1 //===-- RISCVISelLowering.cpp - RISCV DAG Lowering Implementation  --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the interfaces that RISCV uses to lower LLVM code into a
10 // selection DAG.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "RISCVISelLowering.h"
15 #include "MCTargetDesc/RISCVMatInt.h"
16 #include "RISCV.h"
17 #include "RISCVMachineFunctionInfo.h"
18 #include "RISCVRegisterInfo.h"
19 #include "RISCVSubtarget.h"
20 #include "RISCVTargetMachine.h"
21 #include "llvm/ADT/SmallSet.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/CodeGen/CallingConvLower.h"
24 #include "llvm/CodeGen/MachineFrameInfo.h"
25 #include "llvm/CodeGen/MachineFunction.h"
26 #include "llvm/CodeGen/MachineInstrBuilder.h"
27 #include "llvm/CodeGen/MachineRegisterInfo.h"
28 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
29 #include "llvm/CodeGen/ValueTypes.h"
30 #include "llvm/IR/DiagnosticInfo.h"
31 #include "llvm/IR/DiagnosticPrinter.h"
32 #include "llvm/IR/IntrinsicsRISCV.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/ErrorHandling.h"
35 #include "llvm/Support/KnownBits.h"
36 #include "llvm/Support/MathExtras.h"
37 #include "llvm/Support/raw_ostream.h"
38 
39 using namespace llvm;
40 
41 #define DEBUG_TYPE "riscv-lower"
42 
43 STATISTIC(NumTailCalls, "Number of tail calls");
44 
45 RISCVTargetLowering::RISCVTargetLowering(const TargetMachine &TM,
46                                          const RISCVSubtarget &STI)
47     : TargetLowering(TM), Subtarget(STI) {
48 
49   if (Subtarget.isRV32E())
50     report_fatal_error("Codegen not yet implemented for RV32E");
51 
52   RISCVABI::ABI ABI = Subtarget.getTargetABI();
53   assert(ABI != RISCVABI::ABI_Unknown && "Improperly initialised target ABI");
54 
55   if ((ABI == RISCVABI::ABI_ILP32F || ABI == RISCVABI::ABI_LP64F) &&
56       !Subtarget.hasStdExtF()) {
57     errs() << "Hard-float 'f' ABI can't be used for a target that "
58                 "doesn't support the F instruction set extension (ignoring "
59                           "target-abi)\n";
60     ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32;
61   } else if ((ABI == RISCVABI::ABI_ILP32D || ABI == RISCVABI::ABI_LP64D) &&
62              !Subtarget.hasStdExtD()) {
63     errs() << "Hard-float 'd' ABI can't be used for a target that "
64               "doesn't support the D instruction set extension (ignoring "
65               "target-abi)\n";
66     ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32;
67   }
68 
69   switch (ABI) {
70   default:
71     report_fatal_error("Don't know how to lower this ABI");
72   case RISCVABI::ABI_ILP32:
73   case RISCVABI::ABI_ILP32F:
74   case RISCVABI::ABI_ILP32D:
75   case RISCVABI::ABI_LP64:
76   case RISCVABI::ABI_LP64F:
77   case RISCVABI::ABI_LP64D:
78     break;
79   }
80 
81   MVT XLenVT = Subtarget.getXLenVT();
82 
83   // Set up the register classes.
84   addRegisterClass(XLenVT, &RISCV::GPRRegClass);
85 
86   if (Subtarget.hasStdExtZfh())
87     addRegisterClass(MVT::f16, &RISCV::FPR16RegClass);
88   if (Subtarget.hasStdExtF())
89     addRegisterClass(MVT::f32, &RISCV::FPR32RegClass);
90   if (Subtarget.hasStdExtD())
91     addRegisterClass(MVT::f64, &RISCV::FPR64RegClass);
92 
93   if (Subtarget.hasStdExtV()) {
94     addRegisterClass(RISCVVMVTs::vbool64_t, &RISCV::VRRegClass);
95     addRegisterClass(RISCVVMVTs::vbool32_t, &RISCV::VRRegClass);
96     addRegisterClass(RISCVVMVTs::vbool16_t, &RISCV::VRRegClass);
97     addRegisterClass(RISCVVMVTs::vbool8_t, &RISCV::VRRegClass);
98     addRegisterClass(RISCVVMVTs::vbool4_t, &RISCV::VRRegClass);
99     addRegisterClass(RISCVVMVTs::vbool2_t, &RISCV::VRRegClass);
100     addRegisterClass(RISCVVMVTs::vbool1_t, &RISCV::VRRegClass);
101 
102     addRegisterClass(RISCVVMVTs::vint8mf8_t, &RISCV::VRRegClass);
103     addRegisterClass(RISCVVMVTs::vint8mf4_t, &RISCV::VRRegClass);
104     addRegisterClass(RISCVVMVTs::vint8mf2_t, &RISCV::VRRegClass);
105     addRegisterClass(RISCVVMVTs::vint8m1_t, &RISCV::VRRegClass);
106     addRegisterClass(RISCVVMVTs::vint8m2_t, &RISCV::VRM2RegClass);
107     addRegisterClass(RISCVVMVTs::vint8m4_t, &RISCV::VRM4RegClass);
108     addRegisterClass(RISCVVMVTs::vint8m8_t, &RISCV::VRM8RegClass);
109 
110     addRegisterClass(RISCVVMVTs::vint16mf4_t, &RISCV::VRRegClass);
111     addRegisterClass(RISCVVMVTs::vint16mf2_t, &RISCV::VRRegClass);
112     addRegisterClass(RISCVVMVTs::vint16m1_t, &RISCV::VRRegClass);
113     addRegisterClass(RISCVVMVTs::vint16m2_t, &RISCV::VRM2RegClass);
114     addRegisterClass(RISCVVMVTs::vint16m4_t, &RISCV::VRM4RegClass);
115     addRegisterClass(RISCVVMVTs::vint16m8_t, &RISCV::VRM8RegClass);
116 
117     addRegisterClass(RISCVVMVTs::vint32mf2_t, &RISCV::VRRegClass);
118     addRegisterClass(RISCVVMVTs::vint32m1_t, &RISCV::VRRegClass);
119     addRegisterClass(RISCVVMVTs::vint32m2_t, &RISCV::VRM2RegClass);
120     addRegisterClass(RISCVVMVTs::vint32m4_t, &RISCV::VRM4RegClass);
121     addRegisterClass(RISCVVMVTs::vint32m8_t, &RISCV::VRM8RegClass);
122 
123     addRegisterClass(RISCVVMVTs::vint64m1_t, &RISCV::VRRegClass);
124     addRegisterClass(RISCVVMVTs::vint64m2_t, &RISCV::VRM2RegClass);
125     addRegisterClass(RISCVVMVTs::vint64m4_t, &RISCV::VRM4RegClass);
126     addRegisterClass(RISCVVMVTs::vint64m8_t, &RISCV::VRM8RegClass);
127 
128     if (Subtarget.hasStdExtZfh()) {
129       addRegisterClass(RISCVVMVTs::vfloat16mf4_t, &RISCV::VRRegClass);
130       addRegisterClass(RISCVVMVTs::vfloat16mf2_t, &RISCV::VRRegClass);
131       addRegisterClass(RISCVVMVTs::vfloat16m1_t, &RISCV::VRRegClass);
132       addRegisterClass(RISCVVMVTs::vfloat16m2_t, &RISCV::VRM2RegClass);
133       addRegisterClass(RISCVVMVTs::vfloat16m4_t, &RISCV::VRM4RegClass);
134       addRegisterClass(RISCVVMVTs::vfloat16m8_t, &RISCV::VRM8RegClass);
135     }
136 
137     if (Subtarget.hasStdExtF()) {
138       addRegisterClass(RISCVVMVTs::vfloat32mf2_t, &RISCV::VRRegClass);
139       addRegisterClass(RISCVVMVTs::vfloat32m1_t, &RISCV::VRRegClass);
140       addRegisterClass(RISCVVMVTs::vfloat32m2_t, &RISCV::VRM2RegClass);
141       addRegisterClass(RISCVVMVTs::vfloat32m4_t, &RISCV::VRM4RegClass);
142       addRegisterClass(RISCVVMVTs::vfloat32m8_t, &RISCV::VRM8RegClass);
143     }
144 
145     if (Subtarget.hasStdExtD()) {
146       addRegisterClass(RISCVVMVTs::vfloat64m1_t, &RISCV::VRRegClass);
147       addRegisterClass(RISCVVMVTs::vfloat64m2_t, &RISCV::VRM2RegClass);
148       addRegisterClass(RISCVVMVTs::vfloat64m4_t, &RISCV::VRM4RegClass);
149       addRegisterClass(RISCVVMVTs::vfloat64m8_t, &RISCV::VRM8RegClass);
150     }
151   }
152 
153   // Compute derived properties from the register classes.
154   computeRegisterProperties(STI.getRegisterInfo());
155 
156   setStackPointerRegisterToSaveRestore(RISCV::X2);
157 
158   for (auto N : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD})
159     setLoadExtAction(N, XLenVT, MVT::i1, Promote);
160 
161   // TODO: add all necessary setOperationAction calls.
162   setOperationAction(ISD::DYNAMIC_STACKALLOC, XLenVT, Expand);
163 
164   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
165   setOperationAction(ISD::BR_CC, XLenVT, Expand);
166   setOperationAction(ISD::SELECT, XLenVT, Custom);
167   setOperationAction(ISD::SELECT_CC, XLenVT, Expand);
168 
169   setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
170   setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
171 
172   setOperationAction(ISD::VASTART, MVT::Other, Custom);
173   setOperationAction(ISD::VAARG, MVT::Other, Expand);
174   setOperationAction(ISD::VACOPY, MVT::Other, Expand);
175   setOperationAction(ISD::VAEND, MVT::Other, Expand);
176 
177   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
178   if (!Subtarget.hasStdExtZbb()) {
179     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand);
180     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
181   }
182 
183   if (Subtarget.is64Bit()) {
184     setOperationAction(ISD::ADD, MVT::i32, Custom);
185     setOperationAction(ISD::SUB, MVT::i32, Custom);
186     setOperationAction(ISD::SHL, MVT::i32, Custom);
187     setOperationAction(ISD::SRA, MVT::i32, Custom);
188     setOperationAction(ISD::SRL, MVT::i32, Custom);
189   }
190 
191   if (!Subtarget.hasStdExtM()) {
192     setOperationAction(ISD::MUL, XLenVT, Expand);
193     setOperationAction(ISD::MULHS, XLenVT, Expand);
194     setOperationAction(ISD::MULHU, XLenVT, Expand);
195     setOperationAction(ISD::SDIV, XLenVT, Expand);
196     setOperationAction(ISD::UDIV, XLenVT, Expand);
197     setOperationAction(ISD::SREM, XLenVT, Expand);
198     setOperationAction(ISD::UREM, XLenVT, Expand);
199   }
200 
201   if (Subtarget.is64Bit() && Subtarget.hasStdExtM()) {
202     setOperationAction(ISD::MUL, MVT::i32, Custom);
203     setOperationAction(ISD::SDIV, MVT::i32, Custom);
204     setOperationAction(ISD::UDIV, MVT::i32, Custom);
205     setOperationAction(ISD::UREM, MVT::i32, Custom);
206   }
207 
208   setOperationAction(ISD::SDIVREM, XLenVT, Expand);
209   setOperationAction(ISD::UDIVREM, XLenVT, Expand);
210   setOperationAction(ISD::SMUL_LOHI, XLenVT, Expand);
211   setOperationAction(ISD::UMUL_LOHI, XLenVT, Expand);
212 
213   setOperationAction(ISD::SHL_PARTS, XLenVT, Custom);
214   setOperationAction(ISD::SRL_PARTS, XLenVT, Custom);
215   setOperationAction(ISD::SRA_PARTS, XLenVT, Custom);
216 
217   if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp()) {
218     if (Subtarget.is64Bit()) {
219       setOperationAction(ISD::ROTL, MVT::i32, Custom);
220       setOperationAction(ISD::ROTR, MVT::i32, Custom);
221     }
222   } else {
223     setOperationAction(ISD::ROTL, XLenVT, Expand);
224     setOperationAction(ISD::ROTR, XLenVT, Expand);
225   }
226 
227   if (Subtarget.hasStdExtZbp()) {
228     setOperationAction(ISD::BITREVERSE, XLenVT, Custom);
229     setOperationAction(ISD::BSWAP, XLenVT, Custom);
230 
231     if (Subtarget.is64Bit()) {
232       setOperationAction(ISD::BITREVERSE, MVT::i32, Custom);
233       setOperationAction(ISD::BSWAP, MVT::i32, Custom);
234     }
235   } else {
236     setOperationAction(ISD::BSWAP, XLenVT, Expand);
237   }
238 
239   if (Subtarget.hasStdExtZbb()) {
240     setOperationAction(ISD::SMIN, XLenVT, Legal);
241     setOperationAction(ISD::SMAX, XLenVT, Legal);
242     setOperationAction(ISD::UMIN, XLenVT, Legal);
243     setOperationAction(ISD::UMAX, XLenVT, Legal);
244   } else {
245     setOperationAction(ISD::CTTZ, XLenVT, Expand);
246     setOperationAction(ISD::CTLZ, XLenVT, Expand);
247     setOperationAction(ISD::CTPOP, XLenVT, Expand);
248   }
249 
250   if (Subtarget.hasStdExtZbt()) {
251     setOperationAction(ISD::FSHL, XLenVT, Legal);
252     setOperationAction(ISD::FSHR, XLenVT, Legal);
253 
254     if (Subtarget.is64Bit()) {
255       setOperationAction(ISD::FSHL, MVT::i32, Custom);
256       setOperationAction(ISD::FSHR, MVT::i32, Custom);
257     }
258   }
259 
260   ISD::CondCode FPCCToExpand[] = {
261       ISD::SETOGT, ISD::SETOGE, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT,
262       ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUNE, ISD::SETGT,
263       ISD::SETGE,  ISD::SETNE,  ISD::SETO,   ISD::SETUO};
264 
265   ISD::NodeType FPOpToExpand[] = {
266       ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, ISD::FREM, ISD::FP16_TO_FP,
267       ISD::FP_TO_FP16};
268 
269   if (Subtarget.hasStdExtZfh())
270     setOperationAction(ISD::BITCAST, MVT::i16, Custom);
271 
272   if (Subtarget.hasStdExtZfh()) {
273     setOperationAction(ISD::FMINNUM, MVT::f16, Legal);
274     setOperationAction(ISD::FMAXNUM, MVT::f16, Legal);
275     for (auto CC : FPCCToExpand)
276       setCondCodeAction(CC, MVT::f16, Expand);
277     setOperationAction(ISD::SELECT_CC, MVT::f16, Expand);
278     setOperationAction(ISD::SELECT, MVT::f16, Custom);
279     setOperationAction(ISD::BR_CC, MVT::f16, Expand);
280     for (auto Op : FPOpToExpand)
281       setOperationAction(Op, MVT::f16, Expand);
282   }
283 
284   if (Subtarget.hasStdExtF()) {
285     setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
286     setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
287     for (auto CC : FPCCToExpand)
288       setCondCodeAction(CC, MVT::f32, Expand);
289     setOperationAction(ISD::SELECT_CC, MVT::f32, Expand);
290     setOperationAction(ISD::SELECT, MVT::f32, Custom);
291     setOperationAction(ISD::BR_CC, MVT::f32, Expand);
292     for (auto Op : FPOpToExpand)
293       setOperationAction(Op, MVT::f32, Expand);
294     setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
295     setTruncStoreAction(MVT::f32, MVT::f16, Expand);
296   }
297 
298   if (Subtarget.hasStdExtF() && Subtarget.is64Bit())
299     setOperationAction(ISD::BITCAST, MVT::i32, Custom);
300 
301   if (Subtarget.hasStdExtD()) {
302     setOperationAction(ISD::FMINNUM, MVT::f64, Legal);
303     setOperationAction(ISD::FMAXNUM, MVT::f64, Legal);
304     for (auto CC : FPCCToExpand)
305       setCondCodeAction(CC, MVT::f64, Expand);
306     setOperationAction(ISD::SELECT_CC, MVT::f64, Expand);
307     setOperationAction(ISD::SELECT, MVT::f64, Custom);
308     setOperationAction(ISD::BR_CC, MVT::f64, Expand);
309     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
310     setTruncStoreAction(MVT::f64, MVT::f32, Expand);
311     for (auto Op : FPOpToExpand)
312       setOperationAction(Op, MVT::f64, Expand);
313     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
314     setTruncStoreAction(MVT::f64, MVT::f16, Expand);
315   }
316 
317   if (Subtarget.is64Bit()) {
318     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
319     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
320     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom);
321     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom);
322   }
323 
324   setOperationAction(ISD::GlobalAddress, XLenVT, Custom);
325   setOperationAction(ISD::BlockAddress, XLenVT, Custom);
326   setOperationAction(ISD::ConstantPool, XLenVT, Custom);
327   setOperationAction(ISD::JumpTable, XLenVT, Custom);
328 
329   setOperationAction(ISD::GlobalTLSAddress, XLenVT, Custom);
330 
331   // TODO: On M-mode only targets, the cycle[h] CSR may not be present.
332   // Unfortunately this can't be determined just from the ISA naming string.
333   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64,
334                      Subtarget.is64Bit() ? Legal : Custom);
335 
336   setOperationAction(ISD::TRAP, MVT::Other, Legal);
337   setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal);
338   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
339 
340   if (Subtarget.hasStdExtA()) {
341     setMaxAtomicSizeInBitsSupported(Subtarget.getXLen());
342     setMinCmpXchgSizeInBits(32);
343   } else {
344     setMaxAtomicSizeInBitsSupported(0);
345   }
346 
347   setBooleanContents(ZeroOrOneBooleanContent);
348 
349   if (Subtarget.hasStdExtV()) {
350     setBooleanVectorContents(ZeroOrOneBooleanContent);
351 
352     setOperationAction(ISD::VSCALE, XLenVT, Custom);
353 
354     // RVV intrinsics may have illegal operands.
355     // We also need to custom legalize vmv.x.s.
356     setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i8, Custom);
357     setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i16, Custom);
358     setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i8, Custom);
359     setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i16, Custom);
360     setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i32, Custom);
361     setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i32, Custom);
362 
363     if (Subtarget.is64Bit()) {
364       setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i64, Custom);
365       setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i64, Custom);
366     }
367 
368     for (auto VT : MVT::integer_scalable_vector_valuetypes()) {
369       setOperationAction(ISD::SPLAT_VECTOR, VT, Legal);
370 
371       setOperationAction(ISD::SMIN, VT, Legal);
372       setOperationAction(ISD::SMAX, VT, Legal);
373       setOperationAction(ISD::UMIN, VT, Legal);
374       setOperationAction(ISD::UMAX, VT, Legal);
375 
376       if (isTypeLegal(VT)) {
377         // Custom-lower extensions and truncations from/to mask types.
378         setOperationAction(ISD::ANY_EXTEND, VT, Custom);
379         setOperationAction(ISD::SIGN_EXTEND, VT, Custom);
380         setOperationAction(ISD::ZERO_EXTEND, VT, Custom);
381 
382         // We custom-lower all legally-typed vector truncates:
383         // 1. Mask VTs are custom-expanded into a series of standard nodes
384         // 2. Integer VTs are lowered as a series of "RISCVISD::TRUNCATE_VECTOR"
385         // nodes which truncate by one power of two at a time.
386         setOperationAction(ISD::TRUNCATE, VT, Custom);
387       }
388     }
389 
390     // We must custom-lower SPLAT_VECTOR vXi64 on RV32
391     if (!Subtarget.is64Bit())
392       setOperationAction(ISD::SPLAT_VECTOR, MVT::i64, Custom);
393 
394     // Expand various CCs to best match the RVV ISA, which natively supports UNE
395     // but no other unordered comparisons, and supports all ordered comparisons
396     // except ONE. Additionally, we expand GT,OGT,GE,OGE for optimization
397     // purposes; they are expanded to their swapped-operand CCs (LT,OLT,LE,OLE),
398     // and we pattern-match those back to the "original", swapping operands once
399     // more. This way we catch both operations and both "vf" and "fv" forms with
400     // fewer patterns.
401     ISD::CondCode VFPCCToExpand[] = {
402         ISD::SETO,   ISD::SETONE, ISD::SETUEQ, ISD::SETUGT,
403         ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUO,
404         ISD::SETGT,  ISD::SETOGT, ISD::SETGE,  ISD::SETOGE,
405     };
406 
407     if (Subtarget.hasStdExtZfh()) {
408       for (auto VT : {RISCVVMVTs::vfloat16mf4_t, RISCVVMVTs::vfloat16mf2_t,
409                       RISCVVMVTs::vfloat16m1_t, RISCVVMVTs::vfloat16m2_t,
410                       RISCVVMVTs::vfloat16m4_t, RISCVVMVTs::vfloat16m8_t}) {
411         setOperationAction(ISD::SPLAT_VECTOR, VT, Legal);
412         for (auto CC : VFPCCToExpand)
413           setCondCodeAction(CC, VT, Expand);
414       }
415     }
416 
417     if (Subtarget.hasStdExtF()) {
418       for (auto VT : {RISCVVMVTs::vfloat32mf2_t, RISCVVMVTs::vfloat32m1_t,
419                       RISCVVMVTs::vfloat32m2_t, RISCVVMVTs::vfloat32m4_t,
420                       RISCVVMVTs::vfloat32m8_t}) {
421         setOperationAction(ISD::SPLAT_VECTOR, VT, Legal);
422         for (auto CC : VFPCCToExpand)
423           setCondCodeAction(CC, VT, Expand);
424       }
425     }
426 
427     if (Subtarget.hasStdExtD()) {
428       for (auto VT : {RISCVVMVTs::vfloat64m1_t, RISCVVMVTs::vfloat64m2_t,
429                       RISCVVMVTs::vfloat64m4_t, RISCVVMVTs::vfloat64m8_t}) {
430         setOperationAction(ISD::SPLAT_VECTOR, VT, Legal);
431         for (auto CC : VFPCCToExpand)
432           setCondCodeAction(CC, VT, Expand);
433       }
434     }
435   }
436 
437   // Function alignments.
438   const Align FunctionAlignment(Subtarget.hasStdExtC() ? 2 : 4);
439   setMinFunctionAlignment(FunctionAlignment);
440   setPrefFunctionAlignment(FunctionAlignment);
441 
442   setMinimumJumpTableEntries(5);
443 
444   // Jumps are expensive, compared to logic
445   setJumpIsExpensive();
446 
447   // We can use any register for comparisons
448   setHasMultipleConditionRegisters();
449 
450   setTargetDAGCombine(ISD::SETCC);
451   if (Subtarget.hasStdExtZbp()) {
452     setTargetDAGCombine(ISD::OR);
453   }
454 }
455 
456 EVT RISCVTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &,
457                                             EVT VT) const {
458   if (!VT.isVector())
459     return getPointerTy(DL);
460   if (Subtarget.hasStdExtV())
461     return MVT::getVectorVT(MVT::i1, VT.getVectorElementCount());
462   return VT.changeVectorElementTypeToInteger();
463 }
464 
465 bool RISCVTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
466                                              const CallInst &I,
467                                              MachineFunction &MF,
468                                              unsigned Intrinsic) const {
469   switch (Intrinsic) {
470   default:
471     return false;
472   case Intrinsic::riscv_masked_atomicrmw_xchg_i32:
473   case Intrinsic::riscv_masked_atomicrmw_add_i32:
474   case Intrinsic::riscv_masked_atomicrmw_sub_i32:
475   case Intrinsic::riscv_masked_atomicrmw_nand_i32:
476   case Intrinsic::riscv_masked_atomicrmw_max_i32:
477   case Intrinsic::riscv_masked_atomicrmw_min_i32:
478   case Intrinsic::riscv_masked_atomicrmw_umax_i32:
479   case Intrinsic::riscv_masked_atomicrmw_umin_i32:
480   case Intrinsic::riscv_masked_cmpxchg_i32:
481     PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType());
482     Info.opc = ISD::INTRINSIC_W_CHAIN;
483     Info.memVT = MVT::getVT(PtrTy->getElementType());
484     Info.ptrVal = I.getArgOperand(0);
485     Info.offset = 0;
486     Info.align = Align(4);
487     Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore |
488                  MachineMemOperand::MOVolatile;
489     return true;
490   }
491 }
492 
493 bool RISCVTargetLowering::isLegalAddressingMode(const DataLayout &DL,
494                                                 const AddrMode &AM, Type *Ty,
495                                                 unsigned AS,
496                                                 Instruction *I) const {
497   // No global is ever allowed as a base.
498   if (AM.BaseGV)
499     return false;
500 
501   // Require a 12-bit signed offset.
502   if (!isInt<12>(AM.BaseOffs))
503     return false;
504 
505   switch (AM.Scale) {
506   case 0: // "r+i" or just "i", depending on HasBaseReg.
507     break;
508   case 1:
509     if (!AM.HasBaseReg) // allow "r+i".
510       break;
511     return false; // disallow "r+r" or "r+r+i".
512   default:
513     return false;
514   }
515 
516   return true;
517 }
518 
519 bool RISCVTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
520   return isInt<12>(Imm);
521 }
522 
523 bool RISCVTargetLowering::isLegalAddImmediate(int64_t Imm) const {
524   return isInt<12>(Imm);
525 }
526 
527 // On RV32, 64-bit integers are split into their high and low parts and held
528 // in two different registers, so the trunc is free since the low register can
529 // just be used.
530 bool RISCVTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const {
531   if (Subtarget.is64Bit() || !SrcTy->isIntegerTy() || !DstTy->isIntegerTy())
532     return false;
533   unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();
534   unsigned DestBits = DstTy->getPrimitiveSizeInBits();
535   return (SrcBits == 64 && DestBits == 32);
536 }
537 
538 bool RISCVTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const {
539   if (Subtarget.is64Bit() || SrcVT.isVector() || DstVT.isVector() ||
540       !SrcVT.isInteger() || !DstVT.isInteger())
541     return false;
542   unsigned SrcBits = SrcVT.getSizeInBits();
543   unsigned DestBits = DstVT.getSizeInBits();
544   return (SrcBits == 64 && DestBits == 32);
545 }
546 
547 bool RISCVTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
548   // Zexts are free if they can be combined with a load.
549   if (auto *LD = dyn_cast<LoadSDNode>(Val)) {
550     EVT MemVT = LD->getMemoryVT();
551     if ((MemVT == MVT::i8 || MemVT == MVT::i16 ||
552          (Subtarget.is64Bit() && MemVT == MVT::i32)) &&
553         (LD->getExtensionType() == ISD::NON_EXTLOAD ||
554          LD->getExtensionType() == ISD::ZEXTLOAD))
555       return true;
556   }
557 
558   return TargetLowering::isZExtFree(Val, VT2);
559 }
560 
561 bool RISCVTargetLowering::isSExtCheaperThanZExt(EVT SrcVT, EVT DstVT) const {
562   return Subtarget.is64Bit() && SrcVT == MVT::i32 && DstVT == MVT::i64;
563 }
564 
565 bool RISCVTargetLowering::isCheapToSpeculateCttz() const {
566   return Subtarget.hasStdExtZbb();
567 }
568 
569 bool RISCVTargetLowering::isCheapToSpeculateCtlz() const {
570   return Subtarget.hasStdExtZbb();
571 }
572 
573 bool RISCVTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
574                                        bool ForCodeSize) const {
575   if (VT == MVT::f16 && !Subtarget.hasStdExtZfh())
576     return false;
577   if (VT == MVT::f32 && !Subtarget.hasStdExtF())
578     return false;
579   if (VT == MVT::f64 && !Subtarget.hasStdExtD())
580     return false;
581   if (Imm.isNegZero())
582     return false;
583   return Imm.isZero();
584 }
585 
586 bool RISCVTargetLowering::hasBitPreservingFPLogic(EVT VT) const {
587   return (VT == MVT::f16 && Subtarget.hasStdExtZfh()) ||
588          (VT == MVT::f32 && Subtarget.hasStdExtF()) ||
589          (VT == MVT::f64 && Subtarget.hasStdExtD());
590 }
591 
592 // Changes the condition code and swaps operands if necessary, so the SetCC
593 // operation matches one of the comparisons supported directly in the RISC-V
594 // ISA.
595 static void normaliseSetCC(SDValue &LHS, SDValue &RHS, ISD::CondCode &CC) {
596   switch (CC) {
597   default:
598     break;
599   case ISD::SETGT:
600   case ISD::SETLE:
601   case ISD::SETUGT:
602   case ISD::SETULE:
603     CC = ISD::getSetCCSwappedOperands(CC);
604     std::swap(LHS, RHS);
605     break;
606   }
607 }
608 
609 // Return the RISC-V branch opcode that matches the given DAG integer
610 // condition code. The CondCode must be one of those supported by the RISC-V
611 // ISA (see normaliseSetCC).
612 static unsigned getBranchOpcodeForIntCondCode(ISD::CondCode CC) {
613   switch (CC) {
614   default:
615     llvm_unreachable("Unsupported CondCode");
616   case ISD::SETEQ:
617     return RISCV::BEQ;
618   case ISD::SETNE:
619     return RISCV::BNE;
620   case ISD::SETLT:
621     return RISCV::BLT;
622   case ISD::SETGE:
623     return RISCV::BGE;
624   case ISD::SETULT:
625     return RISCV::BLTU;
626   case ISD::SETUGE:
627     return RISCV::BGEU;
628   }
629 }
630 
631 SDValue RISCVTargetLowering::LowerOperation(SDValue Op,
632                                             SelectionDAG &DAG) const {
633   switch (Op.getOpcode()) {
634   default:
635     report_fatal_error("unimplemented operand");
636   case ISD::GlobalAddress:
637     return lowerGlobalAddress(Op, DAG);
638   case ISD::BlockAddress:
639     return lowerBlockAddress(Op, DAG);
640   case ISD::ConstantPool:
641     return lowerConstantPool(Op, DAG);
642   case ISD::JumpTable:
643     return lowerJumpTable(Op, DAG);
644   case ISD::GlobalTLSAddress:
645     return lowerGlobalTLSAddress(Op, DAG);
646   case ISD::SELECT:
647     return lowerSELECT(Op, DAG);
648   case ISD::VASTART:
649     return lowerVASTART(Op, DAG);
650   case ISD::FRAMEADDR:
651     return lowerFRAMEADDR(Op, DAG);
652   case ISD::RETURNADDR:
653     return lowerRETURNADDR(Op, DAG);
654   case ISD::SHL_PARTS:
655     return lowerShiftLeftParts(Op, DAG);
656   case ISD::SRA_PARTS:
657     return lowerShiftRightParts(Op, DAG, true);
658   case ISD::SRL_PARTS:
659     return lowerShiftRightParts(Op, DAG, false);
660   case ISD::BITCAST: {
661     assert(((Subtarget.is64Bit() && Subtarget.hasStdExtF()) ||
662             Subtarget.hasStdExtZfh()) &&
663            "Unexpected custom legalisation");
664     SDLoc DL(Op);
665     SDValue Op0 = Op.getOperand(0);
666     if (Op.getValueType() == MVT::f16 && Subtarget.hasStdExtZfh()) {
667       if (Op0.getValueType() != MVT::i16)
668         return SDValue();
669       SDValue NewOp0 =
670           DAG.getNode(ISD::ANY_EXTEND, DL, Subtarget.getXLenVT(), Op0);
671       SDValue FPConv = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, NewOp0);
672       return FPConv;
673     } else if (Op.getValueType() == MVT::f32 && Subtarget.is64Bit() &&
674                Subtarget.hasStdExtF()) {
675       if (Op0.getValueType() != MVT::i32)
676         return SDValue();
677       SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
678       SDValue FPConv =
679           DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, NewOp0);
680       return FPConv;
681     }
682     return SDValue();
683   }
684   case ISD::INTRINSIC_WO_CHAIN:
685     return LowerINTRINSIC_WO_CHAIN(Op, DAG);
686   case ISD::INTRINSIC_W_CHAIN:
687     return LowerINTRINSIC_W_CHAIN(Op, DAG);
688   case ISD::BSWAP:
689   case ISD::BITREVERSE: {
690     // Convert BSWAP/BITREVERSE to GREVI to enable GREVI combinining.
691     assert(Subtarget.hasStdExtZbp() && "Unexpected custom legalisation");
692     MVT VT = Op.getSimpleValueType();
693     SDLoc DL(Op);
694     // Start with the maximum immediate value which is the bitwidth - 1.
695     unsigned Imm = VT.getSizeInBits() - 1;
696     // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits.
697     if (Op.getOpcode() == ISD::BSWAP)
698       Imm &= ~0x7U;
699     return DAG.getNode(RISCVISD::GREVI, DL, VT, Op.getOperand(0),
700                        DAG.getTargetConstant(Imm, DL, Subtarget.getXLenVT()));
701   }
702   case ISD::TRUNCATE: {
703     SDLoc DL(Op);
704     EVT VT = Op.getValueType();
705     // Only custom-lower vector truncates
706     if (!VT.isVector())
707       return Op;
708 
709     // Truncates to mask types are handled differently
710     if (VT.getVectorElementType() == MVT::i1)
711       return lowerVectorMaskTrunc(Op, DAG);
712 
713     // RVV only has truncates which operate from SEW*2->SEW, so lower arbitrary
714     // truncates as a series of "RISCVISD::TRUNCATE_VECTOR" nodes which
715     // truncate by one power of two at a time.
716     EVT DstEltVT = VT.getVectorElementType();
717 
718     SDValue Src = Op.getOperand(0);
719     EVT SrcVT = Src.getValueType();
720     EVT SrcEltVT = SrcVT.getVectorElementType();
721 
722     assert(DstEltVT.bitsLT(SrcEltVT) &&
723            isPowerOf2_64(DstEltVT.getSizeInBits()) &&
724            isPowerOf2_64(SrcEltVT.getSizeInBits()) &&
725            "Unexpected vector truncate lowering");
726 
727     SDValue Result = Src;
728     LLVMContext &Context = *DAG.getContext();
729     const ElementCount Count = SrcVT.getVectorElementCount();
730     do {
731       SrcEltVT = EVT::getIntegerVT(Context, SrcEltVT.getSizeInBits() / 2);
732       EVT ResultVT = EVT::getVectorVT(Context, SrcEltVT, Count);
733       Result = DAG.getNode(RISCVISD::TRUNCATE_VECTOR, DL, ResultVT, Result);
734     } while (SrcEltVT != DstEltVT);
735 
736     return Result;
737   }
738   case ISD::ANY_EXTEND:
739   case ISD::ZERO_EXTEND:
740     return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ 1);
741   case ISD::SIGN_EXTEND:
742     return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ -1);
743   case ISD::SPLAT_VECTOR:
744     return lowerSPLATVECTOR(Op, DAG);
745   case ISD::VSCALE: {
746     MVT VT = Op.getSimpleValueType();
747     SDLoc DL(Op);
748     SDValue VLENB = DAG.getNode(RISCVISD::READ_VLENB, DL, VT);
749     // We define our scalable vector types for lmul=1 to use a 64 bit known
750     // minimum size. e.g. <vscale x 2 x i32>. VLENB is in bytes so we calculate
751     // vscale as VLENB / 8.
752     SDValue VScale = DAG.getNode(ISD::SRL, DL, VT, VLENB,
753                                  DAG.getConstant(3, DL, VT));
754     return DAG.getNode(ISD::MUL, DL, VT, VScale, Op.getOperand(0));
755   }
756   }
757 }
758 
759 static SDValue getTargetNode(GlobalAddressSDNode *N, SDLoc DL, EVT Ty,
760                              SelectionDAG &DAG, unsigned Flags) {
761   return DAG.getTargetGlobalAddress(N->getGlobal(), DL, Ty, 0, Flags);
762 }
763 
764 static SDValue getTargetNode(BlockAddressSDNode *N, SDLoc DL, EVT Ty,
765                              SelectionDAG &DAG, unsigned Flags) {
766   return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, N->getOffset(),
767                                    Flags);
768 }
769 
770 static SDValue getTargetNode(ConstantPoolSDNode *N, SDLoc DL, EVT Ty,
771                              SelectionDAG &DAG, unsigned Flags) {
772   return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlign(),
773                                    N->getOffset(), Flags);
774 }
775 
776 static SDValue getTargetNode(JumpTableSDNode *N, SDLoc DL, EVT Ty,
777                              SelectionDAG &DAG, unsigned Flags) {
778   return DAG.getTargetJumpTable(N->getIndex(), Ty, Flags);
779 }
780 
781 template <class NodeTy>
782 SDValue RISCVTargetLowering::getAddr(NodeTy *N, SelectionDAG &DAG,
783                                      bool IsLocal) const {
784   SDLoc DL(N);
785   EVT Ty = getPointerTy(DAG.getDataLayout());
786 
787   if (isPositionIndependent()) {
788     SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0);
789     if (IsLocal)
790       // Use PC-relative addressing to access the symbol. This generates the
791       // pattern (PseudoLLA sym), which expands to (addi (auipc %pcrel_hi(sym))
792       // %pcrel_lo(auipc)).
793       return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0);
794 
795     // Use PC-relative addressing to access the GOT for this symbol, then load
796     // the address from the GOT. This generates the pattern (PseudoLA sym),
797     // which expands to (ld (addi (auipc %got_pcrel_hi(sym)) %pcrel_lo(auipc))).
798     return SDValue(DAG.getMachineNode(RISCV::PseudoLA, DL, Ty, Addr), 0);
799   }
800 
801   switch (getTargetMachine().getCodeModel()) {
802   default:
803     report_fatal_error("Unsupported code model for lowering");
804   case CodeModel::Small: {
805     // Generate a sequence for accessing addresses within the first 2 GiB of
806     // address space. This generates the pattern (addi (lui %hi(sym)) %lo(sym)).
807     SDValue AddrHi = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_HI);
808     SDValue AddrLo = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_LO);
809     SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0);
810     return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNHi, AddrLo), 0);
811   }
812   case CodeModel::Medium: {
813     // Generate a sequence for accessing addresses within any 2GiB range within
814     // the address space. This generates the pattern (PseudoLLA sym), which
815     // expands to (addi (auipc %pcrel_hi(sym)) %pcrel_lo(auipc)).
816     SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0);
817     return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0);
818   }
819   }
820 }
821 
822 SDValue RISCVTargetLowering::lowerGlobalAddress(SDValue Op,
823                                                 SelectionDAG &DAG) const {
824   SDLoc DL(Op);
825   EVT Ty = Op.getValueType();
826   GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op);
827   int64_t Offset = N->getOffset();
828   MVT XLenVT = Subtarget.getXLenVT();
829 
830   const GlobalValue *GV = N->getGlobal();
831   bool IsLocal = getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV);
832   SDValue Addr = getAddr(N, DAG, IsLocal);
833 
834   // In order to maximise the opportunity for common subexpression elimination,
835   // emit a separate ADD node for the global address offset instead of folding
836   // it in the global address node. Later peephole optimisations may choose to
837   // fold it back in when profitable.
838   if (Offset != 0)
839     return DAG.getNode(ISD::ADD, DL, Ty, Addr,
840                        DAG.getConstant(Offset, DL, XLenVT));
841   return Addr;
842 }
843 
844 SDValue RISCVTargetLowering::lowerBlockAddress(SDValue Op,
845                                                SelectionDAG &DAG) const {
846   BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op);
847 
848   return getAddr(N, DAG);
849 }
850 
851 SDValue RISCVTargetLowering::lowerConstantPool(SDValue Op,
852                                                SelectionDAG &DAG) const {
853   ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op);
854 
855   return getAddr(N, DAG);
856 }
857 
858 SDValue RISCVTargetLowering::lowerJumpTable(SDValue Op,
859                                             SelectionDAG &DAG) const {
860   JumpTableSDNode *N = cast<JumpTableSDNode>(Op);
861 
862   return getAddr(N, DAG);
863 }
864 
865 SDValue RISCVTargetLowering::getStaticTLSAddr(GlobalAddressSDNode *N,
866                                               SelectionDAG &DAG,
867                                               bool UseGOT) const {
868   SDLoc DL(N);
869   EVT Ty = getPointerTy(DAG.getDataLayout());
870   const GlobalValue *GV = N->getGlobal();
871   MVT XLenVT = Subtarget.getXLenVT();
872 
873   if (UseGOT) {
874     // Use PC-relative addressing to access the GOT for this TLS symbol, then
875     // load the address from the GOT and add the thread pointer. This generates
876     // the pattern (PseudoLA_TLS_IE sym), which expands to
877     // (ld (auipc %tls_ie_pcrel_hi(sym)) %pcrel_lo(auipc)).
878     SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0);
879     SDValue Load =
880         SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_IE, DL, Ty, Addr), 0);
881 
882     // Add the thread pointer.
883     SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT);
884     return DAG.getNode(ISD::ADD, DL, Ty, Load, TPReg);
885   }
886 
887   // Generate a sequence for accessing the address relative to the thread
888   // pointer, with the appropriate adjustment for the thread pointer offset.
889   // This generates the pattern
890   // (add (add_tprel (lui %tprel_hi(sym)) tp %tprel_add(sym)) %tprel_lo(sym))
891   SDValue AddrHi =
892       DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_HI);
893   SDValue AddrAdd =
894       DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_ADD);
895   SDValue AddrLo =
896       DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_LO);
897 
898   SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0);
899   SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT);
900   SDValue MNAdd = SDValue(
901       DAG.getMachineNode(RISCV::PseudoAddTPRel, DL, Ty, MNHi, TPReg, AddrAdd),
902       0);
903   return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNAdd, AddrLo), 0);
904 }
905 
906 SDValue RISCVTargetLowering::getDynamicTLSAddr(GlobalAddressSDNode *N,
907                                                SelectionDAG &DAG) const {
908   SDLoc DL(N);
909   EVT Ty = getPointerTy(DAG.getDataLayout());
910   IntegerType *CallTy = Type::getIntNTy(*DAG.getContext(), Ty.getSizeInBits());
911   const GlobalValue *GV = N->getGlobal();
912 
913   // Use a PC-relative addressing mode to access the global dynamic GOT address.
914   // This generates the pattern (PseudoLA_TLS_GD sym), which expands to
915   // (addi (auipc %tls_gd_pcrel_hi(sym)) %pcrel_lo(auipc)).
916   SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0);
917   SDValue Load =
918       SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_GD, DL, Ty, Addr), 0);
919 
920   // Prepare argument list to generate call.
921   ArgListTy Args;
922   ArgListEntry Entry;
923   Entry.Node = Load;
924   Entry.Ty = CallTy;
925   Args.push_back(Entry);
926 
927   // Setup call to __tls_get_addr.
928   TargetLowering::CallLoweringInfo CLI(DAG);
929   CLI.setDebugLoc(DL)
930       .setChain(DAG.getEntryNode())
931       .setLibCallee(CallingConv::C, CallTy,
932                     DAG.getExternalSymbol("__tls_get_addr", Ty),
933                     std::move(Args));
934 
935   return LowerCallTo(CLI).first;
936 }
937 
938 SDValue RISCVTargetLowering::lowerGlobalTLSAddress(SDValue Op,
939                                                    SelectionDAG &DAG) const {
940   SDLoc DL(Op);
941   EVT Ty = Op.getValueType();
942   GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op);
943   int64_t Offset = N->getOffset();
944   MVT XLenVT = Subtarget.getXLenVT();
945 
946   TLSModel::Model Model = getTargetMachine().getTLSModel(N->getGlobal());
947 
948   if (DAG.getMachineFunction().getFunction().getCallingConv() ==
949       CallingConv::GHC)
950     report_fatal_error("In GHC calling convention TLS is not supported");
951 
952   SDValue Addr;
953   switch (Model) {
954   case TLSModel::LocalExec:
955     Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/false);
956     break;
957   case TLSModel::InitialExec:
958     Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/true);
959     break;
960   case TLSModel::LocalDynamic:
961   case TLSModel::GeneralDynamic:
962     Addr = getDynamicTLSAddr(N, DAG);
963     break;
964   }
965 
966   // In order to maximise the opportunity for common subexpression elimination,
967   // emit a separate ADD node for the global address offset instead of folding
968   // it in the global address node. Later peephole optimisations may choose to
969   // fold it back in when profitable.
970   if (Offset != 0)
971     return DAG.getNode(ISD::ADD, DL, Ty, Addr,
972                        DAG.getConstant(Offset, DL, XLenVT));
973   return Addr;
974 }
975 
976 SDValue RISCVTargetLowering::lowerSELECT(SDValue Op, SelectionDAG &DAG) const {
977   SDValue CondV = Op.getOperand(0);
978   SDValue TrueV = Op.getOperand(1);
979   SDValue FalseV = Op.getOperand(2);
980   SDLoc DL(Op);
981   MVT XLenVT = Subtarget.getXLenVT();
982 
983   // If the result type is XLenVT and CondV is the output of a SETCC node
984   // which also operated on XLenVT inputs, then merge the SETCC node into the
985   // lowered RISCVISD::SELECT_CC to take advantage of the integer
986   // compare+branch instructions. i.e.:
987   // (select (setcc lhs, rhs, cc), truev, falsev)
988   // -> (riscvisd::select_cc lhs, rhs, cc, truev, falsev)
989   if (Op.getSimpleValueType() == XLenVT && CondV.getOpcode() == ISD::SETCC &&
990       CondV.getOperand(0).getSimpleValueType() == XLenVT) {
991     SDValue LHS = CondV.getOperand(0);
992     SDValue RHS = CondV.getOperand(1);
993     auto CC = cast<CondCodeSDNode>(CondV.getOperand(2));
994     ISD::CondCode CCVal = CC->get();
995 
996     normaliseSetCC(LHS, RHS, CCVal);
997 
998     SDValue TargetCC = DAG.getConstant(CCVal, DL, XLenVT);
999     SDValue Ops[] = {LHS, RHS, TargetCC, TrueV, FalseV};
1000     return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops);
1001   }
1002 
1003   // Otherwise:
1004   // (select condv, truev, falsev)
1005   // -> (riscvisd::select_cc condv, zero, setne, truev, falsev)
1006   SDValue Zero = DAG.getConstant(0, DL, XLenVT);
1007   SDValue SetNE = DAG.getConstant(ISD::SETNE, DL, XLenVT);
1008 
1009   SDValue Ops[] = {CondV, Zero, SetNE, TrueV, FalseV};
1010 
1011   return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops);
1012 }
1013 
1014 SDValue RISCVTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const {
1015   MachineFunction &MF = DAG.getMachineFunction();
1016   RISCVMachineFunctionInfo *FuncInfo = MF.getInfo<RISCVMachineFunctionInfo>();
1017 
1018   SDLoc DL(Op);
1019   SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
1020                                  getPointerTy(MF.getDataLayout()));
1021 
1022   // vastart just stores the address of the VarArgsFrameIndex slot into the
1023   // memory location argument.
1024   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1025   return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1),
1026                       MachinePointerInfo(SV));
1027 }
1028 
1029 SDValue RISCVTargetLowering::lowerFRAMEADDR(SDValue Op,
1030                                             SelectionDAG &DAG) const {
1031   const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo();
1032   MachineFunction &MF = DAG.getMachineFunction();
1033   MachineFrameInfo &MFI = MF.getFrameInfo();
1034   MFI.setFrameAddressIsTaken(true);
1035   Register FrameReg = RI.getFrameRegister(MF);
1036   int XLenInBytes = Subtarget.getXLen() / 8;
1037 
1038   EVT VT = Op.getValueType();
1039   SDLoc DL(Op);
1040   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, FrameReg, VT);
1041   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
1042   while (Depth--) {
1043     int Offset = -(XLenInBytes * 2);
1044     SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr,
1045                               DAG.getIntPtrConstant(Offset, DL));
1046     FrameAddr =
1047         DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo());
1048   }
1049   return FrameAddr;
1050 }
1051 
1052 SDValue RISCVTargetLowering::lowerRETURNADDR(SDValue Op,
1053                                              SelectionDAG &DAG) const {
1054   const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo();
1055   MachineFunction &MF = DAG.getMachineFunction();
1056   MachineFrameInfo &MFI = MF.getFrameInfo();
1057   MFI.setReturnAddressIsTaken(true);
1058   MVT XLenVT = Subtarget.getXLenVT();
1059   int XLenInBytes = Subtarget.getXLen() / 8;
1060 
1061   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
1062     return SDValue();
1063 
1064   EVT VT = Op.getValueType();
1065   SDLoc DL(Op);
1066   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
1067   if (Depth) {
1068     int Off = -XLenInBytes;
1069     SDValue FrameAddr = lowerFRAMEADDR(Op, DAG);
1070     SDValue Offset = DAG.getConstant(Off, DL, VT);
1071     return DAG.getLoad(VT, DL, DAG.getEntryNode(),
1072                        DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset),
1073                        MachinePointerInfo());
1074   }
1075 
1076   // Return the value of the return address register, marking it an implicit
1077   // live-in.
1078   Register Reg = MF.addLiveIn(RI.getRARegister(), getRegClassFor(XLenVT));
1079   return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, XLenVT);
1080 }
1081 
1082 SDValue RISCVTargetLowering::lowerShiftLeftParts(SDValue Op,
1083                                                  SelectionDAG &DAG) const {
1084   SDLoc DL(Op);
1085   SDValue Lo = Op.getOperand(0);
1086   SDValue Hi = Op.getOperand(1);
1087   SDValue Shamt = Op.getOperand(2);
1088   EVT VT = Lo.getValueType();
1089 
1090   // if Shamt-XLEN < 0: // Shamt < XLEN
1091   //   Lo = Lo << Shamt
1092   //   Hi = (Hi << Shamt) | ((Lo >>u 1) >>u (XLEN-1 - Shamt))
1093   // else:
1094   //   Lo = 0
1095   //   Hi = Lo << (Shamt-XLEN)
1096 
1097   SDValue Zero = DAG.getConstant(0, DL, VT);
1098   SDValue One = DAG.getConstant(1, DL, VT);
1099   SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT);
1100   SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT);
1101   SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen);
1102   SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt);
1103 
1104   SDValue LoTrue = DAG.getNode(ISD::SHL, DL, VT, Lo, Shamt);
1105   SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, VT, Lo, One);
1106   SDValue ShiftRightLo =
1107       DAG.getNode(ISD::SRL, DL, VT, ShiftRight1Lo, XLenMinus1Shamt);
1108   SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, Hi, Shamt);
1109   SDValue HiTrue = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo);
1110   SDValue HiFalse = DAG.getNode(ISD::SHL, DL, VT, Lo, ShamtMinusXLen);
1111 
1112   SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT);
1113 
1114   Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, Zero);
1115   Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse);
1116 
1117   SDValue Parts[2] = {Lo, Hi};
1118   return DAG.getMergeValues(Parts, DL);
1119 }
1120 
1121 SDValue RISCVTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG,
1122                                                   bool IsSRA) const {
1123   SDLoc DL(Op);
1124   SDValue Lo = Op.getOperand(0);
1125   SDValue Hi = Op.getOperand(1);
1126   SDValue Shamt = Op.getOperand(2);
1127   EVT VT = Lo.getValueType();
1128 
1129   // SRA expansion:
1130   //   if Shamt-XLEN < 0: // Shamt < XLEN
1131   //     Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt))
1132   //     Hi = Hi >>s Shamt
1133   //   else:
1134   //     Lo = Hi >>s (Shamt-XLEN);
1135   //     Hi = Hi >>s (XLEN-1)
1136   //
1137   // SRL expansion:
1138   //   if Shamt-XLEN < 0: // Shamt < XLEN
1139   //     Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt))
1140   //     Hi = Hi >>u Shamt
1141   //   else:
1142   //     Lo = Hi >>u (Shamt-XLEN);
1143   //     Hi = 0;
1144 
1145   unsigned ShiftRightOp = IsSRA ? ISD::SRA : ISD::SRL;
1146 
1147   SDValue Zero = DAG.getConstant(0, DL, VT);
1148   SDValue One = DAG.getConstant(1, DL, VT);
1149   SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT);
1150   SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT);
1151   SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen);
1152   SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt);
1153 
1154   SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, Lo, Shamt);
1155   SDValue ShiftLeftHi1 = DAG.getNode(ISD::SHL, DL, VT, Hi, One);
1156   SDValue ShiftLeftHi =
1157       DAG.getNode(ISD::SHL, DL, VT, ShiftLeftHi1, XLenMinus1Shamt);
1158   SDValue LoTrue = DAG.getNode(ISD::OR, DL, VT, ShiftRightLo, ShiftLeftHi);
1159   SDValue HiTrue = DAG.getNode(ShiftRightOp, DL, VT, Hi, Shamt);
1160   SDValue LoFalse = DAG.getNode(ShiftRightOp, DL, VT, Hi, ShamtMinusXLen);
1161   SDValue HiFalse =
1162       IsSRA ? DAG.getNode(ISD::SRA, DL, VT, Hi, XLenMinus1) : Zero;
1163 
1164   SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT);
1165 
1166   Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, LoFalse);
1167   Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse);
1168 
1169   SDValue Parts[2] = {Lo, Hi};
1170   return DAG.getMergeValues(Parts, DL);
1171 }
1172 
1173 // Custom-lower a SPLAT_VECTOR where XLEN<SEW, as the SEW element type is
1174 // illegal (currently only vXi64 RV32).
1175 // FIXME: We could also catch non-constant sign-extended i32 values and lower
1176 // them to SPLAT_VECTOR_I64
1177 SDValue RISCVTargetLowering::lowerSPLATVECTOR(SDValue Op,
1178                                               SelectionDAG &DAG) const {
1179   SDLoc DL(Op);
1180   EVT VecVT = Op.getValueType();
1181   assert(!Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64 &&
1182          "Unexpected SPLAT_VECTOR lowering");
1183   SDValue SplatVal = Op.getOperand(0);
1184 
1185   // If we can prove that the value is a sign-extended 32-bit value, lower this
1186   // as a custom node in order to try and match RVV vector/scalar instructions.
1187   if (auto *CVal = dyn_cast<ConstantSDNode>(SplatVal)) {
1188     if (isInt<32>(CVal->getSExtValue()))
1189       return DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT,
1190                          DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32));
1191   }
1192 
1193   // Else, on RV32 we lower an i64-element SPLAT_VECTOR thus, being careful not
1194   // to accidentally sign-extend the 32-bit halves to the e64 SEW:
1195   // vmv.v.x vX, hi
1196   // vsll.vx vX, vX, /*32*/
1197   // vmv.v.x vY, lo
1198   // vsll.vx vY, vY, /*32*/
1199   // vsrl.vx vY, vY, /*32*/
1200   // vor.vv vX, vX, vY
1201   SDValue One = DAG.getConstant(1, DL, MVT::i32);
1202   SDValue Zero = DAG.getConstant(0, DL, MVT::i32);
1203   SDValue ThirtyTwoV = DAG.getConstant(32, DL, VecVT);
1204   SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, SplatVal, Zero);
1205   SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, SplatVal, One);
1206 
1207   Lo = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, Lo);
1208   Lo = DAG.getNode(ISD::SHL, DL, VecVT, Lo, ThirtyTwoV);
1209   Lo = DAG.getNode(ISD::SRL, DL, VecVT, Lo, ThirtyTwoV);
1210 
1211   if (isNullConstant(Hi))
1212     return Lo;
1213 
1214   Hi = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, Hi);
1215   Hi = DAG.getNode(ISD::SHL, DL, VecVT, Hi, ThirtyTwoV);
1216 
1217   return DAG.getNode(ISD::OR, DL, VecVT, Lo, Hi);
1218 }
1219 
1220 // Custom-lower extensions from mask vectors by using a vselect either with 1
1221 // for zero/any-extension or -1 for sign-extension:
1222 //   (vXiN = (s|z)ext vXi1:vmask) -> (vXiN = vselect vmask, (-1 or 1), 0)
1223 // Note that any-extension is lowered identically to zero-extension.
1224 SDValue RISCVTargetLowering::lowerVectorMaskExt(SDValue Op, SelectionDAG &DAG,
1225                                                 int64_t ExtTrueVal) const {
1226   SDLoc DL(Op);
1227   EVT VecVT = Op.getValueType();
1228   SDValue Src = Op.getOperand(0);
1229   // Only custom-lower extensions from mask types
1230   if (!Src.getValueType().isVector() ||
1231       Src.getValueType().getVectorElementType() != MVT::i1)
1232     return Op;
1233 
1234   // Be careful not to introduce illegal scalar types at this stage, and be
1235   // careful also about splatting constants as on RV32, vXi64 SPLAT_VECTOR is
1236   // illegal and must be expanded. Since we know that the constants are
1237   // sign-extended 32-bit values, we use SPLAT_VECTOR_I64 directly.
1238   bool IsRV32E64 =
1239       !Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64;
1240   SDValue SplatZero = DAG.getConstant(0, DL, Subtarget.getXLenVT());
1241   SDValue SplatTrueVal = DAG.getConstant(ExtTrueVal, DL, Subtarget.getXLenVT());
1242 
1243   if (!IsRV32E64) {
1244     SplatZero = DAG.getSplatVector(VecVT, DL, SplatZero);
1245     SplatTrueVal = DAG.getSplatVector(VecVT, DL, SplatTrueVal);
1246   } else {
1247     SplatZero = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, SplatZero);
1248     SplatTrueVal =
1249         DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, SplatTrueVal);
1250   }
1251 
1252   return DAG.getNode(ISD::VSELECT, DL, VecVT, Src, SplatTrueVal, SplatZero);
1253 }
1254 
1255 // Custom-lower truncations from vectors to mask vectors by using a mask and a
1256 // setcc operation:
1257 //   (vXi1 = trunc vXiN vec) -> (vXi1 = setcc (and vec, 1), 0, ne)
1258 SDValue RISCVTargetLowering::lowerVectorMaskTrunc(SDValue Op,
1259                                                   SelectionDAG &DAG) const {
1260   SDLoc DL(Op);
1261   EVT MaskVT = Op.getValueType();
1262   // Only expect to custom-lower truncations to mask types
1263   assert(MaskVT.isVector() && MaskVT.getVectorElementType() == MVT::i1 &&
1264          "Unexpected type for vector mask lowering");
1265   SDValue Src = Op.getOperand(0);
1266   EVT VecVT = Src.getValueType();
1267 
1268   // Be careful not to introduce illegal scalar types at this stage, and be
1269   // careful also about splatting constants as on RV32, vXi64 SPLAT_VECTOR is
1270   // illegal and must be expanded. Since we know that the constants are
1271   // sign-extended 32-bit values, we use SPLAT_VECTOR_I64 directly.
1272   bool IsRV32E64 =
1273       !Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64;
1274   SDValue SplatOne = DAG.getConstant(1, DL, Subtarget.getXLenVT());
1275   SDValue SplatZero = DAG.getConstant(0, DL, Subtarget.getXLenVT());
1276 
1277   if (!IsRV32E64) {
1278     SplatOne = DAG.getSplatVector(VecVT, DL, SplatOne);
1279     SplatZero = DAG.getSplatVector(VecVT, DL, SplatZero);
1280   } else {
1281     SplatOne = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, SplatOne);
1282     SplatZero = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, SplatZero);
1283   }
1284 
1285   SDValue Trunc = DAG.getNode(ISD::AND, DL, VecVT, Src, SplatOne);
1286 
1287   return DAG.getSetCC(DL, MaskVT, Trunc, SplatZero, ISD::SETNE);
1288 }
1289 
1290 SDValue RISCVTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
1291                                                      SelectionDAG &DAG) const {
1292   unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
1293   SDLoc DL(Op);
1294 
1295   if (Subtarget.hasStdExtV()) {
1296     // Some RVV intrinsics may claim that they want an integer operand to be
1297     // extended.
1298     if (const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II =
1299             RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo)) {
1300       if (II->ExtendedOperand) {
1301         assert(II->ExtendedOperand < Op.getNumOperands());
1302         SmallVector<SDValue, 8> Operands(Op->op_begin(), Op->op_end());
1303         SDValue &ScalarOp = Operands[II->ExtendedOperand];
1304         EVT OpVT = ScalarOp.getValueType();
1305         if (OpVT == MVT::i8 || OpVT == MVT::i16 ||
1306             (OpVT == MVT::i32 && Subtarget.is64Bit())) {
1307           // If the operand is a constant, sign extend to increase our chances
1308           // of being able to use a .vi instruction. ANY_EXTEND would become a
1309           // a zero extend and the simm5 check in isel would fail.
1310           // FIXME: Should we ignore the upper bits in isel instead?
1311           unsigned ExtOpc = isa<ConstantSDNode>(ScalarOp) ? ISD::SIGN_EXTEND
1312                                                           : ISD::ANY_EXTEND;
1313           ScalarOp = DAG.getNode(ExtOpc, DL, Subtarget.getXLenVT(), ScalarOp);
1314           return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, Op.getValueType(),
1315                              Operands);
1316         }
1317       }
1318     }
1319   }
1320 
1321   switch (IntNo) {
1322   default:
1323     return SDValue();    // Don't custom lower most intrinsics.
1324   case Intrinsic::thread_pointer: {
1325     EVT PtrVT = getPointerTy(DAG.getDataLayout());
1326     return DAG.getRegister(RISCV::X4, PtrVT);
1327   }
1328   case Intrinsic::riscv_vmv_x_s:
1329     assert(Op.getValueType() == Subtarget.getXLenVT() && "Unexpected VT!");
1330     return DAG.getNode(RISCVISD::VMV_X_S, DL, Op.getValueType(),
1331                        Op.getOperand(1));
1332   }
1333 }
1334 
1335 SDValue RISCVTargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op,
1336                                                     SelectionDAG &DAG) const {
1337   unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
1338   SDLoc DL(Op);
1339 
1340   if (Subtarget.hasStdExtV()) {
1341     // Some RVV intrinsics may claim that they want an integer operand to be
1342     // extended.
1343     if (const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II =
1344             RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo)) {
1345       if (II->ExtendedOperand) {
1346         // The operands start from the second argument in INTRINSIC_W_CHAIN.
1347         unsigned ExtendOp = II->ExtendedOperand + 1;
1348         assert(ExtendOp < Op.getNumOperands());
1349         SmallVector<SDValue, 8> Operands(Op->op_begin(), Op->op_end());
1350         SDValue &ScalarOp = Operands[ExtendOp];
1351         EVT OpVT = ScalarOp.getValueType();
1352         if (OpVT == MVT::i8 || OpVT == MVT::i16 ||
1353             (OpVT == MVT::i32 && Subtarget.is64Bit())) {
1354           // If the operand is a constant, sign extend to increase our chances
1355           // of being able to use a .vi instruction. ANY_EXTEND would become a
1356           // a zero extend and the simm5 check in isel would fail.
1357           // FIXME: Should we ignore the upper bits in isel instead?
1358           unsigned ExtOpc = isa<ConstantSDNode>(ScalarOp) ? ISD::SIGN_EXTEND
1359                                                           : ISD::ANY_EXTEND;
1360           ScalarOp = DAG.getNode(ExtOpc, DL, Subtarget.getXLenVT(), ScalarOp);
1361           return DAG.getNode(ISD::INTRINSIC_W_CHAIN, DL, Op->getVTList(),
1362                              Operands);
1363         }
1364       }
1365     }
1366   }
1367 
1368   return SDValue();
1369 }
1370 
1371 // Returns the opcode of the target-specific SDNode that implements the 32-bit
1372 // form of the given Opcode.
1373 static RISCVISD::NodeType getRISCVWOpcode(unsigned Opcode) {
1374   switch (Opcode) {
1375   default:
1376     llvm_unreachable("Unexpected opcode");
1377   case ISD::SHL:
1378     return RISCVISD::SLLW;
1379   case ISD::SRA:
1380     return RISCVISD::SRAW;
1381   case ISD::SRL:
1382     return RISCVISD::SRLW;
1383   case ISD::SDIV:
1384     return RISCVISD::DIVW;
1385   case ISD::UDIV:
1386     return RISCVISD::DIVUW;
1387   case ISD::UREM:
1388     return RISCVISD::REMUW;
1389   case ISD::ROTL:
1390     return RISCVISD::ROLW;
1391   case ISD::ROTR:
1392     return RISCVISD::RORW;
1393   case RISCVISD::GREVI:
1394     return RISCVISD::GREVIW;
1395   case RISCVISD::GORCI:
1396     return RISCVISD::GORCIW;
1397   }
1398 }
1399 
1400 // Converts the given 32-bit operation to a target-specific SelectionDAG node.
1401 // Because i32 isn't a legal type for RV64, these operations would otherwise
1402 // be promoted to i64, making it difficult to select the SLLW/DIVUW/.../*W
1403 // later one because the fact the operation was originally of type i32 is
1404 // lost.
1405 static SDValue customLegalizeToWOp(SDNode *N, SelectionDAG &DAG) {
1406   SDLoc DL(N);
1407   RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode());
1408   SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
1409   SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
1410   SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1);
1411   // ReplaceNodeResults requires we maintain the same type for the return value.
1412   return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes);
1413 }
1414 
1415 // Converts the given 32-bit operation to a i64 operation with signed extension
1416 // semantic to reduce the signed extension instructions.
1417 static SDValue customLegalizeToWOpWithSExt(SDNode *N, SelectionDAG &DAG) {
1418   SDLoc DL(N);
1419   SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
1420   SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
1421   SDValue NewWOp = DAG.getNode(N->getOpcode(), DL, MVT::i64, NewOp0, NewOp1);
1422   SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp,
1423                                DAG.getValueType(MVT::i32));
1424   return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes);
1425 }
1426 
1427 void RISCVTargetLowering::ReplaceNodeResults(SDNode *N,
1428                                              SmallVectorImpl<SDValue> &Results,
1429                                              SelectionDAG &DAG) const {
1430   SDLoc DL(N);
1431   switch (N->getOpcode()) {
1432   default:
1433     llvm_unreachable("Don't know how to custom type legalize this operation!");
1434   case ISD::STRICT_FP_TO_SINT:
1435   case ISD::STRICT_FP_TO_UINT:
1436   case ISD::FP_TO_SINT:
1437   case ISD::FP_TO_UINT: {
1438     bool IsStrict = N->isStrictFPOpcode();
1439     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
1440            "Unexpected custom legalisation");
1441     SDValue Op0 = IsStrict ? N->getOperand(1) : N->getOperand(0);
1442     // If the FP type needs to be softened, emit a library call using the 'si'
1443     // version. If we left it to default legalization we'd end up with 'di'. If
1444     // the FP type doesn't need to be softened just let generic type
1445     // legalization promote the result type.
1446     if (getTypeAction(*DAG.getContext(), Op0.getValueType()) !=
1447         TargetLowering::TypeSoftenFloat)
1448       return;
1449     RTLIB::Libcall LC;
1450     if (N->getOpcode() == ISD::FP_TO_SINT ||
1451         N->getOpcode() == ISD::STRICT_FP_TO_SINT)
1452       LC = RTLIB::getFPTOSINT(Op0.getValueType(), N->getValueType(0));
1453     else
1454       LC = RTLIB::getFPTOUINT(Op0.getValueType(), N->getValueType(0));
1455     MakeLibCallOptions CallOptions;
1456     EVT OpVT = Op0.getValueType();
1457     CallOptions.setTypeListBeforeSoften(OpVT, N->getValueType(0), true);
1458     SDValue Chain = IsStrict ? N->getOperand(0) : SDValue();
1459     SDValue Result;
1460     std::tie(Result, Chain) =
1461         makeLibCall(DAG, LC, N->getValueType(0), Op0, CallOptions, DL, Chain);
1462     Results.push_back(Result);
1463     if (IsStrict)
1464       Results.push_back(Chain);
1465     break;
1466   }
1467   case ISD::READCYCLECOUNTER: {
1468     assert(!Subtarget.is64Bit() &&
1469            "READCYCLECOUNTER only has custom type legalization on riscv32");
1470 
1471     SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
1472     SDValue RCW =
1473         DAG.getNode(RISCVISD::READ_CYCLE_WIDE, DL, VTs, N->getOperand(0));
1474 
1475     Results.push_back(
1476         DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, RCW, RCW.getValue(1)));
1477     Results.push_back(RCW.getValue(2));
1478     break;
1479   }
1480   case ISD::ADD:
1481   case ISD::SUB:
1482   case ISD::MUL:
1483     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
1484            "Unexpected custom legalisation");
1485     if (N->getOperand(1).getOpcode() == ISD::Constant)
1486       return;
1487     Results.push_back(customLegalizeToWOpWithSExt(N, DAG));
1488     break;
1489   case ISD::SHL:
1490   case ISD::SRA:
1491   case ISD::SRL:
1492     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
1493            "Unexpected custom legalisation");
1494     if (N->getOperand(1).getOpcode() == ISD::Constant)
1495       return;
1496     Results.push_back(customLegalizeToWOp(N, DAG));
1497     break;
1498   case ISD::ROTL:
1499   case ISD::ROTR:
1500     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
1501            "Unexpected custom legalisation");
1502     Results.push_back(customLegalizeToWOp(N, DAG));
1503     break;
1504   case ISD::SDIV:
1505   case ISD::UDIV:
1506   case ISD::UREM:
1507     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
1508            Subtarget.hasStdExtM() && "Unexpected custom legalisation");
1509     if (N->getOperand(0).getOpcode() == ISD::Constant ||
1510         N->getOperand(1).getOpcode() == ISD::Constant)
1511       return;
1512     Results.push_back(customLegalizeToWOp(N, DAG));
1513     break;
1514   case ISD::BITCAST: {
1515     assert(((N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
1516              Subtarget.hasStdExtF()) ||
1517             (N->getValueType(0) == MVT::i16 && Subtarget.hasStdExtZfh())) &&
1518            "Unexpected custom legalisation");
1519     SDValue Op0 = N->getOperand(0);
1520     if (N->getValueType(0) == MVT::i16 && Subtarget.hasStdExtZfh()) {
1521       if (Op0.getValueType() != MVT::f16)
1522         return;
1523       SDValue FPConv =
1524           DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, Subtarget.getXLenVT(), Op0);
1525       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FPConv));
1526     } else if (N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
1527                Subtarget.hasStdExtF()) {
1528       if (Op0.getValueType() != MVT::f32)
1529         return;
1530       SDValue FPConv =
1531           DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Op0);
1532       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, FPConv));
1533     }
1534     break;
1535   }
1536   case RISCVISD::GREVI:
1537   case RISCVISD::GORCI: {
1538     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
1539            "Unexpected custom legalisation");
1540     // This is similar to customLegalizeToWOp, except that we pass the second
1541     // operand (a TargetConstant) straight through: it is already of type
1542     // XLenVT.
1543     SDLoc DL(N);
1544     RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode());
1545     SDValue NewOp0 =
1546         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
1547     SDValue NewRes =
1548         DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, N->getOperand(1));
1549     // ReplaceNodeResults requires we maintain the same type for the return
1550     // value.
1551     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes));
1552     break;
1553   }
1554   case ISD::BSWAP:
1555   case ISD::BITREVERSE: {
1556     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
1557            Subtarget.hasStdExtZbp() && "Unexpected custom legalisation");
1558     SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64,
1559                                  N->getOperand(0));
1560     unsigned Imm = N->getOpcode() == ISD::BITREVERSE ? 31 : 24;
1561     SDValue GREVIW = DAG.getNode(RISCVISD::GREVIW, DL, MVT::i64, NewOp0,
1562                                  DAG.getTargetConstant(Imm, DL,
1563                                                        Subtarget.getXLenVT()));
1564     // ReplaceNodeResults requires we maintain the same type for the return
1565     // value.
1566     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, GREVIW));
1567     break;
1568   }
1569   case ISD::FSHL:
1570   case ISD::FSHR: {
1571     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
1572            Subtarget.hasStdExtZbt() && "Unexpected custom legalisation");
1573     SDValue NewOp0 =
1574         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
1575     SDValue NewOp1 =
1576         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
1577     SDValue NewOp2 =
1578         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
1579     // FSLW/FSRW take a 6 bit shift amount but i32 FSHL/FSHR only use 5 bits.
1580     // Mask the shift amount to 5 bits.
1581     NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2,
1582                          DAG.getConstant(0x1f, DL, MVT::i64));
1583     unsigned Opc =
1584         N->getOpcode() == ISD::FSHL ? RISCVISD::FSLW : RISCVISD::FSRW;
1585     SDValue NewOp = DAG.getNode(Opc, DL, MVT::i64, NewOp0, NewOp1, NewOp2);
1586     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewOp));
1587     break;
1588   }
1589   case ISD::INTRINSIC_WO_CHAIN: {
1590     unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
1591     switch (IntNo) {
1592     default:
1593       llvm_unreachable(
1594           "Don't know how to custom type legalize this intrinsic!");
1595     case Intrinsic::riscv_vmv_x_s: {
1596       EVT VT = N->getValueType(0);
1597       assert((VT == MVT::i8 || VT == MVT::i16 ||
1598               (Subtarget.is64Bit() && VT == MVT::i32)) &&
1599              "Unexpected custom legalisation!");
1600       SDValue Extract = DAG.getNode(RISCVISD::VMV_X_S, DL,
1601                                     Subtarget.getXLenVT(), N->getOperand(1));
1602       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, Extract));
1603       break;
1604     }
1605     }
1606     break;
1607   }
1608   }
1609 }
1610 
1611 // A structure to hold one of the bit-manipulation patterns below. Together, a
1612 // SHL and non-SHL pattern may form a bit-manipulation pair on a single source:
1613 //   (or (and (shl x, 1), 0xAAAAAAAA),
1614 //       (and (srl x, 1), 0x55555555))
1615 struct RISCVBitmanipPat {
1616   SDValue Op;
1617   unsigned ShAmt;
1618   bool IsSHL;
1619 
1620   bool formsPairWith(const RISCVBitmanipPat &Other) const {
1621     return Op == Other.Op && ShAmt == Other.ShAmt && IsSHL != Other.IsSHL;
1622   }
1623 };
1624 
1625 // Matches any of the following bit-manipulation patterns:
1626 //   (and (shl x, 1), (0x55555555 << 1))
1627 //   (and (srl x, 1), 0x55555555)
1628 //   (shl (and x, 0x55555555), 1)
1629 //   (srl (and x, (0x55555555 << 1)), 1)
1630 // where the shift amount and mask may vary thus:
1631 //   [1]  = 0x55555555 / 0xAAAAAAAA
1632 //   [2]  = 0x33333333 / 0xCCCCCCCC
1633 //   [4]  = 0x0F0F0F0F / 0xF0F0F0F0
1634 //   [8]  = 0x00FF00FF / 0xFF00FF00
1635 //   [16] = 0x0000FFFF / 0xFFFFFFFF
1636 //   [32] = 0x00000000FFFFFFFF / 0xFFFFFFFF00000000 (for RV64)
1637 static Optional<RISCVBitmanipPat> matchRISCVBitmanipPat(SDValue Op) {
1638   Optional<uint64_t> Mask;
1639   // Optionally consume a mask around the shift operation.
1640   if (Op.getOpcode() == ISD::AND && isa<ConstantSDNode>(Op.getOperand(1))) {
1641     Mask = Op.getConstantOperandVal(1);
1642     Op = Op.getOperand(0);
1643   }
1644   if (Op.getOpcode() != ISD::SHL && Op.getOpcode() != ISD::SRL)
1645     return None;
1646   bool IsSHL = Op.getOpcode() == ISD::SHL;
1647 
1648   if (!isa<ConstantSDNode>(Op.getOperand(1)))
1649     return None;
1650   auto ShAmt = Op.getConstantOperandVal(1);
1651 
1652   if (!isPowerOf2_64(ShAmt))
1653     return None;
1654 
1655   // These are the unshifted masks which we use to match bit-manipulation
1656   // patterns. They may be shifted left in certain circumstances.
1657   static const uint64_t BitmanipMasks[] = {
1658       0x5555555555555555ULL, 0x3333333333333333ULL, 0x0F0F0F0F0F0F0F0FULL,
1659       0x00FF00FF00FF00FFULL, 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL,
1660   };
1661 
1662   unsigned MaskIdx = Log2_64(ShAmt);
1663   if (MaskIdx >= array_lengthof(BitmanipMasks))
1664     return None;
1665 
1666   auto Src = Op.getOperand(0);
1667 
1668   unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32;
1669   auto ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width);
1670 
1671   // The expected mask is shifted left when the AND is found around SHL
1672   // patterns.
1673   //   ((x >> 1) & 0x55555555)
1674   //   ((x << 1) & 0xAAAAAAAA)
1675   bool SHLExpMask = IsSHL;
1676 
1677   if (!Mask) {
1678     // Sometimes LLVM keeps the mask as an operand of the shift, typically when
1679     // the mask is all ones: consume that now.
1680     if (Src.getOpcode() == ISD::AND && isa<ConstantSDNode>(Src.getOperand(1))) {
1681       Mask = Src.getConstantOperandVal(1);
1682       Src = Src.getOperand(0);
1683       // The expected mask is now in fact shifted left for SRL, so reverse the
1684       // decision.
1685       //   ((x & 0xAAAAAAAA) >> 1)
1686       //   ((x & 0x55555555) << 1)
1687       SHLExpMask = !SHLExpMask;
1688     } else {
1689       // Use a default shifted mask of all-ones if there's no AND, truncated
1690       // down to the expected width. This simplifies the logic later on.
1691       Mask = maskTrailingOnes<uint64_t>(Width);
1692       *Mask &= (IsSHL ? *Mask << ShAmt : *Mask >> ShAmt);
1693     }
1694   }
1695 
1696   if (SHLExpMask)
1697     ExpMask <<= ShAmt;
1698 
1699   if (Mask != ExpMask)
1700     return None;
1701 
1702   return RISCVBitmanipPat{Src, (unsigned)ShAmt, IsSHL};
1703 }
1704 
1705 // Match the following pattern as a GREVI(W) operation
1706 //   (or (BITMANIP_SHL x), (BITMANIP_SRL x))
1707 static SDValue combineORToGREV(SDValue Op, SelectionDAG &DAG,
1708                                const RISCVSubtarget &Subtarget) {
1709   EVT VT = Op.getValueType();
1710 
1711   if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) {
1712     auto LHS = matchRISCVBitmanipPat(Op.getOperand(0));
1713     auto RHS = matchRISCVBitmanipPat(Op.getOperand(1));
1714     if (LHS && RHS && LHS->formsPairWith(*RHS)) {
1715       SDLoc DL(Op);
1716       return DAG.getNode(
1717           RISCVISD::GREVI, DL, VT, LHS->Op,
1718           DAG.getTargetConstant(LHS->ShAmt, DL, Subtarget.getXLenVT()));
1719     }
1720   }
1721   return SDValue();
1722 }
1723 
1724 // Matches any the following pattern as a GORCI(W) operation
1725 // 1.  (or (GREVI x, shamt), x) if shamt is a power of 2
1726 // 2.  (or x, (GREVI x, shamt)) if shamt is a power of 2
1727 // 3.  (or (or (BITMANIP_SHL x), x), (BITMANIP_SRL x))
1728 // Note that with the variant of 3.,
1729 //     (or (or (BITMANIP_SHL x), (BITMANIP_SRL x)), x)
1730 // the inner pattern will first be matched as GREVI and then the outer
1731 // pattern will be matched to GORC via the first rule above.
1732 // 4.  (or (rotl/rotr x, bitwidth/2), x)
1733 static SDValue combineORToGORC(SDValue Op, SelectionDAG &DAG,
1734                                const RISCVSubtarget &Subtarget) {
1735   EVT VT = Op.getValueType();
1736 
1737   if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) {
1738     SDLoc DL(Op);
1739     SDValue Op0 = Op.getOperand(0);
1740     SDValue Op1 = Op.getOperand(1);
1741 
1742     auto MatchOROfReverse = [&](SDValue Reverse, SDValue X) {
1743       if (Reverse.getOpcode() == RISCVISD::GREVI && Reverse.getOperand(0) == X &&
1744           isPowerOf2_32(Reverse.getConstantOperandVal(1)))
1745         return DAG.getNode(RISCVISD::GORCI, DL, VT, X, Reverse.getOperand(1));
1746       // We can also form GORCI from ROTL/ROTR by half the bitwidth.
1747       if ((Reverse.getOpcode() == ISD::ROTL ||
1748            Reverse.getOpcode() == ISD::ROTR) &&
1749           Reverse.getOperand(0) == X &&
1750           isa<ConstantSDNode>(Reverse.getOperand(1))) {
1751         uint64_t RotAmt = Reverse.getConstantOperandVal(1);
1752         if (RotAmt == (VT.getSizeInBits() / 2))
1753           return DAG.getNode(
1754               RISCVISD::GORCI, DL, VT, X,
1755               DAG.getTargetConstant(RotAmt, DL, Subtarget.getXLenVT()));
1756       }
1757       return SDValue();
1758     };
1759 
1760     // Check for either commutable permutation of (or (GREVI x, shamt), x)
1761     if (SDValue V = MatchOROfReverse(Op0, Op1))
1762       return V;
1763     if (SDValue V = MatchOROfReverse(Op1, Op0))
1764       return V;
1765 
1766     // OR is commutable so canonicalize its OR operand to the left
1767     if (Op0.getOpcode() != ISD::OR && Op1.getOpcode() == ISD::OR)
1768       std::swap(Op0, Op1);
1769     if (Op0.getOpcode() != ISD::OR)
1770       return SDValue();
1771     SDValue OrOp0 = Op0.getOperand(0);
1772     SDValue OrOp1 = Op0.getOperand(1);
1773     auto LHS = matchRISCVBitmanipPat(OrOp0);
1774     // OR is commutable so swap the operands and try again: x might have been
1775     // on the left
1776     if (!LHS) {
1777       std::swap(OrOp0, OrOp1);
1778       LHS = matchRISCVBitmanipPat(OrOp0);
1779     }
1780     auto RHS = matchRISCVBitmanipPat(Op1);
1781     if (LHS && RHS && LHS->formsPairWith(*RHS) && LHS->Op == OrOp1) {
1782       return DAG.getNode(
1783           RISCVISD::GORCI, DL, VT, LHS->Op,
1784           DAG.getTargetConstant(LHS->ShAmt, DL, Subtarget.getXLenVT()));
1785     }
1786   }
1787   return SDValue();
1788 }
1789 
1790 // Combine (GREVI (GREVI x, C2), C1) -> (GREVI x, C1^C2) when C1^C2 is
1791 // non-zero, and to x when it is. Any repeated GREVI stage undoes itself.
1792 // Combine (GORCI (GORCI x, C2), C1) -> (GORCI x, C1|C2). Repeated stage does
1793 // not undo itself, but they are redundant.
1794 static SDValue combineGREVI_GORCI(SDNode *N, SelectionDAG &DAG) {
1795   unsigned ShAmt1 = N->getConstantOperandVal(1);
1796   SDValue Src = N->getOperand(0);
1797 
1798   if (Src.getOpcode() != N->getOpcode())
1799     return SDValue();
1800 
1801   unsigned ShAmt2 = Src.getConstantOperandVal(1);
1802   Src = Src.getOperand(0);
1803 
1804   unsigned CombinedShAmt;
1805   if (N->getOpcode() == RISCVISD::GORCI || N->getOpcode() == RISCVISD::GORCIW)
1806     CombinedShAmt = ShAmt1 | ShAmt2;
1807   else
1808     CombinedShAmt = ShAmt1 ^ ShAmt2;
1809 
1810   if (CombinedShAmt == 0)
1811     return Src;
1812 
1813   SDLoc DL(N);
1814   return DAG.getNode(N->getOpcode(), DL, N->getValueType(0), Src,
1815                      DAG.getTargetConstant(CombinedShAmt, DL,
1816                                            N->getOperand(1).getValueType()));
1817 }
1818 
1819 SDValue RISCVTargetLowering::PerformDAGCombine(SDNode *N,
1820                                                DAGCombinerInfo &DCI) const {
1821   SelectionDAG &DAG = DCI.DAG;
1822 
1823   switch (N->getOpcode()) {
1824   default:
1825     break;
1826   case RISCVISD::SplitF64: {
1827     SDValue Op0 = N->getOperand(0);
1828     // If the input to SplitF64 is just BuildPairF64 then the operation is
1829     // redundant. Instead, use BuildPairF64's operands directly.
1830     if (Op0->getOpcode() == RISCVISD::BuildPairF64)
1831       return DCI.CombineTo(N, Op0.getOperand(0), Op0.getOperand(1));
1832 
1833     SDLoc DL(N);
1834 
1835     // It's cheaper to materialise two 32-bit integers than to load a double
1836     // from the constant pool and transfer it to integer registers through the
1837     // stack.
1838     if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op0)) {
1839       APInt V = C->getValueAPF().bitcastToAPInt();
1840       SDValue Lo = DAG.getConstant(V.trunc(32), DL, MVT::i32);
1841       SDValue Hi = DAG.getConstant(V.lshr(32).trunc(32), DL, MVT::i32);
1842       return DCI.CombineTo(N, Lo, Hi);
1843     }
1844 
1845     // This is a target-specific version of a DAGCombine performed in
1846     // DAGCombiner::visitBITCAST. It performs the equivalent of:
1847     // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
1848     // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
1849     if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) ||
1850         !Op0.getNode()->hasOneUse())
1851       break;
1852     SDValue NewSplitF64 =
1853         DAG.getNode(RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32),
1854                     Op0.getOperand(0));
1855     SDValue Lo = NewSplitF64.getValue(0);
1856     SDValue Hi = NewSplitF64.getValue(1);
1857     APInt SignBit = APInt::getSignMask(32);
1858     if (Op0.getOpcode() == ISD::FNEG) {
1859       SDValue NewHi = DAG.getNode(ISD::XOR, DL, MVT::i32, Hi,
1860                                   DAG.getConstant(SignBit, DL, MVT::i32));
1861       return DCI.CombineTo(N, Lo, NewHi);
1862     }
1863     assert(Op0.getOpcode() == ISD::FABS);
1864     SDValue NewHi = DAG.getNode(ISD::AND, DL, MVT::i32, Hi,
1865                                 DAG.getConstant(~SignBit, DL, MVT::i32));
1866     return DCI.CombineTo(N, Lo, NewHi);
1867   }
1868   case RISCVISD::SLLW:
1869   case RISCVISD::SRAW:
1870   case RISCVISD::SRLW:
1871   case RISCVISD::ROLW:
1872   case RISCVISD::RORW: {
1873     // Only the lower 32 bits of LHS and lower 5 bits of RHS are read.
1874     SDValue LHS = N->getOperand(0);
1875     SDValue RHS = N->getOperand(1);
1876     APInt LHSMask = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 32);
1877     APInt RHSMask = APInt::getLowBitsSet(RHS.getValueSizeInBits(), 5);
1878     if (SimplifyDemandedBits(N->getOperand(0), LHSMask, DCI) ||
1879         SimplifyDemandedBits(N->getOperand(1), RHSMask, DCI)) {
1880       if (N->getOpcode() != ISD::DELETED_NODE)
1881         DCI.AddToWorklist(N);
1882       return SDValue(N, 0);
1883     }
1884     break;
1885   }
1886   case RISCVISD::FSLW:
1887   case RISCVISD::FSRW: {
1888     // Only the lower 32 bits of Values and lower 6 bits of shift amount are
1889     // read.
1890     SDValue Op0 = N->getOperand(0);
1891     SDValue Op1 = N->getOperand(1);
1892     SDValue ShAmt = N->getOperand(2);
1893     APInt OpMask = APInt::getLowBitsSet(Op0.getValueSizeInBits(), 32);
1894     APInt ShAmtMask = APInt::getLowBitsSet(ShAmt.getValueSizeInBits(), 6);
1895     if (SimplifyDemandedBits(Op0, OpMask, DCI) ||
1896         SimplifyDemandedBits(Op1, OpMask, DCI) ||
1897         SimplifyDemandedBits(ShAmt, ShAmtMask, DCI)) {
1898       if (N->getOpcode() != ISD::DELETED_NODE)
1899         DCI.AddToWorklist(N);
1900       return SDValue(N, 0);
1901     }
1902     break;
1903   }
1904   case RISCVISD::GREVIW:
1905   case RISCVISD::GORCIW: {
1906     // Only the lower 32 bits of the first operand are read
1907     SDValue Op0 = N->getOperand(0);
1908     APInt Mask = APInt::getLowBitsSet(Op0.getValueSizeInBits(), 32);
1909     if (SimplifyDemandedBits(Op0, Mask, DCI)) {
1910       if (N->getOpcode() != ISD::DELETED_NODE)
1911         DCI.AddToWorklist(N);
1912       return SDValue(N, 0);
1913     }
1914 
1915     return combineGREVI_GORCI(N, DCI.DAG);
1916   }
1917   case RISCVISD::FMV_X_ANYEXTW_RV64: {
1918     SDLoc DL(N);
1919     SDValue Op0 = N->getOperand(0);
1920     // If the input to FMV_X_ANYEXTW_RV64 is just FMV_W_X_RV64 then the
1921     // conversion is unnecessary and can be replaced with an ANY_EXTEND
1922     // of the FMV_W_X_RV64 operand.
1923     if (Op0->getOpcode() == RISCVISD::FMV_W_X_RV64) {
1924       assert(Op0.getOperand(0).getValueType() == MVT::i64 &&
1925              "Unexpected value type!");
1926       return Op0.getOperand(0);
1927     }
1928 
1929     // This is a target-specific version of a DAGCombine performed in
1930     // DAGCombiner::visitBITCAST. It performs the equivalent of:
1931     // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
1932     // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
1933     if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) ||
1934         !Op0.getNode()->hasOneUse())
1935       break;
1936     SDValue NewFMV = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64,
1937                                  Op0.getOperand(0));
1938     APInt SignBit = APInt::getSignMask(32).sext(64);
1939     if (Op0.getOpcode() == ISD::FNEG)
1940       return DAG.getNode(ISD::XOR, DL, MVT::i64, NewFMV,
1941                          DAG.getConstant(SignBit, DL, MVT::i64));
1942 
1943     assert(Op0.getOpcode() == ISD::FABS);
1944     return DAG.getNode(ISD::AND, DL, MVT::i64, NewFMV,
1945                        DAG.getConstant(~SignBit, DL, MVT::i64));
1946   }
1947   case RISCVISD::GREVI:
1948   case RISCVISD::GORCI:
1949     return combineGREVI_GORCI(N, DCI.DAG);
1950   case ISD::OR:
1951     if (auto GREV = combineORToGREV(SDValue(N, 0), DCI.DAG, Subtarget))
1952       return GREV;
1953     if (auto GORC = combineORToGORC(SDValue(N, 0), DCI.DAG, Subtarget))
1954       return GORC;
1955     break;
1956   case RISCVISD::SELECT_CC: {
1957     // Transform
1958     // (select_cc (xor X, 1), 0, setne, trueV, falseV) ->
1959     // (select_cc X, 0, seteq, trueV, falseV) if we can prove X is 0/1.
1960     // This can occur when legalizing some floating point comparisons.
1961     SDValue LHS = N->getOperand(0);
1962     SDValue RHS = N->getOperand(1);
1963     auto CCVal = static_cast<ISD::CondCode>(N->getConstantOperandVal(2));
1964     APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1);
1965     if (ISD::isIntEqualitySetCC(CCVal) && isNullConstant(RHS) &&
1966         LHS.getOpcode() == ISD::XOR && isOneConstant(LHS.getOperand(1)) &&
1967         DAG.MaskedValueIsZero(LHS.getOperand(0), Mask)) {
1968       SDLoc DL(N);
1969       CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
1970       SDValue TargetCC = DAG.getConstant(CCVal, DL, Subtarget.getXLenVT());
1971       return DAG.getNode(RISCVISD::SELECT_CC, DL, N->getValueType(0),
1972                          {LHS.getOperand(0), RHS, TargetCC, N->getOperand(3),
1973                           N->getOperand(4)});
1974     }
1975     break;
1976   }
1977   case ISD::SETCC: {
1978     // (setcc X, 1, setne) -> (setcc X, 0, seteq) if we can prove X is 0/1.
1979     // Comparing with 0 may allow us to fold into bnez/beqz.
1980     SDValue LHS = N->getOperand(0);
1981     SDValue RHS = N->getOperand(1);
1982     auto CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
1983     APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1);
1984     if (isOneConstant(RHS) && ISD::isIntEqualitySetCC(CC) &&
1985         DAG.MaskedValueIsZero(LHS, Mask)) {
1986       SDLoc DL(N);
1987       SDValue Zero = DAG.getConstant(0, DL, LHS.getValueType());
1988       CC = ISD::getSetCCInverse(CC, LHS.getValueType());
1989       return DAG.getSetCC(DL, N->getValueType(0), LHS, Zero, CC);
1990     }
1991     break;
1992   }
1993   }
1994 
1995   return SDValue();
1996 }
1997 
1998 bool RISCVTargetLowering::isDesirableToCommuteWithShift(
1999     const SDNode *N, CombineLevel Level) const {
2000   // The following folds are only desirable if `(OP _, c1 << c2)` can be
2001   // materialised in fewer instructions than `(OP _, c1)`:
2002   //
2003   //   (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2)
2004   //   (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2)
2005   SDValue N0 = N->getOperand(0);
2006   EVT Ty = N0.getValueType();
2007   if (Ty.isScalarInteger() &&
2008       (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::OR)) {
2009     auto *C1 = dyn_cast<ConstantSDNode>(N0->getOperand(1));
2010     auto *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1));
2011     if (C1 && C2) {
2012       const APInt &C1Int = C1->getAPIntValue();
2013       APInt ShiftedC1Int = C1Int << C2->getAPIntValue();
2014 
2015       // We can materialise `c1 << c2` into an add immediate, so it's "free",
2016       // and the combine should happen, to potentially allow further combines
2017       // later.
2018       if (ShiftedC1Int.getMinSignedBits() <= 64 &&
2019           isLegalAddImmediate(ShiftedC1Int.getSExtValue()))
2020         return true;
2021 
2022       // We can materialise `c1` in an add immediate, so it's "free", and the
2023       // combine should be prevented.
2024       if (C1Int.getMinSignedBits() <= 64 &&
2025           isLegalAddImmediate(C1Int.getSExtValue()))
2026         return false;
2027 
2028       // Neither constant will fit into an immediate, so find materialisation
2029       // costs.
2030       int C1Cost = RISCVMatInt::getIntMatCost(C1Int, Ty.getSizeInBits(),
2031                                               Subtarget.is64Bit());
2032       int ShiftedC1Cost = RISCVMatInt::getIntMatCost(
2033           ShiftedC1Int, Ty.getSizeInBits(), Subtarget.is64Bit());
2034 
2035       // Materialising `c1` is cheaper than materialising `c1 << c2`, so the
2036       // combine should be prevented.
2037       if (C1Cost < ShiftedC1Cost)
2038         return false;
2039     }
2040   }
2041   return true;
2042 }
2043 
2044 bool RISCVTargetLowering::targetShrinkDemandedConstant(
2045     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
2046     TargetLoweringOpt &TLO) const {
2047   // Delay this optimization as late as possible.
2048   if (!TLO.LegalOps)
2049     return false;
2050 
2051   EVT VT = Op.getValueType();
2052   if (VT.isVector())
2053     return false;
2054 
2055   // Only handle AND for now.
2056   if (Op.getOpcode() != ISD::AND)
2057     return false;
2058 
2059   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
2060   if (!C)
2061     return false;
2062 
2063   const APInt &Mask = C->getAPIntValue();
2064 
2065   // Clear all non-demanded bits initially.
2066   APInt ShrunkMask = Mask & DemandedBits;
2067 
2068   // If the shrunk mask fits in sign extended 12 bits, let the target
2069   // independent code apply it.
2070   if (ShrunkMask.isSignedIntN(12))
2071     return false;
2072 
2073   // Try to make a smaller immediate by setting undemanded bits.
2074 
2075   // We need to be able to make a negative number through a combination of mask
2076   // and undemanded bits.
2077   APInt ExpandedMask = Mask | ~DemandedBits;
2078   if (!ExpandedMask.isNegative())
2079     return false;
2080 
2081   // What is the fewest number of bits we need to represent the negative number.
2082   unsigned MinSignedBits = ExpandedMask.getMinSignedBits();
2083 
2084   // Try to make a 12 bit negative immediate. If that fails try to make a 32
2085   // bit negative immediate unless the shrunk immediate already fits in 32 bits.
2086   APInt NewMask = ShrunkMask;
2087   if (MinSignedBits <= 12)
2088     NewMask.setBitsFrom(11);
2089   else if (MinSignedBits <= 32 && !ShrunkMask.isSignedIntN(32))
2090     NewMask.setBitsFrom(31);
2091   else
2092     return false;
2093 
2094   // Sanity check that our new mask is a subset of the demanded mask.
2095   assert(NewMask.isSubsetOf(ExpandedMask));
2096 
2097   // If we aren't changing the mask, just return true to keep it and prevent
2098   // the caller from optimizing.
2099   if (NewMask == Mask)
2100     return true;
2101 
2102   // Replace the constant with the new mask.
2103   SDLoc DL(Op);
2104   SDValue NewC = TLO.DAG.getConstant(NewMask, DL, VT);
2105   SDValue NewOp = TLO.DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), NewC);
2106   return TLO.CombineTo(Op, NewOp);
2107 }
2108 
2109 void RISCVTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
2110                                                         KnownBits &Known,
2111                                                         const APInt &DemandedElts,
2112                                                         const SelectionDAG &DAG,
2113                                                         unsigned Depth) const {
2114   unsigned Opc = Op.getOpcode();
2115   assert((Opc >= ISD::BUILTIN_OP_END ||
2116           Opc == ISD::INTRINSIC_WO_CHAIN ||
2117           Opc == ISD::INTRINSIC_W_CHAIN ||
2118           Opc == ISD::INTRINSIC_VOID) &&
2119          "Should use MaskedValueIsZero if you don't know whether Op"
2120          " is a target node!");
2121 
2122   Known.resetAll();
2123   switch (Opc) {
2124   default: break;
2125   case RISCVISD::READ_VLENB:
2126     // We assume VLENB is at least 8 bytes.
2127     // FIXME: The 1.0 draft spec defines minimum VLEN as 128 bits.
2128     Known.Zero.setLowBits(3);
2129     break;
2130   }
2131 }
2132 
2133 unsigned RISCVTargetLowering::ComputeNumSignBitsForTargetNode(
2134     SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
2135     unsigned Depth) const {
2136   switch (Op.getOpcode()) {
2137   default:
2138     break;
2139   case RISCVISD::SLLW:
2140   case RISCVISD::SRAW:
2141   case RISCVISD::SRLW:
2142   case RISCVISD::DIVW:
2143   case RISCVISD::DIVUW:
2144   case RISCVISD::REMUW:
2145   case RISCVISD::ROLW:
2146   case RISCVISD::RORW:
2147   case RISCVISD::GREVIW:
2148   case RISCVISD::GORCIW:
2149   case RISCVISD::FSLW:
2150   case RISCVISD::FSRW:
2151     // TODO: As the result is sign-extended, this is conservatively correct. A
2152     // more precise answer could be calculated for SRAW depending on known
2153     // bits in the shift amount.
2154     return 33;
2155   case RISCVISD::VMV_X_S:
2156     // The number of sign bits of the scalar result is computed by obtaining the
2157     // element type of the input vector operand, substracting its width from the
2158     // XLEN, and then adding one (sign bit within the element type).
2159     return Subtarget.getXLen() - Op.getOperand(0).getScalarValueSizeInBits() + 1;
2160   }
2161 
2162   return 1;
2163 }
2164 
2165 static MachineBasicBlock *emitReadCycleWidePseudo(MachineInstr &MI,
2166                                                   MachineBasicBlock *BB) {
2167   assert(MI.getOpcode() == RISCV::ReadCycleWide && "Unexpected instruction");
2168 
2169   // To read the 64-bit cycle CSR on a 32-bit target, we read the two halves.
2170   // Should the count have wrapped while it was being read, we need to try
2171   // again.
2172   // ...
2173   // read:
2174   // rdcycleh x3 # load high word of cycle
2175   // rdcycle  x2 # load low word of cycle
2176   // rdcycleh x4 # load high word of cycle
2177   // bne x3, x4, read # check if high word reads match, otherwise try again
2178   // ...
2179 
2180   MachineFunction &MF = *BB->getParent();
2181   const BasicBlock *LLVM_BB = BB->getBasicBlock();
2182   MachineFunction::iterator It = ++BB->getIterator();
2183 
2184   MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB);
2185   MF.insert(It, LoopMBB);
2186 
2187   MachineBasicBlock *DoneMBB = MF.CreateMachineBasicBlock(LLVM_BB);
2188   MF.insert(It, DoneMBB);
2189 
2190   // Transfer the remainder of BB and its successor edges to DoneMBB.
2191   DoneMBB->splice(DoneMBB->begin(), BB,
2192                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
2193   DoneMBB->transferSuccessorsAndUpdatePHIs(BB);
2194 
2195   BB->addSuccessor(LoopMBB);
2196 
2197   MachineRegisterInfo &RegInfo = MF.getRegInfo();
2198   Register ReadAgainReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
2199   Register LoReg = MI.getOperand(0).getReg();
2200   Register HiReg = MI.getOperand(1).getReg();
2201   DebugLoc DL = MI.getDebugLoc();
2202 
2203   const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
2204   BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), HiReg)
2205       .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding)
2206       .addReg(RISCV::X0);
2207   BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), LoReg)
2208       .addImm(RISCVSysReg::lookupSysRegByName("CYCLE")->Encoding)
2209       .addReg(RISCV::X0);
2210   BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), ReadAgainReg)
2211       .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding)
2212       .addReg(RISCV::X0);
2213 
2214   BuildMI(LoopMBB, DL, TII->get(RISCV::BNE))
2215       .addReg(HiReg)
2216       .addReg(ReadAgainReg)
2217       .addMBB(LoopMBB);
2218 
2219   LoopMBB->addSuccessor(LoopMBB);
2220   LoopMBB->addSuccessor(DoneMBB);
2221 
2222   MI.eraseFromParent();
2223 
2224   return DoneMBB;
2225 }
2226 
2227 static MachineBasicBlock *emitSplitF64Pseudo(MachineInstr &MI,
2228                                              MachineBasicBlock *BB) {
2229   assert(MI.getOpcode() == RISCV::SplitF64Pseudo && "Unexpected instruction");
2230 
2231   MachineFunction &MF = *BB->getParent();
2232   DebugLoc DL = MI.getDebugLoc();
2233   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
2234   const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo();
2235   Register LoReg = MI.getOperand(0).getReg();
2236   Register HiReg = MI.getOperand(1).getReg();
2237   Register SrcReg = MI.getOperand(2).getReg();
2238   const TargetRegisterClass *SrcRC = &RISCV::FPR64RegClass;
2239   int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF);
2240 
2241   TII.storeRegToStackSlot(*BB, MI, SrcReg, MI.getOperand(2).isKill(), FI, SrcRC,
2242                           RI);
2243   MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI);
2244   MachineMemOperand *MMOLo =
2245       MF.getMachineMemOperand(MPI, MachineMemOperand::MOLoad, 4, Align(8));
2246   MachineMemOperand *MMOHi = MF.getMachineMemOperand(
2247       MPI.getWithOffset(4), MachineMemOperand::MOLoad, 4, Align(8));
2248   BuildMI(*BB, MI, DL, TII.get(RISCV::LW), LoReg)
2249       .addFrameIndex(FI)
2250       .addImm(0)
2251       .addMemOperand(MMOLo);
2252   BuildMI(*BB, MI, DL, TII.get(RISCV::LW), HiReg)
2253       .addFrameIndex(FI)
2254       .addImm(4)
2255       .addMemOperand(MMOHi);
2256   MI.eraseFromParent(); // The pseudo instruction is gone now.
2257   return BB;
2258 }
2259 
2260 static MachineBasicBlock *emitBuildPairF64Pseudo(MachineInstr &MI,
2261                                                  MachineBasicBlock *BB) {
2262   assert(MI.getOpcode() == RISCV::BuildPairF64Pseudo &&
2263          "Unexpected instruction");
2264 
2265   MachineFunction &MF = *BB->getParent();
2266   DebugLoc DL = MI.getDebugLoc();
2267   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
2268   const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo();
2269   Register DstReg = MI.getOperand(0).getReg();
2270   Register LoReg = MI.getOperand(1).getReg();
2271   Register HiReg = MI.getOperand(2).getReg();
2272   const TargetRegisterClass *DstRC = &RISCV::FPR64RegClass;
2273   int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF);
2274 
2275   MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI);
2276   MachineMemOperand *MMOLo =
2277       MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Align(8));
2278   MachineMemOperand *MMOHi = MF.getMachineMemOperand(
2279       MPI.getWithOffset(4), MachineMemOperand::MOStore, 4, Align(8));
2280   BuildMI(*BB, MI, DL, TII.get(RISCV::SW))
2281       .addReg(LoReg, getKillRegState(MI.getOperand(1).isKill()))
2282       .addFrameIndex(FI)
2283       .addImm(0)
2284       .addMemOperand(MMOLo);
2285   BuildMI(*BB, MI, DL, TII.get(RISCV::SW))
2286       .addReg(HiReg, getKillRegState(MI.getOperand(2).isKill()))
2287       .addFrameIndex(FI)
2288       .addImm(4)
2289       .addMemOperand(MMOHi);
2290   TII.loadRegFromStackSlot(*BB, MI, DstReg, FI, DstRC, RI);
2291   MI.eraseFromParent(); // The pseudo instruction is gone now.
2292   return BB;
2293 }
2294 
2295 static bool isSelectPseudo(MachineInstr &MI) {
2296   switch (MI.getOpcode()) {
2297   default:
2298     return false;
2299   case RISCV::Select_GPR_Using_CC_GPR:
2300   case RISCV::Select_FPR16_Using_CC_GPR:
2301   case RISCV::Select_FPR32_Using_CC_GPR:
2302   case RISCV::Select_FPR64_Using_CC_GPR:
2303     return true;
2304   }
2305 }
2306 
2307 static MachineBasicBlock *emitSelectPseudo(MachineInstr &MI,
2308                                            MachineBasicBlock *BB) {
2309   // To "insert" Select_* instructions, we actually have to insert the triangle
2310   // control-flow pattern.  The incoming instructions know the destination vreg
2311   // to set, the condition code register to branch on, the true/false values to
2312   // select between, and the condcode to use to select the appropriate branch.
2313   //
2314   // We produce the following control flow:
2315   //     HeadMBB
2316   //     |  \
2317   //     |  IfFalseMBB
2318   //     | /
2319   //    TailMBB
2320   //
2321   // When we find a sequence of selects we attempt to optimize their emission
2322   // by sharing the control flow. Currently we only handle cases where we have
2323   // multiple selects with the exact same condition (same LHS, RHS and CC).
2324   // The selects may be interleaved with other instructions if the other
2325   // instructions meet some requirements we deem safe:
2326   // - They are debug instructions. Otherwise,
2327   // - They do not have side-effects, do not access memory and their inputs do
2328   //   not depend on the results of the select pseudo-instructions.
2329   // The TrueV/FalseV operands of the selects cannot depend on the result of
2330   // previous selects in the sequence.
2331   // These conditions could be further relaxed. See the X86 target for a
2332   // related approach and more information.
2333   Register LHS = MI.getOperand(1).getReg();
2334   Register RHS = MI.getOperand(2).getReg();
2335   auto CC = static_cast<ISD::CondCode>(MI.getOperand(3).getImm());
2336 
2337   SmallVector<MachineInstr *, 4> SelectDebugValues;
2338   SmallSet<Register, 4> SelectDests;
2339   SelectDests.insert(MI.getOperand(0).getReg());
2340 
2341   MachineInstr *LastSelectPseudo = &MI;
2342 
2343   for (auto E = BB->end(), SequenceMBBI = MachineBasicBlock::iterator(MI);
2344        SequenceMBBI != E; ++SequenceMBBI) {
2345     if (SequenceMBBI->isDebugInstr())
2346       continue;
2347     else if (isSelectPseudo(*SequenceMBBI)) {
2348       if (SequenceMBBI->getOperand(1).getReg() != LHS ||
2349           SequenceMBBI->getOperand(2).getReg() != RHS ||
2350           SequenceMBBI->getOperand(3).getImm() != CC ||
2351           SelectDests.count(SequenceMBBI->getOperand(4).getReg()) ||
2352           SelectDests.count(SequenceMBBI->getOperand(5).getReg()))
2353         break;
2354       LastSelectPseudo = &*SequenceMBBI;
2355       SequenceMBBI->collectDebugValues(SelectDebugValues);
2356       SelectDests.insert(SequenceMBBI->getOperand(0).getReg());
2357     } else {
2358       if (SequenceMBBI->hasUnmodeledSideEffects() ||
2359           SequenceMBBI->mayLoadOrStore())
2360         break;
2361       if (llvm::any_of(SequenceMBBI->operands(), [&](MachineOperand &MO) {
2362             return MO.isReg() && MO.isUse() && SelectDests.count(MO.getReg());
2363           }))
2364         break;
2365     }
2366   }
2367 
2368   const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo();
2369   const BasicBlock *LLVM_BB = BB->getBasicBlock();
2370   DebugLoc DL = MI.getDebugLoc();
2371   MachineFunction::iterator I = ++BB->getIterator();
2372 
2373   MachineBasicBlock *HeadMBB = BB;
2374   MachineFunction *F = BB->getParent();
2375   MachineBasicBlock *TailMBB = F->CreateMachineBasicBlock(LLVM_BB);
2376   MachineBasicBlock *IfFalseMBB = F->CreateMachineBasicBlock(LLVM_BB);
2377 
2378   F->insert(I, IfFalseMBB);
2379   F->insert(I, TailMBB);
2380 
2381   // Transfer debug instructions associated with the selects to TailMBB.
2382   for (MachineInstr *DebugInstr : SelectDebugValues) {
2383     TailMBB->push_back(DebugInstr->removeFromParent());
2384   }
2385 
2386   // Move all instructions after the sequence to TailMBB.
2387   TailMBB->splice(TailMBB->end(), HeadMBB,
2388                   std::next(LastSelectPseudo->getIterator()), HeadMBB->end());
2389   // Update machine-CFG edges by transferring all successors of the current
2390   // block to the new block which will contain the Phi nodes for the selects.
2391   TailMBB->transferSuccessorsAndUpdatePHIs(HeadMBB);
2392   // Set the successors for HeadMBB.
2393   HeadMBB->addSuccessor(IfFalseMBB);
2394   HeadMBB->addSuccessor(TailMBB);
2395 
2396   // Insert appropriate branch.
2397   unsigned Opcode = getBranchOpcodeForIntCondCode(CC);
2398 
2399   BuildMI(HeadMBB, DL, TII.get(Opcode))
2400     .addReg(LHS)
2401     .addReg(RHS)
2402     .addMBB(TailMBB);
2403 
2404   // IfFalseMBB just falls through to TailMBB.
2405   IfFalseMBB->addSuccessor(TailMBB);
2406 
2407   // Create PHIs for all of the select pseudo-instructions.
2408   auto SelectMBBI = MI.getIterator();
2409   auto SelectEnd = std::next(LastSelectPseudo->getIterator());
2410   auto InsertionPoint = TailMBB->begin();
2411   while (SelectMBBI != SelectEnd) {
2412     auto Next = std::next(SelectMBBI);
2413     if (isSelectPseudo(*SelectMBBI)) {
2414       // %Result = phi [ %TrueValue, HeadMBB ], [ %FalseValue, IfFalseMBB ]
2415       BuildMI(*TailMBB, InsertionPoint, SelectMBBI->getDebugLoc(),
2416               TII.get(RISCV::PHI), SelectMBBI->getOperand(0).getReg())
2417           .addReg(SelectMBBI->getOperand(4).getReg())
2418           .addMBB(HeadMBB)
2419           .addReg(SelectMBBI->getOperand(5).getReg())
2420           .addMBB(IfFalseMBB);
2421       SelectMBBI->eraseFromParent();
2422     }
2423     SelectMBBI = Next;
2424   }
2425 
2426   F->getProperties().reset(MachineFunctionProperties::Property::NoPHIs);
2427   return TailMBB;
2428 }
2429 
2430 static MachineBasicBlock *addVSetVL(MachineInstr &MI, MachineBasicBlock *BB,
2431                                     int VLIndex, unsigned SEWIndex,
2432                                     RISCVVLMUL VLMul, bool WritesElement0) {
2433   MachineFunction &MF = *BB->getParent();
2434   DebugLoc DL = MI.getDebugLoc();
2435   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
2436 
2437   unsigned SEW = MI.getOperand(SEWIndex).getImm();
2438   assert(RISCVVType::isValidSEW(SEW) && "Unexpected SEW");
2439   RISCVVSEW ElementWidth = static_cast<RISCVVSEW>(Log2_32(SEW / 8));
2440 
2441   MachineRegisterInfo &MRI = MF.getRegInfo();
2442 
2443   // VL and VTYPE are alive here.
2444   MachineInstrBuilder MIB = BuildMI(*BB, MI, DL, TII.get(RISCV::PseudoVSETVLI));
2445 
2446   if (VLIndex >= 0) {
2447     // Set VL (rs1 != X0).
2448     Register DestReg = MRI.createVirtualRegister(&RISCV::GPRRegClass);
2449     MIB.addReg(DestReg, RegState::Define | RegState::Dead)
2450         .addReg(MI.getOperand(VLIndex).getReg());
2451   } else
2452     // With no VL operator in the pseudo, do not modify VL (rd = X0, rs1 = X0).
2453     MIB.addReg(RISCV::X0, RegState::Define | RegState::Dead)
2454         .addReg(RISCV::X0, RegState::Kill);
2455 
2456   // Default to tail agnostic unless the destination is tied to a source. In
2457   // that case the user would have some control over the tail values. The tail
2458   // policy is also ignored on instructions that only update element 0 like
2459   // vmv.s.x or reductions so use agnostic there to match the common case.
2460   // FIXME: This is conservatively correct, but we might want to detect that
2461   // the input is undefined.
2462   bool TailAgnostic = true;
2463   unsigned UseOpIdx;
2464   if (MI.isRegTiedToUseOperand(0, &UseOpIdx) && !WritesElement0) {
2465     TailAgnostic = false;
2466     // If the tied operand is an IMPLICIT_DEF we can keep TailAgnostic.
2467     const MachineOperand &UseMO = MI.getOperand(UseOpIdx);
2468     MachineInstr *UseMI = MRI.getVRegDef(UseMO.getReg());
2469     if (UseMI && UseMI->isImplicitDef())
2470       TailAgnostic = true;
2471   }
2472 
2473   // For simplicity we reuse the vtype representation here.
2474   MIB.addImm(RISCVVType::encodeVTYPE(VLMul, ElementWidth,
2475                                      /*TailAgnostic*/ TailAgnostic,
2476                                      /*MaskAgnostic*/ false));
2477 
2478   // Remove (now) redundant operands from pseudo
2479   MI.getOperand(SEWIndex).setImm(-1);
2480   if (VLIndex >= 0) {
2481     MI.getOperand(VLIndex).setReg(RISCV::NoRegister);
2482     MI.getOperand(VLIndex).setIsKill(false);
2483   }
2484 
2485   return BB;
2486 }
2487 
2488 MachineBasicBlock *
2489 RISCVTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
2490                                                  MachineBasicBlock *BB) const {
2491   uint64_t TSFlags = MI.getDesc().TSFlags;
2492 
2493   if (TSFlags & RISCVII::HasSEWOpMask) {
2494     unsigned NumOperands = MI.getNumExplicitOperands();
2495     int VLIndex = (TSFlags & RISCVII::HasVLOpMask) ? NumOperands - 2 : -1;
2496     unsigned SEWIndex = NumOperands - 1;
2497     bool WritesElement0 = TSFlags & RISCVII::WritesElement0Mask;
2498 
2499     RISCVVLMUL VLMul = static_cast<RISCVVLMUL>((TSFlags & RISCVII::VLMulMask) >>
2500                                                RISCVII::VLMulShift);
2501     return addVSetVL(MI, BB, VLIndex, SEWIndex, VLMul, WritesElement0);
2502   }
2503 
2504   switch (MI.getOpcode()) {
2505   default:
2506     llvm_unreachable("Unexpected instr type to insert");
2507   case RISCV::ReadCycleWide:
2508     assert(!Subtarget.is64Bit() &&
2509            "ReadCycleWrite is only to be used on riscv32");
2510     return emitReadCycleWidePseudo(MI, BB);
2511   case RISCV::Select_GPR_Using_CC_GPR:
2512   case RISCV::Select_FPR16_Using_CC_GPR:
2513   case RISCV::Select_FPR32_Using_CC_GPR:
2514   case RISCV::Select_FPR64_Using_CC_GPR:
2515     return emitSelectPseudo(MI, BB);
2516   case RISCV::BuildPairF64Pseudo:
2517     return emitBuildPairF64Pseudo(MI, BB);
2518   case RISCV::SplitF64Pseudo:
2519     return emitSplitF64Pseudo(MI, BB);
2520   }
2521 }
2522 
2523 // Calling Convention Implementation.
2524 // The expectations for frontend ABI lowering vary from target to target.
2525 // Ideally, an LLVM frontend would be able to avoid worrying about many ABI
2526 // details, but this is a longer term goal. For now, we simply try to keep the
2527 // role of the frontend as simple and well-defined as possible. The rules can
2528 // be summarised as:
2529 // * Never split up large scalar arguments. We handle them here.
2530 // * If a hardfloat calling convention is being used, and the struct may be
2531 // passed in a pair of registers (fp+fp, int+fp), and both registers are
2532 // available, then pass as two separate arguments. If either the GPRs or FPRs
2533 // are exhausted, then pass according to the rule below.
2534 // * If a struct could never be passed in registers or directly in a stack
2535 // slot (as it is larger than 2*XLEN and the floating point rules don't
2536 // apply), then pass it using a pointer with the byval attribute.
2537 // * If a struct is less than 2*XLEN, then coerce to either a two-element
2538 // word-sized array or a 2*XLEN scalar (depending on alignment).
2539 // * The frontend can determine whether a struct is returned by reference or
2540 // not based on its size and fields. If it will be returned by reference, the
2541 // frontend must modify the prototype so a pointer with the sret annotation is
2542 // passed as the first argument. This is not necessary for large scalar
2543 // returns.
2544 // * Struct return values and varargs should be coerced to structs containing
2545 // register-size fields in the same situations they would be for fixed
2546 // arguments.
2547 
2548 static const MCPhysReg ArgGPRs[] = {
2549   RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13,
2550   RISCV::X14, RISCV::X15, RISCV::X16, RISCV::X17
2551 };
2552 static const MCPhysReg ArgFPR16s[] = {
2553   RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H,
2554   RISCV::F14_H, RISCV::F15_H, RISCV::F16_H, RISCV::F17_H
2555 };
2556 static const MCPhysReg ArgFPR32s[] = {
2557   RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F,
2558   RISCV::F14_F, RISCV::F15_F, RISCV::F16_F, RISCV::F17_F
2559 };
2560 static const MCPhysReg ArgFPR64s[] = {
2561   RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D,
2562   RISCV::F14_D, RISCV::F15_D, RISCV::F16_D, RISCV::F17_D
2563 };
2564 // This is an interim calling convention and it may be changed in the future.
2565 static const MCPhysReg ArgVRs[] = {
2566   RISCV::V16, RISCV::V17, RISCV::V18, RISCV::V19, RISCV::V20,
2567   RISCV::V21, RISCV::V22, RISCV::V23
2568 };
2569 static const MCPhysReg ArgVRM2s[] = {
2570   RISCV::V16M2, RISCV::V18M2, RISCV::V20M2, RISCV::V22M2
2571 };
2572 static const MCPhysReg ArgVRM4s[] = {RISCV::V16M4, RISCV::V20M4};
2573 static const MCPhysReg ArgVRM8s[] = {RISCV::V16M8};
2574 
2575 // Pass a 2*XLEN argument that has been split into two XLEN values through
2576 // registers or the stack as necessary.
2577 static bool CC_RISCVAssign2XLen(unsigned XLen, CCState &State, CCValAssign VA1,
2578                                 ISD::ArgFlagsTy ArgFlags1, unsigned ValNo2,
2579                                 MVT ValVT2, MVT LocVT2,
2580                                 ISD::ArgFlagsTy ArgFlags2) {
2581   unsigned XLenInBytes = XLen / 8;
2582   if (Register Reg = State.AllocateReg(ArgGPRs)) {
2583     // At least one half can be passed via register.
2584     State.addLoc(CCValAssign::getReg(VA1.getValNo(), VA1.getValVT(), Reg,
2585                                      VA1.getLocVT(), CCValAssign::Full));
2586   } else {
2587     // Both halves must be passed on the stack, with proper alignment.
2588     Align StackAlign =
2589         std::max(Align(XLenInBytes), ArgFlags1.getNonZeroOrigAlign());
2590     State.addLoc(
2591         CCValAssign::getMem(VA1.getValNo(), VA1.getValVT(),
2592                             State.AllocateStack(XLenInBytes, StackAlign),
2593                             VA1.getLocVT(), CCValAssign::Full));
2594     State.addLoc(CCValAssign::getMem(
2595         ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)),
2596         LocVT2, CCValAssign::Full));
2597     return false;
2598   }
2599 
2600   if (Register Reg = State.AllocateReg(ArgGPRs)) {
2601     // The second half can also be passed via register.
2602     State.addLoc(
2603         CCValAssign::getReg(ValNo2, ValVT2, Reg, LocVT2, CCValAssign::Full));
2604   } else {
2605     // The second half is passed via the stack, without additional alignment.
2606     State.addLoc(CCValAssign::getMem(
2607         ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)),
2608         LocVT2, CCValAssign::Full));
2609   }
2610 
2611   return false;
2612 }
2613 
2614 // Implements the RISC-V calling convention. Returns true upon failure.
2615 static bool CC_RISCV(const DataLayout &DL, RISCVABI::ABI ABI, unsigned ValNo,
2616                      MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo,
2617                      ISD::ArgFlagsTy ArgFlags, CCState &State, bool IsFixed,
2618                      bool IsRet, Type *OrigTy, const RISCVTargetLowering &TLI,
2619                      Optional<unsigned> FirstMaskArgument) {
2620   unsigned XLen = DL.getLargestLegalIntTypeSizeInBits();
2621   assert(XLen == 32 || XLen == 64);
2622   MVT XLenVT = XLen == 32 ? MVT::i32 : MVT::i64;
2623 
2624   // Any return value split in to more than two values can't be returned
2625   // directly.
2626   if (IsRet && ValNo > 1)
2627     return true;
2628 
2629   // UseGPRForF16_F32 if targeting one of the soft-float ABIs, if passing a
2630   // variadic argument, or if no F16/F32 argument registers are available.
2631   bool UseGPRForF16_F32 = true;
2632   // UseGPRForF64 if targeting soft-float ABIs or an FLEN=32 ABI, if passing a
2633   // variadic argument, or if no F64 argument registers are available.
2634   bool UseGPRForF64 = true;
2635 
2636   switch (ABI) {
2637   default:
2638     llvm_unreachable("Unexpected ABI");
2639   case RISCVABI::ABI_ILP32:
2640   case RISCVABI::ABI_LP64:
2641     break;
2642   case RISCVABI::ABI_ILP32F:
2643   case RISCVABI::ABI_LP64F:
2644     UseGPRForF16_F32 = !IsFixed;
2645     break;
2646   case RISCVABI::ABI_ILP32D:
2647   case RISCVABI::ABI_LP64D:
2648     UseGPRForF16_F32 = !IsFixed;
2649     UseGPRForF64 = !IsFixed;
2650     break;
2651   }
2652 
2653   // FPR16, FPR32, and FPR64 alias each other.
2654   if (State.getFirstUnallocated(ArgFPR32s) == array_lengthof(ArgFPR32s)) {
2655     UseGPRForF16_F32 = true;
2656     UseGPRForF64 = true;
2657   }
2658 
2659   // From this point on, rely on UseGPRForF16_F32, UseGPRForF64 and
2660   // similar local variables rather than directly checking against the target
2661   // ABI.
2662 
2663   if (UseGPRForF16_F32 && (ValVT == MVT::f16 || ValVT == MVT::f32)) {
2664     LocVT = XLenVT;
2665     LocInfo = CCValAssign::BCvt;
2666   } else if (UseGPRForF64 && XLen == 64 && ValVT == MVT::f64) {
2667     LocVT = MVT::i64;
2668     LocInfo = CCValAssign::BCvt;
2669   }
2670 
2671   // If this is a variadic argument, the RISC-V calling convention requires
2672   // that it is assigned an 'even' or 'aligned' register if it has 8-byte
2673   // alignment (RV32) or 16-byte alignment (RV64). An aligned register should
2674   // be used regardless of whether the original argument was split during
2675   // legalisation or not. The argument will not be passed by registers if the
2676   // original type is larger than 2*XLEN, so the register alignment rule does
2677   // not apply.
2678   unsigned TwoXLenInBytes = (2 * XLen) / 8;
2679   if (!IsFixed && ArgFlags.getNonZeroOrigAlign() == TwoXLenInBytes &&
2680       DL.getTypeAllocSize(OrigTy) == TwoXLenInBytes) {
2681     unsigned RegIdx = State.getFirstUnallocated(ArgGPRs);
2682     // Skip 'odd' register if necessary.
2683     if (RegIdx != array_lengthof(ArgGPRs) && RegIdx % 2 == 1)
2684       State.AllocateReg(ArgGPRs);
2685   }
2686 
2687   SmallVectorImpl<CCValAssign> &PendingLocs = State.getPendingLocs();
2688   SmallVectorImpl<ISD::ArgFlagsTy> &PendingArgFlags =
2689       State.getPendingArgFlags();
2690 
2691   assert(PendingLocs.size() == PendingArgFlags.size() &&
2692          "PendingLocs and PendingArgFlags out of sync");
2693 
2694   // Handle passing f64 on RV32D with a soft float ABI or when floating point
2695   // registers are exhausted.
2696   if (UseGPRForF64 && XLen == 32 && ValVT == MVT::f64) {
2697     assert(!ArgFlags.isSplit() && PendingLocs.empty() &&
2698            "Can't lower f64 if it is split");
2699     // Depending on available argument GPRS, f64 may be passed in a pair of
2700     // GPRs, split between a GPR and the stack, or passed completely on the
2701     // stack. LowerCall/LowerFormalArguments/LowerReturn must recognise these
2702     // cases.
2703     Register Reg = State.AllocateReg(ArgGPRs);
2704     LocVT = MVT::i32;
2705     if (!Reg) {
2706       unsigned StackOffset = State.AllocateStack(8, Align(8));
2707       State.addLoc(
2708           CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
2709       return false;
2710     }
2711     if (!State.AllocateReg(ArgGPRs))
2712       State.AllocateStack(4, Align(4));
2713     State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
2714     return false;
2715   }
2716 
2717   // Split arguments might be passed indirectly, so keep track of the pending
2718   // values.
2719   if (ArgFlags.isSplit() || !PendingLocs.empty()) {
2720     LocVT = XLenVT;
2721     LocInfo = CCValAssign::Indirect;
2722     PendingLocs.push_back(
2723         CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo));
2724     PendingArgFlags.push_back(ArgFlags);
2725     if (!ArgFlags.isSplitEnd()) {
2726       return false;
2727     }
2728   }
2729 
2730   // If the split argument only had two elements, it should be passed directly
2731   // in registers or on the stack.
2732   if (ArgFlags.isSplitEnd() && PendingLocs.size() <= 2) {
2733     assert(PendingLocs.size() == 2 && "Unexpected PendingLocs.size()");
2734     // Apply the normal calling convention rules to the first half of the
2735     // split argument.
2736     CCValAssign VA = PendingLocs[0];
2737     ISD::ArgFlagsTy AF = PendingArgFlags[0];
2738     PendingLocs.clear();
2739     PendingArgFlags.clear();
2740     return CC_RISCVAssign2XLen(XLen, State, VA, AF, ValNo, ValVT, LocVT,
2741                                ArgFlags);
2742   }
2743 
2744   // Allocate to a register if possible, or else a stack slot.
2745   Register Reg;
2746   if (ValVT == MVT::f16 && !UseGPRForF16_F32)
2747     Reg = State.AllocateReg(ArgFPR16s);
2748   else if (ValVT == MVT::f32 && !UseGPRForF16_F32)
2749     Reg = State.AllocateReg(ArgFPR32s);
2750   else if (ValVT == MVT::f64 && !UseGPRForF64)
2751     Reg = State.AllocateReg(ArgFPR64s);
2752   else if (ValVT.isScalableVector()) {
2753     const TargetRegisterClass *RC = TLI.getRegClassFor(ValVT);
2754     if (RC == &RISCV::VRRegClass) {
2755       // Assign the first mask argument to V0.
2756       // This is an interim calling convention and it may be changed in the
2757       // future.
2758       if (FirstMaskArgument.hasValue() &&
2759           ValNo == FirstMaskArgument.getValue()) {
2760         Reg = State.AllocateReg(RISCV::V0);
2761       } else {
2762         Reg = State.AllocateReg(ArgVRs);
2763       }
2764     } else if (RC == &RISCV::VRM2RegClass) {
2765       Reg = State.AllocateReg(ArgVRM2s);
2766     } else if (RC == &RISCV::VRM4RegClass) {
2767       Reg = State.AllocateReg(ArgVRM4s);
2768     } else if (RC == &RISCV::VRM8RegClass) {
2769       Reg = State.AllocateReg(ArgVRM8s);
2770     } else {
2771       llvm_unreachable("Unhandled class register for ValueType");
2772     }
2773     if (!Reg) {
2774       LocInfo = CCValAssign::Indirect;
2775       // Try using a GPR to pass the address
2776       Reg = State.AllocateReg(ArgGPRs);
2777       LocVT = XLenVT;
2778     }
2779   } else
2780     Reg = State.AllocateReg(ArgGPRs);
2781   unsigned StackOffset =
2782       Reg ? 0 : State.AllocateStack(XLen / 8, Align(XLen / 8));
2783 
2784   // If we reach this point and PendingLocs is non-empty, we must be at the
2785   // end of a split argument that must be passed indirectly.
2786   if (!PendingLocs.empty()) {
2787     assert(ArgFlags.isSplitEnd() && "Expected ArgFlags.isSplitEnd()");
2788     assert(PendingLocs.size() > 2 && "Unexpected PendingLocs.size()");
2789 
2790     for (auto &It : PendingLocs) {
2791       if (Reg)
2792         It.convertToReg(Reg);
2793       else
2794         It.convertToMem(StackOffset);
2795       State.addLoc(It);
2796     }
2797     PendingLocs.clear();
2798     PendingArgFlags.clear();
2799     return false;
2800   }
2801 
2802   assert((!UseGPRForF16_F32 || !UseGPRForF64 || LocVT == XLenVT ||
2803           (TLI.getSubtarget().hasStdExtV() && ValVT.isScalableVector())) &&
2804          "Expected an XLenVT or scalable vector types at this stage");
2805 
2806   if (Reg) {
2807     State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
2808     return false;
2809   }
2810 
2811   // When a floating-point value is passed on the stack, no bit-conversion is
2812   // needed.
2813   if (ValVT.isFloatingPoint()) {
2814     LocVT = ValVT;
2815     LocInfo = CCValAssign::Full;
2816   }
2817   State.addLoc(CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
2818   return false;
2819 }
2820 
2821 template <typename ArgTy>
2822 static Optional<unsigned> preAssignMask(const ArgTy &Args) {
2823   for (const auto &ArgIdx : enumerate(Args)) {
2824     MVT ArgVT = ArgIdx.value().VT;
2825     if (ArgVT.isScalableVector() &&
2826         ArgVT.getVectorElementType().SimpleTy == MVT::i1)
2827       return ArgIdx.index();
2828   }
2829   return None;
2830 }
2831 
2832 void RISCVTargetLowering::analyzeInputArgs(
2833     MachineFunction &MF, CCState &CCInfo,
2834     const SmallVectorImpl<ISD::InputArg> &Ins, bool IsRet) const {
2835   unsigned NumArgs = Ins.size();
2836   FunctionType *FType = MF.getFunction().getFunctionType();
2837 
2838   Optional<unsigned> FirstMaskArgument;
2839   if (Subtarget.hasStdExtV())
2840     FirstMaskArgument = preAssignMask(Ins);
2841 
2842   for (unsigned i = 0; i != NumArgs; ++i) {
2843     MVT ArgVT = Ins[i].VT;
2844     ISD::ArgFlagsTy ArgFlags = Ins[i].Flags;
2845 
2846     Type *ArgTy = nullptr;
2847     if (IsRet)
2848       ArgTy = FType->getReturnType();
2849     else if (Ins[i].isOrigArg())
2850       ArgTy = FType->getParamType(Ins[i].getOrigArgIndex());
2851 
2852     RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
2853     if (CC_RISCV(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full,
2854                  ArgFlags, CCInfo, /*IsFixed=*/true, IsRet, ArgTy, *this,
2855                  FirstMaskArgument)) {
2856       LLVM_DEBUG(dbgs() << "InputArg #" << i << " has unhandled type "
2857                         << EVT(ArgVT).getEVTString() << '\n');
2858       llvm_unreachable(nullptr);
2859     }
2860   }
2861 }
2862 
2863 void RISCVTargetLowering::analyzeOutputArgs(
2864     MachineFunction &MF, CCState &CCInfo,
2865     const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsRet,
2866     CallLoweringInfo *CLI) const {
2867   unsigned NumArgs = Outs.size();
2868 
2869   Optional<unsigned> FirstMaskArgument;
2870   if (Subtarget.hasStdExtV())
2871     FirstMaskArgument = preAssignMask(Outs);
2872 
2873   for (unsigned i = 0; i != NumArgs; i++) {
2874     MVT ArgVT = Outs[i].VT;
2875     ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
2876     Type *OrigTy = CLI ? CLI->getArgs()[Outs[i].OrigArgIndex].Ty : nullptr;
2877 
2878     RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
2879     if (CC_RISCV(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full,
2880                  ArgFlags, CCInfo, Outs[i].IsFixed, IsRet, OrigTy, *this,
2881                  FirstMaskArgument)) {
2882       LLVM_DEBUG(dbgs() << "OutputArg #" << i << " has unhandled type "
2883                         << EVT(ArgVT).getEVTString() << "\n");
2884       llvm_unreachable(nullptr);
2885     }
2886   }
2887 }
2888 
2889 // Convert Val to a ValVT. Should not be called for CCValAssign::Indirect
2890 // values.
2891 static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDValue Val,
2892                                    const CCValAssign &VA, const SDLoc &DL) {
2893   switch (VA.getLocInfo()) {
2894   default:
2895     llvm_unreachable("Unexpected CCValAssign::LocInfo");
2896   case CCValAssign::Full:
2897     break;
2898   case CCValAssign::BCvt:
2899     if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16)
2900       Val = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, Val);
2901     else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32)
2902       Val = DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, Val);
2903     else
2904       Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val);
2905     break;
2906   }
2907   return Val;
2908 }
2909 
2910 // The caller is responsible for loading the full value if the argument is
2911 // passed with CCValAssign::Indirect.
2912 static SDValue unpackFromRegLoc(SelectionDAG &DAG, SDValue Chain,
2913                                 const CCValAssign &VA, const SDLoc &DL,
2914                                 const RISCVTargetLowering &TLI) {
2915   MachineFunction &MF = DAG.getMachineFunction();
2916   MachineRegisterInfo &RegInfo = MF.getRegInfo();
2917   EVT LocVT = VA.getLocVT();
2918   SDValue Val;
2919   const TargetRegisterClass *RC = TLI.getRegClassFor(LocVT.getSimpleVT());
2920   Register VReg = RegInfo.createVirtualRegister(RC);
2921   RegInfo.addLiveIn(VA.getLocReg(), VReg);
2922   Val = DAG.getCopyFromReg(Chain, DL, VReg, LocVT);
2923 
2924   if (VA.getLocInfo() == CCValAssign::Indirect)
2925     return Val;
2926 
2927   return convertLocVTToValVT(DAG, Val, VA, DL);
2928 }
2929 
2930 static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDValue Val,
2931                                    const CCValAssign &VA, const SDLoc &DL) {
2932   EVT LocVT = VA.getLocVT();
2933 
2934   switch (VA.getLocInfo()) {
2935   default:
2936     llvm_unreachable("Unexpected CCValAssign::LocInfo");
2937   case CCValAssign::Full:
2938     break;
2939   case CCValAssign::BCvt:
2940     if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16)
2941       Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, VA.getLocVT(), Val);
2942     else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32)
2943       Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Val);
2944     else
2945       Val = DAG.getNode(ISD::BITCAST, DL, LocVT, Val);
2946     break;
2947   }
2948   return Val;
2949 }
2950 
2951 // The caller is responsible for loading the full value if the argument is
2952 // passed with CCValAssign::Indirect.
2953 static SDValue unpackFromMemLoc(SelectionDAG &DAG, SDValue Chain,
2954                                 const CCValAssign &VA, const SDLoc &DL) {
2955   MachineFunction &MF = DAG.getMachineFunction();
2956   MachineFrameInfo &MFI = MF.getFrameInfo();
2957   EVT LocVT = VA.getLocVT();
2958   EVT ValVT = VA.getValVT();
2959   EVT PtrVT = MVT::getIntegerVT(DAG.getDataLayout().getPointerSizeInBits(0));
2960   int FI = MFI.CreateFixedObject(ValVT.getSizeInBits() / 8,
2961                                  VA.getLocMemOffset(), /*Immutable=*/true);
2962   SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
2963   SDValue Val;
2964 
2965   ISD::LoadExtType ExtType;
2966   switch (VA.getLocInfo()) {
2967   default:
2968     llvm_unreachable("Unexpected CCValAssign::LocInfo");
2969   case CCValAssign::Full:
2970   case CCValAssign::Indirect:
2971   case CCValAssign::BCvt:
2972     ExtType = ISD::NON_EXTLOAD;
2973     break;
2974   }
2975   Val = DAG.getExtLoad(
2976       ExtType, DL, LocVT, Chain, FIN,
2977       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), ValVT);
2978   return Val;
2979 }
2980 
2981 static SDValue unpackF64OnRV32DSoftABI(SelectionDAG &DAG, SDValue Chain,
2982                                        const CCValAssign &VA, const SDLoc &DL) {
2983   assert(VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64 &&
2984          "Unexpected VA");
2985   MachineFunction &MF = DAG.getMachineFunction();
2986   MachineFrameInfo &MFI = MF.getFrameInfo();
2987   MachineRegisterInfo &RegInfo = MF.getRegInfo();
2988 
2989   if (VA.isMemLoc()) {
2990     // f64 is passed on the stack.
2991     int FI = MFI.CreateFixedObject(8, VA.getLocMemOffset(), /*Immutable=*/true);
2992     SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
2993     return DAG.getLoad(MVT::f64, DL, Chain, FIN,
2994                        MachinePointerInfo::getFixedStack(MF, FI));
2995   }
2996 
2997   assert(VA.isRegLoc() && "Expected register VA assignment");
2998 
2999   Register LoVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
3000   RegInfo.addLiveIn(VA.getLocReg(), LoVReg);
3001   SDValue Lo = DAG.getCopyFromReg(Chain, DL, LoVReg, MVT::i32);
3002   SDValue Hi;
3003   if (VA.getLocReg() == RISCV::X17) {
3004     // Second half of f64 is passed on the stack.
3005     int FI = MFI.CreateFixedObject(4, 0, /*Immutable=*/true);
3006     SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
3007     Hi = DAG.getLoad(MVT::i32, DL, Chain, FIN,
3008                      MachinePointerInfo::getFixedStack(MF, FI));
3009   } else {
3010     // Second half of f64 is passed in another GPR.
3011     Register HiVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
3012     RegInfo.addLiveIn(VA.getLocReg() + 1, HiVReg);
3013     Hi = DAG.getCopyFromReg(Chain, DL, HiVReg, MVT::i32);
3014   }
3015   return DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, Lo, Hi);
3016 }
3017 
3018 // FastCC has less than 1% performance improvement for some particular
3019 // benchmark. But theoretically, it may has benenfit for some cases.
3020 static bool CC_RISCV_FastCC(unsigned ValNo, MVT ValVT, MVT LocVT,
3021                             CCValAssign::LocInfo LocInfo,
3022                             ISD::ArgFlagsTy ArgFlags, CCState &State) {
3023 
3024   if (LocVT == MVT::i32 || LocVT == MVT::i64) {
3025     // X5 and X6 might be used for save-restore libcall.
3026     static const MCPhysReg GPRList[] = {
3027         RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, RISCV::X14,
3028         RISCV::X15, RISCV::X16, RISCV::X17, RISCV::X7,  RISCV::X28,
3029         RISCV::X29, RISCV::X30, RISCV::X31};
3030     if (unsigned Reg = State.AllocateReg(GPRList)) {
3031       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
3032       return false;
3033     }
3034   }
3035 
3036   if (LocVT == MVT::f16) {
3037     static const MCPhysReg FPR16List[] = {
3038         RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, RISCV::F14_H,
3039         RISCV::F15_H, RISCV::F16_H, RISCV::F17_H, RISCV::F0_H,  RISCV::F1_H,
3040         RISCV::F2_H,  RISCV::F3_H,  RISCV::F4_H,  RISCV::F5_H,  RISCV::F6_H,
3041         RISCV::F7_H,  RISCV::F28_H, RISCV::F29_H, RISCV::F30_H, RISCV::F31_H};
3042     if (unsigned Reg = State.AllocateReg(FPR16List)) {
3043       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
3044       return false;
3045     }
3046   }
3047 
3048   if (LocVT == MVT::f32) {
3049     static const MCPhysReg FPR32List[] = {
3050         RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, RISCV::F14_F,
3051         RISCV::F15_F, RISCV::F16_F, RISCV::F17_F, RISCV::F0_F,  RISCV::F1_F,
3052         RISCV::F2_F,  RISCV::F3_F,  RISCV::F4_F,  RISCV::F5_F,  RISCV::F6_F,
3053         RISCV::F7_F,  RISCV::F28_F, RISCV::F29_F, RISCV::F30_F, RISCV::F31_F};
3054     if (unsigned Reg = State.AllocateReg(FPR32List)) {
3055       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
3056       return false;
3057     }
3058   }
3059 
3060   if (LocVT == MVT::f64) {
3061     static const MCPhysReg FPR64List[] = {
3062         RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, RISCV::F14_D,
3063         RISCV::F15_D, RISCV::F16_D, RISCV::F17_D, RISCV::F0_D,  RISCV::F1_D,
3064         RISCV::F2_D,  RISCV::F3_D,  RISCV::F4_D,  RISCV::F5_D,  RISCV::F6_D,
3065         RISCV::F7_D,  RISCV::F28_D, RISCV::F29_D, RISCV::F30_D, RISCV::F31_D};
3066     if (unsigned Reg = State.AllocateReg(FPR64List)) {
3067       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
3068       return false;
3069     }
3070   }
3071 
3072   if (LocVT == MVT::i32 || LocVT == MVT::f32) {
3073     unsigned Offset4 = State.AllocateStack(4, Align(4));
3074     State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset4, LocVT, LocInfo));
3075     return false;
3076   }
3077 
3078   if (LocVT == MVT::i64 || LocVT == MVT::f64) {
3079     unsigned Offset5 = State.AllocateStack(8, Align(8));
3080     State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset5, LocVT, LocInfo));
3081     return false;
3082   }
3083 
3084   return true; // CC didn't match.
3085 }
3086 
3087 static bool CC_RISCV_GHC(unsigned ValNo, MVT ValVT, MVT LocVT,
3088                          CCValAssign::LocInfo LocInfo,
3089                          ISD::ArgFlagsTy ArgFlags, CCState &State) {
3090 
3091   if (LocVT == MVT::i32 || LocVT == MVT::i64) {
3092     // Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, R6, R7, SpLim
3093     //                        s1    s2  s3  s4  s5  s6  s7  s8  s9  s10 s11
3094     static const MCPhysReg GPRList[] = {
3095         RISCV::X9, RISCV::X18, RISCV::X19, RISCV::X20, RISCV::X21, RISCV::X22,
3096         RISCV::X23, RISCV::X24, RISCV::X25, RISCV::X26, RISCV::X27};
3097     if (unsigned Reg = State.AllocateReg(GPRList)) {
3098       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
3099       return false;
3100     }
3101   }
3102 
3103   if (LocVT == MVT::f32) {
3104     // Pass in STG registers: F1, ..., F6
3105     //                        fs0 ... fs5
3106     static const MCPhysReg FPR32List[] = {RISCV::F8_F, RISCV::F9_F,
3107                                           RISCV::F18_F, RISCV::F19_F,
3108                                           RISCV::F20_F, RISCV::F21_F};
3109     if (unsigned Reg = State.AllocateReg(FPR32List)) {
3110       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
3111       return false;
3112     }
3113   }
3114 
3115   if (LocVT == MVT::f64) {
3116     // Pass in STG registers: D1, ..., D6
3117     //                        fs6 ... fs11
3118     static const MCPhysReg FPR64List[] = {RISCV::F22_D, RISCV::F23_D,
3119                                           RISCV::F24_D, RISCV::F25_D,
3120                                           RISCV::F26_D, RISCV::F27_D};
3121     if (unsigned Reg = State.AllocateReg(FPR64List)) {
3122       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
3123       return false;
3124     }
3125   }
3126 
3127   report_fatal_error("No registers left in GHC calling convention");
3128   return true;
3129 }
3130 
3131 // Transform physical registers into virtual registers.
3132 SDValue RISCVTargetLowering::LowerFormalArguments(
3133     SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
3134     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
3135     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3136 
3137   MachineFunction &MF = DAG.getMachineFunction();
3138 
3139   switch (CallConv) {
3140   default:
3141     report_fatal_error("Unsupported calling convention");
3142   case CallingConv::C:
3143   case CallingConv::Fast:
3144     break;
3145   case CallingConv::GHC:
3146     if (!MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtF] ||
3147         !MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtD])
3148       report_fatal_error(
3149         "GHC calling convention requires the F and D instruction set extensions");
3150   }
3151 
3152   const Function &Func = MF.getFunction();
3153   if (Func.hasFnAttribute("interrupt")) {
3154     if (!Func.arg_empty())
3155       report_fatal_error(
3156         "Functions with the interrupt attribute cannot have arguments!");
3157 
3158     StringRef Kind =
3159       MF.getFunction().getFnAttribute("interrupt").getValueAsString();
3160 
3161     if (!(Kind == "user" || Kind == "supervisor" || Kind == "machine"))
3162       report_fatal_error(
3163         "Function interrupt attribute argument not supported!");
3164   }
3165 
3166   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3167   MVT XLenVT = Subtarget.getXLenVT();
3168   unsigned XLenInBytes = Subtarget.getXLen() / 8;
3169   // Used with vargs to acumulate store chains.
3170   std::vector<SDValue> OutChains;
3171 
3172   // Assign locations to all of the incoming arguments.
3173   SmallVector<CCValAssign, 16> ArgLocs;
3174   CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
3175 
3176   if (CallConv == CallingConv::Fast)
3177     CCInfo.AnalyzeFormalArguments(Ins, CC_RISCV_FastCC);
3178   else if (CallConv == CallingConv::GHC)
3179     CCInfo.AnalyzeFormalArguments(Ins, CC_RISCV_GHC);
3180   else
3181     analyzeInputArgs(MF, CCInfo, Ins, /*IsRet=*/false);
3182 
3183   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
3184     CCValAssign &VA = ArgLocs[i];
3185     SDValue ArgValue;
3186     // Passing f64 on RV32D with a soft float ABI must be handled as a special
3187     // case.
3188     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64)
3189       ArgValue = unpackF64OnRV32DSoftABI(DAG, Chain, VA, DL);
3190     else if (VA.isRegLoc())
3191       ArgValue = unpackFromRegLoc(DAG, Chain, VA, DL, *this);
3192     else
3193       ArgValue = unpackFromMemLoc(DAG, Chain, VA, DL);
3194 
3195     if (VA.getLocInfo() == CCValAssign::Indirect) {
3196       // If the original argument was split and passed by reference (e.g. i128
3197       // on RV32), we need to load all parts of it here (using the same
3198       // address).
3199       InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue,
3200                                    MachinePointerInfo()));
3201       unsigned ArgIndex = Ins[i].OrigArgIndex;
3202       assert(Ins[i].PartOffset == 0);
3203       while (i + 1 != e && Ins[i + 1].OrigArgIndex == ArgIndex) {
3204         CCValAssign &PartVA = ArgLocs[i + 1];
3205         unsigned PartOffset = Ins[i + 1].PartOffset;
3206         SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue,
3207                                       DAG.getIntPtrConstant(PartOffset, DL));
3208         InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address,
3209                                      MachinePointerInfo()));
3210         ++i;
3211       }
3212       continue;
3213     }
3214     InVals.push_back(ArgValue);
3215   }
3216 
3217   if (IsVarArg) {
3218     ArrayRef<MCPhysReg> ArgRegs = makeArrayRef(ArgGPRs);
3219     unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs);
3220     const TargetRegisterClass *RC = &RISCV::GPRRegClass;
3221     MachineFrameInfo &MFI = MF.getFrameInfo();
3222     MachineRegisterInfo &RegInfo = MF.getRegInfo();
3223     RISCVMachineFunctionInfo *RVFI = MF.getInfo<RISCVMachineFunctionInfo>();
3224 
3225     // Offset of the first variable argument from stack pointer, and size of
3226     // the vararg save area. For now, the varargs save area is either zero or
3227     // large enough to hold a0-a7.
3228     int VaArgOffset, VarArgsSaveSize;
3229 
3230     // If all registers are allocated, then all varargs must be passed on the
3231     // stack and we don't need to save any argregs.
3232     if (ArgRegs.size() == Idx) {
3233       VaArgOffset = CCInfo.getNextStackOffset();
3234       VarArgsSaveSize = 0;
3235     } else {
3236       VarArgsSaveSize = XLenInBytes * (ArgRegs.size() - Idx);
3237       VaArgOffset = -VarArgsSaveSize;
3238     }
3239 
3240     // Record the frame index of the first variable argument
3241     // which is a value necessary to VASTART.
3242     int FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true);
3243     RVFI->setVarArgsFrameIndex(FI);
3244 
3245     // If saving an odd number of registers then create an extra stack slot to
3246     // ensure that the frame pointer is 2*XLEN-aligned, which in turn ensures
3247     // offsets to even-numbered registered remain 2*XLEN-aligned.
3248     if (Idx % 2) {
3249       MFI.CreateFixedObject(XLenInBytes, VaArgOffset - (int)XLenInBytes, true);
3250       VarArgsSaveSize += XLenInBytes;
3251     }
3252 
3253     // Copy the integer registers that may have been used for passing varargs
3254     // to the vararg save area.
3255     for (unsigned I = Idx; I < ArgRegs.size();
3256          ++I, VaArgOffset += XLenInBytes) {
3257       const Register Reg = RegInfo.createVirtualRegister(RC);
3258       RegInfo.addLiveIn(ArgRegs[I], Reg);
3259       SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, XLenVT);
3260       FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true);
3261       SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
3262       SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff,
3263                                    MachinePointerInfo::getFixedStack(MF, FI));
3264       cast<StoreSDNode>(Store.getNode())
3265           ->getMemOperand()
3266           ->setValue((Value *)nullptr);
3267       OutChains.push_back(Store);
3268     }
3269     RVFI->setVarArgsSaveSize(VarArgsSaveSize);
3270   }
3271 
3272   // All stores are grouped in one node to allow the matching between
3273   // the size of Ins and InVals. This only happens for vararg functions.
3274   if (!OutChains.empty()) {
3275     OutChains.push_back(Chain);
3276     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains);
3277   }
3278 
3279   return Chain;
3280 }
3281 
3282 /// isEligibleForTailCallOptimization - Check whether the call is eligible
3283 /// for tail call optimization.
3284 /// Note: This is modelled after ARM's IsEligibleForTailCallOptimization.
3285 bool RISCVTargetLowering::isEligibleForTailCallOptimization(
3286     CCState &CCInfo, CallLoweringInfo &CLI, MachineFunction &MF,
3287     const SmallVector<CCValAssign, 16> &ArgLocs) const {
3288 
3289   auto &Callee = CLI.Callee;
3290   auto CalleeCC = CLI.CallConv;
3291   auto &Outs = CLI.Outs;
3292   auto &Caller = MF.getFunction();
3293   auto CallerCC = Caller.getCallingConv();
3294 
3295   // Exception-handling functions need a special set of instructions to
3296   // indicate a return to the hardware. Tail-calling another function would
3297   // probably break this.
3298   // TODO: The "interrupt" attribute isn't currently defined by RISC-V. This
3299   // should be expanded as new function attributes are introduced.
3300   if (Caller.hasFnAttribute("interrupt"))
3301     return false;
3302 
3303   // Do not tail call opt if the stack is used to pass parameters.
3304   if (CCInfo.getNextStackOffset() != 0)
3305     return false;
3306 
3307   // Do not tail call opt if any parameters need to be passed indirectly.
3308   // Since long doubles (fp128) and i128 are larger than 2*XLEN, they are
3309   // passed indirectly. So the address of the value will be passed in a
3310   // register, or if not available, then the address is put on the stack. In
3311   // order to pass indirectly, space on the stack often needs to be allocated
3312   // in order to store the value. In this case the CCInfo.getNextStackOffset()
3313   // != 0 check is not enough and we need to check if any CCValAssign ArgsLocs
3314   // are passed CCValAssign::Indirect.
3315   for (auto &VA : ArgLocs)
3316     if (VA.getLocInfo() == CCValAssign::Indirect)
3317       return false;
3318 
3319   // Do not tail call opt if either caller or callee uses struct return
3320   // semantics.
3321   auto IsCallerStructRet = Caller.hasStructRetAttr();
3322   auto IsCalleeStructRet = Outs.empty() ? false : Outs[0].Flags.isSRet();
3323   if (IsCallerStructRet || IsCalleeStructRet)
3324     return false;
3325 
3326   // Externally-defined functions with weak linkage should not be
3327   // tail-called. The behaviour of branch instructions in this situation (as
3328   // used for tail calls) is implementation-defined, so we cannot rely on the
3329   // linker replacing the tail call with a return.
3330   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
3331     const GlobalValue *GV = G->getGlobal();
3332     if (GV->hasExternalWeakLinkage())
3333       return false;
3334   }
3335 
3336   // The callee has to preserve all registers the caller needs to preserve.
3337   const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo();
3338   const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
3339   if (CalleeCC != CallerCC) {
3340     const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
3341     if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
3342       return false;
3343   }
3344 
3345   // Byval parameters hand the function a pointer directly into the stack area
3346   // we want to reuse during a tail call. Working around this *is* possible
3347   // but less efficient and uglier in LowerCall.
3348   for (auto &Arg : Outs)
3349     if (Arg.Flags.isByVal())
3350       return false;
3351 
3352   return true;
3353 }
3354 
3355 // Lower a call to a callseq_start + CALL + callseq_end chain, and add input
3356 // and output parameter nodes.
3357 SDValue RISCVTargetLowering::LowerCall(CallLoweringInfo &CLI,
3358                                        SmallVectorImpl<SDValue> &InVals) const {
3359   SelectionDAG &DAG = CLI.DAG;
3360   SDLoc &DL = CLI.DL;
3361   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
3362   SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
3363   SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
3364   SDValue Chain = CLI.Chain;
3365   SDValue Callee = CLI.Callee;
3366   bool &IsTailCall = CLI.IsTailCall;
3367   CallingConv::ID CallConv = CLI.CallConv;
3368   bool IsVarArg = CLI.IsVarArg;
3369   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3370   MVT XLenVT = Subtarget.getXLenVT();
3371 
3372   MachineFunction &MF = DAG.getMachineFunction();
3373 
3374   // Analyze the operands of the call, assigning locations to each operand.
3375   SmallVector<CCValAssign, 16> ArgLocs;
3376   CCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
3377 
3378   if (CallConv == CallingConv::Fast)
3379     ArgCCInfo.AnalyzeCallOperands(Outs, CC_RISCV_FastCC);
3380   else if (CallConv == CallingConv::GHC)
3381     ArgCCInfo.AnalyzeCallOperands(Outs, CC_RISCV_GHC);
3382   else
3383     analyzeOutputArgs(MF, ArgCCInfo, Outs, /*IsRet=*/false, &CLI);
3384 
3385   // Check if it's really possible to do a tail call.
3386   if (IsTailCall)
3387     IsTailCall = isEligibleForTailCallOptimization(ArgCCInfo, CLI, MF, ArgLocs);
3388 
3389   if (IsTailCall)
3390     ++NumTailCalls;
3391   else if (CLI.CB && CLI.CB->isMustTailCall())
3392     report_fatal_error("failed to perform tail call elimination on a call "
3393                        "site marked musttail");
3394 
3395   // Get a count of how many bytes are to be pushed on the stack.
3396   unsigned NumBytes = ArgCCInfo.getNextStackOffset();
3397 
3398   // Create local copies for byval args
3399   SmallVector<SDValue, 8> ByValArgs;
3400   for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
3401     ISD::ArgFlagsTy Flags = Outs[i].Flags;
3402     if (!Flags.isByVal())
3403       continue;
3404 
3405     SDValue Arg = OutVals[i];
3406     unsigned Size = Flags.getByValSize();
3407     Align Alignment = Flags.getNonZeroByValAlign();
3408 
3409     int FI =
3410         MF.getFrameInfo().CreateStackObject(Size, Alignment, /*isSS=*/false);
3411     SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
3412     SDValue SizeNode = DAG.getConstant(Size, DL, XLenVT);
3413 
3414     Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Alignment,
3415                           /*IsVolatile=*/false,
3416                           /*AlwaysInline=*/false, IsTailCall,
3417                           MachinePointerInfo(), MachinePointerInfo());
3418     ByValArgs.push_back(FIPtr);
3419   }
3420 
3421   if (!IsTailCall)
3422     Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, CLI.DL);
3423 
3424   // Copy argument values to their designated locations.
3425   SmallVector<std::pair<Register, SDValue>, 8> RegsToPass;
3426   SmallVector<SDValue, 8> MemOpChains;
3427   SDValue StackPtr;
3428   for (unsigned i = 0, j = 0, e = ArgLocs.size(); i != e; ++i) {
3429     CCValAssign &VA = ArgLocs[i];
3430     SDValue ArgValue = OutVals[i];
3431     ISD::ArgFlagsTy Flags = Outs[i].Flags;
3432 
3433     // Handle passing f64 on RV32D with a soft float ABI as a special case.
3434     bool IsF64OnRV32DSoftABI =
3435         VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64;
3436     if (IsF64OnRV32DSoftABI && VA.isRegLoc()) {
3437       SDValue SplitF64 = DAG.getNode(
3438           RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), ArgValue);
3439       SDValue Lo = SplitF64.getValue(0);
3440       SDValue Hi = SplitF64.getValue(1);
3441 
3442       Register RegLo = VA.getLocReg();
3443       RegsToPass.push_back(std::make_pair(RegLo, Lo));
3444 
3445       if (RegLo == RISCV::X17) {
3446         // Second half of f64 is passed on the stack.
3447         // Work out the address of the stack slot.
3448         if (!StackPtr.getNode())
3449           StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT);
3450         // Emit the store.
3451         MemOpChains.push_back(
3452             DAG.getStore(Chain, DL, Hi, StackPtr, MachinePointerInfo()));
3453       } else {
3454         // Second half of f64 is passed in another GPR.
3455         assert(RegLo < RISCV::X31 && "Invalid register pair");
3456         Register RegHigh = RegLo + 1;
3457         RegsToPass.push_back(std::make_pair(RegHigh, Hi));
3458       }
3459       continue;
3460     }
3461 
3462     // IsF64OnRV32DSoftABI && VA.isMemLoc() is handled below in the same way
3463     // as any other MemLoc.
3464 
3465     // Promote the value if needed.
3466     // For now, only handle fully promoted and indirect arguments.
3467     if (VA.getLocInfo() == CCValAssign::Indirect) {
3468       // Store the argument in a stack slot and pass its address.
3469       SDValue SpillSlot = DAG.CreateStackTemporary(Outs[i].ArgVT);
3470       int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
3471       MemOpChains.push_back(
3472           DAG.getStore(Chain, DL, ArgValue, SpillSlot,
3473                        MachinePointerInfo::getFixedStack(MF, FI)));
3474       // If the original argument was split (e.g. i128), we need
3475       // to store all parts of it here (and pass just one address).
3476       unsigned ArgIndex = Outs[i].OrigArgIndex;
3477       assert(Outs[i].PartOffset == 0);
3478       while (i + 1 != e && Outs[i + 1].OrigArgIndex == ArgIndex) {
3479         SDValue PartValue = OutVals[i + 1];
3480         unsigned PartOffset = Outs[i + 1].PartOffset;
3481         SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot,
3482                                       DAG.getIntPtrConstant(PartOffset, DL));
3483         MemOpChains.push_back(
3484             DAG.getStore(Chain, DL, PartValue, Address,
3485                          MachinePointerInfo::getFixedStack(MF, FI)));
3486         ++i;
3487       }
3488       ArgValue = SpillSlot;
3489     } else {
3490       ArgValue = convertValVTToLocVT(DAG, ArgValue, VA, DL);
3491     }
3492 
3493     // Use local copy if it is a byval arg.
3494     if (Flags.isByVal())
3495       ArgValue = ByValArgs[j++];
3496 
3497     if (VA.isRegLoc()) {
3498       // Queue up the argument copies and emit them at the end.
3499       RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue));
3500     } else {
3501       assert(VA.isMemLoc() && "Argument not register or memory");
3502       assert(!IsTailCall && "Tail call not allowed if stack is used "
3503                             "for passing parameters");
3504 
3505       // Work out the address of the stack slot.
3506       if (!StackPtr.getNode())
3507         StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT);
3508       SDValue Address =
3509           DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr,
3510                       DAG.getIntPtrConstant(VA.getLocMemOffset(), DL));
3511 
3512       // Emit the store.
3513       MemOpChains.push_back(
3514           DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo()));
3515     }
3516   }
3517 
3518   // Join the stores, which are independent of one another.
3519   if (!MemOpChains.empty())
3520     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
3521 
3522   SDValue Glue;
3523 
3524   // Build a sequence of copy-to-reg nodes, chained and glued together.
3525   for (auto &Reg : RegsToPass) {
3526     Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, Glue);
3527     Glue = Chain.getValue(1);
3528   }
3529 
3530   // Validate that none of the argument registers have been marked as
3531   // reserved, if so report an error. Do the same for the return address if this
3532   // is not a tailcall.
3533   validateCCReservedRegs(RegsToPass, MF);
3534   if (!IsTailCall &&
3535       MF.getSubtarget<RISCVSubtarget>().isRegisterReservedByUser(RISCV::X1))
3536     MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
3537         MF.getFunction(),
3538         "Return address register required, but has been reserved."});
3539 
3540   // If the callee is a GlobalAddress/ExternalSymbol node, turn it into a
3541   // TargetGlobalAddress/TargetExternalSymbol node so that legalize won't
3542   // split it and then direct call can be matched by PseudoCALL.
3543   if (GlobalAddressSDNode *S = dyn_cast<GlobalAddressSDNode>(Callee)) {
3544     const GlobalValue *GV = S->getGlobal();
3545 
3546     unsigned OpFlags = RISCVII::MO_CALL;
3547     if (!getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV))
3548       OpFlags = RISCVII::MO_PLT;
3549 
3550     Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags);
3551   } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
3552     unsigned OpFlags = RISCVII::MO_CALL;
3553 
3554     if (!getTargetMachine().shouldAssumeDSOLocal(*MF.getFunction().getParent(),
3555                                                  nullptr))
3556       OpFlags = RISCVII::MO_PLT;
3557 
3558     Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, OpFlags);
3559   }
3560 
3561   // The first call operand is the chain and the second is the target address.
3562   SmallVector<SDValue, 8> Ops;
3563   Ops.push_back(Chain);
3564   Ops.push_back(Callee);
3565 
3566   // Add argument registers to the end of the list so that they are
3567   // known live into the call.
3568   for (auto &Reg : RegsToPass)
3569     Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType()));
3570 
3571   if (!IsTailCall) {
3572     // Add a register mask operand representing the call-preserved registers.
3573     const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
3574     const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
3575     assert(Mask && "Missing call preserved mask for calling convention");
3576     Ops.push_back(DAG.getRegisterMask(Mask));
3577   }
3578 
3579   // Glue the call to the argument copies, if any.
3580   if (Glue.getNode())
3581     Ops.push_back(Glue);
3582 
3583   // Emit the call.
3584   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
3585 
3586   if (IsTailCall) {
3587     MF.getFrameInfo().setHasTailCall();
3588     return DAG.getNode(RISCVISD::TAIL, DL, NodeTys, Ops);
3589   }
3590 
3591   Chain = DAG.getNode(RISCVISD::CALL, DL, NodeTys, Ops);
3592   DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge);
3593   Glue = Chain.getValue(1);
3594 
3595   // Mark the end of the call, which is glued to the call itself.
3596   Chain = DAG.getCALLSEQ_END(Chain,
3597                              DAG.getConstant(NumBytes, DL, PtrVT, true),
3598                              DAG.getConstant(0, DL, PtrVT, true),
3599                              Glue, DL);
3600   Glue = Chain.getValue(1);
3601 
3602   // Assign locations to each value returned by this call.
3603   SmallVector<CCValAssign, 16> RVLocs;
3604   CCState RetCCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext());
3605   analyzeInputArgs(MF, RetCCInfo, Ins, /*IsRet=*/true);
3606 
3607   // Copy all of the result registers out of their specified physreg.
3608   for (auto &VA : RVLocs) {
3609     // Copy the value out
3610     SDValue RetValue =
3611         DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), Glue);
3612     // Glue the RetValue to the end of the call sequence
3613     Chain = RetValue.getValue(1);
3614     Glue = RetValue.getValue(2);
3615 
3616     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) {
3617       assert(VA.getLocReg() == ArgGPRs[0] && "Unexpected reg assignment");
3618       SDValue RetValue2 =
3619           DAG.getCopyFromReg(Chain, DL, ArgGPRs[1], MVT::i32, Glue);
3620       Chain = RetValue2.getValue(1);
3621       Glue = RetValue2.getValue(2);
3622       RetValue = DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, RetValue,
3623                              RetValue2);
3624     }
3625 
3626     RetValue = convertLocVTToValVT(DAG, RetValue, VA, DL);
3627 
3628     InVals.push_back(RetValue);
3629   }
3630 
3631   return Chain;
3632 }
3633 
3634 bool RISCVTargetLowering::CanLowerReturn(
3635     CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg,
3636     const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const {
3637   SmallVector<CCValAssign, 16> RVLocs;
3638   CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);
3639 
3640   Optional<unsigned> FirstMaskArgument;
3641   if (Subtarget.hasStdExtV())
3642     FirstMaskArgument = preAssignMask(Outs);
3643 
3644   for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
3645     MVT VT = Outs[i].VT;
3646     ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
3647     RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
3648     if (CC_RISCV(MF.getDataLayout(), ABI, i, VT, VT, CCValAssign::Full,
3649                  ArgFlags, CCInfo, /*IsFixed=*/true, /*IsRet=*/true, nullptr,
3650                  *this, FirstMaskArgument))
3651       return false;
3652   }
3653   return true;
3654 }
3655 
3656 SDValue
3657 RISCVTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
3658                                  bool IsVarArg,
3659                                  const SmallVectorImpl<ISD::OutputArg> &Outs,
3660                                  const SmallVectorImpl<SDValue> &OutVals,
3661                                  const SDLoc &DL, SelectionDAG &DAG) const {
3662   const MachineFunction &MF = DAG.getMachineFunction();
3663   const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>();
3664 
3665   // Stores the assignment of the return value to a location.
3666   SmallVector<CCValAssign, 16> RVLocs;
3667 
3668   // Info about the registers and stack slot.
3669   CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
3670                  *DAG.getContext());
3671 
3672   analyzeOutputArgs(DAG.getMachineFunction(), CCInfo, Outs, /*IsRet=*/true,
3673                     nullptr);
3674 
3675   if (CallConv == CallingConv::GHC && !RVLocs.empty())
3676     report_fatal_error("GHC functions return void only");
3677 
3678   SDValue Glue;
3679   SmallVector<SDValue, 4> RetOps(1, Chain);
3680 
3681   // Copy the result values into the output registers.
3682   for (unsigned i = 0, e = RVLocs.size(); i < e; ++i) {
3683     SDValue Val = OutVals[i];
3684     CCValAssign &VA = RVLocs[i];
3685     assert(VA.isRegLoc() && "Can only return in registers!");
3686 
3687     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) {
3688       // Handle returning f64 on RV32D with a soft float ABI.
3689       assert(VA.isRegLoc() && "Expected return via registers");
3690       SDValue SplitF64 = DAG.getNode(RISCVISD::SplitF64, DL,
3691                                      DAG.getVTList(MVT::i32, MVT::i32), Val);
3692       SDValue Lo = SplitF64.getValue(0);
3693       SDValue Hi = SplitF64.getValue(1);
3694       Register RegLo = VA.getLocReg();
3695       assert(RegLo < RISCV::X31 && "Invalid register pair");
3696       Register RegHi = RegLo + 1;
3697 
3698       if (STI.isRegisterReservedByUser(RegLo) ||
3699           STI.isRegisterReservedByUser(RegHi))
3700         MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
3701             MF.getFunction(),
3702             "Return value register required, but has been reserved."});
3703 
3704       Chain = DAG.getCopyToReg(Chain, DL, RegLo, Lo, Glue);
3705       Glue = Chain.getValue(1);
3706       RetOps.push_back(DAG.getRegister(RegLo, MVT::i32));
3707       Chain = DAG.getCopyToReg(Chain, DL, RegHi, Hi, Glue);
3708       Glue = Chain.getValue(1);
3709       RetOps.push_back(DAG.getRegister(RegHi, MVT::i32));
3710     } else {
3711       // Handle a 'normal' return.
3712       Val = convertValVTToLocVT(DAG, Val, VA, DL);
3713       Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Glue);
3714 
3715       if (STI.isRegisterReservedByUser(VA.getLocReg()))
3716         MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
3717             MF.getFunction(),
3718             "Return value register required, but has been reserved."});
3719 
3720       // Guarantee that all emitted copies are stuck together.
3721       Glue = Chain.getValue(1);
3722       RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
3723     }
3724   }
3725 
3726   RetOps[0] = Chain; // Update chain.
3727 
3728   // Add the glue node if we have it.
3729   if (Glue.getNode()) {
3730     RetOps.push_back(Glue);
3731   }
3732 
3733   // Interrupt service routines use different return instructions.
3734   const Function &Func = DAG.getMachineFunction().getFunction();
3735   if (Func.hasFnAttribute("interrupt")) {
3736     if (!Func.getReturnType()->isVoidTy())
3737       report_fatal_error(
3738           "Functions with the interrupt attribute must have void return type!");
3739 
3740     MachineFunction &MF = DAG.getMachineFunction();
3741     StringRef Kind =
3742       MF.getFunction().getFnAttribute("interrupt").getValueAsString();
3743 
3744     unsigned RetOpc;
3745     if (Kind == "user")
3746       RetOpc = RISCVISD::URET_FLAG;
3747     else if (Kind == "supervisor")
3748       RetOpc = RISCVISD::SRET_FLAG;
3749     else
3750       RetOpc = RISCVISD::MRET_FLAG;
3751 
3752     return DAG.getNode(RetOpc, DL, MVT::Other, RetOps);
3753   }
3754 
3755   return DAG.getNode(RISCVISD::RET_FLAG, DL, MVT::Other, RetOps);
3756 }
3757 
3758 void RISCVTargetLowering::validateCCReservedRegs(
3759     const SmallVectorImpl<std::pair<llvm::Register, llvm::SDValue>> &Regs,
3760     MachineFunction &MF) const {
3761   const Function &F = MF.getFunction();
3762   const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>();
3763 
3764   if (llvm::any_of(Regs, [&STI](auto Reg) {
3765         return STI.isRegisterReservedByUser(Reg.first);
3766       }))
3767     F.getContext().diagnose(DiagnosticInfoUnsupported{
3768         F, "Argument register required, but has been reserved."});
3769 }
3770 
3771 bool RISCVTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
3772   return CI->isTailCall();
3773 }
3774 
3775 const char *RISCVTargetLowering::getTargetNodeName(unsigned Opcode) const {
3776 #define NODE_NAME_CASE(NODE)                                                   \
3777   case RISCVISD::NODE:                                                         \
3778     return "RISCVISD::" #NODE;
3779   // clang-format off
3780   switch ((RISCVISD::NodeType)Opcode) {
3781   case RISCVISD::FIRST_NUMBER:
3782     break;
3783   NODE_NAME_CASE(RET_FLAG)
3784   NODE_NAME_CASE(URET_FLAG)
3785   NODE_NAME_CASE(SRET_FLAG)
3786   NODE_NAME_CASE(MRET_FLAG)
3787   NODE_NAME_CASE(CALL)
3788   NODE_NAME_CASE(SELECT_CC)
3789   NODE_NAME_CASE(BuildPairF64)
3790   NODE_NAME_CASE(SplitF64)
3791   NODE_NAME_CASE(TAIL)
3792   NODE_NAME_CASE(SLLW)
3793   NODE_NAME_CASE(SRAW)
3794   NODE_NAME_CASE(SRLW)
3795   NODE_NAME_CASE(DIVW)
3796   NODE_NAME_CASE(DIVUW)
3797   NODE_NAME_CASE(REMUW)
3798   NODE_NAME_CASE(ROLW)
3799   NODE_NAME_CASE(RORW)
3800   NODE_NAME_CASE(FSLW)
3801   NODE_NAME_CASE(FSRW)
3802   NODE_NAME_CASE(FMV_H_X)
3803   NODE_NAME_CASE(FMV_X_ANYEXTH)
3804   NODE_NAME_CASE(FMV_W_X_RV64)
3805   NODE_NAME_CASE(FMV_X_ANYEXTW_RV64)
3806   NODE_NAME_CASE(READ_CYCLE_WIDE)
3807   NODE_NAME_CASE(GREVI)
3808   NODE_NAME_CASE(GREVIW)
3809   NODE_NAME_CASE(GORCI)
3810   NODE_NAME_CASE(GORCIW)
3811   NODE_NAME_CASE(VMV_X_S)
3812   NODE_NAME_CASE(SPLAT_VECTOR_I64)
3813   NODE_NAME_CASE(READ_VLENB)
3814   NODE_NAME_CASE(TRUNCATE_VECTOR)
3815   }
3816   // clang-format on
3817   return nullptr;
3818 #undef NODE_NAME_CASE
3819 }
3820 
3821 /// getConstraintType - Given a constraint letter, return the type of
3822 /// constraint it is for this target.
3823 RISCVTargetLowering::ConstraintType
3824 RISCVTargetLowering::getConstraintType(StringRef Constraint) const {
3825   if (Constraint.size() == 1) {
3826     switch (Constraint[0]) {
3827     default:
3828       break;
3829     case 'f':
3830       return C_RegisterClass;
3831     case 'I':
3832     case 'J':
3833     case 'K':
3834       return C_Immediate;
3835     case 'A':
3836       return C_Memory;
3837     }
3838   }
3839   return TargetLowering::getConstraintType(Constraint);
3840 }
3841 
3842 std::pair<unsigned, const TargetRegisterClass *>
3843 RISCVTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
3844                                                   StringRef Constraint,
3845                                                   MVT VT) const {
3846   // First, see if this is a constraint that directly corresponds to a
3847   // RISCV register class.
3848   if (Constraint.size() == 1) {
3849     switch (Constraint[0]) {
3850     case 'r':
3851       return std::make_pair(0U, &RISCV::GPRRegClass);
3852     case 'f':
3853       if (Subtarget.hasStdExtZfh() && VT == MVT::f16)
3854         return std::make_pair(0U, &RISCV::FPR16RegClass);
3855       if (Subtarget.hasStdExtF() && VT == MVT::f32)
3856         return std::make_pair(0U, &RISCV::FPR32RegClass);
3857       if (Subtarget.hasStdExtD() && VT == MVT::f64)
3858         return std::make_pair(0U, &RISCV::FPR64RegClass);
3859       break;
3860     default:
3861       break;
3862     }
3863   }
3864 
3865   // Clang will correctly decode the usage of register name aliases into their
3866   // official names. However, other frontends like `rustc` do not. This allows
3867   // users of these frontends to use the ABI names for registers in LLVM-style
3868   // register constraints.
3869   unsigned XRegFromAlias = StringSwitch<unsigned>(Constraint.lower())
3870                                .Case("{zero}", RISCV::X0)
3871                                .Case("{ra}", RISCV::X1)
3872                                .Case("{sp}", RISCV::X2)
3873                                .Case("{gp}", RISCV::X3)
3874                                .Case("{tp}", RISCV::X4)
3875                                .Case("{t0}", RISCV::X5)
3876                                .Case("{t1}", RISCV::X6)
3877                                .Case("{t2}", RISCV::X7)
3878                                .Cases("{s0}", "{fp}", RISCV::X8)
3879                                .Case("{s1}", RISCV::X9)
3880                                .Case("{a0}", RISCV::X10)
3881                                .Case("{a1}", RISCV::X11)
3882                                .Case("{a2}", RISCV::X12)
3883                                .Case("{a3}", RISCV::X13)
3884                                .Case("{a4}", RISCV::X14)
3885                                .Case("{a5}", RISCV::X15)
3886                                .Case("{a6}", RISCV::X16)
3887                                .Case("{a7}", RISCV::X17)
3888                                .Case("{s2}", RISCV::X18)
3889                                .Case("{s3}", RISCV::X19)
3890                                .Case("{s4}", RISCV::X20)
3891                                .Case("{s5}", RISCV::X21)
3892                                .Case("{s6}", RISCV::X22)
3893                                .Case("{s7}", RISCV::X23)
3894                                .Case("{s8}", RISCV::X24)
3895                                .Case("{s9}", RISCV::X25)
3896                                .Case("{s10}", RISCV::X26)
3897                                .Case("{s11}", RISCV::X27)
3898                                .Case("{t3}", RISCV::X28)
3899                                .Case("{t4}", RISCV::X29)
3900                                .Case("{t5}", RISCV::X30)
3901                                .Case("{t6}", RISCV::X31)
3902                                .Default(RISCV::NoRegister);
3903   if (XRegFromAlias != RISCV::NoRegister)
3904     return std::make_pair(XRegFromAlias, &RISCV::GPRRegClass);
3905 
3906   // Since TargetLowering::getRegForInlineAsmConstraint uses the name of the
3907   // TableGen record rather than the AsmName to choose registers for InlineAsm
3908   // constraints, plus we want to match those names to the widest floating point
3909   // register type available, manually select floating point registers here.
3910   //
3911   // The second case is the ABI name of the register, so that frontends can also
3912   // use the ABI names in register constraint lists.
3913   if (Subtarget.hasStdExtF()) {
3914     unsigned FReg = StringSwitch<unsigned>(Constraint.lower())
3915                         .Cases("{f0}", "{ft0}", RISCV::F0_F)
3916                         .Cases("{f1}", "{ft1}", RISCV::F1_F)
3917                         .Cases("{f2}", "{ft2}", RISCV::F2_F)
3918                         .Cases("{f3}", "{ft3}", RISCV::F3_F)
3919                         .Cases("{f4}", "{ft4}", RISCV::F4_F)
3920                         .Cases("{f5}", "{ft5}", RISCV::F5_F)
3921                         .Cases("{f6}", "{ft6}", RISCV::F6_F)
3922                         .Cases("{f7}", "{ft7}", RISCV::F7_F)
3923                         .Cases("{f8}", "{fs0}", RISCV::F8_F)
3924                         .Cases("{f9}", "{fs1}", RISCV::F9_F)
3925                         .Cases("{f10}", "{fa0}", RISCV::F10_F)
3926                         .Cases("{f11}", "{fa1}", RISCV::F11_F)
3927                         .Cases("{f12}", "{fa2}", RISCV::F12_F)
3928                         .Cases("{f13}", "{fa3}", RISCV::F13_F)
3929                         .Cases("{f14}", "{fa4}", RISCV::F14_F)
3930                         .Cases("{f15}", "{fa5}", RISCV::F15_F)
3931                         .Cases("{f16}", "{fa6}", RISCV::F16_F)
3932                         .Cases("{f17}", "{fa7}", RISCV::F17_F)
3933                         .Cases("{f18}", "{fs2}", RISCV::F18_F)
3934                         .Cases("{f19}", "{fs3}", RISCV::F19_F)
3935                         .Cases("{f20}", "{fs4}", RISCV::F20_F)
3936                         .Cases("{f21}", "{fs5}", RISCV::F21_F)
3937                         .Cases("{f22}", "{fs6}", RISCV::F22_F)
3938                         .Cases("{f23}", "{fs7}", RISCV::F23_F)
3939                         .Cases("{f24}", "{fs8}", RISCV::F24_F)
3940                         .Cases("{f25}", "{fs9}", RISCV::F25_F)
3941                         .Cases("{f26}", "{fs10}", RISCV::F26_F)
3942                         .Cases("{f27}", "{fs11}", RISCV::F27_F)
3943                         .Cases("{f28}", "{ft8}", RISCV::F28_F)
3944                         .Cases("{f29}", "{ft9}", RISCV::F29_F)
3945                         .Cases("{f30}", "{ft10}", RISCV::F30_F)
3946                         .Cases("{f31}", "{ft11}", RISCV::F31_F)
3947                         .Default(RISCV::NoRegister);
3948     if (FReg != RISCV::NoRegister) {
3949       assert(RISCV::F0_F <= FReg && FReg <= RISCV::F31_F && "Unknown fp-reg");
3950       if (Subtarget.hasStdExtD()) {
3951         unsigned RegNo = FReg - RISCV::F0_F;
3952         unsigned DReg = RISCV::F0_D + RegNo;
3953         return std::make_pair(DReg, &RISCV::FPR64RegClass);
3954       }
3955       return std::make_pair(FReg, &RISCV::FPR32RegClass);
3956     }
3957   }
3958 
3959   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
3960 }
3961 
3962 unsigned
3963 RISCVTargetLowering::getInlineAsmMemConstraint(StringRef ConstraintCode) const {
3964   // Currently only support length 1 constraints.
3965   if (ConstraintCode.size() == 1) {
3966     switch (ConstraintCode[0]) {
3967     case 'A':
3968       return InlineAsm::Constraint_A;
3969     default:
3970       break;
3971     }
3972   }
3973 
3974   return TargetLowering::getInlineAsmMemConstraint(ConstraintCode);
3975 }
3976 
3977 void RISCVTargetLowering::LowerAsmOperandForConstraint(
3978     SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops,
3979     SelectionDAG &DAG) const {
3980   // Currently only support length 1 constraints.
3981   if (Constraint.length() == 1) {
3982     switch (Constraint[0]) {
3983     case 'I':
3984       // Validate & create a 12-bit signed immediate operand.
3985       if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
3986         uint64_t CVal = C->getSExtValue();
3987         if (isInt<12>(CVal))
3988           Ops.push_back(
3989               DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT()));
3990       }
3991       return;
3992     case 'J':
3993       // Validate & create an integer zero operand.
3994       if (auto *C = dyn_cast<ConstantSDNode>(Op))
3995         if (C->getZExtValue() == 0)
3996           Ops.push_back(
3997               DAG.getTargetConstant(0, SDLoc(Op), Subtarget.getXLenVT()));
3998       return;
3999     case 'K':
4000       // Validate & create a 5-bit unsigned immediate operand.
4001       if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
4002         uint64_t CVal = C->getZExtValue();
4003         if (isUInt<5>(CVal))
4004           Ops.push_back(
4005               DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT()));
4006       }
4007       return;
4008     default:
4009       break;
4010     }
4011   }
4012   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
4013 }
4014 
4015 Instruction *RISCVTargetLowering::emitLeadingFence(IRBuilder<> &Builder,
4016                                                    Instruction *Inst,
4017                                                    AtomicOrdering Ord) const {
4018   if (isa<LoadInst>(Inst) && Ord == AtomicOrdering::SequentiallyConsistent)
4019     return Builder.CreateFence(Ord);
4020   if (isa<StoreInst>(Inst) && isReleaseOrStronger(Ord))
4021     return Builder.CreateFence(AtomicOrdering::Release);
4022   return nullptr;
4023 }
4024 
4025 Instruction *RISCVTargetLowering::emitTrailingFence(IRBuilder<> &Builder,
4026                                                     Instruction *Inst,
4027                                                     AtomicOrdering Ord) const {
4028   if (isa<LoadInst>(Inst) && isAcquireOrStronger(Ord))
4029     return Builder.CreateFence(AtomicOrdering::Acquire);
4030   return nullptr;
4031 }
4032 
4033 TargetLowering::AtomicExpansionKind
4034 RISCVTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
4035   // atomicrmw {fadd,fsub} must be expanded to use compare-exchange, as floating
4036   // point operations can't be used in an lr/sc sequence without breaking the
4037   // forward-progress guarantee.
4038   if (AI->isFloatingPointOperation())
4039     return AtomicExpansionKind::CmpXChg;
4040 
4041   unsigned Size = AI->getType()->getPrimitiveSizeInBits();
4042   if (Size == 8 || Size == 16)
4043     return AtomicExpansionKind::MaskedIntrinsic;
4044   return AtomicExpansionKind::None;
4045 }
4046 
4047 static Intrinsic::ID
4048 getIntrinsicForMaskedAtomicRMWBinOp(unsigned XLen, AtomicRMWInst::BinOp BinOp) {
4049   if (XLen == 32) {
4050     switch (BinOp) {
4051     default:
4052       llvm_unreachable("Unexpected AtomicRMW BinOp");
4053     case AtomicRMWInst::Xchg:
4054       return Intrinsic::riscv_masked_atomicrmw_xchg_i32;
4055     case AtomicRMWInst::Add:
4056       return Intrinsic::riscv_masked_atomicrmw_add_i32;
4057     case AtomicRMWInst::Sub:
4058       return Intrinsic::riscv_masked_atomicrmw_sub_i32;
4059     case AtomicRMWInst::Nand:
4060       return Intrinsic::riscv_masked_atomicrmw_nand_i32;
4061     case AtomicRMWInst::Max:
4062       return Intrinsic::riscv_masked_atomicrmw_max_i32;
4063     case AtomicRMWInst::Min:
4064       return Intrinsic::riscv_masked_atomicrmw_min_i32;
4065     case AtomicRMWInst::UMax:
4066       return Intrinsic::riscv_masked_atomicrmw_umax_i32;
4067     case AtomicRMWInst::UMin:
4068       return Intrinsic::riscv_masked_atomicrmw_umin_i32;
4069     }
4070   }
4071 
4072   if (XLen == 64) {
4073     switch (BinOp) {
4074     default:
4075       llvm_unreachable("Unexpected AtomicRMW BinOp");
4076     case AtomicRMWInst::Xchg:
4077       return Intrinsic::riscv_masked_atomicrmw_xchg_i64;
4078     case AtomicRMWInst::Add:
4079       return Intrinsic::riscv_masked_atomicrmw_add_i64;
4080     case AtomicRMWInst::Sub:
4081       return Intrinsic::riscv_masked_atomicrmw_sub_i64;
4082     case AtomicRMWInst::Nand:
4083       return Intrinsic::riscv_masked_atomicrmw_nand_i64;
4084     case AtomicRMWInst::Max:
4085       return Intrinsic::riscv_masked_atomicrmw_max_i64;
4086     case AtomicRMWInst::Min:
4087       return Intrinsic::riscv_masked_atomicrmw_min_i64;
4088     case AtomicRMWInst::UMax:
4089       return Intrinsic::riscv_masked_atomicrmw_umax_i64;
4090     case AtomicRMWInst::UMin:
4091       return Intrinsic::riscv_masked_atomicrmw_umin_i64;
4092     }
4093   }
4094 
4095   llvm_unreachable("Unexpected XLen\n");
4096 }
4097 
4098 Value *RISCVTargetLowering::emitMaskedAtomicRMWIntrinsic(
4099     IRBuilder<> &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr,
4100     Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const {
4101   unsigned XLen = Subtarget.getXLen();
4102   Value *Ordering =
4103       Builder.getIntN(XLen, static_cast<uint64_t>(AI->getOrdering()));
4104   Type *Tys[] = {AlignedAddr->getType()};
4105   Function *LrwOpScwLoop = Intrinsic::getDeclaration(
4106       AI->getModule(),
4107       getIntrinsicForMaskedAtomicRMWBinOp(XLen, AI->getOperation()), Tys);
4108 
4109   if (XLen == 64) {
4110     Incr = Builder.CreateSExt(Incr, Builder.getInt64Ty());
4111     Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty());
4112     ShiftAmt = Builder.CreateSExt(ShiftAmt, Builder.getInt64Ty());
4113   }
4114 
4115   Value *Result;
4116 
4117   // Must pass the shift amount needed to sign extend the loaded value prior
4118   // to performing a signed comparison for min/max. ShiftAmt is the number of
4119   // bits to shift the value into position. Pass XLen-ShiftAmt-ValWidth, which
4120   // is the number of bits to left+right shift the value in order to
4121   // sign-extend.
4122   if (AI->getOperation() == AtomicRMWInst::Min ||
4123       AI->getOperation() == AtomicRMWInst::Max) {
4124     const DataLayout &DL = AI->getModule()->getDataLayout();
4125     unsigned ValWidth =
4126         DL.getTypeStoreSizeInBits(AI->getValOperand()->getType());
4127     Value *SextShamt =
4128         Builder.CreateSub(Builder.getIntN(XLen, XLen - ValWidth), ShiftAmt);
4129     Result = Builder.CreateCall(LrwOpScwLoop,
4130                                 {AlignedAddr, Incr, Mask, SextShamt, Ordering});
4131   } else {
4132     Result =
4133         Builder.CreateCall(LrwOpScwLoop, {AlignedAddr, Incr, Mask, Ordering});
4134   }
4135 
4136   if (XLen == 64)
4137     Result = Builder.CreateTrunc(Result, Builder.getInt32Ty());
4138   return Result;
4139 }
4140 
4141 TargetLowering::AtomicExpansionKind
4142 RISCVTargetLowering::shouldExpandAtomicCmpXchgInIR(
4143     AtomicCmpXchgInst *CI) const {
4144   unsigned Size = CI->getCompareOperand()->getType()->getPrimitiveSizeInBits();
4145   if (Size == 8 || Size == 16)
4146     return AtomicExpansionKind::MaskedIntrinsic;
4147   return AtomicExpansionKind::None;
4148 }
4149 
4150 Value *RISCVTargetLowering::emitMaskedAtomicCmpXchgIntrinsic(
4151     IRBuilder<> &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr,
4152     Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const {
4153   unsigned XLen = Subtarget.getXLen();
4154   Value *Ordering = Builder.getIntN(XLen, static_cast<uint64_t>(Ord));
4155   Intrinsic::ID CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i32;
4156   if (XLen == 64) {
4157     CmpVal = Builder.CreateSExt(CmpVal, Builder.getInt64Ty());
4158     NewVal = Builder.CreateSExt(NewVal, Builder.getInt64Ty());
4159     Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty());
4160     CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i64;
4161   }
4162   Type *Tys[] = {AlignedAddr->getType()};
4163   Function *MaskedCmpXchg =
4164       Intrinsic::getDeclaration(CI->getModule(), CmpXchgIntrID, Tys);
4165   Value *Result = Builder.CreateCall(
4166       MaskedCmpXchg, {AlignedAddr, CmpVal, NewVal, Mask, Ordering});
4167   if (XLen == 64)
4168     Result = Builder.CreateTrunc(Result, Builder.getInt32Ty());
4169   return Result;
4170 }
4171 
4172 bool RISCVTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF,
4173                                                      EVT VT) const {
4174   VT = VT.getScalarType();
4175 
4176   if (!VT.isSimple())
4177     return false;
4178 
4179   switch (VT.getSimpleVT().SimpleTy) {
4180   case MVT::f16:
4181     return Subtarget.hasStdExtZfh();
4182   case MVT::f32:
4183     return Subtarget.hasStdExtF();
4184   case MVT::f64:
4185     return Subtarget.hasStdExtD();
4186   default:
4187     break;
4188   }
4189 
4190   return false;
4191 }
4192 
4193 Register RISCVTargetLowering::getExceptionPointerRegister(
4194     const Constant *PersonalityFn) const {
4195   return RISCV::X10;
4196 }
4197 
4198 Register RISCVTargetLowering::getExceptionSelectorRegister(
4199     const Constant *PersonalityFn) const {
4200   return RISCV::X11;
4201 }
4202 
4203 bool RISCVTargetLowering::shouldExtendTypeInLibCall(EVT Type) const {
4204   // Return false to suppress the unnecessary extensions if the LibCall
4205   // arguments or return value is f32 type for LP64 ABI.
4206   RISCVABI::ABI ABI = Subtarget.getTargetABI();
4207   if (ABI == RISCVABI::ABI_LP64 && (Type == MVT::f32))
4208     return false;
4209 
4210   return true;
4211 }
4212 
4213 bool RISCVTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT,
4214                                                  SDValue C) const {
4215   // Check integral scalar types.
4216   if (VT.isScalarInteger()) {
4217     // Omit the optimization if the sub target has the M extension and the data
4218     // size exceeds XLen.
4219     if (Subtarget.hasStdExtM() && VT.getSizeInBits() > Subtarget.getXLen())
4220       return false;
4221     if (auto *ConstNode = dyn_cast<ConstantSDNode>(C.getNode())) {
4222       // Break the MUL to a SLLI and an ADD/SUB.
4223       const APInt &Imm = ConstNode->getAPIntValue();
4224       if ((Imm + 1).isPowerOf2() || (Imm - 1).isPowerOf2() ||
4225           (1 - Imm).isPowerOf2() || (-1 - Imm).isPowerOf2())
4226         return true;
4227       // Omit the following optimization if the sub target has the M extension
4228       // and the data size >= XLen.
4229       if (Subtarget.hasStdExtM() && VT.getSizeInBits() >= Subtarget.getXLen())
4230         return false;
4231       // Break the MUL to two SLLI instructions and an ADD/SUB, if Imm needs
4232       // a pair of LUI/ADDI.
4233       if (!Imm.isSignedIntN(12) && Imm.countTrailingZeros() < 12) {
4234         APInt ImmS = Imm.ashr(Imm.countTrailingZeros());
4235         if ((ImmS + 1).isPowerOf2() || (ImmS - 1).isPowerOf2() ||
4236             (1 - ImmS).isPowerOf2())
4237         return true;
4238       }
4239     }
4240   }
4241 
4242   return false;
4243 }
4244 
4245 #define GET_REGISTER_MATCHER
4246 #include "RISCVGenAsmMatcher.inc"
4247 
4248 Register
4249 RISCVTargetLowering::getRegisterByName(const char *RegName, LLT VT,
4250                                        const MachineFunction &MF) const {
4251   Register Reg = MatchRegisterAltName(RegName);
4252   if (Reg == RISCV::NoRegister)
4253     Reg = MatchRegisterName(RegName);
4254   if (Reg == RISCV::NoRegister)
4255     report_fatal_error(
4256         Twine("Invalid register name \"" + StringRef(RegName) + "\"."));
4257   BitVector ReservedRegs = Subtarget.getRegisterInfo()->getReservedRegs(MF);
4258   if (!ReservedRegs.test(Reg) && !Subtarget.isRegisterReservedByUser(Reg))
4259     report_fatal_error(Twine("Trying to obtain non-reserved register \"" +
4260                              StringRef(RegName) + "\"."));
4261   return Reg;
4262 }
4263 
4264 namespace llvm {
4265 namespace RISCVVIntrinsicsTable {
4266 
4267 #define GET_RISCVVIntrinsicsTable_IMPL
4268 #include "RISCVGenSearchableTables.inc"
4269 
4270 } // namespace RISCVVIntrinsicsTable
4271 
4272 namespace RISCVZvlssegTable {
4273 
4274 #define GET_RISCVZvlssegTable_IMPL
4275 #include "RISCVGenSearchableTables.inc"
4276 
4277 } // namespace RISCVZvlssegTable
4278 } // namespace llvm
4279