1 //===-- RISCVISelLowering.cpp - RISCV DAG Lowering Implementation --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the interfaces that RISCV uses to lower LLVM code into a 10 // selection DAG. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "RISCVISelLowering.h" 15 #include "MCTargetDesc/RISCVMatInt.h" 16 #include "RISCV.h" 17 #include "RISCVMachineFunctionInfo.h" 18 #include "RISCVRegisterInfo.h" 19 #include "RISCVSubtarget.h" 20 #include "RISCVTargetMachine.h" 21 #include "llvm/ADT/SmallSet.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/CodeGen/MachineFrameInfo.h" 24 #include "llvm/CodeGen/MachineFunction.h" 25 #include "llvm/CodeGen/MachineInstrBuilder.h" 26 #include "llvm/CodeGen/MachineRegisterInfo.h" 27 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 28 #include "llvm/CodeGen/ValueTypes.h" 29 #include "llvm/IR/DiagnosticInfo.h" 30 #include "llvm/IR/DiagnosticPrinter.h" 31 #include "llvm/IR/IntrinsicsRISCV.h" 32 #include "llvm/IR/IRBuilder.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/ErrorHandling.h" 35 #include "llvm/Support/KnownBits.h" 36 #include "llvm/Support/MathExtras.h" 37 #include "llvm/Support/raw_ostream.h" 38 39 using namespace llvm; 40 41 #define DEBUG_TYPE "riscv-lower" 42 43 STATISTIC(NumTailCalls, "Number of tail calls"); 44 45 RISCVTargetLowering::RISCVTargetLowering(const TargetMachine &TM, 46 const RISCVSubtarget &STI) 47 : TargetLowering(TM), Subtarget(STI) { 48 49 if (Subtarget.isRV32E()) 50 report_fatal_error("Codegen not yet implemented for RV32E"); 51 52 RISCVABI::ABI ABI = Subtarget.getTargetABI(); 53 assert(ABI != RISCVABI::ABI_Unknown && "Improperly initialised target ABI"); 54 55 if ((ABI == RISCVABI::ABI_ILP32F || ABI == RISCVABI::ABI_LP64F) && 56 !Subtarget.hasStdExtF()) { 57 errs() << "Hard-float 'f' ABI can't be used for a target that " 58 "doesn't support the F instruction set extension (ignoring " 59 "target-abi)\n"; 60 ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32; 61 } else if ((ABI == RISCVABI::ABI_ILP32D || ABI == RISCVABI::ABI_LP64D) && 62 !Subtarget.hasStdExtD()) { 63 errs() << "Hard-float 'd' ABI can't be used for a target that " 64 "doesn't support the D instruction set extension (ignoring " 65 "target-abi)\n"; 66 ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32; 67 } 68 69 switch (ABI) { 70 default: 71 report_fatal_error("Don't know how to lower this ABI"); 72 case RISCVABI::ABI_ILP32: 73 case RISCVABI::ABI_ILP32F: 74 case RISCVABI::ABI_ILP32D: 75 case RISCVABI::ABI_LP64: 76 case RISCVABI::ABI_LP64F: 77 case RISCVABI::ABI_LP64D: 78 break; 79 } 80 81 MVT XLenVT = Subtarget.getXLenVT(); 82 83 // Set up the register classes. 84 addRegisterClass(XLenVT, &RISCV::GPRRegClass); 85 86 if (Subtarget.hasStdExtZfh()) 87 addRegisterClass(MVT::f16, &RISCV::FPR16RegClass); 88 if (Subtarget.hasStdExtF()) 89 addRegisterClass(MVT::f32, &RISCV::FPR32RegClass); 90 if (Subtarget.hasStdExtD()) 91 addRegisterClass(MVT::f64, &RISCV::FPR64RegClass); 92 93 static const MVT::SimpleValueType BoolVecVTs[] = { 94 MVT::nxv1i1, MVT::nxv2i1, MVT::nxv4i1, MVT::nxv8i1, 95 MVT::nxv16i1, MVT::nxv32i1, MVT::nxv64i1}; 96 static const MVT::SimpleValueType IntVecVTs[] = { 97 MVT::nxv1i8, MVT::nxv2i8, MVT::nxv4i8, MVT::nxv8i8, MVT::nxv16i8, 98 MVT::nxv32i8, MVT::nxv64i8, MVT::nxv1i16, MVT::nxv2i16, MVT::nxv4i16, 99 MVT::nxv8i16, MVT::nxv16i16, MVT::nxv32i16, MVT::nxv1i32, MVT::nxv2i32, 100 MVT::nxv4i32, MVT::nxv8i32, MVT::nxv16i32, MVT::nxv1i64, MVT::nxv2i64, 101 MVT::nxv4i64, MVT::nxv8i64}; 102 static const MVT::SimpleValueType F16VecVTs[] = { 103 MVT::nxv1f16, MVT::nxv2f16, MVT::nxv4f16, 104 MVT::nxv8f16, MVT::nxv16f16, MVT::nxv32f16}; 105 static const MVT::SimpleValueType F32VecVTs[] = { 106 MVT::nxv1f32, MVT::nxv2f32, MVT::nxv4f32, MVT::nxv8f32, MVT::nxv16f32}; 107 static const MVT::SimpleValueType F64VecVTs[] = { 108 MVT::nxv1f64, MVT::nxv2f64, MVT::nxv4f64, MVT::nxv8f64}; 109 110 if (Subtarget.hasStdExtV()) { 111 auto addRegClassForRVV = [this](MVT VT) { 112 unsigned Size = VT.getSizeInBits().getKnownMinValue(); 113 assert(Size <= 512 && isPowerOf2_32(Size)); 114 const TargetRegisterClass *RC; 115 if (Size <= 64) 116 RC = &RISCV::VRRegClass; 117 else if (Size == 128) 118 RC = &RISCV::VRM2RegClass; 119 else if (Size == 256) 120 RC = &RISCV::VRM4RegClass; 121 else 122 RC = &RISCV::VRM8RegClass; 123 124 addRegisterClass(VT, RC); 125 }; 126 127 for (MVT VT : BoolVecVTs) 128 addRegClassForRVV(VT); 129 for (MVT VT : IntVecVTs) 130 addRegClassForRVV(VT); 131 132 if (Subtarget.hasStdExtZfh()) 133 for (MVT VT : F16VecVTs) 134 addRegClassForRVV(VT); 135 136 if (Subtarget.hasStdExtF()) 137 for (MVT VT : F32VecVTs) 138 addRegClassForRVV(VT); 139 140 if (Subtarget.hasStdExtD()) 141 for (MVT VT : F64VecVTs) 142 addRegClassForRVV(VT); 143 144 if (Subtarget.useRVVForFixedLengthVectors()) { 145 auto addRegClassForFixedVectors = [this](MVT VT) { 146 MVT ContainerVT = getContainerForFixedLengthVector(VT); 147 unsigned RCID = getRegClassIDForVecVT(ContainerVT); 148 const RISCVRegisterInfo &TRI = *Subtarget.getRegisterInfo(); 149 addRegisterClass(VT, TRI.getRegClass(RCID)); 150 }; 151 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) 152 if (useRVVForFixedLengthVectorVT(VT)) 153 addRegClassForFixedVectors(VT); 154 155 for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) 156 if (useRVVForFixedLengthVectorVT(VT)) 157 addRegClassForFixedVectors(VT); 158 } 159 } 160 161 // Compute derived properties from the register classes. 162 computeRegisterProperties(STI.getRegisterInfo()); 163 164 setStackPointerRegisterToSaveRestore(RISCV::X2); 165 166 for (auto N : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}) 167 setLoadExtAction(N, XLenVT, MVT::i1, Promote); 168 169 // TODO: add all necessary setOperationAction calls. 170 setOperationAction(ISD::DYNAMIC_STACKALLOC, XLenVT, Expand); 171 172 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 173 setOperationAction(ISD::BR_CC, XLenVT, Expand); 174 setOperationAction(ISD::BRCOND, MVT::Other, Custom); 175 setOperationAction(ISD::SELECT_CC, XLenVT, Expand); 176 177 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); 178 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); 179 180 setOperationAction(ISD::VASTART, MVT::Other, Custom); 181 setOperationAction(ISD::VAARG, MVT::Other, Expand); 182 setOperationAction(ISD::VACOPY, MVT::Other, Expand); 183 setOperationAction(ISD::VAEND, MVT::Other, Expand); 184 185 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 186 if (!Subtarget.hasStdExtZbb()) { 187 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand); 188 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand); 189 } 190 191 if (Subtarget.is64Bit()) { 192 setOperationAction(ISD::ADD, MVT::i32, Custom); 193 setOperationAction(ISD::SUB, MVT::i32, Custom); 194 setOperationAction(ISD::SHL, MVT::i32, Custom); 195 setOperationAction(ISD::SRA, MVT::i32, Custom); 196 setOperationAction(ISD::SRL, MVT::i32, Custom); 197 198 setOperationAction(ISD::UADDO, MVT::i32, Custom); 199 setOperationAction(ISD::USUBO, MVT::i32, Custom); 200 setOperationAction(ISD::UADDSAT, MVT::i32, Custom); 201 setOperationAction(ISD::USUBSAT, MVT::i32, Custom); 202 } else { 203 setLibcallName(RTLIB::SHL_I128, nullptr); 204 setLibcallName(RTLIB::SRL_I128, nullptr); 205 setLibcallName(RTLIB::SRA_I128, nullptr); 206 setLibcallName(RTLIB::MUL_I128, nullptr); 207 setLibcallName(RTLIB::MULO_I64, nullptr); 208 } 209 210 if (!Subtarget.hasStdExtM()) { 211 setOperationAction(ISD::MUL, XLenVT, Expand); 212 setOperationAction(ISD::MULHS, XLenVT, Expand); 213 setOperationAction(ISD::MULHU, XLenVT, Expand); 214 setOperationAction(ISD::SDIV, XLenVT, Expand); 215 setOperationAction(ISD::UDIV, XLenVT, Expand); 216 setOperationAction(ISD::SREM, XLenVT, Expand); 217 setOperationAction(ISD::UREM, XLenVT, Expand); 218 } else { 219 if (Subtarget.is64Bit()) { 220 setOperationAction(ISD::MUL, MVT::i32, Custom); 221 setOperationAction(ISD::MUL, MVT::i128, Custom); 222 223 setOperationAction(ISD::SDIV, MVT::i8, Custom); 224 setOperationAction(ISD::UDIV, MVT::i8, Custom); 225 setOperationAction(ISD::UREM, MVT::i8, Custom); 226 setOperationAction(ISD::SDIV, MVT::i16, Custom); 227 setOperationAction(ISD::UDIV, MVT::i16, Custom); 228 setOperationAction(ISD::UREM, MVT::i16, Custom); 229 setOperationAction(ISD::SDIV, MVT::i32, Custom); 230 setOperationAction(ISD::UDIV, MVT::i32, Custom); 231 setOperationAction(ISD::UREM, MVT::i32, Custom); 232 } else { 233 setOperationAction(ISD::MUL, MVT::i64, Custom); 234 } 235 } 236 237 setOperationAction(ISD::SDIVREM, XLenVT, Expand); 238 setOperationAction(ISD::UDIVREM, XLenVT, Expand); 239 setOperationAction(ISD::SMUL_LOHI, XLenVT, Expand); 240 setOperationAction(ISD::UMUL_LOHI, XLenVT, Expand); 241 242 setOperationAction(ISD::SHL_PARTS, XLenVT, Custom); 243 setOperationAction(ISD::SRL_PARTS, XLenVT, Custom); 244 setOperationAction(ISD::SRA_PARTS, XLenVT, Custom); 245 246 if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp()) { 247 if (Subtarget.is64Bit()) { 248 setOperationAction(ISD::ROTL, MVT::i32, Custom); 249 setOperationAction(ISD::ROTR, MVT::i32, Custom); 250 } 251 } else { 252 setOperationAction(ISD::ROTL, XLenVT, Expand); 253 setOperationAction(ISD::ROTR, XLenVT, Expand); 254 } 255 256 if (Subtarget.hasStdExtZbp()) { 257 // Custom lower bswap/bitreverse so we can convert them to GREVI to enable 258 // more combining. 259 setOperationAction(ISD::BITREVERSE, XLenVT, Custom); 260 setOperationAction(ISD::BSWAP, XLenVT, Custom); 261 setOperationAction(ISD::BITREVERSE, MVT::i8, Custom); 262 // BSWAP i8 doesn't exist. 263 setOperationAction(ISD::BITREVERSE, MVT::i16, Custom); 264 setOperationAction(ISD::BSWAP, MVT::i16, Custom); 265 266 if (Subtarget.is64Bit()) { 267 setOperationAction(ISD::BITREVERSE, MVT::i32, Custom); 268 setOperationAction(ISD::BSWAP, MVT::i32, Custom); 269 } 270 } else { 271 // With Zbb we have an XLen rev8 instruction, but not GREVI. So we'll 272 // pattern match it directly in isel. 273 setOperationAction(ISD::BSWAP, XLenVT, 274 Subtarget.hasStdExtZbb() ? Legal : Expand); 275 } 276 277 if (Subtarget.hasStdExtZbb()) { 278 setOperationAction(ISD::SMIN, XLenVT, Legal); 279 setOperationAction(ISD::SMAX, XLenVT, Legal); 280 setOperationAction(ISD::UMIN, XLenVT, Legal); 281 setOperationAction(ISD::UMAX, XLenVT, Legal); 282 283 if (Subtarget.is64Bit()) { 284 setOperationAction(ISD::CTTZ, MVT::i32, Custom); 285 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Custom); 286 setOperationAction(ISD::CTLZ, MVT::i32, Custom); 287 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom); 288 } 289 } else { 290 setOperationAction(ISD::CTTZ, XLenVT, Expand); 291 setOperationAction(ISD::CTLZ, XLenVT, Expand); 292 setOperationAction(ISD::CTPOP, XLenVT, Expand); 293 } 294 295 if (Subtarget.hasStdExtZbt()) { 296 setOperationAction(ISD::FSHL, XLenVT, Custom); 297 setOperationAction(ISD::FSHR, XLenVT, Custom); 298 setOperationAction(ISD::SELECT, XLenVT, Legal); 299 300 if (Subtarget.is64Bit()) { 301 setOperationAction(ISD::FSHL, MVT::i32, Custom); 302 setOperationAction(ISD::FSHR, MVT::i32, Custom); 303 } 304 } else { 305 setOperationAction(ISD::SELECT, XLenVT, Custom); 306 } 307 308 ISD::CondCode FPCCToExpand[] = { 309 ISD::SETOGT, ISD::SETOGE, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT, 310 ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUNE, ISD::SETGT, 311 ISD::SETGE, ISD::SETNE, ISD::SETO, ISD::SETUO}; 312 313 ISD::NodeType FPOpToExpand[] = { 314 ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, ISD::FREM, ISD::FP16_TO_FP, 315 ISD::FP_TO_FP16}; 316 317 if (Subtarget.hasStdExtZfh()) 318 setOperationAction(ISD::BITCAST, MVT::i16, Custom); 319 320 if (Subtarget.hasStdExtZfh()) { 321 setOperationAction(ISD::FMINNUM, MVT::f16, Legal); 322 setOperationAction(ISD::FMAXNUM, MVT::f16, Legal); 323 setOperationAction(ISD::LRINT, MVT::f16, Legal); 324 setOperationAction(ISD::LLRINT, MVT::f16, Legal); 325 setOperationAction(ISD::LROUND, MVT::f16, Legal); 326 setOperationAction(ISD::LLROUND, MVT::f16, Legal); 327 for (auto CC : FPCCToExpand) 328 setCondCodeAction(CC, MVT::f16, Expand); 329 setOperationAction(ISD::SELECT_CC, MVT::f16, Expand); 330 setOperationAction(ISD::SELECT, MVT::f16, Custom); 331 setOperationAction(ISD::BR_CC, MVT::f16, Expand); 332 for (auto Op : FPOpToExpand) 333 setOperationAction(Op, MVT::f16, Expand); 334 } 335 336 if (Subtarget.hasStdExtF()) { 337 setOperationAction(ISD::FMINNUM, MVT::f32, Legal); 338 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); 339 setOperationAction(ISD::LRINT, MVT::f32, Legal); 340 setOperationAction(ISD::LLRINT, MVT::f32, Legal); 341 setOperationAction(ISD::LROUND, MVT::f32, Legal); 342 setOperationAction(ISD::LLROUND, MVT::f32, Legal); 343 for (auto CC : FPCCToExpand) 344 setCondCodeAction(CC, MVT::f32, Expand); 345 setOperationAction(ISD::SELECT_CC, MVT::f32, Expand); 346 setOperationAction(ISD::SELECT, MVT::f32, Custom); 347 setOperationAction(ISD::BR_CC, MVT::f32, Expand); 348 for (auto Op : FPOpToExpand) 349 setOperationAction(Op, MVT::f32, Expand); 350 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); 351 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 352 } 353 354 if (Subtarget.hasStdExtF() && Subtarget.is64Bit()) 355 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 356 357 if (Subtarget.hasStdExtD()) { 358 setOperationAction(ISD::FMINNUM, MVT::f64, Legal); 359 setOperationAction(ISD::FMAXNUM, MVT::f64, Legal); 360 setOperationAction(ISD::LRINT, MVT::f64, Legal); 361 setOperationAction(ISD::LLRINT, MVT::f64, Legal); 362 setOperationAction(ISD::LROUND, MVT::f64, Legal); 363 setOperationAction(ISD::LLROUND, MVT::f64, Legal); 364 for (auto CC : FPCCToExpand) 365 setCondCodeAction(CC, MVT::f64, Expand); 366 setOperationAction(ISD::SELECT_CC, MVT::f64, Expand); 367 setOperationAction(ISD::SELECT, MVT::f64, Custom); 368 setOperationAction(ISD::BR_CC, MVT::f64, Expand); 369 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 370 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 371 for (auto Op : FPOpToExpand) 372 setOperationAction(Op, MVT::f64, Expand); 373 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); 374 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 375 } 376 377 if (Subtarget.is64Bit()) { 378 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 379 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 380 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom); 381 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom); 382 } 383 384 if (Subtarget.hasStdExtF()) { 385 setOperationAction(ISD::FP_TO_UINT_SAT, XLenVT, Custom); 386 setOperationAction(ISD::FP_TO_SINT_SAT, XLenVT, Custom); 387 388 setOperationAction(ISD::FLT_ROUNDS_, XLenVT, Custom); 389 setOperationAction(ISD::SET_ROUNDING, MVT::Other, Custom); 390 } 391 392 setOperationAction(ISD::GlobalAddress, XLenVT, Custom); 393 setOperationAction(ISD::BlockAddress, XLenVT, Custom); 394 setOperationAction(ISD::ConstantPool, XLenVT, Custom); 395 setOperationAction(ISD::JumpTable, XLenVT, Custom); 396 397 setOperationAction(ISD::GlobalTLSAddress, XLenVT, Custom); 398 399 // TODO: On M-mode only targets, the cycle[h] CSR may not be present. 400 // Unfortunately this can't be determined just from the ISA naming string. 401 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, 402 Subtarget.is64Bit() ? Legal : Custom); 403 404 setOperationAction(ISD::TRAP, MVT::Other, Legal); 405 setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal); 406 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 407 if (Subtarget.is64Bit()) 408 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i32, Custom); 409 410 if (Subtarget.hasStdExtA()) { 411 setMaxAtomicSizeInBitsSupported(Subtarget.getXLen()); 412 setMinCmpXchgSizeInBits(32); 413 } else { 414 setMaxAtomicSizeInBitsSupported(0); 415 } 416 417 setBooleanContents(ZeroOrOneBooleanContent); 418 419 if (Subtarget.hasStdExtV()) { 420 setBooleanVectorContents(ZeroOrOneBooleanContent); 421 422 setOperationAction(ISD::VSCALE, XLenVT, Custom); 423 424 // RVV intrinsics may have illegal operands. 425 // We also need to custom legalize vmv.x.s. 426 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i8, Custom); 427 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i16, Custom); 428 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i8, Custom); 429 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i16, Custom); 430 if (Subtarget.is64Bit()) { 431 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i32, Custom); 432 } else { 433 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i64, Custom); 434 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i64, Custom); 435 } 436 437 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom); 438 439 static unsigned IntegerVPOps[] = { 440 ISD::VP_ADD, ISD::VP_SUB, ISD::VP_MUL, ISD::VP_SDIV, ISD::VP_UDIV, 441 ISD::VP_SREM, ISD::VP_UREM, ISD::VP_AND, ISD::VP_OR, ISD::VP_XOR, 442 ISD::VP_ASHR, ISD::VP_LSHR, ISD::VP_SHL}; 443 444 static unsigned FloatingPointVPOps[] = {ISD::VP_FADD, ISD::VP_FSUB, 445 ISD::VP_FMUL, ISD::VP_FDIV}; 446 447 if (!Subtarget.is64Bit()) { 448 // We must custom-lower certain vXi64 operations on RV32 due to the vector 449 // element type being illegal. 450 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::i64, Custom); 451 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::i64, Custom); 452 453 setOperationAction(ISD::VECREDUCE_ADD, MVT::i64, Custom); 454 setOperationAction(ISD::VECREDUCE_AND, MVT::i64, Custom); 455 setOperationAction(ISD::VECREDUCE_OR, MVT::i64, Custom); 456 setOperationAction(ISD::VECREDUCE_XOR, MVT::i64, Custom); 457 setOperationAction(ISD::VECREDUCE_SMAX, MVT::i64, Custom); 458 setOperationAction(ISD::VECREDUCE_SMIN, MVT::i64, Custom); 459 setOperationAction(ISD::VECREDUCE_UMAX, MVT::i64, Custom); 460 setOperationAction(ISD::VECREDUCE_UMIN, MVT::i64, Custom); 461 } 462 463 for (MVT VT : BoolVecVTs) { 464 setOperationAction(ISD::SPLAT_VECTOR, VT, Custom); 465 466 // Mask VTs are custom-expanded into a series of standard nodes 467 setOperationAction(ISD::TRUNCATE, VT, Custom); 468 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 469 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 470 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 471 472 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 473 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 474 475 setOperationAction(ISD::SELECT, VT, Custom); 476 setOperationAction(ISD::SELECT_CC, VT, Expand); 477 setOperationAction(ISD::VSELECT, VT, Expand); 478 479 setOperationAction(ISD::VECREDUCE_AND, VT, Custom); 480 setOperationAction(ISD::VECREDUCE_OR, VT, Custom); 481 setOperationAction(ISD::VECREDUCE_XOR, VT, Custom); 482 483 // RVV has native int->float & float->int conversions where the 484 // element type sizes are within one power-of-two of each other. Any 485 // wider distances between type sizes have to be lowered as sequences 486 // which progressively narrow the gap in stages. 487 setOperationAction(ISD::SINT_TO_FP, VT, Custom); 488 setOperationAction(ISD::UINT_TO_FP, VT, Custom); 489 setOperationAction(ISD::FP_TO_SINT, VT, Custom); 490 setOperationAction(ISD::FP_TO_UINT, VT, Custom); 491 492 // Expand all extending loads to types larger than this, and truncating 493 // stores from types larger than this. 494 for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) { 495 setTruncStoreAction(OtherVT, VT, Expand); 496 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 497 setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand); 498 setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand); 499 } 500 } 501 502 for (MVT VT : IntVecVTs) { 503 setOperationAction(ISD::SPLAT_VECTOR, VT, Legal); 504 setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom); 505 506 setOperationAction(ISD::SMIN, VT, Legal); 507 setOperationAction(ISD::SMAX, VT, Legal); 508 setOperationAction(ISD::UMIN, VT, Legal); 509 setOperationAction(ISD::UMAX, VT, Legal); 510 511 setOperationAction(ISD::ROTL, VT, Expand); 512 setOperationAction(ISD::ROTR, VT, Expand); 513 514 // Custom-lower extensions and truncations from/to mask types. 515 setOperationAction(ISD::ANY_EXTEND, VT, Custom); 516 setOperationAction(ISD::SIGN_EXTEND, VT, Custom); 517 setOperationAction(ISD::ZERO_EXTEND, VT, Custom); 518 519 // RVV has native int->float & float->int conversions where the 520 // element type sizes are within one power-of-two of each other. Any 521 // wider distances between type sizes have to be lowered as sequences 522 // which progressively narrow the gap in stages. 523 setOperationAction(ISD::SINT_TO_FP, VT, Custom); 524 setOperationAction(ISD::UINT_TO_FP, VT, Custom); 525 setOperationAction(ISD::FP_TO_SINT, VT, Custom); 526 setOperationAction(ISD::FP_TO_UINT, VT, Custom); 527 528 setOperationAction(ISD::SADDSAT, VT, Legal); 529 setOperationAction(ISD::UADDSAT, VT, Legal); 530 setOperationAction(ISD::SSUBSAT, VT, Legal); 531 setOperationAction(ISD::USUBSAT, VT, Legal); 532 533 // Integer VTs are lowered as a series of "RISCVISD::TRUNCATE_VECTOR_VL" 534 // nodes which truncate by one power of two at a time. 535 setOperationAction(ISD::TRUNCATE, VT, Custom); 536 537 // Custom-lower insert/extract operations to simplify patterns. 538 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 539 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 540 541 // Custom-lower reduction operations to set up the corresponding custom 542 // nodes' operands. 543 setOperationAction(ISD::VECREDUCE_ADD, VT, Custom); 544 setOperationAction(ISD::VECREDUCE_AND, VT, Custom); 545 setOperationAction(ISD::VECREDUCE_OR, VT, Custom); 546 setOperationAction(ISD::VECREDUCE_XOR, VT, Custom); 547 setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom); 548 setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom); 549 setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom); 550 setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom); 551 552 for (unsigned VPOpc : IntegerVPOps) 553 setOperationAction(VPOpc, VT, Custom); 554 555 setOperationAction(ISD::LOAD, VT, Custom); 556 setOperationAction(ISD::STORE, VT, Custom); 557 558 setOperationAction(ISD::MLOAD, VT, Custom); 559 setOperationAction(ISD::MSTORE, VT, Custom); 560 setOperationAction(ISD::MGATHER, VT, Custom); 561 setOperationAction(ISD::MSCATTER, VT, Custom); 562 563 setOperationAction(ISD::VP_LOAD, VT, Custom); 564 setOperationAction(ISD::VP_STORE, VT, Custom); 565 setOperationAction(ISD::VP_GATHER, VT, Custom); 566 setOperationAction(ISD::VP_SCATTER, VT, Custom); 567 568 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 569 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 570 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 571 572 setOperationAction(ISD::SELECT, VT, Custom); 573 setOperationAction(ISD::SELECT_CC, VT, Expand); 574 575 setOperationAction(ISD::STEP_VECTOR, VT, Custom); 576 setOperationAction(ISD::VECTOR_REVERSE, VT, Custom); 577 578 for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) { 579 setTruncStoreAction(VT, OtherVT, Expand); 580 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 581 setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand); 582 setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand); 583 } 584 } 585 586 // Expand various CCs to best match the RVV ISA, which natively supports UNE 587 // but no other unordered comparisons, and supports all ordered comparisons 588 // except ONE. Additionally, we expand GT,OGT,GE,OGE for optimization 589 // purposes; they are expanded to their swapped-operand CCs (LT,OLT,LE,OLE), 590 // and we pattern-match those back to the "original", swapping operands once 591 // more. This way we catch both operations and both "vf" and "fv" forms with 592 // fewer patterns. 593 ISD::CondCode VFPCCToExpand[] = { 594 ISD::SETO, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT, 595 ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUO, 596 ISD::SETGT, ISD::SETOGT, ISD::SETGE, ISD::SETOGE, 597 }; 598 599 // Sets common operation actions on RVV floating-point vector types. 600 const auto SetCommonVFPActions = [&](MVT VT) { 601 setOperationAction(ISD::SPLAT_VECTOR, VT, Legal); 602 // RVV has native FP_ROUND & FP_EXTEND conversions where the element type 603 // sizes are within one power-of-two of each other. Therefore conversions 604 // between vXf16 and vXf64 must be lowered as sequences which convert via 605 // vXf32. 606 setOperationAction(ISD::FP_ROUND, VT, Custom); 607 setOperationAction(ISD::FP_EXTEND, VT, Custom); 608 // Custom-lower insert/extract operations to simplify patterns. 609 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 610 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 611 // Expand various condition codes (explained above). 612 for (auto CC : VFPCCToExpand) 613 setCondCodeAction(CC, VT, Expand); 614 615 setOperationAction(ISD::FMINNUM, VT, Legal); 616 setOperationAction(ISD::FMAXNUM, VT, Legal); 617 618 setOperationAction(ISD::VECREDUCE_FADD, VT, Custom); 619 setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom); 620 setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom); 621 setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom); 622 setOperationAction(ISD::FCOPYSIGN, VT, Legal); 623 624 setOperationAction(ISD::LOAD, VT, Custom); 625 setOperationAction(ISD::STORE, VT, Custom); 626 627 setOperationAction(ISD::MLOAD, VT, Custom); 628 setOperationAction(ISD::MSTORE, VT, Custom); 629 setOperationAction(ISD::MGATHER, VT, Custom); 630 setOperationAction(ISD::MSCATTER, VT, Custom); 631 632 setOperationAction(ISD::VP_LOAD, VT, Custom); 633 setOperationAction(ISD::VP_STORE, VT, Custom); 634 setOperationAction(ISD::VP_GATHER, VT, Custom); 635 setOperationAction(ISD::VP_SCATTER, VT, Custom); 636 637 setOperationAction(ISD::SELECT, VT, Custom); 638 setOperationAction(ISD::SELECT_CC, VT, Expand); 639 640 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 641 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 642 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 643 644 setOperationAction(ISD::VECTOR_REVERSE, VT, Custom); 645 646 for (unsigned VPOpc : FloatingPointVPOps) 647 setOperationAction(VPOpc, VT, Custom); 648 }; 649 650 // Sets common extload/truncstore actions on RVV floating-point vector 651 // types. 652 const auto SetCommonVFPExtLoadTruncStoreActions = 653 [&](MVT VT, ArrayRef<MVT::SimpleValueType> SmallerVTs) { 654 for (auto SmallVT : SmallerVTs) { 655 setTruncStoreAction(VT, SmallVT, Expand); 656 setLoadExtAction(ISD::EXTLOAD, VT, SmallVT, Expand); 657 } 658 }; 659 660 if (Subtarget.hasStdExtZfh()) 661 for (MVT VT : F16VecVTs) 662 SetCommonVFPActions(VT); 663 664 for (MVT VT : F32VecVTs) { 665 if (Subtarget.hasStdExtF()) 666 SetCommonVFPActions(VT); 667 SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs); 668 } 669 670 for (MVT VT : F64VecVTs) { 671 if (Subtarget.hasStdExtD()) 672 SetCommonVFPActions(VT); 673 SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs); 674 SetCommonVFPExtLoadTruncStoreActions(VT, F32VecVTs); 675 } 676 677 if (Subtarget.useRVVForFixedLengthVectors()) { 678 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) { 679 if (!useRVVForFixedLengthVectorVT(VT)) 680 continue; 681 682 // By default everything must be expanded. 683 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) 684 setOperationAction(Op, VT, Expand); 685 for (MVT OtherVT : MVT::integer_fixedlen_vector_valuetypes()) { 686 setTruncStoreAction(VT, OtherVT, Expand); 687 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 688 setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand); 689 setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand); 690 } 691 692 // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed. 693 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 694 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 695 696 setOperationAction(ISD::BUILD_VECTOR, VT, Custom); 697 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 698 699 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 700 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 701 702 setOperationAction(ISD::LOAD, VT, Custom); 703 setOperationAction(ISD::STORE, VT, Custom); 704 705 setOperationAction(ISD::SETCC, VT, Custom); 706 707 setOperationAction(ISD::SELECT, VT, Custom); 708 709 setOperationAction(ISD::TRUNCATE, VT, Custom); 710 711 setOperationAction(ISD::BITCAST, VT, Custom); 712 713 setOperationAction(ISD::VECREDUCE_AND, VT, Custom); 714 setOperationAction(ISD::VECREDUCE_OR, VT, Custom); 715 setOperationAction(ISD::VECREDUCE_XOR, VT, Custom); 716 717 setOperationAction(ISD::SINT_TO_FP, VT, Custom); 718 setOperationAction(ISD::UINT_TO_FP, VT, Custom); 719 setOperationAction(ISD::FP_TO_SINT, VT, Custom); 720 setOperationAction(ISD::FP_TO_UINT, VT, Custom); 721 722 // Operations below are different for between masks and other vectors. 723 if (VT.getVectorElementType() == MVT::i1) { 724 setOperationAction(ISD::AND, VT, Custom); 725 setOperationAction(ISD::OR, VT, Custom); 726 setOperationAction(ISD::XOR, VT, Custom); 727 continue; 728 } 729 730 // Use SPLAT_VECTOR to prevent type legalization from destroying the 731 // splats when type legalizing i64 scalar on RV32. 732 // FIXME: Use SPLAT_VECTOR for all types? DAGCombine probably needs 733 // improvements first. 734 if (!Subtarget.is64Bit() && VT.getVectorElementType() == MVT::i64) { 735 setOperationAction(ISD::SPLAT_VECTOR, VT, Custom); 736 setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom); 737 } 738 739 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); 740 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 741 742 setOperationAction(ISD::MLOAD, VT, Custom); 743 setOperationAction(ISD::MSTORE, VT, Custom); 744 setOperationAction(ISD::MGATHER, VT, Custom); 745 setOperationAction(ISD::MSCATTER, VT, Custom); 746 747 setOperationAction(ISD::VP_LOAD, VT, Custom); 748 setOperationAction(ISD::VP_STORE, VT, Custom); 749 setOperationAction(ISD::VP_GATHER, VT, Custom); 750 setOperationAction(ISD::VP_SCATTER, VT, Custom); 751 752 setOperationAction(ISD::ADD, VT, Custom); 753 setOperationAction(ISD::MUL, VT, Custom); 754 setOperationAction(ISD::SUB, VT, Custom); 755 setOperationAction(ISD::AND, VT, Custom); 756 setOperationAction(ISD::OR, VT, Custom); 757 setOperationAction(ISD::XOR, VT, Custom); 758 setOperationAction(ISD::SDIV, VT, Custom); 759 setOperationAction(ISD::SREM, VT, Custom); 760 setOperationAction(ISD::UDIV, VT, Custom); 761 setOperationAction(ISD::UREM, VT, Custom); 762 setOperationAction(ISD::SHL, VT, Custom); 763 setOperationAction(ISD::SRA, VT, Custom); 764 setOperationAction(ISD::SRL, VT, Custom); 765 766 setOperationAction(ISD::SMIN, VT, Custom); 767 setOperationAction(ISD::SMAX, VT, Custom); 768 setOperationAction(ISD::UMIN, VT, Custom); 769 setOperationAction(ISD::UMAX, VT, Custom); 770 setOperationAction(ISD::ABS, VT, Custom); 771 772 setOperationAction(ISD::MULHS, VT, Custom); 773 setOperationAction(ISD::MULHU, VT, Custom); 774 775 setOperationAction(ISD::SADDSAT, VT, Custom); 776 setOperationAction(ISD::UADDSAT, VT, Custom); 777 setOperationAction(ISD::SSUBSAT, VT, Custom); 778 setOperationAction(ISD::USUBSAT, VT, Custom); 779 780 setOperationAction(ISD::VSELECT, VT, Custom); 781 setOperationAction(ISD::SELECT_CC, VT, Expand); 782 783 setOperationAction(ISD::ANY_EXTEND, VT, Custom); 784 setOperationAction(ISD::SIGN_EXTEND, VT, Custom); 785 setOperationAction(ISD::ZERO_EXTEND, VT, Custom); 786 787 // Custom-lower reduction operations to set up the corresponding custom 788 // nodes' operands. 789 setOperationAction(ISD::VECREDUCE_ADD, VT, Custom); 790 setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom); 791 setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom); 792 setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom); 793 setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom); 794 795 for (unsigned VPOpc : IntegerVPOps) 796 setOperationAction(VPOpc, VT, Custom); 797 } 798 799 for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) { 800 if (!useRVVForFixedLengthVectorVT(VT)) 801 continue; 802 803 // By default everything must be expanded. 804 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) 805 setOperationAction(Op, VT, Expand); 806 for (MVT OtherVT : MVT::fp_fixedlen_vector_valuetypes()) { 807 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 808 setTruncStoreAction(VT, OtherVT, Expand); 809 } 810 811 // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed. 812 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 813 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 814 815 setOperationAction(ISD::BUILD_VECTOR, VT, Custom); 816 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 817 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); 818 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 819 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 820 821 setOperationAction(ISD::LOAD, VT, Custom); 822 setOperationAction(ISD::STORE, VT, Custom); 823 setOperationAction(ISD::MLOAD, VT, Custom); 824 setOperationAction(ISD::MSTORE, VT, Custom); 825 setOperationAction(ISD::MGATHER, VT, Custom); 826 setOperationAction(ISD::MSCATTER, VT, Custom); 827 828 setOperationAction(ISD::VP_LOAD, VT, Custom); 829 setOperationAction(ISD::VP_STORE, VT, Custom); 830 setOperationAction(ISD::VP_GATHER, VT, Custom); 831 setOperationAction(ISD::VP_SCATTER, VT, Custom); 832 833 setOperationAction(ISD::FADD, VT, Custom); 834 setOperationAction(ISD::FSUB, VT, Custom); 835 setOperationAction(ISD::FMUL, VT, Custom); 836 setOperationAction(ISD::FDIV, VT, Custom); 837 setOperationAction(ISD::FNEG, VT, Custom); 838 setOperationAction(ISD::FABS, VT, Custom); 839 setOperationAction(ISD::FCOPYSIGN, VT, Custom); 840 setOperationAction(ISD::FSQRT, VT, Custom); 841 setOperationAction(ISD::FMA, VT, Custom); 842 setOperationAction(ISD::FMINNUM, VT, Custom); 843 setOperationAction(ISD::FMAXNUM, VT, Custom); 844 845 setOperationAction(ISD::FP_ROUND, VT, Custom); 846 setOperationAction(ISD::FP_EXTEND, VT, Custom); 847 848 for (auto CC : VFPCCToExpand) 849 setCondCodeAction(CC, VT, Expand); 850 851 setOperationAction(ISD::VSELECT, VT, Custom); 852 setOperationAction(ISD::SELECT, VT, Custom); 853 setOperationAction(ISD::SELECT_CC, VT, Expand); 854 855 setOperationAction(ISD::BITCAST, VT, Custom); 856 857 setOperationAction(ISD::VECREDUCE_FADD, VT, Custom); 858 setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom); 859 setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom); 860 setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom); 861 862 for (unsigned VPOpc : FloatingPointVPOps) 863 setOperationAction(VPOpc, VT, Custom); 864 } 865 866 // Custom-legalize bitcasts from fixed-length vectors to scalar types. 867 setOperationAction(ISD::BITCAST, MVT::i8, Custom); 868 setOperationAction(ISD::BITCAST, MVT::i16, Custom); 869 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 870 setOperationAction(ISD::BITCAST, MVT::i64, Custom); 871 setOperationAction(ISD::BITCAST, MVT::f16, Custom); 872 setOperationAction(ISD::BITCAST, MVT::f32, Custom); 873 setOperationAction(ISD::BITCAST, MVT::f64, Custom); 874 } 875 } 876 877 // Function alignments. 878 const Align FunctionAlignment(Subtarget.hasStdExtC() ? 2 : 4); 879 setMinFunctionAlignment(FunctionAlignment); 880 setPrefFunctionAlignment(FunctionAlignment); 881 882 setMinimumJumpTableEntries(5); 883 884 // Jumps are expensive, compared to logic 885 setJumpIsExpensive(); 886 887 // We can use any register for comparisons 888 setHasMultipleConditionRegisters(); 889 890 setTargetDAGCombine(ISD::ADD); 891 setTargetDAGCombine(ISD::SUB); 892 setTargetDAGCombine(ISD::AND); 893 setTargetDAGCombine(ISD::OR); 894 setTargetDAGCombine(ISD::XOR); 895 setTargetDAGCombine(ISD::ANY_EXTEND); 896 setTargetDAGCombine(ISD::ZERO_EXTEND); 897 if (Subtarget.hasStdExtV()) { 898 setTargetDAGCombine(ISD::FCOPYSIGN); 899 setTargetDAGCombine(ISD::MGATHER); 900 setTargetDAGCombine(ISD::MSCATTER); 901 setTargetDAGCombine(ISD::VP_GATHER); 902 setTargetDAGCombine(ISD::VP_SCATTER); 903 setTargetDAGCombine(ISD::SRA); 904 setTargetDAGCombine(ISD::SRL); 905 setTargetDAGCombine(ISD::SHL); 906 } 907 } 908 909 EVT RISCVTargetLowering::getSetCCResultType(const DataLayout &DL, 910 LLVMContext &Context, 911 EVT VT) const { 912 if (!VT.isVector()) 913 return getPointerTy(DL); 914 if (Subtarget.hasStdExtV() && 915 (VT.isScalableVector() || Subtarget.useRVVForFixedLengthVectors())) 916 return EVT::getVectorVT(Context, MVT::i1, VT.getVectorElementCount()); 917 return VT.changeVectorElementTypeToInteger(); 918 } 919 920 MVT RISCVTargetLowering::getVPExplicitVectorLengthTy() const { 921 return Subtarget.getXLenVT(); 922 } 923 924 bool RISCVTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 925 const CallInst &I, 926 MachineFunction &MF, 927 unsigned Intrinsic) const { 928 switch (Intrinsic) { 929 default: 930 return false; 931 case Intrinsic::riscv_masked_atomicrmw_xchg_i32: 932 case Intrinsic::riscv_masked_atomicrmw_add_i32: 933 case Intrinsic::riscv_masked_atomicrmw_sub_i32: 934 case Intrinsic::riscv_masked_atomicrmw_nand_i32: 935 case Intrinsic::riscv_masked_atomicrmw_max_i32: 936 case Intrinsic::riscv_masked_atomicrmw_min_i32: 937 case Intrinsic::riscv_masked_atomicrmw_umax_i32: 938 case Intrinsic::riscv_masked_atomicrmw_umin_i32: 939 case Intrinsic::riscv_masked_cmpxchg_i32: { 940 PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType()); 941 Info.opc = ISD::INTRINSIC_W_CHAIN; 942 Info.memVT = MVT::getVT(PtrTy->getElementType()); 943 Info.ptrVal = I.getArgOperand(0); 944 Info.offset = 0; 945 Info.align = Align(4); 946 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore | 947 MachineMemOperand::MOVolatile; 948 return true; 949 } 950 } 951 } 952 953 bool RISCVTargetLowering::isLegalAddressingMode(const DataLayout &DL, 954 const AddrMode &AM, Type *Ty, 955 unsigned AS, 956 Instruction *I) const { 957 // No global is ever allowed as a base. 958 if (AM.BaseGV) 959 return false; 960 961 // Require a 12-bit signed offset. 962 if (!isInt<12>(AM.BaseOffs)) 963 return false; 964 965 switch (AM.Scale) { 966 case 0: // "r+i" or just "i", depending on HasBaseReg. 967 break; 968 case 1: 969 if (!AM.HasBaseReg) // allow "r+i". 970 break; 971 return false; // disallow "r+r" or "r+r+i". 972 default: 973 return false; 974 } 975 976 return true; 977 } 978 979 bool RISCVTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 980 return isInt<12>(Imm); 981 } 982 983 bool RISCVTargetLowering::isLegalAddImmediate(int64_t Imm) const { 984 return isInt<12>(Imm); 985 } 986 987 // On RV32, 64-bit integers are split into their high and low parts and held 988 // in two different registers, so the trunc is free since the low register can 989 // just be used. 990 bool RISCVTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const { 991 if (Subtarget.is64Bit() || !SrcTy->isIntegerTy() || !DstTy->isIntegerTy()) 992 return false; 993 unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); 994 unsigned DestBits = DstTy->getPrimitiveSizeInBits(); 995 return (SrcBits == 64 && DestBits == 32); 996 } 997 998 bool RISCVTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const { 999 if (Subtarget.is64Bit() || SrcVT.isVector() || DstVT.isVector() || 1000 !SrcVT.isInteger() || !DstVT.isInteger()) 1001 return false; 1002 unsigned SrcBits = SrcVT.getSizeInBits(); 1003 unsigned DestBits = DstVT.getSizeInBits(); 1004 return (SrcBits == 64 && DestBits == 32); 1005 } 1006 1007 bool RISCVTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 1008 // Zexts are free if they can be combined with a load. 1009 if (auto *LD = dyn_cast<LoadSDNode>(Val)) { 1010 EVT MemVT = LD->getMemoryVT(); 1011 if ((MemVT == MVT::i8 || MemVT == MVT::i16 || 1012 (Subtarget.is64Bit() && MemVT == MVT::i32)) && 1013 (LD->getExtensionType() == ISD::NON_EXTLOAD || 1014 LD->getExtensionType() == ISD::ZEXTLOAD)) 1015 return true; 1016 } 1017 1018 return TargetLowering::isZExtFree(Val, VT2); 1019 } 1020 1021 bool RISCVTargetLowering::isSExtCheaperThanZExt(EVT SrcVT, EVT DstVT) const { 1022 return Subtarget.is64Bit() && SrcVT == MVT::i32 && DstVT == MVT::i64; 1023 } 1024 1025 bool RISCVTargetLowering::isCheapToSpeculateCttz() const { 1026 return Subtarget.hasStdExtZbb(); 1027 } 1028 1029 bool RISCVTargetLowering::isCheapToSpeculateCtlz() const { 1030 return Subtarget.hasStdExtZbb(); 1031 } 1032 1033 bool RISCVTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 1034 bool ForCodeSize) const { 1035 if (VT == MVT::f16 && !Subtarget.hasStdExtZfh()) 1036 return false; 1037 if (VT == MVT::f32 && !Subtarget.hasStdExtF()) 1038 return false; 1039 if (VT == MVT::f64 && !Subtarget.hasStdExtD()) 1040 return false; 1041 if (Imm.isNegZero()) 1042 return false; 1043 return Imm.isZero(); 1044 } 1045 1046 bool RISCVTargetLowering::hasBitPreservingFPLogic(EVT VT) const { 1047 return (VT == MVT::f16 && Subtarget.hasStdExtZfh()) || 1048 (VT == MVT::f32 && Subtarget.hasStdExtF()) || 1049 (VT == MVT::f64 && Subtarget.hasStdExtD()); 1050 } 1051 1052 MVT RISCVTargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context, 1053 CallingConv::ID CC, 1054 EVT VT) const { 1055 // Use f32 to pass f16 if it is legal and Zfh is not enabled. We might still 1056 // end up using a GPR but that will be decided based on ABI. 1057 if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh()) 1058 return MVT::f32; 1059 1060 return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT); 1061 } 1062 1063 unsigned RISCVTargetLowering::getNumRegistersForCallingConv(LLVMContext &Context, 1064 CallingConv::ID CC, 1065 EVT VT) const { 1066 // Use f32 to pass f16 if it is legal and Zfh is not enabled. We might still 1067 // end up using a GPR but that will be decided based on ABI. 1068 if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh()) 1069 return 1; 1070 1071 return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT); 1072 } 1073 1074 // Changes the condition code and swaps operands if necessary, so the SetCC 1075 // operation matches one of the comparisons supported directly by branches 1076 // in the RISC-V ISA. May adjust compares to favor compare with 0 over compare 1077 // with 1/-1. 1078 static void translateSetCCForBranch(const SDLoc &DL, SDValue &LHS, SDValue &RHS, 1079 ISD::CondCode &CC, SelectionDAG &DAG) { 1080 // Convert X > -1 to X >= 0. 1081 if (CC == ISD::SETGT && isAllOnesConstant(RHS)) { 1082 RHS = DAG.getConstant(0, DL, RHS.getValueType()); 1083 CC = ISD::SETGE; 1084 return; 1085 } 1086 // Convert X < 1 to 0 >= X. 1087 if (CC == ISD::SETLT && isOneConstant(RHS)) { 1088 RHS = LHS; 1089 LHS = DAG.getConstant(0, DL, RHS.getValueType()); 1090 CC = ISD::SETGE; 1091 return; 1092 } 1093 1094 switch (CC) { 1095 default: 1096 break; 1097 case ISD::SETGT: 1098 case ISD::SETLE: 1099 case ISD::SETUGT: 1100 case ISD::SETULE: 1101 CC = ISD::getSetCCSwappedOperands(CC); 1102 std::swap(LHS, RHS); 1103 break; 1104 } 1105 } 1106 1107 RISCVII::VLMUL RISCVTargetLowering::getLMUL(MVT VT) { 1108 assert(VT.isScalableVector() && "Expecting a scalable vector type"); 1109 unsigned KnownSize = VT.getSizeInBits().getKnownMinValue(); 1110 if (VT.getVectorElementType() == MVT::i1) 1111 KnownSize *= 8; 1112 1113 switch (KnownSize) { 1114 default: 1115 llvm_unreachable("Invalid LMUL."); 1116 case 8: 1117 return RISCVII::VLMUL::LMUL_F8; 1118 case 16: 1119 return RISCVII::VLMUL::LMUL_F4; 1120 case 32: 1121 return RISCVII::VLMUL::LMUL_F2; 1122 case 64: 1123 return RISCVII::VLMUL::LMUL_1; 1124 case 128: 1125 return RISCVII::VLMUL::LMUL_2; 1126 case 256: 1127 return RISCVII::VLMUL::LMUL_4; 1128 case 512: 1129 return RISCVII::VLMUL::LMUL_8; 1130 } 1131 } 1132 1133 unsigned RISCVTargetLowering::getRegClassIDForLMUL(RISCVII::VLMUL LMul) { 1134 switch (LMul) { 1135 default: 1136 llvm_unreachable("Invalid LMUL."); 1137 case RISCVII::VLMUL::LMUL_F8: 1138 case RISCVII::VLMUL::LMUL_F4: 1139 case RISCVII::VLMUL::LMUL_F2: 1140 case RISCVII::VLMUL::LMUL_1: 1141 return RISCV::VRRegClassID; 1142 case RISCVII::VLMUL::LMUL_2: 1143 return RISCV::VRM2RegClassID; 1144 case RISCVII::VLMUL::LMUL_4: 1145 return RISCV::VRM4RegClassID; 1146 case RISCVII::VLMUL::LMUL_8: 1147 return RISCV::VRM8RegClassID; 1148 } 1149 } 1150 1151 unsigned RISCVTargetLowering::getSubregIndexByMVT(MVT VT, unsigned Index) { 1152 RISCVII::VLMUL LMUL = getLMUL(VT); 1153 if (LMUL == RISCVII::VLMUL::LMUL_F8 || 1154 LMUL == RISCVII::VLMUL::LMUL_F4 || 1155 LMUL == RISCVII::VLMUL::LMUL_F2 || 1156 LMUL == RISCVII::VLMUL::LMUL_1) { 1157 static_assert(RISCV::sub_vrm1_7 == RISCV::sub_vrm1_0 + 7, 1158 "Unexpected subreg numbering"); 1159 return RISCV::sub_vrm1_0 + Index; 1160 } 1161 if (LMUL == RISCVII::VLMUL::LMUL_2) { 1162 static_assert(RISCV::sub_vrm2_3 == RISCV::sub_vrm2_0 + 3, 1163 "Unexpected subreg numbering"); 1164 return RISCV::sub_vrm2_0 + Index; 1165 } 1166 if (LMUL == RISCVII::VLMUL::LMUL_4) { 1167 static_assert(RISCV::sub_vrm4_1 == RISCV::sub_vrm4_0 + 1, 1168 "Unexpected subreg numbering"); 1169 return RISCV::sub_vrm4_0 + Index; 1170 } 1171 llvm_unreachable("Invalid vector type."); 1172 } 1173 1174 unsigned RISCVTargetLowering::getRegClassIDForVecVT(MVT VT) { 1175 if (VT.getVectorElementType() == MVT::i1) 1176 return RISCV::VRRegClassID; 1177 return getRegClassIDForLMUL(getLMUL(VT)); 1178 } 1179 1180 // Attempt to decompose a subvector insert/extract between VecVT and 1181 // SubVecVT via subregister indices. Returns the subregister index that 1182 // can perform the subvector insert/extract with the given element index, as 1183 // well as the index corresponding to any leftover subvectors that must be 1184 // further inserted/extracted within the register class for SubVecVT. 1185 std::pair<unsigned, unsigned> 1186 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( 1187 MVT VecVT, MVT SubVecVT, unsigned InsertExtractIdx, 1188 const RISCVRegisterInfo *TRI) { 1189 static_assert((RISCV::VRM8RegClassID > RISCV::VRM4RegClassID && 1190 RISCV::VRM4RegClassID > RISCV::VRM2RegClassID && 1191 RISCV::VRM2RegClassID > RISCV::VRRegClassID), 1192 "Register classes not ordered"); 1193 unsigned VecRegClassID = getRegClassIDForVecVT(VecVT); 1194 unsigned SubRegClassID = getRegClassIDForVecVT(SubVecVT); 1195 // Try to compose a subregister index that takes us from the incoming 1196 // LMUL>1 register class down to the outgoing one. At each step we half 1197 // the LMUL: 1198 // nxv16i32@12 -> nxv2i32: sub_vrm4_1_then_sub_vrm2_1_then_sub_vrm1_0 1199 // Note that this is not guaranteed to find a subregister index, such as 1200 // when we are extracting from one VR type to another. 1201 unsigned SubRegIdx = RISCV::NoSubRegister; 1202 for (const unsigned RCID : 1203 {RISCV::VRM4RegClassID, RISCV::VRM2RegClassID, RISCV::VRRegClassID}) 1204 if (VecRegClassID > RCID && SubRegClassID <= RCID) { 1205 VecVT = VecVT.getHalfNumVectorElementsVT(); 1206 bool IsHi = 1207 InsertExtractIdx >= VecVT.getVectorElementCount().getKnownMinValue(); 1208 SubRegIdx = TRI->composeSubRegIndices(SubRegIdx, 1209 getSubregIndexByMVT(VecVT, IsHi)); 1210 if (IsHi) 1211 InsertExtractIdx -= VecVT.getVectorElementCount().getKnownMinValue(); 1212 } 1213 return {SubRegIdx, InsertExtractIdx}; 1214 } 1215 1216 // Permit combining of mask vectors as BUILD_VECTOR never expands to scalar 1217 // stores for those types. 1218 bool RISCVTargetLowering::mergeStoresAfterLegalization(EVT VT) const { 1219 return !Subtarget.useRVVForFixedLengthVectors() || 1220 (VT.isFixedLengthVector() && VT.getVectorElementType() == MVT::i1); 1221 } 1222 1223 static bool useRVVForFixedLengthVectorVT(MVT VT, 1224 const RISCVSubtarget &Subtarget) { 1225 assert(VT.isFixedLengthVector() && "Expected a fixed length vector type!"); 1226 if (!Subtarget.useRVVForFixedLengthVectors()) 1227 return false; 1228 1229 // We only support a set of vector types with a consistent maximum fixed size 1230 // across all supported vector element types to avoid legalization issues. 1231 // Therefore -- since the largest is v1024i8/v512i16/etc -- the largest 1232 // fixed-length vector type we support is 1024 bytes. 1233 if (VT.getFixedSizeInBits() > 1024 * 8) 1234 return false; 1235 1236 unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits(); 1237 1238 MVT EltVT = VT.getVectorElementType(); 1239 1240 // Don't use RVV for vectors we cannot scalarize if required. 1241 switch (EltVT.SimpleTy) { 1242 // i1 is supported but has different rules. 1243 default: 1244 return false; 1245 case MVT::i1: 1246 // Masks can only use a single register. 1247 if (VT.getVectorNumElements() > MinVLen) 1248 return false; 1249 MinVLen /= 8; 1250 break; 1251 case MVT::i8: 1252 case MVT::i16: 1253 case MVT::i32: 1254 case MVT::i64: 1255 break; 1256 case MVT::f16: 1257 if (!Subtarget.hasStdExtZfh()) 1258 return false; 1259 break; 1260 case MVT::f32: 1261 if (!Subtarget.hasStdExtF()) 1262 return false; 1263 break; 1264 case MVT::f64: 1265 if (!Subtarget.hasStdExtD()) 1266 return false; 1267 break; 1268 } 1269 1270 // Reject elements larger than ELEN. 1271 if (EltVT.getSizeInBits() > Subtarget.getMaxELENForFixedLengthVectors()) 1272 return false; 1273 1274 unsigned LMul = divideCeil(VT.getSizeInBits(), MinVLen); 1275 // Don't use RVV for types that don't fit. 1276 if (LMul > Subtarget.getMaxLMULForFixedLengthVectors()) 1277 return false; 1278 1279 // TODO: Perhaps an artificial restriction, but worth having whilst getting 1280 // the base fixed length RVV support in place. 1281 if (!VT.isPow2VectorType()) 1282 return false; 1283 1284 return true; 1285 } 1286 1287 bool RISCVTargetLowering::useRVVForFixedLengthVectorVT(MVT VT) const { 1288 return ::useRVVForFixedLengthVectorVT(VT, Subtarget); 1289 } 1290 1291 // Return the largest legal scalable vector type that matches VT's element type. 1292 static MVT getContainerForFixedLengthVector(const TargetLowering &TLI, MVT VT, 1293 const RISCVSubtarget &Subtarget) { 1294 // This may be called before legal types are setup. 1295 assert(((VT.isFixedLengthVector() && TLI.isTypeLegal(VT)) || 1296 useRVVForFixedLengthVectorVT(VT, Subtarget)) && 1297 "Expected legal fixed length vector!"); 1298 1299 unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits(); 1300 unsigned MaxELen = Subtarget.getMaxELENForFixedLengthVectors(); 1301 1302 MVT EltVT = VT.getVectorElementType(); 1303 switch (EltVT.SimpleTy) { 1304 default: 1305 llvm_unreachable("unexpected element type for RVV container"); 1306 case MVT::i1: 1307 case MVT::i8: 1308 case MVT::i16: 1309 case MVT::i32: 1310 case MVT::i64: 1311 case MVT::f16: 1312 case MVT::f32: 1313 case MVT::f64: { 1314 // We prefer to use LMUL=1 for VLEN sized types. Use fractional lmuls for 1315 // narrower types. The smallest fractional LMUL we support is 8/ELEN. Within 1316 // each fractional LMUL we support SEW between 8 and LMUL*ELEN. 1317 unsigned NumElts = 1318 (VT.getVectorNumElements() * RISCV::RVVBitsPerBlock) / MinVLen; 1319 NumElts = std::max(NumElts, RISCV::RVVBitsPerBlock / MaxELen); 1320 assert(isPowerOf2_32(NumElts) && "Expected power of 2 NumElts"); 1321 return MVT::getScalableVectorVT(EltVT, NumElts); 1322 } 1323 } 1324 } 1325 1326 static MVT getContainerForFixedLengthVector(SelectionDAG &DAG, MVT VT, 1327 const RISCVSubtarget &Subtarget) { 1328 return getContainerForFixedLengthVector(DAG.getTargetLoweringInfo(), VT, 1329 Subtarget); 1330 } 1331 1332 MVT RISCVTargetLowering::getContainerForFixedLengthVector(MVT VT) const { 1333 return ::getContainerForFixedLengthVector(*this, VT, getSubtarget()); 1334 } 1335 1336 // Grow V to consume an entire RVV register. 1337 static SDValue convertToScalableVector(EVT VT, SDValue V, SelectionDAG &DAG, 1338 const RISCVSubtarget &Subtarget) { 1339 assert(VT.isScalableVector() && 1340 "Expected to convert into a scalable vector!"); 1341 assert(V.getValueType().isFixedLengthVector() && 1342 "Expected a fixed length vector operand!"); 1343 SDLoc DL(V); 1344 SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 1345 return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, DAG.getUNDEF(VT), V, Zero); 1346 } 1347 1348 // Shrink V so it's just big enough to maintain a VT's worth of data. 1349 static SDValue convertFromScalableVector(EVT VT, SDValue V, SelectionDAG &DAG, 1350 const RISCVSubtarget &Subtarget) { 1351 assert(VT.isFixedLengthVector() && 1352 "Expected to convert into a fixed length vector!"); 1353 assert(V.getValueType().isScalableVector() && 1354 "Expected a scalable vector operand!"); 1355 SDLoc DL(V); 1356 SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 1357 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V, Zero); 1358 } 1359 1360 // Gets the two common "VL" operands: an all-ones mask and the vector length. 1361 // VecVT is a vector type, either fixed-length or scalable, and ContainerVT is 1362 // the vector type that it is contained in. 1363 static std::pair<SDValue, SDValue> 1364 getDefaultVLOps(MVT VecVT, MVT ContainerVT, SDLoc DL, SelectionDAG &DAG, 1365 const RISCVSubtarget &Subtarget) { 1366 assert(ContainerVT.isScalableVector() && "Expecting scalable container type"); 1367 MVT XLenVT = Subtarget.getXLenVT(); 1368 SDValue VL = VecVT.isFixedLengthVector() 1369 ? DAG.getConstant(VecVT.getVectorNumElements(), DL, XLenVT) 1370 : DAG.getTargetConstant(RISCV::VLMaxSentinel, DL, XLenVT); 1371 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 1372 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 1373 return {Mask, VL}; 1374 } 1375 1376 // As above but assuming the given type is a scalable vector type. 1377 static std::pair<SDValue, SDValue> 1378 getDefaultScalableVLOps(MVT VecVT, SDLoc DL, SelectionDAG &DAG, 1379 const RISCVSubtarget &Subtarget) { 1380 assert(VecVT.isScalableVector() && "Expecting a scalable vector"); 1381 return getDefaultVLOps(VecVT, VecVT, DL, DAG, Subtarget); 1382 } 1383 1384 // The state of RVV BUILD_VECTOR and VECTOR_SHUFFLE lowering is that very few 1385 // of either is (currently) supported. This can get us into an infinite loop 1386 // where we try to lower a BUILD_VECTOR as a VECTOR_SHUFFLE as a BUILD_VECTOR 1387 // as a ..., etc. 1388 // Until either (or both) of these can reliably lower any node, reporting that 1389 // we don't want to expand BUILD_VECTORs via VECTOR_SHUFFLEs at least breaks 1390 // the infinite loop. Note that this lowers BUILD_VECTOR through the stack, 1391 // which is not desirable. 1392 bool RISCVTargetLowering::shouldExpandBuildVectorWithShuffles( 1393 EVT VT, unsigned DefinedValues) const { 1394 return false; 1395 } 1396 1397 bool RISCVTargetLowering::isShuffleMaskLegal(ArrayRef<int> M, EVT VT) const { 1398 // Only splats are currently supported. 1399 if (ShuffleVectorSDNode::isSplatMask(M.data(), VT)) 1400 return true; 1401 1402 return false; 1403 } 1404 1405 static SDValue lowerFP_TO_INT_SAT(SDValue Op, SelectionDAG &DAG) { 1406 // RISCV FP-to-int conversions saturate to the destination register size, but 1407 // don't produce 0 for nan. We can use a conversion instruction and fix the 1408 // nan case with a compare and a select. 1409 SDValue Src = Op.getOperand(0); 1410 1411 EVT DstVT = Op.getValueType(); 1412 EVT SatVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1413 1414 bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT_SAT; 1415 unsigned Opc; 1416 if (SatVT == DstVT) 1417 Opc = IsSigned ? RISCVISD::FCVT_X_RTZ : RISCVISD::FCVT_XU_RTZ; 1418 else if (DstVT == MVT::i64 && SatVT == MVT::i32) 1419 Opc = IsSigned ? RISCVISD::FCVT_W_RTZ_RV64 : RISCVISD::FCVT_WU_RTZ_RV64; 1420 else 1421 return SDValue(); 1422 // FIXME: Support other SatVTs by clamping before or after the conversion. 1423 1424 SDLoc DL(Op); 1425 SDValue FpToInt = DAG.getNode(Opc, DL, DstVT, Src); 1426 1427 SDValue ZeroInt = DAG.getConstant(0, DL, DstVT); 1428 return DAG.getSelectCC(DL, Src, Src, ZeroInt, FpToInt, ISD::CondCode::SETUO); 1429 } 1430 1431 static SDValue lowerSPLAT_VECTOR(SDValue Op, SelectionDAG &DAG, 1432 const RISCVSubtarget &Subtarget) { 1433 MVT VT = Op.getSimpleValueType(); 1434 assert(VT.isFixedLengthVector() && "Unexpected vector!"); 1435 1436 MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 1437 1438 SDLoc DL(Op); 1439 SDValue Mask, VL; 1440 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 1441 1442 unsigned Opc = 1443 VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL : RISCVISD::VMV_V_X_VL; 1444 SDValue Splat = DAG.getNode(Opc, DL, ContainerVT, Op.getOperand(0), VL); 1445 return convertFromScalableVector(VT, Splat, DAG, Subtarget); 1446 } 1447 1448 struct VIDSequence { 1449 int64_t StepNumerator; 1450 unsigned StepDenominator; 1451 int64_t Addend; 1452 }; 1453 1454 // Try to match an arithmetic-sequence BUILD_VECTOR [X,X+S,X+2*S,...,X+(N-1)*S] 1455 // to the (non-zero) step S and start value X. This can be then lowered as the 1456 // RVV sequence (VID * S) + X, for example. 1457 // The step S is represented as an integer numerator divided by a positive 1458 // denominator. Note that the implementation currently only identifies 1459 // sequences in which either the numerator is +/- 1 or the denominator is 1. It 1460 // cannot detect 2/3, for example. 1461 // Note that this method will also match potentially unappealing index 1462 // sequences, like <i32 0, i32 50939494>, however it is left to the caller to 1463 // determine whether this is worth generating code for. 1464 static Optional<VIDSequence> isSimpleVIDSequence(SDValue Op) { 1465 unsigned NumElts = Op.getNumOperands(); 1466 assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unexpected BUILD_VECTOR"); 1467 if (!Op.getValueType().isInteger()) 1468 return None; 1469 1470 Optional<unsigned> SeqStepDenom; 1471 Optional<int64_t> SeqStepNum, SeqAddend; 1472 Optional<std::pair<uint64_t, unsigned>> PrevElt; 1473 unsigned EltSizeInBits = Op.getValueType().getScalarSizeInBits(); 1474 for (unsigned Idx = 0; Idx < NumElts; Idx++) { 1475 // Assume undef elements match the sequence; we just have to be careful 1476 // when interpolating across them. 1477 if (Op.getOperand(Idx).isUndef()) 1478 continue; 1479 // The BUILD_VECTOR must be all constants. 1480 if (!isa<ConstantSDNode>(Op.getOperand(Idx))) 1481 return None; 1482 1483 uint64_t Val = Op.getConstantOperandVal(Idx) & 1484 maskTrailingOnes<uint64_t>(EltSizeInBits); 1485 1486 if (PrevElt) { 1487 // Calculate the step since the last non-undef element, and ensure 1488 // it's consistent across the entire sequence. 1489 unsigned IdxDiff = Idx - PrevElt->second; 1490 int64_t ValDiff = SignExtend64(Val - PrevElt->first, EltSizeInBits); 1491 1492 // A zero-value value difference means that we're somewhere in the middle 1493 // of a fractional step, e.g. <0,0,0*,0,1,1,1,1>. Wait until we notice a 1494 // step change before evaluating the sequence. 1495 if (ValDiff != 0) { 1496 int64_t Remainder = ValDiff % IdxDiff; 1497 // Normalize the step if it's greater than 1. 1498 if (Remainder != ValDiff) { 1499 // The difference must cleanly divide the element span. 1500 if (Remainder != 0) 1501 return None; 1502 ValDiff /= IdxDiff; 1503 IdxDiff = 1; 1504 } 1505 1506 if (!SeqStepNum) 1507 SeqStepNum = ValDiff; 1508 else if (ValDiff != SeqStepNum) 1509 return None; 1510 1511 if (!SeqStepDenom) 1512 SeqStepDenom = IdxDiff; 1513 else if (IdxDiff != *SeqStepDenom) 1514 return None; 1515 } 1516 } 1517 1518 // Record and/or check any addend. 1519 if (SeqStepNum && SeqStepDenom) { 1520 uint64_t ExpectedVal = 1521 (int64_t)(Idx * (uint64_t)*SeqStepNum) / *SeqStepDenom; 1522 int64_t Addend = SignExtend64(Val - ExpectedVal, EltSizeInBits); 1523 if (!SeqAddend) 1524 SeqAddend = Addend; 1525 else if (SeqAddend != Addend) 1526 return None; 1527 } 1528 1529 // Record this non-undef element for later. 1530 if (!PrevElt || PrevElt->first != Val) 1531 PrevElt = std::make_pair(Val, Idx); 1532 } 1533 // We need to have logged both a step and an addend for this to count as 1534 // a legal index sequence. 1535 if (!SeqStepNum || !SeqStepDenom || !SeqAddend) 1536 return None; 1537 1538 return VIDSequence{*SeqStepNum, *SeqStepDenom, *SeqAddend}; 1539 } 1540 1541 static SDValue lowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG, 1542 const RISCVSubtarget &Subtarget) { 1543 MVT VT = Op.getSimpleValueType(); 1544 assert(VT.isFixedLengthVector() && "Unexpected vector!"); 1545 1546 MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 1547 1548 SDLoc DL(Op); 1549 SDValue Mask, VL; 1550 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 1551 1552 MVT XLenVT = Subtarget.getXLenVT(); 1553 unsigned NumElts = Op.getNumOperands(); 1554 1555 if (VT.getVectorElementType() == MVT::i1) { 1556 if (ISD::isBuildVectorAllZeros(Op.getNode())) { 1557 SDValue VMClr = DAG.getNode(RISCVISD::VMCLR_VL, DL, ContainerVT, VL); 1558 return convertFromScalableVector(VT, VMClr, DAG, Subtarget); 1559 } 1560 1561 if (ISD::isBuildVectorAllOnes(Op.getNode())) { 1562 SDValue VMSet = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL); 1563 return convertFromScalableVector(VT, VMSet, DAG, Subtarget); 1564 } 1565 1566 // Lower constant mask BUILD_VECTORs via an integer vector type, in 1567 // scalar integer chunks whose bit-width depends on the number of mask 1568 // bits and XLEN. 1569 // First, determine the most appropriate scalar integer type to use. This 1570 // is at most XLenVT, but may be shrunk to a smaller vector element type 1571 // according to the size of the final vector - use i8 chunks rather than 1572 // XLenVT if we're producing a v8i1. This results in more consistent 1573 // codegen across RV32 and RV64. 1574 unsigned NumViaIntegerBits = 1575 std::min(std::max(NumElts, 8u), Subtarget.getXLen()); 1576 if (ISD::isBuildVectorOfConstantSDNodes(Op.getNode())) { 1577 // If we have to use more than one INSERT_VECTOR_ELT then this 1578 // optimization is likely to increase code size; avoid peforming it in 1579 // such a case. We can use a load from a constant pool in this case. 1580 if (DAG.shouldOptForSize() && NumElts > NumViaIntegerBits) 1581 return SDValue(); 1582 // Now we can create our integer vector type. Note that it may be larger 1583 // than the resulting mask type: v4i1 would use v1i8 as its integer type. 1584 MVT IntegerViaVecVT = 1585 MVT::getVectorVT(MVT::getIntegerVT(NumViaIntegerBits), 1586 divideCeil(NumElts, NumViaIntegerBits)); 1587 1588 uint64_t Bits = 0; 1589 unsigned BitPos = 0, IntegerEltIdx = 0; 1590 SDValue Vec = DAG.getUNDEF(IntegerViaVecVT); 1591 1592 for (unsigned I = 0; I < NumElts; I++, BitPos++) { 1593 // Once we accumulate enough bits to fill our scalar type, insert into 1594 // our vector and clear our accumulated data. 1595 if (I != 0 && I % NumViaIntegerBits == 0) { 1596 if (NumViaIntegerBits <= 32) 1597 Bits = SignExtend64(Bits, 32); 1598 SDValue Elt = DAG.getConstant(Bits, DL, XLenVT); 1599 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec, 1600 Elt, DAG.getConstant(IntegerEltIdx, DL, XLenVT)); 1601 Bits = 0; 1602 BitPos = 0; 1603 IntegerEltIdx++; 1604 } 1605 SDValue V = Op.getOperand(I); 1606 bool BitValue = !V.isUndef() && cast<ConstantSDNode>(V)->getZExtValue(); 1607 Bits |= ((uint64_t)BitValue << BitPos); 1608 } 1609 1610 // Insert the (remaining) scalar value into position in our integer 1611 // vector type. 1612 if (NumViaIntegerBits <= 32) 1613 Bits = SignExtend64(Bits, 32); 1614 SDValue Elt = DAG.getConstant(Bits, DL, XLenVT); 1615 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec, Elt, 1616 DAG.getConstant(IntegerEltIdx, DL, XLenVT)); 1617 1618 if (NumElts < NumViaIntegerBits) { 1619 // If we're producing a smaller vector than our minimum legal integer 1620 // type, bitcast to the equivalent (known-legal) mask type, and extract 1621 // our final mask. 1622 assert(IntegerViaVecVT == MVT::v1i8 && "Unexpected mask vector type"); 1623 Vec = DAG.getBitcast(MVT::v8i1, Vec); 1624 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Vec, 1625 DAG.getConstant(0, DL, XLenVT)); 1626 } else { 1627 // Else we must have produced an integer type with the same size as the 1628 // mask type; bitcast for the final result. 1629 assert(VT.getSizeInBits() == IntegerViaVecVT.getSizeInBits()); 1630 Vec = DAG.getBitcast(VT, Vec); 1631 } 1632 1633 return Vec; 1634 } 1635 1636 // A BUILD_VECTOR can be lowered as a SETCC. For each fixed-length mask 1637 // vector type, we have a legal equivalently-sized i8 type, so we can use 1638 // that. 1639 MVT WideVecVT = VT.changeVectorElementType(MVT::i8); 1640 SDValue VecZero = DAG.getConstant(0, DL, WideVecVT); 1641 1642 SDValue WideVec; 1643 if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) { 1644 // For a splat, perform a scalar truncate before creating the wider 1645 // vector. 1646 assert(Splat.getValueType() == XLenVT && 1647 "Unexpected type for i1 splat value"); 1648 Splat = DAG.getNode(ISD::AND, DL, XLenVT, Splat, 1649 DAG.getConstant(1, DL, XLenVT)); 1650 WideVec = DAG.getSplatBuildVector(WideVecVT, DL, Splat); 1651 } else { 1652 SmallVector<SDValue, 8> Ops(Op->op_values()); 1653 WideVec = DAG.getBuildVector(WideVecVT, DL, Ops); 1654 SDValue VecOne = DAG.getConstant(1, DL, WideVecVT); 1655 WideVec = DAG.getNode(ISD::AND, DL, WideVecVT, WideVec, VecOne); 1656 } 1657 1658 return DAG.getSetCC(DL, VT, WideVec, VecZero, ISD::SETNE); 1659 } 1660 1661 if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) { 1662 unsigned Opc = VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL 1663 : RISCVISD::VMV_V_X_VL; 1664 Splat = DAG.getNode(Opc, DL, ContainerVT, Splat, VL); 1665 return convertFromScalableVector(VT, Splat, DAG, Subtarget); 1666 } 1667 1668 // Try and match index sequences, which we can lower to the vid instruction 1669 // with optional modifications. An all-undef vector is matched by 1670 // getSplatValue, above. 1671 if (auto SimpleVID = isSimpleVIDSequence(Op)) { 1672 int64_t StepNumerator = SimpleVID->StepNumerator; 1673 unsigned StepDenominator = SimpleVID->StepDenominator; 1674 int64_t Addend = SimpleVID->Addend; 1675 // Only emit VIDs with suitably-small steps/addends. We use imm5 is a 1676 // threshold since it's the immediate value many RVV instructions accept. 1677 if (isInt<5>(StepNumerator) && isPowerOf2_32(StepDenominator) && 1678 isInt<5>(Addend)) { 1679 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, ContainerVT, Mask, VL); 1680 // Convert right out of the scalable type so we can use standard ISD 1681 // nodes for the rest of the computation. If we used scalable types with 1682 // these, we'd lose the fixed-length vector info and generate worse 1683 // vsetvli code. 1684 VID = convertFromScalableVector(VT, VID, DAG, Subtarget); 1685 assert(StepNumerator != 0 && "Invalid step"); 1686 bool Negate = false; 1687 if (StepNumerator != 1) { 1688 int64_t SplatStepVal = StepNumerator; 1689 unsigned Opcode = ISD::MUL; 1690 if (isPowerOf2_64(std::abs(StepNumerator))) { 1691 Negate = StepNumerator < 0; 1692 Opcode = ISD::SHL; 1693 SplatStepVal = Log2_64(std::abs(StepNumerator)); 1694 } 1695 SDValue SplatStep = DAG.getSplatVector( 1696 VT, DL, DAG.getConstant(SplatStepVal, DL, XLenVT)); 1697 VID = DAG.getNode(Opcode, DL, VT, VID, SplatStep); 1698 } 1699 if (StepDenominator != 1) { 1700 SDValue SplatStep = DAG.getSplatVector( 1701 VT, DL, DAG.getConstant(Log2_64(StepDenominator), DL, XLenVT)); 1702 VID = DAG.getNode(ISD::SRL, DL, VT, VID, SplatStep); 1703 } 1704 if (Addend != 0 || Negate) { 1705 SDValue SplatAddend = 1706 DAG.getSplatVector(VT, DL, DAG.getConstant(Addend, DL, XLenVT)); 1707 VID = DAG.getNode(Negate ? ISD::SUB : ISD::ADD, DL, VT, SplatAddend, VID); 1708 } 1709 return VID; 1710 } 1711 } 1712 1713 // Attempt to detect "hidden" splats, which only reveal themselves as splats 1714 // when re-interpreted as a vector with a larger element type. For example, 1715 // v4i16 = build_vector i16 0, i16 1, i16 0, i16 1 1716 // could be instead splat as 1717 // v2i32 = build_vector i32 0x00010000, i32 0x00010000 1718 // TODO: This optimization could also work on non-constant splats, but it 1719 // would require bit-manipulation instructions to construct the splat value. 1720 SmallVector<SDValue> Sequence; 1721 unsigned EltBitSize = VT.getScalarSizeInBits(); 1722 const auto *BV = cast<BuildVectorSDNode>(Op); 1723 if (VT.isInteger() && EltBitSize < 64 && 1724 ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) && 1725 BV->getRepeatedSequence(Sequence) && 1726 (Sequence.size() * EltBitSize) <= 64) { 1727 unsigned SeqLen = Sequence.size(); 1728 MVT ViaIntVT = MVT::getIntegerVT(EltBitSize * SeqLen); 1729 MVT ViaVecVT = MVT::getVectorVT(ViaIntVT, NumElts / SeqLen); 1730 assert((ViaIntVT == MVT::i16 || ViaIntVT == MVT::i32 || 1731 ViaIntVT == MVT::i64) && 1732 "Unexpected sequence type"); 1733 1734 unsigned EltIdx = 0; 1735 uint64_t EltMask = maskTrailingOnes<uint64_t>(EltBitSize); 1736 uint64_t SplatValue = 0; 1737 // Construct the amalgamated value which can be splatted as this larger 1738 // vector type. 1739 for (const auto &SeqV : Sequence) { 1740 if (!SeqV.isUndef()) 1741 SplatValue |= ((cast<ConstantSDNode>(SeqV)->getZExtValue() & EltMask) 1742 << (EltIdx * EltBitSize)); 1743 EltIdx++; 1744 } 1745 1746 // On RV64, sign-extend from 32 to 64 bits where possible in order to 1747 // achieve better constant materializion. 1748 if (Subtarget.is64Bit() && ViaIntVT == MVT::i32) 1749 SplatValue = SignExtend64(SplatValue, 32); 1750 1751 // Since we can't introduce illegal i64 types at this stage, we can only 1752 // perform an i64 splat on RV32 if it is its own sign-extended value. That 1753 // way we can use RVV instructions to splat. 1754 assert((ViaIntVT.bitsLE(XLenVT) || 1755 (!Subtarget.is64Bit() && ViaIntVT == MVT::i64)) && 1756 "Unexpected bitcast sequence"); 1757 if (ViaIntVT.bitsLE(XLenVT) || isInt<32>(SplatValue)) { 1758 SDValue ViaVL = 1759 DAG.getConstant(ViaVecVT.getVectorNumElements(), DL, XLenVT); 1760 MVT ViaContainerVT = 1761 getContainerForFixedLengthVector(DAG, ViaVecVT, Subtarget); 1762 SDValue Splat = 1763 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ViaContainerVT, 1764 DAG.getConstant(SplatValue, DL, XLenVT), ViaVL); 1765 Splat = convertFromScalableVector(ViaVecVT, Splat, DAG, Subtarget); 1766 return DAG.getBitcast(VT, Splat); 1767 } 1768 } 1769 1770 // Try and optimize BUILD_VECTORs with "dominant values" - these are values 1771 // which constitute a large proportion of the elements. In such cases we can 1772 // splat a vector with the dominant element and make up the shortfall with 1773 // INSERT_VECTOR_ELTs. 1774 // Note that this includes vectors of 2 elements by association. The 1775 // upper-most element is the "dominant" one, allowing us to use a splat to 1776 // "insert" the upper element, and an insert of the lower element at position 1777 // 0, which improves codegen. 1778 SDValue DominantValue; 1779 unsigned MostCommonCount = 0; 1780 DenseMap<SDValue, unsigned> ValueCounts; 1781 unsigned NumUndefElts = 1782 count_if(Op->op_values(), [](const SDValue &V) { return V.isUndef(); }); 1783 1784 // Track the number of scalar loads we know we'd be inserting, estimated as 1785 // any non-zero floating-point constant. Other kinds of element are either 1786 // already in registers or are materialized on demand. The threshold at which 1787 // a vector load is more desirable than several scalar materializion and 1788 // vector-insertion instructions is not known. 1789 unsigned NumScalarLoads = 0; 1790 1791 for (SDValue V : Op->op_values()) { 1792 if (V.isUndef()) 1793 continue; 1794 1795 ValueCounts.insert(std::make_pair(V, 0)); 1796 unsigned &Count = ValueCounts[V]; 1797 1798 if (auto *CFP = dyn_cast<ConstantFPSDNode>(V)) 1799 NumScalarLoads += !CFP->isExactlyValue(+0.0); 1800 1801 // Is this value dominant? In case of a tie, prefer the highest element as 1802 // it's cheaper to insert near the beginning of a vector than it is at the 1803 // end. 1804 if (++Count >= MostCommonCount) { 1805 DominantValue = V; 1806 MostCommonCount = Count; 1807 } 1808 } 1809 1810 assert(DominantValue && "Not expecting an all-undef BUILD_VECTOR"); 1811 unsigned NumDefElts = NumElts - NumUndefElts; 1812 unsigned DominantValueCountThreshold = NumDefElts <= 2 ? 0 : NumDefElts - 2; 1813 1814 // Don't perform this optimization when optimizing for size, since 1815 // materializing elements and inserting them tends to cause code bloat. 1816 if (!DAG.shouldOptForSize() && NumScalarLoads < NumElts && 1817 ((MostCommonCount > DominantValueCountThreshold) || 1818 (ValueCounts.size() <= Log2_32(NumDefElts)))) { 1819 // Start by splatting the most common element. 1820 SDValue Vec = DAG.getSplatBuildVector(VT, DL, DominantValue); 1821 1822 DenseSet<SDValue> Processed{DominantValue}; 1823 MVT SelMaskTy = VT.changeVectorElementType(MVT::i1); 1824 for (const auto &OpIdx : enumerate(Op->ops())) { 1825 const SDValue &V = OpIdx.value(); 1826 if (V.isUndef() || !Processed.insert(V).second) 1827 continue; 1828 if (ValueCounts[V] == 1) { 1829 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Vec, V, 1830 DAG.getConstant(OpIdx.index(), DL, XLenVT)); 1831 } else { 1832 // Blend in all instances of this value using a VSELECT, using a 1833 // mask where each bit signals whether that element is the one 1834 // we're after. 1835 SmallVector<SDValue> Ops; 1836 transform(Op->op_values(), std::back_inserter(Ops), [&](SDValue V1) { 1837 return DAG.getConstant(V == V1, DL, XLenVT); 1838 }); 1839 Vec = DAG.getNode(ISD::VSELECT, DL, VT, 1840 DAG.getBuildVector(SelMaskTy, DL, Ops), 1841 DAG.getSplatBuildVector(VT, DL, V), Vec); 1842 } 1843 } 1844 1845 return Vec; 1846 } 1847 1848 return SDValue(); 1849 } 1850 1851 static SDValue splatPartsI64WithVL(const SDLoc &DL, MVT VT, SDValue Lo, 1852 SDValue Hi, SDValue VL, SelectionDAG &DAG) { 1853 if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) { 1854 int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue(); 1855 int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue(); 1856 // If Hi constant is all the same sign bit as Lo, lower this as a custom 1857 // node in order to try and match RVV vector/scalar instructions. 1858 if ((LoC >> 31) == HiC) 1859 return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Lo, VL); 1860 } 1861 1862 // Fall back to a stack store and stride x0 vector load. 1863 return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VT, Lo, Hi, VL); 1864 } 1865 1866 // Called by type legalization to handle splat of i64 on RV32. 1867 // FIXME: We can optimize this when the type has sign or zero bits in one 1868 // of the halves. 1869 static SDValue splatSplitI64WithVL(const SDLoc &DL, MVT VT, SDValue Scalar, 1870 SDValue VL, SelectionDAG &DAG) { 1871 assert(Scalar.getValueType() == MVT::i64 && "Unexpected VT!"); 1872 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 1873 DAG.getConstant(0, DL, MVT::i32)); 1874 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 1875 DAG.getConstant(1, DL, MVT::i32)); 1876 return splatPartsI64WithVL(DL, VT, Lo, Hi, VL, DAG); 1877 } 1878 1879 // This function lowers a splat of a scalar operand Splat with the vector 1880 // length VL. It ensures the final sequence is type legal, which is useful when 1881 // lowering a splat after type legalization. 1882 static SDValue lowerScalarSplat(SDValue Scalar, SDValue VL, MVT VT, SDLoc DL, 1883 SelectionDAG &DAG, 1884 const RISCVSubtarget &Subtarget) { 1885 if (VT.isFloatingPoint()) 1886 return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, VT, Scalar, VL); 1887 1888 MVT XLenVT = Subtarget.getXLenVT(); 1889 1890 // Simplest case is that the operand needs to be promoted to XLenVT. 1891 if (Scalar.getValueType().bitsLE(XLenVT)) { 1892 // If the operand is a constant, sign extend to increase our chances 1893 // of being able to use a .vi instruction. ANY_EXTEND would become a 1894 // a zero extend and the simm5 check in isel would fail. 1895 // FIXME: Should we ignore the upper bits in isel instead? 1896 unsigned ExtOpc = 1897 isa<ConstantSDNode>(Scalar) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND; 1898 Scalar = DAG.getNode(ExtOpc, DL, XLenVT, Scalar); 1899 return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Scalar, VL); 1900 } 1901 1902 assert(XLenVT == MVT::i32 && Scalar.getValueType() == MVT::i64 && 1903 "Unexpected scalar for splat lowering!"); 1904 1905 // Otherwise use the more complicated splatting algorithm. 1906 return splatSplitI64WithVL(DL, VT, Scalar, VL, DAG); 1907 } 1908 1909 static SDValue lowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG, 1910 const RISCVSubtarget &Subtarget) { 1911 SDValue V1 = Op.getOperand(0); 1912 SDValue V2 = Op.getOperand(1); 1913 SDLoc DL(Op); 1914 MVT XLenVT = Subtarget.getXLenVT(); 1915 MVT VT = Op.getSimpleValueType(); 1916 unsigned NumElts = VT.getVectorNumElements(); 1917 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode()); 1918 1919 MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 1920 1921 SDValue TrueMask, VL; 1922 std::tie(TrueMask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 1923 1924 if (SVN->isSplat()) { 1925 const int Lane = SVN->getSplatIndex(); 1926 if (Lane >= 0) { 1927 MVT SVT = VT.getVectorElementType(); 1928 1929 // Turn splatted vector load into a strided load with an X0 stride. 1930 SDValue V = V1; 1931 // Peek through CONCAT_VECTORS as VectorCombine can concat a vector 1932 // with undef. 1933 // FIXME: Peek through INSERT_SUBVECTOR, EXTRACT_SUBVECTOR, bitcasts? 1934 int Offset = Lane; 1935 if (V.getOpcode() == ISD::CONCAT_VECTORS) { 1936 int OpElements = 1937 V.getOperand(0).getSimpleValueType().getVectorNumElements(); 1938 V = V.getOperand(Offset / OpElements); 1939 Offset %= OpElements; 1940 } 1941 1942 // We need to ensure the load isn't atomic or volatile. 1943 if (ISD::isNormalLoad(V.getNode()) && cast<LoadSDNode>(V)->isSimple()) { 1944 auto *Ld = cast<LoadSDNode>(V); 1945 Offset *= SVT.getStoreSize(); 1946 SDValue NewAddr = DAG.getMemBasePlusOffset(Ld->getBasePtr(), 1947 TypeSize::Fixed(Offset), DL); 1948 1949 // If this is SEW=64 on RV32, use a strided load with a stride of x0. 1950 if (SVT.isInteger() && SVT.bitsGT(XLenVT)) { 1951 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 1952 SDValue IntID = 1953 DAG.getTargetConstant(Intrinsic::riscv_vlse, DL, XLenVT); 1954 SDValue Ops[] = {Ld->getChain(), IntID, NewAddr, 1955 DAG.getRegister(RISCV::X0, XLenVT), VL}; 1956 SDValue NewLoad = DAG.getMemIntrinsicNode( 1957 ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, SVT, 1958 DAG.getMachineFunction().getMachineMemOperand( 1959 Ld->getMemOperand(), Offset, SVT.getStoreSize())); 1960 DAG.makeEquivalentMemoryOrdering(Ld, NewLoad); 1961 return convertFromScalableVector(VT, NewLoad, DAG, Subtarget); 1962 } 1963 1964 // Otherwise use a scalar load and splat. This will give the best 1965 // opportunity to fold a splat into the operation. ISel can turn it into 1966 // the x0 strided load if we aren't able to fold away the select. 1967 if (SVT.isFloatingPoint()) 1968 V = DAG.getLoad(SVT, DL, Ld->getChain(), NewAddr, 1969 Ld->getPointerInfo().getWithOffset(Offset), 1970 Ld->getOriginalAlign(), 1971 Ld->getMemOperand()->getFlags()); 1972 else 1973 V = DAG.getExtLoad(ISD::SEXTLOAD, DL, XLenVT, Ld->getChain(), NewAddr, 1974 Ld->getPointerInfo().getWithOffset(Offset), SVT, 1975 Ld->getOriginalAlign(), 1976 Ld->getMemOperand()->getFlags()); 1977 DAG.makeEquivalentMemoryOrdering(Ld, V); 1978 1979 unsigned Opc = 1980 VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL : RISCVISD::VMV_V_X_VL; 1981 SDValue Splat = DAG.getNode(Opc, DL, ContainerVT, V, VL); 1982 return convertFromScalableVector(VT, Splat, DAG, Subtarget); 1983 } 1984 1985 V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget); 1986 assert(Lane < (int)NumElts && "Unexpected lane!"); 1987 SDValue Gather = 1988 DAG.getNode(RISCVISD::VRGATHER_VX_VL, DL, ContainerVT, V1, 1989 DAG.getConstant(Lane, DL, XLenVT), TrueMask, VL); 1990 return convertFromScalableVector(VT, Gather, DAG, Subtarget); 1991 } 1992 } 1993 1994 // Detect shuffles which can be re-expressed as vector selects; these are 1995 // shuffles in which each element in the destination is taken from an element 1996 // at the corresponding index in either source vectors. 1997 bool IsSelect = all_of(enumerate(SVN->getMask()), [&](const auto &MaskIdx) { 1998 int MaskIndex = MaskIdx.value(); 1999 return MaskIndex < 0 || MaskIdx.index() == (unsigned)MaskIndex % NumElts; 2000 }); 2001 2002 assert(!V1.isUndef() && "Unexpected shuffle canonicalization"); 2003 2004 SmallVector<SDValue> MaskVals; 2005 // As a backup, shuffles can be lowered via a vrgather instruction, possibly 2006 // merged with a second vrgather. 2007 SmallVector<SDValue> GatherIndicesLHS, GatherIndicesRHS; 2008 2009 // By default we preserve the original operand order, and use a mask to 2010 // select LHS as true and RHS as false. However, since RVV vector selects may 2011 // feature splats but only on the LHS, we may choose to invert our mask and 2012 // instead select between RHS and LHS. 2013 bool SwapOps = DAG.isSplatValue(V2) && !DAG.isSplatValue(V1); 2014 bool InvertMask = IsSelect == SwapOps; 2015 2016 // Keep a track of which non-undef indices are used by each LHS/RHS shuffle 2017 // half. 2018 DenseMap<int, unsigned> LHSIndexCounts, RHSIndexCounts; 2019 2020 // Now construct the mask that will be used by the vselect or blended 2021 // vrgather operation. For vrgathers, construct the appropriate indices into 2022 // each vector. 2023 for (int MaskIndex : SVN->getMask()) { 2024 bool SelectMaskVal = (MaskIndex < (int)NumElts) ^ InvertMask; 2025 MaskVals.push_back(DAG.getConstant(SelectMaskVal, DL, XLenVT)); 2026 if (!IsSelect) { 2027 bool IsLHSOrUndefIndex = MaskIndex < (int)NumElts; 2028 GatherIndicesLHS.push_back(IsLHSOrUndefIndex && MaskIndex >= 0 2029 ? DAG.getConstant(MaskIndex, DL, XLenVT) 2030 : DAG.getUNDEF(XLenVT)); 2031 GatherIndicesRHS.push_back( 2032 IsLHSOrUndefIndex ? DAG.getUNDEF(XLenVT) 2033 : DAG.getConstant(MaskIndex - NumElts, DL, XLenVT)); 2034 if (IsLHSOrUndefIndex && MaskIndex >= 0) 2035 ++LHSIndexCounts[MaskIndex]; 2036 if (!IsLHSOrUndefIndex) 2037 ++RHSIndexCounts[MaskIndex - NumElts]; 2038 } 2039 } 2040 2041 if (SwapOps) { 2042 std::swap(V1, V2); 2043 std::swap(GatherIndicesLHS, GatherIndicesRHS); 2044 } 2045 2046 assert(MaskVals.size() == NumElts && "Unexpected select-like shuffle"); 2047 MVT MaskVT = MVT::getVectorVT(MVT::i1, NumElts); 2048 SDValue SelectMask = DAG.getBuildVector(MaskVT, DL, MaskVals); 2049 2050 if (IsSelect) 2051 return DAG.getNode(ISD::VSELECT, DL, VT, SelectMask, V1, V2); 2052 2053 if (VT.getScalarSizeInBits() == 8 && VT.getVectorNumElements() > 256) { 2054 // On such a large vector we're unable to use i8 as the index type. 2055 // FIXME: We could promote the index to i16 and use vrgatherei16, but that 2056 // may involve vector splitting if we're already at LMUL=8, or our 2057 // user-supplied maximum fixed-length LMUL. 2058 return SDValue(); 2059 } 2060 2061 unsigned GatherVXOpc = RISCVISD::VRGATHER_VX_VL; 2062 unsigned GatherVVOpc = RISCVISD::VRGATHER_VV_VL; 2063 MVT IndexVT = VT.changeTypeToInteger(); 2064 // Since we can't introduce illegal index types at this stage, use i16 and 2065 // vrgatherei16 if the corresponding index type for plain vrgather is greater 2066 // than XLenVT. 2067 if (IndexVT.getScalarType().bitsGT(XLenVT)) { 2068 GatherVVOpc = RISCVISD::VRGATHEREI16_VV_VL; 2069 IndexVT = IndexVT.changeVectorElementType(MVT::i16); 2070 } 2071 2072 MVT IndexContainerVT = 2073 ContainerVT.changeVectorElementType(IndexVT.getScalarType()); 2074 2075 SDValue Gather; 2076 // TODO: This doesn't trigger for i64 vectors on RV32, since there we 2077 // encounter a bitcasted BUILD_VECTOR with low/high i32 values. 2078 if (SDValue SplatValue = DAG.getSplatValue(V1, /*LegalTypes*/ true)) { 2079 Gather = lowerScalarSplat(SplatValue, VL, ContainerVT, DL, DAG, Subtarget); 2080 } else { 2081 V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget); 2082 // If only one index is used, we can use a "splat" vrgather. 2083 // TODO: We can splat the most-common index and fix-up any stragglers, if 2084 // that's beneficial. 2085 if (LHSIndexCounts.size() == 1) { 2086 int SplatIndex = LHSIndexCounts.begin()->getFirst(); 2087 Gather = 2088 DAG.getNode(GatherVXOpc, DL, ContainerVT, V1, 2089 DAG.getConstant(SplatIndex, DL, XLenVT), TrueMask, VL); 2090 } else { 2091 SDValue LHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesLHS); 2092 LHSIndices = 2093 convertToScalableVector(IndexContainerVT, LHSIndices, DAG, Subtarget); 2094 2095 Gather = DAG.getNode(GatherVVOpc, DL, ContainerVT, V1, LHSIndices, 2096 TrueMask, VL); 2097 } 2098 } 2099 2100 // If a second vector operand is used by this shuffle, blend it in with an 2101 // additional vrgather. 2102 if (!V2.isUndef()) { 2103 V2 = convertToScalableVector(ContainerVT, V2, DAG, Subtarget); 2104 // If only one index is used, we can use a "splat" vrgather. 2105 // TODO: We can splat the most-common index and fix-up any stragglers, if 2106 // that's beneficial. 2107 if (RHSIndexCounts.size() == 1) { 2108 int SplatIndex = RHSIndexCounts.begin()->getFirst(); 2109 V2 = DAG.getNode(GatherVXOpc, DL, ContainerVT, V2, 2110 DAG.getConstant(SplatIndex, DL, XLenVT), TrueMask, VL); 2111 } else { 2112 SDValue RHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesRHS); 2113 RHSIndices = 2114 convertToScalableVector(IndexContainerVT, RHSIndices, DAG, Subtarget); 2115 V2 = DAG.getNode(GatherVVOpc, DL, ContainerVT, V2, RHSIndices, TrueMask, 2116 VL); 2117 } 2118 2119 MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1); 2120 SelectMask = 2121 convertToScalableVector(MaskContainerVT, SelectMask, DAG, Subtarget); 2122 2123 Gather = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, SelectMask, V2, 2124 Gather, VL); 2125 } 2126 2127 return convertFromScalableVector(VT, Gather, DAG, Subtarget); 2128 } 2129 2130 static SDValue getRVVFPExtendOrRound(SDValue Op, MVT VT, MVT ContainerVT, 2131 SDLoc DL, SelectionDAG &DAG, 2132 const RISCVSubtarget &Subtarget) { 2133 if (VT.isScalableVector()) 2134 return DAG.getFPExtendOrRound(Op, DL, VT); 2135 assert(VT.isFixedLengthVector() && 2136 "Unexpected value type for RVV FP extend/round lowering"); 2137 SDValue Mask, VL; 2138 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 2139 unsigned RVVOpc = ContainerVT.bitsGT(Op.getSimpleValueType()) 2140 ? RISCVISD::FP_EXTEND_VL 2141 : RISCVISD::FP_ROUND_VL; 2142 return DAG.getNode(RVVOpc, DL, ContainerVT, Op, Mask, VL); 2143 } 2144 2145 // While RVV has alignment restrictions, we should always be able to load as a 2146 // legal equivalently-sized byte-typed vector instead. This method is 2147 // responsible for re-expressing a ISD::LOAD via a correctly-aligned type. If 2148 // the load is already correctly-aligned, it returns SDValue(). 2149 SDValue RISCVTargetLowering::expandUnalignedRVVLoad(SDValue Op, 2150 SelectionDAG &DAG) const { 2151 auto *Load = cast<LoadSDNode>(Op); 2152 assert(Load && Load->getMemoryVT().isVector() && "Expected vector load"); 2153 2154 if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 2155 Load->getMemoryVT(), 2156 *Load->getMemOperand())) 2157 return SDValue(); 2158 2159 SDLoc DL(Op); 2160 MVT VT = Op.getSimpleValueType(); 2161 unsigned EltSizeBits = VT.getScalarSizeInBits(); 2162 assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) && 2163 "Unexpected unaligned RVV load type"); 2164 MVT NewVT = 2165 MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8)); 2166 assert(NewVT.isValid() && 2167 "Expecting equally-sized RVV vector types to be legal"); 2168 SDValue L = DAG.getLoad(NewVT, DL, Load->getChain(), Load->getBasePtr(), 2169 Load->getPointerInfo(), Load->getOriginalAlign(), 2170 Load->getMemOperand()->getFlags()); 2171 return DAG.getMergeValues({DAG.getBitcast(VT, L), L.getValue(1)}, DL); 2172 } 2173 2174 // While RVV has alignment restrictions, we should always be able to store as a 2175 // legal equivalently-sized byte-typed vector instead. This method is 2176 // responsible for re-expressing a ISD::STORE via a correctly-aligned type. It 2177 // returns SDValue() if the store is already correctly aligned. 2178 SDValue RISCVTargetLowering::expandUnalignedRVVStore(SDValue Op, 2179 SelectionDAG &DAG) const { 2180 auto *Store = cast<StoreSDNode>(Op); 2181 assert(Store && Store->getValue().getValueType().isVector() && 2182 "Expected vector store"); 2183 2184 if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 2185 Store->getMemoryVT(), 2186 *Store->getMemOperand())) 2187 return SDValue(); 2188 2189 SDLoc DL(Op); 2190 SDValue StoredVal = Store->getValue(); 2191 MVT VT = StoredVal.getSimpleValueType(); 2192 unsigned EltSizeBits = VT.getScalarSizeInBits(); 2193 assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) && 2194 "Unexpected unaligned RVV store type"); 2195 MVT NewVT = 2196 MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8)); 2197 assert(NewVT.isValid() && 2198 "Expecting equally-sized RVV vector types to be legal"); 2199 StoredVal = DAG.getBitcast(NewVT, StoredVal); 2200 return DAG.getStore(Store->getChain(), DL, StoredVal, Store->getBasePtr(), 2201 Store->getPointerInfo(), Store->getOriginalAlign(), 2202 Store->getMemOperand()->getFlags()); 2203 } 2204 2205 SDValue RISCVTargetLowering::LowerOperation(SDValue Op, 2206 SelectionDAG &DAG) const { 2207 switch (Op.getOpcode()) { 2208 default: 2209 report_fatal_error("unimplemented operand"); 2210 case ISD::GlobalAddress: 2211 return lowerGlobalAddress(Op, DAG); 2212 case ISD::BlockAddress: 2213 return lowerBlockAddress(Op, DAG); 2214 case ISD::ConstantPool: 2215 return lowerConstantPool(Op, DAG); 2216 case ISD::JumpTable: 2217 return lowerJumpTable(Op, DAG); 2218 case ISD::GlobalTLSAddress: 2219 return lowerGlobalTLSAddress(Op, DAG); 2220 case ISD::SELECT: 2221 return lowerSELECT(Op, DAG); 2222 case ISD::BRCOND: 2223 return lowerBRCOND(Op, DAG); 2224 case ISD::VASTART: 2225 return lowerVASTART(Op, DAG); 2226 case ISD::FRAMEADDR: 2227 return lowerFRAMEADDR(Op, DAG); 2228 case ISD::RETURNADDR: 2229 return lowerRETURNADDR(Op, DAG); 2230 case ISD::SHL_PARTS: 2231 return lowerShiftLeftParts(Op, DAG); 2232 case ISD::SRA_PARTS: 2233 return lowerShiftRightParts(Op, DAG, true); 2234 case ISD::SRL_PARTS: 2235 return lowerShiftRightParts(Op, DAG, false); 2236 case ISD::BITCAST: { 2237 SDLoc DL(Op); 2238 EVT VT = Op.getValueType(); 2239 SDValue Op0 = Op.getOperand(0); 2240 EVT Op0VT = Op0.getValueType(); 2241 MVT XLenVT = Subtarget.getXLenVT(); 2242 if (VT.isFixedLengthVector()) { 2243 // We can handle fixed length vector bitcasts with a simple replacement 2244 // in isel. 2245 if (Op0VT.isFixedLengthVector()) 2246 return Op; 2247 // When bitcasting from scalar to fixed-length vector, insert the scalar 2248 // into a one-element vector of the result type, and perform a vector 2249 // bitcast. 2250 if (!Op0VT.isVector()) { 2251 auto BVT = EVT::getVectorVT(*DAG.getContext(), Op0VT, 1); 2252 return DAG.getBitcast(VT, DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, BVT, 2253 DAG.getUNDEF(BVT), Op0, 2254 DAG.getConstant(0, DL, XLenVT))); 2255 } 2256 return SDValue(); 2257 } 2258 // Custom-legalize bitcasts from fixed-length vector types to scalar types 2259 // thus: bitcast the vector to a one-element vector type whose element type 2260 // is the same as the result type, and extract the first element. 2261 if (!VT.isVector() && Op0VT.isFixedLengthVector()) { 2262 LLVMContext &Context = *DAG.getContext(); 2263 SDValue BVec = DAG.getBitcast(EVT::getVectorVT(Context, VT, 1), Op0); 2264 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec, 2265 DAG.getConstant(0, DL, XLenVT)); 2266 } 2267 if (VT == MVT::f16 && Op0VT == MVT::i16 && Subtarget.hasStdExtZfh()) { 2268 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Op0); 2269 SDValue FPConv = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, NewOp0); 2270 return FPConv; 2271 } 2272 if (VT == MVT::f32 && Op0VT == MVT::i32 && Subtarget.is64Bit() && 2273 Subtarget.hasStdExtF()) { 2274 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); 2275 SDValue FPConv = 2276 DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, NewOp0); 2277 return FPConv; 2278 } 2279 return SDValue(); 2280 } 2281 case ISD::INTRINSIC_WO_CHAIN: 2282 return LowerINTRINSIC_WO_CHAIN(Op, DAG); 2283 case ISD::INTRINSIC_W_CHAIN: 2284 return LowerINTRINSIC_W_CHAIN(Op, DAG); 2285 case ISD::BSWAP: 2286 case ISD::BITREVERSE: { 2287 // Convert BSWAP/BITREVERSE to GREVI to enable GREVI combinining. 2288 assert(Subtarget.hasStdExtZbp() && "Unexpected custom legalisation"); 2289 MVT VT = Op.getSimpleValueType(); 2290 SDLoc DL(Op); 2291 // Start with the maximum immediate value which is the bitwidth - 1. 2292 unsigned Imm = VT.getSizeInBits() - 1; 2293 // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits. 2294 if (Op.getOpcode() == ISD::BSWAP) 2295 Imm &= ~0x7U; 2296 return DAG.getNode(RISCVISD::GREV, DL, VT, Op.getOperand(0), 2297 DAG.getConstant(Imm, DL, VT)); 2298 } 2299 case ISD::FSHL: 2300 case ISD::FSHR: { 2301 MVT VT = Op.getSimpleValueType(); 2302 assert(VT == Subtarget.getXLenVT() && "Unexpected custom legalization"); 2303 SDLoc DL(Op); 2304 if (Op.getOperand(2).getOpcode() == ISD::Constant) 2305 return Op; 2306 // FSL/FSR take a log2(XLen)+1 bit shift amount but XLenVT FSHL/FSHR only 2307 // use log(XLen) bits. Mask the shift amount accordingly. 2308 unsigned ShAmtWidth = Subtarget.getXLen() - 1; 2309 SDValue ShAmt = DAG.getNode(ISD::AND, DL, VT, Op.getOperand(2), 2310 DAG.getConstant(ShAmtWidth, DL, VT)); 2311 unsigned Opc = Op.getOpcode() == ISD::FSHL ? RISCVISD::FSL : RISCVISD::FSR; 2312 return DAG.getNode(Opc, DL, VT, Op.getOperand(0), Op.getOperand(1), ShAmt); 2313 } 2314 case ISD::TRUNCATE: { 2315 SDLoc DL(Op); 2316 MVT VT = Op.getSimpleValueType(); 2317 // Only custom-lower vector truncates 2318 if (!VT.isVector()) 2319 return Op; 2320 2321 // Truncates to mask types are handled differently 2322 if (VT.getVectorElementType() == MVT::i1) 2323 return lowerVectorMaskTrunc(Op, DAG); 2324 2325 // RVV only has truncates which operate from SEW*2->SEW, so lower arbitrary 2326 // truncates as a series of "RISCVISD::TRUNCATE_VECTOR_VL" nodes which 2327 // truncate by one power of two at a time. 2328 MVT DstEltVT = VT.getVectorElementType(); 2329 2330 SDValue Src = Op.getOperand(0); 2331 MVT SrcVT = Src.getSimpleValueType(); 2332 MVT SrcEltVT = SrcVT.getVectorElementType(); 2333 2334 assert(DstEltVT.bitsLT(SrcEltVT) && 2335 isPowerOf2_64(DstEltVT.getSizeInBits()) && 2336 isPowerOf2_64(SrcEltVT.getSizeInBits()) && 2337 "Unexpected vector truncate lowering"); 2338 2339 MVT ContainerVT = SrcVT; 2340 if (SrcVT.isFixedLengthVector()) { 2341 ContainerVT = getContainerForFixedLengthVector(SrcVT); 2342 Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget); 2343 } 2344 2345 SDValue Result = Src; 2346 SDValue Mask, VL; 2347 std::tie(Mask, VL) = 2348 getDefaultVLOps(SrcVT, ContainerVT, DL, DAG, Subtarget); 2349 LLVMContext &Context = *DAG.getContext(); 2350 const ElementCount Count = ContainerVT.getVectorElementCount(); 2351 do { 2352 SrcEltVT = MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2); 2353 EVT ResultVT = EVT::getVectorVT(Context, SrcEltVT, Count); 2354 Result = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, ResultVT, Result, 2355 Mask, VL); 2356 } while (SrcEltVT != DstEltVT); 2357 2358 if (SrcVT.isFixedLengthVector()) 2359 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 2360 2361 return Result; 2362 } 2363 case ISD::ANY_EXTEND: 2364 case ISD::ZERO_EXTEND: 2365 if (Op.getOperand(0).getValueType().isVector() && 2366 Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) 2367 return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ 1); 2368 return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VZEXT_VL); 2369 case ISD::SIGN_EXTEND: 2370 if (Op.getOperand(0).getValueType().isVector() && 2371 Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) 2372 return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ -1); 2373 return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VSEXT_VL); 2374 case ISD::SPLAT_VECTOR_PARTS: 2375 return lowerSPLAT_VECTOR_PARTS(Op, DAG); 2376 case ISD::INSERT_VECTOR_ELT: 2377 return lowerINSERT_VECTOR_ELT(Op, DAG); 2378 case ISD::EXTRACT_VECTOR_ELT: 2379 return lowerEXTRACT_VECTOR_ELT(Op, DAG); 2380 case ISD::VSCALE: { 2381 MVT VT = Op.getSimpleValueType(); 2382 SDLoc DL(Op); 2383 SDValue VLENB = DAG.getNode(RISCVISD::READ_VLENB, DL, VT); 2384 // We define our scalable vector types for lmul=1 to use a 64 bit known 2385 // minimum size. e.g. <vscale x 2 x i32>. VLENB is in bytes so we calculate 2386 // vscale as VLENB / 8. 2387 assert(RISCV::RVVBitsPerBlock == 64 && "Unexpected bits per block!"); 2388 if (isa<ConstantSDNode>(Op.getOperand(0))) { 2389 // We assume VLENB is a multiple of 8. We manually choose the best shift 2390 // here because SimplifyDemandedBits isn't always able to simplify it. 2391 uint64_t Val = Op.getConstantOperandVal(0); 2392 if (isPowerOf2_64(Val)) { 2393 uint64_t Log2 = Log2_64(Val); 2394 if (Log2 < 3) 2395 return DAG.getNode(ISD::SRL, DL, VT, VLENB, 2396 DAG.getConstant(3 - Log2, DL, VT)); 2397 if (Log2 > 3) 2398 return DAG.getNode(ISD::SHL, DL, VT, VLENB, 2399 DAG.getConstant(Log2 - 3, DL, VT)); 2400 return VLENB; 2401 } 2402 // If the multiplier is a multiple of 8, scale it down to avoid needing 2403 // to shift the VLENB value. 2404 if ((Val % 8) == 0) 2405 return DAG.getNode(ISD::MUL, DL, VT, VLENB, 2406 DAG.getConstant(Val / 8, DL, VT)); 2407 } 2408 2409 SDValue VScale = DAG.getNode(ISD::SRL, DL, VT, VLENB, 2410 DAG.getConstant(3, DL, VT)); 2411 return DAG.getNode(ISD::MUL, DL, VT, VScale, Op.getOperand(0)); 2412 } 2413 case ISD::FP_EXTEND: { 2414 // RVV can only do fp_extend to types double the size as the source. We 2415 // custom-lower f16->f64 extensions to two hops of ISD::FP_EXTEND, going 2416 // via f32. 2417 SDLoc DL(Op); 2418 MVT VT = Op.getSimpleValueType(); 2419 SDValue Src = Op.getOperand(0); 2420 MVT SrcVT = Src.getSimpleValueType(); 2421 2422 // Prepare any fixed-length vector operands. 2423 MVT ContainerVT = VT; 2424 if (SrcVT.isFixedLengthVector()) { 2425 ContainerVT = getContainerForFixedLengthVector(VT); 2426 MVT SrcContainerVT = 2427 ContainerVT.changeVectorElementType(SrcVT.getVectorElementType()); 2428 Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); 2429 } 2430 2431 if (!VT.isVector() || VT.getVectorElementType() != MVT::f64 || 2432 SrcVT.getVectorElementType() != MVT::f16) { 2433 // For scalable vectors, we only need to close the gap between 2434 // vXf16->vXf64. 2435 if (!VT.isFixedLengthVector()) 2436 return Op; 2437 // For fixed-length vectors, lower the FP_EXTEND to a custom "VL" version. 2438 Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget); 2439 return convertFromScalableVector(VT, Src, DAG, Subtarget); 2440 } 2441 2442 MVT InterVT = VT.changeVectorElementType(MVT::f32); 2443 MVT InterContainerVT = ContainerVT.changeVectorElementType(MVT::f32); 2444 SDValue IntermediateExtend = getRVVFPExtendOrRound( 2445 Src, InterVT, InterContainerVT, DL, DAG, Subtarget); 2446 2447 SDValue Extend = getRVVFPExtendOrRound(IntermediateExtend, VT, ContainerVT, 2448 DL, DAG, Subtarget); 2449 if (VT.isFixedLengthVector()) 2450 return convertFromScalableVector(VT, Extend, DAG, Subtarget); 2451 return Extend; 2452 } 2453 case ISD::FP_ROUND: { 2454 // RVV can only do fp_round to types half the size as the source. We 2455 // custom-lower f64->f16 rounds via RVV's round-to-odd float 2456 // conversion instruction. 2457 SDLoc DL(Op); 2458 MVT VT = Op.getSimpleValueType(); 2459 SDValue Src = Op.getOperand(0); 2460 MVT SrcVT = Src.getSimpleValueType(); 2461 2462 // Prepare any fixed-length vector operands. 2463 MVT ContainerVT = VT; 2464 if (VT.isFixedLengthVector()) { 2465 MVT SrcContainerVT = getContainerForFixedLengthVector(SrcVT); 2466 ContainerVT = 2467 SrcContainerVT.changeVectorElementType(VT.getVectorElementType()); 2468 Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); 2469 } 2470 2471 if (!VT.isVector() || VT.getVectorElementType() != MVT::f16 || 2472 SrcVT.getVectorElementType() != MVT::f64) { 2473 // For scalable vectors, we only need to close the gap between 2474 // vXf64<->vXf16. 2475 if (!VT.isFixedLengthVector()) 2476 return Op; 2477 // For fixed-length vectors, lower the FP_ROUND to a custom "VL" version. 2478 Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget); 2479 return convertFromScalableVector(VT, Src, DAG, Subtarget); 2480 } 2481 2482 SDValue Mask, VL; 2483 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 2484 2485 MVT InterVT = ContainerVT.changeVectorElementType(MVT::f32); 2486 SDValue IntermediateRound = 2487 DAG.getNode(RISCVISD::VFNCVT_ROD_VL, DL, InterVT, Src, Mask, VL); 2488 SDValue Round = getRVVFPExtendOrRound(IntermediateRound, VT, ContainerVT, 2489 DL, DAG, Subtarget); 2490 2491 if (VT.isFixedLengthVector()) 2492 return convertFromScalableVector(VT, Round, DAG, Subtarget); 2493 return Round; 2494 } 2495 case ISD::FP_TO_SINT: 2496 case ISD::FP_TO_UINT: 2497 case ISD::SINT_TO_FP: 2498 case ISD::UINT_TO_FP: { 2499 // RVV can only do fp<->int conversions to types half/double the size as 2500 // the source. We custom-lower any conversions that do two hops into 2501 // sequences. 2502 MVT VT = Op.getSimpleValueType(); 2503 if (!VT.isVector()) 2504 return Op; 2505 SDLoc DL(Op); 2506 SDValue Src = Op.getOperand(0); 2507 MVT EltVT = VT.getVectorElementType(); 2508 MVT SrcVT = Src.getSimpleValueType(); 2509 MVT SrcEltVT = SrcVT.getVectorElementType(); 2510 unsigned EltSize = EltVT.getSizeInBits(); 2511 unsigned SrcEltSize = SrcEltVT.getSizeInBits(); 2512 assert(isPowerOf2_32(EltSize) && isPowerOf2_32(SrcEltSize) && 2513 "Unexpected vector element types"); 2514 2515 bool IsInt2FP = SrcEltVT.isInteger(); 2516 // Widening conversions 2517 if (EltSize > SrcEltSize && (EltSize / SrcEltSize >= 4)) { 2518 if (IsInt2FP) { 2519 // Do a regular integer sign/zero extension then convert to float. 2520 MVT IVecVT = MVT::getVectorVT(MVT::getIntegerVT(EltVT.getSizeInBits()), 2521 VT.getVectorElementCount()); 2522 unsigned ExtOpcode = Op.getOpcode() == ISD::UINT_TO_FP 2523 ? ISD::ZERO_EXTEND 2524 : ISD::SIGN_EXTEND; 2525 SDValue Ext = DAG.getNode(ExtOpcode, DL, IVecVT, Src); 2526 return DAG.getNode(Op.getOpcode(), DL, VT, Ext); 2527 } 2528 // FP2Int 2529 assert(SrcEltVT == MVT::f16 && "Unexpected FP_TO_[US]INT lowering"); 2530 // Do one doubling fp_extend then complete the operation by converting 2531 // to int. 2532 MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount()); 2533 SDValue FExt = DAG.getFPExtendOrRound(Src, DL, InterimFVT); 2534 return DAG.getNode(Op.getOpcode(), DL, VT, FExt); 2535 } 2536 2537 // Narrowing conversions 2538 if (SrcEltSize > EltSize && (SrcEltSize / EltSize >= 4)) { 2539 if (IsInt2FP) { 2540 // One narrowing int_to_fp, then an fp_round. 2541 assert(EltVT == MVT::f16 && "Unexpected [US]_TO_FP lowering"); 2542 MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount()); 2543 SDValue Int2FP = DAG.getNode(Op.getOpcode(), DL, InterimFVT, Src); 2544 return DAG.getFPExtendOrRound(Int2FP, DL, VT); 2545 } 2546 // FP2Int 2547 // One narrowing fp_to_int, then truncate the integer. If the float isn't 2548 // representable by the integer, the result is poison. 2549 MVT IVecVT = 2550 MVT::getVectorVT(MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2), 2551 VT.getVectorElementCount()); 2552 SDValue FP2Int = DAG.getNode(Op.getOpcode(), DL, IVecVT, Src); 2553 return DAG.getNode(ISD::TRUNCATE, DL, VT, FP2Int); 2554 } 2555 2556 // Scalable vectors can exit here. Patterns will handle equally-sized 2557 // conversions halving/doubling ones. 2558 if (!VT.isFixedLengthVector()) 2559 return Op; 2560 2561 // For fixed-length vectors we lower to a custom "VL" node. 2562 unsigned RVVOpc = 0; 2563 switch (Op.getOpcode()) { 2564 default: 2565 llvm_unreachable("Impossible opcode"); 2566 case ISD::FP_TO_SINT: 2567 RVVOpc = RISCVISD::FP_TO_SINT_VL; 2568 break; 2569 case ISD::FP_TO_UINT: 2570 RVVOpc = RISCVISD::FP_TO_UINT_VL; 2571 break; 2572 case ISD::SINT_TO_FP: 2573 RVVOpc = RISCVISD::SINT_TO_FP_VL; 2574 break; 2575 case ISD::UINT_TO_FP: 2576 RVVOpc = RISCVISD::UINT_TO_FP_VL; 2577 break; 2578 } 2579 2580 MVT ContainerVT, SrcContainerVT; 2581 // Derive the reference container type from the larger vector type. 2582 if (SrcEltSize > EltSize) { 2583 SrcContainerVT = getContainerForFixedLengthVector(SrcVT); 2584 ContainerVT = 2585 SrcContainerVT.changeVectorElementType(VT.getVectorElementType()); 2586 } else { 2587 ContainerVT = getContainerForFixedLengthVector(VT); 2588 SrcContainerVT = ContainerVT.changeVectorElementType(SrcEltVT); 2589 } 2590 2591 SDValue Mask, VL; 2592 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 2593 2594 Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); 2595 Src = DAG.getNode(RVVOpc, DL, ContainerVT, Src, Mask, VL); 2596 return convertFromScalableVector(VT, Src, DAG, Subtarget); 2597 } 2598 case ISD::FP_TO_SINT_SAT: 2599 case ISD::FP_TO_UINT_SAT: 2600 return lowerFP_TO_INT_SAT(Op, DAG); 2601 case ISD::VECREDUCE_ADD: 2602 case ISD::VECREDUCE_UMAX: 2603 case ISD::VECREDUCE_SMAX: 2604 case ISD::VECREDUCE_UMIN: 2605 case ISD::VECREDUCE_SMIN: 2606 return lowerVECREDUCE(Op, DAG); 2607 case ISD::VECREDUCE_AND: 2608 case ISD::VECREDUCE_OR: 2609 case ISD::VECREDUCE_XOR: 2610 if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) 2611 return lowerVectorMaskVECREDUCE(Op, DAG); 2612 return lowerVECREDUCE(Op, DAG); 2613 case ISD::VECREDUCE_FADD: 2614 case ISD::VECREDUCE_SEQ_FADD: 2615 case ISD::VECREDUCE_FMIN: 2616 case ISD::VECREDUCE_FMAX: 2617 return lowerFPVECREDUCE(Op, DAG); 2618 case ISD::INSERT_SUBVECTOR: 2619 return lowerINSERT_SUBVECTOR(Op, DAG); 2620 case ISD::EXTRACT_SUBVECTOR: 2621 return lowerEXTRACT_SUBVECTOR(Op, DAG); 2622 case ISD::STEP_VECTOR: 2623 return lowerSTEP_VECTOR(Op, DAG); 2624 case ISD::VECTOR_REVERSE: 2625 return lowerVECTOR_REVERSE(Op, DAG); 2626 case ISD::BUILD_VECTOR: 2627 return lowerBUILD_VECTOR(Op, DAG, Subtarget); 2628 case ISD::SPLAT_VECTOR: 2629 if (Op.getValueType().getVectorElementType() == MVT::i1) 2630 return lowerVectorMaskSplat(Op, DAG); 2631 return lowerSPLAT_VECTOR(Op, DAG, Subtarget); 2632 case ISD::VECTOR_SHUFFLE: 2633 return lowerVECTOR_SHUFFLE(Op, DAG, Subtarget); 2634 case ISD::CONCAT_VECTORS: { 2635 // Split CONCAT_VECTORS into a series of INSERT_SUBVECTOR nodes. This is 2636 // better than going through the stack, as the default expansion does. 2637 SDLoc DL(Op); 2638 MVT VT = Op.getSimpleValueType(); 2639 unsigned NumOpElts = 2640 Op.getOperand(0).getSimpleValueType().getVectorMinNumElements(); 2641 SDValue Vec = DAG.getUNDEF(VT); 2642 for (const auto &OpIdx : enumerate(Op->ops())) 2643 Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, Vec, OpIdx.value(), 2644 DAG.getIntPtrConstant(OpIdx.index() * NumOpElts, DL)); 2645 return Vec; 2646 } 2647 case ISD::LOAD: 2648 if (auto V = expandUnalignedRVVLoad(Op, DAG)) 2649 return V; 2650 if (Op.getValueType().isFixedLengthVector()) 2651 return lowerFixedLengthVectorLoadToRVV(Op, DAG); 2652 return Op; 2653 case ISD::STORE: 2654 if (auto V = expandUnalignedRVVStore(Op, DAG)) 2655 return V; 2656 if (Op.getOperand(1).getValueType().isFixedLengthVector()) 2657 return lowerFixedLengthVectorStoreToRVV(Op, DAG); 2658 return Op; 2659 case ISD::MLOAD: 2660 case ISD::VP_LOAD: 2661 return lowerMaskedLoad(Op, DAG); 2662 case ISD::MSTORE: 2663 case ISD::VP_STORE: 2664 return lowerMaskedStore(Op, DAG); 2665 case ISD::SETCC: 2666 return lowerFixedLengthVectorSetccToRVV(Op, DAG); 2667 case ISD::ADD: 2668 return lowerToScalableOp(Op, DAG, RISCVISD::ADD_VL); 2669 case ISD::SUB: 2670 return lowerToScalableOp(Op, DAG, RISCVISD::SUB_VL); 2671 case ISD::MUL: 2672 return lowerToScalableOp(Op, DAG, RISCVISD::MUL_VL); 2673 case ISD::MULHS: 2674 return lowerToScalableOp(Op, DAG, RISCVISD::MULHS_VL); 2675 case ISD::MULHU: 2676 return lowerToScalableOp(Op, DAG, RISCVISD::MULHU_VL); 2677 case ISD::AND: 2678 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMAND_VL, 2679 RISCVISD::AND_VL); 2680 case ISD::OR: 2681 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMOR_VL, 2682 RISCVISD::OR_VL); 2683 case ISD::XOR: 2684 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMXOR_VL, 2685 RISCVISD::XOR_VL); 2686 case ISD::SDIV: 2687 return lowerToScalableOp(Op, DAG, RISCVISD::SDIV_VL); 2688 case ISD::SREM: 2689 return lowerToScalableOp(Op, DAG, RISCVISD::SREM_VL); 2690 case ISD::UDIV: 2691 return lowerToScalableOp(Op, DAG, RISCVISD::UDIV_VL); 2692 case ISD::UREM: 2693 return lowerToScalableOp(Op, DAG, RISCVISD::UREM_VL); 2694 case ISD::SHL: 2695 case ISD::SRA: 2696 case ISD::SRL: 2697 if (Op.getSimpleValueType().isFixedLengthVector()) 2698 return lowerFixedLengthVectorShiftToRVV(Op, DAG); 2699 // This can be called for an i32 shift amount that needs to be promoted. 2700 assert(Op.getOperand(1).getValueType() == MVT::i32 && Subtarget.is64Bit() && 2701 "Unexpected custom legalisation"); 2702 return SDValue(); 2703 case ISD::SADDSAT: 2704 return lowerToScalableOp(Op, DAG, RISCVISD::SADDSAT_VL); 2705 case ISD::UADDSAT: 2706 return lowerToScalableOp(Op, DAG, RISCVISD::UADDSAT_VL); 2707 case ISD::SSUBSAT: 2708 return lowerToScalableOp(Op, DAG, RISCVISD::SSUBSAT_VL); 2709 case ISD::USUBSAT: 2710 return lowerToScalableOp(Op, DAG, RISCVISD::USUBSAT_VL); 2711 case ISD::FADD: 2712 return lowerToScalableOp(Op, DAG, RISCVISD::FADD_VL); 2713 case ISD::FSUB: 2714 return lowerToScalableOp(Op, DAG, RISCVISD::FSUB_VL); 2715 case ISD::FMUL: 2716 return lowerToScalableOp(Op, DAG, RISCVISD::FMUL_VL); 2717 case ISD::FDIV: 2718 return lowerToScalableOp(Op, DAG, RISCVISD::FDIV_VL); 2719 case ISD::FNEG: 2720 return lowerToScalableOp(Op, DAG, RISCVISD::FNEG_VL); 2721 case ISD::FABS: 2722 return lowerToScalableOp(Op, DAG, RISCVISD::FABS_VL); 2723 case ISD::FSQRT: 2724 return lowerToScalableOp(Op, DAG, RISCVISD::FSQRT_VL); 2725 case ISD::FMA: 2726 return lowerToScalableOp(Op, DAG, RISCVISD::FMA_VL); 2727 case ISD::SMIN: 2728 return lowerToScalableOp(Op, DAG, RISCVISD::SMIN_VL); 2729 case ISD::SMAX: 2730 return lowerToScalableOp(Op, DAG, RISCVISD::SMAX_VL); 2731 case ISD::UMIN: 2732 return lowerToScalableOp(Op, DAG, RISCVISD::UMIN_VL); 2733 case ISD::UMAX: 2734 return lowerToScalableOp(Op, DAG, RISCVISD::UMAX_VL); 2735 case ISD::FMINNUM: 2736 return lowerToScalableOp(Op, DAG, RISCVISD::FMINNUM_VL); 2737 case ISD::FMAXNUM: 2738 return lowerToScalableOp(Op, DAG, RISCVISD::FMAXNUM_VL); 2739 case ISD::ABS: 2740 return lowerABS(Op, DAG); 2741 case ISD::VSELECT: 2742 return lowerFixedLengthVectorSelectToRVV(Op, DAG); 2743 case ISD::FCOPYSIGN: 2744 return lowerFixedLengthVectorFCOPYSIGNToRVV(Op, DAG); 2745 case ISD::MGATHER: 2746 case ISD::VP_GATHER: 2747 return lowerMaskedGather(Op, DAG); 2748 case ISD::MSCATTER: 2749 case ISD::VP_SCATTER: 2750 return lowerMaskedScatter(Op, DAG); 2751 case ISD::FLT_ROUNDS_: 2752 return lowerGET_ROUNDING(Op, DAG); 2753 case ISD::SET_ROUNDING: 2754 return lowerSET_ROUNDING(Op, DAG); 2755 case ISD::VP_ADD: 2756 return lowerVPOp(Op, DAG, RISCVISD::ADD_VL); 2757 case ISD::VP_SUB: 2758 return lowerVPOp(Op, DAG, RISCVISD::SUB_VL); 2759 case ISD::VP_MUL: 2760 return lowerVPOp(Op, DAG, RISCVISD::MUL_VL); 2761 case ISD::VP_SDIV: 2762 return lowerVPOp(Op, DAG, RISCVISD::SDIV_VL); 2763 case ISD::VP_UDIV: 2764 return lowerVPOp(Op, DAG, RISCVISD::UDIV_VL); 2765 case ISD::VP_SREM: 2766 return lowerVPOp(Op, DAG, RISCVISD::SREM_VL); 2767 case ISD::VP_UREM: 2768 return lowerVPOp(Op, DAG, RISCVISD::UREM_VL); 2769 case ISD::VP_AND: 2770 return lowerVPOp(Op, DAG, RISCVISD::AND_VL); 2771 case ISD::VP_OR: 2772 return lowerVPOp(Op, DAG, RISCVISD::OR_VL); 2773 case ISD::VP_XOR: 2774 return lowerVPOp(Op, DAG, RISCVISD::XOR_VL); 2775 case ISD::VP_ASHR: 2776 return lowerVPOp(Op, DAG, RISCVISD::SRA_VL); 2777 case ISD::VP_LSHR: 2778 return lowerVPOp(Op, DAG, RISCVISD::SRL_VL); 2779 case ISD::VP_SHL: 2780 return lowerVPOp(Op, DAG, RISCVISD::SHL_VL); 2781 case ISD::VP_FADD: 2782 return lowerVPOp(Op, DAG, RISCVISD::FADD_VL); 2783 case ISD::VP_FSUB: 2784 return lowerVPOp(Op, DAG, RISCVISD::FSUB_VL); 2785 case ISD::VP_FMUL: 2786 return lowerVPOp(Op, DAG, RISCVISD::FMUL_VL); 2787 case ISD::VP_FDIV: 2788 return lowerVPOp(Op, DAG, RISCVISD::FDIV_VL); 2789 } 2790 } 2791 2792 static SDValue getTargetNode(GlobalAddressSDNode *N, SDLoc DL, EVT Ty, 2793 SelectionDAG &DAG, unsigned Flags) { 2794 return DAG.getTargetGlobalAddress(N->getGlobal(), DL, Ty, 0, Flags); 2795 } 2796 2797 static SDValue getTargetNode(BlockAddressSDNode *N, SDLoc DL, EVT Ty, 2798 SelectionDAG &DAG, unsigned Flags) { 2799 return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, N->getOffset(), 2800 Flags); 2801 } 2802 2803 static SDValue getTargetNode(ConstantPoolSDNode *N, SDLoc DL, EVT Ty, 2804 SelectionDAG &DAG, unsigned Flags) { 2805 return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlign(), 2806 N->getOffset(), Flags); 2807 } 2808 2809 static SDValue getTargetNode(JumpTableSDNode *N, SDLoc DL, EVT Ty, 2810 SelectionDAG &DAG, unsigned Flags) { 2811 return DAG.getTargetJumpTable(N->getIndex(), Ty, Flags); 2812 } 2813 2814 template <class NodeTy> 2815 SDValue RISCVTargetLowering::getAddr(NodeTy *N, SelectionDAG &DAG, 2816 bool IsLocal) const { 2817 SDLoc DL(N); 2818 EVT Ty = getPointerTy(DAG.getDataLayout()); 2819 2820 if (isPositionIndependent()) { 2821 SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0); 2822 if (IsLocal) 2823 // Use PC-relative addressing to access the symbol. This generates the 2824 // pattern (PseudoLLA sym), which expands to (addi (auipc %pcrel_hi(sym)) 2825 // %pcrel_lo(auipc)). 2826 return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0); 2827 2828 // Use PC-relative addressing to access the GOT for this symbol, then load 2829 // the address from the GOT. This generates the pattern (PseudoLA sym), 2830 // which expands to (ld (addi (auipc %got_pcrel_hi(sym)) %pcrel_lo(auipc))). 2831 return SDValue(DAG.getMachineNode(RISCV::PseudoLA, DL, Ty, Addr), 0); 2832 } 2833 2834 switch (getTargetMachine().getCodeModel()) { 2835 default: 2836 report_fatal_error("Unsupported code model for lowering"); 2837 case CodeModel::Small: { 2838 // Generate a sequence for accessing addresses within the first 2 GiB of 2839 // address space. This generates the pattern (addi (lui %hi(sym)) %lo(sym)). 2840 SDValue AddrHi = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_HI); 2841 SDValue AddrLo = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_LO); 2842 SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0); 2843 return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNHi, AddrLo), 0); 2844 } 2845 case CodeModel::Medium: { 2846 // Generate a sequence for accessing addresses within any 2GiB range within 2847 // the address space. This generates the pattern (PseudoLLA sym), which 2848 // expands to (addi (auipc %pcrel_hi(sym)) %pcrel_lo(auipc)). 2849 SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0); 2850 return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0); 2851 } 2852 } 2853 } 2854 2855 SDValue RISCVTargetLowering::lowerGlobalAddress(SDValue Op, 2856 SelectionDAG &DAG) const { 2857 SDLoc DL(Op); 2858 EVT Ty = Op.getValueType(); 2859 GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op); 2860 int64_t Offset = N->getOffset(); 2861 MVT XLenVT = Subtarget.getXLenVT(); 2862 2863 const GlobalValue *GV = N->getGlobal(); 2864 bool IsLocal = getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV); 2865 SDValue Addr = getAddr(N, DAG, IsLocal); 2866 2867 // In order to maximise the opportunity for common subexpression elimination, 2868 // emit a separate ADD node for the global address offset instead of folding 2869 // it in the global address node. Later peephole optimisations may choose to 2870 // fold it back in when profitable. 2871 if (Offset != 0) 2872 return DAG.getNode(ISD::ADD, DL, Ty, Addr, 2873 DAG.getConstant(Offset, DL, XLenVT)); 2874 return Addr; 2875 } 2876 2877 SDValue RISCVTargetLowering::lowerBlockAddress(SDValue Op, 2878 SelectionDAG &DAG) const { 2879 BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op); 2880 2881 return getAddr(N, DAG); 2882 } 2883 2884 SDValue RISCVTargetLowering::lowerConstantPool(SDValue Op, 2885 SelectionDAG &DAG) const { 2886 ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op); 2887 2888 return getAddr(N, DAG); 2889 } 2890 2891 SDValue RISCVTargetLowering::lowerJumpTable(SDValue Op, 2892 SelectionDAG &DAG) const { 2893 JumpTableSDNode *N = cast<JumpTableSDNode>(Op); 2894 2895 return getAddr(N, DAG); 2896 } 2897 2898 SDValue RISCVTargetLowering::getStaticTLSAddr(GlobalAddressSDNode *N, 2899 SelectionDAG &DAG, 2900 bool UseGOT) const { 2901 SDLoc DL(N); 2902 EVT Ty = getPointerTy(DAG.getDataLayout()); 2903 const GlobalValue *GV = N->getGlobal(); 2904 MVT XLenVT = Subtarget.getXLenVT(); 2905 2906 if (UseGOT) { 2907 // Use PC-relative addressing to access the GOT for this TLS symbol, then 2908 // load the address from the GOT and add the thread pointer. This generates 2909 // the pattern (PseudoLA_TLS_IE sym), which expands to 2910 // (ld (auipc %tls_ie_pcrel_hi(sym)) %pcrel_lo(auipc)). 2911 SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0); 2912 SDValue Load = 2913 SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_IE, DL, Ty, Addr), 0); 2914 2915 // Add the thread pointer. 2916 SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT); 2917 return DAG.getNode(ISD::ADD, DL, Ty, Load, TPReg); 2918 } 2919 2920 // Generate a sequence for accessing the address relative to the thread 2921 // pointer, with the appropriate adjustment for the thread pointer offset. 2922 // This generates the pattern 2923 // (add (add_tprel (lui %tprel_hi(sym)) tp %tprel_add(sym)) %tprel_lo(sym)) 2924 SDValue AddrHi = 2925 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_HI); 2926 SDValue AddrAdd = 2927 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_ADD); 2928 SDValue AddrLo = 2929 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_LO); 2930 2931 SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0); 2932 SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT); 2933 SDValue MNAdd = SDValue( 2934 DAG.getMachineNode(RISCV::PseudoAddTPRel, DL, Ty, MNHi, TPReg, AddrAdd), 2935 0); 2936 return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNAdd, AddrLo), 0); 2937 } 2938 2939 SDValue RISCVTargetLowering::getDynamicTLSAddr(GlobalAddressSDNode *N, 2940 SelectionDAG &DAG) const { 2941 SDLoc DL(N); 2942 EVT Ty = getPointerTy(DAG.getDataLayout()); 2943 IntegerType *CallTy = Type::getIntNTy(*DAG.getContext(), Ty.getSizeInBits()); 2944 const GlobalValue *GV = N->getGlobal(); 2945 2946 // Use a PC-relative addressing mode to access the global dynamic GOT address. 2947 // This generates the pattern (PseudoLA_TLS_GD sym), which expands to 2948 // (addi (auipc %tls_gd_pcrel_hi(sym)) %pcrel_lo(auipc)). 2949 SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0); 2950 SDValue Load = 2951 SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_GD, DL, Ty, Addr), 0); 2952 2953 // Prepare argument list to generate call. 2954 ArgListTy Args; 2955 ArgListEntry Entry; 2956 Entry.Node = Load; 2957 Entry.Ty = CallTy; 2958 Args.push_back(Entry); 2959 2960 // Setup call to __tls_get_addr. 2961 TargetLowering::CallLoweringInfo CLI(DAG); 2962 CLI.setDebugLoc(DL) 2963 .setChain(DAG.getEntryNode()) 2964 .setLibCallee(CallingConv::C, CallTy, 2965 DAG.getExternalSymbol("__tls_get_addr", Ty), 2966 std::move(Args)); 2967 2968 return LowerCallTo(CLI).first; 2969 } 2970 2971 SDValue RISCVTargetLowering::lowerGlobalTLSAddress(SDValue Op, 2972 SelectionDAG &DAG) const { 2973 SDLoc DL(Op); 2974 EVT Ty = Op.getValueType(); 2975 GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op); 2976 int64_t Offset = N->getOffset(); 2977 MVT XLenVT = Subtarget.getXLenVT(); 2978 2979 TLSModel::Model Model = getTargetMachine().getTLSModel(N->getGlobal()); 2980 2981 if (DAG.getMachineFunction().getFunction().getCallingConv() == 2982 CallingConv::GHC) 2983 report_fatal_error("In GHC calling convention TLS is not supported"); 2984 2985 SDValue Addr; 2986 switch (Model) { 2987 case TLSModel::LocalExec: 2988 Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/false); 2989 break; 2990 case TLSModel::InitialExec: 2991 Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/true); 2992 break; 2993 case TLSModel::LocalDynamic: 2994 case TLSModel::GeneralDynamic: 2995 Addr = getDynamicTLSAddr(N, DAG); 2996 break; 2997 } 2998 2999 // In order to maximise the opportunity for common subexpression elimination, 3000 // emit a separate ADD node for the global address offset instead of folding 3001 // it in the global address node. Later peephole optimisations may choose to 3002 // fold it back in when profitable. 3003 if (Offset != 0) 3004 return DAG.getNode(ISD::ADD, DL, Ty, Addr, 3005 DAG.getConstant(Offset, DL, XLenVT)); 3006 return Addr; 3007 } 3008 3009 SDValue RISCVTargetLowering::lowerSELECT(SDValue Op, SelectionDAG &DAG) const { 3010 SDValue CondV = Op.getOperand(0); 3011 SDValue TrueV = Op.getOperand(1); 3012 SDValue FalseV = Op.getOperand(2); 3013 SDLoc DL(Op); 3014 MVT VT = Op.getSimpleValueType(); 3015 MVT XLenVT = Subtarget.getXLenVT(); 3016 3017 // Lower vector SELECTs to VSELECTs by splatting the condition. 3018 if (VT.isVector()) { 3019 MVT SplatCondVT = VT.changeVectorElementType(MVT::i1); 3020 SDValue CondSplat = VT.isScalableVector() 3021 ? DAG.getSplatVector(SplatCondVT, DL, CondV) 3022 : DAG.getSplatBuildVector(SplatCondVT, DL, CondV); 3023 return DAG.getNode(ISD::VSELECT, DL, VT, CondSplat, TrueV, FalseV); 3024 } 3025 3026 // If the result type is XLenVT and CondV is the output of a SETCC node 3027 // which also operated on XLenVT inputs, then merge the SETCC node into the 3028 // lowered RISCVISD::SELECT_CC to take advantage of the integer 3029 // compare+branch instructions. i.e.: 3030 // (select (setcc lhs, rhs, cc), truev, falsev) 3031 // -> (riscvisd::select_cc lhs, rhs, cc, truev, falsev) 3032 if (VT == XLenVT && CondV.getOpcode() == ISD::SETCC && 3033 CondV.getOperand(0).getSimpleValueType() == XLenVT) { 3034 SDValue LHS = CondV.getOperand(0); 3035 SDValue RHS = CondV.getOperand(1); 3036 const auto *CC = cast<CondCodeSDNode>(CondV.getOperand(2)); 3037 ISD::CondCode CCVal = CC->get(); 3038 3039 // Special case for a select of 2 constants that have a diffence of 1. 3040 // Normally this is done by DAGCombine, but if the select is introduced by 3041 // type legalization or op legalization, we miss it. Restricting to SETLT 3042 // case for now because that is what signed saturating add/sub need. 3043 // FIXME: We don't need the condition to be SETLT or even a SETCC, 3044 // but we would probably want to swap the true/false values if the condition 3045 // is SETGE/SETLE to avoid an XORI. 3046 if (isa<ConstantSDNode>(TrueV) && isa<ConstantSDNode>(FalseV) && 3047 CCVal == ISD::SETLT) { 3048 const APInt &TrueVal = cast<ConstantSDNode>(TrueV)->getAPIntValue(); 3049 const APInt &FalseVal = cast<ConstantSDNode>(FalseV)->getAPIntValue(); 3050 if (TrueVal - 1 == FalseVal) 3051 return DAG.getNode(ISD::ADD, DL, Op.getValueType(), CondV, FalseV); 3052 if (TrueVal + 1 == FalseVal) 3053 return DAG.getNode(ISD::SUB, DL, Op.getValueType(), FalseV, CondV); 3054 } 3055 3056 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 3057 3058 SDValue TargetCC = DAG.getCondCode(CCVal); 3059 SDValue Ops[] = {LHS, RHS, TargetCC, TrueV, FalseV}; 3060 return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops); 3061 } 3062 3063 // Otherwise: 3064 // (select condv, truev, falsev) 3065 // -> (riscvisd::select_cc condv, zero, setne, truev, falsev) 3066 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 3067 SDValue SetNE = DAG.getCondCode(ISD::SETNE); 3068 3069 SDValue Ops[] = {CondV, Zero, SetNE, TrueV, FalseV}; 3070 3071 return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops); 3072 } 3073 3074 SDValue RISCVTargetLowering::lowerBRCOND(SDValue Op, SelectionDAG &DAG) const { 3075 SDValue CondV = Op.getOperand(1); 3076 SDLoc DL(Op); 3077 MVT XLenVT = Subtarget.getXLenVT(); 3078 3079 if (CondV.getOpcode() == ISD::SETCC && 3080 CondV.getOperand(0).getValueType() == XLenVT) { 3081 SDValue LHS = CondV.getOperand(0); 3082 SDValue RHS = CondV.getOperand(1); 3083 ISD::CondCode CCVal = cast<CondCodeSDNode>(CondV.getOperand(2))->get(); 3084 3085 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 3086 3087 SDValue TargetCC = DAG.getCondCode(CCVal); 3088 return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0), 3089 LHS, RHS, TargetCC, Op.getOperand(2)); 3090 } 3091 3092 return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0), 3093 CondV, DAG.getConstant(0, DL, XLenVT), 3094 DAG.getCondCode(ISD::SETNE), Op.getOperand(2)); 3095 } 3096 3097 SDValue RISCVTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const { 3098 MachineFunction &MF = DAG.getMachineFunction(); 3099 RISCVMachineFunctionInfo *FuncInfo = MF.getInfo<RISCVMachineFunctionInfo>(); 3100 3101 SDLoc DL(Op); 3102 SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), 3103 getPointerTy(MF.getDataLayout())); 3104 3105 // vastart just stores the address of the VarArgsFrameIndex slot into the 3106 // memory location argument. 3107 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 3108 return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1), 3109 MachinePointerInfo(SV)); 3110 } 3111 3112 SDValue RISCVTargetLowering::lowerFRAMEADDR(SDValue Op, 3113 SelectionDAG &DAG) const { 3114 const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo(); 3115 MachineFunction &MF = DAG.getMachineFunction(); 3116 MachineFrameInfo &MFI = MF.getFrameInfo(); 3117 MFI.setFrameAddressIsTaken(true); 3118 Register FrameReg = RI.getFrameRegister(MF); 3119 int XLenInBytes = Subtarget.getXLen() / 8; 3120 3121 EVT VT = Op.getValueType(); 3122 SDLoc DL(Op); 3123 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, FrameReg, VT); 3124 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 3125 while (Depth--) { 3126 int Offset = -(XLenInBytes * 2); 3127 SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr, 3128 DAG.getIntPtrConstant(Offset, DL)); 3129 FrameAddr = 3130 DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo()); 3131 } 3132 return FrameAddr; 3133 } 3134 3135 SDValue RISCVTargetLowering::lowerRETURNADDR(SDValue Op, 3136 SelectionDAG &DAG) const { 3137 const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo(); 3138 MachineFunction &MF = DAG.getMachineFunction(); 3139 MachineFrameInfo &MFI = MF.getFrameInfo(); 3140 MFI.setReturnAddressIsTaken(true); 3141 MVT XLenVT = Subtarget.getXLenVT(); 3142 int XLenInBytes = Subtarget.getXLen() / 8; 3143 3144 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 3145 return SDValue(); 3146 3147 EVT VT = Op.getValueType(); 3148 SDLoc DL(Op); 3149 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 3150 if (Depth) { 3151 int Off = -XLenInBytes; 3152 SDValue FrameAddr = lowerFRAMEADDR(Op, DAG); 3153 SDValue Offset = DAG.getConstant(Off, DL, VT); 3154 return DAG.getLoad(VT, DL, DAG.getEntryNode(), 3155 DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset), 3156 MachinePointerInfo()); 3157 } 3158 3159 // Return the value of the return address register, marking it an implicit 3160 // live-in. 3161 Register Reg = MF.addLiveIn(RI.getRARegister(), getRegClassFor(XLenVT)); 3162 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, XLenVT); 3163 } 3164 3165 SDValue RISCVTargetLowering::lowerShiftLeftParts(SDValue Op, 3166 SelectionDAG &DAG) const { 3167 SDLoc DL(Op); 3168 SDValue Lo = Op.getOperand(0); 3169 SDValue Hi = Op.getOperand(1); 3170 SDValue Shamt = Op.getOperand(2); 3171 EVT VT = Lo.getValueType(); 3172 3173 // if Shamt-XLEN < 0: // Shamt < XLEN 3174 // Lo = Lo << Shamt 3175 // Hi = (Hi << Shamt) | ((Lo >>u 1) >>u (XLEN-1 - Shamt)) 3176 // else: 3177 // Lo = 0 3178 // Hi = Lo << (Shamt-XLEN) 3179 3180 SDValue Zero = DAG.getConstant(0, DL, VT); 3181 SDValue One = DAG.getConstant(1, DL, VT); 3182 SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT); 3183 SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT); 3184 SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen); 3185 SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt); 3186 3187 SDValue LoTrue = DAG.getNode(ISD::SHL, DL, VT, Lo, Shamt); 3188 SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, VT, Lo, One); 3189 SDValue ShiftRightLo = 3190 DAG.getNode(ISD::SRL, DL, VT, ShiftRight1Lo, XLenMinus1Shamt); 3191 SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, Hi, Shamt); 3192 SDValue HiTrue = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo); 3193 SDValue HiFalse = DAG.getNode(ISD::SHL, DL, VT, Lo, ShamtMinusXLen); 3194 3195 SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT); 3196 3197 Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, Zero); 3198 Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse); 3199 3200 SDValue Parts[2] = {Lo, Hi}; 3201 return DAG.getMergeValues(Parts, DL); 3202 } 3203 3204 SDValue RISCVTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG, 3205 bool IsSRA) const { 3206 SDLoc DL(Op); 3207 SDValue Lo = Op.getOperand(0); 3208 SDValue Hi = Op.getOperand(1); 3209 SDValue Shamt = Op.getOperand(2); 3210 EVT VT = Lo.getValueType(); 3211 3212 // SRA expansion: 3213 // if Shamt-XLEN < 0: // Shamt < XLEN 3214 // Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt)) 3215 // Hi = Hi >>s Shamt 3216 // else: 3217 // Lo = Hi >>s (Shamt-XLEN); 3218 // Hi = Hi >>s (XLEN-1) 3219 // 3220 // SRL expansion: 3221 // if Shamt-XLEN < 0: // Shamt < XLEN 3222 // Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt)) 3223 // Hi = Hi >>u Shamt 3224 // else: 3225 // Lo = Hi >>u (Shamt-XLEN); 3226 // Hi = 0; 3227 3228 unsigned ShiftRightOp = IsSRA ? ISD::SRA : ISD::SRL; 3229 3230 SDValue Zero = DAG.getConstant(0, DL, VT); 3231 SDValue One = DAG.getConstant(1, DL, VT); 3232 SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT); 3233 SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT); 3234 SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen); 3235 SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt); 3236 3237 SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, Lo, Shamt); 3238 SDValue ShiftLeftHi1 = DAG.getNode(ISD::SHL, DL, VT, Hi, One); 3239 SDValue ShiftLeftHi = 3240 DAG.getNode(ISD::SHL, DL, VT, ShiftLeftHi1, XLenMinus1Shamt); 3241 SDValue LoTrue = DAG.getNode(ISD::OR, DL, VT, ShiftRightLo, ShiftLeftHi); 3242 SDValue HiTrue = DAG.getNode(ShiftRightOp, DL, VT, Hi, Shamt); 3243 SDValue LoFalse = DAG.getNode(ShiftRightOp, DL, VT, Hi, ShamtMinusXLen); 3244 SDValue HiFalse = 3245 IsSRA ? DAG.getNode(ISD::SRA, DL, VT, Hi, XLenMinus1) : Zero; 3246 3247 SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT); 3248 3249 Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, LoFalse); 3250 Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse); 3251 3252 SDValue Parts[2] = {Lo, Hi}; 3253 return DAG.getMergeValues(Parts, DL); 3254 } 3255 3256 // Lower splats of i1 types to SETCC. For each mask vector type, we have a 3257 // legal equivalently-sized i8 type, so we can use that as a go-between. 3258 SDValue RISCVTargetLowering::lowerVectorMaskSplat(SDValue Op, 3259 SelectionDAG &DAG) const { 3260 SDLoc DL(Op); 3261 MVT VT = Op.getSimpleValueType(); 3262 SDValue SplatVal = Op.getOperand(0); 3263 // All-zeros or all-ones splats are handled specially. 3264 if (ISD::isConstantSplatVectorAllOnes(Op.getNode())) { 3265 SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second; 3266 return DAG.getNode(RISCVISD::VMSET_VL, DL, VT, VL); 3267 } 3268 if (ISD::isConstantSplatVectorAllZeros(Op.getNode())) { 3269 SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second; 3270 return DAG.getNode(RISCVISD::VMCLR_VL, DL, VT, VL); 3271 } 3272 MVT XLenVT = Subtarget.getXLenVT(); 3273 assert(SplatVal.getValueType() == XLenVT && 3274 "Unexpected type for i1 splat value"); 3275 MVT InterVT = VT.changeVectorElementType(MVT::i8); 3276 SplatVal = DAG.getNode(ISD::AND, DL, XLenVT, SplatVal, 3277 DAG.getConstant(1, DL, XLenVT)); 3278 SDValue LHS = DAG.getSplatVector(InterVT, DL, SplatVal); 3279 SDValue Zero = DAG.getConstant(0, DL, InterVT); 3280 return DAG.getSetCC(DL, VT, LHS, Zero, ISD::SETNE); 3281 } 3282 3283 // Custom-lower a SPLAT_VECTOR_PARTS where XLEN<SEW, as the SEW element type is 3284 // illegal (currently only vXi64 RV32). 3285 // FIXME: We could also catch non-constant sign-extended i32 values and lower 3286 // them to SPLAT_VECTOR_I64 3287 SDValue RISCVTargetLowering::lowerSPLAT_VECTOR_PARTS(SDValue Op, 3288 SelectionDAG &DAG) const { 3289 SDLoc DL(Op); 3290 MVT VecVT = Op.getSimpleValueType(); 3291 assert(!Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64 && 3292 "Unexpected SPLAT_VECTOR_PARTS lowering"); 3293 3294 assert(Op.getNumOperands() == 2 && "Unexpected number of operands!"); 3295 SDValue Lo = Op.getOperand(0); 3296 SDValue Hi = Op.getOperand(1); 3297 3298 if (VecVT.isFixedLengthVector()) { 3299 MVT ContainerVT = getContainerForFixedLengthVector(VecVT); 3300 SDLoc DL(Op); 3301 SDValue Mask, VL; 3302 std::tie(Mask, VL) = 3303 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 3304 3305 SDValue Res = splatPartsI64WithVL(DL, ContainerVT, Lo, Hi, VL, DAG); 3306 return convertFromScalableVector(VecVT, Res, DAG, Subtarget); 3307 } 3308 3309 if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) { 3310 int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue(); 3311 int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue(); 3312 // If Hi constant is all the same sign bit as Lo, lower this as a custom 3313 // node in order to try and match RVV vector/scalar instructions. 3314 if ((LoC >> 31) == HiC) 3315 return DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, Lo); 3316 } 3317 3318 // Detect cases where Hi is (SRA Lo, 31) which means Hi is Lo sign extended. 3319 if (Hi.getOpcode() == ISD::SRA && Hi.getOperand(0) == Lo && 3320 isa<ConstantSDNode>(Hi.getOperand(1)) && 3321 Hi.getConstantOperandVal(1) == 31) 3322 return DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, Lo); 3323 3324 // Fall back to use a stack store and stride x0 vector load. Use X0 as VL. 3325 return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VecVT, Lo, Hi, 3326 DAG.getTargetConstant(RISCV::VLMaxSentinel, DL, MVT::i64)); 3327 } 3328 3329 // Custom-lower extensions from mask vectors by using a vselect either with 1 3330 // for zero/any-extension or -1 for sign-extension: 3331 // (vXiN = (s|z)ext vXi1:vmask) -> (vXiN = vselect vmask, (-1 or 1), 0) 3332 // Note that any-extension is lowered identically to zero-extension. 3333 SDValue RISCVTargetLowering::lowerVectorMaskExt(SDValue Op, SelectionDAG &DAG, 3334 int64_t ExtTrueVal) const { 3335 SDLoc DL(Op); 3336 MVT VecVT = Op.getSimpleValueType(); 3337 SDValue Src = Op.getOperand(0); 3338 // Only custom-lower extensions from mask types 3339 assert(Src.getValueType().isVector() && 3340 Src.getValueType().getVectorElementType() == MVT::i1); 3341 3342 MVT XLenVT = Subtarget.getXLenVT(); 3343 SDValue SplatZero = DAG.getConstant(0, DL, XLenVT); 3344 SDValue SplatTrueVal = DAG.getConstant(ExtTrueVal, DL, XLenVT); 3345 3346 if (VecVT.isScalableVector()) { 3347 // Be careful not to introduce illegal scalar types at this stage, and be 3348 // careful also about splatting constants as on RV32, vXi64 SPLAT_VECTOR is 3349 // illegal and must be expanded. Since we know that the constants are 3350 // sign-extended 32-bit values, we use SPLAT_VECTOR_I64 directly. 3351 bool IsRV32E64 = 3352 !Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64; 3353 3354 if (!IsRV32E64) { 3355 SplatZero = DAG.getSplatVector(VecVT, DL, SplatZero); 3356 SplatTrueVal = DAG.getSplatVector(VecVT, DL, SplatTrueVal); 3357 } else { 3358 SplatZero = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, SplatZero); 3359 SplatTrueVal = 3360 DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, SplatTrueVal); 3361 } 3362 3363 return DAG.getNode(ISD::VSELECT, DL, VecVT, Src, SplatTrueVal, SplatZero); 3364 } 3365 3366 MVT ContainerVT = getContainerForFixedLengthVector(VecVT); 3367 MVT I1ContainerVT = 3368 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 3369 3370 SDValue CC = convertToScalableVector(I1ContainerVT, Src, DAG, Subtarget); 3371 3372 SDValue Mask, VL; 3373 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 3374 3375 SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatZero, VL); 3376 SplatTrueVal = 3377 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatTrueVal, VL); 3378 SDValue Select = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC, 3379 SplatTrueVal, SplatZero, VL); 3380 3381 return convertFromScalableVector(VecVT, Select, DAG, Subtarget); 3382 } 3383 3384 SDValue RISCVTargetLowering::lowerFixedLengthVectorExtendToRVV( 3385 SDValue Op, SelectionDAG &DAG, unsigned ExtendOpc) const { 3386 MVT ExtVT = Op.getSimpleValueType(); 3387 // Only custom-lower extensions from fixed-length vector types. 3388 if (!ExtVT.isFixedLengthVector()) 3389 return Op; 3390 MVT VT = Op.getOperand(0).getSimpleValueType(); 3391 // Grab the canonical container type for the extended type. Infer the smaller 3392 // type from that to ensure the same number of vector elements, as we know 3393 // the LMUL will be sufficient to hold the smaller type. 3394 MVT ContainerExtVT = getContainerForFixedLengthVector(ExtVT); 3395 // Get the extended container type manually to ensure the same number of 3396 // vector elements between source and dest. 3397 MVT ContainerVT = MVT::getVectorVT(VT.getVectorElementType(), 3398 ContainerExtVT.getVectorElementCount()); 3399 3400 SDValue Op1 = 3401 convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget); 3402 3403 SDLoc DL(Op); 3404 SDValue Mask, VL; 3405 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 3406 3407 SDValue Ext = DAG.getNode(ExtendOpc, DL, ContainerExtVT, Op1, Mask, VL); 3408 3409 return convertFromScalableVector(ExtVT, Ext, DAG, Subtarget); 3410 } 3411 3412 // Custom-lower truncations from vectors to mask vectors by using a mask and a 3413 // setcc operation: 3414 // (vXi1 = trunc vXiN vec) -> (vXi1 = setcc (and vec, 1), 0, ne) 3415 SDValue RISCVTargetLowering::lowerVectorMaskTrunc(SDValue Op, 3416 SelectionDAG &DAG) const { 3417 SDLoc DL(Op); 3418 EVT MaskVT = Op.getValueType(); 3419 // Only expect to custom-lower truncations to mask types 3420 assert(MaskVT.isVector() && MaskVT.getVectorElementType() == MVT::i1 && 3421 "Unexpected type for vector mask lowering"); 3422 SDValue Src = Op.getOperand(0); 3423 MVT VecVT = Src.getSimpleValueType(); 3424 3425 // If this is a fixed vector, we need to convert it to a scalable vector. 3426 MVT ContainerVT = VecVT; 3427 if (VecVT.isFixedLengthVector()) { 3428 ContainerVT = getContainerForFixedLengthVector(VecVT); 3429 Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget); 3430 } 3431 3432 SDValue SplatOne = DAG.getConstant(1, DL, Subtarget.getXLenVT()); 3433 SDValue SplatZero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 3434 3435 SplatOne = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatOne); 3436 SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatZero); 3437 3438 if (VecVT.isScalableVector()) { 3439 SDValue Trunc = DAG.getNode(ISD::AND, DL, VecVT, Src, SplatOne); 3440 return DAG.getSetCC(DL, MaskVT, Trunc, SplatZero, ISD::SETNE); 3441 } 3442 3443 SDValue Mask, VL; 3444 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 3445 3446 MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1); 3447 SDValue Trunc = 3448 DAG.getNode(RISCVISD::AND_VL, DL, ContainerVT, Src, SplatOne, Mask, VL); 3449 Trunc = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskContainerVT, Trunc, SplatZero, 3450 DAG.getCondCode(ISD::SETNE), Mask, VL); 3451 return convertFromScalableVector(MaskVT, Trunc, DAG, Subtarget); 3452 } 3453 3454 // Custom-legalize INSERT_VECTOR_ELT so that the value is inserted into the 3455 // first position of a vector, and that vector is slid up to the insert index. 3456 // By limiting the active vector length to index+1 and merging with the 3457 // original vector (with an undisturbed tail policy for elements >= VL), we 3458 // achieve the desired result of leaving all elements untouched except the one 3459 // at VL-1, which is replaced with the desired value. 3460 SDValue RISCVTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op, 3461 SelectionDAG &DAG) const { 3462 SDLoc DL(Op); 3463 MVT VecVT = Op.getSimpleValueType(); 3464 SDValue Vec = Op.getOperand(0); 3465 SDValue Val = Op.getOperand(1); 3466 SDValue Idx = Op.getOperand(2); 3467 3468 if (VecVT.getVectorElementType() == MVT::i1) { 3469 // FIXME: For now we just promote to an i8 vector and insert into that, 3470 // but this is probably not optimal. 3471 MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount()); 3472 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec); 3473 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, WideVT, Vec, Val, Idx); 3474 return DAG.getNode(ISD::TRUNCATE, DL, VecVT, Vec); 3475 } 3476 3477 MVT ContainerVT = VecVT; 3478 // If the operand is a fixed-length vector, convert to a scalable one. 3479 if (VecVT.isFixedLengthVector()) { 3480 ContainerVT = getContainerForFixedLengthVector(VecVT); 3481 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 3482 } 3483 3484 MVT XLenVT = Subtarget.getXLenVT(); 3485 3486 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 3487 bool IsLegalInsert = Subtarget.is64Bit() || Val.getValueType() != MVT::i64; 3488 // Even i64-element vectors on RV32 can be lowered without scalar 3489 // legalization if the most-significant 32 bits of the value are not affected 3490 // by the sign-extension of the lower 32 bits. 3491 // TODO: We could also catch sign extensions of a 32-bit value. 3492 if (!IsLegalInsert && isa<ConstantSDNode>(Val)) { 3493 const auto *CVal = cast<ConstantSDNode>(Val); 3494 if (isInt<32>(CVal->getSExtValue())) { 3495 IsLegalInsert = true; 3496 Val = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32); 3497 } 3498 } 3499 3500 SDValue Mask, VL; 3501 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 3502 3503 SDValue ValInVec; 3504 3505 if (IsLegalInsert) { 3506 unsigned Opc = 3507 VecVT.isFloatingPoint() ? RISCVISD::VFMV_S_F_VL : RISCVISD::VMV_S_X_VL; 3508 if (isNullConstant(Idx)) { 3509 Vec = DAG.getNode(Opc, DL, ContainerVT, Vec, Val, VL); 3510 if (!VecVT.isFixedLengthVector()) 3511 return Vec; 3512 return convertFromScalableVector(VecVT, Vec, DAG, Subtarget); 3513 } 3514 ValInVec = 3515 DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), Val, VL); 3516 } else { 3517 // On RV32, i64-element vectors must be specially handled to place the 3518 // value at element 0, by using two vslide1up instructions in sequence on 3519 // the i32 split lo/hi value. Use an equivalently-sized i32 vector for 3520 // this. 3521 SDValue One = DAG.getConstant(1, DL, XLenVT); 3522 SDValue ValLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, Zero); 3523 SDValue ValHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, One); 3524 MVT I32ContainerVT = 3525 MVT::getVectorVT(MVT::i32, ContainerVT.getVectorElementCount() * 2); 3526 SDValue I32Mask = 3527 getDefaultScalableVLOps(I32ContainerVT, DL, DAG, Subtarget).first; 3528 // Limit the active VL to two. 3529 SDValue InsertI64VL = DAG.getConstant(2, DL, XLenVT); 3530 // Note: We can't pass a UNDEF to the first VSLIDE1UP_VL since an untied 3531 // undef doesn't obey the earlyclobber constraint. Just splat a zero value. 3532 ValInVec = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, I32ContainerVT, Zero, 3533 InsertI64VL); 3534 // First slide in the hi value, then the lo in underneath it. 3535 ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT, ValInVec, 3536 ValHi, I32Mask, InsertI64VL); 3537 ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT, ValInVec, 3538 ValLo, I32Mask, InsertI64VL); 3539 // Bitcast back to the right container type. 3540 ValInVec = DAG.getBitcast(ContainerVT, ValInVec); 3541 } 3542 3543 // Now that the value is in a vector, slide it into position. 3544 SDValue InsertVL = 3545 DAG.getNode(ISD::ADD, DL, XLenVT, Idx, DAG.getConstant(1, DL, XLenVT)); 3546 SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec, 3547 ValInVec, Idx, Mask, InsertVL); 3548 if (!VecVT.isFixedLengthVector()) 3549 return Slideup; 3550 return convertFromScalableVector(VecVT, Slideup, DAG, Subtarget); 3551 } 3552 3553 // Custom-lower EXTRACT_VECTOR_ELT operations to slide the vector down, then 3554 // extract the first element: (extractelt (slidedown vec, idx), 0). For integer 3555 // types this is done using VMV_X_S to allow us to glean information about the 3556 // sign bits of the result. 3557 SDValue RISCVTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op, 3558 SelectionDAG &DAG) const { 3559 SDLoc DL(Op); 3560 SDValue Idx = Op.getOperand(1); 3561 SDValue Vec = Op.getOperand(0); 3562 EVT EltVT = Op.getValueType(); 3563 MVT VecVT = Vec.getSimpleValueType(); 3564 MVT XLenVT = Subtarget.getXLenVT(); 3565 3566 if (VecVT.getVectorElementType() == MVT::i1) { 3567 // FIXME: For now we just promote to an i8 vector and extract from that, 3568 // but this is probably not optimal. 3569 MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount()); 3570 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec); 3571 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec, Idx); 3572 } 3573 3574 // If this is a fixed vector, we need to convert it to a scalable vector. 3575 MVT ContainerVT = VecVT; 3576 if (VecVT.isFixedLengthVector()) { 3577 ContainerVT = getContainerForFixedLengthVector(VecVT); 3578 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 3579 } 3580 3581 // If the index is 0, the vector is already in the right position. 3582 if (!isNullConstant(Idx)) { 3583 // Use a VL of 1 to avoid processing more elements than we need. 3584 SDValue VL = DAG.getConstant(1, DL, XLenVT); 3585 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 3586 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 3587 Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 3588 DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL); 3589 } 3590 3591 if (!EltVT.isInteger()) { 3592 // Floating-point extracts are handled in TableGen. 3593 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec, 3594 DAG.getConstant(0, DL, XLenVT)); 3595 } 3596 3597 SDValue Elt0 = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); 3598 return DAG.getNode(ISD::TRUNCATE, DL, EltVT, Elt0); 3599 } 3600 3601 // Some RVV intrinsics may claim that they want an integer operand to be 3602 // promoted or expanded. 3603 static SDValue lowerVectorIntrinsicSplats(SDValue Op, SelectionDAG &DAG, 3604 const RISCVSubtarget &Subtarget) { 3605 assert((Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3606 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN) && 3607 "Unexpected opcode"); 3608 3609 if (!Subtarget.hasStdExtV()) 3610 return SDValue(); 3611 3612 bool HasChain = Op.getOpcode() == ISD::INTRINSIC_W_CHAIN; 3613 unsigned IntNo = Op.getConstantOperandVal(HasChain ? 1 : 0); 3614 SDLoc DL(Op); 3615 3616 const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II = 3617 RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo); 3618 if (!II || !II->SplatOperand) 3619 return SDValue(); 3620 3621 unsigned SplatOp = II->SplatOperand + HasChain; 3622 assert(SplatOp < Op.getNumOperands()); 3623 3624 SmallVector<SDValue, 8> Operands(Op->op_begin(), Op->op_end()); 3625 SDValue &ScalarOp = Operands[SplatOp]; 3626 MVT OpVT = ScalarOp.getSimpleValueType(); 3627 MVT XLenVT = Subtarget.getXLenVT(); 3628 3629 // If this isn't a scalar, or its type is XLenVT we're done. 3630 if (!OpVT.isScalarInteger() || OpVT == XLenVT) 3631 return SDValue(); 3632 3633 // Simplest case is that the operand needs to be promoted to XLenVT. 3634 if (OpVT.bitsLT(XLenVT)) { 3635 // If the operand is a constant, sign extend to increase our chances 3636 // of being able to use a .vi instruction. ANY_EXTEND would become a 3637 // a zero extend and the simm5 check in isel would fail. 3638 // FIXME: Should we ignore the upper bits in isel instead? 3639 unsigned ExtOpc = 3640 isa<ConstantSDNode>(ScalarOp) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND; 3641 ScalarOp = DAG.getNode(ExtOpc, DL, XLenVT, ScalarOp); 3642 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); 3643 } 3644 3645 // Use the previous operand to get the vXi64 VT. The result might be a mask 3646 // VT for compares. Using the previous operand assumes that the previous 3647 // operand will never have a smaller element size than a scalar operand and 3648 // that a widening operation never uses SEW=64. 3649 // NOTE: If this fails the below assert, we can probably just find the 3650 // element count from any operand or result and use it to construct the VT. 3651 assert(II->SplatOperand > 1 && "Unexpected splat operand!"); 3652 MVT VT = Op.getOperand(SplatOp - 1).getSimpleValueType(); 3653 3654 // The more complex case is when the scalar is larger than XLenVT. 3655 assert(XLenVT == MVT::i32 && OpVT == MVT::i64 && 3656 VT.getVectorElementType() == MVT::i64 && "Unexpected VTs!"); 3657 3658 // If this is a sign-extended 32-bit constant, we can truncate it and rely 3659 // on the instruction to sign-extend since SEW>XLEN. 3660 if (auto *CVal = dyn_cast<ConstantSDNode>(ScalarOp)) { 3661 if (isInt<32>(CVal->getSExtValue())) { 3662 ScalarOp = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32); 3663 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); 3664 } 3665 } 3666 3667 // We need to convert the scalar to a splat vector. 3668 // FIXME: Can we implicitly truncate the scalar if it is known to 3669 // be sign extended? 3670 // VL should be the last operand. 3671 SDValue VL = Op.getOperand(Op.getNumOperands() - 1); 3672 assert(VL.getValueType() == XLenVT); 3673 ScalarOp = splatSplitI64WithVL(DL, VT, ScalarOp, VL, DAG); 3674 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); 3675 } 3676 3677 SDValue RISCVTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 3678 SelectionDAG &DAG) const { 3679 unsigned IntNo = Op.getConstantOperandVal(0); 3680 SDLoc DL(Op); 3681 MVT XLenVT = Subtarget.getXLenVT(); 3682 3683 switch (IntNo) { 3684 default: 3685 break; // Don't custom lower most intrinsics. 3686 case Intrinsic::thread_pointer: { 3687 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3688 return DAG.getRegister(RISCV::X4, PtrVT); 3689 } 3690 case Intrinsic::riscv_orc_b: 3691 // Lower to the GORCI encoding for orc.b. 3692 return DAG.getNode(RISCVISD::GORC, DL, XLenVT, Op.getOperand(1), 3693 DAG.getConstant(7, DL, XLenVT)); 3694 case Intrinsic::riscv_grev: 3695 case Intrinsic::riscv_gorc: { 3696 unsigned Opc = 3697 IntNo == Intrinsic::riscv_grev ? RISCVISD::GREV : RISCVISD::GORC; 3698 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2)); 3699 } 3700 case Intrinsic::riscv_shfl: 3701 case Intrinsic::riscv_unshfl: { 3702 unsigned Opc = 3703 IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL; 3704 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2)); 3705 } 3706 case Intrinsic::riscv_bcompress: 3707 case Intrinsic::riscv_bdecompress: { 3708 unsigned Opc = IntNo == Intrinsic::riscv_bcompress ? RISCVISD::BCOMPRESS 3709 : RISCVISD::BDECOMPRESS; 3710 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2)); 3711 } 3712 case Intrinsic::riscv_vmv_x_s: 3713 assert(Op.getValueType() == XLenVT && "Unexpected VT!"); 3714 return DAG.getNode(RISCVISD::VMV_X_S, DL, Op.getValueType(), 3715 Op.getOperand(1)); 3716 case Intrinsic::riscv_vmv_v_x: 3717 return lowerScalarSplat(Op.getOperand(1), Op.getOperand(2), 3718 Op.getSimpleValueType(), DL, DAG, Subtarget); 3719 case Intrinsic::riscv_vfmv_v_f: 3720 return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, Op.getValueType(), 3721 Op.getOperand(1), Op.getOperand(2)); 3722 case Intrinsic::riscv_vmv_s_x: { 3723 SDValue Scalar = Op.getOperand(2); 3724 3725 if (Scalar.getValueType().bitsLE(XLenVT)) { 3726 Scalar = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Scalar); 3727 return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, Op.getValueType(), 3728 Op.getOperand(1), Scalar, Op.getOperand(3)); 3729 } 3730 3731 assert(Scalar.getValueType() == MVT::i64 && "Unexpected scalar VT!"); 3732 3733 // This is an i64 value that lives in two scalar registers. We have to 3734 // insert this in a convoluted way. First we build vXi64 splat containing 3735 // the/ two values that we assemble using some bit math. Next we'll use 3736 // vid.v and vmseq to build a mask with bit 0 set. Then we'll use that mask 3737 // to merge element 0 from our splat into the source vector. 3738 // FIXME: This is probably not the best way to do this, but it is 3739 // consistent with INSERT_VECTOR_ELT lowering so it is a good starting 3740 // point. 3741 // sw lo, (a0) 3742 // sw hi, 4(a0) 3743 // vlse vX, (a0) 3744 // 3745 // vid.v vVid 3746 // vmseq.vx mMask, vVid, 0 3747 // vmerge.vvm vDest, vSrc, vVal, mMask 3748 MVT VT = Op.getSimpleValueType(); 3749 SDValue Vec = Op.getOperand(1); 3750 SDValue VL = Op.getOperand(3); 3751 3752 SDValue SplattedVal = splatSplitI64WithVL(DL, VT, Scalar, VL, DAG); 3753 SDValue SplattedIdx = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, 3754 DAG.getConstant(0, DL, MVT::i32), VL); 3755 3756 MVT MaskVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount()); 3757 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 3758 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL); 3759 SDValue SelectCond = 3760 DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, VID, SplattedIdx, 3761 DAG.getCondCode(ISD::SETEQ), Mask, VL); 3762 return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, SelectCond, SplattedVal, 3763 Vec, VL); 3764 } 3765 case Intrinsic::riscv_vslide1up: 3766 case Intrinsic::riscv_vslide1down: 3767 case Intrinsic::riscv_vslide1up_mask: 3768 case Intrinsic::riscv_vslide1down_mask: { 3769 // We need to special case these when the scalar is larger than XLen. 3770 unsigned NumOps = Op.getNumOperands(); 3771 bool IsMasked = NumOps == 6; 3772 unsigned OpOffset = IsMasked ? 1 : 0; 3773 SDValue Scalar = Op.getOperand(2 + OpOffset); 3774 if (Scalar.getValueType().bitsLE(XLenVT)) 3775 break; 3776 3777 // Splatting a sign extended constant is fine. 3778 if (auto *CVal = dyn_cast<ConstantSDNode>(Scalar)) 3779 if (isInt<32>(CVal->getSExtValue())) 3780 break; 3781 3782 MVT VT = Op.getSimpleValueType(); 3783 assert(VT.getVectorElementType() == MVT::i64 && 3784 Scalar.getValueType() == MVT::i64 && "Unexpected VTs"); 3785 3786 // Convert the vector source to the equivalent nxvXi32 vector. 3787 MVT I32VT = MVT::getVectorVT(MVT::i32, VT.getVectorElementCount() * 2); 3788 SDValue Vec = DAG.getBitcast(I32VT, Op.getOperand(1 + OpOffset)); 3789 3790 SDValue ScalarLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 3791 DAG.getConstant(0, DL, XLenVT)); 3792 SDValue ScalarHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 3793 DAG.getConstant(1, DL, XLenVT)); 3794 3795 // Double the VL since we halved SEW. 3796 SDValue VL = Op.getOperand(NumOps - 1); 3797 SDValue I32VL = 3798 DAG.getNode(ISD::SHL, DL, XLenVT, VL, DAG.getConstant(1, DL, XLenVT)); 3799 3800 MVT I32MaskVT = MVT::getVectorVT(MVT::i1, I32VT.getVectorElementCount()); 3801 SDValue I32Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, I32MaskVT, VL); 3802 3803 // Shift the two scalar parts in using SEW=32 slide1up/slide1down 3804 // instructions. 3805 if (IntNo == Intrinsic::riscv_vslide1up || 3806 IntNo == Intrinsic::riscv_vslide1up_mask) { 3807 Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Vec, ScalarHi, 3808 I32Mask, I32VL); 3809 Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Vec, ScalarLo, 3810 I32Mask, I32VL); 3811 } else { 3812 Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Vec, ScalarLo, 3813 I32Mask, I32VL); 3814 Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Vec, ScalarHi, 3815 I32Mask, I32VL); 3816 } 3817 3818 // Convert back to nxvXi64. 3819 Vec = DAG.getBitcast(VT, Vec); 3820 3821 if (!IsMasked) 3822 return Vec; 3823 3824 // Apply mask after the operation. 3825 SDValue Mask = Op.getOperand(NumOps - 2); 3826 SDValue MaskedOff = Op.getOperand(1); 3827 return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, Mask, Vec, MaskedOff, VL); 3828 } 3829 } 3830 3831 return lowerVectorIntrinsicSplats(Op, DAG, Subtarget); 3832 } 3833 3834 SDValue RISCVTargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op, 3835 SelectionDAG &DAG) const { 3836 return lowerVectorIntrinsicSplats(Op, DAG, Subtarget); 3837 } 3838 3839 static MVT getLMUL1VT(MVT VT) { 3840 assert(VT.getVectorElementType().getSizeInBits() <= 64 && 3841 "Unexpected vector MVT"); 3842 return MVT::getScalableVectorVT( 3843 VT.getVectorElementType(), 3844 RISCV::RVVBitsPerBlock / VT.getVectorElementType().getSizeInBits()); 3845 } 3846 3847 static unsigned getRVVReductionOp(unsigned ISDOpcode) { 3848 switch (ISDOpcode) { 3849 default: 3850 llvm_unreachable("Unhandled reduction"); 3851 case ISD::VECREDUCE_ADD: 3852 return RISCVISD::VECREDUCE_ADD_VL; 3853 case ISD::VECREDUCE_UMAX: 3854 return RISCVISD::VECREDUCE_UMAX_VL; 3855 case ISD::VECREDUCE_SMAX: 3856 return RISCVISD::VECREDUCE_SMAX_VL; 3857 case ISD::VECREDUCE_UMIN: 3858 return RISCVISD::VECREDUCE_UMIN_VL; 3859 case ISD::VECREDUCE_SMIN: 3860 return RISCVISD::VECREDUCE_SMIN_VL; 3861 case ISD::VECREDUCE_AND: 3862 return RISCVISD::VECREDUCE_AND_VL; 3863 case ISD::VECREDUCE_OR: 3864 return RISCVISD::VECREDUCE_OR_VL; 3865 case ISD::VECREDUCE_XOR: 3866 return RISCVISD::VECREDUCE_XOR_VL; 3867 } 3868 } 3869 3870 SDValue RISCVTargetLowering::lowerVectorMaskVECREDUCE(SDValue Op, 3871 SelectionDAG &DAG) const { 3872 SDLoc DL(Op); 3873 SDValue Vec = Op.getOperand(0); 3874 MVT VecVT = Vec.getSimpleValueType(); 3875 assert((Op.getOpcode() == ISD::VECREDUCE_AND || 3876 Op.getOpcode() == ISD::VECREDUCE_OR || 3877 Op.getOpcode() == ISD::VECREDUCE_XOR) && 3878 "Unexpected reduction lowering"); 3879 3880 MVT XLenVT = Subtarget.getXLenVT(); 3881 assert(Op.getValueType() == XLenVT && 3882 "Expected reduction output to be legalized to XLenVT"); 3883 3884 MVT ContainerVT = VecVT; 3885 if (VecVT.isFixedLengthVector()) { 3886 ContainerVT = getContainerForFixedLengthVector(VecVT); 3887 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 3888 } 3889 3890 SDValue Mask, VL; 3891 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 3892 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 3893 3894 switch (Op.getOpcode()) { 3895 default: 3896 llvm_unreachable("Unhandled reduction"); 3897 case ISD::VECREDUCE_AND: 3898 // vpopc ~x == 0 3899 Vec = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Vec, Mask, VL); 3900 Vec = DAG.getNode(RISCVISD::VPOPC_VL, DL, XLenVT, Vec, Mask, VL); 3901 return DAG.getSetCC(DL, XLenVT, Vec, Zero, ISD::SETEQ); 3902 case ISD::VECREDUCE_OR: 3903 // vpopc x != 0 3904 Vec = DAG.getNode(RISCVISD::VPOPC_VL, DL, XLenVT, Vec, Mask, VL); 3905 return DAG.getSetCC(DL, XLenVT, Vec, Zero, ISD::SETNE); 3906 case ISD::VECREDUCE_XOR: { 3907 // ((vpopc x) & 1) != 0 3908 SDValue One = DAG.getConstant(1, DL, XLenVT); 3909 Vec = DAG.getNode(RISCVISD::VPOPC_VL, DL, XLenVT, Vec, Mask, VL); 3910 Vec = DAG.getNode(ISD::AND, DL, XLenVT, Vec, One); 3911 return DAG.getSetCC(DL, XLenVT, Vec, Zero, ISD::SETNE); 3912 } 3913 } 3914 } 3915 3916 SDValue RISCVTargetLowering::lowerVECREDUCE(SDValue Op, 3917 SelectionDAG &DAG) const { 3918 SDLoc DL(Op); 3919 SDValue Vec = Op.getOperand(0); 3920 EVT VecEVT = Vec.getValueType(); 3921 3922 unsigned BaseOpc = ISD::getVecReduceBaseOpcode(Op.getOpcode()); 3923 3924 // Due to ordering in legalize types we may have a vector type that needs to 3925 // be split. Do that manually so we can get down to a legal type. 3926 while (getTypeAction(*DAG.getContext(), VecEVT) == 3927 TargetLowering::TypeSplitVector) { 3928 SDValue Lo, Hi; 3929 std::tie(Lo, Hi) = DAG.SplitVector(Vec, DL); 3930 VecEVT = Lo.getValueType(); 3931 Vec = DAG.getNode(BaseOpc, DL, VecEVT, Lo, Hi); 3932 } 3933 3934 // TODO: The type may need to be widened rather than split. Or widened before 3935 // it can be split. 3936 if (!isTypeLegal(VecEVT)) 3937 return SDValue(); 3938 3939 MVT VecVT = VecEVT.getSimpleVT(); 3940 MVT VecEltVT = VecVT.getVectorElementType(); 3941 unsigned RVVOpcode = getRVVReductionOp(Op.getOpcode()); 3942 3943 MVT ContainerVT = VecVT; 3944 if (VecVT.isFixedLengthVector()) { 3945 ContainerVT = getContainerForFixedLengthVector(VecVT); 3946 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 3947 } 3948 3949 MVT M1VT = getLMUL1VT(ContainerVT); 3950 3951 SDValue Mask, VL; 3952 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 3953 3954 // FIXME: This is a VLMAX splat which might be too large and can prevent 3955 // vsetvli removal. 3956 SDValue NeutralElem = 3957 DAG.getNeutralElement(BaseOpc, DL, VecEltVT, SDNodeFlags()); 3958 SDValue IdentitySplat = DAG.getSplatVector(M1VT, DL, NeutralElem); 3959 SDValue Reduction = 3960 DAG.getNode(RVVOpcode, DL, M1VT, Vec, IdentitySplat, Mask, VL); 3961 SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction, 3962 DAG.getConstant(0, DL, Subtarget.getXLenVT())); 3963 return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType()); 3964 } 3965 3966 // Given a reduction op, this function returns the matching reduction opcode, 3967 // the vector SDValue and the scalar SDValue required to lower this to a 3968 // RISCVISD node. 3969 static std::tuple<unsigned, SDValue, SDValue> 3970 getRVVFPReductionOpAndOperands(SDValue Op, SelectionDAG &DAG, EVT EltVT) { 3971 SDLoc DL(Op); 3972 auto Flags = Op->getFlags(); 3973 unsigned Opcode = Op.getOpcode(); 3974 unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Opcode); 3975 switch (Opcode) { 3976 default: 3977 llvm_unreachable("Unhandled reduction"); 3978 case ISD::VECREDUCE_FADD: 3979 return std::make_tuple(RISCVISD::VECREDUCE_FADD_VL, Op.getOperand(0), 3980 DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags)); 3981 case ISD::VECREDUCE_SEQ_FADD: 3982 return std::make_tuple(RISCVISD::VECREDUCE_SEQ_FADD_VL, Op.getOperand(1), 3983 Op.getOperand(0)); 3984 case ISD::VECREDUCE_FMIN: 3985 return std::make_tuple(RISCVISD::VECREDUCE_FMIN_VL, Op.getOperand(0), 3986 DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags)); 3987 case ISD::VECREDUCE_FMAX: 3988 return std::make_tuple(RISCVISD::VECREDUCE_FMAX_VL, Op.getOperand(0), 3989 DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags)); 3990 } 3991 } 3992 3993 SDValue RISCVTargetLowering::lowerFPVECREDUCE(SDValue Op, 3994 SelectionDAG &DAG) const { 3995 SDLoc DL(Op); 3996 MVT VecEltVT = Op.getSimpleValueType(); 3997 3998 unsigned RVVOpcode; 3999 SDValue VectorVal, ScalarVal; 4000 std::tie(RVVOpcode, VectorVal, ScalarVal) = 4001 getRVVFPReductionOpAndOperands(Op, DAG, VecEltVT); 4002 MVT VecVT = VectorVal.getSimpleValueType(); 4003 4004 MVT ContainerVT = VecVT; 4005 if (VecVT.isFixedLengthVector()) { 4006 ContainerVT = getContainerForFixedLengthVector(VecVT); 4007 VectorVal = convertToScalableVector(ContainerVT, VectorVal, DAG, Subtarget); 4008 } 4009 4010 MVT M1VT = getLMUL1VT(VectorVal.getSimpleValueType()); 4011 4012 SDValue Mask, VL; 4013 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 4014 4015 // FIXME: This is a VLMAX splat which might be too large and can prevent 4016 // vsetvli removal. 4017 SDValue ScalarSplat = DAG.getSplatVector(M1VT, DL, ScalarVal); 4018 SDValue Reduction = 4019 DAG.getNode(RVVOpcode, DL, M1VT, VectorVal, ScalarSplat, Mask, VL); 4020 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction, 4021 DAG.getConstant(0, DL, Subtarget.getXLenVT())); 4022 } 4023 4024 SDValue RISCVTargetLowering::lowerINSERT_SUBVECTOR(SDValue Op, 4025 SelectionDAG &DAG) const { 4026 SDValue Vec = Op.getOperand(0); 4027 SDValue SubVec = Op.getOperand(1); 4028 MVT VecVT = Vec.getSimpleValueType(); 4029 MVT SubVecVT = SubVec.getSimpleValueType(); 4030 4031 SDLoc DL(Op); 4032 MVT XLenVT = Subtarget.getXLenVT(); 4033 unsigned OrigIdx = Op.getConstantOperandVal(2); 4034 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 4035 4036 // We don't have the ability to slide mask vectors up indexed by their i1 4037 // elements; the smallest we can do is i8. Often we are able to bitcast to 4038 // equivalent i8 vectors. Note that when inserting a fixed-length vector 4039 // into a scalable one, we might not necessarily have enough scalable 4040 // elements to safely divide by 8: nxv1i1 = insert nxv1i1, v4i1 is valid. 4041 if (SubVecVT.getVectorElementType() == MVT::i1 && 4042 (OrigIdx != 0 || !Vec.isUndef())) { 4043 if (VecVT.getVectorMinNumElements() >= 8 && 4044 SubVecVT.getVectorMinNumElements() >= 8) { 4045 assert(OrigIdx % 8 == 0 && "Invalid index"); 4046 assert(VecVT.getVectorMinNumElements() % 8 == 0 && 4047 SubVecVT.getVectorMinNumElements() % 8 == 0 && 4048 "Unexpected mask vector lowering"); 4049 OrigIdx /= 8; 4050 SubVecVT = 4051 MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8, 4052 SubVecVT.isScalableVector()); 4053 VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8, 4054 VecVT.isScalableVector()); 4055 Vec = DAG.getBitcast(VecVT, Vec); 4056 SubVec = DAG.getBitcast(SubVecVT, SubVec); 4057 } else { 4058 // We can't slide this mask vector up indexed by its i1 elements. 4059 // This poses a problem when we wish to insert a scalable vector which 4060 // can't be re-expressed as a larger type. Just choose the slow path and 4061 // extend to a larger type, then truncate back down. 4062 MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8); 4063 MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8); 4064 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec); 4065 SubVec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtSubVecVT, SubVec); 4066 Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ExtVecVT, Vec, SubVec, 4067 Op.getOperand(2)); 4068 SDValue SplatZero = DAG.getConstant(0, DL, ExtVecVT); 4069 return DAG.getSetCC(DL, VecVT, Vec, SplatZero, ISD::SETNE); 4070 } 4071 } 4072 4073 // If the subvector vector is a fixed-length type, we cannot use subregister 4074 // manipulation to simplify the codegen; we don't know which register of a 4075 // LMUL group contains the specific subvector as we only know the minimum 4076 // register size. Therefore we must slide the vector group up the full 4077 // amount. 4078 if (SubVecVT.isFixedLengthVector()) { 4079 if (OrigIdx == 0 && Vec.isUndef()) 4080 return Op; 4081 MVT ContainerVT = VecVT; 4082 if (VecVT.isFixedLengthVector()) { 4083 ContainerVT = getContainerForFixedLengthVector(VecVT); 4084 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 4085 } 4086 SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ContainerVT, 4087 DAG.getUNDEF(ContainerVT), SubVec, 4088 DAG.getConstant(0, DL, XLenVT)); 4089 SDValue Mask = 4090 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first; 4091 // Set the vector length to only the number of elements we care about. Note 4092 // that for slideup this includes the offset. 4093 SDValue VL = 4094 DAG.getConstant(OrigIdx + SubVecVT.getVectorNumElements(), DL, XLenVT); 4095 SDValue SlideupAmt = DAG.getConstant(OrigIdx, DL, XLenVT); 4096 SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec, 4097 SubVec, SlideupAmt, Mask, VL); 4098 if (VecVT.isFixedLengthVector()) 4099 Slideup = convertFromScalableVector(VecVT, Slideup, DAG, Subtarget); 4100 return DAG.getBitcast(Op.getValueType(), Slideup); 4101 } 4102 4103 unsigned SubRegIdx, RemIdx; 4104 std::tie(SubRegIdx, RemIdx) = 4105 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( 4106 VecVT, SubVecVT, OrigIdx, TRI); 4107 4108 RISCVII::VLMUL SubVecLMUL = RISCVTargetLowering::getLMUL(SubVecVT); 4109 bool IsSubVecPartReg = SubVecLMUL == RISCVII::VLMUL::LMUL_F2 || 4110 SubVecLMUL == RISCVII::VLMUL::LMUL_F4 || 4111 SubVecLMUL == RISCVII::VLMUL::LMUL_F8; 4112 4113 // 1. If the Idx has been completely eliminated and this subvector's size is 4114 // a vector register or a multiple thereof, or the surrounding elements are 4115 // undef, then this is a subvector insert which naturally aligns to a vector 4116 // register. These can easily be handled using subregister manipulation. 4117 // 2. If the subvector is smaller than a vector register, then the insertion 4118 // must preserve the undisturbed elements of the register. We do this by 4119 // lowering to an EXTRACT_SUBVECTOR grabbing the nearest LMUL=1 vector type 4120 // (which resolves to a subregister copy), performing a VSLIDEUP to place the 4121 // subvector within the vector register, and an INSERT_SUBVECTOR of that 4122 // LMUL=1 type back into the larger vector (resolving to another subregister 4123 // operation). See below for how our VSLIDEUP works. We go via a LMUL=1 type 4124 // to avoid allocating a large register group to hold our subvector. 4125 if (RemIdx == 0 && (!IsSubVecPartReg || Vec.isUndef())) 4126 return Op; 4127 4128 // VSLIDEUP works by leaving elements 0<i<OFFSET undisturbed, elements 4129 // OFFSET<=i<VL set to the "subvector" and vl<=i<VLMAX set to the tail policy 4130 // (in our case undisturbed). This means we can set up a subvector insertion 4131 // where OFFSET is the insertion offset, and the VL is the OFFSET plus the 4132 // size of the subvector. 4133 MVT InterSubVT = VecVT; 4134 SDValue AlignedExtract = Vec; 4135 unsigned AlignedIdx = OrigIdx - RemIdx; 4136 if (VecVT.bitsGT(getLMUL1VT(VecVT))) { 4137 InterSubVT = getLMUL1VT(VecVT); 4138 // Extract a subvector equal to the nearest full vector register type. This 4139 // should resolve to a EXTRACT_SUBREG instruction. 4140 AlignedExtract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec, 4141 DAG.getConstant(AlignedIdx, DL, XLenVT)); 4142 } 4143 4144 SDValue SlideupAmt = DAG.getConstant(RemIdx, DL, XLenVT); 4145 // For scalable vectors this must be further multiplied by vscale. 4146 SlideupAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlideupAmt); 4147 4148 SDValue Mask, VL; 4149 std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget); 4150 4151 // Construct the vector length corresponding to RemIdx + length(SubVecVT). 4152 VL = DAG.getConstant(SubVecVT.getVectorMinNumElements(), DL, XLenVT); 4153 VL = DAG.getNode(ISD::VSCALE, DL, XLenVT, VL); 4154 VL = DAG.getNode(ISD::ADD, DL, XLenVT, SlideupAmt, VL); 4155 4156 SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, InterSubVT, 4157 DAG.getUNDEF(InterSubVT), SubVec, 4158 DAG.getConstant(0, DL, XLenVT)); 4159 4160 SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, InterSubVT, 4161 AlignedExtract, SubVec, SlideupAmt, Mask, VL); 4162 4163 // If required, insert this subvector back into the correct vector register. 4164 // This should resolve to an INSERT_SUBREG instruction. 4165 if (VecVT.bitsGT(InterSubVT)) 4166 Slideup = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, Vec, Slideup, 4167 DAG.getConstant(AlignedIdx, DL, XLenVT)); 4168 4169 // We might have bitcast from a mask type: cast back to the original type if 4170 // required. 4171 return DAG.getBitcast(Op.getSimpleValueType(), Slideup); 4172 } 4173 4174 SDValue RISCVTargetLowering::lowerEXTRACT_SUBVECTOR(SDValue Op, 4175 SelectionDAG &DAG) const { 4176 SDValue Vec = Op.getOperand(0); 4177 MVT SubVecVT = Op.getSimpleValueType(); 4178 MVT VecVT = Vec.getSimpleValueType(); 4179 4180 SDLoc DL(Op); 4181 MVT XLenVT = Subtarget.getXLenVT(); 4182 unsigned OrigIdx = Op.getConstantOperandVal(1); 4183 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 4184 4185 // We don't have the ability to slide mask vectors down indexed by their i1 4186 // elements; the smallest we can do is i8. Often we are able to bitcast to 4187 // equivalent i8 vectors. Note that when extracting a fixed-length vector 4188 // from a scalable one, we might not necessarily have enough scalable 4189 // elements to safely divide by 8: v8i1 = extract nxv1i1 is valid. 4190 if (SubVecVT.getVectorElementType() == MVT::i1 && OrigIdx != 0) { 4191 if (VecVT.getVectorMinNumElements() >= 8 && 4192 SubVecVT.getVectorMinNumElements() >= 8) { 4193 assert(OrigIdx % 8 == 0 && "Invalid index"); 4194 assert(VecVT.getVectorMinNumElements() % 8 == 0 && 4195 SubVecVT.getVectorMinNumElements() % 8 == 0 && 4196 "Unexpected mask vector lowering"); 4197 OrigIdx /= 8; 4198 SubVecVT = 4199 MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8, 4200 SubVecVT.isScalableVector()); 4201 VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8, 4202 VecVT.isScalableVector()); 4203 Vec = DAG.getBitcast(VecVT, Vec); 4204 } else { 4205 // We can't slide this mask vector down, indexed by its i1 elements. 4206 // This poses a problem when we wish to extract a scalable vector which 4207 // can't be re-expressed as a larger type. Just choose the slow path and 4208 // extend to a larger type, then truncate back down. 4209 // TODO: We could probably improve this when extracting certain fixed 4210 // from fixed, where we can extract as i8 and shift the correct element 4211 // right to reach the desired subvector? 4212 MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8); 4213 MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8); 4214 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec); 4215 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ExtSubVecVT, Vec, 4216 Op.getOperand(1)); 4217 SDValue SplatZero = DAG.getConstant(0, DL, ExtSubVecVT); 4218 return DAG.getSetCC(DL, SubVecVT, Vec, SplatZero, ISD::SETNE); 4219 } 4220 } 4221 4222 // If the subvector vector is a fixed-length type, we cannot use subregister 4223 // manipulation to simplify the codegen; we don't know which register of a 4224 // LMUL group contains the specific subvector as we only know the minimum 4225 // register size. Therefore we must slide the vector group down the full 4226 // amount. 4227 if (SubVecVT.isFixedLengthVector()) { 4228 // With an index of 0 this is a cast-like subvector, which can be performed 4229 // with subregister operations. 4230 if (OrigIdx == 0) 4231 return Op; 4232 MVT ContainerVT = VecVT; 4233 if (VecVT.isFixedLengthVector()) { 4234 ContainerVT = getContainerForFixedLengthVector(VecVT); 4235 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 4236 } 4237 SDValue Mask = 4238 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first; 4239 // Set the vector length to only the number of elements we care about. This 4240 // avoids sliding down elements we're going to discard straight away. 4241 SDValue VL = DAG.getConstant(SubVecVT.getVectorNumElements(), DL, XLenVT); 4242 SDValue SlidedownAmt = DAG.getConstant(OrigIdx, DL, XLenVT); 4243 SDValue Slidedown = 4244 DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 4245 DAG.getUNDEF(ContainerVT), Vec, SlidedownAmt, Mask, VL); 4246 // Now we can use a cast-like subvector extract to get the result. 4247 Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown, 4248 DAG.getConstant(0, DL, XLenVT)); 4249 return DAG.getBitcast(Op.getValueType(), Slidedown); 4250 } 4251 4252 unsigned SubRegIdx, RemIdx; 4253 std::tie(SubRegIdx, RemIdx) = 4254 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( 4255 VecVT, SubVecVT, OrigIdx, TRI); 4256 4257 // If the Idx has been completely eliminated then this is a subvector extract 4258 // which naturally aligns to a vector register. These can easily be handled 4259 // using subregister manipulation. 4260 if (RemIdx == 0) 4261 return Op; 4262 4263 // Else we must shift our vector register directly to extract the subvector. 4264 // Do this using VSLIDEDOWN. 4265 4266 // If the vector type is an LMUL-group type, extract a subvector equal to the 4267 // nearest full vector register type. This should resolve to a EXTRACT_SUBREG 4268 // instruction. 4269 MVT InterSubVT = VecVT; 4270 if (VecVT.bitsGT(getLMUL1VT(VecVT))) { 4271 InterSubVT = getLMUL1VT(VecVT); 4272 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec, 4273 DAG.getConstant(OrigIdx - RemIdx, DL, XLenVT)); 4274 } 4275 4276 // Slide this vector register down by the desired number of elements in order 4277 // to place the desired subvector starting at element 0. 4278 SDValue SlidedownAmt = DAG.getConstant(RemIdx, DL, XLenVT); 4279 // For scalable vectors this must be further multiplied by vscale. 4280 SlidedownAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlidedownAmt); 4281 4282 SDValue Mask, VL; 4283 std::tie(Mask, VL) = getDefaultScalableVLOps(InterSubVT, DL, DAG, Subtarget); 4284 SDValue Slidedown = 4285 DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, InterSubVT, 4286 DAG.getUNDEF(InterSubVT), Vec, SlidedownAmt, Mask, VL); 4287 4288 // Now the vector is in the right position, extract our final subvector. This 4289 // should resolve to a COPY. 4290 Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown, 4291 DAG.getConstant(0, DL, XLenVT)); 4292 4293 // We might have bitcast from a mask type: cast back to the original type if 4294 // required. 4295 return DAG.getBitcast(Op.getSimpleValueType(), Slidedown); 4296 } 4297 4298 // Lower step_vector to the vid instruction. Any non-identity step value must 4299 // be accounted for my manual expansion. 4300 SDValue RISCVTargetLowering::lowerSTEP_VECTOR(SDValue Op, 4301 SelectionDAG &DAG) const { 4302 SDLoc DL(Op); 4303 MVT VT = Op.getSimpleValueType(); 4304 MVT XLenVT = Subtarget.getXLenVT(); 4305 SDValue Mask, VL; 4306 std::tie(Mask, VL) = getDefaultScalableVLOps(VT, DL, DAG, Subtarget); 4307 SDValue StepVec = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL); 4308 uint64_t StepValImm = Op.getConstantOperandVal(0); 4309 if (StepValImm != 1) { 4310 if (isPowerOf2_64(StepValImm)) { 4311 SDValue StepVal = 4312 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, 4313 DAG.getConstant(Log2_64(StepValImm), DL, XLenVT)); 4314 StepVec = DAG.getNode(ISD::SHL, DL, VT, StepVec, StepVal); 4315 } else { 4316 SDValue StepVal = lowerScalarSplat( 4317 DAG.getConstant(StepValImm, DL, VT.getVectorElementType()), VL, VT, 4318 DL, DAG, Subtarget); 4319 StepVec = DAG.getNode(ISD::MUL, DL, VT, StepVec, StepVal); 4320 } 4321 } 4322 return StepVec; 4323 } 4324 4325 // Implement vector_reverse using vrgather.vv with indices determined by 4326 // subtracting the id of each element from (VLMAX-1). This will convert 4327 // the indices like so: 4328 // (0, 1,..., VLMAX-2, VLMAX-1) -> (VLMAX-1, VLMAX-2,..., 1, 0). 4329 // TODO: This code assumes VLMAX <= 65536 for LMUL=8 SEW=16. 4330 SDValue RISCVTargetLowering::lowerVECTOR_REVERSE(SDValue Op, 4331 SelectionDAG &DAG) const { 4332 SDLoc DL(Op); 4333 MVT VecVT = Op.getSimpleValueType(); 4334 unsigned EltSize = VecVT.getScalarSizeInBits(); 4335 unsigned MinSize = VecVT.getSizeInBits().getKnownMinValue(); 4336 4337 unsigned MaxVLMAX = 0; 4338 unsigned VectorBitsMax = Subtarget.getMaxRVVVectorSizeInBits(); 4339 if (VectorBitsMax != 0) 4340 MaxVLMAX = ((VectorBitsMax / EltSize) * MinSize) / RISCV::RVVBitsPerBlock; 4341 4342 unsigned GatherOpc = RISCVISD::VRGATHER_VV_VL; 4343 MVT IntVT = VecVT.changeVectorElementTypeToInteger(); 4344 4345 // If this is SEW=8 and VLMAX is unknown or more than 256, we need 4346 // to use vrgatherei16.vv. 4347 // TODO: It's also possible to use vrgatherei16.vv for other types to 4348 // decrease register width for the index calculation. 4349 if ((MaxVLMAX == 0 || MaxVLMAX > 256) && EltSize == 8) { 4350 // If this is LMUL=8, we have to split before can use vrgatherei16.vv. 4351 // Reverse each half, then reassemble them in reverse order. 4352 // NOTE: It's also possible that after splitting that VLMAX no longer 4353 // requires vrgatherei16.vv. 4354 if (MinSize == (8 * RISCV::RVVBitsPerBlock)) { 4355 SDValue Lo, Hi; 4356 std::tie(Lo, Hi) = DAG.SplitVectorOperand(Op.getNode(), 0); 4357 EVT LoVT, HiVT; 4358 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VecVT); 4359 Lo = DAG.getNode(ISD::VECTOR_REVERSE, DL, LoVT, Lo); 4360 Hi = DAG.getNode(ISD::VECTOR_REVERSE, DL, HiVT, Hi); 4361 // Reassemble the low and high pieces reversed. 4362 // FIXME: This is a CONCAT_VECTORS. 4363 SDValue Res = 4364 DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, DAG.getUNDEF(VecVT), Hi, 4365 DAG.getIntPtrConstant(0, DL)); 4366 return DAG.getNode( 4367 ISD::INSERT_SUBVECTOR, DL, VecVT, Res, Lo, 4368 DAG.getIntPtrConstant(LoVT.getVectorMinNumElements(), DL)); 4369 } 4370 4371 // Just promote the int type to i16 which will double the LMUL. 4372 IntVT = MVT::getVectorVT(MVT::i16, VecVT.getVectorElementCount()); 4373 GatherOpc = RISCVISD::VRGATHEREI16_VV_VL; 4374 } 4375 4376 MVT XLenVT = Subtarget.getXLenVT(); 4377 SDValue Mask, VL; 4378 std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget); 4379 4380 // Calculate VLMAX-1 for the desired SEW. 4381 unsigned MinElts = VecVT.getVectorMinNumElements(); 4382 SDValue VLMax = DAG.getNode(ISD::VSCALE, DL, XLenVT, 4383 DAG.getConstant(MinElts, DL, XLenVT)); 4384 SDValue VLMinus1 = 4385 DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, DAG.getConstant(1, DL, XLenVT)); 4386 4387 // Splat VLMAX-1 taking care to handle SEW==64 on RV32. 4388 bool IsRV32E64 = 4389 !Subtarget.is64Bit() && IntVT.getVectorElementType() == MVT::i64; 4390 SDValue SplatVL; 4391 if (!IsRV32E64) 4392 SplatVL = DAG.getSplatVector(IntVT, DL, VLMinus1); 4393 else 4394 SplatVL = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, IntVT, VLMinus1); 4395 4396 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, IntVT, Mask, VL); 4397 SDValue Indices = 4398 DAG.getNode(RISCVISD::SUB_VL, DL, IntVT, SplatVL, VID, Mask, VL); 4399 4400 return DAG.getNode(GatherOpc, DL, VecVT, Op.getOperand(0), Indices, Mask, VL); 4401 } 4402 4403 SDValue 4404 RISCVTargetLowering::lowerFixedLengthVectorLoadToRVV(SDValue Op, 4405 SelectionDAG &DAG) const { 4406 SDLoc DL(Op); 4407 auto *Load = cast<LoadSDNode>(Op); 4408 4409 assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 4410 Load->getMemoryVT(), 4411 *Load->getMemOperand()) && 4412 "Expecting a correctly-aligned load"); 4413 4414 MVT VT = Op.getSimpleValueType(); 4415 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4416 4417 SDValue VL = 4418 DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT()); 4419 4420 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 4421 SDValue NewLoad = DAG.getMemIntrinsicNode( 4422 RISCVISD::VLE_VL, DL, VTs, {Load->getChain(), Load->getBasePtr(), VL}, 4423 Load->getMemoryVT(), Load->getMemOperand()); 4424 4425 SDValue Result = convertFromScalableVector(VT, NewLoad, DAG, Subtarget); 4426 return DAG.getMergeValues({Result, Load->getChain()}, DL); 4427 } 4428 4429 SDValue 4430 RISCVTargetLowering::lowerFixedLengthVectorStoreToRVV(SDValue Op, 4431 SelectionDAG &DAG) const { 4432 SDLoc DL(Op); 4433 auto *Store = cast<StoreSDNode>(Op); 4434 4435 assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 4436 Store->getMemoryVT(), 4437 *Store->getMemOperand()) && 4438 "Expecting a correctly-aligned store"); 4439 4440 SDValue StoreVal = Store->getValue(); 4441 MVT VT = StoreVal.getSimpleValueType(); 4442 4443 // If the size less than a byte, we need to pad with zeros to make a byte. 4444 if (VT.getVectorElementType() == MVT::i1 && VT.getVectorNumElements() < 8) { 4445 VT = MVT::v8i1; 4446 StoreVal = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, 4447 DAG.getConstant(0, DL, VT), StoreVal, 4448 DAG.getIntPtrConstant(0, DL)); 4449 } 4450 4451 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4452 4453 SDValue VL = 4454 DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT()); 4455 4456 SDValue NewValue = 4457 convertToScalableVector(ContainerVT, StoreVal, DAG, Subtarget); 4458 return DAG.getMemIntrinsicNode( 4459 RISCVISD::VSE_VL, DL, DAG.getVTList(MVT::Other), 4460 {Store->getChain(), NewValue, Store->getBasePtr(), VL}, 4461 Store->getMemoryVT(), Store->getMemOperand()); 4462 } 4463 4464 SDValue RISCVTargetLowering::lowerMaskedLoad(SDValue Op, 4465 SelectionDAG &DAG) const { 4466 SDLoc DL(Op); 4467 MVT VT = Op.getSimpleValueType(); 4468 4469 const auto *MemSD = cast<MemSDNode>(Op); 4470 EVT MemVT = MemSD->getMemoryVT(); 4471 MachineMemOperand *MMO = MemSD->getMemOperand(); 4472 SDValue Chain = MemSD->getChain(); 4473 SDValue BasePtr = MemSD->getBasePtr(); 4474 4475 SDValue Mask, PassThru, VL; 4476 if (const auto *VPLoad = dyn_cast<VPLoadSDNode>(Op)) { 4477 Mask = VPLoad->getMask(); 4478 PassThru = DAG.getUNDEF(VT); 4479 VL = VPLoad->getVectorLength(); 4480 } else { 4481 const auto *MLoad = cast<MaskedLoadSDNode>(Op); 4482 Mask = MLoad->getMask(); 4483 PassThru = MLoad->getPassThru(); 4484 } 4485 4486 MVT XLenVT = Subtarget.getXLenVT(); 4487 4488 MVT ContainerVT = VT; 4489 if (VT.isFixedLengthVector()) { 4490 ContainerVT = getContainerForFixedLengthVector(VT); 4491 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4492 4493 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 4494 PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget); 4495 } 4496 4497 if (!VL) 4498 VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; 4499 4500 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 4501 SDValue IntID = DAG.getTargetConstant(Intrinsic::riscv_vle_mask, DL, XLenVT); 4502 SDValue Ops[] = {Chain, IntID, PassThru, BasePtr, Mask, VL}; 4503 SDValue Result = 4504 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, MemVT, MMO); 4505 Chain = Result.getValue(1); 4506 4507 if (VT.isFixedLengthVector()) 4508 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 4509 4510 return DAG.getMergeValues({Result, Chain}, DL); 4511 } 4512 4513 SDValue RISCVTargetLowering::lowerMaskedStore(SDValue Op, 4514 SelectionDAG &DAG) const { 4515 SDLoc DL(Op); 4516 4517 const auto *MemSD = cast<MemSDNode>(Op); 4518 EVT MemVT = MemSD->getMemoryVT(); 4519 MachineMemOperand *MMO = MemSD->getMemOperand(); 4520 SDValue Chain = MemSD->getChain(); 4521 SDValue BasePtr = MemSD->getBasePtr(); 4522 SDValue Val, Mask, VL; 4523 4524 if (const auto *VPStore = dyn_cast<VPStoreSDNode>(Op)) { 4525 Val = VPStore->getValue(); 4526 Mask = VPStore->getMask(); 4527 VL = VPStore->getVectorLength(); 4528 } else { 4529 const auto *MStore = cast<MaskedStoreSDNode>(Op); 4530 Val = MStore->getValue(); 4531 Mask = MStore->getMask(); 4532 } 4533 4534 MVT VT = Val.getSimpleValueType(); 4535 MVT XLenVT = Subtarget.getXLenVT(); 4536 4537 MVT ContainerVT = VT; 4538 if (VT.isFixedLengthVector()) { 4539 ContainerVT = getContainerForFixedLengthVector(VT); 4540 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4541 4542 Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget); 4543 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 4544 } 4545 4546 if (!VL) 4547 VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; 4548 4549 SDValue IntID = DAG.getTargetConstant(Intrinsic::riscv_vse_mask, DL, XLenVT); 4550 return DAG.getMemIntrinsicNode( 4551 ISD::INTRINSIC_VOID, DL, DAG.getVTList(MVT::Other), 4552 {Chain, IntID, Val, BasePtr, Mask, VL}, MemVT, MMO); 4553 } 4554 4555 SDValue 4556 RISCVTargetLowering::lowerFixedLengthVectorSetccToRVV(SDValue Op, 4557 SelectionDAG &DAG) const { 4558 MVT InVT = Op.getOperand(0).getSimpleValueType(); 4559 MVT ContainerVT = getContainerForFixedLengthVector(InVT); 4560 4561 MVT VT = Op.getSimpleValueType(); 4562 4563 SDValue Op1 = 4564 convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget); 4565 SDValue Op2 = 4566 convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget); 4567 4568 SDLoc DL(Op); 4569 SDValue VL = 4570 DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT()); 4571 4572 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4573 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 4574 4575 SDValue Cmp = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, Op1, Op2, 4576 Op.getOperand(2), Mask, VL); 4577 4578 return convertFromScalableVector(VT, Cmp, DAG, Subtarget); 4579 } 4580 4581 SDValue RISCVTargetLowering::lowerFixedLengthVectorLogicOpToRVV( 4582 SDValue Op, SelectionDAG &DAG, unsigned MaskOpc, unsigned VecOpc) const { 4583 MVT VT = Op.getSimpleValueType(); 4584 4585 if (VT.getVectorElementType() == MVT::i1) 4586 return lowerToScalableOp(Op, DAG, MaskOpc, /*HasMask*/ false); 4587 4588 return lowerToScalableOp(Op, DAG, VecOpc, /*HasMask*/ true); 4589 } 4590 4591 SDValue 4592 RISCVTargetLowering::lowerFixedLengthVectorShiftToRVV(SDValue Op, 4593 SelectionDAG &DAG) const { 4594 unsigned Opc; 4595 switch (Op.getOpcode()) { 4596 default: llvm_unreachable("Unexpected opcode!"); 4597 case ISD::SHL: Opc = RISCVISD::SHL_VL; break; 4598 case ISD::SRA: Opc = RISCVISD::SRA_VL; break; 4599 case ISD::SRL: Opc = RISCVISD::SRL_VL; break; 4600 } 4601 4602 return lowerToScalableOp(Op, DAG, Opc); 4603 } 4604 4605 // Lower vector ABS to smax(X, sub(0, X)). 4606 SDValue RISCVTargetLowering::lowerABS(SDValue Op, SelectionDAG &DAG) const { 4607 SDLoc DL(Op); 4608 MVT VT = Op.getSimpleValueType(); 4609 SDValue X = Op.getOperand(0); 4610 4611 assert(VT.isFixedLengthVector() && "Unexpected type"); 4612 4613 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4614 X = convertToScalableVector(ContainerVT, X, DAG, Subtarget); 4615 4616 SDValue Mask, VL; 4617 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 4618 4619 SDValue SplatZero = 4620 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, 4621 DAG.getConstant(0, DL, Subtarget.getXLenVT())); 4622 SDValue NegX = 4623 DAG.getNode(RISCVISD::SUB_VL, DL, ContainerVT, SplatZero, X, Mask, VL); 4624 SDValue Max = 4625 DAG.getNode(RISCVISD::SMAX_VL, DL, ContainerVT, X, NegX, Mask, VL); 4626 4627 return convertFromScalableVector(VT, Max, DAG, Subtarget); 4628 } 4629 4630 SDValue RISCVTargetLowering::lowerFixedLengthVectorFCOPYSIGNToRVV( 4631 SDValue Op, SelectionDAG &DAG) const { 4632 SDLoc DL(Op); 4633 MVT VT = Op.getSimpleValueType(); 4634 SDValue Mag = Op.getOperand(0); 4635 SDValue Sign = Op.getOperand(1); 4636 assert(Mag.getValueType() == Sign.getValueType() && 4637 "Can only handle COPYSIGN with matching types."); 4638 4639 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4640 Mag = convertToScalableVector(ContainerVT, Mag, DAG, Subtarget); 4641 Sign = convertToScalableVector(ContainerVT, Sign, DAG, Subtarget); 4642 4643 SDValue Mask, VL; 4644 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 4645 4646 SDValue CopySign = 4647 DAG.getNode(RISCVISD::FCOPYSIGN_VL, DL, ContainerVT, Mag, Sign, Mask, VL); 4648 4649 return convertFromScalableVector(VT, CopySign, DAG, Subtarget); 4650 } 4651 4652 SDValue RISCVTargetLowering::lowerFixedLengthVectorSelectToRVV( 4653 SDValue Op, SelectionDAG &DAG) const { 4654 MVT VT = Op.getSimpleValueType(); 4655 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4656 4657 MVT I1ContainerVT = 4658 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4659 4660 SDValue CC = 4661 convertToScalableVector(I1ContainerVT, Op.getOperand(0), DAG, Subtarget); 4662 SDValue Op1 = 4663 convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget); 4664 SDValue Op2 = 4665 convertToScalableVector(ContainerVT, Op.getOperand(2), DAG, Subtarget); 4666 4667 SDLoc DL(Op); 4668 SDValue Mask, VL; 4669 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 4670 4671 SDValue Select = 4672 DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC, Op1, Op2, VL); 4673 4674 return convertFromScalableVector(VT, Select, DAG, Subtarget); 4675 } 4676 4677 SDValue RISCVTargetLowering::lowerToScalableOp(SDValue Op, SelectionDAG &DAG, 4678 unsigned NewOpc, 4679 bool HasMask) const { 4680 MVT VT = Op.getSimpleValueType(); 4681 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4682 4683 // Create list of operands by converting existing ones to scalable types. 4684 SmallVector<SDValue, 6> Ops; 4685 for (const SDValue &V : Op->op_values()) { 4686 assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!"); 4687 4688 // Pass through non-vector operands. 4689 if (!V.getValueType().isVector()) { 4690 Ops.push_back(V); 4691 continue; 4692 } 4693 4694 // "cast" fixed length vector to a scalable vector. 4695 assert(useRVVForFixedLengthVectorVT(V.getSimpleValueType()) && 4696 "Only fixed length vectors are supported!"); 4697 Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget)); 4698 } 4699 4700 SDLoc DL(Op); 4701 SDValue Mask, VL; 4702 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 4703 if (HasMask) 4704 Ops.push_back(Mask); 4705 Ops.push_back(VL); 4706 4707 SDValue ScalableRes = DAG.getNode(NewOpc, DL, ContainerVT, Ops); 4708 return convertFromScalableVector(VT, ScalableRes, DAG, Subtarget); 4709 } 4710 4711 // Lower a VP_* ISD node to the corresponding RISCVISD::*_VL node: 4712 // * Operands of each node are assumed to be in the same order. 4713 // * The EVL operand is promoted from i32 to i64 on RV64. 4714 // * Fixed-length vectors are converted to their scalable-vector container 4715 // types. 4716 SDValue RISCVTargetLowering::lowerVPOp(SDValue Op, SelectionDAG &DAG, 4717 unsigned RISCVISDOpc) const { 4718 SDLoc DL(Op); 4719 MVT VT = Op.getSimpleValueType(); 4720 SmallVector<SDValue, 4> Ops; 4721 4722 for (const auto &OpIdx : enumerate(Op->ops())) { 4723 SDValue V = OpIdx.value(); 4724 assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!"); 4725 // Pass through operands which aren't fixed-length vectors. 4726 if (!V.getValueType().isFixedLengthVector()) { 4727 Ops.push_back(V); 4728 continue; 4729 } 4730 // "cast" fixed length vector to a scalable vector. 4731 MVT OpVT = V.getSimpleValueType(); 4732 MVT ContainerVT = getContainerForFixedLengthVector(OpVT); 4733 assert(useRVVForFixedLengthVectorVT(OpVT) && 4734 "Only fixed length vectors are supported!"); 4735 Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget)); 4736 } 4737 4738 if (!VT.isFixedLengthVector()) 4739 return DAG.getNode(RISCVISDOpc, DL, VT, Ops); 4740 4741 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4742 4743 SDValue VPOp = DAG.getNode(RISCVISDOpc, DL, ContainerVT, Ops); 4744 4745 return convertFromScalableVector(VT, VPOp, DAG, Subtarget); 4746 } 4747 4748 // Custom lower MGATHER/VP_GATHER to a legalized form for RVV. It will then be 4749 // matched to a RVV indexed load. The RVV indexed load instructions only 4750 // support the "unsigned unscaled" addressing mode; indices are implicitly 4751 // zero-extended or truncated to XLEN and are treated as byte offsets. Any 4752 // signed or scaled indexing is extended to the XLEN value type and scaled 4753 // accordingly. 4754 SDValue RISCVTargetLowering::lowerMaskedGather(SDValue Op, 4755 SelectionDAG &DAG) const { 4756 SDLoc DL(Op); 4757 MVT VT = Op.getSimpleValueType(); 4758 4759 const auto *MemSD = cast<MemSDNode>(Op.getNode()); 4760 EVT MemVT = MemSD->getMemoryVT(); 4761 MachineMemOperand *MMO = MemSD->getMemOperand(); 4762 SDValue Chain = MemSD->getChain(); 4763 SDValue BasePtr = MemSD->getBasePtr(); 4764 4765 ISD::LoadExtType LoadExtType; 4766 SDValue Index, Mask, PassThru, VL; 4767 4768 if (auto *VPGN = dyn_cast<VPGatherSDNode>(Op.getNode())) { 4769 Index = VPGN->getIndex(); 4770 Mask = VPGN->getMask(); 4771 PassThru = DAG.getUNDEF(VT); 4772 VL = VPGN->getVectorLength(); 4773 // VP doesn't support extending loads. 4774 LoadExtType = ISD::NON_EXTLOAD; 4775 } else { 4776 // Else it must be a MGATHER. 4777 auto *MGN = cast<MaskedGatherSDNode>(Op.getNode()); 4778 Index = MGN->getIndex(); 4779 Mask = MGN->getMask(); 4780 PassThru = MGN->getPassThru(); 4781 LoadExtType = MGN->getExtensionType(); 4782 } 4783 4784 MVT IndexVT = Index.getSimpleValueType(); 4785 MVT XLenVT = Subtarget.getXLenVT(); 4786 4787 assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() && 4788 "Unexpected VTs!"); 4789 assert(BasePtr.getSimpleValueType() == XLenVT && "Unexpected pointer type"); 4790 // Targets have to explicitly opt-in for extending vector loads. 4791 assert(LoadExtType == ISD::NON_EXTLOAD && 4792 "Unexpected extending MGATHER/VP_GATHER"); 4793 (void)LoadExtType; 4794 4795 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 4796 // the selection of the masked intrinsics doesn't do this for us. 4797 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 4798 4799 MVT ContainerVT = VT; 4800 if (VT.isFixedLengthVector()) { 4801 // We need to use the larger of the result and index type to determine the 4802 // scalable type to use so we don't increase LMUL for any operand/result. 4803 if (VT.bitsGE(IndexVT)) { 4804 ContainerVT = getContainerForFixedLengthVector(VT); 4805 IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(), 4806 ContainerVT.getVectorElementCount()); 4807 } else { 4808 IndexVT = getContainerForFixedLengthVector(IndexVT); 4809 ContainerVT = MVT::getVectorVT(ContainerVT.getVectorElementType(), 4810 IndexVT.getVectorElementCount()); 4811 } 4812 4813 Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget); 4814 4815 if (!IsUnmasked) { 4816 MVT MaskVT = 4817 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4818 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 4819 PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget); 4820 } 4821 } 4822 4823 if (!VL) 4824 VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; 4825 4826 unsigned IntID = 4827 IsUnmasked ? Intrinsic::riscv_vluxei : Intrinsic::riscv_vluxei_mask; 4828 SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)}; 4829 if (!IsUnmasked) 4830 Ops.push_back(PassThru); 4831 Ops.push_back(BasePtr); 4832 Ops.push_back(Index); 4833 if (!IsUnmasked) 4834 Ops.push_back(Mask); 4835 Ops.push_back(VL); 4836 4837 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 4838 SDValue Result = 4839 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, MemVT, MMO); 4840 Chain = Result.getValue(1); 4841 4842 if (VT.isFixedLengthVector()) 4843 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 4844 4845 return DAG.getMergeValues({Result, Chain}, DL); 4846 } 4847 4848 // Custom lower MSCATTER/VP_SCATTER to a legalized form for RVV. It will then be 4849 // matched to a RVV indexed store. The RVV indexed store instructions only 4850 // support the "unsigned unscaled" addressing mode; indices are implicitly 4851 // zero-extended or truncated to XLEN and are treated as byte offsets. Any 4852 // signed or scaled indexing is extended to the XLEN value type and scaled 4853 // accordingly. 4854 SDValue RISCVTargetLowering::lowerMaskedScatter(SDValue Op, 4855 SelectionDAG &DAG) const { 4856 SDLoc DL(Op); 4857 const auto *MemSD = cast<MemSDNode>(Op.getNode()); 4858 EVT MemVT = MemSD->getMemoryVT(); 4859 MachineMemOperand *MMO = MemSD->getMemOperand(); 4860 SDValue Chain = MemSD->getChain(); 4861 SDValue BasePtr = MemSD->getBasePtr(); 4862 4863 bool IsTruncatingStore = false; 4864 SDValue Index, Mask, Val, VL; 4865 4866 if (auto *VPSN = dyn_cast<VPScatterSDNode>(Op.getNode())) { 4867 Index = VPSN->getIndex(); 4868 Mask = VPSN->getMask(); 4869 Val = VPSN->getValue(); 4870 VL = VPSN->getVectorLength(); 4871 // VP doesn't support truncating stores. 4872 IsTruncatingStore = false; 4873 } else { 4874 // Else it must be a MSCATTER. 4875 auto *MSN = cast<MaskedScatterSDNode>(Op.getNode()); 4876 Index = MSN->getIndex(); 4877 Mask = MSN->getMask(); 4878 Val = MSN->getValue(); 4879 IsTruncatingStore = MSN->isTruncatingStore(); 4880 } 4881 4882 MVT VT = Val.getSimpleValueType(); 4883 MVT IndexVT = Index.getSimpleValueType(); 4884 MVT XLenVT = Subtarget.getXLenVT(); 4885 4886 assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() && 4887 "Unexpected VTs!"); 4888 assert(BasePtr.getSimpleValueType() == XLenVT && "Unexpected pointer type"); 4889 // Targets have to explicitly opt-in for extending vector loads and 4890 // truncating vector stores. 4891 assert(!IsTruncatingStore && "Unexpected truncating MSCATTER/VP_SCATTER"); 4892 (void)IsTruncatingStore; 4893 4894 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 4895 // the selection of the masked intrinsics doesn't do this for us. 4896 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 4897 4898 MVT ContainerVT = VT; 4899 if (VT.isFixedLengthVector()) { 4900 // We need to use the larger of the value and index type to determine the 4901 // scalable type to use so we don't increase LMUL for any operand/result. 4902 if (VT.bitsGE(IndexVT)) { 4903 ContainerVT = getContainerForFixedLengthVector(VT); 4904 IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(), 4905 ContainerVT.getVectorElementCount()); 4906 } else { 4907 IndexVT = getContainerForFixedLengthVector(IndexVT); 4908 ContainerVT = MVT::getVectorVT(VT.getVectorElementType(), 4909 IndexVT.getVectorElementCount()); 4910 } 4911 4912 Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget); 4913 Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget); 4914 4915 if (!IsUnmasked) { 4916 MVT MaskVT = 4917 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4918 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 4919 } 4920 } 4921 4922 if (!VL) 4923 VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; 4924 4925 unsigned IntID = 4926 IsUnmasked ? Intrinsic::riscv_vsoxei : Intrinsic::riscv_vsoxei_mask; 4927 SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)}; 4928 Ops.push_back(Val); 4929 Ops.push_back(BasePtr); 4930 Ops.push_back(Index); 4931 if (!IsUnmasked) 4932 Ops.push_back(Mask); 4933 Ops.push_back(VL); 4934 4935 return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, 4936 DAG.getVTList(MVT::Other), Ops, MemVT, MMO); 4937 } 4938 4939 SDValue RISCVTargetLowering::lowerGET_ROUNDING(SDValue Op, 4940 SelectionDAG &DAG) const { 4941 const MVT XLenVT = Subtarget.getXLenVT(); 4942 SDLoc DL(Op); 4943 SDValue Chain = Op->getOperand(0); 4944 SDValue SysRegNo = DAG.getConstant( 4945 RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT); 4946 SDVTList VTs = DAG.getVTList(XLenVT, MVT::Other); 4947 SDValue RM = DAG.getNode(RISCVISD::READ_CSR, DL, VTs, Chain, SysRegNo); 4948 4949 // Encoding used for rounding mode in RISCV differs from that used in 4950 // FLT_ROUNDS. To convert it the RISCV rounding mode is used as an index in a 4951 // table, which consists of a sequence of 4-bit fields, each representing 4952 // corresponding FLT_ROUNDS mode. 4953 static const int Table = 4954 (int(RoundingMode::NearestTiesToEven) << 4 * RISCVFPRndMode::RNE) | 4955 (int(RoundingMode::TowardZero) << 4 * RISCVFPRndMode::RTZ) | 4956 (int(RoundingMode::TowardNegative) << 4 * RISCVFPRndMode::RDN) | 4957 (int(RoundingMode::TowardPositive) << 4 * RISCVFPRndMode::RUP) | 4958 (int(RoundingMode::NearestTiesToAway) << 4 * RISCVFPRndMode::RMM); 4959 4960 SDValue Shift = 4961 DAG.getNode(ISD::SHL, DL, XLenVT, RM, DAG.getConstant(2, DL, XLenVT)); 4962 SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT, 4963 DAG.getConstant(Table, DL, XLenVT), Shift); 4964 SDValue Masked = DAG.getNode(ISD::AND, DL, XLenVT, Shifted, 4965 DAG.getConstant(7, DL, XLenVT)); 4966 4967 return DAG.getMergeValues({Masked, Chain}, DL); 4968 } 4969 4970 SDValue RISCVTargetLowering::lowerSET_ROUNDING(SDValue Op, 4971 SelectionDAG &DAG) const { 4972 const MVT XLenVT = Subtarget.getXLenVT(); 4973 SDLoc DL(Op); 4974 SDValue Chain = Op->getOperand(0); 4975 SDValue RMValue = Op->getOperand(1); 4976 SDValue SysRegNo = DAG.getConstant( 4977 RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT); 4978 4979 // Encoding used for rounding mode in RISCV differs from that used in 4980 // FLT_ROUNDS. To convert it the C rounding mode is used as an index in 4981 // a table, which consists of a sequence of 4-bit fields, each representing 4982 // corresponding RISCV mode. 4983 static const unsigned Table = 4984 (RISCVFPRndMode::RNE << 4 * int(RoundingMode::NearestTiesToEven)) | 4985 (RISCVFPRndMode::RTZ << 4 * int(RoundingMode::TowardZero)) | 4986 (RISCVFPRndMode::RDN << 4 * int(RoundingMode::TowardNegative)) | 4987 (RISCVFPRndMode::RUP << 4 * int(RoundingMode::TowardPositive)) | 4988 (RISCVFPRndMode::RMM << 4 * int(RoundingMode::NearestTiesToAway)); 4989 4990 SDValue Shift = DAG.getNode(ISD::SHL, DL, XLenVT, RMValue, 4991 DAG.getConstant(2, DL, XLenVT)); 4992 SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT, 4993 DAG.getConstant(Table, DL, XLenVT), Shift); 4994 RMValue = DAG.getNode(ISD::AND, DL, XLenVT, Shifted, 4995 DAG.getConstant(0x7, DL, XLenVT)); 4996 return DAG.getNode(RISCVISD::WRITE_CSR, DL, MVT::Other, Chain, SysRegNo, 4997 RMValue); 4998 } 4999 5000 // Returns the opcode of the target-specific SDNode that implements the 32-bit 5001 // form of the given Opcode. 5002 static RISCVISD::NodeType getRISCVWOpcode(unsigned Opcode) { 5003 switch (Opcode) { 5004 default: 5005 llvm_unreachable("Unexpected opcode"); 5006 case ISD::SHL: 5007 return RISCVISD::SLLW; 5008 case ISD::SRA: 5009 return RISCVISD::SRAW; 5010 case ISD::SRL: 5011 return RISCVISD::SRLW; 5012 case ISD::SDIV: 5013 return RISCVISD::DIVW; 5014 case ISD::UDIV: 5015 return RISCVISD::DIVUW; 5016 case ISD::UREM: 5017 return RISCVISD::REMUW; 5018 case ISD::ROTL: 5019 return RISCVISD::ROLW; 5020 case ISD::ROTR: 5021 return RISCVISD::RORW; 5022 case RISCVISD::GREV: 5023 return RISCVISD::GREVW; 5024 case RISCVISD::GORC: 5025 return RISCVISD::GORCW; 5026 } 5027 } 5028 5029 // Converts the given i8/i16/i32 operation to a target-specific SelectionDAG 5030 // node. Because i8/i16/i32 isn't a legal type for RV64, these operations would 5031 // otherwise be promoted to i64, making it difficult to select the 5032 // SLLW/DIVUW/.../*W later one because the fact the operation was originally of 5033 // type i8/i16/i32 is lost. 5034 static SDValue customLegalizeToWOp(SDNode *N, SelectionDAG &DAG, 5035 unsigned ExtOpc = ISD::ANY_EXTEND) { 5036 SDLoc DL(N); 5037 RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode()); 5038 SDValue NewOp0 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(0)); 5039 SDValue NewOp1 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(1)); 5040 SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1); 5041 // ReplaceNodeResults requires we maintain the same type for the return value. 5042 return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewRes); 5043 } 5044 5045 // Converts the given 32-bit operation to a i64 operation with signed extension 5046 // semantic to reduce the signed extension instructions. 5047 static SDValue customLegalizeToWOpWithSExt(SDNode *N, SelectionDAG &DAG) { 5048 SDLoc DL(N); 5049 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 5050 SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 5051 SDValue NewWOp = DAG.getNode(N->getOpcode(), DL, MVT::i64, NewOp0, NewOp1); 5052 SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp, 5053 DAG.getValueType(MVT::i32)); 5054 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes); 5055 } 5056 5057 void RISCVTargetLowering::ReplaceNodeResults(SDNode *N, 5058 SmallVectorImpl<SDValue> &Results, 5059 SelectionDAG &DAG) const { 5060 SDLoc DL(N); 5061 switch (N->getOpcode()) { 5062 default: 5063 llvm_unreachable("Don't know how to custom type legalize this operation!"); 5064 case ISD::STRICT_FP_TO_SINT: 5065 case ISD::STRICT_FP_TO_UINT: 5066 case ISD::FP_TO_SINT: 5067 case ISD::FP_TO_UINT: { 5068 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5069 "Unexpected custom legalisation"); 5070 bool IsStrict = N->isStrictFPOpcode(); 5071 bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT || 5072 N->getOpcode() == ISD::STRICT_FP_TO_SINT; 5073 SDValue Op0 = IsStrict ? N->getOperand(1) : N->getOperand(0); 5074 if (getTypeAction(*DAG.getContext(), Op0.getValueType()) != 5075 TargetLowering::TypeSoftenFloat) { 5076 // FIXME: Support strict FP. 5077 if (IsStrict) 5078 return; 5079 if (!isTypeLegal(Op0.getValueType())) 5080 return; 5081 unsigned Opc = 5082 IsSigned ? RISCVISD::FCVT_W_RTZ_RV64 : RISCVISD::FCVT_WU_RTZ_RV64; 5083 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, Op0); 5084 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 5085 return; 5086 } 5087 // If the FP type needs to be softened, emit a library call using the 'si' 5088 // version. If we left it to default legalization we'd end up with 'di'. If 5089 // the FP type doesn't need to be softened just let generic type 5090 // legalization promote the result type. 5091 RTLIB::Libcall LC; 5092 if (IsSigned) 5093 LC = RTLIB::getFPTOSINT(Op0.getValueType(), N->getValueType(0)); 5094 else 5095 LC = RTLIB::getFPTOUINT(Op0.getValueType(), N->getValueType(0)); 5096 MakeLibCallOptions CallOptions; 5097 EVT OpVT = Op0.getValueType(); 5098 CallOptions.setTypeListBeforeSoften(OpVT, N->getValueType(0), true); 5099 SDValue Chain = IsStrict ? N->getOperand(0) : SDValue(); 5100 SDValue Result; 5101 std::tie(Result, Chain) = 5102 makeLibCall(DAG, LC, N->getValueType(0), Op0, CallOptions, DL, Chain); 5103 Results.push_back(Result); 5104 if (IsStrict) 5105 Results.push_back(Chain); 5106 break; 5107 } 5108 case ISD::READCYCLECOUNTER: { 5109 assert(!Subtarget.is64Bit() && 5110 "READCYCLECOUNTER only has custom type legalization on riscv32"); 5111 5112 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other); 5113 SDValue RCW = 5114 DAG.getNode(RISCVISD::READ_CYCLE_WIDE, DL, VTs, N->getOperand(0)); 5115 5116 Results.push_back( 5117 DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, RCW, RCW.getValue(1))); 5118 Results.push_back(RCW.getValue(2)); 5119 break; 5120 } 5121 case ISD::MUL: { 5122 unsigned Size = N->getSimpleValueType(0).getSizeInBits(); 5123 unsigned XLen = Subtarget.getXLen(); 5124 // This multiply needs to be expanded, try to use MULHSU+MUL if possible. 5125 if (Size > XLen) { 5126 assert(Size == (XLen * 2) && "Unexpected custom legalisation"); 5127 SDValue LHS = N->getOperand(0); 5128 SDValue RHS = N->getOperand(1); 5129 APInt HighMask = APInt::getHighBitsSet(Size, XLen); 5130 5131 bool LHSIsU = DAG.MaskedValueIsZero(LHS, HighMask); 5132 bool RHSIsU = DAG.MaskedValueIsZero(RHS, HighMask); 5133 // We need exactly one side to be unsigned. 5134 if (LHSIsU == RHSIsU) 5135 return; 5136 5137 auto MakeMULPair = [&](SDValue S, SDValue U) { 5138 MVT XLenVT = Subtarget.getXLenVT(); 5139 S = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, S); 5140 U = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, U); 5141 SDValue Lo = DAG.getNode(ISD::MUL, DL, XLenVT, S, U); 5142 SDValue Hi = DAG.getNode(RISCVISD::MULHSU, DL, XLenVT, S, U); 5143 return DAG.getNode(ISD::BUILD_PAIR, DL, N->getValueType(0), Lo, Hi); 5144 }; 5145 5146 bool LHSIsS = DAG.ComputeNumSignBits(LHS) > XLen; 5147 bool RHSIsS = DAG.ComputeNumSignBits(RHS) > XLen; 5148 5149 // The other operand should be signed, but still prefer MULH when 5150 // possible. 5151 if (RHSIsU && LHSIsS && !RHSIsS) 5152 Results.push_back(MakeMULPair(LHS, RHS)); 5153 else if (LHSIsU && RHSIsS && !LHSIsS) 5154 Results.push_back(MakeMULPair(RHS, LHS)); 5155 5156 return; 5157 } 5158 LLVM_FALLTHROUGH; 5159 } 5160 case ISD::ADD: 5161 case ISD::SUB: 5162 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5163 "Unexpected custom legalisation"); 5164 Results.push_back(customLegalizeToWOpWithSExt(N, DAG)); 5165 break; 5166 case ISD::SHL: 5167 case ISD::SRA: 5168 case ISD::SRL: 5169 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5170 "Unexpected custom legalisation"); 5171 if (N->getOperand(1).getOpcode() != ISD::Constant) { 5172 Results.push_back(customLegalizeToWOp(N, DAG)); 5173 break; 5174 } 5175 5176 // Custom legalize ISD::SHL by placing a SIGN_EXTEND_INREG after. This is 5177 // similar to customLegalizeToWOpWithSExt, but we must zero_extend the 5178 // shift amount. 5179 if (N->getOpcode() == ISD::SHL) { 5180 SDLoc DL(N); 5181 SDValue NewOp0 = 5182 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 5183 SDValue NewOp1 = 5184 DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1)); 5185 SDValue NewWOp = DAG.getNode(ISD::SHL, DL, MVT::i64, NewOp0, NewOp1); 5186 SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp, 5187 DAG.getValueType(MVT::i32)); 5188 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes)); 5189 } 5190 5191 break; 5192 case ISD::ROTL: 5193 case ISD::ROTR: 5194 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5195 "Unexpected custom legalisation"); 5196 Results.push_back(customLegalizeToWOp(N, DAG)); 5197 break; 5198 case ISD::CTTZ: 5199 case ISD::CTTZ_ZERO_UNDEF: 5200 case ISD::CTLZ: 5201 case ISD::CTLZ_ZERO_UNDEF: { 5202 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5203 "Unexpected custom legalisation"); 5204 5205 SDValue NewOp0 = 5206 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 5207 bool IsCTZ = 5208 N->getOpcode() == ISD::CTTZ || N->getOpcode() == ISD::CTTZ_ZERO_UNDEF; 5209 unsigned Opc = IsCTZ ? RISCVISD::CTZW : RISCVISD::CLZW; 5210 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp0); 5211 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 5212 return; 5213 } 5214 case ISD::SDIV: 5215 case ISD::UDIV: 5216 case ISD::UREM: { 5217 MVT VT = N->getSimpleValueType(0); 5218 assert((VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) && 5219 Subtarget.is64Bit() && Subtarget.hasStdExtM() && 5220 "Unexpected custom legalisation"); 5221 // Don't promote division/remainder by constant since we should expand those 5222 // to multiply by magic constant. 5223 // FIXME: What if the expansion is disabled for minsize. 5224 if (N->getOperand(1).getOpcode() == ISD::Constant) 5225 return; 5226 5227 // If the input is i32, use ANY_EXTEND since the W instructions don't read 5228 // the upper 32 bits. For other types we need to sign or zero extend 5229 // based on the opcode. 5230 unsigned ExtOpc = ISD::ANY_EXTEND; 5231 if (VT != MVT::i32) 5232 ExtOpc = N->getOpcode() == ISD::SDIV ? ISD::SIGN_EXTEND 5233 : ISD::ZERO_EXTEND; 5234 5235 Results.push_back(customLegalizeToWOp(N, DAG, ExtOpc)); 5236 break; 5237 } 5238 case ISD::UADDO: 5239 case ISD::USUBO: { 5240 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5241 "Unexpected custom legalisation"); 5242 bool IsAdd = N->getOpcode() == ISD::UADDO; 5243 // Create an ADDW or SUBW. 5244 SDValue LHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 5245 SDValue RHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 5246 SDValue Res = 5247 DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, DL, MVT::i64, LHS, RHS); 5248 Res = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Res, 5249 DAG.getValueType(MVT::i32)); 5250 5251 // Sign extend the LHS and perform an unsigned compare with the ADDW result. 5252 // Since the inputs are sign extended from i32, this is equivalent to 5253 // comparing the lower 32 bits. 5254 LHS = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0)); 5255 SDValue Overflow = DAG.getSetCC(DL, N->getValueType(1), Res, LHS, 5256 IsAdd ? ISD::SETULT : ISD::SETUGT); 5257 5258 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 5259 Results.push_back(Overflow); 5260 return; 5261 } 5262 case ISD::UADDSAT: 5263 case ISD::USUBSAT: { 5264 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5265 "Unexpected custom legalisation"); 5266 if (Subtarget.hasStdExtZbb()) { 5267 // With Zbb we can sign extend and let LegalizeDAG use minu/maxu. Using 5268 // sign extend allows overflow of the lower 32 bits to be detected on 5269 // the promoted size. 5270 SDValue LHS = 5271 DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0)); 5272 SDValue RHS = 5273 DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(1)); 5274 SDValue Res = DAG.getNode(N->getOpcode(), DL, MVT::i64, LHS, RHS); 5275 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 5276 return; 5277 } 5278 5279 // Without Zbb, expand to UADDO/USUBO+select which will trigger our custom 5280 // promotion for UADDO/USUBO. 5281 Results.push_back(expandAddSubSat(N, DAG)); 5282 return; 5283 } 5284 case ISD::BITCAST: { 5285 EVT VT = N->getValueType(0); 5286 assert(VT.isInteger() && !VT.isVector() && "Unexpected VT!"); 5287 SDValue Op0 = N->getOperand(0); 5288 EVT Op0VT = Op0.getValueType(); 5289 MVT XLenVT = Subtarget.getXLenVT(); 5290 if (VT == MVT::i16 && Op0VT == MVT::f16 && Subtarget.hasStdExtZfh()) { 5291 SDValue FPConv = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, XLenVT, Op0); 5292 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FPConv)); 5293 } else if (VT == MVT::i32 && Op0VT == MVT::f32 && Subtarget.is64Bit() && 5294 Subtarget.hasStdExtF()) { 5295 SDValue FPConv = 5296 DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Op0); 5297 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, FPConv)); 5298 } else if (!VT.isVector() && Op0VT.isFixedLengthVector() && 5299 isTypeLegal(Op0VT)) { 5300 // Custom-legalize bitcasts from fixed-length vector types to illegal 5301 // scalar types in order to improve codegen. Bitcast the vector to a 5302 // one-element vector type whose element type is the same as the result 5303 // type, and extract the first element. 5304 LLVMContext &Context = *DAG.getContext(); 5305 SDValue BVec = DAG.getBitcast(EVT::getVectorVT(Context, VT, 1), Op0); 5306 Results.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec, 5307 DAG.getConstant(0, DL, XLenVT))); 5308 } 5309 break; 5310 } 5311 case RISCVISD::GREV: 5312 case RISCVISD::GORC: { 5313 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5314 "Unexpected custom legalisation"); 5315 assert(isa<ConstantSDNode>(N->getOperand(1)) && "Expected constant"); 5316 // This is similar to customLegalizeToWOp, except that we pass the second 5317 // operand (a TargetConstant) straight through: it is already of type 5318 // XLenVT. 5319 RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode()); 5320 SDValue NewOp0 = 5321 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 5322 SDValue NewOp1 = 5323 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 5324 SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1); 5325 // ReplaceNodeResults requires we maintain the same type for the return 5326 // value. 5327 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes)); 5328 break; 5329 } 5330 case RISCVISD::SHFL: { 5331 // There is no SHFLIW instruction, but we can just promote the operation. 5332 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5333 "Unexpected custom legalisation"); 5334 assert(isa<ConstantSDNode>(N->getOperand(1)) && "Expected constant"); 5335 SDValue NewOp0 = 5336 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 5337 SDValue NewOp1 = 5338 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 5339 SDValue NewRes = DAG.getNode(RISCVISD::SHFL, DL, MVT::i64, NewOp0, NewOp1); 5340 // ReplaceNodeResults requires we maintain the same type for the return 5341 // value. 5342 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes)); 5343 break; 5344 } 5345 case ISD::BSWAP: 5346 case ISD::BITREVERSE: { 5347 MVT VT = N->getSimpleValueType(0); 5348 MVT XLenVT = Subtarget.getXLenVT(); 5349 assert((VT == MVT::i8 || VT == MVT::i16 || 5350 (VT == MVT::i32 && Subtarget.is64Bit())) && 5351 Subtarget.hasStdExtZbp() && "Unexpected custom legalisation"); 5352 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, N->getOperand(0)); 5353 unsigned Imm = VT.getSizeInBits() - 1; 5354 // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits. 5355 if (N->getOpcode() == ISD::BSWAP) 5356 Imm &= ~0x7U; 5357 unsigned Opc = Subtarget.is64Bit() ? RISCVISD::GREVW : RISCVISD::GREV; 5358 SDValue GREVI = 5359 DAG.getNode(Opc, DL, XLenVT, NewOp0, DAG.getConstant(Imm, DL, XLenVT)); 5360 // ReplaceNodeResults requires we maintain the same type for the return 5361 // value. 5362 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, GREVI)); 5363 break; 5364 } 5365 case ISD::FSHL: 5366 case ISD::FSHR: { 5367 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5368 Subtarget.hasStdExtZbt() && "Unexpected custom legalisation"); 5369 SDValue NewOp0 = 5370 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 5371 SDValue NewOp1 = 5372 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 5373 SDValue NewOp2 = 5374 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 5375 // FSLW/FSRW take a 6 bit shift amount but i32 FSHL/FSHR only use 5 bits. 5376 // Mask the shift amount to 5 bits. 5377 NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2, 5378 DAG.getConstant(0x1f, DL, MVT::i64)); 5379 unsigned Opc = 5380 N->getOpcode() == ISD::FSHL ? RISCVISD::FSLW : RISCVISD::FSRW; 5381 SDValue NewOp = DAG.getNode(Opc, DL, MVT::i64, NewOp0, NewOp1, NewOp2); 5382 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewOp)); 5383 break; 5384 } 5385 case ISD::EXTRACT_VECTOR_ELT: { 5386 // Custom-legalize an EXTRACT_VECTOR_ELT where XLEN<SEW, as the SEW element 5387 // type is illegal (currently only vXi64 RV32). 5388 // With vmv.x.s, when SEW > XLEN, only the least-significant XLEN bits are 5389 // transferred to the destination register. We issue two of these from the 5390 // upper- and lower- halves of the SEW-bit vector element, slid down to the 5391 // first element. 5392 SDValue Vec = N->getOperand(0); 5393 SDValue Idx = N->getOperand(1); 5394 5395 // The vector type hasn't been legalized yet so we can't issue target 5396 // specific nodes if it needs legalization. 5397 // FIXME: We would manually legalize if it's important. 5398 if (!isTypeLegal(Vec.getValueType())) 5399 return; 5400 5401 MVT VecVT = Vec.getSimpleValueType(); 5402 5403 assert(!Subtarget.is64Bit() && N->getValueType(0) == MVT::i64 && 5404 VecVT.getVectorElementType() == MVT::i64 && 5405 "Unexpected EXTRACT_VECTOR_ELT legalization"); 5406 5407 // If this is a fixed vector, we need to convert it to a scalable vector. 5408 MVT ContainerVT = VecVT; 5409 if (VecVT.isFixedLengthVector()) { 5410 ContainerVT = getContainerForFixedLengthVector(VecVT); 5411 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 5412 } 5413 5414 MVT XLenVT = Subtarget.getXLenVT(); 5415 5416 // Use a VL of 1 to avoid processing more elements than we need. 5417 MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount()); 5418 SDValue VL = DAG.getConstant(1, DL, XLenVT); 5419 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 5420 5421 // Unless the index is known to be 0, we must slide the vector down to get 5422 // the desired element into index 0. 5423 if (!isNullConstant(Idx)) { 5424 Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 5425 DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL); 5426 } 5427 5428 // Extract the lower XLEN bits of the correct vector element. 5429 SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); 5430 5431 // To extract the upper XLEN bits of the vector element, shift the first 5432 // element right by 32 bits and re-extract the lower XLEN bits. 5433 SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, 5434 DAG.getConstant(32, DL, XLenVT), VL); 5435 SDValue LShr32 = DAG.getNode(RISCVISD::SRL_VL, DL, ContainerVT, Vec, 5436 ThirtyTwoV, Mask, VL); 5437 5438 SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32); 5439 5440 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi)); 5441 break; 5442 } 5443 case ISD::INTRINSIC_WO_CHAIN: { 5444 unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 5445 switch (IntNo) { 5446 default: 5447 llvm_unreachable( 5448 "Don't know how to custom type legalize this intrinsic!"); 5449 case Intrinsic::riscv_orc_b: { 5450 // Lower to the GORCI encoding for orc.b with the operand extended. 5451 SDValue NewOp = 5452 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 5453 // If Zbp is enabled, use GORCIW which will sign extend the result. 5454 unsigned Opc = 5455 Subtarget.hasStdExtZbp() ? RISCVISD::GORCW : RISCVISD::GORC; 5456 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp, 5457 DAG.getConstant(7, DL, MVT::i64)); 5458 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 5459 return; 5460 } 5461 case Intrinsic::riscv_grev: 5462 case Intrinsic::riscv_gorc: { 5463 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5464 "Unexpected custom legalisation"); 5465 SDValue NewOp1 = 5466 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 5467 SDValue NewOp2 = 5468 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 5469 unsigned Opc = 5470 IntNo == Intrinsic::riscv_grev ? RISCVISD::GREVW : RISCVISD::GORCW; 5471 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2); 5472 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 5473 break; 5474 } 5475 case Intrinsic::riscv_shfl: 5476 case Intrinsic::riscv_unshfl: { 5477 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5478 "Unexpected custom legalisation"); 5479 SDValue NewOp1 = 5480 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 5481 SDValue NewOp2 = 5482 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 5483 unsigned Opc = 5484 IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFLW : RISCVISD::UNSHFLW; 5485 if (isa<ConstantSDNode>(N->getOperand(2))) { 5486 NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2, 5487 DAG.getConstant(0xf, DL, MVT::i64)); 5488 Opc = 5489 IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL; 5490 } 5491 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2); 5492 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 5493 break; 5494 } 5495 case Intrinsic::riscv_bcompress: 5496 case Intrinsic::riscv_bdecompress: { 5497 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5498 "Unexpected custom legalisation"); 5499 SDValue NewOp1 = 5500 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 5501 SDValue NewOp2 = 5502 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 5503 unsigned Opc = IntNo == Intrinsic::riscv_bcompress 5504 ? RISCVISD::BCOMPRESSW 5505 : RISCVISD::BDECOMPRESSW; 5506 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2); 5507 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 5508 break; 5509 } 5510 case Intrinsic::riscv_vmv_x_s: { 5511 EVT VT = N->getValueType(0); 5512 MVT XLenVT = Subtarget.getXLenVT(); 5513 if (VT.bitsLT(XLenVT)) { 5514 // Simple case just extract using vmv.x.s and truncate. 5515 SDValue Extract = DAG.getNode(RISCVISD::VMV_X_S, DL, 5516 Subtarget.getXLenVT(), N->getOperand(1)); 5517 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, Extract)); 5518 return; 5519 } 5520 5521 assert(VT == MVT::i64 && !Subtarget.is64Bit() && 5522 "Unexpected custom legalization"); 5523 5524 // We need to do the move in two steps. 5525 SDValue Vec = N->getOperand(1); 5526 MVT VecVT = Vec.getSimpleValueType(); 5527 5528 // First extract the lower XLEN bits of the element. 5529 SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); 5530 5531 // To extract the upper XLEN bits of the vector element, shift the first 5532 // element right by 32 bits and re-extract the lower XLEN bits. 5533 SDValue VL = DAG.getConstant(1, DL, XLenVT); 5534 MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount()); 5535 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 5536 SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, 5537 DAG.getConstant(32, DL, XLenVT), VL); 5538 SDValue LShr32 = 5539 DAG.getNode(RISCVISD::SRL_VL, DL, VecVT, Vec, ThirtyTwoV, Mask, VL); 5540 SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32); 5541 5542 Results.push_back( 5543 DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi)); 5544 break; 5545 } 5546 } 5547 break; 5548 } 5549 case ISD::VECREDUCE_ADD: 5550 case ISD::VECREDUCE_AND: 5551 case ISD::VECREDUCE_OR: 5552 case ISD::VECREDUCE_XOR: 5553 case ISD::VECREDUCE_SMAX: 5554 case ISD::VECREDUCE_UMAX: 5555 case ISD::VECREDUCE_SMIN: 5556 case ISD::VECREDUCE_UMIN: 5557 if (SDValue V = lowerVECREDUCE(SDValue(N, 0), DAG)) 5558 Results.push_back(V); 5559 break; 5560 case ISD::FLT_ROUNDS_: { 5561 SDVTList VTs = DAG.getVTList(Subtarget.getXLenVT(), MVT::Other); 5562 SDValue Res = DAG.getNode(ISD::FLT_ROUNDS_, DL, VTs, N->getOperand(0)); 5563 Results.push_back(Res.getValue(0)); 5564 Results.push_back(Res.getValue(1)); 5565 break; 5566 } 5567 } 5568 } 5569 5570 // A structure to hold one of the bit-manipulation patterns below. Together, a 5571 // SHL and non-SHL pattern may form a bit-manipulation pair on a single source: 5572 // (or (and (shl x, 1), 0xAAAAAAAA), 5573 // (and (srl x, 1), 0x55555555)) 5574 struct RISCVBitmanipPat { 5575 SDValue Op; 5576 unsigned ShAmt; 5577 bool IsSHL; 5578 5579 bool formsPairWith(const RISCVBitmanipPat &Other) const { 5580 return Op == Other.Op && ShAmt == Other.ShAmt && IsSHL != Other.IsSHL; 5581 } 5582 }; 5583 5584 // Matches patterns of the form 5585 // (and (shl x, C2), (C1 << C2)) 5586 // (and (srl x, C2), C1) 5587 // (shl (and x, C1), C2) 5588 // (srl (and x, (C1 << C2)), C2) 5589 // Where C2 is a power of 2 and C1 has at least that many leading zeroes. 5590 // The expected masks for each shift amount are specified in BitmanipMasks where 5591 // BitmanipMasks[log2(C2)] specifies the expected C1 value. 5592 // The max allowed shift amount is either XLen/2 or XLen/4 determined by whether 5593 // BitmanipMasks contains 6 or 5 entries assuming that the maximum possible 5594 // XLen is 64. 5595 static Optional<RISCVBitmanipPat> 5596 matchRISCVBitmanipPat(SDValue Op, ArrayRef<uint64_t> BitmanipMasks) { 5597 assert((BitmanipMasks.size() == 5 || BitmanipMasks.size() == 6) && 5598 "Unexpected number of masks"); 5599 Optional<uint64_t> Mask; 5600 // Optionally consume a mask around the shift operation. 5601 if (Op.getOpcode() == ISD::AND && isa<ConstantSDNode>(Op.getOperand(1))) { 5602 Mask = Op.getConstantOperandVal(1); 5603 Op = Op.getOperand(0); 5604 } 5605 if (Op.getOpcode() != ISD::SHL && Op.getOpcode() != ISD::SRL) 5606 return None; 5607 bool IsSHL = Op.getOpcode() == ISD::SHL; 5608 5609 if (!isa<ConstantSDNode>(Op.getOperand(1))) 5610 return None; 5611 uint64_t ShAmt = Op.getConstantOperandVal(1); 5612 5613 unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32; 5614 if (ShAmt >= Width || !isPowerOf2_64(ShAmt)) 5615 return None; 5616 // If we don't have enough masks for 64 bit, then we must be trying to 5617 // match SHFL so we're only allowed to shift 1/4 of the width. 5618 if (BitmanipMasks.size() == 5 && ShAmt >= (Width / 2)) 5619 return None; 5620 5621 SDValue Src = Op.getOperand(0); 5622 5623 // The expected mask is shifted left when the AND is found around SHL 5624 // patterns. 5625 // ((x >> 1) & 0x55555555) 5626 // ((x << 1) & 0xAAAAAAAA) 5627 bool SHLExpMask = IsSHL; 5628 5629 if (!Mask) { 5630 // Sometimes LLVM keeps the mask as an operand of the shift, typically when 5631 // the mask is all ones: consume that now. 5632 if (Src.getOpcode() == ISD::AND && isa<ConstantSDNode>(Src.getOperand(1))) { 5633 Mask = Src.getConstantOperandVal(1); 5634 Src = Src.getOperand(0); 5635 // The expected mask is now in fact shifted left for SRL, so reverse the 5636 // decision. 5637 // ((x & 0xAAAAAAAA) >> 1) 5638 // ((x & 0x55555555) << 1) 5639 SHLExpMask = !SHLExpMask; 5640 } else { 5641 // Use a default shifted mask of all-ones if there's no AND, truncated 5642 // down to the expected width. This simplifies the logic later on. 5643 Mask = maskTrailingOnes<uint64_t>(Width); 5644 *Mask &= (IsSHL ? *Mask << ShAmt : *Mask >> ShAmt); 5645 } 5646 } 5647 5648 unsigned MaskIdx = Log2_32(ShAmt); 5649 uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width); 5650 5651 if (SHLExpMask) 5652 ExpMask <<= ShAmt; 5653 5654 if (Mask != ExpMask) 5655 return None; 5656 5657 return RISCVBitmanipPat{Src, (unsigned)ShAmt, IsSHL}; 5658 } 5659 5660 // Matches any of the following bit-manipulation patterns: 5661 // (and (shl x, 1), (0x55555555 << 1)) 5662 // (and (srl x, 1), 0x55555555) 5663 // (shl (and x, 0x55555555), 1) 5664 // (srl (and x, (0x55555555 << 1)), 1) 5665 // where the shift amount and mask may vary thus: 5666 // [1] = 0x55555555 / 0xAAAAAAAA 5667 // [2] = 0x33333333 / 0xCCCCCCCC 5668 // [4] = 0x0F0F0F0F / 0xF0F0F0F0 5669 // [8] = 0x00FF00FF / 0xFF00FF00 5670 // [16] = 0x0000FFFF / 0xFFFFFFFF 5671 // [32] = 0x00000000FFFFFFFF / 0xFFFFFFFF00000000 (for RV64) 5672 static Optional<RISCVBitmanipPat> matchGREVIPat(SDValue Op) { 5673 // These are the unshifted masks which we use to match bit-manipulation 5674 // patterns. They may be shifted left in certain circumstances. 5675 static const uint64_t BitmanipMasks[] = { 5676 0x5555555555555555ULL, 0x3333333333333333ULL, 0x0F0F0F0F0F0F0F0FULL, 5677 0x00FF00FF00FF00FFULL, 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL}; 5678 5679 return matchRISCVBitmanipPat(Op, BitmanipMasks); 5680 } 5681 5682 // Match the following pattern as a GREVI(W) operation 5683 // (or (BITMANIP_SHL x), (BITMANIP_SRL x)) 5684 static SDValue combineORToGREV(SDValue Op, SelectionDAG &DAG, 5685 const RISCVSubtarget &Subtarget) { 5686 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson"); 5687 EVT VT = Op.getValueType(); 5688 5689 if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) { 5690 auto LHS = matchGREVIPat(Op.getOperand(0)); 5691 auto RHS = matchGREVIPat(Op.getOperand(1)); 5692 if (LHS && RHS && LHS->formsPairWith(*RHS)) { 5693 SDLoc DL(Op); 5694 return DAG.getNode(RISCVISD::GREV, DL, VT, LHS->Op, 5695 DAG.getConstant(LHS->ShAmt, DL, VT)); 5696 } 5697 } 5698 return SDValue(); 5699 } 5700 5701 // Matches any the following pattern as a GORCI(W) operation 5702 // 1. (or (GREVI x, shamt), x) if shamt is a power of 2 5703 // 2. (or x, (GREVI x, shamt)) if shamt is a power of 2 5704 // 3. (or (or (BITMANIP_SHL x), x), (BITMANIP_SRL x)) 5705 // Note that with the variant of 3., 5706 // (or (or (BITMANIP_SHL x), (BITMANIP_SRL x)), x) 5707 // the inner pattern will first be matched as GREVI and then the outer 5708 // pattern will be matched to GORC via the first rule above. 5709 // 4. (or (rotl/rotr x, bitwidth/2), x) 5710 static SDValue combineORToGORC(SDValue Op, SelectionDAG &DAG, 5711 const RISCVSubtarget &Subtarget) { 5712 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson"); 5713 EVT VT = Op.getValueType(); 5714 5715 if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) { 5716 SDLoc DL(Op); 5717 SDValue Op0 = Op.getOperand(0); 5718 SDValue Op1 = Op.getOperand(1); 5719 5720 auto MatchOROfReverse = [&](SDValue Reverse, SDValue X) { 5721 if (Reverse.getOpcode() == RISCVISD::GREV && Reverse.getOperand(0) == X && 5722 isa<ConstantSDNode>(Reverse.getOperand(1)) && 5723 isPowerOf2_32(Reverse.getConstantOperandVal(1))) 5724 return DAG.getNode(RISCVISD::GORC, DL, VT, X, Reverse.getOperand(1)); 5725 // We can also form GORCI from ROTL/ROTR by half the bitwidth. 5726 if ((Reverse.getOpcode() == ISD::ROTL || 5727 Reverse.getOpcode() == ISD::ROTR) && 5728 Reverse.getOperand(0) == X && 5729 isa<ConstantSDNode>(Reverse.getOperand(1))) { 5730 uint64_t RotAmt = Reverse.getConstantOperandVal(1); 5731 if (RotAmt == (VT.getSizeInBits() / 2)) 5732 return DAG.getNode(RISCVISD::GORC, DL, VT, X, 5733 DAG.getConstant(RotAmt, DL, VT)); 5734 } 5735 return SDValue(); 5736 }; 5737 5738 // Check for either commutable permutation of (or (GREVI x, shamt), x) 5739 if (SDValue V = MatchOROfReverse(Op0, Op1)) 5740 return V; 5741 if (SDValue V = MatchOROfReverse(Op1, Op0)) 5742 return V; 5743 5744 // OR is commutable so canonicalize its OR operand to the left 5745 if (Op0.getOpcode() != ISD::OR && Op1.getOpcode() == ISD::OR) 5746 std::swap(Op0, Op1); 5747 if (Op0.getOpcode() != ISD::OR) 5748 return SDValue(); 5749 SDValue OrOp0 = Op0.getOperand(0); 5750 SDValue OrOp1 = Op0.getOperand(1); 5751 auto LHS = matchGREVIPat(OrOp0); 5752 // OR is commutable so swap the operands and try again: x might have been 5753 // on the left 5754 if (!LHS) { 5755 std::swap(OrOp0, OrOp1); 5756 LHS = matchGREVIPat(OrOp0); 5757 } 5758 auto RHS = matchGREVIPat(Op1); 5759 if (LHS && RHS && LHS->formsPairWith(*RHS) && LHS->Op == OrOp1) { 5760 return DAG.getNode(RISCVISD::GORC, DL, VT, LHS->Op, 5761 DAG.getConstant(LHS->ShAmt, DL, VT)); 5762 } 5763 } 5764 return SDValue(); 5765 } 5766 5767 // Matches any of the following bit-manipulation patterns: 5768 // (and (shl x, 1), (0x22222222 << 1)) 5769 // (and (srl x, 1), 0x22222222) 5770 // (shl (and x, 0x22222222), 1) 5771 // (srl (and x, (0x22222222 << 1)), 1) 5772 // where the shift amount and mask may vary thus: 5773 // [1] = 0x22222222 / 0x44444444 5774 // [2] = 0x0C0C0C0C / 0x3C3C3C3C 5775 // [4] = 0x00F000F0 / 0x0F000F00 5776 // [8] = 0x0000FF00 / 0x00FF0000 5777 // [16] = 0x00000000FFFF0000 / 0x0000FFFF00000000 (for RV64) 5778 static Optional<RISCVBitmanipPat> matchSHFLPat(SDValue Op) { 5779 // These are the unshifted masks which we use to match bit-manipulation 5780 // patterns. They may be shifted left in certain circumstances. 5781 static const uint64_t BitmanipMasks[] = { 5782 0x2222222222222222ULL, 0x0C0C0C0C0C0C0C0CULL, 0x00F000F000F000F0ULL, 5783 0x0000FF000000FF00ULL, 0x00000000FFFF0000ULL}; 5784 5785 return matchRISCVBitmanipPat(Op, BitmanipMasks); 5786 } 5787 5788 // Match (or (or (SHFL_SHL x), (SHFL_SHR x)), (SHFL_AND x) 5789 static SDValue combineORToSHFL(SDValue Op, SelectionDAG &DAG, 5790 const RISCVSubtarget &Subtarget) { 5791 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson"); 5792 EVT VT = Op.getValueType(); 5793 5794 if (VT != MVT::i32 && VT != Subtarget.getXLenVT()) 5795 return SDValue(); 5796 5797 SDValue Op0 = Op.getOperand(0); 5798 SDValue Op1 = Op.getOperand(1); 5799 5800 // Or is commutable so canonicalize the second OR to the LHS. 5801 if (Op0.getOpcode() != ISD::OR) 5802 std::swap(Op0, Op1); 5803 if (Op0.getOpcode() != ISD::OR) 5804 return SDValue(); 5805 5806 // We found an inner OR, so our operands are the operands of the inner OR 5807 // and the other operand of the outer OR. 5808 SDValue A = Op0.getOperand(0); 5809 SDValue B = Op0.getOperand(1); 5810 SDValue C = Op1; 5811 5812 auto Match1 = matchSHFLPat(A); 5813 auto Match2 = matchSHFLPat(B); 5814 5815 // If neither matched, we failed. 5816 if (!Match1 && !Match2) 5817 return SDValue(); 5818 5819 // We had at least one match. if one failed, try the remaining C operand. 5820 if (!Match1) { 5821 std::swap(A, C); 5822 Match1 = matchSHFLPat(A); 5823 if (!Match1) 5824 return SDValue(); 5825 } else if (!Match2) { 5826 std::swap(B, C); 5827 Match2 = matchSHFLPat(B); 5828 if (!Match2) 5829 return SDValue(); 5830 } 5831 assert(Match1 && Match2); 5832 5833 // Make sure our matches pair up. 5834 if (!Match1->formsPairWith(*Match2)) 5835 return SDValue(); 5836 5837 // All the remains is to make sure C is an AND with the same input, that masks 5838 // out the bits that are being shuffled. 5839 if (C.getOpcode() != ISD::AND || !isa<ConstantSDNode>(C.getOperand(1)) || 5840 C.getOperand(0) != Match1->Op) 5841 return SDValue(); 5842 5843 uint64_t Mask = C.getConstantOperandVal(1); 5844 5845 static const uint64_t BitmanipMasks[] = { 5846 0x9999999999999999ULL, 0xC3C3C3C3C3C3C3C3ULL, 0xF00FF00FF00FF00FULL, 5847 0xFF0000FFFF0000FFULL, 0xFFFF00000000FFFFULL, 5848 }; 5849 5850 unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32; 5851 unsigned MaskIdx = Log2_32(Match1->ShAmt); 5852 uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width); 5853 5854 if (Mask != ExpMask) 5855 return SDValue(); 5856 5857 SDLoc DL(Op); 5858 return DAG.getNode(RISCVISD::SHFL, DL, VT, Match1->Op, 5859 DAG.getConstant(Match1->ShAmt, DL, VT)); 5860 } 5861 5862 // Combine (GREVI (GREVI x, C2), C1) -> (GREVI x, C1^C2) when C1^C2 is 5863 // non-zero, and to x when it is. Any repeated GREVI stage undoes itself. 5864 // Combine (GORCI (GORCI x, C2), C1) -> (GORCI x, C1|C2). Repeated stage does 5865 // not undo itself, but they are redundant. 5866 static SDValue combineGREVI_GORCI(SDNode *N, SelectionDAG &DAG) { 5867 SDValue Src = N->getOperand(0); 5868 5869 if (Src.getOpcode() != N->getOpcode()) 5870 return SDValue(); 5871 5872 if (!isa<ConstantSDNode>(N->getOperand(1)) || 5873 !isa<ConstantSDNode>(Src.getOperand(1))) 5874 return SDValue(); 5875 5876 unsigned ShAmt1 = N->getConstantOperandVal(1); 5877 unsigned ShAmt2 = Src.getConstantOperandVal(1); 5878 Src = Src.getOperand(0); 5879 5880 unsigned CombinedShAmt; 5881 if (N->getOpcode() == RISCVISD::GORC || N->getOpcode() == RISCVISD::GORCW) 5882 CombinedShAmt = ShAmt1 | ShAmt2; 5883 else 5884 CombinedShAmt = ShAmt1 ^ ShAmt2; 5885 5886 if (CombinedShAmt == 0) 5887 return Src; 5888 5889 SDLoc DL(N); 5890 return DAG.getNode( 5891 N->getOpcode(), DL, N->getValueType(0), Src, 5892 DAG.getConstant(CombinedShAmt, DL, N->getOperand(1).getValueType())); 5893 } 5894 5895 // Combine a constant select operand into its use: 5896 // 5897 // (and (select cond, -1, c), x) 5898 // -> (select cond, x, (and x, c)) [AllOnes=1] 5899 // (or (select cond, 0, c), x) 5900 // -> (select cond, x, (or x, c)) [AllOnes=0] 5901 // (xor (select cond, 0, c), x) 5902 // -> (select cond, x, (xor x, c)) [AllOnes=0] 5903 // (add (select cond, 0, c), x) 5904 // -> (select cond, x, (add x, c)) [AllOnes=0] 5905 // (sub x, (select cond, 0, c)) 5906 // -> (select cond, x, (sub x, c)) [AllOnes=0] 5907 static SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp, 5908 SelectionDAG &DAG, bool AllOnes) { 5909 EVT VT = N->getValueType(0); 5910 5911 // Skip vectors. 5912 if (VT.isVector()) 5913 return SDValue(); 5914 5915 if ((Slct.getOpcode() != ISD::SELECT && 5916 Slct.getOpcode() != RISCVISD::SELECT_CC) || 5917 !Slct.hasOneUse()) 5918 return SDValue(); 5919 5920 auto isZeroOrAllOnes = [](SDValue N, bool AllOnes) { 5921 return AllOnes ? isAllOnesConstant(N) : isNullConstant(N); 5922 }; 5923 5924 bool SwapSelectOps; 5925 unsigned OpOffset = Slct.getOpcode() == RISCVISD::SELECT_CC ? 2 : 0; 5926 SDValue TrueVal = Slct.getOperand(1 + OpOffset); 5927 SDValue FalseVal = Slct.getOperand(2 + OpOffset); 5928 SDValue NonConstantVal; 5929 if (isZeroOrAllOnes(TrueVal, AllOnes)) { 5930 SwapSelectOps = false; 5931 NonConstantVal = FalseVal; 5932 } else if (isZeroOrAllOnes(FalseVal, AllOnes)) { 5933 SwapSelectOps = true; 5934 NonConstantVal = TrueVal; 5935 } else 5936 return SDValue(); 5937 5938 // Slct is now know to be the desired identity constant when CC is true. 5939 TrueVal = OtherOp; 5940 FalseVal = DAG.getNode(N->getOpcode(), SDLoc(N), VT, OtherOp, NonConstantVal); 5941 // Unless SwapSelectOps says the condition should be false. 5942 if (SwapSelectOps) 5943 std::swap(TrueVal, FalseVal); 5944 5945 if (Slct.getOpcode() == RISCVISD::SELECT_CC) 5946 return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), VT, 5947 {Slct.getOperand(0), Slct.getOperand(1), 5948 Slct.getOperand(2), TrueVal, FalseVal}); 5949 5950 return DAG.getNode(ISD::SELECT, SDLoc(N), VT, 5951 {Slct.getOperand(0), TrueVal, FalseVal}); 5952 } 5953 5954 // Attempt combineSelectAndUse on each operand of a commutative operator N. 5955 static SDValue combineSelectAndUseCommutative(SDNode *N, SelectionDAG &DAG, 5956 bool AllOnes) { 5957 SDValue N0 = N->getOperand(0); 5958 SDValue N1 = N->getOperand(1); 5959 if (SDValue Result = combineSelectAndUse(N, N0, N1, DAG, AllOnes)) 5960 return Result; 5961 if (SDValue Result = combineSelectAndUse(N, N1, N0, DAG, AllOnes)) 5962 return Result; 5963 return SDValue(); 5964 } 5965 5966 static SDValue performADDCombine(SDNode *N, SelectionDAG &DAG) { 5967 // fold (add (select lhs, rhs, cc, 0, y), x) -> 5968 // (select lhs, rhs, cc, x, (add x, y)) 5969 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false); 5970 } 5971 5972 static SDValue performSUBCombine(SDNode *N, SelectionDAG &DAG) { 5973 // fold (sub x, (select lhs, rhs, cc, 0, y)) -> 5974 // (select lhs, rhs, cc, x, (sub x, y)) 5975 SDValue N0 = N->getOperand(0); 5976 SDValue N1 = N->getOperand(1); 5977 return combineSelectAndUse(N, N1, N0, DAG, /*AllOnes*/ false); 5978 } 5979 5980 static SDValue performANDCombine(SDNode *N, SelectionDAG &DAG) { 5981 // fold (and (select lhs, rhs, cc, -1, y), x) -> 5982 // (select lhs, rhs, cc, x, (and x, y)) 5983 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ true); 5984 } 5985 5986 static SDValue performORCombine(SDNode *N, SelectionDAG &DAG, 5987 const RISCVSubtarget &Subtarget) { 5988 if (Subtarget.hasStdExtZbp()) { 5989 if (auto GREV = combineORToGREV(SDValue(N, 0), DAG, Subtarget)) 5990 return GREV; 5991 if (auto GORC = combineORToGORC(SDValue(N, 0), DAG, Subtarget)) 5992 return GORC; 5993 if (auto SHFL = combineORToSHFL(SDValue(N, 0), DAG, Subtarget)) 5994 return SHFL; 5995 } 5996 5997 // fold (or (select cond, 0, y), x) -> 5998 // (select cond, x, (or x, y)) 5999 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false); 6000 } 6001 6002 static SDValue performXORCombine(SDNode *N, SelectionDAG &DAG) { 6003 // fold (xor (select cond, 0, y), x) -> 6004 // (select cond, x, (xor x, y)) 6005 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false); 6006 } 6007 6008 // Attempt to turn ANY_EXTEND into SIGN_EXTEND if the input to the ANY_EXTEND 6009 // has users that require SIGN_EXTEND and the SIGN_EXTEND can be done for free 6010 // by an instruction like ADDW/SUBW/MULW. Without this the ANY_EXTEND would be 6011 // removed during type legalization leaving an ADD/SUB/MUL use that won't use 6012 // ADDW/SUBW/MULW. 6013 static SDValue performANY_EXTENDCombine(SDNode *N, 6014 TargetLowering::DAGCombinerInfo &DCI, 6015 const RISCVSubtarget &Subtarget) { 6016 if (!Subtarget.is64Bit()) 6017 return SDValue(); 6018 6019 SelectionDAG &DAG = DCI.DAG; 6020 6021 SDValue Src = N->getOperand(0); 6022 EVT VT = N->getValueType(0); 6023 if (VT != MVT::i64 || Src.getValueType() != MVT::i32) 6024 return SDValue(); 6025 6026 // The opcode must be one that can implicitly sign_extend. 6027 // FIXME: Additional opcodes. 6028 switch (Src.getOpcode()) { 6029 default: 6030 return SDValue(); 6031 case ISD::MUL: 6032 if (!Subtarget.hasStdExtM()) 6033 return SDValue(); 6034 LLVM_FALLTHROUGH; 6035 case ISD::ADD: 6036 case ISD::SUB: 6037 break; 6038 } 6039 6040 // Only handle cases where the result is used by a CopyToReg. That likely 6041 // means the value is a liveout of the basic block. This helps prevent 6042 // infinite combine loops like PR51206. 6043 if (none_of(N->uses(), 6044 [](SDNode *User) { return User->getOpcode() == ISD::CopyToReg; })) 6045 return SDValue(); 6046 6047 SmallVector<SDNode *, 4> SetCCs; 6048 for (SDNode::use_iterator UI = Src.getNode()->use_begin(), 6049 UE = Src.getNode()->use_end(); 6050 UI != UE; ++UI) { 6051 SDNode *User = *UI; 6052 if (User == N) 6053 continue; 6054 if (UI.getUse().getResNo() != Src.getResNo()) 6055 continue; 6056 // All i32 setccs are legalized by sign extending operands. 6057 if (User->getOpcode() == ISD::SETCC) { 6058 SetCCs.push_back(User); 6059 continue; 6060 } 6061 // We don't know if we can extend this user. 6062 break; 6063 } 6064 6065 // If we don't have any SetCCs, this isn't worthwhile. 6066 if (SetCCs.empty()) 6067 return SDValue(); 6068 6069 SDLoc DL(N); 6070 SDValue SExt = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Src); 6071 DCI.CombineTo(N, SExt); 6072 6073 // Promote all the setccs. 6074 for (SDNode *SetCC : SetCCs) { 6075 SmallVector<SDValue, 4> Ops; 6076 6077 for (unsigned j = 0; j != 2; ++j) { 6078 SDValue SOp = SetCC->getOperand(j); 6079 if (SOp == Src) 6080 Ops.push_back(SExt); 6081 else 6082 Ops.push_back(DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, SOp)); 6083 } 6084 6085 Ops.push_back(SetCC->getOperand(2)); 6086 DCI.CombineTo(SetCC, 6087 DAG.getNode(ISD::SETCC, DL, SetCC->getValueType(0), Ops)); 6088 } 6089 return SDValue(N, 0); 6090 } 6091 6092 SDValue RISCVTargetLowering::PerformDAGCombine(SDNode *N, 6093 DAGCombinerInfo &DCI) const { 6094 SelectionDAG &DAG = DCI.DAG; 6095 6096 // Helper to call SimplifyDemandedBits on an operand of N where only some low 6097 // bits are demanded. N will be added to the Worklist if it was not deleted. 6098 // Caller should return SDValue(N, 0) if this returns true. 6099 auto SimplifyDemandedLowBitsHelper = [&](unsigned OpNo, unsigned LowBits) { 6100 SDValue Op = N->getOperand(OpNo); 6101 APInt Mask = APInt::getLowBitsSet(Op.getValueSizeInBits(), LowBits); 6102 if (!SimplifyDemandedBits(Op, Mask, DCI)) 6103 return false; 6104 6105 if (N->getOpcode() != ISD::DELETED_NODE) 6106 DCI.AddToWorklist(N); 6107 return true; 6108 }; 6109 6110 switch (N->getOpcode()) { 6111 default: 6112 break; 6113 case RISCVISD::SplitF64: { 6114 SDValue Op0 = N->getOperand(0); 6115 // If the input to SplitF64 is just BuildPairF64 then the operation is 6116 // redundant. Instead, use BuildPairF64's operands directly. 6117 if (Op0->getOpcode() == RISCVISD::BuildPairF64) 6118 return DCI.CombineTo(N, Op0.getOperand(0), Op0.getOperand(1)); 6119 6120 SDLoc DL(N); 6121 6122 // It's cheaper to materialise two 32-bit integers than to load a double 6123 // from the constant pool and transfer it to integer registers through the 6124 // stack. 6125 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op0)) { 6126 APInt V = C->getValueAPF().bitcastToAPInt(); 6127 SDValue Lo = DAG.getConstant(V.trunc(32), DL, MVT::i32); 6128 SDValue Hi = DAG.getConstant(V.lshr(32).trunc(32), DL, MVT::i32); 6129 return DCI.CombineTo(N, Lo, Hi); 6130 } 6131 6132 // This is a target-specific version of a DAGCombine performed in 6133 // DAGCombiner::visitBITCAST. It performs the equivalent of: 6134 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) 6135 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) 6136 if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) || 6137 !Op0.getNode()->hasOneUse()) 6138 break; 6139 SDValue NewSplitF64 = 6140 DAG.getNode(RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), 6141 Op0.getOperand(0)); 6142 SDValue Lo = NewSplitF64.getValue(0); 6143 SDValue Hi = NewSplitF64.getValue(1); 6144 APInt SignBit = APInt::getSignMask(32); 6145 if (Op0.getOpcode() == ISD::FNEG) { 6146 SDValue NewHi = DAG.getNode(ISD::XOR, DL, MVT::i32, Hi, 6147 DAG.getConstant(SignBit, DL, MVT::i32)); 6148 return DCI.CombineTo(N, Lo, NewHi); 6149 } 6150 assert(Op0.getOpcode() == ISD::FABS); 6151 SDValue NewHi = DAG.getNode(ISD::AND, DL, MVT::i32, Hi, 6152 DAG.getConstant(~SignBit, DL, MVT::i32)); 6153 return DCI.CombineTo(N, Lo, NewHi); 6154 } 6155 case RISCVISD::SLLW: 6156 case RISCVISD::SRAW: 6157 case RISCVISD::SRLW: 6158 case RISCVISD::ROLW: 6159 case RISCVISD::RORW: { 6160 // Only the lower 32 bits of LHS and lower 5 bits of RHS are read. 6161 if (SimplifyDemandedLowBitsHelper(0, 32) || 6162 SimplifyDemandedLowBitsHelper(1, 5)) 6163 return SDValue(N, 0); 6164 break; 6165 } 6166 case RISCVISD::CLZW: 6167 case RISCVISD::CTZW: { 6168 // Only the lower 32 bits of the first operand are read 6169 if (SimplifyDemandedLowBitsHelper(0, 32)) 6170 return SDValue(N, 0); 6171 break; 6172 } 6173 case RISCVISD::FSL: 6174 case RISCVISD::FSR: { 6175 // Only the lower log2(Bitwidth)+1 bits of the the shift amount are read. 6176 unsigned BitWidth = N->getOperand(2).getValueSizeInBits(); 6177 assert(isPowerOf2_32(BitWidth) && "Unexpected bit width"); 6178 if (SimplifyDemandedLowBitsHelper(2, Log2_32(BitWidth) + 1)) 6179 return SDValue(N, 0); 6180 break; 6181 } 6182 case RISCVISD::FSLW: 6183 case RISCVISD::FSRW: { 6184 // Only the lower 32 bits of Values and lower 6 bits of shift amount are 6185 // read. 6186 if (SimplifyDemandedLowBitsHelper(0, 32) || 6187 SimplifyDemandedLowBitsHelper(1, 32) || 6188 SimplifyDemandedLowBitsHelper(2, 6)) 6189 return SDValue(N, 0); 6190 break; 6191 } 6192 case RISCVISD::GREV: 6193 case RISCVISD::GORC: { 6194 // Only the lower log2(Bitwidth) bits of the the shift amount are read. 6195 unsigned BitWidth = N->getOperand(1).getValueSizeInBits(); 6196 assert(isPowerOf2_32(BitWidth) && "Unexpected bit width"); 6197 if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth))) 6198 return SDValue(N, 0); 6199 6200 return combineGREVI_GORCI(N, DCI.DAG); 6201 } 6202 case RISCVISD::GREVW: 6203 case RISCVISD::GORCW: { 6204 // Only the lower 32 bits of LHS and lower 5 bits of RHS are read. 6205 if (SimplifyDemandedLowBitsHelper(0, 32) || 6206 SimplifyDemandedLowBitsHelper(1, 5)) 6207 return SDValue(N, 0); 6208 6209 return combineGREVI_GORCI(N, DCI.DAG); 6210 } 6211 case RISCVISD::SHFL: 6212 case RISCVISD::UNSHFL: { 6213 // Only the lower log2(Bitwidth)-1 bits of the the shift amount are read. 6214 unsigned BitWidth = N->getOperand(1).getValueSizeInBits(); 6215 assert(isPowerOf2_32(BitWidth) && "Unexpected bit width"); 6216 if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth) - 1)) 6217 return SDValue(N, 0); 6218 6219 break; 6220 } 6221 case RISCVISD::SHFLW: 6222 case RISCVISD::UNSHFLW: { 6223 // Only the lower 32 bits of LHS and lower 4 bits of RHS are read. 6224 SDValue LHS = N->getOperand(0); 6225 SDValue RHS = N->getOperand(1); 6226 APInt LHSMask = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 32); 6227 APInt RHSMask = APInt::getLowBitsSet(RHS.getValueSizeInBits(), 4); 6228 if (SimplifyDemandedLowBitsHelper(0, 32) || 6229 SimplifyDemandedLowBitsHelper(1, 4)) 6230 return SDValue(N, 0); 6231 6232 break; 6233 } 6234 case RISCVISD::BCOMPRESSW: 6235 case RISCVISD::BDECOMPRESSW: { 6236 // Only the lower 32 bits of LHS and RHS are read. 6237 if (SimplifyDemandedLowBitsHelper(0, 32) || 6238 SimplifyDemandedLowBitsHelper(1, 32)) 6239 return SDValue(N, 0); 6240 6241 break; 6242 } 6243 case RISCVISD::FMV_X_ANYEXTH: 6244 case RISCVISD::FMV_X_ANYEXTW_RV64: { 6245 SDLoc DL(N); 6246 SDValue Op0 = N->getOperand(0); 6247 MVT VT = N->getSimpleValueType(0); 6248 // If the input to FMV_X_ANYEXTW_RV64 is just FMV_W_X_RV64 then the 6249 // conversion is unnecessary and can be replaced with the FMV_W_X_RV64 6250 // operand. Similar for FMV_X_ANYEXTH and FMV_H_X. 6251 if ((N->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64 && 6252 Op0->getOpcode() == RISCVISD::FMV_W_X_RV64) || 6253 (N->getOpcode() == RISCVISD::FMV_X_ANYEXTH && 6254 Op0->getOpcode() == RISCVISD::FMV_H_X)) { 6255 assert(Op0.getOperand(0).getValueType() == VT && 6256 "Unexpected value type!"); 6257 return Op0.getOperand(0); 6258 } 6259 6260 // This is a target-specific version of a DAGCombine performed in 6261 // DAGCombiner::visitBITCAST. It performs the equivalent of: 6262 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) 6263 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) 6264 if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) || 6265 !Op0.getNode()->hasOneUse()) 6266 break; 6267 SDValue NewFMV = DAG.getNode(N->getOpcode(), DL, VT, Op0.getOperand(0)); 6268 unsigned FPBits = N->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64 ? 32 : 16; 6269 APInt SignBit = APInt::getSignMask(FPBits).sextOrSelf(VT.getSizeInBits()); 6270 if (Op0.getOpcode() == ISD::FNEG) 6271 return DAG.getNode(ISD::XOR, DL, VT, NewFMV, 6272 DAG.getConstant(SignBit, DL, VT)); 6273 6274 assert(Op0.getOpcode() == ISD::FABS); 6275 return DAG.getNode(ISD::AND, DL, VT, NewFMV, 6276 DAG.getConstant(~SignBit, DL, VT)); 6277 } 6278 case ISD::ADD: 6279 return performADDCombine(N, DAG); 6280 case ISD::SUB: 6281 return performSUBCombine(N, DAG); 6282 case ISD::AND: 6283 return performANDCombine(N, DAG); 6284 case ISD::OR: 6285 return performORCombine(N, DAG, Subtarget); 6286 case ISD::XOR: 6287 return performXORCombine(N, DAG); 6288 case ISD::ANY_EXTEND: 6289 return performANY_EXTENDCombine(N, DCI, Subtarget); 6290 case ISD::ZERO_EXTEND: 6291 // Fold (zero_extend (fp_to_uint X)) to prevent forming fcvt+zexti32 during 6292 // type legalization. This is safe because fp_to_uint produces poison if 6293 // it overflows. 6294 if (N->getValueType(0) == MVT::i64 && Subtarget.is64Bit() && 6295 N->getOperand(0).getOpcode() == ISD::FP_TO_UINT && 6296 isTypeLegal(N->getOperand(0).getOperand(0).getValueType())) 6297 return DAG.getNode(ISD::FP_TO_UINT, SDLoc(N), MVT::i64, 6298 N->getOperand(0).getOperand(0)); 6299 return SDValue(); 6300 case RISCVISD::SELECT_CC: { 6301 // Transform 6302 SDValue LHS = N->getOperand(0); 6303 SDValue RHS = N->getOperand(1); 6304 SDValue TrueV = N->getOperand(3); 6305 SDValue FalseV = N->getOperand(4); 6306 6307 // If the True and False values are the same, we don't need a select_cc. 6308 if (TrueV == FalseV) 6309 return TrueV; 6310 6311 ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(2))->get(); 6312 if (!ISD::isIntEqualitySetCC(CCVal)) 6313 break; 6314 6315 // Fold (select_cc (setlt X, Y), 0, ne, trueV, falseV) -> 6316 // (select_cc X, Y, lt, trueV, falseV) 6317 // Sometimes the setcc is introduced after select_cc has been formed. 6318 if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) && 6319 LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) { 6320 // If we're looking for eq 0 instead of ne 0, we need to invert the 6321 // condition. 6322 bool Invert = CCVal == ISD::SETEQ; 6323 CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get(); 6324 if (Invert) 6325 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 6326 6327 SDLoc DL(N); 6328 RHS = LHS.getOperand(1); 6329 LHS = LHS.getOperand(0); 6330 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 6331 6332 SDValue TargetCC = DAG.getCondCode(CCVal); 6333 return DAG.getNode(RISCVISD::SELECT_CC, DL, N->getValueType(0), 6334 {LHS, RHS, TargetCC, TrueV, FalseV}); 6335 } 6336 6337 // Fold (select_cc (xor X, Y), 0, eq/ne, trueV, falseV) -> 6338 // (select_cc X, Y, eq/ne, trueV, falseV) 6339 if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS)) 6340 return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), N->getValueType(0), 6341 {LHS.getOperand(0), LHS.getOperand(1), 6342 N->getOperand(2), TrueV, FalseV}); 6343 // (select_cc X, 1, setne, trueV, falseV) -> 6344 // (select_cc X, 0, seteq, trueV, falseV) if we can prove X is 0/1. 6345 // This can occur when legalizing some floating point comparisons. 6346 APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1); 6347 if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) { 6348 SDLoc DL(N); 6349 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 6350 SDValue TargetCC = DAG.getCondCode(CCVal); 6351 RHS = DAG.getConstant(0, DL, LHS.getValueType()); 6352 return DAG.getNode(RISCVISD::SELECT_CC, DL, N->getValueType(0), 6353 {LHS, RHS, TargetCC, TrueV, FalseV}); 6354 } 6355 6356 break; 6357 } 6358 case RISCVISD::BR_CC: { 6359 SDValue LHS = N->getOperand(1); 6360 SDValue RHS = N->getOperand(2); 6361 ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(3))->get(); 6362 if (!ISD::isIntEqualitySetCC(CCVal)) 6363 break; 6364 6365 // Fold (br_cc (setlt X, Y), 0, ne, dest) -> 6366 // (br_cc X, Y, lt, dest) 6367 // Sometimes the setcc is introduced after br_cc has been formed. 6368 if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) && 6369 LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) { 6370 // If we're looking for eq 0 instead of ne 0, we need to invert the 6371 // condition. 6372 bool Invert = CCVal == ISD::SETEQ; 6373 CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get(); 6374 if (Invert) 6375 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 6376 6377 SDLoc DL(N); 6378 RHS = LHS.getOperand(1); 6379 LHS = LHS.getOperand(0); 6380 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 6381 6382 return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0), 6383 N->getOperand(0), LHS, RHS, DAG.getCondCode(CCVal), 6384 N->getOperand(4)); 6385 } 6386 6387 // Fold (br_cc (xor X, Y), 0, eq/ne, dest) -> 6388 // (br_cc X, Y, eq/ne, trueV, falseV) 6389 if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS)) 6390 return DAG.getNode(RISCVISD::BR_CC, SDLoc(N), N->getValueType(0), 6391 N->getOperand(0), LHS.getOperand(0), LHS.getOperand(1), 6392 N->getOperand(3), N->getOperand(4)); 6393 6394 // (br_cc X, 1, setne, br_cc) -> 6395 // (br_cc X, 0, seteq, br_cc) if we can prove X is 0/1. 6396 // This can occur when legalizing some floating point comparisons. 6397 APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1); 6398 if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) { 6399 SDLoc DL(N); 6400 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 6401 SDValue TargetCC = DAG.getCondCode(CCVal); 6402 RHS = DAG.getConstant(0, DL, LHS.getValueType()); 6403 return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0), 6404 N->getOperand(0), LHS, RHS, TargetCC, 6405 N->getOperand(4)); 6406 } 6407 break; 6408 } 6409 case ISD::FCOPYSIGN: { 6410 EVT VT = N->getValueType(0); 6411 if (!VT.isVector()) 6412 break; 6413 // There is a form of VFSGNJ which injects the negated sign of its second 6414 // operand. Try and bubble any FNEG up after the extend/round to produce 6415 // this optimized pattern. Avoid modifying cases where FP_ROUND and 6416 // TRUNC=1. 6417 SDValue In2 = N->getOperand(1); 6418 // Avoid cases where the extend/round has multiple uses, as duplicating 6419 // those is typically more expensive than removing a fneg. 6420 if (!In2.hasOneUse()) 6421 break; 6422 if (In2.getOpcode() != ISD::FP_EXTEND && 6423 (In2.getOpcode() != ISD::FP_ROUND || In2.getConstantOperandVal(1) != 0)) 6424 break; 6425 In2 = In2.getOperand(0); 6426 if (In2.getOpcode() != ISD::FNEG) 6427 break; 6428 SDLoc DL(N); 6429 SDValue NewFPExtRound = DAG.getFPExtendOrRound(In2.getOperand(0), DL, VT); 6430 return DAG.getNode(ISD::FCOPYSIGN, DL, VT, N->getOperand(0), 6431 DAG.getNode(ISD::FNEG, DL, VT, NewFPExtRound)); 6432 } 6433 case ISD::MGATHER: 6434 case ISD::MSCATTER: 6435 case ISD::VP_GATHER: 6436 case ISD::VP_SCATTER: { 6437 if (!DCI.isBeforeLegalize()) 6438 break; 6439 SDValue Index, ScaleOp; 6440 bool IsIndexScaled = false; 6441 bool IsIndexSigned = false; 6442 if (const auto *VPGSN = dyn_cast<VPGatherScatterSDNode>(N)) { 6443 Index = VPGSN->getIndex(); 6444 ScaleOp = VPGSN->getScale(); 6445 IsIndexScaled = VPGSN->isIndexScaled(); 6446 IsIndexSigned = VPGSN->isIndexSigned(); 6447 } else { 6448 const auto *MGSN = cast<MaskedGatherScatterSDNode>(N); 6449 Index = MGSN->getIndex(); 6450 ScaleOp = MGSN->getScale(); 6451 IsIndexScaled = MGSN->isIndexScaled(); 6452 IsIndexSigned = MGSN->isIndexSigned(); 6453 } 6454 EVT IndexVT = Index.getValueType(); 6455 MVT XLenVT = Subtarget.getXLenVT(); 6456 // RISCV indexed loads only support the "unsigned unscaled" addressing 6457 // mode, so anything else must be manually legalized. 6458 bool NeedsIdxLegalization = 6459 IsIndexScaled || 6460 (IsIndexSigned && IndexVT.getVectorElementType().bitsLT(XLenVT)); 6461 if (!NeedsIdxLegalization) 6462 break; 6463 6464 SDLoc DL(N); 6465 6466 // Any index legalization should first promote to XLenVT, so we don't lose 6467 // bits when scaling. This may create an illegal index type so we let 6468 // LLVM's legalization take care of the splitting. 6469 // FIXME: LLVM can't split VP_GATHER or VP_SCATTER yet. 6470 if (IndexVT.getVectorElementType().bitsLT(XLenVT)) { 6471 IndexVT = IndexVT.changeVectorElementType(XLenVT); 6472 Index = DAG.getNode(IsIndexSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, 6473 DL, IndexVT, Index); 6474 } 6475 6476 unsigned Scale = cast<ConstantSDNode>(ScaleOp)->getZExtValue(); 6477 if (IsIndexScaled && Scale != 1) { 6478 // Manually scale the indices by the element size. 6479 // TODO: Sanitize the scale operand here? 6480 // TODO: For VP nodes, should we use VP_SHL here? 6481 assert(isPowerOf2_32(Scale) && "Expecting power-of-two types"); 6482 SDValue SplatScale = DAG.getConstant(Log2_32(Scale), DL, IndexVT); 6483 Index = DAG.getNode(ISD::SHL, DL, IndexVT, Index, SplatScale); 6484 } 6485 6486 ISD::MemIndexType NewIndexTy = ISD::UNSIGNED_UNSCALED; 6487 if (const auto *VPGN = dyn_cast<VPGatherSDNode>(N)) 6488 return DAG.getGatherVP(N->getVTList(), VPGN->getMemoryVT(), DL, 6489 {VPGN->getChain(), VPGN->getBasePtr(), Index, 6490 VPGN->getScale(), VPGN->getMask(), 6491 VPGN->getVectorLength()}, 6492 VPGN->getMemOperand(), NewIndexTy); 6493 if (const auto *VPSN = dyn_cast<VPScatterSDNode>(N)) 6494 return DAG.getScatterVP(N->getVTList(), VPSN->getMemoryVT(), DL, 6495 {VPSN->getChain(), VPSN->getValue(), 6496 VPSN->getBasePtr(), Index, VPSN->getScale(), 6497 VPSN->getMask(), VPSN->getVectorLength()}, 6498 VPSN->getMemOperand(), NewIndexTy); 6499 if (const auto *MGN = dyn_cast<MaskedGatherSDNode>(N)) 6500 return DAG.getMaskedGather( 6501 N->getVTList(), MGN->getMemoryVT(), DL, 6502 {MGN->getChain(), MGN->getPassThru(), MGN->getMask(), 6503 MGN->getBasePtr(), Index, MGN->getScale()}, 6504 MGN->getMemOperand(), NewIndexTy, MGN->getExtensionType()); 6505 const auto *MSN = cast<MaskedScatterSDNode>(N); 6506 return DAG.getMaskedScatter( 6507 N->getVTList(), MSN->getMemoryVT(), DL, 6508 {MSN->getChain(), MSN->getValue(), MSN->getMask(), MSN->getBasePtr(), 6509 Index, MSN->getScale()}, 6510 MSN->getMemOperand(), NewIndexTy, MSN->isTruncatingStore()); 6511 } 6512 case RISCVISD::SRA_VL: 6513 case RISCVISD::SRL_VL: 6514 case RISCVISD::SHL_VL: { 6515 SDValue ShAmt = N->getOperand(1); 6516 if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) { 6517 // We don't need the upper 32 bits of a 64-bit element for a shift amount. 6518 SDLoc DL(N); 6519 SDValue VL = N->getOperand(3); 6520 EVT VT = N->getValueType(0); 6521 ShAmt = 6522 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, ShAmt.getOperand(0), VL); 6523 return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt, 6524 N->getOperand(2), N->getOperand(3)); 6525 } 6526 break; 6527 } 6528 case ISD::SRA: 6529 case ISD::SRL: 6530 case ISD::SHL: { 6531 SDValue ShAmt = N->getOperand(1); 6532 if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) { 6533 // We don't need the upper 32 bits of a 64-bit element for a shift amount. 6534 SDLoc DL(N); 6535 EVT VT = N->getValueType(0); 6536 ShAmt = 6537 DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VT, ShAmt.getOperand(0)); 6538 return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt); 6539 } 6540 break; 6541 } 6542 case RISCVISD::MUL_VL: { 6543 // Try to form VWMUL or VWMULU. 6544 // FIXME: Look for splat of extended scalar as well. 6545 // FIXME: Support VWMULSU. 6546 SDValue Op0 = N->getOperand(0); 6547 SDValue Op1 = N->getOperand(1); 6548 bool IsSignExt = Op0.getOpcode() == RISCVISD::VSEXT_VL; 6549 bool IsZeroExt = Op0.getOpcode() == RISCVISD::VZEXT_VL; 6550 if ((!IsSignExt && !IsZeroExt) || Op0.getOpcode() != Op1.getOpcode()) 6551 return SDValue(); 6552 6553 // Make sure the extends have a single use. 6554 if (!Op0.hasOneUse() || !Op1.hasOneUse()) 6555 return SDValue(); 6556 6557 SDValue Mask = N->getOperand(2); 6558 SDValue VL = N->getOperand(3); 6559 if (Op0.getOperand(1) != Mask || Op1.getOperand(1) != Mask || 6560 Op0.getOperand(2) != VL || Op1.getOperand(2) != VL) 6561 return SDValue(); 6562 6563 Op0 = Op0.getOperand(0); 6564 Op1 = Op1.getOperand(0); 6565 6566 MVT VT = N->getSimpleValueType(0); 6567 MVT NarrowVT = 6568 MVT::getVectorVT(MVT::getIntegerVT(VT.getScalarSizeInBits() / 2), 6569 VT.getVectorElementCount()); 6570 6571 SDLoc DL(N); 6572 6573 // Re-introduce narrower extends if needed. 6574 unsigned ExtOpc = IsSignExt ? RISCVISD::VSEXT_VL : RISCVISD::VZEXT_VL; 6575 if (Op0.getValueType() != NarrowVT) 6576 Op0 = DAG.getNode(ExtOpc, DL, NarrowVT, Op0, Mask, VL); 6577 if (Op1.getValueType() != NarrowVT) 6578 Op1 = DAG.getNode(ExtOpc, DL, NarrowVT, Op1, Mask, VL); 6579 6580 unsigned WMulOpc = IsSignExt ? RISCVISD::VWMUL_VL : RISCVISD::VWMULU_VL; 6581 return DAG.getNode(WMulOpc, DL, VT, Op0, Op1, Mask, VL); 6582 } 6583 } 6584 6585 return SDValue(); 6586 } 6587 6588 bool RISCVTargetLowering::isDesirableToCommuteWithShift( 6589 const SDNode *N, CombineLevel Level) const { 6590 // The following folds are only desirable if `(OP _, c1 << c2)` can be 6591 // materialised in fewer instructions than `(OP _, c1)`: 6592 // 6593 // (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2) 6594 // (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2) 6595 SDValue N0 = N->getOperand(0); 6596 EVT Ty = N0.getValueType(); 6597 if (Ty.isScalarInteger() && 6598 (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::OR)) { 6599 auto *C1 = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 6600 auto *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1)); 6601 if (C1 && C2) { 6602 const APInt &C1Int = C1->getAPIntValue(); 6603 APInt ShiftedC1Int = C1Int << C2->getAPIntValue(); 6604 6605 // We can materialise `c1 << c2` into an add immediate, so it's "free", 6606 // and the combine should happen, to potentially allow further combines 6607 // later. 6608 if (ShiftedC1Int.getMinSignedBits() <= 64 && 6609 isLegalAddImmediate(ShiftedC1Int.getSExtValue())) 6610 return true; 6611 6612 // We can materialise `c1` in an add immediate, so it's "free", and the 6613 // combine should be prevented. 6614 if (C1Int.getMinSignedBits() <= 64 && 6615 isLegalAddImmediate(C1Int.getSExtValue())) 6616 return false; 6617 6618 // Neither constant will fit into an immediate, so find materialisation 6619 // costs. 6620 int C1Cost = RISCVMatInt::getIntMatCost(C1Int, Ty.getSizeInBits(), 6621 Subtarget.getFeatureBits(), 6622 /*CompressionCost*/true); 6623 int ShiftedC1Cost = RISCVMatInt::getIntMatCost( 6624 ShiftedC1Int, Ty.getSizeInBits(), Subtarget.getFeatureBits(), 6625 /*CompressionCost*/true); 6626 6627 // Materialising `c1` is cheaper than materialising `c1 << c2`, so the 6628 // combine should be prevented. 6629 if (C1Cost < ShiftedC1Cost) 6630 return false; 6631 } 6632 } 6633 return true; 6634 } 6635 6636 bool RISCVTargetLowering::targetShrinkDemandedConstant( 6637 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 6638 TargetLoweringOpt &TLO) const { 6639 // Delay this optimization as late as possible. 6640 if (!TLO.LegalOps) 6641 return false; 6642 6643 EVT VT = Op.getValueType(); 6644 if (VT.isVector()) 6645 return false; 6646 6647 // Only handle AND for now. 6648 if (Op.getOpcode() != ISD::AND) 6649 return false; 6650 6651 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 6652 if (!C) 6653 return false; 6654 6655 const APInt &Mask = C->getAPIntValue(); 6656 6657 // Clear all non-demanded bits initially. 6658 APInt ShrunkMask = Mask & DemandedBits; 6659 6660 // Try to make a smaller immediate by setting undemanded bits. 6661 6662 APInt ExpandedMask = Mask | ~DemandedBits; 6663 6664 auto IsLegalMask = [ShrunkMask, ExpandedMask](const APInt &Mask) -> bool { 6665 return ShrunkMask.isSubsetOf(Mask) && Mask.isSubsetOf(ExpandedMask); 6666 }; 6667 auto UseMask = [Mask, Op, VT, &TLO](const APInt &NewMask) -> bool { 6668 if (NewMask == Mask) 6669 return true; 6670 SDLoc DL(Op); 6671 SDValue NewC = TLO.DAG.getConstant(NewMask, DL, VT); 6672 SDValue NewOp = TLO.DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), NewC); 6673 return TLO.CombineTo(Op, NewOp); 6674 }; 6675 6676 // If the shrunk mask fits in sign extended 12 bits, let the target 6677 // independent code apply it. 6678 if (ShrunkMask.isSignedIntN(12)) 6679 return false; 6680 6681 // Preserve (and X, 0xffff) when zext.h is supported. 6682 if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp()) { 6683 APInt NewMask = APInt(Mask.getBitWidth(), 0xffff); 6684 if (IsLegalMask(NewMask)) 6685 return UseMask(NewMask); 6686 } 6687 6688 // Try to preserve (and X, 0xffffffff), the (zext_inreg X, i32) pattern. 6689 if (VT == MVT::i64) { 6690 APInt NewMask = APInt(64, 0xffffffff); 6691 if (IsLegalMask(NewMask)) 6692 return UseMask(NewMask); 6693 } 6694 6695 // For the remaining optimizations, we need to be able to make a negative 6696 // number through a combination of mask and undemanded bits. 6697 if (!ExpandedMask.isNegative()) 6698 return false; 6699 6700 // What is the fewest number of bits we need to represent the negative number. 6701 unsigned MinSignedBits = ExpandedMask.getMinSignedBits(); 6702 6703 // Try to make a 12 bit negative immediate. If that fails try to make a 32 6704 // bit negative immediate unless the shrunk immediate already fits in 32 bits. 6705 APInt NewMask = ShrunkMask; 6706 if (MinSignedBits <= 12) 6707 NewMask.setBitsFrom(11); 6708 else if (MinSignedBits <= 32 && !ShrunkMask.isSignedIntN(32)) 6709 NewMask.setBitsFrom(31); 6710 else 6711 return false; 6712 6713 // Sanity check that our new mask is a subset of the demanded mask. 6714 assert(IsLegalMask(NewMask)); 6715 return UseMask(NewMask); 6716 } 6717 6718 static void computeGREV(APInt &Src, unsigned ShAmt) { 6719 ShAmt &= Src.getBitWidth() - 1; 6720 uint64_t x = Src.getZExtValue(); 6721 if (ShAmt & 1) 6722 x = ((x & 0x5555555555555555LL) << 1) | ((x & 0xAAAAAAAAAAAAAAAALL) >> 1); 6723 if (ShAmt & 2) 6724 x = ((x & 0x3333333333333333LL) << 2) | ((x & 0xCCCCCCCCCCCCCCCCLL) >> 2); 6725 if (ShAmt & 4) 6726 x = ((x & 0x0F0F0F0F0F0F0F0FLL) << 4) | ((x & 0xF0F0F0F0F0F0F0F0LL) >> 4); 6727 if (ShAmt & 8) 6728 x = ((x & 0x00FF00FF00FF00FFLL) << 8) | ((x & 0xFF00FF00FF00FF00LL) >> 8); 6729 if (ShAmt & 16) 6730 x = ((x & 0x0000FFFF0000FFFFLL) << 16) | ((x & 0xFFFF0000FFFF0000LL) >> 16); 6731 if (ShAmt & 32) 6732 x = ((x & 0x00000000FFFFFFFFLL) << 32) | ((x & 0xFFFFFFFF00000000LL) >> 32); 6733 Src = x; 6734 } 6735 6736 void RISCVTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 6737 KnownBits &Known, 6738 const APInt &DemandedElts, 6739 const SelectionDAG &DAG, 6740 unsigned Depth) const { 6741 unsigned BitWidth = Known.getBitWidth(); 6742 unsigned Opc = Op.getOpcode(); 6743 assert((Opc >= ISD::BUILTIN_OP_END || 6744 Opc == ISD::INTRINSIC_WO_CHAIN || 6745 Opc == ISD::INTRINSIC_W_CHAIN || 6746 Opc == ISD::INTRINSIC_VOID) && 6747 "Should use MaskedValueIsZero if you don't know whether Op" 6748 " is a target node!"); 6749 6750 Known.resetAll(); 6751 switch (Opc) { 6752 default: break; 6753 case RISCVISD::SELECT_CC: { 6754 Known = DAG.computeKnownBits(Op.getOperand(4), Depth + 1); 6755 // If we don't know any bits, early out. 6756 if (Known.isUnknown()) 6757 break; 6758 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(3), Depth + 1); 6759 6760 // Only known if known in both the LHS and RHS. 6761 Known = KnownBits::commonBits(Known, Known2); 6762 break; 6763 } 6764 case RISCVISD::REMUW: { 6765 KnownBits Known2; 6766 Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 6767 Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 6768 // We only care about the lower 32 bits. 6769 Known = KnownBits::urem(Known.trunc(32), Known2.trunc(32)); 6770 // Restore the original width by sign extending. 6771 Known = Known.sext(BitWidth); 6772 break; 6773 } 6774 case RISCVISD::DIVUW: { 6775 KnownBits Known2; 6776 Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 6777 Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 6778 // We only care about the lower 32 bits. 6779 Known = KnownBits::udiv(Known.trunc(32), Known2.trunc(32)); 6780 // Restore the original width by sign extending. 6781 Known = Known.sext(BitWidth); 6782 break; 6783 } 6784 case RISCVISD::CTZW: { 6785 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 6786 unsigned PossibleTZ = Known2.trunc(32).countMaxTrailingZeros(); 6787 unsigned LowBits = Log2_32(PossibleTZ) + 1; 6788 Known.Zero.setBitsFrom(LowBits); 6789 break; 6790 } 6791 case RISCVISD::CLZW: { 6792 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 6793 unsigned PossibleLZ = Known2.trunc(32).countMaxLeadingZeros(); 6794 unsigned LowBits = Log2_32(PossibleLZ) + 1; 6795 Known.Zero.setBitsFrom(LowBits); 6796 break; 6797 } 6798 case RISCVISD::GREV: 6799 case RISCVISD::GREVW: { 6800 if (auto *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 6801 Known = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 6802 if (Opc == RISCVISD::GREVW) 6803 Known = Known.trunc(32); 6804 unsigned ShAmt = C->getZExtValue(); 6805 computeGREV(Known.Zero, ShAmt); 6806 computeGREV(Known.One, ShAmt); 6807 if (Opc == RISCVISD::GREVW) 6808 Known = Known.sext(BitWidth); 6809 } 6810 break; 6811 } 6812 case RISCVISD::READ_VLENB: 6813 // We assume VLENB is at least 16 bytes. 6814 Known.Zero.setLowBits(4); 6815 // We assume VLENB is no more than 65536 / 8 bytes. 6816 Known.Zero.setBitsFrom(14); 6817 break; 6818 case ISD::INTRINSIC_W_CHAIN: { 6819 unsigned IntNo = Op.getConstantOperandVal(1); 6820 switch (IntNo) { 6821 default: 6822 // We can't do anything for most intrinsics. 6823 break; 6824 case Intrinsic::riscv_vsetvli: 6825 case Intrinsic::riscv_vsetvlimax: 6826 // Assume that VL output is positive and would fit in an int32_t. 6827 // TODO: VLEN might be capped at 16 bits in a future V spec update. 6828 if (BitWidth >= 32) 6829 Known.Zero.setBitsFrom(31); 6830 break; 6831 } 6832 break; 6833 } 6834 } 6835 } 6836 6837 unsigned RISCVTargetLowering::ComputeNumSignBitsForTargetNode( 6838 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 6839 unsigned Depth) const { 6840 switch (Op.getOpcode()) { 6841 default: 6842 break; 6843 case RISCVISD::SELECT_CC: { 6844 unsigned Tmp = DAG.ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth + 1); 6845 if (Tmp == 1) return 1; // Early out. 6846 unsigned Tmp2 = DAG.ComputeNumSignBits(Op.getOperand(4), DemandedElts, Depth + 1); 6847 return std::min(Tmp, Tmp2); 6848 } 6849 case RISCVISD::SLLW: 6850 case RISCVISD::SRAW: 6851 case RISCVISD::SRLW: 6852 case RISCVISD::DIVW: 6853 case RISCVISD::DIVUW: 6854 case RISCVISD::REMUW: 6855 case RISCVISD::ROLW: 6856 case RISCVISD::RORW: 6857 case RISCVISD::GREVW: 6858 case RISCVISD::GORCW: 6859 case RISCVISD::FSLW: 6860 case RISCVISD::FSRW: 6861 case RISCVISD::SHFLW: 6862 case RISCVISD::UNSHFLW: 6863 case RISCVISD::BCOMPRESSW: 6864 case RISCVISD::BDECOMPRESSW: 6865 case RISCVISD::FCVT_W_RTZ_RV64: 6866 case RISCVISD::FCVT_WU_RTZ_RV64: 6867 // TODO: As the result is sign-extended, this is conservatively correct. A 6868 // more precise answer could be calculated for SRAW depending on known 6869 // bits in the shift amount. 6870 return 33; 6871 case RISCVISD::SHFL: 6872 case RISCVISD::UNSHFL: { 6873 // There is no SHFLIW, but a i64 SHFLI with bit 4 of the control word 6874 // cleared doesn't affect bit 31. The upper 32 bits will be shuffled, but 6875 // will stay within the upper 32 bits. If there were more than 32 sign bits 6876 // before there will be at least 33 sign bits after. 6877 if (Op.getValueType() == MVT::i64 && 6878 isa<ConstantSDNode>(Op.getOperand(1)) && 6879 (Op.getConstantOperandVal(1) & 0x10) == 0) { 6880 unsigned Tmp = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1); 6881 if (Tmp > 32) 6882 return 33; 6883 } 6884 break; 6885 } 6886 case RISCVISD::VMV_X_S: 6887 // The number of sign bits of the scalar result is computed by obtaining the 6888 // element type of the input vector operand, subtracting its width from the 6889 // XLEN, and then adding one (sign bit within the element type). If the 6890 // element type is wider than XLen, the least-significant XLEN bits are 6891 // taken. 6892 if (Op.getOperand(0).getScalarValueSizeInBits() > Subtarget.getXLen()) 6893 return 1; 6894 return Subtarget.getXLen() - Op.getOperand(0).getScalarValueSizeInBits() + 1; 6895 } 6896 6897 return 1; 6898 } 6899 6900 static MachineBasicBlock *emitReadCycleWidePseudo(MachineInstr &MI, 6901 MachineBasicBlock *BB) { 6902 assert(MI.getOpcode() == RISCV::ReadCycleWide && "Unexpected instruction"); 6903 6904 // To read the 64-bit cycle CSR on a 32-bit target, we read the two halves. 6905 // Should the count have wrapped while it was being read, we need to try 6906 // again. 6907 // ... 6908 // read: 6909 // rdcycleh x3 # load high word of cycle 6910 // rdcycle x2 # load low word of cycle 6911 // rdcycleh x4 # load high word of cycle 6912 // bne x3, x4, read # check if high word reads match, otherwise try again 6913 // ... 6914 6915 MachineFunction &MF = *BB->getParent(); 6916 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 6917 MachineFunction::iterator It = ++BB->getIterator(); 6918 6919 MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB); 6920 MF.insert(It, LoopMBB); 6921 6922 MachineBasicBlock *DoneMBB = MF.CreateMachineBasicBlock(LLVM_BB); 6923 MF.insert(It, DoneMBB); 6924 6925 // Transfer the remainder of BB and its successor edges to DoneMBB. 6926 DoneMBB->splice(DoneMBB->begin(), BB, 6927 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 6928 DoneMBB->transferSuccessorsAndUpdatePHIs(BB); 6929 6930 BB->addSuccessor(LoopMBB); 6931 6932 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 6933 Register ReadAgainReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 6934 Register LoReg = MI.getOperand(0).getReg(); 6935 Register HiReg = MI.getOperand(1).getReg(); 6936 DebugLoc DL = MI.getDebugLoc(); 6937 6938 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 6939 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), HiReg) 6940 .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding) 6941 .addReg(RISCV::X0); 6942 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), LoReg) 6943 .addImm(RISCVSysReg::lookupSysRegByName("CYCLE")->Encoding) 6944 .addReg(RISCV::X0); 6945 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), ReadAgainReg) 6946 .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding) 6947 .addReg(RISCV::X0); 6948 6949 BuildMI(LoopMBB, DL, TII->get(RISCV::BNE)) 6950 .addReg(HiReg) 6951 .addReg(ReadAgainReg) 6952 .addMBB(LoopMBB); 6953 6954 LoopMBB->addSuccessor(LoopMBB); 6955 LoopMBB->addSuccessor(DoneMBB); 6956 6957 MI.eraseFromParent(); 6958 6959 return DoneMBB; 6960 } 6961 6962 static MachineBasicBlock *emitSplitF64Pseudo(MachineInstr &MI, 6963 MachineBasicBlock *BB) { 6964 assert(MI.getOpcode() == RISCV::SplitF64Pseudo && "Unexpected instruction"); 6965 6966 MachineFunction &MF = *BB->getParent(); 6967 DebugLoc DL = MI.getDebugLoc(); 6968 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 6969 const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo(); 6970 Register LoReg = MI.getOperand(0).getReg(); 6971 Register HiReg = MI.getOperand(1).getReg(); 6972 Register SrcReg = MI.getOperand(2).getReg(); 6973 const TargetRegisterClass *SrcRC = &RISCV::FPR64RegClass; 6974 int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF); 6975 6976 TII.storeRegToStackSlot(*BB, MI, SrcReg, MI.getOperand(2).isKill(), FI, SrcRC, 6977 RI); 6978 MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI); 6979 MachineMemOperand *MMOLo = 6980 MF.getMachineMemOperand(MPI, MachineMemOperand::MOLoad, 4, Align(8)); 6981 MachineMemOperand *MMOHi = MF.getMachineMemOperand( 6982 MPI.getWithOffset(4), MachineMemOperand::MOLoad, 4, Align(8)); 6983 BuildMI(*BB, MI, DL, TII.get(RISCV::LW), LoReg) 6984 .addFrameIndex(FI) 6985 .addImm(0) 6986 .addMemOperand(MMOLo); 6987 BuildMI(*BB, MI, DL, TII.get(RISCV::LW), HiReg) 6988 .addFrameIndex(FI) 6989 .addImm(4) 6990 .addMemOperand(MMOHi); 6991 MI.eraseFromParent(); // The pseudo instruction is gone now. 6992 return BB; 6993 } 6994 6995 static MachineBasicBlock *emitBuildPairF64Pseudo(MachineInstr &MI, 6996 MachineBasicBlock *BB) { 6997 assert(MI.getOpcode() == RISCV::BuildPairF64Pseudo && 6998 "Unexpected instruction"); 6999 7000 MachineFunction &MF = *BB->getParent(); 7001 DebugLoc DL = MI.getDebugLoc(); 7002 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 7003 const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo(); 7004 Register DstReg = MI.getOperand(0).getReg(); 7005 Register LoReg = MI.getOperand(1).getReg(); 7006 Register HiReg = MI.getOperand(2).getReg(); 7007 const TargetRegisterClass *DstRC = &RISCV::FPR64RegClass; 7008 int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF); 7009 7010 MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI); 7011 MachineMemOperand *MMOLo = 7012 MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Align(8)); 7013 MachineMemOperand *MMOHi = MF.getMachineMemOperand( 7014 MPI.getWithOffset(4), MachineMemOperand::MOStore, 4, Align(8)); 7015 BuildMI(*BB, MI, DL, TII.get(RISCV::SW)) 7016 .addReg(LoReg, getKillRegState(MI.getOperand(1).isKill())) 7017 .addFrameIndex(FI) 7018 .addImm(0) 7019 .addMemOperand(MMOLo); 7020 BuildMI(*BB, MI, DL, TII.get(RISCV::SW)) 7021 .addReg(HiReg, getKillRegState(MI.getOperand(2).isKill())) 7022 .addFrameIndex(FI) 7023 .addImm(4) 7024 .addMemOperand(MMOHi); 7025 TII.loadRegFromStackSlot(*BB, MI, DstReg, FI, DstRC, RI); 7026 MI.eraseFromParent(); // The pseudo instruction is gone now. 7027 return BB; 7028 } 7029 7030 static bool isSelectPseudo(MachineInstr &MI) { 7031 switch (MI.getOpcode()) { 7032 default: 7033 return false; 7034 case RISCV::Select_GPR_Using_CC_GPR: 7035 case RISCV::Select_FPR16_Using_CC_GPR: 7036 case RISCV::Select_FPR32_Using_CC_GPR: 7037 case RISCV::Select_FPR64_Using_CC_GPR: 7038 return true; 7039 } 7040 } 7041 7042 static MachineBasicBlock *emitSelectPseudo(MachineInstr &MI, 7043 MachineBasicBlock *BB, 7044 const RISCVSubtarget &Subtarget) { 7045 // To "insert" Select_* instructions, we actually have to insert the triangle 7046 // control-flow pattern. The incoming instructions know the destination vreg 7047 // to set, the condition code register to branch on, the true/false values to 7048 // select between, and the condcode to use to select the appropriate branch. 7049 // 7050 // We produce the following control flow: 7051 // HeadMBB 7052 // | \ 7053 // | IfFalseMBB 7054 // | / 7055 // TailMBB 7056 // 7057 // When we find a sequence of selects we attempt to optimize their emission 7058 // by sharing the control flow. Currently we only handle cases where we have 7059 // multiple selects with the exact same condition (same LHS, RHS and CC). 7060 // The selects may be interleaved with other instructions if the other 7061 // instructions meet some requirements we deem safe: 7062 // - They are debug instructions. Otherwise, 7063 // - They do not have side-effects, do not access memory and their inputs do 7064 // not depend on the results of the select pseudo-instructions. 7065 // The TrueV/FalseV operands of the selects cannot depend on the result of 7066 // previous selects in the sequence. 7067 // These conditions could be further relaxed. See the X86 target for a 7068 // related approach and more information. 7069 Register LHS = MI.getOperand(1).getReg(); 7070 Register RHS = MI.getOperand(2).getReg(); 7071 auto CC = static_cast<RISCVCC::CondCode>(MI.getOperand(3).getImm()); 7072 7073 SmallVector<MachineInstr *, 4> SelectDebugValues; 7074 SmallSet<Register, 4> SelectDests; 7075 SelectDests.insert(MI.getOperand(0).getReg()); 7076 7077 MachineInstr *LastSelectPseudo = &MI; 7078 7079 for (auto E = BB->end(), SequenceMBBI = MachineBasicBlock::iterator(MI); 7080 SequenceMBBI != E; ++SequenceMBBI) { 7081 if (SequenceMBBI->isDebugInstr()) 7082 continue; 7083 else if (isSelectPseudo(*SequenceMBBI)) { 7084 if (SequenceMBBI->getOperand(1).getReg() != LHS || 7085 SequenceMBBI->getOperand(2).getReg() != RHS || 7086 SequenceMBBI->getOperand(3).getImm() != CC || 7087 SelectDests.count(SequenceMBBI->getOperand(4).getReg()) || 7088 SelectDests.count(SequenceMBBI->getOperand(5).getReg())) 7089 break; 7090 LastSelectPseudo = &*SequenceMBBI; 7091 SequenceMBBI->collectDebugValues(SelectDebugValues); 7092 SelectDests.insert(SequenceMBBI->getOperand(0).getReg()); 7093 } else { 7094 if (SequenceMBBI->hasUnmodeledSideEffects() || 7095 SequenceMBBI->mayLoadOrStore()) 7096 break; 7097 if (llvm::any_of(SequenceMBBI->operands(), [&](MachineOperand &MO) { 7098 return MO.isReg() && MO.isUse() && SelectDests.count(MO.getReg()); 7099 })) 7100 break; 7101 } 7102 } 7103 7104 const RISCVInstrInfo &TII = *Subtarget.getInstrInfo(); 7105 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 7106 DebugLoc DL = MI.getDebugLoc(); 7107 MachineFunction::iterator I = ++BB->getIterator(); 7108 7109 MachineBasicBlock *HeadMBB = BB; 7110 MachineFunction *F = BB->getParent(); 7111 MachineBasicBlock *TailMBB = F->CreateMachineBasicBlock(LLVM_BB); 7112 MachineBasicBlock *IfFalseMBB = F->CreateMachineBasicBlock(LLVM_BB); 7113 7114 F->insert(I, IfFalseMBB); 7115 F->insert(I, TailMBB); 7116 7117 // Transfer debug instructions associated with the selects to TailMBB. 7118 for (MachineInstr *DebugInstr : SelectDebugValues) { 7119 TailMBB->push_back(DebugInstr->removeFromParent()); 7120 } 7121 7122 // Move all instructions after the sequence to TailMBB. 7123 TailMBB->splice(TailMBB->end(), HeadMBB, 7124 std::next(LastSelectPseudo->getIterator()), HeadMBB->end()); 7125 // Update machine-CFG edges by transferring all successors of the current 7126 // block to the new block which will contain the Phi nodes for the selects. 7127 TailMBB->transferSuccessorsAndUpdatePHIs(HeadMBB); 7128 // Set the successors for HeadMBB. 7129 HeadMBB->addSuccessor(IfFalseMBB); 7130 HeadMBB->addSuccessor(TailMBB); 7131 7132 // Insert appropriate branch. 7133 BuildMI(HeadMBB, DL, TII.getBrCond(CC)) 7134 .addReg(LHS) 7135 .addReg(RHS) 7136 .addMBB(TailMBB); 7137 7138 // IfFalseMBB just falls through to TailMBB. 7139 IfFalseMBB->addSuccessor(TailMBB); 7140 7141 // Create PHIs for all of the select pseudo-instructions. 7142 auto SelectMBBI = MI.getIterator(); 7143 auto SelectEnd = std::next(LastSelectPseudo->getIterator()); 7144 auto InsertionPoint = TailMBB->begin(); 7145 while (SelectMBBI != SelectEnd) { 7146 auto Next = std::next(SelectMBBI); 7147 if (isSelectPseudo(*SelectMBBI)) { 7148 // %Result = phi [ %TrueValue, HeadMBB ], [ %FalseValue, IfFalseMBB ] 7149 BuildMI(*TailMBB, InsertionPoint, SelectMBBI->getDebugLoc(), 7150 TII.get(RISCV::PHI), SelectMBBI->getOperand(0).getReg()) 7151 .addReg(SelectMBBI->getOperand(4).getReg()) 7152 .addMBB(HeadMBB) 7153 .addReg(SelectMBBI->getOperand(5).getReg()) 7154 .addMBB(IfFalseMBB); 7155 SelectMBBI->eraseFromParent(); 7156 } 7157 SelectMBBI = Next; 7158 } 7159 7160 F->getProperties().reset(MachineFunctionProperties::Property::NoPHIs); 7161 return TailMBB; 7162 } 7163 7164 MachineBasicBlock * 7165 RISCVTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 7166 MachineBasicBlock *BB) const { 7167 switch (MI.getOpcode()) { 7168 default: 7169 llvm_unreachable("Unexpected instr type to insert"); 7170 case RISCV::ReadCycleWide: 7171 assert(!Subtarget.is64Bit() && 7172 "ReadCycleWrite is only to be used on riscv32"); 7173 return emitReadCycleWidePseudo(MI, BB); 7174 case RISCV::Select_GPR_Using_CC_GPR: 7175 case RISCV::Select_FPR16_Using_CC_GPR: 7176 case RISCV::Select_FPR32_Using_CC_GPR: 7177 case RISCV::Select_FPR64_Using_CC_GPR: 7178 return emitSelectPseudo(MI, BB, Subtarget); 7179 case RISCV::BuildPairF64Pseudo: 7180 return emitBuildPairF64Pseudo(MI, BB); 7181 case RISCV::SplitF64Pseudo: 7182 return emitSplitF64Pseudo(MI, BB); 7183 } 7184 } 7185 7186 // Calling Convention Implementation. 7187 // The expectations for frontend ABI lowering vary from target to target. 7188 // Ideally, an LLVM frontend would be able to avoid worrying about many ABI 7189 // details, but this is a longer term goal. For now, we simply try to keep the 7190 // role of the frontend as simple and well-defined as possible. The rules can 7191 // be summarised as: 7192 // * Never split up large scalar arguments. We handle them here. 7193 // * If a hardfloat calling convention is being used, and the struct may be 7194 // passed in a pair of registers (fp+fp, int+fp), and both registers are 7195 // available, then pass as two separate arguments. If either the GPRs or FPRs 7196 // are exhausted, then pass according to the rule below. 7197 // * If a struct could never be passed in registers or directly in a stack 7198 // slot (as it is larger than 2*XLEN and the floating point rules don't 7199 // apply), then pass it using a pointer with the byval attribute. 7200 // * If a struct is less than 2*XLEN, then coerce to either a two-element 7201 // word-sized array or a 2*XLEN scalar (depending on alignment). 7202 // * The frontend can determine whether a struct is returned by reference or 7203 // not based on its size and fields. If it will be returned by reference, the 7204 // frontend must modify the prototype so a pointer with the sret annotation is 7205 // passed as the first argument. This is not necessary for large scalar 7206 // returns. 7207 // * Struct return values and varargs should be coerced to structs containing 7208 // register-size fields in the same situations they would be for fixed 7209 // arguments. 7210 7211 static const MCPhysReg ArgGPRs[] = { 7212 RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, 7213 RISCV::X14, RISCV::X15, RISCV::X16, RISCV::X17 7214 }; 7215 static const MCPhysReg ArgFPR16s[] = { 7216 RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, 7217 RISCV::F14_H, RISCV::F15_H, RISCV::F16_H, RISCV::F17_H 7218 }; 7219 static const MCPhysReg ArgFPR32s[] = { 7220 RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, 7221 RISCV::F14_F, RISCV::F15_F, RISCV::F16_F, RISCV::F17_F 7222 }; 7223 static const MCPhysReg ArgFPR64s[] = { 7224 RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, 7225 RISCV::F14_D, RISCV::F15_D, RISCV::F16_D, RISCV::F17_D 7226 }; 7227 // This is an interim calling convention and it may be changed in the future. 7228 static const MCPhysReg ArgVRs[] = { 7229 RISCV::V8, RISCV::V9, RISCV::V10, RISCV::V11, RISCV::V12, RISCV::V13, 7230 RISCV::V14, RISCV::V15, RISCV::V16, RISCV::V17, RISCV::V18, RISCV::V19, 7231 RISCV::V20, RISCV::V21, RISCV::V22, RISCV::V23}; 7232 static const MCPhysReg ArgVRM2s[] = {RISCV::V8M2, RISCV::V10M2, RISCV::V12M2, 7233 RISCV::V14M2, RISCV::V16M2, RISCV::V18M2, 7234 RISCV::V20M2, RISCV::V22M2}; 7235 static const MCPhysReg ArgVRM4s[] = {RISCV::V8M4, RISCV::V12M4, RISCV::V16M4, 7236 RISCV::V20M4}; 7237 static const MCPhysReg ArgVRM8s[] = {RISCV::V8M8, RISCV::V16M8}; 7238 7239 // Pass a 2*XLEN argument that has been split into two XLEN values through 7240 // registers or the stack as necessary. 7241 static bool CC_RISCVAssign2XLen(unsigned XLen, CCState &State, CCValAssign VA1, 7242 ISD::ArgFlagsTy ArgFlags1, unsigned ValNo2, 7243 MVT ValVT2, MVT LocVT2, 7244 ISD::ArgFlagsTy ArgFlags2) { 7245 unsigned XLenInBytes = XLen / 8; 7246 if (Register Reg = State.AllocateReg(ArgGPRs)) { 7247 // At least one half can be passed via register. 7248 State.addLoc(CCValAssign::getReg(VA1.getValNo(), VA1.getValVT(), Reg, 7249 VA1.getLocVT(), CCValAssign::Full)); 7250 } else { 7251 // Both halves must be passed on the stack, with proper alignment. 7252 Align StackAlign = 7253 std::max(Align(XLenInBytes), ArgFlags1.getNonZeroOrigAlign()); 7254 State.addLoc( 7255 CCValAssign::getMem(VA1.getValNo(), VA1.getValVT(), 7256 State.AllocateStack(XLenInBytes, StackAlign), 7257 VA1.getLocVT(), CCValAssign::Full)); 7258 State.addLoc(CCValAssign::getMem( 7259 ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)), 7260 LocVT2, CCValAssign::Full)); 7261 return false; 7262 } 7263 7264 if (Register Reg = State.AllocateReg(ArgGPRs)) { 7265 // The second half can also be passed via register. 7266 State.addLoc( 7267 CCValAssign::getReg(ValNo2, ValVT2, Reg, LocVT2, CCValAssign::Full)); 7268 } else { 7269 // The second half is passed via the stack, without additional alignment. 7270 State.addLoc(CCValAssign::getMem( 7271 ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)), 7272 LocVT2, CCValAssign::Full)); 7273 } 7274 7275 return false; 7276 } 7277 7278 static unsigned allocateRVVReg(MVT ValVT, unsigned ValNo, 7279 Optional<unsigned> FirstMaskArgument, 7280 CCState &State, const RISCVTargetLowering &TLI) { 7281 const TargetRegisterClass *RC = TLI.getRegClassFor(ValVT); 7282 if (RC == &RISCV::VRRegClass) { 7283 // Assign the first mask argument to V0. 7284 // This is an interim calling convention and it may be changed in the 7285 // future. 7286 if (FirstMaskArgument.hasValue() && ValNo == FirstMaskArgument.getValue()) 7287 return State.AllocateReg(RISCV::V0); 7288 return State.AllocateReg(ArgVRs); 7289 } 7290 if (RC == &RISCV::VRM2RegClass) 7291 return State.AllocateReg(ArgVRM2s); 7292 if (RC == &RISCV::VRM4RegClass) 7293 return State.AllocateReg(ArgVRM4s); 7294 if (RC == &RISCV::VRM8RegClass) 7295 return State.AllocateReg(ArgVRM8s); 7296 llvm_unreachable("Unhandled register class for ValueType"); 7297 } 7298 7299 // Implements the RISC-V calling convention. Returns true upon failure. 7300 static bool CC_RISCV(const DataLayout &DL, RISCVABI::ABI ABI, unsigned ValNo, 7301 MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, 7302 ISD::ArgFlagsTy ArgFlags, CCState &State, bool IsFixed, 7303 bool IsRet, Type *OrigTy, const RISCVTargetLowering &TLI, 7304 Optional<unsigned> FirstMaskArgument) { 7305 unsigned XLen = DL.getLargestLegalIntTypeSizeInBits(); 7306 assert(XLen == 32 || XLen == 64); 7307 MVT XLenVT = XLen == 32 ? MVT::i32 : MVT::i64; 7308 7309 // Any return value split in to more than two values can't be returned 7310 // directly. Vectors are returned via the available vector registers. 7311 if (!LocVT.isVector() && IsRet && ValNo > 1) 7312 return true; 7313 7314 // UseGPRForF16_F32 if targeting one of the soft-float ABIs, if passing a 7315 // variadic argument, or if no F16/F32 argument registers are available. 7316 bool UseGPRForF16_F32 = true; 7317 // UseGPRForF64 if targeting soft-float ABIs or an FLEN=32 ABI, if passing a 7318 // variadic argument, or if no F64 argument registers are available. 7319 bool UseGPRForF64 = true; 7320 7321 switch (ABI) { 7322 default: 7323 llvm_unreachable("Unexpected ABI"); 7324 case RISCVABI::ABI_ILP32: 7325 case RISCVABI::ABI_LP64: 7326 break; 7327 case RISCVABI::ABI_ILP32F: 7328 case RISCVABI::ABI_LP64F: 7329 UseGPRForF16_F32 = !IsFixed; 7330 break; 7331 case RISCVABI::ABI_ILP32D: 7332 case RISCVABI::ABI_LP64D: 7333 UseGPRForF16_F32 = !IsFixed; 7334 UseGPRForF64 = !IsFixed; 7335 break; 7336 } 7337 7338 // FPR16, FPR32, and FPR64 alias each other. 7339 if (State.getFirstUnallocated(ArgFPR32s) == array_lengthof(ArgFPR32s)) { 7340 UseGPRForF16_F32 = true; 7341 UseGPRForF64 = true; 7342 } 7343 7344 // From this point on, rely on UseGPRForF16_F32, UseGPRForF64 and 7345 // similar local variables rather than directly checking against the target 7346 // ABI. 7347 7348 if (UseGPRForF16_F32 && (ValVT == MVT::f16 || ValVT == MVT::f32)) { 7349 LocVT = XLenVT; 7350 LocInfo = CCValAssign::BCvt; 7351 } else if (UseGPRForF64 && XLen == 64 && ValVT == MVT::f64) { 7352 LocVT = MVT::i64; 7353 LocInfo = CCValAssign::BCvt; 7354 } 7355 7356 // If this is a variadic argument, the RISC-V calling convention requires 7357 // that it is assigned an 'even' or 'aligned' register if it has 8-byte 7358 // alignment (RV32) or 16-byte alignment (RV64). An aligned register should 7359 // be used regardless of whether the original argument was split during 7360 // legalisation or not. The argument will not be passed by registers if the 7361 // original type is larger than 2*XLEN, so the register alignment rule does 7362 // not apply. 7363 unsigned TwoXLenInBytes = (2 * XLen) / 8; 7364 if (!IsFixed && ArgFlags.getNonZeroOrigAlign() == TwoXLenInBytes && 7365 DL.getTypeAllocSize(OrigTy) == TwoXLenInBytes) { 7366 unsigned RegIdx = State.getFirstUnallocated(ArgGPRs); 7367 // Skip 'odd' register if necessary. 7368 if (RegIdx != array_lengthof(ArgGPRs) && RegIdx % 2 == 1) 7369 State.AllocateReg(ArgGPRs); 7370 } 7371 7372 SmallVectorImpl<CCValAssign> &PendingLocs = State.getPendingLocs(); 7373 SmallVectorImpl<ISD::ArgFlagsTy> &PendingArgFlags = 7374 State.getPendingArgFlags(); 7375 7376 assert(PendingLocs.size() == PendingArgFlags.size() && 7377 "PendingLocs and PendingArgFlags out of sync"); 7378 7379 // Handle passing f64 on RV32D with a soft float ABI or when floating point 7380 // registers are exhausted. 7381 if (UseGPRForF64 && XLen == 32 && ValVT == MVT::f64) { 7382 assert(!ArgFlags.isSplit() && PendingLocs.empty() && 7383 "Can't lower f64 if it is split"); 7384 // Depending on available argument GPRS, f64 may be passed in a pair of 7385 // GPRs, split between a GPR and the stack, or passed completely on the 7386 // stack. LowerCall/LowerFormalArguments/LowerReturn must recognise these 7387 // cases. 7388 Register Reg = State.AllocateReg(ArgGPRs); 7389 LocVT = MVT::i32; 7390 if (!Reg) { 7391 unsigned StackOffset = State.AllocateStack(8, Align(8)); 7392 State.addLoc( 7393 CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 7394 return false; 7395 } 7396 if (!State.AllocateReg(ArgGPRs)) 7397 State.AllocateStack(4, Align(4)); 7398 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 7399 return false; 7400 } 7401 7402 // Fixed-length vectors are located in the corresponding scalable-vector 7403 // container types. 7404 if (ValVT.isFixedLengthVector()) 7405 LocVT = TLI.getContainerForFixedLengthVector(LocVT); 7406 7407 // Split arguments might be passed indirectly, so keep track of the pending 7408 // values. Split vectors are passed via a mix of registers and indirectly, so 7409 // treat them as we would any other argument. 7410 if (ValVT.isScalarInteger() && (ArgFlags.isSplit() || !PendingLocs.empty())) { 7411 LocVT = XLenVT; 7412 LocInfo = CCValAssign::Indirect; 7413 PendingLocs.push_back( 7414 CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo)); 7415 PendingArgFlags.push_back(ArgFlags); 7416 if (!ArgFlags.isSplitEnd()) { 7417 return false; 7418 } 7419 } 7420 7421 // If the split argument only had two elements, it should be passed directly 7422 // in registers or on the stack. 7423 if (ValVT.isScalarInteger() && ArgFlags.isSplitEnd() && 7424 PendingLocs.size() <= 2) { 7425 assert(PendingLocs.size() == 2 && "Unexpected PendingLocs.size()"); 7426 // Apply the normal calling convention rules to the first half of the 7427 // split argument. 7428 CCValAssign VA = PendingLocs[0]; 7429 ISD::ArgFlagsTy AF = PendingArgFlags[0]; 7430 PendingLocs.clear(); 7431 PendingArgFlags.clear(); 7432 return CC_RISCVAssign2XLen(XLen, State, VA, AF, ValNo, ValVT, LocVT, 7433 ArgFlags); 7434 } 7435 7436 // Allocate to a register if possible, or else a stack slot. 7437 Register Reg; 7438 unsigned StoreSizeBytes = XLen / 8; 7439 Align StackAlign = Align(XLen / 8); 7440 7441 if (ValVT == MVT::f16 && !UseGPRForF16_F32) 7442 Reg = State.AllocateReg(ArgFPR16s); 7443 else if (ValVT == MVT::f32 && !UseGPRForF16_F32) 7444 Reg = State.AllocateReg(ArgFPR32s); 7445 else if (ValVT == MVT::f64 && !UseGPRForF64) 7446 Reg = State.AllocateReg(ArgFPR64s); 7447 else if (ValVT.isVector()) { 7448 Reg = allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI); 7449 if (!Reg) { 7450 // For return values, the vector must be passed fully via registers or 7451 // via the stack. 7452 // FIXME: The proposed vector ABI only mandates v8-v15 for return values, 7453 // but we're using all of them. 7454 if (IsRet) 7455 return true; 7456 // Try using a GPR to pass the address 7457 if ((Reg = State.AllocateReg(ArgGPRs))) { 7458 LocVT = XLenVT; 7459 LocInfo = CCValAssign::Indirect; 7460 } else if (ValVT.isScalableVector()) { 7461 report_fatal_error("Unable to pass scalable vector types on the stack"); 7462 } else { 7463 // Pass fixed-length vectors on the stack. 7464 LocVT = ValVT; 7465 StoreSizeBytes = ValVT.getStoreSize(); 7466 // Align vectors to their element sizes, being careful for vXi1 7467 // vectors. 7468 StackAlign = MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne(); 7469 } 7470 } 7471 } else { 7472 Reg = State.AllocateReg(ArgGPRs); 7473 } 7474 7475 unsigned StackOffset = 7476 Reg ? 0 : State.AllocateStack(StoreSizeBytes, StackAlign); 7477 7478 // If we reach this point and PendingLocs is non-empty, we must be at the 7479 // end of a split argument that must be passed indirectly. 7480 if (!PendingLocs.empty()) { 7481 assert(ArgFlags.isSplitEnd() && "Expected ArgFlags.isSplitEnd()"); 7482 assert(PendingLocs.size() > 2 && "Unexpected PendingLocs.size()"); 7483 7484 for (auto &It : PendingLocs) { 7485 if (Reg) 7486 It.convertToReg(Reg); 7487 else 7488 It.convertToMem(StackOffset); 7489 State.addLoc(It); 7490 } 7491 PendingLocs.clear(); 7492 PendingArgFlags.clear(); 7493 return false; 7494 } 7495 7496 assert((!UseGPRForF16_F32 || !UseGPRForF64 || LocVT == XLenVT || 7497 (TLI.getSubtarget().hasStdExtV() && ValVT.isVector())) && 7498 "Expected an XLenVT or vector types at this stage"); 7499 7500 if (Reg) { 7501 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 7502 return false; 7503 } 7504 7505 // When a floating-point value is passed on the stack, no bit-conversion is 7506 // needed. 7507 if (ValVT.isFloatingPoint()) { 7508 LocVT = ValVT; 7509 LocInfo = CCValAssign::Full; 7510 } 7511 State.addLoc(CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 7512 return false; 7513 } 7514 7515 template <typename ArgTy> 7516 static Optional<unsigned> preAssignMask(const ArgTy &Args) { 7517 for (const auto &ArgIdx : enumerate(Args)) { 7518 MVT ArgVT = ArgIdx.value().VT; 7519 if (ArgVT.isVector() && ArgVT.getVectorElementType() == MVT::i1) 7520 return ArgIdx.index(); 7521 } 7522 return None; 7523 } 7524 7525 void RISCVTargetLowering::analyzeInputArgs( 7526 MachineFunction &MF, CCState &CCInfo, 7527 const SmallVectorImpl<ISD::InputArg> &Ins, bool IsRet, 7528 RISCVCCAssignFn Fn) const { 7529 unsigned NumArgs = Ins.size(); 7530 FunctionType *FType = MF.getFunction().getFunctionType(); 7531 7532 Optional<unsigned> FirstMaskArgument; 7533 if (Subtarget.hasStdExtV()) 7534 FirstMaskArgument = preAssignMask(Ins); 7535 7536 for (unsigned i = 0; i != NumArgs; ++i) { 7537 MVT ArgVT = Ins[i].VT; 7538 ISD::ArgFlagsTy ArgFlags = Ins[i].Flags; 7539 7540 Type *ArgTy = nullptr; 7541 if (IsRet) 7542 ArgTy = FType->getReturnType(); 7543 else if (Ins[i].isOrigArg()) 7544 ArgTy = FType->getParamType(Ins[i].getOrigArgIndex()); 7545 7546 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 7547 if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full, 7548 ArgFlags, CCInfo, /*IsFixed=*/true, IsRet, ArgTy, *this, 7549 FirstMaskArgument)) { 7550 LLVM_DEBUG(dbgs() << "InputArg #" << i << " has unhandled type " 7551 << EVT(ArgVT).getEVTString() << '\n'); 7552 llvm_unreachable(nullptr); 7553 } 7554 } 7555 } 7556 7557 void RISCVTargetLowering::analyzeOutputArgs( 7558 MachineFunction &MF, CCState &CCInfo, 7559 const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsRet, 7560 CallLoweringInfo *CLI, RISCVCCAssignFn Fn) const { 7561 unsigned NumArgs = Outs.size(); 7562 7563 Optional<unsigned> FirstMaskArgument; 7564 if (Subtarget.hasStdExtV()) 7565 FirstMaskArgument = preAssignMask(Outs); 7566 7567 for (unsigned i = 0; i != NumArgs; i++) { 7568 MVT ArgVT = Outs[i].VT; 7569 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 7570 Type *OrigTy = CLI ? CLI->getArgs()[Outs[i].OrigArgIndex].Ty : nullptr; 7571 7572 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 7573 if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full, 7574 ArgFlags, CCInfo, Outs[i].IsFixed, IsRet, OrigTy, *this, 7575 FirstMaskArgument)) { 7576 LLVM_DEBUG(dbgs() << "OutputArg #" << i << " has unhandled type " 7577 << EVT(ArgVT).getEVTString() << "\n"); 7578 llvm_unreachable(nullptr); 7579 } 7580 } 7581 } 7582 7583 // Convert Val to a ValVT. Should not be called for CCValAssign::Indirect 7584 // values. 7585 static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDValue Val, 7586 const CCValAssign &VA, const SDLoc &DL, 7587 const RISCVSubtarget &Subtarget) { 7588 switch (VA.getLocInfo()) { 7589 default: 7590 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 7591 case CCValAssign::Full: 7592 if (VA.getValVT().isFixedLengthVector() && VA.getLocVT().isScalableVector()) 7593 Val = convertFromScalableVector(VA.getValVT(), Val, DAG, Subtarget); 7594 break; 7595 case CCValAssign::BCvt: 7596 if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16) 7597 Val = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, Val); 7598 else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) 7599 Val = DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, Val); 7600 else 7601 Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val); 7602 break; 7603 } 7604 return Val; 7605 } 7606 7607 // The caller is responsible for loading the full value if the argument is 7608 // passed with CCValAssign::Indirect. 7609 static SDValue unpackFromRegLoc(SelectionDAG &DAG, SDValue Chain, 7610 const CCValAssign &VA, const SDLoc &DL, 7611 const RISCVTargetLowering &TLI) { 7612 MachineFunction &MF = DAG.getMachineFunction(); 7613 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 7614 EVT LocVT = VA.getLocVT(); 7615 SDValue Val; 7616 const TargetRegisterClass *RC = TLI.getRegClassFor(LocVT.getSimpleVT()); 7617 Register VReg = RegInfo.createVirtualRegister(RC); 7618 RegInfo.addLiveIn(VA.getLocReg(), VReg); 7619 Val = DAG.getCopyFromReg(Chain, DL, VReg, LocVT); 7620 7621 if (VA.getLocInfo() == CCValAssign::Indirect) 7622 return Val; 7623 7624 return convertLocVTToValVT(DAG, Val, VA, DL, TLI.getSubtarget()); 7625 } 7626 7627 static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDValue Val, 7628 const CCValAssign &VA, const SDLoc &DL, 7629 const RISCVSubtarget &Subtarget) { 7630 EVT LocVT = VA.getLocVT(); 7631 7632 switch (VA.getLocInfo()) { 7633 default: 7634 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 7635 case CCValAssign::Full: 7636 if (VA.getValVT().isFixedLengthVector() && LocVT.isScalableVector()) 7637 Val = convertToScalableVector(LocVT, Val, DAG, Subtarget); 7638 break; 7639 case CCValAssign::BCvt: 7640 if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16) 7641 Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, VA.getLocVT(), Val); 7642 else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) 7643 Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Val); 7644 else 7645 Val = DAG.getNode(ISD::BITCAST, DL, LocVT, Val); 7646 break; 7647 } 7648 return Val; 7649 } 7650 7651 // The caller is responsible for loading the full value if the argument is 7652 // passed with CCValAssign::Indirect. 7653 static SDValue unpackFromMemLoc(SelectionDAG &DAG, SDValue Chain, 7654 const CCValAssign &VA, const SDLoc &DL) { 7655 MachineFunction &MF = DAG.getMachineFunction(); 7656 MachineFrameInfo &MFI = MF.getFrameInfo(); 7657 EVT LocVT = VA.getLocVT(); 7658 EVT ValVT = VA.getValVT(); 7659 EVT PtrVT = MVT::getIntegerVT(DAG.getDataLayout().getPointerSizeInBits(0)); 7660 int FI = MFI.CreateFixedObject(ValVT.getStoreSize(), VA.getLocMemOffset(), 7661 /*Immutable=*/true); 7662 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 7663 SDValue Val; 7664 7665 ISD::LoadExtType ExtType; 7666 switch (VA.getLocInfo()) { 7667 default: 7668 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 7669 case CCValAssign::Full: 7670 case CCValAssign::Indirect: 7671 case CCValAssign::BCvt: 7672 ExtType = ISD::NON_EXTLOAD; 7673 break; 7674 } 7675 Val = DAG.getExtLoad( 7676 ExtType, DL, LocVT, Chain, FIN, 7677 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), ValVT); 7678 return Val; 7679 } 7680 7681 static SDValue unpackF64OnRV32DSoftABI(SelectionDAG &DAG, SDValue Chain, 7682 const CCValAssign &VA, const SDLoc &DL) { 7683 assert(VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64 && 7684 "Unexpected VA"); 7685 MachineFunction &MF = DAG.getMachineFunction(); 7686 MachineFrameInfo &MFI = MF.getFrameInfo(); 7687 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 7688 7689 if (VA.isMemLoc()) { 7690 // f64 is passed on the stack. 7691 int FI = MFI.CreateFixedObject(8, VA.getLocMemOffset(), /*Immutable=*/true); 7692 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 7693 return DAG.getLoad(MVT::f64, DL, Chain, FIN, 7694 MachinePointerInfo::getFixedStack(MF, FI)); 7695 } 7696 7697 assert(VA.isRegLoc() && "Expected register VA assignment"); 7698 7699 Register LoVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 7700 RegInfo.addLiveIn(VA.getLocReg(), LoVReg); 7701 SDValue Lo = DAG.getCopyFromReg(Chain, DL, LoVReg, MVT::i32); 7702 SDValue Hi; 7703 if (VA.getLocReg() == RISCV::X17) { 7704 // Second half of f64 is passed on the stack. 7705 int FI = MFI.CreateFixedObject(4, 0, /*Immutable=*/true); 7706 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 7707 Hi = DAG.getLoad(MVT::i32, DL, Chain, FIN, 7708 MachinePointerInfo::getFixedStack(MF, FI)); 7709 } else { 7710 // Second half of f64 is passed in another GPR. 7711 Register HiVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 7712 RegInfo.addLiveIn(VA.getLocReg() + 1, HiVReg); 7713 Hi = DAG.getCopyFromReg(Chain, DL, HiVReg, MVT::i32); 7714 } 7715 return DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, Lo, Hi); 7716 } 7717 7718 // FastCC has less than 1% performance improvement for some particular 7719 // benchmark. But theoretically, it may has benenfit for some cases. 7720 static bool CC_RISCV_FastCC(const DataLayout &DL, RISCVABI::ABI ABI, 7721 unsigned ValNo, MVT ValVT, MVT LocVT, 7722 CCValAssign::LocInfo LocInfo, 7723 ISD::ArgFlagsTy ArgFlags, CCState &State, 7724 bool IsFixed, bool IsRet, Type *OrigTy, 7725 const RISCVTargetLowering &TLI, 7726 Optional<unsigned> FirstMaskArgument) { 7727 7728 // X5 and X6 might be used for save-restore libcall. 7729 static const MCPhysReg GPRList[] = { 7730 RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, RISCV::X14, 7731 RISCV::X15, RISCV::X16, RISCV::X17, RISCV::X7, RISCV::X28, 7732 RISCV::X29, RISCV::X30, RISCV::X31}; 7733 7734 if (LocVT == MVT::i32 || LocVT == MVT::i64) { 7735 if (unsigned Reg = State.AllocateReg(GPRList)) { 7736 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 7737 return false; 7738 } 7739 } 7740 7741 if (LocVT == MVT::f16) { 7742 static const MCPhysReg FPR16List[] = { 7743 RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, RISCV::F14_H, 7744 RISCV::F15_H, RISCV::F16_H, RISCV::F17_H, RISCV::F0_H, RISCV::F1_H, 7745 RISCV::F2_H, RISCV::F3_H, RISCV::F4_H, RISCV::F5_H, RISCV::F6_H, 7746 RISCV::F7_H, RISCV::F28_H, RISCV::F29_H, RISCV::F30_H, RISCV::F31_H}; 7747 if (unsigned Reg = State.AllocateReg(FPR16List)) { 7748 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 7749 return false; 7750 } 7751 } 7752 7753 if (LocVT == MVT::f32) { 7754 static const MCPhysReg FPR32List[] = { 7755 RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, RISCV::F14_F, 7756 RISCV::F15_F, RISCV::F16_F, RISCV::F17_F, RISCV::F0_F, RISCV::F1_F, 7757 RISCV::F2_F, RISCV::F3_F, RISCV::F4_F, RISCV::F5_F, RISCV::F6_F, 7758 RISCV::F7_F, RISCV::F28_F, RISCV::F29_F, RISCV::F30_F, RISCV::F31_F}; 7759 if (unsigned Reg = State.AllocateReg(FPR32List)) { 7760 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 7761 return false; 7762 } 7763 } 7764 7765 if (LocVT == MVT::f64) { 7766 static const MCPhysReg FPR64List[] = { 7767 RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, RISCV::F14_D, 7768 RISCV::F15_D, RISCV::F16_D, RISCV::F17_D, RISCV::F0_D, RISCV::F1_D, 7769 RISCV::F2_D, RISCV::F3_D, RISCV::F4_D, RISCV::F5_D, RISCV::F6_D, 7770 RISCV::F7_D, RISCV::F28_D, RISCV::F29_D, RISCV::F30_D, RISCV::F31_D}; 7771 if (unsigned Reg = State.AllocateReg(FPR64List)) { 7772 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 7773 return false; 7774 } 7775 } 7776 7777 if (LocVT == MVT::i32 || LocVT == MVT::f32) { 7778 unsigned Offset4 = State.AllocateStack(4, Align(4)); 7779 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset4, LocVT, LocInfo)); 7780 return false; 7781 } 7782 7783 if (LocVT == MVT::i64 || LocVT == MVT::f64) { 7784 unsigned Offset5 = State.AllocateStack(8, Align(8)); 7785 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset5, LocVT, LocInfo)); 7786 return false; 7787 } 7788 7789 if (LocVT.isVector()) { 7790 if (unsigned Reg = 7791 allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI)) { 7792 // Fixed-length vectors are located in the corresponding scalable-vector 7793 // container types. 7794 if (ValVT.isFixedLengthVector()) 7795 LocVT = TLI.getContainerForFixedLengthVector(LocVT); 7796 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 7797 } else { 7798 // Try and pass the address via a "fast" GPR. 7799 if (unsigned GPRReg = State.AllocateReg(GPRList)) { 7800 LocInfo = CCValAssign::Indirect; 7801 LocVT = TLI.getSubtarget().getXLenVT(); 7802 State.addLoc(CCValAssign::getReg(ValNo, ValVT, GPRReg, LocVT, LocInfo)); 7803 } else if (ValVT.isFixedLengthVector()) { 7804 auto StackAlign = 7805 MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne(); 7806 unsigned StackOffset = 7807 State.AllocateStack(ValVT.getStoreSize(), StackAlign); 7808 State.addLoc( 7809 CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 7810 } else { 7811 // Can't pass scalable vectors on the stack. 7812 return true; 7813 } 7814 } 7815 7816 return false; 7817 } 7818 7819 return true; // CC didn't match. 7820 } 7821 7822 static bool CC_RISCV_GHC(unsigned ValNo, MVT ValVT, MVT LocVT, 7823 CCValAssign::LocInfo LocInfo, 7824 ISD::ArgFlagsTy ArgFlags, CCState &State) { 7825 7826 if (LocVT == MVT::i32 || LocVT == MVT::i64) { 7827 // Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, R6, R7, SpLim 7828 // s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 7829 static const MCPhysReg GPRList[] = { 7830 RISCV::X9, RISCV::X18, RISCV::X19, RISCV::X20, RISCV::X21, RISCV::X22, 7831 RISCV::X23, RISCV::X24, RISCV::X25, RISCV::X26, RISCV::X27}; 7832 if (unsigned Reg = State.AllocateReg(GPRList)) { 7833 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 7834 return false; 7835 } 7836 } 7837 7838 if (LocVT == MVT::f32) { 7839 // Pass in STG registers: F1, ..., F6 7840 // fs0 ... fs5 7841 static const MCPhysReg FPR32List[] = {RISCV::F8_F, RISCV::F9_F, 7842 RISCV::F18_F, RISCV::F19_F, 7843 RISCV::F20_F, RISCV::F21_F}; 7844 if (unsigned Reg = State.AllocateReg(FPR32List)) { 7845 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 7846 return false; 7847 } 7848 } 7849 7850 if (LocVT == MVT::f64) { 7851 // Pass in STG registers: D1, ..., D6 7852 // fs6 ... fs11 7853 static const MCPhysReg FPR64List[] = {RISCV::F22_D, RISCV::F23_D, 7854 RISCV::F24_D, RISCV::F25_D, 7855 RISCV::F26_D, RISCV::F27_D}; 7856 if (unsigned Reg = State.AllocateReg(FPR64List)) { 7857 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 7858 return false; 7859 } 7860 } 7861 7862 report_fatal_error("No registers left in GHC calling convention"); 7863 return true; 7864 } 7865 7866 // Transform physical registers into virtual registers. 7867 SDValue RISCVTargetLowering::LowerFormalArguments( 7868 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 7869 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 7870 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 7871 7872 MachineFunction &MF = DAG.getMachineFunction(); 7873 7874 switch (CallConv) { 7875 default: 7876 report_fatal_error("Unsupported calling convention"); 7877 case CallingConv::C: 7878 case CallingConv::Fast: 7879 break; 7880 case CallingConv::GHC: 7881 if (!MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtF] || 7882 !MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtD]) 7883 report_fatal_error( 7884 "GHC calling convention requires the F and D instruction set extensions"); 7885 } 7886 7887 const Function &Func = MF.getFunction(); 7888 if (Func.hasFnAttribute("interrupt")) { 7889 if (!Func.arg_empty()) 7890 report_fatal_error( 7891 "Functions with the interrupt attribute cannot have arguments!"); 7892 7893 StringRef Kind = 7894 MF.getFunction().getFnAttribute("interrupt").getValueAsString(); 7895 7896 if (!(Kind == "user" || Kind == "supervisor" || Kind == "machine")) 7897 report_fatal_error( 7898 "Function interrupt attribute argument not supported!"); 7899 } 7900 7901 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7902 MVT XLenVT = Subtarget.getXLenVT(); 7903 unsigned XLenInBytes = Subtarget.getXLen() / 8; 7904 // Used with vargs to acumulate store chains. 7905 std::vector<SDValue> OutChains; 7906 7907 // Assign locations to all of the incoming arguments. 7908 SmallVector<CCValAssign, 16> ArgLocs; 7909 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 7910 7911 if (CallConv == CallingConv::GHC) 7912 CCInfo.AnalyzeFormalArguments(Ins, CC_RISCV_GHC); 7913 else 7914 analyzeInputArgs(MF, CCInfo, Ins, /*IsRet=*/false, 7915 CallConv == CallingConv::Fast ? CC_RISCV_FastCC 7916 : CC_RISCV); 7917 7918 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 7919 CCValAssign &VA = ArgLocs[i]; 7920 SDValue ArgValue; 7921 // Passing f64 on RV32D with a soft float ABI must be handled as a special 7922 // case. 7923 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) 7924 ArgValue = unpackF64OnRV32DSoftABI(DAG, Chain, VA, DL); 7925 else if (VA.isRegLoc()) 7926 ArgValue = unpackFromRegLoc(DAG, Chain, VA, DL, *this); 7927 else 7928 ArgValue = unpackFromMemLoc(DAG, Chain, VA, DL); 7929 7930 if (VA.getLocInfo() == CCValAssign::Indirect) { 7931 // If the original argument was split and passed by reference (e.g. i128 7932 // on RV32), we need to load all parts of it here (using the same 7933 // address). Vectors may be partly split to registers and partly to the 7934 // stack, in which case the base address is partly offset and subsequent 7935 // stores are relative to that. 7936 InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue, 7937 MachinePointerInfo())); 7938 unsigned ArgIndex = Ins[i].OrigArgIndex; 7939 unsigned ArgPartOffset = Ins[i].PartOffset; 7940 assert(VA.getValVT().isVector() || ArgPartOffset == 0); 7941 while (i + 1 != e && Ins[i + 1].OrigArgIndex == ArgIndex) { 7942 CCValAssign &PartVA = ArgLocs[i + 1]; 7943 unsigned PartOffset = Ins[i + 1].PartOffset - ArgPartOffset; 7944 SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL); 7945 if (PartVA.getValVT().isScalableVector()) 7946 Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset); 7947 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, Offset); 7948 InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address, 7949 MachinePointerInfo())); 7950 ++i; 7951 } 7952 continue; 7953 } 7954 InVals.push_back(ArgValue); 7955 } 7956 7957 if (IsVarArg) { 7958 ArrayRef<MCPhysReg> ArgRegs = makeArrayRef(ArgGPRs); 7959 unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs); 7960 const TargetRegisterClass *RC = &RISCV::GPRRegClass; 7961 MachineFrameInfo &MFI = MF.getFrameInfo(); 7962 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 7963 RISCVMachineFunctionInfo *RVFI = MF.getInfo<RISCVMachineFunctionInfo>(); 7964 7965 // Offset of the first variable argument from stack pointer, and size of 7966 // the vararg save area. For now, the varargs save area is either zero or 7967 // large enough to hold a0-a7. 7968 int VaArgOffset, VarArgsSaveSize; 7969 7970 // If all registers are allocated, then all varargs must be passed on the 7971 // stack and we don't need to save any argregs. 7972 if (ArgRegs.size() == Idx) { 7973 VaArgOffset = CCInfo.getNextStackOffset(); 7974 VarArgsSaveSize = 0; 7975 } else { 7976 VarArgsSaveSize = XLenInBytes * (ArgRegs.size() - Idx); 7977 VaArgOffset = -VarArgsSaveSize; 7978 } 7979 7980 // Record the frame index of the first variable argument 7981 // which is a value necessary to VASTART. 7982 int FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true); 7983 RVFI->setVarArgsFrameIndex(FI); 7984 7985 // If saving an odd number of registers then create an extra stack slot to 7986 // ensure that the frame pointer is 2*XLEN-aligned, which in turn ensures 7987 // offsets to even-numbered registered remain 2*XLEN-aligned. 7988 if (Idx % 2) { 7989 MFI.CreateFixedObject(XLenInBytes, VaArgOffset - (int)XLenInBytes, true); 7990 VarArgsSaveSize += XLenInBytes; 7991 } 7992 7993 // Copy the integer registers that may have been used for passing varargs 7994 // to the vararg save area. 7995 for (unsigned I = Idx; I < ArgRegs.size(); 7996 ++I, VaArgOffset += XLenInBytes) { 7997 const Register Reg = RegInfo.createVirtualRegister(RC); 7998 RegInfo.addLiveIn(ArgRegs[I], Reg); 7999 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, XLenVT); 8000 FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true); 8001 SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 8002 SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff, 8003 MachinePointerInfo::getFixedStack(MF, FI)); 8004 cast<StoreSDNode>(Store.getNode()) 8005 ->getMemOperand() 8006 ->setValue((Value *)nullptr); 8007 OutChains.push_back(Store); 8008 } 8009 RVFI->setVarArgsSaveSize(VarArgsSaveSize); 8010 } 8011 8012 // All stores are grouped in one node to allow the matching between 8013 // the size of Ins and InVals. This only happens for vararg functions. 8014 if (!OutChains.empty()) { 8015 OutChains.push_back(Chain); 8016 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains); 8017 } 8018 8019 return Chain; 8020 } 8021 8022 /// isEligibleForTailCallOptimization - Check whether the call is eligible 8023 /// for tail call optimization. 8024 /// Note: This is modelled after ARM's IsEligibleForTailCallOptimization. 8025 bool RISCVTargetLowering::isEligibleForTailCallOptimization( 8026 CCState &CCInfo, CallLoweringInfo &CLI, MachineFunction &MF, 8027 const SmallVector<CCValAssign, 16> &ArgLocs) const { 8028 8029 auto &Callee = CLI.Callee; 8030 auto CalleeCC = CLI.CallConv; 8031 auto &Outs = CLI.Outs; 8032 auto &Caller = MF.getFunction(); 8033 auto CallerCC = Caller.getCallingConv(); 8034 8035 // Exception-handling functions need a special set of instructions to 8036 // indicate a return to the hardware. Tail-calling another function would 8037 // probably break this. 8038 // TODO: The "interrupt" attribute isn't currently defined by RISC-V. This 8039 // should be expanded as new function attributes are introduced. 8040 if (Caller.hasFnAttribute("interrupt")) 8041 return false; 8042 8043 // Do not tail call opt if the stack is used to pass parameters. 8044 if (CCInfo.getNextStackOffset() != 0) 8045 return false; 8046 8047 // Do not tail call opt if any parameters need to be passed indirectly. 8048 // Since long doubles (fp128) and i128 are larger than 2*XLEN, they are 8049 // passed indirectly. So the address of the value will be passed in a 8050 // register, or if not available, then the address is put on the stack. In 8051 // order to pass indirectly, space on the stack often needs to be allocated 8052 // in order to store the value. In this case the CCInfo.getNextStackOffset() 8053 // != 0 check is not enough and we need to check if any CCValAssign ArgsLocs 8054 // are passed CCValAssign::Indirect. 8055 for (auto &VA : ArgLocs) 8056 if (VA.getLocInfo() == CCValAssign::Indirect) 8057 return false; 8058 8059 // Do not tail call opt if either caller or callee uses struct return 8060 // semantics. 8061 auto IsCallerStructRet = Caller.hasStructRetAttr(); 8062 auto IsCalleeStructRet = Outs.empty() ? false : Outs[0].Flags.isSRet(); 8063 if (IsCallerStructRet || IsCalleeStructRet) 8064 return false; 8065 8066 // Externally-defined functions with weak linkage should not be 8067 // tail-called. The behaviour of branch instructions in this situation (as 8068 // used for tail calls) is implementation-defined, so we cannot rely on the 8069 // linker replacing the tail call with a return. 8070 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 8071 const GlobalValue *GV = G->getGlobal(); 8072 if (GV->hasExternalWeakLinkage()) 8073 return false; 8074 } 8075 8076 // The callee has to preserve all registers the caller needs to preserve. 8077 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 8078 const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC); 8079 if (CalleeCC != CallerCC) { 8080 const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC); 8081 if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved)) 8082 return false; 8083 } 8084 8085 // Byval parameters hand the function a pointer directly into the stack area 8086 // we want to reuse during a tail call. Working around this *is* possible 8087 // but less efficient and uglier in LowerCall. 8088 for (auto &Arg : Outs) 8089 if (Arg.Flags.isByVal()) 8090 return false; 8091 8092 return true; 8093 } 8094 8095 static Align getPrefTypeAlign(EVT VT, SelectionDAG &DAG) { 8096 return DAG.getDataLayout().getPrefTypeAlign( 8097 VT.getTypeForEVT(*DAG.getContext())); 8098 } 8099 8100 // Lower a call to a callseq_start + CALL + callseq_end chain, and add input 8101 // and output parameter nodes. 8102 SDValue RISCVTargetLowering::LowerCall(CallLoweringInfo &CLI, 8103 SmallVectorImpl<SDValue> &InVals) const { 8104 SelectionDAG &DAG = CLI.DAG; 8105 SDLoc &DL = CLI.DL; 8106 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 8107 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 8108 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 8109 SDValue Chain = CLI.Chain; 8110 SDValue Callee = CLI.Callee; 8111 bool &IsTailCall = CLI.IsTailCall; 8112 CallingConv::ID CallConv = CLI.CallConv; 8113 bool IsVarArg = CLI.IsVarArg; 8114 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 8115 MVT XLenVT = Subtarget.getXLenVT(); 8116 8117 MachineFunction &MF = DAG.getMachineFunction(); 8118 8119 // Analyze the operands of the call, assigning locations to each operand. 8120 SmallVector<CCValAssign, 16> ArgLocs; 8121 CCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 8122 8123 if (CallConv == CallingConv::GHC) 8124 ArgCCInfo.AnalyzeCallOperands(Outs, CC_RISCV_GHC); 8125 else 8126 analyzeOutputArgs(MF, ArgCCInfo, Outs, /*IsRet=*/false, &CLI, 8127 CallConv == CallingConv::Fast ? CC_RISCV_FastCC 8128 : CC_RISCV); 8129 8130 // Check if it's really possible to do a tail call. 8131 if (IsTailCall) 8132 IsTailCall = isEligibleForTailCallOptimization(ArgCCInfo, CLI, MF, ArgLocs); 8133 8134 if (IsTailCall) 8135 ++NumTailCalls; 8136 else if (CLI.CB && CLI.CB->isMustTailCall()) 8137 report_fatal_error("failed to perform tail call elimination on a call " 8138 "site marked musttail"); 8139 8140 // Get a count of how many bytes are to be pushed on the stack. 8141 unsigned NumBytes = ArgCCInfo.getNextStackOffset(); 8142 8143 // Create local copies for byval args 8144 SmallVector<SDValue, 8> ByValArgs; 8145 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 8146 ISD::ArgFlagsTy Flags = Outs[i].Flags; 8147 if (!Flags.isByVal()) 8148 continue; 8149 8150 SDValue Arg = OutVals[i]; 8151 unsigned Size = Flags.getByValSize(); 8152 Align Alignment = Flags.getNonZeroByValAlign(); 8153 8154 int FI = 8155 MF.getFrameInfo().CreateStackObject(Size, Alignment, /*isSS=*/false); 8156 SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 8157 SDValue SizeNode = DAG.getConstant(Size, DL, XLenVT); 8158 8159 Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Alignment, 8160 /*IsVolatile=*/false, 8161 /*AlwaysInline=*/false, IsTailCall, 8162 MachinePointerInfo(), MachinePointerInfo()); 8163 ByValArgs.push_back(FIPtr); 8164 } 8165 8166 if (!IsTailCall) 8167 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, CLI.DL); 8168 8169 // Copy argument values to their designated locations. 8170 SmallVector<std::pair<Register, SDValue>, 8> RegsToPass; 8171 SmallVector<SDValue, 8> MemOpChains; 8172 SDValue StackPtr; 8173 for (unsigned i = 0, j = 0, e = ArgLocs.size(); i != e; ++i) { 8174 CCValAssign &VA = ArgLocs[i]; 8175 SDValue ArgValue = OutVals[i]; 8176 ISD::ArgFlagsTy Flags = Outs[i].Flags; 8177 8178 // Handle passing f64 on RV32D with a soft float ABI as a special case. 8179 bool IsF64OnRV32DSoftABI = 8180 VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64; 8181 if (IsF64OnRV32DSoftABI && VA.isRegLoc()) { 8182 SDValue SplitF64 = DAG.getNode( 8183 RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), ArgValue); 8184 SDValue Lo = SplitF64.getValue(0); 8185 SDValue Hi = SplitF64.getValue(1); 8186 8187 Register RegLo = VA.getLocReg(); 8188 RegsToPass.push_back(std::make_pair(RegLo, Lo)); 8189 8190 if (RegLo == RISCV::X17) { 8191 // Second half of f64 is passed on the stack. 8192 // Work out the address of the stack slot. 8193 if (!StackPtr.getNode()) 8194 StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT); 8195 // Emit the store. 8196 MemOpChains.push_back( 8197 DAG.getStore(Chain, DL, Hi, StackPtr, MachinePointerInfo())); 8198 } else { 8199 // Second half of f64 is passed in another GPR. 8200 assert(RegLo < RISCV::X31 && "Invalid register pair"); 8201 Register RegHigh = RegLo + 1; 8202 RegsToPass.push_back(std::make_pair(RegHigh, Hi)); 8203 } 8204 continue; 8205 } 8206 8207 // IsF64OnRV32DSoftABI && VA.isMemLoc() is handled below in the same way 8208 // as any other MemLoc. 8209 8210 // Promote the value if needed. 8211 // For now, only handle fully promoted and indirect arguments. 8212 if (VA.getLocInfo() == CCValAssign::Indirect) { 8213 // Store the argument in a stack slot and pass its address. 8214 Align StackAlign = 8215 std::max(getPrefTypeAlign(Outs[i].ArgVT, DAG), 8216 getPrefTypeAlign(ArgValue.getValueType(), DAG)); 8217 TypeSize StoredSize = ArgValue.getValueType().getStoreSize(); 8218 // If the original argument was split (e.g. i128), we need 8219 // to store the required parts of it here (and pass just one address). 8220 // Vectors may be partly split to registers and partly to the stack, in 8221 // which case the base address is partly offset and subsequent stores are 8222 // relative to that. 8223 unsigned ArgIndex = Outs[i].OrigArgIndex; 8224 unsigned ArgPartOffset = Outs[i].PartOffset; 8225 assert(VA.getValVT().isVector() || ArgPartOffset == 0); 8226 // Calculate the total size to store. We don't have access to what we're 8227 // actually storing other than performing the loop and collecting the 8228 // info. 8229 SmallVector<std::pair<SDValue, SDValue>> Parts; 8230 while (i + 1 != e && Outs[i + 1].OrigArgIndex == ArgIndex) { 8231 SDValue PartValue = OutVals[i + 1]; 8232 unsigned PartOffset = Outs[i + 1].PartOffset - ArgPartOffset; 8233 SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL); 8234 EVT PartVT = PartValue.getValueType(); 8235 if (PartVT.isScalableVector()) 8236 Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset); 8237 StoredSize += PartVT.getStoreSize(); 8238 StackAlign = std::max(StackAlign, getPrefTypeAlign(PartVT, DAG)); 8239 Parts.push_back(std::make_pair(PartValue, Offset)); 8240 ++i; 8241 } 8242 SDValue SpillSlot = DAG.CreateStackTemporary(StoredSize, StackAlign); 8243 int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); 8244 MemOpChains.push_back( 8245 DAG.getStore(Chain, DL, ArgValue, SpillSlot, 8246 MachinePointerInfo::getFixedStack(MF, FI))); 8247 for (const auto &Part : Parts) { 8248 SDValue PartValue = Part.first; 8249 SDValue PartOffset = Part.second; 8250 SDValue Address = 8251 DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, PartOffset); 8252 MemOpChains.push_back( 8253 DAG.getStore(Chain, DL, PartValue, Address, 8254 MachinePointerInfo::getFixedStack(MF, FI))); 8255 } 8256 ArgValue = SpillSlot; 8257 } else { 8258 ArgValue = convertValVTToLocVT(DAG, ArgValue, VA, DL, Subtarget); 8259 } 8260 8261 // Use local copy if it is a byval arg. 8262 if (Flags.isByVal()) 8263 ArgValue = ByValArgs[j++]; 8264 8265 if (VA.isRegLoc()) { 8266 // Queue up the argument copies and emit them at the end. 8267 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue)); 8268 } else { 8269 assert(VA.isMemLoc() && "Argument not register or memory"); 8270 assert(!IsTailCall && "Tail call not allowed if stack is used " 8271 "for passing parameters"); 8272 8273 // Work out the address of the stack slot. 8274 if (!StackPtr.getNode()) 8275 StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT); 8276 SDValue Address = 8277 DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, 8278 DAG.getIntPtrConstant(VA.getLocMemOffset(), DL)); 8279 8280 // Emit the store. 8281 MemOpChains.push_back( 8282 DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo())); 8283 } 8284 } 8285 8286 // Join the stores, which are independent of one another. 8287 if (!MemOpChains.empty()) 8288 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); 8289 8290 SDValue Glue; 8291 8292 // Build a sequence of copy-to-reg nodes, chained and glued together. 8293 for (auto &Reg : RegsToPass) { 8294 Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, Glue); 8295 Glue = Chain.getValue(1); 8296 } 8297 8298 // Validate that none of the argument registers have been marked as 8299 // reserved, if so report an error. Do the same for the return address if this 8300 // is not a tailcall. 8301 validateCCReservedRegs(RegsToPass, MF); 8302 if (!IsTailCall && 8303 MF.getSubtarget<RISCVSubtarget>().isRegisterReservedByUser(RISCV::X1)) 8304 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 8305 MF.getFunction(), 8306 "Return address register required, but has been reserved."}); 8307 8308 // If the callee is a GlobalAddress/ExternalSymbol node, turn it into a 8309 // TargetGlobalAddress/TargetExternalSymbol node so that legalize won't 8310 // split it and then direct call can be matched by PseudoCALL. 8311 if (GlobalAddressSDNode *S = dyn_cast<GlobalAddressSDNode>(Callee)) { 8312 const GlobalValue *GV = S->getGlobal(); 8313 8314 unsigned OpFlags = RISCVII::MO_CALL; 8315 if (!getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV)) 8316 OpFlags = RISCVII::MO_PLT; 8317 8318 Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags); 8319 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { 8320 unsigned OpFlags = RISCVII::MO_CALL; 8321 8322 if (!getTargetMachine().shouldAssumeDSOLocal(*MF.getFunction().getParent(), 8323 nullptr)) 8324 OpFlags = RISCVII::MO_PLT; 8325 8326 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, OpFlags); 8327 } 8328 8329 // The first call operand is the chain and the second is the target address. 8330 SmallVector<SDValue, 8> Ops; 8331 Ops.push_back(Chain); 8332 Ops.push_back(Callee); 8333 8334 // Add argument registers to the end of the list so that they are 8335 // known live into the call. 8336 for (auto &Reg : RegsToPass) 8337 Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType())); 8338 8339 if (!IsTailCall) { 8340 // Add a register mask operand representing the call-preserved registers. 8341 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 8342 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv); 8343 assert(Mask && "Missing call preserved mask for calling convention"); 8344 Ops.push_back(DAG.getRegisterMask(Mask)); 8345 } 8346 8347 // Glue the call to the argument copies, if any. 8348 if (Glue.getNode()) 8349 Ops.push_back(Glue); 8350 8351 // Emit the call. 8352 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 8353 8354 if (IsTailCall) { 8355 MF.getFrameInfo().setHasTailCall(); 8356 return DAG.getNode(RISCVISD::TAIL, DL, NodeTys, Ops); 8357 } 8358 8359 Chain = DAG.getNode(RISCVISD::CALL, DL, NodeTys, Ops); 8360 DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge); 8361 Glue = Chain.getValue(1); 8362 8363 // Mark the end of the call, which is glued to the call itself. 8364 Chain = DAG.getCALLSEQ_END(Chain, 8365 DAG.getConstant(NumBytes, DL, PtrVT, true), 8366 DAG.getConstant(0, DL, PtrVT, true), 8367 Glue, DL); 8368 Glue = Chain.getValue(1); 8369 8370 // Assign locations to each value returned by this call. 8371 SmallVector<CCValAssign, 16> RVLocs; 8372 CCState RetCCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext()); 8373 analyzeInputArgs(MF, RetCCInfo, Ins, /*IsRet=*/true, CC_RISCV); 8374 8375 // Copy all of the result registers out of their specified physreg. 8376 for (auto &VA : RVLocs) { 8377 // Copy the value out 8378 SDValue RetValue = 8379 DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), Glue); 8380 // Glue the RetValue to the end of the call sequence 8381 Chain = RetValue.getValue(1); 8382 Glue = RetValue.getValue(2); 8383 8384 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { 8385 assert(VA.getLocReg() == ArgGPRs[0] && "Unexpected reg assignment"); 8386 SDValue RetValue2 = 8387 DAG.getCopyFromReg(Chain, DL, ArgGPRs[1], MVT::i32, Glue); 8388 Chain = RetValue2.getValue(1); 8389 Glue = RetValue2.getValue(2); 8390 RetValue = DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, RetValue, 8391 RetValue2); 8392 } 8393 8394 RetValue = convertLocVTToValVT(DAG, RetValue, VA, DL, Subtarget); 8395 8396 InVals.push_back(RetValue); 8397 } 8398 8399 return Chain; 8400 } 8401 8402 bool RISCVTargetLowering::CanLowerReturn( 8403 CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg, 8404 const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const { 8405 SmallVector<CCValAssign, 16> RVLocs; 8406 CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context); 8407 8408 Optional<unsigned> FirstMaskArgument; 8409 if (Subtarget.hasStdExtV()) 8410 FirstMaskArgument = preAssignMask(Outs); 8411 8412 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 8413 MVT VT = Outs[i].VT; 8414 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 8415 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 8416 if (CC_RISCV(MF.getDataLayout(), ABI, i, VT, VT, CCValAssign::Full, 8417 ArgFlags, CCInfo, /*IsFixed=*/true, /*IsRet=*/true, nullptr, 8418 *this, FirstMaskArgument)) 8419 return false; 8420 } 8421 return true; 8422 } 8423 8424 SDValue 8425 RISCVTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 8426 bool IsVarArg, 8427 const SmallVectorImpl<ISD::OutputArg> &Outs, 8428 const SmallVectorImpl<SDValue> &OutVals, 8429 const SDLoc &DL, SelectionDAG &DAG) const { 8430 const MachineFunction &MF = DAG.getMachineFunction(); 8431 const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>(); 8432 8433 // Stores the assignment of the return value to a location. 8434 SmallVector<CCValAssign, 16> RVLocs; 8435 8436 // Info about the registers and stack slot. 8437 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, 8438 *DAG.getContext()); 8439 8440 analyzeOutputArgs(DAG.getMachineFunction(), CCInfo, Outs, /*IsRet=*/true, 8441 nullptr, CC_RISCV); 8442 8443 if (CallConv == CallingConv::GHC && !RVLocs.empty()) 8444 report_fatal_error("GHC functions return void only"); 8445 8446 SDValue Glue; 8447 SmallVector<SDValue, 4> RetOps(1, Chain); 8448 8449 // Copy the result values into the output registers. 8450 for (unsigned i = 0, e = RVLocs.size(); i < e; ++i) { 8451 SDValue Val = OutVals[i]; 8452 CCValAssign &VA = RVLocs[i]; 8453 assert(VA.isRegLoc() && "Can only return in registers!"); 8454 8455 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { 8456 // Handle returning f64 on RV32D with a soft float ABI. 8457 assert(VA.isRegLoc() && "Expected return via registers"); 8458 SDValue SplitF64 = DAG.getNode(RISCVISD::SplitF64, DL, 8459 DAG.getVTList(MVT::i32, MVT::i32), Val); 8460 SDValue Lo = SplitF64.getValue(0); 8461 SDValue Hi = SplitF64.getValue(1); 8462 Register RegLo = VA.getLocReg(); 8463 assert(RegLo < RISCV::X31 && "Invalid register pair"); 8464 Register RegHi = RegLo + 1; 8465 8466 if (STI.isRegisterReservedByUser(RegLo) || 8467 STI.isRegisterReservedByUser(RegHi)) 8468 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 8469 MF.getFunction(), 8470 "Return value register required, but has been reserved."}); 8471 8472 Chain = DAG.getCopyToReg(Chain, DL, RegLo, Lo, Glue); 8473 Glue = Chain.getValue(1); 8474 RetOps.push_back(DAG.getRegister(RegLo, MVT::i32)); 8475 Chain = DAG.getCopyToReg(Chain, DL, RegHi, Hi, Glue); 8476 Glue = Chain.getValue(1); 8477 RetOps.push_back(DAG.getRegister(RegHi, MVT::i32)); 8478 } else { 8479 // Handle a 'normal' return. 8480 Val = convertValVTToLocVT(DAG, Val, VA, DL, Subtarget); 8481 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Glue); 8482 8483 if (STI.isRegisterReservedByUser(VA.getLocReg())) 8484 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 8485 MF.getFunction(), 8486 "Return value register required, but has been reserved."}); 8487 8488 // Guarantee that all emitted copies are stuck together. 8489 Glue = Chain.getValue(1); 8490 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 8491 } 8492 } 8493 8494 RetOps[0] = Chain; // Update chain. 8495 8496 // Add the glue node if we have it. 8497 if (Glue.getNode()) { 8498 RetOps.push_back(Glue); 8499 } 8500 8501 unsigned RetOpc = RISCVISD::RET_FLAG; 8502 // Interrupt service routines use different return instructions. 8503 const Function &Func = DAG.getMachineFunction().getFunction(); 8504 if (Func.hasFnAttribute("interrupt")) { 8505 if (!Func.getReturnType()->isVoidTy()) 8506 report_fatal_error( 8507 "Functions with the interrupt attribute must have void return type!"); 8508 8509 MachineFunction &MF = DAG.getMachineFunction(); 8510 StringRef Kind = 8511 MF.getFunction().getFnAttribute("interrupt").getValueAsString(); 8512 8513 if (Kind == "user") 8514 RetOpc = RISCVISD::URET_FLAG; 8515 else if (Kind == "supervisor") 8516 RetOpc = RISCVISD::SRET_FLAG; 8517 else 8518 RetOpc = RISCVISD::MRET_FLAG; 8519 } 8520 8521 return DAG.getNode(RetOpc, DL, MVT::Other, RetOps); 8522 } 8523 8524 void RISCVTargetLowering::validateCCReservedRegs( 8525 const SmallVectorImpl<std::pair<llvm::Register, llvm::SDValue>> &Regs, 8526 MachineFunction &MF) const { 8527 const Function &F = MF.getFunction(); 8528 const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>(); 8529 8530 if (llvm::any_of(Regs, [&STI](auto Reg) { 8531 return STI.isRegisterReservedByUser(Reg.first); 8532 })) 8533 F.getContext().diagnose(DiagnosticInfoUnsupported{ 8534 F, "Argument register required, but has been reserved."}); 8535 } 8536 8537 bool RISCVTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { 8538 return CI->isTailCall(); 8539 } 8540 8541 const char *RISCVTargetLowering::getTargetNodeName(unsigned Opcode) const { 8542 #define NODE_NAME_CASE(NODE) \ 8543 case RISCVISD::NODE: \ 8544 return "RISCVISD::" #NODE; 8545 // clang-format off 8546 switch ((RISCVISD::NodeType)Opcode) { 8547 case RISCVISD::FIRST_NUMBER: 8548 break; 8549 NODE_NAME_CASE(RET_FLAG) 8550 NODE_NAME_CASE(URET_FLAG) 8551 NODE_NAME_CASE(SRET_FLAG) 8552 NODE_NAME_CASE(MRET_FLAG) 8553 NODE_NAME_CASE(CALL) 8554 NODE_NAME_CASE(SELECT_CC) 8555 NODE_NAME_CASE(BR_CC) 8556 NODE_NAME_CASE(BuildPairF64) 8557 NODE_NAME_CASE(SplitF64) 8558 NODE_NAME_CASE(TAIL) 8559 NODE_NAME_CASE(MULHSU) 8560 NODE_NAME_CASE(SLLW) 8561 NODE_NAME_CASE(SRAW) 8562 NODE_NAME_CASE(SRLW) 8563 NODE_NAME_CASE(DIVW) 8564 NODE_NAME_CASE(DIVUW) 8565 NODE_NAME_CASE(REMUW) 8566 NODE_NAME_CASE(ROLW) 8567 NODE_NAME_CASE(RORW) 8568 NODE_NAME_CASE(CLZW) 8569 NODE_NAME_CASE(CTZW) 8570 NODE_NAME_CASE(FSLW) 8571 NODE_NAME_CASE(FSRW) 8572 NODE_NAME_CASE(FSL) 8573 NODE_NAME_CASE(FSR) 8574 NODE_NAME_CASE(FMV_H_X) 8575 NODE_NAME_CASE(FMV_X_ANYEXTH) 8576 NODE_NAME_CASE(FMV_W_X_RV64) 8577 NODE_NAME_CASE(FMV_X_ANYEXTW_RV64) 8578 NODE_NAME_CASE(FCVT_X_RTZ) 8579 NODE_NAME_CASE(FCVT_XU_RTZ) 8580 NODE_NAME_CASE(FCVT_W_RTZ_RV64) 8581 NODE_NAME_CASE(FCVT_WU_RTZ_RV64) 8582 NODE_NAME_CASE(READ_CYCLE_WIDE) 8583 NODE_NAME_CASE(GREV) 8584 NODE_NAME_CASE(GREVW) 8585 NODE_NAME_CASE(GORC) 8586 NODE_NAME_CASE(GORCW) 8587 NODE_NAME_CASE(SHFL) 8588 NODE_NAME_CASE(SHFLW) 8589 NODE_NAME_CASE(UNSHFL) 8590 NODE_NAME_CASE(UNSHFLW) 8591 NODE_NAME_CASE(BCOMPRESS) 8592 NODE_NAME_CASE(BCOMPRESSW) 8593 NODE_NAME_CASE(BDECOMPRESS) 8594 NODE_NAME_CASE(BDECOMPRESSW) 8595 NODE_NAME_CASE(VMV_V_X_VL) 8596 NODE_NAME_CASE(VFMV_V_F_VL) 8597 NODE_NAME_CASE(VMV_X_S) 8598 NODE_NAME_CASE(VMV_S_X_VL) 8599 NODE_NAME_CASE(VFMV_S_F_VL) 8600 NODE_NAME_CASE(SPLAT_VECTOR_I64) 8601 NODE_NAME_CASE(SPLAT_VECTOR_SPLIT_I64_VL) 8602 NODE_NAME_CASE(READ_VLENB) 8603 NODE_NAME_CASE(TRUNCATE_VECTOR_VL) 8604 NODE_NAME_CASE(VSLIDEUP_VL) 8605 NODE_NAME_CASE(VSLIDE1UP_VL) 8606 NODE_NAME_CASE(VSLIDEDOWN_VL) 8607 NODE_NAME_CASE(VSLIDE1DOWN_VL) 8608 NODE_NAME_CASE(VID_VL) 8609 NODE_NAME_CASE(VFNCVT_ROD_VL) 8610 NODE_NAME_CASE(VECREDUCE_ADD_VL) 8611 NODE_NAME_CASE(VECREDUCE_UMAX_VL) 8612 NODE_NAME_CASE(VECREDUCE_SMAX_VL) 8613 NODE_NAME_CASE(VECREDUCE_UMIN_VL) 8614 NODE_NAME_CASE(VECREDUCE_SMIN_VL) 8615 NODE_NAME_CASE(VECREDUCE_AND_VL) 8616 NODE_NAME_CASE(VECREDUCE_OR_VL) 8617 NODE_NAME_CASE(VECREDUCE_XOR_VL) 8618 NODE_NAME_CASE(VECREDUCE_FADD_VL) 8619 NODE_NAME_CASE(VECREDUCE_SEQ_FADD_VL) 8620 NODE_NAME_CASE(VECREDUCE_FMIN_VL) 8621 NODE_NAME_CASE(VECREDUCE_FMAX_VL) 8622 NODE_NAME_CASE(ADD_VL) 8623 NODE_NAME_CASE(AND_VL) 8624 NODE_NAME_CASE(MUL_VL) 8625 NODE_NAME_CASE(OR_VL) 8626 NODE_NAME_CASE(SDIV_VL) 8627 NODE_NAME_CASE(SHL_VL) 8628 NODE_NAME_CASE(SREM_VL) 8629 NODE_NAME_CASE(SRA_VL) 8630 NODE_NAME_CASE(SRL_VL) 8631 NODE_NAME_CASE(SUB_VL) 8632 NODE_NAME_CASE(UDIV_VL) 8633 NODE_NAME_CASE(UREM_VL) 8634 NODE_NAME_CASE(XOR_VL) 8635 NODE_NAME_CASE(SADDSAT_VL) 8636 NODE_NAME_CASE(UADDSAT_VL) 8637 NODE_NAME_CASE(SSUBSAT_VL) 8638 NODE_NAME_CASE(USUBSAT_VL) 8639 NODE_NAME_CASE(FADD_VL) 8640 NODE_NAME_CASE(FSUB_VL) 8641 NODE_NAME_CASE(FMUL_VL) 8642 NODE_NAME_CASE(FDIV_VL) 8643 NODE_NAME_CASE(FNEG_VL) 8644 NODE_NAME_CASE(FABS_VL) 8645 NODE_NAME_CASE(FSQRT_VL) 8646 NODE_NAME_CASE(FMA_VL) 8647 NODE_NAME_CASE(FCOPYSIGN_VL) 8648 NODE_NAME_CASE(SMIN_VL) 8649 NODE_NAME_CASE(SMAX_VL) 8650 NODE_NAME_CASE(UMIN_VL) 8651 NODE_NAME_CASE(UMAX_VL) 8652 NODE_NAME_CASE(FMINNUM_VL) 8653 NODE_NAME_CASE(FMAXNUM_VL) 8654 NODE_NAME_CASE(MULHS_VL) 8655 NODE_NAME_CASE(MULHU_VL) 8656 NODE_NAME_CASE(FP_TO_SINT_VL) 8657 NODE_NAME_CASE(FP_TO_UINT_VL) 8658 NODE_NAME_CASE(SINT_TO_FP_VL) 8659 NODE_NAME_CASE(UINT_TO_FP_VL) 8660 NODE_NAME_CASE(FP_EXTEND_VL) 8661 NODE_NAME_CASE(FP_ROUND_VL) 8662 NODE_NAME_CASE(VWMUL_VL) 8663 NODE_NAME_CASE(VWMULU_VL) 8664 NODE_NAME_CASE(SETCC_VL) 8665 NODE_NAME_CASE(VSELECT_VL) 8666 NODE_NAME_CASE(VMAND_VL) 8667 NODE_NAME_CASE(VMOR_VL) 8668 NODE_NAME_CASE(VMXOR_VL) 8669 NODE_NAME_CASE(VMCLR_VL) 8670 NODE_NAME_CASE(VMSET_VL) 8671 NODE_NAME_CASE(VRGATHER_VX_VL) 8672 NODE_NAME_CASE(VRGATHER_VV_VL) 8673 NODE_NAME_CASE(VRGATHEREI16_VV_VL) 8674 NODE_NAME_CASE(VSEXT_VL) 8675 NODE_NAME_CASE(VZEXT_VL) 8676 NODE_NAME_CASE(VPOPC_VL) 8677 NODE_NAME_CASE(VLE_VL) 8678 NODE_NAME_CASE(VSE_VL) 8679 NODE_NAME_CASE(READ_CSR) 8680 NODE_NAME_CASE(WRITE_CSR) 8681 NODE_NAME_CASE(SWAP_CSR) 8682 } 8683 // clang-format on 8684 return nullptr; 8685 #undef NODE_NAME_CASE 8686 } 8687 8688 /// getConstraintType - Given a constraint letter, return the type of 8689 /// constraint it is for this target. 8690 RISCVTargetLowering::ConstraintType 8691 RISCVTargetLowering::getConstraintType(StringRef Constraint) const { 8692 if (Constraint.size() == 1) { 8693 switch (Constraint[0]) { 8694 default: 8695 break; 8696 case 'f': 8697 return C_RegisterClass; 8698 case 'I': 8699 case 'J': 8700 case 'K': 8701 return C_Immediate; 8702 case 'A': 8703 return C_Memory; 8704 case 'S': // A symbolic address 8705 return C_Other; 8706 } 8707 } else { 8708 if (Constraint == "vr" || Constraint == "vm") 8709 return C_RegisterClass; 8710 } 8711 return TargetLowering::getConstraintType(Constraint); 8712 } 8713 8714 std::pair<unsigned, const TargetRegisterClass *> 8715 RISCVTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 8716 StringRef Constraint, 8717 MVT VT) const { 8718 // First, see if this is a constraint that directly corresponds to a 8719 // RISCV register class. 8720 if (Constraint.size() == 1) { 8721 switch (Constraint[0]) { 8722 case 'r': 8723 return std::make_pair(0U, &RISCV::GPRRegClass); 8724 case 'f': 8725 if (Subtarget.hasStdExtZfh() && VT == MVT::f16) 8726 return std::make_pair(0U, &RISCV::FPR16RegClass); 8727 if (Subtarget.hasStdExtF() && VT == MVT::f32) 8728 return std::make_pair(0U, &RISCV::FPR32RegClass); 8729 if (Subtarget.hasStdExtD() && VT == MVT::f64) 8730 return std::make_pair(0U, &RISCV::FPR64RegClass); 8731 break; 8732 default: 8733 break; 8734 } 8735 } else { 8736 if (Constraint == "vr") { 8737 for (const auto *RC : {&RISCV::VRRegClass, &RISCV::VRM2RegClass, 8738 &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) { 8739 if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy)) 8740 return std::make_pair(0U, RC); 8741 } 8742 } else if (Constraint == "vm") { 8743 if (TRI->isTypeLegalForClass(RISCV::VMRegClass, VT.SimpleTy)) 8744 return std::make_pair(0U, &RISCV::VMRegClass); 8745 } 8746 } 8747 8748 // Clang will correctly decode the usage of register name aliases into their 8749 // official names. However, other frontends like `rustc` do not. This allows 8750 // users of these frontends to use the ABI names for registers in LLVM-style 8751 // register constraints. 8752 unsigned XRegFromAlias = StringSwitch<unsigned>(Constraint.lower()) 8753 .Case("{zero}", RISCV::X0) 8754 .Case("{ra}", RISCV::X1) 8755 .Case("{sp}", RISCV::X2) 8756 .Case("{gp}", RISCV::X3) 8757 .Case("{tp}", RISCV::X4) 8758 .Case("{t0}", RISCV::X5) 8759 .Case("{t1}", RISCV::X6) 8760 .Case("{t2}", RISCV::X7) 8761 .Cases("{s0}", "{fp}", RISCV::X8) 8762 .Case("{s1}", RISCV::X9) 8763 .Case("{a0}", RISCV::X10) 8764 .Case("{a1}", RISCV::X11) 8765 .Case("{a2}", RISCV::X12) 8766 .Case("{a3}", RISCV::X13) 8767 .Case("{a4}", RISCV::X14) 8768 .Case("{a5}", RISCV::X15) 8769 .Case("{a6}", RISCV::X16) 8770 .Case("{a7}", RISCV::X17) 8771 .Case("{s2}", RISCV::X18) 8772 .Case("{s3}", RISCV::X19) 8773 .Case("{s4}", RISCV::X20) 8774 .Case("{s5}", RISCV::X21) 8775 .Case("{s6}", RISCV::X22) 8776 .Case("{s7}", RISCV::X23) 8777 .Case("{s8}", RISCV::X24) 8778 .Case("{s9}", RISCV::X25) 8779 .Case("{s10}", RISCV::X26) 8780 .Case("{s11}", RISCV::X27) 8781 .Case("{t3}", RISCV::X28) 8782 .Case("{t4}", RISCV::X29) 8783 .Case("{t5}", RISCV::X30) 8784 .Case("{t6}", RISCV::X31) 8785 .Default(RISCV::NoRegister); 8786 if (XRegFromAlias != RISCV::NoRegister) 8787 return std::make_pair(XRegFromAlias, &RISCV::GPRRegClass); 8788 8789 // Since TargetLowering::getRegForInlineAsmConstraint uses the name of the 8790 // TableGen record rather than the AsmName to choose registers for InlineAsm 8791 // constraints, plus we want to match those names to the widest floating point 8792 // register type available, manually select floating point registers here. 8793 // 8794 // The second case is the ABI name of the register, so that frontends can also 8795 // use the ABI names in register constraint lists. 8796 if (Subtarget.hasStdExtF()) { 8797 unsigned FReg = StringSwitch<unsigned>(Constraint.lower()) 8798 .Cases("{f0}", "{ft0}", RISCV::F0_F) 8799 .Cases("{f1}", "{ft1}", RISCV::F1_F) 8800 .Cases("{f2}", "{ft2}", RISCV::F2_F) 8801 .Cases("{f3}", "{ft3}", RISCV::F3_F) 8802 .Cases("{f4}", "{ft4}", RISCV::F4_F) 8803 .Cases("{f5}", "{ft5}", RISCV::F5_F) 8804 .Cases("{f6}", "{ft6}", RISCV::F6_F) 8805 .Cases("{f7}", "{ft7}", RISCV::F7_F) 8806 .Cases("{f8}", "{fs0}", RISCV::F8_F) 8807 .Cases("{f9}", "{fs1}", RISCV::F9_F) 8808 .Cases("{f10}", "{fa0}", RISCV::F10_F) 8809 .Cases("{f11}", "{fa1}", RISCV::F11_F) 8810 .Cases("{f12}", "{fa2}", RISCV::F12_F) 8811 .Cases("{f13}", "{fa3}", RISCV::F13_F) 8812 .Cases("{f14}", "{fa4}", RISCV::F14_F) 8813 .Cases("{f15}", "{fa5}", RISCV::F15_F) 8814 .Cases("{f16}", "{fa6}", RISCV::F16_F) 8815 .Cases("{f17}", "{fa7}", RISCV::F17_F) 8816 .Cases("{f18}", "{fs2}", RISCV::F18_F) 8817 .Cases("{f19}", "{fs3}", RISCV::F19_F) 8818 .Cases("{f20}", "{fs4}", RISCV::F20_F) 8819 .Cases("{f21}", "{fs5}", RISCV::F21_F) 8820 .Cases("{f22}", "{fs6}", RISCV::F22_F) 8821 .Cases("{f23}", "{fs7}", RISCV::F23_F) 8822 .Cases("{f24}", "{fs8}", RISCV::F24_F) 8823 .Cases("{f25}", "{fs9}", RISCV::F25_F) 8824 .Cases("{f26}", "{fs10}", RISCV::F26_F) 8825 .Cases("{f27}", "{fs11}", RISCV::F27_F) 8826 .Cases("{f28}", "{ft8}", RISCV::F28_F) 8827 .Cases("{f29}", "{ft9}", RISCV::F29_F) 8828 .Cases("{f30}", "{ft10}", RISCV::F30_F) 8829 .Cases("{f31}", "{ft11}", RISCV::F31_F) 8830 .Default(RISCV::NoRegister); 8831 if (FReg != RISCV::NoRegister) { 8832 assert(RISCV::F0_F <= FReg && FReg <= RISCV::F31_F && "Unknown fp-reg"); 8833 if (Subtarget.hasStdExtD()) { 8834 unsigned RegNo = FReg - RISCV::F0_F; 8835 unsigned DReg = RISCV::F0_D + RegNo; 8836 return std::make_pair(DReg, &RISCV::FPR64RegClass); 8837 } 8838 return std::make_pair(FReg, &RISCV::FPR32RegClass); 8839 } 8840 } 8841 8842 if (Subtarget.hasStdExtV()) { 8843 Register VReg = StringSwitch<Register>(Constraint.lower()) 8844 .Case("{v0}", RISCV::V0) 8845 .Case("{v1}", RISCV::V1) 8846 .Case("{v2}", RISCV::V2) 8847 .Case("{v3}", RISCV::V3) 8848 .Case("{v4}", RISCV::V4) 8849 .Case("{v5}", RISCV::V5) 8850 .Case("{v6}", RISCV::V6) 8851 .Case("{v7}", RISCV::V7) 8852 .Case("{v8}", RISCV::V8) 8853 .Case("{v9}", RISCV::V9) 8854 .Case("{v10}", RISCV::V10) 8855 .Case("{v11}", RISCV::V11) 8856 .Case("{v12}", RISCV::V12) 8857 .Case("{v13}", RISCV::V13) 8858 .Case("{v14}", RISCV::V14) 8859 .Case("{v15}", RISCV::V15) 8860 .Case("{v16}", RISCV::V16) 8861 .Case("{v17}", RISCV::V17) 8862 .Case("{v18}", RISCV::V18) 8863 .Case("{v19}", RISCV::V19) 8864 .Case("{v20}", RISCV::V20) 8865 .Case("{v21}", RISCV::V21) 8866 .Case("{v22}", RISCV::V22) 8867 .Case("{v23}", RISCV::V23) 8868 .Case("{v24}", RISCV::V24) 8869 .Case("{v25}", RISCV::V25) 8870 .Case("{v26}", RISCV::V26) 8871 .Case("{v27}", RISCV::V27) 8872 .Case("{v28}", RISCV::V28) 8873 .Case("{v29}", RISCV::V29) 8874 .Case("{v30}", RISCV::V30) 8875 .Case("{v31}", RISCV::V31) 8876 .Default(RISCV::NoRegister); 8877 if (VReg != RISCV::NoRegister) { 8878 if (TRI->isTypeLegalForClass(RISCV::VMRegClass, VT.SimpleTy)) 8879 return std::make_pair(VReg, &RISCV::VMRegClass); 8880 if (TRI->isTypeLegalForClass(RISCV::VRRegClass, VT.SimpleTy)) 8881 return std::make_pair(VReg, &RISCV::VRRegClass); 8882 for (const auto *RC : 8883 {&RISCV::VRM2RegClass, &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) { 8884 if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy)) { 8885 VReg = TRI->getMatchingSuperReg(VReg, RISCV::sub_vrm1_0, RC); 8886 return std::make_pair(VReg, RC); 8887 } 8888 } 8889 } 8890 } 8891 8892 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 8893 } 8894 8895 unsigned 8896 RISCVTargetLowering::getInlineAsmMemConstraint(StringRef ConstraintCode) const { 8897 // Currently only support length 1 constraints. 8898 if (ConstraintCode.size() == 1) { 8899 switch (ConstraintCode[0]) { 8900 case 'A': 8901 return InlineAsm::Constraint_A; 8902 default: 8903 break; 8904 } 8905 } 8906 8907 return TargetLowering::getInlineAsmMemConstraint(ConstraintCode); 8908 } 8909 8910 void RISCVTargetLowering::LowerAsmOperandForConstraint( 8911 SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops, 8912 SelectionDAG &DAG) const { 8913 // Currently only support length 1 constraints. 8914 if (Constraint.length() == 1) { 8915 switch (Constraint[0]) { 8916 case 'I': 8917 // Validate & create a 12-bit signed immediate operand. 8918 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 8919 uint64_t CVal = C->getSExtValue(); 8920 if (isInt<12>(CVal)) 8921 Ops.push_back( 8922 DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT())); 8923 } 8924 return; 8925 case 'J': 8926 // Validate & create an integer zero operand. 8927 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 8928 if (C->getZExtValue() == 0) 8929 Ops.push_back( 8930 DAG.getTargetConstant(0, SDLoc(Op), Subtarget.getXLenVT())); 8931 return; 8932 case 'K': 8933 // Validate & create a 5-bit unsigned immediate operand. 8934 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 8935 uint64_t CVal = C->getZExtValue(); 8936 if (isUInt<5>(CVal)) 8937 Ops.push_back( 8938 DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT())); 8939 } 8940 return; 8941 case 'S': 8942 if (const auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) { 8943 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op), 8944 GA->getValueType(0))); 8945 } else if (const auto *BA = dyn_cast<BlockAddressSDNode>(Op)) { 8946 Ops.push_back(DAG.getTargetBlockAddress(BA->getBlockAddress(), 8947 BA->getValueType(0))); 8948 } 8949 return; 8950 default: 8951 break; 8952 } 8953 } 8954 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 8955 } 8956 8957 Instruction *RISCVTargetLowering::emitLeadingFence(IRBuilderBase &Builder, 8958 Instruction *Inst, 8959 AtomicOrdering Ord) const { 8960 if (isa<LoadInst>(Inst) && Ord == AtomicOrdering::SequentiallyConsistent) 8961 return Builder.CreateFence(Ord); 8962 if (isa<StoreInst>(Inst) && isReleaseOrStronger(Ord)) 8963 return Builder.CreateFence(AtomicOrdering::Release); 8964 return nullptr; 8965 } 8966 8967 Instruction *RISCVTargetLowering::emitTrailingFence(IRBuilderBase &Builder, 8968 Instruction *Inst, 8969 AtomicOrdering Ord) const { 8970 if (isa<LoadInst>(Inst) && isAcquireOrStronger(Ord)) 8971 return Builder.CreateFence(AtomicOrdering::Acquire); 8972 return nullptr; 8973 } 8974 8975 TargetLowering::AtomicExpansionKind 8976 RISCVTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { 8977 // atomicrmw {fadd,fsub} must be expanded to use compare-exchange, as floating 8978 // point operations can't be used in an lr/sc sequence without breaking the 8979 // forward-progress guarantee. 8980 if (AI->isFloatingPointOperation()) 8981 return AtomicExpansionKind::CmpXChg; 8982 8983 unsigned Size = AI->getType()->getPrimitiveSizeInBits(); 8984 if (Size == 8 || Size == 16) 8985 return AtomicExpansionKind::MaskedIntrinsic; 8986 return AtomicExpansionKind::None; 8987 } 8988 8989 static Intrinsic::ID 8990 getIntrinsicForMaskedAtomicRMWBinOp(unsigned XLen, AtomicRMWInst::BinOp BinOp) { 8991 if (XLen == 32) { 8992 switch (BinOp) { 8993 default: 8994 llvm_unreachable("Unexpected AtomicRMW BinOp"); 8995 case AtomicRMWInst::Xchg: 8996 return Intrinsic::riscv_masked_atomicrmw_xchg_i32; 8997 case AtomicRMWInst::Add: 8998 return Intrinsic::riscv_masked_atomicrmw_add_i32; 8999 case AtomicRMWInst::Sub: 9000 return Intrinsic::riscv_masked_atomicrmw_sub_i32; 9001 case AtomicRMWInst::Nand: 9002 return Intrinsic::riscv_masked_atomicrmw_nand_i32; 9003 case AtomicRMWInst::Max: 9004 return Intrinsic::riscv_masked_atomicrmw_max_i32; 9005 case AtomicRMWInst::Min: 9006 return Intrinsic::riscv_masked_atomicrmw_min_i32; 9007 case AtomicRMWInst::UMax: 9008 return Intrinsic::riscv_masked_atomicrmw_umax_i32; 9009 case AtomicRMWInst::UMin: 9010 return Intrinsic::riscv_masked_atomicrmw_umin_i32; 9011 } 9012 } 9013 9014 if (XLen == 64) { 9015 switch (BinOp) { 9016 default: 9017 llvm_unreachable("Unexpected AtomicRMW BinOp"); 9018 case AtomicRMWInst::Xchg: 9019 return Intrinsic::riscv_masked_atomicrmw_xchg_i64; 9020 case AtomicRMWInst::Add: 9021 return Intrinsic::riscv_masked_atomicrmw_add_i64; 9022 case AtomicRMWInst::Sub: 9023 return Intrinsic::riscv_masked_atomicrmw_sub_i64; 9024 case AtomicRMWInst::Nand: 9025 return Intrinsic::riscv_masked_atomicrmw_nand_i64; 9026 case AtomicRMWInst::Max: 9027 return Intrinsic::riscv_masked_atomicrmw_max_i64; 9028 case AtomicRMWInst::Min: 9029 return Intrinsic::riscv_masked_atomicrmw_min_i64; 9030 case AtomicRMWInst::UMax: 9031 return Intrinsic::riscv_masked_atomicrmw_umax_i64; 9032 case AtomicRMWInst::UMin: 9033 return Intrinsic::riscv_masked_atomicrmw_umin_i64; 9034 } 9035 } 9036 9037 llvm_unreachable("Unexpected XLen\n"); 9038 } 9039 9040 Value *RISCVTargetLowering::emitMaskedAtomicRMWIntrinsic( 9041 IRBuilderBase &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr, 9042 Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const { 9043 unsigned XLen = Subtarget.getXLen(); 9044 Value *Ordering = 9045 Builder.getIntN(XLen, static_cast<uint64_t>(AI->getOrdering())); 9046 Type *Tys[] = {AlignedAddr->getType()}; 9047 Function *LrwOpScwLoop = Intrinsic::getDeclaration( 9048 AI->getModule(), 9049 getIntrinsicForMaskedAtomicRMWBinOp(XLen, AI->getOperation()), Tys); 9050 9051 if (XLen == 64) { 9052 Incr = Builder.CreateSExt(Incr, Builder.getInt64Ty()); 9053 Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty()); 9054 ShiftAmt = Builder.CreateSExt(ShiftAmt, Builder.getInt64Ty()); 9055 } 9056 9057 Value *Result; 9058 9059 // Must pass the shift amount needed to sign extend the loaded value prior 9060 // to performing a signed comparison for min/max. ShiftAmt is the number of 9061 // bits to shift the value into position. Pass XLen-ShiftAmt-ValWidth, which 9062 // is the number of bits to left+right shift the value in order to 9063 // sign-extend. 9064 if (AI->getOperation() == AtomicRMWInst::Min || 9065 AI->getOperation() == AtomicRMWInst::Max) { 9066 const DataLayout &DL = AI->getModule()->getDataLayout(); 9067 unsigned ValWidth = 9068 DL.getTypeStoreSizeInBits(AI->getValOperand()->getType()); 9069 Value *SextShamt = 9070 Builder.CreateSub(Builder.getIntN(XLen, XLen - ValWidth), ShiftAmt); 9071 Result = Builder.CreateCall(LrwOpScwLoop, 9072 {AlignedAddr, Incr, Mask, SextShamt, Ordering}); 9073 } else { 9074 Result = 9075 Builder.CreateCall(LrwOpScwLoop, {AlignedAddr, Incr, Mask, Ordering}); 9076 } 9077 9078 if (XLen == 64) 9079 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty()); 9080 return Result; 9081 } 9082 9083 TargetLowering::AtomicExpansionKind 9084 RISCVTargetLowering::shouldExpandAtomicCmpXchgInIR( 9085 AtomicCmpXchgInst *CI) const { 9086 unsigned Size = CI->getCompareOperand()->getType()->getPrimitiveSizeInBits(); 9087 if (Size == 8 || Size == 16) 9088 return AtomicExpansionKind::MaskedIntrinsic; 9089 return AtomicExpansionKind::None; 9090 } 9091 9092 Value *RISCVTargetLowering::emitMaskedAtomicCmpXchgIntrinsic( 9093 IRBuilderBase &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr, 9094 Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const { 9095 unsigned XLen = Subtarget.getXLen(); 9096 Value *Ordering = Builder.getIntN(XLen, static_cast<uint64_t>(Ord)); 9097 Intrinsic::ID CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i32; 9098 if (XLen == 64) { 9099 CmpVal = Builder.CreateSExt(CmpVal, Builder.getInt64Ty()); 9100 NewVal = Builder.CreateSExt(NewVal, Builder.getInt64Ty()); 9101 Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty()); 9102 CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i64; 9103 } 9104 Type *Tys[] = {AlignedAddr->getType()}; 9105 Function *MaskedCmpXchg = 9106 Intrinsic::getDeclaration(CI->getModule(), CmpXchgIntrID, Tys); 9107 Value *Result = Builder.CreateCall( 9108 MaskedCmpXchg, {AlignedAddr, CmpVal, NewVal, Mask, Ordering}); 9109 if (XLen == 64) 9110 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty()); 9111 return Result; 9112 } 9113 9114 bool RISCVTargetLowering::shouldRemoveExtendFromGSIndex(EVT VT) const { 9115 return false; 9116 } 9117 9118 bool RISCVTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, 9119 EVT VT) const { 9120 VT = VT.getScalarType(); 9121 9122 if (!VT.isSimple()) 9123 return false; 9124 9125 switch (VT.getSimpleVT().SimpleTy) { 9126 case MVT::f16: 9127 return Subtarget.hasStdExtZfh(); 9128 case MVT::f32: 9129 return Subtarget.hasStdExtF(); 9130 case MVT::f64: 9131 return Subtarget.hasStdExtD(); 9132 default: 9133 break; 9134 } 9135 9136 return false; 9137 } 9138 9139 Register RISCVTargetLowering::getExceptionPointerRegister( 9140 const Constant *PersonalityFn) const { 9141 return RISCV::X10; 9142 } 9143 9144 Register RISCVTargetLowering::getExceptionSelectorRegister( 9145 const Constant *PersonalityFn) const { 9146 return RISCV::X11; 9147 } 9148 9149 bool RISCVTargetLowering::shouldExtendTypeInLibCall(EVT Type) const { 9150 // Return false to suppress the unnecessary extensions if the LibCall 9151 // arguments or return value is f32 type for LP64 ABI. 9152 RISCVABI::ABI ABI = Subtarget.getTargetABI(); 9153 if (ABI == RISCVABI::ABI_LP64 && (Type == MVT::f32)) 9154 return false; 9155 9156 return true; 9157 } 9158 9159 bool RISCVTargetLowering::shouldSignExtendTypeInLibCall(EVT Type, bool IsSigned) const { 9160 if (Subtarget.is64Bit() && Type == MVT::i32) 9161 return true; 9162 9163 return IsSigned; 9164 } 9165 9166 bool RISCVTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT, 9167 SDValue C) const { 9168 // Check integral scalar types. 9169 if (VT.isScalarInteger()) { 9170 // Omit the optimization if the sub target has the M extension and the data 9171 // size exceeds XLen. 9172 if (Subtarget.hasStdExtM() && VT.getSizeInBits() > Subtarget.getXLen()) 9173 return false; 9174 if (auto *ConstNode = dyn_cast<ConstantSDNode>(C.getNode())) { 9175 // Break the MUL to a SLLI and an ADD/SUB. 9176 const APInt &Imm = ConstNode->getAPIntValue(); 9177 if ((Imm + 1).isPowerOf2() || (Imm - 1).isPowerOf2() || 9178 (1 - Imm).isPowerOf2() || (-1 - Imm).isPowerOf2()) 9179 return true; 9180 // Optimize the MUL to (SH*ADD x, (SLLI x, bits)) if Imm is not simm12. 9181 if (Subtarget.hasStdExtZba() && !Imm.isSignedIntN(12) && 9182 ((Imm - 2).isPowerOf2() || (Imm - 4).isPowerOf2() || 9183 (Imm - 8).isPowerOf2())) 9184 return true; 9185 // Omit the following optimization if the sub target has the M extension 9186 // and the data size >= XLen. 9187 if (Subtarget.hasStdExtM() && VT.getSizeInBits() >= Subtarget.getXLen()) 9188 return false; 9189 // Break the MUL to two SLLI instructions and an ADD/SUB, if Imm needs 9190 // a pair of LUI/ADDI. 9191 if (!Imm.isSignedIntN(12) && Imm.countTrailingZeros() < 12) { 9192 APInt ImmS = Imm.ashr(Imm.countTrailingZeros()); 9193 if ((ImmS + 1).isPowerOf2() || (ImmS - 1).isPowerOf2() || 9194 (1 - ImmS).isPowerOf2()) 9195 return true; 9196 } 9197 } 9198 } 9199 9200 return false; 9201 } 9202 9203 bool RISCVTargetLowering::isMulAddWithConstProfitable( 9204 const SDValue &AddNode, const SDValue &ConstNode) const { 9205 // Let the DAGCombiner decide for vectors. 9206 EVT VT = AddNode.getValueType(); 9207 if (VT.isVector()) 9208 return true; 9209 9210 // Let the DAGCombiner decide for larger types. 9211 if (VT.getScalarSizeInBits() > Subtarget.getXLen()) 9212 return true; 9213 9214 // It is worse if c1 is simm12 while c1*c2 is not. 9215 ConstantSDNode *C1Node = cast<ConstantSDNode>(AddNode.getOperand(1)); 9216 ConstantSDNode *C2Node = cast<ConstantSDNode>(ConstNode); 9217 const APInt &C1 = C1Node->getAPIntValue(); 9218 const APInt &C2 = C2Node->getAPIntValue(); 9219 if (C1.isSignedIntN(12) && !(C1 * C2).isSignedIntN(12)) 9220 return false; 9221 9222 // Default to true and let the DAGCombiner decide. 9223 return true; 9224 } 9225 9226 bool RISCVTargetLowering::allowsMisalignedMemoryAccesses( 9227 EVT VT, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags, 9228 bool *Fast) const { 9229 if (!VT.isVector()) 9230 return false; 9231 9232 EVT ElemVT = VT.getVectorElementType(); 9233 if (Alignment >= ElemVT.getStoreSize()) { 9234 if (Fast) 9235 *Fast = true; 9236 return true; 9237 } 9238 9239 return false; 9240 } 9241 9242 bool RISCVTargetLowering::splitValueIntoRegisterParts( 9243 SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts, 9244 unsigned NumParts, MVT PartVT, Optional<CallingConv::ID> CC) const { 9245 bool IsABIRegCopy = CC.hasValue(); 9246 EVT ValueVT = Val.getValueType(); 9247 if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) { 9248 // Cast the f16 to i16, extend to i32, pad with ones to make a float nan, 9249 // and cast to f32. 9250 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i16, Val); 9251 Val = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Val); 9252 Val = DAG.getNode(ISD::OR, DL, MVT::i32, Val, 9253 DAG.getConstant(0xFFFF0000, DL, MVT::i32)); 9254 Val = DAG.getNode(ISD::BITCAST, DL, MVT::f32, Val); 9255 Parts[0] = Val; 9256 return true; 9257 } 9258 9259 if (ValueVT.isScalableVector() && PartVT.isScalableVector()) { 9260 LLVMContext &Context = *DAG.getContext(); 9261 EVT ValueEltVT = ValueVT.getVectorElementType(); 9262 EVT PartEltVT = PartVT.getVectorElementType(); 9263 unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize(); 9264 unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize(); 9265 if (PartVTBitSize % ValueVTBitSize == 0) { 9266 // If the element types are different, bitcast to the same element type of 9267 // PartVT first. 9268 if (ValueEltVT != PartEltVT) { 9269 unsigned Count = ValueVTBitSize / PartEltVT.getSizeInBits(); 9270 assert(Count != 0 && "The number of element should not be zero."); 9271 EVT SameEltTypeVT = 9272 EVT::getVectorVT(Context, PartEltVT, Count, /*IsScalable=*/true); 9273 Val = DAG.getNode(ISD::BITCAST, DL, SameEltTypeVT, Val); 9274 } 9275 Val = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT), 9276 Val, DAG.getConstant(0, DL, Subtarget.getXLenVT())); 9277 Parts[0] = Val; 9278 return true; 9279 } 9280 } 9281 return false; 9282 } 9283 9284 SDValue RISCVTargetLowering::joinRegisterPartsIntoValue( 9285 SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts, 9286 MVT PartVT, EVT ValueVT, Optional<CallingConv::ID> CC) const { 9287 bool IsABIRegCopy = CC.hasValue(); 9288 if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) { 9289 SDValue Val = Parts[0]; 9290 9291 // Cast the f32 to i32, truncate to i16, and cast back to f16. 9292 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Val); 9293 Val = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Val); 9294 Val = DAG.getNode(ISD::BITCAST, DL, MVT::f16, Val); 9295 return Val; 9296 } 9297 9298 if (ValueVT.isScalableVector() && PartVT.isScalableVector()) { 9299 LLVMContext &Context = *DAG.getContext(); 9300 SDValue Val = Parts[0]; 9301 EVT ValueEltVT = ValueVT.getVectorElementType(); 9302 EVT PartEltVT = PartVT.getVectorElementType(); 9303 unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize(); 9304 unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize(); 9305 if (PartVTBitSize % ValueVTBitSize == 0) { 9306 EVT SameEltTypeVT = ValueVT; 9307 // If the element types are different, convert it to the same element type 9308 // of PartVT. 9309 if (ValueEltVT != PartEltVT) { 9310 unsigned Count = ValueVTBitSize / PartEltVT.getSizeInBits(); 9311 assert(Count != 0 && "The number of element should not be zero."); 9312 SameEltTypeVT = 9313 EVT::getVectorVT(Context, PartEltVT, Count, /*IsScalable=*/true); 9314 } 9315 Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SameEltTypeVT, Val, 9316 DAG.getConstant(0, DL, Subtarget.getXLenVT())); 9317 if (ValueEltVT != PartEltVT) 9318 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 9319 return Val; 9320 } 9321 } 9322 return SDValue(); 9323 } 9324 9325 #define GET_REGISTER_MATCHER 9326 #include "RISCVGenAsmMatcher.inc" 9327 9328 Register 9329 RISCVTargetLowering::getRegisterByName(const char *RegName, LLT VT, 9330 const MachineFunction &MF) const { 9331 Register Reg = MatchRegisterAltName(RegName); 9332 if (Reg == RISCV::NoRegister) 9333 Reg = MatchRegisterName(RegName); 9334 if (Reg == RISCV::NoRegister) 9335 report_fatal_error( 9336 Twine("Invalid register name \"" + StringRef(RegName) + "\".")); 9337 BitVector ReservedRegs = Subtarget.getRegisterInfo()->getReservedRegs(MF); 9338 if (!ReservedRegs.test(Reg) && !Subtarget.isRegisterReservedByUser(Reg)) 9339 report_fatal_error(Twine("Trying to obtain non-reserved register \"" + 9340 StringRef(RegName) + "\".")); 9341 return Reg; 9342 } 9343 9344 namespace llvm { 9345 namespace RISCVVIntrinsicsTable { 9346 9347 #define GET_RISCVVIntrinsicsTable_IMPL 9348 #include "RISCVGenSearchableTables.inc" 9349 9350 } // namespace RISCVVIntrinsicsTable 9351 9352 } // namespace llvm 9353