isVector() && IsRet && ValNo > 1) 9303 return true; 9304 9305 // UseGPRForF16_F32 if targeting one of the soft-float ABIs, if passing a 9306 // variadic argument, or if no F16/F32 argument registers are available. 9307 bool UseGPRForF16_F32 = true; 9308 // UseGPRForF64 if targeting soft-float ABIs or an FLEN=32 ABI, if passing a 9309 // variadic argument, or if no F64 argument registers are available. 9310 bool UseGPRForF64 = true; 9311 9312 switch (ABI) { 9313 default: 9314 llvm_unreachable("Unexpected ABI"); 9315 case RISCVABI::ABI_ILP32: 9316 case RISCVABI::ABI_LP64: 9317 break; 9318 case RISCVABI::ABI_ILP32F: 9319 case RISCVABI::ABI_LP64F: 9320 UseGPRForF16_F32 = !IsFixed; 9321 break; 9322 case RISCVABI::ABI_ILP32D: 9323 case RISCVABI::ABI_LP64D: 9324 UseGPRForF16_F32 = !IsFixed; 9325 UseGPRForF64 = !IsFixed; 9326 break; 9327 } 9328 9329 // FPR16, FPR32, and FPR64 alias each other. 9330 if (State.getFirstUnallocated(ArgFPR32s) == array_lengthof(ArgFPR32s)) { 9331 UseGPRForF16_F32 = true; 9332 UseGPRForF64 = true; 9333 } 9334 9335 // From this point on, rely on UseGPRForF16_F32, UseGPRForF64 and 9336 // similar local variables rather than directly checking against the target 9337 // ABI. 9338 9339 if (UseGPRForF16_F32 && (ValVT == MVT::f16 || ValVT == MVT::f32)) { 9340 LocVT = XLenVT; 9341 LocInfo = CCValAssign::BCvt; 9342 } else if (UseGPRForF64 && XLen == 64 && ValVT == MVT::f64) { 9343 LocVT = MVT::i64; 9344 LocInfo = CCValAssign::BCvt; 9345 } 9346 9347 // If this is a variadic argument, the RISC-V calling convention requires 9348 // that it is assigned an 'even' or 'aligned' register if it has 8-byte 9349 // alignment (RV32) or 16-byte alignment (RV64). An aligned register should 9350 // be used regardless of whether the original argument was split during 9351 // legalisation or not. The argument will not be passed by registers if the 9352 // original type is larger than 2*XLEN, so the register alignment rule does 9353 // not apply. 9354 unsigned TwoXLenInBytes = (2 * XLen) / 8; 9355 if (!IsFixed && ArgFlags.getNonZeroOrigAlign() == TwoXLenInBytes && 9356 DL.getTypeAllocSize(OrigTy) == TwoXLenInBytes) { 9357 unsigned RegIdx = State.getFirstUnallocated(ArgGPRs); 9358 // Skip 'odd' register if necessary. 9359 if (RegIdx != array_lengthof(ArgGPRs) && RegIdx % 2 == 1) 9360 State.AllocateReg(ArgGPRs); 9361 } 9362 9363 SmallVectorImpl<CCValAssign> &PendingLocs = State.getPendingLocs(); 9364 SmallVectorImpl<ISD::ArgFlagsTy> &PendingArgFlags = 9365 State.getPendingArgFlags(); 9366 9367 assert(PendingLocs.size() == PendingArgFlags.size() && 9368 "PendingLocs and PendingArgFlags out of sync"); 9369 9370 // Handle passing f64 on RV32D with a soft float ABI or when floating point 9371 // registers are exhausted. 9372 if (UseGPRForF64 && XLen == 32 && ValVT == MVT::f64) { 9373 assert(!ArgFlags.isSplit() && PendingLocs.empty() && 9374 "Can't lower f64 if it is split"); 9375 // Depending on available argument GPRS, f64 may be passed in a pair of 9376 // GPRs, split between a GPR and the stack, or passed completely on the 9377 // stack. LowerCall/LowerFormalArguments/LowerReturn must recognise these 9378 // cases. 9379 Register Reg = State.AllocateReg(ArgGPRs); 9380 LocVT = MVT::i32; 9381 if (!Reg) { 9382 unsigned StackOffset = State.AllocateStack(8, Align(8)); 9383 State.addLoc( 9384 CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 9385 return false; 9386 } 9387 if (!State.AllocateReg(ArgGPRs)) 9388 State.AllocateStack(4, Align(4)); 9389 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 9390 return false; 9391 } 9392 9393 // Fixed-length vectors are located in the corresponding scalable-vector 9394 // container types. 9395 if (ValVT.isFixedLengthVector()) 9396 LocVT = TLI.getContainerForFixedLengthVector(LocVT); 9397 9398 // Split arguments might be passed indirectly, so keep track of the pending 9399 // values. Split vectors are passed via a mix of registers and indirectly, so 9400 // treat them as we would any other argument. 9401 if (ValVT.isScalarInteger() && (ArgFlags.isSplit() || !PendingLocs.empty())) { 9402 LocVT = XLenVT; 9403 LocInfo = CCValAssign::Indirect; 9404 PendingLocs.push_back( 9405 CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo)); 9406 PendingArgFlags.push_back(ArgFlags); 9407 if (!ArgFlags.isSplitEnd()) { 9408 return false; 9409 } 9410 } 9411 9412 // If the split argument only had two elements, it should be passed directly 9413 // in registers or on the stack. 9414 if (ValVT.isScalarInteger() && ArgFlags.isSplitEnd() && 9415 PendingLocs.size() <= 2) { 9416 assert(PendingLocs.size() == 2 && "Unexpected PendingLocs.size()"); 9417 // Apply the normal calling convention rules to the first half of the 9418 // split argument. 9419 CCValAssign VA = PendingLocs[0]; 9420 ISD::ArgFlagsTy AF = PendingArgFlags[0]; 9421 PendingLocs.clear(); 9422 PendingArgFlags.clear(); 9423 return CC_RISCVAssign2XLen(XLen, State, VA, AF, ValNo, ValVT, LocVT, 9424 ArgFlags); 9425 } 9426 9427 // Allocate to a register if possible, or else a stack slot. 9428 Register Reg; 9429 unsigned StoreSizeBytes = XLen / 8; 9430 Align StackAlign = Align(XLen / 8); 9431 9432 if (ValVT == MVT::f16 && !UseGPRForF16_F32) 9433 Reg = State.AllocateReg(ArgFPR16s); 9434 else if (ValVT == MVT::f32 && !UseGPRForF16_F32) 9435 Reg = State.AllocateReg(ArgFPR32s); 9436 else if (ValVT == MVT::f64 && !UseGPRForF64) 9437 Reg = State.AllocateReg(ArgFPR64s); 9438 else if (ValVT.isVector()) { 9439 Reg = allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI); 9440 if (!Reg) { 9441 // For return values, the vector must be passed fully via registers or 9442 // via the stack. 9443 // FIXME: The proposed vector ABI only mandates v8-v15 for return values, 9444 // but we're using all of them. 9445 if (IsRet) 9446 return true; 9447 // Try using a GPR to pass the address 9448 if ((Reg = State.AllocateReg(ArgGPRs))) { 9449 LocVT = XLenVT; 9450 LocInfo = CCValAssign::Indirect; 9451 } else if (ValVT.isScalableVector()) { 9452 LocVT = XLenVT; 9453 LocInfo = CCValAssign::Indirect; 9454 } else { 9455 // Pass fixed-length vectors on the stack. 9456 LocVT = ValVT; 9457 StoreSizeBytes = ValVT.getStoreSize(); 9458 // Align vectors to their element sizes, being careful for vXi1 9459 // vectors. 9460 StackAlign = MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne(); 9461 } 9462 } 9463 } else { 9464 Reg = State.AllocateReg(ArgGPRs); 9465 } 9466 9467 unsigned StackOffset = 9468 Reg ? 0 : State.AllocateStack(StoreSizeBytes, StackAlign); 9469 9470 // If we reach this point and PendingLocs is non-empty, we must be at the 9471 // end of a split argument that must be passed indirectly. 9472 if (!PendingLocs.empty()) { 9473 assert(ArgFlags.isSplitEnd() && "Expected ArgFlags.isSplitEnd()"); 9474 assert(PendingLocs.size() > 2 && "Unexpected PendingLocs.size()"); 9475 9476 for (auto &It : PendingLocs) { 9477 if (Reg) 9478 It.convertToReg(Reg); 9479 else 9480 It.convertToMem(StackOffset); 9481 State.addLoc(It); 9482 } 9483 PendingLocs.clear(); 9484 PendingArgFlags.clear(); 9485 return false; 9486 } 9487 9488 assert((!UseGPRForF16_F32 || !UseGPRForF64 || LocVT == XLenVT || 9489 (TLI.getSubtarget().hasVInstructions() && ValVT.isVector())) && 9490 "Expected an XLenVT or vector types at this stage"); 9491 9492 if (Reg) { 9493 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 9494 return false; 9495 } 9496 9497 // When a floating-point value is passed on the stack, no bit-conversion is 9498 // needed. 9499 if (ValVT.isFloatingPoint()) { 9500 LocVT = ValVT; 9501 LocInfo = CCValAssign::Full; 9502 } 9503 State.addLoc(CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 9504 return false; 9505 } 9506 9507 template <typename ArgTy> 9508 static Optional<unsigned> preAssignMask(const ArgTy &Args) { 9509 for (const auto &ArgIdx : enumerate(Args)) { 9510 MVT ArgVT = ArgIdx.value().VT; 9511 if (ArgVT.isVector() && ArgVT.getVectorElementType() == MVT::i1) 9512 return ArgIdx.index(); 9513 } 9514 return None; 9515 } 9516 9517 void RISCVTargetLowering::analyzeInputArgs( 9518 MachineFunction &MF, CCState &CCInfo, 9519 const SmallVectorImpl<ISD::InputArg> &Ins, bool IsRet, 9520 RISCVCCAssignFn Fn) const { 9521 unsigned NumArgs = Ins.size(); 9522 FunctionType *FType = MF.getFunction().getFunctionType(); 9523 9524 Optional<unsigned> FirstMaskArgument; 9525 if (Subtarget.hasVInstructions()) 9526 FirstMaskArgument = preAssignMask(Ins); 9527 9528 for (unsigned i = 0; i != NumArgs; ++i) { 9529 MVT ArgVT = Ins[i].VT; 9530 ISD::ArgFlagsTy ArgFlags = Ins[i].Flags; 9531 9532 Type *ArgTy = nullptr; 9533 if (IsRet) 9534 ArgTy = FType->getReturnType(); 9535 else if (Ins[i].isOrigArg()) 9536 ArgTy = FType->getParamType(Ins[i].getOrigArgIndex()); 9537 9538 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 9539 if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full, 9540 ArgFlags, CCInfo, /*IsFixed=*/true, IsRet, ArgTy, *this, 9541 FirstMaskArgument)) { 9542 LLVM_DEBUG(dbgs() << "InputArg #" << i << " has unhandled type " 9543 << EVT(ArgVT).getEVTString() << '\n'); 9544 llvm_unreachable(nullptr); 9545 } 9546 } 9547 } 9548 9549 void RISCVTargetLowering::analyzeOutputArgs( 9550 MachineFunction &MF, CCState &CCInfo, 9551 const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsRet, 9552 CallLoweringInfo *CLI, RISCVCCAssignFn Fn) const { 9553 unsigned NumArgs = Outs.size(); 9554 9555 Optional<unsigned> FirstMaskArgument; 9556 if (Subtarget.hasVInstructions()) 9557 FirstMaskArgument = preAssignMask(Outs); 9558 9559 for (unsigned i = 0; i != NumArgs; i++) { 9560 MVT ArgVT = Outs[i].VT; 9561 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 9562 Type *OrigTy = CLI ? CLI->getArgs()[Outs[i].OrigArgIndex].Ty : nullptr; 9563 9564 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 9565 if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full, 9566 ArgFlags, CCInfo, Outs[i].IsFixed, IsRet, OrigTy, *this, 9567 FirstMaskArgument)) { 9568 LLVM_DEBUG(dbgs() << "OutputArg #" << i << " has unhandled type " 9569 << EVT(ArgVT).getEVTString() << "\n"); 9570 llvm_unreachable(nullptr); 9571 } 9572 } 9573 } 9574 9575 // Convert Val to a ValVT. Should not be called for CCValAssign::Indirect 9576 // values. 9577 static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDValue Val, 9578 const CCValAssign &VA, const SDLoc &DL, 9579 const RISCVSubtarget &Subtarget) { 9580 switch (VA.getLocInfo()) { 9581 default: 9582 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 9583 case CCValAssign::Full: 9584 if (VA.getValVT().isFixedLengthVector() && VA.getLocVT().isScalableVector()) 9585 Val = convertFromScalableVector(VA.getValVT(), Val, DAG, Subtarget); 9586 break; 9587 case CCValAssign::BCvt: 9588 if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16) 9589 Val = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, Val); 9590 else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) 9591 Val = DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, Val); 9592 else 9593 Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val); 9594 break; 9595 } 9596 return Val; 9597 } 9598 9599 // The caller is responsible for loading the full value if the argument is 9600 // passed with CCValAssign::Indirect. 9601 static SDValue unpackFromRegLoc(SelectionDAG &DAG, SDValue Chain, 9602 const CCValAssign &VA, const SDLoc &DL, 9603 const RISCVTargetLowering &TLI) { 9604 MachineFunction &MF = DAG.getMachineFunction(); 9605 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 9606 EVT LocVT = VA.getLocVT(); 9607 SDValue Val; 9608 const TargetRegisterClass *RC = TLI.getRegClassFor(LocVT.getSimpleVT()); 9609 Register VReg = RegInfo.createVirtualRegister(RC); 9610 RegInfo.addLiveIn(VA.getLocReg(), VReg); 9611 Val = DAG.getCopyFromReg(Chain, DL, VReg, LocVT); 9612 9613 if (VA.getLocInfo() == CCValAssign::Indirect) 9614 return Val; 9615 9616 return convertLocVTToValVT(DAG, Val, VA, DL, TLI.getSubtarget()); 9617 } 9618 9619 static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDValue Val, 9620 const CCValAssign &VA, const SDLoc &DL, 9621 const RISCVSubtarget &Subtarget) { 9622 EVT LocVT = VA.getLocVT(); 9623 9624 switch (VA.getLocInfo()) { 9625 default: 9626 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 9627 case CCValAssign::Full: 9628 if (VA.getValVT().isFixedLengthVector() && LocVT.isScalableVector()) 9629 Val = convertToScalableVector(LocVT, Val, DAG, Subtarget); 9630 break; 9631 case CCValAssign::BCvt: 9632 if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16) 9633 Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, VA.getLocVT(), Val); 9634 else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) 9635 Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Val); 9636 else 9637 Val = DAG.getNode(ISD::BITCAST, DL, LocVT, Val); 9638 break; 9639 } 9640 return Val; 9641 } 9642 9643 // The caller is responsible for loading the full value if the argument is 9644 // passed with CCValAssign::Indirect. 9645 static SDValue unpackFromMemLoc(SelectionDAG &DAG, SDValue Chain, 9646 const CCValAssign &VA, const SDLoc &DL) { 9647 MachineFunction &MF = DAG.getMachineFunction(); 9648 MachineFrameInfo &MFI = MF.getFrameInfo(); 9649 EVT LocVT = VA.getLocVT(); 9650 EVT ValVT = VA.getValVT(); 9651 EVT PtrVT = MVT::getIntegerVT(DAG.getDataLayout().getPointerSizeInBits(0)); 9652 if (ValVT.isScalableVector()) { 9653 // When the value is a scalable vector, we save the pointer which points to 9654 // the scalable vector value in the stack. The ValVT will be the pointer 9655 // type, instead of the scalable vector type. 9656 ValVT = LocVT; 9657 } 9658 int FI = MFI.CreateFixedObject(ValVT.getStoreSize(), VA.getLocMemOffset(), 9659 /*IsImmutable=*/true); 9660 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 9661 SDValue Val; 9662 9663 ISD::LoadExtType ExtType; 9664 switch (VA.getLocInfo()) { 9665 default: 9666 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 9667 case CCValAssign::Full: 9668 case CCValAssign::Indirect: 9669 case CCValAssign::BCvt: 9670 ExtType = ISD::NON_EXTLOAD; 9671 break; 9672 } 9673 Val = DAG.getExtLoad( 9674 ExtType, DL, LocVT, Chain, FIN, 9675 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), ValVT); 9676 return Val; 9677 } 9678 9679 static SDValue unpackF64OnRV32DSoftABI(SelectionDAG &DAG, SDValue Chain, 9680 const CCValAssign &VA, const SDLoc &DL) { 9681 assert(VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64 && 9682 "Unexpected VA"); 9683 MachineFunction &MF = DAG.getMachineFunction(); 9684 MachineFrameInfo &MFI = MF.getFrameInfo(); 9685 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 9686 9687 if (VA.isMemLoc()) { 9688 // f64 is passed on the stack. 9689 int FI = 9690 MFI.CreateFixedObject(8, VA.getLocMemOffset(), /*IsImmutable=*/true); 9691 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 9692 return DAG.getLoad(MVT::f64, DL, Chain, FIN, 9693 MachinePointerInfo::getFixedStack(MF, FI)); 9694 } 9695 9696 assert(VA.isRegLoc() && "Expected register VA assignment"); 9697 9698 Register LoVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 9699 RegInfo.addLiveIn(VA.getLocReg(), LoVReg); 9700 SDValue Lo = DAG.getCopyFromReg(Chain, DL, LoVReg, MVT::i32); 9701 SDValue Hi; 9702 if (VA.getLocReg() == RISCV::X17) { 9703 // Second half of f64 is passed on the stack. 9704 int FI = MFI.CreateFixedObject(4, 0, /*IsImmutable=*/true); 9705 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 9706 Hi = DAG.getLoad(MVT::i32, DL, Chain, FIN, 9707 MachinePointerInfo::getFixedStack(MF, FI)); 9708 } else { 9709 // Second half of f64 is passed in another GPR. 9710 Register HiVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 9711 RegInfo.addLiveIn(VA.getLocReg() + 1, HiVReg); 9712 Hi = DAG.getCopyFromReg(Chain, DL, HiVReg, MVT::i32); 9713 } 9714 return DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, Lo, Hi); 9715 } 9716 9717 // FastCC has less than 1% performance improvement for some particular 9718 // benchmark. But theoretically, it may has benenfit for some cases. 9719 static bool CC_RISCV_FastCC(const DataLayout &DL, RISCVABI::ABI ABI, 9720 unsigned ValNo, MVT ValVT, MVT LocVT, 9721 CCValAssign::LocInfo LocInfo, 9722 ISD::ArgFlagsTy ArgFlags, CCState &State, 9723 bool IsFixed, bool IsRet, Type *OrigTy, 9724 const RISCVTargetLowering &TLI, 9725 Optional<unsigned> FirstMaskArgument) { 9726 9727 // X5 and X6 might be used for save-restore libcall. 9728 static const MCPhysReg GPRList[] = { 9729 RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, RISCV::X14, 9730 RISCV::X15, RISCV::X16, RISCV::X17, RISCV::X7, RISCV::X28, 9731 RISCV::X29, RISCV::X30, RISCV::X31}; 9732 9733 if (LocVT == MVT::i32 || LocVT == MVT::i64) { 9734 if (unsigned Reg = State.AllocateReg(GPRList)) { 9735 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 9736 return false; 9737 } 9738 } 9739 9740 if (LocVT == MVT::f16) { 9741 static const MCPhysReg FPR16List[] = { 9742 RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, RISCV::F14_H, 9743 RISCV::F15_H, RISCV::F16_H, RISCV::F17_H, RISCV::F0_H, RISCV::F1_H, 9744 RISCV::F2_H, RISCV::F3_H, RISCV::F4_H, RISCV::F5_H, RISCV::F6_H, 9745 RISCV::F7_H, RISCV::F28_H, RISCV::F29_H, RISCV::F30_H, RISCV::F31_H}; 9746 if (unsigned Reg = State.AllocateReg(FPR16List)) { 9747 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 9748 return false; 9749 } 9750 } 9751 9752 if (LocVT == MVT::f32) { 9753 static const MCPhysReg FPR32List[] = { 9754 RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, RISCV::F14_F, 9755 RISCV::F15_F, RISCV::F16_F, RISCV::F17_F, RISCV::F0_F, RISCV::F1_F, 9756 RISCV::F2_F, RISCV::F3_F, RISCV::F4_F, RISCV::F5_F, RISCV::F6_F, 9757 RISCV::F7_F, RISCV::F28_F, RISCV::F29_F, RISCV::F30_F, RISCV::F31_F}; 9758 if (unsigned Reg = State.AllocateReg(FPR32List)) { 9759 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 9760 return false; 9761 } 9762 } 9763 9764 if (LocVT == MVT::f64) { 9765 static const MCPhysReg FPR64List[] = { 9766 RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, RISCV::F14_D, 9767 RISCV::F15_D, RISCV::F16_D, RISCV::F17_D, RISCV::F0_D, RISCV::F1_D, 9768 RISCV::F2_D, RISCV::F3_D, RISCV::F4_D, RISCV::F5_D, RISCV::F6_D, 9769 RISCV::F7_D, RISCV::F28_D, RISCV::F29_D, RISCV::F30_D, RISCV::F31_D}; 9770 if (unsigned Reg = State.AllocateReg(FPR64List)) { 9771 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 9772 return false; 9773 } 9774 } 9775 9776 if (LocVT == MVT::i32 || LocVT == MVT::f32) { 9777 unsigned Offset4 = State.AllocateStack(4, Align(4)); 9778 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset4, LocVT, LocInfo)); 9779 return false; 9780 } 9781 9782 if (LocVT == MVT::i64 || LocVT == MVT::f64) { 9783 unsigned Offset5 = State.AllocateStack(8, Align(8)); 9784 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset5, LocVT, LocInfo)); 9785 return false; 9786 } 9787 9788 if (LocVT.isVector()) { 9789 if (unsigned Reg = 9790 allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI)) { 9791 // Fixed-length vectors are located in the corresponding scalable-vector 9792 // container types. 9793 if (ValVT.isFixedLengthVector()) 9794 LocVT = TLI.getContainerForFixedLengthVector(LocVT); 9795 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 9796 } else { 9797 // Try and pass the address via a "fast" GPR. 9798 if (unsigned GPRReg = State.AllocateReg(GPRList)) { 9799 LocInfo = CCValAssign::Indirect; 9800 LocVT = TLI.getSubtarget().getXLenVT(); 9801 State.addLoc(CCValAssign::getReg(ValNo, ValVT, GPRReg, LocVT, LocInfo)); 9802 } else if (ValVT.isFixedLengthVector()) { 9803 auto StackAlign = 9804 MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne(); 9805 unsigned StackOffset = 9806 State.AllocateStack(ValVT.getStoreSize(), StackAlign); 9807 State.addLoc( 9808 CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 9809 } else { 9810 // Can't pass scalable vectors on the stack. 9811 return true; 9812 } 9813 } 9814 9815 return false; 9816 } 9817 9818 return true; // CC didn't match. 9819 } 9820 9821 static bool CC_RISCV_GHC(unsigned ValNo, MVT ValVT, MVT LocVT, 9822 CCValAssign::LocInfo LocInfo, 9823 ISD::ArgFlagsTy ArgFlags, CCState &State) { 9824 9825 if (LocVT == MVT::i32 || LocVT == MVT::i64) { 9826 // Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, R6, R7, SpLim 9827 // s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 9828 static const MCPhysReg GPRList[] = { 9829 RISCV::X9, RISCV::X18, RISCV::X19, RISCV::X20, RISCV::X21, RISCV::X22, 9830 RISCV::X23, RISCV::X24, RISCV::X25, RISCV::X26, RISCV::X27}; 9831 if (unsigned Reg = State.AllocateReg(GPRList)) { 9832 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 9833 return false; 9834 } 9835 } 9836 9837 if (LocVT == MVT::f32) { 9838 // Pass in STG registers: F1, ..., F6 9839 // fs0 ... fs5 9840 static const MCPhysReg FPR32List[] = {RISCV::F8_F, RISCV::F9_F, 9841 RISCV::F18_F, RISCV::F19_F, 9842 RISCV::F20_F, RISCV::F21_F}; 9843 if (unsigned Reg = State.AllocateReg(FPR32List)) { 9844 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 9845 return false; 9846 } 9847 } 9848 9849 if (LocVT == MVT::f64) { 9850 // Pass in STG registers: D1, ..., D6 9851 // fs6 ... fs11 9852 static const MCPhysReg FPR64List[] = {RISCV::F22_D, RISCV::F23_D, 9853 RISCV::F24_D, RISCV::F25_D, 9854 RISCV::F26_D, RISCV::F27_D}; 9855 if (unsigned Reg = State.AllocateReg(FPR64List)) { 9856 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 9857 return false; 9858 } 9859 } 9860 9861 report_fatal_error("No registers left in GHC calling convention"); 9862 return true; 9863 } 9864 9865 // Transform physical registers into virtual registers. 9866 SDValue RISCVTargetLowering::LowerFormalArguments( 9867 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 9868 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 9869 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 9870 9871 MachineFunction &MF = DAG.getMachineFunction(); 9872 9873 switch (CallConv) { 9874 default: 9875 report_fatal_error("Unsupported calling convention"); 9876 case CallingConv::C: 9877 case CallingConv::Fast: 9878 break; 9879 case CallingConv::GHC: 9880 if (!MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtF] || 9881 !MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtD]) 9882 report_fatal_error( 9883 "GHC calling convention requires the F and D instruction set extensions"); 9884 } 9885 9886 const Function &Func = MF.getFunction(); 9887 if (Func.hasFnAttribute("interrupt")) { 9888 if (!Func.arg_empty()) 9889 report_fatal_error( 9890 "Functions with the interrupt attribute cannot have arguments!"); 9891 9892 StringRef Kind = 9893 MF.getFunction().getFnAttribute("interrupt").getValueAsString(); 9894 9895 if (!(Kind == "user" || Kind == "supervisor" || Kind == "machine")) 9896 report_fatal_error( 9897 "Function interrupt attribute argument not supported!"); 9898 } 9899 9900 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 9901 MVT XLenVT = Subtarget.getXLenVT(); 9902 unsigned XLenInBytes = Subtarget.getXLen() / 8; 9903 // Used with vargs to acumulate store chains. 9904 std::vector<SDValue> OutChains; 9905 9906 // Assign locations to all of the incoming arguments. 9907 SmallVector<CCValAssign, 16> ArgLocs; 9908 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 9909 9910 if (CallConv == CallingConv::GHC) 9911 CCInfo.AnalyzeFormalArguments(Ins, CC_RISCV_GHC); 9912 else 9913 analyzeInputArgs(MF, CCInfo, Ins, /*IsRet=*/false, 9914 CallConv == CallingConv::Fast ? CC_RISCV_FastCC 9915 : CC_RISCV); 9916 9917 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 9918 CCValAssign &VA = ArgLocs[i]; 9919 SDValue ArgValue; 9920 // Passing f64 on RV32D with a soft float ABI must be handled as a special 9921 // case. 9922 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) 9923 ArgValue = unpackF64OnRV32DSoftABI(DAG, Chain, VA, DL); 9924 else if (VA.isRegLoc()) 9925 ArgValue = unpackFromRegLoc(DAG, Chain, VA, DL, *this); 9926 else 9927 ArgValue = unpackFromMemLoc(DAG, Chain, VA, DL); 9928 9929 if (VA.getLocInfo() == CCValAssign::Indirect) { 9930 // If the original argument was split and passed by reference (e.g. i128 9931 // on RV32), we need to load all parts of it here (using the same 9932 // address). Vectors may be partly split to registers and partly to the 9933 // stack, in which case the base address is partly offset and subsequent 9934 // stores are relative to that. 9935 InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue, 9936 MachinePointerInfo())); 9937 unsigned ArgIndex = Ins[i].OrigArgIndex; 9938 unsigned ArgPartOffset = Ins[i].PartOffset; 9939 assert(VA.getValVT().isVector() || ArgPartOffset == 0); 9940 while (i + 1 != e && Ins[i + 1].OrigArgIndex == ArgIndex) { 9941 CCValAssign &PartVA = ArgLocs[i + 1]; 9942 unsigned PartOffset = Ins[i + 1].PartOffset - ArgPartOffset; 9943 SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL); 9944 if (PartVA.getValVT().isScalableVector()) 9945 Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset); 9946 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, Offset); 9947 InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address, 9948 MachinePointerInfo())); 9949 ++i; 9950 } 9951 continue; 9952 } 9953 InVals.push_back(ArgValue); 9954 } 9955 9956 if (IsVarArg) { 9957 ArrayRef<MCPhysReg> ArgRegs = makeArrayRef(ArgGPRs); 9958 unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs); 9959 const TargetRegisterClass *RC = &RISCV::GPRRegClass; 9960 MachineFrameInfo &MFI = MF.getFrameInfo(); 9961 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 9962 RISCVMachineFunctionInfo *RVFI = MF.getInfo<RISCVMachineFunctionInfo>(); 9963 9964 // Offset of the first variable argument from stack pointer, and size of 9965 // the vararg save area. For now, the varargs save area is either zero or 9966 // large enough to hold a0-a7. 9967 int VaArgOffset, VarArgsSaveSize; 9968 9969 // If all registers are allocated, then all varargs must be passed on the 9970 // stack and we don't need to save any argregs. 9971 if (ArgRegs.size() == Idx) { 9972 VaArgOffset = CCInfo.getNextStackOffset(); 9973 VarArgsSaveSize = 0; 9974 } else { 9975 VarArgsSaveSize = XLenInBytes * (ArgRegs.size() - Idx); 9976 VaArgOffset = -VarArgsSaveSize; 9977 } 9978 9979 // Record the frame index of the first variable argument 9980 // which is a value necessary to VASTART. 9981 int FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true); 9982 RVFI->setVarArgsFrameIndex(FI); 9983 9984 // If saving an odd number of registers then create an extra stack slot to 9985 // ensure that the frame pointer is 2*XLEN-aligned, which in turn ensures 9986 // offsets to even-numbered registered remain 2*XLEN-aligned. 9987 if (Idx % 2) { 9988 MFI.CreateFixedObject(XLenInBytes, VaArgOffset - (int)XLenInBytes, true); 9989 VarArgsSaveSize += XLenInBytes; 9990 } 9991 9992 // Copy the integer registers that may have been used for passing varargs 9993 // to the vararg save area. 9994 for (unsigned I = Idx; I < ArgRegs.size(); 9995 ++I, VaArgOffset += XLenInBytes) { 9996 const Register Reg = RegInfo.createVirtualRegister(RC); 9997 RegInfo.addLiveIn(ArgRegs[I], Reg); 9998 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, XLenVT); 9999 FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true); 10000 SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 10001 SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff, 10002 MachinePointerInfo::getFixedStack(MF, FI)); 10003 cast<StoreSDNode>(Store.getNode()) 10004 ->getMemOperand() 10005 ->setValue((Value *)nullptr); 10006 OutChains.push_back(Store); 10007 } 10008 RVFI->setVarArgsSaveSize(VarArgsSaveSize); 10009 } 10010 10011 // All stores are grouped in one node to allow the matching between 10012 // the size of Ins and InVals. This only happens for vararg functions. 10013 if (!OutChains.empty()) { 10014 OutChains.push_back(Chain); 10015 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains); 10016 } 10017 10018 return Chain; 10019 } 10020 10021 /// isEligibleForTailCallOptimization - Check whether the call is eligible 10022 /// for tail call optimization. 10023 /// Note: This is modelled after ARM's IsEligibleForTailCallOptimization. 10024 bool RISCVTargetLowering::isEligibleForTailCallOptimization( 10025 CCState &CCInfo, CallLoweringInfo &CLI, MachineFunction &MF, 10026 const SmallVector<CCValAssign, 16> &ArgLocs) const { 10027 10028 auto &Callee = CLI.Callee; 10029 auto CalleeCC = CLI.CallConv; 10030 auto &Outs = CLI.Outs; 10031 auto &Caller = MF.getFunction(); 10032 auto CallerCC = Caller.getCallingConv(); 10033 10034 // Exception-handling functions need a special set of instructions to 10035 // indicate a return to the hardware. Tail-calling another function would 10036 // probably break this. 10037 // TODO: The "interrupt" attribute isn't currently defined by RISC-V. This 10038 // should be expanded as new function attributes are introduced. 10039 if (Caller.hasFnAttribute("interrupt")) 10040 return false; 10041 10042 // Do not tail call opt if the stack is used to pass parameters. 10043 if (CCInfo.getNextStackOffset() != 0) 10044 return false; 10045 10046 // Do not tail call opt if any parameters need to be passed indirectly. 10047 // Since long doubles (fp128) and i128 are larger than 2*XLEN, they are 10048 // passed indirectly. So the address of the value will be passed in a 10049 // register, or if not available, then the address is put on the stack. In 10050 // order to pass indirectly, space on the stack often needs to be allocated 10051 // in order to store the value. In this case the CCInfo.getNextStackOffset() 10052 // != 0 check is not enough and we need to check if any CCValAssign ArgsLocs 10053 // are passed CCValAssign::Indirect. 10054 for (auto &VA : ArgLocs) 10055 if (VA.getLocInfo() == CCValAssign::Indirect) 10056 return false; 10057 10058 // Do not tail call opt if either caller or callee uses struct return 10059 // semantics. 10060 auto IsCallerStructRet = Caller.hasStructRetAttr(); 10061 auto IsCalleeStructRet = Outs.empty() ? false : Outs[0].Flags.isSRet(); 10062 if (IsCallerStructRet || IsCalleeStructRet) 10063 return false; 10064 10065 // Externally-defined functions with weak linkage should not be 10066 // tail-called. The behaviour of branch instructions in this situation (as 10067 // used for tail calls) is implementation-defined, so we cannot rely on the 10068 // linker replacing the tail call with a return. 10069 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 10070 const GlobalValue *GV = G->getGlobal(); 10071 if (GV->hasExternalWeakLinkage()) 10072 return false; 10073 } 10074 10075 // The callee has to preserve all registers the caller needs to preserve. 10076 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 10077 const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC); 10078 if (CalleeCC != CallerCC) { 10079 const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC); 10080 if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved)) 10081 return false; 10082 } 10083 10084 // Byval parameters hand the function a pointer directly into the stack area 10085 // we want to reuse during a tail call. Working around this *is* possible 10086 // but less efficient and uglier in LowerCall. 10087 for (auto &Arg : Outs) 10088 if (Arg.Flags.isByVal()) 10089 return false; 10090 10091 return true; 10092 } 10093 10094 static Align getPrefTypeAlign(EVT VT, SelectionDAG &DAG) { 10095 return DAG.getDataLayout().getPrefTypeAlign( 10096 VT.getTypeForEVT(*DAG.getContext())); 10097 } 10098 10099 // Lower a call to a callseq_start + CALL + callseq_end chain, and add input 10100 // and output parameter nodes. 10101 SDValue RISCVTargetLowering::LowerCall(CallLoweringInfo &CLI, 10102 SmallVectorImpl<SDValue> &InVals) const { 10103 SelectionDAG &DAG = CLI.DAG; 10104 SDLoc &DL = CLI.DL; 10105 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 10106 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 10107 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 10108 SDValue Chain = CLI.Chain; 10109 SDValue Callee = CLI.Callee; 10110 bool &IsTailCall = CLI.IsTailCall; 10111 CallingConv::ID CallConv = CLI.CallConv; 10112 bool IsVarArg = CLI.IsVarArg; 10113 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 10114 MVT XLenVT = Subtarget.getXLenVT(); 10115 10116 MachineFunction &MF = DAG.getMachineFunction(); 10117 10118 // Analyze the operands of the call, assigning locations to each operand. 10119 SmallVector<CCValAssign, 16> ArgLocs; 10120 CCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 10121 10122 if (CallConv == CallingConv::GHC) 10123 ArgCCInfo.AnalyzeCallOperands(Outs, CC_RISCV_GHC); 10124 else 10125 analyzeOutputArgs(MF, ArgCCInfo, Outs, /*IsRet=*/false, &CLI, 10126 CallConv == CallingConv::Fast ? CC_RISCV_FastCC 10127 : CC_RISCV); 10128 10129 // Check if it's really possible to do a tail call. 10130 if (IsTailCall) 10131 IsTailCall = isEligibleForTailCallOptimization(ArgCCInfo, CLI, MF, ArgLocs); 10132 10133 if (IsTailCall) 10134 ++NumTailCalls; 10135 else if (CLI.CB && CLI.CB->isMustTailCall()) 10136 report_fatal_error("failed to perform tail call elimination on a call " 10137 "site marked musttail"); 10138 10139 // Get a count of how many bytes are to be pushed on the stack. 10140 unsigned NumBytes = ArgCCInfo.getNextStackOffset(); 10141 10142 // Create local copies for byval args 10143 SmallVector<SDValue, 8> ByValArgs; 10144 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 10145 ISD::ArgFlagsTy Flags = Outs[i].Flags; 10146 if (!Flags.isByVal()) 10147 continue; 10148 10149 SDValue Arg = OutVals[i]; 10150 unsigned Size = Flags.getByValSize(); 10151 Align Alignment = Flags.getNonZeroByValAlign(); 10152 10153 int FI = 10154 MF.getFrameInfo().CreateStackObject(Size, Alignment, /*isSS=*/false); 10155 SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 10156 SDValue SizeNode = DAG.getConstant(Size, DL, XLenVT); 10157 10158 Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Alignment, 10159 /*IsVolatile=*/false, 10160 /*AlwaysInline=*/false, IsTailCall, 10161 MachinePointerInfo(), MachinePointerInfo()); 10162 ByValArgs.push_back(FIPtr); 10163 } 10164 10165 if (!IsTailCall) 10166 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, CLI.DL); 10167 10168 // Copy argument values to their designated locations. 10169 SmallVector<std::pair<Register, SDValue>, 8> RegsToPass; 10170 SmallVector<SDValue, 8> MemOpChains; 10171 SDValue StackPtr; 10172 for (unsigned i = 0, j = 0, e = ArgLocs.size(); i != e; ++i) { 10173 CCValAssign &VA = ArgLocs[i]; 10174 SDValue ArgValue = OutVals[i]; 10175 ISD::ArgFlagsTy Flags = Outs[i].Flags; 10176 10177 // Handle passing f64 on RV32D with a soft float ABI as a special case. 10178 bool IsF64OnRV32DSoftABI = 10179 VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64; 10180 if (IsF64OnRV32DSoftABI && VA.isRegLoc()) { 10181 SDValue SplitF64 = DAG.getNode( 10182 RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), ArgValue); 10183 SDValue Lo = SplitF64.getValue(0); 10184 SDValue Hi = SplitF64.getValue(1); 10185 10186 Register RegLo = VA.getLocReg(); 10187 RegsToPass.push_back(std::make_pair(RegLo, Lo)); 10188 10189 if (RegLo == RISCV::X17) { 10190 // Second half of f64 is passed on the stack. 10191 // Work out the address of the stack slot. 10192 if (!StackPtr.getNode()) 10193 StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT); 10194 // Emit the store. 10195 MemOpChains.push_back( 10196 DAG.getStore(Chain, DL, Hi, StackPtr, MachinePointerInfo())); 10197 } else { 10198 // Second half of f64 is passed in another GPR. 10199 assert(RegLo < RISCV::X31 && "Invalid register pair"); 10200 Register RegHigh = RegLo + 1; 10201 RegsToPass.push_back(std::make_pair(RegHigh, Hi)); 10202 } 10203 continue; 10204 } 10205 10206 // IsF64OnRV32DSoftABI && VA.isMemLoc() is handled below in the same way 10207 // as any other MemLoc. 10208 10209 // Promote the value if needed. 10210 // For now, only handle fully promoted and indirect arguments. 10211 if (VA.getLocInfo() == CCValAssign::Indirect) { 10212 // Store the argument in a stack slot and pass its address. 10213 Align StackAlign = 10214 std::max(getPrefTypeAlign(Outs[i].ArgVT, DAG), 10215 getPrefTypeAlign(ArgValue.getValueType(), DAG)); 10216 TypeSize StoredSize = ArgValue.getValueType().getStoreSize(); 10217 // If the original argument was split (e.g. i128), we need 10218 // to store the required parts of it here (and pass just one address). 10219 // Vectors may be partly split to registers and partly to the stack, in 10220 // which case the base address is partly offset and subsequent stores are 10221 // relative to that. 10222 unsigned ArgIndex = Outs[i].OrigArgIndex; 10223 unsigned ArgPartOffset = Outs[i].PartOffset; 10224 assert(VA.getValVT().isVector() || ArgPartOffset == 0); 10225 // Calculate the total size to store. We don't have access to what we're 10226 // actually storing other than performing the loop and collecting the 10227 // info. 10228 SmallVector<std::pair<SDValue, SDValue>> Parts; 10229 while (i + 1 != e && Outs[i + 1].OrigArgIndex == ArgIndex) { 10230 SDValue PartValue = OutVals[i + 1]; 10231 unsigned PartOffset = Outs[i + 1].PartOffset - ArgPartOffset; 10232 SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL); 10233 EVT PartVT = PartValue.getValueType(); 10234 if (PartVT.isScalableVector()) 10235 Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset); 10236 StoredSize += PartVT.getStoreSize(); 10237 StackAlign = std::max(StackAlign, getPrefTypeAlign(PartVT, DAG)); 10238 Parts.push_back(std::make_pair(PartValue, Offset)); 10239 ++i; 10240 } 10241 SDValue SpillSlot = DAG.CreateStackTemporary(StoredSize, StackAlign); 10242 int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); 10243 MemOpChains.push_back( 10244 DAG.getStore(Chain, DL, ArgValue, SpillSlot, 10245 MachinePointerInfo::getFixedStack(MF, FI))); 10246 for (const auto &Part : Parts) { 10247 SDValue PartValue = Part.first; 10248 SDValue PartOffset = Part.second; 10249 SDValue Address = 10250 DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, PartOffset); 10251 MemOpChains.push_back( 10252 DAG.getStore(Chain, DL, PartValue, Address, 10253 MachinePointerInfo::getFixedStack(MF, FI))); 10254 } 10255 ArgValue = SpillSlot; 10256 } else { 10257 ArgValue = convertValVTToLocVT(DAG, ArgValue, VA, DL, Subtarget); 10258 } 10259 10260 // Use local copy if it is a byval arg. 10261 if (Flags.isByVal()) 10262 ArgValue = ByValArgs[j++]; 10263 10264 if (VA.isRegLoc()) { 10265 // Queue up the argument copies and emit them at the end. 10266 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue)); 10267 } else { 10268 assert(VA.isMemLoc() && "Argument not register or memory"); 10269 assert(!IsTailCall && "Tail call not allowed if stack is used " 10270 "for passing parameters"); 10271 10272 // Work out the address of the stack slot. 10273 if (!StackPtr.getNode()) 10274 StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT); 10275 SDValue Address = 10276 DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, 10277 DAG.getIntPtrConstant(VA.getLocMemOffset(), DL)); 10278 10279 // Emit the store. 10280 MemOpChains.push_back( 10281 DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo())); 10282 } 10283 } 10284 10285 // Join the stores, which are independent of one another. 10286 if (!MemOpChains.empty()) 10287 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); 10288 10289 SDValue Glue; 10290 10291 // Build a sequence of copy-to-reg nodes, chained and glued together. 10292 for (auto &Reg : RegsToPass) { 10293 Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, Glue); 10294 Glue = Chain.getValue(1); 10295 } 10296 10297 // Validate that none of the argument registers have been marked as 10298 // reserved, if so report an error. Do the same for the return address if this 10299 // is not a tailcall. 10300 validateCCReservedRegs(RegsToPass, MF); 10301 if (!IsTailCall && 10302 MF.getSubtarget<RISCVSubtarget>().isRegisterReservedByUser(RISCV::X1)) 10303 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 10304 MF.getFunction(), 10305 "Return address register required, but has been reserved."}); 10306 10307 // If the callee is a GlobalAddress/ExternalSymbol node, turn it into a 10308 // TargetGlobalAddress/TargetExternalSymbol node so that legalize won't 10309 // split it and then direct call can be matched by PseudoCALL. 10310 if (GlobalAddressSDNode *S = dyn_cast<GlobalAddressSDNode>(Callee)) { 10311 const GlobalValue *GV = S->getGlobal(); 10312 10313 unsigned OpFlags = RISCVII::MO_CALL; 10314 if (!getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV)) 10315 OpFlags = RISCVII::MO_PLT; 10316 10317 Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags); 10318 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { 10319 unsigned OpFlags = RISCVII::MO_CALL; 10320 10321 if (!getTargetMachine().shouldAssumeDSOLocal(*MF.getFunction().getParent(), 10322 nullptr)) 10323 OpFlags = RISCVII::MO_PLT; 10324 10325 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, OpFlags); 10326 } 10327 10328 // The first call operand is the chain and the second is the target address. 10329 SmallVector<SDValue, 8> Ops; 10330 Ops.push_back(Chain); 10331 Ops.push_back(Callee); 10332 10333 // Add argument registers to the end of the list so that they are 10334 // known live into the call. 10335 for (auto &Reg : RegsToPass) 10336 Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType())); 10337 10338 if (!IsTailCall) { 10339 // Add a register mask operand representing the call-preserved registers. 10340 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 10341 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv); 10342 assert(Mask && "Missing call preserved mask for calling convention"); 10343 Ops.push_back(DAG.getRegisterMask(Mask)); 10344 } 10345 10346 // Glue the call to the argument copies, if any. 10347 if (Glue.getNode()) 10348 Ops.push_back(Glue); 10349 10350 // Emit the call. 10351 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 10352 10353 if (IsTailCall) { 10354 MF.getFrameInfo().setHasTailCall(); 10355 return DAG.getNode(RISCVISD::TAIL, DL, NodeTys, Ops); 10356 } 10357 10358 Chain = DAG.getNode(RISCVISD::CALL, DL, NodeTys, Ops); 10359 DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge); 10360 Glue = Chain.getValue(1); 10361 10362 // Mark the end of the call, which is glued to the call itself. 10363 Chain = DAG.getCALLSEQ_END(Chain, 10364 DAG.getConstant(NumBytes, DL, PtrVT, true), 10365 DAG.getConstant(0, DL, PtrVT, true), 10366 Glue, DL); 10367 Glue = Chain.getValue(1); 10368 10369 // Assign locations to each value returned by this call. 10370 SmallVector<CCValAssign, 16> RVLocs; 10371 CCState RetCCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext()); 10372 analyzeInputArgs(MF, RetCCInfo, Ins, /*IsRet=*/true, CC_RISCV); 10373 10374 // Copy all of the result registers out of their specified physreg. 10375 for (auto &VA : RVLocs) { 10376 // Copy the value out 10377 SDValue RetValue = 10378 DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), Glue); 10379 // Glue the RetValue to the end of the call sequence 10380 Chain = RetValue.getValue(1); 10381 Glue = RetValue.getValue(2); 10382 10383 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { 10384 assert(VA.getLocReg() == ArgGPRs[0] && "Unexpected reg assignment"); 10385 SDValue RetValue2 = 10386 DAG.getCopyFromReg(Chain, DL, ArgGPRs[1], MVT::i32, Glue); 10387 Chain = RetValue2.getValue(1); 10388 Glue = RetValue2.getValue(2); 10389 RetValue = DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, RetValue, 10390 RetValue2); 10391 } 10392 10393 RetValue = convertLocVTToValVT(DAG, RetValue, VA, DL, Subtarget); 10394 10395 InVals.push_back(RetValue); 10396 } 10397 10398 return Chain; 10399 } 10400 10401 bool RISCVTargetLowering::CanLowerReturn( 10402 CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg, 10403 const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const { 10404 SmallVector<CCValAssign, 16> RVLocs; 10405 CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context); 10406 10407 Optional<unsigned> FirstMaskArgument; 10408 if (Subtarget.hasVInstructions()) 10409 FirstMaskArgument = preAssignMask(Outs); 10410 10411 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 10412 MVT VT = Outs[i].VT; 10413 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 10414 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 10415 if (CC_RISCV(MF.getDataLayout(), ABI, i, VT, VT, CCValAssign::Full, 10416 ArgFlags, CCInfo, /*IsFixed=*/true, /*IsRet=*/true, nullptr, 10417 *this, FirstMaskArgument)) 10418 return false; 10419 } 10420 return true; 10421 } 10422 10423 SDValue 10424 RISCVTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 10425 bool IsVarArg, 10426 const SmallVectorImpl<ISD::OutputArg> &Outs, 10427 const SmallVectorImpl<SDValue> &OutVals, 10428 const SDLoc &DL, SelectionDAG &DAG) const { 10429 const MachineFunction &MF = DAG.getMachineFunction(); 10430 const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>(); 10431 10432 // Stores the assignment of the return value to a location. 10433 SmallVector<CCValAssign, 16> RVLocs; 10434 10435 // Info about the registers and stack slot. 10436 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, 10437 *DAG.getContext()); 10438 10439 analyzeOutputArgs(DAG.getMachineFunction(), CCInfo, Outs, /*IsRet=*/true, 10440 nullptr, CC_RISCV); 10441 10442 if (CallConv == CallingConv::GHC && !RVLocs.empty()) 10443 report_fatal_error("GHC functions return void only"); 10444 10445 SDValue Glue; 10446 SmallVector<SDValue, 4> RetOps(1, Chain); 10447 10448 // Copy the result values into the output registers. 10449 for (unsigned i = 0, e = RVLocs.size(); i < e; ++i) { 10450 SDValue Val = OutVals[i]; 10451 CCValAssign &VA = RVLocs[i]; 10452 assert(VA.isRegLoc() && "Can only return in registers!"); 10453 10454 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { 10455 // Handle returning f64 on RV32D with a soft float ABI. 10456 assert(VA.isRegLoc() && "Expected return via registers"); 10457 SDValue SplitF64 = DAG.getNode(RISCVISD::SplitF64, DL, 10458 DAG.getVTList(MVT::i32, MVT::i32), Val); 10459 SDValue Lo = SplitF64.getValue(0); 10460 SDValue Hi = SplitF64.getValue(1); 10461 Register RegLo = VA.getLocReg(); 10462 assert(RegLo < RISCV::X31 && "Invalid register pair"); 10463 Register RegHi = RegLo + 1; 10464 10465 if (STI.isRegisterReservedByUser(RegLo) || 10466 STI.isRegisterReservedByUser(RegHi)) 10467 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 10468 MF.getFunction(), 10469 "Return value register required, but has been reserved."}); 10470 10471 Chain = DAG.getCopyToReg(Chain, DL, RegLo, Lo, Glue); 10472 Glue = Chain.getValue(1); 10473 RetOps.push_back(DAG.getRegister(RegLo, MVT::i32)); 10474 Chain = DAG.getCopyToReg(Chain, DL, RegHi, Hi, Glue); 10475 Glue = Chain.getValue(1); 10476 RetOps.push_back(DAG.getRegister(RegHi, MVT::i32)); 10477 } else { 10478 // Handle a 'normal' return. 10479 Val = convertValVTToLocVT(DAG, Val, VA, DL, Subtarget); 10480 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Glue); 10481 10482 if (STI.isRegisterReservedByUser(VA.getLocReg())) 10483 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 10484 MF.getFunction(), 10485 "Return value register required, but has been reserved."}); 10486 10487 // Guarantee that all emitted copies are stuck together. 10488 Glue = Chain.getValue(1); 10489 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 10490 } 10491 } 10492 10493 RetOps[0] = Chain; // Update chain. 10494 10495 // Add the glue node if we have it. 10496 if (Glue.getNode()) { 10497 RetOps.push_back(Glue); 10498 } 10499 10500 unsigned RetOpc = RISCVISD::RET_FLAG; 10501 // Interrupt service routines use different return instructions. 10502 const Function &Func = DAG.getMachineFunction().getFunction(); 10503 if (Func.hasFnAttribute("interrupt")) { 10504 if (!Func.getReturnType()->isVoidTy()) 10505 report_fatal_error( 10506 "Functions with the interrupt attribute must have void return type!"); 10507 10508 MachineFunction &MF = DAG.getMachineFunction(); 10509 StringRef Kind = 10510 MF.getFunction().getFnAttribute("interrupt").getValueAsString(); 10511 10512 if (Kind == "user") 10513 RetOpc = RISCVISD::URET_FLAG; 10514 else if (Kind == "supervisor") 10515 RetOpc = RISCVISD::SRET_FLAG; 10516 else 10517 RetOpc = RISCVISD::MRET_FLAG; 10518 } 10519 10520 return DAG.getNode(RetOpc, DL, MVT::Other, RetOps); 10521 } 10522 10523 void RISCVTargetLowering::validateCCReservedRegs( 10524 const SmallVectorImpl<std::pair<llvm::Register, llvm::SDValue>> &Regs, 10525 MachineFunction &MF) const { 10526 const Function &F = MF.getFunction(); 10527 const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>(); 10528 10529 if (llvm::any_of(Regs, [&STI](auto Reg) { 10530 return STI.isRegisterReservedByUser(Reg.first); 10531 })) 10532 F.getContext().diagnose(DiagnosticInfoUnsupported{ 10533 F, "Argument register required, but has been reserved."}); 10534 } 10535 10536 bool RISCVTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { 10537 return CI->isTailCall(); 10538 } 10539 10540 const char *RISCVTargetLowering::getTargetNodeName(unsigned Opcode) const { 10541 #define NODE_NAME_CASE(NODE) \ 10542 case RISCVISD::NODE: \ 10543 return "RISCVISD::" #NODE; 10544 // clang-format off 10545 switch ((RISCVISD::NodeType)Opcode) { 10546 case RISCVISD::FIRST_NUMBER: 10547 break; 10548 NODE_NAME_CASE(RET_FLAG) 10549 NODE_NAME_CASE(URET_FLAG) 10550 NODE_NAME_CASE(SRET_FLAG) 10551 NODE_NAME_CASE(MRET_FLAG) 10552 NODE_NAME_CASE(CALL) 10553 NODE_NAME_CASE(SELECT_CC) 10554 NODE_NAME_CASE(BR_CC) 10555 NODE_NAME_CASE(BuildPairF64) 10556 NODE_NAME_CASE(SplitF64) 10557 NODE_NAME_CASE(TAIL) 10558 NODE_NAME_CASE(MULHSU) 10559 NODE_NAME_CASE(SLLW) 10560 NODE_NAME_CASE(SRAW) 10561 NODE_NAME_CASE(SRLW) 10562 NODE_NAME_CASE(DIVW) 10563 NODE_NAME_CASE(DIVUW) 10564 NODE_NAME_CASE(REMUW) 10565 NODE_NAME_CASE(ROLW) 10566 NODE_NAME_CASE(RORW) 10567 NODE_NAME_CASE(CLZW) 10568 NODE_NAME_CASE(CTZW) 10569 NODE_NAME_CASE(FSLW) 10570 NODE_NAME_CASE(FSRW) 10571 NODE_NAME_CASE(FSL) 10572 NODE_NAME_CASE(FSR) 10573 NODE_NAME_CASE(FMV_H_X) 10574 NODE_NAME_CASE(FMV_X_ANYEXTH) 10575 NODE_NAME_CASE(FMV_W_X_RV64) 10576 NODE_NAME_CASE(FMV_X_ANYEXTW_RV64) 10577 NODE_NAME_CASE(FCVT_X) 10578 NODE_NAME_CASE(FCVT_XU) 10579 NODE_NAME_CASE(FCVT_W_RV64) 10580 NODE_NAME_CASE(FCVT_WU_RV64) 10581 NODE_NAME_CASE(STRICT_FCVT_W_RV64) 10582 NODE_NAME_CASE(STRICT_FCVT_WU_RV64) 10583 NODE_NAME_CASE(READ_CYCLE_WIDE) 10584 NODE_NAME_CASE(GREV) 10585 NODE_NAME_CASE(GREVW) 10586 NODE_NAME_CASE(GORC) 10587 NODE_NAME_CASE(GORCW) 10588 NODE_NAME_CASE(SHFL) 10589 NODE_NAME_CASE(SHFLW) 10590 NODE_NAME_CASE(UNSHFL) 10591 NODE_NAME_CASE(UNSHFLW) 10592 NODE_NAME_CASE(BFP) 10593 NODE_NAME_CASE(BFPW) 10594 NODE_NAME_CASE(BCOMPRESS) 10595 NODE_NAME_CASE(BCOMPRESSW) 10596 NODE_NAME_CASE(BDECOMPRESS) 10597 NODE_NAME_CASE(BDECOMPRESSW) 10598 NODE_NAME_CASE(VMV_V_X_VL) 10599 NODE_NAME_CASE(VFMV_V_F_VL) 10600 NODE_NAME_CASE(VMV_X_S) 10601 NODE_NAME_CASE(VMV_S_X_VL) 10602 NODE_NAME_CASE(VFMV_S_F_VL) 10603 NODE_NAME_CASE(SPLAT_VECTOR_SPLIT_I64_VL) 10604 NODE_NAME_CASE(READ_VLENB) 10605 NODE_NAME_CASE(TRUNCATE_VECTOR_VL) 10606 NODE_NAME_CASE(VSLIDEUP_VL) 10607 NODE_NAME_CASE(VSLIDE1UP_VL) 10608 NODE_NAME_CASE(VSLIDEDOWN_VL) 10609 NODE_NAME_CASE(VSLIDE1DOWN_VL) 10610 NODE_NAME_CASE(VID_VL) 10611 NODE_NAME_CASE(VFNCVT_ROD_VL) 10612 NODE_NAME_CASE(VECREDUCE_ADD_VL) 10613 NODE_NAME_CASE(VECREDUCE_UMAX_VL) 10614 NODE_NAME_CASE(VECREDUCE_SMAX_VL) 10615 NODE_NAME_CASE(VECREDUCE_UMIN_VL) 10616 NODE_NAME_CASE(VECREDUCE_SMIN_VL) 10617 NODE_NAME_CASE(VECREDUCE_AND_VL) 10618 NODE_NAME_CASE(VECREDUCE_OR_VL) 10619 NODE_NAME_CASE(VECREDUCE_XOR_VL) 10620 NODE_NAME_CASE(VECREDUCE_FADD_VL) 10621 NODE_NAME_CASE(VECREDUCE_SEQ_FADD_VL) 10622 NODE_NAME_CASE(VECREDUCE_FMIN_VL) 10623 NODE_NAME_CASE(VECREDUCE_FMAX_VL) 10624 NODE_NAME_CASE(ADD_VL) 10625 NODE_NAME_CASE(AND_VL) 10626 NODE_NAME_CASE(MUL_VL) 10627 NODE_NAME_CASE(OR_VL) 10628 NODE_NAME_CASE(SDIV_VL) 10629 NODE_NAME_CASE(SHL_VL) 10630 NODE_NAME_CASE(SREM_VL) 10631 NODE_NAME_CASE(SRA_VL) 10632 NODE_NAME_CASE(SRL_VL) 10633 NODE_NAME_CASE(SUB_VL) 10634 NODE_NAME_CASE(UDIV_VL) 10635 NODE_NAME_CASE(UREM_VL) 10636 NODE_NAME_CASE(XOR_VL) 10637 NODE_NAME_CASE(SADDSAT_VL) 10638 NODE_NAME_CASE(UADDSAT_VL) 10639 NODE_NAME_CASE(SSUBSAT_VL) 10640 NODE_NAME_CASE(USUBSAT_VL) 10641 NODE_NAME_CASE(FADD_VL) 10642 NODE_NAME_CASE(FSUB_VL) 10643 NODE_NAME_CASE(FMUL_VL) 10644 NODE_NAME_CASE(FDIV_VL) 10645 NODE_NAME_CASE(FNEG_VL) 10646 NODE_NAME_CASE(FABS_VL) 10647 NODE_NAME_CASE(FSQRT_VL) 10648 NODE_NAME_CASE(FMA_VL) 10649 NODE_NAME_CASE(FCOPYSIGN_VL) 10650 NODE_NAME_CASE(SMIN_VL) 10651 NODE_NAME_CASE(SMAX_VL) 10652 NODE_NAME_CASE(UMIN_VL) 10653 NODE_NAME_CASE(UMAX_VL) 10654 NODE_NAME_CASE(FMINNUM_VL) 10655 NODE_NAME_CASE(FMAXNUM_VL) 10656 NODE_NAME_CASE(MULHS_VL) 10657 NODE_NAME_CASE(MULHU_VL) 10658 NODE_NAME_CASE(FP_TO_SINT_VL) 10659 NODE_NAME_CASE(FP_TO_UINT_VL) 10660 NODE_NAME_CASE(SINT_TO_FP_VL) 10661 NODE_NAME_CASE(UINT_TO_FP_VL) 10662 NODE_NAME_CASE(FP_EXTEND_VL) 10663 NODE_NAME_CASE(FP_ROUND_VL) 10664 NODE_NAME_CASE(VWMUL_VL) 10665 NODE_NAME_CASE(VWMULU_VL) 10666 NODE_NAME_CASE(VWMULSU_VL) 10667 NODE_NAME_CASE(VWADD_VL) 10668 NODE_NAME_CASE(VWADDU_VL) 10669 NODE_NAME_CASE(VWSUB_VL) 10670 NODE_NAME_CASE(VWSUBU_VL) 10671 NODE_NAME_CASE(VWADD_W_VL) 10672 NODE_NAME_CASE(VWADDU_W_VL) 10673 NODE_NAME_CASE(VWSUB_W_VL) 10674 NODE_NAME_CASE(VWSUBU_W_VL) 10675 NODE_NAME_CASE(SETCC_VL) 10676 NODE_NAME_CASE(VSELECT_VL) 10677 NODE_NAME_CASE(VP_MERGE_VL) 10678 NODE_NAME_CASE(VMAND_VL) 10679 NODE_NAME_CASE(VMOR_VL) 10680 NODE_NAME_CASE(VMXOR_VL) 10681 NODE_NAME_CASE(VMCLR_VL) 10682 NODE_NAME_CASE(VMSET_VL) 10683 NODE_NAME_CASE(VRGATHER_VX_VL) 10684 NODE_NAME_CASE(VRGATHER_VV_VL) 10685 NODE_NAME_CASE(VRGATHEREI16_VV_VL) 10686 NODE_NAME_CASE(VSEXT_VL) 10687 NODE_NAME_CASE(VZEXT_VL) 10688 NODE_NAME_CASE(VCPOP_VL) 10689 NODE_NAME_CASE(VLE_VL) 10690 NODE_NAME_CASE(VSE_VL) 10691 NODE_NAME_CASE(READ_CSR) 10692 NODE_NAME_CASE(WRITE_CSR) 10693 NODE_NAME_CASE(SWAP_CSR) 10694 } 10695 // clang-format on 10696 return nullptr; 10697 #undef NODE_NAME_CASE 10698 } 10699 10700 /// getConstraintType - Given a constraint letter, return the type of 10701 /// constraint it is for this target. 10702 RISCVTargetLowering::ConstraintType 10703 RISCVTargetLowering::getConstraintType(StringRef Constraint) const { 10704 if (Constraint.size() == 1) { 10705 switch (Constraint[0]) { 10706 default: 10707 break; 10708 case 'f': 10709 return C_RegisterClass; 10710 case 'I': 10711 case 'J': 10712 case 'K': 10713 return C_Immediate; 10714 case 'A': 10715 return C_Memory; 10716 case 'S': // A symbolic address 10717 return C_Other; 10718 } 10719 } else { 10720 if (Constraint == "vr" || Constraint == "vm") 10721 return C_RegisterClass; 10722 } 10723 return TargetLowering::getConstraintType(Constraint); 10724 } 10725 10726 std::pair<unsigned, const TargetRegisterClass *> 10727 RISCVTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 10728 StringRef Constraint, 10729 MVT VT) const { 10730 // First, see if this is a constraint that directly corresponds to a 10731 // RISCV register class. 10732 if (Constraint.size() == 1) { 10733 switch (Constraint[0]) { 10734 case 'r': 10735 // TODO: Support fixed vectors up to XLen for P extension? 10736 if (VT.isVector()) 10737 break; 10738 return std::make_pair(0U, &RISCV::GPRRegClass); 10739 case 'f': 10740 if (Subtarget.hasStdExtZfh() && VT == MVT::f16) 10741 return std::make_pair(0U, &RISCV::FPR16RegClass); 10742 if (Subtarget.hasStdExtF() && VT == MVT::f32) 10743 return std::make_pair(0U, &RISCV::FPR32RegClass); 10744 if (Subtarget.hasStdExtD() && VT == MVT::f64) 10745 return std::make_pair(0U, &RISCV::FPR64RegClass); 10746 break; 10747 default: 10748 break; 10749 } 10750 } else if (Constraint == "vr") { 10751 for (const auto *RC : {&RISCV::VRRegClass, &RISCV::VRM2RegClass, 10752 &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) { 10753 if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy)) 10754 return std::make_pair(0U, RC); 10755 } 10756 } else if (Constraint == "vm") { 10757 if (TRI->isTypeLegalForClass(RISCV::VMV0RegClass, VT.SimpleTy)) 10758 return std::make_pair(0U, &RISCV::VMV0RegClass); 10759 } 10760 10761 // Clang will correctly decode the usage of register name aliases into their 10762 // official names. However, other frontends like `rustc` do not. This allows 10763 // users of these frontends to use the ABI names for registers in LLVM-style 10764 // register constraints. 10765 unsigned XRegFromAlias = StringSwitch<unsigned>(Constraint.lower()) 10766 .Case("{zero}", RISCV::X0) 10767 .Case("{ra}", RISCV::X1) 10768 .Case("{sp}", RISCV::X2) 10769 .Case("{gp}", RISCV::X3) 10770 .Case("{tp}", RISCV::X4) 10771 .Case("{t0}", RISCV::X5) 10772 .Case("{t1}", RISCV::X6) 10773 .Case("{t2}", RISCV::X7) 10774 .Cases("{s0}", "{fp}", RISCV::X8) 10775 .Case("{s1}", RISCV::X9) 10776 .Case("{a0}", RISCV::X10) 10777 .Case("{a1}", RISCV::X11) 10778 .Case("{a2}", RISCV::X12) 10779 .Case("{a3}", RISCV::X13) 10780 .Case("{a4}", RISCV::X14) 10781 .Case("{a5}", RISCV::X15) 10782 .Case("{a6}", RISCV::X16) 10783 .Case("{a7}", RISCV::X17) 10784 .Case("{s2}", RISCV::X18) 10785 .Case("{s3}", RISCV::X19) 10786 .Case("{s4}", RISCV::X20) 10787 .Case("{s5}", RISCV::X21) 10788 .Case("{s6}", RISCV::X22) 10789 .Case("{s7}", RISCV::X23) 10790 .Case("{s8}", RISCV::X24) 10791 .Case("{s9}", RISCV::X25) 10792 .Case("{s10}", RISCV::X26) 10793 .Case("{s11}", RISCV::X27) 10794 .Case("{t3}", RISCV::X28) 10795 .Case("{t4}", RISCV::X29) 10796 .Case("{t5}", RISCV::X30) 10797 .Case("{t6}", RISCV::X31) 10798 .Default(RISCV::NoRegister); 10799 if (XRegFromAlias != RISCV::NoRegister) 10800 return std::make_pair(XRegFromAlias, &RISCV::GPRRegClass); 10801 10802 // Since TargetLowering::getRegForInlineAsmConstraint uses the name of the 10803 // TableGen record rather than the AsmName to choose registers for InlineAsm 10804 // constraints, plus we want to match those names to the widest floating point 10805 // register type available, manually select floating point registers here. 10806 // 10807 // The second case is the ABI name of the register, so that frontends can also 10808 // use the ABI names in register constraint lists. 10809 if (Subtarget.hasStdExtF()) { 10810 unsigned FReg = StringSwitch<unsigned>(Constraint.lower()) 10811 .Cases("{f0}", "{ft0}", RISCV::F0_F) 10812 .Cases("{f1}", "{ft1}", RISCV::F1_F) 10813 .Cases("{f2}", "{ft2}", RISCV::F2_F) 10814 .Cases("{f3}", "{ft3}", RISCV::F3_F) 10815 .Cases("{f4}", "{ft4}", RISCV::F4_F) 10816 .Cases("{f5}", "{ft5}", RISCV::F5_F) 10817 .Cases("{f6}", "{ft6}", RISCV::F6_F) 10818 .Cases("{f7}", "{ft7}", RISCV::F7_F) 10819 .Cases("{f8}", "{fs0}", RISCV::F8_F) 10820 .Cases("{f9}", "{fs1}", RISCV::F9_F) 10821 .Cases("{f10}", "{fa0}", RISCV::F10_F) 10822 .Cases("{f11}", "{fa1}", RISCV::F11_F) 10823 .Cases("{f12}", "{fa2}", RISCV::F12_F) 10824 .Cases("{f13}", "{fa3}", RISCV::F13_F) 10825 .Cases("{f14}", "{fa4}", RISCV::F14_F) 10826 .Cases("{f15}", "{fa5}", RISCV::F15_F) 10827 .Cases("{f16}", "{fa6}", RISCV::F16_F) 10828 .Cases("{f17}", "{fa7}", RISCV::F17_F) 10829 .Cases("{f18}", "{fs2}", RISCV::F18_F) 10830 .Cases("{f19}", "{fs3}", RISCV::F19_F) 10831 .Cases("{f20}", "{fs4}", RISCV::F20_F) 10832 .Cases("{f21}", "{fs5}", RISCV::F21_F) 10833 .Cases("{f22}", "{fs6}", RISCV::F22_F) 10834 .Cases("{f23}", "{fs7}", RISCV::F23_F) 10835 .Cases("{f24}", "{fs8}", RISCV::F24_F) 10836 .Cases("{f25}", "{fs9}", RISCV::F25_F) 10837 .Cases("{f26}", "{fs10}", RISCV::F26_F) 10838 .Cases("{f27}", "{fs11}", RISCV::F27_F) 10839 .Cases("{f28}", "{ft8}", RISCV::F28_F) 10840 .Cases("{f29}", "{ft9}", RISCV::F29_F) 10841 .Cases("{f30}", "{ft10}", RISCV::F30_F) 10842 .Cases("{f31}", "{ft11}", RISCV::F31_F) 10843 .Default(RISCV::NoRegister); 10844 if (FReg != RISCV::NoRegister) { 10845 assert(RISCV::F0_F <= FReg && FReg <= RISCV::F31_F && "Unknown fp-reg"); 10846 if (Subtarget.hasStdExtD() && (VT == MVT::f64 || VT == MVT::Other)) { 10847 unsigned RegNo = FReg - RISCV::F0_F; 10848 unsigned DReg = RISCV::F0_D + RegNo; 10849 return std::make_pair(DReg, &RISCV::FPR64RegClass); 10850 } 10851 if (VT == MVT::f32 || VT == MVT::Other) 10852 return std::make_pair(FReg, &RISCV::FPR32RegClass); 10853 if (Subtarget.hasStdExtZfh() && VT == MVT::f16) { 10854 unsigned RegNo = FReg - RISCV::F0_F; 10855 unsigned HReg = RISCV::F0_H + RegNo; 10856 return std::make_pair(HReg, &RISCV::FPR16RegClass); 10857 } 10858 } 10859 } 10860 10861 if (Subtarget.hasVInstructions()) { 10862 Register VReg = StringSwitch<Register>(Constraint.lower()) 10863 .Case("{v0}", RISCV::V0) 10864 .Case("{v1}", RISCV::V1) 10865 .Case("{v2}", RISCV::V2) 10866 .Case("{v3}", RISCV::V3) 10867 .Case("{v4}", RISCV::V4) 10868 .Case("{v5}", RISCV::V5) 10869 .Case("{v6}", RISCV::V6) 10870 .Case("{v7}", RISCV::V7) 10871 .Case("{v8}", RISCV::V8) 10872 .Case("{v9}", RISCV::V9) 10873 .Case("{v10}", RISCV::V10) 10874 .Case("{v11}", RISCV::V11) 10875 .Case("{v12}", RISCV::V12) 10876 .Case("{v13}", RISCV::V13) 10877 .Case("{v14}", RISCV::V14) 10878 .Case("{v15}", RISCV::V15) 10879 .Case("{v16}", RISCV::V16) 10880 .Case("{v17}", RISCV::V17) 10881 .Case("{v18}", RISCV::V18) 10882 .Case("{v19}", RISCV::V19) 10883 .Case("{v20}", RISCV::V20) 10884 .Case("{v21}", RISCV::V21) 10885 .Case("{v22}", RISCV::V22) 10886 .Case("{v23}", RISCV::V23) 10887 .Case("{v24}", RISCV::V24) 10888 .Case("{v25}", RISCV::V25) 10889 .Case("{v26}", RISCV::V26) 10890 .Case("{v27}", RISCV::V27) 10891 .Case("{v28}", RISCV::V28) 10892 .Case("{v29}", RISCV::V29) 10893 .Case("{v30}", RISCV::V30) 10894 .Case("{v31}", RISCV::V31) 10895 .Default(RISCV::NoRegister); 10896 if (VReg != RISCV::NoRegister) { 10897 if (TRI->isTypeLegalForClass(RISCV::VMRegClass, VT.SimpleTy)) 10898 return std::make_pair(VReg, &RISCV::VMRegClass); 10899 if (TRI->isTypeLegalForClass(RISCV::VRRegClass, VT.SimpleTy)) 10900 return std::make_pair(VReg, &RISCV::VRRegClass); 10901 for (const auto *RC : 10902 {&RISCV::VRM2RegClass, &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) { 10903 if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy)) { 10904 VReg = TRI->getMatchingSuperReg(VReg, RISCV::sub_vrm1_0, RC); 10905 return std::make_pair(VReg, RC); 10906 } 10907 } 10908 } 10909 } 10910 10911 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 10912 } 10913 10914 unsigned 10915 RISCVTargetLowering::getInlineAsmMemConstraint(StringRef ConstraintCode) const { 10916 // Currently only support length 1 constraints. 10917 if (ConstraintCode.size() == 1) { 10918 switch (ConstraintCode[0]) { 10919 case 'A': 10920 return InlineAsm::Constraint_A; 10921 default: 10922 break; 10923 } 10924 } 10925 10926 return TargetLowering::getInlineAsmMemConstraint(ConstraintCode); 10927 } 10928 10929 void RISCVTargetLowering::LowerAsmOperandForConstraint( 10930 SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops, 10931 SelectionDAG &DAG) const { 10932 // Currently only support length 1 constraints. 10933 if (Constraint.length() == 1) { 10934 switch (Constraint[0]) { 10935 case 'I': 10936 // Validate & create a 12-bit signed immediate operand. 10937 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 10938 uint64_t CVal = C->getSExtValue(); 10939 if (isInt<12>(CVal)) 10940 Ops.push_back( 10941 DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT())); 10942 } 10943 return; 10944 case 'J': 10945 // Validate & create an integer zero operand. 10946 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 10947 if (C->getZExtValue() == 0) 10948 Ops.push_back( 10949 DAG.getTargetConstant(0, SDLoc(Op), Subtarget.getXLenVT())); 10950 return; 10951 case 'K': 10952 // Validate & create a 5-bit unsigned immediate operand. 10953 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 10954 uint64_t CVal = C->getZExtValue(); 10955 if (isUInt<5>(CVal)) 10956 Ops.push_back( 10957 DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT())); 10958 } 10959 return; 10960 case 'S': 10961 if (const auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) { 10962 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op), 10963 GA->getValueType(0))); 10964 } else if (const auto *BA = dyn_cast<BlockAddressSDNode>(Op)) { 10965 Ops.push_back(DAG.getTargetBlockAddress(BA->getBlockAddress(), 10966 BA->getValueType(0))); 10967 } 10968 return; 10969 default: 10970 break; 10971 } 10972 } 10973 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 10974 } 10975 10976 Instruction *RISCVTargetLowering::emitLeadingFence(IRBuilderBase &Builder, 10977 Instruction *Inst, 10978 AtomicOrdering Ord) const { 10979 if (isa<LoadInst>(Inst) && Ord == AtomicOrdering::SequentiallyConsistent) 10980 return Builder.CreateFence(Ord); 10981 if (isa<StoreInst>(Inst) && isReleaseOrStronger(Ord)) 10982 return Builder.CreateFence(AtomicOrdering::Release); 10983 return nullptr; 10984 } 10985 10986 Instruction *RISCVTargetLowering::emitTrailingFence(IRBuilderBase &Builder, 10987 Instruction *Inst, 10988 AtomicOrdering Ord) const { 10989 if (isa<LoadInst>(Inst) && isAcquireOrStronger(Ord)) 10990 return Builder.CreateFence(AtomicOrdering::Acquire); 10991 return nullptr; 10992 } 10993 10994 TargetLowering::AtomicExpansionKind 10995 RISCVTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { 10996 // atomicrmw {fadd,fsub} must be expanded to use compare-exchange, as floating 10997 // point operations can't be used in an lr/sc sequence without breaking the 10998 // forward-progress guarantee. 10999 if (AI->isFloatingPointOperation()) 11000 return AtomicExpansionKind::CmpXChg; 11001 11002 unsigned Size = AI->getType()->getPrimitiveSizeInBits(); 11003 if (Size == 8 || Size == 16) 11004 return AtomicExpansionKind::MaskedIntrinsic; 11005 return AtomicExpansionKind::None; 11006 } 11007 11008 static Intrinsic::ID 11009 getIntrinsicForMaskedAtomicRMWBinOp(unsigned XLen, AtomicRMWInst::BinOp BinOp) { 11010 if (XLen == 32) { 11011 switch (BinOp) { 11012 default: 11013 llvm_unreachable("Unexpected AtomicRMW BinOp"); 11014 case AtomicRMWInst::Xchg: 11015 return Intrinsic::riscv_masked_atomicrmw_xchg_i32; 11016 case AtomicRMWInst::Add: 11017 return Intrinsic::riscv_masked_atomicrmw_add_i32; 11018 case AtomicRMWInst::Sub: 11019 return Intrinsic::riscv_masked_atomicrmw_sub_i32; 11020 case AtomicRMWInst::Nand: 11021 return Intrinsic::riscv_masked_atomicrmw_nand_i32; 11022 case AtomicRMWInst::Max: 11023 return Intrinsic::riscv_masked_atomicrmw_max_i32; 11024 case AtomicRMWInst::Min: 11025 return Intrinsic::riscv_masked_atomicrmw_min_i32; 11026 case AtomicRMWInst::UMax: 11027 return Intrinsic::riscv_masked_atomicrmw_umax_i32; 11028 case AtomicRMWInst::UMin: 11029 return Intrinsic::riscv_masked_atomicrmw_umin_i32; 11030 } 11031 } 11032 11033 if (XLen == 64) { 11034 switch (BinOp) { 11035 default: 11036 llvm_unreachable("Unexpected AtomicRMW BinOp"); 11037 case AtomicRMWInst::Xchg: 11038 return Intrinsic::riscv_masked_atomicrmw_xchg_i64; 11039 case AtomicRMWInst::Add: 11040 return Intrinsic::riscv_masked_atomicrmw_add_i64; 11041 case AtomicRMWInst::Sub: 11042 return Intrinsic::riscv_masked_atomicrmw_sub_i64; 11043 case AtomicRMWInst::Nand: 11044 return Intrinsic::riscv_masked_atomicrmw_nand_i64; 11045 case AtomicRMWInst::Max: 11046 return Intrinsic::riscv_masked_atomicrmw_max_i64; 11047 case AtomicRMWInst::Min: 11048 return Intrinsic::riscv_masked_atomicrmw_min_i64; 11049 case AtomicRMWInst::UMax: 11050 return Intrinsic::riscv_masked_atomicrmw_umax_i64; 11051 case AtomicRMWInst::UMin: 11052 return Intrinsic::riscv_masked_atomicrmw_umin_i64; 11053 } 11054 } 11055 11056 llvm_unreachable("Unexpected XLen\n"); 11057 } 11058 11059 Value *RISCVTargetLowering::emitMaskedAtomicRMWIntrinsic( 11060 IRBuilderBase &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr, 11061 Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const { 11062 unsigned XLen = Subtarget.getXLen(); 11063 Value *Ordering = 11064 Builder.getIntN(XLen, static_cast<uint64_t>(AI->getOrdering())); 11065 Type *Tys[] = {AlignedAddr->getType()}; 11066 Function *LrwOpScwLoop = Intrinsic::getDeclaration( 11067 AI->getModule(), 11068 getIntrinsicForMaskedAtomicRMWBinOp(XLen, AI->getOperation()), Tys); 11069 11070 if (XLen == 64) { 11071 Incr = Builder.CreateSExt(Incr, Builder.getInt64Ty()); 11072 Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty()); 11073 ShiftAmt = Builder.CreateSExt(ShiftAmt, Builder.getInt64Ty()); 11074 } 11075 11076 Value *Result; 11077 11078 // Must pass the shift amount needed to sign extend the loaded value prior 11079 // to performing a signed comparison for min/max. ShiftAmt is the number of 11080 // bits to shift the value into position. Pass XLen-ShiftAmt-ValWidth, which 11081 // is the number of bits to left+right shift the value in order to 11082 // sign-extend. 11083 if (AI->getOperation() == AtomicRMWInst::Min || 11084 AI->getOperation() == AtomicRMWInst::Max) { 11085 const DataLayout &DL = AI->getModule()->getDataLayout(); 11086 unsigned ValWidth = 11087 DL.getTypeStoreSizeInBits(AI->getValOperand()->getType()); 11088 Value *SextShamt = 11089 Builder.CreateSub(Builder.getIntN(XLen, XLen - ValWidth), ShiftAmt); 11090 Result = Builder.CreateCall(LrwOpScwLoop, 11091 {AlignedAddr, Incr, Mask, SextShamt, Ordering}); 11092 } else { 11093 Result = 11094 Builder.CreateCall(LrwOpScwLoop, {AlignedAddr, Incr, Mask, Ordering}); 11095 } 11096 11097 if (XLen == 64) 11098 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty()); 11099 return Result; 11100 } 11101 11102 TargetLowering::AtomicExpansionKind 11103 RISCVTargetLowering::shouldExpandAtomicCmpXchgInIR( 11104 AtomicCmpXchgInst *CI) const { 11105 unsigned Size = CI->getCompareOperand()->getType()->getPrimitiveSizeInBits(); 11106 if (Size == 8 || Size == 16) 11107 return AtomicExpansionKind::MaskedIntrinsic; 11108 return AtomicExpansionKind::None; 11109 } 11110 11111 Value *RISCVTargetLowering::emitMaskedAtomicCmpXchgIntrinsic( 11112 IRBuilderBase &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr, 11113 Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const { 11114 unsigned XLen = Subtarget.getXLen(); 11115 Value *Ordering = Builder.getIntN(XLen, static_cast<uint64_t>(Ord)); 11116 Intrinsic::ID CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i32; 11117 if (XLen == 64) { 11118 CmpVal = Builder.CreateSExt(CmpVal, Builder.getInt64Ty()); 11119 NewVal = Builder.CreateSExt(NewVal, Builder.getInt64Ty()); 11120 Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty()); 11121 CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i64; 11122 } 11123 Type *Tys[] = {AlignedAddr->getType()}; 11124 Function *MaskedCmpXchg = 11125 Intrinsic::getDeclaration(CI->getModule(), CmpXchgIntrID, Tys); 11126 Value *Result = Builder.CreateCall( 11127 MaskedCmpXchg, {AlignedAddr, CmpVal, NewVal, Mask, Ordering}); 11128 if (XLen == 64) 11129 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty()); 11130 return Result; 11131 } 11132 11133 bool RISCVTargetLowering::shouldRemoveExtendFromGSIndex(EVT VT) const { 11134 return false; 11135 } 11136 11137 bool RISCVTargetLowering::shouldConvertFpToSat(unsigned Op, EVT FPVT, 11138 EVT VT) const { 11139 if (!isOperationLegalOrCustom(Op, VT) || !FPVT.isSimple()) 11140 return false; 11141 11142 switch (FPVT.getSimpleVT().SimpleTy) { 11143 case MVT::f16: 11144 return Subtarget.hasStdExtZfh(); 11145 case MVT::f32: 11146 return Subtarget.hasStdExtF(); 11147 case MVT::f64: 11148 return Subtarget.hasStdExtD(); 11149 default: 11150 return false; 11151 } 11152 } 11153 11154 unsigned RISCVTargetLowering::getJumpTableEncoding() const { 11155 // If we are using the small code model, we can reduce size of jump table 11156 // entry to 4 bytes. 11157 if (Subtarget.is64Bit() && !isPositionIndependent() && 11158 getTargetMachine().getCodeModel() == CodeModel::Small) { 11159 return MachineJumpTableInfo::EK_Custom32; 11160 } 11161 return TargetLowering::getJumpTableEncoding(); 11162 } 11163 11164 const MCExpr *RISCVTargetLowering::LowerCustomJumpTableEntry( 11165 const MachineJumpTableInfo *MJTI, const MachineBasicBlock *MBB, 11166 unsigned uid, MCContext &Ctx) const { 11167 assert(Subtarget.is64Bit() && !isPositionIndependent() && 11168 getTargetMachine().getCodeModel() == CodeModel::Small); 11169 return MCSymbolRefExpr::create(MBB->getSymbol(), Ctx); 11170 } 11171 11172 bool RISCVTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, 11173 EVT VT) const { 11174 VT = VT.getScalarType(); 11175 11176 if (!VT.isSimple()) 11177 return false; 11178 11179 switch (VT.getSimpleVT().SimpleTy) { 11180 case MVT::f16: 11181 return Subtarget.hasStdExtZfh(); 11182 case MVT::f32: 11183 return Subtarget.hasStdExtF(); 11184 case MVT::f64: 11185 return Subtarget.hasStdExtD(); 11186 default: 11187 break; 11188 } 11189 11190 return false; 11191 } 11192 11193 Register RISCVTargetLowering::getExceptionPointerRegister( 11194 const Constant *PersonalityFn) const { 11195 return RISCV::X10; 11196 } 11197 11198 Register RISCVTargetLowering::getExceptionSelectorRegister( 11199 const Constant *PersonalityFn) const { 11200 return RISCV::X11; 11201 } 11202 11203 bool RISCVTargetLowering::shouldExtendTypeInLibCall(EVT Type) const { 11204 // Return false to suppress the unnecessary extensions if the LibCall 11205 // arguments or return value is f32 type for LP64 ABI. 11206 RISCVABI::ABI ABI = Subtarget.getTargetABI(); 11207 if (ABI == RISCVABI::ABI_LP64 && (Type == MVT::f32)) 11208 return false; 11209 11210 return true; 11211 } 11212 11213 bool RISCVTargetLowering::shouldSignExtendTypeInLibCall(EVT Type, bool IsSigned) const { 11214 if (Subtarget.is64Bit() && Type == MVT::i32) 11215 return true; 11216 11217 return IsSigned; 11218 } 11219 11220 bool RISCVTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT, 11221 SDValue C) const { 11222 // Check integral scalar types. 11223 if (VT.isScalarInteger()) { 11224 // Omit the optimization if the sub target has the M extension and the data 11225 // size exceeds XLen. 11226 if (Subtarget.hasStdExtM() && VT.getSizeInBits() > Subtarget.getXLen()) 11227 return false; 11228 if (auto *ConstNode = dyn_cast<ConstantSDNode>(C.getNode())) { 11229 // Break the MUL to a SLLI and an ADD/SUB. 11230 const APInt &Imm = ConstNode->getAPIntValue(); 11231 if ((Imm + 1).isPowerOf2() || (Imm - 1).isPowerOf2() || 11232 (1 - Imm).isPowerOf2() || (-1 - Imm).isPowerOf2()) 11233 return true; 11234 // Optimize the MUL to (SH*ADD x, (SLLI x, bits)) if Imm is not simm12. 11235 if (Subtarget.hasStdExtZba() && !Imm.isSignedIntN(12) && 11236 ((Imm - 2).isPowerOf2() || (Imm - 4).isPowerOf2() || 11237 (Imm - 8).isPowerOf2())) 11238 return true; 11239 // Omit the following optimization if the sub target has the M extension 11240 // and the data size >= XLen. 11241 if (Subtarget.hasStdExtM() && VT.getSizeInBits() >= Subtarget.getXLen()) 11242 return false; 11243 // Break the MUL to two SLLI instructions and an ADD/SUB, if Imm needs 11244 // a pair of LUI/ADDI. 11245 if (!Imm.isSignedIntN(12) && Imm.countTrailingZeros() < 12) { 11246 APInt ImmS = Imm.ashr(Imm.countTrailingZeros()); 11247 if ((ImmS + 1).isPowerOf2() || (ImmS - 1).isPowerOf2() || 11248 (1 - ImmS).isPowerOf2()) 11249 return true; 11250 } 11251 } 11252 } 11253 11254 return false; 11255 } 11256 11257 bool RISCVTargetLowering::isMulAddWithConstProfitable( 11258 const SDValue &AddNode, const SDValue &ConstNode) const { 11259 // Let the DAGCombiner decide for vectors. 11260 EVT VT = AddNode.getValueType(); 11261 if (VT.isVector()) 11262 return true; 11263 11264 // Let the DAGCombiner decide for larger types. 11265 if (VT.getScalarSizeInBits() > Subtarget.getXLen()) 11266 return true; 11267 11268 // It is worse if c1 is simm12 while c1*c2 is not. 11269 ConstantSDNode *C1Node = cast<ConstantSDNode>(AddNode.getOperand(1)); 11270 ConstantSDNode *C2Node = cast<ConstantSDNode>(ConstNode); 11271 const APInt &C1 = C1Node->getAPIntValue(); 11272 const APInt &C2 = C2Node->getAPIntValue(); 11273 if (C1.isSignedIntN(12) && !(C1 * C2).isSignedIntN(12)) 11274 return false; 11275 11276 // Default to true and let the DAGCombiner decide. 11277 return true; 11278 } 11279 11280 bool RISCVTargetLowering::allowsMisalignedMemoryAccesses( 11281 EVT VT, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags, 11282 bool *Fast) const { 11283 if (!VT.isVector()) 11284 return false; 11285 11286 EVT ElemVT = VT.getVectorElementType(); 11287 if (Alignment >= ElemVT.getStoreSize()) { 11288 if (Fast) 11289 *Fast = true; 11290 return true; 11291 } 11292 11293 return false; 11294 } 11295 11296 bool RISCVTargetLowering::splitValueIntoRegisterParts( 11297 SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts, 11298 unsigned NumParts, MVT PartVT, Optional<CallingConv::ID> CC) const { 11299 bool IsABIRegCopy = CC.hasValue(); 11300 EVT ValueVT = Val.getValueType(); 11301 if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) { 11302 // Cast the f16 to i16, extend to i32, pad with ones to make a float nan, 11303 // and cast to f32. 11304 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i16, Val); 11305 Val = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Val); 11306 Val = DAG.getNode(ISD::OR, DL, MVT::i32, Val, 11307 DAG.getConstant(0xFFFF0000, DL, MVT::i32)); 11308 Val = DAG.getNode(ISD::BITCAST, DL, MVT::f32, Val); 11309 Parts[0] = Val; 11310 return true; 11311 } 11312 11313 if (ValueVT.isScalableVector() && PartVT.isScalableVector()) { 11314 LLVMContext &Context = *DAG.getContext(); 11315 EVT ValueEltVT = ValueVT.getVectorElementType(); 11316 EVT PartEltVT = PartVT.getVectorElementType(); 11317 unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize(); 11318 unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize(); 11319 if (PartVTBitSize % ValueVTBitSize == 0) { 11320 assert(PartVTBitSize >= ValueVTBitSize); 11321 // If the element types are different, bitcast to the same element type of 11322 // PartVT first. 11323 // Give an example here, we want copy a <vscale x 1 x i8> value to 11324 // <vscale x 4 x i16>. 11325 // We need to convert <vscale x 1 x i8> to <vscale x 8 x i8> by insert 11326 // subvector, then we can bitcast to <vscale x 4 x i16>. 11327 if (ValueEltVT != PartEltVT) { 11328 if (PartVTBitSize > ValueVTBitSize) { 11329 unsigned Count = PartVTBitSize / ValueEltVT.getFixedSizeInBits(); 11330 assert(Count != 0 && "The number of element should not be zero."); 11331 EVT SameEltTypeVT = 11332 EVT::getVectorVT(Context, ValueEltVT, Count, /*IsScalable=*/true); 11333 Val = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, SameEltTypeVT, 11334 DAG.getUNDEF(SameEltTypeVT), Val, 11335 DAG.getVectorIdxConstant(0, DL)); 11336 } 11337 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 11338 } else { 11339 Val = 11340 DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT), 11341 Val, DAG.getVectorIdxConstant(0, DL)); 11342 } 11343 Parts[0] = Val; 11344 return true; 11345 } 11346 } 11347 return false; 11348 } 11349 11350 SDValue RISCVTargetLowering::joinRegisterPartsIntoValue( 11351 SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts, 11352 MVT PartVT, EVT ValueVT, Optional<CallingConv::ID> CC) const { 11353 bool IsABIRegCopy = CC.hasValue(); 11354 if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) { 11355 SDValue Val = Parts[0]; 11356 11357 // Cast the f32 to i32, truncate to i16, and cast back to f16. 11358 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Val); 11359 Val = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Val); 11360 Val = DAG.getNode(ISD::BITCAST, DL, MVT::f16, Val); 11361 return Val; 11362 } 11363 11364 if (ValueVT.isScalableVector() && PartVT.isScalableVector()) { 11365 LLVMContext &Context = *DAG.getContext(); 11366 SDValue Val = Parts[0]; 11367 EVT ValueEltVT = ValueVT.getVectorElementType(); 11368 EVT PartEltVT = PartVT.getVectorElementType(); 11369 unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize(); 11370 unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize(); 11371 if (PartVTBitSize % ValueVTBitSize == 0) { 11372 assert(PartVTBitSize >= ValueVTBitSize); 11373 EVT SameEltTypeVT = ValueVT; 11374 // If the element types are different, convert it to the same element type 11375 // of PartVT. 11376 // Give an example here, we want copy a <vscale x 1 x i8> value from 11377 // <vscale x 4 x i16>. 11378 // We need to convert <vscale x 4 x i16> to <vscale x 8 x i8> first, 11379 // then we can extract <vscale x 1 x i8>. 11380 if (ValueEltVT != PartEltVT) { 11381 unsigned Count = PartVTBitSize / ValueEltVT.getFixedSizeInBits(); 11382 assert(Count != 0 && "The number of element should not be zero."); 11383 SameEltTypeVT = 11384 EVT::getVectorVT(Context, ValueEltVT, Count, /*IsScalable=*/true); 11385 Val = DAG.getNode(ISD::BITCAST, DL, SameEltTypeVT, Val); 11386 } 11387 Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 11388 DAG.getVectorIdxConstant(0, DL)); 11389 return Val; 11390 } 11391 } 11392 return SDValue(); 11393 } 11394 11395 SDValue 11396 RISCVTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 11397 SelectionDAG &DAG, 11398 SmallVectorImpl<SDNode *> &Created) const { 11399 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 11400 if (isIntDivCheap(N->getValueType(0), Attr)) 11401 return SDValue(N, 0); // Lower SDIV as SDIV 11402 11403 assert((Divisor.isPowerOf2() || Divisor.isNegatedPowerOf2()) && 11404 "Unexpected divisor!"); 11405 11406 // Conditional move is needed, so do the transformation iff Zbt is enabled. 11407 if (!Subtarget.hasStdExtZbt()) 11408 return SDValue(); 11409 11410 // When |Divisor| >= 2 ^ 12, it isn't profitable to do such transformation. 11411 // Besides, more critical path instructions will be generated when dividing 11412 // by 2. So we keep using the original DAGs for these cases. 11413 unsigned Lg2 = Divisor.countTrailingZeros(); 11414 if (Lg2 == 1 || Lg2 >= 12) 11415 return SDValue(); 11416 11417 // fold (sdiv X, pow2) 11418 EVT VT = N->getValueType(0); 11419 if (VT != MVT::i32 && !(Subtarget.is64Bit() && VT == MVT::i64)) 11420 return SDValue(); 11421 11422 SDLoc DL(N); 11423 SDValue N0 = N->getOperand(0); 11424 SDValue Zero = DAG.getConstant(0, DL, VT); 11425 SDValue Pow2MinusOne = DAG.getConstant((1ULL << Lg2) - 1, DL, VT); 11426 11427 // Add (N0 < 0) ? Pow2 - 1 : 0; 11428 SDValue Cmp = DAG.getSetCC(DL, VT, N0, Zero, ISD::SETLT); 11429 SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0, Pow2MinusOne); 11430 SDValue Sel = DAG.getNode(ISD::SELECT, DL, VT, Cmp, Add, N0); 11431 11432 Created.push_back(Cmp.getNode()); 11433 Created.push_back(Add.getNode()); 11434 Created.push_back(Sel.getNode()); 11435 11436 // Divide by pow2. 11437 SDValue SRA = 11438 DAG.getNode(ISD::SRA, DL, VT, Sel, DAG.getConstant(Lg2, DL, VT)); 11439 11440 // If we're dividing by a positive value, we're done. Otherwise, we must 11441 // negate the result. 11442 if (Divisor.isNonNegative()) 11443 return SRA; 11444 11445 Created.push_back(SRA.getNode()); 11446 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), SRA); 11447 } 11448 11449 #define GET_REGISTER_MATCHER 11450 #include "RISCVGenAsmMatcher.inc" 11451 11452 Register 11453 RISCVTargetLowering::getRegisterByName(const char *RegName, LLT VT, 11454 const MachineFunction &MF) const { 11455 Register Reg = MatchRegisterAltName(RegName); 11456 if (Reg == RISCV::NoRegister) 11457 Reg = MatchRegisterName(RegName); 11458 if (Reg == RISCV::NoRegister) 11459 report_fatal_error( 11460 Twine("Invalid register name \"" + StringRef(RegName) + "\".")); 11461 BitVector ReservedRegs = Subtarget.getRegisterInfo()->getReservedRegs(MF); 11462 if (!ReservedRegs.test(Reg) && !Subtarget.isRegisterReservedByUser(Reg)) 11463 report_fatal_error(Twine("Trying to obtain non-reserved register \"" + 11464 StringRef(RegName) + "\".")); 11465 return Reg; 11466 } 11467 11468 namespace llvm { 11469 namespace RISCVVIntrinsicsTable { 11470 11471 #define GET_RISCVVIntrinsicsTable_IMPL 11472 #include "RISCVGenSearchableTables.inc" 11473 11474 } // namespace RISCVVIntrinsicsTable 11475 11476 } // namespace llvm 11477