1 //===-- RISCVISelLowering.cpp - RISCV DAG Lowering Implementation --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the interfaces that RISCV uses to lower LLVM code into a 10 // selection DAG. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "RISCVISelLowering.h" 15 #include "MCTargetDesc/RISCVMatInt.h" 16 #include "RISCV.h" 17 #include "RISCVMachineFunctionInfo.h" 18 #include "RISCVRegisterInfo.h" 19 #include "RISCVSubtarget.h" 20 #include "RISCVTargetMachine.h" 21 #include "llvm/ADT/SmallSet.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Analysis/MemoryLocation.h" 24 #include "llvm/CodeGen/MachineFrameInfo.h" 25 #include "llvm/CodeGen/MachineFunction.h" 26 #include "llvm/CodeGen/MachineInstrBuilder.h" 27 #include "llvm/CodeGen/MachineJumpTableInfo.h" 28 #include "llvm/CodeGen/MachineRegisterInfo.h" 29 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 30 #include "llvm/CodeGen/ValueTypes.h" 31 #include "llvm/IR/DiagnosticInfo.h" 32 #include "llvm/IR/DiagnosticPrinter.h" 33 #include "llvm/IR/IRBuilder.h" 34 #include "llvm/IR/IntrinsicsRISCV.h" 35 #include "llvm/IR/PatternMatch.h" 36 #include "llvm/Support/Debug.h" 37 #include "llvm/Support/ErrorHandling.h" 38 #include "llvm/Support/KnownBits.h" 39 #include "llvm/Support/MathExtras.h" 40 #include "llvm/Support/raw_ostream.h" 41 42 using namespace llvm; 43 44 #define DEBUG_TYPE "riscv-lower" 45 46 STATISTIC(NumTailCalls, "Number of tail calls"); 47 48 RISCVTargetLowering::RISCVTargetLowering(const TargetMachine &TM, 49 const RISCVSubtarget &STI) 50 : TargetLowering(TM), Subtarget(STI) { 51 52 if (Subtarget.isRV32E()) 53 report_fatal_error("Codegen not yet implemented for RV32E"); 54 55 RISCVABI::ABI ABI = Subtarget.getTargetABI(); 56 assert(ABI != RISCVABI::ABI_Unknown && "Improperly initialised target ABI"); 57 58 if ((ABI == RISCVABI::ABI_ILP32F || ABI == RISCVABI::ABI_LP64F) && 59 !Subtarget.hasStdExtF()) { 60 errs() << "Hard-float 'f' ABI can't be used for a target that " 61 "doesn't support the F instruction set extension (ignoring " 62 "target-abi)\n"; 63 ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32; 64 } else if ((ABI == RISCVABI::ABI_ILP32D || ABI == RISCVABI::ABI_LP64D) && 65 !Subtarget.hasStdExtD()) { 66 errs() << "Hard-float 'd' ABI can't be used for a target that " 67 "doesn't support the D instruction set extension (ignoring " 68 "target-abi)\n"; 69 ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32; 70 } 71 72 switch (ABI) { 73 default: 74 report_fatal_error("Don't know how to lower this ABI"); 75 case RISCVABI::ABI_ILP32: 76 case RISCVABI::ABI_ILP32F: 77 case RISCVABI::ABI_ILP32D: 78 case RISCVABI::ABI_LP64: 79 case RISCVABI::ABI_LP64F: 80 case RISCVABI::ABI_LP64D: 81 break; 82 } 83 84 MVT XLenVT = Subtarget.getXLenVT(); 85 86 // Set up the register classes. 87 addRegisterClass(XLenVT, &RISCV::GPRRegClass); 88 89 if (Subtarget.hasStdExtZfh()) 90 addRegisterClass(MVT::f16, &RISCV::FPR16RegClass); 91 if (Subtarget.hasStdExtF()) 92 addRegisterClass(MVT::f32, &RISCV::FPR32RegClass); 93 if (Subtarget.hasStdExtD()) 94 addRegisterClass(MVT::f64, &RISCV::FPR64RegClass); 95 96 static const MVT::SimpleValueType BoolVecVTs[] = { 97 MVT::nxv1i1, MVT::nxv2i1, MVT::nxv4i1, MVT::nxv8i1, 98 MVT::nxv16i1, MVT::nxv32i1, MVT::nxv64i1}; 99 static const MVT::SimpleValueType IntVecVTs[] = { 100 MVT::nxv1i8, MVT::nxv2i8, MVT::nxv4i8, MVT::nxv8i8, MVT::nxv16i8, 101 MVT::nxv32i8, MVT::nxv64i8, MVT::nxv1i16, MVT::nxv2i16, MVT::nxv4i16, 102 MVT::nxv8i16, MVT::nxv16i16, MVT::nxv32i16, MVT::nxv1i32, MVT::nxv2i32, 103 MVT::nxv4i32, MVT::nxv8i32, MVT::nxv16i32, MVT::nxv1i64, MVT::nxv2i64, 104 MVT::nxv4i64, MVT::nxv8i64}; 105 static const MVT::SimpleValueType F16VecVTs[] = { 106 MVT::nxv1f16, MVT::nxv2f16, MVT::nxv4f16, 107 MVT::nxv8f16, MVT::nxv16f16, MVT::nxv32f16}; 108 static const MVT::SimpleValueType F32VecVTs[] = { 109 MVT::nxv1f32, MVT::nxv2f32, MVT::nxv4f32, MVT::nxv8f32, MVT::nxv16f32}; 110 static const MVT::SimpleValueType F64VecVTs[] = { 111 MVT::nxv1f64, MVT::nxv2f64, MVT::nxv4f64, MVT::nxv8f64}; 112 113 if (Subtarget.hasVInstructions()) { 114 auto addRegClassForRVV = [this](MVT VT) { 115 unsigned Size = VT.getSizeInBits().getKnownMinValue(); 116 assert(Size <= 512 && isPowerOf2_32(Size)); 117 const TargetRegisterClass *RC; 118 if (Size <= 64) 119 RC = &RISCV::VRRegClass; 120 else if (Size == 128) 121 RC = &RISCV::VRM2RegClass; 122 else if (Size == 256) 123 RC = &RISCV::VRM4RegClass; 124 else 125 RC = &RISCV::VRM8RegClass; 126 127 addRegisterClass(VT, RC); 128 }; 129 130 for (MVT VT : BoolVecVTs) 131 addRegClassForRVV(VT); 132 for (MVT VT : IntVecVTs) { 133 if (VT.getVectorElementType() == MVT::i64 && 134 !Subtarget.hasVInstructionsI64()) 135 continue; 136 addRegClassForRVV(VT); 137 } 138 139 if (Subtarget.hasVInstructionsF16()) 140 for (MVT VT : F16VecVTs) 141 addRegClassForRVV(VT); 142 143 if (Subtarget.hasVInstructionsF32()) 144 for (MVT VT : F32VecVTs) 145 addRegClassForRVV(VT); 146 147 if (Subtarget.hasVInstructionsF64()) 148 for (MVT VT : F64VecVTs) 149 addRegClassForRVV(VT); 150 151 if (Subtarget.useRVVForFixedLengthVectors()) { 152 auto addRegClassForFixedVectors = [this](MVT VT) { 153 MVT ContainerVT = getContainerForFixedLengthVector(VT); 154 unsigned RCID = getRegClassIDForVecVT(ContainerVT); 155 const RISCVRegisterInfo &TRI = *Subtarget.getRegisterInfo(); 156 addRegisterClass(VT, TRI.getRegClass(RCID)); 157 }; 158 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) 159 if (useRVVForFixedLengthVectorVT(VT)) 160 addRegClassForFixedVectors(VT); 161 162 for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) 163 if (useRVVForFixedLengthVectorVT(VT)) 164 addRegClassForFixedVectors(VT); 165 } 166 } 167 168 // Compute derived properties from the register classes. 169 computeRegisterProperties(STI.getRegisterInfo()); 170 171 setStackPointerRegisterToSaveRestore(RISCV::X2); 172 173 for (auto N : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}) 174 setLoadExtAction(N, XLenVT, MVT::i1, Promote); 175 176 // TODO: add all necessary setOperationAction calls. 177 setOperationAction(ISD::DYNAMIC_STACKALLOC, XLenVT, Expand); 178 179 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 180 setOperationAction(ISD::BR_CC, XLenVT, Expand); 181 setOperationAction(ISD::BRCOND, MVT::Other, Custom); 182 setOperationAction(ISD::SELECT_CC, XLenVT, Expand); 183 184 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); 185 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); 186 187 setOperationAction(ISD::VASTART, MVT::Other, Custom); 188 setOperationAction(ISD::VAARG, MVT::Other, Expand); 189 setOperationAction(ISD::VACOPY, MVT::Other, Expand); 190 setOperationAction(ISD::VAEND, MVT::Other, Expand); 191 192 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 193 if (!Subtarget.hasStdExtZbb()) { 194 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand); 195 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand); 196 } 197 198 if (Subtarget.is64Bit()) { 199 setOperationAction(ISD::ADD, MVT::i32, Custom); 200 setOperationAction(ISD::SUB, MVT::i32, Custom); 201 setOperationAction(ISD::SHL, MVT::i32, Custom); 202 setOperationAction(ISD::SRA, MVT::i32, Custom); 203 setOperationAction(ISD::SRL, MVT::i32, Custom); 204 205 setOperationAction(ISD::UADDO, MVT::i32, Custom); 206 setOperationAction(ISD::USUBO, MVT::i32, Custom); 207 setOperationAction(ISD::UADDSAT, MVT::i32, Custom); 208 setOperationAction(ISD::USUBSAT, MVT::i32, Custom); 209 } else { 210 setLibcallName(RTLIB::SHL_I128, nullptr); 211 setLibcallName(RTLIB::SRL_I128, nullptr); 212 setLibcallName(RTLIB::SRA_I128, nullptr); 213 setLibcallName(RTLIB::MUL_I128, nullptr); 214 setLibcallName(RTLIB::MULO_I64, nullptr); 215 } 216 217 if (!Subtarget.hasStdExtM()) { 218 setOperationAction(ISD::MUL, XLenVT, Expand); 219 setOperationAction(ISD::MULHS, XLenVT, Expand); 220 setOperationAction(ISD::MULHU, XLenVT, Expand); 221 setOperationAction(ISD::SDIV, XLenVT, Expand); 222 setOperationAction(ISD::UDIV, XLenVT, Expand); 223 setOperationAction(ISD::SREM, XLenVT, Expand); 224 setOperationAction(ISD::UREM, XLenVT, Expand); 225 } else { 226 if (Subtarget.is64Bit()) { 227 setOperationAction(ISD::MUL, MVT::i32, Custom); 228 setOperationAction(ISD::MUL, MVT::i128, Custom); 229 230 setOperationAction(ISD::SDIV, MVT::i8, Custom); 231 setOperationAction(ISD::UDIV, MVT::i8, Custom); 232 setOperationAction(ISD::UREM, MVT::i8, Custom); 233 setOperationAction(ISD::SDIV, MVT::i16, Custom); 234 setOperationAction(ISD::UDIV, MVT::i16, Custom); 235 setOperationAction(ISD::UREM, MVT::i16, Custom); 236 setOperationAction(ISD::SDIV, MVT::i32, Custom); 237 setOperationAction(ISD::UDIV, MVT::i32, Custom); 238 setOperationAction(ISD::UREM, MVT::i32, Custom); 239 } else { 240 setOperationAction(ISD::MUL, MVT::i64, Custom); 241 } 242 } 243 244 setOperationAction(ISD::SDIVREM, XLenVT, Expand); 245 setOperationAction(ISD::UDIVREM, XLenVT, Expand); 246 setOperationAction(ISD::SMUL_LOHI, XLenVT, Expand); 247 setOperationAction(ISD::UMUL_LOHI, XLenVT, Expand); 248 249 setOperationAction(ISD::SHL_PARTS, XLenVT, Custom); 250 setOperationAction(ISD::SRL_PARTS, XLenVT, Custom); 251 setOperationAction(ISD::SRA_PARTS, XLenVT, Custom); 252 253 if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp() || 254 Subtarget.hasStdExtZbkb()) { 255 if (Subtarget.is64Bit()) { 256 setOperationAction(ISD::ROTL, MVT::i32, Custom); 257 setOperationAction(ISD::ROTR, MVT::i32, Custom); 258 } 259 } else { 260 setOperationAction(ISD::ROTL, XLenVT, Expand); 261 setOperationAction(ISD::ROTR, XLenVT, Expand); 262 } 263 264 if (Subtarget.hasStdExtZbp()) { 265 // Custom lower bswap/bitreverse so we can convert them to GREVI to enable 266 // more combining. 267 setOperationAction(ISD::BITREVERSE, XLenVT, Custom); 268 setOperationAction(ISD::BSWAP, XLenVT, Custom); 269 setOperationAction(ISD::BITREVERSE, MVT::i8, Custom); 270 // BSWAP i8 doesn't exist. 271 setOperationAction(ISD::BITREVERSE, MVT::i16, Custom); 272 setOperationAction(ISD::BSWAP, MVT::i16, Custom); 273 274 if (Subtarget.is64Bit()) { 275 setOperationAction(ISD::BITREVERSE, MVT::i32, Custom); 276 setOperationAction(ISD::BSWAP, MVT::i32, Custom); 277 } 278 } else { 279 // With Zbb we have an XLen rev8 instruction, but not GREVI. So we'll 280 // pattern match it directly in isel. 281 setOperationAction(ISD::BSWAP, XLenVT, 282 (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbkb()) 283 ? Legal 284 : Expand); 285 // Zbkb can use rev8+brev8 to implement bitreverse. 286 setOperationAction(ISD::BITREVERSE, XLenVT, 287 Subtarget.hasStdExtZbkb() ? Custom : Expand); 288 } 289 290 if (Subtarget.hasStdExtZbb()) { 291 setOperationAction(ISD::SMIN, XLenVT, Legal); 292 setOperationAction(ISD::SMAX, XLenVT, Legal); 293 setOperationAction(ISD::UMIN, XLenVT, Legal); 294 setOperationAction(ISD::UMAX, XLenVT, Legal); 295 296 if (Subtarget.is64Bit()) { 297 setOperationAction(ISD::CTTZ, MVT::i32, Custom); 298 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Custom); 299 setOperationAction(ISD::CTLZ, MVT::i32, Custom); 300 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom); 301 } 302 } else { 303 setOperationAction(ISD::CTTZ, XLenVT, Expand); 304 setOperationAction(ISD::CTLZ, XLenVT, Expand); 305 setOperationAction(ISD::CTPOP, XLenVT, Expand); 306 307 if (Subtarget.is64Bit()) 308 setOperationAction(ISD::ABS, MVT::i32, Custom); 309 } 310 311 if (Subtarget.hasStdExtZbt()) { 312 setOperationAction(ISD::FSHL, XLenVT, Custom); 313 setOperationAction(ISD::FSHR, XLenVT, Custom); 314 setOperationAction(ISD::SELECT, XLenVT, Legal); 315 316 if (Subtarget.is64Bit()) { 317 setOperationAction(ISD::FSHL, MVT::i32, Custom); 318 setOperationAction(ISD::FSHR, MVT::i32, Custom); 319 } 320 } else { 321 setOperationAction(ISD::SELECT, XLenVT, Custom); 322 } 323 324 static constexpr ISD::NodeType FPLegalNodeTypes[] = { 325 ISD::FMINNUM, ISD::FMAXNUM, ISD::LRINT, 326 ISD::LLRINT, ISD::LROUND, ISD::LLROUND, 327 ISD::STRICT_LRINT, ISD::STRICT_LLRINT, ISD::STRICT_LROUND, 328 ISD::STRICT_LLROUND, ISD::STRICT_FMA, ISD::STRICT_FADD, 329 ISD::STRICT_FSUB, ISD::STRICT_FMUL, ISD::STRICT_FDIV, 330 ISD::STRICT_FSQRT, ISD::STRICT_FSETCC, ISD::STRICT_FSETCCS}; 331 332 static const ISD::CondCode FPCCToExpand[] = { 333 ISD::SETOGT, ISD::SETOGE, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT, 334 ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUNE, ISD::SETGT, 335 ISD::SETGE, ISD::SETNE, ISD::SETO, ISD::SETUO}; 336 337 static const ISD::NodeType FPOpToExpand[] = { 338 ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, 339 ISD::FREM, ISD::FP16_TO_FP, ISD::FP_TO_FP16}; 340 341 if (Subtarget.hasStdExtZfh()) 342 setOperationAction(ISD::BITCAST, MVT::i16, Custom); 343 344 if (Subtarget.hasStdExtZfh()) { 345 for (auto NT : FPLegalNodeTypes) 346 setOperationAction(NT, MVT::f16, Legal); 347 setOperationAction(ISD::STRICT_FP_ROUND, MVT::f16, Legal); 348 setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f32, Legal); 349 for (auto CC : FPCCToExpand) 350 setCondCodeAction(CC, MVT::f16, Expand); 351 setOperationAction(ISD::SELECT_CC, MVT::f16, Expand); 352 setOperationAction(ISD::SELECT, MVT::f16, Custom); 353 setOperationAction(ISD::BR_CC, MVT::f16, Expand); 354 355 setOperationAction(ISD::FREM, MVT::f16, Promote); 356 setOperationAction(ISD::FCEIL, MVT::f16, Promote); 357 setOperationAction(ISD::FFLOOR, MVT::f16, Promote); 358 setOperationAction(ISD::FNEARBYINT, MVT::f16, Promote); 359 setOperationAction(ISD::FRINT, MVT::f16, Promote); 360 setOperationAction(ISD::FROUND, MVT::f16, Promote); 361 setOperationAction(ISD::FROUNDEVEN, MVT::f16, Promote); 362 setOperationAction(ISD::FTRUNC, MVT::f16, Promote); 363 setOperationAction(ISD::FPOW, MVT::f16, Promote); 364 setOperationAction(ISD::FPOWI, MVT::f16, Promote); 365 setOperationAction(ISD::FCOS, MVT::f16, Promote); 366 setOperationAction(ISD::FSIN, MVT::f16, Promote); 367 setOperationAction(ISD::FSINCOS, MVT::f16, Promote); 368 setOperationAction(ISD::FEXP, MVT::f16, Promote); 369 setOperationAction(ISD::FEXP2, MVT::f16, Promote); 370 setOperationAction(ISD::FLOG, MVT::f16, Promote); 371 setOperationAction(ISD::FLOG2, MVT::f16, Promote); 372 setOperationAction(ISD::FLOG10, MVT::f16, Promote); 373 374 // FIXME: Need to promote f16 STRICT_* to f32 libcalls, but we don't have 375 // complete support for all operations in LegalizeDAG. 376 377 // We need to custom promote this. 378 if (Subtarget.is64Bit()) 379 setOperationAction(ISD::FPOWI, MVT::i32, Custom); 380 } 381 382 if (Subtarget.hasStdExtF()) { 383 for (auto NT : FPLegalNodeTypes) 384 setOperationAction(NT, MVT::f32, Legal); 385 for (auto CC : FPCCToExpand) 386 setCondCodeAction(CC, MVT::f32, Expand); 387 setOperationAction(ISD::SELECT_CC, MVT::f32, Expand); 388 setOperationAction(ISD::SELECT, MVT::f32, Custom); 389 setOperationAction(ISD::BR_CC, MVT::f32, Expand); 390 for (auto Op : FPOpToExpand) 391 setOperationAction(Op, MVT::f32, Expand); 392 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); 393 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 394 } 395 396 if (Subtarget.hasStdExtF() && Subtarget.is64Bit()) 397 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 398 399 if (Subtarget.hasStdExtD()) { 400 for (auto NT : FPLegalNodeTypes) 401 setOperationAction(NT, MVT::f64, Legal); 402 setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal); 403 setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f64, Legal); 404 for (auto CC : FPCCToExpand) 405 setCondCodeAction(CC, MVT::f64, Expand); 406 setOperationAction(ISD::SELECT_CC, MVT::f64, Expand); 407 setOperationAction(ISD::SELECT, MVT::f64, Custom); 408 setOperationAction(ISD::BR_CC, MVT::f64, Expand); 409 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 410 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 411 for (auto Op : FPOpToExpand) 412 setOperationAction(Op, MVT::f64, Expand); 413 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); 414 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 415 } 416 417 if (Subtarget.is64Bit()) { 418 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 419 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 420 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom); 421 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom); 422 } 423 424 if (Subtarget.hasStdExtF()) { 425 setOperationAction(ISD::FP_TO_UINT_SAT, XLenVT, Custom); 426 setOperationAction(ISD::FP_TO_SINT_SAT, XLenVT, Custom); 427 428 setOperationAction(ISD::STRICT_FP_TO_UINT, XLenVT, Legal); 429 setOperationAction(ISD::STRICT_FP_TO_SINT, XLenVT, Legal); 430 setOperationAction(ISD::STRICT_UINT_TO_FP, XLenVT, Legal); 431 setOperationAction(ISD::STRICT_SINT_TO_FP, XLenVT, Legal); 432 433 setOperationAction(ISD::FLT_ROUNDS_, XLenVT, Custom); 434 setOperationAction(ISD::SET_ROUNDING, MVT::Other, Custom); 435 } 436 437 setOperationAction(ISD::GlobalAddress, XLenVT, Custom); 438 setOperationAction(ISD::BlockAddress, XLenVT, Custom); 439 setOperationAction(ISD::ConstantPool, XLenVT, Custom); 440 setOperationAction(ISD::JumpTable, XLenVT, Custom); 441 442 setOperationAction(ISD::GlobalTLSAddress, XLenVT, Custom); 443 444 // TODO: On M-mode only targets, the cycle[h] CSR may not be present. 445 // Unfortunately this can't be determined just from the ISA naming string. 446 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, 447 Subtarget.is64Bit() ? Legal : Custom); 448 449 setOperationAction(ISD::TRAP, MVT::Other, Legal); 450 setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal); 451 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 452 if (Subtarget.is64Bit()) 453 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i32, Custom); 454 455 if (Subtarget.hasStdExtA()) { 456 setMaxAtomicSizeInBitsSupported(Subtarget.getXLen()); 457 setMinCmpXchgSizeInBits(32); 458 } else { 459 setMaxAtomicSizeInBitsSupported(0); 460 } 461 462 setBooleanContents(ZeroOrOneBooleanContent); 463 464 if (Subtarget.hasVInstructions()) { 465 setBooleanVectorContents(ZeroOrOneBooleanContent); 466 467 setOperationAction(ISD::VSCALE, XLenVT, Custom); 468 469 // RVV intrinsics may have illegal operands. 470 // We also need to custom legalize vmv.x.s. 471 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i8, Custom); 472 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i16, Custom); 473 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i8, Custom); 474 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i16, Custom); 475 if (Subtarget.is64Bit()) { 476 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i32, Custom); 477 } else { 478 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i64, Custom); 479 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i64, Custom); 480 } 481 482 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom); 483 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); 484 485 static const unsigned IntegerVPOps[] = { 486 ISD::VP_ADD, ISD::VP_SUB, ISD::VP_MUL, 487 ISD::VP_SDIV, ISD::VP_UDIV, ISD::VP_SREM, 488 ISD::VP_UREM, ISD::VP_AND, ISD::VP_OR, 489 ISD::VP_XOR, ISD::VP_ASHR, ISD::VP_LSHR, 490 ISD::VP_SHL, ISD::VP_REDUCE_ADD, ISD::VP_REDUCE_AND, 491 ISD::VP_REDUCE_OR, ISD::VP_REDUCE_XOR, ISD::VP_REDUCE_SMAX, 492 ISD::VP_REDUCE_SMIN, ISD::VP_REDUCE_UMAX, ISD::VP_REDUCE_UMIN, 493 ISD::VP_MERGE, ISD::VP_SELECT, ISD::VP_FPTOSI, 494 ISD::VP_FPTOUI, ISD::VP_SETCC, ISD::VP_SEXT, 495 ISD::VP_ZEXT, ISD::VP_TRUNC}; 496 497 static const unsigned FloatingPointVPOps[] = { 498 ISD::VP_FADD, ISD::VP_FSUB, 499 ISD::VP_FMUL, ISD::VP_FDIV, 500 ISD::VP_FNEG, ISD::VP_FMA, 501 ISD::VP_REDUCE_FADD, ISD::VP_REDUCE_SEQ_FADD, 502 ISD::VP_REDUCE_FMIN, ISD::VP_REDUCE_FMAX, 503 ISD::VP_MERGE, ISD::VP_SELECT, 504 ISD::VP_SITOFP, ISD::VP_UITOFP, 505 ISD::VP_SETCC, ISD::VP_FP_ROUND}; 506 507 if (!Subtarget.is64Bit()) { 508 // We must custom-lower certain vXi64 operations on RV32 due to the vector 509 // element type being illegal. 510 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::i64, Custom); 511 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::i64, Custom); 512 513 setOperationAction(ISD::VECREDUCE_ADD, MVT::i64, Custom); 514 setOperationAction(ISD::VECREDUCE_AND, MVT::i64, Custom); 515 setOperationAction(ISD::VECREDUCE_OR, MVT::i64, Custom); 516 setOperationAction(ISD::VECREDUCE_XOR, MVT::i64, Custom); 517 setOperationAction(ISD::VECREDUCE_SMAX, MVT::i64, Custom); 518 setOperationAction(ISD::VECREDUCE_SMIN, MVT::i64, Custom); 519 setOperationAction(ISD::VECREDUCE_UMAX, MVT::i64, Custom); 520 setOperationAction(ISD::VECREDUCE_UMIN, MVT::i64, Custom); 521 522 setOperationAction(ISD::VP_REDUCE_ADD, MVT::i64, Custom); 523 setOperationAction(ISD::VP_REDUCE_AND, MVT::i64, Custom); 524 setOperationAction(ISD::VP_REDUCE_OR, MVT::i64, Custom); 525 setOperationAction(ISD::VP_REDUCE_XOR, MVT::i64, Custom); 526 setOperationAction(ISD::VP_REDUCE_SMAX, MVT::i64, Custom); 527 setOperationAction(ISD::VP_REDUCE_SMIN, MVT::i64, Custom); 528 setOperationAction(ISD::VP_REDUCE_UMAX, MVT::i64, Custom); 529 setOperationAction(ISD::VP_REDUCE_UMIN, MVT::i64, Custom); 530 } 531 532 for (MVT VT : BoolVecVTs) { 533 setOperationAction(ISD::SPLAT_VECTOR, VT, Custom); 534 535 // Mask VTs are custom-expanded into a series of standard nodes 536 setOperationAction(ISD::TRUNCATE, VT, Custom); 537 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 538 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 539 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 540 541 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 542 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 543 544 setOperationAction(ISD::SELECT, VT, Custom); 545 setOperationAction(ISD::SELECT_CC, VT, Expand); 546 setOperationAction(ISD::VSELECT, VT, Expand); 547 setOperationAction(ISD::VP_MERGE, VT, Expand); 548 setOperationAction(ISD::VP_SELECT, VT, Expand); 549 550 setOperationAction(ISD::VP_AND, VT, Custom); 551 setOperationAction(ISD::VP_OR, VT, Custom); 552 setOperationAction(ISD::VP_XOR, VT, Custom); 553 554 setOperationAction(ISD::VECREDUCE_AND, VT, Custom); 555 setOperationAction(ISD::VECREDUCE_OR, VT, Custom); 556 setOperationAction(ISD::VECREDUCE_XOR, VT, Custom); 557 558 setOperationAction(ISD::VP_REDUCE_AND, VT, Custom); 559 setOperationAction(ISD::VP_REDUCE_OR, VT, Custom); 560 setOperationAction(ISD::VP_REDUCE_XOR, VT, Custom); 561 562 // RVV has native int->float & float->int conversions where the 563 // element type sizes are within one power-of-two of each other. Any 564 // wider distances between type sizes have to be lowered as sequences 565 // which progressively narrow the gap in stages. 566 setOperationAction(ISD::SINT_TO_FP, VT, Custom); 567 setOperationAction(ISD::UINT_TO_FP, VT, Custom); 568 setOperationAction(ISD::FP_TO_SINT, VT, Custom); 569 setOperationAction(ISD::FP_TO_UINT, VT, Custom); 570 571 // Expand all extending loads to types larger than this, and truncating 572 // stores from types larger than this. 573 for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) { 574 setTruncStoreAction(OtherVT, VT, Expand); 575 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 576 setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand); 577 setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand); 578 } 579 580 setOperationAction(ISD::VP_FPTOSI, VT, Custom); 581 setOperationAction(ISD::VP_FPTOUI, VT, Custom); 582 setOperationAction(ISD::VP_TRUNC, VT, Custom); 583 } 584 585 for (MVT VT : IntVecVTs) { 586 if (VT.getVectorElementType() == MVT::i64 && 587 !Subtarget.hasVInstructionsI64()) 588 continue; 589 590 setOperationAction(ISD::SPLAT_VECTOR, VT, Legal); 591 setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom); 592 593 // Vectors implement MULHS/MULHU. 594 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 595 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 596 597 // nxvXi64 MULHS/MULHU requires the V extension instead of Zve64*. 598 if (VT.getVectorElementType() == MVT::i64 && !Subtarget.hasStdExtV()) { 599 setOperationAction(ISD::MULHU, VT, Expand); 600 setOperationAction(ISD::MULHS, VT, Expand); 601 } 602 603 setOperationAction(ISD::SMIN, VT, Legal); 604 setOperationAction(ISD::SMAX, VT, Legal); 605 setOperationAction(ISD::UMIN, VT, Legal); 606 setOperationAction(ISD::UMAX, VT, Legal); 607 608 setOperationAction(ISD::ROTL, VT, Expand); 609 setOperationAction(ISD::ROTR, VT, Expand); 610 611 setOperationAction(ISD::CTTZ, VT, Expand); 612 setOperationAction(ISD::CTLZ, VT, Expand); 613 setOperationAction(ISD::CTPOP, VT, Expand); 614 615 setOperationAction(ISD::BSWAP, VT, Expand); 616 617 // Custom-lower extensions and truncations from/to mask types. 618 setOperationAction(ISD::ANY_EXTEND, VT, Custom); 619 setOperationAction(ISD::SIGN_EXTEND, VT, Custom); 620 setOperationAction(ISD::ZERO_EXTEND, VT, Custom); 621 622 // RVV has native int->float & float->int conversions where the 623 // element type sizes are within one power-of-two of each other. Any 624 // wider distances between type sizes have to be lowered as sequences 625 // which progressively narrow the gap in stages. 626 setOperationAction(ISD::SINT_TO_FP, VT, Custom); 627 setOperationAction(ISD::UINT_TO_FP, VT, Custom); 628 setOperationAction(ISD::FP_TO_SINT, VT, Custom); 629 setOperationAction(ISD::FP_TO_UINT, VT, Custom); 630 631 setOperationAction(ISD::SADDSAT, VT, Legal); 632 setOperationAction(ISD::UADDSAT, VT, Legal); 633 setOperationAction(ISD::SSUBSAT, VT, Legal); 634 setOperationAction(ISD::USUBSAT, VT, Legal); 635 636 // Integer VTs are lowered as a series of "RISCVISD::TRUNCATE_VECTOR_VL" 637 // nodes which truncate by one power of two at a time. 638 setOperationAction(ISD::TRUNCATE, VT, Custom); 639 640 // Custom-lower insert/extract operations to simplify patterns. 641 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 642 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 643 644 // Custom-lower reduction operations to set up the corresponding custom 645 // nodes' operands. 646 setOperationAction(ISD::VECREDUCE_ADD, VT, Custom); 647 setOperationAction(ISD::VECREDUCE_AND, VT, Custom); 648 setOperationAction(ISD::VECREDUCE_OR, VT, Custom); 649 setOperationAction(ISD::VECREDUCE_XOR, VT, Custom); 650 setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom); 651 setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom); 652 setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom); 653 setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom); 654 655 for (unsigned VPOpc : IntegerVPOps) 656 setOperationAction(VPOpc, VT, Custom); 657 658 setOperationAction(ISD::LOAD, VT, Custom); 659 setOperationAction(ISD::STORE, VT, Custom); 660 661 setOperationAction(ISD::MLOAD, VT, Custom); 662 setOperationAction(ISD::MSTORE, VT, Custom); 663 setOperationAction(ISD::MGATHER, VT, Custom); 664 setOperationAction(ISD::MSCATTER, VT, Custom); 665 666 setOperationAction(ISD::VP_LOAD, VT, Custom); 667 setOperationAction(ISD::VP_STORE, VT, Custom); 668 setOperationAction(ISD::VP_GATHER, VT, Custom); 669 setOperationAction(ISD::VP_SCATTER, VT, Custom); 670 671 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 672 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 673 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 674 675 setOperationAction(ISD::SELECT, VT, Custom); 676 setOperationAction(ISD::SELECT_CC, VT, Expand); 677 678 setOperationAction(ISD::STEP_VECTOR, VT, Custom); 679 setOperationAction(ISD::VECTOR_REVERSE, VT, Custom); 680 681 for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) { 682 setTruncStoreAction(VT, OtherVT, Expand); 683 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 684 setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand); 685 setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand); 686 } 687 688 // Splice 689 setOperationAction(ISD::VECTOR_SPLICE, VT, Custom); 690 691 // Lower CTLZ_ZERO_UNDEF and CTTZ_ZERO_UNDEF if we have a floating point 692 // type that can represent the value exactly. 693 if (VT.getVectorElementType() != MVT::i64) { 694 MVT FloatEltVT = 695 VT.getVectorElementType() == MVT::i32 ? MVT::f64 : MVT::f32; 696 EVT FloatVT = MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount()); 697 if (isTypeLegal(FloatVT)) { 698 setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Custom); 699 setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Custom); 700 } 701 } 702 } 703 704 // Expand various CCs to best match the RVV ISA, which natively supports UNE 705 // but no other unordered comparisons, and supports all ordered comparisons 706 // except ONE. Additionally, we expand GT,OGT,GE,OGE for optimization 707 // purposes; they are expanded to their swapped-operand CCs (LT,OLT,LE,OLE), 708 // and we pattern-match those back to the "original", swapping operands once 709 // more. This way we catch both operations and both "vf" and "fv" forms with 710 // fewer patterns. 711 static const ISD::CondCode VFPCCToExpand[] = { 712 ISD::SETO, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT, 713 ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUO, 714 ISD::SETGT, ISD::SETOGT, ISD::SETGE, ISD::SETOGE, 715 }; 716 717 // Sets common operation actions on RVV floating-point vector types. 718 const auto SetCommonVFPActions = [&](MVT VT) { 719 setOperationAction(ISD::SPLAT_VECTOR, VT, Legal); 720 // RVV has native FP_ROUND & FP_EXTEND conversions where the element type 721 // sizes are within one power-of-two of each other. Therefore conversions 722 // between vXf16 and vXf64 must be lowered as sequences which convert via 723 // vXf32. 724 setOperationAction(ISD::FP_ROUND, VT, Custom); 725 setOperationAction(ISD::FP_EXTEND, VT, Custom); 726 // Custom-lower insert/extract operations to simplify patterns. 727 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 728 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 729 // Expand various condition codes (explained above). 730 for (auto CC : VFPCCToExpand) 731 setCondCodeAction(CC, VT, Expand); 732 733 setOperationAction(ISD::FMINNUM, VT, Legal); 734 setOperationAction(ISD::FMAXNUM, VT, Legal); 735 736 setOperationAction(ISD::FTRUNC, VT, Custom); 737 setOperationAction(ISD::FCEIL, VT, Custom); 738 setOperationAction(ISD::FFLOOR, VT, Custom); 739 setOperationAction(ISD::FROUND, VT, Custom); 740 741 setOperationAction(ISD::VECREDUCE_FADD, VT, Custom); 742 setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom); 743 setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom); 744 setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom); 745 746 setOperationAction(ISD::FCOPYSIGN, VT, Legal); 747 748 setOperationAction(ISD::LOAD, VT, Custom); 749 setOperationAction(ISD::STORE, VT, Custom); 750 751 setOperationAction(ISD::MLOAD, VT, Custom); 752 setOperationAction(ISD::MSTORE, VT, Custom); 753 setOperationAction(ISD::MGATHER, VT, Custom); 754 setOperationAction(ISD::MSCATTER, VT, Custom); 755 756 setOperationAction(ISD::VP_LOAD, VT, Custom); 757 setOperationAction(ISD::VP_STORE, VT, Custom); 758 setOperationAction(ISD::VP_GATHER, VT, Custom); 759 setOperationAction(ISD::VP_SCATTER, VT, Custom); 760 761 setOperationAction(ISD::SELECT, VT, Custom); 762 setOperationAction(ISD::SELECT_CC, VT, Expand); 763 764 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 765 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 766 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 767 768 setOperationAction(ISD::VECTOR_REVERSE, VT, Custom); 769 setOperationAction(ISD::VECTOR_SPLICE, VT, Custom); 770 771 for (unsigned VPOpc : FloatingPointVPOps) 772 setOperationAction(VPOpc, VT, Custom); 773 }; 774 775 // Sets common extload/truncstore actions on RVV floating-point vector 776 // types. 777 const auto SetCommonVFPExtLoadTruncStoreActions = 778 [&](MVT VT, ArrayRef<MVT::SimpleValueType> SmallerVTs) { 779 for (auto SmallVT : SmallerVTs) { 780 setTruncStoreAction(VT, SmallVT, Expand); 781 setLoadExtAction(ISD::EXTLOAD, VT, SmallVT, Expand); 782 } 783 }; 784 785 if (Subtarget.hasVInstructionsF16()) 786 for (MVT VT : F16VecVTs) 787 SetCommonVFPActions(VT); 788 789 for (MVT VT : F32VecVTs) { 790 if (Subtarget.hasVInstructionsF32()) 791 SetCommonVFPActions(VT); 792 SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs); 793 } 794 795 for (MVT VT : F64VecVTs) { 796 if (Subtarget.hasVInstructionsF64()) 797 SetCommonVFPActions(VT); 798 SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs); 799 SetCommonVFPExtLoadTruncStoreActions(VT, F32VecVTs); 800 } 801 802 if (Subtarget.useRVVForFixedLengthVectors()) { 803 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) { 804 if (!useRVVForFixedLengthVectorVT(VT)) 805 continue; 806 807 // By default everything must be expanded. 808 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) 809 setOperationAction(Op, VT, Expand); 810 for (MVT OtherVT : MVT::integer_fixedlen_vector_valuetypes()) { 811 setTruncStoreAction(VT, OtherVT, Expand); 812 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 813 setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand); 814 setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand); 815 } 816 817 // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed. 818 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 819 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 820 821 setOperationAction(ISD::BUILD_VECTOR, VT, Custom); 822 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 823 824 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 825 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 826 827 setOperationAction(ISD::LOAD, VT, Custom); 828 setOperationAction(ISD::STORE, VT, Custom); 829 830 setOperationAction(ISD::SETCC, VT, Custom); 831 832 setOperationAction(ISD::SELECT, VT, Custom); 833 834 setOperationAction(ISD::TRUNCATE, VT, Custom); 835 836 setOperationAction(ISD::BITCAST, VT, Custom); 837 838 setOperationAction(ISD::VECREDUCE_AND, VT, Custom); 839 setOperationAction(ISD::VECREDUCE_OR, VT, Custom); 840 setOperationAction(ISD::VECREDUCE_XOR, VT, Custom); 841 842 setOperationAction(ISD::VP_REDUCE_AND, VT, Custom); 843 setOperationAction(ISD::VP_REDUCE_OR, VT, Custom); 844 setOperationAction(ISD::VP_REDUCE_XOR, VT, Custom); 845 846 setOperationAction(ISD::SINT_TO_FP, VT, Custom); 847 setOperationAction(ISD::UINT_TO_FP, VT, Custom); 848 setOperationAction(ISD::FP_TO_SINT, VT, Custom); 849 setOperationAction(ISD::FP_TO_UINT, VT, Custom); 850 851 // Operations below are different for between masks and other vectors. 852 if (VT.getVectorElementType() == MVT::i1) { 853 setOperationAction(ISD::VP_AND, VT, Custom); 854 setOperationAction(ISD::VP_OR, VT, Custom); 855 setOperationAction(ISD::VP_XOR, VT, Custom); 856 setOperationAction(ISD::AND, VT, Custom); 857 setOperationAction(ISD::OR, VT, Custom); 858 setOperationAction(ISD::XOR, VT, Custom); 859 860 setOperationAction(ISD::VP_FPTOSI, VT, Custom); 861 setOperationAction(ISD::VP_FPTOUI, VT, Custom); 862 setOperationAction(ISD::VP_SETCC, VT, Custom); 863 setOperationAction(ISD::VP_TRUNC, VT, Custom); 864 continue; 865 } 866 867 // Make SPLAT_VECTOR Legal so DAGCombine will convert splat vectors to 868 // it before type legalization for i64 vectors on RV32. It will then be 869 // type legalized to SPLAT_VECTOR_PARTS which we need to Custom handle. 870 // FIXME: Use SPLAT_VECTOR for all types? DAGCombine probably needs 871 // improvements first. 872 if (!Subtarget.is64Bit() && VT.getVectorElementType() == MVT::i64) { 873 setOperationAction(ISD::SPLAT_VECTOR, VT, Legal); 874 setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom); 875 } 876 877 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); 878 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 879 880 setOperationAction(ISD::MLOAD, VT, Custom); 881 setOperationAction(ISD::MSTORE, VT, Custom); 882 setOperationAction(ISD::MGATHER, VT, Custom); 883 setOperationAction(ISD::MSCATTER, VT, Custom); 884 885 setOperationAction(ISD::VP_LOAD, VT, Custom); 886 setOperationAction(ISD::VP_STORE, VT, Custom); 887 setOperationAction(ISD::VP_GATHER, VT, Custom); 888 setOperationAction(ISD::VP_SCATTER, VT, Custom); 889 890 setOperationAction(ISD::ADD, VT, Custom); 891 setOperationAction(ISD::MUL, VT, Custom); 892 setOperationAction(ISD::SUB, VT, Custom); 893 setOperationAction(ISD::AND, VT, Custom); 894 setOperationAction(ISD::OR, VT, Custom); 895 setOperationAction(ISD::XOR, VT, Custom); 896 setOperationAction(ISD::SDIV, VT, Custom); 897 setOperationAction(ISD::SREM, VT, Custom); 898 setOperationAction(ISD::UDIV, VT, Custom); 899 setOperationAction(ISD::UREM, VT, Custom); 900 setOperationAction(ISD::SHL, VT, Custom); 901 setOperationAction(ISD::SRA, VT, Custom); 902 setOperationAction(ISD::SRL, VT, Custom); 903 904 setOperationAction(ISD::SMIN, VT, Custom); 905 setOperationAction(ISD::SMAX, VT, Custom); 906 setOperationAction(ISD::UMIN, VT, Custom); 907 setOperationAction(ISD::UMAX, VT, Custom); 908 setOperationAction(ISD::ABS, VT, Custom); 909 910 // vXi64 MULHS/MULHU requires the V extension instead of Zve64*. 911 if (VT.getVectorElementType() != MVT::i64 || Subtarget.hasStdExtV()) { 912 setOperationAction(ISD::MULHS, VT, Custom); 913 setOperationAction(ISD::MULHU, VT, Custom); 914 } 915 916 setOperationAction(ISD::SADDSAT, VT, Custom); 917 setOperationAction(ISD::UADDSAT, VT, Custom); 918 setOperationAction(ISD::SSUBSAT, VT, Custom); 919 setOperationAction(ISD::USUBSAT, VT, Custom); 920 921 setOperationAction(ISD::VSELECT, VT, Custom); 922 setOperationAction(ISD::SELECT_CC, VT, Expand); 923 924 setOperationAction(ISD::ANY_EXTEND, VT, Custom); 925 setOperationAction(ISD::SIGN_EXTEND, VT, Custom); 926 setOperationAction(ISD::ZERO_EXTEND, VT, Custom); 927 928 // Custom-lower reduction operations to set up the corresponding custom 929 // nodes' operands. 930 setOperationAction(ISD::VECREDUCE_ADD, VT, Custom); 931 setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom); 932 setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom); 933 setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom); 934 setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom); 935 936 for (unsigned VPOpc : IntegerVPOps) 937 setOperationAction(VPOpc, VT, Custom); 938 939 // Lower CTLZ_ZERO_UNDEF and CTTZ_ZERO_UNDEF if we have a floating point 940 // type that can represent the value exactly. 941 if (VT.getVectorElementType() != MVT::i64) { 942 MVT FloatEltVT = 943 VT.getVectorElementType() == MVT::i32 ? MVT::f64 : MVT::f32; 944 EVT FloatVT = 945 MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount()); 946 if (isTypeLegal(FloatVT)) { 947 setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Custom); 948 setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Custom); 949 } 950 } 951 } 952 953 for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) { 954 if (!useRVVForFixedLengthVectorVT(VT)) 955 continue; 956 957 // By default everything must be expanded. 958 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) 959 setOperationAction(Op, VT, Expand); 960 for (MVT OtherVT : MVT::fp_fixedlen_vector_valuetypes()) { 961 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 962 setTruncStoreAction(VT, OtherVT, Expand); 963 } 964 965 // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed. 966 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 967 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 968 969 setOperationAction(ISD::BUILD_VECTOR, VT, Custom); 970 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 971 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); 972 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 973 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 974 975 setOperationAction(ISD::LOAD, VT, Custom); 976 setOperationAction(ISD::STORE, VT, Custom); 977 setOperationAction(ISD::MLOAD, VT, Custom); 978 setOperationAction(ISD::MSTORE, VT, Custom); 979 setOperationAction(ISD::MGATHER, VT, Custom); 980 setOperationAction(ISD::MSCATTER, VT, Custom); 981 982 setOperationAction(ISD::VP_LOAD, VT, Custom); 983 setOperationAction(ISD::VP_STORE, VT, Custom); 984 setOperationAction(ISD::VP_GATHER, VT, Custom); 985 setOperationAction(ISD::VP_SCATTER, VT, Custom); 986 987 setOperationAction(ISD::FADD, VT, Custom); 988 setOperationAction(ISD::FSUB, VT, Custom); 989 setOperationAction(ISD::FMUL, VT, Custom); 990 setOperationAction(ISD::FDIV, VT, Custom); 991 setOperationAction(ISD::FNEG, VT, Custom); 992 setOperationAction(ISD::FABS, VT, Custom); 993 setOperationAction(ISD::FCOPYSIGN, VT, Custom); 994 setOperationAction(ISD::FSQRT, VT, Custom); 995 setOperationAction(ISD::FMA, VT, Custom); 996 setOperationAction(ISD::FMINNUM, VT, Custom); 997 setOperationAction(ISD::FMAXNUM, VT, Custom); 998 999 setOperationAction(ISD::FP_ROUND, VT, Custom); 1000 setOperationAction(ISD::FP_EXTEND, VT, Custom); 1001 1002 setOperationAction(ISD::FTRUNC, VT, Custom); 1003 setOperationAction(ISD::FCEIL, VT, Custom); 1004 setOperationAction(ISD::FFLOOR, VT, Custom); 1005 setOperationAction(ISD::FROUND, VT, Custom); 1006 1007 for (auto CC : VFPCCToExpand) 1008 setCondCodeAction(CC, VT, Expand); 1009 1010 setOperationAction(ISD::VSELECT, VT, Custom); 1011 setOperationAction(ISD::SELECT, VT, Custom); 1012 setOperationAction(ISD::SELECT_CC, VT, Expand); 1013 1014 setOperationAction(ISD::BITCAST, VT, Custom); 1015 1016 setOperationAction(ISD::VECREDUCE_FADD, VT, Custom); 1017 setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom); 1018 setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom); 1019 setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom); 1020 1021 for (unsigned VPOpc : FloatingPointVPOps) 1022 setOperationAction(VPOpc, VT, Custom); 1023 } 1024 1025 // Custom-legalize bitcasts from fixed-length vectors to scalar types. 1026 setOperationAction(ISD::BITCAST, MVT::i8, Custom); 1027 setOperationAction(ISD::BITCAST, MVT::i16, Custom); 1028 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 1029 setOperationAction(ISD::BITCAST, MVT::i64, Custom); 1030 if (Subtarget.hasStdExtZfh()) 1031 setOperationAction(ISD::BITCAST, MVT::f16, Custom); 1032 if (Subtarget.hasStdExtF()) 1033 setOperationAction(ISD::BITCAST, MVT::f32, Custom); 1034 if (Subtarget.hasStdExtD()) 1035 setOperationAction(ISD::BITCAST, MVT::f64, Custom); 1036 } 1037 } 1038 1039 // Function alignments. 1040 const Align FunctionAlignment(Subtarget.hasStdExtC() ? 2 : 4); 1041 setMinFunctionAlignment(FunctionAlignment); 1042 setPrefFunctionAlignment(FunctionAlignment); 1043 1044 setMinimumJumpTableEntries(5); 1045 1046 // Jumps are expensive, compared to logic 1047 setJumpIsExpensive(); 1048 1049 setTargetDAGCombine({ISD::INTRINSIC_WO_CHAIN, ISD::ADD, ISD::SUB, ISD::AND, 1050 ISD::OR, ISD::XOR}); 1051 1052 if (Subtarget.hasStdExtZbp()) 1053 setTargetDAGCombine({ISD::ROTL, ISD::ROTR}); 1054 if (Subtarget.hasStdExtZbkb()) 1055 setTargetDAGCombine(ISD::BITREVERSE); 1056 if (Subtarget.hasStdExtZfh() || Subtarget.hasStdExtZbb()) 1057 setTargetDAGCombine(ISD::SIGN_EXTEND_INREG); 1058 if (Subtarget.hasStdExtF()) 1059 setTargetDAGCombine({ISD::ZERO_EXTEND, ISD::FP_TO_SINT, ISD::FP_TO_UINT, 1060 ISD::FP_TO_SINT_SAT, ISD::FP_TO_UINT_SAT}); 1061 if (Subtarget.hasVInstructions()) 1062 setTargetDAGCombine({ISD::FCOPYSIGN, ISD::MGATHER, ISD::MSCATTER, 1063 ISD::VP_GATHER, ISD::VP_SCATTER, ISD::SRA, ISD::SRL, 1064 ISD::SHL, ISD::STORE, ISD::SPLAT_VECTOR}); 1065 1066 setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2"); 1067 setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2"); 1068 } 1069 1070 EVT RISCVTargetLowering::getSetCCResultType(const DataLayout &DL, 1071 LLVMContext &Context, 1072 EVT VT) const { 1073 if (!VT.isVector()) 1074 return getPointerTy(DL); 1075 if (Subtarget.hasVInstructions() && 1076 (VT.isScalableVector() || Subtarget.useRVVForFixedLengthVectors())) 1077 return EVT::getVectorVT(Context, MVT::i1, VT.getVectorElementCount()); 1078 return VT.changeVectorElementTypeToInteger(); 1079 } 1080 1081 MVT RISCVTargetLowering::getVPExplicitVectorLengthTy() const { 1082 return Subtarget.getXLenVT(); 1083 } 1084 1085 bool RISCVTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 1086 const CallInst &I, 1087 MachineFunction &MF, 1088 unsigned Intrinsic) const { 1089 auto &DL = I.getModule()->getDataLayout(); 1090 switch (Intrinsic) { 1091 default: 1092 return false; 1093 case Intrinsic::riscv_masked_atomicrmw_xchg_i32: 1094 case Intrinsic::riscv_masked_atomicrmw_add_i32: 1095 case Intrinsic::riscv_masked_atomicrmw_sub_i32: 1096 case Intrinsic::riscv_masked_atomicrmw_nand_i32: 1097 case Intrinsic::riscv_masked_atomicrmw_max_i32: 1098 case Intrinsic::riscv_masked_atomicrmw_min_i32: 1099 case Intrinsic::riscv_masked_atomicrmw_umax_i32: 1100 case Intrinsic::riscv_masked_atomicrmw_umin_i32: 1101 case Intrinsic::riscv_masked_cmpxchg_i32: 1102 Info.opc = ISD::INTRINSIC_W_CHAIN; 1103 Info.memVT = MVT::i32; 1104 Info.ptrVal = I.getArgOperand(0); 1105 Info.offset = 0; 1106 Info.align = Align(4); 1107 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore | 1108 MachineMemOperand::MOVolatile; 1109 return true; 1110 case Intrinsic::riscv_masked_strided_load: 1111 Info.opc = ISD::INTRINSIC_W_CHAIN; 1112 Info.ptrVal = I.getArgOperand(1); 1113 Info.memVT = getValueType(DL, I.getType()->getScalarType()); 1114 Info.align = Align(DL.getTypeSizeInBits(I.getType()->getScalarType()) / 8); 1115 Info.size = MemoryLocation::UnknownSize; 1116 Info.flags |= MachineMemOperand::MOLoad; 1117 return true; 1118 case Intrinsic::riscv_masked_strided_store: 1119 Info.opc = ISD::INTRINSIC_VOID; 1120 Info.ptrVal = I.getArgOperand(1); 1121 Info.memVT = 1122 getValueType(DL, I.getArgOperand(0)->getType()->getScalarType()); 1123 Info.align = Align( 1124 DL.getTypeSizeInBits(I.getArgOperand(0)->getType()->getScalarType()) / 1125 8); 1126 Info.size = MemoryLocation::UnknownSize; 1127 Info.flags |= MachineMemOperand::MOStore; 1128 return true; 1129 case Intrinsic::riscv_seg2_load: 1130 case Intrinsic::riscv_seg3_load: 1131 case Intrinsic::riscv_seg4_load: 1132 case Intrinsic::riscv_seg5_load: 1133 case Intrinsic::riscv_seg6_load: 1134 case Intrinsic::riscv_seg7_load: 1135 case Intrinsic::riscv_seg8_load: 1136 Info.opc = ISD::INTRINSIC_W_CHAIN; 1137 Info.ptrVal = I.getArgOperand(0); 1138 Info.memVT = 1139 getValueType(DL, I.getType()->getStructElementType(0)->getScalarType()); 1140 Info.align = 1141 Align(DL.getTypeSizeInBits( 1142 I.getType()->getStructElementType(0)->getScalarType()) / 1143 8); 1144 Info.size = MemoryLocation::UnknownSize; 1145 Info.flags |= MachineMemOperand::MOLoad; 1146 return true; 1147 } 1148 } 1149 1150 bool RISCVTargetLowering::isLegalAddressingMode(const DataLayout &DL, 1151 const AddrMode &AM, Type *Ty, 1152 unsigned AS, 1153 Instruction *I) const { 1154 // No global is ever allowed as a base. 1155 if (AM.BaseGV) 1156 return false; 1157 1158 // Require a 12-bit signed offset. 1159 if (!isInt<12>(AM.BaseOffs)) 1160 return false; 1161 1162 switch (AM.Scale) { 1163 case 0: // "r+i" or just "i", depending on HasBaseReg. 1164 break; 1165 case 1: 1166 if (!AM.HasBaseReg) // allow "r+i". 1167 break; 1168 return false; // disallow "r+r" or "r+r+i". 1169 default: 1170 return false; 1171 } 1172 1173 return true; 1174 } 1175 1176 bool RISCVTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 1177 return isInt<12>(Imm); 1178 } 1179 1180 bool RISCVTargetLowering::isLegalAddImmediate(int64_t Imm) const { 1181 return isInt<12>(Imm); 1182 } 1183 1184 // On RV32, 64-bit integers are split into their high and low parts and held 1185 // in two different registers, so the trunc is free since the low register can 1186 // just be used. 1187 bool RISCVTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const { 1188 if (Subtarget.is64Bit() || !SrcTy->isIntegerTy() || !DstTy->isIntegerTy()) 1189 return false; 1190 unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); 1191 unsigned DestBits = DstTy->getPrimitiveSizeInBits(); 1192 return (SrcBits == 64 && DestBits == 32); 1193 } 1194 1195 bool RISCVTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const { 1196 if (Subtarget.is64Bit() || SrcVT.isVector() || DstVT.isVector() || 1197 !SrcVT.isInteger() || !DstVT.isInteger()) 1198 return false; 1199 unsigned SrcBits = SrcVT.getSizeInBits(); 1200 unsigned DestBits = DstVT.getSizeInBits(); 1201 return (SrcBits == 64 && DestBits == 32); 1202 } 1203 1204 bool RISCVTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 1205 // Zexts are free if they can be combined with a load. 1206 // Don't advertise i32->i64 zextload as being free for RV64. It interacts 1207 // poorly with type legalization of compares preferring sext. 1208 if (auto *LD = dyn_cast<LoadSDNode>(Val)) { 1209 EVT MemVT = LD->getMemoryVT(); 1210 if ((MemVT == MVT::i8 || MemVT == MVT::i16) && 1211 (LD->getExtensionType() == ISD::NON_EXTLOAD || 1212 LD->getExtensionType() == ISD::ZEXTLOAD)) 1213 return true; 1214 } 1215 1216 return TargetLowering::isZExtFree(Val, VT2); 1217 } 1218 1219 bool RISCVTargetLowering::isSExtCheaperThanZExt(EVT SrcVT, EVT DstVT) const { 1220 return Subtarget.is64Bit() && SrcVT == MVT::i32 && DstVT == MVT::i64; 1221 } 1222 1223 bool RISCVTargetLowering::signExtendConstant(const ConstantInt *CI) const { 1224 return Subtarget.is64Bit() && CI->getType()->isIntegerTy(32); 1225 } 1226 1227 bool RISCVTargetLowering::isCheapToSpeculateCttz() const { 1228 return Subtarget.hasStdExtZbb(); 1229 } 1230 1231 bool RISCVTargetLowering::isCheapToSpeculateCtlz() const { 1232 return Subtarget.hasStdExtZbb(); 1233 } 1234 1235 bool RISCVTargetLowering::hasAndNotCompare(SDValue Y) const { 1236 EVT VT = Y.getValueType(); 1237 1238 // FIXME: Support vectors once we have tests. 1239 if (VT.isVector()) 1240 return false; 1241 1242 return (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp() || 1243 Subtarget.hasStdExtZbkb()) && 1244 !isa<ConstantSDNode>(Y); 1245 } 1246 1247 bool RISCVTargetLowering::hasBitTest(SDValue X, SDValue Y) const { 1248 // We can use ANDI+SEQZ/SNEZ as a bit test. Y contains the bit position. 1249 auto *C = dyn_cast<ConstantSDNode>(Y); 1250 return C && C->getAPIntValue().ule(10); 1251 } 1252 1253 /// Check if sinking \p I's operands to I's basic block is profitable, because 1254 /// the operands can be folded into a target instruction, e.g. 1255 /// splats of scalars can fold into vector instructions. 1256 bool RISCVTargetLowering::shouldSinkOperands( 1257 Instruction *I, SmallVectorImpl<Use *> &Ops) const { 1258 using namespace llvm::PatternMatch; 1259 1260 if (!I->getType()->isVectorTy() || !Subtarget.hasVInstructions()) 1261 return false; 1262 1263 auto IsSinker = [&](Instruction *I, int Operand) { 1264 switch (I->getOpcode()) { 1265 case Instruction::Add: 1266 case Instruction::Sub: 1267 case Instruction::Mul: 1268 case Instruction::And: 1269 case Instruction::Or: 1270 case Instruction::Xor: 1271 case Instruction::FAdd: 1272 case Instruction::FSub: 1273 case Instruction::FMul: 1274 case Instruction::FDiv: 1275 case Instruction::ICmp: 1276 case Instruction::FCmp: 1277 return true; 1278 case Instruction::Shl: 1279 case Instruction::LShr: 1280 case Instruction::AShr: 1281 case Instruction::UDiv: 1282 case Instruction::SDiv: 1283 case Instruction::URem: 1284 case Instruction::SRem: 1285 return Operand == 1; 1286 case Instruction::Call: 1287 if (auto *II = dyn_cast<IntrinsicInst>(I)) { 1288 switch (II->getIntrinsicID()) { 1289 case Intrinsic::fma: 1290 case Intrinsic::vp_fma: 1291 return Operand == 0 || Operand == 1; 1292 // FIXME: Our patterns can only match vx/vf instructions when the splat 1293 // it on the RHS, because TableGen doesn't recognize our VP operations 1294 // as commutative. 1295 case Intrinsic::vp_add: 1296 case Intrinsic::vp_mul: 1297 case Intrinsic::vp_and: 1298 case Intrinsic::vp_or: 1299 case Intrinsic::vp_xor: 1300 case Intrinsic::vp_fadd: 1301 case Intrinsic::vp_fmul: 1302 case Intrinsic::vp_shl: 1303 case Intrinsic::vp_lshr: 1304 case Intrinsic::vp_ashr: 1305 case Intrinsic::vp_udiv: 1306 case Intrinsic::vp_sdiv: 1307 case Intrinsic::vp_urem: 1308 case Intrinsic::vp_srem: 1309 return Operand == 1; 1310 // ... with the exception of vp.sub/vp.fsub/vp.fdiv, which have 1311 // explicit patterns for both LHS and RHS (as 'vr' versions). 1312 case Intrinsic::vp_sub: 1313 case Intrinsic::vp_fsub: 1314 case Intrinsic::vp_fdiv: 1315 return Operand == 0 || Operand == 1; 1316 default: 1317 return false; 1318 } 1319 } 1320 return false; 1321 default: 1322 return false; 1323 } 1324 }; 1325 1326 for (auto OpIdx : enumerate(I->operands())) { 1327 if (!IsSinker(I, OpIdx.index())) 1328 continue; 1329 1330 Instruction *Op = dyn_cast<Instruction>(OpIdx.value().get()); 1331 // Make sure we are not already sinking this operand 1332 if (!Op || any_of(Ops, [&](Use *U) { return U->get() == Op; })) 1333 continue; 1334 1335 // We are looking for a splat that can be sunk. 1336 if (!match(Op, m_Shuffle(m_InsertElt(m_Undef(), m_Value(), m_ZeroInt()), 1337 m_Undef(), m_ZeroMask()))) 1338 continue; 1339 1340 // All uses of the shuffle should be sunk to avoid duplicating it across gpr 1341 // and vector registers 1342 for (Use &U : Op->uses()) { 1343 Instruction *Insn = cast<Instruction>(U.getUser()); 1344 if (!IsSinker(Insn, U.getOperandNo())) 1345 return false; 1346 } 1347 1348 Ops.push_back(&Op->getOperandUse(0)); 1349 Ops.push_back(&OpIdx.value()); 1350 } 1351 return true; 1352 } 1353 1354 bool RISCVTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 1355 bool ForCodeSize) const { 1356 // FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin. 1357 if (VT == MVT::f16 && !Subtarget.hasStdExtZfh()) 1358 return false; 1359 if (VT == MVT::f32 && !Subtarget.hasStdExtF()) 1360 return false; 1361 if (VT == MVT::f64 && !Subtarget.hasStdExtD()) 1362 return false; 1363 return Imm.isZero(); 1364 } 1365 1366 bool RISCVTargetLowering::hasBitPreservingFPLogic(EVT VT) const { 1367 return (VT == MVT::f16 && Subtarget.hasStdExtZfh()) || 1368 (VT == MVT::f32 && Subtarget.hasStdExtF()) || 1369 (VT == MVT::f64 && Subtarget.hasStdExtD()); 1370 } 1371 1372 MVT RISCVTargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context, 1373 CallingConv::ID CC, 1374 EVT VT) const { 1375 // Use f32 to pass f16 if it is legal and Zfh is not enabled. 1376 // We might still end up using a GPR but that will be decided based on ABI. 1377 // FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin. 1378 if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh()) 1379 return MVT::f32; 1380 1381 return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT); 1382 } 1383 1384 unsigned RISCVTargetLowering::getNumRegistersForCallingConv(LLVMContext &Context, 1385 CallingConv::ID CC, 1386 EVT VT) const { 1387 // Use f32 to pass f16 if it is legal and Zfh is not enabled. 1388 // We might still end up using a GPR but that will be decided based on ABI. 1389 // FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin. 1390 if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh()) 1391 return 1; 1392 1393 return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT); 1394 } 1395 1396 // Changes the condition code and swaps operands if necessary, so the SetCC 1397 // operation matches one of the comparisons supported directly by branches 1398 // in the RISC-V ISA. May adjust compares to favor compare with 0 over compare 1399 // with 1/-1. 1400 static void translateSetCCForBranch(const SDLoc &DL, SDValue &LHS, SDValue &RHS, 1401 ISD::CondCode &CC, SelectionDAG &DAG) { 1402 // Convert X > -1 to X >= 0. 1403 if (CC == ISD::SETGT && isAllOnesConstant(RHS)) { 1404 RHS = DAG.getConstant(0, DL, RHS.getValueType()); 1405 CC = ISD::SETGE; 1406 return; 1407 } 1408 // Convert X < 1 to 0 >= X. 1409 if (CC == ISD::SETLT && isOneConstant(RHS)) { 1410 RHS = LHS; 1411 LHS = DAG.getConstant(0, DL, RHS.getValueType()); 1412 CC = ISD::SETGE; 1413 return; 1414 } 1415 1416 switch (CC) { 1417 default: 1418 break; 1419 case ISD::SETGT: 1420 case ISD::SETLE: 1421 case ISD::SETUGT: 1422 case ISD::SETULE: 1423 CC = ISD::getSetCCSwappedOperands(CC); 1424 std::swap(LHS, RHS); 1425 break; 1426 } 1427 } 1428 1429 RISCVII::VLMUL RISCVTargetLowering::getLMUL(MVT VT) { 1430 assert(VT.isScalableVector() && "Expecting a scalable vector type"); 1431 unsigned KnownSize = VT.getSizeInBits().getKnownMinValue(); 1432 if (VT.getVectorElementType() == MVT::i1) 1433 KnownSize *= 8; 1434 1435 switch (KnownSize) { 1436 default: 1437 llvm_unreachable("Invalid LMUL."); 1438 case 8: 1439 return RISCVII::VLMUL::LMUL_F8; 1440 case 16: 1441 return RISCVII::VLMUL::LMUL_F4; 1442 case 32: 1443 return RISCVII::VLMUL::LMUL_F2; 1444 case 64: 1445 return RISCVII::VLMUL::LMUL_1; 1446 case 128: 1447 return RISCVII::VLMUL::LMUL_2; 1448 case 256: 1449 return RISCVII::VLMUL::LMUL_4; 1450 case 512: 1451 return RISCVII::VLMUL::LMUL_8; 1452 } 1453 } 1454 1455 unsigned RISCVTargetLowering::getRegClassIDForLMUL(RISCVII::VLMUL LMul) { 1456 switch (LMul) { 1457 default: 1458 llvm_unreachable("Invalid LMUL."); 1459 case RISCVII::VLMUL::LMUL_F8: 1460 case RISCVII::VLMUL::LMUL_F4: 1461 case RISCVII::VLMUL::LMUL_F2: 1462 case RISCVII::VLMUL::LMUL_1: 1463 return RISCV::VRRegClassID; 1464 case RISCVII::VLMUL::LMUL_2: 1465 return RISCV::VRM2RegClassID; 1466 case RISCVII::VLMUL::LMUL_4: 1467 return RISCV::VRM4RegClassID; 1468 case RISCVII::VLMUL::LMUL_8: 1469 return RISCV::VRM8RegClassID; 1470 } 1471 } 1472 1473 unsigned RISCVTargetLowering::getSubregIndexByMVT(MVT VT, unsigned Index) { 1474 RISCVII::VLMUL LMUL = getLMUL(VT); 1475 if (LMUL == RISCVII::VLMUL::LMUL_F8 || 1476 LMUL == RISCVII::VLMUL::LMUL_F4 || 1477 LMUL == RISCVII::VLMUL::LMUL_F2 || 1478 LMUL == RISCVII::VLMUL::LMUL_1) { 1479 static_assert(RISCV::sub_vrm1_7 == RISCV::sub_vrm1_0 + 7, 1480 "Unexpected subreg numbering"); 1481 return RISCV::sub_vrm1_0 + Index; 1482 } 1483 if (LMUL == RISCVII::VLMUL::LMUL_2) { 1484 static_assert(RISCV::sub_vrm2_3 == RISCV::sub_vrm2_0 + 3, 1485 "Unexpected subreg numbering"); 1486 return RISCV::sub_vrm2_0 + Index; 1487 } 1488 if (LMUL == RISCVII::VLMUL::LMUL_4) { 1489 static_assert(RISCV::sub_vrm4_1 == RISCV::sub_vrm4_0 + 1, 1490 "Unexpected subreg numbering"); 1491 return RISCV::sub_vrm4_0 + Index; 1492 } 1493 llvm_unreachable("Invalid vector type."); 1494 } 1495 1496 unsigned RISCVTargetLowering::getRegClassIDForVecVT(MVT VT) { 1497 if (VT.getVectorElementType() == MVT::i1) 1498 return RISCV::VRRegClassID; 1499 return getRegClassIDForLMUL(getLMUL(VT)); 1500 } 1501 1502 // Attempt to decompose a subvector insert/extract between VecVT and 1503 // SubVecVT via subregister indices. Returns the subregister index that 1504 // can perform the subvector insert/extract with the given element index, as 1505 // well as the index corresponding to any leftover subvectors that must be 1506 // further inserted/extracted within the register class for SubVecVT. 1507 std::pair<unsigned, unsigned> 1508 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( 1509 MVT VecVT, MVT SubVecVT, unsigned InsertExtractIdx, 1510 const RISCVRegisterInfo *TRI) { 1511 static_assert((RISCV::VRM8RegClassID > RISCV::VRM4RegClassID && 1512 RISCV::VRM4RegClassID > RISCV::VRM2RegClassID && 1513 RISCV::VRM2RegClassID > RISCV::VRRegClassID), 1514 "Register classes not ordered"); 1515 unsigned VecRegClassID = getRegClassIDForVecVT(VecVT); 1516 unsigned SubRegClassID = getRegClassIDForVecVT(SubVecVT); 1517 // Try to compose a subregister index that takes us from the incoming 1518 // LMUL>1 register class down to the outgoing one. At each step we half 1519 // the LMUL: 1520 // nxv16i32@12 -> nxv2i32: sub_vrm4_1_then_sub_vrm2_1_then_sub_vrm1_0 1521 // Note that this is not guaranteed to find a subregister index, such as 1522 // when we are extracting from one VR type to another. 1523 unsigned SubRegIdx = RISCV::NoSubRegister; 1524 for (const unsigned RCID : 1525 {RISCV::VRM4RegClassID, RISCV::VRM2RegClassID, RISCV::VRRegClassID}) 1526 if (VecRegClassID > RCID && SubRegClassID <= RCID) { 1527 VecVT = VecVT.getHalfNumVectorElementsVT(); 1528 bool IsHi = 1529 InsertExtractIdx >= VecVT.getVectorElementCount().getKnownMinValue(); 1530 SubRegIdx = TRI->composeSubRegIndices(SubRegIdx, 1531 getSubregIndexByMVT(VecVT, IsHi)); 1532 if (IsHi) 1533 InsertExtractIdx -= VecVT.getVectorElementCount().getKnownMinValue(); 1534 } 1535 return {SubRegIdx, InsertExtractIdx}; 1536 } 1537 1538 // Permit combining of mask vectors as BUILD_VECTOR never expands to scalar 1539 // stores for those types. 1540 bool RISCVTargetLowering::mergeStoresAfterLegalization(EVT VT) const { 1541 return !Subtarget.useRVVForFixedLengthVectors() || 1542 (VT.isFixedLengthVector() && VT.getVectorElementType() == MVT::i1); 1543 } 1544 1545 bool RISCVTargetLowering::isLegalElementTypeForRVV(Type *ScalarTy) const { 1546 if (ScalarTy->isPointerTy()) 1547 return true; 1548 1549 if (ScalarTy->isIntegerTy(8) || ScalarTy->isIntegerTy(16) || 1550 ScalarTy->isIntegerTy(32)) 1551 return true; 1552 1553 if (ScalarTy->isIntegerTy(64)) 1554 return Subtarget.hasVInstructionsI64(); 1555 1556 if (ScalarTy->isHalfTy()) 1557 return Subtarget.hasVInstructionsF16(); 1558 if (ScalarTy->isFloatTy()) 1559 return Subtarget.hasVInstructionsF32(); 1560 if (ScalarTy->isDoubleTy()) 1561 return Subtarget.hasVInstructionsF64(); 1562 1563 return false; 1564 } 1565 1566 static SDValue getVLOperand(SDValue Op) { 1567 assert((Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 1568 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN) && 1569 "Unexpected opcode"); 1570 bool HasChain = Op.getOpcode() == ISD::INTRINSIC_W_CHAIN; 1571 unsigned IntNo = Op.getConstantOperandVal(HasChain ? 1 : 0); 1572 const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II = 1573 RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo); 1574 if (!II) 1575 return SDValue(); 1576 return Op.getOperand(II->VLOperand + 1 + HasChain); 1577 } 1578 1579 static bool useRVVForFixedLengthVectorVT(MVT VT, 1580 const RISCVSubtarget &Subtarget) { 1581 assert(VT.isFixedLengthVector() && "Expected a fixed length vector type!"); 1582 if (!Subtarget.useRVVForFixedLengthVectors()) 1583 return false; 1584 1585 // We only support a set of vector types with a consistent maximum fixed size 1586 // across all supported vector element types to avoid legalization issues. 1587 // Therefore -- since the largest is v1024i8/v512i16/etc -- the largest 1588 // fixed-length vector type we support is 1024 bytes. 1589 if (VT.getFixedSizeInBits() > 1024 * 8) 1590 return false; 1591 1592 unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits(); 1593 1594 MVT EltVT = VT.getVectorElementType(); 1595 1596 // Don't use RVV for vectors we cannot scalarize if required. 1597 switch (EltVT.SimpleTy) { 1598 // i1 is supported but has different rules. 1599 default: 1600 return false; 1601 case MVT::i1: 1602 // Masks can only use a single register. 1603 if (VT.getVectorNumElements() > MinVLen) 1604 return false; 1605 MinVLen /= 8; 1606 break; 1607 case MVT::i8: 1608 case MVT::i16: 1609 case MVT::i32: 1610 break; 1611 case MVT::i64: 1612 if (!Subtarget.hasVInstructionsI64()) 1613 return false; 1614 break; 1615 case MVT::f16: 1616 if (!Subtarget.hasVInstructionsF16()) 1617 return false; 1618 break; 1619 case MVT::f32: 1620 if (!Subtarget.hasVInstructionsF32()) 1621 return false; 1622 break; 1623 case MVT::f64: 1624 if (!Subtarget.hasVInstructionsF64()) 1625 return false; 1626 break; 1627 } 1628 1629 // Reject elements larger than ELEN. 1630 if (EltVT.getSizeInBits() > Subtarget.getELEN()) 1631 return false; 1632 1633 unsigned LMul = divideCeil(VT.getSizeInBits(), MinVLen); 1634 // Don't use RVV for types that don't fit. 1635 if (LMul > Subtarget.getMaxLMULForFixedLengthVectors()) 1636 return false; 1637 1638 // TODO: Perhaps an artificial restriction, but worth having whilst getting 1639 // the base fixed length RVV support in place. 1640 if (!VT.isPow2VectorType()) 1641 return false; 1642 1643 return true; 1644 } 1645 1646 bool RISCVTargetLowering::useRVVForFixedLengthVectorVT(MVT VT) const { 1647 return ::useRVVForFixedLengthVectorVT(VT, Subtarget); 1648 } 1649 1650 // Return the largest legal scalable vector type that matches VT's element type. 1651 static MVT getContainerForFixedLengthVector(const TargetLowering &TLI, MVT VT, 1652 const RISCVSubtarget &Subtarget) { 1653 // This may be called before legal types are setup. 1654 assert(((VT.isFixedLengthVector() && TLI.isTypeLegal(VT)) || 1655 useRVVForFixedLengthVectorVT(VT, Subtarget)) && 1656 "Expected legal fixed length vector!"); 1657 1658 unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits(); 1659 unsigned MaxELen = Subtarget.getELEN(); 1660 1661 MVT EltVT = VT.getVectorElementType(); 1662 switch (EltVT.SimpleTy) { 1663 default: 1664 llvm_unreachable("unexpected element type for RVV container"); 1665 case MVT::i1: 1666 case MVT::i8: 1667 case MVT::i16: 1668 case MVT::i32: 1669 case MVT::i64: 1670 case MVT::f16: 1671 case MVT::f32: 1672 case MVT::f64: { 1673 // We prefer to use LMUL=1 for VLEN sized types. Use fractional lmuls for 1674 // narrower types. The smallest fractional LMUL we support is 8/ELEN. Within 1675 // each fractional LMUL we support SEW between 8 and LMUL*ELEN. 1676 unsigned NumElts = 1677 (VT.getVectorNumElements() * RISCV::RVVBitsPerBlock) / MinVLen; 1678 NumElts = std::max(NumElts, RISCV::RVVBitsPerBlock / MaxELen); 1679 assert(isPowerOf2_32(NumElts) && "Expected power of 2 NumElts"); 1680 return MVT::getScalableVectorVT(EltVT, NumElts); 1681 } 1682 } 1683 } 1684 1685 static MVT getContainerForFixedLengthVector(SelectionDAG &DAG, MVT VT, 1686 const RISCVSubtarget &Subtarget) { 1687 return getContainerForFixedLengthVector(DAG.getTargetLoweringInfo(), VT, 1688 Subtarget); 1689 } 1690 1691 MVT RISCVTargetLowering::getContainerForFixedLengthVector(MVT VT) const { 1692 return ::getContainerForFixedLengthVector(*this, VT, getSubtarget()); 1693 } 1694 1695 // Grow V to consume an entire RVV register. 1696 static SDValue convertToScalableVector(EVT VT, SDValue V, SelectionDAG &DAG, 1697 const RISCVSubtarget &Subtarget) { 1698 assert(VT.isScalableVector() && 1699 "Expected to convert into a scalable vector!"); 1700 assert(V.getValueType().isFixedLengthVector() && 1701 "Expected a fixed length vector operand!"); 1702 SDLoc DL(V); 1703 SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 1704 return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, DAG.getUNDEF(VT), V, Zero); 1705 } 1706 1707 // Shrink V so it's just big enough to maintain a VT's worth of data. 1708 static SDValue convertFromScalableVector(EVT VT, SDValue V, SelectionDAG &DAG, 1709 const RISCVSubtarget &Subtarget) { 1710 assert(VT.isFixedLengthVector() && 1711 "Expected to convert into a fixed length vector!"); 1712 assert(V.getValueType().isScalableVector() && 1713 "Expected a scalable vector operand!"); 1714 SDLoc DL(V); 1715 SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 1716 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V, Zero); 1717 } 1718 1719 // Gets the two common "VL" operands: an all-ones mask and the vector length. 1720 // VecVT is a vector type, either fixed-length or scalable, and ContainerVT is 1721 // the vector type that it is contained in. 1722 static std::pair<SDValue, SDValue> 1723 getDefaultVLOps(MVT VecVT, MVT ContainerVT, SDLoc DL, SelectionDAG &DAG, 1724 const RISCVSubtarget &Subtarget) { 1725 assert(ContainerVT.isScalableVector() && "Expecting scalable container type"); 1726 MVT XLenVT = Subtarget.getXLenVT(); 1727 SDValue VL = VecVT.isFixedLengthVector() 1728 ? DAG.getConstant(VecVT.getVectorNumElements(), DL, XLenVT) 1729 : DAG.getRegister(RISCV::X0, XLenVT); 1730 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 1731 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 1732 return {Mask, VL}; 1733 } 1734 1735 // As above but assuming the given type is a scalable vector type. 1736 static std::pair<SDValue, SDValue> 1737 getDefaultScalableVLOps(MVT VecVT, SDLoc DL, SelectionDAG &DAG, 1738 const RISCVSubtarget &Subtarget) { 1739 assert(VecVT.isScalableVector() && "Expecting a scalable vector"); 1740 return getDefaultVLOps(VecVT, VecVT, DL, DAG, Subtarget); 1741 } 1742 1743 // The state of RVV BUILD_VECTOR and VECTOR_SHUFFLE lowering is that very few 1744 // of either is (currently) supported. This can get us into an infinite loop 1745 // where we try to lower a BUILD_VECTOR as a VECTOR_SHUFFLE as a BUILD_VECTOR 1746 // as a ..., etc. 1747 // Until either (or both) of these can reliably lower any node, reporting that 1748 // we don't want to expand BUILD_VECTORs via VECTOR_SHUFFLEs at least breaks 1749 // the infinite loop. Note that this lowers BUILD_VECTOR through the stack, 1750 // which is not desirable. 1751 bool RISCVTargetLowering::shouldExpandBuildVectorWithShuffles( 1752 EVT VT, unsigned DefinedValues) const { 1753 return false; 1754 } 1755 1756 static SDValue lowerFP_TO_INT_SAT(SDValue Op, SelectionDAG &DAG, 1757 const RISCVSubtarget &Subtarget) { 1758 // RISCV FP-to-int conversions saturate to the destination register size, but 1759 // don't produce 0 for nan. We can use a conversion instruction and fix the 1760 // nan case with a compare and a select. 1761 SDValue Src = Op.getOperand(0); 1762 1763 EVT DstVT = Op.getValueType(); 1764 EVT SatVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1765 1766 bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT_SAT; 1767 unsigned Opc; 1768 if (SatVT == DstVT) 1769 Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU; 1770 else if (DstVT == MVT::i64 && SatVT == MVT::i32) 1771 Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64; 1772 else 1773 return SDValue(); 1774 // FIXME: Support other SatVTs by clamping before or after the conversion. 1775 1776 SDLoc DL(Op); 1777 SDValue FpToInt = DAG.getNode( 1778 Opc, DL, DstVT, Src, 1779 DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, Subtarget.getXLenVT())); 1780 1781 SDValue ZeroInt = DAG.getConstant(0, DL, DstVT); 1782 return DAG.getSelectCC(DL, Src, Src, ZeroInt, FpToInt, ISD::CondCode::SETUO); 1783 } 1784 1785 // Expand vector FTRUNC, FCEIL, and FFLOOR by converting to the integer domain 1786 // and back. Taking care to avoid converting values that are nan or already 1787 // correct. 1788 // TODO: Floor and ceil could be shorter by changing rounding mode, but we don't 1789 // have FRM dependencies modeled yet. 1790 static SDValue lowerFTRUNC_FCEIL_FFLOOR(SDValue Op, SelectionDAG &DAG) { 1791 MVT VT = Op.getSimpleValueType(); 1792 assert(VT.isVector() && "Unexpected type"); 1793 1794 SDLoc DL(Op); 1795 1796 // Freeze the source since we are increasing the number of uses. 1797 SDValue Src = DAG.getFreeze(Op.getOperand(0)); 1798 1799 // Truncate to integer and convert back to FP. 1800 MVT IntVT = VT.changeVectorElementTypeToInteger(); 1801 SDValue Truncated = DAG.getNode(ISD::FP_TO_SINT, DL, IntVT, Src); 1802 Truncated = DAG.getNode(ISD::SINT_TO_FP, DL, VT, Truncated); 1803 1804 MVT SetccVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount()); 1805 1806 if (Op.getOpcode() == ISD::FCEIL) { 1807 // If the truncated value is the greater than or equal to the original 1808 // value, we've computed the ceil. Otherwise, we went the wrong way and 1809 // need to increase by 1. 1810 // FIXME: This should use a masked operation. Handle here or in isel? 1811 SDValue Adjust = DAG.getNode(ISD::FADD, DL, VT, Truncated, 1812 DAG.getConstantFP(1.0, DL, VT)); 1813 SDValue NeedAdjust = DAG.getSetCC(DL, SetccVT, Truncated, Src, ISD::SETOLT); 1814 Truncated = DAG.getSelect(DL, VT, NeedAdjust, Adjust, Truncated); 1815 } else if (Op.getOpcode() == ISD::FFLOOR) { 1816 // If the truncated value is the less than or equal to the original value, 1817 // we've computed the floor. Otherwise, we went the wrong way and need to 1818 // decrease by 1. 1819 // FIXME: This should use a masked operation. Handle here or in isel? 1820 SDValue Adjust = DAG.getNode(ISD::FSUB, DL, VT, Truncated, 1821 DAG.getConstantFP(1.0, DL, VT)); 1822 SDValue NeedAdjust = DAG.getSetCC(DL, SetccVT, Truncated, Src, ISD::SETOGT); 1823 Truncated = DAG.getSelect(DL, VT, NeedAdjust, Adjust, Truncated); 1824 } 1825 1826 // Restore the original sign so that -0.0 is preserved. 1827 Truncated = DAG.getNode(ISD::FCOPYSIGN, DL, VT, Truncated, Src); 1828 1829 // Determine the largest integer that can be represented exactly. This and 1830 // values larger than it don't have any fractional bits so don't need to 1831 // be converted. 1832 const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT); 1833 unsigned Precision = APFloat::semanticsPrecision(FltSem); 1834 APFloat MaxVal = APFloat(FltSem); 1835 MaxVal.convertFromAPInt(APInt::getOneBitSet(Precision, Precision - 1), 1836 /*IsSigned*/ false, APFloat::rmNearestTiesToEven); 1837 SDValue MaxValNode = DAG.getConstantFP(MaxVal, DL, VT); 1838 1839 // If abs(Src) was larger than MaxVal or nan, keep it. 1840 SDValue Abs = DAG.getNode(ISD::FABS, DL, VT, Src); 1841 SDValue Setcc = DAG.getSetCC(DL, SetccVT, Abs, MaxValNode, ISD::SETOLT); 1842 return DAG.getSelect(DL, VT, Setcc, Truncated, Src); 1843 } 1844 1845 // ISD::FROUND is defined to round to nearest with ties rounding away from 0. 1846 // This mode isn't supported in vector hardware on RISCV. But as long as we 1847 // aren't compiling with trapping math, we can emulate this with 1848 // floor(X + copysign(nextafter(0.5, 0.0), X)). 1849 // FIXME: Could be shorter by changing rounding mode, but we don't have FRM 1850 // dependencies modeled yet. 1851 // FIXME: Use masked operations to avoid final merge. 1852 static SDValue lowerFROUND(SDValue Op, SelectionDAG &DAG) { 1853 MVT VT = Op.getSimpleValueType(); 1854 assert(VT.isVector() && "Unexpected type"); 1855 1856 SDLoc DL(Op); 1857 1858 // Freeze the source since we are increasing the number of uses. 1859 SDValue Src = DAG.getFreeze(Op.getOperand(0)); 1860 1861 // We do the conversion on the absolute value and fix the sign at the end. 1862 SDValue Abs = DAG.getNode(ISD::FABS, DL, VT, Src); 1863 1864 const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT); 1865 bool Ignored; 1866 APFloat Point5Pred = APFloat(0.5f); 1867 Point5Pred.convert(FltSem, APFloat::rmNearestTiesToEven, &Ignored); 1868 Point5Pred.next(/*nextDown*/ true); 1869 1870 // Add the adjustment. 1871 SDValue Adjust = DAG.getNode(ISD::FADD, DL, VT, Abs, 1872 DAG.getConstantFP(Point5Pred, DL, VT)); 1873 1874 // Truncate to integer and convert back to fp. 1875 MVT IntVT = VT.changeVectorElementTypeToInteger(); 1876 SDValue Truncated = DAG.getNode(ISD::FP_TO_SINT, DL, IntVT, Adjust); 1877 Truncated = DAG.getNode(ISD::SINT_TO_FP, DL, VT, Truncated); 1878 1879 // Restore the original sign. 1880 Truncated = DAG.getNode(ISD::FCOPYSIGN, DL, VT, Truncated, Src); 1881 1882 // Determine the largest integer that can be represented exactly. This and 1883 // values larger than it don't have any fractional bits so don't need to 1884 // be converted. 1885 unsigned Precision = APFloat::semanticsPrecision(FltSem); 1886 APFloat MaxVal = APFloat(FltSem); 1887 MaxVal.convertFromAPInt(APInt::getOneBitSet(Precision, Precision - 1), 1888 /*IsSigned*/ false, APFloat::rmNearestTiesToEven); 1889 SDValue MaxValNode = DAG.getConstantFP(MaxVal, DL, VT); 1890 1891 // If abs(Src) was larger than MaxVal or nan, keep it. 1892 MVT SetccVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount()); 1893 SDValue Setcc = DAG.getSetCC(DL, SetccVT, Abs, MaxValNode, ISD::SETOLT); 1894 return DAG.getSelect(DL, VT, Setcc, Truncated, Src); 1895 } 1896 1897 struct VIDSequence { 1898 int64_t StepNumerator; 1899 unsigned StepDenominator; 1900 int64_t Addend; 1901 }; 1902 1903 // Try to match an arithmetic-sequence BUILD_VECTOR [X,X+S,X+2*S,...,X+(N-1)*S] 1904 // to the (non-zero) step S and start value X. This can be then lowered as the 1905 // RVV sequence (VID * S) + X, for example. 1906 // The step S is represented as an integer numerator divided by a positive 1907 // denominator. Note that the implementation currently only identifies 1908 // sequences in which either the numerator is +/- 1 or the denominator is 1. It 1909 // cannot detect 2/3, for example. 1910 // Note that this method will also match potentially unappealing index 1911 // sequences, like <i32 0, i32 50939494>, however it is left to the caller to 1912 // determine whether this is worth generating code for. 1913 static Optional<VIDSequence> isSimpleVIDSequence(SDValue Op) { 1914 unsigned NumElts = Op.getNumOperands(); 1915 assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unexpected BUILD_VECTOR"); 1916 if (!Op.getValueType().isInteger()) 1917 return None; 1918 1919 Optional<unsigned> SeqStepDenom; 1920 Optional<int64_t> SeqStepNum, SeqAddend; 1921 Optional<std::pair<uint64_t, unsigned>> PrevElt; 1922 unsigned EltSizeInBits = Op.getValueType().getScalarSizeInBits(); 1923 for (unsigned Idx = 0; Idx < NumElts; Idx++) { 1924 // Assume undef elements match the sequence; we just have to be careful 1925 // when interpolating across them. 1926 if (Op.getOperand(Idx).isUndef()) 1927 continue; 1928 // The BUILD_VECTOR must be all constants. 1929 if (!isa<ConstantSDNode>(Op.getOperand(Idx))) 1930 return None; 1931 1932 uint64_t Val = Op.getConstantOperandVal(Idx) & 1933 maskTrailingOnes<uint64_t>(EltSizeInBits); 1934 1935 if (PrevElt) { 1936 // Calculate the step since the last non-undef element, and ensure 1937 // it's consistent across the entire sequence. 1938 unsigned IdxDiff = Idx - PrevElt->second; 1939 int64_t ValDiff = SignExtend64(Val - PrevElt->first, EltSizeInBits); 1940 1941 // A zero-value value difference means that we're somewhere in the middle 1942 // of a fractional step, e.g. <0,0,0*,0,1,1,1,1>. Wait until we notice a 1943 // step change before evaluating the sequence. 1944 if (ValDiff == 0) 1945 continue; 1946 1947 int64_t Remainder = ValDiff % IdxDiff; 1948 // Normalize the step if it's greater than 1. 1949 if (Remainder != ValDiff) { 1950 // The difference must cleanly divide the element span. 1951 if (Remainder != 0) 1952 return None; 1953 ValDiff /= IdxDiff; 1954 IdxDiff = 1; 1955 } 1956 1957 if (!SeqStepNum) 1958 SeqStepNum = ValDiff; 1959 else if (ValDiff != SeqStepNum) 1960 return None; 1961 1962 if (!SeqStepDenom) 1963 SeqStepDenom = IdxDiff; 1964 else if (IdxDiff != *SeqStepDenom) 1965 return None; 1966 } 1967 1968 // Record this non-undef element for later. 1969 if (!PrevElt || PrevElt->first != Val) 1970 PrevElt = std::make_pair(Val, Idx); 1971 } 1972 1973 // We need to have logged a step for this to count as a legal index sequence. 1974 if (!SeqStepNum || !SeqStepDenom) 1975 return None; 1976 1977 // Loop back through the sequence and validate elements we might have skipped 1978 // while waiting for a valid step. While doing this, log any sequence addend. 1979 for (unsigned Idx = 0; Idx < NumElts; Idx++) { 1980 if (Op.getOperand(Idx).isUndef()) 1981 continue; 1982 uint64_t Val = Op.getConstantOperandVal(Idx) & 1983 maskTrailingOnes<uint64_t>(EltSizeInBits); 1984 uint64_t ExpectedVal = 1985 (int64_t)(Idx * (uint64_t)*SeqStepNum) / *SeqStepDenom; 1986 int64_t Addend = SignExtend64(Val - ExpectedVal, EltSizeInBits); 1987 if (!SeqAddend) 1988 SeqAddend = Addend; 1989 else if (Addend != SeqAddend) 1990 return None; 1991 } 1992 1993 assert(SeqAddend && "Must have an addend if we have a step"); 1994 1995 return VIDSequence{*SeqStepNum, *SeqStepDenom, *SeqAddend}; 1996 } 1997 1998 // Match a splatted value (SPLAT_VECTOR/BUILD_VECTOR) of an EXTRACT_VECTOR_ELT 1999 // and lower it as a VRGATHER_VX_VL from the source vector. 2000 static SDValue matchSplatAsGather(SDValue SplatVal, MVT VT, const SDLoc &DL, 2001 SelectionDAG &DAG, 2002 const RISCVSubtarget &Subtarget) { 2003 if (SplatVal.getOpcode() != ISD::EXTRACT_VECTOR_ELT) 2004 return SDValue(); 2005 SDValue Vec = SplatVal.getOperand(0); 2006 // Only perform this optimization on vectors of the same size for simplicity. 2007 if (Vec.getValueType() != VT) 2008 return SDValue(); 2009 SDValue Idx = SplatVal.getOperand(1); 2010 // The index must be a legal type. 2011 if (Idx.getValueType() != Subtarget.getXLenVT()) 2012 return SDValue(); 2013 2014 MVT ContainerVT = VT; 2015 if (VT.isFixedLengthVector()) { 2016 ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 2017 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 2018 } 2019 2020 SDValue Mask, VL; 2021 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 2022 2023 SDValue Gather = DAG.getNode(RISCVISD::VRGATHER_VX_VL, DL, ContainerVT, Vec, 2024 Idx, Mask, VL); 2025 2026 if (!VT.isFixedLengthVector()) 2027 return Gather; 2028 2029 return convertFromScalableVector(VT, Gather, DAG, Subtarget); 2030 } 2031 2032 static SDValue lowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG, 2033 const RISCVSubtarget &Subtarget) { 2034 MVT VT = Op.getSimpleValueType(); 2035 assert(VT.isFixedLengthVector() && "Unexpected vector!"); 2036 2037 MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 2038 2039 SDLoc DL(Op); 2040 SDValue Mask, VL; 2041 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 2042 2043 MVT XLenVT = Subtarget.getXLenVT(); 2044 unsigned NumElts = Op.getNumOperands(); 2045 2046 if (VT.getVectorElementType() == MVT::i1) { 2047 if (ISD::isBuildVectorAllZeros(Op.getNode())) { 2048 SDValue VMClr = DAG.getNode(RISCVISD::VMCLR_VL, DL, ContainerVT, VL); 2049 return convertFromScalableVector(VT, VMClr, DAG, Subtarget); 2050 } 2051 2052 if (ISD::isBuildVectorAllOnes(Op.getNode())) { 2053 SDValue VMSet = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL); 2054 return convertFromScalableVector(VT, VMSet, DAG, Subtarget); 2055 } 2056 2057 // Lower constant mask BUILD_VECTORs via an integer vector type, in 2058 // scalar integer chunks whose bit-width depends on the number of mask 2059 // bits and XLEN. 2060 // First, determine the most appropriate scalar integer type to use. This 2061 // is at most XLenVT, but may be shrunk to a smaller vector element type 2062 // according to the size of the final vector - use i8 chunks rather than 2063 // XLenVT if we're producing a v8i1. This results in more consistent 2064 // codegen across RV32 and RV64. 2065 unsigned NumViaIntegerBits = 2066 std::min(std::max(NumElts, 8u), Subtarget.getXLen()); 2067 NumViaIntegerBits = std::min(NumViaIntegerBits, Subtarget.getELEN()); 2068 if (ISD::isBuildVectorOfConstantSDNodes(Op.getNode())) { 2069 // If we have to use more than one INSERT_VECTOR_ELT then this 2070 // optimization is likely to increase code size; avoid peforming it in 2071 // such a case. We can use a load from a constant pool in this case. 2072 if (DAG.shouldOptForSize() && NumElts > NumViaIntegerBits) 2073 return SDValue(); 2074 // Now we can create our integer vector type. Note that it may be larger 2075 // than the resulting mask type: v4i1 would use v1i8 as its integer type. 2076 MVT IntegerViaVecVT = 2077 MVT::getVectorVT(MVT::getIntegerVT(NumViaIntegerBits), 2078 divideCeil(NumElts, NumViaIntegerBits)); 2079 2080 uint64_t Bits = 0; 2081 unsigned BitPos = 0, IntegerEltIdx = 0; 2082 SDValue Vec = DAG.getUNDEF(IntegerViaVecVT); 2083 2084 for (unsigned I = 0; I < NumElts; I++, BitPos++) { 2085 // Once we accumulate enough bits to fill our scalar type, insert into 2086 // our vector and clear our accumulated data. 2087 if (I != 0 && I % NumViaIntegerBits == 0) { 2088 if (NumViaIntegerBits <= 32) 2089 Bits = SignExtend64(Bits, 32); 2090 SDValue Elt = DAG.getConstant(Bits, DL, XLenVT); 2091 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec, 2092 Elt, DAG.getConstant(IntegerEltIdx, DL, XLenVT)); 2093 Bits = 0; 2094 BitPos = 0; 2095 IntegerEltIdx++; 2096 } 2097 SDValue V = Op.getOperand(I); 2098 bool BitValue = !V.isUndef() && cast<ConstantSDNode>(V)->getZExtValue(); 2099 Bits |= ((uint64_t)BitValue << BitPos); 2100 } 2101 2102 // Insert the (remaining) scalar value into position in our integer 2103 // vector type. 2104 if (NumViaIntegerBits <= 32) 2105 Bits = SignExtend64(Bits, 32); 2106 SDValue Elt = DAG.getConstant(Bits, DL, XLenVT); 2107 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec, Elt, 2108 DAG.getConstant(IntegerEltIdx, DL, XLenVT)); 2109 2110 if (NumElts < NumViaIntegerBits) { 2111 // If we're producing a smaller vector than our minimum legal integer 2112 // type, bitcast to the equivalent (known-legal) mask type, and extract 2113 // our final mask. 2114 assert(IntegerViaVecVT == MVT::v1i8 && "Unexpected mask vector type"); 2115 Vec = DAG.getBitcast(MVT::v8i1, Vec); 2116 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Vec, 2117 DAG.getConstant(0, DL, XLenVT)); 2118 } else { 2119 // Else we must have produced an integer type with the same size as the 2120 // mask type; bitcast for the final result. 2121 assert(VT.getSizeInBits() == IntegerViaVecVT.getSizeInBits()); 2122 Vec = DAG.getBitcast(VT, Vec); 2123 } 2124 2125 return Vec; 2126 } 2127 2128 // A BUILD_VECTOR can be lowered as a SETCC. For each fixed-length mask 2129 // vector type, we have a legal equivalently-sized i8 type, so we can use 2130 // that. 2131 MVT WideVecVT = VT.changeVectorElementType(MVT::i8); 2132 SDValue VecZero = DAG.getConstant(0, DL, WideVecVT); 2133 2134 SDValue WideVec; 2135 if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) { 2136 // For a splat, perform a scalar truncate before creating the wider 2137 // vector. 2138 assert(Splat.getValueType() == XLenVT && 2139 "Unexpected type for i1 splat value"); 2140 Splat = DAG.getNode(ISD::AND, DL, XLenVT, Splat, 2141 DAG.getConstant(1, DL, XLenVT)); 2142 WideVec = DAG.getSplatBuildVector(WideVecVT, DL, Splat); 2143 } else { 2144 SmallVector<SDValue, 8> Ops(Op->op_values()); 2145 WideVec = DAG.getBuildVector(WideVecVT, DL, Ops); 2146 SDValue VecOne = DAG.getConstant(1, DL, WideVecVT); 2147 WideVec = DAG.getNode(ISD::AND, DL, WideVecVT, WideVec, VecOne); 2148 } 2149 2150 return DAG.getSetCC(DL, VT, WideVec, VecZero, ISD::SETNE); 2151 } 2152 2153 if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) { 2154 if (auto Gather = matchSplatAsGather(Splat, VT, DL, DAG, Subtarget)) 2155 return Gather; 2156 unsigned Opc = VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL 2157 : RISCVISD::VMV_V_X_VL; 2158 Splat = 2159 DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), Splat, VL); 2160 return convertFromScalableVector(VT, Splat, DAG, Subtarget); 2161 } 2162 2163 // Try and match index sequences, which we can lower to the vid instruction 2164 // with optional modifications. An all-undef vector is matched by 2165 // getSplatValue, above. 2166 if (auto SimpleVID = isSimpleVIDSequence(Op)) { 2167 int64_t StepNumerator = SimpleVID->StepNumerator; 2168 unsigned StepDenominator = SimpleVID->StepDenominator; 2169 int64_t Addend = SimpleVID->Addend; 2170 2171 assert(StepNumerator != 0 && "Invalid step"); 2172 bool Negate = false; 2173 int64_t SplatStepVal = StepNumerator; 2174 unsigned StepOpcode = ISD::MUL; 2175 if (StepNumerator != 1) { 2176 if (isPowerOf2_64(std::abs(StepNumerator))) { 2177 Negate = StepNumerator < 0; 2178 StepOpcode = ISD::SHL; 2179 SplatStepVal = Log2_64(std::abs(StepNumerator)); 2180 } 2181 } 2182 2183 // Only emit VIDs with suitably-small steps/addends. We use imm5 is a 2184 // threshold since it's the immediate value many RVV instructions accept. 2185 // There is no vmul.vi instruction so ensure multiply constant can fit in 2186 // a single addi instruction. 2187 if (((StepOpcode == ISD::MUL && isInt<12>(SplatStepVal)) || 2188 (StepOpcode == ISD::SHL && isUInt<5>(SplatStepVal))) && 2189 isPowerOf2_32(StepDenominator) && 2190 (SplatStepVal >= 0 || StepDenominator == 1) && isInt<5>(Addend)) { 2191 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, ContainerVT, Mask, VL); 2192 // Convert right out of the scalable type so we can use standard ISD 2193 // nodes for the rest of the computation. If we used scalable types with 2194 // these, we'd lose the fixed-length vector info and generate worse 2195 // vsetvli code. 2196 VID = convertFromScalableVector(VT, VID, DAG, Subtarget); 2197 if ((StepOpcode == ISD::MUL && SplatStepVal != 1) || 2198 (StepOpcode == ISD::SHL && SplatStepVal != 0)) { 2199 SDValue SplatStep = DAG.getSplatBuildVector( 2200 VT, DL, DAG.getConstant(SplatStepVal, DL, XLenVT)); 2201 VID = DAG.getNode(StepOpcode, DL, VT, VID, SplatStep); 2202 } 2203 if (StepDenominator != 1) { 2204 SDValue SplatStep = DAG.getSplatBuildVector( 2205 VT, DL, DAG.getConstant(Log2_64(StepDenominator), DL, XLenVT)); 2206 VID = DAG.getNode(ISD::SRL, DL, VT, VID, SplatStep); 2207 } 2208 if (Addend != 0 || Negate) { 2209 SDValue SplatAddend = DAG.getSplatBuildVector( 2210 VT, DL, DAG.getConstant(Addend, DL, XLenVT)); 2211 VID = DAG.getNode(Negate ? ISD::SUB : ISD::ADD, DL, VT, SplatAddend, VID); 2212 } 2213 return VID; 2214 } 2215 } 2216 2217 // Attempt to detect "hidden" splats, which only reveal themselves as splats 2218 // when re-interpreted as a vector with a larger element type. For example, 2219 // v4i16 = build_vector i16 0, i16 1, i16 0, i16 1 2220 // could be instead splat as 2221 // v2i32 = build_vector i32 0x00010000, i32 0x00010000 2222 // TODO: This optimization could also work on non-constant splats, but it 2223 // would require bit-manipulation instructions to construct the splat value. 2224 SmallVector<SDValue> Sequence; 2225 unsigned EltBitSize = VT.getScalarSizeInBits(); 2226 const auto *BV = cast<BuildVectorSDNode>(Op); 2227 if (VT.isInteger() && EltBitSize < 64 && 2228 ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) && 2229 BV->getRepeatedSequence(Sequence) && 2230 (Sequence.size() * EltBitSize) <= 64) { 2231 unsigned SeqLen = Sequence.size(); 2232 MVT ViaIntVT = MVT::getIntegerVT(EltBitSize * SeqLen); 2233 MVT ViaVecVT = MVT::getVectorVT(ViaIntVT, NumElts / SeqLen); 2234 assert((ViaIntVT == MVT::i16 || ViaIntVT == MVT::i32 || 2235 ViaIntVT == MVT::i64) && 2236 "Unexpected sequence type"); 2237 2238 unsigned EltIdx = 0; 2239 uint64_t EltMask = maskTrailingOnes<uint64_t>(EltBitSize); 2240 uint64_t SplatValue = 0; 2241 // Construct the amalgamated value which can be splatted as this larger 2242 // vector type. 2243 for (const auto &SeqV : Sequence) { 2244 if (!SeqV.isUndef()) 2245 SplatValue |= ((cast<ConstantSDNode>(SeqV)->getZExtValue() & EltMask) 2246 << (EltIdx * EltBitSize)); 2247 EltIdx++; 2248 } 2249 2250 // On RV64, sign-extend from 32 to 64 bits where possible in order to 2251 // achieve better constant materializion. 2252 if (Subtarget.is64Bit() && ViaIntVT == MVT::i32) 2253 SplatValue = SignExtend64(SplatValue, 32); 2254 2255 // Since we can't introduce illegal i64 types at this stage, we can only 2256 // perform an i64 splat on RV32 if it is its own sign-extended value. That 2257 // way we can use RVV instructions to splat. 2258 assert((ViaIntVT.bitsLE(XLenVT) || 2259 (!Subtarget.is64Bit() && ViaIntVT == MVT::i64)) && 2260 "Unexpected bitcast sequence"); 2261 if (ViaIntVT.bitsLE(XLenVT) || isInt<32>(SplatValue)) { 2262 SDValue ViaVL = 2263 DAG.getConstant(ViaVecVT.getVectorNumElements(), DL, XLenVT); 2264 MVT ViaContainerVT = 2265 getContainerForFixedLengthVector(DAG, ViaVecVT, Subtarget); 2266 SDValue Splat = 2267 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ViaContainerVT, 2268 DAG.getUNDEF(ViaContainerVT), 2269 DAG.getConstant(SplatValue, DL, XLenVT), ViaVL); 2270 Splat = convertFromScalableVector(ViaVecVT, Splat, DAG, Subtarget); 2271 return DAG.getBitcast(VT, Splat); 2272 } 2273 } 2274 2275 // Try and optimize BUILD_VECTORs with "dominant values" - these are values 2276 // which constitute a large proportion of the elements. In such cases we can 2277 // splat a vector with the dominant element and make up the shortfall with 2278 // INSERT_VECTOR_ELTs. 2279 // Note that this includes vectors of 2 elements by association. The 2280 // upper-most element is the "dominant" one, allowing us to use a splat to 2281 // "insert" the upper element, and an insert of the lower element at position 2282 // 0, which improves codegen. 2283 SDValue DominantValue; 2284 unsigned MostCommonCount = 0; 2285 DenseMap<SDValue, unsigned> ValueCounts; 2286 unsigned NumUndefElts = 2287 count_if(Op->op_values(), [](const SDValue &V) { return V.isUndef(); }); 2288 2289 // Track the number of scalar loads we know we'd be inserting, estimated as 2290 // any non-zero floating-point constant. Other kinds of element are either 2291 // already in registers or are materialized on demand. The threshold at which 2292 // a vector load is more desirable than several scalar materializion and 2293 // vector-insertion instructions is not known. 2294 unsigned NumScalarLoads = 0; 2295 2296 for (SDValue V : Op->op_values()) { 2297 if (V.isUndef()) 2298 continue; 2299 2300 ValueCounts.insert(std::make_pair(V, 0)); 2301 unsigned &Count = ValueCounts[V]; 2302 2303 if (auto *CFP = dyn_cast<ConstantFPSDNode>(V)) 2304 NumScalarLoads += !CFP->isExactlyValue(+0.0); 2305 2306 // Is this value dominant? In case of a tie, prefer the highest element as 2307 // it's cheaper to insert near the beginning of a vector than it is at the 2308 // end. 2309 if (++Count >= MostCommonCount) { 2310 DominantValue = V; 2311 MostCommonCount = Count; 2312 } 2313 } 2314 2315 assert(DominantValue && "Not expecting an all-undef BUILD_VECTOR"); 2316 unsigned NumDefElts = NumElts - NumUndefElts; 2317 unsigned DominantValueCountThreshold = NumDefElts <= 2 ? 0 : NumDefElts - 2; 2318 2319 // Don't perform this optimization when optimizing for size, since 2320 // materializing elements and inserting them tends to cause code bloat. 2321 if (!DAG.shouldOptForSize() && NumScalarLoads < NumElts && 2322 ((MostCommonCount > DominantValueCountThreshold) || 2323 (ValueCounts.size() <= Log2_32(NumDefElts)))) { 2324 // Start by splatting the most common element. 2325 SDValue Vec = DAG.getSplatBuildVector(VT, DL, DominantValue); 2326 2327 DenseSet<SDValue> Processed{DominantValue}; 2328 MVT SelMaskTy = VT.changeVectorElementType(MVT::i1); 2329 for (const auto &OpIdx : enumerate(Op->ops())) { 2330 const SDValue &V = OpIdx.value(); 2331 if (V.isUndef() || !Processed.insert(V).second) 2332 continue; 2333 if (ValueCounts[V] == 1) { 2334 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Vec, V, 2335 DAG.getConstant(OpIdx.index(), DL, XLenVT)); 2336 } else { 2337 // Blend in all instances of this value using a VSELECT, using a 2338 // mask where each bit signals whether that element is the one 2339 // we're after. 2340 SmallVector<SDValue> Ops; 2341 transform(Op->op_values(), std::back_inserter(Ops), [&](SDValue V1) { 2342 return DAG.getConstant(V == V1, DL, XLenVT); 2343 }); 2344 Vec = DAG.getNode(ISD::VSELECT, DL, VT, 2345 DAG.getBuildVector(SelMaskTy, DL, Ops), 2346 DAG.getSplatBuildVector(VT, DL, V), Vec); 2347 } 2348 } 2349 2350 return Vec; 2351 } 2352 2353 return SDValue(); 2354 } 2355 2356 static SDValue splatPartsI64WithVL(const SDLoc &DL, MVT VT, SDValue Passthru, 2357 SDValue Lo, SDValue Hi, SDValue VL, 2358 SelectionDAG &DAG) { 2359 if (!Passthru) 2360 Passthru = DAG.getUNDEF(VT); 2361 if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) { 2362 int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue(); 2363 int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue(); 2364 // If Hi constant is all the same sign bit as Lo, lower this as a custom 2365 // node in order to try and match RVV vector/scalar instructions. 2366 if ((LoC >> 31) == HiC) 2367 return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Passthru, Lo, VL); 2368 2369 // If vl is equal to XLEN_MAX and Hi constant is equal to Lo, we could use 2370 // vmv.v.x whose EEW = 32 to lower it. 2371 auto *Const = dyn_cast<ConstantSDNode>(VL); 2372 if (LoC == HiC && Const && Const->isAllOnesValue()) { 2373 MVT InterVT = MVT::getVectorVT(MVT::i32, VT.getVectorElementCount() * 2); 2374 // TODO: if vl <= min(VLMAX), we can also do this. But we could not 2375 // access the subtarget here now. 2376 auto InterVec = DAG.getNode( 2377 RISCVISD::VMV_V_X_VL, DL, InterVT, DAG.getUNDEF(InterVT), Lo, 2378 DAG.getRegister(RISCV::X0, MVT::i32)); 2379 return DAG.getNode(ISD::BITCAST, DL, VT, InterVec); 2380 } 2381 } 2382 2383 // Fall back to a stack store and stride x0 vector load. 2384 return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VT, Passthru, Lo, 2385 Hi, VL); 2386 } 2387 2388 // Called by type legalization to handle splat of i64 on RV32. 2389 // FIXME: We can optimize this when the type has sign or zero bits in one 2390 // of the halves. 2391 static SDValue splatSplitI64WithVL(const SDLoc &DL, MVT VT, SDValue Passthru, 2392 SDValue Scalar, SDValue VL, 2393 SelectionDAG &DAG) { 2394 assert(Scalar.getValueType() == MVT::i64 && "Unexpected VT!"); 2395 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 2396 DAG.getConstant(0, DL, MVT::i32)); 2397 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 2398 DAG.getConstant(1, DL, MVT::i32)); 2399 return splatPartsI64WithVL(DL, VT, Passthru, Lo, Hi, VL, DAG); 2400 } 2401 2402 // This function lowers a splat of a scalar operand Splat with the vector 2403 // length VL. It ensures the final sequence is type legal, which is useful when 2404 // lowering a splat after type legalization. 2405 static SDValue lowerScalarSplat(SDValue Passthru, SDValue Scalar, SDValue VL, 2406 MVT VT, SDLoc DL, SelectionDAG &DAG, 2407 const RISCVSubtarget &Subtarget) { 2408 bool HasPassthru = Passthru && !Passthru.isUndef(); 2409 if (!HasPassthru && !Passthru) 2410 Passthru = DAG.getUNDEF(VT); 2411 if (VT.isFloatingPoint()) { 2412 // If VL is 1, we could use vfmv.s.f. 2413 if (isOneConstant(VL)) 2414 return DAG.getNode(RISCVISD::VFMV_S_F_VL, DL, VT, Passthru, Scalar, VL); 2415 return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, VT, Passthru, Scalar, VL); 2416 } 2417 2418 MVT XLenVT = Subtarget.getXLenVT(); 2419 2420 // Simplest case is that the operand needs to be promoted to XLenVT. 2421 if (Scalar.getValueType().bitsLE(XLenVT)) { 2422 // If the operand is a constant, sign extend to increase our chances 2423 // of being able to use a .vi instruction. ANY_EXTEND would become a 2424 // a zero extend and the simm5 check in isel would fail. 2425 // FIXME: Should we ignore the upper bits in isel instead? 2426 unsigned ExtOpc = 2427 isa<ConstantSDNode>(Scalar) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND; 2428 Scalar = DAG.getNode(ExtOpc, DL, XLenVT, Scalar); 2429 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Scalar); 2430 // If VL is 1 and the scalar value won't benefit from immediate, we could 2431 // use vmv.s.x. 2432 if (isOneConstant(VL) && 2433 (!Const || isNullConstant(Scalar) || !isInt<5>(Const->getSExtValue()))) 2434 return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, VT, Passthru, Scalar, VL); 2435 return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Passthru, Scalar, VL); 2436 } 2437 2438 assert(XLenVT == MVT::i32 && Scalar.getValueType() == MVT::i64 && 2439 "Unexpected scalar for splat lowering!"); 2440 2441 if (isOneConstant(VL) && isNullConstant(Scalar)) 2442 return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, VT, Passthru, 2443 DAG.getConstant(0, DL, XLenVT), VL); 2444 2445 // Otherwise use the more complicated splatting algorithm. 2446 return splatSplitI64WithVL(DL, VT, Passthru, Scalar, VL, DAG); 2447 } 2448 2449 static bool isInterleaveShuffle(ArrayRef<int> Mask, MVT VT, bool &SwapSources, 2450 const RISCVSubtarget &Subtarget) { 2451 // We need to be able to widen elements to the next larger integer type. 2452 if (VT.getScalarSizeInBits() >= Subtarget.getELEN()) 2453 return false; 2454 2455 int Size = Mask.size(); 2456 assert(Size == (int)VT.getVectorNumElements() && "Unexpected mask size"); 2457 2458 int Srcs[] = {-1, -1}; 2459 for (int i = 0; i != Size; ++i) { 2460 // Ignore undef elements. 2461 if (Mask[i] < 0) 2462 continue; 2463 2464 // Is this an even or odd element. 2465 int Pol = i % 2; 2466 2467 // Ensure we consistently use the same source for this element polarity. 2468 int Src = Mask[i] / Size; 2469 if (Srcs[Pol] < 0) 2470 Srcs[Pol] = Src; 2471 if (Srcs[Pol] != Src) 2472 return false; 2473 2474 // Make sure the element within the source is appropriate for this element 2475 // in the destination. 2476 int Elt = Mask[i] % Size; 2477 if (Elt != i / 2) 2478 return false; 2479 } 2480 2481 // We need to find a source for each polarity and they can't be the same. 2482 if (Srcs[0] < 0 || Srcs[1] < 0 || Srcs[0] == Srcs[1]) 2483 return false; 2484 2485 // Swap the sources if the second source was in the even polarity. 2486 SwapSources = Srcs[0] > Srcs[1]; 2487 2488 return true; 2489 } 2490 2491 /// Match shuffles that concatenate two vectors, rotate the concatenation, 2492 /// and then extract the original number of elements from the rotated result. 2493 /// This is equivalent to vector.splice or X86's PALIGNR instruction. The 2494 /// returned rotation amount is for a rotate right, where elements move from 2495 /// higher elements to lower elements. \p LoSrc indicates the first source 2496 /// vector of the rotate or -1 for undef. \p HiSrc indicates the second vector 2497 /// of the rotate or -1 for undef. At least one of \p LoSrc and \p HiSrc will be 2498 /// 0 or 1 if a rotation is found. 2499 /// 2500 /// NOTE: We talk about rotate to the right which matches how bit shift and 2501 /// rotate instructions are described where LSBs are on the right, but LLVM IR 2502 /// and the table below write vectors with the lowest elements on the left. 2503 static int isElementRotate(int &LoSrc, int &HiSrc, ArrayRef<int> Mask) { 2504 int Size = Mask.size(); 2505 2506 // We need to detect various ways of spelling a rotation: 2507 // [11, 12, 13, 14, 15, 0, 1, 2] 2508 // [-1, 12, 13, 14, -1, -1, 1, -1] 2509 // [-1, -1, -1, -1, -1, -1, 1, 2] 2510 // [ 3, 4, 5, 6, 7, 8, 9, 10] 2511 // [-1, 4, 5, 6, -1, -1, 9, -1] 2512 // [-1, 4, 5, 6, -1, -1, -1, -1] 2513 int Rotation = 0; 2514 LoSrc = -1; 2515 HiSrc = -1; 2516 for (int i = 0; i != Size; ++i) { 2517 int M = Mask[i]; 2518 if (M < 0) 2519 continue; 2520 2521 // Determine where a rotate vector would have started. 2522 int StartIdx = i - (M % Size); 2523 // The identity rotation isn't interesting, stop. 2524 if (StartIdx == 0) 2525 return -1; 2526 2527 // If we found the tail of a vector the rotation must be the missing 2528 // front. If we found the head of a vector, it must be how much of the 2529 // head. 2530 int CandidateRotation = StartIdx < 0 ? -StartIdx : Size - StartIdx; 2531 2532 if (Rotation == 0) 2533 Rotation = CandidateRotation; 2534 else if (Rotation != CandidateRotation) 2535 // The rotations don't match, so we can't match this mask. 2536 return -1; 2537 2538 // Compute which value this mask is pointing at. 2539 int MaskSrc = M < Size ? 0 : 1; 2540 2541 // Compute which of the two target values this index should be assigned to. 2542 // This reflects whether the high elements are remaining or the low elemnts 2543 // are remaining. 2544 int &TargetSrc = StartIdx < 0 ? HiSrc : LoSrc; 2545 2546 // Either set up this value if we've not encountered it before, or check 2547 // that it remains consistent. 2548 if (TargetSrc < 0) 2549 TargetSrc = MaskSrc; 2550 else if (TargetSrc != MaskSrc) 2551 // This may be a rotation, but it pulls from the inputs in some 2552 // unsupported interleaving. 2553 return -1; 2554 } 2555 2556 // Check that we successfully analyzed the mask, and normalize the results. 2557 assert(Rotation != 0 && "Failed to locate a viable rotation!"); 2558 assert((LoSrc >= 0 || HiSrc >= 0) && 2559 "Failed to find a rotated input vector!"); 2560 2561 return Rotation; 2562 } 2563 2564 static SDValue lowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG, 2565 const RISCVSubtarget &Subtarget) { 2566 SDValue V1 = Op.getOperand(0); 2567 SDValue V2 = Op.getOperand(1); 2568 SDLoc DL(Op); 2569 MVT XLenVT = Subtarget.getXLenVT(); 2570 MVT VT = Op.getSimpleValueType(); 2571 unsigned NumElts = VT.getVectorNumElements(); 2572 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode()); 2573 2574 MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 2575 2576 SDValue TrueMask, VL; 2577 std::tie(TrueMask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 2578 2579 if (SVN->isSplat()) { 2580 const int Lane = SVN->getSplatIndex(); 2581 if (Lane >= 0) { 2582 MVT SVT = VT.getVectorElementType(); 2583 2584 // Turn splatted vector load into a strided load with an X0 stride. 2585 SDValue V = V1; 2586 // Peek through CONCAT_VECTORS as VectorCombine can concat a vector 2587 // with undef. 2588 // FIXME: Peek through INSERT_SUBVECTOR, EXTRACT_SUBVECTOR, bitcasts? 2589 int Offset = Lane; 2590 if (V.getOpcode() == ISD::CONCAT_VECTORS) { 2591 int OpElements = 2592 V.getOperand(0).getSimpleValueType().getVectorNumElements(); 2593 V = V.getOperand(Offset / OpElements); 2594 Offset %= OpElements; 2595 } 2596 2597 // We need to ensure the load isn't atomic or volatile. 2598 if (ISD::isNormalLoad(V.getNode()) && cast<LoadSDNode>(V)->isSimple()) { 2599 auto *Ld = cast<LoadSDNode>(V); 2600 Offset *= SVT.getStoreSize(); 2601 SDValue NewAddr = DAG.getMemBasePlusOffset(Ld->getBasePtr(), 2602 TypeSize::Fixed(Offset), DL); 2603 2604 // If this is SEW=64 on RV32, use a strided load with a stride of x0. 2605 if (SVT.isInteger() && SVT.bitsGT(XLenVT)) { 2606 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 2607 SDValue IntID = 2608 DAG.getTargetConstant(Intrinsic::riscv_vlse, DL, XLenVT); 2609 SDValue Ops[] = {Ld->getChain(), 2610 IntID, 2611 DAG.getUNDEF(ContainerVT), 2612 NewAddr, 2613 DAG.getRegister(RISCV::X0, XLenVT), 2614 VL}; 2615 SDValue NewLoad = DAG.getMemIntrinsicNode( 2616 ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, SVT, 2617 DAG.getMachineFunction().getMachineMemOperand( 2618 Ld->getMemOperand(), Offset, SVT.getStoreSize())); 2619 DAG.makeEquivalentMemoryOrdering(Ld, NewLoad); 2620 return convertFromScalableVector(VT, NewLoad, DAG, Subtarget); 2621 } 2622 2623 // Otherwise use a scalar load and splat. This will give the best 2624 // opportunity to fold a splat into the operation. ISel can turn it into 2625 // the x0 strided load if we aren't able to fold away the select. 2626 if (SVT.isFloatingPoint()) 2627 V = DAG.getLoad(SVT, DL, Ld->getChain(), NewAddr, 2628 Ld->getPointerInfo().getWithOffset(Offset), 2629 Ld->getOriginalAlign(), 2630 Ld->getMemOperand()->getFlags()); 2631 else 2632 V = DAG.getExtLoad(ISD::SEXTLOAD, DL, XLenVT, Ld->getChain(), NewAddr, 2633 Ld->getPointerInfo().getWithOffset(Offset), SVT, 2634 Ld->getOriginalAlign(), 2635 Ld->getMemOperand()->getFlags()); 2636 DAG.makeEquivalentMemoryOrdering(Ld, V); 2637 2638 unsigned Opc = 2639 VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL : RISCVISD::VMV_V_X_VL; 2640 SDValue Splat = 2641 DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), V, VL); 2642 return convertFromScalableVector(VT, Splat, DAG, Subtarget); 2643 } 2644 2645 V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget); 2646 assert(Lane < (int)NumElts && "Unexpected lane!"); 2647 SDValue Gather = 2648 DAG.getNode(RISCVISD::VRGATHER_VX_VL, DL, ContainerVT, V1, 2649 DAG.getConstant(Lane, DL, XLenVT), TrueMask, VL); 2650 return convertFromScalableVector(VT, Gather, DAG, Subtarget); 2651 } 2652 } 2653 2654 ArrayRef<int> Mask = SVN->getMask(); 2655 2656 // Lower rotations to a SLIDEDOWN and a SLIDEUP. One of the source vectors may 2657 // be undef which can be handled with a single SLIDEDOWN/UP. 2658 int LoSrc, HiSrc; 2659 int Rotation = isElementRotate(LoSrc, HiSrc, Mask); 2660 if (Rotation > 0) { 2661 SDValue LoV, HiV; 2662 if (LoSrc >= 0) { 2663 LoV = LoSrc == 0 ? V1 : V2; 2664 LoV = convertToScalableVector(ContainerVT, LoV, DAG, Subtarget); 2665 } 2666 if (HiSrc >= 0) { 2667 HiV = HiSrc == 0 ? V1 : V2; 2668 HiV = convertToScalableVector(ContainerVT, HiV, DAG, Subtarget); 2669 } 2670 2671 // We found a rotation. We need to slide HiV down by Rotation. Then we need 2672 // to slide LoV up by (NumElts - Rotation). 2673 unsigned InvRotate = NumElts - Rotation; 2674 2675 SDValue Res = DAG.getUNDEF(ContainerVT); 2676 if (HiV) { 2677 // If we are doing a SLIDEDOWN+SLIDEUP, reduce the VL for the SLIDEDOWN. 2678 // FIXME: If we are only doing a SLIDEDOWN, don't reduce the VL as it 2679 // causes multiple vsetvlis in some test cases such as lowering 2680 // reduce.mul 2681 SDValue DownVL = VL; 2682 if (LoV) 2683 DownVL = DAG.getConstant(InvRotate, DL, XLenVT); 2684 Res = 2685 DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, Res, HiV, 2686 DAG.getConstant(Rotation, DL, XLenVT), TrueMask, DownVL); 2687 } 2688 if (LoV) 2689 Res = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Res, LoV, 2690 DAG.getConstant(InvRotate, DL, XLenVT), TrueMask, VL); 2691 2692 return convertFromScalableVector(VT, Res, DAG, Subtarget); 2693 } 2694 2695 // Detect an interleave shuffle and lower to 2696 // (vmaccu.vx (vwaddu.vx lohalf(V1), lohalf(V2)), lohalf(V2), (2^eltbits - 1)) 2697 bool SwapSources; 2698 if (isInterleaveShuffle(Mask, VT, SwapSources, Subtarget)) { 2699 // Swap sources if needed. 2700 if (SwapSources) 2701 std::swap(V1, V2); 2702 2703 // Extract the lower half of the vectors. 2704 MVT HalfVT = VT.getHalfNumVectorElementsVT(); 2705 V1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, V1, 2706 DAG.getConstant(0, DL, XLenVT)); 2707 V2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, V2, 2708 DAG.getConstant(0, DL, XLenVT)); 2709 2710 // Double the element width and halve the number of elements in an int type. 2711 unsigned EltBits = VT.getScalarSizeInBits(); 2712 MVT WideIntEltVT = MVT::getIntegerVT(EltBits * 2); 2713 MVT WideIntVT = 2714 MVT::getVectorVT(WideIntEltVT, VT.getVectorNumElements() / 2); 2715 // Convert this to a scalable vector. We need to base this on the 2716 // destination size to ensure there's always a type with a smaller LMUL. 2717 MVT WideIntContainerVT = 2718 getContainerForFixedLengthVector(DAG, WideIntVT, Subtarget); 2719 2720 // Convert sources to scalable vectors with the same element count as the 2721 // larger type. 2722 MVT HalfContainerVT = MVT::getVectorVT( 2723 VT.getVectorElementType(), WideIntContainerVT.getVectorElementCount()); 2724 V1 = convertToScalableVector(HalfContainerVT, V1, DAG, Subtarget); 2725 V2 = convertToScalableVector(HalfContainerVT, V2, DAG, Subtarget); 2726 2727 // Cast sources to integer. 2728 MVT IntEltVT = MVT::getIntegerVT(EltBits); 2729 MVT IntHalfVT = 2730 MVT::getVectorVT(IntEltVT, HalfContainerVT.getVectorElementCount()); 2731 V1 = DAG.getBitcast(IntHalfVT, V1); 2732 V2 = DAG.getBitcast(IntHalfVT, V2); 2733 2734 // Freeze V2 since we use it twice and we need to be sure that the add and 2735 // multiply see the same value. 2736 V2 = DAG.getFreeze(V2); 2737 2738 // Recreate TrueMask using the widened type's element count. 2739 MVT MaskVT = 2740 MVT::getVectorVT(MVT::i1, HalfContainerVT.getVectorElementCount()); 2741 TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 2742 2743 // Widen V1 and V2 with 0s and add one copy of V2 to V1. 2744 SDValue Add = DAG.getNode(RISCVISD::VWADDU_VL, DL, WideIntContainerVT, V1, 2745 V2, TrueMask, VL); 2746 // Create 2^eltbits - 1 copies of V2 by multiplying by the largest integer. 2747 SDValue Multiplier = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, IntHalfVT, 2748 DAG.getUNDEF(IntHalfVT), 2749 DAG.getAllOnesConstant(DL, XLenVT)); 2750 SDValue WidenMul = DAG.getNode(RISCVISD::VWMULU_VL, DL, WideIntContainerVT, 2751 V2, Multiplier, TrueMask, VL); 2752 // Add the new copies to our previous addition giving us 2^eltbits copies of 2753 // V2. This is equivalent to shifting V2 left by eltbits. This should 2754 // combine with the vwmulu.vv above to form vwmaccu.vv. 2755 Add = DAG.getNode(RISCVISD::ADD_VL, DL, WideIntContainerVT, Add, WidenMul, 2756 TrueMask, VL); 2757 // Cast back to ContainerVT. We need to re-create a new ContainerVT in case 2758 // WideIntContainerVT is a larger fractional LMUL than implied by the fixed 2759 // vector VT. 2760 ContainerVT = 2761 MVT::getVectorVT(VT.getVectorElementType(), 2762 WideIntContainerVT.getVectorElementCount() * 2); 2763 Add = DAG.getBitcast(ContainerVT, Add); 2764 return convertFromScalableVector(VT, Add, DAG, Subtarget); 2765 } 2766 2767 // Detect shuffles which can be re-expressed as vector selects; these are 2768 // shuffles in which each element in the destination is taken from an element 2769 // at the corresponding index in either source vectors. 2770 bool IsSelect = all_of(enumerate(Mask), [&](const auto &MaskIdx) { 2771 int MaskIndex = MaskIdx.value(); 2772 return MaskIndex < 0 || MaskIdx.index() == (unsigned)MaskIndex % NumElts; 2773 }); 2774 2775 assert(!V1.isUndef() && "Unexpected shuffle canonicalization"); 2776 2777 SmallVector<SDValue> MaskVals; 2778 // As a backup, shuffles can be lowered via a vrgather instruction, possibly 2779 // merged with a second vrgather. 2780 SmallVector<SDValue> GatherIndicesLHS, GatherIndicesRHS; 2781 2782 // By default we preserve the original operand order, and use a mask to 2783 // select LHS as true and RHS as false. However, since RVV vector selects may 2784 // feature splats but only on the LHS, we may choose to invert our mask and 2785 // instead select between RHS and LHS. 2786 bool SwapOps = DAG.isSplatValue(V2) && !DAG.isSplatValue(V1); 2787 bool InvertMask = IsSelect == SwapOps; 2788 2789 // Keep a track of which non-undef indices are used by each LHS/RHS shuffle 2790 // half. 2791 DenseMap<int, unsigned> LHSIndexCounts, RHSIndexCounts; 2792 2793 // Now construct the mask that will be used by the vselect or blended 2794 // vrgather operation. For vrgathers, construct the appropriate indices into 2795 // each vector. 2796 for (int MaskIndex : Mask) { 2797 bool SelectMaskVal = (MaskIndex < (int)NumElts) ^ InvertMask; 2798 MaskVals.push_back(DAG.getConstant(SelectMaskVal, DL, XLenVT)); 2799 if (!IsSelect) { 2800 bool IsLHSOrUndefIndex = MaskIndex < (int)NumElts; 2801 GatherIndicesLHS.push_back(IsLHSOrUndefIndex && MaskIndex >= 0 2802 ? DAG.getConstant(MaskIndex, DL, XLenVT) 2803 : DAG.getUNDEF(XLenVT)); 2804 GatherIndicesRHS.push_back( 2805 IsLHSOrUndefIndex ? DAG.getUNDEF(XLenVT) 2806 : DAG.getConstant(MaskIndex - NumElts, DL, XLenVT)); 2807 if (IsLHSOrUndefIndex && MaskIndex >= 0) 2808 ++LHSIndexCounts[MaskIndex]; 2809 if (!IsLHSOrUndefIndex) 2810 ++RHSIndexCounts[MaskIndex - NumElts]; 2811 } 2812 } 2813 2814 if (SwapOps) { 2815 std::swap(V1, V2); 2816 std::swap(GatherIndicesLHS, GatherIndicesRHS); 2817 } 2818 2819 assert(MaskVals.size() == NumElts && "Unexpected select-like shuffle"); 2820 MVT MaskVT = MVT::getVectorVT(MVT::i1, NumElts); 2821 SDValue SelectMask = DAG.getBuildVector(MaskVT, DL, MaskVals); 2822 2823 if (IsSelect) 2824 return DAG.getNode(ISD::VSELECT, DL, VT, SelectMask, V1, V2); 2825 2826 if (VT.getScalarSizeInBits() == 8 && VT.getVectorNumElements() > 256) { 2827 // On such a large vector we're unable to use i8 as the index type. 2828 // FIXME: We could promote the index to i16 and use vrgatherei16, but that 2829 // may involve vector splitting if we're already at LMUL=8, or our 2830 // user-supplied maximum fixed-length LMUL. 2831 return SDValue(); 2832 } 2833 2834 unsigned GatherVXOpc = RISCVISD::VRGATHER_VX_VL; 2835 unsigned GatherVVOpc = RISCVISD::VRGATHER_VV_VL; 2836 MVT IndexVT = VT.changeTypeToInteger(); 2837 // Since we can't introduce illegal index types at this stage, use i16 and 2838 // vrgatherei16 if the corresponding index type for plain vrgather is greater 2839 // than XLenVT. 2840 if (IndexVT.getScalarType().bitsGT(XLenVT)) { 2841 GatherVVOpc = RISCVISD::VRGATHEREI16_VV_VL; 2842 IndexVT = IndexVT.changeVectorElementType(MVT::i16); 2843 } 2844 2845 MVT IndexContainerVT = 2846 ContainerVT.changeVectorElementType(IndexVT.getScalarType()); 2847 2848 SDValue Gather; 2849 // TODO: This doesn't trigger for i64 vectors on RV32, since there we 2850 // encounter a bitcasted BUILD_VECTOR with low/high i32 values. 2851 if (SDValue SplatValue = DAG.getSplatValue(V1, /*LegalTypes*/ true)) { 2852 Gather = lowerScalarSplat(SDValue(), SplatValue, VL, ContainerVT, DL, DAG, 2853 Subtarget); 2854 } else { 2855 V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget); 2856 // If only one index is used, we can use a "splat" vrgather. 2857 // TODO: We can splat the most-common index and fix-up any stragglers, if 2858 // that's beneficial. 2859 if (LHSIndexCounts.size() == 1) { 2860 int SplatIndex = LHSIndexCounts.begin()->getFirst(); 2861 Gather = 2862 DAG.getNode(GatherVXOpc, DL, ContainerVT, V1, 2863 DAG.getConstant(SplatIndex, DL, XLenVT), TrueMask, VL); 2864 } else { 2865 SDValue LHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesLHS); 2866 LHSIndices = 2867 convertToScalableVector(IndexContainerVT, LHSIndices, DAG, Subtarget); 2868 2869 Gather = DAG.getNode(GatherVVOpc, DL, ContainerVT, V1, LHSIndices, 2870 TrueMask, VL); 2871 } 2872 } 2873 2874 // If a second vector operand is used by this shuffle, blend it in with an 2875 // additional vrgather. 2876 if (!V2.isUndef()) { 2877 V2 = convertToScalableVector(ContainerVT, V2, DAG, Subtarget); 2878 // If only one index is used, we can use a "splat" vrgather. 2879 // TODO: We can splat the most-common index and fix-up any stragglers, if 2880 // that's beneficial. 2881 if (RHSIndexCounts.size() == 1) { 2882 int SplatIndex = RHSIndexCounts.begin()->getFirst(); 2883 V2 = DAG.getNode(GatherVXOpc, DL, ContainerVT, V2, 2884 DAG.getConstant(SplatIndex, DL, XLenVT), TrueMask, VL); 2885 } else { 2886 SDValue RHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesRHS); 2887 RHSIndices = 2888 convertToScalableVector(IndexContainerVT, RHSIndices, DAG, Subtarget); 2889 V2 = DAG.getNode(GatherVVOpc, DL, ContainerVT, V2, RHSIndices, TrueMask, 2890 VL); 2891 } 2892 2893 MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1); 2894 SelectMask = 2895 convertToScalableVector(MaskContainerVT, SelectMask, DAG, Subtarget); 2896 2897 Gather = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, SelectMask, V2, 2898 Gather, VL); 2899 } 2900 2901 return convertFromScalableVector(VT, Gather, DAG, Subtarget); 2902 } 2903 2904 bool RISCVTargetLowering::isShuffleMaskLegal(ArrayRef<int> M, EVT VT) const { 2905 // Support splats for any type. These should type legalize well. 2906 if (ShuffleVectorSDNode::isSplatMask(M.data(), VT)) 2907 return true; 2908 2909 // Only support legal VTs for other shuffles for now. 2910 if (!isTypeLegal(VT)) 2911 return false; 2912 2913 MVT SVT = VT.getSimpleVT(); 2914 2915 bool SwapSources; 2916 int LoSrc, HiSrc; 2917 return (isElementRotate(LoSrc, HiSrc, M) > 0) || 2918 isInterleaveShuffle(M, SVT, SwapSources, Subtarget); 2919 } 2920 2921 static SDValue getRVVFPExtendOrRound(SDValue Op, MVT VT, MVT ContainerVT, 2922 SDLoc DL, SelectionDAG &DAG, 2923 const RISCVSubtarget &Subtarget) { 2924 if (VT.isScalableVector()) 2925 return DAG.getFPExtendOrRound(Op, DL, VT); 2926 assert(VT.isFixedLengthVector() && 2927 "Unexpected value type for RVV FP extend/round lowering"); 2928 SDValue Mask, VL; 2929 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 2930 unsigned RVVOpc = ContainerVT.bitsGT(Op.getSimpleValueType()) 2931 ? RISCVISD::FP_EXTEND_VL 2932 : RISCVISD::FP_ROUND_VL; 2933 return DAG.getNode(RVVOpc, DL, ContainerVT, Op, Mask, VL); 2934 } 2935 2936 // Lower CTLZ_ZERO_UNDEF or CTTZ_ZERO_UNDEF by converting to FP and extracting 2937 // the exponent. 2938 static SDValue lowerCTLZ_CTTZ_ZERO_UNDEF(SDValue Op, SelectionDAG &DAG) { 2939 MVT VT = Op.getSimpleValueType(); 2940 unsigned EltSize = VT.getScalarSizeInBits(); 2941 SDValue Src = Op.getOperand(0); 2942 SDLoc DL(Op); 2943 2944 // We need a FP type that can represent the value. 2945 // TODO: Use f16 for i8 when possible? 2946 MVT FloatEltVT = EltSize == 32 ? MVT::f64 : MVT::f32; 2947 MVT FloatVT = MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount()); 2948 2949 // Legal types should have been checked in the RISCVTargetLowering 2950 // constructor. 2951 // TODO: Splitting may make sense in some cases. 2952 assert(DAG.getTargetLoweringInfo().isTypeLegal(FloatVT) && 2953 "Expected legal float type!"); 2954 2955 // For CTTZ_ZERO_UNDEF, we need to extract the lowest set bit using X & -X. 2956 // The trailing zero count is equal to log2 of this single bit value. 2957 if (Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF) { 2958 SDValue Neg = 2959 DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Src); 2960 Src = DAG.getNode(ISD::AND, DL, VT, Src, Neg); 2961 } 2962 2963 // We have a legal FP type, convert to it. 2964 SDValue FloatVal = DAG.getNode(ISD::UINT_TO_FP, DL, FloatVT, Src); 2965 // Bitcast to integer and shift the exponent to the LSB. 2966 EVT IntVT = FloatVT.changeVectorElementTypeToInteger(); 2967 SDValue Bitcast = DAG.getBitcast(IntVT, FloatVal); 2968 unsigned ShiftAmt = FloatEltVT == MVT::f64 ? 52 : 23; 2969 SDValue Shift = DAG.getNode(ISD::SRL, DL, IntVT, Bitcast, 2970 DAG.getConstant(ShiftAmt, DL, IntVT)); 2971 // Truncate back to original type to allow vnsrl. 2972 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, VT, Shift); 2973 // The exponent contains log2 of the value in biased form. 2974 unsigned ExponentBias = FloatEltVT == MVT::f64 ? 1023 : 127; 2975 2976 // For trailing zeros, we just need to subtract the bias. 2977 if (Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF) 2978 return DAG.getNode(ISD::SUB, DL, VT, Trunc, 2979 DAG.getConstant(ExponentBias, DL, VT)); 2980 2981 // For leading zeros, we need to remove the bias and convert from log2 to 2982 // leading zeros. We can do this by subtracting from (Bias + (EltSize - 1)). 2983 unsigned Adjust = ExponentBias + (EltSize - 1); 2984 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(Adjust, DL, VT), Trunc); 2985 } 2986 2987 // While RVV has alignment restrictions, we should always be able to load as a 2988 // legal equivalently-sized byte-typed vector instead. This method is 2989 // responsible for re-expressing a ISD::LOAD via a correctly-aligned type. If 2990 // the load is already correctly-aligned, it returns SDValue(). 2991 SDValue RISCVTargetLowering::expandUnalignedRVVLoad(SDValue Op, 2992 SelectionDAG &DAG) const { 2993 auto *Load = cast<LoadSDNode>(Op); 2994 assert(Load && Load->getMemoryVT().isVector() && "Expected vector load"); 2995 2996 if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 2997 Load->getMemoryVT(), 2998 *Load->getMemOperand())) 2999 return SDValue(); 3000 3001 SDLoc DL(Op); 3002 MVT VT = Op.getSimpleValueType(); 3003 unsigned EltSizeBits = VT.getScalarSizeInBits(); 3004 assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) && 3005 "Unexpected unaligned RVV load type"); 3006 MVT NewVT = 3007 MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8)); 3008 assert(NewVT.isValid() && 3009 "Expecting equally-sized RVV vector types to be legal"); 3010 SDValue L = DAG.getLoad(NewVT, DL, Load->getChain(), Load->getBasePtr(), 3011 Load->getPointerInfo(), Load->getOriginalAlign(), 3012 Load->getMemOperand()->getFlags()); 3013 return DAG.getMergeValues({DAG.getBitcast(VT, L), L.getValue(1)}, DL); 3014 } 3015 3016 // While RVV has alignment restrictions, we should always be able to store as a 3017 // legal equivalently-sized byte-typed vector instead. This method is 3018 // responsible for re-expressing a ISD::STORE via a correctly-aligned type. It 3019 // returns SDValue() if the store is already correctly aligned. 3020 SDValue RISCVTargetLowering::expandUnalignedRVVStore(SDValue Op, 3021 SelectionDAG &DAG) const { 3022 auto *Store = cast<StoreSDNode>(Op); 3023 assert(Store && Store->getValue().getValueType().isVector() && 3024 "Expected vector store"); 3025 3026 if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 3027 Store->getMemoryVT(), 3028 *Store->getMemOperand())) 3029 return SDValue(); 3030 3031 SDLoc DL(Op); 3032 SDValue StoredVal = Store->getValue(); 3033 MVT VT = StoredVal.getSimpleValueType(); 3034 unsigned EltSizeBits = VT.getScalarSizeInBits(); 3035 assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) && 3036 "Unexpected unaligned RVV store type"); 3037 MVT NewVT = 3038 MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8)); 3039 assert(NewVT.isValid() && 3040 "Expecting equally-sized RVV vector types to be legal"); 3041 StoredVal = DAG.getBitcast(NewVT, StoredVal); 3042 return DAG.getStore(Store->getChain(), DL, StoredVal, Store->getBasePtr(), 3043 Store->getPointerInfo(), Store->getOriginalAlign(), 3044 Store->getMemOperand()->getFlags()); 3045 } 3046 3047 SDValue RISCVTargetLowering::LowerOperation(SDValue Op, 3048 SelectionDAG &DAG) const { 3049 switch (Op.getOpcode()) { 3050 default: 3051 report_fatal_error("unimplemented operand"); 3052 case ISD::GlobalAddress: 3053 return lowerGlobalAddress(Op, DAG); 3054 case ISD::BlockAddress: 3055 return lowerBlockAddress(Op, DAG); 3056 case ISD::ConstantPool: 3057 return lowerConstantPool(Op, DAG); 3058 case ISD::JumpTable: 3059 return lowerJumpTable(Op, DAG); 3060 case ISD::GlobalTLSAddress: 3061 return lowerGlobalTLSAddress(Op, DAG); 3062 case ISD::SELECT: 3063 return lowerSELECT(Op, DAG); 3064 case ISD::BRCOND: 3065 return lowerBRCOND(Op, DAG); 3066 case ISD::VASTART: 3067 return lowerVASTART(Op, DAG); 3068 case ISD::FRAMEADDR: 3069 return lowerFRAMEADDR(Op, DAG); 3070 case ISD::RETURNADDR: 3071 return lowerRETURNADDR(Op, DAG); 3072 case ISD::SHL_PARTS: 3073 return lowerShiftLeftParts(Op, DAG); 3074 case ISD::SRA_PARTS: 3075 return lowerShiftRightParts(Op, DAG, true); 3076 case ISD::SRL_PARTS: 3077 return lowerShiftRightParts(Op, DAG, false); 3078 case ISD::BITCAST: { 3079 SDLoc DL(Op); 3080 EVT VT = Op.getValueType(); 3081 SDValue Op0 = Op.getOperand(0); 3082 EVT Op0VT = Op0.getValueType(); 3083 MVT XLenVT = Subtarget.getXLenVT(); 3084 if (VT.isFixedLengthVector()) { 3085 // We can handle fixed length vector bitcasts with a simple replacement 3086 // in isel. 3087 if (Op0VT.isFixedLengthVector()) 3088 return Op; 3089 // When bitcasting from scalar to fixed-length vector, insert the scalar 3090 // into a one-element vector of the result type, and perform a vector 3091 // bitcast. 3092 if (!Op0VT.isVector()) { 3093 EVT BVT = EVT::getVectorVT(*DAG.getContext(), Op0VT, 1); 3094 if (!isTypeLegal(BVT)) 3095 return SDValue(); 3096 return DAG.getBitcast(VT, DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, BVT, 3097 DAG.getUNDEF(BVT), Op0, 3098 DAG.getConstant(0, DL, XLenVT))); 3099 } 3100 return SDValue(); 3101 } 3102 // Custom-legalize bitcasts from fixed-length vector types to scalar types 3103 // thus: bitcast the vector to a one-element vector type whose element type 3104 // is the same as the result type, and extract the first element. 3105 if (!VT.isVector() && Op0VT.isFixedLengthVector()) { 3106 EVT BVT = EVT::getVectorVT(*DAG.getContext(), VT, 1); 3107 if (!isTypeLegal(BVT)) 3108 return SDValue(); 3109 SDValue BVec = DAG.getBitcast(BVT, Op0); 3110 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec, 3111 DAG.getConstant(0, DL, XLenVT)); 3112 } 3113 if (VT == MVT::f16 && Op0VT == MVT::i16 && Subtarget.hasStdExtZfh()) { 3114 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Op0); 3115 SDValue FPConv = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, NewOp0); 3116 return FPConv; 3117 } 3118 if (VT == MVT::f32 && Op0VT == MVT::i32 && Subtarget.is64Bit() && 3119 Subtarget.hasStdExtF()) { 3120 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); 3121 SDValue FPConv = 3122 DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, NewOp0); 3123 return FPConv; 3124 } 3125 return SDValue(); 3126 } 3127 case ISD::INTRINSIC_WO_CHAIN: 3128 return LowerINTRINSIC_WO_CHAIN(Op, DAG); 3129 case ISD::INTRINSIC_W_CHAIN: 3130 return LowerINTRINSIC_W_CHAIN(Op, DAG); 3131 case ISD::INTRINSIC_VOID: 3132 return LowerINTRINSIC_VOID(Op, DAG); 3133 case ISD::BSWAP: 3134 case ISD::BITREVERSE: { 3135 MVT VT = Op.getSimpleValueType(); 3136 SDLoc DL(Op); 3137 if (Subtarget.hasStdExtZbp()) { 3138 // Convert BSWAP/BITREVERSE to GREVI to enable GREVI combinining. 3139 // Start with the maximum immediate value which is the bitwidth - 1. 3140 unsigned Imm = VT.getSizeInBits() - 1; 3141 // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits. 3142 if (Op.getOpcode() == ISD::BSWAP) 3143 Imm &= ~0x7U; 3144 return DAG.getNode(RISCVISD::GREV, DL, VT, Op.getOperand(0), 3145 DAG.getConstant(Imm, DL, VT)); 3146 } 3147 assert(Subtarget.hasStdExtZbkb() && "Unexpected custom legalization"); 3148 assert(Op.getOpcode() == ISD::BITREVERSE && "Unexpected opcode"); 3149 // Expand bitreverse to a bswap(rev8) followed by brev8. 3150 SDValue BSwap = DAG.getNode(ISD::BSWAP, DL, VT, Op.getOperand(0)); 3151 // We use the Zbp grevi encoding for rev.b/brev8 which will be recognized 3152 // as brev8 by an isel pattern. 3153 return DAG.getNode(RISCVISD::GREV, DL, VT, BSwap, 3154 DAG.getConstant(7, DL, VT)); 3155 } 3156 case ISD::FSHL: 3157 case ISD::FSHR: { 3158 MVT VT = Op.getSimpleValueType(); 3159 assert(VT == Subtarget.getXLenVT() && "Unexpected custom legalization"); 3160 SDLoc DL(Op); 3161 // FSL/FSR take a log2(XLen)+1 bit shift amount but XLenVT FSHL/FSHR only 3162 // use log(XLen) bits. Mask the shift amount accordingly to prevent 3163 // accidentally setting the extra bit. 3164 unsigned ShAmtWidth = Subtarget.getXLen() - 1; 3165 SDValue ShAmt = DAG.getNode(ISD::AND, DL, VT, Op.getOperand(2), 3166 DAG.getConstant(ShAmtWidth, DL, VT)); 3167 // fshl and fshr concatenate their operands in the same order. fsr and fsl 3168 // instruction use different orders. fshl will return its first operand for 3169 // shift of zero, fshr will return its second operand. fsl and fsr both 3170 // return rs1 so the ISD nodes need to have different operand orders. 3171 // Shift amount is in rs2. 3172 SDValue Op0 = Op.getOperand(0); 3173 SDValue Op1 = Op.getOperand(1); 3174 unsigned Opc = RISCVISD::FSL; 3175 if (Op.getOpcode() == ISD::FSHR) { 3176 std::swap(Op0, Op1); 3177 Opc = RISCVISD::FSR; 3178 } 3179 return DAG.getNode(Opc, DL, VT, Op0, Op1, ShAmt); 3180 } 3181 case ISD::TRUNCATE: 3182 // Only custom-lower vector truncates 3183 if (!Op.getSimpleValueType().isVector()) 3184 return Op; 3185 return lowerVectorTruncLike(Op, DAG); 3186 case ISD::ANY_EXTEND: 3187 case ISD::ZERO_EXTEND: 3188 if (Op.getOperand(0).getValueType().isVector() && 3189 Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) 3190 return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ 1); 3191 return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VZEXT_VL); 3192 case ISD::SIGN_EXTEND: 3193 if (Op.getOperand(0).getValueType().isVector() && 3194 Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) 3195 return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ -1); 3196 return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VSEXT_VL); 3197 case ISD::SPLAT_VECTOR_PARTS: 3198 return lowerSPLAT_VECTOR_PARTS(Op, DAG); 3199 case ISD::INSERT_VECTOR_ELT: 3200 return lowerINSERT_VECTOR_ELT(Op, DAG); 3201 case ISD::EXTRACT_VECTOR_ELT: 3202 return lowerEXTRACT_VECTOR_ELT(Op, DAG); 3203 case ISD::VSCALE: { 3204 MVT VT = Op.getSimpleValueType(); 3205 SDLoc DL(Op); 3206 SDValue VLENB = DAG.getNode(RISCVISD::READ_VLENB, DL, VT); 3207 // We define our scalable vector types for lmul=1 to use a 64 bit known 3208 // minimum size. e.g. <vscale x 2 x i32>. VLENB is in bytes so we calculate 3209 // vscale as VLENB / 8. 3210 static_assert(RISCV::RVVBitsPerBlock == 64, "Unexpected bits per block!"); 3211 if (Subtarget.getMinVLen() < RISCV::RVVBitsPerBlock) 3212 report_fatal_error("Support for VLEN==32 is incomplete."); 3213 if (isa<ConstantSDNode>(Op.getOperand(0))) { 3214 // We assume VLENB is a multiple of 8. We manually choose the best shift 3215 // here because SimplifyDemandedBits isn't always able to simplify it. 3216 uint64_t Val = Op.getConstantOperandVal(0); 3217 if (isPowerOf2_64(Val)) { 3218 uint64_t Log2 = Log2_64(Val); 3219 if (Log2 < 3) 3220 return DAG.getNode(ISD::SRL, DL, VT, VLENB, 3221 DAG.getConstant(3 - Log2, DL, VT)); 3222 if (Log2 > 3) 3223 return DAG.getNode(ISD::SHL, DL, VT, VLENB, 3224 DAG.getConstant(Log2 - 3, DL, VT)); 3225 return VLENB; 3226 } 3227 // If the multiplier is a multiple of 8, scale it down to avoid needing 3228 // to shift the VLENB value. 3229 if ((Val % 8) == 0) 3230 return DAG.getNode(ISD::MUL, DL, VT, VLENB, 3231 DAG.getConstant(Val / 8, DL, VT)); 3232 } 3233 3234 SDValue VScale = DAG.getNode(ISD::SRL, DL, VT, VLENB, 3235 DAG.getConstant(3, DL, VT)); 3236 return DAG.getNode(ISD::MUL, DL, VT, VScale, Op.getOperand(0)); 3237 } 3238 case ISD::FPOWI: { 3239 // Custom promote f16 powi with illegal i32 integer type on RV64. Once 3240 // promoted this will be legalized into a libcall by LegalizeIntegerTypes. 3241 if (Op.getValueType() == MVT::f16 && Subtarget.is64Bit() && 3242 Op.getOperand(1).getValueType() == MVT::i32) { 3243 SDLoc DL(Op); 3244 SDValue Op0 = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Op.getOperand(0)); 3245 SDValue Powi = 3246 DAG.getNode(ISD::FPOWI, DL, MVT::f32, Op0, Op.getOperand(1)); 3247 return DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, Powi, 3248 DAG.getIntPtrConstant(0, DL)); 3249 } 3250 return SDValue(); 3251 } 3252 case ISD::FP_EXTEND: { 3253 // RVV can only do fp_extend to types double the size as the source. We 3254 // custom-lower f16->f64 extensions to two hops of ISD::FP_EXTEND, going 3255 // via f32. 3256 SDLoc DL(Op); 3257 MVT VT = Op.getSimpleValueType(); 3258 SDValue Src = Op.getOperand(0); 3259 MVT SrcVT = Src.getSimpleValueType(); 3260 3261 // Prepare any fixed-length vector operands. 3262 MVT ContainerVT = VT; 3263 if (SrcVT.isFixedLengthVector()) { 3264 ContainerVT = getContainerForFixedLengthVector(VT); 3265 MVT SrcContainerVT = 3266 ContainerVT.changeVectorElementType(SrcVT.getVectorElementType()); 3267 Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); 3268 } 3269 3270 if (!VT.isVector() || VT.getVectorElementType() != MVT::f64 || 3271 SrcVT.getVectorElementType() != MVT::f16) { 3272 // For scalable vectors, we only need to close the gap between 3273 // vXf16->vXf64. 3274 if (!VT.isFixedLengthVector()) 3275 return Op; 3276 // For fixed-length vectors, lower the FP_EXTEND to a custom "VL" version. 3277 Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget); 3278 return convertFromScalableVector(VT, Src, DAG, Subtarget); 3279 } 3280 3281 MVT InterVT = VT.changeVectorElementType(MVT::f32); 3282 MVT InterContainerVT = ContainerVT.changeVectorElementType(MVT::f32); 3283 SDValue IntermediateExtend = getRVVFPExtendOrRound( 3284 Src, InterVT, InterContainerVT, DL, DAG, Subtarget); 3285 3286 SDValue Extend = getRVVFPExtendOrRound(IntermediateExtend, VT, ContainerVT, 3287 DL, DAG, Subtarget); 3288 if (VT.isFixedLengthVector()) 3289 return convertFromScalableVector(VT, Extend, DAG, Subtarget); 3290 return Extend; 3291 } 3292 case ISD::FP_ROUND: 3293 if (!Op.getValueType().isVector()) 3294 return Op; 3295 return lowerVectorFPRoundLike(Op, DAG); 3296 case ISD::FP_TO_SINT: 3297 case ISD::FP_TO_UINT: 3298 case ISD::SINT_TO_FP: 3299 case ISD::UINT_TO_FP: { 3300 // RVV can only do fp<->int conversions to types half/double the size as 3301 // the source. We custom-lower any conversions that do two hops into 3302 // sequences. 3303 MVT VT = Op.getSimpleValueType(); 3304 if (!VT.isVector()) 3305 return Op; 3306 SDLoc DL(Op); 3307 SDValue Src = Op.getOperand(0); 3308 MVT EltVT = VT.getVectorElementType(); 3309 MVT SrcVT = Src.getSimpleValueType(); 3310 MVT SrcEltVT = SrcVT.getVectorElementType(); 3311 unsigned EltSize = EltVT.getSizeInBits(); 3312 unsigned SrcEltSize = SrcEltVT.getSizeInBits(); 3313 assert(isPowerOf2_32(EltSize) && isPowerOf2_32(SrcEltSize) && 3314 "Unexpected vector element types"); 3315 3316 bool IsInt2FP = SrcEltVT.isInteger(); 3317 // Widening conversions 3318 if (EltSize > (2 * SrcEltSize)) { 3319 if (IsInt2FP) { 3320 // Do a regular integer sign/zero extension then convert to float. 3321 MVT IVecVT = MVT::getVectorVT(MVT::getIntegerVT(EltSize), 3322 VT.getVectorElementCount()); 3323 unsigned ExtOpcode = Op.getOpcode() == ISD::UINT_TO_FP 3324 ? ISD::ZERO_EXTEND 3325 : ISD::SIGN_EXTEND; 3326 SDValue Ext = DAG.getNode(ExtOpcode, DL, IVecVT, Src); 3327 return DAG.getNode(Op.getOpcode(), DL, VT, Ext); 3328 } 3329 // FP2Int 3330 assert(SrcEltVT == MVT::f16 && "Unexpected FP_TO_[US]INT lowering"); 3331 // Do one doubling fp_extend then complete the operation by converting 3332 // to int. 3333 MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount()); 3334 SDValue FExt = DAG.getFPExtendOrRound(Src, DL, InterimFVT); 3335 return DAG.getNode(Op.getOpcode(), DL, VT, FExt); 3336 } 3337 3338 // Narrowing conversions 3339 if (SrcEltSize > (2 * EltSize)) { 3340 if (IsInt2FP) { 3341 // One narrowing int_to_fp, then an fp_round. 3342 assert(EltVT == MVT::f16 && "Unexpected [US]_TO_FP lowering"); 3343 MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount()); 3344 SDValue Int2FP = DAG.getNode(Op.getOpcode(), DL, InterimFVT, Src); 3345 return DAG.getFPExtendOrRound(Int2FP, DL, VT); 3346 } 3347 // FP2Int 3348 // One narrowing fp_to_int, then truncate the integer. If the float isn't 3349 // representable by the integer, the result is poison. 3350 MVT IVecVT = MVT::getVectorVT(MVT::getIntegerVT(SrcEltSize / 2), 3351 VT.getVectorElementCount()); 3352 SDValue FP2Int = DAG.getNode(Op.getOpcode(), DL, IVecVT, Src); 3353 return DAG.getNode(ISD::TRUNCATE, DL, VT, FP2Int); 3354 } 3355 3356 // Scalable vectors can exit here. Patterns will handle equally-sized 3357 // conversions halving/doubling ones. 3358 if (!VT.isFixedLengthVector()) 3359 return Op; 3360 3361 // For fixed-length vectors we lower to a custom "VL" node. 3362 unsigned RVVOpc = 0; 3363 switch (Op.getOpcode()) { 3364 default: 3365 llvm_unreachable("Impossible opcode"); 3366 case ISD::FP_TO_SINT: 3367 RVVOpc = RISCVISD::FP_TO_SINT_VL; 3368 break; 3369 case ISD::FP_TO_UINT: 3370 RVVOpc = RISCVISD::FP_TO_UINT_VL; 3371 break; 3372 case ISD::SINT_TO_FP: 3373 RVVOpc = RISCVISD::SINT_TO_FP_VL; 3374 break; 3375 case ISD::UINT_TO_FP: 3376 RVVOpc = RISCVISD::UINT_TO_FP_VL; 3377 break; 3378 } 3379 3380 MVT ContainerVT, SrcContainerVT; 3381 // Derive the reference container type from the larger vector type. 3382 if (SrcEltSize > EltSize) { 3383 SrcContainerVT = getContainerForFixedLengthVector(SrcVT); 3384 ContainerVT = 3385 SrcContainerVT.changeVectorElementType(VT.getVectorElementType()); 3386 } else { 3387 ContainerVT = getContainerForFixedLengthVector(VT); 3388 SrcContainerVT = ContainerVT.changeVectorElementType(SrcEltVT); 3389 } 3390 3391 SDValue Mask, VL; 3392 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 3393 3394 Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); 3395 Src = DAG.getNode(RVVOpc, DL, ContainerVT, Src, Mask, VL); 3396 return convertFromScalableVector(VT, Src, DAG, Subtarget); 3397 } 3398 case ISD::FP_TO_SINT_SAT: 3399 case ISD::FP_TO_UINT_SAT: 3400 return lowerFP_TO_INT_SAT(Op, DAG, Subtarget); 3401 case ISD::FTRUNC: 3402 case ISD::FCEIL: 3403 case ISD::FFLOOR: 3404 return lowerFTRUNC_FCEIL_FFLOOR(Op, DAG); 3405 case ISD::FROUND: 3406 return lowerFROUND(Op, DAG); 3407 case ISD::VECREDUCE_ADD: 3408 case ISD::VECREDUCE_UMAX: 3409 case ISD::VECREDUCE_SMAX: 3410 case ISD::VECREDUCE_UMIN: 3411 case ISD::VECREDUCE_SMIN: 3412 return lowerVECREDUCE(Op, DAG); 3413 case ISD::VECREDUCE_AND: 3414 case ISD::VECREDUCE_OR: 3415 case ISD::VECREDUCE_XOR: 3416 if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) 3417 return lowerVectorMaskVecReduction(Op, DAG, /*IsVP*/ false); 3418 return lowerVECREDUCE(Op, DAG); 3419 case ISD::VECREDUCE_FADD: 3420 case ISD::VECREDUCE_SEQ_FADD: 3421 case ISD::VECREDUCE_FMIN: 3422 case ISD::VECREDUCE_FMAX: 3423 return lowerFPVECREDUCE(Op, DAG); 3424 case ISD::VP_REDUCE_ADD: 3425 case ISD::VP_REDUCE_UMAX: 3426 case ISD::VP_REDUCE_SMAX: 3427 case ISD::VP_REDUCE_UMIN: 3428 case ISD::VP_REDUCE_SMIN: 3429 case ISD::VP_REDUCE_FADD: 3430 case ISD::VP_REDUCE_SEQ_FADD: 3431 case ISD::VP_REDUCE_FMIN: 3432 case ISD::VP_REDUCE_FMAX: 3433 return lowerVPREDUCE(Op, DAG); 3434 case ISD::VP_REDUCE_AND: 3435 case ISD::VP_REDUCE_OR: 3436 case ISD::VP_REDUCE_XOR: 3437 if (Op.getOperand(1).getValueType().getVectorElementType() == MVT::i1) 3438 return lowerVectorMaskVecReduction(Op, DAG, /*IsVP*/ true); 3439 return lowerVPREDUCE(Op, DAG); 3440 case ISD::INSERT_SUBVECTOR: 3441 return lowerINSERT_SUBVECTOR(Op, DAG); 3442 case ISD::EXTRACT_SUBVECTOR: 3443 return lowerEXTRACT_SUBVECTOR(Op, DAG); 3444 case ISD::STEP_VECTOR: 3445 return lowerSTEP_VECTOR(Op, DAG); 3446 case ISD::VECTOR_REVERSE: 3447 return lowerVECTOR_REVERSE(Op, DAG); 3448 case ISD::VECTOR_SPLICE: 3449 return lowerVECTOR_SPLICE(Op, DAG); 3450 case ISD::BUILD_VECTOR: 3451 return lowerBUILD_VECTOR(Op, DAG, Subtarget); 3452 case ISD::SPLAT_VECTOR: 3453 if (Op.getValueType().getVectorElementType() == MVT::i1) 3454 return lowerVectorMaskSplat(Op, DAG); 3455 return SDValue(); 3456 case ISD::VECTOR_SHUFFLE: 3457 return lowerVECTOR_SHUFFLE(Op, DAG, Subtarget); 3458 case ISD::CONCAT_VECTORS: { 3459 // Split CONCAT_VECTORS into a series of INSERT_SUBVECTOR nodes. This is 3460 // better than going through the stack, as the default expansion does. 3461 SDLoc DL(Op); 3462 MVT VT = Op.getSimpleValueType(); 3463 unsigned NumOpElts = 3464 Op.getOperand(0).getSimpleValueType().getVectorMinNumElements(); 3465 SDValue Vec = DAG.getUNDEF(VT); 3466 for (const auto &OpIdx : enumerate(Op->ops())) { 3467 SDValue SubVec = OpIdx.value(); 3468 // Don't insert undef subvectors. 3469 if (SubVec.isUndef()) 3470 continue; 3471 Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, Vec, SubVec, 3472 DAG.getIntPtrConstant(OpIdx.index() * NumOpElts, DL)); 3473 } 3474 return Vec; 3475 } 3476 case ISD::LOAD: 3477 if (auto V = expandUnalignedRVVLoad(Op, DAG)) 3478 return V; 3479 if (Op.getValueType().isFixedLengthVector()) 3480 return lowerFixedLengthVectorLoadToRVV(Op, DAG); 3481 return Op; 3482 case ISD::STORE: 3483 if (auto V = expandUnalignedRVVStore(Op, DAG)) 3484 return V; 3485 if (Op.getOperand(1).getValueType().isFixedLengthVector()) 3486 return lowerFixedLengthVectorStoreToRVV(Op, DAG); 3487 return Op; 3488 case ISD::MLOAD: 3489 case ISD::VP_LOAD: 3490 return lowerMaskedLoad(Op, DAG); 3491 case ISD::MSTORE: 3492 case ISD::VP_STORE: 3493 return lowerMaskedStore(Op, DAG); 3494 case ISD::SETCC: 3495 return lowerFixedLengthVectorSetccToRVV(Op, DAG); 3496 case ISD::ADD: 3497 return lowerToScalableOp(Op, DAG, RISCVISD::ADD_VL); 3498 case ISD::SUB: 3499 return lowerToScalableOp(Op, DAG, RISCVISD::SUB_VL); 3500 case ISD::MUL: 3501 return lowerToScalableOp(Op, DAG, RISCVISD::MUL_VL); 3502 case ISD::MULHS: 3503 return lowerToScalableOp(Op, DAG, RISCVISD::MULHS_VL); 3504 case ISD::MULHU: 3505 return lowerToScalableOp(Op, DAG, RISCVISD::MULHU_VL); 3506 case ISD::AND: 3507 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMAND_VL, 3508 RISCVISD::AND_VL); 3509 case ISD::OR: 3510 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMOR_VL, 3511 RISCVISD::OR_VL); 3512 case ISD::XOR: 3513 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMXOR_VL, 3514 RISCVISD::XOR_VL); 3515 case ISD::SDIV: 3516 return lowerToScalableOp(Op, DAG, RISCVISD::SDIV_VL); 3517 case ISD::SREM: 3518 return lowerToScalableOp(Op, DAG, RISCVISD::SREM_VL); 3519 case ISD::UDIV: 3520 return lowerToScalableOp(Op, DAG, RISCVISD::UDIV_VL); 3521 case ISD::UREM: 3522 return lowerToScalableOp(Op, DAG, RISCVISD::UREM_VL); 3523 case ISD::SHL: 3524 case ISD::SRA: 3525 case ISD::SRL: 3526 if (Op.getSimpleValueType().isFixedLengthVector()) 3527 return lowerFixedLengthVectorShiftToRVV(Op, DAG); 3528 // This can be called for an i32 shift amount that needs to be promoted. 3529 assert(Op.getOperand(1).getValueType() == MVT::i32 && Subtarget.is64Bit() && 3530 "Unexpected custom legalisation"); 3531 return SDValue(); 3532 case ISD::SADDSAT: 3533 return lowerToScalableOp(Op, DAG, RISCVISD::SADDSAT_VL); 3534 case ISD::UADDSAT: 3535 return lowerToScalableOp(Op, DAG, RISCVISD::UADDSAT_VL); 3536 case ISD::SSUBSAT: 3537 return lowerToScalableOp(Op, DAG, RISCVISD::SSUBSAT_VL); 3538 case ISD::USUBSAT: 3539 return lowerToScalableOp(Op, DAG, RISCVISD::USUBSAT_VL); 3540 case ISD::FADD: 3541 return lowerToScalableOp(Op, DAG, RISCVISD::FADD_VL); 3542 case ISD::FSUB: 3543 return lowerToScalableOp(Op, DAG, RISCVISD::FSUB_VL); 3544 case ISD::FMUL: 3545 return lowerToScalableOp(Op, DAG, RISCVISD::FMUL_VL); 3546 case ISD::FDIV: 3547 return lowerToScalableOp(Op, DAG, RISCVISD::FDIV_VL); 3548 case ISD::FNEG: 3549 return lowerToScalableOp(Op, DAG, RISCVISD::FNEG_VL); 3550 case ISD::FABS: 3551 return lowerToScalableOp(Op, DAG, RISCVISD::FABS_VL); 3552 case ISD::FSQRT: 3553 return lowerToScalableOp(Op, DAG, RISCVISD::FSQRT_VL); 3554 case ISD::FMA: 3555 return lowerToScalableOp(Op, DAG, RISCVISD::FMA_VL); 3556 case ISD::SMIN: 3557 return lowerToScalableOp(Op, DAG, RISCVISD::SMIN_VL); 3558 case ISD::SMAX: 3559 return lowerToScalableOp(Op, DAG, RISCVISD::SMAX_VL); 3560 case ISD::UMIN: 3561 return lowerToScalableOp(Op, DAG, RISCVISD::UMIN_VL); 3562 case ISD::UMAX: 3563 return lowerToScalableOp(Op, DAG, RISCVISD::UMAX_VL); 3564 case ISD::FMINNUM: 3565 return lowerToScalableOp(Op, DAG, RISCVISD::FMINNUM_VL); 3566 case ISD::FMAXNUM: 3567 return lowerToScalableOp(Op, DAG, RISCVISD::FMAXNUM_VL); 3568 case ISD::ABS: 3569 return lowerABS(Op, DAG); 3570 case ISD::CTLZ_ZERO_UNDEF: 3571 case ISD::CTTZ_ZERO_UNDEF: 3572 return lowerCTLZ_CTTZ_ZERO_UNDEF(Op, DAG); 3573 case ISD::VSELECT: 3574 return lowerFixedLengthVectorSelectToRVV(Op, DAG); 3575 case ISD::FCOPYSIGN: 3576 return lowerFixedLengthVectorFCOPYSIGNToRVV(Op, DAG); 3577 case ISD::MGATHER: 3578 case ISD::VP_GATHER: 3579 return lowerMaskedGather(Op, DAG); 3580 case ISD::MSCATTER: 3581 case ISD::VP_SCATTER: 3582 return lowerMaskedScatter(Op, DAG); 3583 case ISD::FLT_ROUNDS_: 3584 return lowerGET_ROUNDING(Op, DAG); 3585 case ISD::SET_ROUNDING: 3586 return lowerSET_ROUNDING(Op, DAG); 3587 case ISD::VP_SELECT: 3588 return lowerVPOp(Op, DAG, RISCVISD::VSELECT_VL); 3589 case ISD::VP_MERGE: 3590 return lowerVPOp(Op, DAG, RISCVISD::VP_MERGE_VL); 3591 case ISD::VP_ADD: 3592 return lowerVPOp(Op, DAG, RISCVISD::ADD_VL); 3593 case ISD::VP_SUB: 3594 return lowerVPOp(Op, DAG, RISCVISD::SUB_VL); 3595 case ISD::VP_MUL: 3596 return lowerVPOp(Op, DAG, RISCVISD::MUL_VL); 3597 case ISD::VP_SDIV: 3598 return lowerVPOp(Op, DAG, RISCVISD::SDIV_VL); 3599 case ISD::VP_UDIV: 3600 return lowerVPOp(Op, DAG, RISCVISD::UDIV_VL); 3601 case ISD::VP_SREM: 3602 return lowerVPOp(Op, DAG, RISCVISD::SREM_VL); 3603 case ISD::VP_UREM: 3604 return lowerVPOp(Op, DAG, RISCVISD::UREM_VL); 3605 case ISD::VP_AND: 3606 return lowerLogicVPOp(Op, DAG, RISCVISD::VMAND_VL, RISCVISD::AND_VL); 3607 case ISD::VP_OR: 3608 return lowerLogicVPOp(Op, DAG, RISCVISD::VMOR_VL, RISCVISD::OR_VL); 3609 case ISD::VP_XOR: 3610 return lowerLogicVPOp(Op, DAG, RISCVISD::VMXOR_VL, RISCVISD::XOR_VL); 3611 case ISD::VP_ASHR: 3612 return lowerVPOp(Op, DAG, RISCVISD::SRA_VL); 3613 case ISD::VP_LSHR: 3614 return lowerVPOp(Op, DAG, RISCVISD::SRL_VL); 3615 case ISD::VP_SHL: 3616 return lowerVPOp(Op, DAG, RISCVISD::SHL_VL); 3617 case ISD::VP_FADD: 3618 return lowerVPOp(Op, DAG, RISCVISD::FADD_VL); 3619 case ISD::VP_FSUB: 3620 return lowerVPOp(Op, DAG, RISCVISD::FSUB_VL); 3621 case ISD::VP_FMUL: 3622 return lowerVPOp(Op, DAG, RISCVISD::FMUL_VL); 3623 case ISD::VP_FDIV: 3624 return lowerVPOp(Op, DAG, RISCVISD::FDIV_VL); 3625 case ISD::VP_FNEG: 3626 return lowerVPOp(Op, DAG, RISCVISD::FNEG_VL); 3627 case ISD::VP_FMA: 3628 return lowerVPOp(Op, DAG, RISCVISD::FMA_VL); 3629 case ISD::VP_SEXT: 3630 case ISD::VP_ZEXT: 3631 if (Op.getOperand(0).getSimpleValueType().getVectorElementType() == MVT::i1) 3632 return lowerVPExtMaskOp(Op, DAG); 3633 return lowerVPOp(Op, DAG, 3634 Op.getOpcode() == ISD::VP_SEXT ? RISCVISD::VSEXT_VL 3635 : RISCVISD::VZEXT_VL); 3636 case ISD::VP_TRUNC: 3637 return lowerVectorTruncLike(Op, DAG); 3638 case ISD::VP_FP_ROUND: 3639 return lowerVectorFPRoundLike(Op, DAG); 3640 case ISD::VP_FPTOSI: 3641 return lowerVPFPIntConvOp(Op, DAG, RISCVISD::FP_TO_SINT_VL); 3642 case ISD::VP_FPTOUI: 3643 return lowerVPFPIntConvOp(Op, DAG, RISCVISD::FP_TO_UINT_VL); 3644 case ISD::VP_SITOFP: 3645 return lowerVPFPIntConvOp(Op, DAG, RISCVISD::SINT_TO_FP_VL); 3646 case ISD::VP_UITOFP: 3647 return lowerVPFPIntConvOp(Op, DAG, RISCVISD::UINT_TO_FP_VL); 3648 case ISD::VP_SETCC: 3649 return lowerVPOp(Op, DAG, RISCVISD::SETCC_VL); 3650 } 3651 } 3652 3653 static SDValue getTargetNode(GlobalAddressSDNode *N, SDLoc DL, EVT Ty, 3654 SelectionDAG &DAG, unsigned Flags) { 3655 return DAG.getTargetGlobalAddress(N->getGlobal(), DL, Ty, 0, Flags); 3656 } 3657 3658 static SDValue getTargetNode(BlockAddressSDNode *N, SDLoc DL, EVT Ty, 3659 SelectionDAG &DAG, unsigned Flags) { 3660 return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, N->getOffset(), 3661 Flags); 3662 } 3663 3664 static SDValue getTargetNode(ConstantPoolSDNode *N, SDLoc DL, EVT Ty, 3665 SelectionDAG &DAG, unsigned Flags) { 3666 return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlign(), 3667 N->getOffset(), Flags); 3668 } 3669 3670 static SDValue getTargetNode(JumpTableSDNode *N, SDLoc DL, EVT Ty, 3671 SelectionDAG &DAG, unsigned Flags) { 3672 return DAG.getTargetJumpTable(N->getIndex(), Ty, Flags); 3673 } 3674 3675 template <class NodeTy> 3676 SDValue RISCVTargetLowering::getAddr(NodeTy *N, SelectionDAG &DAG, 3677 bool IsLocal) const { 3678 SDLoc DL(N); 3679 EVT Ty = getPointerTy(DAG.getDataLayout()); 3680 3681 if (isPositionIndependent()) { 3682 SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0); 3683 if (IsLocal) 3684 // Use PC-relative addressing to access the symbol. This generates the 3685 // pattern (PseudoLLA sym), which expands to (addi (auipc %pcrel_hi(sym)) 3686 // %pcrel_lo(auipc)). 3687 return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0); 3688 3689 // Use PC-relative addressing to access the GOT for this symbol, then load 3690 // the address from the GOT. This generates the pattern (PseudoLA sym), 3691 // which expands to (ld (addi (auipc %got_pcrel_hi(sym)) %pcrel_lo(auipc))). 3692 SDValue Load = 3693 SDValue(DAG.getMachineNode(RISCV::PseudoLA, DL, Ty, Addr), 0); 3694 MachineFunction &MF = DAG.getMachineFunction(); 3695 MachineMemOperand *MemOp = MF.getMachineMemOperand( 3696 MachinePointerInfo::getGOT(MF), 3697 MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable | 3698 MachineMemOperand::MOInvariant, 3699 LLT(Ty.getSimpleVT()), Align(Ty.getFixedSizeInBits() / 8)); 3700 DAG.setNodeMemRefs(cast<MachineSDNode>(Load.getNode()), {MemOp}); 3701 return Load; 3702 } 3703 3704 switch (getTargetMachine().getCodeModel()) { 3705 default: 3706 report_fatal_error("Unsupported code model for lowering"); 3707 case CodeModel::Small: { 3708 // Generate a sequence for accessing addresses within the first 2 GiB of 3709 // address space. This generates the pattern (addi (lui %hi(sym)) %lo(sym)). 3710 SDValue AddrHi = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_HI); 3711 SDValue AddrLo = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_LO); 3712 SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0); 3713 return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNHi, AddrLo), 0); 3714 } 3715 case CodeModel::Medium: { 3716 // Generate a sequence for accessing addresses within any 2GiB range within 3717 // the address space. This generates the pattern (PseudoLLA sym), which 3718 // expands to (addi (auipc %pcrel_hi(sym)) %pcrel_lo(auipc)). 3719 SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0); 3720 return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0); 3721 } 3722 } 3723 } 3724 3725 template SDValue RISCVTargetLowering::getAddr<GlobalAddressSDNode>( 3726 GlobalAddressSDNode *N, SelectionDAG &DAG, bool IsLocal) const; 3727 template SDValue RISCVTargetLowering::getAddr<BlockAddressSDNode>( 3728 BlockAddressSDNode *N, SelectionDAG &DAG, bool IsLocal) const; 3729 template SDValue RISCVTargetLowering::getAddr<ConstantPoolSDNode>( 3730 ConstantPoolSDNode *N, SelectionDAG &DAG, bool IsLocal) const; 3731 template SDValue RISCVTargetLowering::getAddr<JumpTableSDNode>( 3732 JumpTableSDNode *N, SelectionDAG &DAG, bool IsLocal) const; 3733 3734 SDValue RISCVTargetLowering::lowerGlobalAddress(SDValue Op, 3735 SelectionDAG &DAG) const { 3736 SDLoc DL(Op); 3737 EVT Ty = Op.getValueType(); 3738 GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op); 3739 int64_t Offset = N->getOffset(); 3740 MVT XLenVT = Subtarget.getXLenVT(); 3741 3742 const GlobalValue *GV = N->getGlobal(); 3743 bool IsLocal = getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV); 3744 SDValue Addr = getAddr(N, DAG, IsLocal); 3745 3746 // In order to maximise the opportunity for common subexpression elimination, 3747 // emit a separate ADD node for the global address offset instead of folding 3748 // it in the global address node. Later peephole optimisations may choose to 3749 // fold it back in when profitable. 3750 if (Offset != 0) 3751 return DAG.getNode(ISD::ADD, DL, Ty, Addr, 3752 DAG.getConstant(Offset, DL, XLenVT)); 3753 return Addr; 3754 } 3755 3756 SDValue RISCVTargetLowering::lowerBlockAddress(SDValue Op, 3757 SelectionDAG &DAG) const { 3758 BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op); 3759 3760 return getAddr(N, DAG); 3761 } 3762 3763 SDValue RISCVTargetLowering::lowerConstantPool(SDValue Op, 3764 SelectionDAG &DAG) const { 3765 ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op); 3766 3767 return getAddr(N, DAG); 3768 } 3769 3770 SDValue RISCVTargetLowering::lowerJumpTable(SDValue Op, 3771 SelectionDAG &DAG) const { 3772 JumpTableSDNode *N = cast<JumpTableSDNode>(Op); 3773 3774 return getAddr(N, DAG); 3775 } 3776 3777 SDValue RISCVTargetLowering::getStaticTLSAddr(GlobalAddressSDNode *N, 3778 SelectionDAG &DAG, 3779 bool UseGOT) const { 3780 SDLoc DL(N); 3781 EVT Ty = getPointerTy(DAG.getDataLayout()); 3782 const GlobalValue *GV = N->getGlobal(); 3783 MVT XLenVT = Subtarget.getXLenVT(); 3784 3785 if (UseGOT) { 3786 // Use PC-relative addressing to access the GOT for this TLS symbol, then 3787 // load the address from the GOT and add the thread pointer. This generates 3788 // the pattern (PseudoLA_TLS_IE sym), which expands to 3789 // (ld (auipc %tls_ie_pcrel_hi(sym)) %pcrel_lo(auipc)). 3790 SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0); 3791 SDValue Load = 3792 SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_IE, DL, Ty, Addr), 0); 3793 MachineFunction &MF = DAG.getMachineFunction(); 3794 MachineMemOperand *MemOp = MF.getMachineMemOperand( 3795 MachinePointerInfo::getGOT(MF), 3796 MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable | 3797 MachineMemOperand::MOInvariant, 3798 LLT(Ty.getSimpleVT()), Align(Ty.getFixedSizeInBits() / 8)); 3799 DAG.setNodeMemRefs(cast<MachineSDNode>(Load.getNode()), {MemOp}); 3800 3801 // Add the thread pointer. 3802 SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT); 3803 return DAG.getNode(ISD::ADD, DL, Ty, Load, TPReg); 3804 } 3805 3806 // Generate a sequence for accessing the address relative to the thread 3807 // pointer, with the appropriate adjustment for the thread pointer offset. 3808 // This generates the pattern 3809 // (add (add_tprel (lui %tprel_hi(sym)) tp %tprel_add(sym)) %tprel_lo(sym)) 3810 SDValue AddrHi = 3811 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_HI); 3812 SDValue AddrAdd = 3813 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_ADD); 3814 SDValue AddrLo = 3815 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_LO); 3816 3817 SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0); 3818 SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT); 3819 SDValue MNAdd = SDValue( 3820 DAG.getMachineNode(RISCV::PseudoAddTPRel, DL, Ty, MNHi, TPReg, AddrAdd), 3821 0); 3822 return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNAdd, AddrLo), 0); 3823 } 3824 3825 SDValue RISCVTargetLowering::getDynamicTLSAddr(GlobalAddressSDNode *N, 3826 SelectionDAG &DAG) const { 3827 SDLoc DL(N); 3828 EVT Ty = getPointerTy(DAG.getDataLayout()); 3829 IntegerType *CallTy = Type::getIntNTy(*DAG.getContext(), Ty.getSizeInBits()); 3830 const GlobalValue *GV = N->getGlobal(); 3831 3832 // Use a PC-relative addressing mode to access the global dynamic GOT address. 3833 // This generates the pattern (PseudoLA_TLS_GD sym), which expands to 3834 // (addi (auipc %tls_gd_pcrel_hi(sym)) %pcrel_lo(auipc)). 3835 SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0); 3836 SDValue Load = 3837 SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_GD, DL, Ty, Addr), 0); 3838 3839 // Prepare argument list to generate call. 3840 ArgListTy Args; 3841 ArgListEntry Entry; 3842 Entry.Node = Load; 3843 Entry.Ty = CallTy; 3844 Args.push_back(Entry); 3845 3846 // Setup call to __tls_get_addr. 3847 TargetLowering::CallLoweringInfo CLI(DAG); 3848 CLI.setDebugLoc(DL) 3849 .setChain(DAG.getEntryNode()) 3850 .setLibCallee(CallingConv::C, CallTy, 3851 DAG.getExternalSymbol("__tls_get_addr", Ty), 3852 std::move(Args)); 3853 3854 return LowerCallTo(CLI).first; 3855 } 3856 3857 SDValue RISCVTargetLowering::lowerGlobalTLSAddress(SDValue Op, 3858 SelectionDAG &DAG) const { 3859 SDLoc DL(Op); 3860 EVT Ty = Op.getValueType(); 3861 GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op); 3862 int64_t Offset = N->getOffset(); 3863 MVT XLenVT = Subtarget.getXLenVT(); 3864 3865 TLSModel::Model Model = getTargetMachine().getTLSModel(N->getGlobal()); 3866 3867 if (DAG.getMachineFunction().getFunction().getCallingConv() == 3868 CallingConv::GHC) 3869 report_fatal_error("In GHC calling convention TLS is not supported"); 3870 3871 SDValue Addr; 3872 switch (Model) { 3873 case TLSModel::LocalExec: 3874 Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/false); 3875 break; 3876 case TLSModel::InitialExec: 3877 Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/true); 3878 break; 3879 case TLSModel::LocalDynamic: 3880 case TLSModel::GeneralDynamic: 3881 Addr = getDynamicTLSAddr(N, DAG); 3882 break; 3883 } 3884 3885 // In order to maximise the opportunity for common subexpression elimination, 3886 // emit a separate ADD node for the global address offset instead of folding 3887 // it in the global address node. Later peephole optimisations may choose to 3888 // fold it back in when profitable. 3889 if (Offset != 0) 3890 return DAG.getNode(ISD::ADD, DL, Ty, Addr, 3891 DAG.getConstant(Offset, DL, XLenVT)); 3892 return Addr; 3893 } 3894 3895 SDValue RISCVTargetLowering::lowerSELECT(SDValue Op, SelectionDAG &DAG) const { 3896 SDValue CondV = Op.getOperand(0); 3897 SDValue TrueV = Op.getOperand(1); 3898 SDValue FalseV = Op.getOperand(2); 3899 SDLoc DL(Op); 3900 MVT VT = Op.getSimpleValueType(); 3901 MVT XLenVT = Subtarget.getXLenVT(); 3902 3903 // Lower vector SELECTs to VSELECTs by splatting the condition. 3904 if (VT.isVector()) { 3905 MVT SplatCondVT = VT.changeVectorElementType(MVT::i1); 3906 SDValue CondSplat = VT.isScalableVector() 3907 ? DAG.getSplatVector(SplatCondVT, DL, CondV) 3908 : DAG.getSplatBuildVector(SplatCondVT, DL, CondV); 3909 return DAG.getNode(ISD::VSELECT, DL, VT, CondSplat, TrueV, FalseV); 3910 } 3911 3912 // If the result type is XLenVT and CondV is the output of a SETCC node 3913 // which also operated on XLenVT inputs, then merge the SETCC node into the 3914 // lowered RISCVISD::SELECT_CC to take advantage of the integer 3915 // compare+branch instructions. i.e.: 3916 // (select (setcc lhs, rhs, cc), truev, falsev) 3917 // -> (riscvisd::select_cc lhs, rhs, cc, truev, falsev) 3918 if (VT == XLenVT && CondV.getOpcode() == ISD::SETCC && 3919 CondV.getOperand(0).getSimpleValueType() == XLenVT) { 3920 SDValue LHS = CondV.getOperand(0); 3921 SDValue RHS = CondV.getOperand(1); 3922 const auto *CC = cast<CondCodeSDNode>(CondV.getOperand(2)); 3923 ISD::CondCode CCVal = CC->get(); 3924 3925 // Special case for a select of 2 constants that have a diffence of 1. 3926 // Normally this is done by DAGCombine, but if the select is introduced by 3927 // type legalization or op legalization, we miss it. Restricting to SETLT 3928 // case for now because that is what signed saturating add/sub need. 3929 // FIXME: We don't need the condition to be SETLT or even a SETCC, 3930 // but we would probably want to swap the true/false values if the condition 3931 // is SETGE/SETLE to avoid an XORI. 3932 if (isa<ConstantSDNode>(TrueV) && isa<ConstantSDNode>(FalseV) && 3933 CCVal == ISD::SETLT) { 3934 const APInt &TrueVal = cast<ConstantSDNode>(TrueV)->getAPIntValue(); 3935 const APInt &FalseVal = cast<ConstantSDNode>(FalseV)->getAPIntValue(); 3936 if (TrueVal - 1 == FalseVal) 3937 return DAG.getNode(ISD::ADD, DL, Op.getValueType(), CondV, FalseV); 3938 if (TrueVal + 1 == FalseVal) 3939 return DAG.getNode(ISD::SUB, DL, Op.getValueType(), FalseV, CondV); 3940 } 3941 3942 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 3943 3944 SDValue TargetCC = DAG.getCondCode(CCVal); 3945 SDValue Ops[] = {LHS, RHS, TargetCC, TrueV, FalseV}; 3946 return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops); 3947 } 3948 3949 // Otherwise: 3950 // (select condv, truev, falsev) 3951 // -> (riscvisd::select_cc condv, zero, setne, truev, falsev) 3952 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 3953 SDValue SetNE = DAG.getCondCode(ISD::SETNE); 3954 3955 SDValue Ops[] = {CondV, Zero, SetNE, TrueV, FalseV}; 3956 3957 return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops); 3958 } 3959 3960 SDValue RISCVTargetLowering::lowerBRCOND(SDValue Op, SelectionDAG &DAG) const { 3961 SDValue CondV = Op.getOperand(1); 3962 SDLoc DL(Op); 3963 MVT XLenVT = Subtarget.getXLenVT(); 3964 3965 if (CondV.getOpcode() == ISD::SETCC && 3966 CondV.getOperand(0).getValueType() == XLenVT) { 3967 SDValue LHS = CondV.getOperand(0); 3968 SDValue RHS = CondV.getOperand(1); 3969 ISD::CondCode CCVal = cast<CondCodeSDNode>(CondV.getOperand(2))->get(); 3970 3971 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 3972 3973 SDValue TargetCC = DAG.getCondCode(CCVal); 3974 return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0), 3975 LHS, RHS, TargetCC, Op.getOperand(2)); 3976 } 3977 3978 return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0), 3979 CondV, DAG.getConstant(0, DL, XLenVT), 3980 DAG.getCondCode(ISD::SETNE), Op.getOperand(2)); 3981 } 3982 3983 SDValue RISCVTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const { 3984 MachineFunction &MF = DAG.getMachineFunction(); 3985 RISCVMachineFunctionInfo *FuncInfo = MF.getInfo<RISCVMachineFunctionInfo>(); 3986 3987 SDLoc DL(Op); 3988 SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), 3989 getPointerTy(MF.getDataLayout())); 3990 3991 // vastart just stores the address of the VarArgsFrameIndex slot into the 3992 // memory location argument. 3993 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 3994 return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1), 3995 MachinePointerInfo(SV)); 3996 } 3997 3998 SDValue RISCVTargetLowering::lowerFRAMEADDR(SDValue Op, 3999 SelectionDAG &DAG) const { 4000 const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo(); 4001 MachineFunction &MF = DAG.getMachineFunction(); 4002 MachineFrameInfo &MFI = MF.getFrameInfo(); 4003 MFI.setFrameAddressIsTaken(true); 4004 Register FrameReg = RI.getFrameRegister(MF); 4005 int XLenInBytes = Subtarget.getXLen() / 8; 4006 4007 EVT VT = Op.getValueType(); 4008 SDLoc DL(Op); 4009 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, FrameReg, VT); 4010 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 4011 while (Depth--) { 4012 int Offset = -(XLenInBytes * 2); 4013 SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr, 4014 DAG.getIntPtrConstant(Offset, DL)); 4015 FrameAddr = 4016 DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo()); 4017 } 4018 return FrameAddr; 4019 } 4020 4021 SDValue RISCVTargetLowering::lowerRETURNADDR(SDValue Op, 4022 SelectionDAG &DAG) const { 4023 const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo(); 4024 MachineFunction &MF = DAG.getMachineFunction(); 4025 MachineFrameInfo &MFI = MF.getFrameInfo(); 4026 MFI.setReturnAddressIsTaken(true); 4027 MVT XLenVT = Subtarget.getXLenVT(); 4028 int XLenInBytes = Subtarget.getXLen() / 8; 4029 4030 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 4031 return SDValue(); 4032 4033 EVT VT = Op.getValueType(); 4034 SDLoc DL(Op); 4035 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 4036 if (Depth) { 4037 int Off = -XLenInBytes; 4038 SDValue FrameAddr = lowerFRAMEADDR(Op, DAG); 4039 SDValue Offset = DAG.getConstant(Off, DL, VT); 4040 return DAG.getLoad(VT, DL, DAG.getEntryNode(), 4041 DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset), 4042 MachinePointerInfo()); 4043 } 4044 4045 // Return the value of the return address register, marking it an implicit 4046 // live-in. 4047 Register Reg = MF.addLiveIn(RI.getRARegister(), getRegClassFor(XLenVT)); 4048 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, XLenVT); 4049 } 4050 4051 SDValue RISCVTargetLowering::lowerShiftLeftParts(SDValue Op, 4052 SelectionDAG &DAG) const { 4053 SDLoc DL(Op); 4054 SDValue Lo = Op.getOperand(0); 4055 SDValue Hi = Op.getOperand(1); 4056 SDValue Shamt = Op.getOperand(2); 4057 EVT VT = Lo.getValueType(); 4058 4059 // if Shamt-XLEN < 0: // Shamt < XLEN 4060 // Lo = Lo << Shamt 4061 // Hi = (Hi << Shamt) | ((Lo >>u 1) >>u (XLEN-1 ^ Shamt)) 4062 // else: 4063 // Lo = 0 4064 // Hi = Lo << (Shamt-XLEN) 4065 4066 SDValue Zero = DAG.getConstant(0, DL, VT); 4067 SDValue One = DAG.getConstant(1, DL, VT); 4068 SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT); 4069 SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT); 4070 SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen); 4071 SDValue XLenMinus1Shamt = DAG.getNode(ISD::XOR, DL, VT, Shamt, XLenMinus1); 4072 4073 SDValue LoTrue = DAG.getNode(ISD::SHL, DL, VT, Lo, Shamt); 4074 SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, VT, Lo, One); 4075 SDValue ShiftRightLo = 4076 DAG.getNode(ISD::SRL, DL, VT, ShiftRight1Lo, XLenMinus1Shamt); 4077 SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, Hi, Shamt); 4078 SDValue HiTrue = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo); 4079 SDValue HiFalse = DAG.getNode(ISD::SHL, DL, VT, Lo, ShamtMinusXLen); 4080 4081 SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT); 4082 4083 Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, Zero); 4084 Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse); 4085 4086 SDValue Parts[2] = {Lo, Hi}; 4087 return DAG.getMergeValues(Parts, DL); 4088 } 4089 4090 SDValue RISCVTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG, 4091 bool IsSRA) const { 4092 SDLoc DL(Op); 4093 SDValue Lo = Op.getOperand(0); 4094 SDValue Hi = Op.getOperand(1); 4095 SDValue Shamt = Op.getOperand(2); 4096 EVT VT = Lo.getValueType(); 4097 4098 // SRA expansion: 4099 // if Shamt-XLEN < 0: // Shamt < XLEN 4100 // Lo = (Lo >>u Shamt) | ((Hi << 1) << (ShAmt ^ XLEN-1)) 4101 // Hi = Hi >>s Shamt 4102 // else: 4103 // Lo = Hi >>s (Shamt-XLEN); 4104 // Hi = Hi >>s (XLEN-1) 4105 // 4106 // SRL expansion: 4107 // if Shamt-XLEN < 0: // Shamt < XLEN 4108 // Lo = (Lo >>u Shamt) | ((Hi << 1) << (ShAmt ^ XLEN-1)) 4109 // Hi = Hi >>u Shamt 4110 // else: 4111 // Lo = Hi >>u (Shamt-XLEN); 4112 // Hi = 0; 4113 4114 unsigned ShiftRightOp = IsSRA ? ISD::SRA : ISD::SRL; 4115 4116 SDValue Zero = DAG.getConstant(0, DL, VT); 4117 SDValue One = DAG.getConstant(1, DL, VT); 4118 SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT); 4119 SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT); 4120 SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen); 4121 SDValue XLenMinus1Shamt = DAG.getNode(ISD::XOR, DL, VT, Shamt, XLenMinus1); 4122 4123 SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, Lo, Shamt); 4124 SDValue ShiftLeftHi1 = DAG.getNode(ISD::SHL, DL, VT, Hi, One); 4125 SDValue ShiftLeftHi = 4126 DAG.getNode(ISD::SHL, DL, VT, ShiftLeftHi1, XLenMinus1Shamt); 4127 SDValue LoTrue = DAG.getNode(ISD::OR, DL, VT, ShiftRightLo, ShiftLeftHi); 4128 SDValue HiTrue = DAG.getNode(ShiftRightOp, DL, VT, Hi, Shamt); 4129 SDValue LoFalse = DAG.getNode(ShiftRightOp, DL, VT, Hi, ShamtMinusXLen); 4130 SDValue HiFalse = 4131 IsSRA ? DAG.getNode(ISD::SRA, DL, VT, Hi, XLenMinus1) : Zero; 4132 4133 SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT); 4134 4135 Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, LoFalse); 4136 Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse); 4137 4138 SDValue Parts[2] = {Lo, Hi}; 4139 return DAG.getMergeValues(Parts, DL); 4140 } 4141 4142 // Lower splats of i1 types to SETCC. For each mask vector type, we have a 4143 // legal equivalently-sized i8 type, so we can use that as a go-between. 4144 SDValue RISCVTargetLowering::lowerVectorMaskSplat(SDValue Op, 4145 SelectionDAG &DAG) const { 4146 SDLoc DL(Op); 4147 MVT VT = Op.getSimpleValueType(); 4148 SDValue SplatVal = Op.getOperand(0); 4149 // All-zeros or all-ones splats are handled specially. 4150 if (ISD::isConstantSplatVectorAllOnes(Op.getNode())) { 4151 SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second; 4152 return DAG.getNode(RISCVISD::VMSET_VL, DL, VT, VL); 4153 } 4154 if (ISD::isConstantSplatVectorAllZeros(Op.getNode())) { 4155 SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second; 4156 return DAG.getNode(RISCVISD::VMCLR_VL, DL, VT, VL); 4157 } 4158 MVT XLenVT = Subtarget.getXLenVT(); 4159 assert(SplatVal.getValueType() == XLenVT && 4160 "Unexpected type for i1 splat value"); 4161 MVT InterVT = VT.changeVectorElementType(MVT::i8); 4162 SplatVal = DAG.getNode(ISD::AND, DL, XLenVT, SplatVal, 4163 DAG.getConstant(1, DL, XLenVT)); 4164 SDValue LHS = DAG.getSplatVector(InterVT, DL, SplatVal); 4165 SDValue Zero = DAG.getConstant(0, DL, InterVT); 4166 return DAG.getSetCC(DL, VT, LHS, Zero, ISD::SETNE); 4167 } 4168 4169 // Custom-lower a SPLAT_VECTOR_PARTS where XLEN<SEW, as the SEW element type is 4170 // illegal (currently only vXi64 RV32). 4171 // FIXME: We could also catch non-constant sign-extended i32 values and lower 4172 // them to VMV_V_X_VL. 4173 SDValue RISCVTargetLowering::lowerSPLAT_VECTOR_PARTS(SDValue Op, 4174 SelectionDAG &DAG) const { 4175 SDLoc DL(Op); 4176 MVT VecVT = Op.getSimpleValueType(); 4177 assert(!Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64 && 4178 "Unexpected SPLAT_VECTOR_PARTS lowering"); 4179 4180 assert(Op.getNumOperands() == 2 && "Unexpected number of operands!"); 4181 SDValue Lo = Op.getOperand(0); 4182 SDValue Hi = Op.getOperand(1); 4183 4184 if (VecVT.isFixedLengthVector()) { 4185 MVT ContainerVT = getContainerForFixedLengthVector(VecVT); 4186 SDLoc DL(Op); 4187 SDValue Mask, VL; 4188 std::tie(Mask, VL) = 4189 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 4190 4191 SDValue Res = 4192 splatPartsI64WithVL(DL, ContainerVT, SDValue(), Lo, Hi, VL, DAG); 4193 return convertFromScalableVector(VecVT, Res, DAG, Subtarget); 4194 } 4195 4196 if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) { 4197 int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue(); 4198 int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue(); 4199 // If Hi constant is all the same sign bit as Lo, lower this as a custom 4200 // node in order to try and match RVV vector/scalar instructions. 4201 if ((LoC >> 31) == HiC) 4202 return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, DAG.getUNDEF(VecVT), 4203 Lo, DAG.getRegister(RISCV::X0, MVT::i32)); 4204 } 4205 4206 // Detect cases where Hi is (SRA Lo, 31) which means Hi is Lo sign extended. 4207 if (Hi.getOpcode() == ISD::SRA && Hi.getOperand(0) == Lo && 4208 isa<ConstantSDNode>(Hi.getOperand(1)) && 4209 Hi.getConstantOperandVal(1) == 31) 4210 return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, DAG.getUNDEF(VecVT), Lo, 4211 DAG.getRegister(RISCV::X0, MVT::i32)); 4212 4213 // Fall back to use a stack store and stride x0 vector load. Use X0 as VL. 4214 return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VecVT, 4215 DAG.getUNDEF(VecVT), Lo, Hi, 4216 DAG.getRegister(RISCV::X0, MVT::i32)); 4217 } 4218 4219 // Custom-lower extensions from mask vectors by using a vselect either with 1 4220 // for zero/any-extension or -1 for sign-extension: 4221 // (vXiN = (s|z)ext vXi1:vmask) -> (vXiN = vselect vmask, (-1 or 1), 0) 4222 // Note that any-extension is lowered identically to zero-extension. 4223 SDValue RISCVTargetLowering::lowerVectorMaskExt(SDValue Op, SelectionDAG &DAG, 4224 int64_t ExtTrueVal) const { 4225 SDLoc DL(Op); 4226 MVT VecVT = Op.getSimpleValueType(); 4227 SDValue Src = Op.getOperand(0); 4228 // Only custom-lower extensions from mask types 4229 assert(Src.getValueType().isVector() && 4230 Src.getValueType().getVectorElementType() == MVT::i1); 4231 4232 if (VecVT.isScalableVector()) { 4233 SDValue SplatZero = DAG.getConstant(0, DL, VecVT); 4234 SDValue SplatTrueVal = DAG.getConstant(ExtTrueVal, DL, VecVT); 4235 return DAG.getNode(ISD::VSELECT, DL, VecVT, Src, SplatTrueVal, SplatZero); 4236 } 4237 4238 MVT ContainerVT = getContainerForFixedLengthVector(VecVT); 4239 MVT I1ContainerVT = 4240 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4241 4242 SDValue CC = convertToScalableVector(I1ContainerVT, Src, DAG, Subtarget); 4243 4244 SDValue Mask, VL; 4245 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 4246 4247 MVT XLenVT = Subtarget.getXLenVT(); 4248 SDValue SplatZero = DAG.getConstant(0, DL, XLenVT); 4249 SDValue SplatTrueVal = DAG.getConstant(ExtTrueVal, DL, XLenVT); 4250 4251 SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, 4252 DAG.getUNDEF(ContainerVT), SplatZero, VL); 4253 SplatTrueVal = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, 4254 DAG.getUNDEF(ContainerVT), SplatTrueVal, VL); 4255 SDValue Select = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC, 4256 SplatTrueVal, SplatZero, VL); 4257 4258 return convertFromScalableVector(VecVT, Select, DAG, Subtarget); 4259 } 4260 4261 SDValue RISCVTargetLowering::lowerFixedLengthVectorExtendToRVV( 4262 SDValue Op, SelectionDAG &DAG, unsigned ExtendOpc) const { 4263 MVT ExtVT = Op.getSimpleValueType(); 4264 // Only custom-lower extensions from fixed-length vector types. 4265 if (!ExtVT.isFixedLengthVector()) 4266 return Op; 4267 MVT VT = Op.getOperand(0).getSimpleValueType(); 4268 // Grab the canonical container type for the extended type. Infer the smaller 4269 // type from that to ensure the same number of vector elements, as we know 4270 // the LMUL will be sufficient to hold the smaller type. 4271 MVT ContainerExtVT = getContainerForFixedLengthVector(ExtVT); 4272 // Get the extended container type manually to ensure the same number of 4273 // vector elements between source and dest. 4274 MVT ContainerVT = MVT::getVectorVT(VT.getVectorElementType(), 4275 ContainerExtVT.getVectorElementCount()); 4276 4277 SDValue Op1 = 4278 convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget); 4279 4280 SDLoc DL(Op); 4281 SDValue Mask, VL; 4282 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 4283 4284 SDValue Ext = DAG.getNode(ExtendOpc, DL, ContainerExtVT, Op1, Mask, VL); 4285 4286 return convertFromScalableVector(ExtVT, Ext, DAG, Subtarget); 4287 } 4288 4289 // Custom-lower truncations from vectors to mask vectors by using a mask and a 4290 // setcc operation: 4291 // (vXi1 = trunc vXiN vec) -> (vXi1 = setcc (and vec, 1), 0, ne) 4292 SDValue RISCVTargetLowering::lowerVectorMaskTruncLike(SDValue Op, 4293 SelectionDAG &DAG) const { 4294 bool IsVPTrunc = Op.getOpcode() == ISD::VP_TRUNC; 4295 SDLoc DL(Op); 4296 EVT MaskVT = Op.getValueType(); 4297 // Only expect to custom-lower truncations to mask types 4298 assert(MaskVT.isVector() && MaskVT.getVectorElementType() == MVT::i1 && 4299 "Unexpected type for vector mask lowering"); 4300 SDValue Src = Op.getOperand(0); 4301 MVT VecVT = Src.getSimpleValueType(); 4302 SDValue Mask, VL; 4303 if (IsVPTrunc) { 4304 Mask = Op.getOperand(1); 4305 VL = Op.getOperand(2); 4306 } 4307 // If this is a fixed vector, we need to convert it to a scalable vector. 4308 MVT ContainerVT = VecVT; 4309 4310 if (VecVT.isFixedLengthVector()) { 4311 ContainerVT = getContainerForFixedLengthVector(VecVT); 4312 Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget); 4313 if (IsVPTrunc) { 4314 MVT MaskContainerVT = 4315 getContainerForFixedLengthVector(Mask.getSimpleValueType()); 4316 Mask = convertToScalableVector(MaskContainerVT, Mask, DAG, Subtarget); 4317 } 4318 } 4319 4320 if (!IsVPTrunc) { 4321 std::tie(Mask, VL) = 4322 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 4323 } 4324 4325 SDValue SplatOne = DAG.getConstant(1, DL, Subtarget.getXLenVT()); 4326 SDValue SplatZero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 4327 4328 SplatOne = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, 4329 DAG.getUNDEF(ContainerVT), SplatOne, VL); 4330 SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, 4331 DAG.getUNDEF(ContainerVT), SplatZero, VL); 4332 4333 MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1); 4334 SDValue Trunc = 4335 DAG.getNode(RISCVISD::AND_VL, DL, ContainerVT, Src, SplatOne, Mask, VL); 4336 Trunc = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskContainerVT, Trunc, SplatZero, 4337 DAG.getCondCode(ISD::SETNE), Mask, VL); 4338 if (MaskVT.isFixedLengthVector()) 4339 Trunc = convertFromScalableVector(MaskVT, Trunc, DAG, Subtarget); 4340 return Trunc; 4341 } 4342 4343 SDValue RISCVTargetLowering::lowerVectorTruncLike(SDValue Op, 4344 SelectionDAG &DAG) const { 4345 bool IsVPTrunc = Op.getOpcode() == ISD::VP_TRUNC; 4346 SDLoc DL(Op); 4347 4348 MVT VT = Op.getSimpleValueType(); 4349 // Only custom-lower vector truncates 4350 assert(VT.isVector() && "Unexpected type for vector truncate lowering"); 4351 4352 // Truncates to mask types are handled differently 4353 if (VT.getVectorElementType() == MVT::i1) 4354 return lowerVectorMaskTruncLike(Op, DAG); 4355 4356 // RVV only has truncates which operate from SEW*2->SEW, so lower arbitrary 4357 // truncates as a series of "RISCVISD::TRUNCATE_VECTOR_VL" nodes which 4358 // truncate by one power of two at a time. 4359 MVT DstEltVT = VT.getVectorElementType(); 4360 4361 SDValue Src = Op.getOperand(0); 4362 MVT SrcVT = Src.getSimpleValueType(); 4363 MVT SrcEltVT = SrcVT.getVectorElementType(); 4364 4365 assert(DstEltVT.bitsLT(SrcEltVT) && isPowerOf2_64(DstEltVT.getSizeInBits()) && 4366 isPowerOf2_64(SrcEltVT.getSizeInBits()) && 4367 "Unexpected vector truncate lowering"); 4368 4369 MVT ContainerVT = SrcVT; 4370 SDValue Mask, VL; 4371 if (IsVPTrunc) { 4372 Mask = Op.getOperand(1); 4373 VL = Op.getOperand(2); 4374 } 4375 if (SrcVT.isFixedLengthVector()) { 4376 ContainerVT = getContainerForFixedLengthVector(SrcVT); 4377 Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget); 4378 if (IsVPTrunc) { 4379 MVT MaskVT = 4380 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4381 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 4382 } 4383 } 4384 4385 SDValue Result = Src; 4386 if (!IsVPTrunc) { 4387 std::tie(Mask, VL) = 4388 getDefaultVLOps(SrcVT, ContainerVT, DL, DAG, Subtarget); 4389 } 4390 4391 LLVMContext &Context = *DAG.getContext(); 4392 const ElementCount Count = ContainerVT.getVectorElementCount(); 4393 do { 4394 SrcEltVT = MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2); 4395 EVT ResultVT = EVT::getVectorVT(Context, SrcEltVT, Count); 4396 Result = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, ResultVT, Result, 4397 Mask, VL); 4398 } while (SrcEltVT != DstEltVT); 4399 4400 if (SrcVT.isFixedLengthVector()) 4401 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 4402 4403 return Result; 4404 } 4405 4406 SDValue RISCVTargetLowering::lowerVectorFPRoundLike(SDValue Op, 4407 SelectionDAG &DAG) const { 4408 bool IsVPFPTrunc = Op.getOpcode() == ISD::VP_FP_ROUND; 4409 // RVV can only do truncate fp to types half the size as the source. We 4410 // custom-lower f64->f16 rounds via RVV's round-to-odd float 4411 // conversion instruction. 4412 SDLoc DL(Op); 4413 MVT VT = Op.getSimpleValueType(); 4414 4415 assert(VT.isVector() && "Unexpected type for vector truncate lowering"); 4416 4417 SDValue Src = Op.getOperand(0); 4418 MVT SrcVT = Src.getSimpleValueType(); 4419 4420 bool IsDirectConv = VT.getVectorElementType() != MVT::f16 || 4421 SrcVT.getVectorElementType() != MVT::f64; 4422 4423 // For FP_ROUND of scalable vectors, leave it to the pattern. 4424 if (!VT.isFixedLengthVector() && !IsVPFPTrunc && IsDirectConv) 4425 return Op; 4426 4427 // Prepare any fixed-length vector operands. 4428 MVT ContainerVT = VT; 4429 SDValue Mask, VL; 4430 if (IsVPFPTrunc) { 4431 Mask = Op.getOperand(1); 4432 VL = Op.getOperand(2); 4433 } 4434 if (VT.isFixedLengthVector()) { 4435 MVT SrcContainerVT = getContainerForFixedLengthVector(SrcVT); 4436 ContainerVT = 4437 SrcContainerVT.changeVectorElementType(VT.getVectorElementType()); 4438 Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); 4439 if (IsVPFPTrunc) { 4440 MVT MaskVT = 4441 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4442 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 4443 } 4444 } 4445 4446 if (!IsVPFPTrunc) 4447 std::tie(Mask, VL) = 4448 getDefaultVLOps(SrcVT, ContainerVT, DL, DAG, Subtarget); 4449 4450 if (IsDirectConv) { 4451 Src = DAG.getNode(RISCVISD::FP_ROUND_VL, DL, ContainerVT, Src, Mask, VL); 4452 if (VT.isFixedLengthVector()) 4453 Src = convertFromScalableVector(VT, Src, DAG, Subtarget); 4454 return Src; 4455 } 4456 4457 MVT InterVT = ContainerVT.changeVectorElementType(MVT::f32); 4458 SDValue IntermediateRound = 4459 DAG.getNode(RISCVISD::VFNCVT_ROD_VL, DL, InterVT, Src, Mask, VL); 4460 SDValue Round = DAG.getNode(RISCVISD::FP_ROUND_VL, DL, ContainerVT, 4461 IntermediateRound, Mask, VL); 4462 if (VT.isFixedLengthVector()) 4463 return convertFromScalableVector(VT, Round, DAG, Subtarget); 4464 return Round; 4465 } 4466 4467 // Custom-legalize INSERT_VECTOR_ELT so that the value is inserted into the 4468 // first position of a vector, and that vector is slid up to the insert index. 4469 // By limiting the active vector length to index+1 and merging with the 4470 // original vector (with an undisturbed tail policy for elements >= VL), we 4471 // achieve the desired result of leaving all elements untouched except the one 4472 // at VL-1, which is replaced with the desired value. 4473 SDValue RISCVTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op, 4474 SelectionDAG &DAG) const { 4475 SDLoc DL(Op); 4476 MVT VecVT = Op.getSimpleValueType(); 4477 SDValue Vec = Op.getOperand(0); 4478 SDValue Val = Op.getOperand(1); 4479 SDValue Idx = Op.getOperand(2); 4480 4481 if (VecVT.getVectorElementType() == MVT::i1) { 4482 // FIXME: For now we just promote to an i8 vector and insert into that, 4483 // but this is probably not optimal. 4484 MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount()); 4485 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec); 4486 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, WideVT, Vec, Val, Idx); 4487 return DAG.getNode(ISD::TRUNCATE, DL, VecVT, Vec); 4488 } 4489 4490 MVT ContainerVT = VecVT; 4491 // If the operand is a fixed-length vector, convert to a scalable one. 4492 if (VecVT.isFixedLengthVector()) { 4493 ContainerVT = getContainerForFixedLengthVector(VecVT); 4494 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 4495 } 4496 4497 MVT XLenVT = Subtarget.getXLenVT(); 4498 4499 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 4500 bool IsLegalInsert = Subtarget.is64Bit() || Val.getValueType() != MVT::i64; 4501 // Even i64-element vectors on RV32 can be lowered without scalar 4502 // legalization if the most-significant 32 bits of the value are not affected 4503 // by the sign-extension of the lower 32 bits. 4504 // TODO: We could also catch sign extensions of a 32-bit value. 4505 if (!IsLegalInsert && isa<ConstantSDNode>(Val)) { 4506 const auto *CVal = cast<ConstantSDNode>(Val); 4507 if (isInt<32>(CVal->getSExtValue())) { 4508 IsLegalInsert = true; 4509 Val = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32); 4510 } 4511 } 4512 4513 SDValue Mask, VL; 4514 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 4515 4516 SDValue ValInVec; 4517 4518 if (IsLegalInsert) { 4519 unsigned Opc = 4520 VecVT.isFloatingPoint() ? RISCVISD::VFMV_S_F_VL : RISCVISD::VMV_S_X_VL; 4521 if (isNullConstant(Idx)) { 4522 Vec = DAG.getNode(Opc, DL, ContainerVT, Vec, Val, VL); 4523 if (!VecVT.isFixedLengthVector()) 4524 return Vec; 4525 return convertFromScalableVector(VecVT, Vec, DAG, Subtarget); 4526 } 4527 ValInVec = 4528 DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), Val, VL); 4529 } else { 4530 // On RV32, i64-element vectors must be specially handled to place the 4531 // value at element 0, by using two vslide1up instructions in sequence on 4532 // the i32 split lo/hi value. Use an equivalently-sized i32 vector for 4533 // this. 4534 SDValue One = DAG.getConstant(1, DL, XLenVT); 4535 SDValue ValLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, Zero); 4536 SDValue ValHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, One); 4537 MVT I32ContainerVT = 4538 MVT::getVectorVT(MVT::i32, ContainerVT.getVectorElementCount() * 2); 4539 SDValue I32Mask = 4540 getDefaultScalableVLOps(I32ContainerVT, DL, DAG, Subtarget).first; 4541 // Limit the active VL to two. 4542 SDValue InsertI64VL = DAG.getConstant(2, DL, XLenVT); 4543 // Note: We can't pass a UNDEF to the first VSLIDE1UP_VL since an untied 4544 // undef doesn't obey the earlyclobber constraint. Just splat a zero value. 4545 ValInVec = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, I32ContainerVT, 4546 DAG.getUNDEF(I32ContainerVT), Zero, InsertI64VL); 4547 // First slide in the hi value, then the lo in underneath it. 4548 ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT, 4549 DAG.getUNDEF(I32ContainerVT), ValInVec, ValHi, 4550 I32Mask, InsertI64VL); 4551 ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT, 4552 DAG.getUNDEF(I32ContainerVT), ValInVec, ValLo, 4553 I32Mask, InsertI64VL); 4554 // Bitcast back to the right container type. 4555 ValInVec = DAG.getBitcast(ContainerVT, ValInVec); 4556 } 4557 4558 // Now that the value is in a vector, slide it into position. 4559 SDValue InsertVL = 4560 DAG.getNode(ISD::ADD, DL, XLenVT, Idx, DAG.getConstant(1, DL, XLenVT)); 4561 SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec, 4562 ValInVec, Idx, Mask, InsertVL); 4563 if (!VecVT.isFixedLengthVector()) 4564 return Slideup; 4565 return convertFromScalableVector(VecVT, Slideup, DAG, Subtarget); 4566 } 4567 4568 // Custom-lower EXTRACT_VECTOR_ELT operations to slide the vector down, then 4569 // extract the first element: (extractelt (slidedown vec, idx), 0). For integer 4570 // types this is done using VMV_X_S to allow us to glean information about the 4571 // sign bits of the result. 4572 SDValue RISCVTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op, 4573 SelectionDAG &DAG) const { 4574 SDLoc DL(Op); 4575 SDValue Idx = Op.getOperand(1); 4576 SDValue Vec = Op.getOperand(0); 4577 EVT EltVT = Op.getValueType(); 4578 MVT VecVT = Vec.getSimpleValueType(); 4579 MVT XLenVT = Subtarget.getXLenVT(); 4580 4581 if (VecVT.getVectorElementType() == MVT::i1) { 4582 if (VecVT.isFixedLengthVector()) { 4583 unsigned NumElts = VecVT.getVectorNumElements(); 4584 if (NumElts >= 8) { 4585 MVT WideEltVT; 4586 unsigned WidenVecLen; 4587 SDValue ExtractElementIdx; 4588 SDValue ExtractBitIdx; 4589 unsigned MaxEEW = Subtarget.getELEN(); 4590 MVT LargestEltVT = MVT::getIntegerVT( 4591 std::min(MaxEEW, unsigned(XLenVT.getSizeInBits()))); 4592 if (NumElts <= LargestEltVT.getSizeInBits()) { 4593 assert(isPowerOf2_32(NumElts) && 4594 "the number of elements should be power of 2"); 4595 WideEltVT = MVT::getIntegerVT(NumElts); 4596 WidenVecLen = 1; 4597 ExtractElementIdx = DAG.getConstant(0, DL, XLenVT); 4598 ExtractBitIdx = Idx; 4599 } else { 4600 WideEltVT = LargestEltVT; 4601 WidenVecLen = NumElts / WideEltVT.getSizeInBits(); 4602 // extract element index = index / element width 4603 ExtractElementIdx = DAG.getNode( 4604 ISD::SRL, DL, XLenVT, Idx, 4605 DAG.getConstant(Log2_64(WideEltVT.getSizeInBits()), DL, XLenVT)); 4606 // mask bit index = index % element width 4607 ExtractBitIdx = DAG.getNode( 4608 ISD::AND, DL, XLenVT, Idx, 4609 DAG.getConstant(WideEltVT.getSizeInBits() - 1, DL, XLenVT)); 4610 } 4611 MVT WideVT = MVT::getVectorVT(WideEltVT, WidenVecLen); 4612 Vec = DAG.getNode(ISD::BITCAST, DL, WideVT, Vec); 4613 SDValue ExtractElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, XLenVT, 4614 Vec, ExtractElementIdx); 4615 // Extract the bit from GPR. 4616 SDValue ShiftRight = 4617 DAG.getNode(ISD::SRL, DL, XLenVT, ExtractElt, ExtractBitIdx); 4618 return DAG.getNode(ISD::AND, DL, XLenVT, ShiftRight, 4619 DAG.getConstant(1, DL, XLenVT)); 4620 } 4621 } 4622 // Otherwise, promote to an i8 vector and extract from that. 4623 MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount()); 4624 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec); 4625 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec, Idx); 4626 } 4627 4628 // If this is a fixed vector, we need to convert it to a scalable vector. 4629 MVT ContainerVT = VecVT; 4630 if (VecVT.isFixedLengthVector()) { 4631 ContainerVT = getContainerForFixedLengthVector(VecVT); 4632 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 4633 } 4634 4635 // If the index is 0, the vector is already in the right position. 4636 if (!isNullConstant(Idx)) { 4637 // Use a VL of 1 to avoid processing more elements than we need. 4638 SDValue VL = DAG.getConstant(1, DL, XLenVT); 4639 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4640 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 4641 Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 4642 DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL); 4643 } 4644 4645 if (!EltVT.isInteger()) { 4646 // Floating-point extracts are handled in TableGen. 4647 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec, 4648 DAG.getConstant(0, DL, XLenVT)); 4649 } 4650 4651 SDValue Elt0 = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); 4652 return DAG.getNode(ISD::TRUNCATE, DL, EltVT, Elt0); 4653 } 4654 4655 // Some RVV intrinsics may claim that they want an integer operand to be 4656 // promoted or expanded. 4657 static SDValue lowerVectorIntrinsicScalars(SDValue Op, SelectionDAG &DAG, 4658 const RISCVSubtarget &Subtarget) { 4659 assert((Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 4660 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN) && 4661 "Unexpected opcode"); 4662 4663 if (!Subtarget.hasVInstructions()) 4664 return SDValue(); 4665 4666 bool HasChain = Op.getOpcode() == ISD::INTRINSIC_W_CHAIN; 4667 unsigned IntNo = Op.getConstantOperandVal(HasChain ? 1 : 0); 4668 SDLoc DL(Op); 4669 4670 const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II = 4671 RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo); 4672 if (!II || !II->hasScalarOperand()) 4673 return SDValue(); 4674 4675 unsigned SplatOp = II->ScalarOperand + 1 + HasChain; 4676 assert(SplatOp < Op.getNumOperands()); 4677 4678 SmallVector<SDValue, 8> Operands(Op->op_begin(), Op->op_end()); 4679 SDValue &ScalarOp = Operands[SplatOp]; 4680 MVT OpVT = ScalarOp.getSimpleValueType(); 4681 MVT XLenVT = Subtarget.getXLenVT(); 4682 4683 // If this isn't a scalar, or its type is XLenVT we're done. 4684 if (!OpVT.isScalarInteger() || OpVT == XLenVT) 4685 return SDValue(); 4686 4687 // Simplest case is that the operand needs to be promoted to XLenVT. 4688 if (OpVT.bitsLT(XLenVT)) { 4689 // If the operand is a constant, sign extend to increase our chances 4690 // of being able to use a .vi instruction. ANY_EXTEND would become a 4691 // a zero extend and the simm5 check in isel would fail. 4692 // FIXME: Should we ignore the upper bits in isel instead? 4693 unsigned ExtOpc = 4694 isa<ConstantSDNode>(ScalarOp) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND; 4695 ScalarOp = DAG.getNode(ExtOpc, DL, XLenVT, ScalarOp); 4696 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); 4697 } 4698 4699 // Use the previous operand to get the vXi64 VT. The result might be a mask 4700 // VT for compares. Using the previous operand assumes that the previous 4701 // operand will never have a smaller element size than a scalar operand and 4702 // that a widening operation never uses SEW=64. 4703 // NOTE: If this fails the below assert, we can probably just find the 4704 // element count from any operand or result and use it to construct the VT. 4705 assert(II->ScalarOperand > 0 && "Unexpected splat operand!"); 4706 MVT VT = Op.getOperand(SplatOp - 1).getSimpleValueType(); 4707 4708 // The more complex case is when the scalar is larger than XLenVT. 4709 assert(XLenVT == MVT::i32 && OpVT == MVT::i64 && 4710 VT.getVectorElementType() == MVT::i64 && "Unexpected VTs!"); 4711 4712 // If this is a sign-extended 32-bit value, we can truncate it and rely on the 4713 // instruction to sign-extend since SEW>XLEN. 4714 if (DAG.ComputeNumSignBits(ScalarOp) > 32) { 4715 ScalarOp = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, ScalarOp); 4716 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); 4717 } 4718 4719 switch (IntNo) { 4720 case Intrinsic::riscv_vslide1up: 4721 case Intrinsic::riscv_vslide1down: 4722 case Intrinsic::riscv_vslide1up_mask: 4723 case Intrinsic::riscv_vslide1down_mask: { 4724 // We need to special case these when the scalar is larger than XLen. 4725 unsigned NumOps = Op.getNumOperands(); 4726 bool IsMasked = NumOps == 7; 4727 4728 // Convert the vector source to the equivalent nxvXi32 vector. 4729 MVT I32VT = MVT::getVectorVT(MVT::i32, VT.getVectorElementCount() * 2); 4730 SDValue Vec = DAG.getBitcast(I32VT, Operands[2]); 4731 4732 SDValue ScalarLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, ScalarOp, 4733 DAG.getConstant(0, DL, XLenVT)); 4734 SDValue ScalarHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, ScalarOp, 4735 DAG.getConstant(1, DL, XLenVT)); 4736 4737 // Double the VL since we halved SEW. 4738 SDValue AVL = getVLOperand(Op); 4739 SDValue I32VL; 4740 4741 // Optimize for constant AVL 4742 if (isa<ConstantSDNode>(AVL)) { 4743 unsigned EltSize = VT.getScalarSizeInBits(); 4744 unsigned MinSize = VT.getSizeInBits().getKnownMinValue(); 4745 4746 unsigned VectorBitsMax = Subtarget.getRealMaxVLen(); 4747 unsigned MaxVLMAX = 4748 RISCVTargetLowering::computeVLMAX(VectorBitsMax, EltSize, MinSize); 4749 4750 unsigned VectorBitsMin = Subtarget.getRealMinVLen(); 4751 unsigned MinVLMAX = 4752 RISCVTargetLowering::computeVLMAX(VectorBitsMin, EltSize, MinSize); 4753 4754 uint64_t AVLInt = cast<ConstantSDNode>(AVL)->getZExtValue(); 4755 if (AVLInt <= MinVLMAX) { 4756 I32VL = DAG.getConstant(2 * AVLInt, DL, XLenVT); 4757 } else if (AVLInt >= 2 * MaxVLMAX) { 4758 // Just set vl to VLMAX in this situation 4759 RISCVII::VLMUL Lmul = RISCVTargetLowering::getLMUL(I32VT); 4760 SDValue LMUL = DAG.getConstant(Lmul, DL, XLenVT); 4761 unsigned Sew = RISCVVType::encodeSEW(I32VT.getScalarSizeInBits()); 4762 SDValue SEW = DAG.getConstant(Sew, DL, XLenVT); 4763 SDValue SETVLMAX = DAG.getTargetConstant( 4764 Intrinsic::riscv_vsetvlimax_opt, DL, MVT::i32); 4765 I32VL = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, XLenVT, SETVLMAX, SEW, 4766 LMUL); 4767 } else { 4768 // For AVL between (MinVLMAX, 2 * MaxVLMAX), the actual working vl 4769 // is related to the hardware implementation. 4770 // So let the following code handle 4771 } 4772 } 4773 if (!I32VL) { 4774 RISCVII::VLMUL Lmul = RISCVTargetLowering::getLMUL(VT); 4775 SDValue LMUL = DAG.getConstant(Lmul, DL, XLenVT); 4776 unsigned Sew = RISCVVType::encodeSEW(VT.getScalarSizeInBits()); 4777 SDValue SEW = DAG.getConstant(Sew, DL, XLenVT); 4778 SDValue SETVL = 4779 DAG.getTargetConstant(Intrinsic::riscv_vsetvli_opt, DL, MVT::i32); 4780 // Using vsetvli instruction to get actually used length which related to 4781 // the hardware implementation 4782 SDValue VL = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, XLenVT, SETVL, AVL, 4783 SEW, LMUL); 4784 I32VL = 4785 DAG.getNode(ISD::SHL, DL, XLenVT, VL, DAG.getConstant(1, DL, XLenVT)); 4786 } 4787 4788 MVT I32MaskVT = MVT::getVectorVT(MVT::i1, I32VT.getVectorElementCount()); 4789 SDValue I32Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, I32MaskVT, I32VL); 4790 4791 // Shift the two scalar parts in using SEW=32 slide1up/slide1down 4792 // instructions. 4793 SDValue Passthru; 4794 if (IsMasked) 4795 Passthru = DAG.getUNDEF(I32VT); 4796 else 4797 Passthru = DAG.getBitcast(I32VT, Operands[1]); 4798 4799 if (IntNo == Intrinsic::riscv_vslide1up || 4800 IntNo == Intrinsic::riscv_vslide1up_mask) { 4801 Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Passthru, Vec, 4802 ScalarHi, I32Mask, I32VL); 4803 Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Passthru, Vec, 4804 ScalarLo, I32Mask, I32VL); 4805 } else { 4806 Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Passthru, Vec, 4807 ScalarLo, I32Mask, I32VL); 4808 Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Passthru, Vec, 4809 ScalarHi, I32Mask, I32VL); 4810 } 4811 4812 // Convert back to nxvXi64. 4813 Vec = DAG.getBitcast(VT, Vec); 4814 4815 if (!IsMasked) 4816 return Vec; 4817 // Apply mask after the operation. 4818 SDValue Mask = Operands[NumOps - 3]; 4819 SDValue MaskedOff = Operands[1]; 4820 // Assume Policy operand is the last operand. 4821 uint64_t Policy = 4822 cast<ConstantSDNode>(Operands[NumOps - 1])->getZExtValue(); 4823 // We don't need to select maskedoff if it's undef. 4824 if (MaskedOff.isUndef()) 4825 return Vec; 4826 // TAMU 4827 if (Policy == RISCVII::TAIL_AGNOSTIC) 4828 return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, Mask, Vec, MaskedOff, 4829 AVL); 4830 // TUMA or TUMU: Currently we always emit tumu policy regardless of tuma. 4831 // It's fine because vmerge does not care mask policy. 4832 return DAG.getNode(RISCVISD::VP_MERGE_VL, DL, VT, Mask, Vec, MaskedOff, 4833 AVL); 4834 } 4835 } 4836 4837 // We need to convert the scalar to a splat vector. 4838 SDValue VL = getVLOperand(Op); 4839 assert(VL.getValueType() == XLenVT); 4840 ScalarOp = splatSplitI64WithVL(DL, VT, SDValue(), ScalarOp, VL, DAG); 4841 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); 4842 } 4843 4844 SDValue RISCVTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 4845 SelectionDAG &DAG) const { 4846 unsigned IntNo = Op.getConstantOperandVal(0); 4847 SDLoc DL(Op); 4848 MVT XLenVT = Subtarget.getXLenVT(); 4849 4850 switch (IntNo) { 4851 default: 4852 break; // Don't custom lower most intrinsics. 4853 case Intrinsic::thread_pointer: { 4854 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 4855 return DAG.getRegister(RISCV::X4, PtrVT); 4856 } 4857 case Intrinsic::riscv_orc_b: 4858 case Intrinsic::riscv_brev8: { 4859 // Lower to the GORCI encoding for orc.b or the GREVI encoding for brev8. 4860 unsigned Opc = 4861 IntNo == Intrinsic::riscv_brev8 ? RISCVISD::GREV : RISCVISD::GORC; 4862 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), 4863 DAG.getConstant(7, DL, XLenVT)); 4864 } 4865 case Intrinsic::riscv_grev: 4866 case Intrinsic::riscv_gorc: { 4867 unsigned Opc = 4868 IntNo == Intrinsic::riscv_grev ? RISCVISD::GREV : RISCVISD::GORC; 4869 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2)); 4870 } 4871 case Intrinsic::riscv_zip: 4872 case Intrinsic::riscv_unzip: { 4873 // Lower to the SHFLI encoding for zip or the UNSHFLI encoding for unzip. 4874 // For i32 the immediate is 15. For i64 the immediate is 31. 4875 unsigned Opc = 4876 IntNo == Intrinsic::riscv_zip ? RISCVISD::SHFL : RISCVISD::UNSHFL; 4877 unsigned BitWidth = Op.getValueSizeInBits(); 4878 assert(isPowerOf2_32(BitWidth) && BitWidth >= 2 && "Unexpected bit width"); 4879 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), 4880 DAG.getConstant((BitWidth / 2) - 1, DL, XLenVT)); 4881 } 4882 case Intrinsic::riscv_shfl: 4883 case Intrinsic::riscv_unshfl: { 4884 unsigned Opc = 4885 IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL; 4886 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2)); 4887 } 4888 case Intrinsic::riscv_bcompress: 4889 case Intrinsic::riscv_bdecompress: { 4890 unsigned Opc = IntNo == Intrinsic::riscv_bcompress ? RISCVISD::BCOMPRESS 4891 : RISCVISD::BDECOMPRESS; 4892 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2)); 4893 } 4894 case Intrinsic::riscv_bfp: 4895 return DAG.getNode(RISCVISD::BFP, DL, XLenVT, Op.getOperand(1), 4896 Op.getOperand(2)); 4897 case Intrinsic::riscv_fsl: 4898 return DAG.getNode(RISCVISD::FSL, DL, XLenVT, Op.getOperand(1), 4899 Op.getOperand(2), Op.getOperand(3)); 4900 case Intrinsic::riscv_fsr: 4901 return DAG.getNode(RISCVISD::FSR, DL, XLenVT, Op.getOperand(1), 4902 Op.getOperand(2), Op.getOperand(3)); 4903 case Intrinsic::riscv_vmv_x_s: 4904 assert(Op.getValueType() == XLenVT && "Unexpected VT!"); 4905 return DAG.getNode(RISCVISD::VMV_X_S, DL, Op.getValueType(), 4906 Op.getOperand(1)); 4907 case Intrinsic::riscv_vmv_v_x: 4908 return lowerScalarSplat(Op.getOperand(1), Op.getOperand(2), 4909 Op.getOperand(3), Op.getSimpleValueType(), DL, DAG, 4910 Subtarget); 4911 case Intrinsic::riscv_vfmv_v_f: 4912 return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, Op.getValueType(), 4913 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 4914 case Intrinsic::riscv_vmv_s_x: { 4915 SDValue Scalar = Op.getOperand(2); 4916 4917 if (Scalar.getValueType().bitsLE(XLenVT)) { 4918 Scalar = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Scalar); 4919 return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, Op.getValueType(), 4920 Op.getOperand(1), Scalar, Op.getOperand(3)); 4921 } 4922 4923 assert(Scalar.getValueType() == MVT::i64 && "Unexpected scalar VT!"); 4924 4925 // This is an i64 value that lives in two scalar registers. We have to 4926 // insert this in a convoluted way. First we build vXi64 splat containing 4927 // the two values that we assemble using some bit math. Next we'll use 4928 // vid.v and vmseq to build a mask with bit 0 set. Then we'll use that mask 4929 // to merge element 0 from our splat into the source vector. 4930 // FIXME: This is probably not the best way to do this, but it is 4931 // consistent with INSERT_VECTOR_ELT lowering so it is a good starting 4932 // point. 4933 // sw lo, (a0) 4934 // sw hi, 4(a0) 4935 // vlse vX, (a0) 4936 // 4937 // vid.v vVid 4938 // vmseq.vx mMask, vVid, 0 4939 // vmerge.vvm vDest, vSrc, vVal, mMask 4940 MVT VT = Op.getSimpleValueType(); 4941 SDValue Vec = Op.getOperand(1); 4942 SDValue VL = getVLOperand(Op); 4943 4944 SDValue SplattedVal = splatSplitI64WithVL(DL, VT, SDValue(), Scalar, VL, DAG); 4945 if (Op.getOperand(1).isUndef()) 4946 return SplattedVal; 4947 SDValue SplattedIdx = 4948 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, DAG.getUNDEF(VT), 4949 DAG.getConstant(0, DL, MVT::i32), VL); 4950 4951 MVT MaskVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount()); 4952 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 4953 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL); 4954 SDValue SelectCond = 4955 DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, VID, SplattedIdx, 4956 DAG.getCondCode(ISD::SETEQ), Mask, VL); 4957 return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, SelectCond, SplattedVal, 4958 Vec, VL); 4959 } 4960 } 4961 4962 return lowerVectorIntrinsicScalars(Op, DAG, Subtarget); 4963 } 4964 4965 SDValue RISCVTargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op, 4966 SelectionDAG &DAG) const { 4967 unsigned IntNo = Op.getConstantOperandVal(1); 4968 switch (IntNo) { 4969 default: 4970 break; 4971 case Intrinsic::riscv_masked_strided_load: { 4972 SDLoc DL(Op); 4973 MVT XLenVT = Subtarget.getXLenVT(); 4974 4975 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 4976 // the selection of the masked intrinsics doesn't do this for us. 4977 SDValue Mask = Op.getOperand(5); 4978 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 4979 4980 MVT VT = Op->getSimpleValueType(0); 4981 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4982 4983 SDValue PassThru = Op.getOperand(2); 4984 if (!IsUnmasked) { 4985 MVT MaskVT = 4986 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4987 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 4988 PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget); 4989 } 4990 4991 SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT); 4992 4993 SDValue IntID = DAG.getTargetConstant( 4994 IsUnmasked ? Intrinsic::riscv_vlse : Intrinsic::riscv_vlse_mask, DL, 4995 XLenVT); 4996 4997 auto *Load = cast<MemIntrinsicSDNode>(Op); 4998 SmallVector<SDValue, 8> Ops{Load->getChain(), IntID}; 4999 if (IsUnmasked) 5000 Ops.push_back(DAG.getUNDEF(ContainerVT)); 5001 else 5002 Ops.push_back(PassThru); 5003 Ops.push_back(Op.getOperand(3)); // Ptr 5004 Ops.push_back(Op.getOperand(4)); // Stride 5005 if (!IsUnmasked) 5006 Ops.push_back(Mask); 5007 Ops.push_back(VL); 5008 if (!IsUnmasked) { 5009 SDValue Policy = DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT); 5010 Ops.push_back(Policy); 5011 } 5012 5013 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 5014 SDValue Result = 5015 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, 5016 Load->getMemoryVT(), Load->getMemOperand()); 5017 SDValue Chain = Result.getValue(1); 5018 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 5019 return DAG.getMergeValues({Result, Chain}, DL); 5020 } 5021 case Intrinsic::riscv_seg2_load: 5022 case Intrinsic::riscv_seg3_load: 5023 case Intrinsic::riscv_seg4_load: 5024 case Intrinsic::riscv_seg5_load: 5025 case Intrinsic::riscv_seg6_load: 5026 case Intrinsic::riscv_seg7_load: 5027 case Intrinsic::riscv_seg8_load: { 5028 SDLoc DL(Op); 5029 static const Intrinsic::ID VlsegInts[7] = { 5030 Intrinsic::riscv_vlseg2, Intrinsic::riscv_vlseg3, 5031 Intrinsic::riscv_vlseg4, Intrinsic::riscv_vlseg5, 5032 Intrinsic::riscv_vlseg6, Intrinsic::riscv_vlseg7, 5033 Intrinsic::riscv_vlseg8}; 5034 unsigned NF = Op->getNumValues() - 1; 5035 assert(NF >= 2 && NF <= 8 && "Unexpected seg number"); 5036 MVT XLenVT = Subtarget.getXLenVT(); 5037 MVT VT = Op->getSimpleValueType(0); 5038 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5039 5040 SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT); 5041 SDValue IntID = DAG.getTargetConstant(VlsegInts[NF - 2], DL, XLenVT); 5042 auto *Load = cast<MemIntrinsicSDNode>(Op); 5043 SmallVector<EVT, 9> ContainerVTs(NF, ContainerVT); 5044 ContainerVTs.push_back(MVT::Other); 5045 SDVTList VTs = DAG.getVTList(ContainerVTs); 5046 SDValue Result = 5047 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, 5048 {Load->getChain(), IntID, Op.getOperand(2), VL}, 5049 Load->getMemoryVT(), Load->getMemOperand()); 5050 SmallVector<SDValue, 9> Results; 5051 for (unsigned int RetIdx = 0; RetIdx < NF; RetIdx++) 5052 Results.push_back(convertFromScalableVector(VT, Result.getValue(RetIdx), 5053 DAG, Subtarget)); 5054 Results.push_back(Result.getValue(NF)); 5055 return DAG.getMergeValues(Results, DL); 5056 } 5057 } 5058 5059 return lowerVectorIntrinsicScalars(Op, DAG, Subtarget); 5060 } 5061 5062 SDValue RISCVTargetLowering::LowerINTRINSIC_VOID(SDValue Op, 5063 SelectionDAG &DAG) const { 5064 unsigned IntNo = Op.getConstantOperandVal(1); 5065 switch (IntNo) { 5066 default: 5067 break; 5068 case Intrinsic::riscv_masked_strided_store: { 5069 SDLoc DL(Op); 5070 MVT XLenVT = Subtarget.getXLenVT(); 5071 5072 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 5073 // the selection of the masked intrinsics doesn't do this for us. 5074 SDValue Mask = Op.getOperand(5); 5075 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 5076 5077 SDValue Val = Op.getOperand(2); 5078 MVT VT = Val.getSimpleValueType(); 5079 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5080 5081 Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget); 5082 if (!IsUnmasked) { 5083 MVT MaskVT = 5084 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 5085 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 5086 } 5087 5088 SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT); 5089 5090 SDValue IntID = DAG.getTargetConstant( 5091 IsUnmasked ? Intrinsic::riscv_vsse : Intrinsic::riscv_vsse_mask, DL, 5092 XLenVT); 5093 5094 auto *Store = cast<MemIntrinsicSDNode>(Op); 5095 SmallVector<SDValue, 8> Ops{Store->getChain(), IntID}; 5096 Ops.push_back(Val); 5097 Ops.push_back(Op.getOperand(3)); // Ptr 5098 Ops.push_back(Op.getOperand(4)); // Stride 5099 if (!IsUnmasked) 5100 Ops.push_back(Mask); 5101 Ops.push_back(VL); 5102 5103 return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, Store->getVTList(), 5104 Ops, Store->getMemoryVT(), 5105 Store->getMemOperand()); 5106 } 5107 } 5108 5109 return SDValue(); 5110 } 5111 5112 static MVT getLMUL1VT(MVT VT) { 5113 assert(VT.getVectorElementType().getSizeInBits() <= 64 && 5114 "Unexpected vector MVT"); 5115 return MVT::getScalableVectorVT( 5116 VT.getVectorElementType(), 5117 RISCV::RVVBitsPerBlock / VT.getVectorElementType().getSizeInBits()); 5118 } 5119 5120 static unsigned getRVVReductionOp(unsigned ISDOpcode) { 5121 switch (ISDOpcode) { 5122 default: 5123 llvm_unreachable("Unhandled reduction"); 5124 case ISD::VECREDUCE_ADD: 5125 return RISCVISD::VECREDUCE_ADD_VL; 5126 case ISD::VECREDUCE_UMAX: 5127 return RISCVISD::VECREDUCE_UMAX_VL; 5128 case ISD::VECREDUCE_SMAX: 5129 return RISCVISD::VECREDUCE_SMAX_VL; 5130 case ISD::VECREDUCE_UMIN: 5131 return RISCVISD::VECREDUCE_UMIN_VL; 5132 case ISD::VECREDUCE_SMIN: 5133 return RISCVISD::VECREDUCE_SMIN_VL; 5134 case ISD::VECREDUCE_AND: 5135 return RISCVISD::VECREDUCE_AND_VL; 5136 case ISD::VECREDUCE_OR: 5137 return RISCVISD::VECREDUCE_OR_VL; 5138 case ISD::VECREDUCE_XOR: 5139 return RISCVISD::VECREDUCE_XOR_VL; 5140 } 5141 } 5142 5143 SDValue RISCVTargetLowering::lowerVectorMaskVecReduction(SDValue Op, 5144 SelectionDAG &DAG, 5145 bool IsVP) const { 5146 SDLoc DL(Op); 5147 SDValue Vec = Op.getOperand(IsVP ? 1 : 0); 5148 MVT VecVT = Vec.getSimpleValueType(); 5149 assert((Op.getOpcode() == ISD::VECREDUCE_AND || 5150 Op.getOpcode() == ISD::VECREDUCE_OR || 5151 Op.getOpcode() == ISD::VECREDUCE_XOR || 5152 Op.getOpcode() == ISD::VP_REDUCE_AND || 5153 Op.getOpcode() == ISD::VP_REDUCE_OR || 5154 Op.getOpcode() == ISD::VP_REDUCE_XOR) && 5155 "Unexpected reduction lowering"); 5156 5157 MVT XLenVT = Subtarget.getXLenVT(); 5158 assert(Op.getValueType() == XLenVT && 5159 "Expected reduction output to be legalized to XLenVT"); 5160 5161 MVT ContainerVT = VecVT; 5162 if (VecVT.isFixedLengthVector()) { 5163 ContainerVT = getContainerForFixedLengthVector(VecVT); 5164 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 5165 } 5166 5167 SDValue Mask, VL; 5168 if (IsVP) { 5169 Mask = Op.getOperand(2); 5170 VL = Op.getOperand(3); 5171 } else { 5172 std::tie(Mask, VL) = 5173 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 5174 } 5175 5176 unsigned BaseOpc; 5177 ISD::CondCode CC; 5178 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 5179 5180 switch (Op.getOpcode()) { 5181 default: 5182 llvm_unreachable("Unhandled reduction"); 5183 case ISD::VECREDUCE_AND: 5184 case ISD::VP_REDUCE_AND: { 5185 // vcpop ~x == 0 5186 SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL); 5187 Vec = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Vec, TrueMask, VL); 5188 Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL); 5189 CC = ISD::SETEQ; 5190 BaseOpc = ISD::AND; 5191 break; 5192 } 5193 case ISD::VECREDUCE_OR: 5194 case ISD::VP_REDUCE_OR: 5195 // vcpop x != 0 5196 Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL); 5197 CC = ISD::SETNE; 5198 BaseOpc = ISD::OR; 5199 break; 5200 case ISD::VECREDUCE_XOR: 5201 case ISD::VP_REDUCE_XOR: { 5202 // ((vcpop x) & 1) != 0 5203 SDValue One = DAG.getConstant(1, DL, XLenVT); 5204 Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL); 5205 Vec = DAG.getNode(ISD::AND, DL, XLenVT, Vec, One); 5206 CC = ISD::SETNE; 5207 BaseOpc = ISD::XOR; 5208 break; 5209 } 5210 } 5211 5212 SDValue SetCC = DAG.getSetCC(DL, XLenVT, Vec, Zero, CC); 5213 5214 if (!IsVP) 5215 return SetCC; 5216 5217 // Now include the start value in the operation. 5218 // Note that we must return the start value when no elements are operated 5219 // upon. The vcpop instructions we've emitted in each case above will return 5220 // 0 for an inactive vector, and so we've already received the neutral value: 5221 // AND gives us (0 == 0) -> 1 and OR/XOR give us (0 != 0) -> 0. Therefore we 5222 // can simply include the start value. 5223 return DAG.getNode(BaseOpc, DL, XLenVT, SetCC, Op.getOperand(0)); 5224 } 5225 5226 SDValue RISCVTargetLowering::lowerVECREDUCE(SDValue Op, 5227 SelectionDAG &DAG) const { 5228 SDLoc DL(Op); 5229 SDValue Vec = Op.getOperand(0); 5230 EVT VecEVT = Vec.getValueType(); 5231 5232 unsigned BaseOpc = ISD::getVecReduceBaseOpcode(Op.getOpcode()); 5233 5234 // Due to ordering in legalize types we may have a vector type that needs to 5235 // be split. Do that manually so we can get down to a legal type. 5236 while (getTypeAction(*DAG.getContext(), VecEVT) == 5237 TargetLowering::TypeSplitVector) { 5238 SDValue Lo, Hi; 5239 std::tie(Lo, Hi) = DAG.SplitVector(Vec, DL); 5240 VecEVT = Lo.getValueType(); 5241 Vec = DAG.getNode(BaseOpc, DL, VecEVT, Lo, Hi); 5242 } 5243 5244 // TODO: The type may need to be widened rather than split. Or widened before 5245 // it can be split. 5246 if (!isTypeLegal(VecEVT)) 5247 return SDValue(); 5248 5249 MVT VecVT = VecEVT.getSimpleVT(); 5250 MVT VecEltVT = VecVT.getVectorElementType(); 5251 unsigned RVVOpcode = getRVVReductionOp(Op.getOpcode()); 5252 5253 MVT ContainerVT = VecVT; 5254 if (VecVT.isFixedLengthVector()) { 5255 ContainerVT = getContainerForFixedLengthVector(VecVT); 5256 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 5257 } 5258 5259 MVT M1VT = getLMUL1VT(ContainerVT); 5260 MVT XLenVT = Subtarget.getXLenVT(); 5261 5262 SDValue Mask, VL; 5263 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 5264 5265 SDValue NeutralElem = 5266 DAG.getNeutralElement(BaseOpc, DL, VecEltVT, SDNodeFlags()); 5267 SDValue IdentitySplat = 5268 lowerScalarSplat(SDValue(), NeutralElem, DAG.getConstant(1, DL, XLenVT), 5269 M1VT, DL, DAG, Subtarget); 5270 SDValue Reduction = DAG.getNode(RVVOpcode, DL, M1VT, DAG.getUNDEF(M1VT), Vec, 5271 IdentitySplat, Mask, VL); 5272 SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction, 5273 DAG.getConstant(0, DL, XLenVT)); 5274 return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType()); 5275 } 5276 5277 // Given a reduction op, this function returns the matching reduction opcode, 5278 // the vector SDValue and the scalar SDValue required to lower this to a 5279 // RISCVISD node. 5280 static std::tuple<unsigned, SDValue, SDValue> 5281 getRVVFPReductionOpAndOperands(SDValue Op, SelectionDAG &DAG, EVT EltVT) { 5282 SDLoc DL(Op); 5283 auto Flags = Op->getFlags(); 5284 unsigned Opcode = Op.getOpcode(); 5285 unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Opcode); 5286 switch (Opcode) { 5287 default: 5288 llvm_unreachable("Unhandled reduction"); 5289 case ISD::VECREDUCE_FADD: { 5290 // Use positive zero if we can. It is cheaper to materialize. 5291 SDValue Zero = 5292 DAG.getConstantFP(Flags.hasNoSignedZeros() ? 0.0 : -0.0, DL, EltVT); 5293 return std::make_tuple(RISCVISD::VECREDUCE_FADD_VL, Op.getOperand(0), Zero); 5294 } 5295 case ISD::VECREDUCE_SEQ_FADD: 5296 return std::make_tuple(RISCVISD::VECREDUCE_SEQ_FADD_VL, Op.getOperand(1), 5297 Op.getOperand(0)); 5298 case ISD::VECREDUCE_FMIN: 5299 return std::make_tuple(RISCVISD::VECREDUCE_FMIN_VL, Op.getOperand(0), 5300 DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags)); 5301 case ISD::VECREDUCE_FMAX: 5302 return std::make_tuple(RISCVISD::VECREDUCE_FMAX_VL, Op.getOperand(0), 5303 DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags)); 5304 } 5305 } 5306 5307 SDValue RISCVTargetLowering::lowerFPVECREDUCE(SDValue Op, 5308 SelectionDAG &DAG) const { 5309 SDLoc DL(Op); 5310 MVT VecEltVT = Op.getSimpleValueType(); 5311 5312 unsigned RVVOpcode; 5313 SDValue VectorVal, ScalarVal; 5314 std::tie(RVVOpcode, VectorVal, ScalarVal) = 5315 getRVVFPReductionOpAndOperands(Op, DAG, VecEltVT); 5316 MVT VecVT = VectorVal.getSimpleValueType(); 5317 5318 MVT ContainerVT = VecVT; 5319 if (VecVT.isFixedLengthVector()) { 5320 ContainerVT = getContainerForFixedLengthVector(VecVT); 5321 VectorVal = convertToScalableVector(ContainerVT, VectorVal, DAG, Subtarget); 5322 } 5323 5324 MVT M1VT = getLMUL1VT(VectorVal.getSimpleValueType()); 5325 MVT XLenVT = Subtarget.getXLenVT(); 5326 5327 SDValue Mask, VL; 5328 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 5329 5330 SDValue ScalarSplat = 5331 lowerScalarSplat(SDValue(), ScalarVal, DAG.getConstant(1, DL, XLenVT), 5332 M1VT, DL, DAG, Subtarget); 5333 SDValue Reduction = DAG.getNode(RVVOpcode, DL, M1VT, DAG.getUNDEF(M1VT), 5334 VectorVal, ScalarSplat, Mask, VL); 5335 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction, 5336 DAG.getConstant(0, DL, XLenVT)); 5337 } 5338 5339 static unsigned getRVVVPReductionOp(unsigned ISDOpcode) { 5340 switch (ISDOpcode) { 5341 default: 5342 llvm_unreachable("Unhandled reduction"); 5343 case ISD::VP_REDUCE_ADD: 5344 return RISCVISD::VECREDUCE_ADD_VL; 5345 case ISD::VP_REDUCE_UMAX: 5346 return RISCVISD::VECREDUCE_UMAX_VL; 5347 case ISD::VP_REDUCE_SMAX: 5348 return RISCVISD::VECREDUCE_SMAX_VL; 5349 case ISD::VP_REDUCE_UMIN: 5350 return RISCVISD::VECREDUCE_UMIN_VL; 5351 case ISD::VP_REDUCE_SMIN: 5352 return RISCVISD::VECREDUCE_SMIN_VL; 5353 case ISD::VP_REDUCE_AND: 5354 return RISCVISD::VECREDUCE_AND_VL; 5355 case ISD::VP_REDUCE_OR: 5356 return RISCVISD::VECREDUCE_OR_VL; 5357 case ISD::VP_REDUCE_XOR: 5358 return RISCVISD::VECREDUCE_XOR_VL; 5359 case ISD::VP_REDUCE_FADD: 5360 return RISCVISD::VECREDUCE_FADD_VL; 5361 case ISD::VP_REDUCE_SEQ_FADD: 5362 return RISCVISD::VECREDUCE_SEQ_FADD_VL; 5363 case ISD::VP_REDUCE_FMAX: 5364 return RISCVISD::VECREDUCE_FMAX_VL; 5365 case ISD::VP_REDUCE_FMIN: 5366 return RISCVISD::VECREDUCE_FMIN_VL; 5367 } 5368 } 5369 5370 SDValue RISCVTargetLowering::lowerVPREDUCE(SDValue Op, 5371 SelectionDAG &DAG) const { 5372 SDLoc DL(Op); 5373 SDValue Vec = Op.getOperand(1); 5374 EVT VecEVT = Vec.getValueType(); 5375 5376 // TODO: The type may need to be widened rather than split. Or widened before 5377 // it can be split. 5378 if (!isTypeLegal(VecEVT)) 5379 return SDValue(); 5380 5381 MVT VecVT = VecEVT.getSimpleVT(); 5382 MVT VecEltVT = VecVT.getVectorElementType(); 5383 unsigned RVVOpcode = getRVVVPReductionOp(Op.getOpcode()); 5384 5385 MVT ContainerVT = VecVT; 5386 if (VecVT.isFixedLengthVector()) { 5387 ContainerVT = getContainerForFixedLengthVector(VecVT); 5388 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 5389 } 5390 5391 SDValue VL = Op.getOperand(3); 5392 SDValue Mask = Op.getOperand(2); 5393 5394 MVT M1VT = getLMUL1VT(ContainerVT); 5395 MVT XLenVT = Subtarget.getXLenVT(); 5396 MVT ResVT = !VecVT.isInteger() || VecEltVT.bitsGE(XLenVT) ? VecEltVT : XLenVT; 5397 5398 SDValue StartSplat = lowerScalarSplat(SDValue(), Op.getOperand(0), 5399 DAG.getConstant(1, DL, XLenVT), M1VT, 5400 DL, DAG, Subtarget); 5401 SDValue Reduction = 5402 DAG.getNode(RVVOpcode, DL, M1VT, StartSplat, Vec, StartSplat, Mask, VL); 5403 SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Reduction, 5404 DAG.getConstant(0, DL, XLenVT)); 5405 if (!VecVT.isInteger()) 5406 return Elt0; 5407 return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType()); 5408 } 5409 5410 SDValue RISCVTargetLowering::lowerINSERT_SUBVECTOR(SDValue Op, 5411 SelectionDAG &DAG) const { 5412 SDValue Vec = Op.getOperand(0); 5413 SDValue SubVec = Op.getOperand(1); 5414 MVT VecVT = Vec.getSimpleValueType(); 5415 MVT SubVecVT = SubVec.getSimpleValueType(); 5416 5417 SDLoc DL(Op); 5418 MVT XLenVT = Subtarget.getXLenVT(); 5419 unsigned OrigIdx = Op.getConstantOperandVal(2); 5420 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 5421 5422 // We don't have the ability to slide mask vectors up indexed by their i1 5423 // elements; the smallest we can do is i8. Often we are able to bitcast to 5424 // equivalent i8 vectors. Note that when inserting a fixed-length vector 5425 // into a scalable one, we might not necessarily have enough scalable 5426 // elements to safely divide by 8: nxv1i1 = insert nxv1i1, v4i1 is valid. 5427 if (SubVecVT.getVectorElementType() == MVT::i1 && 5428 (OrigIdx != 0 || !Vec.isUndef())) { 5429 if (VecVT.getVectorMinNumElements() >= 8 && 5430 SubVecVT.getVectorMinNumElements() >= 8) { 5431 assert(OrigIdx % 8 == 0 && "Invalid index"); 5432 assert(VecVT.getVectorMinNumElements() % 8 == 0 && 5433 SubVecVT.getVectorMinNumElements() % 8 == 0 && 5434 "Unexpected mask vector lowering"); 5435 OrigIdx /= 8; 5436 SubVecVT = 5437 MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8, 5438 SubVecVT.isScalableVector()); 5439 VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8, 5440 VecVT.isScalableVector()); 5441 Vec = DAG.getBitcast(VecVT, Vec); 5442 SubVec = DAG.getBitcast(SubVecVT, SubVec); 5443 } else { 5444 // We can't slide this mask vector up indexed by its i1 elements. 5445 // This poses a problem when we wish to insert a scalable vector which 5446 // can't be re-expressed as a larger type. Just choose the slow path and 5447 // extend to a larger type, then truncate back down. 5448 MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8); 5449 MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8); 5450 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec); 5451 SubVec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtSubVecVT, SubVec); 5452 Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ExtVecVT, Vec, SubVec, 5453 Op.getOperand(2)); 5454 SDValue SplatZero = DAG.getConstant(0, DL, ExtVecVT); 5455 return DAG.getSetCC(DL, VecVT, Vec, SplatZero, ISD::SETNE); 5456 } 5457 } 5458 5459 // If the subvector vector is a fixed-length type, we cannot use subregister 5460 // manipulation to simplify the codegen; we don't know which register of a 5461 // LMUL group contains the specific subvector as we only know the minimum 5462 // register size. Therefore we must slide the vector group up the full 5463 // amount. 5464 if (SubVecVT.isFixedLengthVector()) { 5465 if (OrigIdx == 0 && Vec.isUndef() && !VecVT.isFixedLengthVector()) 5466 return Op; 5467 MVT ContainerVT = VecVT; 5468 if (VecVT.isFixedLengthVector()) { 5469 ContainerVT = getContainerForFixedLengthVector(VecVT); 5470 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 5471 } 5472 SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ContainerVT, 5473 DAG.getUNDEF(ContainerVT), SubVec, 5474 DAG.getConstant(0, DL, XLenVT)); 5475 if (OrigIdx == 0 && Vec.isUndef() && VecVT.isFixedLengthVector()) { 5476 SubVec = convertFromScalableVector(VecVT, SubVec, DAG, Subtarget); 5477 return DAG.getBitcast(Op.getValueType(), SubVec); 5478 } 5479 SDValue Mask = 5480 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first; 5481 // Set the vector length to only the number of elements we care about. Note 5482 // that for slideup this includes the offset. 5483 SDValue VL = 5484 DAG.getConstant(OrigIdx + SubVecVT.getVectorNumElements(), DL, XLenVT); 5485 SDValue SlideupAmt = DAG.getConstant(OrigIdx, DL, XLenVT); 5486 SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec, 5487 SubVec, SlideupAmt, Mask, VL); 5488 if (VecVT.isFixedLengthVector()) 5489 Slideup = convertFromScalableVector(VecVT, Slideup, DAG, Subtarget); 5490 return DAG.getBitcast(Op.getValueType(), Slideup); 5491 } 5492 5493 unsigned SubRegIdx, RemIdx; 5494 std::tie(SubRegIdx, RemIdx) = 5495 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( 5496 VecVT, SubVecVT, OrigIdx, TRI); 5497 5498 RISCVII::VLMUL SubVecLMUL = RISCVTargetLowering::getLMUL(SubVecVT); 5499 bool IsSubVecPartReg = SubVecLMUL == RISCVII::VLMUL::LMUL_F2 || 5500 SubVecLMUL == RISCVII::VLMUL::LMUL_F4 || 5501 SubVecLMUL == RISCVII::VLMUL::LMUL_F8; 5502 5503 // 1. If the Idx has been completely eliminated and this subvector's size is 5504 // a vector register or a multiple thereof, or the surrounding elements are 5505 // undef, then this is a subvector insert which naturally aligns to a vector 5506 // register. These can easily be handled using subregister manipulation. 5507 // 2. If the subvector is smaller than a vector register, then the insertion 5508 // must preserve the undisturbed elements of the register. We do this by 5509 // lowering to an EXTRACT_SUBVECTOR grabbing the nearest LMUL=1 vector type 5510 // (which resolves to a subregister copy), performing a VSLIDEUP to place the 5511 // subvector within the vector register, and an INSERT_SUBVECTOR of that 5512 // LMUL=1 type back into the larger vector (resolving to another subregister 5513 // operation). See below for how our VSLIDEUP works. We go via a LMUL=1 type 5514 // to avoid allocating a large register group to hold our subvector. 5515 if (RemIdx == 0 && (!IsSubVecPartReg || Vec.isUndef())) 5516 return Op; 5517 5518 // VSLIDEUP works by leaving elements 0<i<OFFSET undisturbed, elements 5519 // OFFSET<=i<VL set to the "subvector" and vl<=i<VLMAX set to the tail policy 5520 // (in our case undisturbed). This means we can set up a subvector insertion 5521 // where OFFSET is the insertion offset, and the VL is the OFFSET plus the 5522 // size of the subvector. 5523 MVT InterSubVT = VecVT; 5524 SDValue AlignedExtract = Vec; 5525 unsigned AlignedIdx = OrigIdx - RemIdx; 5526 if (VecVT.bitsGT(getLMUL1VT(VecVT))) { 5527 InterSubVT = getLMUL1VT(VecVT); 5528 // Extract a subvector equal to the nearest full vector register type. This 5529 // should resolve to a EXTRACT_SUBREG instruction. 5530 AlignedExtract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec, 5531 DAG.getConstant(AlignedIdx, DL, XLenVT)); 5532 } 5533 5534 SDValue SlideupAmt = DAG.getConstant(RemIdx, DL, XLenVT); 5535 // For scalable vectors this must be further multiplied by vscale. 5536 SlideupAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlideupAmt); 5537 5538 SDValue Mask, VL; 5539 std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget); 5540 5541 // Construct the vector length corresponding to RemIdx + length(SubVecVT). 5542 VL = DAG.getConstant(SubVecVT.getVectorMinNumElements(), DL, XLenVT); 5543 VL = DAG.getNode(ISD::VSCALE, DL, XLenVT, VL); 5544 VL = DAG.getNode(ISD::ADD, DL, XLenVT, SlideupAmt, VL); 5545 5546 SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, InterSubVT, 5547 DAG.getUNDEF(InterSubVT), SubVec, 5548 DAG.getConstant(0, DL, XLenVT)); 5549 5550 SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, InterSubVT, 5551 AlignedExtract, SubVec, SlideupAmt, Mask, VL); 5552 5553 // If required, insert this subvector back into the correct vector register. 5554 // This should resolve to an INSERT_SUBREG instruction. 5555 if (VecVT.bitsGT(InterSubVT)) 5556 Slideup = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, Vec, Slideup, 5557 DAG.getConstant(AlignedIdx, DL, XLenVT)); 5558 5559 // We might have bitcast from a mask type: cast back to the original type if 5560 // required. 5561 return DAG.getBitcast(Op.getSimpleValueType(), Slideup); 5562 } 5563 5564 SDValue RISCVTargetLowering::lowerEXTRACT_SUBVECTOR(SDValue Op, 5565 SelectionDAG &DAG) const { 5566 SDValue Vec = Op.getOperand(0); 5567 MVT SubVecVT = Op.getSimpleValueType(); 5568 MVT VecVT = Vec.getSimpleValueType(); 5569 5570 SDLoc DL(Op); 5571 MVT XLenVT = Subtarget.getXLenVT(); 5572 unsigned OrigIdx = Op.getConstantOperandVal(1); 5573 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 5574 5575 // We don't have the ability to slide mask vectors down indexed by their i1 5576 // elements; the smallest we can do is i8. Often we are able to bitcast to 5577 // equivalent i8 vectors. Note that when extracting a fixed-length vector 5578 // from a scalable one, we might not necessarily have enough scalable 5579 // elements to safely divide by 8: v8i1 = extract nxv1i1 is valid. 5580 if (SubVecVT.getVectorElementType() == MVT::i1 && OrigIdx != 0) { 5581 if (VecVT.getVectorMinNumElements() >= 8 && 5582 SubVecVT.getVectorMinNumElements() >= 8) { 5583 assert(OrigIdx % 8 == 0 && "Invalid index"); 5584 assert(VecVT.getVectorMinNumElements() % 8 == 0 && 5585 SubVecVT.getVectorMinNumElements() % 8 == 0 && 5586 "Unexpected mask vector lowering"); 5587 OrigIdx /= 8; 5588 SubVecVT = 5589 MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8, 5590 SubVecVT.isScalableVector()); 5591 VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8, 5592 VecVT.isScalableVector()); 5593 Vec = DAG.getBitcast(VecVT, Vec); 5594 } else { 5595 // We can't slide this mask vector down, indexed by its i1 elements. 5596 // This poses a problem when we wish to extract a scalable vector which 5597 // can't be re-expressed as a larger type. Just choose the slow path and 5598 // extend to a larger type, then truncate back down. 5599 // TODO: We could probably improve this when extracting certain fixed 5600 // from fixed, where we can extract as i8 and shift the correct element 5601 // right to reach the desired subvector? 5602 MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8); 5603 MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8); 5604 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec); 5605 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ExtSubVecVT, Vec, 5606 Op.getOperand(1)); 5607 SDValue SplatZero = DAG.getConstant(0, DL, ExtSubVecVT); 5608 return DAG.getSetCC(DL, SubVecVT, Vec, SplatZero, ISD::SETNE); 5609 } 5610 } 5611 5612 // If the subvector vector is a fixed-length type, we cannot use subregister 5613 // manipulation to simplify the codegen; we don't know which register of a 5614 // LMUL group contains the specific subvector as we only know the minimum 5615 // register size. Therefore we must slide the vector group down the full 5616 // amount. 5617 if (SubVecVT.isFixedLengthVector()) { 5618 // With an index of 0 this is a cast-like subvector, which can be performed 5619 // with subregister operations. 5620 if (OrigIdx == 0) 5621 return Op; 5622 MVT ContainerVT = VecVT; 5623 if (VecVT.isFixedLengthVector()) { 5624 ContainerVT = getContainerForFixedLengthVector(VecVT); 5625 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 5626 } 5627 SDValue Mask = 5628 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first; 5629 // Set the vector length to only the number of elements we care about. This 5630 // avoids sliding down elements we're going to discard straight away. 5631 SDValue VL = DAG.getConstant(SubVecVT.getVectorNumElements(), DL, XLenVT); 5632 SDValue SlidedownAmt = DAG.getConstant(OrigIdx, DL, XLenVT); 5633 SDValue Slidedown = 5634 DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 5635 DAG.getUNDEF(ContainerVT), Vec, SlidedownAmt, Mask, VL); 5636 // Now we can use a cast-like subvector extract to get the result. 5637 Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown, 5638 DAG.getConstant(0, DL, XLenVT)); 5639 return DAG.getBitcast(Op.getValueType(), Slidedown); 5640 } 5641 5642 unsigned SubRegIdx, RemIdx; 5643 std::tie(SubRegIdx, RemIdx) = 5644 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( 5645 VecVT, SubVecVT, OrigIdx, TRI); 5646 5647 // If the Idx has been completely eliminated then this is a subvector extract 5648 // which naturally aligns to a vector register. These can easily be handled 5649 // using subregister manipulation. 5650 if (RemIdx == 0) 5651 return Op; 5652 5653 // Else we must shift our vector register directly to extract the subvector. 5654 // Do this using VSLIDEDOWN. 5655 5656 // If the vector type is an LMUL-group type, extract a subvector equal to the 5657 // nearest full vector register type. This should resolve to a EXTRACT_SUBREG 5658 // instruction. 5659 MVT InterSubVT = VecVT; 5660 if (VecVT.bitsGT(getLMUL1VT(VecVT))) { 5661 InterSubVT = getLMUL1VT(VecVT); 5662 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec, 5663 DAG.getConstant(OrigIdx - RemIdx, DL, XLenVT)); 5664 } 5665 5666 // Slide this vector register down by the desired number of elements in order 5667 // to place the desired subvector starting at element 0. 5668 SDValue SlidedownAmt = DAG.getConstant(RemIdx, DL, XLenVT); 5669 // For scalable vectors this must be further multiplied by vscale. 5670 SlidedownAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlidedownAmt); 5671 5672 SDValue Mask, VL; 5673 std::tie(Mask, VL) = getDefaultScalableVLOps(InterSubVT, DL, DAG, Subtarget); 5674 SDValue Slidedown = 5675 DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, InterSubVT, 5676 DAG.getUNDEF(InterSubVT), Vec, SlidedownAmt, Mask, VL); 5677 5678 // Now the vector is in the right position, extract our final subvector. This 5679 // should resolve to a COPY. 5680 Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown, 5681 DAG.getConstant(0, DL, XLenVT)); 5682 5683 // We might have bitcast from a mask type: cast back to the original type if 5684 // required. 5685 return DAG.getBitcast(Op.getSimpleValueType(), Slidedown); 5686 } 5687 5688 // Lower step_vector to the vid instruction. Any non-identity step value must 5689 // be accounted for my manual expansion. 5690 SDValue RISCVTargetLowering::lowerSTEP_VECTOR(SDValue Op, 5691 SelectionDAG &DAG) const { 5692 SDLoc DL(Op); 5693 MVT VT = Op.getSimpleValueType(); 5694 MVT XLenVT = Subtarget.getXLenVT(); 5695 SDValue Mask, VL; 5696 std::tie(Mask, VL) = getDefaultScalableVLOps(VT, DL, DAG, Subtarget); 5697 SDValue StepVec = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL); 5698 uint64_t StepValImm = Op.getConstantOperandVal(0); 5699 if (StepValImm != 1) { 5700 if (isPowerOf2_64(StepValImm)) { 5701 SDValue StepVal = 5702 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, DAG.getUNDEF(VT), 5703 DAG.getConstant(Log2_64(StepValImm), DL, XLenVT)); 5704 StepVec = DAG.getNode(ISD::SHL, DL, VT, StepVec, StepVal); 5705 } else { 5706 SDValue StepVal = lowerScalarSplat( 5707 SDValue(), DAG.getConstant(StepValImm, DL, VT.getVectorElementType()), 5708 VL, VT, DL, DAG, Subtarget); 5709 StepVec = DAG.getNode(ISD::MUL, DL, VT, StepVec, StepVal); 5710 } 5711 } 5712 return StepVec; 5713 } 5714 5715 // Implement vector_reverse using vrgather.vv with indices determined by 5716 // subtracting the id of each element from (VLMAX-1). This will convert 5717 // the indices like so: 5718 // (0, 1,..., VLMAX-2, VLMAX-1) -> (VLMAX-1, VLMAX-2,..., 1, 0). 5719 // TODO: This code assumes VLMAX <= 65536 for LMUL=8 SEW=16. 5720 SDValue RISCVTargetLowering::lowerVECTOR_REVERSE(SDValue Op, 5721 SelectionDAG &DAG) const { 5722 SDLoc DL(Op); 5723 MVT VecVT = Op.getSimpleValueType(); 5724 unsigned EltSize = VecVT.getScalarSizeInBits(); 5725 unsigned MinSize = VecVT.getSizeInBits().getKnownMinValue(); 5726 5727 unsigned MaxVLMAX = 0; 5728 unsigned VectorBitsMax = Subtarget.getMaxRVVVectorSizeInBits(); 5729 if (VectorBitsMax != 0) 5730 MaxVLMAX = 5731 RISCVTargetLowering::computeVLMAX(VectorBitsMax, EltSize, MinSize); 5732 5733 unsigned GatherOpc = RISCVISD::VRGATHER_VV_VL; 5734 MVT IntVT = VecVT.changeVectorElementTypeToInteger(); 5735 5736 // If this is SEW=8 and VLMAX is unknown or more than 256, we need 5737 // to use vrgatherei16.vv. 5738 // TODO: It's also possible to use vrgatherei16.vv for other types to 5739 // decrease register width for the index calculation. 5740 if ((MaxVLMAX == 0 || MaxVLMAX > 256) && EltSize == 8) { 5741 // If this is LMUL=8, we have to split before can use vrgatherei16.vv. 5742 // Reverse each half, then reassemble them in reverse order. 5743 // NOTE: It's also possible that after splitting that VLMAX no longer 5744 // requires vrgatherei16.vv. 5745 if (MinSize == (8 * RISCV::RVVBitsPerBlock)) { 5746 SDValue Lo, Hi; 5747 std::tie(Lo, Hi) = DAG.SplitVectorOperand(Op.getNode(), 0); 5748 EVT LoVT, HiVT; 5749 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VecVT); 5750 Lo = DAG.getNode(ISD::VECTOR_REVERSE, DL, LoVT, Lo); 5751 Hi = DAG.getNode(ISD::VECTOR_REVERSE, DL, HiVT, Hi); 5752 // Reassemble the low and high pieces reversed. 5753 // FIXME: This is a CONCAT_VECTORS. 5754 SDValue Res = 5755 DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, DAG.getUNDEF(VecVT), Hi, 5756 DAG.getIntPtrConstant(0, DL)); 5757 return DAG.getNode( 5758 ISD::INSERT_SUBVECTOR, DL, VecVT, Res, Lo, 5759 DAG.getIntPtrConstant(LoVT.getVectorMinNumElements(), DL)); 5760 } 5761 5762 // Just promote the int type to i16 which will double the LMUL. 5763 IntVT = MVT::getVectorVT(MVT::i16, VecVT.getVectorElementCount()); 5764 GatherOpc = RISCVISD::VRGATHEREI16_VV_VL; 5765 } 5766 5767 MVT XLenVT = Subtarget.getXLenVT(); 5768 SDValue Mask, VL; 5769 std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget); 5770 5771 // Calculate VLMAX-1 for the desired SEW. 5772 unsigned MinElts = VecVT.getVectorMinNumElements(); 5773 SDValue VLMax = DAG.getNode(ISD::VSCALE, DL, XLenVT, 5774 DAG.getConstant(MinElts, DL, XLenVT)); 5775 SDValue VLMinus1 = 5776 DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, DAG.getConstant(1, DL, XLenVT)); 5777 5778 // Splat VLMAX-1 taking care to handle SEW==64 on RV32. 5779 bool IsRV32E64 = 5780 !Subtarget.is64Bit() && IntVT.getVectorElementType() == MVT::i64; 5781 SDValue SplatVL; 5782 if (!IsRV32E64) 5783 SplatVL = DAG.getSplatVector(IntVT, DL, VLMinus1); 5784 else 5785 SplatVL = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, IntVT, DAG.getUNDEF(IntVT), 5786 VLMinus1, DAG.getRegister(RISCV::X0, XLenVT)); 5787 5788 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, IntVT, Mask, VL); 5789 SDValue Indices = 5790 DAG.getNode(RISCVISD::SUB_VL, DL, IntVT, SplatVL, VID, Mask, VL); 5791 5792 return DAG.getNode(GatherOpc, DL, VecVT, Op.getOperand(0), Indices, Mask, VL); 5793 } 5794 5795 SDValue RISCVTargetLowering::lowerVECTOR_SPLICE(SDValue Op, 5796 SelectionDAG &DAG) const { 5797 SDLoc DL(Op); 5798 SDValue V1 = Op.getOperand(0); 5799 SDValue V2 = Op.getOperand(1); 5800 MVT XLenVT = Subtarget.getXLenVT(); 5801 MVT VecVT = Op.getSimpleValueType(); 5802 5803 unsigned MinElts = VecVT.getVectorMinNumElements(); 5804 SDValue VLMax = DAG.getNode(ISD::VSCALE, DL, XLenVT, 5805 DAG.getConstant(MinElts, DL, XLenVT)); 5806 5807 int64_t ImmValue = cast<ConstantSDNode>(Op.getOperand(2))->getSExtValue(); 5808 SDValue DownOffset, UpOffset; 5809 if (ImmValue >= 0) { 5810 // The operand is a TargetConstant, we need to rebuild it as a regular 5811 // constant. 5812 DownOffset = DAG.getConstant(ImmValue, DL, XLenVT); 5813 UpOffset = DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, DownOffset); 5814 } else { 5815 // The operand is a TargetConstant, we need to rebuild it as a regular 5816 // constant rather than negating the original operand. 5817 UpOffset = DAG.getConstant(-ImmValue, DL, XLenVT); 5818 DownOffset = DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, UpOffset); 5819 } 5820 5821 MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount()); 5822 SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VLMax); 5823 5824 SDValue SlideDown = 5825 DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, VecVT, DAG.getUNDEF(VecVT), V1, 5826 DownOffset, TrueMask, UpOffset); 5827 return DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, VecVT, SlideDown, V2, UpOffset, 5828 TrueMask, 5829 DAG.getTargetConstant(RISCV::VLMaxSentinel, DL, XLenVT)); 5830 } 5831 5832 SDValue 5833 RISCVTargetLowering::lowerFixedLengthVectorLoadToRVV(SDValue Op, 5834 SelectionDAG &DAG) const { 5835 SDLoc DL(Op); 5836 auto *Load = cast<LoadSDNode>(Op); 5837 5838 assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 5839 Load->getMemoryVT(), 5840 *Load->getMemOperand()) && 5841 "Expecting a correctly-aligned load"); 5842 5843 MVT VT = Op.getSimpleValueType(); 5844 MVT XLenVT = Subtarget.getXLenVT(); 5845 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5846 5847 SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT); 5848 5849 bool IsMaskOp = VT.getVectorElementType() == MVT::i1; 5850 SDValue IntID = DAG.getTargetConstant( 5851 IsMaskOp ? Intrinsic::riscv_vlm : Intrinsic::riscv_vle, DL, XLenVT); 5852 SmallVector<SDValue, 4> Ops{Load->getChain(), IntID}; 5853 if (!IsMaskOp) 5854 Ops.push_back(DAG.getUNDEF(ContainerVT)); 5855 Ops.push_back(Load->getBasePtr()); 5856 Ops.push_back(VL); 5857 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 5858 SDValue NewLoad = 5859 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, 5860 Load->getMemoryVT(), Load->getMemOperand()); 5861 5862 SDValue Result = convertFromScalableVector(VT, NewLoad, DAG, Subtarget); 5863 return DAG.getMergeValues({Result, Load->getChain()}, DL); 5864 } 5865 5866 SDValue 5867 RISCVTargetLowering::lowerFixedLengthVectorStoreToRVV(SDValue Op, 5868 SelectionDAG &DAG) const { 5869 SDLoc DL(Op); 5870 auto *Store = cast<StoreSDNode>(Op); 5871 5872 assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 5873 Store->getMemoryVT(), 5874 *Store->getMemOperand()) && 5875 "Expecting a correctly-aligned store"); 5876 5877 SDValue StoreVal = Store->getValue(); 5878 MVT VT = StoreVal.getSimpleValueType(); 5879 MVT XLenVT = Subtarget.getXLenVT(); 5880 5881 // If the size less than a byte, we need to pad with zeros to make a byte. 5882 if (VT.getVectorElementType() == MVT::i1 && VT.getVectorNumElements() < 8) { 5883 VT = MVT::v8i1; 5884 StoreVal = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, 5885 DAG.getConstant(0, DL, VT), StoreVal, 5886 DAG.getIntPtrConstant(0, DL)); 5887 } 5888 5889 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5890 5891 SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT); 5892 5893 SDValue NewValue = 5894 convertToScalableVector(ContainerVT, StoreVal, DAG, Subtarget); 5895 5896 bool IsMaskOp = VT.getVectorElementType() == MVT::i1; 5897 SDValue IntID = DAG.getTargetConstant( 5898 IsMaskOp ? Intrinsic::riscv_vsm : Intrinsic::riscv_vse, DL, XLenVT); 5899 return DAG.getMemIntrinsicNode( 5900 ISD::INTRINSIC_VOID, DL, DAG.getVTList(MVT::Other), 5901 {Store->getChain(), IntID, NewValue, Store->getBasePtr(), VL}, 5902 Store->getMemoryVT(), Store->getMemOperand()); 5903 } 5904 5905 SDValue RISCVTargetLowering::lowerMaskedLoad(SDValue Op, 5906 SelectionDAG &DAG) const { 5907 SDLoc DL(Op); 5908 MVT VT = Op.getSimpleValueType(); 5909 5910 const auto *MemSD = cast<MemSDNode>(Op); 5911 EVT MemVT = MemSD->getMemoryVT(); 5912 MachineMemOperand *MMO = MemSD->getMemOperand(); 5913 SDValue Chain = MemSD->getChain(); 5914 SDValue BasePtr = MemSD->getBasePtr(); 5915 5916 SDValue Mask, PassThru, VL; 5917 if (const auto *VPLoad = dyn_cast<VPLoadSDNode>(Op)) { 5918 Mask = VPLoad->getMask(); 5919 PassThru = DAG.getUNDEF(VT); 5920 VL = VPLoad->getVectorLength(); 5921 } else { 5922 const auto *MLoad = cast<MaskedLoadSDNode>(Op); 5923 Mask = MLoad->getMask(); 5924 PassThru = MLoad->getPassThru(); 5925 } 5926 5927 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 5928 5929 MVT XLenVT = Subtarget.getXLenVT(); 5930 5931 MVT ContainerVT = VT; 5932 if (VT.isFixedLengthVector()) { 5933 ContainerVT = getContainerForFixedLengthVector(VT); 5934 PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget); 5935 if (!IsUnmasked) { 5936 MVT MaskVT = 5937 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 5938 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 5939 } 5940 } 5941 5942 if (!VL) 5943 VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; 5944 5945 unsigned IntID = 5946 IsUnmasked ? Intrinsic::riscv_vle : Intrinsic::riscv_vle_mask; 5947 SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)}; 5948 if (IsUnmasked) 5949 Ops.push_back(DAG.getUNDEF(ContainerVT)); 5950 else 5951 Ops.push_back(PassThru); 5952 Ops.push_back(BasePtr); 5953 if (!IsUnmasked) 5954 Ops.push_back(Mask); 5955 Ops.push_back(VL); 5956 if (!IsUnmasked) 5957 Ops.push_back(DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT)); 5958 5959 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 5960 5961 SDValue Result = 5962 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, MemVT, MMO); 5963 Chain = Result.getValue(1); 5964 5965 if (VT.isFixedLengthVector()) 5966 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 5967 5968 return DAG.getMergeValues({Result, Chain}, DL); 5969 } 5970 5971 SDValue RISCVTargetLowering::lowerMaskedStore(SDValue Op, 5972 SelectionDAG &DAG) const { 5973 SDLoc DL(Op); 5974 5975 const auto *MemSD = cast<MemSDNode>(Op); 5976 EVT MemVT = MemSD->getMemoryVT(); 5977 MachineMemOperand *MMO = MemSD->getMemOperand(); 5978 SDValue Chain = MemSD->getChain(); 5979 SDValue BasePtr = MemSD->getBasePtr(); 5980 SDValue Val, Mask, VL; 5981 5982 if (const auto *VPStore = dyn_cast<VPStoreSDNode>(Op)) { 5983 Val = VPStore->getValue(); 5984 Mask = VPStore->getMask(); 5985 VL = VPStore->getVectorLength(); 5986 } else { 5987 const auto *MStore = cast<MaskedStoreSDNode>(Op); 5988 Val = MStore->getValue(); 5989 Mask = MStore->getMask(); 5990 } 5991 5992 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 5993 5994 MVT VT = Val.getSimpleValueType(); 5995 MVT XLenVT = Subtarget.getXLenVT(); 5996 5997 MVT ContainerVT = VT; 5998 if (VT.isFixedLengthVector()) { 5999 ContainerVT = getContainerForFixedLengthVector(VT); 6000 6001 Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget); 6002 if (!IsUnmasked) { 6003 MVT MaskVT = 6004 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 6005 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 6006 } 6007 } 6008 6009 if (!VL) 6010 VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; 6011 6012 unsigned IntID = 6013 IsUnmasked ? Intrinsic::riscv_vse : Intrinsic::riscv_vse_mask; 6014 SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)}; 6015 Ops.push_back(Val); 6016 Ops.push_back(BasePtr); 6017 if (!IsUnmasked) 6018 Ops.push_back(Mask); 6019 Ops.push_back(VL); 6020 6021 return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, 6022 DAG.getVTList(MVT::Other), Ops, MemVT, MMO); 6023 } 6024 6025 SDValue 6026 RISCVTargetLowering::lowerFixedLengthVectorSetccToRVV(SDValue Op, 6027 SelectionDAG &DAG) const { 6028 MVT InVT = Op.getOperand(0).getSimpleValueType(); 6029 MVT ContainerVT = getContainerForFixedLengthVector(InVT); 6030 6031 MVT VT = Op.getSimpleValueType(); 6032 6033 SDValue Op1 = 6034 convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget); 6035 SDValue Op2 = 6036 convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget); 6037 6038 SDLoc DL(Op); 6039 SDValue VL = 6040 DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT()); 6041 6042 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 6043 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 6044 6045 SDValue Cmp = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, Op1, Op2, 6046 Op.getOperand(2), Mask, VL); 6047 6048 return convertFromScalableVector(VT, Cmp, DAG, Subtarget); 6049 } 6050 6051 SDValue RISCVTargetLowering::lowerFixedLengthVectorLogicOpToRVV( 6052 SDValue Op, SelectionDAG &DAG, unsigned MaskOpc, unsigned VecOpc) const { 6053 MVT VT = Op.getSimpleValueType(); 6054 6055 if (VT.getVectorElementType() == MVT::i1) 6056 return lowerToScalableOp(Op, DAG, MaskOpc, /*HasMask*/ false); 6057 6058 return lowerToScalableOp(Op, DAG, VecOpc, /*HasMask*/ true); 6059 } 6060 6061 SDValue 6062 RISCVTargetLowering::lowerFixedLengthVectorShiftToRVV(SDValue Op, 6063 SelectionDAG &DAG) const { 6064 unsigned Opc; 6065 switch (Op.getOpcode()) { 6066 default: llvm_unreachable("Unexpected opcode!"); 6067 case ISD::SHL: Opc = RISCVISD::SHL_VL; break; 6068 case ISD::SRA: Opc = RISCVISD::SRA_VL; break; 6069 case ISD::SRL: Opc = RISCVISD::SRL_VL; break; 6070 } 6071 6072 return lowerToScalableOp(Op, DAG, Opc); 6073 } 6074 6075 // Lower vector ABS to smax(X, sub(0, X)). 6076 SDValue RISCVTargetLowering::lowerABS(SDValue Op, SelectionDAG &DAG) const { 6077 SDLoc DL(Op); 6078 MVT VT = Op.getSimpleValueType(); 6079 SDValue X = Op.getOperand(0); 6080 6081 assert(VT.isFixedLengthVector() && "Unexpected type"); 6082 6083 MVT ContainerVT = getContainerForFixedLengthVector(VT); 6084 X = convertToScalableVector(ContainerVT, X, DAG, Subtarget); 6085 6086 SDValue Mask, VL; 6087 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 6088 6089 SDValue SplatZero = DAG.getNode( 6090 RISCVISD::VMV_V_X_VL, DL, ContainerVT, DAG.getUNDEF(ContainerVT), 6091 DAG.getConstant(0, DL, Subtarget.getXLenVT())); 6092 SDValue NegX = 6093 DAG.getNode(RISCVISD::SUB_VL, DL, ContainerVT, SplatZero, X, Mask, VL); 6094 SDValue Max = 6095 DAG.getNode(RISCVISD::SMAX_VL, DL, ContainerVT, X, NegX, Mask, VL); 6096 6097 return convertFromScalableVector(VT, Max, DAG, Subtarget); 6098 } 6099 6100 SDValue RISCVTargetLowering::lowerFixedLengthVectorFCOPYSIGNToRVV( 6101 SDValue Op, SelectionDAG &DAG) const { 6102 SDLoc DL(Op); 6103 MVT VT = Op.getSimpleValueType(); 6104 SDValue Mag = Op.getOperand(0); 6105 SDValue Sign = Op.getOperand(1); 6106 assert(Mag.getValueType() == Sign.getValueType() && 6107 "Can only handle COPYSIGN with matching types."); 6108 6109 MVT ContainerVT = getContainerForFixedLengthVector(VT); 6110 Mag = convertToScalableVector(ContainerVT, Mag, DAG, Subtarget); 6111 Sign = convertToScalableVector(ContainerVT, Sign, DAG, Subtarget); 6112 6113 SDValue Mask, VL; 6114 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 6115 6116 SDValue CopySign = 6117 DAG.getNode(RISCVISD::FCOPYSIGN_VL, DL, ContainerVT, Mag, Sign, Mask, VL); 6118 6119 return convertFromScalableVector(VT, CopySign, DAG, Subtarget); 6120 } 6121 6122 SDValue RISCVTargetLowering::lowerFixedLengthVectorSelectToRVV( 6123 SDValue Op, SelectionDAG &DAG) const { 6124 MVT VT = Op.getSimpleValueType(); 6125 MVT ContainerVT = getContainerForFixedLengthVector(VT); 6126 6127 MVT I1ContainerVT = 6128 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 6129 6130 SDValue CC = 6131 convertToScalableVector(I1ContainerVT, Op.getOperand(0), DAG, Subtarget); 6132 SDValue Op1 = 6133 convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget); 6134 SDValue Op2 = 6135 convertToScalableVector(ContainerVT, Op.getOperand(2), DAG, Subtarget); 6136 6137 SDLoc DL(Op); 6138 SDValue Mask, VL; 6139 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 6140 6141 SDValue Select = 6142 DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC, Op1, Op2, VL); 6143 6144 return convertFromScalableVector(VT, Select, DAG, Subtarget); 6145 } 6146 6147 SDValue RISCVTargetLowering::lowerToScalableOp(SDValue Op, SelectionDAG &DAG, 6148 unsigned NewOpc, 6149 bool HasMask) const { 6150 MVT VT = Op.getSimpleValueType(); 6151 MVT ContainerVT = getContainerForFixedLengthVector(VT); 6152 6153 // Create list of operands by converting existing ones to scalable types. 6154 SmallVector<SDValue, 6> Ops; 6155 for (const SDValue &V : Op->op_values()) { 6156 assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!"); 6157 6158 // Pass through non-vector operands. 6159 if (!V.getValueType().isVector()) { 6160 Ops.push_back(V); 6161 continue; 6162 } 6163 6164 // "cast" fixed length vector to a scalable vector. 6165 assert(useRVVForFixedLengthVectorVT(V.getSimpleValueType()) && 6166 "Only fixed length vectors are supported!"); 6167 Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget)); 6168 } 6169 6170 SDLoc DL(Op); 6171 SDValue Mask, VL; 6172 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 6173 if (HasMask) 6174 Ops.push_back(Mask); 6175 Ops.push_back(VL); 6176 6177 SDValue ScalableRes = DAG.getNode(NewOpc, DL, ContainerVT, Ops); 6178 return convertFromScalableVector(VT, ScalableRes, DAG, Subtarget); 6179 } 6180 6181 // Lower a VP_* ISD node to the corresponding RISCVISD::*_VL node: 6182 // * Operands of each node are assumed to be in the same order. 6183 // * The EVL operand is promoted from i32 to i64 on RV64. 6184 // * Fixed-length vectors are converted to their scalable-vector container 6185 // types. 6186 SDValue RISCVTargetLowering::lowerVPOp(SDValue Op, SelectionDAG &DAG, 6187 unsigned RISCVISDOpc) const { 6188 SDLoc DL(Op); 6189 MVT VT = Op.getSimpleValueType(); 6190 SmallVector<SDValue, 4> Ops; 6191 6192 for (const auto &OpIdx : enumerate(Op->ops())) { 6193 SDValue V = OpIdx.value(); 6194 assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!"); 6195 // Pass through operands which aren't fixed-length vectors. 6196 if (!V.getValueType().isFixedLengthVector()) { 6197 Ops.push_back(V); 6198 continue; 6199 } 6200 // "cast" fixed length vector to a scalable vector. 6201 MVT OpVT = V.getSimpleValueType(); 6202 MVT ContainerVT = getContainerForFixedLengthVector(OpVT); 6203 assert(useRVVForFixedLengthVectorVT(OpVT) && 6204 "Only fixed length vectors are supported!"); 6205 Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget)); 6206 } 6207 6208 if (!VT.isFixedLengthVector()) 6209 return DAG.getNode(RISCVISDOpc, DL, VT, Ops); 6210 6211 MVT ContainerVT = getContainerForFixedLengthVector(VT); 6212 6213 SDValue VPOp = DAG.getNode(RISCVISDOpc, DL, ContainerVT, Ops); 6214 6215 return convertFromScalableVector(VT, VPOp, DAG, Subtarget); 6216 } 6217 6218 SDValue RISCVTargetLowering::lowerVPExtMaskOp(SDValue Op, 6219 SelectionDAG &DAG) const { 6220 SDLoc DL(Op); 6221 MVT VT = Op.getSimpleValueType(); 6222 6223 SDValue Src = Op.getOperand(0); 6224 // NOTE: Mask is dropped. 6225 SDValue VL = Op.getOperand(2); 6226 6227 MVT ContainerVT = VT; 6228 if (VT.isFixedLengthVector()) { 6229 ContainerVT = getContainerForFixedLengthVector(VT); 6230 MVT SrcVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 6231 Src = convertToScalableVector(SrcVT, Src, DAG, Subtarget); 6232 } 6233 6234 MVT XLenVT = Subtarget.getXLenVT(); 6235 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 6236 SDValue ZeroSplat = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, 6237 DAG.getUNDEF(ContainerVT), Zero, VL); 6238 6239 SDValue SplatValue = 6240 DAG.getConstant(Op.getOpcode() == ISD::VP_ZEXT ? 1 : -1, DL, XLenVT); 6241 SDValue Splat = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, 6242 DAG.getUNDEF(ContainerVT), SplatValue, VL); 6243 6244 SDValue Result = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, Src, 6245 Splat, ZeroSplat, VL); 6246 if (!VT.isFixedLengthVector()) 6247 return Result; 6248 return convertFromScalableVector(VT, Result, DAG, Subtarget); 6249 } 6250 6251 // Lower Floating-Point/Integer Type-Convert VP SDNodes 6252 SDValue RISCVTargetLowering::lowerVPFPIntConvOp(SDValue Op, SelectionDAG &DAG, 6253 unsigned RISCVISDOpc) const { 6254 SDLoc DL(Op); 6255 6256 SDValue Src = Op.getOperand(0); 6257 SDValue Mask = Op.getOperand(1); 6258 SDValue VL = Op.getOperand(2); 6259 6260 MVT DstVT = Op.getSimpleValueType(); 6261 MVT SrcVT = Src.getSimpleValueType(); 6262 if (DstVT.isFixedLengthVector()) { 6263 DstVT = getContainerForFixedLengthVector(DstVT); 6264 SrcVT = getContainerForFixedLengthVector(SrcVT); 6265 Src = convertToScalableVector(SrcVT, Src, DAG, Subtarget); 6266 MVT MaskVT = MVT::getVectorVT(MVT::i1, DstVT.getVectorElementCount()); 6267 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 6268 } 6269 6270 unsigned RISCVISDExtOpc = (RISCVISDOpc == RISCVISD::SINT_TO_FP_VL || 6271 RISCVISDOpc == RISCVISD::FP_TO_SINT_VL) 6272 ? RISCVISD::VSEXT_VL 6273 : RISCVISD::VZEXT_VL; 6274 6275 unsigned DstEltSize = DstVT.getScalarSizeInBits(); 6276 unsigned SrcEltSize = SrcVT.getScalarSizeInBits(); 6277 6278 SDValue Result; 6279 if (DstEltSize >= SrcEltSize) { // Single-width and widening conversion. 6280 if (SrcVT.isInteger()) { 6281 assert(DstVT.isFloatingPoint() && "Wrong input/output vector types"); 6282 6283 // Do we need to do any pre-widening before converting? 6284 if (SrcEltSize == 1) { 6285 MVT IntVT = DstVT.changeVectorElementTypeToInteger(); 6286 MVT XLenVT = Subtarget.getXLenVT(); 6287 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 6288 SDValue ZeroSplat = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, IntVT, 6289 DAG.getUNDEF(IntVT), Zero, VL); 6290 SDValue One = DAG.getConstant( 6291 RISCVISDExtOpc == RISCVISD::VZEXT_VL ? 1 : -1, DL, XLenVT); 6292 SDValue OneSplat = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, IntVT, 6293 DAG.getUNDEF(IntVT), One, VL); 6294 Src = DAG.getNode(RISCVISD::VSELECT_VL, DL, IntVT, Src, OneSplat, 6295 ZeroSplat, VL); 6296 } else if (DstEltSize > (2 * SrcEltSize)) { 6297 // Widen before converting. 6298 MVT IntVT = MVT::getVectorVT(MVT::getIntegerVT(DstEltSize / 2), 6299 DstVT.getVectorElementCount()); 6300 Src = DAG.getNode(RISCVISDExtOpc, DL, IntVT, Src, Mask, VL); 6301 } 6302 6303 Result = DAG.getNode(RISCVISDOpc, DL, DstVT, Src, Mask, VL); 6304 } else { 6305 assert(SrcVT.isFloatingPoint() && DstVT.isInteger() && 6306 "Wrong input/output vector types"); 6307 6308 // Convert f16 to f32 then convert f32 to i64. 6309 if (DstEltSize > (2 * SrcEltSize)) { 6310 assert(SrcVT.getVectorElementType() == MVT::f16 && "Unexpected type!"); 6311 MVT InterimFVT = 6312 MVT::getVectorVT(MVT::f32, DstVT.getVectorElementCount()); 6313 Src = 6314 DAG.getNode(RISCVISD::FP_EXTEND_VL, DL, InterimFVT, Src, Mask, VL); 6315 } 6316 6317 Result = DAG.getNode(RISCVISDOpc, DL, DstVT, Src, Mask, VL); 6318 } 6319 } else { // Narrowing + Conversion 6320 if (SrcVT.isInteger()) { 6321 assert(DstVT.isFloatingPoint() && "Wrong input/output vector types"); 6322 // First do a narrowing convert to an FP type half the size, then round 6323 // the FP type to a small FP type if needed. 6324 6325 MVT InterimFVT = DstVT; 6326 if (SrcEltSize > (2 * DstEltSize)) { 6327 assert(SrcEltSize == (4 * DstEltSize) && "Unexpected types!"); 6328 assert(DstVT.getVectorElementType() == MVT::f16 && "Unexpected type!"); 6329 InterimFVT = MVT::getVectorVT(MVT::f32, DstVT.getVectorElementCount()); 6330 } 6331 6332 Result = DAG.getNode(RISCVISDOpc, DL, InterimFVT, Src, Mask, VL); 6333 6334 if (InterimFVT != DstVT) { 6335 Src = Result; 6336 Result = DAG.getNode(RISCVISD::FP_ROUND_VL, DL, DstVT, Src, Mask, VL); 6337 } 6338 } else { 6339 assert(SrcVT.isFloatingPoint() && DstVT.isInteger() && 6340 "Wrong input/output vector types"); 6341 // First do a narrowing conversion to an integer half the size, then 6342 // truncate if needed. 6343 6344 if (DstEltSize == 1) { 6345 // First convert to the same size integer, then convert to mask using 6346 // setcc. 6347 assert(SrcEltSize >= 16 && "Unexpected FP type!"); 6348 MVT InterimIVT = MVT::getVectorVT(MVT::getIntegerVT(SrcEltSize), 6349 DstVT.getVectorElementCount()); 6350 Result = DAG.getNode(RISCVISDOpc, DL, InterimIVT, Src, Mask, VL); 6351 6352 // Compare the integer result to 0. The integer should be 0 or 1/-1, 6353 // otherwise the conversion was undefined. 6354 MVT XLenVT = Subtarget.getXLenVT(); 6355 SDValue SplatZero = DAG.getConstant(0, DL, XLenVT); 6356 SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, InterimIVT, 6357 DAG.getUNDEF(InterimIVT), SplatZero); 6358 Result = DAG.getNode(RISCVISD::SETCC_VL, DL, DstVT, Result, SplatZero, 6359 DAG.getCondCode(ISD::SETNE), Mask, VL); 6360 } else { 6361 MVT InterimIVT = MVT::getVectorVT(MVT::getIntegerVT(SrcEltSize / 2), 6362 DstVT.getVectorElementCount()); 6363 6364 Result = DAG.getNode(RISCVISDOpc, DL, InterimIVT, Src, Mask, VL); 6365 6366 while (InterimIVT != DstVT) { 6367 SrcEltSize /= 2; 6368 Src = Result; 6369 InterimIVT = MVT::getVectorVT(MVT::getIntegerVT(SrcEltSize / 2), 6370 DstVT.getVectorElementCount()); 6371 Result = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, InterimIVT, 6372 Src, Mask, VL); 6373 } 6374 } 6375 } 6376 } 6377 6378 MVT VT = Op.getSimpleValueType(); 6379 if (!VT.isFixedLengthVector()) 6380 return Result; 6381 return convertFromScalableVector(VT, Result, DAG, Subtarget); 6382 } 6383 6384 SDValue RISCVTargetLowering::lowerLogicVPOp(SDValue Op, SelectionDAG &DAG, 6385 unsigned MaskOpc, 6386 unsigned VecOpc) const { 6387 MVT VT = Op.getSimpleValueType(); 6388 if (VT.getVectorElementType() != MVT::i1) 6389 return lowerVPOp(Op, DAG, VecOpc); 6390 6391 // It is safe to drop mask parameter as masked-off elements are undef. 6392 SDValue Op1 = Op->getOperand(0); 6393 SDValue Op2 = Op->getOperand(1); 6394 SDValue VL = Op->getOperand(3); 6395 6396 MVT ContainerVT = VT; 6397 const bool IsFixed = VT.isFixedLengthVector(); 6398 if (IsFixed) { 6399 ContainerVT = getContainerForFixedLengthVector(VT); 6400 Op1 = convertToScalableVector(ContainerVT, Op1, DAG, Subtarget); 6401 Op2 = convertToScalableVector(ContainerVT, Op2, DAG, Subtarget); 6402 } 6403 6404 SDLoc DL(Op); 6405 SDValue Val = DAG.getNode(MaskOpc, DL, ContainerVT, Op1, Op2, VL); 6406 if (!IsFixed) 6407 return Val; 6408 return convertFromScalableVector(VT, Val, DAG, Subtarget); 6409 } 6410 6411 // Custom lower MGATHER/VP_GATHER to a legalized form for RVV. It will then be 6412 // matched to a RVV indexed load. The RVV indexed load instructions only 6413 // support the "unsigned unscaled" addressing mode; indices are implicitly 6414 // zero-extended or truncated to XLEN and are treated as byte offsets. Any 6415 // signed or scaled indexing is extended to the XLEN value type and scaled 6416 // accordingly. 6417 SDValue RISCVTargetLowering::lowerMaskedGather(SDValue Op, 6418 SelectionDAG &DAG) const { 6419 SDLoc DL(Op); 6420 MVT VT = Op.getSimpleValueType(); 6421 6422 const auto *MemSD = cast<MemSDNode>(Op.getNode()); 6423 EVT MemVT = MemSD->getMemoryVT(); 6424 MachineMemOperand *MMO = MemSD->getMemOperand(); 6425 SDValue Chain = MemSD->getChain(); 6426 SDValue BasePtr = MemSD->getBasePtr(); 6427 6428 ISD::LoadExtType LoadExtType; 6429 SDValue Index, Mask, PassThru, VL; 6430 6431 if (auto *VPGN = dyn_cast<VPGatherSDNode>(Op.getNode())) { 6432 Index = VPGN->getIndex(); 6433 Mask = VPGN->getMask(); 6434 PassThru = DAG.getUNDEF(VT); 6435 VL = VPGN->getVectorLength(); 6436 // VP doesn't support extending loads. 6437 LoadExtType = ISD::NON_EXTLOAD; 6438 } else { 6439 // Else it must be a MGATHER. 6440 auto *MGN = cast<MaskedGatherSDNode>(Op.getNode()); 6441 Index = MGN->getIndex(); 6442 Mask = MGN->getMask(); 6443 PassThru = MGN->getPassThru(); 6444 LoadExtType = MGN->getExtensionType(); 6445 } 6446 6447 MVT IndexVT = Index.getSimpleValueType(); 6448 MVT XLenVT = Subtarget.getXLenVT(); 6449 6450 assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() && 6451 "Unexpected VTs!"); 6452 assert(BasePtr.getSimpleValueType() == XLenVT && "Unexpected pointer type"); 6453 // Targets have to explicitly opt-in for extending vector loads. 6454 assert(LoadExtType == ISD::NON_EXTLOAD && 6455 "Unexpected extending MGATHER/VP_GATHER"); 6456 (void)LoadExtType; 6457 6458 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 6459 // the selection of the masked intrinsics doesn't do this for us. 6460 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 6461 6462 MVT ContainerVT = VT; 6463 if (VT.isFixedLengthVector()) { 6464 // We need to use the larger of the result and index type to determine the 6465 // scalable type to use so we don't increase LMUL for any operand/result. 6466 if (VT.bitsGE(IndexVT)) { 6467 ContainerVT = getContainerForFixedLengthVector(VT); 6468 IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(), 6469 ContainerVT.getVectorElementCount()); 6470 } else { 6471 IndexVT = getContainerForFixedLengthVector(IndexVT); 6472 ContainerVT = MVT::getVectorVT(ContainerVT.getVectorElementType(), 6473 IndexVT.getVectorElementCount()); 6474 } 6475 6476 Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget); 6477 6478 if (!IsUnmasked) { 6479 MVT MaskVT = 6480 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 6481 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 6482 PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget); 6483 } 6484 } 6485 6486 if (!VL) 6487 VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; 6488 6489 if (XLenVT == MVT::i32 && IndexVT.getVectorElementType().bitsGT(XLenVT)) { 6490 IndexVT = IndexVT.changeVectorElementType(XLenVT); 6491 SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, Mask.getValueType(), 6492 VL); 6493 Index = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, IndexVT, Index, 6494 TrueMask, VL); 6495 } 6496 6497 unsigned IntID = 6498 IsUnmasked ? Intrinsic::riscv_vluxei : Intrinsic::riscv_vluxei_mask; 6499 SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)}; 6500 if (IsUnmasked) 6501 Ops.push_back(DAG.getUNDEF(ContainerVT)); 6502 else 6503 Ops.push_back(PassThru); 6504 Ops.push_back(BasePtr); 6505 Ops.push_back(Index); 6506 if (!IsUnmasked) 6507 Ops.push_back(Mask); 6508 Ops.push_back(VL); 6509 if (!IsUnmasked) 6510 Ops.push_back(DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT)); 6511 6512 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 6513 SDValue Result = 6514 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, MemVT, MMO); 6515 Chain = Result.getValue(1); 6516 6517 if (VT.isFixedLengthVector()) 6518 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 6519 6520 return DAG.getMergeValues({Result, Chain}, DL); 6521 } 6522 6523 // Custom lower MSCATTER/VP_SCATTER to a legalized form for RVV. It will then be 6524 // matched to a RVV indexed store. The RVV indexed store instructions only 6525 // support the "unsigned unscaled" addressing mode; indices are implicitly 6526 // zero-extended or truncated to XLEN and are treated as byte offsets. Any 6527 // signed or scaled indexing is extended to the XLEN value type and scaled 6528 // accordingly. 6529 SDValue RISCVTargetLowering::lowerMaskedScatter(SDValue Op, 6530 SelectionDAG &DAG) const { 6531 SDLoc DL(Op); 6532 const auto *MemSD = cast<MemSDNode>(Op.getNode()); 6533 EVT MemVT = MemSD->getMemoryVT(); 6534 MachineMemOperand *MMO = MemSD->getMemOperand(); 6535 SDValue Chain = MemSD->getChain(); 6536 SDValue BasePtr = MemSD->getBasePtr(); 6537 6538 bool IsTruncatingStore = false; 6539 SDValue Index, Mask, Val, VL; 6540 6541 if (auto *VPSN = dyn_cast<VPScatterSDNode>(Op.getNode())) { 6542 Index = VPSN->getIndex(); 6543 Mask = VPSN->getMask(); 6544 Val = VPSN->getValue(); 6545 VL = VPSN->getVectorLength(); 6546 // VP doesn't support truncating stores. 6547 IsTruncatingStore = false; 6548 } else { 6549 // Else it must be a MSCATTER. 6550 auto *MSN = cast<MaskedScatterSDNode>(Op.getNode()); 6551 Index = MSN->getIndex(); 6552 Mask = MSN->getMask(); 6553 Val = MSN->getValue(); 6554 IsTruncatingStore = MSN->isTruncatingStore(); 6555 } 6556 6557 MVT VT = Val.getSimpleValueType(); 6558 MVT IndexVT = Index.getSimpleValueType(); 6559 MVT XLenVT = Subtarget.getXLenVT(); 6560 6561 assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() && 6562 "Unexpected VTs!"); 6563 assert(BasePtr.getSimpleValueType() == XLenVT && "Unexpected pointer type"); 6564 // Targets have to explicitly opt-in for extending vector loads and 6565 // truncating vector stores. 6566 assert(!IsTruncatingStore && "Unexpected truncating MSCATTER/VP_SCATTER"); 6567 (void)IsTruncatingStore; 6568 6569 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 6570 // the selection of the masked intrinsics doesn't do this for us. 6571 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 6572 6573 MVT ContainerVT = VT; 6574 if (VT.isFixedLengthVector()) { 6575 // We need to use the larger of the value and index type to determine the 6576 // scalable type to use so we don't increase LMUL for any operand/result. 6577 if (VT.bitsGE(IndexVT)) { 6578 ContainerVT = getContainerForFixedLengthVector(VT); 6579 IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(), 6580 ContainerVT.getVectorElementCount()); 6581 } else { 6582 IndexVT = getContainerForFixedLengthVector(IndexVT); 6583 ContainerVT = MVT::getVectorVT(VT.getVectorElementType(), 6584 IndexVT.getVectorElementCount()); 6585 } 6586 6587 Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget); 6588 Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget); 6589 6590 if (!IsUnmasked) { 6591 MVT MaskVT = 6592 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 6593 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 6594 } 6595 } 6596 6597 if (!VL) 6598 VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; 6599 6600 if (XLenVT == MVT::i32 && IndexVT.getVectorElementType().bitsGT(XLenVT)) { 6601 IndexVT = IndexVT.changeVectorElementType(XLenVT); 6602 SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, Mask.getValueType(), 6603 VL); 6604 Index = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, IndexVT, Index, 6605 TrueMask, VL); 6606 } 6607 6608 unsigned IntID = 6609 IsUnmasked ? Intrinsic::riscv_vsoxei : Intrinsic::riscv_vsoxei_mask; 6610 SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)}; 6611 Ops.push_back(Val); 6612 Ops.push_back(BasePtr); 6613 Ops.push_back(Index); 6614 if (!IsUnmasked) 6615 Ops.push_back(Mask); 6616 Ops.push_back(VL); 6617 6618 return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, 6619 DAG.getVTList(MVT::Other), Ops, MemVT, MMO); 6620 } 6621 6622 SDValue RISCVTargetLowering::lowerGET_ROUNDING(SDValue Op, 6623 SelectionDAG &DAG) const { 6624 const MVT XLenVT = Subtarget.getXLenVT(); 6625 SDLoc DL(Op); 6626 SDValue Chain = Op->getOperand(0); 6627 SDValue SysRegNo = DAG.getTargetConstant( 6628 RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT); 6629 SDVTList VTs = DAG.getVTList(XLenVT, MVT::Other); 6630 SDValue RM = DAG.getNode(RISCVISD::READ_CSR, DL, VTs, Chain, SysRegNo); 6631 6632 // Encoding used for rounding mode in RISCV differs from that used in 6633 // FLT_ROUNDS. To convert it the RISCV rounding mode is used as an index in a 6634 // table, which consists of a sequence of 4-bit fields, each representing 6635 // corresponding FLT_ROUNDS mode. 6636 static const int Table = 6637 (int(RoundingMode::NearestTiesToEven) << 4 * RISCVFPRndMode::RNE) | 6638 (int(RoundingMode::TowardZero) << 4 * RISCVFPRndMode::RTZ) | 6639 (int(RoundingMode::TowardNegative) << 4 * RISCVFPRndMode::RDN) | 6640 (int(RoundingMode::TowardPositive) << 4 * RISCVFPRndMode::RUP) | 6641 (int(RoundingMode::NearestTiesToAway) << 4 * RISCVFPRndMode::RMM); 6642 6643 SDValue Shift = 6644 DAG.getNode(ISD::SHL, DL, XLenVT, RM, DAG.getConstant(2, DL, XLenVT)); 6645 SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT, 6646 DAG.getConstant(Table, DL, XLenVT), Shift); 6647 SDValue Masked = DAG.getNode(ISD::AND, DL, XLenVT, Shifted, 6648 DAG.getConstant(7, DL, XLenVT)); 6649 6650 return DAG.getMergeValues({Masked, Chain}, DL); 6651 } 6652 6653 SDValue RISCVTargetLowering::lowerSET_ROUNDING(SDValue Op, 6654 SelectionDAG &DAG) const { 6655 const MVT XLenVT = Subtarget.getXLenVT(); 6656 SDLoc DL(Op); 6657 SDValue Chain = Op->getOperand(0); 6658 SDValue RMValue = Op->getOperand(1); 6659 SDValue SysRegNo = DAG.getTargetConstant( 6660 RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT); 6661 6662 // Encoding used for rounding mode in RISCV differs from that used in 6663 // FLT_ROUNDS. To convert it the C rounding mode is used as an index in 6664 // a table, which consists of a sequence of 4-bit fields, each representing 6665 // corresponding RISCV mode. 6666 static const unsigned Table = 6667 (RISCVFPRndMode::RNE << 4 * int(RoundingMode::NearestTiesToEven)) | 6668 (RISCVFPRndMode::RTZ << 4 * int(RoundingMode::TowardZero)) | 6669 (RISCVFPRndMode::RDN << 4 * int(RoundingMode::TowardNegative)) | 6670 (RISCVFPRndMode::RUP << 4 * int(RoundingMode::TowardPositive)) | 6671 (RISCVFPRndMode::RMM << 4 * int(RoundingMode::NearestTiesToAway)); 6672 6673 SDValue Shift = DAG.getNode(ISD::SHL, DL, XLenVT, RMValue, 6674 DAG.getConstant(2, DL, XLenVT)); 6675 SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT, 6676 DAG.getConstant(Table, DL, XLenVT), Shift); 6677 RMValue = DAG.getNode(ISD::AND, DL, XLenVT, Shifted, 6678 DAG.getConstant(0x7, DL, XLenVT)); 6679 return DAG.getNode(RISCVISD::WRITE_CSR, DL, MVT::Other, Chain, SysRegNo, 6680 RMValue); 6681 } 6682 6683 static RISCVISD::NodeType getRISCVWOpcodeByIntr(unsigned IntNo) { 6684 switch (IntNo) { 6685 default: 6686 llvm_unreachable("Unexpected Intrinsic"); 6687 case Intrinsic::riscv_bcompress: 6688 return RISCVISD::BCOMPRESSW; 6689 case Intrinsic::riscv_bdecompress: 6690 return RISCVISD::BDECOMPRESSW; 6691 case Intrinsic::riscv_bfp: 6692 return RISCVISD::BFPW; 6693 case Intrinsic::riscv_fsl: 6694 return RISCVISD::FSLW; 6695 case Intrinsic::riscv_fsr: 6696 return RISCVISD::FSRW; 6697 } 6698 } 6699 6700 // Converts the given intrinsic to a i64 operation with any extension. 6701 static SDValue customLegalizeToWOpByIntr(SDNode *N, SelectionDAG &DAG, 6702 unsigned IntNo) { 6703 SDLoc DL(N); 6704 RISCVISD::NodeType WOpcode = getRISCVWOpcodeByIntr(IntNo); 6705 // Deal with the Instruction Operands 6706 SmallVector<SDValue, 3> NewOps; 6707 for (SDValue Op : drop_begin(N->ops())) 6708 // Promote the operand to i64 type 6709 NewOps.push_back(DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op)); 6710 SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOps); 6711 // ReplaceNodeResults requires we maintain the same type for the return value. 6712 return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewRes); 6713 } 6714 6715 // Returns the opcode of the target-specific SDNode that implements the 32-bit 6716 // form of the given Opcode. 6717 static RISCVISD::NodeType getRISCVWOpcode(unsigned Opcode) { 6718 switch (Opcode) { 6719 default: 6720 llvm_unreachable("Unexpected opcode"); 6721 case ISD::SHL: 6722 return RISCVISD::SLLW; 6723 case ISD::SRA: 6724 return RISCVISD::SRAW; 6725 case ISD::SRL: 6726 return RISCVISD::SRLW; 6727 case ISD::SDIV: 6728 return RISCVISD::DIVW; 6729 case ISD::UDIV: 6730 return RISCVISD::DIVUW; 6731 case ISD::UREM: 6732 return RISCVISD::REMUW; 6733 case ISD::ROTL: 6734 return RISCVISD::ROLW; 6735 case ISD::ROTR: 6736 return RISCVISD::RORW; 6737 } 6738 } 6739 6740 // Converts the given i8/i16/i32 operation to a target-specific SelectionDAG 6741 // node. Because i8/i16/i32 isn't a legal type for RV64, these operations would 6742 // otherwise be promoted to i64, making it difficult to select the 6743 // SLLW/DIVUW/.../*W later one because the fact the operation was originally of 6744 // type i8/i16/i32 is lost. 6745 static SDValue customLegalizeToWOp(SDNode *N, SelectionDAG &DAG, 6746 unsigned ExtOpc = ISD::ANY_EXTEND) { 6747 SDLoc DL(N); 6748 RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode()); 6749 SDValue NewOp0 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(0)); 6750 SDValue NewOp1 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(1)); 6751 SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1); 6752 // ReplaceNodeResults requires we maintain the same type for the return value. 6753 return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewRes); 6754 } 6755 6756 // Converts the given 32-bit operation to a i64 operation with signed extension 6757 // semantic to reduce the signed extension instructions. 6758 static SDValue customLegalizeToWOpWithSExt(SDNode *N, SelectionDAG &DAG) { 6759 SDLoc DL(N); 6760 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 6761 SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6762 SDValue NewWOp = DAG.getNode(N->getOpcode(), DL, MVT::i64, NewOp0, NewOp1); 6763 SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp, 6764 DAG.getValueType(MVT::i32)); 6765 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes); 6766 } 6767 6768 void RISCVTargetLowering::ReplaceNodeResults(SDNode *N, 6769 SmallVectorImpl<SDValue> &Results, 6770 SelectionDAG &DAG) const { 6771 SDLoc DL(N); 6772 switch (N->getOpcode()) { 6773 default: 6774 llvm_unreachable("Don't know how to custom type legalize this operation!"); 6775 case ISD::STRICT_FP_TO_SINT: 6776 case ISD::STRICT_FP_TO_UINT: 6777 case ISD::FP_TO_SINT: 6778 case ISD::FP_TO_UINT: { 6779 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6780 "Unexpected custom legalisation"); 6781 bool IsStrict = N->isStrictFPOpcode(); 6782 bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT || 6783 N->getOpcode() == ISD::STRICT_FP_TO_SINT; 6784 SDValue Op0 = IsStrict ? N->getOperand(1) : N->getOperand(0); 6785 if (getTypeAction(*DAG.getContext(), Op0.getValueType()) != 6786 TargetLowering::TypeSoftenFloat) { 6787 if (!isTypeLegal(Op0.getValueType())) 6788 return; 6789 if (IsStrict) { 6790 unsigned Opc = IsSigned ? RISCVISD::STRICT_FCVT_W_RV64 6791 : RISCVISD::STRICT_FCVT_WU_RV64; 6792 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other); 6793 SDValue Res = DAG.getNode( 6794 Opc, DL, VTs, N->getOperand(0), Op0, 6795 DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, MVT::i64)); 6796 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6797 Results.push_back(Res.getValue(1)); 6798 return; 6799 } 6800 unsigned Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64; 6801 SDValue Res = 6802 DAG.getNode(Opc, DL, MVT::i64, Op0, 6803 DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, MVT::i64)); 6804 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6805 return; 6806 } 6807 // If the FP type needs to be softened, emit a library call using the 'si' 6808 // version. If we left it to default legalization we'd end up with 'di'. If 6809 // the FP type doesn't need to be softened just let generic type 6810 // legalization promote the result type. 6811 RTLIB::Libcall LC; 6812 if (IsSigned) 6813 LC = RTLIB::getFPTOSINT(Op0.getValueType(), N->getValueType(0)); 6814 else 6815 LC = RTLIB::getFPTOUINT(Op0.getValueType(), N->getValueType(0)); 6816 MakeLibCallOptions CallOptions; 6817 EVT OpVT = Op0.getValueType(); 6818 CallOptions.setTypeListBeforeSoften(OpVT, N->getValueType(0), true); 6819 SDValue Chain = IsStrict ? N->getOperand(0) : SDValue(); 6820 SDValue Result; 6821 std::tie(Result, Chain) = 6822 makeLibCall(DAG, LC, N->getValueType(0), Op0, CallOptions, DL, Chain); 6823 Results.push_back(Result); 6824 if (IsStrict) 6825 Results.push_back(Chain); 6826 break; 6827 } 6828 case ISD::READCYCLECOUNTER: { 6829 assert(!Subtarget.is64Bit() && 6830 "READCYCLECOUNTER only has custom type legalization on riscv32"); 6831 6832 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other); 6833 SDValue RCW = 6834 DAG.getNode(RISCVISD::READ_CYCLE_WIDE, DL, VTs, N->getOperand(0)); 6835 6836 Results.push_back( 6837 DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, RCW, RCW.getValue(1))); 6838 Results.push_back(RCW.getValue(2)); 6839 break; 6840 } 6841 case ISD::MUL: { 6842 unsigned Size = N->getSimpleValueType(0).getSizeInBits(); 6843 unsigned XLen = Subtarget.getXLen(); 6844 // This multiply needs to be expanded, try to use MULHSU+MUL if possible. 6845 if (Size > XLen) { 6846 assert(Size == (XLen * 2) && "Unexpected custom legalisation"); 6847 SDValue LHS = N->getOperand(0); 6848 SDValue RHS = N->getOperand(1); 6849 APInt HighMask = APInt::getHighBitsSet(Size, XLen); 6850 6851 bool LHSIsU = DAG.MaskedValueIsZero(LHS, HighMask); 6852 bool RHSIsU = DAG.MaskedValueIsZero(RHS, HighMask); 6853 // We need exactly one side to be unsigned. 6854 if (LHSIsU == RHSIsU) 6855 return; 6856 6857 auto MakeMULPair = [&](SDValue S, SDValue U) { 6858 MVT XLenVT = Subtarget.getXLenVT(); 6859 S = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, S); 6860 U = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, U); 6861 SDValue Lo = DAG.getNode(ISD::MUL, DL, XLenVT, S, U); 6862 SDValue Hi = DAG.getNode(RISCVISD::MULHSU, DL, XLenVT, S, U); 6863 return DAG.getNode(ISD::BUILD_PAIR, DL, N->getValueType(0), Lo, Hi); 6864 }; 6865 6866 bool LHSIsS = DAG.ComputeNumSignBits(LHS) > XLen; 6867 bool RHSIsS = DAG.ComputeNumSignBits(RHS) > XLen; 6868 6869 // The other operand should be signed, but still prefer MULH when 6870 // possible. 6871 if (RHSIsU && LHSIsS && !RHSIsS) 6872 Results.push_back(MakeMULPair(LHS, RHS)); 6873 else if (LHSIsU && RHSIsS && !LHSIsS) 6874 Results.push_back(MakeMULPair(RHS, LHS)); 6875 6876 return; 6877 } 6878 LLVM_FALLTHROUGH; 6879 } 6880 case ISD::ADD: 6881 case ISD::SUB: 6882 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6883 "Unexpected custom legalisation"); 6884 Results.push_back(customLegalizeToWOpWithSExt(N, DAG)); 6885 break; 6886 case ISD::SHL: 6887 case ISD::SRA: 6888 case ISD::SRL: 6889 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6890 "Unexpected custom legalisation"); 6891 if (N->getOperand(1).getOpcode() != ISD::Constant) { 6892 Results.push_back(customLegalizeToWOp(N, DAG)); 6893 break; 6894 } 6895 6896 // Custom legalize ISD::SHL by placing a SIGN_EXTEND_INREG after. This is 6897 // similar to customLegalizeToWOpWithSExt, but we must zero_extend the 6898 // shift amount. 6899 if (N->getOpcode() == ISD::SHL) { 6900 SDLoc DL(N); 6901 SDValue NewOp0 = 6902 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 6903 SDValue NewOp1 = 6904 DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1)); 6905 SDValue NewWOp = DAG.getNode(ISD::SHL, DL, MVT::i64, NewOp0, NewOp1); 6906 SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp, 6907 DAG.getValueType(MVT::i32)); 6908 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes)); 6909 } 6910 6911 break; 6912 case ISD::ROTL: 6913 case ISD::ROTR: 6914 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6915 "Unexpected custom legalisation"); 6916 Results.push_back(customLegalizeToWOp(N, DAG)); 6917 break; 6918 case ISD::CTTZ: 6919 case ISD::CTTZ_ZERO_UNDEF: 6920 case ISD::CTLZ: 6921 case ISD::CTLZ_ZERO_UNDEF: { 6922 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6923 "Unexpected custom legalisation"); 6924 6925 SDValue NewOp0 = 6926 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 6927 bool IsCTZ = 6928 N->getOpcode() == ISD::CTTZ || N->getOpcode() == ISD::CTTZ_ZERO_UNDEF; 6929 unsigned Opc = IsCTZ ? RISCVISD::CTZW : RISCVISD::CLZW; 6930 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp0); 6931 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6932 return; 6933 } 6934 case ISD::SDIV: 6935 case ISD::UDIV: 6936 case ISD::UREM: { 6937 MVT VT = N->getSimpleValueType(0); 6938 assert((VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) && 6939 Subtarget.is64Bit() && Subtarget.hasStdExtM() && 6940 "Unexpected custom legalisation"); 6941 // Don't promote division/remainder by constant since we should expand those 6942 // to multiply by magic constant. 6943 // FIXME: What if the expansion is disabled for minsize. 6944 if (N->getOperand(1).getOpcode() == ISD::Constant) 6945 return; 6946 6947 // If the input is i32, use ANY_EXTEND since the W instructions don't read 6948 // the upper 32 bits. For other types we need to sign or zero extend 6949 // based on the opcode. 6950 unsigned ExtOpc = ISD::ANY_EXTEND; 6951 if (VT != MVT::i32) 6952 ExtOpc = N->getOpcode() == ISD::SDIV ? ISD::SIGN_EXTEND 6953 : ISD::ZERO_EXTEND; 6954 6955 Results.push_back(customLegalizeToWOp(N, DAG, ExtOpc)); 6956 break; 6957 } 6958 case ISD::UADDO: 6959 case ISD::USUBO: { 6960 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6961 "Unexpected custom legalisation"); 6962 bool IsAdd = N->getOpcode() == ISD::UADDO; 6963 // Create an ADDW or SUBW. 6964 SDValue LHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 6965 SDValue RHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6966 SDValue Res = 6967 DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, DL, MVT::i64, LHS, RHS); 6968 Res = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Res, 6969 DAG.getValueType(MVT::i32)); 6970 6971 SDValue Overflow; 6972 if (IsAdd && isOneConstant(RHS)) { 6973 // Special case uaddo X, 1 overflowed if the addition result is 0. 6974 // FIXME: We can do this for any constant RHS by using (X + C) < C. 6975 Overflow = DAG.getSetCC(DL, N->getValueType(1), Res, 6976 DAG.getConstant(0, DL, MVT::i64), ISD::SETEQ); 6977 } else { 6978 // Sign extend the LHS and perform an unsigned compare with the ADDW 6979 // result. Since the inputs are sign extended from i32, this is equivalent 6980 // to comparing the lower 32 bits. 6981 LHS = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0)); 6982 Overflow = DAG.getSetCC(DL, N->getValueType(1), Res, LHS, 6983 IsAdd ? ISD::SETULT : ISD::SETUGT); 6984 } 6985 6986 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6987 Results.push_back(Overflow); 6988 return; 6989 } 6990 case ISD::UADDSAT: 6991 case ISD::USUBSAT: { 6992 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6993 "Unexpected custom legalisation"); 6994 if (Subtarget.hasStdExtZbb()) { 6995 // With Zbb we can sign extend and let LegalizeDAG use minu/maxu. Using 6996 // sign extend allows overflow of the lower 32 bits to be detected on 6997 // the promoted size. 6998 SDValue LHS = 6999 DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0)); 7000 SDValue RHS = 7001 DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(1)); 7002 SDValue Res = DAG.getNode(N->getOpcode(), DL, MVT::i64, LHS, RHS); 7003 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 7004 return; 7005 } 7006 7007 // Without Zbb, expand to UADDO/USUBO+select which will trigger our custom 7008 // promotion for UADDO/USUBO. 7009 Results.push_back(expandAddSubSat(N, DAG)); 7010 return; 7011 } 7012 case ISD::ABS: { 7013 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 7014 "Unexpected custom legalisation"); 7015 DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0)); 7016 7017 // Expand abs to Y = (sraiw X, 31); subw(xor(X, Y), Y) 7018 7019 SDValue Src = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 7020 7021 // Freeze the source so we can increase it's use count. 7022 Src = DAG.getFreeze(Src); 7023 7024 // Copy sign bit to all bits using the sraiw pattern. 7025 SDValue SignFill = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Src, 7026 DAG.getValueType(MVT::i32)); 7027 SignFill = DAG.getNode(ISD::SRA, DL, MVT::i64, SignFill, 7028 DAG.getConstant(31, DL, MVT::i64)); 7029 7030 SDValue NewRes = DAG.getNode(ISD::XOR, DL, MVT::i64, Src, SignFill); 7031 NewRes = DAG.getNode(ISD::SUB, DL, MVT::i64, NewRes, SignFill); 7032 7033 // NOTE: The result is only required to be anyextended, but sext is 7034 // consistent with type legalization of sub. 7035 NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewRes, 7036 DAG.getValueType(MVT::i32)); 7037 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes)); 7038 return; 7039 } 7040 case ISD::BITCAST: { 7041 EVT VT = N->getValueType(0); 7042 assert(VT.isInteger() && !VT.isVector() && "Unexpected VT!"); 7043 SDValue Op0 = N->getOperand(0); 7044 EVT Op0VT = Op0.getValueType(); 7045 MVT XLenVT = Subtarget.getXLenVT(); 7046 if (VT == MVT::i16 && Op0VT == MVT::f16 && Subtarget.hasStdExtZfh()) { 7047 SDValue FPConv = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, XLenVT, Op0); 7048 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FPConv)); 7049 } else if (VT == MVT::i32 && Op0VT == MVT::f32 && Subtarget.is64Bit() && 7050 Subtarget.hasStdExtF()) { 7051 SDValue FPConv = 7052 DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Op0); 7053 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, FPConv)); 7054 } else if (!VT.isVector() && Op0VT.isFixedLengthVector() && 7055 isTypeLegal(Op0VT)) { 7056 // Custom-legalize bitcasts from fixed-length vector types to illegal 7057 // scalar types in order to improve codegen. Bitcast the vector to a 7058 // one-element vector type whose element type is the same as the result 7059 // type, and extract the first element. 7060 EVT BVT = EVT::getVectorVT(*DAG.getContext(), VT, 1); 7061 if (isTypeLegal(BVT)) { 7062 SDValue BVec = DAG.getBitcast(BVT, Op0); 7063 Results.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec, 7064 DAG.getConstant(0, DL, XLenVT))); 7065 } 7066 } 7067 break; 7068 } 7069 case RISCVISD::GREV: 7070 case RISCVISD::GORC: 7071 case RISCVISD::SHFL: { 7072 MVT VT = N->getSimpleValueType(0); 7073 MVT XLenVT = Subtarget.getXLenVT(); 7074 assert((VT == MVT::i16 || (VT == MVT::i32 && Subtarget.is64Bit())) && 7075 "Unexpected custom legalisation"); 7076 assert(isa<ConstantSDNode>(N->getOperand(1)) && "Expected constant"); 7077 assert((Subtarget.hasStdExtZbp() || 7078 (Subtarget.hasStdExtZbkb() && N->getOpcode() == RISCVISD::GREV && 7079 N->getConstantOperandVal(1) == 7)) && 7080 "Unexpected extension"); 7081 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, N->getOperand(0)); 7082 SDValue NewOp1 = 7083 DAG.getNode(ISD::ZERO_EXTEND, DL, XLenVT, N->getOperand(1)); 7084 SDValue NewRes = DAG.getNode(N->getOpcode(), DL, XLenVT, NewOp0, NewOp1); 7085 // ReplaceNodeResults requires we maintain the same type for the return 7086 // value. 7087 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, NewRes)); 7088 break; 7089 } 7090 case ISD::BSWAP: 7091 case ISD::BITREVERSE: { 7092 MVT VT = N->getSimpleValueType(0); 7093 MVT XLenVT = Subtarget.getXLenVT(); 7094 assert((VT == MVT::i8 || VT == MVT::i16 || 7095 (VT == MVT::i32 && Subtarget.is64Bit())) && 7096 Subtarget.hasStdExtZbp() && "Unexpected custom legalisation"); 7097 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, N->getOperand(0)); 7098 unsigned Imm = VT.getSizeInBits() - 1; 7099 // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits. 7100 if (N->getOpcode() == ISD::BSWAP) 7101 Imm &= ~0x7U; 7102 SDValue GREVI = DAG.getNode(RISCVISD::GREV, DL, XLenVT, NewOp0, 7103 DAG.getConstant(Imm, DL, XLenVT)); 7104 // ReplaceNodeResults requires we maintain the same type for the return 7105 // value. 7106 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, GREVI)); 7107 break; 7108 } 7109 case ISD::FSHL: 7110 case ISD::FSHR: { 7111 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 7112 Subtarget.hasStdExtZbt() && "Unexpected custom legalisation"); 7113 SDValue NewOp0 = 7114 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 7115 SDValue NewOp1 = 7116 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 7117 SDValue NewShAmt = 7118 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 7119 // FSLW/FSRW take a 6 bit shift amount but i32 FSHL/FSHR only use 5 bits. 7120 // Mask the shift amount to 5 bits to prevent accidentally setting bit 5. 7121 NewShAmt = DAG.getNode(ISD::AND, DL, MVT::i64, NewShAmt, 7122 DAG.getConstant(0x1f, DL, MVT::i64)); 7123 // fshl and fshr concatenate their operands in the same order. fsrw and fslw 7124 // instruction use different orders. fshl will return its first operand for 7125 // shift of zero, fshr will return its second operand. fsl and fsr both 7126 // return rs1 so the ISD nodes need to have different operand orders. 7127 // Shift amount is in rs2. 7128 unsigned Opc = RISCVISD::FSLW; 7129 if (N->getOpcode() == ISD::FSHR) { 7130 std::swap(NewOp0, NewOp1); 7131 Opc = RISCVISD::FSRW; 7132 } 7133 SDValue NewOp = DAG.getNode(Opc, DL, MVT::i64, NewOp0, NewOp1, NewShAmt); 7134 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewOp)); 7135 break; 7136 } 7137 case ISD::EXTRACT_VECTOR_ELT: { 7138 // Custom-legalize an EXTRACT_VECTOR_ELT where XLEN<SEW, as the SEW element 7139 // type is illegal (currently only vXi64 RV32). 7140 // With vmv.x.s, when SEW > XLEN, only the least-significant XLEN bits are 7141 // transferred to the destination register. We issue two of these from the 7142 // upper- and lower- halves of the SEW-bit vector element, slid down to the 7143 // first element. 7144 SDValue Vec = N->getOperand(0); 7145 SDValue Idx = N->getOperand(1); 7146 7147 // The vector type hasn't been legalized yet so we can't issue target 7148 // specific nodes if it needs legalization. 7149 // FIXME: We would manually legalize if it's important. 7150 if (!isTypeLegal(Vec.getValueType())) 7151 return; 7152 7153 MVT VecVT = Vec.getSimpleValueType(); 7154 7155 assert(!Subtarget.is64Bit() && N->getValueType(0) == MVT::i64 && 7156 VecVT.getVectorElementType() == MVT::i64 && 7157 "Unexpected EXTRACT_VECTOR_ELT legalization"); 7158 7159 // If this is a fixed vector, we need to convert it to a scalable vector. 7160 MVT ContainerVT = VecVT; 7161 if (VecVT.isFixedLengthVector()) { 7162 ContainerVT = getContainerForFixedLengthVector(VecVT); 7163 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 7164 } 7165 7166 MVT XLenVT = Subtarget.getXLenVT(); 7167 7168 // Use a VL of 1 to avoid processing more elements than we need. 7169 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 7170 SDValue VL = DAG.getConstant(1, DL, XLenVT); 7171 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 7172 7173 // Unless the index is known to be 0, we must slide the vector down to get 7174 // the desired element into index 0. 7175 if (!isNullConstant(Idx)) { 7176 Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 7177 DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL); 7178 } 7179 7180 // Extract the lower XLEN bits of the correct vector element. 7181 SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); 7182 7183 // To extract the upper XLEN bits of the vector element, shift the first 7184 // element right by 32 bits and re-extract the lower XLEN bits. 7185 SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, 7186 DAG.getUNDEF(ContainerVT), 7187 DAG.getConstant(32, DL, XLenVT), VL); 7188 SDValue LShr32 = DAG.getNode(RISCVISD::SRL_VL, DL, ContainerVT, Vec, 7189 ThirtyTwoV, Mask, VL); 7190 7191 SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32); 7192 7193 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi)); 7194 break; 7195 } 7196 case ISD::INTRINSIC_WO_CHAIN: { 7197 unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 7198 switch (IntNo) { 7199 default: 7200 llvm_unreachable( 7201 "Don't know how to custom type legalize this intrinsic!"); 7202 case Intrinsic::riscv_grev: 7203 case Intrinsic::riscv_gorc: { 7204 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 7205 "Unexpected custom legalisation"); 7206 SDValue NewOp1 = 7207 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 7208 SDValue NewOp2 = 7209 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 7210 unsigned Opc = 7211 IntNo == Intrinsic::riscv_grev ? RISCVISD::GREVW : RISCVISD::GORCW; 7212 // If the control is a constant, promote the node by clearing any extra 7213 // bits bits in the control. isel will form greviw/gorciw if the result is 7214 // sign extended. 7215 if (isa<ConstantSDNode>(NewOp2)) { 7216 NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2, 7217 DAG.getConstant(0x1f, DL, MVT::i64)); 7218 Opc = IntNo == Intrinsic::riscv_grev ? RISCVISD::GREV : RISCVISD::GORC; 7219 } 7220 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2); 7221 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 7222 break; 7223 } 7224 case Intrinsic::riscv_bcompress: 7225 case Intrinsic::riscv_bdecompress: 7226 case Intrinsic::riscv_bfp: 7227 case Intrinsic::riscv_fsl: 7228 case Intrinsic::riscv_fsr: { 7229 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 7230 "Unexpected custom legalisation"); 7231 Results.push_back(customLegalizeToWOpByIntr(N, DAG, IntNo)); 7232 break; 7233 } 7234 case Intrinsic::riscv_orc_b: { 7235 // Lower to the GORCI encoding for orc.b with the operand extended. 7236 SDValue NewOp = 7237 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 7238 SDValue Res = DAG.getNode(RISCVISD::GORC, DL, MVT::i64, NewOp, 7239 DAG.getConstant(7, DL, MVT::i64)); 7240 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 7241 return; 7242 } 7243 case Intrinsic::riscv_shfl: 7244 case Intrinsic::riscv_unshfl: { 7245 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 7246 "Unexpected custom legalisation"); 7247 SDValue NewOp1 = 7248 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 7249 SDValue NewOp2 = 7250 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 7251 unsigned Opc = 7252 IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFLW : RISCVISD::UNSHFLW; 7253 // There is no (UN)SHFLIW. If the control word is a constant, we can use 7254 // (UN)SHFLI with bit 4 of the control word cleared. The upper 32 bit half 7255 // will be shuffled the same way as the lower 32 bit half, but the two 7256 // halves won't cross. 7257 if (isa<ConstantSDNode>(NewOp2)) { 7258 NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2, 7259 DAG.getConstant(0xf, DL, MVT::i64)); 7260 Opc = 7261 IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL; 7262 } 7263 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2); 7264 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 7265 break; 7266 } 7267 case Intrinsic::riscv_vmv_x_s: { 7268 EVT VT = N->getValueType(0); 7269 MVT XLenVT = Subtarget.getXLenVT(); 7270 if (VT.bitsLT(XLenVT)) { 7271 // Simple case just extract using vmv.x.s and truncate. 7272 SDValue Extract = DAG.getNode(RISCVISD::VMV_X_S, DL, 7273 Subtarget.getXLenVT(), N->getOperand(1)); 7274 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, Extract)); 7275 return; 7276 } 7277 7278 assert(VT == MVT::i64 && !Subtarget.is64Bit() && 7279 "Unexpected custom legalization"); 7280 7281 // We need to do the move in two steps. 7282 SDValue Vec = N->getOperand(1); 7283 MVT VecVT = Vec.getSimpleValueType(); 7284 7285 // First extract the lower XLEN bits of the element. 7286 SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); 7287 7288 // To extract the upper XLEN bits of the vector element, shift the first 7289 // element right by 32 bits and re-extract the lower XLEN bits. 7290 SDValue VL = DAG.getConstant(1, DL, XLenVT); 7291 MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount()); 7292 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 7293 SDValue ThirtyTwoV = 7294 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, DAG.getUNDEF(VecVT), 7295 DAG.getConstant(32, DL, XLenVT), VL); 7296 SDValue LShr32 = 7297 DAG.getNode(RISCVISD::SRL_VL, DL, VecVT, Vec, ThirtyTwoV, Mask, VL); 7298 SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32); 7299 7300 Results.push_back( 7301 DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi)); 7302 break; 7303 } 7304 } 7305 break; 7306 } 7307 case ISD::VECREDUCE_ADD: 7308 case ISD::VECREDUCE_AND: 7309 case ISD::VECREDUCE_OR: 7310 case ISD::VECREDUCE_XOR: 7311 case ISD::VECREDUCE_SMAX: 7312 case ISD::VECREDUCE_UMAX: 7313 case ISD::VECREDUCE_SMIN: 7314 case ISD::VECREDUCE_UMIN: 7315 if (SDValue V = lowerVECREDUCE(SDValue(N, 0), DAG)) 7316 Results.push_back(V); 7317 break; 7318 case ISD::VP_REDUCE_ADD: 7319 case ISD::VP_REDUCE_AND: 7320 case ISD::VP_REDUCE_OR: 7321 case ISD::VP_REDUCE_XOR: 7322 case ISD::VP_REDUCE_SMAX: 7323 case ISD::VP_REDUCE_UMAX: 7324 case ISD::VP_REDUCE_SMIN: 7325 case ISD::VP_REDUCE_UMIN: 7326 if (SDValue V = lowerVPREDUCE(SDValue(N, 0), DAG)) 7327 Results.push_back(V); 7328 break; 7329 case ISD::FLT_ROUNDS_: { 7330 SDVTList VTs = DAG.getVTList(Subtarget.getXLenVT(), MVT::Other); 7331 SDValue Res = DAG.getNode(ISD::FLT_ROUNDS_, DL, VTs, N->getOperand(0)); 7332 Results.push_back(Res.getValue(0)); 7333 Results.push_back(Res.getValue(1)); 7334 break; 7335 } 7336 } 7337 } 7338 7339 // A structure to hold one of the bit-manipulation patterns below. Together, a 7340 // SHL and non-SHL pattern may form a bit-manipulation pair on a single source: 7341 // (or (and (shl x, 1), 0xAAAAAAAA), 7342 // (and (srl x, 1), 0x55555555)) 7343 struct RISCVBitmanipPat { 7344 SDValue Op; 7345 unsigned ShAmt; 7346 bool IsSHL; 7347 7348 bool formsPairWith(const RISCVBitmanipPat &Other) const { 7349 return Op == Other.Op && ShAmt == Other.ShAmt && IsSHL != Other.IsSHL; 7350 } 7351 }; 7352 7353 // Matches patterns of the form 7354 // (and (shl x, C2), (C1 << C2)) 7355 // (and (srl x, C2), C1) 7356 // (shl (and x, C1), C2) 7357 // (srl (and x, (C1 << C2)), C2) 7358 // Where C2 is a power of 2 and C1 has at least that many leading zeroes. 7359 // The expected masks for each shift amount are specified in BitmanipMasks where 7360 // BitmanipMasks[log2(C2)] specifies the expected C1 value. 7361 // The max allowed shift amount is either XLen/2 or XLen/4 determined by whether 7362 // BitmanipMasks contains 6 or 5 entries assuming that the maximum possible 7363 // XLen is 64. 7364 static Optional<RISCVBitmanipPat> 7365 matchRISCVBitmanipPat(SDValue Op, ArrayRef<uint64_t> BitmanipMasks) { 7366 assert((BitmanipMasks.size() == 5 || BitmanipMasks.size() == 6) && 7367 "Unexpected number of masks"); 7368 Optional<uint64_t> Mask; 7369 // Optionally consume a mask around the shift operation. 7370 if (Op.getOpcode() == ISD::AND && isa<ConstantSDNode>(Op.getOperand(1))) { 7371 Mask = Op.getConstantOperandVal(1); 7372 Op = Op.getOperand(0); 7373 } 7374 if (Op.getOpcode() != ISD::SHL && Op.getOpcode() != ISD::SRL) 7375 return None; 7376 bool IsSHL = Op.getOpcode() == ISD::SHL; 7377 7378 if (!isa<ConstantSDNode>(Op.getOperand(1))) 7379 return None; 7380 uint64_t ShAmt = Op.getConstantOperandVal(1); 7381 7382 unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32; 7383 if (ShAmt >= Width || !isPowerOf2_64(ShAmt)) 7384 return None; 7385 // If we don't have enough masks for 64 bit, then we must be trying to 7386 // match SHFL so we're only allowed to shift 1/4 of the width. 7387 if (BitmanipMasks.size() == 5 && ShAmt >= (Width / 2)) 7388 return None; 7389 7390 SDValue Src = Op.getOperand(0); 7391 7392 // The expected mask is shifted left when the AND is found around SHL 7393 // patterns. 7394 // ((x >> 1) & 0x55555555) 7395 // ((x << 1) & 0xAAAAAAAA) 7396 bool SHLExpMask = IsSHL; 7397 7398 if (!Mask) { 7399 // Sometimes LLVM keeps the mask as an operand of the shift, typically when 7400 // the mask is all ones: consume that now. 7401 if (Src.getOpcode() == ISD::AND && isa<ConstantSDNode>(Src.getOperand(1))) { 7402 Mask = Src.getConstantOperandVal(1); 7403 Src = Src.getOperand(0); 7404 // The expected mask is now in fact shifted left for SRL, so reverse the 7405 // decision. 7406 // ((x & 0xAAAAAAAA) >> 1) 7407 // ((x & 0x55555555) << 1) 7408 SHLExpMask = !SHLExpMask; 7409 } else { 7410 // Use a default shifted mask of all-ones if there's no AND, truncated 7411 // down to the expected width. This simplifies the logic later on. 7412 Mask = maskTrailingOnes<uint64_t>(Width); 7413 *Mask &= (IsSHL ? *Mask << ShAmt : *Mask >> ShAmt); 7414 } 7415 } 7416 7417 unsigned MaskIdx = Log2_32(ShAmt); 7418 uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width); 7419 7420 if (SHLExpMask) 7421 ExpMask <<= ShAmt; 7422 7423 if (Mask != ExpMask) 7424 return None; 7425 7426 return RISCVBitmanipPat{Src, (unsigned)ShAmt, IsSHL}; 7427 } 7428 7429 // Matches any of the following bit-manipulation patterns: 7430 // (and (shl x, 1), (0x55555555 << 1)) 7431 // (and (srl x, 1), 0x55555555) 7432 // (shl (and x, 0x55555555), 1) 7433 // (srl (and x, (0x55555555 << 1)), 1) 7434 // where the shift amount and mask may vary thus: 7435 // [1] = 0x55555555 / 0xAAAAAAAA 7436 // [2] = 0x33333333 / 0xCCCCCCCC 7437 // [4] = 0x0F0F0F0F / 0xF0F0F0F0 7438 // [8] = 0x00FF00FF / 0xFF00FF00 7439 // [16] = 0x0000FFFF / 0xFFFFFFFF 7440 // [32] = 0x00000000FFFFFFFF / 0xFFFFFFFF00000000 (for RV64) 7441 static Optional<RISCVBitmanipPat> matchGREVIPat(SDValue Op) { 7442 // These are the unshifted masks which we use to match bit-manipulation 7443 // patterns. They may be shifted left in certain circumstances. 7444 static const uint64_t BitmanipMasks[] = { 7445 0x5555555555555555ULL, 0x3333333333333333ULL, 0x0F0F0F0F0F0F0F0FULL, 7446 0x00FF00FF00FF00FFULL, 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL}; 7447 7448 return matchRISCVBitmanipPat(Op, BitmanipMasks); 7449 } 7450 7451 // Match the following pattern as a GREVI(W) operation 7452 // (or (BITMANIP_SHL x), (BITMANIP_SRL x)) 7453 static SDValue combineORToGREV(SDValue Op, SelectionDAG &DAG, 7454 const RISCVSubtarget &Subtarget) { 7455 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson"); 7456 EVT VT = Op.getValueType(); 7457 7458 if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) { 7459 auto LHS = matchGREVIPat(Op.getOperand(0)); 7460 auto RHS = matchGREVIPat(Op.getOperand(1)); 7461 if (LHS && RHS && LHS->formsPairWith(*RHS)) { 7462 SDLoc DL(Op); 7463 return DAG.getNode(RISCVISD::GREV, DL, VT, LHS->Op, 7464 DAG.getConstant(LHS->ShAmt, DL, VT)); 7465 } 7466 } 7467 return SDValue(); 7468 } 7469 7470 // Matches any the following pattern as a GORCI(W) operation 7471 // 1. (or (GREVI x, shamt), x) if shamt is a power of 2 7472 // 2. (or x, (GREVI x, shamt)) if shamt is a power of 2 7473 // 3. (or (or (BITMANIP_SHL x), x), (BITMANIP_SRL x)) 7474 // Note that with the variant of 3., 7475 // (or (or (BITMANIP_SHL x), (BITMANIP_SRL x)), x) 7476 // the inner pattern will first be matched as GREVI and then the outer 7477 // pattern will be matched to GORC via the first rule above. 7478 // 4. (or (rotl/rotr x, bitwidth/2), x) 7479 static SDValue combineORToGORC(SDValue Op, SelectionDAG &DAG, 7480 const RISCVSubtarget &Subtarget) { 7481 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson"); 7482 EVT VT = Op.getValueType(); 7483 7484 if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) { 7485 SDLoc DL(Op); 7486 SDValue Op0 = Op.getOperand(0); 7487 SDValue Op1 = Op.getOperand(1); 7488 7489 auto MatchOROfReverse = [&](SDValue Reverse, SDValue X) { 7490 if (Reverse.getOpcode() == RISCVISD::GREV && Reverse.getOperand(0) == X && 7491 isa<ConstantSDNode>(Reverse.getOperand(1)) && 7492 isPowerOf2_32(Reverse.getConstantOperandVal(1))) 7493 return DAG.getNode(RISCVISD::GORC, DL, VT, X, Reverse.getOperand(1)); 7494 // We can also form GORCI from ROTL/ROTR by half the bitwidth. 7495 if ((Reverse.getOpcode() == ISD::ROTL || 7496 Reverse.getOpcode() == ISD::ROTR) && 7497 Reverse.getOperand(0) == X && 7498 isa<ConstantSDNode>(Reverse.getOperand(1))) { 7499 uint64_t RotAmt = Reverse.getConstantOperandVal(1); 7500 if (RotAmt == (VT.getSizeInBits() / 2)) 7501 return DAG.getNode(RISCVISD::GORC, DL, VT, X, 7502 DAG.getConstant(RotAmt, DL, VT)); 7503 } 7504 return SDValue(); 7505 }; 7506 7507 // Check for either commutable permutation of (or (GREVI x, shamt), x) 7508 if (SDValue V = MatchOROfReverse(Op0, Op1)) 7509 return V; 7510 if (SDValue V = MatchOROfReverse(Op1, Op0)) 7511 return V; 7512 7513 // OR is commutable so canonicalize its OR operand to the left 7514 if (Op0.getOpcode() != ISD::OR && Op1.getOpcode() == ISD::OR) 7515 std::swap(Op0, Op1); 7516 if (Op0.getOpcode() != ISD::OR) 7517 return SDValue(); 7518 SDValue OrOp0 = Op0.getOperand(0); 7519 SDValue OrOp1 = Op0.getOperand(1); 7520 auto LHS = matchGREVIPat(OrOp0); 7521 // OR is commutable so swap the operands and try again: x might have been 7522 // on the left 7523 if (!LHS) { 7524 std::swap(OrOp0, OrOp1); 7525 LHS = matchGREVIPat(OrOp0); 7526 } 7527 auto RHS = matchGREVIPat(Op1); 7528 if (LHS && RHS && LHS->formsPairWith(*RHS) && LHS->Op == OrOp1) { 7529 return DAG.getNode(RISCVISD::GORC, DL, VT, LHS->Op, 7530 DAG.getConstant(LHS->ShAmt, DL, VT)); 7531 } 7532 } 7533 return SDValue(); 7534 } 7535 7536 // Matches any of the following bit-manipulation patterns: 7537 // (and (shl x, 1), (0x22222222 << 1)) 7538 // (and (srl x, 1), 0x22222222) 7539 // (shl (and x, 0x22222222), 1) 7540 // (srl (and x, (0x22222222 << 1)), 1) 7541 // where the shift amount and mask may vary thus: 7542 // [1] = 0x22222222 / 0x44444444 7543 // [2] = 0x0C0C0C0C / 0x3C3C3C3C 7544 // [4] = 0x00F000F0 / 0x0F000F00 7545 // [8] = 0x0000FF00 / 0x00FF0000 7546 // [16] = 0x00000000FFFF0000 / 0x0000FFFF00000000 (for RV64) 7547 static Optional<RISCVBitmanipPat> matchSHFLPat(SDValue Op) { 7548 // These are the unshifted masks which we use to match bit-manipulation 7549 // patterns. They may be shifted left in certain circumstances. 7550 static const uint64_t BitmanipMasks[] = { 7551 0x2222222222222222ULL, 0x0C0C0C0C0C0C0C0CULL, 0x00F000F000F000F0ULL, 7552 0x0000FF000000FF00ULL, 0x00000000FFFF0000ULL}; 7553 7554 return matchRISCVBitmanipPat(Op, BitmanipMasks); 7555 } 7556 7557 // Match (or (or (SHFL_SHL x), (SHFL_SHR x)), (SHFL_AND x) 7558 static SDValue combineORToSHFL(SDValue Op, SelectionDAG &DAG, 7559 const RISCVSubtarget &Subtarget) { 7560 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson"); 7561 EVT VT = Op.getValueType(); 7562 7563 if (VT != MVT::i32 && VT != Subtarget.getXLenVT()) 7564 return SDValue(); 7565 7566 SDValue Op0 = Op.getOperand(0); 7567 SDValue Op1 = Op.getOperand(1); 7568 7569 // Or is commutable so canonicalize the second OR to the LHS. 7570 if (Op0.getOpcode() != ISD::OR) 7571 std::swap(Op0, Op1); 7572 if (Op0.getOpcode() != ISD::OR) 7573 return SDValue(); 7574 7575 // We found an inner OR, so our operands are the operands of the inner OR 7576 // and the other operand of the outer OR. 7577 SDValue A = Op0.getOperand(0); 7578 SDValue B = Op0.getOperand(1); 7579 SDValue C = Op1; 7580 7581 auto Match1 = matchSHFLPat(A); 7582 auto Match2 = matchSHFLPat(B); 7583 7584 // If neither matched, we failed. 7585 if (!Match1 && !Match2) 7586 return SDValue(); 7587 7588 // We had at least one match. if one failed, try the remaining C operand. 7589 if (!Match1) { 7590 std::swap(A, C); 7591 Match1 = matchSHFLPat(A); 7592 if (!Match1) 7593 return SDValue(); 7594 } else if (!Match2) { 7595 std::swap(B, C); 7596 Match2 = matchSHFLPat(B); 7597 if (!Match2) 7598 return SDValue(); 7599 } 7600 assert(Match1 && Match2); 7601 7602 // Make sure our matches pair up. 7603 if (!Match1->formsPairWith(*Match2)) 7604 return SDValue(); 7605 7606 // All the remains is to make sure C is an AND with the same input, that masks 7607 // out the bits that are being shuffled. 7608 if (C.getOpcode() != ISD::AND || !isa<ConstantSDNode>(C.getOperand(1)) || 7609 C.getOperand(0) != Match1->Op) 7610 return SDValue(); 7611 7612 uint64_t Mask = C.getConstantOperandVal(1); 7613 7614 static const uint64_t BitmanipMasks[] = { 7615 0x9999999999999999ULL, 0xC3C3C3C3C3C3C3C3ULL, 0xF00FF00FF00FF00FULL, 7616 0xFF0000FFFF0000FFULL, 0xFFFF00000000FFFFULL, 7617 }; 7618 7619 unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32; 7620 unsigned MaskIdx = Log2_32(Match1->ShAmt); 7621 uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width); 7622 7623 if (Mask != ExpMask) 7624 return SDValue(); 7625 7626 SDLoc DL(Op); 7627 return DAG.getNode(RISCVISD::SHFL, DL, VT, Match1->Op, 7628 DAG.getConstant(Match1->ShAmt, DL, VT)); 7629 } 7630 7631 // Optimize (add (shl x, c0), (shl y, c1)) -> 7632 // (SLLI (SH*ADD x, y), c0), if c1-c0 equals to [1|2|3]. 7633 static SDValue transformAddShlImm(SDNode *N, SelectionDAG &DAG, 7634 const RISCVSubtarget &Subtarget) { 7635 // Perform this optimization only in the zba extension. 7636 if (!Subtarget.hasStdExtZba()) 7637 return SDValue(); 7638 7639 // Skip for vector types and larger types. 7640 EVT VT = N->getValueType(0); 7641 if (VT.isVector() || VT.getSizeInBits() > Subtarget.getXLen()) 7642 return SDValue(); 7643 7644 // The two operand nodes must be SHL and have no other use. 7645 SDValue N0 = N->getOperand(0); 7646 SDValue N1 = N->getOperand(1); 7647 if (N0->getOpcode() != ISD::SHL || N1->getOpcode() != ISD::SHL || 7648 !N0->hasOneUse() || !N1->hasOneUse()) 7649 return SDValue(); 7650 7651 // Check c0 and c1. 7652 auto *N0C = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 7653 auto *N1C = dyn_cast<ConstantSDNode>(N1->getOperand(1)); 7654 if (!N0C || !N1C) 7655 return SDValue(); 7656 int64_t C0 = N0C->getSExtValue(); 7657 int64_t C1 = N1C->getSExtValue(); 7658 if (C0 <= 0 || C1 <= 0) 7659 return SDValue(); 7660 7661 // Skip if SH1ADD/SH2ADD/SH3ADD are not applicable. 7662 int64_t Bits = std::min(C0, C1); 7663 int64_t Diff = std::abs(C0 - C1); 7664 if (Diff != 1 && Diff != 2 && Diff != 3) 7665 return SDValue(); 7666 7667 // Build nodes. 7668 SDLoc DL(N); 7669 SDValue NS = (C0 < C1) ? N0->getOperand(0) : N1->getOperand(0); 7670 SDValue NL = (C0 > C1) ? N0->getOperand(0) : N1->getOperand(0); 7671 SDValue NA0 = 7672 DAG.getNode(ISD::SHL, DL, VT, NL, DAG.getConstant(Diff, DL, VT)); 7673 SDValue NA1 = DAG.getNode(ISD::ADD, DL, VT, NA0, NS); 7674 return DAG.getNode(ISD::SHL, DL, VT, NA1, DAG.getConstant(Bits, DL, VT)); 7675 } 7676 7677 // Combine 7678 // ROTR ((GREVI x, 24), 16) -> (GREVI x, 8) for RV32 7679 // ROTL ((GREVI x, 24), 16) -> (GREVI x, 8) for RV32 7680 // ROTR ((GREVI x, 56), 32) -> (GREVI x, 24) for RV64 7681 // ROTL ((GREVI x, 56), 32) -> (GREVI x, 24) for RV64 7682 // RORW ((GREVI x, 24), 16) -> (GREVIW x, 8) for RV64 7683 // ROLW ((GREVI x, 24), 16) -> (GREVIW x, 8) for RV64 7684 // The grev patterns represents BSWAP. 7685 // FIXME: This can be generalized to any GREV. We just need to toggle the MSB 7686 // off the grev. 7687 static SDValue combineROTR_ROTL_RORW_ROLW(SDNode *N, SelectionDAG &DAG, 7688 const RISCVSubtarget &Subtarget) { 7689 bool IsWInstruction = 7690 N->getOpcode() == RISCVISD::RORW || N->getOpcode() == RISCVISD::ROLW; 7691 assert((N->getOpcode() == ISD::ROTR || N->getOpcode() == ISD::ROTL || 7692 IsWInstruction) && 7693 "Unexpected opcode!"); 7694 SDValue Src = N->getOperand(0); 7695 EVT VT = N->getValueType(0); 7696 SDLoc DL(N); 7697 7698 if (!Subtarget.hasStdExtZbp() || Src.getOpcode() != RISCVISD::GREV) 7699 return SDValue(); 7700 7701 if (!isa<ConstantSDNode>(N->getOperand(1)) || 7702 !isa<ConstantSDNode>(Src.getOperand(1))) 7703 return SDValue(); 7704 7705 unsigned BitWidth = IsWInstruction ? 32 : VT.getSizeInBits(); 7706 assert(isPowerOf2_32(BitWidth) && "Expected a power of 2"); 7707 7708 // Needs to be a rotate by half the bitwidth for ROTR/ROTL or by 16 for 7709 // RORW/ROLW. And the grev should be the encoding for bswap for this width. 7710 unsigned ShAmt1 = N->getConstantOperandVal(1); 7711 unsigned ShAmt2 = Src.getConstantOperandVal(1); 7712 if (BitWidth < 32 || ShAmt1 != (BitWidth / 2) || ShAmt2 != (BitWidth - 8)) 7713 return SDValue(); 7714 7715 Src = Src.getOperand(0); 7716 7717 // Toggle bit the MSB of the shift. 7718 unsigned CombinedShAmt = ShAmt1 ^ ShAmt2; 7719 if (CombinedShAmt == 0) 7720 return Src; 7721 7722 SDValue Res = DAG.getNode( 7723 RISCVISD::GREV, DL, VT, Src, 7724 DAG.getConstant(CombinedShAmt, DL, N->getOperand(1).getValueType())); 7725 if (!IsWInstruction) 7726 return Res; 7727 7728 // Sign extend the result to match the behavior of the rotate. This will be 7729 // selected to GREVIW in isel. 7730 return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Res, 7731 DAG.getValueType(MVT::i32)); 7732 } 7733 7734 // Combine (GREVI (GREVI x, C2), C1) -> (GREVI x, C1^C2) when C1^C2 is 7735 // non-zero, and to x when it is. Any repeated GREVI stage undoes itself. 7736 // Combine (GORCI (GORCI x, C2), C1) -> (GORCI x, C1|C2). Repeated stage does 7737 // not undo itself, but they are redundant. 7738 static SDValue combineGREVI_GORCI(SDNode *N, SelectionDAG &DAG) { 7739 bool IsGORC = N->getOpcode() == RISCVISD::GORC; 7740 assert((IsGORC || N->getOpcode() == RISCVISD::GREV) && "Unexpected opcode"); 7741 SDValue Src = N->getOperand(0); 7742 7743 if (Src.getOpcode() != N->getOpcode()) 7744 return SDValue(); 7745 7746 if (!isa<ConstantSDNode>(N->getOperand(1)) || 7747 !isa<ConstantSDNode>(Src.getOperand(1))) 7748 return SDValue(); 7749 7750 unsigned ShAmt1 = N->getConstantOperandVal(1); 7751 unsigned ShAmt2 = Src.getConstantOperandVal(1); 7752 Src = Src.getOperand(0); 7753 7754 unsigned CombinedShAmt; 7755 if (IsGORC) 7756 CombinedShAmt = ShAmt1 | ShAmt2; 7757 else 7758 CombinedShAmt = ShAmt1 ^ ShAmt2; 7759 7760 if (CombinedShAmt == 0) 7761 return Src; 7762 7763 SDLoc DL(N); 7764 return DAG.getNode( 7765 N->getOpcode(), DL, N->getValueType(0), Src, 7766 DAG.getConstant(CombinedShAmt, DL, N->getOperand(1).getValueType())); 7767 } 7768 7769 // Combine a constant select operand into its use: 7770 // 7771 // (and (select cond, -1, c), x) 7772 // -> (select cond, x, (and x, c)) [AllOnes=1] 7773 // (or (select cond, 0, c), x) 7774 // -> (select cond, x, (or x, c)) [AllOnes=0] 7775 // (xor (select cond, 0, c), x) 7776 // -> (select cond, x, (xor x, c)) [AllOnes=0] 7777 // (add (select cond, 0, c), x) 7778 // -> (select cond, x, (add x, c)) [AllOnes=0] 7779 // (sub x, (select cond, 0, c)) 7780 // -> (select cond, x, (sub x, c)) [AllOnes=0] 7781 static SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp, 7782 SelectionDAG &DAG, bool AllOnes) { 7783 EVT VT = N->getValueType(0); 7784 7785 // Skip vectors. 7786 if (VT.isVector()) 7787 return SDValue(); 7788 7789 if ((Slct.getOpcode() != ISD::SELECT && 7790 Slct.getOpcode() != RISCVISD::SELECT_CC) || 7791 !Slct.hasOneUse()) 7792 return SDValue(); 7793 7794 auto isZeroOrAllOnes = [](SDValue N, bool AllOnes) { 7795 return AllOnes ? isAllOnesConstant(N) : isNullConstant(N); 7796 }; 7797 7798 bool SwapSelectOps; 7799 unsigned OpOffset = Slct.getOpcode() == RISCVISD::SELECT_CC ? 2 : 0; 7800 SDValue TrueVal = Slct.getOperand(1 + OpOffset); 7801 SDValue FalseVal = Slct.getOperand(2 + OpOffset); 7802 SDValue NonConstantVal; 7803 if (isZeroOrAllOnes(TrueVal, AllOnes)) { 7804 SwapSelectOps = false; 7805 NonConstantVal = FalseVal; 7806 } else if (isZeroOrAllOnes(FalseVal, AllOnes)) { 7807 SwapSelectOps = true; 7808 NonConstantVal = TrueVal; 7809 } else 7810 return SDValue(); 7811 7812 // Slct is now know to be the desired identity constant when CC is true. 7813 TrueVal = OtherOp; 7814 FalseVal = DAG.getNode(N->getOpcode(), SDLoc(N), VT, OtherOp, NonConstantVal); 7815 // Unless SwapSelectOps says the condition should be false. 7816 if (SwapSelectOps) 7817 std::swap(TrueVal, FalseVal); 7818 7819 if (Slct.getOpcode() == RISCVISD::SELECT_CC) 7820 return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), VT, 7821 {Slct.getOperand(0), Slct.getOperand(1), 7822 Slct.getOperand(2), TrueVal, FalseVal}); 7823 7824 return DAG.getNode(ISD::SELECT, SDLoc(N), VT, 7825 {Slct.getOperand(0), TrueVal, FalseVal}); 7826 } 7827 7828 // Attempt combineSelectAndUse on each operand of a commutative operator N. 7829 static SDValue combineSelectAndUseCommutative(SDNode *N, SelectionDAG &DAG, 7830 bool AllOnes) { 7831 SDValue N0 = N->getOperand(0); 7832 SDValue N1 = N->getOperand(1); 7833 if (SDValue Result = combineSelectAndUse(N, N0, N1, DAG, AllOnes)) 7834 return Result; 7835 if (SDValue Result = combineSelectAndUse(N, N1, N0, DAG, AllOnes)) 7836 return Result; 7837 return SDValue(); 7838 } 7839 7840 // Transform (add (mul x, c0), c1) -> 7841 // (add (mul (add x, c1/c0), c0), c1%c0). 7842 // if c1/c0 and c1%c0 are simm12, while c1 is not. A special corner case 7843 // that should be excluded is when c0*(c1/c0) is simm12, which will lead 7844 // to an infinite loop in DAGCombine if transformed. 7845 // Or transform (add (mul x, c0), c1) -> 7846 // (add (mul (add x, c1/c0+1), c0), c1%c0-c0), 7847 // if c1/c0+1 and c1%c0-c0 are simm12, while c1 is not. A special corner 7848 // case that should be excluded is when c0*(c1/c0+1) is simm12, which will 7849 // lead to an infinite loop in DAGCombine if transformed. 7850 // Or transform (add (mul x, c0), c1) -> 7851 // (add (mul (add x, c1/c0-1), c0), c1%c0+c0), 7852 // if c1/c0-1 and c1%c0+c0 are simm12, while c1 is not. A special corner 7853 // case that should be excluded is when c0*(c1/c0-1) is simm12, which will 7854 // lead to an infinite loop in DAGCombine if transformed. 7855 // Or transform (add (mul x, c0), c1) -> 7856 // (mul (add x, c1/c0), c0). 7857 // if c1%c0 is zero, and c1/c0 is simm12 while c1 is not. 7858 static SDValue transformAddImmMulImm(SDNode *N, SelectionDAG &DAG, 7859 const RISCVSubtarget &Subtarget) { 7860 // Skip for vector types and larger types. 7861 EVT VT = N->getValueType(0); 7862 if (VT.isVector() || VT.getSizeInBits() > Subtarget.getXLen()) 7863 return SDValue(); 7864 // The first operand node must be a MUL and has no other use. 7865 SDValue N0 = N->getOperand(0); 7866 if (!N0->hasOneUse() || N0->getOpcode() != ISD::MUL) 7867 return SDValue(); 7868 // Check if c0 and c1 match above conditions. 7869 auto *N0C = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 7870 auto *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1)); 7871 if (!N0C || !N1C) 7872 return SDValue(); 7873 // If N0C has multiple uses it's possible one of the cases in 7874 // DAGCombiner::isMulAddWithConstProfitable will be true, which would result 7875 // in an infinite loop. 7876 if (!N0C->hasOneUse()) 7877 return SDValue(); 7878 int64_t C0 = N0C->getSExtValue(); 7879 int64_t C1 = N1C->getSExtValue(); 7880 int64_t CA, CB; 7881 if (C0 == -1 || C0 == 0 || C0 == 1 || isInt<12>(C1)) 7882 return SDValue(); 7883 // Search for proper CA (non-zero) and CB that both are simm12. 7884 if ((C1 / C0) != 0 && isInt<12>(C1 / C0) && isInt<12>(C1 % C0) && 7885 !isInt<12>(C0 * (C1 / C0))) { 7886 CA = C1 / C0; 7887 CB = C1 % C0; 7888 } else if ((C1 / C0 + 1) != 0 && isInt<12>(C1 / C0 + 1) && 7889 isInt<12>(C1 % C0 - C0) && !isInt<12>(C0 * (C1 / C0 + 1))) { 7890 CA = C1 / C0 + 1; 7891 CB = C1 % C0 - C0; 7892 } else if ((C1 / C0 - 1) != 0 && isInt<12>(C1 / C0 - 1) && 7893 isInt<12>(C1 % C0 + C0) && !isInt<12>(C0 * (C1 / C0 - 1))) { 7894 CA = C1 / C0 - 1; 7895 CB = C1 % C0 + C0; 7896 } else 7897 return SDValue(); 7898 // Build new nodes (add (mul (add x, c1/c0), c0), c1%c0). 7899 SDLoc DL(N); 7900 SDValue New0 = DAG.getNode(ISD::ADD, DL, VT, N0->getOperand(0), 7901 DAG.getConstant(CA, DL, VT)); 7902 SDValue New1 = 7903 DAG.getNode(ISD::MUL, DL, VT, New0, DAG.getConstant(C0, DL, VT)); 7904 return DAG.getNode(ISD::ADD, DL, VT, New1, DAG.getConstant(CB, DL, VT)); 7905 } 7906 7907 static SDValue performADDCombine(SDNode *N, SelectionDAG &DAG, 7908 const RISCVSubtarget &Subtarget) { 7909 if (SDValue V = transformAddImmMulImm(N, DAG, Subtarget)) 7910 return V; 7911 if (SDValue V = transformAddShlImm(N, DAG, Subtarget)) 7912 return V; 7913 // fold (add (select lhs, rhs, cc, 0, y), x) -> 7914 // (select lhs, rhs, cc, x, (add x, y)) 7915 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false); 7916 } 7917 7918 static SDValue performSUBCombine(SDNode *N, SelectionDAG &DAG) { 7919 // fold (sub x, (select lhs, rhs, cc, 0, y)) -> 7920 // (select lhs, rhs, cc, x, (sub x, y)) 7921 SDValue N0 = N->getOperand(0); 7922 SDValue N1 = N->getOperand(1); 7923 return combineSelectAndUse(N, N1, N0, DAG, /*AllOnes*/ false); 7924 } 7925 7926 static SDValue performANDCombine(SDNode *N, SelectionDAG &DAG) { 7927 // fold (and (select lhs, rhs, cc, -1, y), x) -> 7928 // (select lhs, rhs, cc, x, (and x, y)) 7929 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ true); 7930 } 7931 7932 static SDValue performORCombine(SDNode *N, SelectionDAG &DAG, 7933 const RISCVSubtarget &Subtarget) { 7934 if (Subtarget.hasStdExtZbp()) { 7935 if (auto GREV = combineORToGREV(SDValue(N, 0), DAG, Subtarget)) 7936 return GREV; 7937 if (auto GORC = combineORToGORC(SDValue(N, 0), DAG, Subtarget)) 7938 return GORC; 7939 if (auto SHFL = combineORToSHFL(SDValue(N, 0), DAG, Subtarget)) 7940 return SHFL; 7941 } 7942 7943 // fold (or (select cond, 0, y), x) -> 7944 // (select cond, x, (or x, y)) 7945 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false); 7946 } 7947 7948 static SDValue performXORCombine(SDNode *N, SelectionDAG &DAG) { 7949 SDValue N0 = N->getOperand(0); 7950 SDValue N1 = N->getOperand(1); 7951 7952 // fold (xor (sllw 1, x), -1) -> (rolw ~1, x) 7953 // NOTE: Assumes ROL being legal means ROLW is legal. 7954 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7955 if (N0.getOpcode() == RISCVISD::SLLW && 7956 isAllOnesConstant(N1) && isOneConstant(N0.getOperand(0)) && 7957 TLI.isOperationLegal(ISD::ROTL, MVT::i64)) { 7958 SDLoc DL(N); 7959 return DAG.getNode(RISCVISD::ROLW, DL, MVT::i64, 7960 DAG.getConstant(~1, DL, MVT::i64), N0.getOperand(1)); 7961 } 7962 7963 // fold (xor (select cond, 0, y), x) -> 7964 // (select cond, x, (xor x, y)) 7965 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false); 7966 } 7967 7968 static SDValue 7969 performSIGN_EXTEND_INREGCombine(SDNode *N, SelectionDAG &DAG, 7970 const RISCVSubtarget &Subtarget) { 7971 SDValue Src = N->getOperand(0); 7972 EVT VT = N->getValueType(0); 7973 7974 // Fold (sext_inreg (fmv_x_anyexth X), i16) -> (fmv_x_signexth X) 7975 if (Src.getOpcode() == RISCVISD::FMV_X_ANYEXTH && 7976 cast<VTSDNode>(N->getOperand(1))->getVT().bitsGE(MVT::i16)) 7977 return DAG.getNode(RISCVISD::FMV_X_SIGNEXTH, SDLoc(N), VT, 7978 Src.getOperand(0)); 7979 7980 // Fold (i64 (sext_inreg (abs X), i32)) -> 7981 // (i64 (smax (sext_inreg (neg X), i32), X)) if X has more than 32 sign bits. 7982 // The (sext_inreg (neg X), i32) will be selected to negw by isel. This 7983 // pattern occurs after type legalization of (i32 (abs X)) on RV64 if the user 7984 // of the (i32 (abs X)) is a sext or setcc or something else that causes type 7985 // legalization to add a sext_inreg after the abs. The (i32 (abs X)) will have 7986 // been type legalized to (i64 (abs (sext_inreg X, i32))), but the sext_inreg 7987 // may get combined into an earlier operation so we need to use 7988 // ComputeNumSignBits. 7989 // NOTE: (i64 (sext_inreg (abs X), i32)) can also be created for 7990 // (i64 (ashr (shl (abs X), 32), 32)) without any type legalization so 7991 // we can't assume that X has 33 sign bits. We must check. 7992 if (Subtarget.hasStdExtZbb() && Subtarget.is64Bit() && 7993 Src.getOpcode() == ISD::ABS && Src.hasOneUse() && VT == MVT::i64 && 7994 cast<VTSDNode>(N->getOperand(1))->getVT() == MVT::i32 && 7995 DAG.ComputeNumSignBits(Src.getOperand(0)) > 32) { 7996 SDLoc DL(N); 7997 SDValue Freeze = DAG.getFreeze(Src.getOperand(0)); 7998 SDValue Neg = 7999 DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, MVT::i64), Freeze); 8000 Neg = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Neg, 8001 DAG.getValueType(MVT::i32)); 8002 return DAG.getNode(ISD::SMAX, DL, MVT::i64, Freeze, Neg); 8003 } 8004 8005 return SDValue(); 8006 } 8007 8008 // Try to form vwadd(u).wv/wx or vwsub(u).wv/wx. It might later be optimized to 8009 // vwadd(u).vv/vx or vwsub(u).vv/vx. 8010 static SDValue combineADDSUB_VLToVWADDSUB_VL(SDNode *N, SelectionDAG &DAG, 8011 bool Commute = false) { 8012 assert((N->getOpcode() == RISCVISD::ADD_VL || 8013 N->getOpcode() == RISCVISD::SUB_VL) && 8014 "Unexpected opcode"); 8015 bool IsAdd = N->getOpcode() == RISCVISD::ADD_VL; 8016 SDValue Op0 = N->getOperand(0); 8017 SDValue Op1 = N->getOperand(1); 8018 if (Commute) 8019 std::swap(Op0, Op1); 8020 8021 MVT VT = N->getSimpleValueType(0); 8022 8023 // Determine the narrow size for a widening add/sub. 8024 unsigned NarrowSize = VT.getScalarSizeInBits() / 2; 8025 MVT NarrowVT = MVT::getVectorVT(MVT::getIntegerVT(NarrowSize), 8026 VT.getVectorElementCount()); 8027 8028 SDValue Mask = N->getOperand(2); 8029 SDValue VL = N->getOperand(3); 8030 8031 SDLoc DL(N); 8032 8033 // If the RHS is a sext or zext, we can form a widening op. 8034 if ((Op1.getOpcode() == RISCVISD::VZEXT_VL || 8035 Op1.getOpcode() == RISCVISD::VSEXT_VL) && 8036 Op1.hasOneUse() && Op1.getOperand(1) == Mask && Op1.getOperand(2) == VL) { 8037 unsigned ExtOpc = Op1.getOpcode(); 8038 Op1 = Op1.getOperand(0); 8039 // Re-introduce narrower extends if needed. 8040 if (Op1.getValueType() != NarrowVT) 8041 Op1 = DAG.getNode(ExtOpc, DL, NarrowVT, Op1, Mask, VL); 8042 8043 unsigned WOpc; 8044 if (ExtOpc == RISCVISD::VSEXT_VL) 8045 WOpc = IsAdd ? RISCVISD::VWADD_W_VL : RISCVISD::VWSUB_W_VL; 8046 else 8047 WOpc = IsAdd ? RISCVISD::VWADDU_W_VL : RISCVISD::VWSUBU_W_VL; 8048 8049 return DAG.getNode(WOpc, DL, VT, Op0, Op1, Mask, VL); 8050 } 8051 8052 // FIXME: Is it useful to form a vwadd.wx or vwsub.wx if it removes a scalar 8053 // sext/zext? 8054 8055 return SDValue(); 8056 } 8057 8058 // Try to convert vwadd(u).wv/wx or vwsub(u).wv/wx to vwadd(u).vv/vx or 8059 // vwsub(u).vv/vx. 8060 static SDValue combineVWADD_W_VL_VWSUB_W_VL(SDNode *N, SelectionDAG &DAG) { 8061 SDValue Op0 = N->getOperand(0); 8062 SDValue Op1 = N->getOperand(1); 8063 SDValue Mask = N->getOperand(2); 8064 SDValue VL = N->getOperand(3); 8065 8066 MVT VT = N->getSimpleValueType(0); 8067 MVT NarrowVT = Op1.getSimpleValueType(); 8068 unsigned NarrowSize = NarrowVT.getScalarSizeInBits(); 8069 8070 unsigned VOpc; 8071 switch (N->getOpcode()) { 8072 default: llvm_unreachable("Unexpected opcode"); 8073 case RISCVISD::VWADD_W_VL: VOpc = RISCVISD::VWADD_VL; break; 8074 case RISCVISD::VWSUB_W_VL: VOpc = RISCVISD::VWSUB_VL; break; 8075 case RISCVISD::VWADDU_W_VL: VOpc = RISCVISD::VWADDU_VL; break; 8076 case RISCVISD::VWSUBU_W_VL: VOpc = RISCVISD::VWSUBU_VL; break; 8077 } 8078 8079 bool IsSigned = N->getOpcode() == RISCVISD::VWADD_W_VL || 8080 N->getOpcode() == RISCVISD::VWSUB_W_VL; 8081 8082 SDLoc DL(N); 8083 8084 // If the LHS is a sext or zext, we can narrow this op to the same size as 8085 // the RHS. 8086 if (((Op0.getOpcode() == RISCVISD::VZEXT_VL && !IsSigned) || 8087 (Op0.getOpcode() == RISCVISD::VSEXT_VL && IsSigned)) && 8088 Op0.hasOneUse() && Op0.getOperand(1) == Mask && Op0.getOperand(2) == VL) { 8089 unsigned ExtOpc = Op0.getOpcode(); 8090 Op0 = Op0.getOperand(0); 8091 // Re-introduce narrower extends if needed. 8092 if (Op0.getValueType() != NarrowVT) 8093 Op0 = DAG.getNode(ExtOpc, DL, NarrowVT, Op0, Mask, VL); 8094 return DAG.getNode(VOpc, DL, VT, Op0, Op1, Mask, VL); 8095 } 8096 8097 bool IsAdd = N->getOpcode() == RISCVISD::VWADD_W_VL || 8098 N->getOpcode() == RISCVISD::VWADDU_W_VL; 8099 8100 // Look for splats on the left hand side of a vwadd(u).wv. We might be able 8101 // to commute and use a vwadd(u).vx instead. 8102 if (IsAdd && Op0.getOpcode() == RISCVISD::VMV_V_X_VL && 8103 Op0.getOperand(0).isUndef() && Op0.getOperand(2) == VL) { 8104 Op0 = Op0.getOperand(1); 8105 8106 // See if have enough sign bits or zero bits in the scalar to use a 8107 // widening add/sub by splatting to smaller element size. 8108 unsigned EltBits = VT.getScalarSizeInBits(); 8109 unsigned ScalarBits = Op0.getValueSizeInBits(); 8110 // Make sure we're getting all element bits from the scalar register. 8111 // FIXME: Support implicit sign extension of vmv.v.x? 8112 if (ScalarBits < EltBits) 8113 return SDValue(); 8114 8115 if (IsSigned) { 8116 if (DAG.ComputeNumSignBits(Op0) <= (ScalarBits - NarrowSize)) 8117 return SDValue(); 8118 } else { 8119 APInt Mask = APInt::getBitsSetFrom(ScalarBits, NarrowSize); 8120 if (!DAG.MaskedValueIsZero(Op0, Mask)) 8121 return SDValue(); 8122 } 8123 8124 Op0 = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, NarrowVT, 8125 DAG.getUNDEF(NarrowVT), Op0, VL); 8126 return DAG.getNode(VOpc, DL, VT, Op1, Op0, Mask, VL); 8127 } 8128 8129 return SDValue(); 8130 } 8131 8132 // Try to form VWMUL, VWMULU or VWMULSU. 8133 // TODO: Support VWMULSU.vx with a sign extend Op and a splat of scalar Op. 8134 static SDValue combineMUL_VLToVWMUL_VL(SDNode *N, SelectionDAG &DAG, 8135 bool Commute) { 8136 assert(N->getOpcode() == RISCVISD::MUL_VL && "Unexpected opcode"); 8137 SDValue Op0 = N->getOperand(0); 8138 SDValue Op1 = N->getOperand(1); 8139 if (Commute) 8140 std::swap(Op0, Op1); 8141 8142 bool IsSignExt = Op0.getOpcode() == RISCVISD::VSEXT_VL; 8143 bool IsZeroExt = Op0.getOpcode() == RISCVISD::VZEXT_VL; 8144 bool IsVWMULSU = IsSignExt && Op1.getOpcode() == RISCVISD::VZEXT_VL; 8145 if ((!IsSignExt && !IsZeroExt) || !Op0.hasOneUse()) 8146 return SDValue(); 8147 8148 SDValue Mask = N->getOperand(2); 8149 SDValue VL = N->getOperand(3); 8150 8151 // Make sure the mask and VL match. 8152 if (Op0.getOperand(1) != Mask || Op0.getOperand(2) != VL) 8153 return SDValue(); 8154 8155 MVT VT = N->getSimpleValueType(0); 8156 8157 // Determine the narrow size for a widening multiply. 8158 unsigned NarrowSize = VT.getScalarSizeInBits() / 2; 8159 MVT NarrowVT = MVT::getVectorVT(MVT::getIntegerVT(NarrowSize), 8160 VT.getVectorElementCount()); 8161 8162 SDLoc DL(N); 8163 8164 // See if the other operand is the same opcode. 8165 if (IsVWMULSU || Op0.getOpcode() == Op1.getOpcode()) { 8166 if (!Op1.hasOneUse()) 8167 return SDValue(); 8168 8169 // Make sure the mask and VL match. 8170 if (Op1.getOperand(1) != Mask || Op1.getOperand(2) != VL) 8171 return SDValue(); 8172 8173 Op1 = Op1.getOperand(0); 8174 } else if (Op1.getOpcode() == RISCVISD::VMV_V_X_VL) { 8175 // The operand is a splat of a scalar. 8176 8177 // The pasthru must be undef for tail agnostic 8178 if (!Op1.getOperand(0).isUndef()) 8179 return SDValue(); 8180 // The VL must be the same. 8181 if (Op1.getOperand(2) != VL) 8182 return SDValue(); 8183 8184 // Get the scalar value. 8185 Op1 = Op1.getOperand(1); 8186 8187 // See if have enough sign bits or zero bits in the scalar to use a 8188 // widening multiply by splatting to smaller element size. 8189 unsigned EltBits = VT.getScalarSizeInBits(); 8190 unsigned ScalarBits = Op1.getValueSizeInBits(); 8191 // Make sure we're getting all element bits from the scalar register. 8192 // FIXME: Support implicit sign extension of vmv.v.x? 8193 if (ScalarBits < EltBits) 8194 return SDValue(); 8195 8196 // If the LHS is a sign extend, try to use vwmul. 8197 if (IsSignExt && DAG.ComputeNumSignBits(Op1) > (ScalarBits - NarrowSize)) { 8198 // Can use vwmul. 8199 } else { 8200 // Otherwise try to use vwmulu or vwmulsu. 8201 APInt Mask = APInt::getBitsSetFrom(ScalarBits, NarrowSize); 8202 if (DAG.MaskedValueIsZero(Op1, Mask)) 8203 IsVWMULSU = IsSignExt; 8204 else 8205 return SDValue(); 8206 } 8207 8208 Op1 = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, NarrowVT, 8209 DAG.getUNDEF(NarrowVT), Op1, VL); 8210 } else 8211 return SDValue(); 8212 8213 Op0 = Op0.getOperand(0); 8214 8215 // Re-introduce narrower extends if needed. 8216 unsigned ExtOpc = IsSignExt ? RISCVISD::VSEXT_VL : RISCVISD::VZEXT_VL; 8217 if (Op0.getValueType() != NarrowVT) 8218 Op0 = DAG.getNode(ExtOpc, DL, NarrowVT, Op0, Mask, VL); 8219 // vwmulsu requires second operand to be zero extended. 8220 ExtOpc = IsVWMULSU ? RISCVISD::VZEXT_VL : ExtOpc; 8221 if (Op1.getValueType() != NarrowVT) 8222 Op1 = DAG.getNode(ExtOpc, DL, NarrowVT, Op1, Mask, VL); 8223 8224 unsigned WMulOpc = RISCVISD::VWMULSU_VL; 8225 if (!IsVWMULSU) 8226 WMulOpc = IsSignExt ? RISCVISD::VWMUL_VL : RISCVISD::VWMULU_VL; 8227 return DAG.getNode(WMulOpc, DL, VT, Op0, Op1, Mask, VL); 8228 } 8229 8230 static RISCVFPRndMode::RoundingMode matchRoundingOp(SDValue Op) { 8231 switch (Op.getOpcode()) { 8232 case ISD::FROUNDEVEN: return RISCVFPRndMode::RNE; 8233 case ISD::FTRUNC: return RISCVFPRndMode::RTZ; 8234 case ISD::FFLOOR: return RISCVFPRndMode::RDN; 8235 case ISD::FCEIL: return RISCVFPRndMode::RUP; 8236 case ISD::FROUND: return RISCVFPRndMode::RMM; 8237 } 8238 8239 return RISCVFPRndMode::Invalid; 8240 } 8241 8242 // Fold 8243 // (fp_to_int (froundeven X)) -> fcvt X, rne 8244 // (fp_to_int (ftrunc X)) -> fcvt X, rtz 8245 // (fp_to_int (ffloor X)) -> fcvt X, rdn 8246 // (fp_to_int (fceil X)) -> fcvt X, rup 8247 // (fp_to_int (fround X)) -> fcvt X, rmm 8248 static SDValue performFP_TO_INTCombine(SDNode *N, 8249 TargetLowering::DAGCombinerInfo &DCI, 8250 const RISCVSubtarget &Subtarget) { 8251 SelectionDAG &DAG = DCI.DAG; 8252 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8253 MVT XLenVT = Subtarget.getXLenVT(); 8254 8255 // Only handle XLen or i32 types. Other types narrower than XLen will 8256 // eventually be legalized to XLenVT. 8257 EVT VT = N->getValueType(0); 8258 if (VT != MVT::i32 && VT != XLenVT) 8259 return SDValue(); 8260 8261 SDValue Src = N->getOperand(0); 8262 8263 // Ensure the FP type is also legal. 8264 if (!TLI.isTypeLegal(Src.getValueType())) 8265 return SDValue(); 8266 8267 // Don't do this for f16 with Zfhmin and not Zfh. 8268 if (Src.getValueType() == MVT::f16 && !Subtarget.hasStdExtZfh()) 8269 return SDValue(); 8270 8271 RISCVFPRndMode::RoundingMode FRM = matchRoundingOp(Src); 8272 if (FRM == RISCVFPRndMode::Invalid) 8273 return SDValue(); 8274 8275 bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT; 8276 8277 unsigned Opc; 8278 if (VT == XLenVT) 8279 Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU; 8280 else 8281 Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64; 8282 8283 SDLoc DL(N); 8284 SDValue FpToInt = DAG.getNode(Opc, DL, XLenVT, Src.getOperand(0), 8285 DAG.getTargetConstant(FRM, DL, XLenVT)); 8286 return DAG.getNode(ISD::TRUNCATE, DL, VT, FpToInt); 8287 } 8288 8289 // Fold 8290 // (fp_to_int_sat (froundeven X)) -> (select X == nan, 0, (fcvt X, rne)) 8291 // (fp_to_int_sat (ftrunc X)) -> (select X == nan, 0, (fcvt X, rtz)) 8292 // (fp_to_int_sat (ffloor X)) -> (select X == nan, 0, (fcvt X, rdn)) 8293 // (fp_to_int_sat (fceil X)) -> (select X == nan, 0, (fcvt X, rup)) 8294 // (fp_to_int_sat (fround X)) -> (select X == nan, 0, (fcvt X, rmm)) 8295 static SDValue performFP_TO_INT_SATCombine(SDNode *N, 8296 TargetLowering::DAGCombinerInfo &DCI, 8297 const RISCVSubtarget &Subtarget) { 8298 SelectionDAG &DAG = DCI.DAG; 8299 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8300 MVT XLenVT = Subtarget.getXLenVT(); 8301 8302 // Only handle XLen types. Other types narrower than XLen will eventually be 8303 // legalized to XLenVT. 8304 EVT DstVT = N->getValueType(0); 8305 if (DstVT != XLenVT) 8306 return SDValue(); 8307 8308 SDValue Src = N->getOperand(0); 8309 8310 // Ensure the FP type is also legal. 8311 if (!TLI.isTypeLegal(Src.getValueType())) 8312 return SDValue(); 8313 8314 // Don't do this for f16 with Zfhmin and not Zfh. 8315 if (Src.getValueType() == MVT::f16 && !Subtarget.hasStdExtZfh()) 8316 return SDValue(); 8317 8318 EVT SatVT = cast<VTSDNode>(N->getOperand(1))->getVT(); 8319 8320 RISCVFPRndMode::RoundingMode FRM = matchRoundingOp(Src); 8321 if (FRM == RISCVFPRndMode::Invalid) 8322 return SDValue(); 8323 8324 bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT_SAT; 8325 8326 unsigned Opc; 8327 if (SatVT == DstVT) 8328 Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU; 8329 else if (DstVT == MVT::i64 && SatVT == MVT::i32) 8330 Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64; 8331 else 8332 return SDValue(); 8333 // FIXME: Support other SatVTs by clamping before or after the conversion. 8334 8335 Src = Src.getOperand(0); 8336 8337 SDLoc DL(N); 8338 SDValue FpToInt = DAG.getNode(Opc, DL, XLenVT, Src, 8339 DAG.getTargetConstant(FRM, DL, XLenVT)); 8340 8341 // RISCV FP-to-int conversions saturate to the destination register size, but 8342 // don't produce 0 for nan. 8343 SDValue ZeroInt = DAG.getConstant(0, DL, DstVT); 8344 return DAG.getSelectCC(DL, Src, Src, ZeroInt, FpToInt, ISD::CondCode::SETUO); 8345 } 8346 8347 // Combine (bitreverse (bswap X)) to the BREV8 GREVI encoding if the type is 8348 // smaller than XLenVT. 8349 static SDValue performBITREVERSECombine(SDNode *N, SelectionDAG &DAG, 8350 const RISCVSubtarget &Subtarget) { 8351 assert(Subtarget.hasStdExtZbkb() && "Unexpected extension"); 8352 8353 SDValue Src = N->getOperand(0); 8354 if (Src.getOpcode() != ISD::BSWAP) 8355 return SDValue(); 8356 8357 EVT VT = N->getValueType(0); 8358 if (!VT.isScalarInteger() || VT.getSizeInBits() >= Subtarget.getXLen() || 8359 !isPowerOf2_32(VT.getSizeInBits())) 8360 return SDValue(); 8361 8362 SDLoc DL(N); 8363 return DAG.getNode(RISCVISD::GREV, DL, VT, Src.getOperand(0), 8364 DAG.getConstant(7, DL, VT)); 8365 } 8366 8367 SDValue RISCVTargetLowering::PerformDAGCombine(SDNode *N, 8368 DAGCombinerInfo &DCI) const { 8369 SelectionDAG &DAG = DCI.DAG; 8370 8371 // Helper to call SimplifyDemandedBits on an operand of N where only some low 8372 // bits are demanded. N will be added to the Worklist if it was not deleted. 8373 // Caller should return SDValue(N, 0) if this returns true. 8374 auto SimplifyDemandedLowBitsHelper = [&](unsigned OpNo, unsigned LowBits) { 8375 SDValue Op = N->getOperand(OpNo); 8376 APInt Mask = APInt::getLowBitsSet(Op.getValueSizeInBits(), LowBits); 8377 if (!SimplifyDemandedBits(Op, Mask, DCI)) 8378 return false; 8379 8380 if (N->getOpcode() != ISD::DELETED_NODE) 8381 DCI.AddToWorklist(N); 8382 return true; 8383 }; 8384 8385 switch (N->getOpcode()) { 8386 default: 8387 break; 8388 case RISCVISD::SplitF64: { 8389 SDValue Op0 = N->getOperand(0); 8390 // If the input to SplitF64 is just BuildPairF64 then the operation is 8391 // redundant. Instead, use BuildPairF64's operands directly. 8392 if (Op0->getOpcode() == RISCVISD::BuildPairF64) 8393 return DCI.CombineTo(N, Op0.getOperand(0), Op0.getOperand(1)); 8394 8395 if (Op0->isUndef()) { 8396 SDValue Lo = DAG.getUNDEF(MVT::i32); 8397 SDValue Hi = DAG.getUNDEF(MVT::i32); 8398 return DCI.CombineTo(N, Lo, Hi); 8399 } 8400 8401 SDLoc DL(N); 8402 8403 // It's cheaper to materialise two 32-bit integers than to load a double 8404 // from the constant pool and transfer it to integer registers through the 8405 // stack. 8406 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op0)) { 8407 APInt V = C->getValueAPF().bitcastToAPInt(); 8408 SDValue Lo = DAG.getConstant(V.trunc(32), DL, MVT::i32); 8409 SDValue Hi = DAG.getConstant(V.lshr(32).trunc(32), DL, MVT::i32); 8410 return DCI.CombineTo(N, Lo, Hi); 8411 } 8412 8413 // This is a target-specific version of a DAGCombine performed in 8414 // DAGCombiner::visitBITCAST. It performs the equivalent of: 8415 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) 8416 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) 8417 if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) || 8418 !Op0.getNode()->hasOneUse()) 8419 break; 8420 SDValue NewSplitF64 = 8421 DAG.getNode(RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), 8422 Op0.getOperand(0)); 8423 SDValue Lo = NewSplitF64.getValue(0); 8424 SDValue Hi = NewSplitF64.getValue(1); 8425 APInt SignBit = APInt::getSignMask(32); 8426 if (Op0.getOpcode() == ISD::FNEG) { 8427 SDValue NewHi = DAG.getNode(ISD::XOR, DL, MVT::i32, Hi, 8428 DAG.getConstant(SignBit, DL, MVT::i32)); 8429 return DCI.CombineTo(N, Lo, NewHi); 8430 } 8431 assert(Op0.getOpcode() == ISD::FABS); 8432 SDValue NewHi = DAG.getNode(ISD::AND, DL, MVT::i32, Hi, 8433 DAG.getConstant(~SignBit, DL, MVT::i32)); 8434 return DCI.CombineTo(N, Lo, NewHi); 8435 } 8436 case RISCVISD::SLLW: 8437 case RISCVISD::SRAW: 8438 case RISCVISD::SRLW: { 8439 // Only the lower 32 bits of LHS and lower 5 bits of RHS are read. 8440 if (SimplifyDemandedLowBitsHelper(0, 32) || 8441 SimplifyDemandedLowBitsHelper(1, 5)) 8442 return SDValue(N, 0); 8443 8444 break; 8445 } 8446 case ISD::ROTR: 8447 case ISD::ROTL: 8448 case RISCVISD::RORW: 8449 case RISCVISD::ROLW: { 8450 if (N->getOpcode() == RISCVISD::RORW || N->getOpcode() == RISCVISD::ROLW) { 8451 // Only the lower 32 bits of LHS and lower 5 bits of RHS are read. 8452 if (SimplifyDemandedLowBitsHelper(0, 32) || 8453 SimplifyDemandedLowBitsHelper(1, 5)) 8454 return SDValue(N, 0); 8455 } 8456 8457 return combineROTR_ROTL_RORW_ROLW(N, DAG, Subtarget); 8458 } 8459 case RISCVISD::CLZW: 8460 case RISCVISD::CTZW: { 8461 // Only the lower 32 bits of the first operand are read 8462 if (SimplifyDemandedLowBitsHelper(0, 32)) 8463 return SDValue(N, 0); 8464 break; 8465 } 8466 case RISCVISD::GREV: 8467 case RISCVISD::GORC: { 8468 // Only the lower log2(Bitwidth) bits of the the shift amount are read. 8469 unsigned BitWidth = N->getOperand(1).getValueSizeInBits(); 8470 assert(isPowerOf2_32(BitWidth) && "Unexpected bit width"); 8471 if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth))) 8472 return SDValue(N, 0); 8473 8474 return combineGREVI_GORCI(N, DAG); 8475 } 8476 case RISCVISD::GREVW: 8477 case RISCVISD::GORCW: { 8478 // Only the lower 32 bits of LHS and lower 5 bits of RHS are read. 8479 if (SimplifyDemandedLowBitsHelper(0, 32) || 8480 SimplifyDemandedLowBitsHelper(1, 5)) 8481 return SDValue(N, 0); 8482 8483 break; 8484 } 8485 case RISCVISD::SHFL: 8486 case RISCVISD::UNSHFL: { 8487 // Only the lower log2(Bitwidth)-1 bits of the the shift amount are read. 8488 unsigned BitWidth = N->getOperand(1).getValueSizeInBits(); 8489 assert(isPowerOf2_32(BitWidth) && "Unexpected bit width"); 8490 if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth) - 1)) 8491 return SDValue(N, 0); 8492 8493 break; 8494 } 8495 case RISCVISD::SHFLW: 8496 case RISCVISD::UNSHFLW: { 8497 // Only the lower 32 bits of LHS and lower 4 bits of RHS are read. 8498 if (SimplifyDemandedLowBitsHelper(0, 32) || 8499 SimplifyDemandedLowBitsHelper(1, 4)) 8500 return SDValue(N, 0); 8501 8502 break; 8503 } 8504 case RISCVISD::BCOMPRESSW: 8505 case RISCVISD::BDECOMPRESSW: { 8506 // Only the lower 32 bits of LHS and RHS are read. 8507 if (SimplifyDemandedLowBitsHelper(0, 32) || 8508 SimplifyDemandedLowBitsHelper(1, 32)) 8509 return SDValue(N, 0); 8510 8511 break; 8512 } 8513 case RISCVISD::FSR: 8514 case RISCVISD::FSL: 8515 case RISCVISD::FSRW: 8516 case RISCVISD::FSLW: { 8517 bool IsWInstruction = 8518 N->getOpcode() == RISCVISD::FSRW || N->getOpcode() == RISCVISD::FSLW; 8519 unsigned BitWidth = 8520 IsWInstruction ? 32 : N->getSimpleValueType(0).getSizeInBits(); 8521 assert(isPowerOf2_32(BitWidth) && "Unexpected bit width"); 8522 // Only the lower log2(Bitwidth)+1 bits of the the shift amount are read. 8523 if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth) + 1)) 8524 return SDValue(N, 0); 8525 8526 break; 8527 } 8528 case RISCVISD::FMV_X_ANYEXTH: 8529 case RISCVISD::FMV_X_ANYEXTW_RV64: { 8530 SDLoc DL(N); 8531 SDValue Op0 = N->getOperand(0); 8532 MVT VT = N->getSimpleValueType(0); 8533 // If the input to FMV_X_ANYEXTW_RV64 is just FMV_W_X_RV64 then the 8534 // conversion is unnecessary and can be replaced with the FMV_W_X_RV64 8535 // operand. Similar for FMV_X_ANYEXTH and FMV_H_X. 8536 if ((N->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64 && 8537 Op0->getOpcode() == RISCVISD::FMV_W_X_RV64) || 8538 (N->getOpcode() == RISCVISD::FMV_X_ANYEXTH && 8539 Op0->getOpcode() == RISCVISD::FMV_H_X)) { 8540 assert(Op0.getOperand(0).getValueType() == VT && 8541 "Unexpected value type!"); 8542 return Op0.getOperand(0); 8543 } 8544 8545 // This is a target-specific version of a DAGCombine performed in 8546 // DAGCombiner::visitBITCAST. It performs the equivalent of: 8547 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) 8548 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) 8549 if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) || 8550 !Op0.getNode()->hasOneUse()) 8551 break; 8552 SDValue NewFMV = DAG.getNode(N->getOpcode(), DL, VT, Op0.getOperand(0)); 8553 unsigned FPBits = N->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64 ? 32 : 16; 8554 APInt SignBit = APInt::getSignMask(FPBits).sextOrSelf(VT.getSizeInBits()); 8555 if (Op0.getOpcode() == ISD::FNEG) 8556 return DAG.getNode(ISD::XOR, DL, VT, NewFMV, 8557 DAG.getConstant(SignBit, DL, VT)); 8558 8559 assert(Op0.getOpcode() == ISD::FABS); 8560 return DAG.getNode(ISD::AND, DL, VT, NewFMV, 8561 DAG.getConstant(~SignBit, DL, VT)); 8562 } 8563 case ISD::ADD: 8564 return performADDCombine(N, DAG, Subtarget); 8565 case ISD::SUB: 8566 return performSUBCombine(N, DAG); 8567 case ISD::AND: 8568 return performANDCombine(N, DAG); 8569 case ISD::OR: 8570 return performORCombine(N, DAG, Subtarget); 8571 case ISD::XOR: 8572 return performXORCombine(N, DAG); 8573 case ISD::SIGN_EXTEND_INREG: 8574 return performSIGN_EXTEND_INREGCombine(N, DAG, Subtarget); 8575 case ISD::ZERO_EXTEND: 8576 // Fold (zero_extend (fp_to_uint X)) to prevent forming fcvt+zexti32 during 8577 // type legalization. This is safe because fp_to_uint produces poison if 8578 // it overflows. 8579 if (N->getValueType(0) == MVT::i64 && Subtarget.is64Bit()) { 8580 SDValue Src = N->getOperand(0); 8581 if (Src.getOpcode() == ISD::FP_TO_UINT && 8582 isTypeLegal(Src.getOperand(0).getValueType())) 8583 return DAG.getNode(ISD::FP_TO_UINT, SDLoc(N), MVT::i64, 8584 Src.getOperand(0)); 8585 if (Src.getOpcode() == ISD::STRICT_FP_TO_UINT && Src.hasOneUse() && 8586 isTypeLegal(Src.getOperand(1).getValueType())) { 8587 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other); 8588 SDValue Res = DAG.getNode(ISD::STRICT_FP_TO_UINT, SDLoc(N), VTs, 8589 Src.getOperand(0), Src.getOperand(1)); 8590 DCI.CombineTo(N, Res); 8591 DAG.ReplaceAllUsesOfValueWith(Src.getValue(1), Res.getValue(1)); 8592 DCI.recursivelyDeleteUnusedNodes(Src.getNode()); 8593 return SDValue(N, 0); // Return N so it doesn't get rechecked. 8594 } 8595 } 8596 return SDValue(); 8597 case RISCVISD::SELECT_CC: { 8598 // Transform 8599 SDValue LHS = N->getOperand(0); 8600 SDValue RHS = N->getOperand(1); 8601 SDValue TrueV = N->getOperand(3); 8602 SDValue FalseV = N->getOperand(4); 8603 8604 // If the True and False values are the same, we don't need a select_cc. 8605 if (TrueV == FalseV) 8606 return TrueV; 8607 8608 ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(2))->get(); 8609 if (!ISD::isIntEqualitySetCC(CCVal)) 8610 break; 8611 8612 // Fold (select_cc (setlt X, Y), 0, ne, trueV, falseV) -> 8613 // (select_cc X, Y, lt, trueV, falseV) 8614 // Sometimes the setcc is introduced after select_cc has been formed. 8615 if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) && 8616 LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) { 8617 // If we're looking for eq 0 instead of ne 0, we need to invert the 8618 // condition. 8619 bool Invert = CCVal == ISD::SETEQ; 8620 CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get(); 8621 if (Invert) 8622 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 8623 8624 SDLoc DL(N); 8625 RHS = LHS.getOperand(1); 8626 LHS = LHS.getOperand(0); 8627 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 8628 8629 SDValue TargetCC = DAG.getCondCode(CCVal); 8630 return DAG.getNode(RISCVISD::SELECT_CC, DL, N->getValueType(0), 8631 {LHS, RHS, TargetCC, TrueV, FalseV}); 8632 } 8633 8634 // Fold (select_cc (xor X, Y), 0, eq/ne, trueV, falseV) -> 8635 // (select_cc X, Y, eq/ne, trueV, falseV) 8636 if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS)) 8637 return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), N->getValueType(0), 8638 {LHS.getOperand(0), LHS.getOperand(1), 8639 N->getOperand(2), TrueV, FalseV}); 8640 // (select_cc X, 1, setne, trueV, falseV) -> 8641 // (select_cc X, 0, seteq, trueV, falseV) if we can prove X is 0/1. 8642 // This can occur when legalizing some floating point comparisons. 8643 APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1); 8644 if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) { 8645 SDLoc DL(N); 8646 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 8647 SDValue TargetCC = DAG.getCondCode(CCVal); 8648 RHS = DAG.getConstant(0, DL, LHS.getValueType()); 8649 return DAG.getNode(RISCVISD::SELECT_CC, DL, N->getValueType(0), 8650 {LHS, RHS, TargetCC, TrueV, FalseV}); 8651 } 8652 8653 break; 8654 } 8655 case RISCVISD::BR_CC: { 8656 SDValue LHS = N->getOperand(1); 8657 SDValue RHS = N->getOperand(2); 8658 ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(3))->get(); 8659 if (!ISD::isIntEqualitySetCC(CCVal)) 8660 break; 8661 8662 // Fold (br_cc (setlt X, Y), 0, ne, dest) -> 8663 // (br_cc X, Y, lt, dest) 8664 // Sometimes the setcc is introduced after br_cc has been formed. 8665 if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) && 8666 LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) { 8667 // If we're looking for eq 0 instead of ne 0, we need to invert the 8668 // condition. 8669 bool Invert = CCVal == ISD::SETEQ; 8670 CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get(); 8671 if (Invert) 8672 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 8673 8674 SDLoc DL(N); 8675 RHS = LHS.getOperand(1); 8676 LHS = LHS.getOperand(0); 8677 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 8678 8679 return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0), 8680 N->getOperand(0), LHS, RHS, DAG.getCondCode(CCVal), 8681 N->getOperand(4)); 8682 } 8683 8684 // Fold (br_cc (xor X, Y), 0, eq/ne, dest) -> 8685 // (br_cc X, Y, eq/ne, trueV, falseV) 8686 if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS)) 8687 return DAG.getNode(RISCVISD::BR_CC, SDLoc(N), N->getValueType(0), 8688 N->getOperand(0), LHS.getOperand(0), LHS.getOperand(1), 8689 N->getOperand(3), N->getOperand(4)); 8690 8691 // (br_cc X, 1, setne, br_cc) -> 8692 // (br_cc X, 0, seteq, br_cc) if we can prove X is 0/1. 8693 // This can occur when legalizing some floating point comparisons. 8694 APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1); 8695 if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) { 8696 SDLoc DL(N); 8697 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 8698 SDValue TargetCC = DAG.getCondCode(CCVal); 8699 RHS = DAG.getConstant(0, DL, LHS.getValueType()); 8700 return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0), 8701 N->getOperand(0), LHS, RHS, TargetCC, 8702 N->getOperand(4)); 8703 } 8704 break; 8705 } 8706 case ISD::BITREVERSE: 8707 return performBITREVERSECombine(N, DAG, Subtarget); 8708 case ISD::FP_TO_SINT: 8709 case ISD::FP_TO_UINT: 8710 return performFP_TO_INTCombine(N, DCI, Subtarget); 8711 case ISD::FP_TO_SINT_SAT: 8712 case ISD::FP_TO_UINT_SAT: 8713 return performFP_TO_INT_SATCombine(N, DCI, Subtarget); 8714 case ISD::FCOPYSIGN: { 8715 EVT VT = N->getValueType(0); 8716 if (!VT.isVector()) 8717 break; 8718 // There is a form of VFSGNJ which injects the negated sign of its second 8719 // operand. Try and bubble any FNEG up after the extend/round to produce 8720 // this optimized pattern. Avoid modifying cases where FP_ROUND and 8721 // TRUNC=1. 8722 SDValue In2 = N->getOperand(1); 8723 // Avoid cases where the extend/round has multiple uses, as duplicating 8724 // those is typically more expensive than removing a fneg. 8725 if (!In2.hasOneUse()) 8726 break; 8727 if (In2.getOpcode() != ISD::FP_EXTEND && 8728 (In2.getOpcode() != ISD::FP_ROUND || In2.getConstantOperandVal(1) != 0)) 8729 break; 8730 In2 = In2.getOperand(0); 8731 if (In2.getOpcode() != ISD::FNEG) 8732 break; 8733 SDLoc DL(N); 8734 SDValue NewFPExtRound = DAG.getFPExtendOrRound(In2.getOperand(0), DL, VT); 8735 return DAG.getNode(ISD::FCOPYSIGN, DL, VT, N->getOperand(0), 8736 DAG.getNode(ISD::FNEG, DL, VT, NewFPExtRound)); 8737 } 8738 case ISD::MGATHER: 8739 case ISD::MSCATTER: 8740 case ISD::VP_GATHER: 8741 case ISD::VP_SCATTER: { 8742 if (!DCI.isBeforeLegalize()) 8743 break; 8744 SDValue Index, ScaleOp; 8745 bool IsIndexScaled = false; 8746 bool IsIndexSigned = false; 8747 if (const auto *VPGSN = dyn_cast<VPGatherScatterSDNode>(N)) { 8748 Index = VPGSN->getIndex(); 8749 ScaleOp = VPGSN->getScale(); 8750 IsIndexScaled = VPGSN->isIndexScaled(); 8751 IsIndexSigned = VPGSN->isIndexSigned(); 8752 } else { 8753 const auto *MGSN = cast<MaskedGatherScatterSDNode>(N); 8754 Index = MGSN->getIndex(); 8755 ScaleOp = MGSN->getScale(); 8756 IsIndexScaled = MGSN->isIndexScaled(); 8757 IsIndexSigned = MGSN->isIndexSigned(); 8758 } 8759 EVT IndexVT = Index.getValueType(); 8760 MVT XLenVT = Subtarget.getXLenVT(); 8761 // RISCV indexed loads only support the "unsigned unscaled" addressing 8762 // mode, so anything else must be manually legalized. 8763 bool NeedsIdxLegalization = 8764 IsIndexScaled || 8765 (IsIndexSigned && IndexVT.getVectorElementType().bitsLT(XLenVT)); 8766 if (!NeedsIdxLegalization) 8767 break; 8768 8769 SDLoc DL(N); 8770 8771 // Any index legalization should first promote to XLenVT, so we don't lose 8772 // bits when scaling. This may create an illegal index type so we let 8773 // LLVM's legalization take care of the splitting. 8774 // FIXME: LLVM can't split VP_GATHER or VP_SCATTER yet. 8775 if (IndexVT.getVectorElementType().bitsLT(XLenVT)) { 8776 IndexVT = IndexVT.changeVectorElementType(XLenVT); 8777 Index = DAG.getNode(IsIndexSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, 8778 DL, IndexVT, Index); 8779 } 8780 8781 unsigned Scale = cast<ConstantSDNode>(ScaleOp)->getZExtValue(); 8782 if (IsIndexScaled && Scale != 1) { 8783 // Manually scale the indices by the element size. 8784 // TODO: Sanitize the scale operand here? 8785 // TODO: For VP nodes, should we use VP_SHL here? 8786 assert(isPowerOf2_32(Scale) && "Expecting power-of-two types"); 8787 SDValue SplatScale = DAG.getConstant(Log2_32(Scale), DL, IndexVT); 8788 Index = DAG.getNode(ISD::SHL, DL, IndexVT, Index, SplatScale); 8789 } 8790 8791 ISD::MemIndexType NewIndexTy = ISD::UNSIGNED_UNSCALED; 8792 if (const auto *VPGN = dyn_cast<VPGatherSDNode>(N)) 8793 return DAG.getGatherVP(N->getVTList(), VPGN->getMemoryVT(), DL, 8794 {VPGN->getChain(), VPGN->getBasePtr(), Index, 8795 VPGN->getScale(), VPGN->getMask(), 8796 VPGN->getVectorLength()}, 8797 VPGN->getMemOperand(), NewIndexTy); 8798 if (const auto *VPSN = dyn_cast<VPScatterSDNode>(N)) 8799 return DAG.getScatterVP(N->getVTList(), VPSN->getMemoryVT(), DL, 8800 {VPSN->getChain(), VPSN->getValue(), 8801 VPSN->getBasePtr(), Index, VPSN->getScale(), 8802 VPSN->getMask(), VPSN->getVectorLength()}, 8803 VPSN->getMemOperand(), NewIndexTy); 8804 if (const auto *MGN = dyn_cast<MaskedGatherSDNode>(N)) 8805 return DAG.getMaskedGather( 8806 N->getVTList(), MGN->getMemoryVT(), DL, 8807 {MGN->getChain(), MGN->getPassThru(), MGN->getMask(), 8808 MGN->getBasePtr(), Index, MGN->getScale()}, 8809 MGN->getMemOperand(), NewIndexTy, MGN->getExtensionType()); 8810 const auto *MSN = cast<MaskedScatterSDNode>(N); 8811 return DAG.getMaskedScatter( 8812 N->getVTList(), MSN->getMemoryVT(), DL, 8813 {MSN->getChain(), MSN->getValue(), MSN->getMask(), MSN->getBasePtr(), 8814 Index, MSN->getScale()}, 8815 MSN->getMemOperand(), NewIndexTy, MSN->isTruncatingStore()); 8816 } 8817 case RISCVISD::SRA_VL: 8818 case RISCVISD::SRL_VL: 8819 case RISCVISD::SHL_VL: { 8820 SDValue ShAmt = N->getOperand(1); 8821 if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) { 8822 // We don't need the upper 32 bits of a 64-bit element for a shift amount. 8823 SDLoc DL(N); 8824 SDValue VL = N->getOperand(3); 8825 EVT VT = N->getValueType(0); 8826 ShAmt = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, DAG.getUNDEF(VT), 8827 ShAmt.getOperand(1), VL); 8828 return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt, 8829 N->getOperand(2), N->getOperand(3)); 8830 } 8831 break; 8832 } 8833 case ISD::SRA: 8834 case ISD::SRL: 8835 case ISD::SHL: { 8836 SDValue ShAmt = N->getOperand(1); 8837 if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) { 8838 // We don't need the upper 32 bits of a 64-bit element for a shift amount. 8839 SDLoc DL(N); 8840 EVT VT = N->getValueType(0); 8841 ShAmt = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, DAG.getUNDEF(VT), 8842 ShAmt.getOperand(1), 8843 DAG.getRegister(RISCV::X0, Subtarget.getXLenVT())); 8844 return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt); 8845 } 8846 break; 8847 } 8848 case RISCVISD::ADD_VL: 8849 if (SDValue V = combineADDSUB_VLToVWADDSUB_VL(N, DAG, /*Commute*/ false)) 8850 return V; 8851 return combineADDSUB_VLToVWADDSUB_VL(N, DAG, /*Commute*/ true); 8852 case RISCVISD::SUB_VL: 8853 return combineADDSUB_VLToVWADDSUB_VL(N, DAG); 8854 case RISCVISD::VWADD_W_VL: 8855 case RISCVISD::VWADDU_W_VL: 8856 case RISCVISD::VWSUB_W_VL: 8857 case RISCVISD::VWSUBU_W_VL: 8858 return combineVWADD_W_VL_VWSUB_W_VL(N, DAG); 8859 case RISCVISD::MUL_VL: 8860 if (SDValue V = combineMUL_VLToVWMUL_VL(N, DAG, /*Commute*/ false)) 8861 return V; 8862 // Mul is commutative. 8863 return combineMUL_VLToVWMUL_VL(N, DAG, /*Commute*/ true); 8864 case ISD::STORE: { 8865 auto *Store = cast<StoreSDNode>(N); 8866 SDValue Val = Store->getValue(); 8867 // Combine store of vmv.x.s to vse with VL of 1. 8868 // FIXME: Support FP. 8869 if (Val.getOpcode() == RISCVISD::VMV_X_S) { 8870 SDValue Src = Val.getOperand(0); 8871 EVT VecVT = Src.getValueType(); 8872 EVT MemVT = Store->getMemoryVT(); 8873 // The memory VT and the element type must match. 8874 if (VecVT.getVectorElementType() == MemVT) { 8875 SDLoc DL(N); 8876 MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount()); 8877 return DAG.getStoreVP( 8878 Store->getChain(), DL, Src, Store->getBasePtr(), Store->getOffset(), 8879 DAG.getConstant(1, DL, MaskVT), 8880 DAG.getConstant(1, DL, Subtarget.getXLenVT()), MemVT, 8881 Store->getMemOperand(), Store->getAddressingMode(), 8882 Store->isTruncatingStore(), /*IsCompress*/ false); 8883 } 8884 } 8885 8886 break; 8887 } 8888 case ISD::SPLAT_VECTOR: { 8889 EVT VT = N->getValueType(0); 8890 // Only perform this combine on legal MVT types. 8891 if (!isTypeLegal(VT)) 8892 break; 8893 if (auto Gather = matchSplatAsGather(N->getOperand(0), VT.getSimpleVT(), N, 8894 DAG, Subtarget)) 8895 return Gather; 8896 break; 8897 } 8898 case RISCVISD::VMV_V_X_VL: { 8899 // Tail agnostic VMV.V.X only demands the vector element bitwidth from the 8900 // scalar input. 8901 unsigned ScalarSize = N->getOperand(1).getValueSizeInBits(); 8902 unsigned EltWidth = N->getValueType(0).getScalarSizeInBits(); 8903 if (ScalarSize > EltWidth && N->getOperand(0).isUndef()) 8904 if (SimplifyDemandedLowBitsHelper(1, EltWidth)) 8905 return SDValue(N, 0); 8906 8907 break; 8908 } 8909 case ISD::INTRINSIC_WO_CHAIN: { 8910 unsigned IntNo = N->getConstantOperandVal(0); 8911 switch (IntNo) { 8912 // By default we do not combine any intrinsic. 8913 default: 8914 return SDValue(); 8915 case Intrinsic::riscv_vcpop: 8916 case Intrinsic::riscv_vcpop_mask: 8917 case Intrinsic::riscv_vfirst: 8918 case Intrinsic::riscv_vfirst_mask: { 8919 SDValue VL = N->getOperand(2); 8920 if (IntNo == Intrinsic::riscv_vcpop_mask || 8921 IntNo == Intrinsic::riscv_vfirst_mask) 8922 VL = N->getOperand(3); 8923 if (!isNullConstant(VL)) 8924 return SDValue(); 8925 // If VL is 0, vcpop -> li 0, vfirst -> li -1. 8926 SDLoc DL(N); 8927 EVT VT = N->getValueType(0); 8928 if (IntNo == Intrinsic::riscv_vfirst || 8929 IntNo == Intrinsic::riscv_vfirst_mask) 8930 return DAG.getConstant(-1, DL, VT); 8931 return DAG.getConstant(0, DL, VT); 8932 } 8933 } 8934 } 8935 } 8936 8937 return SDValue(); 8938 } 8939 8940 bool RISCVTargetLowering::isDesirableToCommuteWithShift( 8941 const SDNode *N, CombineLevel Level) const { 8942 // The following folds are only desirable if `(OP _, c1 << c2)` can be 8943 // materialised in fewer instructions than `(OP _, c1)`: 8944 // 8945 // (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2) 8946 // (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2) 8947 SDValue N0 = N->getOperand(0); 8948 EVT Ty = N0.getValueType(); 8949 if (Ty.isScalarInteger() && 8950 (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::OR)) { 8951 auto *C1 = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 8952 auto *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1)); 8953 if (C1 && C2) { 8954 const APInt &C1Int = C1->getAPIntValue(); 8955 APInt ShiftedC1Int = C1Int << C2->getAPIntValue(); 8956 8957 // We can materialise `c1 << c2` into an add immediate, so it's "free", 8958 // and the combine should happen, to potentially allow further combines 8959 // later. 8960 if (ShiftedC1Int.getMinSignedBits() <= 64 && 8961 isLegalAddImmediate(ShiftedC1Int.getSExtValue())) 8962 return true; 8963 8964 // We can materialise `c1` in an add immediate, so it's "free", and the 8965 // combine should be prevented. 8966 if (C1Int.getMinSignedBits() <= 64 && 8967 isLegalAddImmediate(C1Int.getSExtValue())) 8968 return false; 8969 8970 // Neither constant will fit into an immediate, so find materialisation 8971 // costs. 8972 int C1Cost = RISCVMatInt::getIntMatCost(C1Int, Ty.getSizeInBits(), 8973 Subtarget.getFeatureBits(), 8974 /*CompressionCost*/true); 8975 int ShiftedC1Cost = RISCVMatInt::getIntMatCost( 8976 ShiftedC1Int, Ty.getSizeInBits(), Subtarget.getFeatureBits(), 8977 /*CompressionCost*/true); 8978 8979 // Materialising `c1` is cheaper than materialising `c1 << c2`, so the 8980 // combine should be prevented. 8981 if (C1Cost < ShiftedC1Cost) 8982 return false; 8983 } 8984 } 8985 return true; 8986 } 8987 8988 bool RISCVTargetLowering::targetShrinkDemandedConstant( 8989 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 8990 TargetLoweringOpt &TLO) const { 8991 // Delay this optimization as late as possible. 8992 if (!TLO.LegalOps) 8993 return false; 8994 8995 EVT VT = Op.getValueType(); 8996 if (VT.isVector()) 8997 return false; 8998 8999 // Only handle AND for now. 9000 if (Op.getOpcode() != ISD::AND) 9001 return false; 9002 9003 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 9004 if (!C) 9005 return false; 9006 9007 const APInt &Mask = C->getAPIntValue(); 9008 9009 // Clear all non-demanded bits initially. 9010 APInt ShrunkMask = Mask & DemandedBits; 9011 9012 // Try to make a smaller immediate by setting undemanded bits. 9013 9014 APInt ExpandedMask = Mask | ~DemandedBits; 9015 9016 auto IsLegalMask = [ShrunkMask, ExpandedMask](const APInt &Mask) -> bool { 9017 return ShrunkMask.isSubsetOf(Mask) && Mask.isSubsetOf(ExpandedMask); 9018 }; 9019 auto UseMask = [Mask, Op, VT, &TLO](const APInt &NewMask) -> bool { 9020 if (NewMask == Mask) 9021 return true; 9022 SDLoc DL(Op); 9023 SDValue NewC = TLO.DAG.getConstant(NewMask, DL, VT); 9024 SDValue NewOp = TLO.DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), NewC); 9025 return TLO.CombineTo(Op, NewOp); 9026 }; 9027 9028 // If the shrunk mask fits in sign extended 12 bits, let the target 9029 // independent code apply it. 9030 if (ShrunkMask.isSignedIntN(12)) 9031 return false; 9032 9033 // Preserve (and X, 0xffff) when zext.h is supported. 9034 if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp()) { 9035 APInt NewMask = APInt(Mask.getBitWidth(), 0xffff); 9036 if (IsLegalMask(NewMask)) 9037 return UseMask(NewMask); 9038 } 9039 9040 // Try to preserve (and X, 0xffffffff), the (zext_inreg X, i32) pattern. 9041 if (VT == MVT::i64) { 9042 APInt NewMask = APInt(64, 0xffffffff); 9043 if (IsLegalMask(NewMask)) 9044 return UseMask(NewMask); 9045 } 9046 9047 // For the remaining optimizations, we need to be able to make a negative 9048 // number through a combination of mask and undemanded bits. 9049 if (!ExpandedMask.isNegative()) 9050 return false; 9051 9052 // What is the fewest number of bits we need to represent the negative number. 9053 unsigned MinSignedBits = ExpandedMask.getMinSignedBits(); 9054 9055 // Try to make a 12 bit negative immediate. If that fails try to make a 32 9056 // bit negative immediate unless the shrunk immediate already fits in 32 bits. 9057 APInt NewMask = ShrunkMask; 9058 if (MinSignedBits <= 12) 9059 NewMask.setBitsFrom(11); 9060 else if (MinSignedBits <= 32 && !ShrunkMask.isSignedIntN(32)) 9061 NewMask.setBitsFrom(31); 9062 else 9063 return false; 9064 9065 // Check that our new mask is a subset of the demanded mask. 9066 assert(IsLegalMask(NewMask)); 9067 return UseMask(NewMask); 9068 } 9069 9070 static uint64_t computeGREVOrGORC(uint64_t x, unsigned ShAmt, bool IsGORC) { 9071 static const uint64_t GREVMasks[] = { 9072 0x5555555555555555ULL, 0x3333333333333333ULL, 0x0F0F0F0F0F0F0F0FULL, 9073 0x00FF00FF00FF00FFULL, 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL}; 9074 9075 for (unsigned Stage = 0; Stage != 6; ++Stage) { 9076 unsigned Shift = 1 << Stage; 9077 if (ShAmt & Shift) { 9078 uint64_t Mask = GREVMasks[Stage]; 9079 uint64_t Res = ((x & Mask) << Shift) | ((x >> Shift) & Mask); 9080 if (IsGORC) 9081 Res |= x; 9082 x = Res; 9083 } 9084 } 9085 9086 return x; 9087 } 9088 9089 void RISCVTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 9090 KnownBits &Known, 9091 const APInt &DemandedElts, 9092 const SelectionDAG &DAG, 9093 unsigned Depth) const { 9094 unsigned BitWidth = Known.getBitWidth(); 9095 unsigned Opc = Op.getOpcode(); 9096 assert((Opc >= ISD::BUILTIN_OP_END || 9097 Opc == ISD::INTRINSIC_WO_CHAIN || 9098 Opc == ISD::INTRINSIC_W_CHAIN || 9099 Opc == ISD::INTRINSIC_VOID) && 9100 "Should use MaskedValueIsZero if you don't know whether Op" 9101 " is a target node!"); 9102 9103 Known.resetAll(); 9104 switch (Opc) { 9105 default: break; 9106 case RISCVISD::SELECT_CC: { 9107 Known = DAG.computeKnownBits(Op.getOperand(4), Depth + 1); 9108 // If we don't know any bits, early out. 9109 if (Known.isUnknown()) 9110 break; 9111 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(3), Depth + 1); 9112 9113 // Only known if known in both the LHS and RHS. 9114 Known = KnownBits::commonBits(Known, Known2); 9115 break; 9116 } 9117 case RISCVISD::REMUW: { 9118 KnownBits Known2; 9119 Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 9120 Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 9121 // We only care about the lower 32 bits. 9122 Known = KnownBits::urem(Known.trunc(32), Known2.trunc(32)); 9123 // Restore the original width by sign extending. 9124 Known = Known.sext(BitWidth); 9125 break; 9126 } 9127 case RISCVISD::DIVUW: { 9128 KnownBits Known2; 9129 Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 9130 Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 9131 // We only care about the lower 32 bits. 9132 Known = KnownBits::udiv(Known.trunc(32), Known2.trunc(32)); 9133 // Restore the original width by sign extending. 9134 Known = Known.sext(BitWidth); 9135 break; 9136 } 9137 case RISCVISD::CTZW: { 9138 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 9139 unsigned PossibleTZ = Known2.trunc(32).countMaxTrailingZeros(); 9140 unsigned LowBits = Log2_32(PossibleTZ) + 1; 9141 Known.Zero.setBitsFrom(LowBits); 9142 break; 9143 } 9144 case RISCVISD::CLZW: { 9145 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 9146 unsigned PossibleLZ = Known2.trunc(32).countMaxLeadingZeros(); 9147 unsigned LowBits = Log2_32(PossibleLZ) + 1; 9148 Known.Zero.setBitsFrom(LowBits); 9149 break; 9150 } 9151 case RISCVISD::GREV: 9152 case RISCVISD::GORC: { 9153 if (auto *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 9154 Known = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 9155 unsigned ShAmt = C->getZExtValue() & (Known.getBitWidth() - 1); 9156 bool IsGORC = Op.getOpcode() == RISCVISD::GORC; 9157 // To compute zeros, we need to invert the value and invert it back after. 9158 Known.Zero = 9159 ~computeGREVOrGORC(~Known.Zero.getZExtValue(), ShAmt, IsGORC); 9160 Known.One = computeGREVOrGORC(Known.One.getZExtValue(), ShAmt, IsGORC); 9161 } 9162 break; 9163 } 9164 case RISCVISD::READ_VLENB: { 9165 // If we know the minimum VLen from Zvl extensions, we can use that to 9166 // determine the trailing zeros of VLENB. 9167 // FIXME: Limit to 128 bit vectors until we have more testing. 9168 unsigned MinVLenB = std::min(128U, Subtarget.getMinVLen()) / 8; 9169 if (MinVLenB > 0) 9170 Known.Zero.setLowBits(Log2_32(MinVLenB)); 9171 // We assume VLENB is no more than 65536 / 8 bytes. 9172 Known.Zero.setBitsFrom(14); 9173 break; 9174 } 9175 case ISD::INTRINSIC_W_CHAIN: 9176 case ISD::INTRINSIC_WO_CHAIN: { 9177 unsigned IntNo = 9178 Op.getConstantOperandVal(Opc == ISD::INTRINSIC_WO_CHAIN ? 0 : 1); 9179 switch (IntNo) { 9180 default: 9181 // We can't do anything for most intrinsics. 9182 break; 9183 case Intrinsic::riscv_vsetvli: 9184 case Intrinsic::riscv_vsetvlimax: 9185 case Intrinsic::riscv_vsetvli_opt: 9186 case Intrinsic::riscv_vsetvlimax_opt: 9187 // Assume that VL output is positive and would fit in an int32_t. 9188 // TODO: VLEN might be capped at 16 bits in a future V spec update. 9189 if (BitWidth >= 32) 9190 Known.Zero.setBitsFrom(31); 9191 break; 9192 } 9193 break; 9194 } 9195 } 9196 } 9197 9198 unsigned RISCVTargetLowering::ComputeNumSignBitsForTargetNode( 9199 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 9200 unsigned Depth) const { 9201 switch (Op.getOpcode()) { 9202 default: 9203 break; 9204 case RISCVISD::SELECT_CC: { 9205 unsigned Tmp = 9206 DAG.ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth + 1); 9207 if (Tmp == 1) return 1; // Early out. 9208 unsigned Tmp2 = 9209 DAG.ComputeNumSignBits(Op.getOperand(4), DemandedElts, Depth + 1); 9210 return std::min(Tmp, Tmp2); 9211 } 9212 case RISCVISD::SLLW: 9213 case RISCVISD::SRAW: 9214 case RISCVISD::SRLW: 9215 case RISCVISD::DIVW: 9216 case RISCVISD::DIVUW: 9217 case RISCVISD::REMUW: 9218 case RISCVISD::ROLW: 9219 case RISCVISD::RORW: 9220 case RISCVISD::GREVW: 9221 case RISCVISD::GORCW: 9222 case RISCVISD::FSLW: 9223 case RISCVISD::FSRW: 9224 case RISCVISD::SHFLW: 9225 case RISCVISD::UNSHFLW: 9226 case RISCVISD::BCOMPRESSW: 9227 case RISCVISD::BDECOMPRESSW: 9228 case RISCVISD::BFPW: 9229 case RISCVISD::FCVT_W_RV64: 9230 case RISCVISD::FCVT_WU_RV64: 9231 case RISCVISD::STRICT_FCVT_W_RV64: 9232 case RISCVISD::STRICT_FCVT_WU_RV64: 9233 // TODO: As the result is sign-extended, this is conservatively correct. A 9234 // more precise answer could be calculated for SRAW depending on known 9235 // bits in the shift amount. 9236 return 33; 9237 case RISCVISD::SHFL: 9238 case RISCVISD::UNSHFL: { 9239 // There is no SHFLIW, but a i64 SHFLI with bit 4 of the control word 9240 // cleared doesn't affect bit 31. The upper 32 bits will be shuffled, but 9241 // will stay within the upper 32 bits. If there were more than 32 sign bits 9242 // before there will be at least 33 sign bits after. 9243 if (Op.getValueType() == MVT::i64 && 9244 isa<ConstantSDNode>(Op.getOperand(1)) && 9245 (Op.getConstantOperandVal(1) & 0x10) == 0) { 9246 unsigned Tmp = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1); 9247 if (Tmp > 32) 9248 return 33; 9249 } 9250 break; 9251 } 9252 case RISCVISD::VMV_X_S: { 9253 // The number of sign bits of the scalar result is computed by obtaining the 9254 // element type of the input vector operand, subtracting its width from the 9255 // XLEN, and then adding one (sign bit within the element type). If the 9256 // element type is wider than XLen, the least-significant XLEN bits are 9257 // taken. 9258 unsigned XLen = Subtarget.getXLen(); 9259 unsigned EltBits = Op.getOperand(0).getScalarValueSizeInBits(); 9260 if (EltBits <= XLen) 9261 return XLen - EltBits + 1; 9262 break; 9263 } 9264 } 9265 9266 return 1; 9267 } 9268 9269 static MachineBasicBlock *emitReadCycleWidePseudo(MachineInstr &MI, 9270 MachineBasicBlock *BB) { 9271 assert(MI.getOpcode() == RISCV::ReadCycleWide && "Unexpected instruction"); 9272 9273 // To read the 64-bit cycle CSR on a 32-bit target, we read the two halves. 9274 // Should the count have wrapped while it was being read, we need to try 9275 // again. 9276 // ... 9277 // read: 9278 // rdcycleh x3 # load high word of cycle 9279 // rdcycle x2 # load low word of cycle 9280 // rdcycleh x4 # load high word of cycle 9281 // bne x3, x4, read # check if high word reads match, otherwise try again 9282 // ... 9283 9284 MachineFunction &MF = *BB->getParent(); 9285 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 9286 MachineFunction::iterator It = ++BB->getIterator(); 9287 9288 MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB); 9289 MF.insert(It, LoopMBB); 9290 9291 MachineBasicBlock *DoneMBB = MF.CreateMachineBasicBlock(LLVM_BB); 9292 MF.insert(It, DoneMBB); 9293 9294 // Transfer the remainder of BB and its successor edges to DoneMBB. 9295 DoneMBB->splice(DoneMBB->begin(), BB, 9296 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 9297 DoneMBB->transferSuccessorsAndUpdatePHIs(BB); 9298 9299 BB->addSuccessor(LoopMBB); 9300 9301 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 9302 Register ReadAgainReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 9303 Register LoReg = MI.getOperand(0).getReg(); 9304 Register HiReg = MI.getOperand(1).getReg(); 9305 DebugLoc DL = MI.getDebugLoc(); 9306 9307 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 9308 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), HiReg) 9309 .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding) 9310 .addReg(RISCV::X0); 9311 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), LoReg) 9312 .addImm(RISCVSysReg::lookupSysRegByName("CYCLE")->Encoding) 9313 .addReg(RISCV::X0); 9314 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), ReadAgainReg) 9315 .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding) 9316 .addReg(RISCV::X0); 9317 9318 BuildMI(LoopMBB, DL, TII->get(RISCV::BNE)) 9319 .addReg(HiReg) 9320 .addReg(ReadAgainReg) 9321 .addMBB(LoopMBB); 9322 9323 LoopMBB->addSuccessor(LoopMBB); 9324 LoopMBB->addSuccessor(DoneMBB); 9325 9326 MI.eraseFromParent(); 9327 9328 return DoneMBB; 9329 } 9330 9331 static MachineBasicBlock *emitSplitF64Pseudo(MachineInstr &MI, 9332 MachineBasicBlock *BB) { 9333 assert(MI.getOpcode() == RISCV::SplitF64Pseudo && "Unexpected instruction"); 9334 9335 MachineFunction &MF = *BB->getParent(); 9336 DebugLoc DL = MI.getDebugLoc(); 9337 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 9338 const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo(); 9339 Register LoReg = MI.getOperand(0).getReg(); 9340 Register HiReg = MI.getOperand(1).getReg(); 9341 Register SrcReg = MI.getOperand(2).getReg(); 9342 const TargetRegisterClass *SrcRC = &RISCV::FPR64RegClass; 9343 int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF); 9344 9345 TII.storeRegToStackSlot(*BB, MI, SrcReg, MI.getOperand(2).isKill(), FI, SrcRC, 9346 RI); 9347 MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI); 9348 MachineMemOperand *MMOLo = 9349 MF.getMachineMemOperand(MPI, MachineMemOperand::MOLoad, 4, Align(8)); 9350 MachineMemOperand *MMOHi = MF.getMachineMemOperand( 9351 MPI.getWithOffset(4), MachineMemOperand::MOLoad, 4, Align(8)); 9352 BuildMI(*BB, MI, DL, TII.get(RISCV::LW), LoReg) 9353 .addFrameIndex(FI) 9354 .addImm(0) 9355 .addMemOperand(MMOLo); 9356 BuildMI(*BB, MI, DL, TII.get(RISCV::LW), HiReg) 9357 .addFrameIndex(FI) 9358 .addImm(4) 9359 .addMemOperand(MMOHi); 9360 MI.eraseFromParent(); // The pseudo instruction is gone now. 9361 return BB; 9362 } 9363 9364 static MachineBasicBlock *emitBuildPairF64Pseudo(MachineInstr &MI, 9365 MachineBasicBlock *BB) { 9366 assert(MI.getOpcode() == RISCV::BuildPairF64Pseudo && 9367 "Unexpected instruction"); 9368 9369 MachineFunction &MF = *BB->getParent(); 9370 DebugLoc DL = MI.getDebugLoc(); 9371 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 9372 const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo(); 9373 Register DstReg = MI.getOperand(0).getReg(); 9374 Register LoReg = MI.getOperand(1).getReg(); 9375 Register HiReg = MI.getOperand(2).getReg(); 9376 const TargetRegisterClass *DstRC = &RISCV::FPR64RegClass; 9377 int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF); 9378 9379 MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI); 9380 MachineMemOperand *MMOLo = 9381 MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Align(8)); 9382 MachineMemOperand *MMOHi = MF.getMachineMemOperand( 9383 MPI.getWithOffset(4), MachineMemOperand::MOStore, 4, Align(8)); 9384 BuildMI(*BB, MI, DL, TII.get(RISCV::SW)) 9385 .addReg(LoReg, getKillRegState(MI.getOperand(1).isKill())) 9386 .addFrameIndex(FI) 9387 .addImm(0) 9388 .addMemOperand(MMOLo); 9389 BuildMI(*BB, MI, DL, TII.get(RISCV::SW)) 9390 .addReg(HiReg, getKillRegState(MI.getOperand(2).isKill())) 9391 .addFrameIndex(FI) 9392 .addImm(4) 9393 .addMemOperand(MMOHi); 9394 TII.loadRegFromStackSlot(*BB, MI, DstReg, FI, DstRC, RI); 9395 MI.eraseFromParent(); // The pseudo instruction is gone now. 9396 return BB; 9397 } 9398 9399 static bool isSelectPseudo(MachineInstr &MI) { 9400 switch (MI.getOpcode()) { 9401 default: 9402 return false; 9403 case RISCV::Select_GPR_Using_CC_GPR: 9404 case RISCV::Select_FPR16_Using_CC_GPR: 9405 case RISCV::Select_FPR32_Using_CC_GPR: 9406 case RISCV::Select_FPR64_Using_CC_GPR: 9407 return true; 9408 } 9409 } 9410 9411 static MachineBasicBlock *emitQuietFCMP(MachineInstr &MI, MachineBasicBlock *BB, 9412 unsigned RelOpcode, unsigned EqOpcode, 9413 const RISCVSubtarget &Subtarget) { 9414 DebugLoc DL = MI.getDebugLoc(); 9415 Register DstReg = MI.getOperand(0).getReg(); 9416 Register Src1Reg = MI.getOperand(1).getReg(); 9417 Register Src2Reg = MI.getOperand(2).getReg(); 9418 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); 9419 Register SavedFFlags = MRI.createVirtualRegister(&RISCV::GPRRegClass); 9420 const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo(); 9421 9422 // Save the current FFLAGS. 9423 BuildMI(*BB, MI, DL, TII.get(RISCV::ReadFFLAGS), SavedFFlags); 9424 9425 auto MIB = BuildMI(*BB, MI, DL, TII.get(RelOpcode), DstReg) 9426 .addReg(Src1Reg) 9427 .addReg(Src2Reg); 9428 if (MI.getFlag(MachineInstr::MIFlag::NoFPExcept)) 9429 MIB->setFlag(MachineInstr::MIFlag::NoFPExcept); 9430 9431 // Restore the FFLAGS. 9432 BuildMI(*BB, MI, DL, TII.get(RISCV::WriteFFLAGS)) 9433 .addReg(SavedFFlags, RegState::Kill); 9434 9435 // Issue a dummy FEQ opcode to raise exception for signaling NaNs. 9436 auto MIB2 = BuildMI(*BB, MI, DL, TII.get(EqOpcode), RISCV::X0) 9437 .addReg(Src1Reg, getKillRegState(MI.getOperand(1).isKill())) 9438 .addReg(Src2Reg, getKillRegState(MI.getOperand(2).isKill())); 9439 if (MI.getFlag(MachineInstr::MIFlag::NoFPExcept)) 9440 MIB2->setFlag(MachineInstr::MIFlag::NoFPExcept); 9441 9442 // Erase the pseudoinstruction. 9443 MI.eraseFromParent(); 9444 return BB; 9445 } 9446 9447 static MachineBasicBlock *emitSelectPseudo(MachineInstr &MI, 9448 MachineBasicBlock *BB, 9449 const RISCVSubtarget &Subtarget) { 9450 // To "insert" Select_* instructions, we actually have to insert the triangle 9451 // control-flow pattern. The incoming instructions know the destination vreg 9452 // to set, the condition code register to branch on, the true/false values to 9453 // select between, and the condcode to use to select the appropriate branch. 9454 // 9455 // We produce the following control flow: 9456 // HeadMBB 9457 // | \ 9458 // | IfFalseMBB 9459 // | / 9460 // TailMBB 9461 // 9462 // When we find a sequence of selects we attempt to optimize their emission 9463 // by sharing the control flow. Currently we only handle cases where we have 9464 // multiple selects with the exact same condition (same LHS, RHS and CC). 9465 // The selects may be interleaved with other instructions if the other 9466 // instructions meet some requirements we deem safe: 9467 // - They are debug instructions. Otherwise, 9468 // - They do not have side-effects, do not access memory and their inputs do 9469 // not depend on the results of the select pseudo-instructions. 9470 // The TrueV/FalseV operands of the selects cannot depend on the result of 9471 // previous selects in the sequence. 9472 // These conditions could be further relaxed. See the X86 target for a 9473 // related approach and more information. 9474 Register LHS = MI.getOperand(1).getReg(); 9475 Register RHS = MI.getOperand(2).getReg(); 9476 auto CC = static_cast<RISCVCC::CondCode>(MI.getOperand(3).getImm()); 9477 9478 SmallVector<MachineInstr *, 4> SelectDebugValues; 9479 SmallSet<Register, 4> SelectDests; 9480 SelectDests.insert(MI.getOperand(0).getReg()); 9481 9482 MachineInstr *LastSelectPseudo = &MI; 9483 9484 for (auto E = BB->end(), SequenceMBBI = MachineBasicBlock::iterator(MI); 9485 SequenceMBBI != E; ++SequenceMBBI) { 9486 if (SequenceMBBI->isDebugInstr()) 9487 continue; 9488 else if (isSelectPseudo(*SequenceMBBI)) { 9489 if (SequenceMBBI->getOperand(1).getReg() != LHS || 9490 SequenceMBBI->getOperand(2).getReg() != RHS || 9491 SequenceMBBI->getOperand(3).getImm() != CC || 9492 SelectDests.count(SequenceMBBI->getOperand(4).getReg()) || 9493 SelectDests.count(SequenceMBBI->getOperand(5).getReg())) 9494 break; 9495 LastSelectPseudo = &*SequenceMBBI; 9496 SequenceMBBI->collectDebugValues(SelectDebugValues); 9497 SelectDests.insert(SequenceMBBI->getOperand(0).getReg()); 9498 } else { 9499 if (SequenceMBBI->hasUnmodeledSideEffects() || 9500 SequenceMBBI->mayLoadOrStore()) 9501 break; 9502 if (llvm::any_of(SequenceMBBI->operands(), [&](MachineOperand &MO) { 9503 return MO.isReg() && MO.isUse() && SelectDests.count(MO.getReg()); 9504 })) 9505 break; 9506 } 9507 } 9508 9509 const RISCVInstrInfo &TII = *Subtarget.getInstrInfo(); 9510 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 9511 DebugLoc DL = MI.getDebugLoc(); 9512 MachineFunction::iterator I = ++BB->getIterator(); 9513 9514 MachineBasicBlock *HeadMBB = BB; 9515 MachineFunction *F = BB->getParent(); 9516 MachineBasicBlock *TailMBB = F->CreateMachineBasicBlock(LLVM_BB); 9517 MachineBasicBlock *IfFalseMBB = F->CreateMachineBasicBlock(LLVM_BB); 9518 9519 F->insert(I, IfFalseMBB); 9520 F->insert(I, TailMBB); 9521 9522 // Transfer debug instructions associated with the selects to TailMBB. 9523 for (MachineInstr *DebugInstr : SelectDebugValues) { 9524 TailMBB->push_back(DebugInstr->removeFromParent()); 9525 } 9526 9527 // Move all instructions after the sequence to TailMBB. 9528 TailMBB->splice(TailMBB->end(), HeadMBB, 9529 std::next(LastSelectPseudo->getIterator()), HeadMBB->end()); 9530 // Update machine-CFG edges by transferring all successors of the current 9531 // block to the new block which will contain the Phi nodes for the selects. 9532 TailMBB->transferSuccessorsAndUpdatePHIs(HeadMBB); 9533 // Set the successors for HeadMBB. 9534 HeadMBB->addSuccessor(IfFalseMBB); 9535 HeadMBB->addSuccessor(TailMBB); 9536 9537 // Insert appropriate branch. 9538 BuildMI(HeadMBB, DL, TII.getBrCond(CC)) 9539 .addReg(LHS) 9540 .addReg(RHS) 9541 .addMBB(TailMBB); 9542 9543 // IfFalseMBB just falls through to TailMBB. 9544 IfFalseMBB->addSuccessor(TailMBB); 9545 9546 // Create PHIs for all of the select pseudo-instructions. 9547 auto SelectMBBI = MI.getIterator(); 9548 auto SelectEnd = std::next(LastSelectPseudo->getIterator()); 9549 auto InsertionPoint = TailMBB->begin(); 9550 while (SelectMBBI != SelectEnd) { 9551 auto Next = std::next(SelectMBBI); 9552 if (isSelectPseudo(*SelectMBBI)) { 9553 // %Result = phi [ %TrueValue, HeadMBB ], [ %FalseValue, IfFalseMBB ] 9554 BuildMI(*TailMBB, InsertionPoint, SelectMBBI->getDebugLoc(), 9555 TII.get(RISCV::PHI), SelectMBBI->getOperand(0).getReg()) 9556 .addReg(SelectMBBI->getOperand(4).getReg()) 9557 .addMBB(HeadMBB) 9558 .addReg(SelectMBBI->getOperand(5).getReg()) 9559 .addMBB(IfFalseMBB); 9560 SelectMBBI->eraseFromParent(); 9561 } 9562 SelectMBBI = Next; 9563 } 9564 9565 F->getProperties().reset(MachineFunctionProperties::Property::NoPHIs); 9566 return TailMBB; 9567 } 9568 9569 MachineBasicBlock * 9570 RISCVTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 9571 MachineBasicBlock *BB) const { 9572 switch (MI.getOpcode()) { 9573 default: 9574 llvm_unreachable("Unexpected instr type to insert"); 9575 case RISCV::ReadCycleWide: 9576 assert(!Subtarget.is64Bit() && 9577 "ReadCycleWrite is only to be used on riscv32"); 9578 return emitReadCycleWidePseudo(MI, BB); 9579 case RISCV::Select_GPR_Using_CC_GPR: 9580 case RISCV::Select_FPR16_Using_CC_GPR: 9581 case RISCV::Select_FPR32_Using_CC_GPR: 9582 case RISCV::Select_FPR64_Using_CC_GPR: 9583 return emitSelectPseudo(MI, BB, Subtarget); 9584 case RISCV::BuildPairF64Pseudo: 9585 return emitBuildPairF64Pseudo(MI, BB); 9586 case RISCV::SplitF64Pseudo: 9587 return emitSplitF64Pseudo(MI, BB); 9588 case RISCV::PseudoQuietFLE_H: 9589 return emitQuietFCMP(MI, BB, RISCV::FLE_H, RISCV::FEQ_H, Subtarget); 9590 case RISCV::PseudoQuietFLT_H: 9591 return emitQuietFCMP(MI, BB, RISCV::FLT_H, RISCV::FEQ_H, Subtarget); 9592 case RISCV::PseudoQuietFLE_S: 9593 return emitQuietFCMP(MI, BB, RISCV::FLE_S, RISCV::FEQ_S, Subtarget); 9594 case RISCV::PseudoQuietFLT_S: 9595 return emitQuietFCMP(MI, BB, RISCV::FLT_S, RISCV::FEQ_S, Subtarget); 9596 case RISCV::PseudoQuietFLE_D: 9597 return emitQuietFCMP(MI, BB, RISCV::FLE_D, RISCV::FEQ_D, Subtarget); 9598 case RISCV::PseudoQuietFLT_D: 9599 return emitQuietFCMP(MI, BB, RISCV::FLT_D, RISCV::FEQ_D, Subtarget); 9600 } 9601 } 9602 9603 void RISCVTargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI, 9604 SDNode *Node) const { 9605 // Add FRM dependency to any instructions with dynamic rounding mode. 9606 unsigned Opc = MI.getOpcode(); 9607 auto Idx = RISCV::getNamedOperandIdx(Opc, RISCV::OpName::frm); 9608 if (Idx < 0) 9609 return; 9610 if (MI.getOperand(Idx).getImm() != RISCVFPRndMode::DYN) 9611 return; 9612 // If the instruction already reads FRM, don't add another read. 9613 if (MI.readsRegister(RISCV::FRM)) 9614 return; 9615 MI.addOperand( 9616 MachineOperand::CreateReg(RISCV::FRM, /*isDef*/ false, /*isImp*/ true)); 9617 } 9618 9619 // Calling Convention Implementation. 9620 // The expectations for frontend ABI lowering vary from target to target. 9621 // Ideally, an LLVM frontend would be able to avoid worrying about many ABI 9622 // details, but this is a longer term goal. For now, we simply try to keep the 9623 // role of the frontend as simple and well-defined as possible. The rules can 9624 // be summarised as: 9625 // * Never split up large scalar arguments. We handle them here. 9626 // * If a hardfloat calling convention is being used, and the struct may be 9627 // passed in a pair of registers (fp+fp, int+fp), and both registers are 9628 // available, then pass as two separate arguments. If either the GPRs or FPRs 9629 // are exhausted, then pass according to the rule below. 9630 // * If a struct could never be passed in registers or directly in a stack 9631 // slot (as it is larger than 2*XLEN and the floating point rules don't 9632 // apply), then pass it using a pointer with the byval attribute. 9633 // * If a struct is less than 2*XLEN, then coerce to either a two-element 9634 // word-sized array or a 2*XLEN scalar (depending on alignment). 9635 // * The frontend can determine whether a struct is returned by reference or 9636 // not based on its size and fields. If it will be returned by reference, the 9637 // frontend must modify the prototype so a pointer with the sret annotation is 9638 // passed as the first argument. This is not necessary for large scalar 9639 // returns. 9640 // * Struct return values and varargs should be coerced to structs containing 9641 // register-size fields in the same situations they would be for fixed 9642 // arguments. 9643 9644 static const MCPhysReg ArgGPRs[] = { 9645 RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, 9646 RISCV::X14, RISCV::X15, RISCV::X16, RISCV::X17 9647 }; 9648 static const MCPhysReg ArgFPR16s[] = { 9649 RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, 9650 RISCV::F14_H, RISCV::F15_H, RISCV::F16_H, RISCV::F17_H 9651 }; 9652 static const MCPhysReg ArgFPR32s[] = { 9653 RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, 9654 RISCV::F14_F, RISCV::F15_F, RISCV::F16_F, RISCV::F17_F 9655 }; 9656 static const MCPhysReg ArgFPR64s[] = { 9657 RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, 9658 RISCV::F14_D, RISCV::F15_D, RISCV::F16_D, RISCV::F17_D 9659 }; 9660 // This is an interim calling convention and it may be changed in the future. 9661 static const MCPhysReg ArgVRs[] = { 9662 RISCV::V8, RISCV::V9, RISCV::V10, RISCV::V11, RISCV::V12, RISCV::V13, 9663 RISCV::V14, RISCV::V15, RISCV::V16, RISCV::V17, RISCV::V18, RISCV::V19, 9664 RISCV::V20, RISCV::V21, RISCV::V22, RISCV::V23}; 9665 static const MCPhysReg ArgVRM2s[] = {RISCV::V8M2, RISCV::V10M2, RISCV::V12M2, 9666 RISCV::V14M2, RISCV::V16M2, RISCV::V18M2, 9667 RISCV::V20M2, RISCV::V22M2}; 9668 static const MCPhysReg ArgVRM4s[] = {RISCV::V8M4, RISCV::V12M4, RISCV::V16M4, 9669 RISCV::V20M4}; 9670 static const MCPhysReg ArgVRM8s[] = {RISCV::V8M8, RISCV::V16M8}; 9671 9672 // Pass a 2*XLEN argument that has been split into two XLEN values through 9673 // registers or the stack as necessary. 9674 static bool CC_RISCVAssign2XLen(unsigned XLen, CCState &State, CCValAssign VA1, 9675 ISD::ArgFlagsTy ArgFlags1, unsigned ValNo2, 9676 MVT ValVT2, MVT LocVT2, 9677 ISD::ArgFlagsTy ArgFlags2) { 9678 unsigned XLenInBytes = XLen / 8; 9679 if (Register Reg = State.AllocateReg(ArgGPRs)) { 9680 // At least one half can be passed via register. 9681 State.addLoc(CCValAssign::getReg(VA1.getValNo(), VA1.getValVT(), Reg, 9682 VA1.getLocVT(), CCValAssign::Full)); 9683 } else { 9684 // Both halves must be passed on the stack, with proper alignment. 9685 Align StackAlign = 9686 std::max(Align(XLenInBytes), ArgFlags1.getNonZeroOrigAlign()); 9687 State.addLoc( 9688 CCValAssign::getMem(VA1.getValNo(), VA1.getValVT(), 9689 State.AllocateStack(XLenInBytes, StackAlign), 9690 VA1.getLocVT(), CCValAssign::Full)); 9691 State.addLoc(CCValAssign::getMem( 9692 ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)), 9693 LocVT2, CCValAssign::Full)); 9694 return false; 9695 } 9696 9697 if (Register Reg = State.AllocateReg(ArgGPRs)) { 9698 // The second half can also be passed via register. 9699 State.addLoc( 9700 CCValAssign::getReg(ValNo2, ValVT2, Reg, LocVT2, CCValAssign::Full)); 9701 } else { 9702 // The second half is passed via the stack, without additional alignment. 9703 State.addLoc(CCValAssign::getMem( 9704 ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)), 9705 LocVT2, CCValAssign::Full)); 9706 } 9707 9708 return false; 9709 } 9710 9711 static unsigned allocateRVVReg(MVT ValVT, unsigned ValNo, 9712 Optional<unsigned> FirstMaskArgument, 9713 CCState &State, const RISCVTargetLowering &TLI) { 9714 const TargetRegisterClass *RC = TLI.getRegClassFor(ValVT); 9715 if (RC == &RISCV::VRRegClass) { 9716 // Assign the first mask argument to V0. 9717 // This is an interim calling convention and it may be changed in the 9718 // future. 9719 if (FirstMaskArgument.hasValue() && ValNo == FirstMaskArgument.getValue()) 9720 return State.AllocateReg(RISCV::V0); 9721 return State.AllocateReg(ArgVRs); 9722 } 9723 if (RC == &RISCV::VRM2RegClass) 9724 return State.AllocateReg(ArgVRM2s); 9725 if (RC == &RISCV::VRM4RegClass) 9726 return State.AllocateReg(ArgVRM4s); 9727 if (RC == &RISCV::VRM8RegClass) 9728 return State.AllocateReg(ArgVRM8s); 9729 llvm_unreachable("Unhandled register class for ValueType"); 9730 } 9731 9732 // Implements the RISC-V calling convention. Returns true upon failure. 9733 static bool CC_RISCV(const DataLayout &DL, RISCVABI::ABI ABI, unsigned ValNo, 9734 MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, 9735 ISD::ArgFlagsTy ArgFlags, CCState &State, bool IsFixed, 9736 bool IsRet, Type *OrigTy, const RISCVTargetLowering &TLI, 9737 Optional<unsigned> FirstMaskArgument) { 9738 unsigned XLen = DL.getLargestLegalIntTypeSizeInBits(); 9739 assert(XLen == 32 || XLen == 64); 9740 MVT XLenVT = XLen == 32 ? MVT::i32 : MVT::i64; 9741 9742 // Any return value split in to more than two values can't be returned 9743 // directly. Vectors are returned via the available vector registers. 9744 if (!LocVT.isVector() && IsRet && ValNo > 1) 9745 return true; 9746 9747 // UseGPRForF16_F32 if targeting one of the soft-float ABIs, if passing a 9748 // variadic argument, or if no F16/F32 argument registers are available. 9749 bool UseGPRForF16_F32 = true; 9750 // UseGPRForF64 if targeting soft-float ABIs or an FLEN=32 ABI, if passing a 9751 // variadic argument, or if no F64 argument registers are available. 9752 bool UseGPRForF64 = true; 9753 9754 switch (ABI) { 9755 default: 9756 llvm_unreachable("Unexpected ABI"); 9757 case RISCVABI::ABI_ILP32: 9758 case RISCVABI::ABI_LP64: 9759 break; 9760 case RISCVABI::ABI_ILP32F: 9761 case RISCVABI::ABI_LP64F: 9762 UseGPRForF16_F32 = !IsFixed; 9763 break; 9764 case RISCVABI::ABI_ILP32D: 9765 case RISCVABI::ABI_LP64D: 9766 UseGPRForF16_F32 = !IsFixed; 9767 UseGPRForF64 = !IsFixed; 9768 break; 9769 } 9770 9771 // FPR16, FPR32, and FPR64 alias each other. 9772 if (State.getFirstUnallocated(ArgFPR32s) == array_lengthof(ArgFPR32s)) { 9773 UseGPRForF16_F32 = true; 9774 UseGPRForF64 = true; 9775 } 9776 9777 // From this point on, rely on UseGPRForF16_F32, UseGPRForF64 and 9778 // similar local variables rather than directly checking against the target 9779 // ABI. 9780 9781 if (UseGPRForF16_F32 && (ValVT == MVT::f16 || ValVT == MVT::f32)) { 9782 LocVT = XLenVT; 9783 LocInfo = CCValAssign::BCvt; 9784 } else if (UseGPRForF64 && XLen == 64 && ValVT == MVT::f64) { 9785 LocVT = MVT::i64; 9786 LocInfo = CCValAssign::BCvt; 9787 } 9788 9789 // If this is a variadic argument, the RISC-V calling convention requires 9790 // that it is assigned an 'even' or 'aligned' register if it has 8-byte 9791 // alignment (RV32) or 16-byte alignment (RV64). An aligned register should 9792 // be used regardless of whether the original argument was split during 9793 // legalisation or not. The argument will not be passed by registers if the 9794 // original type is larger than 2*XLEN, so the register alignment rule does 9795 // not apply. 9796 unsigned TwoXLenInBytes = (2 * XLen) / 8; 9797 if (!IsFixed && ArgFlags.getNonZeroOrigAlign() == TwoXLenInBytes && 9798 DL.getTypeAllocSize(OrigTy) == TwoXLenInBytes) { 9799 unsigned RegIdx = State.getFirstUnallocated(ArgGPRs); 9800 // Skip 'odd' register if necessary. 9801 if (RegIdx != array_lengthof(ArgGPRs) && RegIdx % 2 == 1) 9802 State.AllocateReg(ArgGPRs); 9803 } 9804 9805 SmallVectorImpl<CCValAssign> &PendingLocs = State.getPendingLocs(); 9806 SmallVectorImpl<ISD::ArgFlagsTy> &PendingArgFlags = 9807 State.getPendingArgFlags(); 9808 9809 assert(PendingLocs.size() == PendingArgFlags.size() && 9810 "PendingLocs and PendingArgFlags out of sync"); 9811 9812 // Handle passing f64 on RV32D with a soft float ABI or when floating point 9813 // registers are exhausted. 9814 if (UseGPRForF64 && XLen == 32 && ValVT == MVT::f64) { 9815 assert(!ArgFlags.isSplit() && PendingLocs.empty() && 9816 "Can't lower f64 if it is split"); 9817 // Depending on available argument GPRS, f64 may be passed in a pair of 9818 // GPRs, split between a GPR and the stack, or passed completely on the 9819 // stack. LowerCall/LowerFormalArguments/LowerReturn must recognise these 9820 // cases. 9821 Register Reg = State.AllocateReg(ArgGPRs); 9822 LocVT = MVT::i32; 9823 if (!Reg) { 9824 unsigned StackOffset = State.AllocateStack(8, Align(8)); 9825 State.addLoc( 9826 CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 9827 return false; 9828 } 9829 if (!State.AllocateReg(ArgGPRs)) 9830 State.AllocateStack(4, Align(4)); 9831 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 9832 return false; 9833 } 9834 9835 // Fixed-length vectors are located in the corresponding scalable-vector 9836 // container types. 9837 if (ValVT.isFixedLengthVector()) 9838 LocVT = TLI.getContainerForFixedLengthVector(LocVT); 9839 9840 // Split arguments might be passed indirectly, so keep track of the pending 9841 // values. Split vectors are passed via a mix of registers and indirectly, so 9842 // treat them as we would any other argument. 9843 if (ValVT.isScalarInteger() && (ArgFlags.isSplit() || !PendingLocs.empty())) { 9844 LocVT = XLenVT; 9845 LocInfo = CCValAssign::Indirect; 9846 PendingLocs.push_back( 9847 CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo)); 9848 PendingArgFlags.push_back(ArgFlags); 9849 if (!ArgFlags.isSplitEnd()) { 9850 return false; 9851 } 9852 } 9853 9854 // If the split argument only had two elements, it should be passed directly 9855 // in registers or on the stack. 9856 if (ValVT.isScalarInteger() && ArgFlags.isSplitEnd() && 9857 PendingLocs.size() <= 2) { 9858 assert(PendingLocs.size() == 2 && "Unexpected PendingLocs.size()"); 9859 // Apply the normal calling convention rules to the first half of the 9860 // split argument. 9861 CCValAssign VA = PendingLocs[0]; 9862 ISD::ArgFlagsTy AF = PendingArgFlags[0]; 9863 PendingLocs.clear(); 9864 PendingArgFlags.clear(); 9865 return CC_RISCVAssign2XLen(XLen, State, VA, AF, ValNo, ValVT, LocVT, 9866 ArgFlags); 9867 } 9868 9869 // Allocate to a register if possible, or else a stack slot. 9870 Register Reg; 9871 unsigned StoreSizeBytes = XLen / 8; 9872 Align StackAlign = Align(XLen / 8); 9873 9874 if (ValVT == MVT::f16 && !UseGPRForF16_F32) 9875 Reg = State.AllocateReg(ArgFPR16s); 9876 else if (ValVT == MVT::f32 && !UseGPRForF16_F32) 9877 Reg = State.AllocateReg(ArgFPR32s); 9878 else if (ValVT == MVT::f64 && !UseGPRForF64) 9879 Reg = State.AllocateReg(ArgFPR64s); 9880 else if (ValVT.isVector()) { 9881 Reg = allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI); 9882 if (!Reg) { 9883 // For return values, the vector must be passed fully via registers or 9884 // via the stack. 9885 // FIXME: The proposed vector ABI only mandates v8-v15 for return values, 9886 // but we're using all of them. 9887 if (IsRet) 9888 return true; 9889 // Try using a GPR to pass the address 9890 if ((Reg = State.AllocateReg(ArgGPRs))) { 9891 LocVT = XLenVT; 9892 LocInfo = CCValAssign::Indirect; 9893 } else if (ValVT.isScalableVector()) { 9894 LocVT = XLenVT; 9895 LocInfo = CCValAssign::Indirect; 9896 } else { 9897 // Pass fixed-length vectors on the stack. 9898 LocVT = ValVT; 9899 StoreSizeBytes = ValVT.getStoreSize(); 9900 // Align vectors to their element sizes, being careful for vXi1 9901 // vectors. 9902 StackAlign = MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne(); 9903 } 9904 } 9905 } else { 9906 Reg = State.AllocateReg(ArgGPRs); 9907 } 9908 9909 unsigned StackOffset = 9910 Reg ? 0 : State.AllocateStack(StoreSizeBytes, StackAlign); 9911 9912 // If we reach this point and PendingLocs is non-empty, we must be at the 9913 // end of a split argument that must be passed indirectly. 9914 if (!PendingLocs.empty()) { 9915 assert(ArgFlags.isSplitEnd() && "Expected ArgFlags.isSplitEnd()"); 9916 assert(PendingLocs.size() > 2 && "Unexpected PendingLocs.size()"); 9917 9918 for (auto &It : PendingLocs) { 9919 if (Reg) 9920 It.convertToReg(Reg); 9921 else 9922 It.convertToMem(StackOffset); 9923 State.addLoc(It); 9924 } 9925 PendingLocs.clear(); 9926 PendingArgFlags.clear(); 9927 return false; 9928 } 9929 9930 assert((!UseGPRForF16_F32 || !UseGPRForF64 || LocVT == XLenVT || 9931 (TLI.getSubtarget().hasVInstructions() && ValVT.isVector())) && 9932 "Expected an XLenVT or vector types at this stage"); 9933 9934 if (Reg) { 9935 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 9936 return false; 9937 } 9938 9939 // When a floating-point value is passed on the stack, no bit-conversion is 9940 // needed. 9941 if (ValVT.isFloatingPoint()) { 9942 LocVT = ValVT; 9943 LocInfo = CCValAssign::Full; 9944 } 9945 State.addLoc(CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 9946 return false; 9947 } 9948 9949 template <typename ArgTy> 9950 static Optional<unsigned> preAssignMask(const ArgTy &Args) { 9951 for (const auto &ArgIdx : enumerate(Args)) { 9952 MVT ArgVT = ArgIdx.value().VT; 9953 if (ArgVT.isVector() && ArgVT.getVectorElementType() == MVT::i1) 9954 return ArgIdx.index(); 9955 } 9956 return None; 9957 } 9958 9959 void RISCVTargetLowering::analyzeInputArgs( 9960 MachineFunction &MF, CCState &CCInfo, 9961 const SmallVectorImpl<ISD::InputArg> &Ins, bool IsRet, 9962 RISCVCCAssignFn Fn) const { 9963 unsigned NumArgs = Ins.size(); 9964 FunctionType *FType = MF.getFunction().getFunctionType(); 9965 9966 Optional<unsigned> FirstMaskArgument; 9967 if (Subtarget.hasVInstructions()) 9968 FirstMaskArgument = preAssignMask(Ins); 9969 9970 for (unsigned i = 0; i != NumArgs; ++i) { 9971 MVT ArgVT = Ins[i].VT; 9972 ISD::ArgFlagsTy ArgFlags = Ins[i].Flags; 9973 9974 Type *ArgTy = nullptr; 9975 if (IsRet) 9976 ArgTy = FType->getReturnType(); 9977 else if (Ins[i].isOrigArg()) 9978 ArgTy = FType->getParamType(Ins[i].getOrigArgIndex()); 9979 9980 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 9981 if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full, 9982 ArgFlags, CCInfo, /*IsFixed=*/true, IsRet, ArgTy, *this, 9983 FirstMaskArgument)) { 9984 LLVM_DEBUG(dbgs() << "InputArg #" << i << " has unhandled type " 9985 << EVT(ArgVT).getEVTString() << '\n'); 9986 llvm_unreachable(nullptr); 9987 } 9988 } 9989 } 9990 9991 void RISCVTargetLowering::analyzeOutputArgs( 9992 MachineFunction &MF, CCState &CCInfo, 9993 const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsRet, 9994 CallLoweringInfo *CLI, RISCVCCAssignFn Fn) const { 9995 unsigned NumArgs = Outs.size(); 9996 9997 Optional<unsigned> FirstMaskArgument; 9998 if (Subtarget.hasVInstructions()) 9999 FirstMaskArgument = preAssignMask(Outs); 10000 10001 for (unsigned i = 0; i != NumArgs; i++) { 10002 MVT ArgVT = Outs[i].VT; 10003 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 10004 Type *OrigTy = CLI ? CLI->getArgs()[Outs[i].OrigArgIndex].Ty : nullptr; 10005 10006 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 10007 if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full, 10008 ArgFlags, CCInfo, Outs[i].IsFixed, IsRet, OrigTy, *this, 10009 FirstMaskArgument)) { 10010 LLVM_DEBUG(dbgs() << "OutputArg #" << i << " has unhandled type " 10011 << EVT(ArgVT).getEVTString() << "\n"); 10012 llvm_unreachable(nullptr); 10013 } 10014 } 10015 } 10016 10017 // Convert Val to a ValVT. Should not be called for CCValAssign::Indirect 10018 // values. 10019 static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDValue Val, 10020 const CCValAssign &VA, const SDLoc &DL, 10021 const RISCVSubtarget &Subtarget) { 10022 switch (VA.getLocInfo()) { 10023 default: 10024 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 10025 case CCValAssign::Full: 10026 if (VA.getValVT().isFixedLengthVector() && VA.getLocVT().isScalableVector()) 10027 Val = convertFromScalableVector(VA.getValVT(), Val, DAG, Subtarget); 10028 break; 10029 case CCValAssign::BCvt: 10030 if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16) 10031 Val = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, Val); 10032 else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) 10033 Val = DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, Val); 10034 else 10035 Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val); 10036 break; 10037 } 10038 return Val; 10039 } 10040 10041 // The caller is responsible for loading the full value if the argument is 10042 // passed with CCValAssign::Indirect. 10043 static SDValue unpackFromRegLoc(SelectionDAG &DAG, SDValue Chain, 10044 const CCValAssign &VA, const SDLoc &DL, 10045 const RISCVTargetLowering &TLI) { 10046 MachineFunction &MF = DAG.getMachineFunction(); 10047 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 10048 EVT LocVT = VA.getLocVT(); 10049 SDValue Val; 10050 const TargetRegisterClass *RC = TLI.getRegClassFor(LocVT.getSimpleVT()); 10051 Register VReg = RegInfo.createVirtualRegister(RC); 10052 RegInfo.addLiveIn(VA.getLocReg(), VReg); 10053 Val = DAG.getCopyFromReg(Chain, DL, VReg, LocVT); 10054 10055 if (VA.getLocInfo() == CCValAssign::Indirect) 10056 return Val; 10057 10058 return convertLocVTToValVT(DAG, Val, VA, DL, TLI.getSubtarget()); 10059 } 10060 10061 static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDValue Val, 10062 const CCValAssign &VA, const SDLoc &DL, 10063 const RISCVSubtarget &Subtarget) { 10064 EVT LocVT = VA.getLocVT(); 10065 10066 switch (VA.getLocInfo()) { 10067 default: 10068 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 10069 case CCValAssign::Full: 10070 if (VA.getValVT().isFixedLengthVector() && LocVT.isScalableVector()) 10071 Val = convertToScalableVector(LocVT, Val, DAG, Subtarget); 10072 break; 10073 case CCValAssign::BCvt: 10074 if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16) 10075 Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, VA.getLocVT(), Val); 10076 else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) 10077 Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Val); 10078 else 10079 Val = DAG.getNode(ISD::BITCAST, DL, LocVT, Val); 10080 break; 10081 } 10082 return Val; 10083 } 10084 10085 // The caller is responsible for loading the full value if the argument is 10086 // passed with CCValAssign::Indirect. 10087 static SDValue unpackFromMemLoc(SelectionDAG &DAG, SDValue Chain, 10088 const CCValAssign &VA, const SDLoc &DL) { 10089 MachineFunction &MF = DAG.getMachineFunction(); 10090 MachineFrameInfo &MFI = MF.getFrameInfo(); 10091 EVT LocVT = VA.getLocVT(); 10092 EVT ValVT = VA.getValVT(); 10093 EVT PtrVT = MVT::getIntegerVT(DAG.getDataLayout().getPointerSizeInBits(0)); 10094 if (ValVT.isScalableVector()) { 10095 // When the value is a scalable vector, we save the pointer which points to 10096 // the scalable vector value in the stack. The ValVT will be the pointer 10097 // type, instead of the scalable vector type. 10098 ValVT = LocVT; 10099 } 10100 int FI = MFI.CreateFixedObject(ValVT.getStoreSize(), VA.getLocMemOffset(), 10101 /*IsImmutable=*/true); 10102 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 10103 SDValue Val; 10104 10105 ISD::LoadExtType ExtType; 10106 switch (VA.getLocInfo()) { 10107 default: 10108 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 10109 case CCValAssign::Full: 10110 case CCValAssign::Indirect: 10111 case CCValAssign::BCvt: 10112 ExtType = ISD::NON_EXTLOAD; 10113 break; 10114 } 10115 Val = DAG.getExtLoad( 10116 ExtType, DL, LocVT, Chain, FIN, 10117 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), ValVT); 10118 return Val; 10119 } 10120 10121 static SDValue unpackF64OnRV32DSoftABI(SelectionDAG &DAG, SDValue Chain, 10122 const CCValAssign &VA, const SDLoc &DL) { 10123 assert(VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64 && 10124 "Unexpected VA"); 10125 MachineFunction &MF = DAG.getMachineFunction(); 10126 MachineFrameInfo &MFI = MF.getFrameInfo(); 10127 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 10128 10129 if (VA.isMemLoc()) { 10130 // f64 is passed on the stack. 10131 int FI = 10132 MFI.CreateFixedObject(8, VA.getLocMemOffset(), /*IsImmutable=*/true); 10133 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 10134 return DAG.getLoad(MVT::f64, DL, Chain, FIN, 10135 MachinePointerInfo::getFixedStack(MF, FI)); 10136 } 10137 10138 assert(VA.isRegLoc() && "Expected register VA assignment"); 10139 10140 Register LoVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 10141 RegInfo.addLiveIn(VA.getLocReg(), LoVReg); 10142 SDValue Lo = DAG.getCopyFromReg(Chain, DL, LoVReg, MVT::i32); 10143 SDValue Hi; 10144 if (VA.getLocReg() == RISCV::X17) { 10145 // Second half of f64 is passed on the stack. 10146 int FI = MFI.CreateFixedObject(4, 0, /*IsImmutable=*/true); 10147 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 10148 Hi = DAG.getLoad(MVT::i32, DL, Chain, FIN, 10149 MachinePointerInfo::getFixedStack(MF, FI)); 10150 } else { 10151 // Second half of f64 is passed in another GPR. 10152 Register HiVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 10153 RegInfo.addLiveIn(VA.getLocReg() + 1, HiVReg); 10154 Hi = DAG.getCopyFromReg(Chain, DL, HiVReg, MVT::i32); 10155 } 10156 return DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, Lo, Hi); 10157 } 10158 10159 // FastCC has less than 1% performance improvement for some particular 10160 // benchmark. But theoretically, it may has benenfit for some cases. 10161 static bool CC_RISCV_FastCC(const DataLayout &DL, RISCVABI::ABI ABI, 10162 unsigned ValNo, MVT ValVT, MVT LocVT, 10163 CCValAssign::LocInfo LocInfo, 10164 ISD::ArgFlagsTy ArgFlags, CCState &State, 10165 bool IsFixed, bool IsRet, Type *OrigTy, 10166 const RISCVTargetLowering &TLI, 10167 Optional<unsigned> FirstMaskArgument) { 10168 10169 // X5 and X6 might be used for save-restore libcall. 10170 static const MCPhysReg GPRList[] = { 10171 RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, RISCV::X14, 10172 RISCV::X15, RISCV::X16, RISCV::X17, RISCV::X7, RISCV::X28, 10173 RISCV::X29, RISCV::X30, RISCV::X31}; 10174 10175 if (LocVT == MVT::i32 || LocVT == MVT::i64) { 10176 if (unsigned Reg = State.AllocateReg(GPRList)) { 10177 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 10178 return false; 10179 } 10180 } 10181 10182 if (LocVT == MVT::f16) { 10183 static const MCPhysReg FPR16List[] = { 10184 RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, RISCV::F14_H, 10185 RISCV::F15_H, RISCV::F16_H, RISCV::F17_H, RISCV::F0_H, RISCV::F1_H, 10186 RISCV::F2_H, RISCV::F3_H, RISCV::F4_H, RISCV::F5_H, RISCV::F6_H, 10187 RISCV::F7_H, RISCV::F28_H, RISCV::F29_H, RISCV::F30_H, RISCV::F31_H}; 10188 if (unsigned Reg = State.AllocateReg(FPR16List)) { 10189 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 10190 return false; 10191 } 10192 } 10193 10194 if (LocVT == MVT::f32) { 10195 static const MCPhysReg FPR32List[] = { 10196 RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, RISCV::F14_F, 10197 RISCV::F15_F, RISCV::F16_F, RISCV::F17_F, RISCV::F0_F, RISCV::F1_F, 10198 RISCV::F2_F, RISCV::F3_F, RISCV::F4_F, RISCV::F5_F, RISCV::F6_F, 10199 RISCV::F7_F, RISCV::F28_F, RISCV::F29_F, RISCV::F30_F, RISCV::F31_F}; 10200 if (unsigned Reg = State.AllocateReg(FPR32List)) { 10201 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 10202 return false; 10203 } 10204 } 10205 10206 if (LocVT == MVT::f64) { 10207 static const MCPhysReg FPR64List[] = { 10208 RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, RISCV::F14_D, 10209 RISCV::F15_D, RISCV::F16_D, RISCV::F17_D, RISCV::F0_D, RISCV::F1_D, 10210 RISCV::F2_D, RISCV::F3_D, RISCV::F4_D, RISCV::F5_D, RISCV::F6_D, 10211 RISCV::F7_D, RISCV::F28_D, RISCV::F29_D, RISCV::F30_D, RISCV::F31_D}; 10212 if (unsigned Reg = State.AllocateReg(FPR64List)) { 10213 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 10214 return false; 10215 } 10216 } 10217 10218 if (LocVT == MVT::i32 || LocVT == MVT::f32) { 10219 unsigned Offset4 = State.AllocateStack(4, Align(4)); 10220 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset4, LocVT, LocInfo)); 10221 return false; 10222 } 10223 10224 if (LocVT == MVT::i64 || LocVT == MVT::f64) { 10225 unsigned Offset5 = State.AllocateStack(8, Align(8)); 10226 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset5, LocVT, LocInfo)); 10227 return false; 10228 } 10229 10230 if (LocVT.isVector()) { 10231 if (unsigned Reg = 10232 allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI)) { 10233 // Fixed-length vectors are located in the corresponding scalable-vector 10234 // container types. 10235 if (ValVT.isFixedLengthVector()) 10236 LocVT = TLI.getContainerForFixedLengthVector(LocVT); 10237 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 10238 } else { 10239 // Try and pass the address via a "fast" GPR. 10240 if (unsigned GPRReg = State.AllocateReg(GPRList)) { 10241 LocInfo = CCValAssign::Indirect; 10242 LocVT = TLI.getSubtarget().getXLenVT(); 10243 State.addLoc(CCValAssign::getReg(ValNo, ValVT, GPRReg, LocVT, LocInfo)); 10244 } else if (ValVT.isFixedLengthVector()) { 10245 auto StackAlign = 10246 MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne(); 10247 unsigned StackOffset = 10248 State.AllocateStack(ValVT.getStoreSize(), StackAlign); 10249 State.addLoc( 10250 CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 10251 } else { 10252 // Can't pass scalable vectors on the stack. 10253 return true; 10254 } 10255 } 10256 10257 return false; 10258 } 10259 10260 return true; // CC didn't match. 10261 } 10262 10263 static bool CC_RISCV_GHC(unsigned ValNo, MVT ValVT, MVT LocVT, 10264 CCValAssign::LocInfo LocInfo, 10265 ISD::ArgFlagsTy ArgFlags, CCState &State) { 10266 10267 if (LocVT == MVT::i32 || LocVT == MVT::i64) { 10268 // Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, R6, R7, SpLim 10269 // s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 10270 static const MCPhysReg GPRList[] = { 10271 RISCV::X9, RISCV::X18, RISCV::X19, RISCV::X20, RISCV::X21, RISCV::X22, 10272 RISCV::X23, RISCV::X24, RISCV::X25, RISCV::X26, RISCV::X27}; 10273 if (unsigned Reg = State.AllocateReg(GPRList)) { 10274 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 10275 return false; 10276 } 10277 } 10278 10279 if (LocVT == MVT::f32) { 10280 // Pass in STG registers: F1, ..., F6 10281 // fs0 ... fs5 10282 static const MCPhysReg FPR32List[] = {RISCV::F8_F, RISCV::F9_F, 10283 RISCV::F18_F, RISCV::F19_F, 10284 RISCV::F20_F, RISCV::F21_F}; 10285 if (unsigned Reg = State.AllocateReg(FPR32List)) { 10286 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 10287 return false; 10288 } 10289 } 10290 10291 if (LocVT == MVT::f64) { 10292 // Pass in STG registers: D1, ..., D6 10293 // fs6 ... fs11 10294 static const MCPhysReg FPR64List[] = {RISCV::F22_D, RISCV::F23_D, 10295 RISCV::F24_D, RISCV::F25_D, 10296 RISCV::F26_D, RISCV::F27_D}; 10297 if (unsigned Reg = State.AllocateReg(FPR64List)) { 10298 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 10299 return false; 10300 } 10301 } 10302 10303 report_fatal_error("No registers left in GHC calling convention"); 10304 return true; 10305 } 10306 10307 // Transform physical registers into virtual registers. 10308 SDValue RISCVTargetLowering::LowerFormalArguments( 10309 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 10310 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 10311 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 10312 10313 MachineFunction &MF = DAG.getMachineFunction(); 10314 10315 switch (CallConv) { 10316 default: 10317 report_fatal_error("Unsupported calling convention"); 10318 case CallingConv::C: 10319 case CallingConv::Fast: 10320 break; 10321 case CallingConv::GHC: 10322 if (!MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtF] || 10323 !MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtD]) 10324 report_fatal_error( 10325 "GHC calling convention requires the F and D instruction set extensions"); 10326 } 10327 10328 const Function &Func = MF.getFunction(); 10329 if (Func.hasFnAttribute("interrupt")) { 10330 if (!Func.arg_empty()) 10331 report_fatal_error( 10332 "Functions with the interrupt attribute cannot have arguments!"); 10333 10334 StringRef Kind = 10335 MF.getFunction().getFnAttribute("interrupt").getValueAsString(); 10336 10337 if (!(Kind == "user" || Kind == "supervisor" || Kind == "machine")) 10338 report_fatal_error( 10339 "Function interrupt attribute argument not supported!"); 10340 } 10341 10342 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 10343 MVT XLenVT = Subtarget.getXLenVT(); 10344 unsigned XLenInBytes = Subtarget.getXLen() / 8; 10345 // Used with vargs to acumulate store chains. 10346 std::vector<SDValue> OutChains; 10347 10348 // Assign locations to all of the incoming arguments. 10349 SmallVector<CCValAssign, 16> ArgLocs; 10350 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 10351 10352 if (CallConv == CallingConv::GHC) 10353 CCInfo.AnalyzeFormalArguments(Ins, CC_RISCV_GHC); 10354 else 10355 analyzeInputArgs(MF, CCInfo, Ins, /*IsRet=*/false, 10356 CallConv == CallingConv::Fast ? CC_RISCV_FastCC 10357 : CC_RISCV); 10358 10359 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 10360 CCValAssign &VA = ArgLocs[i]; 10361 SDValue ArgValue; 10362 // Passing f64 on RV32D with a soft float ABI must be handled as a special 10363 // case. 10364 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) 10365 ArgValue = unpackF64OnRV32DSoftABI(DAG, Chain, VA, DL); 10366 else if (VA.isRegLoc()) 10367 ArgValue = unpackFromRegLoc(DAG, Chain, VA, DL, *this); 10368 else 10369 ArgValue = unpackFromMemLoc(DAG, Chain, VA, DL); 10370 10371 if (VA.getLocInfo() == CCValAssign::Indirect) { 10372 // If the original argument was split and passed by reference (e.g. i128 10373 // on RV32), we need to load all parts of it here (using the same 10374 // address). Vectors may be partly split to registers and partly to the 10375 // stack, in which case the base address is partly offset and subsequent 10376 // stores are relative to that. 10377 InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue, 10378 MachinePointerInfo())); 10379 unsigned ArgIndex = Ins[i].OrigArgIndex; 10380 unsigned ArgPartOffset = Ins[i].PartOffset; 10381 assert(VA.getValVT().isVector() || ArgPartOffset == 0); 10382 while (i + 1 != e && Ins[i + 1].OrigArgIndex == ArgIndex) { 10383 CCValAssign &PartVA = ArgLocs[i + 1]; 10384 unsigned PartOffset = Ins[i + 1].PartOffset - ArgPartOffset; 10385 SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL); 10386 if (PartVA.getValVT().isScalableVector()) 10387 Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset); 10388 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, Offset); 10389 InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address, 10390 MachinePointerInfo())); 10391 ++i; 10392 } 10393 continue; 10394 } 10395 InVals.push_back(ArgValue); 10396 } 10397 10398 if (IsVarArg) { 10399 ArrayRef<MCPhysReg> ArgRegs = makeArrayRef(ArgGPRs); 10400 unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs); 10401 const TargetRegisterClass *RC = &RISCV::GPRRegClass; 10402 MachineFrameInfo &MFI = MF.getFrameInfo(); 10403 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 10404 RISCVMachineFunctionInfo *RVFI = MF.getInfo<RISCVMachineFunctionInfo>(); 10405 10406 // Offset of the first variable argument from stack pointer, and size of 10407 // the vararg save area. For now, the varargs save area is either zero or 10408 // large enough to hold a0-a7. 10409 int VaArgOffset, VarArgsSaveSize; 10410 10411 // If all registers are allocated, then all varargs must be passed on the 10412 // stack and we don't need to save any argregs. 10413 if (ArgRegs.size() == Idx) { 10414 VaArgOffset = CCInfo.getNextStackOffset(); 10415 VarArgsSaveSize = 0; 10416 } else { 10417 VarArgsSaveSize = XLenInBytes * (ArgRegs.size() - Idx); 10418 VaArgOffset = -VarArgsSaveSize; 10419 } 10420 10421 // Record the frame index of the first variable argument 10422 // which is a value necessary to VASTART. 10423 int FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true); 10424 RVFI->setVarArgsFrameIndex(FI); 10425 10426 // If saving an odd number of registers then create an extra stack slot to 10427 // ensure that the frame pointer is 2*XLEN-aligned, which in turn ensures 10428 // offsets to even-numbered registered remain 2*XLEN-aligned. 10429 if (Idx % 2) { 10430 MFI.CreateFixedObject(XLenInBytes, VaArgOffset - (int)XLenInBytes, true); 10431 VarArgsSaveSize += XLenInBytes; 10432 } 10433 10434 // Copy the integer registers that may have been used for passing varargs 10435 // to the vararg save area. 10436 for (unsigned I = Idx; I < ArgRegs.size(); 10437 ++I, VaArgOffset += XLenInBytes) { 10438 const Register Reg = RegInfo.createVirtualRegister(RC); 10439 RegInfo.addLiveIn(ArgRegs[I], Reg); 10440 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, XLenVT); 10441 FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true); 10442 SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 10443 SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff, 10444 MachinePointerInfo::getFixedStack(MF, FI)); 10445 cast<StoreSDNode>(Store.getNode()) 10446 ->getMemOperand() 10447 ->setValue((Value *)nullptr); 10448 OutChains.push_back(Store); 10449 } 10450 RVFI->setVarArgsSaveSize(VarArgsSaveSize); 10451 } 10452 10453 // All stores are grouped in one node to allow the matching between 10454 // the size of Ins and InVals. This only happens for vararg functions. 10455 if (!OutChains.empty()) { 10456 OutChains.push_back(Chain); 10457 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains); 10458 } 10459 10460 return Chain; 10461 } 10462 10463 /// isEligibleForTailCallOptimization - Check whether the call is eligible 10464 /// for tail call optimization. 10465 /// Note: This is modelled after ARM's IsEligibleForTailCallOptimization. 10466 bool RISCVTargetLowering::isEligibleForTailCallOptimization( 10467 CCState &CCInfo, CallLoweringInfo &CLI, MachineFunction &MF, 10468 const SmallVector<CCValAssign, 16> &ArgLocs) const { 10469 10470 auto &Callee = CLI.Callee; 10471 auto CalleeCC = CLI.CallConv; 10472 auto &Outs = CLI.Outs; 10473 auto &Caller = MF.getFunction(); 10474 auto CallerCC = Caller.getCallingConv(); 10475 10476 // Exception-handling functions need a special set of instructions to 10477 // indicate a return to the hardware. Tail-calling another function would 10478 // probably break this. 10479 // TODO: The "interrupt" attribute isn't currently defined by RISC-V. This 10480 // should be expanded as new function attributes are introduced. 10481 if (Caller.hasFnAttribute("interrupt")) 10482 return false; 10483 10484 // Do not tail call opt if the stack is used to pass parameters. 10485 if (CCInfo.getNextStackOffset() != 0) 10486 return false; 10487 10488 // Do not tail call opt if any parameters need to be passed indirectly. 10489 // Since long doubles (fp128) and i128 are larger than 2*XLEN, they are 10490 // passed indirectly. So the address of the value will be passed in a 10491 // register, or if not available, then the address is put on the stack. In 10492 // order to pass indirectly, space on the stack often needs to be allocated 10493 // in order to store the value. In this case the CCInfo.getNextStackOffset() 10494 // != 0 check is not enough and we need to check if any CCValAssign ArgsLocs 10495 // are passed CCValAssign::Indirect. 10496 for (auto &VA : ArgLocs) 10497 if (VA.getLocInfo() == CCValAssign::Indirect) 10498 return false; 10499 10500 // Do not tail call opt if either caller or callee uses struct return 10501 // semantics. 10502 auto IsCallerStructRet = Caller.hasStructRetAttr(); 10503 auto IsCalleeStructRet = Outs.empty() ? false : Outs[0].Flags.isSRet(); 10504 if (IsCallerStructRet || IsCalleeStructRet) 10505 return false; 10506 10507 // Externally-defined functions with weak linkage should not be 10508 // tail-called. The behaviour of branch instructions in this situation (as 10509 // used for tail calls) is implementation-defined, so we cannot rely on the 10510 // linker replacing the tail call with a return. 10511 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 10512 const GlobalValue *GV = G->getGlobal(); 10513 if (GV->hasExternalWeakLinkage()) 10514 return false; 10515 } 10516 10517 // The callee has to preserve all registers the caller needs to preserve. 10518 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 10519 const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC); 10520 if (CalleeCC != CallerCC) { 10521 const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC); 10522 if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved)) 10523 return false; 10524 } 10525 10526 // Byval parameters hand the function a pointer directly into the stack area 10527 // we want to reuse during a tail call. Working around this *is* possible 10528 // but less efficient and uglier in LowerCall. 10529 for (auto &Arg : Outs) 10530 if (Arg.Flags.isByVal()) 10531 return false; 10532 10533 return true; 10534 } 10535 10536 static Align getPrefTypeAlign(EVT VT, SelectionDAG &DAG) { 10537 return DAG.getDataLayout().getPrefTypeAlign( 10538 VT.getTypeForEVT(*DAG.getContext())); 10539 } 10540 10541 // Lower a call to a callseq_start + CALL + callseq_end chain, and add input 10542 // and output parameter nodes. 10543 SDValue RISCVTargetLowering::LowerCall(CallLoweringInfo &CLI, 10544 SmallVectorImpl<SDValue> &InVals) const { 10545 SelectionDAG &DAG = CLI.DAG; 10546 SDLoc &DL = CLI.DL; 10547 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 10548 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 10549 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 10550 SDValue Chain = CLI.Chain; 10551 SDValue Callee = CLI.Callee; 10552 bool &IsTailCall = CLI.IsTailCall; 10553 CallingConv::ID CallConv = CLI.CallConv; 10554 bool IsVarArg = CLI.IsVarArg; 10555 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 10556 MVT XLenVT = Subtarget.getXLenVT(); 10557 10558 MachineFunction &MF = DAG.getMachineFunction(); 10559 10560 // Analyze the operands of the call, assigning locations to each operand. 10561 SmallVector<CCValAssign, 16> ArgLocs; 10562 CCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 10563 10564 if (CallConv == CallingConv::GHC) 10565 ArgCCInfo.AnalyzeCallOperands(Outs, CC_RISCV_GHC); 10566 else 10567 analyzeOutputArgs(MF, ArgCCInfo, Outs, /*IsRet=*/false, &CLI, 10568 CallConv == CallingConv::Fast ? CC_RISCV_FastCC 10569 : CC_RISCV); 10570 10571 // Check if it's really possible to do a tail call. 10572 if (IsTailCall) 10573 IsTailCall = isEligibleForTailCallOptimization(ArgCCInfo, CLI, MF, ArgLocs); 10574 10575 if (IsTailCall) 10576 ++NumTailCalls; 10577 else if (CLI.CB && CLI.CB->isMustTailCall()) 10578 report_fatal_error("failed to perform tail call elimination on a call " 10579 "site marked musttail"); 10580 10581 // Get a count of how many bytes are to be pushed on the stack. 10582 unsigned NumBytes = ArgCCInfo.getNextStackOffset(); 10583 10584 // Create local copies for byval args 10585 SmallVector<SDValue, 8> ByValArgs; 10586 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 10587 ISD::ArgFlagsTy Flags = Outs[i].Flags; 10588 if (!Flags.isByVal()) 10589 continue; 10590 10591 SDValue Arg = OutVals[i]; 10592 unsigned Size = Flags.getByValSize(); 10593 Align Alignment = Flags.getNonZeroByValAlign(); 10594 10595 int FI = 10596 MF.getFrameInfo().CreateStackObject(Size, Alignment, /*isSS=*/false); 10597 SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 10598 SDValue SizeNode = DAG.getConstant(Size, DL, XLenVT); 10599 10600 Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Alignment, 10601 /*IsVolatile=*/false, 10602 /*AlwaysInline=*/false, IsTailCall, 10603 MachinePointerInfo(), MachinePointerInfo()); 10604 ByValArgs.push_back(FIPtr); 10605 } 10606 10607 if (!IsTailCall) 10608 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, CLI.DL); 10609 10610 // Copy argument values to their designated locations. 10611 SmallVector<std::pair<Register, SDValue>, 8> RegsToPass; 10612 SmallVector<SDValue, 8> MemOpChains; 10613 SDValue StackPtr; 10614 for (unsigned i = 0, j = 0, e = ArgLocs.size(); i != e; ++i) { 10615 CCValAssign &VA = ArgLocs[i]; 10616 SDValue ArgValue = OutVals[i]; 10617 ISD::ArgFlagsTy Flags = Outs[i].Flags; 10618 10619 // Handle passing f64 on RV32D with a soft float ABI as a special case. 10620 bool IsF64OnRV32DSoftABI = 10621 VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64; 10622 if (IsF64OnRV32DSoftABI && VA.isRegLoc()) { 10623 SDValue SplitF64 = DAG.getNode( 10624 RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), ArgValue); 10625 SDValue Lo = SplitF64.getValue(0); 10626 SDValue Hi = SplitF64.getValue(1); 10627 10628 Register RegLo = VA.getLocReg(); 10629 RegsToPass.push_back(std::make_pair(RegLo, Lo)); 10630 10631 if (RegLo == RISCV::X17) { 10632 // Second half of f64 is passed on the stack. 10633 // Work out the address of the stack slot. 10634 if (!StackPtr.getNode()) 10635 StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT); 10636 // Emit the store. 10637 MemOpChains.push_back( 10638 DAG.getStore(Chain, DL, Hi, StackPtr, MachinePointerInfo())); 10639 } else { 10640 // Second half of f64 is passed in another GPR. 10641 assert(RegLo < RISCV::X31 && "Invalid register pair"); 10642 Register RegHigh = RegLo + 1; 10643 RegsToPass.push_back(std::make_pair(RegHigh, Hi)); 10644 } 10645 continue; 10646 } 10647 10648 // IsF64OnRV32DSoftABI && VA.isMemLoc() is handled below in the same way 10649 // as any other MemLoc. 10650 10651 // Promote the value if needed. 10652 // For now, only handle fully promoted and indirect arguments. 10653 if (VA.getLocInfo() == CCValAssign::Indirect) { 10654 // Store the argument in a stack slot and pass its address. 10655 Align StackAlign = 10656 std::max(getPrefTypeAlign(Outs[i].ArgVT, DAG), 10657 getPrefTypeAlign(ArgValue.getValueType(), DAG)); 10658 TypeSize StoredSize = ArgValue.getValueType().getStoreSize(); 10659 // If the original argument was split (e.g. i128), we need 10660 // to store the required parts of it here (and pass just one address). 10661 // Vectors may be partly split to registers and partly to the stack, in 10662 // which case the base address is partly offset and subsequent stores are 10663 // relative to that. 10664 unsigned ArgIndex = Outs[i].OrigArgIndex; 10665 unsigned ArgPartOffset = Outs[i].PartOffset; 10666 assert(VA.getValVT().isVector() || ArgPartOffset == 0); 10667 // Calculate the total size to store. We don't have access to what we're 10668 // actually storing other than performing the loop and collecting the 10669 // info. 10670 SmallVector<std::pair<SDValue, SDValue>> Parts; 10671 while (i + 1 != e && Outs[i + 1].OrigArgIndex == ArgIndex) { 10672 SDValue PartValue = OutVals[i + 1]; 10673 unsigned PartOffset = Outs[i + 1].PartOffset - ArgPartOffset; 10674 SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL); 10675 EVT PartVT = PartValue.getValueType(); 10676 if (PartVT.isScalableVector()) 10677 Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset); 10678 StoredSize += PartVT.getStoreSize(); 10679 StackAlign = std::max(StackAlign, getPrefTypeAlign(PartVT, DAG)); 10680 Parts.push_back(std::make_pair(PartValue, Offset)); 10681 ++i; 10682 } 10683 SDValue SpillSlot = DAG.CreateStackTemporary(StoredSize, StackAlign); 10684 int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); 10685 MemOpChains.push_back( 10686 DAG.getStore(Chain, DL, ArgValue, SpillSlot, 10687 MachinePointerInfo::getFixedStack(MF, FI))); 10688 for (const auto &Part : Parts) { 10689 SDValue PartValue = Part.first; 10690 SDValue PartOffset = Part.second; 10691 SDValue Address = 10692 DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, PartOffset); 10693 MemOpChains.push_back( 10694 DAG.getStore(Chain, DL, PartValue, Address, 10695 MachinePointerInfo::getFixedStack(MF, FI))); 10696 } 10697 ArgValue = SpillSlot; 10698 } else { 10699 ArgValue = convertValVTToLocVT(DAG, ArgValue, VA, DL, Subtarget); 10700 } 10701 10702 // Use local copy if it is a byval arg. 10703 if (Flags.isByVal()) 10704 ArgValue = ByValArgs[j++]; 10705 10706 if (VA.isRegLoc()) { 10707 // Queue up the argument copies and emit them at the end. 10708 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue)); 10709 } else { 10710 assert(VA.isMemLoc() && "Argument not register or memory"); 10711 assert(!IsTailCall && "Tail call not allowed if stack is used " 10712 "for passing parameters"); 10713 10714 // Work out the address of the stack slot. 10715 if (!StackPtr.getNode()) 10716 StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT); 10717 SDValue Address = 10718 DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, 10719 DAG.getIntPtrConstant(VA.getLocMemOffset(), DL)); 10720 10721 // Emit the store. 10722 MemOpChains.push_back( 10723 DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo())); 10724 } 10725 } 10726 10727 // Join the stores, which are independent of one another. 10728 if (!MemOpChains.empty()) 10729 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); 10730 10731 SDValue Glue; 10732 10733 // Build a sequence of copy-to-reg nodes, chained and glued together. 10734 for (auto &Reg : RegsToPass) { 10735 Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, Glue); 10736 Glue = Chain.getValue(1); 10737 } 10738 10739 // Validate that none of the argument registers have been marked as 10740 // reserved, if so report an error. Do the same for the return address if this 10741 // is not a tailcall. 10742 validateCCReservedRegs(RegsToPass, MF); 10743 if (!IsTailCall && 10744 MF.getSubtarget<RISCVSubtarget>().isRegisterReservedByUser(RISCV::X1)) 10745 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 10746 MF.getFunction(), 10747 "Return address register required, but has been reserved."}); 10748 10749 // If the callee is a GlobalAddress/ExternalSymbol node, turn it into a 10750 // TargetGlobalAddress/TargetExternalSymbol node so that legalize won't 10751 // split it and then direct call can be matched by PseudoCALL. 10752 if (GlobalAddressSDNode *S = dyn_cast<GlobalAddressSDNode>(Callee)) { 10753 const GlobalValue *GV = S->getGlobal(); 10754 10755 unsigned OpFlags = RISCVII::MO_CALL; 10756 if (!getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV)) 10757 OpFlags = RISCVII::MO_PLT; 10758 10759 Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags); 10760 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { 10761 unsigned OpFlags = RISCVII::MO_CALL; 10762 10763 if (!getTargetMachine().shouldAssumeDSOLocal(*MF.getFunction().getParent(), 10764 nullptr)) 10765 OpFlags = RISCVII::MO_PLT; 10766 10767 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, OpFlags); 10768 } 10769 10770 // The first call operand is the chain and the second is the target address. 10771 SmallVector<SDValue, 8> Ops; 10772 Ops.push_back(Chain); 10773 Ops.push_back(Callee); 10774 10775 // Add argument registers to the end of the list so that they are 10776 // known live into the call. 10777 for (auto &Reg : RegsToPass) 10778 Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType())); 10779 10780 if (!IsTailCall) { 10781 // Add a register mask operand representing the call-preserved registers. 10782 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 10783 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv); 10784 assert(Mask && "Missing call preserved mask for calling convention"); 10785 Ops.push_back(DAG.getRegisterMask(Mask)); 10786 } 10787 10788 // Glue the call to the argument copies, if any. 10789 if (Glue.getNode()) 10790 Ops.push_back(Glue); 10791 10792 // Emit the call. 10793 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 10794 10795 if (IsTailCall) { 10796 MF.getFrameInfo().setHasTailCall(); 10797 return DAG.getNode(RISCVISD::TAIL, DL, NodeTys, Ops); 10798 } 10799 10800 Chain = DAG.getNode(RISCVISD::CALL, DL, NodeTys, Ops); 10801 DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge); 10802 Glue = Chain.getValue(1); 10803 10804 // Mark the end of the call, which is glued to the call itself. 10805 Chain = DAG.getCALLSEQ_END(Chain, 10806 DAG.getConstant(NumBytes, DL, PtrVT, true), 10807 DAG.getConstant(0, DL, PtrVT, true), 10808 Glue, DL); 10809 Glue = Chain.getValue(1); 10810 10811 // Assign locations to each value returned by this call. 10812 SmallVector<CCValAssign, 16> RVLocs; 10813 CCState RetCCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext()); 10814 analyzeInputArgs(MF, RetCCInfo, Ins, /*IsRet=*/true, CC_RISCV); 10815 10816 // Copy all of the result registers out of their specified physreg. 10817 for (auto &VA : RVLocs) { 10818 // Copy the value out 10819 SDValue RetValue = 10820 DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), Glue); 10821 // Glue the RetValue to the end of the call sequence 10822 Chain = RetValue.getValue(1); 10823 Glue = RetValue.getValue(2); 10824 10825 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { 10826 assert(VA.getLocReg() == ArgGPRs[0] && "Unexpected reg assignment"); 10827 SDValue RetValue2 = 10828 DAG.getCopyFromReg(Chain, DL, ArgGPRs[1], MVT::i32, Glue); 10829 Chain = RetValue2.getValue(1); 10830 Glue = RetValue2.getValue(2); 10831 RetValue = DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, RetValue, 10832 RetValue2); 10833 } 10834 10835 RetValue = convertLocVTToValVT(DAG, RetValue, VA, DL, Subtarget); 10836 10837 InVals.push_back(RetValue); 10838 } 10839 10840 return Chain; 10841 } 10842 10843 bool RISCVTargetLowering::CanLowerReturn( 10844 CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg, 10845 const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const { 10846 SmallVector<CCValAssign, 16> RVLocs; 10847 CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context); 10848 10849 Optional<unsigned> FirstMaskArgument; 10850 if (Subtarget.hasVInstructions()) 10851 FirstMaskArgument = preAssignMask(Outs); 10852 10853 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 10854 MVT VT = Outs[i].VT; 10855 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 10856 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 10857 if (CC_RISCV(MF.getDataLayout(), ABI, i, VT, VT, CCValAssign::Full, 10858 ArgFlags, CCInfo, /*IsFixed=*/true, /*IsRet=*/true, nullptr, 10859 *this, FirstMaskArgument)) 10860 return false; 10861 } 10862 return true; 10863 } 10864 10865 SDValue 10866 RISCVTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 10867 bool IsVarArg, 10868 const SmallVectorImpl<ISD::OutputArg> &Outs, 10869 const SmallVectorImpl<SDValue> &OutVals, 10870 const SDLoc &DL, SelectionDAG &DAG) const { 10871 const MachineFunction &MF = DAG.getMachineFunction(); 10872 const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>(); 10873 10874 // Stores the assignment of the return value to a location. 10875 SmallVector<CCValAssign, 16> RVLocs; 10876 10877 // Info about the registers and stack slot. 10878 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, 10879 *DAG.getContext()); 10880 10881 analyzeOutputArgs(DAG.getMachineFunction(), CCInfo, Outs, /*IsRet=*/true, 10882 nullptr, CC_RISCV); 10883 10884 if (CallConv == CallingConv::GHC && !RVLocs.empty()) 10885 report_fatal_error("GHC functions return void only"); 10886 10887 SDValue Glue; 10888 SmallVector<SDValue, 4> RetOps(1, Chain); 10889 10890 // Copy the result values into the output registers. 10891 for (unsigned i = 0, e = RVLocs.size(); i < e; ++i) { 10892 SDValue Val = OutVals[i]; 10893 CCValAssign &VA = RVLocs[i]; 10894 assert(VA.isRegLoc() && "Can only return in registers!"); 10895 10896 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { 10897 // Handle returning f64 on RV32D with a soft float ABI. 10898 assert(VA.isRegLoc() && "Expected return via registers"); 10899 SDValue SplitF64 = DAG.getNode(RISCVISD::SplitF64, DL, 10900 DAG.getVTList(MVT::i32, MVT::i32), Val); 10901 SDValue Lo = SplitF64.getValue(0); 10902 SDValue Hi = SplitF64.getValue(1); 10903 Register RegLo = VA.getLocReg(); 10904 assert(RegLo < RISCV::X31 && "Invalid register pair"); 10905 Register RegHi = RegLo + 1; 10906 10907 if (STI.isRegisterReservedByUser(RegLo) || 10908 STI.isRegisterReservedByUser(RegHi)) 10909 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 10910 MF.getFunction(), 10911 "Return value register required, but has been reserved."}); 10912 10913 Chain = DAG.getCopyToReg(Chain, DL, RegLo, Lo, Glue); 10914 Glue = Chain.getValue(1); 10915 RetOps.push_back(DAG.getRegister(RegLo, MVT::i32)); 10916 Chain = DAG.getCopyToReg(Chain, DL, RegHi, Hi, Glue); 10917 Glue = Chain.getValue(1); 10918 RetOps.push_back(DAG.getRegister(RegHi, MVT::i32)); 10919 } else { 10920 // Handle a 'normal' return. 10921 Val = convertValVTToLocVT(DAG, Val, VA, DL, Subtarget); 10922 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Glue); 10923 10924 if (STI.isRegisterReservedByUser(VA.getLocReg())) 10925 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 10926 MF.getFunction(), 10927 "Return value register required, but has been reserved."}); 10928 10929 // Guarantee that all emitted copies are stuck together. 10930 Glue = Chain.getValue(1); 10931 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 10932 } 10933 } 10934 10935 RetOps[0] = Chain; // Update chain. 10936 10937 // Add the glue node if we have it. 10938 if (Glue.getNode()) { 10939 RetOps.push_back(Glue); 10940 } 10941 10942 unsigned RetOpc = RISCVISD::RET_FLAG; 10943 // Interrupt service routines use different return instructions. 10944 const Function &Func = DAG.getMachineFunction().getFunction(); 10945 if (Func.hasFnAttribute("interrupt")) { 10946 if (!Func.getReturnType()->isVoidTy()) 10947 report_fatal_error( 10948 "Functions with the interrupt attribute must have void return type!"); 10949 10950 MachineFunction &MF = DAG.getMachineFunction(); 10951 StringRef Kind = 10952 MF.getFunction().getFnAttribute("interrupt").getValueAsString(); 10953 10954 if (Kind == "user") 10955 RetOpc = RISCVISD::URET_FLAG; 10956 else if (Kind == "supervisor") 10957 RetOpc = RISCVISD::SRET_FLAG; 10958 else 10959 RetOpc = RISCVISD::MRET_FLAG; 10960 } 10961 10962 return DAG.getNode(RetOpc, DL, MVT::Other, RetOps); 10963 } 10964 10965 void RISCVTargetLowering::validateCCReservedRegs( 10966 const SmallVectorImpl<std::pair<llvm::Register, llvm::SDValue>> &Regs, 10967 MachineFunction &MF) const { 10968 const Function &F = MF.getFunction(); 10969 const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>(); 10970 10971 if (llvm::any_of(Regs, [&STI](auto Reg) { 10972 return STI.isRegisterReservedByUser(Reg.first); 10973 })) 10974 F.getContext().diagnose(DiagnosticInfoUnsupported{ 10975 F, "Argument register required, but has been reserved."}); 10976 } 10977 10978 bool RISCVTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { 10979 return CI->isTailCall(); 10980 } 10981 10982 const char *RISCVTargetLowering::getTargetNodeName(unsigned Opcode) const { 10983 #define NODE_NAME_CASE(NODE) \ 10984 case RISCVISD::NODE: \ 10985 return "RISCVISD::" #NODE; 10986 // clang-format off 10987 switch ((RISCVISD::NodeType)Opcode) { 10988 case RISCVISD::FIRST_NUMBER: 10989 break; 10990 NODE_NAME_CASE(RET_FLAG) 10991 NODE_NAME_CASE(URET_FLAG) 10992 NODE_NAME_CASE(SRET_FLAG) 10993 NODE_NAME_CASE(MRET_FLAG) 10994 NODE_NAME_CASE(CALL) 10995 NODE_NAME_CASE(SELECT_CC) 10996 NODE_NAME_CASE(BR_CC) 10997 NODE_NAME_CASE(BuildPairF64) 10998 NODE_NAME_CASE(SplitF64) 10999 NODE_NAME_CASE(TAIL) 11000 NODE_NAME_CASE(MULHSU) 11001 NODE_NAME_CASE(SLLW) 11002 NODE_NAME_CASE(SRAW) 11003 NODE_NAME_CASE(SRLW) 11004 NODE_NAME_CASE(DIVW) 11005 NODE_NAME_CASE(DIVUW) 11006 NODE_NAME_CASE(REMUW) 11007 NODE_NAME_CASE(ROLW) 11008 NODE_NAME_CASE(RORW) 11009 NODE_NAME_CASE(CLZW) 11010 NODE_NAME_CASE(CTZW) 11011 NODE_NAME_CASE(FSLW) 11012 NODE_NAME_CASE(FSRW) 11013 NODE_NAME_CASE(FSL) 11014 NODE_NAME_CASE(FSR) 11015 NODE_NAME_CASE(FMV_H_X) 11016 NODE_NAME_CASE(FMV_X_ANYEXTH) 11017 NODE_NAME_CASE(FMV_X_SIGNEXTH) 11018 NODE_NAME_CASE(FMV_W_X_RV64) 11019 NODE_NAME_CASE(FMV_X_ANYEXTW_RV64) 11020 NODE_NAME_CASE(FCVT_X) 11021 NODE_NAME_CASE(FCVT_XU) 11022 NODE_NAME_CASE(FCVT_W_RV64) 11023 NODE_NAME_CASE(FCVT_WU_RV64) 11024 NODE_NAME_CASE(STRICT_FCVT_W_RV64) 11025 NODE_NAME_CASE(STRICT_FCVT_WU_RV64) 11026 NODE_NAME_CASE(READ_CYCLE_WIDE) 11027 NODE_NAME_CASE(GREV) 11028 NODE_NAME_CASE(GREVW) 11029 NODE_NAME_CASE(GORC) 11030 NODE_NAME_CASE(GORCW) 11031 NODE_NAME_CASE(SHFL) 11032 NODE_NAME_CASE(SHFLW) 11033 NODE_NAME_CASE(UNSHFL) 11034 NODE_NAME_CASE(UNSHFLW) 11035 NODE_NAME_CASE(BFP) 11036 NODE_NAME_CASE(BFPW) 11037 NODE_NAME_CASE(BCOMPRESS) 11038 NODE_NAME_CASE(BCOMPRESSW) 11039 NODE_NAME_CASE(BDECOMPRESS) 11040 NODE_NAME_CASE(BDECOMPRESSW) 11041 NODE_NAME_CASE(VMV_V_X_VL) 11042 NODE_NAME_CASE(VFMV_V_F_VL) 11043 NODE_NAME_CASE(VMV_X_S) 11044 NODE_NAME_CASE(VMV_S_X_VL) 11045 NODE_NAME_CASE(VFMV_S_F_VL) 11046 NODE_NAME_CASE(SPLAT_VECTOR_SPLIT_I64_VL) 11047 NODE_NAME_CASE(READ_VLENB) 11048 NODE_NAME_CASE(TRUNCATE_VECTOR_VL) 11049 NODE_NAME_CASE(VSLIDEUP_VL) 11050 NODE_NAME_CASE(VSLIDE1UP_VL) 11051 NODE_NAME_CASE(VSLIDEDOWN_VL) 11052 NODE_NAME_CASE(VSLIDE1DOWN_VL) 11053 NODE_NAME_CASE(VID_VL) 11054 NODE_NAME_CASE(VFNCVT_ROD_VL) 11055 NODE_NAME_CASE(VECREDUCE_ADD_VL) 11056 NODE_NAME_CASE(VECREDUCE_UMAX_VL) 11057 NODE_NAME_CASE(VECREDUCE_SMAX_VL) 11058 NODE_NAME_CASE(VECREDUCE_UMIN_VL) 11059 NODE_NAME_CASE(VECREDUCE_SMIN_VL) 11060 NODE_NAME_CASE(VECREDUCE_AND_VL) 11061 NODE_NAME_CASE(VECREDUCE_OR_VL) 11062 NODE_NAME_CASE(VECREDUCE_XOR_VL) 11063 NODE_NAME_CASE(VECREDUCE_FADD_VL) 11064 NODE_NAME_CASE(VECREDUCE_SEQ_FADD_VL) 11065 NODE_NAME_CASE(VECREDUCE_FMIN_VL) 11066 NODE_NAME_CASE(VECREDUCE_FMAX_VL) 11067 NODE_NAME_CASE(ADD_VL) 11068 NODE_NAME_CASE(AND_VL) 11069 NODE_NAME_CASE(MUL_VL) 11070 NODE_NAME_CASE(OR_VL) 11071 NODE_NAME_CASE(SDIV_VL) 11072 NODE_NAME_CASE(SHL_VL) 11073 NODE_NAME_CASE(SREM_VL) 11074 NODE_NAME_CASE(SRA_VL) 11075 NODE_NAME_CASE(SRL_VL) 11076 NODE_NAME_CASE(SUB_VL) 11077 NODE_NAME_CASE(UDIV_VL) 11078 NODE_NAME_CASE(UREM_VL) 11079 NODE_NAME_CASE(XOR_VL) 11080 NODE_NAME_CASE(SADDSAT_VL) 11081 NODE_NAME_CASE(UADDSAT_VL) 11082 NODE_NAME_CASE(SSUBSAT_VL) 11083 NODE_NAME_CASE(USUBSAT_VL) 11084 NODE_NAME_CASE(FADD_VL) 11085 NODE_NAME_CASE(FSUB_VL) 11086 NODE_NAME_CASE(FMUL_VL) 11087 NODE_NAME_CASE(FDIV_VL) 11088 NODE_NAME_CASE(FNEG_VL) 11089 NODE_NAME_CASE(FABS_VL) 11090 NODE_NAME_CASE(FSQRT_VL) 11091 NODE_NAME_CASE(FMA_VL) 11092 NODE_NAME_CASE(FCOPYSIGN_VL) 11093 NODE_NAME_CASE(SMIN_VL) 11094 NODE_NAME_CASE(SMAX_VL) 11095 NODE_NAME_CASE(UMIN_VL) 11096 NODE_NAME_CASE(UMAX_VL) 11097 NODE_NAME_CASE(FMINNUM_VL) 11098 NODE_NAME_CASE(FMAXNUM_VL) 11099 NODE_NAME_CASE(MULHS_VL) 11100 NODE_NAME_CASE(MULHU_VL) 11101 NODE_NAME_CASE(FP_TO_SINT_VL) 11102 NODE_NAME_CASE(FP_TO_UINT_VL) 11103 NODE_NAME_CASE(SINT_TO_FP_VL) 11104 NODE_NAME_CASE(UINT_TO_FP_VL) 11105 NODE_NAME_CASE(FP_EXTEND_VL) 11106 NODE_NAME_CASE(FP_ROUND_VL) 11107 NODE_NAME_CASE(VWMUL_VL) 11108 NODE_NAME_CASE(VWMULU_VL) 11109 NODE_NAME_CASE(VWMULSU_VL) 11110 NODE_NAME_CASE(VWADD_VL) 11111 NODE_NAME_CASE(VWADDU_VL) 11112 NODE_NAME_CASE(VWSUB_VL) 11113 NODE_NAME_CASE(VWSUBU_VL) 11114 NODE_NAME_CASE(VWADD_W_VL) 11115 NODE_NAME_CASE(VWADDU_W_VL) 11116 NODE_NAME_CASE(VWSUB_W_VL) 11117 NODE_NAME_CASE(VWSUBU_W_VL) 11118 NODE_NAME_CASE(SETCC_VL) 11119 NODE_NAME_CASE(VSELECT_VL) 11120 NODE_NAME_CASE(VP_MERGE_VL) 11121 NODE_NAME_CASE(VMAND_VL) 11122 NODE_NAME_CASE(VMOR_VL) 11123 NODE_NAME_CASE(VMXOR_VL) 11124 NODE_NAME_CASE(VMCLR_VL) 11125 NODE_NAME_CASE(VMSET_VL) 11126 NODE_NAME_CASE(VRGATHER_VX_VL) 11127 NODE_NAME_CASE(VRGATHER_VV_VL) 11128 NODE_NAME_CASE(VRGATHEREI16_VV_VL) 11129 NODE_NAME_CASE(VSEXT_VL) 11130 NODE_NAME_CASE(VZEXT_VL) 11131 NODE_NAME_CASE(VCPOP_VL) 11132 NODE_NAME_CASE(READ_CSR) 11133 NODE_NAME_CASE(WRITE_CSR) 11134 NODE_NAME_CASE(SWAP_CSR) 11135 } 11136 // clang-format on 11137 return nullptr; 11138 #undef NODE_NAME_CASE 11139 } 11140 11141 /// getConstraintType - Given a constraint letter, return the type of 11142 /// constraint it is for this target. 11143 RISCVTargetLowering::ConstraintType 11144 RISCVTargetLowering::getConstraintType(StringRef Constraint) const { 11145 if (Constraint.size() == 1) { 11146 switch (Constraint[0]) { 11147 default: 11148 break; 11149 case 'f': 11150 return C_RegisterClass; 11151 case 'I': 11152 case 'J': 11153 case 'K': 11154 return C_Immediate; 11155 case 'A': 11156 return C_Memory; 11157 case 'S': // A symbolic address 11158 return C_Other; 11159 } 11160 } else { 11161 if (Constraint == "vr" || Constraint == "vm") 11162 return C_RegisterClass; 11163 } 11164 return TargetLowering::getConstraintType(Constraint); 11165 } 11166 11167 std::pair<unsigned, const TargetRegisterClass *> 11168 RISCVTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 11169 StringRef Constraint, 11170 MVT VT) const { 11171 // First, see if this is a constraint that directly corresponds to a 11172 // RISCV register class. 11173 if (Constraint.size() == 1) { 11174 switch (Constraint[0]) { 11175 case 'r': 11176 // TODO: Support fixed vectors up to XLen for P extension? 11177 if (VT.isVector()) 11178 break; 11179 return std::make_pair(0U, &RISCV::GPRRegClass); 11180 case 'f': 11181 if (Subtarget.hasStdExtZfh() && VT == MVT::f16) 11182 return std::make_pair(0U, &RISCV::FPR16RegClass); 11183 if (Subtarget.hasStdExtF() && VT == MVT::f32) 11184 return std::make_pair(0U, &RISCV::FPR32RegClass); 11185 if (Subtarget.hasStdExtD() && VT == MVT::f64) 11186 return std::make_pair(0U, &RISCV::FPR64RegClass); 11187 break; 11188 default: 11189 break; 11190 } 11191 } else if (Constraint == "vr") { 11192 for (const auto *RC : {&RISCV::VRRegClass, &RISCV::VRM2RegClass, 11193 &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) { 11194 if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy)) 11195 return std::make_pair(0U, RC); 11196 } 11197 } else if (Constraint == "vm") { 11198 if (TRI->isTypeLegalForClass(RISCV::VMV0RegClass, VT.SimpleTy)) 11199 return std::make_pair(0U, &RISCV::VMV0RegClass); 11200 } 11201 11202 // Clang will correctly decode the usage of register name aliases into their 11203 // official names. However, other frontends like `rustc` do not. This allows 11204 // users of these frontends to use the ABI names for registers in LLVM-style 11205 // register constraints. 11206 unsigned XRegFromAlias = StringSwitch<unsigned>(Constraint.lower()) 11207 .Case("{zero}", RISCV::X0) 11208 .Case("{ra}", RISCV::X1) 11209 .Case("{sp}", RISCV::X2) 11210 .Case("{gp}", RISCV::X3) 11211 .Case("{tp}", RISCV::X4) 11212 .Case("{t0}", RISCV::X5) 11213 .Case("{t1}", RISCV::X6) 11214 .Case("{t2}", RISCV::X7) 11215 .Cases("{s0}", "{fp}", RISCV::X8) 11216 .Case("{s1}", RISCV::X9) 11217 .Case("{a0}", RISCV::X10) 11218 .Case("{a1}", RISCV::X11) 11219 .Case("{a2}", RISCV::X12) 11220 .Case("{a3}", RISCV::X13) 11221 .Case("{a4}", RISCV::X14) 11222 .Case("{a5}", RISCV::X15) 11223 .Case("{a6}", RISCV::X16) 11224 .Case("{a7}", RISCV::X17) 11225 .Case("{s2}", RISCV::X18) 11226 .Case("{s3}", RISCV::X19) 11227 .Case("{s4}", RISCV::X20) 11228 .Case("{s5}", RISCV::X21) 11229 .Case("{s6}", RISCV::X22) 11230 .Case("{s7}", RISCV::X23) 11231 .Case("{s8}", RISCV::X24) 11232 .Case("{s9}", RISCV::X25) 11233 .Case("{s10}", RISCV::X26) 11234 .Case("{s11}", RISCV::X27) 11235 .Case("{t3}", RISCV::X28) 11236 .Case("{t4}", RISCV::X29) 11237 .Case("{t5}", RISCV::X30) 11238 .Case("{t6}", RISCV::X31) 11239 .Default(RISCV::NoRegister); 11240 if (XRegFromAlias != RISCV::NoRegister) 11241 return std::make_pair(XRegFromAlias, &RISCV::GPRRegClass); 11242 11243 // Since TargetLowering::getRegForInlineAsmConstraint uses the name of the 11244 // TableGen record rather than the AsmName to choose registers for InlineAsm 11245 // constraints, plus we want to match those names to the widest floating point 11246 // register type available, manually select floating point registers here. 11247 // 11248 // The second case is the ABI name of the register, so that frontends can also 11249 // use the ABI names in register constraint lists. 11250 if (Subtarget.hasStdExtF()) { 11251 unsigned FReg = StringSwitch<unsigned>(Constraint.lower()) 11252 .Cases("{f0}", "{ft0}", RISCV::F0_F) 11253 .Cases("{f1}", "{ft1}", RISCV::F1_F) 11254 .Cases("{f2}", "{ft2}", RISCV::F2_F) 11255 .Cases("{f3}", "{ft3}", RISCV::F3_F) 11256 .Cases("{f4}", "{ft4}", RISCV::F4_F) 11257 .Cases("{f5}", "{ft5}", RISCV::F5_F) 11258 .Cases("{f6}", "{ft6}", RISCV::F6_F) 11259 .Cases("{f7}", "{ft7}", RISCV::F7_F) 11260 .Cases("{f8}", "{fs0}", RISCV::F8_F) 11261 .Cases("{f9}", "{fs1}", RISCV::F9_F) 11262 .Cases("{f10}", "{fa0}", RISCV::F10_F) 11263 .Cases("{f11}", "{fa1}", RISCV::F11_F) 11264 .Cases("{f12}", "{fa2}", RISCV::F12_F) 11265 .Cases("{f13}", "{fa3}", RISCV::F13_F) 11266 .Cases("{f14}", "{fa4}", RISCV::F14_F) 11267 .Cases("{f15}", "{fa5}", RISCV::F15_F) 11268 .Cases("{f16}", "{fa6}", RISCV::F16_F) 11269 .Cases("{f17}", "{fa7}", RISCV::F17_F) 11270 .Cases("{f18}", "{fs2}", RISCV::F18_F) 11271 .Cases("{f19}", "{fs3}", RISCV::F19_F) 11272 .Cases("{f20}", "{fs4}", RISCV::F20_F) 11273 .Cases("{f21}", "{fs5}", RISCV::F21_F) 11274 .Cases("{f22}", "{fs6}", RISCV::F22_F) 11275 .Cases("{f23}", "{fs7}", RISCV::F23_F) 11276 .Cases("{f24}", "{fs8}", RISCV::F24_F) 11277 .Cases("{f25}", "{fs9}", RISCV::F25_F) 11278 .Cases("{f26}", "{fs10}", RISCV::F26_F) 11279 .Cases("{f27}", "{fs11}", RISCV::F27_F) 11280 .Cases("{f28}", "{ft8}", RISCV::F28_F) 11281 .Cases("{f29}", "{ft9}", RISCV::F29_F) 11282 .Cases("{f30}", "{ft10}", RISCV::F30_F) 11283 .Cases("{f31}", "{ft11}", RISCV::F31_F) 11284 .Default(RISCV::NoRegister); 11285 if (FReg != RISCV::NoRegister) { 11286 assert(RISCV::F0_F <= FReg && FReg <= RISCV::F31_F && "Unknown fp-reg"); 11287 if (Subtarget.hasStdExtD() && (VT == MVT::f64 || VT == MVT::Other)) { 11288 unsigned RegNo = FReg - RISCV::F0_F; 11289 unsigned DReg = RISCV::F0_D + RegNo; 11290 return std::make_pair(DReg, &RISCV::FPR64RegClass); 11291 } 11292 if (VT == MVT::f32 || VT == MVT::Other) 11293 return std::make_pair(FReg, &RISCV::FPR32RegClass); 11294 if (Subtarget.hasStdExtZfh() && VT == MVT::f16) { 11295 unsigned RegNo = FReg - RISCV::F0_F; 11296 unsigned HReg = RISCV::F0_H + RegNo; 11297 return std::make_pair(HReg, &RISCV::FPR16RegClass); 11298 } 11299 } 11300 } 11301 11302 if (Subtarget.hasVInstructions()) { 11303 Register VReg = StringSwitch<Register>(Constraint.lower()) 11304 .Case("{v0}", RISCV::V0) 11305 .Case("{v1}", RISCV::V1) 11306 .Case("{v2}", RISCV::V2) 11307 .Case("{v3}", RISCV::V3) 11308 .Case("{v4}", RISCV::V4) 11309 .Case("{v5}", RISCV::V5) 11310 .Case("{v6}", RISCV::V6) 11311 .Case("{v7}", RISCV::V7) 11312 .Case("{v8}", RISCV::V8) 11313 .Case("{v9}", RISCV::V9) 11314 .Case("{v10}", RISCV::V10) 11315 .Case("{v11}", RISCV::V11) 11316 .Case("{v12}", RISCV::V12) 11317 .Case("{v13}", RISCV::V13) 11318 .Case("{v14}", RISCV::V14) 11319 .Case("{v15}", RISCV::V15) 11320 .Case("{v16}", RISCV::V16) 11321 .Case("{v17}", RISCV::V17) 11322 .Case("{v18}", RISCV::V18) 11323 .Case("{v19}", RISCV::V19) 11324 .Case("{v20}", RISCV::V20) 11325 .Case("{v21}", RISCV::V21) 11326 .Case("{v22}", RISCV::V22) 11327 .Case("{v23}", RISCV::V23) 11328 .Case("{v24}", RISCV::V24) 11329 .Case("{v25}", RISCV::V25) 11330 .Case("{v26}", RISCV::V26) 11331 .Case("{v27}", RISCV::V27) 11332 .Case("{v28}", RISCV::V28) 11333 .Case("{v29}", RISCV::V29) 11334 .Case("{v30}", RISCV::V30) 11335 .Case("{v31}", RISCV::V31) 11336 .Default(RISCV::NoRegister); 11337 if (VReg != RISCV::NoRegister) { 11338 if (TRI->isTypeLegalForClass(RISCV::VMRegClass, VT.SimpleTy)) 11339 return std::make_pair(VReg, &RISCV::VMRegClass); 11340 if (TRI->isTypeLegalForClass(RISCV::VRRegClass, VT.SimpleTy)) 11341 return std::make_pair(VReg, &RISCV::VRRegClass); 11342 for (const auto *RC : 11343 {&RISCV::VRM2RegClass, &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) { 11344 if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy)) { 11345 VReg = TRI->getMatchingSuperReg(VReg, RISCV::sub_vrm1_0, RC); 11346 return std::make_pair(VReg, RC); 11347 } 11348 } 11349 } 11350 } 11351 11352 std::pair<Register, const TargetRegisterClass *> Res = 11353 TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 11354 11355 // If we picked one of the Zfinx register classes, remap it to the GPR class. 11356 // FIXME: When Zfinx is supported in CodeGen this will need to take the 11357 // Subtarget into account. 11358 if (Res.second == &RISCV::GPRF16RegClass || 11359 Res.second == &RISCV::GPRF32RegClass || 11360 Res.second == &RISCV::GPRF64RegClass) 11361 return std::make_pair(Res.first, &RISCV::GPRRegClass); 11362 11363 return Res; 11364 } 11365 11366 unsigned 11367 RISCVTargetLowering::getInlineAsmMemConstraint(StringRef ConstraintCode) const { 11368 // Currently only support length 1 constraints. 11369 if (ConstraintCode.size() == 1) { 11370 switch (ConstraintCode[0]) { 11371 case 'A': 11372 return InlineAsm::Constraint_A; 11373 default: 11374 break; 11375 } 11376 } 11377 11378 return TargetLowering::getInlineAsmMemConstraint(ConstraintCode); 11379 } 11380 11381 void RISCVTargetLowering::LowerAsmOperandForConstraint( 11382 SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops, 11383 SelectionDAG &DAG) const { 11384 // Currently only support length 1 constraints. 11385 if (Constraint.length() == 1) { 11386 switch (Constraint[0]) { 11387 case 'I': 11388 // Validate & create a 12-bit signed immediate operand. 11389 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 11390 uint64_t CVal = C->getSExtValue(); 11391 if (isInt<12>(CVal)) 11392 Ops.push_back( 11393 DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT())); 11394 } 11395 return; 11396 case 'J': 11397 // Validate & create an integer zero operand. 11398 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 11399 if (C->getZExtValue() == 0) 11400 Ops.push_back( 11401 DAG.getTargetConstant(0, SDLoc(Op), Subtarget.getXLenVT())); 11402 return; 11403 case 'K': 11404 // Validate & create a 5-bit unsigned immediate operand. 11405 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 11406 uint64_t CVal = C->getZExtValue(); 11407 if (isUInt<5>(CVal)) 11408 Ops.push_back( 11409 DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT())); 11410 } 11411 return; 11412 case 'S': 11413 if (const auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) { 11414 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op), 11415 GA->getValueType(0))); 11416 } else if (const auto *BA = dyn_cast<BlockAddressSDNode>(Op)) { 11417 Ops.push_back(DAG.getTargetBlockAddress(BA->getBlockAddress(), 11418 BA->getValueType(0))); 11419 } 11420 return; 11421 default: 11422 break; 11423 } 11424 } 11425 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 11426 } 11427 11428 Instruction *RISCVTargetLowering::emitLeadingFence(IRBuilderBase &Builder, 11429 Instruction *Inst, 11430 AtomicOrdering Ord) const { 11431 if (isa<LoadInst>(Inst) && Ord == AtomicOrdering::SequentiallyConsistent) 11432 return Builder.CreateFence(Ord); 11433 if (isa<StoreInst>(Inst) && isReleaseOrStronger(Ord)) 11434 return Builder.CreateFence(AtomicOrdering::Release); 11435 return nullptr; 11436 } 11437 11438 Instruction *RISCVTargetLowering::emitTrailingFence(IRBuilderBase &Builder, 11439 Instruction *Inst, 11440 AtomicOrdering Ord) const { 11441 if (isa<LoadInst>(Inst) && isAcquireOrStronger(Ord)) 11442 return Builder.CreateFence(AtomicOrdering::Acquire); 11443 return nullptr; 11444 } 11445 11446 TargetLowering::AtomicExpansionKind 11447 RISCVTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { 11448 // atomicrmw {fadd,fsub} must be expanded to use compare-exchange, as floating 11449 // point operations can't be used in an lr/sc sequence without breaking the 11450 // forward-progress guarantee. 11451 if (AI->isFloatingPointOperation()) 11452 return AtomicExpansionKind::CmpXChg; 11453 11454 unsigned Size = AI->getType()->getPrimitiveSizeInBits(); 11455 if (Size == 8 || Size == 16) 11456 return AtomicExpansionKind::MaskedIntrinsic; 11457 return AtomicExpansionKind::None; 11458 } 11459 11460 static Intrinsic::ID 11461 getIntrinsicForMaskedAtomicRMWBinOp(unsigned XLen, AtomicRMWInst::BinOp BinOp) { 11462 if (XLen == 32) { 11463 switch (BinOp) { 11464 default: 11465 llvm_unreachable("Unexpected AtomicRMW BinOp"); 11466 case AtomicRMWInst::Xchg: 11467 return Intrinsic::riscv_masked_atomicrmw_xchg_i32; 11468 case AtomicRMWInst::Add: 11469 return Intrinsic::riscv_masked_atomicrmw_add_i32; 11470 case AtomicRMWInst::Sub: 11471 return Intrinsic::riscv_masked_atomicrmw_sub_i32; 11472 case AtomicRMWInst::Nand: 11473 return Intrinsic::riscv_masked_atomicrmw_nand_i32; 11474 case AtomicRMWInst::Max: 11475 return Intrinsic::riscv_masked_atomicrmw_max_i32; 11476 case AtomicRMWInst::Min: 11477 return Intrinsic::riscv_masked_atomicrmw_min_i32; 11478 case AtomicRMWInst::UMax: 11479 return Intrinsic::riscv_masked_atomicrmw_umax_i32; 11480 case AtomicRMWInst::UMin: 11481 return Intrinsic::riscv_masked_atomicrmw_umin_i32; 11482 } 11483 } 11484 11485 if (XLen == 64) { 11486 switch (BinOp) { 11487 default: 11488 llvm_unreachable("Unexpected AtomicRMW BinOp"); 11489 case AtomicRMWInst::Xchg: 11490 return Intrinsic::riscv_masked_atomicrmw_xchg_i64; 11491 case AtomicRMWInst::Add: 11492 return Intrinsic::riscv_masked_atomicrmw_add_i64; 11493 case AtomicRMWInst::Sub: 11494 return Intrinsic::riscv_masked_atomicrmw_sub_i64; 11495 case AtomicRMWInst::Nand: 11496 return Intrinsic::riscv_masked_atomicrmw_nand_i64; 11497 case AtomicRMWInst::Max: 11498 return Intrinsic::riscv_masked_atomicrmw_max_i64; 11499 case AtomicRMWInst::Min: 11500 return Intrinsic::riscv_masked_atomicrmw_min_i64; 11501 case AtomicRMWInst::UMax: 11502 return Intrinsic::riscv_masked_atomicrmw_umax_i64; 11503 case AtomicRMWInst::UMin: 11504 return Intrinsic::riscv_masked_atomicrmw_umin_i64; 11505 } 11506 } 11507 11508 llvm_unreachable("Unexpected XLen\n"); 11509 } 11510 11511 Value *RISCVTargetLowering::emitMaskedAtomicRMWIntrinsic( 11512 IRBuilderBase &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr, 11513 Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const { 11514 unsigned XLen = Subtarget.getXLen(); 11515 Value *Ordering = 11516 Builder.getIntN(XLen, static_cast<uint64_t>(AI->getOrdering())); 11517 Type *Tys[] = {AlignedAddr->getType()}; 11518 Function *LrwOpScwLoop = Intrinsic::getDeclaration( 11519 AI->getModule(), 11520 getIntrinsicForMaskedAtomicRMWBinOp(XLen, AI->getOperation()), Tys); 11521 11522 if (XLen == 64) { 11523 Incr = Builder.CreateSExt(Incr, Builder.getInt64Ty()); 11524 Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty()); 11525 ShiftAmt = Builder.CreateSExt(ShiftAmt, Builder.getInt64Ty()); 11526 } 11527 11528 Value *Result; 11529 11530 // Must pass the shift amount needed to sign extend the loaded value prior 11531 // to performing a signed comparison for min/max. ShiftAmt is the number of 11532 // bits to shift the value into position. Pass XLen-ShiftAmt-ValWidth, which 11533 // is the number of bits to left+right shift the value in order to 11534 // sign-extend. 11535 if (AI->getOperation() == AtomicRMWInst::Min || 11536 AI->getOperation() == AtomicRMWInst::Max) { 11537 const DataLayout &DL = AI->getModule()->getDataLayout(); 11538 unsigned ValWidth = 11539 DL.getTypeStoreSizeInBits(AI->getValOperand()->getType()); 11540 Value *SextShamt = 11541 Builder.CreateSub(Builder.getIntN(XLen, XLen - ValWidth), ShiftAmt); 11542 Result = Builder.CreateCall(LrwOpScwLoop, 11543 {AlignedAddr, Incr, Mask, SextShamt, Ordering}); 11544 } else { 11545 Result = 11546 Builder.CreateCall(LrwOpScwLoop, {AlignedAddr, Incr, Mask, Ordering}); 11547 } 11548 11549 if (XLen == 64) 11550 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty()); 11551 return Result; 11552 } 11553 11554 TargetLowering::AtomicExpansionKind 11555 RISCVTargetLowering::shouldExpandAtomicCmpXchgInIR( 11556 AtomicCmpXchgInst *CI) const { 11557 unsigned Size = CI->getCompareOperand()->getType()->getPrimitiveSizeInBits(); 11558 if (Size == 8 || Size == 16) 11559 return AtomicExpansionKind::MaskedIntrinsic; 11560 return AtomicExpansionKind::None; 11561 } 11562 11563 Value *RISCVTargetLowering::emitMaskedAtomicCmpXchgIntrinsic( 11564 IRBuilderBase &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr, 11565 Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const { 11566 unsigned XLen = Subtarget.getXLen(); 11567 Value *Ordering = Builder.getIntN(XLen, static_cast<uint64_t>(Ord)); 11568 Intrinsic::ID CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i32; 11569 if (XLen == 64) { 11570 CmpVal = Builder.CreateSExt(CmpVal, Builder.getInt64Ty()); 11571 NewVal = Builder.CreateSExt(NewVal, Builder.getInt64Ty()); 11572 Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty()); 11573 CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i64; 11574 } 11575 Type *Tys[] = {AlignedAddr->getType()}; 11576 Function *MaskedCmpXchg = 11577 Intrinsic::getDeclaration(CI->getModule(), CmpXchgIntrID, Tys); 11578 Value *Result = Builder.CreateCall( 11579 MaskedCmpXchg, {AlignedAddr, CmpVal, NewVal, Mask, Ordering}); 11580 if (XLen == 64) 11581 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty()); 11582 return Result; 11583 } 11584 11585 bool RISCVTargetLowering::shouldRemoveExtendFromGSIndex(EVT VT) const { 11586 return false; 11587 } 11588 11589 bool RISCVTargetLowering::shouldConvertFpToSat(unsigned Op, EVT FPVT, 11590 EVT VT) const { 11591 if (!isOperationLegalOrCustom(Op, VT) || !FPVT.isSimple()) 11592 return false; 11593 11594 switch (FPVT.getSimpleVT().SimpleTy) { 11595 case MVT::f16: 11596 return Subtarget.hasStdExtZfh(); 11597 case MVT::f32: 11598 return Subtarget.hasStdExtF(); 11599 case MVT::f64: 11600 return Subtarget.hasStdExtD(); 11601 default: 11602 return false; 11603 } 11604 } 11605 11606 unsigned RISCVTargetLowering::getJumpTableEncoding() const { 11607 // If we are using the small code model, we can reduce size of jump table 11608 // entry to 4 bytes. 11609 if (Subtarget.is64Bit() && !isPositionIndependent() && 11610 getTargetMachine().getCodeModel() == CodeModel::Small) { 11611 return MachineJumpTableInfo::EK_Custom32; 11612 } 11613 return TargetLowering::getJumpTableEncoding(); 11614 } 11615 11616 const MCExpr *RISCVTargetLowering::LowerCustomJumpTableEntry( 11617 const MachineJumpTableInfo *MJTI, const MachineBasicBlock *MBB, 11618 unsigned uid, MCContext &Ctx) const { 11619 assert(Subtarget.is64Bit() && !isPositionIndependent() && 11620 getTargetMachine().getCodeModel() == CodeModel::Small); 11621 return MCSymbolRefExpr::create(MBB->getSymbol(), Ctx); 11622 } 11623 11624 bool RISCVTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, 11625 EVT VT) const { 11626 VT = VT.getScalarType(); 11627 11628 if (!VT.isSimple()) 11629 return false; 11630 11631 switch (VT.getSimpleVT().SimpleTy) { 11632 case MVT::f16: 11633 return Subtarget.hasStdExtZfh(); 11634 case MVT::f32: 11635 return Subtarget.hasStdExtF(); 11636 case MVT::f64: 11637 return Subtarget.hasStdExtD(); 11638 default: 11639 break; 11640 } 11641 11642 return false; 11643 } 11644 11645 Register RISCVTargetLowering::getExceptionPointerRegister( 11646 const Constant *PersonalityFn) const { 11647 return RISCV::X10; 11648 } 11649 11650 Register RISCVTargetLowering::getExceptionSelectorRegister( 11651 const Constant *PersonalityFn) const { 11652 return RISCV::X11; 11653 } 11654 11655 bool RISCVTargetLowering::shouldExtendTypeInLibCall(EVT Type) const { 11656 // Return false to suppress the unnecessary extensions if the LibCall 11657 // arguments or return value is f32 type for LP64 ABI. 11658 RISCVABI::ABI ABI = Subtarget.getTargetABI(); 11659 if (ABI == RISCVABI::ABI_LP64 && (Type == MVT::f32)) 11660 return false; 11661 11662 return true; 11663 } 11664 11665 bool RISCVTargetLowering::shouldSignExtendTypeInLibCall(EVT Type, bool IsSigned) const { 11666 if (Subtarget.is64Bit() && Type == MVT::i32) 11667 return true; 11668 11669 return IsSigned; 11670 } 11671 11672 bool RISCVTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT, 11673 SDValue C) const { 11674 // Check integral scalar types. 11675 if (VT.isScalarInteger()) { 11676 // Omit the optimization if the sub target has the M extension and the data 11677 // size exceeds XLen. 11678 if (Subtarget.hasStdExtM() && VT.getSizeInBits() > Subtarget.getXLen()) 11679 return false; 11680 if (auto *ConstNode = dyn_cast<ConstantSDNode>(C.getNode())) { 11681 // Break the MUL to a SLLI and an ADD/SUB. 11682 const APInt &Imm = ConstNode->getAPIntValue(); 11683 if ((Imm + 1).isPowerOf2() || (Imm - 1).isPowerOf2() || 11684 (1 - Imm).isPowerOf2() || (-1 - Imm).isPowerOf2()) 11685 return true; 11686 // Optimize the MUL to (SH*ADD x, (SLLI x, bits)) if Imm is not simm12. 11687 if (Subtarget.hasStdExtZba() && !Imm.isSignedIntN(12) && 11688 ((Imm - 2).isPowerOf2() || (Imm - 4).isPowerOf2() || 11689 (Imm - 8).isPowerOf2())) 11690 return true; 11691 // Omit the following optimization if the sub target has the M extension 11692 // and the data size >= XLen. 11693 if (Subtarget.hasStdExtM() && VT.getSizeInBits() >= Subtarget.getXLen()) 11694 return false; 11695 // Break the MUL to two SLLI instructions and an ADD/SUB, if Imm needs 11696 // a pair of LUI/ADDI. 11697 if (!Imm.isSignedIntN(12) && Imm.countTrailingZeros() < 12) { 11698 APInt ImmS = Imm.ashr(Imm.countTrailingZeros()); 11699 if ((ImmS + 1).isPowerOf2() || (ImmS - 1).isPowerOf2() || 11700 (1 - ImmS).isPowerOf2()) 11701 return true; 11702 } 11703 } 11704 } 11705 11706 return false; 11707 } 11708 11709 bool RISCVTargetLowering::isMulAddWithConstProfitable(SDValue AddNode, 11710 SDValue ConstNode) const { 11711 // Let the DAGCombiner decide for vectors. 11712 EVT VT = AddNode.getValueType(); 11713 if (VT.isVector()) 11714 return true; 11715 11716 // Let the DAGCombiner decide for larger types. 11717 if (VT.getScalarSizeInBits() > Subtarget.getXLen()) 11718 return true; 11719 11720 // It is worse if c1 is simm12 while c1*c2 is not. 11721 ConstantSDNode *C1Node = cast<ConstantSDNode>(AddNode.getOperand(1)); 11722 ConstantSDNode *C2Node = cast<ConstantSDNode>(ConstNode); 11723 const APInt &C1 = C1Node->getAPIntValue(); 11724 const APInt &C2 = C2Node->getAPIntValue(); 11725 if (C1.isSignedIntN(12) && !(C1 * C2).isSignedIntN(12)) 11726 return false; 11727 11728 // Default to true and let the DAGCombiner decide. 11729 return true; 11730 } 11731 11732 bool RISCVTargetLowering::allowsMisalignedMemoryAccesses( 11733 EVT VT, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags, 11734 bool *Fast) const { 11735 if (!VT.isVector()) 11736 return false; 11737 11738 EVT ElemVT = VT.getVectorElementType(); 11739 if (Alignment >= ElemVT.getStoreSize()) { 11740 if (Fast) 11741 *Fast = true; 11742 return true; 11743 } 11744 11745 return false; 11746 } 11747 11748 bool RISCVTargetLowering::splitValueIntoRegisterParts( 11749 SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts, 11750 unsigned NumParts, MVT PartVT, Optional<CallingConv::ID> CC) const { 11751 bool IsABIRegCopy = CC.hasValue(); 11752 EVT ValueVT = Val.getValueType(); 11753 if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) { 11754 // Cast the f16 to i16, extend to i32, pad with ones to make a float nan, 11755 // and cast to f32. 11756 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i16, Val); 11757 Val = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Val); 11758 Val = DAG.getNode(ISD::OR, DL, MVT::i32, Val, 11759 DAG.getConstant(0xFFFF0000, DL, MVT::i32)); 11760 Val = DAG.getNode(ISD::BITCAST, DL, MVT::f32, Val); 11761 Parts[0] = Val; 11762 return true; 11763 } 11764 11765 if (ValueVT.isScalableVector() && PartVT.isScalableVector()) { 11766 LLVMContext &Context = *DAG.getContext(); 11767 EVT ValueEltVT = ValueVT.getVectorElementType(); 11768 EVT PartEltVT = PartVT.getVectorElementType(); 11769 unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize(); 11770 unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize(); 11771 if (PartVTBitSize % ValueVTBitSize == 0) { 11772 assert(PartVTBitSize >= ValueVTBitSize); 11773 // If the element types are different, bitcast to the same element type of 11774 // PartVT first. 11775 // Give an example here, we want copy a <vscale x 1 x i8> value to 11776 // <vscale x 4 x i16>. 11777 // We need to convert <vscale x 1 x i8> to <vscale x 8 x i8> by insert 11778 // subvector, then we can bitcast to <vscale x 4 x i16>. 11779 if (ValueEltVT != PartEltVT) { 11780 if (PartVTBitSize > ValueVTBitSize) { 11781 unsigned Count = PartVTBitSize / ValueEltVT.getFixedSizeInBits(); 11782 assert(Count != 0 && "The number of element should not be zero."); 11783 EVT SameEltTypeVT = 11784 EVT::getVectorVT(Context, ValueEltVT, Count, /*IsScalable=*/true); 11785 Val = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, SameEltTypeVT, 11786 DAG.getUNDEF(SameEltTypeVT), Val, 11787 DAG.getVectorIdxConstant(0, DL)); 11788 } 11789 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 11790 } else { 11791 Val = 11792 DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT), 11793 Val, DAG.getVectorIdxConstant(0, DL)); 11794 } 11795 Parts[0] = Val; 11796 return true; 11797 } 11798 } 11799 return false; 11800 } 11801 11802 SDValue RISCVTargetLowering::joinRegisterPartsIntoValue( 11803 SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts, 11804 MVT PartVT, EVT ValueVT, Optional<CallingConv::ID> CC) const { 11805 bool IsABIRegCopy = CC.hasValue(); 11806 if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) { 11807 SDValue Val = Parts[0]; 11808 11809 // Cast the f32 to i32, truncate to i16, and cast back to f16. 11810 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Val); 11811 Val = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Val); 11812 Val = DAG.getNode(ISD::BITCAST, DL, MVT::f16, Val); 11813 return Val; 11814 } 11815 11816 if (ValueVT.isScalableVector() && PartVT.isScalableVector()) { 11817 LLVMContext &Context = *DAG.getContext(); 11818 SDValue Val = Parts[0]; 11819 EVT ValueEltVT = ValueVT.getVectorElementType(); 11820 EVT PartEltVT = PartVT.getVectorElementType(); 11821 unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize(); 11822 unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize(); 11823 if (PartVTBitSize % ValueVTBitSize == 0) { 11824 assert(PartVTBitSize >= ValueVTBitSize); 11825 EVT SameEltTypeVT = ValueVT; 11826 // If the element types are different, convert it to the same element type 11827 // of PartVT. 11828 // Give an example here, we want copy a <vscale x 1 x i8> value from 11829 // <vscale x 4 x i16>. 11830 // We need to convert <vscale x 4 x i16> to <vscale x 8 x i8> first, 11831 // then we can extract <vscale x 1 x i8>. 11832 if (ValueEltVT != PartEltVT) { 11833 unsigned Count = PartVTBitSize / ValueEltVT.getFixedSizeInBits(); 11834 assert(Count != 0 && "The number of element should not be zero."); 11835 SameEltTypeVT = 11836 EVT::getVectorVT(Context, ValueEltVT, Count, /*IsScalable=*/true); 11837 Val = DAG.getNode(ISD::BITCAST, DL, SameEltTypeVT, Val); 11838 } 11839 Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 11840 DAG.getVectorIdxConstant(0, DL)); 11841 return Val; 11842 } 11843 } 11844 return SDValue(); 11845 } 11846 11847 SDValue 11848 RISCVTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 11849 SelectionDAG &DAG, 11850 SmallVectorImpl<SDNode *> &Created) const { 11851 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 11852 if (isIntDivCheap(N->getValueType(0), Attr)) 11853 return SDValue(N, 0); // Lower SDIV as SDIV 11854 11855 assert((Divisor.isPowerOf2() || Divisor.isNegatedPowerOf2()) && 11856 "Unexpected divisor!"); 11857 11858 // Conditional move is needed, so do the transformation iff Zbt is enabled. 11859 if (!Subtarget.hasStdExtZbt()) 11860 return SDValue(); 11861 11862 // When |Divisor| >= 2 ^ 12, it isn't profitable to do such transformation. 11863 // Besides, more critical path instructions will be generated when dividing 11864 // by 2. So we keep using the original DAGs for these cases. 11865 unsigned Lg2 = Divisor.countTrailingZeros(); 11866 if (Lg2 == 1 || Lg2 >= 12) 11867 return SDValue(); 11868 11869 // fold (sdiv X, pow2) 11870 EVT VT = N->getValueType(0); 11871 if (VT != MVT::i32 && !(Subtarget.is64Bit() && VT == MVT::i64)) 11872 return SDValue(); 11873 11874 SDLoc DL(N); 11875 SDValue N0 = N->getOperand(0); 11876 SDValue Zero = DAG.getConstant(0, DL, VT); 11877 SDValue Pow2MinusOne = DAG.getConstant((1ULL << Lg2) - 1, DL, VT); 11878 11879 // Add (N0 < 0) ? Pow2 - 1 : 0; 11880 SDValue Cmp = DAG.getSetCC(DL, VT, N0, Zero, ISD::SETLT); 11881 SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0, Pow2MinusOne); 11882 SDValue Sel = DAG.getNode(ISD::SELECT, DL, VT, Cmp, Add, N0); 11883 11884 Created.push_back(Cmp.getNode()); 11885 Created.push_back(Add.getNode()); 11886 Created.push_back(Sel.getNode()); 11887 11888 // Divide by pow2. 11889 SDValue SRA = 11890 DAG.getNode(ISD::SRA, DL, VT, Sel, DAG.getConstant(Lg2, DL, VT)); 11891 11892 // If we're dividing by a positive value, we're done. Otherwise, we must 11893 // negate the result. 11894 if (Divisor.isNonNegative()) 11895 return SRA; 11896 11897 Created.push_back(SRA.getNode()); 11898 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), SRA); 11899 } 11900 11901 #define GET_REGISTER_MATCHER 11902 #include "RISCVGenAsmMatcher.inc" 11903 11904 Register 11905 RISCVTargetLowering::getRegisterByName(const char *RegName, LLT VT, 11906 const MachineFunction &MF) const { 11907 Register Reg = MatchRegisterAltName(RegName); 11908 if (Reg == RISCV::NoRegister) 11909 Reg = MatchRegisterName(RegName); 11910 if (Reg == RISCV::NoRegister) 11911 report_fatal_error( 11912 Twine("Invalid register name \"" + StringRef(RegName) + "\".")); 11913 BitVector ReservedRegs = Subtarget.getRegisterInfo()->getReservedRegs(MF); 11914 if (!ReservedRegs.test(Reg) && !Subtarget.isRegisterReservedByUser(Reg)) 11915 report_fatal_error(Twine("Trying to obtain non-reserved register \"" + 11916 StringRef(RegName) + "\".")); 11917 return Reg; 11918 } 11919 11920 namespace llvm { 11921 namespace RISCVVIntrinsicsTable { 11922 11923 #define GET_RISCVVIntrinsicsTable_IMPL 11924 #include "RISCVGenSearchableTables.inc" 11925 11926 } // namespace RISCVVIntrinsicsTable 11927 11928 } // namespace llvm 11929