1 //===-- RISCVISelLowering.cpp - RISCV DAG Lowering Implementation  --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the interfaces that RISCV uses to lower LLVM code into a
10 // selection DAG.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "RISCVISelLowering.h"
15 #include "MCTargetDesc/RISCVMatInt.h"
16 #include "RISCV.h"
17 #include "RISCVMachineFunctionInfo.h"
18 #include "RISCVRegisterInfo.h"
19 #include "RISCVSubtarget.h"
20 #include "RISCVTargetMachine.h"
21 #include "llvm/ADT/SmallSet.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/Analysis/MemoryLocation.h"
24 #include "llvm/CodeGen/MachineFrameInfo.h"
25 #include "llvm/CodeGen/MachineFunction.h"
26 #include "llvm/CodeGen/MachineInstrBuilder.h"
27 #include "llvm/CodeGen/MachineJumpTableInfo.h"
28 #include "llvm/CodeGen/MachineRegisterInfo.h"
29 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
30 #include "llvm/CodeGen/ValueTypes.h"
31 #include "llvm/IR/DiagnosticInfo.h"
32 #include "llvm/IR/DiagnosticPrinter.h"
33 #include "llvm/IR/IRBuilder.h"
34 #include "llvm/IR/IntrinsicsRISCV.h"
35 #include "llvm/IR/PatternMatch.h"
36 #include "llvm/Support/Debug.h"
37 #include "llvm/Support/ErrorHandling.h"
38 #include "llvm/Support/KnownBits.h"
39 #include "llvm/Support/MathExtras.h"
40 #include "llvm/Support/raw_ostream.h"
41 
42 using namespace llvm;
43 
44 #define DEBUG_TYPE "riscv-lower"
45 
46 STATISTIC(NumTailCalls, "Number of tail calls");
47 
48 RISCVTargetLowering::RISCVTargetLowering(const TargetMachine &TM,
49                                          const RISCVSubtarget &STI)
50     : TargetLowering(TM), Subtarget(STI) {
51 
52   if (Subtarget.isRV32E())
53     report_fatal_error("Codegen not yet implemented for RV32E");
54 
55   RISCVABI::ABI ABI = Subtarget.getTargetABI();
56   assert(ABI != RISCVABI::ABI_Unknown && "Improperly initialised target ABI");
57 
58   if ((ABI == RISCVABI::ABI_ILP32F || ABI == RISCVABI::ABI_LP64F) &&
59       !Subtarget.hasStdExtF()) {
60     errs() << "Hard-float 'f' ABI can't be used for a target that "
61                 "doesn't support the F instruction set extension (ignoring "
62                           "target-abi)\n";
63     ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32;
64   } else if ((ABI == RISCVABI::ABI_ILP32D || ABI == RISCVABI::ABI_LP64D) &&
65              !Subtarget.hasStdExtD()) {
66     errs() << "Hard-float 'd' ABI can't be used for a target that "
67               "doesn't support the D instruction set extension (ignoring "
68               "target-abi)\n";
69     ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32;
70   }
71 
72   switch (ABI) {
73   default:
74     report_fatal_error("Don't know how to lower this ABI");
75   case RISCVABI::ABI_ILP32:
76   case RISCVABI::ABI_ILP32F:
77   case RISCVABI::ABI_ILP32D:
78   case RISCVABI::ABI_LP64:
79   case RISCVABI::ABI_LP64F:
80   case RISCVABI::ABI_LP64D:
81     break;
82   }
83 
84   MVT XLenVT = Subtarget.getXLenVT();
85 
86   // Set up the register classes.
87   addRegisterClass(XLenVT, &RISCV::GPRRegClass);
88 
89   if (Subtarget.hasStdExtZfh())
90     addRegisterClass(MVT::f16, &RISCV::FPR16RegClass);
91   if (Subtarget.hasStdExtF())
92     addRegisterClass(MVT::f32, &RISCV::FPR32RegClass);
93   if (Subtarget.hasStdExtD())
94     addRegisterClass(MVT::f64, &RISCV::FPR64RegClass);
95 
96   static const MVT::SimpleValueType BoolVecVTs[] = {
97       MVT::nxv1i1,  MVT::nxv2i1,  MVT::nxv4i1, MVT::nxv8i1,
98       MVT::nxv16i1, MVT::nxv32i1, MVT::nxv64i1};
99   static const MVT::SimpleValueType IntVecVTs[] = {
100       MVT::nxv1i8,  MVT::nxv2i8,   MVT::nxv4i8,   MVT::nxv8i8,  MVT::nxv16i8,
101       MVT::nxv32i8, MVT::nxv64i8,  MVT::nxv1i16,  MVT::nxv2i16, MVT::nxv4i16,
102       MVT::nxv8i16, MVT::nxv16i16, MVT::nxv32i16, MVT::nxv1i32, MVT::nxv2i32,
103       MVT::nxv4i32, MVT::nxv8i32,  MVT::nxv16i32, MVT::nxv1i64, MVT::nxv2i64,
104       MVT::nxv4i64, MVT::nxv8i64};
105   static const MVT::SimpleValueType F16VecVTs[] = {
106       MVT::nxv1f16, MVT::nxv2f16,  MVT::nxv4f16,
107       MVT::nxv8f16, MVT::nxv16f16, MVT::nxv32f16};
108   static const MVT::SimpleValueType F32VecVTs[] = {
109       MVT::nxv1f32, MVT::nxv2f32, MVT::nxv4f32, MVT::nxv8f32, MVT::nxv16f32};
110   static const MVT::SimpleValueType F64VecVTs[] = {
111       MVT::nxv1f64, MVT::nxv2f64, MVT::nxv4f64, MVT::nxv8f64};
112 
113   if (Subtarget.hasVInstructions()) {
114     auto addRegClassForRVV = [this](MVT VT) {
115       unsigned Size = VT.getSizeInBits().getKnownMinValue();
116       assert(Size <= 512 && isPowerOf2_32(Size));
117       const TargetRegisterClass *RC;
118       if (Size <= 64)
119         RC = &RISCV::VRRegClass;
120       else if (Size == 128)
121         RC = &RISCV::VRM2RegClass;
122       else if (Size == 256)
123         RC = &RISCV::VRM4RegClass;
124       else
125         RC = &RISCV::VRM8RegClass;
126 
127       addRegisterClass(VT, RC);
128     };
129 
130     for (MVT VT : BoolVecVTs)
131       addRegClassForRVV(VT);
132     for (MVT VT : IntVecVTs) {
133       if (VT.getVectorElementType() == MVT::i64 &&
134           !Subtarget.hasVInstructionsI64())
135         continue;
136       addRegClassForRVV(VT);
137     }
138 
139     if (Subtarget.hasVInstructionsF16())
140       for (MVT VT : F16VecVTs)
141         addRegClassForRVV(VT);
142 
143     if (Subtarget.hasVInstructionsF32())
144       for (MVT VT : F32VecVTs)
145         addRegClassForRVV(VT);
146 
147     if (Subtarget.hasVInstructionsF64())
148       for (MVT VT : F64VecVTs)
149         addRegClassForRVV(VT);
150 
151     if (Subtarget.useRVVForFixedLengthVectors()) {
152       auto addRegClassForFixedVectors = [this](MVT VT) {
153         MVT ContainerVT = getContainerForFixedLengthVector(VT);
154         unsigned RCID = getRegClassIDForVecVT(ContainerVT);
155         const RISCVRegisterInfo &TRI = *Subtarget.getRegisterInfo();
156         addRegisterClass(VT, TRI.getRegClass(RCID));
157       };
158       for (MVT VT : MVT::integer_fixedlen_vector_valuetypes())
159         if (useRVVForFixedLengthVectorVT(VT))
160           addRegClassForFixedVectors(VT);
161 
162       for (MVT VT : MVT::fp_fixedlen_vector_valuetypes())
163         if (useRVVForFixedLengthVectorVT(VT))
164           addRegClassForFixedVectors(VT);
165     }
166   }
167 
168   // Compute derived properties from the register classes.
169   computeRegisterProperties(STI.getRegisterInfo());
170 
171   setStackPointerRegisterToSaveRestore(RISCV::X2);
172 
173   for (auto N : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD})
174     setLoadExtAction(N, XLenVT, MVT::i1, Promote);
175 
176   // TODO: add all necessary setOperationAction calls.
177   setOperationAction(ISD::DYNAMIC_STACKALLOC, XLenVT, Expand);
178 
179   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
180   setOperationAction(ISD::BR_CC, XLenVT, Expand);
181   setOperationAction(ISD::BRCOND, MVT::Other, Custom);
182   setOperationAction(ISD::SELECT_CC, XLenVT, Expand);
183 
184   setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
185   setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
186 
187   setOperationAction(ISD::VASTART, MVT::Other, Custom);
188   setOperationAction(ISD::VAARG, MVT::Other, Expand);
189   setOperationAction(ISD::VACOPY, MVT::Other, Expand);
190   setOperationAction(ISD::VAEND, MVT::Other, Expand);
191 
192   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
193   if (!Subtarget.hasStdExtZbb()) {
194     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand);
195     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
196   }
197 
198   if (Subtarget.is64Bit()) {
199     setOperationAction(ISD::ADD, MVT::i32, Custom);
200     setOperationAction(ISD::SUB, MVT::i32, Custom);
201     setOperationAction(ISD::SHL, MVT::i32, Custom);
202     setOperationAction(ISD::SRA, MVT::i32, Custom);
203     setOperationAction(ISD::SRL, MVT::i32, Custom);
204 
205     setOperationAction(ISD::UADDO, MVT::i32, Custom);
206     setOperationAction(ISD::USUBO, MVT::i32, Custom);
207     setOperationAction(ISD::UADDSAT, MVT::i32, Custom);
208     setOperationAction(ISD::USUBSAT, MVT::i32, Custom);
209   } else {
210     setLibcallName(RTLIB::SHL_I128, nullptr);
211     setLibcallName(RTLIB::SRL_I128, nullptr);
212     setLibcallName(RTLIB::SRA_I128, nullptr);
213     setLibcallName(RTLIB::MUL_I128, nullptr);
214     setLibcallName(RTLIB::MULO_I64, nullptr);
215   }
216 
217   if (!Subtarget.hasStdExtM()) {
218     setOperationAction(ISD::MUL, XLenVT, Expand);
219     setOperationAction(ISD::MULHS, XLenVT, Expand);
220     setOperationAction(ISD::MULHU, XLenVT, Expand);
221     setOperationAction(ISD::SDIV, XLenVT, Expand);
222     setOperationAction(ISD::UDIV, XLenVT, Expand);
223     setOperationAction(ISD::SREM, XLenVT, Expand);
224     setOperationAction(ISD::UREM, XLenVT, Expand);
225   } else {
226     if (Subtarget.is64Bit()) {
227       setOperationAction(ISD::MUL, MVT::i32, Custom);
228       setOperationAction(ISD::MUL, MVT::i128, Custom);
229 
230       setOperationAction(ISD::SDIV, MVT::i8, Custom);
231       setOperationAction(ISD::UDIV, MVT::i8, Custom);
232       setOperationAction(ISD::UREM, MVT::i8, Custom);
233       setOperationAction(ISD::SDIV, MVT::i16, Custom);
234       setOperationAction(ISD::UDIV, MVT::i16, Custom);
235       setOperationAction(ISD::UREM, MVT::i16, Custom);
236       setOperationAction(ISD::SDIV, MVT::i32, Custom);
237       setOperationAction(ISD::UDIV, MVT::i32, Custom);
238       setOperationAction(ISD::UREM, MVT::i32, Custom);
239     } else {
240       setOperationAction(ISD::MUL, MVT::i64, Custom);
241     }
242   }
243 
244   setOperationAction(ISD::SDIVREM, XLenVT, Expand);
245   setOperationAction(ISD::UDIVREM, XLenVT, Expand);
246   setOperationAction(ISD::SMUL_LOHI, XLenVT, Expand);
247   setOperationAction(ISD::UMUL_LOHI, XLenVT, Expand);
248 
249   setOperationAction(ISD::SHL_PARTS, XLenVT, Custom);
250   setOperationAction(ISD::SRL_PARTS, XLenVT, Custom);
251   setOperationAction(ISD::SRA_PARTS, XLenVT, Custom);
252 
253   if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp() ||
254       Subtarget.hasStdExtZbkb()) {
255     if (Subtarget.is64Bit()) {
256       setOperationAction(ISD::ROTL, MVT::i32, Custom);
257       setOperationAction(ISD::ROTR, MVT::i32, Custom);
258     }
259   } else {
260     setOperationAction(ISD::ROTL, XLenVT, Expand);
261     setOperationAction(ISD::ROTR, XLenVT, Expand);
262   }
263 
264   if (Subtarget.hasStdExtZbp()) {
265     // Custom lower bswap/bitreverse so we can convert them to GREVI to enable
266     // more combining.
267     setOperationAction(ISD::BITREVERSE, XLenVT,   Custom);
268     setOperationAction(ISD::BSWAP,      XLenVT,   Custom);
269     setOperationAction(ISD::BITREVERSE, MVT::i8,  Custom);
270     // BSWAP i8 doesn't exist.
271     setOperationAction(ISD::BITREVERSE, MVT::i16, Custom);
272     setOperationAction(ISD::BSWAP,      MVT::i16, Custom);
273 
274     if (Subtarget.is64Bit()) {
275       setOperationAction(ISD::BITREVERSE, MVT::i32, Custom);
276       setOperationAction(ISD::BSWAP,      MVT::i32, Custom);
277     }
278   } else {
279     // With Zbb we have an XLen rev8 instruction, but not GREVI. So we'll
280     // pattern match it directly in isel.
281     setOperationAction(ISD::BSWAP, XLenVT,
282                        (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbkb())
283                            ? Legal
284                            : Expand);
285     // Zbkb can use rev8+brev8 to implement bitreverse.
286     setOperationAction(ISD::BITREVERSE, XLenVT,
287                        Subtarget.hasStdExtZbkb() ? Custom : Expand);
288   }
289 
290   if (Subtarget.hasStdExtZbb()) {
291     setOperationAction(ISD::SMIN, XLenVT, Legal);
292     setOperationAction(ISD::SMAX, XLenVT, Legal);
293     setOperationAction(ISD::UMIN, XLenVT, Legal);
294     setOperationAction(ISD::UMAX, XLenVT, Legal);
295 
296     if (Subtarget.is64Bit()) {
297       setOperationAction(ISD::CTTZ, MVT::i32, Custom);
298       setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Custom);
299       setOperationAction(ISD::CTLZ, MVT::i32, Custom);
300       setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom);
301     }
302   } else {
303     setOperationAction(ISD::CTTZ, XLenVT, Expand);
304     setOperationAction(ISD::CTLZ, XLenVT, Expand);
305     setOperationAction(ISD::CTPOP, XLenVT, Expand);
306 
307     if (Subtarget.is64Bit())
308       setOperationAction(ISD::ABS, MVT::i32, Custom);
309   }
310 
311   if (Subtarget.hasStdExtZbt()) {
312     setOperationAction(ISD::FSHL, XLenVT, Custom);
313     setOperationAction(ISD::FSHR, XLenVT, Custom);
314     setOperationAction(ISD::SELECT, XLenVT, Legal);
315 
316     if (Subtarget.is64Bit()) {
317       setOperationAction(ISD::FSHL, MVT::i32, Custom);
318       setOperationAction(ISD::FSHR, MVT::i32, Custom);
319     }
320   } else {
321     setOperationAction(ISD::SELECT, XLenVT, Custom);
322   }
323 
324   static constexpr ISD::NodeType FPLegalNodeTypes[] = {
325       ISD::FMINNUM,        ISD::FMAXNUM,       ISD::LRINT,
326       ISD::LLRINT,         ISD::LROUND,        ISD::LLROUND,
327       ISD::STRICT_LRINT,   ISD::STRICT_LLRINT, ISD::STRICT_LROUND,
328       ISD::STRICT_LLROUND, ISD::STRICT_FMA,    ISD::STRICT_FADD,
329       ISD::STRICT_FSUB,    ISD::STRICT_FMUL,   ISD::STRICT_FDIV,
330       ISD::STRICT_FSQRT,   ISD::STRICT_FSETCC, ISD::STRICT_FSETCCS};
331 
332   static const ISD::CondCode FPCCToExpand[] = {
333       ISD::SETOGT, ISD::SETOGE, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT,
334       ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUNE, ISD::SETGT,
335       ISD::SETGE,  ISD::SETNE,  ISD::SETO,   ISD::SETUO};
336 
337   static const ISD::NodeType FPOpToExpand[] = {
338       ISD::FSIN, ISD::FCOS,       ISD::FSINCOS,   ISD::FPOW,
339       ISD::FREM, ISD::FP16_TO_FP, ISD::FP_TO_FP16};
340 
341   if (Subtarget.hasStdExtZfh())
342     setOperationAction(ISD::BITCAST, MVT::i16, Custom);
343 
344   if (Subtarget.hasStdExtZfh()) {
345     for (auto NT : FPLegalNodeTypes)
346       setOperationAction(NT, MVT::f16, Legal);
347     setOperationAction(ISD::STRICT_FP_ROUND, MVT::f16, Legal);
348     setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f32, Legal);
349     for (auto CC : FPCCToExpand)
350       setCondCodeAction(CC, MVT::f16, Expand);
351     setOperationAction(ISD::SELECT_CC, MVT::f16, Expand);
352     setOperationAction(ISD::SELECT, MVT::f16, Custom);
353     setOperationAction(ISD::BR_CC, MVT::f16, Expand);
354 
355     setOperationAction(ISD::FREM,       MVT::f16, Promote);
356     setOperationAction(ISD::FCEIL,      MVT::f16, Promote);
357     setOperationAction(ISD::FFLOOR,     MVT::f16, Promote);
358     setOperationAction(ISD::FNEARBYINT, MVT::f16, Promote);
359     setOperationAction(ISD::FRINT,      MVT::f16, Promote);
360     setOperationAction(ISD::FROUND,     MVT::f16, Promote);
361     setOperationAction(ISD::FROUNDEVEN, MVT::f16, Promote);
362     setOperationAction(ISD::FTRUNC,     MVT::f16, Promote);
363     setOperationAction(ISD::FPOW,       MVT::f16, Promote);
364     setOperationAction(ISD::FPOWI,      MVT::f16, Promote);
365     setOperationAction(ISD::FCOS,       MVT::f16, Promote);
366     setOperationAction(ISD::FSIN,       MVT::f16, Promote);
367     setOperationAction(ISD::FSINCOS,    MVT::f16, Promote);
368     setOperationAction(ISD::FEXP,       MVT::f16, Promote);
369     setOperationAction(ISD::FEXP2,      MVT::f16, Promote);
370     setOperationAction(ISD::FLOG,       MVT::f16, Promote);
371     setOperationAction(ISD::FLOG2,      MVT::f16, Promote);
372     setOperationAction(ISD::FLOG10,     MVT::f16, Promote);
373 
374     // FIXME: Need to promote f16 STRICT_* to f32 libcalls, but we don't have
375     // complete support for all operations in LegalizeDAG.
376 
377     // We need to custom promote this.
378     if (Subtarget.is64Bit())
379       setOperationAction(ISD::FPOWI, MVT::i32, Custom);
380   }
381 
382   if (Subtarget.hasStdExtF()) {
383     for (auto NT : FPLegalNodeTypes)
384       setOperationAction(NT, MVT::f32, Legal);
385     for (auto CC : FPCCToExpand)
386       setCondCodeAction(CC, MVT::f32, Expand);
387     setOperationAction(ISD::SELECT_CC, MVT::f32, Expand);
388     setOperationAction(ISD::SELECT, MVT::f32, Custom);
389     setOperationAction(ISD::BR_CC, MVT::f32, Expand);
390     for (auto Op : FPOpToExpand)
391       setOperationAction(Op, MVT::f32, Expand);
392     setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
393     setTruncStoreAction(MVT::f32, MVT::f16, Expand);
394   }
395 
396   if (Subtarget.hasStdExtF() && Subtarget.is64Bit())
397     setOperationAction(ISD::BITCAST, MVT::i32, Custom);
398 
399   if (Subtarget.hasStdExtD()) {
400     for (auto NT : FPLegalNodeTypes)
401       setOperationAction(NT, MVT::f64, Legal);
402     setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal);
403     setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f64, Legal);
404     for (auto CC : FPCCToExpand)
405       setCondCodeAction(CC, MVT::f64, Expand);
406     setOperationAction(ISD::SELECT_CC, MVT::f64, Expand);
407     setOperationAction(ISD::SELECT, MVT::f64, Custom);
408     setOperationAction(ISD::BR_CC, MVT::f64, Expand);
409     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
410     setTruncStoreAction(MVT::f64, MVT::f32, Expand);
411     for (auto Op : FPOpToExpand)
412       setOperationAction(Op, MVT::f64, Expand);
413     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
414     setTruncStoreAction(MVT::f64, MVT::f16, Expand);
415   }
416 
417   if (Subtarget.is64Bit()) {
418     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
419     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
420     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom);
421     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom);
422   }
423 
424   if (Subtarget.hasStdExtF()) {
425     setOperationAction(ISD::FP_TO_UINT_SAT, XLenVT, Custom);
426     setOperationAction(ISD::FP_TO_SINT_SAT, XLenVT, Custom);
427 
428     setOperationAction(ISD::STRICT_FP_TO_UINT, XLenVT, Legal);
429     setOperationAction(ISD::STRICT_FP_TO_SINT, XLenVT, Legal);
430     setOperationAction(ISD::STRICT_UINT_TO_FP, XLenVT, Legal);
431     setOperationAction(ISD::STRICT_SINT_TO_FP, XLenVT, Legal);
432 
433     setOperationAction(ISD::FLT_ROUNDS_, XLenVT, Custom);
434     setOperationAction(ISD::SET_ROUNDING, MVT::Other, Custom);
435   }
436 
437   setOperationAction(ISD::GlobalAddress, XLenVT, Custom);
438   setOperationAction(ISD::BlockAddress, XLenVT, Custom);
439   setOperationAction(ISD::ConstantPool, XLenVT, Custom);
440   setOperationAction(ISD::JumpTable, XLenVT, Custom);
441 
442   setOperationAction(ISD::GlobalTLSAddress, XLenVT, Custom);
443 
444   // TODO: On M-mode only targets, the cycle[h] CSR may not be present.
445   // Unfortunately this can't be determined just from the ISA naming string.
446   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64,
447                      Subtarget.is64Bit() ? Legal : Custom);
448 
449   setOperationAction(ISD::TRAP, MVT::Other, Legal);
450   setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal);
451   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
452   if (Subtarget.is64Bit())
453     setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i32, Custom);
454 
455   if (Subtarget.hasStdExtA()) {
456     setMaxAtomicSizeInBitsSupported(Subtarget.getXLen());
457     setMinCmpXchgSizeInBits(32);
458   } else {
459     setMaxAtomicSizeInBitsSupported(0);
460   }
461 
462   setBooleanContents(ZeroOrOneBooleanContent);
463 
464   if (Subtarget.hasVInstructions()) {
465     setBooleanVectorContents(ZeroOrOneBooleanContent);
466 
467     setOperationAction(ISD::VSCALE, XLenVT, Custom);
468 
469     // RVV intrinsics may have illegal operands.
470     // We also need to custom legalize vmv.x.s.
471     setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i8, Custom);
472     setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i16, Custom);
473     setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i8, Custom);
474     setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i16, Custom);
475     if (Subtarget.is64Bit()) {
476       setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i32, Custom);
477     } else {
478       setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i64, Custom);
479       setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i64, Custom);
480     }
481 
482     setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
483     setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
484 
485     static const unsigned IntegerVPOps[] = {
486         ISD::VP_ADD,         ISD::VP_SUB,         ISD::VP_MUL,
487         ISD::VP_SDIV,        ISD::VP_UDIV,        ISD::VP_SREM,
488         ISD::VP_UREM,        ISD::VP_AND,         ISD::VP_OR,
489         ISD::VP_XOR,         ISD::VP_ASHR,        ISD::VP_LSHR,
490         ISD::VP_SHL,         ISD::VP_REDUCE_ADD,  ISD::VP_REDUCE_AND,
491         ISD::VP_REDUCE_OR,   ISD::VP_REDUCE_XOR,  ISD::VP_REDUCE_SMAX,
492         ISD::VP_REDUCE_SMIN, ISD::VP_REDUCE_UMAX, ISD::VP_REDUCE_UMIN,
493         ISD::VP_MERGE,       ISD::VP_SELECT};
494 
495     static const unsigned FloatingPointVPOps[] = {
496         ISD::VP_FADD,        ISD::VP_FSUB,        ISD::VP_FMUL,
497         ISD::VP_FDIV,        ISD::VP_FNEG,        ISD::VP_FMA,
498         ISD::VP_REDUCE_FADD, ISD::VP_REDUCE_SEQ_FADD, ISD::VP_REDUCE_FMIN,
499         ISD::VP_REDUCE_FMAX, ISD::VP_MERGE,       ISD::VP_SELECT};
500 
501     if (!Subtarget.is64Bit()) {
502       // We must custom-lower certain vXi64 operations on RV32 due to the vector
503       // element type being illegal.
504       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::i64, Custom);
505       setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::i64, Custom);
506 
507       setOperationAction(ISD::VECREDUCE_ADD, MVT::i64, Custom);
508       setOperationAction(ISD::VECREDUCE_AND, MVT::i64, Custom);
509       setOperationAction(ISD::VECREDUCE_OR, MVT::i64, Custom);
510       setOperationAction(ISD::VECREDUCE_XOR, MVT::i64, Custom);
511       setOperationAction(ISD::VECREDUCE_SMAX, MVT::i64, Custom);
512       setOperationAction(ISD::VECREDUCE_SMIN, MVT::i64, Custom);
513       setOperationAction(ISD::VECREDUCE_UMAX, MVT::i64, Custom);
514       setOperationAction(ISD::VECREDUCE_UMIN, MVT::i64, Custom);
515 
516       setOperationAction(ISD::VP_REDUCE_ADD, MVT::i64, Custom);
517       setOperationAction(ISD::VP_REDUCE_AND, MVT::i64, Custom);
518       setOperationAction(ISD::VP_REDUCE_OR, MVT::i64, Custom);
519       setOperationAction(ISD::VP_REDUCE_XOR, MVT::i64, Custom);
520       setOperationAction(ISD::VP_REDUCE_SMAX, MVT::i64, Custom);
521       setOperationAction(ISD::VP_REDUCE_SMIN, MVT::i64, Custom);
522       setOperationAction(ISD::VP_REDUCE_UMAX, MVT::i64, Custom);
523       setOperationAction(ISD::VP_REDUCE_UMIN, MVT::i64, Custom);
524     }
525 
526     for (MVT VT : BoolVecVTs) {
527       setOperationAction(ISD::SPLAT_VECTOR, VT, Custom);
528 
529       // Mask VTs are custom-expanded into a series of standard nodes
530       setOperationAction(ISD::TRUNCATE, VT, Custom);
531       setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
532       setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
533       setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
534 
535       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
536       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
537 
538       setOperationAction(ISD::SELECT, VT, Custom);
539       setOperationAction(ISD::SELECT_CC, VT, Expand);
540       setOperationAction(ISD::VSELECT, VT, Expand);
541       setOperationAction(ISD::VP_MERGE, VT, Expand);
542       setOperationAction(ISD::VP_SELECT, VT, Expand);
543 
544       setOperationAction(ISD::VP_AND, VT, Custom);
545       setOperationAction(ISD::VP_OR, VT, Custom);
546       setOperationAction(ISD::VP_XOR, VT, Custom);
547 
548       setOperationAction(ISD::VECREDUCE_AND, VT, Custom);
549       setOperationAction(ISD::VECREDUCE_OR, VT, Custom);
550       setOperationAction(ISD::VECREDUCE_XOR, VT, Custom);
551 
552       setOperationAction(ISD::VP_REDUCE_AND, VT, Custom);
553       setOperationAction(ISD::VP_REDUCE_OR, VT, Custom);
554       setOperationAction(ISD::VP_REDUCE_XOR, VT, Custom);
555 
556       // RVV has native int->float & float->int conversions where the
557       // element type sizes are within one power-of-two of each other. Any
558       // wider distances between type sizes have to be lowered as sequences
559       // which progressively narrow the gap in stages.
560       setOperationAction(ISD::SINT_TO_FP, VT, Custom);
561       setOperationAction(ISD::UINT_TO_FP, VT, Custom);
562       setOperationAction(ISD::FP_TO_SINT, VT, Custom);
563       setOperationAction(ISD::FP_TO_UINT, VT, Custom);
564 
565       // Expand all extending loads to types larger than this, and truncating
566       // stores from types larger than this.
567       for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) {
568         setTruncStoreAction(OtherVT, VT, Expand);
569         setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand);
570         setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand);
571         setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand);
572       }
573     }
574 
575     for (MVT VT : IntVecVTs) {
576       if (VT.getVectorElementType() == MVT::i64 &&
577           !Subtarget.hasVInstructionsI64())
578         continue;
579 
580       setOperationAction(ISD::SPLAT_VECTOR, VT, Legal);
581       setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom);
582 
583       // Vectors implement MULHS/MULHU.
584       setOperationAction(ISD::SMUL_LOHI, VT, Expand);
585       setOperationAction(ISD::UMUL_LOHI, VT, Expand);
586 
587       // nxvXi64 MULHS/MULHU requires the V extension instead of Zve64*.
588       if (VT.getVectorElementType() == MVT::i64 && !Subtarget.hasStdExtV()) {
589         setOperationAction(ISD::MULHU, VT, Expand);
590         setOperationAction(ISD::MULHS, VT, Expand);
591       }
592 
593       setOperationAction(ISD::SMIN, VT, Legal);
594       setOperationAction(ISD::SMAX, VT, Legal);
595       setOperationAction(ISD::UMIN, VT, Legal);
596       setOperationAction(ISD::UMAX, VT, Legal);
597 
598       setOperationAction(ISD::ROTL, VT, Expand);
599       setOperationAction(ISD::ROTR, VT, Expand);
600 
601       setOperationAction(ISD::CTTZ, VT, Expand);
602       setOperationAction(ISD::CTLZ, VT, Expand);
603       setOperationAction(ISD::CTPOP, VT, Expand);
604 
605       setOperationAction(ISD::BSWAP, VT, Expand);
606 
607       // Custom-lower extensions and truncations from/to mask types.
608       setOperationAction(ISD::ANY_EXTEND, VT, Custom);
609       setOperationAction(ISD::SIGN_EXTEND, VT, Custom);
610       setOperationAction(ISD::ZERO_EXTEND, VT, Custom);
611 
612       // RVV has native int->float & float->int conversions where the
613       // element type sizes are within one power-of-two of each other. Any
614       // wider distances between type sizes have to be lowered as sequences
615       // which progressively narrow the gap in stages.
616       setOperationAction(ISD::SINT_TO_FP, VT, Custom);
617       setOperationAction(ISD::UINT_TO_FP, VT, Custom);
618       setOperationAction(ISD::FP_TO_SINT, VT, Custom);
619       setOperationAction(ISD::FP_TO_UINT, VT, Custom);
620 
621       setOperationAction(ISD::SADDSAT, VT, Legal);
622       setOperationAction(ISD::UADDSAT, VT, Legal);
623       setOperationAction(ISD::SSUBSAT, VT, Legal);
624       setOperationAction(ISD::USUBSAT, VT, Legal);
625 
626       // Integer VTs are lowered as a series of "RISCVISD::TRUNCATE_VECTOR_VL"
627       // nodes which truncate by one power of two at a time.
628       setOperationAction(ISD::TRUNCATE, VT, Custom);
629 
630       // Custom-lower insert/extract operations to simplify patterns.
631       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
632       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
633 
634       // Custom-lower reduction operations to set up the corresponding custom
635       // nodes' operands.
636       setOperationAction(ISD::VECREDUCE_ADD, VT, Custom);
637       setOperationAction(ISD::VECREDUCE_AND, VT, Custom);
638       setOperationAction(ISD::VECREDUCE_OR, VT, Custom);
639       setOperationAction(ISD::VECREDUCE_XOR, VT, Custom);
640       setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom);
641       setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom);
642       setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom);
643       setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom);
644 
645       for (unsigned VPOpc : IntegerVPOps)
646         setOperationAction(VPOpc, VT, Custom);
647 
648       setOperationAction(ISD::LOAD, VT, Custom);
649       setOperationAction(ISD::STORE, VT, Custom);
650 
651       setOperationAction(ISD::MLOAD, VT, Custom);
652       setOperationAction(ISD::MSTORE, VT, Custom);
653       setOperationAction(ISD::MGATHER, VT, Custom);
654       setOperationAction(ISD::MSCATTER, VT, Custom);
655 
656       setOperationAction(ISD::VP_LOAD, VT, Custom);
657       setOperationAction(ISD::VP_STORE, VT, Custom);
658       setOperationAction(ISD::VP_GATHER, VT, Custom);
659       setOperationAction(ISD::VP_SCATTER, VT, Custom);
660 
661       setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
662       setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
663       setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
664 
665       setOperationAction(ISD::SELECT, VT, Custom);
666       setOperationAction(ISD::SELECT_CC, VT, Expand);
667 
668       setOperationAction(ISD::STEP_VECTOR, VT, Custom);
669       setOperationAction(ISD::VECTOR_REVERSE, VT, Custom);
670 
671       for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) {
672         setTruncStoreAction(VT, OtherVT, Expand);
673         setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand);
674         setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand);
675         setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand);
676       }
677 
678       // Splice
679       setOperationAction(ISD::VECTOR_SPLICE, VT, Custom);
680 
681       // Lower CTLZ_ZERO_UNDEF and CTTZ_ZERO_UNDEF if we have a floating point
682       // type that can represent the value exactly.
683       if (VT.getVectorElementType() != MVT::i64) {
684         MVT FloatEltVT =
685             VT.getVectorElementType() == MVT::i32 ? MVT::f64 : MVT::f32;
686         EVT FloatVT = MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount());
687         if (isTypeLegal(FloatVT)) {
688           setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Custom);
689           setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Custom);
690         }
691       }
692     }
693 
694     // Expand various CCs to best match the RVV ISA, which natively supports UNE
695     // but no other unordered comparisons, and supports all ordered comparisons
696     // except ONE. Additionally, we expand GT,OGT,GE,OGE for optimization
697     // purposes; they are expanded to their swapped-operand CCs (LT,OLT,LE,OLE),
698     // and we pattern-match those back to the "original", swapping operands once
699     // more. This way we catch both operations and both "vf" and "fv" forms with
700     // fewer patterns.
701     static const ISD::CondCode VFPCCToExpand[] = {
702         ISD::SETO,   ISD::SETONE, ISD::SETUEQ, ISD::SETUGT,
703         ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUO,
704         ISD::SETGT,  ISD::SETOGT, ISD::SETGE,  ISD::SETOGE,
705     };
706 
707     // Sets common operation actions on RVV floating-point vector types.
708     const auto SetCommonVFPActions = [&](MVT VT) {
709       setOperationAction(ISD::SPLAT_VECTOR, VT, Legal);
710       // RVV has native FP_ROUND & FP_EXTEND conversions where the element type
711       // sizes are within one power-of-two of each other. Therefore conversions
712       // between vXf16 and vXf64 must be lowered as sequences which convert via
713       // vXf32.
714       setOperationAction(ISD::FP_ROUND, VT, Custom);
715       setOperationAction(ISD::FP_EXTEND, VT, Custom);
716       // Custom-lower insert/extract operations to simplify patterns.
717       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
718       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
719       // Expand various condition codes (explained above).
720       for (auto CC : VFPCCToExpand)
721         setCondCodeAction(CC, VT, Expand);
722 
723       setOperationAction(ISD::FMINNUM, VT, Legal);
724       setOperationAction(ISD::FMAXNUM, VT, Legal);
725 
726       setOperationAction(ISD::FTRUNC, VT, Custom);
727       setOperationAction(ISD::FCEIL, VT, Custom);
728       setOperationAction(ISD::FFLOOR, VT, Custom);
729       setOperationAction(ISD::FROUND, VT, Custom);
730 
731       setOperationAction(ISD::VECREDUCE_FADD, VT, Custom);
732       setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom);
733       setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom);
734       setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom);
735 
736       setOperationAction(ISD::FCOPYSIGN, VT, Legal);
737 
738       setOperationAction(ISD::LOAD, VT, Custom);
739       setOperationAction(ISD::STORE, VT, Custom);
740 
741       setOperationAction(ISD::MLOAD, VT, Custom);
742       setOperationAction(ISD::MSTORE, VT, Custom);
743       setOperationAction(ISD::MGATHER, VT, Custom);
744       setOperationAction(ISD::MSCATTER, VT, Custom);
745 
746       setOperationAction(ISD::VP_LOAD, VT, Custom);
747       setOperationAction(ISD::VP_STORE, VT, Custom);
748       setOperationAction(ISD::VP_GATHER, VT, Custom);
749       setOperationAction(ISD::VP_SCATTER, VT, Custom);
750 
751       setOperationAction(ISD::SELECT, VT, Custom);
752       setOperationAction(ISD::SELECT_CC, VT, Expand);
753 
754       setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
755       setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
756       setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
757 
758       setOperationAction(ISD::VECTOR_REVERSE, VT, Custom);
759       setOperationAction(ISD::VECTOR_SPLICE, VT, Custom);
760 
761       for (unsigned VPOpc : FloatingPointVPOps)
762         setOperationAction(VPOpc, VT, Custom);
763     };
764 
765     // Sets common extload/truncstore actions on RVV floating-point vector
766     // types.
767     const auto SetCommonVFPExtLoadTruncStoreActions =
768         [&](MVT VT, ArrayRef<MVT::SimpleValueType> SmallerVTs) {
769           for (auto SmallVT : SmallerVTs) {
770             setTruncStoreAction(VT, SmallVT, Expand);
771             setLoadExtAction(ISD::EXTLOAD, VT, SmallVT, Expand);
772           }
773         };
774 
775     if (Subtarget.hasVInstructionsF16())
776       for (MVT VT : F16VecVTs)
777         SetCommonVFPActions(VT);
778 
779     for (MVT VT : F32VecVTs) {
780       if (Subtarget.hasVInstructionsF32())
781         SetCommonVFPActions(VT);
782       SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs);
783     }
784 
785     for (MVT VT : F64VecVTs) {
786       if (Subtarget.hasVInstructionsF64())
787         SetCommonVFPActions(VT);
788       SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs);
789       SetCommonVFPExtLoadTruncStoreActions(VT, F32VecVTs);
790     }
791 
792     if (Subtarget.useRVVForFixedLengthVectors()) {
793       for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) {
794         if (!useRVVForFixedLengthVectorVT(VT))
795           continue;
796 
797         // By default everything must be expanded.
798         for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op)
799           setOperationAction(Op, VT, Expand);
800         for (MVT OtherVT : MVT::integer_fixedlen_vector_valuetypes()) {
801           setTruncStoreAction(VT, OtherVT, Expand);
802           setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand);
803           setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand);
804           setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand);
805         }
806 
807         // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed.
808         setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
809         setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
810 
811         setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
812         setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
813 
814         setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
815         setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
816 
817         setOperationAction(ISD::LOAD, VT, Custom);
818         setOperationAction(ISD::STORE, VT, Custom);
819 
820         setOperationAction(ISD::SETCC, VT, Custom);
821 
822         setOperationAction(ISD::SELECT, VT, Custom);
823 
824         setOperationAction(ISD::TRUNCATE, VT, Custom);
825 
826         setOperationAction(ISD::BITCAST, VT, Custom);
827 
828         setOperationAction(ISD::VECREDUCE_AND, VT, Custom);
829         setOperationAction(ISD::VECREDUCE_OR, VT, Custom);
830         setOperationAction(ISD::VECREDUCE_XOR, VT, Custom);
831 
832         setOperationAction(ISD::VP_REDUCE_AND, VT, Custom);
833         setOperationAction(ISD::VP_REDUCE_OR, VT, Custom);
834         setOperationAction(ISD::VP_REDUCE_XOR, VT, Custom);
835 
836         setOperationAction(ISD::SINT_TO_FP, VT, Custom);
837         setOperationAction(ISD::UINT_TO_FP, VT, Custom);
838         setOperationAction(ISD::FP_TO_SINT, VT, Custom);
839         setOperationAction(ISD::FP_TO_UINT, VT, Custom);
840 
841         // Operations below are different for between masks and other vectors.
842         if (VT.getVectorElementType() == MVT::i1) {
843           setOperationAction(ISD::VP_AND, VT, Custom);
844           setOperationAction(ISD::VP_OR, VT, Custom);
845           setOperationAction(ISD::VP_XOR, VT, Custom);
846           setOperationAction(ISD::AND, VT, Custom);
847           setOperationAction(ISD::OR, VT, Custom);
848           setOperationAction(ISD::XOR, VT, Custom);
849           continue;
850         }
851 
852         // Make SPLAT_VECTOR Legal so DAGCombine will convert splat vectors to
853         // it before type legalization for i64 vectors on RV32. It will then be
854         // type legalized to SPLAT_VECTOR_PARTS which we need to Custom handle.
855         // FIXME: Use SPLAT_VECTOR for all types? DAGCombine probably needs
856         // improvements first.
857         if (!Subtarget.is64Bit() && VT.getVectorElementType() == MVT::i64) {
858           setOperationAction(ISD::SPLAT_VECTOR, VT, Legal);
859           setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom);
860         }
861 
862         setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
863         setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
864 
865         setOperationAction(ISD::MLOAD, VT, Custom);
866         setOperationAction(ISD::MSTORE, VT, Custom);
867         setOperationAction(ISD::MGATHER, VT, Custom);
868         setOperationAction(ISD::MSCATTER, VT, Custom);
869 
870         setOperationAction(ISD::VP_LOAD, VT, Custom);
871         setOperationAction(ISD::VP_STORE, VT, Custom);
872         setOperationAction(ISD::VP_GATHER, VT, Custom);
873         setOperationAction(ISD::VP_SCATTER, VT, Custom);
874 
875         setOperationAction(ISD::ADD, VT, Custom);
876         setOperationAction(ISD::MUL, VT, Custom);
877         setOperationAction(ISD::SUB, VT, Custom);
878         setOperationAction(ISD::AND, VT, Custom);
879         setOperationAction(ISD::OR, VT, Custom);
880         setOperationAction(ISD::XOR, VT, Custom);
881         setOperationAction(ISD::SDIV, VT, Custom);
882         setOperationAction(ISD::SREM, VT, Custom);
883         setOperationAction(ISD::UDIV, VT, Custom);
884         setOperationAction(ISD::UREM, VT, Custom);
885         setOperationAction(ISD::SHL, VT, Custom);
886         setOperationAction(ISD::SRA, VT, Custom);
887         setOperationAction(ISD::SRL, VT, Custom);
888 
889         setOperationAction(ISD::SMIN, VT, Custom);
890         setOperationAction(ISD::SMAX, VT, Custom);
891         setOperationAction(ISD::UMIN, VT, Custom);
892         setOperationAction(ISD::UMAX, VT, Custom);
893         setOperationAction(ISD::ABS,  VT, Custom);
894 
895         // vXi64 MULHS/MULHU requires the V extension instead of Zve64*.
896         if (VT.getVectorElementType() != MVT::i64 || Subtarget.hasStdExtV()) {
897           setOperationAction(ISD::MULHS, VT, Custom);
898           setOperationAction(ISD::MULHU, VT, Custom);
899         }
900 
901         setOperationAction(ISD::SADDSAT, VT, Custom);
902         setOperationAction(ISD::UADDSAT, VT, Custom);
903         setOperationAction(ISD::SSUBSAT, VT, Custom);
904         setOperationAction(ISD::USUBSAT, VT, Custom);
905 
906         setOperationAction(ISD::VSELECT, VT, Custom);
907         setOperationAction(ISD::SELECT_CC, VT, Expand);
908 
909         setOperationAction(ISD::ANY_EXTEND, VT, Custom);
910         setOperationAction(ISD::SIGN_EXTEND, VT, Custom);
911         setOperationAction(ISD::ZERO_EXTEND, VT, Custom);
912 
913         // Custom-lower reduction operations to set up the corresponding custom
914         // nodes' operands.
915         setOperationAction(ISD::VECREDUCE_ADD, VT, Custom);
916         setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom);
917         setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom);
918         setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom);
919         setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom);
920 
921         for (unsigned VPOpc : IntegerVPOps)
922           setOperationAction(VPOpc, VT, Custom);
923 
924         // Lower CTLZ_ZERO_UNDEF and CTTZ_ZERO_UNDEF if we have a floating point
925         // type that can represent the value exactly.
926         if (VT.getVectorElementType() != MVT::i64) {
927           MVT FloatEltVT =
928               VT.getVectorElementType() == MVT::i32 ? MVT::f64 : MVT::f32;
929           EVT FloatVT =
930               MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount());
931           if (isTypeLegal(FloatVT)) {
932             setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Custom);
933             setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Custom);
934           }
935         }
936       }
937 
938       for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) {
939         if (!useRVVForFixedLengthVectorVT(VT))
940           continue;
941 
942         // By default everything must be expanded.
943         for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op)
944           setOperationAction(Op, VT, Expand);
945         for (MVT OtherVT : MVT::fp_fixedlen_vector_valuetypes()) {
946           setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand);
947           setTruncStoreAction(VT, OtherVT, Expand);
948         }
949 
950         // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed.
951         setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
952         setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
953 
954         setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
955         setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
956         setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
957         setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
958         setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
959 
960         setOperationAction(ISD::LOAD, VT, Custom);
961         setOperationAction(ISD::STORE, VT, Custom);
962         setOperationAction(ISD::MLOAD, VT, Custom);
963         setOperationAction(ISD::MSTORE, VT, Custom);
964         setOperationAction(ISD::MGATHER, VT, Custom);
965         setOperationAction(ISD::MSCATTER, VT, Custom);
966 
967         setOperationAction(ISD::VP_LOAD, VT, Custom);
968         setOperationAction(ISD::VP_STORE, VT, Custom);
969         setOperationAction(ISD::VP_GATHER, VT, Custom);
970         setOperationAction(ISD::VP_SCATTER, VT, Custom);
971 
972         setOperationAction(ISD::FADD, VT, Custom);
973         setOperationAction(ISD::FSUB, VT, Custom);
974         setOperationAction(ISD::FMUL, VT, Custom);
975         setOperationAction(ISD::FDIV, VT, Custom);
976         setOperationAction(ISD::FNEG, VT, Custom);
977         setOperationAction(ISD::FABS, VT, Custom);
978         setOperationAction(ISD::FCOPYSIGN, VT, Custom);
979         setOperationAction(ISD::FSQRT, VT, Custom);
980         setOperationAction(ISD::FMA, VT, Custom);
981         setOperationAction(ISD::FMINNUM, VT, Custom);
982         setOperationAction(ISD::FMAXNUM, VT, Custom);
983 
984         setOperationAction(ISD::FP_ROUND, VT, Custom);
985         setOperationAction(ISD::FP_EXTEND, VT, Custom);
986 
987         setOperationAction(ISD::FTRUNC, VT, Custom);
988         setOperationAction(ISD::FCEIL, VT, Custom);
989         setOperationAction(ISD::FFLOOR, VT, Custom);
990         setOperationAction(ISD::FROUND, VT, Custom);
991 
992         for (auto CC : VFPCCToExpand)
993           setCondCodeAction(CC, VT, Expand);
994 
995         setOperationAction(ISD::VSELECT, VT, Custom);
996         setOperationAction(ISD::SELECT, VT, Custom);
997         setOperationAction(ISD::SELECT_CC, VT, Expand);
998 
999         setOperationAction(ISD::BITCAST, VT, Custom);
1000 
1001         setOperationAction(ISD::VECREDUCE_FADD, VT, Custom);
1002         setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom);
1003         setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom);
1004         setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom);
1005 
1006         for (unsigned VPOpc : FloatingPointVPOps)
1007           setOperationAction(VPOpc, VT, Custom);
1008       }
1009 
1010       // Custom-legalize bitcasts from fixed-length vectors to scalar types.
1011       setOperationAction(ISD::BITCAST, MVT::i8, Custom);
1012       setOperationAction(ISD::BITCAST, MVT::i16, Custom);
1013       setOperationAction(ISD::BITCAST, MVT::i32, Custom);
1014       setOperationAction(ISD::BITCAST, MVT::i64, Custom);
1015       if (Subtarget.hasStdExtZfh())
1016         setOperationAction(ISD::BITCAST, MVT::f16, Custom);
1017       if (Subtarget.hasStdExtF())
1018         setOperationAction(ISD::BITCAST, MVT::f32, Custom);
1019       if (Subtarget.hasStdExtD())
1020         setOperationAction(ISD::BITCAST, MVT::f64, Custom);
1021     }
1022   }
1023 
1024   // Function alignments.
1025   const Align FunctionAlignment(Subtarget.hasStdExtC() ? 2 : 4);
1026   setMinFunctionAlignment(FunctionAlignment);
1027   setPrefFunctionAlignment(FunctionAlignment);
1028 
1029   setMinimumJumpTableEntries(5);
1030 
1031   // Jumps are expensive, compared to logic
1032   setJumpIsExpensive();
1033 
1034   setTargetDAGCombine(ISD::ADD);
1035   setTargetDAGCombine(ISD::SUB);
1036   setTargetDAGCombine(ISD::AND);
1037   setTargetDAGCombine(ISD::OR);
1038   setTargetDAGCombine(ISD::XOR);
1039   if (Subtarget.hasStdExtZbp()) {
1040     setTargetDAGCombine(ISD::ROTL);
1041     setTargetDAGCombine(ISD::ROTR);
1042   }
1043   if (Subtarget.hasStdExtZbkb())
1044     setTargetDAGCombine(ISD::BITREVERSE);
1045   setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
1046   if (Subtarget.hasStdExtZfh() || Subtarget.hasStdExtZbb())
1047     setTargetDAGCombine(ISD::SIGN_EXTEND_INREG);
1048   if (Subtarget.hasStdExtF()) {
1049     setTargetDAGCombine(ISD::ZERO_EXTEND);
1050     setTargetDAGCombine(ISD::FP_TO_SINT);
1051     setTargetDAGCombine(ISD::FP_TO_UINT);
1052     setTargetDAGCombine(ISD::FP_TO_SINT_SAT);
1053     setTargetDAGCombine(ISD::FP_TO_UINT_SAT);
1054   }
1055   if (Subtarget.hasVInstructions()) {
1056     setTargetDAGCombine(ISD::FCOPYSIGN);
1057     setTargetDAGCombine(ISD::MGATHER);
1058     setTargetDAGCombine(ISD::MSCATTER);
1059     setTargetDAGCombine(ISD::VP_GATHER);
1060     setTargetDAGCombine(ISD::VP_SCATTER);
1061     setTargetDAGCombine(ISD::SRA);
1062     setTargetDAGCombine(ISD::SRL);
1063     setTargetDAGCombine(ISD::SHL);
1064     setTargetDAGCombine(ISD::STORE);
1065     setTargetDAGCombine(ISD::SPLAT_VECTOR);
1066   }
1067 
1068   setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2");
1069   setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2");
1070 }
1071 
1072 EVT RISCVTargetLowering::getSetCCResultType(const DataLayout &DL,
1073                                             LLVMContext &Context,
1074                                             EVT VT) const {
1075   if (!VT.isVector())
1076     return getPointerTy(DL);
1077   if (Subtarget.hasVInstructions() &&
1078       (VT.isScalableVector() || Subtarget.useRVVForFixedLengthVectors()))
1079     return EVT::getVectorVT(Context, MVT::i1, VT.getVectorElementCount());
1080   return VT.changeVectorElementTypeToInteger();
1081 }
1082 
1083 MVT RISCVTargetLowering::getVPExplicitVectorLengthTy() const {
1084   return Subtarget.getXLenVT();
1085 }
1086 
1087 bool RISCVTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
1088                                              const CallInst &I,
1089                                              MachineFunction &MF,
1090                                              unsigned Intrinsic) const {
1091   auto &DL = I.getModule()->getDataLayout();
1092   switch (Intrinsic) {
1093   default:
1094     return false;
1095   case Intrinsic::riscv_masked_atomicrmw_xchg_i32:
1096   case Intrinsic::riscv_masked_atomicrmw_add_i32:
1097   case Intrinsic::riscv_masked_atomicrmw_sub_i32:
1098   case Intrinsic::riscv_masked_atomicrmw_nand_i32:
1099   case Intrinsic::riscv_masked_atomicrmw_max_i32:
1100   case Intrinsic::riscv_masked_atomicrmw_min_i32:
1101   case Intrinsic::riscv_masked_atomicrmw_umax_i32:
1102   case Intrinsic::riscv_masked_atomicrmw_umin_i32:
1103   case Intrinsic::riscv_masked_cmpxchg_i32:
1104     Info.opc = ISD::INTRINSIC_W_CHAIN;
1105     Info.memVT = MVT::i32;
1106     Info.ptrVal = I.getArgOperand(0);
1107     Info.offset = 0;
1108     Info.align = Align(4);
1109     Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore |
1110                  MachineMemOperand::MOVolatile;
1111     return true;
1112   case Intrinsic::riscv_masked_strided_load:
1113     Info.opc = ISD::INTRINSIC_W_CHAIN;
1114     Info.ptrVal = I.getArgOperand(1);
1115     Info.memVT = getValueType(DL, I.getType()->getScalarType());
1116     Info.align = Align(DL.getTypeSizeInBits(I.getType()->getScalarType()) / 8);
1117     Info.size = MemoryLocation::UnknownSize;
1118     Info.flags |= MachineMemOperand::MOLoad;
1119     return true;
1120   case Intrinsic::riscv_masked_strided_store:
1121     Info.opc = ISD::INTRINSIC_VOID;
1122     Info.ptrVal = I.getArgOperand(1);
1123     Info.memVT =
1124         getValueType(DL, I.getArgOperand(0)->getType()->getScalarType());
1125     Info.align = Align(
1126         DL.getTypeSizeInBits(I.getArgOperand(0)->getType()->getScalarType()) /
1127         8);
1128     Info.size = MemoryLocation::UnknownSize;
1129     Info.flags |= MachineMemOperand::MOStore;
1130     return true;
1131   case Intrinsic::riscv_seg2_load:
1132   case Intrinsic::riscv_seg3_load:
1133   case Intrinsic::riscv_seg4_load:
1134   case Intrinsic::riscv_seg5_load:
1135   case Intrinsic::riscv_seg6_load:
1136   case Intrinsic::riscv_seg7_load:
1137   case Intrinsic::riscv_seg8_load:
1138     Info.opc = ISD::INTRINSIC_W_CHAIN;
1139     Info.ptrVal = I.getArgOperand(0);
1140     Info.memVT =
1141         getValueType(DL, I.getType()->getStructElementType(0)->getScalarType());
1142     Info.align =
1143         Align(DL.getTypeSizeInBits(
1144                   I.getType()->getStructElementType(0)->getScalarType()) /
1145               8);
1146     Info.size = MemoryLocation::UnknownSize;
1147     Info.flags |= MachineMemOperand::MOLoad;
1148     return true;
1149   }
1150 }
1151 
1152 bool RISCVTargetLowering::isLegalAddressingMode(const DataLayout &DL,
1153                                                 const AddrMode &AM, Type *Ty,
1154                                                 unsigned AS,
1155                                                 Instruction *I) const {
1156   // No global is ever allowed as a base.
1157   if (AM.BaseGV)
1158     return false;
1159 
1160   // Require a 12-bit signed offset.
1161   if (!isInt<12>(AM.BaseOffs))
1162     return false;
1163 
1164   switch (AM.Scale) {
1165   case 0: // "r+i" or just "i", depending on HasBaseReg.
1166     break;
1167   case 1:
1168     if (!AM.HasBaseReg) // allow "r+i".
1169       break;
1170     return false; // disallow "r+r" or "r+r+i".
1171   default:
1172     return false;
1173   }
1174 
1175   return true;
1176 }
1177 
1178 bool RISCVTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
1179   return isInt<12>(Imm);
1180 }
1181 
1182 bool RISCVTargetLowering::isLegalAddImmediate(int64_t Imm) const {
1183   return isInt<12>(Imm);
1184 }
1185 
1186 // On RV32, 64-bit integers are split into their high and low parts and held
1187 // in two different registers, so the trunc is free since the low register can
1188 // just be used.
1189 bool RISCVTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const {
1190   if (Subtarget.is64Bit() || !SrcTy->isIntegerTy() || !DstTy->isIntegerTy())
1191     return false;
1192   unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();
1193   unsigned DestBits = DstTy->getPrimitiveSizeInBits();
1194   return (SrcBits == 64 && DestBits == 32);
1195 }
1196 
1197 bool RISCVTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const {
1198   if (Subtarget.is64Bit() || SrcVT.isVector() || DstVT.isVector() ||
1199       !SrcVT.isInteger() || !DstVT.isInteger())
1200     return false;
1201   unsigned SrcBits = SrcVT.getSizeInBits();
1202   unsigned DestBits = DstVT.getSizeInBits();
1203   return (SrcBits == 64 && DestBits == 32);
1204 }
1205 
1206 bool RISCVTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
1207   // Zexts are free if they can be combined with a load.
1208   // Don't advertise i32->i64 zextload as being free for RV64. It interacts
1209   // poorly with type legalization of compares preferring sext.
1210   if (auto *LD = dyn_cast<LoadSDNode>(Val)) {
1211     EVT MemVT = LD->getMemoryVT();
1212     if ((MemVT == MVT::i8 || MemVT == MVT::i16) &&
1213         (LD->getExtensionType() == ISD::NON_EXTLOAD ||
1214          LD->getExtensionType() == ISD::ZEXTLOAD))
1215       return true;
1216   }
1217 
1218   return TargetLowering::isZExtFree(Val, VT2);
1219 }
1220 
1221 bool RISCVTargetLowering::isSExtCheaperThanZExt(EVT SrcVT, EVT DstVT) const {
1222   return Subtarget.is64Bit() && SrcVT == MVT::i32 && DstVT == MVT::i64;
1223 }
1224 
1225 bool RISCVTargetLowering::isCheapToSpeculateCttz() const {
1226   return Subtarget.hasStdExtZbb();
1227 }
1228 
1229 bool RISCVTargetLowering::isCheapToSpeculateCtlz() const {
1230   return Subtarget.hasStdExtZbb();
1231 }
1232 
1233 bool RISCVTargetLowering::hasAndNotCompare(SDValue Y) const {
1234   EVT VT = Y.getValueType();
1235 
1236   // FIXME: Support vectors once we have tests.
1237   if (VT.isVector())
1238     return false;
1239 
1240   return (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp() ||
1241           Subtarget.hasStdExtZbkb()) &&
1242          !isa<ConstantSDNode>(Y);
1243 }
1244 
1245 /// Check if sinking \p I's operands to I's basic block is profitable, because
1246 /// the operands can be folded into a target instruction, e.g.
1247 /// splats of scalars can fold into vector instructions.
1248 bool RISCVTargetLowering::shouldSinkOperands(
1249     Instruction *I, SmallVectorImpl<Use *> &Ops) const {
1250   using namespace llvm::PatternMatch;
1251 
1252   if (!I->getType()->isVectorTy() || !Subtarget.hasVInstructions())
1253     return false;
1254 
1255   auto IsSinker = [&](Instruction *I, int Operand) {
1256     switch (I->getOpcode()) {
1257     case Instruction::Add:
1258     case Instruction::Sub:
1259     case Instruction::Mul:
1260     case Instruction::And:
1261     case Instruction::Or:
1262     case Instruction::Xor:
1263     case Instruction::FAdd:
1264     case Instruction::FSub:
1265     case Instruction::FMul:
1266     case Instruction::FDiv:
1267     case Instruction::ICmp:
1268     case Instruction::FCmp:
1269       return true;
1270     case Instruction::Shl:
1271     case Instruction::LShr:
1272     case Instruction::AShr:
1273     case Instruction::UDiv:
1274     case Instruction::SDiv:
1275     case Instruction::URem:
1276     case Instruction::SRem:
1277       return Operand == 1;
1278     case Instruction::Call:
1279       if (auto *II = dyn_cast<IntrinsicInst>(I)) {
1280         switch (II->getIntrinsicID()) {
1281         case Intrinsic::fma:
1282         case Intrinsic::vp_fma:
1283           return Operand == 0 || Operand == 1;
1284         // FIXME: Our patterns can only match vx/vf instructions when the splat
1285         // it on the RHS, because TableGen doesn't recognize our VP operations
1286         // as commutative.
1287         case Intrinsic::vp_add:
1288         case Intrinsic::vp_mul:
1289         case Intrinsic::vp_and:
1290         case Intrinsic::vp_or:
1291         case Intrinsic::vp_xor:
1292         case Intrinsic::vp_fadd:
1293         case Intrinsic::vp_fmul:
1294         case Intrinsic::vp_shl:
1295         case Intrinsic::vp_lshr:
1296         case Intrinsic::vp_ashr:
1297         case Intrinsic::vp_udiv:
1298         case Intrinsic::vp_sdiv:
1299         case Intrinsic::vp_urem:
1300         case Intrinsic::vp_srem:
1301           return Operand == 1;
1302         // ... with the exception of vp.sub/vp.fsub/vp.fdiv, which have
1303         // explicit patterns for both LHS and RHS (as 'vr' versions).
1304         case Intrinsic::vp_sub:
1305         case Intrinsic::vp_fsub:
1306         case Intrinsic::vp_fdiv:
1307           return Operand == 0 || Operand == 1;
1308         default:
1309           return false;
1310         }
1311       }
1312       return false;
1313     default:
1314       return false;
1315     }
1316   };
1317 
1318   for (auto OpIdx : enumerate(I->operands())) {
1319     if (!IsSinker(I, OpIdx.index()))
1320       continue;
1321 
1322     Instruction *Op = dyn_cast<Instruction>(OpIdx.value().get());
1323     // Make sure we are not already sinking this operand
1324     if (!Op || any_of(Ops, [&](Use *U) { return U->get() == Op; }))
1325       continue;
1326 
1327     // We are looking for a splat that can be sunk.
1328     if (!match(Op, m_Shuffle(m_InsertElt(m_Undef(), m_Value(), m_ZeroInt()),
1329                              m_Undef(), m_ZeroMask())))
1330       continue;
1331 
1332     // All uses of the shuffle should be sunk to avoid duplicating it across gpr
1333     // and vector registers
1334     for (Use &U : Op->uses()) {
1335       Instruction *Insn = cast<Instruction>(U.getUser());
1336       if (!IsSinker(Insn, U.getOperandNo()))
1337         return false;
1338     }
1339 
1340     Ops.push_back(&Op->getOperandUse(0));
1341     Ops.push_back(&OpIdx.value());
1342   }
1343   return true;
1344 }
1345 
1346 bool RISCVTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
1347                                        bool ForCodeSize) const {
1348   // FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin.
1349   if (VT == MVT::f16 && !Subtarget.hasStdExtZfh())
1350     return false;
1351   if (VT == MVT::f32 && !Subtarget.hasStdExtF())
1352     return false;
1353   if (VT == MVT::f64 && !Subtarget.hasStdExtD())
1354     return false;
1355   return Imm.isZero();
1356 }
1357 
1358 bool RISCVTargetLowering::hasBitPreservingFPLogic(EVT VT) const {
1359   return (VT == MVT::f16 && Subtarget.hasStdExtZfh()) ||
1360          (VT == MVT::f32 && Subtarget.hasStdExtF()) ||
1361          (VT == MVT::f64 && Subtarget.hasStdExtD());
1362 }
1363 
1364 MVT RISCVTargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context,
1365                                                       CallingConv::ID CC,
1366                                                       EVT VT) const {
1367   // Use f32 to pass f16 if it is legal and Zfh is not enabled.
1368   // We might still end up using a GPR but that will be decided based on ABI.
1369   // FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin.
1370   if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh())
1371     return MVT::f32;
1372 
1373   return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT);
1374 }
1375 
1376 unsigned RISCVTargetLowering::getNumRegistersForCallingConv(LLVMContext &Context,
1377                                                            CallingConv::ID CC,
1378                                                            EVT VT) const {
1379   // Use f32 to pass f16 if it is legal and Zfh is not enabled.
1380   // We might still end up using a GPR but that will be decided based on ABI.
1381   // FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin.
1382   if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh())
1383     return 1;
1384 
1385   return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT);
1386 }
1387 
1388 // Changes the condition code and swaps operands if necessary, so the SetCC
1389 // operation matches one of the comparisons supported directly by branches
1390 // in the RISC-V ISA. May adjust compares to favor compare with 0 over compare
1391 // with 1/-1.
1392 static void translateSetCCForBranch(const SDLoc &DL, SDValue &LHS, SDValue &RHS,
1393                                     ISD::CondCode &CC, SelectionDAG &DAG) {
1394   // Convert X > -1 to X >= 0.
1395   if (CC == ISD::SETGT && isAllOnesConstant(RHS)) {
1396     RHS = DAG.getConstant(0, DL, RHS.getValueType());
1397     CC = ISD::SETGE;
1398     return;
1399   }
1400   // Convert X < 1 to 0 >= X.
1401   if (CC == ISD::SETLT && isOneConstant(RHS)) {
1402     RHS = LHS;
1403     LHS = DAG.getConstant(0, DL, RHS.getValueType());
1404     CC = ISD::SETGE;
1405     return;
1406   }
1407 
1408   switch (CC) {
1409   default:
1410     break;
1411   case ISD::SETGT:
1412   case ISD::SETLE:
1413   case ISD::SETUGT:
1414   case ISD::SETULE:
1415     CC = ISD::getSetCCSwappedOperands(CC);
1416     std::swap(LHS, RHS);
1417     break;
1418   }
1419 }
1420 
1421 RISCVII::VLMUL RISCVTargetLowering::getLMUL(MVT VT) {
1422   assert(VT.isScalableVector() && "Expecting a scalable vector type");
1423   unsigned KnownSize = VT.getSizeInBits().getKnownMinValue();
1424   if (VT.getVectorElementType() == MVT::i1)
1425     KnownSize *= 8;
1426 
1427   switch (KnownSize) {
1428   default:
1429     llvm_unreachable("Invalid LMUL.");
1430   case 8:
1431     return RISCVII::VLMUL::LMUL_F8;
1432   case 16:
1433     return RISCVII::VLMUL::LMUL_F4;
1434   case 32:
1435     return RISCVII::VLMUL::LMUL_F2;
1436   case 64:
1437     return RISCVII::VLMUL::LMUL_1;
1438   case 128:
1439     return RISCVII::VLMUL::LMUL_2;
1440   case 256:
1441     return RISCVII::VLMUL::LMUL_4;
1442   case 512:
1443     return RISCVII::VLMUL::LMUL_8;
1444   }
1445 }
1446 
1447 unsigned RISCVTargetLowering::getRegClassIDForLMUL(RISCVII::VLMUL LMul) {
1448   switch (LMul) {
1449   default:
1450     llvm_unreachable("Invalid LMUL.");
1451   case RISCVII::VLMUL::LMUL_F8:
1452   case RISCVII::VLMUL::LMUL_F4:
1453   case RISCVII::VLMUL::LMUL_F2:
1454   case RISCVII::VLMUL::LMUL_1:
1455     return RISCV::VRRegClassID;
1456   case RISCVII::VLMUL::LMUL_2:
1457     return RISCV::VRM2RegClassID;
1458   case RISCVII::VLMUL::LMUL_4:
1459     return RISCV::VRM4RegClassID;
1460   case RISCVII::VLMUL::LMUL_8:
1461     return RISCV::VRM8RegClassID;
1462   }
1463 }
1464 
1465 unsigned RISCVTargetLowering::getSubregIndexByMVT(MVT VT, unsigned Index) {
1466   RISCVII::VLMUL LMUL = getLMUL(VT);
1467   if (LMUL == RISCVII::VLMUL::LMUL_F8 ||
1468       LMUL == RISCVII::VLMUL::LMUL_F4 ||
1469       LMUL == RISCVII::VLMUL::LMUL_F2 ||
1470       LMUL == RISCVII::VLMUL::LMUL_1) {
1471     static_assert(RISCV::sub_vrm1_7 == RISCV::sub_vrm1_0 + 7,
1472                   "Unexpected subreg numbering");
1473     return RISCV::sub_vrm1_0 + Index;
1474   }
1475   if (LMUL == RISCVII::VLMUL::LMUL_2) {
1476     static_assert(RISCV::sub_vrm2_3 == RISCV::sub_vrm2_0 + 3,
1477                   "Unexpected subreg numbering");
1478     return RISCV::sub_vrm2_0 + Index;
1479   }
1480   if (LMUL == RISCVII::VLMUL::LMUL_4) {
1481     static_assert(RISCV::sub_vrm4_1 == RISCV::sub_vrm4_0 + 1,
1482                   "Unexpected subreg numbering");
1483     return RISCV::sub_vrm4_0 + Index;
1484   }
1485   llvm_unreachable("Invalid vector type.");
1486 }
1487 
1488 unsigned RISCVTargetLowering::getRegClassIDForVecVT(MVT VT) {
1489   if (VT.getVectorElementType() == MVT::i1)
1490     return RISCV::VRRegClassID;
1491   return getRegClassIDForLMUL(getLMUL(VT));
1492 }
1493 
1494 // Attempt to decompose a subvector insert/extract between VecVT and
1495 // SubVecVT via subregister indices. Returns the subregister index that
1496 // can perform the subvector insert/extract with the given element index, as
1497 // well as the index corresponding to any leftover subvectors that must be
1498 // further inserted/extracted within the register class for SubVecVT.
1499 std::pair<unsigned, unsigned>
1500 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs(
1501     MVT VecVT, MVT SubVecVT, unsigned InsertExtractIdx,
1502     const RISCVRegisterInfo *TRI) {
1503   static_assert((RISCV::VRM8RegClassID > RISCV::VRM4RegClassID &&
1504                  RISCV::VRM4RegClassID > RISCV::VRM2RegClassID &&
1505                  RISCV::VRM2RegClassID > RISCV::VRRegClassID),
1506                 "Register classes not ordered");
1507   unsigned VecRegClassID = getRegClassIDForVecVT(VecVT);
1508   unsigned SubRegClassID = getRegClassIDForVecVT(SubVecVT);
1509   // Try to compose a subregister index that takes us from the incoming
1510   // LMUL>1 register class down to the outgoing one. At each step we half
1511   // the LMUL:
1512   //   nxv16i32@12 -> nxv2i32: sub_vrm4_1_then_sub_vrm2_1_then_sub_vrm1_0
1513   // Note that this is not guaranteed to find a subregister index, such as
1514   // when we are extracting from one VR type to another.
1515   unsigned SubRegIdx = RISCV::NoSubRegister;
1516   for (const unsigned RCID :
1517        {RISCV::VRM4RegClassID, RISCV::VRM2RegClassID, RISCV::VRRegClassID})
1518     if (VecRegClassID > RCID && SubRegClassID <= RCID) {
1519       VecVT = VecVT.getHalfNumVectorElementsVT();
1520       bool IsHi =
1521           InsertExtractIdx >= VecVT.getVectorElementCount().getKnownMinValue();
1522       SubRegIdx = TRI->composeSubRegIndices(SubRegIdx,
1523                                             getSubregIndexByMVT(VecVT, IsHi));
1524       if (IsHi)
1525         InsertExtractIdx -= VecVT.getVectorElementCount().getKnownMinValue();
1526     }
1527   return {SubRegIdx, InsertExtractIdx};
1528 }
1529 
1530 // Permit combining of mask vectors as BUILD_VECTOR never expands to scalar
1531 // stores for those types.
1532 bool RISCVTargetLowering::mergeStoresAfterLegalization(EVT VT) const {
1533   return !Subtarget.useRVVForFixedLengthVectors() ||
1534          (VT.isFixedLengthVector() && VT.getVectorElementType() == MVT::i1);
1535 }
1536 
1537 bool RISCVTargetLowering::isLegalElementTypeForRVV(Type *ScalarTy) const {
1538   if (ScalarTy->isPointerTy())
1539     return true;
1540 
1541   if (ScalarTy->isIntegerTy(8) || ScalarTy->isIntegerTy(16) ||
1542       ScalarTy->isIntegerTy(32))
1543     return true;
1544 
1545   if (ScalarTy->isIntegerTy(64))
1546     return Subtarget.hasVInstructionsI64();
1547 
1548   if (ScalarTy->isHalfTy())
1549     return Subtarget.hasVInstructionsF16();
1550   if (ScalarTy->isFloatTy())
1551     return Subtarget.hasVInstructionsF32();
1552   if (ScalarTy->isDoubleTy())
1553     return Subtarget.hasVInstructionsF64();
1554 
1555   return false;
1556 }
1557 
1558 static SDValue getVLOperand(SDValue Op) {
1559   assert((Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1560           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN) &&
1561          "Unexpected opcode");
1562   bool HasChain = Op.getOpcode() == ISD::INTRINSIC_W_CHAIN;
1563   unsigned IntNo = Op.getConstantOperandVal(HasChain ? 1 : 0);
1564   const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II =
1565       RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo);
1566   if (!II)
1567     return SDValue();
1568   return Op.getOperand(II->VLOperand + 1 + HasChain);
1569 }
1570 
1571 static bool useRVVForFixedLengthVectorVT(MVT VT,
1572                                          const RISCVSubtarget &Subtarget) {
1573   assert(VT.isFixedLengthVector() && "Expected a fixed length vector type!");
1574   if (!Subtarget.useRVVForFixedLengthVectors())
1575     return false;
1576 
1577   // We only support a set of vector types with a consistent maximum fixed size
1578   // across all supported vector element types to avoid legalization issues.
1579   // Therefore -- since the largest is v1024i8/v512i16/etc -- the largest
1580   // fixed-length vector type we support is 1024 bytes.
1581   if (VT.getFixedSizeInBits() > 1024 * 8)
1582     return false;
1583 
1584   unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits();
1585 
1586   MVT EltVT = VT.getVectorElementType();
1587 
1588   // Don't use RVV for vectors we cannot scalarize if required.
1589   switch (EltVT.SimpleTy) {
1590   // i1 is supported but has different rules.
1591   default:
1592     return false;
1593   case MVT::i1:
1594     // Masks can only use a single register.
1595     if (VT.getVectorNumElements() > MinVLen)
1596       return false;
1597     MinVLen /= 8;
1598     break;
1599   case MVT::i8:
1600   case MVT::i16:
1601   case MVT::i32:
1602     break;
1603   case MVT::i64:
1604     if (!Subtarget.hasVInstructionsI64())
1605       return false;
1606     break;
1607   case MVT::f16:
1608     if (!Subtarget.hasVInstructionsF16())
1609       return false;
1610     break;
1611   case MVT::f32:
1612     if (!Subtarget.hasVInstructionsF32())
1613       return false;
1614     break;
1615   case MVT::f64:
1616     if (!Subtarget.hasVInstructionsF64())
1617       return false;
1618     break;
1619   }
1620 
1621   // Reject elements larger than ELEN.
1622   if (EltVT.getSizeInBits() > Subtarget.getMaxELENForFixedLengthVectors())
1623     return false;
1624 
1625   unsigned LMul = divideCeil(VT.getSizeInBits(), MinVLen);
1626   // Don't use RVV for types that don't fit.
1627   if (LMul > Subtarget.getMaxLMULForFixedLengthVectors())
1628     return false;
1629 
1630   // TODO: Perhaps an artificial restriction, but worth having whilst getting
1631   // the base fixed length RVV support in place.
1632   if (!VT.isPow2VectorType())
1633     return false;
1634 
1635   return true;
1636 }
1637 
1638 bool RISCVTargetLowering::useRVVForFixedLengthVectorVT(MVT VT) const {
1639   return ::useRVVForFixedLengthVectorVT(VT, Subtarget);
1640 }
1641 
1642 // Return the largest legal scalable vector type that matches VT's element type.
1643 static MVT getContainerForFixedLengthVector(const TargetLowering &TLI, MVT VT,
1644                                             const RISCVSubtarget &Subtarget) {
1645   // This may be called before legal types are setup.
1646   assert(((VT.isFixedLengthVector() && TLI.isTypeLegal(VT)) ||
1647           useRVVForFixedLengthVectorVT(VT, Subtarget)) &&
1648          "Expected legal fixed length vector!");
1649 
1650   unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits();
1651   unsigned MaxELen = Subtarget.getMaxELENForFixedLengthVectors();
1652 
1653   MVT EltVT = VT.getVectorElementType();
1654   switch (EltVT.SimpleTy) {
1655   default:
1656     llvm_unreachable("unexpected element type for RVV container");
1657   case MVT::i1:
1658   case MVT::i8:
1659   case MVT::i16:
1660   case MVT::i32:
1661   case MVT::i64:
1662   case MVT::f16:
1663   case MVT::f32:
1664   case MVT::f64: {
1665     // We prefer to use LMUL=1 for VLEN sized types. Use fractional lmuls for
1666     // narrower types. The smallest fractional LMUL we support is 8/ELEN. Within
1667     // each fractional LMUL we support SEW between 8 and LMUL*ELEN.
1668     unsigned NumElts =
1669         (VT.getVectorNumElements() * RISCV::RVVBitsPerBlock) / MinVLen;
1670     NumElts = std::max(NumElts, RISCV::RVVBitsPerBlock / MaxELen);
1671     assert(isPowerOf2_32(NumElts) && "Expected power of 2 NumElts");
1672     return MVT::getScalableVectorVT(EltVT, NumElts);
1673   }
1674   }
1675 }
1676 
1677 static MVT getContainerForFixedLengthVector(SelectionDAG &DAG, MVT VT,
1678                                             const RISCVSubtarget &Subtarget) {
1679   return getContainerForFixedLengthVector(DAG.getTargetLoweringInfo(), VT,
1680                                           Subtarget);
1681 }
1682 
1683 MVT RISCVTargetLowering::getContainerForFixedLengthVector(MVT VT) const {
1684   return ::getContainerForFixedLengthVector(*this, VT, getSubtarget());
1685 }
1686 
1687 // Grow V to consume an entire RVV register.
1688 static SDValue convertToScalableVector(EVT VT, SDValue V, SelectionDAG &DAG,
1689                                        const RISCVSubtarget &Subtarget) {
1690   assert(VT.isScalableVector() &&
1691          "Expected to convert into a scalable vector!");
1692   assert(V.getValueType().isFixedLengthVector() &&
1693          "Expected a fixed length vector operand!");
1694   SDLoc DL(V);
1695   SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT());
1696   return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, DAG.getUNDEF(VT), V, Zero);
1697 }
1698 
1699 // Shrink V so it's just big enough to maintain a VT's worth of data.
1700 static SDValue convertFromScalableVector(EVT VT, SDValue V, SelectionDAG &DAG,
1701                                          const RISCVSubtarget &Subtarget) {
1702   assert(VT.isFixedLengthVector() &&
1703          "Expected to convert into a fixed length vector!");
1704   assert(V.getValueType().isScalableVector() &&
1705          "Expected a scalable vector operand!");
1706   SDLoc DL(V);
1707   SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT());
1708   return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V, Zero);
1709 }
1710 
1711 // Gets the two common "VL" operands: an all-ones mask and the vector length.
1712 // VecVT is a vector type, either fixed-length or scalable, and ContainerVT is
1713 // the vector type that it is contained in.
1714 static std::pair<SDValue, SDValue>
1715 getDefaultVLOps(MVT VecVT, MVT ContainerVT, SDLoc DL, SelectionDAG &DAG,
1716                 const RISCVSubtarget &Subtarget) {
1717   assert(ContainerVT.isScalableVector() && "Expecting scalable container type");
1718   MVT XLenVT = Subtarget.getXLenVT();
1719   SDValue VL = VecVT.isFixedLengthVector()
1720                    ? DAG.getConstant(VecVT.getVectorNumElements(), DL, XLenVT)
1721                    : DAG.getRegister(RISCV::X0, XLenVT);
1722   MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
1723   SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
1724   return {Mask, VL};
1725 }
1726 
1727 // As above but assuming the given type is a scalable vector type.
1728 static std::pair<SDValue, SDValue>
1729 getDefaultScalableVLOps(MVT VecVT, SDLoc DL, SelectionDAG &DAG,
1730                         const RISCVSubtarget &Subtarget) {
1731   assert(VecVT.isScalableVector() && "Expecting a scalable vector");
1732   return getDefaultVLOps(VecVT, VecVT, DL, DAG, Subtarget);
1733 }
1734 
1735 // The state of RVV BUILD_VECTOR and VECTOR_SHUFFLE lowering is that very few
1736 // of either is (currently) supported. This can get us into an infinite loop
1737 // where we try to lower a BUILD_VECTOR as a VECTOR_SHUFFLE as a BUILD_VECTOR
1738 // as a ..., etc.
1739 // Until either (or both) of these can reliably lower any node, reporting that
1740 // we don't want to expand BUILD_VECTORs via VECTOR_SHUFFLEs at least breaks
1741 // the infinite loop. Note that this lowers BUILD_VECTOR through the stack,
1742 // which is not desirable.
1743 bool RISCVTargetLowering::shouldExpandBuildVectorWithShuffles(
1744     EVT VT, unsigned DefinedValues) const {
1745   return false;
1746 }
1747 
1748 static SDValue lowerFP_TO_INT_SAT(SDValue Op, SelectionDAG &DAG,
1749                                   const RISCVSubtarget &Subtarget) {
1750   // RISCV FP-to-int conversions saturate to the destination register size, but
1751   // don't produce 0 for nan. We can use a conversion instruction and fix the
1752   // nan case with a compare and a select.
1753   SDValue Src = Op.getOperand(0);
1754 
1755   EVT DstVT = Op.getValueType();
1756   EVT SatVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1757 
1758   bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT_SAT;
1759   unsigned Opc;
1760   if (SatVT == DstVT)
1761     Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU;
1762   else if (DstVT == MVT::i64 && SatVT == MVT::i32)
1763     Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64;
1764   else
1765     return SDValue();
1766   // FIXME: Support other SatVTs by clamping before or after the conversion.
1767 
1768   SDLoc DL(Op);
1769   SDValue FpToInt = DAG.getNode(
1770       Opc, DL, DstVT, Src,
1771       DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, Subtarget.getXLenVT()));
1772 
1773   SDValue ZeroInt = DAG.getConstant(0, DL, DstVT);
1774   return DAG.getSelectCC(DL, Src, Src, ZeroInt, FpToInt, ISD::CondCode::SETUO);
1775 }
1776 
1777 // Expand vector FTRUNC, FCEIL, and FFLOOR by converting to the integer domain
1778 // and back. Taking care to avoid converting values that are nan or already
1779 // correct.
1780 // TODO: Floor and ceil could be shorter by changing rounding mode, but we don't
1781 // have FRM dependencies modeled yet.
1782 static SDValue lowerFTRUNC_FCEIL_FFLOOR(SDValue Op, SelectionDAG &DAG) {
1783   MVT VT = Op.getSimpleValueType();
1784   assert(VT.isVector() && "Unexpected type");
1785 
1786   SDLoc DL(Op);
1787 
1788   // Freeze the source since we are increasing the number of uses.
1789   SDValue Src = DAG.getFreeze(Op.getOperand(0));
1790 
1791   // Truncate to integer and convert back to FP.
1792   MVT IntVT = VT.changeVectorElementTypeToInteger();
1793   SDValue Truncated = DAG.getNode(ISD::FP_TO_SINT, DL, IntVT, Src);
1794   Truncated = DAG.getNode(ISD::SINT_TO_FP, DL, VT, Truncated);
1795 
1796   MVT SetccVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount());
1797 
1798   if (Op.getOpcode() == ISD::FCEIL) {
1799     // If the truncated value is the greater than or equal to the original
1800     // value, we've computed the ceil. Otherwise, we went the wrong way and
1801     // need to increase by 1.
1802     // FIXME: This should use a masked operation. Handle here or in isel?
1803     SDValue Adjust = DAG.getNode(ISD::FADD, DL, VT, Truncated,
1804                                  DAG.getConstantFP(1.0, DL, VT));
1805     SDValue NeedAdjust = DAG.getSetCC(DL, SetccVT, Truncated, Src, ISD::SETOLT);
1806     Truncated = DAG.getSelect(DL, VT, NeedAdjust, Adjust, Truncated);
1807   } else if (Op.getOpcode() == ISD::FFLOOR) {
1808     // If the truncated value is the less than or equal to the original value,
1809     // we've computed the floor. Otherwise, we went the wrong way and need to
1810     // decrease by 1.
1811     // FIXME: This should use a masked operation. Handle here or in isel?
1812     SDValue Adjust = DAG.getNode(ISD::FSUB, DL, VT, Truncated,
1813                                  DAG.getConstantFP(1.0, DL, VT));
1814     SDValue NeedAdjust = DAG.getSetCC(DL, SetccVT, Truncated, Src, ISD::SETOGT);
1815     Truncated = DAG.getSelect(DL, VT, NeedAdjust, Adjust, Truncated);
1816   }
1817 
1818   // Restore the original sign so that -0.0 is preserved.
1819   Truncated = DAG.getNode(ISD::FCOPYSIGN, DL, VT, Truncated, Src);
1820 
1821   // Determine the largest integer that can be represented exactly. This and
1822   // values larger than it don't have any fractional bits so don't need to
1823   // be converted.
1824   const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT);
1825   unsigned Precision = APFloat::semanticsPrecision(FltSem);
1826   APFloat MaxVal = APFloat(FltSem);
1827   MaxVal.convertFromAPInt(APInt::getOneBitSet(Precision, Precision - 1),
1828                           /*IsSigned*/ false, APFloat::rmNearestTiesToEven);
1829   SDValue MaxValNode = DAG.getConstantFP(MaxVal, DL, VT);
1830 
1831   // If abs(Src) was larger than MaxVal or nan, keep it.
1832   SDValue Abs = DAG.getNode(ISD::FABS, DL, VT, Src);
1833   SDValue Setcc = DAG.getSetCC(DL, SetccVT, Abs, MaxValNode, ISD::SETOLT);
1834   return DAG.getSelect(DL, VT, Setcc, Truncated, Src);
1835 }
1836 
1837 // ISD::FROUND is defined to round to nearest with ties rounding away from 0.
1838 // This mode isn't supported in vector hardware on RISCV. But as long as we
1839 // aren't compiling with trapping math, we can emulate this with
1840 // floor(X + copysign(nextafter(0.5, 0.0), X)).
1841 // FIXME: Could be shorter by changing rounding mode, but we don't have FRM
1842 // dependencies modeled yet.
1843 // FIXME: Use masked operations to avoid final merge.
1844 static SDValue lowerFROUND(SDValue Op, SelectionDAG &DAG) {
1845   MVT VT = Op.getSimpleValueType();
1846   assert(VT.isVector() && "Unexpected type");
1847 
1848   SDLoc DL(Op);
1849 
1850   // Freeze the source since we are increasing the number of uses.
1851   SDValue Src = DAG.getFreeze(Op.getOperand(0));
1852 
1853   // We do the conversion on the absolute value and fix the sign at the end.
1854   SDValue Abs = DAG.getNode(ISD::FABS, DL, VT, Src);
1855 
1856   const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT);
1857   bool Ignored;
1858   APFloat Point5Pred = APFloat(0.5f);
1859   Point5Pred.convert(FltSem, APFloat::rmNearestTiesToEven, &Ignored);
1860   Point5Pred.next(/*nextDown*/ true);
1861 
1862   // Add the adjustment.
1863   SDValue Adjust = DAG.getNode(ISD::FADD, DL, VT, Abs,
1864                                DAG.getConstantFP(Point5Pred, DL, VT));
1865 
1866   // Truncate to integer and convert back to fp.
1867   MVT IntVT = VT.changeVectorElementTypeToInteger();
1868   SDValue Truncated = DAG.getNode(ISD::FP_TO_SINT, DL, IntVT, Adjust);
1869   Truncated = DAG.getNode(ISD::SINT_TO_FP, DL, VT, Truncated);
1870 
1871   // Restore the original sign.
1872   Truncated = DAG.getNode(ISD::FCOPYSIGN, DL, VT, Truncated, Src);
1873 
1874   // Determine the largest integer that can be represented exactly. This and
1875   // values larger than it don't have any fractional bits so don't need to
1876   // be converted.
1877   unsigned Precision = APFloat::semanticsPrecision(FltSem);
1878   APFloat MaxVal = APFloat(FltSem);
1879   MaxVal.convertFromAPInt(APInt::getOneBitSet(Precision, Precision - 1),
1880                           /*IsSigned*/ false, APFloat::rmNearestTiesToEven);
1881   SDValue MaxValNode = DAG.getConstantFP(MaxVal, DL, VT);
1882 
1883   // If abs(Src) was larger than MaxVal or nan, keep it.
1884   MVT SetccVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount());
1885   SDValue Setcc = DAG.getSetCC(DL, SetccVT, Abs, MaxValNode, ISD::SETOLT);
1886   return DAG.getSelect(DL, VT, Setcc, Truncated, Src);
1887 }
1888 
1889 struct VIDSequence {
1890   int64_t StepNumerator;
1891   unsigned StepDenominator;
1892   int64_t Addend;
1893 };
1894 
1895 // Try to match an arithmetic-sequence BUILD_VECTOR [X,X+S,X+2*S,...,X+(N-1)*S]
1896 // to the (non-zero) step S and start value X. This can be then lowered as the
1897 // RVV sequence (VID * S) + X, for example.
1898 // The step S is represented as an integer numerator divided by a positive
1899 // denominator. Note that the implementation currently only identifies
1900 // sequences in which either the numerator is +/- 1 or the denominator is 1. It
1901 // cannot detect 2/3, for example.
1902 // Note that this method will also match potentially unappealing index
1903 // sequences, like <i32 0, i32 50939494>, however it is left to the caller to
1904 // determine whether this is worth generating code for.
1905 static Optional<VIDSequence> isSimpleVIDSequence(SDValue Op) {
1906   unsigned NumElts = Op.getNumOperands();
1907   assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unexpected BUILD_VECTOR");
1908   if (!Op.getValueType().isInteger())
1909     return None;
1910 
1911   Optional<unsigned> SeqStepDenom;
1912   Optional<int64_t> SeqStepNum, SeqAddend;
1913   Optional<std::pair<uint64_t, unsigned>> PrevElt;
1914   unsigned EltSizeInBits = Op.getValueType().getScalarSizeInBits();
1915   for (unsigned Idx = 0; Idx < NumElts; Idx++) {
1916     // Assume undef elements match the sequence; we just have to be careful
1917     // when interpolating across them.
1918     if (Op.getOperand(Idx).isUndef())
1919       continue;
1920     // The BUILD_VECTOR must be all constants.
1921     if (!isa<ConstantSDNode>(Op.getOperand(Idx)))
1922       return None;
1923 
1924     uint64_t Val = Op.getConstantOperandVal(Idx) &
1925                    maskTrailingOnes<uint64_t>(EltSizeInBits);
1926 
1927     if (PrevElt) {
1928       // Calculate the step since the last non-undef element, and ensure
1929       // it's consistent across the entire sequence.
1930       unsigned IdxDiff = Idx - PrevElt->second;
1931       int64_t ValDiff = SignExtend64(Val - PrevElt->first, EltSizeInBits);
1932 
1933       // A zero-value value difference means that we're somewhere in the middle
1934       // of a fractional step, e.g. <0,0,0*,0,1,1,1,1>. Wait until we notice a
1935       // step change before evaluating the sequence.
1936       if (ValDiff != 0) {
1937         int64_t Remainder = ValDiff % IdxDiff;
1938         // Normalize the step if it's greater than 1.
1939         if (Remainder != ValDiff) {
1940           // The difference must cleanly divide the element span.
1941           if (Remainder != 0)
1942             return None;
1943           ValDiff /= IdxDiff;
1944           IdxDiff = 1;
1945         }
1946 
1947         if (!SeqStepNum)
1948           SeqStepNum = ValDiff;
1949         else if (ValDiff != SeqStepNum)
1950           return None;
1951 
1952         if (!SeqStepDenom)
1953           SeqStepDenom = IdxDiff;
1954         else if (IdxDiff != *SeqStepDenom)
1955           return None;
1956       }
1957     }
1958 
1959     // Record and/or check any addend.
1960     if (SeqStepNum && SeqStepDenom) {
1961       uint64_t ExpectedVal =
1962           (int64_t)(Idx * (uint64_t)*SeqStepNum) / *SeqStepDenom;
1963       int64_t Addend = SignExtend64(Val - ExpectedVal, EltSizeInBits);
1964       if (!SeqAddend)
1965         SeqAddend = Addend;
1966       else if (SeqAddend != Addend)
1967         return None;
1968     }
1969 
1970     // Record this non-undef element for later.
1971     if (!PrevElt || PrevElt->first != Val)
1972       PrevElt = std::make_pair(Val, Idx);
1973   }
1974   // We need to have logged both a step and an addend for this to count as
1975   // a legal index sequence.
1976   if (!SeqStepNum || !SeqStepDenom || !SeqAddend)
1977     return None;
1978 
1979   return VIDSequence{*SeqStepNum, *SeqStepDenom, *SeqAddend};
1980 }
1981 
1982 // Match a splatted value (SPLAT_VECTOR/BUILD_VECTOR) of an EXTRACT_VECTOR_ELT
1983 // and lower it as a VRGATHER_VX_VL from the source vector.
1984 static SDValue matchSplatAsGather(SDValue SplatVal, MVT VT, const SDLoc &DL,
1985                                   SelectionDAG &DAG,
1986                                   const RISCVSubtarget &Subtarget) {
1987   if (SplatVal.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
1988     return SDValue();
1989   SDValue Vec = SplatVal.getOperand(0);
1990   // Only perform this optimization on vectors of the same size for simplicity.
1991   if (Vec.getValueType() != VT)
1992     return SDValue();
1993   SDValue Idx = SplatVal.getOperand(1);
1994   // The index must be a legal type.
1995   if (Idx.getValueType() != Subtarget.getXLenVT())
1996     return SDValue();
1997 
1998   MVT ContainerVT = VT;
1999   if (VT.isFixedLengthVector()) {
2000     ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
2001     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
2002   }
2003 
2004   SDValue Mask, VL;
2005   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
2006 
2007   SDValue Gather = DAG.getNode(RISCVISD::VRGATHER_VX_VL, DL, ContainerVT, Vec,
2008                                Idx, Mask, VL);
2009 
2010   if (!VT.isFixedLengthVector())
2011     return Gather;
2012 
2013   return convertFromScalableVector(VT, Gather, DAG, Subtarget);
2014 }
2015 
2016 static SDValue lowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG,
2017                                  const RISCVSubtarget &Subtarget) {
2018   MVT VT = Op.getSimpleValueType();
2019   assert(VT.isFixedLengthVector() && "Unexpected vector!");
2020 
2021   MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
2022 
2023   SDLoc DL(Op);
2024   SDValue Mask, VL;
2025   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
2026 
2027   MVT XLenVT = Subtarget.getXLenVT();
2028   unsigned NumElts = Op.getNumOperands();
2029 
2030   if (VT.getVectorElementType() == MVT::i1) {
2031     if (ISD::isBuildVectorAllZeros(Op.getNode())) {
2032       SDValue VMClr = DAG.getNode(RISCVISD::VMCLR_VL, DL, ContainerVT, VL);
2033       return convertFromScalableVector(VT, VMClr, DAG, Subtarget);
2034     }
2035 
2036     if (ISD::isBuildVectorAllOnes(Op.getNode())) {
2037       SDValue VMSet = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL);
2038       return convertFromScalableVector(VT, VMSet, DAG, Subtarget);
2039     }
2040 
2041     // Lower constant mask BUILD_VECTORs via an integer vector type, in
2042     // scalar integer chunks whose bit-width depends on the number of mask
2043     // bits and XLEN.
2044     // First, determine the most appropriate scalar integer type to use. This
2045     // is at most XLenVT, but may be shrunk to a smaller vector element type
2046     // according to the size of the final vector - use i8 chunks rather than
2047     // XLenVT if we're producing a v8i1. This results in more consistent
2048     // codegen across RV32 and RV64.
2049     unsigned NumViaIntegerBits =
2050         std::min(std::max(NumElts, 8u), Subtarget.getXLen());
2051     NumViaIntegerBits = std::min(NumViaIntegerBits,
2052                                  Subtarget.getMaxELENForFixedLengthVectors());
2053     if (ISD::isBuildVectorOfConstantSDNodes(Op.getNode())) {
2054       // If we have to use more than one INSERT_VECTOR_ELT then this
2055       // optimization is likely to increase code size; avoid peforming it in
2056       // such a case. We can use a load from a constant pool in this case.
2057       if (DAG.shouldOptForSize() && NumElts > NumViaIntegerBits)
2058         return SDValue();
2059       // Now we can create our integer vector type. Note that it may be larger
2060       // than the resulting mask type: v4i1 would use v1i8 as its integer type.
2061       MVT IntegerViaVecVT =
2062           MVT::getVectorVT(MVT::getIntegerVT(NumViaIntegerBits),
2063                            divideCeil(NumElts, NumViaIntegerBits));
2064 
2065       uint64_t Bits = 0;
2066       unsigned BitPos = 0, IntegerEltIdx = 0;
2067       SDValue Vec = DAG.getUNDEF(IntegerViaVecVT);
2068 
2069       for (unsigned I = 0; I < NumElts; I++, BitPos++) {
2070         // Once we accumulate enough bits to fill our scalar type, insert into
2071         // our vector and clear our accumulated data.
2072         if (I != 0 && I % NumViaIntegerBits == 0) {
2073           if (NumViaIntegerBits <= 32)
2074             Bits = SignExtend64(Bits, 32);
2075           SDValue Elt = DAG.getConstant(Bits, DL, XLenVT);
2076           Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec,
2077                             Elt, DAG.getConstant(IntegerEltIdx, DL, XLenVT));
2078           Bits = 0;
2079           BitPos = 0;
2080           IntegerEltIdx++;
2081         }
2082         SDValue V = Op.getOperand(I);
2083         bool BitValue = !V.isUndef() && cast<ConstantSDNode>(V)->getZExtValue();
2084         Bits |= ((uint64_t)BitValue << BitPos);
2085       }
2086 
2087       // Insert the (remaining) scalar value into position in our integer
2088       // vector type.
2089       if (NumViaIntegerBits <= 32)
2090         Bits = SignExtend64(Bits, 32);
2091       SDValue Elt = DAG.getConstant(Bits, DL, XLenVT);
2092       Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec, Elt,
2093                         DAG.getConstant(IntegerEltIdx, DL, XLenVT));
2094 
2095       if (NumElts < NumViaIntegerBits) {
2096         // If we're producing a smaller vector than our minimum legal integer
2097         // type, bitcast to the equivalent (known-legal) mask type, and extract
2098         // our final mask.
2099         assert(IntegerViaVecVT == MVT::v1i8 && "Unexpected mask vector type");
2100         Vec = DAG.getBitcast(MVT::v8i1, Vec);
2101         Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Vec,
2102                           DAG.getConstant(0, DL, XLenVT));
2103       } else {
2104         // Else we must have produced an integer type with the same size as the
2105         // mask type; bitcast for the final result.
2106         assert(VT.getSizeInBits() == IntegerViaVecVT.getSizeInBits());
2107         Vec = DAG.getBitcast(VT, Vec);
2108       }
2109 
2110       return Vec;
2111     }
2112 
2113     // A BUILD_VECTOR can be lowered as a SETCC. For each fixed-length mask
2114     // vector type, we have a legal equivalently-sized i8 type, so we can use
2115     // that.
2116     MVT WideVecVT = VT.changeVectorElementType(MVT::i8);
2117     SDValue VecZero = DAG.getConstant(0, DL, WideVecVT);
2118 
2119     SDValue WideVec;
2120     if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) {
2121       // For a splat, perform a scalar truncate before creating the wider
2122       // vector.
2123       assert(Splat.getValueType() == XLenVT &&
2124              "Unexpected type for i1 splat value");
2125       Splat = DAG.getNode(ISD::AND, DL, XLenVT, Splat,
2126                           DAG.getConstant(1, DL, XLenVT));
2127       WideVec = DAG.getSplatBuildVector(WideVecVT, DL, Splat);
2128     } else {
2129       SmallVector<SDValue, 8> Ops(Op->op_values());
2130       WideVec = DAG.getBuildVector(WideVecVT, DL, Ops);
2131       SDValue VecOne = DAG.getConstant(1, DL, WideVecVT);
2132       WideVec = DAG.getNode(ISD::AND, DL, WideVecVT, WideVec, VecOne);
2133     }
2134 
2135     return DAG.getSetCC(DL, VT, WideVec, VecZero, ISD::SETNE);
2136   }
2137 
2138   if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) {
2139     if (auto Gather = matchSplatAsGather(Splat, VT, DL, DAG, Subtarget))
2140       return Gather;
2141     unsigned Opc = VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL
2142                                         : RISCVISD::VMV_V_X_VL;
2143     Splat =
2144         DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), Splat, VL);
2145     return convertFromScalableVector(VT, Splat, DAG, Subtarget);
2146   }
2147 
2148   // Try and match index sequences, which we can lower to the vid instruction
2149   // with optional modifications. An all-undef vector is matched by
2150   // getSplatValue, above.
2151   if (auto SimpleVID = isSimpleVIDSequence(Op)) {
2152     int64_t StepNumerator = SimpleVID->StepNumerator;
2153     unsigned StepDenominator = SimpleVID->StepDenominator;
2154     int64_t Addend = SimpleVID->Addend;
2155 
2156     assert(StepNumerator != 0 && "Invalid step");
2157     bool Negate = false;
2158     int64_t SplatStepVal = StepNumerator;
2159     unsigned StepOpcode = ISD::MUL;
2160     if (StepNumerator != 1) {
2161       if (isPowerOf2_64(std::abs(StepNumerator))) {
2162         Negate = StepNumerator < 0;
2163         StepOpcode = ISD::SHL;
2164         SplatStepVal = Log2_64(std::abs(StepNumerator));
2165       }
2166     }
2167 
2168     // Only emit VIDs with suitably-small steps/addends. We use imm5 is a
2169     // threshold since it's the immediate value many RVV instructions accept.
2170     // There is no vmul.vi instruction so ensure multiply constant can fit in
2171     // a single addi instruction.
2172     if (((StepOpcode == ISD::MUL && isInt<12>(SplatStepVal)) ||
2173          (StepOpcode == ISD::SHL && isUInt<5>(SplatStepVal))) &&
2174         isPowerOf2_32(StepDenominator) && isInt<5>(Addend)) {
2175       SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, ContainerVT, Mask, VL);
2176       // Convert right out of the scalable type so we can use standard ISD
2177       // nodes for the rest of the computation. If we used scalable types with
2178       // these, we'd lose the fixed-length vector info and generate worse
2179       // vsetvli code.
2180       VID = convertFromScalableVector(VT, VID, DAG, Subtarget);
2181       if ((StepOpcode == ISD::MUL && SplatStepVal != 1) ||
2182           (StepOpcode == ISD::SHL && SplatStepVal != 0)) {
2183         SDValue SplatStep = DAG.getSplatVector(
2184             VT, DL, DAG.getConstant(SplatStepVal, DL, XLenVT));
2185         VID = DAG.getNode(StepOpcode, DL, VT, VID, SplatStep);
2186       }
2187       if (StepDenominator != 1) {
2188         SDValue SplatStep = DAG.getSplatVector(
2189             VT, DL, DAG.getConstant(Log2_64(StepDenominator), DL, XLenVT));
2190         VID = DAG.getNode(ISD::SRL, DL, VT, VID, SplatStep);
2191       }
2192       if (Addend != 0 || Negate) {
2193         SDValue SplatAddend =
2194             DAG.getSplatVector(VT, DL, DAG.getConstant(Addend, DL, XLenVT));
2195         VID = DAG.getNode(Negate ? ISD::SUB : ISD::ADD, DL, VT, SplatAddend, VID);
2196       }
2197       return VID;
2198     }
2199   }
2200 
2201   // Attempt to detect "hidden" splats, which only reveal themselves as splats
2202   // when re-interpreted as a vector with a larger element type. For example,
2203   //   v4i16 = build_vector i16 0, i16 1, i16 0, i16 1
2204   // could be instead splat as
2205   //   v2i32 = build_vector i32 0x00010000, i32 0x00010000
2206   // TODO: This optimization could also work on non-constant splats, but it
2207   // would require bit-manipulation instructions to construct the splat value.
2208   SmallVector<SDValue> Sequence;
2209   unsigned EltBitSize = VT.getScalarSizeInBits();
2210   const auto *BV = cast<BuildVectorSDNode>(Op);
2211   if (VT.isInteger() && EltBitSize < 64 &&
2212       ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) &&
2213       BV->getRepeatedSequence(Sequence) &&
2214       (Sequence.size() * EltBitSize) <= 64) {
2215     unsigned SeqLen = Sequence.size();
2216     MVT ViaIntVT = MVT::getIntegerVT(EltBitSize * SeqLen);
2217     MVT ViaVecVT = MVT::getVectorVT(ViaIntVT, NumElts / SeqLen);
2218     assert((ViaIntVT == MVT::i16 || ViaIntVT == MVT::i32 ||
2219             ViaIntVT == MVT::i64) &&
2220            "Unexpected sequence type");
2221 
2222     unsigned EltIdx = 0;
2223     uint64_t EltMask = maskTrailingOnes<uint64_t>(EltBitSize);
2224     uint64_t SplatValue = 0;
2225     // Construct the amalgamated value which can be splatted as this larger
2226     // vector type.
2227     for (const auto &SeqV : Sequence) {
2228       if (!SeqV.isUndef())
2229         SplatValue |= ((cast<ConstantSDNode>(SeqV)->getZExtValue() & EltMask)
2230                        << (EltIdx * EltBitSize));
2231       EltIdx++;
2232     }
2233 
2234     // On RV64, sign-extend from 32 to 64 bits where possible in order to
2235     // achieve better constant materializion.
2236     if (Subtarget.is64Bit() && ViaIntVT == MVT::i32)
2237       SplatValue = SignExtend64(SplatValue, 32);
2238 
2239     // Since we can't introduce illegal i64 types at this stage, we can only
2240     // perform an i64 splat on RV32 if it is its own sign-extended value. That
2241     // way we can use RVV instructions to splat.
2242     assert((ViaIntVT.bitsLE(XLenVT) ||
2243             (!Subtarget.is64Bit() && ViaIntVT == MVT::i64)) &&
2244            "Unexpected bitcast sequence");
2245     if (ViaIntVT.bitsLE(XLenVT) || isInt<32>(SplatValue)) {
2246       SDValue ViaVL =
2247           DAG.getConstant(ViaVecVT.getVectorNumElements(), DL, XLenVT);
2248       MVT ViaContainerVT =
2249           getContainerForFixedLengthVector(DAG, ViaVecVT, Subtarget);
2250       SDValue Splat =
2251           DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ViaContainerVT,
2252                       DAG.getUNDEF(ViaContainerVT),
2253                       DAG.getConstant(SplatValue, DL, XLenVT), ViaVL);
2254       Splat = convertFromScalableVector(ViaVecVT, Splat, DAG, Subtarget);
2255       return DAG.getBitcast(VT, Splat);
2256     }
2257   }
2258 
2259   // Try and optimize BUILD_VECTORs with "dominant values" - these are values
2260   // which constitute a large proportion of the elements. In such cases we can
2261   // splat a vector with the dominant element and make up the shortfall with
2262   // INSERT_VECTOR_ELTs.
2263   // Note that this includes vectors of 2 elements by association. The
2264   // upper-most element is the "dominant" one, allowing us to use a splat to
2265   // "insert" the upper element, and an insert of the lower element at position
2266   // 0, which improves codegen.
2267   SDValue DominantValue;
2268   unsigned MostCommonCount = 0;
2269   DenseMap<SDValue, unsigned> ValueCounts;
2270   unsigned NumUndefElts =
2271       count_if(Op->op_values(), [](const SDValue &V) { return V.isUndef(); });
2272 
2273   // Track the number of scalar loads we know we'd be inserting, estimated as
2274   // any non-zero floating-point constant. Other kinds of element are either
2275   // already in registers or are materialized on demand. The threshold at which
2276   // a vector load is more desirable than several scalar materializion and
2277   // vector-insertion instructions is not known.
2278   unsigned NumScalarLoads = 0;
2279 
2280   for (SDValue V : Op->op_values()) {
2281     if (V.isUndef())
2282       continue;
2283 
2284     ValueCounts.insert(std::make_pair(V, 0));
2285     unsigned &Count = ValueCounts[V];
2286 
2287     if (auto *CFP = dyn_cast<ConstantFPSDNode>(V))
2288       NumScalarLoads += !CFP->isExactlyValue(+0.0);
2289 
2290     // Is this value dominant? In case of a tie, prefer the highest element as
2291     // it's cheaper to insert near the beginning of a vector than it is at the
2292     // end.
2293     if (++Count >= MostCommonCount) {
2294       DominantValue = V;
2295       MostCommonCount = Count;
2296     }
2297   }
2298 
2299   assert(DominantValue && "Not expecting an all-undef BUILD_VECTOR");
2300   unsigned NumDefElts = NumElts - NumUndefElts;
2301   unsigned DominantValueCountThreshold = NumDefElts <= 2 ? 0 : NumDefElts - 2;
2302 
2303   // Don't perform this optimization when optimizing for size, since
2304   // materializing elements and inserting them tends to cause code bloat.
2305   if (!DAG.shouldOptForSize() && NumScalarLoads < NumElts &&
2306       ((MostCommonCount > DominantValueCountThreshold) ||
2307        (ValueCounts.size() <= Log2_32(NumDefElts)))) {
2308     // Start by splatting the most common element.
2309     SDValue Vec = DAG.getSplatBuildVector(VT, DL, DominantValue);
2310 
2311     DenseSet<SDValue> Processed{DominantValue};
2312     MVT SelMaskTy = VT.changeVectorElementType(MVT::i1);
2313     for (const auto &OpIdx : enumerate(Op->ops())) {
2314       const SDValue &V = OpIdx.value();
2315       if (V.isUndef() || !Processed.insert(V).second)
2316         continue;
2317       if (ValueCounts[V] == 1) {
2318         Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Vec, V,
2319                           DAG.getConstant(OpIdx.index(), DL, XLenVT));
2320       } else {
2321         // Blend in all instances of this value using a VSELECT, using a
2322         // mask where each bit signals whether that element is the one
2323         // we're after.
2324         SmallVector<SDValue> Ops;
2325         transform(Op->op_values(), std::back_inserter(Ops), [&](SDValue V1) {
2326           return DAG.getConstant(V == V1, DL, XLenVT);
2327         });
2328         Vec = DAG.getNode(ISD::VSELECT, DL, VT,
2329                           DAG.getBuildVector(SelMaskTy, DL, Ops),
2330                           DAG.getSplatBuildVector(VT, DL, V), Vec);
2331       }
2332     }
2333 
2334     return Vec;
2335   }
2336 
2337   return SDValue();
2338 }
2339 
2340 static SDValue splatPartsI64WithVL(const SDLoc &DL, MVT VT, SDValue Passthru,
2341                                    SDValue Lo, SDValue Hi, SDValue VL,
2342                                    SelectionDAG &DAG) {
2343   bool HasPassthru = Passthru && !Passthru.isUndef();
2344   if (!HasPassthru && !Passthru)
2345     Passthru = DAG.getUNDEF(VT);
2346   if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) {
2347     int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue();
2348     int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue();
2349     // If Hi constant is all the same sign bit as Lo, lower this as a custom
2350     // node in order to try and match RVV vector/scalar instructions.
2351     if ((LoC >> 31) == HiC)
2352       return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Passthru, Lo, VL);
2353 
2354     // If vl is equal to XLEN_MAX and Hi constant is equal to Lo, we could use
2355     // vmv.v.x whose EEW = 32 to lower it.
2356     auto *Const = dyn_cast<ConstantSDNode>(VL);
2357     if (LoC == HiC && Const && Const->isAllOnesValue()) {
2358       MVT InterVT = MVT::getVectorVT(MVT::i32, VT.getVectorElementCount() * 2);
2359       // TODO: if vl <= min(VLMAX), we can also do this. But we could not
2360       // access the subtarget here now.
2361       auto InterVec = DAG.getNode(
2362           RISCVISD::VMV_V_X_VL, DL, InterVT, DAG.getUNDEF(InterVT), Lo,
2363                                   DAG.getRegister(RISCV::X0, MVT::i32));
2364       return DAG.getNode(ISD::BITCAST, DL, VT, InterVec);
2365     }
2366   }
2367 
2368   // Fall back to a stack store and stride x0 vector load.
2369   return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VT, Passthru, Lo,
2370                      Hi, VL);
2371 }
2372 
2373 // Called by type legalization to handle splat of i64 on RV32.
2374 // FIXME: We can optimize this when the type has sign or zero bits in one
2375 // of the halves.
2376 static SDValue splatSplitI64WithVL(const SDLoc &DL, MVT VT, SDValue Passthru,
2377                                    SDValue Scalar, SDValue VL,
2378                                    SelectionDAG &DAG) {
2379   assert(Scalar.getValueType() == MVT::i64 && "Unexpected VT!");
2380   SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar,
2381                            DAG.getConstant(0, DL, MVT::i32));
2382   SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar,
2383                            DAG.getConstant(1, DL, MVT::i32));
2384   return splatPartsI64WithVL(DL, VT, Passthru, Lo, Hi, VL, DAG);
2385 }
2386 
2387 // This function lowers a splat of a scalar operand Splat with the vector
2388 // length VL. It ensures the final sequence is type legal, which is useful when
2389 // lowering a splat after type legalization.
2390 static SDValue lowerScalarSplat(SDValue Passthru, SDValue Scalar, SDValue VL,
2391                                 MVT VT, SDLoc DL, SelectionDAG &DAG,
2392                                 const RISCVSubtarget &Subtarget) {
2393   bool HasPassthru = Passthru && !Passthru.isUndef();
2394   if (!HasPassthru && !Passthru)
2395     Passthru = DAG.getUNDEF(VT);
2396   if (VT.isFloatingPoint()) {
2397     // If VL is 1, we could use vfmv.s.f.
2398     if (isOneConstant(VL))
2399       return DAG.getNode(RISCVISD::VFMV_S_F_VL, DL, VT, Passthru, Scalar, VL);
2400     return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, VT, Passthru, Scalar, VL);
2401   }
2402 
2403   MVT XLenVT = Subtarget.getXLenVT();
2404 
2405   // Simplest case is that the operand needs to be promoted to XLenVT.
2406   if (Scalar.getValueType().bitsLE(XLenVT)) {
2407     // If the operand is a constant, sign extend to increase our chances
2408     // of being able to use a .vi instruction. ANY_EXTEND would become a
2409     // a zero extend and the simm5 check in isel would fail.
2410     // FIXME: Should we ignore the upper bits in isel instead?
2411     unsigned ExtOpc =
2412         isa<ConstantSDNode>(Scalar) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND;
2413     Scalar = DAG.getNode(ExtOpc, DL, XLenVT, Scalar);
2414     ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Scalar);
2415     // If VL is 1 and the scalar value won't benefit from immediate, we could
2416     // use vmv.s.x.
2417     if (isOneConstant(VL) &&
2418         (!Const || isNullConstant(Scalar) || !isInt<5>(Const->getSExtValue())))
2419       return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, VT, Passthru, Scalar, VL);
2420     return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Passthru, Scalar, VL);
2421   }
2422 
2423   assert(XLenVT == MVT::i32 && Scalar.getValueType() == MVT::i64 &&
2424          "Unexpected scalar for splat lowering!");
2425 
2426   if (isOneConstant(VL) && isNullConstant(Scalar))
2427     return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, VT, Passthru,
2428                        DAG.getConstant(0, DL, XLenVT), VL);
2429 
2430   // Otherwise use the more complicated splatting algorithm.
2431   return splatSplitI64WithVL(DL, VT, Passthru, Scalar, VL, DAG);
2432 }
2433 
2434 static bool isInterleaveShuffle(ArrayRef<int> Mask, MVT VT, bool &SwapSources,
2435                                 const RISCVSubtarget &Subtarget) {
2436   // We need to be able to widen elements to the next larger integer type.
2437   if (VT.getScalarSizeInBits() >= Subtarget.getMaxELENForFixedLengthVectors())
2438     return false;
2439 
2440   int Size = Mask.size();
2441   assert(Size == (int)VT.getVectorNumElements() && "Unexpected mask size");
2442 
2443   int Srcs[] = {-1, -1};
2444   for (int i = 0; i != Size; ++i) {
2445     // Ignore undef elements.
2446     if (Mask[i] < 0)
2447       continue;
2448 
2449     // Is this an even or odd element.
2450     int Pol = i % 2;
2451 
2452     // Ensure we consistently use the same source for this element polarity.
2453     int Src = Mask[i] / Size;
2454     if (Srcs[Pol] < 0)
2455       Srcs[Pol] = Src;
2456     if (Srcs[Pol] != Src)
2457       return false;
2458 
2459     // Make sure the element within the source is appropriate for this element
2460     // in the destination.
2461     int Elt = Mask[i] % Size;
2462     if (Elt != i / 2)
2463       return false;
2464   }
2465 
2466   // We need to find a source for each polarity and they can't be the same.
2467   if (Srcs[0] < 0 || Srcs[1] < 0 || Srcs[0] == Srcs[1])
2468     return false;
2469 
2470   // Swap the sources if the second source was in the even polarity.
2471   SwapSources = Srcs[0] > Srcs[1];
2472 
2473   return true;
2474 }
2475 
2476 /// Match shuffles that concatenate two vectors, rotate the concatenation,
2477 /// and then extract the original number of elements from the rotated result.
2478 /// This is equivalent to vector.splice or X86's PALIGNR instruction. The
2479 /// returned rotation amount is for a rotate right, where elements move from
2480 /// higher elements to lower elements. \p LoSrc indicates the first source
2481 /// vector of the rotate or -1 for undef. \p HiSrc indicates the second vector
2482 /// of the rotate or -1 for undef. At least one of \p LoSrc and \p HiSrc will be
2483 /// 0 or 1 if a rotation is found.
2484 ///
2485 /// NOTE: We talk about rotate to the right which matches how bit shift and
2486 /// rotate instructions are described where LSBs are on the right, but LLVM IR
2487 /// and the table below write vectors with the lowest elements on the left.
2488 static int isElementRotate(int &LoSrc, int &HiSrc, ArrayRef<int> Mask) {
2489   int Size = Mask.size();
2490 
2491   // We need to detect various ways of spelling a rotation:
2492   //   [11, 12, 13, 14, 15,  0,  1,  2]
2493   //   [-1, 12, 13, 14, -1, -1,  1, -1]
2494   //   [-1, -1, -1, -1, -1, -1,  1,  2]
2495   //   [ 3,  4,  5,  6,  7,  8,  9, 10]
2496   //   [-1,  4,  5,  6, -1, -1,  9, -1]
2497   //   [-1,  4,  5,  6, -1, -1, -1, -1]
2498   int Rotation = 0;
2499   LoSrc = -1;
2500   HiSrc = -1;
2501   for (int i = 0; i != Size; ++i) {
2502     int M = Mask[i];
2503     if (M < 0)
2504       continue;
2505 
2506     // Determine where a rotate vector would have started.
2507     int StartIdx = i - (M % Size);
2508     // The identity rotation isn't interesting, stop.
2509     if (StartIdx == 0)
2510       return -1;
2511 
2512     // If we found the tail of a vector the rotation must be the missing
2513     // front. If we found the head of a vector, it must be how much of the
2514     // head.
2515     int CandidateRotation = StartIdx < 0 ? -StartIdx : Size - StartIdx;
2516 
2517     if (Rotation == 0)
2518       Rotation = CandidateRotation;
2519     else if (Rotation != CandidateRotation)
2520       // The rotations don't match, so we can't match this mask.
2521       return -1;
2522 
2523     // Compute which value this mask is pointing at.
2524     int MaskSrc = M < Size ? 0 : 1;
2525 
2526     // Compute which of the two target values this index should be assigned to.
2527     // This reflects whether the high elements are remaining or the low elemnts
2528     // are remaining.
2529     int &TargetSrc = StartIdx < 0 ? HiSrc : LoSrc;
2530 
2531     // Either set up this value if we've not encountered it before, or check
2532     // that it remains consistent.
2533     if (TargetSrc < 0)
2534       TargetSrc = MaskSrc;
2535     else if (TargetSrc != MaskSrc)
2536       // This may be a rotation, but it pulls from the inputs in some
2537       // unsupported interleaving.
2538       return -1;
2539   }
2540 
2541   // Check that we successfully analyzed the mask, and normalize the results.
2542   assert(Rotation != 0 && "Failed to locate a viable rotation!");
2543   assert((LoSrc >= 0 || HiSrc >= 0) &&
2544          "Failed to find a rotated input vector!");
2545 
2546   return Rotation;
2547 }
2548 
2549 static SDValue lowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG,
2550                                    const RISCVSubtarget &Subtarget) {
2551   SDValue V1 = Op.getOperand(0);
2552   SDValue V2 = Op.getOperand(1);
2553   SDLoc DL(Op);
2554   MVT XLenVT = Subtarget.getXLenVT();
2555   MVT VT = Op.getSimpleValueType();
2556   unsigned NumElts = VT.getVectorNumElements();
2557   ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
2558 
2559   MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
2560 
2561   SDValue TrueMask, VL;
2562   std::tie(TrueMask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
2563 
2564   if (SVN->isSplat()) {
2565     const int Lane = SVN->getSplatIndex();
2566     if (Lane >= 0) {
2567       MVT SVT = VT.getVectorElementType();
2568 
2569       // Turn splatted vector load into a strided load with an X0 stride.
2570       SDValue V = V1;
2571       // Peek through CONCAT_VECTORS as VectorCombine can concat a vector
2572       // with undef.
2573       // FIXME: Peek through INSERT_SUBVECTOR, EXTRACT_SUBVECTOR, bitcasts?
2574       int Offset = Lane;
2575       if (V.getOpcode() == ISD::CONCAT_VECTORS) {
2576         int OpElements =
2577             V.getOperand(0).getSimpleValueType().getVectorNumElements();
2578         V = V.getOperand(Offset / OpElements);
2579         Offset %= OpElements;
2580       }
2581 
2582       // We need to ensure the load isn't atomic or volatile.
2583       if (ISD::isNormalLoad(V.getNode()) && cast<LoadSDNode>(V)->isSimple()) {
2584         auto *Ld = cast<LoadSDNode>(V);
2585         Offset *= SVT.getStoreSize();
2586         SDValue NewAddr = DAG.getMemBasePlusOffset(Ld->getBasePtr(),
2587                                                    TypeSize::Fixed(Offset), DL);
2588 
2589         // If this is SEW=64 on RV32, use a strided load with a stride of x0.
2590         if (SVT.isInteger() && SVT.bitsGT(XLenVT)) {
2591           SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
2592           SDValue IntID =
2593               DAG.getTargetConstant(Intrinsic::riscv_vlse, DL, XLenVT);
2594           SDValue Ops[] = {Ld->getChain(),
2595                            IntID,
2596                            DAG.getUNDEF(ContainerVT),
2597                            NewAddr,
2598                            DAG.getRegister(RISCV::X0, XLenVT),
2599                            VL};
2600           SDValue NewLoad = DAG.getMemIntrinsicNode(
2601               ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, SVT,
2602               DAG.getMachineFunction().getMachineMemOperand(
2603                   Ld->getMemOperand(), Offset, SVT.getStoreSize()));
2604           DAG.makeEquivalentMemoryOrdering(Ld, NewLoad);
2605           return convertFromScalableVector(VT, NewLoad, DAG, Subtarget);
2606         }
2607 
2608         // Otherwise use a scalar load and splat. This will give the best
2609         // opportunity to fold a splat into the operation. ISel can turn it into
2610         // the x0 strided load if we aren't able to fold away the select.
2611         if (SVT.isFloatingPoint())
2612           V = DAG.getLoad(SVT, DL, Ld->getChain(), NewAddr,
2613                           Ld->getPointerInfo().getWithOffset(Offset),
2614                           Ld->getOriginalAlign(),
2615                           Ld->getMemOperand()->getFlags());
2616         else
2617           V = DAG.getExtLoad(ISD::SEXTLOAD, DL, XLenVT, Ld->getChain(), NewAddr,
2618                              Ld->getPointerInfo().getWithOffset(Offset), SVT,
2619                              Ld->getOriginalAlign(),
2620                              Ld->getMemOperand()->getFlags());
2621         DAG.makeEquivalentMemoryOrdering(Ld, V);
2622 
2623         unsigned Opc =
2624             VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL : RISCVISD::VMV_V_X_VL;
2625         SDValue Splat =
2626             DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), V, VL);
2627         return convertFromScalableVector(VT, Splat, DAG, Subtarget);
2628       }
2629 
2630       V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget);
2631       assert(Lane < (int)NumElts && "Unexpected lane!");
2632       SDValue Gather =
2633           DAG.getNode(RISCVISD::VRGATHER_VX_VL, DL, ContainerVT, V1,
2634                       DAG.getConstant(Lane, DL, XLenVT), TrueMask, VL);
2635       return convertFromScalableVector(VT, Gather, DAG, Subtarget);
2636     }
2637   }
2638 
2639   ArrayRef<int> Mask = SVN->getMask();
2640 
2641   // Lower rotations to a SLIDEDOWN and a SLIDEUP. One of the source vectors may
2642   // be undef which can be handled with a single SLIDEDOWN/UP.
2643   int LoSrc, HiSrc;
2644   int Rotation = isElementRotate(LoSrc, HiSrc, Mask);
2645   if (Rotation > 0) {
2646     SDValue LoV, HiV;
2647     if (LoSrc >= 0) {
2648       LoV = LoSrc == 0 ? V1 : V2;
2649       LoV = convertToScalableVector(ContainerVT, LoV, DAG, Subtarget);
2650     }
2651     if (HiSrc >= 0) {
2652       HiV = HiSrc == 0 ? V1 : V2;
2653       HiV = convertToScalableVector(ContainerVT, HiV, DAG, Subtarget);
2654     }
2655 
2656     // We found a rotation. We need to slide HiV down by Rotation. Then we need
2657     // to slide LoV up by (NumElts - Rotation).
2658     unsigned InvRotate = NumElts - Rotation;
2659 
2660     SDValue Res = DAG.getUNDEF(ContainerVT);
2661     if (HiV) {
2662       // If we are doing a SLIDEDOWN+SLIDEUP, reduce the VL for the SLIDEDOWN.
2663       // FIXME: If we are only doing a SLIDEDOWN, don't reduce the VL as it
2664       // causes multiple vsetvlis in some test cases such as lowering
2665       // reduce.mul
2666       SDValue DownVL = VL;
2667       if (LoV)
2668         DownVL = DAG.getConstant(InvRotate, DL, XLenVT);
2669       Res =
2670           DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, Res, HiV,
2671                       DAG.getConstant(Rotation, DL, XLenVT), TrueMask, DownVL);
2672     }
2673     if (LoV)
2674       Res = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Res, LoV,
2675                         DAG.getConstant(InvRotate, DL, XLenVT), TrueMask, VL);
2676 
2677     return convertFromScalableVector(VT, Res, DAG, Subtarget);
2678   }
2679 
2680   // Detect an interleave shuffle and lower to
2681   // (vmaccu.vx (vwaddu.vx lohalf(V1), lohalf(V2)), lohalf(V2), (2^eltbits - 1))
2682   bool SwapSources;
2683   if (isInterleaveShuffle(Mask, VT, SwapSources, Subtarget)) {
2684     // Swap sources if needed.
2685     if (SwapSources)
2686       std::swap(V1, V2);
2687 
2688     // Extract the lower half of the vectors.
2689     MVT HalfVT = VT.getHalfNumVectorElementsVT();
2690     V1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, V1,
2691                      DAG.getConstant(0, DL, XLenVT));
2692     V2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, V2,
2693                      DAG.getConstant(0, DL, XLenVT));
2694 
2695     // Double the element width and halve the number of elements in an int type.
2696     unsigned EltBits = VT.getScalarSizeInBits();
2697     MVT WideIntEltVT = MVT::getIntegerVT(EltBits * 2);
2698     MVT WideIntVT =
2699         MVT::getVectorVT(WideIntEltVT, VT.getVectorNumElements() / 2);
2700     // Convert this to a scalable vector. We need to base this on the
2701     // destination size to ensure there's always a type with a smaller LMUL.
2702     MVT WideIntContainerVT =
2703         getContainerForFixedLengthVector(DAG, WideIntVT, Subtarget);
2704 
2705     // Convert sources to scalable vectors with the same element count as the
2706     // larger type.
2707     MVT HalfContainerVT = MVT::getVectorVT(
2708         VT.getVectorElementType(), WideIntContainerVT.getVectorElementCount());
2709     V1 = convertToScalableVector(HalfContainerVT, V1, DAG, Subtarget);
2710     V2 = convertToScalableVector(HalfContainerVT, V2, DAG, Subtarget);
2711 
2712     // Cast sources to integer.
2713     MVT IntEltVT = MVT::getIntegerVT(EltBits);
2714     MVT IntHalfVT =
2715         MVT::getVectorVT(IntEltVT, HalfContainerVT.getVectorElementCount());
2716     V1 = DAG.getBitcast(IntHalfVT, V1);
2717     V2 = DAG.getBitcast(IntHalfVT, V2);
2718 
2719     // Freeze V2 since we use it twice and we need to be sure that the add and
2720     // multiply see the same value.
2721     V2 = DAG.getFreeze(V2);
2722 
2723     // Recreate TrueMask using the widened type's element count.
2724     MVT MaskVT =
2725         MVT::getVectorVT(MVT::i1, HalfContainerVT.getVectorElementCount());
2726     TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
2727 
2728     // Widen V1 and V2 with 0s and add one copy of V2 to V1.
2729     SDValue Add = DAG.getNode(RISCVISD::VWADDU_VL, DL, WideIntContainerVT, V1,
2730                               V2, TrueMask, VL);
2731     // Create 2^eltbits - 1 copies of V2 by multiplying by the largest integer.
2732     SDValue Multiplier = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, IntHalfVT,
2733                                      DAG.getUNDEF(IntHalfVT),
2734                                      DAG.getAllOnesConstant(DL, XLenVT));
2735     SDValue WidenMul = DAG.getNode(RISCVISD::VWMULU_VL, DL, WideIntContainerVT,
2736                                    V2, Multiplier, TrueMask, VL);
2737     // Add the new copies to our previous addition giving us 2^eltbits copies of
2738     // V2. This is equivalent to shifting V2 left by eltbits. This should
2739     // combine with the vwmulu.vv above to form vwmaccu.vv.
2740     Add = DAG.getNode(RISCVISD::ADD_VL, DL, WideIntContainerVT, Add, WidenMul,
2741                       TrueMask, VL);
2742     // Cast back to ContainerVT. We need to re-create a new ContainerVT in case
2743     // WideIntContainerVT is a larger fractional LMUL than implied by the fixed
2744     // vector VT.
2745     ContainerVT =
2746         MVT::getVectorVT(VT.getVectorElementType(),
2747                          WideIntContainerVT.getVectorElementCount() * 2);
2748     Add = DAG.getBitcast(ContainerVT, Add);
2749     return convertFromScalableVector(VT, Add, DAG, Subtarget);
2750   }
2751 
2752   // Detect shuffles which can be re-expressed as vector selects; these are
2753   // shuffles in which each element in the destination is taken from an element
2754   // at the corresponding index in either source vectors.
2755   bool IsSelect = all_of(enumerate(Mask), [&](const auto &MaskIdx) {
2756     int MaskIndex = MaskIdx.value();
2757     return MaskIndex < 0 || MaskIdx.index() == (unsigned)MaskIndex % NumElts;
2758   });
2759 
2760   assert(!V1.isUndef() && "Unexpected shuffle canonicalization");
2761 
2762   SmallVector<SDValue> MaskVals;
2763   // As a backup, shuffles can be lowered via a vrgather instruction, possibly
2764   // merged with a second vrgather.
2765   SmallVector<SDValue> GatherIndicesLHS, GatherIndicesRHS;
2766 
2767   // By default we preserve the original operand order, and use a mask to
2768   // select LHS as true and RHS as false. However, since RVV vector selects may
2769   // feature splats but only on the LHS, we may choose to invert our mask and
2770   // instead select between RHS and LHS.
2771   bool SwapOps = DAG.isSplatValue(V2) && !DAG.isSplatValue(V1);
2772   bool InvertMask = IsSelect == SwapOps;
2773 
2774   // Keep a track of which non-undef indices are used by each LHS/RHS shuffle
2775   // half.
2776   DenseMap<int, unsigned> LHSIndexCounts, RHSIndexCounts;
2777 
2778   // Now construct the mask that will be used by the vselect or blended
2779   // vrgather operation. For vrgathers, construct the appropriate indices into
2780   // each vector.
2781   for (int MaskIndex : Mask) {
2782     bool SelectMaskVal = (MaskIndex < (int)NumElts) ^ InvertMask;
2783     MaskVals.push_back(DAG.getConstant(SelectMaskVal, DL, XLenVT));
2784     if (!IsSelect) {
2785       bool IsLHSOrUndefIndex = MaskIndex < (int)NumElts;
2786       GatherIndicesLHS.push_back(IsLHSOrUndefIndex && MaskIndex >= 0
2787                                      ? DAG.getConstant(MaskIndex, DL, XLenVT)
2788                                      : DAG.getUNDEF(XLenVT));
2789       GatherIndicesRHS.push_back(
2790           IsLHSOrUndefIndex ? DAG.getUNDEF(XLenVT)
2791                             : DAG.getConstant(MaskIndex - NumElts, DL, XLenVT));
2792       if (IsLHSOrUndefIndex && MaskIndex >= 0)
2793         ++LHSIndexCounts[MaskIndex];
2794       if (!IsLHSOrUndefIndex)
2795         ++RHSIndexCounts[MaskIndex - NumElts];
2796     }
2797   }
2798 
2799   if (SwapOps) {
2800     std::swap(V1, V2);
2801     std::swap(GatherIndicesLHS, GatherIndicesRHS);
2802   }
2803 
2804   assert(MaskVals.size() == NumElts && "Unexpected select-like shuffle");
2805   MVT MaskVT = MVT::getVectorVT(MVT::i1, NumElts);
2806   SDValue SelectMask = DAG.getBuildVector(MaskVT, DL, MaskVals);
2807 
2808   if (IsSelect)
2809     return DAG.getNode(ISD::VSELECT, DL, VT, SelectMask, V1, V2);
2810 
2811   if (VT.getScalarSizeInBits() == 8 && VT.getVectorNumElements() > 256) {
2812     // On such a large vector we're unable to use i8 as the index type.
2813     // FIXME: We could promote the index to i16 and use vrgatherei16, but that
2814     // may involve vector splitting if we're already at LMUL=8, or our
2815     // user-supplied maximum fixed-length LMUL.
2816     return SDValue();
2817   }
2818 
2819   unsigned GatherVXOpc = RISCVISD::VRGATHER_VX_VL;
2820   unsigned GatherVVOpc = RISCVISD::VRGATHER_VV_VL;
2821   MVT IndexVT = VT.changeTypeToInteger();
2822   // Since we can't introduce illegal index types at this stage, use i16 and
2823   // vrgatherei16 if the corresponding index type for plain vrgather is greater
2824   // than XLenVT.
2825   if (IndexVT.getScalarType().bitsGT(XLenVT)) {
2826     GatherVVOpc = RISCVISD::VRGATHEREI16_VV_VL;
2827     IndexVT = IndexVT.changeVectorElementType(MVT::i16);
2828   }
2829 
2830   MVT IndexContainerVT =
2831       ContainerVT.changeVectorElementType(IndexVT.getScalarType());
2832 
2833   SDValue Gather;
2834   // TODO: This doesn't trigger for i64 vectors on RV32, since there we
2835   // encounter a bitcasted BUILD_VECTOR with low/high i32 values.
2836   if (SDValue SplatValue = DAG.getSplatValue(V1, /*LegalTypes*/ true)) {
2837     Gather = lowerScalarSplat(SDValue(), SplatValue, VL, ContainerVT, DL, DAG,
2838                               Subtarget);
2839   } else {
2840     V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget);
2841     // If only one index is used, we can use a "splat" vrgather.
2842     // TODO: We can splat the most-common index and fix-up any stragglers, if
2843     // that's beneficial.
2844     if (LHSIndexCounts.size() == 1) {
2845       int SplatIndex = LHSIndexCounts.begin()->getFirst();
2846       Gather =
2847           DAG.getNode(GatherVXOpc, DL, ContainerVT, V1,
2848                       DAG.getConstant(SplatIndex, DL, XLenVT), TrueMask, VL);
2849     } else {
2850       SDValue LHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesLHS);
2851       LHSIndices =
2852           convertToScalableVector(IndexContainerVT, LHSIndices, DAG, Subtarget);
2853 
2854       Gather = DAG.getNode(GatherVVOpc, DL, ContainerVT, V1, LHSIndices,
2855                            TrueMask, VL);
2856     }
2857   }
2858 
2859   // If a second vector operand is used by this shuffle, blend it in with an
2860   // additional vrgather.
2861   if (!V2.isUndef()) {
2862     V2 = convertToScalableVector(ContainerVT, V2, DAG, Subtarget);
2863     // If only one index is used, we can use a "splat" vrgather.
2864     // TODO: We can splat the most-common index and fix-up any stragglers, if
2865     // that's beneficial.
2866     if (RHSIndexCounts.size() == 1) {
2867       int SplatIndex = RHSIndexCounts.begin()->getFirst();
2868       V2 = DAG.getNode(GatherVXOpc, DL, ContainerVT, V2,
2869                        DAG.getConstant(SplatIndex, DL, XLenVT), TrueMask, VL);
2870     } else {
2871       SDValue RHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesRHS);
2872       RHSIndices =
2873           convertToScalableVector(IndexContainerVT, RHSIndices, DAG, Subtarget);
2874       V2 = DAG.getNode(GatherVVOpc, DL, ContainerVT, V2, RHSIndices, TrueMask,
2875                        VL);
2876     }
2877 
2878     MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1);
2879     SelectMask =
2880         convertToScalableVector(MaskContainerVT, SelectMask, DAG, Subtarget);
2881 
2882     Gather = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, SelectMask, V2,
2883                          Gather, VL);
2884   }
2885 
2886   return convertFromScalableVector(VT, Gather, DAG, Subtarget);
2887 }
2888 
2889 bool RISCVTargetLowering::isShuffleMaskLegal(ArrayRef<int> M, EVT VT) const {
2890   // Support splats for any type. These should type legalize well.
2891   if (ShuffleVectorSDNode::isSplatMask(M.data(), VT))
2892     return true;
2893 
2894   // Only support legal VTs for other shuffles for now.
2895   if (!isTypeLegal(VT))
2896     return false;
2897 
2898   MVT SVT = VT.getSimpleVT();
2899 
2900   bool SwapSources;
2901   int LoSrc, HiSrc;
2902   return (isElementRotate(LoSrc, HiSrc, M) > 0) ||
2903          isInterleaveShuffle(M, SVT, SwapSources, Subtarget);
2904 }
2905 
2906 static SDValue getRVVFPExtendOrRound(SDValue Op, MVT VT, MVT ContainerVT,
2907                                      SDLoc DL, SelectionDAG &DAG,
2908                                      const RISCVSubtarget &Subtarget) {
2909   if (VT.isScalableVector())
2910     return DAG.getFPExtendOrRound(Op, DL, VT);
2911   assert(VT.isFixedLengthVector() &&
2912          "Unexpected value type for RVV FP extend/round lowering");
2913   SDValue Mask, VL;
2914   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
2915   unsigned RVVOpc = ContainerVT.bitsGT(Op.getSimpleValueType())
2916                         ? RISCVISD::FP_EXTEND_VL
2917                         : RISCVISD::FP_ROUND_VL;
2918   return DAG.getNode(RVVOpc, DL, ContainerVT, Op, Mask, VL);
2919 }
2920 
2921 // Lower CTLZ_ZERO_UNDEF or CTTZ_ZERO_UNDEF by converting to FP and extracting
2922 // the exponent.
2923 static SDValue lowerCTLZ_CTTZ_ZERO_UNDEF(SDValue Op, SelectionDAG &DAG) {
2924   MVT VT = Op.getSimpleValueType();
2925   unsigned EltSize = VT.getScalarSizeInBits();
2926   SDValue Src = Op.getOperand(0);
2927   SDLoc DL(Op);
2928 
2929   // We need a FP type that can represent the value.
2930   // TODO: Use f16 for i8 when possible?
2931   MVT FloatEltVT = EltSize == 32 ? MVT::f64 : MVT::f32;
2932   MVT FloatVT = MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount());
2933 
2934   // Legal types should have been checked in the RISCVTargetLowering
2935   // constructor.
2936   // TODO: Splitting may make sense in some cases.
2937   assert(DAG.getTargetLoweringInfo().isTypeLegal(FloatVT) &&
2938          "Expected legal float type!");
2939 
2940   // For CTTZ_ZERO_UNDEF, we need to extract the lowest set bit using X & -X.
2941   // The trailing zero count is equal to log2 of this single bit value.
2942   if (Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF) {
2943     SDValue Neg =
2944         DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Src);
2945     Src = DAG.getNode(ISD::AND, DL, VT, Src, Neg);
2946   }
2947 
2948   // We have a legal FP type, convert to it.
2949   SDValue FloatVal = DAG.getNode(ISD::UINT_TO_FP, DL, FloatVT, Src);
2950   // Bitcast to integer and shift the exponent to the LSB.
2951   EVT IntVT = FloatVT.changeVectorElementTypeToInteger();
2952   SDValue Bitcast = DAG.getBitcast(IntVT, FloatVal);
2953   unsigned ShiftAmt = FloatEltVT == MVT::f64 ? 52 : 23;
2954   SDValue Shift = DAG.getNode(ISD::SRL, DL, IntVT, Bitcast,
2955                               DAG.getConstant(ShiftAmt, DL, IntVT));
2956   // Truncate back to original type to allow vnsrl.
2957   SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, VT, Shift);
2958   // The exponent contains log2 of the value in biased form.
2959   unsigned ExponentBias = FloatEltVT == MVT::f64 ? 1023 : 127;
2960 
2961   // For trailing zeros, we just need to subtract the bias.
2962   if (Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF)
2963     return DAG.getNode(ISD::SUB, DL, VT, Trunc,
2964                        DAG.getConstant(ExponentBias, DL, VT));
2965 
2966   // For leading zeros, we need to remove the bias and convert from log2 to
2967   // leading zeros. We can do this by subtracting from (Bias + (EltSize - 1)).
2968   unsigned Adjust = ExponentBias + (EltSize - 1);
2969   return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(Adjust, DL, VT), Trunc);
2970 }
2971 
2972 // While RVV has alignment restrictions, we should always be able to load as a
2973 // legal equivalently-sized byte-typed vector instead. This method is
2974 // responsible for re-expressing a ISD::LOAD via a correctly-aligned type. If
2975 // the load is already correctly-aligned, it returns SDValue().
2976 SDValue RISCVTargetLowering::expandUnalignedRVVLoad(SDValue Op,
2977                                                     SelectionDAG &DAG) const {
2978   auto *Load = cast<LoadSDNode>(Op);
2979   assert(Load && Load->getMemoryVT().isVector() && "Expected vector load");
2980 
2981   if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
2982                                      Load->getMemoryVT(),
2983                                      *Load->getMemOperand()))
2984     return SDValue();
2985 
2986   SDLoc DL(Op);
2987   MVT VT = Op.getSimpleValueType();
2988   unsigned EltSizeBits = VT.getScalarSizeInBits();
2989   assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) &&
2990          "Unexpected unaligned RVV load type");
2991   MVT NewVT =
2992       MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8));
2993   assert(NewVT.isValid() &&
2994          "Expecting equally-sized RVV vector types to be legal");
2995   SDValue L = DAG.getLoad(NewVT, DL, Load->getChain(), Load->getBasePtr(),
2996                           Load->getPointerInfo(), Load->getOriginalAlign(),
2997                           Load->getMemOperand()->getFlags());
2998   return DAG.getMergeValues({DAG.getBitcast(VT, L), L.getValue(1)}, DL);
2999 }
3000 
3001 // While RVV has alignment restrictions, we should always be able to store as a
3002 // legal equivalently-sized byte-typed vector instead. This method is
3003 // responsible for re-expressing a ISD::STORE via a correctly-aligned type. It
3004 // returns SDValue() if the store is already correctly aligned.
3005 SDValue RISCVTargetLowering::expandUnalignedRVVStore(SDValue Op,
3006                                                      SelectionDAG &DAG) const {
3007   auto *Store = cast<StoreSDNode>(Op);
3008   assert(Store && Store->getValue().getValueType().isVector() &&
3009          "Expected vector store");
3010 
3011   if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
3012                                      Store->getMemoryVT(),
3013                                      *Store->getMemOperand()))
3014     return SDValue();
3015 
3016   SDLoc DL(Op);
3017   SDValue StoredVal = Store->getValue();
3018   MVT VT = StoredVal.getSimpleValueType();
3019   unsigned EltSizeBits = VT.getScalarSizeInBits();
3020   assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) &&
3021          "Unexpected unaligned RVV store type");
3022   MVT NewVT =
3023       MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8));
3024   assert(NewVT.isValid() &&
3025          "Expecting equally-sized RVV vector types to be legal");
3026   StoredVal = DAG.getBitcast(NewVT, StoredVal);
3027   return DAG.getStore(Store->getChain(), DL, StoredVal, Store->getBasePtr(),
3028                       Store->getPointerInfo(), Store->getOriginalAlign(),
3029                       Store->getMemOperand()->getFlags());
3030 }
3031 
3032 SDValue RISCVTargetLowering::LowerOperation(SDValue Op,
3033                                             SelectionDAG &DAG) const {
3034   switch (Op.getOpcode()) {
3035   default:
3036     report_fatal_error("unimplemented operand");
3037   case ISD::GlobalAddress:
3038     return lowerGlobalAddress(Op, DAG);
3039   case ISD::BlockAddress:
3040     return lowerBlockAddress(Op, DAG);
3041   case ISD::ConstantPool:
3042     return lowerConstantPool(Op, DAG);
3043   case ISD::JumpTable:
3044     return lowerJumpTable(Op, DAG);
3045   case ISD::GlobalTLSAddress:
3046     return lowerGlobalTLSAddress(Op, DAG);
3047   case ISD::SELECT:
3048     return lowerSELECT(Op, DAG);
3049   case ISD::BRCOND:
3050     return lowerBRCOND(Op, DAG);
3051   case ISD::VASTART:
3052     return lowerVASTART(Op, DAG);
3053   case ISD::FRAMEADDR:
3054     return lowerFRAMEADDR(Op, DAG);
3055   case ISD::RETURNADDR:
3056     return lowerRETURNADDR(Op, DAG);
3057   case ISD::SHL_PARTS:
3058     return lowerShiftLeftParts(Op, DAG);
3059   case ISD::SRA_PARTS:
3060     return lowerShiftRightParts(Op, DAG, true);
3061   case ISD::SRL_PARTS:
3062     return lowerShiftRightParts(Op, DAG, false);
3063   case ISD::BITCAST: {
3064     SDLoc DL(Op);
3065     EVT VT = Op.getValueType();
3066     SDValue Op0 = Op.getOperand(0);
3067     EVT Op0VT = Op0.getValueType();
3068     MVT XLenVT = Subtarget.getXLenVT();
3069     if (VT.isFixedLengthVector()) {
3070       // We can handle fixed length vector bitcasts with a simple replacement
3071       // in isel.
3072       if (Op0VT.isFixedLengthVector())
3073         return Op;
3074       // When bitcasting from scalar to fixed-length vector, insert the scalar
3075       // into a one-element vector of the result type, and perform a vector
3076       // bitcast.
3077       if (!Op0VT.isVector()) {
3078         EVT BVT = EVT::getVectorVT(*DAG.getContext(), Op0VT, 1);
3079         if (!isTypeLegal(BVT))
3080           return SDValue();
3081         return DAG.getBitcast(VT, DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, BVT,
3082                                               DAG.getUNDEF(BVT), Op0,
3083                                               DAG.getConstant(0, DL, XLenVT)));
3084       }
3085       return SDValue();
3086     }
3087     // Custom-legalize bitcasts from fixed-length vector types to scalar types
3088     // thus: bitcast the vector to a one-element vector type whose element type
3089     // is the same as the result type, and extract the first element.
3090     if (!VT.isVector() && Op0VT.isFixedLengthVector()) {
3091       EVT BVT = EVT::getVectorVT(*DAG.getContext(), VT, 1);
3092       if (!isTypeLegal(BVT))
3093         return SDValue();
3094       SDValue BVec = DAG.getBitcast(BVT, Op0);
3095       return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec,
3096                          DAG.getConstant(0, DL, XLenVT));
3097     }
3098     if (VT == MVT::f16 && Op0VT == MVT::i16 && Subtarget.hasStdExtZfh()) {
3099       SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Op0);
3100       SDValue FPConv = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, NewOp0);
3101       return FPConv;
3102     }
3103     if (VT == MVT::f32 && Op0VT == MVT::i32 && Subtarget.is64Bit() &&
3104         Subtarget.hasStdExtF()) {
3105       SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
3106       SDValue FPConv =
3107           DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, NewOp0);
3108       return FPConv;
3109     }
3110     return SDValue();
3111   }
3112   case ISD::INTRINSIC_WO_CHAIN:
3113     return LowerINTRINSIC_WO_CHAIN(Op, DAG);
3114   case ISD::INTRINSIC_W_CHAIN:
3115     return LowerINTRINSIC_W_CHAIN(Op, DAG);
3116   case ISD::INTRINSIC_VOID:
3117     return LowerINTRINSIC_VOID(Op, DAG);
3118   case ISD::BSWAP:
3119   case ISD::BITREVERSE: {
3120     MVT VT = Op.getSimpleValueType();
3121     SDLoc DL(Op);
3122     if (Subtarget.hasStdExtZbp()) {
3123       // Convert BSWAP/BITREVERSE to GREVI to enable GREVI combinining.
3124       // Start with the maximum immediate value which is the bitwidth - 1.
3125       unsigned Imm = VT.getSizeInBits() - 1;
3126       // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits.
3127       if (Op.getOpcode() == ISD::BSWAP)
3128         Imm &= ~0x7U;
3129       return DAG.getNode(RISCVISD::GREV, DL, VT, Op.getOperand(0),
3130                          DAG.getConstant(Imm, DL, VT));
3131     }
3132     assert(Subtarget.hasStdExtZbkb() && "Unexpected custom legalization");
3133     assert(Op.getOpcode() == ISD::BITREVERSE && "Unexpected opcode");
3134     // Expand bitreverse to a bswap(rev8) followed by brev8.
3135     SDValue BSwap = DAG.getNode(ISD::BSWAP, DL, VT, Op.getOperand(0));
3136     // We use the Zbp grevi encoding for rev.b/brev8 which will be recognized
3137     // as brev8 by an isel pattern.
3138     return DAG.getNode(RISCVISD::GREV, DL, VT, BSwap,
3139                        DAG.getConstant(7, DL, VT));
3140   }
3141   case ISD::FSHL:
3142   case ISD::FSHR: {
3143     MVT VT = Op.getSimpleValueType();
3144     assert(VT == Subtarget.getXLenVT() && "Unexpected custom legalization");
3145     SDLoc DL(Op);
3146     // FSL/FSR take a log2(XLen)+1 bit shift amount but XLenVT FSHL/FSHR only
3147     // use log(XLen) bits. Mask the shift amount accordingly to prevent
3148     // accidentally setting the extra bit.
3149     unsigned ShAmtWidth = Subtarget.getXLen() - 1;
3150     SDValue ShAmt = DAG.getNode(ISD::AND, DL, VT, Op.getOperand(2),
3151                                 DAG.getConstant(ShAmtWidth, DL, VT));
3152     // fshl and fshr concatenate their operands in the same order. fsr and fsl
3153     // instruction use different orders. fshl will return its first operand for
3154     // shift of zero, fshr will return its second operand. fsl and fsr both
3155     // return rs1 so the ISD nodes need to have different operand orders.
3156     // Shift amount is in rs2.
3157     SDValue Op0 = Op.getOperand(0);
3158     SDValue Op1 = Op.getOperand(1);
3159     unsigned Opc = RISCVISD::FSL;
3160     if (Op.getOpcode() == ISD::FSHR) {
3161       std::swap(Op0, Op1);
3162       Opc = RISCVISD::FSR;
3163     }
3164     return DAG.getNode(Opc, DL, VT, Op0, Op1, ShAmt);
3165   }
3166   case ISD::TRUNCATE: {
3167     SDLoc DL(Op);
3168     MVT VT = Op.getSimpleValueType();
3169     // Only custom-lower vector truncates
3170     if (!VT.isVector())
3171       return Op;
3172 
3173     // Truncates to mask types are handled differently
3174     if (VT.getVectorElementType() == MVT::i1)
3175       return lowerVectorMaskTrunc(Op, DAG);
3176 
3177     // RVV only has truncates which operate from SEW*2->SEW, so lower arbitrary
3178     // truncates as a series of "RISCVISD::TRUNCATE_VECTOR_VL" nodes which
3179     // truncate by one power of two at a time.
3180     MVT DstEltVT = VT.getVectorElementType();
3181 
3182     SDValue Src = Op.getOperand(0);
3183     MVT SrcVT = Src.getSimpleValueType();
3184     MVT SrcEltVT = SrcVT.getVectorElementType();
3185 
3186     assert(DstEltVT.bitsLT(SrcEltVT) &&
3187            isPowerOf2_64(DstEltVT.getSizeInBits()) &&
3188            isPowerOf2_64(SrcEltVT.getSizeInBits()) &&
3189            "Unexpected vector truncate lowering");
3190 
3191     MVT ContainerVT = SrcVT;
3192     if (SrcVT.isFixedLengthVector()) {
3193       ContainerVT = getContainerForFixedLengthVector(SrcVT);
3194       Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget);
3195     }
3196 
3197     SDValue Result = Src;
3198     SDValue Mask, VL;
3199     std::tie(Mask, VL) =
3200         getDefaultVLOps(SrcVT, ContainerVT, DL, DAG, Subtarget);
3201     LLVMContext &Context = *DAG.getContext();
3202     const ElementCount Count = ContainerVT.getVectorElementCount();
3203     do {
3204       SrcEltVT = MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2);
3205       EVT ResultVT = EVT::getVectorVT(Context, SrcEltVT, Count);
3206       Result = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, ResultVT, Result,
3207                            Mask, VL);
3208     } while (SrcEltVT != DstEltVT);
3209 
3210     if (SrcVT.isFixedLengthVector())
3211       Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
3212 
3213     return Result;
3214   }
3215   case ISD::ANY_EXTEND:
3216   case ISD::ZERO_EXTEND:
3217     if (Op.getOperand(0).getValueType().isVector() &&
3218         Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1)
3219       return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ 1);
3220     return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VZEXT_VL);
3221   case ISD::SIGN_EXTEND:
3222     if (Op.getOperand(0).getValueType().isVector() &&
3223         Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1)
3224       return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ -1);
3225     return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VSEXT_VL);
3226   case ISD::SPLAT_VECTOR_PARTS:
3227     return lowerSPLAT_VECTOR_PARTS(Op, DAG);
3228   case ISD::INSERT_VECTOR_ELT:
3229     return lowerINSERT_VECTOR_ELT(Op, DAG);
3230   case ISD::EXTRACT_VECTOR_ELT:
3231     return lowerEXTRACT_VECTOR_ELT(Op, DAG);
3232   case ISD::VSCALE: {
3233     MVT VT = Op.getSimpleValueType();
3234     SDLoc DL(Op);
3235     SDValue VLENB = DAG.getNode(RISCVISD::READ_VLENB, DL, VT);
3236     // We define our scalable vector types for lmul=1 to use a 64 bit known
3237     // minimum size. e.g. <vscale x 2 x i32>. VLENB is in bytes so we calculate
3238     // vscale as VLENB / 8.
3239     static_assert(RISCV::RVVBitsPerBlock == 64, "Unexpected bits per block!");
3240     if (Subtarget.getMinVLen() < RISCV::RVVBitsPerBlock)
3241       report_fatal_error("Support for VLEN==32 is incomplete.");
3242     if (isa<ConstantSDNode>(Op.getOperand(0))) {
3243       // We assume VLENB is a multiple of 8. We manually choose the best shift
3244       // here because SimplifyDemandedBits isn't always able to simplify it.
3245       uint64_t Val = Op.getConstantOperandVal(0);
3246       if (isPowerOf2_64(Val)) {
3247         uint64_t Log2 = Log2_64(Val);
3248         if (Log2 < 3)
3249           return DAG.getNode(ISD::SRL, DL, VT, VLENB,
3250                              DAG.getConstant(3 - Log2, DL, VT));
3251         if (Log2 > 3)
3252           return DAG.getNode(ISD::SHL, DL, VT, VLENB,
3253                              DAG.getConstant(Log2 - 3, DL, VT));
3254         return VLENB;
3255       }
3256       // If the multiplier is a multiple of 8, scale it down to avoid needing
3257       // to shift the VLENB value.
3258       if ((Val % 8) == 0)
3259         return DAG.getNode(ISD::MUL, DL, VT, VLENB,
3260                            DAG.getConstant(Val / 8, DL, VT));
3261     }
3262 
3263     SDValue VScale = DAG.getNode(ISD::SRL, DL, VT, VLENB,
3264                                  DAG.getConstant(3, DL, VT));
3265     return DAG.getNode(ISD::MUL, DL, VT, VScale, Op.getOperand(0));
3266   }
3267   case ISD::FPOWI: {
3268     // Custom promote f16 powi with illegal i32 integer type on RV64. Once
3269     // promoted this will be legalized into a libcall by LegalizeIntegerTypes.
3270     if (Op.getValueType() == MVT::f16 && Subtarget.is64Bit() &&
3271         Op.getOperand(1).getValueType() == MVT::i32) {
3272       SDLoc DL(Op);
3273       SDValue Op0 = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Op.getOperand(0));
3274       SDValue Powi =
3275           DAG.getNode(ISD::FPOWI, DL, MVT::f32, Op0, Op.getOperand(1));
3276       return DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, Powi,
3277                          DAG.getIntPtrConstant(0, DL));
3278     }
3279     return SDValue();
3280   }
3281   case ISD::FP_EXTEND: {
3282     // RVV can only do fp_extend to types double the size as the source. We
3283     // custom-lower f16->f64 extensions to two hops of ISD::FP_EXTEND, going
3284     // via f32.
3285     SDLoc DL(Op);
3286     MVT VT = Op.getSimpleValueType();
3287     SDValue Src = Op.getOperand(0);
3288     MVT SrcVT = Src.getSimpleValueType();
3289 
3290     // Prepare any fixed-length vector operands.
3291     MVT ContainerVT = VT;
3292     if (SrcVT.isFixedLengthVector()) {
3293       ContainerVT = getContainerForFixedLengthVector(VT);
3294       MVT SrcContainerVT =
3295           ContainerVT.changeVectorElementType(SrcVT.getVectorElementType());
3296       Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget);
3297     }
3298 
3299     if (!VT.isVector() || VT.getVectorElementType() != MVT::f64 ||
3300         SrcVT.getVectorElementType() != MVT::f16) {
3301       // For scalable vectors, we only need to close the gap between
3302       // vXf16->vXf64.
3303       if (!VT.isFixedLengthVector())
3304         return Op;
3305       // For fixed-length vectors, lower the FP_EXTEND to a custom "VL" version.
3306       Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget);
3307       return convertFromScalableVector(VT, Src, DAG, Subtarget);
3308     }
3309 
3310     MVT InterVT = VT.changeVectorElementType(MVT::f32);
3311     MVT InterContainerVT = ContainerVT.changeVectorElementType(MVT::f32);
3312     SDValue IntermediateExtend = getRVVFPExtendOrRound(
3313         Src, InterVT, InterContainerVT, DL, DAG, Subtarget);
3314 
3315     SDValue Extend = getRVVFPExtendOrRound(IntermediateExtend, VT, ContainerVT,
3316                                            DL, DAG, Subtarget);
3317     if (VT.isFixedLengthVector())
3318       return convertFromScalableVector(VT, Extend, DAG, Subtarget);
3319     return Extend;
3320   }
3321   case ISD::FP_ROUND: {
3322     // RVV can only do fp_round to types half the size as the source. We
3323     // custom-lower f64->f16 rounds via RVV's round-to-odd float
3324     // conversion instruction.
3325     SDLoc DL(Op);
3326     MVT VT = Op.getSimpleValueType();
3327     SDValue Src = Op.getOperand(0);
3328     MVT SrcVT = Src.getSimpleValueType();
3329 
3330     // Prepare any fixed-length vector operands.
3331     MVT ContainerVT = VT;
3332     if (VT.isFixedLengthVector()) {
3333       MVT SrcContainerVT = getContainerForFixedLengthVector(SrcVT);
3334       ContainerVT =
3335           SrcContainerVT.changeVectorElementType(VT.getVectorElementType());
3336       Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget);
3337     }
3338 
3339     if (!VT.isVector() || VT.getVectorElementType() != MVT::f16 ||
3340         SrcVT.getVectorElementType() != MVT::f64) {
3341       // For scalable vectors, we only need to close the gap between
3342       // vXf64<->vXf16.
3343       if (!VT.isFixedLengthVector())
3344         return Op;
3345       // For fixed-length vectors, lower the FP_ROUND to a custom "VL" version.
3346       Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget);
3347       return convertFromScalableVector(VT, Src, DAG, Subtarget);
3348     }
3349 
3350     SDValue Mask, VL;
3351     std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
3352 
3353     MVT InterVT = ContainerVT.changeVectorElementType(MVT::f32);
3354     SDValue IntermediateRound =
3355         DAG.getNode(RISCVISD::VFNCVT_ROD_VL, DL, InterVT, Src, Mask, VL);
3356     SDValue Round = getRVVFPExtendOrRound(IntermediateRound, VT, ContainerVT,
3357                                           DL, DAG, Subtarget);
3358 
3359     if (VT.isFixedLengthVector())
3360       return convertFromScalableVector(VT, Round, DAG, Subtarget);
3361     return Round;
3362   }
3363   case ISD::FP_TO_SINT:
3364   case ISD::FP_TO_UINT:
3365   case ISD::SINT_TO_FP:
3366   case ISD::UINT_TO_FP: {
3367     // RVV can only do fp<->int conversions to types half/double the size as
3368     // the source. We custom-lower any conversions that do two hops into
3369     // sequences.
3370     MVT VT = Op.getSimpleValueType();
3371     if (!VT.isVector())
3372       return Op;
3373     SDLoc DL(Op);
3374     SDValue Src = Op.getOperand(0);
3375     MVT EltVT = VT.getVectorElementType();
3376     MVT SrcVT = Src.getSimpleValueType();
3377     MVT SrcEltVT = SrcVT.getVectorElementType();
3378     unsigned EltSize = EltVT.getSizeInBits();
3379     unsigned SrcEltSize = SrcEltVT.getSizeInBits();
3380     assert(isPowerOf2_32(EltSize) && isPowerOf2_32(SrcEltSize) &&
3381            "Unexpected vector element types");
3382 
3383     bool IsInt2FP = SrcEltVT.isInteger();
3384     // Widening conversions
3385     if (EltSize > SrcEltSize && (EltSize / SrcEltSize >= 4)) {
3386       if (IsInt2FP) {
3387         // Do a regular integer sign/zero extension then convert to float.
3388         MVT IVecVT = MVT::getVectorVT(MVT::getIntegerVT(EltVT.getSizeInBits()),
3389                                       VT.getVectorElementCount());
3390         unsigned ExtOpcode = Op.getOpcode() == ISD::UINT_TO_FP
3391                                  ? ISD::ZERO_EXTEND
3392                                  : ISD::SIGN_EXTEND;
3393         SDValue Ext = DAG.getNode(ExtOpcode, DL, IVecVT, Src);
3394         return DAG.getNode(Op.getOpcode(), DL, VT, Ext);
3395       }
3396       // FP2Int
3397       assert(SrcEltVT == MVT::f16 && "Unexpected FP_TO_[US]INT lowering");
3398       // Do one doubling fp_extend then complete the operation by converting
3399       // to int.
3400       MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount());
3401       SDValue FExt = DAG.getFPExtendOrRound(Src, DL, InterimFVT);
3402       return DAG.getNode(Op.getOpcode(), DL, VT, FExt);
3403     }
3404 
3405     // Narrowing conversions
3406     if (SrcEltSize > EltSize && (SrcEltSize / EltSize >= 4)) {
3407       if (IsInt2FP) {
3408         // One narrowing int_to_fp, then an fp_round.
3409         assert(EltVT == MVT::f16 && "Unexpected [US]_TO_FP lowering");
3410         MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount());
3411         SDValue Int2FP = DAG.getNode(Op.getOpcode(), DL, InterimFVT, Src);
3412         return DAG.getFPExtendOrRound(Int2FP, DL, VT);
3413       }
3414       // FP2Int
3415       // One narrowing fp_to_int, then truncate the integer. If the float isn't
3416       // representable by the integer, the result is poison.
3417       MVT IVecVT =
3418           MVT::getVectorVT(MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2),
3419                            VT.getVectorElementCount());
3420       SDValue FP2Int = DAG.getNode(Op.getOpcode(), DL, IVecVT, Src);
3421       return DAG.getNode(ISD::TRUNCATE, DL, VT, FP2Int);
3422     }
3423 
3424     // Scalable vectors can exit here. Patterns will handle equally-sized
3425     // conversions halving/doubling ones.
3426     if (!VT.isFixedLengthVector())
3427       return Op;
3428 
3429     // For fixed-length vectors we lower to a custom "VL" node.
3430     unsigned RVVOpc = 0;
3431     switch (Op.getOpcode()) {
3432     default:
3433       llvm_unreachable("Impossible opcode");
3434     case ISD::FP_TO_SINT:
3435       RVVOpc = RISCVISD::FP_TO_SINT_VL;
3436       break;
3437     case ISD::FP_TO_UINT:
3438       RVVOpc = RISCVISD::FP_TO_UINT_VL;
3439       break;
3440     case ISD::SINT_TO_FP:
3441       RVVOpc = RISCVISD::SINT_TO_FP_VL;
3442       break;
3443     case ISD::UINT_TO_FP:
3444       RVVOpc = RISCVISD::UINT_TO_FP_VL;
3445       break;
3446     }
3447 
3448     MVT ContainerVT, SrcContainerVT;
3449     // Derive the reference container type from the larger vector type.
3450     if (SrcEltSize > EltSize) {
3451       SrcContainerVT = getContainerForFixedLengthVector(SrcVT);
3452       ContainerVT =
3453           SrcContainerVT.changeVectorElementType(VT.getVectorElementType());
3454     } else {
3455       ContainerVT = getContainerForFixedLengthVector(VT);
3456       SrcContainerVT = ContainerVT.changeVectorElementType(SrcEltVT);
3457     }
3458 
3459     SDValue Mask, VL;
3460     std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
3461 
3462     Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget);
3463     Src = DAG.getNode(RVVOpc, DL, ContainerVT, Src, Mask, VL);
3464     return convertFromScalableVector(VT, Src, DAG, Subtarget);
3465   }
3466   case ISD::FP_TO_SINT_SAT:
3467   case ISD::FP_TO_UINT_SAT:
3468     return lowerFP_TO_INT_SAT(Op, DAG, Subtarget);
3469   case ISD::FTRUNC:
3470   case ISD::FCEIL:
3471   case ISD::FFLOOR:
3472     return lowerFTRUNC_FCEIL_FFLOOR(Op, DAG);
3473   case ISD::FROUND:
3474     return lowerFROUND(Op, DAG);
3475   case ISD::VECREDUCE_ADD:
3476   case ISD::VECREDUCE_UMAX:
3477   case ISD::VECREDUCE_SMAX:
3478   case ISD::VECREDUCE_UMIN:
3479   case ISD::VECREDUCE_SMIN:
3480     return lowerVECREDUCE(Op, DAG);
3481   case ISD::VECREDUCE_AND:
3482   case ISD::VECREDUCE_OR:
3483   case ISD::VECREDUCE_XOR:
3484     if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1)
3485       return lowerVectorMaskVecReduction(Op, DAG, /*IsVP*/ false);
3486     return lowerVECREDUCE(Op, DAG);
3487   case ISD::VECREDUCE_FADD:
3488   case ISD::VECREDUCE_SEQ_FADD:
3489   case ISD::VECREDUCE_FMIN:
3490   case ISD::VECREDUCE_FMAX:
3491     return lowerFPVECREDUCE(Op, DAG);
3492   case ISD::VP_REDUCE_ADD:
3493   case ISD::VP_REDUCE_UMAX:
3494   case ISD::VP_REDUCE_SMAX:
3495   case ISD::VP_REDUCE_UMIN:
3496   case ISD::VP_REDUCE_SMIN:
3497   case ISD::VP_REDUCE_FADD:
3498   case ISD::VP_REDUCE_SEQ_FADD:
3499   case ISD::VP_REDUCE_FMIN:
3500   case ISD::VP_REDUCE_FMAX:
3501     return lowerVPREDUCE(Op, DAG);
3502   case ISD::VP_REDUCE_AND:
3503   case ISD::VP_REDUCE_OR:
3504   case ISD::VP_REDUCE_XOR:
3505     if (Op.getOperand(1).getValueType().getVectorElementType() == MVT::i1)
3506       return lowerVectorMaskVecReduction(Op, DAG, /*IsVP*/ true);
3507     return lowerVPREDUCE(Op, DAG);
3508   case ISD::INSERT_SUBVECTOR:
3509     return lowerINSERT_SUBVECTOR(Op, DAG);
3510   case ISD::EXTRACT_SUBVECTOR:
3511     return lowerEXTRACT_SUBVECTOR(Op, DAG);
3512   case ISD::STEP_VECTOR:
3513     return lowerSTEP_VECTOR(Op, DAG);
3514   case ISD::VECTOR_REVERSE:
3515     return lowerVECTOR_REVERSE(Op, DAG);
3516   case ISD::VECTOR_SPLICE:
3517     return lowerVECTOR_SPLICE(Op, DAG);
3518   case ISD::BUILD_VECTOR:
3519     return lowerBUILD_VECTOR(Op, DAG, Subtarget);
3520   case ISD::SPLAT_VECTOR:
3521     if (Op.getValueType().getVectorElementType() == MVT::i1)
3522       return lowerVectorMaskSplat(Op, DAG);
3523     return SDValue();
3524   case ISD::VECTOR_SHUFFLE:
3525     return lowerVECTOR_SHUFFLE(Op, DAG, Subtarget);
3526   case ISD::CONCAT_VECTORS: {
3527     // Split CONCAT_VECTORS into a series of INSERT_SUBVECTOR nodes. This is
3528     // better than going through the stack, as the default expansion does.
3529     SDLoc DL(Op);
3530     MVT VT = Op.getSimpleValueType();
3531     unsigned NumOpElts =
3532         Op.getOperand(0).getSimpleValueType().getVectorMinNumElements();
3533     SDValue Vec = DAG.getUNDEF(VT);
3534     for (const auto &OpIdx : enumerate(Op->ops())) {
3535       SDValue SubVec = OpIdx.value();
3536       // Don't insert undef subvectors.
3537       if (SubVec.isUndef())
3538         continue;
3539       Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, Vec, SubVec,
3540                         DAG.getIntPtrConstant(OpIdx.index() * NumOpElts, DL));
3541     }
3542     return Vec;
3543   }
3544   case ISD::LOAD:
3545     if (auto V = expandUnalignedRVVLoad(Op, DAG))
3546       return V;
3547     if (Op.getValueType().isFixedLengthVector())
3548       return lowerFixedLengthVectorLoadToRVV(Op, DAG);
3549     return Op;
3550   case ISD::STORE:
3551     if (auto V = expandUnalignedRVVStore(Op, DAG))
3552       return V;
3553     if (Op.getOperand(1).getValueType().isFixedLengthVector())
3554       return lowerFixedLengthVectorStoreToRVV(Op, DAG);
3555     return Op;
3556   case ISD::MLOAD:
3557   case ISD::VP_LOAD:
3558     return lowerMaskedLoad(Op, DAG);
3559   case ISD::MSTORE:
3560   case ISD::VP_STORE:
3561     return lowerMaskedStore(Op, DAG);
3562   case ISD::SETCC:
3563     return lowerFixedLengthVectorSetccToRVV(Op, DAG);
3564   case ISD::ADD:
3565     return lowerToScalableOp(Op, DAG, RISCVISD::ADD_VL);
3566   case ISD::SUB:
3567     return lowerToScalableOp(Op, DAG, RISCVISD::SUB_VL);
3568   case ISD::MUL:
3569     return lowerToScalableOp(Op, DAG, RISCVISD::MUL_VL);
3570   case ISD::MULHS:
3571     return lowerToScalableOp(Op, DAG, RISCVISD::MULHS_VL);
3572   case ISD::MULHU:
3573     return lowerToScalableOp(Op, DAG, RISCVISD::MULHU_VL);
3574   case ISD::AND:
3575     return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMAND_VL,
3576                                               RISCVISD::AND_VL);
3577   case ISD::OR:
3578     return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMOR_VL,
3579                                               RISCVISD::OR_VL);
3580   case ISD::XOR:
3581     return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMXOR_VL,
3582                                               RISCVISD::XOR_VL);
3583   case ISD::SDIV:
3584     return lowerToScalableOp(Op, DAG, RISCVISD::SDIV_VL);
3585   case ISD::SREM:
3586     return lowerToScalableOp(Op, DAG, RISCVISD::SREM_VL);
3587   case ISD::UDIV:
3588     return lowerToScalableOp(Op, DAG, RISCVISD::UDIV_VL);
3589   case ISD::UREM:
3590     return lowerToScalableOp(Op, DAG, RISCVISD::UREM_VL);
3591   case ISD::SHL:
3592   case ISD::SRA:
3593   case ISD::SRL:
3594     if (Op.getSimpleValueType().isFixedLengthVector())
3595       return lowerFixedLengthVectorShiftToRVV(Op, DAG);
3596     // This can be called for an i32 shift amount that needs to be promoted.
3597     assert(Op.getOperand(1).getValueType() == MVT::i32 && Subtarget.is64Bit() &&
3598            "Unexpected custom legalisation");
3599     return SDValue();
3600   case ISD::SADDSAT:
3601     return lowerToScalableOp(Op, DAG, RISCVISD::SADDSAT_VL);
3602   case ISD::UADDSAT:
3603     return lowerToScalableOp(Op, DAG, RISCVISD::UADDSAT_VL);
3604   case ISD::SSUBSAT:
3605     return lowerToScalableOp(Op, DAG, RISCVISD::SSUBSAT_VL);
3606   case ISD::USUBSAT:
3607     return lowerToScalableOp(Op, DAG, RISCVISD::USUBSAT_VL);
3608   case ISD::FADD:
3609     return lowerToScalableOp(Op, DAG, RISCVISD::FADD_VL);
3610   case ISD::FSUB:
3611     return lowerToScalableOp(Op, DAG, RISCVISD::FSUB_VL);
3612   case ISD::FMUL:
3613     return lowerToScalableOp(Op, DAG, RISCVISD::FMUL_VL);
3614   case ISD::FDIV:
3615     return lowerToScalableOp(Op, DAG, RISCVISD::FDIV_VL);
3616   case ISD::FNEG:
3617     return lowerToScalableOp(Op, DAG, RISCVISD::FNEG_VL);
3618   case ISD::FABS:
3619     return lowerToScalableOp(Op, DAG, RISCVISD::FABS_VL);
3620   case ISD::FSQRT:
3621     return lowerToScalableOp(Op, DAG, RISCVISD::FSQRT_VL);
3622   case ISD::FMA:
3623     return lowerToScalableOp(Op, DAG, RISCVISD::FMA_VL);
3624   case ISD::SMIN:
3625     return lowerToScalableOp(Op, DAG, RISCVISD::SMIN_VL);
3626   case ISD::SMAX:
3627     return lowerToScalableOp(Op, DAG, RISCVISD::SMAX_VL);
3628   case ISD::UMIN:
3629     return lowerToScalableOp(Op, DAG, RISCVISD::UMIN_VL);
3630   case ISD::UMAX:
3631     return lowerToScalableOp(Op, DAG, RISCVISD::UMAX_VL);
3632   case ISD::FMINNUM:
3633     return lowerToScalableOp(Op, DAG, RISCVISD::FMINNUM_VL);
3634   case ISD::FMAXNUM:
3635     return lowerToScalableOp(Op, DAG, RISCVISD::FMAXNUM_VL);
3636   case ISD::ABS:
3637     return lowerABS(Op, DAG);
3638   case ISD::CTLZ_ZERO_UNDEF:
3639   case ISD::CTTZ_ZERO_UNDEF:
3640     return lowerCTLZ_CTTZ_ZERO_UNDEF(Op, DAG);
3641   case ISD::VSELECT:
3642     return lowerFixedLengthVectorSelectToRVV(Op, DAG);
3643   case ISD::FCOPYSIGN:
3644     return lowerFixedLengthVectorFCOPYSIGNToRVV(Op, DAG);
3645   case ISD::MGATHER:
3646   case ISD::VP_GATHER:
3647     return lowerMaskedGather(Op, DAG);
3648   case ISD::MSCATTER:
3649   case ISD::VP_SCATTER:
3650     return lowerMaskedScatter(Op, DAG);
3651   case ISD::FLT_ROUNDS_:
3652     return lowerGET_ROUNDING(Op, DAG);
3653   case ISD::SET_ROUNDING:
3654     return lowerSET_ROUNDING(Op, DAG);
3655   case ISD::VP_SELECT:
3656     return lowerVPOp(Op, DAG, RISCVISD::VSELECT_VL);
3657   case ISD::VP_MERGE:
3658     return lowerVPOp(Op, DAG, RISCVISD::VP_MERGE_VL);
3659   case ISD::VP_ADD:
3660     return lowerVPOp(Op, DAG, RISCVISD::ADD_VL);
3661   case ISD::VP_SUB:
3662     return lowerVPOp(Op, DAG, RISCVISD::SUB_VL);
3663   case ISD::VP_MUL:
3664     return lowerVPOp(Op, DAG, RISCVISD::MUL_VL);
3665   case ISD::VP_SDIV:
3666     return lowerVPOp(Op, DAG, RISCVISD::SDIV_VL);
3667   case ISD::VP_UDIV:
3668     return lowerVPOp(Op, DAG, RISCVISD::UDIV_VL);
3669   case ISD::VP_SREM:
3670     return lowerVPOp(Op, DAG, RISCVISD::SREM_VL);
3671   case ISD::VP_UREM:
3672     return lowerVPOp(Op, DAG, RISCVISD::UREM_VL);
3673   case ISD::VP_AND:
3674     return lowerLogicVPOp(Op, DAG, RISCVISD::VMAND_VL, RISCVISD::AND_VL);
3675   case ISD::VP_OR:
3676     return lowerLogicVPOp(Op, DAG, RISCVISD::VMOR_VL, RISCVISD::OR_VL);
3677   case ISD::VP_XOR:
3678     return lowerLogicVPOp(Op, DAG, RISCVISD::VMXOR_VL, RISCVISD::XOR_VL);
3679   case ISD::VP_ASHR:
3680     return lowerVPOp(Op, DAG, RISCVISD::SRA_VL);
3681   case ISD::VP_LSHR:
3682     return lowerVPOp(Op, DAG, RISCVISD::SRL_VL);
3683   case ISD::VP_SHL:
3684     return lowerVPOp(Op, DAG, RISCVISD::SHL_VL);
3685   case ISD::VP_FADD:
3686     return lowerVPOp(Op, DAG, RISCVISD::FADD_VL);
3687   case ISD::VP_FSUB:
3688     return lowerVPOp(Op, DAG, RISCVISD::FSUB_VL);
3689   case ISD::VP_FMUL:
3690     return lowerVPOp(Op, DAG, RISCVISD::FMUL_VL);
3691   case ISD::VP_FDIV:
3692     return lowerVPOp(Op, DAG, RISCVISD::FDIV_VL);
3693   case ISD::VP_FNEG:
3694     return lowerVPOp(Op, DAG, RISCVISD::FNEG_VL);
3695   case ISD::VP_FMA:
3696     return lowerVPOp(Op, DAG, RISCVISD::FMA_VL);
3697   }
3698 }
3699 
3700 static SDValue getTargetNode(GlobalAddressSDNode *N, SDLoc DL, EVT Ty,
3701                              SelectionDAG &DAG, unsigned Flags) {
3702   return DAG.getTargetGlobalAddress(N->getGlobal(), DL, Ty, 0, Flags);
3703 }
3704 
3705 static SDValue getTargetNode(BlockAddressSDNode *N, SDLoc DL, EVT Ty,
3706                              SelectionDAG &DAG, unsigned Flags) {
3707   return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, N->getOffset(),
3708                                    Flags);
3709 }
3710 
3711 static SDValue getTargetNode(ConstantPoolSDNode *N, SDLoc DL, EVT Ty,
3712                              SelectionDAG &DAG, unsigned Flags) {
3713   return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlign(),
3714                                    N->getOffset(), Flags);
3715 }
3716 
3717 static SDValue getTargetNode(JumpTableSDNode *N, SDLoc DL, EVT Ty,
3718                              SelectionDAG &DAG, unsigned Flags) {
3719   return DAG.getTargetJumpTable(N->getIndex(), Ty, Flags);
3720 }
3721 
3722 template <class NodeTy>
3723 SDValue RISCVTargetLowering::getAddr(NodeTy *N, SelectionDAG &DAG,
3724                                      bool IsLocal) const {
3725   SDLoc DL(N);
3726   EVT Ty = getPointerTy(DAG.getDataLayout());
3727 
3728   if (isPositionIndependent()) {
3729     SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0);
3730     if (IsLocal)
3731       // Use PC-relative addressing to access the symbol. This generates the
3732       // pattern (PseudoLLA sym), which expands to (addi (auipc %pcrel_hi(sym))
3733       // %pcrel_lo(auipc)).
3734       return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0);
3735 
3736     // Use PC-relative addressing to access the GOT for this symbol, then load
3737     // the address from the GOT. This generates the pattern (PseudoLA sym),
3738     // which expands to (ld (addi (auipc %got_pcrel_hi(sym)) %pcrel_lo(auipc))).
3739     SDValue Load =
3740         SDValue(DAG.getMachineNode(RISCV::PseudoLA, DL, Ty, Addr), 0);
3741     MachineFunction &MF = DAG.getMachineFunction();
3742     MachineMemOperand *MemOp = MF.getMachineMemOperand(
3743         MachinePointerInfo::getGOT(MF),
3744         MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable |
3745             MachineMemOperand::MOInvariant,
3746         LLT(Ty.getSimpleVT()), Align(Ty.getFixedSizeInBits() / 8));
3747     DAG.setNodeMemRefs(cast<MachineSDNode>(Load.getNode()), {MemOp});
3748     return Load;
3749   }
3750 
3751   switch (getTargetMachine().getCodeModel()) {
3752   default:
3753     report_fatal_error("Unsupported code model for lowering");
3754   case CodeModel::Small: {
3755     // Generate a sequence for accessing addresses within the first 2 GiB of
3756     // address space. This generates the pattern (addi (lui %hi(sym)) %lo(sym)).
3757     SDValue AddrHi = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_HI);
3758     SDValue AddrLo = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_LO);
3759     SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0);
3760     return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNHi, AddrLo), 0);
3761   }
3762   case CodeModel::Medium: {
3763     // Generate a sequence for accessing addresses within any 2GiB range within
3764     // the address space. This generates the pattern (PseudoLLA sym), which
3765     // expands to (addi (auipc %pcrel_hi(sym)) %pcrel_lo(auipc)).
3766     SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0);
3767     return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0);
3768   }
3769   }
3770 }
3771 
3772 SDValue RISCVTargetLowering::lowerGlobalAddress(SDValue Op,
3773                                                 SelectionDAG &DAG) const {
3774   SDLoc DL(Op);
3775   EVT Ty = Op.getValueType();
3776   GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op);
3777   int64_t Offset = N->getOffset();
3778   MVT XLenVT = Subtarget.getXLenVT();
3779 
3780   const GlobalValue *GV = N->getGlobal();
3781   bool IsLocal = getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV);
3782   SDValue Addr = getAddr(N, DAG, IsLocal);
3783 
3784   // In order to maximise the opportunity for common subexpression elimination,
3785   // emit a separate ADD node for the global address offset instead of folding
3786   // it in the global address node. Later peephole optimisations may choose to
3787   // fold it back in when profitable.
3788   if (Offset != 0)
3789     return DAG.getNode(ISD::ADD, DL, Ty, Addr,
3790                        DAG.getConstant(Offset, DL, XLenVT));
3791   return Addr;
3792 }
3793 
3794 SDValue RISCVTargetLowering::lowerBlockAddress(SDValue Op,
3795                                                SelectionDAG &DAG) const {
3796   BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op);
3797 
3798   return getAddr(N, DAG);
3799 }
3800 
3801 SDValue RISCVTargetLowering::lowerConstantPool(SDValue Op,
3802                                                SelectionDAG &DAG) const {
3803   ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op);
3804 
3805   return getAddr(N, DAG);
3806 }
3807 
3808 SDValue RISCVTargetLowering::lowerJumpTable(SDValue Op,
3809                                             SelectionDAG &DAG) const {
3810   JumpTableSDNode *N = cast<JumpTableSDNode>(Op);
3811 
3812   return getAddr(N, DAG);
3813 }
3814 
3815 SDValue RISCVTargetLowering::getStaticTLSAddr(GlobalAddressSDNode *N,
3816                                               SelectionDAG &DAG,
3817                                               bool UseGOT) const {
3818   SDLoc DL(N);
3819   EVT Ty = getPointerTy(DAG.getDataLayout());
3820   const GlobalValue *GV = N->getGlobal();
3821   MVT XLenVT = Subtarget.getXLenVT();
3822 
3823   if (UseGOT) {
3824     // Use PC-relative addressing to access the GOT for this TLS symbol, then
3825     // load the address from the GOT and add the thread pointer. This generates
3826     // the pattern (PseudoLA_TLS_IE sym), which expands to
3827     // (ld (auipc %tls_ie_pcrel_hi(sym)) %pcrel_lo(auipc)).
3828     SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0);
3829     SDValue Load =
3830         SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_IE, DL, Ty, Addr), 0);
3831     MachineFunction &MF = DAG.getMachineFunction();
3832     MachineMemOperand *MemOp = MF.getMachineMemOperand(
3833         MachinePointerInfo::getGOT(MF),
3834         MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable |
3835             MachineMemOperand::MOInvariant,
3836         LLT(Ty.getSimpleVT()), Align(Ty.getFixedSizeInBits() / 8));
3837     DAG.setNodeMemRefs(cast<MachineSDNode>(Load.getNode()), {MemOp});
3838 
3839     // Add the thread pointer.
3840     SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT);
3841     return DAG.getNode(ISD::ADD, DL, Ty, Load, TPReg);
3842   }
3843 
3844   // Generate a sequence for accessing the address relative to the thread
3845   // pointer, with the appropriate adjustment for the thread pointer offset.
3846   // This generates the pattern
3847   // (add (add_tprel (lui %tprel_hi(sym)) tp %tprel_add(sym)) %tprel_lo(sym))
3848   SDValue AddrHi =
3849       DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_HI);
3850   SDValue AddrAdd =
3851       DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_ADD);
3852   SDValue AddrLo =
3853       DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_LO);
3854 
3855   SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0);
3856   SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT);
3857   SDValue MNAdd = SDValue(
3858       DAG.getMachineNode(RISCV::PseudoAddTPRel, DL, Ty, MNHi, TPReg, AddrAdd),
3859       0);
3860   return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNAdd, AddrLo), 0);
3861 }
3862 
3863 SDValue RISCVTargetLowering::getDynamicTLSAddr(GlobalAddressSDNode *N,
3864                                                SelectionDAG &DAG) const {
3865   SDLoc DL(N);
3866   EVT Ty = getPointerTy(DAG.getDataLayout());
3867   IntegerType *CallTy = Type::getIntNTy(*DAG.getContext(), Ty.getSizeInBits());
3868   const GlobalValue *GV = N->getGlobal();
3869 
3870   // Use a PC-relative addressing mode to access the global dynamic GOT address.
3871   // This generates the pattern (PseudoLA_TLS_GD sym), which expands to
3872   // (addi (auipc %tls_gd_pcrel_hi(sym)) %pcrel_lo(auipc)).
3873   SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0);
3874   SDValue Load =
3875       SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_GD, DL, Ty, Addr), 0);
3876 
3877   // Prepare argument list to generate call.
3878   ArgListTy Args;
3879   ArgListEntry Entry;
3880   Entry.Node = Load;
3881   Entry.Ty = CallTy;
3882   Args.push_back(Entry);
3883 
3884   // Setup call to __tls_get_addr.
3885   TargetLowering::CallLoweringInfo CLI(DAG);
3886   CLI.setDebugLoc(DL)
3887       .setChain(DAG.getEntryNode())
3888       .setLibCallee(CallingConv::C, CallTy,
3889                     DAG.getExternalSymbol("__tls_get_addr", Ty),
3890                     std::move(Args));
3891 
3892   return LowerCallTo(CLI).first;
3893 }
3894 
3895 SDValue RISCVTargetLowering::lowerGlobalTLSAddress(SDValue Op,
3896                                                    SelectionDAG &DAG) const {
3897   SDLoc DL(Op);
3898   EVT Ty = Op.getValueType();
3899   GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op);
3900   int64_t Offset = N->getOffset();
3901   MVT XLenVT = Subtarget.getXLenVT();
3902 
3903   TLSModel::Model Model = getTargetMachine().getTLSModel(N->getGlobal());
3904 
3905   if (DAG.getMachineFunction().getFunction().getCallingConv() ==
3906       CallingConv::GHC)
3907     report_fatal_error("In GHC calling convention TLS is not supported");
3908 
3909   SDValue Addr;
3910   switch (Model) {
3911   case TLSModel::LocalExec:
3912     Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/false);
3913     break;
3914   case TLSModel::InitialExec:
3915     Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/true);
3916     break;
3917   case TLSModel::LocalDynamic:
3918   case TLSModel::GeneralDynamic:
3919     Addr = getDynamicTLSAddr(N, DAG);
3920     break;
3921   }
3922 
3923   // In order to maximise the opportunity for common subexpression elimination,
3924   // emit a separate ADD node for the global address offset instead of folding
3925   // it in the global address node. Later peephole optimisations may choose to
3926   // fold it back in when profitable.
3927   if (Offset != 0)
3928     return DAG.getNode(ISD::ADD, DL, Ty, Addr,
3929                        DAG.getConstant(Offset, DL, XLenVT));
3930   return Addr;
3931 }
3932 
3933 SDValue RISCVTargetLowering::lowerSELECT(SDValue Op, SelectionDAG &DAG) const {
3934   SDValue CondV = Op.getOperand(0);
3935   SDValue TrueV = Op.getOperand(1);
3936   SDValue FalseV = Op.getOperand(2);
3937   SDLoc DL(Op);
3938   MVT VT = Op.getSimpleValueType();
3939   MVT XLenVT = Subtarget.getXLenVT();
3940 
3941   // Lower vector SELECTs to VSELECTs by splatting the condition.
3942   if (VT.isVector()) {
3943     MVT SplatCondVT = VT.changeVectorElementType(MVT::i1);
3944     SDValue CondSplat = VT.isScalableVector()
3945                             ? DAG.getSplatVector(SplatCondVT, DL, CondV)
3946                             : DAG.getSplatBuildVector(SplatCondVT, DL, CondV);
3947     return DAG.getNode(ISD::VSELECT, DL, VT, CondSplat, TrueV, FalseV);
3948   }
3949 
3950   // If the result type is XLenVT and CondV is the output of a SETCC node
3951   // which also operated on XLenVT inputs, then merge the SETCC node into the
3952   // lowered RISCVISD::SELECT_CC to take advantage of the integer
3953   // compare+branch instructions. i.e.:
3954   // (select (setcc lhs, rhs, cc), truev, falsev)
3955   // -> (riscvisd::select_cc lhs, rhs, cc, truev, falsev)
3956   if (VT == XLenVT && CondV.getOpcode() == ISD::SETCC &&
3957       CondV.getOperand(0).getSimpleValueType() == XLenVT) {
3958     SDValue LHS = CondV.getOperand(0);
3959     SDValue RHS = CondV.getOperand(1);
3960     const auto *CC = cast<CondCodeSDNode>(CondV.getOperand(2));
3961     ISD::CondCode CCVal = CC->get();
3962 
3963     // Special case for a select of 2 constants that have a diffence of 1.
3964     // Normally this is done by DAGCombine, but if the select is introduced by
3965     // type legalization or op legalization, we miss it. Restricting to SETLT
3966     // case for now because that is what signed saturating add/sub need.
3967     // FIXME: We don't need the condition to be SETLT or even a SETCC,
3968     // but we would probably want to swap the true/false values if the condition
3969     // is SETGE/SETLE to avoid an XORI.
3970     if (isa<ConstantSDNode>(TrueV) && isa<ConstantSDNode>(FalseV) &&
3971         CCVal == ISD::SETLT) {
3972       const APInt &TrueVal = cast<ConstantSDNode>(TrueV)->getAPIntValue();
3973       const APInt &FalseVal = cast<ConstantSDNode>(FalseV)->getAPIntValue();
3974       if (TrueVal - 1 == FalseVal)
3975         return DAG.getNode(ISD::ADD, DL, Op.getValueType(), CondV, FalseV);
3976       if (TrueVal + 1 == FalseVal)
3977         return DAG.getNode(ISD::SUB, DL, Op.getValueType(), FalseV, CondV);
3978     }
3979 
3980     translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
3981 
3982     SDValue TargetCC = DAG.getCondCode(CCVal);
3983     SDValue Ops[] = {LHS, RHS, TargetCC, TrueV, FalseV};
3984     return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops);
3985   }
3986 
3987   // Otherwise:
3988   // (select condv, truev, falsev)
3989   // -> (riscvisd::select_cc condv, zero, setne, truev, falsev)
3990   SDValue Zero = DAG.getConstant(0, DL, XLenVT);
3991   SDValue SetNE = DAG.getCondCode(ISD::SETNE);
3992 
3993   SDValue Ops[] = {CondV, Zero, SetNE, TrueV, FalseV};
3994 
3995   return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops);
3996 }
3997 
3998 SDValue RISCVTargetLowering::lowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
3999   SDValue CondV = Op.getOperand(1);
4000   SDLoc DL(Op);
4001   MVT XLenVT = Subtarget.getXLenVT();
4002 
4003   if (CondV.getOpcode() == ISD::SETCC &&
4004       CondV.getOperand(0).getValueType() == XLenVT) {
4005     SDValue LHS = CondV.getOperand(0);
4006     SDValue RHS = CondV.getOperand(1);
4007     ISD::CondCode CCVal = cast<CondCodeSDNode>(CondV.getOperand(2))->get();
4008 
4009     translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
4010 
4011     SDValue TargetCC = DAG.getCondCode(CCVal);
4012     return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0),
4013                        LHS, RHS, TargetCC, Op.getOperand(2));
4014   }
4015 
4016   return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0),
4017                      CondV, DAG.getConstant(0, DL, XLenVT),
4018                      DAG.getCondCode(ISD::SETNE), Op.getOperand(2));
4019 }
4020 
4021 SDValue RISCVTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const {
4022   MachineFunction &MF = DAG.getMachineFunction();
4023   RISCVMachineFunctionInfo *FuncInfo = MF.getInfo<RISCVMachineFunctionInfo>();
4024 
4025   SDLoc DL(Op);
4026   SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
4027                                  getPointerTy(MF.getDataLayout()));
4028 
4029   // vastart just stores the address of the VarArgsFrameIndex slot into the
4030   // memory location argument.
4031   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
4032   return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1),
4033                       MachinePointerInfo(SV));
4034 }
4035 
4036 SDValue RISCVTargetLowering::lowerFRAMEADDR(SDValue Op,
4037                                             SelectionDAG &DAG) const {
4038   const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo();
4039   MachineFunction &MF = DAG.getMachineFunction();
4040   MachineFrameInfo &MFI = MF.getFrameInfo();
4041   MFI.setFrameAddressIsTaken(true);
4042   Register FrameReg = RI.getFrameRegister(MF);
4043   int XLenInBytes = Subtarget.getXLen() / 8;
4044 
4045   EVT VT = Op.getValueType();
4046   SDLoc DL(Op);
4047   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, FrameReg, VT);
4048   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
4049   while (Depth--) {
4050     int Offset = -(XLenInBytes * 2);
4051     SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr,
4052                               DAG.getIntPtrConstant(Offset, DL));
4053     FrameAddr =
4054         DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo());
4055   }
4056   return FrameAddr;
4057 }
4058 
4059 SDValue RISCVTargetLowering::lowerRETURNADDR(SDValue Op,
4060                                              SelectionDAG &DAG) const {
4061   const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo();
4062   MachineFunction &MF = DAG.getMachineFunction();
4063   MachineFrameInfo &MFI = MF.getFrameInfo();
4064   MFI.setReturnAddressIsTaken(true);
4065   MVT XLenVT = Subtarget.getXLenVT();
4066   int XLenInBytes = Subtarget.getXLen() / 8;
4067 
4068   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
4069     return SDValue();
4070 
4071   EVT VT = Op.getValueType();
4072   SDLoc DL(Op);
4073   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
4074   if (Depth) {
4075     int Off = -XLenInBytes;
4076     SDValue FrameAddr = lowerFRAMEADDR(Op, DAG);
4077     SDValue Offset = DAG.getConstant(Off, DL, VT);
4078     return DAG.getLoad(VT, DL, DAG.getEntryNode(),
4079                        DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset),
4080                        MachinePointerInfo());
4081   }
4082 
4083   // Return the value of the return address register, marking it an implicit
4084   // live-in.
4085   Register Reg = MF.addLiveIn(RI.getRARegister(), getRegClassFor(XLenVT));
4086   return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, XLenVT);
4087 }
4088 
4089 SDValue RISCVTargetLowering::lowerShiftLeftParts(SDValue Op,
4090                                                  SelectionDAG &DAG) const {
4091   SDLoc DL(Op);
4092   SDValue Lo = Op.getOperand(0);
4093   SDValue Hi = Op.getOperand(1);
4094   SDValue Shamt = Op.getOperand(2);
4095   EVT VT = Lo.getValueType();
4096 
4097   // if Shamt-XLEN < 0: // Shamt < XLEN
4098   //   Lo = Lo << Shamt
4099   //   Hi = (Hi << Shamt) | ((Lo >>u 1) >>u (XLEN-1 ^ Shamt))
4100   // else:
4101   //   Lo = 0
4102   //   Hi = Lo << (Shamt-XLEN)
4103 
4104   SDValue Zero = DAG.getConstant(0, DL, VT);
4105   SDValue One = DAG.getConstant(1, DL, VT);
4106   SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT);
4107   SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT);
4108   SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen);
4109   SDValue XLenMinus1Shamt = DAG.getNode(ISD::XOR, DL, VT, Shamt, XLenMinus1);
4110 
4111   SDValue LoTrue = DAG.getNode(ISD::SHL, DL, VT, Lo, Shamt);
4112   SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, VT, Lo, One);
4113   SDValue ShiftRightLo =
4114       DAG.getNode(ISD::SRL, DL, VT, ShiftRight1Lo, XLenMinus1Shamt);
4115   SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, Hi, Shamt);
4116   SDValue HiTrue = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo);
4117   SDValue HiFalse = DAG.getNode(ISD::SHL, DL, VT, Lo, ShamtMinusXLen);
4118 
4119   SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT);
4120 
4121   Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, Zero);
4122   Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse);
4123 
4124   SDValue Parts[2] = {Lo, Hi};
4125   return DAG.getMergeValues(Parts, DL);
4126 }
4127 
4128 SDValue RISCVTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG,
4129                                                   bool IsSRA) const {
4130   SDLoc DL(Op);
4131   SDValue Lo = Op.getOperand(0);
4132   SDValue Hi = Op.getOperand(1);
4133   SDValue Shamt = Op.getOperand(2);
4134   EVT VT = Lo.getValueType();
4135 
4136   // SRA expansion:
4137   //   if Shamt-XLEN < 0: // Shamt < XLEN
4138   //     Lo = (Lo >>u Shamt) | ((Hi << 1) << (ShAmt ^ XLEN-1))
4139   //     Hi = Hi >>s Shamt
4140   //   else:
4141   //     Lo = Hi >>s (Shamt-XLEN);
4142   //     Hi = Hi >>s (XLEN-1)
4143   //
4144   // SRL expansion:
4145   //   if Shamt-XLEN < 0: // Shamt < XLEN
4146   //     Lo = (Lo >>u Shamt) | ((Hi << 1) << (ShAmt ^ XLEN-1))
4147   //     Hi = Hi >>u Shamt
4148   //   else:
4149   //     Lo = Hi >>u (Shamt-XLEN);
4150   //     Hi = 0;
4151 
4152   unsigned ShiftRightOp = IsSRA ? ISD::SRA : ISD::SRL;
4153 
4154   SDValue Zero = DAG.getConstant(0, DL, VT);
4155   SDValue One = DAG.getConstant(1, DL, VT);
4156   SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT);
4157   SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT);
4158   SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen);
4159   SDValue XLenMinus1Shamt = DAG.getNode(ISD::XOR, DL, VT, Shamt, XLenMinus1);
4160 
4161   SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, Lo, Shamt);
4162   SDValue ShiftLeftHi1 = DAG.getNode(ISD::SHL, DL, VT, Hi, One);
4163   SDValue ShiftLeftHi =
4164       DAG.getNode(ISD::SHL, DL, VT, ShiftLeftHi1, XLenMinus1Shamt);
4165   SDValue LoTrue = DAG.getNode(ISD::OR, DL, VT, ShiftRightLo, ShiftLeftHi);
4166   SDValue HiTrue = DAG.getNode(ShiftRightOp, DL, VT, Hi, Shamt);
4167   SDValue LoFalse = DAG.getNode(ShiftRightOp, DL, VT, Hi, ShamtMinusXLen);
4168   SDValue HiFalse =
4169       IsSRA ? DAG.getNode(ISD::SRA, DL, VT, Hi, XLenMinus1) : Zero;
4170 
4171   SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT);
4172 
4173   Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, LoFalse);
4174   Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse);
4175 
4176   SDValue Parts[2] = {Lo, Hi};
4177   return DAG.getMergeValues(Parts, DL);
4178 }
4179 
4180 // Lower splats of i1 types to SETCC. For each mask vector type, we have a
4181 // legal equivalently-sized i8 type, so we can use that as a go-between.
4182 SDValue RISCVTargetLowering::lowerVectorMaskSplat(SDValue Op,
4183                                                   SelectionDAG &DAG) const {
4184   SDLoc DL(Op);
4185   MVT VT = Op.getSimpleValueType();
4186   SDValue SplatVal = Op.getOperand(0);
4187   // All-zeros or all-ones splats are handled specially.
4188   if (ISD::isConstantSplatVectorAllOnes(Op.getNode())) {
4189     SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second;
4190     return DAG.getNode(RISCVISD::VMSET_VL, DL, VT, VL);
4191   }
4192   if (ISD::isConstantSplatVectorAllZeros(Op.getNode())) {
4193     SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second;
4194     return DAG.getNode(RISCVISD::VMCLR_VL, DL, VT, VL);
4195   }
4196   MVT XLenVT = Subtarget.getXLenVT();
4197   assert(SplatVal.getValueType() == XLenVT &&
4198          "Unexpected type for i1 splat value");
4199   MVT InterVT = VT.changeVectorElementType(MVT::i8);
4200   SplatVal = DAG.getNode(ISD::AND, DL, XLenVT, SplatVal,
4201                          DAG.getConstant(1, DL, XLenVT));
4202   SDValue LHS = DAG.getSplatVector(InterVT, DL, SplatVal);
4203   SDValue Zero = DAG.getConstant(0, DL, InterVT);
4204   return DAG.getSetCC(DL, VT, LHS, Zero, ISD::SETNE);
4205 }
4206 
4207 // Custom-lower a SPLAT_VECTOR_PARTS where XLEN<SEW, as the SEW element type is
4208 // illegal (currently only vXi64 RV32).
4209 // FIXME: We could also catch non-constant sign-extended i32 values and lower
4210 // them to VMV_V_X_VL.
4211 SDValue RISCVTargetLowering::lowerSPLAT_VECTOR_PARTS(SDValue Op,
4212                                                      SelectionDAG &DAG) const {
4213   SDLoc DL(Op);
4214   MVT VecVT = Op.getSimpleValueType();
4215   assert(!Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64 &&
4216          "Unexpected SPLAT_VECTOR_PARTS lowering");
4217 
4218   assert(Op.getNumOperands() == 2 && "Unexpected number of operands!");
4219   SDValue Lo = Op.getOperand(0);
4220   SDValue Hi = Op.getOperand(1);
4221 
4222   if (VecVT.isFixedLengthVector()) {
4223     MVT ContainerVT = getContainerForFixedLengthVector(VecVT);
4224     SDLoc DL(Op);
4225     SDValue Mask, VL;
4226     std::tie(Mask, VL) =
4227         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
4228 
4229     SDValue Res =
4230         splatPartsI64WithVL(DL, ContainerVT, SDValue(), Lo, Hi, VL, DAG);
4231     return convertFromScalableVector(VecVT, Res, DAG, Subtarget);
4232   }
4233 
4234   if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) {
4235     int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue();
4236     int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue();
4237     // If Hi constant is all the same sign bit as Lo, lower this as a custom
4238     // node in order to try and match RVV vector/scalar instructions.
4239     if ((LoC >> 31) == HiC)
4240       return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, DAG.getUNDEF(VecVT),
4241                          Lo, DAG.getRegister(RISCV::X0, MVT::i32));
4242   }
4243 
4244   // Detect cases where Hi is (SRA Lo, 31) which means Hi is Lo sign extended.
4245   if (Hi.getOpcode() == ISD::SRA && Hi.getOperand(0) == Lo &&
4246       isa<ConstantSDNode>(Hi.getOperand(1)) &&
4247       Hi.getConstantOperandVal(1) == 31)
4248     return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, DAG.getUNDEF(VecVT), Lo,
4249                        DAG.getRegister(RISCV::X0, MVT::i32));
4250 
4251   // Fall back to use a stack store and stride x0 vector load. Use X0 as VL.
4252   return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VecVT,
4253                      DAG.getUNDEF(VecVT), Lo, Hi,
4254                      DAG.getRegister(RISCV::X0, MVT::i32));
4255 }
4256 
4257 // Custom-lower extensions from mask vectors by using a vselect either with 1
4258 // for zero/any-extension or -1 for sign-extension:
4259 //   (vXiN = (s|z)ext vXi1:vmask) -> (vXiN = vselect vmask, (-1 or 1), 0)
4260 // Note that any-extension is lowered identically to zero-extension.
4261 SDValue RISCVTargetLowering::lowerVectorMaskExt(SDValue Op, SelectionDAG &DAG,
4262                                                 int64_t ExtTrueVal) const {
4263   SDLoc DL(Op);
4264   MVT VecVT = Op.getSimpleValueType();
4265   SDValue Src = Op.getOperand(0);
4266   // Only custom-lower extensions from mask types
4267   assert(Src.getValueType().isVector() &&
4268          Src.getValueType().getVectorElementType() == MVT::i1);
4269 
4270   MVT XLenVT = Subtarget.getXLenVT();
4271   SDValue SplatZero = DAG.getConstant(0, DL, XLenVT);
4272   SDValue SplatTrueVal = DAG.getConstant(ExtTrueVal, DL, XLenVT);
4273 
4274   if (VecVT.isScalableVector()) {
4275     // Be careful not to introduce illegal scalar types at this stage, and be
4276     // careful also about splatting constants as on RV32, vXi64 SPLAT_VECTOR is
4277     // illegal and must be expanded. Since we know that the constants are
4278     // sign-extended 32-bit values, we use VMV_V_X_VL directly.
4279     bool IsRV32E64 =
4280         !Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64;
4281 
4282     if (!IsRV32E64) {
4283       SplatZero = DAG.getSplatVector(VecVT, DL, SplatZero);
4284       SplatTrueVal = DAG.getSplatVector(VecVT, DL, SplatTrueVal);
4285     } else {
4286       SplatZero =
4287           DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, DAG.getUNDEF(VecVT),
4288                       SplatZero, DAG.getRegister(RISCV::X0, XLenVT));
4289       SplatTrueVal =
4290           DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, DAG.getUNDEF(VecVT),
4291                       SplatTrueVal, DAG.getRegister(RISCV::X0, XLenVT));
4292     }
4293 
4294     return DAG.getNode(ISD::VSELECT, DL, VecVT, Src, SplatTrueVal, SplatZero);
4295   }
4296 
4297   MVT ContainerVT = getContainerForFixedLengthVector(VecVT);
4298   MVT I1ContainerVT =
4299       MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
4300 
4301   SDValue CC = convertToScalableVector(I1ContainerVT, Src, DAG, Subtarget);
4302 
4303   SDValue Mask, VL;
4304   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
4305 
4306   SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
4307                           DAG.getUNDEF(ContainerVT), SplatZero, VL);
4308   SplatTrueVal = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
4309                              DAG.getUNDEF(ContainerVT), SplatTrueVal, VL);
4310   SDValue Select = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC,
4311                                SplatTrueVal, SplatZero, VL);
4312 
4313   return convertFromScalableVector(VecVT, Select, DAG, Subtarget);
4314 }
4315 
4316 SDValue RISCVTargetLowering::lowerFixedLengthVectorExtendToRVV(
4317     SDValue Op, SelectionDAG &DAG, unsigned ExtendOpc) const {
4318   MVT ExtVT = Op.getSimpleValueType();
4319   // Only custom-lower extensions from fixed-length vector types.
4320   if (!ExtVT.isFixedLengthVector())
4321     return Op;
4322   MVT VT = Op.getOperand(0).getSimpleValueType();
4323   // Grab the canonical container type for the extended type. Infer the smaller
4324   // type from that to ensure the same number of vector elements, as we know
4325   // the LMUL will be sufficient to hold the smaller type.
4326   MVT ContainerExtVT = getContainerForFixedLengthVector(ExtVT);
4327   // Get the extended container type manually to ensure the same number of
4328   // vector elements between source and dest.
4329   MVT ContainerVT = MVT::getVectorVT(VT.getVectorElementType(),
4330                                      ContainerExtVT.getVectorElementCount());
4331 
4332   SDValue Op1 =
4333       convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget);
4334 
4335   SDLoc DL(Op);
4336   SDValue Mask, VL;
4337   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
4338 
4339   SDValue Ext = DAG.getNode(ExtendOpc, DL, ContainerExtVT, Op1, Mask, VL);
4340 
4341   return convertFromScalableVector(ExtVT, Ext, DAG, Subtarget);
4342 }
4343 
4344 // Custom-lower truncations from vectors to mask vectors by using a mask and a
4345 // setcc operation:
4346 //   (vXi1 = trunc vXiN vec) -> (vXi1 = setcc (and vec, 1), 0, ne)
4347 SDValue RISCVTargetLowering::lowerVectorMaskTrunc(SDValue Op,
4348                                                   SelectionDAG &DAG) const {
4349   SDLoc DL(Op);
4350   EVT MaskVT = Op.getValueType();
4351   // Only expect to custom-lower truncations to mask types
4352   assert(MaskVT.isVector() && MaskVT.getVectorElementType() == MVT::i1 &&
4353          "Unexpected type for vector mask lowering");
4354   SDValue Src = Op.getOperand(0);
4355   MVT VecVT = Src.getSimpleValueType();
4356 
4357   // If this is a fixed vector, we need to convert it to a scalable vector.
4358   MVT ContainerVT = VecVT;
4359   if (VecVT.isFixedLengthVector()) {
4360     ContainerVT = getContainerForFixedLengthVector(VecVT);
4361     Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget);
4362   }
4363 
4364   SDValue SplatOne = DAG.getConstant(1, DL, Subtarget.getXLenVT());
4365   SDValue SplatZero = DAG.getConstant(0, DL, Subtarget.getXLenVT());
4366 
4367   SplatOne = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
4368                          DAG.getUNDEF(ContainerVT), SplatOne);
4369   SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
4370                           DAG.getUNDEF(ContainerVT), SplatZero);
4371 
4372   if (VecVT.isScalableVector()) {
4373     SDValue Trunc = DAG.getNode(ISD::AND, DL, VecVT, Src, SplatOne);
4374     return DAG.getSetCC(DL, MaskVT, Trunc, SplatZero, ISD::SETNE);
4375   }
4376 
4377   SDValue Mask, VL;
4378   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
4379 
4380   MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1);
4381   SDValue Trunc =
4382       DAG.getNode(RISCVISD::AND_VL, DL, ContainerVT, Src, SplatOne, Mask, VL);
4383   Trunc = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskContainerVT, Trunc, SplatZero,
4384                       DAG.getCondCode(ISD::SETNE), Mask, VL);
4385   return convertFromScalableVector(MaskVT, Trunc, DAG, Subtarget);
4386 }
4387 
4388 // Custom-legalize INSERT_VECTOR_ELT so that the value is inserted into the
4389 // first position of a vector, and that vector is slid up to the insert index.
4390 // By limiting the active vector length to index+1 and merging with the
4391 // original vector (with an undisturbed tail policy for elements >= VL), we
4392 // achieve the desired result of leaving all elements untouched except the one
4393 // at VL-1, which is replaced with the desired value.
4394 SDValue RISCVTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op,
4395                                                     SelectionDAG &DAG) const {
4396   SDLoc DL(Op);
4397   MVT VecVT = Op.getSimpleValueType();
4398   SDValue Vec = Op.getOperand(0);
4399   SDValue Val = Op.getOperand(1);
4400   SDValue Idx = Op.getOperand(2);
4401 
4402   if (VecVT.getVectorElementType() == MVT::i1) {
4403     // FIXME: For now we just promote to an i8 vector and insert into that,
4404     // but this is probably not optimal.
4405     MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount());
4406     Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec);
4407     Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, WideVT, Vec, Val, Idx);
4408     return DAG.getNode(ISD::TRUNCATE, DL, VecVT, Vec);
4409   }
4410 
4411   MVT ContainerVT = VecVT;
4412   // If the operand is a fixed-length vector, convert to a scalable one.
4413   if (VecVT.isFixedLengthVector()) {
4414     ContainerVT = getContainerForFixedLengthVector(VecVT);
4415     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
4416   }
4417 
4418   MVT XLenVT = Subtarget.getXLenVT();
4419 
4420   SDValue Zero = DAG.getConstant(0, DL, XLenVT);
4421   bool IsLegalInsert = Subtarget.is64Bit() || Val.getValueType() != MVT::i64;
4422   // Even i64-element vectors on RV32 can be lowered without scalar
4423   // legalization if the most-significant 32 bits of the value are not affected
4424   // by the sign-extension of the lower 32 bits.
4425   // TODO: We could also catch sign extensions of a 32-bit value.
4426   if (!IsLegalInsert && isa<ConstantSDNode>(Val)) {
4427     const auto *CVal = cast<ConstantSDNode>(Val);
4428     if (isInt<32>(CVal->getSExtValue())) {
4429       IsLegalInsert = true;
4430       Val = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32);
4431     }
4432   }
4433 
4434   SDValue Mask, VL;
4435   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
4436 
4437   SDValue ValInVec;
4438 
4439   if (IsLegalInsert) {
4440     unsigned Opc =
4441         VecVT.isFloatingPoint() ? RISCVISD::VFMV_S_F_VL : RISCVISD::VMV_S_X_VL;
4442     if (isNullConstant(Idx)) {
4443       Vec = DAG.getNode(Opc, DL, ContainerVT, Vec, Val, VL);
4444       if (!VecVT.isFixedLengthVector())
4445         return Vec;
4446       return convertFromScalableVector(VecVT, Vec, DAG, Subtarget);
4447     }
4448     ValInVec =
4449         DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), Val, VL);
4450   } else {
4451     // On RV32, i64-element vectors must be specially handled to place the
4452     // value at element 0, by using two vslide1up instructions in sequence on
4453     // the i32 split lo/hi value. Use an equivalently-sized i32 vector for
4454     // this.
4455     SDValue One = DAG.getConstant(1, DL, XLenVT);
4456     SDValue ValLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, Zero);
4457     SDValue ValHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, One);
4458     MVT I32ContainerVT =
4459         MVT::getVectorVT(MVT::i32, ContainerVT.getVectorElementCount() * 2);
4460     SDValue I32Mask =
4461         getDefaultScalableVLOps(I32ContainerVT, DL, DAG, Subtarget).first;
4462     // Limit the active VL to two.
4463     SDValue InsertI64VL = DAG.getConstant(2, DL, XLenVT);
4464     // Note: We can't pass a UNDEF to the first VSLIDE1UP_VL since an untied
4465     // undef doesn't obey the earlyclobber constraint. Just splat a zero value.
4466     ValInVec = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, I32ContainerVT,
4467                            DAG.getUNDEF(I32ContainerVT), Zero, InsertI64VL);
4468     // First slide in the hi value, then the lo in underneath it.
4469     ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT,
4470                            DAG.getUNDEF(I32ContainerVT), ValInVec, ValHi,
4471                            I32Mask, InsertI64VL);
4472     ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT,
4473                            DAG.getUNDEF(I32ContainerVT), ValInVec, ValLo,
4474                            I32Mask, InsertI64VL);
4475     // Bitcast back to the right container type.
4476     ValInVec = DAG.getBitcast(ContainerVT, ValInVec);
4477   }
4478 
4479   // Now that the value is in a vector, slide it into position.
4480   SDValue InsertVL =
4481       DAG.getNode(ISD::ADD, DL, XLenVT, Idx, DAG.getConstant(1, DL, XLenVT));
4482   SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec,
4483                                 ValInVec, Idx, Mask, InsertVL);
4484   if (!VecVT.isFixedLengthVector())
4485     return Slideup;
4486   return convertFromScalableVector(VecVT, Slideup, DAG, Subtarget);
4487 }
4488 
4489 // Custom-lower EXTRACT_VECTOR_ELT operations to slide the vector down, then
4490 // extract the first element: (extractelt (slidedown vec, idx), 0). For integer
4491 // types this is done using VMV_X_S to allow us to glean information about the
4492 // sign bits of the result.
4493 SDValue RISCVTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op,
4494                                                      SelectionDAG &DAG) const {
4495   SDLoc DL(Op);
4496   SDValue Idx = Op.getOperand(1);
4497   SDValue Vec = Op.getOperand(0);
4498   EVT EltVT = Op.getValueType();
4499   MVT VecVT = Vec.getSimpleValueType();
4500   MVT XLenVT = Subtarget.getXLenVT();
4501 
4502   if (VecVT.getVectorElementType() == MVT::i1) {
4503     if (VecVT.isFixedLengthVector()) {
4504       unsigned NumElts = VecVT.getVectorNumElements();
4505       if (NumElts >= 8) {
4506         MVT WideEltVT;
4507         unsigned WidenVecLen;
4508         SDValue ExtractElementIdx;
4509         SDValue ExtractBitIdx;
4510         unsigned MaxEEW = Subtarget.getMaxELENForFixedLengthVectors();
4511         MVT LargestEltVT = MVT::getIntegerVT(
4512             std::min(MaxEEW, unsigned(XLenVT.getSizeInBits())));
4513         if (NumElts <= LargestEltVT.getSizeInBits()) {
4514           assert(isPowerOf2_32(NumElts) &&
4515                  "the number of elements should be power of 2");
4516           WideEltVT = MVT::getIntegerVT(NumElts);
4517           WidenVecLen = 1;
4518           ExtractElementIdx = DAG.getConstant(0, DL, XLenVT);
4519           ExtractBitIdx = Idx;
4520         } else {
4521           WideEltVT = LargestEltVT;
4522           WidenVecLen = NumElts / WideEltVT.getSizeInBits();
4523           // extract element index = index / element width
4524           ExtractElementIdx = DAG.getNode(
4525               ISD::SRL, DL, XLenVT, Idx,
4526               DAG.getConstant(Log2_64(WideEltVT.getSizeInBits()), DL, XLenVT));
4527           // mask bit index = index % element width
4528           ExtractBitIdx = DAG.getNode(
4529               ISD::AND, DL, XLenVT, Idx,
4530               DAG.getConstant(WideEltVT.getSizeInBits() - 1, DL, XLenVT));
4531         }
4532         MVT WideVT = MVT::getVectorVT(WideEltVT, WidenVecLen);
4533         Vec = DAG.getNode(ISD::BITCAST, DL, WideVT, Vec);
4534         SDValue ExtractElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, XLenVT,
4535                                          Vec, ExtractElementIdx);
4536         // Extract the bit from GPR.
4537         SDValue ShiftRight =
4538             DAG.getNode(ISD::SRL, DL, XLenVT, ExtractElt, ExtractBitIdx);
4539         return DAG.getNode(ISD::AND, DL, XLenVT, ShiftRight,
4540                            DAG.getConstant(1, DL, XLenVT));
4541       }
4542     }
4543     // Otherwise, promote to an i8 vector and extract from that.
4544     MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount());
4545     Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec);
4546     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec, Idx);
4547   }
4548 
4549   // If this is a fixed vector, we need to convert it to a scalable vector.
4550   MVT ContainerVT = VecVT;
4551   if (VecVT.isFixedLengthVector()) {
4552     ContainerVT = getContainerForFixedLengthVector(VecVT);
4553     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
4554   }
4555 
4556   // If the index is 0, the vector is already in the right position.
4557   if (!isNullConstant(Idx)) {
4558     // Use a VL of 1 to avoid processing more elements than we need.
4559     SDValue VL = DAG.getConstant(1, DL, XLenVT);
4560     MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
4561     SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
4562     Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT,
4563                       DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL);
4564   }
4565 
4566   if (!EltVT.isInteger()) {
4567     // Floating-point extracts are handled in TableGen.
4568     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec,
4569                        DAG.getConstant(0, DL, XLenVT));
4570   }
4571 
4572   SDValue Elt0 = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec);
4573   return DAG.getNode(ISD::TRUNCATE, DL, EltVT, Elt0);
4574 }
4575 
4576 // Some RVV intrinsics may claim that they want an integer operand to be
4577 // promoted or expanded.
4578 static SDValue lowerVectorIntrinsicScalars(SDValue Op, SelectionDAG &DAG,
4579                                            const RISCVSubtarget &Subtarget) {
4580   assert((Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
4581           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN) &&
4582          "Unexpected opcode");
4583 
4584   if (!Subtarget.hasVInstructions())
4585     return SDValue();
4586 
4587   bool HasChain = Op.getOpcode() == ISD::INTRINSIC_W_CHAIN;
4588   unsigned IntNo = Op.getConstantOperandVal(HasChain ? 1 : 0);
4589   SDLoc DL(Op);
4590 
4591   const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II =
4592       RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo);
4593   if (!II || !II->hasScalarOperand())
4594     return SDValue();
4595 
4596   unsigned SplatOp = II->ScalarOperand + 1 + HasChain;
4597   assert(SplatOp < Op.getNumOperands());
4598 
4599   SmallVector<SDValue, 8> Operands(Op->op_begin(), Op->op_end());
4600   SDValue &ScalarOp = Operands[SplatOp];
4601   MVT OpVT = ScalarOp.getSimpleValueType();
4602   MVT XLenVT = Subtarget.getXLenVT();
4603 
4604   // If this isn't a scalar, or its type is XLenVT we're done.
4605   if (!OpVT.isScalarInteger() || OpVT == XLenVT)
4606     return SDValue();
4607 
4608   // Simplest case is that the operand needs to be promoted to XLenVT.
4609   if (OpVT.bitsLT(XLenVT)) {
4610     // If the operand is a constant, sign extend to increase our chances
4611     // of being able to use a .vi instruction. ANY_EXTEND would become a
4612     // a zero extend and the simm5 check in isel would fail.
4613     // FIXME: Should we ignore the upper bits in isel instead?
4614     unsigned ExtOpc =
4615         isa<ConstantSDNode>(ScalarOp) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND;
4616     ScalarOp = DAG.getNode(ExtOpc, DL, XLenVT, ScalarOp);
4617     return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands);
4618   }
4619 
4620   // Use the previous operand to get the vXi64 VT. The result might be a mask
4621   // VT for compares. Using the previous operand assumes that the previous
4622   // operand will never have a smaller element size than a scalar operand and
4623   // that a widening operation never uses SEW=64.
4624   // NOTE: If this fails the below assert, we can probably just find the
4625   // element count from any operand or result and use it to construct the VT.
4626   assert(II->ScalarOperand > 0 && "Unexpected splat operand!");
4627   MVT VT = Op.getOperand(SplatOp - 1).getSimpleValueType();
4628 
4629   // The more complex case is when the scalar is larger than XLenVT.
4630   assert(XLenVT == MVT::i32 && OpVT == MVT::i64 &&
4631          VT.getVectorElementType() == MVT::i64 && "Unexpected VTs!");
4632 
4633   // If this is a sign-extended 32-bit constant, we can truncate it and rely
4634   // on the instruction to sign-extend since SEW>XLEN.
4635   if (auto *CVal = dyn_cast<ConstantSDNode>(ScalarOp)) {
4636     if (isInt<32>(CVal->getSExtValue())) {
4637       ScalarOp = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32);
4638       return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands);
4639     }
4640   }
4641 
4642   switch (IntNo) {
4643   case Intrinsic::riscv_vslide1up:
4644   case Intrinsic::riscv_vslide1down:
4645   case Intrinsic::riscv_vslide1up_mask:
4646   case Intrinsic::riscv_vslide1down_mask: {
4647     // We need to special case these when the scalar is larger than XLen.
4648     unsigned NumOps = Op.getNumOperands();
4649     bool IsMasked = NumOps == 7;
4650 
4651     // Convert the vector source to the equivalent nxvXi32 vector.
4652     MVT I32VT = MVT::getVectorVT(MVT::i32, VT.getVectorElementCount() * 2);
4653     SDValue Vec = DAG.getBitcast(I32VT, Operands[2]);
4654 
4655     SDValue ScalarLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, ScalarOp,
4656                                    DAG.getConstant(0, DL, XLenVT));
4657     SDValue ScalarHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, ScalarOp,
4658                                    DAG.getConstant(1, DL, XLenVT));
4659 
4660     // Double the VL since we halved SEW.
4661     SDValue AVL = getVLOperand(Op);
4662     SDValue I32VL;
4663 
4664     // Optimize for constant AVL
4665     if (isa<ConstantSDNode>(AVL)) {
4666       unsigned EltSize = VT.getScalarSizeInBits();
4667       unsigned MinSize = VT.getSizeInBits().getKnownMinValue();
4668 
4669       unsigned VectorBitsMax = Subtarget.getRealMaxVLen();
4670       unsigned MaxVLMAX =
4671           RISCVTargetLowering::computeVLMAX(VectorBitsMax, EltSize, MinSize);
4672 
4673       unsigned VectorBitsMin = Subtarget.getRealMinVLen();
4674       unsigned MinVLMAX =
4675           RISCVTargetLowering::computeVLMAX(VectorBitsMin, EltSize, MinSize);
4676 
4677       uint64_t AVLInt = cast<ConstantSDNode>(AVL)->getZExtValue();
4678       if (AVLInt <= MinVLMAX) {
4679         I32VL = DAG.getConstant(2 * AVLInt, DL, XLenVT);
4680       } else if (AVLInt >= 2 * MaxVLMAX) {
4681         // Just set vl to VLMAX in this situation
4682         RISCVII::VLMUL Lmul = RISCVTargetLowering::getLMUL(I32VT);
4683         SDValue LMUL = DAG.getConstant(Lmul, DL, XLenVT);
4684         unsigned Sew = RISCVVType::encodeSEW(I32VT.getScalarSizeInBits());
4685         SDValue SEW = DAG.getConstant(Sew, DL, XLenVT);
4686         SDValue SETVLMAX = DAG.getTargetConstant(
4687             Intrinsic::riscv_vsetvlimax_opt, DL, MVT::i32);
4688         I32VL = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, XLenVT, SETVLMAX, SEW,
4689                             LMUL);
4690       } else {
4691         // For AVL between (MinVLMAX, 2 * MaxVLMAX), the actual working vl
4692         // is related to the hardware implementation.
4693         // So let the following code handle
4694       }
4695     }
4696     if (!I32VL) {
4697       RISCVII::VLMUL Lmul = RISCVTargetLowering::getLMUL(VT);
4698       SDValue LMUL = DAG.getConstant(Lmul, DL, XLenVT);
4699       unsigned Sew = RISCVVType::encodeSEW(VT.getScalarSizeInBits());
4700       SDValue SEW = DAG.getConstant(Sew, DL, XLenVT);
4701       SDValue SETVL =
4702           DAG.getTargetConstant(Intrinsic::riscv_vsetvli_opt, DL, MVT::i32);
4703       // Using vsetvli instruction to get actually used length which related to
4704       // the hardware implementation
4705       SDValue VL = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, XLenVT, SETVL, AVL,
4706                                SEW, LMUL);
4707       I32VL =
4708           DAG.getNode(ISD::SHL, DL, XLenVT, VL, DAG.getConstant(1, DL, XLenVT));
4709     }
4710 
4711     MVT I32MaskVT = MVT::getVectorVT(MVT::i1, I32VT.getVectorElementCount());
4712     SDValue I32Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, I32MaskVT, I32VL);
4713 
4714     // Shift the two scalar parts in using SEW=32 slide1up/slide1down
4715     // instructions.
4716     SDValue Passthru;
4717     if (IsMasked)
4718       Passthru = DAG.getUNDEF(I32VT);
4719     else
4720       Passthru = DAG.getBitcast(I32VT, Operands[1]);
4721 
4722     if (IntNo == Intrinsic::riscv_vslide1up ||
4723         IntNo == Intrinsic::riscv_vslide1up_mask) {
4724       Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Passthru, Vec,
4725                         ScalarHi, I32Mask, I32VL);
4726       Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Passthru, Vec,
4727                         ScalarLo, I32Mask, I32VL);
4728     } else {
4729       Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Passthru, Vec,
4730                         ScalarLo, I32Mask, I32VL);
4731       Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Passthru, Vec,
4732                         ScalarHi, I32Mask, I32VL);
4733     }
4734 
4735     // Convert back to nxvXi64.
4736     Vec = DAG.getBitcast(VT, Vec);
4737 
4738     if (!IsMasked)
4739       return Vec;
4740     // Apply mask after the operation.
4741     SDValue Mask = Operands[NumOps - 3];
4742     SDValue MaskedOff = Operands[1];
4743     // Assume Policy operand is the last operand.
4744     uint64_t Policy =
4745         cast<ConstantSDNode>(Operands[NumOps - 1])->getZExtValue();
4746     // We don't need to select maskedoff if it's undef.
4747     if (MaskedOff.isUndef())
4748       return Vec;
4749     // TAMU
4750     if (Policy == RISCVII::TAIL_AGNOSTIC)
4751       return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, Mask, Vec, MaskedOff,
4752                          AVL);
4753     // TUMA or TUMU: Currently we always emit tumu policy regardless of tuma.
4754     // It's fine because vmerge does not care mask policy.
4755     return DAG.getNode(RISCVISD::VP_MERGE_VL, DL, VT, Mask, Vec, MaskedOff,
4756                        AVL);
4757   }
4758   }
4759 
4760   // We need to convert the scalar to a splat vector.
4761   // FIXME: Can we implicitly truncate the scalar if it is known to
4762   // be sign extended?
4763   SDValue VL = getVLOperand(Op);
4764   assert(VL.getValueType() == XLenVT);
4765   ScalarOp = splatSplitI64WithVL(DL, VT, SDValue(), ScalarOp, VL, DAG);
4766   return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands);
4767 }
4768 
4769 SDValue RISCVTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
4770                                                      SelectionDAG &DAG) const {
4771   unsigned IntNo = Op.getConstantOperandVal(0);
4772   SDLoc DL(Op);
4773   MVT XLenVT = Subtarget.getXLenVT();
4774 
4775   switch (IntNo) {
4776   default:
4777     break; // Don't custom lower most intrinsics.
4778   case Intrinsic::thread_pointer: {
4779     EVT PtrVT = getPointerTy(DAG.getDataLayout());
4780     return DAG.getRegister(RISCV::X4, PtrVT);
4781   }
4782   case Intrinsic::riscv_orc_b:
4783   case Intrinsic::riscv_brev8: {
4784     // Lower to the GORCI encoding for orc.b or the GREVI encoding for brev8.
4785     unsigned Opc =
4786         IntNo == Intrinsic::riscv_brev8 ? RISCVISD::GREV : RISCVISD::GORC;
4787     return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1),
4788                        DAG.getConstant(7, DL, XLenVT));
4789   }
4790   case Intrinsic::riscv_grev:
4791   case Intrinsic::riscv_gorc: {
4792     unsigned Opc =
4793         IntNo == Intrinsic::riscv_grev ? RISCVISD::GREV : RISCVISD::GORC;
4794     return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2));
4795   }
4796   case Intrinsic::riscv_zip:
4797   case Intrinsic::riscv_unzip: {
4798     // Lower to the SHFLI encoding for zip or the UNSHFLI encoding for unzip.
4799     // For i32 the immediate is 15. For i64 the immediate is 31.
4800     unsigned Opc =
4801         IntNo == Intrinsic::riscv_zip ? RISCVISD::SHFL : RISCVISD::UNSHFL;
4802     unsigned BitWidth = Op.getValueSizeInBits();
4803     assert(isPowerOf2_32(BitWidth) && BitWidth >= 2 && "Unexpected bit width");
4804     return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1),
4805                        DAG.getConstant((BitWidth / 2) - 1, DL, XLenVT));
4806   }
4807   case Intrinsic::riscv_shfl:
4808   case Intrinsic::riscv_unshfl: {
4809     unsigned Opc =
4810         IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL;
4811     return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2));
4812   }
4813   case Intrinsic::riscv_bcompress:
4814   case Intrinsic::riscv_bdecompress: {
4815     unsigned Opc = IntNo == Intrinsic::riscv_bcompress ? RISCVISD::BCOMPRESS
4816                                                        : RISCVISD::BDECOMPRESS;
4817     return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2));
4818   }
4819   case Intrinsic::riscv_bfp:
4820     return DAG.getNode(RISCVISD::BFP, DL, XLenVT, Op.getOperand(1),
4821                        Op.getOperand(2));
4822   case Intrinsic::riscv_fsl:
4823     return DAG.getNode(RISCVISD::FSL, DL, XLenVT, Op.getOperand(1),
4824                        Op.getOperand(2), Op.getOperand(3));
4825   case Intrinsic::riscv_fsr:
4826     return DAG.getNode(RISCVISD::FSR, DL, XLenVT, Op.getOperand(1),
4827                        Op.getOperand(2), Op.getOperand(3));
4828   case Intrinsic::riscv_vmv_x_s:
4829     assert(Op.getValueType() == XLenVT && "Unexpected VT!");
4830     return DAG.getNode(RISCVISD::VMV_X_S, DL, Op.getValueType(),
4831                        Op.getOperand(1));
4832   case Intrinsic::riscv_vmv_v_x:
4833     return lowerScalarSplat(Op.getOperand(1), Op.getOperand(2),
4834                             Op.getOperand(3), Op.getSimpleValueType(), DL, DAG,
4835                             Subtarget);
4836   case Intrinsic::riscv_vfmv_v_f:
4837     return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, Op.getValueType(),
4838                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
4839   case Intrinsic::riscv_vmv_s_x: {
4840     SDValue Scalar = Op.getOperand(2);
4841 
4842     if (Scalar.getValueType().bitsLE(XLenVT)) {
4843       Scalar = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Scalar);
4844       return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, Op.getValueType(),
4845                          Op.getOperand(1), Scalar, Op.getOperand(3));
4846     }
4847 
4848     assert(Scalar.getValueType() == MVT::i64 && "Unexpected scalar VT!");
4849 
4850     // This is an i64 value that lives in two scalar registers. We have to
4851     // insert this in a convoluted way. First we build vXi64 splat containing
4852     // the/ two values that we assemble using some bit math. Next we'll use
4853     // vid.v and vmseq to build a mask with bit 0 set. Then we'll use that mask
4854     // to merge element 0 from our splat into the source vector.
4855     // FIXME: This is probably not the best way to do this, but it is
4856     // consistent with INSERT_VECTOR_ELT lowering so it is a good starting
4857     // point.
4858     //   sw lo, (a0)
4859     //   sw hi, 4(a0)
4860     //   vlse vX, (a0)
4861     //
4862     //   vid.v      vVid
4863     //   vmseq.vx   mMask, vVid, 0
4864     //   vmerge.vvm vDest, vSrc, vVal, mMask
4865     MVT VT = Op.getSimpleValueType();
4866     SDValue Vec = Op.getOperand(1);
4867     SDValue VL = getVLOperand(Op);
4868 
4869     SDValue SplattedVal = splatSplitI64WithVL(DL, VT, SDValue(), Scalar, VL, DAG);
4870     if (Op.getOperand(1).isUndef())
4871       return SplattedVal;
4872     SDValue SplattedIdx =
4873         DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, DAG.getUNDEF(VT),
4874                     DAG.getConstant(0, DL, MVT::i32), VL);
4875 
4876     MVT MaskVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount());
4877     SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
4878     SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL);
4879     SDValue SelectCond =
4880         DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, VID, SplattedIdx,
4881                     DAG.getCondCode(ISD::SETEQ), Mask, VL);
4882     return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, SelectCond, SplattedVal,
4883                        Vec, VL);
4884   }
4885   }
4886 
4887   return lowerVectorIntrinsicScalars(Op, DAG, Subtarget);
4888 }
4889 
4890 SDValue RISCVTargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op,
4891                                                     SelectionDAG &DAG) const {
4892   unsigned IntNo = Op.getConstantOperandVal(1);
4893   switch (IntNo) {
4894   default:
4895     break;
4896   case Intrinsic::riscv_masked_strided_load: {
4897     SDLoc DL(Op);
4898     MVT XLenVT = Subtarget.getXLenVT();
4899 
4900     // If the mask is known to be all ones, optimize to an unmasked intrinsic;
4901     // the selection of the masked intrinsics doesn't do this for us.
4902     SDValue Mask = Op.getOperand(5);
4903     bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
4904 
4905     MVT VT = Op->getSimpleValueType(0);
4906     MVT ContainerVT = getContainerForFixedLengthVector(VT);
4907 
4908     SDValue PassThru = Op.getOperand(2);
4909     if (!IsUnmasked) {
4910       MVT MaskVT =
4911           MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
4912       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
4913       PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget);
4914     }
4915 
4916     SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT);
4917 
4918     SDValue IntID = DAG.getTargetConstant(
4919         IsUnmasked ? Intrinsic::riscv_vlse : Intrinsic::riscv_vlse_mask, DL,
4920         XLenVT);
4921 
4922     auto *Load = cast<MemIntrinsicSDNode>(Op);
4923     SmallVector<SDValue, 8> Ops{Load->getChain(), IntID};
4924     if (IsUnmasked)
4925       Ops.push_back(DAG.getUNDEF(ContainerVT));
4926     else
4927       Ops.push_back(PassThru);
4928     Ops.push_back(Op.getOperand(3)); // Ptr
4929     Ops.push_back(Op.getOperand(4)); // Stride
4930     if (!IsUnmasked)
4931       Ops.push_back(Mask);
4932     Ops.push_back(VL);
4933     if (!IsUnmasked) {
4934       SDValue Policy = DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT);
4935       Ops.push_back(Policy);
4936     }
4937 
4938     SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
4939     SDValue Result =
4940         DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops,
4941                                 Load->getMemoryVT(), Load->getMemOperand());
4942     SDValue Chain = Result.getValue(1);
4943     Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
4944     return DAG.getMergeValues({Result, Chain}, DL);
4945   }
4946   case Intrinsic::riscv_seg2_load:
4947   case Intrinsic::riscv_seg3_load:
4948   case Intrinsic::riscv_seg4_load:
4949   case Intrinsic::riscv_seg5_load:
4950   case Intrinsic::riscv_seg6_load:
4951   case Intrinsic::riscv_seg7_load:
4952   case Intrinsic::riscv_seg8_load: {
4953     SDLoc DL(Op);
4954     static const Intrinsic::ID VlsegInts[7] = {
4955         Intrinsic::riscv_vlseg2, Intrinsic::riscv_vlseg3,
4956         Intrinsic::riscv_vlseg4, Intrinsic::riscv_vlseg5,
4957         Intrinsic::riscv_vlseg6, Intrinsic::riscv_vlseg7,
4958         Intrinsic::riscv_vlseg8};
4959     unsigned NF = Op->getNumValues() - 1;
4960     assert(NF >= 2 && NF <= 8 && "Unexpected seg number");
4961     MVT XLenVT = Subtarget.getXLenVT();
4962     MVT VT = Op->getSimpleValueType(0);
4963     MVT ContainerVT = getContainerForFixedLengthVector(VT);
4964 
4965     SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT);
4966     SDValue IntID = DAG.getTargetConstant(VlsegInts[NF - 2], DL, XLenVT);
4967     auto *Load = cast<MemIntrinsicSDNode>(Op);
4968     SmallVector<EVT, 9> ContainerVTs(NF, ContainerVT);
4969     ContainerVTs.push_back(MVT::Other);
4970     SDVTList VTs = DAG.getVTList(ContainerVTs);
4971     SDValue Result =
4972         DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs,
4973                                 {Load->getChain(), IntID, Op.getOperand(2), VL},
4974                                 Load->getMemoryVT(), Load->getMemOperand());
4975     SmallVector<SDValue, 9> Results;
4976     for (unsigned int RetIdx = 0; RetIdx < NF; RetIdx++)
4977       Results.push_back(convertFromScalableVector(VT, Result.getValue(RetIdx),
4978                                                   DAG, Subtarget));
4979     Results.push_back(Result.getValue(NF));
4980     return DAG.getMergeValues(Results, DL);
4981   }
4982   }
4983 
4984   return lowerVectorIntrinsicScalars(Op, DAG, Subtarget);
4985 }
4986 
4987 SDValue RISCVTargetLowering::LowerINTRINSIC_VOID(SDValue Op,
4988                                                  SelectionDAG &DAG) const {
4989   unsigned IntNo = Op.getConstantOperandVal(1);
4990   switch (IntNo) {
4991   default:
4992     break;
4993   case Intrinsic::riscv_masked_strided_store: {
4994     SDLoc DL(Op);
4995     MVT XLenVT = Subtarget.getXLenVT();
4996 
4997     // If the mask is known to be all ones, optimize to an unmasked intrinsic;
4998     // the selection of the masked intrinsics doesn't do this for us.
4999     SDValue Mask = Op.getOperand(5);
5000     bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
5001 
5002     SDValue Val = Op.getOperand(2);
5003     MVT VT = Val.getSimpleValueType();
5004     MVT ContainerVT = getContainerForFixedLengthVector(VT);
5005 
5006     Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget);
5007     if (!IsUnmasked) {
5008       MVT MaskVT =
5009           MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
5010       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
5011     }
5012 
5013     SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT);
5014 
5015     SDValue IntID = DAG.getTargetConstant(
5016         IsUnmasked ? Intrinsic::riscv_vsse : Intrinsic::riscv_vsse_mask, DL,
5017         XLenVT);
5018 
5019     auto *Store = cast<MemIntrinsicSDNode>(Op);
5020     SmallVector<SDValue, 8> Ops{Store->getChain(), IntID};
5021     Ops.push_back(Val);
5022     Ops.push_back(Op.getOperand(3)); // Ptr
5023     Ops.push_back(Op.getOperand(4)); // Stride
5024     if (!IsUnmasked)
5025       Ops.push_back(Mask);
5026     Ops.push_back(VL);
5027 
5028     return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, Store->getVTList(),
5029                                    Ops, Store->getMemoryVT(),
5030                                    Store->getMemOperand());
5031   }
5032   }
5033 
5034   return SDValue();
5035 }
5036 
5037 static MVT getLMUL1VT(MVT VT) {
5038   assert(VT.getVectorElementType().getSizeInBits() <= 64 &&
5039          "Unexpected vector MVT");
5040   return MVT::getScalableVectorVT(
5041       VT.getVectorElementType(),
5042       RISCV::RVVBitsPerBlock / VT.getVectorElementType().getSizeInBits());
5043 }
5044 
5045 static unsigned getRVVReductionOp(unsigned ISDOpcode) {
5046   switch (ISDOpcode) {
5047   default:
5048     llvm_unreachable("Unhandled reduction");
5049   case ISD::VECREDUCE_ADD:
5050     return RISCVISD::VECREDUCE_ADD_VL;
5051   case ISD::VECREDUCE_UMAX:
5052     return RISCVISD::VECREDUCE_UMAX_VL;
5053   case ISD::VECREDUCE_SMAX:
5054     return RISCVISD::VECREDUCE_SMAX_VL;
5055   case ISD::VECREDUCE_UMIN:
5056     return RISCVISD::VECREDUCE_UMIN_VL;
5057   case ISD::VECREDUCE_SMIN:
5058     return RISCVISD::VECREDUCE_SMIN_VL;
5059   case ISD::VECREDUCE_AND:
5060     return RISCVISD::VECREDUCE_AND_VL;
5061   case ISD::VECREDUCE_OR:
5062     return RISCVISD::VECREDUCE_OR_VL;
5063   case ISD::VECREDUCE_XOR:
5064     return RISCVISD::VECREDUCE_XOR_VL;
5065   }
5066 }
5067 
5068 SDValue RISCVTargetLowering::lowerVectorMaskVecReduction(SDValue Op,
5069                                                          SelectionDAG &DAG,
5070                                                          bool IsVP) const {
5071   SDLoc DL(Op);
5072   SDValue Vec = Op.getOperand(IsVP ? 1 : 0);
5073   MVT VecVT = Vec.getSimpleValueType();
5074   assert((Op.getOpcode() == ISD::VECREDUCE_AND ||
5075           Op.getOpcode() == ISD::VECREDUCE_OR ||
5076           Op.getOpcode() == ISD::VECREDUCE_XOR ||
5077           Op.getOpcode() == ISD::VP_REDUCE_AND ||
5078           Op.getOpcode() == ISD::VP_REDUCE_OR ||
5079           Op.getOpcode() == ISD::VP_REDUCE_XOR) &&
5080          "Unexpected reduction lowering");
5081 
5082   MVT XLenVT = Subtarget.getXLenVT();
5083   assert(Op.getValueType() == XLenVT &&
5084          "Expected reduction output to be legalized to XLenVT");
5085 
5086   MVT ContainerVT = VecVT;
5087   if (VecVT.isFixedLengthVector()) {
5088     ContainerVT = getContainerForFixedLengthVector(VecVT);
5089     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
5090   }
5091 
5092   SDValue Mask, VL;
5093   if (IsVP) {
5094     Mask = Op.getOperand(2);
5095     VL = Op.getOperand(3);
5096   } else {
5097     std::tie(Mask, VL) =
5098         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
5099   }
5100 
5101   unsigned BaseOpc;
5102   ISD::CondCode CC;
5103   SDValue Zero = DAG.getConstant(0, DL, XLenVT);
5104 
5105   switch (Op.getOpcode()) {
5106   default:
5107     llvm_unreachable("Unhandled reduction");
5108   case ISD::VECREDUCE_AND:
5109   case ISD::VP_REDUCE_AND: {
5110     // vcpop ~x == 0
5111     SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL);
5112     Vec = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Vec, TrueMask, VL);
5113     Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL);
5114     CC = ISD::SETEQ;
5115     BaseOpc = ISD::AND;
5116     break;
5117   }
5118   case ISD::VECREDUCE_OR:
5119   case ISD::VP_REDUCE_OR:
5120     // vcpop x != 0
5121     Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL);
5122     CC = ISD::SETNE;
5123     BaseOpc = ISD::OR;
5124     break;
5125   case ISD::VECREDUCE_XOR:
5126   case ISD::VP_REDUCE_XOR: {
5127     // ((vcpop x) & 1) != 0
5128     SDValue One = DAG.getConstant(1, DL, XLenVT);
5129     Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL);
5130     Vec = DAG.getNode(ISD::AND, DL, XLenVT, Vec, One);
5131     CC = ISD::SETNE;
5132     BaseOpc = ISD::XOR;
5133     break;
5134   }
5135   }
5136 
5137   SDValue SetCC = DAG.getSetCC(DL, XLenVT, Vec, Zero, CC);
5138 
5139   if (!IsVP)
5140     return SetCC;
5141 
5142   // Now include the start value in the operation.
5143   // Note that we must return the start value when no elements are operated
5144   // upon. The vcpop instructions we've emitted in each case above will return
5145   // 0 for an inactive vector, and so we've already received the neutral value:
5146   // AND gives us (0 == 0) -> 1 and OR/XOR give us (0 != 0) -> 0. Therefore we
5147   // can simply include the start value.
5148   return DAG.getNode(BaseOpc, DL, XLenVT, SetCC, Op.getOperand(0));
5149 }
5150 
5151 SDValue RISCVTargetLowering::lowerVECREDUCE(SDValue Op,
5152                                             SelectionDAG &DAG) const {
5153   SDLoc DL(Op);
5154   SDValue Vec = Op.getOperand(0);
5155   EVT VecEVT = Vec.getValueType();
5156 
5157   unsigned BaseOpc = ISD::getVecReduceBaseOpcode(Op.getOpcode());
5158 
5159   // Due to ordering in legalize types we may have a vector type that needs to
5160   // be split. Do that manually so we can get down to a legal type.
5161   while (getTypeAction(*DAG.getContext(), VecEVT) ==
5162          TargetLowering::TypeSplitVector) {
5163     SDValue Lo, Hi;
5164     std::tie(Lo, Hi) = DAG.SplitVector(Vec, DL);
5165     VecEVT = Lo.getValueType();
5166     Vec = DAG.getNode(BaseOpc, DL, VecEVT, Lo, Hi);
5167   }
5168 
5169   // TODO: The type may need to be widened rather than split. Or widened before
5170   // it can be split.
5171   if (!isTypeLegal(VecEVT))
5172     return SDValue();
5173 
5174   MVT VecVT = VecEVT.getSimpleVT();
5175   MVT VecEltVT = VecVT.getVectorElementType();
5176   unsigned RVVOpcode = getRVVReductionOp(Op.getOpcode());
5177 
5178   MVT ContainerVT = VecVT;
5179   if (VecVT.isFixedLengthVector()) {
5180     ContainerVT = getContainerForFixedLengthVector(VecVT);
5181     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
5182   }
5183 
5184   MVT M1VT = getLMUL1VT(ContainerVT);
5185   MVT XLenVT = Subtarget.getXLenVT();
5186 
5187   SDValue Mask, VL;
5188   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
5189 
5190   SDValue NeutralElem =
5191       DAG.getNeutralElement(BaseOpc, DL, VecEltVT, SDNodeFlags());
5192   SDValue IdentitySplat =
5193       lowerScalarSplat(SDValue(), NeutralElem, DAG.getConstant(1, DL, XLenVT),
5194                        M1VT, DL, DAG, Subtarget);
5195   SDValue Reduction = DAG.getNode(RVVOpcode, DL, M1VT, DAG.getUNDEF(M1VT), Vec,
5196                                   IdentitySplat, Mask, VL);
5197   SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction,
5198                              DAG.getConstant(0, DL, XLenVT));
5199   return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType());
5200 }
5201 
5202 // Given a reduction op, this function returns the matching reduction opcode,
5203 // the vector SDValue and the scalar SDValue required to lower this to a
5204 // RISCVISD node.
5205 static std::tuple<unsigned, SDValue, SDValue>
5206 getRVVFPReductionOpAndOperands(SDValue Op, SelectionDAG &DAG, EVT EltVT) {
5207   SDLoc DL(Op);
5208   auto Flags = Op->getFlags();
5209   unsigned Opcode = Op.getOpcode();
5210   unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Opcode);
5211   switch (Opcode) {
5212   default:
5213     llvm_unreachable("Unhandled reduction");
5214   case ISD::VECREDUCE_FADD: {
5215     // Use positive zero if we can. It is cheaper to materialize.
5216     SDValue Zero =
5217         DAG.getConstantFP(Flags.hasNoSignedZeros() ? 0.0 : -0.0, DL, EltVT);
5218     return std::make_tuple(RISCVISD::VECREDUCE_FADD_VL, Op.getOperand(0), Zero);
5219   }
5220   case ISD::VECREDUCE_SEQ_FADD:
5221     return std::make_tuple(RISCVISD::VECREDUCE_SEQ_FADD_VL, Op.getOperand(1),
5222                            Op.getOperand(0));
5223   case ISD::VECREDUCE_FMIN:
5224     return std::make_tuple(RISCVISD::VECREDUCE_FMIN_VL, Op.getOperand(0),
5225                            DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags));
5226   case ISD::VECREDUCE_FMAX:
5227     return std::make_tuple(RISCVISD::VECREDUCE_FMAX_VL, Op.getOperand(0),
5228                            DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags));
5229   }
5230 }
5231 
5232 SDValue RISCVTargetLowering::lowerFPVECREDUCE(SDValue Op,
5233                                               SelectionDAG &DAG) const {
5234   SDLoc DL(Op);
5235   MVT VecEltVT = Op.getSimpleValueType();
5236 
5237   unsigned RVVOpcode;
5238   SDValue VectorVal, ScalarVal;
5239   std::tie(RVVOpcode, VectorVal, ScalarVal) =
5240       getRVVFPReductionOpAndOperands(Op, DAG, VecEltVT);
5241   MVT VecVT = VectorVal.getSimpleValueType();
5242 
5243   MVT ContainerVT = VecVT;
5244   if (VecVT.isFixedLengthVector()) {
5245     ContainerVT = getContainerForFixedLengthVector(VecVT);
5246     VectorVal = convertToScalableVector(ContainerVT, VectorVal, DAG, Subtarget);
5247   }
5248 
5249   MVT M1VT = getLMUL1VT(VectorVal.getSimpleValueType());
5250   MVT XLenVT = Subtarget.getXLenVT();
5251 
5252   SDValue Mask, VL;
5253   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
5254 
5255   SDValue ScalarSplat =
5256       lowerScalarSplat(SDValue(), ScalarVal, DAG.getConstant(1, DL, XLenVT),
5257                        M1VT, DL, DAG, Subtarget);
5258   SDValue Reduction = DAG.getNode(RVVOpcode, DL, M1VT, DAG.getUNDEF(M1VT),
5259                                   VectorVal, ScalarSplat, Mask, VL);
5260   return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction,
5261                      DAG.getConstant(0, DL, XLenVT));
5262 }
5263 
5264 static unsigned getRVVVPReductionOp(unsigned ISDOpcode) {
5265   switch (ISDOpcode) {
5266   default:
5267     llvm_unreachable("Unhandled reduction");
5268   case ISD::VP_REDUCE_ADD:
5269     return RISCVISD::VECREDUCE_ADD_VL;
5270   case ISD::VP_REDUCE_UMAX:
5271     return RISCVISD::VECREDUCE_UMAX_VL;
5272   case ISD::VP_REDUCE_SMAX:
5273     return RISCVISD::VECREDUCE_SMAX_VL;
5274   case ISD::VP_REDUCE_UMIN:
5275     return RISCVISD::VECREDUCE_UMIN_VL;
5276   case ISD::VP_REDUCE_SMIN:
5277     return RISCVISD::VECREDUCE_SMIN_VL;
5278   case ISD::VP_REDUCE_AND:
5279     return RISCVISD::VECREDUCE_AND_VL;
5280   case ISD::VP_REDUCE_OR:
5281     return RISCVISD::VECREDUCE_OR_VL;
5282   case ISD::VP_REDUCE_XOR:
5283     return RISCVISD::VECREDUCE_XOR_VL;
5284   case ISD::VP_REDUCE_FADD:
5285     return RISCVISD::VECREDUCE_FADD_VL;
5286   case ISD::VP_REDUCE_SEQ_FADD:
5287     return RISCVISD::VECREDUCE_SEQ_FADD_VL;
5288   case ISD::VP_REDUCE_FMAX:
5289     return RISCVISD::VECREDUCE_FMAX_VL;
5290   case ISD::VP_REDUCE_FMIN:
5291     return RISCVISD::VECREDUCE_FMIN_VL;
5292   }
5293 }
5294 
5295 SDValue RISCVTargetLowering::lowerVPREDUCE(SDValue Op,
5296                                            SelectionDAG &DAG) const {
5297   SDLoc DL(Op);
5298   SDValue Vec = Op.getOperand(1);
5299   EVT VecEVT = Vec.getValueType();
5300 
5301   // TODO: The type may need to be widened rather than split. Or widened before
5302   // it can be split.
5303   if (!isTypeLegal(VecEVT))
5304     return SDValue();
5305 
5306   MVT VecVT = VecEVT.getSimpleVT();
5307   MVT VecEltVT = VecVT.getVectorElementType();
5308   unsigned RVVOpcode = getRVVVPReductionOp(Op.getOpcode());
5309 
5310   MVT ContainerVT = VecVT;
5311   if (VecVT.isFixedLengthVector()) {
5312     ContainerVT = getContainerForFixedLengthVector(VecVT);
5313     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
5314   }
5315 
5316   SDValue VL = Op.getOperand(3);
5317   SDValue Mask = Op.getOperand(2);
5318 
5319   MVT M1VT = getLMUL1VT(ContainerVT);
5320   MVT XLenVT = Subtarget.getXLenVT();
5321   MVT ResVT = !VecVT.isInteger() || VecEltVT.bitsGE(XLenVT) ? VecEltVT : XLenVT;
5322 
5323   SDValue StartSplat = lowerScalarSplat(SDValue(), Op.getOperand(0),
5324                                         DAG.getConstant(1, DL, XLenVT), M1VT,
5325                                         DL, DAG, Subtarget);
5326   SDValue Reduction =
5327       DAG.getNode(RVVOpcode, DL, M1VT, StartSplat, Vec, StartSplat, Mask, VL);
5328   SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Reduction,
5329                              DAG.getConstant(0, DL, XLenVT));
5330   if (!VecVT.isInteger())
5331     return Elt0;
5332   return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType());
5333 }
5334 
5335 SDValue RISCVTargetLowering::lowerINSERT_SUBVECTOR(SDValue Op,
5336                                                    SelectionDAG &DAG) const {
5337   SDValue Vec = Op.getOperand(0);
5338   SDValue SubVec = Op.getOperand(1);
5339   MVT VecVT = Vec.getSimpleValueType();
5340   MVT SubVecVT = SubVec.getSimpleValueType();
5341 
5342   SDLoc DL(Op);
5343   MVT XLenVT = Subtarget.getXLenVT();
5344   unsigned OrigIdx = Op.getConstantOperandVal(2);
5345   const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo();
5346 
5347   // We don't have the ability to slide mask vectors up indexed by their i1
5348   // elements; the smallest we can do is i8. Often we are able to bitcast to
5349   // equivalent i8 vectors. Note that when inserting a fixed-length vector
5350   // into a scalable one, we might not necessarily have enough scalable
5351   // elements to safely divide by 8: nxv1i1 = insert nxv1i1, v4i1 is valid.
5352   if (SubVecVT.getVectorElementType() == MVT::i1 &&
5353       (OrigIdx != 0 || !Vec.isUndef())) {
5354     if (VecVT.getVectorMinNumElements() >= 8 &&
5355         SubVecVT.getVectorMinNumElements() >= 8) {
5356       assert(OrigIdx % 8 == 0 && "Invalid index");
5357       assert(VecVT.getVectorMinNumElements() % 8 == 0 &&
5358              SubVecVT.getVectorMinNumElements() % 8 == 0 &&
5359              "Unexpected mask vector lowering");
5360       OrigIdx /= 8;
5361       SubVecVT =
5362           MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8,
5363                            SubVecVT.isScalableVector());
5364       VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8,
5365                                VecVT.isScalableVector());
5366       Vec = DAG.getBitcast(VecVT, Vec);
5367       SubVec = DAG.getBitcast(SubVecVT, SubVec);
5368     } else {
5369       // We can't slide this mask vector up indexed by its i1 elements.
5370       // This poses a problem when we wish to insert a scalable vector which
5371       // can't be re-expressed as a larger type. Just choose the slow path and
5372       // extend to a larger type, then truncate back down.
5373       MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8);
5374       MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8);
5375       Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec);
5376       SubVec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtSubVecVT, SubVec);
5377       Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ExtVecVT, Vec, SubVec,
5378                         Op.getOperand(2));
5379       SDValue SplatZero = DAG.getConstant(0, DL, ExtVecVT);
5380       return DAG.getSetCC(DL, VecVT, Vec, SplatZero, ISD::SETNE);
5381     }
5382   }
5383 
5384   // If the subvector vector is a fixed-length type, we cannot use subregister
5385   // manipulation to simplify the codegen; we don't know which register of a
5386   // LMUL group contains the specific subvector as we only know the minimum
5387   // register size. Therefore we must slide the vector group up the full
5388   // amount.
5389   if (SubVecVT.isFixedLengthVector()) {
5390     if (OrigIdx == 0 && Vec.isUndef() && !VecVT.isFixedLengthVector())
5391       return Op;
5392     MVT ContainerVT = VecVT;
5393     if (VecVT.isFixedLengthVector()) {
5394       ContainerVT = getContainerForFixedLengthVector(VecVT);
5395       Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
5396     }
5397     SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ContainerVT,
5398                          DAG.getUNDEF(ContainerVT), SubVec,
5399                          DAG.getConstant(0, DL, XLenVT));
5400     if (OrigIdx == 0 && Vec.isUndef() && VecVT.isFixedLengthVector()) {
5401       SubVec = convertFromScalableVector(VecVT, SubVec, DAG, Subtarget);
5402       return DAG.getBitcast(Op.getValueType(), SubVec);
5403     }
5404     SDValue Mask =
5405         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first;
5406     // Set the vector length to only the number of elements we care about. Note
5407     // that for slideup this includes the offset.
5408     SDValue VL =
5409         DAG.getConstant(OrigIdx + SubVecVT.getVectorNumElements(), DL, XLenVT);
5410     SDValue SlideupAmt = DAG.getConstant(OrigIdx, DL, XLenVT);
5411     SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec,
5412                                   SubVec, SlideupAmt, Mask, VL);
5413     if (VecVT.isFixedLengthVector())
5414       Slideup = convertFromScalableVector(VecVT, Slideup, DAG, Subtarget);
5415     return DAG.getBitcast(Op.getValueType(), Slideup);
5416   }
5417 
5418   unsigned SubRegIdx, RemIdx;
5419   std::tie(SubRegIdx, RemIdx) =
5420       RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs(
5421           VecVT, SubVecVT, OrigIdx, TRI);
5422 
5423   RISCVII::VLMUL SubVecLMUL = RISCVTargetLowering::getLMUL(SubVecVT);
5424   bool IsSubVecPartReg = SubVecLMUL == RISCVII::VLMUL::LMUL_F2 ||
5425                          SubVecLMUL == RISCVII::VLMUL::LMUL_F4 ||
5426                          SubVecLMUL == RISCVII::VLMUL::LMUL_F8;
5427 
5428   // 1. If the Idx has been completely eliminated and this subvector's size is
5429   // a vector register or a multiple thereof, or the surrounding elements are
5430   // undef, then this is a subvector insert which naturally aligns to a vector
5431   // register. These can easily be handled using subregister manipulation.
5432   // 2. If the subvector is smaller than a vector register, then the insertion
5433   // must preserve the undisturbed elements of the register. We do this by
5434   // lowering to an EXTRACT_SUBVECTOR grabbing the nearest LMUL=1 vector type
5435   // (which resolves to a subregister copy), performing a VSLIDEUP to place the
5436   // subvector within the vector register, and an INSERT_SUBVECTOR of that
5437   // LMUL=1 type back into the larger vector (resolving to another subregister
5438   // operation). See below for how our VSLIDEUP works. We go via a LMUL=1 type
5439   // to avoid allocating a large register group to hold our subvector.
5440   if (RemIdx == 0 && (!IsSubVecPartReg || Vec.isUndef()))
5441     return Op;
5442 
5443   // VSLIDEUP works by leaving elements 0<i<OFFSET undisturbed, elements
5444   // OFFSET<=i<VL set to the "subvector" and vl<=i<VLMAX set to the tail policy
5445   // (in our case undisturbed). This means we can set up a subvector insertion
5446   // where OFFSET is the insertion offset, and the VL is the OFFSET plus the
5447   // size of the subvector.
5448   MVT InterSubVT = VecVT;
5449   SDValue AlignedExtract = Vec;
5450   unsigned AlignedIdx = OrigIdx - RemIdx;
5451   if (VecVT.bitsGT(getLMUL1VT(VecVT))) {
5452     InterSubVT = getLMUL1VT(VecVT);
5453     // Extract a subvector equal to the nearest full vector register type. This
5454     // should resolve to a EXTRACT_SUBREG instruction.
5455     AlignedExtract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec,
5456                                  DAG.getConstant(AlignedIdx, DL, XLenVT));
5457   }
5458 
5459   SDValue SlideupAmt = DAG.getConstant(RemIdx, DL, XLenVT);
5460   // For scalable vectors this must be further multiplied by vscale.
5461   SlideupAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlideupAmt);
5462 
5463   SDValue Mask, VL;
5464   std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget);
5465 
5466   // Construct the vector length corresponding to RemIdx + length(SubVecVT).
5467   VL = DAG.getConstant(SubVecVT.getVectorMinNumElements(), DL, XLenVT);
5468   VL = DAG.getNode(ISD::VSCALE, DL, XLenVT, VL);
5469   VL = DAG.getNode(ISD::ADD, DL, XLenVT, SlideupAmt, VL);
5470 
5471   SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, InterSubVT,
5472                        DAG.getUNDEF(InterSubVT), SubVec,
5473                        DAG.getConstant(0, DL, XLenVT));
5474 
5475   SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, InterSubVT,
5476                                 AlignedExtract, SubVec, SlideupAmt, Mask, VL);
5477 
5478   // If required, insert this subvector back into the correct vector register.
5479   // This should resolve to an INSERT_SUBREG instruction.
5480   if (VecVT.bitsGT(InterSubVT))
5481     Slideup = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, Vec, Slideup,
5482                           DAG.getConstant(AlignedIdx, DL, XLenVT));
5483 
5484   // We might have bitcast from a mask type: cast back to the original type if
5485   // required.
5486   return DAG.getBitcast(Op.getSimpleValueType(), Slideup);
5487 }
5488 
5489 SDValue RISCVTargetLowering::lowerEXTRACT_SUBVECTOR(SDValue Op,
5490                                                     SelectionDAG &DAG) const {
5491   SDValue Vec = Op.getOperand(0);
5492   MVT SubVecVT = Op.getSimpleValueType();
5493   MVT VecVT = Vec.getSimpleValueType();
5494 
5495   SDLoc DL(Op);
5496   MVT XLenVT = Subtarget.getXLenVT();
5497   unsigned OrigIdx = Op.getConstantOperandVal(1);
5498   const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo();
5499 
5500   // We don't have the ability to slide mask vectors down indexed by their i1
5501   // elements; the smallest we can do is i8. Often we are able to bitcast to
5502   // equivalent i8 vectors. Note that when extracting a fixed-length vector
5503   // from a scalable one, we might not necessarily have enough scalable
5504   // elements to safely divide by 8: v8i1 = extract nxv1i1 is valid.
5505   if (SubVecVT.getVectorElementType() == MVT::i1 && OrigIdx != 0) {
5506     if (VecVT.getVectorMinNumElements() >= 8 &&
5507         SubVecVT.getVectorMinNumElements() >= 8) {
5508       assert(OrigIdx % 8 == 0 && "Invalid index");
5509       assert(VecVT.getVectorMinNumElements() % 8 == 0 &&
5510              SubVecVT.getVectorMinNumElements() % 8 == 0 &&
5511              "Unexpected mask vector lowering");
5512       OrigIdx /= 8;
5513       SubVecVT =
5514           MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8,
5515                            SubVecVT.isScalableVector());
5516       VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8,
5517                                VecVT.isScalableVector());
5518       Vec = DAG.getBitcast(VecVT, Vec);
5519     } else {
5520       // We can't slide this mask vector down, indexed by its i1 elements.
5521       // This poses a problem when we wish to extract a scalable vector which
5522       // can't be re-expressed as a larger type. Just choose the slow path and
5523       // extend to a larger type, then truncate back down.
5524       // TODO: We could probably improve this when extracting certain fixed
5525       // from fixed, where we can extract as i8 and shift the correct element
5526       // right to reach the desired subvector?
5527       MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8);
5528       MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8);
5529       Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec);
5530       Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ExtSubVecVT, Vec,
5531                         Op.getOperand(1));
5532       SDValue SplatZero = DAG.getConstant(0, DL, ExtSubVecVT);
5533       return DAG.getSetCC(DL, SubVecVT, Vec, SplatZero, ISD::SETNE);
5534     }
5535   }
5536 
5537   // If the subvector vector is a fixed-length type, we cannot use subregister
5538   // manipulation to simplify the codegen; we don't know which register of a
5539   // LMUL group contains the specific subvector as we only know the minimum
5540   // register size. Therefore we must slide the vector group down the full
5541   // amount.
5542   if (SubVecVT.isFixedLengthVector()) {
5543     // With an index of 0 this is a cast-like subvector, which can be performed
5544     // with subregister operations.
5545     if (OrigIdx == 0)
5546       return Op;
5547     MVT ContainerVT = VecVT;
5548     if (VecVT.isFixedLengthVector()) {
5549       ContainerVT = getContainerForFixedLengthVector(VecVT);
5550       Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
5551     }
5552     SDValue Mask =
5553         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first;
5554     // Set the vector length to only the number of elements we care about. This
5555     // avoids sliding down elements we're going to discard straight away.
5556     SDValue VL = DAG.getConstant(SubVecVT.getVectorNumElements(), DL, XLenVT);
5557     SDValue SlidedownAmt = DAG.getConstant(OrigIdx, DL, XLenVT);
5558     SDValue Slidedown =
5559         DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT,
5560                     DAG.getUNDEF(ContainerVT), Vec, SlidedownAmt, Mask, VL);
5561     // Now we can use a cast-like subvector extract to get the result.
5562     Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown,
5563                             DAG.getConstant(0, DL, XLenVT));
5564     return DAG.getBitcast(Op.getValueType(), Slidedown);
5565   }
5566 
5567   unsigned SubRegIdx, RemIdx;
5568   std::tie(SubRegIdx, RemIdx) =
5569       RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs(
5570           VecVT, SubVecVT, OrigIdx, TRI);
5571 
5572   // If the Idx has been completely eliminated then this is a subvector extract
5573   // which naturally aligns to a vector register. These can easily be handled
5574   // using subregister manipulation.
5575   if (RemIdx == 0)
5576     return Op;
5577 
5578   // Else we must shift our vector register directly to extract the subvector.
5579   // Do this using VSLIDEDOWN.
5580 
5581   // If the vector type is an LMUL-group type, extract a subvector equal to the
5582   // nearest full vector register type. This should resolve to a EXTRACT_SUBREG
5583   // instruction.
5584   MVT InterSubVT = VecVT;
5585   if (VecVT.bitsGT(getLMUL1VT(VecVT))) {
5586     InterSubVT = getLMUL1VT(VecVT);
5587     Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec,
5588                       DAG.getConstant(OrigIdx - RemIdx, DL, XLenVT));
5589   }
5590 
5591   // Slide this vector register down by the desired number of elements in order
5592   // to place the desired subvector starting at element 0.
5593   SDValue SlidedownAmt = DAG.getConstant(RemIdx, DL, XLenVT);
5594   // For scalable vectors this must be further multiplied by vscale.
5595   SlidedownAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlidedownAmt);
5596 
5597   SDValue Mask, VL;
5598   std::tie(Mask, VL) = getDefaultScalableVLOps(InterSubVT, DL, DAG, Subtarget);
5599   SDValue Slidedown =
5600       DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, InterSubVT,
5601                   DAG.getUNDEF(InterSubVT), Vec, SlidedownAmt, Mask, VL);
5602 
5603   // Now the vector is in the right position, extract our final subvector. This
5604   // should resolve to a COPY.
5605   Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown,
5606                           DAG.getConstant(0, DL, XLenVT));
5607 
5608   // We might have bitcast from a mask type: cast back to the original type if
5609   // required.
5610   return DAG.getBitcast(Op.getSimpleValueType(), Slidedown);
5611 }
5612 
5613 // Lower step_vector to the vid instruction. Any non-identity step value must
5614 // be accounted for my manual expansion.
5615 SDValue RISCVTargetLowering::lowerSTEP_VECTOR(SDValue Op,
5616                                               SelectionDAG &DAG) const {
5617   SDLoc DL(Op);
5618   MVT VT = Op.getSimpleValueType();
5619   MVT XLenVT = Subtarget.getXLenVT();
5620   SDValue Mask, VL;
5621   std::tie(Mask, VL) = getDefaultScalableVLOps(VT, DL, DAG, Subtarget);
5622   SDValue StepVec = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL);
5623   uint64_t StepValImm = Op.getConstantOperandVal(0);
5624   if (StepValImm != 1) {
5625     if (isPowerOf2_64(StepValImm)) {
5626       SDValue StepVal =
5627           DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, DAG.getUNDEF(VT),
5628                       DAG.getConstant(Log2_64(StepValImm), DL, XLenVT));
5629       StepVec = DAG.getNode(ISD::SHL, DL, VT, StepVec, StepVal);
5630     } else {
5631       SDValue StepVal = lowerScalarSplat(
5632           SDValue(), DAG.getConstant(StepValImm, DL, VT.getVectorElementType()),
5633           VL, VT, DL, DAG, Subtarget);
5634       StepVec = DAG.getNode(ISD::MUL, DL, VT, StepVec, StepVal);
5635     }
5636   }
5637   return StepVec;
5638 }
5639 
5640 // Implement vector_reverse using vrgather.vv with indices determined by
5641 // subtracting the id of each element from (VLMAX-1). This will convert
5642 // the indices like so:
5643 // (0, 1,..., VLMAX-2, VLMAX-1) -> (VLMAX-1, VLMAX-2,..., 1, 0).
5644 // TODO: This code assumes VLMAX <= 65536 for LMUL=8 SEW=16.
5645 SDValue RISCVTargetLowering::lowerVECTOR_REVERSE(SDValue Op,
5646                                                  SelectionDAG &DAG) const {
5647   SDLoc DL(Op);
5648   MVT VecVT = Op.getSimpleValueType();
5649   unsigned EltSize = VecVT.getScalarSizeInBits();
5650   unsigned MinSize = VecVT.getSizeInBits().getKnownMinValue();
5651 
5652   unsigned MaxVLMAX = 0;
5653   unsigned VectorBitsMax = Subtarget.getMaxRVVVectorSizeInBits();
5654   if (VectorBitsMax != 0)
5655     MaxVLMAX =
5656         RISCVTargetLowering::computeVLMAX(VectorBitsMax, EltSize, MinSize);
5657 
5658   unsigned GatherOpc = RISCVISD::VRGATHER_VV_VL;
5659   MVT IntVT = VecVT.changeVectorElementTypeToInteger();
5660 
5661   // If this is SEW=8 and VLMAX is unknown or more than 256, we need
5662   // to use vrgatherei16.vv.
5663   // TODO: It's also possible to use vrgatherei16.vv for other types to
5664   // decrease register width for the index calculation.
5665   if ((MaxVLMAX == 0 || MaxVLMAX > 256) && EltSize == 8) {
5666     // If this is LMUL=8, we have to split before can use vrgatherei16.vv.
5667     // Reverse each half, then reassemble them in reverse order.
5668     // NOTE: It's also possible that after splitting that VLMAX no longer
5669     // requires vrgatherei16.vv.
5670     if (MinSize == (8 * RISCV::RVVBitsPerBlock)) {
5671       SDValue Lo, Hi;
5672       std::tie(Lo, Hi) = DAG.SplitVectorOperand(Op.getNode(), 0);
5673       EVT LoVT, HiVT;
5674       std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VecVT);
5675       Lo = DAG.getNode(ISD::VECTOR_REVERSE, DL, LoVT, Lo);
5676       Hi = DAG.getNode(ISD::VECTOR_REVERSE, DL, HiVT, Hi);
5677       // Reassemble the low and high pieces reversed.
5678       // FIXME: This is a CONCAT_VECTORS.
5679       SDValue Res =
5680           DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, DAG.getUNDEF(VecVT), Hi,
5681                       DAG.getIntPtrConstant(0, DL));
5682       return DAG.getNode(
5683           ISD::INSERT_SUBVECTOR, DL, VecVT, Res, Lo,
5684           DAG.getIntPtrConstant(LoVT.getVectorMinNumElements(), DL));
5685     }
5686 
5687     // Just promote the int type to i16 which will double the LMUL.
5688     IntVT = MVT::getVectorVT(MVT::i16, VecVT.getVectorElementCount());
5689     GatherOpc = RISCVISD::VRGATHEREI16_VV_VL;
5690   }
5691 
5692   MVT XLenVT = Subtarget.getXLenVT();
5693   SDValue Mask, VL;
5694   std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget);
5695 
5696   // Calculate VLMAX-1 for the desired SEW.
5697   unsigned MinElts = VecVT.getVectorMinNumElements();
5698   SDValue VLMax = DAG.getNode(ISD::VSCALE, DL, XLenVT,
5699                               DAG.getConstant(MinElts, DL, XLenVT));
5700   SDValue VLMinus1 =
5701       DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, DAG.getConstant(1, DL, XLenVT));
5702 
5703   // Splat VLMAX-1 taking care to handle SEW==64 on RV32.
5704   bool IsRV32E64 =
5705       !Subtarget.is64Bit() && IntVT.getVectorElementType() == MVT::i64;
5706   SDValue SplatVL;
5707   if (!IsRV32E64)
5708     SplatVL = DAG.getSplatVector(IntVT, DL, VLMinus1);
5709   else
5710     SplatVL = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, IntVT, DAG.getUNDEF(IntVT),
5711                           VLMinus1, DAG.getRegister(RISCV::X0, XLenVT));
5712 
5713   SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, IntVT, Mask, VL);
5714   SDValue Indices =
5715       DAG.getNode(RISCVISD::SUB_VL, DL, IntVT, SplatVL, VID, Mask, VL);
5716 
5717   return DAG.getNode(GatherOpc, DL, VecVT, Op.getOperand(0), Indices, Mask, VL);
5718 }
5719 
5720 SDValue RISCVTargetLowering::lowerVECTOR_SPLICE(SDValue Op,
5721                                                 SelectionDAG &DAG) const {
5722   SDLoc DL(Op);
5723   SDValue V1 = Op.getOperand(0);
5724   SDValue V2 = Op.getOperand(1);
5725   MVT XLenVT = Subtarget.getXLenVT();
5726   MVT VecVT = Op.getSimpleValueType();
5727 
5728   unsigned MinElts = VecVT.getVectorMinNumElements();
5729   SDValue VLMax = DAG.getNode(ISD::VSCALE, DL, XLenVT,
5730                               DAG.getConstant(MinElts, DL, XLenVT));
5731 
5732   int64_t ImmValue = cast<ConstantSDNode>(Op.getOperand(2))->getSExtValue();
5733   SDValue DownOffset, UpOffset;
5734   if (ImmValue >= 0) {
5735     // The operand is a TargetConstant, we need to rebuild it as a regular
5736     // constant.
5737     DownOffset = DAG.getConstant(ImmValue, DL, XLenVT);
5738     UpOffset = DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, DownOffset);
5739   } else {
5740     // The operand is a TargetConstant, we need to rebuild it as a regular
5741     // constant rather than negating the original operand.
5742     UpOffset = DAG.getConstant(-ImmValue, DL, XLenVT);
5743     DownOffset = DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, UpOffset);
5744   }
5745 
5746   MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount());
5747   SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VLMax);
5748 
5749   SDValue SlideDown =
5750       DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, VecVT, DAG.getUNDEF(VecVT), V1,
5751                   DownOffset, TrueMask, UpOffset);
5752   return DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, VecVT, SlideDown, V2, UpOffset,
5753                      TrueMask,
5754                      DAG.getTargetConstant(RISCV::VLMaxSentinel, DL, XLenVT));
5755 }
5756 
5757 SDValue
5758 RISCVTargetLowering::lowerFixedLengthVectorLoadToRVV(SDValue Op,
5759                                                      SelectionDAG &DAG) const {
5760   SDLoc DL(Op);
5761   auto *Load = cast<LoadSDNode>(Op);
5762 
5763   assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
5764                                         Load->getMemoryVT(),
5765                                         *Load->getMemOperand()) &&
5766          "Expecting a correctly-aligned load");
5767 
5768   MVT VT = Op.getSimpleValueType();
5769   MVT XLenVT = Subtarget.getXLenVT();
5770   MVT ContainerVT = getContainerForFixedLengthVector(VT);
5771 
5772   SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT);
5773 
5774   bool IsMaskOp = VT.getVectorElementType() == MVT::i1;
5775   SDValue IntID = DAG.getTargetConstant(
5776       IsMaskOp ? Intrinsic::riscv_vlm : Intrinsic::riscv_vle, DL, XLenVT);
5777   SmallVector<SDValue, 4> Ops{Load->getChain(), IntID};
5778   if (!IsMaskOp)
5779     Ops.push_back(DAG.getUNDEF(ContainerVT));
5780   Ops.push_back(Load->getBasePtr());
5781   Ops.push_back(VL);
5782   SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
5783   SDValue NewLoad =
5784       DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops,
5785                               Load->getMemoryVT(), Load->getMemOperand());
5786 
5787   SDValue Result = convertFromScalableVector(VT, NewLoad, DAG, Subtarget);
5788   return DAG.getMergeValues({Result, Load->getChain()}, DL);
5789 }
5790 
5791 SDValue
5792 RISCVTargetLowering::lowerFixedLengthVectorStoreToRVV(SDValue Op,
5793                                                       SelectionDAG &DAG) const {
5794   SDLoc DL(Op);
5795   auto *Store = cast<StoreSDNode>(Op);
5796 
5797   assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
5798                                         Store->getMemoryVT(),
5799                                         *Store->getMemOperand()) &&
5800          "Expecting a correctly-aligned store");
5801 
5802   SDValue StoreVal = Store->getValue();
5803   MVT VT = StoreVal.getSimpleValueType();
5804   MVT XLenVT = Subtarget.getXLenVT();
5805 
5806   // If the size less than a byte, we need to pad with zeros to make a byte.
5807   if (VT.getVectorElementType() == MVT::i1 && VT.getVectorNumElements() < 8) {
5808     VT = MVT::v8i1;
5809     StoreVal = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT,
5810                            DAG.getConstant(0, DL, VT), StoreVal,
5811                            DAG.getIntPtrConstant(0, DL));
5812   }
5813 
5814   MVT ContainerVT = getContainerForFixedLengthVector(VT);
5815 
5816   SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT);
5817 
5818   SDValue NewValue =
5819       convertToScalableVector(ContainerVT, StoreVal, DAG, Subtarget);
5820 
5821   bool IsMaskOp = VT.getVectorElementType() == MVT::i1;
5822   SDValue IntID = DAG.getTargetConstant(
5823       IsMaskOp ? Intrinsic::riscv_vsm : Intrinsic::riscv_vse, DL, XLenVT);
5824   return DAG.getMemIntrinsicNode(
5825       ISD::INTRINSIC_VOID, DL, DAG.getVTList(MVT::Other),
5826       {Store->getChain(), IntID, NewValue, Store->getBasePtr(), VL},
5827       Store->getMemoryVT(), Store->getMemOperand());
5828 }
5829 
5830 SDValue RISCVTargetLowering::lowerMaskedLoad(SDValue Op,
5831                                              SelectionDAG &DAG) const {
5832   SDLoc DL(Op);
5833   MVT VT = Op.getSimpleValueType();
5834 
5835   const auto *MemSD = cast<MemSDNode>(Op);
5836   EVT MemVT = MemSD->getMemoryVT();
5837   MachineMemOperand *MMO = MemSD->getMemOperand();
5838   SDValue Chain = MemSD->getChain();
5839   SDValue BasePtr = MemSD->getBasePtr();
5840 
5841   SDValue Mask, PassThru, VL;
5842   if (const auto *VPLoad = dyn_cast<VPLoadSDNode>(Op)) {
5843     Mask = VPLoad->getMask();
5844     PassThru = DAG.getUNDEF(VT);
5845     VL = VPLoad->getVectorLength();
5846   } else {
5847     const auto *MLoad = cast<MaskedLoadSDNode>(Op);
5848     Mask = MLoad->getMask();
5849     PassThru = MLoad->getPassThru();
5850   }
5851 
5852   bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
5853 
5854   MVT XLenVT = Subtarget.getXLenVT();
5855 
5856   MVT ContainerVT = VT;
5857   if (VT.isFixedLengthVector()) {
5858     ContainerVT = getContainerForFixedLengthVector(VT);
5859     PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget);
5860     if (!IsUnmasked) {
5861       MVT MaskVT =
5862           MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
5863       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
5864     }
5865   }
5866 
5867   if (!VL)
5868     VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second;
5869 
5870   unsigned IntID =
5871       IsUnmasked ? Intrinsic::riscv_vle : Intrinsic::riscv_vle_mask;
5872   SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)};
5873   if (IsUnmasked)
5874     Ops.push_back(DAG.getUNDEF(ContainerVT));
5875   else
5876     Ops.push_back(PassThru);
5877   Ops.push_back(BasePtr);
5878   if (!IsUnmasked)
5879     Ops.push_back(Mask);
5880   Ops.push_back(VL);
5881   if (!IsUnmasked)
5882     Ops.push_back(DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT));
5883 
5884   SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
5885 
5886   SDValue Result =
5887       DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, MemVT, MMO);
5888   Chain = Result.getValue(1);
5889 
5890   if (VT.isFixedLengthVector())
5891     Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
5892 
5893   return DAG.getMergeValues({Result, Chain}, DL);
5894 }
5895 
5896 SDValue RISCVTargetLowering::lowerMaskedStore(SDValue Op,
5897                                               SelectionDAG &DAG) const {
5898   SDLoc DL(Op);
5899 
5900   const auto *MemSD = cast<MemSDNode>(Op);
5901   EVT MemVT = MemSD->getMemoryVT();
5902   MachineMemOperand *MMO = MemSD->getMemOperand();
5903   SDValue Chain = MemSD->getChain();
5904   SDValue BasePtr = MemSD->getBasePtr();
5905   SDValue Val, Mask, VL;
5906 
5907   if (const auto *VPStore = dyn_cast<VPStoreSDNode>(Op)) {
5908     Val = VPStore->getValue();
5909     Mask = VPStore->getMask();
5910     VL = VPStore->getVectorLength();
5911   } else {
5912     const auto *MStore = cast<MaskedStoreSDNode>(Op);
5913     Val = MStore->getValue();
5914     Mask = MStore->getMask();
5915   }
5916 
5917   bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
5918 
5919   MVT VT = Val.getSimpleValueType();
5920   MVT XLenVT = Subtarget.getXLenVT();
5921 
5922   MVT ContainerVT = VT;
5923   if (VT.isFixedLengthVector()) {
5924     ContainerVT = getContainerForFixedLengthVector(VT);
5925 
5926     Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget);
5927     if (!IsUnmasked) {
5928       MVT MaskVT =
5929           MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
5930       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
5931     }
5932   }
5933 
5934   if (!VL)
5935     VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second;
5936 
5937   unsigned IntID =
5938       IsUnmasked ? Intrinsic::riscv_vse : Intrinsic::riscv_vse_mask;
5939   SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)};
5940   Ops.push_back(Val);
5941   Ops.push_back(BasePtr);
5942   if (!IsUnmasked)
5943     Ops.push_back(Mask);
5944   Ops.push_back(VL);
5945 
5946   return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL,
5947                                  DAG.getVTList(MVT::Other), Ops, MemVT, MMO);
5948 }
5949 
5950 SDValue
5951 RISCVTargetLowering::lowerFixedLengthVectorSetccToRVV(SDValue Op,
5952                                                       SelectionDAG &DAG) const {
5953   MVT InVT = Op.getOperand(0).getSimpleValueType();
5954   MVT ContainerVT = getContainerForFixedLengthVector(InVT);
5955 
5956   MVT VT = Op.getSimpleValueType();
5957 
5958   SDValue Op1 =
5959       convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget);
5960   SDValue Op2 =
5961       convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget);
5962 
5963   SDLoc DL(Op);
5964   SDValue VL =
5965       DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT());
5966 
5967   MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
5968   SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
5969 
5970   SDValue Cmp = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, Op1, Op2,
5971                             Op.getOperand(2), Mask, VL);
5972 
5973   return convertFromScalableVector(VT, Cmp, DAG, Subtarget);
5974 }
5975 
5976 SDValue RISCVTargetLowering::lowerFixedLengthVectorLogicOpToRVV(
5977     SDValue Op, SelectionDAG &DAG, unsigned MaskOpc, unsigned VecOpc) const {
5978   MVT VT = Op.getSimpleValueType();
5979 
5980   if (VT.getVectorElementType() == MVT::i1)
5981     return lowerToScalableOp(Op, DAG, MaskOpc, /*HasMask*/ false);
5982 
5983   return lowerToScalableOp(Op, DAG, VecOpc, /*HasMask*/ true);
5984 }
5985 
5986 SDValue
5987 RISCVTargetLowering::lowerFixedLengthVectorShiftToRVV(SDValue Op,
5988                                                       SelectionDAG &DAG) const {
5989   unsigned Opc;
5990   switch (Op.getOpcode()) {
5991   default: llvm_unreachable("Unexpected opcode!");
5992   case ISD::SHL: Opc = RISCVISD::SHL_VL; break;
5993   case ISD::SRA: Opc = RISCVISD::SRA_VL; break;
5994   case ISD::SRL: Opc = RISCVISD::SRL_VL; break;
5995   }
5996 
5997   return lowerToScalableOp(Op, DAG, Opc);
5998 }
5999 
6000 // Lower vector ABS to smax(X, sub(0, X)).
6001 SDValue RISCVTargetLowering::lowerABS(SDValue Op, SelectionDAG &DAG) const {
6002   SDLoc DL(Op);
6003   MVT VT = Op.getSimpleValueType();
6004   SDValue X = Op.getOperand(0);
6005 
6006   assert(VT.isFixedLengthVector() && "Unexpected type");
6007 
6008   MVT ContainerVT = getContainerForFixedLengthVector(VT);
6009   X = convertToScalableVector(ContainerVT, X, DAG, Subtarget);
6010 
6011   SDValue Mask, VL;
6012   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
6013 
6014   SDValue SplatZero = DAG.getNode(
6015       RISCVISD::VMV_V_X_VL, DL, ContainerVT, DAG.getUNDEF(ContainerVT),
6016       DAG.getConstant(0, DL, Subtarget.getXLenVT()));
6017   SDValue NegX =
6018       DAG.getNode(RISCVISD::SUB_VL, DL, ContainerVT, SplatZero, X, Mask, VL);
6019   SDValue Max =
6020       DAG.getNode(RISCVISD::SMAX_VL, DL, ContainerVT, X, NegX, Mask, VL);
6021 
6022   return convertFromScalableVector(VT, Max, DAG, Subtarget);
6023 }
6024 
6025 SDValue RISCVTargetLowering::lowerFixedLengthVectorFCOPYSIGNToRVV(
6026     SDValue Op, SelectionDAG &DAG) const {
6027   SDLoc DL(Op);
6028   MVT VT = Op.getSimpleValueType();
6029   SDValue Mag = Op.getOperand(0);
6030   SDValue Sign = Op.getOperand(1);
6031   assert(Mag.getValueType() == Sign.getValueType() &&
6032          "Can only handle COPYSIGN with matching types.");
6033 
6034   MVT ContainerVT = getContainerForFixedLengthVector(VT);
6035   Mag = convertToScalableVector(ContainerVT, Mag, DAG, Subtarget);
6036   Sign = convertToScalableVector(ContainerVT, Sign, DAG, Subtarget);
6037 
6038   SDValue Mask, VL;
6039   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
6040 
6041   SDValue CopySign =
6042       DAG.getNode(RISCVISD::FCOPYSIGN_VL, DL, ContainerVT, Mag, Sign, Mask, VL);
6043 
6044   return convertFromScalableVector(VT, CopySign, DAG, Subtarget);
6045 }
6046 
6047 SDValue RISCVTargetLowering::lowerFixedLengthVectorSelectToRVV(
6048     SDValue Op, SelectionDAG &DAG) const {
6049   MVT VT = Op.getSimpleValueType();
6050   MVT ContainerVT = getContainerForFixedLengthVector(VT);
6051 
6052   MVT I1ContainerVT =
6053       MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
6054 
6055   SDValue CC =
6056       convertToScalableVector(I1ContainerVT, Op.getOperand(0), DAG, Subtarget);
6057   SDValue Op1 =
6058       convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget);
6059   SDValue Op2 =
6060       convertToScalableVector(ContainerVT, Op.getOperand(2), DAG, Subtarget);
6061 
6062   SDLoc DL(Op);
6063   SDValue Mask, VL;
6064   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
6065 
6066   SDValue Select =
6067       DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC, Op1, Op2, VL);
6068 
6069   return convertFromScalableVector(VT, Select, DAG, Subtarget);
6070 }
6071 
6072 SDValue RISCVTargetLowering::lowerToScalableOp(SDValue Op, SelectionDAG &DAG,
6073                                                unsigned NewOpc,
6074                                                bool HasMask) const {
6075   MVT VT = Op.getSimpleValueType();
6076   MVT ContainerVT = getContainerForFixedLengthVector(VT);
6077 
6078   // Create list of operands by converting existing ones to scalable types.
6079   SmallVector<SDValue, 6> Ops;
6080   for (const SDValue &V : Op->op_values()) {
6081     assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!");
6082 
6083     // Pass through non-vector operands.
6084     if (!V.getValueType().isVector()) {
6085       Ops.push_back(V);
6086       continue;
6087     }
6088 
6089     // "cast" fixed length vector to a scalable vector.
6090     assert(useRVVForFixedLengthVectorVT(V.getSimpleValueType()) &&
6091            "Only fixed length vectors are supported!");
6092     Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget));
6093   }
6094 
6095   SDLoc DL(Op);
6096   SDValue Mask, VL;
6097   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
6098   if (HasMask)
6099     Ops.push_back(Mask);
6100   Ops.push_back(VL);
6101 
6102   SDValue ScalableRes = DAG.getNode(NewOpc, DL, ContainerVT, Ops);
6103   return convertFromScalableVector(VT, ScalableRes, DAG, Subtarget);
6104 }
6105 
6106 // Lower a VP_* ISD node to the corresponding RISCVISD::*_VL node:
6107 // * Operands of each node are assumed to be in the same order.
6108 // * The EVL operand is promoted from i32 to i64 on RV64.
6109 // * Fixed-length vectors are converted to their scalable-vector container
6110 //   types.
6111 SDValue RISCVTargetLowering::lowerVPOp(SDValue Op, SelectionDAG &DAG,
6112                                        unsigned RISCVISDOpc) const {
6113   SDLoc DL(Op);
6114   MVT VT = Op.getSimpleValueType();
6115   SmallVector<SDValue, 4> Ops;
6116 
6117   for (const auto &OpIdx : enumerate(Op->ops())) {
6118     SDValue V = OpIdx.value();
6119     assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!");
6120     // Pass through operands which aren't fixed-length vectors.
6121     if (!V.getValueType().isFixedLengthVector()) {
6122       Ops.push_back(V);
6123       continue;
6124     }
6125     // "cast" fixed length vector to a scalable vector.
6126     MVT OpVT = V.getSimpleValueType();
6127     MVT ContainerVT = getContainerForFixedLengthVector(OpVT);
6128     assert(useRVVForFixedLengthVectorVT(OpVT) &&
6129            "Only fixed length vectors are supported!");
6130     Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget));
6131   }
6132 
6133   if (!VT.isFixedLengthVector())
6134     return DAG.getNode(RISCVISDOpc, DL, VT, Ops);
6135 
6136   MVT ContainerVT = getContainerForFixedLengthVector(VT);
6137 
6138   SDValue VPOp = DAG.getNode(RISCVISDOpc, DL, ContainerVT, Ops);
6139 
6140   return convertFromScalableVector(VT, VPOp, DAG, Subtarget);
6141 }
6142 
6143 SDValue RISCVTargetLowering::lowerLogicVPOp(SDValue Op, SelectionDAG &DAG,
6144                                             unsigned MaskOpc,
6145                                             unsigned VecOpc) const {
6146   MVT VT = Op.getSimpleValueType();
6147   if (VT.getVectorElementType() != MVT::i1)
6148     return lowerVPOp(Op, DAG, VecOpc);
6149 
6150   // It is safe to drop mask parameter as masked-off elements are undef.
6151   SDValue Op1 = Op->getOperand(0);
6152   SDValue Op2 = Op->getOperand(1);
6153   SDValue VL = Op->getOperand(3);
6154 
6155   MVT ContainerVT = VT;
6156   const bool IsFixed = VT.isFixedLengthVector();
6157   if (IsFixed) {
6158     ContainerVT = getContainerForFixedLengthVector(VT);
6159     Op1 = convertToScalableVector(ContainerVT, Op1, DAG, Subtarget);
6160     Op2 = convertToScalableVector(ContainerVT, Op2, DAG, Subtarget);
6161   }
6162 
6163   SDLoc DL(Op);
6164   SDValue Val = DAG.getNode(MaskOpc, DL, ContainerVT, Op1, Op2, VL);
6165   if (!IsFixed)
6166     return Val;
6167   return convertFromScalableVector(VT, Val, DAG, Subtarget);
6168 }
6169 
6170 // Custom lower MGATHER/VP_GATHER to a legalized form for RVV. It will then be
6171 // matched to a RVV indexed load. The RVV indexed load instructions only
6172 // support the "unsigned unscaled" addressing mode; indices are implicitly
6173 // zero-extended or truncated to XLEN and are treated as byte offsets. Any
6174 // signed or scaled indexing is extended to the XLEN value type and scaled
6175 // accordingly.
6176 SDValue RISCVTargetLowering::lowerMaskedGather(SDValue Op,
6177                                                SelectionDAG &DAG) const {
6178   SDLoc DL(Op);
6179   MVT VT = Op.getSimpleValueType();
6180 
6181   const auto *MemSD = cast<MemSDNode>(Op.getNode());
6182   EVT MemVT = MemSD->getMemoryVT();
6183   MachineMemOperand *MMO = MemSD->getMemOperand();
6184   SDValue Chain = MemSD->getChain();
6185   SDValue BasePtr = MemSD->getBasePtr();
6186 
6187   ISD::LoadExtType LoadExtType;
6188   SDValue Index, Mask, PassThru, VL;
6189 
6190   if (auto *VPGN = dyn_cast<VPGatherSDNode>(Op.getNode())) {
6191     Index = VPGN->getIndex();
6192     Mask = VPGN->getMask();
6193     PassThru = DAG.getUNDEF(VT);
6194     VL = VPGN->getVectorLength();
6195     // VP doesn't support extending loads.
6196     LoadExtType = ISD::NON_EXTLOAD;
6197   } else {
6198     // Else it must be a MGATHER.
6199     auto *MGN = cast<MaskedGatherSDNode>(Op.getNode());
6200     Index = MGN->getIndex();
6201     Mask = MGN->getMask();
6202     PassThru = MGN->getPassThru();
6203     LoadExtType = MGN->getExtensionType();
6204   }
6205 
6206   MVT IndexVT = Index.getSimpleValueType();
6207   MVT XLenVT = Subtarget.getXLenVT();
6208 
6209   assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() &&
6210          "Unexpected VTs!");
6211   assert(BasePtr.getSimpleValueType() == XLenVT && "Unexpected pointer type");
6212   // Targets have to explicitly opt-in for extending vector loads.
6213   assert(LoadExtType == ISD::NON_EXTLOAD &&
6214          "Unexpected extending MGATHER/VP_GATHER");
6215   (void)LoadExtType;
6216 
6217   // If the mask is known to be all ones, optimize to an unmasked intrinsic;
6218   // the selection of the masked intrinsics doesn't do this for us.
6219   bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
6220 
6221   MVT ContainerVT = VT;
6222   if (VT.isFixedLengthVector()) {
6223     // We need to use the larger of the result and index type to determine the
6224     // scalable type to use so we don't increase LMUL for any operand/result.
6225     if (VT.bitsGE(IndexVT)) {
6226       ContainerVT = getContainerForFixedLengthVector(VT);
6227       IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(),
6228                                  ContainerVT.getVectorElementCount());
6229     } else {
6230       IndexVT = getContainerForFixedLengthVector(IndexVT);
6231       ContainerVT = MVT::getVectorVT(ContainerVT.getVectorElementType(),
6232                                      IndexVT.getVectorElementCount());
6233     }
6234 
6235     Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget);
6236 
6237     if (!IsUnmasked) {
6238       MVT MaskVT =
6239           MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
6240       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
6241       PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget);
6242     }
6243   }
6244 
6245   if (!VL)
6246     VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second;
6247 
6248   if (XLenVT == MVT::i32 && IndexVT.getVectorElementType().bitsGT(XLenVT)) {
6249     IndexVT = IndexVT.changeVectorElementType(XLenVT);
6250     SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, Mask.getValueType(),
6251                                    VL);
6252     Index = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, IndexVT, Index,
6253                         TrueMask, VL);
6254   }
6255 
6256   unsigned IntID =
6257       IsUnmasked ? Intrinsic::riscv_vluxei : Intrinsic::riscv_vluxei_mask;
6258   SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)};
6259   if (IsUnmasked)
6260     Ops.push_back(DAG.getUNDEF(ContainerVT));
6261   else
6262     Ops.push_back(PassThru);
6263   Ops.push_back(BasePtr);
6264   Ops.push_back(Index);
6265   if (!IsUnmasked)
6266     Ops.push_back(Mask);
6267   Ops.push_back(VL);
6268   if (!IsUnmasked)
6269     Ops.push_back(DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT));
6270 
6271   SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
6272   SDValue Result =
6273       DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, MemVT, MMO);
6274   Chain = Result.getValue(1);
6275 
6276   if (VT.isFixedLengthVector())
6277     Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
6278 
6279   return DAG.getMergeValues({Result, Chain}, DL);
6280 }
6281 
6282 // Custom lower MSCATTER/VP_SCATTER to a legalized form for RVV. It will then be
6283 // matched to a RVV indexed store. The RVV indexed store instructions only
6284 // support the "unsigned unscaled" addressing mode; indices are implicitly
6285 // zero-extended or truncated to XLEN and are treated as byte offsets. Any
6286 // signed or scaled indexing is extended to the XLEN value type and scaled
6287 // accordingly.
6288 SDValue RISCVTargetLowering::lowerMaskedScatter(SDValue Op,
6289                                                 SelectionDAG &DAG) const {
6290   SDLoc DL(Op);
6291   const auto *MemSD = cast<MemSDNode>(Op.getNode());
6292   EVT MemVT = MemSD->getMemoryVT();
6293   MachineMemOperand *MMO = MemSD->getMemOperand();
6294   SDValue Chain = MemSD->getChain();
6295   SDValue BasePtr = MemSD->getBasePtr();
6296 
6297   bool IsTruncatingStore = false;
6298   SDValue Index, Mask, Val, VL;
6299 
6300   if (auto *VPSN = dyn_cast<VPScatterSDNode>(Op.getNode())) {
6301     Index = VPSN->getIndex();
6302     Mask = VPSN->getMask();
6303     Val = VPSN->getValue();
6304     VL = VPSN->getVectorLength();
6305     // VP doesn't support truncating stores.
6306     IsTruncatingStore = false;
6307   } else {
6308     // Else it must be a MSCATTER.
6309     auto *MSN = cast<MaskedScatterSDNode>(Op.getNode());
6310     Index = MSN->getIndex();
6311     Mask = MSN->getMask();
6312     Val = MSN->getValue();
6313     IsTruncatingStore = MSN->isTruncatingStore();
6314   }
6315 
6316   MVT VT = Val.getSimpleValueType();
6317   MVT IndexVT = Index.getSimpleValueType();
6318   MVT XLenVT = Subtarget.getXLenVT();
6319 
6320   assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() &&
6321          "Unexpected VTs!");
6322   assert(BasePtr.getSimpleValueType() == XLenVT && "Unexpected pointer type");
6323   // Targets have to explicitly opt-in for extending vector loads and
6324   // truncating vector stores.
6325   assert(!IsTruncatingStore && "Unexpected truncating MSCATTER/VP_SCATTER");
6326   (void)IsTruncatingStore;
6327 
6328   // If the mask is known to be all ones, optimize to an unmasked intrinsic;
6329   // the selection of the masked intrinsics doesn't do this for us.
6330   bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
6331 
6332   MVT ContainerVT = VT;
6333   if (VT.isFixedLengthVector()) {
6334     // We need to use the larger of the value and index type to determine the
6335     // scalable type to use so we don't increase LMUL for any operand/result.
6336     if (VT.bitsGE(IndexVT)) {
6337       ContainerVT = getContainerForFixedLengthVector(VT);
6338       IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(),
6339                                  ContainerVT.getVectorElementCount());
6340     } else {
6341       IndexVT = getContainerForFixedLengthVector(IndexVT);
6342       ContainerVT = MVT::getVectorVT(VT.getVectorElementType(),
6343                                      IndexVT.getVectorElementCount());
6344     }
6345 
6346     Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget);
6347     Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget);
6348 
6349     if (!IsUnmasked) {
6350       MVT MaskVT =
6351           MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
6352       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
6353     }
6354   }
6355 
6356   if (!VL)
6357     VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second;
6358 
6359   if (XLenVT == MVT::i32 && IndexVT.getVectorElementType().bitsGT(XLenVT)) {
6360     IndexVT = IndexVT.changeVectorElementType(XLenVT);
6361     SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, Mask.getValueType(),
6362                                    VL);
6363     Index = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, IndexVT, Index,
6364                         TrueMask, VL);
6365   }
6366 
6367   unsigned IntID =
6368       IsUnmasked ? Intrinsic::riscv_vsoxei : Intrinsic::riscv_vsoxei_mask;
6369   SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)};
6370   Ops.push_back(Val);
6371   Ops.push_back(BasePtr);
6372   Ops.push_back(Index);
6373   if (!IsUnmasked)
6374     Ops.push_back(Mask);
6375   Ops.push_back(VL);
6376 
6377   return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL,
6378                                  DAG.getVTList(MVT::Other), Ops, MemVT, MMO);
6379 }
6380 
6381 SDValue RISCVTargetLowering::lowerGET_ROUNDING(SDValue Op,
6382                                                SelectionDAG &DAG) const {
6383   const MVT XLenVT = Subtarget.getXLenVT();
6384   SDLoc DL(Op);
6385   SDValue Chain = Op->getOperand(0);
6386   SDValue SysRegNo = DAG.getTargetConstant(
6387       RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT);
6388   SDVTList VTs = DAG.getVTList(XLenVT, MVT::Other);
6389   SDValue RM = DAG.getNode(RISCVISD::READ_CSR, DL, VTs, Chain, SysRegNo);
6390 
6391   // Encoding used for rounding mode in RISCV differs from that used in
6392   // FLT_ROUNDS. To convert it the RISCV rounding mode is used as an index in a
6393   // table, which consists of a sequence of 4-bit fields, each representing
6394   // corresponding FLT_ROUNDS mode.
6395   static const int Table =
6396       (int(RoundingMode::NearestTiesToEven) << 4 * RISCVFPRndMode::RNE) |
6397       (int(RoundingMode::TowardZero) << 4 * RISCVFPRndMode::RTZ) |
6398       (int(RoundingMode::TowardNegative) << 4 * RISCVFPRndMode::RDN) |
6399       (int(RoundingMode::TowardPositive) << 4 * RISCVFPRndMode::RUP) |
6400       (int(RoundingMode::NearestTiesToAway) << 4 * RISCVFPRndMode::RMM);
6401 
6402   SDValue Shift =
6403       DAG.getNode(ISD::SHL, DL, XLenVT, RM, DAG.getConstant(2, DL, XLenVT));
6404   SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT,
6405                                 DAG.getConstant(Table, DL, XLenVT), Shift);
6406   SDValue Masked = DAG.getNode(ISD::AND, DL, XLenVT, Shifted,
6407                                DAG.getConstant(7, DL, XLenVT));
6408 
6409   return DAG.getMergeValues({Masked, Chain}, DL);
6410 }
6411 
6412 SDValue RISCVTargetLowering::lowerSET_ROUNDING(SDValue Op,
6413                                                SelectionDAG &DAG) const {
6414   const MVT XLenVT = Subtarget.getXLenVT();
6415   SDLoc DL(Op);
6416   SDValue Chain = Op->getOperand(0);
6417   SDValue RMValue = Op->getOperand(1);
6418   SDValue SysRegNo = DAG.getTargetConstant(
6419       RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT);
6420 
6421   // Encoding used for rounding mode in RISCV differs from that used in
6422   // FLT_ROUNDS. To convert it the C rounding mode is used as an index in
6423   // a table, which consists of a sequence of 4-bit fields, each representing
6424   // corresponding RISCV mode.
6425   static const unsigned Table =
6426       (RISCVFPRndMode::RNE << 4 * int(RoundingMode::NearestTiesToEven)) |
6427       (RISCVFPRndMode::RTZ << 4 * int(RoundingMode::TowardZero)) |
6428       (RISCVFPRndMode::RDN << 4 * int(RoundingMode::TowardNegative)) |
6429       (RISCVFPRndMode::RUP << 4 * int(RoundingMode::TowardPositive)) |
6430       (RISCVFPRndMode::RMM << 4 * int(RoundingMode::NearestTiesToAway));
6431 
6432   SDValue Shift = DAG.getNode(ISD::SHL, DL, XLenVT, RMValue,
6433                               DAG.getConstant(2, DL, XLenVT));
6434   SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT,
6435                                 DAG.getConstant(Table, DL, XLenVT), Shift);
6436   RMValue = DAG.getNode(ISD::AND, DL, XLenVT, Shifted,
6437                         DAG.getConstant(0x7, DL, XLenVT));
6438   return DAG.getNode(RISCVISD::WRITE_CSR, DL, MVT::Other, Chain, SysRegNo,
6439                      RMValue);
6440 }
6441 
6442 static RISCVISD::NodeType getRISCVWOpcodeByIntr(unsigned IntNo) {
6443   switch (IntNo) {
6444   default:
6445     llvm_unreachable("Unexpected Intrinsic");
6446   case Intrinsic::riscv_bcompress:
6447     return RISCVISD::BCOMPRESSW;
6448   case Intrinsic::riscv_bdecompress:
6449     return RISCVISD::BDECOMPRESSW;
6450   case Intrinsic::riscv_bfp:
6451     return RISCVISD::BFPW;
6452   case Intrinsic::riscv_fsl:
6453     return RISCVISD::FSLW;
6454   case Intrinsic::riscv_fsr:
6455     return RISCVISD::FSRW;
6456   }
6457 }
6458 
6459 // Converts the given intrinsic to a i64 operation with any extension.
6460 static SDValue customLegalizeToWOpByIntr(SDNode *N, SelectionDAG &DAG,
6461                                          unsigned IntNo) {
6462   SDLoc DL(N);
6463   RISCVISD::NodeType WOpcode = getRISCVWOpcodeByIntr(IntNo);
6464   SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
6465   SDValue NewOp2 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
6466   SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp1, NewOp2);
6467   // ReplaceNodeResults requires we maintain the same type for the return value.
6468   return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewRes);
6469 }
6470 
6471 // Returns the opcode of the target-specific SDNode that implements the 32-bit
6472 // form of the given Opcode.
6473 static RISCVISD::NodeType getRISCVWOpcode(unsigned Opcode) {
6474   switch (Opcode) {
6475   default:
6476     llvm_unreachable("Unexpected opcode");
6477   case ISD::SHL:
6478     return RISCVISD::SLLW;
6479   case ISD::SRA:
6480     return RISCVISD::SRAW;
6481   case ISD::SRL:
6482     return RISCVISD::SRLW;
6483   case ISD::SDIV:
6484     return RISCVISD::DIVW;
6485   case ISD::UDIV:
6486     return RISCVISD::DIVUW;
6487   case ISD::UREM:
6488     return RISCVISD::REMUW;
6489   case ISD::ROTL:
6490     return RISCVISD::ROLW;
6491   case ISD::ROTR:
6492     return RISCVISD::RORW;
6493   }
6494 }
6495 
6496 // Converts the given i8/i16/i32 operation to a target-specific SelectionDAG
6497 // node. Because i8/i16/i32 isn't a legal type for RV64, these operations would
6498 // otherwise be promoted to i64, making it difficult to select the
6499 // SLLW/DIVUW/.../*W later one because the fact the operation was originally of
6500 // type i8/i16/i32 is lost.
6501 static SDValue customLegalizeToWOp(SDNode *N, SelectionDAG &DAG,
6502                                    unsigned ExtOpc = ISD::ANY_EXTEND) {
6503   SDLoc DL(N);
6504   RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode());
6505   SDValue NewOp0 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(0));
6506   SDValue NewOp1 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(1));
6507   SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1);
6508   // ReplaceNodeResults requires we maintain the same type for the return value.
6509   return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewRes);
6510 }
6511 
6512 // Converts the given 32-bit operation to a i64 operation with signed extension
6513 // semantic to reduce the signed extension instructions.
6514 static SDValue customLegalizeToWOpWithSExt(SDNode *N, SelectionDAG &DAG) {
6515   SDLoc DL(N);
6516   SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
6517   SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
6518   SDValue NewWOp = DAG.getNode(N->getOpcode(), DL, MVT::i64, NewOp0, NewOp1);
6519   SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp,
6520                                DAG.getValueType(MVT::i32));
6521   return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes);
6522 }
6523 
6524 void RISCVTargetLowering::ReplaceNodeResults(SDNode *N,
6525                                              SmallVectorImpl<SDValue> &Results,
6526                                              SelectionDAG &DAG) const {
6527   SDLoc DL(N);
6528   switch (N->getOpcode()) {
6529   default:
6530     llvm_unreachable("Don't know how to custom type legalize this operation!");
6531   case ISD::STRICT_FP_TO_SINT:
6532   case ISD::STRICT_FP_TO_UINT:
6533   case ISD::FP_TO_SINT:
6534   case ISD::FP_TO_UINT: {
6535     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6536            "Unexpected custom legalisation");
6537     bool IsStrict = N->isStrictFPOpcode();
6538     bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT ||
6539                     N->getOpcode() == ISD::STRICT_FP_TO_SINT;
6540     SDValue Op0 = IsStrict ? N->getOperand(1) : N->getOperand(0);
6541     if (getTypeAction(*DAG.getContext(), Op0.getValueType()) !=
6542         TargetLowering::TypeSoftenFloat) {
6543       if (!isTypeLegal(Op0.getValueType()))
6544         return;
6545       if (IsStrict) {
6546         unsigned Opc = IsSigned ? RISCVISD::STRICT_FCVT_W_RV64
6547                                 : RISCVISD::STRICT_FCVT_WU_RV64;
6548         SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other);
6549         SDValue Res = DAG.getNode(
6550             Opc, DL, VTs, N->getOperand(0), Op0,
6551             DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, MVT::i64));
6552         Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
6553         Results.push_back(Res.getValue(1));
6554         return;
6555       }
6556       unsigned Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64;
6557       SDValue Res =
6558           DAG.getNode(Opc, DL, MVT::i64, Op0,
6559                       DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, MVT::i64));
6560       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
6561       return;
6562     }
6563     // If the FP type needs to be softened, emit a library call using the 'si'
6564     // version. If we left it to default legalization we'd end up with 'di'. If
6565     // the FP type doesn't need to be softened just let generic type
6566     // legalization promote the result type.
6567     RTLIB::Libcall LC;
6568     if (IsSigned)
6569       LC = RTLIB::getFPTOSINT(Op0.getValueType(), N->getValueType(0));
6570     else
6571       LC = RTLIB::getFPTOUINT(Op0.getValueType(), N->getValueType(0));
6572     MakeLibCallOptions CallOptions;
6573     EVT OpVT = Op0.getValueType();
6574     CallOptions.setTypeListBeforeSoften(OpVT, N->getValueType(0), true);
6575     SDValue Chain = IsStrict ? N->getOperand(0) : SDValue();
6576     SDValue Result;
6577     std::tie(Result, Chain) =
6578         makeLibCall(DAG, LC, N->getValueType(0), Op0, CallOptions, DL, Chain);
6579     Results.push_back(Result);
6580     if (IsStrict)
6581       Results.push_back(Chain);
6582     break;
6583   }
6584   case ISD::READCYCLECOUNTER: {
6585     assert(!Subtarget.is64Bit() &&
6586            "READCYCLECOUNTER only has custom type legalization on riscv32");
6587 
6588     SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
6589     SDValue RCW =
6590         DAG.getNode(RISCVISD::READ_CYCLE_WIDE, DL, VTs, N->getOperand(0));
6591 
6592     Results.push_back(
6593         DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, RCW, RCW.getValue(1)));
6594     Results.push_back(RCW.getValue(2));
6595     break;
6596   }
6597   case ISD::MUL: {
6598     unsigned Size = N->getSimpleValueType(0).getSizeInBits();
6599     unsigned XLen = Subtarget.getXLen();
6600     // This multiply needs to be expanded, try to use MULHSU+MUL if possible.
6601     if (Size > XLen) {
6602       assert(Size == (XLen * 2) && "Unexpected custom legalisation");
6603       SDValue LHS = N->getOperand(0);
6604       SDValue RHS = N->getOperand(1);
6605       APInt HighMask = APInt::getHighBitsSet(Size, XLen);
6606 
6607       bool LHSIsU = DAG.MaskedValueIsZero(LHS, HighMask);
6608       bool RHSIsU = DAG.MaskedValueIsZero(RHS, HighMask);
6609       // We need exactly one side to be unsigned.
6610       if (LHSIsU == RHSIsU)
6611         return;
6612 
6613       auto MakeMULPair = [&](SDValue S, SDValue U) {
6614         MVT XLenVT = Subtarget.getXLenVT();
6615         S = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, S);
6616         U = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, U);
6617         SDValue Lo = DAG.getNode(ISD::MUL, DL, XLenVT, S, U);
6618         SDValue Hi = DAG.getNode(RISCVISD::MULHSU, DL, XLenVT, S, U);
6619         return DAG.getNode(ISD::BUILD_PAIR, DL, N->getValueType(0), Lo, Hi);
6620       };
6621 
6622       bool LHSIsS = DAG.ComputeNumSignBits(LHS) > XLen;
6623       bool RHSIsS = DAG.ComputeNumSignBits(RHS) > XLen;
6624 
6625       // The other operand should be signed, but still prefer MULH when
6626       // possible.
6627       if (RHSIsU && LHSIsS && !RHSIsS)
6628         Results.push_back(MakeMULPair(LHS, RHS));
6629       else if (LHSIsU && RHSIsS && !LHSIsS)
6630         Results.push_back(MakeMULPair(RHS, LHS));
6631 
6632       return;
6633     }
6634     LLVM_FALLTHROUGH;
6635   }
6636   case ISD::ADD:
6637   case ISD::SUB:
6638     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6639            "Unexpected custom legalisation");
6640     Results.push_back(customLegalizeToWOpWithSExt(N, DAG));
6641     break;
6642   case ISD::SHL:
6643   case ISD::SRA:
6644   case ISD::SRL:
6645     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6646            "Unexpected custom legalisation");
6647     if (N->getOperand(1).getOpcode() != ISD::Constant) {
6648       Results.push_back(customLegalizeToWOp(N, DAG));
6649       break;
6650     }
6651 
6652     // Custom legalize ISD::SHL by placing a SIGN_EXTEND_INREG after. This is
6653     // similar to customLegalizeToWOpWithSExt, but we must zero_extend the
6654     // shift amount.
6655     if (N->getOpcode() == ISD::SHL) {
6656       SDLoc DL(N);
6657       SDValue NewOp0 =
6658           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
6659       SDValue NewOp1 =
6660           DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1));
6661       SDValue NewWOp = DAG.getNode(ISD::SHL, DL, MVT::i64, NewOp0, NewOp1);
6662       SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp,
6663                                    DAG.getValueType(MVT::i32));
6664       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes));
6665     }
6666 
6667     break;
6668   case ISD::ROTL:
6669   case ISD::ROTR:
6670     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6671            "Unexpected custom legalisation");
6672     Results.push_back(customLegalizeToWOp(N, DAG));
6673     break;
6674   case ISD::CTTZ:
6675   case ISD::CTTZ_ZERO_UNDEF:
6676   case ISD::CTLZ:
6677   case ISD::CTLZ_ZERO_UNDEF: {
6678     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6679            "Unexpected custom legalisation");
6680 
6681     SDValue NewOp0 =
6682         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
6683     bool IsCTZ =
6684         N->getOpcode() == ISD::CTTZ || N->getOpcode() == ISD::CTTZ_ZERO_UNDEF;
6685     unsigned Opc = IsCTZ ? RISCVISD::CTZW : RISCVISD::CLZW;
6686     SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp0);
6687     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
6688     return;
6689   }
6690   case ISD::SDIV:
6691   case ISD::UDIV:
6692   case ISD::UREM: {
6693     MVT VT = N->getSimpleValueType(0);
6694     assert((VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) &&
6695            Subtarget.is64Bit() && Subtarget.hasStdExtM() &&
6696            "Unexpected custom legalisation");
6697     // Don't promote division/remainder by constant since we should expand those
6698     // to multiply by magic constant.
6699     // FIXME: What if the expansion is disabled for minsize.
6700     if (N->getOperand(1).getOpcode() == ISD::Constant)
6701       return;
6702 
6703     // If the input is i32, use ANY_EXTEND since the W instructions don't read
6704     // the upper 32 bits. For other types we need to sign or zero extend
6705     // based on the opcode.
6706     unsigned ExtOpc = ISD::ANY_EXTEND;
6707     if (VT != MVT::i32)
6708       ExtOpc = N->getOpcode() == ISD::SDIV ? ISD::SIGN_EXTEND
6709                                            : ISD::ZERO_EXTEND;
6710 
6711     Results.push_back(customLegalizeToWOp(N, DAG, ExtOpc));
6712     break;
6713   }
6714   case ISD::UADDO:
6715   case ISD::USUBO: {
6716     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6717            "Unexpected custom legalisation");
6718     bool IsAdd = N->getOpcode() == ISD::UADDO;
6719     // Create an ADDW or SUBW.
6720     SDValue LHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
6721     SDValue RHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
6722     SDValue Res =
6723         DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, DL, MVT::i64, LHS, RHS);
6724     Res = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Res,
6725                       DAG.getValueType(MVT::i32));
6726 
6727     // Sign extend the LHS and perform an unsigned compare with the ADDW result.
6728     // Since the inputs are sign extended from i32, this is equivalent to
6729     // comparing the lower 32 bits.
6730     LHS = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0));
6731     SDValue Overflow = DAG.getSetCC(DL, N->getValueType(1), Res, LHS,
6732                                     IsAdd ? ISD::SETULT : ISD::SETUGT);
6733 
6734     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
6735     Results.push_back(Overflow);
6736     return;
6737   }
6738   case ISD::UADDSAT:
6739   case ISD::USUBSAT: {
6740     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6741            "Unexpected custom legalisation");
6742     if (Subtarget.hasStdExtZbb()) {
6743       // With Zbb we can sign extend and let LegalizeDAG use minu/maxu. Using
6744       // sign extend allows overflow of the lower 32 bits to be detected on
6745       // the promoted size.
6746       SDValue LHS =
6747           DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0));
6748       SDValue RHS =
6749           DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(1));
6750       SDValue Res = DAG.getNode(N->getOpcode(), DL, MVT::i64, LHS, RHS);
6751       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
6752       return;
6753     }
6754 
6755     // Without Zbb, expand to UADDO/USUBO+select which will trigger our custom
6756     // promotion for UADDO/USUBO.
6757     Results.push_back(expandAddSubSat(N, DAG));
6758     return;
6759   }
6760   case ISD::ABS: {
6761     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6762            "Unexpected custom legalisation");
6763           DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0));
6764 
6765     // Expand abs to Y = (sraiw X, 31); subw(xor(X, Y), Y)
6766 
6767     SDValue Src = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
6768 
6769     // Freeze the source so we can increase it's use count.
6770     Src = DAG.getFreeze(Src);
6771 
6772     // Copy sign bit to all bits using the sraiw pattern.
6773     SDValue SignFill = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Src,
6774                                    DAG.getValueType(MVT::i32));
6775     SignFill = DAG.getNode(ISD::SRA, DL, MVT::i64, SignFill,
6776                            DAG.getConstant(31, DL, MVT::i64));
6777 
6778     SDValue NewRes = DAG.getNode(ISD::XOR, DL, MVT::i64, Src, SignFill);
6779     NewRes = DAG.getNode(ISD::SUB, DL, MVT::i64, NewRes, SignFill);
6780 
6781     // NOTE: The result is only required to be anyextended, but sext is
6782     // consistent with type legalization of sub.
6783     NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewRes,
6784                          DAG.getValueType(MVT::i32));
6785     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes));
6786     return;
6787   }
6788   case ISD::BITCAST: {
6789     EVT VT = N->getValueType(0);
6790     assert(VT.isInteger() && !VT.isVector() && "Unexpected VT!");
6791     SDValue Op0 = N->getOperand(0);
6792     EVT Op0VT = Op0.getValueType();
6793     MVT XLenVT = Subtarget.getXLenVT();
6794     if (VT == MVT::i16 && Op0VT == MVT::f16 && Subtarget.hasStdExtZfh()) {
6795       SDValue FPConv = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, XLenVT, Op0);
6796       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FPConv));
6797     } else if (VT == MVT::i32 && Op0VT == MVT::f32 && Subtarget.is64Bit() &&
6798                Subtarget.hasStdExtF()) {
6799       SDValue FPConv =
6800           DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Op0);
6801       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, FPConv));
6802     } else if (!VT.isVector() && Op0VT.isFixedLengthVector() &&
6803                isTypeLegal(Op0VT)) {
6804       // Custom-legalize bitcasts from fixed-length vector types to illegal
6805       // scalar types in order to improve codegen. Bitcast the vector to a
6806       // one-element vector type whose element type is the same as the result
6807       // type, and extract the first element.
6808       EVT BVT = EVT::getVectorVT(*DAG.getContext(), VT, 1);
6809       if (isTypeLegal(BVT)) {
6810         SDValue BVec = DAG.getBitcast(BVT, Op0);
6811         Results.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec,
6812                                       DAG.getConstant(0, DL, XLenVT)));
6813       }
6814     }
6815     break;
6816   }
6817   case RISCVISD::GREV:
6818   case RISCVISD::GORC:
6819   case RISCVISD::SHFL: {
6820     MVT VT = N->getSimpleValueType(0);
6821     MVT XLenVT = Subtarget.getXLenVT();
6822     assert((VT == MVT::i16 || (VT == MVT::i32 && Subtarget.is64Bit())) &&
6823            "Unexpected custom legalisation");
6824     assert(isa<ConstantSDNode>(N->getOperand(1)) && "Expected constant");
6825     assert((Subtarget.hasStdExtZbp() ||
6826             (Subtarget.hasStdExtZbkb() && N->getOpcode() == RISCVISD::GREV &&
6827              N->getConstantOperandVal(1) == 7)) &&
6828            "Unexpected extension");
6829     SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, N->getOperand(0));
6830     SDValue NewOp1 =
6831         DAG.getNode(ISD::ZERO_EXTEND, DL, XLenVT, N->getOperand(1));
6832     SDValue NewRes = DAG.getNode(N->getOpcode(), DL, XLenVT, NewOp0, NewOp1);
6833     // ReplaceNodeResults requires we maintain the same type for the return
6834     // value.
6835     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, NewRes));
6836     break;
6837   }
6838   case ISD::BSWAP:
6839   case ISD::BITREVERSE: {
6840     MVT VT = N->getSimpleValueType(0);
6841     MVT XLenVT = Subtarget.getXLenVT();
6842     assert((VT == MVT::i8 || VT == MVT::i16 ||
6843             (VT == MVT::i32 && Subtarget.is64Bit())) &&
6844            Subtarget.hasStdExtZbp() && "Unexpected custom legalisation");
6845     SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, N->getOperand(0));
6846     unsigned Imm = VT.getSizeInBits() - 1;
6847     // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits.
6848     if (N->getOpcode() == ISD::BSWAP)
6849       Imm &= ~0x7U;
6850     SDValue GREVI = DAG.getNode(RISCVISD::GREV, DL, XLenVT, NewOp0,
6851                                 DAG.getConstant(Imm, DL, XLenVT));
6852     // ReplaceNodeResults requires we maintain the same type for the return
6853     // value.
6854     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, GREVI));
6855     break;
6856   }
6857   case ISD::FSHL:
6858   case ISD::FSHR: {
6859     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6860            Subtarget.hasStdExtZbt() && "Unexpected custom legalisation");
6861     SDValue NewOp0 =
6862         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
6863     SDValue NewOp1 =
6864         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
6865     SDValue NewShAmt =
6866         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
6867     // FSLW/FSRW take a 6 bit shift amount but i32 FSHL/FSHR only use 5 bits.
6868     // Mask the shift amount to 5 bits to prevent accidentally setting bit 5.
6869     NewShAmt = DAG.getNode(ISD::AND, DL, MVT::i64, NewShAmt,
6870                            DAG.getConstant(0x1f, DL, MVT::i64));
6871     // fshl and fshr concatenate their operands in the same order. fsrw and fslw
6872     // instruction use different orders. fshl will return its first operand for
6873     // shift of zero, fshr will return its second operand. fsl and fsr both
6874     // return rs1 so the ISD nodes need to have different operand orders.
6875     // Shift amount is in rs2.
6876     unsigned Opc = RISCVISD::FSLW;
6877     if (N->getOpcode() == ISD::FSHR) {
6878       std::swap(NewOp0, NewOp1);
6879       Opc = RISCVISD::FSRW;
6880     }
6881     SDValue NewOp = DAG.getNode(Opc, DL, MVT::i64, NewOp0, NewOp1, NewShAmt);
6882     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewOp));
6883     break;
6884   }
6885   case ISD::EXTRACT_VECTOR_ELT: {
6886     // Custom-legalize an EXTRACT_VECTOR_ELT where XLEN<SEW, as the SEW element
6887     // type is illegal (currently only vXi64 RV32).
6888     // With vmv.x.s, when SEW > XLEN, only the least-significant XLEN bits are
6889     // transferred to the destination register. We issue two of these from the
6890     // upper- and lower- halves of the SEW-bit vector element, slid down to the
6891     // first element.
6892     SDValue Vec = N->getOperand(0);
6893     SDValue Idx = N->getOperand(1);
6894 
6895     // The vector type hasn't been legalized yet so we can't issue target
6896     // specific nodes if it needs legalization.
6897     // FIXME: We would manually legalize if it's important.
6898     if (!isTypeLegal(Vec.getValueType()))
6899       return;
6900 
6901     MVT VecVT = Vec.getSimpleValueType();
6902 
6903     assert(!Subtarget.is64Bit() && N->getValueType(0) == MVT::i64 &&
6904            VecVT.getVectorElementType() == MVT::i64 &&
6905            "Unexpected EXTRACT_VECTOR_ELT legalization");
6906 
6907     // If this is a fixed vector, we need to convert it to a scalable vector.
6908     MVT ContainerVT = VecVT;
6909     if (VecVT.isFixedLengthVector()) {
6910       ContainerVT = getContainerForFixedLengthVector(VecVT);
6911       Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
6912     }
6913 
6914     MVT XLenVT = Subtarget.getXLenVT();
6915 
6916     // Use a VL of 1 to avoid processing more elements than we need.
6917     MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
6918     SDValue VL = DAG.getConstant(1, DL, XLenVT);
6919     SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
6920 
6921     // Unless the index is known to be 0, we must slide the vector down to get
6922     // the desired element into index 0.
6923     if (!isNullConstant(Idx)) {
6924       Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT,
6925                         DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL);
6926     }
6927 
6928     // Extract the lower XLEN bits of the correct vector element.
6929     SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec);
6930 
6931     // To extract the upper XLEN bits of the vector element, shift the first
6932     // element right by 32 bits and re-extract the lower XLEN bits.
6933     SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
6934                                      DAG.getUNDEF(ContainerVT),
6935                                      DAG.getConstant(32, DL, XLenVT), VL);
6936     SDValue LShr32 = DAG.getNode(RISCVISD::SRL_VL, DL, ContainerVT, Vec,
6937                                  ThirtyTwoV, Mask, VL);
6938 
6939     SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32);
6940 
6941     Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi));
6942     break;
6943   }
6944   case ISD::INTRINSIC_WO_CHAIN: {
6945     unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
6946     switch (IntNo) {
6947     default:
6948       llvm_unreachable(
6949           "Don't know how to custom type legalize this intrinsic!");
6950     case Intrinsic::riscv_grev:
6951     case Intrinsic::riscv_gorc: {
6952       assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6953              "Unexpected custom legalisation");
6954       SDValue NewOp1 =
6955           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
6956       SDValue NewOp2 =
6957           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
6958       unsigned Opc =
6959           IntNo == Intrinsic::riscv_grev ? RISCVISD::GREVW : RISCVISD::GORCW;
6960       // If the control is a constant, promote the node by clearing any extra
6961       // bits bits in the control. isel will form greviw/gorciw if the result is
6962       // sign extended.
6963       if (isa<ConstantSDNode>(NewOp2)) {
6964         NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2,
6965                              DAG.getConstant(0x1f, DL, MVT::i64));
6966         Opc = IntNo == Intrinsic::riscv_grev ? RISCVISD::GREV : RISCVISD::GORC;
6967       }
6968       SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2);
6969       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
6970       break;
6971     }
6972     case Intrinsic::riscv_bcompress:
6973     case Intrinsic::riscv_bdecompress:
6974     case Intrinsic::riscv_bfp: {
6975       assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6976              "Unexpected custom legalisation");
6977       Results.push_back(customLegalizeToWOpByIntr(N, DAG, IntNo));
6978       break;
6979     }
6980     case Intrinsic::riscv_fsl:
6981     case Intrinsic::riscv_fsr: {
6982       assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6983              "Unexpected custom legalisation");
6984       SDValue NewOp1 =
6985           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
6986       SDValue NewOp2 =
6987           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
6988       SDValue NewOp3 =
6989           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(3));
6990       unsigned Opc = getRISCVWOpcodeByIntr(IntNo);
6991       SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2, NewOp3);
6992       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
6993       break;
6994     }
6995     case Intrinsic::riscv_orc_b: {
6996       // Lower to the GORCI encoding for orc.b with the operand extended.
6997       SDValue NewOp =
6998           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
6999       SDValue Res = DAG.getNode(RISCVISD::GORC, DL, MVT::i64, NewOp,
7000                                 DAG.getConstant(7, DL, MVT::i64));
7001       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
7002       return;
7003     }
7004     case Intrinsic::riscv_shfl:
7005     case Intrinsic::riscv_unshfl: {
7006       assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
7007              "Unexpected custom legalisation");
7008       SDValue NewOp1 =
7009           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
7010       SDValue NewOp2 =
7011           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
7012       unsigned Opc =
7013           IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFLW : RISCVISD::UNSHFLW;
7014       // There is no (UN)SHFLIW. If the control word is a constant, we can use
7015       // (UN)SHFLI with bit 4 of the control word cleared. The upper 32 bit half
7016       // will be shuffled the same way as the lower 32 bit half, but the two
7017       // halves won't cross.
7018       if (isa<ConstantSDNode>(NewOp2)) {
7019         NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2,
7020                              DAG.getConstant(0xf, DL, MVT::i64));
7021         Opc =
7022             IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL;
7023       }
7024       SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2);
7025       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
7026       break;
7027     }
7028     case Intrinsic::riscv_vmv_x_s: {
7029       EVT VT = N->getValueType(0);
7030       MVT XLenVT = Subtarget.getXLenVT();
7031       if (VT.bitsLT(XLenVT)) {
7032         // Simple case just extract using vmv.x.s and truncate.
7033         SDValue Extract = DAG.getNode(RISCVISD::VMV_X_S, DL,
7034                                       Subtarget.getXLenVT(), N->getOperand(1));
7035         Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, Extract));
7036         return;
7037       }
7038 
7039       assert(VT == MVT::i64 && !Subtarget.is64Bit() &&
7040              "Unexpected custom legalization");
7041 
7042       // We need to do the move in two steps.
7043       SDValue Vec = N->getOperand(1);
7044       MVT VecVT = Vec.getSimpleValueType();
7045 
7046       // First extract the lower XLEN bits of the element.
7047       SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec);
7048 
7049       // To extract the upper XLEN bits of the vector element, shift the first
7050       // element right by 32 bits and re-extract the lower XLEN bits.
7051       SDValue VL = DAG.getConstant(1, DL, XLenVT);
7052       MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount());
7053       SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
7054       SDValue ThirtyTwoV =
7055           DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, DAG.getUNDEF(VecVT),
7056                       DAG.getConstant(32, DL, XLenVT), VL);
7057       SDValue LShr32 =
7058           DAG.getNode(RISCVISD::SRL_VL, DL, VecVT, Vec, ThirtyTwoV, Mask, VL);
7059       SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32);
7060 
7061       Results.push_back(
7062           DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi));
7063       break;
7064     }
7065     }
7066     break;
7067   }
7068   case ISD::VECREDUCE_ADD:
7069   case ISD::VECREDUCE_AND:
7070   case ISD::VECREDUCE_OR:
7071   case ISD::VECREDUCE_XOR:
7072   case ISD::VECREDUCE_SMAX:
7073   case ISD::VECREDUCE_UMAX:
7074   case ISD::VECREDUCE_SMIN:
7075   case ISD::VECREDUCE_UMIN:
7076     if (SDValue V = lowerVECREDUCE(SDValue(N, 0), DAG))
7077       Results.push_back(V);
7078     break;
7079   case ISD::VP_REDUCE_ADD:
7080   case ISD::VP_REDUCE_AND:
7081   case ISD::VP_REDUCE_OR:
7082   case ISD::VP_REDUCE_XOR:
7083   case ISD::VP_REDUCE_SMAX:
7084   case ISD::VP_REDUCE_UMAX:
7085   case ISD::VP_REDUCE_SMIN:
7086   case ISD::VP_REDUCE_UMIN:
7087     if (SDValue V = lowerVPREDUCE(SDValue(N, 0), DAG))
7088       Results.push_back(V);
7089     break;
7090   case ISD::FLT_ROUNDS_: {
7091     SDVTList VTs = DAG.getVTList(Subtarget.getXLenVT(), MVT::Other);
7092     SDValue Res = DAG.getNode(ISD::FLT_ROUNDS_, DL, VTs, N->getOperand(0));
7093     Results.push_back(Res.getValue(0));
7094     Results.push_back(Res.getValue(1));
7095     break;
7096   }
7097   }
7098 }
7099 
7100 // A structure to hold one of the bit-manipulation patterns below. Together, a
7101 // SHL and non-SHL pattern may form a bit-manipulation pair on a single source:
7102 //   (or (and (shl x, 1), 0xAAAAAAAA),
7103 //       (and (srl x, 1), 0x55555555))
7104 struct RISCVBitmanipPat {
7105   SDValue Op;
7106   unsigned ShAmt;
7107   bool IsSHL;
7108 
7109   bool formsPairWith(const RISCVBitmanipPat &Other) const {
7110     return Op == Other.Op && ShAmt == Other.ShAmt && IsSHL != Other.IsSHL;
7111   }
7112 };
7113 
7114 // Matches patterns of the form
7115 //   (and (shl x, C2), (C1 << C2))
7116 //   (and (srl x, C2), C1)
7117 //   (shl (and x, C1), C2)
7118 //   (srl (and x, (C1 << C2)), C2)
7119 // Where C2 is a power of 2 and C1 has at least that many leading zeroes.
7120 // The expected masks for each shift amount are specified in BitmanipMasks where
7121 // BitmanipMasks[log2(C2)] specifies the expected C1 value.
7122 // The max allowed shift amount is either XLen/2 or XLen/4 determined by whether
7123 // BitmanipMasks contains 6 or 5 entries assuming that the maximum possible
7124 // XLen is 64.
7125 static Optional<RISCVBitmanipPat>
7126 matchRISCVBitmanipPat(SDValue Op, ArrayRef<uint64_t> BitmanipMasks) {
7127   assert((BitmanipMasks.size() == 5 || BitmanipMasks.size() == 6) &&
7128          "Unexpected number of masks");
7129   Optional<uint64_t> Mask;
7130   // Optionally consume a mask around the shift operation.
7131   if (Op.getOpcode() == ISD::AND && isa<ConstantSDNode>(Op.getOperand(1))) {
7132     Mask = Op.getConstantOperandVal(1);
7133     Op = Op.getOperand(0);
7134   }
7135   if (Op.getOpcode() != ISD::SHL && Op.getOpcode() != ISD::SRL)
7136     return None;
7137   bool IsSHL = Op.getOpcode() == ISD::SHL;
7138 
7139   if (!isa<ConstantSDNode>(Op.getOperand(1)))
7140     return None;
7141   uint64_t ShAmt = Op.getConstantOperandVal(1);
7142 
7143   unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32;
7144   if (ShAmt >= Width || !isPowerOf2_64(ShAmt))
7145     return None;
7146   // If we don't have enough masks for 64 bit, then we must be trying to
7147   // match SHFL so we're only allowed to shift 1/4 of the width.
7148   if (BitmanipMasks.size() == 5 && ShAmt >= (Width / 2))
7149     return None;
7150 
7151   SDValue Src = Op.getOperand(0);
7152 
7153   // The expected mask is shifted left when the AND is found around SHL
7154   // patterns.
7155   //   ((x >> 1) & 0x55555555)
7156   //   ((x << 1) & 0xAAAAAAAA)
7157   bool SHLExpMask = IsSHL;
7158 
7159   if (!Mask) {
7160     // Sometimes LLVM keeps the mask as an operand of the shift, typically when
7161     // the mask is all ones: consume that now.
7162     if (Src.getOpcode() == ISD::AND && isa<ConstantSDNode>(Src.getOperand(1))) {
7163       Mask = Src.getConstantOperandVal(1);
7164       Src = Src.getOperand(0);
7165       // The expected mask is now in fact shifted left for SRL, so reverse the
7166       // decision.
7167       //   ((x & 0xAAAAAAAA) >> 1)
7168       //   ((x & 0x55555555) << 1)
7169       SHLExpMask = !SHLExpMask;
7170     } else {
7171       // Use a default shifted mask of all-ones if there's no AND, truncated
7172       // down to the expected width. This simplifies the logic later on.
7173       Mask = maskTrailingOnes<uint64_t>(Width);
7174       *Mask &= (IsSHL ? *Mask << ShAmt : *Mask >> ShAmt);
7175     }
7176   }
7177 
7178   unsigned MaskIdx = Log2_32(ShAmt);
7179   uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width);
7180 
7181   if (SHLExpMask)
7182     ExpMask <<= ShAmt;
7183 
7184   if (Mask != ExpMask)
7185     return None;
7186 
7187   return RISCVBitmanipPat{Src, (unsigned)ShAmt, IsSHL};
7188 }
7189 
7190 // Matches any of the following bit-manipulation patterns:
7191 //   (and (shl x, 1), (0x55555555 << 1))
7192 //   (and (srl x, 1), 0x55555555)
7193 //   (shl (and x, 0x55555555), 1)
7194 //   (srl (and x, (0x55555555 << 1)), 1)
7195 // where the shift amount and mask may vary thus:
7196 //   [1]  = 0x55555555 / 0xAAAAAAAA
7197 //   [2]  = 0x33333333 / 0xCCCCCCCC
7198 //   [4]  = 0x0F0F0F0F / 0xF0F0F0F0
7199 //   [8]  = 0x00FF00FF / 0xFF00FF00
7200 //   [16] = 0x0000FFFF / 0xFFFFFFFF
7201 //   [32] = 0x00000000FFFFFFFF / 0xFFFFFFFF00000000 (for RV64)
7202 static Optional<RISCVBitmanipPat> matchGREVIPat(SDValue Op) {
7203   // These are the unshifted masks which we use to match bit-manipulation
7204   // patterns. They may be shifted left in certain circumstances.
7205   static const uint64_t BitmanipMasks[] = {
7206       0x5555555555555555ULL, 0x3333333333333333ULL, 0x0F0F0F0F0F0F0F0FULL,
7207       0x00FF00FF00FF00FFULL, 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL};
7208 
7209   return matchRISCVBitmanipPat(Op, BitmanipMasks);
7210 }
7211 
7212 // Match the following pattern as a GREVI(W) operation
7213 //   (or (BITMANIP_SHL x), (BITMANIP_SRL x))
7214 static SDValue combineORToGREV(SDValue Op, SelectionDAG &DAG,
7215                                const RISCVSubtarget &Subtarget) {
7216   assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson");
7217   EVT VT = Op.getValueType();
7218 
7219   if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) {
7220     auto LHS = matchGREVIPat(Op.getOperand(0));
7221     auto RHS = matchGREVIPat(Op.getOperand(1));
7222     if (LHS && RHS && LHS->formsPairWith(*RHS)) {
7223       SDLoc DL(Op);
7224       return DAG.getNode(RISCVISD::GREV, DL, VT, LHS->Op,
7225                          DAG.getConstant(LHS->ShAmt, DL, VT));
7226     }
7227   }
7228   return SDValue();
7229 }
7230 
7231 // Matches any the following pattern as a GORCI(W) operation
7232 // 1.  (or (GREVI x, shamt), x) if shamt is a power of 2
7233 // 2.  (or x, (GREVI x, shamt)) if shamt is a power of 2
7234 // 3.  (or (or (BITMANIP_SHL x), x), (BITMANIP_SRL x))
7235 // Note that with the variant of 3.,
7236 //     (or (or (BITMANIP_SHL x), (BITMANIP_SRL x)), x)
7237 // the inner pattern will first be matched as GREVI and then the outer
7238 // pattern will be matched to GORC via the first rule above.
7239 // 4.  (or (rotl/rotr x, bitwidth/2), x)
7240 static SDValue combineORToGORC(SDValue Op, SelectionDAG &DAG,
7241                                const RISCVSubtarget &Subtarget) {
7242   assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson");
7243   EVT VT = Op.getValueType();
7244 
7245   if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) {
7246     SDLoc DL(Op);
7247     SDValue Op0 = Op.getOperand(0);
7248     SDValue Op1 = Op.getOperand(1);
7249 
7250     auto MatchOROfReverse = [&](SDValue Reverse, SDValue X) {
7251       if (Reverse.getOpcode() == RISCVISD::GREV && Reverse.getOperand(0) == X &&
7252           isa<ConstantSDNode>(Reverse.getOperand(1)) &&
7253           isPowerOf2_32(Reverse.getConstantOperandVal(1)))
7254         return DAG.getNode(RISCVISD::GORC, DL, VT, X, Reverse.getOperand(1));
7255       // We can also form GORCI from ROTL/ROTR by half the bitwidth.
7256       if ((Reverse.getOpcode() == ISD::ROTL ||
7257            Reverse.getOpcode() == ISD::ROTR) &&
7258           Reverse.getOperand(0) == X &&
7259           isa<ConstantSDNode>(Reverse.getOperand(1))) {
7260         uint64_t RotAmt = Reverse.getConstantOperandVal(1);
7261         if (RotAmt == (VT.getSizeInBits() / 2))
7262           return DAG.getNode(RISCVISD::GORC, DL, VT, X,
7263                              DAG.getConstant(RotAmt, DL, VT));
7264       }
7265       return SDValue();
7266     };
7267 
7268     // Check for either commutable permutation of (or (GREVI x, shamt), x)
7269     if (SDValue V = MatchOROfReverse(Op0, Op1))
7270       return V;
7271     if (SDValue V = MatchOROfReverse(Op1, Op0))
7272       return V;
7273 
7274     // OR is commutable so canonicalize its OR operand to the left
7275     if (Op0.getOpcode() != ISD::OR && Op1.getOpcode() == ISD::OR)
7276       std::swap(Op0, Op1);
7277     if (Op0.getOpcode() != ISD::OR)
7278       return SDValue();
7279     SDValue OrOp0 = Op0.getOperand(0);
7280     SDValue OrOp1 = Op0.getOperand(1);
7281     auto LHS = matchGREVIPat(OrOp0);
7282     // OR is commutable so swap the operands and try again: x might have been
7283     // on the left
7284     if (!LHS) {
7285       std::swap(OrOp0, OrOp1);
7286       LHS = matchGREVIPat(OrOp0);
7287     }
7288     auto RHS = matchGREVIPat(Op1);
7289     if (LHS && RHS && LHS->formsPairWith(*RHS) && LHS->Op == OrOp1) {
7290       return DAG.getNode(RISCVISD::GORC, DL, VT, LHS->Op,
7291                          DAG.getConstant(LHS->ShAmt, DL, VT));
7292     }
7293   }
7294   return SDValue();
7295 }
7296 
7297 // Matches any of the following bit-manipulation patterns:
7298 //   (and (shl x, 1), (0x22222222 << 1))
7299 //   (and (srl x, 1), 0x22222222)
7300 //   (shl (and x, 0x22222222), 1)
7301 //   (srl (and x, (0x22222222 << 1)), 1)
7302 // where the shift amount and mask may vary thus:
7303 //   [1]  = 0x22222222 / 0x44444444
7304 //   [2]  = 0x0C0C0C0C / 0x3C3C3C3C
7305 //   [4]  = 0x00F000F0 / 0x0F000F00
7306 //   [8]  = 0x0000FF00 / 0x00FF0000
7307 //   [16] = 0x00000000FFFF0000 / 0x0000FFFF00000000 (for RV64)
7308 static Optional<RISCVBitmanipPat> matchSHFLPat(SDValue Op) {
7309   // These are the unshifted masks which we use to match bit-manipulation
7310   // patterns. They may be shifted left in certain circumstances.
7311   static const uint64_t BitmanipMasks[] = {
7312       0x2222222222222222ULL, 0x0C0C0C0C0C0C0C0CULL, 0x00F000F000F000F0ULL,
7313       0x0000FF000000FF00ULL, 0x00000000FFFF0000ULL};
7314 
7315   return matchRISCVBitmanipPat(Op, BitmanipMasks);
7316 }
7317 
7318 // Match (or (or (SHFL_SHL x), (SHFL_SHR x)), (SHFL_AND x)
7319 static SDValue combineORToSHFL(SDValue Op, SelectionDAG &DAG,
7320                                const RISCVSubtarget &Subtarget) {
7321   assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson");
7322   EVT VT = Op.getValueType();
7323 
7324   if (VT != MVT::i32 && VT != Subtarget.getXLenVT())
7325     return SDValue();
7326 
7327   SDValue Op0 = Op.getOperand(0);
7328   SDValue Op1 = Op.getOperand(1);
7329 
7330   // Or is commutable so canonicalize the second OR to the LHS.
7331   if (Op0.getOpcode() != ISD::OR)
7332     std::swap(Op0, Op1);
7333   if (Op0.getOpcode() != ISD::OR)
7334     return SDValue();
7335 
7336   // We found an inner OR, so our operands are the operands of the inner OR
7337   // and the other operand of the outer OR.
7338   SDValue A = Op0.getOperand(0);
7339   SDValue B = Op0.getOperand(1);
7340   SDValue C = Op1;
7341 
7342   auto Match1 = matchSHFLPat(A);
7343   auto Match2 = matchSHFLPat(B);
7344 
7345   // If neither matched, we failed.
7346   if (!Match1 && !Match2)
7347     return SDValue();
7348 
7349   // We had at least one match. if one failed, try the remaining C operand.
7350   if (!Match1) {
7351     std::swap(A, C);
7352     Match1 = matchSHFLPat(A);
7353     if (!Match1)
7354       return SDValue();
7355   } else if (!Match2) {
7356     std::swap(B, C);
7357     Match2 = matchSHFLPat(B);
7358     if (!Match2)
7359       return SDValue();
7360   }
7361   assert(Match1 && Match2);
7362 
7363   // Make sure our matches pair up.
7364   if (!Match1->formsPairWith(*Match2))
7365     return SDValue();
7366 
7367   // All the remains is to make sure C is an AND with the same input, that masks
7368   // out the bits that are being shuffled.
7369   if (C.getOpcode() != ISD::AND || !isa<ConstantSDNode>(C.getOperand(1)) ||
7370       C.getOperand(0) != Match1->Op)
7371     return SDValue();
7372 
7373   uint64_t Mask = C.getConstantOperandVal(1);
7374 
7375   static const uint64_t BitmanipMasks[] = {
7376       0x9999999999999999ULL, 0xC3C3C3C3C3C3C3C3ULL, 0xF00FF00FF00FF00FULL,
7377       0xFF0000FFFF0000FFULL, 0xFFFF00000000FFFFULL,
7378   };
7379 
7380   unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32;
7381   unsigned MaskIdx = Log2_32(Match1->ShAmt);
7382   uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width);
7383 
7384   if (Mask != ExpMask)
7385     return SDValue();
7386 
7387   SDLoc DL(Op);
7388   return DAG.getNode(RISCVISD::SHFL, DL, VT, Match1->Op,
7389                      DAG.getConstant(Match1->ShAmt, DL, VT));
7390 }
7391 
7392 // Optimize (add (shl x, c0), (shl y, c1)) ->
7393 //          (SLLI (SH*ADD x, y), c0), if c1-c0 equals to [1|2|3].
7394 static SDValue transformAddShlImm(SDNode *N, SelectionDAG &DAG,
7395                                   const RISCVSubtarget &Subtarget) {
7396   // Perform this optimization only in the zba extension.
7397   if (!Subtarget.hasStdExtZba())
7398     return SDValue();
7399 
7400   // Skip for vector types and larger types.
7401   EVT VT = N->getValueType(0);
7402   if (VT.isVector() || VT.getSizeInBits() > Subtarget.getXLen())
7403     return SDValue();
7404 
7405   // The two operand nodes must be SHL and have no other use.
7406   SDValue N0 = N->getOperand(0);
7407   SDValue N1 = N->getOperand(1);
7408   if (N0->getOpcode() != ISD::SHL || N1->getOpcode() != ISD::SHL ||
7409       !N0->hasOneUse() || !N1->hasOneUse())
7410     return SDValue();
7411 
7412   // Check c0 and c1.
7413   auto *N0C = dyn_cast<ConstantSDNode>(N0->getOperand(1));
7414   auto *N1C = dyn_cast<ConstantSDNode>(N1->getOperand(1));
7415   if (!N0C || !N1C)
7416     return SDValue();
7417   int64_t C0 = N0C->getSExtValue();
7418   int64_t C1 = N1C->getSExtValue();
7419   if (C0 <= 0 || C1 <= 0)
7420     return SDValue();
7421 
7422   // Skip if SH1ADD/SH2ADD/SH3ADD are not applicable.
7423   int64_t Bits = std::min(C0, C1);
7424   int64_t Diff = std::abs(C0 - C1);
7425   if (Diff != 1 && Diff != 2 && Diff != 3)
7426     return SDValue();
7427 
7428   // Build nodes.
7429   SDLoc DL(N);
7430   SDValue NS = (C0 < C1) ? N0->getOperand(0) : N1->getOperand(0);
7431   SDValue NL = (C0 > C1) ? N0->getOperand(0) : N1->getOperand(0);
7432   SDValue NA0 =
7433       DAG.getNode(ISD::SHL, DL, VT, NL, DAG.getConstant(Diff, DL, VT));
7434   SDValue NA1 = DAG.getNode(ISD::ADD, DL, VT, NA0, NS);
7435   return DAG.getNode(ISD::SHL, DL, VT, NA1, DAG.getConstant(Bits, DL, VT));
7436 }
7437 
7438 // Combine
7439 // ROTR ((GREVI x, 24), 16) -> (GREVI x, 8) for RV32
7440 // ROTL ((GREVI x, 24), 16) -> (GREVI x, 8) for RV32
7441 // ROTR ((GREVI x, 56), 32) -> (GREVI x, 24) for RV64
7442 // ROTL ((GREVI x, 56), 32) -> (GREVI x, 24) for RV64
7443 // RORW ((GREVI x, 24), 16) -> (GREVIW x, 8) for RV64
7444 // ROLW ((GREVI x, 24), 16) -> (GREVIW x, 8) for RV64
7445 // The grev patterns represents BSWAP.
7446 // FIXME: This can be generalized to any GREV. We just need to toggle the MSB
7447 // off the grev.
7448 static SDValue combineROTR_ROTL_RORW_ROLW(SDNode *N, SelectionDAG &DAG,
7449                                           const RISCVSubtarget &Subtarget) {
7450   bool IsWInstruction =
7451       N->getOpcode() == RISCVISD::RORW || N->getOpcode() == RISCVISD::ROLW;
7452   assert((N->getOpcode() == ISD::ROTR || N->getOpcode() == ISD::ROTL ||
7453           IsWInstruction) &&
7454          "Unexpected opcode!");
7455   SDValue Src = N->getOperand(0);
7456   EVT VT = N->getValueType(0);
7457   SDLoc DL(N);
7458 
7459   if (!Subtarget.hasStdExtZbp() || Src.getOpcode() != RISCVISD::GREV)
7460     return SDValue();
7461 
7462   if (!isa<ConstantSDNode>(N->getOperand(1)) ||
7463       !isa<ConstantSDNode>(Src.getOperand(1)))
7464     return SDValue();
7465 
7466   unsigned BitWidth = IsWInstruction ? 32 : VT.getSizeInBits();
7467   assert(isPowerOf2_32(BitWidth) && "Expected a power of 2");
7468 
7469   // Needs to be a rotate by half the bitwidth for ROTR/ROTL or by 16 for
7470   // RORW/ROLW. And the grev should be the encoding for bswap for this width.
7471   unsigned ShAmt1 = N->getConstantOperandVal(1);
7472   unsigned ShAmt2 = Src.getConstantOperandVal(1);
7473   if (BitWidth < 32 || ShAmt1 != (BitWidth / 2) || ShAmt2 != (BitWidth - 8))
7474     return SDValue();
7475 
7476   Src = Src.getOperand(0);
7477 
7478   // Toggle bit the MSB of the shift.
7479   unsigned CombinedShAmt = ShAmt1 ^ ShAmt2;
7480   if (CombinedShAmt == 0)
7481     return Src;
7482 
7483   SDValue Res = DAG.getNode(
7484       RISCVISD::GREV, DL, VT, Src,
7485       DAG.getConstant(CombinedShAmt, DL, N->getOperand(1).getValueType()));
7486   if (!IsWInstruction)
7487     return Res;
7488 
7489   // Sign extend the result to match the behavior of the rotate. This will be
7490   // selected to GREVIW in isel.
7491   return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Res,
7492                      DAG.getValueType(MVT::i32));
7493 }
7494 
7495 // Combine (GREVI (GREVI x, C2), C1) -> (GREVI x, C1^C2) when C1^C2 is
7496 // non-zero, and to x when it is. Any repeated GREVI stage undoes itself.
7497 // Combine (GORCI (GORCI x, C2), C1) -> (GORCI x, C1|C2). Repeated stage does
7498 // not undo itself, but they are redundant.
7499 static SDValue combineGREVI_GORCI(SDNode *N, SelectionDAG &DAG) {
7500   bool IsGORC = N->getOpcode() == RISCVISD::GORC;
7501   assert((IsGORC || N->getOpcode() == RISCVISD::GREV) && "Unexpected opcode");
7502   SDValue Src = N->getOperand(0);
7503 
7504   if (Src.getOpcode() != N->getOpcode())
7505     return SDValue();
7506 
7507   if (!isa<ConstantSDNode>(N->getOperand(1)) ||
7508       !isa<ConstantSDNode>(Src.getOperand(1)))
7509     return SDValue();
7510 
7511   unsigned ShAmt1 = N->getConstantOperandVal(1);
7512   unsigned ShAmt2 = Src.getConstantOperandVal(1);
7513   Src = Src.getOperand(0);
7514 
7515   unsigned CombinedShAmt;
7516   if (IsGORC)
7517     CombinedShAmt = ShAmt1 | ShAmt2;
7518   else
7519     CombinedShAmt = ShAmt1 ^ ShAmt2;
7520 
7521   if (CombinedShAmt == 0)
7522     return Src;
7523 
7524   SDLoc DL(N);
7525   return DAG.getNode(
7526       N->getOpcode(), DL, N->getValueType(0), Src,
7527       DAG.getConstant(CombinedShAmt, DL, N->getOperand(1).getValueType()));
7528 }
7529 
7530 // Combine a constant select operand into its use:
7531 //
7532 // (and (select cond, -1, c), x)
7533 //   -> (select cond, x, (and x, c))  [AllOnes=1]
7534 // (or  (select cond, 0, c), x)
7535 //   -> (select cond, x, (or x, c))  [AllOnes=0]
7536 // (xor (select cond, 0, c), x)
7537 //   -> (select cond, x, (xor x, c))  [AllOnes=0]
7538 // (add (select cond, 0, c), x)
7539 //   -> (select cond, x, (add x, c))  [AllOnes=0]
7540 // (sub x, (select cond, 0, c))
7541 //   -> (select cond, x, (sub x, c))  [AllOnes=0]
7542 static SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp,
7543                                    SelectionDAG &DAG, bool AllOnes) {
7544   EVT VT = N->getValueType(0);
7545 
7546   // Skip vectors.
7547   if (VT.isVector())
7548     return SDValue();
7549 
7550   if ((Slct.getOpcode() != ISD::SELECT &&
7551        Slct.getOpcode() != RISCVISD::SELECT_CC) ||
7552       !Slct.hasOneUse())
7553     return SDValue();
7554 
7555   auto isZeroOrAllOnes = [](SDValue N, bool AllOnes) {
7556     return AllOnes ? isAllOnesConstant(N) : isNullConstant(N);
7557   };
7558 
7559   bool SwapSelectOps;
7560   unsigned OpOffset = Slct.getOpcode() == RISCVISD::SELECT_CC ? 2 : 0;
7561   SDValue TrueVal = Slct.getOperand(1 + OpOffset);
7562   SDValue FalseVal = Slct.getOperand(2 + OpOffset);
7563   SDValue NonConstantVal;
7564   if (isZeroOrAllOnes(TrueVal, AllOnes)) {
7565     SwapSelectOps = false;
7566     NonConstantVal = FalseVal;
7567   } else if (isZeroOrAllOnes(FalseVal, AllOnes)) {
7568     SwapSelectOps = true;
7569     NonConstantVal = TrueVal;
7570   } else
7571     return SDValue();
7572 
7573   // Slct is now know to be the desired identity constant when CC is true.
7574   TrueVal = OtherOp;
7575   FalseVal = DAG.getNode(N->getOpcode(), SDLoc(N), VT, OtherOp, NonConstantVal);
7576   // Unless SwapSelectOps says the condition should be false.
7577   if (SwapSelectOps)
7578     std::swap(TrueVal, FalseVal);
7579 
7580   if (Slct.getOpcode() == RISCVISD::SELECT_CC)
7581     return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), VT,
7582                        {Slct.getOperand(0), Slct.getOperand(1),
7583                         Slct.getOperand(2), TrueVal, FalseVal});
7584 
7585   return DAG.getNode(ISD::SELECT, SDLoc(N), VT,
7586                      {Slct.getOperand(0), TrueVal, FalseVal});
7587 }
7588 
7589 // Attempt combineSelectAndUse on each operand of a commutative operator N.
7590 static SDValue combineSelectAndUseCommutative(SDNode *N, SelectionDAG &DAG,
7591                                               bool AllOnes) {
7592   SDValue N0 = N->getOperand(0);
7593   SDValue N1 = N->getOperand(1);
7594   if (SDValue Result = combineSelectAndUse(N, N0, N1, DAG, AllOnes))
7595     return Result;
7596   if (SDValue Result = combineSelectAndUse(N, N1, N0, DAG, AllOnes))
7597     return Result;
7598   return SDValue();
7599 }
7600 
7601 // Transform (add (mul x, c0), c1) ->
7602 //           (add (mul (add x, c1/c0), c0), c1%c0).
7603 // if c1/c0 and c1%c0 are simm12, while c1 is not. A special corner case
7604 // that should be excluded is when c0*(c1/c0) is simm12, which will lead
7605 // to an infinite loop in DAGCombine if transformed.
7606 // Or transform (add (mul x, c0), c1) ->
7607 //              (add (mul (add x, c1/c0+1), c0), c1%c0-c0),
7608 // if c1/c0+1 and c1%c0-c0 are simm12, while c1 is not. A special corner
7609 // case that should be excluded is when c0*(c1/c0+1) is simm12, which will
7610 // lead to an infinite loop in DAGCombine if transformed.
7611 // Or transform (add (mul x, c0), c1) ->
7612 //              (add (mul (add x, c1/c0-1), c0), c1%c0+c0),
7613 // if c1/c0-1 and c1%c0+c0 are simm12, while c1 is not. A special corner
7614 // case that should be excluded is when c0*(c1/c0-1) is simm12, which will
7615 // lead to an infinite loop in DAGCombine if transformed.
7616 // Or transform (add (mul x, c0), c1) ->
7617 //              (mul (add x, c1/c0), c0).
7618 // if c1%c0 is zero, and c1/c0 is simm12 while c1 is not.
7619 static SDValue transformAddImmMulImm(SDNode *N, SelectionDAG &DAG,
7620                                      const RISCVSubtarget &Subtarget) {
7621   // Skip for vector types and larger types.
7622   EVT VT = N->getValueType(0);
7623   if (VT.isVector() || VT.getSizeInBits() > Subtarget.getXLen())
7624     return SDValue();
7625   // The first operand node must be a MUL and has no other use.
7626   SDValue N0 = N->getOperand(0);
7627   if (!N0->hasOneUse() || N0->getOpcode() != ISD::MUL)
7628     return SDValue();
7629   // Check if c0 and c1 match above conditions.
7630   auto *N0C = dyn_cast<ConstantSDNode>(N0->getOperand(1));
7631   auto *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1));
7632   if (!N0C || !N1C)
7633     return SDValue();
7634   // If N0C has multiple uses it's possible one of the cases in
7635   // DAGCombiner::isMulAddWithConstProfitable will be true, which would result
7636   // in an infinite loop.
7637   if (!N0C->hasOneUse())
7638     return SDValue();
7639   int64_t C0 = N0C->getSExtValue();
7640   int64_t C1 = N1C->getSExtValue();
7641   int64_t CA, CB;
7642   if (C0 == -1 || C0 == 0 || C0 == 1 || isInt<12>(C1))
7643     return SDValue();
7644   // Search for proper CA (non-zero) and CB that both are simm12.
7645   if ((C1 / C0) != 0 && isInt<12>(C1 / C0) && isInt<12>(C1 % C0) &&
7646       !isInt<12>(C0 * (C1 / C0))) {
7647     CA = C1 / C0;
7648     CB = C1 % C0;
7649   } else if ((C1 / C0 + 1) != 0 && isInt<12>(C1 / C0 + 1) &&
7650              isInt<12>(C1 % C0 - C0) && !isInt<12>(C0 * (C1 / C0 + 1))) {
7651     CA = C1 / C0 + 1;
7652     CB = C1 % C0 - C0;
7653   } else if ((C1 / C0 - 1) != 0 && isInt<12>(C1 / C0 - 1) &&
7654              isInt<12>(C1 % C0 + C0) && !isInt<12>(C0 * (C1 / C0 - 1))) {
7655     CA = C1 / C0 - 1;
7656     CB = C1 % C0 + C0;
7657   } else
7658     return SDValue();
7659   // Build new nodes (add (mul (add x, c1/c0), c0), c1%c0).
7660   SDLoc DL(N);
7661   SDValue New0 = DAG.getNode(ISD::ADD, DL, VT, N0->getOperand(0),
7662                              DAG.getConstant(CA, DL, VT));
7663   SDValue New1 =
7664       DAG.getNode(ISD::MUL, DL, VT, New0, DAG.getConstant(C0, DL, VT));
7665   return DAG.getNode(ISD::ADD, DL, VT, New1, DAG.getConstant(CB, DL, VT));
7666 }
7667 
7668 static SDValue performADDCombine(SDNode *N, SelectionDAG &DAG,
7669                                  const RISCVSubtarget &Subtarget) {
7670   if (SDValue V = transformAddImmMulImm(N, DAG, Subtarget))
7671     return V;
7672   if (SDValue V = transformAddShlImm(N, DAG, Subtarget))
7673     return V;
7674   // fold (add (select lhs, rhs, cc, 0, y), x) ->
7675   //      (select lhs, rhs, cc, x, (add x, y))
7676   return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false);
7677 }
7678 
7679 static SDValue performSUBCombine(SDNode *N, SelectionDAG &DAG) {
7680   // fold (sub x, (select lhs, rhs, cc, 0, y)) ->
7681   //      (select lhs, rhs, cc, x, (sub x, y))
7682   SDValue N0 = N->getOperand(0);
7683   SDValue N1 = N->getOperand(1);
7684   return combineSelectAndUse(N, N1, N0, DAG, /*AllOnes*/ false);
7685 }
7686 
7687 static SDValue performANDCombine(SDNode *N, SelectionDAG &DAG) {
7688   // fold (and (select lhs, rhs, cc, -1, y), x) ->
7689   //      (select lhs, rhs, cc, x, (and x, y))
7690   return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ true);
7691 }
7692 
7693 static SDValue performORCombine(SDNode *N, SelectionDAG &DAG,
7694                                 const RISCVSubtarget &Subtarget) {
7695   if (Subtarget.hasStdExtZbp()) {
7696     if (auto GREV = combineORToGREV(SDValue(N, 0), DAG, Subtarget))
7697       return GREV;
7698     if (auto GORC = combineORToGORC(SDValue(N, 0), DAG, Subtarget))
7699       return GORC;
7700     if (auto SHFL = combineORToSHFL(SDValue(N, 0), DAG, Subtarget))
7701       return SHFL;
7702   }
7703 
7704   // fold (or (select cond, 0, y), x) ->
7705   //      (select cond, x, (or x, y))
7706   return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false);
7707 }
7708 
7709 static SDValue performXORCombine(SDNode *N, SelectionDAG &DAG) {
7710   // fold (xor (select cond, 0, y), x) ->
7711   //      (select cond, x, (xor x, y))
7712   return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false);
7713 }
7714 
7715 static SDValue
7716 performSIGN_EXTEND_INREGCombine(SDNode *N, SelectionDAG &DAG,
7717                                 const RISCVSubtarget &Subtarget) {
7718   SDValue Src = N->getOperand(0);
7719   EVT VT = N->getValueType(0);
7720 
7721   // Fold (sext_inreg (fmv_x_anyexth X), i16) -> (fmv_x_signexth X)
7722   if (Src.getOpcode() == RISCVISD::FMV_X_ANYEXTH &&
7723       cast<VTSDNode>(N->getOperand(1))->getVT().bitsGE(MVT::i16))
7724     return DAG.getNode(RISCVISD::FMV_X_SIGNEXTH, SDLoc(N), VT,
7725                        Src.getOperand(0));
7726 
7727   // Fold (i64 (sext_inreg (abs X), i32)) ->
7728   // (i64 (smax (sext_inreg (neg X), i32), X)) if X has more than 32 sign bits.
7729   // The (sext_inreg (neg X), i32) will be selected to negw by isel. This
7730   // pattern occurs after type legalization of (i32 (abs X)) on RV64 if the user
7731   // of the (i32 (abs X)) is a sext or setcc or something else that causes type
7732   // legalization to add a sext_inreg after the abs. The (i32 (abs X)) will have
7733   // been type legalized to (i64 (abs (sext_inreg X, i32))), but the sext_inreg
7734   // may get combined into an earlier operation so we need to use
7735   // ComputeNumSignBits.
7736   // NOTE: (i64 (sext_inreg (abs X), i32)) can also be created for
7737   // (i64 (ashr (shl (abs X), 32), 32)) without any type legalization so
7738   // we can't assume that X has 33 sign bits. We must check.
7739   if (Subtarget.hasStdExtZbb() && Subtarget.is64Bit() &&
7740       Src.getOpcode() == ISD::ABS && Src.hasOneUse() && VT == MVT::i64 &&
7741       cast<VTSDNode>(N->getOperand(1))->getVT() == MVT::i32 &&
7742       DAG.ComputeNumSignBits(Src.getOperand(0)) > 32) {
7743     SDLoc DL(N);
7744     SDValue Freeze = DAG.getFreeze(Src.getOperand(0));
7745     SDValue Neg =
7746         DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, MVT::i64), Freeze);
7747     Neg = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Neg,
7748                       DAG.getValueType(MVT::i32));
7749     return DAG.getNode(ISD::SMAX, DL, MVT::i64, Freeze, Neg);
7750   }
7751 
7752   return SDValue();
7753 }
7754 
7755 // Try to form vwadd(u).wv/wx or vwsub(u).wv/wx. It might later be optimized to
7756 // vwadd(u).vv/vx or vwsub(u).vv/vx.
7757 static SDValue combineADDSUB_VLToVWADDSUB_VL(SDNode *N, SelectionDAG &DAG,
7758                                              bool Commute = false) {
7759   assert((N->getOpcode() == RISCVISD::ADD_VL ||
7760           N->getOpcode() == RISCVISD::SUB_VL) &&
7761          "Unexpected opcode");
7762   bool IsAdd = N->getOpcode() == RISCVISD::ADD_VL;
7763   SDValue Op0 = N->getOperand(0);
7764   SDValue Op1 = N->getOperand(1);
7765   if (Commute)
7766     std::swap(Op0, Op1);
7767 
7768   MVT VT = N->getSimpleValueType(0);
7769 
7770   // Determine the narrow size for a widening add/sub.
7771   unsigned NarrowSize = VT.getScalarSizeInBits() / 2;
7772   MVT NarrowVT = MVT::getVectorVT(MVT::getIntegerVT(NarrowSize),
7773                                   VT.getVectorElementCount());
7774 
7775   SDValue Mask = N->getOperand(2);
7776   SDValue VL = N->getOperand(3);
7777 
7778   SDLoc DL(N);
7779 
7780   // If the RHS is a sext or zext, we can form a widening op.
7781   if ((Op1.getOpcode() == RISCVISD::VZEXT_VL ||
7782        Op1.getOpcode() == RISCVISD::VSEXT_VL) &&
7783       Op1.hasOneUse() && Op1.getOperand(1) == Mask && Op1.getOperand(2) == VL) {
7784     unsigned ExtOpc = Op1.getOpcode();
7785     Op1 = Op1.getOperand(0);
7786     // Re-introduce narrower extends if needed.
7787     if (Op1.getValueType() != NarrowVT)
7788       Op1 = DAG.getNode(ExtOpc, DL, NarrowVT, Op1, Mask, VL);
7789 
7790     unsigned WOpc;
7791     if (ExtOpc == RISCVISD::VSEXT_VL)
7792       WOpc = IsAdd ? RISCVISD::VWADD_W_VL : RISCVISD::VWSUB_W_VL;
7793     else
7794       WOpc = IsAdd ? RISCVISD::VWADDU_W_VL : RISCVISD::VWSUBU_W_VL;
7795 
7796     return DAG.getNode(WOpc, DL, VT, Op0, Op1, Mask, VL);
7797   }
7798 
7799   // FIXME: Is it useful to form a vwadd.wx or vwsub.wx if it removes a scalar
7800   // sext/zext?
7801 
7802   return SDValue();
7803 }
7804 
7805 // Try to convert vwadd(u).wv/wx or vwsub(u).wv/wx to vwadd(u).vv/vx or
7806 // vwsub(u).vv/vx.
7807 static SDValue combineVWADD_W_VL_VWSUB_W_VL(SDNode *N, SelectionDAG &DAG) {
7808   SDValue Op0 = N->getOperand(0);
7809   SDValue Op1 = N->getOperand(1);
7810   SDValue Mask = N->getOperand(2);
7811   SDValue VL = N->getOperand(3);
7812 
7813   MVT VT = N->getSimpleValueType(0);
7814   MVT NarrowVT = Op1.getSimpleValueType();
7815   unsigned NarrowSize = NarrowVT.getScalarSizeInBits();
7816 
7817   unsigned VOpc;
7818   switch (N->getOpcode()) {
7819   default: llvm_unreachable("Unexpected opcode");
7820   case RISCVISD::VWADD_W_VL:  VOpc = RISCVISD::VWADD_VL;  break;
7821   case RISCVISD::VWSUB_W_VL:  VOpc = RISCVISD::VWSUB_VL;  break;
7822   case RISCVISD::VWADDU_W_VL: VOpc = RISCVISD::VWADDU_VL; break;
7823   case RISCVISD::VWSUBU_W_VL: VOpc = RISCVISD::VWSUBU_VL; break;
7824   }
7825 
7826   bool IsSigned = N->getOpcode() == RISCVISD::VWADD_W_VL ||
7827                   N->getOpcode() == RISCVISD::VWSUB_W_VL;
7828 
7829   SDLoc DL(N);
7830 
7831   // If the LHS is a sext or zext, we can narrow this op to the same size as
7832   // the RHS.
7833   if (((Op0.getOpcode() == RISCVISD::VZEXT_VL && !IsSigned) ||
7834        (Op0.getOpcode() == RISCVISD::VSEXT_VL && IsSigned)) &&
7835       Op0.hasOneUse() && Op0.getOperand(1) == Mask && Op0.getOperand(2) == VL) {
7836     unsigned ExtOpc = Op0.getOpcode();
7837     Op0 = Op0.getOperand(0);
7838     // Re-introduce narrower extends if needed.
7839     if (Op0.getValueType() != NarrowVT)
7840       Op0 = DAG.getNode(ExtOpc, DL, NarrowVT, Op0, Mask, VL);
7841     return DAG.getNode(VOpc, DL, VT, Op0, Op1, Mask, VL);
7842   }
7843 
7844   bool IsAdd = N->getOpcode() == RISCVISD::VWADD_W_VL ||
7845                N->getOpcode() == RISCVISD::VWADDU_W_VL;
7846 
7847   // Look for splats on the left hand side of a vwadd(u).wv. We might be able
7848   // to commute and use a vwadd(u).vx instead.
7849   if (IsAdd && Op0.getOpcode() == RISCVISD::VMV_V_X_VL &&
7850       Op0.getOperand(0).isUndef() && Op0.getOperand(2) == VL) {
7851     Op0 = Op0.getOperand(1);
7852 
7853     // See if have enough sign bits or zero bits in the scalar to use a
7854     // widening add/sub by splatting to smaller element size.
7855     unsigned EltBits = VT.getScalarSizeInBits();
7856     unsigned ScalarBits = Op0.getValueSizeInBits();
7857     // Make sure we're getting all element bits from the scalar register.
7858     // FIXME: Support implicit sign extension of vmv.v.x?
7859     if (ScalarBits < EltBits)
7860       return SDValue();
7861 
7862     if (IsSigned) {
7863       if (DAG.ComputeNumSignBits(Op0) <= (ScalarBits - NarrowSize))
7864         return SDValue();
7865     } else {
7866       APInt Mask = APInt::getBitsSetFrom(ScalarBits, NarrowSize);
7867       if (!DAG.MaskedValueIsZero(Op0, Mask))
7868         return SDValue();
7869     }
7870 
7871     Op0 = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, NarrowVT,
7872                       DAG.getUNDEF(NarrowVT), Op0, VL);
7873     return DAG.getNode(VOpc, DL, VT, Op1, Op0, Mask, VL);
7874   }
7875 
7876   return SDValue();
7877 }
7878 
7879 // Try to form VWMUL, VWMULU or VWMULSU.
7880 // TODO: Support VWMULSU.vx with a sign extend Op and a splat of scalar Op.
7881 static SDValue combineMUL_VLToVWMUL_VL(SDNode *N, SelectionDAG &DAG,
7882                                        bool Commute) {
7883   assert(N->getOpcode() == RISCVISD::MUL_VL && "Unexpected opcode");
7884   SDValue Op0 = N->getOperand(0);
7885   SDValue Op1 = N->getOperand(1);
7886   if (Commute)
7887     std::swap(Op0, Op1);
7888 
7889   bool IsSignExt = Op0.getOpcode() == RISCVISD::VSEXT_VL;
7890   bool IsZeroExt = Op0.getOpcode() == RISCVISD::VZEXT_VL;
7891   bool IsVWMULSU = IsSignExt && Op1.getOpcode() == RISCVISD::VZEXT_VL;
7892   if ((!IsSignExt && !IsZeroExt) || !Op0.hasOneUse())
7893     return SDValue();
7894 
7895   SDValue Mask = N->getOperand(2);
7896   SDValue VL = N->getOperand(3);
7897 
7898   // Make sure the mask and VL match.
7899   if (Op0.getOperand(1) != Mask || Op0.getOperand(2) != VL)
7900     return SDValue();
7901 
7902   MVT VT = N->getSimpleValueType(0);
7903 
7904   // Determine the narrow size for a widening multiply.
7905   unsigned NarrowSize = VT.getScalarSizeInBits() / 2;
7906   MVT NarrowVT = MVT::getVectorVT(MVT::getIntegerVT(NarrowSize),
7907                                   VT.getVectorElementCount());
7908 
7909   SDLoc DL(N);
7910 
7911   // See if the other operand is the same opcode.
7912   if (IsVWMULSU || Op0.getOpcode() == Op1.getOpcode()) {
7913     if (!Op1.hasOneUse())
7914       return SDValue();
7915 
7916     // Make sure the mask and VL match.
7917     if (Op1.getOperand(1) != Mask || Op1.getOperand(2) != VL)
7918       return SDValue();
7919 
7920     Op1 = Op1.getOperand(0);
7921   } else if (Op1.getOpcode() == RISCVISD::VMV_V_X_VL) {
7922     // The operand is a splat of a scalar.
7923 
7924     // The pasthru must be undef for tail agnostic
7925     if (!Op1.getOperand(0).isUndef())
7926       return SDValue();
7927     // The VL must be the same.
7928     if (Op1.getOperand(2) != VL)
7929       return SDValue();
7930 
7931     // Get the scalar value.
7932     Op1 = Op1.getOperand(1);
7933 
7934     // See if have enough sign bits or zero bits in the scalar to use a
7935     // widening multiply by splatting to smaller element size.
7936     unsigned EltBits = VT.getScalarSizeInBits();
7937     unsigned ScalarBits = Op1.getValueSizeInBits();
7938     // Make sure we're getting all element bits from the scalar register.
7939     // FIXME: Support implicit sign extension of vmv.v.x?
7940     if (ScalarBits < EltBits)
7941       return SDValue();
7942 
7943     // If the LHS is a sign extend, try to use vwmul.
7944     if (IsSignExt && DAG.ComputeNumSignBits(Op1) > (ScalarBits - NarrowSize)) {
7945       // Can use vwmul.
7946     } else {
7947       // Otherwise try to use vwmulu or vwmulsu.
7948       APInt Mask = APInt::getBitsSetFrom(ScalarBits, NarrowSize);
7949       if (DAG.MaskedValueIsZero(Op1, Mask))
7950         IsVWMULSU = IsSignExt;
7951       else
7952         return SDValue();
7953     }
7954 
7955     Op1 = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, NarrowVT,
7956                       DAG.getUNDEF(NarrowVT), Op1, VL);
7957   } else
7958     return SDValue();
7959 
7960   Op0 = Op0.getOperand(0);
7961 
7962   // Re-introduce narrower extends if needed.
7963   unsigned ExtOpc = IsSignExt ? RISCVISD::VSEXT_VL : RISCVISD::VZEXT_VL;
7964   if (Op0.getValueType() != NarrowVT)
7965     Op0 = DAG.getNode(ExtOpc, DL, NarrowVT, Op0, Mask, VL);
7966   // vwmulsu requires second operand to be zero extended.
7967   ExtOpc = IsVWMULSU ? RISCVISD::VZEXT_VL : ExtOpc;
7968   if (Op1.getValueType() != NarrowVT)
7969     Op1 = DAG.getNode(ExtOpc, DL, NarrowVT, Op1, Mask, VL);
7970 
7971   unsigned WMulOpc = RISCVISD::VWMULSU_VL;
7972   if (!IsVWMULSU)
7973     WMulOpc = IsSignExt ? RISCVISD::VWMUL_VL : RISCVISD::VWMULU_VL;
7974   return DAG.getNode(WMulOpc, DL, VT, Op0, Op1, Mask, VL);
7975 }
7976 
7977 static RISCVFPRndMode::RoundingMode matchRoundingOp(SDValue Op) {
7978   switch (Op.getOpcode()) {
7979   case ISD::FROUNDEVEN: return RISCVFPRndMode::RNE;
7980   case ISD::FTRUNC:     return RISCVFPRndMode::RTZ;
7981   case ISD::FFLOOR:     return RISCVFPRndMode::RDN;
7982   case ISD::FCEIL:      return RISCVFPRndMode::RUP;
7983   case ISD::FROUND:     return RISCVFPRndMode::RMM;
7984   }
7985 
7986   return RISCVFPRndMode::Invalid;
7987 }
7988 
7989 // Fold
7990 //   (fp_to_int (froundeven X)) -> fcvt X, rne
7991 //   (fp_to_int (ftrunc X))     -> fcvt X, rtz
7992 //   (fp_to_int (ffloor X))     -> fcvt X, rdn
7993 //   (fp_to_int (fceil X))      -> fcvt X, rup
7994 //   (fp_to_int (fround X))     -> fcvt X, rmm
7995 static SDValue performFP_TO_INTCombine(SDNode *N,
7996                                        TargetLowering::DAGCombinerInfo &DCI,
7997                                        const RISCVSubtarget &Subtarget) {
7998   SelectionDAG &DAG = DCI.DAG;
7999   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8000   MVT XLenVT = Subtarget.getXLenVT();
8001 
8002   // Only handle XLen or i32 types. Other types narrower than XLen will
8003   // eventually be legalized to XLenVT.
8004   EVT VT = N->getValueType(0);
8005   if (VT != MVT::i32 && VT != XLenVT)
8006     return SDValue();
8007 
8008   SDValue Src = N->getOperand(0);
8009 
8010   // Ensure the FP type is also legal.
8011   if (!TLI.isTypeLegal(Src.getValueType()))
8012     return SDValue();
8013 
8014   // Don't do this for f16 with Zfhmin and not Zfh.
8015   if (Src.getValueType() == MVT::f16 && !Subtarget.hasStdExtZfh())
8016     return SDValue();
8017 
8018   RISCVFPRndMode::RoundingMode FRM = matchRoundingOp(Src);
8019   if (FRM == RISCVFPRndMode::Invalid)
8020     return SDValue();
8021 
8022   bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT;
8023 
8024   unsigned Opc;
8025   if (VT == XLenVT)
8026     Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU;
8027   else
8028     Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64;
8029 
8030   SDLoc DL(N);
8031   SDValue FpToInt = DAG.getNode(Opc, DL, XLenVT, Src.getOperand(0),
8032                                 DAG.getTargetConstant(FRM, DL, XLenVT));
8033   return DAG.getNode(ISD::TRUNCATE, DL, VT, FpToInt);
8034 }
8035 
8036 // Fold
8037 //   (fp_to_int_sat (froundeven X)) -> (select X == nan, 0, (fcvt X, rne))
8038 //   (fp_to_int_sat (ftrunc X))     -> (select X == nan, 0, (fcvt X, rtz))
8039 //   (fp_to_int_sat (ffloor X))     -> (select X == nan, 0, (fcvt X, rdn))
8040 //   (fp_to_int_sat (fceil X))      -> (select X == nan, 0, (fcvt X, rup))
8041 //   (fp_to_int_sat (fround X))     -> (select X == nan, 0, (fcvt X, rmm))
8042 static SDValue performFP_TO_INT_SATCombine(SDNode *N,
8043                                        TargetLowering::DAGCombinerInfo &DCI,
8044                                        const RISCVSubtarget &Subtarget) {
8045   SelectionDAG &DAG = DCI.DAG;
8046   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8047   MVT XLenVT = Subtarget.getXLenVT();
8048 
8049   // Only handle XLen types. Other types narrower than XLen will eventually be
8050   // legalized to XLenVT.
8051   EVT DstVT = N->getValueType(0);
8052   if (DstVT != XLenVT)
8053     return SDValue();
8054 
8055   SDValue Src = N->getOperand(0);
8056 
8057   // Ensure the FP type is also legal.
8058   if (!TLI.isTypeLegal(Src.getValueType()))
8059     return SDValue();
8060 
8061   // Don't do this for f16 with Zfhmin and not Zfh.
8062   if (Src.getValueType() == MVT::f16 && !Subtarget.hasStdExtZfh())
8063     return SDValue();
8064 
8065   EVT SatVT = cast<VTSDNode>(N->getOperand(1))->getVT();
8066 
8067   RISCVFPRndMode::RoundingMode FRM = matchRoundingOp(Src);
8068   if (FRM == RISCVFPRndMode::Invalid)
8069     return SDValue();
8070 
8071   bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT_SAT;
8072 
8073   unsigned Opc;
8074   if (SatVT == DstVT)
8075     Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU;
8076   else if (DstVT == MVT::i64 && SatVT == MVT::i32)
8077     Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64;
8078   else
8079     return SDValue();
8080   // FIXME: Support other SatVTs by clamping before or after the conversion.
8081 
8082   Src = Src.getOperand(0);
8083 
8084   SDLoc DL(N);
8085   SDValue FpToInt = DAG.getNode(Opc, DL, XLenVT, Src,
8086                                 DAG.getTargetConstant(FRM, DL, XLenVT));
8087 
8088   // RISCV FP-to-int conversions saturate to the destination register size, but
8089   // don't produce 0 for nan.
8090   SDValue ZeroInt = DAG.getConstant(0, DL, DstVT);
8091   return DAG.getSelectCC(DL, Src, Src, ZeroInt, FpToInt, ISD::CondCode::SETUO);
8092 }
8093 
8094 // Combine (bitreverse (bswap X)) to the BREV8 GREVI encoding if the type is
8095 // smaller than XLenVT.
8096 static SDValue performBITREVERSECombine(SDNode *N, SelectionDAG &DAG,
8097                                         const RISCVSubtarget &Subtarget) {
8098   assert(Subtarget.hasStdExtZbkb() && "Unexpected extension");
8099 
8100   SDValue Src = N->getOperand(0);
8101   if (Src.getOpcode() != ISD::BSWAP)
8102     return SDValue();
8103 
8104   EVT VT = N->getValueType(0);
8105   if (!VT.isScalarInteger() || VT.getSizeInBits() >= Subtarget.getXLen() ||
8106       !isPowerOf2_32(VT.getSizeInBits()))
8107     return SDValue();
8108 
8109   SDLoc DL(N);
8110   return DAG.getNode(RISCVISD::GREV, DL, VT, Src.getOperand(0),
8111                      DAG.getConstant(7, DL, VT));
8112 }
8113 
8114 SDValue RISCVTargetLowering::PerformDAGCombine(SDNode *N,
8115                                                DAGCombinerInfo &DCI) const {
8116   SelectionDAG &DAG = DCI.DAG;
8117 
8118   // Helper to call SimplifyDemandedBits on an operand of N where only some low
8119   // bits are demanded. N will be added to the Worklist if it was not deleted.
8120   // Caller should return SDValue(N, 0) if this returns true.
8121   auto SimplifyDemandedLowBitsHelper = [&](unsigned OpNo, unsigned LowBits) {
8122     SDValue Op = N->getOperand(OpNo);
8123     APInt Mask = APInt::getLowBitsSet(Op.getValueSizeInBits(), LowBits);
8124     if (!SimplifyDemandedBits(Op, Mask, DCI))
8125       return false;
8126 
8127     if (N->getOpcode() != ISD::DELETED_NODE)
8128       DCI.AddToWorklist(N);
8129     return true;
8130   };
8131 
8132   switch (N->getOpcode()) {
8133   default:
8134     break;
8135   case RISCVISD::SplitF64: {
8136     SDValue Op0 = N->getOperand(0);
8137     // If the input to SplitF64 is just BuildPairF64 then the operation is
8138     // redundant. Instead, use BuildPairF64's operands directly.
8139     if (Op0->getOpcode() == RISCVISD::BuildPairF64)
8140       return DCI.CombineTo(N, Op0.getOperand(0), Op0.getOperand(1));
8141 
8142     if (Op0->isUndef()) {
8143       SDValue Lo = DAG.getUNDEF(MVT::i32);
8144       SDValue Hi = DAG.getUNDEF(MVT::i32);
8145       return DCI.CombineTo(N, Lo, Hi);
8146     }
8147 
8148     SDLoc DL(N);
8149 
8150     // It's cheaper to materialise two 32-bit integers than to load a double
8151     // from the constant pool and transfer it to integer registers through the
8152     // stack.
8153     if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op0)) {
8154       APInt V = C->getValueAPF().bitcastToAPInt();
8155       SDValue Lo = DAG.getConstant(V.trunc(32), DL, MVT::i32);
8156       SDValue Hi = DAG.getConstant(V.lshr(32).trunc(32), DL, MVT::i32);
8157       return DCI.CombineTo(N, Lo, Hi);
8158     }
8159 
8160     // This is a target-specific version of a DAGCombine performed in
8161     // DAGCombiner::visitBITCAST. It performs the equivalent of:
8162     // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
8163     // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
8164     if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) ||
8165         !Op0.getNode()->hasOneUse())
8166       break;
8167     SDValue NewSplitF64 =
8168         DAG.getNode(RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32),
8169                     Op0.getOperand(0));
8170     SDValue Lo = NewSplitF64.getValue(0);
8171     SDValue Hi = NewSplitF64.getValue(1);
8172     APInt SignBit = APInt::getSignMask(32);
8173     if (Op0.getOpcode() == ISD::FNEG) {
8174       SDValue NewHi = DAG.getNode(ISD::XOR, DL, MVT::i32, Hi,
8175                                   DAG.getConstant(SignBit, DL, MVT::i32));
8176       return DCI.CombineTo(N, Lo, NewHi);
8177     }
8178     assert(Op0.getOpcode() == ISD::FABS);
8179     SDValue NewHi = DAG.getNode(ISD::AND, DL, MVT::i32, Hi,
8180                                 DAG.getConstant(~SignBit, DL, MVT::i32));
8181     return DCI.CombineTo(N, Lo, NewHi);
8182   }
8183   case RISCVISD::SLLW:
8184   case RISCVISD::SRAW:
8185   case RISCVISD::SRLW: {
8186     // Only the lower 32 bits of LHS and lower 5 bits of RHS are read.
8187     if (SimplifyDemandedLowBitsHelper(0, 32) ||
8188         SimplifyDemandedLowBitsHelper(1, 5))
8189       return SDValue(N, 0);
8190 
8191     break;
8192   }
8193   case ISD::ROTR:
8194   case ISD::ROTL:
8195   case RISCVISD::RORW:
8196   case RISCVISD::ROLW: {
8197     if (N->getOpcode() == RISCVISD::RORW || N->getOpcode() == RISCVISD::ROLW) {
8198       // Only the lower 32 bits of LHS and lower 5 bits of RHS are read.
8199       if (SimplifyDemandedLowBitsHelper(0, 32) ||
8200           SimplifyDemandedLowBitsHelper(1, 5))
8201         return SDValue(N, 0);
8202     }
8203 
8204     return combineROTR_ROTL_RORW_ROLW(N, DAG, Subtarget);
8205   }
8206   case RISCVISD::CLZW:
8207   case RISCVISD::CTZW: {
8208     // Only the lower 32 bits of the first operand are read
8209     if (SimplifyDemandedLowBitsHelper(0, 32))
8210       return SDValue(N, 0);
8211     break;
8212   }
8213   case RISCVISD::GREV:
8214   case RISCVISD::GORC: {
8215     // Only the lower log2(Bitwidth) bits of the the shift amount are read.
8216     unsigned BitWidth = N->getOperand(1).getValueSizeInBits();
8217     assert(isPowerOf2_32(BitWidth) && "Unexpected bit width");
8218     if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth)))
8219       return SDValue(N, 0);
8220 
8221     return combineGREVI_GORCI(N, DAG);
8222   }
8223   case RISCVISD::GREVW:
8224   case RISCVISD::GORCW: {
8225     // Only the lower 32 bits of LHS and lower 5 bits of RHS are read.
8226     if (SimplifyDemandedLowBitsHelper(0, 32) ||
8227         SimplifyDemandedLowBitsHelper(1, 5))
8228       return SDValue(N, 0);
8229 
8230     break;
8231   }
8232   case RISCVISD::SHFL:
8233   case RISCVISD::UNSHFL: {
8234     // Only the lower log2(Bitwidth)-1 bits of the the shift amount are read.
8235     unsigned BitWidth = N->getOperand(1).getValueSizeInBits();
8236     assert(isPowerOf2_32(BitWidth) && "Unexpected bit width");
8237     if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth) - 1))
8238       return SDValue(N, 0);
8239 
8240     break;
8241   }
8242   case RISCVISD::SHFLW:
8243   case RISCVISD::UNSHFLW: {
8244     // Only the lower 32 bits of LHS and lower 4 bits of RHS are read.
8245     if (SimplifyDemandedLowBitsHelper(0, 32) ||
8246         SimplifyDemandedLowBitsHelper(1, 4))
8247       return SDValue(N, 0);
8248 
8249     break;
8250   }
8251   case RISCVISD::BCOMPRESSW:
8252   case RISCVISD::BDECOMPRESSW: {
8253     // Only the lower 32 bits of LHS and RHS are read.
8254     if (SimplifyDemandedLowBitsHelper(0, 32) ||
8255         SimplifyDemandedLowBitsHelper(1, 32))
8256       return SDValue(N, 0);
8257 
8258     break;
8259   }
8260   case RISCVISD::FSR:
8261   case RISCVISD::FSL:
8262   case RISCVISD::FSRW:
8263   case RISCVISD::FSLW: {
8264     bool IsWInstruction =
8265         N->getOpcode() == RISCVISD::FSRW || N->getOpcode() == RISCVISD::FSLW;
8266     unsigned BitWidth =
8267         IsWInstruction ? 32 : N->getSimpleValueType(0).getSizeInBits();
8268     assert(isPowerOf2_32(BitWidth) && "Unexpected bit width");
8269     // Only the lower log2(Bitwidth)+1 bits of the the shift amount are read.
8270     if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth) + 1))
8271       return SDValue(N, 0);
8272 
8273     break;
8274   }
8275   case RISCVISD::FMV_X_ANYEXTH:
8276   case RISCVISD::FMV_X_ANYEXTW_RV64: {
8277     SDLoc DL(N);
8278     SDValue Op0 = N->getOperand(0);
8279     MVT VT = N->getSimpleValueType(0);
8280     // If the input to FMV_X_ANYEXTW_RV64 is just FMV_W_X_RV64 then the
8281     // conversion is unnecessary and can be replaced with the FMV_W_X_RV64
8282     // operand. Similar for FMV_X_ANYEXTH and FMV_H_X.
8283     if ((N->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64 &&
8284          Op0->getOpcode() == RISCVISD::FMV_W_X_RV64) ||
8285         (N->getOpcode() == RISCVISD::FMV_X_ANYEXTH &&
8286          Op0->getOpcode() == RISCVISD::FMV_H_X)) {
8287       assert(Op0.getOperand(0).getValueType() == VT &&
8288              "Unexpected value type!");
8289       return Op0.getOperand(0);
8290     }
8291 
8292     // This is a target-specific version of a DAGCombine performed in
8293     // DAGCombiner::visitBITCAST. It performs the equivalent of:
8294     // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
8295     // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
8296     if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) ||
8297         !Op0.getNode()->hasOneUse())
8298       break;
8299     SDValue NewFMV = DAG.getNode(N->getOpcode(), DL, VT, Op0.getOperand(0));
8300     unsigned FPBits = N->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64 ? 32 : 16;
8301     APInt SignBit = APInt::getSignMask(FPBits).sextOrSelf(VT.getSizeInBits());
8302     if (Op0.getOpcode() == ISD::FNEG)
8303       return DAG.getNode(ISD::XOR, DL, VT, NewFMV,
8304                          DAG.getConstant(SignBit, DL, VT));
8305 
8306     assert(Op0.getOpcode() == ISD::FABS);
8307     return DAG.getNode(ISD::AND, DL, VT, NewFMV,
8308                        DAG.getConstant(~SignBit, DL, VT));
8309   }
8310   case ISD::ADD:
8311     return performADDCombine(N, DAG, Subtarget);
8312   case ISD::SUB:
8313     return performSUBCombine(N, DAG);
8314   case ISD::AND:
8315     return performANDCombine(N, DAG);
8316   case ISD::OR:
8317     return performORCombine(N, DAG, Subtarget);
8318   case ISD::XOR:
8319     return performXORCombine(N, DAG);
8320   case ISD::SIGN_EXTEND_INREG:
8321     return performSIGN_EXTEND_INREGCombine(N, DAG, Subtarget);
8322   case ISD::ZERO_EXTEND:
8323     // Fold (zero_extend (fp_to_uint X)) to prevent forming fcvt+zexti32 during
8324     // type legalization. This is safe because fp_to_uint produces poison if
8325     // it overflows.
8326     if (N->getValueType(0) == MVT::i64 && Subtarget.is64Bit()) {
8327       SDValue Src = N->getOperand(0);
8328       if (Src.getOpcode() == ISD::FP_TO_UINT &&
8329           isTypeLegal(Src.getOperand(0).getValueType()))
8330         return DAG.getNode(ISD::FP_TO_UINT, SDLoc(N), MVT::i64,
8331                            Src.getOperand(0));
8332       if (Src.getOpcode() == ISD::STRICT_FP_TO_UINT && Src.hasOneUse() &&
8333           isTypeLegal(Src.getOperand(1).getValueType())) {
8334         SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other);
8335         SDValue Res = DAG.getNode(ISD::STRICT_FP_TO_UINT, SDLoc(N), VTs,
8336                                   Src.getOperand(0), Src.getOperand(1));
8337         DCI.CombineTo(N, Res);
8338         DAG.ReplaceAllUsesOfValueWith(Src.getValue(1), Res.getValue(1));
8339         DCI.recursivelyDeleteUnusedNodes(Src.getNode());
8340         return SDValue(N, 0); // Return N so it doesn't get rechecked.
8341       }
8342     }
8343     return SDValue();
8344   case RISCVISD::SELECT_CC: {
8345     // Transform
8346     SDValue LHS = N->getOperand(0);
8347     SDValue RHS = N->getOperand(1);
8348     SDValue TrueV = N->getOperand(3);
8349     SDValue FalseV = N->getOperand(4);
8350 
8351     // If the True and False values are the same, we don't need a select_cc.
8352     if (TrueV == FalseV)
8353       return TrueV;
8354 
8355     ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(2))->get();
8356     if (!ISD::isIntEqualitySetCC(CCVal))
8357       break;
8358 
8359     // Fold (select_cc (setlt X, Y), 0, ne, trueV, falseV) ->
8360     //      (select_cc X, Y, lt, trueV, falseV)
8361     // Sometimes the setcc is introduced after select_cc has been formed.
8362     if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) &&
8363         LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) {
8364       // If we're looking for eq 0 instead of ne 0, we need to invert the
8365       // condition.
8366       bool Invert = CCVal == ISD::SETEQ;
8367       CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
8368       if (Invert)
8369         CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
8370 
8371       SDLoc DL(N);
8372       RHS = LHS.getOperand(1);
8373       LHS = LHS.getOperand(0);
8374       translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
8375 
8376       SDValue TargetCC = DAG.getCondCode(CCVal);
8377       return DAG.getNode(RISCVISD::SELECT_CC, DL, N->getValueType(0),
8378                          {LHS, RHS, TargetCC, TrueV, FalseV});
8379     }
8380 
8381     // Fold (select_cc (xor X, Y), 0, eq/ne, trueV, falseV) ->
8382     //      (select_cc X, Y, eq/ne, trueV, falseV)
8383     if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS))
8384       return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), N->getValueType(0),
8385                          {LHS.getOperand(0), LHS.getOperand(1),
8386                           N->getOperand(2), TrueV, FalseV});
8387     // (select_cc X, 1, setne, trueV, falseV) ->
8388     // (select_cc X, 0, seteq, trueV, falseV) if we can prove X is 0/1.
8389     // This can occur when legalizing some floating point comparisons.
8390     APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1);
8391     if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) {
8392       SDLoc DL(N);
8393       CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
8394       SDValue TargetCC = DAG.getCondCode(CCVal);
8395       RHS = DAG.getConstant(0, DL, LHS.getValueType());
8396       return DAG.getNode(RISCVISD::SELECT_CC, DL, N->getValueType(0),
8397                          {LHS, RHS, TargetCC, TrueV, FalseV});
8398     }
8399 
8400     break;
8401   }
8402   case RISCVISD::BR_CC: {
8403     SDValue LHS = N->getOperand(1);
8404     SDValue RHS = N->getOperand(2);
8405     ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(3))->get();
8406     if (!ISD::isIntEqualitySetCC(CCVal))
8407       break;
8408 
8409     // Fold (br_cc (setlt X, Y), 0, ne, dest) ->
8410     //      (br_cc X, Y, lt, dest)
8411     // Sometimes the setcc is introduced after br_cc has been formed.
8412     if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) &&
8413         LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) {
8414       // If we're looking for eq 0 instead of ne 0, we need to invert the
8415       // condition.
8416       bool Invert = CCVal == ISD::SETEQ;
8417       CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
8418       if (Invert)
8419         CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
8420 
8421       SDLoc DL(N);
8422       RHS = LHS.getOperand(1);
8423       LHS = LHS.getOperand(0);
8424       translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
8425 
8426       return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0),
8427                          N->getOperand(0), LHS, RHS, DAG.getCondCode(CCVal),
8428                          N->getOperand(4));
8429     }
8430 
8431     // Fold (br_cc (xor X, Y), 0, eq/ne, dest) ->
8432     //      (br_cc X, Y, eq/ne, trueV, falseV)
8433     if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS))
8434       return DAG.getNode(RISCVISD::BR_CC, SDLoc(N), N->getValueType(0),
8435                          N->getOperand(0), LHS.getOperand(0), LHS.getOperand(1),
8436                          N->getOperand(3), N->getOperand(4));
8437 
8438     // (br_cc X, 1, setne, br_cc) ->
8439     // (br_cc X, 0, seteq, br_cc) if we can prove X is 0/1.
8440     // This can occur when legalizing some floating point comparisons.
8441     APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1);
8442     if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) {
8443       SDLoc DL(N);
8444       CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
8445       SDValue TargetCC = DAG.getCondCode(CCVal);
8446       RHS = DAG.getConstant(0, DL, LHS.getValueType());
8447       return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0),
8448                          N->getOperand(0), LHS, RHS, TargetCC,
8449                          N->getOperand(4));
8450     }
8451     break;
8452   }
8453   case ISD::BITREVERSE:
8454     return performBITREVERSECombine(N, DAG, Subtarget);
8455   case ISD::FP_TO_SINT:
8456   case ISD::FP_TO_UINT:
8457     return performFP_TO_INTCombine(N, DCI, Subtarget);
8458   case ISD::FP_TO_SINT_SAT:
8459   case ISD::FP_TO_UINT_SAT:
8460     return performFP_TO_INT_SATCombine(N, DCI, Subtarget);
8461   case ISD::FCOPYSIGN: {
8462     EVT VT = N->getValueType(0);
8463     if (!VT.isVector())
8464       break;
8465     // There is a form of VFSGNJ which injects the negated sign of its second
8466     // operand. Try and bubble any FNEG up after the extend/round to produce
8467     // this optimized pattern. Avoid modifying cases where FP_ROUND and
8468     // TRUNC=1.
8469     SDValue In2 = N->getOperand(1);
8470     // Avoid cases where the extend/round has multiple uses, as duplicating
8471     // those is typically more expensive than removing a fneg.
8472     if (!In2.hasOneUse())
8473       break;
8474     if (In2.getOpcode() != ISD::FP_EXTEND &&
8475         (In2.getOpcode() != ISD::FP_ROUND || In2.getConstantOperandVal(1) != 0))
8476       break;
8477     In2 = In2.getOperand(0);
8478     if (In2.getOpcode() != ISD::FNEG)
8479       break;
8480     SDLoc DL(N);
8481     SDValue NewFPExtRound = DAG.getFPExtendOrRound(In2.getOperand(0), DL, VT);
8482     return DAG.getNode(ISD::FCOPYSIGN, DL, VT, N->getOperand(0),
8483                        DAG.getNode(ISD::FNEG, DL, VT, NewFPExtRound));
8484   }
8485   case ISD::MGATHER:
8486   case ISD::MSCATTER:
8487   case ISD::VP_GATHER:
8488   case ISD::VP_SCATTER: {
8489     if (!DCI.isBeforeLegalize())
8490       break;
8491     SDValue Index, ScaleOp;
8492     bool IsIndexScaled = false;
8493     bool IsIndexSigned = false;
8494     if (const auto *VPGSN = dyn_cast<VPGatherScatterSDNode>(N)) {
8495       Index = VPGSN->getIndex();
8496       ScaleOp = VPGSN->getScale();
8497       IsIndexScaled = VPGSN->isIndexScaled();
8498       IsIndexSigned = VPGSN->isIndexSigned();
8499     } else {
8500       const auto *MGSN = cast<MaskedGatherScatterSDNode>(N);
8501       Index = MGSN->getIndex();
8502       ScaleOp = MGSN->getScale();
8503       IsIndexScaled = MGSN->isIndexScaled();
8504       IsIndexSigned = MGSN->isIndexSigned();
8505     }
8506     EVT IndexVT = Index.getValueType();
8507     MVT XLenVT = Subtarget.getXLenVT();
8508     // RISCV indexed loads only support the "unsigned unscaled" addressing
8509     // mode, so anything else must be manually legalized.
8510     bool NeedsIdxLegalization =
8511         IsIndexScaled ||
8512         (IsIndexSigned && IndexVT.getVectorElementType().bitsLT(XLenVT));
8513     if (!NeedsIdxLegalization)
8514       break;
8515 
8516     SDLoc DL(N);
8517 
8518     // Any index legalization should first promote to XLenVT, so we don't lose
8519     // bits when scaling. This may create an illegal index type so we let
8520     // LLVM's legalization take care of the splitting.
8521     // FIXME: LLVM can't split VP_GATHER or VP_SCATTER yet.
8522     if (IndexVT.getVectorElementType().bitsLT(XLenVT)) {
8523       IndexVT = IndexVT.changeVectorElementType(XLenVT);
8524       Index = DAG.getNode(IsIndexSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
8525                           DL, IndexVT, Index);
8526     }
8527 
8528     unsigned Scale = cast<ConstantSDNode>(ScaleOp)->getZExtValue();
8529     if (IsIndexScaled && Scale != 1) {
8530       // Manually scale the indices by the element size.
8531       // TODO: Sanitize the scale operand here?
8532       // TODO: For VP nodes, should we use VP_SHL here?
8533       assert(isPowerOf2_32(Scale) && "Expecting power-of-two types");
8534       SDValue SplatScale = DAG.getConstant(Log2_32(Scale), DL, IndexVT);
8535       Index = DAG.getNode(ISD::SHL, DL, IndexVT, Index, SplatScale);
8536     }
8537 
8538     ISD::MemIndexType NewIndexTy = ISD::UNSIGNED_UNSCALED;
8539     if (const auto *VPGN = dyn_cast<VPGatherSDNode>(N))
8540       return DAG.getGatherVP(N->getVTList(), VPGN->getMemoryVT(), DL,
8541                              {VPGN->getChain(), VPGN->getBasePtr(), Index,
8542                               VPGN->getScale(), VPGN->getMask(),
8543                               VPGN->getVectorLength()},
8544                              VPGN->getMemOperand(), NewIndexTy);
8545     if (const auto *VPSN = dyn_cast<VPScatterSDNode>(N))
8546       return DAG.getScatterVP(N->getVTList(), VPSN->getMemoryVT(), DL,
8547                               {VPSN->getChain(), VPSN->getValue(),
8548                                VPSN->getBasePtr(), Index, VPSN->getScale(),
8549                                VPSN->getMask(), VPSN->getVectorLength()},
8550                               VPSN->getMemOperand(), NewIndexTy);
8551     if (const auto *MGN = dyn_cast<MaskedGatherSDNode>(N))
8552       return DAG.getMaskedGather(
8553           N->getVTList(), MGN->getMemoryVT(), DL,
8554           {MGN->getChain(), MGN->getPassThru(), MGN->getMask(),
8555            MGN->getBasePtr(), Index, MGN->getScale()},
8556           MGN->getMemOperand(), NewIndexTy, MGN->getExtensionType());
8557     const auto *MSN = cast<MaskedScatterSDNode>(N);
8558     return DAG.getMaskedScatter(
8559         N->getVTList(), MSN->getMemoryVT(), DL,
8560         {MSN->getChain(), MSN->getValue(), MSN->getMask(), MSN->getBasePtr(),
8561          Index, MSN->getScale()},
8562         MSN->getMemOperand(), NewIndexTy, MSN->isTruncatingStore());
8563   }
8564   case RISCVISD::SRA_VL:
8565   case RISCVISD::SRL_VL:
8566   case RISCVISD::SHL_VL: {
8567     SDValue ShAmt = N->getOperand(1);
8568     if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) {
8569       // We don't need the upper 32 bits of a 64-bit element for a shift amount.
8570       SDLoc DL(N);
8571       SDValue VL = N->getOperand(3);
8572       EVT VT = N->getValueType(0);
8573       ShAmt = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, DAG.getUNDEF(VT),
8574                           ShAmt.getOperand(1), VL);
8575       return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt,
8576                          N->getOperand(2), N->getOperand(3));
8577     }
8578     break;
8579   }
8580   case ISD::SRA:
8581   case ISD::SRL:
8582   case ISD::SHL: {
8583     SDValue ShAmt = N->getOperand(1);
8584     if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) {
8585       // We don't need the upper 32 bits of a 64-bit element for a shift amount.
8586       SDLoc DL(N);
8587       EVT VT = N->getValueType(0);
8588       ShAmt = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, DAG.getUNDEF(VT),
8589                           ShAmt.getOperand(1),
8590                           DAG.getRegister(RISCV::X0, Subtarget.getXLenVT()));
8591       return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt);
8592     }
8593     break;
8594   }
8595   case RISCVISD::ADD_VL:
8596     if (SDValue V = combineADDSUB_VLToVWADDSUB_VL(N, DAG, /*Commute*/ false))
8597       return V;
8598     return combineADDSUB_VLToVWADDSUB_VL(N, DAG, /*Commute*/ true);
8599   case RISCVISD::SUB_VL:
8600     return combineADDSUB_VLToVWADDSUB_VL(N, DAG);
8601   case RISCVISD::VWADD_W_VL:
8602   case RISCVISD::VWADDU_W_VL:
8603   case RISCVISD::VWSUB_W_VL:
8604   case RISCVISD::VWSUBU_W_VL:
8605     return combineVWADD_W_VL_VWSUB_W_VL(N, DAG);
8606   case RISCVISD::MUL_VL:
8607     if (SDValue V = combineMUL_VLToVWMUL_VL(N, DAG, /*Commute*/ false))
8608       return V;
8609     // Mul is commutative.
8610     return combineMUL_VLToVWMUL_VL(N, DAG, /*Commute*/ true);
8611   case ISD::STORE: {
8612     auto *Store = cast<StoreSDNode>(N);
8613     SDValue Val = Store->getValue();
8614     // Combine store of vmv.x.s to vse with VL of 1.
8615     // FIXME: Support FP.
8616     if (Val.getOpcode() == RISCVISD::VMV_X_S) {
8617       SDValue Src = Val.getOperand(0);
8618       EVT VecVT = Src.getValueType();
8619       EVT MemVT = Store->getMemoryVT();
8620       // The memory VT and the element type must match.
8621       if (VecVT.getVectorElementType() == MemVT) {
8622         SDLoc DL(N);
8623         MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount());
8624         return DAG.getStoreVP(
8625             Store->getChain(), DL, Src, Store->getBasePtr(), Store->getOffset(),
8626             DAG.getConstant(1, DL, MaskVT),
8627             DAG.getConstant(1, DL, Subtarget.getXLenVT()), MemVT,
8628             Store->getMemOperand(), Store->getAddressingMode(),
8629             Store->isTruncatingStore(), /*IsCompress*/ false);
8630       }
8631     }
8632 
8633     break;
8634   }
8635   case ISD::SPLAT_VECTOR: {
8636     EVT VT = N->getValueType(0);
8637     // Only perform this combine on legal MVT types.
8638     if (!isTypeLegal(VT))
8639       break;
8640     if (auto Gather = matchSplatAsGather(N->getOperand(0), VT.getSimpleVT(), N,
8641                                          DAG, Subtarget))
8642       return Gather;
8643     break;
8644   }
8645   case RISCVISD::VMV_V_X_VL: {
8646     // Tail agnostic VMV.V.X only demands the vector element bitwidth from the
8647     // scalar input.
8648     unsigned ScalarSize = N->getOperand(1).getValueSizeInBits();
8649     unsigned EltWidth = N->getValueType(0).getScalarSizeInBits();
8650     if (ScalarSize > EltWidth && N->getOperand(0).isUndef())
8651       if (SimplifyDemandedLowBitsHelper(1, EltWidth))
8652         return SDValue(N, 0);
8653 
8654     break;
8655   }
8656   case ISD::INTRINSIC_WO_CHAIN: {
8657     unsigned IntNo = N->getConstantOperandVal(0);
8658     switch (IntNo) {
8659       // By default we do not combine any intrinsic.
8660     default:
8661       return SDValue();
8662     case Intrinsic::riscv_vcpop:
8663     case Intrinsic::riscv_vcpop_mask:
8664     case Intrinsic::riscv_vfirst:
8665     case Intrinsic::riscv_vfirst_mask: {
8666       SDValue VL = N->getOperand(2);
8667       if (IntNo == Intrinsic::riscv_vcpop_mask ||
8668           IntNo == Intrinsic::riscv_vfirst_mask)
8669         VL = N->getOperand(3);
8670       if (!isNullConstant(VL))
8671         return SDValue();
8672       // If VL is 0, vcpop -> li 0, vfirst -> li -1.
8673       SDLoc DL(N);
8674       EVT VT = N->getValueType(0);
8675       if (IntNo == Intrinsic::riscv_vfirst ||
8676           IntNo == Intrinsic::riscv_vfirst_mask)
8677         return DAG.getConstant(-1, DL, VT);
8678       return DAG.getConstant(0, DL, VT);
8679     }
8680     }
8681   }
8682   }
8683 
8684   return SDValue();
8685 }
8686 
8687 bool RISCVTargetLowering::isDesirableToCommuteWithShift(
8688     const SDNode *N, CombineLevel Level) const {
8689   // The following folds are only desirable if `(OP _, c1 << c2)` can be
8690   // materialised in fewer instructions than `(OP _, c1)`:
8691   //
8692   //   (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2)
8693   //   (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2)
8694   SDValue N0 = N->getOperand(0);
8695   EVT Ty = N0.getValueType();
8696   if (Ty.isScalarInteger() &&
8697       (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::OR)) {
8698     auto *C1 = dyn_cast<ConstantSDNode>(N0->getOperand(1));
8699     auto *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1));
8700     if (C1 && C2) {
8701       const APInt &C1Int = C1->getAPIntValue();
8702       APInt ShiftedC1Int = C1Int << C2->getAPIntValue();
8703 
8704       // We can materialise `c1 << c2` into an add immediate, so it's "free",
8705       // and the combine should happen, to potentially allow further combines
8706       // later.
8707       if (ShiftedC1Int.getMinSignedBits() <= 64 &&
8708           isLegalAddImmediate(ShiftedC1Int.getSExtValue()))
8709         return true;
8710 
8711       // We can materialise `c1` in an add immediate, so it's "free", and the
8712       // combine should be prevented.
8713       if (C1Int.getMinSignedBits() <= 64 &&
8714           isLegalAddImmediate(C1Int.getSExtValue()))
8715         return false;
8716 
8717       // Neither constant will fit into an immediate, so find materialisation
8718       // costs.
8719       int C1Cost = RISCVMatInt::getIntMatCost(C1Int, Ty.getSizeInBits(),
8720                                               Subtarget.getFeatureBits(),
8721                                               /*CompressionCost*/true);
8722       int ShiftedC1Cost = RISCVMatInt::getIntMatCost(
8723           ShiftedC1Int, Ty.getSizeInBits(), Subtarget.getFeatureBits(),
8724           /*CompressionCost*/true);
8725 
8726       // Materialising `c1` is cheaper than materialising `c1 << c2`, so the
8727       // combine should be prevented.
8728       if (C1Cost < ShiftedC1Cost)
8729         return false;
8730     }
8731   }
8732   return true;
8733 }
8734 
8735 bool RISCVTargetLowering::targetShrinkDemandedConstant(
8736     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
8737     TargetLoweringOpt &TLO) const {
8738   // Delay this optimization as late as possible.
8739   if (!TLO.LegalOps)
8740     return false;
8741 
8742   EVT VT = Op.getValueType();
8743   if (VT.isVector())
8744     return false;
8745 
8746   // Only handle AND for now.
8747   if (Op.getOpcode() != ISD::AND)
8748     return false;
8749 
8750   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
8751   if (!C)
8752     return false;
8753 
8754   const APInt &Mask = C->getAPIntValue();
8755 
8756   // Clear all non-demanded bits initially.
8757   APInt ShrunkMask = Mask & DemandedBits;
8758 
8759   // Try to make a smaller immediate by setting undemanded bits.
8760 
8761   APInt ExpandedMask = Mask | ~DemandedBits;
8762 
8763   auto IsLegalMask = [ShrunkMask, ExpandedMask](const APInt &Mask) -> bool {
8764     return ShrunkMask.isSubsetOf(Mask) && Mask.isSubsetOf(ExpandedMask);
8765   };
8766   auto UseMask = [Mask, Op, VT, &TLO](const APInt &NewMask) -> bool {
8767     if (NewMask == Mask)
8768       return true;
8769     SDLoc DL(Op);
8770     SDValue NewC = TLO.DAG.getConstant(NewMask, DL, VT);
8771     SDValue NewOp = TLO.DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), NewC);
8772     return TLO.CombineTo(Op, NewOp);
8773   };
8774 
8775   // If the shrunk mask fits in sign extended 12 bits, let the target
8776   // independent code apply it.
8777   if (ShrunkMask.isSignedIntN(12))
8778     return false;
8779 
8780   // Preserve (and X, 0xffff) when zext.h is supported.
8781   if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp()) {
8782     APInt NewMask = APInt(Mask.getBitWidth(), 0xffff);
8783     if (IsLegalMask(NewMask))
8784       return UseMask(NewMask);
8785   }
8786 
8787   // Try to preserve (and X, 0xffffffff), the (zext_inreg X, i32) pattern.
8788   if (VT == MVT::i64) {
8789     APInt NewMask = APInt(64, 0xffffffff);
8790     if (IsLegalMask(NewMask))
8791       return UseMask(NewMask);
8792   }
8793 
8794   // For the remaining optimizations, we need to be able to make a negative
8795   // number through a combination of mask and undemanded bits.
8796   if (!ExpandedMask.isNegative())
8797     return false;
8798 
8799   // What is the fewest number of bits we need to represent the negative number.
8800   unsigned MinSignedBits = ExpandedMask.getMinSignedBits();
8801 
8802   // Try to make a 12 bit negative immediate. If that fails try to make a 32
8803   // bit negative immediate unless the shrunk immediate already fits in 32 bits.
8804   APInt NewMask = ShrunkMask;
8805   if (MinSignedBits <= 12)
8806     NewMask.setBitsFrom(11);
8807   else if (MinSignedBits <= 32 && !ShrunkMask.isSignedIntN(32))
8808     NewMask.setBitsFrom(31);
8809   else
8810     return false;
8811 
8812   // Check that our new mask is a subset of the demanded mask.
8813   assert(IsLegalMask(NewMask));
8814   return UseMask(NewMask);
8815 }
8816 
8817 static void computeGREV(APInt &Src, unsigned ShAmt) {
8818   ShAmt &= Src.getBitWidth() - 1;
8819   uint64_t x = Src.getZExtValue();
8820   if (ShAmt & 1)
8821     x = ((x & 0x5555555555555555LL) << 1) | ((x & 0xAAAAAAAAAAAAAAAALL) >> 1);
8822   if (ShAmt & 2)
8823     x = ((x & 0x3333333333333333LL) << 2) | ((x & 0xCCCCCCCCCCCCCCCCLL) >> 2);
8824   if (ShAmt & 4)
8825     x = ((x & 0x0F0F0F0F0F0F0F0FLL) << 4) | ((x & 0xF0F0F0F0F0F0F0F0LL) >> 4);
8826   if (ShAmt & 8)
8827     x = ((x & 0x00FF00FF00FF00FFLL) << 8) | ((x & 0xFF00FF00FF00FF00LL) >> 8);
8828   if (ShAmt & 16)
8829     x = ((x & 0x0000FFFF0000FFFFLL) << 16) | ((x & 0xFFFF0000FFFF0000LL) >> 16);
8830   if (ShAmt & 32)
8831     x = ((x & 0x00000000FFFFFFFFLL) << 32) | ((x & 0xFFFFFFFF00000000LL) >> 32);
8832   Src = x;
8833 }
8834 
8835 void RISCVTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
8836                                                         KnownBits &Known,
8837                                                         const APInt &DemandedElts,
8838                                                         const SelectionDAG &DAG,
8839                                                         unsigned Depth) const {
8840   unsigned BitWidth = Known.getBitWidth();
8841   unsigned Opc = Op.getOpcode();
8842   assert((Opc >= ISD::BUILTIN_OP_END ||
8843           Opc == ISD::INTRINSIC_WO_CHAIN ||
8844           Opc == ISD::INTRINSIC_W_CHAIN ||
8845           Opc == ISD::INTRINSIC_VOID) &&
8846          "Should use MaskedValueIsZero if you don't know whether Op"
8847          " is a target node!");
8848 
8849   Known.resetAll();
8850   switch (Opc) {
8851   default: break;
8852   case RISCVISD::SELECT_CC: {
8853     Known = DAG.computeKnownBits(Op.getOperand(4), Depth + 1);
8854     // If we don't know any bits, early out.
8855     if (Known.isUnknown())
8856       break;
8857     KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(3), Depth + 1);
8858 
8859     // Only known if known in both the LHS and RHS.
8860     Known = KnownBits::commonBits(Known, Known2);
8861     break;
8862   }
8863   case RISCVISD::REMUW: {
8864     KnownBits Known2;
8865     Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
8866     Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
8867     // We only care about the lower 32 bits.
8868     Known = KnownBits::urem(Known.trunc(32), Known2.trunc(32));
8869     // Restore the original width by sign extending.
8870     Known = Known.sext(BitWidth);
8871     break;
8872   }
8873   case RISCVISD::DIVUW: {
8874     KnownBits Known2;
8875     Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
8876     Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
8877     // We only care about the lower 32 bits.
8878     Known = KnownBits::udiv(Known.trunc(32), Known2.trunc(32));
8879     // Restore the original width by sign extending.
8880     Known = Known.sext(BitWidth);
8881     break;
8882   }
8883   case RISCVISD::CTZW: {
8884     KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
8885     unsigned PossibleTZ = Known2.trunc(32).countMaxTrailingZeros();
8886     unsigned LowBits = Log2_32(PossibleTZ) + 1;
8887     Known.Zero.setBitsFrom(LowBits);
8888     break;
8889   }
8890   case RISCVISD::CLZW: {
8891     KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
8892     unsigned PossibleLZ = Known2.trunc(32).countMaxLeadingZeros();
8893     unsigned LowBits = Log2_32(PossibleLZ) + 1;
8894     Known.Zero.setBitsFrom(LowBits);
8895     break;
8896   }
8897   case RISCVISD::GREV: {
8898     if (auto *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
8899       Known = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
8900       unsigned ShAmt = C->getZExtValue();
8901       computeGREV(Known.Zero, ShAmt);
8902       computeGREV(Known.One, ShAmt);
8903     }
8904     break;
8905   }
8906   case RISCVISD::READ_VLENB: {
8907     // If we know the minimum VLen from Zvl extensions, we can use that to
8908     // determine the trailing zeros of VLENB.
8909     // FIXME: Limit to 128 bit vectors until we have more testing.
8910     unsigned MinVLenB = std::min(128U, Subtarget.getMinVLen()) / 8;
8911     if (MinVLenB > 0)
8912       Known.Zero.setLowBits(Log2_32(MinVLenB));
8913     // We assume VLENB is no more than 65536 / 8 bytes.
8914     Known.Zero.setBitsFrom(14);
8915     break;
8916   }
8917   case ISD::INTRINSIC_W_CHAIN:
8918   case ISD::INTRINSIC_WO_CHAIN: {
8919     unsigned IntNo =
8920         Op.getConstantOperandVal(Opc == ISD::INTRINSIC_WO_CHAIN ? 0 : 1);
8921     switch (IntNo) {
8922     default:
8923       // We can't do anything for most intrinsics.
8924       break;
8925     case Intrinsic::riscv_vsetvli:
8926     case Intrinsic::riscv_vsetvlimax:
8927     case Intrinsic::riscv_vsetvli_opt:
8928     case Intrinsic::riscv_vsetvlimax_opt:
8929       // Assume that VL output is positive and would fit in an int32_t.
8930       // TODO: VLEN might be capped at 16 bits in a future V spec update.
8931       if (BitWidth >= 32)
8932         Known.Zero.setBitsFrom(31);
8933       break;
8934     }
8935     break;
8936   }
8937   }
8938 }
8939 
8940 unsigned RISCVTargetLowering::ComputeNumSignBitsForTargetNode(
8941     SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
8942     unsigned Depth) const {
8943   switch (Op.getOpcode()) {
8944   default:
8945     break;
8946   case RISCVISD::SELECT_CC: {
8947     unsigned Tmp =
8948         DAG.ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth + 1);
8949     if (Tmp == 1) return 1;  // Early out.
8950     unsigned Tmp2 =
8951         DAG.ComputeNumSignBits(Op.getOperand(4), DemandedElts, Depth + 1);
8952     return std::min(Tmp, Tmp2);
8953   }
8954   case RISCVISD::SLLW:
8955   case RISCVISD::SRAW:
8956   case RISCVISD::SRLW:
8957   case RISCVISD::DIVW:
8958   case RISCVISD::DIVUW:
8959   case RISCVISD::REMUW:
8960   case RISCVISD::ROLW:
8961   case RISCVISD::RORW:
8962   case RISCVISD::GREVW:
8963   case RISCVISD::GORCW:
8964   case RISCVISD::FSLW:
8965   case RISCVISD::FSRW:
8966   case RISCVISD::SHFLW:
8967   case RISCVISD::UNSHFLW:
8968   case RISCVISD::BCOMPRESSW:
8969   case RISCVISD::BDECOMPRESSW:
8970   case RISCVISD::BFPW:
8971   case RISCVISD::FCVT_W_RV64:
8972   case RISCVISD::FCVT_WU_RV64:
8973   case RISCVISD::STRICT_FCVT_W_RV64:
8974   case RISCVISD::STRICT_FCVT_WU_RV64:
8975     // TODO: As the result is sign-extended, this is conservatively correct. A
8976     // more precise answer could be calculated for SRAW depending on known
8977     // bits in the shift amount.
8978     return 33;
8979   case RISCVISD::SHFL:
8980   case RISCVISD::UNSHFL: {
8981     // There is no SHFLIW, but a i64 SHFLI with bit 4 of the control word
8982     // cleared doesn't affect bit 31. The upper 32 bits will be shuffled, but
8983     // will stay within the upper 32 bits. If there were more than 32 sign bits
8984     // before there will be at least 33 sign bits after.
8985     if (Op.getValueType() == MVT::i64 &&
8986         isa<ConstantSDNode>(Op.getOperand(1)) &&
8987         (Op.getConstantOperandVal(1) & 0x10) == 0) {
8988       unsigned Tmp = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1);
8989       if (Tmp > 32)
8990         return 33;
8991     }
8992     break;
8993   }
8994   case RISCVISD::VMV_X_S: {
8995     // The number of sign bits of the scalar result is computed by obtaining the
8996     // element type of the input vector operand, subtracting its width from the
8997     // XLEN, and then adding one (sign bit within the element type). If the
8998     // element type is wider than XLen, the least-significant XLEN bits are
8999     // taken.
9000     unsigned XLen = Subtarget.getXLen();
9001     unsigned EltBits = Op.getOperand(0).getScalarValueSizeInBits();
9002     if (EltBits <= XLen)
9003       return XLen - EltBits + 1;
9004     break;
9005   }
9006   }
9007 
9008   return 1;
9009 }
9010 
9011 static MachineBasicBlock *emitReadCycleWidePseudo(MachineInstr &MI,
9012                                                   MachineBasicBlock *BB) {
9013   assert(MI.getOpcode() == RISCV::ReadCycleWide && "Unexpected instruction");
9014 
9015   // To read the 64-bit cycle CSR on a 32-bit target, we read the two halves.
9016   // Should the count have wrapped while it was being read, we need to try
9017   // again.
9018   // ...
9019   // read:
9020   // rdcycleh x3 # load high word of cycle
9021   // rdcycle  x2 # load low word of cycle
9022   // rdcycleh x4 # load high word of cycle
9023   // bne x3, x4, read # check if high word reads match, otherwise try again
9024   // ...
9025 
9026   MachineFunction &MF = *BB->getParent();
9027   const BasicBlock *LLVM_BB = BB->getBasicBlock();
9028   MachineFunction::iterator It = ++BB->getIterator();
9029 
9030   MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB);
9031   MF.insert(It, LoopMBB);
9032 
9033   MachineBasicBlock *DoneMBB = MF.CreateMachineBasicBlock(LLVM_BB);
9034   MF.insert(It, DoneMBB);
9035 
9036   // Transfer the remainder of BB and its successor edges to DoneMBB.
9037   DoneMBB->splice(DoneMBB->begin(), BB,
9038                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
9039   DoneMBB->transferSuccessorsAndUpdatePHIs(BB);
9040 
9041   BB->addSuccessor(LoopMBB);
9042 
9043   MachineRegisterInfo &RegInfo = MF.getRegInfo();
9044   Register ReadAgainReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
9045   Register LoReg = MI.getOperand(0).getReg();
9046   Register HiReg = MI.getOperand(1).getReg();
9047   DebugLoc DL = MI.getDebugLoc();
9048 
9049   const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
9050   BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), HiReg)
9051       .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding)
9052       .addReg(RISCV::X0);
9053   BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), LoReg)
9054       .addImm(RISCVSysReg::lookupSysRegByName("CYCLE")->Encoding)
9055       .addReg(RISCV::X0);
9056   BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), ReadAgainReg)
9057       .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding)
9058       .addReg(RISCV::X0);
9059 
9060   BuildMI(LoopMBB, DL, TII->get(RISCV::BNE))
9061       .addReg(HiReg)
9062       .addReg(ReadAgainReg)
9063       .addMBB(LoopMBB);
9064 
9065   LoopMBB->addSuccessor(LoopMBB);
9066   LoopMBB->addSuccessor(DoneMBB);
9067 
9068   MI.eraseFromParent();
9069 
9070   return DoneMBB;
9071 }
9072 
9073 static MachineBasicBlock *emitSplitF64Pseudo(MachineInstr &MI,
9074                                              MachineBasicBlock *BB) {
9075   assert(MI.getOpcode() == RISCV::SplitF64Pseudo && "Unexpected instruction");
9076 
9077   MachineFunction &MF = *BB->getParent();
9078   DebugLoc DL = MI.getDebugLoc();
9079   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
9080   const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo();
9081   Register LoReg = MI.getOperand(0).getReg();
9082   Register HiReg = MI.getOperand(1).getReg();
9083   Register SrcReg = MI.getOperand(2).getReg();
9084   const TargetRegisterClass *SrcRC = &RISCV::FPR64RegClass;
9085   int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF);
9086 
9087   TII.storeRegToStackSlot(*BB, MI, SrcReg, MI.getOperand(2).isKill(), FI, SrcRC,
9088                           RI);
9089   MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI);
9090   MachineMemOperand *MMOLo =
9091       MF.getMachineMemOperand(MPI, MachineMemOperand::MOLoad, 4, Align(8));
9092   MachineMemOperand *MMOHi = MF.getMachineMemOperand(
9093       MPI.getWithOffset(4), MachineMemOperand::MOLoad, 4, Align(8));
9094   BuildMI(*BB, MI, DL, TII.get(RISCV::LW), LoReg)
9095       .addFrameIndex(FI)
9096       .addImm(0)
9097       .addMemOperand(MMOLo);
9098   BuildMI(*BB, MI, DL, TII.get(RISCV::LW), HiReg)
9099       .addFrameIndex(FI)
9100       .addImm(4)
9101       .addMemOperand(MMOHi);
9102   MI.eraseFromParent(); // The pseudo instruction is gone now.
9103   return BB;
9104 }
9105 
9106 static MachineBasicBlock *emitBuildPairF64Pseudo(MachineInstr &MI,
9107                                                  MachineBasicBlock *BB) {
9108   assert(MI.getOpcode() == RISCV::BuildPairF64Pseudo &&
9109          "Unexpected instruction");
9110 
9111   MachineFunction &MF = *BB->getParent();
9112   DebugLoc DL = MI.getDebugLoc();
9113   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
9114   const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo();
9115   Register DstReg = MI.getOperand(0).getReg();
9116   Register LoReg = MI.getOperand(1).getReg();
9117   Register HiReg = MI.getOperand(2).getReg();
9118   const TargetRegisterClass *DstRC = &RISCV::FPR64RegClass;
9119   int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF);
9120 
9121   MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI);
9122   MachineMemOperand *MMOLo =
9123       MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Align(8));
9124   MachineMemOperand *MMOHi = MF.getMachineMemOperand(
9125       MPI.getWithOffset(4), MachineMemOperand::MOStore, 4, Align(8));
9126   BuildMI(*BB, MI, DL, TII.get(RISCV::SW))
9127       .addReg(LoReg, getKillRegState(MI.getOperand(1).isKill()))
9128       .addFrameIndex(FI)
9129       .addImm(0)
9130       .addMemOperand(MMOLo);
9131   BuildMI(*BB, MI, DL, TII.get(RISCV::SW))
9132       .addReg(HiReg, getKillRegState(MI.getOperand(2).isKill()))
9133       .addFrameIndex(FI)
9134       .addImm(4)
9135       .addMemOperand(MMOHi);
9136   TII.loadRegFromStackSlot(*BB, MI, DstReg, FI, DstRC, RI);
9137   MI.eraseFromParent(); // The pseudo instruction is gone now.
9138   return BB;
9139 }
9140 
9141 static bool isSelectPseudo(MachineInstr &MI) {
9142   switch (MI.getOpcode()) {
9143   default:
9144     return false;
9145   case RISCV::Select_GPR_Using_CC_GPR:
9146   case RISCV::Select_FPR16_Using_CC_GPR:
9147   case RISCV::Select_FPR32_Using_CC_GPR:
9148   case RISCV::Select_FPR64_Using_CC_GPR:
9149     return true;
9150   }
9151 }
9152 
9153 static MachineBasicBlock *emitQuietFCMP(MachineInstr &MI, MachineBasicBlock *BB,
9154                                         unsigned RelOpcode, unsigned EqOpcode,
9155                                         const RISCVSubtarget &Subtarget) {
9156   DebugLoc DL = MI.getDebugLoc();
9157   Register DstReg = MI.getOperand(0).getReg();
9158   Register Src1Reg = MI.getOperand(1).getReg();
9159   Register Src2Reg = MI.getOperand(2).getReg();
9160   MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
9161   Register SavedFFlags = MRI.createVirtualRegister(&RISCV::GPRRegClass);
9162   const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo();
9163 
9164   // Save the current FFLAGS.
9165   BuildMI(*BB, MI, DL, TII.get(RISCV::ReadFFLAGS), SavedFFlags);
9166 
9167   auto MIB = BuildMI(*BB, MI, DL, TII.get(RelOpcode), DstReg)
9168                  .addReg(Src1Reg)
9169                  .addReg(Src2Reg);
9170   if (MI.getFlag(MachineInstr::MIFlag::NoFPExcept))
9171     MIB->setFlag(MachineInstr::MIFlag::NoFPExcept);
9172 
9173   // Restore the FFLAGS.
9174   BuildMI(*BB, MI, DL, TII.get(RISCV::WriteFFLAGS))
9175       .addReg(SavedFFlags, RegState::Kill);
9176 
9177   // Issue a dummy FEQ opcode to raise exception for signaling NaNs.
9178   auto MIB2 = BuildMI(*BB, MI, DL, TII.get(EqOpcode), RISCV::X0)
9179                   .addReg(Src1Reg, getKillRegState(MI.getOperand(1).isKill()))
9180                   .addReg(Src2Reg, getKillRegState(MI.getOperand(2).isKill()));
9181   if (MI.getFlag(MachineInstr::MIFlag::NoFPExcept))
9182     MIB2->setFlag(MachineInstr::MIFlag::NoFPExcept);
9183 
9184   // Erase the pseudoinstruction.
9185   MI.eraseFromParent();
9186   return BB;
9187 }
9188 
9189 static MachineBasicBlock *emitSelectPseudo(MachineInstr &MI,
9190                                            MachineBasicBlock *BB,
9191                                            const RISCVSubtarget &Subtarget) {
9192   // To "insert" Select_* instructions, we actually have to insert the triangle
9193   // control-flow pattern.  The incoming instructions know the destination vreg
9194   // to set, the condition code register to branch on, the true/false values to
9195   // select between, and the condcode to use to select the appropriate branch.
9196   //
9197   // We produce the following control flow:
9198   //     HeadMBB
9199   //     |  \
9200   //     |  IfFalseMBB
9201   //     | /
9202   //    TailMBB
9203   //
9204   // When we find a sequence of selects we attempt to optimize their emission
9205   // by sharing the control flow. Currently we only handle cases where we have
9206   // multiple selects with the exact same condition (same LHS, RHS and CC).
9207   // The selects may be interleaved with other instructions if the other
9208   // instructions meet some requirements we deem safe:
9209   // - They are debug instructions. Otherwise,
9210   // - They do not have side-effects, do not access memory and their inputs do
9211   //   not depend on the results of the select pseudo-instructions.
9212   // The TrueV/FalseV operands of the selects cannot depend on the result of
9213   // previous selects in the sequence.
9214   // These conditions could be further relaxed. See the X86 target for a
9215   // related approach and more information.
9216   Register LHS = MI.getOperand(1).getReg();
9217   Register RHS = MI.getOperand(2).getReg();
9218   auto CC = static_cast<RISCVCC::CondCode>(MI.getOperand(3).getImm());
9219 
9220   SmallVector<MachineInstr *, 4> SelectDebugValues;
9221   SmallSet<Register, 4> SelectDests;
9222   SelectDests.insert(MI.getOperand(0).getReg());
9223 
9224   MachineInstr *LastSelectPseudo = &MI;
9225 
9226   for (auto E = BB->end(), SequenceMBBI = MachineBasicBlock::iterator(MI);
9227        SequenceMBBI != E; ++SequenceMBBI) {
9228     if (SequenceMBBI->isDebugInstr())
9229       continue;
9230     else if (isSelectPseudo(*SequenceMBBI)) {
9231       if (SequenceMBBI->getOperand(1).getReg() != LHS ||
9232           SequenceMBBI->getOperand(2).getReg() != RHS ||
9233           SequenceMBBI->getOperand(3).getImm() != CC ||
9234           SelectDests.count(SequenceMBBI->getOperand(4).getReg()) ||
9235           SelectDests.count(SequenceMBBI->getOperand(5).getReg()))
9236         break;
9237       LastSelectPseudo = &*SequenceMBBI;
9238       SequenceMBBI->collectDebugValues(SelectDebugValues);
9239       SelectDests.insert(SequenceMBBI->getOperand(0).getReg());
9240     } else {
9241       if (SequenceMBBI->hasUnmodeledSideEffects() ||
9242           SequenceMBBI->mayLoadOrStore())
9243         break;
9244       if (llvm::any_of(SequenceMBBI->operands(), [&](MachineOperand &MO) {
9245             return MO.isReg() && MO.isUse() && SelectDests.count(MO.getReg());
9246           }))
9247         break;
9248     }
9249   }
9250 
9251   const RISCVInstrInfo &TII = *Subtarget.getInstrInfo();
9252   const BasicBlock *LLVM_BB = BB->getBasicBlock();
9253   DebugLoc DL = MI.getDebugLoc();
9254   MachineFunction::iterator I = ++BB->getIterator();
9255 
9256   MachineBasicBlock *HeadMBB = BB;
9257   MachineFunction *F = BB->getParent();
9258   MachineBasicBlock *TailMBB = F->CreateMachineBasicBlock(LLVM_BB);
9259   MachineBasicBlock *IfFalseMBB = F->CreateMachineBasicBlock(LLVM_BB);
9260 
9261   F->insert(I, IfFalseMBB);
9262   F->insert(I, TailMBB);
9263 
9264   // Transfer debug instructions associated with the selects to TailMBB.
9265   for (MachineInstr *DebugInstr : SelectDebugValues) {
9266     TailMBB->push_back(DebugInstr->removeFromParent());
9267   }
9268 
9269   // Move all instructions after the sequence to TailMBB.
9270   TailMBB->splice(TailMBB->end(), HeadMBB,
9271                   std::next(LastSelectPseudo->getIterator()), HeadMBB->end());
9272   // Update machine-CFG edges by transferring all successors of the current
9273   // block to the new block which will contain the Phi nodes for the selects.
9274   TailMBB->transferSuccessorsAndUpdatePHIs(HeadMBB);
9275   // Set the successors for HeadMBB.
9276   HeadMBB->addSuccessor(IfFalseMBB);
9277   HeadMBB->addSuccessor(TailMBB);
9278 
9279   // Insert appropriate branch.
9280   BuildMI(HeadMBB, DL, TII.getBrCond(CC))
9281     .addReg(LHS)
9282     .addReg(RHS)
9283     .addMBB(TailMBB);
9284 
9285   // IfFalseMBB just falls through to TailMBB.
9286   IfFalseMBB->addSuccessor(TailMBB);
9287 
9288   // Create PHIs for all of the select pseudo-instructions.
9289   auto SelectMBBI = MI.getIterator();
9290   auto SelectEnd = std::next(LastSelectPseudo->getIterator());
9291   auto InsertionPoint = TailMBB->begin();
9292   while (SelectMBBI != SelectEnd) {
9293     auto Next = std::next(SelectMBBI);
9294     if (isSelectPseudo(*SelectMBBI)) {
9295       // %Result = phi [ %TrueValue, HeadMBB ], [ %FalseValue, IfFalseMBB ]
9296       BuildMI(*TailMBB, InsertionPoint, SelectMBBI->getDebugLoc(),
9297               TII.get(RISCV::PHI), SelectMBBI->getOperand(0).getReg())
9298           .addReg(SelectMBBI->getOperand(4).getReg())
9299           .addMBB(HeadMBB)
9300           .addReg(SelectMBBI->getOperand(5).getReg())
9301           .addMBB(IfFalseMBB);
9302       SelectMBBI->eraseFromParent();
9303     }
9304     SelectMBBI = Next;
9305   }
9306 
9307   F->getProperties().reset(MachineFunctionProperties::Property::NoPHIs);
9308   return TailMBB;
9309 }
9310 
9311 MachineBasicBlock *
9312 RISCVTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
9313                                                  MachineBasicBlock *BB) const {
9314   switch (MI.getOpcode()) {
9315   default:
9316     llvm_unreachable("Unexpected instr type to insert");
9317   case RISCV::ReadCycleWide:
9318     assert(!Subtarget.is64Bit() &&
9319            "ReadCycleWrite is only to be used on riscv32");
9320     return emitReadCycleWidePseudo(MI, BB);
9321   case RISCV::Select_GPR_Using_CC_GPR:
9322   case RISCV::Select_FPR16_Using_CC_GPR:
9323   case RISCV::Select_FPR32_Using_CC_GPR:
9324   case RISCV::Select_FPR64_Using_CC_GPR:
9325     return emitSelectPseudo(MI, BB, Subtarget);
9326   case RISCV::BuildPairF64Pseudo:
9327     return emitBuildPairF64Pseudo(MI, BB);
9328   case RISCV::SplitF64Pseudo:
9329     return emitSplitF64Pseudo(MI, BB);
9330   case RISCV::PseudoQuietFLE_H:
9331     return emitQuietFCMP(MI, BB, RISCV::FLE_H, RISCV::FEQ_H, Subtarget);
9332   case RISCV::PseudoQuietFLT_H:
9333     return emitQuietFCMP(MI, BB, RISCV::FLT_H, RISCV::FEQ_H, Subtarget);
9334   case RISCV::PseudoQuietFLE_S:
9335     return emitQuietFCMP(MI, BB, RISCV::FLE_S, RISCV::FEQ_S, Subtarget);
9336   case RISCV::PseudoQuietFLT_S:
9337     return emitQuietFCMP(MI, BB, RISCV::FLT_S, RISCV::FEQ_S, Subtarget);
9338   case RISCV::PseudoQuietFLE_D:
9339     return emitQuietFCMP(MI, BB, RISCV::FLE_D, RISCV::FEQ_D, Subtarget);
9340   case RISCV::PseudoQuietFLT_D:
9341     return emitQuietFCMP(MI, BB, RISCV::FLT_D, RISCV::FEQ_D, Subtarget);
9342   }
9343 }
9344 
9345 void RISCVTargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI,
9346                                                         SDNode *Node) const {
9347   // Add FRM dependency to any instructions with dynamic rounding mode.
9348   unsigned Opc = MI.getOpcode();
9349   auto Idx = RISCV::getNamedOperandIdx(Opc, RISCV::OpName::frm);
9350   if (Idx < 0)
9351     return;
9352   if (MI.getOperand(Idx).getImm() != RISCVFPRndMode::DYN)
9353     return;
9354   // If the instruction already reads FRM, don't add another read.
9355   if (MI.readsRegister(RISCV::FRM))
9356     return;
9357   MI.addOperand(
9358       MachineOperand::CreateReg(RISCV::FRM, /*isDef*/ false, /*isImp*/ true));
9359 }
9360 
9361 // Calling Convention Implementation.
9362 // The expectations for frontend ABI lowering vary from target to target.
9363 // Ideally, an LLVM frontend would be able to avoid worrying about many ABI
9364 // details, but this is a longer term goal. For now, we simply try to keep the
9365 // role of the frontend as simple and well-defined as possible. The rules can
9366 // be summarised as:
9367 // * Never split up large scalar arguments. We handle them here.
9368 // * If a hardfloat calling convention is being used, and the struct may be
9369 // passed in a pair of registers (fp+fp, int+fp), and both registers are
9370 // available, then pass as two separate arguments. If either the GPRs or FPRs
9371 // are exhausted, then pass according to the rule below.
9372 // * If a struct could never be passed in registers or directly in a stack
9373 // slot (as it is larger than 2*XLEN and the floating point rules don't
9374 // apply), then pass it using a pointer with the byval attribute.
9375 // * If a struct is less than 2*XLEN, then coerce to either a two-element
9376 // word-sized array or a 2*XLEN scalar (depending on alignment).
9377 // * The frontend can determine whether a struct is returned by reference or
9378 // not based on its size and fields. If it will be returned by reference, the
9379 // frontend must modify the prototype so a pointer with the sret annotation is
9380 // passed as the first argument. This is not necessary for large scalar
9381 // returns.
9382 // * Struct return values and varargs should be coerced to structs containing
9383 // register-size fields in the same situations they would be for fixed
9384 // arguments.
9385 
9386 static const MCPhysReg ArgGPRs[] = {
9387   RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13,
9388   RISCV::X14, RISCV::X15, RISCV::X16, RISCV::X17
9389 };
9390 static const MCPhysReg ArgFPR16s[] = {
9391   RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H,
9392   RISCV::F14_H, RISCV::F15_H, RISCV::F16_H, RISCV::F17_H
9393 };
9394 static const MCPhysReg ArgFPR32s[] = {
9395   RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F,
9396   RISCV::F14_F, RISCV::F15_F, RISCV::F16_F, RISCV::F17_F
9397 };
9398 static const MCPhysReg ArgFPR64s[] = {
9399   RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D,
9400   RISCV::F14_D, RISCV::F15_D, RISCV::F16_D, RISCV::F17_D
9401 };
9402 // This is an interim calling convention and it may be changed in the future.
9403 static const MCPhysReg ArgVRs[] = {
9404     RISCV::V8,  RISCV::V9,  RISCV::V10, RISCV::V11, RISCV::V12, RISCV::V13,
9405     RISCV::V14, RISCV::V15, RISCV::V16, RISCV::V17, RISCV::V18, RISCV::V19,
9406     RISCV::V20, RISCV::V21, RISCV::V22, RISCV::V23};
9407 static const MCPhysReg ArgVRM2s[] = {RISCV::V8M2,  RISCV::V10M2, RISCV::V12M2,
9408                                      RISCV::V14M2, RISCV::V16M2, RISCV::V18M2,
9409                                      RISCV::V20M2, RISCV::V22M2};
9410 static const MCPhysReg ArgVRM4s[] = {RISCV::V8M4, RISCV::V12M4, RISCV::V16M4,
9411                                      RISCV::V20M4};
9412 static const MCPhysReg ArgVRM8s[] = {RISCV::V8M8, RISCV::V16M8};
9413 
9414 // Pass a 2*XLEN argument that has been split into two XLEN values through
9415 // registers or the stack as necessary.
9416 static bool CC_RISCVAssign2XLen(unsigned XLen, CCState &State, CCValAssign VA1,
9417                                 ISD::ArgFlagsTy ArgFlags1, unsigned ValNo2,
9418                                 MVT ValVT2, MVT LocVT2,
9419                                 ISD::ArgFlagsTy ArgFlags2) {
9420   unsigned XLenInBytes = XLen / 8;
9421   if (Register Reg = State.AllocateReg(ArgGPRs)) {
9422     // At least one half can be passed via register.
9423     State.addLoc(CCValAssign::getReg(VA1.getValNo(), VA1.getValVT(), Reg,
9424                                      VA1.getLocVT(), CCValAssign::Full));
9425   } else {
9426     // Both halves must be passed on the stack, with proper alignment.
9427     Align StackAlign =
9428         std::max(Align(XLenInBytes), ArgFlags1.getNonZeroOrigAlign());
9429     State.addLoc(
9430         CCValAssign::getMem(VA1.getValNo(), VA1.getValVT(),
9431                             State.AllocateStack(XLenInBytes, StackAlign),
9432                             VA1.getLocVT(), CCValAssign::Full));
9433     State.addLoc(CCValAssign::getMem(
9434         ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)),
9435         LocVT2, CCValAssign::Full));
9436     return false;
9437   }
9438 
9439   if (Register Reg = State.AllocateReg(ArgGPRs)) {
9440     // The second half can also be passed via register.
9441     State.addLoc(
9442         CCValAssign::getReg(ValNo2, ValVT2, Reg, LocVT2, CCValAssign::Full));
9443   } else {
9444     // The second half is passed via the stack, without additional alignment.
9445     State.addLoc(CCValAssign::getMem(
9446         ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)),
9447         LocVT2, CCValAssign::Full));
9448   }
9449 
9450   return false;
9451 }
9452 
9453 static unsigned allocateRVVReg(MVT ValVT, unsigned ValNo,
9454                                Optional<unsigned> FirstMaskArgument,
9455                                CCState &State, const RISCVTargetLowering &TLI) {
9456   const TargetRegisterClass *RC = TLI.getRegClassFor(ValVT);
9457   if (RC == &RISCV::VRRegClass) {
9458     // Assign the first mask argument to V0.
9459     // This is an interim calling convention and it may be changed in the
9460     // future.
9461     if (FirstMaskArgument.hasValue() && ValNo == FirstMaskArgument.getValue())
9462       return State.AllocateReg(RISCV::V0);
9463     return State.AllocateReg(ArgVRs);
9464   }
9465   if (RC == &RISCV::VRM2RegClass)
9466     return State.AllocateReg(ArgVRM2s);
9467   if (RC == &RISCV::VRM4RegClass)
9468     return State.AllocateReg(ArgVRM4s);
9469   if (RC == &RISCV::VRM8RegClass)
9470     return State.AllocateReg(ArgVRM8s);
9471   llvm_unreachable("Unhandled register class for ValueType");
9472 }
9473 
9474 // Implements the RISC-V calling convention. Returns true upon failure.
9475 static bool CC_RISCV(const DataLayout &DL, RISCVABI::ABI ABI, unsigned ValNo,
9476                      MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo,
9477                      ISD::ArgFlagsTy ArgFlags, CCState &State, bool IsFixed,
9478                      bool IsRet, Type *OrigTy, const RISCVTargetLowering &TLI,
9479                      Optional<unsigned> FirstMaskArgument) {
9480   unsigned XLen = DL.getLargestLegalIntTypeSizeInBits();
9481   assert(XLen == 32 || XLen == 64);
9482   MVT XLenVT = XLen == 32 ? MVT::i32 : MVT::i64;
9483 
9484   // Any return value split in to more than two values can't be returned
9485   // directly. Vectors are returned via the available vector registers.
9486   if (!LocVT.isVector() && IsRet && ValNo > 1)
9487     return true;
9488 
9489   // UseGPRForF16_F32 if targeting one of the soft-float ABIs, if passing a
9490   // variadic argument, or if no F16/F32 argument registers are available.
9491   bool UseGPRForF16_F32 = true;
9492   // UseGPRForF64 if targeting soft-float ABIs or an FLEN=32 ABI, if passing a
9493   // variadic argument, or if no F64 argument registers are available.
9494   bool UseGPRForF64 = true;
9495 
9496   switch (ABI) {
9497   default:
9498     llvm_unreachable("Unexpected ABI");
9499   case RISCVABI::ABI_ILP32:
9500   case RISCVABI::ABI_LP64:
9501     break;
9502   case RISCVABI::ABI_ILP32F:
9503   case RISCVABI::ABI_LP64F:
9504     UseGPRForF16_F32 = !IsFixed;
9505     break;
9506   case RISCVABI::ABI_ILP32D:
9507   case RISCVABI::ABI_LP64D:
9508     UseGPRForF16_F32 = !IsFixed;
9509     UseGPRForF64 = !IsFixed;
9510     break;
9511   }
9512 
9513   // FPR16, FPR32, and FPR64 alias each other.
9514   if (State.getFirstUnallocated(ArgFPR32s) == array_lengthof(ArgFPR32s)) {
9515     UseGPRForF16_F32 = true;
9516     UseGPRForF64 = true;
9517   }
9518 
9519   // From this point on, rely on UseGPRForF16_F32, UseGPRForF64 and
9520   // similar local variables rather than directly checking against the target
9521   // ABI.
9522 
9523   if (UseGPRForF16_F32 && (ValVT == MVT::f16 || ValVT == MVT::f32)) {
9524     LocVT = XLenVT;
9525     LocInfo = CCValAssign::BCvt;
9526   } else if (UseGPRForF64 && XLen == 64 && ValVT == MVT::f64) {
9527     LocVT = MVT::i64;
9528     LocInfo = CCValAssign::BCvt;
9529   }
9530 
9531   // If this is a variadic argument, the RISC-V calling convention requires
9532   // that it is assigned an 'even' or 'aligned' register if it has 8-byte
9533   // alignment (RV32) or 16-byte alignment (RV64). An aligned register should
9534   // be used regardless of whether the original argument was split during
9535   // legalisation or not. The argument will not be passed by registers if the
9536   // original type is larger than 2*XLEN, so the register alignment rule does
9537   // not apply.
9538   unsigned TwoXLenInBytes = (2 * XLen) / 8;
9539   if (!IsFixed && ArgFlags.getNonZeroOrigAlign() == TwoXLenInBytes &&
9540       DL.getTypeAllocSize(OrigTy) == TwoXLenInBytes) {
9541     unsigned RegIdx = State.getFirstUnallocated(ArgGPRs);
9542     // Skip 'odd' register if necessary.
9543     if (RegIdx != array_lengthof(ArgGPRs) && RegIdx % 2 == 1)
9544       State.AllocateReg(ArgGPRs);
9545   }
9546 
9547   SmallVectorImpl<CCValAssign> &PendingLocs = State.getPendingLocs();
9548   SmallVectorImpl<ISD::ArgFlagsTy> &PendingArgFlags =
9549       State.getPendingArgFlags();
9550 
9551   assert(PendingLocs.size() == PendingArgFlags.size() &&
9552          "PendingLocs and PendingArgFlags out of sync");
9553 
9554   // Handle passing f64 on RV32D with a soft float ABI or when floating point
9555   // registers are exhausted.
9556   if (UseGPRForF64 && XLen == 32 && ValVT == MVT::f64) {
9557     assert(!ArgFlags.isSplit() && PendingLocs.empty() &&
9558            "Can't lower f64 if it is split");
9559     // Depending on available argument GPRS, f64 may be passed in a pair of
9560     // GPRs, split between a GPR and the stack, or passed completely on the
9561     // stack. LowerCall/LowerFormalArguments/LowerReturn must recognise these
9562     // cases.
9563     Register Reg = State.AllocateReg(ArgGPRs);
9564     LocVT = MVT::i32;
9565     if (!Reg) {
9566       unsigned StackOffset = State.AllocateStack(8, Align(8));
9567       State.addLoc(
9568           CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
9569       return false;
9570     }
9571     if (!State.AllocateReg(ArgGPRs))
9572       State.AllocateStack(4, Align(4));
9573     State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
9574     return false;
9575   }
9576 
9577   // Fixed-length vectors are located in the corresponding scalable-vector
9578   // container types.
9579   if (ValVT.isFixedLengthVector())
9580     LocVT = TLI.getContainerForFixedLengthVector(LocVT);
9581 
9582   // Split arguments might be passed indirectly, so keep track of the pending
9583   // values. Split vectors are passed via a mix of registers and indirectly, so
9584   // treat them as we would any other argument.
9585   if (ValVT.isScalarInteger() && (ArgFlags.isSplit() || !PendingLocs.empty())) {
9586     LocVT = XLenVT;
9587     LocInfo = CCValAssign::Indirect;
9588     PendingLocs.push_back(
9589         CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo));
9590     PendingArgFlags.push_back(ArgFlags);
9591     if (!ArgFlags.isSplitEnd()) {
9592       return false;
9593     }
9594   }
9595 
9596   // If the split argument only had two elements, it should be passed directly
9597   // in registers or on the stack.
9598   if (ValVT.isScalarInteger() && ArgFlags.isSplitEnd() &&
9599       PendingLocs.size() <= 2) {
9600     assert(PendingLocs.size() == 2 && "Unexpected PendingLocs.size()");
9601     // Apply the normal calling convention rules to the first half of the
9602     // split argument.
9603     CCValAssign VA = PendingLocs[0];
9604     ISD::ArgFlagsTy AF = PendingArgFlags[0];
9605     PendingLocs.clear();
9606     PendingArgFlags.clear();
9607     return CC_RISCVAssign2XLen(XLen, State, VA, AF, ValNo, ValVT, LocVT,
9608                                ArgFlags);
9609   }
9610 
9611   // Allocate to a register if possible, or else a stack slot.
9612   Register Reg;
9613   unsigned StoreSizeBytes = XLen / 8;
9614   Align StackAlign = Align(XLen / 8);
9615 
9616   if (ValVT == MVT::f16 && !UseGPRForF16_F32)
9617     Reg = State.AllocateReg(ArgFPR16s);
9618   else if (ValVT == MVT::f32 && !UseGPRForF16_F32)
9619     Reg = State.AllocateReg(ArgFPR32s);
9620   else if (ValVT == MVT::f64 && !UseGPRForF64)
9621     Reg = State.AllocateReg(ArgFPR64s);
9622   else if (ValVT.isVector()) {
9623     Reg = allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI);
9624     if (!Reg) {
9625       // For return values, the vector must be passed fully via registers or
9626       // via the stack.
9627       // FIXME: The proposed vector ABI only mandates v8-v15 for return values,
9628       // but we're using all of them.
9629       if (IsRet)
9630         return true;
9631       // Try using a GPR to pass the address
9632       if ((Reg = State.AllocateReg(ArgGPRs))) {
9633         LocVT = XLenVT;
9634         LocInfo = CCValAssign::Indirect;
9635       } else if (ValVT.isScalableVector()) {
9636         LocVT = XLenVT;
9637         LocInfo = CCValAssign::Indirect;
9638       } else {
9639         // Pass fixed-length vectors on the stack.
9640         LocVT = ValVT;
9641         StoreSizeBytes = ValVT.getStoreSize();
9642         // Align vectors to their element sizes, being careful for vXi1
9643         // vectors.
9644         StackAlign = MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne();
9645       }
9646     }
9647   } else {
9648     Reg = State.AllocateReg(ArgGPRs);
9649   }
9650 
9651   unsigned StackOffset =
9652       Reg ? 0 : State.AllocateStack(StoreSizeBytes, StackAlign);
9653 
9654   // If we reach this point and PendingLocs is non-empty, we must be at the
9655   // end of a split argument that must be passed indirectly.
9656   if (!PendingLocs.empty()) {
9657     assert(ArgFlags.isSplitEnd() && "Expected ArgFlags.isSplitEnd()");
9658     assert(PendingLocs.size() > 2 && "Unexpected PendingLocs.size()");
9659 
9660     for (auto &It : PendingLocs) {
9661       if (Reg)
9662         It.convertToReg(Reg);
9663       else
9664         It.convertToMem(StackOffset);
9665       State.addLoc(It);
9666     }
9667     PendingLocs.clear();
9668     PendingArgFlags.clear();
9669     return false;
9670   }
9671 
9672   assert((!UseGPRForF16_F32 || !UseGPRForF64 || LocVT == XLenVT ||
9673           (TLI.getSubtarget().hasVInstructions() && ValVT.isVector())) &&
9674          "Expected an XLenVT or vector types at this stage");
9675 
9676   if (Reg) {
9677     State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
9678     return false;
9679   }
9680 
9681   // When a floating-point value is passed on the stack, no bit-conversion is
9682   // needed.
9683   if (ValVT.isFloatingPoint()) {
9684     LocVT = ValVT;
9685     LocInfo = CCValAssign::Full;
9686   }
9687   State.addLoc(CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
9688   return false;
9689 }
9690 
9691 template <typename ArgTy>
9692 static Optional<unsigned> preAssignMask(const ArgTy &Args) {
9693   for (const auto &ArgIdx : enumerate(Args)) {
9694     MVT ArgVT = ArgIdx.value().VT;
9695     if (ArgVT.isVector() && ArgVT.getVectorElementType() == MVT::i1)
9696       return ArgIdx.index();
9697   }
9698   return None;
9699 }
9700 
9701 void RISCVTargetLowering::analyzeInputArgs(
9702     MachineFunction &MF, CCState &CCInfo,
9703     const SmallVectorImpl<ISD::InputArg> &Ins, bool IsRet,
9704     RISCVCCAssignFn Fn) const {
9705   unsigned NumArgs = Ins.size();
9706   FunctionType *FType = MF.getFunction().getFunctionType();
9707 
9708   Optional<unsigned> FirstMaskArgument;
9709   if (Subtarget.hasVInstructions())
9710     FirstMaskArgument = preAssignMask(Ins);
9711 
9712   for (unsigned i = 0; i != NumArgs; ++i) {
9713     MVT ArgVT = Ins[i].VT;
9714     ISD::ArgFlagsTy ArgFlags = Ins[i].Flags;
9715 
9716     Type *ArgTy = nullptr;
9717     if (IsRet)
9718       ArgTy = FType->getReturnType();
9719     else if (Ins[i].isOrigArg())
9720       ArgTy = FType->getParamType(Ins[i].getOrigArgIndex());
9721 
9722     RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
9723     if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full,
9724            ArgFlags, CCInfo, /*IsFixed=*/true, IsRet, ArgTy, *this,
9725            FirstMaskArgument)) {
9726       LLVM_DEBUG(dbgs() << "InputArg #" << i << " has unhandled type "
9727                         << EVT(ArgVT).getEVTString() << '\n');
9728       llvm_unreachable(nullptr);
9729     }
9730   }
9731 }
9732 
9733 void RISCVTargetLowering::analyzeOutputArgs(
9734     MachineFunction &MF, CCState &CCInfo,
9735     const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsRet,
9736     CallLoweringInfo *CLI, RISCVCCAssignFn Fn) const {
9737   unsigned NumArgs = Outs.size();
9738 
9739   Optional<unsigned> FirstMaskArgument;
9740   if (Subtarget.hasVInstructions())
9741     FirstMaskArgument = preAssignMask(Outs);
9742 
9743   for (unsigned i = 0; i != NumArgs; i++) {
9744     MVT ArgVT = Outs[i].VT;
9745     ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
9746     Type *OrigTy = CLI ? CLI->getArgs()[Outs[i].OrigArgIndex].Ty : nullptr;
9747 
9748     RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
9749     if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full,
9750            ArgFlags, CCInfo, Outs[i].IsFixed, IsRet, OrigTy, *this,
9751            FirstMaskArgument)) {
9752       LLVM_DEBUG(dbgs() << "OutputArg #" << i << " has unhandled type "
9753                         << EVT(ArgVT).getEVTString() << "\n");
9754       llvm_unreachable(nullptr);
9755     }
9756   }
9757 }
9758 
9759 // Convert Val to a ValVT. Should not be called for CCValAssign::Indirect
9760 // values.
9761 static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDValue Val,
9762                                    const CCValAssign &VA, const SDLoc &DL,
9763                                    const RISCVSubtarget &Subtarget) {
9764   switch (VA.getLocInfo()) {
9765   default:
9766     llvm_unreachable("Unexpected CCValAssign::LocInfo");
9767   case CCValAssign::Full:
9768     if (VA.getValVT().isFixedLengthVector() && VA.getLocVT().isScalableVector())
9769       Val = convertFromScalableVector(VA.getValVT(), Val, DAG, Subtarget);
9770     break;
9771   case CCValAssign::BCvt:
9772     if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16)
9773       Val = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, Val);
9774     else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32)
9775       Val = DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, Val);
9776     else
9777       Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val);
9778     break;
9779   }
9780   return Val;
9781 }
9782 
9783 // The caller is responsible for loading the full value if the argument is
9784 // passed with CCValAssign::Indirect.
9785 static SDValue unpackFromRegLoc(SelectionDAG &DAG, SDValue Chain,
9786                                 const CCValAssign &VA, const SDLoc &DL,
9787                                 const RISCVTargetLowering &TLI) {
9788   MachineFunction &MF = DAG.getMachineFunction();
9789   MachineRegisterInfo &RegInfo = MF.getRegInfo();
9790   EVT LocVT = VA.getLocVT();
9791   SDValue Val;
9792   const TargetRegisterClass *RC = TLI.getRegClassFor(LocVT.getSimpleVT());
9793   Register VReg = RegInfo.createVirtualRegister(RC);
9794   RegInfo.addLiveIn(VA.getLocReg(), VReg);
9795   Val = DAG.getCopyFromReg(Chain, DL, VReg, LocVT);
9796 
9797   if (VA.getLocInfo() == CCValAssign::Indirect)
9798     return Val;
9799 
9800   return convertLocVTToValVT(DAG, Val, VA, DL, TLI.getSubtarget());
9801 }
9802 
9803 static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDValue Val,
9804                                    const CCValAssign &VA, const SDLoc &DL,
9805                                    const RISCVSubtarget &Subtarget) {
9806   EVT LocVT = VA.getLocVT();
9807 
9808   switch (VA.getLocInfo()) {
9809   default:
9810     llvm_unreachable("Unexpected CCValAssign::LocInfo");
9811   case CCValAssign::Full:
9812     if (VA.getValVT().isFixedLengthVector() && LocVT.isScalableVector())
9813       Val = convertToScalableVector(LocVT, Val, DAG, Subtarget);
9814     break;
9815   case CCValAssign::BCvt:
9816     if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16)
9817       Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, VA.getLocVT(), Val);
9818     else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32)
9819       Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Val);
9820     else
9821       Val = DAG.getNode(ISD::BITCAST, DL, LocVT, Val);
9822     break;
9823   }
9824   return Val;
9825 }
9826 
9827 // The caller is responsible for loading the full value if the argument is
9828 // passed with CCValAssign::Indirect.
9829 static SDValue unpackFromMemLoc(SelectionDAG &DAG, SDValue Chain,
9830                                 const CCValAssign &VA, const SDLoc &DL) {
9831   MachineFunction &MF = DAG.getMachineFunction();
9832   MachineFrameInfo &MFI = MF.getFrameInfo();
9833   EVT LocVT = VA.getLocVT();
9834   EVT ValVT = VA.getValVT();
9835   EVT PtrVT = MVT::getIntegerVT(DAG.getDataLayout().getPointerSizeInBits(0));
9836   if (ValVT.isScalableVector()) {
9837     // When the value is a scalable vector, we save the pointer which points to
9838     // the scalable vector value in the stack. The ValVT will be the pointer
9839     // type, instead of the scalable vector type.
9840     ValVT = LocVT;
9841   }
9842   int FI = MFI.CreateFixedObject(ValVT.getStoreSize(), VA.getLocMemOffset(),
9843                                  /*IsImmutable=*/true);
9844   SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
9845   SDValue Val;
9846 
9847   ISD::LoadExtType ExtType;
9848   switch (VA.getLocInfo()) {
9849   default:
9850     llvm_unreachable("Unexpected CCValAssign::LocInfo");
9851   case CCValAssign::Full:
9852   case CCValAssign::Indirect:
9853   case CCValAssign::BCvt:
9854     ExtType = ISD::NON_EXTLOAD;
9855     break;
9856   }
9857   Val = DAG.getExtLoad(
9858       ExtType, DL, LocVT, Chain, FIN,
9859       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), ValVT);
9860   return Val;
9861 }
9862 
9863 static SDValue unpackF64OnRV32DSoftABI(SelectionDAG &DAG, SDValue Chain,
9864                                        const CCValAssign &VA, const SDLoc &DL) {
9865   assert(VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64 &&
9866          "Unexpected VA");
9867   MachineFunction &MF = DAG.getMachineFunction();
9868   MachineFrameInfo &MFI = MF.getFrameInfo();
9869   MachineRegisterInfo &RegInfo = MF.getRegInfo();
9870 
9871   if (VA.isMemLoc()) {
9872     // f64 is passed on the stack.
9873     int FI =
9874         MFI.CreateFixedObject(8, VA.getLocMemOffset(), /*IsImmutable=*/true);
9875     SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
9876     return DAG.getLoad(MVT::f64, DL, Chain, FIN,
9877                        MachinePointerInfo::getFixedStack(MF, FI));
9878   }
9879 
9880   assert(VA.isRegLoc() && "Expected register VA assignment");
9881 
9882   Register LoVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
9883   RegInfo.addLiveIn(VA.getLocReg(), LoVReg);
9884   SDValue Lo = DAG.getCopyFromReg(Chain, DL, LoVReg, MVT::i32);
9885   SDValue Hi;
9886   if (VA.getLocReg() == RISCV::X17) {
9887     // Second half of f64 is passed on the stack.
9888     int FI = MFI.CreateFixedObject(4, 0, /*IsImmutable=*/true);
9889     SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
9890     Hi = DAG.getLoad(MVT::i32, DL, Chain, FIN,
9891                      MachinePointerInfo::getFixedStack(MF, FI));
9892   } else {
9893     // Second half of f64 is passed in another GPR.
9894     Register HiVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
9895     RegInfo.addLiveIn(VA.getLocReg() + 1, HiVReg);
9896     Hi = DAG.getCopyFromReg(Chain, DL, HiVReg, MVT::i32);
9897   }
9898   return DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, Lo, Hi);
9899 }
9900 
9901 // FastCC has less than 1% performance improvement for some particular
9902 // benchmark. But theoretically, it may has benenfit for some cases.
9903 static bool CC_RISCV_FastCC(const DataLayout &DL, RISCVABI::ABI ABI,
9904                             unsigned ValNo, MVT ValVT, MVT LocVT,
9905                             CCValAssign::LocInfo LocInfo,
9906                             ISD::ArgFlagsTy ArgFlags, CCState &State,
9907                             bool IsFixed, bool IsRet, Type *OrigTy,
9908                             const RISCVTargetLowering &TLI,
9909                             Optional<unsigned> FirstMaskArgument) {
9910 
9911   // X5 and X6 might be used for save-restore libcall.
9912   static const MCPhysReg GPRList[] = {
9913       RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, RISCV::X14,
9914       RISCV::X15, RISCV::X16, RISCV::X17, RISCV::X7,  RISCV::X28,
9915       RISCV::X29, RISCV::X30, RISCV::X31};
9916 
9917   if (LocVT == MVT::i32 || LocVT == MVT::i64) {
9918     if (unsigned Reg = State.AllocateReg(GPRList)) {
9919       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
9920       return false;
9921     }
9922   }
9923 
9924   if (LocVT == MVT::f16) {
9925     static const MCPhysReg FPR16List[] = {
9926         RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, RISCV::F14_H,
9927         RISCV::F15_H, RISCV::F16_H, RISCV::F17_H, RISCV::F0_H,  RISCV::F1_H,
9928         RISCV::F2_H,  RISCV::F3_H,  RISCV::F4_H,  RISCV::F5_H,  RISCV::F6_H,
9929         RISCV::F7_H,  RISCV::F28_H, RISCV::F29_H, RISCV::F30_H, RISCV::F31_H};
9930     if (unsigned Reg = State.AllocateReg(FPR16List)) {
9931       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
9932       return false;
9933     }
9934   }
9935 
9936   if (LocVT == MVT::f32) {
9937     static const MCPhysReg FPR32List[] = {
9938         RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, RISCV::F14_F,
9939         RISCV::F15_F, RISCV::F16_F, RISCV::F17_F, RISCV::F0_F,  RISCV::F1_F,
9940         RISCV::F2_F,  RISCV::F3_F,  RISCV::F4_F,  RISCV::F5_F,  RISCV::F6_F,
9941         RISCV::F7_F,  RISCV::F28_F, RISCV::F29_F, RISCV::F30_F, RISCV::F31_F};
9942     if (unsigned Reg = State.AllocateReg(FPR32List)) {
9943       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
9944       return false;
9945     }
9946   }
9947 
9948   if (LocVT == MVT::f64) {
9949     static const MCPhysReg FPR64List[] = {
9950         RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, RISCV::F14_D,
9951         RISCV::F15_D, RISCV::F16_D, RISCV::F17_D, RISCV::F0_D,  RISCV::F1_D,
9952         RISCV::F2_D,  RISCV::F3_D,  RISCV::F4_D,  RISCV::F5_D,  RISCV::F6_D,
9953         RISCV::F7_D,  RISCV::F28_D, RISCV::F29_D, RISCV::F30_D, RISCV::F31_D};
9954     if (unsigned Reg = State.AllocateReg(FPR64List)) {
9955       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
9956       return false;
9957     }
9958   }
9959 
9960   if (LocVT == MVT::i32 || LocVT == MVT::f32) {
9961     unsigned Offset4 = State.AllocateStack(4, Align(4));
9962     State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset4, LocVT, LocInfo));
9963     return false;
9964   }
9965 
9966   if (LocVT == MVT::i64 || LocVT == MVT::f64) {
9967     unsigned Offset5 = State.AllocateStack(8, Align(8));
9968     State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset5, LocVT, LocInfo));
9969     return false;
9970   }
9971 
9972   if (LocVT.isVector()) {
9973     if (unsigned Reg =
9974             allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI)) {
9975       // Fixed-length vectors are located in the corresponding scalable-vector
9976       // container types.
9977       if (ValVT.isFixedLengthVector())
9978         LocVT = TLI.getContainerForFixedLengthVector(LocVT);
9979       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
9980     } else {
9981       // Try and pass the address via a "fast" GPR.
9982       if (unsigned GPRReg = State.AllocateReg(GPRList)) {
9983         LocInfo = CCValAssign::Indirect;
9984         LocVT = TLI.getSubtarget().getXLenVT();
9985         State.addLoc(CCValAssign::getReg(ValNo, ValVT, GPRReg, LocVT, LocInfo));
9986       } else if (ValVT.isFixedLengthVector()) {
9987         auto StackAlign =
9988             MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne();
9989         unsigned StackOffset =
9990             State.AllocateStack(ValVT.getStoreSize(), StackAlign);
9991         State.addLoc(
9992             CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
9993       } else {
9994         // Can't pass scalable vectors on the stack.
9995         return true;
9996       }
9997     }
9998 
9999     return false;
10000   }
10001 
10002   return true; // CC didn't match.
10003 }
10004 
10005 static bool CC_RISCV_GHC(unsigned ValNo, MVT ValVT, MVT LocVT,
10006                          CCValAssign::LocInfo LocInfo,
10007                          ISD::ArgFlagsTy ArgFlags, CCState &State) {
10008 
10009   if (LocVT == MVT::i32 || LocVT == MVT::i64) {
10010     // Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, R6, R7, SpLim
10011     //                        s1    s2  s3  s4  s5  s6  s7  s8  s9  s10 s11
10012     static const MCPhysReg GPRList[] = {
10013         RISCV::X9, RISCV::X18, RISCV::X19, RISCV::X20, RISCV::X21, RISCV::X22,
10014         RISCV::X23, RISCV::X24, RISCV::X25, RISCV::X26, RISCV::X27};
10015     if (unsigned Reg = State.AllocateReg(GPRList)) {
10016       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
10017       return false;
10018     }
10019   }
10020 
10021   if (LocVT == MVT::f32) {
10022     // Pass in STG registers: F1, ..., F6
10023     //                        fs0 ... fs5
10024     static const MCPhysReg FPR32List[] = {RISCV::F8_F, RISCV::F9_F,
10025                                           RISCV::F18_F, RISCV::F19_F,
10026                                           RISCV::F20_F, RISCV::F21_F};
10027     if (unsigned Reg = State.AllocateReg(FPR32List)) {
10028       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
10029       return false;
10030     }
10031   }
10032 
10033   if (LocVT == MVT::f64) {
10034     // Pass in STG registers: D1, ..., D6
10035     //                        fs6 ... fs11
10036     static const MCPhysReg FPR64List[] = {RISCV::F22_D, RISCV::F23_D,
10037                                           RISCV::F24_D, RISCV::F25_D,
10038                                           RISCV::F26_D, RISCV::F27_D};
10039     if (unsigned Reg = State.AllocateReg(FPR64List)) {
10040       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
10041       return false;
10042     }
10043   }
10044 
10045   report_fatal_error("No registers left in GHC calling convention");
10046   return true;
10047 }
10048 
10049 // Transform physical registers into virtual registers.
10050 SDValue RISCVTargetLowering::LowerFormalArguments(
10051     SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
10052     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
10053     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
10054 
10055   MachineFunction &MF = DAG.getMachineFunction();
10056 
10057   switch (CallConv) {
10058   default:
10059     report_fatal_error("Unsupported calling convention");
10060   case CallingConv::C:
10061   case CallingConv::Fast:
10062     break;
10063   case CallingConv::GHC:
10064     if (!MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtF] ||
10065         !MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtD])
10066       report_fatal_error(
10067         "GHC calling convention requires the F and D instruction set extensions");
10068   }
10069 
10070   const Function &Func = MF.getFunction();
10071   if (Func.hasFnAttribute("interrupt")) {
10072     if (!Func.arg_empty())
10073       report_fatal_error(
10074         "Functions with the interrupt attribute cannot have arguments!");
10075 
10076     StringRef Kind =
10077       MF.getFunction().getFnAttribute("interrupt").getValueAsString();
10078 
10079     if (!(Kind == "user" || Kind == "supervisor" || Kind == "machine"))
10080       report_fatal_error(
10081         "Function interrupt attribute argument not supported!");
10082   }
10083 
10084   EVT PtrVT = getPointerTy(DAG.getDataLayout());
10085   MVT XLenVT = Subtarget.getXLenVT();
10086   unsigned XLenInBytes = Subtarget.getXLen() / 8;
10087   // Used with vargs to acumulate store chains.
10088   std::vector<SDValue> OutChains;
10089 
10090   // Assign locations to all of the incoming arguments.
10091   SmallVector<CCValAssign, 16> ArgLocs;
10092   CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
10093 
10094   if (CallConv == CallingConv::GHC)
10095     CCInfo.AnalyzeFormalArguments(Ins, CC_RISCV_GHC);
10096   else
10097     analyzeInputArgs(MF, CCInfo, Ins, /*IsRet=*/false,
10098                      CallConv == CallingConv::Fast ? CC_RISCV_FastCC
10099                                                    : CC_RISCV);
10100 
10101   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
10102     CCValAssign &VA = ArgLocs[i];
10103     SDValue ArgValue;
10104     // Passing f64 on RV32D with a soft float ABI must be handled as a special
10105     // case.
10106     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64)
10107       ArgValue = unpackF64OnRV32DSoftABI(DAG, Chain, VA, DL);
10108     else if (VA.isRegLoc())
10109       ArgValue = unpackFromRegLoc(DAG, Chain, VA, DL, *this);
10110     else
10111       ArgValue = unpackFromMemLoc(DAG, Chain, VA, DL);
10112 
10113     if (VA.getLocInfo() == CCValAssign::Indirect) {
10114       // If the original argument was split and passed by reference (e.g. i128
10115       // on RV32), we need to load all parts of it here (using the same
10116       // address). Vectors may be partly split to registers and partly to the
10117       // stack, in which case the base address is partly offset and subsequent
10118       // stores are relative to that.
10119       InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue,
10120                                    MachinePointerInfo()));
10121       unsigned ArgIndex = Ins[i].OrigArgIndex;
10122       unsigned ArgPartOffset = Ins[i].PartOffset;
10123       assert(VA.getValVT().isVector() || ArgPartOffset == 0);
10124       while (i + 1 != e && Ins[i + 1].OrigArgIndex == ArgIndex) {
10125         CCValAssign &PartVA = ArgLocs[i + 1];
10126         unsigned PartOffset = Ins[i + 1].PartOffset - ArgPartOffset;
10127         SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL);
10128         if (PartVA.getValVT().isScalableVector())
10129           Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset);
10130         SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, Offset);
10131         InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address,
10132                                      MachinePointerInfo()));
10133         ++i;
10134       }
10135       continue;
10136     }
10137     InVals.push_back(ArgValue);
10138   }
10139 
10140   if (IsVarArg) {
10141     ArrayRef<MCPhysReg> ArgRegs = makeArrayRef(ArgGPRs);
10142     unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs);
10143     const TargetRegisterClass *RC = &RISCV::GPRRegClass;
10144     MachineFrameInfo &MFI = MF.getFrameInfo();
10145     MachineRegisterInfo &RegInfo = MF.getRegInfo();
10146     RISCVMachineFunctionInfo *RVFI = MF.getInfo<RISCVMachineFunctionInfo>();
10147 
10148     // Offset of the first variable argument from stack pointer, and size of
10149     // the vararg save area. For now, the varargs save area is either zero or
10150     // large enough to hold a0-a7.
10151     int VaArgOffset, VarArgsSaveSize;
10152 
10153     // If all registers are allocated, then all varargs must be passed on the
10154     // stack and we don't need to save any argregs.
10155     if (ArgRegs.size() == Idx) {
10156       VaArgOffset = CCInfo.getNextStackOffset();
10157       VarArgsSaveSize = 0;
10158     } else {
10159       VarArgsSaveSize = XLenInBytes * (ArgRegs.size() - Idx);
10160       VaArgOffset = -VarArgsSaveSize;
10161     }
10162 
10163     // Record the frame index of the first variable argument
10164     // which is a value necessary to VASTART.
10165     int FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true);
10166     RVFI->setVarArgsFrameIndex(FI);
10167 
10168     // If saving an odd number of registers then create an extra stack slot to
10169     // ensure that the frame pointer is 2*XLEN-aligned, which in turn ensures
10170     // offsets to even-numbered registered remain 2*XLEN-aligned.
10171     if (Idx % 2) {
10172       MFI.CreateFixedObject(XLenInBytes, VaArgOffset - (int)XLenInBytes, true);
10173       VarArgsSaveSize += XLenInBytes;
10174     }
10175 
10176     // Copy the integer registers that may have been used for passing varargs
10177     // to the vararg save area.
10178     for (unsigned I = Idx; I < ArgRegs.size();
10179          ++I, VaArgOffset += XLenInBytes) {
10180       const Register Reg = RegInfo.createVirtualRegister(RC);
10181       RegInfo.addLiveIn(ArgRegs[I], Reg);
10182       SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, XLenVT);
10183       FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true);
10184       SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
10185       SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff,
10186                                    MachinePointerInfo::getFixedStack(MF, FI));
10187       cast<StoreSDNode>(Store.getNode())
10188           ->getMemOperand()
10189           ->setValue((Value *)nullptr);
10190       OutChains.push_back(Store);
10191     }
10192     RVFI->setVarArgsSaveSize(VarArgsSaveSize);
10193   }
10194 
10195   // All stores are grouped in one node to allow the matching between
10196   // the size of Ins and InVals. This only happens for vararg functions.
10197   if (!OutChains.empty()) {
10198     OutChains.push_back(Chain);
10199     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains);
10200   }
10201 
10202   return Chain;
10203 }
10204 
10205 /// isEligibleForTailCallOptimization - Check whether the call is eligible
10206 /// for tail call optimization.
10207 /// Note: This is modelled after ARM's IsEligibleForTailCallOptimization.
10208 bool RISCVTargetLowering::isEligibleForTailCallOptimization(
10209     CCState &CCInfo, CallLoweringInfo &CLI, MachineFunction &MF,
10210     const SmallVector<CCValAssign, 16> &ArgLocs) const {
10211 
10212   auto &Callee = CLI.Callee;
10213   auto CalleeCC = CLI.CallConv;
10214   auto &Outs = CLI.Outs;
10215   auto &Caller = MF.getFunction();
10216   auto CallerCC = Caller.getCallingConv();
10217 
10218   // Exception-handling functions need a special set of instructions to
10219   // indicate a return to the hardware. Tail-calling another function would
10220   // probably break this.
10221   // TODO: The "interrupt" attribute isn't currently defined by RISC-V. This
10222   // should be expanded as new function attributes are introduced.
10223   if (Caller.hasFnAttribute("interrupt"))
10224     return false;
10225 
10226   // Do not tail call opt if the stack is used to pass parameters.
10227   if (CCInfo.getNextStackOffset() != 0)
10228     return false;
10229 
10230   // Do not tail call opt if any parameters need to be passed indirectly.
10231   // Since long doubles (fp128) and i128 are larger than 2*XLEN, they are
10232   // passed indirectly. So the address of the value will be passed in a
10233   // register, or if not available, then the address is put on the stack. In
10234   // order to pass indirectly, space on the stack often needs to be allocated
10235   // in order to store the value. In this case the CCInfo.getNextStackOffset()
10236   // != 0 check is not enough and we need to check if any CCValAssign ArgsLocs
10237   // are passed CCValAssign::Indirect.
10238   for (auto &VA : ArgLocs)
10239     if (VA.getLocInfo() == CCValAssign::Indirect)
10240       return false;
10241 
10242   // Do not tail call opt if either caller or callee uses struct return
10243   // semantics.
10244   auto IsCallerStructRet = Caller.hasStructRetAttr();
10245   auto IsCalleeStructRet = Outs.empty() ? false : Outs[0].Flags.isSRet();
10246   if (IsCallerStructRet || IsCalleeStructRet)
10247     return false;
10248 
10249   // Externally-defined functions with weak linkage should not be
10250   // tail-called. The behaviour of branch instructions in this situation (as
10251   // used for tail calls) is implementation-defined, so we cannot rely on the
10252   // linker replacing the tail call with a return.
10253   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
10254     const GlobalValue *GV = G->getGlobal();
10255     if (GV->hasExternalWeakLinkage())
10256       return false;
10257   }
10258 
10259   // The callee has to preserve all registers the caller needs to preserve.
10260   const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo();
10261   const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
10262   if (CalleeCC != CallerCC) {
10263     const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
10264     if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
10265       return false;
10266   }
10267 
10268   // Byval parameters hand the function a pointer directly into the stack area
10269   // we want to reuse during a tail call. Working around this *is* possible
10270   // but less efficient and uglier in LowerCall.
10271   for (auto &Arg : Outs)
10272     if (Arg.Flags.isByVal())
10273       return false;
10274 
10275   return true;
10276 }
10277 
10278 static Align getPrefTypeAlign(EVT VT, SelectionDAG &DAG) {
10279   return DAG.getDataLayout().getPrefTypeAlign(
10280       VT.getTypeForEVT(*DAG.getContext()));
10281 }
10282 
10283 // Lower a call to a callseq_start + CALL + callseq_end chain, and add input
10284 // and output parameter nodes.
10285 SDValue RISCVTargetLowering::LowerCall(CallLoweringInfo &CLI,
10286                                        SmallVectorImpl<SDValue> &InVals) const {
10287   SelectionDAG &DAG = CLI.DAG;
10288   SDLoc &DL = CLI.DL;
10289   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
10290   SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
10291   SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
10292   SDValue Chain = CLI.Chain;
10293   SDValue Callee = CLI.Callee;
10294   bool &IsTailCall = CLI.IsTailCall;
10295   CallingConv::ID CallConv = CLI.CallConv;
10296   bool IsVarArg = CLI.IsVarArg;
10297   EVT PtrVT = getPointerTy(DAG.getDataLayout());
10298   MVT XLenVT = Subtarget.getXLenVT();
10299 
10300   MachineFunction &MF = DAG.getMachineFunction();
10301 
10302   // Analyze the operands of the call, assigning locations to each operand.
10303   SmallVector<CCValAssign, 16> ArgLocs;
10304   CCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
10305 
10306   if (CallConv == CallingConv::GHC)
10307     ArgCCInfo.AnalyzeCallOperands(Outs, CC_RISCV_GHC);
10308   else
10309     analyzeOutputArgs(MF, ArgCCInfo, Outs, /*IsRet=*/false, &CLI,
10310                       CallConv == CallingConv::Fast ? CC_RISCV_FastCC
10311                                                     : CC_RISCV);
10312 
10313   // Check if it's really possible to do a tail call.
10314   if (IsTailCall)
10315     IsTailCall = isEligibleForTailCallOptimization(ArgCCInfo, CLI, MF, ArgLocs);
10316 
10317   if (IsTailCall)
10318     ++NumTailCalls;
10319   else if (CLI.CB && CLI.CB->isMustTailCall())
10320     report_fatal_error("failed to perform tail call elimination on a call "
10321                        "site marked musttail");
10322 
10323   // Get a count of how many bytes are to be pushed on the stack.
10324   unsigned NumBytes = ArgCCInfo.getNextStackOffset();
10325 
10326   // Create local copies for byval args
10327   SmallVector<SDValue, 8> ByValArgs;
10328   for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
10329     ISD::ArgFlagsTy Flags = Outs[i].Flags;
10330     if (!Flags.isByVal())
10331       continue;
10332 
10333     SDValue Arg = OutVals[i];
10334     unsigned Size = Flags.getByValSize();
10335     Align Alignment = Flags.getNonZeroByValAlign();
10336 
10337     int FI =
10338         MF.getFrameInfo().CreateStackObject(Size, Alignment, /*isSS=*/false);
10339     SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
10340     SDValue SizeNode = DAG.getConstant(Size, DL, XLenVT);
10341 
10342     Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Alignment,
10343                           /*IsVolatile=*/false,
10344                           /*AlwaysInline=*/false, IsTailCall,
10345                           MachinePointerInfo(), MachinePointerInfo());
10346     ByValArgs.push_back(FIPtr);
10347   }
10348 
10349   if (!IsTailCall)
10350     Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, CLI.DL);
10351 
10352   // Copy argument values to their designated locations.
10353   SmallVector<std::pair<Register, SDValue>, 8> RegsToPass;
10354   SmallVector<SDValue, 8> MemOpChains;
10355   SDValue StackPtr;
10356   for (unsigned i = 0, j = 0, e = ArgLocs.size(); i != e; ++i) {
10357     CCValAssign &VA = ArgLocs[i];
10358     SDValue ArgValue = OutVals[i];
10359     ISD::ArgFlagsTy Flags = Outs[i].Flags;
10360 
10361     // Handle passing f64 on RV32D with a soft float ABI as a special case.
10362     bool IsF64OnRV32DSoftABI =
10363         VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64;
10364     if (IsF64OnRV32DSoftABI && VA.isRegLoc()) {
10365       SDValue SplitF64 = DAG.getNode(
10366           RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), ArgValue);
10367       SDValue Lo = SplitF64.getValue(0);
10368       SDValue Hi = SplitF64.getValue(1);
10369 
10370       Register RegLo = VA.getLocReg();
10371       RegsToPass.push_back(std::make_pair(RegLo, Lo));
10372 
10373       if (RegLo == RISCV::X17) {
10374         // Second half of f64 is passed on the stack.
10375         // Work out the address of the stack slot.
10376         if (!StackPtr.getNode())
10377           StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT);
10378         // Emit the store.
10379         MemOpChains.push_back(
10380             DAG.getStore(Chain, DL, Hi, StackPtr, MachinePointerInfo()));
10381       } else {
10382         // Second half of f64 is passed in another GPR.
10383         assert(RegLo < RISCV::X31 && "Invalid register pair");
10384         Register RegHigh = RegLo + 1;
10385         RegsToPass.push_back(std::make_pair(RegHigh, Hi));
10386       }
10387       continue;
10388     }
10389 
10390     // IsF64OnRV32DSoftABI && VA.isMemLoc() is handled below in the same way
10391     // as any other MemLoc.
10392 
10393     // Promote the value if needed.
10394     // For now, only handle fully promoted and indirect arguments.
10395     if (VA.getLocInfo() == CCValAssign::Indirect) {
10396       // Store the argument in a stack slot and pass its address.
10397       Align StackAlign =
10398           std::max(getPrefTypeAlign(Outs[i].ArgVT, DAG),
10399                    getPrefTypeAlign(ArgValue.getValueType(), DAG));
10400       TypeSize StoredSize = ArgValue.getValueType().getStoreSize();
10401       // If the original argument was split (e.g. i128), we need
10402       // to store the required parts of it here (and pass just one address).
10403       // Vectors may be partly split to registers and partly to the stack, in
10404       // which case the base address is partly offset and subsequent stores are
10405       // relative to that.
10406       unsigned ArgIndex = Outs[i].OrigArgIndex;
10407       unsigned ArgPartOffset = Outs[i].PartOffset;
10408       assert(VA.getValVT().isVector() || ArgPartOffset == 0);
10409       // Calculate the total size to store. We don't have access to what we're
10410       // actually storing other than performing the loop and collecting the
10411       // info.
10412       SmallVector<std::pair<SDValue, SDValue>> Parts;
10413       while (i + 1 != e && Outs[i + 1].OrigArgIndex == ArgIndex) {
10414         SDValue PartValue = OutVals[i + 1];
10415         unsigned PartOffset = Outs[i + 1].PartOffset - ArgPartOffset;
10416         SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL);
10417         EVT PartVT = PartValue.getValueType();
10418         if (PartVT.isScalableVector())
10419           Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset);
10420         StoredSize += PartVT.getStoreSize();
10421         StackAlign = std::max(StackAlign, getPrefTypeAlign(PartVT, DAG));
10422         Parts.push_back(std::make_pair(PartValue, Offset));
10423         ++i;
10424       }
10425       SDValue SpillSlot = DAG.CreateStackTemporary(StoredSize, StackAlign);
10426       int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
10427       MemOpChains.push_back(
10428           DAG.getStore(Chain, DL, ArgValue, SpillSlot,
10429                        MachinePointerInfo::getFixedStack(MF, FI)));
10430       for (const auto &Part : Parts) {
10431         SDValue PartValue = Part.first;
10432         SDValue PartOffset = Part.second;
10433         SDValue Address =
10434             DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, PartOffset);
10435         MemOpChains.push_back(
10436             DAG.getStore(Chain, DL, PartValue, Address,
10437                          MachinePointerInfo::getFixedStack(MF, FI)));
10438       }
10439       ArgValue = SpillSlot;
10440     } else {
10441       ArgValue = convertValVTToLocVT(DAG, ArgValue, VA, DL, Subtarget);
10442     }
10443 
10444     // Use local copy if it is a byval arg.
10445     if (Flags.isByVal())
10446       ArgValue = ByValArgs[j++];
10447 
10448     if (VA.isRegLoc()) {
10449       // Queue up the argument copies and emit them at the end.
10450       RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue));
10451     } else {
10452       assert(VA.isMemLoc() && "Argument not register or memory");
10453       assert(!IsTailCall && "Tail call not allowed if stack is used "
10454                             "for passing parameters");
10455 
10456       // Work out the address of the stack slot.
10457       if (!StackPtr.getNode())
10458         StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT);
10459       SDValue Address =
10460           DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr,
10461                       DAG.getIntPtrConstant(VA.getLocMemOffset(), DL));
10462 
10463       // Emit the store.
10464       MemOpChains.push_back(
10465           DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo()));
10466     }
10467   }
10468 
10469   // Join the stores, which are independent of one another.
10470   if (!MemOpChains.empty())
10471     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
10472 
10473   SDValue Glue;
10474 
10475   // Build a sequence of copy-to-reg nodes, chained and glued together.
10476   for (auto &Reg : RegsToPass) {
10477     Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, Glue);
10478     Glue = Chain.getValue(1);
10479   }
10480 
10481   // Validate that none of the argument registers have been marked as
10482   // reserved, if so report an error. Do the same for the return address if this
10483   // is not a tailcall.
10484   validateCCReservedRegs(RegsToPass, MF);
10485   if (!IsTailCall &&
10486       MF.getSubtarget<RISCVSubtarget>().isRegisterReservedByUser(RISCV::X1))
10487     MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
10488         MF.getFunction(),
10489         "Return address register required, but has been reserved."});
10490 
10491   // If the callee is a GlobalAddress/ExternalSymbol node, turn it into a
10492   // TargetGlobalAddress/TargetExternalSymbol node so that legalize won't
10493   // split it and then direct call can be matched by PseudoCALL.
10494   if (GlobalAddressSDNode *S = dyn_cast<GlobalAddressSDNode>(Callee)) {
10495     const GlobalValue *GV = S->getGlobal();
10496 
10497     unsigned OpFlags = RISCVII::MO_CALL;
10498     if (!getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV))
10499       OpFlags = RISCVII::MO_PLT;
10500 
10501     Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags);
10502   } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
10503     unsigned OpFlags = RISCVII::MO_CALL;
10504 
10505     if (!getTargetMachine().shouldAssumeDSOLocal(*MF.getFunction().getParent(),
10506                                                  nullptr))
10507       OpFlags = RISCVII::MO_PLT;
10508 
10509     Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, OpFlags);
10510   }
10511 
10512   // The first call operand is the chain and the second is the target address.
10513   SmallVector<SDValue, 8> Ops;
10514   Ops.push_back(Chain);
10515   Ops.push_back(Callee);
10516 
10517   // Add argument registers to the end of the list so that they are
10518   // known live into the call.
10519   for (auto &Reg : RegsToPass)
10520     Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType()));
10521 
10522   if (!IsTailCall) {
10523     // Add a register mask operand representing the call-preserved registers.
10524     const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
10525     const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
10526     assert(Mask && "Missing call preserved mask for calling convention");
10527     Ops.push_back(DAG.getRegisterMask(Mask));
10528   }
10529 
10530   // Glue the call to the argument copies, if any.
10531   if (Glue.getNode())
10532     Ops.push_back(Glue);
10533 
10534   // Emit the call.
10535   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
10536 
10537   if (IsTailCall) {
10538     MF.getFrameInfo().setHasTailCall();
10539     return DAG.getNode(RISCVISD::TAIL, DL, NodeTys, Ops);
10540   }
10541 
10542   Chain = DAG.getNode(RISCVISD::CALL, DL, NodeTys, Ops);
10543   DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge);
10544   Glue = Chain.getValue(1);
10545 
10546   // Mark the end of the call, which is glued to the call itself.
10547   Chain = DAG.getCALLSEQ_END(Chain,
10548                              DAG.getConstant(NumBytes, DL, PtrVT, true),
10549                              DAG.getConstant(0, DL, PtrVT, true),
10550                              Glue, DL);
10551   Glue = Chain.getValue(1);
10552 
10553   // Assign locations to each value returned by this call.
10554   SmallVector<CCValAssign, 16> RVLocs;
10555   CCState RetCCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext());
10556   analyzeInputArgs(MF, RetCCInfo, Ins, /*IsRet=*/true, CC_RISCV);
10557 
10558   // Copy all of the result registers out of their specified physreg.
10559   for (auto &VA : RVLocs) {
10560     // Copy the value out
10561     SDValue RetValue =
10562         DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), Glue);
10563     // Glue the RetValue to the end of the call sequence
10564     Chain = RetValue.getValue(1);
10565     Glue = RetValue.getValue(2);
10566 
10567     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) {
10568       assert(VA.getLocReg() == ArgGPRs[0] && "Unexpected reg assignment");
10569       SDValue RetValue2 =
10570           DAG.getCopyFromReg(Chain, DL, ArgGPRs[1], MVT::i32, Glue);
10571       Chain = RetValue2.getValue(1);
10572       Glue = RetValue2.getValue(2);
10573       RetValue = DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, RetValue,
10574                              RetValue2);
10575     }
10576 
10577     RetValue = convertLocVTToValVT(DAG, RetValue, VA, DL, Subtarget);
10578 
10579     InVals.push_back(RetValue);
10580   }
10581 
10582   return Chain;
10583 }
10584 
10585 bool RISCVTargetLowering::CanLowerReturn(
10586     CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg,
10587     const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const {
10588   SmallVector<CCValAssign, 16> RVLocs;
10589   CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);
10590 
10591   Optional<unsigned> FirstMaskArgument;
10592   if (Subtarget.hasVInstructions())
10593     FirstMaskArgument = preAssignMask(Outs);
10594 
10595   for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
10596     MVT VT = Outs[i].VT;
10597     ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
10598     RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
10599     if (CC_RISCV(MF.getDataLayout(), ABI, i, VT, VT, CCValAssign::Full,
10600                  ArgFlags, CCInfo, /*IsFixed=*/true, /*IsRet=*/true, nullptr,
10601                  *this, FirstMaskArgument))
10602       return false;
10603   }
10604   return true;
10605 }
10606 
10607 SDValue
10608 RISCVTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
10609                                  bool IsVarArg,
10610                                  const SmallVectorImpl<ISD::OutputArg> &Outs,
10611                                  const SmallVectorImpl<SDValue> &OutVals,
10612                                  const SDLoc &DL, SelectionDAG &DAG) const {
10613   const MachineFunction &MF = DAG.getMachineFunction();
10614   const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>();
10615 
10616   // Stores the assignment of the return value to a location.
10617   SmallVector<CCValAssign, 16> RVLocs;
10618 
10619   // Info about the registers and stack slot.
10620   CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
10621                  *DAG.getContext());
10622 
10623   analyzeOutputArgs(DAG.getMachineFunction(), CCInfo, Outs, /*IsRet=*/true,
10624                     nullptr, CC_RISCV);
10625 
10626   if (CallConv == CallingConv::GHC && !RVLocs.empty())
10627     report_fatal_error("GHC functions return void only");
10628 
10629   SDValue Glue;
10630   SmallVector<SDValue, 4> RetOps(1, Chain);
10631 
10632   // Copy the result values into the output registers.
10633   for (unsigned i = 0, e = RVLocs.size(); i < e; ++i) {
10634     SDValue Val = OutVals[i];
10635     CCValAssign &VA = RVLocs[i];
10636     assert(VA.isRegLoc() && "Can only return in registers!");
10637 
10638     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) {
10639       // Handle returning f64 on RV32D with a soft float ABI.
10640       assert(VA.isRegLoc() && "Expected return via registers");
10641       SDValue SplitF64 = DAG.getNode(RISCVISD::SplitF64, DL,
10642                                      DAG.getVTList(MVT::i32, MVT::i32), Val);
10643       SDValue Lo = SplitF64.getValue(0);
10644       SDValue Hi = SplitF64.getValue(1);
10645       Register RegLo = VA.getLocReg();
10646       assert(RegLo < RISCV::X31 && "Invalid register pair");
10647       Register RegHi = RegLo + 1;
10648 
10649       if (STI.isRegisterReservedByUser(RegLo) ||
10650           STI.isRegisterReservedByUser(RegHi))
10651         MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
10652             MF.getFunction(),
10653             "Return value register required, but has been reserved."});
10654 
10655       Chain = DAG.getCopyToReg(Chain, DL, RegLo, Lo, Glue);
10656       Glue = Chain.getValue(1);
10657       RetOps.push_back(DAG.getRegister(RegLo, MVT::i32));
10658       Chain = DAG.getCopyToReg(Chain, DL, RegHi, Hi, Glue);
10659       Glue = Chain.getValue(1);
10660       RetOps.push_back(DAG.getRegister(RegHi, MVT::i32));
10661     } else {
10662       // Handle a 'normal' return.
10663       Val = convertValVTToLocVT(DAG, Val, VA, DL, Subtarget);
10664       Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Glue);
10665 
10666       if (STI.isRegisterReservedByUser(VA.getLocReg()))
10667         MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
10668             MF.getFunction(),
10669             "Return value register required, but has been reserved."});
10670 
10671       // Guarantee that all emitted copies are stuck together.
10672       Glue = Chain.getValue(1);
10673       RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
10674     }
10675   }
10676 
10677   RetOps[0] = Chain; // Update chain.
10678 
10679   // Add the glue node if we have it.
10680   if (Glue.getNode()) {
10681     RetOps.push_back(Glue);
10682   }
10683 
10684   unsigned RetOpc = RISCVISD::RET_FLAG;
10685   // Interrupt service routines use different return instructions.
10686   const Function &Func = DAG.getMachineFunction().getFunction();
10687   if (Func.hasFnAttribute("interrupt")) {
10688     if (!Func.getReturnType()->isVoidTy())
10689       report_fatal_error(
10690           "Functions with the interrupt attribute must have void return type!");
10691 
10692     MachineFunction &MF = DAG.getMachineFunction();
10693     StringRef Kind =
10694       MF.getFunction().getFnAttribute("interrupt").getValueAsString();
10695 
10696     if (Kind == "user")
10697       RetOpc = RISCVISD::URET_FLAG;
10698     else if (Kind == "supervisor")
10699       RetOpc = RISCVISD::SRET_FLAG;
10700     else
10701       RetOpc = RISCVISD::MRET_FLAG;
10702   }
10703 
10704   return DAG.getNode(RetOpc, DL, MVT::Other, RetOps);
10705 }
10706 
10707 void RISCVTargetLowering::validateCCReservedRegs(
10708     const SmallVectorImpl<std::pair<llvm::Register, llvm::SDValue>> &Regs,
10709     MachineFunction &MF) const {
10710   const Function &F = MF.getFunction();
10711   const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>();
10712 
10713   if (llvm::any_of(Regs, [&STI](auto Reg) {
10714         return STI.isRegisterReservedByUser(Reg.first);
10715       }))
10716     F.getContext().diagnose(DiagnosticInfoUnsupported{
10717         F, "Argument register required, but has been reserved."});
10718 }
10719 
10720 bool RISCVTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
10721   return CI->isTailCall();
10722 }
10723 
10724 const char *RISCVTargetLowering::getTargetNodeName(unsigned Opcode) const {
10725 #define NODE_NAME_CASE(NODE)                                                   \
10726   case RISCVISD::NODE:                                                         \
10727     return "RISCVISD::" #NODE;
10728   // clang-format off
10729   switch ((RISCVISD::NodeType)Opcode) {
10730   case RISCVISD::FIRST_NUMBER:
10731     break;
10732   NODE_NAME_CASE(RET_FLAG)
10733   NODE_NAME_CASE(URET_FLAG)
10734   NODE_NAME_CASE(SRET_FLAG)
10735   NODE_NAME_CASE(MRET_FLAG)
10736   NODE_NAME_CASE(CALL)
10737   NODE_NAME_CASE(SELECT_CC)
10738   NODE_NAME_CASE(BR_CC)
10739   NODE_NAME_CASE(BuildPairF64)
10740   NODE_NAME_CASE(SplitF64)
10741   NODE_NAME_CASE(TAIL)
10742   NODE_NAME_CASE(MULHSU)
10743   NODE_NAME_CASE(SLLW)
10744   NODE_NAME_CASE(SRAW)
10745   NODE_NAME_CASE(SRLW)
10746   NODE_NAME_CASE(DIVW)
10747   NODE_NAME_CASE(DIVUW)
10748   NODE_NAME_CASE(REMUW)
10749   NODE_NAME_CASE(ROLW)
10750   NODE_NAME_CASE(RORW)
10751   NODE_NAME_CASE(CLZW)
10752   NODE_NAME_CASE(CTZW)
10753   NODE_NAME_CASE(FSLW)
10754   NODE_NAME_CASE(FSRW)
10755   NODE_NAME_CASE(FSL)
10756   NODE_NAME_CASE(FSR)
10757   NODE_NAME_CASE(FMV_H_X)
10758   NODE_NAME_CASE(FMV_X_ANYEXTH)
10759   NODE_NAME_CASE(FMV_X_SIGNEXTH)
10760   NODE_NAME_CASE(FMV_W_X_RV64)
10761   NODE_NAME_CASE(FMV_X_ANYEXTW_RV64)
10762   NODE_NAME_CASE(FCVT_X)
10763   NODE_NAME_CASE(FCVT_XU)
10764   NODE_NAME_CASE(FCVT_W_RV64)
10765   NODE_NAME_CASE(FCVT_WU_RV64)
10766   NODE_NAME_CASE(STRICT_FCVT_W_RV64)
10767   NODE_NAME_CASE(STRICT_FCVT_WU_RV64)
10768   NODE_NAME_CASE(READ_CYCLE_WIDE)
10769   NODE_NAME_CASE(GREV)
10770   NODE_NAME_CASE(GREVW)
10771   NODE_NAME_CASE(GORC)
10772   NODE_NAME_CASE(GORCW)
10773   NODE_NAME_CASE(SHFL)
10774   NODE_NAME_CASE(SHFLW)
10775   NODE_NAME_CASE(UNSHFL)
10776   NODE_NAME_CASE(UNSHFLW)
10777   NODE_NAME_CASE(BFP)
10778   NODE_NAME_CASE(BFPW)
10779   NODE_NAME_CASE(BCOMPRESS)
10780   NODE_NAME_CASE(BCOMPRESSW)
10781   NODE_NAME_CASE(BDECOMPRESS)
10782   NODE_NAME_CASE(BDECOMPRESSW)
10783   NODE_NAME_CASE(VMV_V_X_VL)
10784   NODE_NAME_CASE(VFMV_V_F_VL)
10785   NODE_NAME_CASE(VMV_X_S)
10786   NODE_NAME_CASE(VMV_S_X_VL)
10787   NODE_NAME_CASE(VFMV_S_F_VL)
10788   NODE_NAME_CASE(SPLAT_VECTOR_SPLIT_I64_VL)
10789   NODE_NAME_CASE(READ_VLENB)
10790   NODE_NAME_CASE(TRUNCATE_VECTOR_VL)
10791   NODE_NAME_CASE(VSLIDEUP_VL)
10792   NODE_NAME_CASE(VSLIDE1UP_VL)
10793   NODE_NAME_CASE(VSLIDEDOWN_VL)
10794   NODE_NAME_CASE(VSLIDE1DOWN_VL)
10795   NODE_NAME_CASE(VID_VL)
10796   NODE_NAME_CASE(VFNCVT_ROD_VL)
10797   NODE_NAME_CASE(VECREDUCE_ADD_VL)
10798   NODE_NAME_CASE(VECREDUCE_UMAX_VL)
10799   NODE_NAME_CASE(VECREDUCE_SMAX_VL)
10800   NODE_NAME_CASE(VECREDUCE_UMIN_VL)
10801   NODE_NAME_CASE(VECREDUCE_SMIN_VL)
10802   NODE_NAME_CASE(VECREDUCE_AND_VL)
10803   NODE_NAME_CASE(VECREDUCE_OR_VL)
10804   NODE_NAME_CASE(VECREDUCE_XOR_VL)
10805   NODE_NAME_CASE(VECREDUCE_FADD_VL)
10806   NODE_NAME_CASE(VECREDUCE_SEQ_FADD_VL)
10807   NODE_NAME_CASE(VECREDUCE_FMIN_VL)
10808   NODE_NAME_CASE(VECREDUCE_FMAX_VL)
10809   NODE_NAME_CASE(ADD_VL)
10810   NODE_NAME_CASE(AND_VL)
10811   NODE_NAME_CASE(MUL_VL)
10812   NODE_NAME_CASE(OR_VL)
10813   NODE_NAME_CASE(SDIV_VL)
10814   NODE_NAME_CASE(SHL_VL)
10815   NODE_NAME_CASE(SREM_VL)
10816   NODE_NAME_CASE(SRA_VL)
10817   NODE_NAME_CASE(SRL_VL)
10818   NODE_NAME_CASE(SUB_VL)
10819   NODE_NAME_CASE(UDIV_VL)
10820   NODE_NAME_CASE(UREM_VL)
10821   NODE_NAME_CASE(XOR_VL)
10822   NODE_NAME_CASE(SADDSAT_VL)
10823   NODE_NAME_CASE(UADDSAT_VL)
10824   NODE_NAME_CASE(SSUBSAT_VL)
10825   NODE_NAME_CASE(USUBSAT_VL)
10826   NODE_NAME_CASE(FADD_VL)
10827   NODE_NAME_CASE(FSUB_VL)
10828   NODE_NAME_CASE(FMUL_VL)
10829   NODE_NAME_CASE(FDIV_VL)
10830   NODE_NAME_CASE(FNEG_VL)
10831   NODE_NAME_CASE(FABS_VL)
10832   NODE_NAME_CASE(FSQRT_VL)
10833   NODE_NAME_CASE(FMA_VL)
10834   NODE_NAME_CASE(FCOPYSIGN_VL)
10835   NODE_NAME_CASE(SMIN_VL)
10836   NODE_NAME_CASE(SMAX_VL)
10837   NODE_NAME_CASE(UMIN_VL)
10838   NODE_NAME_CASE(UMAX_VL)
10839   NODE_NAME_CASE(FMINNUM_VL)
10840   NODE_NAME_CASE(FMAXNUM_VL)
10841   NODE_NAME_CASE(MULHS_VL)
10842   NODE_NAME_CASE(MULHU_VL)
10843   NODE_NAME_CASE(FP_TO_SINT_VL)
10844   NODE_NAME_CASE(FP_TO_UINT_VL)
10845   NODE_NAME_CASE(SINT_TO_FP_VL)
10846   NODE_NAME_CASE(UINT_TO_FP_VL)
10847   NODE_NAME_CASE(FP_EXTEND_VL)
10848   NODE_NAME_CASE(FP_ROUND_VL)
10849   NODE_NAME_CASE(VWMUL_VL)
10850   NODE_NAME_CASE(VWMULU_VL)
10851   NODE_NAME_CASE(VWMULSU_VL)
10852   NODE_NAME_CASE(VWADD_VL)
10853   NODE_NAME_CASE(VWADDU_VL)
10854   NODE_NAME_CASE(VWSUB_VL)
10855   NODE_NAME_CASE(VWSUBU_VL)
10856   NODE_NAME_CASE(VWADD_W_VL)
10857   NODE_NAME_CASE(VWADDU_W_VL)
10858   NODE_NAME_CASE(VWSUB_W_VL)
10859   NODE_NAME_CASE(VWSUBU_W_VL)
10860   NODE_NAME_CASE(SETCC_VL)
10861   NODE_NAME_CASE(VSELECT_VL)
10862   NODE_NAME_CASE(VP_MERGE_VL)
10863   NODE_NAME_CASE(VMAND_VL)
10864   NODE_NAME_CASE(VMOR_VL)
10865   NODE_NAME_CASE(VMXOR_VL)
10866   NODE_NAME_CASE(VMCLR_VL)
10867   NODE_NAME_CASE(VMSET_VL)
10868   NODE_NAME_CASE(VRGATHER_VX_VL)
10869   NODE_NAME_CASE(VRGATHER_VV_VL)
10870   NODE_NAME_CASE(VRGATHEREI16_VV_VL)
10871   NODE_NAME_CASE(VSEXT_VL)
10872   NODE_NAME_CASE(VZEXT_VL)
10873   NODE_NAME_CASE(VCPOP_VL)
10874   NODE_NAME_CASE(READ_CSR)
10875   NODE_NAME_CASE(WRITE_CSR)
10876   NODE_NAME_CASE(SWAP_CSR)
10877   }
10878   // clang-format on
10879   return nullptr;
10880 #undef NODE_NAME_CASE
10881 }
10882 
10883 /// getConstraintType - Given a constraint letter, return the type of
10884 /// constraint it is for this target.
10885 RISCVTargetLowering::ConstraintType
10886 RISCVTargetLowering::getConstraintType(StringRef Constraint) const {
10887   if (Constraint.size() == 1) {
10888     switch (Constraint[0]) {
10889     default:
10890       break;
10891     case 'f':
10892       return C_RegisterClass;
10893     case 'I':
10894     case 'J':
10895     case 'K':
10896       return C_Immediate;
10897     case 'A':
10898       return C_Memory;
10899     case 'S': // A symbolic address
10900       return C_Other;
10901     }
10902   } else {
10903     if (Constraint == "vr" || Constraint == "vm")
10904       return C_RegisterClass;
10905   }
10906   return TargetLowering::getConstraintType(Constraint);
10907 }
10908 
10909 std::pair<unsigned, const TargetRegisterClass *>
10910 RISCVTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
10911                                                   StringRef Constraint,
10912                                                   MVT VT) const {
10913   // First, see if this is a constraint that directly corresponds to a
10914   // RISCV register class.
10915   if (Constraint.size() == 1) {
10916     switch (Constraint[0]) {
10917     case 'r':
10918       // TODO: Support fixed vectors up to XLen for P extension?
10919       if (VT.isVector())
10920         break;
10921       return std::make_pair(0U, &RISCV::GPRRegClass);
10922     case 'f':
10923       if (Subtarget.hasStdExtZfh() && VT == MVT::f16)
10924         return std::make_pair(0U, &RISCV::FPR16RegClass);
10925       if (Subtarget.hasStdExtF() && VT == MVT::f32)
10926         return std::make_pair(0U, &RISCV::FPR32RegClass);
10927       if (Subtarget.hasStdExtD() && VT == MVT::f64)
10928         return std::make_pair(0U, &RISCV::FPR64RegClass);
10929       break;
10930     default:
10931       break;
10932     }
10933   } else if (Constraint == "vr") {
10934     for (const auto *RC : {&RISCV::VRRegClass, &RISCV::VRM2RegClass,
10935                            &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) {
10936       if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy))
10937         return std::make_pair(0U, RC);
10938     }
10939   } else if (Constraint == "vm") {
10940     if (TRI->isTypeLegalForClass(RISCV::VMV0RegClass, VT.SimpleTy))
10941       return std::make_pair(0U, &RISCV::VMV0RegClass);
10942   }
10943 
10944   // Clang will correctly decode the usage of register name aliases into their
10945   // official names. However, other frontends like `rustc` do not. This allows
10946   // users of these frontends to use the ABI names for registers in LLVM-style
10947   // register constraints.
10948   unsigned XRegFromAlias = StringSwitch<unsigned>(Constraint.lower())
10949                                .Case("{zero}", RISCV::X0)
10950                                .Case("{ra}", RISCV::X1)
10951                                .Case("{sp}", RISCV::X2)
10952                                .Case("{gp}", RISCV::X3)
10953                                .Case("{tp}", RISCV::X4)
10954                                .Case("{t0}", RISCV::X5)
10955                                .Case("{t1}", RISCV::X6)
10956                                .Case("{t2}", RISCV::X7)
10957                                .Cases("{s0}", "{fp}", RISCV::X8)
10958                                .Case("{s1}", RISCV::X9)
10959                                .Case("{a0}", RISCV::X10)
10960                                .Case("{a1}", RISCV::X11)
10961                                .Case("{a2}", RISCV::X12)
10962                                .Case("{a3}", RISCV::X13)
10963                                .Case("{a4}", RISCV::X14)
10964                                .Case("{a5}", RISCV::X15)
10965                                .Case("{a6}", RISCV::X16)
10966                                .Case("{a7}", RISCV::X17)
10967                                .Case("{s2}", RISCV::X18)
10968                                .Case("{s3}", RISCV::X19)
10969                                .Case("{s4}", RISCV::X20)
10970                                .Case("{s5}", RISCV::X21)
10971                                .Case("{s6}", RISCV::X22)
10972                                .Case("{s7}", RISCV::X23)
10973                                .Case("{s8}", RISCV::X24)
10974                                .Case("{s9}", RISCV::X25)
10975                                .Case("{s10}", RISCV::X26)
10976                                .Case("{s11}", RISCV::X27)
10977                                .Case("{t3}", RISCV::X28)
10978                                .Case("{t4}", RISCV::X29)
10979                                .Case("{t5}", RISCV::X30)
10980                                .Case("{t6}", RISCV::X31)
10981                                .Default(RISCV::NoRegister);
10982   if (XRegFromAlias != RISCV::NoRegister)
10983     return std::make_pair(XRegFromAlias, &RISCV::GPRRegClass);
10984 
10985   // Since TargetLowering::getRegForInlineAsmConstraint uses the name of the
10986   // TableGen record rather than the AsmName to choose registers for InlineAsm
10987   // constraints, plus we want to match those names to the widest floating point
10988   // register type available, manually select floating point registers here.
10989   //
10990   // The second case is the ABI name of the register, so that frontends can also
10991   // use the ABI names in register constraint lists.
10992   if (Subtarget.hasStdExtF()) {
10993     unsigned FReg = StringSwitch<unsigned>(Constraint.lower())
10994                         .Cases("{f0}", "{ft0}", RISCV::F0_F)
10995                         .Cases("{f1}", "{ft1}", RISCV::F1_F)
10996                         .Cases("{f2}", "{ft2}", RISCV::F2_F)
10997                         .Cases("{f3}", "{ft3}", RISCV::F3_F)
10998                         .Cases("{f4}", "{ft4}", RISCV::F4_F)
10999                         .Cases("{f5}", "{ft5}", RISCV::F5_F)
11000                         .Cases("{f6}", "{ft6}", RISCV::F6_F)
11001                         .Cases("{f7}", "{ft7}", RISCV::F7_F)
11002                         .Cases("{f8}", "{fs0}", RISCV::F8_F)
11003                         .Cases("{f9}", "{fs1}", RISCV::F9_F)
11004                         .Cases("{f10}", "{fa0}", RISCV::F10_F)
11005                         .Cases("{f11}", "{fa1}", RISCV::F11_F)
11006                         .Cases("{f12}", "{fa2}", RISCV::F12_F)
11007                         .Cases("{f13}", "{fa3}", RISCV::F13_F)
11008                         .Cases("{f14}", "{fa4}", RISCV::F14_F)
11009                         .Cases("{f15}", "{fa5}", RISCV::F15_F)
11010                         .Cases("{f16}", "{fa6}", RISCV::F16_F)
11011                         .Cases("{f17}", "{fa7}", RISCV::F17_F)
11012                         .Cases("{f18}", "{fs2}", RISCV::F18_F)
11013                         .Cases("{f19}", "{fs3}", RISCV::F19_F)
11014                         .Cases("{f20}", "{fs4}", RISCV::F20_F)
11015                         .Cases("{f21}", "{fs5}", RISCV::F21_F)
11016                         .Cases("{f22}", "{fs6}", RISCV::F22_F)
11017                         .Cases("{f23}", "{fs7}", RISCV::F23_F)
11018                         .Cases("{f24}", "{fs8}", RISCV::F24_F)
11019                         .Cases("{f25}", "{fs9}", RISCV::F25_F)
11020                         .Cases("{f26}", "{fs10}", RISCV::F26_F)
11021                         .Cases("{f27}", "{fs11}", RISCV::F27_F)
11022                         .Cases("{f28}", "{ft8}", RISCV::F28_F)
11023                         .Cases("{f29}", "{ft9}", RISCV::F29_F)
11024                         .Cases("{f30}", "{ft10}", RISCV::F30_F)
11025                         .Cases("{f31}", "{ft11}", RISCV::F31_F)
11026                         .Default(RISCV::NoRegister);
11027     if (FReg != RISCV::NoRegister) {
11028       assert(RISCV::F0_F <= FReg && FReg <= RISCV::F31_F && "Unknown fp-reg");
11029       if (Subtarget.hasStdExtD() && (VT == MVT::f64 || VT == MVT::Other)) {
11030         unsigned RegNo = FReg - RISCV::F0_F;
11031         unsigned DReg = RISCV::F0_D + RegNo;
11032         return std::make_pair(DReg, &RISCV::FPR64RegClass);
11033       }
11034       if (VT == MVT::f32 || VT == MVT::Other)
11035         return std::make_pair(FReg, &RISCV::FPR32RegClass);
11036       if (Subtarget.hasStdExtZfh() && VT == MVT::f16) {
11037         unsigned RegNo = FReg - RISCV::F0_F;
11038         unsigned HReg = RISCV::F0_H + RegNo;
11039         return std::make_pair(HReg, &RISCV::FPR16RegClass);
11040       }
11041     }
11042   }
11043 
11044   if (Subtarget.hasVInstructions()) {
11045     Register VReg = StringSwitch<Register>(Constraint.lower())
11046                         .Case("{v0}", RISCV::V0)
11047                         .Case("{v1}", RISCV::V1)
11048                         .Case("{v2}", RISCV::V2)
11049                         .Case("{v3}", RISCV::V3)
11050                         .Case("{v4}", RISCV::V4)
11051                         .Case("{v5}", RISCV::V5)
11052                         .Case("{v6}", RISCV::V6)
11053                         .Case("{v7}", RISCV::V7)
11054                         .Case("{v8}", RISCV::V8)
11055                         .Case("{v9}", RISCV::V9)
11056                         .Case("{v10}", RISCV::V10)
11057                         .Case("{v11}", RISCV::V11)
11058                         .Case("{v12}", RISCV::V12)
11059                         .Case("{v13}", RISCV::V13)
11060                         .Case("{v14}", RISCV::V14)
11061                         .Case("{v15}", RISCV::V15)
11062                         .Case("{v16}", RISCV::V16)
11063                         .Case("{v17}", RISCV::V17)
11064                         .Case("{v18}", RISCV::V18)
11065                         .Case("{v19}", RISCV::V19)
11066                         .Case("{v20}", RISCV::V20)
11067                         .Case("{v21}", RISCV::V21)
11068                         .Case("{v22}", RISCV::V22)
11069                         .Case("{v23}", RISCV::V23)
11070                         .Case("{v24}", RISCV::V24)
11071                         .Case("{v25}", RISCV::V25)
11072                         .Case("{v26}", RISCV::V26)
11073                         .Case("{v27}", RISCV::V27)
11074                         .Case("{v28}", RISCV::V28)
11075                         .Case("{v29}", RISCV::V29)
11076                         .Case("{v30}", RISCV::V30)
11077                         .Case("{v31}", RISCV::V31)
11078                         .Default(RISCV::NoRegister);
11079     if (VReg != RISCV::NoRegister) {
11080       if (TRI->isTypeLegalForClass(RISCV::VMRegClass, VT.SimpleTy))
11081         return std::make_pair(VReg, &RISCV::VMRegClass);
11082       if (TRI->isTypeLegalForClass(RISCV::VRRegClass, VT.SimpleTy))
11083         return std::make_pair(VReg, &RISCV::VRRegClass);
11084       for (const auto *RC :
11085            {&RISCV::VRM2RegClass, &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) {
11086         if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy)) {
11087           VReg = TRI->getMatchingSuperReg(VReg, RISCV::sub_vrm1_0, RC);
11088           return std::make_pair(VReg, RC);
11089         }
11090       }
11091     }
11092   }
11093 
11094   std::pair<Register, const TargetRegisterClass *> Res =
11095       TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
11096 
11097   // If we picked one of the Zfinx register classes, remap it to the GPR class.
11098   // FIXME: When Zfinx is supported in CodeGen this will need to take the
11099   // Subtarget into account.
11100   if (Res.second == &RISCV::GPRF16RegClass ||
11101       Res.second == &RISCV::GPRF32RegClass ||
11102       Res.second == &RISCV::GPRF64RegClass)
11103     return std::make_pair(Res.first, &RISCV::GPRRegClass);
11104 
11105   return Res;
11106 }
11107 
11108 unsigned
11109 RISCVTargetLowering::getInlineAsmMemConstraint(StringRef ConstraintCode) const {
11110   // Currently only support length 1 constraints.
11111   if (ConstraintCode.size() == 1) {
11112     switch (ConstraintCode[0]) {
11113     case 'A':
11114       return InlineAsm::Constraint_A;
11115     default:
11116       break;
11117     }
11118   }
11119 
11120   return TargetLowering::getInlineAsmMemConstraint(ConstraintCode);
11121 }
11122 
11123 void RISCVTargetLowering::LowerAsmOperandForConstraint(
11124     SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops,
11125     SelectionDAG &DAG) const {
11126   // Currently only support length 1 constraints.
11127   if (Constraint.length() == 1) {
11128     switch (Constraint[0]) {
11129     case 'I':
11130       // Validate & create a 12-bit signed immediate operand.
11131       if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
11132         uint64_t CVal = C->getSExtValue();
11133         if (isInt<12>(CVal))
11134           Ops.push_back(
11135               DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT()));
11136       }
11137       return;
11138     case 'J':
11139       // Validate & create an integer zero operand.
11140       if (auto *C = dyn_cast<ConstantSDNode>(Op))
11141         if (C->getZExtValue() == 0)
11142           Ops.push_back(
11143               DAG.getTargetConstant(0, SDLoc(Op), Subtarget.getXLenVT()));
11144       return;
11145     case 'K':
11146       // Validate & create a 5-bit unsigned immediate operand.
11147       if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
11148         uint64_t CVal = C->getZExtValue();
11149         if (isUInt<5>(CVal))
11150           Ops.push_back(
11151               DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT()));
11152       }
11153       return;
11154     case 'S':
11155       if (const auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) {
11156         Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op),
11157                                                  GA->getValueType(0)));
11158       } else if (const auto *BA = dyn_cast<BlockAddressSDNode>(Op)) {
11159         Ops.push_back(DAG.getTargetBlockAddress(BA->getBlockAddress(),
11160                                                 BA->getValueType(0)));
11161       }
11162       return;
11163     default:
11164       break;
11165     }
11166   }
11167   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
11168 }
11169 
11170 Instruction *RISCVTargetLowering::emitLeadingFence(IRBuilderBase &Builder,
11171                                                    Instruction *Inst,
11172                                                    AtomicOrdering Ord) const {
11173   if (isa<LoadInst>(Inst) && Ord == AtomicOrdering::SequentiallyConsistent)
11174     return Builder.CreateFence(Ord);
11175   if (isa<StoreInst>(Inst) && isReleaseOrStronger(Ord))
11176     return Builder.CreateFence(AtomicOrdering::Release);
11177   return nullptr;
11178 }
11179 
11180 Instruction *RISCVTargetLowering::emitTrailingFence(IRBuilderBase &Builder,
11181                                                     Instruction *Inst,
11182                                                     AtomicOrdering Ord) const {
11183   if (isa<LoadInst>(Inst) && isAcquireOrStronger(Ord))
11184     return Builder.CreateFence(AtomicOrdering::Acquire);
11185   return nullptr;
11186 }
11187 
11188 TargetLowering::AtomicExpansionKind
11189 RISCVTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
11190   // atomicrmw {fadd,fsub} must be expanded to use compare-exchange, as floating
11191   // point operations can't be used in an lr/sc sequence without breaking the
11192   // forward-progress guarantee.
11193   if (AI->isFloatingPointOperation())
11194     return AtomicExpansionKind::CmpXChg;
11195 
11196   unsigned Size = AI->getType()->getPrimitiveSizeInBits();
11197   if (Size == 8 || Size == 16)
11198     return AtomicExpansionKind::MaskedIntrinsic;
11199   return AtomicExpansionKind::None;
11200 }
11201 
11202 static Intrinsic::ID
11203 getIntrinsicForMaskedAtomicRMWBinOp(unsigned XLen, AtomicRMWInst::BinOp BinOp) {
11204   if (XLen == 32) {
11205     switch (BinOp) {
11206     default:
11207       llvm_unreachable("Unexpected AtomicRMW BinOp");
11208     case AtomicRMWInst::Xchg:
11209       return Intrinsic::riscv_masked_atomicrmw_xchg_i32;
11210     case AtomicRMWInst::Add:
11211       return Intrinsic::riscv_masked_atomicrmw_add_i32;
11212     case AtomicRMWInst::Sub:
11213       return Intrinsic::riscv_masked_atomicrmw_sub_i32;
11214     case AtomicRMWInst::Nand:
11215       return Intrinsic::riscv_masked_atomicrmw_nand_i32;
11216     case AtomicRMWInst::Max:
11217       return Intrinsic::riscv_masked_atomicrmw_max_i32;
11218     case AtomicRMWInst::Min:
11219       return Intrinsic::riscv_masked_atomicrmw_min_i32;
11220     case AtomicRMWInst::UMax:
11221       return Intrinsic::riscv_masked_atomicrmw_umax_i32;
11222     case AtomicRMWInst::UMin:
11223       return Intrinsic::riscv_masked_atomicrmw_umin_i32;
11224     }
11225   }
11226 
11227   if (XLen == 64) {
11228     switch (BinOp) {
11229     default:
11230       llvm_unreachable("Unexpected AtomicRMW BinOp");
11231     case AtomicRMWInst::Xchg:
11232       return Intrinsic::riscv_masked_atomicrmw_xchg_i64;
11233     case AtomicRMWInst::Add:
11234       return Intrinsic::riscv_masked_atomicrmw_add_i64;
11235     case AtomicRMWInst::Sub:
11236       return Intrinsic::riscv_masked_atomicrmw_sub_i64;
11237     case AtomicRMWInst::Nand:
11238       return Intrinsic::riscv_masked_atomicrmw_nand_i64;
11239     case AtomicRMWInst::Max:
11240       return Intrinsic::riscv_masked_atomicrmw_max_i64;
11241     case AtomicRMWInst::Min:
11242       return Intrinsic::riscv_masked_atomicrmw_min_i64;
11243     case AtomicRMWInst::UMax:
11244       return Intrinsic::riscv_masked_atomicrmw_umax_i64;
11245     case AtomicRMWInst::UMin:
11246       return Intrinsic::riscv_masked_atomicrmw_umin_i64;
11247     }
11248   }
11249 
11250   llvm_unreachable("Unexpected XLen\n");
11251 }
11252 
11253 Value *RISCVTargetLowering::emitMaskedAtomicRMWIntrinsic(
11254     IRBuilderBase &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr,
11255     Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const {
11256   unsigned XLen = Subtarget.getXLen();
11257   Value *Ordering =
11258       Builder.getIntN(XLen, static_cast<uint64_t>(AI->getOrdering()));
11259   Type *Tys[] = {AlignedAddr->getType()};
11260   Function *LrwOpScwLoop = Intrinsic::getDeclaration(
11261       AI->getModule(),
11262       getIntrinsicForMaskedAtomicRMWBinOp(XLen, AI->getOperation()), Tys);
11263 
11264   if (XLen == 64) {
11265     Incr = Builder.CreateSExt(Incr, Builder.getInt64Ty());
11266     Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty());
11267     ShiftAmt = Builder.CreateSExt(ShiftAmt, Builder.getInt64Ty());
11268   }
11269 
11270   Value *Result;
11271 
11272   // Must pass the shift amount needed to sign extend the loaded value prior
11273   // to performing a signed comparison for min/max. ShiftAmt is the number of
11274   // bits to shift the value into position. Pass XLen-ShiftAmt-ValWidth, which
11275   // is the number of bits to left+right shift the value in order to
11276   // sign-extend.
11277   if (AI->getOperation() == AtomicRMWInst::Min ||
11278       AI->getOperation() == AtomicRMWInst::Max) {
11279     const DataLayout &DL = AI->getModule()->getDataLayout();
11280     unsigned ValWidth =
11281         DL.getTypeStoreSizeInBits(AI->getValOperand()->getType());
11282     Value *SextShamt =
11283         Builder.CreateSub(Builder.getIntN(XLen, XLen - ValWidth), ShiftAmt);
11284     Result = Builder.CreateCall(LrwOpScwLoop,
11285                                 {AlignedAddr, Incr, Mask, SextShamt, Ordering});
11286   } else {
11287     Result =
11288         Builder.CreateCall(LrwOpScwLoop, {AlignedAddr, Incr, Mask, Ordering});
11289   }
11290 
11291   if (XLen == 64)
11292     Result = Builder.CreateTrunc(Result, Builder.getInt32Ty());
11293   return Result;
11294 }
11295 
11296 TargetLowering::AtomicExpansionKind
11297 RISCVTargetLowering::shouldExpandAtomicCmpXchgInIR(
11298     AtomicCmpXchgInst *CI) const {
11299   unsigned Size = CI->getCompareOperand()->getType()->getPrimitiveSizeInBits();
11300   if (Size == 8 || Size == 16)
11301     return AtomicExpansionKind::MaskedIntrinsic;
11302   return AtomicExpansionKind::None;
11303 }
11304 
11305 Value *RISCVTargetLowering::emitMaskedAtomicCmpXchgIntrinsic(
11306     IRBuilderBase &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr,
11307     Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const {
11308   unsigned XLen = Subtarget.getXLen();
11309   Value *Ordering = Builder.getIntN(XLen, static_cast<uint64_t>(Ord));
11310   Intrinsic::ID CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i32;
11311   if (XLen == 64) {
11312     CmpVal = Builder.CreateSExt(CmpVal, Builder.getInt64Ty());
11313     NewVal = Builder.CreateSExt(NewVal, Builder.getInt64Ty());
11314     Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty());
11315     CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i64;
11316   }
11317   Type *Tys[] = {AlignedAddr->getType()};
11318   Function *MaskedCmpXchg =
11319       Intrinsic::getDeclaration(CI->getModule(), CmpXchgIntrID, Tys);
11320   Value *Result = Builder.CreateCall(
11321       MaskedCmpXchg, {AlignedAddr, CmpVal, NewVal, Mask, Ordering});
11322   if (XLen == 64)
11323     Result = Builder.CreateTrunc(Result, Builder.getInt32Ty());
11324   return Result;
11325 }
11326 
11327 bool RISCVTargetLowering::shouldRemoveExtendFromGSIndex(EVT VT) const {
11328   return false;
11329 }
11330 
11331 bool RISCVTargetLowering::shouldConvertFpToSat(unsigned Op, EVT FPVT,
11332                                                EVT VT) const {
11333   if (!isOperationLegalOrCustom(Op, VT) || !FPVT.isSimple())
11334     return false;
11335 
11336   switch (FPVT.getSimpleVT().SimpleTy) {
11337   case MVT::f16:
11338     return Subtarget.hasStdExtZfh();
11339   case MVT::f32:
11340     return Subtarget.hasStdExtF();
11341   case MVT::f64:
11342     return Subtarget.hasStdExtD();
11343   default:
11344     return false;
11345   }
11346 }
11347 
11348 unsigned RISCVTargetLowering::getJumpTableEncoding() const {
11349   // If we are using the small code model, we can reduce size of jump table
11350   // entry to 4 bytes.
11351   if (Subtarget.is64Bit() && !isPositionIndependent() &&
11352       getTargetMachine().getCodeModel() == CodeModel::Small) {
11353     return MachineJumpTableInfo::EK_Custom32;
11354   }
11355   return TargetLowering::getJumpTableEncoding();
11356 }
11357 
11358 const MCExpr *RISCVTargetLowering::LowerCustomJumpTableEntry(
11359     const MachineJumpTableInfo *MJTI, const MachineBasicBlock *MBB,
11360     unsigned uid, MCContext &Ctx) const {
11361   assert(Subtarget.is64Bit() && !isPositionIndependent() &&
11362          getTargetMachine().getCodeModel() == CodeModel::Small);
11363   return MCSymbolRefExpr::create(MBB->getSymbol(), Ctx);
11364 }
11365 
11366 bool RISCVTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF,
11367                                                      EVT VT) const {
11368   VT = VT.getScalarType();
11369 
11370   if (!VT.isSimple())
11371     return false;
11372 
11373   switch (VT.getSimpleVT().SimpleTy) {
11374   case MVT::f16:
11375     return Subtarget.hasStdExtZfh();
11376   case MVT::f32:
11377     return Subtarget.hasStdExtF();
11378   case MVT::f64:
11379     return Subtarget.hasStdExtD();
11380   default:
11381     break;
11382   }
11383 
11384   return false;
11385 }
11386 
11387 Register RISCVTargetLowering::getExceptionPointerRegister(
11388     const Constant *PersonalityFn) const {
11389   return RISCV::X10;
11390 }
11391 
11392 Register RISCVTargetLowering::getExceptionSelectorRegister(
11393     const Constant *PersonalityFn) const {
11394   return RISCV::X11;
11395 }
11396 
11397 bool RISCVTargetLowering::shouldExtendTypeInLibCall(EVT Type) const {
11398   // Return false to suppress the unnecessary extensions if the LibCall
11399   // arguments or return value is f32 type for LP64 ABI.
11400   RISCVABI::ABI ABI = Subtarget.getTargetABI();
11401   if (ABI == RISCVABI::ABI_LP64 && (Type == MVT::f32))
11402     return false;
11403 
11404   return true;
11405 }
11406 
11407 bool RISCVTargetLowering::shouldSignExtendTypeInLibCall(EVT Type, bool IsSigned) const {
11408   if (Subtarget.is64Bit() && Type == MVT::i32)
11409     return true;
11410 
11411   return IsSigned;
11412 }
11413 
11414 bool RISCVTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT,
11415                                                  SDValue C) const {
11416   // Check integral scalar types.
11417   if (VT.isScalarInteger()) {
11418     // Omit the optimization if the sub target has the M extension and the data
11419     // size exceeds XLen.
11420     if (Subtarget.hasStdExtM() && VT.getSizeInBits() > Subtarget.getXLen())
11421       return false;
11422     if (auto *ConstNode = dyn_cast<ConstantSDNode>(C.getNode())) {
11423       // Break the MUL to a SLLI and an ADD/SUB.
11424       const APInt &Imm = ConstNode->getAPIntValue();
11425       if ((Imm + 1).isPowerOf2() || (Imm - 1).isPowerOf2() ||
11426           (1 - Imm).isPowerOf2() || (-1 - Imm).isPowerOf2())
11427         return true;
11428       // Optimize the MUL to (SH*ADD x, (SLLI x, bits)) if Imm is not simm12.
11429       if (Subtarget.hasStdExtZba() && !Imm.isSignedIntN(12) &&
11430           ((Imm - 2).isPowerOf2() || (Imm - 4).isPowerOf2() ||
11431            (Imm - 8).isPowerOf2()))
11432         return true;
11433       // Omit the following optimization if the sub target has the M extension
11434       // and the data size >= XLen.
11435       if (Subtarget.hasStdExtM() && VT.getSizeInBits() >= Subtarget.getXLen())
11436         return false;
11437       // Break the MUL to two SLLI instructions and an ADD/SUB, if Imm needs
11438       // a pair of LUI/ADDI.
11439       if (!Imm.isSignedIntN(12) && Imm.countTrailingZeros() < 12) {
11440         APInt ImmS = Imm.ashr(Imm.countTrailingZeros());
11441         if ((ImmS + 1).isPowerOf2() || (ImmS - 1).isPowerOf2() ||
11442             (1 - ImmS).isPowerOf2())
11443         return true;
11444       }
11445     }
11446   }
11447 
11448   return false;
11449 }
11450 
11451 bool RISCVTargetLowering::isMulAddWithConstProfitable(SDValue AddNode,
11452                                                       SDValue ConstNode) const {
11453   // Let the DAGCombiner decide for vectors.
11454   EVT VT = AddNode.getValueType();
11455   if (VT.isVector())
11456     return true;
11457 
11458   // Let the DAGCombiner decide for larger types.
11459   if (VT.getScalarSizeInBits() > Subtarget.getXLen())
11460     return true;
11461 
11462   // It is worse if c1 is simm12 while c1*c2 is not.
11463   ConstantSDNode *C1Node = cast<ConstantSDNode>(AddNode.getOperand(1));
11464   ConstantSDNode *C2Node = cast<ConstantSDNode>(ConstNode);
11465   const APInt &C1 = C1Node->getAPIntValue();
11466   const APInt &C2 = C2Node->getAPIntValue();
11467   if (C1.isSignedIntN(12) && !(C1 * C2).isSignedIntN(12))
11468     return false;
11469 
11470   // Default to true and let the DAGCombiner decide.
11471   return true;
11472 }
11473 
11474 bool RISCVTargetLowering::allowsMisalignedMemoryAccesses(
11475     EVT VT, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags,
11476     bool *Fast) const {
11477   if (!VT.isVector())
11478     return false;
11479 
11480   EVT ElemVT = VT.getVectorElementType();
11481   if (Alignment >= ElemVT.getStoreSize()) {
11482     if (Fast)
11483       *Fast = true;
11484     return true;
11485   }
11486 
11487   return false;
11488 }
11489 
11490 bool RISCVTargetLowering::splitValueIntoRegisterParts(
11491     SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts,
11492     unsigned NumParts, MVT PartVT, Optional<CallingConv::ID> CC) const {
11493   bool IsABIRegCopy = CC.hasValue();
11494   EVT ValueVT = Val.getValueType();
11495   if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) {
11496     // Cast the f16 to i16, extend to i32, pad with ones to make a float nan,
11497     // and cast to f32.
11498     Val = DAG.getNode(ISD::BITCAST, DL, MVT::i16, Val);
11499     Val = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Val);
11500     Val = DAG.getNode(ISD::OR, DL, MVT::i32, Val,
11501                       DAG.getConstant(0xFFFF0000, DL, MVT::i32));
11502     Val = DAG.getNode(ISD::BITCAST, DL, MVT::f32, Val);
11503     Parts[0] = Val;
11504     return true;
11505   }
11506 
11507   if (ValueVT.isScalableVector() && PartVT.isScalableVector()) {
11508     LLVMContext &Context = *DAG.getContext();
11509     EVT ValueEltVT = ValueVT.getVectorElementType();
11510     EVT PartEltVT = PartVT.getVectorElementType();
11511     unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize();
11512     unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize();
11513     if (PartVTBitSize % ValueVTBitSize == 0) {
11514       assert(PartVTBitSize >= ValueVTBitSize);
11515       // If the element types are different, bitcast to the same element type of
11516       // PartVT first.
11517       // Give an example here, we want copy a <vscale x 1 x i8> value to
11518       // <vscale x 4 x i16>.
11519       // We need to convert <vscale x 1 x i8> to <vscale x 8 x i8> by insert
11520       // subvector, then we can bitcast to <vscale x 4 x i16>.
11521       if (ValueEltVT != PartEltVT) {
11522         if (PartVTBitSize > ValueVTBitSize) {
11523           unsigned Count = PartVTBitSize / ValueEltVT.getFixedSizeInBits();
11524           assert(Count != 0 && "The number of element should not be zero.");
11525           EVT SameEltTypeVT =
11526               EVT::getVectorVT(Context, ValueEltVT, Count, /*IsScalable=*/true);
11527           Val = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, SameEltTypeVT,
11528                             DAG.getUNDEF(SameEltTypeVT), Val,
11529                             DAG.getVectorIdxConstant(0, DL));
11530         }
11531         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
11532       } else {
11533         Val =
11534             DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT),
11535                         Val, DAG.getVectorIdxConstant(0, DL));
11536       }
11537       Parts[0] = Val;
11538       return true;
11539     }
11540   }
11541   return false;
11542 }
11543 
11544 SDValue RISCVTargetLowering::joinRegisterPartsIntoValue(
11545     SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts,
11546     MVT PartVT, EVT ValueVT, Optional<CallingConv::ID> CC) const {
11547   bool IsABIRegCopy = CC.hasValue();
11548   if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) {
11549     SDValue Val = Parts[0];
11550 
11551     // Cast the f32 to i32, truncate to i16, and cast back to f16.
11552     Val = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Val);
11553     Val = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Val);
11554     Val = DAG.getNode(ISD::BITCAST, DL, MVT::f16, Val);
11555     return Val;
11556   }
11557 
11558   if (ValueVT.isScalableVector() && PartVT.isScalableVector()) {
11559     LLVMContext &Context = *DAG.getContext();
11560     SDValue Val = Parts[0];
11561     EVT ValueEltVT = ValueVT.getVectorElementType();
11562     EVT PartEltVT = PartVT.getVectorElementType();
11563     unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize();
11564     unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize();
11565     if (PartVTBitSize % ValueVTBitSize == 0) {
11566       assert(PartVTBitSize >= ValueVTBitSize);
11567       EVT SameEltTypeVT = ValueVT;
11568       // If the element types are different, convert it to the same element type
11569       // of PartVT.
11570       // Give an example here, we want copy a <vscale x 1 x i8> value from
11571       // <vscale x 4 x i16>.
11572       // We need to convert <vscale x 4 x i16> to <vscale x 8 x i8> first,
11573       // then we can extract <vscale x 1 x i8>.
11574       if (ValueEltVT != PartEltVT) {
11575         unsigned Count = PartVTBitSize / ValueEltVT.getFixedSizeInBits();
11576         assert(Count != 0 && "The number of element should not be zero.");
11577         SameEltTypeVT =
11578             EVT::getVectorVT(Context, ValueEltVT, Count, /*IsScalable=*/true);
11579         Val = DAG.getNode(ISD::BITCAST, DL, SameEltTypeVT, Val);
11580       }
11581       Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
11582                         DAG.getVectorIdxConstant(0, DL));
11583       return Val;
11584     }
11585   }
11586   return SDValue();
11587 }
11588 
11589 SDValue
11590 RISCVTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
11591                                    SelectionDAG &DAG,
11592                                    SmallVectorImpl<SDNode *> &Created) const {
11593   AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
11594   if (isIntDivCheap(N->getValueType(0), Attr))
11595     return SDValue(N, 0); // Lower SDIV as SDIV
11596 
11597   assert((Divisor.isPowerOf2() || Divisor.isNegatedPowerOf2()) &&
11598          "Unexpected divisor!");
11599 
11600   // Conditional move is needed, so do the transformation iff Zbt is enabled.
11601   if (!Subtarget.hasStdExtZbt())
11602     return SDValue();
11603 
11604   // When |Divisor| >= 2 ^ 12, it isn't profitable to do such transformation.
11605   // Besides, more critical path instructions will be generated when dividing
11606   // by 2. So we keep using the original DAGs for these cases.
11607   unsigned Lg2 = Divisor.countTrailingZeros();
11608   if (Lg2 == 1 || Lg2 >= 12)
11609     return SDValue();
11610 
11611   // fold (sdiv X, pow2)
11612   EVT VT = N->getValueType(0);
11613   if (VT != MVT::i32 && !(Subtarget.is64Bit() && VT == MVT::i64))
11614     return SDValue();
11615 
11616   SDLoc DL(N);
11617   SDValue N0 = N->getOperand(0);
11618   SDValue Zero = DAG.getConstant(0, DL, VT);
11619   SDValue Pow2MinusOne = DAG.getConstant((1ULL << Lg2) - 1, DL, VT);
11620 
11621   // Add (N0 < 0) ? Pow2 - 1 : 0;
11622   SDValue Cmp = DAG.getSetCC(DL, VT, N0, Zero, ISD::SETLT);
11623   SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0, Pow2MinusOne);
11624   SDValue Sel = DAG.getNode(ISD::SELECT, DL, VT, Cmp, Add, N0);
11625 
11626   Created.push_back(Cmp.getNode());
11627   Created.push_back(Add.getNode());
11628   Created.push_back(Sel.getNode());
11629 
11630   // Divide by pow2.
11631   SDValue SRA =
11632       DAG.getNode(ISD::SRA, DL, VT, Sel, DAG.getConstant(Lg2, DL, VT));
11633 
11634   // If we're dividing by a positive value, we're done.  Otherwise, we must
11635   // negate the result.
11636   if (Divisor.isNonNegative())
11637     return SRA;
11638 
11639   Created.push_back(SRA.getNode());
11640   return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), SRA);
11641 }
11642 
11643 #define GET_REGISTER_MATCHER
11644 #include "RISCVGenAsmMatcher.inc"
11645 
11646 Register
11647 RISCVTargetLowering::getRegisterByName(const char *RegName, LLT VT,
11648                                        const MachineFunction &MF) const {
11649   Register Reg = MatchRegisterAltName(RegName);
11650   if (Reg == RISCV::NoRegister)
11651     Reg = MatchRegisterName(RegName);
11652   if (Reg == RISCV::NoRegister)
11653     report_fatal_error(
11654         Twine("Invalid register name \"" + StringRef(RegName) + "\"."));
11655   BitVector ReservedRegs = Subtarget.getRegisterInfo()->getReservedRegs(MF);
11656   if (!ReservedRegs.test(Reg) && !Subtarget.isRegisterReservedByUser(Reg))
11657     report_fatal_error(Twine("Trying to obtain non-reserved register \"" +
11658                              StringRef(RegName) + "\"."));
11659   return Reg;
11660 }
11661 
11662 namespace llvm {
11663 namespace RISCVVIntrinsicsTable {
11664 
11665 #define GET_RISCVVIntrinsicsTable_IMPL
11666 #include "RISCVGenSearchableTables.inc"
11667 
11668 } // namespace RISCVVIntrinsicsTable
11669 
11670 } // namespace llvm
11671