1 //===-- RISCVISelLowering.cpp - RISCV DAG Lowering Implementation --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the interfaces that RISCV uses to lower LLVM code into a 11 // selection DAG. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "RISCVISelLowering.h" 16 #include "RISCV.h" 17 #include "RISCVMachineFunctionInfo.h" 18 #include "RISCVRegisterInfo.h" 19 #include "RISCVSubtarget.h" 20 #include "RISCVTargetMachine.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/CodeGen/CallingConvLower.h" 23 #include "llvm/CodeGen/MachineFrameInfo.h" 24 #include "llvm/CodeGen/MachineFunction.h" 25 #include "llvm/CodeGen/MachineInstrBuilder.h" 26 #include "llvm/CodeGen/MachineRegisterInfo.h" 27 #include "llvm/CodeGen/SelectionDAGISel.h" 28 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 29 #include "llvm/CodeGen/ValueTypes.h" 30 #include "llvm/IR/DiagnosticInfo.h" 31 #include "llvm/IR/DiagnosticPrinter.h" 32 #include "llvm/Support/Debug.h" 33 #include "llvm/Support/ErrorHandling.h" 34 #include "llvm/Support/raw_ostream.h" 35 36 using namespace llvm; 37 38 #define DEBUG_TYPE "riscv-lower" 39 40 STATISTIC(NumTailCalls, "Number of tail calls"); 41 42 RISCVTargetLowering::RISCVTargetLowering(const TargetMachine &TM, 43 const RISCVSubtarget &STI) 44 : TargetLowering(TM), Subtarget(STI) { 45 46 MVT XLenVT = Subtarget.getXLenVT(); 47 48 // Set up the register classes. 49 addRegisterClass(XLenVT, &RISCV::GPRRegClass); 50 51 if (Subtarget.hasStdExtF()) 52 addRegisterClass(MVT::f32, &RISCV::FPR32RegClass); 53 if (Subtarget.hasStdExtD()) 54 addRegisterClass(MVT::f64, &RISCV::FPR64RegClass); 55 56 // Compute derived properties from the register classes. 57 computeRegisterProperties(STI.getRegisterInfo()); 58 59 setStackPointerRegisterToSaveRestore(RISCV::X2); 60 61 for (auto N : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}) 62 setLoadExtAction(N, XLenVT, MVT::i1, Promote); 63 64 // TODO: add all necessary setOperationAction calls. 65 setOperationAction(ISD::DYNAMIC_STACKALLOC, XLenVT, Expand); 66 67 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 68 setOperationAction(ISD::BR_CC, XLenVT, Expand); 69 setOperationAction(ISD::SELECT, XLenVT, Custom); 70 setOperationAction(ISD::SELECT_CC, XLenVT, Expand); 71 72 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); 73 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); 74 75 setOperationAction(ISD::VASTART, MVT::Other, Custom); 76 setOperationAction(ISD::VAARG, MVT::Other, Expand); 77 setOperationAction(ISD::VACOPY, MVT::Other, Expand); 78 setOperationAction(ISD::VAEND, MVT::Other, Expand); 79 80 for (auto VT : {MVT::i1, MVT::i8, MVT::i16}) 81 setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand); 82 83 if (!Subtarget.hasStdExtM()) { 84 setOperationAction(ISD::MUL, XLenVT, Expand); 85 setOperationAction(ISD::MULHS, XLenVT, Expand); 86 setOperationAction(ISD::MULHU, XLenVT, Expand); 87 setOperationAction(ISD::SDIV, XLenVT, Expand); 88 setOperationAction(ISD::UDIV, XLenVT, Expand); 89 setOperationAction(ISD::SREM, XLenVT, Expand); 90 setOperationAction(ISD::UREM, XLenVT, Expand); 91 } 92 93 setOperationAction(ISD::SDIVREM, XLenVT, Expand); 94 setOperationAction(ISD::UDIVREM, XLenVT, Expand); 95 setOperationAction(ISD::SMUL_LOHI, XLenVT, Expand); 96 setOperationAction(ISD::UMUL_LOHI, XLenVT, Expand); 97 98 setOperationAction(ISD::SHL_PARTS, XLenVT, Expand); 99 setOperationAction(ISD::SRL_PARTS, XLenVT, Expand); 100 setOperationAction(ISD::SRA_PARTS, XLenVT, Expand); 101 102 setOperationAction(ISD::ROTL, XLenVT, Expand); 103 setOperationAction(ISD::ROTR, XLenVT, Expand); 104 setOperationAction(ISD::BSWAP, XLenVT, Expand); 105 setOperationAction(ISD::CTTZ, XLenVT, Expand); 106 setOperationAction(ISD::CTLZ, XLenVT, Expand); 107 setOperationAction(ISD::CTPOP, XLenVT, Expand); 108 109 ISD::CondCode FPCCToExtend[] = { 110 ISD::SETOGT, ISD::SETOGE, ISD::SETONE, ISD::SETO, ISD::SETUEQ, 111 ISD::SETUGT, ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUNE, 112 ISD::SETGT, ISD::SETGE, ISD::SETNE}; 113 114 if (Subtarget.hasStdExtF()) { 115 setOperationAction(ISD::FMINNUM, MVT::f32, Legal); 116 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); 117 for (auto CC : FPCCToExtend) 118 setCondCodeAction(CC, MVT::f32, Expand); 119 setOperationAction(ISD::SELECT_CC, MVT::f32, Expand); 120 setOperationAction(ISD::SELECT, MVT::f32, Custom); 121 setOperationAction(ISD::BR_CC, MVT::f32, Expand); 122 } 123 124 if (Subtarget.hasStdExtD()) { 125 setOperationAction(ISD::FMINNUM, MVT::f64, Legal); 126 setOperationAction(ISD::FMAXNUM, MVT::f64, Legal); 127 for (auto CC : FPCCToExtend) 128 setCondCodeAction(CC, MVT::f64, Expand); 129 setOperationAction(ISD::SELECT_CC, MVT::f64, Expand); 130 setOperationAction(ISD::SELECT, MVT::f64, Custom); 131 setOperationAction(ISD::BR_CC, MVT::f64, Expand); 132 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 133 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 134 } 135 136 setOperationAction(ISD::GlobalAddress, XLenVT, Custom); 137 setOperationAction(ISD::BlockAddress, XLenVT, Custom); 138 setOperationAction(ISD::ConstantPool, XLenVT, Custom); 139 140 setBooleanContents(ZeroOrOneBooleanContent); 141 142 // Function alignments (log2). 143 unsigned FunctionAlignment = Subtarget.hasStdExtC() ? 1 : 2; 144 setMinFunctionAlignment(FunctionAlignment); 145 setPrefFunctionAlignment(FunctionAlignment); 146 147 // Effectively disable jump table generation. 148 setMinimumJumpTableEntries(INT_MAX); 149 } 150 151 EVT RISCVTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &, 152 EVT VT) const { 153 if (!VT.isVector()) 154 return getPointerTy(DL); 155 return VT.changeVectorElementTypeToInteger(); 156 } 157 158 bool RISCVTargetLowering::isLegalAddressingMode(const DataLayout &DL, 159 const AddrMode &AM, Type *Ty, 160 unsigned AS, 161 Instruction *I) const { 162 // No global is ever allowed as a base. 163 if (AM.BaseGV) 164 return false; 165 166 // Require a 12-bit signed offset. 167 if (!isInt<12>(AM.BaseOffs)) 168 return false; 169 170 switch (AM.Scale) { 171 case 0: // "r+i" or just "i", depending on HasBaseReg. 172 break; 173 case 1: 174 if (!AM.HasBaseReg) // allow "r+i". 175 break; 176 return false; // disallow "r+r" or "r+r+i". 177 default: 178 return false; 179 } 180 181 return true; 182 } 183 184 bool RISCVTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 185 return isInt<12>(Imm); 186 } 187 188 bool RISCVTargetLowering::isLegalAddImmediate(int64_t Imm) const { 189 return isInt<12>(Imm); 190 } 191 192 // On RV32, 64-bit integers are split into their high and low parts and held 193 // in two different registers, so the trunc is free since the low register can 194 // just be used. 195 bool RISCVTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const { 196 if (Subtarget.is64Bit() || !SrcTy->isIntegerTy() || !DstTy->isIntegerTy()) 197 return false; 198 unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); 199 unsigned DestBits = DstTy->getPrimitiveSizeInBits(); 200 return (SrcBits == 64 && DestBits == 32); 201 } 202 203 bool RISCVTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const { 204 if (Subtarget.is64Bit() || SrcVT.isVector() || DstVT.isVector() || 205 !SrcVT.isInteger() || !DstVT.isInteger()) 206 return false; 207 unsigned SrcBits = SrcVT.getSizeInBits(); 208 unsigned DestBits = DstVT.getSizeInBits(); 209 return (SrcBits == 64 && DestBits == 32); 210 } 211 212 bool RISCVTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 213 // Zexts are free if they can be combined with a load. 214 if (auto *LD = dyn_cast<LoadSDNode>(Val)) { 215 EVT MemVT = LD->getMemoryVT(); 216 if ((MemVT == MVT::i8 || MemVT == MVT::i16 || 217 (Subtarget.is64Bit() && MemVT == MVT::i32)) && 218 (LD->getExtensionType() == ISD::NON_EXTLOAD || 219 LD->getExtensionType() == ISD::ZEXTLOAD)) 220 return true; 221 } 222 223 return TargetLowering::isZExtFree(Val, VT2); 224 } 225 226 // Changes the condition code and swaps operands if necessary, so the SetCC 227 // operation matches one of the comparisons supported directly in the RISC-V 228 // ISA. 229 static void normaliseSetCC(SDValue &LHS, SDValue &RHS, ISD::CondCode &CC) { 230 switch (CC) { 231 default: 232 break; 233 case ISD::SETGT: 234 case ISD::SETLE: 235 case ISD::SETUGT: 236 case ISD::SETULE: 237 CC = ISD::getSetCCSwappedOperands(CC); 238 std::swap(LHS, RHS); 239 break; 240 } 241 } 242 243 // Return the RISC-V branch opcode that matches the given DAG integer 244 // condition code. The CondCode must be one of those supported by the RISC-V 245 // ISA (see normaliseSetCC). 246 static unsigned getBranchOpcodeForIntCondCode(ISD::CondCode CC) { 247 switch (CC) { 248 default: 249 llvm_unreachable("Unsupported CondCode"); 250 case ISD::SETEQ: 251 return RISCV::BEQ; 252 case ISD::SETNE: 253 return RISCV::BNE; 254 case ISD::SETLT: 255 return RISCV::BLT; 256 case ISD::SETGE: 257 return RISCV::BGE; 258 case ISD::SETULT: 259 return RISCV::BLTU; 260 case ISD::SETUGE: 261 return RISCV::BGEU; 262 } 263 } 264 265 SDValue RISCVTargetLowering::LowerOperation(SDValue Op, 266 SelectionDAG &DAG) const { 267 switch (Op.getOpcode()) { 268 default: 269 report_fatal_error("unimplemented operand"); 270 case ISD::GlobalAddress: 271 return lowerGlobalAddress(Op, DAG); 272 case ISD::BlockAddress: 273 return lowerBlockAddress(Op, DAG); 274 case ISD::ConstantPool: 275 return lowerConstantPool(Op, DAG); 276 case ISD::SELECT: 277 return lowerSELECT(Op, DAG); 278 case ISD::VASTART: 279 return lowerVASTART(Op, DAG); 280 case ISD::FRAMEADDR: 281 return LowerFRAMEADDR(Op, DAG); 282 case ISD::RETURNADDR: 283 return LowerRETURNADDR(Op, DAG); 284 } 285 } 286 287 SDValue RISCVTargetLowering::lowerGlobalAddress(SDValue Op, 288 SelectionDAG &DAG) const { 289 SDLoc DL(Op); 290 EVT Ty = Op.getValueType(); 291 GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op); 292 const GlobalValue *GV = N->getGlobal(); 293 int64_t Offset = N->getOffset(); 294 MVT XLenVT = Subtarget.getXLenVT(); 295 296 if (isPositionIndependent() || Subtarget.is64Bit()) 297 report_fatal_error("Unable to lowerGlobalAddress"); 298 // In order to maximise the opportunity for common subexpression elimination, 299 // emit a separate ADD node for the global address offset instead of folding 300 // it in the global address node. Later peephole optimisations may choose to 301 // fold it back in when profitable. 302 SDValue GAHi = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_HI); 303 SDValue GALo = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_LO); 304 SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, GAHi), 0); 305 SDValue MNLo = 306 SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNHi, GALo), 0); 307 if (Offset != 0) 308 return DAG.getNode(ISD::ADD, DL, Ty, MNLo, 309 DAG.getConstant(Offset, DL, XLenVT)); 310 return MNLo; 311 } 312 313 SDValue RISCVTargetLowering::lowerBlockAddress(SDValue Op, 314 SelectionDAG &DAG) const { 315 SDLoc DL(Op); 316 EVT Ty = Op.getValueType(); 317 BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op); 318 const BlockAddress *BA = N->getBlockAddress(); 319 int64_t Offset = N->getOffset(); 320 321 if (isPositionIndependent() || Subtarget.is64Bit()) 322 report_fatal_error("Unable to lowerBlockAddress"); 323 324 SDValue BAHi = DAG.getTargetBlockAddress(BA, Ty, Offset, RISCVII::MO_HI); 325 SDValue BALo = DAG.getTargetBlockAddress(BA, Ty, Offset, RISCVII::MO_LO); 326 SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, BAHi), 0); 327 SDValue MNLo = 328 SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNHi, BALo), 0); 329 return MNLo; 330 } 331 332 SDValue RISCVTargetLowering::lowerConstantPool(SDValue Op, 333 SelectionDAG &DAG) const { 334 SDLoc DL(Op); 335 EVT Ty = Op.getValueType(); 336 ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op); 337 const Constant *CPA = N->getConstVal(); 338 int64_t Offset = N->getOffset(); 339 unsigned Alignment = N->getAlignment(); 340 341 if (!isPositionIndependent()) { 342 SDValue CPAHi = 343 DAG.getTargetConstantPool(CPA, Ty, Alignment, Offset, RISCVII::MO_HI); 344 SDValue CPALo = 345 DAG.getTargetConstantPool(CPA, Ty, Alignment, Offset, RISCVII::MO_LO); 346 SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, CPAHi), 0); 347 SDValue MNLo = 348 SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNHi, CPALo), 0); 349 return MNLo; 350 } else { 351 report_fatal_error("Unable to lowerConstantPool"); 352 } 353 } 354 355 SDValue RISCVTargetLowering::lowerExternalSymbol(SDValue Op, 356 SelectionDAG &DAG) const { 357 SDLoc DL(Op); 358 EVT Ty = Op.getValueType(); 359 ExternalSymbolSDNode *N = cast<ExternalSymbolSDNode>(Op); 360 const char *Sym = N->getSymbol(); 361 362 // TODO: should also handle gp-relative loads. 363 364 if (isPositionIndependent() || Subtarget.is64Bit()) 365 report_fatal_error("Unable to lowerExternalSymbol"); 366 367 SDValue GAHi = DAG.getTargetExternalSymbol(Sym, Ty, RISCVII::MO_HI); 368 SDValue GALo = DAG.getTargetExternalSymbol(Sym, Ty, RISCVII::MO_LO); 369 SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, GAHi), 0); 370 SDValue MNLo = 371 SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNHi, GALo), 0); 372 return MNLo; 373 } 374 375 SDValue RISCVTargetLowering::lowerSELECT(SDValue Op, SelectionDAG &DAG) const { 376 SDValue CondV = Op.getOperand(0); 377 SDValue TrueV = Op.getOperand(1); 378 SDValue FalseV = Op.getOperand(2); 379 SDLoc DL(Op); 380 MVT XLenVT = Subtarget.getXLenVT(); 381 382 // If the result type is XLenVT and CondV is the output of a SETCC node 383 // which also operated on XLenVT inputs, then merge the SETCC node into the 384 // lowered RISCVISD::SELECT_CC to take advantage of the integer 385 // compare+branch instructions. i.e.: 386 // (select (setcc lhs, rhs, cc), truev, falsev) 387 // -> (riscvisd::select_cc lhs, rhs, cc, truev, falsev) 388 if (Op.getSimpleValueType() == XLenVT && CondV.getOpcode() == ISD::SETCC && 389 CondV.getOperand(0).getSimpleValueType() == XLenVT) { 390 SDValue LHS = CondV.getOperand(0); 391 SDValue RHS = CondV.getOperand(1); 392 auto CC = cast<CondCodeSDNode>(CondV.getOperand(2)); 393 ISD::CondCode CCVal = CC->get(); 394 395 normaliseSetCC(LHS, RHS, CCVal); 396 397 SDValue TargetCC = DAG.getConstant(CCVal, DL, XLenVT); 398 SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue); 399 SDValue Ops[] = {LHS, RHS, TargetCC, TrueV, FalseV}; 400 return DAG.getNode(RISCVISD::SELECT_CC, DL, VTs, Ops); 401 } 402 403 // Otherwise: 404 // (select condv, truev, falsev) 405 // -> (riscvisd::select_cc condv, zero, setne, truev, falsev) 406 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 407 SDValue SetNE = DAG.getConstant(ISD::SETNE, DL, XLenVT); 408 409 SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue); 410 SDValue Ops[] = {CondV, Zero, SetNE, TrueV, FalseV}; 411 412 return DAG.getNode(RISCVISD::SELECT_CC, DL, VTs, Ops); 413 } 414 415 SDValue RISCVTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const { 416 MachineFunction &MF = DAG.getMachineFunction(); 417 RISCVMachineFunctionInfo *FuncInfo = MF.getInfo<RISCVMachineFunctionInfo>(); 418 419 SDLoc DL(Op); 420 SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), 421 getPointerTy(MF.getDataLayout())); 422 423 // vastart just stores the address of the VarArgsFrameIndex slot into the 424 // memory location argument. 425 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 426 return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1), 427 MachinePointerInfo(SV)); 428 } 429 430 SDValue RISCVTargetLowering::LowerFRAMEADDR(SDValue Op, 431 SelectionDAG &DAG) const { 432 const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo(); 433 MachineFunction &MF = DAG.getMachineFunction(); 434 MachineFrameInfo &MFI = MF.getFrameInfo(); 435 MFI.setFrameAddressIsTaken(true); 436 unsigned FrameReg = RI.getFrameRegister(MF); 437 int XLenInBytes = Subtarget.getXLen() / 8; 438 439 EVT VT = Op.getValueType(); 440 SDLoc DL(Op); 441 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, FrameReg, VT); 442 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 443 while (Depth--) { 444 int Offset = -(XLenInBytes * 2); 445 SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr, 446 DAG.getIntPtrConstant(Offset, DL)); 447 FrameAddr = 448 DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo()); 449 } 450 return FrameAddr; 451 } 452 453 SDValue RISCVTargetLowering::LowerRETURNADDR(SDValue Op, 454 SelectionDAG &DAG) const { 455 const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo(); 456 MachineFunction &MF = DAG.getMachineFunction(); 457 MachineFrameInfo &MFI = MF.getFrameInfo(); 458 MFI.setReturnAddressIsTaken(true); 459 MVT XLenVT = Subtarget.getXLenVT(); 460 int XLenInBytes = Subtarget.getXLen() / 8; 461 462 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 463 return SDValue(); 464 465 EVT VT = Op.getValueType(); 466 SDLoc DL(Op); 467 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 468 if (Depth) { 469 int Off = -XLenInBytes; 470 SDValue FrameAddr = LowerFRAMEADDR(Op, DAG); 471 SDValue Offset = DAG.getConstant(Off, DL, VT); 472 return DAG.getLoad(VT, DL, DAG.getEntryNode(), 473 DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset), 474 MachinePointerInfo()); 475 } 476 477 // Return the value of the return address register, marking it an implicit 478 // live-in. 479 unsigned Reg = MF.addLiveIn(RI.getRARegister(), getRegClassFor(XLenVT)); 480 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, XLenVT); 481 } 482 483 static MachineBasicBlock *emitSplitF64Pseudo(MachineInstr &MI, 484 MachineBasicBlock *BB) { 485 assert(MI.getOpcode() == RISCV::SplitF64Pseudo && "Unexpected instruction"); 486 487 MachineFunction &MF = *BB->getParent(); 488 DebugLoc DL = MI.getDebugLoc(); 489 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 490 const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo(); 491 unsigned LoReg = MI.getOperand(0).getReg(); 492 unsigned HiReg = MI.getOperand(1).getReg(); 493 unsigned SrcReg = MI.getOperand(2).getReg(); 494 const TargetRegisterClass *SrcRC = &RISCV::FPR64RegClass; 495 int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(); 496 497 TII.storeRegToStackSlot(*BB, MI, SrcReg, MI.getOperand(2).isKill(), FI, SrcRC, 498 RI); 499 MachineMemOperand *MMO = 500 MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(MF, FI), 501 MachineMemOperand::MOLoad, 8, 8); 502 BuildMI(*BB, MI, DL, TII.get(RISCV::LW), LoReg) 503 .addFrameIndex(FI) 504 .addImm(0) 505 .addMemOperand(MMO); 506 BuildMI(*BB, MI, DL, TII.get(RISCV::LW), HiReg) 507 .addFrameIndex(FI) 508 .addImm(4) 509 .addMemOperand(MMO); 510 MI.eraseFromParent(); // The pseudo instruction is gone now. 511 return BB; 512 } 513 514 static MachineBasicBlock *emitBuildPairF64Pseudo(MachineInstr &MI, 515 MachineBasicBlock *BB) { 516 assert(MI.getOpcode() == RISCV::BuildPairF64Pseudo && 517 "Unexpected instruction"); 518 519 MachineFunction &MF = *BB->getParent(); 520 DebugLoc DL = MI.getDebugLoc(); 521 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 522 const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo(); 523 unsigned DstReg = MI.getOperand(0).getReg(); 524 unsigned LoReg = MI.getOperand(1).getReg(); 525 unsigned HiReg = MI.getOperand(2).getReg(); 526 const TargetRegisterClass *DstRC = &RISCV::FPR64RegClass; 527 int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(); 528 529 MachineMemOperand *MMO = 530 MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(MF, FI), 531 MachineMemOperand::MOStore, 8, 8); 532 BuildMI(*BB, MI, DL, TII.get(RISCV::SW)) 533 .addReg(LoReg, getKillRegState(MI.getOperand(1).isKill())) 534 .addFrameIndex(FI) 535 .addImm(0) 536 .addMemOperand(MMO); 537 BuildMI(*BB, MI, DL, TII.get(RISCV::SW)) 538 .addReg(HiReg, getKillRegState(MI.getOperand(2).isKill())) 539 .addFrameIndex(FI) 540 .addImm(4) 541 .addMemOperand(MMO); 542 TII.loadRegFromStackSlot(*BB, MI, DstReg, FI, DstRC, RI); 543 MI.eraseFromParent(); // The pseudo instruction is gone now. 544 return BB; 545 } 546 547 MachineBasicBlock * 548 RISCVTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 549 MachineBasicBlock *BB) const { 550 switch (MI.getOpcode()) { 551 default: 552 llvm_unreachable("Unexpected instr type to insert"); 553 case RISCV::Select_GPR_Using_CC_GPR: 554 case RISCV::Select_FPR32_Using_CC_GPR: 555 case RISCV::Select_FPR64_Using_CC_GPR: 556 break; 557 case RISCV::BuildPairF64Pseudo: 558 return emitBuildPairF64Pseudo(MI, BB); 559 case RISCV::SplitF64Pseudo: 560 return emitSplitF64Pseudo(MI, BB); 561 } 562 563 // To "insert" a SELECT instruction, we actually have to insert the triangle 564 // control-flow pattern. The incoming instruction knows the destination vreg 565 // to set, the condition code register to branch on, the true/false values to 566 // select between, and the condcode to use to select the appropriate branch. 567 // 568 // We produce the following control flow: 569 // HeadMBB 570 // | \ 571 // | IfFalseMBB 572 // | / 573 // TailMBB 574 const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo(); 575 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 576 DebugLoc DL = MI.getDebugLoc(); 577 MachineFunction::iterator I = ++BB->getIterator(); 578 579 MachineBasicBlock *HeadMBB = BB; 580 MachineFunction *F = BB->getParent(); 581 MachineBasicBlock *TailMBB = F->CreateMachineBasicBlock(LLVM_BB); 582 MachineBasicBlock *IfFalseMBB = F->CreateMachineBasicBlock(LLVM_BB); 583 584 F->insert(I, IfFalseMBB); 585 F->insert(I, TailMBB); 586 // Move all remaining instructions to TailMBB. 587 TailMBB->splice(TailMBB->begin(), HeadMBB, 588 std::next(MachineBasicBlock::iterator(MI)), HeadMBB->end()); 589 // Update machine-CFG edges by transferring all successors of the current 590 // block to the new block which will contain the Phi node for the select. 591 TailMBB->transferSuccessorsAndUpdatePHIs(HeadMBB); 592 // Set the successors for HeadMBB. 593 HeadMBB->addSuccessor(IfFalseMBB); 594 HeadMBB->addSuccessor(TailMBB); 595 596 // Insert appropriate branch. 597 unsigned LHS = MI.getOperand(1).getReg(); 598 unsigned RHS = MI.getOperand(2).getReg(); 599 auto CC = static_cast<ISD::CondCode>(MI.getOperand(3).getImm()); 600 unsigned Opcode = getBranchOpcodeForIntCondCode(CC); 601 602 BuildMI(HeadMBB, DL, TII.get(Opcode)) 603 .addReg(LHS) 604 .addReg(RHS) 605 .addMBB(TailMBB); 606 607 // IfFalseMBB just falls through to TailMBB. 608 IfFalseMBB->addSuccessor(TailMBB); 609 610 // %Result = phi [ %TrueValue, HeadMBB ], [ %FalseValue, IfFalseMBB ] 611 BuildMI(*TailMBB, TailMBB->begin(), DL, TII.get(RISCV::PHI), 612 MI.getOperand(0).getReg()) 613 .addReg(MI.getOperand(4).getReg()) 614 .addMBB(HeadMBB) 615 .addReg(MI.getOperand(5).getReg()) 616 .addMBB(IfFalseMBB); 617 618 MI.eraseFromParent(); // The pseudo instruction is gone now. 619 return TailMBB; 620 } 621 622 // Calling Convention Implementation. 623 // The expectations for frontend ABI lowering vary from target to target. 624 // Ideally, an LLVM frontend would be able to avoid worrying about many ABI 625 // details, but this is a longer term goal. For now, we simply try to keep the 626 // role of the frontend as simple and well-defined as possible. The rules can 627 // be summarised as: 628 // * Never split up large scalar arguments. We handle them here. 629 // * If a hardfloat calling convention is being used, and the struct may be 630 // passed in a pair of registers (fp+fp, int+fp), and both registers are 631 // available, then pass as two separate arguments. If either the GPRs or FPRs 632 // are exhausted, then pass according to the rule below. 633 // * If a struct could never be passed in registers or directly in a stack 634 // slot (as it is larger than 2*XLEN and the floating point rules don't 635 // apply), then pass it using a pointer with the byval attribute. 636 // * If a struct is less than 2*XLEN, then coerce to either a two-element 637 // word-sized array or a 2*XLEN scalar (depending on alignment). 638 // * The frontend can determine whether a struct is returned by reference or 639 // not based on its size and fields. If it will be returned by reference, the 640 // frontend must modify the prototype so a pointer with the sret annotation is 641 // passed as the first argument. This is not necessary for large scalar 642 // returns. 643 // * Struct return values and varargs should be coerced to structs containing 644 // register-size fields in the same situations they would be for fixed 645 // arguments. 646 647 static const MCPhysReg ArgGPRs[] = { 648 RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, 649 RISCV::X14, RISCV::X15, RISCV::X16, RISCV::X17 650 }; 651 652 // Pass a 2*XLEN argument that has been split into two XLEN values through 653 // registers or the stack as necessary. 654 static bool CC_RISCVAssign2XLen(unsigned XLen, CCState &State, CCValAssign VA1, 655 ISD::ArgFlagsTy ArgFlags1, unsigned ValNo2, 656 MVT ValVT2, MVT LocVT2, 657 ISD::ArgFlagsTy ArgFlags2) { 658 unsigned XLenInBytes = XLen / 8; 659 if (unsigned Reg = State.AllocateReg(ArgGPRs)) { 660 // At least one half can be passed via register. 661 State.addLoc(CCValAssign::getReg(VA1.getValNo(), VA1.getValVT(), Reg, 662 VA1.getLocVT(), CCValAssign::Full)); 663 } else { 664 // Both halves must be passed on the stack, with proper alignment. 665 unsigned StackAlign = std::max(XLenInBytes, ArgFlags1.getOrigAlign()); 666 State.addLoc( 667 CCValAssign::getMem(VA1.getValNo(), VA1.getValVT(), 668 State.AllocateStack(XLenInBytes, StackAlign), 669 VA1.getLocVT(), CCValAssign::Full)); 670 State.addLoc(CCValAssign::getMem( 671 ValNo2, ValVT2, State.AllocateStack(XLenInBytes, XLenInBytes), LocVT2, 672 CCValAssign::Full)); 673 return false; 674 } 675 676 if (unsigned Reg = State.AllocateReg(ArgGPRs)) { 677 // The second half can also be passed via register. 678 State.addLoc( 679 CCValAssign::getReg(ValNo2, ValVT2, Reg, LocVT2, CCValAssign::Full)); 680 } else { 681 // The second half is passed via the stack, without additional alignment. 682 State.addLoc(CCValAssign::getMem( 683 ValNo2, ValVT2, State.AllocateStack(XLenInBytes, XLenInBytes), LocVT2, 684 CCValAssign::Full)); 685 } 686 687 return false; 688 } 689 690 // Implements the RISC-V calling convention. Returns true upon failure. 691 static bool CC_RISCV(const DataLayout &DL, unsigned ValNo, MVT ValVT, MVT LocVT, 692 CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags, 693 CCState &State, bool IsFixed, bool IsRet, Type *OrigTy) { 694 unsigned XLen = DL.getLargestLegalIntTypeSizeInBits(); 695 assert(XLen == 32 || XLen == 64); 696 MVT XLenVT = XLen == 32 ? MVT::i32 : MVT::i64; 697 if (ValVT == MVT::f32) { 698 LocVT = MVT::i32; 699 LocInfo = CCValAssign::BCvt; 700 } 701 702 // Any return value split in to more than two values can't be returned 703 // directly. 704 if (IsRet && ValNo > 1) 705 return true; 706 707 // If this is a variadic argument, the RISC-V calling convention requires 708 // that it is assigned an 'even' or 'aligned' register if it has 8-byte 709 // alignment (RV32) or 16-byte alignment (RV64). An aligned register should 710 // be used regardless of whether the original argument was split during 711 // legalisation or not. The argument will not be passed by registers if the 712 // original type is larger than 2*XLEN, so the register alignment rule does 713 // not apply. 714 unsigned TwoXLenInBytes = (2 * XLen) / 8; 715 if (!IsFixed && ArgFlags.getOrigAlign() == TwoXLenInBytes && 716 DL.getTypeAllocSize(OrigTy) == TwoXLenInBytes) { 717 unsigned RegIdx = State.getFirstUnallocated(ArgGPRs); 718 // Skip 'odd' register if necessary. 719 if (RegIdx != array_lengthof(ArgGPRs) && RegIdx % 2 == 1) 720 State.AllocateReg(ArgGPRs); 721 } 722 723 SmallVectorImpl<CCValAssign> &PendingLocs = State.getPendingLocs(); 724 SmallVectorImpl<ISD::ArgFlagsTy> &PendingArgFlags = 725 State.getPendingArgFlags(); 726 727 assert(PendingLocs.size() == PendingArgFlags.size() && 728 "PendingLocs and PendingArgFlags out of sync"); 729 730 // Handle passing f64 on RV32D with a soft float ABI. 731 if (XLen == 32 && ValVT == MVT::f64) { 732 assert(!ArgFlags.isSplit() && PendingLocs.empty() && 733 "Can't lower f64 if it is split"); 734 // Depending on available argument GPRS, f64 may be passed in a pair of 735 // GPRs, split between a GPR and the stack, or passed completely on the 736 // stack. LowerCall/LowerFormalArguments/LowerReturn must recognise these 737 // cases. 738 unsigned Reg = State.AllocateReg(ArgGPRs); 739 LocVT = MVT::i32; 740 if (!Reg) { 741 unsigned StackOffset = State.AllocateStack(8, 8); 742 State.addLoc( 743 CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 744 return false; 745 } 746 if (!State.AllocateReg(ArgGPRs)) 747 State.AllocateStack(4, 4); 748 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 749 return false; 750 } 751 752 // Split arguments might be passed indirectly, so keep track of the pending 753 // values. 754 if (ArgFlags.isSplit() || !PendingLocs.empty()) { 755 LocVT = XLenVT; 756 LocInfo = CCValAssign::Indirect; 757 PendingLocs.push_back( 758 CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo)); 759 PendingArgFlags.push_back(ArgFlags); 760 if (!ArgFlags.isSplitEnd()) { 761 return false; 762 } 763 } 764 765 // If the split argument only had two elements, it should be passed directly 766 // in registers or on the stack. 767 if (ArgFlags.isSplitEnd() && PendingLocs.size() <= 2) { 768 assert(PendingLocs.size() == 2 && "Unexpected PendingLocs.size()"); 769 // Apply the normal calling convention rules to the first half of the 770 // split argument. 771 CCValAssign VA = PendingLocs[0]; 772 ISD::ArgFlagsTy AF = PendingArgFlags[0]; 773 PendingLocs.clear(); 774 PendingArgFlags.clear(); 775 return CC_RISCVAssign2XLen(XLen, State, VA, AF, ValNo, ValVT, LocVT, 776 ArgFlags); 777 } 778 779 // Allocate to a register if possible, or else a stack slot. 780 unsigned Reg = State.AllocateReg(ArgGPRs); 781 unsigned StackOffset = Reg ? 0 : State.AllocateStack(XLen / 8, XLen / 8); 782 783 // If we reach this point and PendingLocs is non-empty, we must be at the 784 // end of a split argument that must be passed indirectly. 785 if (!PendingLocs.empty()) { 786 assert(ArgFlags.isSplitEnd() && "Expected ArgFlags.isSplitEnd()"); 787 assert(PendingLocs.size() > 2 && "Unexpected PendingLocs.size()"); 788 789 for (auto &It : PendingLocs) { 790 if (Reg) 791 It.convertToReg(Reg); 792 else 793 It.convertToMem(StackOffset); 794 State.addLoc(It); 795 } 796 PendingLocs.clear(); 797 PendingArgFlags.clear(); 798 return false; 799 } 800 801 assert(LocVT == XLenVT && "Expected an XLenVT at this stage"); 802 803 if (Reg) { 804 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 805 } else { 806 State.addLoc( 807 CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 808 } 809 return false; 810 } 811 812 void RISCVTargetLowering::analyzeInputArgs( 813 MachineFunction &MF, CCState &CCInfo, 814 const SmallVectorImpl<ISD::InputArg> &Ins, bool IsRet) const { 815 unsigned NumArgs = Ins.size(); 816 FunctionType *FType = MF.getFunction().getFunctionType(); 817 818 for (unsigned i = 0; i != NumArgs; ++i) { 819 MVT ArgVT = Ins[i].VT; 820 ISD::ArgFlagsTy ArgFlags = Ins[i].Flags; 821 822 Type *ArgTy = nullptr; 823 if (IsRet) 824 ArgTy = FType->getReturnType(); 825 else if (Ins[i].isOrigArg()) 826 ArgTy = FType->getParamType(Ins[i].getOrigArgIndex()); 827 828 if (CC_RISCV(MF.getDataLayout(), i, ArgVT, ArgVT, CCValAssign::Full, 829 ArgFlags, CCInfo, /*IsRet=*/true, IsRet, ArgTy)) { 830 LLVM_DEBUG(dbgs() << "InputArg #" << i << " has unhandled type " 831 << EVT(ArgVT).getEVTString() << '\n'); 832 llvm_unreachable(nullptr); 833 } 834 } 835 } 836 837 void RISCVTargetLowering::analyzeOutputArgs( 838 MachineFunction &MF, CCState &CCInfo, 839 const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsRet, 840 CallLoweringInfo *CLI) const { 841 unsigned NumArgs = Outs.size(); 842 843 for (unsigned i = 0; i != NumArgs; i++) { 844 MVT ArgVT = Outs[i].VT; 845 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 846 Type *OrigTy = CLI ? CLI->getArgs()[Outs[i].OrigArgIndex].Ty : nullptr; 847 848 if (CC_RISCV(MF.getDataLayout(), i, ArgVT, ArgVT, CCValAssign::Full, 849 ArgFlags, CCInfo, Outs[i].IsFixed, IsRet, OrigTy)) { 850 LLVM_DEBUG(dbgs() << "OutputArg #" << i << " has unhandled type " 851 << EVT(ArgVT).getEVTString() << "\n"); 852 llvm_unreachable(nullptr); 853 } 854 } 855 } 856 857 // The caller is responsible for loading the full value if the argument is 858 // passed with CCValAssign::Indirect. 859 static SDValue unpackFromRegLoc(SelectionDAG &DAG, SDValue Chain, 860 const CCValAssign &VA, const SDLoc &DL) { 861 MachineFunction &MF = DAG.getMachineFunction(); 862 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 863 EVT LocVT = VA.getLocVT(); 864 EVT ValVT = VA.getValVT(); 865 SDValue Val; 866 867 unsigned VReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 868 RegInfo.addLiveIn(VA.getLocReg(), VReg); 869 Val = DAG.getCopyFromReg(Chain, DL, VReg, LocVT); 870 871 switch (VA.getLocInfo()) { 872 default: 873 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 874 case CCValAssign::Full: 875 case CCValAssign::Indirect: 876 break; 877 case CCValAssign::BCvt: 878 Val = DAG.getNode(ISD::BITCAST, DL, ValVT, Val); 879 break; 880 } 881 return Val; 882 } 883 884 // The caller is responsible for loading the full value if the argument is 885 // passed with CCValAssign::Indirect. 886 static SDValue unpackFromMemLoc(SelectionDAG &DAG, SDValue Chain, 887 const CCValAssign &VA, const SDLoc &DL) { 888 MachineFunction &MF = DAG.getMachineFunction(); 889 MachineFrameInfo &MFI = MF.getFrameInfo(); 890 EVT LocVT = VA.getLocVT(); 891 EVT ValVT = VA.getValVT(); 892 EVT PtrVT = MVT::getIntegerVT(DAG.getDataLayout().getPointerSizeInBits(0)); 893 int FI = MFI.CreateFixedObject(ValVT.getSizeInBits() / 8, 894 VA.getLocMemOffset(), /*Immutable=*/true); 895 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 896 SDValue Val; 897 898 ISD::LoadExtType ExtType; 899 switch (VA.getLocInfo()) { 900 default: 901 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 902 case CCValAssign::Full: 903 case CCValAssign::Indirect: 904 ExtType = ISD::NON_EXTLOAD; 905 break; 906 } 907 Val = DAG.getExtLoad( 908 ExtType, DL, LocVT, Chain, FIN, 909 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), ValVT); 910 return Val; 911 } 912 913 static SDValue unpackF64OnRV32DSoftABI(SelectionDAG &DAG, SDValue Chain, 914 const CCValAssign &VA, const SDLoc &DL) { 915 assert(VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64 && 916 "Unexpected VA"); 917 MachineFunction &MF = DAG.getMachineFunction(); 918 MachineFrameInfo &MFI = MF.getFrameInfo(); 919 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 920 921 if (VA.isMemLoc()) { 922 // f64 is passed on the stack. 923 int FI = MFI.CreateFixedObject(8, VA.getLocMemOffset(), /*Immutable=*/true); 924 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 925 return DAG.getLoad(MVT::f64, DL, Chain, FIN, 926 MachinePointerInfo::getFixedStack(MF, FI)); 927 } 928 929 assert(VA.isRegLoc() && "Expected register VA assignment"); 930 931 unsigned LoVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 932 RegInfo.addLiveIn(VA.getLocReg(), LoVReg); 933 SDValue Lo = DAG.getCopyFromReg(Chain, DL, LoVReg, MVT::i32); 934 SDValue Hi; 935 if (VA.getLocReg() == RISCV::X17) { 936 // Second half of f64 is passed on the stack. 937 int FI = MFI.CreateFixedObject(4, 0, /*Immutable=*/true); 938 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 939 Hi = DAG.getLoad(MVT::i32, DL, Chain, FIN, 940 MachinePointerInfo::getFixedStack(MF, FI)); 941 } else { 942 // Second half of f64 is passed in another GPR. 943 unsigned HiVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 944 RegInfo.addLiveIn(VA.getLocReg() + 1, HiVReg); 945 Hi = DAG.getCopyFromReg(Chain, DL, HiVReg, MVT::i32); 946 } 947 return DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, Lo, Hi); 948 } 949 950 // Transform physical registers into virtual registers. 951 SDValue RISCVTargetLowering::LowerFormalArguments( 952 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 953 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 954 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 955 956 switch (CallConv) { 957 default: 958 report_fatal_error("Unsupported calling convention"); 959 case CallingConv::C: 960 case CallingConv::Fast: 961 break; 962 } 963 964 MachineFunction &MF = DAG.getMachineFunction(); 965 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 966 MVT XLenVT = Subtarget.getXLenVT(); 967 unsigned XLenInBytes = Subtarget.getXLen() / 8; 968 // Used with vargs to acumulate store chains. 969 std::vector<SDValue> OutChains; 970 971 // Assign locations to all of the incoming arguments. 972 SmallVector<CCValAssign, 16> ArgLocs; 973 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 974 analyzeInputArgs(MF, CCInfo, Ins, /*IsRet=*/false); 975 976 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 977 CCValAssign &VA = ArgLocs[i]; 978 assert(VA.getLocVT() == XLenVT && "Unhandled argument type"); 979 SDValue ArgValue; 980 // Passing f64 on RV32D with a soft float ABI must be handled as a special 981 // case. 982 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) 983 ArgValue = unpackF64OnRV32DSoftABI(DAG, Chain, VA, DL); 984 else if (VA.isRegLoc()) 985 ArgValue = unpackFromRegLoc(DAG, Chain, VA, DL); 986 else 987 ArgValue = unpackFromMemLoc(DAG, Chain, VA, DL); 988 989 if (VA.getLocInfo() == CCValAssign::Indirect) { 990 // If the original argument was split and passed by reference (e.g. i128 991 // on RV32), we need to load all parts of it here (using the same 992 // address). 993 InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue, 994 MachinePointerInfo())); 995 unsigned ArgIndex = Ins[i].OrigArgIndex; 996 assert(Ins[i].PartOffset == 0); 997 while (i + 1 != e && Ins[i + 1].OrigArgIndex == ArgIndex) { 998 CCValAssign &PartVA = ArgLocs[i + 1]; 999 unsigned PartOffset = Ins[i + 1].PartOffset; 1000 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, 1001 DAG.getIntPtrConstant(PartOffset, DL)); 1002 InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address, 1003 MachinePointerInfo())); 1004 ++i; 1005 } 1006 continue; 1007 } 1008 InVals.push_back(ArgValue); 1009 } 1010 1011 if (IsVarArg) { 1012 ArrayRef<MCPhysReg> ArgRegs = makeArrayRef(ArgGPRs); 1013 unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs); 1014 const TargetRegisterClass *RC = &RISCV::GPRRegClass; 1015 MachineFrameInfo &MFI = MF.getFrameInfo(); 1016 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 1017 RISCVMachineFunctionInfo *RVFI = MF.getInfo<RISCVMachineFunctionInfo>(); 1018 1019 // Offset of the first variable argument from stack pointer, and size of 1020 // the vararg save area. For now, the varargs save area is either zero or 1021 // large enough to hold a0-a7. 1022 int VaArgOffset, VarArgsSaveSize; 1023 1024 // If all registers are allocated, then all varargs must be passed on the 1025 // stack and we don't need to save any argregs. 1026 if (ArgRegs.size() == Idx) { 1027 VaArgOffset = CCInfo.getNextStackOffset(); 1028 VarArgsSaveSize = 0; 1029 } else { 1030 VarArgsSaveSize = XLenInBytes * (ArgRegs.size() - Idx); 1031 VaArgOffset = -VarArgsSaveSize; 1032 } 1033 1034 // Record the frame index of the first variable argument 1035 // which is a value necessary to VASTART. 1036 int FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true); 1037 RVFI->setVarArgsFrameIndex(FI); 1038 1039 // If saving an odd number of registers then create an extra stack slot to 1040 // ensure that the frame pointer is 2*XLEN-aligned, which in turn ensures 1041 // offsets to even-numbered registered remain 2*XLEN-aligned. 1042 if (Idx % 2) { 1043 FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset - (int)XLenInBytes, 1044 true); 1045 VarArgsSaveSize += XLenInBytes; 1046 } 1047 1048 // Copy the integer registers that may have been used for passing varargs 1049 // to the vararg save area. 1050 for (unsigned I = Idx; I < ArgRegs.size(); 1051 ++I, VaArgOffset += XLenInBytes) { 1052 const unsigned Reg = RegInfo.createVirtualRegister(RC); 1053 RegInfo.addLiveIn(ArgRegs[I], Reg); 1054 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, XLenVT); 1055 FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true); 1056 SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 1057 SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff, 1058 MachinePointerInfo::getFixedStack(MF, FI)); 1059 cast<StoreSDNode>(Store.getNode()) 1060 ->getMemOperand() 1061 ->setValue((Value *)nullptr); 1062 OutChains.push_back(Store); 1063 } 1064 RVFI->setVarArgsSaveSize(VarArgsSaveSize); 1065 } 1066 1067 // All stores are grouped in one node to allow the matching between 1068 // the size of Ins and InVals. This only happens for vararg functions. 1069 if (!OutChains.empty()) { 1070 OutChains.push_back(Chain); 1071 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains); 1072 } 1073 1074 return Chain; 1075 } 1076 1077 /// IsEligibleForTailCallOptimization - Check whether the call is eligible 1078 /// for tail call optimization. 1079 /// Note: This is modelled after ARM's IsEligibleForTailCallOptimization. 1080 bool RISCVTargetLowering::IsEligibleForTailCallOptimization( 1081 CCState &CCInfo, CallLoweringInfo &CLI, MachineFunction &MF, 1082 const SmallVector<CCValAssign, 16> &ArgLocs) const { 1083 1084 auto &Callee = CLI.Callee; 1085 auto CalleeCC = CLI.CallConv; 1086 auto IsVarArg = CLI.IsVarArg; 1087 auto &Outs = CLI.Outs; 1088 auto &Caller = MF.getFunction(); 1089 auto CallerCC = Caller.getCallingConv(); 1090 1091 // Do not tail call opt functions with "disable-tail-calls" attribute. 1092 if (Caller.getFnAttribute("disable-tail-calls").getValueAsString() == "true") 1093 return false; 1094 1095 // Exception-handling functions need a special set of instructions to 1096 // indicate a return to the hardware. Tail-calling another function would 1097 // probably break this. 1098 // TODO: The "interrupt" attribute isn't currently defined by RISC-V. This 1099 // should be expanded as new function attributes are introduced. 1100 if (Caller.hasFnAttribute("interrupt")) 1101 return false; 1102 1103 // Do not tail call opt functions with varargs. 1104 if (IsVarArg) 1105 return false; 1106 1107 // Do not tail call opt if the stack is used to pass parameters. 1108 if (CCInfo.getNextStackOffset() != 0) 1109 return false; 1110 1111 // Do not tail call opt if any parameters need to be passed indirectly. 1112 // Since long doubles (fp128) and i128 are larger than 2*XLEN, they are 1113 // passed indirectly. So the address of the value will be passed in a 1114 // register, or if not available, then the address is put on the stack. In 1115 // order to pass indirectly, space on the stack often needs to be allocated 1116 // in order to store the value. In this case the CCInfo.getNextStackOffset() 1117 // != 0 check is not enough and we need to check if any CCValAssign ArgsLocs 1118 // are passed CCValAssign::Indirect. 1119 for (auto &VA : ArgLocs) 1120 if (VA.getLocInfo() == CCValAssign::Indirect) 1121 return false; 1122 1123 // Do not tail call opt if either caller or callee uses struct return 1124 // semantics. 1125 auto IsCallerStructRet = Caller.hasStructRetAttr(); 1126 auto IsCalleeStructRet = Outs.empty() ? false : Outs[0].Flags.isSRet(); 1127 if (IsCallerStructRet || IsCalleeStructRet) 1128 return false; 1129 1130 // Externally-defined functions with weak linkage should not be 1131 // tail-called. The behaviour of branch instructions in this situation (as 1132 // used for tail calls) is implementation-defined, so we cannot rely on the 1133 // linker replacing the tail call with a return. 1134 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 1135 const GlobalValue *GV = G->getGlobal(); 1136 if (GV->hasExternalWeakLinkage()) 1137 return false; 1138 } 1139 1140 // The callee has to preserve all registers the caller needs to preserve. 1141 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 1142 const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC); 1143 if (CalleeCC != CallerCC) { 1144 const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC); 1145 if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved)) 1146 return false; 1147 } 1148 1149 // Byval parameters hand the function a pointer directly into the stack area 1150 // we want to reuse during a tail call. Working around this *is* possible 1151 // but less efficient and uglier in LowerCall. 1152 for (auto &Arg : Outs) 1153 if (Arg.Flags.isByVal()) 1154 return false; 1155 1156 return true; 1157 } 1158 1159 // Lower a call to a callseq_start + CALL + callseq_end chain, and add input 1160 // and output parameter nodes. 1161 SDValue RISCVTargetLowering::LowerCall(CallLoweringInfo &CLI, 1162 SmallVectorImpl<SDValue> &InVals) const { 1163 SelectionDAG &DAG = CLI.DAG; 1164 SDLoc &DL = CLI.DL; 1165 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 1166 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 1167 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 1168 SDValue Chain = CLI.Chain; 1169 SDValue Callee = CLI.Callee; 1170 bool &IsTailCall = CLI.IsTailCall; 1171 CallingConv::ID CallConv = CLI.CallConv; 1172 bool IsVarArg = CLI.IsVarArg; 1173 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 1174 MVT XLenVT = Subtarget.getXLenVT(); 1175 1176 MachineFunction &MF = DAG.getMachineFunction(); 1177 1178 // Analyze the operands of the call, assigning locations to each operand. 1179 SmallVector<CCValAssign, 16> ArgLocs; 1180 CCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 1181 analyzeOutputArgs(MF, ArgCCInfo, Outs, /*IsRet=*/false, &CLI); 1182 1183 // Check if it's really possible to do a tail call. 1184 if (IsTailCall) 1185 IsTailCall = IsEligibleForTailCallOptimization(ArgCCInfo, CLI, MF, 1186 ArgLocs); 1187 1188 if (IsTailCall) 1189 ++NumTailCalls; 1190 else if (CLI.CS && CLI.CS.isMustTailCall()) 1191 report_fatal_error("failed to perform tail call elimination on a call " 1192 "site marked musttail"); 1193 1194 // Get a count of how many bytes are to be pushed on the stack. 1195 unsigned NumBytes = ArgCCInfo.getNextStackOffset(); 1196 1197 // Create local copies for byval args 1198 SmallVector<SDValue, 8> ByValArgs; 1199 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 1200 ISD::ArgFlagsTy Flags = Outs[i].Flags; 1201 if (!Flags.isByVal()) 1202 continue; 1203 1204 SDValue Arg = OutVals[i]; 1205 unsigned Size = Flags.getByValSize(); 1206 unsigned Align = Flags.getByValAlign(); 1207 1208 int FI = MF.getFrameInfo().CreateStackObject(Size, Align, /*isSS=*/false); 1209 SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 1210 SDValue SizeNode = DAG.getConstant(Size, DL, XLenVT); 1211 1212 Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Align, 1213 /*IsVolatile=*/false, 1214 /*AlwaysInline=*/false, 1215 IsTailCall, MachinePointerInfo(), 1216 MachinePointerInfo()); 1217 ByValArgs.push_back(FIPtr); 1218 } 1219 1220 if (!IsTailCall) 1221 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, CLI.DL); 1222 1223 // Copy argument values to their designated locations. 1224 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 1225 SmallVector<SDValue, 8> MemOpChains; 1226 SDValue StackPtr; 1227 for (unsigned i = 0, j = 0, e = ArgLocs.size(); i != e; ++i) { 1228 CCValAssign &VA = ArgLocs[i]; 1229 SDValue ArgValue = OutVals[i]; 1230 ISD::ArgFlagsTy Flags = Outs[i].Flags; 1231 1232 // Handle passing f64 on RV32D with a soft float ABI as a special case. 1233 bool IsF64OnRV32DSoftABI = 1234 VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64; 1235 if (IsF64OnRV32DSoftABI && VA.isRegLoc()) { 1236 SDValue SplitF64 = DAG.getNode( 1237 RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), ArgValue); 1238 SDValue Lo = SplitF64.getValue(0); 1239 SDValue Hi = SplitF64.getValue(1); 1240 1241 unsigned RegLo = VA.getLocReg(); 1242 RegsToPass.push_back(std::make_pair(RegLo, Lo)); 1243 1244 if (RegLo == RISCV::X17) { 1245 // Second half of f64 is passed on the stack. 1246 // Work out the address of the stack slot. 1247 if (!StackPtr.getNode()) 1248 StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT); 1249 // Emit the store. 1250 MemOpChains.push_back( 1251 DAG.getStore(Chain, DL, Hi, StackPtr, MachinePointerInfo())); 1252 } else { 1253 // Second half of f64 is passed in another GPR. 1254 unsigned RegHigh = RegLo + 1; 1255 RegsToPass.push_back(std::make_pair(RegHigh, Hi)); 1256 } 1257 continue; 1258 } 1259 1260 // IsF64OnRV32DSoftABI && VA.isMemLoc() is handled below in the same way 1261 // as any other MemLoc. 1262 1263 // Promote the value if needed. 1264 // For now, only handle fully promoted and indirect arguments. 1265 switch (VA.getLocInfo()) { 1266 case CCValAssign::Full: 1267 break; 1268 case CCValAssign::BCvt: 1269 ArgValue = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), ArgValue); 1270 break; 1271 case CCValAssign::Indirect: { 1272 // Store the argument in a stack slot and pass its address. 1273 SDValue SpillSlot = DAG.CreateStackTemporary(Outs[i].ArgVT); 1274 int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); 1275 MemOpChains.push_back( 1276 DAG.getStore(Chain, DL, ArgValue, SpillSlot, 1277 MachinePointerInfo::getFixedStack(MF, FI))); 1278 // If the original argument was split (e.g. i128), we need 1279 // to store all parts of it here (and pass just one address). 1280 unsigned ArgIndex = Outs[i].OrigArgIndex; 1281 assert(Outs[i].PartOffset == 0); 1282 while (i + 1 != e && Outs[i + 1].OrigArgIndex == ArgIndex) { 1283 SDValue PartValue = OutVals[i + 1]; 1284 unsigned PartOffset = Outs[i + 1].PartOffset; 1285 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, 1286 DAG.getIntPtrConstant(PartOffset, DL)); 1287 MemOpChains.push_back( 1288 DAG.getStore(Chain, DL, PartValue, Address, 1289 MachinePointerInfo::getFixedStack(MF, FI))); 1290 ++i; 1291 } 1292 ArgValue = SpillSlot; 1293 break; 1294 } 1295 default: 1296 llvm_unreachable("Unknown loc info!"); 1297 } 1298 1299 // Use local copy if it is a byval arg. 1300 if (Flags.isByVal()) 1301 ArgValue = ByValArgs[j++]; 1302 1303 if (VA.isRegLoc()) { 1304 // Queue up the argument copies and emit them at the end. 1305 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue)); 1306 } else { 1307 assert(VA.isMemLoc() && "Argument not register or memory"); 1308 assert(!IsTailCall && "Tail call not allowed if stack is used " 1309 "for passing parameters"); 1310 1311 // Work out the address of the stack slot. 1312 if (!StackPtr.getNode()) 1313 StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT); 1314 SDValue Address = 1315 DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, 1316 DAG.getIntPtrConstant(VA.getLocMemOffset(), DL)); 1317 1318 // Emit the store. 1319 MemOpChains.push_back( 1320 DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo())); 1321 } 1322 } 1323 1324 // Join the stores, which are independent of one another. 1325 if (!MemOpChains.empty()) 1326 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); 1327 1328 SDValue Glue; 1329 1330 // Build a sequence of copy-to-reg nodes, chained and glued together. 1331 for (auto &Reg : RegsToPass) { 1332 Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, Glue); 1333 Glue = Chain.getValue(1); 1334 } 1335 1336 // If the callee is a GlobalAddress/ExternalSymbol node, turn it into a 1337 // TargetGlobalAddress/TargetExternalSymbol node so that legalize won't 1338 // split it and then direct call can be matched by PseudoCALL. 1339 if (GlobalAddressSDNode *S = dyn_cast<GlobalAddressSDNode>(Callee)) { 1340 Callee = DAG.getTargetGlobalAddress(S->getGlobal(), DL, PtrVT, 0, 0); 1341 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { 1342 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, 0); 1343 } 1344 1345 // The first call operand is the chain and the second is the target address. 1346 SmallVector<SDValue, 8> Ops; 1347 Ops.push_back(Chain); 1348 Ops.push_back(Callee); 1349 1350 // Add argument registers to the end of the list so that they are 1351 // known live into the call. 1352 for (auto &Reg : RegsToPass) 1353 Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType())); 1354 1355 if (!IsTailCall) { 1356 // Add a register mask operand representing the call-preserved registers. 1357 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 1358 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv); 1359 assert(Mask && "Missing call preserved mask for calling convention"); 1360 Ops.push_back(DAG.getRegisterMask(Mask)); 1361 } 1362 1363 // Glue the call to the argument copies, if any. 1364 if (Glue.getNode()) 1365 Ops.push_back(Glue); 1366 1367 // Emit the call. 1368 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 1369 1370 if (IsTailCall) { 1371 MF.getFrameInfo().setHasTailCall(); 1372 return DAG.getNode(RISCVISD::TAIL, DL, NodeTys, Ops); 1373 } 1374 1375 Chain = DAG.getNode(RISCVISD::CALL, DL, NodeTys, Ops); 1376 Glue = Chain.getValue(1); 1377 1378 // Mark the end of the call, which is glued to the call itself. 1379 Chain = DAG.getCALLSEQ_END(Chain, 1380 DAG.getConstant(NumBytes, DL, PtrVT, true), 1381 DAG.getConstant(0, DL, PtrVT, true), 1382 Glue, DL); 1383 Glue = Chain.getValue(1); 1384 1385 // Assign locations to each value returned by this call. 1386 SmallVector<CCValAssign, 16> RVLocs; 1387 CCState RetCCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext()); 1388 analyzeInputArgs(MF, RetCCInfo, Ins, /*IsRet=*/true); 1389 1390 // Copy all of the result registers out of their specified physreg. 1391 for (auto &VA : RVLocs) { 1392 // Copy the value out 1393 SDValue RetValue = 1394 DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), Glue); 1395 // Glue the RetValue to the end of the call sequence 1396 Chain = RetValue.getValue(1); 1397 Glue = RetValue.getValue(2); 1398 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { 1399 assert(VA.getLocReg() == ArgGPRs[0] && "Unexpected reg assignment"); 1400 SDValue RetValue2 = 1401 DAG.getCopyFromReg(Chain, DL, ArgGPRs[1], MVT::i32, Glue); 1402 Chain = RetValue2.getValue(1); 1403 Glue = RetValue2.getValue(2); 1404 RetValue = DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, RetValue, 1405 RetValue2); 1406 } 1407 1408 switch (VA.getLocInfo()) { 1409 default: 1410 llvm_unreachable("Unknown loc info!"); 1411 case CCValAssign::Full: 1412 break; 1413 case CCValAssign::BCvt: 1414 RetValue = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), RetValue); 1415 break; 1416 } 1417 1418 InVals.push_back(RetValue); 1419 } 1420 1421 return Chain; 1422 } 1423 1424 bool RISCVTargetLowering::CanLowerReturn( 1425 CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg, 1426 const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const { 1427 SmallVector<CCValAssign, 16> RVLocs; 1428 CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context); 1429 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 1430 MVT VT = Outs[i].VT; 1431 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 1432 if (CC_RISCV(MF.getDataLayout(), i, VT, VT, CCValAssign::Full, ArgFlags, 1433 CCInfo, /*IsFixed=*/true, /*IsRet=*/true, nullptr)) 1434 return false; 1435 } 1436 return true; 1437 } 1438 1439 static SDValue packIntoRegLoc(SelectionDAG &DAG, SDValue Val, 1440 const CCValAssign &VA, const SDLoc &DL) { 1441 EVT LocVT = VA.getLocVT(); 1442 1443 switch (VA.getLocInfo()) { 1444 default: 1445 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 1446 case CCValAssign::Full: 1447 break; 1448 case CCValAssign::BCvt: 1449 Val = DAG.getNode(ISD::BITCAST, DL, LocVT, Val); 1450 break; 1451 } 1452 return Val; 1453 } 1454 1455 SDValue 1456 RISCVTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 1457 bool IsVarArg, 1458 const SmallVectorImpl<ISD::OutputArg> &Outs, 1459 const SmallVectorImpl<SDValue> &OutVals, 1460 const SDLoc &DL, SelectionDAG &DAG) const { 1461 // Stores the assignment of the return value to a location. 1462 SmallVector<CCValAssign, 16> RVLocs; 1463 1464 // Info about the registers and stack slot. 1465 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, 1466 *DAG.getContext()); 1467 1468 analyzeOutputArgs(DAG.getMachineFunction(), CCInfo, Outs, /*IsRet=*/true, 1469 nullptr); 1470 1471 SDValue Glue; 1472 SmallVector<SDValue, 4> RetOps(1, Chain); 1473 1474 // Copy the result values into the output registers. 1475 for (unsigned i = 0, e = RVLocs.size(); i < e; ++i) { 1476 SDValue Val = OutVals[i]; 1477 CCValAssign &VA = RVLocs[i]; 1478 assert(VA.isRegLoc() && "Can only return in registers!"); 1479 1480 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { 1481 // Handle returning f64 on RV32D with a soft float ABI. 1482 assert(VA.isRegLoc() && "Expected return via registers"); 1483 SDValue SplitF64 = DAG.getNode(RISCVISD::SplitF64, DL, 1484 DAG.getVTList(MVT::i32, MVT::i32), Val); 1485 SDValue Lo = SplitF64.getValue(0); 1486 SDValue Hi = SplitF64.getValue(1); 1487 unsigned RegLo = VA.getLocReg(); 1488 unsigned RegHi = RegLo + 1; 1489 Chain = DAG.getCopyToReg(Chain, DL, RegLo, Lo, Glue); 1490 Glue = Chain.getValue(1); 1491 RetOps.push_back(DAG.getRegister(RegLo, MVT::i32)); 1492 Chain = DAG.getCopyToReg(Chain, DL, RegHi, Hi, Glue); 1493 Glue = Chain.getValue(1); 1494 RetOps.push_back(DAG.getRegister(RegHi, MVT::i32)); 1495 } else { 1496 // Handle a 'normal' return. 1497 Val = packIntoRegLoc(DAG, Val, VA, DL); 1498 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Glue); 1499 1500 // Guarantee that all emitted copies are stuck together. 1501 Glue = Chain.getValue(1); 1502 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 1503 } 1504 } 1505 1506 RetOps[0] = Chain; // Update chain. 1507 1508 // Add the glue node if we have it. 1509 if (Glue.getNode()) { 1510 RetOps.push_back(Glue); 1511 } 1512 1513 return DAG.getNode(RISCVISD::RET_FLAG, DL, MVT::Other, RetOps); 1514 } 1515 1516 const char *RISCVTargetLowering::getTargetNodeName(unsigned Opcode) const { 1517 switch ((RISCVISD::NodeType)Opcode) { 1518 case RISCVISD::FIRST_NUMBER: 1519 break; 1520 case RISCVISD::RET_FLAG: 1521 return "RISCVISD::RET_FLAG"; 1522 case RISCVISD::CALL: 1523 return "RISCVISD::CALL"; 1524 case RISCVISD::SELECT_CC: 1525 return "RISCVISD::SELECT_CC"; 1526 case RISCVISD::BuildPairF64: 1527 return "RISCVISD::BuildPairF64"; 1528 case RISCVISD::SplitF64: 1529 return "RISCVISD::SplitF64"; 1530 case RISCVISD::TAIL: 1531 return "RISCVISD::TAIL"; 1532 } 1533 return nullptr; 1534 } 1535 1536 std::pair<unsigned, const TargetRegisterClass *> 1537 RISCVTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 1538 StringRef Constraint, 1539 MVT VT) const { 1540 // First, see if this is a constraint that directly corresponds to a 1541 // RISCV register class. 1542 if (Constraint.size() == 1) { 1543 switch (Constraint[0]) { 1544 case 'r': 1545 return std::make_pair(0U, &RISCV::GPRRegClass); 1546 default: 1547 break; 1548 } 1549 } 1550 1551 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 1552 } 1553