1 //===-- RISCVISelLowering.cpp - RISCV DAG Lowering Implementation --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the interfaces that RISCV uses to lower LLVM code into a 10 // selection DAG. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "RISCVISelLowering.h" 15 #include "MCTargetDesc/RISCVMatInt.h" 16 #include "RISCV.h" 17 #include "RISCVMachineFunctionInfo.h" 18 #include "RISCVRegisterInfo.h" 19 #include "RISCVSubtarget.h" 20 #include "RISCVTargetMachine.h" 21 #include "llvm/ADT/SmallSet.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Analysis/MemoryLocation.h" 24 #include "llvm/CodeGen/MachineFrameInfo.h" 25 #include "llvm/CodeGen/MachineFunction.h" 26 #include "llvm/CodeGen/MachineInstrBuilder.h" 27 #include "llvm/CodeGen/MachineRegisterInfo.h" 28 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 29 #include "llvm/CodeGen/ValueTypes.h" 30 #include "llvm/IR/DiagnosticInfo.h" 31 #include "llvm/IR/DiagnosticPrinter.h" 32 #include "llvm/IR/IRBuilder.h" 33 #include "llvm/IR/IntrinsicsRISCV.h" 34 #include "llvm/IR/PatternMatch.h" 35 #include "llvm/Support/Debug.h" 36 #include "llvm/Support/ErrorHandling.h" 37 #include "llvm/Support/KnownBits.h" 38 #include "llvm/Support/MathExtras.h" 39 #include "llvm/Support/raw_ostream.h" 40 41 using namespace llvm; 42 43 #define DEBUG_TYPE "riscv-lower" 44 45 STATISTIC(NumTailCalls, "Number of tail calls"); 46 47 RISCVTargetLowering::RISCVTargetLowering(const TargetMachine &TM, 48 const RISCVSubtarget &STI) 49 : TargetLowering(TM), Subtarget(STI) { 50 51 if (Subtarget.isRV32E()) 52 report_fatal_error("Codegen not yet implemented for RV32E"); 53 54 RISCVABI::ABI ABI = Subtarget.getTargetABI(); 55 assert(ABI != RISCVABI::ABI_Unknown && "Improperly initialised target ABI"); 56 57 if ((ABI == RISCVABI::ABI_ILP32F || ABI == RISCVABI::ABI_LP64F) && 58 !Subtarget.hasStdExtF()) { 59 errs() << "Hard-float 'f' ABI can't be used for a target that " 60 "doesn't support the F instruction set extension (ignoring " 61 "target-abi)\n"; 62 ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32; 63 } else if ((ABI == RISCVABI::ABI_ILP32D || ABI == RISCVABI::ABI_LP64D) && 64 !Subtarget.hasStdExtD()) { 65 errs() << "Hard-float 'd' ABI can't be used for a target that " 66 "doesn't support the D instruction set extension (ignoring " 67 "target-abi)\n"; 68 ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32; 69 } 70 71 switch (ABI) { 72 default: 73 report_fatal_error("Don't know how to lower this ABI"); 74 case RISCVABI::ABI_ILP32: 75 case RISCVABI::ABI_ILP32F: 76 case RISCVABI::ABI_ILP32D: 77 case RISCVABI::ABI_LP64: 78 case RISCVABI::ABI_LP64F: 79 case RISCVABI::ABI_LP64D: 80 break; 81 } 82 83 MVT XLenVT = Subtarget.getXLenVT(); 84 85 // Set up the register classes. 86 addRegisterClass(XLenVT, &RISCV::GPRRegClass); 87 88 if (Subtarget.hasStdExtZfh()) 89 addRegisterClass(MVT::f16, &RISCV::FPR16RegClass); 90 if (Subtarget.hasStdExtF()) 91 addRegisterClass(MVT::f32, &RISCV::FPR32RegClass); 92 if (Subtarget.hasStdExtD()) 93 addRegisterClass(MVT::f64, &RISCV::FPR64RegClass); 94 95 static const MVT::SimpleValueType BoolVecVTs[] = { 96 MVT::nxv1i1, MVT::nxv2i1, MVT::nxv4i1, MVT::nxv8i1, 97 MVT::nxv16i1, MVT::nxv32i1, MVT::nxv64i1}; 98 static const MVT::SimpleValueType IntVecVTs[] = { 99 MVT::nxv1i8, MVT::nxv2i8, MVT::nxv4i8, MVT::nxv8i8, MVT::nxv16i8, 100 MVT::nxv32i8, MVT::nxv64i8, MVT::nxv1i16, MVT::nxv2i16, MVT::nxv4i16, 101 MVT::nxv8i16, MVT::nxv16i16, MVT::nxv32i16, MVT::nxv1i32, MVT::nxv2i32, 102 MVT::nxv4i32, MVT::nxv8i32, MVT::nxv16i32, MVT::nxv1i64, MVT::nxv2i64, 103 MVT::nxv4i64, MVT::nxv8i64}; 104 static const MVT::SimpleValueType F16VecVTs[] = { 105 MVT::nxv1f16, MVT::nxv2f16, MVT::nxv4f16, 106 MVT::nxv8f16, MVT::nxv16f16, MVT::nxv32f16}; 107 static const MVT::SimpleValueType F32VecVTs[] = { 108 MVT::nxv1f32, MVT::nxv2f32, MVT::nxv4f32, MVT::nxv8f32, MVT::nxv16f32}; 109 static const MVT::SimpleValueType F64VecVTs[] = { 110 MVT::nxv1f64, MVT::nxv2f64, MVT::nxv4f64, MVT::nxv8f64}; 111 112 if (Subtarget.hasVInstructions()) { 113 auto addRegClassForRVV = [this](MVT VT) { 114 unsigned Size = VT.getSizeInBits().getKnownMinValue(); 115 assert(Size <= 512 && isPowerOf2_32(Size)); 116 const TargetRegisterClass *RC; 117 if (Size <= 64) 118 RC = &RISCV::VRRegClass; 119 else if (Size == 128) 120 RC = &RISCV::VRM2RegClass; 121 else if (Size == 256) 122 RC = &RISCV::VRM4RegClass; 123 else 124 RC = &RISCV::VRM8RegClass; 125 126 addRegisterClass(VT, RC); 127 }; 128 129 for (MVT VT : BoolVecVTs) 130 addRegClassForRVV(VT); 131 for (MVT VT : IntVecVTs) { 132 if (VT.getVectorElementType() == MVT::i64 && 133 !Subtarget.hasVInstructionsI64()) 134 continue; 135 addRegClassForRVV(VT); 136 } 137 138 if (Subtarget.hasVInstructionsF16()) 139 for (MVT VT : F16VecVTs) 140 addRegClassForRVV(VT); 141 142 if (Subtarget.hasVInstructionsF32()) 143 for (MVT VT : F32VecVTs) 144 addRegClassForRVV(VT); 145 146 if (Subtarget.hasVInstructionsF64()) 147 for (MVT VT : F64VecVTs) 148 addRegClassForRVV(VT); 149 150 if (Subtarget.useRVVForFixedLengthVectors()) { 151 auto addRegClassForFixedVectors = [this](MVT VT) { 152 MVT ContainerVT = getContainerForFixedLengthVector(VT); 153 unsigned RCID = getRegClassIDForVecVT(ContainerVT); 154 const RISCVRegisterInfo &TRI = *Subtarget.getRegisterInfo(); 155 addRegisterClass(VT, TRI.getRegClass(RCID)); 156 }; 157 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) 158 if (useRVVForFixedLengthVectorVT(VT)) 159 addRegClassForFixedVectors(VT); 160 161 for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) 162 if (useRVVForFixedLengthVectorVT(VT)) 163 addRegClassForFixedVectors(VT); 164 } 165 } 166 167 // Compute derived properties from the register classes. 168 computeRegisterProperties(STI.getRegisterInfo()); 169 170 setStackPointerRegisterToSaveRestore(RISCV::X2); 171 172 for (auto N : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}) 173 setLoadExtAction(N, XLenVT, MVT::i1, Promote); 174 175 // TODO: add all necessary setOperationAction calls. 176 setOperationAction(ISD::DYNAMIC_STACKALLOC, XLenVT, Expand); 177 178 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 179 setOperationAction(ISD::BR_CC, XLenVT, Expand); 180 setOperationAction(ISD::BRCOND, MVT::Other, Custom); 181 setOperationAction(ISD::SELECT_CC, XLenVT, Expand); 182 183 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); 184 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); 185 186 setOperationAction(ISD::VASTART, MVT::Other, Custom); 187 setOperationAction(ISD::VAARG, MVT::Other, Expand); 188 setOperationAction(ISD::VACOPY, MVT::Other, Expand); 189 setOperationAction(ISD::VAEND, MVT::Other, Expand); 190 191 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 192 if (!Subtarget.hasStdExtZbb()) { 193 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand); 194 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand); 195 } 196 197 if (Subtarget.is64Bit()) { 198 setOperationAction(ISD::ADD, MVT::i32, Custom); 199 setOperationAction(ISD::SUB, MVT::i32, Custom); 200 setOperationAction(ISD::SHL, MVT::i32, Custom); 201 setOperationAction(ISD::SRA, MVT::i32, Custom); 202 setOperationAction(ISD::SRL, MVT::i32, Custom); 203 204 setOperationAction(ISD::UADDO, MVT::i32, Custom); 205 setOperationAction(ISD::USUBO, MVT::i32, Custom); 206 setOperationAction(ISD::UADDSAT, MVT::i32, Custom); 207 setOperationAction(ISD::USUBSAT, MVT::i32, Custom); 208 } else { 209 setLibcallName(RTLIB::SHL_I128, nullptr); 210 setLibcallName(RTLIB::SRL_I128, nullptr); 211 setLibcallName(RTLIB::SRA_I128, nullptr); 212 setLibcallName(RTLIB::MUL_I128, nullptr); 213 setLibcallName(RTLIB::MULO_I64, nullptr); 214 } 215 216 if (!Subtarget.hasStdExtM()) { 217 setOperationAction(ISD::MUL, XLenVT, Expand); 218 setOperationAction(ISD::MULHS, XLenVT, Expand); 219 setOperationAction(ISD::MULHU, XLenVT, Expand); 220 setOperationAction(ISD::SDIV, XLenVT, Expand); 221 setOperationAction(ISD::UDIV, XLenVT, Expand); 222 setOperationAction(ISD::SREM, XLenVT, Expand); 223 setOperationAction(ISD::UREM, XLenVT, Expand); 224 } else { 225 if (Subtarget.is64Bit()) { 226 setOperationAction(ISD::MUL, MVT::i32, Custom); 227 setOperationAction(ISD::MUL, MVT::i128, Custom); 228 229 setOperationAction(ISD::SDIV, MVT::i8, Custom); 230 setOperationAction(ISD::UDIV, MVT::i8, Custom); 231 setOperationAction(ISD::UREM, MVT::i8, Custom); 232 setOperationAction(ISD::SDIV, MVT::i16, Custom); 233 setOperationAction(ISD::UDIV, MVT::i16, Custom); 234 setOperationAction(ISD::UREM, MVT::i16, Custom); 235 setOperationAction(ISD::SDIV, MVT::i32, Custom); 236 setOperationAction(ISD::UDIV, MVT::i32, Custom); 237 setOperationAction(ISD::UREM, MVT::i32, Custom); 238 } else { 239 setOperationAction(ISD::MUL, MVT::i64, Custom); 240 } 241 } 242 243 setOperationAction(ISD::SDIVREM, XLenVT, Expand); 244 setOperationAction(ISD::UDIVREM, XLenVT, Expand); 245 setOperationAction(ISD::SMUL_LOHI, XLenVT, Expand); 246 setOperationAction(ISD::UMUL_LOHI, XLenVT, Expand); 247 248 setOperationAction(ISD::SHL_PARTS, XLenVT, Custom); 249 setOperationAction(ISD::SRL_PARTS, XLenVT, Custom); 250 setOperationAction(ISD::SRA_PARTS, XLenVT, Custom); 251 252 if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp()) { 253 if (Subtarget.is64Bit()) { 254 setOperationAction(ISD::ROTL, MVT::i32, Custom); 255 setOperationAction(ISD::ROTR, MVT::i32, Custom); 256 } 257 } else { 258 setOperationAction(ISD::ROTL, XLenVT, Expand); 259 setOperationAction(ISD::ROTR, XLenVT, Expand); 260 } 261 262 if (Subtarget.hasStdExtZbp()) { 263 // Custom lower bswap/bitreverse so we can convert them to GREVI to enable 264 // more combining. 265 setOperationAction(ISD::BITREVERSE, XLenVT, Custom); 266 setOperationAction(ISD::BSWAP, XLenVT, Custom); 267 setOperationAction(ISD::BITREVERSE, MVT::i8, Custom); 268 // BSWAP i8 doesn't exist. 269 setOperationAction(ISD::BITREVERSE, MVT::i16, Custom); 270 setOperationAction(ISD::BSWAP, MVT::i16, Custom); 271 272 if (Subtarget.is64Bit()) { 273 setOperationAction(ISD::BITREVERSE, MVT::i32, Custom); 274 setOperationAction(ISD::BSWAP, MVT::i32, Custom); 275 } 276 } else { 277 // With Zbb we have an XLen rev8 instruction, but not GREVI. So we'll 278 // pattern match it directly in isel. 279 setOperationAction(ISD::BSWAP, XLenVT, 280 Subtarget.hasStdExtZbb() ? Legal : Expand); 281 } 282 283 if (Subtarget.hasStdExtZbb()) { 284 setOperationAction(ISD::SMIN, XLenVT, Legal); 285 setOperationAction(ISD::SMAX, XLenVT, Legal); 286 setOperationAction(ISD::UMIN, XLenVT, Legal); 287 setOperationAction(ISD::UMAX, XLenVT, Legal); 288 289 if (Subtarget.is64Bit()) { 290 setOperationAction(ISD::CTTZ, MVT::i32, Custom); 291 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Custom); 292 setOperationAction(ISD::CTLZ, MVT::i32, Custom); 293 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom); 294 } 295 } else { 296 setOperationAction(ISD::CTTZ, XLenVT, Expand); 297 setOperationAction(ISD::CTLZ, XLenVT, Expand); 298 setOperationAction(ISD::CTPOP, XLenVT, Expand); 299 } 300 301 if (Subtarget.hasStdExtZbt()) { 302 setOperationAction(ISD::FSHL, XLenVT, Custom); 303 setOperationAction(ISD::FSHR, XLenVT, Custom); 304 setOperationAction(ISD::SELECT, XLenVT, Legal); 305 306 if (Subtarget.is64Bit()) { 307 setOperationAction(ISD::FSHL, MVT::i32, Custom); 308 setOperationAction(ISD::FSHR, MVT::i32, Custom); 309 } 310 } else { 311 setOperationAction(ISD::SELECT, XLenVT, Custom); 312 } 313 314 static const ISD::CondCode FPCCToExpand[] = { 315 ISD::SETOGT, ISD::SETOGE, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT, 316 ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUNE, ISD::SETGT, 317 ISD::SETGE, ISD::SETNE, ISD::SETO, ISD::SETUO}; 318 319 static const ISD::NodeType FPOpToExpand[] = { 320 ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, 321 ISD::FREM, ISD::FP16_TO_FP, ISD::FP_TO_FP16}; 322 323 if (Subtarget.hasStdExtZfh()) 324 setOperationAction(ISD::BITCAST, MVT::i16, Custom); 325 326 if (Subtarget.hasStdExtZfh()) { 327 setOperationAction(ISD::FMINNUM, MVT::f16, Legal); 328 setOperationAction(ISD::FMAXNUM, MVT::f16, Legal); 329 setOperationAction(ISD::LRINT, MVT::f16, Legal); 330 setOperationAction(ISD::LLRINT, MVT::f16, Legal); 331 setOperationAction(ISD::LROUND, MVT::f16, Legal); 332 setOperationAction(ISD::LLROUND, MVT::f16, Legal); 333 setOperationAction(ISD::STRICT_FADD, MVT::f16, Legal); 334 setOperationAction(ISD::STRICT_FMA, MVT::f16, Legal); 335 setOperationAction(ISD::STRICT_FSUB, MVT::f16, Legal); 336 setOperationAction(ISD::STRICT_FMUL, MVT::f16, Legal); 337 setOperationAction(ISD::STRICT_FDIV, MVT::f16, Legal); 338 setOperationAction(ISD::STRICT_FSQRT, MVT::f16, Legal); 339 for (auto CC : FPCCToExpand) 340 setCondCodeAction(CC, MVT::f16, Expand); 341 setOperationAction(ISD::SELECT_CC, MVT::f16, Expand); 342 setOperationAction(ISD::SELECT, MVT::f16, Custom); 343 setOperationAction(ISD::BR_CC, MVT::f16, Expand); 344 345 setOperationAction(ISD::FREM, MVT::f16, Promote); 346 setOperationAction(ISD::FCEIL, MVT::f16, Promote); 347 setOperationAction(ISD::FFLOOR, MVT::f16, Promote); 348 setOperationAction(ISD::FNEARBYINT, MVT::f16, Promote); 349 setOperationAction(ISD::FRINT, MVT::f16, Promote); 350 setOperationAction(ISD::FROUND, MVT::f16, Promote); 351 setOperationAction(ISD::FROUNDEVEN, MVT::f16, Promote); 352 setOperationAction(ISD::FTRUNC, MVT::f16, Promote); 353 setOperationAction(ISD::FPOW, MVT::f16, Promote); 354 setOperationAction(ISD::FPOWI, MVT::f16, Promote); 355 setOperationAction(ISD::FCOS, MVT::f16, Promote); 356 setOperationAction(ISD::FSIN, MVT::f16, Promote); 357 setOperationAction(ISD::FSINCOS, MVT::f16, Promote); 358 setOperationAction(ISD::FEXP, MVT::f16, Promote); 359 setOperationAction(ISD::FEXP2, MVT::f16, Promote); 360 setOperationAction(ISD::FLOG, MVT::f16, Promote); 361 setOperationAction(ISD::FLOG2, MVT::f16, Promote); 362 setOperationAction(ISD::FLOG10, MVT::f16, Promote); 363 364 // We need to custom promote this. 365 if (Subtarget.is64Bit()) 366 setOperationAction(ISD::FPOWI, MVT::i32, Custom); 367 } 368 369 if (Subtarget.hasStdExtF()) { 370 setOperationAction(ISD::FMINNUM, MVT::f32, Legal); 371 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); 372 setOperationAction(ISD::LRINT, MVT::f32, Legal); 373 setOperationAction(ISD::LLRINT, MVT::f32, Legal); 374 setOperationAction(ISD::LROUND, MVT::f32, Legal); 375 setOperationAction(ISD::LLROUND, MVT::f32, Legal); 376 setOperationAction(ISD::STRICT_FADD, MVT::f32, Legal); 377 setOperationAction(ISD::STRICT_FMA, MVT::f32, Legal); 378 setOperationAction(ISD::STRICT_FSUB, MVT::f32, Legal); 379 setOperationAction(ISD::STRICT_FMUL, MVT::f32, Legal); 380 setOperationAction(ISD::STRICT_FDIV, MVT::f32, Legal); 381 setOperationAction(ISD::STRICT_FSQRT, MVT::f32, Legal); 382 for (auto CC : FPCCToExpand) 383 setCondCodeAction(CC, MVT::f32, Expand); 384 setOperationAction(ISD::SELECT_CC, MVT::f32, Expand); 385 setOperationAction(ISD::SELECT, MVT::f32, Custom); 386 setOperationAction(ISD::BR_CC, MVT::f32, Expand); 387 for (auto Op : FPOpToExpand) 388 setOperationAction(Op, MVT::f32, Expand); 389 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); 390 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 391 } 392 393 if (Subtarget.hasStdExtF() && Subtarget.is64Bit()) 394 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 395 396 if (Subtarget.hasStdExtD()) { 397 setOperationAction(ISD::FMINNUM, MVT::f64, Legal); 398 setOperationAction(ISD::FMAXNUM, MVT::f64, Legal); 399 setOperationAction(ISD::LRINT, MVT::f64, Legal); 400 setOperationAction(ISD::LLRINT, MVT::f64, Legal); 401 setOperationAction(ISD::LROUND, MVT::f64, Legal); 402 setOperationAction(ISD::LLROUND, MVT::f64, Legal); 403 setOperationAction(ISD::STRICT_FMA, MVT::f64, Legal); 404 setOperationAction(ISD::STRICT_FADD, MVT::f64, Legal); 405 setOperationAction(ISD::STRICT_FSUB, MVT::f64, Legal); 406 setOperationAction(ISD::STRICT_FMUL, MVT::f64, Legal); 407 setOperationAction(ISD::STRICT_FDIV, MVT::f64, Legal); 408 setOperationAction(ISD::STRICT_FSQRT, MVT::f64, Legal); 409 for (auto CC : FPCCToExpand) 410 setCondCodeAction(CC, MVT::f64, Expand); 411 setOperationAction(ISD::SELECT_CC, MVT::f64, Expand); 412 setOperationAction(ISD::SELECT, MVT::f64, Custom); 413 setOperationAction(ISD::BR_CC, MVT::f64, Expand); 414 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 415 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 416 for (auto Op : FPOpToExpand) 417 setOperationAction(Op, MVT::f64, Expand); 418 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); 419 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 420 } 421 422 if (Subtarget.is64Bit()) { 423 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 424 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 425 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom); 426 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom); 427 } 428 429 if (Subtarget.hasStdExtF()) { 430 setOperationAction(ISD::FP_TO_UINT_SAT, XLenVT, Custom); 431 setOperationAction(ISD::FP_TO_SINT_SAT, XLenVT, Custom); 432 433 setOperationAction(ISD::FLT_ROUNDS_, XLenVT, Custom); 434 setOperationAction(ISD::SET_ROUNDING, MVT::Other, Custom); 435 } 436 437 setOperationAction(ISD::GlobalAddress, XLenVT, Custom); 438 setOperationAction(ISD::BlockAddress, XLenVT, Custom); 439 setOperationAction(ISD::ConstantPool, XLenVT, Custom); 440 setOperationAction(ISD::JumpTable, XLenVT, Custom); 441 442 setOperationAction(ISD::GlobalTLSAddress, XLenVT, Custom); 443 444 // TODO: On M-mode only targets, the cycle[h] CSR may not be present. 445 // Unfortunately this can't be determined just from the ISA naming string. 446 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, 447 Subtarget.is64Bit() ? Legal : Custom); 448 449 setOperationAction(ISD::TRAP, MVT::Other, Legal); 450 setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal); 451 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 452 if (Subtarget.is64Bit()) 453 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i32, Custom); 454 455 if (Subtarget.hasStdExtA()) { 456 setMaxAtomicSizeInBitsSupported(Subtarget.getXLen()); 457 setMinCmpXchgSizeInBits(32); 458 } else { 459 setMaxAtomicSizeInBitsSupported(0); 460 } 461 462 setBooleanContents(ZeroOrOneBooleanContent); 463 464 if (Subtarget.hasVInstructions()) { 465 setBooleanVectorContents(ZeroOrOneBooleanContent); 466 467 setOperationAction(ISD::VSCALE, XLenVT, Custom); 468 469 // RVV intrinsics may have illegal operands. 470 // We also need to custom legalize vmv.x.s. 471 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i8, Custom); 472 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i16, Custom); 473 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i8, Custom); 474 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i16, Custom); 475 if (Subtarget.is64Bit()) { 476 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i32, Custom); 477 } else { 478 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i64, Custom); 479 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i64, Custom); 480 } 481 482 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom); 483 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); 484 485 static const unsigned IntegerVPOps[] = { 486 ISD::VP_ADD, ISD::VP_SUB, ISD::VP_MUL, 487 ISD::VP_SDIV, ISD::VP_UDIV, ISD::VP_SREM, 488 ISD::VP_UREM, ISD::VP_AND, ISD::VP_OR, 489 ISD::VP_XOR, ISD::VP_ASHR, ISD::VP_LSHR, 490 ISD::VP_SHL, ISD::VP_REDUCE_ADD, ISD::VP_REDUCE_AND, 491 ISD::VP_REDUCE_OR, ISD::VP_REDUCE_XOR, ISD::VP_REDUCE_SMAX, 492 ISD::VP_REDUCE_SMIN, ISD::VP_REDUCE_UMAX, ISD::VP_REDUCE_UMIN, 493 ISD::VP_SELECT}; 494 495 static const unsigned FloatingPointVPOps[] = { 496 ISD::VP_FADD, ISD::VP_FSUB, ISD::VP_FMUL, 497 ISD::VP_FDIV, ISD::VP_REDUCE_FADD, ISD::VP_REDUCE_SEQ_FADD, 498 ISD::VP_REDUCE_FMIN, ISD::VP_REDUCE_FMAX, ISD::VP_SELECT}; 499 500 if (!Subtarget.is64Bit()) { 501 // We must custom-lower certain vXi64 operations on RV32 due to the vector 502 // element type being illegal. 503 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::i64, Custom); 504 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::i64, Custom); 505 506 setOperationAction(ISD::VECREDUCE_ADD, MVT::i64, Custom); 507 setOperationAction(ISD::VECREDUCE_AND, MVT::i64, Custom); 508 setOperationAction(ISD::VECREDUCE_OR, MVT::i64, Custom); 509 setOperationAction(ISD::VECREDUCE_XOR, MVT::i64, Custom); 510 setOperationAction(ISD::VECREDUCE_SMAX, MVT::i64, Custom); 511 setOperationAction(ISD::VECREDUCE_SMIN, MVT::i64, Custom); 512 setOperationAction(ISD::VECREDUCE_UMAX, MVT::i64, Custom); 513 setOperationAction(ISD::VECREDUCE_UMIN, MVT::i64, Custom); 514 515 setOperationAction(ISD::VP_REDUCE_ADD, MVT::i64, Custom); 516 setOperationAction(ISD::VP_REDUCE_AND, MVT::i64, Custom); 517 setOperationAction(ISD::VP_REDUCE_OR, MVT::i64, Custom); 518 setOperationAction(ISD::VP_REDUCE_XOR, MVT::i64, Custom); 519 setOperationAction(ISD::VP_REDUCE_SMAX, MVT::i64, Custom); 520 setOperationAction(ISD::VP_REDUCE_SMIN, MVT::i64, Custom); 521 setOperationAction(ISD::VP_REDUCE_UMAX, MVT::i64, Custom); 522 setOperationAction(ISD::VP_REDUCE_UMIN, MVT::i64, Custom); 523 } 524 525 for (MVT VT : BoolVecVTs) { 526 setOperationAction(ISD::SPLAT_VECTOR, VT, Custom); 527 528 // Mask VTs are custom-expanded into a series of standard nodes 529 setOperationAction(ISD::TRUNCATE, VT, Custom); 530 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 531 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 532 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 533 534 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 535 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 536 537 setOperationAction(ISD::SELECT, VT, Custom); 538 setOperationAction(ISD::SELECT_CC, VT, Expand); 539 setOperationAction(ISD::VSELECT, VT, Expand); 540 541 setOperationAction(ISD::VECREDUCE_AND, VT, Custom); 542 setOperationAction(ISD::VECREDUCE_OR, VT, Custom); 543 setOperationAction(ISD::VECREDUCE_XOR, VT, Custom); 544 545 setOperationAction(ISD::VP_REDUCE_AND, VT, Custom); 546 setOperationAction(ISD::VP_REDUCE_OR, VT, Custom); 547 setOperationAction(ISD::VP_REDUCE_XOR, VT, Custom); 548 549 // RVV has native int->float & float->int conversions where the 550 // element type sizes are within one power-of-two of each other. Any 551 // wider distances between type sizes have to be lowered as sequences 552 // which progressively narrow the gap in stages. 553 setOperationAction(ISD::SINT_TO_FP, VT, Custom); 554 setOperationAction(ISD::UINT_TO_FP, VT, Custom); 555 setOperationAction(ISD::FP_TO_SINT, VT, Custom); 556 setOperationAction(ISD::FP_TO_UINT, VT, Custom); 557 558 // Expand all extending loads to types larger than this, and truncating 559 // stores from types larger than this. 560 for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) { 561 setTruncStoreAction(OtherVT, VT, Expand); 562 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 563 setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand); 564 setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand); 565 } 566 } 567 568 for (MVT VT : IntVecVTs) { 569 if (VT.getVectorElementType() == MVT::i64 && 570 !Subtarget.hasVInstructionsI64()) 571 continue; 572 573 setOperationAction(ISD::SPLAT_VECTOR, VT, Legal); 574 setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom); 575 576 // Vectors implement MULHS/MULHU. 577 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 578 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 579 580 setOperationAction(ISD::SMIN, VT, Legal); 581 setOperationAction(ISD::SMAX, VT, Legal); 582 setOperationAction(ISD::UMIN, VT, Legal); 583 setOperationAction(ISD::UMAX, VT, Legal); 584 585 setOperationAction(ISD::ROTL, VT, Expand); 586 setOperationAction(ISD::ROTR, VT, Expand); 587 588 setOperationAction(ISD::CTTZ, VT, Expand); 589 setOperationAction(ISD::CTLZ, VT, Expand); 590 setOperationAction(ISD::CTPOP, VT, Expand); 591 592 setOperationAction(ISD::BSWAP, VT, Expand); 593 594 // Custom-lower extensions and truncations from/to mask types. 595 setOperationAction(ISD::ANY_EXTEND, VT, Custom); 596 setOperationAction(ISD::SIGN_EXTEND, VT, Custom); 597 setOperationAction(ISD::ZERO_EXTEND, VT, Custom); 598 599 // RVV has native int->float & float->int conversions where the 600 // element type sizes are within one power-of-two of each other. Any 601 // wider distances between type sizes have to be lowered as sequences 602 // which progressively narrow the gap in stages. 603 setOperationAction(ISD::SINT_TO_FP, VT, Custom); 604 setOperationAction(ISD::UINT_TO_FP, VT, Custom); 605 setOperationAction(ISD::FP_TO_SINT, VT, Custom); 606 setOperationAction(ISD::FP_TO_UINT, VT, Custom); 607 608 setOperationAction(ISD::SADDSAT, VT, Legal); 609 setOperationAction(ISD::UADDSAT, VT, Legal); 610 setOperationAction(ISD::SSUBSAT, VT, Legal); 611 setOperationAction(ISD::USUBSAT, VT, Legal); 612 613 // Integer VTs are lowered as a series of "RISCVISD::TRUNCATE_VECTOR_VL" 614 // nodes which truncate by one power of two at a time. 615 setOperationAction(ISD::TRUNCATE, VT, Custom); 616 617 // Custom-lower insert/extract operations to simplify patterns. 618 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 619 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 620 621 // Custom-lower reduction operations to set up the corresponding custom 622 // nodes' operands. 623 setOperationAction(ISD::VECREDUCE_ADD, VT, Custom); 624 setOperationAction(ISD::VECREDUCE_AND, VT, Custom); 625 setOperationAction(ISD::VECREDUCE_OR, VT, Custom); 626 setOperationAction(ISD::VECREDUCE_XOR, VT, Custom); 627 setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom); 628 setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom); 629 setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom); 630 setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom); 631 632 for (unsigned VPOpc : IntegerVPOps) 633 setOperationAction(VPOpc, VT, Custom); 634 635 setOperationAction(ISD::LOAD, VT, Custom); 636 setOperationAction(ISD::STORE, VT, Custom); 637 638 setOperationAction(ISD::MLOAD, VT, Custom); 639 setOperationAction(ISD::MSTORE, VT, Custom); 640 setOperationAction(ISD::MGATHER, VT, Custom); 641 setOperationAction(ISD::MSCATTER, VT, Custom); 642 643 setOperationAction(ISD::VP_LOAD, VT, Custom); 644 setOperationAction(ISD::VP_STORE, VT, Custom); 645 setOperationAction(ISD::VP_GATHER, VT, Custom); 646 setOperationAction(ISD::VP_SCATTER, VT, Custom); 647 648 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 649 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 650 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 651 652 setOperationAction(ISD::SELECT, VT, Custom); 653 setOperationAction(ISD::SELECT_CC, VT, Expand); 654 655 setOperationAction(ISD::STEP_VECTOR, VT, Custom); 656 setOperationAction(ISD::VECTOR_REVERSE, VT, Custom); 657 658 for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) { 659 setTruncStoreAction(VT, OtherVT, Expand); 660 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 661 setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand); 662 setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand); 663 } 664 665 // Lower CTLZ_ZERO_UNDEF and CTTZ_ZERO_UNDEF if we have a floating point 666 // type that can represent the value exactly. 667 if (VT.getVectorElementType() != MVT::i64) { 668 MVT FloatEltVT = 669 VT.getVectorElementType() == MVT::i32 ? MVT::f64 : MVT::f32; 670 EVT FloatVT = MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount()); 671 if (isTypeLegal(FloatVT)) { 672 setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Custom); 673 setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Custom); 674 } 675 } 676 } 677 678 // Expand various CCs to best match the RVV ISA, which natively supports UNE 679 // but no other unordered comparisons, and supports all ordered comparisons 680 // except ONE. Additionally, we expand GT,OGT,GE,OGE for optimization 681 // purposes; they are expanded to their swapped-operand CCs (LT,OLT,LE,OLE), 682 // and we pattern-match those back to the "original", swapping operands once 683 // more. This way we catch both operations and both "vf" and "fv" forms with 684 // fewer patterns. 685 static const ISD::CondCode VFPCCToExpand[] = { 686 ISD::SETO, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT, 687 ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUO, 688 ISD::SETGT, ISD::SETOGT, ISD::SETGE, ISD::SETOGE, 689 }; 690 691 // Sets common operation actions on RVV floating-point vector types. 692 const auto SetCommonVFPActions = [&](MVT VT) { 693 setOperationAction(ISD::SPLAT_VECTOR, VT, Legal); 694 // RVV has native FP_ROUND & FP_EXTEND conversions where the element type 695 // sizes are within one power-of-two of each other. Therefore conversions 696 // between vXf16 and vXf64 must be lowered as sequences which convert via 697 // vXf32. 698 setOperationAction(ISD::FP_ROUND, VT, Custom); 699 setOperationAction(ISD::FP_EXTEND, VT, Custom); 700 // Custom-lower insert/extract operations to simplify patterns. 701 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 702 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 703 // Expand various condition codes (explained above). 704 for (auto CC : VFPCCToExpand) 705 setCondCodeAction(CC, VT, Expand); 706 707 setOperationAction(ISD::FMINNUM, VT, Legal); 708 setOperationAction(ISD::FMAXNUM, VT, Legal); 709 710 setOperationAction(ISD::FTRUNC, VT, Custom); 711 setOperationAction(ISD::FCEIL, VT, Custom); 712 setOperationAction(ISD::FFLOOR, VT, Custom); 713 714 setOperationAction(ISD::VECREDUCE_FADD, VT, Custom); 715 setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom); 716 setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom); 717 setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom); 718 719 setOperationAction(ISD::FCOPYSIGN, VT, Legal); 720 721 setOperationAction(ISD::LOAD, VT, Custom); 722 setOperationAction(ISD::STORE, VT, Custom); 723 724 setOperationAction(ISD::MLOAD, VT, Custom); 725 setOperationAction(ISD::MSTORE, VT, Custom); 726 setOperationAction(ISD::MGATHER, VT, Custom); 727 setOperationAction(ISD::MSCATTER, VT, Custom); 728 729 setOperationAction(ISD::VP_LOAD, VT, Custom); 730 setOperationAction(ISD::VP_STORE, VT, Custom); 731 setOperationAction(ISD::VP_GATHER, VT, Custom); 732 setOperationAction(ISD::VP_SCATTER, VT, Custom); 733 734 setOperationAction(ISD::SELECT, VT, Custom); 735 setOperationAction(ISD::SELECT_CC, VT, Expand); 736 737 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 738 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 739 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 740 741 setOperationAction(ISD::VECTOR_REVERSE, VT, Custom); 742 743 for (unsigned VPOpc : FloatingPointVPOps) 744 setOperationAction(VPOpc, VT, Custom); 745 }; 746 747 // Sets common extload/truncstore actions on RVV floating-point vector 748 // types. 749 const auto SetCommonVFPExtLoadTruncStoreActions = 750 [&](MVT VT, ArrayRef<MVT::SimpleValueType> SmallerVTs) { 751 for (auto SmallVT : SmallerVTs) { 752 setTruncStoreAction(VT, SmallVT, Expand); 753 setLoadExtAction(ISD::EXTLOAD, VT, SmallVT, Expand); 754 } 755 }; 756 757 if (Subtarget.hasVInstructionsF16()) 758 for (MVT VT : F16VecVTs) 759 SetCommonVFPActions(VT); 760 761 for (MVT VT : F32VecVTs) { 762 if (Subtarget.hasVInstructionsF32()) 763 SetCommonVFPActions(VT); 764 SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs); 765 } 766 767 for (MVT VT : F64VecVTs) { 768 if (Subtarget.hasVInstructionsF64()) 769 SetCommonVFPActions(VT); 770 SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs); 771 SetCommonVFPExtLoadTruncStoreActions(VT, F32VecVTs); 772 } 773 774 if (Subtarget.useRVVForFixedLengthVectors()) { 775 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) { 776 if (!useRVVForFixedLengthVectorVT(VT)) 777 continue; 778 779 // By default everything must be expanded. 780 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) 781 setOperationAction(Op, VT, Expand); 782 for (MVT OtherVT : MVT::integer_fixedlen_vector_valuetypes()) { 783 setTruncStoreAction(VT, OtherVT, Expand); 784 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 785 setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand); 786 setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand); 787 } 788 789 // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed. 790 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 791 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 792 793 setOperationAction(ISD::BUILD_VECTOR, VT, Custom); 794 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 795 796 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 797 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 798 799 setOperationAction(ISD::LOAD, VT, Custom); 800 setOperationAction(ISD::STORE, VT, Custom); 801 802 setOperationAction(ISD::SETCC, VT, Custom); 803 804 setOperationAction(ISD::SELECT, VT, Custom); 805 806 setOperationAction(ISD::TRUNCATE, VT, Custom); 807 808 setOperationAction(ISD::BITCAST, VT, Custom); 809 810 setOperationAction(ISD::VECREDUCE_AND, VT, Custom); 811 setOperationAction(ISD::VECREDUCE_OR, VT, Custom); 812 setOperationAction(ISD::VECREDUCE_XOR, VT, Custom); 813 814 setOperationAction(ISD::VP_REDUCE_AND, VT, Custom); 815 setOperationAction(ISD::VP_REDUCE_OR, VT, Custom); 816 setOperationAction(ISD::VP_REDUCE_XOR, VT, Custom); 817 818 setOperationAction(ISD::SINT_TO_FP, VT, Custom); 819 setOperationAction(ISD::UINT_TO_FP, VT, Custom); 820 setOperationAction(ISD::FP_TO_SINT, VT, Custom); 821 setOperationAction(ISD::FP_TO_UINT, VT, Custom); 822 823 // Operations below are different for between masks and other vectors. 824 if (VT.getVectorElementType() == MVT::i1) { 825 setOperationAction(ISD::AND, VT, Custom); 826 setOperationAction(ISD::OR, VT, Custom); 827 setOperationAction(ISD::XOR, VT, Custom); 828 continue; 829 } 830 831 // Use SPLAT_VECTOR to prevent type legalization from destroying the 832 // splats when type legalizing i64 scalar on RV32. 833 // FIXME: Use SPLAT_VECTOR for all types? DAGCombine probably needs 834 // improvements first. 835 if (!Subtarget.is64Bit() && VT.getVectorElementType() == MVT::i64) { 836 setOperationAction(ISD::SPLAT_VECTOR, VT, Custom); 837 setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom); 838 } 839 840 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); 841 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 842 843 setOperationAction(ISD::MLOAD, VT, Custom); 844 setOperationAction(ISD::MSTORE, VT, Custom); 845 setOperationAction(ISD::MGATHER, VT, Custom); 846 setOperationAction(ISD::MSCATTER, VT, Custom); 847 848 setOperationAction(ISD::VP_LOAD, VT, Custom); 849 setOperationAction(ISD::VP_STORE, VT, Custom); 850 setOperationAction(ISD::VP_GATHER, VT, Custom); 851 setOperationAction(ISD::VP_SCATTER, VT, Custom); 852 853 setOperationAction(ISD::ADD, VT, Custom); 854 setOperationAction(ISD::MUL, VT, Custom); 855 setOperationAction(ISD::SUB, VT, Custom); 856 setOperationAction(ISD::AND, VT, Custom); 857 setOperationAction(ISD::OR, VT, Custom); 858 setOperationAction(ISD::XOR, VT, Custom); 859 setOperationAction(ISD::SDIV, VT, Custom); 860 setOperationAction(ISD::SREM, VT, Custom); 861 setOperationAction(ISD::UDIV, VT, Custom); 862 setOperationAction(ISD::UREM, VT, Custom); 863 setOperationAction(ISD::SHL, VT, Custom); 864 setOperationAction(ISD::SRA, VT, Custom); 865 setOperationAction(ISD::SRL, VT, Custom); 866 867 setOperationAction(ISD::SMIN, VT, Custom); 868 setOperationAction(ISD::SMAX, VT, Custom); 869 setOperationAction(ISD::UMIN, VT, Custom); 870 setOperationAction(ISD::UMAX, VT, Custom); 871 setOperationAction(ISD::ABS, VT, Custom); 872 873 setOperationAction(ISD::MULHS, VT, Custom); 874 setOperationAction(ISD::MULHU, VT, Custom); 875 876 setOperationAction(ISD::SADDSAT, VT, Custom); 877 setOperationAction(ISD::UADDSAT, VT, Custom); 878 setOperationAction(ISD::SSUBSAT, VT, Custom); 879 setOperationAction(ISD::USUBSAT, VT, Custom); 880 881 setOperationAction(ISD::VSELECT, VT, Custom); 882 setOperationAction(ISD::SELECT_CC, VT, Expand); 883 884 setOperationAction(ISD::ANY_EXTEND, VT, Custom); 885 setOperationAction(ISD::SIGN_EXTEND, VT, Custom); 886 setOperationAction(ISD::ZERO_EXTEND, VT, Custom); 887 888 // Custom-lower reduction operations to set up the corresponding custom 889 // nodes' operands. 890 setOperationAction(ISD::VECREDUCE_ADD, VT, Custom); 891 setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom); 892 setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom); 893 setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom); 894 setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom); 895 896 for (unsigned VPOpc : IntegerVPOps) 897 setOperationAction(VPOpc, VT, Custom); 898 899 // Lower CTLZ_ZERO_UNDEF and CTTZ_ZERO_UNDEF if we have a floating point 900 // type that can represent the value exactly. 901 if (VT.getVectorElementType() != MVT::i64) { 902 MVT FloatEltVT = 903 VT.getVectorElementType() == MVT::i32 ? MVT::f64 : MVT::f32; 904 EVT FloatVT = 905 MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount()); 906 if (isTypeLegal(FloatVT)) { 907 setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Custom); 908 setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Custom); 909 } 910 } 911 } 912 913 for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) { 914 if (!useRVVForFixedLengthVectorVT(VT)) 915 continue; 916 917 // By default everything must be expanded. 918 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) 919 setOperationAction(Op, VT, Expand); 920 for (MVT OtherVT : MVT::fp_fixedlen_vector_valuetypes()) { 921 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 922 setTruncStoreAction(VT, OtherVT, Expand); 923 } 924 925 // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed. 926 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 927 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 928 929 setOperationAction(ISD::BUILD_VECTOR, VT, Custom); 930 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 931 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); 932 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 933 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 934 935 setOperationAction(ISD::LOAD, VT, Custom); 936 setOperationAction(ISD::STORE, VT, Custom); 937 setOperationAction(ISD::MLOAD, VT, Custom); 938 setOperationAction(ISD::MSTORE, VT, Custom); 939 setOperationAction(ISD::MGATHER, VT, Custom); 940 setOperationAction(ISD::MSCATTER, VT, Custom); 941 942 setOperationAction(ISD::VP_LOAD, VT, Custom); 943 setOperationAction(ISD::VP_STORE, VT, Custom); 944 setOperationAction(ISD::VP_GATHER, VT, Custom); 945 setOperationAction(ISD::VP_SCATTER, VT, Custom); 946 947 setOperationAction(ISD::FADD, VT, Custom); 948 setOperationAction(ISD::FSUB, VT, Custom); 949 setOperationAction(ISD::FMUL, VT, Custom); 950 setOperationAction(ISD::FDIV, VT, Custom); 951 setOperationAction(ISD::FNEG, VT, Custom); 952 setOperationAction(ISD::FABS, VT, Custom); 953 setOperationAction(ISD::FCOPYSIGN, VT, Custom); 954 setOperationAction(ISD::FSQRT, VT, Custom); 955 setOperationAction(ISD::FMA, VT, Custom); 956 setOperationAction(ISD::FMINNUM, VT, Custom); 957 setOperationAction(ISD::FMAXNUM, VT, Custom); 958 959 setOperationAction(ISD::FP_ROUND, VT, Custom); 960 setOperationAction(ISD::FP_EXTEND, VT, Custom); 961 962 setOperationAction(ISD::FTRUNC, VT, Custom); 963 setOperationAction(ISD::FCEIL, VT, Custom); 964 setOperationAction(ISD::FFLOOR, VT, Custom); 965 966 for (auto CC : VFPCCToExpand) 967 setCondCodeAction(CC, VT, Expand); 968 969 setOperationAction(ISD::VSELECT, VT, Custom); 970 setOperationAction(ISD::SELECT, VT, Custom); 971 setOperationAction(ISD::SELECT_CC, VT, Expand); 972 973 setOperationAction(ISD::BITCAST, VT, Custom); 974 975 setOperationAction(ISD::VECREDUCE_FADD, VT, Custom); 976 setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom); 977 setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom); 978 setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom); 979 980 for (unsigned VPOpc : FloatingPointVPOps) 981 setOperationAction(VPOpc, VT, Custom); 982 } 983 984 // Custom-legalize bitcasts from fixed-length vectors to scalar types. 985 setOperationAction(ISD::BITCAST, MVT::i8, Custom); 986 setOperationAction(ISD::BITCAST, MVT::i16, Custom); 987 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 988 setOperationAction(ISD::BITCAST, MVT::i64, Custom); 989 setOperationAction(ISD::BITCAST, MVT::f16, Custom); 990 setOperationAction(ISD::BITCAST, MVT::f32, Custom); 991 setOperationAction(ISD::BITCAST, MVT::f64, Custom); 992 } 993 } 994 995 // Function alignments. 996 const Align FunctionAlignment(Subtarget.hasStdExtC() ? 2 : 4); 997 setMinFunctionAlignment(FunctionAlignment); 998 setPrefFunctionAlignment(FunctionAlignment); 999 1000 setMinimumJumpTableEntries(5); 1001 1002 // Jumps are expensive, compared to logic 1003 setJumpIsExpensive(); 1004 1005 setTargetDAGCombine(ISD::ADD); 1006 setTargetDAGCombine(ISD::SUB); 1007 setTargetDAGCombine(ISD::AND); 1008 setTargetDAGCombine(ISD::OR); 1009 setTargetDAGCombine(ISD::XOR); 1010 setTargetDAGCombine(ISD::ANY_EXTEND); 1011 setTargetDAGCombine(ISD::ZERO_EXTEND); 1012 if (Subtarget.hasVInstructions()) { 1013 setTargetDAGCombine(ISD::FCOPYSIGN); 1014 setTargetDAGCombine(ISD::MGATHER); 1015 setTargetDAGCombine(ISD::MSCATTER); 1016 setTargetDAGCombine(ISD::VP_GATHER); 1017 setTargetDAGCombine(ISD::VP_SCATTER); 1018 setTargetDAGCombine(ISD::SRA); 1019 setTargetDAGCombine(ISD::SRL); 1020 setTargetDAGCombine(ISD::SHL); 1021 setTargetDAGCombine(ISD::STORE); 1022 } 1023 } 1024 1025 EVT RISCVTargetLowering::getSetCCResultType(const DataLayout &DL, 1026 LLVMContext &Context, 1027 EVT VT) const { 1028 if (!VT.isVector()) 1029 return getPointerTy(DL); 1030 if (Subtarget.hasVInstructions() && 1031 (VT.isScalableVector() || Subtarget.useRVVForFixedLengthVectors())) 1032 return EVT::getVectorVT(Context, MVT::i1, VT.getVectorElementCount()); 1033 return VT.changeVectorElementTypeToInteger(); 1034 } 1035 1036 MVT RISCVTargetLowering::getVPExplicitVectorLengthTy() const { 1037 return Subtarget.getXLenVT(); 1038 } 1039 1040 bool RISCVTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 1041 const CallInst &I, 1042 MachineFunction &MF, 1043 unsigned Intrinsic) const { 1044 auto &DL = I.getModule()->getDataLayout(); 1045 switch (Intrinsic) { 1046 default: 1047 return false; 1048 case Intrinsic::riscv_masked_atomicrmw_xchg_i32: 1049 case Intrinsic::riscv_masked_atomicrmw_add_i32: 1050 case Intrinsic::riscv_masked_atomicrmw_sub_i32: 1051 case Intrinsic::riscv_masked_atomicrmw_nand_i32: 1052 case Intrinsic::riscv_masked_atomicrmw_max_i32: 1053 case Intrinsic::riscv_masked_atomicrmw_min_i32: 1054 case Intrinsic::riscv_masked_atomicrmw_umax_i32: 1055 case Intrinsic::riscv_masked_atomicrmw_umin_i32: 1056 case Intrinsic::riscv_masked_cmpxchg_i32: { 1057 PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType()); 1058 Info.opc = ISD::INTRINSIC_W_CHAIN; 1059 Info.memVT = MVT::getVT(PtrTy->getElementType()); 1060 Info.ptrVal = I.getArgOperand(0); 1061 Info.offset = 0; 1062 Info.align = Align(4); 1063 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore | 1064 MachineMemOperand::MOVolatile; 1065 return true; 1066 } 1067 case Intrinsic::riscv_masked_strided_load: 1068 Info.opc = ISD::INTRINSIC_W_CHAIN; 1069 Info.ptrVal = I.getArgOperand(1); 1070 Info.memVT = getValueType(DL, I.getType()->getScalarType()); 1071 Info.align = Align(DL.getTypeSizeInBits(I.getType()->getScalarType()) / 8); 1072 Info.size = MemoryLocation::UnknownSize; 1073 Info.flags |= MachineMemOperand::MOLoad; 1074 return true; 1075 case Intrinsic::riscv_masked_strided_store: 1076 Info.opc = ISD::INTRINSIC_VOID; 1077 Info.ptrVal = I.getArgOperand(1); 1078 Info.memVT = 1079 getValueType(DL, I.getArgOperand(0)->getType()->getScalarType()); 1080 Info.align = Align( 1081 DL.getTypeSizeInBits(I.getArgOperand(0)->getType()->getScalarType()) / 1082 8); 1083 Info.size = MemoryLocation::UnknownSize; 1084 Info.flags |= MachineMemOperand::MOStore; 1085 return true; 1086 } 1087 } 1088 1089 bool RISCVTargetLowering::isLegalAddressingMode(const DataLayout &DL, 1090 const AddrMode &AM, Type *Ty, 1091 unsigned AS, 1092 Instruction *I) const { 1093 // No global is ever allowed as a base. 1094 if (AM.BaseGV) 1095 return false; 1096 1097 // Require a 12-bit signed offset. 1098 if (!isInt<12>(AM.BaseOffs)) 1099 return false; 1100 1101 switch (AM.Scale) { 1102 case 0: // "r+i" or just "i", depending on HasBaseReg. 1103 break; 1104 case 1: 1105 if (!AM.HasBaseReg) // allow "r+i". 1106 break; 1107 return false; // disallow "r+r" or "r+r+i". 1108 default: 1109 return false; 1110 } 1111 1112 return true; 1113 } 1114 1115 bool RISCVTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 1116 return isInt<12>(Imm); 1117 } 1118 1119 bool RISCVTargetLowering::isLegalAddImmediate(int64_t Imm) const { 1120 return isInt<12>(Imm); 1121 } 1122 1123 // On RV32, 64-bit integers are split into their high and low parts and held 1124 // in two different registers, so the trunc is free since the low register can 1125 // just be used. 1126 bool RISCVTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const { 1127 if (Subtarget.is64Bit() || !SrcTy->isIntegerTy() || !DstTy->isIntegerTy()) 1128 return false; 1129 unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); 1130 unsigned DestBits = DstTy->getPrimitiveSizeInBits(); 1131 return (SrcBits == 64 && DestBits == 32); 1132 } 1133 1134 bool RISCVTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const { 1135 if (Subtarget.is64Bit() || SrcVT.isVector() || DstVT.isVector() || 1136 !SrcVT.isInteger() || !DstVT.isInteger()) 1137 return false; 1138 unsigned SrcBits = SrcVT.getSizeInBits(); 1139 unsigned DestBits = DstVT.getSizeInBits(); 1140 return (SrcBits == 64 && DestBits == 32); 1141 } 1142 1143 bool RISCVTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 1144 // Zexts are free if they can be combined with a load. 1145 if (auto *LD = dyn_cast<LoadSDNode>(Val)) { 1146 EVT MemVT = LD->getMemoryVT(); 1147 if ((MemVT == MVT::i8 || MemVT == MVT::i16 || 1148 (Subtarget.is64Bit() && MemVT == MVT::i32)) && 1149 (LD->getExtensionType() == ISD::NON_EXTLOAD || 1150 LD->getExtensionType() == ISD::ZEXTLOAD)) 1151 return true; 1152 } 1153 1154 return TargetLowering::isZExtFree(Val, VT2); 1155 } 1156 1157 bool RISCVTargetLowering::isSExtCheaperThanZExt(EVT SrcVT, EVT DstVT) const { 1158 return Subtarget.is64Bit() && SrcVT == MVT::i32 && DstVT == MVT::i64; 1159 } 1160 1161 bool RISCVTargetLowering::isCheapToSpeculateCttz() const { 1162 return Subtarget.hasStdExtZbb(); 1163 } 1164 1165 bool RISCVTargetLowering::isCheapToSpeculateCtlz() const { 1166 return Subtarget.hasStdExtZbb(); 1167 } 1168 1169 bool RISCVTargetLowering::hasAndNot(SDValue Y) const { 1170 EVT VT = Y.getValueType(); 1171 1172 // FIXME: Support vectors once we have tests. 1173 if (VT.isVector()) 1174 return false; 1175 1176 return Subtarget.hasStdExtZbb() && !isa<ConstantSDNode>(Y); 1177 } 1178 1179 /// Check if sinking \p I's operands to I's basic block is profitable, because 1180 /// the operands can be folded into a target instruction, e.g. 1181 /// splats of scalars can fold into vector instructions. 1182 bool RISCVTargetLowering::shouldSinkOperands( 1183 Instruction *I, SmallVectorImpl<Use *> &Ops) const { 1184 using namespace llvm::PatternMatch; 1185 1186 if (!I->getType()->isVectorTy() || !Subtarget.hasVInstructions()) 1187 return false; 1188 1189 auto IsSinker = [&](Instruction *I, int Operand) { 1190 switch (I->getOpcode()) { 1191 case Instruction::Add: 1192 case Instruction::Sub: 1193 case Instruction::Mul: 1194 case Instruction::And: 1195 case Instruction::Or: 1196 case Instruction::Xor: 1197 case Instruction::FAdd: 1198 case Instruction::FSub: 1199 case Instruction::FMul: 1200 case Instruction::FDiv: 1201 case Instruction::ICmp: 1202 case Instruction::FCmp: 1203 return true; 1204 case Instruction::Shl: 1205 case Instruction::LShr: 1206 case Instruction::AShr: 1207 case Instruction::UDiv: 1208 case Instruction::SDiv: 1209 case Instruction::URem: 1210 case Instruction::SRem: 1211 return Operand == 1; 1212 case Instruction::Call: 1213 if (auto *II = dyn_cast<IntrinsicInst>(I)) { 1214 switch (II->getIntrinsicID()) { 1215 case Intrinsic::fma: 1216 return Operand == 0 || Operand == 1; 1217 default: 1218 return false; 1219 } 1220 } 1221 return false; 1222 default: 1223 return false; 1224 } 1225 }; 1226 1227 for (auto OpIdx : enumerate(I->operands())) { 1228 if (!IsSinker(I, OpIdx.index())) 1229 continue; 1230 1231 Instruction *Op = dyn_cast<Instruction>(OpIdx.value().get()); 1232 // Make sure we are not already sinking this operand 1233 if (!Op || any_of(Ops, [&](Use *U) { return U->get() == Op; })) 1234 continue; 1235 1236 // We are looking for a splat that can be sunk. 1237 if (!match(Op, m_Shuffle(m_InsertElt(m_Undef(), m_Value(), m_ZeroInt()), 1238 m_Undef(), m_ZeroMask()))) 1239 continue; 1240 1241 // All uses of the shuffle should be sunk to avoid duplicating it across gpr 1242 // and vector registers 1243 for (Use &U : Op->uses()) { 1244 Instruction *Insn = cast<Instruction>(U.getUser()); 1245 if (!IsSinker(Insn, U.getOperandNo())) 1246 return false; 1247 } 1248 1249 Ops.push_back(&Op->getOperandUse(0)); 1250 Ops.push_back(&OpIdx.value()); 1251 } 1252 return true; 1253 } 1254 1255 bool RISCVTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 1256 bool ForCodeSize) const { 1257 // FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin. 1258 if (VT == MVT::f16 && !Subtarget.hasStdExtZfh()) 1259 return false; 1260 if (VT == MVT::f32 && !Subtarget.hasStdExtF()) 1261 return false; 1262 if (VT == MVT::f64 && !Subtarget.hasStdExtD()) 1263 return false; 1264 if (Imm.isNegZero()) 1265 return false; 1266 return Imm.isZero(); 1267 } 1268 1269 bool RISCVTargetLowering::hasBitPreservingFPLogic(EVT VT) const { 1270 return (VT == MVT::f16 && Subtarget.hasStdExtZfh()) || 1271 (VT == MVT::f32 && Subtarget.hasStdExtF()) || 1272 (VT == MVT::f64 && Subtarget.hasStdExtD()); 1273 } 1274 1275 MVT RISCVTargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context, 1276 CallingConv::ID CC, 1277 EVT VT) const { 1278 // Use f32 to pass f16 if it is legal and Zfh is not enabled. 1279 // We might still end up using a GPR but that will be decided based on ABI. 1280 // FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin. 1281 if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh()) 1282 return MVT::f32; 1283 1284 return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT); 1285 } 1286 1287 unsigned RISCVTargetLowering::getNumRegistersForCallingConv(LLVMContext &Context, 1288 CallingConv::ID CC, 1289 EVT VT) const { 1290 // Use f32 to pass f16 if it is legal and Zfh is not enabled. 1291 // We might still end up using a GPR but that will be decided based on ABI. 1292 // FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin. 1293 if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh()) 1294 return 1; 1295 1296 return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT); 1297 } 1298 1299 // Changes the condition code and swaps operands if necessary, so the SetCC 1300 // operation matches one of the comparisons supported directly by branches 1301 // in the RISC-V ISA. May adjust compares to favor compare with 0 over compare 1302 // with 1/-1. 1303 static void translateSetCCForBranch(const SDLoc &DL, SDValue &LHS, SDValue &RHS, 1304 ISD::CondCode &CC, SelectionDAG &DAG) { 1305 // Convert X > -1 to X >= 0. 1306 if (CC == ISD::SETGT && isAllOnesConstant(RHS)) { 1307 RHS = DAG.getConstant(0, DL, RHS.getValueType()); 1308 CC = ISD::SETGE; 1309 return; 1310 } 1311 // Convert X < 1 to 0 >= X. 1312 if (CC == ISD::SETLT && isOneConstant(RHS)) { 1313 RHS = LHS; 1314 LHS = DAG.getConstant(0, DL, RHS.getValueType()); 1315 CC = ISD::SETGE; 1316 return; 1317 } 1318 1319 switch (CC) { 1320 default: 1321 break; 1322 case ISD::SETGT: 1323 case ISD::SETLE: 1324 case ISD::SETUGT: 1325 case ISD::SETULE: 1326 CC = ISD::getSetCCSwappedOperands(CC); 1327 std::swap(LHS, RHS); 1328 break; 1329 } 1330 } 1331 1332 RISCVII::VLMUL RISCVTargetLowering::getLMUL(MVT VT) { 1333 assert(VT.isScalableVector() && "Expecting a scalable vector type"); 1334 unsigned KnownSize = VT.getSizeInBits().getKnownMinValue(); 1335 if (VT.getVectorElementType() == MVT::i1) 1336 KnownSize *= 8; 1337 1338 switch (KnownSize) { 1339 default: 1340 llvm_unreachable("Invalid LMUL."); 1341 case 8: 1342 return RISCVII::VLMUL::LMUL_F8; 1343 case 16: 1344 return RISCVII::VLMUL::LMUL_F4; 1345 case 32: 1346 return RISCVII::VLMUL::LMUL_F2; 1347 case 64: 1348 return RISCVII::VLMUL::LMUL_1; 1349 case 128: 1350 return RISCVII::VLMUL::LMUL_2; 1351 case 256: 1352 return RISCVII::VLMUL::LMUL_4; 1353 case 512: 1354 return RISCVII::VLMUL::LMUL_8; 1355 } 1356 } 1357 1358 unsigned RISCVTargetLowering::getRegClassIDForLMUL(RISCVII::VLMUL LMul) { 1359 switch (LMul) { 1360 default: 1361 llvm_unreachable("Invalid LMUL."); 1362 case RISCVII::VLMUL::LMUL_F8: 1363 case RISCVII::VLMUL::LMUL_F4: 1364 case RISCVII::VLMUL::LMUL_F2: 1365 case RISCVII::VLMUL::LMUL_1: 1366 return RISCV::VRRegClassID; 1367 case RISCVII::VLMUL::LMUL_2: 1368 return RISCV::VRM2RegClassID; 1369 case RISCVII::VLMUL::LMUL_4: 1370 return RISCV::VRM4RegClassID; 1371 case RISCVII::VLMUL::LMUL_8: 1372 return RISCV::VRM8RegClassID; 1373 } 1374 } 1375 1376 unsigned RISCVTargetLowering::getSubregIndexByMVT(MVT VT, unsigned Index) { 1377 RISCVII::VLMUL LMUL = getLMUL(VT); 1378 if (LMUL == RISCVII::VLMUL::LMUL_F8 || 1379 LMUL == RISCVII::VLMUL::LMUL_F4 || 1380 LMUL == RISCVII::VLMUL::LMUL_F2 || 1381 LMUL == RISCVII::VLMUL::LMUL_1) { 1382 static_assert(RISCV::sub_vrm1_7 == RISCV::sub_vrm1_0 + 7, 1383 "Unexpected subreg numbering"); 1384 return RISCV::sub_vrm1_0 + Index; 1385 } 1386 if (LMUL == RISCVII::VLMUL::LMUL_2) { 1387 static_assert(RISCV::sub_vrm2_3 == RISCV::sub_vrm2_0 + 3, 1388 "Unexpected subreg numbering"); 1389 return RISCV::sub_vrm2_0 + Index; 1390 } 1391 if (LMUL == RISCVII::VLMUL::LMUL_4) { 1392 static_assert(RISCV::sub_vrm4_1 == RISCV::sub_vrm4_0 + 1, 1393 "Unexpected subreg numbering"); 1394 return RISCV::sub_vrm4_0 + Index; 1395 } 1396 llvm_unreachable("Invalid vector type."); 1397 } 1398 1399 unsigned RISCVTargetLowering::getRegClassIDForVecVT(MVT VT) { 1400 if (VT.getVectorElementType() == MVT::i1) 1401 return RISCV::VRRegClassID; 1402 return getRegClassIDForLMUL(getLMUL(VT)); 1403 } 1404 1405 // Attempt to decompose a subvector insert/extract between VecVT and 1406 // SubVecVT via subregister indices. Returns the subregister index that 1407 // can perform the subvector insert/extract with the given element index, as 1408 // well as the index corresponding to any leftover subvectors that must be 1409 // further inserted/extracted within the register class for SubVecVT. 1410 std::pair<unsigned, unsigned> 1411 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( 1412 MVT VecVT, MVT SubVecVT, unsigned InsertExtractIdx, 1413 const RISCVRegisterInfo *TRI) { 1414 static_assert((RISCV::VRM8RegClassID > RISCV::VRM4RegClassID && 1415 RISCV::VRM4RegClassID > RISCV::VRM2RegClassID && 1416 RISCV::VRM2RegClassID > RISCV::VRRegClassID), 1417 "Register classes not ordered"); 1418 unsigned VecRegClassID = getRegClassIDForVecVT(VecVT); 1419 unsigned SubRegClassID = getRegClassIDForVecVT(SubVecVT); 1420 // Try to compose a subregister index that takes us from the incoming 1421 // LMUL>1 register class down to the outgoing one. At each step we half 1422 // the LMUL: 1423 // nxv16i32@12 -> nxv2i32: sub_vrm4_1_then_sub_vrm2_1_then_sub_vrm1_0 1424 // Note that this is not guaranteed to find a subregister index, such as 1425 // when we are extracting from one VR type to another. 1426 unsigned SubRegIdx = RISCV::NoSubRegister; 1427 for (const unsigned RCID : 1428 {RISCV::VRM4RegClassID, RISCV::VRM2RegClassID, RISCV::VRRegClassID}) 1429 if (VecRegClassID > RCID && SubRegClassID <= RCID) { 1430 VecVT = VecVT.getHalfNumVectorElementsVT(); 1431 bool IsHi = 1432 InsertExtractIdx >= VecVT.getVectorElementCount().getKnownMinValue(); 1433 SubRegIdx = TRI->composeSubRegIndices(SubRegIdx, 1434 getSubregIndexByMVT(VecVT, IsHi)); 1435 if (IsHi) 1436 InsertExtractIdx -= VecVT.getVectorElementCount().getKnownMinValue(); 1437 } 1438 return {SubRegIdx, InsertExtractIdx}; 1439 } 1440 1441 // Permit combining of mask vectors as BUILD_VECTOR never expands to scalar 1442 // stores for those types. 1443 bool RISCVTargetLowering::mergeStoresAfterLegalization(EVT VT) const { 1444 return !Subtarget.useRVVForFixedLengthVectors() || 1445 (VT.isFixedLengthVector() && VT.getVectorElementType() == MVT::i1); 1446 } 1447 1448 bool RISCVTargetLowering::isLegalElementTypeForRVV(Type *ScalarTy) const { 1449 if (ScalarTy->isPointerTy()) 1450 return true; 1451 1452 if (ScalarTy->isIntegerTy(8) || ScalarTy->isIntegerTy(16) || 1453 ScalarTy->isIntegerTy(32)) 1454 return true; 1455 1456 if (ScalarTy->isIntegerTy(64)) 1457 return Subtarget.hasVInstructionsI64(); 1458 1459 if (ScalarTy->isHalfTy()) 1460 return Subtarget.hasVInstructionsF16(); 1461 if (ScalarTy->isFloatTy()) 1462 return Subtarget.hasVInstructionsF32(); 1463 if (ScalarTy->isDoubleTy()) 1464 return Subtarget.hasVInstructionsF64(); 1465 1466 return false; 1467 } 1468 1469 static bool useRVVForFixedLengthVectorVT(MVT VT, 1470 const RISCVSubtarget &Subtarget) { 1471 assert(VT.isFixedLengthVector() && "Expected a fixed length vector type!"); 1472 if (!Subtarget.useRVVForFixedLengthVectors()) 1473 return false; 1474 1475 // We only support a set of vector types with a consistent maximum fixed size 1476 // across all supported vector element types to avoid legalization issues. 1477 // Therefore -- since the largest is v1024i8/v512i16/etc -- the largest 1478 // fixed-length vector type we support is 1024 bytes. 1479 if (VT.getFixedSizeInBits() > 1024 * 8) 1480 return false; 1481 1482 unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits(); 1483 1484 MVT EltVT = VT.getVectorElementType(); 1485 1486 // Don't use RVV for vectors we cannot scalarize if required. 1487 switch (EltVT.SimpleTy) { 1488 // i1 is supported but has different rules. 1489 default: 1490 return false; 1491 case MVT::i1: 1492 // Masks can only use a single register. 1493 if (VT.getVectorNumElements() > MinVLen) 1494 return false; 1495 MinVLen /= 8; 1496 break; 1497 case MVT::i8: 1498 case MVT::i16: 1499 case MVT::i32: 1500 break; 1501 case MVT::i64: 1502 if (!Subtarget.hasVInstructionsI64()) 1503 return false; 1504 break; 1505 case MVT::f16: 1506 if (!Subtarget.hasVInstructionsF16()) 1507 return false; 1508 break; 1509 case MVT::f32: 1510 if (!Subtarget.hasVInstructionsF32()) 1511 return false; 1512 break; 1513 case MVT::f64: 1514 if (!Subtarget.hasVInstructionsF64()) 1515 return false; 1516 break; 1517 } 1518 1519 // Reject elements larger than ELEN. 1520 if (EltVT.getSizeInBits() > Subtarget.getMaxELENForFixedLengthVectors()) 1521 return false; 1522 1523 unsigned LMul = divideCeil(VT.getSizeInBits(), MinVLen); 1524 // Don't use RVV for types that don't fit. 1525 if (LMul > Subtarget.getMaxLMULForFixedLengthVectors()) 1526 return false; 1527 1528 // TODO: Perhaps an artificial restriction, but worth having whilst getting 1529 // the base fixed length RVV support in place. 1530 if (!VT.isPow2VectorType()) 1531 return false; 1532 1533 return true; 1534 } 1535 1536 bool RISCVTargetLowering::useRVVForFixedLengthVectorVT(MVT VT) const { 1537 return ::useRVVForFixedLengthVectorVT(VT, Subtarget); 1538 } 1539 1540 // Return the largest legal scalable vector type that matches VT's element type. 1541 static MVT getContainerForFixedLengthVector(const TargetLowering &TLI, MVT VT, 1542 const RISCVSubtarget &Subtarget) { 1543 // This may be called before legal types are setup. 1544 assert(((VT.isFixedLengthVector() && TLI.isTypeLegal(VT)) || 1545 useRVVForFixedLengthVectorVT(VT, Subtarget)) && 1546 "Expected legal fixed length vector!"); 1547 1548 unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits(); 1549 unsigned MaxELen = Subtarget.getMaxELENForFixedLengthVectors(); 1550 1551 MVT EltVT = VT.getVectorElementType(); 1552 switch (EltVT.SimpleTy) { 1553 default: 1554 llvm_unreachable("unexpected element type for RVV container"); 1555 case MVT::i1: 1556 case MVT::i8: 1557 case MVT::i16: 1558 case MVT::i32: 1559 case MVT::i64: 1560 case MVT::f16: 1561 case MVT::f32: 1562 case MVT::f64: { 1563 // We prefer to use LMUL=1 for VLEN sized types. Use fractional lmuls for 1564 // narrower types. The smallest fractional LMUL we support is 8/ELEN. Within 1565 // each fractional LMUL we support SEW between 8 and LMUL*ELEN. 1566 unsigned NumElts = 1567 (VT.getVectorNumElements() * RISCV::RVVBitsPerBlock) / MinVLen; 1568 NumElts = std::max(NumElts, RISCV::RVVBitsPerBlock / MaxELen); 1569 assert(isPowerOf2_32(NumElts) && "Expected power of 2 NumElts"); 1570 return MVT::getScalableVectorVT(EltVT, NumElts); 1571 } 1572 } 1573 } 1574 1575 static MVT getContainerForFixedLengthVector(SelectionDAG &DAG, MVT VT, 1576 const RISCVSubtarget &Subtarget) { 1577 return getContainerForFixedLengthVector(DAG.getTargetLoweringInfo(), VT, 1578 Subtarget); 1579 } 1580 1581 MVT RISCVTargetLowering::getContainerForFixedLengthVector(MVT VT) const { 1582 return ::getContainerForFixedLengthVector(*this, VT, getSubtarget()); 1583 } 1584 1585 // Grow V to consume an entire RVV register. 1586 static SDValue convertToScalableVector(EVT VT, SDValue V, SelectionDAG &DAG, 1587 const RISCVSubtarget &Subtarget) { 1588 assert(VT.isScalableVector() && 1589 "Expected to convert into a scalable vector!"); 1590 assert(V.getValueType().isFixedLengthVector() && 1591 "Expected a fixed length vector operand!"); 1592 SDLoc DL(V); 1593 SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 1594 return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, DAG.getUNDEF(VT), V, Zero); 1595 } 1596 1597 // Shrink V so it's just big enough to maintain a VT's worth of data. 1598 static SDValue convertFromScalableVector(EVT VT, SDValue V, SelectionDAG &DAG, 1599 const RISCVSubtarget &Subtarget) { 1600 assert(VT.isFixedLengthVector() && 1601 "Expected to convert into a fixed length vector!"); 1602 assert(V.getValueType().isScalableVector() && 1603 "Expected a scalable vector operand!"); 1604 SDLoc DL(V); 1605 SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 1606 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V, Zero); 1607 } 1608 1609 // Gets the two common "VL" operands: an all-ones mask and the vector length. 1610 // VecVT is a vector type, either fixed-length or scalable, and ContainerVT is 1611 // the vector type that it is contained in. 1612 static std::pair<SDValue, SDValue> 1613 getDefaultVLOps(MVT VecVT, MVT ContainerVT, SDLoc DL, SelectionDAG &DAG, 1614 const RISCVSubtarget &Subtarget) { 1615 assert(ContainerVT.isScalableVector() && "Expecting scalable container type"); 1616 MVT XLenVT = Subtarget.getXLenVT(); 1617 SDValue VL = VecVT.isFixedLengthVector() 1618 ? DAG.getConstant(VecVT.getVectorNumElements(), DL, XLenVT) 1619 : DAG.getTargetConstant(RISCV::VLMaxSentinel, DL, XLenVT); 1620 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 1621 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 1622 return {Mask, VL}; 1623 } 1624 1625 // As above but assuming the given type is a scalable vector type. 1626 static std::pair<SDValue, SDValue> 1627 getDefaultScalableVLOps(MVT VecVT, SDLoc DL, SelectionDAG &DAG, 1628 const RISCVSubtarget &Subtarget) { 1629 assert(VecVT.isScalableVector() && "Expecting a scalable vector"); 1630 return getDefaultVLOps(VecVT, VecVT, DL, DAG, Subtarget); 1631 } 1632 1633 // The state of RVV BUILD_VECTOR and VECTOR_SHUFFLE lowering is that very few 1634 // of either is (currently) supported. This can get us into an infinite loop 1635 // where we try to lower a BUILD_VECTOR as a VECTOR_SHUFFLE as a BUILD_VECTOR 1636 // as a ..., etc. 1637 // Until either (or both) of these can reliably lower any node, reporting that 1638 // we don't want to expand BUILD_VECTORs via VECTOR_SHUFFLEs at least breaks 1639 // the infinite loop. Note that this lowers BUILD_VECTOR through the stack, 1640 // which is not desirable. 1641 bool RISCVTargetLowering::shouldExpandBuildVectorWithShuffles( 1642 EVT VT, unsigned DefinedValues) const { 1643 return false; 1644 } 1645 1646 bool RISCVTargetLowering::isShuffleMaskLegal(ArrayRef<int> M, EVT VT) const { 1647 // Only splats are currently supported. 1648 if (ShuffleVectorSDNode::isSplatMask(M.data(), VT)) 1649 return true; 1650 1651 return false; 1652 } 1653 1654 static SDValue lowerFP_TO_INT_SAT(SDValue Op, SelectionDAG &DAG) { 1655 // RISCV FP-to-int conversions saturate to the destination register size, but 1656 // don't produce 0 for nan. We can use a conversion instruction and fix the 1657 // nan case with a compare and a select. 1658 SDValue Src = Op.getOperand(0); 1659 1660 EVT DstVT = Op.getValueType(); 1661 EVT SatVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1662 1663 bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT_SAT; 1664 unsigned Opc; 1665 if (SatVT == DstVT) 1666 Opc = IsSigned ? RISCVISD::FCVT_X_RTZ : RISCVISD::FCVT_XU_RTZ; 1667 else if (DstVT == MVT::i64 && SatVT == MVT::i32) 1668 Opc = IsSigned ? RISCVISD::FCVT_W_RTZ_RV64 : RISCVISD::FCVT_WU_RTZ_RV64; 1669 else 1670 return SDValue(); 1671 // FIXME: Support other SatVTs by clamping before or after the conversion. 1672 1673 SDLoc DL(Op); 1674 SDValue FpToInt = DAG.getNode(Opc, DL, DstVT, Src); 1675 1676 SDValue ZeroInt = DAG.getConstant(0, DL, DstVT); 1677 return DAG.getSelectCC(DL, Src, Src, ZeroInt, FpToInt, ISD::CondCode::SETUO); 1678 } 1679 1680 // Expand vector FTRUNC, FCEIL, and FFLOOR by converting to the integer domain 1681 // and back. Taking care to avoid converting values that are nan or already 1682 // correct. 1683 // TODO: Floor and ceil could be shorter by changing rounding mode, but we don't 1684 // have FRM dependencies modeled yet. 1685 static SDValue lowerFTRUNC_FCEIL_FFLOOR(SDValue Op, SelectionDAG &DAG) { 1686 MVT VT = Op.getSimpleValueType(); 1687 assert(VT.isVector() && "Unexpected type"); 1688 1689 SDLoc DL(Op); 1690 1691 // Freeze the source since we are increasing the number of uses. 1692 SDValue Src = DAG.getNode(ISD::FREEZE, DL, VT, Op.getOperand(0)); 1693 1694 // Truncate to integer and convert back to FP. 1695 MVT IntVT = VT.changeVectorElementTypeToInteger(); 1696 SDValue Truncated = DAG.getNode(ISD::FP_TO_SINT, DL, IntVT, Src); 1697 Truncated = DAG.getNode(ISD::SINT_TO_FP, DL, VT, Truncated); 1698 1699 MVT SetccVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount()); 1700 1701 if (Op.getOpcode() == ISD::FCEIL) { 1702 // If the truncated value is the greater than or equal to the original 1703 // value, we've computed the ceil. Otherwise, we went the wrong way and 1704 // need to increase by 1. 1705 // FIXME: This should use a masked operation. Handle here or in isel? 1706 SDValue Adjust = DAG.getNode(ISD::FADD, DL, VT, Truncated, 1707 DAG.getConstantFP(1.0, DL, VT)); 1708 SDValue NeedAdjust = DAG.getSetCC(DL, SetccVT, Truncated, Src, ISD::SETOLT); 1709 Truncated = DAG.getSelect(DL, VT, NeedAdjust, Adjust, Truncated); 1710 } else if (Op.getOpcode() == ISD::FFLOOR) { 1711 // If the truncated value is the less than or equal to the original value, 1712 // we've computed the floor. Otherwise, we went the wrong way and need to 1713 // decrease by 1. 1714 // FIXME: This should use a masked operation. Handle here or in isel? 1715 SDValue Adjust = DAG.getNode(ISD::FSUB, DL, VT, Truncated, 1716 DAG.getConstantFP(1.0, DL, VT)); 1717 SDValue NeedAdjust = DAG.getSetCC(DL, SetccVT, Truncated, Src, ISD::SETOGT); 1718 Truncated = DAG.getSelect(DL, VT, NeedAdjust, Adjust, Truncated); 1719 } 1720 1721 // Restore the original sign so that -0.0 is preserved. 1722 Truncated = DAG.getNode(ISD::FCOPYSIGN, DL, VT, Truncated, Src); 1723 1724 // Determine the largest integer that can be represented exactly. This and 1725 // values larger than it don't have any fractional bits so don't need to 1726 // be converted. 1727 const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT); 1728 unsigned Precision = APFloat::semanticsPrecision(FltSem); 1729 APFloat MaxVal = APFloat(FltSem); 1730 MaxVal.convertFromAPInt(APInt::getOneBitSet(Precision, Precision - 1), 1731 /*IsSigned*/ false, APFloat::rmNearestTiesToEven); 1732 SDValue MaxValNode = DAG.getConstantFP(MaxVal, DL, VT); 1733 1734 // If abs(Src) was larger than MaxVal or nan, keep it. 1735 SDValue Abs = DAG.getNode(ISD::FABS, DL, VT, Src); 1736 SDValue Setcc = DAG.getSetCC(DL, SetccVT, Abs, MaxValNode, ISD::SETOLT); 1737 return DAG.getSelect(DL, VT, Setcc, Truncated, Src); 1738 } 1739 1740 static SDValue lowerSPLAT_VECTOR(SDValue Op, SelectionDAG &DAG, 1741 const RISCVSubtarget &Subtarget) { 1742 MVT VT = Op.getSimpleValueType(); 1743 assert(VT.isFixedLengthVector() && "Unexpected vector!"); 1744 1745 MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 1746 1747 SDLoc DL(Op); 1748 SDValue Mask, VL; 1749 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 1750 1751 unsigned Opc = 1752 VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL : RISCVISD::VMV_V_X_VL; 1753 SDValue Splat = DAG.getNode(Opc, DL, ContainerVT, Op.getOperand(0), VL); 1754 return convertFromScalableVector(VT, Splat, DAG, Subtarget); 1755 } 1756 1757 struct VIDSequence { 1758 int64_t StepNumerator; 1759 unsigned StepDenominator; 1760 int64_t Addend; 1761 }; 1762 1763 // Try to match an arithmetic-sequence BUILD_VECTOR [X,X+S,X+2*S,...,X+(N-1)*S] 1764 // to the (non-zero) step S and start value X. This can be then lowered as the 1765 // RVV sequence (VID * S) + X, for example. 1766 // The step S is represented as an integer numerator divided by a positive 1767 // denominator. Note that the implementation currently only identifies 1768 // sequences in which either the numerator is +/- 1 or the denominator is 1. It 1769 // cannot detect 2/3, for example. 1770 // Note that this method will also match potentially unappealing index 1771 // sequences, like <i32 0, i32 50939494>, however it is left to the caller to 1772 // determine whether this is worth generating code for. 1773 static Optional<VIDSequence> isSimpleVIDSequence(SDValue Op) { 1774 unsigned NumElts = Op.getNumOperands(); 1775 assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unexpected BUILD_VECTOR"); 1776 if (!Op.getValueType().isInteger()) 1777 return None; 1778 1779 Optional<unsigned> SeqStepDenom; 1780 Optional<int64_t> SeqStepNum, SeqAddend; 1781 Optional<std::pair<uint64_t, unsigned>> PrevElt; 1782 unsigned EltSizeInBits = Op.getValueType().getScalarSizeInBits(); 1783 for (unsigned Idx = 0; Idx < NumElts; Idx++) { 1784 // Assume undef elements match the sequence; we just have to be careful 1785 // when interpolating across them. 1786 if (Op.getOperand(Idx).isUndef()) 1787 continue; 1788 // The BUILD_VECTOR must be all constants. 1789 if (!isa<ConstantSDNode>(Op.getOperand(Idx))) 1790 return None; 1791 1792 uint64_t Val = Op.getConstantOperandVal(Idx) & 1793 maskTrailingOnes<uint64_t>(EltSizeInBits); 1794 1795 if (PrevElt) { 1796 // Calculate the step since the last non-undef element, and ensure 1797 // it's consistent across the entire sequence. 1798 unsigned IdxDiff = Idx - PrevElt->second; 1799 int64_t ValDiff = SignExtend64(Val - PrevElt->first, EltSizeInBits); 1800 1801 // A zero-value value difference means that we're somewhere in the middle 1802 // of a fractional step, e.g. <0,0,0*,0,1,1,1,1>. Wait until we notice a 1803 // step change before evaluating the sequence. 1804 if (ValDiff != 0) { 1805 int64_t Remainder = ValDiff % IdxDiff; 1806 // Normalize the step if it's greater than 1. 1807 if (Remainder != ValDiff) { 1808 // The difference must cleanly divide the element span. 1809 if (Remainder != 0) 1810 return None; 1811 ValDiff /= IdxDiff; 1812 IdxDiff = 1; 1813 } 1814 1815 if (!SeqStepNum) 1816 SeqStepNum = ValDiff; 1817 else if (ValDiff != SeqStepNum) 1818 return None; 1819 1820 if (!SeqStepDenom) 1821 SeqStepDenom = IdxDiff; 1822 else if (IdxDiff != *SeqStepDenom) 1823 return None; 1824 } 1825 } 1826 1827 // Record and/or check any addend. 1828 if (SeqStepNum && SeqStepDenom) { 1829 uint64_t ExpectedVal = 1830 (int64_t)(Idx * (uint64_t)*SeqStepNum) / *SeqStepDenom; 1831 int64_t Addend = SignExtend64(Val - ExpectedVal, EltSizeInBits); 1832 if (!SeqAddend) 1833 SeqAddend = Addend; 1834 else if (SeqAddend != Addend) 1835 return None; 1836 } 1837 1838 // Record this non-undef element for later. 1839 if (!PrevElt || PrevElt->first != Val) 1840 PrevElt = std::make_pair(Val, Idx); 1841 } 1842 // We need to have logged both a step and an addend for this to count as 1843 // a legal index sequence. 1844 if (!SeqStepNum || !SeqStepDenom || !SeqAddend) 1845 return None; 1846 1847 return VIDSequence{*SeqStepNum, *SeqStepDenom, *SeqAddend}; 1848 } 1849 1850 static SDValue lowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG, 1851 const RISCVSubtarget &Subtarget) { 1852 MVT VT = Op.getSimpleValueType(); 1853 assert(VT.isFixedLengthVector() && "Unexpected vector!"); 1854 1855 MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 1856 1857 SDLoc DL(Op); 1858 SDValue Mask, VL; 1859 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 1860 1861 MVT XLenVT = Subtarget.getXLenVT(); 1862 unsigned NumElts = Op.getNumOperands(); 1863 1864 if (VT.getVectorElementType() == MVT::i1) { 1865 if (ISD::isBuildVectorAllZeros(Op.getNode())) { 1866 SDValue VMClr = DAG.getNode(RISCVISD::VMCLR_VL, DL, ContainerVT, VL); 1867 return convertFromScalableVector(VT, VMClr, DAG, Subtarget); 1868 } 1869 1870 if (ISD::isBuildVectorAllOnes(Op.getNode())) { 1871 SDValue VMSet = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL); 1872 return convertFromScalableVector(VT, VMSet, DAG, Subtarget); 1873 } 1874 1875 // Lower constant mask BUILD_VECTORs via an integer vector type, in 1876 // scalar integer chunks whose bit-width depends on the number of mask 1877 // bits and XLEN. 1878 // First, determine the most appropriate scalar integer type to use. This 1879 // is at most XLenVT, but may be shrunk to a smaller vector element type 1880 // according to the size of the final vector - use i8 chunks rather than 1881 // XLenVT if we're producing a v8i1. This results in more consistent 1882 // codegen across RV32 and RV64. 1883 unsigned NumViaIntegerBits = 1884 std::min(std::max(NumElts, 8u), Subtarget.getXLen()); 1885 if (ISD::isBuildVectorOfConstantSDNodes(Op.getNode())) { 1886 // If we have to use more than one INSERT_VECTOR_ELT then this 1887 // optimization is likely to increase code size; avoid peforming it in 1888 // such a case. We can use a load from a constant pool in this case. 1889 if (DAG.shouldOptForSize() && NumElts > NumViaIntegerBits) 1890 return SDValue(); 1891 // Now we can create our integer vector type. Note that it may be larger 1892 // than the resulting mask type: v4i1 would use v1i8 as its integer type. 1893 MVT IntegerViaVecVT = 1894 MVT::getVectorVT(MVT::getIntegerVT(NumViaIntegerBits), 1895 divideCeil(NumElts, NumViaIntegerBits)); 1896 1897 uint64_t Bits = 0; 1898 unsigned BitPos = 0, IntegerEltIdx = 0; 1899 SDValue Vec = DAG.getUNDEF(IntegerViaVecVT); 1900 1901 for (unsigned I = 0; I < NumElts; I++, BitPos++) { 1902 // Once we accumulate enough bits to fill our scalar type, insert into 1903 // our vector and clear our accumulated data. 1904 if (I != 0 && I % NumViaIntegerBits == 0) { 1905 if (NumViaIntegerBits <= 32) 1906 Bits = SignExtend64(Bits, 32); 1907 SDValue Elt = DAG.getConstant(Bits, DL, XLenVT); 1908 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec, 1909 Elt, DAG.getConstant(IntegerEltIdx, DL, XLenVT)); 1910 Bits = 0; 1911 BitPos = 0; 1912 IntegerEltIdx++; 1913 } 1914 SDValue V = Op.getOperand(I); 1915 bool BitValue = !V.isUndef() && cast<ConstantSDNode>(V)->getZExtValue(); 1916 Bits |= ((uint64_t)BitValue << BitPos); 1917 } 1918 1919 // Insert the (remaining) scalar value into position in our integer 1920 // vector type. 1921 if (NumViaIntegerBits <= 32) 1922 Bits = SignExtend64(Bits, 32); 1923 SDValue Elt = DAG.getConstant(Bits, DL, XLenVT); 1924 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec, Elt, 1925 DAG.getConstant(IntegerEltIdx, DL, XLenVT)); 1926 1927 if (NumElts < NumViaIntegerBits) { 1928 // If we're producing a smaller vector than our minimum legal integer 1929 // type, bitcast to the equivalent (known-legal) mask type, and extract 1930 // our final mask. 1931 assert(IntegerViaVecVT == MVT::v1i8 && "Unexpected mask vector type"); 1932 Vec = DAG.getBitcast(MVT::v8i1, Vec); 1933 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Vec, 1934 DAG.getConstant(0, DL, XLenVT)); 1935 } else { 1936 // Else we must have produced an integer type with the same size as the 1937 // mask type; bitcast for the final result. 1938 assert(VT.getSizeInBits() == IntegerViaVecVT.getSizeInBits()); 1939 Vec = DAG.getBitcast(VT, Vec); 1940 } 1941 1942 return Vec; 1943 } 1944 1945 // A BUILD_VECTOR can be lowered as a SETCC. For each fixed-length mask 1946 // vector type, we have a legal equivalently-sized i8 type, so we can use 1947 // that. 1948 MVT WideVecVT = VT.changeVectorElementType(MVT::i8); 1949 SDValue VecZero = DAG.getConstant(0, DL, WideVecVT); 1950 1951 SDValue WideVec; 1952 if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) { 1953 // For a splat, perform a scalar truncate before creating the wider 1954 // vector. 1955 assert(Splat.getValueType() == XLenVT && 1956 "Unexpected type for i1 splat value"); 1957 Splat = DAG.getNode(ISD::AND, DL, XLenVT, Splat, 1958 DAG.getConstant(1, DL, XLenVT)); 1959 WideVec = DAG.getSplatBuildVector(WideVecVT, DL, Splat); 1960 } else { 1961 SmallVector<SDValue, 8> Ops(Op->op_values()); 1962 WideVec = DAG.getBuildVector(WideVecVT, DL, Ops); 1963 SDValue VecOne = DAG.getConstant(1, DL, WideVecVT); 1964 WideVec = DAG.getNode(ISD::AND, DL, WideVecVT, WideVec, VecOne); 1965 } 1966 1967 return DAG.getSetCC(DL, VT, WideVec, VecZero, ISD::SETNE); 1968 } 1969 1970 if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) { 1971 unsigned Opc = VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL 1972 : RISCVISD::VMV_V_X_VL; 1973 Splat = DAG.getNode(Opc, DL, ContainerVT, Splat, VL); 1974 return convertFromScalableVector(VT, Splat, DAG, Subtarget); 1975 } 1976 1977 // Try and match index sequences, which we can lower to the vid instruction 1978 // with optional modifications. An all-undef vector is matched by 1979 // getSplatValue, above. 1980 if (auto SimpleVID = isSimpleVIDSequence(Op)) { 1981 int64_t StepNumerator = SimpleVID->StepNumerator; 1982 unsigned StepDenominator = SimpleVID->StepDenominator; 1983 int64_t Addend = SimpleVID->Addend; 1984 1985 assert(StepNumerator != 0 && "Invalid step"); 1986 bool Negate = false; 1987 int64_t SplatStepVal = StepNumerator; 1988 unsigned StepOpcode = ISD::MUL; 1989 if (StepNumerator != 1) { 1990 if (isPowerOf2_64(std::abs(StepNumerator))) { 1991 Negate = StepNumerator < 0; 1992 StepOpcode = ISD::SHL; 1993 SplatStepVal = Log2_64(std::abs(StepNumerator)); 1994 } 1995 } 1996 1997 // Only emit VIDs with suitably-small steps/addends. We use imm5 is a 1998 // threshold since it's the immediate value many RVV instructions accept. 1999 // There is no vmul.vi instruction so ensure multiply constant can fit in 2000 // a single addi instruction. 2001 if (((StepOpcode == ISD::MUL && isInt<12>(SplatStepVal)) || 2002 (StepOpcode == ISD::SHL && isUInt<5>(SplatStepVal))) && 2003 isPowerOf2_32(StepDenominator) && isInt<5>(Addend)) { 2004 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, ContainerVT, Mask, VL); 2005 // Convert right out of the scalable type so we can use standard ISD 2006 // nodes for the rest of the computation. If we used scalable types with 2007 // these, we'd lose the fixed-length vector info and generate worse 2008 // vsetvli code. 2009 VID = convertFromScalableVector(VT, VID, DAG, Subtarget); 2010 if ((StepOpcode == ISD::MUL && SplatStepVal != 1) || 2011 (StepOpcode == ISD::SHL && SplatStepVal != 0)) { 2012 SDValue SplatStep = DAG.getSplatVector( 2013 VT, DL, DAG.getConstant(SplatStepVal, DL, XLenVT)); 2014 VID = DAG.getNode(StepOpcode, DL, VT, VID, SplatStep); 2015 } 2016 if (StepDenominator != 1) { 2017 SDValue SplatStep = DAG.getSplatVector( 2018 VT, DL, DAG.getConstant(Log2_64(StepDenominator), DL, XLenVT)); 2019 VID = DAG.getNode(ISD::SRL, DL, VT, VID, SplatStep); 2020 } 2021 if (Addend != 0 || Negate) { 2022 SDValue SplatAddend = 2023 DAG.getSplatVector(VT, DL, DAG.getConstant(Addend, DL, XLenVT)); 2024 VID = DAG.getNode(Negate ? ISD::SUB : ISD::ADD, DL, VT, SplatAddend, VID); 2025 } 2026 return VID; 2027 } 2028 } 2029 2030 // Attempt to detect "hidden" splats, which only reveal themselves as splats 2031 // when re-interpreted as a vector with a larger element type. For example, 2032 // v4i16 = build_vector i16 0, i16 1, i16 0, i16 1 2033 // could be instead splat as 2034 // v2i32 = build_vector i32 0x00010000, i32 0x00010000 2035 // TODO: This optimization could also work on non-constant splats, but it 2036 // would require bit-manipulation instructions to construct the splat value. 2037 SmallVector<SDValue> Sequence; 2038 unsigned EltBitSize = VT.getScalarSizeInBits(); 2039 const auto *BV = cast<BuildVectorSDNode>(Op); 2040 if (VT.isInteger() && EltBitSize < 64 && 2041 ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) && 2042 BV->getRepeatedSequence(Sequence) && 2043 (Sequence.size() * EltBitSize) <= 64) { 2044 unsigned SeqLen = Sequence.size(); 2045 MVT ViaIntVT = MVT::getIntegerVT(EltBitSize * SeqLen); 2046 MVT ViaVecVT = MVT::getVectorVT(ViaIntVT, NumElts / SeqLen); 2047 assert((ViaIntVT == MVT::i16 || ViaIntVT == MVT::i32 || 2048 ViaIntVT == MVT::i64) && 2049 "Unexpected sequence type"); 2050 2051 unsigned EltIdx = 0; 2052 uint64_t EltMask = maskTrailingOnes<uint64_t>(EltBitSize); 2053 uint64_t SplatValue = 0; 2054 // Construct the amalgamated value which can be splatted as this larger 2055 // vector type. 2056 for (const auto &SeqV : Sequence) { 2057 if (!SeqV.isUndef()) 2058 SplatValue |= ((cast<ConstantSDNode>(SeqV)->getZExtValue() & EltMask) 2059 << (EltIdx * EltBitSize)); 2060 EltIdx++; 2061 } 2062 2063 // On RV64, sign-extend from 32 to 64 bits where possible in order to 2064 // achieve better constant materializion. 2065 if (Subtarget.is64Bit() && ViaIntVT == MVT::i32) 2066 SplatValue = SignExtend64(SplatValue, 32); 2067 2068 // Since we can't introduce illegal i64 types at this stage, we can only 2069 // perform an i64 splat on RV32 if it is its own sign-extended value. That 2070 // way we can use RVV instructions to splat. 2071 assert((ViaIntVT.bitsLE(XLenVT) || 2072 (!Subtarget.is64Bit() && ViaIntVT == MVT::i64)) && 2073 "Unexpected bitcast sequence"); 2074 if (ViaIntVT.bitsLE(XLenVT) || isInt<32>(SplatValue)) { 2075 SDValue ViaVL = 2076 DAG.getConstant(ViaVecVT.getVectorNumElements(), DL, XLenVT); 2077 MVT ViaContainerVT = 2078 getContainerForFixedLengthVector(DAG, ViaVecVT, Subtarget); 2079 SDValue Splat = 2080 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ViaContainerVT, 2081 DAG.getConstant(SplatValue, DL, XLenVT), ViaVL); 2082 Splat = convertFromScalableVector(ViaVecVT, Splat, DAG, Subtarget); 2083 return DAG.getBitcast(VT, Splat); 2084 } 2085 } 2086 2087 // Try and optimize BUILD_VECTORs with "dominant values" - these are values 2088 // which constitute a large proportion of the elements. In such cases we can 2089 // splat a vector with the dominant element and make up the shortfall with 2090 // INSERT_VECTOR_ELTs. 2091 // Note that this includes vectors of 2 elements by association. The 2092 // upper-most element is the "dominant" one, allowing us to use a splat to 2093 // "insert" the upper element, and an insert of the lower element at position 2094 // 0, which improves codegen. 2095 SDValue DominantValue; 2096 unsigned MostCommonCount = 0; 2097 DenseMap<SDValue, unsigned> ValueCounts; 2098 unsigned NumUndefElts = 2099 count_if(Op->op_values(), [](const SDValue &V) { return V.isUndef(); }); 2100 2101 // Track the number of scalar loads we know we'd be inserting, estimated as 2102 // any non-zero floating-point constant. Other kinds of element are either 2103 // already in registers or are materialized on demand. The threshold at which 2104 // a vector load is more desirable than several scalar materializion and 2105 // vector-insertion instructions is not known. 2106 unsigned NumScalarLoads = 0; 2107 2108 for (SDValue V : Op->op_values()) { 2109 if (V.isUndef()) 2110 continue; 2111 2112 ValueCounts.insert(std::make_pair(V, 0)); 2113 unsigned &Count = ValueCounts[V]; 2114 2115 if (auto *CFP = dyn_cast<ConstantFPSDNode>(V)) 2116 NumScalarLoads += !CFP->isExactlyValue(+0.0); 2117 2118 // Is this value dominant? In case of a tie, prefer the highest element as 2119 // it's cheaper to insert near the beginning of a vector than it is at the 2120 // end. 2121 if (++Count >= MostCommonCount) { 2122 DominantValue = V; 2123 MostCommonCount = Count; 2124 } 2125 } 2126 2127 assert(DominantValue && "Not expecting an all-undef BUILD_VECTOR"); 2128 unsigned NumDefElts = NumElts - NumUndefElts; 2129 unsigned DominantValueCountThreshold = NumDefElts <= 2 ? 0 : NumDefElts - 2; 2130 2131 // Don't perform this optimization when optimizing for size, since 2132 // materializing elements and inserting them tends to cause code bloat. 2133 if (!DAG.shouldOptForSize() && NumScalarLoads < NumElts && 2134 ((MostCommonCount > DominantValueCountThreshold) || 2135 (ValueCounts.size() <= Log2_32(NumDefElts)))) { 2136 // Start by splatting the most common element. 2137 SDValue Vec = DAG.getSplatBuildVector(VT, DL, DominantValue); 2138 2139 DenseSet<SDValue> Processed{DominantValue}; 2140 MVT SelMaskTy = VT.changeVectorElementType(MVT::i1); 2141 for (const auto &OpIdx : enumerate(Op->ops())) { 2142 const SDValue &V = OpIdx.value(); 2143 if (V.isUndef() || !Processed.insert(V).second) 2144 continue; 2145 if (ValueCounts[V] == 1) { 2146 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Vec, V, 2147 DAG.getConstant(OpIdx.index(), DL, XLenVT)); 2148 } else { 2149 // Blend in all instances of this value using a VSELECT, using a 2150 // mask where each bit signals whether that element is the one 2151 // we're after. 2152 SmallVector<SDValue> Ops; 2153 transform(Op->op_values(), std::back_inserter(Ops), [&](SDValue V1) { 2154 return DAG.getConstant(V == V1, DL, XLenVT); 2155 }); 2156 Vec = DAG.getNode(ISD::VSELECT, DL, VT, 2157 DAG.getBuildVector(SelMaskTy, DL, Ops), 2158 DAG.getSplatBuildVector(VT, DL, V), Vec); 2159 } 2160 } 2161 2162 return Vec; 2163 } 2164 2165 return SDValue(); 2166 } 2167 2168 static SDValue splatPartsI64WithVL(const SDLoc &DL, MVT VT, SDValue Lo, 2169 SDValue Hi, SDValue VL, SelectionDAG &DAG) { 2170 if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) { 2171 int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue(); 2172 int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue(); 2173 // If Hi constant is all the same sign bit as Lo, lower this as a custom 2174 // node in order to try and match RVV vector/scalar instructions. 2175 if ((LoC >> 31) == HiC) 2176 return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Lo, VL); 2177 } 2178 2179 // Fall back to a stack store and stride x0 vector load. 2180 return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VT, Lo, Hi, VL); 2181 } 2182 2183 // Called by type legalization to handle splat of i64 on RV32. 2184 // FIXME: We can optimize this when the type has sign or zero bits in one 2185 // of the halves. 2186 static SDValue splatSplitI64WithVL(const SDLoc &DL, MVT VT, SDValue Scalar, 2187 SDValue VL, SelectionDAG &DAG) { 2188 assert(Scalar.getValueType() == MVT::i64 && "Unexpected VT!"); 2189 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 2190 DAG.getConstant(0, DL, MVT::i32)); 2191 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 2192 DAG.getConstant(1, DL, MVT::i32)); 2193 return splatPartsI64WithVL(DL, VT, Lo, Hi, VL, DAG); 2194 } 2195 2196 // This function lowers a splat of a scalar operand Splat with the vector 2197 // length VL. It ensures the final sequence is type legal, which is useful when 2198 // lowering a splat after type legalization. 2199 static SDValue lowerScalarSplat(SDValue Scalar, SDValue VL, MVT VT, SDLoc DL, 2200 SelectionDAG &DAG, 2201 const RISCVSubtarget &Subtarget) { 2202 if (VT.isFloatingPoint()) 2203 return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, VT, Scalar, VL); 2204 2205 MVT XLenVT = Subtarget.getXLenVT(); 2206 2207 // Simplest case is that the operand needs to be promoted to XLenVT. 2208 if (Scalar.getValueType().bitsLE(XLenVT)) { 2209 // If the operand is a constant, sign extend to increase our chances 2210 // of being able to use a .vi instruction. ANY_EXTEND would become a 2211 // a zero extend and the simm5 check in isel would fail. 2212 // FIXME: Should we ignore the upper bits in isel instead? 2213 unsigned ExtOpc = 2214 isa<ConstantSDNode>(Scalar) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND; 2215 Scalar = DAG.getNode(ExtOpc, DL, XLenVT, Scalar); 2216 return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Scalar, VL); 2217 } 2218 2219 assert(XLenVT == MVT::i32 && Scalar.getValueType() == MVT::i64 && 2220 "Unexpected scalar for splat lowering!"); 2221 2222 // Otherwise use the more complicated splatting algorithm. 2223 return splatSplitI64WithVL(DL, VT, Scalar, VL, DAG); 2224 } 2225 2226 static SDValue lowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG, 2227 const RISCVSubtarget &Subtarget) { 2228 SDValue V1 = Op.getOperand(0); 2229 SDValue V2 = Op.getOperand(1); 2230 SDLoc DL(Op); 2231 MVT XLenVT = Subtarget.getXLenVT(); 2232 MVT VT = Op.getSimpleValueType(); 2233 unsigned NumElts = VT.getVectorNumElements(); 2234 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode()); 2235 2236 MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 2237 2238 SDValue TrueMask, VL; 2239 std::tie(TrueMask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 2240 2241 if (SVN->isSplat()) { 2242 const int Lane = SVN->getSplatIndex(); 2243 if (Lane >= 0) { 2244 MVT SVT = VT.getVectorElementType(); 2245 2246 // Turn splatted vector load into a strided load with an X0 stride. 2247 SDValue V = V1; 2248 // Peek through CONCAT_VECTORS as VectorCombine can concat a vector 2249 // with undef. 2250 // FIXME: Peek through INSERT_SUBVECTOR, EXTRACT_SUBVECTOR, bitcasts? 2251 int Offset = Lane; 2252 if (V.getOpcode() == ISD::CONCAT_VECTORS) { 2253 int OpElements = 2254 V.getOperand(0).getSimpleValueType().getVectorNumElements(); 2255 V = V.getOperand(Offset / OpElements); 2256 Offset %= OpElements; 2257 } 2258 2259 // We need to ensure the load isn't atomic or volatile. 2260 if (ISD::isNormalLoad(V.getNode()) && cast<LoadSDNode>(V)->isSimple()) { 2261 auto *Ld = cast<LoadSDNode>(V); 2262 Offset *= SVT.getStoreSize(); 2263 SDValue NewAddr = DAG.getMemBasePlusOffset(Ld->getBasePtr(), 2264 TypeSize::Fixed(Offset), DL); 2265 2266 // If this is SEW=64 on RV32, use a strided load with a stride of x0. 2267 if (SVT.isInteger() && SVT.bitsGT(XLenVT)) { 2268 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 2269 SDValue IntID = 2270 DAG.getTargetConstant(Intrinsic::riscv_vlse, DL, XLenVT); 2271 SDValue Ops[] = {Ld->getChain(), IntID, NewAddr, 2272 DAG.getRegister(RISCV::X0, XLenVT), VL}; 2273 SDValue NewLoad = DAG.getMemIntrinsicNode( 2274 ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, SVT, 2275 DAG.getMachineFunction().getMachineMemOperand( 2276 Ld->getMemOperand(), Offset, SVT.getStoreSize())); 2277 DAG.makeEquivalentMemoryOrdering(Ld, NewLoad); 2278 return convertFromScalableVector(VT, NewLoad, DAG, Subtarget); 2279 } 2280 2281 // Otherwise use a scalar load and splat. This will give the best 2282 // opportunity to fold a splat into the operation. ISel can turn it into 2283 // the x0 strided load if we aren't able to fold away the select. 2284 if (SVT.isFloatingPoint()) 2285 V = DAG.getLoad(SVT, DL, Ld->getChain(), NewAddr, 2286 Ld->getPointerInfo().getWithOffset(Offset), 2287 Ld->getOriginalAlign(), 2288 Ld->getMemOperand()->getFlags()); 2289 else 2290 V = DAG.getExtLoad(ISD::SEXTLOAD, DL, XLenVT, Ld->getChain(), NewAddr, 2291 Ld->getPointerInfo().getWithOffset(Offset), SVT, 2292 Ld->getOriginalAlign(), 2293 Ld->getMemOperand()->getFlags()); 2294 DAG.makeEquivalentMemoryOrdering(Ld, V); 2295 2296 unsigned Opc = 2297 VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL : RISCVISD::VMV_V_X_VL; 2298 SDValue Splat = DAG.getNode(Opc, DL, ContainerVT, V, VL); 2299 return convertFromScalableVector(VT, Splat, DAG, Subtarget); 2300 } 2301 2302 V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget); 2303 assert(Lane < (int)NumElts && "Unexpected lane!"); 2304 SDValue Gather = 2305 DAG.getNode(RISCVISD::VRGATHER_VX_VL, DL, ContainerVT, V1, 2306 DAG.getConstant(Lane, DL, XLenVT), TrueMask, VL); 2307 return convertFromScalableVector(VT, Gather, DAG, Subtarget); 2308 } 2309 } 2310 2311 // Detect shuffles which can be re-expressed as vector selects; these are 2312 // shuffles in which each element in the destination is taken from an element 2313 // at the corresponding index in either source vectors. 2314 bool IsSelect = all_of(enumerate(SVN->getMask()), [&](const auto &MaskIdx) { 2315 int MaskIndex = MaskIdx.value(); 2316 return MaskIndex < 0 || MaskIdx.index() == (unsigned)MaskIndex % NumElts; 2317 }); 2318 2319 assert(!V1.isUndef() && "Unexpected shuffle canonicalization"); 2320 2321 SmallVector<SDValue> MaskVals; 2322 // As a backup, shuffles can be lowered via a vrgather instruction, possibly 2323 // merged with a second vrgather. 2324 SmallVector<SDValue> GatherIndicesLHS, GatherIndicesRHS; 2325 2326 // By default we preserve the original operand order, and use a mask to 2327 // select LHS as true and RHS as false. However, since RVV vector selects may 2328 // feature splats but only on the LHS, we may choose to invert our mask and 2329 // instead select between RHS and LHS. 2330 bool SwapOps = DAG.isSplatValue(V2) && !DAG.isSplatValue(V1); 2331 bool InvertMask = IsSelect == SwapOps; 2332 2333 // Keep a track of which non-undef indices are used by each LHS/RHS shuffle 2334 // half. 2335 DenseMap<int, unsigned> LHSIndexCounts, RHSIndexCounts; 2336 2337 // Now construct the mask that will be used by the vselect or blended 2338 // vrgather operation. For vrgathers, construct the appropriate indices into 2339 // each vector. 2340 for (int MaskIndex : SVN->getMask()) { 2341 bool SelectMaskVal = (MaskIndex < (int)NumElts) ^ InvertMask; 2342 MaskVals.push_back(DAG.getConstant(SelectMaskVal, DL, XLenVT)); 2343 if (!IsSelect) { 2344 bool IsLHSOrUndefIndex = MaskIndex < (int)NumElts; 2345 GatherIndicesLHS.push_back(IsLHSOrUndefIndex && MaskIndex >= 0 2346 ? DAG.getConstant(MaskIndex, DL, XLenVT) 2347 : DAG.getUNDEF(XLenVT)); 2348 GatherIndicesRHS.push_back( 2349 IsLHSOrUndefIndex ? DAG.getUNDEF(XLenVT) 2350 : DAG.getConstant(MaskIndex - NumElts, DL, XLenVT)); 2351 if (IsLHSOrUndefIndex && MaskIndex >= 0) 2352 ++LHSIndexCounts[MaskIndex]; 2353 if (!IsLHSOrUndefIndex) 2354 ++RHSIndexCounts[MaskIndex - NumElts]; 2355 } 2356 } 2357 2358 if (SwapOps) { 2359 std::swap(V1, V2); 2360 std::swap(GatherIndicesLHS, GatherIndicesRHS); 2361 } 2362 2363 assert(MaskVals.size() == NumElts && "Unexpected select-like shuffle"); 2364 MVT MaskVT = MVT::getVectorVT(MVT::i1, NumElts); 2365 SDValue SelectMask = DAG.getBuildVector(MaskVT, DL, MaskVals); 2366 2367 if (IsSelect) 2368 return DAG.getNode(ISD::VSELECT, DL, VT, SelectMask, V1, V2); 2369 2370 if (VT.getScalarSizeInBits() == 8 && VT.getVectorNumElements() > 256) { 2371 // On such a large vector we're unable to use i8 as the index type. 2372 // FIXME: We could promote the index to i16 and use vrgatherei16, but that 2373 // may involve vector splitting if we're already at LMUL=8, or our 2374 // user-supplied maximum fixed-length LMUL. 2375 return SDValue(); 2376 } 2377 2378 unsigned GatherVXOpc = RISCVISD::VRGATHER_VX_VL; 2379 unsigned GatherVVOpc = RISCVISD::VRGATHER_VV_VL; 2380 MVT IndexVT = VT.changeTypeToInteger(); 2381 // Since we can't introduce illegal index types at this stage, use i16 and 2382 // vrgatherei16 if the corresponding index type for plain vrgather is greater 2383 // than XLenVT. 2384 if (IndexVT.getScalarType().bitsGT(XLenVT)) { 2385 GatherVVOpc = RISCVISD::VRGATHEREI16_VV_VL; 2386 IndexVT = IndexVT.changeVectorElementType(MVT::i16); 2387 } 2388 2389 MVT IndexContainerVT = 2390 ContainerVT.changeVectorElementType(IndexVT.getScalarType()); 2391 2392 SDValue Gather; 2393 // TODO: This doesn't trigger for i64 vectors on RV32, since there we 2394 // encounter a bitcasted BUILD_VECTOR with low/high i32 values. 2395 if (SDValue SplatValue = DAG.getSplatValue(V1, /*LegalTypes*/ true)) { 2396 Gather = lowerScalarSplat(SplatValue, VL, ContainerVT, DL, DAG, Subtarget); 2397 } else { 2398 V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget); 2399 // If only one index is used, we can use a "splat" vrgather. 2400 // TODO: We can splat the most-common index and fix-up any stragglers, if 2401 // that's beneficial. 2402 if (LHSIndexCounts.size() == 1) { 2403 int SplatIndex = LHSIndexCounts.begin()->getFirst(); 2404 Gather = 2405 DAG.getNode(GatherVXOpc, DL, ContainerVT, V1, 2406 DAG.getConstant(SplatIndex, DL, XLenVT), TrueMask, VL); 2407 } else { 2408 SDValue LHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesLHS); 2409 LHSIndices = 2410 convertToScalableVector(IndexContainerVT, LHSIndices, DAG, Subtarget); 2411 2412 Gather = DAG.getNode(GatherVVOpc, DL, ContainerVT, V1, LHSIndices, 2413 TrueMask, VL); 2414 } 2415 } 2416 2417 // If a second vector operand is used by this shuffle, blend it in with an 2418 // additional vrgather. 2419 if (!V2.isUndef()) { 2420 V2 = convertToScalableVector(ContainerVT, V2, DAG, Subtarget); 2421 // If only one index is used, we can use a "splat" vrgather. 2422 // TODO: We can splat the most-common index and fix-up any stragglers, if 2423 // that's beneficial. 2424 if (RHSIndexCounts.size() == 1) { 2425 int SplatIndex = RHSIndexCounts.begin()->getFirst(); 2426 V2 = DAG.getNode(GatherVXOpc, DL, ContainerVT, V2, 2427 DAG.getConstant(SplatIndex, DL, XLenVT), TrueMask, VL); 2428 } else { 2429 SDValue RHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesRHS); 2430 RHSIndices = 2431 convertToScalableVector(IndexContainerVT, RHSIndices, DAG, Subtarget); 2432 V2 = DAG.getNode(GatherVVOpc, DL, ContainerVT, V2, RHSIndices, TrueMask, 2433 VL); 2434 } 2435 2436 MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1); 2437 SelectMask = 2438 convertToScalableVector(MaskContainerVT, SelectMask, DAG, Subtarget); 2439 2440 Gather = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, SelectMask, V2, 2441 Gather, VL); 2442 } 2443 2444 return convertFromScalableVector(VT, Gather, DAG, Subtarget); 2445 } 2446 2447 static SDValue getRVVFPExtendOrRound(SDValue Op, MVT VT, MVT ContainerVT, 2448 SDLoc DL, SelectionDAG &DAG, 2449 const RISCVSubtarget &Subtarget) { 2450 if (VT.isScalableVector()) 2451 return DAG.getFPExtendOrRound(Op, DL, VT); 2452 assert(VT.isFixedLengthVector() && 2453 "Unexpected value type for RVV FP extend/round lowering"); 2454 SDValue Mask, VL; 2455 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 2456 unsigned RVVOpc = ContainerVT.bitsGT(Op.getSimpleValueType()) 2457 ? RISCVISD::FP_EXTEND_VL 2458 : RISCVISD::FP_ROUND_VL; 2459 return DAG.getNode(RVVOpc, DL, ContainerVT, Op, Mask, VL); 2460 } 2461 2462 // Lower CTLZ_ZERO_UNDEF or CTTZ_ZERO_UNDEF by converting to FP and extracting 2463 // the exponent. 2464 static SDValue lowerCTLZ_CTTZ_ZERO_UNDEF(SDValue Op, SelectionDAG &DAG) { 2465 MVT VT = Op.getSimpleValueType(); 2466 unsigned EltSize = VT.getScalarSizeInBits(); 2467 SDValue Src = Op.getOperand(0); 2468 SDLoc DL(Op); 2469 2470 // We need a FP type that can represent the value. 2471 // TODO: Use f16 for i8 when possible? 2472 MVT FloatEltVT = EltSize == 32 ? MVT::f64 : MVT::f32; 2473 MVT FloatVT = MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount()); 2474 2475 // Legal types should have been checked in the RISCVTargetLowering 2476 // constructor. 2477 // TODO: Splitting may make sense in some cases. 2478 assert(DAG.getTargetLoweringInfo().isTypeLegal(FloatVT) && 2479 "Expected legal float type!"); 2480 2481 // For CTTZ_ZERO_UNDEF, we need to extract the lowest set bit using X & -X. 2482 // The trailing zero count is equal to log2 of this single bit value. 2483 if (Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF) { 2484 SDValue Neg = 2485 DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Src); 2486 Src = DAG.getNode(ISD::AND, DL, VT, Src, Neg); 2487 } 2488 2489 // We have a legal FP type, convert to it. 2490 SDValue FloatVal = DAG.getNode(ISD::UINT_TO_FP, DL, FloatVT, Src); 2491 // Bitcast to integer and shift the exponent to the LSB. 2492 EVT IntVT = FloatVT.changeVectorElementTypeToInteger(); 2493 SDValue Bitcast = DAG.getBitcast(IntVT, FloatVal); 2494 unsigned ShiftAmt = FloatEltVT == MVT::f64 ? 52 : 23; 2495 SDValue Shift = DAG.getNode(ISD::SRL, DL, IntVT, Bitcast, 2496 DAG.getConstant(ShiftAmt, DL, IntVT)); 2497 // Truncate back to original type to allow vnsrl. 2498 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, VT, Shift); 2499 // The exponent contains log2 of the value in biased form. 2500 unsigned ExponentBias = FloatEltVT == MVT::f64 ? 1023 : 127; 2501 2502 // For trailing zeros, we just need to subtract the bias. 2503 if (Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF) 2504 return DAG.getNode(ISD::SUB, DL, VT, Trunc, 2505 DAG.getConstant(ExponentBias, DL, VT)); 2506 2507 // For leading zeros, we need to remove the bias and convert from log2 to 2508 // leading zeros. We can do this by subtracting from (Bias + (EltSize - 1)). 2509 unsigned Adjust = ExponentBias + (EltSize - 1); 2510 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(Adjust, DL, VT), Trunc); 2511 } 2512 2513 // While RVV has alignment restrictions, we should always be able to load as a 2514 // legal equivalently-sized byte-typed vector instead. This method is 2515 // responsible for re-expressing a ISD::LOAD via a correctly-aligned type. If 2516 // the load is already correctly-aligned, it returns SDValue(). 2517 SDValue RISCVTargetLowering::expandUnalignedRVVLoad(SDValue Op, 2518 SelectionDAG &DAG) const { 2519 auto *Load = cast<LoadSDNode>(Op); 2520 assert(Load && Load->getMemoryVT().isVector() && "Expected vector load"); 2521 2522 if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 2523 Load->getMemoryVT(), 2524 *Load->getMemOperand())) 2525 return SDValue(); 2526 2527 SDLoc DL(Op); 2528 MVT VT = Op.getSimpleValueType(); 2529 unsigned EltSizeBits = VT.getScalarSizeInBits(); 2530 assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) && 2531 "Unexpected unaligned RVV load type"); 2532 MVT NewVT = 2533 MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8)); 2534 assert(NewVT.isValid() && 2535 "Expecting equally-sized RVV vector types to be legal"); 2536 SDValue L = DAG.getLoad(NewVT, DL, Load->getChain(), Load->getBasePtr(), 2537 Load->getPointerInfo(), Load->getOriginalAlign(), 2538 Load->getMemOperand()->getFlags()); 2539 return DAG.getMergeValues({DAG.getBitcast(VT, L), L.getValue(1)}, DL); 2540 } 2541 2542 // While RVV has alignment restrictions, we should always be able to store as a 2543 // legal equivalently-sized byte-typed vector instead. This method is 2544 // responsible for re-expressing a ISD::STORE via a correctly-aligned type. It 2545 // returns SDValue() if the store is already correctly aligned. 2546 SDValue RISCVTargetLowering::expandUnalignedRVVStore(SDValue Op, 2547 SelectionDAG &DAG) const { 2548 auto *Store = cast<StoreSDNode>(Op); 2549 assert(Store && Store->getValue().getValueType().isVector() && 2550 "Expected vector store"); 2551 2552 if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 2553 Store->getMemoryVT(), 2554 *Store->getMemOperand())) 2555 return SDValue(); 2556 2557 SDLoc DL(Op); 2558 SDValue StoredVal = Store->getValue(); 2559 MVT VT = StoredVal.getSimpleValueType(); 2560 unsigned EltSizeBits = VT.getScalarSizeInBits(); 2561 assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) && 2562 "Unexpected unaligned RVV store type"); 2563 MVT NewVT = 2564 MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8)); 2565 assert(NewVT.isValid() && 2566 "Expecting equally-sized RVV vector types to be legal"); 2567 StoredVal = DAG.getBitcast(NewVT, StoredVal); 2568 return DAG.getStore(Store->getChain(), DL, StoredVal, Store->getBasePtr(), 2569 Store->getPointerInfo(), Store->getOriginalAlign(), 2570 Store->getMemOperand()->getFlags()); 2571 } 2572 2573 SDValue RISCVTargetLowering::LowerOperation(SDValue Op, 2574 SelectionDAG &DAG) const { 2575 switch (Op.getOpcode()) { 2576 default: 2577 report_fatal_error("unimplemented operand"); 2578 case ISD::GlobalAddress: 2579 return lowerGlobalAddress(Op, DAG); 2580 case ISD::BlockAddress: 2581 return lowerBlockAddress(Op, DAG); 2582 case ISD::ConstantPool: 2583 return lowerConstantPool(Op, DAG); 2584 case ISD::JumpTable: 2585 return lowerJumpTable(Op, DAG); 2586 case ISD::GlobalTLSAddress: 2587 return lowerGlobalTLSAddress(Op, DAG); 2588 case ISD::SELECT: 2589 return lowerSELECT(Op, DAG); 2590 case ISD::BRCOND: 2591 return lowerBRCOND(Op, DAG); 2592 case ISD::VASTART: 2593 return lowerVASTART(Op, DAG); 2594 case ISD::FRAMEADDR: 2595 return lowerFRAMEADDR(Op, DAG); 2596 case ISD::RETURNADDR: 2597 return lowerRETURNADDR(Op, DAG); 2598 case ISD::SHL_PARTS: 2599 return lowerShiftLeftParts(Op, DAG); 2600 case ISD::SRA_PARTS: 2601 return lowerShiftRightParts(Op, DAG, true); 2602 case ISD::SRL_PARTS: 2603 return lowerShiftRightParts(Op, DAG, false); 2604 case ISD::BITCAST: { 2605 SDLoc DL(Op); 2606 EVT VT = Op.getValueType(); 2607 SDValue Op0 = Op.getOperand(0); 2608 EVT Op0VT = Op0.getValueType(); 2609 MVT XLenVT = Subtarget.getXLenVT(); 2610 if (VT.isFixedLengthVector()) { 2611 // We can handle fixed length vector bitcasts with a simple replacement 2612 // in isel. 2613 if (Op0VT.isFixedLengthVector()) 2614 return Op; 2615 // When bitcasting from scalar to fixed-length vector, insert the scalar 2616 // into a one-element vector of the result type, and perform a vector 2617 // bitcast. 2618 if (!Op0VT.isVector()) { 2619 EVT BVT = EVT::getVectorVT(*DAG.getContext(), Op0VT, 1); 2620 if (!isTypeLegal(BVT)) 2621 return SDValue(); 2622 return DAG.getBitcast(VT, DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, BVT, 2623 DAG.getUNDEF(BVT), Op0, 2624 DAG.getConstant(0, DL, XLenVT))); 2625 } 2626 return SDValue(); 2627 } 2628 // Custom-legalize bitcasts from fixed-length vector types to scalar types 2629 // thus: bitcast the vector to a one-element vector type whose element type 2630 // is the same as the result type, and extract the first element. 2631 if (!VT.isVector() && Op0VT.isFixedLengthVector()) { 2632 EVT BVT = EVT::getVectorVT(*DAG.getContext(), VT, 1); 2633 if (!isTypeLegal(BVT)) 2634 return SDValue(); 2635 SDValue BVec = DAG.getBitcast(BVT, Op0); 2636 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec, 2637 DAG.getConstant(0, DL, XLenVT)); 2638 } 2639 if (VT == MVT::f16 && Op0VT == MVT::i16 && Subtarget.hasStdExtZfh()) { 2640 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Op0); 2641 SDValue FPConv = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, NewOp0); 2642 return FPConv; 2643 } 2644 if (VT == MVT::f32 && Op0VT == MVT::i32 && Subtarget.is64Bit() && 2645 Subtarget.hasStdExtF()) { 2646 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); 2647 SDValue FPConv = 2648 DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, NewOp0); 2649 return FPConv; 2650 } 2651 return SDValue(); 2652 } 2653 case ISD::INTRINSIC_WO_CHAIN: 2654 return LowerINTRINSIC_WO_CHAIN(Op, DAG); 2655 case ISD::INTRINSIC_W_CHAIN: 2656 return LowerINTRINSIC_W_CHAIN(Op, DAG); 2657 case ISD::INTRINSIC_VOID: 2658 return LowerINTRINSIC_VOID(Op, DAG); 2659 case ISD::BSWAP: 2660 case ISD::BITREVERSE: { 2661 // Convert BSWAP/BITREVERSE to GREVI to enable GREVI combinining. 2662 assert(Subtarget.hasStdExtZbp() && "Unexpected custom legalisation"); 2663 MVT VT = Op.getSimpleValueType(); 2664 SDLoc DL(Op); 2665 // Start with the maximum immediate value which is the bitwidth - 1. 2666 unsigned Imm = VT.getSizeInBits() - 1; 2667 // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits. 2668 if (Op.getOpcode() == ISD::BSWAP) 2669 Imm &= ~0x7U; 2670 return DAG.getNode(RISCVISD::GREV, DL, VT, Op.getOperand(0), 2671 DAG.getConstant(Imm, DL, VT)); 2672 } 2673 case ISD::FSHL: 2674 case ISD::FSHR: { 2675 MVT VT = Op.getSimpleValueType(); 2676 assert(VT == Subtarget.getXLenVT() && "Unexpected custom legalization"); 2677 SDLoc DL(Op); 2678 if (Op.getOperand(2).getOpcode() == ISD::Constant) 2679 return Op; 2680 // FSL/FSR take a log2(XLen)+1 bit shift amount but XLenVT FSHL/FSHR only 2681 // use log(XLen) bits. Mask the shift amount accordingly. 2682 unsigned ShAmtWidth = Subtarget.getXLen() - 1; 2683 SDValue ShAmt = DAG.getNode(ISD::AND, DL, VT, Op.getOperand(2), 2684 DAG.getConstant(ShAmtWidth, DL, VT)); 2685 unsigned Opc = Op.getOpcode() == ISD::FSHL ? RISCVISD::FSL : RISCVISD::FSR; 2686 return DAG.getNode(Opc, DL, VT, Op.getOperand(0), Op.getOperand(1), ShAmt); 2687 } 2688 case ISD::TRUNCATE: { 2689 SDLoc DL(Op); 2690 MVT VT = Op.getSimpleValueType(); 2691 // Only custom-lower vector truncates 2692 if (!VT.isVector()) 2693 return Op; 2694 2695 // Truncates to mask types are handled differently 2696 if (VT.getVectorElementType() == MVT::i1) 2697 return lowerVectorMaskTrunc(Op, DAG); 2698 2699 // RVV only has truncates which operate from SEW*2->SEW, so lower arbitrary 2700 // truncates as a series of "RISCVISD::TRUNCATE_VECTOR_VL" nodes which 2701 // truncate by one power of two at a time. 2702 MVT DstEltVT = VT.getVectorElementType(); 2703 2704 SDValue Src = Op.getOperand(0); 2705 MVT SrcVT = Src.getSimpleValueType(); 2706 MVT SrcEltVT = SrcVT.getVectorElementType(); 2707 2708 assert(DstEltVT.bitsLT(SrcEltVT) && 2709 isPowerOf2_64(DstEltVT.getSizeInBits()) && 2710 isPowerOf2_64(SrcEltVT.getSizeInBits()) && 2711 "Unexpected vector truncate lowering"); 2712 2713 MVT ContainerVT = SrcVT; 2714 if (SrcVT.isFixedLengthVector()) { 2715 ContainerVT = getContainerForFixedLengthVector(SrcVT); 2716 Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget); 2717 } 2718 2719 SDValue Result = Src; 2720 SDValue Mask, VL; 2721 std::tie(Mask, VL) = 2722 getDefaultVLOps(SrcVT, ContainerVT, DL, DAG, Subtarget); 2723 LLVMContext &Context = *DAG.getContext(); 2724 const ElementCount Count = ContainerVT.getVectorElementCount(); 2725 do { 2726 SrcEltVT = MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2); 2727 EVT ResultVT = EVT::getVectorVT(Context, SrcEltVT, Count); 2728 Result = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, ResultVT, Result, 2729 Mask, VL); 2730 } while (SrcEltVT != DstEltVT); 2731 2732 if (SrcVT.isFixedLengthVector()) 2733 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 2734 2735 return Result; 2736 } 2737 case ISD::ANY_EXTEND: 2738 case ISD::ZERO_EXTEND: 2739 if (Op.getOperand(0).getValueType().isVector() && 2740 Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) 2741 return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ 1); 2742 return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VZEXT_VL); 2743 case ISD::SIGN_EXTEND: 2744 if (Op.getOperand(0).getValueType().isVector() && 2745 Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) 2746 return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ -1); 2747 return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VSEXT_VL); 2748 case ISD::SPLAT_VECTOR_PARTS: 2749 return lowerSPLAT_VECTOR_PARTS(Op, DAG); 2750 case ISD::INSERT_VECTOR_ELT: 2751 return lowerINSERT_VECTOR_ELT(Op, DAG); 2752 case ISD::EXTRACT_VECTOR_ELT: 2753 return lowerEXTRACT_VECTOR_ELT(Op, DAG); 2754 case ISD::VSCALE: { 2755 MVT VT = Op.getSimpleValueType(); 2756 SDLoc DL(Op); 2757 SDValue VLENB = DAG.getNode(RISCVISD::READ_VLENB, DL, VT); 2758 // We define our scalable vector types for lmul=1 to use a 64 bit known 2759 // minimum size. e.g. <vscale x 2 x i32>. VLENB is in bytes so we calculate 2760 // vscale as VLENB / 8. 2761 assert(RISCV::RVVBitsPerBlock == 64 && "Unexpected bits per block!"); 2762 if (isa<ConstantSDNode>(Op.getOperand(0))) { 2763 // We assume VLENB is a multiple of 8. We manually choose the best shift 2764 // here because SimplifyDemandedBits isn't always able to simplify it. 2765 uint64_t Val = Op.getConstantOperandVal(0); 2766 if (isPowerOf2_64(Val)) { 2767 uint64_t Log2 = Log2_64(Val); 2768 if (Log2 < 3) 2769 return DAG.getNode(ISD::SRL, DL, VT, VLENB, 2770 DAG.getConstant(3 - Log2, DL, VT)); 2771 if (Log2 > 3) 2772 return DAG.getNode(ISD::SHL, DL, VT, VLENB, 2773 DAG.getConstant(Log2 - 3, DL, VT)); 2774 return VLENB; 2775 } 2776 // If the multiplier is a multiple of 8, scale it down to avoid needing 2777 // to shift the VLENB value. 2778 if ((Val % 8) == 0) 2779 return DAG.getNode(ISD::MUL, DL, VT, VLENB, 2780 DAG.getConstant(Val / 8, DL, VT)); 2781 } 2782 2783 SDValue VScale = DAG.getNode(ISD::SRL, DL, VT, VLENB, 2784 DAG.getConstant(3, DL, VT)); 2785 return DAG.getNode(ISD::MUL, DL, VT, VScale, Op.getOperand(0)); 2786 } 2787 case ISD::FPOWI: { 2788 // Custom promote f16 powi with illegal i32 integer type on RV64. Once 2789 // promoted this will be legalized into a libcall by LegalizeIntegerTypes. 2790 if (Op.getValueType() == MVT::f16 && Subtarget.is64Bit() && 2791 Op.getOperand(1).getValueType() == MVT::i32) { 2792 SDLoc DL(Op); 2793 SDValue Op0 = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Op.getOperand(0)); 2794 SDValue Powi = 2795 DAG.getNode(ISD::FPOWI, DL, MVT::f32, Op0, Op.getOperand(1)); 2796 return DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, Powi, 2797 DAG.getIntPtrConstant(0, DL)); 2798 } 2799 return SDValue(); 2800 } 2801 case ISD::FP_EXTEND: { 2802 // RVV can only do fp_extend to types double the size as the source. We 2803 // custom-lower f16->f64 extensions to two hops of ISD::FP_EXTEND, going 2804 // via f32. 2805 SDLoc DL(Op); 2806 MVT VT = Op.getSimpleValueType(); 2807 SDValue Src = Op.getOperand(0); 2808 MVT SrcVT = Src.getSimpleValueType(); 2809 2810 // Prepare any fixed-length vector operands. 2811 MVT ContainerVT = VT; 2812 if (SrcVT.isFixedLengthVector()) { 2813 ContainerVT = getContainerForFixedLengthVector(VT); 2814 MVT SrcContainerVT = 2815 ContainerVT.changeVectorElementType(SrcVT.getVectorElementType()); 2816 Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); 2817 } 2818 2819 if (!VT.isVector() || VT.getVectorElementType() != MVT::f64 || 2820 SrcVT.getVectorElementType() != MVT::f16) { 2821 // For scalable vectors, we only need to close the gap between 2822 // vXf16->vXf64. 2823 if (!VT.isFixedLengthVector()) 2824 return Op; 2825 // For fixed-length vectors, lower the FP_EXTEND to a custom "VL" version. 2826 Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget); 2827 return convertFromScalableVector(VT, Src, DAG, Subtarget); 2828 } 2829 2830 MVT InterVT = VT.changeVectorElementType(MVT::f32); 2831 MVT InterContainerVT = ContainerVT.changeVectorElementType(MVT::f32); 2832 SDValue IntermediateExtend = getRVVFPExtendOrRound( 2833 Src, InterVT, InterContainerVT, DL, DAG, Subtarget); 2834 2835 SDValue Extend = getRVVFPExtendOrRound(IntermediateExtend, VT, ContainerVT, 2836 DL, DAG, Subtarget); 2837 if (VT.isFixedLengthVector()) 2838 return convertFromScalableVector(VT, Extend, DAG, Subtarget); 2839 return Extend; 2840 } 2841 case ISD::FP_ROUND: { 2842 // RVV can only do fp_round to types half the size as the source. We 2843 // custom-lower f64->f16 rounds via RVV's round-to-odd float 2844 // conversion instruction. 2845 SDLoc DL(Op); 2846 MVT VT = Op.getSimpleValueType(); 2847 SDValue Src = Op.getOperand(0); 2848 MVT SrcVT = Src.getSimpleValueType(); 2849 2850 // Prepare any fixed-length vector operands. 2851 MVT ContainerVT = VT; 2852 if (VT.isFixedLengthVector()) { 2853 MVT SrcContainerVT = getContainerForFixedLengthVector(SrcVT); 2854 ContainerVT = 2855 SrcContainerVT.changeVectorElementType(VT.getVectorElementType()); 2856 Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); 2857 } 2858 2859 if (!VT.isVector() || VT.getVectorElementType() != MVT::f16 || 2860 SrcVT.getVectorElementType() != MVT::f64) { 2861 // For scalable vectors, we only need to close the gap between 2862 // vXf64<->vXf16. 2863 if (!VT.isFixedLengthVector()) 2864 return Op; 2865 // For fixed-length vectors, lower the FP_ROUND to a custom "VL" version. 2866 Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget); 2867 return convertFromScalableVector(VT, Src, DAG, Subtarget); 2868 } 2869 2870 SDValue Mask, VL; 2871 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 2872 2873 MVT InterVT = ContainerVT.changeVectorElementType(MVT::f32); 2874 SDValue IntermediateRound = 2875 DAG.getNode(RISCVISD::VFNCVT_ROD_VL, DL, InterVT, Src, Mask, VL); 2876 SDValue Round = getRVVFPExtendOrRound(IntermediateRound, VT, ContainerVT, 2877 DL, DAG, Subtarget); 2878 2879 if (VT.isFixedLengthVector()) 2880 return convertFromScalableVector(VT, Round, DAG, Subtarget); 2881 return Round; 2882 } 2883 case ISD::FP_TO_SINT: 2884 case ISD::FP_TO_UINT: 2885 case ISD::SINT_TO_FP: 2886 case ISD::UINT_TO_FP: { 2887 // RVV can only do fp<->int conversions to types half/double the size as 2888 // the source. We custom-lower any conversions that do two hops into 2889 // sequences. 2890 MVT VT = Op.getSimpleValueType(); 2891 if (!VT.isVector()) 2892 return Op; 2893 SDLoc DL(Op); 2894 SDValue Src = Op.getOperand(0); 2895 MVT EltVT = VT.getVectorElementType(); 2896 MVT SrcVT = Src.getSimpleValueType(); 2897 MVT SrcEltVT = SrcVT.getVectorElementType(); 2898 unsigned EltSize = EltVT.getSizeInBits(); 2899 unsigned SrcEltSize = SrcEltVT.getSizeInBits(); 2900 assert(isPowerOf2_32(EltSize) && isPowerOf2_32(SrcEltSize) && 2901 "Unexpected vector element types"); 2902 2903 bool IsInt2FP = SrcEltVT.isInteger(); 2904 // Widening conversions 2905 if (EltSize > SrcEltSize && (EltSize / SrcEltSize >= 4)) { 2906 if (IsInt2FP) { 2907 // Do a regular integer sign/zero extension then convert to float. 2908 MVT IVecVT = MVT::getVectorVT(MVT::getIntegerVT(EltVT.getSizeInBits()), 2909 VT.getVectorElementCount()); 2910 unsigned ExtOpcode = Op.getOpcode() == ISD::UINT_TO_FP 2911 ? ISD::ZERO_EXTEND 2912 : ISD::SIGN_EXTEND; 2913 SDValue Ext = DAG.getNode(ExtOpcode, DL, IVecVT, Src); 2914 return DAG.getNode(Op.getOpcode(), DL, VT, Ext); 2915 } 2916 // FP2Int 2917 assert(SrcEltVT == MVT::f16 && "Unexpected FP_TO_[US]INT lowering"); 2918 // Do one doubling fp_extend then complete the operation by converting 2919 // to int. 2920 MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount()); 2921 SDValue FExt = DAG.getFPExtendOrRound(Src, DL, InterimFVT); 2922 return DAG.getNode(Op.getOpcode(), DL, VT, FExt); 2923 } 2924 2925 // Narrowing conversions 2926 if (SrcEltSize > EltSize && (SrcEltSize / EltSize >= 4)) { 2927 if (IsInt2FP) { 2928 // One narrowing int_to_fp, then an fp_round. 2929 assert(EltVT == MVT::f16 && "Unexpected [US]_TO_FP lowering"); 2930 MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount()); 2931 SDValue Int2FP = DAG.getNode(Op.getOpcode(), DL, InterimFVT, Src); 2932 return DAG.getFPExtendOrRound(Int2FP, DL, VT); 2933 } 2934 // FP2Int 2935 // One narrowing fp_to_int, then truncate the integer. If the float isn't 2936 // representable by the integer, the result is poison. 2937 MVT IVecVT = 2938 MVT::getVectorVT(MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2), 2939 VT.getVectorElementCount()); 2940 SDValue FP2Int = DAG.getNode(Op.getOpcode(), DL, IVecVT, Src); 2941 return DAG.getNode(ISD::TRUNCATE, DL, VT, FP2Int); 2942 } 2943 2944 // Scalable vectors can exit here. Patterns will handle equally-sized 2945 // conversions halving/doubling ones. 2946 if (!VT.isFixedLengthVector()) 2947 return Op; 2948 2949 // For fixed-length vectors we lower to a custom "VL" node. 2950 unsigned RVVOpc = 0; 2951 switch (Op.getOpcode()) { 2952 default: 2953 llvm_unreachable("Impossible opcode"); 2954 case ISD::FP_TO_SINT: 2955 RVVOpc = RISCVISD::FP_TO_SINT_VL; 2956 break; 2957 case ISD::FP_TO_UINT: 2958 RVVOpc = RISCVISD::FP_TO_UINT_VL; 2959 break; 2960 case ISD::SINT_TO_FP: 2961 RVVOpc = RISCVISD::SINT_TO_FP_VL; 2962 break; 2963 case ISD::UINT_TO_FP: 2964 RVVOpc = RISCVISD::UINT_TO_FP_VL; 2965 break; 2966 } 2967 2968 MVT ContainerVT, SrcContainerVT; 2969 // Derive the reference container type from the larger vector type. 2970 if (SrcEltSize > EltSize) { 2971 SrcContainerVT = getContainerForFixedLengthVector(SrcVT); 2972 ContainerVT = 2973 SrcContainerVT.changeVectorElementType(VT.getVectorElementType()); 2974 } else { 2975 ContainerVT = getContainerForFixedLengthVector(VT); 2976 SrcContainerVT = ContainerVT.changeVectorElementType(SrcEltVT); 2977 } 2978 2979 SDValue Mask, VL; 2980 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 2981 2982 Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); 2983 Src = DAG.getNode(RVVOpc, DL, ContainerVT, Src, Mask, VL); 2984 return convertFromScalableVector(VT, Src, DAG, Subtarget); 2985 } 2986 case ISD::FP_TO_SINT_SAT: 2987 case ISD::FP_TO_UINT_SAT: 2988 return lowerFP_TO_INT_SAT(Op, DAG); 2989 case ISD::FTRUNC: 2990 case ISD::FCEIL: 2991 case ISD::FFLOOR: 2992 return lowerFTRUNC_FCEIL_FFLOOR(Op, DAG); 2993 case ISD::VECREDUCE_ADD: 2994 case ISD::VECREDUCE_UMAX: 2995 case ISD::VECREDUCE_SMAX: 2996 case ISD::VECREDUCE_UMIN: 2997 case ISD::VECREDUCE_SMIN: 2998 return lowerVECREDUCE(Op, DAG); 2999 case ISD::VECREDUCE_AND: 3000 case ISD::VECREDUCE_OR: 3001 case ISD::VECREDUCE_XOR: 3002 if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) 3003 return lowerVectorMaskVecReduction(Op, DAG, /*IsVP*/ false); 3004 return lowerVECREDUCE(Op, DAG); 3005 case ISD::VECREDUCE_FADD: 3006 case ISD::VECREDUCE_SEQ_FADD: 3007 case ISD::VECREDUCE_FMIN: 3008 case ISD::VECREDUCE_FMAX: 3009 return lowerFPVECREDUCE(Op, DAG); 3010 case ISD::VP_REDUCE_ADD: 3011 case ISD::VP_REDUCE_UMAX: 3012 case ISD::VP_REDUCE_SMAX: 3013 case ISD::VP_REDUCE_UMIN: 3014 case ISD::VP_REDUCE_SMIN: 3015 case ISD::VP_REDUCE_FADD: 3016 case ISD::VP_REDUCE_SEQ_FADD: 3017 case ISD::VP_REDUCE_FMIN: 3018 case ISD::VP_REDUCE_FMAX: 3019 return lowerVPREDUCE(Op, DAG); 3020 case ISD::VP_REDUCE_AND: 3021 case ISD::VP_REDUCE_OR: 3022 case ISD::VP_REDUCE_XOR: 3023 if (Op.getOperand(1).getValueType().getVectorElementType() == MVT::i1) 3024 return lowerVectorMaskVecReduction(Op, DAG, /*IsVP*/ true); 3025 return lowerVPREDUCE(Op, DAG); 3026 case ISD::INSERT_SUBVECTOR: 3027 return lowerINSERT_SUBVECTOR(Op, DAG); 3028 case ISD::EXTRACT_SUBVECTOR: 3029 return lowerEXTRACT_SUBVECTOR(Op, DAG); 3030 case ISD::STEP_VECTOR: 3031 return lowerSTEP_VECTOR(Op, DAG); 3032 case ISD::VECTOR_REVERSE: 3033 return lowerVECTOR_REVERSE(Op, DAG); 3034 case ISD::BUILD_VECTOR: 3035 return lowerBUILD_VECTOR(Op, DAG, Subtarget); 3036 case ISD::SPLAT_VECTOR: 3037 if (Op.getValueType().getVectorElementType() == MVT::i1) 3038 return lowerVectorMaskSplat(Op, DAG); 3039 return lowerSPLAT_VECTOR(Op, DAG, Subtarget); 3040 case ISD::VECTOR_SHUFFLE: 3041 return lowerVECTOR_SHUFFLE(Op, DAG, Subtarget); 3042 case ISD::CONCAT_VECTORS: { 3043 // Split CONCAT_VECTORS into a series of INSERT_SUBVECTOR nodes. This is 3044 // better than going through the stack, as the default expansion does. 3045 SDLoc DL(Op); 3046 MVT VT = Op.getSimpleValueType(); 3047 unsigned NumOpElts = 3048 Op.getOperand(0).getSimpleValueType().getVectorMinNumElements(); 3049 SDValue Vec = DAG.getUNDEF(VT); 3050 for (const auto &OpIdx : enumerate(Op->ops())) 3051 Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, Vec, OpIdx.value(), 3052 DAG.getIntPtrConstant(OpIdx.index() * NumOpElts, DL)); 3053 return Vec; 3054 } 3055 case ISD::LOAD: 3056 if (auto V = expandUnalignedRVVLoad(Op, DAG)) 3057 return V; 3058 if (Op.getValueType().isFixedLengthVector()) 3059 return lowerFixedLengthVectorLoadToRVV(Op, DAG); 3060 return Op; 3061 case ISD::STORE: 3062 if (auto V = expandUnalignedRVVStore(Op, DAG)) 3063 return V; 3064 if (Op.getOperand(1).getValueType().isFixedLengthVector()) 3065 return lowerFixedLengthVectorStoreToRVV(Op, DAG); 3066 return Op; 3067 case ISD::MLOAD: 3068 case ISD::VP_LOAD: 3069 return lowerMaskedLoad(Op, DAG); 3070 case ISD::MSTORE: 3071 case ISD::VP_STORE: 3072 return lowerMaskedStore(Op, DAG); 3073 case ISD::SETCC: 3074 return lowerFixedLengthVectorSetccToRVV(Op, DAG); 3075 case ISD::ADD: 3076 return lowerToScalableOp(Op, DAG, RISCVISD::ADD_VL); 3077 case ISD::SUB: 3078 return lowerToScalableOp(Op, DAG, RISCVISD::SUB_VL); 3079 case ISD::MUL: 3080 return lowerToScalableOp(Op, DAG, RISCVISD::MUL_VL); 3081 case ISD::MULHS: 3082 return lowerToScalableOp(Op, DAG, RISCVISD::MULHS_VL); 3083 case ISD::MULHU: 3084 return lowerToScalableOp(Op, DAG, RISCVISD::MULHU_VL); 3085 case ISD::AND: 3086 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMAND_VL, 3087 RISCVISD::AND_VL); 3088 case ISD::OR: 3089 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMOR_VL, 3090 RISCVISD::OR_VL); 3091 case ISD::XOR: 3092 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMXOR_VL, 3093 RISCVISD::XOR_VL); 3094 case ISD::SDIV: 3095 return lowerToScalableOp(Op, DAG, RISCVISD::SDIV_VL); 3096 case ISD::SREM: 3097 return lowerToScalableOp(Op, DAG, RISCVISD::SREM_VL); 3098 case ISD::UDIV: 3099 return lowerToScalableOp(Op, DAG, RISCVISD::UDIV_VL); 3100 case ISD::UREM: 3101 return lowerToScalableOp(Op, DAG, RISCVISD::UREM_VL); 3102 case ISD::SHL: 3103 case ISD::SRA: 3104 case ISD::SRL: 3105 if (Op.getSimpleValueType().isFixedLengthVector()) 3106 return lowerFixedLengthVectorShiftToRVV(Op, DAG); 3107 // This can be called for an i32 shift amount that needs to be promoted. 3108 assert(Op.getOperand(1).getValueType() == MVT::i32 && Subtarget.is64Bit() && 3109 "Unexpected custom legalisation"); 3110 return SDValue(); 3111 case ISD::SADDSAT: 3112 return lowerToScalableOp(Op, DAG, RISCVISD::SADDSAT_VL); 3113 case ISD::UADDSAT: 3114 return lowerToScalableOp(Op, DAG, RISCVISD::UADDSAT_VL); 3115 case ISD::SSUBSAT: 3116 return lowerToScalableOp(Op, DAG, RISCVISD::SSUBSAT_VL); 3117 case ISD::USUBSAT: 3118 return lowerToScalableOp(Op, DAG, RISCVISD::USUBSAT_VL); 3119 case ISD::FADD: 3120 return lowerToScalableOp(Op, DAG, RISCVISD::FADD_VL); 3121 case ISD::FSUB: 3122 return lowerToScalableOp(Op, DAG, RISCVISD::FSUB_VL); 3123 case ISD::FMUL: 3124 return lowerToScalableOp(Op, DAG, RISCVISD::FMUL_VL); 3125 case ISD::FDIV: 3126 return lowerToScalableOp(Op, DAG, RISCVISD::FDIV_VL); 3127 case ISD::FNEG: 3128 return lowerToScalableOp(Op, DAG, RISCVISD::FNEG_VL); 3129 case ISD::FABS: 3130 return lowerToScalableOp(Op, DAG, RISCVISD::FABS_VL); 3131 case ISD::FSQRT: 3132 return lowerToScalableOp(Op, DAG, RISCVISD::FSQRT_VL); 3133 case ISD::FMA: 3134 return lowerToScalableOp(Op, DAG, RISCVISD::FMA_VL); 3135 case ISD::SMIN: 3136 return lowerToScalableOp(Op, DAG, RISCVISD::SMIN_VL); 3137 case ISD::SMAX: 3138 return lowerToScalableOp(Op, DAG, RISCVISD::SMAX_VL); 3139 case ISD::UMIN: 3140 return lowerToScalableOp(Op, DAG, RISCVISD::UMIN_VL); 3141 case ISD::UMAX: 3142 return lowerToScalableOp(Op, DAG, RISCVISD::UMAX_VL); 3143 case ISD::FMINNUM: 3144 return lowerToScalableOp(Op, DAG, RISCVISD::FMINNUM_VL); 3145 case ISD::FMAXNUM: 3146 return lowerToScalableOp(Op, DAG, RISCVISD::FMAXNUM_VL); 3147 case ISD::ABS: 3148 return lowerABS(Op, DAG); 3149 case ISD::CTLZ_ZERO_UNDEF: 3150 case ISD::CTTZ_ZERO_UNDEF: 3151 return lowerCTLZ_CTTZ_ZERO_UNDEF(Op, DAG); 3152 case ISD::VSELECT: 3153 return lowerFixedLengthVectorSelectToRVV(Op, DAG); 3154 case ISD::FCOPYSIGN: 3155 return lowerFixedLengthVectorFCOPYSIGNToRVV(Op, DAG); 3156 case ISD::MGATHER: 3157 case ISD::VP_GATHER: 3158 return lowerMaskedGather(Op, DAG); 3159 case ISD::MSCATTER: 3160 case ISD::VP_SCATTER: 3161 return lowerMaskedScatter(Op, DAG); 3162 case ISD::FLT_ROUNDS_: 3163 return lowerGET_ROUNDING(Op, DAG); 3164 case ISD::SET_ROUNDING: 3165 return lowerSET_ROUNDING(Op, DAG); 3166 case ISD::VP_SELECT: 3167 return lowerVPOp(Op, DAG, RISCVISD::VSELECT_VL); 3168 case ISD::VP_ADD: 3169 return lowerVPOp(Op, DAG, RISCVISD::ADD_VL); 3170 case ISD::VP_SUB: 3171 return lowerVPOp(Op, DAG, RISCVISD::SUB_VL); 3172 case ISD::VP_MUL: 3173 return lowerVPOp(Op, DAG, RISCVISD::MUL_VL); 3174 case ISD::VP_SDIV: 3175 return lowerVPOp(Op, DAG, RISCVISD::SDIV_VL); 3176 case ISD::VP_UDIV: 3177 return lowerVPOp(Op, DAG, RISCVISD::UDIV_VL); 3178 case ISD::VP_SREM: 3179 return lowerVPOp(Op, DAG, RISCVISD::SREM_VL); 3180 case ISD::VP_UREM: 3181 return lowerVPOp(Op, DAG, RISCVISD::UREM_VL); 3182 case ISD::VP_AND: 3183 return lowerVPOp(Op, DAG, RISCVISD::AND_VL); 3184 case ISD::VP_OR: 3185 return lowerVPOp(Op, DAG, RISCVISD::OR_VL); 3186 case ISD::VP_XOR: 3187 return lowerVPOp(Op, DAG, RISCVISD::XOR_VL); 3188 case ISD::VP_ASHR: 3189 return lowerVPOp(Op, DAG, RISCVISD::SRA_VL); 3190 case ISD::VP_LSHR: 3191 return lowerVPOp(Op, DAG, RISCVISD::SRL_VL); 3192 case ISD::VP_SHL: 3193 return lowerVPOp(Op, DAG, RISCVISD::SHL_VL); 3194 case ISD::VP_FADD: 3195 return lowerVPOp(Op, DAG, RISCVISD::FADD_VL); 3196 case ISD::VP_FSUB: 3197 return lowerVPOp(Op, DAG, RISCVISD::FSUB_VL); 3198 case ISD::VP_FMUL: 3199 return lowerVPOp(Op, DAG, RISCVISD::FMUL_VL); 3200 case ISD::VP_FDIV: 3201 return lowerVPOp(Op, DAG, RISCVISD::FDIV_VL); 3202 } 3203 } 3204 3205 static SDValue getTargetNode(GlobalAddressSDNode *N, SDLoc DL, EVT Ty, 3206 SelectionDAG &DAG, unsigned Flags) { 3207 return DAG.getTargetGlobalAddress(N->getGlobal(), DL, Ty, 0, Flags); 3208 } 3209 3210 static SDValue getTargetNode(BlockAddressSDNode *N, SDLoc DL, EVT Ty, 3211 SelectionDAG &DAG, unsigned Flags) { 3212 return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, N->getOffset(), 3213 Flags); 3214 } 3215 3216 static SDValue getTargetNode(ConstantPoolSDNode *N, SDLoc DL, EVT Ty, 3217 SelectionDAG &DAG, unsigned Flags) { 3218 return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlign(), 3219 N->getOffset(), Flags); 3220 } 3221 3222 static SDValue getTargetNode(JumpTableSDNode *N, SDLoc DL, EVT Ty, 3223 SelectionDAG &DAG, unsigned Flags) { 3224 return DAG.getTargetJumpTable(N->getIndex(), Ty, Flags); 3225 } 3226 3227 template <class NodeTy> 3228 SDValue RISCVTargetLowering::getAddr(NodeTy *N, SelectionDAG &DAG, 3229 bool IsLocal) const { 3230 SDLoc DL(N); 3231 EVT Ty = getPointerTy(DAG.getDataLayout()); 3232 3233 if (isPositionIndependent()) { 3234 SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0); 3235 if (IsLocal) 3236 // Use PC-relative addressing to access the symbol. This generates the 3237 // pattern (PseudoLLA sym), which expands to (addi (auipc %pcrel_hi(sym)) 3238 // %pcrel_lo(auipc)). 3239 return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0); 3240 3241 // Use PC-relative addressing to access the GOT for this symbol, then load 3242 // the address from the GOT. This generates the pattern (PseudoLA sym), 3243 // which expands to (ld (addi (auipc %got_pcrel_hi(sym)) %pcrel_lo(auipc))). 3244 return SDValue(DAG.getMachineNode(RISCV::PseudoLA, DL, Ty, Addr), 0); 3245 } 3246 3247 switch (getTargetMachine().getCodeModel()) { 3248 default: 3249 report_fatal_error("Unsupported code model for lowering"); 3250 case CodeModel::Small: { 3251 // Generate a sequence for accessing addresses within the first 2 GiB of 3252 // address space. This generates the pattern (addi (lui %hi(sym)) %lo(sym)). 3253 SDValue AddrHi = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_HI); 3254 SDValue AddrLo = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_LO); 3255 SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0); 3256 return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNHi, AddrLo), 0); 3257 } 3258 case CodeModel::Medium: { 3259 // Generate a sequence for accessing addresses within any 2GiB range within 3260 // the address space. This generates the pattern (PseudoLLA sym), which 3261 // expands to (addi (auipc %pcrel_hi(sym)) %pcrel_lo(auipc)). 3262 SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0); 3263 return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0); 3264 } 3265 } 3266 } 3267 3268 SDValue RISCVTargetLowering::lowerGlobalAddress(SDValue Op, 3269 SelectionDAG &DAG) const { 3270 SDLoc DL(Op); 3271 EVT Ty = Op.getValueType(); 3272 GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op); 3273 int64_t Offset = N->getOffset(); 3274 MVT XLenVT = Subtarget.getXLenVT(); 3275 3276 const GlobalValue *GV = N->getGlobal(); 3277 bool IsLocal = getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV); 3278 SDValue Addr = getAddr(N, DAG, IsLocal); 3279 3280 // In order to maximise the opportunity for common subexpression elimination, 3281 // emit a separate ADD node for the global address offset instead of folding 3282 // it in the global address node. Later peephole optimisations may choose to 3283 // fold it back in when profitable. 3284 if (Offset != 0) 3285 return DAG.getNode(ISD::ADD, DL, Ty, Addr, 3286 DAG.getConstant(Offset, DL, XLenVT)); 3287 return Addr; 3288 } 3289 3290 SDValue RISCVTargetLowering::lowerBlockAddress(SDValue Op, 3291 SelectionDAG &DAG) const { 3292 BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op); 3293 3294 return getAddr(N, DAG); 3295 } 3296 3297 SDValue RISCVTargetLowering::lowerConstantPool(SDValue Op, 3298 SelectionDAG &DAG) const { 3299 ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op); 3300 3301 return getAddr(N, DAG); 3302 } 3303 3304 SDValue RISCVTargetLowering::lowerJumpTable(SDValue Op, 3305 SelectionDAG &DAG) const { 3306 JumpTableSDNode *N = cast<JumpTableSDNode>(Op); 3307 3308 return getAddr(N, DAG); 3309 } 3310 3311 SDValue RISCVTargetLowering::getStaticTLSAddr(GlobalAddressSDNode *N, 3312 SelectionDAG &DAG, 3313 bool UseGOT) const { 3314 SDLoc DL(N); 3315 EVT Ty = getPointerTy(DAG.getDataLayout()); 3316 const GlobalValue *GV = N->getGlobal(); 3317 MVT XLenVT = Subtarget.getXLenVT(); 3318 3319 if (UseGOT) { 3320 // Use PC-relative addressing to access the GOT for this TLS symbol, then 3321 // load the address from the GOT and add the thread pointer. This generates 3322 // the pattern (PseudoLA_TLS_IE sym), which expands to 3323 // (ld (auipc %tls_ie_pcrel_hi(sym)) %pcrel_lo(auipc)). 3324 SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0); 3325 SDValue Load = 3326 SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_IE, DL, Ty, Addr), 0); 3327 3328 // Add the thread pointer. 3329 SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT); 3330 return DAG.getNode(ISD::ADD, DL, Ty, Load, TPReg); 3331 } 3332 3333 // Generate a sequence for accessing the address relative to the thread 3334 // pointer, with the appropriate adjustment for the thread pointer offset. 3335 // This generates the pattern 3336 // (add (add_tprel (lui %tprel_hi(sym)) tp %tprel_add(sym)) %tprel_lo(sym)) 3337 SDValue AddrHi = 3338 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_HI); 3339 SDValue AddrAdd = 3340 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_ADD); 3341 SDValue AddrLo = 3342 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_LO); 3343 3344 SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0); 3345 SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT); 3346 SDValue MNAdd = SDValue( 3347 DAG.getMachineNode(RISCV::PseudoAddTPRel, DL, Ty, MNHi, TPReg, AddrAdd), 3348 0); 3349 return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNAdd, AddrLo), 0); 3350 } 3351 3352 SDValue RISCVTargetLowering::getDynamicTLSAddr(GlobalAddressSDNode *N, 3353 SelectionDAG &DAG) const { 3354 SDLoc DL(N); 3355 EVT Ty = getPointerTy(DAG.getDataLayout()); 3356 IntegerType *CallTy = Type::getIntNTy(*DAG.getContext(), Ty.getSizeInBits()); 3357 const GlobalValue *GV = N->getGlobal(); 3358 3359 // Use a PC-relative addressing mode to access the global dynamic GOT address. 3360 // This generates the pattern (PseudoLA_TLS_GD sym), which expands to 3361 // (addi (auipc %tls_gd_pcrel_hi(sym)) %pcrel_lo(auipc)). 3362 SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0); 3363 SDValue Load = 3364 SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_GD, DL, Ty, Addr), 0); 3365 3366 // Prepare argument list to generate call. 3367 ArgListTy Args; 3368 ArgListEntry Entry; 3369 Entry.Node = Load; 3370 Entry.Ty = CallTy; 3371 Args.push_back(Entry); 3372 3373 // Setup call to __tls_get_addr. 3374 TargetLowering::CallLoweringInfo CLI(DAG); 3375 CLI.setDebugLoc(DL) 3376 .setChain(DAG.getEntryNode()) 3377 .setLibCallee(CallingConv::C, CallTy, 3378 DAG.getExternalSymbol("__tls_get_addr", Ty), 3379 std::move(Args)); 3380 3381 return LowerCallTo(CLI).first; 3382 } 3383 3384 SDValue RISCVTargetLowering::lowerGlobalTLSAddress(SDValue Op, 3385 SelectionDAG &DAG) const { 3386 SDLoc DL(Op); 3387 EVT Ty = Op.getValueType(); 3388 GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op); 3389 int64_t Offset = N->getOffset(); 3390 MVT XLenVT = Subtarget.getXLenVT(); 3391 3392 TLSModel::Model Model = getTargetMachine().getTLSModel(N->getGlobal()); 3393 3394 if (DAG.getMachineFunction().getFunction().getCallingConv() == 3395 CallingConv::GHC) 3396 report_fatal_error("In GHC calling convention TLS is not supported"); 3397 3398 SDValue Addr; 3399 switch (Model) { 3400 case TLSModel::LocalExec: 3401 Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/false); 3402 break; 3403 case TLSModel::InitialExec: 3404 Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/true); 3405 break; 3406 case TLSModel::LocalDynamic: 3407 case TLSModel::GeneralDynamic: 3408 Addr = getDynamicTLSAddr(N, DAG); 3409 break; 3410 } 3411 3412 // In order to maximise the opportunity for common subexpression elimination, 3413 // emit a separate ADD node for the global address offset instead of folding 3414 // it in the global address node. Later peephole optimisations may choose to 3415 // fold it back in when profitable. 3416 if (Offset != 0) 3417 return DAG.getNode(ISD::ADD, DL, Ty, Addr, 3418 DAG.getConstant(Offset, DL, XLenVT)); 3419 return Addr; 3420 } 3421 3422 SDValue RISCVTargetLowering::lowerSELECT(SDValue Op, SelectionDAG &DAG) const { 3423 SDValue CondV = Op.getOperand(0); 3424 SDValue TrueV = Op.getOperand(1); 3425 SDValue FalseV = Op.getOperand(2); 3426 SDLoc DL(Op); 3427 MVT VT = Op.getSimpleValueType(); 3428 MVT XLenVT = Subtarget.getXLenVT(); 3429 3430 // Lower vector SELECTs to VSELECTs by splatting the condition. 3431 if (VT.isVector()) { 3432 MVT SplatCondVT = VT.changeVectorElementType(MVT::i1); 3433 SDValue CondSplat = VT.isScalableVector() 3434 ? DAG.getSplatVector(SplatCondVT, DL, CondV) 3435 : DAG.getSplatBuildVector(SplatCondVT, DL, CondV); 3436 return DAG.getNode(ISD::VSELECT, DL, VT, CondSplat, TrueV, FalseV); 3437 } 3438 3439 // If the result type is XLenVT and CondV is the output of a SETCC node 3440 // which also operated on XLenVT inputs, then merge the SETCC node into the 3441 // lowered RISCVISD::SELECT_CC to take advantage of the integer 3442 // compare+branch instructions. i.e.: 3443 // (select (setcc lhs, rhs, cc), truev, falsev) 3444 // -> (riscvisd::select_cc lhs, rhs, cc, truev, falsev) 3445 if (VT == XLenVT && CondV.getOpcode() == ISD::SETCC && 3446 CondV.getOperand(0).getSimpleValueType() == XLenVT) { 3447 SDValue LHS = CondV.getOperand(0); 3448 SDValue RHS = CondV.getOperand(1); 3449 const auto *CC = cast<CondCodeSDNode>(CondV.getOperand(2)); 3450 ISD::CondCode CCVal = CC->get(); 3451 3452 // Special case for a select of 2 constants that have a diffence of 1. 3453 // Normally this is done by DAGCombine, but if the select is introduced by 3454 // type legalization or op legalization, we miss it. Restricting to SETLT 3455 // case for now because that is what signed saturating add/sub need. 3456 // FIXME: We don't need the condition to be SETLT or even a SETCC, 3457 // but we would probably want to swap the true/false values if the condition 3458 // is SETGE/SETLE to avoid an XORI. 3459 if (isa<ConstantSDNode>(TrueV) && isa<ConstantSDNode>(FalseV) && 3460 CCVal == ISD::SETLT) { 3461 const APInt &TrueVal = cast<ConstantSDNode>(TrueV)->getAPIntValue(); 3462 const APInt &FalseVal = cast<ConstantSDNode>(FalseV)->getAPIntValue(); 3463 if (TrueVal - 1 == FalseVal) 3464 return DAG.getNode(ISD::ADD, DL, Op.getValueType(), CondV, FalseV); 3465 if (TrueVal + 1 == FalseVal) 3466 return DAG.getNode(ISD::SUB, DL, Op.getValueType(), FalseV, CondV); 3467 } 3468 3469 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 3470 3471 SDValue TargetCC = DAG.getCondCode(CCVal); 3472 SDValue Ops[] = {LHS, RHS, TargetCC, TrueV, FalseV}; 3473 return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops); 3474 } 3475 3476 // Otherwise: 3477 // (select condv, truev, falsev) 3478 // -> (riscvisd::select_cc condv, zero, setne, truev, falsev) 3479 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 3480 SDValue SetNE = DAG.getCondCode(ISD::SETNE); 3481 3482 SDValue Ops[] = {CondV, Zero, SetNE, TrueV, FalseV}; 3483 3484 return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops); 3485 } 3486 3487 SDValue RISCVTargetLowering::lowerBRCOND(SDValue Op, SelectionDAG &DAG) const { 3488 SDValue CondV = Op.getOperand(1); 3489 SDLoc DL(Op); 3490 MVT XLenVT = Subtarget.getXLenVT(); 3491 3492 if (CondV.getOpcode() == ISD::SETCC && 3493 CondV.getOperand(0).getValueType() == XLenVT) { 3494 SDValue LHS = CondV.getOperand(0); 3495 SDValue RHS = CondV.getOperand(1); 3496 ISD::CondCode CCVal = cast<CondCodeSDNode>(CondV.getOperand(2))->get(); 3497 3498 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 3499 3500 SDValue TargetCC = DAG.getCondCode(CCVal); 3501 return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0), 3502 LHS, RHS, TargetCC, Op.getOperand(2)); 3503 } 3504 3505 return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0), 3506 CondV, DAG.getConstant(0, DL, XLenVT), 3507 DAG.getCondCode(ISD::SETNE), Op.getOperand(2)); 3508 } 3509 3510 SDValue RISCVTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const { 3511 MachineFunction &MF = DAG.getMachineFunction(); 3512 RISCVMachineFunctionInfo *FuncInfo = MF.getInfo<RISCVMachineFunctionInfo>(); 3513 3514 SDLoc DL(Op); 3515 SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), 3516 getPointerTy(MF.getDataLayout())); 3517 3518 // vastart just stores the address of the VarArgsFrameIndex slot into the 3519 // memory location argument. 3520 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 3521 return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1), 3522 MachinePointerInfo(SV)); 3523 } 3524 3525 SDValue RISCVTargetLowering::lowerFRAMEADDR(SDValue Op, 3526 SelectionDAG &DAG) const { 3527 const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo(); 3528 MachineFunction &MF = DAG.getMachineFunction(); 3529 MachineFrameInfo &MFI = MF.getFrameInfo(); 3530 MFI.setFrameAddressIsTaken(true); 3531 Register FrameReg = RI.getFrameRegister(MF); 3532 int XLenInBytes = Subtarget.getXLen() / 8; 3533 3534 EVT VT = Op.getValueType(); 3535 SDLoc DL(Op); 3536 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, FrameReg, VT); 3537 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 3538 while (Depth--) { 3539 int Offset = -(XLenInBytes * 2); 3540 SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr, 3541 DAG.getIntPtrConstant(Offset, DL)); 3542 FrameAddr = 3543 DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo()); 3544 } 3545 return FrameAddr; 3546 } 3547 3548 SDValue RISCVTargetLowering::lowerRETURNADDR(SDValue Op, 3549 SelectionDAG &DAG) const { 3550 const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo(); 3551 MachineFunction &MF = DAG.getMachineFunction(); 3552 MachineFrameInfo &MFI = MF.getFrameInfo(); 3553 MFI.setReturnAddressIsTaken(true); 3554 MVT XLenVT = Subtarget.getXLenVT(); 3555 int XLenInBytes = Subtarget.getXLen() / 8; 3556 3557 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 3558 return SDValue(); 3559 3560 EVT VT = Op.getValueType(); 3561 SDLoc DL(Op); 3562 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 3563 if (Depth) { 3564 int Off = -XLenInBytes; 3565 SDValue FrameAddr = lowerFRAMEADDR(Op, DAG); 3566 SDValue Offset = DAG.getConstant(Off, DL, VT); 3567 return DAG.getLoad(VT, DL, DAG.getEntryNode(), 3568 DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset), 3569 MachinePointerInfo()); 3570 } 3571 3572 // Return the value of the return address register, marking it an implicit 3573 // live-in. 3574 Register Reg = MF.addLiveIn(RI.getRARegister(), getRegClassFor(XLenVT)); 3575 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, XLenVT); 3576 } 3577 3578 SDValue RISCVTargetLowering::lowerShiftLeftParts(SDValue Op, 3579 SelectionDAG &DAG) const { 3580 SDLoc DL(Op); 3581 SDValue Lo = Op.getOperand(0); 3582 SDValue Hi = Op.getOperand(1); 3583 SDValue Shamt = Op.getOperand(2); 3584 EVT VT = Lo.getValueType(); 3585 3586 // if Shamt-XLEN < 0: // Shamt < XLEN 3587 // Lo = Lo << Shamt 3588 // Hi = (Hi << Shamt) | ((Lo >>u 1) >>u (XLEN-1 - Shamt)) 3589 // else: 3590 // Lo = 0 3591 // Hi = Lo << (Shamt-XLEN) 3592 3593 SDValue Zero = DAG.getConstant(0, DL, VT); 3594 SDValue One = DAG.getConstant(1, DL, VT); 3595 SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT); 3596 SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT); 3597 SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen); 3598 SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt); 3599 3600 SDValue LoTrue = DAG.getNode(ISD::SHL, DL, VT, Lo, Shamt); 3601 SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, VT, Lo, One); 3602 SDValue ShiftRightLo = 3603 DAG.getNode(ISD::SRL, DL, VT, ShiftRight1Lo, XLenMinus1Shamt); 3604 SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, Hi, Shamt); 3605 SDValue HiTrue = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo); 3606 SDValue HiFalse = DAG.getNode(ISD::SHL, DL, VT, Lo, ShamtMinusXLen); 3607 3608 SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT); 3609 3610 Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, Zero); 3611 Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse); 3612 3613 SDValue Parts[2] = {Lo, Hi}; 3614 return DAG.getMergeValues(Parts, DL); 3615 } 3616 3617 SDValue RISCVTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG, 3618 bool IsSRA) const { 3619 SDLoc DL(Op); 3620 SDValue Lo = Op.getOperand(0); 3621 SDValue Hi = Op.getOperand(1); 3622 SDValue Shamt = Op.getOperand(2); 3623 EVT VT = Lo.getValueType(); 3624 3625 // SRA expansion: 3626 // if Shamt-XLEN < 0: // Shamt < XLEN 3627 // Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt)) 3628 // Hi = Hi >>s Shamt 3629 // else: 3630 // Lo = Hi >>s (Shamt-XLEN); 3631 // Hi = Hi >>s (XLEN-1) 3632 // 3633 // SRL expansion: 3634 // if Shamt-XLEN < 0: // Shamt < XLEN 3635 // Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt)) 3636 // Hi = Hi >>u Shamt 3637 // else: 3638 // Lo = Hi >>u (Shamt-XLEN); 3639 // Hi = 0; 3640 3641 unsigned ShiftRightOp = IsSRA ? ISD::SRA : ISD::SRL; 3642 3643 SDValue Zero = DAG.getConstant(0, DL, VT); 3644 SDValue One = DAG.getConstant(1, DL, VT); 3645 SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT); 3646 SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT); 3647 SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen); 3648 SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt); 3649 3650 SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, Lo, Shamt); 3651 SDValue ShiftLeftHi1 = DAG.getNode(ISD::SHL, DL, VT, Hi, One); 3652 SDValue ShiftLeftHi = 3653 DAG.getNode(ISD::SHL, DL, VT, ShiftLeftHi1, XLenMinus1Shamt); 3654 SDValue LoTrue = DAG.getNode(ISD::OR, DL, VT, ShiftRightLo, ShiftLeftHi); 3655 SDValue HiTrue = DAG.getNode(ShiftRightOp, DL, VT, Hi, Shamt); 3656 SDValue LoFalse = DAG.getNode(ShiftRightOp, DL, VT, Hi, ShamtMinusXLen); 3657 SDValue HiFalse = 3658 IsSRA ? DAG.getNode(ISD::SRA, DL, VT, Hi, XLenMinus1) : Zero; 3659 3660 SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT); 3661 3662 Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, LoFalse); 3663 Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse); 3664 3665 SDValue Parts[2] = {Lo, Hi}; 3666 return DAG.getMergeValues(Parts, DL); 3667 } 3668 3669 // Lower splats of i1 types to SETCC. For each mask vector type, we have a 3670 // legal equivalently-sized i8 type, so we can use that as a go-between. 3671 SDValue RISCVTargetLowering::lowerVectorMaskSplat(SDValue Op, 3672 SelectionDAG &DAG) const { 3673 SDLoc DL(Op); 3674 MVT VT = Op.getSimpleValueType(); 3675 SDValue SplatVal = Op.getOperand(0); 3676 // All-zeros or all-ones splats are handled specially. 3677 if (ISD::isConstantSplatVectorAllOnes(Op.getNode())) { 3678 SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second; 3679 return DAG.getNode(RISCVISD::VMSET_VL, DL, VT, VL); 3680 } 3681 if (ISD::isConstantSplatVectorAllZeros(Op.getNode())) { 3682 SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second; 3683 return DAG.getNode(RISCVISD::VMCLR_VL, DL, VT, VL); 3684 } 3685 MVT XLenVT = Subtarget.getXLenVT(); 3686 assert(SplatVal.getValueType() == XLenVT && 3687 "Unexpected type for i1 splat value"); 3688 MVT InterVT = VT.changeVectorElementType(MVT::i8); 3689 SplatVal = DAG.getNode(ISD::AND, DL, XLenVT, SplatVal, 3690 DAG.getConstant(1, DL, XLenVT)); 3691 SDValue LHS = DAG.getSplatVector(InterVT, DL, SplatVal); 3692 SDValue Zero = DAG.getConstant(0, DL, InterVT); 3693 return DAG.getSetCC(DL, VT, LHS, Zero, ISD::SETNE); 3694 } 3695 3696 // Custom-lower a SPLAT_VECTOR_PARTS where XLEN<SEW, as the SEW element type is 3697 // illegal (currently only vXi64 RV32). 3698 // FIXME: We could also catch non-constant sign-extended i32 values and lower 3699 // them to SPLAT_VECTOR_I64 3700 SDValue RISCVTargetLowering::lowerSPLAT_VECTOR_PARTS(SDValue Op, 3701 SelectionDAG &DAG) const { 3702 SDLoc DL(Op); 3703 MVT VecVT = Op.getSimpleValueType(); 3704 assert(!Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64 && 3705 "Unexpected SPLAT_VECTOR_PARTS lowering"); 3706 3707 assert(Op.getNumOperands() == 2 && "Unexpected number of operands!"); 3708 SDValue Lo = Op.getOperand(0); 3709 SDValue Hi = Op.getOperand(1); 3710 3711 if (VecVT.isFixedLengthVector()) { 3712 MVT ContainerVT = getContainerForFixedLengthVector(VecVT); 3713 SDLoc DL(Op); 3714 SDValue Mask, VL; 3715 std::tie(Mask, VL) = 3716 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 3717 3718 SDValue Res = splatPartsI64WithVL(DL, ContainerVT, Lo, Hi, VL, DAG); 3719 return convertFromScalableVector(VecVT, Res, DAG, Subtarget); 3720 } 3721 3722 if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) { 3723 int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue(); 3724 int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue(); 3725 // If Hi constant is all the same sign bit as Lo, lower this as a custom 3726 // node in order to try and match RVV vector/scalar instructions. 3727 if ((LoC >> 31) == HiC) 3728 return DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, Lo); 3729 } 3730 3731 // Detect cases where Hi is (SRA Lo, 31) which means Hi is Lo sign extended. 3732 if (Hi.getOpcode() == ISD::SRA && Hi.getOperand(0) == Lo && 3733 isa<ConstantSDNode>(Hi.getOperand(1)) && 3734 Hi.getConstantOperandVal(1) == 31) 3735 return DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, Lo); 3736 3737 // Fall back to use a stack store and stride x0 vector load. Use X0 as VL. 3738 return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VecVT, Lo, Hi, 3739 DAG.getTargetConstant(RISCV::VLMaxSentinel, DL, MVT::i64)); 3740 } 3741 3742 // Custom-lower extensions from mask vectors by using a vselect either with 1 3743 // for zero/any-extension or -1 for sign-extension: 3744 // (vXiN = (s|z)ext vXi1:vmask) -> (vXiN = vselect vmask, (-1 or 1), 0) 3745 // Note that any-extension is lowered identically to zero-extension. 3746 SDValue RISCVTargetLowering::lowerVectorMaskExt(SDValue Op, SelectionDAG &DAG, 3747 int64_t ExtTrueVal) const { 3748 SDLoc DL(Op); 3749 MVT VecVT = Op.getSimpleValueType(); 3750 SDValue Src = Op.getOperand(0); 3751 // Only custom-lower extensions from mask types 3752 assert(Src.getValueType().isVector() && 3753 Src.getValueType().getVectorElementType() == MVT::i1); 3754 3755 MVT XLenVT = Subtarget.getXLenVT(); 3756 SDValue SplatZero = DAG.getConstant(0, DL, XLenVT); 3757 SDValue SplatTrueVal = DAG.getConstant(ExtTrueVal, DL, XLenVT); 3758 3759 if (VecVT.isScalableVector()) { 3760 // Be careful not to introduce illegal scalar types at this stage, and be 3761 // careful also about splatting constants as on RV32, vXi64 SPLAT_VECTOR is 3762 // illegal and must be expanded. Since we know that the constants are 3763 // sign-extended 32-bit values, we use SPLAT_VECTOR_I64 directly. 3764 bool IsRV32E64 = 3765 !Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64; 3766 3767 if (!IsRV32E64) { 3768 SplatZero = DAG.getSplatVector(VecVT, DL, SplatZero); 3769 SplatTrueVal = DAG.getSplatVector(VecVT, DL, SplatTrueVal); 3770 } else { 3771 SplatZero = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, SplatZero); 3772 SplatTrueVal = 3773 DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, SplatTrueVal); 3774 } 3775 3776 return DAG.getNode(ISD::VSELECT, DL, VecVT, Src, SplatTrueVal, SplatZero); 3777 } 3778 3779 MVT ContainerVT = getContainerForFixedLengthVector(VecVT); 3780 MVT I1ContainerVT = 3781 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 3782 3783 SDValue CC = convertToScalableVector(I1ContainerVT, Src, DAG, Subtarget); 3784 3785 SDValue Mask, VL; 3786 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 3787 3788 SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatZero, VL); 3789 SplatTrueVal = 3790 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatTrueVal, VL); 3791 SDValue Select = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC, 3792 SplatTrueVal, SplatZero, VL); 3793 3794 return convertFromScalableVector(VecVT, Select, DAG, Subtarget); 3795 } 3796 3797 SDValue RISCVTargetLowering::lowerFixedLengthVectorExtendToRVV( 3798 SDValue Op, SelectionDAG &DAG, unsigned ExtendOpc) const { 3799 MVT ExtVT = Op.getSimpleValueType(); 3800 // Only custom-lower extensions from fixed-length vector types. 3801 if (!ExtVT.isFixedLengthVector()) 3802 return Op; 3803 MVT VT = Op.getOperand(0).getSimpleValueType(); 3804 // Grab the canonical container type for the extended type. Infer the smaller 3805 // type from that to ensure the same number of vector elements, as we know 3806 // the LMUL will be sufficient to hold the smaller type. 3807 MVT ContainerExtVT = getContainerForFixedLengthVector(ExtVT); 3808 // Get the extended container type manually to ensure the same number of 3809 // vector elements between source and dest. 3810 MVT ContainerVT = MVT::getVectorVT(VT.getVectorElementType(), 3811 ContainerExtVT.getVectorElementCount()); 3812 3813 SDValue Op1 = 3814 convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget); 3815 3816 SDLoc DL(Op); 3817 SDValue Mask, VL; 3818 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 3819 3820 SDValue Ext = DAG.getNode(ExtendOpc, DL, ContainerExtVT, Op1, Mask, VL); 3821 3822 return convertFromScalableVector(ExtVT, Ext, DAG, Subtarget); 3823 } 3824 3825 // Custom-lower truncations from vectors to mask vectors by using a mask and a 3826 // setcc operation: 3827 // (vXi1 = trunc vXiN vec) -> (vXi1 = setcc (and vec, 1), 0, ne) 3828 SDValue RISCVTargetLowering::lowerVectorMaskTrunc(SDValue Op, 3829 SelectionDAG &DAG) const { 3830 SDLoc DL(Op); 3831 EVT MaskVT = Op.getValueType(); 3832 // Only expect to custom-lower truncations to mask types 3833 assert(MaskVT.isVector() && MaskVT.getVectorElementType() == MVT::i1 && 3834 "Unexpected type for vector mask lowering"); 3835 SDValue Src = Op.getOperand(0); 3836 MVT VecVT = Src.getSimpleValueType(); 3837 3838 // If this is a fixed vector, we need to convert it to a scalable vector. 3839 MVT ContainerVT = VecVT; 3840 if (VecVT.isFixedLengthVector()) { 3841 ContainerVT = getContainerForFixedLengthVector(VecVT); 3842 Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget); 3843 } 3844 3845 SDValue SplatOne = DAG.getConstant(1, DL, Subtarget.getXLenVT()); 3846 SDValue SplatZero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 3847 3848 SplatOne = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatOne); 3849 SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatZero); 3850 3851 if (VecVT.isScalableVector()) { 3852 SDValue Trunc = DAG.getNode(ISD::AND, DL, VecVT, Src, SplatOne); 3853 return DAG.getSetCC(DL, MaskVT, Trunc, SplatZero, ISD::SETNE); 3854 } 3855 3856 SDValue Mask, VL; 3857 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 3858 3859 MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1); 3860 SDValue Trunc = 3861 DAG.getNode(RISCVISD::AND_VL, DL, ContainerVT, Src, SplatOne, Mask, VL); 3862 Trunc = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskContainerVT, Trunc, SplatZero, 3863 DAG.getCondCode(ISD::SETNE), Mask, VL); 3864 return convertFromScalableVector(MaskVT, Trunc, DAG, Subtarget); 3865 } 3866 3867 // Custom-legalize INSERT_VECTOR_ELT so that the value is inserted into the 3868 // first position of a vector, and that vector is slid up to the insert index. 3869 // By limiting the active vector length to index+1 and merging with the 3870 // original vector (with an undisturbed tail policy for elements >= VL), we 3871 // achieve the desired result of leaving all elements untouched except the one 3872 // at VL-1, which is replaced with the desired value. 3873 SDValue RISCVTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op, 3874 SelectionDAG &DAG) const { 3875 SDLoc DL(Op); 3876 MVT VecVT = Op.getSimpleValueType(); 3877 SDValue Vec = Op.getOperand(0); 3878 SDValue Val = Op.getOperand(1); 3879 SDValue Idx = Op.getOperand(2); 3880 3881 if (VecVT.getVectorElementType() == MVT::i1) { 3882 // FIXME: For now we just promote to an i8 vector and insert into that, 3883 // but this is probably not optimal. 3884 MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount()); 3885 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec); 3886 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, WideVT, Vec, Val, Idx); 3887 return DAG.getNode(ISD::TRUNCATE, DL, VecVT, Vec); 3888 } 3889 3890 MVT ContainerVT = VecVT; 3891 // If the operand is a fixed-length vector, convert to a scalable one. 3892 if (VecVT.isFixedLengthVector()) { 3893 ContainerVT = getContainerForFixedLengthVector(VecVT); 3894 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 3895 } 3896 3897 MVT XLenVT = Subtarget.getXLenVT(); 3898 3899 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 3900 bool IsLegalInsert = Subtarget.is64Bit() || Val.getValueType() != MVT::i64; 3901 // Even i64-element vectors on RV32 can be lowered without scalar 3902 // legalization if the most-significant 32 bits of the value are not affected 3903 // by the sign-extension of the lower 32 bits. 3904 // TODO: We could also catch sign extensions of a 32-bit value. 3905 if (!IsLegalInsert && isa<ConstantSDNode>(Val)) { 3906 const auto *CVal = cast<ConstantSDNode>(Val); 3907 if (isInt<32>(CVal->getSExtValue())) { 3908 IsLegalInsert = true; 3909 Val = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32); 3910 } 3911 } 3912 3913 SDValue Mask, VL; 3914 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 3915 3916 SDValue ValInVec; 3917 3918 if (IsLegalInsert) { 3919 unsigned Opc = 3920 VecVT.isFloatingPoint() ? RISCVISD::VFMV_S_F_VL : RISCVISD::VMV_S_X_VL; 3921 if (isNullConstant(Idx)) { 3922 Vec = DAG.getNode(Opc, DL, ContainerVT, Vec, Val, VL); 3923 if (!VecVT.isFixedLengthVector()) 3924 return Vec; 3925 return convertFromScalableVector(VecVT, Vec, DAG, Subtarget); 3926 } 3927 ValInVec = 3928 DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), Val, VL); 3929 } else { 3930 // On RV32, i64-element vectors must be specially handled to place the 3931 // value at element 0, by using two vslide1up instructions in sequence on 3932 // the i32 split lo/hi value. Use an equivalently-sized i32 vector for 3933 // this. 3934 SDValue One = DAG.getConstant(1, DL, XLenVT); 3935 SDValue ValLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, Zero); 3936 SDValue ValHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, One); 3937 MVT I32ContainerVT = 3938 MVT::getVectorVT(MVT::i32, ContainerVT.getVectorElementCount() * 2); 3939 SDValue I32Mask = 3940 getDefaultScalableVLOps(I32ContainerVT, DL, DAG, Subtarget).first; 3941 // Limit the active VL to two. 3942 SDValue InsertI64VL = DAG.getConstant(2, DL, XLenVT); 3943 // Note: We can't pass a UNDEF to the first VSLIDE1UP_VL since an untied 3944 // undef doesn't obey the earlyclobber constraint. Just splat a zero value. 3945 ValInVec = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, I32ContainerVT, Zero, 3946 InsertI64VL); 3947 // First slide in the hi value, then the lo in underneath it. 3948 ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT, ValInVec, 3949 ValHi, I32Mask, InsertI64VL); 3950 ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT, ValInVec, 3951 ValLo, I32Mask, InsertI64VL); 3952 // Bitcast back to the right container type. 3953 ValInVec = DAG.getBitcast(ContainerVT, ValInVec); 3954 } 3955 3956 // Now that the value is in a vector, slide it into position. 3957 SDValue InsertVL = 3958 DAG.getNode(ISD::ADD, DL, XLenVT, Idx, DAG.getConstant(1, DL, XLenVT)); 3959 SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec, 3960 ValInVec, Idx, Mask, InsertVL); 3961 if (!VecVT.isFixedLengthVector()) 3962 return Slideup; 3963 return convertFromScalableVector(VecVT, Slideup, DAG, Subtarget); 3964 } 3965 3966 // Custom-lower EXTRACT_VECTOR_ELT operations to slide the vector down, then 3967 // extract the first element: (extractelt (slidedown vec, idx), 0). For integer 3968 // types this is done using VMV_X_S to allow us to glean information about the 3969 // sign bits of the result. 3970 SDValue RISCVTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op, 3971 SelectionDAG &DAG) const { 3972 SDLoc DL(Op); 3973 SDValue Idx = Op.getOperand(1); 3974 SDValue Vec = Op.getOperand(0); 3975 EVT EltVT = Op.getValueType(); 3976 MVT VecVT = Vec.getSimpleValueType(); 3977 MVT XLenVT = Subtarget.getXLenVT(); 3978 3979 if (VecVT.getVectorElementType() == MVT::i1) { 3980 // FIXME: For now we just promote to an i8 vector and extract from that, 3981 // but this is probably not optimal. 3982 MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount()); 3983 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec); 3984 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec, Idx); 3985 } 3986 3987 // If this is a fixed vector, we need to convert it to a scalable vector. 3988 MVT ContainerVT = VecVT; 3989 if (VecVT.isFixedLengthVector()) { 3990 ContainerVT = getContainerForFixedLengthVector(VecVT); 3991 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 3992 } 3993 3994 // If the index is 0, the vector is already in the right position. 3995 if (!isNullConstant(Idx)) { 3996 // Use a VL of 1 to avoid processing more elements than we need. 3997 SDValue VL = DAG.getConstant(1, DL, XLenVT); 3998 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 3999 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 4000 Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 4001 DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL); 4002 } 4003 4004 if (!EltVT.isInteger()) { 4005 // Floating-point extracts are handled in TableGen. 4006 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec, 4007 DAG.getConstant(0, DL, XLenVT)); 4008 } 4009 4010 SDValue Elt0 = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); 4011 return DAG.getNode(ISD::TRUNCATE, DL, EltVT, Elt0); 4012 } 4013 4014 // Some RVV intrinsics may claim that they want an integer operand to be 4015 // promoted or expanded. 4016 static SDValue lowerVectorIntrinsicSplats(SDValue Op, SelectionDAG &DAG, 4017 const RISCVSubtarget &Subtarget) { 4018 assert((Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 4019 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN) && 4020 "Unexpected opcode"); 4021 4022 if (!Subtarget.hasVInstructions()) 4023 return SDValue(); 4024 4025 bool HasChain = Op.getOpcode() == ISD::INTRINSIC_W_CHAIN; 4026 unsigned IntNo = Op.getConstantOperandVal(HasChain ? 1 : 0); 4027 SDLoc DL(Op); 4028 4029 const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II = 4030 RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo); 4031 if (!II || !II->SplatOperand) 4032 return SDValue(); 4033 4034 unsigned SplatOp = II->SplatOperand + HasChain; 4035 assert(SplatOp < Op.getNumOperands()); 4036 4037 SmallVector<SDValue, 8> Operands(Op->op_begin(), Op->op_end()); 4038 SDValue &ScalarOp = Operands[SplatOp]; 4039 MVT OpVT = ScalarOp.getSimpleValueType(); 4040 MVT XLenVT = Subtarget.getXLenVT(); 4041 4042 // If this isn't a scalar, or its type is XLenVT we're done. 4043 if (!OpVT.isScalarInteger() || OpVT == XLenVT) 4044 return SDValue(); 4045 4046 // Simplest case is that the operand needs to be promoted to XLenVT. 4047 if (OpVT.bitsLT(XLenVT)) { 4048 // If the operand is a constant, sign extend to increase our chances 4049 // of being able to use a .vi instruction. ANY_EXTEND would become a 4050 // a zero extend and the simm5 check in isel would fail. 4051 // FIXME: Should we ignore the upper bits in isel instead? 4052 unsigned ExtOpc = 4053 isa<ConstantSDNode>(ScalarOp) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND; 4054 ScalarOp = DAG.getNode(ExtOpc, DL, XLenVT, ScalarOp); 4055 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); 4056 } 4057 4058 // Use the previous operand to get the vXi64 VT. The result might be a mask 4059 // VT for compares. Using the previous operand assumes that the previous 4060 // operand will never have a smaller element size than a scalar operand and 4061 // that a widening operation never uses SEW=64. 4062 // NOTE: If this fails the below assert, we can probably just find the 4063 // element count from any operand or result and use it to construct the VT. 4064 assert(II->SplatOperand > 1 && "Unexpected splat operand!"); 4065 MVT VT = Op.getOperand(SplatOp - 1).getSimpleValueType(); 4066 4067 // The more complex case is when the scalar is larger than XLenVT. 4068 assert(XLenVT == MVT::i32 && OpVT == MVT::i64 && 4069 VT.getVectorElementType() == MVT::i64 && "Unexpected VTs!"); 4070 4071 // If this is a sign-extended 32-bit constant, we can truncate it and rely 4072 // on the instruction to sign-extend since SEW>XLEN. 4073 if (auto *CVal = dyn_cast<ConstantSDNode>(ScalarOp)) { 4074 if (isInt<32>(CVal->getSExtValue())) { 4075 ScalarOp = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32); 4076 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); 4077 } 4078 } 4079 4080 // We need to convert the scalar to a splat vector. 4081 // FIXME: Can we implicitly truncate the scalar if it is known to 4082 // be sign extended? 4083 // VL should be the last operand. 4084 SDValue VL = Op.getOperand(Op.getNumOperands() - 1); 4085 assert(VL.getValueType() == XLenVT); 4086 ScalarOp = splatSplitI64WithVL(DL, VT, ScalarOp, VL, DAG); 4087 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); 4088 } 4089 4090 SDValue RISCVTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 4091 SelectionDAG &DAG) const { 4092 unsigned IntNo = Op.getConstantOperandVal(0); 4093 SDLoc DL(Op); 4094 MVT XLenVT = Subtarget.getXLenVT(); 4095 4096 switch (IntNo) { 4097 default: 4098 break; // Don't custom lower most intrinsics. 4099 case Intrinsic::thread_pointer: { 4100 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 4101 return DAG.getRegister(RISCV::X4, PtrVT); 4102 } 4103 case Intrinsic::riscv_orc_b: 4104 // Lower to the GORCI encoding for orc.b. 4105 return DAG.getNode(RISCVISD::GORC, DL, XLenVT, Op.getOperand(1), 4106 DAG.getConstant(7, DL, XLenVT)); 4107 case Intrinsic::riscv_grev: 4108 case Intrinsic::riscv_gorc: { 4109 unsigned Opc = 4110 IntNo == Intrinsic::riscv_grev ? RISCVISD::GREV : RISCVISD::GORC; 4111 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2)); 4112 } 4113 case Intrinsic::riscv_shfl: 4114 case Intrinsic::riscv_unshfl: { 4115 unsigned Opc = 4116 IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL; 4117 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2)); 4118 } 4119 case Intrinsic::riscv_bcompress: 4120 case Intrinsic::riscv_bdecompress: { 4121 unsigned Opc = IntNo == Intrinsic::riscv_bcompress ? RISCVISD::BCOMPRESS 4122 : RISCVISD::BDECOMPRESS; 4123 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2)); 4124 } 4125 case Intrinsic::riscv_vmv_x_s: 4126 assert(Op.getValueType() == XLenVT && "Unexpected VT!"); 4127 return DAG.getNode(RISCVISD::VMV_X_S, DL, Op.getValueType(), 4128 Op.getOperand(1)); 4129 case Intrinsic::riscv_vmv_v_x: 4130 return lowerScalarSplat(Op.getOperand(1), Op.getOperand(2), 4131 Op.getSimpleValueType(), DL, DAG, Subtarget); 4132 case Intrinsic::riscv_vfmv_v_f: 4133 return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, Op.getValueType(), 4134 Op.getOperand(1), Op.getOperand(2)); 4135 case Intrinsic::riscv_vmv_s_x: { 4136 SDValue Scalar = Op.getOperand(2); 4137 4138 if (Scalar.getValueType().bitsLE(XLenVT)) { 4139 Scalar = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Scalar); 4140 return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, Op.getValueType(), 4141 Op.getOperand(1), Scalar, Op.getOperand(3)); 4142 } 4143 4144 assert(Scalar.getValueType() == MVT::i64 && "Unexpected scalar VT!"); 4145 4146 // This is an i64 value that lives in two scalar registers. We have to 4147 // insert this in a convoluted way. First we build vXi64 splat containing 4148 // the/ two values that we assemble using some bit math. Next we'll use 4149 // vid.v and vmseq to build a mask with bit 0 set. Then we'll use that mask 4150 // to merge element 0 from our splat into the source vector. 4151 // FIXME: This is probably not the best way to do this, but it is 4152 // consistent with INSERT_VECTOR_ELT lowering so it is a good starting 4153 // point. 4154 // sw lo, (a0) 4155 // sw hi, 4(a0) 4156 // vlse vX, (a0) 4157 // 4158 // vid.v vVid 4159 // vmseq.vx mMask, vVid, 0 4160 // vmerge.vvm vDest, vSrc, vVal, mMask 4161 MVT VT = Op.getSimpleValueType(); 4162 SDValue Vec = Op.getOperand(1); 4163 SDValue VL = Op.getOperand(3); 4164 4165 SDValue SplattedVal = splatSplitI64WithVL(DL, VT, Scalar, VL, DAG); 4166 SDValue SplattedIdx = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, 4167 DAG.getConstant(0, DL, MVT::i32), VL); 4168 4169 MVT MaskVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount()); 4170 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 4171 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL); 4172 SDValue SelectCond = 4173 DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, VID, SplattedIdx, 4174 DAG.getCondCode(ISD::SETEQ), Mask, VL); 4175 return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, SelectCond, SplattedVal, 4176 Vec, VL); 4177 } 4178 case Intrinsic::riscv_vslide1up: 4179 case Intrinsic::riscv_vslide1down: 4180 case Intrinsic::riscv_vslide1up_mask: 4181 case Intrinsic::riscv_vslide1down_mask: { 4182 // We need to special case these when the scalar is larger than XLen. 4183 unsigned NumOps = Op.getNumOperands(); 4184 bool IsMasked = NumOps == 7; 4185 unsigned OpOffset = IsMasked ? 1 : 0; 4186 SDValue Scalar = Op.getOperand(2 + OpOffset); 4187 if (Scalar.getValueType().bitsLE(XLenVT)) 4188 break; 4189 4190 // Splatting a sign extended constant is fine. 4191 if (auto *CVal = dyn_cast<ConstantSDNode>(Scalar)) 4192 if (isInt<32>(CVal->getSExtValue())) 4193 break; 4194 4195 MVT VT = Op.getSimpleValueType(); 4196 assert(VT.getVectorElementType() == MVT::i64 && 4197 Scalar.getValueType() == MVT::i64 && "Unexpected VTs"); 4198 4199 // Convert the vector source to the equivalent nxvXi32 vector. 4200 MVT I32VT = MVT::getVectorVT(MVT::i32, VT.getVectorElementCount() * 2); 4201 SDValue Vec = DAG.getBitcast(I32VT, Op.getOperand(1 + OpOffset)); 4202 4203 SDValue ScalarLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 4204 DAG.getConstant(0, DL, XLenVT)); 4205 SDValue ScalarHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 4206 DAG.getConstant(1, DL, XLenVT)); 4207 4208 // Double the VL since we halved SEW. 4209 SDValue VL = Op.getOperand(NumOps - (1 + OpOffset)); 4210 SDValue I32VL = 4211 DAG.getNode(ISD::SHL, DL, XLenVT, VL, DAG.getConstant(1, DL, XLenVT)); 4212 4213 MVT I32MaskVT = MVT::getVectorVT(MVT::i1, I32VT.getVectorElementCount()); 4214 SDValue I32Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, I32MaskVT, VL); 4215 4216 // Shift the two scalar parts in using SEW=32 slide1up/slide1down 4217 // instructions. 4218 if (IntNo == Intrinsic::riscv_vslide1up || 4219 IntNo == Intrinsic::riscv_vslide1up_mask) { 4220 Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Vec, ScalarHi, 4221 I32Mask, I32VL); 4222 Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Vec, ScalarLo, 4223 I32Mask, I32VL); 4224 } else { 4225 Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Vec, ScalarLo, 4226 I32Mask, I32VL); 4227 Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Vec, ScalarHi, 4228 I32Mask, I32VL); 4229 } 4230 4231 // Convert back to nxvXi64. 4232 Vec = DAG.getBitcast(VT, Vec); 4233 4234 if (!IsMasked) 4235 return Vec; 4236 4237 // Apply mask after the operation. 4238 SDValue Mask = Op.getOperand(NumOps - 3); 4239 SDValue MaskedOff = Op.getOperand(1); 4240 return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, Mask, Vec, MaskedOff, VL); 4241 } 4242 } 4243 4244 return lowerVectorIntrinsicSplats(Op, DAG, Subtarget); 4245 } 4246 4247 SDValue RISCVTargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op, 4248 SelectionDAG &DAG) const { 4249 unsigned IntNo = Op.getConstantOperandVal(1); 4250 switch (IntNo) { 4251 default: 4252 break; 4253 case Intrinsic::riscv_masked_strided_load: { 4254 SDLoc DL(Op); 4255 MVT XLenVT = Subtarget.getXLenVT(); 4256 4257 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 4258 // the selection of the masked intrinsics doesn't do this for us. 4259 SDValue Mask = Op.getOperand(5); 4260 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 4261 4262 MVT VT = Op->getSimpleValueType(0); 4263 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4264 4265 SDValue PassThru = Op.getOperand(2); 4266 if (!IsUnmasked) { 4267 MVT MaskVT = 4268 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4269 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 4270 PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget); 4271 } 4272 4273 SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT); 4274 4275 SDValue IntID = DAG.getTargetConstant( 4276 IsUnmasked ? Intrinsic::riscv_vlse : Intrinsic::riscv_vlse_mask, DL, 4277 XLenVT); 4278 4279 auto *Load = cast<MemIntrinsicSDNode>(Op); 4280 SmallVector<SDValue, 8> Ops{Load->getChain(), IntID}; 4281 if (!IsUnmasked) 4282 Ops.push_back(PassThru); 4283 Ops.push_back(Op.getOperand(3)); // Ptr 4284 Ops.push_back(Op.getOperand(4)); // Stride 4285 if (!IsUnmasked) 4286 Ops.push_back(Mask); 4287 Ops.push_back(VL); 4288 if (!IsUnmasked) { 4289 SDValue Policy = DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT); 4290 Ops.push_back(Policy); 4291 } 4292 4293 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 4294 SDValue Result = 4295 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, 4296 Load->getMemoryVT(), Load->getMemOperand()); 4297 SDValue Chain = Result.getValue(1); 4298 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 4299 return DAG.getMergeValues({Result, Chain}, DL); 4300 } 4301 } 4302 4303 return lowerVectorIntrinsicSplats(Op, DAG, Subtarget); 4304 } 4305 4306 SDValue RISCVTargetLowering::LowerINTRINSIC_VOID(SDValue Op, 4307 SelectionDAG &DAG) const { 4308 unsigned IntNo = Op.getConstantOperandVal(1); 4309 switch (IntNo) { 4310 default: 4311 break; 4312 case Intrinsic::riscv_masked_strided_store: { 4313 SDLoc DL(Op); 4314 MVT XLenVT = Subtarget.getXLenVT(); 4315 4316 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 4317 // the selection of the masked intrinsics doesn't do this for us. 4318 SDValue Mask = Op.getOperand(5); 4319 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 4320 4321 SDValue Val = Op.getOperand(2); 4322 MVT VT = Val.getSimpleValueType(); 4323 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4324 4325 Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget); 4326 if (!IsUnmasked) { 4327 MVT MaskVT = 4328 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4329 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 4330 } 4331 4332 SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT); 4333 4334 SDValue IntID = DAG.getTargetConstant( 4335 IsUnmasked ? Intrinsic::riscv_vsse : Intrinsic::riscv_vsse_mask, DL, 4336 XLenVT); 4337 4338 auto *Store = cast<MemIntrinsicSDNode>(Op); 4339 SmallVector<SDValue, 8> Ops{Store->getChain(), IntID}; 4340 Ops.push_back(Val); 4341 Ops.push_back(Op.getOperand(3)); // Ptr 4342 Ops.push_back(Op.getOperand(4)); // Stride 4343 if (!IsUnmasked) 4344 Ops.push_back(Mask); 4345 Ops.push_back(VL); 4346 4347 return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, Store->getVTList(), 4348 Ops, Store->getMemoryVT(), 4349 Store->getMemOperand()); 4350 } 4351 } 4352 4353 return SDValue(); 4354 } 4355 4356 static MVT getLMUL1VT(MVT VT) { 4357 assert(VT.getVectorElementType().getSizeInBits() <= 64 && 4358 "Unexpected vector MVT"); 4359 return MVT::getScalableVectorVT( 4360 VT.getVectorElementType(), 4361 RISCV::RVVBitsPerBlock / VT.getVectorElementType().getSizeInBits()); 4362 } 4363 4364 static unsigned getRVVReductionOp(unsigned ISDOpcode) { 4365 switch (ISDOpcode) { 4366 default: 4367 llvm_unreachable("Unhandled reduction"); 4368 case ISD::VECREDUCE_ADD: 4369 return RISCVISD::VECREDUCE_ADD_VL; 4370 case ISD::VECREDUCE_UMAX: 4371 return RISCVISD::VECREDUCE_UMAX_VL; 4372 case ISD::VECREDUCE_SMAX: 4373 return RISCVISD::VECREDUCE_SMAX_VL; 4374 case ISD::VECREDUCE_UMIN: 4375 return RISCVISD::VECREDUCE_UMIN_VL; 4376 case ISD::VECREDUCE_SMIN: 4377 return RISCVISD::VECREDUCE_SMIN_VL; 4378 case ISD::VECREDUCE_AND: 4379 return RISCVISD::VECREDUCE_AND_VL; 4380 case ISD::VECREDUCE_OR: 4381 return RISCVISD::VECREDUCE_OR_VL; 4382 case ISD::VECREDUCE_XOR: 4383 return RISCVISD::VECREDUCE_XOR_VL; 4384 } 4385 } 4386 4387 SDValue RISCVTargetLowering::lowerVectorMaskVecReduction(SDValue Op, 4388 SelectionDAG &DAG, 4389 bool IsVP) const { 4390 SDLoc DL(Op); 4391 SDValue Vec = Op.getOperand(IsVP ? 1 : 0); 4392 MVT VecVT = Vec.getSimpleValueType(); 4393 assert((Op.getOpcode() == ISD::VECREDUCE_AND || 4394 Op.getOpcode() == ISD::VECREDUCE_OR || 4395 Op.getOpcode() == ISD::VECREDUCE_XOR || 4396 Op.getOpcode() == ISD::VP_REDUCE_AND || 4397 Op.getOpcode() == ISD::VP_REDUCE_OR || 4398 Op.getOpcode() == ISD::VP_REDUCE_XOR) && 4399 "Unexpected reduction lowering"); 4400 4401 MVT XLenVT = Subtarget.getXLenVT(); 4402 assert(Op.getValueType() == XLenVT && 4403 "Expected reduction output to be legalized to XLenVT"); 4404 4405 MVT ContainerVT = VecVT; 4406 if (VecVT.isFixedLengthVector()) { 4407 ContainerVT = getContainerForFixedLengthVector(VecVT); 4408 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 4409 } 4410 4411 SDValue Mask, VL; 4412 if (IsVP) { 4413 Mask = Op.getOperand(2); 4414 VL = Op.getOperand(3); 4415 } else { 4416 std::tie(Mask, VL) = 4417 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 4418 } 4419 4420 unsigned BaseOpc; 4421 ISD::CondCode CC; 4422 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 4423 4424 switch (Op.getOpcode()) { 4425 default: 4426 llvm_unreachable("Unhandled reduction"); 4427 case ISD::VECREDUCE_AND: 4428 case ISD::VP_REDUCE_AND: { 4429 // vcpop ~x == 0 4430 SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL); 4431 Vec = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Vec, TrueMask, VL); 4432 Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL); 4433 CC = ISD::SETEQ; 4434 BaseOpc = ISD::AND; 4435 break; 4436 } 4437 case ISD::VECREDUCE_OR: 4438 case ISD::VP_REDUCE_OR: 4439 // vcpop x != 0 4440 Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL); 4441 CC = ISD::SETNE; 4442 BaseOpc = ISD::OR; 4443 break; 4444 case ISD::VECREDUCE_XOR: 4445 case ISD::VP_REDUCE_XOR: { 4446 // ((vcpop x) & 1) != 0 4447 SDValue One = DAG.getConstant(1, DL, XLenVT); 4448 Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL); 4449 Vec = DAG.getNode(ISD::AND, DL, XLenVT, Vec, One); 4450 CC = ISD::SETNE; 4451 BaseOpc = ISD::XOR; 4452 break; 4453 } 4454 } 4455 4456 SDValue SetCC = DAG.getSetCC(DL, XLenVT, Vec, Zero, CC); 4457 4458 if (!IsVP) 4459 return SetCC; 4460 4461 // Now include the start value in the operation. 4462 // Note that we must return the start value when no elements are operated 4463 // upon. The vcpop instructions we've emitted in each case above will return 4464 // 0 for an inactive vector, and so we've already received the neutral value: 4465 // AND gives us (0 == 0) -> 1 and OR/XOR give us (0 != 0) -> 0. Therefore we 4466 // can simply include the start value. 4467 return DAG.getNode(BaseOpc, DL, XLenVT, SetCC, Op.getOperand(0)); 4468 } 4469 4470 SDValue RISCVTargetLowering::lowerVECREDUCE(SDValue Op, 4471 SelectionDAG &DAG) const { 4472 SDLoc DL(Op); 4473 SDValue Vec = Op.getOperand(0); 4474 EVT VecEVT = Vec.getValueType(); 4475 4476 unsigned BaseOpc = ISD::getVecReduceBaseOpcode(Op.getOpcode()); 4477 4478 // Due to ordering in legalize types we may have a vector type that needs to 4479 // be split. Do that manually so we can get down to a legal type. 4480 while (getTypeAction(*DAG.getContext(), VecEVT) == 4481 TargetLowering::TypeSplitVector) { 4482 SDValue Lo, Hi; 4483 std::tie(Lo, Hi) = DAG.SplitVector(Vec, DL); 4484 VecEVT = Lo.getValueType(); 4485 Vec = DAG.getNode(BaseOpc, DL, VecEVT, Lo, Hi); 4486 } 4487 4488 // TODO: The type may need to be widened rather than split. Or widened before 4489 // it can be split. 4490 if (!isTypeLegal(VecEVT)) 4491 return SDValue(); 4492 4493 MVT VecVT = VecEVT.getSimpleVT(); 4494 MVT VecEltVT = VecVT.getVectorElementType(); 4495 unsigned RVVOpcode = getRVVReductionOp(Op.getOpcode()); 4496 4497 MVT ContainerVT = VecVT; 4498 if (VecVT.isFixedLengthVector()) { 4499 ContainerVT = getContainerForFixedLengthVector(VecVT); 4500 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 4501 } 4502 4503 MVT M1VT = getLMUL1VT(ContainerVT); 4504 MVT XLenVT = Subtarget.getXLenVT(); 4505 4506 SDValue Mask, VL; 4507 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 4508 4509 SDValue NeutralElem = 4510 DAG.getNeutralElement(BaseOpc, DL, VecEltVT, SDNodeFlags()); 4511 SDValue IdentitySplat = lowerScalarSplat( 4512 NeutralElem, DAG.getConstant(1, DL, XLenVT), M1VT, DL, DAG, Subtarget); 4513 SDValue Reduction = DAG.getNode(RVVOpcode, DL, M1VT, DAG.getUNDEF(M1VT), Vec, 4514 IdentitySplat, Mask, VL); 4515 SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction, 4516 DAG.getConstant(0, DL, XLenVT)); 4517 return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType()); 4518 } 4519 4520 // Given a reduction op, this function returns the matching reduction opcode, 4521 // the vector SDValue and the scalar SDValue required to lower this to a 4522 // RISCVISD node. 4523 static std::tuple<unsigned, SDValue, SDValue> 4524 getRVVFPReductionOpAndOperands(SDValue Op, SelectionDAG &DAG, EVT EltVT) { 4525 SDLoc DL(Op); 4526 auto Flags = Op->getFlags(); 4527 unsigned Opcode = Op.getOpcode(); 4528 unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Opcode); 4529 switch (Opcode) { 4530 default: 4531 llvm_unreachable("Unhandled reduction"); 4532 case ISD::VECREDUCE_FADD: 4533 return std::make_tuple(RISCVISD::VECREDUCE_FADD_VL, Op.getOperand(0), 4534 DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags)); 4535 case ISD::VECREDUCE_SEQ_FADD: 4536 return std::make_tuple(RISCVISD::VECREDUCE_SEQ_FADD_VL, Op.getOperand(1), 4537 Op.getOperand(0)); 4538 case ISD::VECREDUCE_FMIN: 4539 return std::make_tuple(RISCVISD::VECREDUCE_FMIN_VL, Op.getOperand(0), 4540 DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags)); 4541 case ISD::VECREDUCE_FMAX: 4542 return std::make_tuple(RISCVISD::VECREDUCE_FMAX_VL, Op.getOperand(0), 4543 DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags)); 4544 } 4545 } 4546 4547 SDValue RISCVTargetLowering::lowerFPVECREDUCE(SDValue Op, 4548 SelectionDAG &DAG) const { 4549 SDLoc DL(Op); 4550 MVT VecEltVT = Op.getSimpleValueType(); 4551 4552 unsigned RVVOpcode; 4553 SDValue VectorVal, ScalarVal; 4554 std::tie(RVVOpcode, VectorVal, ScalarVal) = 4555 getRVVFPReductionOpAndOperands(Op, DAG, VecEltVT); 4556 MVT VecVT = VectorVal.getSimpleValueType(); 4557 4558 MVT ContainerVT = VecVT; 4559 if (VecVT.isFixedLengthVector()) { 4560 ContainerVT = getContainerForFixedLengthVector(VecVT); 4561 VectorVal = convertToScalableVector(ContainerVT, VectorVal, DAG, Subtarget); 4562 } 4563 4564 MVT M1VT = getLMUL1VT(VectorVal.getSimpleValueType()); 4565 MVT XLenVT = Subtarget.getXLenVT(); 4566 4567 SDValue Mask, VL; 4568 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 4569 4570 SDValue ScalarSplat = lowerScalarSplat( 4571 ScalarVal, DAG.getConstant(1, DL, XLenVT), M1VT, DL, DAG, Subtarget); 4572 SDValue Reduction = DAG.getNode(RVVOpcode, DL, M1VT, DAG.getUNDEF(M1VT), 4573 VectorVal, ScalarSplat, Mask, VL); 4574 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction, 4575 DAG.getConstant(0, DL, XLenVT)); 4576 } 4577 4578 static unsigned getRVVVPReductionOp(unsigned ISDOpcode) { 4579 switch (ISDOpcode) { 4580 default: 4581 llvm_unreachable("Unhandled reduction"); 4582 case ISD::VP_REDUCE_ADD: 4583 return RISCVISD::VECREDUCE_ADD_VL; 4584 case ISD::VP_REDUCE_UMAX: 4585 return RISCVISD::VECREDUCE_UMAX_VL; 4586 case ISD::VP_REDUCE_SMAX: 4587 return RISCVISD::VECREDUCE_SMAX_VL; 4588 case ISD::VP_REDUCE_UMIN: 4589 return RISCVISD::VECREDUCE_UMIN_VL; 4590 case ISD::VP_REDUCE_SMIN: 4591 return RISCVISD::VECREDUCE_SMIN_VL; 4592 case ISD::VP_REDUCE_AND: 4593 return RISCVISD::VECREDUCE_AND_VL; 4594 case ISD::VP_REDUCE_OR: 4595 return RISCVISD::VECREDUCE_OR_VL; 4596 case ISD::VP_REDUCE_XOR: 4597 return RISCVISD::VECREDUCE_XOR_VL; 4598 case ISD::VP_REDUCE_FADD: 4599 return RISCVISD::VECREDUCE_FADD_VL; 4600 case ISD::VP_REDUCE_SEQ_FADD: 4601 return RISCVISD::VECREDUCE_SEQ_FADD_VL; 4602 case ISD::VP_REDUCE_FMAX: 4603 return RISCVISD::VECREDUCE_FMAX_VL; 4604 case ISD::VP_REDUCE_FMIN: 4605 return RISCVISD::VECREDUCE_FMIN_VL; 4606 } 4607 } 4608 4609 SDValue RISCVTargetLowering::lowerVPREDUCE(SDValue Op, 4610 SelectionDAG &DAG) const { 4611 SDLoc DL(Op); 4612 SDValue Vec = Op.getOperand(1); 4613 EVT VecEVT = Vec.getValueType(); 4614 4615 // TODO: The type may need to be widened rather than split. Or widened before 4616 // it can be split. 4617 if (!isTypeLegal(VecEVT)) 4618 return SDValue(); 4619 4620 MVT VecVT = VecEVT.getSimpleVT(); 4621 MVT VecEltVT = VecVT.getVectorElementType(); 4622 unsigned RVVOpcode = getRVVVPReductionOp(Op.getOpcode()); 4623 4624 MVT ContainerVT = VecVT; 4625 if (VecVT.isFixedLengthVector()) { 4626 ContainerVT = getContainerForFixedLengthVector(VecVT); 4627 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 4628 } 4629 4630 SDValue VL = Op.getOperand(3); 4631 SDValue Mask = Op.getOperand(2); 4632 4633 MVT M1VT = getLMUL1VT(ContainerVT); 4634 MVT XLenVT = Subtarget.getXLenVT(); 4635 MVT ResVT = !VecVT.isInteger() || VecEltVT.bitsGE(XLenVT) ? VecEltVT : XLenVT; 4636 4637 SDValue StartSplat = 4638 lowerScalarSplat(Op.getOperand(0), DAG.getConstant(1, DL, XLenVT), M1VT, 4639 DL, DAG, Subtarget); 4640 SDValue Reduction = 4641 DAG.getNode(RVVOpcode, DL, M1VT, StartSplat, Vec, StartSplat, Mask, VL); 4642 SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Reduction, 4643 DAG.getConstant(0, DL, XLenVT)); 4644 if (!VecVT.isInteger()) 4645 return Elt0; 4646 return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType()); 4647 } 4648 4649 SDValue RISCVTargetLowering::lowerINSERT_SUBVECTOR(SDValue Op, 4650 SelectionDAG &DAG) const { 4651 SDValue Vec = Op.getOperand(0); 4652 SDValue SubVec = Op.getOperand(1); 4653 MVT VecVT = Vec.getSimpleValueType(); 4654 MVT SubVecVT = SubVec.getSimpleValueType(); 4655 4656 SDLoc DL(Op); 4657 MVT XLenVT = Subtarget.getXLenVT(); 4658 unsigned OrigIdx = Op.getConstantOperandVal(2); 4659 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 4660 4661 // We don't have the ability to slide mask vectors up indexed by their i1 4662 // elements; the smallest we can do is i8. Often we are able to bitcast to 4663 // equivalent i8 vectors. Note that when inserting a fixed-length vector 4664 // into a scalable one, we might not necessarily have enough scalable 4665 // elements to safely divide by 8: nxv1i1 = insert nxv1i1, v4i1 is valid. 4666 if (SubVecVT.getVectorElementType() == MVT::i1 && 4667 (OrigIdx != 0 || !Vec.isUndef())) { 4668 if (VecVT.getVectorMinNumElements() >= 8 && 4669 SubVecVT.getVectorMinNumElements() >= 8) { 4670 assert(OrigIdx % 8 == 0 && "Invalid index"); 4671 assert(VecVT.getVectorMinNumElements() % 8 == 0 && 4672 SubVecVT.getVectorMinNumElements() % 8 == 0 && 4673 "Unexpected mask vector lowering"); 4674 OrigIdx /= 8; 4675 SubVecVT = 4676 MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8, 4677 SubVecVT.isScalableVector()); 4678 VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8, 4679 VecVT.isScalableVector()); 4680 Vec = DAG.getBitcast(VecVT, Vec); 4681 SubVec = DAG.getBitcast(SubVecVT, SubVec); 4682 } else { 4683 // We can't slide this mask vector up indexed by its i1 elements. 4684 // This poses a problem when we wish to insert a scalable vector which 4685 // can't be re-expressed as a larger type. Just choose the slow path and 4686 // extend to a larger type, then truncate back down. 4687 MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8); 4688 MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8); 4689 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec); 4690 SubVec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtSubVecVT, SubVec); 4691 Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ExtVecVT, Vec, SubVec, 4692 Op.getOperand(2)); 4693 SDValue SplatZero = DAG.getConstant(0, DL, ExtVecVT); 4694 return DAG.getSetCC(DL, VecVT, Vec, SplatZero, ISD::SETNE); 4695 } 4696 } 4697 4698 // If the subvector vector is a fixed-length type, we cannot use subregister 4699 // manipulation to simplify the codegen; we don't know which register of a 4700 // LMUL group contains the specific subvector as we only know the minimum 4701 // register size. Therefore we must slide the vector group up the full 4702 // amount. 4703 if (SubVecVT.isFixedLengthVector()) { 4704 if (OrigIdx == 0 && Vec.isUndef()) 4705 return Op; 4706 MVT ContainerVT = VecVT; 4707 if (VecVT.isFixedLengthVector()) { 4708 ContainerVT = getContainerForFixedLengthVector(VecVT); 4709 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 4710 } 4711 SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ContainerVT, 4712 DAG.getUNDEF(ContainerVT), SubVec, 4713 DAG.getConstant(0, DL, XLenVT)); 4714 SDValue Mask = 4715 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first; 4716 // Set the vector length to only the number of elements we care about. Note 4717 // that for slideup this includes the offset. 4718 SDValue VL = 4719 DAG.getConstant(OrigIdx + SubVecVT.getVectorNumElements(), DL, XLenVT); 4720 SDValue SlideupAmt = DAG.getConstant(OrigIdx, DL, XLenVT); 4721 SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec, 4722 SubVec, SlideupAmt, Mask, VL); 4723 if (VecVT.isFixedLengthVector()) 4724 Slideup = convertFromScalableVector(VecVT, Slideup, DAG, Subtarget); 4725 return DAG.getBitcast(Op.getValueType(), Slideup); 4726 } 4727 4728 unsigned SubRegIdx, RemIdx; 4729 std::tie(SubRegIdx, RemIdx) = 4730 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( 4731 VecVT, SubVecVT, OrigIdx, TRI); 4732 4733 RISCVII::VLMUL SubVecLMUL = RISCVTargetLowering::getLMUL(SubVecVT); 4734 bool IsSubVecPartReg = SubVecLMUL == RISCVII::VLMUL::LMUL_F2 || 4735 SubVecLMUL == RISCVII::VLMUL::LMUL_F4 || 4736 SubVecLMUL == RISCVII::VLMUL::LMUL_F8; 4737 4738 // 1. If the Idx has been completely eliminated and this subvector's size is 4739 // a vector register or a multiple thereof, or the surrounding elements are 4740 // undef, then this is a subvector insert which naturally aligns to a vector 4741 // register. These can easily be handled using subregister manipulation. 4742 // 2. If the subvector is smaller than a vector register, then the insertion 4743 // must preserve the undisturbed elements of the register. We do this by 4744 // lowering to an EXTRACT_SUBVECTOR grabbing the nearest LMUL=1 vector type 4745 // (which resolves to a subregister copy), performing a VSLIDEUP to place the 4746 // subvector within the vector register, and an INSERT_SUBVECTOR of that 4747 // LMUL=1 type back into the larger vector (resolving to another subregister 4748 // operation). See below for how our VSLIDEUP works. We go via a LMUL=1 type 4749 // to avoid allocating a large register group to hold our subvector. 4750 if (RemIdx == 0 && (!IsSubVecPartReg || Vec.isUndef())) 4751 return Op; 4752 4753 // VSLIDEUP works by leaving elements 0<i<OFFSET undisturbed, elements 4754 // OFFSET<=i<VL set to the "subvector" and vl<=i<VLMAX set to the tail policy 4755 // (in our case undisturbed). This means we can set up a subvector insertion 4756 // where OFFSET is the insertion offset, and the VL is the OFFSET plus the 4757 // size of the subvector. 4758 MVT InterSubVT = VecVT; 4759 SDValue AlignedExtract = Vec; 4760 unsigned AlignedIdx = OrigIdx - RemIdx; 4761 if (VecVT.bitsGT(getLMUL1VT(VecVT))) { 4762 InterSubVT = getLMUL1VT(VecVT); 4763 // Extract a subvector equal to the nearest full vector register type. This 4764 // should resolve to a EXTRACT_SUBREG instruction. 4765 AlignedExtract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec, 4766 DAG.getConstant(AlignedIdx, DL, XLenVT)); 4767 } 4768 4769 SDValue SlideupAmt = DAG.getConstant(RemIdx, DL, XLenVT); 4770 // For scalable vectors this must be further multiplied by vscale. 4771 SlideupAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlideupAmt); 4772 4773 SDValue Mask, VL; 4774 std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget); 4775 4776 // Construct the vector length corresponding to RemIdx + length(SubVecVT). 4777 VL = DAG.getConstant(SubVecVT.getVectorMinNumElements(), DL, XLenVT); 4778 VL = DAG.getNode(ISD::VSCALE, DL, XLenVT, VL); 4779 VL = DAG.getNode(ISD::ADD, DL, XLenVT, SlideupAmt, VL); 4780 4781 SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, InterSubVT, 4782 DAG.getUNDEF(InterSubVT), SubVec, 4783 DAG.getConstant(0, DL, XLenVT)); 4784 4785 SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, InterSubVT, 4786 AlignedExtract, SubVec, SlideupAmt, Mask, VL); 4787 4788 // If required, insert this subvector back into the correct vector register. 4789 // This should resolve to an INSERT_SUBREG instruction. 4790 if (VecVT.bitsGT(InterSubVT)) 4791 Slideup = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, Vec, Slideup, 4792 DAG.getConstant(AlignedIdx, DL, XLenVT)); 4793 4794 // We might have bitcast from a mask type: cast back to the original type if 4795 // required. 4796 return DAG.getBitcast(Op.getSimpleValueType(), Slideup); 4797 } 4798 4799 SDValue RISCVTargetLowering::lowerEXTRACT_SUBVECTOR(SDValue Op, 4800 SelectionDAG &DAG) const { 4801 SDValue Vec = Op.getOperand(0); 4802 MVT SubVecVT = Op.getSimpleValueType(); 4803 MVT VecVT = Vec.getSimpleValueType(); 4804 4805 SDLoc DL(Op); 4806 MVT XLenVT = Subtarget.getXLenVT(); 4807 unsigned OrigIdx = Op.getConstantOperandVal(1); 4808 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 4809 4810 // We don't have the ability to slide mask vectors down indexed by their i1 4811 // elements; the smallest we can do is i8. Often we are able to bitcast to 4812 // equivalent i8 vectors. Note that when extracting a fixed-length vector 4813 // from a scalable one, we might not necessarily have enough scalable 4814 // elements to safely divide by 8: v8i1 = extract nxv1i1 is valid. 4815 if (SubVecVT.getVectorElementType() == MVT::i1 && OrigIdx != 0) { 4816 if (VecVT.getVectorMinNumElements() >= 8 && 4817 SubVecVT.getVectorMinNumElements() >= 8) { 4818 assert(OrigIdx % 8 == 0 && "Invalid index"); 4819 assert(VecVT.getVectorMinNumElements() % 8 == 0 && 4820 SubVecVT.getVectorMinNumElements() % 8 == 0 && 4821 "Unexpected mask vector lowering"); 4822 OrigIdx /= 8; 4823 SubVecVT = 4824 MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8, 4825 SubVecVT.isScalableVector()); 4826 VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8, 4827 VecVT.isScalableVector()); 4828 Vec = DAG.getBitcast(VecVT, Vec); 4829 } else { 4830 // We can't slide this mask vector down, indexed by its i1 elements. 4831 // This poses a problem when we wish to extract a scalable vector which 4832 // can't be re-expressed as a larger type. Just choose the slow path and 4833 // extend to a larger type, then truncate back down. 4834 // TODO: We could probably improve this when extracting certain fixed 4835 // from fixed, where we can extract as i8 and shift the correct element 4836 // right to reach the desired subvector? 4837 MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8); 4838 MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8); 4839 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec); 4840 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ExtSubVecVT, Vec, 4841 Op.getOperand(1)); 4842 SDValue SplatZero = DAG.getConstant(0, DL, ExtSubVecVT); 4843 return DAG.getSetCC(DL, SubVecVT, Vec, SplatZero, ISD::SETNE); 4844 } 4845 } 4846 4847 // If the subvector vector is a fixed-length type, we cannot use subregister 4848 // manipulation to simplify the codegen; we don't know which register of a 4849 // LMUL group contains the specific subvector as we only know the minimum 4850 // register size. Therefore we must slide the vector group down the full 4851 // amount. 4852 if (SubVecVT.isFixedLengthVector()) { 4853 // With an index of 0 this is a cast-like subvector, which can be performed 4854 // with subregister operations. 4855 if (OrigIdx == 0) 4856 return Op; 4857 MVT ContainerVT = VecVT; 4858 if (VecVT.isFixedLengthVector()) { 4859 ContainerVT = getContainerForFixedLengthVector(VecVT); 4860 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 4861 } 4862 SDValue Mask = 4863 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first; 4864 // Set the vector length to only the number of elements we care about. This 4865 // avoids sliding down elements we're going to discard straight away. 4866 SDValue VL = DAG.getConstant(SubVecVT.getVectorNumElements(), DL, XLenVT); 4867 SDValue SlidedownAmt = DAG.getConstant(OrigIdx, DL, XLenVT); 4868 SDValue Slidedown = 4869 DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 4870 DAG.getUNDEF(ContainerVT), Vec, SlidedownAmt, Mask, VL); 4871 // Now we can use a cast-like subvector extract to get the result. 4872 Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown, 4873 DAG.getConstant(0, DL, XLenVT)); 4874 return DAG.getBitcast(Op.getValueType(), Slidedown); 4875 } 4876 4877 unsigned SubRegIdx, RemIdx; 4878 std::tie(SubRegIdx, RemIdx) = 4879 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( 4880 VecVT, SubVecVT, OrigIdx, TRI); 4881 4882 // If the Idx has been completely eliminated then this is a subvector extract 4883 // which naturally aligns to a vector register. These can easily be handled 4884 // using subregister manipulation. 4885 if (RemIdx == 0) 4886 return Op; 4887 4888 // Else we must shift our vector register directly to extract the subvector. 4889 // Do this using VSLIDEDOWN. 4890 4891 // If the vector type is an LMUL-group type, extract a subvector equal to the 4892 // nearest full vector register type. This should resolve to a EXTRACT_SUBREG 4893 // instruction. 4894 MVT InterSubVT = VecVT; 4895 if (VecVT.bitsGT(getLMUL1VT(VecVT))) { 4896 InterSubVT = getLMUL1VT(VecVT); 4897 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec, 4898 DAG.getConstant(OrigIdx - RemIdx, DL, XLenVT)); 4899 } 4900 4901 // Slide this vector register down by the desired number of elements in order 4902 // to place the desired subvector starting at element 0. 4903 SDValue SlidedownAmt = DAG.getConstant(RemIdx, DL, XLenVT); 4904 // For scalable vectors this must be further multiplied by vscale. 4905 SlidedownAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlidedownAmt); 4906 4907 SDValue Mask, VL; 4908 std::tie(Mask, VL) = getDefaultScalableVLOps(InterSubVT, DL, DAG, Subtarget); 4909 SDValue Slidedown = 4910 DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, InterSubVT, 4911 DAG.getUNDEF(InterSubVT), Vec, SlidedownAmt, Mask, VL); 4912 4913 // Now the vector is in the right position, extract our final subvector. This 4914 // should resolve to a COPY. 4915 Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown, 4916 DAG.getConstant(0, DL, XLenVT)); 4917 4918 // We might have bitcast from a mask type: cast back to the original type if 4919 // required. 4920 return DAG.getBitcast(Op.getSimpleValueType(), Slidedown); 4921 } 4922 4923 // Lower step_vector to the vid instruction. Any non-identity step value must 4924 // be accounted for my manual expansion. 4925 SDValue RISCVTargetLowering::lowerSTEP_VECTOR(SDValue Op, 4926 SelectionDAG &DAG) const { 4927 SDLoc DL(Op); 4928 MVT VT = Op.getSimpleValueType(); 4929 MVT XLenVT = Subtarget.getXLenVT(); 4930 SDValue Mask, VL; 4931 std::tie(Mask, VL) = getDefaultScalableVLOps(VT, DL, DAG, Subtarget); 4932 SDValue StepVec = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL); 4933 uint64_t StepValImm = Op.getConstantOperandVal(0); 4934 if (StepValImm != 1) { 4935 if (isPowerOf2_64(StepValImm)) { 4936 SDValue StepVal = 4937 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, 4938 DAG.getConstant(Log2_64(StepValImm), DL, XLenVT)); 4939 StepVec = DAG.getNode(ISD::SHL, DL, VT, StepVec, StepVal); 4940 } else { 4941 SDValue StepVal = lowerScalarSplat( 4942 DAG.getConstant(StepValImm, DL, VT.getVectorElementType()), VL, VT, 4943 DL, DAG, Subtarget); 4944 StepVec = DAG.getNode(ISD::MUL, DL, VT, StepVec, StepVal); 4945 } 4946 } 4947 return StepVec; 4948 } 4949 4950 // Implement vector_reverse using vrgather.vv with indices determined by 4951 // subtracting the id of each element from (VLMAX-1). This will convert 4952 // the indices like so: 4953 // (0, 1,..., VLMAX-2, VLMAX-1) -> (VLMAX-1, VLMAX-2,..., 1, 0). 4954 // TODO: This code assumes VLMAX <= 65536 for LMUL=8 SEW=16. 4955 SDValue RISCVTargetLowering::lowerVECTOR_REVERSE(SDValue Op, 4956 SelectionDAG &DAG) const { 4957 SDLoc DL(Op); 4958 MVT VecVT = Op.getSimpleValueType(); 4959 unsigned EltSize = VecVT.getScalarSizeInBits(); 4960 unsigned MinSize = VecVT.getSizeInBits().getKnownMinValue(); 4961 4962 unsigned MaxVLMAX = 0; 4963 unsigned VectorBitsMax = Subtarget.getMaxRVVVectorSizeInBits(); 4964 if (VectorBitsMax != 0) 4965 MaxVLMAX = ((VectorBitsMax / EltSize) * MinSize) / RISCV::RVVBitsPerBlock; 4966 4967 unsigned GatherOpc = RISCVISD::VRGATHER_VV_VL; 4968 MVT IntVT = VecVT.changeVectorElementTypeToInteger(); 4969 4970 // If this is SEW=8 and VLMAX is unknown or more than 256, we need 4971 // to use vrgatherei16.vv. 4972 // TODO: It's also possible to use vrgatherei16.vv for other types to 4973 // decrease register width for the index calculation. 4974 if ((MaxVLMAX == 0 || MaxVLMAX > 256) && EltSize == 8) { 4975 // If this is LMUL=8, we have to split before can use vrgatherei16.vv. 4976 // Reverse each half, then reassemble them in reverse order. 4977 // NOTE: It's also possible that after splitting that VLMAX no longer 4978 // requires vrgatherei16.vv. 4979 if (MinSize == (8 * RISCV::RVVBitsPerBlock)) { 4980 SDValue Lo, Hi; 4981 std::tie(Lo, Hi) = DAG.SplitVectorOperand(Op.getNode(), 0); 4982 EVT LoVT, HiVT; 4983 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VecVT); 4984 Lo = DAG.getNode(ISD::VECTOR_REVERSE, DL, LoVT, Lo); 4985 Hi = DAG.getNode(ISD::VECTOR_REVERSE, DL, HiVT, Hi); 4986 // Reassemble the low and high pieces reversed. 4987 // FIXME: This is a CONCAT_VECTORS. 4988 SDValue Res = 4989 DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, DAG.getUNDEF(VecVT), Hi, 4990 DAG.getIntPtrConstant(0, DL)); 4991 return DAG.getNode( 4992 ISD::INSERT_SUBVECTOR, DL, VecVT, Res, Lo, 4993 DAG.getIntPtrConstant(LoVT.getVectorMinNumElements(), DL)); 4994 } 4995 4996 // Just promote the int type to i16 which will double the LMUL. 4997 IntVT = MVT::getVectorVT(MVT::i16, VecVT.getVectorElementCount()); 4998 GatherOpc = RISCVISD::VRGATHEREI16_VV_VL; 4999 } 5000 5001 MVT XLenVT = Subtarget.getXLenVT(); 5002 SDValue Mask, VL; 5003 std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget); 5004 5005 // Calculate VLMAX-1 for the desired SEW. 5006 unsigned MinElts = VecVT.getVectorMinNumElements(); 5007 SDValue VLMax = DAG.getNode(ISD::VSCALE, DL, XLenVT, 5008 DAG.getConstant(MinElts, DL, XLenVT)); 5009 SDValue VLMinus1 = 5010 DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, DAG.getConstant(1, DL, XLenVT)); 5011 5012 // Splat VLMAX-1 taking care to handle SEW==64 on RV32. 5013 bool IsRV32E64 = 5014 !Subtarget.is64Bit() && IntVT.getVectorElementType() == MVT::i64; 5015 SDValue SplatVL; 5016 if (!IsRV32E64) 5017 SplatVL = DAG.getSplatVector(IntVT, DL, VLMinus1); 5018 else 5019 SplatVL = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, IntVT, VLMinus1); 5020 5021 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, IntVT, Mask, VL); 5022 SDValue Indices = 5023 DAG.getNode(RISCVISD::SUB_VL, DL, IntVT, SplatVL, VID, Mask, VL); 5024 5025 return DAG.getNode(GatherOpc, DL, VecVT, Op.getOperand(0), Indices, Mask, VL); 5026 } 5027 5028 SDValue 5029 RISCVTargetLowering::lowerFixedLengthVectorLoadToRVV(SDValue Op, 5030 SelectionDAG &DAG) const { 5031 SDLoc DL(Op); 5032 auto *Load = cast<LoadSDNode>(Op); 5033 5034 assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 5035 Load->getMemoryVT(), 5036 *Load->getMemOperand()) && 5037 "Expecting a correctly-aligned load"); 5038 5039 MVT VT = Op.getSimpleValueType(); 5040 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5041 5042 SDValue VL = 5043 DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT()); 5044 5045 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 5046 SDValue NewLoad = DAG.getMemIntrinsicNode( 5047 RISCVISD::VLE_VL, DL, VTs, {Load->getChain(), Load->getBasePtr(), VL}, 5048 Load->getMemoryVT(), Load->getMemOperand()); 5049 5050 SDValue Result = convertFromScalableVector(VT, NewLoad, DAG, Subtarget); 5051 return DAG.getMergeValues({Result, Load->getChain()}, DL); 5052 } 5053 5054 SDValue 5055 RISCVTargetLowering::lowerFixedLengthVectorStoreToRVV(SDValue Op, 5056 SelectionDAG &DAG) const { 5057 SDLoc DL(Op); 5058 auto *Store = cast<StoreSDNode>(Op); 5059 5060 assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 5061 Store->getMemoryVT(), 5062 *Store->getMemOperand()) && 5063 "Expecting a correctly-aligned store"); 5064 5065 SDValue StoreVal = Store->getValue(); 5066 MVT VT = StoreVal.getSimpleValueType(); 5067 5068 // If the size less than a byte, we need to pad with zeros to make a byte. 5069 if (VT.getVectorElementType() == MVT::i1 && VT.getVectorNumElements() < 8) { 5070 VT = MVT::v8i1; 5071 StoreVal = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, 5072 DAG.getConstant(0, DL, VT), StoreVal, 5073 DAG.getIntPtrConstant(0, DL)); 5074 } 5075 5076 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5077 5078 SDValue VL = 5079 DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT()); 5080 5081 SDValue NewValue = 5082 convertToScalableVector(ContainerVT, StoreVal, DAG, Subtarget); 5083 return DAG.getMemIntrinsicNode( 5084 RISCVISD::VSE_VL, DL, DAG.getVTList(MVT::Other), 5085 {Store->getChain(), NewValue, Store->getBasePtr(), VL}, 5086 Store->getMemoryVT(), Store->getMemOperand()); 5087 } 5088 5089 SDValue RISCVTargetLowering::lowerMaskedLoad(SDValue Op, 5090 SelectionDAG &DAG) const { 5091 SDLoc DL(Op); 5092 MVT VT = Op.getSimpleValueType(); 5093 5094 const auto *MemSD = cast<MemSDNode>(Op); 5095 EVT MemVT = MemSD->getMemoryVT(); 5096 MachineMemOperand *MMO = MemSD->getMemOperand(); 5097 SDValue Chain = MemSD->getChain(); 5098 SDValue BasePtr = MemSD->getBasePtr(); 5099 5100 SDValue Mask, PassThru, VL; 5101 if (const auto *VPLoad = dyn_cast<VPLoadSDNode>(Op)) { 5102 Mask = VPLoad->getMask(); 5103 PassThru = DAG.getUNDEF(VT); 5104 VL = VPLoad->getVectorLength(); 5105 } else { 5106 const auto *MLoad = cast<MaskedLoadSDNode>(Op); 5107 Mask = MLoad->getMask(); 5108 PassThru = MLoad->getPassThru(); 5109 } 5110 5111 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 5112 5113 MVT XLenVT = Subtarget.getXLenVT(); 5114 5115 MVT ContainerVT = VT; 5116 if (VT.isFixedLengthVector()) { 5117 ContainerVT = getContainerForFixedLengthVector(VT); 5118 PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget); 5119 if (!IsUnmasked) { 5120 MVT MaskVT = 5121 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 5122 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 5123 } 5124 } 5125 5126 if (!VL) 5127 VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; 5128 5129 unsigned IntID = 5130 IsUnmasked ? Intrinsic::riscv_vle : Intrinsic::riscv_vle_mask; 5131 SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)}; 5132 if (!IsUnmasked) 5133 Ops.push_back(PassThru); 5134 Ops.push_back(BasePtr); 5135 if (!IsUnmasked) 5136 Ops.push_back(Mask); 5137 Ops.push_back(VL); 5138 if (!IsUnmasked) 5139 Ops.push_back(DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT)); 5140 5141 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 5142 5143 SDValue Result = 5144 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, MemVT, MMO); 5145 Chain = Result.getValue(1); 5146 5147 if (VT.isFixedLengthVector()) 5148 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 5149 5150 return DAG.getMergeValues({Result, Chain}, DL); 5151 } 5152 5153 SDValue RISCVTargetLowering::lowerMaskedStore(SDValue Op, 5154 SelectionDAG &DAG) const { 5155 SDLoc DL(Op); 5156 5157 const auto *MemSD = cast<MemSDNode>(Op); 5158 EVT MemVT = MemSD->getMemoryVT(); 5159 MachineMemOperand *MMO = MemSD->getMemOperand(); 5160 SDValue Chain = MemSD->getChain(); 5161 SDValue BasePtr = MemSD->getBasePtr(); 5162 SDValue Val, Mask, VL; 5163 5164 if (const auto *VPStore = dyn_cast<VPStoreSDNode>(Op)) { 5165 Val = VPStore->getValue(); 5166 Mask = VPStore->getMask(); 5167 VL = VPStore->getVectorLength(); 5168 } else { 5169 const auto *MStore = cast<MaskedStoreSDNode>(Op); 5170 Val = MStore->getValue(); 5171 Mask = MStore->getMask(); 5172 } 5173 5174 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 5175 5176 MVT VT = Val.getSimpleValueType(); 5177 MVT XLenVT = Subtarget.getXLenVT(); 5178 5179 MVT ContainerVT = VT; 5180 if (VT.isFixedLengthVector()) { 5181 ContainerVT = getContainerForFixedLengthVector(VT); 5182 5183 Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget); 5184 if (!IsUnmasked) { 5185 MVT MaskVT = 5186 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 5187 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 5188 } 5189 } 5190 5191 if (!VL) 5192 VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; 5193 5194 unsigned IntID = 5195 IsUnmasked ? Intrinsic::riscv_vse : Intrinsic::riscv_vse_mask; 5196 SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)}; 5197 Ops.push_back(Val); 5198 Ops.push_back(BasePtr); 5199 if (!IsUnmasked) 5200 Ops.push_back(Mask); 5201 Ops.push_back(VL); 5202 5203 return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, 5204 DAG.getVTList(MVT::Other), Ops, MemVT, MMO); 5205 } 5206 5207 SDValue 5208 RISCVTargetLowering::lowerFixedLengthVectorSetccToRVV(SDValue Op, 5209 SelectionDAG &DAG) const { 5210 MVT InVT = Op.getOperand(0).getSimpleValueType(); 5211 MVT ContainerVT = getContainerForFixedLengthVector(InVT); 5212 5213 MVT VT = Op.getSimpleValueType(); 5214 5215 SDValue Op1 = 5216 convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget); 5217 SDValue Op2 = 5218 convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget); 5219 5220 SDLoc DL(Op); 5221 SDValue VL = 5222 DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT()); 5223 5224 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 5225 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 5226 5227 SDValue Cmp = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, Op1, Op2, 5228 Op.getOperand(2), Mask, VL); 5229 5230 return convertFromScalableVector(VT, Cmp, DAG, Subtarget); 5231 } 5232 5233 SDValue RISCVTargetLowering::lowerFixedLengthVectorLogicOpToRVV( 5234 SDValue Op, SelectionDAG &DAG, unsigned MaskOpc, unsigned VecOpc) const { 5235 MVT VT = Op.getSimpleValueType(); 5236 5237 if (VT.getVectorElementType() == MVT::i1) 5238 return lowerToScalableOp(Op, DAG, MaskOpc, /*HasMask*/ false); 5239 5240 return lowerToScalableOp(Op, DAG, VecOpc, /*HasMask*/ true); 5241 } 5242 5243 SDValue 5244 RISCVTargetLowering::lowerFixedLengthVectorShiftToRVV(SDValue Op, 5245 SelectionDAG &DAG) const { 5246 unsigned Opc; 5247 switch (Op.getOpcode()) { 5248 default: llvm_unreachable("Unexpected opcode!"); 5249 case ISD::SHL: Opc = RISCVISD::SHL_VL; break; 5250 case ISD::SRA: Opc = RISCVISD::SRA_VL; break; 5251 case ISD::SRL: Opc = RISCVISD::SRL_VL; break; 5252 } 5253 5254 return lowerToScalableOp(Op, DAG, Opc); 5255 } 5256 5257 // Lower vector ABS to smax(X, sub(0, X)). 5258 SDValue RISCVTargetLowering::lowerABS(SDValue Op, SelectionDAG &DAG) const { 5259 SDLoc DL(Op); 5260 MVT VT = Op.getSimpleValueType(); 5261 SDValue X = Op.getOperand(0); 5262 5263 assert(VT.isFixedLengthVector() && "Unexpected type"); 5264 5265 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5266 X = convertToScalableVector(ContainerVT, X, DAG, Subtarget); 5267 5268 SDValue Mask, VL; 5269 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 5270 5271 SDValue SplatZero = 5272 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, 5273 DAG.getConstant(0, DL, Subtarget.getXLenVT())); 5274 SDValue NegX = 5275 DAG.getNode(RISCVISD::SUB_VL, DL, ContainerVT, SplatZero, X, Mask, VL); 5276 SDValue Max = 5277 DAG.getNode(RISCVISD::SMAX_VL, DL, ContainerVT, X, NegX, Mask, VL); 5278 5279 return convertFromScalableVector(VT, Max, DAG, Subtarget); 5280 } 5281 5282 SDValue RISCVTargetLowering::lowerFixedLengthVectorFCOPYSIGNToRVV( 5283 SDValue Op, SelectionDAG &DAG) const { 5284 SDLoc DL(Op); 5285 MVT VT = Op.getSimpleValueType(); 5286 SDValue Mag = Op.getOperand(0); 5287 SDValue Sign = Op.getOperand(1); 5288 assert(Mag.getValueType() == Sign.getValueType() && 5289 "Can only handle COPYSIGN with matching types."); 5290 5291 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5292 Mag = convertToScalableVector(ContainerVT, Mag, DAG, Subtarget); 5293 Sign = convertToScalableVector(ContainerVT, Sign, DAG, Subtarget); 5294 5295 SDValue Mask, VL; 5296 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 5297 5298 SDValue CopySign = 5299 DAG.getNode(RISCVISD::FCOPYSIGN_VL, DL, ContainerVT, Mag, Sign, Mask, VL); 5300 5301 return convertFromScalableVector(VT, CopySign, DAG, Subtarget); 5302 } 5303 5304 SDValue RISCVTargetLowering::lowerFixedLengthVectorSelectToRVV( 5305 SDValue Op, SelectionDAG &DAG) const { 5306 MVT VT = Op.getSimpleValueType(); 5307 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5308 5309 MVT I1ContainerVT = 5310 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 5311 5312 SDValue CC = 5313 convertToScalableVector(I1ContainerVT, Op.getOperand(0), DAG, Subtarget); 5314 SDValue Op1 = 5315 convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget); 5316 SDValue Op2 = 5317 convertToScalableVector(ContainerVT, Op.getOperand(2), DAG, Subtarget); 5318 5319 SDLoc DL(Op); 5320 SDValue Mask, VL; 5321 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 5322 5323 SDValue Select = 5324 DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC, Op1, Op2, VL); 5325 5326 return convertFromScalableVector(VT, Select, DAG, Subtarget); 5327 } 5328 5329 SDValue RISCVTargetLowering::lowerToScalableOp(SDValue Op, SelectionDAG &DAG, 5330 unsigned NewOpc, 5331 bool HasMask) const { 5332 MVT VT = Op.getSimpleValueType(); 5333 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5334 5335 // Create list of operands by converting existing ones to scalable types. 5336 SmallVector<SDValue, 6> Ops; 5337 for (const SDValue &V : Op->op_values()) { 5338 assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!"); 5339 5340 // Pass through non-vector operands. 5341 if (!V.getValueType().isVector()) { 5342 Ops.push_back(V); 5343 continue; 5344 } 5345 5346 // "cast" fixed length vector to a scalable vector. 5347 assert(useRVVForFixedLengthVectorVT(V.getSimpleValueType()) && 5348 "Only fixed length vectors are supported!"); 5349 Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget)); 5350 } 5351 5352 SDLoc DL(Op); 5353 SDValue Mask, VL; 5354 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 5355 if (HasMask) 5356 Ops.push_back(Mask); 5357 Ops.push_back(VL); 5358 5359 SDValue ScalableRes = DAG.getNode(NewOpc, DL, ContainerVT, Ops); 5360 return convertFromScalableVector(VT, ScalableRes, DAG, Subtarget); 5361 } 5362 5363 // Lower a VP_* ISD node to the corresponding RISCVISD::*_VL node: 5364 // * Operands of each node are assumed to be in the same order. 5365 // * The EVL operand is promoted from i32 to i64 on RV64. 5366 // * Fixed-length vectors are converted to their scalable-vector container 5367 // types. 5368 SDValue RISCVTargetLowering::lowerVPOp(SDValue Op, SelectionDAG &DAG, 5369 unsigned RISCVISDOpc) const { 5370 SDLoc DL(Op); 5371 MVT VT = Op.getSimpleValueType(); 5372 SmallVector<SDValue, 4> Ops; 5373 5374 for (const auto &OpIdx : enumerate(Op->ops())) { 5375 SDValue V = OpIdx.value(); 5376 assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!"); 5377 // Pass through operands which aren't fixed-length vectors. 5378 if (!V.getValueType().isFixedLengthVector()) { 5379 Ops.push_back(V); 5380 continue; 5381 } 5382 // "cast" fixed length vector to a scalable vector. 5383 MVT OpVT = V.getSimpleValueType(); 5384 MVT ContainerVT = getContainerForFixedLengthVector(OpVT); 5385 assert(useRVVForFixedLengthVectorVT(OpVT) && 5386 "Only fixed length vectors are supported!"); 5387 Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget)); 5388 } 5389 5390 if (!VT.isFixedLengthVector()) 5391 return DAG.getNode(RISCVISDOpc, DL, VT, Ops); 5392 5393 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5394 5395 SDValue VPOp = DAG.getNode(RISCVISDOpc, DL, ContainerVT, Ops); 5396 5397 return convertFromScalableVector(VT, VPOp, DAG, Subtarget); 5398 } 5399 5400 // Custom lower MGATHER/VP_GATHER to a legalized form for RVV. It will then be 5401 // matched to a RVV indexed load. The RVV indexed load instructions only 5402 // support the "unsigned unscaled" addressing mode; indices are implicitly 5403 // zero-extended or truncated to XLEN and are treated as byte offsets. Any 5404 // signed or scaled indexing is extended to the XLEN value type and scaled 5405 // accordingly. 5406 SDValue RISCVTargetLowering::lowerMaskedGather(SDValue Op, 5407 SelectionDAG &DAG) const { 5408 SDLoc DL(Op); 5409 MVT VT = Op.getSimpleValueType(); 5410 5411 const auto *MemSD = cast<MemSDNode>(Op.getNode()); 5412 EVT MemVT = MemSD->getMemoryVT(); 5413 MachineMemOperand *MMO = MemSD->getMemOperand(); 5414 SDValue Chain = MemSD->getChain(); 5415 SDValue BasePtr = MemSD->getBasePtr(); 5416 5417 ISD::LoadExtType LoadExtType; 5418 SDValue Index, Mask, PassThru, VL; 5419 5420 if (auto *VPGN = dyn_cast<VPGatherSDNode>(Op.getNode())) { 5421 Index = VPGN->getIndex(); 5422 Mask = VPGN->getMask(); 5423 PassThru = DAG.getUNDEF(VT); 5424 VL = VPGN->getVectorLength(); 5425 // VP doesn't support extending loads. 5426 LoadExtType = ISD::NON_EXTLOAD; 5427 } else { 5428 // Else it must be a MGATHER. 5429 auto *MGN = cast<MaskedGatherSDNode>(Op.getNode()); 5430 Index = MGN->getIndex(); 5431 Mask = MGN->getMask(); 5432 PassThru = MGN->getPassThru(); 5433 LoadExtType = MGN->getExtensionType(); 5434 } 5435 5436 MVT IndexVT = Index.getSimpleValueType(); 5437 MVT XLenVT = Subtarget.getXLenVT(); 5438 5439 assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() && 5440 "Unexpected VTs!"); 5441 assert(BasePtr.getSimpleValueType() == XLenVT && "Unexpected pointer type"); 5442 // Targets have to explicitly opt-in for extending vector loads. 5443 assert(LoadExtType == ISD::NON_EXTLOAD && 5444 "Unexpected extending MGATHER/VP_GATHER"); 5445 (void)LoadExtType; 5446 5447 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 5448 // the selection of the masked intrinsics doesn't do this for us. 5449 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 5450 5451 MVT ContainerVT = VT; 5452 if (VT.isFixedLengthVector()) { 5453 // We need to use the larger of the result and index type to determine the 5454 // scalable type to use so we don't increase LMUL for any operand/result. 5455 if (VT.bitsGE(IndexVT)) { 5456 ContainerVT = getContainerForFixedLengthVector(VT); 5457 IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(), 5458 ContainerVT.getVectorElementCount()); 5459 } else { 5460 IndexVT = getContainerForFixedLengthVector(IndexVT); 5461 ContainerVT = MVT::getVectorVT(ContainerVT.getVectorElementType(), 5462 IndexVT.getVectorElementCount()); 5463 } 5464 5465 Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget); 5466 5467 if (!IsUnmasked) { 5468 MVT MaskVT = 5469 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 5470 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 5471 PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget); 5472 } 5473 } 5474 5475 if (!VL) 5476 VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; 5477 5478 unsigned IntID = 5479 IsUnmasked ? Intrinsic::riscv_vluxei : Intrinsic::riscv_vluxei_mask; 5480 SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)}; 5481 if (!IsUnmasked) 5482 Ops.push_back(PassThru); 5483 Ops.push_back(BasePtr); 5484 Ops.push_back(Index); 5485 if (!IsUnmasked) 5486 Ops.push_back(Mask); 5487 Ops.push_back(VL); 5488 if (!IsUnmasked) 5489 Ops.push_back(DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT)); 5490 5491 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 5492 SDValue Result = 5493 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, MemVT, MMO); 5494 Chain = Result.getValue(1); 5495 5496 if (VT.isFixedLengthVector()) 5497 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 5498 5499 return DAG.getMergeValues({Result, Chain}, DL); 5500 } 5501 5502 // Custom lower MSCATTER/VP_SCATTER to a legalized form for RVV. It will then be 5503 // matched to a RVV indexed store. The RVV indexed store instructions only 5504 // support the "unsigned unscaled" addressing mode; indices are implicitly 5505 // zero-extended or truncated to XLEN and are treated as byte offsets. Any 5506 // signed or scaled indexing is extended to the XLEN value type and scaled 5507 // accordingly. 5508 SDValue RISCVTargetLowering::lowerMaskedScatter(SDValue Op, 5509 SelectionDAG &DAG) const { 5510 SDLoc DL(Op); 5511 const auto *MemSD = cast<MemSDNode>(Op.getNode()); 5512 EVT MemVT = MemSD->getMemoryVT(); 5513 MachineMemOperand *MMO = MemSD->getMemOperand(); 5514 SDValue Chain = MemSD->getChain(); 5515 SDValue BasePtr = MemSD->getBasePtr(); 5516 5517 bool IsTruncatingStore = false; 5518 SDValue Index, Mask, Val, VL; 5519 5520 if (auto *VPSN = dyn_cast<VPScatterSDNode>(Op.getNode())) { 5521 Index = VPSN->getIndex(); 5522 Mask = VPSN->getMask(); 5523 Val = VPSN->getValue(); 5524 VL = VPSN->getVectorLength(); 5525 // VP doesn't support truncating stores. 5526 IsTruncatingStore = false; 5527 } else { 5528 // Else it must be a MSCATTER. 5529 auto *MSN = cast<MaskedScatterSDNode>(Op.getNode()); 5530 Index = MSN->getIndex(); 5531 Mask = MSN->getMask(); 5532 Val = MSN->getValue(); 5533 IsTruncatingStore = MSN->isTruncatingStore(); 5534 } 5535 5536 MVT VT = Val.getSimpleValueType(); 5537 MVT IndexVT = Index.getSimpleValueType(); 5538 MVT XLenVT = Subtarget.getXLenVT(); 5539 5540 assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() && 5541 "Unexpected VTs!"); 5542 assert(BasePtr.getSimpleValueType() == XLenVT && "Unexpected pointer type"); 5543 // Targets have to explicitly opt-in for extending vector loads and 5544 // truncating vector stores. 5545 assert(!IsTruncatingStore && "Unexpected truncating MSCATTER/VP_SCATTER"); 5546 (void)IsTruncatingStore; 5547 5548 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 5549 // the selection of the masked intrinsics doesn't do this for us. 5550 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 5551 5552 MVT ContainerVT = VT; 5553 if (VT.isFixedLengthVector()) { 5554 // We need to use the larger of the value and index type to determine the 5555 // scalable type to use so we don't increase LMUL for any operand/result. 5556 if (VT.bitsGE(IndexVT)) { 5557 ContainerVT = getContainerForFixedLengthVector(VT); 5558 IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(), 5559 ContainerVT.getVectorElementCount()); 5560 } else { 5561 IndexVT = getContainerForFixedLengthVector(IndexVT); 5562 ContainerVT = MVT::getVectorVT(VT.getVectorElementType(), 5563 IndexVT.getVectorElementCount()); 5564 } 5565 5566 Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget); 5567 Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget); 5568 5569 if (!IsUnmasked) { 5570 MVT MaskVT = 5571 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 5572 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 5573 } 5574 } 5575 5576 if (!VL) 5577 VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; 5578 5579 unsigned IntID = 5580 IsUnmasked ? Intrinsic::riscv_vsoxei : Intrinsic::riscv_vsoxei_mask; 5581 SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)}; 5582 Ops.push_back(Val); 5583 Ops.push_back(BasePtr); 5584 Ops.push_back(Index); 5585 if (!IsUnmasked) 5586 Ops.push_back(Mask); 5587 Ops.push_back(VL); 5588 5589 return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, 5590 DAG.getVTList(MVT::Other), Ops, MemVT, MMO); 5591 } 5592 5593 SDValue RISCVTargetLowering::lowerGET_ROUNDING(SDValue Op, 5594 SelectionDAG &DAG) const { 5595 const MVT XLenVT = Subtarget.getXLenVT(); 5596 SDLoc DL(Op); 5597 SDValue Chain = Op->getOperand(0); 5598 SDValue SysRegNo = DAG.getTargetConstant( 5599 RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT); 5600 SDVTList VTs = DAG.getVTList(XLenVT, MVT::Other); 5601 SDValue RM = DAG.getNode(RISCVISD::READ_CSR, DL, VTs, Chain, SysRegNo); 5602 5603 // Encoding used for rounding mode in RISCV differs from that used in 5604 // FLT_ROUNDS. To convert it the RISCV rounding mode is used as an index in a 5605 // table, which consists of a sequence of 4-bit fields, each representing 5606 // corresponding FLT_ROUNDS mode. 5607 static const int Table = 5608 (int(RoundingMode::NearestTiesToEven) << 4 * RISCVFPRndMode::RNE) | 5609 (int(RoundingMode::TowardZero) << 4 * RISCVFPRndMode::RTZ) | 5610 (int(RoundingMode::TowardNegative) << 4 * RISCVFPRndMode::RDN) | 5611 (int(RoundingMode::TowardPositive) << 4 * RISCVFPRndMode::RUP) | 5612 (int(RoundingMode::NearestTiesToAway) << 4 * RISCVFPRndMode::RMM); 5613 5614 SDValue Shift = 5615 DAG.getNode(ISD::SHL, DL, XLenVT, RM, DAG.getConstant(2, DL, XLenVT)); 5616 SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT, 5617 DAG.getConstant(Table, DL, XLenVT), Shift); 5618 SDValue Masked = DAG.getNode(ISD::AND, DL, XLenVT, Shifted, 5619 DAG.getConstant(7, DL, XLenVT)); 5620 5621 return DAG.getMergeValues({Masked, Chain}, DL); 5622 } 5623 5624 SDValue RISCVTargetLowering::lowerSET_ROUNDING(SDValue Op, 5625 SelectionDAG &DAG) const { 5626 const MVT XLenVT = Subtarget.getXLenVT(); 5627 SDLoc DL(Op); 5628 SDValue Chain = Op->getOperand(0); 5629 SDValue RMValue = Op->getOperand(1); 5630 SDValue SysRegNo = DAG.getTargetConstant( 5631 RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT); 5632 5633 // Encoding used for rounding mode in RISCV differs from that used in 5634 // FLT_ROUNDS. To convert it the C rounding mode is used as an index in 5635 // a table, which consists of a sequence of 4-bit fields, each representing 5636 // corresponding RISCV mode. 5637 static const unsigned Table = 5638 (RISCVFPRndMode::RNE << 4 * int(RoundingMode::NearestTiesToEven)) | 5639 (RISCVFPRndMode::RTZ << 4 * int(RoundingMode::TowardZero)) | 5640 (RISCVFPRndMode::RDN << 4 * int(RoundingMode::TowardNegative)) | 5641 (RISCVFPRndMode::RUP << 4 * int(RoundingMode::TowardPositive)) | 5642 (RISCVFPRndMode::RMM << 4 * int(RoundingMode::NearestTiesToAway)); 5643 5644 SDValue Shift = DAG.getNode(ISD::SHL, DL, XLenVT, RMValue, 5645 DAG.getConstant(2, DL, XLenVT)); 5646 SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT, 5647 DAG.getConstant(Table, DL, XLenVT), Shift); 5648 RMValue = DAG.getNode(ISD::AND, DL, XLenVT, Shifted, 5649 DAG.getConstant(0x7, DL, XLenVT)); 5650 return DAG.getNode(RISCVISD::WRITE_CSR, DL, MVT::Other, Chain, SysRegNo, 5651 RMValue); 5652 } 5653 5654 // Returns the opcode of the target-specific SDNode that implements the 32-bit 5655 // form of the given Opcode. 5656 static RISCVISD::NodeType getRISCVWOpcode(unsigned Opcode) { 5657 switch (Opcode) { 5658 default: 5659 llvm_unreachable("Unexpected opcode"); 5660 case ISD::SHL: 5661 return RISCVISD::SLLW; 5662 case ISD::SRA: 5663 return RISCVISD::SRAW; 5664 case ISD::SRL: 5665 return RISCVISD::SRLW; 5666 case ISD::SDIV: 5667 return RISCVISD::DIVW; 5668 case ISD::UDIV: 5669 return RISCVISD::DIVUW; 5670 case ISD::UREM: 5671 return RISCVISD::REMUW; 5672 case ISD::ROTL: 5673 return RISCVISD::ROLW; 5674 case ISD::ROTR: 5675 return RISCVISD::RORW; 5676 case RISCVISD::GREV: 5677 return RISCVISD::GREVW; 5678 case RISCVISD::GORC: 5679 return RISCVISD::GORCW; 5680 } 5681 } 5682 5683 // Converts the given i8/i16/i32 operation to a target-specific SelectionDAG 5684 // node. Because i8/i16/i32 isn't a legal type for RV64, these operations would 5685 // otherwise be promoted to i64, making it difficult to select the 5686 // SLLW/DIVUW/.../*W later one because the fact the operation was originally of 5687 // type i8/i16/i32 is lost. 5688 static SDValue customLegalizeToWOp(SDNode *N, SelectionDAG &DAG, 5689 unsigned ExtOpc = ISD::ANY_EXTEND) { 5690 SDLoc DL(N); 5691 RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode()); 5692 SDValue NewOp0 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(0)); 5693 SDValue NewOp1 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(1)); 5694 SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1); 5695 // ReplaceNodeResults requires we maintain the same type for the return value. 5696 return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewRes); 5697 } 5698 5699 // Converts the given 32-bit operation to a i64 operation with signed extension 5700 // semantic to reduce the signed extension instructions. 5701 static SDValue customLegalizeToWOpWithSExt(SDNode *N, SelectionDAG &DAG) { 5702 SDLoc DL(N); 5703 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 5704 SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 5705 SDValue NewWOp = DAG.getNode(N->getOpcode(), DL, MVT::i64, NewOp0, NewOp1); 5706 SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp, 5707 DAG.getValueType(MVT::i32)); 5708 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes); 5709 } 5710 5711 void RISCVTargetLowering::ReplaceNodeResults(SDNode *N, 5712 SmallVectorImpl<SDValue> &Results, 5713 SelectionDAG &DAG) const { 5714 SDLoc DL(N); 5715 switch (N->getOpcode()) { 5716 default: 5717 llvm_unreachable("Don't know how to custom type legalize this operation!"); 5718 case ISD::STRICT_FP_TO_SINT: 5719 case ISD::STRICT_FP_TO_UINT: 5720 case ISD::FP_TO_SINT: 5721 case ISD::FP_TO_UINT: { 5722 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5723 "Unexpected custom legalisation"); 5724 bool IsStrict = N->isStrictFPOpcode(); 5725 bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT || 5726 N->getOpcode() == ISD::STRICT_FP_TO_SINT; 5727 SDValue Op0 = IsStrict ? N->getOperand(1) : N->getOperand(0); 5728 if (getTypeAction(*DAG.getContext(), Op0.getValueType()) != 5729 TargetLowering::TypeSoftenFloat) { 5730 // FIXME: Support strict FP. 5731 if (IsStrict) 5732 return; 5733 if (!isTypeLegal(Op0.getValueType())) 5734 return; 5735 unsigned Opc = 5736 IsSigned ? RISCVISD::FCVT_W_RTZ_RV64 : RISCVISD::FCVT_WU_RTZ_RV64; 5737 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, Op0); 5738 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 5739 return; 5740 } 5741 // If the FP type needs to be softened, emit a library call using the 'si' 5742 // version. If we left it to default legalization we'd end up with 'di'. If 5743 // the FP type doesn't need to be softened just let generic type 5744 // legalization promote the result type. 5745 RTLIB::Libcall LC; 5746 if (IsSigned) 5747 LC = RTLIB::getFPTOSINT(Op0.getValueType(), N->getValueType(0)); 5748 else 5749 LC = RTLIB::getFPTOUINT(Op0.getValueType(), N->getValueType(0)); 5750 MakeLibCallOptions CallOptions; 5751 EVT OpVT = Op0.getValueType(); 5752 CallOptions.setTypeListBeforeSoften(OpVT, N->getValueType(0), true); 5753 SDValue Chain = IsStrict ? N->getOperand(0) : SDValue(); 5754 SDValue Result; 5755 std::tie(Result, Chain) = 5756 makeLibCall(DAG, LC, N->getValueType(0), Op0, CallOptions, DL, Chain); 5757 Results.push_back(Result); 5758 if (IsStrict) 5759 Results.push_back(Chain); 5760 break; 5761 } 5762 case ISD::READCYCLECOUNTER: { 5763 assert(!Subtarget.is64Bit() && 5764 "READCYCLECOUNTER only has custom type legalization on riscv32"); 5765 5766 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other); 5767 SDValue RCW = 5768 DAG.getNode(RISCVISD::READ_CYCLE_WIDE, DL, VTs, N->getOperand(0)); 5769 5770 Results.push_back( 5771 DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, RCW, RCW.getValue(1))); 5772 Results.push_back(RCW.getValue(2)); 5773 break; 5774 } 5775 case ISD::MUL: { 5776 unsigned Size = N->getSimpleValueType(0).getSizeInBits(); 5777 unsigned XLen = Subtarget.getXLen(); 5778 // This multiply needs to be expanded, try to use MULHSU+MUL if possible. 5779 if (Size > XLen) { 5780 assert(Size == (XLen * 2) && "Unexpected custom legalisation"); 5781 SDValue LHS = N->getOperand(0); 5782 SDValue RHS = N->getOperand(1); 5783 APInt HighMask = APInt::getHighBitsSet(Size, XLen); 5784 5785 bool LHSIsU = DAG.MaskedValueIsZero(LHS, HighMask); 5786 bool RHSIsU = DAG.MaskedValueIsZero(RHS, HighMask); 5787 // We need exactly one side to be unsigned. 5788 if (LHSIsU == RHSIsU) 5789 return; 5790 5791 auto MakeMULPair = [&](SDValue S, SDValue U) { 5792 MVT XLenVT = Subtarget.getXLenVT(); 5793 S = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, S); 5794 U = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, U); 5795 SDValue Lo = DAG.getNode(ISD::MUL, DL, XLenVT, S, U); 5796 SDValue Hi = DAG.getNode(RISCVISD::MULHSU, DL, XLenVT, S, U); 5797 return DAG.getNode(ISD::BUILD_PAIR, DL, N->getValueType(0), Lo, Hi); 5798 }; 5799 5800 bool LHSIsS = DAG.ComputeNumSignBits(LHS) > XLen; 5801 bool RHSIsS = DAG.ComputeNumSignBits(RHS) > XLen; 5802 5803 // The other operand should be signed, but still prefer MULH when 5804 // possible. 5805 if (RHSIsU && LHSIsS && !RHSIsS) 5806 Results.push_back(MakeMULPair(LHS, RHS)); 5807 else if (LHSIsU && RHSIsS && !LHSIsS) 5808 Results.push_back(MakeMULPair(RHS, LHS)); 5809 5810 return; 5811 } 5812 LLVM_FALLTHROUGH; 5813 } 5814 case ISD::ADD: 5815 case ISD::SUB: 5816 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5817 "Unexpected custom legalisation"); 5818 Results.push_back(customLegalizeToWOpWithSExt(N, DAG)); 5819 break; 5820 case ISD::SHL: 5821 case ISD::SRA: 5822 case ISD::SRL: 5823 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5824 "Unexpected custom legalisation"); 5825 if (N->getOperand(1).getOpcode() != ISD::Constant) { 5826 Results.push_back(customLegalizeToWOp(N, DAG)); 5827 break; 5828 } 5829 5830 // Custom legalize ISD::SHL by placing a SIGN_EXTEND_INREG after. This is 5831 // similar to customLegalizeToWOpWithSExt, but we must zero_extend the 5832 // shift amount. 5833 if (N->getOpcode() == ISD::SHL) { 5834 SDLoc DL(N); 5835 SDValue NewOp0 = 5836 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 5837 SDValue NewOp1 = 5838 DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1)); 5839 SDValue NewWOp = DAG.getNode(ISD::SHL, DL, MVT::i64, NewOp0, NewOp1); 5840 SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp, 5841 DAG.getValueType(MVT::i32)); 5842 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes)); 5843 } 5844 5845 break; 5846 case ISD::ROTL: 5847 case ISD::ROTR: 5848 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5849 "Unexpected custom legalisation"); 5850 Results.push_back(customLegalizeToWOp(N, DAG)); 5851 break; 5852 case ISD::CTTZ: 5853 case ISD::CTTZ_ZERO_UNDEF: 5854 case ISD::CTLZ: 5855 case ISD::CTLZ_ZERO_UNDEF: { 5856 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5857 "Unexpected custom legalisation"); 5858 5859 SDValue NewOp0 = 5860 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 5861 bool IsCTZ = 5862 N->getOpcode() == ISD::CTTZ || N->getOpcode() == ISD::CTTZ_ZERO_UNDEF; 5863 unsigned Opc = IsCTZ ? RISCVISD::CTZW : RISCVISD::CLZW; 5864 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp0); 5865 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 5866 return; 5867 } 5868 case ISD::SDIV: 5869 case ISD::UDIV: 5870 case ISD::UREM: { 5871 MVT VT = N->getSimpleValueType(0); 5872 assert((VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) && 5873 Subtarget.is64Bit() && Subtarget.hasStdExtM() && 5874 "Unexpected custom legalisation"); 5875 // Don't promote division/remainder by constant since we should expand those 5876 // to multiply by magic constant. 5877 // FIXME: What if the expansion is disabled for minsize. 5878 if (N->getOperand(1).getOpcode() == ISD::Constant) 5879 return; 5880 5881 // If the input is i32, use ANY_EXTEND since the W instructions don't read 5882 // the upper 32 bits. For other types we need to sign or zero extend 5883 // based on the opcode. 5884 unsigned ExtOpc = ISD::ANY_EXTEND; 5885 if (VT != MVT::i32) 5886 ExtOpc = N->getOpcode() == ISD::SDIV ? ISD::SIGN_EXTEND 5887 : ISD::ZERO_EXTEND; 5888 5889 Results.push_back(customLegalizeToWOp(N, DAG, ExtOpc)); 5890 break; 5891 } 5892 case ISD::UADDO: 5893 case ISD::USUBO: { 5894 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5895 "Unexpected custom legalisation"); 5896 bool IsAdd = N->getOpcode() == ISD::UADDO; 5897 // Create an ADDW or SUBW. 5898 SDValue LHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 5899 SDValue RHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 5900 SDValue Res = 5901 DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, DL, MVT::i64, LHS, RHS); 5902 Res = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Res, 5903 DAG.getValueType(MVT::i32)); 5904 5905 // Sign extend the LHS and perform an unsigned compare with the ADDW result. 5906 // Since the inputs are sign extended from i32, this is equivalent to 5907 // comparing the lower 32 bits. 5908 LHS = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0)); 5909 SDValue Overflow = DAG.getSetCC(DL, N->getValueType(1), Res, LHS, 5910 IsAdd ? ISD::SETULT : ISD::SETUGT); 5911 5912 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 5913 Results.push_back(Overflow); 5914 return; 5915 } 5916 case ISD::UADDSAT: 5917 case ISD::USUBSAT: { 5918 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5919 "Unexpected custom legalisation"); 5920 if (Subtarget.hasStdExtZbb()) { 5921 // With Zbb we can sign extend and let LegalizeDAG use minu/maxu. Using 5922 // sign extend allows overflow of the lower 32 bits to be detected on 5923 // the promoted size. 5924 SDValue LHS = 5925 DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0)); 5926 SDValue RHS = 5927 DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(1)); 5928 SDValue Res = DAG.getNode(N->getOpcode(), DL, MVT::i64, LHS, RHS); 5929 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 5930 return; 5931 } 5932 5933 // Without Zbb, expand to UADDO/USUBO+select which will trigger our custom 5934 // promotion for UADDO/USUBO. 5935 Results.push_back(expandAddSubSat(N, DAG)); 5936 return; 5937 } 5938 case ISD::BITCAST: { 5939 EVT VT = N->getValueType(0); 5940 assert(VT.isInteger() && !VT.isVector() && "Unexpected VT!"); 5941 SDValue Op0 = N->getOperand(0); 5942 EVT Op0VT = Op0.getValueType(); 5943 MVT XLenVT = Subtarget.getXLenVT(); 5944 if (VT == MVT::i16 && Op0VT == MVT::f16 && Subtarget.hasStdExtZfh()) { 5945 SDValue FPConv = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, XLenVT, Op0); 5946 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FPConv)); 5947 } else if (VT == MVT::i32 && Op0VT == MVT::f32 && Subtarget.is64Bit() && 5948 Subtarget.hasStdExtF()) { 5949 SDValue FPConv = 5950 DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Op0); 5951 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, FPConv)); 5952 } else if (!VT.isVector() && Op0VT.isFixedLengthVector() && 5953 isTypeLegal(Op0VT)) { 5954 // Custom-legalize bitcasts from fixed-length vector types to illegal 5955 // scalar types in order to improve codegen. Bitcast the vector to a 5956 // one-element vector type whose element type is the same as the result 5957 // type, and extract the first element. 5958 EVT BVT = EVT::getVectorVT(*DAG.getContext(), VT, 1); 5959 if (isTypeLegal(BVT)) { 5960 SDValue BVec = DAG.getBitcast(BVT, Op0); 5961 Results.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec, 5962 DAG.getConstant(0, DL, XLenVT))); 5963 } 5964 } 5965 break; 5966 } 5967 case RISCVISD::GREV: 5968 case RISCVISD::GORC: { 5969 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5970 "Unexpected custom legalisation"); 5971 assert(isa<ConstantSDNode>(N->getOperand(1)) && "Expected constant"); 5972 // This is similar to customLegalizeToWOp, except that we pass the second 5973 // operand (a TargetConstant) straight through: it is already of type 5974 // XLenVT. 5975 RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode()); 5976 SDValue NewOp0 = 5977 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 5978 SDValue NewOp1 = 5979 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 5980 SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1); 5981 // ReplaceNodeResults requires we maintain the same type for the return 5982 // value. 5983 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes)); 5984 break; 5985 } 5986 case RISCVISD::SHFL: { 5987 // There is no SHFLIW instruction, but we can just promote the operation. 5988 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5989 "Unexpected custom legalisation"); 5990 assert(isa<ConstantSDNode>(N->getOperand(1)) && "Expected constant"); 5991 SDValue NewOp0 = 5992 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 5993 SDValue NewOp1 = 5994 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 5995 SDValue NewRes = DAG.getNode(RISCVISD::SHFL, DL, MVT::i64, NewOp0, NewOp1); 5996 // ReplaceNodeResults requires we maintain the same type for the return 5997 // value. 5998 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes)); 5999 break; 6000 } 6001 case ISD::BSWAP: 6002 case ISD::BITREVERSE: { 6003 MVT VT = N->getSimpleValueType(0); 6004 MVT XLenVT = Subtarget.getXLenVT(); 6005 assert((VT == MVT::i8 || VT == MVT::i16 || 6006 (VT == MVT::i32 && Subtarget.is64Bit())) && 6007 Subtarget.hasStdExtZbp() && "Unexpected custom legalisation"); 6008 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, N->getOperand(0)); 6009 unsigned Imm = VT.getSizeInBits() - 1; 6010 // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits. 6011 if (N->getOpcode() == ISD::BSWAP) 6012 Imm &= ~0x7U; 6013 unsigned Opc = Subtarget.is64Bit() ? RISCVISD::GREVW : RISCVISD::GREV; 6014 SDValue GREVI = 6015 DAG.getNode(Opc, DL, XLenVT, NewOp0, DAG.getConstant(Imm, DL, XLenVT)); 6016 // ReplaceNodeResults requires we maintain the same type for the return 6017 // value. 6018 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, GREVI)); 6019 break; 6020 } 6021 case ISD::FSHL: 6022 case ISD::FSHR: { 6023 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6024 Subtarget.hasStdExtZbt() && "Unexpected custom legalisation"); 6025 SDValue NewOp0 = 6026 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 6027 SDValue NewOp1 = 6028 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6029 SDValue NewOp2 = 6030 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 6031 // FSLW/FSRW take a 6 bit shift amount but i32 FSHL/FSHR only use 5 bits. 6032 // Mask the shift amount to 5 bits. 6033 NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2, 6034 DAG.getConstant(0x1f, DL, MVT::i64)); 6035 unsigned Opc = 6036 N->getOpcode() == ISD::FSHL ? RISCVISD::FSLW : RISCVISD::FSRW; 6037 SDValue NewOp = DAG.getNode(Opc, DL, MVT::i64, NewOp0, NewOp1, NewOp2); 6038 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewOp)); 6039 break; 6040 } 6041 case ISD::EXTRACT_VECTOR_ELT: { 6042 // Custom-legalize an EXTRACT_VECTOR_ELT where XLEN<SEW, as the SEW element 6043 // type is illegal (currently only vXi64 RV32). 6044 // With vmv.x.s, when SEW > XLEN, only the least-significant XLEN bits are 6045 // transferred to the destination register. We issue two of these from the 6046 // upper- and lower- halves of the SEW-bit vector element, slid down to the 6047 // first element. 6048 SDValue Vec = N->getOperand(0); 6049 SDValue Idx = N->getOperand(1); 6050 6051 // The vector type hasn't been legalized yet so we can't issue target 6052 // specific nodes if it needs legalization. 6053 // FIXME: We would manually legalize if it's important. 6054 if (!isTypeLegal(Vec.getValueType())) 6055 return; 6056 6057 MVT VecVT = Vec.getSimpleValueType(); 6058 6059 assert(!Subtarget.is64Bit() && N->getValueType(0) == MVT::i64 && 6060 VecVT.getVectorElementType() == MVT::i64 && 6061 "Unexpected EXTRACT_VECTOR_ELT legalization"); 6062 6063 // If this is a fixed vector, we need to convert it to a scalable vector. 6064 MVT ContainerVT = VecVT; 6065 if (VecVT.isFixedLengthVector()) { 6066 ContainerVT = getContainerForFixedLengthVector(VecVT); 6067 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 6068 } 6069 6070 MVT XLenVT = Subtarget.getXLenVT(); 6071 6072 // Use a VL of 1 to avoid processing more elements than we need. 6073 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 6074 SDValue VL = DAG.getConstant(1, DL, XLenVT); 6075 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 6076 6077 // Unless the index is known to be 0, we must slide the vector down to get 6078 // the desired element into index 0. 6079 if (!isNullConstant(Idx)) { 6080 Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 6081 DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL); 6082 } 6083 6084 // Extract the lower XLEN bits of the correct vector element. 6085 SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); 6086 6087 // To extract the upper XLEN bits of the vector element, shift the first 6088 // element right by 32 bits and re-extract the lower XLEN bits. 6089 SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, 6090 DAG.getConstant(32, DL, XLenVT), VL); 6091 SDValue LShr32 = DAG.getNode(RISCVISD::SRL_VL, DL, ContainerVT, Vec, 6092 ThirtyTwoV, Mask, VL); 6093 6094 SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32); 6095 6096 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi)); 6097 break; 6098 } 6099 case ISD::INTRINSIC_WO_CHAIN: { 6100 unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 6101 switch (IntNo) { 6102 default: 6103 llvm_unreachable( 6104 "Don't know how to custom type legalize this intrinsic!"); 6105 case Intrinsic::riscv_orc_b: { 6106 // Lower to the GORCI encoding for orc.b with the operand extended. 6107 SDValue NewOp = 6108 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6109 // If Zbp is enabled, use GORCIW which will sign extend the result. 6110 unsigned Opc = 6111 Subtarget.hasStdExtZbp() ? RISCVISD::GORCW : RISCVISD::GORC; 6112 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp, 6113 DAG.getConstant(7, DL, MVT::i64)); 6114 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6115 return; 6116 } 6117 case Intrinsic::riscv_grev: 6118 case Intrinsic::riscv_gorc: { 6119 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6120 "Unexpected custom legalisation"); 6121 SDValue NewOp1 = 6122 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6123 SDValue NewOp2 = 6124 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 6125 unsigned Opc = 6126 IntNo == Intrinsic::riscv_grev ? RISCVISD::GREVW : RISCVISD::GORCW; 6127 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2); 6128 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6129 break; 6130 } 6131 case Intrinsic::riscv_shfl: 6132 case Intrinsic::riscv_unshfl: { 6133 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6134 "Unexpected custom legalisation"); 6135 SDValue NewOp1 = 6136 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6137 SDValue NewOp2 = 6138 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 6139 unsigned Opc = 6140 IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFLW : RISCVISD::UNSHFLW; 6141 if (isa<ConstantSDNode>(N->getOperand(2))) { 6142 NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2, 6143 DAG.getConstant(0xf, DL, MVT::i64)); 6144 Opc = 6145 IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL; 6146 } 6147 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2); 6148 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6149 break; 6150 } 6151 case Intrinsic::riscv_bcompress: 6152 case Intrinsic::riscv_bdecompress: { 6153 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6154 "Unexpected custom legalisation"); 6155 SDValue NewOp1 = 6156 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6157 SDValue NewOp2 = 6158 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 6159 unsigned Opc = IntNo == Intrinsic::riscv_bcompress 6160 ? RISCVISD::BCOMPRESSW 6161 : RISCVISD::BDECOMPRESSW; 6162 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2); 6163 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6164 break; 6165 } 6166 case Intrinsic::riscv_vmv_x_s: { 6167 EVT VT = N->getValueType(0); 6168 MVT XLenVT = Subtarget.getXLenVT(); 6169 if (VT.bitsLT(XLenVT)) { 6170 // Simple case just extract using vmv.x.s and truncate. 6171 SDValue Extract = DAG.getNode(RISCVISD::VMV_X_S, DL, 6172 Subtarget.getXLenVT(), N->getOperand(1)); 6173 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, Extract)); 6174 return; 6175 } 6176 6177 assert(VT == MVT::i64 && !Subtarget.is64Bit() && 6178 "Unexpected custom legalization"); 6179 6180 // We need to do the move in two steps. 6181 SDValue Vec = N->getOperand(1); 6182 MVT VecVT = Vec.getSimpleValueType(); 6183 6184 // First extract the lower XLEN bits of the element. 6185 SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); 6186 6187 // To extract the upper XLEN bits of the vector element, shift the first 6188 // element right by 32 bits and re-extract the lower XLEN bits. 6189 SDValue VL = DAG.getConstant(1, DL, XLenVT); 6190 MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount()); 6191 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 6192 SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, 6193 DAG.getConstant(32, DL, XLenVT), VL); 6194 SDValue LShr32 = 6195 DAG.getNode(RISCVISD::SRL_VL, DL, VecVT, Vec, ThirtyTwoV, Mask, VL); 6196 SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32); 6197 6198 Results.push_back( 6199 DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi)); 6200 break; 6201 } 6202 } 6203 break; 6204 } 6205 case ISD::VECREDUCE_ADD: 6206 case ISD::VECREDUCE_AND: 6207 case ISD::VECREDUCE_OR: 6208 case ISD::VECREDUCE_XOR: 6209 case ISD::VECREDUCE_SMAX: 6210 case ISD::VECREDUCE_UMAX: 6211 case ISD::VECREDUCE_SMIN: 6212 case ISD::VECREDUCE_UMIN: 6213 if (SDValue V = lowerVECREDUCE(SDValue(N, 0), DAG)) 6214 Results.push_back(V); 6215 break; 6216 case ISD::VP_REDUCE_ADD: 6217 case ISD::VP_REDUCE_AND: 6218 case ISD::VP_REDUCE_OR: 6219 case ISD::VP_REDUCE_XOR: 6220 case ISD::VP_REDUCE_SMAX: 6221 case ISD::VP_REDUCE_UMAX: 6222 case ISD::VP_REDUCE_SMIN: 6223 case ISD::VP_REDUCE_UMIN: 6224 if (SDValue V = lowerVPREDUCE(SDValue(N, 0), DAG)) 6225 Results.push_back(V); 6226 break; 6227 case ISD::FLT_ROUNDS_: { 6228 SDVTList VTs = DAG.getVTList(Subtarget.getXLenVT(), MVT::Other); 6229 SDValue Res = DAG.getNode(ISD::FLT_ROUNDS_, DL, VTs, N->getOperand(0)); 6230 Results.push_back(Res.getValue(0)); 6231 Results.push_back(Res.getValue(1)); 6232 break; 6233 } 6234 } 6235 } 6236 6237 // A structure to hold one of the bit-manipulation patterns below. Together, a 6238 // SHL and non-SHL pattern may form a bit-manipulation pair on a single source: 6239 // (or (and (shl x, 1), 0xAAAAAAAA), 6240 // (and (srl x, 1), 0x55555555)) 6241 struct RISCVBitmanipPat { 6242 SDValue Op; 6243 unsigned ShAmt; 6244 bool IsSHL; 6245 6246 bool formsPairWith(const RISCVBitmanipPat &Other) const { 6247 return Op == Other.Op && ShAmt == Other.ShAmt && IsSHL != Other.IsSHL; 6248 } 6249 }; 6250 6251 // Matches patterns of the form 6252 // (and (shl x, C2), (C1 << C2)) 6253 // (and (srl x, C2), C1) 6254 // (shl (and x, C1), C2) 6255 // (srl (and x, (C1 << C2)), C2) 6256 // Where C2 is a power of 2 and C1 has at least that many leading zeroes. 6257 // The expected masks for each shift amount are specified in BitmanipMasks where 6258 // BitmanipMasks[log2(C2)] specifies the expected C1 value. 6259 // The max allowed shift amount is either XLen/2 or XLen/4 determined by whether 6260 // BitmanipMasks contains 6 or 5 entries assuming that the maximum possible 6261 // XLen is 64. 6262 static Optional<RISCVBitmanipPat> 6263 matchRISCVBitmanipPat(SDValue Op, ArrayRef<uint64_t> BitmanipMasks) { 6264 assert((BitmanipMasks.size() == 5 || BitmanipMasks.size() == 6) && 6265 "Unexpected number of masks"); 6266 Optional<uint64_t> Mask; 6267 // Optionally consume a mask around the shift operation. 6268 if (Op.getOpcode() == ISD::AND && isa<ConstantSDNode>(Op.getOperand(1))) { 6269 Mask = Op.getConstantOperandVal(1); 6270 Op = Op.getOperand(0); 6271 } 6272 if (Op.getOpcode() != ISD::SHL && Op.getOpcode() != ISD::SRL) 6273 return None; 6274 bool IsSHL = Op.getOpcode() == ISD::SHL; 6275 6276 if (!isa<ConstantSDNode>(Op.getOperand(1))) 6277 return None; 6278 uint64_t ShAmt = Op.getConstantOperandVal(1); 6279 6280 unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32; 6281 if (ShAmt >= Width || !isPowerOf2_64(ShAmt)) 6282 return None; 6283 // If we don't have enough masks for 64 bit, then we must be trying to 6284 // match SHFL so we're only allowed to shift 1/4 of the width. 6285 if (BitmanipMasks.size() == 5 && ShAmt >= (Width / 2)) 6286 return None; 6287 6288 SDValue Src = Op.getOperand(0); 6289 6290 // The expected mask is shifted left when the AND is found around SHL 6291 // patterns. 6292 // ((x >> 1) & 0x55555555) 6293 // ((x << 1) & 0xAAAAAAAA) 6294 bool SHLExpMask = IsSHL; 6295 6296 if (!Mask) { 6297 // Sometimes LLVM keeps the mask as an operand of the shift, typically when 6298 // the mask is all ones: consume that now. 6299 if (Src.getOpcode() == ISD::AND && isa<ConstantSDNode>(Src.getOperand(1))) { 6300 Mask = Src.getConstantOperandVal(1); 6301 Src = Src.getOperand(0); 6302 // The expected mask is now in fact shifted left for SRL, so reverse the 6303 // decision. 6304 // ((x & 0xAAAAAAAA) >> 1) 6305 // ((x & 0x55555555) << 1) 6306 SHLExpMask = !SHLExpMask; 6307 } else { 6308 // Use a default shifted mask of all-ones if there's no AND, truncated 6309 // down to the expected width. This simplifies the logic later on. 6310 Mask = maskTrailingOnes<uint64_t>(Width); 6311 *Mask &= (IsSHL ? *Mask << ShAmt : *Mask >> ShAmt); 6312 } 6313 } 6314 6315 unsigned MaskIdx = Log2_32(ShAmt); 6316 uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width); 6317 6318 if (SHLExpMask) 6319 ExpMask <<= ShAmt; 6320 6321 if (Mask != ExpMask) 6322 return None; 6323 6324 return RISCVBitmanipPat{Src, (unsigned)ShAmt, IsSHL}; 6325 } 6326 6327 // Matches any of the following bit-manipulation patterns: 6328 // (and (shl x, 1), (0x55555555 << 1)) 6329 // (and (srl x, 1), 0x55555555) 6330 // (shl (and x, 0x55555555), 1) 6331 // (srl (and x, (0x55555555 << 1)), 1) 6332 // where the shift amount and mask may vary thus: 6333 // [1] = 0x55555555 / 0xAAAAAAAA 6334 // [2] = 0x33333333 / 0xCCCCCCCC 6335 // [4] = 0x0F0F0F0F / 0xF0F0F0F0 6336 // [8] = 0x00FF00FF / 0xFF00FF00 6337 // [16] = 0x0000FFFF / 0xFFFFFFFF 6338 // [32] = 0x00000000FFFFFFFF / 0xFFFFFFFF00000000 (for RV64) 6339 static Optional<RISCVBitmanipPat> matchGREVIPat(SDValue Op) { 6340 // These are the unshifted masks which we use to match bit-manipulation 6341 // patterns. They may be shifted left in certain circumstances. 6342 static const uint64_t BitmanipMasks[] = { 6343 0x5555555555555555ULL, 0x3333333333333333ULL, 0x0F0F0F0F0F0F0F0FULL, 6344 0x00FF00FF00FF00FFULL, 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL}; 6345 6346 return matchRISCVBitmanipPat(Op, BitmanipMasks); 6347 } 6348 6349 // Match the following pattern as a GREVI(W) operation 6350 // (or (BITMANIP_SHL x), (BITMANIP_SRL x)) 6351 static SDValue combineORToGREV(SDValue Op, SelectionDAG &DAG, 6352 const RISCVSubtarget &Subtarget) { 6353 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson"); 6354 EVT VT = Op.getValueType(); 6355 6356 if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) { 6357 auto LHS = matchGREVIPat(Op.getOperand(0)); 6358 auto RHS = matchGREVIPat(Op.getOperand(1)); 6359 if (LHS && RHS && LHS->formsPairWith(*RHS)) { 6360 SDLoc DL(Op); 6361 return DAG.getNode(RISCVISD::GREV, DL, VT, LHS->Op, 6362 DAG.getConstant(LHS->ShAmt, DL, VT)); 6363 } 6364 } 6365 return SDValue(); 6366 } 6367 6368 // Matches any the following pattern as a GORCI(W) operation 6369 // 1. (or (GREVI x, shamt), x) if shamt is a power of 2 6370 // 2. (or x, (GREVI x, shamt)) if shamt is a power of 2 6371 // 3. (or (or (BITMANIP_SHL x), x), (BITMANIP_SRL x)) 6372 // Note that with the variant of 3., 6373 // (or (or (BITMANIP_SHL x), (BITMANIP_SRL x)), x) 6374 // the inner pattern will first be matched as GREVI and then the outer 6375 // pattern will be matched to GORC via the first rule above. 6376 // 4. (or (rotl/rotr x, bitwidth/2), x) 6377 static SDValue combineORToGORC(SDValue Op, SelectionDAG &DAG, 6378 const RISCVSubtarget &Subtarget) { 6379 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson"); 6380 EVT VT = Op.getValueType(); 6381 6382 if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) { 6383 SDLoc DL(Op); 6384 SDValue Op0 = Op.getOperand(0); 6385 SDValue Op1 = Op.getOperand(1); 6386 6387 auto MatchOROfReverse = [&](SDValue Reverse, SDValue X) { 6388 if (Reverse.getOpcode() == RISCVISD::GREV && Reverse.getOperand(0) == X && 6389 isa<ConstantSDNode>(Reverse.getOperand(1)) && 6390 isPowerOf2_32(Reverse.getConstantOperandVal(1))) 6391 return DAG.getNode(RISCVISD::GORC, DL, VT, X, Reverse.getOperand(1)); 6392 // We can also form GORCI from ROTL/ROTR by half the bitwidth. 6393 if ((Reverse.getOpcode() == ISD::ROTL || 6394 Reverse.getOpcode() == ISD::ROTR) && 6395 Reverse.getOperand(0) == X && 6396 isa<ConstantSDNode>(Reverse.getOperand(1))) { 6397 uint64_t RotAmt = Reverse.getConstantOperandVal(1); 6398 if (RotAmt == (VT.getSizeInBits() / 2)) 6399 return DAG.getNode(RISCVISD::GORC, DL, VT, X, 6400 DAG.getConstant(RotAmt, DL, VT)); 6401 } 6402 return SDValue(); 6403 }; 6404 6405 // Check for either commutable permutation of (or (GREVI x, shamt), x) 6406 if (SDValue V = MatchOROfReverse(Op0, Op1)) 6407 return V; 6408 if (SDValue V = MatchOROfReverse(Op1, Op0)) 6409 return V; 6410 6411 // OR is commutable so canonicalize its OR operand to the left 6412 if (Op0.getOpcode() != ISD::OR && Op1.getOpcode() == ISD::OR) 6413 std::swap(Op0, Op1); 6414 if (Op0.getOpcode() != ISD::OR) 6415 return SDValue(); 6416 SDValue OrOp0 = Op0.getOperand(0); 6417 SDValue OrOp1 = Op0.getOperand(1); 6418 auto LHS = matchGREVIPat(OrOp0); 6419 // OR is commutable so swap the operands and try again: x might have been 6420 // on the left 6421 if (!LHS) { 6422 std::swap(OrOp0, OrOp1); 6423 LHS = matchGREVIPat(OrOp0); 6424 } 6425 auto RHS = matchGREVIPat(Op1); 6426 if (LHS && RHS && LHS->formsPairWith(*RHS) && LHS->Op == OrOp1) { 6427 return DAG.getNode(RISCVISD::GORC, DL, VT, LHS->Op, 6428 DAG.getConstant(LHS->ShAmt, DL, VT)); 6429 } 6430 } 6431 return SDValue(); 6432 } 6433 6434 // Matches any of the following bit-manipulation patterns: 6435 // (and (shl x, 1), (0x22222222 << 1)) 6436 // (and (srl x, 1), 0x22222222) 6437 // (shl (and x, 0x22222222), 1) 6438 // (srl (and x, (0x22222222 << 1)), 1) 6439 // where the shift amount and mask may vary thus: 6440 // [1] = 0x22222222 / 0x44444444 6441 // [2] = 0x0C0C0C0C / 0x3C3C3C3C 6442 // [4] = 0x00F000F0 / 0x0F000F00 6443 // [8] = 0x0000FF00 / 0x00FF0000 6444 // [16] = 0x00000000FFFF0000 / 0x0000FFFF00000000 (for RV64) 6445 static Optional<RISCVBitmanipPat> matchSHFLPat(SDValue Op) { 6446 // These are the unshifted masks which we use to match bit-manipulation 6447 // patterns. They may be shifted left in certain circumstances. 6448 static const uint64_t BitmanipMasks[] = { 6449 0x2222222222222222ULL, 0x0C0C0C0C0C0C0C0CULL, 0x00F000F000F000F0ULL, 6450 0x0000FF000000FF00ULL, 0x00000000FFFF0000ULL}; 6451 6452 return matchRISCVBitmanipPat(Op, BitmanipMasks); 6453 } 6454 6455 // Match (or (or (SHFL_SHL x), (SHFL_SHR x)), (SHFL_AND x) 6456 static SDValue combineORToSHFL(SDValue Op, SelectionDAG &DAG, 6457 const RISCVSubtarget &Subtarget) { 6458 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson"); 6459 EVT VT = Op.getValueType(); 6460 6461 if (VT != MVT::i32 && VT != Subtarget.getXLenVT()) 6462 return SDValue(); 6463 6464 SDValue Op0 = Op.getOperand(0); 6465 SDValue Op1 = Op.getOperand(1); 6466 6467 // Or is commutable so canonicalize the second OR to the LHS. 6468 if (Op0.getOpcode() != ISD::OR) 6469 std::swap(Op0, Op1); 6470 if (Op0.getOpcode() != ISD::OR) 6471 return SDValue(); 6472 6473 // We found an inner OR, so our operands are the operands of the inner OR 6474 // and the other operand of the outer OR. 6475 SDValue A = Op0.getOperand(0); 6476 SDValue B = Op0.getOperand(1); 6477 SDValue C = Op1; 6478 6479 auto Match1 = matchSHFLPat(A); 6480 auto Match2 = matchSHFLPat(B); 6481 6482 // If neither matched, we failed. 6483 if (!Match1 && !Match2) 6484 return SDValue(); 6485 6486 // We had at least one match. if one failed, try the remaining C operand. 6487 if (!Match1) { 6488 std::swap(A, C); 6489 Match1 = matchSHFLPat(A); 6490 if (!Match1) 6491 return SDValue(); 6492 } else if (!Match2) { 6493 std::swap(B, C); 6494 Match2 = matchSHFLPat(B); 6495 if (!Match2) 6496 return SDValue(); 6497 } 6498 assert(Match1 && Match2); 6499 6500 // Make sure our matches pair up. 6501 if (!Match1->formsPairWith(*Match2)) 6502 return SDValue(); 6503 6504 // All the remains is to make sure C is an AND with the same input, that masks 6505 // out the bits that are being shuffled. 6506 if (C.getOpcode() != ISD::AND || !isa<ConstantSDNode>(C.getOperand(1)) || 6507 C.getOperand(0) != Match1->Op) 6508 return SDValue(); 6509 6510 uint64_t Mask = C.getConstantOperandVal(1); 6511 6512 static const uint64_t BitmanipMasks[] = { 6513 0x9999999999999999ULL, 0xC3C3C3C3C3C3C3C3ULL, 0xF00FF00FF00FF00FULL, 6514 0xFF0000FFFF0000FFULL, 0xFFFF00000000FFFFULL, 6515 }; 6516 6517 unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32; 6518 unsigned MaskIdx = Log2_32(Match1->ShAmt); 6519 uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width); 6520 6521 if (Mask != ExpMask) 6522 return SDValue(); 6523 6524 SDLoc DL(Op); 6525 return DAG.getNode(RISCVISD::SHFL, DL, VT, Match1->Op, 6526 DAG.getConstant(Match1->ShAmt, DL, VT)); 6527 } 6528 6529 // Optimize (add (shl x, c0), (shl y, c1)) -> 6530 // (SLLI (SH*ADD x, y), c0), if c1-c0 equals to [1|2|3]. 6531 static SDValue transformAddShlImm(SDNode *N, SelectionDAG &DAG, 6532 const RISCVSubtarget &Subtarget) { 6533 // Perform this optimization only in the zba extension. 6534 if (!Subtarget.hasStdExtZba()) 6535 return SDValue(); 6536 6537 // Skip for vector types and larger types. 6538 EVT VT = N->getValueType(0); 6539 if (VT.isVector() || VT.getSizeInBits() > Subtarget.getXLen()) 6540 return SDValue(); 6541 6542 // The two operand nodes must be SHL and have no other use. 6543 SDValue N0 = N->getOperand(0); 6544 SDValue N1 = N->getOperand(1); 6545 if (N0->getOpcode() != ISD::SHL || N1->getOpcode() != ISD::SHL || 6546 !N0->hasOneUse() || !N1->hasOneUse()) 6547 return SDValue(); 6548 6549 // Check c0 and c1. 6550 auto *N0C = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 6551 auto *N1C = dyn_cast<ConstantSDNode>(N1->getOperand(1)); 6552 if (!N0C || !N1C) 6553 return SDValue(); 6554 int64_t C0 = N0C->getSExtValue(); 6555 int64_t C1 = N1C->getSExtValue(); 6556 if (C0 <= 0 || C1 <= 0) 6557 return SDValue(); 6558 6559 // Skip if SH1ADD/SH2ADD/SH3ADD are not applicable. 6560 int64_t Bits = std::min(C0, C1); 6561 int64_t Diff = std::abs(C0 - C1); 6562 if (Diff != 1 && Diff != 2 && Diff != 3) 6563 return SDValue(); 6564 6565 // Build nodes. 6566 SDLoc DL(N); 6567 SDValue NS = (C0 < C1) ? N0->getOperand(0) : N1->getOperand(0); 6568 SDValue NL = (C0 > C1) ? N0->getOperand(0) : N1->getOperand(0); 6569 SDValue NA0 = 6570 DAG.getNode(ISD::SHL, DL, VT, NL, DAG.getConstant(Diff, DL, VT)); 6571 SDValue NA1 = DAG.getNode(ISD::ADD, DL, VT, NA0, NS); 6572 return DAG.getNode(ISD::SHL, DL, VT, NA1, DAG.getConstant(Bits, DL, VT)); 6573 } 6574 6575 // Combine (GREVI (GREVI x, C2), C1) -> (GREVI x, C1^C2) when C1^C2 is 6576 // non-zero, and to x when it is. Any repeated GREVI stage undoes itself. 6577 // Combine (GORCI (GORCI x, C2), C1) -> (GORCI x, C1|C2). Repeated stage does 6578 // not undo itself, but they are redundant. 6579 static SDValue combineGREVI_GORCI(SDNode *N, SelectionDAG &DAG) { 6580 SDValue Src = N->getOperand(0); 6581 6582 if (Src.getOpcode() != N->getOpcode()) 6583 return SDValue(); 6584 6585 if (!isa<ConstantSDNode>(N->getOperand(1)) || 6586 !isa<ConstantSDNode>(Src.getOperand(1))) 6587 return SDValue(); 6588 6589 unsigned ShAmt1 = N->getConstantOperandVal(1); 6590 unsigned ShAmt2 = Src.getConstantOperandVal(1); 6591 Src = Src.getOperand(0); 6592 6593 unsigned CombinedShAmt; 6594 if (N->getOpcode() == RISCVISD::GORC || N->getOpcode() == RISCVISD::GORCW) 6595 CombinedShAmt = ShAmt1 | ShAmt2; 6596 else 6597 CombinedShAmt = ShAmt1 ^ ShAmt2; 6598 6599 if (CombinedShAmt == 0) 6600 return Src; 6601 6602 SDLoc DL(N); 6603 return DAG.getNode( 6604 N->getOpcode(), DL, N->getValueType(0), Src, 6605 DAG.getConstant(CombinedShAmt, DL, N->getOperand(1).getValueType())); 6606 } 6607 6608 // Combine a constant select operand into its use: 6609 // 6610 // (and (select cond, -1, c), x) 6611 // -> (select cond, x, (and x, c)) [AllOnes=1] 6612 // (or (select cond, 0, c), x) 6613 // -> (select cond, x, (or x, c)) [AllOnes=0] 6614 // (xor (select cond, 0, c), x) 6615 // -> (select cond, x, (xor x, c)) [AllOnes=0] 6616 // (add (select cond, 0, c), x) 6617 // -> (select cond, x, (add x, c)) [AllOnes=0] 6618 // (sub x, (select cond, 0, c)) 6619 // -> (select cond, x, (sub x, c)) [AllOnes=0] 6620 static SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp, 6621 SelectionDAG &DAG, bool AllOnes) { 6622 EVT VT = N->getValueType(0); 6623 6624 // Skip vectors. 6625 if (VT.isVector()) 6626 return SDValue(); 6627 6628 if ((Slct.getOpcode() != ISD::SELECT && 6629 Slct.getOpcode() != RISCVISD::SELECT_CC) || 6630 !Slct.hasOneUse()) 6631 return SDValue(); 6632 6633 auto isZeroOrAllOnes = [](SDValue N, bool AllOnes) { 6634 return AllOnes ? isAllOnesConstant(N) : isNullConstant(N); 6635 }; 6636 6637 bool SwapSelectOps; 6638 unsigned OpOffset = Slct.getOpcode() == RISCVISD::SELECT_CC ? 2 : 0; 6639 SDValue TrueVal = Slct.getOperand(1 + OpOffset); 6640 SDValue FalseVal = Slct.getOperand(2 + OpOffset); 6641 SDValue NonConstantVal; 6642 if (isZeroOrAllOnes(TrueVal, AllOnes)) { 6643 SwapSelectOps = false; 6644 NonConstantVal = FalseVal; 6645 } else if (isZeroOrAllOnes(FalseVal, AllOnes)) { 6646 SwapSelectOps = true; 6647 NonConstantVal = TrueVal; 6648 } else 6649 return SDValue(); 6650 6651 // Slct is now know to be the desired identity constant when CC is true. 6652 TrueVal = OtherOp; 6653 FalseVal = DAG.getNode(N->getOpcode(), SDLoc(N), VT, OtherOp, NonConstantVal); 6654 // Unless SwapSelectOps says the condition should be false. 6655 if (SwapSelectOps) 6656 std::swap(TrueVal, FalseVal); 6657 6658 if (Slct.getOpcode() == RISCVISD::SELECT_CC) 6659 return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), VT, 6660 {Slct.getOperand(0), Slct.getOperand(1), 6661 Slct.getOperand(2), TrueVal, FalseVal}); 6662 6663 return DAG.getNode(ISD::SELECT, SDLoc(N), VT, 6664 {Slct.getOperand(0), TrueVal, FalseVal}); 6665 } 6666 6667 // Attempt combineSelectAndUse on each operand of a commutative operator N. 6668 static SDValue combineSelectAndUseCommutative(SDNode *N, SelectionDAG &DAG, 6669 bool AllOnes) { 6670 SDValue N0 = N->getOperand(0); 6671 SDValue N1 = N->getOperand(1); 6672 if (SDValue Result = combineSelectAndUse(N, N0, N1, DAG, AllOnes)) 6673 return Result; 6674 if (SDValue Result = combineSelectAndUse(N, N1, N0, DAG, AllOnes)) 6675 return Result; 6676 return SDValue(); 6677 } 6678 6679 // Transform (add (mul x, c0), c1) -> 6680 // (add (mul (add x, c1/c0), c0), c1%c0). 6681 // if c1/c0 and c1%c0 are simm12, while c1 is not. A special corner case 6682 // that should be excluded is when c0*(c1/c0) is simm12, which will lead 6683 // to an infinite loop in DAGCombine if transformed. 6684 // Or transform (add (mul x, c0), c1) -> 6685 // (add (mul (add x, c1/c0+1), c0), c1%c0-c0), 6686 // if c1/c0+1 and c1%c0-c0 are simm12, while c1 is not. A special corner 6687 // case that should be excluded is when c0*(c1/c0+1) is simm12, which will 6688 // lead to an infinite loop in DAGCombine if transformed. 6689 // Or transform (add (mul x, c0), c1) -> 6690 // (add (mul (add x, c1/c0-1), c0), c1%c0+c0), 6691 // if c1/c0-1 and c1%c0+c0 are simm12, while c1 is not. A special corner 6692 // case that should be excluded is when c0*(c1/c0-1) is simm12, which will 6693 // lead to an infinite loop in DAGCombine if transformed. 6694 // Or transform (add (mul x, c0), c1) -> 6695 // (mul (add x, c1/c0), c0). 6696 // if c1%c0 is zero, and c1/c0 is simm12 while c1 is not. 6697 static SDValue transformAddImmMulImm(SDNode *N, SelectionDAG &DAG, 6698 const RISCVSubtarget &Subtarget) { 6699 // Skip for vector types and larger types. 6700 EVT VT = N->getValueType(0); 6701 if (VT.isVector() || VT.getSizeInBits() > Subtarget.getXLen()) 6702 return SDValue(); 6703 // The first operand node must be a MUL and has no other use. 6704 SDValue N0 = N->getOperand(0); 6705 if (!N0->hasOneUse() || N0->getOpcode() != ISD::MUL) 6706 return SDValue(); 6707 // Check if c0 and c1 match above conditions. 6708 auto *N0C = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 6709 auto *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1)); 6710 if (!N0C || !N1C) 6711 return SDValue(); 6712 int64_t C0 = N0C->getSExtValue(); 6713 int64_t C1 = N1C->getSExtValue(); 6714 int64_t CA, CB; 6715 if (C0 == -1 || C0 == 0 || C0 == 1 || isInt<12>(C1)) 6716 return SDValue(); 6717 // Search for proper CA (non-zero) and CB that both are simm12. 6718 if ((C1 / C0) != 0 && isInt<12>(C1 / C0) && isInt<12>(C1 % C0) && 6719 !isInt<12>(C0 * (C1 / C0))) { 6720 CA = C1 / C0; 6721 CB = C1 % C0; 6722 } else if ((C1 / C0 + 1) != 0 && isInt<12>(C1 / C0 + 1) && 6723 isInt<12>(C1 % C0 - C0) && !isInt<12>(C0 * (C1 / C0 + 1))) { 6724 CA = C1 / C0 + 1; 6725 CB = C1 % C0 - C0; 6726 } else if ((C1 / C0 - 1) != 0 && isInt<12>(C1 / C0 - 1) && 6727 isInt<12>(C1 % C0 + C0) && !isInt<12>(C0 * (C1 / C0 - 1))) { 6728 CA = C1 / C0 - 1; 6729 CB = C1 % C0 + C0; 6730 } else 6731 return SDValue(); 6732 // Build new nodes (add (mul (add x, c1/c0), c0), c1%c0). 6733 SDLoc DL(N); 6734 SDValue New0 = DAG.getNode(ISD::ADD, DL, VT, N0->getOperand(0), 6735 DAG.getConstant(CA, DL, VT)); 6736 SDValue New1 = 6737 DAG.getNode(ISD::MUL, DL, VT, New0, DAG.getConstant(C0, DL, VT)); 6738 return DAG.getNode(ISD::ADD, DL, VT, New1, DAG.getConstant(CB, DL, VT)); 6739 } 6740 6741 static SDValue performADDCombine(SDNode *N, SelectionDAG &DAG, 6742 const RISCVSubtarget &Subtarget) { 6743 if (SDValue V = transformAddImmMulImm(N, DAG, Subtarget)) 6744 return V; 6745 if (SDValue V = transformAddShlImm(N, DAG, Subtarget)) 6746 return V; 6747 // fold (add (select lhs, rhs, cc, 0, y), x) -> 6748 // (select lhs, rhs, cc, x, (add x, y)) 6749 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false); 6750 } 6751 6752 static SDValue performSUBCombine(SDNode *N, SelectionDAG &DAG) { 6753 // fold (sub x, (select lhs, rhs, cc, 0, y)) -> 6754 // (select lhs, rhs, cc, x, (sub x, y)) 6755 SDValue N0 = N->getOperand(0); 6756 SDValue N1 = N->getOperand(1); 6757 return combineSelectAndUse(N, N1, N0, DAG, /*AllOnes*/ false); 6758 } 6759 6760 static SDValue performANDCombine(SDNode *N, SelectionDAG &DAG) { 6761 // fold (and (select lhs, rhs, cc, -1, y), x) -> 6762 // (select lhs, rhs, cc, x, (and x, y)) 6763 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ true); 6764 } 6765 6766 static SDValue performORCombine(SDNode *N, SelectionDAG &DAG, 6767 const RISCVSubtarget &Subtarget) { 6768 if (Subtarget.hasStdExtZbp()) { 6769 if (auto GREV = combineORToGREV(SDValue(N, 0), DAG, Subtarget)) 6770 return GREV; 6771 if (auto GORC = combineORToGORC(SDValue(N, 0), DAG, Subtarget)) 6772 return GORC; 6773 if (auto SHFL = combineORToSHFL(SDValue(N, 0), DAG, Subtarget)) 6774 return SHFL; 6775 } 6776 6777 // fold (or (select cond, 0, y), x) -> 6778 // (select cond, x, (or x, y)) 6779 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false); 6780 } 6781 6782 static SDValue performXORCombine(SDNode *N, SelectionDAG &DAG) { 6783 // fold (xor (select cond, 0, y), x) -> 6784 // (select cond, x, (xor x, y)) 6785 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false); 6786 } 6787 6788 // Attempt to turn ANY_EXTEND into SIGN_EXTEND if the input to the ANY_EXTEND 6789 // has users that require SIGN_EXTEND and the SIGN_EXTEND can be done for free 6790 // by an instruction like ADDW/SUBW/MULW. Without this the ANY_EXTEND would be 6791 // removed during type legalization leaving an ADD/SUB/MUL use that won't use 6792 // ADDW/SUBW/MULW. 6793 static SDValue performANY_EXTENDCombine(SDNode *N, 6794 TargetLowering::DAGCombinerInfo &DCI, 6795 const RISCVSubtarget &Subtarget) { 6796 if (!Subtarget.is64Bit()) 6797 return SDValue(); 6798 6799 SelectionDAG &DAG = DCI.DAG; 6800 6801 SDValue Src = N->getOperand(0); 6802 EVT VT = N->getValueType(0); 6803 if (VT != MVT::i64 || Src.getValueType() != MVT::i32) 6804 return SDValue(); 6805 6806 // The opcode must be one that can implicitly sign_extend. 6807 // FIXME: Additional opcodes. 6808 switch (Src.getOpcode()) { 6809 default: 6810 return SDValue(); 6811 case ISD::MUL: 6812 if (!Subtarget.hasStdExtM()) 6813 return SDValue(); 6814 LLVM_FALLTHROUGH; 6815 case ISD::ADD: 6816 case ISD::SUB: 6817 break; 6818 } 6819 6820 // Only handle cases where the result is used by a CopyToReg. That likely 6821 // means the value is a liveout of the basic block. This helps prevent 6822 // infinite combine loops like PR51206. 6823 if (none_of(N->uses(), 6824 [](SDNode *User) { return User->getOpcode() == ISD::CopyToReg; })) 6825 return SDValue(); 6826 6827 SmallVector<SDNode *, 4> SetCCs; 6828 for (SDNode::use_iterator UI = Src.getNode()->use_begin(), 6829 UE = Src.getNode()->use_end(); 6830 UI != UE; ++UI) { 6831 SDNode *User = *UI; 6832 if (User == N) 6833 continue; 6834 if (UI.getUse().getResNo() != Src.getResNo()) 6835 continue; 6836 // All i32 setccs are legalized by sign extending operands. 6837 if (User->getOpcode() == ISD::SETCC) { 6838 SetCCs.push_back(User); 6839 continue; 6840 } 6841 // We don't know if we can extend this user. 6842 break; 6843 } 6844 6845 // If we don't have any SetCCs, this isn't worthwhile. 6846 if (SetCCs.empty()) 6847 return SDValue(); 6848 6849 SDLoc DL(N); 6850 SDValue SExt = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Src); 6851 DCI.CombineTo(N, SExt); 6852 6853 // Promote all the setccs. 6854 for (SDNode *SetCC : SetCCs) { 6855 SmallVector<SDValue, 4> Ops; 6856 6857 for (unsigned j = 0; j != 2; ++j) { 6858 SDValue SOp = SetCC->getOperand(j); 6859 if (SOp == Src) 6860 Ops.push_back(SExt); 6861 else 6862 Ops.push_back(DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, SOp)); 6863 } 6864 6865 Ops.push_back(SetCC->getOperand(2)); 6866 DCI.CombineTo(SetCC, 6867 DAG.getNode(ISD::SETCC, DL, SetCC->getValueType(0), Ops)); 6868 } 6869 return SDValue(N, 0); 6870 } 6871 6872 // Try to form VWMUL or VWMULU. 6873 // FIXME: Support VWMULSU. 6874 static SDValue combineMUL_VLToVWMUL(SDNode *N, SDValue Op0, SDValue Op1, 6875 SelectionDAG &DAG) { 6876 assert(N->getOpcode() == RISCVISD::MUL_VL && "Unexpected opcode"); 6877 bool IsSignExt = Op0.getOpcode() == RISCVISD::VSEXT_VL; 6878 bool IsZeroExt = Op0.getOpcode() == RISCVISD::VZEXT_VL; 6879 if ((!IsSignExt && !IsZeroExt) || !Op0.hasOneUse()) 6880 return SDValue(); 6881 6882 SDValue Mask = N->getOperand(2); 6883 SDValue VL = N->getOperand(3); 6884 6885 // Make sure the mask and VL match. 6886 if (Op0.getOperand(1) != Mask || Op0.getOperand(2) != VL) 6887 return SDValue(); 6888 6889 MVT VT = N->getSimpleValueType(0); 6890 6891 // Determine the narrow size for a widening multiply. 6892 unsigned NarrowSize = VT.getScalarSizeInBits() / 2; 6893 MVT NarrowVT = MVT::getVectorVT(MVT::getIntegerVT(NarrowSize), 6894 VT.getVectorElementCount()); 6895 6896 SDLoc DL(N); 6897 6898 // See if the other operand is the same opcode. 6899 if (Op0.getOpcode() == Op1.getOpcode()) { 6900 if (!Op1.hasOneUse()) 6901 return SDValue(); 6902 6903 // Make sure the mask and VL match. 6904 if (Op1.getOperand(1) != Mask || Op1.getOperand(2) != VL) 6905 return SDValue(); 6906 6907 Op1 = Op1.getOperand(0); 6908 } else if (Op1.getOpcode() == RISCVISD::VMV_V_X_VL) { 6909 // The operand is a splat of a scalar. 6910 6911 // The VL must be the same. 6912 if (Op1.getOperand(1) != VL) 6913 return SDValue(); 6914 6915 // Get the scalar value. 6916 Op1 = Op1.getOperand(0); 6917 6918 // See if have enough sign bits or zero bits in the scalar to use a 6919 // widening multiply by splatting to smaller element size. 6920 unsigned EltBits = VT.getScalarSizeInBits(); 6921 unsigned ScalarBits = Op1.getValueSizeInBits(); 6922 // Make sure we're getting all element bits from the scalar register. 6923 // FIXME: Support implicit sign extension of vmv.v.x? 6924 if (ScalarBits < EltBits) 6925 return SDValue(); 6926 6927 if (IsSignExt) { 6928 if (DAG.ComputeNumSignBits(Op1) <= (ScalarBits - NarrowSize)) 6929 return SDValue(); 6930 } else { 6931 APInt Mask = APInt::getBitsSetFrom(ScalarBits, NarrowSize); 6932 if (!DAG.MaskedValueIsZero(Op1, Mask)) 6933 return SDValue(); 6934 } 6935 6936 Op1 = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, NarrowVT, Op1, VL); 6937 } else 6938 return SDValue(); 6939 6940 Op0 = Op0.getOperand(0); 6941 6942 // Re-introduce narrower extends if needed. 6943 unsigned ExtOpc = IsSignExt ? RISCVISD::VSEXT_VL : RISCVISD::VZEXT_VL; 6944 if (Op0.getValueType() != NarrowVT) 6945 Op0 = DAG.getNode(ExtOpc, DL, NarrowVT, Op0, Mask, VL); 6946 if (Op1.getValueType() != NarrowVT) 6947 Op1 = DAG.getNode(ExtOpc, DL, NarrowVT, Op1, Mask, VL); 6948 6949 unsigned WMulOpc = IsSignExt ? RISCVISD::VWMUL_VL : RISCVISD::VWMULU_VL; 6950 return DAG.getNode(WMulOpc, DL, VT, Op0, Op1, Mask, VL); 6951 } 6952 6953 SDValue RISCVTargetLowering::PerformDAGCombine(SDNode *N, 6954 DAGCombinerInfo &DCI) const { 6955 SelectionDAG &DAG = DCI.DAG; 6956 6957 // Helper to call SimplifyDemandedBits on an operand of N where only some low 6958 // bits are demanded. N will be added to the Worklist if it was not deleted. 6959 // Caller should return SDValue(N, 0) if this returns true. 6960 auto SimplifyDemandedLowBitsHelper = [&](unsigned OpNo, unsigned LowBits) { 6961 SDValue Op = N->getOperand(OpNo); 6962 APInt Mask = APInt::getLowBitsSet(Op.getValueSizeInBits(), LowBits); 6963 if (!SimplifyDemandedBits(Op, Mask, DCI)) 6964 return false; 6965 6966 if (N->getOpcode() != ISD::DELETED_NODE) 6967 DCI.AddToWorklist(N); 6968 return true; 6969 }; 6970 6971 switch (N->getOpcode()) { 6972 default: 6973 break; 6974 case RISCVISD::SplitF64: { 6975 SDValue Op0 = N->getOperand(0); 6976 // If the input to SplitF64 is just BuildPairF64 then the operation is 6977 // redundant. Instead, use BuildPairF64's operands directly. 6978 if (Op0->getOpcode() == RISCVISD::BuildPairF64) 6979 return DCI.CombineTo(N, Op0.getOperand(0), Op0.getOperand(1)); 6980 6981 SDLoc DL(N); 6982 6983 // It's cheaper to materialise two 32-bit integers than to load a double 6984 // from the constant pool and transfer it to integer registers through the 6985 // stack. 6986 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op0)) { 6987 APInt V = C->getValueAPF().bitcastToAPInt(); 6988 SDValue Lo = DAG.getConstant(V.trunc(32), DL, MVT::i32); 6989 SDValue Hi = DAG.getConstant(V.lshr(32).trunc(32), DL, MVT::i32); 6990 return DCI.CombineTo(N, Lo, Hi); 6991 } 6992 6993 // This is a target-specific version of a DAGCombine performed in 6994 // DAGCombiner::visitBITCAST. It performs the equivalent of: 6995 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) 6996 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) 6997 if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) || 6998 !Op0.getNode()->hasOneUse()) 6999 break; 7000 SDValue NewSplitF64 = 7001 DAG.getNode(RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), 7002 Op0.getOperand(0)); 7003 SDValue Lo = NewSplitF64.getValue(0); 7004 SDValue Hi = NewSplitF64.getValue(1); 7005 APInt SignBit = APInt::getSignMask(32); 7006 if (Op0.getOpcode() == ISD::FNEG) { 7007 SDValue NewHi = DAG.getNode(ISD::XOR, DL, MVT::i32, Hi, 7008 DAG.getConstant(SignBit, DL, MVT::i32)); 7009 return DCI.CombineTo(N, Lo, NewHi); 7010 } 7011 assert(Op0.getOpcode() == ISD::FABS); 7012 SDValue NewHi = DAG.getNode(ISD::AND, DL, MVT::i32, Hi, 7013 DAG.getConstant(~SignBit, DL, MVT::i32)); 7014 return DCI.CombineTo(N, Lo, NewHi); 7015 } 7016 case RISCVISD::SLLW: 7017 case RISCVISD::SRAW: 7018 case RISCVISD::SRLW: 7019 case RISCVISD::ROLW: 7020 case RISCVISD::RORW: { 7021 // Only the lower 32 bits of LHS and lower 5 bits of RHS are read. 7022 if (SimplifyDemandedLowBitsHelper(0, 32) || 7023 SimplifyDemandedLowBitsHelper(1, 5)) 7024 return SDValue(N, 0); 7025 break; 7026 } 7027 case RISCVISD::CLZW: 7028 case RISCVISD::CTZW: { 7029 // Only the lower 32 bits of the first operand are read 7030 if (SimplifyDemandedLowBitsHelper(0, 32)) 7031 return SDValue(N, 0); 7032 break; 7033 } 7034 case RISCVISD::FSL: 7035 case RISCVISD::FSR: { 7036 // Only the lower log2(Bitwidth)+1 bits of the the shift amount are read. 7037 unsigned BitWidth = N->getOperand(2).getValueSizeInBits(); 7038 assert(isPowerOf2_32(BitWidth) && "Unexpected bit width"); 7039 if (SimplifyDemandedLowBitsHelper(2, Log2_32(BitWidth) + 1)) 7040 return SDValue(N, 0); 7041 break; 7042 } 7043 case RISCVISD::FSLW: 7044 case RISCVISD::FSRW: { 7045 // Only the lower 32 bits of Values and lower 6 bits of shift amount are 7046 // read. 7047 if (SimplifyDemandedLowBitsHelper(0, 32) || 7048 SimplifyDemandedLowBitsHelper(1, 32) || 7049 SimplifyDemandedLowBitsHelper(2, 6)) 7050 return SDValue(N, 0); 7051 break; 7052 } 7053 case RISCVISD::GREV: 7054 case RISCVISD::GORC: { 7055 // Only the lower log2(Bitwidth) bits of the the shift amount are read. 7056 unsigned BitWidth = N->getOperand(1).getValueSizeInBits(); 7057 assert(isPowerOf2_32(BitWidth) && "Unexpected bit width"); 7058 if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth))) 7059 return SDValue(N, 0); 7060 7061 return combineGREVI_GORCI(N, DCI.DAG); 7062 } 7063 case RISCVISD::GREVW: 7064 case RISCVISD::GORCW: { 7065 // Only the lower 32 bits of LHS and lower 5 bits of RHS are read. 7066 if (SimplifyDemandedLowBitsHelper(0, 32) || 7067 SimplifyDemandedLowBitsHelper(1, 5)) 7068 return SDValue(N, 0); 7069 7070 return combineGREVI_GORCI(N, DCI.DAG); 7071 } 7072 case RISCVISD::SHFL: 7073 case RISCVISD::UNSHFL: { 7074 // Only the lower log2(Bitwidth)-1 bits of the the shift amount are read. 7075 unsigned BitWidth = N->getOperand(1).getValueSizeInBits(); 7076 assert(isPowerOf2_32(BitWidth) && "Unexpected bit width"); 7077 if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth) - 1)) 7078 return SDValue(N, 0); 7079 7080 break; 7081 } 7082 case RISCVISD::SHFLW: 7083 case RISCVISD::UNSHFLW: { 7084 // Only the lower 32 bits of LHS and lower 4 bits of RHS are read. 7085 SDValue LHS = N->getOperand(0); 7086 SDValue RHS = N->getOperand(1); 7087 APInt LHSMask = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 32); 7088 APInt RHSMask = APInt::getLowBitsSet(RHS.getValueSizeInBits(), 4); 7089 if (SimplifyDemandedLowBitsHelper(0, 32) || 7090 SimplifyDemandedLowBitsHelper(1, 4)) 7091 return SDValue(N, 0); 7092 7093 break; 7094 } 7095 case RISCVISD::BCOMPRESSW: 7096 case RISCVISD::BDECOMPRESSW: { 7097 // Only the lower 32 bits of LHS and RHS are read. 7098 if (SimplifyDemandedLowBitsHelper(0, 32) || 7099 SimplifyDemandedLowBitsHelper(1, 32)) 7100 return SDValue(N, 0); 7101 7102 break; 7103 } 7104 case RISCVISD::FMV_X_ANYEXTH: 7105 case RISCVISD::FMV_X_ANYEXTW_RV64: { 7106 SDLoc DL(N); 7107 SDValue Op0 = N->getOperand(0); 7108 MVT VT = N->getSimpleValueType(0); 7109 // If the input to FMV_X_ANYEXTW_RV64 is just FMV_W_X_RV64 then the 7110 // conversion is unnecessary and can be replaced with the FMV_W_X_RV64 7111 // operand. Similar for FMV_X_ANYEXTH and FMV_H_X. 7112 if ((N->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64 && 7113 Op0->getOpcode() == RISCVISD::FMV_W_X_RV64) || 7114 (N->getOpcode() == RISCVISD::FMV_X_ANYEXTH && 7115 Op0->getOpcode() == RISCVISD::FMV_H_X)) { 7116 assert(Op0.getOperand(0).getValueType() == VT && 7117 "Unexpected value type!"); 7118 return Op0.getOperand(0); 7119 } 7120 7121 // This is a target-specific version of a DAGCombine performed in 7122 // DAGCombiner::visitBITCAST. It performs the equivalent of: 7123 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) 7124 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) 7125 if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) || 7126 !Op0.getNode()->hasOneUse()) 7127 break; 7128 SDValue NewFMV = DAG.getNode(N->getOpcode(), DL, VT, Op0.getOperand(0)); 7129 unsigned FPBits = N->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64 ? 32 : 16; 7130 APInt SignBit = APInt::getSignMask(FPBits).sextOrSelf(VT.getSizeInBits()); 7131 if (Op0.getOpcode() == ISD::FNEG) 7132 return DAG.getNode(ISD::XOR, DL, VT, NewFMV, 7133 DAG.getConstant(SignBit, DL, VT)); 7134 7135 assert(Op0.getOpcode() == ISD::FABS); 7136 return DAG.getNode(ISD::AND, DL, VT, NewFMV, 7137 DAG.getConstant(~SignBit, DL, VT)); 7138 } 7139 case ISD::ADD: 7140 return performADDCombine(N, DAG, Subtarget); 7141 case ISD::SUB: 7142 return performSUBCombine(N, DAG); 7143 case ISD::AND: 7144 return performANDCombine(N, DAG); 7145 case ISD::OR: 7146 return performORCombine(N, DAG, Subtarget); 7147 case ISD::XOR: 7148 return performXORCombine(N, DAG); 7149 case ISD::ANY_EXTEND: 7150 return performANY_EXTENDCombine(N, DCI, Subtarget); 7151 case ISD::ZERO_EXTEND: 7152 // Fold (zero_extend (fp_to_uint X)) to prevent forming fcvt+zexti32 during 7153 // type legalization. This is safe because fp_to_uint produces poison if 7154 // it overflows. 7155 if (N->getValueType(0) == MVT::i64 && Subtarget.is64Bit() && 7156 N->getOperand(0).getOpcode() == ISD::FP_TO_UINT && 7157 isTypeLegal(N->getOperand(0).getOperand(0).getValueType())) 7158 return DAG.getNode(ISD::FP_TO_UINT, SDLoc(N), MVT::i64, 7159 N->getOperand(0).getOperand(0)); 7160 return SDValue(); 7161 case RISCVISD::SELECT_CC: { 7162 // Transform 7163 SDValue LHS = N->getOperand(0); 7164 SDValue RHS = N->getOperand(1); 7165 SDValue TrueV = N->getOperand(3); 7166 SDValue FalseV = N->getOperand(4); 7167 7168 // If the True and False values are the same, we don't need a select_cc. 7169 if (TrueV == FalseV) 7170 return TrueV; 7171 7172 ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(2))->get(); 7173 if (!ISD::isIntEqualitySetCC(CCVal)) 7174 break; 7175 7176 // Fold (select_cc (setlt X, Y), 0, ne, trueV, falseV) -> 7177 // (select_cc X, Y, lt, trueV, falseV) 7178 // Sometimes the setcc is introduced after select_cc has been formed. 7179 if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) && 7180 LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) { 7181 // If we're looking for eq 0 instead of ne 0, we need to invert the 7182 // condition. 7183 bool Invert = CCVal == ISD::SETEQ; 7184 CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get(); 7185 if (Invert) 7186 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 7187 7188 SDLoc DL(N); 7189 RHS = LHS.getOperand(1); 7190 LHS = LHS.getOperand(0); 7191 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 7192 7193 SDValue TargetCC = DAG.getCondCode(CCVal); 7194 return DAG.getNode(RISCVISD::SELECT_CC, DL, N->getValueType(0), 7195 {LHS, RHS, TargetCC, TrueV, FalseV}); 7196 } 7197 7198 // Fold (select_cc (xor X, Y), 0, eq/ne, trueV, falseV) -> 7199 // (select_cc X, Y, eq/ne, trueV, falseV) 7200 if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS)) 7201 return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), N->getValueType(0), 7202 {LHS.getOperand(0), LHS.getOperand(1), 7203 N->getOperand(2), TrueV, FalseV}); 7204 // (select_cc X, 1, setne, trueV, falseV) -> 7205 // (select_cc X, 0, seteq, trueV, falseV) if we can prove X is 0/1. 7206 // This can occur when legalizing some floating point comparisons. 7207 APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1); 7208 if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) { 7209 SDLoc DL(N); 7210 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 7211 SDValue TargetCC = DAG.getCondCode(CCVal); 7212 RHS = DAG.getConstant(0, DL, LHS.getValueType()); 7213 return DAG.getNode(RISCVISD::SELECT_CC, DL, N->getValueType(0), 7214 {LHS, RHS, TargetCC, TrueV, FalseV}); 7215 } 7216 7217 break; 7218 } 7219 case RISCVISD::BR_CC: { 7220 SDValue LHS = N->getOperand(1); 7221 SDValue RHS = N->getOperand(2); 7222 ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(3))->get(); 7223 if (!ISD::isIntEqualitySetCC(CCVal)) 7224 break; 7225 7226 // Fold (br_cc (setlt X, Y), 0, ne, dest) -> 7227 // (br_cc X, Y, lt, dest) 7228 // Sometimes the setcc is introduced after br_cc has been formed. 7229 if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) && 7230 LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) { 7231 // If we're looking for eq 0 instead of ne 0, we need to invert the 7232 // condition. 7233 bool Invert = CCVal == ISD::SETEQ; 7234 CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get(); 7235 if (Invert) 7236 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 7237 7238 SDLoc DL(N); 7239 RHS = LHS.getOperand(1); 7240 LHS = LHS.getOperand(0); 7241 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 7242 7243 return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0), 7244 N->getOperand(0), LHS, RHS, DAG.getCondCode(CCVal), 7245 N->getOperand(4)); 7246 } 7247 7248 // Fold (br_cc (xor X, Y), 0, eq/ne, dest) -> 7249 // (br_cc X, Y, eq/ne, trueV, falseV) 7250 if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS)) 7251 return DAG.getNode(RISCVISD::BR_CC, SDLoc(N), N->getValueType(0), 7252 N->getOperand(0), LHS.getOperand(0), LHS.getOperand(1), 7253 N->getOperand(3), N->getOperand(4)); 7254 7255 // (br_cc X, 1, setne, br_cc) -> 7256 // (br_cc X, 0, seteq, br_cc) if we can prove X is 0/1. 7257 // This can occur when legalizing some floating point comparisons. 7258 APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1); 7259 if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) { 7260 SDLoc DL(N); 7261 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 7262 SDValue TargetCC = DAG.getCondCode(CCVal); 7263 RHS = DAG.getConstant(0, DL, LHS.getValueType()); 7264 return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0), 7265 N->getOperand(0), LHS, RHS, TargetCC, 7266 N->getOperand(4)); 7267 } 7268 break; 7269 } 7270 case ISD::FCOPYSIGN: { 7271 EVT VT = N->getValueType(0); 7272 if (!VT.isVector()) 7273 break; 7274 // There is a form of VFSGNJ which injects the negated sign of its second 7275 // operand. Try and bubble any FNEG up after the extend/round to produce 7276 // this optimized pattern. Avoid modifying cases where FP_ROUND and 7277 // TRUNC=1. 7278 SDValue In2 = N->getOperand(1); 7279 // Avoid cases where the extend/round has multiple uses, as duplicating 7280 // those is typically more expensive than removing a fneg. 7281 if (!In2.hasOneUse()) 7282 break; 7283 if (In2.getOpcode() != ISD::FP_EXTEND && 7284 (In2.getOpcode() != ISD::FP_ROUND || In2.getConstantOperandVal(1) != 0)) 7285 break; 7286 In2 = In2.getOperand(0); 7287 if (In2.getOpcode() != ISD::FNEG) 7288 break; 7289 SDLoc DL(N); 7290 SDValue NewFPExtRound = DAG.getFPExtendOrRound(In2.getOperand(0), DL, VT); 7291 return DAG.getNode(ISD::FCOPYSIGN, DL, VT, N->getOperand(0), 7292 DAG.getNode(ISD::FNEG, DL, VT, NewFPExtRound)); 7293 } 7294 case ISD::MGATHER: 7295 case ISD::MSCATTER: 7296 case ISD::VP_GATHER: 7297 case ISD::VP_SCATTER: { 7298 if (!DCI.isBeforeLegalize()) 7299 break; 7300 SDValue Index, ScaleOp; 7301 bool IsIndexScaled = false; 7302 bool IsIndexSigned = false; 7303 if (const auto *VPGSN = dyn_cast<VPGatherScatterSDNode>(N)) { 7304 Index = VPGSN->getIndex(); 7305 ScaleOp = VPGSN->getScale(); 7306 IsIndexScaled = VPGSN->isIndexScaled(); 7307 IsIndexSigned = VPGSN->isIndexSigned(); 7308 } else { 7309 const auto *MGSN = cast<MaskedGatherScatterSDNode>(N); 7310 Index = MGSN->getIndex(); 7311 ScaleOp = MGSN->getScale(); 7312 IsIndexScaled = MGSN->isIndexScaled(); 7313 IsIndexSigned = MGSN->isIndexSigned(); 7314 } 7315 EVT IndexVT = Index.getValueType(); 7316 MVT XLenVT = Subtarget.getXLenVT(); 7317 // RISCV indexed loads only support the "unsigned unscaled" addressing 7318 // mode, so anything else must be manually legalized. 7319 bool NeedsIdxLegalization = 7320 IsIndexScaled || 7321 (IsIndexSigned && IndexVT.getVectorElementType().bitsLT(XLenVT)); 7322 if (!NeedsIdxLegalization) 7323 break; 7324 7325 SDLoc DL(N); 7326 7327 // Any index legalization should first promote to XLenVT, so we don't lose 7328 // bits when scaling. This may create an illegal index type so we let 7329 // LLVM's legalization take care of the splitting. 7330 // FIXME: LLVM can't split VP_GATHER or VP_SCATTER yet. 7331 if (IndexVT.getVectorElementType().bitsLT(XLenVT)) { 7332 IndexVT = IndexVT.changeVectorElementType(XLenVT); 7333 Index = DAG.getNode(IsIndexSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, 7334 DL, IndexVT, Index); 7335 } 7336 7337 unsigned Scale = cast<ConstantSDNode>(ScaleOp)->getZExtValue(); 7338 if (IsIndexScaled && Scale != 1) { 7339 // Manually scale the indices by the element size. 7340 // TODO: Sanitize the scale operand here? 7341 // TODO: For VP nodes, should we use VP_SHL here? 7342 assert(isPowerOf2_32(Scale) && "Expecting power-of-two types"); 7343 SDValue SplatScale = DAG.getConstant(Log2_32(Scale), DL, IndexVT); 7344 Index = DAG.getNode(ISD::SHL, DL, IndexVT, Index, SplatScale); 7345 } 7346 7347 ISD::MemIndexType NewIndexTy = ISD::UNSIGNED_UNSCALED; 7348 if (const auto *VPGN = dyn_cast<VPGatherSDNode>(N)) 7349 return DAG.getGatherVP(N->getVTList(), VPGN->getMemoryVT(), DL, 7350 {VPGN->getChain(), VPGN->getBasePtr(), Index, 7351 VPGN->getScale(), VPGN->getMask(), 7352 VPGN->getVectorLength()}, 7353 VPGN->getMemOperand(), NewIndexTy); 7354 if (const auto *VPSN = dyn_cast<VPScatterSDNode>(N)) 7355 return DAG.getScatterVP(N->getVTList(), VPSN->getMemoryVT(), DL, 7356 {VPSN->getChain(), VPSN->getValue(), 7357 VPSN->getBasePtr(), Index, VPSN->getScale(), 7358 VPSN->getMask(), VPSN->getVectorLength()}, 7359 VPSN->getMemOperand(), NewIndexTy); 7360 if (const auto *MGN = dyn_cast<MaskedGatherSDNode>(N)) 7361 return DAG.getMaskedGather( 7362 N->getVTList(), MGN->getMemoryVT(), DL, 7363 {MGN->getChain(), MGN->getPassThru(), MGN->getMask(), 7364 MGN->getBasePtr(), Index, MGN->getScale()}, 7365 MGN->getMemOperand(), NewIndexTy, MGN->getExtensionType()); 7366 const auto *MSN = cast<MaskedScatterSDNode>(N); 7367 return DAG.getMaskedScatter( 7368 N->getVTList(), MSN->getMemoryVT(), DL, 7369 {MSN->getChain(), MSN->getValue(), MSN->getMask(), MSN->getBasePtr(), 7370 Index, MSN->getScale()}, 7371 MSN->getMemOperand(), NewIndexTy, MSN->isTruncatingStore()); 7372 } 7373 case RISCVISD::SRA_VL: 7374 case RISCVISD::SRL_VL: 7375 case RISCVISD::SHL_VL: { 7376 SDValue ShAmt = N->getOperand(1); 7377 if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) { 7378 // We don't need the upper 32 bits of a 64-bit element for a shift amount. 7379 SDLoc DL(N); 7380 SDValue VL = N->getOperand(3); 7381 EVT VT = N->getValueType(0); 7382 ShAmt = 7383 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, ShAmt.getOperand(0), VL); 7384 return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt, 7385 N->getOperand(2), N->getOperand(3)); 7386 } 7387 break; 7388 } 7389 case ISD::SRA: 7390 case ISD::SRL: 7391 case ISD::SHL: { 7392 SDValue ShAmt = N->getOperand(1); 7393 if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) { 7394 // We don't need the upper 32 bits of a 64-bit element for a shift amount. 7395 SDLoc DL(N); 7396 EVT VT = N->getValueType(0); 7397 ShAmt = 7398 DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VT, ShAmt.getOperand(0)); 7399 return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt); 7400 } 7401 break; 7402 } 7403 case RISCVISD::MUL_VL: { 7404 SDValue Op0 = N->getOperand(0); 7405 SDValue Op1 = N->getOperand(1); 7406 if (SDValue V = combineMUL_VLToVWMUL(N, Op0, Op1, DAG)) 7407 return V; 7408 if (SDValue V = combineMUL_VLToVWMUL(N, Op1, Op0, DAG)) 7409 return V; 7410 return SDValue(); 7411 } 7412 case ISD::STORE: { 7413 auto *Store = cast<StoreSDNode>(N); 7414 SDValue Val = Store->getValue(); 7415 // Combine store of vmv.x.s to vse with VL of 1. 7416 // FIXME: Support FP. 7417 if (Val.getOpcode() == RISCVISD::VMV_X_S) { 7418 SDValue Src = Val.getOperand(0); 7419 EVT VecVT = Src.getValueType(); 7420 EVT MemVT = Store->getMemoryVT(); 7421 // The memory VT and the element type must match. 7422 if (VecVT.getVectorElementType() == MemVT) { 7423 SDLoc DL(N); 7424 MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount()); 7425 return DAG.getStoreVP(Store->getChain(), DL, Src, Store->getBasePtr(), 7426 DAG.getConstant(1, DL, MaskVT), 7427 DAG.getConstant(1, DL, Subtarget.getXLenVT()), 7428 Store->getPointerInfo(), 7429 Store->getOriginalAlign(), 7430 Store->getMemOperand()->getFlags()); 7431 } 7432 } 7433 7434 break; 7435 } 7436 } 7437 7438 return SDValue(); 7439 } 7440 7441 bool RISCVTargetLowering::isDesirableToCommuteWithShift( 7442 const SDNode *N, CombineLevel Level) const { 7443 // The following folds are only desirable if `(OP _, c1 << c2)` can be 7444 // materialised in fewer instructions than `(OP _, c1)`: 7445 // 7446 // (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2) 7447 // (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2) 7448 SDValue N0 = N->getOperand(0); 7449 EVT Ty = N0.getValueType(); 7450 if (Ty.isScalarInteger() && 7451 (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::OR)) { 7452 auto *C1 = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 7453 auto *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1)); 7454 if (C1 && C2) { 7455 const APInt &C1Int = C1->getAPIntValue(); 7456 APInt ShiftedC1Int = C1Int << C2->getAPIntValue(); 7457 7458 // We can materialise `c1 << c2` into an add immediate, so it's "free", 7459 // and the combine should happen, to potentially allow further combines 7460 // later. 7461 if (ShiftedC1Int.getMinSignedBits() <= 64 && 7462 isLegalAddImmediate(ShiftedC1Int.getSExtValue())) 7463 return true; 7464 7465 // We can materialise `c1` in an add immediate, so it's "free", and the 7466 // combine should be prevented. 7467 if (C1Int.getMinSignedBits() <= 64 && 7468 isLegalAddImmediate(C1Int.getSExtValue())) 7469 return false; 7470 7471 // Neither constant will fit into an immediate, so find materialisation 7472 // costs. 7473 int C1Cost = RISCVMatInt::getIntMatCost(C1Int, Ty.getSizeInBits(), 7474 Subtarget.getFeatureBits(), 7475 /*CompressionCost*/true); 7476 int ShiftedC1Cost = RISCVMatInt::getIntMatCost( 7477 ShiftedC1Int, Ty.getSizeInBits(), Subtarget.getFeatureBits(), 7478 /*CompressionCost*/true); 7479 7480 // Materialising `c1` is cheaper than materialising `c1 << c2`, so the 7481 // combine should be prevented. 7482 if (C1Cost < ShiftedC1Cost) 7483 return false; 7484 } 7485 } 7486 return true; 7487 } 7488 7489 bool RISCVTargetLowering::targetShrinkDemandedConstant( 7490 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 7491 TargetLoweringOpt &TLO) const { 7492 // Delay this optimization as late as possible. 7493 if (!TLO.LegalOps) 7494 return false; 7495 7496 EVT VT = Op.getValueType(); 7497 if (VT.isVector()) 7498 return false; 7499 7500 // Only handle AND for now. 7501 if (Op.getOpcode() != ISD::AND) 7502 return false; 7503 7504 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 7505 if (!C) 7506 return false; 7507 7508 const APInt &Mask = C->getAPIntValue(); 7509 7510 // Clear all non-demanded bits initially. 7511 APInt ShrunkMask = Mask & DemandedBits; 7512 7513 // Try to make a smaller immediate by setting undemanded bits. 7514 7515 APInt ExpandedMask = Mask | ~DemandedBits; 7516 7517 auto IsLegalMask = [ShrunkMask, ExpandedMask](const APInt &Mask) -> bool { 7518 return ShrunkMask.isSubsetOf(Mask) && Mask.isSubsetOf(ExpandedMask); 7519 }; 7520 auto UseMask = [Mask, Op, VT, &TLO](const APInt &NewMask) -> bool { 7521 if (NewMask == Mask) 7522 return true; 7523 SDLoc DL(Op); 7524 SDValue NewC = TLO.DAG.getConstant(NewMask, DL, VT); 7525 SDValue NewOp = TLO.DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), NewC); 7526 return TLO.CombineTo(Op, NewOp); 7527 }; 7528 7529 // If the shrunk mask fits in sign extended 12 bits, let the target 7530 // independent code apply it. 7531 if (ShrunkMask.isSignedIntN(12)) 7532 return false; 7533 7534 // Preserve (and X, 0xffff) when zext.h is supported. 7535 if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp()) { 7536 APInt NewMask = APInt(Mask.getBitWidth(), 0xffff); 7537 if (IsLegalMask(NewMask)) 7538 return UseMask(NewMask); 7539 } 7540 7541 // Try to preserve (and X, 0xffffffff), the (zext_inreg X, i32) pattern. 7542 if (VT == MVT::i64) { 7543 APInt NewMask = APInt(64, 0xffffffff); 7544 if (IsLegalMask(NewMask)) 7545 return UseMask(NewMask); 7546 } 7547 7548 // For the remaining optimizations, we need to be able to make a negative 7549 // number through a combination of mask and undemanded bits. 7550 if (!ExpandedMask.isNegative()) 7551 return false; 7552 7553 // What is the fewest number of bits we need to represent the negative number. 7554 unsigned MinSignedBits = ExpandedMask.getMinSignedBits(); 7555 7556 // Try to make a 12 bit negative immediate. If that fails try to make a 32 7557 // bit negative immediate unless the shrunk immediate already fits in 32 bits. 7558 APInt NewMask = ShrunkMask; 7559 if (MinSignedBits <= 12) 7560 NewMask.setBitsFrom(11); 7561 else if (MinSignedBits <= 32 && !ShrunkMask.isSignedIntN(32)) 7562 NewMask.setBitsFrom(31); 7563 else 7564 return false; 7565 7566 // Check that our new mask is a subset of the demanded mask. 7567 assert(IsLegalMask(NewMask)); 7568 return UseMask(NewMask); 7569 } 7570 7571 static void computeGREV(APInt &Src, unsigned ShAmt) { 7572 ShAmt &= Src.getBitWidth() - 1; 7573 uint64_t x = Src.getZExtValue(); 7574 if (ShAmt & 1) 7575 x = ((x & 0x5555555555555555LL) << 1) | ((x & 0xAAAAAAAAAAAAAAAALL) >> 1); 7576 if (ShAmt & 2) 7577 x = ((x & 0x3333333333333333LL) << 2) | ((x & 0xCCCCCCCCCCCCCCCCLL) >> 2); 7578 if (ShAmt & 4) 7579 x = ((x & 0x0F0F0F0F0F0F0F0FLL) << 4) | ((x & 0xF0F0F0F0F0F0F0F0LL) >> 4); 7580 if (ShAmt & 8) 7581 x = ((x & 0x00FF00FF00FF00FFLL) << 8) | ((x & 0xFF00FF00FF00FF00LL) >> 8); 7582 if (ShAmt & 16) 7583 x = ((x & 0x0000FFFF0000FFFFLL) << 16) | ((x & 0xFFFF0000FFFF0000LL) >> 16); 7584 if (ShAmt & 32) 7585 x = ((x & 0x00000000FFFFFFFFLL) << 32) | ((x & 0xFFFFFFFF00000000LL) >> 32); 7586 Src = x; 7587 } 7588 7589 void RISCVTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 7590 KnownBits &Known, 7591 const APInt &DemandedElts, 7592 const SelectionDAG &DAG, 7593 unsigned Depth) const { 7594 unsigned BitWidth = Known.getBitWidth(); 7595 unsigned Opc = Op.getOpcode(); 7596 assert((Opc >= ISD::BUILTIN_OP_END || 7597 Opc == ISD::INTRINSIC_WO_CHAIN || 7598 Opc == ISD::INTRINSIC_W_CHAIN || 7599 Opc == ISD::INTRINSIC_VOID) && 7600 "Should use MaskedValueIsZero if you don't know whether Op" 7601 " is a target node!"); 7602 7603 Known.resetAll(); 7604 switch (Opc) { 7605 default: break; 7606 case RISCVISD::SELECT_CC: { 7607 Known = DAG.computeKnownBits(Op.getOperand(4), Depth + 1); 7608 // If we don't know any bits, early out. 7609 if (Known.isUnknown()) 7610 break; 7611 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(3), Depth + 1); 7612 7613 // Only known if known in both the LHS and RHS. 7614 Known = KnownBits::commonBits(Known, Known2); 7615 break; 7616 } 7617 case RISCVISD::REMUW: { 7618 KnownBits Known2; 7619 Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 7620 Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 7621 // We only care about the lower 32 bits. 7622 Known = KnownBits::urem(Known.trunc(32), Known2.trunc(32)); 7623 // Restore the original width by sign extending. 7624 Known = Known.sext(BitWidth); 7625 break; 7626 } 7627 case RISCVISD::DIVUW: { 7628 KnownBits Known2; 7629 Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 7630 Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 7631 // We only care about the lower 32 bits. 7632 Known = KnownBits::udiv(Known.trunc(32), Known2.trunc(32)); 7633 // Restore the original width by sign extending. 7634 Known = Known.sext(BitWidth); 7635 break; 7636 } 7637 case RISCVISD::CTZW: { 7638 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 7639 unsigned PossibleTZ = Known2.trunc(32).countMaxTrailingZeros(); 7640 unsigned LowBits = Log2_32(PossibleTZ) + 1; 7641 Known.Zero.setBitsFrom(LowBits); 7642 break; 7643 } 7644 case RISCVISD::CLZW: { 7645 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 7646 unsigned PossibleLZ = Known2.trunc(32).countMaxLeadingZeros(); 7647 unsigned LowBits = Log2_32(PossibleLZ) + 1; 7648 Known.Zero.setBitsFrom(LowBits); 7649 break; 7650 } 7651 case RISCVISD::GREV: 7652 case RISCVISD::GREVW: { 7653 if (auto *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 7654 Known = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 7655 if (Opc == RISCVISD::GREVW) 7656 Known = Known.trunc(32); 7657 unsigned ShAmt = C->getZExtValue(); 7658 computeGREV(Known.Zero, ShAmt); 7659 computeGREV(Known.One, ShAmt); 7660 if (Opc == RISCVISD::GREVW) 7661 Known = Known.sext(BitWidth); 7662 } 7663 break; 7664 } 7665 case RISCVISD::READ_VLENB: 7666 // We assume VLENB is at least 16 bytes. 7667 Known.Zero.setLowBits(4); 7668 // We assume VLENB is no more than 65536 / 8 bytes. 7669 Known.Zero.setBitsFrom(14); 7670 break; 7671 case ISD::INTRINSIC_W_CHAIN: { 7672 unsigned IntNo = Op.getConstantOperandVal(1); 7673 switch (IntNo) { 7674 default: 7675 // We can't do anything for most intrinsics. 7676 break; 7677 case Intrinsic::riscv_vsetvli: 7678 case Intrinsic::riscv_vsetvlimax: 7679 // Assume that VL output is positive and would fit in an int32_t. 7680 // TODO: VLEN might be capped at 16 bits in a future V spec update. 7681 if (BitWidth >= 32) 7682 Known.Zero.setBitsFrom(31); 7683 break; 7684 } 7685 break; 7686 } 7687 } 7688 } 7689 7690 unsigned RISCVTargetLowering::ComputeNumSignBitsForTargetNode( 7691 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 7692 unsigned Depth) const { 7693 switch (Op.getOpcode()) { 7694 default: 7695 break; 7696 case RISCVISD::SELECT_CC: { 7697 unsigned Tmp = DAG.ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth + 1); 7698 if (Tmp == 1) return 1; // Early out. 7699 unsigned Tmp2 = DAG.ComputeNumSignBits(Op.getOperand(4), DemandedElts, Depth + 1); 7700 return std::min(Tmp, Tmp2); 7701 } 7702 case RISCVISD::SLLW: 7703 case RISCVISD::SRAW: 7704 case RISCVISD::SRLW: 7705 case RISCVISD::DIVW: 7706 case RISCVISD::DIVUW: 7707 case RISCVISD::REMUW: 7708 case RISCVISD::ROLW: 7709 case RISCVISD::RORW: 7710 case RISCVISD::GREVW: 7711 case RISCVISD::GORCW: 7712 case RISCVISD::FSLW: 7713 case RISCVISD::FSRW: 7714 case RISCVISD::SHFLW: 7715 case RISCVISD::UNSHFLW: 7716 case RISCVISD::BCOMPRESSW: 7717 case RISCVISD::BDECOMPRESSW: 7718 case RISCVISD::FCVT_W_RTZ_RV64: 7719 case RISCVISD::FCVT_WU_RTZ_RV64: 7720 // TODO: As the result is sign-extended, this is conservatively correct. A 7721 // more precise answer could be calculated for SRAW depending on known 7722 // bits in the shift amount. 7723 return 33; 7724 case RISCVISD::SHFL: 7725 case RISCVISD::UNSHFL: { 7726 // There is no SHFLIW, but a i64 SHFLI with bit 4 of the control word 7727 // cleared doesn't affect bit 31. The upper 32 bits will be shuffled, but 7728 // will stay within the upper 32 bits. If there were more than 32 sign bits 7729 // before there will be at least 33 sign bits after. 7730 if (Op.getValueType() == MVT::i64 && 7731 isa<ConstantSDNode>(Op.getOperand(1)) && 7732 (Op.getConstantOperandVal(1) & 0x10) == 0) { 7733 unsigned Tmp = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1); 7734 if (Tmp > 32) 7735 return 33; 7736 } 7737 break; 7738 } 7739 case RISCVISD::VMV_X_S: 7740 // The number of sign bits of the scalar result is computed by obtaining the 7741 // element type of the input vector operand, subtracting its width from the 7742 // XLEN, and then adding one (sign bit within the element type). If the 7743 // element type is wider than XLen, the least-significant XLEN bits are 7744 // taken. 7745 if (Op.getOperand(0).getScalarValueSizeInBits() > Subtarget.getXLen()) 7746 return 1; 7747 return Subtarget.getXLen() - Op.getOperand(0).getScalarValueSizeInBits() + 1; 7748 } 7749 7750 return 1; 7751 } 7752 7753 static MachineBasicBlock *emitReadCycleWidePseudo(MachineInstr &MI, 7754 MachineBasicBlock *BB) { 7755 assert(MI.getOpcode() == RISCV::ReadCycleWide && "Unexpected instruction"); 7756 7757 // To read the 64-bit cycle CSR on a 32-bit target, we read the two halves. 7758 // Should the count have wrapped while it was being read, we need to try 7759 // again. 7760 // ... 7761 // read: 7762 // rdcycleh x3 # load high word of cycle 7763 // rdcycle x2 # load low word of cycle 7764 // rdcycleh x4 # load high word of cycle 7765 // bne x3, x4, read # check if high word reads match, otherwise try again 7766 // ... 7767 7768 MachineFunction &MF = *BB->getParent(); 7769 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 7770 MachineFunction::iterator It = ++BB->getIterator(); 7771 7772 MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB); 7773 MF.insert(It, LoopMBB); 7774 7775 MachineBasicBlock *DoneMBB = MF.CreateMachineBasicBlock(LLVM_BB); 7776 MF.insert(It, DoneMBB); 7777 7778 // Transfer the remainder of BB and its successor edges to DoneMBB. 7779 DoneMBB->splice(DoneMBB->begin(), BB, 7780 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 7781 DoneMBB->transferSuccessorsAndUpdatePHIs(BB); 7782 7783 BB->addSuccessor(LoopMBB); 7784 7785 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 7786 Register ReadAgainReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 7787 Register LoReg = MI.getOperand(0).getReg(); 7788 Register HiReg = MI.getOperand(1).getReg(); 7789 DebugLoc DL = MI.getDebugLoc(); 7790 7791 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 7792 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), HiReg) 7793 .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding) 7794 .addReg(RISCV::X0); 7795 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), LoReg) 7796 .addImm(RISCVSysReg::lookupSysRegByName("CYCLE")->Encoding) 7797 .addReg(RISCV::X0); 7798 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), ReadAgainReg) 7799 .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding) 7800 .addReg(RISCV::X0); 7801 7802 BuildMI(LoopMBB, DL, TII->get(RISCV::BNE)) 7803 .addReg(HiReg) 7804 .addReg(ReadAgainReg) 7805 .addMBB(LoopMBB); 7806 7807 LoopMBB->addSuccessor(LoopMBB); 7808 LoopMBB->addSuccessor(DoneMBB); 7809 7810 MI.eraseFromParent(); 7811 7812 return DoneMBB; 7813 } 7814 7815 static MachineBasicBlock *emitSplitF64Pseudo(MachineInstr &MI, 7816 MachineBasicBlock *BB) { 7817 assert(MI.getOpcode() == RISCV::SplitF64Pseudo && "Unexpected instruction"); 7818 7819 MachineFunction &MF = *BB->getParent(); 7820 DebugLoc DL = MI.getDebugLoc(); 7821 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 7822 const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo(); 7823 Register LoReg = MI.getOperand(0).getReg(); 7824 Register HiReg = MI.getOperand(1).getReg(); 7825 Register SrcReg = MI.getOperand(2).getReg(); 7826 const TargetRegisterClass *SrcRC = &RISCV::FPR64RegClass; 7827 int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF); 7828 7829 TII.storeRegToStackSlot(*BB, MI, SrcReg, MI.getOperand(2).isKill(), FI, SrcRC, 7830 RI); 7831 MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI); 7832 MachineMemOperand *MMOLo = 7833 MF.getMachineMemOperand(MPI, MachineMemOperand::MOLoad, 4, Align(8)); 7834 MachineMemOperand *MMOHi = MF.getMachineMemOperand( 7835 MPI.getWithOffset(4), MachineMemOperand::MOLoad, 4, Align(8)); 7836 BuildMI(*BB, MI, DL, TII.get(RISCV::LW), LoReg) 7837 .addFrameIndex(FI) 7838 .addImm(0) 7839 .addMemOperand(MMOLo); 7840 BuildMI(*BB, MI, DL, TII.get(RISCV::LW), HiReg) 7841 .addFrameIndex(FI) 7842 .addImm(4) 7843 .addMemOperand(MMOHi); 7844 MI.eraseFromParent(); // The pseudo instruction is gone now. 7845 return BB; 7846 } 7847 7848 static MachineBasicBlock *emitBuildPairF64Pseudo(MachineInstr &MI, 7849 MachineBasicBlock *BB) { 7850 assert(MI.getOpcode() == RISCV::BuildPairF64Pseudo && 7851 "Unexpected instruction"); 7852 7853 MachineFunction &MF = *BB->getParent(); 7854 DebugLoc DL = MI.getDebugLoc(); 7855 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 7856 const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo(); 7857 Register DstReg = MI.getOperand(0).getReg(); 7858 Register LoReg = MI.getOperand(1).getReg(); 7859 Register HiReg = MI.getOperand(2).getReg(); 7860 const TargetRegisterClass *DstRC = &RISCV::FPR64RegClass; 7861 int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF); 7862 7863 MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI); 7864 MachineMemOperand *MMOLo = 7865 MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Align(8)); 7866 MachineMemOperand *MMOHi = MF.getMachineMemOperand( 7867 MPI.getWithOffset(4), MachineMemOperand::MOStore, 4, Align(8)); 7868 BuildMI(*BB, MI, DL, TII.get(RISCV::SW)) 7869 .addReg(LoReg, getKillRegState(MI.getOperand(1).isKill())) 7870 .addFrameIndex(FI) 7871 .addImm(0) 7872 .addMemOperand(MMOLo); 7873 BuildMI(*BB, MI, DL, TII.get(RISCV::SW)) 7874 .addReg(HiReg, getKillRegState(MI.getOperand(2).isKill())) 7875 .addFrameIndex(FI) 7876 .addImm(4) 7877 .addMemOperand(MMOHi); 7878 TII.loadRegFromStackSlot(*BB, MI, DstReg, FI, DstRC, RI); 7879 MI.eraseFromParent(); // The pseudo instruction is gone now. 7880 return BB; 7881 } 7882 7883 static bool isSelectPseudo(MachineInstr &MI) { 7884 switch (MI.getOpcode()) { 7885 default: 7886 return false; 7887 case RISCV::Select_GPR_Using_CC_GPR: 7888 case RISCV::Select_FPR16_Using_CC_GPR: 7889 case RISCV::Select_FPR32_Using_CC_GPR: 7890 case RISCV::Select_FPR64_Using_CC_GPR: 7891 return true; 7892 } 7893 } 7894 7895 static MachineBasicBlock *emitSelectPseudo(MachineInstr &MI, 7896 MachineBasicBlock *BB, 7897 const RISCVSubtarget &Subtarget) { 7898 // To "insert" Select_* instructions, we actually have to insert the triangle 7899 // control-flow pattern. The incoming instructions know the destination vreg 7900 // to set, the condition code register to branch on, the true/false values to 7901 // select between, and the condcode to use to select the appropriate branch. 7902 // 7903 // We produce the following control flow: 7904 // HeadMBB 7905 // | \ 7906 // | IfFalseMBB 7907 // | / 7908 // TailMBB 7909 // 7910 // When we find a sequence of selects we attempt to optimize their emission 7911 // by sharing the control flow. Currently we only handle cases where we have 7912 // multiple selects with the exact same condition (same LHS, RHS and CC). 7913 // The selects may be interleaved with other instructions if the other 7914 // instructions meet some requirements we deem safe: 7915 // - They are debug instructions. Otherwise, 7916 // - They do not have side-effects, do not access memory and their inputs do 7917 // not depend on the results of the select pseudo-instructions. 7918 // The TrueV/FalseV operands of the selects cannot depend on the result of 7919 // previous selects in the sequence. 7920 // These conditions could be further relaxed. See the X86 target for a 7921 // related approach and more information. 7922 Register LHS = MI.getOperand(1).getReg(); 7923 Register RHS = MI.getOperand(2).getReg(); 7924 auto CC = static_cast<RISCVCC::CondCode>(MI.getOperand(3).getImm()); 7925 7926 SmallVector<MachineInstr *, 4> SelectDebugValues; 7927 SmallSet<Register, 4> SelectDests; 7928 SelectDests.insert(MI.getOperand(0).getReg()); 7929 7930 MachineInstr *LastSelectPseudo = &MI; 7931 7932 for (auto E = BB->end(), SequenceMBBI = MachineBasicBlock::iterator(MI); 7933 SequenceMBBI != E; ++SequenceMBBI) { 7934 if (SequenceMBBI->isDebugInstr()) 7935 continue; 7936 else if (isSelectPseudo(*SequenceMBBI)) { 7937 if (SequenceMBBI->getOperand(1).getReg() != LHS || 7938 SequenceMBBI->getOperand(2).getReg() != RHS || 7939 SequenceMBBI->getOperand(3).getImm() != CC || 7940 SelectDests.count(SequenceMBBI->getOperand(4).getReg()) || 7941 SelectDests.count(SequenceMBBI->getOperand(5).getReg())) 7942 break; 7943 LastSelectPseudo = &*SequenceMBBI; 7944 SequenceMBBI->collectDebugValues(SelectDebugValues); 7945 SelectDests.insert(SequenceMBBI->getOperand(0).getReg()); 7946 } else { 7947 if (SequenceMBBI->hasUnmodeledSideEffects() || 7948 SequenceMBBI->mayLoadOrStore()) 7949 break; 7950 if (llvm::any_of(SequenceMBBI->operands(), [&](MachineOperand &MO) { 7951 return MO.isReg() && MO.isUse() && SelectDests.count(MO.getReg()); 7952 })) 7953 break; 7954 } 7955 } 7956 7957 const RISCVInstrInfo &TII = *Subtarget.getInstrInfo(); 7958 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 7959 DebugLoc DL = MI.getDebugLoc(); 7960 MachineFunction::iterator I = ++BB->getIterator(); 7961 7962 MachineBasicBlock *HeadMBB = BB; 7963 MachineFunction *F = BB->getParent(); 7964 MachineBasicBlock *TailMBB = F->CreateMachineBasicBlock(LLVM_BB); 7965 MachineBasicBlock *IfFalseMBB = F->CreateMachineBasicBlock(LLVM_BB); 7966 7967 F->insert(I, IfFalseMBB); 7968 F->insert(I, TailMBB); 7969 7970 // Transfer debug instructions associated with the selects to TailMBB. 7971 for (MachineInstr *DebugInstr : SelectDebugValues) { 7972 TailMBB->push_back(DebugInstr->removeFromParent()); 7973 } 7974 7975 // Move all instructions after the sequence to TailMBB. 7976 TailMBB->splice(TailMBB->end(), HeadMBB, 7977 std::next(LastSelectPseudo->getIterator()), HeadMBB->end()); 7978 // Update machine-CFG edges by transferring all successors of the current 7979 // block to the new block which will contain the Phi nodes for the selects. 7980 TailMBB->transferSuccessorsAndUpdatePHIs(HeadMBB); 7981 // Set the successors for HeadMBB. 7982 HeadMBB->addSuccessor(IfFalseMBB); 7983 HeadMBB->addSuccessor(TailMBB); 7984 7985 // Insert appropriate branch. 7986 BuildMI(HeadMBB, DL, TII.getBrCond(CC)) 7987 .addReg(LHS) 7988 .addReg(RHS) 7989 .addMBB(TailMBB); 7990 7991 // IfFalseMBB just falls through to TailMBB. 7992 IfFalseMBB->addSuccessor(TailMBB); 7993 7994 // Create PHIs for all of the select pseudo-instructions. 7995 auto SelectMBBI = MI.getIterator(); 7996 auto SelectEnd = std::next(LastSelectPseudo->getIterator()); 7997 auto InsertionPoint = TailMBB->begin(); 7998 while (SelectMBBI != SelectEnd) { 7999 auto Next = std::next(SelectMBBI); 8000 if (isSelectPseudo(*SelectMBBI)) { 8001 // %Result = phi [ %TrueValue, HeadMBB ], [ %FalseValue, IfFalseMBB ] 8002 BuildMI(*TailMBB, InsertionPoint, SelectMBBI->getDebugLoc(), 8003 TII.get(RISCV::PHI), SelectMBBI->getOperand(0).getReg()) 8004 .addReg(SelectMBBI->getOperand(4).getReg()) 8005 .addMBB(HeadMBB) 8006 .addReg(SelectMBBI->getOperand(5).getReg()) 8007 .addMBB(IfFalseMBB); 8008 SelectMBBI->eraseFromParent(); 8009 } 8010 SelectMBBI = Next; 8011 } 8012 8013 F->getProperties().reset(MachineFunctionProperties::Property::NoPHIs); 8014 return TailMBB; 8015 } 8016 8017 MachineBasicBlock * 8018 RISCVTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 8019 MachineBasicBlock *BB) const { 8020 switch (MI.getOpcode()) { 8021 default: 8022 llvm_unreachable("Unexpected instr type to insert"); 8023 case RISCV::ReadCycleWide: 8024 assert(!Subtarget.is64Bit() && 8025 "ReadCycleWrite is only to be used on riscv32"); 8026 return emitReadCycleWidePseudo(MI, BB); 8027 case RISCV::Select_GPR_Using_CC_GPR: 8028 case RISCV::Select_FPR16_Using_CC_GPR: 8029 case RISCV::Select_FPR32_Using_CC_GPR: 8030 case RISCV::Select_FPR64_Using_CC_GPR: 8031 return emitSelectPseudo(MI, BB, Subtarget); 8032 case RISCV::BuildPairF64Pseudo: 8033 return emitBuildPairF64Pseudo(MI, BB); 8034 case RISCV::SplitF64Pseudo: 8035 return emitSplitF64Pseudo(MI, BB); 8036 } 8037 } 8038 8039 void RISCVTargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI, 8040 SDNode *Node) const { 8041 // Add FRM dependency to any instructions with dynamic rounding mode. 8042 unsigned Opc = MI.getOpcode(); 8043 auto Idx = RISCV::getNamedOperandIdx(Opc, RISCV::OpName::frm); 8044 if (Idx < 0) 8045 return; 8046 if (MI.getOperand(Idx).getImm() != RISCVFPRndMode::DYN) 8047 return; 8048 // If the instruction already reads FRM, don't add another read. 8049 if (MI.readsRegister(RISCV::FRM)) 8050 return; 8051 MI.addOperand( 8052 MachineOperand::CreateReg(RISCV::FRM, /*isDef*/ false, /*isImp*/ true)); 8053 } 8054 8055 // Calling Convention Implementation. 8056 // The expectations for frontend ABI lowering vary from target to target. 8057 // Ideally, an LLVM frontend would be able to avoid worrying about many ABI 8058 // details, but this is a longer term goal. For now, we simply try to keep the 8059 // role of the frontend as simple and well-defined as possible. The rules can 8060 // be summarised as: 8061 // * Never split up large scalar arguments. We handle them here. 8062 // * If a hardfloat calling convention is being used, and the struct may be 8063 // passed in a pair of registers (fp+fp, int+fp), and both registers are 8064 // available, then pass as two separate arguments. If either the GPRs or FPRs 8065 // are exhausted, then pass according to the rule below. 8066 // * If a struct could never be passed in registers or directly in a stack 8067 // slot (as it is larger than 2*XLEN and the floating point rules don't 8068 // apply), then pass it using a pointer with the byval attribute. 8069 // * If a struct is less than 2*XLEN, then coerce to either a two-element 8070 // word-sized array or a 2*XLEN scalar (depending on alignment). 8071 // * The frontend can determine whether a struct is returned by reference or 8072 // not based on its size and fields. If it will be returned by reference, the 8073 // frontend must modify the prototype so a pointer with the sret annotation is 8074 // passed as the first argument. This is not necessary for large scalar 8075 // returns. 8076 // * Struct return values and varargs should be coerced to structs containing 8077 // register-size fields in the same situations they would be for fixed 8078 // arguments. 8079 8080 static const MCPhysReg ArgGPRs[] = { 8081 RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, 8082 RISCV::X14, RISCV::X15, RISCV::X16, RISCV::X17 8083 }; 8084 static const MCPhysReg ArgFPR16s[] = { 8085 RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, 8086 RISCV::F14_H, RISCV::F15_H, RISCV::F16_H, RISCV::F17_H 8087 }; 8088 static const MCPhysReg ArgFPR32s[] = { 8089 RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, 8090 RISCV::F14_F, RISCV::F15_F, RISCV::F16_F, RISCV::F17_F 8091 }; 8092 static const MCPhysReg ArgFPR64s[] = { 8093 RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, 8094 RISCV::F14_D, RISCV::F15_D, RISCV::F16_D, RISCV::F17_D 8095 }; 8096 // This is an interim calling convention and it may be changed in the future. 8097 static const MCPhysReg ArgVRs[] = { 8098 RISCV::V8, RISCV::V9, RISCV::V10, RISCV::V11, RISCV::V12, RISCV::V13, 8099 RISCV::V14, RISCV::V15, RISCV::V16, RISCV::V17, RISCV::V18, RISCV::V19, 8100 RISCV::V20, RISCV::V21, RISCV::V22, RISCV::V23}; 8101 static const MCPhysReg ArgVRM2s[] = {RISCV::V8M2, RISCV::V10M2, RISCV::V12M2, 8102 RISCV::V14M2, RISCV::V16M2, RISCV::V18M2, 8103 RISCV::V20M2, RISCV::V22M2}; 8104 static const MCPhysReg ArgVRM4s[] = {RISCV::V8M4, RISCV::V12M4, RISCV::V16M4, 8105 RISCV::V20M4}; 8106 static const MCPhysReg ArgVRM8s[] = {RISCV::V8M8, RISCV::V16M8}; 8107 8108 // Pass a 2*XLEN argument that has been split into two XLEN values through 8109 // registers or the stack as necessary. 8110 static bool CC_RISCVAssign2XLen(unsigned XLen, CCState &State, CCValAssign VA1, 8111 ISD::ArgFlagsTy ArgFlags1, unsigned ValNo2, 8112 MVT ValVT2, MVT LocVT2, 8113 ISD::ArgFlagsTy ArgFlags2) { 8114 unsigned XLenInBytes = XLen / 8; 8115 if (Register Reg = State.AllocateReg(ArgGPRs)) { 8116 // At least one half can be passed via register. 8117 State.addLoc(CCValAssign::getReg(VA1.getValNo(), VA1.getValVT(), Reg, 8118 VA1.getLocVT(), CCValAssign::Full)); 8119 } else { 8120 // Both halves must be passed on the stack, with proper alignment. 8121 Align StackAlign = 8122 std::max(Align(XLenInBytes), ArgFlags1.getNonZeroOrigAlign()); 8123 State.addLoc( 8124 CCValAssign::getMem(VA1.getValNo(), VA1.getValVT(), 8125 State.AllocateStack(XLenInBytes, StackAlign), 8126 VA1.getLocVT(), CCValAssign::Full)); 8127 State.addLoc(CCValAssign::getMem( 8128 ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)), 8129 LocVT2, CCValAssign::Full)); 8130 return false; 8131 } 8132 8133 if (Register Reg = State.AllocateReg(ArgGPRs)) { 8134 // The second half can also be passed via register. 8135 State.addLoc( 8136 CCValAssign::getReg(ValNo2, ValVT2, Reg, LocVT2, CCValAssign::Full)); 8137 } else { 8138 // The second half is passed via the stack, without additional alignment. 8139 State.addLoc(CCValAssign::getMem( 8140 ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)), 8141 LocVT2, CCValAssign::Full)); 8142 } 8143 8144 return false; 8145 } 8146 8147 static unsigned allocateRVVReg(MVT ValVT, unsigned ValNo, 8148 Optional<unsigned> FirstMaskArgument, 8149 CCState &State, const RISCVTargetLowering &TLI) { 8150 const TargetRegisterClass *RC = TLI.getRegClassFor(ValVT); 8151 if (RC == &RISCV::VRRegClass) { 8152 // Assign the first mask argument to V0. 8153 // This is an interim calling convention and it may be changed in the 8154 // future. 8155 if (FirstMaskArgument.hasValue() && ValNo == FirstMaskArgument.getValue()) 8156 return State.AllocateReg(RISCV::V0); 8157 return State.AllocateReg(ArgVRs); 8158 } 8159 if (RC == &RISCV::VRM2RegClass) 8160 return State.AllocateReg(ArgVRM2s); 8161 if (RC == &RISCV::VRM4RegClass) 8162 return State.AllocateReg(ArgVRM4s); 8163 if (RC == &RISCV::VRM8RegClass) 8164 return State.AllocateReg(ArgVRM8s); 8165 llvm_unreachable("Unhandled register class for ValueType"); 8166 } 8167 8168 // Implements the RISC-V calling convention. Returns true upon failure. 8169 static bool CC_RISCV(const DataLayout &DL, RISCVABI::ABI ABI, unsigned ValNo, 8170 MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, 8171 ISD::ArgFlagsTy ArgFlags, CCState &State, bool IsFixed, 8172 bool IsRet, Type *OrigTy, const RISCVTargetLowering &TLI, 8173 Optional<unsigned> FirstMaskArgument) { 8174 unsigned XLen = DL.getLargestLegalIntTypeSizeInBits(); 8175 assert(XLen == 32 || XLen == 64); 8176 MVT XLenVT = XLen == 32 ? MVT::i32 : MVT::i64; 8177 8178 // Any return value split in to more than two values can't be returned 8179 // directly. Vectors are returned via the available vector registers. 8180 if (!LocVT.isVector() && IsRet && ValNo > 1) 8181 return true; 8182 8183 // UseGPRForF16_F32 if targeting one of the soft-float ABIs, if passing a 8184 // variadic argument, or if no F16/F32 argument registers are available. 8185 bool UseGPRForF16_F32 = true; 8186 // UseGPRForF64 if targeting soft-float ABIs or an FLEN=32 ABI, if passing a 8187 // variadic argument, or if no F64 argument registers are available. 8188 bool UseGPRForF64 = true; 8189 8190 switch (ABI) { 8191 default: 8192 llvm_unreachable("Unexpected ABI"); 8193 case RISCVABI::ABI_ILP32: 8194 case RISCVABI::ABI_LP64: 8195 break; 8196 case RISCVABI::ABI_ILP32F: 8197 case RISCVABI::ABI_LP64F: 8198 UseGPRForF16_F32 = !IsFixed; 8199 break; 8200 case RISCVABI::ABI_ILP32D: 8201 case RISCVABI::ABI_LP64D: 8202 UseGPRForF16_F32 = !IsFixed; 8203 UseGPRForF64 = !IsFixed; 8204 break; 8205 } 8206 8207 // FPR16, FPR32, and FPR64 alias each other. 8208 if (State.getFirstUnallocated(ArgFPR32s) == array_lengthof(ArgFPR32s)) { 8209 UseGPRForF16_F32 = true; 8210 UseGPRForF64 = true; 8211 } 8212 8213 // From this point on, rely on UseGPRForF16_F32, UseGPRForF64 and 8214 // similar local variables rather than directly checking against the target 8215 // ABI. 8216 8217 if (UseGPRForF16_F32 && (ValVT == MVT::f16 || ValVT == MVT::f32)) { 8218 LocVT = XLenVT; 8219 LocInfo = CCValAssign::BCvt; 8220 } else if (UseGPRForF64 && XLen == 64 && ValVT == MVT::f64) { 8221 LocVT = MVT::i64; 8222 LocInfo = CCValAssign::BCvt; 8223 } 8224 8225 // If this is a variadic argument, the RISC-V calling convention requires 8226 // that it is assigned an 'even' or 'aligned' register if it has 8-byte 8227 // alignment (RV32) or 16-byte alignment (RV64). An aligned register should 8228 // be used regardless of whether the original argument was split during 8229 // legalisation or not. The argument will not be passed by registers if the 8230 // original type is larger than 2*XLEN, so the register alignment rule does 8231 // not apply. 8232 unsigned TwoXLenInBytes = (2 * XLen) / 8; 8233 if (!IsFixed && ArgFlags.getNonZeroOrigAlign() == TwoXLenInBytes && 8234 DL.getTypeAllocSize(OrigTy) == TwoXLenInBytes) { 8235 unsigned RegIdx = State.getFirstUnallocated(ArgGPRs); 8236 // Skip 'odd' register if necessary. 8237 if (RegIdx != array_lengthof(ArgGPRs) && RegIdx % 2 == 1) 8238 State.AllocateReg(ArgGPRs); 8239 } 8240 8241 SmallVectorImpl<CCValAssign> &PendingLocs = State.getPendingLocs(); 8242 SmallVectorImpl<ISD::ArgFlagsTy> &PendingArgFlags = 8243 State.getPendingArgFlags(); 8244 8245 assert(PendingLocs.size() == PendingArgFlags.size() && 8246 "PendingLocs and PendingArgFlags out of sync"); 8247 8248 // Handle passing f64 on RV32D with a soft float ABI or when floating point 8249 // registers are exhausted. 8250 if (UseGPRForF64 && XLen == 32 && ValVT == MVT::f64) { 8251 assert(!ArgFlags.isSplit() && PendingLocs.empty() && 8252 "Can't lower f64 if it is split"); 8253 // Depending on available argument GPRS, f64 may be passed in a pair of 8254 // GPRs, split between a GPR and the stack, or passed completely on the 8255 // stack. LowerCall/LowerFormalArguments/LowerReturn must recognise these 8256 // cases. 8257 Register Reg = State.AllocateReg(ArgGPRs); 8258 LocVT = MVT::i32; 8259 if (!Reg) { 8260 unsigned StackOffset = State.AllocateStack(8, Align(8)); 8261 State.addLoc( 8262 CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 8263 return false; 8264 } 8265 if (!State.AllocateReg(ArgGPRs)) 8266 State.AllocateStack(4, Align(4)); 8267 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 8268 return false; 8269 } 8270 8271 // Fixed-length vectors are located in the corresponding scalable-vector 8272 // container types. 8273 if (ValVT.isFixedLengthVector()) 8274 LocVT = TLI.getContainerForFixedLengthVector(LocVT); 8275 8276 // Split arguments might be passed indirectly, so keep track of the pending 8277 // values. Split vectors are passed via a mix of registers and indirectly, so 8278 // treat them as we would any other argument. 8279 if (ValVT.isScalarInteger() && (ArgFlags.isSplit() || !PendingLocs.empty())) { 8280 LocVT = XLenVT; 8281 LocInfo = CCValAssign::Indirect; 8282 PendingLocs.push_back( 8283 CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo)); 8284 PendingArgFlags.push_back(ArgFlags); 8285 if (!ArgFlags.isSplitEnd()) { 8286 return false; 8287 } 8288 } 8289 8290 // If the split argument only had two elements, it should be passed directly 8291 // in registers or on the stack. 8292 if (ValVT.isScalarInteger() && ArgFlags.isSplitEnd() && 8293 PendingLocs.size() <= 2) { 8294 assert(PendingLocs.size() == 2 && "Unexpected PendingLocs.size()"); 8295 // Apply the normal calling convention rules to the first half of the 8296 // split argument. 8297 CCValAssign VA = PendingLocs[0]; 8298 ISD::ArgFlagsTy AF = PendingArgFlags[0]; 8299 PendingLocs.clear(); 8300 PendingArgFlags.clear(); 8301 return CC_RISCVAssign2XLen(XLen, State, VA, AF, ValNo, ValVT, LocVT, 8302 ArgFlags); 8303 } 8304 8305 // Allocate to a register if possible, or else a stack slot. 8306 Register Reg; 8307 unsigned StoreSizeBytes = XLen / 8; 8308 Align StackAlign = Align(XLen / 8); 8309 8310 if (ValVT == MVT::f16 && !UseGPRForF16_F32) 8311 Reg = State.AllocateReg(ArgFPR16s); 8312 else if (ValVT == MVT::f32 && !UseGPRForF16_F32) 8313 Reg = State.AllocateReg(ArgFPR32s); 8314 else if (ValVT == MVT::f64 && !UseGPRForF64) 8315 Reg = State.AllocateReg(ArgFPR64s); 8316 else if (ValVT.isVector()) { 8317 Reg = allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI); 8318 if (!Reg) { 8319 // For return values, the vector must be passed fully via registers or 8320 // via the stack. 8321 // FIXME: The proposed vector ABI only mandates v8-v15 for return values, 8322 // but we're using all of them. 8323 if (IsRet) 8324 return true; 8325 // Try using a GPR to pass the address 8326 if ((Reg = State.AllocateReg(ArgGPRs))) { 8327 LocVT = XLenVT; 8328 LocInfo = CCValAssign::Indirect; 8329 } else if (ValVT.isScalableVector()) { 8330 report_fatal_error("Unable to pass scalable vector types on the stack"); 8331 } else { 8332 // Pass fixed-length vectors on the stack. 8333 LocVT = ValVT; 8334 StoreSizeBytes = ValVT.getStoreSize(); 8335 // Align vectors to their element sizes, being careful for vXi1 8336 // vectors. 8337 StackAlign = MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne(); 8338 } 8339 } 8340 } else { 8341 Reg = State.AllocateReg(ArgGPRs); 8342 } 8343 8344 unsigned StackOffset = 8345 Reg ? 0 : State.AllocateStack(StoreSizeBytes, StackAlign); 8346 8347 // If we reach this point and PendingLocs is non-empty, we must be at the 8348 // end of a split argument that must be passed indirectly. 8349 if (!PendingLocs.empty()) { 8350 assert(ArgFlags.isSplitEnd() && "Expected ArgFlags.isSplitEnd()"); 8351 assert(PendingLocs.size() > 2 && "Unexpected PendingLocs.size()"); 8352 8353 for (auto &It : PendingLocs) { 8354 if (Reg) 8355 It.convertToReg(Reg); 8356 else 8357 It.convertToMem(StackOffset); 8358 State.addLoc(It); 8359 } 8360 PendingLocs.clear(); 8361 PendingArgFlags.clear(); 8362 return false; 8363 } 8364 8365 assert((!UseGPRForF16_F32 || !UseGPRForF64 || LocVT == XLenVT || 8366 (TLI.getSubtarget().hasVInstructions() && ValVT.isVector())) && 8367 "Expected an XLenVT or vector types at this stage"); 8368 8369 if (Reg) { 8370 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 8371 return false; 8372 } 8373 8374 // When a floating-point value is passed on the stack, no bit-conversion is 8375 // needed. 8376 if (ValVT.isFloatingPoint()) { 8377 LocVT = ValVT; 8378 LocInfo = CCValAssign::Full; 8379 } 8380 State.addLoc(CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 8381 return false; 8382 } 8383 8384 template <typename ArgTy> 8385 static Optional<unsigned> preAssignMask(const ArgTy &Args) { 8386 for (const auto &ArgIdx : enumerate(Args)) { 8387 MVT ArgVT = ArgIdx.value().VT; 8388 if (ArgVT.isVector() && ArgVT.getVectorElementType() == MVT::i1) 8389 return ArgIdx.index(); 8390 } 8391 return None; 8392 } 8393 8394 void RISCVTargetLowering::analyzeInputArgs( 8395 MachineFunction &MF, CCState &CCInfo, 8396 const SmallVectorImpl<ISD::InputArg> &Ins, bool IsRet, 8397 RISCVCCAssignFn Fn) const { 8398 unsigned NumArgs = Ins.size(); 8399 FunctionType *FType = MF.getFunction().getFunctionType(); 8400 8401 Optional<unsigned> FirstMaskArgument; 8402 if (Subtarget.hasVInstructions()) 8403 FirstMaskArgument = preAssignMask(Ins); 8404 8405 for (unsigned i = 0; i != NumArgs; ++i) { 8406 MVT ArgVT = Ins[i].VT; 8407 ISD::ArgFlagsTy ArgFlags = Ins[i].Flags; 8408 8409 Type *ArgTy = nullptr; 8410 if (IsRet) 8411 ArgTy = FType->getReturnType(); 8412 else if (Ins[i].isOrigArg()) 8413 ArgTy = FType->getParamType(Ins[i].getOrigArgIndex()); 8414 8415 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 8416 if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full, 8417 ArgFlags, CCInfo, /*IsFixed=*/true, IsRet, ArgTy, *this, 8418 FirstMaskArgument)) { 8419 LLVM_DEBUG(dbgs() << "InputArg #" << i << " has unhandled type " 8420 << EVT(ArgVT).getEVTString() << '\n'); 8421 llvm_unreachable(nullptr); 8422 } 8423 } 8424 } 8425 8426 void RISCVTargetLowering::analyzeOutputArgs( 8427 MachineFunction &MF, CCState &CCInfo, 8428 const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsRet, 8429 CallLoweringInfo *CLI, RISCVCCAssignFn Fn) const { 8430 unsigned NumArgs = Outs.size(); 8431 8432 Optional<unsigned> FirstMaskArgument; 8433 if (Subtarget.hasVInstructions()) 8434 FirstMaskArgument = preAssignMask(Outs); 8435 8436 for (unsigned i = 0; i != NumArgs; i++) { 8437 MVT ArgVT = Outs[i].VT; 8438 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 8439 Type *OrigTy = CLI ? CLI->getArgs()[Outs[i].OrigArgIndex].Ty : nullptr; 8440 8441 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 8442 if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full, 8443 ArgFlags, CCInfo, Outs[i].IsFixed, IsRet, OrigTy, *this, 8444 FirstMaskArgument)) { 8445 LLVM_DEBUG(dbgs() << "OutputArg #" << i << " has unhandled type " 8446 << EVT(ArgVT).getEVTString() << "\n"); 8447 llvm_unreachable(nullptr); 8448 } 8449 } 8450 } 8451 8452 // Convert Val to a ValVT. Should not be called for CCValAssign::Indirect 8453 // values. 8454 static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDValue Val, 8455 const CCValAssign &VA, const SDLoc &DL, 8456 const RISCVSubtarget &Subtarget) { 8457 switch (VA.getLocInfo()) { 8458 default: 8459 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 8460 case CCValAssign::Full: 8461 if (VA.getValVT().isFixedLengthVector() && VA.getLocVT().isScalableVector()) 8462 Val = convertFromScalableVector(VA.getValVT(), Val, DAG, Subtarget); 8463 break; 8464 case CCValAssign::BCvt: 8465 if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16) 8466 Val = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, Val); 8467 else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) 8468 Val = DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, Val); 8469 else 8470 Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val); 8471 break; 8472 } 8473 return Val; 8474 } 8475 8476 // The caller is responsible for loading the full value if the argument is 8477 // passed with CCValAssign::Indirect. 8478 static SDValue unpackFromRegLoc(SelectionDAG &DAG, SDValue Chain, 8479 const CCValAssign &VA, const SDLoc &DL, 8480 const RISCVTargetLowering &TLI) { 8481 MachineFunction &MF = DAG.getMachineFunction(); 8482 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 8483 EVT LocVT = VA.getLocVT(); 8484 SDValue Val; 8485 const TargetRegisterClass *RC = TLI.getRegClassFor(LocVT.getSimpleVT()); 8486 Register VReg = RegInfo.createVirtualRegister(RC); 8487 RegInfo.addLiveIn(VA.getLocReg(), VReg); 8488 Val = DAG.getCopyFromReg(Chain, DL, VReg, LocVT); 8489 8490 if (VA.getLocInfo() == CCValAssign::Indirect) 8491 return Val; 8492 8493 return convertLocVTToValVT(DAG, Val, VA, DL, TLI.getSubtarget()); 8494 } 8495 8496 static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDValue Val, 8497 const CCValAssign &VA, const SDLoc &DL, 8498 const RISCVSubtarget &Subtarget) { 8499 EVT LocVT = VA.getLocVT(); 8500 8501 switch (VA.getLocInfo()) { 8502 default: 8503 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 8504 case CCValAssign::Full: 8505 if (VA.getValVT().isFixedLengthVector() && LocVT.isScalableVector()) 8506 Val = convertToScalableVector(LocVT, Val, DAG, Subtarget); 8507 break; 8508 case CCValAssign::BCvt: 8509 if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16) 8510 Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, VA.getLocVT(), Val); 8511 else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) 8512 Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Val); 8513 else 8514 Val = DAG.getNode(ISD::BITCAST, DL, LocVT, Val); 8515 break; 8516 } 8517 return Val; 8518 } 8519 8520 // The caller is responsible for loading the full value if the argument is 8521 // passed with CCValAssign::Indirect. 8522 static SDValue unpackFromMemLoc(SelectionDAG &DAG, SDValue Chain, 8523 const CCValAssign &VA, const SDLoc &DL) { 8524 MachineFunction &MF = DAG.getMachineFunction(); 8525 MachineFrameInfo &MFI = MF.getFrameInfo(); 8526 EVT LocVT = VA.getLocVT(); 8527 EVT ValVT = VA.getValVT(); 8528 EVT PtrVT = MVT::getIntegerVT(DAG.getDataLayout().getPointerSizeInBits(0)); 8529 int FI = MFI.CreateFixedObject(ValVT.getStoreSize(), VA.getLocMemOffset(), 8530 /*Immutable=*/true); 8531 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 8532 SDValue Val; 8533 8534 ISD::LoadExtType ExtType; 8535 switch (VA.getLocInfo()) { 8536 default: 8537 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 8538 case CCValAssign::Full: 8539 case CCValAssign::Indirect: 8540 case CCValAssign::BCvt: 8541 ExtType = ISD::NON_EXTLOAD; 8542 break; 8543 } 8544 Val = DAG.getExtLoad( 8545 ExtType, DL, LocVT, Chain, FIN, 8546 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), ValVT); 8547 return Val; 8548 } 8549 8550 static SDValue unpackF64OnRV32DSoftABI(SelectionDAG &DAG, SDValue Chain, 8551 const CCValAssign &VA, const SDLoc &DL) { 8552 assert(VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64 && 8553 "Unexpected VA"); 8554 MachineFunction &MF = DAG.getMachineFunction(); 8555 MachineFrameInfo &MFI = MF.getFrameInfo(); 8556 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 8557 8558 if (VA.isMemLoc()) { 8559 // f64 is passed on the stack. 8560 int FI = MFI.CreateFixedObject(8, VA.getLocMemOffset(), /*Immutable=*/true); 8561 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 8562 return DAG.getLoad(MVT::f64, DL, Chain, FIN, 8563 MachinePointerInfo::getFixedStack(MF, FI)); 8564 } 8565 8566 assert(VA.isRegLoc() && "Expected register VA assignment"); 8567 8568 Register LoVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 8569 RegInfo.addLiveIn(VA.getLocReg(), LoVReg); 8570 SDValue Lo = DAG.getCopyFromReg(Chain, DL, LoVReg, MVT::i32); 8571 SDValue Hi; 8572 if (VA.getLocReg() == RISCV::X17) { 8573 // Second half of f64 is passed on the stack. 8574 int FI = MFI.CreateFixedObject(4, 0, /*Immutable=*/true); 8575 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 8576 Hi = DAG.getLoad(MVT::i32, DL, Chain, FIN, 8577 MachinePointerInfo::getFixedStack(MF, FI)); 8578 } else { 8579 // Second half of f64 is passed in another GPR. 8580 Register HiVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 8581 RegInfo.addLiveIn(VA.getLocReg() + 1, HiVReg); 8582 Hi = DAG.getCopyFromReg(Chain, DL, HiVReg, MVT::i32); 8583 } 8584 return DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, Lo, Hi); 8585 } 8586 8587 // FastCC has less than 1% performance improvement for some particular 8588 // benchmark. But theoretically, it may has benenfit for some cases. 8589 static bool CC_RISCV_FastCC(const DataLayout &DL, RISCVABI::ABI ABI, 8590 unsigned ValNo, MVT ValVT, MVT LocVT, 8591 CCValAssign::LocInfo LocInfo, 8592 ISD::ArgFlagsTy ArgFlags, CCState &State, 8593 bool IsFixed, bool IsRet, Type *OrigTy, 8594 const RISCVTargetLowering &TLI, 8595 Optional<unsigned> FirstMaskArgument) { 8596 8597 // X5 and X6 might be used for save-restore libcall. 8598 static const MCPhysReg GPRList[] = { 8599 RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, RISCV::X14, 8600 RISCV::X15, RISCV::X16, RISCV::X17, RISCV::X7, RISCV::X28, 8601 RISCV::X29, RISCV::X30, RISCV::X31}; 8602 8603 if (LocVT == MVT::i32 || LocVT == MVT::i64) { 8604 if (unsigned Reg = State.AllocateReg(GPRList)) { 8605 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 8606 return false; 8607 } 8608 } 8609 8610 if (LocVT == MVT::f16) { 8611 static const MCPhysReg FPR16List[] = { 8612 RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, RISCV::F14_H, 8613 RISCV::F15_H, RISCV::F16_H, RISCV::F17_H, RISCV::F0_H, RISCV::F1_H, 8614 RISCV::F2_H, RISCV::F3_H, RISCV::F4_H, RISCV::F5_H, RISCV::F6_H, 8615 RISCV::F7_H, RISCV::F28_H, RISCV::F29_H, RISCV::F30_H, RISCV::F31_H}; 8616 if (unsigned Reg = State.AllocateReg(FPR16List)) { 8617 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 8618 return false; 8619 } 8620 } 8621 8622 if (LocVT == MVT::f32) { 8623 static const MCPhysReg FPR32List[] = { 8624 RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, RISCV::F14_F, 8625 RISCV::F15_F, RISCV::F16_F, RISCV::F17_F, RISCV::F0_F, RISCV::F1_F, 8626 RISCV::F2_F, RISCV::F3_F, RISCV::F4_F, RISCV::F5_F, RISCV::F6_F, 8627 RISCV::F7_F, RISCV::F28_F, RISCV::F29_F, RISCV::F30_F, RISCV::F31_F}; 8628 if (unsigned Reg = State.AllocateReg(FPR32List)) { 8629 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 8630 return false; 8631 } 8632 } 8633 8634 if (LocVT == MVT::f64) { 8635 static const MCPhysReg FPR64List[] = { 8636 RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, RISCV::F14_D, 8637 RISCV::F15_D, RISCV::F16_D, RISCV::F17_D, RISCV::F0_D, RISCV::F1_D, 8638 RISCV::F2_D, RISCV::F3_D, RISCV::F4_D, RISCV::F5_D, RISCV::F6_D, 8639 RISCV::F7_D, RISCV::F28_D, RISCV::F29_D, RISCV::F30_D, RISCV::F31_D}; 8640 if (unsigned Reg = State.AllocateReg(FPR64List)) { 8641 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 8642 return false; 8643 } 8644 } 8645 8646 if (LocVT == MVT::i32 || LocVT == MVT::f32) { 8647 unsigned Offset4 = State.AllocateStack(4, Align(4)); 8648 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset4, LocVT, LocInfo)); 8649 return false; 8650 } 8651 8652 if (LocVT == MVT::i64 || LocVT == MVT::f64) { 8653 unsigned Offset5 = State.AllocateStack(8, Align(8)); 8654 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset5, LocVT, LocInfo)); 8655 return false; 8656 } 8657 8658 if (LocVT.isVector()) { 8659 if (unsigned Reg = 8660 allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI)) { 8661 // Fixed-length vectors are located in the corresponding scalable-vector 8662 // container types. 8663 if (ValVT.isFixedLengthVector()) 8664 LocVT = TLI.getContainerForFixedLengthVector(LocVT); 8665 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 8666 } else { 8667 // Try and pass the address via a "fast" GPR. 8668 if (unsigned GPRReg = State.AllocateReg(GPRList)) { 8669 LocInfo = CCValAssign::Indirect; 8670 LocVT = TLI.getSubtarget().getXLenVT(); 8671 State.addLoc(CCValAssign::getReg(ValNo, ValVT, GPRReg, LocVT, LocInfo)); 8672 } else if (ValVT.isFixedLengthVector()) { 8673 auto StackAlign = 8674 MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne(); 8675 unsigned StackOffset = 8676 State.AllocateStack(ValVT.getStoreSize(), StackAlign); 8677 State.addLoc( 8678 CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 8679 } else { 8680 // Can't pass scalable vectors on the stack. 8681 return true; 8682 } 8683 } 8684 8685 return false; 8686 } 8687 8688 return true; // CC didn't match. 8689 } 8690 8691 static bool CC_RISCV_GHC(unsigned ValNo, MVT ValVT, MVT LocVT, 8692 CCValAssign::LocInfo LocInfo, 8693 ISD::ArgFlagsTy ArgFlags, CCState &State) { 8694 8695 if (LocVT == MVT::i32 || LocVT == MVT::i64) { 8696 // Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, R6, R7, SpLim 8697 // s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 8698 static const MCPhysReg GPRList[] = { 8699 RISCV::X9, RISCV::X18, RISCV::X19, RISCV::X20, RISCV::X21, RISCV::X22, 8700 RISCV::X23, RISCV::X24, RISCV::X25, RISCV::X26, RISCV::X27}; 8701 if (unsigned Reg = State.AllocateReg(GPRList)) { 8702 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 8703 return false; 8704 } 8705 } 8706 8707 if (LocVT == MVT::f32) { 8708 // Pass in STG registers: F1, ..., F6 8709 // fs0 ... fs5 8710 static const MCPhysReg FPR32List[] = {RISCV::F8_F, RISCV::F9_F, 8711 RISCV::F18_F, RISCV::F19_F, 8712 RISCV::F20_F, RISCV::F21_F}; 8713 if (unsigned Reg = State.AllocateReg(FPR32List)) { 8714 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 8715 return false; 8716 } 8717 } 8718 8719 if (LocVT == MVT::f64) { 8720 // Pass in STG registers: D1, ..., D6 8721 // fs6 ... fs11 8722 static const MCPhysReg FPR64List[] = {RISCV::F22_D, RISCV::F23_D, 8723 RISCV::F24_D, RISCV::F25_D, 8724 RISCV::F26_D, RISCV::F27_D}; 8725 if (unsigned Reg = State.AllocateReg(FPR64List)) { 8726 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 8727 return false; 8728 } 8729 } 8730 8731 report_fatal_error("No registers left in GHC calling convention"); 8732 return true; 8733 } 8734 8735 // Transform physical registers into virtual registers. 8736 SDValue RISCVTargetLowering::LowerFormalArguments( 8737 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 8738 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 8739 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 8740 8741 MachineFunction &MF = DAG.getMachineFunction(); 8742 8743 switch (CallConv) { 8744 default: 8745 report_fatal_error("Unsupported calling convention"); 8746 case CallingConv::C: 8747 case CallingConv::Fast: 8748 break; 8749 case CallingConv::GHC: 8750 if (!MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtF] || 8751 !MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtD]) 8752 report_fatal_error( 8753 "GHC calling convention requires the F and D instruction set extensions"); 8754 } 8755 8756 const Function &Func = MF.getFunction(); 8757 if (Func.hasFnAttribute("interrupt")) { 8758 if (!Func.arg_empty()) 8759 report_fatal_error( 8760 "Functions with the interrupt attribute cannot have arguments!"); 8761 8762 StringRef Kind = 8763 MF.getFunction().getFnAttribute("interrupt").getValueAsString(); 8764 8765 if (!(Kind == "user" || Kind == "supervisor" || Kind == "machine")) 8766 report_fatal_error( 8767 "Function interrupt attribute argument not supported!"); 8768 } 8769 8770 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 8771 MVT XLenVT = Subtarget.getXLenVT(); 8772 unsigned XLenInBytes = Subtarget.getXLen() / 8; 8773 // Used with vargs to acumulate store chains. 8774 std::vector<SDValue> OutChains; 8775 8776 // Assign locations to all of the incoming arguments. 8777 SmallVector<CCValAssign, 16> ArgLocs; 8778 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 8779 8780 if (CallConv == CallingConv::GHC) 8781 CCInfo.AnalyzeFormalArguments(Ins, CC_RISCV_GHC); 8782 else 8783 analyzeInputArgs(MF, CCInfo, Ins, /*IsRet=*/false, 8784 CallConv == CallingConv::Fast ? CC_RISCV_FastCC 8785 : CC_RISCV); 8786 8787 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 8788 CCValAssign &VA = ArgLocs[i]; 8789 SDValue ArgValue; 8790 // Passing f64 on RV32D with a soft float ABI must be handled as a special 8791 // case. 8792 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) 8793 ArgValue = unpackF64OnRV32DSoftABI(DAG, Chain, VA, DL); 8794 else if (VA.isRegLoc()) 8795 ArgValue = unpackFromRegLoc(DAG, Chain, VA, DL, *this); 8796 else 8797 ArgValue = unpackFromMemLoc(DAG, Chain, VA, DL); 8798 8799 if (VA.getLocInfo() == CCValAssign::Indirect) { 8800 // If the original argument was split and passed by reference (e.g. i128 8801 // on RV32), we need to load all parts of it here (using the same 8802 // address). Vectors may be partly split to registers and partly to the 8803 // stack, in which case the base address is partly offset and subsequent 8804 // stores are relative to that. 8805 InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue, 8806 MachinePointerInfo())); 8807 unsigned ArgIndex = Ins[i].OrigArgIndex; 8808 unsigned ArgPartOffset = Ins[i].PartOffset; 8809 assert(VA.getValVT().isVector() || ArgPartOffset == 0); 8810 while (i + 1 != e && Ins[i + 1].OrigArgIndex == ArgIndex) { 8811 CCValAssign &PartVA = ArgLocs[i + 1]; 8812 unsigned PartOffset = Ins[i + 1].PartOffset - ArgPartOffset; 8813 SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL); 8814 if (PartVA.getValVT().isScalableVector()) 8815 Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset); 8816 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, Offset); 8817 InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address, 8818 MachinePointerInfo())); 8819 ++i; 8820 } 8821 continue; 8822 } 8823 InVals.push_back(ArgValue); 8824 } 8825 8826 if (IsVarArg) { 8827 ArrayRef<MCPhysReg> ArgRegs = makeArrayRef(ArgGPRs); 8828 unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs); 8829 const TargetRegisterClass *RC = &RISCV::GPRRegClass; 8830 MachineFrameInfo &MFI = MF.getFrameInfo(); 8831 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 8832 RISCVMachineFunctionInfo *RVFI = MF.getInfo<RISCVMachineFunctionInfo>(); 8833 8834 // Offset of the first variable argument from stack pointer, and size of 8835 // the vararg save area. For now, the varargs save area is either zero or 8836 // large enough to hold a0-a7. 8837 int VaArgOffset, VarArgsSaveSize; 8838 8839 // If all registers are allocated, then all varargs must be passed on the 8840 // stack and we don't need to save any argregs. 8841 if (ArgRegs.size() == Idx) { 8842 VaArgOffset = CCInfo.getNextStackOffset(); 8843 VarArgsSaveSize = 0; 8844 } else { 8845 VarArgsSaveSize = XLenInBytes * (ArgRegs.size() - Idx); 8846 VaArgOffset = -VarArgsSaveSize; 8847 } 8848 8849 // Record the frame index of the first variable argument 8850 // which is a value necessary to VASTART. 8851 int FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true); 8852 RVFI->setVarArgsFrameIndex(FI); 8853 8854 // If saving an odd number of registers then create an extra stack slot to 8855 // ensure that the frame pointer is 2*XLEN-aligned, which in turn ensures 8856 // offsets to even-numbered registered remain 2*XLEN-aligned. 8857 if (Idx % 2) { 8858 MFI.CreateFixedObject(XLenInBytes, VaArgOffset - (int)XLenInBytes, true); 8859 VarArgsSaveSize += XLenInBytes; 8860 } 8861 8862 // Copy the integer registers that may have been used for passing varargs 8863 // to the vararg save area. 8864 for (unsigned I = Idx; I < ArgRegs.size(); 8865 ++I, VaArgOffset += XLenInBytes) { 8866 const Register Reg = RegInfo.createVirtualRegister(RC); 8867 RegInfo.addLiveIn(ArgRegs[I], Reg); 8868 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, XLenVT); 8869 FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true); 8870 SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 8871 SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff, 8872 MachinePointerInfo::getFixedStack(MF, FI)); 8873 cast<StoreSDNode>(Store.getNode()) 8874 ->getMemOperand() 8875 ->setValue((Value *)nullptr); 8876 OutChains.push_back(Store); 8877 } 8878 RVFI->setVarArgsSaveSize(VarArgsSaveSize); 8879 } 8880 8881 // All stores are grouped in one node to allow the matching between 8882 // the size of Ins and InVals. This only happens for vararg functions. 8883 if (!OutChains.empty()) { 8884 OutChains.push_back(Chain); 8885 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains); 8886 } 8887 8888 return Chain; 8889 } 8890 8891 /// isEligibleForTailCallOptimization - Check whether the call is eligible 8892 /// for tail call optimization. 8893 /// Note: This is modelled after ARM's IsEligibleForTailCallOptimization. 8894 bool RISCVTargetLowering::isEligibleForTailCallOptimization( 8895 CCState &CCInfo, CallLoweringInfo &CLI, MachineFunction &MF, 8896 const SmallVector<CCValAssign, 16> &ArgLocs) const { 8897 8898 auto &Callee = CLI.Callee; 8899 auto CalleeCC = CLI.CallConv; 8900 auto &Outs = CLI.Outs; 8901 auto &Caller = MF.getFunction(); 8902 auto CallerCC = Caller.getCallingConv(); 8903 8904 // Exception-handling functions need a special set of instructions to 8905 // indicate a return to the hardware. Tail-calling another function would 8906 // probably break this. 8907 // TODO: The "interrupt" attribute isn't currently defined by RISC-V. This 8908 // should be expanded as new function attributes are introduced. 8909 if (Caller.hasFnAttribute("interrupt")) 8910 return false; 8911 8912 // Do not tail call opt if the stack is used to pass parameters. 8913 if (CCInfo.getNextStackOffset() != 0) 8914 return false; 8915 8916 // Do not tail call opt if any parameters need to be passed indirectly. 8917 // Since long doubles (fp128) and i128 are larger than 2*XLEN, they are 8918 // passed indirectly. So the address of the value will be passed in a 8919 // register, or if not available, then the address is put on the stack. In 8920 // order to pass indirectly, space on the stack often needs to be allocated 8921 // in order to store the value. In this case the CCInfo.getNextStackOffset() 8922 // != 0 check is not enough and we need to check if any CCValAssign ArgsLocs 8923 // are passed CCValAssign::Indirect. 8924 for (auto &VA : ArgLocs) 8925 if (VA.getLocInfo() == CCValAssign::Indirect) 8926 return false; 8927 8928 // Do not tail call opt if either caller or callee uses struct return 8929 // semantics. 8930 auto IsCallerStructRet = Caller.hasStructRetAttr(); 8931 auto IsCalleeStructRet = Outs.empty() ? false : Outs[0].Flags.isSRet(); 8932 if (IsCallerStructRet || IsCalleeStructRet) 8933 return false; 8934 8935 // Externally-defined functions with weak linkage should not be 8936 // tail-called. The behaviour of branch instructions in this situation (as 8937 // used for tail calls) is implementation-defined, so we cannot rely on the 8938 // linker replacing the tail call with a return. 8939 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 8940 const GlobalValue *GV = G->getGlobal(); 8941 if (GV->hasExternalWeakLinkage()) 8942 return false; 8943 } 8944 8945 // The callee has to preserve all registers the caller needs to preserve. 8946 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 8947 const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC); 8948 if (CalleeCC != CallerCC) { 8949 const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC); 8950 if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved)) 8951 return false; 8952 } 8953 8954 // Byval parameters hand the function a pointer directly into the stack area 8955 // we want to reuse during a tail call. Working around this *is* possible 8956 // but less efficient and uglier in LowerCall. 8957 for (auto &Arg : Outs) 8958 if (Arg.Flags.isByVal()) 8959 return false; 8960 8961 return true; 8962 } 8963 8964 static Align getPrefTypeAlign(EVT VT, SelectionDAG &DAG) { 8965 return DAG.getDataLayout().getPrefTypeAlign( 8966 VT.getTypeForEVT(*DAG.getContext())); 8967 } 8968 8969 // Lower a call to a callseq_start + CALL + callseq_end chain, and add input 8970 // and output parameter nodes. 8971 SDValue RISCVTargetLowering::LowerCall(CallLoweringInfo &CLI, 8972 SmallVectorImpl<SDValue> &InVals) const { 8973 SelectionDAG &DAG = CLI.DAG; 8974 SDLoc &DL = CLI.DL; 8975 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 8976 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 8977 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 8978 SDValue Chain = CLI.Chain; 8979 SDValue Callee = CLI.Callee; 8980 bool &IsTailCall = CLI.IsTailCall; 8981 CallingConv::ID CallConv = CLI.CallConv; 8982 bool IsVarArg = CLI.IsVarArg; 8983 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 8984 MVT XLenVT = Subtarget.getXLenVT(); 8985 8986 MachineFunction &MF = DAG.getMachineFunction(); 8987 8988 // Analyze the operands of the call, assigning locations to each operand. 8989 SmallVector<CCValAssign, 16> ArgLocs; 8990 CCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 8991 8992 if (CallConv == CallingConv::GHC) 8993 ArgCCInfo.AnalyzeCallOperands(Outs, CC_RISCV_GHC); 8994 else 8995 analyzeOutputArgs(MF, ArgCCInfo, Outs, /*IsRet=*/false, &CLI, 8996 CallConv == CallingConv::Fast ? CC_RISCV_FastCC 8997 : CC_RISCV); 8998 8999 // Check if it's really possible to do a tail call. 9000 if (IsTailCall) 9001 IsTailCall = isEligibleForTailCallOptimization(ArgCCInfo, CLI, MF, ArgLocs); 9002 9003 if (IsTailCall) 9004 ++NumTailCalls; 9005 else if (CLI.CB && CLI.CB->isMustTailCall()) 9006 report_fatal_error("failed to perform tail call elimination on a call " 9007 "site marked musttail"); 9008 9009 // Get a count of how many bytes are to be pushed on the stack. 9010 unsigned NumBytes = ArgCCInfo.getNextStackOffset(); 9011 9012 // Create local copies for byval args 9013 SmallVector<SDValue, 8> ByValArgs; 9014 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 9015 ISD::ArgFlagsTy Flags = Outs[i].Flags; 9016 if (!Flags.isByVal()) 9017 continue; 9018 9019 SDValue Arg = OutVals[i]; 9020 unsigned Size = Flags.getByValSize(); 9021 Align Alignment = Flags.getNonZeroByValAlign(); 9022 9023 int FI = 9024 MF.getFrameInfo().CreateStackObject(Size, Alignment, /*isSS=*/false); 9025 SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 9026 SDValue SizeNode = DAG.getConstant(Size, DL, XLenVT); 9027 9028 Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Alignment, 9029 /*IsVolatile=*/false, 9030 /*AlwaysInline=*/false, IsTailCall, 9031 MachinePointerInfo(), MachinePointerInfo()); 9032 ByValArgs.push_back(FIPtr); 9033 } 9034 9035 if (!IsTailCall) 9036 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, CLI.DL); 9037 9038 // Copy argument values to their designated locations. 9039 SmallVector<std::pair<Register, SDValue>, 8> RegsToPass; 9040 SmallVector<SDValue, 8> MemOpChains; 9041 SDValue StackPtr; 9042 for (unsigned i = 0, j = 0, e = ArgLocs.size(); i != e; ++i) { 9043 CCValAssign &VA = ArgLocs[i]; 9044 SDValue ArgValue = OutVals[i]; 9045 ISD::ArgFlagsTy Flags = Outs[i].Flags; 9046 9047 // Handle passing f64 on RV32D with a soft float ABI as a special case. 9048 bool IsF64OnRV32DSoftABI = 9049 VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64; 9050 if (IsF64OnRV32DSoftABI && VA.isRegLoc()) { 9051 SDValue SplitF64 = DAG.getNode( 9052 RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), ArgValue); 9053 SDValue Lo = SplitF64.getValue(0); 9054 SDValue Hi = SplitF64.getValue(1); 9055 9056 Register RegLo = VA.getLocReg(); 9057 RegsToPass.push_back(std::make_pair(RegLo, Lo)); 9058 9059 if (RegLo == RISCV::X17) { 9060 // Second half of f64 is passed on the stack. 9061 // Work out the address of the stack slot. 9062 if (!StackPtr.getNode()) 9063 StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT); 9064 // Emit the store. 9065 MemOpChains.push_back( 9066 DAG.getStore(Chain, DL, Hi, StackPtr, MachinePointerInfo())); 9067 } else { 9068 // Second half of f64 is passed in another GPR. 9069 assert(RegLo < RISCV::X31 && "Invalid register pair"); 9070 Register RegHigh = RegLo + 1; 9071 RegsToPass.push_back(std::make_pair(RegHigh, Hi)); 9072 } 9073 continue; 9074 } 9075 9076 // IsF64OnRV32DSoftABI && VA.isMemLoc() is handled below in the same way 9077 // as any other MemLoc. 9078 9079 // Promote the value if needed. 9080 // For now, only handle fully promoted and indirect arguments. 9081 if (VA.getLocInfo() == CCValAssign::Indirect) { 9082 // Store the argument in a stack slot and pass its address. 9083 Align StackAlign = 9084 std::max(getPrefTypeAlign(Outs[i].ArgVT, DAG), 9085 getPrefTypeAlign(ArgValue.getValueType(), DAG)); 9086 TypeSize StoredSize = ArgValue.getValueType().getStoreSize(); 9087 // If the original argument was split (e.g. i128), we need 9088 // to store the required parts of it here (and pass just one address). 9089 // Vectors may be partly split to registers and partly to the stack, in 9090 // which case the base address is partly offset and subsequent stores are 9091 // relative to that. 9092 unsigned ArgIndex = Outs[i].OrigArgIndex; 9093 unsigned ArgPartOffset = Outs[i].PartOffset; 9094 assert(VA.getValVT().isVector() || ArgPartOffset == 0); 9095 // Calculate the total size to store. We don't have access to what we're 9096 // actually storing other than performing the loop and collecting the 9097 // info. 9098 SmallVector<std::pair<SDValue, SDValue>> Parts; 9099 while (i + 1 != e && Outs[i + 1].OrigArgIndex == ArgIndex) { 9100 SDValue PartValue = OutVals[i + 1]; 9101 unsigned PartOffset = Outs[i + 1].PartOffset - ArgPartOffset; 9102 SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL); 9103 EVT PartVT = PartValue.getValueType(); 9104 if (PartVT.isScalableVector()) 9105 Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset); 9106 StoredSize += PartVT.getStoreSize(); 9107 StackAlign = std::max(StackAlign, getPrefTypeAlign(PartVT, DAG)); 9108 Parts.push_back(std::make_pair(PartValue, Offset)); 9109 ++i; 9110 } 9111 SDValue SpillSlot = DAG.CreateStackTemporary(StoredSize, StackAlign); 9112 int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); 9113 MemOpChains.push_back( 9114 DAG.getStore(Chain, DL, ArgValue, SpillSlot, 9115 MachinePointerInfo::getFixedStack(MF, FI))); 9116 for (const auto &Part : Parts) { 9117 SDValue PartValue = Part.first; 9118 SDValue PartOffset = Part.second; 9119 SDValue Address = 9120 DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, PartOffset); 9121 MemOpChains.push_back( 9122 DAG.getStore(Chain, DL, PartValue, Address, 9123 MachinePointerInfo::getFixedStack(MF, FI))); 9124 } 9125 ArgValue = SpillSlot; 9126 } else { 9127 ArgValue = convertValVTToLocVT(DAG, ArgValue, VA, DL, Subtarget); 9128 } 9129 9130 // Use local copy if it is a byval arg. 9131 if (Flags.isByVal()) 9132 ArgValue = ByValArgs[j++]; 9133 9134 if (VA.isRegLoc()) { 9135 // Queue up the argument copies and emit them at the end. 9136 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue)); 9137 } else { 9138 assert(VA.isMemLoc() && "Argument not register or memory"); 9139 assert(!IsTailCall && "Tail call not allowed if stack is used " 9140 "for passing parameters"); 9141 9142 // Work out the address of the stack slot. 9143 if (!StackPtr.getNode()) 9144 StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT); 9145 SDValue Address = 9146 DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, 9147 DAG.getIntPtrConstant(VA.getLocMemOffset(), DL)); 9148 9149 // Emit the store. 9150 MemOpChains.push_back( 9151 DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo())); 9152 } 9153 } 9154 9155 // Join the stores, which are independent of one another. 9156 if (!MemOpChains.empty()) 9157 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); 9158 9159 SDValue Glue; 9160 9161 // Build a sequence of copy-to-reg nodes, chained and glued together. 9162 for (auto &Reg : RegsToPass) { 9163 Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, Glue); 9164 Glue = Chain.getValue(1); 9165 } 9166 9167 // Validate that none of the argument registers have been marked as 9168 // reserved, if so report an error. Do the same for the return address if this 9169 // is not a tailcall. 9170 validateCCReservedRegs(RegsToPass, MF); 9171 if (!IsTailCall && 9172 MF.getSubtarget<RISCVSubtarget>().isRegisterReservedByUser(RISCV::X1)) 9173 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 9174 MF.getFunction(), 9175 "Return address register required, but has been reserved."}); 9176 9177 // If the callee is a GlobalAddress/ExternalSymbol node, turn it into a 9178 // TargetGlobalAddress/TargetExternalSymbol node so that legalize won't 9179 // split it and then direct call can be matched by PseudoCALL. 9180 if (GlobalAddressSDNode *S = dyn_cast<GlobalAddressSDNode>(Callee)) { 9181 const GlobalValue *GV = S->getGlobal(); 9182 9183 unsigned OpFlags = RISCVII::MO_CALL; 9184 if (!getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV)) 9185 OpFlags = RISCVII::MO_PLT; 9186 9187 Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags); 9188 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { 9189 unsigned OpFlags = RISCVII::MO_CALL; 9190 9191 if (!getTargetMachine().shouldAssumeDSOLocal(*MF.getFunction().getParent(), 9192 nullptr)) 9193 OpFlags = RISCVII::MO_PLT; 9194 9195 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, OpFlags); 9196 } 9197 9198 // The first call operand is the chain and the second is the target address. 9199 SmallVector<SDValue, 8> Ops; 9200 Ops.push_back(Chain); 9201 Ops.push_back(Callee); 9202 9203 // Add argument registers to the end of the list so that they are 9204 // known live into the call. 9205 for (auto &Reg : RegsToPass) 9206 Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType())); 9207 9208 if (!IsTailCall) { 9209 // Add a register mask operand representing the call-preserved registers. 9210 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 9211 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv); 9212 assert(Mask && "Missing call preserved mask for calling convention"); 9213 Ops.push_back(DAG.getRegisterMask(Mask)); 9214 } 9215 9216 // Glue the call to the argument copies, if any. 9217 if (Glue.getNode()) 9218 Ops.push_back(Glue); 9219 9220 // Emit the call. 9221 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 9222 9223 if (IsTailCall) { 9224 MF.getFrameInfo().setHasTailCall(); 9225 return DAG.getNode(RISCVISD::TAIL, DL, NodeTys, Ops); 9226 } 9227 9228 Chain = DAG.getNode(RISCVISD::CALL, DL, NodeTys, Ops); 9229 DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge); 9230 Glue = Chain.getValue(1); 9231 9232 // Mark the end of the call, which is glued to the call itself. 9233 Chain = DAG.getCALLSEQ_END(Chain, 9234 DAG.getConstant(NumBytes, DL, PtrVT, true), 9235 DAG.getConstant(0, DL, PtrVT, true), 9236 Glue, DL); 9237 Glue = Chain.getValue(1); 9238 9239 // Assign locations to each value returned by this call. 9240 SmallVector<CCValAssign, 16> RVLocs; 9241 CCState RetCCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext()); 9242 analyzeInputArgs(MF, RetCCInfo, Ins, /*IsRet=*/true, CC_RISCV); 9243 9244 // Copy all of the result registers out of their specified physreg. 9245 for (auto &VA : RVLocs) { 9246 // Copy the value out 9247 SDValue RetValue = 9248 DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), Glue); 9249 // Glue the RetValue to the end of the call sequence 9250 Chain = RetValue.getValue(1); 9251 Glue = RetValue.getValue(2); 9252 9253 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { 9254 assert(VA.getLocReg() == ArgGPRs[0] && "Unexpected reg assignment"); 9255 SDValue RetValue2 = 9256 DAG.getCopyFromReg(Chain, DL, ArgGPRs[1], MVT::i32, Glue); 9257 Chain = RetValue2.getValue(1); 9258 Glue = RetValue2.getValue(2); 9259 RetValue = DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, RetValue, 9260 RetValue2); 9261 } 9262 9263 RetValue = convertLocVTToValVT(DAG, RetValue, VA, DL, Subtarget); 9264 9265 InVals.push_back(RetValue); 9266 } 9267 9268 return Chain; 9269 } 9270 9271 bool RISCVTargetLowering::CanLowerReturn( 9272 CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg, 9273 const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const { 9274 SmallVector<CCValAssign, 16> RVLocs; 9275 CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context); 9276 9277 Optional<unsigned> FirstMaskArgument; 9278 if (Subtarget.hasVInstructions()) 9279 FirstMaskArgument = preAssignMask(Outs); 9280 9281 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 9282 MVT VT = Outs[i].VT; 9283 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 9284 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 9285 if (CC_RISCV(MF.getDataLayout(), ABI, i, VT, VT, CCValAssign::Full, 9286 ArgFlags, CCInfo, /*IsFixed=*/true, /*IsRet=*/true, nullptr, 9287 *this, FirstMaskArgument)) 9288 return false; 9289 } 9290 return true; 9291 } 9292 9293 SDValue 9294 RISCVTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 9295 bool IsVarArg, 9296 const SmallVectorImpl<ISD::OutputArg> &Outs, 9297 const SmallVectorImpl<SDValue> &OutVals, 9298 const SDLoc &DL, SelectionDAG &DAG) const { 9299 const MachineFunction &MF = DAG.getMachineFunction(); 9300 const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>(); 9301 9302 // Stores the assignment of the return value to a location. 9303 SmallVector<CCValAssign, 16> RVLocs; 9304 9305 // Info about the registers and stack slot. 9306 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, 9307 *DAG.getContext()); 9308 9309 analyzeOutputArgs(DAG.getMachineFunction(), CCInfo, Outs, /*IsRet=*/true, 9310 nullptr, CC_RISCV); 9311 9312 if (CallConv == CallingConv::GHC && !RVLocs.empty()) 9313 report_fatal_error("GHC functions return void only"); 9314 9315 SDValue Glue; 9316 SmallVector<SDValue, 4> RetOps(1, Chain); 9317 9318 // Copy the result values into the output registers. 9319 for (unsigned i = 0, e = RVLocs.size(); i < e; ++i) { 9320 SDValue Val = OutVals[i]; 9321 CCValAssign &VA = RVLocs[i]; 9322 assert(VA.isRegLoc() && "Can only return in registers!"); 9323 9324 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { 9325 // Handle returning f64 on RV32D with a soft float ABI. 9326 assert(VA.isRegLoc() && "Expected return via registers"); 9327 SDValue SplitF64 = DAG.getNode(RISCVISD::SplitF64, DL, 9328 DAG.getVTList(MVT::i32, MVT::i32), Val); 9329 SDValue Lo = SplitF64.getValue(0); 9330 SDValue Hi = SplitF64.getValue(1); 9331 Register RegLo = VA.getLocReg(); 9332 assert(RegLo < RISCV::X31 && "Invalid register pair"); 9333 Register RegHi = RegLo + 1; 9334 9335 if (STI.isRegisterReservedByUser(RegLo) || 9336 STI.isRegisterReservedByUser(RegHi)) 9337 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 9338 MF.getFunction(), 9339 "Return value register required, but has been reserved."}); 9340 9341 Chain = DAG.getCopyToReg(Chain, DL, RegLo, Lo, Glue); 9342 Glue = Chain.getValue(1); 9343 RetOps.push_back(DAG.getRegister(RegLo, MVT::i32)); 9344 Chain = DAG.getCopyToReg(Chain, DL, RegHi, Hi, Glue); 9345 Glue = Chain.getValue(1); 9346 RetOps.push_back(DAG.getRegister(RegHi, MVT::i32)); 9347 } else { 9348 // Handle a 'normal' return. 9349 Val = convertValVTToLocVT(DAG, Val, VA, DL, Subtarget); 9350 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Glue); 9351 9352 if (STI.isRegisterReservedByUser(VA.getLocReg())) 9353 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 9354 MF.getFunction(), 9355 "Return value register required, but has been reserved."}); 9356 9357 // Guarantee that all emitted copies are stuck together. 9358 Glue = Chain.getValue(1); 9359 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 9360 } 9361 } 9362 9363 RetOps[0] = Chain; // Update chain. 9364 9365 // Add the glue node if we have it. 9366 if (Glue.getNode()) { 9367 RetOps.push_back(Glue); 9368 } 9369 9370 unsigned RetOpc = RISCVISD::RET_FLAG; 9371 // Interrupt service routines use different return instructions. 9372 const Function &Func = DAG.getMachineFunction().getFunction(); 9373 if (Func.hasFnAttribute("interrupt")) { 9374 if (!Func.getReturnType()->isVoidTy()) 9375 report_fatal_error( 9376 "Functions with the interrupt attribute must have void return type!"); 9377 9378 MachineFunction &MF = DAG.getMachineFunction(); 9379 StringRef Kind = 9380 MF.getFunction().getFnAttribute("interrupt").getValueAsString(); 9381 9382 if (Kind == "user") 9383 RetOpc = RISCVISD::URET_FLAG; 9384 else if (Kind == "supervisor") 9385 RetOpc = RISCVISD::SRET_FLAG; 9386 else 9387 RetOpc = RISCVISD::MRET_FLAG; 9388 } 9389 9390 return DAG.getNode(RetOpc, DL, MVT::Other, RetOps); 9391 } 9392 9393 void RISCVTargetLowering::validateCCReservedRegs( 9394 const SmallVectorImpl<std::pair<llvm::Register, llvm::SDValue>> &Regs, 9395 MachineFunction &MF) const { 9396 const Function &F = MF.getFunction(); 9397 const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>(); 9398 9399 if (llvm::any_of(Regs, [&STI](auto Reg) { 9400 return STI.isRegisterReservedByUser(Reg.first); 9401 })) 9402 F.getContext().diagnose(DiagnosticInfoUnsupported{ 9403 F, "Argument register required, but has been reserved."}); 9404 } 9405 9406 bool RISCVTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { 9407 return CI->isTailCall(); 9408 } 9409 9410 const char *RISCVTargetLowering::getTargetNodeName(unsigned Opcode) const { 9411 #define NODE_NAME_CASE(NODE) \ 9412 case RISCVISD::NODE: \ 9413 return "RISCVISD::" #NODE; 9414 // clang-format off 9415 switch ((RISCVISD::NodeType)Opcode) { 9416 case RISCVISD::FIRST_NUMBER: 9417 break; 9418 NODE_NAME_CASE(RET_FLAG) 9419 NODE_NAME_CASE(URET_FLAG) 9420 NODE_NAME_CASE(SRET_FLAG) 9421 NODE_NAME_CASE(MRET_FLAG) 9422 NODE_NAME_CASE(CALL) 9423 NODE_NAME_CASE(SELECT_CC) 9424 NODE_NAME_CASE(BR_CC) 9425 NODE_NAME_CASE(BuildPairF64) 9426 NODE_NAME_CASE(SplitF64) 9427 NODE_NAME_CASE(TAIL) 9428 NODE_NAME_CASE(MULHSU) 9429 NODE_NAME_CASE(SLLW) 9430 NODE_NAME_CASE(SRAW) 9431 NODE_NAME_CASE(SRLW) 9432 NODE_NAME_CASE(DIVW) 9433 NODE_NAME_CASE(DIVUW) 9434 NODE_NAME_CASE(REMUW) 9435 NODE_NAME_CASE(ROLW) 9436 NODE_NAME_CASE(RORW) 9437 NODE_NAME_CASE(CLZW) 9438 NODE_NAME_CASE(CTZW) 9439 NODE_NAME_CASE(FSLW) 9440 NODE_NAME_CASE(FSRW) 9441 NODE_NAME_CASE(FSL) 9442 NODE_NAME_CASE(FSR) 9443 NODE_NAME_CASE(FMV_H_X) 9444 NODE_NAME_CASE(FMV_X_ANYEXTH) 9445 NODE_NAME_CASE(FMV_W_X_RV64) 9446 NODE_NAME_CASE(FMV_X_ANYEXTW_RV64) 9447 NODE_NAME_CASE(FCVT_X_RTZ) 9448 NODE_NAME_CASE(FCVT_XU_RTZ) 9449 NODE_NAME_CASE(FCVT_W_RTZ_RV64) 9450 NODE_NAME_CASE(FCVT_WU_RTZ_RV64) 9451 NODE_NAME_CASE(READ_CYCLE_WIDE) 9452 NODE_NAME_CASE(GREV) 9453 NODE_NAME_CASE(GREVW) 9454 NODE_NAME_CASE(GORC) 9455 NODE_NAME_CASE(GORCW) 9456 NODE_NAME_CASE(SHFL) 9457 NODE_NAME_CASE(SHFLW) 9458 NODE_NAME_CASE(UNSHFL) 9459 NODE_NAME_CASE(UNSHFLW) 9460 NODE_NAME_CASE(BCOMPRESS) 9461 NODE_NAME_CASE(BCOMPRESSW) 9462 NODE_NAME_CASE(BDECOMPRESS) 9463 NODE_NAME_CASE(BDECOMPRESSW) 9464 NODE_NAME_CASE(VMV_V_X_VL) 9465 NODE_NAME_CASE(VFMV_V_F_VL) 9466 NODE_NAME_CASE(VMV_X_S) 9467 NODE_NAME_CASE(VMV_S_X_VL) 9468 NODE_NAME_CASE(VFMV_S_F_VL) 9469 NODE_NAME_CASE(SPLAT_VECTOR_I64) 9470 NODE_NAME_CASE(SPLAT_VECTOR_SPLIT_I64_VL) 9471 NODE_NAME_CASE(READ_VLENB) 9472 NODE_NAME_CASE(TRUNCATE_VECTOR_VL) 9473 NODE_NAME_CASE(VSLIDEUP_VL) 9474 NODE_NAME_CASE(VSLIDE1UP_VL) 9475 NODE_NAME_CASE(VSLIDEDOWN_VL) 9476 NODE_NAME_CASE(VSLIDE1DOWN_VL) 9477 NODE_NAME_CASE(VID_VL) 9478 NODE_NAME_CASE(VFNCVT_ROD_VL) 9479 NODE_NAME_CASE(VECREDUCE_ADD_VL) 9480 NODE_NAME_CASE(VECREDUCE_UMAX_VL) 9481 NODE_NAME_CASE(VECREDUCE_SMAX_VL) 9482 NODE_NAME_CASE(VECREDUCE_UMIN_VL) 9483 NODE_NAME_CASE(VECREDUCE_SMIN_VL) 9484 NODE_NAME_CASE(VECREDUCE_AND_VL) 9485 NODE_NAME_CASE(VECREDUCE_OR_VL) 9486 NODE_NAME_CASE(VECREDUCE_XOR_VL) 9487 NODE_NAME_CASE(VECREDUCE_FADD_VL) 9488 NODE_NAME_CASE(VECREDUCE_SEQ_FADD_VL) 9489 NODE_NAME_CASE(VECREDUCE_FMIN_VL) 9490 NODE_NAME_CASE(VECREDUCE_FMAX_VL) 9491 NODE_NAME_CASE(ADD_VL) 9492 NODE_NAME_CASE(AND_VL) 9493 NODE_NAME_CASE(MUL_VL) 9494 NODE_NAME_CASE(OR_VL) 9495 NODE_NAME_CASE(SDIV_VL) 9496 NODE_NAME_CASE(SHL_VL) 9497 NODE_NAME_CASE(SREM_VL) 9498 NODE_NAME_CASE(SRA_VL) 9499 NODE_NAME_CASE(SRL_VL) 9500 NODE_NAME_CASE(SUB_VL) 9501 NODE_NAME_CASE(UDIV_VL) 9502 NODE_NAME_CASE(UREM_VL) 9503 NODE_NAME_CASE(XOR_VL) 9504 NODE_NAME_CASE(SADDSAT_VL) 9505 NODE_NAME_CASE(UADDSAT_VL) 9506 NODE_NAME_CASE(SSUBSAT_VL) 9507 NODE_NAME_CASE(USUBSAT_VL) 9508 NODE_NAME_CASE(FADD_VL) 9509 NODE_NAME_CASE(FSUB_VL) 9510 NODE_NAME_CASE(FMUL_VL) 9511 NODE_NAME_CASE(FDIV_VL) 9512 NODE_NAME_CASE(FNEG_VL) 9513 NODE_NAME_CASE(FABS_VL) 9514 NODE_NAME_CASE(FSQRT_VL) 9515 NODE_NAME_CASE(FMA_VL) 9516 NODE_NAME_CASE(FCOPYSIGN_VL) 9517 NODE_NAME_CASE(SMIN_VL) 9518 NODE_NAME_CASE(SMAX_VL) 9519 NODE_NAME_CASE(UMIN_VL) 9520 NODE_NAME_CASE(UMAX_VL) 9521 NODE_NAME_CASE(FMINNUM_VL) 9522 NODE_NAME_CASE(FMAXNUM_VL) 9523 NODE_NAME_CASE(MULHS_VL) 9524 NODE_NAME_CASE(MULHU_VL) 9525 NODE_NAME_CASE(FP_TO_SINT_VL) 9526 NODE_NAME_CASE(FP_TO_UINT_VL) 9527 NODE_NAME_CASE(SINT_TO_FP_VL) 9528 NODE_NAME_CASE(UINT_TO_FP_VL) 9529 NODE_NAME_CASE(FP_EXTEND_VL) 9530 NODE_NAME_CASE(FP_ROUND_VL) 9531 NODE_NAME_CASE(VWMUL_VL) 9532 NODE_NAME_CASE(VWMULU_VL) 9533 NODE_NAME_CASE(SETCC_VL) 9534 NODE_NAME_CASE(VSELECT_VL) 9535 NODE_NAME_CASE(VMAND_VL) 9536 NODE_NAME_CASE(VMOR_VL) 9537 NODE_NAME_CASE(VMXOR_VL) 9538 NODE_NAME_CASE(VMCLR_VL) 9539 NODE_NAME_CASE(VMSET_VL) 9540 NODE_NAME_CASE(VRGATHER_VX_VL) 9541 NODE_NAME_CASE(VRGATHER_VV_VL) 9542 NODE_NAME_CASE(VRGATHEREI16_VV_VL) 9543 NODE_NAME_CASE(VSEXT_VL) 9544 NODE_NAME_CASE(VZEXT_VL) 9545 NODE_NAME_CASE(VCPOP_VL) 9546 NODE_NAME_CASE(VLE_VL) 9547 NODE_NAME_CASE(VSE_VL) 9548 NODE_NAME_CASE(READ_CSR) 9549 NODE_NAME_CASE(WRITE_CSR) 9550 NODE_NAME_CASE(SWAP_CSR) 9551 } 9552 // clang-format on 9553 return nullptr; 9554 #undef NODE_NAME_CASE 9555 } 9556 9557 /// getConstraintType - Given a constraint letter, return the type of 9558 /// constraint it is for this target. 9559 RISCVTargetLowering::ConstraintType 9560 RISCVTargetLowering::getConstraintType(StringRef Constraint) const { 9561 if (Constraint.size() == 1) { 9562 switch (Constraint[0]) { 9563 default: 9564 break; 9565 case 'f': 9566 return C_RegisterClass; 9567 case 'I': 9568 case 'J': 9569 case 'K': 9570 return C_Immediate; 9571 case 'A': 9572 return C_Memory; 9573 case 'S': // A symbolic address 9574 return C_Other; 9575 } 9576 } else { 9577 if (Constraint == "vr" || Constraint == "vm") 9578 return C_RegisterClass; 9579 } 9580 return TargetLowering::getConstraintType(Constraint); 9581 } 9582 9583 std::pair<unsigned, const TargetRegisterClass *> 9584 RISCVTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 9585 StringRef Constraint, 9586 MVT VT) const { 9587 // First, see if this is a constraint that directly corresponds to a 9588 // RISCV register class. 9589 if (Constraint.size() == 1) { 9590 switch (Constraint[0]) { 9591 case 'r': 9592 return std::make_pair(0U, &RISCV::GPRRegClass); 9593 case 'f': 9594 if (Subtarget.hasStdExtZfh() && VT == MVT::f16) 9595 return std::make_pair(0U, &RISCV::FPR16RegClass); 9596 if (Subtarget.hasStdExtF() && VT == MVT::f32) 9597 return std::make_pair(0U, &RISCV::FPR32RegClass); 9598 if (Subtarget.hasStdExtD() && VT == MVT::f64) 9599 return std::make_pair(0U, &RISCV::FPR64RegClass); 9600 break; 9601 default: 9602 break; 9603 } 9604 } else { 9605 if (Constraint == "vr") { 9606 for (const auto *RC : {&RISCV::VRRegClass, &RISCV::VRM2RegClass, 9607 &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) { 9608 if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy)) 9609 return std::make_pair(0U, RC); 9610 } 9611 } else if (Constraint == "vm") { 9612 if (TRI->isTypeLegalForClass(RISCV::VMV0RegClass, VT.SimpleTy)) 9613 return std::make_pair(0U, &RISCV::VMV0RegClass); 9614 } 9615 } 9616 9617 // Clang will correctly decode the usage of register name aliases into their 9618 // official names. However, other frontends like `rustc` do not. This allows 9619 // users of these frontends to use the ABI names for registers in LLVM-style 9620 // register constraints. 9621 unsigned XRegFromAlias = StringSwitch<unsigned>(Constraint.lower()) 9622 .Case("{zero}", RISCV::X0) 9623 .Case("{ra}", RISCV::X1) 9624 .Case("{sp}", RISCV::X2) 9625 .Case("{gp}", RISCV::X3) 9626 .Case("{tp}", RISCV::X4) 9627 .Case("{t0}", RISCV::X5) 9628 .Case("{t1}", RISCV::X6) 9629 .Case("{t2}", RISCV::X7) 9630 .Cases("{s0}", "{fp}", RISCV::X8) 9631 .Case("{s1}", RISCV::X9) 9632 .Case("{a0}", RISCV::X10) 9633 .Case("{a1}", RISCV::X11) 9634 .Case("{a2}", RISCV::X12) 9635 .Case("{a3}", RISCV::X13) 9636 .Case("{a4}", RISCV::X14) 9637 .Case("{a5}", RISCV::X15) 9638 .Case("{a6}", RISCV::X16) 9639 .Case("{a7}", RISCV::X17) 9640 .Case("{s2}", RISCV::X18) 9641 .Case("{s3}", RISCV::X19) 9642 .Case("{s4}", RISCV::X20) 9643 .Case("{s5}", RISCV::X21) 9644 .Case("{s6}", RISCV::X22) 9645 .Case("{s7}", RISCV::X23) 9646 .Case("{s8}", RISCV::X24) 9647 .Case("{s9}", RISCV::X25) 9648 .Case("{s10}", RISCV::X26) 9649 .Case("{s11}", RISCV::X27) 9650 .Case("{t3}", RISCV::X28) 9651 .Case("{t4}", RISCV::X29) 9652 .Case("{t5}", RISCV::X30) 9653 .Case("{t6}", RISCV::X31) 9654 .Default(RISCV::NoRegister); 9655 if (XRegFromAlias != RISCV::NoRegister) 9656 return std::make_pair(XRegFromAlias, &RISCV::GPRRegClass); 9657 9658 // Since TargetLowering::getRegForInlineAsmConstraint uses the name of the 9659 // TableGen record rather than the AsmName to choose registers for InlineAsm 9660 // constraints, plus we want to match those names to the widest floating point 9661 // register type available, manually select floating point registers here. 9662 // 9663 // The second case is the ABI name of the register, so that frontends can also 9664 // use the ABI names in register constraint lists. 9665 if (Subtarget.hasStdExtF()) { 9666 unsigned FReg = StringSwitch<unsigned>(Constraint.lower()) 9667 .Cases("{f0}", "{ft0}", RISCV::F0_F) 9668 .Cases("{f1}", "{ft1}", RISCV::F1_F) 9669 .Cases("{f2}", "{ft2}", RISCV::F2_F) 9670 .Cases("{f3}", "{ft3}", RISCV::F3_F) 9671 .Cases("{f4}", "{ft4}", RISCV::F4_F) 9672 .Cases("{f5}", "{ft5}", RISCV::F5_F) 9673 .Cases("{f6}", "{ft6}", RISCV::F6_F) 9674 .Cases("{f7}", "{ft7}", RISCV::F7_F) 9675 .Cases("{f8}", "{fs0}", RISCV::F8_F) 9676 .Cases("{f9}", "{fs1}", RISCV::F9_F) 9677 .Cases("{f10}", "{fa0}", RISCV::F10_F) 9678 .Cases("{f11}", "{fa1}", RISCV::F11_F) 9679 .Cases("{f12}", "{fa2}", RISCV::F12_F) 9680 .Cases("{f13}", "{fa3}", RISCV::F13_F) 9681 .Cases("{f14}", "{fa4}", RISCV::F14_F) 9682 .Cases("{f15}", "{fa5}", RISCV::F15_F) 9683 .Cases("{f16}", "{fa6}", RISCV::F16_F) 9684 .Cases("{f17}", "{fa7}", RISCV::F17_F) 9685 .Cases("{f18}", "{fs2}", RISCV::F18_F) 9686 .Cases("{f19}", "{fs3}", RISCV::F19_F) 9687 .Cases("{f20}", "{fs4}", RISCV::F20_F) 9688 .Cases("{f21}", "{fs5}", RISCV::F21_F) 9689 .Cases("{f22}", "{fs6}", RISCV::F22_F) 9690 .Cases("{f23}", "{fs7}", RISCV::F23_F) 9691 .Cases("{f24}", "{fs8}", RISCV::F24_F) 9692 .Cases("{f25}", "{fs9}", RISCV::F25_F) 9693 .Cases("{f26}", "{fs10}", RISCV::F26_F) 9694 .Cases("{f27}", "{fs11}", RISCV::F27_F) 9695 .Cases("{f28}", "{ft8}", RISCV::F28_F) 9696 .Cases("{f29}", "{ft9}", RISCV::F29_F) 9697 .Cases("{f30}", "{ft10}", RISCV::F30_F) 9698 .Cases("{f31}", "{ft11}", RISCV::F31_F) 9699 .Default(RISCV::NoRegister); 9700 if (FReg != RISCV::NoRegister) { 9701 assert(RISCV::F0_F <= FReg && FReg <= RISCV::F31_F && "Unknown fp-reg"); 9702 if (Subtarget.hasStdExtD()) { 9703 unsigned RegNo = FReg - RISCV::F0_F; 9704 unsigned DReg = RISCV::F0_D + RegNo; 9705 return std::make_pair(DReg, &RISCV::FPR64RegClass); 9706 } 9707 return std::make_pair(FReg, &RISCV::FPR32RegClass); 9708 } 9709 } 9710 9711 if (Subtarget.hasVInstructions()) { 9712 Register VReg = StringSwitch<Register>(Constraint.lower()) 9713 .Case("{v0}", RISCV::V0) 9714 .Case("{v1}", RISCV::V1) 9715 .Case("{v2}", RISCV::V2) 9716 .Case("{v3}", RISCV::V3) 9717 .Case("{v4}", RISCV::V4) 9718 .Case("{v5}", RISCV::V5) 9719 .Case("{v6}", RISCV::V6) 9720 .Case("{v7}", RISCV::V7) 9721 .Case("{v8}", RISCV::V8) 9722 .Case("{v9}", RISCV::V9) 9723 .Case("{v10}", RISCV::V10) 9724 .Case("{v11}", RISCV::V11) 9725 .Case("{v12}", RISCV::V12) 9726 .Case("{v13}", RISCV::V13) 9727 .Case("{v14}", RISCV::V14) 9728 .Case("{v15}", RISCV::V15) 9729 .Case("{v16}", RISCV::V16) 9730 .Case("{v17}", RISCV::V17) 9731 .Case("{v18}", RISCV::V18) 9732 .Case("{v19}", RISCV::V19) 9733 .Case("{v20}", RISCV::V20) 9734 .Case("{v21}", RISCV::V21) 9735 .Case("{v22}", RISCV::V22) 9736 .Case("{v23}", RISCV::V23) 9737 .Case("{v24}", RISCV::V24) 9738 .Case("{v25}", RISCV::V25) 9739 .Case("{v26}", RISCV::V26) 9740 .Case("{v27}", RISCV::V27) 9741 .Case("{v28}", RISCV::V28) 9742 .Case("{v29}", RISCV::V29) 9743 .Case("{v30}", RISCV::V30) 9744 .Case("{v31}", RISCV::V31) 9745 .Default(RISCV::NoRegister); 9746 if (VReg != RISCV::NoRegister) { 9747 if (TRI->isTypeLegalForClass(RISCV::VMRegClass, VT.SimpleTy)) 9748 return std::make_pair(VReg, &RISCV::VMRegClass); 9749 if (TRI->isTypeLegalForClass(RISCV::VRRegClass, VT.SimpleTy)) 9750 return std::make_pair(VReg, &RISCV::VRRegClass); 9751 for (const auto *RC : 9752 {&RISCV::VRM2RegClass, &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) { 9753 if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy)) { 9754 VReg = TRI->getMatchingSuperReg(VReg, RISCV::sub_vrm1_0, RC); 9755 return std::make_pair(VReg, RC); 9756 } 9757 } 9758 } 9759 } 9760 9761 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 9762 } 9763 9764 unsigned 9765 RISCVTargetLowering::getInlineAsmMemConstraint(StringRef ConstraintCode) const { 9766 // Currently only support length 1 constraints. 9767 if (ConstraintCode.size() == 1) { 9768 switch (ConstraintCode[0]) { 9769 case 'A': 9770 return InlineAsm::Constraint_A; 9771 default: 9772 break; 9773 } 9774 } 9775 9776 return TargetLowering::getInlineAsmMemConstraint(ConstraintCode); 9777 } 9778 9779 void RISCVTargetLowering::LowerAsmOperandForConstraint( 9780 SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops, 9781 SelectionDAG &DAG) const { 9782 // Currently only support length 1 constraints. 9783 if (Constraint.length() == 1) { 9784 switch (Constraint[0]) { 9785 case 'I': 9786 // Validate & create a 12-bit signed immediate operand. 9787 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 9788 uint64_t CVal = C->getSExtValue(); 9789 if (isInt<12>(CVal)) 9790 Ops.push_back( 9791 DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT())); 9792 } 9793 return; 9794 case 'J': 9795 // Validate & create an integer zero operand. 9796 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 9797 if (C->getZExtValue() == 0) 9798 Ops.push_back( 9799 DAG.getTargetConstant(0, SDLoc(Op), Subtarget.getXLenVT())); 9800 return; 9801 case 'K': 9802 // Validate & create a 5-bit unsigned immediate operand. 9803 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 9804 uint64_t CVal = C->getZExtValue(); 9805 if (isUInt<5>(CVal)) 9806 Ops.push_back( 9807 DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT())); 9808 } 9809 return; 9810 case 'S': 9811 if (const auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) { 9812 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op), 9813 GA->getValueType(0))); 9814 } else if (const auto *BA = dyn_cast<BlockAddressSDNode>(Op)) { 9815 Ops.push_back(DAG.getTargetBlockAddress(BA->getBlockAddress(), 9816 BA->getValueType(0))); 9817 } 9818 return; 9819 default: 9820 break; 9821 } 9822 } 9823 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 9824 } 9825 9826 Instruction *RISCVTargetLowering::emitLeadingFence(IRBuilderBase &Builder, 9827 Instruction *Inst, 9828 AtomicOrdering Ord) const { 9829 if (isa<LoadInst>(Inst) && Ord == AtomicOrdering::SequentiallyConsistent) 9830 return Builder.CreateFence(Ord); 9831 if (isa<StoreInst>(Inst) && isReleaseOrStronger(Ord)) 9832 return Builder.CreateFence(AtomicOrdering::Release); 9833 return nullptr; 9834 } 9835 9836 Instruction *RISCVTargetLowering::emitTrailingFence(IRBuilderBase &Builder, 9837 Instruction *Inst, 9838 AtomicOrdering Ord) const { 9839 if (isa<LoadInst>(Inst) && isAcquireOrStronger(Ord)) 9840 return Builder.CreateFence(AtomicOrdering::Acquire); 9841 return nullptr; 9842 } 9843 9844 TargetLowering::AtomicExpansionKind 9845 RISCVTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { 9846 // atomicrmw {fadd,fsub} must be expanded to use compare-exchange, as floating 9847 // point operations can't be used in an lr/sc sequence without breaking the 9848 // forward-progress guarantee. 9849 if (AI->isFloatingPointOperation()) 9850 return AtomicExpansionKind::CmpXChg; 9851 9852 unsigned Size = AI->getType()->getPrimitiveSizeInBits(); 9853 if (Size == 8 || Size == 16) 9854 return AtomicExpansionKind::MaskedIntrinsic; 9855 return AtomicExpansionKind::None; 9856 } 9857 9858 static Intrinsic::ID 9859 getIntrinsicForMaskedAtomicRMWBinOp(unsigned XLen, AtomicRMWInst::BinOp BinOp) { 9860 if (XLen == 32) { 9861 switch (BinOp) { 9862 default: 9863 llvm_unreachable("Unexpected AtomicRMW BinOp"); 9864 case AtomicRMWInst::Xchg: 9865 return Intrinsic::riscv_masked_atomicrmw_xchg_i32; 9866 case AtomicRMWInst::Add: 9867 return Intrinsic::riscv_masked_atomicrmw_add_i32; 9868 case AtomicRMWInst::Sub: 9869 return Intrinsic::riscv_masked_atomicrmw_sub_i32; 9870 case AtomicRMWInst::Nand: 9871 return Intrinsic::riscv_masked_atomicrmw_nand_i32; 9872 case AtomicRMWInst::Max: 9873 return Intrinsic::riscv_masked_atomicrmw_max_i32; 9874 case AtomicRMWInst::Min: 9875 return Intrinsic::riscv_masked_atomicrmw_min_i32; 9876 case AtomicRMWInst::UMax: 9877 return Intrinsic::riscv_masked_atomicrmw_umax_i32; 9878 case AtomicRMWInst::UMin: 9879 return Intrinsic::riscv_masked_atomicrmw_umin_i32; 9880 } 9881 } 9882 9883 if (XLen == 64) { 9884 switch (BinOp) { 9885 default: 9886 llvm_unreachable("Unexpected AtomicRMW BinOp"); 9887 case AtomicRMWInst::Xchg: 9888 return Intrinsic::riscv_masked_atomicrmw_xchg_i64; 9889 case AtomicRMWInst::Add: 9890 return Intrinsic::riscv_masked_atomicrmw_add_i64; 9891 case AtomicRMWInst::Sub: 9892 return Intrinsic::riscv_masked_atomicrmw_sub_i64; 9893 case AtomicRMWInst::Nand: 9894 return Intrinsic::riscv_masked_atomicrmw_nand_i64; 9895 case AtomicRMWInst::Max: 9896 return Intrinsic::riscv_masked_atomicrmw_max_i64; 9897 case AtomicRMWInst::Min: 9898 return Intrinsic::riscv_masked_atomicrmw_min_i64; 9899 case AtomicRMWInst::UMax: 9900 return Intrinsic::riscv_masked_atomicrmw_umax_i64; 9901 case AtomicRMWInst::UMin: 9902 return Intrinsic::riscv_masked_atomicrmw_umin_i64; 9903 } 9904 } 9905 9906 llvm_unreachable("Unexpected XLen\n"); 9907 } 9908 9909 Value *RISCVTargetLowering::emitMaskedAtomicRMWIntrinsic( 9910 IRBuilderBase &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr, 9911 Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const { 9912 unsigned XLen = Subtarget.getXLen(); 9913 Value *Ordering = 9914 Builder.getIntN(XLen, static_cast<uint64_t>(AI->getOrdering())); 9915 Type *Tys[] = {AlignedAddr->getType()}; 9916 Function *LrwOpScwLoop = Intrinsic::getDeclaration( 9917 AI->getModule(), 9918 getIntrinsicForMaskedAtomicRMWBinOp(XLen, AI->getOperation()), Tys); 9919 9920 if (XLen == 64) { 9921 Incr = Builder.CreateSExt(Incr, Builder.getInt64Ty()); 9922 Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty()); 9923 ShiftAmt = Builder.CreateSExt(ShiftAmt, Builder.getInt64Ty()); 9924 } 9925 9926 Value *Result; 9927 9928 // Must pass the shift amount needed to sign extend the loaded value prior 9929 // to performing a signed comparison for min/max. ShiftAmt is the number of 9930 // bits to shift the value into position. Pass XLen-ShiftAmt-ValWidth, which 9931 // is the number of bits to left+right shift the value in order to 9932 // sign-extend. 9933 if (AI->getOperation() == AtomicRMWInst::Min || 9934 AI->getOperation() == AtomicRMWInst::Max) { 9935 const DataLayout &DL = AI->getModule()->getDataLayout(); 9936 unsigned ValWidth = 9937 DL.getTypeStoreSizeInBits(AI->getValOperand()->getType()); 9938 Value *SextShamt = 9939 Builder.CreateSub(Builder.getIntN(XLen, XLen - ValWidth), ShiftAmt); 9940 Result = Builder.CreateCall(LrwOpScwLoop, 9941 {AlignedAddr, Incr, Mask, SextShamt, Ordering}); 9942 } else { 9943 Result = 9944 Builder.CreateCall(LrwOpScwLoop, {AlignedAddr, Incr, Mask, Ordering}); 9945 } 9946 9947 if (XLen == 64) 9948 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty()); 9949 return Result; 9950 } 9951 9952 TargetLowering::AtomicExpansionKind 9953 RISCVTargetLowering::shouldExpandAtomicCmpXchgInIR( 9954 AtomicCmpXchgInst *CI) const { 9955 unsigned Size = CI->getCompareOperand()->getType()->getPrimitiveSizeInBits(); 9956 if (Size == 8 || Size == 16) 9957 return AtomicExpansionKind::MaskedIntrinsic; 9958 return AtomicExpansionKind::None; 9959 } 9960 9961 Value *RISCVTargetLowering::emitMaskedAtomicCmpXchgIntrinsic( 9962 IRBuilderBase &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr, 9963 Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const { 9964 unsigned XLen = Subtarget.getXLen(); 9965 Value *Ordering = Builder.getIntN(XLen, static_cast<uint64_t>(Ord)); 9966 Intrinsic::ID CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i32; 9967 if (XLen == 64) { 9968 CmpVal = Builder.CreateSExt(CmpVal, Builder.getInt64Ty()); 9969 NewVal = Builder.CreateSExt(NewVal, Builder.getInt64Ty()); 9970 Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty()); 9971 CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i64; 9972 } 9973 Type *Tys[] = {AlignedAddr->getType()}; 9974 Function *MaskedCmpXchg = 9975 Intrinsic::getDeclaration(CI->getModule(), CmpXchgIntrID, Tys); 9976 Value *Result = Builder.CreateCall( 9977 MaskedCmpXchg, {AlignedAddr, CmpVal, NewVal, Mask, Ordering}); 9978 if (XLen == 64) 9979 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty()); 9980 return Result; 9981 } 9982 9983 bool RISCVTargetLowering::shouldRemoveExtendFromGSIndex(EVT VT) const { 9984 return false; 9985 } 9986 9987 bool RISCVTargetLowering::shouldConvertFpToSat(unsigned Op, EVT FPVT, 9988 EVT VT) const { 9989 if (!isOperationLegalOrCustom(Op, VT) || !FPVT.isSimple()) 9990 return false; 9991 9992 switch (FPVT.getSimpleVT().SimpleTy) { 9993 case MVT::f16: 9994 return Subtarget.hasStdExtZfh(); 9995 case MVT::f32: 9996 return Subtarget.hasStdExtF(); 9997 case MVT::f64: 9998 return Subtarget.hasStdExtD(); 9999 default: 10000 return false; 10001 } 10002 } 10003 10004 bool RISCVTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, 10005 EVT VT) const { 10006 VT = VT.getScalarType(); 10007 10008 if (!VT.isSimple()) 10009 return false; 10010 10011 switch (VT.getSimpleVT().SimpleTy) { 10012 case MVT::f16: 10013 return Subtarget.hasStdExtZfh(); 10014 case MVT::f32: 10015 return Subtarget.hasStdExtF(); 10016 case MVT::f64: 10017 return Subtarget.hasStdExtD(); 10018 default: 10019 break; 10020 } 10021 10022 return false; 10023 } 10024 10025 Register RISCVTargetLowering::getExceptionPointerRegister( 10026 const Constant *PersonalityFn) const { 10027 return RISCV::X10; 10028 } 10029 10030 Register RISCVTargetLowering::getExceptionSelectorRegister( 10031 const Constant *PersonalityFn) const { 10032 return RISCV::X11; 10033 } 10034 10035 bool RISCVTargetLowering::shouldExtendTypeInLibCall(EVT Type) const { 10036 // Return false to suppress the unnecessary extensions if the LibCall 10037 // arguments or return value is f32 type for LP64 ABI. 10038 RISCVABI::ABI ABI = Subtarget.getTargetABI(); 10039 if (ABI == RISCVABI::ABI_LP64 && (Type == MVT::f32)) 10040 return false; 10041 10042 return true; 10043 } 10044 10045 bool RISCVTargetLowering::shouldSignExtendTypeInLibCall(EVT Type, bool IsSigned) const { 10046 if (Subtarget.is64Bit() && Type == MVT::i32) 10047 return true; 10048 10049 return IsSigned; 10050 } 10051 10052 bool RISCVTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT, 10053 SDValue C) const { 10054 // Check integral scalar types. 10055 if (VT.isScalarInteger()) { 10056 // Omit the optimization if the sub target has the M extension and the data 10057 // size exceeds XLen. 10058 if (Subtarget.hasStdExtM() && VT.getSizeInBits() > Subtarget.getXLen()) 10059 return false; 10060 if (auto *ConstNode = dyn_cast<ConstantSDNode>(C.getNode())) { 10061 // Break the MUL to a SLLI and an ADD/SUB. 10062 const APInt &Imm = ConstNode->getAPIntValue(); 10063 if ((Imm + 1).isPowerOf2() || (Imm - 1).isPowerOf2() || 10064 (1 - Imm).isPowerOf2() || (-1 - Imm).isPowerOf2()) 10065 return true; 10066 // Optimize the MUL to (SH*ADD x, (SLLI x, bits)) if Imm is not simm12. 10067 if (Subtarget.hasStdExtZba() && !Imm.isSignedIntN(12) && 10068 ((Imm - 2).isPowerOf2() || (Imm - 4).isPowerOf2() || 10069 (Imm - 8).isPowerOf2())) 10070 return true; 10071 // Omit the following optimization if the sub target has the M extension 10072 // and the data size >= XLen. 10073 if (Subtarget.hasStdExtM() && VT.getSizeInBits() >= Subtarget.getXLen()) 10074 return false; 10075 // Break the MUL to two SLLI instructions and an ADD/SUB, if Imm needs 10076 // a pair of LUI/ADDI. 10077 if (!Imm.isSignedIntN(12) && Imm.countTrailingZeros() < 12) { 10078 APInt ImmS = Imm.ashr(Imm.countTrailingZeros()); 10079 if ((ImmS + 1).isPowerOf2() || (ImmS - 1).isPowerOf2() || 10080 (1 - ImmS).isPowerOf2()) 10081 return true; 10082 } 10083 } 10084 } 10085 10086 return false; 10087 } 10088 10089 bool RISCVTargetLowering::isMulAddWithConstProfitable( 10090 const SDValue &AddNode, const SDValue &ConstNode) const { 10091 // Let the DAGCombiner decide for vectors. 10092 EVT VT = AddNode.getValueType(); 10093 if (VT.isVector()) 10094 return true; 10095 10096 // Let the DAGCombiner decide for larger types. 10097 if (VT.getScalarSizeInBits() > Subtarget.getXLen()) 10098 return true; 10099 10100 // It is worse if c1 is simm12 while c1*c2 is not. 10101 ConstantSDNode *C1Node = cast<ConstantSDNode>(AddNode.getOperand(1)); 10102 ConstantSDNode *C2Node = cast<ConstantSDNode>(ConstNode); 10103 const APInt &C1 = C1Node->getAPIntValue(); 10104 const APInt &C2 = C2Node->getAPIntValue(); 10105 if (C1.isSignedIntN(12) && !(C1 * C2).isSignedIntN(12)) 10106 return false; 10107 10108 // Default to true and let the DAGCombiner decide. 10109 return true; 10110 } 10111 10112 bool RISCVTargetLowering::allowsMisalignedMemoryAccesses( 10113 EVT VT, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags, 10114 bool *Fast) const { 10115 if (!VT.isVector()) 10116 return false; 10117 10118 EVT ElemVT = VT.getVectorElementType(); 10119 if (Alignment >= ElemVT.getStoreSize()) { 10120 if (Fast) 10121 *Fast = true; 10122 return true; 10123 } 10124 10125 return false; 10126 } 10127 10128 bool RISCVTargetLowering::splitValueIntoRegisterParts( 10129 SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts, 10130 unsigned NumParts, MVT PartVT, Optional<CallingConv::ID> CC) const { 10131 bool IsABIRegCopy = CC.hasValue(); 10132 EVT ValueVT = Val.getValueType(); 10133 if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) { 10134 // Cast the f16 to i16, extend to i32, pad with ones to make a float nan, 10135 // and cast to f32. 10136 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i16, Val); 10137 Val = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Val); 10138 Val = DAG.getNode(ISD::OR, DL, MVT::i32, Val, 10139 DAG.getConstant(0xFFFF0000, DL, MVT::i32)); 10140 Val = DAG.getNode(ISD::BITCAST, DL, MVT::f32, Val); 10141 Parts[0] = Val; 10142 return true; 10143 } 10144 10145 if (ValueVT.isScalableVector() && PartVT.isScalableVector()) { 10146 LLVMContext &Context = *DAG.getContext(); 10147 EVT ValueEltVT = ValueVT.getVectorElementType(); 10148 EVT PartEltVT = PartVT.getVectorElementType(); 10149 unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize(); 10150 unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize(); 10151 if (PartVTBitSize % ValueVTBitSize == 0) { 10152 assert(PartVTBitSize >= ValueVTBitSize); 10153 // If the element types are different, bitcast to the same element type of 10154 // PartVT first. 10155 // Give an example here, we want copy a <vscale x 1 x i8> value to 10156 // <vscale x 4 x i16>. 10157 // We need to convert <vscale x 1 x i8> to <vscale x 8 x i8> by insert 10158 // subvector, then we can bitcast to <vscale x 4 x i16>. 10159 if (ValueEltVT != PartEltVT) { 10160 if (PartVTBitSize > ValueVTBitSize) { 10161 unsigned Count = PartVTBitSize / ValueEltVT.getFixedSizeInBits(); 10162 assert(Count != 0 && "The number of element should not be zero."); 10163 EVT SameEltTypeVT = 10164 EVT::getVectorVT(Context, ValueEltVT, Count, /*IsScalable=*/true); 10165 Val = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, SameEltTypeVT, 10166 DAG.getUNDEF(SameEltTypeVT), Val, 10167 DAG.getVectorIdxConstant(0, DL)); 10168 } 10169 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 10170 } else { 10171 Val = 10172 DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT), 10173 Val, DAG.getVectorIdxConstant(0, DL)); 10174 } 10175 Parts[0] = Val; 10176 return true; 10177 } 10178 } 10179 return false; 10180 } 10181 10182 SDValue RISCVTargetLowering::joinRegisterPartsIntoValue( 10183 SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts, 10184 MVT PartVT, EVT ValueVT, Optional<CallingConv::ID> CC) const { 10185 bool IsABIRegCopy = CC.hasValue(); 10186 if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) { 10187 SDValue Val = Parts[0]; 10188 10189 // Cast the f32 to i32, truncate to i16, and cast back to f16. 10190 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Val); 10191 Val = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Val); 10192 Val = DAG.getNode(ISD::BITCAST, DL, MVT::f16, Val); 10193 return Val; 10194 } 10195 10196 if (ValueVT.isScalableVector() && PartVT.isScalableVector()) { 10197 LLVMContext &Context = *DAG.getContext(); 10198 SDValue Val = Parts[0]; 10199 EVT ValueEltVT = ValueVT.getVectorElementType(); 10200 EVT PartEltVT = PartVT.getVectorElementType(); 10201 unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize(); 10202 unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize(); 10203 if (PartVTBitSize % ValueVTBitSize == 0) { 10204 assert(PartVTBitSize >= ValueVTBitSize); 10205 EVT SameEltTypeVT = ValueVT; 10206 // If the element types are different, convert it to the same element type 10207 // of PartVT. 10208 // Give an example here, we want copy a <vscale x 1 x i8> value from 10209 // <vscale x 4 x i16>. 10210 // We need to convert <vscale x 4 x i16> to <vscale x 8 x i8> first, 10211 // then we can extract <vscale x 1 x i8>. 10212 if (ValueEltVT != PartEltVT) { 10213 unsigned Count = PartVTBitSize / ValueEltVT.getFixedSizeInBits(); 10214 assert(Count != 0 && "The number of element should not be zero."); 10215 SameEltTypeVT = 10216 EVT::getVectorVT(Context, ValueEltVT, Count, /*IsScalable=*/true); 10217 Val = DAG.getNode(ISD::BITCAST, DL, SameEltTypeVT, Val); 10218 } 10219 Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 10220 DAG.getVectorIdxConstant(0, DL)); 10221 return Val; 10222 } 10223 } 10224 return SDValue(); 10225 } 10226 10227 #define GET_REGISTER_MATCHER 10228 #include "RISCVGenAsmMatcher.inc" 10229 10230 Register 10231 RISCVTargetLowering::getRegisterByName(const char *RegName, LLT VT, 10232 const MachineFunction &MF) const { 10233 Register Reg = MatchRegisterAltName(RegName); 10234 if (Reg == RISCV::NoRegister) 10235 Reg = MatchRegisterName(RegName); 10236 if (Reg == RISCV::NoRegister) 10237 report_fatal_error( 10238 Twine("Invalid register name \"" + StringRef(RegName) + "\".")); 10239 BitVector ReservedRegs = Subtarget.getRegisterInfo()->getReservedRegs(MF); 10240 if (!ReservedRegs.test(Reg) && !Subtarget.isRegisterReservedByUser(Reg)) 10241 report_fatal_error(Twine("Trying to obtain non-reserved register \"" + 10242 StringRef(RegName) + "\".")); 10243 return Reg; 10244 } 10245 10246 namespace llvm { 10247 namespace RISCVVIntrinsicsTable { 10248 10249 #define GET_RISCVVIntrinsicsTable_IMPL 10250 #include "RISCVGenSearchableTables.inc" 10251 10252 } // namespace RISCVVIntrinsicsTable 10253 10254 } // namespace llvm 10255