1 //===-- RISCVISelLowering.cpp - RISCV DAG Lowering Implementation  --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the interfaces that RISCV uses to lower LLVM code into a
10 // selection DAG.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "RISCVISelLowering.h"
15 #include "MCTargetDesc/RISCVMatInt.h"
16 #include "RISCV.h"
17 #include "RISCVMachineFunctionInfo.h"
18 #include "RISCVRegisterInfo.h"
19 #include "RISCVSubtarget.h"
20 #include "RISCVTargetMachine.h"
21 #include "llvm/ADT/SmallSet.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/CodeGen/MachineFrameInfo.h"
24 #include "llvm/CodeGen/MachineFunction.h"
25 #include "llvm/CodeGen/MachineInstrBuilder.h"
26 #include "llvm/CodeGen/MachineRegisterInfo.h"
27 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
28 #include "llvm/CodeGen/ValueTypes.h"
29 #include "llvm/IR/DiagnosticInfo.h"
30 #include "llvm/IR/DiagnosticPrinter.h"
31 #include "llvm/IR/IntrinsicsRISCV.h"
32 #include "llvm/IR/IRBuilder.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/ErrorHandling.h"
35 #include "llvm/Support/KnownBits.h"
36 #include "llvm/Support/MathExtras.h"
37 #include "llvm/Support/raw_ostream.h"
38 
39 using namespace llvm;
40 
41 #define DEBUG_TYPE "riscv-lower"
42 
43 STATISTIC(NumTailCalls, "Number of tail calls");
44 
45 RISCVTargetLowering::RISCVTargetLowering(const TargetMachine &TM,
46                                          const RISCVSubtarget &STI)
47     : TargetLowering(TM), Subtarget(STI) {
48 
49   if (Subtarget.isRV32E())
50     report_fatal_error("Codegen not yet implemented for RV32E");
51 
52   RISCVABI::ABI ABI = Subtarget.getTargetABI();
53   assert(ABI != RISCVABI::ABI_Unknown && "Improperly initialised target ABI");
54 
55   if ((ABI == RISCVABI::ABI_ILP32F || ABI == RISCVABI::ABI_LP64F) &&
56       !Subtarget.hasStdExtF()) {
57     errs() << "Hard-float 'f' ABI can't be used for a target that "
58                 "doesn't support the F instruction set extension (ignoring "
59                           "target-abi)\n";
60     ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32;
61   } else if ((ABI == RISCVABI::ABI_ILP32D || ABI == RISCVABI::ABI_LP64D) &&
62              !Subtarget.hasStdExtD()) {
63     errs() << "Hard-float 'd' ABI can't be used for a target that "
64               "doesn't support the D instruction set extension (ignoring "
65               "target-abi)\n";
66     ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32;
67   }
68 
69   switch (ABI) {
70   default:
71     report_fatal_error("Don't know how to lower this ABI");
72   case RISCVABI::ABI_ILP32:
73   case RISCVABI::ABI_ILP32F:
74   case RISCVABI::ABI_ILP32D:
75   case RISCVABI::ABI_LP64:
76   case RISCVABI::ABI_LP64F:
77   case RISCVABI::ABI_LP64D:
78     break;
79   }
80 
81   MVT XLenVT = Subtarget.getXLenVT();
82 
83   // Set up the register classes.
84   addRegisterClass(XLenVT, &RISCV::GPRRegClass);
85 
86   if (Subtarget.hasStdExtZfh())
87     addRegisterClass(MVT::f16, &RISCV::FPR16RegClass);
88   if (Subtarget.hasStdExtF())
89     addRegisterClass(MVT::f32, &RISCV::FPR32RegClass);
90   if (Subtarget.hasStdExtD())
91     addRegisterClass(MVT::f64, &RISCV::FPR64RegClass);
92 
93   static const MVT::SimpleValueType BoolVecVTs[] = {
94       MVT::nxv1i1,  MVT::nxv2i1,  MVT::nxv4i1, MVT::nxv8i1,
95       MVT::nxv16i1, MVT::nxv32i1, MVT::nxv64i1};
96   static const MVT::SimpleValueType IntVecVTs[] = {
97       MVT::nxv1i8,  MVT::nxv2i8,   MVT::nxv4i8,   MVT::nxv8i8,  MVT::nxv16i8,
98       MVT::nxv32i8, MVT::nxv64i8,  MVT::nxv1i16,  MVT::nxv2i16, MVT::nxv4i16,
99       MVT::nxv8i16, MVT::nxv16i16, MVT::nxv32i16, MVT::nxv1i32, MVT::nxv2i32,
100       MVT::nxv4i32, MVT::nxv8i32,  MVT::nxv16i32, MVT::nxv1i64, MVT::nxv2i64,
101       MVT::nxv4i64, MVT::nxv8i64};
102   static const MVT::SimpleValueType F16VecVTs[] = {
103       MVT::nxv1f16, MVT::nxv2f16,  MVT::nxv4f16,
104       MVT::nxv8f16, MVT::nxv16f16, MVT::nxv32f16};
105   static const MVT::SimpleValueType F32VecVTs[] = {
106       MVT::nxv1f32, MVT::nxv2f32, MVT::nxv4f32, MVT::nxv8f32, MVT::nxv16f32};
107   static const MVT::SimpleValueType F64VecVTs[] = {
108       MVT::nxv1f64, MVT::nxv2f64, MVT::nxv4f64, MVT::nxv8f64};
109 
110   if (Subtarget.hasStdExtV()) {
111     auto addRegClassForRVV = [this](MVT VT) {
112       unsigned Size = VT.getSizeInBits().getKnownMinValue();
113       assert(Size <= 512 && isPowerOf2_32(Size));
114       const TargetRegisterClass *RC;
115       if (Size <= 64)
116         RC = &RISCV::VRRegClass;
117       else if (Size == 128)
118         RC = &RISCV::VRM2RegClass;
119       else if (Size == 256)
120         RC = &RISCV::VRM4RegClass;
121       else
122         RC = &RISCV::VRM8RegClass;
123 
124       addRegisterClass(VT, RC);
125     };
126 
127     for (MVT VT : BoolVecVTs)
128       addRegClassForRVV(VT);
129     for (MVT VT : IntVecVTs)
130       addRegClassForRVV(VT);
131 
132     if (Subtarget.hasStdExtZfh())
133       for (MVT VT : F16VecVTs)
134         addRegClassForRVV(VT);
135 
136     if (Subtarget.hasStdExtF())
137       for (MVT VT : F32VecVTs)
138         addRegClassForRVV(VT);
139 
140     if (Subtarget.hasStdExtD())
141       for (MVT VT : F64VecVTs)
142         addRegClassForRVV(VT);
143 
144     if (Subtarget.useRVVForFixedLengthVectors()) {
145       auto addRegClassForFixedVectors = [this](MVT VT) {
146         MVT ContainerVT = getContainerForFixedLengthVector(VT);
147         unsigned RCID = getRegClassIDForVecVT(ContainerVT);
148         const RISCVRegisterInfo &TRI = *Subtarget.getRegisterInfo();
149         addRegisterClass(VT, TRI.getRegClass(RCID));
150       };
151       for (MVT VT : MVT::integer_fixedlen_vector_valuetypes())
152         if (useRVVForFixedLengthVectorVT(VT))
153           addRegClassForFixedVectors(VT);
154 
155       for (MVT VT : MVT::fp_fixedlen_vector_valuetypes())
156         if (useRVVForFixedLengthVectorVT(VT))
157           addRegClassForFixedVectors(VT);
158     }
159   }
160 
161   // Compute derived properties from the register classes.
162   computeRegisterProperties(STI.getRegisterInfo());
163 
164   setStackPointerRegisterToSaveRestore(RISCV::X2);
165 
166   for (auto N : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD})
167     setLoadExtAction(N, XLenVT, MVT::i1, Promote);
168 
169   // TODO: add all necessary setOperationAction calls.
170   setOperationAction(ISD::DYNAMIC_STACKALLOC, XLenVT, Expand);
171 
172   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
173   setOperationAction(ISD::BR_CC, XLenVT, Expand);
174   setOperationAction(ISD::BRCOND, MVT::Other, Custom);
175   setOperationAction(ISD::SELECT_CC, XLenVT, Expand);
176 
177   setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
178   setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
179 
180   setOperationAction(ISD::VASTART, MVT::Other, Custom);
181   setOperationAction(ISD::VAARG, MVT::Other, Expand);
182   setOperationAction(ISD::VACOPY, MVT::Other, Expand);
183   setOperationAction(ISD::VAEND, MVT::Other, Expand);
184 
185   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
186   if (!Subtarget.hasStdExtZbb()) {
187     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand);
188     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
189   }
190 
191   if (Subtarget.is64Bit()) {
192     setOperationAction(ISD::ADD, MVT::i32, Custom);
193     setOperationAction(ISD::SUB, MVT::i32, Custom);
194     setOperationAction(ISD::SHL, MVT::i32, Custom);
195     setOperationAction(ISD::SRA, MVT::i32, Custom);
196     setOperationAction(ISD::SRL, MVT::i32, Custom);
197 
198     setOperationAction(ISD::UADDO, MVT::i32, Custom);
199     setOperationAction(ISD::USUBO, MVT::i32, Custom);
200     setOperationAction(ISD::UADDSAT, MVT::i32, Custom);
201     setOperationAction(ISD::USUBSAT, MVT::i32, Custom);
202   }
203 
204   if (!Subtarget.hasStdExtM()) {
205     setOperationAction(ISD::MUL, XLenVT, Expand);
206     setOperationAction(ISD::MULHS, XLenVT, Expand);
207     setOperationAction(ISD::MULHU, XLenVT, Expand);
208     setOperationAction(ISD::SDIV, XLenVT, Expand);
209     setOperationAction(ISD::UDIV, XLenVT, Expand);
210     setOperationAction(ISD::SREM, XLenVT, Expand);
211     setOperationAction(ISD::UREM, XLenVT, Expand);
212   } else {
213     if (Subtarget.is64Bit()) {
214       setOperationAction(ISD::MUL, MVT::i32, Custom);
215       setOperationAction(ISD::MUL, MVT::i128, Custom);
216 
217       setOperationAction(ISD::SDIV, MVT::i8, Custom);
218       setOperationAction(ISD::UDIV, MVT::i8, Custom);
219       setOperationAction(ISD::UREM, MVT::i8, Custom);
220       setOperationAction(ISD::SDIV, MVT::i16, Custom);
221       setOperationAction(ISD::UDIV, MVT::i16, Custom);
222       setOperationAction(ISD::UREM, MVT::i16, Custom);
223       setOperationAction(ISD::SDIV, MVT::i32, Custom);
224       setOperationAction(ISD::UDIV, MVT::i32, Custom);
225       setOperationAction(ISD::UREM, MVT::i32, Custom);
226     } else {
227       setOperationAction(ISD::MUL, MVT::i64, Custom);
228     }
229   }
230 
231   setOperationAction(ISD::SDIVREM, XLenVT, Expand);
232   setOperationAction(ISD::UDIVREM, XLenVT, Expand);
233   setOperationAction(ISD::SMUL_LOHI, XLenVT, Expand);
234   setOperationAction(ISD::UMUL_LOHI, XLenVT, Expand);
235 
236   setOperationAction(ISD::SHL_PARTS, XLenVT, Custom);
237   setOperationAction(ISD::SRL_PARTS, XLenVT, Custom);
238   setOperationAction(ISD::SRA_PARTS, XLenVT, Custom);
239 
240   if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp()) {
241     if (Subtarget.is64Bit()) {
242       setOperationAction(ISD::ROTL, MVT::i32, Custom);
243       setOperationAction(ISD::ROTR, MVT::i32, Custom);
244     }
245   } else {
246     setOperationAction(ISD::ROTL, XLenVT, Expand);
247     setOperationAction(ISD::ROTR, XLenVT, Expand);
248   }
249 
250   if (Subtarget.hasStdExtZbp()) {
251     // Custom lower bswap/bitreverse so we can convert them to GREVI to enable
252     // more combining.
253     setOperationAction(ISD::BITREVERSE, XLenVT,   Custom);
254     setOperationAction(ISD::BSWAP,      XLenVT,   Custom);
255     setOperationAction(ISD::BITREVERSE, MVT::i8,  Custom);
256     // BSWAP i8 doesn't exist.
257     setOperationAction(ISD::BITREVERSE, MVT::i16, Custom);
258     setOperationAction(ISD::BSWAP,      MVT::i16, Custom);
259 
260     if (Subtarget.is64Bit()) {
261       setOperationAction(ISD::BITREVERSE, MVT::i32, Custom);
262       setOperationAction(ISD::BSWAP,      MVT::i32, Custom);
263     }
264   } else {
265     // With Zbb we have an XLen rev8 instruction, but not GREVI. So we'll
266     // pattern match it directly in isel.
267     setOperationAction(ISD::BSWAP, XLenVT,
268                        Subtarget.hasStdExtZbb() ? Legal : Expand);
269   }
270 
271   if (Subtarget.hasStdExtZbb()) {
272     setOperationAction(ISD::SMIN, XLenVT, Legal);
273     setOperationAction(ISD::SMAX, XLenVT, Legal);
274     setOperationAction(ISD::UMIN, XLenVT, Legal);
275     setOperationAction(ISD::UMAX, XLenVT, Legal);
276 
277     if (Subtarget.is64Bit()) {
278       setOperationAction(ISD::CTTZ, MVT::i32, Custom);
279       setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Custom);
280       setOperationAction(ISD::CTLZ, MVT::i32, Custom);
281       setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom);
282     }
283   } else {
284     setOperationAction(ISD::CTTZ, XLenVT, Expand);
285     setOperationAction(ISD::CTLZ, XLenVT, Expand);
286     setOperationAction(ISD::CTPOP, XLenVT, Expand);
287   }
288 
289   if (Subtarget.hasStdExtZbt()) {
290     setOperationAction(ISD::FSHL, XLenVT, Custom);
291     setOperationAction(ISD::FSHR, XLenVT, Custom);
292     setOperationAction(ISD::SELECT, XLenVT, Legal);
293 
294     if (Subtarget.is64Bit()) {
295       setOperationAction(ISD::FSHL, MVT::i32, Custom);
296       setOperationAction(ISD::FSHR, MVT::i32, Custom);
297     }
298   } else {
299     setOperationAction(ISD::SELECT, XLenVT, Custom);
300   }
301 
302   ISD::CondCode FPCCToExpand[] = {
303       ISD::SETOGT, ISD::SETOGE, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT,
304       ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUNE, ISD::SETGT,
305       ISD::SETGE,  ISD::SETNE,  ISD::SETO,   ISD::SETUO};
306 
307   ISD::NodeType FPOpToExpand[] = {
308       ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, ISD::FREM, ISD::FP16_TO_FP,
309       ISD::FP_TO_FP16};
310 
311   if (Subtarget.hasStdExtZfh())
312     setOperationAction(ISD::BITCAST, MVT::i16, Custom);
313 
314   if (Subtarget.hasStdExtZfh()) {
315     setOperationAction(ISD::FMINNUM, MVT::f16, Legal);
316     setOperationAction(ISD::FMAXNUM, MVT::f16, Legal);
317     setOperationAction(ISD::LRINT, MVT::f16, Legal);
318     setOperationAction(ISD::LLRINT, MVT::f16, Legal);
319     setOperationAction(ISD::LROUND, MVT::f16, Legal);
320     setOperationAction(ISD::LLROUND, MVT::f16, Legal);
321     for (auto CC : FPCCToExpand)
322       setCondCodeAction(CC, MVT::f16, Expand);
323     setOperationAction(ISD::SELECT_CC, MVT::f16, Expand);
324     setOperationAction(ISD::SELECT, MVT::f16, Custom);
325     setOperationAction(ISD::BR_CC, MVT::f16, Expand);
326     for (auto Op : FPOpToExpand)
327       setOperationAction(Op, MVT::f16, Expand);
328   }
329 
330   if (Subtarget.hasStdExtF()) {
331     setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
332     setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
333     setOperationAction(ISD::LRINT, MVT::f32, Legal);
334     setOperationAction(ISD::LLRINT, MVT::f32, Legal);
335     setOperationAction(ISD::LROUND, MVT::f32, Legal);
336     setOperationAction(ISD::LLROUND, MVT::f32, Legal);
337     for (auto CC : FPCCToExpand)
338       setCondCodeAction(CC, MVT::f32, Expand);
339     setOperationAction(ISD::SELECT_CC, MVT::f32, Expand);
340     setOperationAction(ISD::SELECT, MVT::f32, Custom);
341     setOperationAction(ISD::BR_CC, MVT::f32, Expand);
342     for (auto Op : FPOpToExpand)
343       setOperationAction(Op, MVT::f32, Expand);
344     setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
345     setTruncStoreAction(MVT::f32, MVT::f16, Expand);
346   }
347 
348   if (Subtarget.hasStdExtF() && Subtarget.is64Bit())
349     setOperationAction(ISD::BITCAST, MVT::i32, Custom);
350 
351   if (Subtarget.hasStdExtD()) {
352     setOperationAction(ISD::FMINNUM, MVT::f64, Legal);
353     setOperationAction(ISD::FMAXNUM, MVT::f64, Legal);
354     setOperationAction(ISD::LRINT, MVT::f64, Legal);
355     setOperationAction(ISD::LLRINT, MVT::f64, Legal);
356     setOperationAction(ISD::LROUND, MVT::f64, Legal);
357     setOperationAction(ISD::LLROUND, MVT::f64, Legal);
358     for (auto CC : FPCCToExpand)
359       setCondCodeAction(CC, MVT::f64, Expand);
360     setOperationAction(ISD::SELECT_CC, MVT::f64, Expand);
361     setOperationAction(ISD::SELECT, MVT::f64, Custom);
362     setOperationAction(ISD::BR_CC, MVT::f64, Expand);
363     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
364     setTruncStoreAction(MVT::f64, MVT::f32, Expand);
365     for (auto Op : FPOpToExpand)
366       setOperationAction(Op, MVT::f64, Expand);
367     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
368     setTruncStoreAction(MVT::f64, MVT::f16, Expand);
369   }
370 
371   if (Subtarget.is64Bit()) {
372     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
373     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
374     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom);
375     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom);
376   }
377 
378   if (Subtarget.hasStdExtF()) {
379     setOperationAction(ISD::FP_TO_UINT_SAT, XLenVT, Custom);
380     setOperationAction(ISD::FP_TO_SINT_SAT, XLenVT, Custom);
381 
382     setOperationAction(ISD::FLT_ROUNDS_, XLenVT, Custom);
383     setOperationAction(ISD::SET_ROUNDING, MVT::Other, Custom);
384   }
385 
386   setOperationAction(ISD::GlobalAddress, XLenVT, Custom);
387   setOperationAction(ISD::BlockAddress, XLenVT, Custom);
388   setOperationAction(ISD::ConstantPool, XLenVT, Custom);
389   setOperationAction(ISD::JumpTable, XLenVT, Custom);
390 
391   setOperationAction(ISD::GlobalTLSAddress, XLenVT, Custom);
392 
393   // TODO: On M-mode only targets, the cycle[h] CSR may not be present.
394   // Unfortunately this can't be determined just from the ISA naming string.
395   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64,
396                      Subtarget.is64Bit() ? Legal : Custom);
397 
398   setOperationAction(ISD::TRAP, MVT::Other, Legal);
399   setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal);
400   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
401   if (Subtarget.is64Bit())
402     setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i32, Custom);
403 
404   if (Subtarget.hasStdExtA()) {
405     setMaxAtomicSizeInBitsSupported(Subtarget.getXLen());
406     setMinCmpXchgSizeInBits(32);
407   } else {
408     setMaxAtomicSizeInBitsSupported(0);
409   }
410 
411   setBooleanContents(ZeroOrOneBooleanContent);
412 
413   if (Subtarget.hasStdExtV()) {
414     setBooleanVectorContents(ZeroOrOneBooleanContent);
415 
416     setOperationAction(ISD::VSCALE, XLenVT, Custom);
417 
418     // RVV intrinsics may have illegal operands.
419     // We also need to custom legalize vmv.x.s.
420     setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i8, Custom);
421     setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i16, Custom);
422     setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i8, Custom);
423     setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i16, Custom);
424     if (Subtarget.is64Bit()) {
425       setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i32, Custom);
426     } else {
427       setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i64, Custom);
428       setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i64, Custom);
429     }
430 
431     setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
432 
433     static unsigned IntegerVPOps[] = {
434         ISD::VP_ADD,  ISD::VP_SUB,  ISD::VP_MUL, ISD::VP_SDIV, ISD::VP_UDIV,
435         ISD::VP_SREM, ISD::VP_UREM, ISD::VP_AND, ISD::VP_OR,   ISD::VP_XOR,
436         ISD::VP_ASHR, ISD::VP_LSHR, ISD::VP_SHL};
437 
438     static unsigned FloatingPointVPOps[] = {ISD::VP_FADD, ISD::VP_FSUB,
439                                             ISD::VP_FMUL, ISD::VP_FDIV};
440 
441     if (!Subtarget.is64Bit()) {
442       // We must custom-lower certain vXi64 operations on RV32 due to the vector
443       // element type being illegal.
444       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::i64, Custom);
445       setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::i64, Custom);
446 
447       setOperationAction(ISD::VECREDUCE_ADD, MVT::i64, Custom);
448       setOperationAction(ISD::VECREDUCE_AND, MVT::i64, Custom);
449       setOperationAction(ISD::VECREDUCE_OR, MVT::i64, Custom);
450       setOperationAction(ISD::VECREDUCE_XOR, MVT::i64, Custom);
451       setOperationAction(ISD::VECREDUCE_SMAX, MVT::i64, Custom);
452       setOperationAction(ISD::VECREDUCE_SMIN, MVT::i64, Custom);
453       setOperationAction(ISD::VECREDUCE_UMAX, MVT::i64, Custom);
454       setOperationAction(ISD::VECREDUCE_UMIN, MVT::i64, Custom);
455     }
456 
457     for (MVT VT : BoolVecVTs) {
458       setOperationAction(ISD::SPLAT_VECTOR, VT, Custom);
459 
460       // Mask VTs are custom-expanded into a series of standard nodes
461       setOperationAction(ISD::TRUNCATE, VT, Custom);
462       setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
463       setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
464       setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
465 
466       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
467       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
468 
469       setOperationAction(ISD::SELECT, VT, Custom);
470       setOperationAction(ISD::SELECT_CC, VT, Expand);
471       setOperationAction(ISD::VSELECT, VT, Expand);
472 
473       setOperationAction(ISD::VECREDUCE_AND, VT, Custom);
474       setOperationAction(ISD::VECREDUCE_OR, VT, Custom);
475       setOperationAction(ISD::VECREDUCE_XOR, VT, Custom);
476 
477       // RVV has native int->float & float->int conversions where the
478       // element type sizes are within one power-of-two of each other. Any
479       // wider distances between type sizes have to be lowered as sequences
480       // which progressively narrow the gap in stages.
481       setOperationAction(ISD::SINT_TO_FP, VT, Custom);
482       setOperationAction(ISD::UINT_TO_FP, VT, Custom);
483       setOperationAction(ISD::FP_TO_SINT, VT, Custom);
484       setOperationAction(ISD::FP_TO_UINT, VT, Custom);
485 
486       // Expand all extending loads to types larger than this, and truncating
487       // stores from types larger than this.
488       for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) {
489         setTruncStoreAction(OtherVT, VT, Expand);
490         setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand);
491         setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand);
492         setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand);
493       }
494     }
495 
496     for (MVT VT : IntVecVTs) {
497       setOperationAction(ISD::SPLAT_VECTOR, VT, Legal);
498       setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom);
499 
500       setOperationAction(ISD::SMIN, VT, Legal);
501       setOperationAction(ISD::SMAX, VT, Legal);
502       setOperationAction(ISD::UMIN, VT, Legal);
503       setOperationAction(ISD::UMAX, VT, Legal);
504 
505       setOperationAction(ISD::ROTL, VT, Expand);
506       setOperationAction(ISD::ROTR, VT, Expand);
507 
508       // Custom-lower extensions and truncations from/to mask types.
509       setOperationAction(ISD::ANY_EXTEND, VT, Custom);
510       setOperationAction(ISD::SIGN_EXTEND, VT, Custom);
511       setOperationAction(ISD::ZERO_EXTEND, VT, Custom);
512 
513       // RVV has native int->float & float->int conversions where the
514       // element type sizes are within one power-of-two of each other. Any
515       // wider distances between type sizes have to be lowered as sequences
516       // which progressively narrow the gap in stages.
517       setOperationAction(ISD::SINT_TO_FP, VT, Custom);
518       setOperationAction(ISD::UINT_TO_FP, VT, Custom);
519       setOperationAction(ISD::FP_TO_SINT, VT, Custom);
520       setOperationAction(ISD::FP_TO_UINT, VT, Custom);
521 
522       setOperationAction(ISD::SADDSAT, VT, Legal);
523       setOperationAction(ISD::UADDSAT, VT, Legal);
524       setOperationAction(ISD::SSUBSAT, VT, Legal);
525       setOperationAction(ISD::USUBSAT, VT, Legal);
526 
527       // Integer VTs are lowered as a series of "RISCVISD::TRUNCATE_VECTOR_VL"
528       // nodes which truncate by one power of two at a time.
529       setOperationAction(ISD::TRUNCATE, VT, Custom);
530 
531       // Custom-lower insert/extract operations to simplify patterns.
532       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
533       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
534 
535       // Custom-lower reduction operations to set up the corresponding custom
536       // nodes' operands.
537       setOperationAction(ISD::VECREDUCE_ADD, VT, Custom);
538       setOperationAction(ISD::VECREDUCE_AND, VT, Custom);
539       setOperationAction(ISD::VECREDUCE_OR, VT, Custom);
540       setOperationAction(ISD::VECREDUCE_XOR, VT, Custom);
541       setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom);
542       setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom);
543       setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom);
544       setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom);
545 
546       for (unsigned VPOpc : IntegerVPOps)
547         setOperationAction(VPOpc, VT, Custom);
548 
549       setOperationAction(ISD::LOAD, VT, Custom);
550       setOperationAction(ISD::STORE, VT, Custom);
551 
552       setOperationAction(ISD::MLOAD, VT, Custom);
553       setOperationAction(ISD::MSTORE, VT, Custom);
554       setOperationAction(ISD::MGATHER, VT, Custom);
555       setOperationAction(ISD::MSCATTER, VT, Custom);
556 
557       setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
558       setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
559       setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
560 
561       setOperationAction(ISD::SELECT, VT, Custom);
562       setOperationAction(ISD::SELECT_CC, VT, Expand);
563 
564       setOperationAction(ISD::STEP_VECTOR, VT, Custom);
565       setOperationAction(ISD::VECTOR_REVERSE, VT, Custom);
566 
567       for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) {
568         setTruncStoreAction(VT, OtherVT, Expand);
569         setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand);
570         setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand);
571         setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand);
572       }
573     }
574 
575     // Expand various CCs to best match the RVV ISA, which natively supports UNE
576     // but no other unordered comparisons, and supports all ordered comparisons
577     // except ONE. Additionally, we expand GT,OGT,GE,OGE for optimization
578     // purposes; they are expanded to their swapped-operand CCs (LT,OLT,LE,OLE),
579     // and we pattern-match those back to the "original", swapping operands once
580     // more. This way we catch both operations and both "vf" and "fv" forms with
581     // fewer patterns.
582     ISD::CondCode VFPCCToExpand[] = {
583         ISD::SETO,   ISD::SETONE, ISD::SETUEQ, ISD::SETUGT,
584         ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUO,
585         ISD::SETGT,  ISD::SETOGT, ISD::SETGE,  ISD::SETOGE,
586     };
587 
588     // Sets common operation actions on RVV floating-point vector types.
589     const auto SetCommonVFPActions = [&](MVT VT) {
590       setOperationAction(ISD::SPLAT_VECTOR, VT, Legal);
591       // RVV has native FP_ROUND & FP_EXTEND conversions where the element type
592       // sizes are within one power-of-two of each other. Therefore conversions
593       // between vXf16 and vXf64 must be lowered as sequences which convert via
594       // vXf32.
595       setOperationAction(ISD::FP_ROUND, VT, Custom);
596       setOperationAction(ISD::FP_EXTEND, VT, Custom);
597       // Custom-lower insert/extract operations to simplify patterns.
598       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
599       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
600       // Expand various condition codes (explained above).
601       for (auto CC : VFPCCToExpand)
602         setCondCodeAction(CC, VT, Expand);
603 
604       setOperationAction(ISD::FMINNUM, VT, Legal);
605       setOperationAction(ISD::FMAXNUM, VT, Legal);
606 
607       setOperationAction(ISD::VECREDUCE_FADD, VT, Custom);
608       setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom);
609       setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom);
610       setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom);
611       setOperationAction(ISD::FCOPYSIGN, VT, Legal);
612 
613       setOperationAction(ISD::LOAD, VT, Custom);
614       setOperationAction(ISD::STORE, VT, Custom);
615 
616       setOperationAction(ISD::MLOAD, VT, Custom);
617       setOperationAction(ISD::MSTORE, VT, Custom);
618       setOperationAction(ISD::MGATHER, VT, Custom);
619       setOperationAction(ISD::MSCATTER, VT, Custom);
620 
621       setOperationAction(ISD::SELECT, VT, Custom);
622       setOperationAction(ISD::SELECT_CC, VT, Expand);
623 
624       setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
625       setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
626       setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
627 
628       setOperationAction(ISD::VECTOR_REVERSE, VT, Custom);
629 
630       for (unsigned VPOpc : FloatingPointVPOps)
631         setOperationAction(VPOpc, VT, Custom);
632     };
633 
634     // Sets common extload/truncstore actions on RVV floating-point vector
635     // types.
636     const auto SetCommonVFPExtLoadTruncStoreActions =
637         [&](MVT VT, ArrayRef<MVT::SimpleValueType> SmallerVTs) {
638           for (auto SmallVT : SmallerVTs) {
639             setTruncStoreAction(VT, SmallVT, Expand);
640             setLoadExtAction(ISD::EXTLOAD, VT, SmallVT, Expand);
641           }
642         };
643 
644     if (Subtarget.hasStdExtZfh())
645       for (MVT VT : F16VecVTs)
646         SetCommonVFPActions(VT);
647 
648     for (MVT VT : F32VecVTs) {
649       if (Subtarget.hasStdExtF())
650         SetCommonVFPActions(VT);
651       SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs);
652     }
653 
654     for (MVT VT : F64VecVTs) {
655       if (Subtarget.hasStdExtD())
656         SetCommonVFPActions(VT);
657       SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs);
658       SetCommonVFPExtLoadTruncStoreActions(VT, F32VecVTs);
659     }
660 
661     if (Subtarget.useRVVForFixedLengthVectors()) {
662       for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) {
663         if (!useRVVForFixedLengthVectorVT(VT))
664           continue;
665 
666         // By default everything must be expanded.
667         for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op)
668           setOperationAction(Op, VT, Expand);
669         for (MVT OtherVT : MVT::integer_fixedlen_vector_valuetypes()) {
670           setTruncStoreAction(VT, OtherVT, Expand);
671           setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand);
672           setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand);
673           setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand);
674         }
675 
676         // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed.
677         setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
678         setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
679 
680         setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
681         setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
682 
683         setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
684         setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
685 
686         setOperationAction(ISD::LOAD, VT, Custom);
687         setOperationAction(ISD::STORE, VT, Custom);
688 
689         setOperationAction(ISD::SETCC, VT, Custom);
690 
691         setOperationAction(ISD::SELECT, VT, Custom);
692 
693         setOperationAction(ISD::TRUNCATE, VT, Custom);
694 
695         setOperationAction(ISD::BITCAST, VT, Custom);
696 
697         setOperationAction(ISD::VECREDUCE_AND, VT, Custom);
698         setOperationAction(ISD::VECREDUCE_OR, VT, Custom);
699         setOperationAction(ISD::VECREDUCE_XOR, VT, Custom);
700 
701         setOperationAction(ISD::SINT_TO_FP, VT, Custom);
702         setOperationAction(ISD::UINT_TO_FP, VT, Custom);
703         setOperationAction(ISD::FP_TO_SINT, VT, Custom);
704         setOperationAction(ISD::FP_TO_UINT, VT, Custom);
705 
706         // Operations below are different for between masks and other vectors.
707         if (VT.getVectorElementType() == MVT::i1) {
708           setOperationAction(ISD::AND, VT, Custom);
709           setOperationAction(ISD::OR, VT, Custom);
710           setOperationAction(ISD::XOR, VT, Custom);
711           continue;
712         }
713 
714         // Use SPLAT_VECTOR to prevent type legalization from destroying the
715         // splats when type legalizing i64 scalar on RV32.
716         // FIXME: Use SPLAT_VECTOR for all types? DAGCombine probably needs
717         // improvements first.
718         if (!Subtarget.is64Bit() && VT.getVectorElementType() == MVT::i64) {
719           setOperationAction(ISD::SPLAT_VECTOR, VT, Custom);
720           setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom);
721         }
722 
723         setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
724         setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
725 
726         setOperationAction(ISD::MLOAD, VT, Custom);
727         setOperationAction(ISD::MSTORE, VT, Custom);
728         setOperationAction(ISD::MGATHER, VT, Custom);
729         setOperationAction(ISD::MSCATTER, VT, Custom);
730         setOperationAction(ISD::ADD, VT, Custom);
731         setOperationAction(ISD::MUL, VT, Custom);
732         setOperationAction(ISD::SUB, VT, Custom);
733         setOperationAction(ISD::AND, VT, Custom);
734         setOperationAction(ISD::OR, VT, Custom);
735         setOperationAction(ISD::XOR, VT, Custom);
736         setOperationAction(ISD::SDIV, VT, Custom);
737         setOperationAction(ISD::SREM, VT, Custom);
738         setOperationAction(ISD::UDIV, VT, Custom);
739         setOperationAction(ISD::UREM, VT, Custom);
740         setOperationAction(ISD::SHL, VT, Custom);
741         setOperationAction(ISD::SRA, VT, Custom);
742         setOperationAction(ISD::SRL, VT, Custom);
743 
744         setOperationAction(ISD::SMIN, VT, Custom);
745         setOperationAction(ISD::SMAX, VT, Custom);
746         setOperationAction(ISD::UMIN, VT, Custom);
747         setOperationAction(ISD::UMAX, VT, Custom);
748         setOperationAction(ISD::ABS,  VT, Custom);
749 
750         setOperationAction(ISD::MULHS, VT, Custom);
751         setOperationAction(ISD::MULHU, VT, Custom);
752 
753         setOperationAction(ISD::SADDSAT, VT, Custom);
754         setOperationAction(ISD::UADDSAT, VT, Custom);
755         setOperationAction(ISD::SSUBSAT, VT, Custom);
756         setOperationAction(ISD::USUBSAT, VT, Custom);
757 
758         setOperationAction(ISD::VSELECT, VT, Custom);
759         setOperationAction(ISD::SELECT_CC, VT, Expand);
760 
761         setOperationAction(ISD::ANY_EXTEND, VT, Custom);
762         setOperationAction(ISD::SIGN_EXTEND, VT, Custom);
763         setOperationAction(ISD::ZERO_EXTEND, VT, Custom);
764 
765         // Custom-lower reduction operations to set up the corresponding custom
766         // nodes' operands.
767         setOperationAction(ISD::VECREDUCE_ADD, VT, Custom);
768         setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom);
769         setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom);
770         setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom);
771         setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom);
772 
773         for (unsigned VPOpc : IntegerVPOps)
774           setOperationAction(VPOpc, VT, Custom);
775       }
776 
777       for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) {
778         if (!useRVVForFixedLengthVectorVT(VT))
779           continue;
780 
781         // By default everything must be expanded.
782         for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op)
783           setOperationAction(Op, VT, Expand);
784         for (MVT OtherVT : MVT::fp_fixedlen_vector_valuetypes()) {
785           setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand);
786           setTruncStoreAction(VT, OtherVT, Expand);
787         }
788 
789         // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed.
790         setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
791         setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
792 
793         setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
794         setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
795         setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
796         setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
797 
798         setOperationAction(ISD::LOAD, VT, Custom);
799         setOperationAction(ISD::STORE, VT, Custom);
800         setOperationAction(ISD::MLOAD, VT, Custom);
801         setOperationAction(ISD::MSTORE, VT, Custom);
802         setOperationAction(ISD::MGATHER, VT, Custom);
803         setOperationAction(ISD::MSCATTER, VT, Custom);
804         setOperationAction(ISD::FADD, VT, Custom);
805         setOperationAction(ISD::FSUB, VT, Custom);
806         setOperationAction(ISD::FMUL, VT, Custom);
807         setOperationAction(ISD::FDIV, VT, Custom);
808         setOperationAction(ISD::FNEG, VT, Custom);
809         setOperationAction(ISD::FABS, VT, Custom);
810         setOperationAction(ISD::FCOPYSIGN, VT, Custom);
811         setOperationAction(ISD::FSQRT, VT, Custom);
812         setOperationAction(ISD::FMA, VT, Custom);
813         setOperationAction(ISD::FMINNUM, VT, Custom);
814         setOperationAction(ISD::FMAXNUM, VT, Custom);
815 
816         setOperationAction(ISD::FP_ROUND, VT, Custom);
817         setOperationAction(ISD::FP_EXTEND, VT, Custom);
818 
819         for (auto CC : VFPCCToExpand)
820           setCondCodeAction(CC, VT, Expand);
821 
822         setOperationAction(ISD::VSELECT, VT, Custom);
823         setOperationAction(ISD::SELECT, VT, Custom);
824         setOperationAction(ISD::SELECT_CC, VT, Expand);
825 
826         setOperationAction(ISD::BITCAST, VT, Custom);
827 
828         setOperationAction(ISD::VECREDUCE_FADD, VT, Custom);
829         setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom);
830         setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom);
831         setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom);
832 
833         for (unsigned VPOpc : FloatingPointVPOps)
834           setOperationAction(VPOpc, VT, Custom);
835       }
836 
837       // Custom-legalize bitcasts from fixed-length vectors to scalar types.
838       setOperationAction(ISD::BITCAST, MVT::i8, Custom);
839       setOperationAction(ISD::BITCAST, MVT::i16, Custom);
840       setOperationAction(ISD::BITCAST, MVT::i32, Custom);
841       setOperationAction(ISD::BITCAST, MVT::i64, Custom);
842       setOperationAction(ISD::BITCAST, MVT::f16, Custom);
843       setOperationAction(ISD::BITCAST, MVT::f32, Custom);
844       setOperationAction(ISD::BITCAST, MVT::f64, Custom);
845     }
846   }
847 
848   // Function alignments.
849   const Align FunctionAlignment(Subtarget.hasStdExtC() ? 2 : 4);
850   setMinFunctionAlignment(FunctionAlignment);
851   setPrefFunctionAlignment(FunctionAlignment);
852 
853   setMinimumJumpTableEntries(5);
854 
855   // Jumps are expensive, compared to logic
856   setJumpIsExpensive();
857 
858   // We can use any register for comparisons
859   setHasMultipleConditionRegisters();
860 
861   setTargetDAGCombine(ISD::ADD);
862   setTargetDAGCombine(ISD::SUB);
863   setTargetDAGCombine(ISD::AND);
864   setTargetDAGCombine(ISD::OR);
865   setTargetDAGCombine(ISD::XOR);
866   setTargetDAGCombine(ISD::ANY_EXTEND);
867   setTargetDAGCombine(ISD::ZERO_EXTEND);
868   if (Subtarget.hasStdExtV()) {
869     setTargetDAGCombine(ISD::FCOPYSIGN);
870     setTargetDAGCombine(ISD::MGATHER);
871     setTargetDAGCombine(ISD::MSCATTER);
872     setTargetDAGCombine(ISD::SRA);
873     setTargetDAGCombine(ISD::SRL);
874     setTargetDAGCombine(ISD::SHL);
875   }
876 }
877 
878 EVT RISCVTargetLowering::getSetCCResultType(const DataLayout &DL,
879                                             LLVMContext &Context,
880                                             EVT VT) const {
881   if (!VT.isVector())
882     return getPointerTy(DL);
883   if (Subtarget.hasStdExtV() &&
884       (VT.isScalableVector() || Subtarget.useRVVForFixedLengthVectors()))
885     return EVT::getVectorVT(Context, MVT::i1, VT.getVectorElementCount());
886   return VT.changeVectorElementTypeToInteger();
887 }
888 
889 MVT RISCVTargetLowering::getVPExplicitVectorLengthTy() const {
890   return Subtarget.getXLenVT();
891 }
892 
893 bool RISCVTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
894                                              const CallInst &I,
895                                              MachineFunction &MF,
896                                              unsigned Intrinsic) const {
897   switch (Intrinsic) {
898   default:
899     return false;
900   case Intrinsic::riscv_masked_atomicrmw_xchg_i32:
901   case Intrinsic::riscv_masked_atomicrmw_add_i32:
902   case Intrinsic::riscv_masked_atomicrmw_sub_i32:
903   case Intrinsic::riscv_masked_atomicrmw_nand_i32:
904   case Intrinsic::riscv_masked_atomicrmw_max_i32:
905   case Intrinsic::riscv_masked_atomicrmw_min_i32:
906   case Intrinsic::riscv_masked_atomicrmw_umax_i32:
907   case Intrinsic::riscv_masked_atomicrmw_umin_i32:
908   case Intrinsic::riscv_masked_cmpxchg_i32: {
909     PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType());
910     Info.opc = ISD::INTRINSIC_W_CHAIN;
911     Info.memVT = MVT::getVT(PtrTy->getElementType());
912     Info.ptrVal = I.getArgOperand(0);
913     Info.offset = 0;
914     Info.align = Align(4);
915     Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore |
916                  MachineMemOperand::MOVolatile;
917     return true;
918   }
919   }
920 }
921 
922 bool RISCVTargetLowering::isLegalAddressingMode(const DataLayout &DL,
923                                                 const AddrMode &AM, Type *Ty,
924                                                 unsigned AS,
925                                                 Instruction *I) const {
926   // No global is ever allowed as a base.
927   if (AM.BaseGV)
928     return false;
929 
930   // Require a 12-bit signed offset.
931   if (!isInt<12>(AM.BaseOffs))
932     return false;
933 
934   switch (AM.Scale) {
935   case 0: // "r+i" or just "i", depending on HasBaseReg.
936     break;
937   case 1:
938     if (!AM.HasBaseReg) // allow "r+i".
939       break;
940     return false; // disallow "r+r" or "r+r+i".
941   default:
942     return false;
943   }
944 
945   return true;
946 }
947 
948 bool RISCVTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
949   return isInt<12>(Imm);
950 }
951 
952 bool RISCVTargetLowering::isLegalAddImmediate(int64_t Imm) const {
953   return isInt<12>(Imm);
954 }
955 
956 // On RV32, 64-bit integers are split into their high and low parts and held
957 // in two different registers, so the trunc is free since the low register can
958 // just be used.
959 bool RISCVTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const {
960   if (Subtarget.is64Bit() || !SrcTy->isIntegerTy() || !DstTy->isIntegerTy())
961     return false;
962   unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();
963   unsigned DestBits = DstTy->getPrimitiveSizeInBits();
964   return (SrcBits == 64 && DestBits == 32);
965 }
966 
967 bool RISCVTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const {
968   if (Subtarget.is64Bit() || SrcVT.isVector() || DstVT.isVector() ||
969       !SrcVT.isInteger() || !DstVT.isInteger())
970     return false;
971   unsigned SrcBits = SrcVT.getSizeInBits();
972   unsigned DestBits = DstVT.getSizeInBits();
973   return (SrcBits == 64 && DestBits == 32);
974 }
975 
976 bool RISCVTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
977   // Zexts are free if they can be combined with a load.
978   if (auto *LD = dyn_cast<LoadSDNode>(Val)) {
979     EVT MemVT = LD->getMemoryVT();
980     if ((MemVT == MVT::i8 || MemVT == MVT::i16 ||
981          (Subtarget.is64Bit() && MemVT == MVT::i32)) &&
982         (LD->getExtensionType() == ISD::NON_EXTLOAD ||
983          LD->getExtensionType() == ISD::ZEXTLOAD))
984       return true;
985   }
986 
987   return TargetLowering::isZExtFree(Val, VT2);
988 }
989 
990 bool RISCVTargetLowering::isSExtCheaperThanZExt(EVT SrcVT, EVT DstVT) const {
991   return Subtarget.is64Bit() && SrcVT == MVT::i32 && DstVT == MVT::i64;
992 }
993 
994 bool RISCVTargetLowering::isCheapToSpeculateCttz() const {
995   return Subtarget.hasStdExtZbb();
996 }
997 
998 bool RISCVTargetLowering::isCheapToSpeculateCtlz() const {
999   return Subtarget.hasStdExtZbb();
1000 }
1001 
1002 bool RISCVTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
1003                                        bool ForCodeSize) const {
1004   if (VT == MVT::f16 && !Subtarget.hasStdExtZfh())
1005     return false;
1006   if (VT == MVT::f32 && !Subtarget.hasStdExtF())
1007     return false;
1008   if (VT == MVT::f64 && !Subtarget.hasStdExtD())
1009     return false;
1010   if (Imm.isNegZero())
1011     return false;
1012   return Imm.isZero();
1013 }
1014 
1015 bool RISCVTargetLowering::hasBitPreservingFPLogic(EVT VT) const {
1016   return (VT == MVT::f16 && Subtarget.hasStdExtZfh()) ||
1017          (VT == MVT::f32 && Subtarget.hasStdExtF()) ||
1018          (VT == MVT::f64 && Subtarget.hasStdExtD());
1019 }
1020 
1021 MVT RISCVTargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context,
1022                                                       CallingConv::ID CC,
1023                                                       EVT VT) const {
1024   // Use f32 to pass f16 if it is legal and Zfh is not enabled. We might still
1025   // end up using a GPR but that will be decided based on ABI.
1026   if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh())
1027     return MVT::f32;
1028 
1029   return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT);
1030 }
1031 
1032 unsigned RISCVTargetLowering::getNumRegistersForCallingConv(LLVMContext &Context,
1033                                                            CallingConv::ID CC,
1034                                                            EVT VT) const {
1035   // Use f32 to pass f16 if it is legal and Zfh is not enabled. We might still
1036   // end up using a GPR but that will be decided based on ABI.
1037   if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh())
1038     return 1;
1039 
1040   return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT);
1041 }
1042 
1043 // Changes the condition code and swaps operands if necessary, so the SetCC
1044 // operation matches one of the comparisons supported directly by branches
1045 // in the RISC-V ISA. May adjust compares to favor compare with 0 over compare
1046 // with 1/-1.
1047 static void translateSetCCForBranch(const SDLoc &DL, SDValue &LHS, SDValue &RHS,
1048                                     ISD::CondCode &CC, SelectionDAG &DAG) {
1049   // Convert X > -1 to X >= 0.
1050   if (CC == ISD::SETGT && isAllOnesConstant(RHS)) {
1051     RHS = DAG.getConstant(0, DL, RHS.getValueType());
1052     CC = ISD::SETGE;
1053     return;
1054   }
1055   // Convert X < 1 to 0 >= X.
1056   if (CC == ISD::SETLT && isOneConstant(RHS)) {
1057     RHS = LHS;
1058     LHS = DAG.getConstant(0, DL, RHS.getValueType());
1059     CC = ISD::SETGE;
1060     return;
1061   }
1062 
1063   switch (CC) {
1064   default:
1065     break;
1066   case ISD::SETGT:
1067   case ISD::SETLE:
1068   case ISD::SETUGT:
1069   case ISD::SETULE:
1070     CC = ISD::getSetCCSwappedOperands(CC);
1071     std::swap(LHS, RHS);
1072     break;
1073   }
1074 }
1075 
1076 RISCVII::VLMUL RISCVTargetLowering::getLMUL(MVT VT) {
1077   assert(VT.isScalableVector() && "Expecting a scalable vector type");
1078   unsigned KnownSize = VT.getSizeInBits().getKnownMinValue();
1079   if (VT.getVectorElementType() == MVT::i1)
1080     KnownSize *= 8;
1081 
1082   switch (KnownSize) {
1083   default:
1084     llvm_unreachable("Invalid LMUL.");
1085   case 8:
1086     return RISCVII::VLMUL::LMUL_F8;
1087   case 16:
1088     return RISCVII::VLMUL::LMUL_F4;
1089   case 32:
1090     return RISCVII::VLMUL::LMUL_F2;
1091   case 64:
1092     return RISCVII::VLMUL::LMUL_1;
1093   case 128:
1094     return RISCVII::VLMUL::LMUL_2;
1095   case 256:
1096     return RISCVII::VLMUL::LMUL_4;
1097   case 512:
1098     return RISCVII::VLMUL::LMUL_8;
1099   }
1100 }
1101 
1102 unsigned RISCVTargetLowering::getRegClassIDForLMUL(RISCVII::VLMUL LMul) {
1103   switch (LMul) {
1104   default:
1105     llvm_unreachable("Invalid LMUL.");
1106   case RISCVII::VLMUL::LMUL_F8:
1107   case RISCVII::VLMUL::LMUL_F4:
1108   case RISCVII::VLMUL::LMUL_F2:
1109   case RISCVII::VLMUL::LMUL_1:
1110     return RISCV::VRRegClassID;
1111   case RISCVII::VLMUL::LMUL_2:
1112     return RISCV::VRM2RegClassID;
1113   case RISCVII::VLMUL::LMUL_4:
1114     return RISCV::VRM4RegClassID;
1115   case RISCVII::VLMUL::LMUL_8:
1116     return RISCV::VRM8RegClassID;
1117   }
1118 }
1119 
1120 unsigned RISCVTargetLowering::getSubregIndexByMVT(MVT VT, unsigned Index) {
1121   RISCVII::VLMUL LMUL = getLMUL(VT);
1122   if (LMUL == RISCVII::VLMUL::LMUL_F8 ||
1123       LMUL == RISCVII::VLMUL::LMUL_F4 ||
1124       LMUL == RISCVII::VLMUL::LMUL_F2 ||
1125       LMUL == RISCVII::VLMUL::LMUL_1) {
1126     static_assert(RISCV::sub_vrm1_7 == RISCV::sub_vrm1_0 + 7,
1127                   "Unexpected subreg numbering");
1128     return RISCV::sub_vrm1_0 + Index;
1129   }
1130   if (LMUL == RISCVII::VLMUL::LMUL_2) {
1131     static_assert(RISCV::sub_vrm2_3 == RISCV::sub_vrm2_0 + 3,
1132                   "Unexpected subreg numbering");
1133     return RISCV::sub_vrm2_0 + Index;
1134   }
1135   if (LMUL == RISCVII::VLMUL::LMUL_4) {
1136     static_assert(RISCV::sub_vrm4_1 == RISCV::sub_vrm4_0 + 1,
1137                   "Unexpected subreg numbering");
1138     return RISCV::sub_vrm4_0 + Index;
1139   }
1140   llvm_unreachable("Invalid vector type.");
1141 }
1142 
1143 unsigned RISCVTargetLowering::getRegClassIDForVecVT(MVT VT) {
1144   if (VT.getVectorElementType() == MVT::i1)
1145     return RISCV::VRRegClassID;
1146   return getRegClassIDForLMUL(getLMUL(VT));
1147 }
1148 
1149 // Attempt to decompose a subvector insert/extract between VecVT and
1150 // SubVecVT via subregister indices. Returns the subregister index that
1151 // can perform the subvector insert/extract with the given element index, as
1152 // well as the index corresponding to any leftover subvectors that must be
1153 // further inserted/extracted within the register class for SubVecVT.
1154 std::pair<unsigned, unsigned>
1155 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs(
1156     MVT VecVT, MVT SubVecVT, unsigned InsertExtractIdx,
1157     const RISCVRegisterInfo *TRI) {
1158   static_assert((RISCV::VRM8RegClassID > RISCV::VRM4RegClassID &&
1159                  RISCV::VRM4RegClassID > RISCV::VRM2RegClassID &&
1160                  RISCV::VRM2RegClassID > RISCV::VRRegClassID),
1161                 "Register classes not ordered");
1162   unsigned VecRegClassID = getRegClassIDForVecVT(VecVT);
1163   unsigned SubRegClassID = getRegClassIDForVecVT(SubVecVT);
1164   // Try to compose a subregister index that takes us from the incoming
1165   // LMUL>1 register class down to the outgoing one. At each step we half
1166   // the LMUL:
1167   //   nxv16i32@12 -> nxv2i32: sub_vrm4_1_then_sub_vrm2_1_then_sub_vrm1_0
1168   // Note that this is not guaranteed to find a subregister index, such as
1169   // when we are extracting from one VR type to another.
1170   unsigned SubRegIdx = RISCV::NoSubRegister;
1171   for (const unsigned RCID :
1172        {RISCV::VRM4RegClassID, RISCV::VRM2RegClassID, RISCV::VRRegClassID})
1173     if (VecRegClassID > RCID && SubRegClassID <= RCID) {
1174       VecVT = VecVT.getHalfNumVectorElementsVT();
1175       bool IsHi =
1176           InsertExtractIdx >= VecVT.getVectorElementCount().getKnownMinValue();
1177       SubRegIdx = TRI->composeSubRegIndices(SubRegIdx,
1178                                             getSubregIndexByMVT(VecVT, IsHi));
1179       if (IsHi)
1180         InsertExtractIdx -= VecVT.getVectorElementCount().getKnownMinValue();
1181     }
1182   return {SubRegIdx, InsertExtractIdx};
1183 }
1184 
1185 // Permit combining of mask vectors as BUILD_VECTOR never expands to scalar
1186 // stores for those types.
1187 bool RISCVTargetLowering::mergeStoresAfterLegalization(EVT VT) const {
1188   return !Subtarget.useRVVForFixedLengthVectors() ||
1189          (VT.isFixedLengthVector() && VT.getVectorElementType() == MVT::i1);
1190 }
1191 
1192 static bool useRVVForFixedLengthVectorVT(MVT VT,
1193                                          const RISCVSubtarget &Subtarget) {
1194   assert(VT.isFixedLengthVector() && "Expected a fixed length vector type!");
1195   if (!Subtarget.useRVVForFixedLengthVectors())
1196     return false;
1197 
1198   // We only support a set of vector types with a consistent maximum fixed size
1199   // across all supported vector element types to avoid legalization issues.
1200   // Therefore -- since the largest is v1024i8/v512i16/etc -- the largest
1201   // fixed-length vector type we support is 1024 bytes.
1202   if (VT.getFixedSizeInBits() > 1024 * 8)
1203     return false;
1204 
1205   unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits();
1206 
1207   MVT EltVT = VT.getVectorElementType();
1208 
1209   // Don't use RVV for vectors we cannot scalarize if required.
1210   switch (EltVT.SimpleTy) {
1211   // i1 is supported but has different rules.
1212   default:
1213     return false;
1214   case MVT::i1:
1215     // Masks can only use a single register.
1216     if (VT.getVectorNumElements() > MinVLen)
1217       return false;
1218     MinVLen /= 8;
1219     break;
1220   case MVT::i8:
1221   case MVT::i16:
1222   case MVT::i32:
1223   case MVT::i64:
1224     break;
1225   case MVT::f16:
1226     if (!Subtarget.hasStdExtZfh())
1227       return false;
1228     break;
1229   case MVT::f32:
1230     if (!Subtarget.hasStdExtF())
1231       return false;
1232     break;
1233   case MVT::f64:
1234     if (!Subtarget.hasStdExtD())
1235       return false;
1236     break;
1237   }
1238 
1239   // Reject elements larger than ELEN.
1240   if (EltVT.getSizeInBits() > Subtarget.getMaxELENForFixedLengthVectors())
1241     return false;
1242 
1243   unsigned LMul = divideCeil(VT.getSizeInBits(), MinVLen);
1244   // Don't use RVV for types that don't fit.
1245   if (LMul > Subtarget.getMaxLMULForFixedLengthVectors())
1246     return false;
1247 
1248   // TODO: Perhaps an artificial restriction, but worth having whilst getting
1249   // the base fixed length RVV support in place.
1250   if (!VT.isPow2VectorType())
1251     return false;
1252 
1253   return true;
1254 }
1255 
1256 bool RISCVTargetLowering::useRVVForFixedLengthVectorVT(MVT VT) const {
1257   return ::useRVVForFixedLengthVectorVT(VT, Subtarget);
1258 }
1259 
1260 // Return the largest legal scalable vector type that matches VT's element type.
1261 static MVT getContainerForFixedLengthVector(const TargetLowering &TLI, MVT VT,
1262                                             const RISCVSubtarget &Subtarget) {
1263   // This may be called before legal types are setup.
1264   assert(((VT.isFixedLengthVector() && TLI.isTypeLegal(VT)) ||
1265           useRVVForFixedLengthVectorVT(VT, Subtarget)) &&
1266          "Expected legal fixed length vector!");
1267 
1268   unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits();
1269   unsigned MaxELen = Subtarget.getMaxELENForFixedLengthVectors();
1270 
1271   MVT EltVT = VT.getVectorElementType();
1272   switch (EltVT.SimpleTy) {
1273   default:
1274     llvm_unreachable("unexpected element type for RVV container");
1275   case MVT::i1:
1276   case MVT::i8:
1277   case MVT::i16:
1278   case MVT::i32:
1279   case MVT::i64:
1280   case MVT::f16:
1281   case MVT::f32:
1282   case MVT::f64: {
1283     // We prefer to use LMUL=1 for VLEN sized types. Use fractional lmuls for
1284     // narrower types. The smallest fractional LMUL we support is 8/ELEN. Within
1285     // each fractional LMUL we support SEW between 8 and LMUL*ELEN.
1286     unsigned NumElts =
1287         (VT.getVectorNumElements() * RISCV::RVVBitsPerBlock) / MinVLen;
1288     NumElts = std::max(NumElts, RISCV::RVVBitsPerBlock / MaxELen);
1289     assert(isPowerOf2_32(NumElts) && "Expected power of 2 NumElts");
1290     return MVT::getScalableVectorVT(EltVT, NumElts);
1291   }
1292   }
1293 }
1294 
1295 static MVT getContainerForFixedLengthVector(SelectionDAG &DAG, MVT VT,
1296                                             const RISCVSubtarget &Subtarget) {
1297   return getContainerForFixedLengthVector(DAG.getTargetLoweringInfo(), VT,
1298                                           Subtarget);
1299 }
1300 
1301 MVT RISCVTargetLowering::getContainerForFixedLengthVector(MVT VT) const {
1302   return ::getContainerForFixedLengthVector(*this, VT, getSubtarget());
1303 }
1304 
1305 // Grow V to consume an entire RVV register.
1306 static SDValue convertToScalableVector(EVT VT, SDValue V, SelectionDAG &DAG,
1307                                        const RISCVSubtarget &Subtarget) {
1308   assert(VT.isScalableVector() &&
1309          "Expected to convert into a scalable vector!");
1310   assert(V.getValueType().isFixedLengthVector() &&
1311          "Expected a fixed length vector operand!");
1312   SDLoc DL(V);
1313   SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT());
1314   return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, DAG.getUNDEF(VT), V, Zero);
1315 }
1316 
1317 // Shrink V so it's just big enough to maintain a VT's worth of data.
1318 static SDValue convertFromScalableVector(EVT VT, SDValue V, SelectionDAG &DAG,
1319                                          const RISCVSubtarget &Subtarget) {
1320   assert(VT.isFixedLengthVector() &&
1321          "Expected to convert into a fixed length vector!");
1322   assert(V.getValueType().isScalableVector() &&
1323          "Expected a scalable vector operand!");
1324   SDLoc DL(V);
1325   SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT());
1326   return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V, Zero);
1327 }
1328 
1329 // Gets the two common "VL" operands: an all-ones mask and the vector length.
1330 // VecVT is a vector type, either fixed-length or scalable, and ContainerVT is
1331 // the vector type that it is contained in.
1332 static std::pair<SDValue, SDValue>
1333 getDefaultVLOps(MVT VecVT, MVT ContainerVT, SDLoc DL, SelectionDAG &DAG,
1334                 const RISCVSubtarget &Subtarget) {
1335   assert(ContainerVT.isScalableVector() && "Expecting scalable container type");
1336   MVT XLenVT = Subtarget.getXLenVT();
1337   SDValue VL = VecVT.isFixedLengthVector()
1338                    ? DAG.getConstant(VecVT.getVectorNumElements(), DL, XLenVT)
1339                    : DAG.getRegister(RISCV::X0, XLenVT);
1340   MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
1341   SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
1342   return {Mask, VL};
1343 }
1344 
1345 // As above but assuming the given type is a scalable vector type.
1346 static std::pair<SDValue, SDValue>
1347 getDefaultScalableVLOps(MVT VecVT, SDLoc DL, SelectionDAG &DAG,
1348                         const RISCVSubtarget &Subtarget) {
1349   assert(VecVT.isScalableVector() && "Expecting a scalable vector");
1350   return getDefaultVLOps(VecVT, VecVT, DL, DAG, Subtarget);
1351 }
1352 
1353 // The state of RVV BUILD_VECTOR and VECTOR_SHUFFLE lowering is that very few
1354 // of either is (currently) supported. This can get us into an infinite loop
1355 // where we try to lower a BUILD_VECTOR as a VECTOR_SHUFFLE as a BUILD_VECTOR
1356 // as a ..., etc.
1357 // Until either (or both) of these can reliably lower any node, reporting that
1358 // we don't want to expand BUILD_VECTORs via VECTOR_SHUFFLEs at least breaks
1359 // the infinite loop. Note that this lowers BUILD_VECTOR through the stack,
1360 // which is not desirable.
1361 bool RISCVTargetLowering::shouldExpandBuildVectorWithShuffles(
1362     EVT VT, unsigned DefinedValues) const {
1363   return false;
1364 }
1365 
1366 bool RISCVTargetLowering::isShuffleMaskLegal(ArrayRef<int> M, EVT VT) const {
1367   // Only splats are currently supported.
1368   if (ShuffleVectorSDNode::isSplatMask(M.data(), VT))
1369     return true;
1370 
1371   return false;
1372 }
1373 
1374 static SDValue lowerFP_TO_INT_SAT(SDValue Op, SelectionDAG &DAG) {
1375   // RISCV FP-to-int conversions saturate to the destination register size, but
1376   // don't produce 0 for nan. We can use a conversion instruction and fix the
1377   // nan case with a compare and a select.
1378   SDValue Src = Op.getOperand(0);
1379 
1380   EVT DstVT = Op.getValueType();
1381   EVT SatVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1382 
1383   bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT_SAT;
1384   unsigned Opc;
1385   if (SatVT == DstVT)
1386     Opc = IsSigned ? RISCVISD::FCVT_X_RTZ : RISCVISD::FCVT_XU_RTZ;
1387   else if (DstVT == MVT::i64 && SatVT == MVT::i32)
1388     Opc = IsSigned ? RISCVISD::FCVT_W_RTZ_RV64 : RISCVISD::FCVT_WU_RTZ_RV64;
1389   else
1390     return SDValue();
1391   // FIXME: Support other SatVTs by clamping before or after the conversion.
1392 
1393   SDLoc DL(Op);
1394   SDValue FpToInt = DAG.getNode(Opc, DL, DstVT, Src);
1395 
1396   SDValue ZeroInt = DAG.getConstant(0, DL, DstVT);
1397   return DAG.getSelectCC(DL, Src, Src, ZeroInt, FpToInt, ISD::CondCode::SETUO);
1398 }
1399 
1400 static SDValue lowerSPLAT_VECTOR(SDValue Op, SelectionDAG &DAG,
1401                                  const RISCVSubtarget &Subtarget) {
1402   MVT VT = Op.getSimpleValueType();
1403   assert(VT.isFixedLengthVector() && "Unexpected vector!");
1404 
1405   MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
1406 
1407   SDLoc DL(Op);
1408   SDValue Mask, VL;
1409   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
1410 
1411   unsigned Opc =
1412       VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL : RISCVISD::VMV_V_X_VL;
1413   SDValue Splat = DAG.getNode(Opc, DL, ContainerVT, Op.getOperand(0), VL);
1414   return convertFromScalableVector(VT, Splat, DAG, Subtarget);
1415 }
1416 
1417 struct VIDSequence {
1418   int64_t StepNumerator;
1419   unsigned StepDenominator;
1420   int64_t Addend;
1421 };
1422 
1423 // Try to match an arithmetic-sequence BUILD_VECTOR [X,X+S,X+2*S,...,X+(N-1)*S]
1424 // to the (non-zero) step S and start value X. This can be then lowered as the
1425 // RVV sequence (VID * S) + X, for example.
1426 // The step S is represented as an integer numerator divided by a positive
1427 // denominator. Note that the implementation currently only identifies
1428 // sequences in which either the numerator is +/- 1 or the denominator is 1. It
1429 // cannot detect 2/3, for example.
1430 // Note that this method will also match potentially unappealing index
1431 // sequences, like <i32 0, i32 50939494>, however it is left to the caller to
1432 // determine whether this is worth generating code for.
1433 static Optional<VIDSequence> isSimpleVIDSequence(SDValue Op) {
1434   unsigned NumElts = Op.getNumOperands();
1435   assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unexpected BUILD_VECTOR");
1436   if (!Op.getValueType().isInteger())
1437     return None;
1438 
1439   Optional<unsigned> SeqStepDenom;
1440   Optional<int64_t> SeqStepNum, SeqAddend;
1441   Optional<std::pair<uint64_t, unsigned>> PrevElt;
1442   unsigned EltSizeInBits = Op.getValueType().getScalarSizeInBits();
1443   for (unsigned Idx = 0; Idx < NumElts; Idx++) {
1444     // Assume undef elements match the sequence; we just have to be careful
1445     // when interpolating across them.
1446     if (Op.getOperand(Idx).isUndef())
1447       continue;
1448     // The BUILD_VECTOR must be all constants.
1449     if (!isa<ConstantSDNode>(Op.getOperand(Idx)))
1450       return None;
1451 
1452     uint64_t Val = Op.getConstantOperandVal(Idx) &
1453                    maskTrailingOnes<uint64_t>(EltSizeInBits);
1454 
1455     if (PrevElt) {
1456       // Calculate the step since the last non-undef element, and ensure
1457       // it's consistent across the entire sequence.
1458       unsigned IdxDiff = Idx - PrevElt->second;
1459       int64_t ValDiff = SignExtend64(Val - PrevElt->first, EltSizeInBits);
1460 
1461       // A zero-value value difference means that we're somewhere in the middle
1462       // of a fractional step, e.g. <0,0,0*,0,1,1,1,1>. Wait until we notice a
1463       // step change before evaluating the sequence.
1464       if (ValDiff != 0) {
1465         int64_t Remainder = ValDiff % IdxDiff;
1466         // Normalize the step if it's greater than 1.
1467         if (Remainder != ValDiff) {
1468           // The difference must cleanly divide the element span.
1469           if (Remainder != 0)
1470             return None;
1471           ValDiff /= IdxDiff;
1472           IdxDiff = 1;
1473         }
1474 
1475         if (!SeqStepNum)
1476           SeqStepNum = ValDiff;
1477         else if (ValDiff != SeqStepNum)
1478           return None;
1479 
1480         if (!SeqStepDenom)
1481           SeqStepDenom = IdxDiff;
1482         else if (IdxDiff != *SeqStepDenom)
1483           return None;
1484       }
1485     }
1486 
1487     // Record and/or check any addend.
1488     if (SeqStepNum && SeqStepDenom) {
1489       uint64_t ExpectedVal =
1490           (int64_t)(Idx * (uint64_t)*SeqStepNum) / *SeqStepDenom;
1491       int64_t Addend = SignExtend64(Val - ExpectedVal, EltSizeInBits);
1492       if (!SeqAddend)
1493         SeqAddend = Addend;
1494       else if (SeqAddend != Addend)
1495         return None;
1496     }
1497 
1498     // Record this non-undef element for later.
1499     if (!PrevElt || PrevElt->first != Val)
1500       PrevElt = std::make_pair(Val, Idx);
1501   }
1502   // We need to have logged both a step and an addend for this to count as
1503   // a legal index sequence.
1504   if (!SeqStepNum || !SeqStepDenom || !SeqAddend)
1505     return None;
1506 
1507   return VIDSequence{*SeqStepNum, *SeqStepDenom, *SeqAddend};
1508 }
1509 
1510 static SDValue lowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG,
1511                                  const RISCVSubtarget &Subtarget) {
1512   MVT VT = Op.getSimpleValueType();
1513   assert(VT.isFixedLengthVector() && "Unexpected vector!");
1514 
1515   MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
1516 
1517   SDLoc DL(Op);
1518   SDValue Mask, VL;
1519   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
1520 
1521   MVT XLenVT = Subtarget.getXLenVT();
1522   unsigned NumElts = Op.getNumOperands();
1523 
1524   if (VT.getVectorElementType() == MVT::i1) {
1525     if (ISD::isBuildVectorAllZeros(Op.getNode())) {
1526       SDValue VMClr = DAG.getNode(RISCVISD::VMCLR_VL, DL, ContainerVT, VL);
1527       return convertFromScalableVector(VT, VMClr, DAG, Subtarget);
1528     }
1529 
1530     if (ISD::isBuildVectorAllOnes(Op.getNode())) {
1531       SDValue VMSet = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL);
1532       return convertFromScalableVector(VT, VMSet, DAG, Subtarget);
1533     }
1534 
1535     // Lower constant mask BUILD_VECTORs via an integer vector type, in
1536     // scalar integer chunks whose bit-width depends on the number of mask
1537     // bits and XLEN.
1538     // First, determine the most appropriate scalar integer type to use. This
1539     // is at most XLenVT, but may be shrunk to a smaller vector element type
1540     // according to the size of the final vector - use i8 chunks rather than
1541     // XLenVT if we're producing a v8i1. This results in more consistent
1542     // codegen across RV32 and RV64.
1543     unsigned NumViaIntegerBits =
1544         std::min(std::max(NumElts, 8u), Subtarget.getXLen());
1545     if (ISD::isBuildVectorOfConstantSDNodes(Op.getNode())) {
1546       // If we have to use more than one INSERT_VECTOR_ELT then this
1547       // optimization is likely to increase code size; avoid peforming it in
1548       // such a case. We can use a load from a constant pool in this case.
1549       if (DAG.shouldOptForSize() && NumElts > NumViaIntegerBits)
1550         return SDValue();
1551       // Now we can create our integer vector type. Note that it may be larger
1552       // than the resulting mask type: v4i1 would use v1i8 as its integer type.
1553       MVT IntegerViaVecVT =
1554           MVT::getVectorVT(MVT::getIntegerVT(NumViaIntegerBits),
1555                            divideCeil(NumElts, NumViaIntegerBits));
1556 
1557       uint64_t Bits = 0;
1558       unsigned BitPos = 0, IntegerEltIdx = 0;
1559       SDValue Vec = DAG.getUNDEF(IntegerViaVecVT);
1560 
1561       for (unsigned I = 0; I < NumElts; I++, BitPos++) {
1562         // Once we accumulate enough bits to fill our scalar type, insert into
1563         // our vector and clear our accumulated data.
1564         if (I != 0 && I % NumViaIntegerBits == 0) {
1565           if (NumViaIntegerBits <= 32)
1566             Bits = SignExtend64(Bits, 32);
1567           SDValue Elt = DAG.getConstant(Bits, DL, XLenVT);
1568           Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec,
1569                             Elt, DAG.getConstant(IntegerEltIdx, DL, XLenVT));
1570           Bits = 0;
1571           BitPos = 0;
1572           IntegerEltIdx++;
1573         }
1574         SDValue V = Op.getOperand(I);
1575         bool BitValue = !V.isUndef() && cast<ConstantSDNode>(V)->getZExtValue();
1576         Bits |= ((uint64_t)BitValue << BitPos);
1577       }
1578 
1579       // Insert the (remaining) scalar value into position in our integer
1580       // vector type.
1581       if (NumViaIntegerBits <= 32)
1582         Bits = SignExtend64(Bits, 32);
1583       SDValue Elt = DAG.getConstant(Bits, DL, XLenVT);
1584       Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec, Elt,
1585                         DAG.getConstant(IntegerEltIdx, DL, XLenVT));
1586 
1587       if (NumElts < NumViaIntegerBits) {
1588         // If we're producing a smaller vector than our minimum legal integer
1589         // type, bitcast to the equivalent (known-legal) mask type, and extract
1590         // our final mask.
1591         assert(IntegerViaVecVT == MVT::v1i8 && "Unexpected mask vector type");
1592         Vec = DAG.getBitcast(MVT::v8i1, Vec);
1593         Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Vec,
1594                           DAG.getConstant(0, DL, XLenVT));
1595       } else {
1596         // Else we must have produced an integer type with the same size as the
1597         // mask type; bitcast for the final result.
1598         assert(VT.getSizeInBits() == IntegerViaVecVT.getSizeInBits());
1599         Vec = DAG.getBitcast(VT, Vec);
1600       }
1601 
1602       return Vec;
1603     }
1604 
1605     // A BUILD_VECTOR can be lowered as a SETCC. For each fixed-length mask
1606     // vector type, we have a legal equivalently-sized i8 type, so we can use
1607     // that.
1608     MVT WideVecVT = VT.changeVectorElementType(MVT::i8);
1609     SDValue VecZero = DAG.getConstant(0, DL, WideVecVT);
1610 
1611     SDValue WideVec;
1612     if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) {
1613       // For a splat, perform a scalar truncate before creating the wider
1614       // vector.
1615       assert(Splat.getValueType() == XLenVT &&
1616              "Unexpected type for i1 splat value");
1617       Splat = DAG.getNode(ISD::AND, DL, XLenVT, Splat,
1618                           DAG.getConstant(1, DL, XLenVT));
1619       WideVec = DAG.getSplatBuildVector(WideVecVT, DL, Splat);
1620     } else {
1621       SmallVector<SDValue, 8> Ops(Op->op_values());
1622       WideVec = DAG.getBuildVector(WideVecVT, DL, Ops);
1623       SDValue VecOne = DAG.getConstant(1, DL, WideVecVT);
1624       WideVec = DAG.getNode(ISD::AND, DL, WideVecVT, WideVec, VecOne);
1625     }
1626 
1627     return DAG.getSetCC(DL, VT, WideVec, VecZero, ISD::SETNE);
1628   }
1629 
1630   if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) {
1631     unsigned Opc = VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL
1632                                         : RISCVISD::VMV_V_X_VL;
1633     Splat = DAG.getNode(Opc, DL, ContainerVT, Splat, VL);
1634     return convertFromScalableVector(VT, Splat, DAG, Subtarget);
1635   }
1636 
1637   // Try and match index sequences, which we can lower to the vid instruction
1638   // with optional modifications. An all-undef vector is matched by
1639   // getSplatValue, above.
1640   if (auto SimpleVID = isSimpleVIDSequence(Op)) {
1641     int64_t StepNumerator = SimpleVID->StepNumerator;
1642     unsigned StepDenominator = SimpleVID->StepDenominator;
1643     int64_t Addend = SimpleVID->Addend;
1644     // Only emit VIDs with suitably-small steps/addends. We use imm5 is a
1645     // threshold since it's the immediate value many RVV instructions accept.
1646     if (isInt<5>(StepNumerator) && isPowerOf2_32(StepDenominator) &&
1647         isInt<5>(Addend)) {
1648       SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, ContainerVT, Mask, VL);
1649       // Convert right out of the scalable type so we can use standard ISD
1650       // nodes for the rest of the computation. If we used scalable types with
1651       // these, we'd lose the fixed-length vector info and generate worse
1652       // vsetvli code.
1653       VID = convertFromScalableVector(VT, VID, DAG, Subtarget);
1654       assert(StepNumerator != 0 && "Invalid step");
1655       bool Negate = false;
1656       if (StepNumerator != 1) {
1657         int64_t SplatStepVal = StepNumerator;
1658         unsigned Opcode = ISD::MUL;
1659         if (isPowerOf2_64(std::abs(StepNumerator))) {
1660           Negate = StepNumerator < 0;
1661           Opcode = ISD::SHL;
1662           SplatStepVal = Log2_64(std::abs(StepNumerator));
1663         }
1664         SDValue SplatStep = DAG.getSplatVector(
1665             VT, DL, DAG.getConstant(SplatStepVal, DL, XLenVT));
1666         VID = DAG.getNode(Opcode, DL, VT, VID, SplatStep);
1667       }
1668       if (StepDenominator != 1) {
1669         SDValue SplatStep = DAG.getSplatVector(
1670             VT, DL, DAG.getConstant(Log2_64(StepDenominator), DL, XLenVT));
1671         VID = DAG.getNode(ISD::SRL, DL, VT, VID, SplatStep);
1672       }
1673       if (Addend != 0 || Negate) {
1674         SDValue SplatAddend =
1675             DAG.getSplatVector(VT, DL, DAG.getConstant(Addend, DL, XLenVT));
1676         VID = DAG.getNode(Negate ? ISD::SUB : ISD::ADD, DL, VT, SplatAddend, VID);
1677       }
1678       return VID;
1679     }
1680   }
1681 
1682   // Attempt to detect "hidden" splats, which only reveal themselves as splats
1683   // when re-interpreted as a vector with a larger element type. For example,
1684   //   v4i16 = build_vector i16 0, i16 1, i16 0, i16 1
1685   // could be instead splat as
1686   //   v2i32 = build_vector i32 0x00010000, i32 0x00010000
1687   // TODO: This optimization could also work on non-constant splats, but it
1688   // would require bit-manipulation instructions to construct the splat value.
1689   SmallVector<SDValue> Sequence;
1690   unsigned EltBitSize = VT.getScalarSizeInBits();
1691   const auto *BV = cast<BuildVectorSDNode>(Op);
1692   if (VT.isInteger() && EltBitSize < 64 &&
1693       ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) &&
1694       BV->getRepeatedSequence(Sequence) &&
1695       (Sequence.size() * EltBitSize) <= 64) {
1696     unsigned SeqLen = Sequence.size();
1697     MVT ViaIntVT = MVT::getIntegerVT(EltBitSize * SeqLen);
1698     MVT ViaVecVT = MVT::getVectorVT(ViaIntVT, NumElts / SeqLen);
1699     assert((ViaIntVT == MVT::i16 || ViaIntVT == MVT::i32 ||
1700             ViaIntVT == MVT::i64) &&
1701            "Unexpected sequence type");
1702 
1703     unsigned EltIdx = 0;
1704     uint64_t EltMask = maskTrailingOnes<uint64_t>(EltBitSize);
1705     uint64_t SplatValue = 0;
1706     // Construct the amalgamated value which can be splatted as this larger
1707     // vector type.
1708     for (const auto &SeqV : Sequence) {
1709       if (!SeqV.isUndef())
1710         SplatValue |= ((cast<ConstantSDNode>(SeqV)->getZExtValue() & EltMask)
1711                        << (EltIdx * EltBitSize));
1712       EltIdx++;
1713     }
1714 
1715     // On RV64, sign-extend from 32 to 64 bits where possible in order to
1716     // achieve better constant materializion.
1717     if (Subtarget.is64Bit() && ViaIntVT == MVT::i32)
1718       SplatValue = SignExtend64(SplatValue, 32);
1719 
1720     // Since we can't introduce illegal i64 types at this stage, we can only
1721     // perform an i64 splat on RV32 if it is its own sign-extended value. That
1722     // way we can use RVV instructions to splat.
1723     assert((ViaIntVT.bitsLE(XLenVT) ||
1724             (!Subtarget.is64Bit() && ViaIntVT == MVT::i64)) &&
1725            "Unexpected bitcast sequence");
1726     if (ViaIntVT.bitsLE(XLenVT) || isInt<32>(SplatValue)) {
1727       SDValue ViaVL =
1728           DAG.getConstant(ViaVecVT.getVectorNumElements(), DL, XLenVT);
1729       MVT ViaContainerVT =
1730           getContainerForFixedLengthVector(DAG, ViaVecVT, Subtarget);
1731       SDValue Splat =
1732           DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ViaContainerVT,
1733                       DAG.getConstant(SplatValue, DL, XLenVT), ViaVL);
1734       Splat = convertFromScalableVector(ViaVecVT, Splat, DAG, Subtarget);
1735       return DAG.getBitcast(VT, Splat);
1736     }
1737   }
1738 
1739   // Try and optimize BUILD_VECTORs with "dominant values" - these are values
1740   // which constitute a large proportion of the elements. In such cases we can
1741   // splat a vector with the dominant element and make up the shortfall with
1742   // INSERT_VECTOR_ELTs.
1743   // Note that this includes vectors of 2 elements by association. The
1744   // upper-most element is the "dominant" one, allowing us to use a splat to
1745   // "insert" the upper element, and an insert of the lower element at position
1746   // 0, which improves codegen.
1747   SDValue DominantValue;
1748   unsigned MostCommonCount = 0;
1749   DenseMap<SDValue, unsigned> ValueCounts;
1750   unsigned NumUndefElts =
1751       count_if(Op->op_values(), [](const SDValue &V) { return V.isUndef(); });
1752 
1753   // Track the number of scalar loads we know we'd be inserting, estimated as
1754   // any non-zero floating-point constant. Other kinds of element are either
1755   // already in registers or are materialized on demand. The threshold at which
1756   // a vector load is more desirable than several scalar materializion and
1757   // vector-insertion instructions is not known.
1758   unsigned NumScalarLoads = 0;
1759 
1760   for (SDValue V : Op->op_values()) {
1761     if (V.isUndef())
1762       continue;
1763 
1764     ValueCounts.insert(std::make_pair(V, 0));
1765     unsigned &Count = ValueCounts[V];
1766 
1767     if (auto *CFP = dyn_cast<ConstantFPSDNode>(V))
1768       NumScalarLoads += !CFP->isExactlyValue(+0.0);
1769 
1770     // Is this value dominant? In case of a tie, prefer the highest element as
1771     // it's cheaper to insert near the beginning of a vector than it is at the
1772     // end.
1773     if (++Count >= MostCommonCount) {
1774       DominantValue = V;
1775       MostCommonCount = Count;
1776     }
1777   }
1778 
1779   assert(DominantValue && "Not expecting an all-undef BUILD_VECTOR");
1780   unsigned NumDefElts = NumElts - NumUndefElts;
1781   unsigned DominantValueCountThreshold = NumDefElts <= 2 ? 0 : NumDefElts - 2;
1782 
1783   // Don't perform this optimization when optimizing for size, since
1784   // materializing elements and inserting them tends to cause code bloat.
1785   if (!DAG.shouldOptForSize() && NumScalarLoads < NumElts &&
1786       ((MostCommonCount > DominantValueCountThreshold) ||
1787        (ValueCounts.size() <= Log2_32(NumDefElts)))) {
1788     // Start by splatting the most common element.
1789     SDValue Vec = DAG.getSplatBuildVector(VT, DL, DominantValue);
1790 
1791     DenseSet<SDValue> Processed{DominantValue};
1792     MVT SelMaskTy = VT.changeVectorElementType(MVT::i1);
1793     for (const auto &OpIdx : enumerate(Op->ops())) {
1794       const SDValue &V = OpIdx.value();
1795       if (V.isUndef() || !Processed.insert(V).second)
1796         continue;
1797       if (ValueCounts[V] == 1) {
1798         Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Vec, V,
1799                           DAG.getConstant(OpIdx.index(), DL, XLenVT));
1800       } else {
1801         // Blend in all instances of this value using a VSELECT, using a
1802         // mask where each bit signals whether that element is the one
1803         // we're after.
1804         SmallVector<SDValue> Ops;
1805         transform(Op->op_values(), std::back_inserter(Ops), [&](SDValue V1) {
1806           return DAG.getConstant(V == V1, DL, XLenVT);
1807         });
1808         Vec = DAG.getNode(ISD::VSELECT, DL, VT,
1809                           DAG.getBuildVector(SelMaskTy, DL, Ops),
1810                           DAG.getSplatBuildVector(VT, DL, V), Vec);
1811       }
1812     }
1813 
1814     return Vec;
1815   }
1816 
1817   return SDValue();
1818 }
1819 
1820 static SDValue splatPartsI64WithVL(const SDLoc &DL, MVT VT, SDValue Lo,
1821                                    SDValue Hi, SDValue VL, SelectionDAG &DAG) {
1822   if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) {
1823     int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue();
1824     int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue();
1825     // If Hi constant is all the same sign bit as Lo, lower this as a custom
1826     // node in order to try and match RVV vector/scalar instructions.
1827     if ((LoC >> 31) == HiC)
1828       return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Lo, VL);
1829   }
1830 
1831   // Fall back to a stack store and stride x0 vector load.
1832   return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VT, Lo, Hi, VL);
1833 }
1834 
1835 // Called by type legalization to handle splat of i64 on RV32.
1836 // FIXME: We can optimize this when the type has sign or zero bits in one
1837 // of the halves.
1838 static SDValue splatSplitI64WithVL(const SDLoc &DL, MVT VT, SDValue Scalar,
1839                                    SDValue VL, SelectionDAG &DAG) {
1840   assert(Scalar.getValueType() == MVT::i64 && "Unexpected VT!");
1841   SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar,
1842                            DAG.getConstant(0, DL, MVT::i32));
1843   SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar,
1844                            DAG.getConstant(1, DL, MVT::i32));
1845   return splatPartsI64WithVL(DL, VT, Lo, Hi, VL, DAG);
1846 }
1847 
1848 // This function lowers a splat of a scalar operand Splat with the vector
1849 // length VL. It ensures the final sequence is type legal, which is useful when
1850 // lowering a splat after type legalization.
1851 static SDValue lowerScalarSplat(SDValue Scalar, SDValue VL, MVT VT, SDLoc DL,
1852                                 SelectionDAG &DAG,
1853                                 const RISCVSubtarget &Subtarget) {
1854   if (VT.isFloatingPoint())
1855     return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, VT, Scalar, VL);
1856 
1857   MVT XLenVT = Subtarget.getXLenVT();
1858 
1859   // Simplest case is that the operand needs to be promoted to XLenVT.
1860   if (Scalar.getValueType().bitsLE(XLenVT)) {
1861     // If the operand is a constant, sign extend to increase our chances
1862     // of being able to use a .vi instruction. ANY_EXTEND would become a
1863     // a zero extend and the simm5 check in isel would fail.
1864     // FIXME: Should we ignore the upper bits in isel instead?
1865     unsigned ExtOpc =
1866         isa<ConstantSDNode>(Scalar) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND;
1867     Scalar = DAG.getNode(ExtOpc, DL, XLenVT, Scalar);
1868     return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Scalar, VL);
1869   }
1870 
1871   assert(XLenVT == MVT::i32 && Scalar.getValueType() == MVT::i64 &&
1872          "Unexpected scalar for splat lowering!");
1873 
1874   // Otherwise use the more complicated splatting algorithm.
1875   return splatSplitI64WithVL(DL, VT, Scalar, VL, DAG);
1876 }
1877 
1878 static SDValue lowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG,
1879                                    const RISCVSubtarget &Subtarget) {
1880   SDValue V1 = Op.getOperand(0);
1881   SDValue V2 = Op.getOperand(1);
1882   SDLoc DL(Op);
1883   MVT XLenVT = Subtarget.getXLenVT();
1884   MVT VT = Op.getSimpleValueType();
1885   unsigned NumElts = VT.getVectorNumElements();
1886   ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
1887 
1888   MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
1889 
1890   SDValue TrueMask, VL;
1891   std::tie(TrueMask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
1892 
1893   if (SVN->isSplat()) {
1894     const int Lane = SVN->getSplatIndex();
1895     if (Lane >= 0) {
1896       MVT SVT = VT.getVectorElementType();
1897 
1898       // Turn splatted vector load into a strided load with an X0 stride.
1899       SDValue V = V1;
1900       // Peek through CONCAT_VECTORS as VectorCombine can concat a vector
1901       // with undef.
1902       // FIXME: Peek through INSERT_SUBVECTOR, EXTRACT_SUBVECTOR, bitcasts?
1903       int Offset = Lane;
1904       if (V.getOpcode() == ISD::CONCAT_VECTORS) {
1905         int OpElements =
1906             V.getOperand(0).getSimpleValueType().getVectorNumElements();
1907         V = V.getOperand(Offset / OpElements);
1908         Offset %= OpElements;
1909       }
1910 
1911       // We need to ensure the load isn't atomic or volatile.
1912       if (ISD::isNormalLoad(V.getNode()) && cast<LoadSDNode>(V)->isSimple()) {
1913         auto *Ld = cast<LoadSDNode>(V);
1914         Offset *= SVT.getStoreSize();
1915         SDValue NewAddr = DAG.getMemBasePlusOffset(Ld->getBasePtr(),
1916                                                    TypeSize::Fixed(Offset), DL);
1917 
1918         // If this is SEW=64 on RV32, use a strided load with a stride of x0.
1919         if (SVT.isInteger() && SVT.bitsGT(XLenVT)) {
1920           SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
1921           SDValue IntID =
1922               DAG.getTargetConstant(Intrinsic::riscv_vlse, DL, XLenVT);
1923           SDValue Ops[] = {Ld->getChain(), IntID, NewAddr,
1924                            DAG.getRegister(RISCV::X0, XLenVT), VL};
1925           SDValue NewLoad = DAG.getMemIntrinsicNode(
1926               ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, SVT,
1927               DAG.getMachineFunction().getMachineMemOperand(
1928                   Ld->getMemOperand(), Offset, SVT.getStoreSize()));
1929           DAG.makeEquivalentMemoryOrdering(Ld, NewLoad);
1930           return convertFromScalableVector(VT, NewLoad, DAG, Subtarget);
1931         }
1932 
1933         // Otherwise use a scalar load and splat. This will give the best
1934         // opportunity to fold a splat into the operation. ISel can turn it into
1935         // the x0 strided load if we aren't able to fold away the select.
1936         if (SVT.isFloatingPoint())
1937           V = DAG.getLoad(SVT, DL, Ld->getChain(), NewAddr,
1938                           Ld->getPointerInfo().getWithOffset(Offset),
1939                           Ld->getOriginalAlign(),
1940                           Ld->getMemOperand()->getFlags());
1941         else
1942           V = DAG.getExtLoad(ISD::SEXTLOAD, DL, XLenVT, Ld->getChain(), NewAddr,
1943                              Ld->getPointerInfo().getWithOffset(Offset), SVT,
1944                              Ld->getOriginalAlign(),
1945                              Ld->getMemOperand()->getFlags());
1946         DAG.makeEquivalentMemoryOrdering(Ld, V);
1947 
1948         unsigned Opc =
1949             VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL : RISCVISD::VMV_V_X_VL;
1950         SDValue Splat = DAG.getNode(Opc, DL, ContainerVT, V, VL);
1951         return convertFromScalableVector(VT, Splat, DAG, Subtarget);
1952       }
1953 
1954       V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget);
1955       assert(Lane < (int)NumElts && "Unexpected lane!");
1956       SDValue Gather =
1957           DAG.getNode(RISCVISD::VRGATHER_VX_VL, DL, ContainerVT, V1,
1958                       DAG.getConstant(Lane, DL, XLenVT), TrueMask, VL);
1959       return convertFromScalableVector(VT, Gather, DAG, Subtarget);
1960     }
1961   }
1962 
1963   // Detect shuffles which can be re-expressed as vector selects; these are
1964   // shuffles in which each element in the destination is taken from an element
1965   // at the corresponding index in either source vectors.
1966   bool IsSelect = all_of(enumerate(SVN->getMask()), [&](const auto &MaskIdx) {
1967     int MaskIndex = MaskIdx.value();
1968     return MaskIndex < 0 || MaskIdx.index() == (unsigned)MaskIndex % NumElts;
1969   });
1970 
1971   assert(!V1.isUndef() && "Unexpected shuffle canonicalization");
1972 
1973   SmallVector<SDValue> MaskVals;
1974   // As a backup, shuffles can be lowered via a vrgather instruction, possibly
1975   // merged with a second vrgather.
1976   SmallVector<SDValue> GatherIndicesLHS, GatherIndicesRHS;
1977 
1978   // By default we preserve the original operand order, and use a mask to
1979   // select LHS as true and RHS as false. However, since RVV vector selects may
1980   // feature splats but only on the LHS, we may choose to invert our mask and
1981   // instead select between RHS and LHS.
1982   bool SwapOps = DAG.isSplatValue(V2) && !DAG.isSplatValue(V1);
1983   bool InvertMask = IsSelect == SwapOps;
1984 
1985   // Keep a track of which non-undef indices are used by each LHS/RHS shuffle
1986   // half.
1987   DenseMap<int, unsigned> LHSIndexCounts, RHSIndexCounts;
1988 
1989   // Now construct the mask that will be used by the vselect or blended
1990   // vrgather operation. For vrgathers, construct the appropriate indices into
1991   // each vector.
1992   for (int MaskIndex : SVN->getMask()) {
1993     bool SelectMaskVal = (MaskIndex < (int)NumElts) ^ InvertMask;
1994     MaskVals.push_back(DAG.getConstant(SelectMaskVal, DL, XLenVT));
1995     if (!IsSelect) {
1996       bool IsLHSOrUndefIndex = MaskIndex < (int)NumElts;
1997       GatherIndicesLHS.push_back(IsLHSOrUndefIndex && MaskIndex >= 0
1998                                      ? DAG.getConstant(MaskIndex, DL, XLenVT)
1999                                      : DAG.getUNDEF(XLenVT));
2000       GatherIndicesRHS.push_back(
2001           IsLHSOrUndefIndex ? DAG.getUNDEF(XLenVT)
2002                             : DAG.getConstant(MaskIndex - NumElts, DL, XLenVT));
2003       if (IsLHSOrUndefIndex && MaskIndex >= 0)
2004         ++LHSIndexCounts[MaskIndex];
2005       if (!IsLHSOrUndefIndex)
2006         ++RHSIndexCounts[MaskIndex - NumElts];
2007     }
2008   }
2009 
2010   if (SwapOps) {
2011     std::swap(V1, V2);
2012     std::swap(GatherIndicesLHS, GatherIndicesRHS);
2013   }
2014 
2015   assert(MaskVals.size() == NumElts && "Unexpected select-like shuffle");
2016   MVT MaskVT = MVT::getVectorVT(MVT::i1, NumElts);
2017   SDValue SelectMask = DAG.getBuildVector(MaskVT, DL, MaskVals);
2018 
2019   if (IsSelect)
2020     return DAG.getNode(ISD::VSELECT, DL, VT, SelectMask, V1, V2);
2021 
2022   if (VT.getScalarSizeInBits() == 8 && VT.getVectorNumElements() > 256) {
2023     // On such a large vector we're unable to use i8 as the index type.
2024     // FIXME: We could promote the index to i16 and use vrgatherei16, but that
2025     // may involve vector splitting if we're already at LMUL=8, or our
2026     // user-supplied maximum fixed-length LMUL.
2027     return SDValue();
2028   }
2029 
2030   unsigned GatherVXOpc = RISCVISD::VRGATHER_VX_VL;
2031   unsigned GatherVVOpc = RISCVISD::VRGATHER_VV_VL;
2032   MVT IndexVT = VT.changeTypeToInteger();
2033   // Since we can't introduce illegal index types at this stage, use i16 and
2034   // vrgatherei16 if the corresponding index type for plain vrgather is greater
2035   // than XLenVT.
2036   if (IndexVT.getScalarType().bitsGT(XLenVT)) {
2037     GatherVVOpc = RISCVISD::VRGATHEREI16_VV_VL;
2038     IndexVT = IndexVT.changeVectorElementType(MVT::i16);
2039   }
2040 
2041   MVT IndexContainerVT =
2042       ContainerVT.changeVectorElementType(IndexVT.getScalarType());
2043 
2044   SDValue Gather;
2045   // TODO: This doesn't trigger for i64 vectors on RV32, since there we
2046   // encounter a bitcasted BUILD_VECTOR with low/high i32 values.
2047   if (SDValue SplatValue = DAG.getSplatValue(V1, /*LegalTypes*/ true)) {
2048     Gather = lowerScalarSplat(SplatValue, VL, ContainerVT, DL, DAG, Subtarget);
2049   } else {
2050     V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget);
2051     // If only one index is used, we can use a "splat" vrgather.
2052     // TODO: We can splat the most-common index and fix-up any stragglers, if
2053     // that's beneficial.
2054     if (LHSIndexCounts.size() == 1) {
2055       int SplatIndex = LHSIndexCounts.begin()->getFirst();
2056       Gather =
2057           DAG.getNode(GatherVXOpc, DL, ContainerVT, V1,
2058                       DAG.getConstant(SplatIndex, DL, XLenVT), TrueMask, VL);
2059     } else {
2060       SDValue LHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesLHS);
2061       LHSIndices =
2062           convertToScalableVector(IndexContainerVT, LHSIndices, DAG, Subtarget);
2063 
2064       Gather = DAG.getNode(GatherVVOpc, DL, ContainerVT, V1, LHSIndices,
2065                            TrueMask, VL);
2066     }
2067   }
2068 
2069   // If a second vector operand is used by this shuffle, blend it in with an
2070   // additional vrgather.
2071   if (!V2.isUndef()) {
2072     V2 = convertToScalableVector(ContainerVT, V2, DAG, Subtarget);
2073     // If only one index is used, we can use a "splat" vrgather.
2074     // TODO: We can splat the most-common index and fix-up any stragglers, if
2075     // that's beneficial.
2076     if (RHSIndexCounts.size() == 1) {
2077       int SplatIndex = RHSIndexCounts.begin()->getFirst();
2078       V2 = DAG.getNode(GatherVXOpc, DL, ContainerVT, V2,
2079                        DAG.getConstant(SplatIndex, DL, XLenVT), TrueMask, VL);
2080     } else {
2081       SDValue RHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesRHS);
2082       RHSIndices =
2083           convertToScalableVector(IndexContainerVT, RHSIndices, DAG, Subtarget);
2084       V2 = DAG.getNode(GatherVVOpc, DL, ContainerVT, V2, RHSIndices, TrueMask,
2085                        VL);
2086     }
2087 
2088     MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1);
2089     SelectMask =
2090         convertToScalableVector(MaskContainerVT, SelectMask, DAG, Subtarget);
2091 
2092     Gather = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, SelectMask, V2,
2093                          Gather, VL);
2094   }
2095 
2096   return convertFromScalableVector(VT, Gather, DAG, Subtarget);
2097 }
2098 
2099 static SDValue getRVVFPExtendOrRound(SDValue Op, MVT VT, MVT ContainerVT,
2100                                      SDLoc DL, SelectionDAG &DAG,
2101                                      const RISCVSubtarget &Subtarget) {
2102   if (VT.isScalableVector())
2103     return DAG.getFPExtendOrRound(Op, DL, VT);
2104   assert(VT.isFixedLengthVector() &&
2105          "Unexpected value type for RVV FP extend/round lowering");
2106   SDValue Mask, VL;
2107   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
2108   unsigned RVVOpc = ContainerVT.bitsGT(Op.getSimpleValueType())
2109                         ? RISCVISD::FP_EXTEND_VL
2110                         : RISCVISD::FP_ROUND_VL;
2111   return DAG.getNode(RVVOpc, DL, ContainerVT, Op, Mask, VL);
2112 }
2113 
2114 // While RVV has alignment restrictions, we should always be able to load as a
2115 // legal equivalently-sized byte-typed vector instead. This method is
2116 // responsible for re-expressing a ISD::LOAD via a correctly-aligned type. If
2117 // the load is already correctly-aligned, it returns SDValue().
2118 SDValue RISCVTargetLowering::expandUnalignedRVVLoad(SDValue Op,
2119                                                     SelectionDAG &DAG) const {
2120   auto *Load = cast<LoadSDNode>(Op);
2121   assert(Load && Load->getMemoryVT().isVector() && "Expected vector load");
2122 
2123   if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
2124                                      Load->getMemoryVT(),
2125                                      *Load->getMemOperand()))
2126     return SDValue();
2127 
2128   SDLoc DL(Op);
2129   MVT VT = Op.getSimpleValueType();
2130   unsigned EltSizeBits = VT.getScalarSizeInBits();
2131   assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) &&
2132          "Unexpected unaligned RVV load type");
2133   MVT NewVT =
2134       MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8));
2135   assert(NewVT.isValid() &&
2136          "Expecting equally-sized RVV vector types to be legal");
2137   SDValue L = DAG.getLoad(NewVT, DL, Load->getChain(), Load->getBasePtr(),
2138                           Load->getPointerInfo(), Load->getOriginalAlign(),
2139                           Load->getMemOperand()->getFlags());
2140   return DAG.getMergeValues({DAG.getBitcast(VT, L), L.getValue(1)}, DL);
2141 }
2142 
2143 // While RVV has alignment restrictions, we should always be able to store as a
2144 // legal equivalently-sized byte-typed vector instead. This method is
2145 // responsible for re-expressing a ISD::STORE via a correctly-aligned type. It
2146 // returns SDValue() if the store is already correctly aligned.
2147 SDValue RISCVTargetLowering::expandUnalignedRVVStore(SDValue Op,
2148                                                      SelectionDAG &DAG) const {
2149   auto *Store = cast<StoreSDNode>(Op);
2150   assert(Store && Store->getValue().getValueType().isVector() &&
2151          "Expected vector store");
2152 
2153   if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
2154                                      Store->getMemoryVT(),
2155                                      *Store->getMemOperand()))
2156     return SDValue();
2157 
2158   SDLoc DL(Op);
2159   SDValue StoredVal = Store->getValue();
2160   MVT VT = StoredVal.getSimpleValueType();
2161   unsigned EltSizeBits = VT.getScalarSizeInBits();
2162   assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) &&
2163          "Unexpected unaligned RVV store type");
2164   MVT NewVT =
2165       MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8));
2166   assert(NewVT.isValid() &&
2167          "Expecting equally-sized RVV vector types to be legal");
2168   StoredVal = DAG.getBitcast(NewVT, StoredVal);
2169   return DAG.getStore(Store->getChain(), DL, StoredVal, Store->getBasePtr(),
2170                       Store->getPointerInfo(), Store->getOriginalAlign(),
2171                       Store->getMemOperand()->getFlags());
2172 }
2173 
2174 SDValue RISCVTargetLowering::LowerOperation(SDValue Op,
2175                                             SelectionDAG &DAG) const {
2176   switch (Op.getOpcode()) {
2177   default:
2178     report_fatal_error("unimplemented operand");
2179   case ISD::GlobalAddress:
2180     return lowerGlobalAddress(Op, DAG);
2181   case ISD::BlockAddress:
2182     return lowerBlockAddress(Op, DAG);
2183   case ISD::ConstantPool:
2184     return lowerConstantPool(Op, DAG);
2185   case ISD::JumpTable:
2186     return lowerJumpTable(Op, DAG);
2187   case ISD::GlobalTLSAddress:
2188     return lowerGlobalTLSAddress(Op, DAG);
2189   case ISD::SELECT:
2190     return lowerSELECT(Op, DAG);
2191   case ISD::BRCOND:
2192     return lowerBRCOND(Op, DAG);
2193   case ISD::VASTART:
2194     return lowerVASTART(Op, DAG);
2195   case ISD::FRAMEADDR:
2196     return lowerFRAMEADDR(Op, DAG);
2197   case ISD::RETURNADDR:
2198     return lowerRETURNADDR(Op, DAG);
2199   case ISD::SHL_PARTS:
2200     return lowerShiftLeftParts(Op, DAG);
2201   case ISD::SRA_PARTS:
2202     return lowerShiftRightParts(Op, DAG, true);
2203   case ISD::SRL_PARTS:
2204     return lowerShiftRightParts(Op, DAG, false);
2205   case ISD::BITCAST: {
2206     SDLoc DL(Op);
2207     EVT VT = Op.getValueType();
2208     SDValue Op0 = Op.getOperand(0);
2209     EVT Op0VT = Op0.getValueType();
2210     MVT XLenVT = Subtarget.getXLenVT();
2211     if (VT.isFixedLengthVector()) {
2212       // We can handle fixed length vector bitcasts with a simple replacement
2213       // in isel.
2214       if (Op0VT.isFixedLengthVector())
2215         return Op;
2216       // When bitcasting from scalar to fixed-length vector, insert the scalar
2217       // into a one-element vector of the result type, and perform a vector
2218       // bitcast.
2219       if (!Op0VT.isVector()) {
2220         auto BVT = EVT::getVectorVT(*DAG.getContext(), Op0VT, 1);
2221         return DAG.getBitcast(VT, DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, BVT,
2222                                               DAG.getUNDEF(BVT), Op0,
2223                                               DAG.getConstant(0, DL, XLenVT)));
2224       }
2225       return SDValue();
2226     }
2227     // Custom-legalize bitcasts from fixed-length vector types to scalar types
2228     // thus: bitcast the vector to a one-element vector type whose element type
2229     // is the same as the result type, and extract the first element.
2230     if (!VT.isVector() && Op0VT.isFixedLengthVector()) {
2231       LLVMContext &Context = *DAG.getContext();
2232       SDValue BVec = DAG.getBitcast(EVT::getVectorVT(Context, VT, 1), Op0);
2233       return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec,
2234                          DAG.getConstant(0, DL, XLenVT));
2235     }
2236     if (VT == MVT::f16 && Op0VT == MVT::i16 && Subtarget.hasStdExtZfh()) {
2237       SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Op0);
2238       SDValue FPConv = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, NewOp0);
2239       return FPConv;
2240     }
2241     if (VT == MVT::f32 && Op0VT == MVT::i32 && Subtarget.is64Bit() &&
2242         Subtarget.hasStdExtF()) {
2243       SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
2244       SDValue FPConv =
2245           DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, NewOp0);
2246       return FPConv;
2247     }
2248     return SDValue();
2249   }
2250   case ISD::INTRINSIC_WO_CHAIN:
2251     return LowerINTRINSIC_WO_CHAIN(Op, DAG);
2252   case ISD::INTRINSIC_W_CHAIN:
2253     return LowerINTRINSIC_W_CHAIN(Op, DAG);
2254   case ISD::BSWAP:
2255   case ISD::BITREVERSE: {
2256     // Convert BSWAP/BITREVERSE to GREVI to enable GREVI combinining.
2257     assert(Subtarget.hasStdExtZbp() && "Unexpected custom legalisation");
2258     MVT VT = Op.getSimpleValueType();
2259     SDLoc DL(Op);
2260     // Start with the maximum immediate value which is the bitwidth - 1.
2261     unsigned Imm = VT.getSizeInBits() - 1;
2262     // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits.
2263     if (Op.getOpcode() == ISD::BSWAP)
2264       Imm &= ~0x7U;
2265     return DAG.getNode(RISCVISD::GREV, DL, VT, Op.getOperand(0),
2266                        DAG.getConstant(Imm, DL, VT));
2267   }
2268   case ISD::FSHL:
2269   case ISD::FSHR: {
2270     MVT VT = Op.getSimpleValueType();
2271     assert(VT == Subtarget.getXLenVT() && "Unexpected custom legalization");
2272     SDLoc DL(Op);
2273     if (Op.getOperand(2).getOpcode() == ISD::Constant)
2274       return Op;
2275     // FSL/FSR take a log2(XLen)+1 bit shift amount but XLenVT FSHL/FSHR only
2276     // use log(XLen) bits. Mask the shift amount accordingly.
2277     unsigned ShAmtWidth = Subtarget.getXLen() - 1;
2278     SDValue ShAmt = DAG.getNode(ISD::AND, DL, VT, Op.getOperand(2),
2279                                 DAG.getConstant(ShAmtWidth, DL, VT));
2280     unsigned Opc = Op.getOpcode() == ISD::FSHL ? RISCVISD::FSL : RISCVISD::FSR;
2281     return DAG.getNode(Opc, DL, VT, Op.getOperand(0), Op.getOperand(1), ShAmt);
2282   }
2283   case ISD::TRUNCATE: {
2284     SDLoc DL(Op);
2285     MVT VT = Op.getSimpleValueType();
2286     // Only custom-lower vector truncates
2287     if (!VT.isVector())
2288       return Op;
2289 
2290     // Truncates to mask types are handled differently
2291     if (VT.getVectorElementType() == MVT::i1)
2292       return lowerVectorMaskTrunc(Op, DAG);
2293 
2294     // RVV only has truncates which operate from SEW*2->SEW, so lower arbitrary
2295     // truncates as a series of "RISCVISD::TRUNCATE_VECTOR_VL" nodes which
2296     // truncate by one power of two at a time.
2297     MVT DstEltVT = VT.getVectorElementType();
2298 
2299     SDValue Src = Op.getOperand(0);
2300     MVT SrcVT = Src.getSimpleValueType();
2301     MVT SrcEltVT = SrcVT.getVectorElementType();
2302 
2303     assert(DstEltVT.bitsLT(SrcEltVT) &&
2304            isPowerOf2_64(DstEltVT.getSizeInBits()) &&
2305            isPowerOf2_64(SrcEltVT.getSizeInBits()) &&
2306            "Unexpected vector truncate lowering");
2307 
2308     MVT ContainerVT = SrcVT;
2309     if (SrcVT.isFixedLengthVector()) {
2310       ContainerVT = getContainerForFixedLengthVector(SrcVT);
2311       Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget);
2312     }
2313 
2314     SDValue Result = Src;
2315     SDValue Mask, VL;
2316     std::tie(Mask, VL) =
2317         getDefaultVLOps(SrcVT, ContainerVT, DL, DAG, Subtarget);
2318     LLVMContext &Context = *DAG.getContext();
2319     const ElementCount Count = ContainerVT.getVectorElementCount();
2320     do {
2321       SrcEltVT = MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2);
2322       EVT ResultVT = EVT::getVectorVT(Context, SrcEltVT, Count);
2323       Result = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, ResultVT, Result,
2324                            Mask, VL);
2325     } while (SrcEltVT != DstEltVT);
2326 
2327     if (SrcVT.isFixedLengthVector())
2328       Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
2329 
2330     return Result;
2331   }
2332   case ISD::ANY_EXTEND:
2333   case ISD::ZERO_EXTEND:
2334     if (Op.getOperand(0).getValueType().isVector() &&
2335         Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1)
2336       return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ 1);
2337     return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VZEXT_VL);
2338   case ISD::SIGN_EXTEND:
2339     if (Op.getOperand(0).getValueType().isVector() &&
2340         Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1)
2341       return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ -1);
2342     return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VSEXT_VL);
2343   case ISD::SPLAT_VECTOR_PARTS:
2344     return lowerSPLAT_VECTOR_PARTS(Op, DAG);
2345   case ISD::INSERT_VECTOR_ELT:
2346     return lowerINSERT_VECTOR_ELT(Op, DAG);
2347   case ISD::EXTRACT_VECTOR_ELT:
2348     return lowerEXTRACT_VECTOR_ELT(Op, DAG);
2349   case ISD::VSCALE: {
2350     MVT VT = Op.getSimpleValueType();
2351     SDLoc DL(Op);
2352     SDValue VLENB = DAG.getNode(RISCVISD::READ_VLENB, DL, VT);
2353     // We define our scalable vector types for lmul=1 to use a 64 bit known
2354     // minimum size. e.g. <vscale x 2 x i32>. VLENB is in bytes so we calculate
2355     // vscale as VLENB / 8.
2356     assert(RISCV::RVVBitsPerBlock == 64 && "Unexpected bits per block!");
2357     if (isa<ConstantSDNode>(Op.getOperand(0))) {
2358       // We assume VLENB is a multiple of 8. We manually choose the best shift
2359       // here because SimplifyDemandedBits isn't always able to simplify it.
2360       uint64_t Val = Op.getConstantOperandVal(0);
2361       if (isPowerOf2_64(Val)) {
2362         uint64_t Log2 = Log2_64(Val);
2363         if (Log2 < 3)
2364           return DAG.getNode(ISD::SRL, DL, VT, VLENB,
2365                              DAG.getConstant(3 - Log2, DL, VT));
2366         if (Log2 > 3)
2367           return DAG.getNode(ISD::SHL, DL, VT, VLENB,
2368                              DAG.getConstant(Log2 - 3, DL, VT));
2369         return VLENB;
2370       }
2371       // If the multiplier is a multiple of 8, scale it down to avoid needing
2372       // to shift the VLENB value.
2373       if ((Val % 8) == 0)
2374         return DAG.getNode(ISD::MUL, DL, VT, VLENB,
2375                            DAG.getConstant(Val / 8, DL, VT));
2376     }
2377 
2378     SDValue VScale = DAG.getNode(ISD::SRL, DL, VT, VLENB,
2379                                  DAG.getConstant(3, DL, VT));
2380     return DAG.getNode(ISD::MUL, DL, VT, VScale, Op.getOperand(0));
2381   }
2382   case ISD::FP_EXTEND: {
2383     // RVV can only do fp_extend to types double the size as the source. We
2384     // custom-lower f16->f64 extensions to two hops of ISD::FP_EXTEND, going
2385     // via f32.
2386     SDLoc DL(Op);
2387     MVT VT = Op.getSimpleValueType();
2388     SDValue Src = Op.getOperand(0);
2389     MVT SrcVT = Src.getSimpleValueType();
2390 
2391     // Prepare any fixed-length vector operands.
2392     MVT ContainerVT = VT;
2393     if (SrcVT.isFixedLengthVector()) {
2394       ContainerVT = getContainerForFixedLengthVector(VT);
2395       MVT SrcContainerVT =
2396           ContainerVT.changeVectorElementType(SrcVT.getVectorElementType());
2397       Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget);
2398     }
2399 
2400     if (!VT.isVector() || VT.getVectorElementType() != MVT::f64 ||
2401         SrcVT.getVectorElementType() != MVT::f16) {
2402       // For scalable vectors, we only need to close the gap between
2403       // vXf16->vXf64.
2404       if (!VT.isFixedLengthVector())
2405         return Op;
2406       // For fixed-length vectors, lower the FP_EXTEND to a custom "VL" version.
2407       Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget);
2408       return convertFromScalableVector(VT, Src, DAG, Subtarget);
2409     }
2410 
2411     MVT InterVT = VT.changeVectorElementType(MVT::f32);
2412     MVT InterContainerVT = ContainerVT.changeVectorElementType(MVT::f32);
2413     SDValue IntermediateExtend = getRVVFPExtendOrRound(
2414         Src, InterVT, InterContainerVT, DL, DAG, Subtarget);
2415 
2416     SDValue Extend = getRVVFPExtendOrRound(IntermediateExtend, VT, ContainerVT,
2417                                            DL, DAG, Subtarget);
2418     if (VT.isFixedLengthVector())
2419       return convertFromScalableVector(VT, Extend, DAG, Subtarget);
2420     return Extend;
2421   }
2422   case ISD::FP_ROUND: {
2423     // RVV can only do fp_round to types half the size as the source. We
2424     // custom-lower f64->f16 rounds via RVV's round-to-odd float
2425     // conversion instruction.
2426     SDLoc DL(Op);
2427     MVT VT = Op.getSimpleValueType();
2428     SDValue Src = Op.getOperand(0);
2429     MVT SrcVT = Src.getSimpleValueType();
2430 
2431     // Prepare any fixed-length vector operands.
2432     MVT ContainerVT = VT;
2433     if (VT.isFixedLengthVector()) {
2434       MVT SrcContainerVT = getContainerForFixedLengthVector(SrcVT);
2435       ContainerVT =
2436           SrcContainerVT.changeVectorElementType(VT.getVectorElementType());
2437       Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget);
2438     }
2439 
2440     if (!VT.isVector() || VT.getVectorElementType() != MVT::f16 ||
2441         SrcVT.getVectorElementType() != MVT::f64) {
2442       // For scalable vectors, we only need to close the gap between
2443       // vXf64<->vXf16.
2444       if (!VT.isFixedLengthVector())
2445         return Op;
2446       // For fixed-length vectors, lower the FP_ROUND to a custom "VL" version.
2447       Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget);
2448       return convertFromScalableVector(VT, Src, DAG, Subtarget);
2449     }
2450 
2451     SDValue Mask, VL;
2452     std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
2453 
2454     MVT InterVT = ContainerVT.changeVectorElementType(MVT::f32);
2455     SDValue IntermediateRound =
2456         DAG.getNode(RISCVISD::VFNCVT_ROD_VL, DL, InterVT, Src, Mask, VL);
2457     SDValue Round = getRVVFPExtendOrRound(IntermediateRound, VT, ContainerVT,
2458                                           DL, DAG, Subtarget);
2459 
2460     if (VT.isFixedLengthVector())
2461       return convertFromScalableVector(VT, Round, DAG, Subtarget);
2462     return Round;
2463   }
2464   case ISD::FP_TO_SINT:
2465   case ISD::FP_TO_UINT:
2466   case ISD::SINT_TO_FP:
2467   case ISD::UINT_TO_FP: {
2468     // RVV can only do fp<->int conversions to types half/double the size as
2469     // the source. We custom-lower any conversions that do two hops into
2470     // sequences.
2471     MVT VT = Op.getSimpleValueType();
2472     if (!VT.isVector())
2473       return Op;
2474     SDLoc DL(Op);
2475     SDValue Src = Op.getOperand(0);
2476     MVT EltVT = VT.getVectorElementType();
2477     MVT SrcVT = Src.getSimpleValueType();
2478     MVT SrcEltVT = SrcVT.getVectorElementType();
2479     unsigned EltSize = EltVT.getSizeInBits();
2480     unsigned SrcEltSize = SrcEltVT.getSizeInBits();
2481     assert(isPowerOf2_32(EltSize) && isPowerOf2_32(SrcEltSize) &&
2482            "Unexpected vector element types");
2483 
2484     bool IsInt2FP = SrcEltVT.isInteger();
2485     // Widening conversions
2486     if (EltSize > SrcEltSize && (EltSize / SrcEltSize >= 4)) {
2487       if (IsInt2FP) {
2488         // Do a regular integer sign/zero extension then convert to float.
2489         MVT IVecVT = MVT::getVectorVT(MVT::getIntegerVT(EltVT.getSizeInBits()),
2490                                       VT.getVectorElementCount());
2491         unsigned ExtOpcode = Op.getOpcode() == ISD::UINT_TO_FP
2492                                  ? ISD::ZERO_EXTEND
2493                                  : ISD::SIGN_EXTEND;
2494         SDValue Ext = DAG.getNode(ExtOpcode, DL, IVecVT, Src);
2495         return DAG.getNode(Op.getOpcode(), DL, VT, Ext);
2496       }
2497       // FP2Int
2498       assert(SrcEltVT == MVT::f16 && "Unexpected FP_TO_[US]INT lowering");
2499       // Do one doubling fp_extend then complete the operation by converting
2500       // to int.
2501       MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount());
2502       SDValue FExt = DAG.getFPExtendOrRound(Src, DL, InterimFVT);
2503       return DAG.getNode(Op.getOpcode(), DL, VT, FExt);
2504     }
2505 
2506     // Narrowing conversions
2507     if (SrcEltSize > EltSize && (SrcEltSize / EltSize >= 4)) {
2508       if (IsInt2FP) {
2509         // One narrowing int_to_fp, then an fp_round.
2510         assert(EltVT == MVT::f16 && "Unexpected [US]_TO_FP lowering");
2511         MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount());
2512         SDValue Int2FP = DAG.getNode(Op.getOpcode(), DL, InterimFVT, Src);
2513         return DAG.getFPExtendOrRound(Int2FP, DL, VT);
2514       }
2515       // FP2Int
2516       // One narrowing fp_to_int, then truncate the integer. If the float isn't
2517       // representable by the integer, the result is poison.
2518       MVT IVecVT =
2519           MVT::getVectorVT(MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2),
2520                            VT.getVectorElementCount());
2521       SDValue FP2Int = DAG.getNode(Op.getOpcode(), DL, IVecVT, Src);
2522       return DAG.getNode(ISD::TRUNCATE, DL, VT, FP2Int);
2523     }
2524 
2525     // Scalable vectors can exit here. Patterns will handle equally-sized
2526     // conversions halving/doubling ones.
2527     if (!VT.isFixedLengthVector())
2528       return Op;
2529 
2530     // For fixed-length vectors we lower to a custom "VL" node.
2531     unsigned RVVOpc = 0;
2532     switch (Op.getOpcode()) {
2533     default:
2534       llvm_unreachable("Impossible opcode");
2535     case ISD::FP_TO_SINT:
2536       RVVOpc = RISCVISD::FP_TO_SINT_VL;
2537       break;
2538     case ISD::FP_TO_UINT:
2539       RVVOpc = RISCVISD::FP_TO_UINT_VL;
2540       break;
2541     case ISD::SINT_TO_FP:
2542       RVVOpc = RISCVISD::SINT_TO_FP_VL;
2543       break;
2544     case ISD::UINT_TO_FP:
2545       RVVOpc = RISCVISD::UINT_TO_FP_VL;
2546       break;
2547     }
2548 
2549     MVT ContainerVT, SrcContainerVT;
2550     // Derive the reference container type from the larger vector type.
2551     if (SrcEltSize > EltSize) {
2552       SrcContainerVT = getContainerForFixedLengthVector(SrcVT);
2553       ContainerVT =
2554           SrcContainerVT.changeVectorElementType(VT.getVectorElementType());
2555     } else {
2556       ContainerVT = getContainerForFixedLengthVector(VT);
2557       SrcContainerVT = ContainerVT.changeVectorElementType(SrcEltVT);
2558     }
2559 
2560     SDValue Mask, VL;
2561     std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
2562 
2563     Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget);
2564     Src = DAG.getNode(RVVOpc, DL, ContainerVT, Src, Mask, VL);
2565     return convertFromScalableVector(VT, Src, DAG, Subtarget);
2566   }
2567   case ISD::FP_TO_SINT_SAT:
2568   case ISD::FP_TO_UINT_SAT:
2569     return lowerFP_TO_INT_SAT(Op, DAG);
2570   case ISD::VECREDUCE_ADD:
2571   case ISD::VECREDUCE_UMAX:
2572   case ISD::VECREDUCE_SMAX:
2573   case ISD::VECREDUCE_UMIN:
2574   case ISD::VECREDUCE_SMIN:
2575     return lowerVECREDUCE(Op, DAG);
2576   case ISD::VECREDUCE_AND:
2577   case ISD::VECREDUCE_OR:
2578   case ISD::VECREDUCE_XOR:
2579     if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1)
2580       return lowerVectorMaskVECREDUCE(Op, DAG);
2581     return lowerVECREDUCE(Op, DAG);
2582   case ISD::VECREDUCE_FADD:
2583   case ISD::VECREDUCE_SEQ_FADD:
2584   case ISD::VECREDUCE_FMIN:
2585   case ISD::VECREDUCE_FMAX:
2586     return lowerFPVECREDUCE(Op, DAG);
2587   case ISD::INSERT_SUBVECTOR:
2588     return lowerINSERT_SUBVECTOR(Op, DAG);
2589   case ISD::EXTRACT_SUBVECTOR:
2590     return lowerEXTRACT_SUBVECTOR(Op, DAG);
2591   case ISD::STEP_VECTOR:
2592     return lowerSTEP_VECTOR(Op, DAG);
2593   case ISD::VECTOR_REVERSE:
2594     return lowerVECTOR_REVERSE(Op, DAG);
2595   case ISD::BUILD_VECTOR:
2596     return lowerBUILD_VECTOR(Op, DAG, Subtarget);
2597   case ISD::SPLAT_VECTOR:
2598     if (Op.getValueType().getVectorElementType() == MVT::i1)
2599       return lowerVectorMaskSplat(Op, DAG);
2600     return lowerSPLAT_VECTOR(Op, DAG, Subtarget);
2601   case ISD::VECTOR_SHUFFLE:
2602     return lowerVECTOR_SHUFFLE(Op, DAG, Subtarget);
2603   case ISD::CONCAT_VECTORS: {
2604     // Split CONCAT_VECTORS into a series of INSERT_SUBVECTOR nodes. This is
2605     // better than going through the stack, as the default expansion does.
2606     SDLoc DL(Op);
2607     MVT VT = Op.getSimpleValueType();
2608     unsigned NumOpElts =
2609         Op.getOperand(0).getSimpleValueType().getVectorMinNumElements();
2610     SDValue Vec = DAG.getUNDEF(VT);
2611     for (const auto &OpIdx : enumerate(Op->ops()))
2612       Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, Vec, OpIdx.value(),
2613                         DAG.getIntPtrConstant(OpIdx.index() * NumOpElts, DL));
2614     return Vec;
2615   }
2616   case ISD::LOAD:
2617     if (auto V = expandUnalignedRVVLoad(Op, DAG))
2618       return V;
2619     if (Op.getValueType().isFixedLengthVector())
2620       return lowerFixedLengthVectorLoadToRVV(Op, DAG);
2621     return Op;
2622   case ISD::STORE:
2623     if (auto V = expandUnalignedRVVStore(Op, DAG))
2624       return V;
2625     if (Op.getOperand(1).getValueType().isFixedLengthVector())
2626       return lowerFixedLengthVectorStoreToRVV(Op, DAG);
2627     return Op;
2628   case ISD::MLOAD:
2629     return lowerMLOAD(Op, DAG);
2630   case ISD::MSTORE:
2631     return lowerMSTORE(Op, DAG);
2632   case ISD::SETCC:
2633     return lowerFixedLengthVectorSetccToRVV(Op, DAG);
2634   case ISD::ADD:
2635     return lowerToScalableOp(Op, DAG, RISCVISD::ADD_VL);
2636   case ISD::SUB:
2637     return lowerToScalableOp(Op, DAG, RISCVISD::SUB_VL);
2638   case ISD::MUL:
2639     return lowerToScalableOp(Op, DAG, RISCVISD::MUL_VL);
2640   case ISD::MULHS:
2641     return lowerToScalableOp(Op, DAG, RISCVISD::MULHS_VL);
2642   case ISD::MULHU:
2643     return lowerToScalableOp(Op, DAG, RISCVISD::MULHU_VL);
2644   case ISD::AND:
2645     return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMAND_VL,
2646                                               RISCVISD::AND_VL);
2647   case ISD::OR:
2648     return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMOR_VL,
2649                                               RISCVISD::OR_VL);
2650   case ISD::XOR:
2651     return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMXOR_VL,
2652                                               RISCVISD::XOR_VL);
2653   case ISD::SDIV:
2654     return lowerToScalableOp(Op, DAG, RISCVISD::SDIV_VL);
2655   case ISD::SREM:
2656     return lowerToScalableOp(Op, DAG, RISCVISD::SREM_VL);
2657   case ISD::UDIV:
2658     return lowerToScalableOp(Op, DAG, RISCVISD::UDIV_VL);
2659   case ISD::UREM:
2660     return lowerToScalableOp(Op, DAG, RISCVISD::UREM_VL);
2661   case ISD::SHL:
2662   case ISD::SRA:
2663   case ISD::SRL:
2664     if (Op.getSimpleValueType().isFixedLengthVector())
2665       return lowerFixedLengthVectorShiftToRVV(Op, DAG);
2666     // This can be called for an i32 shift amount that needs to be promoted.
2667     assert(Op.getOperand(1).getValueType() == MVT::i32 && Subtarget.is64Bit() &&
2668            "Unexpected custom legalisation");
2669     return SDValue();
2670   case ISD::SADDSAT:
2671     return lowerToScalableOp(Op, DAG, RISCVISD::SADDSAT_VL);
2672   case ISD::UADDSAT:
2673     return lowerToScalableOp(Op, DAG, RISCVISD::UADDSAT_VL);
2674   case ISD::SSUBSAT:
2675     return lowerToScalableOp(Op, DAG, RISCVISD::SSUBSAT_VL);
2676   case ISD::USUBSAT:
2677     return lowerToScalableOp(Op, DAG, RISCVISD::USUBSAT_VL);
2678   case ISD::FADD:
2679     return lowerToScalableOp(Op, DAG, RISCVISD::FADD_VL);
2680   case ISD::FSUB:
2681     return lowerToScalableOp(Op, DAG, RISCVISD::FSUB_VL);
2682   case ISD::FMUL:
2683     return lowerToScalableOp(Op, DAG, RISCVISD::FMUL_VL);
2684   case ISD::FDIV:
2685     return lowerToScalableOp(Op, DAG, RISCVISD::FDIV_VL);
2686   case ISD::FNEG:
2687     return lowerToScalableOp(Op, DAG, RISCVISD::FNEG_VL);
2688   case ISD::FABS:
2689     return lowerToScalableOp(Op, DAG, RISCVISD::FABS_VL);
2690   case ISD::FSQRT:
2691     return lowerToScalableOp(Op, DAG, RISCVISD::FSQRT_VL);
2692   case ISD::FMA:
2693     return lowerToScalableOp(Op, DAG, RISCVISD::FMA_VL);
2694   case ISD::SMIN:
2695     return lowerToScalableOp(Op, DAG, RISCVISD::SMIN_VL);
2696   case ISD::SMAX:
2697     return lowerToScalableOp(Op, DAG, RISCVISD::SMAX_VL);
2698   case ISD::UMIN:
2699     return lowerToScalableOp(Op, DAG, RISCVISD::UMIN_VL);
2700   case ISD::UMAX:
2701     return lowerToScalableOp(Op, DAG, RISCVISD::UMAX_VL);
2702   case ISD::FMINNUM:
2703     return lowerToScalableOp(Op, DAG, RISCVISD::FMINNUM_VL);
2704   case ISD::FMAXNUM:
2705     return lowerToScalableOp(Op, DAG, RISCVISD::FMAXNUM_VL);
2706   case ISD::ABS:
2707     return lowerABS(Op, DAG);
2708   case ISD::VSELECT:
2709     return lowerFixedLengthVectorSelectToRVV(Op, DAG);
2710   case ISD::FCOPYSIGN:
2711     return lowerFixedLengthVectorFCOPYSIGNToRVV(Op, DAG);
2712   case ISD::MGATHER:
2713     return lowerMGATHER(Op, DAG);
2714   case ISD::MSCATTER:
2715     return lowerMSCATTER(Op, DAG);
2716   case ISD::FLT_ROUNDS_:
2717     return lowerGET_ROUNDING(Op, DAG);
2718   case ISD::SET_ROUNDING:
2719     return lowerSET_ROUNDING(Op, DAG);
2720   case ISD::VP_ADD:
2721     return lowerVPOp(Op, DAG, RISCVISD::ADD_VL);
2722   case ISD::VP_SUB:
2723     return lowerVPOp(Op, DAG, RISCVISD::SUB_VL);
2724   case ISD::VP_MUL:
2725     return lowerVPOp(Op, DAG, RISCVISD::MUL_VL);
2726   case ISD::VP_SDIV:
2727     return lowerVPOp(Op, DAG, RISCVISD::SDIV_VL);
2728   case ISD::VP_UDIV:
2729     return lowerVPOp(Op, DAG, RISCVISD::UDIV_VL);
2730   case ISD::VP_SREM:
2731     return lowerVPOp(Op, DAG, RISCVISD::SREM_VL);
2732   case ISD::VP_UREM:
2733     return lowerVPOp(Op, DAG, RISCVISD::UREM_VL);
2734   case ISD::VP_AND:
2735     return lowerVPOp(Op, DAG, RISCVISD::AND_VL);
2736   case ISD::VP_OR:
2737     return lowerVPOp(Op, DAG, RISCVISD::OR_VL);
2738   case ISD::VP_XOR:
2739     return lowerVPOp(Op, DAG, RISCVISD::XOR_VL);
2740   case ISD::VP_ASHR:
2741     return lowerVPOp(Op, DAG, RISCVISD::SRA_VL);
2742   case ISD::VP_LSHR:
2743     return lowerVPOp(Op, DAG, RISCVISD::SRL_VL);
2744   case ISD::VP_SHL:
2745     return lowerVPOp(Op, DAG, RISCVISD::SHL_VL);
2746   case ISD::VP_FADD:
2747     return lowerVPOp(Op, DAG, RISCVISD::FADD_VL);
2748   case ISD::VP_FSUB:
2749     return lowerVPOp(Op, DAG, RISCVISD::FSUB_VL);
2750   case ISD::VP_FMUL:
2751     return lowerVPOp(Op, DAG, RISCVISD::FMUL_VL);
2752   case ISD::VP_FDIV:
2753     return lowerVPOp(Op, DAG, RISCVISD::FDIV_VL);
2754   }
2755 }
2756 
2757 static SDValue getTargetNode(GlobalAddressSDNode *N, SDLoc DL, EVT Ty,
2758                              SelectionDAG &DAG, unsigned Flags) {
2759   return DAG.getTargetGlobalAddress(N->getGlobal(), DL, Ty, 0, Flags);
2760 }
2761 
2762 static SDValue getTargetNode(BlockAddressSDNode *N, SDLoc DL, EVT Ty,
2763                              SelectionDAG &DAG, unsigned Flags) {
2764   return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, N->getOffset(),
2765                                    Flags);
2766 }
2767 
2768 static SDValue getTargetNode(ConstantPoolSDNode *N, SDLoc DL, EVT Ty,
2769                              SelectionDAG &DAG, unsigned Flags) {
2770   return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlign(),
2771                                    N->getOffset(), Flags);
2772 }
2773 
2774 static SDValue getTargetNode(JumpTableSDNode *N, SDLoc DL, EVT Ty,
2775                              SelectionDAG &DAG, unsigned Flags) {
2776   return DAG.getTargetJumpTable(N->getIndex(), Ty, Flags);
2777 }
2778 
2779 template <class NodeTy>
2780 SDValue RISCVTargetLowering::getAddr(NodeTy *N, SelectionDAG &DAG,
2781                                      bool IsLocal) const {
2782   SDLoc DL(N);
2783   EVT Ty = getPointerTy(DAG.getDataLayout());
2784 
2785   if (isPositionIndependent()) {
2786     SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0);
2787     if (IsLocal)
2788       // Use PC-relative addressing to access the symbol. This generates the
2789       // pattern (PseudoLLA sym), which expands to (addi (auipc %pcrel_hi(sym))
2790       // %pcrel_lo(auipc)).
2791       return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0);
2792 
2793     // Use PC-relative addressing to access the GOT for this symbol, then load
2794     // the address from the GOT. This generates the pattern (PseudoLA sym),
2795     // which expands to (ld (addi (auipc %got_pcrel_hi(sym)) %pcrel_lo(auipc))).
2796     return SDValue(DAG.getMachineNode(RISCV::PseudoLA, DL, Ty, Addr), 0);
2797   }
2798 
2799   switch (getTargetMachine().getCodeModel()) {
2800   default:
2801     report_fatal_error("Unsupported code model for lowering");
2802   case CodeModel::Small: {
2803     // Generate a sequence for accessing addresses within the first 2 GiB of
2804     // address space. This generates the pattern (addi (lui %hi(sym)) %lo(sym)).
2805     SDValue AddrHi = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_HI);
2806     SDValue AddrLo = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_LO);
2807     SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0);
2808     return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNHi, AddrLo), 0);
2809   }
2810   case CodeModel::Medium: {
2811     // Generate a sequence for accessing addresses within any 2GiB range within
2812     // the address space. This generates the pattern (PseudoLLA sym), which
2813     // expands to (addi (auipc %pcrel_hi(sym)) %pcrel_lo(auipc)).
2814     SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0);
2815     return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0);
2816   }
2817   }
2818 }
2819 
2820 SDValue RISCVTargetLowering::lowerGlobalAddress(SDValue Op,
2821                                                 SelectionDAG &DAG) const {
2822   SDLoc DL(Op);
2823   EVT Ty = Op.getValueType();
2824   GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op);
2825   int64_t Offset = N->getOffset();
2826   MVT XLenVT = Subtarget.getXLenVT();
2827 
2828   const GlobalValue *GV = N->getGlobal();
2829   bool IsLocal = getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV);
2830   SDValue Addr = getAddr(N, DAG, IsLocal);
2831 
2832   // In order to maximise the opportunity for common subexpression elimination,
2833   // emit a separate ADD node for the global address offset instead of folding
2834   // it in the global address node. Later peephole optimisations may choose to
2835   // fold it back in when profitable.
2836   if (Offset != 0)
2837     return DAG.getNode(ISD::ADD, DL, Ty, Addr,
2838                        DAG.getConstant(Offset, DL, XLenVT));
2839   return Addr;
2840 }
2841 
2842 SDValue RISCVTargetLowering::lowerBlockAddress(SDValue Op,
2843                                                SelectionDAG &DAG) const {
2844   BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op);
2845 
2846   return getAddr(N, DAG);
2847 }
2848 
2849 SDValue RISCVTargetLowering::lowerConstantPool(SDValue Op,
2850                                                SelectionDAG &DAG) const {
2851   ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op);
2852 
2853   return getAddr(N, DAG);
2854 }
2855 
2856 SDValue RISCVTargetLowering::lowerJumpTable(SDValue Op,
2857                                             SelectionDAG &DAG) const {
2858   JumpTableSDNode *N = cast<JumpTableSDNode>(Op);
2859 
2860   return getAddr(N, DAG);
2861 }
2862 
2863 SDValue RISCVTargetLowering::getStaticTLSAddr(GlobalAddressSDNode *N,
2864                                               SelectionDAG &DAG,
2865                                               bool UseGOT) const {
2866   SDLoc DL(N);
2867   EVT Ty = getPointerTy(DAG.getDataLayout());
2868   const GlobalValue *GV = N->getGlobal();
2869   MVT XLenVT = Subtarget.getXLenVT();
2870 
2871   if (UseGOT) {
2872     // Use PC-relative addressing to access the GOT for this TLS symbol, then
2873     // load the address from the GOT and add the thread pointer. This generates
2874     // the pattern (PseudoLA_TLS_IE sym), which expands to
2875     // (ld (auipc %tls_ie_pcrel_hi(sym)) %pcrel_lo(auipc)).
2876     SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0);
2877     SDValue Load =
2878         SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_IE, DL, Ty, Addr), 0);
2879 
2880     // Add the thread pointer.
2881     SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT);
2882     return DAG.getNode(ISD::ADD, DL, Ty, Load, TPReg);
2883   }
2884 
2885   // Generate a sequence for accessing the address relative to the thread
2886   // pointer, with the appropriate adjustment for the thread pointer offset.
2887   // This generates the pattern
2888   // (add (add_tprel (lui %tprel_hi(sym)) tp %tprel_add(sym)) %tprel_lo(sym))
2889   SDValue AddrHi =
2890       DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_HI);
2891   SDValue AddrAdd =
2892       DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_ADD);
2893   SDValue AddrLo =
2894       DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_LO);
2895 
2896   SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0);
2897   SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT);
2898   SDValue MNAdd = SDValue(
2899       DAG.getMachineNode(RISCV::PseudoAddTPRel, DL, Ty, MNHi, TPReg, AddrAdd),
2900       0);
2901   return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNAdd, AddrLo), 0);
2902 }
2903 
2904 SDValue RISCVTargetLowering::getDynamicTLSAddr(GlobalAddressSDNode *N,
2905                                                SelectionDAG &DAG) const {
2906   SDLoc DL(N);
2907   EVT Ty = getPointerTy(DAG.getDataLayout());
2908   IntegerType *CallTy = Type::getIntNTy(*DAG.getContext(), Ty.getSizeInBits());
2909   const GlobalValue *GV = N->getGlobal();
2910 
2911   // Use a PC-relative addressing mode to access the global dynamic GOT address.
2912   // This generates the pattern (PseudoLA_TLS_GD sym), which expands to
2913   // (addi (auipc %tls_gd_pcrel_hi(sym)) %pcrel_lo(auipc)).
2914   SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0);
2915   SDValue Load =
2916       SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_GD, DL, Ty, Addr), 0);
2917 
2918   // Prepare argument list to generate call.
2919   ArgListTy Args;
2920   ArgListEntry Entry;
2921   Entry.Node = Load;
2922   Entry.Ty = CallTy;
2923   Args.push_back(Entry);
2924 
2925   // Setup call to __tls_get_addr.
2926   TargetLowering::CallLoweringInfo CLI(DAG);
2927   CLI.setDebugLoc(DL)
2928       .setChain(DAG.getEntryNode())
2929       .setLibCallee(CallingConv::C, CallTy,
2930                     DAG.getExternalSymbol("__tls_get_addr", Ty),
2931                     std::move(Args));
2932 
2933   return LowerCallTo(CLI).first;
2934 }
2935 
2936 SDValue RISCVTargetLowering::lowerGlobalTLSAddress(SDValue Op,
2937                                                    SelectionDAG &DAG) const {
2938   SDLoc DL(Op);
2939   EVT Ty = Op.getValueType();
2940   GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op);
2941   int64_t Offset = N->getOffset();
2942   MVT XLenVT = Subtarget.getXLenVT();
2943 
2944   TLSModel::Model Model = getTargetMachine().getTLSModel(N->getGlobal());
2945 
2946   if (DAG.getMachineFunction().getFunction().getCallingConv() ==
2947       CallingConv::GHC)
2948     report_fatal_error("In GHC calling convention TLS is not supported");
2949 
2950   SDValue Addr;
2951   switch (Model) {
2952   case TLSModel::LocalExec:
2953     Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/false);
2954     break;
2955   case TLSModel::InitialExec:
2956     Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/true);
2957     break;
2958   case TLSModel::LocalDynamic:
2959   case TLSModel::GeneralDynamic:
2960     Addr = getDynamicTLSAddr(N, DAG);
2961     break;
2962   }
2963 
2964   // In order to maximise the opportunity for common subexpression elimination,
2965   // emit a separate ADD node for the global address offset instead of folding
2966   // it in the global address node. Later peephole optimisations may choose to
2967   // fold it back in when profitable.
2968   if (Offset != 0)
2969     return DAG.getNode(ISD::ADD, DL, Ty, Addr,
2970                        DAG.getConstant(Offset, DL, XLenVT));
2971   return Addr;
2972 }
2973 
2974 SDValue RISCVTargetLowering::lowerSELECT(SDValue Op, SelectionDAG &DAG) const {
2975   SDValue CondV = Op.getOperand(0);
2976   SDValue TrueV = Op.getOperand(1);
2977   SDValue FalseV = Op.getOperand(2);
2978   SDLoc DL(Op);
2979   MVT VT = Op.getSimpleValueType();
2980   MVT XLenVT = Subtarget.getXLenVT();
2981 
2982   // Lower vector SELECTs to VSELECTs by splatting the condition.
2983   if (VT.isVector()) {
2984     MVT SplatCondVT = VT.changeVectorElementType(MVT::i1);
2985     SDValue CondSplat = VT.isScalableVector()
2986                             ? DAG.getSplatVector(SplatCondVT, DL, CondV)
2987                             : DAG.getSplatBuildVector(SplatCondVT, DL, CondV);
2988     return DAG.getNode(ISD::VSELECT, DL, VT, CondSplat, TrueV, FalseV);
2989   }
2990 
2991   // If the result type is XLenVT and CondV is the output of a SETCC node
2992   // which also operated on XLenVT inputs, then merge the SETCC node into the
2993   // lowered RISCVISD::SELECT_CC to take advantage of the integer
2994   // compare+branch instructions. i.e.:
2995   // (select (setcc lhs, rhs, cc), truev, falsev)
2996   // -> (riscvisd::select_cc lhs, rhs, cc, truev, falsev)
2997   if (VT == XLenVT && CondV.getOpcode() == ISD::SETCC &&
2998       CondV.getOperand(0).getSimpleValueType() == XLenVT) {
2999     SDValue LHS = CondV.getOperand(0);
3000     SDValue RHS = CondV.getOperand(1);
3001     const auto *CC = cast<CondCodeSDNode>(CondV.getOperand(2));
3002     ISD::CondCode CCVal = CC->get();
3003 
3004     // Special case for a select of 2 constants that have a diffence of 1.
3005     // Normally this is done by DAGCombine, but if the select is introduced by
3006     // type legalization or op legalization, we miss it. Restricting to SETLT
3007     // case for now because that is what signed saturating add/sub need.
3008     // FIXME: We don't need the condition to be SETLT or even a SETCC,
3009     // but we would probably want to swap the true/false values if the condition
3010     // is SETGE/SETLE to avoid an XORI.
3011     if (isa<ConstantSDNode>(TrueV) && isa<ConstantSDNode>(FalseV) &&
3012         CCVal == ISD::SETLT) {
3013       const APInt &TrueVal = cast<ConstantSDNode>(TrueV)->getAPIntValue();
3014       const APInt &FalseVal = cast<ConstantSDNode>(FalseV)->getAPIntValue();
3015       if (TrueVal - 1 == FalseVal)
3016         return DAG.getNode(ISD::ADD, DL, Op.getValueType(), CondV, FalseV);
3017       if (TrueVal + 1 == FalseVal)
3018         return DAG.getNode(ISD::SUB, DL, Op.getValueType(), FalseV, CondV);
3019     }
3020 
3021     translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
3022 
3023     SDValue TargetCC = DAG.getCondCode(CCVal);
3024     SDValue Ops[] = {LHS, RHS, TargetCC, TrueV, FalseV};
3025     return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops);
3026   }
3027 
3028   // Otherwise:
3029   // (select condv, truev, falsev)
3030   // -> (riscvisd::select_cc condv, zero, setne, truev, falsev)
3031   SDValue Zero = DAG.getConstant(0, DL, XLenVT);
3032   SDValue SetNE = DAG.getCondCode(ISD::SETNE);
3033 
3034   SDValue Ops[] = {CondV, Zero, SetNE, TrueV, FalseV};
3035 
3036   return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops);
3037 }
3038 
3039 SDValue RISCVTargetLowering::lowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
3040   SDValue CondV = Op.getOperand(1);
3041   SDLoc DL(Op);
3042   MVT XLenVT = Subtarget.getXLenVT();
3043 
3044   if (CondV.getOpcode() == ISD::SETCC &&
3045       CondV.getOperand(0).getValueType() == XLenVT) {
3046     SDValue LHS = CondV.getOperand(0);
3047     SDValue RHS = CondV.getOperand(1);
3048     ISD::CondCode CCVal = cast<CondCodeSDNode>(CondV.getOperand(2))->get();
3049 
3050     translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
3051 
3052     SDValue TargetCC = DAG.getCondCode(CCVal);
3053     return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0),
3054                        LHS, RHS, TargetCC, Op.getOperand(2));
3055   }
3056 
3057   return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0),
3058                      CondV, DAG.getConstant(0, DL, XLenVT),
3059                      DAG.getCondCode(ISD::SETNE), Op.getOperand(2));
3060 }
3061 
3062 SDValue RISCVTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const {
3063   MachineFunction &MF = DAG.getMachineFunction();
3064   RISCVMachineFunctionInfo *FuncInfo = MF.getInfo<RISCVMachineFunctionInfo>();
3065 
3066   SDLoc DL(Op);
3067   SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
3068                                  getPointerTy(MF.getDataLayout()));
3069 
3070   // vastart just stores the address of the VarArgsFrameIndex slot into the
3071   // memory location argument.
3072   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3073   return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1),
3074                       MachinePointerInfo(SV));
3075 }
3076 
3077 SDValue RISCVTargetLowering::lowerFRAMEADDR(SDValue Op,
3078                                             SelectionDAG &DAG) const {
3079   const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo();
3080   MachineFunction &MF = DAG.getMachineFunction();
3081   MachineFrameInfo &MFI = MF.getFrameInfo();
3082   MFI.setFrameAddressIsTaken(true);
3083   Register FrameReg = RI.getFrameRegister(MF);
3084   int XLenInBytes = Subtarget.getXLen() / 8;
3085 
3086   EVT VT = Op.getValueType();
3087   SDLoc DL(Op);
3088   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, FrameReg, VT);
3089   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3090   while (Depth--) {
3091     int Offset = -(XLenInBytes * 2);
3092     SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr,
3093                               DAG.getIntPtrConstant(Offset, DL));
3094     FrameAddr =
3095         DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo());
3096   }
3097   return FrameAddr;
3098 }
3099 
3100 SDValue RISCVTargetLowering::lowerRETURNADDR(SDValue Op,
3101                                              SelectionDAG &DAG) const {
3102   const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo();
3103   MachineFunction &MF = DAG.getMachineFunction();
3104   MachineFrameInfo &MFI = MF.getFrameInfo();
3105   MFI.setReturnAddressIsTaken(true);
3106   MVT XLenVT = Subtarget.getXLenVT();
3107   int XLenInBytes = Subtarget.getXLen() / 8;
3108 
3109   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
3110     return SDValue();
3111 
3112   EVT VT = Op.getValueType();
3113   SDLoc DL(Op);
3114   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3115   if (Depth) {
3116     int Off = -XLenInBytes;
3117     SDValue FrameAddr = lowerFRAMEADDR(Op, DAG);
3118     SDValue Offset = DAG.getConstant(Off, DL, VT);
3119     return DAG.getLoad(VT, DL, DAG.getEntryNode(),
3120                        DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset),
3121                        MachinePointerInfo());
3122   }
3123 
3124   // Return the value of the return address register, marking it an implicit
3125   // live-in.
3126   Register Reg = MF.addLiveIn(RI.getRARegister(), getRegClassFor(XLenVT));
3127   return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, XLenVT);
3128 }
3129 
3130 SDValue RISCVTargetLowering::lowerShiftLeftParts(SDValue Op,
3131                                                  SelectionDAG &DAG) const {
3132   SDLoc DL(Op);
3133   SDValue Lo = Op.getOperand(0);
3134   SDValue Hi = Op.getOperand(1);
3135   SDValue Shamt = Op.getOperand(2);
3136   EVT VT = Lo.getValueType();
3137 
3138   // if Shamt-XLEN < 0: // Shamt < XLEN
3139   //   Lo = Lo << Shamt
3140   //   Hi = (Hi << Shamt) | ((Lo >>u 1) >>u (XLEN-1 - Shamt))
3141   // else:
3142   //   Lo = 0
3143   //   Hi = Lo << (Shamt-XLEN)
3144 
3145   SDValue Zero = DAG.getConstant(0, DL, VT);
3146   SDValue One = DAG.getConstant(1, DL, VT);
3147   SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT);
3148   SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT);
3149   SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen);
3150   SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt);
3151 
3152   SDValue LoTrue = DAG.getNode(ISD::SHL, DL, VT, Lo, Shamt);
3153   SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, VT, Lo, One);
3154   SDValue ShiftRightLo =
3155       DAG.getNode(ISD::SRL, DL, VT, ShiftRight1Lo, XLenMinus1Shamt);
3156   SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, Hi, Shamt);
3157   SDValue HiTrue = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo);
3158   SDValue HiFalse = DAG.getNode(ISD::SHL, DL, VT, Lo, ShamtMinusXLen);
3159 
3160   SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT);
3161 
3162   Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, Zero);
3163   Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse);
3164 
3165   SDValue Parts[2] = {Lo, Hi};
3166   return DAG.getMergeValues(Parts, DL);
3167 }
3168 
3169 SDValue RISCVTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG,
3170                                                   bool IsSRA) const {
3171   SDLoc DL(Op);
3172   SDValue Lo = Op.getOperand(0);
3173   SDValue Hi = Op.getOperand(1);
3174   SDValue Shamt = Op.getOperand(2);
3175   EVT VT = Lo.getValueType();
3176 
3177   // SRA expansion:
3178   //   if Shamt-XLEN < 0: // Shamt < XLEN
3179   //     Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt))
3180   //     Hi = Hi >>s Shamt
3181   //   else:
3182   //     Lo = Hi >>s (Shamt-XLEN);
3183   //     Hi = Hi >>s (XLEN-1)
3184   //
3185   // SRL expansion:
3186   //   if Shamt-XLEN < 0: // Shamt < XLEN
3187   //     Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt))
3188   //     Hi = Hi >>u Shamt
3189   //   else:
3190   //     Lo = Hi >>u (Shamt-XLEN);
3191   //     Hi = 0;
3192 
3193   unsigned ShiftRightOp = IsSRA ? ISD::SRA : ISD::SRL;
3194 
3195   SDValue Zero = DAG.getConstant(0, DL, VT);
3196   SDValue One = DAG.getConstant(1, DL, VT);
3197   SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT);
3198   SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT);
3199   SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen);
3200   SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt);
3201 
3202   SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, Lo, Shamt);
3203   SDValue ShiftLeftHi1 = DAG.getNode(ISD::SHL, DL, VT, Hi, One);
3204   SDValue ShiftLeftHi =
3205       DAG.getNode(ISD::SHL, DL, VT, ShiftLeftHi1, XLenMinus1Shamt);
3206   SDValue LoTrue = DAG.getNode(ISD::OR, DL, VT, ShiftRightLo, ShiftLeftHi);
3207   SDValue HiTrue = DAG.getNode(ShiftRightOp, DL, VT, Hi, Shamt);
3208   SDValue LoFalse = DAG.getNode(ShiftRightOp, DL, VT, Hi, ShamtMinusXLen);
3209   SDValue HiFalse =
3210       IsSRA ? DAG.getNode(ISD::SRA, DL, VT, Hi, XLenMinus1) : Zero;
3211 
3212   SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT);
3213 
3214   Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, LoFalse);
3215   Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse);
3216 
3217   SDValue Parts[2] = {Lo, Hi};
3218   return DAG.getMergeValues(Parts, DL);
3219 }
3220 
3221 // Lower splats of i1 types to SETCC. For each mask vector type, we have a
3222 // legal equivalently-sized i8 type, so we can use that as a go-between.
3223 SDValue RISCVTargetLowering::lowerVectorMaskSplat(SDValue Op,
3224                                                   SelectionDAG &DAG) const {
3225   SDLoc DL(Op);
3226   MVT VT = Op.getSimpleValueType();
3227   SDValue SplatVal = Op.getOperand(0);
3228   // All-zeros or all-ones splats are handled specially.
3229   if (ISD::isConstantSplatVectorAllOnes(Op.getNode())) {
3230     SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second;
3231     return DAG.getNode(RISCVISD::VMSET_VL, DL, VT, VL);
3232   }
3233   if (ISD::isConstantSplatVectorAllZeros(Op.getNode())) {
3234     SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second;
3235     return DAG.getNode(RISCVISD::VMCLR_VL, DL, VT, VL);
3236   }
3237   MVT XLenVT = Subtarget.getXLenVT();
3238   assert(SplatVal.getValueType() == XLenVT &&
3239          "Unexpected type for i1 splat value");
3240   MVT InterVT = VT.changeVectorElementType(MVT::i8);
3241   SplatVal = DAG.getNode(ISD::AND, DL, XLenVT, SplatVal,
3242                          DAG.getConstant(1, DL, XLenVT));
3243   SDValue LHS = DAG.getSplatVector(InterVT, DL, SplatVal);
3244   SDValue Zero = DAG.getConstant(0, DL, InterVT);
3245   return DAG.getSetCC(DL, VT, LHS, Zero, ISD::SETNE);
3246 }
3247 
3248 // Custom-lower a SPLAT_VECTOR_PARTS where XLEN<SEW, as the SEW element type is
3249 // illegal (currently only vXi64 RV32).
3250 // FIXME: We could also catch non-constant sign-extended i32 values and lower
3251 // them to SPLAT_VECTOR_I64
3252 SDValue RISCVTargetLowering::lowerSPLAT_VECTOR_PARTS(SDValue Op,
3253                                                      SelectionDAG &DAG) const {
3254   SDLoc DL(Op);
3255   MVT VecVT = Op.getSimpleValueType();
3256   assert(!Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64 &&
3257          "Unexpected SPLAT_VECTOR_PARTS lowering");
3258 
3259   assert(Op.getNumOperands() == 2 && "Unexpected number of operands!");
3260   SDValue Lo = Op.getOperand(0);
3261   SDValue Hi = Op.getOperand(1);
3262 
3263   if (VecVT.isFixedLengthVector()) {
3264     MVT ContainerVT = getContainerForFixedLengthVector(VecVT);
3265     SDLoc DL(Op);
3266     SDValue Mask, VL;
3267     std::tie(Mask, VL) =
3268         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
3269 
3270     SDValue Res = splatPartsI64WithVL(DL, ContainerVT, Lo, Hi, VL, DAG);
3271     return convertFromScalableVector(VecVT, Res, DAG, Subtarget);
3272   }
3273 
3274   if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) {
3275     int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue();
3276     int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue();
3277     // If Hi constant is all the same sign bit as Lo, lower this as a custom
3278     // node in order to try and match RVV vector/scalar instructions.
3279     if ((LoC >> 31) == HiC)
3280       return DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, Lo);
3281   }
3282 
3283   // Detect cases where Hi is (SRA Lo, 31) which means Hi is Lo sign extended.
3284   if (Hi.getOpcode() == ISD::SRA && Hi.getOperand(0) == Lo &&
3285       isa<ConstantSDNode>(Hi.getOperand(1)) &&
3286       Hi.getConstantOperandVal(1) == 31)
3287     return DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, Lo);
3288 
3289   // Fall back to use a stack store and stride x0 vector load. Use X0 as VL.
3290   return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VecVT, Lo, Hi,
3291                      DAG.getRegister(RISCV::X0, MVT::i64));
3292 }
3293 
3294 // Custom-lower extensions from mask vectors by using a vselect either with 1
3295 // for zero/any-extension or -1 for sign-extension:
3296 //   (vXiN = (s|z)ext vXi1:vmask) -> (vXiN = vselect vmask, (-1 or 1), 0)
3297 // Note that any-extension is lowered identically to zero-extension.
3298 SDValue RISCVTargetLowering::lowerVectorMaskExt(SDValue Op, SelectionDAG &DAG,
3299                                                 int64_t ExtTrueVal) const {
3300   SDLoc DL(Op);
3301   MVT VecVT = Op.getSimpleValueType();
3302   SDValue Src = Op.getOperand(0);
3303   // Only custom-lower extensions from mask types
3304   assert(Src.getValueType().isVector() &&
3305          Src.getValueType().getVectorElementType() == MVT::i1);
3306 
3307   MVT XLenVT = Subtarget.getXLenVT();
3308   SDValue SplatZero = DAG.getConstant(0, DL, XLenVT);
3309   SDValue SplatTrueVal = DAG.getConstant(ExtTrueVal, DL, XLenVT);
3310 
3311   if (VecVT.isScalableVector()) {
3312     // Be careful not to introduce illegal scalar types at this stage, and be
3313     // careful also about splatting constants as on RV32, vXi64 SPLAT_VECTOR is
3314     // illegal and must be expanded. Since we know that the constants are
3315     // sign-extended 32-bit values, we use SPLAT_VECTOR_I64 directly.
3316     bool IsRV32E64 =
3317         !Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64;
3318 
3319     if (!IsRV32E64) {
3320       SplatZero = DAG.getSplatVector(VecVT, DL, SplatZero);
3321       SplatTrueVal = DAG.getSplatVector(VecVT, DL, SplatTrueVal);
3322     } else {
3323       SplatZero = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, SplatZero);
3324       SplatTrueVal =
3325           DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, SplatTrueVal);
3326     }
3327 
3328     return DAG.getNode(ISD::VSELECT, DL, VecVT, Src, SplatTrueVal, SplatZero);
3329   }
3330 
3331   MVT ContainerVT = getContainerForFixedLengthVector(VecVT);
3332   MVT I1ContainerVT =
3333       MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
3334 
3335   SDValue CC = convertToScalableVector(I1ContainerVT, Src, DAG, Subtarget);
3336 
3337   SDValue Mask, VL;
3338   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
3339 
3340   SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatZero, VL);
3341   SplatTrueVal =
3342       DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatTrueVal, VL);
3343   SDValue Select = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC,
3344                                SplatTrueVal, SplatZero, VL);
3345 
3346   return convertFromScalableVector(VecVT, Select, DAG, Subtarget);
3347 }
3348 
3349 SDValue RISCVTargetLowering::lowerFixedLengthVectorExtendToRVV(
3350     SDValue Op, SelectionDAG &DAG, unsigned ExtendOpc) const {
3351   MVT ExtVT = Op.getSimpleValueType();
3352   // Only custom-lower extensions from fixed-length vector types.
3353   if (!ExtVT.isFixedLengthVector())
3354     return Op;
3355   MVT VT = Op.getOperand(0).getSimpleValueType();
3356   // Grab the canonical container type for the extended type. Infer the smaller
3357   // type from that to ensure the same number of vector elements, as we know
3358   // the LMUL will be sufficient to hold the smaller type.
3359   MVT ContainerExtVT = getContainerForFixedLengthVector(ExtVT);
3360   // Get the extended container type manually to ensure the same number of
3361   // vector elements between source and dest.
3362   MVT ContainerVT = MVT::getVectorVT(VT.getVectorElementType(),
3363                                      ContainerExtVT.getVectorElementCount());
3364 
3365   SDValue Op1 =
3366       convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget);
3367 
3368   SDLoc DL(Op);
3369   SDValue Mask, VL;
3370   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
3371 
3372   SDValue Ext = DAG.getNode(ExtendOpc, DL, ContainerExtVT, Op1, Mask, VL);
3373 
3374   return convertFromScalableVector(ExtVT, Ext, DAG, Subtarget);
3375 }
3376 
3377 // Custom-lower truncations from vectors to mask vectors by using a mask and a
3378 // setcc operation:
3379 //   (vXi1 = trunc vXiN vec) -> (vXi1 = setcc (and vec, 1), 0, ne)
3380 SDValue RISCVTargetLowering::lowerVectorMaskTrunc(SDValue Op,
3381                                                   SelectionDAG &DAG) const {
3382   SDLoc DL(Op);
3383   EVT MaskVT = Op.getValueType();
3384   // Only expect to custom-lower truncations to mask types
3385   assert(MaskVT.isVector() && MaskVT.getVectorElementType() == MVT::i1 &&
3386          "Unexpected type for vector mask lowering");
3387   SDValue Src = Op.getOperand(0);
3388   MVT VecVT = Src.getSimpleValueType();
3389 
3390   // If this is a fixed vector, we need to convert it to a scalable vector.
3391   MVT ContainerVT = VecVT;
3392   if (VecVT.isFixedLengthVector()) {
3393     ContainerVT = getContainerForFixedLengthVector(VecVT);
3394     Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget);
3395   }
3396 
3397   SDValue SplatOne = DAG.getConstant(1, DL, Subtarget.getXLenVT());
3398   SDValue SplatZero = DAG.getConstant(0, DL, Subtarget.getXLenVT());
3399 
3400   SplatOne = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatOne);
3401   SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatZero);
3402 
3403   if (VecVT.isScalableVector()) {
3404     SDValue Trunc = DAG.getNode(ISD::AND, DL, VecVT, Src, SplatOne);
3405     return DAG.getSetCC(DL, MaskVT, Trunc, SplatZero, ISD::SETNE);
3406   }
3407 
3408   SDValue Mask, VL;
3409   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
3410 
3411   MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1);
3412   SDValue Trunc =
3413       DAG.getNode(RISCVISD::AND_VL, DL, ContainerVT, Src, SplatOne, Mask, VL);
3414   Trunc = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskContainerVT, Trunc, SplatZero,
3415                       DAG.getCondCode(ISD::SETNE), Mask, VL);
3416   return convertFromScalableVector(MaskVT, Trunc, DAG, Subtarget);
3417 }
3418 
3419 // Custom-legalize INSERT_VECTOR_ELT so that the value is inserted into the
3420 // first position of a vector, and that vector is slid up to the insert index.
3421 // By limiting the active vector length to index+1 and merging with the
3422 // original vector (with an undisturbed tail policy for elements >= VL), we
3423 // achieve the desired result of leaving all elements untouched except the one
3424 // at VL-1, which is replaced with the desired value.
3425 SDValue RISCVTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op,
3426                                                     SelectionDAG &DAG) const {
3427   SDLoc DL(Op);
3428   MVT VecVT = Op.getSimpleValueType();
3429   SDValue Vec = Op.getOperand(0);
3430   SDValue Val = Op.getOperand(1);
3431   SDValue Idx = Op.getOperand(2);
3432 
3433   if (VecVT.getVectorElementType() == MVT::i1) {
3434     // FIXME: For now we just promote to an i8 vector and insert into that,
3435     // but this is probably not optimal.
3436     MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount());
3437     Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec);
3438     Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, WideVT, Vec, Val, Idx);
3439     return DAG.getNode(ISD::TRUNCATE, DL, VecVT, Vec);
3440   }
3441 
3442   MVT ContainerVT = VecVT;
3443   // If the operand is a fixed-length vector, convert to a scalable one.
3444   if (VecVT.isFixedLengthVector()) {
3445     ContainerVT = getContainerForFixedLengthVector(VecVT);
3446     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
3447   }
3448 
3449   MVT XLenVT = Subtarget.getXLenVT();
3450 
3451   SDValue Zero = DAG.getConstant(0, DL, XLenVT);
3452   bool IsLegalInsert = Subtarget.is64Bit() || Val.getValueType() != MVT::i64;
3453   // Even i64-element vectors on RV32 can be lowered without scalar
3454   // legalization if the most-significant 32 bits of the value are not affected
3455   // by the sign-extension of the lower 32 bits.
3456   // TODO: We could also catch sign extensions of a 32-bit value.
3457   if (!IsLegalInsert && isa<ConstantSDNode>(Val)) {
3458     const auto *CVal = cast<ConstantSDNode>(Val);
3459     if (isInt<32>(CVal->getSExtValue())) {
3460       IsLegalInsert = true;
3461       Val = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32);
3462     }
3463   }
3464 
3465   SDValue Mask, VL;
3466   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
3467 
3468   SDValue ValInVec;
3469 
3470   if (IsLegalInsert) {
3471     unsigned Opc =
3472         VecVT.isFloatingPoint() ? RISCVISD::VFMV_S_F_VL : RISCVISD::VMV_S_X_VL;
3473     if (isNullConstant(Idx)) {
3474       Vec = DAG.getNode(Opc, DL, ContainerVT, Vec, Val, VL);
3475       if (!VecVT.isFixedLengthVector())
3476         return Vec;
3477       return convertFromScalableVector(VecVT, Vec, DAG, Subtarget);
3478     }
3479     ValInVec =
3480         DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), Val, VL);
3481   } else {
3482     // On RV32, i64-element vectors must be specially handled to place the
3483     // value at element 0, by using two vslide1up instructions in sequence on
3484     // the i32 split lo/hi value. Use an equivalently-sized i32 vector for
3485     // this.
3486     SDValue One = DAG.getConstant(1, DL, XLenVT);
3487     SDValue ValLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, Zero);
3488     SDValue ValHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, One);
3489     MVT I32ContainerVT =
3490         MVT::getVectorVT(MVT::i32, ContainerVT.getVectorElementCount() * 2);
3491     SDValue I32Mask =
3492         getDefaultScalableVLOps(I32ContainerVT, DL, DAG, Subtarget).first;
3493     // Limit the active VL to two.
3494     SDValue InsertI64VL = DAG.getConstant(2, DL, XLenVT);
3495     // Note: We can't pass a UNDEF to the first VSLIDE1UP_VL since an untied
3496     // undef doesn't obey the earlyclobber constraint. Just splat a zero value.
3497     ValInVec = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, I32ContainerVT, Zero,
3498                            InsertI64VL);
3499     // First slide in the hi value, then the lo in underneath it.
3500     ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT, ValInVec,
3501                            ValHi, I32Mask, InsertI64VL);
3502     ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT, ValInVec,
3503                            ValLo, I32Mask, InsertI64VL);
3504     // Bitcast back to the right container type.
3505     ValInVec = DAG.getBitcast(ContainerVT, ValInVec);
3506   }
3507 
3508   // Now that the value is in a vector, slide it into position.
3509   SDValue InsertVL =
3510       DAG.getNode(ISD::ADD, DL, XLenVT, Idx, DAG.getConstant(1, DL, XLenVT));
3511   SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec,
3512                                 ValInVec, Idx, Mask, InsertVL);
3513   if (!VecVT.isFixedLengthVector())
3514     return Slideup;
3515   return convertFromScalableVector(VecVT, Slideup, DAG, Subtarget);
3516 }
3517 
3518 // Custom-lower EXTRACT_VECTOR_ELT operations to slide the vector down, then
3519 // extract the first element: (extractelt (slidedown vec, idx), 0). For integer
3520 // types this is done using VMV_X_S to allow us to glean information about the
3521 // sign bits of the result.
3522 SDValue RISCVTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op,
3523                                                      SelectionDAG &DAG) const {
3524   SDLoc DL(Op);
3525   SDValue Idx = Op.getOperand(1);
3526   SDValue Vec = Op.getOperand(0);
3527   EVT EltVT = Op.getValueType();
3528   MVT VecVT = Vec.getSimpleValueType();
3529   MVT XLenVT = Subtarget.getXLenVT();
3530 
3531   if (VecVT.getVectorElementType() == MVT::i1) {
3532     // FIXME: For now we just promote to an i8 vector and extract from that,
3533     // but this is probably not optimal.
3534     MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount());
3535     Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec);
3536     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec, Idx);
3537   }
3538 
3539   // If this is a fixed vector, we need to convert it to a scalable vector.
3540   MVT ContainerVT = VecVT;
3541   if (VecVT.isFixedLengthVector()) {
3542     ContainerVT = getContainerForFixedLengthVector(VecVT);
3543     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
3544   }
3545 
3546   // If the index is 0, the vector is already in the right position.
3547   if (!isNullConstant(Idx)) {
3548     // Use a VL of 1 to avoid processing more elements than we need.
3549     SDValue VL = DAG.getConstant(1, DL, XLenVT);
3550     MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
3551     SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
3552     Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT,
3553                       DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL);
3554   }
3555 
3556   if (!EltVT.isInteger()) {
3557     // Floating-point extracts are handled in TableGen.
3558     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec,
3559                        DAG.getConstant(0, DL, XLenVT));
3560   }
3561 
3562   SDValue Elt0 = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec);
3563   return DAG.getNode(ISD::TRUNCATE, DL, EltVT, Elt0);
3564 }
3565 
3566 // Some RVV intrinsics may claim that they want an integer operand to be
3567 // promoted or expanded.
3568 static SDValue lowerVectorIntrinsicSplats(SDValue Op, SelectionDAG &DAG,
3569                                           const RISCVSubtarget &Subtarget) {
3570   assert((Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3571           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN) &&
3572          "Unexpected opcode");
3573 
3574   if (!Subtarget.hasStdExtV())
3575     return SDValue();
3576 
3577   bool HasChain = Op.getOpcode() == ISD::INTRINSIC_W_CHAIN;
3578   unsigned IntNo = Op.getConstantOperandVal(HasChain ? 1 : 0);
3579   SDLoc DL(Op);
3580 
3581   const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II =
3582       RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo);
3583   if (!II || !II->SplatOperand)
3584     return SDValue();
3585 
3586   unsigned SplatOp = II->SplatOperand + HasChain;
3587   assert(SplatOp < Op.getNumOperands());
3588 
3589   SmallVector<SDValue, 8> Operands(Op->op_begin(), Op->op_end());
3590   SDValue &ScalarOp = Operands[SplatOp];
3591   MVT OpVT = ScalarOp.getSimpleValueType();
3592   MVT XLenVT = Subtarget.getXLenVT();
3593 
3594   // If this isn't a scalar, or its type is XLenVT we're done.
3595   if (!OpVT.isScalarInteger() || OpVT == XLenVT)
3596     return SDValue();
3597 
3598   // Simplest case is that the operand needs to be promoted to XLenVT.
3599   if (OpVT.bitsLT(XLenVT)) {
3600     // If the operand is a constant, sign extend to increase our chances
3601     // of being able to use a .vi instruction. ANY_EXTEND would become a
3602     // a zero extend and the simm5 check in isel would fail.
3603     // FIXME: Should we ignore the upper bits in isel instead?
3604     unsigned ExtOpc =
3605         isa<ConstantSDNode>(ScalarOp) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND;
3606     ScalarOp = DAG.getNode(ExtOpc, DL, XLenVT, ScalarOp);
3607     return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands);
3608   }
3609 
3610   // Use the previous operand to get the vXi64 VT. The result might be a mask
3611   // VT for compares. Using the previous operand assumes that the previous
3612   // operand will never have a smaller element size than a scalar operand and
3613   // that a widening operation never uses SEW=64.
3614   // NOTE: If this fails the below assert, we can probably just find the
3615   // element count from any operand or result and use it to construct the VT.
3616   assert(II->SplatOperand > 1 && "Unexpected splat operand!");
3617   MVT VT = Op.getOperand(SplatOp - 1).getSimpleValueType();
3618 
3619   // The more complex case is when the scalar is larger than XLenVT.
3620   assert(XLenVT == MVT::i32 && OpVT == MVT::i64 &&
3621          VT.getVectorElementType() == MVT::i64 && "Unexpected VTs!");
3622 
3623   // If this is a sign-extended 32-bit constant, we can truncate it and rely
3624   // on the instruction to sign-extend since SEW>XLEN.
3625   if (auto *CVal = dyn_cast<ConstantSDNode>(ScalarOp)) {
3626     if (isInt<32>(CVal->getSExtValue())) {
3627       ScalarOp = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32);
3628       return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands);
3629     }
3630   }
3631 
3632   // We need to convert the scalar to a splat vector.
3633   // FIXME: Can we implicitly truncate the scalar if it is known to
3634   // be sign extended?
3635   // VL should be the last operand.
3636   SDValue VL = Op.getOperand(Op.getNumOperands() - 1);
3637   assert(VL.getValueType() == XLenVT);
3638   ScalarOp = splatSplitI64WithVL(DL, VT, ScalarOp, VL, DAG);
3639   return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands);
3640 }
3641 
3642 SDValue RISCVTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
3643                                                      SelectionDAG &DAG) const {
3644   unsigned IntNo = Op.getConstantOperandVal(0);
3645   SDLoc DL(Op);
3646   MVT XLenVT = Subtarget.getXLenVT();
3647 
3648   switch (IntNo) {
3649   default:
3650     break; // Don't custom lower most intrinsics.
3651   case Intrinsic::thread_pointer: {
3652     EVT PtrVT = getPointerTy(DAG.getDataLayout());
3653     return DAG.getRegister(RISCV::X4, PtrVT);
3654   }
3655   case Intrinsic::riscv_orc_b:
3656     // Lower to the GORCI encoding for orc.b.
3657     return DAG.getNode(RISCVISD::GORC, DL, XLenVT, Op.getOperand(1),
3658                        DAG.getConstant(7, DL, XLenVT));
3659   case Intrinsic::riscv_grev:
3660   case Intrinsic::riscv_gorc: {
3661     unsigned Opc =
3662         IntNo == Intrinsic::riscv_grev ? RISCVISD::GREV : RISCVISD::GORC;
3663     return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2));
3664   }
3665   case Intrinsic::riscv_shfl:
3666   case Intrinsic::riscv_unshfl: {
3667     unsigned Opc =
3668         IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL;
3669     return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2));
3670   }
3671   case Intrinsic::riscv_bcompress:
3672   case Intrinsic::riscv_bdecompress: {
3673     unsigned Opc = IntNo == Intrinsic::riscv_bcompress ? RISCVISD::BCOMPRESS
3674                                                        : RISCVISD::BDECOMPRESS;
3675     return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2));
3676   }
3677   case Intrinsic::riscv_vmv_x_s:
3678     assert(Op.getValueType() == XLenVT && "Unexpected VT!");
3679     return DAG.getNode(RISCVISD::VMV_X_S, DL, Op.getValueType(),
3680                        Op.getOperand(1));
3681   case Intrinsic::riscv_vmv_v_x:
3682     return lowerScalarSplat(Op.getOperand(1), Op.getOperand(2),
3683                             Op.getSimpleValueType(), DL, DAG, Subtarget);
3684   case Intrinsic::riscv_vfmv_v_f:
3685     return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, Op.getValueType(),
3686                        Op.getOperand(1), Op.getOperand(2));
3687   case Intrinsic::riscv_vmv_s_x: {
3688     SDValue Scalar = Op.getOperand(2);
3689 
3690     if (Scalar.getValueType().bitsLE(XLenVT)) {
3691       Scalar = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Scalar);
3692       return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, Op.getValueType(),
3693                          Op.getOperand(1), Scalar, Op.getOperand(3));
3694     }
3695 
3696     assert(Scalar.getValueType() == MVT::i64 && "Unexpected scalar VT!");
3697 
3698     // This is an i64 value that lives in two scalar registers. We have to
3699     // insert this in a convoluted way. First we build vXi64 splat containing
3700     // the/ two values that we assemble using some bit math. Next we'll use
3701     // vid.v and vmseq to build a mask with bit 0 set. Then we'll use that mask
3702     // to merge element 0 from our splat into the source vector.
3703     // FIXME: This is probably not the best way to do this, but it is
3704     // consistent with INSERT_VECTOR_ELT lowering so it is a good starting
3705     // point.
3706     //   sw lo, (a0)
3707     //   sw hi, 4(a0)
3708     //   vlse vX, (a0)
3709     //
3710     //   vid.v      vVid
3711     //   vmseq.vx   mMask, vVid, 0
3712     //   vmerge.vvm vDest, vSrc, vVal, mMask
3713     MVT VT = Op.getSimpleValueType();
3714     SDValue Vec = Op.getOperand(1);
3715     SDValue VL = Op.getOperand(3);
3716 
3717     SDValue SplattedVal = splatSplitI64WithVL(DL, VT, Scalar, VL, DAG);
3718     SDValue SplattedIdx = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT,
3719                                       DAG.getConstant(0, DL, MVT::i32), VL);
3720 
3721     MVT MaskVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount());
3722     SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
3723     SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL);
3724     SDValue SelectCond =
3725         DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, VID, SplattedIdx,
3726                     DAG.getCondCode(ISD::SETEQ), Mask, VL);
3727     return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, SelectCond, SplattedVal,
3728                        Vec, VL);
3729   }
3730   case Intrinsic::riscv_vslide1up:
3731   case Intrinsic::riscv_vslide1down:
3732   case Intrinsic::riscv_vslide1up_mask:
3733   case Intrinsic::riscv_vslide1down_mask: {
3734     // We need to special case these when the scalar is larger than XLen.
3735     unsigned NumOps = Op.getNumOperands();
3736     bool IsMasked = NumOps == 6;
3737     unsigned OpOffset = IsMasked ? 1 : 0;
3738     SDValue Scalar = Op.getOperand(2 + OpOffset);
3739     if (Scalar.getValueType().bitsLE(XLenVT))
3740       break;
3741 
3742     // Splatting a sign extended constant is fine.
3743     if (auto *CVal = dyn_cast<ConstantSDNode>(Scalar))
3744       if (isInt<32>(CVal->getSExtValue()))
3745         break;
3746 
3747     MVT VT = Op.getSimpleValueType();
3748     assert(VT.getVectorElementType() == MVT::i64 &&
3749            Scalar.getValueType() == MVT::i64 && "Unexpected VTs");
3750 
3751     // Convert the vector source to the equivalent nxvXi32 vector.
3752     MVT I32VT = MVT::getVectorVT(MVT::i32, VT.getVectorElementCount() * 2);
3753     SDValue Vec = DAG.getBitcast(I32VT, Op.getOperand(1 + OpOffset));
3754 
3755     SDValue ScalarLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar,
3756                                    DAG.getConstant(0, DL, XLenVT));
3757     SDValue ScalarHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar,
3758                                    DAG.getConstant(1, DL, XLenVT));
3759 
3760     // Double the VL since we halved SEW.
3761     SDValue VL = Op.getOperand(NumOps - 1);
3762     SDValue I32VL =
3763         DAG.getNode(ISD::SHL, DL, XLenVT, VL, DAG.getConstant(1, DL, XLenVT));
3764 
3765     MVT I32MaskVT = MVT::getVectorVT(MVT::i1, I32VT.getVectorElementCount());
3766     SDValue I32Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, I32MaskVT, VL);
3767 
3768     // Shift the two scalar parts in using SEW=32 slide1up/slide1down
3769     // instructions.
3770     if (IntNo == Intrinsic::riscv_vslide1up ||
3771         IntNo == Intrinsic::riscv_vslide1up_mask) {
3772       Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Vec, ScalarHi,
3773                         I32Mask, I32VL);
3774       Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Vec, ScalarLo,
3775                         I32Mask, I32VL);
3776     } else {
3777       Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Vec, ScalarLo,
3778                         I32Mask, I32VL);
3779       Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Vec, ScalarHi,
3780                         I32Mask, I32VL);
3781     }
3782 
3783     // Convert back to nxvXi64.
3784     Vec = DAG.getBitcast(VT, Vec);
3785 
3786     if (!IsMasked)
3787       return Vec;
3788 
3789     // Apply mask after the operation.
3790     SDValue Mask = Op.getOperand(NumOps - 2);
3791     SDValue MaskedOff = Op.getOperand(1);
3792     return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, Mask, Vec, MaskedOff, VL);
3793   }
3794   }
3795 
3796   return lowerVectorIntrinsicSplats(Op, DAG, Subtarget);
3797 }
3798 
3799 SDValue RISCVTargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op,
3800                                                     SelectionDAG &DAG) const {
3801   return lowerVectorIntrinsicSplats(Op, DAG, Subtarget);
3802 }
3803 
3804 static MVT getLMUL1VT(MVT VT) {
3805   assert(VT.getVectorElementType().getSizeInBits() <= 64 &&
3806          "Unexpected vector MVT");
3807   return MVT::getScalableVectorVT(
3808       VT.getVectorElementType(),
3809       RISCV::RVVBitsPerBlock / VT.getVectorElementType().getSizeInBits());
3810 }
3811 
3812 static unsigned getRVVReductionOp(unsigned ISDOpcode) {
3813   switch (ISDOpcode) {
3814   default:
3815     llvm_unreachable("Unhandled reduction");
3816   case ISD::VECREDUCE_ADD:
3817     return RISCVISD::VECREDUCE_ADD_VL;
3818   case ISD::VECREDUCE_UMAX:
3819     return RISCVISD::VECREDUCE_UMAX_VL;
3820   case ISD::VECREDUCE_SMAX:
3821     return RISCVISD::VECREDUCE_SMAX_VL;
3822   case ISD::VECREDUCE_UMIN:
3823     return RISCVISD::VECREDUCE_UMIN_VL;
3824   case ISD::VECREDUCE_SMIN:
3825     return RISCVISD::VECREDUCE_SMIN_VL;
3826   case ISD::VECREDUCE_AND:
3827     return RISCVISD::VECREDUCE_AND_VL;
3828   case ISD::VECREDUCE_OR:
3829     return RISCVISD::VECREDUCE_OR_VL;
3830   case ISD::VECREDUCE_XOR:
3831     return RISCVISD::VECREDUCE_XOR_VL;
3832   }
3833 }
3834 
3835 SDValue RISCVTargetLowering::lowerVectorMaskVECREDUCE(SDValue Op,
3836                                                       SelectionDAG &DAG) const {
3837   SDLoc DL(Op);
3838   SDValue Vec = Op.getOperand(0);
3839   MVT VecVT = Vec.getSimpleValueType();
3840   assert((Op.getOpcode() == ISD::VECREDUCE_AND ||
3841           Op.getOpcode() == ISD::VECREDUCE_OR ||
3842           Op.getOpcode() == ISD::VECREDUCE_XOR) &&
3843          "Unexpected reduction lowering");
3844 
3845   MVT XLenVT = Subtarget.getXLenVT();
3846   assert(Op.getValueType() == XLenVT &&
3847          "Expected reduction output to be legalized to XLenVT");
3848 
3849   MVT ContainerVT = VecVT;
3850   if (VecVT.isFixedLengthVector()) {
3851     ContainerVT = getContainerForFixedLengthVector(VecVT);
3852     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
3853   }
3854 
3855   SDValue Mask, VL;
3856   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
3857   SDValue Zero = DAG.getConstant(0, DL, XLenVT);
3858 
3859   switch (Op.getOpcode()) {
3860   default:
3861     llvm_unreachable("Unhandled reduction");
3862   case ISD::VECREDUCE_AND:
3863     // vpopc ~x == 0
3864     Vec = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Vec, Mask, VL);
3865     Vec = DAG.getNode(RISCVISD::VPOPC_VL, DL, XLenVT, Vec, Mask, VL);
3866     return DAG.getSetCC(DL, XLenVT, Vec, Zero, ISD::SETEQ);
3867   case ISD::VECREDUCE_OR:
3868     // vpopc x != 0
3869     Vec = DAG.getNode(RISCVISD::VPOPC_VL, DL, XLenVT, Vec, Mask, VL);
3870     return DAG.getSetCC(DL, XLenVT, Vec, Zero, ISD::SETNE);
3871   case ISD::VECREDUCE_XOR: {
3872     // ((vpopc x) & 1) != 0
3873     SDValue One = DAG.getConstant(1, DL, XLenVT);
3874     Vec = DAG.getNode(RISCVISD::VPOPC_VL, DL, XLenVT, Vec, Mask, VL);
3875     Vec = DAG.getNode(ISD::AND, DL, XLenVT, Vec, One);
3876     return DAG.getSetCC(DL, XLenVT, Vec, Zero, ISD::SETNE);
3877   }
3878   }
3879 }
3880 
3881 SDValue RISCVTargetLowering::lowerVECREDUCE(SDValue Op,
3882                                             SelectionDAG &DAG) const {
3883   SDLoc DL(Op);
3884   SDValue Vec = Op.getOperand(0);
3885   EVT VecEVT = Vec.getValueType();
3886 
3887   unsigned BaseOpc = ISD::getVecReduceBaseOpcode(Op.getOpcode());
3888 
3889   // Due to ordering in legalize types we may have a vector type that needs to
3890   // be split. Do that manually so we can get down to a legal type.
3891   while (getTypeAction(*DAG.getContext(), VecEVT) ==
3892          TargetLowering::TypeSplitVector) {
3893     SDValue Lo, Hi;
3894     std::tie(Lo, Hi) = DAG.SplitVector(Vec, DL);
3895     VecEVT = Lo.getValueType();
3896     Vec = DAG.getNode(BaseOpc, DL, VecEVT, Lo, Hi);
3897   }
3898 
3899   // TODO: The type may need to be widened rather than split. Or widened before
3900   // it can be split.
3901   if (!isTypeLegal(VecEVT))
3902     return SDValue();
3903 
3904   MVT VecVT = VecEVT.getSimpleVT();
3905   MVT VecEltVT = VecVT.getVectorElementType();
3906   unsigned RVVOpcode = getRVVReductionOp(Op.getOpcode());
3907 
3908   MVT ContainerVT = VecVT;
3909   if (VecVT.isFixedLengthVector()) {
3910     ContainerVT = getContainerForFixedLengthVector(VecVT);
3911     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
3912   }
3913 
3914   MVT M1VT = getLMUL1VT(ContainerVT);
3915 
3916   SDValue Mask, VL;
3917   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
3918 
3919   // FIXME: This is a VLMAX splat which might be too large and can prevent
3920   // vsetvli removal.
3921   SDValue NeutralElem =
3922       DAG.getNeutralElement(BaseOpc, DL, VecEltVT, SDNodeFlags());
3923   SDValue IdentitySplat = DAG.getSplatVector(M1VT, DL, NeutralElem);
3924   SDValue Reduction =
3925       DAG.getNode(RVVOpcode, DL, M1VT, Vec, IdentitySplat, Mask, VL);
3926   SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction,
3927                              DAG.getConstant(0, DL, Subtarget.getXLenVT()));
3928   return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType());
3929 }
3930 
3931 // Given a reduction op, this function returns the matching reduction opcode,
3932 // the vector SDValue and the scalar SDValue required to lower this to a
3933 // RISCVISD node.
3934 static std::tuple<unsigned, SDValue, SDValue>
3935 getRVVFPReductionOpAndOperands(SDValue Op, SelectionDAG &DAG, EVT EltVT) {
3936   SDLoc DL(Op);
3937   auto Flags = Op->getFlags();
3938   unsigned Opcode = Op.getOpcode();
3939   unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Opcode);
3940   switch (Opcode) {
3941   default:
3942     llvm_unreachable("Unhandled reduction");
3943   case ISD::VECREDUCE_FADD:
3944     return std::make_tuple(RISCVISD::VECREDUCE_FADD_VL, Op.getOperand(0),
3945                            DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags));
3946   case ISD::VECREDUCE_SEQ_FADD:
3947     return std::make_tuple(RISCVISD::VECREDUCE_SEQ_FADD_VL, Op.getOperand(1),
3948                            Op.getOperand(0));
3949   case ISD::VECREDUCE_FMIN:
3950     return std::make_tuple(RISCVISD::VECREDUCE_FMIN_VL, Op.getOperand(0),
3951                            DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags));
3952   case ISD::VECREDUCE_FMAX:
3953     return std::make_tuple(RISCVISD::VECREDUCE_FMAX_VL, Op.getOperand(0),
3954                            DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags));
3955   }
3956 }
3957 
3958 SDValue RISCVTargetLowering::lowerFPVECREDUCE(SDValue Op,
3959                                               SelectionDAG &DAG) const {
3960   SDLoc DL(Op);
3961   MVT VecEltVT = Op.getSimpleValueType();
3962 
3963   unsigned RVVOpcode;
3964   SDValue VectorVal, ScalarVal;
3965   std::tie(RVVOpcode, VectorVal, ScalarVal) =
3966       getRVVFPReductionOpAndOperands(Op, DAG, VecEltVT);
3967   MVT VecVT = VectorVal.getSimpleValueType();
3968 
3969   MVT ContainerVT = VecVT;
3970   if (VecVT.isFixedLengthVector()) {
3971     ContainerVT = getContainerForFixedLengthVector(VecVT);
3972     VectorVal = convertToScalableVector(ContainerVT, VectorVal, DAG, Subtarget);
3973   }
3974 
3975   MVT M1VT = getLMUL1VT(VectorVal.getSimpleValueType());
3976 
3977   SDValue Mask, VL;
3978   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
3979 
3980   // FIXME: This is a VLMAX splat which might be too large and can prevent
3981   // vsetvli removal.
3982   SDValue ScalarSplat = DAG.getSplatVector(M1VT, DL, ScalarVal);
3983   SDValue Reduction =
3984       DAG.getNode(RVVOpcode, DL, M1VT, VectorVal, ScalarSplat, Mask, VL);
3985   return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction,
3986                      DAG.getConstant(0, DL, Subtarget.getXLenVT()));
3987 }
3988 
3989 SDValue RISCVTargetLowering::lowerINSERT_SUBVECTOR(SDValue Op,
3990                                                    SelectionDAG &DAG) const {
3991   SDValue Vec = Op.getOperand(0);
3992   SDValue SubVec = Op.getOperand(1);
3993   MVT VecVT = Vec.getSimpleValueType();
3994   MVT SubVecVT = SubVec.getSimpleValueType();
3995 
3996   SDLoc DL(Op);
3997   MVT XLenVT = Subtarget.getXLenVT();
3998   unsigned OrigIdx = Op.getConstantOperandVal(2);
3999   const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo();
4000 
4001   // We don't have the ability to slide mask vectors up indexed by their i1
4002   // elements; the smallest we can do is i8. Often we are able to bitcast to
4003   // equivalent i8 vectors. Note that when inserting a fixed-length vector
4004   // into a scalable one, we might not necessarily have enough scalable
4005   // elements to safely divide by 8: nxv1i1 = insert nxv1i1, v4i1 is valid.
4006   if (SubVecVT.getVectorElementType() == MVT::i1 &&
4007       (OrigIdx != 0 || !Vec.isUndef())) {
4008     if (VecVT.getVectorMinNumElements() >= 8 &&
4009         SubVecVT.getVectorMinNumElements() >= 8) {
4010       assert(OrigIdx % 8 == 0 && "Invalid index");
4011       assert(VecVT.getVectorMinNumElements() % 8 == 0 &&
4012              SubVecVT.getVectorMinNumElements() % 8 == 0 &&
4013              "Unexpected mask vector lowering");
4014       OrigIdx /= 8;
4015       SubVecVT =
4016           MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8,
4017                            SubVecVT.isScalableVector());
4018       VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8,
4019                                VecVT.isScalableVector());
4020       Vec = DAG.getBitcast(VecVT, Vec);
4021       SubVec = DAG.getBitcast(SubVecVT, SubVec);
4022     } else {
4023       // We can't slide this mask vector up indexed by its i1 elements.
4024       // This poses a problem when we wish to insert a scalable vector which
4025       // can't be re-expressed as a larger type. Just choose the slow path and
4026       // extend to a larger type, then truncate back down.
4027       MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8);
4028       MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8);
4029       Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec);
4030       SubVec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtSubVecVT, SubVec);
4031       Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ExtVecVT, Vec, SubVec,
4032                         Op.getOperand(2));
4033       SDValue SplatZero = DAG.getConstant(0, DL, ExtVecVT);
4034       return DAG.getSetCC(DL, VecVT, Vec, SplatZero, ISD::SETNE);
4035     }
4036   }
4037 
4038   // If the subvector vector is a fixed-length type, we cannot use subregister
4039   // manipulation to simplify the codegen; we don't know which register of a
4040   // LMUL group contains the specific subvector as we only know the minimum
4041   // register size. Therefore we must slide the vector group up the full
4042   // amount.
4043   if (SubVecVT.isFixedLengthVector()) {
4044     if (OrigIdx == 0 && Vec.isUndef())
4045       return Op;
4046     MVT ContainerVT = VecVT;
4047     if (VecVT.isFixedLengthVector()) {
4048       ContainerVT = getContainerForFixedLengthVector(VecVT);
4049       Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
4050     }
4051     SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ContainerVT,
4052                          DAG.getUNDEF(ContainerVT), SubVec,
4053                          DAG.getConstant(0, DL, XLenVT));
4054     SDValue Mask =
4055         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first;
4056     // Set the vector length to only the number of elements we care about. Note
4057     // that for slideup this includes the offset.
4058     SDValue VL =
4059         DAG.getConstant(OrigIdx + SubVecVT.getVectorNumElements(), DL, XLenVT);
4060     SDValue SlideupAmt = DAG.getConstant(OrigIdx, DL, XLenVT);
4061     SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec,
4062                                   SubVec, SlideupAmt, Mask, VL);
4063     if (VecVT.isFixedLengthVector())
4064       Slideup = convertFromScalableVector(VecVT, Slideup, DAG, Subtarget);
4065     return DAG.getBitcast(Op.getValueType(), Slideup);
4066   }
4067 
4068   unsigned SubRegIdx, RemIdx;
4069   std::tie(SubRegIdx, RemIdx) =
4070       RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs(
4071           VecVT, SubVecVT, OrigIdx, TRI);
4072 
4073   RISCVII::VLMUL SubVecLMUL = RISCVTargetLowering::getLMUL(SubVecVT);
4074   bool IsSubVecPartReg = SubVecLMUL == RISCVII::VLMUL::LMUL_F2 ||
4075                          SubVecLMUL == RISCVII::VLMUL::LMUL_F4 ||
4076                          SubVecLMUL == RISCVII::VLMUL::LMUL_F8;
4077 
4078   // 1. If the Idx has been completely eliminated and this subvector's size is
4079   // a vector register or a multiple thereof, or the surrounding elements are
4080   // undef, then this is a subvector insert which naturally aligns to a vector
4081   // register. These can easily be handled using subregister manipulation.
4082   // 2. If the subvector is smaller than a vector register, then the insertion
4083   // must preserve the undisturbed elements of the register. We do this by
4084   // lowering to an EXTRACT_SUBVECTOR grabbing the nearest LMUL=1 vector type
4085   // (which resolves to a subregister copy), performing a VSLIDEUP to place the
4086   // subvector within the vector register, and an INSERT_SUBVECTOR of that
4087   // LMUL=1 type back into the larger vector (resolving to another subregister
4088   // operation). See below for how our VSLIDEUP works. We go via a LMUL=1 type
4089   // to avoid allocating a large register group to hold our subvector.
4090   if (RemIdx == 0 && (!IsSubVecPartReg || Vec.isUndef()))
4091     return Op;
4092 
4093   // VSLIDEUP works by leaving elements 0<i<OFFSET undisturbed, elements
4094   // OFFSET<=i<VL set to the "subvector" and vl<=i<VLMAX set to the tail policy
4095   // (in our case undisturbed). This means we can set up a subvector insertion
4096   // where OFFSET is the insertion offset, and the VL is the OFFSET plus the
4097   // size of the subvector.
4098   MVT InterSubVT = VecVT;
4099   SDValue AlignedExtract = Vec;
4100   unsigned AlignedIdx = OrigIdx - RemIdx;
4101   if (VecVT.bitsGT(getLMUL1VT(VecVT))) {
4102     InterSubVT = getLMUL1VT(VecVT);
4103     // Extract a subvector equal to the nearest full vector register type. This
4104     // should resolve to a EXTRACT_SUBREG instruction.
4105     AlignedExtract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec,
4106                                  DAG.getConstant(AlignedIdx, DL, XLenVT));
4107   }
4108 
4109   SDValue SlideupAmt = DAG.getConstant(RemIdx, DL, XLenVT);
4110   // For scalable vectors this must be further multiplied by vscale.
4111   SlideupAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlideupAmt);
4112 
4113   SDValue Mask, VL;
4114   std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget);
4115 
4116   // Construct the vector length corresponding to RemIdx + length(SubVecVT).
4117   VL = DAG.getConstant(SubVecVT.getVectorMinNumElements(), DL, XLenVT);
4118   VL = DAG.getNode(ISD::VSCALE, DL, XLenVT, VL);
4119   VL = DAG.getNode(ISD::ADD, DL, XLenVT, SlideupAmt, VL);
4120 
4121   SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, InterSubVT,
4122                        DAG.getUNDEF(InterSubVT), SubVec,
4123                        DAG.getConstant(0, DL, XLenVT));
4124 
4125   SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, InterSubVT,
4126                                 AlignedExtract, SubVec, SlideupAmt, Mask, VL);
4127 
4128   // If required, insert this subvector back into the correct vector register.
4129   // This should resolve to an INSERT_SUBREG instruction.
4130   if (VecVT.bitsGT(InterSubVT))
4131     Slideup = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, Vec, Slideup,
4132                           DAG.getConstant(AlignedIdx, DL, XLenVT));
4133 
4134   // We might have bitcast from a mask type: cast back to the original type if
4135   // required.
4136   return DAG.getBitcast(Op.getSimpleValueType(), Slideup);
4137 }
4138 
4139 SDValue RISCVTargetLowering::lowerEXTRACT_SUBVECTOR(SDValue Op,
4140                                                     SelectionDAG &DAG) const {
4141   SDValue Vec = Op.getOperand(0);
4142   MVT SubVecVT = Op.getSimpleValueType();
4143   MVT VecVT = Vec.getSimpleValueType();
4144 
4145   SDLoc DL(Op);
4146   MVT XLenVT = Subtarget.getXLenVT();
4147   unsigned OrigIdx = Op.getConstantOperandVal(1);
4148   const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo();
4149 
4150   // We don't have the ability to slide mask vectors down indexed by their i1
4151   // elements; the smallest we can do is i8. Often we are able to bitcast to
4152   // equivalent i8 vectors. Note that when extracting a fixed-length vector
4153   // from a scalable one, we might not necessarily have enough scalable
4154   // elements to safely divide by 8: v8i1 = extract nxv1i1 is valid.
4155   if (SubVecVT.getVectorElementType() == MVT::i1 && OrigIdx != 0) {
4156     if (VecVT.getVectorMinNumElements() >= 8 &&
4157         SubVecVT.getVectorMinNumElements() >= 8) {
4158       assert(OrigIdx % 8 == 0 && "Invalid index");
4159       assert(VecVT.getVectorMinNumElements() % 8 == 0 &&
4160              SubVecVT.getVectorMinNumElements() % 8 == 0 &&
4161              "Unexpected mask vector lowering");
4162       OrigIdx /= 8;
4163       SubVecVT =
4164           MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8,
4165                            SubVecVT.isScalableVector());
4166       VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8,
4167                                VecVT.isScalableVector());
4168       Vec = DAG.getBitcast(VecVT, Vec);
4169     } else {
4170       // We can't slide this mask vector down, indexed by its i1 elements.
4171       // This poses a problem when we wish to extract a scalable vector which
4172       // can't be re-expressed as a larger type. Just choose the slow path and
4173       // extend to a larger type, then truncate back down.
4174       // TODO: We could probably improve this when extracting certain fixed
4175       // from fixed, where we can extract as i8 and shift the correct element
4176       // right to reach the desired subvector?
4177       MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8);
4178       MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8);
4179       Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec);
4180       Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ExtSubVecVT, Vec,
4181                         Op.getOperand(1));
4182       SDValue SplatZero = DAG.getConstant(0, DL, ExtSubVecVT);
4183       return DAG.getSetCC(DL, SubVecVT, Vec, SplatZero, ISD::SETNE);
4184     }
4185   }
4186 
4187   // If the subvector vector is a fixed-length type, we cannot use subregister
4188   // manipulation to simplify the codegen; we don't know which register of a
4189   // LMUL group contains the specific subvector as we only know the minimum
4190   // register size. Therefore we must slide the vector group down the full
4191   // amount.
4192   if (SubVecVT.isFixedLengthVector()) {
4193     // With an index of 0 this is a cast-like subvector, which can be performed
4194     // with subregister operations.
4195     if (OrigIdx == 0)
4196       return Op;
4197     MVT ContainerVT = VecVT;
4198     if (VecVT.isFixedLengthVector()) {
4199       ContainerVT = getContainerForFixedLengthVector(VecVT);
4200       Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
4201     }
4202     SDValue Mask =
4203         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first;
4204     // Set the vector length to only the number of elements we care about. This
4205     // avoids sliding down elements we're going to discard straight away.
4206     SDValue VL = DAG.getConstant(SubVecVT.getVectorNumElements(), DL, XLenVT);
4207     SDValue SlidedownAmt = DAG.getConstant(OrigIdx, DL, XLenVT);
4208     SDValue Slidedown =
4209         DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT,
4210                     DAG.getUNDEF(ContainerVT), Vec, SlidedownAmt, Mask, VL);
4211     // Now we can use a cast-like subvector extract to get the result.
4212     Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown,
4213                             DAG.getConstant(0, DL, XLenVT));
4214     return DAG.getBitcast(Op.getValueType(), Slidedown);
4215   }
4216 
4217   unsigned SubRegIdx, RemIdx;
4218   std::tie(SubRegIdx, RemIdx) =
4219       RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs(
4220           VecVT, SubVecVT, OrigIdx, TRI);
4221 
4222   // If the Idx has been completely eliminated then this is a subvector extract
4223   // which naturally aligns to a vector register. These can easily be handled
4224   // using subregister manipulation.
4225   if (RemIdx == 0)
4226     return Op;
4227 
4228   // Else we must shift our vector register directly to extract the subvector.
4229   // Do this using VSLIDEDOWN.
4230 
4231   // If the vector type is an LMUL-group type, extract a subvector equal to the
4232   // nearest full vector register type. This should resolve to a EXTRACT_SUBREG
4233   // instruction.
4234   MVT InterSubVT = VecVT;
4235   if (VecVT.bitsGT(getLMUL1VT(VecVT))) {
4236     InterSubVT = getLMUL1VT(VecVT);
4237     Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec,
4238                       DAG.getConstant(OrigIdx - RemIdx, DL, XLenVT));
4239   }
4240 
4241   // Slide this vector register down by the desired number of elements in order
4242   // to place the desired subvector starting at element 0.
4243   SDValue SlidedownAmt = DAG.getConstant(RemIdx, DL, XLenVT);
4244   // For scalable vectors this must be further multiplied by vscale.
4245   SlidedownAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlidedownAmt);
4246 
4247   SDValue Mask, VL;
4248   std::tie(Mask, VL) = getDefaultScalableVLOps(InterSubVT, DL, DAG, Subtarget);
4249   SDValue Slidedown =
4250       DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, InterSubVT,
4251                   DAG.getUNDEF(InterSubVT), Vec, SlidedownAmt, Mask, VL);
4252 
4253   // Now the vector is in the right position, extract our final subvector. This
4254   // should resolve to a COPY.
4255   Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown,
4256                           DAG.getConstant(0, DL, XLenVT));
4257 
4258   // We might have bitcast from a mask type: cast back to the original type if
4259   // required.
4260   return DAG.getBitcast(Op.getSimpleValueType(), Slidedown);
4261 }
4262 
4263 // Lower step_vector to the vid instruction. Any non-identity step value must
4264 // be accounted for my manual expansion.
4265 SDValue RISCVTargetLowering::lowerSTEP_VECTOR(SDValue Op,
4266                                               SelectionDAG &DAG) const {
4267   SDLoc DL(Op);
4268   MVT VT = Op.getSimpleValueType();
4269   MVT XLenVT = Subtarget.getXLenVT();
4270   SDValue Mask, VL;
4271   std::tie(Mask, VL) = getDefaultScalableVLOps(VT, DL, DAG, Subtarget);
4272   SDValue StepVec = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL);
4273   uint64_t StepValImm = Op.getConstantOperandVal(0);
4274   if (StepValImm != 1) {
4275     if (isPowerOf2_64(StepValImm)) {
4276       SDValue StepVal =
4277           DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT,
4278                       DAG.getConstant(Log2_64(StepValImm), DL, XLenVT));
4279       StepVec = DAG.getNode(ISD::SHL, DL, VT, StepVec, StepVal);
4280     } else {
4281       SDValue StepVal = lowerScalarSplat(
4282           DAG.getConstant(StepValImm, DL, VT.getVectorElementType()), VL, VT,
4283           DL, DAG, Subtarget);
4284       StepVec = DAG.getNode(ISD::MUL, DL, VT, StepVec, StepVal);
4285     }
4286   }
4287   return StepVec;
4288 }
4289 
4290 // Implement vector_reverse using vrgather.vv with indices determined by
4291 // subtracting the id of each element from (VLMAX-1). This will convert
4292 // the indices like so:
4293 // (0, 1,..., VLMAX-2, VLMAX-1) -> (VLMAX-1, VLMAX-2,..., 1, 0).
4294 // TODO: This code assumes VLMAX <= 65536 for LMUL=8 SEW=16.
4295 SDValue RISCVTargetLowering::lowerVECTOR_REVERSE(SDValue Op,
4296                                                  SelectionDAG &DAG) const {
4297   SDLoc DL(Op);
4298   MVT VecVT = Op.getSimpleValueType();
4299   unsigned EltSize = VecVT.getScalarSizeInBits();
4300   unsigned MinSize = VecVT.getSizeInBits().getKnownMinValue();
4301 
4302   unsigned MaxVLMAX = 0;
4303   unsigned VectorBitsMax = Subtarget.getMaxRVVVectorSizeInBits();
4304   if (VectorBitsMax != 0)
4305     MaxVLMAX = ((VectorBitsMax / EltSize) * MinSize) / RISCV::RVVBitsPerBlock;
4306 
4307   unsigned GatherOpc = RISCVISD::VRGATHER_VV_VL;
4308   MVT IntVT = VecVT.changeVectorElementTypeToInteger();
4309 
4310   // If this is SEW=8 and VLMAX is unknown or more than 256, we need
4311   // to use vrgatherei16.vv.
4312   // TODO: It's also possible to use vrgatherei16.vv for other types to
4313   // decrease register width for the index calculation.
4314   if ((MaxVLMAX == 0 || MaxVLMAX > 256) && EltSize == 8) {
4315     // If this is LMUL=8, we have to split before can use vrgatherei16.vv.
4316     // Reverse each half, then reassemble them in reverse order.
4317     // NOTE: It's also possible that after splitting that VLMAX no longer
4318     // requires vrgatherei16.vv.
4319     if (MinSize == (8 * RISCV::RVVBitsPerBlock)) {
4320       SDValue Lo, Hi;
4321       std::tie(Lo, Hi) = DAG.SplitVectorOperand(Op.getNode(), 0);
4322       EVT LoVT, HiVT;
4323       std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VecVT);
4324       Lo = DAG.getNode(ISD::VECTOR_REVERSE, DL, LoVT, Lo);
4325       Hi = DAG.getNode(ISD::VECTOR_REVERSE, DL, HiVT, Hi);
4326       // Reassemble the low and high pieces reversed.
4327       // FIXME: This is a CONCAT_VECTORS.
4328       SDValue Res =
4329           DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, DAG.getUNDEF(VecVT), Hi,
4330                       DAG.getIntPtrConstant(0, DL));
4331       return DAG.getNode(
4332           ISD::INSERT_SUBVECTOR, DL, VecVT, Res, Lo,
4333           DAG.getIntPtrConstant(LoVT.getVectorMinNumElements(), DL));
4334     }
4335 
4336     // Just promote the int type to i16 which will double the LMUL.
4337     IntVT = MVT::getVectorVT(MVT::i16, VecVT.getVectorElementCount());
4338     GatherOpc = RISCVISD::VRGATHEREI16_VV_VL;
4339   }
4340 
4341   MVT XLenVT = Subtarget.getXLenVT();
4342   SDValue Mask, VL;
4343   std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget);
4344 
4345   // Calculate VLMAX-1 for the desired SEW.
4346   unsigned MinElts = VecVT.getVectorMinNumElements();
4347   SDValue VLMax = DAG.getNode(ISD::VSCALE, DL, XLenVT,
4348                               DAG.getConstant(MinElts, DL, XLenVT));
4349   SDValue VLMinus1 =
4350       DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, DAG.getConstant(1, DL, XLenVT));
4351 
4352   // Splat VLMAX-1 taking care to handle SEW==64 on RV32.
4353   bool IsRV32E64 =
4354       !Subtarget.is64Bit() && IntVT.getVectorElementType() == MVT::i64;
4355   SDValue SplatVL;
4356   if (!IsRV32E64)
4357     SplatVL = DAG.getSplatVector(IntVT, DL, VLMinus1);
4358   else
4359     SplatVL = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, IntVT, VLMinus1);
4360 
4361   SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, IntVT, Mask, VL);
4362   SDValue Indices =
4363       DAG.getNode(RISCVISD::SUB_VL, DL, IntVT, SplatVL, VID, Mask, VL);
4364 
4365   return DAG.getNode(GatherOpc, DL, VecVT, Op.getOperand(0), Indices, Mask, VL);
4366 }
4367 
4368 SDValue
4369 RISCVTargetLowering::lowerFixedLengthVectorLoadToRVV(SDValue Op,
4370                                                      SelectionDAG &DAG) const {
4371   SDLoc DL(Op);
4372   auto *Load = cast<LoadSDNode>(Op);
4373 
4374   assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
4375                                         Load->getMemoryVT(),
4376                                         *Load->getMemOperand()) &&
4377          "Expecting a correctly-aligned load");
4378 
4379   MVT VT = Op.getSimpleValueType();
4380   MVT ContainerVT = getContainerForFixedLengthVector(VT);
4381 
4382   SDValue VL =
4383       DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT());
4384 
4385   SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
4386   SDValue NewLoad = DAG.getMemIntrinsicNode(
4387       RISCVISD::VLE_VL, DL, VTs, {Load->getChain(), Load->getBasePtr(), VL},
4388       Load->getMemoryVT(), Load->getMemOperand());
4389 
4390   SDValue Result = convertFromScalableVector(VT, NewLoad, DAG, Subtarget);
4391   return DAG.getMergeValues({Result, Load->getChain()}, DL);
4392 }
4393 
4394 SDValue
4395 RISCVTargetLowering::lowerFixedLengthVectorStoreToRVV(SDValue Op,
4396                                                       SelectionDAG &DAG) const {
4397   SDLoc DL(Op);
4398   auto *Store = cast<StoreSDNode>(Op);
4399 
4400   assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
4401                                         Store->getMemoryVT(),
4402                                         *Store->getMemOperand()) &&
4403          "Expecting a correctly-aligned store");
4404 
4405   SDValue StoreVal = Store->getValue();
4406   MVT VT = StoreVal.getSimpleValueType();
4407 
4408   // If the size less than a byte, we need to pad with zeros to make a byte.
4409   if (VT.getVectorElementType() == MVT::i1 && VT.getVectorNumElements() < 8) {
4410     VT = MVT::v8i1;
4411     StoreVal = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT,
4412                            DAG.getConstant(0, DL, VT), StoreVal,
4413                            DAG.getIntPtrConstant(0, DL));
4414   }
4415 
4416   MVT ContainerVT = getContainerForFixedLengthVector(VT);
4417 
4418   SDValue VL =
4419       DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT());
4420 
4421   SDValue NewValue =
4422       convertToScalableVector(ContainerVT, StoreVal, DAG, Subtarget);
4423   return DAG.getMemIntrinsicNode(
4424       RISCVISD::VSE_VL, DL, DAG.getVTList(MVT::Other),
4425       {Store->getChain(), NewValue, Store->getBasePtr(), VL},
4426       Store->getMemoryVT(), Store->getMemOperand());
4427 }
4428 
4429 SDValue RISCVTargetLowering::lowerMLOAD(SDValue Op, SelectionDAG &DAG) const {
4430   auto *Load = cast<MaskedLoadSDNode>(Op);
4431 
4432   SDLoc DL(Op);
4433   MVT VT = Op.getSimpleValueType();
4434   MVT XLenVT = Subtarget.getXLenVT();
4435 
4436   SDValue Mask = Load->getMask();
4437   SDValue PassThru = Load->getPassThru();
4438   SDValue VL;
4439 
4440   MVT ContainerVT = VT;
4441   if (VT.isFixedLengthVector()) {
4442     ContainerVT = getContainerForFixedLengthVector(VT);
4443     MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
4444 
4445     Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
4446     PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget);
4447     VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT);
4448   } else
4449     VL = DAG.getRegister(RISCV::X0, XLenVT);
4450 
4451   SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
4452   SDValue IntID = DAG.getTargetConstant(Intrinsic::riscv_vle_mask, DL, XLenVT);
4453   SDValue Ops[] = {Load->getChain(),   IntID, PassThru,
4454                    Load->getBasePtr(), Mask,  VL};
4455   SDValue Result =
4456       DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops,
4457                               Load->getMemoryVT(), Load->getMemOperand());
4458   SDValue Chain = Result.getValue(1);
4459 
4460   if (VT.isFixedLengthVector())
4461     Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
4462 
4463   return DAG.getMergeValues({Result, Chain}, DL);
4464 }
4465 
4466 SDValue RISCVTargetLowering::lowerMSTORE(SDValue Op, SelectionDAG &DAG) const {
4467   auto *Store = cast<MaskedStoreSDNode>(Op);
4468 
4469   SDLoc DL(Op);
4470   SDValue Val = Store->getValue();
4471   SDValue Mask = Store->getMask();
4472   MVT VT = Val.getSimpleValueType();
4473   MVT XLenVT = Subtarget.getXLenVT();
4474   SDValue VL;
4475 
4476   MVT ContainerVT = VT;
4477   if (VT.isFixedLengthVector()) {
4478     ContainerVT = getContainerForFixedLengthVector(VT);
4479     MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
4480 
4481     Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget);
4482     Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
4483     VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT);
4484   } else
4485     VL = DAG.getRegister(RISCV::X0, XLenVT);
4486 
4487   SDValue IntID = DAG.getTargetConstant(Intrinsic::riscv_vse_mask, DL, XLenVT);
4488   return DAG.getMemIntrinsicNode(
4489       ISD::INTRINSIC_VOID, DL, DAG.getVTList(MVT::Other),
4490       {Store->getChain(), IntID, Val, Store->getBasePtr(), Mask, VL},
4491       Store->getMemoryVT(), Store->getMemOperand());
4492 }
4493 
4494 SDValue
4495 RISCVTargetLowering::lowerFixedLengthVectorSetccToRVV(SDValue Op,
4496                                                       SelectionDAG &DAG) const {
4497   MVT InVT = Op.getOperand(0).getSimpleValueType();
4498   MVT ContainerVT = getContainerForFixedLengthVector(InVT);
4499 
4500   MVT VT = Op.getSimpleValueType();
4501 
4502   SDValue Op1 =
4503       convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget);
4504   SDValue Op2 =
4505       convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget);
4506 
4507   SDLoc DL(Op);
4508   SDValue VL =
4509       DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT());
4510 
4511   MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
4512   SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
4513 
4514   SDValue Cmp = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, Op1, Op2,
4515                             Op.getOperand(2), Mask, VL);
4516 
4517   return convertFromScalableVector(VT, Cmp, DAG, Subtarget);
4518 }
4519 
4520 SDValue RISCVTargetLowering::lowerFixedLengthVectorLogicOpToRVV(
4521     SDValue Op, SelectionDAG &DAG, unsigned MaskOpc, unsigned VecOpc) const {
4522   MVT VT = Op.getSimpleValueType();
4523 
4524   if (VT.getVectorElementType() == MVT::i1)
4525     return lowerToScalableOp(Op, DAG, MaskOpc, /*HasMask*/ false);
4526 
4527   return lowerToScalableOp(Op, DAG, VecOpc, /*HasMask*/ true);
4528 }
4529 
4530 SDValue
4531 RISCVTargetLowering::lowerFixedLengthVectorShiftToRVV(SDValue Op,
4532                                                       SelectionDAG &DAG) const {
4533   unsigned Opc;
4534   switch (Op.getOpcode()) {
4535   default: llvm_unreachable("Unexpected opcode!");
4536   case ISD::SHL: Opc = RISCVISD::SHL_VL; break;
4537   case ISD::SRA: Opc = RISCVISD::SRA_VL; break;
4538   case ISD::SRL: Opc = RISCVISD::SRL_VL; break;
4539   }
4540 
4541   return lowerToScalableOp(Op, DAG, Opc);
4542 }
4543 
4544 // Lower vector ABS to smax(X, sub(0, X)).
4545 SDValue RISCVTargetLowering::lowerABS(SDValue Op, SelectionDAG &DAG) const {
4546   SDLoc DL(Op);
4547   MVT VT = Op.getSimpleValueType();
4548   SDValue X = Op.getOperand(0);
4549 
4550   assert(VT.isFixedLengthVector() && "Unexpected type");
4551 
4552   MVT ContainerVT = getContainerForFixedLengthVector(VT);
4553   X = convertToScalableVector(ContainerVT, X, DAG, Subtarget);
4554 
4555   SDValue Mask, VL;
4556   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
4557 
4558   SDValue SplatZero =
4559       DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
4560                   DAG.getConstant(0, DL, Subtarget.getXLenVT()));
4561   SDValue NegX =
4562       DAG.getNode(RISCVISD::SUB_VL, DL, ContainerVT, SplatZero, X, Mask, VL);
4563   SDValue Max =
4564       DAG.getNode(RISCVISD::SMAX_VL, DL, ContainerVT, X, NegX, Mask, VL);
4565 
4566   return convertFromScalableVector(VT, Max, DAG, Subtarget);
4567 }
4568 
4569 SDValue RISCVTargetLowering::lowerFixedLengthVectorFCOPYSIGNToRVV(
4570     SDValue Op, SelectionDAG &DAG) const {
4571   SDLoc DL(Op);
4572   MVT VT = Op.getSimpleValueType();
4573   SDValue Mag = Op.getOperand(0);
4574   SDValue Sign = Op.getOperand(1);
4575   assert(Mag.getValueType() == Sign.getValueType() &&
4576          "Can only handle COPYSIGN with matching types.");
4577 
4578   MVT ContainerVT = getContainerForFixedLengthVector(VT);
4579   Mag = convertToScalableVector(ContainerVT, Mag, DAG, Subtarget);
4580   Sign = convertToScalableVector(ContainerVT, Sign, DAG, Subtarget);
4581 
4582   SDValue Mask, VL;
4583   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
4584 
4585   SDValue CopySign =
4586       DAG.getNode(RISCVISD::FCOPYSIGN_VL, DL, ContainerVT, Mag, Sign, Mask, VL);
4587 
4588   return convertFromScalableVector(VT, CopySign, DAG, Subtarget);
4589 }
4590 
4591 SDValue RISCVTargetLowering::lowerFixedLengthVectorSelectToRVV(
4592     SDValue Op, SelectionDAG &DAG) const {
4593   MVT VT = Op.getSimpleValueType();
4594   MVT ContainerVT = getContainerForFixedLengthVector(VT);
4595 
4596   MVT I1ContainerVT =
4597       MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
4598 
4599   SDValue CC =
4600       convertToScalableVector(I1ContainerVT, Op.getOperand(0), DAG, Subtarget);
4601   SDValue Op1 =
4602       convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget);
4603   SDValue Op2 =
4604       convertToScalableVector(ContainerVT, Op.getOperand(2), DAG, Subtarget);
4605 
4606   SDLoc DL(Op);
4607   SDValue Mask, VL;
4608   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
4609 
4610   SDValue Select =
4611       DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC, Op1, Op2, VL);
4612 
4613   return convertFromScalableVector(VT, Select, DAG, Subtarget);
4614 }
4615 
4616 SDValue RISCVTargetLowering::lowerToScalableOp(SDValue Op, SelectionDAG &DAG,
4617                                                unsigned NewOpc,
4618                                                bool HasMask) const {
4619   MVT VT = Op.getSimpleValueType();
4620   MVT ContainerVT = getContainerForFixedLengthVector(VT);
4621 
4622   // Create list of operands by converting existing ones to scalable types.
4623   SmallVector<SDValue, 6> Ops;
4624   for (const SDValue &V : Op->op_values()) {
4625     assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!");
4626 
4627     // Pass through non-vector operands.
4628     if (!V.getValueType().isVector()) {
4629       Ops.push_back(V);
4630       continue;
4631     }
4632 
4633     // "cast" fixed length vector to a scalable vector.
4634     assert(useRVVForFixedLengthVectorVT(V.getSimpleValueType()) &&
4635            "Only fixed length vectors are supported!");
4636     Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget));
4637   }
4638 
4639   SDLoc DL(Op);
4640   SDValue Mask, VL;
4641   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
4642   if (HasMask)
4643     Ops.push_back(Mask);
4644   Ops.push_back(VL);
4645 
4646   SDValue ScalableRes = DAG.getNode(NewOpc, DL, ContainerVT, Ops);
4647   return convertFromScalableVector(VT, ScalableRes, DAG, Subtarget);
4648 }
4649 
4650 // Lower a VP_* ISD node to the corresponding RISCVISD::*_VL node:
4651 // * Operands of each node are assumed to be in the same order.
4652 // * The EVL operand is promoted from i32 to i64 on RV64.
4653 // * Fixed-length vectors are converted to their scalable-vector container
4654 //   types.
4655 SDValue RISCVTargetLowering::lowerVPOp(SDValue Op, SelectionDAG &DAG,
4656                                        unsigned RISCVISDOpc) const {
4657   SDLoc DL(Op);
4658   MVT VT = Op.getSimpleValueType();
4659   SmallVector<SDValue, 4> Ops;
4660 
4661   for (const auto &OpIdx : enumerate(Op->ops())) {
4662     SDValue V = OpIdx.value();
4663     assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!");
4664     // Pass through operands which aren't fixed-length vectors.
4665     if (!V.getValueType().isFixedLengthVector()) {
4666       Ops.push_back(V);
4667       continue;
4668     }
4669     // "cast" fixed length vector to a scalable vector.
4670     MVT OpVT = V.getSimpleValueType();
4671     MVT ContainerVT = getContainerForFixedLengthVector(OpVT);
4672     assert(useRVVForFixedLengthVectorVT(OpVT) &&
4673            "Only fixed length vectors are supported!");
4674     Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget));
4675   }
4676 
4677   if (!VT.isFixedLengthVector())
4678     return DAG.getNode(RISCVISDOpc, DL, VT, Ops);
4679 
4680   MVT ContainerVT = getContainerForFixedLengthVector(VT);
4681 
4682   SDValue VPOp = DAG.getNode(RISCVISDOpc, DL, ContainerVT, Ops);
4683 
4684   return convertFromScalableVector(VT, VPOp, DAG, Subtarget);
4685 }
4686 
4687 // Custom lower MGATHER to a legalized form for RVV. It will then be matched to
4688 // a RVV indexed load. The RVV indexed load instructions only support the
4689 // "unsigned unscaled" addressing mode; indices are implicitly zero-extended or
4690 // truncated to XLEN and are treated as byte offsets. Any signed or scaled
4691 // indexing is extended to the XLEN value type and scaled accordingly.
4692 SDValue RISCVTargetLowering::lowerMGATHER(SDValue Op, SelectionDAG &DAG) const {
4693   auto *MGN = cast<MaskedGatherSDNode>(Op.getNode());
4694   SDLoc DL(Op);
4695 
4696   SDValue Index = MGN->getIndex();
4697   SDValue Mask = MGN->getMask();
4698   SDValue PassThru = MGN->getPassThru();
4699 
4700   MVT VT = Op.getSimpleValueType();
4701   MVT IndexVT = Index.getSimpleValueType();
4702   MVT XLenVT = Subtarget.getXLenVT();
4703 
4704   assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() &&
4705          "Unexpected VTs!");
4706   assert(MGN->getBasePtr().getSimpleValueType() == XLenVT &&
4707          "Unexpected pointer type");
4708   // Targets have to explicitly opt-in for extending vector loads.
4709   assert(MGN->getExtensionType() == ISD::NON_EXTLOAD &&
4710          "Unexpected extending MGATHER");
4711 
4712   // If the mask is known to be all ones, optimize to an unmasked intrinsic;
4713   // the selection of the masked intrinsics doesn't do this for us.
4714   bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
4715 
4716   SDValue VL;
4717   MVT ContainerVT = VT;
4718   if (VT.isFixedLengthVector()) {
4719     // We need to use the larger of the result and index type to determine the
4720     // scalable type to use so we don't increase LMUL for any operand/result.
4721     if (VT.bitsGE(IndexVT)) {
4722       ContainerVT = getContainerForFixedLengthVector(VT);
4723       IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(),
4724                                  ContainerVT.getVectorElementCount());
4725     } else {
4726       IndexVT = getContainerForFixedLengthVector(IndexVT);
4727       ContainerVT = MVT::getVectorVT(ContainerVT.getVectorElementType(),
4728                                      IndexVT.getVectorElementCount());
4729     }
4730 
4731     Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget);
4732 
4733     if (!IsUnmasked) {
4734       MVT MaskVT =
4735           MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
4736       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
4737       PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget);
4738     }
4739 
4740     VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT);
4741   } else
4742     VL = DAG.getRegister(RISCV::X0, XLenVT);
4743 
4744   unsigned IntID =
4745       IsUnmasked ? Intrinsic::riscv_vluxei : Intrinsic::riscv_vluxei_mask;
4746   SmallVector<SDValue, 8> Ops{MGN->getChain(),
4747                               DAG.getTargetConstant(IntID, DL, XLenVT)};
4748   if (!IsUnmasked)
4749     Ops.push_back(PassThru);
4750   Ops.push_back(MGN->getBasePtr());
4751   Ops.push_back(Index);
4752   if (!IsUnmasked)
4753     Ops.push_back(Mask);
4754   Ops.push_back(VL);
4755 
4756   SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
4757   SDValue Result =
4758       DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops,
4759                               MGN->getMemoryVT(), MGN->getMemOperand());
4760   SDValue Chain = Result.getValue(1);
4761 
4762   if (VT.isFixedLengthVector())
4763     Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
4764 
4765   return DAG.getMergeValues({Result, Chain}, DL);
4766 }
4767 
4768 // Custom lower MSCATTER to a legalized form for RVV. It will then be matched to
4769 // a RVV indexed store. The RVV indexed store instructions only support the
4770 // "unsigned unscaled" addressing mode; indices are implicitly zero-extended or
4771 // truncated to XLEN and are treated as byte offsets. Any signed or scaled
4772 // indexing is extended to the XLEN value type and scaled accordingly.
4773 SDValue RISCVTargetLowering::lowerMSCATTER(SDValue Op,
4774                                            SelectionDAG &DAG) const {
4775   auto *MSN = cast<MaskedScatterSDNode>(Op.getNode());
4776   SDLoc DL(Op);
4777   SDValue Index = MSN->getIndex();
4778   SDValue Mask = MSN->getMask();
4779   SDValue Val = MSN->getValue();
4780 
4781   MVT VT = Val.getSimpleValueType();
4782   MVT IndexVT = Index.getSimpleValueType();
4783   MVT XLenVT = Subtarget.getXLenVT();
4784 
4785   assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() &&
4786          "Unexpected VTs!");
4787   assert(MSN->getBasePtr().getSimpleValueType() == XLenVT &&
4788          "Unexpected pointer type");
4789   // Targets have to explicitly opt-in for extending vector loads and
4790   // truncating vector stores.
4791   assert(!MSN->isTruncatingStore() && "Unexpected extending MSCATTER");
4792 
4793   // If the mask is known to be all ones, optimize to an unmasked intrinsic;
4794   // the selection of the masked intrinsics doesn't do this for us.
4795   bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
4796 
4797   SDValue VL;
4798   if (VT.isFixedLengthVector()) {
4799     // We need to use the larger of the value and index type to determine the
4800     // scalable type to use so we don't increase LMUL for any operand/result.
4801     MVT ContainerVT;
4802     if (VT.bitsGE(IndexVT)) {
4803       ContainerVT = getContainerForFixedLengthVector(VT);
4804       IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(),
4805                                  ContainerVT.getVectorElementCount());
4806     } else {
4807       IndexVT = getContainerForFixedLengthVector(IndexVT);
4808       ContainerVT = MVT::getVectorVT(VT.getVectorElementType(),
4809                                      IndexVT.getVectorElementCount());
4810     }
4811 
4812     Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget);
4813     Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget);
4814 
4815     if (!IsUnmasked) {
4816       MVT MaskVT =
4817           MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
4818       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
4819     }
4820 
4821     VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT);
4822   } else
4823     VL = DAG.getRegister(RISCV::X0, XLenVT);
4824 
4825   unsigned IntID =
4826       IsUnmasked ? Intrinsic::riscv_vsoxei : Intrinsic::riscv_vsoxei_mask;
4827   SmallVector<SDValue, 8> Ops{MSN->getChain(),
4828                               DAG.getTargetConstant(IntID, DL, XLenVT)};
4829   Ops.push_back(Val);
4830   Ops.push_back(MSN->getBasePtr());
4831   Ops.push_back(Index);
4832   if (!IsUnmasked)
4833     Ops.push_back(Mask);
4834   Ops.push_back(VL);
4835 
4836   return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, MSN->getVTList(), Ops,
4837                                  MSN->getMemoryVT(), MSN->getMemOperand());
4838 }
4839 
4840 SDValue RISCVTargetLowering::lowerGET_ROUNDING(SDValue Op,
4841                                                SelectionDAG &DAG) const {
4842   const MVT XLenVT = Subtarget.getXLenVT();
4843   SDLoc DL(Op);
4844   SDValue Chain = Op->getOperand(0);
4845   SDValue SysRegNo = DAG.getConstant(
4846       RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT);
4847   SDVTList VTs = DAG.getVTList(XLenVT, MVT::Other);
4848   SDValue RM = DAG.getNode(RISCVISD::READ_CSR, DL, VTs, Chain, SysRegNo);
4849 
4850   // Encoding used for rounding mode in RISCV differs from that used in
4851   // FLT_ROUNDS. To convert it the RISCV rounding mode is used as an index in a
4852   // table, which consists of a sequence of 4-bit fields, each representing
4853   // corresponding FLT_ROUNDS mode.
4854   static const int Table =
4855       (int(RoundingMode::NearestTiesToEven) << 4 * RISCVFPRndMode::RNE) |
4856       (int(RoundingMode::TowardZero) << 4 * RISCVFPRndMode::RTZ) |
4857       (int(RoundingMode::TowardNegative) << 4 * RISCVFPRndMode::RDN) |
4858       (int(RoundingMode::TowardPositive) << 4 * RISCVFPRndMode::RUP) |
4859       (int(RoundingMode::NearestTiesToAway) << 4 * RISCVFPRndMode::RMM);
4860 
4861   SDValue Shift =
4862       DAG.getNode(ISD::SHL, DL, XLenVT, RM, DAG.getConstant(2, DL, XLenVT));
4863   SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT,
4864                                 DAG.getConstant(Table, DL, XLenVT), Shift);
4865   SDValue Masked = DAG.getNode(ISD::AND, DL, XLenVT, Shifted,
4866                                DAG.getConstant(7, DL, XLenVT));
4867 
4868   return DAG.getMergeValues({Masked, Chain}, DL);
4869 }
4870 
4871 SDValue RISCVTargetLowering::lowerSET_ROUNDING(SDValue Op,
4872                                                SelectionDAG &DAG) const {
4873   const MVT XLenVT = Subtarget.getXLenVT();
4874   SDLoc DL(Op);
4875   SDValue Chain = Op->getOperand(0);
4876   SDValue RMValue = Op->getOperand(1);
4877   SDValue SysRegNo = DAG.getConstant(
4878       RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT);
4879 
4880   // Encoding used for rounding mode in RISCV differs from that used in
4881   // FLT_ROUNDS. To convert it the C rounding mode is used as an index in
4882   // a table, which consists of a sequence of 4-bit fields, each representing
4883   // corresponding RISCV mode.
4884   static const unsigned Table =
4885       (RISCVFPRndMode::RNE << 4 * int(RoundingMode::NearestTiesToEven)) |
4886       (RISCVFPRndMode::RTZ << 4 * int(RoundingMode::TowardZero)) |
4887       (RISCVFPRndMode::RDN << 4 * int(RoundingMode::TowardNegative)) |
4888       (RISCVFPRndMode::RUP << 4 * int(RoundingMode::TowardPositive)) |
4889       (RISCVFPRndMode::RMM << 4 * int(RoundingMode::NearestTiesToAway));
4890 
4891   SDValue Shift = DAG.getNode(ISD::SHL, DL, XLenVT, RMValue,
4892                               DAG.getConstant(2, DL, XLenVT));
4893   SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT,
4894                                 DAG.getConstant(Table, DL, XLenVT), Shift);
4895   RMValue = DAG.getNode(ISD::AND, DL, XLenVT, Shifted,
4896                         DAG.getConstant(0x7, DL, XLenVT));
4897   return DAG.getNode(RISCVISD::WRITE_CSR, DL, MVT::Other, Chain, SysRegNo,
4898                      RMValue);
4899 }
4900 
4901 // Returns the opcode of the target-specific SDNode that implements the 32-bit
4902 // form of the given Opcode.
4903 static RISCVISD::NodeType getRISCVWOpcode(unsigned Opcode) {
4904   switch (Opcode) {
4905   default:
4906     llvm_unreachable("Unexpected opcode");
4907   case ISD::SHL:
4908     return RISCVISD::SLLW;
4909   case ISD::SRA:
4910     return RISCVISD::SRAW;
4911   case ISD::SRL:
4912     return RISCVISD::SRLW;
4913   case ISD::SDIV:
4914     return RISCVISD::DIVW;
4915   case ISD::UDIV:
4916     return RISCVISD::DIVUW;
4917   case ISD::UREM:
4918     return RISCVISD::REMUW;
4919   case ISD::ROTL:
4920     return RISCVISD::ROLW;
4921   case ISD::ROTR:
4922     return RISCVISD::RORW;
4923   case RISCVISD::GREV:
4924     return RISCVISD::GREVW;
4925   case RISCVISD::GORC:
4926     return RISCVISD::GORCW;
4927   }
4928 }
4929 
4930 // Converts the given i8/i16/i32 operation to a target-specific SelectionDAG
4931 // node. Because i8/i16/i32 isn't a legal type for RV64, these operations would
4932 // otherwise be promoted to i64, making it difficult to select the
4933 // SLLW/DIVUW/.../*W later one because the fact the operation was originally of
4934 // type i8/i16/i32 is lost.
4935 static SDValue customLegalizeToWOp(SDNode *N, SelectionDAG &DAG,
4936                                    unsigned ExtOpc = ISD::ANY_EXTEND) {
4937   SDLoc DL(N);
4938   RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode());
4939   SDValue NewOp0 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(0));
4940   SDValue NewOp1 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(1));
4941   SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1);
4942   // ReplaceNodeResults requires we maintain the same type for the return value.
4943   return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewRes);
4944 }
4945 
4946 // Converts the given 32-bit operation to a i64 operation with signed extension
4947 // semantic to reduce the signed extension instructions.
4948 static SDValue customLegalizeToWOpWithSExt(SDNode *N, SelectionDAG &DAG) {
4949   SDLoc DL(N);
4950   SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
4951   SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
4952   SDValue NewWOp = DAG.getNode(N->getOpcode(), DL, MVT::i64, NewOp0, NewOp1);
4953   SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp,
4954                                DAG.getValueType(MVT::i32));
4955   return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes);
4956 }
4957 
4958 void RISCVTargetLowering::ReplaceNodeResults(SDNode *N,
4959                                              SmallVectorImpl<SDValue> &Results,
4960                                              SelectionDAG &DAG) const {
4961   SDLoc DL(N);
4962   switch (N->getOpcode()) {
4963   default:
4964     llvm_unreachable("Don't know how to custom type legalize this operation!");
4965   case ISD::STRICT_FP_TO_SINT:
4966   case ISD::STRICT_FP_TO_UINT:
4967   case ISD::FP_TO_SINT:
4968   case ISD::FP_TO_UINT: {
4969     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
4970            "Unexpected custom legalisation");
4971     bool IsStrict = N->isStrictFPOpcode();
4972     bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT ||
4973                     N->getOpcode() == ISD::STRICT_FP_TO_SINT;
4974     SDValue Op0 = IsStrict ? N->getOperand(1) : N->getOperand(0);
4975     if (getTypeAction(*DAG.getContext(), Op0.getValueType()) !=
4976         TargetLowering::TypeSoftenFloat) {
4977       // FIXME: Support strict FP.
4978       if (IsStrict)
4979         return;
4980       if (!isTypeLegal(Op0.getValueType()))
4981         return;
4982       unsigned Opc =
4983           IsSigned ? RISCVISD::FCVT_W_RTZ_RV64 : RISCVISD::FCVT_WU_RTZ_RV64;
4984       SDValue Res = DAG.getNode(Opc, DL, MVT::i64, Op0);
4985       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
4986       return;
4987     }
4988     // If the FP type needs to be softened, emit a library call using the 'si'
4989     // version. If we left it to default legalization we'd end up with 'di'. If
4990     // the FP type doesn't need to be softened just let generic type
4991     // legalization promote the result type.
4992     RTLIB::Libcall LC;
4993     if (IsSigned)
4994       LC = RTLIB::getFPTOSINT(Op0.getValueType(), N->getValueType(0));
4995     else
4996       LC = RTLIB::getFPTOUINT(Op0.getValueType(), N->getValueType(0));
4997     MakeLibCallOptions CallOptions;
4998     EVT OpVT = Op0.getValueType();
4999     CallOptions.setTypeListBeforeSoften(OpVT, N->getValueType(0), true);
5000     SDValue Chain = IsStrict ? N->getOperand(0) : SDValue();
5001     SDValue Result;
5002     std::tie(Result, Chain) =
5003         makeLibCall(DAG, LC, N->getValueType(0), Op0, CallOptions, DL, Chain);
5004     Results.push_back(Result);
5005     if (IsStrict)
5006       Results.push_back(Chain);
5007     break;
5008   }
5009   case ISD::READCYCLECOUNTER: {
5010     assert(!Subtarget.is64Bit() &&
5011            "READCYCLECOUNTER only has custom type legalization on riscv32");
5012 
5013     SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
5014     SDValue RCW =
5015         DAG.getNode(RISCVISD::READ_CYCLE_WIDE, DL, VTs, N->getOperand(0));
5016 
5017     Results.push_back(
5018         DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, RCW, RCW.getValue(1)));
5019     Results.push_back(RCW.getValue(2));
5020     break;
5021   }
5022   case ISD::MUL: {
5023     unsigned Size = N->getSimpleValueType(0).getSizeInBits();
5024     unsigned XLen = Subtarget.getXLen();
5025     // This multiply needs to be expanded, try to use MULHSU+MUL if possible.
5026     if (Size > XLen) {
5027       assert(Size == (XLen * 2) && "Unexpected custom legalisation");
5028       SDValue LHS = N->getOperand(0);
5029       SDValue RHS = N->getOperand(1);
5030       APInt HighMask = APInt::getHighBitsSet(Size, XLen);
5031 
5032       bool LHSIsU = DAG.MaskedValueIsZero(LHS, HighMask);
5033       bool RHSIsU = DAG.MaskedValueIsZero(RHS, HighMask);
5034       // We need exactly one side to be unsigned.
5035       if (LHSIsU == RHSIsU)
5036         return;
5037 
5038       auto MakeMULPair = [&](SDValue S, SDValue U) {
5039         MVT XLenVT = Subtarget.getXLenVT();
5040         S = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, S);
5041         U = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, U);
5042         SDValue Lo = DAG.getNode(ISD::MUL, DL, XLenVT, S, U);
5043         SDValue Hi = DAG.getNode(RISCVISD::MULHSU, DL, XLenVT, S, U);
5044         return DAG.getNode(ISD::BUILD_PAIR, DL, N->getValueType(0), Lo, Hi);
5045       };
5046 
5047       bool LHSIsS = DAG.ComputeNumSignBits(LHS) > XLen;
5048       bool RHSIsS = DAG.ComputeNumSignBits(RHS) > XLen;
5049 
5050       // The other operand should be signed, but still prefer MULH when
5051       // possible.
5052       if (RHSIsU && LHSIsS && !RHSIsS)
5053         Results.push_back(MakeMULPair(LHS, RHS));
5054       else if (LHSIsU && RHSIsS && !LHSIsS)
5055         Results.push_back(MakeMULPair(RHS, LHS));
5056 
5057       return;
5058     }
5059     LLVM_FALLTHROUGH;
5060   }
5061   case ISD::ADD:
5062   case ISD::SUB:
5063     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
5064            "Unexpected custom legalisation");
5065     Results.push_back(customLegalizeToWOpWithSExt(N, DAG));
5066     break;
5067   case ISD::SHL:
5068   case ISD::SRA:
5069   case ISD::SRL:
5070     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
5071            "Unexpected custom legalisation");
5072     if (N->getOperand(1).getOpcode() != ISD::Constant) {
5073       Results.push_back(customLegalizeToWOp(N, DAG));
5074       break;
5075     }
5076 
5077     // Custom legalize ISD::SHL by placing a SIGN_EXTEND_INREG after. This is
5078     // similar to customLegalizeToWOpWithSExt, but we must zero_extend the
5079     // shift amount.
5080     if (N->getOpcode() == ISD::SHL) {
5081       SDLoc DL(N);
5082       SDValue NewOp0 =
5083           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
5084       SDValue NewOp1 =
5085           DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1));
5086       SDValue NewWOp = DAG.getNode(ISD::SHL, DL, MVT::i64, NewOp0, NewOp1);
5087       SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp,
5088                                    DAG.getValueType(MVT::i32));
5089       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes));
5090     }
5091 
5092     break;
5093   case ISD::ROTL:
5094   case ISD::ROTR:
5095     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
5096            "Unexpected custom legalisation");
5097     Results.push_back(customLegalizeToWOp(N, DAG));
5098     break;
5099   case ISD::CTTZ:
5100   case ISD::CTTZ_ZERO_UNDEF:
5101   case ISD::CTLZ:
5102   case ISD::CTLZ_ZERO_UNDEF: {
5103     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
5104            "Unexpected custom legalisation");
5105 
5106     SDValue NewOp0 =
5107         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
5108     bool IsCTZ =
5109         N->getOpcode() == ISD::CTTZ || N->getOpcode() == ISD::CTTZ_ZERO_UNDEF;
5110     unsigned Opc = IsCTZ ? RISCVISD::CTZW : RISCVISD::CLZW;
5111     SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp0);
5112     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
5113     return;
5114   }
5115   case ISD::SDIV:
5116   case ISD::UDIV:
5117   case ISD::UREM: {
5118     MVT VT = N->getSimpleValueType(0);
5119     assert((VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) &&
5120            Subtarget.is64Bit() && Subtarget.hasStdExtM() &&
5121            "Unexpected custom legalisation");
5122     // Don't promote division/remainder by constant since we should expand those
5123     // to multiply by magic constant.
5124     // FIXME: What if the expansion is disabled for minsize.
5125     if (N->getOperand(1).getOpcode() == ISD::Constant)
5126       return;
5127 
5128     // If the input is i32, use ANY_EXTEND since the W instructions don't read
5129     // the upper 32 bits. For other types we need to sign or zero extend
5130     // based on the opcode.
5131     unsigned ExtOpc = ISD::ANY_EXTEND;
5132     if (VT != MVT::i32)
5133       ExtOpc = N->getOpcode() == ISD::SDIV ? ISD::SIGN_EXTEND
5134                                            : ISD::ZERO_EXTEND;
5135 
5136     Results.push_back(customLegalizeToWOp(N, DAG, ExtOpc));
5137     break;
5138   }
5139   case ISD::UADDO:
5140   case ISD::USUBO: {
5141     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
5142            "Unexpected custom legalisation");
5143     bool IsAdd = N->getOpcode() == ISD::UADDO;
5144     // Create an ADDW or SUBW.
5145     SDValue LHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
5146     SDValue RHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
5147     SDValue Res =
5148         DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, DL, MVT::i64, LHS, RHS);
5149     Res = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Res,
5150                       DAG.getValueType(MVT::i32));
5151 
5152     // Sign extend the LHS and perform an unsigned compare with the ADDW result.
5153     // Since the inputs are sign extended from i32, this is equivalent to
5154     // comparing the lower 32 bits.
5155     LHS = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0));
5156     SDValue Overflow = DAG.getSetCC(DL, N->getValueType(1), Res, LHS,
5157                                     IsAdd ? ISD::SETULT : ISD::SETUGT);
5158 
5159     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
5160     Results.push_back(Overflow);
5161     return;
5162   }
5163   case ISD::UADDSAT:
5164   case ISD::USUBSAT: {
5165     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
5166            "Unexpected custom legalisation");
5167     if (Subtarget.hasStdExtZbb()) {
5168       // With Zbb we can sign extend and let LegalizeDAG use minu/maxu. Using
5169       // sign extend allows overflow of the lower 32 bits to be detected on
5170       // the promoted size.
5171       SDValue LHS =
5172           DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0));
5173       SDValue RHS =
5174           DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(1));
5175       SDValue Res = DAG.getNode(N->getOpcode(), DL, MVT::i64, LHS, RHS);
5176       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
5177       return;
5178     }
5179 
5180     // Without Zbb, expand to UADDO/USUBO+select which will trigger our custom
5181     // promotion for UADDO/USUBO.
5182     Results.push_back(expandAddSubSat(N, DAG));
5183     return;
5184   }
5185   case ISD::BITCAST: {
5186     EVT VT = N->getValueType(0);
5187     assert(VT.isInteger() && !VT.isVector() && "Unexpected VT!");
5188     SDValue Op0 = N->getOperand(0);
5189     EVT Op0VT = Op0.getValueType();
5190     MVT XLenVT = Subtarget.getXLenVT();
5191     if (VT == MVT::i16 && Op0VT == MVT::f16 && Subtarget.hasStdExtZfh()) {
5192       SDValue FPConv = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, XLenVT, Op0);
5193       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FPConv));
5194     } else if (VT == MVT::i32 && Op0VT == MVT::f32 && Subtarget.is64Bit() &&
5195                Subtarget.hasStdExtF()) {
5196       SDValue FPConv =
5197           DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Op0);
5198       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, FPConv));
5199     } else if (!VT.isVector() && Op0VT.isFixedLengthVector() &&
5200                isTypeLegal(Op0VT)) {
5201       // Custom-legalize bitcasts from fixed-length vector types to illegal
5202       // scalar types in order to improve codegen. Bitcast the vector to a
5203       // one-element vector type whose element type is the same as the result
5204       // type, and extract the first element.
5205       LLVMContext &Context = *DAG.getContext();
5206       SDValue BVec = DAG.getBitcast(EVT::getVectorVT(Context, VT, 1), Op0);
5207       Results.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec,
5208                                     DAG.getConstant(0, DL, XLenVT)));
5209     }
5210     break;
5211   }
5212   case RISCVISD::GREV:
5213   case RISCVISD::GORC: {
5214     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
5215            "Unexpected custom legalisation");
5216     assert(isa<ConstantSDNode>(N->getOperand(1)) && "Expected constant");
5217     // This is similar to customLegalizeToWOp, except that we pass the second
5218     // operand (a TargetConstant) straight through: it is already of type
5219     // XLenVT.
5220     RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode());
5221     SDValue NewOp0 =
5222         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
5223     SDValue NewOp1 =
5224         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
5225     SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1);
5226     // ReplaceNodeResults requires we maintain the same type for the return
5227     // value.
5228     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes));
5229     break;
5230   }
5231   case RISCVISD::SHFL: {
5232     // There is no SHFLIW instruction, but we can just promote the operation.
5233     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
5234            "Unexpected custom legalisation");
5235     assert(isa<ConstantSDNode>(N->getOperand(1)) && "Expected constant");
5236     SDValue NewOp0 =
5237         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
5238     SDValue NewOp1 =
5239         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
5240     SDValue NewRes = DAG.getNode(RISCVISD::SHFL, DL, MVT::i64, NewOp0, NewOp1);
5241     // ReplaceNodeResults requires we maintain the same type for the return
5242     // value.
5243     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes));
5244     break;
5245   }
5246   case ISD::BSWAP:
5247   case ISD::BITREVERSE: {
5248     MVT VT = N->getSimpleValueType(0);
5249     MVT XLenVT = Subtarget.getXLenVT();
5250     assert((VT == MVT::i8 || VT == MVT::i16 ||
5251             (VT == MVT::i32 && Subtarget.is64Bit())) &&
5252            Subtarget.hasStdExtZbp() && "Unexpected custom legalisation");
5253     SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, N->getOperand(0));
5254     unsigned Imm = VT.getSizeInBits() - 1;
5255     // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits.
5256     if (N->getOpcode() == ISD::BSWAP)
5257       Imm &= ~0x7U;
5258     unsigned Opc = Subtarget.is64Bit() ? RISCVISD::GREVW : RISCVISD::GREV;
5259     SDValue GREVI =
5260         DAG.getNode(Opc, DL, XLenVT, NewOp0, DAG.getConstant(Imm, DL, XLenVT));
5261     // ReplaceNodeResults requires we maintain the same type for the return
5262     // value.
5263     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, GREVI));
5264     break;
5265   }
5266   case ISD::FSHL:
5267   case ISD::FSHR: {
5268     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
5269            Subtarget.hasStdExtZbt() && "Unexpected custom legalisation");
5270     SDValue NewOp0 =
5271         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
5272     SDValue NewOp1 =
5273         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
5274     SDValue NewOp2 =
5275         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
5276     // FSLW/FSRW take a 6 bit shift amount but i32 FSHL/FSHR only use 5 bits.
5277     // Mask the shift amount to 5 bits.
5278     NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2,
5279                          DAG.getConstant(0x1f, DL, MVT::i64));
5280     unsigned Opc =
5281         N->getOpcode() == ISD::FSHL ? RISCVISD::FSLW : RISCVISD::FSRW;
5282     SDValue NewOp = DAG.getNode(Opc, DL, MVT::i64, NewOp0, NewOp1, NewOp2);
5283     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewOp));
5284     break;
5285   }
5286   case ISD::EXTRACT_VECTOR_ELT: {
5287     // Custom-legalize an EXTRACT_VECTOR_ELT where XLEN<SEW, as the SEW element
5288     // type is illegal (currently only vXi64 RV32).
5289     // With vmv.x.s, when SEW > XLEN, only the least-significant XLEN bits are
5290     // transferred to the destination register. We issue two of these from the
5291     // upper- and lower- halves of the SEW-bit vector element, slid down to the
5292     // first element.
5293     SDValue Vec = N->getOperand(0);
5294     SDValue Idx = N->getOperand(1);
5295 
5296     // The vector type hasn't been legalized yet so we can't issue target
5297     // specific nodes if it needs legalization.
5298     // FIXME: We would manually legalize if it's important.
5299     if (!isTypeLegal(Vec.getValueType()))
5300       return;
5301 
5302     MVT VecVT = Vec.getSimpleValueType();
5303 
5304     assert(!Subtarget.is64Bit() && N->getValueType(0) == MVT::i64 &&
5305            VecVT.getVectorElementType() == MVT::i64 &&
5306            "Unexpected EXTRACT_VECTOR_ELT legalization");
5307 
5308     // If this is a fixed vector, we need to convert it to a scalable vector.
5309     MVT ContainerVT = VecVT;
5310     if (VecVT.isFixedLengthVector()) {
5311       ContainerVT = getContainerForFixedLengthVector(VecVT);
5312       Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
5313     }
5314 
5315     MVT XLenVT = Subtarget.getXLenVT();
5316 
5317     // Use a VL of 1 to avoid processing more elements than we need.
5318     MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount());
5319     SDValue VL = DAG.getConstant(1, DL, XLenVT);
5320     SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
5321 
5322     // Unless the index is known to be 0, we must slide the vector down to get
5323     // the desired element into index 0.
5324     if (!isNullConstant(Idx)) {
5325       Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT,
5326                         DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL);
5327     }
5328 
5329     // Extract the lower XLEN bits of the correct vector element.
5330     SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec);
5331 
5332     // To extract the upper XLEN bits of the vector element, shift the first
5333     // element right by 32 bits and re-extract the lower XLEN bits.
5334     SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
5335                                      DAG.getConstant(32, DL, XLenVT), VL);
5336     SDValue LShr32 = DAG.getNode(RISCVISD::SRL_VL, DL, ContainerVT, Vec,
5337                                  ThirtyTwoV, Mask, VL);
5338 
5339     SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32);
5340 
5341     Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi));
5342     break;
5343   }
5344   case ISD::INTRINSIC_WO_CHAIN: {
5345     unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
5346     switch (IntNo) {
5347     default:
5348       llvm_unreachable(
5349           "Don't know how to custom type legalize this intrinsic!");
5350     case Intrinsic::riscv_orc_b: {
5351       // Lower to the GORCI encoding for orc.b with the operand extended.
5352       SDValue NewOp =
5353           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
5354       // If Zbp is enabled, use GORCIW which will sign extend the result.
5355       unsigned Opc =
5356           Subtarget.hasStdExtZbp() ? RISCVISD::GORCW : RISCVISD::GORC;
5357       SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp,
5358                                 DAG.getConstant(7, DL, MVT::i64));
5359       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
5360       return;
5361     }
5362     case Intrinsic::riscv_grev:
5363     case Intrinsic::riscv_gorc: {
5364       assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
5365              "Unexpected custom legalisation");
5366       SDValue NewOp1 =
5367           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
5368       SDValue NewOp2 =
5369           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
5370       unsigned Opc =
5371           IntNo == Intrinsic::riscv_grev ? RISCVISD::GREVW : RISCVISD::GORCW;
5372       SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2);
5373       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
5374       break;
5375     }
5376     case Intrinsic::riscv_shfl:
5377     case Intrinsic::riscv_unshfl: {
5378       assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
5379              "Unexpected custom legalisation");
5380       SDValue NewOp1 =
5381           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
5382       SDValue NewOp2 =
5383           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
5384       unsigned Opc =
5385           IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFLW : RISCVISD::UNSHFLW;
5386       if (isa<ConstantSDNode>(N->getOperand(2))) {
5387         NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2,
5388                              DAG.getConstant(0xf, DL, MVT::i64));
5389         Opc =
5390             IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL;
5391       }
5392       SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2);
5393       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
5394       break;
5395     }
5396     case Intrinsic::riscv_bcompress:
5397     case Intrinsic::riscv_bdecompress: {
5398       assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
5399              "Unexpected custom legalisation");
5400       SDValue NewOp1 =
5401           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
5402       SDValue NewOp2 =
5403           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
5404       unsigned Opc = IntNo == Intrinsic::riscv_bcompress
5405                          ? RISCVISD::BCOMPRESSW
5406                          : RISCVISD::BDECOMPRESSW;
5407       SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2);
5408       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
5409       break;
5410     }
5411     case Intrinsic::riscv_vmv_x_s: {
5412       EVT VT = N->getValueType(0);
5413       MVT XLenVT = Subtarget.getXLenVT();
5414       if (VT.bitsLT(XLenVT)) {
5415         // Simple case just extract using vmv.x.s and truncate.
5416         SDValue Extract = DAG.getNode(RISCVISD::VMV_X_S, DL,
5417                                       Subtarget.getXLenVT(), N->getOperand(1));
5418         Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, Extract));
5419         return;
5420       }
5421 
5422       assert(VT == MVT::i64 && !Subtarget.is64Bit() &&
5423              "Unexpected custom legalization");
5424 
5425       // We need to do the move in two steps.
5426       SDValue Vec = N->getOperand(1);
5427       MVT VecVT = Vec.getSimpleValueType();
5428 
5429       // First extract the lower XLEN bits of the element.
5430       SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec);
5431 
5432       // To extract the upper XLEN bits of the vector element, shift the first
5433       // element right by 32 bits and re-extract the lower XLEN bits.
5434       SDValue VL = DAG.getConstant(1, DL, XLenVT);
5435       MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount());
5436       SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
5437       SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT,
5438                                        DAG.getConstant(32, DL, XLenVT), VL);
5439       SDValue LShr32 =
5440           DAG.getNode(RISCVISD::SRL_VL, DL, VecVT, Vec, ThirtyTwoV, Mask, VL);
5441       SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32);
5442 
5443       Results.push_back(
5444           DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi));
5445       break;
5446     }
5447     }
5448     break;
5449   }
5450   case ISD::VECREDUCE_ADD:
5451   case ISD::VECREDUCE_AND:
5452   case ISD::VECREDUCE_OR:
5453   case ISD::VECREDUCE_XOR:
5454   case ISD::VECREDUCE_SMAX:
5455   case ISD::VECREDUCE_UMAX:
5456   case ISD::VECREDUCE_SMIN:
5457   case ISD::VECREDUCE_UMIN:
5458     if (SDValue V = lowerVECREDUCE(SDValue(N, 0), DAG))
5459       Results.push_back(V);
5460     break;
5461   case ISD::FLT_ROUNDS_: {
5462     SDVTList VTs = DAG.getVTList(Subtarget.getXLenVT(), MVT::Other);
5463     SDValue Res = DAG.getNode(ISD::FLT_ROUNDS_, DL, VTs, N->getOperand(0));
5464     Results.push_back(Res.getValue(0));
5465     Results.push_back(Res.getValue(1));
5466     break;
5467   }
5468   }
5469 }
5470 
5471 // A structure to hold one of the bit-manipulation patterns below. Together, a
5472 // SHL and non-SHL pattern may form a bit-manipulation pair on a single source:
5473 //   (or (and (shl x, 1), 0xAAAAAAAA),
5474 //       (and (srl x, 1), 0x55555555))
5475 struct RISCVBitmanipPat {
5476   SDValue Op;
5477   unsigned ShAmt;
5478   bool IsSHL;
5479 
5480   bool formsPairWith(const RISCVBitmanipPat &Other) const {
5481     return Op == Other.Op && ShAmt == Other.ShAmt && IsSHL != Other.IsSHL;
5482   }
5483 };
5484 
5485 // Matches patterns of the form
5486 //   (and (shl x, C2), (C1 << C2))
5487 //   (and (srl x, C2), C1)
5488 //   (shl (and x, C1), C2)
5489 //   (srl (and x, (C1 << C2)), C2)
5490 // Where C2 is a power of 2 and C1 has at least that many leading zeroes.
5491 // The expected masks for each shift amount are specified in BitmanipMasks where
5492 // BitmanipMasks[log2(C2)] specifies the expected C1 value.
5493 // The max allowed shift amount is either XLen/2 or XLen/4 determined by whether
5494 // BitmanipMasks contains 6 or 5 entries assuming that the maximum possible
5495 // XLen is 64.
5496 static Optional<RISCVBitmanipPat>
5497 matchRISCVBitmanipPat(SDValue Op, ArrayRef<uint64_t> BitmanipMasks) {
5498   assert((BitmanipMasks.size() == 5 || BitmanipMasks.size() == 6) &&
5499          "Unexpected number of masks");
5500   Optional<uint64_t> Mask;
5501   // Optionally consume a mask around the shift operation.
5502   if (Op.getOpcode() == ISD::AND && isa<ConstantSDNode>(Op.getOperand(1))) {
5503     Mask = Op.getConstantOperandVal(1);
5504     Op = Op.getOperand(0);
5505   }
5506   if (Op.getOpcode() != ISD::SHL && Op.getOpcode() != ISD::SRL)
5507     return None;
5508   bool IsSHL = Op.getOpcode() == ISD::SHL;
5509 
5510   if (!isa<ConstantSDNode>(Op.getOperand(1)))
5511     return None;
5512   uint64_t ShAmt = Op.getConstantOperandVal(1);
5513 
5514   unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32;
5515   if (ShAmt >= Width || !isPowerOf2_64(ShAmt))
5516     return None;
5517   // If we don't have enough masks for 64 bit, then we must be trying to
5518   // match SHFL so we're only allowed to shift 1/4 of the width.
5519   if (BitmanipMasks.size() == 5 && ShAmt >= (Width / 2))
5520     return None;
5521 
5522   SDValue Src = Op.getOperand(0);
5523 
5524   // The expected mask is shifted left when the AND is found around SHL
5525   // patterns.
5526   //   ((x >> 1) & 0x55555555)
5527   //   ((x << 1) & 0xAAAAAAAA)
5528   bool SHLExpMask = IsSHL;
5529 
5530   if (!Mask) {
5531     // Sometimes LLVM keeps the mask as an operand of the shift, typically when
5532     // the mask is all ones: consume that now.
5533     if (Src.getOpcode() == ISD::AND && isa<ConstantSDNode>(Src.getOperand(1))) {
5534       Mask = Src.getConstantOperandVal(1);
5535       Src = Src.getOperand(0);
5536       // The expected mask is now in fact shifted left for SRL, so reverse the
5537       // decision.
5538       //   ((x & 0xAAAAAAAA) >> 1)
5539       //   ((x & 0x55555555) << 1)
5540       SHLExpMask = !SHLExpMask;
5541     } else {
5542       // Use a default shifted mask of all-ones if there's no AND, truncated
5543       // down to the expected width. This simplifies the logic later on.
5544       Mask = maskTrailingOnes<uint64_t>(Width);
5545       *Mask &= (IsSHL ? *Mask << ShAmt : *Mask >> ShAmt);
5546     }
5547   }
5548 
5549   unsigned MaskIdx = Log2_32(ShAmt);
5550   uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width);
5551 
5552   if (SHLExpMask)
5553     ExpMask <<= ShAmt;
5554 
5555   if (Mask != ExpMask)
5556     return None;
5557 
5558   return RISCVBitmanipPat{Src, (unsigned)ShAmt, IsSHL};
5559 }
5560 
5561 // Matches any of the following bit-manipulation patterns:
5562 //   (and (shl x, 1), (0x55555555 << 1))
5563 //   (and (srl x, 1), 0x55555555)
5564 //   (shl (and x, 0x55555555), 1)
5565 //   (srl (and x, (0x55555555 << 1)), 1)
5566 // where the shift amount and mask may vary thus:
5567 //   [1]  = 0x55555555 / 0xAAAAAAAA
5568 //   [2]  = 0x33333333 / 0xCCCCCCCC
5569 //   [4]  = 0x0F0F0F0F / 0xF0F0F0F0
5570 //   [8]  = 0x00FF00FF / 0xFF00FF00
5571 //   [16] = 0x0000FFFF / 0xFFFFFFFF
5572 //   [32] = 0x00000000FFFFFFFF / 0xFFFFFFFF00000000 (for RV64)
5573 static Optional<RISCVBitmanipPat> matchGREVIPat(SDValue Op) {
5574   // These are the unshifted masks which we use to match bit-manipulation
5575   // patterns. They may be shifted left in certain circumstances.
5576   static const uint64_t BitmanipMasks[] = {
5577       0x5555555555555555ULL, 0x3333333333333333ULL, 0x0F0F0F0F0F0F0F0FULL,
5578       0x00FF00FF00FF00FFULL, 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL};
5579 
5580   return matchRISCVBitmanipPat(Op, BitmanipMasks);
5581 }
5582 
5583 // Match the following pattern as a GREVI(W) operation
5584 //   (or (BITMANIP_SHL x), (BITMANIP_SRL x))
5585 static SDValue combineORToGREV(SDValue Op, SelectionDAG &DAG,
5586                                const RISCVSubtarget &Subtarget) {
5587   assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson");
5588   EVT VT = Op.getValueType();
5589 
5590   if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) {
5591     auto LHS = matchGREVIPat(Op.getOperand(0));
5592     auto RHS = matchGREVIPat(Op.getOperand(1));
5593     if (LHS && RHS && LHS->formsPairWith(*RHS)) {
5594       SDLoc DL(Op);
5595       return DAG.getNode(RISCVISD::GREV, DL, VT, LHS->Op,
5596                          DAG.getConstant(LHS->ShAmt, DL, VT));
5597     }
5598   }
5599   return SDValue();
5600 }
5601 
5602 // Matches any the following pattern as a GORCI(W) operation
5603 // 1.  (or (GREVI x, shamt), x) if shamt is a power of 2
5604 // 2.  (or x, (GREVI x, shamt)) if shamt is a power of 2
5605 // 3.  (or (or (BITMANIP_SHL x), x), (BITMANIP_SRL x))
5606 // Note that with the variant of 3.,
5607 //     (or (or (BITMANIP_SHL x), (BITMANIP_SRL x)), x)
5608 // the inner pattern will first be matched as GREVI and then the outer
5609 // pattern will be matched to GORC via the first rule above.
5610 // 4.  (or (rotl/rotr x, bitwidth/2), x)
5611 static SDValue combineORToGORC(SDValue Op, SelectionDAG &DAG,
5612                                const RISCVSubtarget &Subtarget) {
5613   assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson");
5614   EVT VT = Op.getValueType();
5615 
5616   if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) {
5617     SDLoc DL(Op);
5618     SDValue Op0 = Op.getOperand(0);
5619     SDValue Op1 = Op.getOperand(1);
5620 
5621     auto MatchOROfReverse = [&](SDValue Reverse, SDValue X) {
5622       if (Reverse.getOpcode() == RISCVISD::GREV && Reverse.getOperand(0) == X &&
5623           isa<ConstantSDNode>(Reverse.getOperand(1)) &&
5624           isPowerOf2_32(Reverse.getConstantOperandVal(1)))
5625         return DAG.getNode(RISCVISD::GORC, DL, VT, X, Reverse.getOperand(1));
5626       // We can also form GORCI from ROTL/ROTR by half the bitwidth.
5627       if ((Reverse.getOpcode() == ISD::ROTL ||
5628            Reverse.getOpcode() == ISD::ROTR) &&
5629           Reverse.getOperand(0) == X &&
5630           isa<ConstantSDNode>(Reverse.getOperand(1))) {
5631         uint64_t RotAmt = Reverse.getConstantOperandVal(1);
5632         if (RotAmt == (VT.getSizeInBits() / 2))
5633           return DAG.getNode(RISCVISD::GORC, DL, VT, X,
5634                              DAG.getConstant(RotAmt, DL, VT));
5635       }
5636       return SDValue();
5637     };
5638 
5639     // Check for either commutable permutation of (or (GREVI x, shamt), x)
5640     if (SDValue V = MatchOROfReverse(Op0, Op1))
5641       return V;
5642     if (SDValue V = MatchOROfReverse(Op1, Op0))
5643       return V;
5644 
5645     // OR is commutable so canonicalize its OR operand to the left
5646     if (Op0.getOpcode() != ISD::OR && Op1.getOpcode() == ISD::OR)
5647       std::swap(Op0, Op1);
5648     if (Op0.getOpcode() != ISD::OR)
5649       return SDValue();
5650     SDValue OrOp0 = Op0.getOperand(0);
5651     SDValue OrOp1 = Op0.getOperand(1);
5652     auto LHS = matchGREVIPat(OrOp0);
5653     // OR is commutable so swap the operands and try again: x might have been
5654     // on the left
5655     if (!LHS) {
5656       std::swap(OrOp0, OrOp1);
5657       LHS = matchGREVIPat(OrOp0);
5658     }
5659     auto RHS = matchGREVIPat(Op1);
5660     if (LHS && RHS && LHS->formsPairWith(*RHS) && LHS->Op == OrOp1) {
5661       return DAG.getNode(RISCVISD::GORC, DL, VT, LHS->Op,
5662                          DAG.getConstant(LHS->ShAmt, DL, VT));
5663     }
5664   }
5665   return SDValue();
5666 }
5667 
5668 // Matches any of the following bit-manipulation patterns:
5669 //   (and (shl x, 1), (0x22222222 << 1))
5670 //   (and (srl x, 1), 0x22222222)
5671 //   (shl (and x, 0x22222222), 1)
5672 //   (srl (and x, (0x22222222 << 1)), 1)
5673 // where the shift amount and mask may vary thus:
5674 //   [1]  = 0x22222222 / 0x44444444
5675 //   [2]  = 0x0C0C0C0C / 0x3C3C3C3C
5676 //   [4]  = 0x00F000F0 / 0x0F000F00
5677 //   [8]  = 0x0000FF00 / 0x00FF0000
5678 //   [16] = 0x00000000FFFF0000 / 0x0000FFFF00000000 (for RV64)
5679 static Optional<RISCVBitmanipPat> matchSHFLPat(SDValue Op) {
5680   // These are the unshifted masks which we use to match bit-manipulation
5681   // patterns. They may be shifted left in certain circumstances.
5682   static const uint64_t BitmanipMasks[] = {
5683       0x2222222222222222ULL, 0x0C0C0C0C0C0C0C0CULL, 0x00F000F000F000F0ULL,
5684       0x0000FF000000FF00ULL, 0x00000000FFFF0000ULL};
5685 
5686   return matchRISCVBitmanipPat(Op, BitmanipMasks);
5687 }
5688 
5689 // Match (or (or (SHFL_SHL x), (SHFL_SHR x)), (SHFL_AND x)
5690 static SDValue combineORToSHFL(SDValue Op, SelectionDAG &DAG,
5691                                const RISCVSubtarget &Subtarget) {
5692   assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson");
5693   EVT VT = Op.getValueType();
5694 
5695   if (VT != MVT::i32 && VT != Subtarget.getXLenVT())
5696     return SDValue();
5697 
5698   SDValue Op0 = Op.getOperand(0);
5699   SDValue Op1 = Op.getOperand(1);
5700 
5701   // Or is commutable so canonicalize the second OR to the LHS.
5702   if (Op0.getOpcode() != ISD::OR)
5703     std::swap(Op0, Op1);
5704   if (Op0.getOpcode() != ISD::OR)
5705     return SDValue();
5706 
5707   // We found an inner OR, so our operands are the operands of the inner OR
5708   // and the other operand of the outer OR.
5709   SDValue A = Op0.getOperand(0);
5710   SDValue B = Op0.getOperand(1);
5711   SDValue C = Op1;
5712 
5713   auto Match1 = matchSHFLPat(A);
5714   auto Match2 = matchSHFLPat(B);
5715 
5716   // If neither matched, we failed.
5717   if (!Match1 && !Match2)
5718     return SDValue();
5719 
5720   // We had at least one match. if one failed, try the remaining C operand.
5721   if (!Match1) {
5722     std::swap(A, C);
5723     Match1 = matchSHFLPat(A);
5724     if (!Match1)
5725       return SDValue();
5726   } else if (!Match2) {
5727     std::swap(B, C);
5728     Match2 = matchSHFLPat(B);
5729     if (!Match2)
5730       return SDValue();
5731   }
5732   assert(Match1 && Match2);
5733 
5734   // Make sure our matches pair up.
5735   if (!Match1->formsPairWith(*Match2))
5736     return SDValue();
5737 
5738   // All the remains is to make sure C is an AND with the same input, that masks
5739   // out the bits that are being shuffled.
5740   if (C.getOpcode() != ISD::AND || !isa<ConstantSDNode>(C.getOperand(1)) ||
5741       C.getOperand(0) != Match1->Op)
5742     return SDValue();
5743 
5744   uint64_t Mask = C.getConstantOperandVal(1);
5745 
5746   static const uint64_t BitmanipMasks[] = {
5747       0x9999999999999999ULL, 0xC3C3C3C3C3C3C3C3ULL, 0xF00FF00FF00FF00FULL,
5748       0xFF0000FFFF0000FFULL, 0xFFFF00000000FFFFULL,
5749   };
5750 
5751   unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32;
5752   unsigned MaskIdx = Log2_32(Match1->ShAmt);
5753   uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width);
5754 
5755   if (Mask != ExpMask)
5756     return SDValue();
5757 
5758   SDLoc DL(Op);
5759   return DAG.getNode(RISCVISD::SHFL, DL, VT, Match1->Op,
5760                      DAG.getConstant(Match1->ShAmt, DL, VT));
5761 }
5762 
5763 // Combine (GREVI (GREVI x, C2), C1) -> (GREVI x, C1^C2) when C1^C2 is
5764 // non-zero, and to x when it is. Any repeated GREVI stage undoes itself.
5765 // Combine (GORCI (GORCI x, C2), C1) -> (GORCI x, C1|C2). Repeated stage does
5766 // not undo itself, but they are redundant.
5767 static SDValue combineGREVI_GORCI(SDNode *N, SelectionDAG &DAG) {
5768   SDValue Src = N->getOperand(0);
5769 
5770   if (Src.getOpcode() != N->getOpcode())
5771     return SDValue();
5772 
5773   if (!isa<ConstantSDNode>(N->getOperand(1)) ||
5774       !isa<ConstantSDNode>(Src.getOperand(1)))
5775     return SDValue();
5776 
5777   unsigned ShAmt1 = N->getConstantOperandVal(1);
5778   unsigned ShAmt2 = Src.getConstantOperandVal(1);
5779   Src = Src.getOperand(0);
5780 
5781   unsigned CombinedShAmt;
5782   if (N->getOpcode() == RISCVISD::GORC || N->getOpcode() == RISCVISD::GORCW)
5783     CombinedShAmt = ShAmt1 | ShAmt2;
5784   else
5785     CombinedShAmt = ShAmt1 ^ ShAmt2;
5786 
5787   if (CombinedShAmt == 0)
5788     return Src;
5789 
5790   SDLoc DL(N);
5791   return DAG.getNode(
5792       N->getOpcode(), DL, N->getValueType(0), Src,
5793       DAG.getConstant(CombinedShAmt, DL, N->getOperand(1).getValueType()));
5794 }
5795 
5796 // Combine a constant select operand into its use:
5797 //
5798 // (and (select cond, -1, c), x)
5799 //   -> (select cond, x, (and x, c))  [AllOnes=1]
5800 // (or  (select cond, 0, c), x)
5801 //   -> (select cond, x, (or x, c))  [AllOnes=0]
5802 // (xor (select cond, 0, c), x)
5803 //   -> (select cond, x, (xor x, c))  [AllOnes=0]
5804 // (add (select cond, 0, c), x)
5805 //   -> (select cond, x, (add x, c))  [AllOnes=0]
5806 // (sub x, (select cond, 0, c))
5807 //   -> (select cond, x, (sub x, c))  [AllOnes=0]
5808 static SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp,
5809                                    SelectionDAG &DAG, bool AllOnes) {
5810   EVT VT = N->getValueType(0);
5811 
5812   // Skip vectors.
5813   if (VT.isVector())
5814     return SDValue();
5815 
5816   if ((Slct.getOpcode() != ISD::SELECT &&
5817        Slct.getOpcode() != RISCVISD::SELECT_CC) ||
5818       !Slct.hasOneUse())
5819     return SDValue();
5820 
5821   auto isZeroOrAllOnes = [](SDValue N, bool AllOnes) {
5822     return AllOnes ? isAllOnesConstant(N) : isNullConstant(N);
5823   };
5824 
5825   bool SwapSelectOps;
5826   unsigned OpOffset = Slct.getOpcode() == RISCVISD::SELECT_CC ? 2 : 0;
5827   SDValue TrueVal = Slct.getOperand(1 + OpOffset);
5828   SDValue FalseVal = Slct.getOperand(2 + OpOffset);
5829   SDValue NonConstantVal;
5830   if (isZeroOrAllOnes(TrueVal, AllOnes)) {
5831     SwapSelectOps = false;
5832     NonConstantVal = FalseVal;
5833   } else if (isZeroOrAllOnes(FalseVal, AllOnes)) {
5834     SwapSelectOps = true;
5835     NonConstantVal = TrueVal;
5836   } else
5837     return SDValue();
5838 
5839   // Slct is now know to be the desired identity constant when CC is true.
5840   TrueVal = OtherOp;
5841   FalseVal = DAG.getNode(N->getOpcode(), SDLoc(N), VT, OtherOp, NonConstantVal);
5842   // Unless SwapSelectOps says the condition should be false.
5843   if (SwapSelectOps)
5844     std::swap(TrueVal, FalseVal);
5845 
5846   if (Slct.getOpcode() == RISCVISD::SELECT_CC)
5847     return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), VT,
5848                        {Slct.getOperand(0), Slct.getOperand(1),
5849                         Slct.getOperand(2), TrueVal, FalseVal});
5850 
5851   return DAG.getNode(ISD::SELECT, SDLoc(N), VT,
5852                      {Slct.getOperand(0), TrueVal, FalseVal});
5853 }
5854 
5855 // Attempt combineSelectAndUse on each operand of a commutative operator N.
5856 static SDValue combineSelectAndUseCommutative(SDNode *N, SelectionDAG &DAG,
5857                                               bool AllOnes) {
5858   SDValue N0 = N->getOperand(0);
5859   SDValue N1 = N->getOperand(1);
5860   if (SDValue Result = combineSelectAndUse(N, N0, N1, DAG, AllOnes))
5861     return Result;
5862   if (SDValue Result = combineSelectAndUse(N, N1, N0, DAG, AllOnes))
5863     return Result;
5864   return SDValue();
5865 }
5866 
5867 static SDValue performADDCombine(SDNode *N, SelectionDAG &DAG) {
5868   // fold (add (select lhs, rhs, cc, 0, y), x) ->
5869   //      (select lhs, rhs, cc, x, (add x, y))
5870   return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false);
5871 }
5872 
5873 static SDValue performSUBCombine(SDNode *N, SelectionDAG &DAG) {
5874   // fold (sub x, (select lhs, rhs, cc, 0, y)) ->
5875   //      (select lhs, rhs, cc, x, (sub x, y))
5876   SDValue N0 = N->getOperand(0);
5877   SDValue N1 = N->getOperand(1);
5878   return combineSelectAndUse(N, N1, N0, DAG, /*AllOnes*/ false);
5879 }
5880 
5881 static SDValue performANDCombine(SDNode *N, SelectionDAG &DAG) {
5882   // fold (and (select lhs, rhs, cc, -1, y), x) ->
5883   //      (select lhs, rhs, cc, x, (and x, y))
5884   return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ true);
5885 }
5886 
5887 static SDValue performORCombine(SDNode *N, SelectionDAG &DAG,
5888                                 const RISCVSubtarget &Subtarget) {
5889   if (Subtarget.hasStdExtZbp()) {
5890     if (auto GREV = combineORToGREV(SDValue(N, 0), DAG, Subtarget))
5891       return GREV;
5892     if (auto GORC = combineORToGORC(SDValue(N, 0), DAG, Subtarget))
5893       return GORC;
5894     if (auto SHFL = combineORToSHFL(SDValue(N, 0), DAG, Subtarget))
5895       return SHFL;
5896   }
5897 
5898   // fold (or (select cond, 0, y), x) ->
5899   //      (select cond, x, (or x, y))
5900   return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false);
5901 }
5902 
5903 static SDValue performXORCombine(SDNode *N, SelectionDAG &DAG) {
5904   // fold (xor (select cond, 0, y), x) ->
5905   //      (select cond, x, (xor x, y))
5906   return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false);
5907 }
5908 
5909 // Attempt to turn ANY_EXTEND into SIGN_EXTEND if the input to the ANY_EXTEND
5910 // has users that require SIGN_EXTEND and the SIGN_EXTEND can be done for free
5911 // by an instruction like ADDW/SUBW/MULW. Without this the ANY_EXTEND would be
5912 // removed during type legalization leaving an ADD/SUB/MUL use that won't use
5913 // ADDW/SUBW/MULW.
5914 static SDValue performANY_EXTENDCombine(SDNode *N,
5915                                         TargetLowering::DAGCombinerInfo &DCI,
5916                                         const RISCVSubtarget &Subtarget) {
5917   if (!Subtarget.is64Bit())
5918     return SDValue();
5919 
5920   SelectionDAG &DAG = DCI.DAG;
5921 
5922   SDValue Src = N->getOperand(0);
5923   EVT VT = N->getValueType(0);
5924   if (VT != MVT::i64 || Src.getValueType() != MVT::i32)
5925     return SDValue();
5926 
5927   // The opcode must be one that can implicitly sign_extend.
5928   // FIXME: Additional opcodes.
5929   switch (Src.getOpcode()) {
5930   default:
5931     return SDValue();
5932   case ISD::MUL:
5933     if (!Subtarget.hasStdExtM())
5934       return SDValue();
5935     LLVM_FALLTHROUGH;
5936   case ISD::ADD:
5937   case ISD::SUB:
5938     break;
5939   }
5940 
5941   // Only handle cases where the result is used by a CopyToReg. That likely
5942   // means the value is a liveout of the basic block. This helps prevent
5943   // infinite combine loops like PR51206.
5944   if (none_of(N->uses(),
5945               [](SDNode *User) { return User->getOpcode() == ISD::CopyToReg; }))
5946     return SDValue();
5947 
5948   SmallVector<SDNode *, 4> SetCCs;
5949   for (SDNode::use_iterator UI = Src.getNode()->use_begin(),
5950                             UE = Src.getNode()->use_end();
5951        UI != UE; ++UI) {
5952     SDNode *User = *UI;
5953     if (User == N)
5954       continue;
5955     if (UI.getUse().getResNo() != Src.getResNo())
5956       continue;
5957     // All i32 setccs are legalized by sign extending operands.
5958     if (User->getOpcode() == ISD::SETCC) {
5959       SetCCs.push_back(User);
5960       continue;
5961     }
5962     // We don't know if we can extend this user.
5963     break;
5964   }
5965 
5966   // If we don't have any SetCCs, this isn't worthwhile.
5967   if (SetCCs.empty())
5968     return SDValue();
5969 
5970   SDLoc DL(N);
5971   SDValue SExt = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Src);
5972   DCI.CombineTo(N, SExt);
5973 
5974   // Promote all the setccs.
5975   for (SDNode *SetCC : SetCCs) {
5976     SmallVector<SDValue, 4> Ops;
5977 
5978     for (unsigned j = 0; j != 2; ++j) {
5979       SDValue SOp = SetCC->getOperand(j);
5980       if (SOp == Src)
5981         Ops.push_back(SExt);
5982       else
5983         Ops.push_back(DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, SOp));
5984     }
5985 
5986     Ops.push_back(SetCC->getOperand(2));
5987     DCI.CombineTo(SetCC,
5988                   DAG.getNode(ISD::SETCC, DL, SetCC->getValueType(0), Ops));
5989   }
5990   return SDValue(N, 0);
5991 }
5992 
5993 SDValue RISCVTargetLowering::PerformDAGCombine(SDNode *N,
5994                                                DAGCombinerInfo &DCI) const {
5995   SelectionDAG &DAG = DCI.DAG;
5996 
5997   // Helper to call SimplifyDemandedBits on an operand of N where only some low
5998   // bits are demanded. N will be added to the Worklist if it was not deleted.
5999   // Caller should return SDValue(N, 0) if this returns true.
6000   auto SimplifyDemandedLowBitsHelper = [&](unsigned OpNo, unsigned LowBits) {
6001     SDValue Op = N->getOperand(OpNo);
6002     APInt Mask = APInt::getLowBitsSet(Op.getValueSizeInBits(), LowBits);
6003     if (!SimplifyDemandedBits(Op, Mask, DCI))
6004       return false;
6005 
6006     if (N->getOpcode() != ISD::DELETED_NODE)
6007       DCI.AddToWorklist(N);
6008     return true;
6009   };
6010 
6011   switch (N->getOpcode()) {
6012   default:
6013     break;
6014   case RISCVISD::SplitF64: {
6015     SDValue Op0 = N->getOperand(0);
6016     // If the input to SplitF64 is just BuildPairF64 then the operation is
6017     // redundant. Instead, use BuildPairF64's operands directly.
6018     if (Op0->getOpcode() == RISCVISD::BuildPairF64)
6019       return DCI.CombineTo(N, Op0.getOperand(0), Op0.getOperand(1));
6020 
6021     SDLoc DL(N);
6022 
6023     // It's cheaper to materialise two 32-bit integers than to load a double
6024     // from the constant pool and transfer it to integer registers through the
6025     // stack.
6026     if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op0)) {
6027       APInt V = C->getValueAPF().bitcastToAPInt();
6028       SDValue Lo = DAG.getConstant(V.trunc(32), DL, MVT::i32);
6029       SDValue Hi = DAG.getConstant(V.lshr(32).trunc(32), DL, MVT::i32);
6030       return DCI.CombineTo(N, Lo, Hi);
6031     }
6032 
6033     // This is a target-specific version of a DAGCombine performed in
6034     // DAGCombiner::visitBITCAST. It performs the equivalent of:
6035     // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
6036     // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
6037     if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) ||
6038         !Op0.getNode()->hasOneUse())
6039       break;
6040     SDValue NewSplitF64 =
6041         DAG.getNode(RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32),
6042                     Op0.getOperand(0));
6043     SDValue Lo = NewSplitF64.getValue(0);
6044     SDValue Hi = NewSplitF64.getValue(1);
6045     APInt SignBit = APInt::getSignMask(32);
6046     if (Op0.getOpcode() == ISD::FNEG) {
6047       SDValue NewHi = DAG.getNode(ISD::XOR, DL, MVT::i32, Hi,
6048                                   DAG.getConstant(SignBit, DL, MVT::i32));
6049       return DCI.CombineTo(N, Lo, NewHi);
6050     }
6051     assert(Op0.getOpcode() == ISD::FABS);
6052     SDValue NewHi = DAG.getNode(ISD::AND, DL, MVT::i32, Hi,
6053                                 DAG.getConstant(~SignBit, DL, MVT::i32));
6054     return DCI.CombineTo(N, Lo, NewHi);
6055   }
6056   case RISCVISD::SLLW:
6057   case RISCVISD::SRAW:
6058   case RISCVISD::SRLW:
6059   case RISCVISD::ROLW:
6060   case RISCVISD::RORW: {
6061     // Only the lower 32 bits of LHS and lower 5 bits of RHS are read.
6062     if (SimplifyDemandedLowBitsHelper(0, 32) ||
6063         SimplifyDemandedLowBitsHelper(1, 5))
6064       return SDValue(N, 0);
6065     break;
6066   }
6067   case RISCVISD::CLZW:
6068   case RISCVISD::CTZW: {
6069     // Only the lower 32 bits of the first operand are read
6070     if (SimplifyDemandedLowBitsHelper(0, 32))
6071       return SDValue(N, 0);
6072     break;
6073   }
6074   case RISCVISD::FSL:
6075   case RISCVISD::FSR: {
6076     // Only the lower log2(Bitwidth)+1 bits of the the shift amount are read.
6077     unsigned BitWidth = N->getOperand(2).getValueSizeInBits();
6078     assert(isPowerOf2_32(BitWidth) && "Unexpected bit width");
6079     if (SimplifyDemandedLowBitsHelper(2, Log2_32(BitWidth) + 1))
6080       return SDValue(N, 0);
6081     break;
6082   }
6083   case RISCVISD::FSLW:
6084   case RISCVISD::FSRW: {
6085     // Only the lower 32 bits of Values and lower 6 bits of shift amount are
6086     // read.
6087     if (SimplifyDemandedLowBitsHelper(0, 32) ||
6088         SimplifyDemandedLowBitsHelper(1, 32) ||
6089         SimplifyDemandedLowBitsHelper(2, 6))
6090       return SDValue(N, 0);
6091     break;
6092   }
6093   case RISCVISD::GREV:
6094   case RISCVISD::GORC: {
6095     // Only the lower log2(Bitwidth) bits of the the shift amount are read.
6096     unsigned BitWidth = N->getOperand(1).getValueSizeInBits();
6097     assert(isPowerOf2_32(BitWidth) && "Unexpected bit width");
6098     if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth)))
6099       return SDValue(N, 0);
6100 
6101     return combineGREVI_GORCI(N, DCI.DAG);
6102   }
6103   case RISCVISD::GREVW:
6104   case RISCVISD::GORCW: {
6105     // Only the lower 32 bits of LHS and lower 5 bits of RHS are read.
6106     if (SimplifyDemandedLowBitsHelper(0, 32) ||
6107         SimplifyDemandedLowBitsHelper(1, 5))
6108       return SDValue(N, 0);
6109 
6110     return combineGREVI_GORCI(N, DCI.DAG);
6111   }
6112   case RISCVISD::SHFL:
6113   case RISCVISD::UNSHFL: {
6114     // Only the lower log2(Bitwidth)-1 bits of the the shift amount are read.
6115     unsigned BitWidth = N->getOperand(1).getValueSizeInBits();
6116     assert(isPowerOf2_32(BitWidth) && "Unexpected bit width");
6117     if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth) - 1))
6118       return SDValue(N, 0);
6119 
6120     break;
6121   }
6122   case RISCVISD::SHFLW:
6123   case RISCVISD::UNSHFLW: {
6124     // Only the lower 32 bits of LHS and lower 4 bits of RHS are read.
6125     SDValue LHS = N->getOperand(0);
6126     SDValue RHS = N->getOperand(1);
6127     APInt LHSMask = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 32);
6128     APInt RHSMask = APInt::getLowBitsSet(RHS.getValueSizeInBits(), 4);
6129     if (SimplifyDemandedLowBitsHelper(0, 32) ||
6130         SimplifyDemandedLowBitsHelper(1, 4))
6131       return SDValue(N, 0);
6132 
6133     break;
6134   }
6135   case RISCVISD::BCOMPRESSW:
6136   case RISCVISD::BDECOMPRESSW: {
6137     // Only the lower 32 bits of LHS and RHS are read.
6138     if (SimplifyDemandedLowBitsHelper(0, 32) ||
6139         SimplifyDemandedLowBitsHelper(1, 32))
6140       return SDValue(N, 0);
6141 
6142     break;
6143   }
6144   case RISCVISD::FMV_X_ANYEXTH:
6145   case RISCVISD::FMV_X_ANYEXTW_RV64: {
6146     SDLoc DL(N);
6147     SDValue Op0 = N->getOperand(0);
6148     MVT VT = N->getSimpleValueType(0);
6149     // If the input to FMV_X_ANYEXTW_RV64 is just FMV_W_X_RV64 then the
6150     // conversion is unnecessary and can be replaced with the FMV_W_X_RV64
6151     // operand. Similar for FMV_X_ANYEXTH and FMV_H_X.
6152     if ((N->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64 &&
6153          Op0->getOpcode() == RISCVISD::FMV_W_X_RV64) ||
6154         (N->getOpcode() == RISCVISD::FMV_X_ANYEXTH &&
6155          Op0->getOpcode() == RISCVISD::FMV_H_X)) {
6156       assert(Op0.getOperand(0).getValueType() == VT &&
6157              "Unexpected value type!");
6158       return Op0.getOperand(0);
6159     }
6160 
6161     // This is a target-specific version of a DAGCombine performed in
6162     // DAGCombiner::visitBITCAST. It performs the equivalent of:
6163     // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
6164     // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
6165     if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) ||
6166         !Op0.getNode()->hasOneUse())
6167       break;
6168     SDValue NewFMV = DAG.getNode(N->getOpcode(), DL, VT, Op0.getOperand(0));
6169     unsigned FPBits = N->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64 ? 32 : 16;
6170     APInt SignBit = APInt::getSignMask(FPBits).sextOrSelf(VT.getSizeInBits());
6171     if (Op0.getOpcode() == ISD::FNEG)
6172       return DAG.getNode(ISD::XOR, DL, VT, NewFMV,
6173                          DAG.getConstant(SignBit, DL, VT));
6174 
6175     assert(Op0.getOpcode() == ISD::FABS);
6176     return DAG.getNode(ISD::AND, DL, VT, NewFMV,
6177                        DAG.getConstant(~SignBit, DL, VT));
6178   }
6179   case ISD::ADD:
6180     return performADDCombine(N, DAG);
6181   case ISD::SUB:
6182     return performSUBCombine(N, DAG);
6183   case ISD::AND:
6184     return performANDCombine(N, DAG);
6185   case ISD::OR:
6186     return performORCombine(N, DAG, Subtarget);
6187   case ISD::XOR:
6188     return performXORCombine(N, DAG);
6189   case ISD::ANY_EXTEND:
6190     return performANY_EXTENDCombine(N, DCI, Subtarget);
6191   case ISD::ZERO_EXTEND:
6192     // Fold (zero_extend (fp_to_uint X)) to prevent forming fcvt+zexti32 during
6193     // type legalization. This is safe because fp_to_uint produces poison if
6194     // it overflows.
6195     if (N->getValueType(0) == MVT::i64 && Subtarget.is64Bit() &&
6196         N->getOperand(0).getOpcode() == ISD::FP_TO_UINT &&
6197         isTypeLegal(N->getOperand(0).getOperand(0).getValueType()))
6198       return DAG.getNode(ISD::FP_TO_UINT, SDLoc(N), MVT::i64,
6199                          N->getOperand(0).getOperand(0));
6200     return SDValue();
6201   case RISCVISD::SELECT_CC: {
6202     // Transform
6203     SDValue LHS = N->getOperand(0);
6204     SDValue RHS = N->getOperand(1);
6205     ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(2))->get();
6206     if (!ISD::isIntEqualitySetCC(CCVal))
6207       break;
6208 
6209     // Fold (select_cc (setlt X, Y), 0, ne, trueV, falseV) ->
6210     //      (select_cc X, Y, lt, trueV, falseV)
6211     // Sometimes the setcc is introduced after select_cc has been formed.
6212     if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) &&
6213         LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) {
6214       // If we're looking for eq 0 instead of ne 0, we need to invert the
6215       // condition.
6216       bool Invert = CCVal == ISD::SETEQ;
6217       CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
6218       if (Invert)
6219         CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
6220 
6221       SDLoc DL(N);
6222       RHS = LHS.getOperand(1);
6223       LHS = LHS.getOperand(0);
6224       translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
6225 
6226       SDValue TargetCC = DAG.getCondCode(CCVal);
6227       return DAG.getNode(
6228           RISCVISD::SELECT_CC, DL, N->getValueType(0),
6229           {LHS, RHS, TargetCC, N->getOperand(3), N->getOperand(4)});
6230     }
6231 
6232     // Fold (select_cc (xor X, Y), 0, eq/ne, trueV, falseV) ->
6233     //      (select_cc X, Y, eq/ne, trueV, falseV)
6234     if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS))
6235       return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), N->getValueType(0),
6236                          {LHS.getOperand(0), LHS.getOperand(1),
6237                           N->getOperand(2), N->getOperand(3),
6238                           N->getOperand(4)});
6239     // (select_cc X, 1, setne, trueV, falseV) ->
6240     // (select_cc X, 0, seteq, trueV, falseV) if we can prove X is 0/1.
6241     // This can occur when legalizing some floating point comparisons.
6242     APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1);
6243     if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) {
6244       SDLoc DL(N);
6245       CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
6246       SDValue TargetCC = DAG.getCondCode(CCVal);
6247       RHS = DAG.getConstant(0, DL, LHS.getValueType());
6248       return DAG.getNode(
6249           RISCVISD::SELECT_CC, DL, N->getValueType(0),
6250           {LHS, RHS, TargetCC, N->getOperand(3), N->getOperand(4)});
6251     }
6252 
6253     break;
6254   }
6255   case RISCVISD::BR_CC: {
6256     SDValue LHS = N->getOperand(1);
6257     SDValue RHS = N->getOperand(2);
6258     ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(3))->get();
6259     if (!ISD::isIntEqualitySetCC(CCVal))
6260       break;
6261 
6262     // Fold (br_cc (setlt X, Y), 0, ne, dest) ->
6263     //      (br_cc X, Y, lt, dest)
6264     // Sometimes the setcc is introduced after br_cc has been formed.
6265     if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) &&
6266         LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) {
6267       // If we're looking for eq 0 instead of ne 0, we need to invert the
6268       // condition.
6269       bool Invert = CCVal == ISD::SETEQ;
6270       CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
6271       if (Invert)
6272         CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
6273 
6274       SDLoc DL(N);
6275       RHS = LHS.getOperand(1);
6276       LHS = LHS.getOperand(0);
6277       translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
6278 
6279       return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0),
6280                          N->getOperand(0), LHS, RHS, DAG.getCondCode(CCVal),
6281                          N->getOperand(4));
6282     }
6283 
6284     // Fold (br_cc (xor X, Y), 0, eq/ne, dest) ->
6285     //      (br_cc X, Y, eq/ne, trueV, falseV)
6286     if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS))
6287       return DAG.getNode(RISCVISD::BR_CC, SDLoc(N), N->getValueType(0),
6288                          N->getOperand(0), LHS.getOperand(0), LHS.getOperand(1),
6289                          N->getOperand(3), N->getOperand(4));
6290 
6291     // (br_cc X, 1, setne, br_cc) ->
6292     // (br_cc X, 0, seteq, br_cc) if we can prove X is 0/1.
6293     // This can occur when legalizing some floating point comparisons.
6294     APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1);
6295     if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) {
6296       SDLoc DL(N);
6297       CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
6298       SDValue TargetCC = DAG.getCondCode(CCVal);
6299       RHS = DAG.getConstant(0, DL, LHS.getValueType());
6300       return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0),
6301                          N->getOperand(0), LHS, RHS, TargetCC,
6302                          N->getOperand(4));
6303     }
6304     break;
6305   }
6306   case ISD::FCOPYSIGN: {
6307     EVT VT = N->getValueType(0);
6308     if (!VT.isVector())
6309       break;
6310     // There is a form of VFSGNJ which injects the negated sign of its second
6311     // operand. Try and bubble any FNEG up after the extend/round to produce
6312     // this optimized pattern. Avoid modifying cases where FP_ROUND and
6313     // TRUNC=1.
6314     SDValue In2 = N->getOperand(1);
6315     // Avoid cases where the extend/round has multiple uses, as duplicating
6316     // those is typically more expensive than removing a fneg.
6317     if (!In2.hasOneUse())
6318       break;
6319     if (In2.getOpcode() != ISD::FP_EXTEND &&
6320         (In2.getOpcode() != ISD::FP_ROUND || In2.getConstantOperandVal(1) != 0))
6321       break;
6322     In2 = In2.getOperand(0);
6323     if (In2.getOpcode() != ISD::FNEG)
6324       break;
6325     SDLoc DL(N);
6326     SDValue NewFPExtRound = DAG.getFPExtendOrRound(In2.getOperand(0), DL, VT);
6327     return DAG.getNode(ISD::FCOPYSIGN, DL, VT, N->getOperand(0),
6328                        DAG.getNode(ISD::FNEG, DL, VT, NewFPExtRound));
6329   }
6330   case ISD::MGATHER:
6331   case ISD::MSCATTER: {
6332     if (!DCI.isBeforeLegalize())
6333       break;
6334     MaskedGatherScatterSDNode *MGSN = cast<MaskedGatherScatterSDNode>(N);
6335     SDValue Index = MGSN->getIndex();
6336     EVT IndexVT = Index.getValueType();
6337     MVT XLenVT = Subtarget.getXLenVT();
6338     // RISCV indexed loads only support the "unsigned unscaled" addressing
6339     // mode, so anything else must be manually legalized.
6340     bool NeedsIdxLegalization = MGSN->isIndexScaled() ||
6341                                 (MGSN->isIndexSigned() &&
6342                                  IndexVT.getVectorElementType().bitsLT(XLenVT));
6343     if (!NeedsIdxLegalization)
6344       break;
6345 
6346     SDLoc DL(N);
6347 
6348     // Any index legalization should first promote to XLenVT, so we don't lose
6349     // bits when scaling. This may create an illegal index type so we let
6350     // LLVM's legalization take care of the splitting.
6351     if (IndexVT.getVectorElementType().bitsLT(XLenVT)) {
6352       IndexVT = IndexVT.changeVectorElementType(XLenVT);
6353       Index = DAG.getNode(MGSN->isIndexSigned() ? ISD::SIGN_EXTEND
6354                                                 : ISD::ZERO_EXTEND,
6355                           DL, IndexVT, Index);
6356     }
6357 
6358     unsigned Scale = N->getConstantOperandVal(5);
6359     if (MGSN->isIndexScaled() && Scale != 1) {
6360       // Manually scale the indices by the element size.
6361       // TODO: Sanitize the scale operand here?
6362       assert(isPowerOf2_32(Scale) && "Expecting power-of-two types");
6363       SDValue SplatScale = DAG.getConstant(Log2_32(Scale), DL, IndexVT);
6364       Index = DAG.getNode(ISD::SHL, DL, IndexVT, Index, SplatScale);
6365     }
6366 
6367     ISD::MemIndexType NewIndexTy = ISD::UNSIGNED_UNSCALED;
6368     if (const auto *MGN = dyn_cast<MaskedGatherSDNode>(N)) {
6369       return DAG.getMaskedGather(
6370           N->getVTList(), MGSN->getMemoryVT(), DL,
6371           {MGSN->getChain(), MGN->getPassThru(), MGSN->getMask(),
6372            MGSN->getBasePtr(), Index, MGN->getScale()},
6373           MGN->getMemOperand(), NewIndexTy, MGN->getExtensionType());
6374     }
6375     const auto *MSN = cast<MaskedScatterSDNode>(N);
6376     return DAG.getMaskedScatter(
6377         N->getVTList(), MGSN->getMemoryVT(), DL,
6378         {MGSN->getChain(), MSN->getValue(), MGSN->getMask(), MGSN->getBasePtr(),
6379          Index, MGSN->getScale()},
6380         MGSN->getMemOperand(), NewIndexTy, MSN->isTruncatingStore());
6381   }
6382   case RISCVISD::SRA_VL:
6383   case RISCVISD::SRL_VL:
6384   case RISCVISD::SHL_VL: {
6385     SDValue ShAmt = N->getOperand(1);
6386     if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) {
6387       // We don't need the upper 32 bits of a 64-bit element for a shift amount.
6388       SDLoc DL(N);
6389       SDValue VL = N->getOperand(3);
6390       EVT VT = N->getValueType(0);
6391       ShAmt =
6392           DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, ShAmt.getOperand(0), VL);
6393       return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt,
6394                          N->getOperand(2), N->getOperand(3));
6395     }
6396     break;
6397   }
6398   case ISD::SRA:
6399   case ISD::SRL:
6400   case ISD::SHL: {
6401     SDValue ShAmt = N->getOperand(1);
6402     if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) {
6403       // We don't need the upper 32 bits of a 64-bit element for a shift amount.
6404       SDLoc DL(N);
6405       EVT VT = N->getValueType(0);
6406       ShAmt =
6407           DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VT, ShAmt.getOperand(0));
6408       return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt);
6409     }
6410     break;
6411   }
6412   case RISCVISD::MUL_VL: {
6413     // Try to form VWMUL or VWMULU.
6414     // FIXME: Look for splat of extended scalar as well.
6415     // FIXME: Support VWMULSU.
6416     SDValue Op0 = N->getOperand(0);
6417     SDValue Op1 = N->getOperand(1);
6418     bool IsSignExt = Op0.getOpcode() == RISCVISD::VSEXT_VL;
6419     bool IsZeroExt = Op0.getOpcode() == RISCVISD::VZEXT_VL;
6420     if ((!IsSignExt && !IsZeroExt) || Op0.getOpcode() != Op1.getOpcode())
6421       return SDValue();
6422 
6423     // Make sure the extends have a single use.
6424     if (!Op0.hasOneUse() || !Op1.hasOneUse())
6425       return SDValue();
6426 
6427     SDValue Mask = N->getOperand(2);
6428     SDValue VL = N->getOperand(3);
6429     if (Op0.getOperand(1) != Mask || Op1.getOperand(1) != Mask ||
6430         Op0.getOperand(2) != VL || Op1.getOperand(2) != VL)
6431       return SDValue();
6432 
6433     Op0 = Op0.getOperand(0);
6434     Op1 = Op1.getOperand(0);
6435 
6436     MVT VT = N->getSimpleValueType(0);
6437     MVT NarrowVT =
6438         MVT::getVectorVT(MVT::getIntegerVT(VT.getScalarSizeInBits() / 2),
6439                          VT.getVectorElementCount());
6440 
6441     SDLoc DL(N);
6442 
6443     // Re-introduce narrower extends if needed.
6444     unsigned ExtOpc = IsSignExt ? RISCVISD::VSEXT_VL : RISCVISD::VZEXT_VL;
6445     if (Op0.getValueType() != NarrowVT)
6446       Op0 = DAG.getNode(ExtOpc, DL, NarrowVT, Op0, Mask, VL);
6447     if (Op1.getValueType() != NarrowVT)
6448       Op1 = DAG.getNode(ExtOpc, DL, NarrowVT, Op1, Mask, VL);
6449 
6450     unsigned WMulOpc = IsSignExt ? RISCVISD::VWMUL_VL : RISCVISD::VWMULU_VL;
6451     return DAG.getNode(WMulOpc, DL, VT, Op0, Op1, Mask, VL);
6452   }
6453   }
6454 
6455   return SDValue();
6456 }
6457 
6458 bool RISCVTargetLowering::isDesirableToCommuteWithShift(
6459     const SDNode *N, CombineLevel Level) const {
6460   // The following folds are only desirable if `(OP _, c1 << c2)` can be
6461   // materialised in fewer instructions than `(OP _, c1)`:
6462   //
6463   //   (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2)
6464   //   (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2)
6465   SDValue N0 = N->getOperand(0);
6466   EVT Ty = N0.getValueType();
6467   if (Ty.isScalarInteger() &&
6468       (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::OR)) {
6469     auto *C1 = dyn_cast<ConstantSDNode>(N0->getOperand(1));
6470     auto *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1));
6471     if (C1 && C2) {
6472       const APInt &C1Int = C1->getAPIntValue();
6473       APInt ShiftedC1Int = C1Int << C2->getAPIntValue();
6474 
6475       // We can materialise `c1 << c2` into an add immediate, so it's "free",
6476       // and the combine should happen, to potentially allow further combines
6477       // later.
6478       if (ShiftedC1Int.getMinSignedBits() <= 64 &&
6479           isLegalAddImmediate(ShiftedC1Int.getSExtValue()))
6480         return true;
6481 
6482       // We can materialise `c1` in an add immediate, so it's "free", and the
6483       // combine should be prevented.
6484       if (C1Int.getMinSignedBits() <= 64 &&
6485           isLegalAddImmediate(C1Int.getSExtValue()))
6486         return false;
6487 
6488       // Neither constant will fit into an immediate, so find materialisation
6489       // costs.
6490       int C1Cost = RISCVMatInt::getIntMatCost(C1Int, Ty.getSizeInBits(),
6491                                               Subtarget.getFeatureBits(),
6492                                               /*CompressionCost*/true);
6493       int ShiftedC1Cost = RISCVMatInt::getIntMatCost(
6494           ShiftedC1Int, Ty.getSizeInBits(), Subtarget.getFeatureBits(),
6495           /*CompressionCost*/true);
6496 
6497       // Materialising `c1` is cheaper than materialising `c1 << c2`, so the
6498       // combine should be prevented.
6499       if (C1Cost < ShiftedC1Cost)
6500         return false;
6501     }
6502   }
6503   return true;
6504 }
6505 
6506 bool RISCVTargetLowering::targetShrinkDemandedConstant(
6507     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
6508     TargetLoweringOpt &TLO) const {
6509   // Delay this optimization as late as possible.
6510   if (!TLO.LegalOps)
6511     return false;
6512 
6513   EVT VT = Op.getValueType();
6514   if (VT.isVector())
6515     return false;
6516 
6517   // Only handle AND for now.
6518   if (Op.getOpcode() != ISD::AND)
6519     return false;
6520 
6521   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
6522   if (!C)
6523     return false;
6524 
6525   const APInt &Mask = C->getAPIntValue();
6526 
6527   // Clear all non-demanded bits initially.
6528   APInt ShrunkMask = Mask & DemandedBits;
6529 
6530   // Try to make a smaller immediate by setting undemanded bits.
6531 
6532   APInt ExpandedMask = Mask | ~DemandedBits;
6533 
6534   auto IsLegalMask = [ShrunkMask, ExpandedMask](const APInt &Mask) -> bool {
6535     return ShrunkMask.isSubsetOf(Mask) && Mask.isSubsetOf(ExpandedMask);
6536   };
6537   auto UseMask = [Mask, Op, VT, &TLO](const APInt &NewMask) -> bool {
6538     if (NewMask == Mask)
6539       return true;
6540     SDLoc DL(Op);
6541     SDValue NewC = TLO.DAG.getConstant(NewMask, DL, VT);
6542     SDValue NewOp = TLO.DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), NewC);
6543     return TLO.CombineTo(Op, NewOp);
6544   };
6545 
6546   // If the shrunk mask fits in sign extended 12 bits, let the target
6547   // independent code apply it.
6548   if (ShrunkMask.isSignedIntN(12))
6549     return false;
6550 
6551   // Preserve (and X, 0xffff) when zext.h is supported.
6552   if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp()) {
6553     APInt NewMask = APInt(Mask.getBitWidth(), 0xffff);
6554     if (IsLegalMask(NewMask))
6555       return UseMask(NewMask);
6556   }
6557 
6558   // Try to preserve (and X, 0xffffffff), the (zext_inreg X, i32) pattern.
6559   if (VT == MVT::i64) {
6560     APInt NewMask = APInt(64, 0xffffffff);
6561     if (IsLegalMask(NewMask))
6562       return UseMask(NewMask);
6563   }
6564 
6565   // For the remaining optimizations, we need to be able to make a negative
6566   // number through a combination of mask and undemanded bits.
6567   if (!ExpandedMask.isNegative())
6568     return false;
6569 
6570   // What is the fewest number of bits we need to represent the negative number.
6571   unsigned MinSignedBits = ExpandedMask.getMinSignedBits();
6572 
6573   // Try to make a 12 bit negative immediate. If that fails try to make a 32
6574   // bit negative immediate unless the shrunk immediate already fits in 32 bits.
6575   APInt NewMask = ShrunkMask;
6576   if (MinSignedBits <= 12)
6577     NewMask.setBitsFrom(11);
6578   else if (MinSignedBits <= 32 && !ShrunkMask.isSignedIntN(32))
6579     NewMask.setBitsFrom(31);
6580   else
6581     return false;
6582 
6583   // Sanity check that our new mask is a subset of the demanded mask.
6584   assert(IsLegalMask(NewMask));
6585   return UseMask(NewMask);
6586 }
6587 
6588 static void computeGREV(APInt &Src, unsigned ShAmt) {
6589   ShAmt &= Src.getBitWidth() - 1;
6590   uint64_t x = Src.getZExtValue();
6591   if (ShAmt & 1)
6592     x = ((x & 0x5555555555555555LL) << 1) | ((x & 0xAAAAAAAAAAAAAAAALL) >> 1);
6593   if (ShAmt & 2)
6594     x = ((x & 0x3333333333333333LL) << 2) | ((x & 0xCCCCCCCCCCCCCCCCLL) >> 2);
6595   if (ShAmt & 4)
6596     x = ((x & 0x0F0F0F0F0F0F0F0FLL) << 4) | ((x & 0xF0F0F0F0F0F0F0F0LL) >> 4);
6597   if (ShAmt & 8)
6598     x = ((x & 0x00FF00FF00FF00FFLL) << 8) | ((x & 0xFF00FF00FF00FF00LL) >> 8);
6599   if (ShAmt & 16)
6600     x = ((x & 0x0000FFFF0000FFFFLL) << 16) | ((x & 0xFFFF0000FFFF0000LL) >> 16);
6601   if (ShAmt & 32)
6602     x = ((x & 0x00000000FFFFFFFFLL) << 32) | ((x & 0xFFFFFFFF00000000LL) >> 32);
6603   Src = x;
6604 }
6605 
6606 void RISCVTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
6607                                                         KnownBits &Known,
6608                                                         const APInt &DemandedElts,
6609                                                         const SelectionDAG &DAG,
6610                                                         unsigned Depth) const {
6611   unsigned BitWidth = Known.getBitWidth();
6612   unsigned Opc = Op.getOpcode();
6613   assert((Opc >= ISD::BUILTIN_OP_END ||
6614           Opc == ISD::INTRINSIC_WO_CHAIN ||
6615           Opc == ISD::INTRINSIC_W_CHAIN ||
6616           Opc == ISD::INTRINSIC_VOID) &&
6617          "Should use MaskedValueIsZero if you don't know whether Op"
6618          " is a target node!");
6619 
6620   Known.resetAll();
6621   switch (Opc) {
6622   default: break;
6623   case RISCVISD::SELECT_CC: {
6624     Known = DAG.computeKnownBits(Op.getOperand(4), Depth + 1);
6625     // If we don't know any bits, early out.
6626     if (Known.isUnknown())
6627       break;
6628     KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(3), Depth + 1);
6629 
6630     // Only known if known in both the LHS and RHS.
6631     Known = KnownBits::commonBits(Known, Known2);
6632     break;
6633   }
6634   case RISCVISD::REMUW: {
6635     KnownBits Known2;
6636     Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
6637     Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
6638     // We only care about the lower 32 bits.
6639     Known = KnownBits::urem(Known.trunc(32), Known2.trunc(32));
6640     // Restore the original width by sign extending.
6641     Known = Known.sext(BitWidth);
6642     break;
6643   }
6644   case RISCVISD::DIVUW: {
6645     KnownBits Known2;
6646     Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
6647     Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
6648     // We only care about the lower 32 bits.
6649     Known = KnownBits::udiv(Known.trunc(32), Known2.trunc(32));
6650     // Restore the original width by sign extending.
6651     Known = Known.sext(BitWidth);
6652     break;
6653   }
6654   case RISCVISD::CTZW: {
6655     KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
6656     unsigned PossibleTZ = Known2.trunc(32).countMaxTrailingZeros();
6657     unsigned LowBits = Log2_32(PossibleTZ) + 1;
6658     Known.Zero.setBitsFrom(LowBits);
6659     break;
6660   }
6661   case RISCVISD::CLZW: {
6662     KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
6663     unsigned PossibleLZ = Known2.trunc(32).countMaxLeadingZeros();
6664     unsigned LowBits = Log2_32(PossibleLZ) + 1;
6665     Known.Zero.setBitsFrom(LowBits);
6666     break;
6667   }
6668   case RISCVISD::GREV:
6669   case RISCVISD::GREVW: {
6670     if (auto *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
6671       Known = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
6672       if (Opc == RISCVISD::GREVW)
6673         Known = Known.trunc(32);
6674       unsigned ShAmt = C->getZExtValue();
6675       computeGREV(Known.Zero, ShAmt);
6676       computeGREV(Known.One, ShAmt);
6677       if (Opc == RISCVISD::GREVW)
6678         Known = Known.sext(BitWidth);
6679     }
6680     break;
6681   }
6682   case RISCVISD::READ_VLENB:
6683     // We assume VLENB is at least 16 bytes.
6684     Known.Zero.setLowBits(4);
6685     // We assume VLENB is no more than 65536 / 8 bytes.
6686     Known.Zero.setBitsFrom(14);
6687     break;
6688   case ISD::INTRINSIC_W_CHAIN: {
6689     unsigned IntNo = Op.getConstantOperandVal(1);
6690     switch (IntNo) {
6691     default:
6692       // We can't do anything for most intrinsics.
6693       break;
6694     case Intrinsic::riscv_vsetvli:
6695     case Intrinsic::riscv_vsetvlimax:
6696       // Assume that VL output is positive and would fit in an int32_t.
6697       // TODO: VLEN might be capped at 16 bits in a future V spec update.
6698       if (BitWidth >= 32)
6699         Known.Zero.setBitsFrom(31);
6700       break;
6701     }
6702     break;
6703   }
6704   }
6705 }
6706 
6707 unsigned RISCVTargetLowering::ComputeNumSignBitsForTargetNode(
6708     SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
6709     unsigned Depth) const {
6710   switch (Op.getOpcode()) {
6711   default:
6712     break;
6713   case RISCVISD::SELECT_CC: {
6714     unsigned Tmp = DAG.ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth + 1);
6715     if (Tmp == 1) return 1;  // Early out.
6716     unsigned Tmp2 = DAG.ComputeNumSignBits(Op.getOperand(4), DemandedElts, Depth + 1);
6717     return std::min(Tmp, Tmp2);
6718   }
6719   case RISCVISD::SLLW:
6720   case RISCVISD::SRAW:
6721   case RISCVISD::SRLW:
6722   case RISCVISD::DIVW:
6723   case RISCVISD::DIVUW:
6724   case RISCVISD::REMUW:
6725   case RISCVISD::ROLW:
6726   case RISCVISD::RORW:
6727   case RISCVISD::GREVW:
6728   case RISCVISD::GORCW:
6729   case RISCVISD::FSLW:
6730   case RISCVISD::FSRW:
6731   case RISCVISD::SHFLW:
6732   case RISCVISD::UNSHFLW:
6733   case RISCVISD::BCOMPRESSW:
6734   case RISCVISD::BDECOMPRESSW:
6735   case RISCVISD::FCVT_W_RTZ_RV64:
6736   case RISCVISD::FCVT_WU_RTZ_RV64:
6737     // TODO: As the result is sign-extended, this is conservatively correct. A
6738     // more precise answer could be calculated for SRAW depending on known
6739     // bits in the shift amount.
6740     return 33;
6741   case RISCVISD::SHFL:
6742   case RISCVISD::UNSHFL: {
6743     // There is no SHFLIW, but a i64 SHFLI with bit 4 of the control word
6744     // cleared doesn't affect bit 31. The upper 32 bits will be shuffled, but
6745     // will stay within the upper 32 bits. If there were more than 32 sign bits
6746     // before there will be at least 33 sign bits after.
6747     if (Op.getValueType() == MVT::i64 &&
6748         isa<ConstantSDNode>(Op.getOperand(1)) &&
6749         (Op.getConstantOperandVal(1) & 0x10) == 0) {
6750       unsigned Tmp = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1);
6751       if (Tmp > 32)
6752         return 33;
6753     }
6754     break;
6755   }
6756   case RISCVISD::VMV_X_S:
6757     // The number of sign bits of the scalar result is computed by obtaining the
6758     // element type of the input vector operand, subtracting its width from the
6759     // XLEN, and then adding one (sign bit within the element type). If the
6760     // element type is wider than XLen, the least-significant XLEN bits are
6761     // taken.
6762     if (Op.getOperand(0).getScalarValueSizeInBits() > Subtarget.getXLen())
6763       return 1;
6764     return Subtarget.getXLen() - Op.getOperand(0).getScalarValueSizeInBits() + 1;
6765   }
6766 
6767   return 1;
6768 }
6769 
6770 static MachineBasicBlock *emitReadCycleWidePseudo(MachineInstr &MI,
6771                                                   MachineBasicBlock *BB) {
6772   assert(MI.getOpcode() == RISCV::ReadCycleWide && "Unexpected instruction");
6773 
6774   // To read the 64-bit cycle CSR on a 32-bit target, we read the two halves.
6775   // Should the count have wrapped while it was being read, we need to try
6776   // again.
6777   // ...
6778   // read:
6779   // rdcycleh x3 # load high word of cycle
6780   // rdcycle  x2 # load low word of cycle
6781   // rdcycleh x4 # load high word of cycle
6782   // bne x3, x4, read # check if high word reads match, otherwise try again
6783   // ...
6784 
6785   MachineFunction &MF = *BB->getParent();
6786   const BasicBlock *LLVM_BB = BB->getBasicBlock();
6787   MachineFunction::iterator It = ++BB->getIterator();
6788 
6789   MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB);
6790   MF.insert(It, LoopMBB);
6791 
6792   MachineBasicBlock *DoneMBB = MF.CreateMachineBasicBlock(LLVM_BB);
6793   MF.insert(It, DoneMBB);
6794 
6795   // Transfer the remainder of BB and its successor edges to DoneMBB.
6796   DoneMBB->splice(DoneMBB->begin(), BB,
6797                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
6798   DoneMBB->transferSuccessorsAndUpdatePHIs(BB);
6799 
6800   BB->addSuccessor(LoopMBB);
6801 
6802   MachineRegisterInfo &RegInfo = MF.getRegInfo();
6803   Register ReadAgainReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
6804   Register LoReg = MI.getOperand(0).getReg();
6805   Register HiReg = MI.getOperand(1).getReg();
6806   DebugLoc DL = MI.getDebugLoc();
6807 
6808   const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
6809   BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), HiReg)
6810       .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding)
6811       .addReg(RISCV::X0);
6812   BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), LoReg)
6813       .addImm(RISCVSysReg::lookupSysRegByName("CYCLE")->Encoding)
6814       .addReg(RISCV::X0);
6815   BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), ReadAgainReg)
6816       .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding)
6817       .addReg(RISCV::X0);
6818 
6819   BuildMI(LoopMBB, DL, TII->get(RISCV::BNE))
6820       .addReg(HiReg)
6821       .addReg(ReadAgainReg)
6822       .addMBB(LoopMBB);
6823 
6824   LoopMBB->addSuccessor(LoopMBB);
6825   LoopMBB->addSuccessor(DoneMBB);
6826 
6827   MI.eraseFromParent();
6828 
6829   return DoneMBB;
6830 }
6831 
6832 static MachineBasicBlock *emitSplitF64Pseudo(MachineInstr &MI,
6833                                              MachineBasicBlock *BB) {
6834   assert(MI.getOpcode() == RISCV::SplitF64Pseudo && "Unexpected instruction");
6835 
6836   MachineFunction &MF = *BB->getParent();
6837   DebugLoc DL = MI.getDebugLoc();
6838   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
6839   const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo();
6840   Register LoReg = MI.getOperand(0).getReg();
6841   Register HiReg = MI.getOperand(1).getReg();
6842   Register SrcReg = MI.getOperand(2).getReg();
6843   const TargetRegisterClass *SrcRC = &RISCV::FPR64RegClass;
6844   int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF);
6845 
6846   TII.storeRegToStackSlot(*BB, MI, SrcReg, MI.getOperand(2).isKill(), FI, SrcRC,
6847                           RI);
6848   MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI);
6849   MachineMemOperand *MMOLo =
6850       MF.getMachineMemOperand(MPI, MachineMemOperand::MOLoad, 4, Align(8));
6851   MachineMemOperand *MMOHi = MF.getMachineMemOperand(
6852       MPI.getWithOffset(4), MachineMemOperand::MOLoad, 4, Align(8));
6853   BuildMI(*BB, MI, DL, TII.get(RISCV::LW), LoReg)
6854       .addFrameIndex(FI)
6855       .addImm(0)
6856       .addMemOperand(MMOLo);
6857   BuildMI(*BB, MI, DL, TII.get(RISCV::LW), HiReg)
6858       .addFrameIndex(FI)
6859       .addImm(4)
6860       .addMemOperand(MMOHi);
6861   MI.eraseFromParent(); // The pseudo instruction is gone now.
6862   return BB;
6863 }
6864 
6865 static MachineBasicBlock *emitBuildPairF64Pseudo(MachineInstr &MI,
6866                                                  MachineBasicBlock *BB) {
6867   assert(MI.getOpcode() == RISCV::BuildPairF64Pseudo &&
6868          "Unexpected instruction");
6869 
6870   MachineFunction &MF = *BB->getParent();
6871   DebugLoc DL = MI.getDebugLoc();
6872   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
6873   const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo();
6874   Register DstReg = MI.getOperand(0).getReg();
6875   Register LoReg = MI.getOperand(1).getReg();
6876   Register HiReg = MI.getOperand(2).getReg();
6877   const TargetRegisterClass *DstRC = &RISCV::FPR64RegClass;
6878   int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF);
6879 
6880   MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI);
6881   MachineMemOperand *MMOLo =
6882       MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Align(8));
6883   MachineMemOperand *MMOHi = MF.getMachineMemOperand(
6884       MPI.getWithOffset(4), MachineMemOperand::MOStore, 4, Align(8));
6885   BuildMI(*BB, MI, DL, TII.get(RISCV::SW))
6886       .addReg(LoReg, getKillRegState(MI.getOperand(1).isKill()))
6887       .addFrameIndex(FI)
6888       .addImm(0)
6889       .addMemOperand(MMOLo);
6890   BuildMI(*BB, MI, DL, TII.get(RISCV::SW))
6891       .addReg(HiReg, getKillRegState(MI.getOperand(2).isKill()))
6892       .addFrameIndex(FI)
6893       .addImm(4)
6894       .addMemOperand(MMOHi);
6895   TII.loadRegFromStackSlot(*BB, MI, DstReg, FI, DstRC, RI);
6896   MI.eraseFromParent(); // The pseudo instruction is gone now.
6897   return BB;
6898 }
6899 
6900 static bool isSelectPseudo(MachineInstr &MI) {
6901   switch (MI.getOpcode()) {
6902   default:
6903     return false;
6904   case RISCV::Select_GPR_Using_CC_GPR:
6905   case RISCV::Select_FPR16_Using_CC_GPR:
6906   case RISCV::Select_FPR32_Using_CC_GPR:
6907   case RISCV::Select_FPR64_Using_CC_GPR:
6908     return true;
6909   }
6910 }
6911 
6912 static MachineBasicBlock *emitSelectPseudo(MachineInstr &MI,
6913                                            MachineBasicBlock *BB,
6914                                            const RISCVSubtarget &Subtarget) {
6915   // To "insert" Select_* instructions, we actually have to insert the triangle
6916   // control-flow pattern.  The incoming instructions know the destination vreg
6917   // to set, the condition code register to branch on, the true/false values to
6918   // select between, and the condcode to use to select the appropriate branch.
6919   //
6920   // We produce the following control flow:
6921   //     HeadMBB
6922   //     |  \
6923   //     |  IfFalseMBB
6924   //     | /
6925   //    TailMBB
6926   //
6927   // When we find a sequence of selects we attempt to optimize their emission
6928   // by sharing the control flow. Currently we only handle cases where we have
6929   // multiple selects with the exact same condition (same LHS, RHS and CC).
6930   // The selects may be interleaved with other instructions if the other
6931   // instructions meet some requirements we deem safe:
6932   // - They are debug instructions. Otherwise,
6933   // - They do not have side-effects, do not access memory and their inputs do
6934   //   not depend on the results of the select pseudo-instructions.
6935   // The TrueV/FalseV operands of the selects cannot depend on the result of
6936   // previous selects in the sequence.
6937   // These conditions could be further relaxed. See the X86 target for a
6938   // related approach and more information.
6939   Register LHS = MI.getOperand(1).getReg();
6940   Register RHS = MI.getOperand(2).getReg();
6941   auto CC = static_cast<RISCVCC::CondCode>(MI.getOperand(3).getImm());
6942 
6943   SmallVector<MachineInstr *, 4> SelectDebugValues;
6944   SmallSet<Register, 4> SelectDests;
6945   SelectDests.insert(MI.getOperand(0).getReg());
6946 
6947   MachineInstr *LastSelectPseudo = &MI;
6948 
6949   for (auto E = BB->end(), SequenceMBBI = MachineBasicBlock::iterator(MI);
6950        SequenceMBBI != E; ++SequenceMBBI) {
6951     if (SequenceMBBI->isDebugInstr())
6952       continue;
6953     else if (isSelectPseudo(*SequenceMBBI)) {
6954       if (SequenceMBBI->getOperand(1).getReg() != LHS ||
6955           SequenceMBBI->getOperand(2).getReg() != RHS ||
6956           SequenceMBBI->getOperand(3).getImm() != CC ||
6957           SelectDests.count(SequenceMBBI->getOperand(4).getReg()) ||
6958           SelectDests.count(SequenceMBBI->getOperand(5).getReg()))
6959         break;
6960       LastSelectPseudo = &*SequenceMBBI;
6961       SequenceMBBI->collectDebugValues(SelectDebugValues);
6962       SelectDests.insert(SequenceMBBI->getOperand(0).getReg());
6963     } else {
6964       if (SequenceMBBI->hasUnmodeledSideEffects() ||
6965           SequenceMBBI->mayLoadOrStore())
6966         break;
6967       if (llvm::any_of(SequenceMBBI->operands(), [&](MachineOperand &MO) {
6968             return MO.isReg() && MO.isUse() && SelectDests.count(MO.getReg());
6969           }))
6970         break;
6971     }
6972   }
6973 
6974   const RISCVInstrInfo &TII = *Subtarget.getInstrInfo();
6975   const BasicBlock *LLVM_BB = BB->getBasicBlock();
6976   DebugLoc DL = MI.getDebugLoc();
6977   MachineFunction::iterator I = ++BB->getIterator();
6978 
6979   MachineBasicBlock *HeadMBB = BB;
6980   MachineFunction *F = BB->getParent();
6981   MachineBasicBlock *TailMBB = F->CreateMachineBasicBlock(LLVM_BB);
6982   MachineBasicBlock *IfFalseMBB = F->CreateMachineBasicBlock(LLVM_BB);
6983 
6984   F->insert(I, IfFalseMBB);
6985   F->insert(I, TailMBB);
6986 
6987   // Transfer debug instructions associated with the selects to TailMBB.
6988   for (MachineInstr *DebugInstr : SelectDebugValues) {
6989     TailMBB->push_back(DebugInstr->removeFromParent());
6990   }
6991 
6992   // Move all instructions after the sequence to TailMBB.
6993   TailMBB->splice(TailMBB->end(), HeadMBB,
6994                   std::next(LastSelectPseudo->getIterator()), HeadMBB->end());
6995   // Update machine-CFG edges by transferring all successors of the current
6996   // block to the new block which will contain the Phi nodes for the selects.
6997   TailMBB->transferSuccessorsAndUpdatePHIs(HeadMBB);
6998   // Set the successors for HeadMBB.
6999   HeadMBB->addSuccessor(IfFalseMBB);
7000   HeadMBB->addSuccessor(TailMBB);
7001 
7002   // Insert appropriate branch.
7003   BuildMI(HeadMBB, DL, TII.getBrCond(CC))
7004     .addReg(LHS)
7005     .addReg(RHS)
7006     .addMBB(TailMBB);
7007 
7008   // IfFalseMBB just falls through to TailMBB.
7009   IfFalseMBB->addSuccessor(TailMBB);
7010 
7011   // Create PHIs for all of the select pseudo-instructions.
7012   auto SelectMBBI = MI.getIterator();
7013   auto SelectEnd = std::next(LastSelectPseudo->getIterator());
7014   auto InsertionPoint = TailMBB->begin();
7015   while (SelectMBBI != SelectEnd) {
7016     auto Next = std::next(SelectMBBI);
7017     if (isSelectPseudo(*SelectMBBI)) {
7018       // %Result = phi [ %TrueValue, HeadMBB ], [ %FalseValue, IfFalseMBB ]
7019       BuildMI(*TailMBB, InsertionPoint, SelectMBBI->getDebugLoc(),
7020               TII.get(RISCV::PHI), SelectMBBI->getOperand(0).getReg())
7021           .addReg(SelectMBBI->getOperand(4).getReg())
7022           .addMBB(HeadMBB)
7023           .addReg(SelectMBBI->getOperand(5).getReg())
7024           .addMBB(IfFalseMBB);
7025       SelectMBBI->eraseFromParent();
7026     }
7027     SelectMBBI = Next;
7028   }
7029 
7030   F->getProperties().reset(MachineFunctionProperties::Property::NoPHIs);
7031   return TailMBB;
7032 }
7033 
7034 MachineBasicBlock *
7035 RISCVTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
7036                                                  MachineBasicBlock *BB) const {
7037   switch (MI.getOpcode()) {
7038   default:
7039     llvm_unreachable("Unexpected instr type to insert");
7040   case RISCV::ReadCycleWide:
7041     assert(!Subtarget.is64Bit() &&
7042            "ReadCycleWrite is only to be used on riscv32");
7043     return emitReadCycleWidePseudo(MI, BB);
7044   case RISCV::Select_GPR_Using_CC_GPR:
7045   case RISCV::Select_FPR16_Using_CC_GPR:
7046   case RISCV::Select_FPR32_Using_CC_GPR:
7047   case RISCV::Select_FPR64_Using_CC_GPR:
7048     return emitSelectPseudo(MI, BB, Subtarget);
7049   case RISCV::BuildPairF64Pseudo:
7050     return emitBuildPairF64Pseudo(MI, BB);
7051   case RISCV::SplitF64Pseudo:
7052     return emitSplitF64Pseudo(MI, BB);
7053   }
7054 }
7055 
7056 // Calling Convention Implementation.
7057 // The expectations for frontend ABI lowering vary from target to target.
7058 // Ideally, an LLVM frontend would be able to avoid worrying about many ABI
7059 // details, but this is a longer term goal. For now, we simply try to keep the
7060 // role of the frontend as simple and well-defined as possible. The rules can
7061 // be summarised as:
7062 // * Never split up large scalar arguments. We handle them here.
7063 // * If a hardfloat calling convention is being used, and the struct may be
7064 // passed in a pair of registers (fp+fp, int+fp), and both registers are
7065 // available, then pass as two separate arguments. If either the GPRs or FPRs
7066 // are exhausted, then pass according to the rule below.
7067 // * If a struct could never be passed in registers or directly in a stack
7068 // slot (as it is larger than 2*XLEN and the floating point rules don't
7069 // apply), then pass it using a pointer with the byval attribute.
7070 // * If a struct is less than 2*XLEN, then coerce to either a two-element
7071 // word-sized array or a 2*XLEN scalar (depending on alignment).
7072 // * The frontend can determine whether a struct is returned by reference or
7073 // not based on its size and fields. If it will be returned by reference, the
7074 // frontend must modify the prototype so a pointer with the sret annotation is
7075 // passed as the first argument. This is not necessary for large scalar
7076 // returns.
7077 // * Struct return values and varargs should be coerced to structs containing
7078 // register-size fields in the same situations they would be for fixed
7079 // arguments.
7080 
7081 static const MCPhysReg ArgGPRs[] = {
7082   RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13,
7083   RISCV::X14, RISCV::X15, RISCV::X16, RISCV::X17
7084 };
7085 static const MCPhysReg ArgFPR16s[] = {
7086   RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H,
7087   RISCV::F14_H, RISCV::F15_H, RISCV::F16_H, RISCV::F17_H
7088 };
7089 static const MCPhysReg ArgFPR32s[] = {
7090   RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F,
7091   RISCV::F14_F, RISCV::F15_F, RISCV::F16_F, RISCV::F17_F
7092 };
7093 static const MCPhysReg ArgFPR64s[] = {
7094   RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D,
7095   RISCV::F14_D, RISCV::F15_D, RISCV::F16_D, RISCV::F17_D
7096 };
7097 // This is an interim calling convention and it may be changed in the future.
7098 static const MCPhysReg ArgVRs[] = {
7099     RISCV::V8,  RISCV::V9,  RISCV::V10, RISCV::V11, RISCV::V12, RISCV::V13,
7100     RISCV::V14, RISCV::V15, RISCV::V16, RISCV::V17, RISCV::V18, RISCV::V19,
7101     RISCV::V20, RISCV::V21, RISCV::V22, RISCV::V23};
7102 static const MCPhysReg ArgVRM2s[] = {RISCV::V8M2,  RISCV::V10M2, RISCV::V12M2,
7103                                      RISCV::V14M2, RISCV::V16M2, RISCV::V18M2,
7104                                      RISCV::V20M2, RISCV::V22M2};
7105 static const MCPhysReg ArgVRM4s[] = {RISCV::V8M4, RISCV::V12M4, RISCV::V16M4,
7106                                      RISCV::V20M4};
7107 static const MCPhysReg ArgVRM8s[] = {RISCV::V8M8, RISCV::V16M8};
7108 
7109 // Pass a 2*XLEN argument that has been split into two XLEN values through
7110 // registers or the stack as necessary.
7111 static bool CC_RISCVAssign2XLen(unsigned XLen, CCState &State, CCValAssign VA1,
7112                                 ISD::ArgFlagsTy ArgFlags1, unsigned ValNo2,
7113                                 MVT ValVT2, MVT LocVT2,
7114                                 ISD::ArgFlagsTy ArgFlags2) {
7115   unsigned XLenInBytes = XLen / 8;
7116   if (Register Reg = State.AllocateReg(ArgGPRs)) {
7117     // At least one half can be passed via register.
7118     State.addLoc(CCValAssign::getReg(VA1.getValNo(), VA1.getValVT(), Reg,
7119                                      VA1.getLocVT(), CCValAssign::Full));
7120   } else {
7121     // Both halves must be passed on the stack, with proper alignment.
7122     Align StackAlign =
7123         std::max(Align(XLenInBytes), ArgFlags1.getNonZeroOrigAlign());
7124     State.addLoc(
7125         CCValAssign::getMem(VA1.getValNo(), VA1.getValVT(),
7126                             State.AllocateStack(XLenInBytes, StackAlign),
7127                             VA1.getLocVT(), CCValAssign::Full));
7128     State.addLoc(CCValAssign::getMem(
7129         ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)),
7130         LocVT2, CCValAssign::Full));
7131     return false;
7132   }
7133 
7134   if (Register Reg = State.AllocateReg(ArgGPRs)) {
7135     // The second half can also be passed via register.
7136     State.addLoc(
7137         CCValAssign::getReg(ValNo2, ValVT2, Reg, LocVT2, CCValAssign::Full));
7138   } else {
7139     // The second half is passed via the stack, without additional alignment.
7140     State.addLoc(CCValAssign::getMem(
7141         ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)),
7142         LocVT2, CCValAssign::Full));
7143   }
7144 
7145   return false;
7146 }
7147 
7148 static unsigned allocateRVVReg(MVT ValVT, unsigned ValNo,
7149                                Optional<unsigned> FirstMaskArgument,
7150                                CCState &State, const RISCVTargetLowering &TLI) {
7151   const TargetRegisterClass *RC = TLI.getRegClassFor(ValVT);
7152   if (RC == &RISCV::VRRegClass) {
7153     // Assign the first mask argument to V0.
7154     // This is an interim calling convention and it may be changed in the
7155     // future.
7156     if (FirstMaskArgument.hasValue() && ValNo == FirstMaskArgument.getValue())
7157       return State.AllocateReg(RISCV::V0);
7158     return State.AllocateReg(ArgVRs);
7159   }
7160   if (RC == &RISCV::VRM2RegClass)
7161     return State.AllocateReg(ArgVRM2s);
7162   if (RC == &RISCV::VRM4RegClass)
7163     return State.AllocateReg(ArgVRM4s);
7164   if (RC == &RISCV::VRM8RegClass)
7165     return State.AllocateReg(ArgVRM8s);
7166   llvm_unreachable("Unhandled register class for ValueType");
7167 }
7168 
7169 // Implements the RISC-V calling convention. Returns true upon failure.
7170 static bool CC_RISCV(const DataLayout &DL, RISCVABI::ABI ABI, unsigned ValNo,
7171                      MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo,
7172                      ISD::ArgFlagsTy ArgFlags, CCState &State, bool IsFixed,
7173                      bool IsRet, Type *OrigTy, const RISCVTargetLowering &TLI,
7174                      Optional<unsigned> FirstMaskArgument) {
7175   unsigned XLen = DL.getLargestLegalIntTypeSizeInBits();
7176   assert(XLen == 32 || XLen == 64);
7177   MVT XLenVT = XLen == 32 ? MVT::i32 : MVT::i64;
7178 
7179   // Any return value split in to more than two values can't be returned
7180   // directly. Vectors are returned via the available vector registers.
7181   if (!LocVT.isVector() && IsRet && ValNo > 1)
7182     return true;
7183 
7184   // UseGPRForF16_F32 if targeting one of the soft-float ABIs, if passing a
7185   // variadic argument, or if no F16/F32 argument registers are available.
7186   bool UseGPRForF16_F32 = true;
7187   // UseGPRForF64 if targeting soft-float ABIs or an FLEN=32 ABI, if passing a
7188   // variadic argument, or if no F64 argument registers are available.
7189   bool UseGPRForF64 = true;
7190 
7191   switch (ABI) {
7192   default:
7193     llvm_unreachable("Unexpected ABI");
7194   case RISCVABI::ABI_ILP32:
7195   case RISCVABI::ABI_LP64:
7196     break;
7197   case RISCVABI::ABI_ILP32F:
7198   case RISCVABI::ABI_LP64F:
7199     UseGPRForF16_F32 = !IsFixed;
7200     break;
7201   case RISCVABI::ABI_ILP32D:
7202   case RISCVABI::ABI_LP64D:
7203     UseGPRForF16_F32 = !IsFixed;
7204     UseGPRForF64 = !IsFixed;
7205     break;
7206   }
7207 
7208   // FPR16, FPR32, and FPR64 alias each other.
7209   if (State.getFirstUnallocated(ArgFPR32s) == array_lengthof(ArgFPR32s)) {
7210     UseGPRForF16_F32 = true;
7211     UseGPRForF64 = true;
7212   }
7213 
7214   // From this point on, rely on UseGPRForF16_F32, UseGPRForF64 and
7215   // similar local variables rather than directly checking against the target
7216   // ABI.
7217 
7218   if (UseGPRForF16_F32 && (ValVT == MVT::f16 || ValVT == MVT::f32)) {
7219     LocVT = XLenVT;
7220     LocInfo = CCValAssign::BCvt;
7221   } else if (UseGPRForF64 && XLen == 64 && ValVT == MVT::f64) {
7222     LocVT = MVT::i64;
7223     LocInfo = CCValAssign::BCvt;
7224   }
7225 
7226   // If this is a variadic argument, the RISC-V calling convention requires
7227   // that it is assigned an 'even' or 'aligned' register if it has 8-byte
7228   // alignment (RV32) or 16-byte alignment (RV64). An aligned register should
7229   // be used regardless of whether the original argument was split during
7230   // legalisation or not. The argument will not be passed by registers if the
7231   // original type is larger than 2*XLEN, so the register alignment rule does
7232   // not apply.
7233   unsigned TwoXLenInBytes = (2 * XLen) / 8;
7234   if (!IsFixed && ArgFlags.getNonZeroOrigAlign() == TwoXLenInBytes &&
7235       DL.getTypeAllocSize(OrigTy) == TwoXLenInBytes) {
7236     unsigned RegIdx = State.getFirstUnallocated(ArgGPRs);
7237     // Skip 'odd' register if necessary.
7238     if (RegIdx != array_lengthof(ArgGPRs) && RegIdx % 2 == 1)
7239       State.AllocateReg(ArgGPRs);
7240   }
7241 
7242   SmallVectorImpl<CCValAssign> &PendingLocs = State.getPendingLocs();
7243   SmallVectorImpl<ISD::ArgFlagsTy> &PendingArgFlags =
7244       State.getPendingArgFlags();
7245 
7246   assert(PendingLocs.size() == PendingArgFlags.size() &&
7247          "PendingLocs and PendingArgFlags out of sync");
7248 
7249   // Handle passing f64 on RV32D with a soft float ABI or when floating point
7250   // registers are exhausted.
7251   if (UseGPRForF64 && XLen == 32 && ValVT == MVT::f64) {
7252     assert(!ArgFlags.isSplit() && PendingLocs.empty() &&
7253            "Can't lower f64 if it is split");
7254     // Depending on available argument GPRS, f64 may be passed in a pair of
7255     // GPRs, split between a GPR and the stack, or passed completely on the
7256     // stack. LowerCall/LowerFormalArguments/LowerReturn must recognise these
7257     // cases.
7258     Register Reg = State.AllocateReg(ArgGPRs);
7259     LocVT = MVT::i32;
7260     if (!Reg) {
7261       unsigned StackOffset = State.AllocateStack(8, Align(8));
7262       State.addLoc(
7263           CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
7264       return false;
7265     }
7266     if (!State.AllocateReg(ArgGPRs))
7267       State.AllocateStack(4, Align(4));
7268     State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
7269     return false;
7270   }
7271 
7272   // Fixed-length vectors are located in the corresponding scalable-vector
7273   // container types.
7274   if (ValVT.isFixedLengthVector())
7275     LocVT = TLI.getContainerForFixedLengthVector(LocVT);
7276 
7277   // Split arguments might be passed indirectly, so keep track of the pending
7278   // values. Split vectors are passed via a mix of registers and indirectly, so
7279   // treat them as we would any other argument.
7280   if (ValVT.isScalarInteger() && (ArgFlags.isSplit() || !PendingLocs.empty())) {
7281     LocVT = XLenVT;
7282     LocInfo = CCValAssign::Indirect;
7283     PendingLocs.push_back(
7284         CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo));
7285     PendingArgFlags.push_back(ArgFlags);
7286     if (!ArgFlags.isSplitEnd()) {
7287       return false;
7288     }
7289   }
7290 
7291   // If the split argument only had two elements, it should be passed directly
7292   // in registers or on the stack.
7293   if (ValVT.isScalarInteger() && ArgFlags.isSplitEnd() &&
7294       PendingLocs.size() <= 2) {
7295     assert(PendingLocs.size() == 2 && "Unexpected PendingLocs.size()");
7296     // Apply the normal calling convention rules to the first half of the
7297     // split argument.
7298     CCValAssign VA = PendingLocs[0];
7299     ISD::ArgFlagsTy AF = PendingArgFlags[0];
7300     PendingLocs.clear();
7301     PendingArgFlags.clear();
7302     return CC_RISCVAssign2XLen(XLen, State, VA, AF, ValNo, ValVT, LocVT,
7303                                ArgFlags);
7304   }
7305 
7306   // Allocate to a register if possible, or else a stack slot.
7307   Register Reg;
7308   unsigned StoreSizeBytes = XLen / 8;
7309   Align StackAlign = Align(XLen / 8);
7310 
7311   if (ValVT == MVT::f16 && !UseGPRForF16_F32)
7312     Reg = State.AllocateReg(ArgFPR16s);
7313   else if (ValVT == MVT::f32 && !UseGPRForF16_F32)
7314     Reg = State.AllocateReg(ArgFPR32s);
7315   else if (ValVT == MVT::f64 && !UseGPRForF64)
7316     Reg = State.AllocateReg(ArgFPR64s);
7317   else if (ValVT.isVector()) {
7318     Reg = allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI);
7319     if (!Reg) {
7320       // For return values, the vector must be passed fully via registers or
7321       // via the stack.
7322       // FIXME: The proposed vector ABI only mandates v8-v15 for return values,
7323       // but we're using all of them.
7324       if (IsRet)
7325         return true;
7326       // Try using a GPR to pass the address
7327       if ((Reg = State.AllocateReg(ArgGPRs))) {
7328         LocVT = XLenVT;
7329         LocInfo = CCValAssign::Indirect;
7330       } else if (ValVT.isScalableVector()) {
7331         report_fatal_error("Unable to pass scalable vector types on the stack");
7332       } else {
7333         // Pass fixed-length vectors on the stack.
7334         LocVT = ValVT;
7335         StoreSizeBytes = ValVT.getStoreSize();
7336         // Align vectors to their element sizes, being careful for vXi1
7337         // vectors.
7338         StackAlign = MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne();
7339       }
7340     }
7341   } else {
7342     Reg = State.AllocateReg(ArgGPRs);
7343   }
7344 
7345   unsigned StackOffset =
7346       Reg ? 0 : State.AllocateStack(StoreSizeBytes, StackAlign);
7347 
7348   // If we reach this point and PendingLocs is non-empty, we must be at the
7349   // end of a split argument that must be passed indirectly.
7350   if (!PendingLocs.empty()) {
7351     assert(ArgFlags.isSplitEnd() && "Expected ArgFlags.isSplitEnd()");
7352     assert(PendingLocs.size() > 2 && "Unexpected PendingLocs.size()");
7353 
7354     for (auto &It : PendingLocs) {
7355       if (Reg)
7356         It.convertToReg(Reg);
7357       else
7358         It.convertToMem(StackOffset);
7359       State.addLoc(It);
7360     }
7361     PendingLocs.clear();
7362     PendingArgFlags.clear();
7363     return false;
7364   }
7365 
7366   assert((!UseGPRForF16_F32 || !UseGPRForF64 || LocVT == XLenVT ||
7367           (TLI.getSubtarget().hasStdExtV() && ValVT.isVector())) &&
7368          "Expected an XLenVT or vector types at this stage");
7369 
7370   if (Reg) {
7371     State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
7372     return false;
7373   }
7374 
7375   // When a floating-point value is passed on the stack, no bit-conversion is
7376   // needed.
7377   if (ValVT.isFloatingPoint()) {
7378     LocVT = ValVT;
7379     LocInfo = CCValAssign::Full;
7380   }
7381   State.addLoc(CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
7382   return false;
7383 }
7384 
7385 template <typename ArgTy>
7386 static Optional<unsigned> preAssignMask(const ArgTy &Args) {
7387   for (const auto &ArgIdx : enumerate(Args)) {
7388     MVT ArgVT = ArgIdx.value().VT;
7389     if (ArgVT.isVector() && ArgVT.getVectorElementType() == MVT::i1)
7390       return ArgIdx.index();
7391   }
7392   return None;
7393 }
7394 
7395 void RISCVTargetLowering::analyzeInputArgs(
7396     MachineFunction &MF, CCState &CCInfo,
7397     const SmallVectorImpl<ISD::InputArg> &Ins, bool IsRet,
7398     RISCVCCAssignFn Fn) const {
7399   unsigned NumArgs = Ins.size();
7400   FunctionType *FType = MF.getFunction().getFunctionType();
7401 
7402   Optional<unsigned> FirstMaskArgument;
7403   if (Subtarget.hasStdExtV())
7404     FirstMaskArgument = preAssignMask(Ins);
7405 
7406   for (unsigned i = 0; i != NumArgs; ++i) {
7407     MVT ArgVT = Ins[i].VT;
7408     ISD::ArgFlagsTy ArgFlags = Ins[i].Flags;
7409 
7410     Type *ArgTy = nullptr;
7411     if (IsRet)
7412       ArgTy = FType->getReturnType();
7413     else if (Ins[i].isOrigArg())
7414       ArgTy = FType->getParamType(Ins[i].getOrigArgIndex());
7415 
7416     RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
7417     if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full,
7418            ArgFlags, CCInfo, /*IsFixed=*/true, IsRet, ArgTy, *this,
7419            FirstMaskArgument)) {
7420       LLVM_DEBUG(dbgs() << "InputArg #" << i << " has unhandled type "
7421                         << EVT(ArgVT).getEVTString() << '\n');
7422       llvm_unreachable(nullptr);
7423     }
7424   }
7425 }
7426 
7427 void RISCVTargetLowering::analyzeOutputArgs(
7428     MachineFunction &MF, CCState &CCInfo,
7429     const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsRet,
7430     CallLoweringInfo *CLI, RISCVCCAssignFn Fn) const {
7431   unsigned NumArgs = Outs.size();
7432 
7433   Optional<unsigned> FirstMaskArgument;
7434   if (Subtarget.hasStdExtV())
7435     FirstMaskArgument = preAssignMask(Outs);
7436 
7437   for (unsigned i = 0; i != NumArgs; i++) {
7438     MVT ArgVT = Outs[i].VT;
7439     ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
7440     Type *OrigTy = CLI ? CLI->getArgs()[Outs[i].OrigArgIndex].Ty : nullptr;
7441 
7442     RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
7443     if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full,
7444            ArgFlags, CCInfo, Outs[i].IsFixed, IsRet, OrigTy, *this,
7445            FirstMaskArgument)) {
7446       LLVM_DEBUG(dbgs() << "OutputArg #" << i << " has unhandled type "
7447                         << EVT(ArgVT).getEVTString() << "\n");
7448       llvm_unreachable(nullptr);
7449     }
7450   }
7451 }
7452 
7453 // Convert Val to a ValVT. Should not be called for CCValAssign::Indirect
7454 // values.
7455 static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDValue Val,
7456                                    const CCValAssign &VA, const SDLoc &DL,
7457                                    const RISCVSubtarget &Subtarget) {
7458   switch (VA.getLocInfo()) {
7459   default:
7460     llvm_unreachable("Unexpected CCValAssign::LocInfo");
7461   case CCValAssign::Full:
7462     if (VA.getValVT().isFixedLengthVector() && VA.getLocVT().isScalableVector())
7463       Val = convertFromScalableVector(VA.getValVT(), Val, DAG, Subtarget);
7464     break;
7465   case CCValAssign::BCvt:
7466     if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16)
7467       Val = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, Val);
7468     else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32)
7469       Val = DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, Val);
7470     else
7471       Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val);
7472     break;
7473   }
7474   return Val;
7475 }
7476 
7477 // The caller is responsible for loading the full value if the argument is
7478 // passed with CCValAssign::Indirect.
7479 static SDValue unpackFromRegLoc(SelectionDAG &DAG, SDValue Chain,
7480                                 const CCValAssign &VA, const SDLoc &DL,
7481                                 const RISCVTargetLowering &TLI) {
7482   MachineFunction &MF = DAG.getMachineFunction();
7483   MachineRegisterInfo &RegInfo = MF.getRegInfo();
7484   EVT LocVT = VA.getLocVT();
7485   SDValue Val;
7486   const TargetRegisterClass *RC = TLI.getRegClassFor(LocVT.getSimpleVT());
7487   Register VReg = RegInfo.createVirtualRegister(RC);
7488   RegInfo.addLiveIn(VA.getLocReg(), VReg);
7489   Val = DAG.getCopyFromReg(Chain, DL, VReg, LocVT);
7490 
7491   if (VA.getLocInfo() == CCValAssign::Indirect)
7492     return Val;
7493 
7494   return convertLocVTToValVT(DAG, Val, VA, DL, TLI.getSubtarget());
7495 }
7496 
7497 static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDValue Val,
7498                                    const CCValAssign &VA, const SDLoc &DL,
7499                                    const RISCVSubtarget &Subtarget) {
7500   EVT LocVT = VA.getLocVT();
7501 
7502   switch (VA.getLocInfo()) {
7503   default:
7504     llvm_unreachable("Unexpected CCValAssign::LocInfo");
7505   case CCValAssign::Full:
7506     if (VA.getValVT().isFixedLengthVector() && LocVT.isScalableVector())
7507       Val = convertToScalableVector(LocVT, Val, DAG, Subtarget);
7508     break;
7509   case CCValAssign::BCvt:
7510     if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16)
7511       Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, VA.getLocVT(), Val);
7512     else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32)
7513       Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Val);
7514     else
7515       Val = DAG.getNode(ISD::BITCAST, DL, LocVT, Val);
7516     break;
7517   }
7518   return Val;
7519 }
7520 
7521 // The caller is responsible for loading the full value if the argument is
7522 // passed with CCValAssign::Indirect.
7523 static SDValue unpackFromMemLoc(SelectionDAG &DAG, SDValue Chain,
7524                                 const CCValAssign &VA, const SDLoc &DL) {
7525   MachineFunction &MF = DAG.getMachineFunction();
7526   MachineFrameInfo &MFI = MF.getFrameInfo();
7527   EVT LocVT = VA.getLocVT();
7528   EVT ValVT = VA.getValVT();
7529   EVT PtrVT = MVT::getIntegerVT(DAG.getDataLayout().getPointerSizeInBits(0));
7530   int FI = MFI.CreateFixedObject(ValVT.getStoreSize(), VA.getLocMemOffset(),
7531                                  /*Immutable=*/true);
7532   SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
7533   SDValue Val;
7534 
7535   ISD::LoadExtType ExtType;
7536   switch (VA.getLocInfo()) {
7537   default:
7538     llvm_unreachable("Unexpected CCValAssign::LocInfo");
7539   case CCValAssign::Full:
7540   case CCValAssign::Indirect:
7541   case CCValAssign::BCvt:
7542     ExtType = ISD::NON_EXTLOAD;
7543     break;
7544   }
7545   Val = DAG.getExtLoad(
7546       ExtType, DL, LocVT, Chain, FIN,
7547       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), ValVT);
7548   return Val;
7549 }
7550 
7551 static SDValue unpackF64OnRV32DSoftABI(SelectionDAG &DAG, SDValue Chain,
7552                                        const CCValAssign &VA, const SDLoc &DL) {
7553   assert(VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64 &&
7554          "Unexpected VA");
7555   MachineFunction &MF = DAG.getMachineFunction();
7556   MachineFrameInfo &MFI = MF.getFrameInfo();
7557   MachineRegisterInfo &RegInfo = MF.getRegInfo();
7558 
7559   if (VA.isMemLoc()) {
7560     // f64 is passed on the stack.
7561     int FI = MFI.CreateFixedObject(8, VA.getLocMemOffset(), /*Immutable=*/true);
7562     SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
7563     return DAG.getLoad(MVT::f64, DL, Chain, FIN,
7564                        MachinePointerInfo::getFixedStack(MF, FI));
7565   }
7566 
7567   assert(VA.isRegLoc() && "Expected register VA assignment");
7568 
7569   Register LoVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
7570   RegInfo.addLiveIn(VA.getLocReg(), LoVReg);
7571   SDValue Lo = DAG.getCopyFromReg(Chain, DL, LoVReg, MVT::i32);
7572   SDValue Hi;
7573   if (VA.getLocReg() == RISCV::X17) {
7574     // Second half of f64 is passed on the stack.
7575     int FI = MFI.CreateFixedObject(4, 0, /*Immutable=*/true);
7576     SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
7577     Hi = DAG.getLoad(MVT::i32, DL, Chain, FIN,
7578                      MachinePointerInfo::getFixedStack(MF, FI));
7579   } else {
7580     // Second half of f64 is passed in another GPR.
7581     Register HiVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
7582     RegInfo.addLiveIn(VA.getLocReg() + 1, HiVReg);
7583     Hi = DAG.getCopyFromReg(Chain, DL, HiVReg, MVT::i32);
7584   }
7585   return DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, Lo, Hi);
7586 }
7587 
7588 // FastCC has less than 1% performance improvement for some particular
7589 // benchmark. But theoretically, it may has benenfit for some cases.
7590 static bool CC_RISCV_FastCC(const DataLayout &DL, RISCVABI::ABI ABI,
7591                             unsigned ValNo, MVT ValVT, MVT LocVT,
7592                             CCValAssign::LocInfo LocInfo,
7593                             ISD::ArgFlagsTy ArgFlags, CCState &State,
7594                             bool IsFixed, bool IsRet, Type *OrigTy,
7595                             const RISCVTargetLowering &TLI,
7596                             Optional<unsigned> FirstMaskArgument) {
7597 
7598   // X5 and X6 might be used for save-restore libcall.
7599   static const MCPhysReg GPRList[] = {
7600       RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, RISCV::X14,
7601       RISCV::X15, RISCV::X16, RISCV::X17, RISCV::X7,  RISCV::X28,
7602       RISCV::X29, RISCV::X30, RISCV::X31};
7603 
7604   if (LocVT == MVT::i32 || LocVT == MVT::i64) {
7605     if (unsigned Reg = State.AllocateReg(GPRList)) {
7606       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
7607       return false;
7608     }
7609   }
7610 
7611   if (LocVT == MVT::f16) {
7612     static const MCPhysReg FPR16List[] = {
7613         RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, RISCV::F14_H,
7614         RISCV::F15_H, RISCV::F16_H, RISCV::F17_H, RISCV::F0_H,  RISCV::F1_H,
7615         RISCV::F2_H,  RISCV::F3_H,  RISCV::F4_H,  RISCV::F5_H,  RISCV::F6_H,
7616         RISCV::F7_H,  RISCV::F28_H, RISCV::F29_H, RISCV::F30_H, RISCV::F31_H};
7617     if (unsigned Reg = State.AllocateReg(FPR16List)) {
7618       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
7619       return false;
7620     }
7621   }
7622 
7623   if (LocVT == MVT::f32) {
7624     static const MCPhysReg FPR32List[] = {
7625         RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, RISCV::F14_F,
7626         RISCV::F15_F, RISCV::F16_F, RISCV::F17_F, RISCV::F0_F,  RISCV::F1_F,
7627         RISCV::F2_F,  RISCV::F3_F,  RISCV::F4_F,  RISCV::F5_F,  RISCV::F6_F,
7628         RISCV::F7_F,  RISCV::F28_F, RISCV::F29_F, RISCV::F30_F, RISCV::F31_F};
7629     if (unsigned Reg = State.AllocateReg(FPR32List)) {
7630       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
7631       return false;
7632     }
7633   }
7634 
7635   if (LocVT == MVT::f64) {
7636     static const MCPhysReg FPR64List[] = {
7637         RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, RISCV::F14_D,
7638         RISCV::F15_D, RISCV::F16_D, RISCV::F17_D, RISCV::F0_D,  RISCV::F1_D,
7639         RISCV::F2_D,  RISCV::F3_D,  RISCV::F4_D,  RISCV::F5_D,  RISCV::F6_D,
7640         RISCV::F7_D,  RISCV::F28_D, RISCV::F29_D, RISCV::F30_D, RISCV::F31_D};
7641     if (unsigned Reg = State.AllocateReg(FPR64List)) {
7642       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
7643       return false;
7644     }
7645   }
7646 
7647   if (LocVT == MVT::i32 || LocVT == MVT::f32) {
7648     unsigned Offset4 = State.AllocateStack(4, Align(4));
7649     State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset4, LocVT, LocInfo));
7650     return false;
7651   }
7652 
7653   if (LocVT == MVT::i64 || LocVT == MVT::f64) {
7654     unsigned Offset5 = State.AllocateStack(8, Align(8));
7655     State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset5, LocVT, LocInfo));
7656     return false;
7657   }
7658 
7659   if (LocVT.isVector()) {
7660     if (unsigned Reg =
7661             allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI)) {
7662       // Fixed-length vectors are located in the corresponding scalable-vector
7663       // container types.
7664       if (ValVT.isFixedLengthVector())
7665         LocVT = TLI.getContainerForFixedLengthVector(LocVT);
7666       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
7667     } else {
7668       // Try and pass the address via a "fast" GPR.
7669       if (unsigned GPRReg = State.AllocateReg(GPRList)) {
7670         LocInfo = CCValAssign::Indirect;
7671         LocVT = TLI.getSubtarget().getXLenVT();
7672         State.addLoc(CCValAssign::getReg(ValNo, ValVT, GPRReg, LocVT, LocInfo));
7673       } else if (ValVT.isFixedLengthVector()) {
7674         auto StackAlign =
7675             MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne();
7676         unsigned StackOffset =
7677             State.AllocateStack(ValVT.getStoreSize(), StackAlign);
7678         State.addLoc(
7679             CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
7680       } else {
7681         // Can't pass scalable vectors on the stack.
7682         return true;
7683       }
7684     }
7685 
7686     return false;
7687   }
7688 
7689   return true; // CC didn't match.
7690 }
7691 
7692 static bool CC_RISCV_GHC(unsigned ValNo, MVT ValVT, MVT LocVT,
7693                          CCValAssign::LocInfo LocInfo,
7694                          ISD::ArgFlagsTy ArgFlags, CCState &State) {
7695 
7696   if (LocVT == MVT::i32 || LocVT == MVT::i64) {
7697     // Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, R6, R7, SpLim
7698     //                        s1    s2  s3  s4  s5  s6  s7  s8  s9  s10 s11
7699     static const MCPhysReg GPRList[] = {
7700         RISCV::X9, RISCV::X18, RISCV::X19, RISCV::X20, RISCV::X21, RISCV::X22,
7701         RISCV::X23, RISCV::X24, RISCV::X25, RISCV::X26, RISCV::X27};
7702     if (unsigned Reg = State.AllocateReg(GPRList)) {
7703       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
7704       return false;
7705     }
7706   }
7707 
7708   if (LocVT == MVT::f32) {
7709     // Pass in STG registers: F1, ..., F6
7710     //                        fs0 ... fs5
7711     static const MCPhysReg FPR32List[] = {RISCV::F8_F, RISCV::F9_F,
7712                                           RISCV::F18_F, RISCV::F19_F,
7713                                           RISCV::F20_F, RISCV::F21_F};
7714     if (unsigned Reg = State.AllocateReg(FPR32List)) {
7715       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
7716       return false;
7717     }
7718   }
7719 
7720   if (LocVT == MVT::f64) {
7721     // Pass in STG registers: D1, ..., D6
7722     //                        fs6 ... fs11
7723     static const MCPhysReg FPR64List[] = {RISCV::F22_D, RISCV::F23_D,
7724                                           RISCV::F24_D, RISCV::F25_D,
7725                                           RISCV::F26_D, RISCV::F27_D};
7726     if (unsigned Reg = State.AllocateReg(FPR64List)) {
7727       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
7728       return false;
7729     }
7730   }
7731 
7732   report_fatal_error("No registers left in GHC calling convention");
7733   return true;
7734 }
7735 
7736 // Transform physical registers into virtual registers.
7737 SDValue RISCVTargetLowering::LowerFormalArguments(
7738     SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
7739     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
7740     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
7741 
7742   MachineFunction &MF = DAG.getMachineFunction();
7743 
7744   switch (CallConv) {
7745   default:
7746     report_fatal_error("Unsupported calling convention");
7747   case CallingConv::C:
7748   case CallingConv::Fast:
7749     break;
7750   case CallingConv::GHC:
7751     if (!MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtF] ||
7752         !MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtD])
7753       report_fatal_error(
7754         "GHC calling convention requires the F and D instruction set extensions");
7755   }
7756 
7757   const Function &Func = MF.getFunction();
7758   if (Func.hasFnAttribute("interrupt")) {
7759     if (!Func.arg_empty())
7760       report_fatal_error(
7761         "Functions with the interrupt attribute cannot have arguments!");
7762 
7763     StringRef Kind =
7764       MF.getFunction().getFnAttribute("interrupt").getValueAsString();
7765 
7766     if (!(Kind == "user" || Kind == "supervisor" || Kind == "machine"))
7767       report_fatal_error(
7768         "Function interrupt attribute argument not supported!");
7769   }
7770 
7771   EVT PtrVT = getPointerTy(DAG.getDataLayout());
7772   MVT XLenVT = Subtarget.getXLenVT();
7773   unsigned XLenInBytes = Subtarget.getXLen() / 8;
7774   // Used with vargs to acumulate store chains.
7775   std::vector<SDValue> OutChains;
7776 
7777   // Assign locations to all of the incoming arguments.
7778   SmallVector<CCValAssign, 16> ArgLocs;
7779   CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
7780 
7781   if (CallConv == CallingConv::GHC)
7782     CCInfo.AnalyzeFormalArguments(Ins, CC_RISCV_GHC);
7783   else
7784     analyzeInputArgs(MF, CCInfo, Ins, /*IsRet=*/false,
7785                      CallConv == CallingConv::Fast ? CC_RISCV_FastCC
7786                                                    : CC_RISCV);
7787 
7788   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
7789     CCValAssign &VA = ArgLocs[i];
7790     SDValue ArgValue;
7791     // Passing f64 on RV32D with a soft float ABI must be handled as a special
7792     // case.
7793     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64)
7794       ArgValue = unpackF64OnRV32DSoftABI(DAG, Chain, VA, DL);
7795     else if (VA.isRegLoc())
7796       ArgValue = unpackFromRegLoc(DAG, Chain, VA, DL, *this);
7797     else
7798       ArgValue = unpackFromMemLoc(DAG, Chain, VA, DL);
7799 
7800     if (VA.getLocInfo() == CCValAssign::Indirect) {
7801       // If the original argument was split and passed by reference (e.g. i128
7802       // on RV32), we need to load all parts of it here (using the same
7803       // address). Vectors may be partly split to registers and partly to the
7804       // stack, in which case the base address is partly offset and subsequent
7805       // stores are relative to that.
7806       InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue,
7807                                    MachinePointerInfo()));
7808       unsigned ArgIndex = Ins[i].OrigArgIndex;
7809       unsigned ArgPartOffset = Ins[i].PartOffset;
7810       assert(VA.getValVT().isVector() || ArgPartOffset == 0);
7811       while (i + 1 != e && Ins[i + 1].OrigArgIndex == ArgIndex) {
7812         CCValAssign &PartVA = ArgLocs[i + 1];
7813         unsigned PartOffset = Ins[i + 1].PartOffset - ArgPartOffset;
7814         SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL);
7815         if (PartVA.getValVT().isScalableVector())
7816           Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset);
7817         SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, Offset);
7818         InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address,
7819                                      MachinePointerInfo()));
7820         ++i;
7821       }
7822       continue;
7823     }
7824     InVals.push_back(ArgValue);
7825   }
7826 
7827   if (IsVarArg) {
7828     ArrayRef<MCPhysReg> ArgRegs = makeArrayRef(ArgGPRs);
7829     unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs);
7830     const TargetRegisterClass *RC = &RISCV::GPRRegClass;
7831     MachineFrameInfo &MFI = MF.getFrameInfo();
7832     MachineRegisterInfo &RegInfo = MF.getRegInfo();
7833     RISCVMachineFunctionInfo *RVFI = MF.getInfo<RISCVMachineFunctionInfo>();
7834 
7835     // Offset of the first variable argument from stack pointer, and size of
7836     // the vararg save area. For now, the varargs save area is either zero or
7837     // large enough to hold a0-a7.
7838     int VaArgOffset, VarArgsSaveSize;
7839 
7840     // If all registers are allocated, then all varargs must be passed on the
7841     // stack and we don't need to save any argregs.
7842     if (ArgRegs.size() == Idx) {
7843       VaArgOffset = CCInfo.getNextStackOffset();
7844       VarArgsSaveSize = 0;
7845     } else {
7846       VarArgsSaveSize = XLenInBytes * (ArgRegs.size() - Idx);
7847       VaArgOffset = -VarArgsSaveSize;
7848     }
7849 
7850     // Record the frame index of the first variable argument
7851     // which is a value necessary to VASTART.
7852     int FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true);
7853     RVFI->setVarArgsFrameIndex(FI);
7854 
7855     // If saving an odd number of registers then create an extra stack slot to
7856     // ensure that the frame pointer is 2*XLEN-aligned, which in turn ensures
7857     // offsets to even-numbered registered remain 2*XLEN-aligned.
7858     if (Idx % 2) {
7859       MFI.CreateFixedObject(XLenInBytes, VaArgOffset - (int)XLenInBytes, true);
7860       VarArgsSaveSize += XLenInBytes;
7861     }
7862 
7863     // Copy the integer registers that may have been used for passing varargs
7864     // to the vararg save area.
7865     for (unsigned I = Idx; I < ArgRegs.size();
7866          ++I, VaArgOffset += XLenInBytes) {
7867       const Register Reg = RegInfo.createVirtualRegister(RC);
7868       RegInfo.addLiveIn(ArgRegs[I], Reg);
7869       SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, XLenVT);
7870       FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true);
7871       SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
7872       SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff,
7873                                    MachinePointerInfo::getFixedStack(MF, FI));
7874       cast<StoreSDNode>(Store.getNode())
7875           ->getMemOperand()
7876           ->setValue((Value *)nullptr);
7877       OutChains.push_back(Store);
7878     }
7879     RVFI->setVarArgsSaveSize(VarArgsSaveSize);
7880   }
7881 
7882   // All stores are grouped in one node to allow the matching between
7883   // the size of Ins and InVals. This only happens for vararg functions.
7884   if (!OutChains.empty()) {
7885     OutChains.push_back(Chain);
7886     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains);
7887   }
7888 
7889   return Chain;
7890 }
7891 
7892 /// isEligibleForTailCallOptimization - Check whether the call is eligible
7893 /// for tail call optimization.
7894 /// Note: This is modelled after ARM's IsEligibleForTailCallOptimization.
7895 bool RISCVTargetLowering::isEligibleForTailCallOptimization(
7896     CCState &CCInfo, CallLoweringInfo &CLI, MachineFunction &MF,
7897     const SmallVector<CCValAssign, 16> &ArgLocs) const {
7898 
7899   auto &Callee = CLI.Callee;
7900   auto CalleeCC = CLI.CallConv;
7901   auto &Outs = CLI.Outs;
7902   auto &Caller = MF.getFunction();
7903   auto CallerCC = Caller.getCallingConv();
7904 
7905   // Exception-handling functions need a special set of instructions to
7906   // indicate a return to the hardware. Tail-calling another function would
7907   // probably break this.
7908   // TODO: The "interrupt" attribute isn't currently defined by RISC-V. This
7909   // should be expanded as new function attributes are introduced.
7910   if (Caller.hasFnAttribute("interrupt"))
7911     return false;
7912 
7913   // Do not tail call opt if the stack is used to pass parameters.
7914   if (CCInfo.getNextStackOffset() != 0)
7915     return false;
7916 
7917   // Do not tail call opt if any parameters need to be passed indirectly.
7918   // Since long doubles (fp128) and i128 are larger than 2*XLEN, they are
7919   // passed indirectly. So the address of the value will be passed in a
7920   // register, or if not available, then the address is put on the stack. In
7921   // order to pass indirectly, space on the stack often needs to be allocated
7922   // in order to store the value. In this case the CCInfo.getNextStackOffset()
7923   // != 0 check is not enough and we need to check if any CCValAssign ArgsLocs
7924   // are passed CCValAssign::Indirect.
7925   for (auto &VA : ArgLocs)
7926     if (VA.getLocInfo() == CCValAssign::Indirect)
7927       return false;
7928 
7929   // Do not tail call opt if either caller or callee uses struct return
7930   // semantics.
7931   auto IsCallerStructRet = Caller.hasStructRetAttr();
7932   auto IsCalleeStructRet = Outs.empty() ? false : Outs[0].Flags.isSRet();
7933   if (IsCallerStructRet || IsCalleeStructRet)
7934     return false;
7935 
7936   // Externally-defined functions with weak linkage should not be
7937   // tail-called. The behaviour of branch instructions in this situation (as
7938   // used for tail calls) is implementation-defined, so we cannot rely on the
7939   // linker replacing the tail call with a return.
7940   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
7941     const GlobalValue *GV = G->getGlobal();
7942     if (GV->hasExternalWeakLinkage())
7943       return false;
7944   }
7945 
7946   // The callee has to preserve all registers the caller needs to preserve.
7947   const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo();
7948   const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
7949   if (CalleeCC != CallerCC) {
7950     const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
7951     if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
7952       return false;
7953   }
7954 
7955   // Byval parameters hand the function a pointer directly into the stack area
7956   // we want to reuse during a tail call. Working around this *is* possible
7957   // but less efficient and uglier in LowerCall.
7958   for (auto &Arg : Outs)
7959     if (Arg.Flags.isByVal())
7960       return false;
7961 
7962   return true;
7963 }
7964 
7965 static Align getPrefTypeAlign(EVT VT, SelectionDAG &DAG) {
7966   return DAG.getDataLayout().getPrefTypeAlign(
7967       VT.getTypeForEVT(*DAG.getContext()));
7968 }
7969 
7970 // Lower a call to a callseq_start + CALL + callseq_end chain, and add input
7971 // and output parameter nodes.
7972 SDValue RISCVTargetLowering::LowerCall(CallLoweringInfo &CLI,
7973                                        SmallVectorImpl<SDValue> &InVals) const {
7974   SelectionDAG &DAG = CLI.DAG;
7975   SDLoc &DL = CLI.DL;
7976   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
7977   SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
7978   SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
7979   SDValue Chain = CLI.Chain;
7980   SDValue Callee = CLI.Callee;
7981   bool &IsTailCall = CLI.IsTailCall;
7982   CallingConv::ID CallConv = CLI.CallConv;
7983   bool IsVarArg = CLI.IsVarArg;
7984   EVT PtrVT = getPointerTy(DAG.getDataLayout());
7985   MVT XLenVT = Subtarget.getXLenVT();
7986 
7987   MachineFunction &MF = DAG.getMachineFunction();
7988 
7989   // Analyze the operands of the call, assigning locations to each operand.
7990   SmallVector<CCValAssign, 16> ArgLocs;
7991   CCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
7992 
7993   if (CallConv == CallingConv::GHC)
7994     ArgCCInfo.AnalyzeCallOperands(Outs, CC_RISCV_GHC);
7995   else
7996     analyzeOutputArgs(MF, ArgCCInfo, Outs, /*IsRet=*/false, &CLI,
7997                       CallConv == CallingConv::Fast ? CC_RISCV_FastCC
7998                                                     : CC_RISCV);
7999 
8000   // Check if it's really possible to do a tail call.
8001   if (IsTailCall)
8002     IsTailCall = isEligibleForTailCallOptimization(ArgCCInfo, CLI, MF, ArgLocs);
8003 
8004   if (IsTailCall)
8005     ++NumTailCalls;
8006   else if (CLI.CB && CLI.CB->isMustTailCall())
8007     report_fatal_error("failed to perform tail call elimination on a call "
8008                        "site marked musttail");
8009 
8010   // Get a count of how many bytes are to be pushed on the stack.
8011   unsigned NumBytes = ArgCCInfo.getNextStackOffset();
8012 
8013   // Create local copies for byval args
8014   SmallVector<SDValue, 8> ByValArgs;
8015   for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
8016     ISD::ArgFlagsTy Flags = Outs[i].Flags;
8017     if (!Flags.isByVal())
8018       continue;
8019 
8020     SDValue Arg = OutVals[i];
8021     unsigned Size = Flags.getByValSize();
8022     Align Alignment = Flags.getNonZeroByValAlign();
8023 
8024     int FI =
8025         MF.getFrameInfo().CreateStackObject(Size, Alignment, /*isSS=*/false);
8026     SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
8027     SDValue SizeNode = DAG.getConstant(Size, DL, XLenVT);
8028 
8029     Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Alignment,
8030                           /*IsVolatile=*/false,
8031                           /*AlwaysInline=*/false, IsTailCall,
8032                           MachinePointerInfo(), MachinePointerInfo());
8033     ByValArgs.push_back(FIPtr);
8034   }
8035 
8036   if (!IsTailCall)
8037     Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, CLI.DL);
8038 
8039   // Copy argument values to their designated locations.
8040   SmallVector<std::pair<Register, SDValue>, 8> RegsToPass;
8041   SmallVector<SDValue, 8> MemOpChains;
8042   SDValue StackPtr;
8043   for (unsigned i = 0, j = 0, e = ArgLocs.size(); i != e; ++i) {
8044     CCValAssign &VA = ArgLocs[i];
8045     SDValue ArgValue = OutVals[i];
8046     ISD::ArgFlagsTy Flags = Outs[i].Flags;
8047 
8048     // Handle passing f64 on RV32D with a soft float ABI as a special case.
8049     bool IsF64OnRV32DSoftABI =
8050         VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64;
8051     if (IsF64OnRV32DSoftABI && VA.isRegLoc()) {
8052       SDValue SplitF64 = DAG.getNode(
8053           RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), ArgValue);
8054       SDValue Lo = SplitF64.getValue(0);
8055       SDValue Hi = SplitF64.getValue(1);
8056 
8057       Register RegLo = VA.getLocReg();
8058       RegsToPass.push_back(std::make_pair(RegLo, Lo));
8059 
8060       if (RegLo == RISCV::X17) {
8061         // Second half of f64 is passed on the stack.
8062         // Work out the address of the stack slot.
8063         if (!StackPtr.getNode())
8064           StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT);
8065         // Emit the store.
8066         MemOpChains.push_back(
8067             DAG.getStore(Chain, DL, Hi, StackPtr, MachinePointerInfo()));
8068       } else {
8069         // Second half of f64 is passed in another GPR.
8070         assert(RegLo < RISCV::X31 && "Invalid register pair");
8071         Register RegHigh = RegLo + 1;
8072         RegsToPass.push_back(std::make_pair(RegHigh, Hi));
8073       }
8074       continue;
8075     }
8076 
8077     // IsF64OnRV32DSoftABI && VA.isMemLoc() is handled below in the same way
8078     // as any other MemLoc.
8079 
8080     // Promote the value if needed.
8081     // For now, only handle fully promoted and indirect arguments.
8082     if (VA.getLocInfo() == CCValAssign::Indirect) {
8083       // Store the argument in a stack slot and pass its address.
8084       Align StackAlign =
8085           std::max(getPrefTypeAlign(Outs[i].ArgVT, DAG),
8086                    getPrefTypeAlign(ArgValue.getValueType(), DAG));
8087       TypeSize StoredSize = ArgValue.getValueType().getStoreSize();
8088       // If the original argument was split (e.g. i128), we need
8089       // to store the required parts of it here (and pass just one address).
8090       // Vectors may be partly split to registers and partly to the stack, in
8091       // which case the base address is partly offset and subsequent stores are
8092       // relative to that.
8093       unsigned ArgIndex = Outs[i].OrigArgIndex;
8094       unsigned ArgPartOffset = Outs[i].PartOffset;
8095       assert(VA.getValVT().isVector() || ArgPartOffset == 0);
8096       // Calculate the total size to store. We don't have access to what we're
8097       // actually storing other than performing the loop and collecting the
8098       // info.
8099       SmallVector<std::pair<SDValue, SDValue>> Parts;
8100       while (i + 1 != e && Outs[i + 1].OrigArgIndex == ArgIndex) {
8101         SDValue PartValue = OutVals[i + 1];
8102         unsigned PartOffset = Outs[i + 1].PartOffset - ArgPartOffset;
8103         SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL);
8104         EVT PartVT = PartValue.getValueType();
8105         if (PartVT.isScalableVector())
8106           Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset);
8107         StoredSize += PartVT.getStoreSize();
8108         StackAlign = std::max(StackAlign, getPrefTypeAlign(PartVT, DAG));
8109         Parts.push_back(std::make_pair(PartValue, Offset));
8110         ++i;
8111       }
8112       SDValue SpillSlot = DAG.CreateStackTemporary(StoredSize, StackAlign);
8113       int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
8114       MemOpChains.push_back(
8115           DAG.getStore(Chain, DL, ArgValue, SpillSlot,
8116                        MachinePointerInfo::getFixedStack(MF, FI)));
8117       for (const auto &Part : Parts) {
8118         SDValue PartValue = Part.first;
8119         SDValue PartOffset = Part.second;
8120         SDValue Address =
8121             DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, PartOffset);
8122         MemOpChains.push_back(
8123             DAG.getStore(Chain, DL, PartValue, Address,
8124                          MachinePointerInfo::getFixedStack(MF, FI)));
8125       }
8126       ArgValue = SpillSlot;
8127     } else {
8128       ArgValue = convertValVTToLocVT(DAG, ArgValue, VA, DL, Subtarget);
8129     }
8130 
8131     // Use local copy if it is a byval arg.
8132     if (Flags.isByVal())
8133       ArgValue = ByValArgs[j++];
8134 
8135     if (VA.isRegLoc()) {
8136       // Queue up the argument copies and emit them at the end.
8137       RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue));
8138     } else {
8139       assert(VA.isMemLoc() && "Argument not register or memory");
8140       assert(!IsTailCall && "Tail call not allowed if stack is used "
8141                             "for passing parameters");
8142 
8143       // Work out the address of the stack slot.
8144       if (!StackPtr.getNode())
8145         StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT);
8146       SDValue Address =
8147           DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr,
8148                       DAG.getIntPtrConstant(VA.getLocMemOffset(), DL));
8149 
8150       // Emit the store.
8151       MemOpChains.push_back(
8152           DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo()));
8153     }
8154   }
8155 
8156   // Join the stores, which are independent of one another.
8157   if (!MemOpChains.empty())
8158     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
8159 
8160   SDValue Glue;
8161 
8162   // Build a sequence of copy-to-reg nodes, chained and glued together.
8163   for (auto &Reg : RegsToPass) {
8164     Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, Glue);
8165     Glue = Chain.getValue(1);
8166   }
8167 
8168   // Validate that none of the argument registers have been marked as
8169   // reserved, if so report an error. Do the same for the return address if this
8170   // is not a tailcall.
8171   validateCCReservedRegs(RegsToPass, MF);
8172   if (!IsTailCall &&
8173       MF.getSubtarget<RISCVSubtarget>().isRegisterReservedByUser(RISCV::X1))
8174     MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
8175         MF.getFunction(),
8176         "Return address register required, but has been reserved."});
8177 
8178   // If the callee is a GlobalAddress/ExternalSymbol node, turn it into a
8179   // TargetGlobalAddress/TargetExternalSymbol node so that legalize won't
8180   // split it and then direct call can be matched by PseudoCALL.
8181   if (GlobalAddressSDNode *S = dyn_cast<GlobalAddressSDNode>(Callee)) {
8182     const GlobalValue *GV = S->getGlobal();
8183 
8184     unsigned OpFlags = RISCVII::MO_CALL;
8185     if (!getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV))
8186       OpFlags = RISCVII::MO_PLT;
8187 
8188     Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags);
8189   } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
8190     unsigned OpFlags = RISCVII::MO_CALL;
8191 
8192     if (!getTargetMachine().shouldAssumeDSOLocal(*MF.getFunction().getParent(),
8193                                                  nullptr))
8194       OpFlags = RISCVII::MO_PLT;
8195 
8196     Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, OpFlags);
8197   }
8198 
8199   // The first call operand is the chain and the second is the target address.
8200   SmallVector<SDValue, 8> Ops;
8201   Ops.push_back(Chain);
8202   Ops.push_back(Callee);
8203 
8204   // Add argument registers to the end of the list so that they are
8205   // known live into the call.
8206   for (auto &Reg : RegsToPass)
8207     Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType()));
8208 
8209   if (!IsTailCall) {
8210     // Add a register mask operand representing the call-preserved registers.
8211     const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
8212     const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
8213     assert(Mask && "Missing call preserved mask for calling convention");
8214     Ops.push_back(DAG.getRegisterMask(Mask));
8215   }
8216 
8217   // Glue the call to the argument copies, if any.
8218   if (Glue.getNode())
8219     Ops.push_back(Glue);
8220 
8221   // Emit the call.
8222   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
8223 
8224   if (IsTailCall) {
8225     MF.getFrameInfo().setHasTailCall();
8226     return DAG.getNode(RISCVISD::TAIL, DL, NodeTys, Ops);
8227   }
8228 
8229   Chain = DAG.getNode(RISCVISD::CALL, DL, NodeTys, Ops);
8230   DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge);
8231   Glue = Chain.getValue(1);
8232 
8233   // Mark the end of the call, which is glued to the call itself.
8234   Chain = DAG.getCALLSEQ_END(Chain,
8235                              DAG.getConstant(NumBytes, DL, PtrVT, true),
8236                              DAG.getConstant(0, DL, PtrVT, true),
8237                              Glue, DL);
8238   Glue = Chain.getValue(1);
8239 
8240   // Assign locations to each value returned by this call.
8241   SmallVector<CCValAssign, 16> RVLocs;
8242   CCState RetCCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext());
8243   analyzeInputArgs(MF, RetCCInfo, Ins, /*IsRet=*/true, CC_RISCV);
8244 
8245   // Copy all of the result registers out of their specified physreg.
8246   for (auto &VA : RVLocs) {
8247     // Copy the value out
8248     SDValue RetValue =
8249         DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), Glue);
8250     // Glue the RetValue to the end of the call sequence
8251     Chain = RetValue.getValue(1);
8252     Glue = RetValue.getValue(2);
8253 
8254     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) {
8255       assert(VA.getLocReg() == ArgGPRs[0] && "Unexpected reg assignment");
8256       SDValue RetValue2 =
8257           DAG.getCopyFromReg(Chain, DL, ArgGPRs[1], MVT::i32, Glue);
8258       Chain = RetValue2.getValue(1);
8259       Glue = RetValue2.getValue(2);
8260       RetValue = DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, RetValue,
8261                              RetValue2);
8262     }
8263 
8264     RetValue = convertLocVTToValVT(DAG, RetValue, VA, DL, Subtarget);
8265 
8266     InVals.push_back(RetValue);
8267   }
8268 
8269   return Chain;
8270 }
8271 
8272 bool RISCVTargetLowering::CanLowerReturn(
8273     CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg,
8274     const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const {
8275   SmallVector<CCValAssign, 16> RVLocs;
8276   CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);
8277 
8278   Optional<unsigned> FirstMaskArgument;
8279   if (Subtarget.hasStdExtV())
8280     FirstMaskArgument = preAssignMask(Outs);
8281 
8282   for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
8283     MVT VT = Outs[i].VT;
8284     ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
8285     RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
8286     if (CC_RISCV(MF.getDataLayout(), ABI, i, VT, VT, CCValAssign::Full,
8287                  ArgFlags, CCInfo, /*IsFixed=*/true, /*IsRet=*/true, nullptr,
8288                  *this, FirstMaskArgument))
8289       return false;
8290   }
8291   return true;
8292 }
8293 
8294 SDValue
8295 RISCVTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
8296                                  bool IsVarArg,
8297                                  const SmallVectorImpl<ISD::OutputArg> &Outs,
8298                                  const SmallVectorImpl<SDValue> &OutVals,
8299                                  const SDLoc &DL, SelectionDAG &DAG) const {
8300   const MachineFunction &MF = DAG.getMachineFunction();
8301   const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>();
8302 
8303   // Stores the assignment of the return value to a location.
8304   SmallVector<CCValAssign, 16> RVLocs;
8305 
8306   // Info about the registers and stack slot.
8307   CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
8308                  *DAG.getContext());
8309 
8310   analyzeOutputArgs(DAG.getMachineFunction(), CCInfo, Outs, /*IsRet=*/true,
8311                     nullptr, CC_RISCV);
8312 
8313   if (CallConv == CallingConv::GHC && !RVLocs.empty())
8314     report_fatal_error("GHC functions return void only");
8315 
8316   SDValue Glue;
8317   SmallVector<SDValue, 4> RetOps(1, Chain);
8318 
8319   // Copy the result values into the output registers.
8320   for (unsigned i = 0, e = RVLocs.size(); i < e; ++i) {
8321     SDValue Val = OutVals[i];
8322     CCValAssign &VA = RVLocs[i];
8323     assert(VA.isRegLoc() && "Can only return in registers!");
8324 
8325     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) {
8326       // Handle returning f64 on RV32D with a soft float ABI.
8327       assert(VA.isRegLoc() && "Expected return via registers");
8328       SDValue SplitF64 = DAG.getNode(RISCVISD::SplitF64, DL,
8329                                      DAG.getVTList(MVT::i32, MVT::i32), Val);
8330       SDValue Lo = SplitF64.getValue(0);
8331       SDValue Hi = SplitF64.getValue(1);
8332       Register RegLo = VA.getLocReg();
8333       assert(RegLo < RISCV::X31 && "Invalid register pair");
8334       Register RegHi = RegLo + 1;
8335 
8336       if (STI.isRegisterReservedByUser(RegLo) ||
8337           STI.isRegisterReservedByUser(RegHi))
8338         MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
8339             MF.getFunction(),
8340             "Return value register required, but has been reserved."});
8341 
8342       Chain = DAG.getCopyToReg(Chain, DL, RegLo, Lo, Glue);
8343       Glue = Chain.getValue(1);
8344       RetOps.push_back(DAG.getRegister(RegLo, MVT::i32));
8345       Chain = DAG.getCopyToReg(Chain, DL, RegHi, Hi, Glue);
8346       Glue = Chain.getValue(1);
8347       RetOps.push_back(DAG.getRegister(RegHi, MVT::i32));
8348     } else {
8349       // Handle a 'normal' return.
8350       Val = convertValVTToLocVT(DAG, Val, VA, DL, Subtarget);
8351       Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Glue);
8352 
8353       if (STI.isRegisterReservedByUser(VA.getLocReg()))
8354         MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
8355             MF.getFunction(),
8356             "Return value register required, but has been reserved."});
8357 
8358       // Guarantee that all emitted copies are stuck together.
8359       Glue = Chain.getValue(1);
8360       RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
8361     }
8362   }
8363 
8364   RetOps[0] = Chain; // Update chain.
8365 
8366   // Add the glue node if we have it.
8367   if (Glue.getNode()) {
8368     RetOps.push_back(Glue);
8369   }
8370 
8371   unsigned RetOpc = RISCVISD::RET_FLAG;
8372   // Interrupt service routines use different return instructions.
8373   const Function &Func = DAG.getMachineFunction().getFunction();
8374   if (Func.hasFnAttribute("interrupt")) {
8375     if (!Func.getReturnType()->isVoidTy())
8376       report_fatal_error(
8377           "Functions with the interrupt attribute must have void return type!");
8378 
8379     MachineFunction &MF = DAG.getMachineFunction();
8380     StringRef Kind =
8381       MF.getFunction().getFnAttribute("interrupt").getValueAsString();
8382 
8383     if (Kind == "user")
8384       RetOpc = RISCVISD::URET_FLAG;
8385     else if (Kind == "supervisor")
8386       RetOpc = RISCVISD::SRET_FLAG;
8387     else
8388       RetOpc = RISCVISD::MRET_FLAG;
8389   }
8390 
8391   return DAG.getNode(RetOpc, DL, MVT::Other, RetOps);
8392 }
8393 
8394 void RISCVTargetLowering::validateCCReservedRegs(
8395     const SmallVectorImpl<std::pair<llvm::Register, llvm::SDValue>> &Regs,
8396     MachineFunction &MF) const {
8397   const Function &F = MF.getFunction();
8398   const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>();
8399 
8400   if (llvm::any_of(Regs, [&STI](auto Reg) {
8401         return STI.isRegisterReservedByUser(Reg.first);
8402       }))
8403     F.getContext().diagnose(DiagnosticInfoUnsupported{
8404         F, "Argument register required, but has been reserved."});
8405 }
8406 
8407 bool RISCVTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
8408   return CI->isTailCall();
8409 }
8410 
8411 const char *RISCVTargetLowering::getTargetNodeName(unsigned Opcode) const {
8412 #define NODE_NAME_CASE(NODE)                                                   \
8413   case RISCVISD::NODE:                                                         \
8414     return "RISCVISD::" #NODE;
8415   // clang-format off
8416   switch ((RISCVISD::NodeType)Opcode) {
8417   case RISCVISD::FIRST_NUMBER:
8418     break;
8419   NODE_NAME_CASE(RET_FLAG)
8420   NODE_NAME_CASE(URET_FLAG)
8421   NODE_NAME_CASE(SRET_FLAG)
8422   NODE_NAME_CASE(MRET_FLAG)
8423   NODE_NAME_CASE(CALL)
8424   NODE_NAME_CASE(SELECT_CC)
8425   NODE_NAME_CASE(BR_CC)
8426   NODE_NAME_CASE(BuildPairF64)
8427   NODE_NAME_CASE(SplitF64)
8428   NODE_NAME_CASE(TAIL)
8429   NODE_NAME_CASE(MULHSU)
8430   NODE_NAME_CASE(SLLW)
8431   NODE_NAME_CASE(SRAW)
8432   NODE_NAME_CASE(SRLW)
8433   NODE_NAME_CASE(DIVW)
8434   NODE_NAME_CASE(DIVUW)
8435   NODE_NAME_CASE(REMUW)
8436   NODE_NAME_CASE(ROLW)
8437   NODE_NAME_CASE(RORW)
8438   NODE_NAME_CASE(CLZW)
8439   NODE_NAME_CASE(CTZW)
8440   NODE_NAME_CASE(FSLW)
8441   NODE_NAME_CASE(FSRW)
8442   NODE_NAME_CASE(FSL)
8443   NODE_NAME_CASE(FSR)
8444   NODE_NAME_CASE(FMV_H_X)
8445   NODE_NAME_CASE(FMV_X_ANYEXTH)
8446   NODE_NAME_CASE(FMV_W_X_RV64)
8447   NODE_NAME_CASE(FMV_X_ANYEXTW_RV64)
8448   NODE_NAME_CASE(FCVT_X_RTZ)
8449   NODE_NAME_CASE(FCVT_XU_RTZ)
8450   NODE_NAME_CASE(FCVT_W_RTZ_RV64)
8451   NODE_NAME_CASE(FCVT_WU_RTZ_RV64)
8452   NODE_NAME_CASE(READ_CYCLE_WIDE)
8453   NODE_NAME_CASE(GREV)
8454   NODE_NAME_CASE(GREVW)
8455   NODE_NAME_CASE(GORC)
8456   NODE_NAME_CASE(GORCW)
8457   NODE_NAME_CASE(SHFL)
8458   NODE_NAME_CASE(SHFLW)
8459   NODE_NAME_CASE(UNSHFL)
8460   NODE_NAME_CASE(UNSHFLW)
8461   NODE_NAME_CASE(BCOMPRESS)
8462   NODE_NAME_CASE(BCOMPRESSW)
8463   NODE_NAME_CASE(BDECOMPRESS)
8464   NODE_NAME_CASE(BDECOMPRESSW)
8465   NODE_NAME_CASE(VMV_V_X_VL)
8466   NODE_NAME_CASE(VFMV_V_F_VL)
8467   NODE_NAME_CASE(VMV_X_S)
8468   NODE_NAME_CASE(VMV_S_X_VL)
8469   NODE_NAME_CASE(VFMV_S_F_VL)
8470   NODE_NAME_CASE(SPLAT_VECTOR_I64)
8471   NODE_NAME_CASE(SPLAT_VECTOR_SPLIT_I64_VL)
8472   NODE_NAME_CASE(READ_VLENB)
8473   NODE_NAME_CASE(TRUNCATE_VECTOR_VL)
8474   NODE_NAME_CASE(VSLIDEUP_VL)
8475   NODE_NAME_CASE(VSLIDE1UP_VL)
8476   NODE_NAME_CASE(VSLIDEDOWN_VL)
8477   NODE_NAME_CASE(VSLIDE1DOWN_VL)
8478   NODE_NAME_CASE(VID_VL)
8479   NODE_NAME_CASE(VFNCVT_ROD_VL)
8480   NODE_NAME_CASE(VECREDUCE_ADD_VL)
8481   NODE_NAME_CASE(VECREDUCE_UMAX_VL)
8482   NODE_NAME_CASE(VECREDUCE_SMAX_VL)
8483   NODE_NAME_CASE(VECREDUCE_UMIN_VL)
8484   NODE_NAME_CASE(VECREDUCE_SMIN_VL)
8485   NODE_NAME_CASE(VECREDUCE_AND_VL)
8486   NODE_NAME_CASE(VECREDUCE_OR_VL)
8487   NODE_NAME_CASE(VECREDUCE_XOR_VL)
8488   NODE_NAME_CASE(VECREDUCE_FADD_VL)
8489   NODE_NAME_CASE(VECREDUCE_SEQ_FADD_VL)
8490   NODE_NAME_CASE(VECREDUCE_FMIN_VL)
8491   NODE_NAME_CASE(VECREDUCE_FMAX_VL)
8492   NODE_NAME_CASE(ADD_VL)
8493   NODE_NAME_CASE(AND_VL)
8494   NODE_NAME_CASE(MUL_VL)
8495   NODE_NAME_CASE(OR_VL)
8496   NODE_NAME_CASE(SDIV_VL)
8497   NODE_NAME_CASE(SHL_VL)
8498   NODE_NAME_CASE(SREM_VL)
8499   NODE_NAME_CASE(SRA_VL)
8500   NODE_NAME_CASE(SRL_VL)
8501   NODE_NAME_CASE(SUB_VL)
8502   NODE_NAME_CASE(UDIV_VL)
8503   NODE_NAME_CASE(UREM_VL)
8504   NODE_NAME_CASE(XOR_VL)
8505   NODE_NAME_CASE(SADDSAT_VL)
8506   NODE_NAME_CASE(UADDSAT_VL)
8507   NODE_NAME_CASE(SSUBSAT_VL)
8508   NODE_NAME_CASE(USUBSAT_VL)
8509   NODE_NAME_CASE(FADD_VL)
8510   NODE_NAME_CASE(FSUB_VL)
8511   NODE_NAME_CASE(FMUL_VL)
8512   NODE_NAME_CASE(FDIV_VL)
8513   NODE_NAME_CASE(FNEG_VL)
8514   NODE_NAME_CASE(FABS_VL)
8515   NODE_NAME_CASE(FSQRT_VL)
8516   NODE_NAME_CASE(FMA_VL)
8517   NODE_NAME_CASE(FCOPYSIGN_VL)
8518   NODE_NAME_CASE(SMIN_VL)
8519   NODE_NAME_CASE(SMAX_VL)
8520   NODE_NAME_CASE(UMIN_VL)
8521   NODE_NAME_CASE(UMAX_VL)
8522   NODE_NAME_CASE(FMINNUM_VL)
8523   NODE_NAME_CASE(FMAXNUM_VL)
8524   NODE_NAME_CASE(MULHS_VL)
8525   NODE_NAME_CASE(MULHU_VL)
8526   NODE_NAME_CASE(FP_TO_SINT_VL)
8527   NODE_NAME_CASE(FP_TO_UINT_VL)
8528   NODE_NAME_CASE(SINT_TO_FP_VL)
8529   NODE_NAME_CASE(UINT_TO_FP_VL)
8530   NODE_NAME_CASE(FP_EXTEND_VL)
8531   NODE_NAME_CASE(FP_ROUND_VL)
8532   NODE_NAME_CASE(VWMUL_VL)
8533   NODE_NAME_CASE(VWMULU_VL)
8534   NODE_NAME_CASE(SETCC_VL)
8535   NODE_NAME_CASE(VSELECT_VL)
8536   NODE_NAME_CASE(VMAND_VL)
8537   NODE_NAME_CASE(VMOR_VL)
8538   NODE_NAME_CASE(VMXOR_VL)
8539   NODE_NAME_CASE(VMCLR_VL)
8540   NODE_NAME_CASE(VMSET_VL)
8541   NODE_NAME_CASE(VRGATHER_VX_VL)
8542   NODE_NAME_CASE(VRGATHER_VV_VL)
8543   NODE_NAME_CASE(VRGATHEREI16_VV_VL)
8544   NODE_NAME_CASE(VSEXT_VL)
8545   NODE_NAME_CASE(VZEXT_VL)
8546   NODE_NAME_CASE(VPOPC_VL)
8547   NODE_NAME_CASE(VLE_VL)
8548   NODE_NAME_CASE(VSE_VL)
8549   NODE_NAME_CASE(READ_CSR)
8550   NODE_NAME_CASE(WRITE_CSR)
8551   NODE_NAME_CASE(SWAP_CSR)
8552   }
8553   // clang-format on
8554   return nullptr;
8555 #undef NODE_NAME_CASE
8556 }
8557 
8558 /// getConstraintType - Given a constraint letter, return the type of
8559 /// constraint it is for this target.
8560 RISCVTargetLowering::ConstraintType
8561 RISCVTargetLowering::getConstraintType(StringRef Constraint) const {
8562   if (Constraint.size() == 1) {
8563     switch (Constraint[0]) {
8564     default:
8565       break;
8566     case 'f':
8567       return C_RegisterClass;
8568     case 'I':
8569     case 'J':
8570     case 'K':
8571       return C_Immediate;
8572     case 'A':
8573       return C_Memory;
8574     case 'S': // A symbolic address
8575       return C_Other;
8576     }
8577   } else {
8578     if (Constraint == "vr" || Constraint == "vm")
8579       return C_RegisterClass;
8580   }
8581   return TargetLowering::getConstraintType(Constraint);
8582 }
8583 
8584 std::pair<unsigned, const TargetRegisterClass *>
8585 RISCVTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
8586                                                   StringRef Constraint,
8587                                                   MVT VT) const {
8588   // First, see if this is a constraint that directly corresponds to a
8589   // RISCV register class.
8590   if (Constraint.size() == 1) {
8591     switch (Constraint[0]) {
8592     case 'r':
8593       return std::make_pair(0U, &RISCV::GPRRegClass);
8594     case 'f':
8595       if (Subtarget.hasStdExtZfh() && VT == MVT::f16)
8596         return std::make_pair(0U, &RISCV::FPR16RegClass);
8597       if (Subtarget.hasStdExtF() && VT == MVT::f32)
8598         return std::make_pair(0U, &RISCV::FPR32RegClass);
8599       if (Subtarget.hasStdExtD() && VT == MVT::f64)
8600         return std::make_pair(0U, &RISCV::FPR64RegClass);
8601       break;
8602     default:
8603       break;
8604     }
8605   } else {
8606     if (Constraint == "vr") {
8607       for (const auto *RC : {&RISCV::VRRegClass, &RISCV::VRM2RegClass,
8608                              &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) {
8609         if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy))
8610           return std::make_pair(0U, RC);
8611       }
8612     } else if (Constraint == "vm") {
8613       if (TRI->isTypeLegalForClass(RISCV::VMRegClass, VT.SimpleTy))
8614         return std::make_pair(0U, &RISCV::VMRegClass);
8615     }
8616   }
8617 
8618   // Clang will correctly decode the usage of register name aliases into their
8619   // official names. However, other frontends like `rustc` do not. This allows
8620   // users of these frontends to use the ABI names for registers in LLVM-style
8621   // register constraints.
8622   unsigned XRegFromAlias = StringSwitch<unsigned>(Constraint.lower())
8623                                .Case("{zero}", RISCV::X0)
8624                                .Case("{ra}", RISCV::X1)
8625                                .Case("{sp}", RISCV::X2)
8626                                .Case("{gp}", RISCV::X3)
8627                                .Case("{tp}", RISCV::X4)
8628                                .Case("{t0}", RISCV::X5)
8629                                .Case("{t1}", RISCV::X6)
8630                                .Case("{t2}", RISCV::X7)
8631                                .Cases("{s0}", "{fp}", RISCV::X8)
8632                                .Case("{s1}", RISCV::X9)
8633                                .Case("{a0}", RISCV::X10)
8634                                .Case("{a1}", RISCV::X11)
8635                                .Case("{a2}", RISCV::X12)
8636                                .Case("{a3}", RISCV::X13)
8637                                .Case("{a4}", RISCV::X14)
8638                                .Case("{a5}", RISCV::X15)
8639                                .Case("{a6}", RISCV::X16)
8640                                .Case("{a7}", RISCV::X17)
8641                                .Case("{s2}", RISCV::X18)
8642                                .Case("{s3}", RISCV::X19)
8643                                .Case("{s4}", RISCV::X20)
8644                                .Case("{s5}", RISCV::X21)
8645                                .Case("{s6}", RISCV::X22)
8646                                .Case("{s7}", RISCV::X23)
8647                                .Case("{s8}", RISCV::X24)
8648                                .Case("{s9}", RISCV::X25)
8649                                .Case("{s10}", RISCV::X26)
8650                                .Case("{s11}", RISCV::X27)
8651                                .Case("{t3}", RISCV::X28)
8652                                .Case("{t4}", RISCV::X29)
8653                                .Case("{t5}", RISCV::X30)
8654                                .Case("{t6}", RISCV::X31)
8655                                .Default(RISCV::NoRegister);
8656   if (XRegFromAlias != RISCV::NoRegister)
8657     return std::make_pair(XRegFromAlias, &RISCV::GPRRegClass);
8658 
8659   // Since TargetLowering::getRegForInlineAsmConstraint uses the name of the
8660   // TableGen record rather than the AsmName to choose registers for InlineAsm
8661   // constraints, plus we want to match those names to the widest floating point
8662   // register type available, manually select floating point registers here.
8663   //
8664   // The second case is the ABI name of the register, so that frontends can also
8665   // use the ABI names in register constraint lists.
8666   if (Subtarget.hasStdExtF()) {
8667     unsigned FReg = StringSwitch<unsigned>(Constraint.lower())
8668                         .Cases("{f0}", "{ft0}", RISCV::F0_F)
8669                         .Cases("{f1}", "{ft1}", RISCV::F1_F)
8670                         .Cases("{f2}", "{ft2}", RISCV::F2_F)
8671                         .Cases("{f3}", "{ft3}", RISCV::F3_F)
8672                         .Cases("{f4}", "{ft4}", RISCV::F4_F)
8673                         .Cases("{f5}", "{ft5}", RISCV::F5_F)
8674                         .Cases("{f6}", "{ft6}", RISCV::F6_F)
8675                         .Cases("{f7}", "{ft7}", RISCV::F7_F)
8676                         .Cases("{f8}", "{fs0}", RISCV::F8_F)
8677                         .Cases("{f9}", "{fs1}", RISCV::F9_F)
8678                         .Cases("{f10}", "{fa0}", RISCV::F10_F)
8679                         .Cases("{f11}", "{fa1}", RISCV::F11_F)
8680                         .Cases("{f12}", "{fa2}", RISCV::F12_F)
8681                         .Cases("{f13}", "{fa3}", RISCV::F13_F)
8682                         .Cases("{f14}", "{fa4}", RISCV::F14_F)
8683                         .Cases("{f15}", "{fa5}", RISCV::F15_F)
8684                         .Cases("{f16}", "{fa6}", RISCV::F16_F)
8685                         .Cases("{f17}", "{fa7}", RISCV::F17_F)
8686                         .Cases("{f18}", "{fs2}", RISCV::F18_F)
8687                         .Cases("{f19}", "{fs3}", RISCV::F19_F)
8688                         .Cases("{f20}", "{fs4}", RISCV::F20_F)
8689                         .Cases("{f21}", "{fs5}", RISCV::F21_F)
8690                         .Cases("{f22}", "{fs6}", RISCV::F22_F)
8691                         .Cases("{f23}", "{fs7}", RISCV::F23_F)
8692                         .Cases("{f24}", "{fs8}", RISCV::F24_F)
8693                         .Cases("{f25}", "{fs9}", RISCV::F25_F)
8694                         .Cases("{f26}", "{fs10}", RISCV::F26_F)
8695                         .Cases("{f27}", "{fs11}", RISCV::F27_F)
8696                         .Cases("{f28}", "{ft8}", RISCV::F28_F)
8697                         .Cases("{f29}", "{ft9}", RISCV::F29_F)
8698                         .Cases("{f30}", "{ft10}", RISCV::F30_F)
8699                         .Cases("{f31}", "{ft11}", RISCV::F31_F)
8700                         .Default(RISCV::NoRegister);
8701     if (FReg != RISCV::NoRegister) {
8702       assert(RISCV::F0_F <= FReg && FReg <= RISCV::F31_F && "Unknown fp-reg");
8703       if (Subtarget.hasStdExtD()) {
8704         unsigned RegNo = FReg - RISCV::F0_F;
8705         unsigned DReg = RISCV::F0_D + RegNo;
8706         return std::make_pair(DReg, &RISCV::FPR64RegClass);
8707       }
8708       return std::make_pair(FReg, &RISCV::FPR32RegClass);
8709     }
8710   }
8711 
8712   if (Subtarget.hasStdExtV()) {
8713     Register VReg = StringSwitch<Register>(Constraint.lower())
8714                         .Case("{v0}", RISCV::V0)
8715                         .Case("{v1}", RISCV::V1)
8716                         .Case("{v2}", RISCV::V2)
8717                         .Case("{v3}", RISCV::V3)
8718                         .Case("{v4}", RISCV::V4)
8719                         .Case("{v5}", RISCV::V5)
8720                         .Case("{v6}", RISCV::V6)
8721                         .Case("{v7}", RISCV::V7)
8722                         .Case("{v8}", RISCV::V8)
8723                         .Case("{v9}", RISCV::V9)
8724                         .Case("{v10}", RISCV::V10)
8725                         .Case("{v11}", RISCV::V11)
8726                         .Case("{v12}", RISCV::V12)
8727                         .Case("{v13}", RISCV::V13)
8728                         .Case("{v14}", RISCV::V14)
8729                         .Case("{v15}", RISCV::V15)
8730                         .Case("{v16}", RISCV::V16)
8731                         .Case("{v17}", RISCV::V17)
8732                         .Case("{v18}", RISCV::V18)
8733                         .Case("{v19}", RISCV::V19)
8734                         .Case("{v20}", RISCV::V20)
8735                         .Case("{v21}", RISCV::V21)
8736                         .Case("{v22}", RISCV::V22)
8737                         .Case("{v23}", RISCV::V23)
8738                         .Case("{v24}", RISCV::V24)
8739                         .Case("{v25}", RISCV::V25)
8740                         .Case("{v26}", RISCV::V26)
8741                         .Case("{v27}", RISCV::V27)
8742                         .Case("{v28}", RISCV::V28)
8743                         .Case("{v29}", RISCV::V29)
8744                         .Case("{v30}", RISCV::V30)
8745                         .Case("{v31}", RISCV::V31)
8746                         .Default(RISCV::NoRegister);
8747     if (VReg != RISCV::NoRegister) {
8748       if (TRI->isTypeLegalForClass(RISCV::VMRegClass, VT.SimpleTy))
8749         return std::make_pair(VReg, &RISCV::VMRegClass);
8750       if (TRI->isTypeLegalForClass(RISCV::VRRegClass, VT.SimpleTy))
8751         return std::make_pair(VReg, &RISCV::VRRegClass);
8752       for (const auto *RC :
8753            {&RISCV::VRM2RegClass, &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) {
8754         if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy)) {
8755           VReg = TRI->getMatchingSuperReg(VReg, RISCV::sub_vrm1_0, RC);
8756           return std::make_pair(VReg, RC);
8757         }
8758       }
8759     }
8760   }
8761 
8762   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
8763 }
8764 
8765 unsigned
8766 RISCVTargetLowering::getInlineAsmMemConstraint(StringRef ConstraintCode) const {
8767   // Currently only support length 1 constraints.
8768   if (ConstraintCode.size() == 1) {
8769     switch (ConstraintCode[0]) {
8770     case 'A':
8771       return InlineAsm::Constraint_A;
8772     default:
8773       break;
8774     }
8775   }
8776 
8777   return TargetLowering::getInlineAsmMemConstraint(ConstraintCode);
8778 }
8779 
8780 void RISCVTargetLowering::LowerAsmOperandForConstraint(
8781     SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops,
8782     SelectionDAG &DAG) const {
8783   // Currently only support length 1 constraints.
8784   if (Constraint.length() == 1) {
8785     switch (Constraint[0]) {
8786     case 'I':
8787       // Validate & create a 12-bit signed immediate operand.
8788       if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
8789         uint64_t CVal = C->getSExtValue();
8790         if (isInt<12>(CVal))
8791           Ops.push_back(
8792               DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT()));
8793       }
8794       return;
8795     case 'J':
8796       // Validate & create an integer zero operand.
8797       if (auto *C = dyn_cast<ConstantSDNode>(Op))
8798         if (C->getZExtValue() == 0)
8799           Ops.push_back(
8800               DAG.getTargetConstant(0, SDLoc(Op), Subtarget.getXLenVT()));
8801       return;
8802     case 'K':
8803       // Validate & create a 5-bit unsigned immediate operand.
8804       if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
8805         uint64_t CVal = C->getZExtValue();
8806         if (isUInt<5>(CVal))
8807           Ops.push_back(
8808               DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT()));
8809       }
8810       return;
8811     case 'S':
8812       if (const auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) {
8813         Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op),
8814                                                  GA->getValueType(0)));
8815       } else if (const auto *BA = dyn_cast<BlockAddressSDNode>(Op)) {
8816         Ops.push_back(DAG.getTargetBlockAddress(BA->getBlockAddress(),
8817                                                 BA->getValueType(0)));
8818       }
8819       return;
8820     default:
8821       break;
8822     }
8823   }
8824   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
8825 }
8826 
8827 Instruction *RISCVTargetLowering::emitLeadingFence(IRBuilderBase &Builder,
8828                                                    Instruction *Inst,
8829                                                    AtomicOrdering Ord) const {
8830   if (isa<LoadInst>(Inst) && Ord == AtomicOrdering::SequentiallyConsistent)
8831     return Builder.CreateFence(Ord);
8832   if (isa<StoreInst>(Inst) && isReleaseOrStronger(Ord))
8833     return Builder.CreateFence(AtomicOrdering::Release);
8834   return nullptr;
8835 }
8836 
8837 Instruction *RISCVTargetLowering::emitTrailingFence(IRBuilderBase &Builder,
8838                                                     Instruction *Inst,
8839                                                     AtomicOrdering Ord) const {
8840   if (isa<LoadInst>(Inst) && isAcquireOrStronger(Ord))
8841     return Builder.CreateFence(AtomicOrdering::Acquire);
8842   return nullptr;
8843 }
8844 
8845 TargetLowering::AtomicExpansionKind
8846 RISCVTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
8847   // atomicrmw {fadd,fsub} must be expanded to use compare-exchange, as floating
8848   // point operations can't be used in an lr/sc sequence without breaking the
8849   // forward-progress guarantee.
8850   if (AI->isFloatingPointOperation())
8851     return AtomicExpansionKind::CmpXChg;
8852 
8853   unsigned Size = AI->getType()->getPrimitiveSizeInBits();
8854   if (Size == 8 || Size == 16)
8855     return AtomicExpansionKind::MaskedIntrinsic;
8856   return AtomicExpansionKind::None;
8857 }
8858 
8859 static Intrinsic::ID
8860 getIntrinsicForMaskedAtomicRMWBinOp(unsigned XLen, AtomicRMWInst::BinOp BinOp) {
8861   if (XLen == 32) {
8862     switch (BinOp) {
8863     default:
8864       llvm_unreachable("Unexpected AtomicRMW BinOp");
8865     case AtomicRMWInst::Xchg:
8866       return Intrinsic::riscv_masked_atomicrmw_xchg_i32;
8867     case AtomicRMWInst::Add:
8868       return Intrinsic::riscv_masked_atomicrmw_add_i32;
8869     case AtomicRMWInst::Sub:
8870       return Intrinsic::riscv_masked_atomicrmw_sub_i32;
8871     case AtomicRMWInst::Nand:
8872       return Intrinsic::riscv_masked_atomicrmw_nand_i32;
8873     case AtomicRMWInst::Max:
8874       return Intrinsic::riscv_masked_atomicrmw_max_i32;
8875     case AtomicRMWInst::Min:
8876       return Intrinsic::riscv_masked_atomicrmw_min_i32;
8877     case AtomicRMWInst::UMax:
8878       return Intrinsic::riscv_masked_atomicrmw_umax_i32;
8879     case AtomicRMWInst::UMin:
8880       return Intrinsic::riscv_masked_atomicrmw_umin_i32;
8881     }
8882   }
8883 
8884   if (XLen == 64) {
8885     switch (BinOp) {
8886     default:
8887       llvm_unreachable("Unexpected AtomicRMW BinOp");
8888     case AtomicRMWInst::Xchg:
8889       return Intrinsic::riscv_masked_atomicrmw_xchg_i64;
8890     case AtomicRMWInst::Add:
8891       return Intrinsic::riscv_masked_atomicrmw_add_i64;
8892     case AtomicRMWInst::Sub:
8893       return Intrinsic::riscv_masked_atomicrmw_sub_i64;
8894     case AtomicRMWInst::Nand:
8895       return Intrinsic::riscv_masked_atomicrmw_nand_i64;
8896     case AtomicRMWInst::Max:
8897       return Intrinsic::riscv_masked_atomicrmw_max_i64;
8898     case AtomicRMWInst::Min:
8899       return Intrinsic::riscv_masked_atomicrmw_min_i64;
8900     case AtomicRMWInst::UMax:
8901       return Intrinsic::riscv_masked_atomicrmw_umax_i64;
8902     case AtomicRMWInst::UMin:
8903       return Intrinsic::riscv_masked_atomicrmw_umin_i64;
8904     }
8905   }
8906 
8907   llvm_unreachable("Unexpected XLen\n");
8908 }
8909 
8910 Value *RISCVTargetLowering::emitMaskedAtomicRMWIntrinsic(
8911     IRBuilderBase &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr,
8912     Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const {
8913   unsigned XLen = Subtarget.getXLen();
8914   Value *Ordering =
8915       Builder.getIntN(XLen, static_cast<uint64_t>(AI->getOrdering()));
8916   Type *Tys[] = {AlignedAddr->getType()};
8917   Function *LrwOpScwLoop = Intrinsic::getDeclaration(
8918       AI->getModule(),
8919       getIntrinsicForMaskedAtomicRMWBinOp(XLen, AI->getOperation()), Tys);
8920 
8921   if (XLen == 64) {
8922     Incr = Builder.CreateSExt(Incr, Builder.getInt64Ty());
8923     Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty());
8924     ShiftAmt = Builder.CreateSExt(ShiftAmt, Builder.getInt64Ty());
8925   }
8926 
8927   Value *Result;
8928 
8929   // Must pass the shift amount needed to sign extend the loaded value prior
8930   // to performing a signed comparison for min/max. ShiftAmt is the number of
8931   // bits to shift the value into position. Pass XLen-ShiftAmt-ValWidth, which
8932   // is the number of bits to left+right shift the value in order to
8933   // sign-extend.
8934   if (AI->getOperation() == AtomicRMWInst::Min ||
8935       AI->getOperation() == AtomicRMWInst::Max) {
8936     const DataLayout &DL = AI->getModule()->getDataLayout();
8937     unsigned ValWidth =
8938         DL.getTypeStoreSizeInBits(AI->getValOperand()->getType());
8939     Value *SextShamt =
8940         Builder.CreateSub(Builder.getIntN(XLen, XLen - ValWidth), ShiftAmt);
8941     Result = Builder.CreateCall(LrwOpScwLoop,
8942                                 {AlignedAddr, Incr, Mask, SextShamt, Ordering});
8943   } else {
8944     Result =
8945         Builder.CreateCall(LrwOpScwLoop, {AlignedAddr, Incr, Mask, Ordering});
8946   }
8947 
8948   if (XLen == 64)
8949     Result = Builder.CreateTrunc(Result, Builder.getInt32Ty());
8950   return Result;
8951 }
8952 
8953 TargetLowering::AtomicExpansionKind
8954 RISCVTargetLowering::shouldExpandAtomicCmpXchgInIR(
8955     AtomicCmpXchgInst *CI) const {
8956   unsigned Size = CI->getCompareOperand()->getType()->getPrimitiveSizeInBits();
8957   if (Size == 8 || Size == 16)
8958     return AtomicExpansionKind::MaskedIntrinsic;
8959   return AtomicExpansionKind::None;
8960 }
8961 
8962 Value *RISCVTargetLowering::emitMaskedAtomicCmpXchgIntrinsic(
8963     IRBuilderBase &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr,
8964     Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const {
8965   unsigned XLen = Subtarget.getXLen();
8966   Value *Ordering = Builder.getIntN(XLen, static_cast<uint64_t>(Ord));
8967   Intrinsic::ID CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i32;
8968   if (XLen == 64) {
8969     CmpVal = Builder.CreateSExt(CmpVal, Builder.getInt64Ty());
8970     NewVal = Builder.CreateSExt(NewVal, Builder.getInt64Ty());
8971     Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty());
8972     CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i64;
8973   }
8974   Type *Tys[] = {AlignedAddr->getType()};
8975   Function *MaskedCmpXchg =
8976       Intrinsic::getDeclaration(CI->getModule(), CmpXchgIntrID, Tys);
8977   Value *Result = Builder.CreateCall(
8978       MaskedCmpXchg, {AlignedAddr, CmpVal, NewVal, Mask, Ordering});
8979   if (XLen == 64)
8980     Result = Builder.CreateTrunc(Result, Builder.getInt32Ty());
8981   return Result;
8982 }
8983 
8984 bool RISCVTargetLowering::shouldRemoveExtendFromGSIndex(EVT VT) const {
8985   return false;
8986 }
8987 
8988 bool RISCVTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF,
8989                                                      EVT VT) const {
8990   VT = VT.getScalarType();
8991 
8992   if (!VT.isSimple())
8993     return false;
8994 
8995   switch (VT.getSimpleVT().SimpleTy) {
8996   case MVT::f16:
8997     return Subtarget.hasStdExtZfh();
8998   case MVT::f32:
8999     return Subtarget.hasStdExtF();
9000   case MVT::f64:
9001     return Subtarget.hasStdExtD();
9002   default:
9003     break;
9004   }
9005 
9006   return false;
9007 }
9008 
9009 Register RISCVTargetLowering::getExceptionPointerRegister(
9010     const Constant *PersonalityFn) const {
9011   return RISCV::X10;
9012 }
9013 
9014 Register RISCVTargetLowering::getExceptionSelectorRegister(
9015     const Constant *PersonalityFn) const {
9016   return RISCV::X11;
9017 }
9018 
9019 bool RISCVTargetLowering::shouldExtendTypeInLibCall(EVT Type) const {
9020   // Return false to suppress the unnecessary extensions if the LibCall
9021   // arguments or return value is f32 type for LP64 ABI.
9022   RISCVABI::ABI ABI = Subtarget.getTargetABI();
9023   if (ABI == RISCVABI::ABI_LP64 && (Type == MVT::f32))
9024     return false;
9025 
9026   return true;
9027 }
9028 
9029 bool RISCVTargetLowering::shouldSignExtendTypeInLibCall(EVT Type, bool IsSigned) const {
9030   if (Subtarget.is64Bit() && Type == MVT::i32)
9031     return true;
9032 
9033   return IsSigned;
9034 }
9035 
9036 bool RISCVTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT,
9037                                                  SDValue C) const {
9038   // Check integral scalar types.
9039   if (VT.isScalarInteger()) {
9040     // Omit the optimization if the sub target has the M extension and the data
9041     // size exceeds XLen.
9042     if (Subtarget.hasStdExtM() && VT.getSizeInBits() > Subtarget.getXLen())
9043       return false;
9044     if (auto *ConstNode = dyn_cast<ConstantSDNode>(C.getNode())) {
9045       // Break the MUL to a SLLI and an ADD/SUB.
9046       const APInt &Imm = ConstNode->getAPIntValue();
9047       if ((Imm + 1).isPowerOf2() || (Imm - 1).isPowerOf2() ||
9048           (1 - Imm).isPowerOf2() || (-1 - Imm).isPowerOf2())
9049         return true;
9050       // Optimize the MUL to (SH*ADD x, (SLLI x, bits)) if Imm is not simm12.
9051       if (Subtarget.hasStdExtZba() && !Imm.isSignedIntN(12) &&
9052           ((Imm - 2).isPowerOf2() || (Imm - 4).isPowerOf2() ||
9053            (Imm - 8).isPowerOf2()))
9054         return true;
9055       // Omit the following optimization if the sub target has the M extension
9056       // and the data size >= XLen.
9057       if (Subtarget.hasStdExtM() && VT.getSizeInBits() >= Subtarget.getXLen())
9058         return false;
9059       // Break the MUL to two SLLI instructions and an ADD/SUB, if Imm needs
9060       // a pair of LUI/ADDI.
9061       if (!Imm.isSignedIntN(12) && Imm.countTrailingZeros() < 12) {
9062         APInt ImmS = Imm.ashr(Imm.countTrailingZeros());
9063         if ((ImmS + 1).isPowerOf2() || (ImmS - 1).isPowerOf2() ||
9064             (1 - ImmS).isPowerOf2())
9065         return true;
9066       }
9067     }
9068   }
9069 
9070   return false;
9071 }
9072 
9073 bool RISCVTargetLowering::isMulAddWithConstProfitable(
9074     const SDValue &AddNode, const SDValue &ConstNode) const {
9075   // Let the DAGCombiner decide for vectors.
9076   EVT VT = AddNode.getValueType();
9077   if (VT.isVector())
9078     return true;
9079 
9080   // Let the DAGCombiner decide for larger types.
9081   if (VT.getScalarSizeInBits() > Subtarget.getXLen())
9082     return true;
9083 
9084   // It is worse if c1 is simm12 while c1*c2 is not.
9085   ConstantSDNode *C1Node = cast<ConstantSDNode>(AddNode.getOperand(1));
9086   ConstantSDNode *C2Node = cast<ConstantSDNode>(ConstNode);
9087   const APInt &C1 = C1Node->getAPIntValue();
9088   const APInt &C2 = C2Node->getAPIntValue();
9089   if (C1.isSignedIntN(12) && !(C1 * C2).isSignedIntN(12))
9090     return false;
9091 
9092   // Default to true and let the DAGCombiner decide.
9093   return true;
9094 }
9095 
9096 bool RISCVTargetLowering::allowsMisalignedMemoryAccesses(
9097     EVT VT, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags,
9098     bool *Fast) const {
9099   if (!VT.isVector())
9100     return false;
9101 
9102   EVT ElemVT = VT.getVectorElementType();
9103   if (Alignment >= ElemVT.getStoreSize()) {
9104     if (Fast)
9105       *Fast = true;
9106     return true;
9107   }
9108 
9109   return false;
9110 }
9111 
9112 bool RISCVTargetLowering::splitValueIntoRegisterParts(
9113     SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts,
9114     unsigned NumParts, MVT PartVT, Optional<CallingConv::ID> CC) const {
9115   bool IsABIRegCopy = CC.hasValue();
9116   EVT ValueVT = Val.getValueType();
9117   if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) {
9118     // Cast the f16 to i16, extend to i32, pad with ones to make a float nan,
9119     // and cast to f32.
9120     Val = DAG.getNode(ISD::BITCAST, DL, MVT::i16, Val);
9121     Val = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Val);
9122     Val = DAG.getNode(ISD::OR, DL, MVT::i32, Val,
9123                       DAG.getConstant(0xFFFF0000, DL, MVT::i32));
9124     Val = DAG.getNode(ISD::BITCAST, DL, MVT::f32, Val);
9125     Parts[0] = Val;
9126     return true;
9127   }
9128 
9129   if (ValueVT.isScalableVector() && PartVT.isScalableVector()) {
9130     LLVMContext &Context = *DAG.getContext();
9131     EVT ValueEltVT = ValueVT.getVectorElementType();
9132     EVT PartEltVT = PartVT.getVectorElementType();
9133     unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize();
9134     unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize();
9135     if (PartVTBitSize % ValueVTBitSize == 0) {
9136       // If the element types are different, bitcast to the same element type of
9137       // PartVT first.
9138       if (ValueEltVT != PartEltVT) {
9139         unsigned Count = ValueVTBitSize / PartEltVT.getSizeInBits();
9140         assert(Count != 0 && "The number of element should not be zero.");
9141         EVT SameEltTypeVT =
9142             EVT::getVectorVT(Context, PartEltVT, Count, /*IsScalable=*/true);
9143         Val = DAG.getNode(ISD::BITCAST, DL, SameEltTypeVT, Val);
9144       }
9145       Val = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT),
9146                         Val, DAG.getConstant(0, DL, Subtarget.getXLenVT()));
9147       Parts[0] = Val;
9148       return true;
9149     }
9150   }
9151   return false;
9152 }
9153 
9154 SDValue RISCVTargetLowering::joinRegisterPartsIntoValue(
9155     SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts,
9156     MVT PartVT, EVT ValueVT, Optional<CallingConv::ID> CC) const {
9157   bool IsABIRegCopy = CC.hasValue();
9158   if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) {
9159     SDValue Val = Parts[0];
9160 
9161     // Cast the f32 to i32, truncate to i16, and cast back to f16.
9162     Val = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Val);
9163     Val = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Val);
9164     Val = DAG.getNode(ISD::BITCAST, DL, MVT::f16, Val);
9165     return Val;
9166   }
9167 
9168   if (ValueVT.isScalableVector() && PartVT.isScalableVector()) {
9169     LLVMContext &Context = *DAG.getContext();
9170     SDValue Val = Parts[0];
9171     EVT ValueEltVT = ValueVT.getVectorElementType();
9172     EVT PartEltVT = PartVT.getVectorElementType();
9173     unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize();
9174     unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize();
9175     if (PartVTBitSize % ValueVTBitSize == 0) {
9176       EVT SameEltTypeVT = ValueVT;
9177       // If the element types are different, convert it to the same element type
9178       // of PartVT.
9179       if (ValueEltVT != PartEltVT) {
9180         unsigned Count = ValueVTBitSize / PartEltVT.getSizeInBits();
9181         assert(Count != 0 && "The number of element should not be zero.");
9182         SameEltTypeVT =
9183             EVT::getVectorVT(Context, PartEltVT, Count, /*IsScalable=*/true);
9184       }
9185       Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SameEltTypeVT, Val,
9186                         DAG.getConstant(0, DL, Subtarget.getXLenVT()));
9187       if (ValueEltVT != PartEltVT)
9188         Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
9189       return Val;
9190     }
9191   }
9192   return SDValue();
9193 }
9194 
9195 #define GET_REGISTER_MATCHER
9196 #include "RISCVGenAsmMatcher.inc"
9197 
9198 Register
9199 RISCVTargetLowering::getRegisterByName(const char *RegName, LLT VT,
9200                                        const MachineFunction &MF) const {
9201   Register Reg = MatchRegisterAltName(RegName);
9202   if (Reg == RISCV::NoRegister)
9203     Reg = MatchRegisterName(RegName);
9204   if (Reg == RISCV::NoRegister)
9205     report_fatal_error(
9206         Twine("Invalid register name \"" + StringRef(RegName) + "\"."));
9207   BitVector ReservedRegs = Subtarget.getRegisterInfo()->getReservedRegs(MF);
9208   if (!ReservedRegs.test(Reg) && !Subtarget.isRegisterReservedByUser(Reg))
9209     report_fatal_error(Twine("Trying to obtain non-reserved register \"" +
9210                              StringRef(RegName) + "\"."));
9211   return Reg;
9212 }
9213 
9214 namespace llvm {
9215 namespace RISCVVIntrinsicsTable {
9216 
9217 #define GET_RISCVVIntrinsicsTable_IMPL
9218 #include "RISCVGenSearchableTables.inc"
9219 
9220 } // namespace RISCVVIntrinsicsTable
9221 
9222 } // namespace llvm
9223