1 //===-- RISCVISelLowering.cpp - RISCV DAG Lowering Implementation --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the interfaces that RISCV uses to lower LLVM code into a 10 // selection DAG. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "RISCVISelLowering.h" 15 #include "MCTargetDesc/RISCVMatInt.h" 16 #include "RISCV.h" 17 #include "RISCVMachineFunctionInfo.h" 18 #include "RISCVRegisterInfo.h" 19 #include "RISCVSubtarget.h" 20 #include "RISCVTargetMachine.h" 21 #include "llvm/ADT/SmallSet.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Analysis/MemoryLocation.h" 24 #include "llvm/CodeGen/MachineFrameInfo.h" 25 #include "llvm/CodeGen/MachineFunction.h" 26 #include "llvm/CodeGen/MachineInstrBuilder.h" 27 #include "llvm/CodeGen/MachineJumpTableInfo.h" 28 #include "llvm/CodeGen/MachineRegisterInfo.h" 29 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 30 #include "llvm/CodeGen/ValueTypes.h" 31 #include "llvm/IR/DiagnosticInfo.h" 32 #include "llvm/IR/DiagnosticPrinter.h" 33 #include "llvm/IR/IRBuilder.h" 34 #include "llvm/IR/IntrinsicsRISCV.h" 35 #include "llvm/IR/PatternMatch.h" 36 #include "llvm/Support/Debug.h" 37 #include "llvm/Support/ErrorHandling.h" 38 #include "llvm/Support/KnownBits.h" 39 #include "llvm/Support/MathExtras.h" 40 #include "llvm/Support/raw_ostream.h" 41 42 using namespace llvm; 43 44 #define DEBUG_TYPE "riscv-lower" 45 46 STATISTIC(NumTailCalls, "Number of tail calls"); 47 48 RISCVTargetLowering::RISCVTargetLowering(const TargetMachine &TM, 49 const RISCVSubtarget &STI) 50 : TargetLowering(TM), Subtarget(STI) { 51 52 if (Subtarget.isRV32E()) 53 report_fatal_error("Codegen not yet implemented for RV32E"); 54 55 RISCVABI::ABI ABI = Subtarget.getTargetABI(); 56 assert(ABI != RISCVABI::ABI_Unknown && "Improperly initialised target ABI"); 57 58 if ((ABI == RISCVABI::ABI_ILP32F || ABI == RISCVABI::ABI_LP64F) && 59 !Subtarget.hasStdExtF()) { 60 errs() << "Hard-float 'f' ABI can't be used for a target that " 61 "doesn't support the F instruction set extension (ignoring " 62 "target-abi)\n"; 63 ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32; 64 } else if ((ABI == RISCVABI::ABI_ILP32D || ABI == RISCVABI::ABI_LP64D) && 65 !Subtarget.hasStdExtD()) { 66 errs() << "Hard-float 'd' ABI can't be used for a target that " 67 "doesn't support the D instruction set extension (ignoring " 68 "target-abi)\n"; 69 ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32; 70 } 71 72 switch (ABI) { 73 default: 74 report_fatal_error("Don't know how to lower this ABI"); 75 case RISCVABI::ABI_ILP32: 76 case RISCVABI::ABI_ILP32F: 77 case RISCVABI::ABI_ILP32D: 78 case RISCVABI::ABI_LP64: 79 case RISCVABI::ABI_LP64F: 80 case RISCVABI::ABI_LP64D: 81 break; 82 } 83 84 MVT XLenVT = Subtarget.getXLenVT(); 85 86 // Set up the register classes. 87 addRegisterClass(XLenVT, &RISCV::GPRRegClass); 88 89 if (Subtarget.hasStdExtZfh()) 90 addRegisterClass(MVT::f16, &RISCV::FPR16RegClass); 91 if (Subtarget.hasStdExtF()) 92 addRegisterClass(MVT::f32, &RISCV::FPR32RegClass); 93 if (Subtarget.hasStdExtD()) 94 addRegisterClass(MVT::f64, &RISCV::FPR64RegClass); 95 96 static const MVT::SimpleValueType BoolVecVTs[] = { 97 MVT::nxv1i1, MVT::nxv2i1, MVT::nxv4i1, MVT::nxv8i1, 98 MVT::nxv16i1, MVT::nxv32i1, MVT::nxv64i1}; 99 static const MVT::SimpleValueType IntVecVTs[] = { 100 MVT::nxv1i8, MVT::nxv2i8, MVT::nxv4i8, MVT::nxv8i8, MVT::nxv16i8, 101 MVT::nxv32i8, MVT::nxv64i8, MVT::nxv1i16, MVT::nxv2i16, MVT::nxv4i16, 102 MVT::nxv8i16, MVT::nxv16i16, MVT::nxv32i16, MVT::nxv1i32, MVT::nxv2i32, 103 MVT::nxv4i32, MVT::nxv8i32, MVT::nxv16i32, MVT::nxv1i64, MVT::nxv2i64, 104 MVT::nxv4i64, MVT::nxv8i64}; 105 static const MVT::SimpleValueType F16VecVTs[] = { 106 MVT::nxv1f16, MVT::nxv2f16, MVT::nxv4f16, 107 MVT::nxv8f16, MVT::nxv16f16, MVT::nxv32f16}; 108 static const MVT::SimpleValueType F32VecVTs[] = { 109 MVT::nxv1f32, MVT::nxv2f32, MVT::nxv4f32, MVT::nxv8f32, MVT::nxv16f32}; 110 static const MVT::SimpleValueType F64VecVTs[] = { 111 MVT::nxv1f64, MVT::nxv2f64, MVT::nxv4f64, MVT::nxv8f64}; 112 113 if (Subtarget.hasVInstructions()) { 114 auto addRegClassForRVV = [this](MVT VT) { 115 unsigned Size = VT.getSizeInBits().getKnownMinValue(); 116 assert(Size <= 512 && isPowerOf2_32(Size)); 117 const TargetRegisterClass *RC; 118 if (Size <= 64) 119 RC = &RISCV::VRRegClass; 120 else if (Size == 128) 121 RC = &RISCV::VRM2RegClass; 122 else if (Size == 256) 123 RC = &RISCV::VRM4RegClass; 124 else 125 RC = &RISCV::VRM8RegClass; 126 127 addRegisterClass(VT, RC); 128 }; 129 130 for (MVT VT : BoolVecVTs) 131 addRegClassForRVV(VT); 132 for (MVT VT : IntVecVTs) { 133 if (VT.getVectorElementType() == MVT::i64 && 134 !Subtarget.hasVInstructionsI64()) 135 continue; 136 addRegClassForRVV(VT); 137 } 138 139 if (Subtarget.hasVInstructionsF16()) 140 for (MVT VT : F16VecVTs) 141 addRegClassForRVV(VT); 142 143 if (Subtarget.hasVInstructionsF32()) 144 for (MVT VT : F32VecVTs) 145 addRegClassForRVV(VT); 146 147 if (Subtarget.hasVInstructionsF64()) 148 for (MVT VT : F64VecVTs) 149 addRegClassForRVV(VT); 150 151 if (Subtarget.useRVVForFixedLengthVectors()) { 152 auto addRegClassForFixedVectors = [this](MVT VT) { 153 MVT ContainerVT = getContainerForFixedLengthVector(VT); 154 unsigned RCID = getRegClassIDForVecVT(ContainerVT); 155 const RISCVRegisterInfo &TRI = *Subtarget.getRegisterInfo(); 156 addRegisterClass(VT, TRI.getRegClass(RCID)); 157 }; 158 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) 159 if (useRVVForFixedLengthVectorVT(VT)) 160 addRegClassForFixedVectors(VT); 161 162 for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) 163 if (useRVVForFixedLengthVectorVT(VT)) 164 addRegClassForFixedVectors(VT); 165 } 166 } 167 168 // Compute derived properties from the register classes. 169 computeRegisterProperties(STI.getRegisterInfo()); 170 171 setStackPointerRegisterToSaveRestore(RISCV::X2); 172 173 for (auto N : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}) 174 setLoadExtAction(N, XLenVT, MVT::i1, Promote); 175 176 // TODO: add all necessary setOperationAction calls. 177 setOperationAction(ISD::DYNAMIC_STACKALLOC, XLenVT, Expand); 178 179 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 180 setOperationAction(ISD::BR_CC, XLenVT, Expand); 181 setOperationAction(ISD::BRCOND, MVT::Other, Custom); 182 setOperationAction(ISD::SELECT_CC, XLenVT, Expand); 183 184 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); 185 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); 186 187 setOperationAction(ISD::VASTART, MVT::Other, Custom); 188 setOperationAction(ISD::VAARG, MVT::Other, Expand); 189 setOperationAction(ISD::VACOPY, MVT::Other, Expand); 190 setOperationAction(ISD::VAEND, MVT::Other, Expand); 191 192 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 193 if (!Subtarget.hasStdExtZbb()) { 194 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand); 195 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand); 196 } 197 198 if (Subtarget.is64Bit()) { 199 setOperationAction(ISD::ADD, MVT::i32, Custom); 200 setOperationAction(ISD::SUB, MVT::i32, Custom); 201 setOperationAction(ISD::SHL, MVT::i32, Custom); 202 setOperationAction(ISD::SRA, MVT::i32, Custom); 203 setOperationAction(ISD::SRL, MVT::i32, Custom); 204 205 setOperationAction(ISD::UADDO, MVT::i32, Custom); 206 setOperationAction(ISD::USUBO, MVT::i32, Custom); 207 setOperationAction(ISD::UADDSAT, MVT::i32, Custom); 208 setOperationAction(ISD::USUBSAT, MVT::i32, Custom); 209 } else { 210 setLibcallName(RTLIB::SHL_I128, nullptr); 211 setLibcallName(RTLIB::SRL_I128, nullptr); 212 setLibcallName(RTLIB::SRA_I128, nullptr); 213 setLibcallName(RTLIB::MUL_I128, nullptr); 214 setLibcallName(RTLIB::MULO_I64, nullptr); 215 } 216 217 if (!Subtarget.hasStdExtM()) { 218 setOperationAction(ISD::MUL, XLenVT, Expand); 219 setOperationAction(ISD::MULHS, XLenVT, Expand); 220 setOperationAction(ISD::MULHU, XLenVT, Expand); 221 setOperationAction(ISD::SDIV, XLenVT, Expand); 222 setOperationAction(ISD::UDIV, XLenVT, Expand); 223 setOperationAction(ISD::SREM, XLenVT, Expand); 224 setOperationAction(ISD::UREM, XLenVT, Expand); 225 } else { 226 if (Subtarget.is64Bit()) { 227 setOperationAction(ISD::MUL, MVT::i32, Custom); 228 setOperationAction(ISD::MUL, MVT::i128, Custom); 229 230 setOperationAction(ISD::SDIV, MVT::i8, Custom); 231 setOperationAction(ISD::UDIV, MVT::i8, Custom); 232 setOperationAction(ISD::UREM, MVT::i8, Custom); 233 setOperationAction(ISD::SDIV, MVT::i16, Custom); 234 setOperationAction(ISD::UDIV, MVT::i16, Custom); 235 setOperationAction(ISD::UREM, MVT::i16, Custom); 236 setOperationAction(ISD::SDIV, MVT::i32, Custom); 237 setOperationAction(ISD::UDIV, MVT::i32, Custom); 238 setOperationAction(ISD::UREM, MVT::i32, Custom); 239 } else { 240 setOperationAction(ISD::MUL, MVT::i64, Custom); 241 } 242 } 243 244 setOperationAction(ISD::SDIVREM, XLenVT, Expand); 245 setOperationAction(ISD::UDIVREM, XLenVT, Expand); 246 setOperationAction(ISD::SMUL_LOHI, XLenVT, Expand); 247 setOperationAction(ISD::UMUL_LOHI, XLenVT, Expand); 248 249 setOperationAction(ISD::SHL_PARTS, XLenVT, Custom); 250 setOperationAction(ISD::SRL_PARTS, XLenVT, Custom); 251 setOperationAction(ISD::SRA_PARTS, XLenVT, Custom); 252 253 if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp() || 254 Subtarget.hasStdExtZbkb()) { 255 if (Subtarget.is64Bit()) { 256 setOperationAction(ISD::ROTL, MVT::i32, Custom); 257 setOperationAction(ISD::ROTR, MVT::i32, Custom); 258 } 259 } else { 260 setOperationAction(ISD::ROTL, XLenVT, Expand); 261 setOperationAction(ISD::ROTR, XLenVT, Expand); 262 } 263 264 if (Subtarget.hasStdExtZbp()) { 265 // Custom lower bswap/bitreverse so we can convert them to GREVI to enable 266 // more combining. 267 setOperationAction(ISD::BITREVERSE, XLenVT, Custom); 268 setOperationAction(ISD::BSWAP, XLenVT, Custom); 269 setOperationAction(ISD::BITREVERSE, MVT::i8, Custom); 270 // BSWAP i8 doesn't exist. 271 setOperationAction(ISD::BITREVERSE, MVT::i16, Custom); 272 setOperationAction(ISD::BSWAP, MVT::i16, Custom); 273 274 if (Subtarget.is64Bit()) { 275 setOperationAction(ISD::BITREVERSE, MVT::i32, Custom); 276 setOperationAction(ISD::BSWAP, MVT::i32, Custom); 277 } 278 } else { 279 // With Zbb we have an XLen rev8 instruction, but not GREVI. So we'll 280 // pattern match it directly in isel. 281 setOperationAction(ISD::BSWAP, XLenVT, 282 (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbkb()) 283 ? Legal 284 : Expand); 285 // Zbkb can use rev8+brev8 to implement bitreverse. 286 setOperationAction(ISD::BITREVERSE, XLenVT, 287 Subtarget.hasStdExtZbkb() ? Custom : Expand); 288 } 289 290 if (Subtarget.hasStdExtZbb()) { 291 setOperationAction(ISD::SMIN, XLenVT, Legal); 292 setOperationAction(ISD::SMAX, XLenVT, Legal); 293 setOperationAction(ISD::UMIN, XLenVT, Legal); 294 setOperationAction(ISD::UMAX, XLenVT, Legal); 295 296 if (Subtarget.is64Bit()) { 297 setOperationAction(ISD::CTTZ, MVT::i32, Custom); 298 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Custom); 299 setOperationAction(ISD::CTLZ, MVT::i32, Custom); 300 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom); 301 } 302 } else { 303 setOperationAction(ISD::CTTZ, XLenVT, Expand); 304 setOperationAction(ISD::CTLZ, XLenVT, Expand); 305 setOperationAction(ISD::CTPOP, XLenVT, Expand); 306 307 if (Subtarget.is64Bit()) 308 setOperationAction(ISD::ABS, MVT::i32, Custom); 309 } 310 311 if (Subtarget.hasStdExtZbt()) { 312 setOperationAction(ISD::FSHL, XLenVT, Custom); 313 setOperationAction(ISD::FSHR, XLenVT, Custom); 314 setOperationAction(ISD::SELECT, XLenVT, Legal); 315 316 if (Subtarget.is64Bit()) { 317 setOperationAction(ISD::FSHL, MVT::i32, Custom); 318 setOperationAction(ISD::FSHR, MVT::i32, Custom); 319 } 320 } else { 321 setOperationAction(ISD::SELECT, XLenVT, Custom); 322 } 323 324 static constexpr ISD::NodeType FPLegalNodeTypes[] = { 325 ISD::FMINNUM, ISD::FMAXNUM, ISD::LRINT, 326 ISD::LLRINT, ISD::LROUND, ISD::LLROUND, 327 ISD::STRICT_LRINT, ISD::STRICT_LLRINT, ISD::STRICT_LROUND, 328 ISD::STRICT_LLROUND, ISD::STRICT_FMA, ISD::STRICT_FADD, 329 ISD::STRICT_FSUB, ISD::STRICT_FMUL, ISD::STRICT_FDIV, 330 ISD::STRICT_FSQRT, ISD::STRICT_FSETCC, ISD::STRICT_FSETCCS}; 331 332 static const ISD::CondCode FPCCToExpand[] = { 333 ISD::SETOGT, ISD::SETOGE, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT, 334 ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUNE, ISD::SETGT, 335 ISD::SETGE, ISD::SETNE, ISD::SETO, ISD::SETUO}; 336 337 static const ISD::NodeType FPOpToExpand[] = { 338 ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, 339 ISD::FREM, ISD::FP16_TO_FP, ISD::FP_TO_FP16}; 340 341 if (Subtarget.hasStdExtZfh()) 342 setOperationAction(ISD::BITCAST, MVT::i16, Custom); 343 344 if (Subtarget.hasStdExtZfh()) { 345 for (auto NT : FPLegalNodeTypes) 346 setOperationAction(NT, MVT::f16, Legal); 347 setOperationAction(ISD::STRICT_FP_ROUND, MVT::f16, Legal); 348 setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f32, Legal); 349 for (auto CC : FPCCToExpand) 350 setCondCodeAction(CC, MVT::f16, Expand); 351 setOperationAction(ISD::SELECT_CC, MVT::f16, Expand); 352 setOperationAction(ISD::SELECT, MVT::f16, Custom); 353 setOperationAction(ISD::BR_CC, MVT::f16, Expand); 354 355 setOperationAction(ISD::FREM, MVT::f16, Promote); 356 setOperationAction(ISD::FCEIL, MVT::f16, Promote); 357 setOperationAction(ISD::FFLOOR, MVT::f16, Promote); 358 setOperationAction(ISD::FNEARBYINT, MVT::f16, Promote); 359 setOperationAction(ISD::FRINT, MVT::f16, Promote); 360 setOperationAction(ISD::FROUND, MVT::f16, Promote); 361 setOperationAction(ISD::FROUNDEVEN, MVT::f16, Promote); 362 setOperationAction(ISD::FTRUNC, MVT::f16, Promote); 363 setOperationAction(ISD::FPOW, MVT::f16, Promote); 364 setOperationAction(ISD::FPOWI, MVT::f16, Promote); 365 setOperationAction(ISD::FCOS, MVT::f16, Promote); 366 setOperationAction(ISD::FSIN, MVT::f16, Promote); 367 setOperationAction(ISD::FSINCOS, MVT::f16, Promote); 368 setOperationAction(ISD::FEXP, MVT::f16, Promote); 369 setOperationAction(ISD::FEXP2, MVT::f16, Promote); 370 setOperationAction(ISD::FLOG, MVT::f16, Promote); 371 setOperationAction(ISD::FLOG2, MVT::f16, Promote); 372 setOperationAction(ISD::FLOG10, MVT::f16, Promote); 373 374 // FIXME: Need to promote f16 STRICT_* to f32 libcalls, but we don't have 375 // complete support for all operations in LegalizeDAG. 376 377 // We need to custom promote this. 378 if (Subtarget.is64Bit()) 379 setOperationAction(ISD::FPOWI, MVT::i32, Custom); 380 } 381 382 if (Subtarget.hasStdExtF()) { 383 for (auto NT : FPLegalNodeTypes) 384 setOperationAction(NT, MVT::f32, Legal); 385 for (auto CC : FPCCToExpand) 386 setCondCodeAction(CC, MVT::f32, Expand); 387 setOperationAction(ISD::SELECT_CC, MVT::f32, Expand); 388 setOperationAction(ISD::SELECT, MVT::f32, Custom); 389 setOperationAction(ISD::BR_CC, MVT::f32, Expand); 390 for (auto Op : FPOpToExpand) 391 setOperationAction(Op, MVT::f32, Expand); 392 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); 393 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 394 } 395 396 if (Subtarget.hasStdExtF() && Subtarget.is64Bit()) 397 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 398 399 if (Subtarget.hasStdExtD()) { 400 for (auto NT : FPLegalNodeTypes) 401 setOperationAction(NT, MVT::f64, Legal); 402 setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal); 403 setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f64, Legal); 404 for (auto CC : FPCCToExpand) 405 setCondCodeAction(CC, MVT::f64, Expand); 406 setOperationAction(ISD::SELECT_CC, MVT::f64, Expand); 407 setOperationAction(ISD::SELECT, MVT::f64, Custom); 408 setOperationAction(ISD::BR_CC, MVT::f64, Expand); 409 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 410 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 411 for (auto Op : FPOpToExpand) 412 setOperationAction(Op, MVT::f64, Expand); 413 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); 414 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 415 } 416 417 if (Subtarget.is64Bit()) { 418 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 419 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 420 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom); 421 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom); 422 } 423 424 if (Subtarget.hasStdExtF()) { 425 setOperationAction(ISD::FP_TO_UINT_SAT, XLenVT, Custom); 426 setOperationAction(ISD::FP_TO_SINT_SAT, XLenVT, Custom); 427 428 setOperationAction(ISD::STRICT_FP_TO_UINT, XLenVT, Legal); 429 setOperationAction(ISD::STRICT_FP_TO_SINT, XLenVT, Legal); 430 setOperationAction(ISD::STRICT_UINT_TO_FP, XLenVT, Legal); 431 setOperationAction(ISD::STRICT_SINT_TO_FP, XLenVT, Legal); 432 433 setOperationAction(ISD::FLT_ROUNDS_, XLenVT, Custom); 434 setOperationAction(ISD::SET_ROUNDING, MVT::Other, Custom); 435 } 436 437 setOperationAction(ISD::GlobalAddress, XLenVT, Custom); 438 setOperationAction(ISD::BlockAddress, XLenVT, Custom); 439 setOperationAction(ISD::ConstantPool, XLenVT, Custom); 440 setOperationAction(ISD::JumpTable, XLenVT, Custom); 441 442 setOperationAction(ISD::GlobalTLSAddress, XLenVT, Custom); 443 444 // TODO: On M-mode only targets, the cycle[h] CSR may not be present. 445 // Unfortunately this can't be determined just from the ISA naming string. 446 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, 447 Subtarget.is64Bit() ? Legal : Custom); 448 449 setOperationAction(ISD::TRAP, MVT::Other, Legal); 450 setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal); 451 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 452 if (Subtarget.is64Bit()) 453 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i32, Custom); 454 455 if (Subtarget.hasStdExtA()) { 456 setMaxAtomicSizeInBitsSupported(Subtarget.getXLen()); 457 setMinCmpXchgSizeInBits(32); 458 } else { 459 setMaxAtomicSizeInBitsSupported(0); 460 } 461 462 setBooleanContents(ZeroOrOneBooleanContent); 463 464 if (Subtarget.hasVInstructions()) { 465 setBooleanVectorContents(ZeroOrOneBooleanContent); 466 467 setOperationAction(ISD::VSCALE, XLenVT, Custom); 468 469 // RVV intrinsics may have illegal operands. 470 // We also need to custom legalize vmv.x.s. 471 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i8, Custom); 472 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i16, Custom); 473 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i8, Custom); 474 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i16, Custom); 475 if (Subtarget.is64Bit()) { 476 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i32, Custom); 477 } else { 478 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i64, Custom); 479 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i64, Custom); 480 } 481 482 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom); 483 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); 484 485 static const unsigned IntegerVPOps[] = { 486 ISD::VP_ADD, ISD::VP_SUB, ISD::VP_MUL, 487 ISD::VP_SDIV, ISD::VP_UDIV, ISD::VP_SREM, 488 ISD::VP_UREM, ISD::VP_AND, ISD::VP_OR, 489 ISD::VP_XOR, ISD::VP_ASHR, ISD::VP_LSHR, 490 ISD::VP_SHL, ISD::VP_REDUCE_ADD, ISD::VP_REDUCE_AND, 491 ISD::VP_REDUCE_OR, ISD::VP_REDUCE_XOR, ISD::VP_REDUCE_SMAX, 492 ISD::VP_REDUCE_SMIN, ISD::VP_REDUCE_UMAX, ISD::VP_REDUCE_UMIN, 493 ISD::VP_MERGE, ISD::VP_SELECT}; 494 495 static const unsigned FloatingPointVPOps[] = { 496 ISD::VP_FADD, ISD::VP_FSUB, ISD::VP_FMUL, 497 ISD::VP_FDIV, ISD::VP_FNEG, ISD::VP_FMA, 498 ISD::VP_REDUCE_FADD, ISD::VP_REDUCE_SEQ_FADD, ISD::VP_REDUCE_FMIN, 499 ISD::VP_REDUCE_FMAX, ISD::VP_MERGE, ISD::VP_SELECT}; 500 501 if (!Subtarget.is64Bit()) { 502 // We must custom-lower certain vXi64 operations on RV32 due to the vector 503 // element type being illegal. 504 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::i64, Custom); 505 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::i64, Custom); 506 507 setOperationAction(ISD::VECREDUCE_ADD, MVT::i64, Custom); 508 setOperationAction(ISD::VECREDUCE_AND, MVT::i64, Custom); 509 setOperationAction(ISD::VECREDUCE_OR, MVT::i64, Custom); 510 setOperationAction(ISD::VECREDUCE_XOR, MVT::i64, Custom); 511 setOperationAction(ISD::VECREDUCE_SMAX, MVT::i64, Custom); 512 setOperationAction(ISD::VECREDUCE_SMIN, MVT::i64, Custom); 513 setOperationAction(ISD::VECREDUCE_UMAX, MVT::i64, Custom); 514 setOperationAction(ISD::VECREDUCE_UMIN, MVT::i64, Custom); 515 516 setOperationAction(ISD::VP_REDUCE_ADD, MVT::i64, Custom); 517 setOperationAction(ISD::VP_REDUCE_AND, MVT::i64, Custom); 518 setOperationAction(ISD::VP_REDUCE_OR, MVT::i64, Custom); 519 setOperationAction(ISD::VP_REDUCE_XOR, MVT::i64, Custom); 520 setOperationAction(ISD::VP_REDUCE_SMAX, MVT::i64, Custom); 521 setOperationAction(ISD::VP_REDUCE_SMIN, MVT::i64, Custom); 522 setOperationAction(ISD::VP_REDUCE_UMAX, MVT::i64, Custom); 523 setOperationAction(ISD::VP_REDUCE_UMIN, MVT::i64, Custom); 524 } 525 526 for (MVT VT : BoolVecVTs) { 527 setOperationAction(ISD::SPLAT_VECTOR, VT, Custom); 528 529 // Mask VTs are custom-expanded into a series of standard nodes 530 setOperationAction(ISD::TRUNCATE, VT, Custom); 531 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 532 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 533 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 534 535 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 536 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 537 538 setOperationAction(ISD::SELECT, VT, Custom); 539 setOperationAction(ISD::SELECT_CC, VT, Expand); 540 setOperationAction(ISD::VSELECT, VT, Expand); 541 setOperationAction(ISD::VP_MERGE, VT, Expand); 542 setOperationAction(ISD::VP_SELECT, VT, Expand); 543 544 setOperationAction(ISD::VP_AND, VT, Custom); 545 setOperationAction(ISD::VP_OR, VT, Custom); 546 setOperationAction(ISD::VP_XOR, VT, Custom); 547 548 setOperationAction(ISD::VECREDUCE_AND, VT, Custom); 549 setOperationAction(ISD::VECREDUCE_OR, VT, Custom); 550 setOperationAction(ISD::VECREDUCE_XOR, VT, Custom); 551 552 setOperationAction(ISD::VP_REDUCE_AND, VT, Custom); 553 setOperationAction(ISD::VP_REDUCE_OR, VT, Custom); 554 setOperationAction(ISD::VP_REDUCE_XOR, VT, Custom); 555 556 // RVV has native int->float & float->int conversions where the 557 // element type sizes are within one power-of-two of each other. Any 558 // wider distances between type sizes have to be lowered as sequences 559 // which progressively narrow the gap in stages. 560 setOperationAction(ISD::SINT_TO_FP, VT, Custom); 561 setOperationAction(ISD::UINT_TO_FP, VT, Custom); 562 setOperationAction(ISD::FP_TO_SINT, VT, Custom); 563 setOperationAction(ISD::FP_TO_UINT, VT, Custom); 564 565 // Expand all extending loads to types larger than this, and truncating 566 // stores from types larger than this. 567 for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) { 568 setTruncStoreAction(OtherVT, VT, Expand); 569 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 570 setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand); 571 setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand); 572 } 573 } 574 575 for (MVT VT : IntVecVTs) { 576 if (VT.getVectorElementType() == MVT::i64 && 577 !Subtarget.hasVInstructionsI64()) 578 continue; 579 580 setOperationAction(ISD::SPLAT_VECTOR, VT, Legal); 581 setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom); 582 583 // Vectors implement MULHS/MULHU. 584 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 585 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 586 587 // nxvXi64 MULHS/MULHU requires the V extension instead of Zve64*. 588 if (VT.getVectorElementType() == MVT::i64 && !Subtarget.hasStdExtV()) { 589 setOperationAction(ISD::MULHU, VT, Expand); 590 setOperationAction(ISD::MULHS, VT, Expand); 591 } 592 593 setOperationAction(ISD::SMIN, VT, Legal); 594 setOperationAction(ISD::SMAX, VT, Legal); 595 setOperationAction(ISD::UMIN, VT, Legal); 596 setOperationAction(ISD::UMAX, VT, Legal); 597 598 setOperationAction(ISD::ROTL, VT, Expand); 599 setOperationAction(ISD::ROTR, VT, Expand); 600 601 setOperationAction(ISD::CTTZ, VT, Expand); 602 setOperationAction(ISD::CTLZ, VT, Expand); 603 setOperationAction(ISD::CTPOP, VT, Expand); 604 605 setOperationAction(ISD::BSWAP, VT, Expand); 606 607 // Custom-lower extensions and truncations from/to mask types. 608 setOperationAction(ISD::ANY_EXTEND, VT, Custom); 609 setOperationAction(ISD::SIGN_EXTEND, VT, Custom); 610 setOperationAction(ISD::ZERO_EXTEND, VT, Custom); 611 612 // RVV has native int->float & float->int conversions where the 613 // element type sizes are within one power-of-two of each other. Any 614 // wider distances between type sizes have to be lowered as sequences 615 // which progressively narrow the gap in stages. 616 setOperationAction(ISD::SINT_TO_FP, VT, Custom); 617 setOperationAction(ISD::UINT_TO_FP, VT, Custom); 618 setOperationAction(ISD::FP_TO_SINT, VT, Custom); 619 setOperationAction(ISD::FP_TO_UINT, VT, Custom); 620 621 setOperationAction(ISD::SADDSAT, VT, Legal); 622 setOperationAction(ISD::UADDSAT, VT, Legal); 623 setOperationAction(ISD::SSUBSAT, VT, Legal); 624 setOperationAction(ISD::USUBSAT, VT, Legal); 625 626 // Integer VTs are lowered as a series of "RISCVISD::TRUNCATE_VECTOR_VL" 627 // nodes which truncate by one power of two at a time. 628 setOperationAction(ISD::TRUNCATE, VT, Custom); 629 630 // Custom-lower insert/extract operations to simplify patterns. 631 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 632 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 633 634 // Custom-lower reduction operations to set up the corresponding custom 635 // nodes' operands. 636 setOperationAction(ISD::VECREDUCE_ADD, VT, Custom); 637 setOperationAction(ISD::VECREDUCE_AND, VT, Custom); 638 setOperationAction(ISD::VECREDUCE_OR, VT, Custom); 639 setOperationAction(ISD::VECREDUCE_XOR, VT, Custom); 640 setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom); 641 setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom); 642 setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom); 643 setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom); 644 645 for (unsigned VPOpc : IntegerVPOps) 646 setOperationAction(VPOpc, VT, Custom); 647 648 setOperationAction(ISD::LOAD, VT, Custom); 649 setOperationAction(ISD::STORE, VT, Custom); 650 651 setOperationAction(ISD::MLOAD, VT, Custom); 652 setOperationAction(ISD::MSTORE, VT, Custom); 653 setOperationAction(ISD::MGATHER, VT, Custom); 654 setOperationAction(ISD::MSCATTER, VT, Custom); 655 656 setOperationAction(ISD::VP_LOAD, VT, Custom); 657 setOperationAction(ISD::VP_STORE, VT, Custom); 658 setOperationAction(ISD::VP_GATHER, VT, Custom); 659 setOperationAction(ISD::VP_SCATTER, VT, Custom); 660 661 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 662 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 663 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 664 665 setOperationAction(ISD::SELECT, VT, Custom); 666 setOperationAction(ISD::SELECT_CC, VT, Expand); 667 668 setOperationAction(ISD::STEP_VECTOR, VT, Custom); 669 setOperationAction(ISD::VECTOR_REVERSE, VT, Custom); 670 671 for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) { 672 setTruncStoreAction(VT, OtherVT, Expand); 673 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 674 setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand); 675 setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand); 676 } 677 678 // Splice 679 setOperationAction(ISD::VECTOR_SPLICE, VT, Custom); 680 681 // Lower CTLZ_ZERO_UNDEF and CTTZ_ZERO_UNDEF if we have a floating point 682 // type that can represent the value exactly. 683 if (VT.getVectorElementType() != MVT::i64) { 684 MVT FloatEltVT = 685 VT.getVectorElementType() == MVT::i32 ? MVT::f64 : MVT::f32; 686 EVT FloatVT = MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount()); 687 if (isTypeLegal(FloatVT)) { 688 setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Custom); 689 setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Custom); 690 } 691 } 692 } 693 694 // Expand various CCs to best match the RVV ISA, which natively supports UNE 695 // but no other unordered comparisons, and supports all ordered comparisons 696 // except ONE. Additionally, we expand GT,OGT,GE,OGE for optimization 697 // purposes; they are expanded to their swapped-operand CCs (LT,OLT,LE,OLE), 698 // and we pattern-match those back to the "original", swapping operands once 699 // more. This way we catch both operations and both "vf" and "fv" forms with 700 // fewer patterns. 701 static const ISD::CondCode VFPCCToExpand[] = { 702 ISD::SETO, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT, 703 ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUO, 704 ISD::SETGT, ISD::SETOGT, ISD::SETGE, ISD::SETOGE, 705 }; 706 707 // Sets common operation actions on RVV floating-point vector types. 708 const auto SetCommonVFPActions = [&](MVT VT) { 709 setOperationAction(ISD::SPLAT_VECTOR, VT, Legal); 710 // RVV has native FP_ROUND & FP_EXTEND conversions where the element type 711 // sizes are within one power-of-two of each other. Therefore conversions 712 // between vXf16 and vXf64 must be lowered as sequences which convert via 713 // vXf32. 714 setOperationAction(ISD::FP_ROUND, VT, Custom); 715 setOperationAction(ISD::FP_EXTEND, VT, Custom); 716 // Custom-lower insert/extract operations to simplify patterns. 717 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 718 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 719 // Expand various condition codes (explained above). 720 for (auto CC : VFPCCToExpand) 721 setCondCodeAction(CC, VT, Expand); 722 723 setOperationAction(ISD::FMINNUM, VT, Legal); 724 setOperationAction(ISD::FMAXNUM, VT, Legal); 725 726 setOperationAction(ISD::FTRUNC, VT, Custom); 727 setOperationAction(ISD::FCEIL, VT, Custom); 728 setOperationAction(ISD::FFLOOR, VT, Custom); 729 setOperationAction(ISD::FROUND, VT, Custom); 730 731 setOperationAction(ISD::VECREDUCE_FADD, VT, Custom); 732 setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom); 733 setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom); 734 setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom); 735 736 setOperationAction(ISD::FCOPYSIGN, VT, Legal); 737 738 setOperationAction(ISD::LOAD, VT, Custom); 739 setOperationAction(ISD::STORE, VT, Custom); 740 741 setOperationAction(ISD::MLOAD, VT, Custom); 742 setOperationAction(ISD::MSTORE, VT, Custom); 743 setOperationAction(ISD::MGATHER, VT, Custom); 744 setOperationAction(ISD::MSCATTER, VT, Custom); 745 746 setOperationAction(ISD::VP_LOAD, VT, Custom); 747 setOperationAction(ISD::VP_STORE, VT, Custom); 748 setOperationAction(ISD::VP_GATHER, VT, Custom); 749 setOperationAction(ISD::VP_SCATTER, VT, Custom); 750 751 setOperationAction(ISD::SELECT, VT, Custom); 752 setOperationAction(ISD::SELECT_CC, VT, Expand); 753 754 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 755 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 756 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 757 758 setOperationAction(ISD::VECTOR_REVERSE, VT, Custom); 759 setOperationAction(ISD::VECTOR_SPLICE, VT, Custom); 760 761 for (unsigned VPOpc : FloatingPointVPOps) 762 setOperationAction(VPOpc, VT, Custom); 763 }; 764 765 // Sets common extload/truncstore actions on RVV floating-point vector 766 // types. 767 const auto SetCommonVFPExtLoadTruncStoreActions = 768 [&](MVT VT, ArrayRef<MVT::SimpleValueType> SmallerVTs) { 769 for (auto SmallVT : SmallerVTs) { 770 setTruncStoreAction(VT, SmallVT, Expand); 771 setLoadExtAction(ISD::EXTLOAD, VT, SmallVT, Expand); 772 } 773 }; 774 775 if (Subtarget.hasVInstructionsF16()) 776 for (MVT VT : F16VecVTs) 777 SetCommonVFPActions(VT); 778 779 for (MVT VT : F32VecVTs) { 780 if (Subtarget.hasVInstructionsF32()) 781 SetCommonVFPActions(VT); 782 SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs); 783 } 784 785 for (MVT VT : F64VecVTs) { 786 if (Subtarget.hasVInstructionsF64()) 787 SetCommonVFPActions(VT); 788 SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs); 789 SetCommonVFPExtLoadTruncStoreActions(VT, F32VecVTs); 790 } 791 792 if (Subtarget.useRVVForFixedLengthVectors()) { 793 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) { 794 if (!useRVVForFixedLengthVectorVT(VT)) 795 continue; 796 797 // By default everything must be expanded. 798 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) 799 setOperationAction(Op, VT, Expand); 800 for (MVT OtherVT : MVT::integer_fixedlen_vector_valuetypes()) { 801 setTruncStoreAction(VT, OtherVT, Expand); 802 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 803 setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand); 804 setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand); 805 } 806 807 // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed. 808 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 809 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 810 811 setOperationAction(ISD::BUILD_VECTOR, VT, Custom); 812 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 813 814 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 815 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 816 817 setOperationAction(ISD::LOAD, VT, Custom); 818 setOperationAction(ISD::STORE, VT, Custom); 819 820 setOperationAction(ISD::SETCC, VT, Custom); 821 822 setOperationAction(ISD::SELECT, VT, Custom); 823 824 setOperationAction(ISD::TRUNCATE, VT, Custom); 825 826 setOperationAction(ISD::BITCAST, VT, Custom); 827 828 setOperationAction(ISD::VECREDUCE_AND, VT, Custom); 829 setOperationAction(ISD::VECREDUCE_OR, VT, Custom); 830 setOperationAction(ISD::VECREDUCE_XOR, VT, Custom); 831 832 setOperationAction(ISD::VP_REDUCE_AND, VT, Custom); 833 setOperationAction(ISD::VP_REDUCE_OR, VT, Custom); 834 setOperationAction(ISD::VP_REDUCE_XOR, VT, Custom); 835 836 setOperationAction(ISD::SINT_TO_FP, VT, Custom); 837 setOperationAction(ISD::UINT_TO_FP, VT, Custom); 838 setOperationAction(ISD::FP_TO_SINT, VT, Custom); 839 setOperationAction(ISD::FP_TO_UINT, VT, Custom); 840 841 // Operations below are different for between masks and other vectors. 842 if (VT.getVectorElementType() == MVT::i1) { 843 setOperationAction(ISD::VP_AND, VT, Custom); 844 setOperationAction(ISD::VP_OR, VT, Custom); 845 setOperationAction(ISD::VP_XOR, VT, Custom); 846 setOperationAction(ISD::AND, VT, Custom); 847 setOperationAction(ISD::OR, VT, Custom); 848 setOperationAction(ISD::XOR, VT, Custom); 849 continue; 850 } 851 852 // Make SPLAT_VECTOR Legal so DAGCombine will convert splat vectors to 853 // it before type legalization for i64 vectors on RV32. It will then be 854 // type legalized to SPLAT_VECTOR_PARTS which we need to Custom handle. 855 // FIXME: Use SPLAT_VECTOR for all types? DAGCombine probably needs 856 // improvements first. 857 if (!Subtarget.is64Bit() && VT.getVectorElementType() == MVT::i64) { 858 setOperationAction(ISD::SPLAT_VECTOR, VT, Legal); 859 setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom); 860 } 861 862 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); 863 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 864 865 setOperationAction(ISD::MLOAD, VT, Custom); 866 setOperationAction(ISD::MSTORE, VT, Custom); 867 setOperationAction(ISD::MGATHER, VT, Custom); 868 setOperationAction(ISD::MSCATTER, VT, Custom); 869 870 setOperationAction(ISD::VP_LOAD, VT, Custom); 871 setOperationAction(ISD::VP_STORE, VT, Custom); 872 setOperationAction(ISD::VP_GATHER, VT, Custom); 873 setOperationAction(ISD::VP_SCATTER, VT, Custom); 874 875 setOperationAction(ISD::ADD, VT, Custom); 876 setOperationAction(ISD::MUL, VT, Custom); 877 setOperationAction(ISD::SUB, VT, Custom); 878 setOperationAction(ISD::AND, VT, Custom); 879 setOperationAction(ISD::OR, VT, Custom); 880 setOperationAction(ISD::XOR, VT, Custom); 881 setOperationAction(ISD::SDIV, VT, Custom); 882 setOperationAction(ISD::SREM, VT, Custom); 883 setOperationAction(ISD::UDIV, VT, Custom); 884 setOperationAction(ISD::UREM, VT, Custom); 885 setOperationAction(ISD::SHL, VT, Custom); 886 setOperationAction(ISD::SRA, VT, Custom); 887 setOperationAction(ISD::SRL, VT, Custom); 888 889 setOperationAction(ISD::SMIN, VT, Custom); 890 setOperationAction(ISD::SMAX, VT, Custom); 891 setOperationAction(ISD::UMIN, VT, Custom); 892 setOperationAction(ISD::UMAX, VT, Custom); 893 setOperationAction(ISD::ABS, VT, Custom); 894 895 // vXi64 MULHS/MULHU requires the V extension instead of Zve64*. 896 if (VT.getVectorElementType() != MVT::i64 || Subtarget.hasStdExtV()) { 897 setOperationAction(ISD::MULHS, VT, Custom); 898 setOperationAction(ISD::MULHU, VT, Custom); 899 } 900 901 setOperationAction(ISD::SADDSAT, VT, Custom); 902 setOperationAction(ISD::UADDSAT, VT, Custom); 903 setOperationAction(ISD::SSUBSAT, VT, Custom); 904 setOperationAction(ISD::USUBSAT, VT, Custom); 905 906 setOperationAction(ISD::VSELECT, VT, Custom); 907 setOperationAction(ISD::SELECT_CC, VT, Expand); 908 909 setOperationAction(ISD::ANY_EXTEND, VT, Custom); 910 setOperationAction(ISD::SIGN_EXTEND, VT, Custom); 911 setOperationAction(ISD::ZERO_EXTEND, VT, Custom); 912 913 // Custom-lower reduction operations to set up the corresponding custom 914 // nodes' operands. 915 setOperationAction(ISD::VECREDUCE_ADD, VT, Custom); 916 setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom); 917 setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom); 918 setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom); 919 setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom); 920 921 for (unsigned VPOpc : IntegerVPOps) 922 setOperationAction(VPOpc, VT, Custom); 923 924 // Lower CTLZ_ZERO_UNDEF and CTTZ_ZERO_UNDEF if we have a floating point 925 // type that can represent the value exactly. 926 if (VT.getVectorElementType() != MVT::i64) { 927 MVT FloatEltVT = 928 VT.getVectorElementType() == MVT::i32 ? MVT::f64 : MVT::f32; 929 EVT FloatVT = 930 MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount()); 931 if (isTypeLegal(FloatVT)) { 932 setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Custom); 933 setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Custom); 934 } 935 } 936 } 937 938 for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) { 939 if (!useRVVForFixedLengthVectorVT(VT)) 940 continue; 941 942 // By default everything must be expanded. 943 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) 944 setOperationAction(Op, VT, Expand); 945 for (MVT OtherVT : MVT::fp_fixedlen_vector_valuetypes()) { 946 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 947 setTruncStoreAction(VT, OtherVT, Expand); 948 } 949 950 // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed. 951 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 952 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 953 954 setOperationAction(ISD::BUILD_VECTOR, VT, Custom); 955 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 956 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); 957 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 958 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 959 960 setOperationAction(ISD::LOAD, VT, Custom); 961 setOperationAction(ISD::STORE, VT, Custom); 962 setOperationAction(ISD::MLOAD, VT, Custom); 963 setOperationAction(ISD::MSTORE, VT, Custom); 964 setOperationAction(ISD::MGATHER, VT, Custom); 965 setOperationAction(ISD::MSCATTER, VT, Custom); 966 967 setOperationAction(ISD::VP_LOAD, VT, Custom); 968 setOperationAction(ISD::VP_STORE, VT, Custom); 969 setOperationAction(ISD::VP_GATHER, VT, Custom); 970 setOperationAction(ISD::VP_SCATTER, VT, Custom); 971 972 setOperationAction(ISD::FADD, VT, Custom); 973 setOperationAction(ISD::FSUB, VT, Custom); 974 setOperationAction(ISD::FMUL, VT, Custom); 975 setOperationAction(ISD::FDIV, VT, Custom); 976 setOperationAction(ISD::FNEG, VT, Custom); 977 setOperationAction(ISD::FABS, VT, Custom); 978 setOperationAction(ISD::FCOPYSIGN, VT, Custom); 979 setOperationAction(ISD::FSQRT, VT, Custom); 980 setOperationAction(ISD::FMA, VT, Custom); 981 setOperationAction(ISD::FMINNUM, VT, Custom); 982 setOperationAction(ISD::FMAXNUM, VT, Custom); 983 984 setOperationAction(ISD::FP_ROUND, VT, Custom); 985 setOperationAction(ISD::FP_EXTEND, VT, Custom); 986 987 setOperationAction(ISD::FTRUNC, VT, Custom); 988 setOperationAction(ISD::FCEIL, VT, Custom); 989 setOperationAction(ISD::FFLOOR, VT, Custom); 990 setOperationAction(ISD::FROUND, VT, Custom); 991 992 for (auto CC : VFPCCToExpand) 993 setCondCodeAction(CC, VT, Expand); 994 995 setOperationAction(ISD::VSELECT, VT, Custom); 996 setOperationAction(ISD::SELECT, VT, Custom); 997 setOperationAction(ISD::SELECT_CC, VT, Expand); 998 999 setOperationAction(ISD::BITCAST, VT, Custom); 1000 1001 setOperationAction(ISD::VECREDUCE_FADD, VT, Custom); 1002 setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom); 1003 setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom); 1004 setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom); 1005 1006 for (unsigned VPOpc : FloatingPointVPOps) 1007 setOperationAction(VPOpc, VT, Custom); 1008 } 1009 1010 // Custom-legalize bitcasts from fixed-length vectors to scalar types. 1011 setOperationAction(ISD::BITCAST, MVT::i8, Custom); 1012 setOperationAction(ISD::BITCAST, MVT::i16, Custom); 1013 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 1014 setOperationAction(ISD::BITCAST, MVT::i64, Custom); 1015 if (Subtarget.hasStdExtZfh()) 1016 setOperationAction(ISD::BITCAST, MVT::f16, Custom); 1017 if (Subtarget.hasStdExtF()) 1018 setOperationAction(ISD::BITCAST, MVT::f32, Custom); 1019 if (Subtarget.hasStdExtD()) 1020 setOperationAction(ISD::BITCAST, MVT::f64, Custom); 1021 } 1022 } 1023 1024 // Function alignments. 1025 const Align FunctionAlignment(Subtarget.hasStdExtC() ? 2 : 4); 1026 setMinFunctionAlignment(FunctionAlignment); 1027 setPrefFunctionAlignment(FunctionAlignment); 1028 1029 setMinimumJumpTableEntries(5); 1030 1031 // Jumps are expensive, compared to logic 1032 setJumpIsExpensive(); 1033 1034 setTargetDAGCombine(ISD::ADD); 1035 setTargetDAGCombine(ISD::SUB); 1036 setTargetDAGCombine(ISD::AND); 1037 setTargetDAGCombine(ISD::OR); 1038 setTargetDAGCombine(ISD::XOR); 1039 if (Subtarget.hasStdExtZbp()) { 1040 setTargetDAGCombine(ISD::ROTL); 1041 setTargetDAGCombine(ISD::ROTR); 1042 } 1043 if (Subtarget.hasStdExtZbkb()) 1044 setTargetDAGCombine(ISD::BITREVERSE); 1045 setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN); 1046 if (Subtarget.hasStdExtZfh() || Subtarget.hasStdExtZbb()) 1047 setTargetDAGCombine(ISD::SIGN_EXTEND_INREG); 1048 if (Subtarget.hasStdExtF()) { 1049 setTargetDAGCombine(ISD::ZERO_EXTEND); 1050 setTargetDAGCombine(ISD::FP_TO_SINT); 1051 setTargetDAGCombine(ISD::FP_TO_UINT); 1052 setTargetDAGCombine(ISD::FP_TO_SINT_SAT); 1053 setTargetDAGCombine(ISD::FP_TO_UINT_SAT); 1054 } 1055 if (Subtarget.hasVInstructions()) { 1056 setTargetDAGCombine(ISD::FCOPYSIGN); 1057 setTargetDAGCombine(ISD::MGATHER); 1058 setTargetDAGCombine(ISD::MSCATTER); 1059 setTargetDAGCombine(ISD::VP_GATHER); 1060 setTargetDAGCombine(ISD::VP_SCATTER); 1061 setTargetDAGCombine(ISD::SRA); 1062 setTargetDAGCombine(ISD::SRL); 1063 setTargetDAGCombine(ISD::SHL); 1064 setTargetDAGCombine(ISD::STORE); 1065 setTargetDAGCombine(ISD::SPLAT_VECTOR); 1066 } 1067 1068 setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2"); 1069 setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2"); 1070 } 1071 1072 EVT RISCVTargetLowering::getSetCCResultType(const DataLayout &DL, 1073 LLVMContext &Context, 1074 EVT VT) const { 1075 if (!VT.isVector()) 1076 return getPointerTy(DL); 1077 if (Subtarget.hasVInstructions() && 1078 (VT.isScalableVector() || Subtarget.useRVVForFixedLengthVectors())) 1079 return EVT::getVectorVT(Context, MVT::i1, VT.getVectorElementCount()); 1080 return VT.changeVectorElementTypeToInteger(); 1081 } 1082 1083 MVT RISCVTargetLowering::getVPExplicitVectorLengthTy() const { 1084 return Subtarget.getXLenVT(); 1085 } 1086 1087 bool RISCVTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 1088 const CallInst &I, 1089 MachineFunction &MF, 1090 unsigned Intrinsic) const { 1091 auto &DL = I.getModule()->getDataLayout(); 1092 switch (Intrinsic) { 1093 default: 1094 return false; 1095 case Intrinsic::riscv_masked_atomicrmw_xchg_i32: 1096 case Intrinsic::riscv_masked_atomicrmw_add_i32: 1097 case Intrinsic::riscv_masked_atomicrmw_sub_i32: 1098 case Intrinsic::riscv_masked_atomicrmw_nand_i32: 1099 case Intrinsic::riscv_masked_atomicrmw_max_i32: 1100 case Intrinsic::riscv_masked_atomicrmw_min_i32: 1101 case Intrinsic::riscv_masked_atomicrmw_umax_i32: 1102 case Intrinsic::riscv_masked_atomicrmw_umin_i32: 1103 case Intrinsic::riscv_masked_cmpxchg_i32: 1104 Info.opc = ISD::INTRINSIC_W_CHAIN; 1105 Info.memVT = MVT::i32; 1106 Info.ptrVal = I.getArgOperand(0); 1107 Info.offset = 0; 1108 Info.align = Align(4); 1109 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore | 1110 MachineMemOperand::MOVolatile; 1111 return true; 1112 case Intrinsic::riscv_masked_strided_load: 1113 Info.opc = ISD::INTRINSIC_W_CHAIN; 1114 Info.ptrVal = I.getArgOperand(1); 1115 Info.memVT = getValueType(DL, I.getType()->getScalarType()); 1116 Info.align = Align(DL.getTypeSizeInBits(I.getType()->getScalarType()) / 8); 1117 Info.size = MemoryLocation::UnknownSize; 1118 Info.flags |= MachineMemOperand::MOLoad; 1119 return true; 1120 case Intrinsic::riscv_masked_strided_store: 1121 Info.opc = ISD::INTRINSIC_VOID; 1122 Info.ptrVal = I.getArgOperand(1); 1123 Info.memVT = 1124 getValueType(DL, I.getArgOperand(0)->getType()->getScalarType()); 1125 Info.align = Align( 1126 DL.getTypeSizeInBits(I.getArgOperand(0)->getType()->getScalarType()) / 1127 8); 1128 Info.size = MemoryLocation::UnknownSize; 1129 Info.flags |= MachineMemOperand::MOStore; 1130 return true; 1131 case Intrinsic::riscv_seg2_load: 1132 case Intrinsic::riscv_seg3_load: 1133 case Intrinsic::riscv_seg4_load: 1134 case Intrinsic::riscv_seg5_load: 1135 case Intrinsic::riscv_seg6_load: 1136 case Intrinsic::riscv_seg7_load: 1137 case Intrinsic::riscv_seg8_load: 1138 Info.opc = ISD::INTRINSIC_W_CHAIN; 1139 Info.ptrVal = I.getArgOperand(0); 1140 Info.memVT = 1141 getValueType(DL, I.getType()->getStructElementType(0)->getScalarType()); 1142 Info.align = 1143 Align(DL.getTypeSizeInBits( 1144 I.getType()->getStructElementType(0)->getScalarType()) / 1145 8); 1146 Info.size = MemoryLocation::UnknownSize; 1147 Info.flags |= MachineMemOperand::MOLoad; 1148 return true; 1149 } 1150 } 1151 1152 bool RISCVTargetLowering::isLegalAddressingMode(const DataLayout &DL, 1153 const AddrMode &AM, Type *Ty, 1154 unsigned AS, 1155 Instruction *I) const { 1156 // No global is ever allowed as a base. 1157 if (AM.BaseGV) 1158 return false; 1159 1160 // Require a 12-bit signed offset. 1161 if (!isInt<12>(AM.BaseOffs)) 1162 return false; 1163 1164 switch (AM.Scale) { 1165 case 0: // "r+i" or just "i", depending on HasBaseReg. 1166 break; 1167 case 1: 1168 if (!AM.HasBaseReg) // allow "r+i". 1169 break; 1170 return false; // disallow "r+r" or "r+r+i". 1171 default: 1172 return false; 1173 } 1174 1175 return true; 1176 } 1177 1178 bool RISCVTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 1179 return isInt<12>(Imm); 1180 } 1181 1182 bool RISCVTargetLowering::isLegalAddImmediate(int64_t Imm) const { 1183 return isInt<12>(Imm); 1184 } 1185 1186 // On RV32, 64-bit integers are split into their high and low parts and held 1187 // in two different registers, so the trunc is free since the low register can 1188 // just be used. 1189 bool RISCVTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const { 1190 if (Subtarget.is64Bit() || !SrcTy->isIntegerTy() || !DstTy->isIntegerTy()) 1191 return false; 1192 unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); 1193 unsigned DestBits = DstTy->getPrimitiveSizeInBits(); 1194 return (SrcBits == 64 && DestBits == 32); 1195 } 1196 1197 bool RISCVTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const { 1198 if (Subtarget.is64Bit() || SrcVT.isVector() || DstVT.isVector() || 1199 !SrcVT.isInteger() || !DstVT.isInteger()) 1200 return false; 1201 unsigned SrcBits = SrcVT.getSizeInBits(); 1202 unsigned DestBits = DstVT.getSizeInBits(); 1203 return (SrcBits == 64 && DestBits == 32); 1204 } 1205 1206 bool RISCVTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 1207 // Zexts are free if they can be combined with a load. 1208 // Don't advertise i32->i64 zextload as being free for RV64. It interacts 1209 // poorly with type legalization of compares preferring sext. 1210 if (auto *LD = dyn_cast<LoadSDNode>(Val)) { 1211 EVT MemVT = LD->getMemoryVT(); 1212 if ((MemVT == MVT::i8 || MemVT == MVT::i16) && 1213 (LD->getExtensionType() == ISD::NON_EXTLOAD || 1214 LD->getExtensionType() == ISD::ZEXTLOAD)) 1215 return true; 1216 } 1217 1218 return TargetLowering::isZExtFree(Val, VT2); 1219 } 1220 1221 bool RISCVTargetLowering::isSExtCheaperThanZExt(EVT SrcVT, EVT DstVT) const { 1222 return Subtarget.is64Bit() && SrcVT == MVT::i32 && DstVT == MVT::i64; 1223 } 1224 1225 bool RISCVTargetLowering::isCheapToSpeculateCttz() const { 1226 return Subtarget.hasStdExtZbb(); 1227 } 1228 1229 bool RISCVTargetLowering::isCheapToSpeculateCtlz() const { 1230 return Subtarget.hasStdExtZbb(); 1231 } 1232 1233 bool RISCVTargetLowering::hasAndNotCompare(SDValue Y) const { 1234 EVT VT = Y.getValueType(); 1235 1236 // FIXME: Support vectors once we have tests. 1237 if (VT.isVector()) 1238 return false; 1239 1240 return (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp() || 1241 Subtarget.hasStdExtZbkb()) && 1242 !isa<ConstantSDNode>(Y); 1243 } 1244 1245 /// Check if sinking \p I's operands to I's basic block is profitable, because 1246 /// the operands can be folded into a target instruction, e.g. 1247 /// splats of scalars can fold into vector instructions. 1248 bool RISCVTargetLowering::shouldSinkOperands( 1249 Instruction *I, SmallVectorImpl<Use *> &Ops) const { 1250 using namespace llvm::PatternMatch; 1251 1252 if (!I->getType()->isVectorTy() || !Subtarget.hasVInstructions()) 1253 return false; 1254 1255 auto IsSinker = [&](Instruction *I, int Operand) { 1256 switch (I->getOpcode()) { 1257 case Instruction::Add: 1258 case Instruction::Sub: 1259 case Instruction::Mul: 1260 case Instruction::And: 1261 case Instruction::Or: 1262 case Instruction::Xor: 1263 case Instruction::FAdd: 1264 case Instruction::FSub: 1265 case Instruction::FMul: 1266 case Instruction::FDiv: 1267 case Instruction::ICmp: 1268 case Instruction::FCmp: 1269 return true; 1270 case Instruction::Shl: 1271 case Instruction::LShr: 1272 case Instruction::AShr: 1273 case Instruction::UDiv: 1274 case Instruction::SDiv: 1275 case Instruction::URem: 1276 case Instruction::SRem: 1277 return Operand == 1; 1278 case Instruction::Call: 1279 if (auto *II = dyn_cast<IntrinsicInst>(I)) { 1280 switch (II->getIntrinsicID()) { 1281 case Intrinsic::fma: 1282 case Intrinsic::vp_fma: 1283 return Operand == 0 || Operand == 1; 1284 // FIXME: Our patterns can only match vx/vf instructions when the splat 1285 // it on the RHS, because TableGen doesn't recognize our VP operations 1286 // as commutative. 1287 case Intrinsic::vp_add: 1288 case Intrinsic::vp_mul: 1289 case Intrinsic::vp_and: 1290 case Intrinsic::vp_or: 1291 case Intrinsic::vp_xor: 1292 case Intrinsic::vp_fadd: 1293 case Intrinsic::vp_fmul: 1294 case Intrinsic::vp_shl: 1295 case Intrinsic::vp_lshr: 1296 case Intrinsic::vp_ashr: 1297 case Intrinsic::vp_udiv: 1298 case Intrinsic::vp_sdiv: 1299 case Intrinsic::vp_urem: 1300 case Intrinsic::vp_srem: 1301 return Operand == 1; 1302 // ... with the exception of vp.sub/vp.fsub/vp.fdiv, which have 1303 // explicit patterns for both LHS and RHS (as 'vr' versions). 1304 case Intrinsic::vp_sub: 1305 case Intrinsic::vp_fsub: 1306 case Intrinsic::vp_fdiv: 1307 return Operand == 0 || Operand == 1; 1308 default: 1309 return false; 1310 } 1311 } 1312 return false; 1313 default: 1314 return false; 1315 } 1316 }; 1317 1318 for (auto OpIdx : enumerate(I->operands())) { 1319 if (!IsSinker(I, OpIdx.index())) 1320 continue; 1321 1322 Instruction *Op = dyn_cast<Instruction>(OpIdx.value().get()); 1323 // Make sure we are not already sinking this operand 1324 if (!Op || any_of(Ops, [&](Use *U) { return U->get() == Op; })) 1325 continue; 1326 1327 // We are looking for a splat that can be sunk. 1328 if (!match(Op, m_Shuffle(m_InsertElt(m_Undef(), m_Value(), m_ZeroInt()), 1329 m_Undef(), m_ZeroMask()))) 1330 continue; 1331 1332 // All uses of the shuffle should be sunk to avoid duplicating it across gpr 1333 // and vector registers 1334 for (Use &U : Op->uses()) { 1335 Instruction *Insn = cast<Instruction>(U.getUser()); 1336 if (!IsSinker(Insn, U.getOperandNo())) 1337 return false; 1338 } 1339 1340 Ops.push_back(&Op->getOperandUse(0)); 1341 Ops.push_back(&OpIdx.value()); 1342 } 1343 return true; 1344 } 1345 1346 bool RISCVTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 1347 bool ForCodeSize) const { 1348 // FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin. 1349 if (VT == MVT::f16 && !Subtarget.hasStdExtZfh()) 1350 return false; 1351 if (VT == MVT::f32 && !Subtarget.hasStdExtF()) 1352 return false; 1353 if (VT == MVT::f64 && !Subtarget.hasStdExtD()) 1354 return false; 1355 return Imm.isZero(); 1356 } 1357 1358 bool RISCVTargetLowering::hasBitPreservingFPLogic(EVT VT) const { 1359 return (VT == MVT::f16 && Subtarget.hasStdExtZfh()) || 1360 (VT == MVT::f32 && Subtarget.hasStdExtF()) || 1361 (VT == MVT::f64 && Subtarget.hasStdExtD()); 1362 } 1363 1364 MVT RISCVTargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context, 1365 CallingConv::ID CC, 1366 EVT VT) const { 1367 // Use f32 to pass f16 if it is legal and Zfh is not enabled. 1368 // We might still end up using a GPR but that will be decided based on ABI. 1369 // FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin. 1370 if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh()) 1371 return MVT::f32; 1372 1373 return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT); 1374 } 1375 1376 unsigned RISCVTargetLowering::getNumRegistersForCallingConv(LLVMContext &Context, 1377 CallingConv::ID CC, 1378 EVT VT) const { 1379 // Use f32 to pass f16 if it is legal and Zfh is not enabled. 1380 // We might still end up using a GPR but that will be decided based on ABI. 1381 // FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin. 1382 if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh()) 1383 return 1; 1384 1385 return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT); 1386 } 1387 1388 // Changes the condition code and swaps operands if necessary, so the SetCC 1389 // operation matches one of the comparisons supported directly by branches 1390 // in the RISC-V ISA. May adjust compares to favor compare with 0 over compare 1391 // with 1/-1. 1392 static void translateSetCCForBranch(const SDLoc &DL, SDValue &LHS, SDValue &RHS, 1393 ISD::CondCode &CC, SelectionDAG &DAG) { 1394 // Convert X > -1 to X >= 0. 1395 if (CC == ISD::SETGT && isAllOnesConstant(RHS)) { 1396 RHS = DAG.getConstant(0, DL, RHS.getValueType()); 1397 CC = ISD::SETGE; 1398 return; 1399 } 1400 // Convert X < 1 to 0 >= X. 1401 if (CC == ISD::SETLT && isOneConstant(RHS)) { 1402 RHS = LHS; 1403 LHS = DAG.getConstant(0, DL, RHS.getValueType()); 1404 CC = ISD::SETGE; 1405 return; 1406 } 1407 1408 switch (CC) { 1409 default: 1410 break; 1411 case ISD::SETGT: 1412 case ISD::SETLE: 1413 case ISD::SETUGT: 1414 case ISD::SETULE: 1415 CC = ISD::getSetCCSwappedOperands(CC); 1416 std::swap(LHS, RHS); 1417 break; 1418 } 1419 } 1420 1421 RISCVII::VLMUL RISCVTargetLowering::getLMUL(MVT VT) { 1422 assert(VT.isScalableVector() && "Expecting a scalable vector type"); 1423 unsigned KnownSize = VT.getSizeInBits().getKnownMinValue(); 1424 if (VT.getVectorElementType() == MVT::i1) 1425 KnownSize *= 8; 1426 1427 switch (KnownSize) { 1428 default: 1429 llvm_unreachable("Invalid LMUL."); 1430 case 8: 1431 return RISCVII::VLMUL::LMUL_F8; 1432 case 16: 1433 return RISCVII::VLMUL::LMUL_F4; 1434 case 32: 1435 return RISCVII::VLMUL::LMUL_F2; 1436 case 64: 1437 return RISCVII::VLMUL::LMUL_1; 1438 case 128: 1439 return RISCVII::VLMUL::LMUL_2; 1440 case 256: 1441 return RISCVII::VLMUL::LMUL_4; 1442 case 512: 1443 return RISCVII::VLMUL::LMUL_8; 1444 } 1445 } 1446 1447 unsigned RISCVTargetLowering::getRegClassIDForLMUL(RISCVII::VLMUL LMul) { 1448 switch (LMul) { 1449 default: 1450 llvm_unreachable("Invalid LMUL."); 1451 case RISCVII::VLMUL::LMUL_F8: 1452 case RISCVII::VLMUL::LMUL_F4: 1453 case RISCVII::VLMUL::LMUL_F2: 1454 case RISCVII::VLMUL::LMUL_1: 1455 return RISCV::VRRegClassID; 1456 case RISCVII::VLMUL::LMUL_2: 1457 return RISCV::VRM2RegClassID; 1458 case RISCVII::VLMUL::LMUL_4: 1459 return RISCV::VRM4RegClassID; 1460 case RISCVII::VLMUL::LMUL_8: 1461 return RISCV::VRM8RegClassID; 1462 } 1463 } 1464 1465 unsigned RISCVTargetLowering::getSubregIndexByMVT(MVT VT, unsigned Index) { 1466 RISCVII::VLMUL LMUL = getLMUL(VT); 1467 if (LMUL == RISCVII::VLMUL::LMUL_F8 || 1468 LMUL == RISCVII::VLMUL::LMUL_F4 || 1469 LMUL == RISCVII::VLMUL::LMUL_F2 || 1470 LMUL == RISCVII::VLMUL::LMUL_1) { 1471 static_assert(RISCV::sub_vrm1_7 == RISCV::sub_vrm1_0 + 7, 1472 "Unexpected subreg numbering"); 1473 return RISCV::sub_vrm1_0 + Index; 1474 } 1475 if (LMUL == RISCVII::VLMUL::LMUL_2) { 1476 static_assert(RISCV::sub_vrm2_3 == RISCV::sub_vrm2_0 + 3, 1477 "Unexpected subreg numbering"); 1478 return RISCV::sub_vrm2_0 + Index; 1479 } 1480 if (LMUL == RISCVII::VLMUL::LMUL_4) { 1481 static_assert(RISCV::sub_vrm4_1 == RISCV::sub_vrm4_0 + 1, 1482 "Unexpected subreg numbering"); 1483 return RISCV::sub_vrm4_0 + Index; 1484 } 1485 llvm_unreachable("Invalid vector type."); 1486 } 1487 1488 unsigned RISCVTargetLowering::getRegClassIDForVecVT(MVT VT) { 1489 if (VT.getVectorElementType() == MVT::i1) 1490 return RISCV::VRRegClassID; 1491 return getRegClassIDForLMUL(getLMUL(VT)); 1492 } 1493 1494 // Attempt to decompose a subvector insert/extract between VecVT and 1495 // SubVecVT via subregister indices. Returns the subregister index that 1496 // can perform the subvector insert/extract with the given element index, as 1497 // well as the index corresponding to any leftover subvectors that must be 1498 // further inserted/extracted within the register class for SubVecVT. 1499 std::pair<unsigned, unsigned> 1500 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( 1501 MVT VecVT, MVT SubVecVT, unsigned InsertExtractIdx, 1502 const RISCVRegisterInfo *TRI) { 1503 static_assert((RISCV::VRM8RegClassID > RISCV::VRM4RegClassID && 1504 RISCV::VRM4RegClassID > RISCV::VRM2RegClassID && 1505 RISCV::VRM2RegClassID > RISCV::VRRegClassID), 1506 "Register classes not ordered"); 1507 unsigned VecRegClassID = getRegClassIDForVecVT(VecVT); 1508 unsigned SubRegClassID = getRegClassIDForVecVT(SubVecVT); 1509 // Try to compose a subregister index that takes us from the incoming 1510 // LMUL>1 register class down to the outgoing one. At each step we half 1511 // the LMUL: 1512 // nxv16i32@12 -> nxv2i32: sub_vrm4_1_then_sub_vrm2_1_then_sub_vrm1_0 1513 // Note that this is not guaranteed to find a subregister index, such as 1514 // when we are extracting from one VR type to another. 1515 unsigned SubRegIdx = RISCV::NoSubRegister; 1516 for (const unsigned RCID : 1517 {RISCV::VRM4RegClassID, RISCV::VRM2RegClassID, RISCV::VRRegClassID}) 1518 if (VecRegClassID > RCID && SubRegClassID <= RCID) { 1519 VecVT = VecVT.getHalfNumVectorElementsVT(); 1520 bool IsHi = 1521 InsertExtractIdx >= VecVT.getVectorElementCount().getKnownMinValue(); 1522 SubRegIdx = TRI->composeSubRegIndices(SubRegIdx, 1523 getSubregIndexByMVT(VecVT, IsHi)); 1524 if (IsHi) 1525 InsertExtractIdx -= VecVT.getVectorElementCount().getKnownMinValue(); 1526 } 1527 return {SubRegIdx, InsertExtractIdx}; 1528 } 1529 1530 // Permit combining of mask vectors as BUILD_VECTOR never expands to scalar 1531 // stores for those types. 1532 bool RISCVTargetLowering::mergeStoresAfterLegalization(EVT VT) const { 1533 return !Subtarget.useRVVForFixedLengthVectors() || 1534 (VT.isFixedLengthVector() && VT.getVectorElementType() == MVT::i1); 1535 } 1536 1537 bool RISCVTargetLowering::isLegalElementTypeForRVV(Type *ScalarTy) const { 1538 if (ScalarTy->isPointerTy()) 1539 return true; 1540 1541 if (ScalarTy->isIntegerTy(8) || ScalarTy->isIntegerTy(16) || 1542 ScalarTy->isIntegerTy(32)) 1543 return true; 1544 1545 if (ScalarTy->isIntegerTy(64)) 1546 return Subtarget.hasVInstructionsI64(); 1547 1548 if (ScalarTy->isHalfTy()) 1549 return Subtarget.hasVInstructionsF16(); 1550 if (ScalarTy->isFloatTy()) 1551 return Subtarget.hasVInstructionsF32(); 1552 if (ScalarTy->isDoubleTy()) 1553 return Subtarget.hasVInstructionsF64(); 1554 1555 return false; 1556 } 1557 1558 static SDValue getVLOperand(SDValue Op) { 1559 assert((Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 1560 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN) && 1561 "Unexpected opcode"); 1562 bool HasChain = Op.getOpcode() == ISD::INTRINSIC_W_CHAIN; 1563 unsigned IntNo = Op.getConstantOperandVal(HasChain ? 1 : 0); 1564 const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II = 1565 RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo); 1566 if (!II) 1567 return SDValue(); 1568 return Op.getOperand(II->VLOperand + 1 + HasChain); 1569 } 1570 1571 static bool useRVVForFixedLengthVectorVT(MVT VT, 1572 const RISCVSubtarget &Subtarget) { 1573 assert(VT.isFixedLengthVector() && "Expected a fixed length vector type!"); 1574 if (!Subtarget.useRVVForFixedLengthVectors()) 1575 return false; 1576 1577 // We only support a set of vector types with a consistent maximum fixed size 1578 // across all supported vector element types to avoid legalization issues. 1579 // Therefore -- since the largest is v1024i8/v512i16/etc -- the largest 1580 // fixed-length vector type we support is 1024 bytes. 1581 if (VT.getFixedSizeInBits() > 1024 * 8) 1582 return false; 1583 1584 unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits(); 1585 1586 MVT EltVT = VT.getVectorElementType(); 1587 1588 // Don't use RVV for vectors we cannot scalarize if required. 1589 switch (EltVT.SimpleTy) { 1590 // i1 is supported but has different rules. 1591 default: 1592 return false; 1593 case MVT::i1: 1594 // Masks can only use a single register. 1595 if (VT.getVectorNumElements() > MinVLen) 1596 return false; 1597 MinVLen /= 8; 1598 break; 1599 case MVT::i8: 1600 case MVT::i16: 1601 case MVT::i32: 1602 break; 1603 case MVT::i64: 1604 if (!Subtarget.hasVInstructionsI64()) 1605 return false; 1606 break; 1607 case MVT::f16: 1608 if (!Subtarget.hasVInstructionsF16()) 1609 return false; 1610 break; 1611 case MVT::f32: 1612 if (!Subtarget.hasVInstructionsF32()) 1613 return false; 1614 break; 1615 case MVT::f64: 1616 if (!Subtarget.hasVInstructionsF64()) 1617 return false; 1618 break; 1619 } 1620 1621 // Reject elements larger than ELEN. 1622 if (EltVT.getSizeInBits() > Subtarget.getMaxELENForFixedLengthVectors()) 1623 return false; 1624 1625 unsigned LMul = divideCeil(VT.getSizeInBits(), MinVLen); 1626 // Don't use RVV for types that don't fit. 1627 if (LMul > Subtarget.getMaxLMULForFixedLengthVectors()) 1628 return false; 1629 1630 // TODO: Perhaps an artificial restriction, but worth having whilst getting 1631 // the base fixed length RVV support in place. 1632 if (!VT.isPow2VectorType()) 1633 return false; 1634 1635 return true; 1636 } 1637 1638 bool RISCVTargetLowering::useRVVForFixedLengthVectorVT(MVT VT) const { 1639 return ::useRVVForFixedLengthVectorVT(VT, Subtarget); 1640 } 1641 1642 // Return the largest legal scalable vector type that matches VT's element type. 1643 static MVT getContainerForFixedLengthVector(const TargetLowering &TLI, MVT VT, 1644 const RISCVSubtarget &Subtarget) { 1645 // This may be called before legal types are setup. 1646 assert(((VT.isFixedLengthVector() && TLI.isTypeLegal(VT)) || 1647 useRVVForFixedLengthVectorVT(VT, Subtarget)) && 1648 "Expected legal fixed length vector!"); 1649 1650 unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits(); 1651 unsigned MaxELen = Subtarget.getMaxELENForFixedLengthVectors(); 1652 1653 MVT EltVT = VT.getVectorElementType(); 1654 switch (EltVT.SimpleTy) { 1655 default: 1656 llvm_unreachable("unexpected element type for RVV container"); 1657 case MVT::i1: 1658 case MVT::i8: 1659 case MVT::i16: 1660 case MVT::i32: 1661 case MVT::i64: 1662 case MVT::f16: 1663 case MVT::f32: 1664 case MVT::f64: { 1665 // We prefer to use LMUL=1 for VLEN sized types. Use fractional lmuls for 1666 // narrower types. The smallest fractional LMUL we support is 8/ELEN. Within 1667 // each fractional LMUL we support SEW between 8 and LMUL*ELEN. 1668 unsigned NumElts = 1669 (VT.getVectorNumElements() * RISCV::RVVBitsPerBlock) / MinVLen; 1670 NumElts = std::max(NumElts, RISCV::RVVBitsPerBlock / MaxELen); 1671 assert(isPowerOf2_32(NumElts) && "Expected power of 2 NumElts"); 1672 return MVT::getScalableVectorVT(EltVT, NumElts); 1673 } 1674 } 1675 } 1676 1677 static MVT getContainerForFixedLengthVector(SelectionDAG &DAG, MVT VT, 1678 const RISCVSubtarget &Subtarget) { 1679 return getContainerForFixedLengthVector(DAG.getTargetLoweringInfo(), VT, 1680 Subtarget); 1681 } 1682 1683 MVT RISCVTargetLowering::getContainerForFixedLengthVector(MVT VT) const { 1684 return ::getContainerForFixedLengthVector(*this, VT, getSubtarget()); 1685 } 1686 1687 // Grow V to consume an entire RVV register. 1688 static SDValue convertToScalableVector(EVT VT, SDValue V, SelectionDAG &DAG, 1689 const RISCVSubtarget &Subtarget) { 1690 assert(VT.isScalableVector() && 1691 "Expected to convert into a scalable vector!"); 1692 assert(V.getValueType().isFixedLengthVector() && 1693 "Expected a fixed length vector operand!"); 1694 SDLoc DL(V); 1695 SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 1696 return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, DAG.getUNDEF(VT), V, Zero); 1697 } 1698 1699 // Shrink V so it's just big enough to maintain a VT's worth of data. 1700 static SDValue convertFromScalableVector(EVT VT, SDValue V, SelectionDAG &DAG, 1701 const RISCVSubtarget &Subtarget) { 1702 assert(VT.isFixedLengthVector() && 1703 "Expected to convert into a fixed length vector!"); 1704 assert(V.getValueType().isScalableVector() && 1705 "Expected a scalable vector operand!"); 1706 SDLoc DL(V); 1707 SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 1708 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V, Zero); 1709 } 1710 1711 // Gets the two common "VL" operands: an all-ones mask and the vector length. 1712 // VecVT is a vector type, either fixed-length or scalable, and ContainerVT is 1713 // the vector type that it is contained in. 1714 static std::pair<SDValue, SDValue> 1715 getDefaultVLOps(MVT VecVT, MVT ContainerVT, SDLoc DL, SelectionDAG &DAG, 1716 const RISCVSubtarget &Subtarget) { 1717 assert(ContainerVT.isScalableVector() && "Expecting scalable container type"); 1718 MVT XLenVT = Subtarget.getXLenVT(); 1719 SDValue VL = VecVT.isFixedLengthVector() 1720 ? DAG.getConstant(VecVT.getVectorNumElements(), DL, XLenVT) 1721 : DAG.getRegister(RISCV::X0, XLenVT); 1722 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 1723 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 1724 return {Mask, VL}; 1725 } 1726 1727 // As above but assuming the given type is a scalable vector type. 1728 static std::pair<SDValue, SDValue> 1729 getDefaultScalableVLOps(MVT VecVT, SDLoc DL, SelectionDAG &DAG, 1730 const RISCVSubtarget &Subtarget) { 1731 assert(VecVT.isScalableVector() && "Expecting a scalable vector"); 1732 return getDefaultVLOps(VecVT, VecVT, DL, DAG, Subtarget); 1733 } 1734 1735 // The state of RVV BUILD_VECTOR and VECTOR_SHUFFLE lowering is that very few 1736 // of either is (currently) supported. This can get us into an infinite loop 1737 // where we try to lower a BUILD_VECTOR as a VECTOR_SHUFFLE as a BUILD_VECTOR 1738 // as a ..., etc. 1739 // Until either (or both) of these can reliably lower any node, reporting that 1740 // we don't want to expand BUILD_VECTORs via VECTOR_SHUFFLEs at least breaks 1741 // the infinite loop. Note that this lowers BUILD_VECTOR through the stack, 1742 // which is not desirable. 1743 bool RISCVTargetLowering::shouldExpandBuildVectorWithShuffles( 1744 EVT VT, unsigned DefinedValues) const { 1745 return false; 1746 } 1747 1748 static SDValue lowerFP_TO_INT_SAT(SDValue Op, SelectionDAG &DAG, 1749 const RISCVSubtarget &Subtarget) { 1750 // RISCV FP-to-int conversions saturate to the destination register size, but 1751 // don't produce 0 for nan. We can use a conversion instruction and fix the 1752 // nan case with a compare and a select. 1753 SDValue Src = Op.getOperand(0); 1754 1755 EVT DstVT = Op.getValueType(); 1756 EVT SatVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1757 1758 bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT_SAT; 1759 unsigned Opc; 1760 if (SatVT == DstVT) 1761 Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU; 1762 else if (DstVT == MVT::i64 && SatVT == MVT::i32) 1763 Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64; 1764 else 1765 return SDValue(); 1766 // FIXME: Support other SatVTs by clamping before or after the conversion. 1767 1768 SDLoc DL(Op); 1769 SDValue FpToInt = DAG.getNode( 1770 Opc, DL, DstVT, Src, 1771 DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, Subtarget.getXLenVT())); 1772 1773 SDValue ZeroInt = DAG.getConstant(0, DL, DstVT); 1774 return DAG.getSelectCC(DL, Src, Src, ZeroInt, FpToInt, ISD::CondCode::SETUO); 1775 } 1776 1777 // Expand vector FTRUNC, FCEIL, and FFLOOR by converting to the integer domain 1778 // and back. Taking care to avoid converting values that are nan or already 1779 // correct. 1780 // TODO: Floor and ceil could be shorter by changing rounding mode, but we don't 1781 // have FRM dependencies modeled yet. 1782 static SDValue lowerFTRUNC_FCEIL_FFLOOR(SDValue Op, SelectionDAG &DAG) { 1783 MVT VT = Op.getSimpleValueType(); 1784 assert(VT.isVector() && "Unexpected type"); 1785 1786 SDLoc DL(Op); 1787 1788 // Freeze the source since we are increasing the number of uses. 1789 SDValue Src = DAG.getFreeze(Op.getOperand(0)); 1790 1791 // Truncate to integer and convert back to FP. 1792 MVT IntVT = VT.changeVectorElementTypeToInteger(); 1793 SDValue Truncated = DAG.getNode(ISD::FP_TO_SINT, DL, IntVT, Src); 1794 Truncated = DAG.getNode(ISD::SINT_TO_FP, DL, VT, Truncated); 1795 1796 MVT SetccVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount()); 1797 1798 if (Op.getOpcode() == ISD::FCEIL) { 1799 // If the truncated value is the greater than or equal to the original 1800 // value, we've computed the ceil. Otherwise, we went the wrong way and 1801 // need to increase by 1. 1802 // FIXME: This should use a masked operation. Handle here or in isel? 1803 SDValue Adjust = DAG.getNode(ISD::FADD, DL, VT, Truncated, 1804 DAG.getConstantFP(1.0, DL, VT)); 1805 SDValue NeedAdjust = DAG.getSetCC(DL, SetccVT, Truncated, Src, ISD::SETOLT); 1806 Truncated = DAG.getSelect(DL, VT, NeedAdjust, Adjust, Truncated); 1807 } else if (Op.getOpcode() == ISD::FFLOOR) { 1808 // If the truncated value is the less than or equal to the original value, 1809 // we've computed the floor. Otherwise, we went the wrong way and need to 1810 // decrease by 1. 1811 // FIXME: This should use a masked operation. Handle here or in isel? 1812 SDValue Adjust = DAG.getNode(ISD::FSUB, DL, VT, Truncated, 1813 DAG.getConstantFP(1.0, DL, VT)); 1814 SDValue NeedAdjust = DAG.getSetCC(DL, SetccVT, Truncated, Src, ISD::SETOGT); 1815 Truncated = DAG.getSelect(DL, VT, NeedAdjust, Adjust, Truncated); 1816 } 1817 1818 // Restore the original sign so that -0.0 is preserved. 1819 Truncated = DAG.getNode(ISD::FCOPYSIGN, DL, VT, Truncated, Src); 1820 1821 // Determine the largest integer that can be represented exactly. This and 1822 // values larger than it don't have any fractional bits so don't need to 1823 // be converted. 1824 const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT); 1825 unsigned Precision = APFloat::semanticsPrecision(FltSem); 1826 APFloat MaxVal = APFloat(FltSem); 1827 MaxVal.convertFromAPInt(APInt::getOneBitSet(Precision, Precision - 1), 1828 /*IsSigned*/ false, APFloat::rmNearestTiesToEven); 1829 SDValue MaxValNode = DAG.getConstantFP(MaxVal, DL, VT); 1830 1831 // If abs(Src) was larger than MaxVal or nan, keep it. 1832 SDValue Abs = DAG.getNode(ISD::FABS, DL, VT, Src); 1833 SDValue Setcc = DAG.getSetCC(DL, SetccVT, Abs, MaxValNode, ISD::SETOLT); 1834 return DAG.getSelect(DL, VT, Setcc, Truncated, Src); 1835 } 1836 1837 // ISD::FROUND is defined to round to nearest with ties rounding away from 0. 1838 // This mode isn't supported in vector hardware on RISCV. But as long as we 1839 // aren't compiling with trapping math, we can emulate this with 1840 // floor(X + copysign(nextafter(0.5, 0.0), X)). 1841 // FIXME: Could be shorter by changing rounding mode, but we don't have FRM 1842 // dependencies modeled yet. 1843 // FIXME: Use masked operations to avoid final merge. 1844 static SDValue lowerFROUND(SDValue Op, SelectionDAG &DAG) { 1845 MVT VT = Op.getSimpleValueType(); 1846 assert(VT.isVector() && "Unexpected type"); 1847 1848 SDLoc DL(Op); 1849 1850 // Freeze the source since we are increasing the number of uses. 1851 SDValue Src = DAG.getFreeze(Op.getOperand(0)); 1852 1853 // We do the conversion on the absolute value and fix the sign at the end. 1854 SDValue Abs = DAG.getNode(ISD::FABS, DL, VT, Src); 1855 1856 const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT); 1857 bool Ignored; 1858 APFloat Point5Pred = APFloat(0.5f); 1859 Point5Pred.convert(FltSem, APFloat::rmNearestTiesToEven, &Ignored); 1860 Point5Pred.next(/*nextDown*/ true); 1861 1862 // Add the adjustment. 1863 SDValue Adjust = DAG.getNode(ISD::FADD, DL, VT, Abs, 1864 DAG.getConstantFP(Point5Pred, DL, VT)); 1865 1866 // Truncate to integer and convert back to fp. 1867 MVT IntVT = VT.changeVectorElementTypeToInteger(); 1868 SDValue Truncated = DAG.getNode(ISD::FP_TO_SINT, DL, IntVT, Adjust); 1869 Truncated = DAG.getNode(ISD::SINT_TO_FP, DL, VT, Truncated); 1870 1871 // Restore the original sign. 1872 Truncated = DAG.getNode(ISD::FCOPYSIGN, DL, VT, Truncated, Src); 1873 1874 // Determine the largest integer that can be represented exactly. This and 1875 // values larger than it don't have any fractional bits so don't need to 1876 // be converted. 1877 unsigned Precision = APFloat::semanticsPrecision(FltSem); 1878 APFloat MaxVal = APFloat(FltSem); 1879 MaxVal.convertFromAPInt(APInt::getOneBitSet(Precision, Precision - 1), 1880 /*IsSigned*/ false, APFloat::rmNearestTiesToEven); 1881 SDValue MaxValNode = DAG.getConstantFP(MaxVal, DL, VT); 1882 1883 // If abs(Src) was larger than MaxVal or nan, keep it. 1884 MVT SetccVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount()); 1885 SDValue Setcc = DAG.getSetCC(DL, SetccVT, Abs, MaxValNode, ISD::SETOLT); 1886 return DAG.getSelect(DL, VT, Setcc, Truncated, Src); 1887 } 1888 1889 struct VIDSequence { 1890 int64_t StepNumerator; 1891 unsigned StepDenominator; 1892 int64_t Addend; 1893 }; 1894 1895 // Try to match an arithmetic-sequence BUILD_VECTOR [X,X+S,X+2*S,...,X+(N-1)*S] 1896 // to the (non-zero) step S and start value X. This can be then lowered as the 1897 // RVV sequence (VID * S) + X, for example. 1898 // The step S is represented as an integer numerator divided by a positive 1899 // denominator. Note that the implementation currently only identifies 1900 // sequences in which either the numerator is +/- 1 or the denominator is 1. It 1901 // cannot detect 2/3, for example. 1902 // Note that this method will also match potentially unappealing index 1903 // sequences, like <i32 0, i32 50939494>, however it is left to the caller to 1904 // determine whether this is worth generating code for. 1905 static Optional<VIDSequence> isSimpleVIDSequence(SDValue Op) { 1906 unsigned NumElts = Op.getNumOperands(); 1907 assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unexpected BUILD_VECTOR"); 1908 if (!Op.getValueType().isInteger()) 1909 return None; 1910 1911 Optional<unsigned> SeqStepDenom; 1912 Optional<int64_t> SeqStepNum, SeqAddend; 1913 Optional<std::pair<uint64_t, unsigned>> PrevElt; 1914 unsigned EltSizeInBits = Op.getValueType().getScalarSizeInBits(); 1915 for (unsigned Idx = 0; Idx < NumElts; Idx++) { 1916 // Assume undef elements match the sequence; we just have to be careful 1917 // when interpolating across them. 1918 if (Op.getOperand(Idx).isUndef()) 1919 continue; 1920 // The BUILD_VECTOR must be all constants. 1921 if (!isa<ConstantSDNode>(Op.getOperand(Idx))) 1922 return None; 1923 1924 uint64_t Val = Op.getConstantOperandVal(Idx) & 1925 maskTrailingOnes<uint64_t>(EltSizeInBits); 1926 1927 if (PrevElt) { 1928 // Calculate the step since the last non-undef element, and ensure 1929 // it's consistent across the entire sequence. 1930 unsigned IdxDiff = Idx - PrevElt->second; 1931 int64_t ValDiff = SignExtend64(Val - PrevElt->first, EltSizeInBits); 1932 1933 // A zero-value value difference means that we're somewhere in the middle 1934 // of a fractional step, e.g. <0,0,0*,0,1,1,1,1>. Wait until we notice a 1935 // step change before evaluating the sequence. 1936 if (ValDiff != 0) { 1937 int64_t Remainder = ValDiff % IdxDiff; 1938 // Normalize the step if it's greater than 1. 1939 if (Remainder != ValDiff) { 1940 // The difference must cleanly divide the element span. 1941 if (Remainder != 0) 1942 return None; 1943 ValDiff /= IdxDiff; 1944 IdxDiff = 1; 1945 } 1946 1947 if (!SeqStepNum) 1948 SeqStepNum = ValDiff; 1949 else if (ValDiff != SeqStepNum) 1950 return None; 1951 1952 if (!SeqStepDenom) 1953 SeqStepDenom = IdxDiff; 1954 else if (IdxDiff != *SeqStepDenom) 1955 return None; 1956 } 1957 } 1958 1959 // Record and/or check any addend. 1960 if (SeqStepNum && SeqStepDenom) { 1961 uint64_t ExpectedVal = 1962 (int64_t)(Idx * (uint64_t)*SeqStepNum) / *SeqStepDenom; 1963 int64_t Addend = SignExtend64(Val - ExpectedVal, EltSizeInBits); 1964 if (!SeqAddend) 1965 SeqAddend = Addend; 1966 else if (SeqAddend != Addend) 1967 return None; 1968 } 1969 1970 // Record this non-undef element for later. 1971 if (!PrevElt || PrevElt->first != Val) 1972 PrevElt = std::make_pair(Val, Idx); 1973 } 1974 // We need to have logged both a step and an addend for this to count as 1975 // a legal index sequence. 1976 if (!SeqStepNum || !SeqStepDenom || !SeqAddend) 1977 return None; 1978 1979 return VIDSequence{*SeqStepNum, *SeqStepDenom, *SeqAddend}; 1980 } 1981 1982 // Match a splatted value (SPLAT_VECTOR/BUILD_VECTOR) of an EXTRACT_VECTOR_ELT 1983 // and lower it as a VRGATHER_VX_VL from the source vector. 1984 static SDValue matchSplatAsGather(SDValue SplatVal, MVT VT, const SDLoc &DL, 1985 SelectionDAG &DAG, 1986 const RISCVSubtarget &Subtarget) { 1987 if (SplatVal.getOpcode() != ISD::EXTRACT_VECTOR_ELT) 1988 return SDValue(); 1989 SDValue Vec = SplatVal.getOperand(0); 1990 // Only perform this optimization on vectors of the same size for simplicity. 1991 if (Vec.getValueType() != VT) 1992 return SDValue(); 1993 SDValue Idx = SplatVal.getOperand(1); 1994 // The index must be a legal type. 1995 if (Idx.getValueType() != Subtarget.getXLenVT()) 1996 return SDValue(); 1997 1998 MVT ContainerVT = VT; 1999 if (VT.isFixedLengthVector()) { 2000 ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 2001 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 2002 } 2003 2004 SDValue Mask, VL; 2005 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 2006 2007 SDValue Gather = DAG.getNode(RISCVISD::VRGATHER_VX_VL, DL, ContainerVT, Vec, 2008 Idx, Mask, VL); 2009 2010 if (!VT.isFixedLengthVector()) 2011 return Gather; 2012 2013 return convertFromScalableVector(VT, Gather, DAG, Subtarget); 2014 } 2015 2016 static SDValue lowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG, 2017 const RISCVSubtarget &Subtarget) { 2018 MVT VT = Op.getSimpleValueType(); 2019 assert(VT.isFixedLengthVector() && "Unexpected vector!"); 2020 2021 MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 2022 2023 SDLoc DL(Op); 2024 SDValue Mask, VL; 2025 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 2026 2027 MVT XLenVT = Subtarget.getXLenVT(); 2028 unsigned NumElts = Op.getNumOperands(); 2029 2030 if (VT.getVectorElementType() == MVT::i1) { 2031 if (ISD::isBuildVectorAllZeros(Op.getNode())) { 2032 SDValue VMClr = DAG.getNode(RISCVISD::VMCLR_VL, DL, ContainerVT, VL); 2033 return convertFromScalableVector(VT, VMClr, DAG, Subtarget); 2034 } 2035 2036 if (ISD::isBuildVectorAllOnes(Op.getNode())) { 2037 SDValue VMSet = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL); 2038 return convertFromScalableVector(VT, VMSet, DAG, Subtarget); 2039 } 2040 2041 // Lower constant mask BUILD_VECTORs via an integer vector type, in 2042 // scalar integer chunks whose bit-width depends on the number of mask 2043 // bits and XLEN. 2044 // First, determine the most appropriate scalar integer type to use. This 2045 // is at most XLenVT, but may be shrunk to a smaller vector element type 2046 // according to the size of the final vector - use i8 chunks rather than 2047 // XLenVT if we're producing a v8i1. This results in more consistent 2048 // codegen across RV32 and RV64. 2049 unsigned NumViaIntegerBits = 2050 std::min(std::max(NumElts, 8u), Subtarget.getXLen()); 2051 NumViaIntegerBits = std::min(NumViaIntegerBits, 2052 Subtarget.getMaxELENForFixedLengthVectors()); 2053 if (ISD::isBuildVectorOfConstantSDNodes(Op.getNode())) { 2054 // If we have to use more than one INSERT_VECTOR_ELT then this 2055 // optimization is likely to increase code size; avoid peforming it in 2056 // such a case. We can use a load from a constant pool in this case. 2057 if (DAG.shouldOptForSize() && NumElts > NumViaIntegerBits) 2058 return SDValue(); 2059 // Now we can create our integer vector type. Note that it may be larger 2060 // than the resulting mask type: v4i1 would use v1i8 as its integer type. 2061 MVT IntegerViaVecVT = 2062 MVT::getVectorVT(MVT::getIntegerVT(NumViaIntegerBits), 2063 divideCeil(NumElts, NumViaIntegerBits)); 2064 2065 uint64_t Bits = 0; 2066 unsigned BitPos = 0, IntegerEltIdx = 0; 2067 SDValue Vec = DAG.getUNDEF(IntegerViaVecVT); 2068 2069 for (unsigned I = 0; I < NumElts; I++, BitPos++) { 2070 // Once we accumulate enough bits to fill our scalar type, insert into 2071 // our vector and clear our accumulated data. 2072 if (I != 0 && I % NumViaIntegerBits == 0) { 2073 if (NumViaIntegerBits <= 32) 2074 Bits = SignExtend64(Bits, 32); 2075 SDValue Elt = DAG.getConstant(Bits, DL, XLenVT); 2076 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec, 2077 Elt, DAG.getConstant(IntegerEltIdx, DL, XLenVT)); 2078 Bits = 0; 2079 BitPos = 0; 2080 IntegerEltIdx++; 2081 } 2082 SDValue V = Op.getOperand(I); 2083 bool BitValue = !V.isUndef() && cast<ConstantSDNode>(V)->getZExtValue(); 2084 Bits |= ((uint64_t)BitValue << BitPos); 2085 } 2086 2087 // Insert the (remaining) scalar value into position in our integer 2088 // vector type. 2089 if (NumViaIntegerBits <= 32) 2090 Bits = SignExtend64(Bits, 32); 2091 SDValue Elt = DAG.getConstant(Bits, DL, XLenVT); 2092 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec, Elt, 2093 DAG.getConstant(IntegerEltIdx, DL, XLenVT)); 2094 2095 if (NumElts < NumViaIntegerBits) { 2096 // If we're producing a smaller vector than our minimum legal integer 2097 // type, bitcast to the equivalent (known-legal) mask type, and extract 2098 // our final mask. 2099 assert(IntegerViaVecVT == MVT::v1i8 && "Unexpected mask vector type"); 2100 Vec = DAG.getBitcast(MVT::v8i1, Vec); 2101 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Vec, 2102 DAG.getConstant(0, DL, XLenVT)); 2103 } else { 2104 // Else we must have produced an integer type with the same size as the 2105 // mask type; bitcast for the final result. 2106 assert(VT.getSizeInBits() == IntegerViaVecVT.getSizeInBits()); 2107 Vec = DAG.getBitcast(VT, Vec); 2108 } 2109 2110 return Vec; 2111 } 2112 2113 // A BUILD_VECTOR can be lowered as a SETCC. For each fixed-length mask 2114 // vector type, we have a legal equivalently-sized i8 type, so we can use 2115 // that. 2116 MVT WideVecVT = VT.changeVectorElementType(MVT::i8); 2117 SDValue VecZero = DAG.getConstant(0, DL, WideVecVT); 2118 2119 SDValue WideVec; 2120 if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) { 2121 // For a splat, perform a scalar truncate before creating the wider 2122 // vector. 2123 assert(Splat.getValueType() == XLenVT && 2124 "Unexpected type for i1 splat value"); 2125 Splat = DAG.getNode(ISD::AND, DL, XLenVT, Splat, 2126 DAG.getConstant(1, DL, XLenVT)); 2127 WideVec = DAG.getSplatBuildVector(WideVecVT, DL, Splat); 2128 } else { 2129 SmallVector<SDValue, 8> Ops(Op->op_values()); 2130 WideVec = DAG.getBuildVector(WideVecVT, DL, Ops); 2131 SDValue VecOne = DAG.getConstant(1, DL, WideVecVT); 2132 WideVec = DAG.getNode(ISD::AND, DL, WideVecVT, WideVec, VecOne); 2133 } 2134 2135 return DAG.getSetCC(DL, VT, WideVec, VecZero, ISD::SETNE); 2136 } 2137 2138 if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) { 2139 if (auto Gather = matchSplatAsGather(Splat, VT, DL, DAG, Subtarget)) 2140 return Gather; 2141 unsigned Opc = VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL 2142 : RISCVISD::VMV_V_X_VL; 2143 Splat = 2144 DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), Splat, VL); 2145 return convertFromScalableVector(VT, Splat, DAG, Subtarget); 2146 } 2147 2148 // Try and match index sequences, which we can lower to the vid instruction 2149 // with optional modifications. An all-undef vector is matched by 2150 // getSplatValue, above. 2151 if (auto SimpleVID = isSimpleVIDSequence(Op)) { 2152 int64_t StepNumerator = SimpleVID->StepNumerator; 2153 unsigned StepDenominator = SimpleVID->StepDenominator; 2154 int64_t Addend = SimpleVID->Addend; 2155 2156 assert(StepNumerator != 0 && "Invalid step"); 2157 bool Negate = false; 2158 int64_t SplatStepVal = StepNumerator; 2159 unsigned StepOpcode = ISD::MUL; 2160 if (StepNumerator != 1) { 2161 if (isPowerOf2_64(std::abs(StepNumerator))) { 2162 Negate = StepNumerator < 0; 2163 StepOpcode = ISD::SHL; 2164 SplatStepVal = Log2_64(std::abs(StepNumerator)); 2165 } 2166 } 2167 2168 // Only emit VIDs with suitably-small steps/addends. We use imm5 is a 2169 // threshold since it's the immediate value many RVV instructions accept. 2170 // There is no vmul.vi instruction so ensure multiply constant can fit in 2171 // a single addi instruction. 2172 if (((StepOpcode == ISD::MUL && isInt<12>(SplatStepVal)) || 2173 (StepOpcode == ISD::SHL && isUInt<5>(SplatStepVal))) && 2174 isPowerOf2_32(StepDenominator) && isInt<5>(Addend)) { 2175 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, ContainerVT, Mask, VL); 2176 // Convert right out of the scalable type so we can use standard ISD 2177 // nodes for the rest of the computation. If we used scalable types with 2178 // these, we'd lose the fixed-length vector info and generate worse 2179 // vsetvli code. 2180 VID = convertFromScalableVector(VT, VID, DAG, Subtarget); 2181 if ((StepOpcode == ISD::MUL && SplatStepVal != 1) || 2182 (StepOpcode == ISD::SHL && SplatStepVal != 0)) { 2183 SDValue SplatStep = DAG.getSplatVector( 2184 VT, DL, DAG.getConstant(SplatStepVal, DL, XLenVT)); 2185 VID = DAG.getNode(StepOpcode, DL, VT, VID, SplatStep); 2186 } 2187 if (StepDenominator != 1) { 2188 SDValue SplatStep = DAG.getSplatVector( 2189 VT, DL, DAG.getConstant(Log2_64(StepDenominator), DL, XLenVT)); 2190 VID = DAG.getNode(ISD::SRL, DL, VT, VID, SplatStep); 2191 } 2192 if (Addend != 0 || Negate) { 2193 SDValue SplatAddend = 2194 DAG.getSplatVector(VT, DL, DAG.getConstant(Addend, DL, XLenVT)); 2195 VID = DAG.getNode(Negate ? ISD::SUB : ISD::ADD, DL, VT, SplatAddend, VID); 2196 } 2197 return VID; 2198 } 2199 } 2200 2201 // Attempt to detect "hidden" splats, which only reveal themselves as splats 2202 // when re-interpreted as a vector with a larger element type. For example, 2203 // v4i16 = build_vector i16 0, i16 1, i16 0, i16 1 2204 // could be instead splat as 2205 // v2i32 = build_vector i32 0x00010000, i32 0x00010000 2206 // TODO: This optimization could also work on non-constant splats, but it 2207 // would require bit-manipulation instructions to construct the splat value. 2208 SmallVector<SDValue> Sequence; 2209 unsigned EltBitSize = VT.getScalarSizeInBits(); 2210 const auto *BV = cast<BuildVectorSDNode>(Op); 2211 if (VT.isInteger() && EltBitSize < 64 && 2212 ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) && 2213 BV->getRepeatedSequence(Sequence) && 2214 (Sequence.size() * EltBitSize) <= 64) { 2215 unsigned SeqLen = Sequence.size(); 2216 MVT ViaIntVT = MVT::getIntegerVT(EltBitSize * SeqLen); 2217 MVT ViaVecVT = MVT::getVectorVT(ViaIntVT, NumElts / SeqLen); 2218 assert((ViaIntVT == MVT::i16 || ViaIntVT == MVT::i32 || 2219 ViaIntVT == MVT::i64) && 2220 "Unexpected sequence type"); 2221 2222 unsigned EltIdx = 0; 2223 uint64_t EltMask = maskTrailingOnes<uint64_t>(EltBitSize); 2224 uint64_t SplatValue = 0; 2225 // Construct the amalgamated value which can be splatted as this larger 2226 // vector type. 2227 for (const auto &SeqV : Sequence) { 2228 if (!SeqV.isUndef()) 2229 SplatValue |= ((cast<ConstantSDNode>(SeqV)->getZExtValue() & EltMask) 2230 << (EltIdx * EltBitSize)); 2231 EltIdx++; 2232 } 2233 2234 // On RV64, sign-extend from 32 to 64 bits where possible in order to 2235 // achieve better constant materializion. 2236 if (Subtarget.is64Bit() && ViaIntVT == MVT::i32) 2237 SplatValue = SignExtend64(SplatValue, 32); 2238 2239 // Since we can't introduce illegal i64 types at this stage, we can only 2240 // perform an i64 splat on RV32 if it is its own sign-extended value. That 2241 // way we can use RVV instructions to splat. 2242 assert((ViaIntVT.bitsLE(XLenVT) || 2243 (!Subtarget.is64Bit() && ViaIntVT == MVT::i64)) && 2244 "Unexpected bitcast sequence"); 2245 if (ViaIntVT.bitsLE(XLenVT) || isInt<32>(SplatValue)) { 2246 SDValue ViaVL = 2247 DAG.getConstant(ViaVecVT.getVectorNumElements(), DL, XLenVT); 2248 MVT ViaContainerVT = 2249 getContainerForFixedLengthVector(DAG, ViaVecVT, Subtarget); 2250 SDValue Splat = 2251 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ViaContainerVT, 2252 DAG.getUNDEF(ViaContainerVT), 2253 DAG.getConstant(SplatValue, DL, XLenVT), ViaVL); 2254 Splat = convertFromScalableVector(ViaVecVT, Splat, DAG, Subtarget); 2255 return DAG.getBitcast(VT, Splat); 2256 } 2257 } 2258 2259 // Try and optimize BUILD_VECTORs with "dominant values" - these are values 2260 // which constitute a large proportion of the elements. In such cases we can 2261 // splat a vector with the dominant element and make up the shortfall with 2262 // INSERT_VECTOR_ELTs. 2263 // Note that this includes vectors of 2 elements by association. The 2264 // upper-most element is the "dominant" one, allowing us to use a splat to 2265 // "insert" the upper element, and an insert of the lower element at position 2266 // 0, which improves codegen. 2267 SDValue DominantValue; 2268 unsigned MostCommonCount = 0; 2269 DenseMap<SDValue, unsigned> ValueCounts; 2270 unsigned NumUndefElts = 2271 count_if(Op->op_values(), [](const SDValue &V) { return V.isUndef(); }); 2272 2273 // Track the number of scalar loads we know we'd be inserting, estimated as 2274 // any non-zero floating-point constant. Other kinds of element are either 2275 // already in registers or are materialized on demand. The threshold at which 2276 // a vector load is more desirable than several scalar materializion and 2277 // vector-insertion instructions is not known. 2278 unsigned NumScalarLoads = 0; 2279 2280 for (SDValue V : Op->op_values()) { 2281 if (V.isUndef()) 2282 continue; 2283 2284 ValueCounts.insert(std::make_pair(V, 0)); 2285 unsigned &Count = ValueCounts[V]; 2286 2287 if (auto *CFP = dyn_cast<ConstantFPSDNode>(V)) 2288 NumScalarLoads += !CFP->isExactlyValue(+0.0); 2289 2290 // Is this value dominant? In case of a tie, prefer the highest element as 2291 // it's cheaper to insert near the beginning of a vector than it is at the 2292 // end. 2293 if (++Count >= MostCommonCount) { 2294 DominantValue = V; 2295 MostCommonCount = Count; 2296 } 2297 } 2298 2299 assert(DominantValue && "Not expecting an all-undef BUILD_VECTOR"); 2300 unsigned NumDefElts = NumElts - NumUndefElts; 2301 unsigned DominantValueCountThreshold = NumDefElts <= 2 ? 0 : NumDefElts - 2; 2302 2303 // Don't perform this optimization when optimizing for size, since 2304 // materializing elements and inserting them tends to cause code bloat. 2305 if (!DAG.shouldOptForSize() && NumScalarLoads < NumElts && 2306 ((MostCommonCount > DominantValueCountThreshold) || 2307 (ValueCounts.size() <= Log2_32(NumDefElts)))) { 2308 // Start by splatting the most common element. 2309 SDValue Vec = DAG.getSplatBuildVector(VT, DL, DominantValue); 2310 2311 DenseSet<SDValue> Processed{DominantValue}; 2312 MVT SelMaskTy = VT.changeVectorElementType(MVT::i1); 2313 for (const auto &OpIdx : enumerate(Op->ops())) { 2314 const SDValue &V = OpIdx.value(); 2315 if (V.isUndef() || !Processed.insert(V).second) 2316 continue; 2317 if (ValueCounts[V] == 1) { 2318 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Vec, V, 2319 DAG.getConstant(OpIdx.index(), DL, XLenVT)); 2320 } else { 2321 // Blend in all instances of this value using a VSELECT, using a 2322 // mask where each bit signals whether that element is the one 2323 // we're after. 2324 SmallVector<SDValue> Ops; 2325 transform(Op->op_values(), std::back_inserter(Ops), [&](SDValue V1) { 2326 return DAG.getConstant(V == V1, DL, XLenVT); 2327 }); 2328 Vec = DAG.getNode(ISD::VSELECT, DL, VT, 2329 DAG.getBuildVector(SelMaskTy, DL, Ops), 2330 DAG.getSplatBuildVector(VT, DL, V), Vec); 2331 } 2332 } 2333 2334 return Vec; 2335 } 2336 2337 return SDValue(); 2338 } 2339 2340 static SDValue splatPartsI64WithVL(const SDLoc &DL, MVT VT, SDValue Passthru, 2341 SDValue Lo, SDValue Hi, SDValue VL, 2342 SelectionDAG &DAG) { 2343 bool HasPassthru = Passthru && !Passthru.isUndef(); 2344 if (!HasPassthru && !Passthru) 2345 Passthru = DAG.getUNDEF(VT); 2346 if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) { 2347 int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue(); 2348 int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue(); 2349 // If Hi constant is all the same sign bit as Lo, lower this as a custom 2350 // node in order to try and match RVV vector/scalar instructions. 2351 if ((LoC >> 31) == HiC) 2352 return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Passthru, Lo, VL); 2353 2354 // If vl is equal to XLEN_MAX and Hi constant is equal to Lo, we could use 2355 // vmv.v.x whose EEW = 32 to lower it. 2356 auto *Const = dyn_cast<ConstantSDNode>(VL); 2357 if (LoC == HiC && Const && Const->isAllOnesValue()) { 2358 MVT InterVT = MVT::getVectorVT(MVT::i32, VT.getVectorElementCount() * 2); 2359 // TODO: if vl <= min(VLMAX), we can also do this. But we could not 2360 // access the subtarget here now. 2361 auto InterVec = DAG.getNode( 2362 RISCVISD::VMV_V_X_VL, DL, InterVT, DAG.getUNDEF(InterVT), Lo, 2363 DAG.getRegister(RISCV::X0, MVT::i32)); 2364 return DAG.getNode(ISD::BITCAST, DL, VT, InterVec); 2365 } 2366 } 2367 2368 // Fall back to a stack store and stride x0 vector load. 2369 return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VT, Passthru, Lo, 2370 Hi, VL); 2371 } 2372 2373 // Called by type legalization to handle splat of i64 on RV32. 2374 // FIXME: We can optimize this when the type has sign or zero bits in one 2375 // of the halves. 2376 static SDValue splatSplitI64WithVL(const SDLoc &DL, MVT VT, SDValue Passthru, 2377 SDValue Scalar, SDValue VL, 2378 SelectionDAG &DAG) { 2379 assert(Scalar.getValueType() == MVT::i64 && "Unexpected VT!"); 2380 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 2381 DAG.getConstant(0, DL, MVT::i32)); 2382 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 2383 DAG.getConstant(1, DL, MVT::i32)); 2384 return splatPartsI64WithVL(DL, VT, Passthru, Lo, Hi, VL, DAG); 2385 } 2386 2387 // This function lowers a splat of a scalar operand Splat with the vector 2388 // length VL. It ensures the final sequence is type legal, which is useful when 2389 // lowering a splat after type legalization. 2390 static SDValue lowerScalarSplat(SDValue Passthru, SDValue Scalar, SDValue VL, 2391 MVT VT, SDLoc DL, SelectionDAG &DAG, 2392 const RISCVSubtarget &Subtarget) { 2393 bool HasPassthru = Passthru && !Passthru.isUndef(); 2394 if (!HasPassthru && !Passthru) 2395 Passthru = DAG.getUNDEF(VT); 2396 if (VT.isFloatingPoint()) { 2397 // If VL is 1, we could use vfmv.s.f. 2398 if (isOneConstant(VL)) 2399 return DAG.getNode(RISCVISD::VFMV_S_F_VL, DL, VT, Passthru, Scalar, VL); 2400 return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, VT, Passthru, Scalar, VL); 2401 } 2402 2403 MVT XLenVT = Subtarget.getXLenVT(); 2404 2405 // Simplest case is that the operand needs to be promoted to XLenVT. 2406 if (Scalar.getValueType().bitsLE(XLenVT)) { 2407 // If the operand is a constant, sign extend to increase our chances 2408 // of being able to use a .vi instruction. ANY_EXTEND would become a 2409 // a zero extend and the simm5 check in isel would fail. 2410 // FIXME: Should we ignore the upper bits in isel instead? 2411 unsigned ExtOpc = 2412 isa<ConstantSDNode>(Scalar) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND; 2413 Scalar = DAG.getNode(ExtOpc, DL, XLenVT, Scalar); 2414 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Scalar); 2415 // If VL is 1 and the scalar value won't benefit from immediate, we could 2416 // use vmv.s.x. 2417 if (isOneConstant(VL) && 2418 (!Const || isNullConstant(Scalar) || !isInt<5>(Const->getSExtValue()))) 2419 return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, VT, Passthru, Scalar, VL); 2420 return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Passthru, Scalar, VL); 2421 } 2422 2423 assert(XLenVT == MVT::i32 && Scalar.getValueType() == MVT::i64 && 2424 "Unexpected scalar for splat lowering!"); 2425 2426 if (isOneConstant(VL) && isNullConstant(Scalar)) 2427 return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, VT, Passthru, 2428 DAG.getConstant(0, DL, XLenVT), VL); 2429 2430 // Otherwise use the more complicated splatting algorithm. 2431 return splatSplitI64WithVL(DL, VT, Passthru, Scalar, VL, DAG); 2432 } 2433 2434 static bool isInterleaveShuffle(ArrayRef<int> Mask, MVT VT, bool &SwapSources, 2435 const RISCVSubtarget &Subtarget) { 2436 // We need to be able to widen elements to the next larger integer type. 2437 if (VT.getScalarSizeInBits() >= Subtarget.getMaxELENForFixedLengthVectors()) 2438 return false; 2439 2440 int Size = Mask.size(); 2441 assert(Size == (int)VT.getVectorNumElements() && "Unexpected mask size"); 2442 2443 int Srcs[] = {-1, -1}; 2444 for (int i = 0; i != Size; ++i) { 2445 // Ignore undef elements. 2446 if (Mask[i] < 0) 2447 continue; 2448 2449 // Is this an even or odd element. 2450 int Pol = i % 2; 2451 2452 // Ensure we consistently use the same source for this element polarity. 2453 int Src = Mask[i] / Size; 2454 if (Srcs[Pol] < 0) 2455 Srcs[Pol] = Src; 2456 if (Srcs[Pol] != Src) 2457 return false; 2458 2459 // Make sure the element within the source is appropriate for this element 2460 // in the destination. 2461 int Elt = Mask[i] % Size; 2462 if (Elt != i / 2) 2463 return false; 2464 } 2465 2466 // We need to find a source for each polarity and they can't be the same. 2467 if (Srcs[0] < 0 || Srcs[1] < 0 || Srcs[0] == Srcs[1]) 2468 return false; 2469 2470 // Swap the sources if the second source was in the even polarity. 2471 SwapSources = Srcs[0] > Srcs[1]; 2472 2473 return true; 2474 } 2475 2476 /// Match shuffles that concatenate two vectors, rotate the concatenation, 2477 /// and then extract the original number of elements from the rotated result. 2478 /// This is equivalent to vector.splice or X86's PALIGNR instruction. The 2479 /// returned rotation amount is for a rotate right, where elements move from 2480 /// higher elements to lower elements. \p LoSrc indicates the first source 2481 /// vector of the rotate or -1 for undef. \p HiSrc indicates the second vector 2482 /// of the rotate or -1 for undef. At least one of \p LoSrc and \p HiSrc will be 2483 /// 0 or 1 if a rotation is found. 2484 /// 2485 /// NOTE: We talk about rotate to the right which matches how bit shift and 2486 /// rotate instructions are described where LSBs are on the right, but LLVM IR 2487 /// and the table below write vectors with the lowest elements on the left. 2488 static int isElementRotate(int &LoSrc, int &HiSrc, ArrayRef<int> Mask) { 2489 int Size = Mask.size(); 2490 2491 // We need to detect various ways of spelling a rotation: 2492 // [11, 12, 13, 14, 15, 0, 1, 2] 2493 // [-1, 12, 13, 14, -1, -1, 1, -1] 2494 // [-1, -1, -1, -1, -1, -1, 1, 2] 2495 // [ 3, 4, 5, 6, 7, 8, 9, 10] 2496 // [-1, 4, 5, 6, -1, -1, 9, -1] 2497 // [-1, 4, 5, 6, -1, -1, -1, -1] 2498 int Rotation = 0; 2499 LoSrc = -1; 2500 HiSrc = -1; 2501 for (int i = 0; i != Size; ++i) { 2502 int M = Mask[i]; 2503 if (M < 0) 2504 continue; 2505 2506 // Determine where a rotate vector would have started. 2507 int StartIdx = i - (M % Size); 2508 // The identity rotation isn't interesting, stop. 2509 if (StartIdx == 0) 2510 return -1; 2511 2512 // If we found the tail of a vector the rotation must be the missing 2513 // front. If we found the head of a vector, it must be how much of the 2514 // head. 2515 int CandidateRotation = StartIdx < 0 ? -StartIdx : Size - StartIdx; 2516 2517 if (Rotation == 0) 2518 Rotation = CandidateRotation; 2519 else if (Rotation != CandidateRotation) 2520 // The rotations don't match, so we can't match this mask. 2521 return -1; 2522 2523 // Compute which value this mask is pointing at. 2524 int MaskSrc = M < Size ? 0 : 1; 2525 2526 // Compute which of the two target values this index should be assigned to. 2527 // This reflects whether the high elements are remaining or the low elemnts 2528 // are remaining. 2529 int &TargetSrc = StartIdx < 0 ? HiSrc : LoSrc; 2530 2531 // Either set up this value if we've not encountered it before, or check 2532 // that it remains consistent. 2533 if (TargetSrc < 0) 2534 TargetSrc = MaskSrc; 2535 else if (TargetSrc != MaskSrc) 2536 // This may be a rotation, but it pulls from the inputs in some 2537 // unsupported interleaving. 2538 return -1; 2539 } 2540 2541 // Check that we successfully analyzed the mask, and normalize the results. 2542 assert(Rotation != 0 && "Failed to locate a viable rotation!"); 2543 assert((LoSrc >= 0 || HiSrc >= 0) && 2544 "Failed to find a rotated input vector!"); 2545 2546 return Rotation; 2547 } 2548 2549 static SDValue lowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG, 2550 const RISCVSubtarget &Subtarget) { 2551 SDValue V1 = Op.getOperand(0); 2552 SDValue V2 = Op.getOperand(1); 2553 SDLoc DL(Op); 2554 MVT XLenVT = Subtarget.getXLenVT(); 2555 MVT VT = Op.getSimpleValueType(); 2556 unsigned NumElts = VT.getVectorNumElements(); 2557 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode()); 2558 2559 MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 2560 2561 SDValue TrueMask, VL; 2562 std::tie(TrueMask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 2563 2564 if (SVN->isSplat()) { 2565 const int Lane = SVN->getSplatIndex(); 2566 if (Lane >= 0) { 2567 MVT SVT = VT.getVectorElementType(); 2568 2569 // Turn splatted vector load into a strided load with an X0 stride. 2570 SDValue V = V1; 2571 // Peek through CONCAT_VECTORS as VectorCombine can concat a vector 2572 // with undef. 2573 // FIXME: Peek through INSERT_SUBVECTOR, EXTRACT_SUBVECTOR, bitcasts? 2574 int Offset = Lane; 2575 if (V.getOpcode() == ISD::CONCAT_VECTORS) { 2576 int OpElements = 2577 V.getOperand(0).getSimpleValueType().getVectorNumElements(); 2578 V = V.getOperand(Offset / OpElements); 2579 Offset %= OpElements; 2580 } 2581 2582 // We need to ensure the load isn't atomic or volatile. 2583 if (ISD::isNormalLoad(V.getNode()) && cast<LoadSDNode>(V)->isSimple()) { 2584 auto *Ld = cast<LoadSDNode>(V); 2585 Offset *= SVT.getStoreSize(); 2586 SDValue NewAddr = DAG.getMemBasePlusOffset(Ld->getBasePtr(), 2587 TypeSize::Fixed(Offset), DL); 2588 2589 // If this is SEW=64 on RV32, use a strided load with a stride of x0. 2590 if (SVT.isInteger() && SVT.bitsGT(XLenVT)) { 2591 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 2592 SDValue IntID = 2593 DAG.getTargetConstant(Intrinsic::riscv_vlse, DL, XLenVT); 2594 SDValue Ops[] = {Ld->getChain(), 2595 IntID, 2596 DAG.getUNDEF(ContainerVT), 2597 NewAddr, 2598 DAG.getRegister(RISCV::X0, XLenVT), 2599 VL}; 2600 SDValue NewLoad = DAG.getMemIntrinsicNode( 2601 ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, SVT, 2602 DAG.getMachineFunction().getMachineMemOperand( 2603 Ld->getMemOperand(), Offset, SVT.getStoreSize())); 2604 DAG.makeEquivalentMemoryOrdering(Ld, NewLoad); 2605 return convertFromScalableVector(VT, NewLoad, DAG, Subtarget); 2606 } 2607 2608 // Otherwise use a scalar load and splat. This will give the best 2609 // opportunity to fold a splat into the operation. ISel can turn it into 2610 // the x0 strided load if we aren't able to fold away the select. 2611 if (SVT.isFloatingPoint()) 2612 V = DAG.getLoad(SVT, DL, Ld->getChain(), NewAddr, 2613 Ld->getPointerInfo().getWithOffset(Offset), 2614 Ld->getOriginalAlign(), 2615 Ld->getMemOperand()->getFlags()); 2616 else 2617 V = DAG.getExtLoad(ISD::SEXTLOAD, DL, XLenVT, Ld->getChain(), NewAddr, 2618 Ld->getPointerInfo().getWithOffset(Offset), SVT, 2619 Ld->getOriginalAlign(), 2620 Ld->getMemOperand()->getFlags()); 2621 DAG.makeEquivalentMemoryOrdering(Ld, V); 2622 2623 unsigned Opc = 2624 VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL : RISCVISD::VMV_V_X_VL; 2625 SDValue Splat = 2626 DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), V, VL); 2627 return convertFromScalableVector(VT, Splat, DAG, Subtarget); 2628 } 2629 2630 V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget); 2631 assert(Lane < (int)NumElts && "Unexpected lane!"); 2632 SDValue Gather = 2633 DAG.getNode(RISCVISD::VRGATHER_VX_VL, DL, ContainerVT, V1, 2634 DAG.getConstant(Lane, DL, XLenVT), TrueMask, VL); 2635 return convertFromScalableVector(VT, Gather, DAG, Subtarget); 2636 } 2637 } 2638 2639 ArrayRef<int> Mask = SVN->getMask(); 2640 2641 // Lower rotations to a SLIDEDOWN and a SLIDEUP. One of the source vectors may 2642 // be undef which can be handled with a single SLIDEDOWN/UP. 2643 int LoSrc, HiSrc; 2644 int Rotation = isElementRotate(LoSrc, HiSrc, Mask); 2645 if (Rotation > 0) { 2646 SDValue LoV, HiV; 2647 if (LoSrc >= 0) { 2648 LoV = LoSrc == 0 ? V1 : V2; 2649 LoV = convertToScalableVector(ContainerVT, LoV, DAG, Subtarget); 2650 } 2651 if (HiSrc >= 0) { 2652 HiV = HiSrc == 0 ? V1 : V2; 2653 HiV = convertToScalableVector(ContainerVT, HiV, DAG, Subtarget); 2654 } 2655 2656 // We found a rotation. We need to slide HiV down by Rotation. Then we need 2657 // to slide LoV up by (NumElts - Rotation). 2658 unsigned InvRotate = NumElts - Rotation; 2659 2660 SDValue Res = DAG.getUNDEF(ContainerVT); 2661 if (HiV) { 2662 // If we are doing a SLIDEDOWN+SLIDEUP, reduce the VL for the SLIDEDOWN. 2663 // FIXME: If we are only doing a SLIDEDOWN, don't reduce the VL as it 2664 // causes multiple vsetvlis in some test cases such as lowering 2665 // reduce.mul 2666 SDValue DownVL = VL; 2667 if (LoV) 2668 DownVL = DAG.getConstant(InvRotate, DL, XLenVT); 2669 Res = 2670 DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, Res, HiV, 2671 DAG.getConstant(Rotation, DL, XLenVT), TrueMask, DownVL); 2672 } 2673 if (LoV) 2674 Res = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Res, LoV, 2675 DAG.getConstant(InvRotate, DL, XLenVT), TrueMask, VL); 2676 2677 return convertFromScalableVector(VT, Res, DAG, Subtarget); 2678 } 2679 2680 // Detect an interleave shuffle and lower to 2681 // (vmaccu.vx (vwaddu.vx lohalf(V1), lohalf(V2)), lohalf(V2), (2^eltbits - 1)) 2682 bool SwapSources; 2683 if (isInterleaveShuffle(Mask, VT, SwapSources, Subtarget)) { 2684 // Swap sources if needed. 2685 if (SwapSources) 2686 std::swap(V1, V2); 2687 2688 // Extract the lower half of the vectors. 2689 MVT HalfVT = VT.getHalfNumVectorElementsVT(); 2690 V1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, V1, 2691 DAG.getConstant(0, DL, XLenVT)); 2692 V2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, V2, 2693 DAG.getConstant(0, DL, XLenVT)); 2694 2695 // Double the element width and halve the number of elements in an int type. 2696 unsigned EltBits = VT.getScalarSizeInBits(); 2697 MVT WideIntEltVT = MVT::getIntegerVT(EltBits * 2); 2698 MVT WideIntVT = 2699 MVT::getVectorVT(WideIntEltVT, VT.getVectorNumElements() / 2); 2700 // Convert this to a scalable vector. We need to base this on the 2701 // destination size to ensure there's always a type with a smaller LMUL. 2702 MVT WideIntContainerVT = 2703 getContainerForFixedLengthVector(DAG, WideIntVT, Subtarget); 2704 2705 // Convert sources to scalable vectors with the same element count as the 2706 // larger type. 2707 MVT HalfContainerVT = MVT::getVectorVT( 2708 VT.getVectorElementType(), WideIntContainerVT.getVectorElementCount()); 2709 V1 = convertToScalableVector(HalfContainerVT, V1, DAG, Subtarget); 2710 V2 = convertToScalableVector(HalfContainerVT, V2, DAG, Subtarget); 2711 2712 // Cast sources to integer. 2713 MVT IntEltVT = MVT::getIntegerVT(EltBits); 2714 MVT IntHalfVT = 2715 MVT::getVectorVT(IntEltVT, HalfContainerVT.getVectorElementCount()); 2716 V1 = DAG.getBitcast(IntHalfVT, V1); 2717 V2 = DAG.getBitcast(IntHalfVT, V2); 2718 2719 // Freeze V2 since we use it twice and we need to be sure that the add and 2720 // multiply see the same value. 2721 V2 = DAG.getFreeze(V2); 2722 2723 // Recreate TrueMask using the widened type's element count. 2724 MVT MaskVT = 2725 MVT::getVectorVT(MVT::i1, HalfContainerVT.getVectorElementCount()); 2726 TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 2727 2728 // Widen V1 and V2 with 0s and add one copy of V2 to V1. 2729 SDValue Add = DAG.getNode(RISCVISD::VWADDU_VL, DL, WideIntContainerVT, V1, 2730 V2, TrueMask, VL); 2731 // Create 2^eltbits - 1 copies of V2 by multiplying by the largest integer. 2732 SDValue Multiplier = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, IntHalfVT, 2733 DAG.getUNDEF(IntHalfVT), 2734 DAG.getAllOnesConstant(DL, XLenVT)); 2735 SDValue WidenMul = DAG.getNode(RISCVISD::VWMULU_VL, DL, WideIntContainerVT, 2736 V2, Multiplier, TrueMask, VL); 2737 // Add the new copies to our previous addition giving us 2^eltbits copies of 2738 // V2. This is equivalent to shifting V2 left by eltbits. This should 2739 // combine with the vwmulu.vv above to form vwmaccu.vv. 2740 Add = DAG.getNode(RISCVISD::ADD_VL, DL, WideIntContainerVT, Add, WidenMul, 2741 TrueMask, VL); 2742 // Cast back to ContainerVT. We need to re-create a new ContainerVT in case 2743 // WideIntContainerVT is a larger fractional LMUL than implied by the fixed 2744 // vector VT. 2745 ContainerVT = 2746 MVT::getVectorVT(VT.getVectorElementType(), 2747 WideIntContainerVT.getVectorElementCount() * 2); 2748 Add = DAG.getBitcast(ContainerVT, Add); 2749 return convertFromScalableVector(VT, Add, DAG, Subtarget); 2750 } 2751 2752 // Detect shuffles which can be re-expressed as vector selects; these are 2753 // shuffles in which each element in the destination is taken from an element 2754 // at the corresponding index in either source vectors. 2755 bool IsSelect = all_of(enumerate(Mask), [&](const auto &MaskIdx) { 2756 int MaskIndex = MaskIdx.value(); 2757 return MaskIndex < 0 || MaskIdx.index() == (unsigned)MaskIndex % NumElts; 2758 }); 2759 2760 assert(!V1.isUndef() && "Unexpected shuffle canonicalization"); 2761 2762 SmallVector<SDValue> MaskVals; 2763 // As a backup, shuffles can be lowered via a vrgather instruction, possibly 2764 // merged with a second vrgather. 2765 SmallVector<SDValue> GatherIndicesLHS, GatherIndicesRHS; 2766 2767 // By default we preserve the original operand order, and use a mask to 2768 // select LHS as true and RHS as false. However, since RVV vector selects may 2769 // feature splats but only on the LHS, we may choose to invert our mask and 2770 // instead select between RHS and LHS. 2771 bool SwapOps = DAG.isSplatValue(V2) && !DAG.isSplatValue(V1); 2772 bool InvertMask = IsSelect == SwapOps; 2773 2774 // Keep a track of which non-undef indices are used by each LHS/RHS shuffle 2775 // half. 2776 DenseMap<int, unsigned> LHSIndexCounts, RHSIndexCounts; 2777 2778 // Now construct the mask that will be used by the vselect or blended 2779 // vrgather operation. For vrgathers, construct the appropriate indices into 2780 // each vector. 2781 for (int MaskIndex : Mask) { 2782 bool SelectMaskVal = (MaskIndex < (int)NumElts) ^ InvertMask; 2783 MaskVals.push_back(DAG.getConstant(SelectMaskVal, DL, XLenVT)); 2784 if (!IsSelect) { 2785 bool IsLHSOrUndefIndex = MaskIndex < (int)NumElts; 2786 GatherIndicesLHS.push_back(IsLHSOrUndefIndex && MaskIndex >= 0 2787 ? DAG.getConstant(MaskIndex, DL, XLenVT) 2788 : DAG.getUNDEF(XLenVT)); 2789 GatherIndicesRHS.push_back( 2790 IsLHSOrUndefIndex ? DAG.getUNDEF(XLenVT) 2791 : DAG.getConstant(MaskIndex - NumElts, DL, XLenVT)); 2792 if (IsLHSOrUndefIndex && MaskIndex >= 0) 2793 ++LHSIndexCounts[MaskIndex]; 2794 if (!IsLHSOrUndefIndex) 2795 ++RHSIndexCounts[MaskIndex - NumElts]; 2796 } 2797 } 2798 2799 if (SwapOps) { 2800 std::swap(V1, V2); 2801 std::swap(GatherIndicesLHS, GatherIndicesRHS); 2802 } 2803 2804 assert(MaskVals.size() == NumElts && "Unexpected select-like shuffle"); 2805 MVT MaskVT = MVT::getVectorVT(MVT::i1, NumElts); 2806 SDValue SelectMask = DAG.getBuildVector(MaskVT, DL, MaskVals); 2807 2808 if (IsSelect) 2809 return DAG.getNode(ISD::VSELECT, DL, VT, SelectMask, V1, V2); 2810 2811 if (VT.getScalarSizeInBits() == 8 && VT.getVectorNumElements() > 256) { 2812 // On such a large vector we're unable to use i8 as the index type. 2813 // FIXME: We could promote the index to i16 and use vrgatherei16, but that 2814 // may involve vector splitting if we're already at LMUL=8, or our 2815 // user-supplied maximum fixed-length LMUL. 2816 return SDValue(); 2817 } 2818 2819 unsigned GatherVXOpc = RISCVISD::VRGATHER_VX_VL; 2820 unsigned GatherVVOpc = RISCVISD::VRGATHER_VV_VL; 2821 MVT IndexVT = VT.changeTypeToInteger(); 2822 // Since we can't introduce illegal index types at this stage, use i16 and 2823 // vrgatherei16 if the corresponding index type for plain vrgather is greater 2824 // than XLenVT. 2825 if (IndexVT.getScalarType().bitsGT(XLenVT)) { 2826 GatherVVOpc = RISCVISD::VRGATHEREI16_VV_VL; 2827 IndexVT = IndexVT.changeVectorElementType(MVT::i16); 2828 } 2829 2830 MVT IndexContainerVT = 2831 ContainerVT.changeVectorElementType(IndexVT.getScalarType()); 2832 2833 SDValue Gather; 2834 // TODO: This doesn't trigger for i64 vectors on RV32, since there we 2835 // encounter a bitcasted BUILD_VECTOR with low/high i32 values. 2836 if (SDValue SplatValue = DAG.getSplatValue(V1, /*LegalTypes*/ true)) { 2837 Gather = lowerScalarSplat(SDValue(), SplatValue, VL, ContainerVT, DL, DAG, 2838 Subtarget); 2839 } else { 2840 V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget); 2841 // If only one index is used, we can use a "splat" vrgather. 2842 // TODO: We can splat the most-common index and fix-up any stragglers, if 2843 // that's beneficial. 2844 if (LHSIndexCounts.size() == 1) { 2845 int SplatIndex = LHSIndexCounts.begin()->getFirst(); 2846 Gather = 2847 DAG.getNode(GatherVXOpc, DL, ContainerVT, V1, 2848 DAG.getConstant(SplatIndex, DL, XLenVT), TrueMask, VL); 2849 } else { 2850 SDValue LHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesLHS); 2851 LHSIndices = 2852 convertToScalableVector(IndexContainerVT, LHSIndices, DAG, Subtarget); 2853 2854 Gather = DAG.getNode(GatherVVOpc, DL, ContainerVT, V1, LHSIndices, 2855 TrueMask, VL); 2856 } 2857 } 2858 2859 // If a second vector operand is used by this shuffle, blend it in with an 2860 // additional vrgather. 2861 if (!V2.isUndef()) { 2862 V2 = convertToScalableVector(ContainerVT, V2, DAG, Subtarget); 2863 // If only one index is used, we can use a "splat" vrgather. 2864 // TODO: We can splat the most-common index and fix-up any stragglers, if 2865 // that's beneficial. 2866 if (RHSIndexCounts.size() == 1) { 2867 int SplatIndex = RHSIndexCounts.begin()->getFirst(); 2868 V2 = DAG.getNode(GatherVXOpc, DL, ContainerVT, V2, 2869 DAG.getConstant(SplatIndex, DL, XLenVT), TrueMask, VL); 2870 } else { 2871 SDValue RHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesRHS); 2872 RHSIndices = 2873 convertToScalableVector(IndexContainerVT, RHSIndices, DAG, Subtarget); 2874 V2 = DAG.getNode(GatherVVOpc, DL, ContainerVT, V2, RHSIndices, TrueMask, 2875 VL); 2876 } 2877 2878 MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1); 2879 SelectMask = 2880 convertToScalableVector(MaskContainerVT, SelectMask, DAG, Subtarget); 2881 2882 Gather = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, SelectMask, V2, 2883 Gather, VL); 2884 } 2885 2886 return convertFromScalableVector(VT, Gather, DAG, Subtarget); 2887 } 2888 2889 bool RISCVTargetLowering::isShuffleMaskLegal(ArrayRef<int> M, EVT VT) const { 2890 // Support splats for any type. These should type legalize well. 2891 if (ShuffleVectorSDNode::isSplatMask(M.data(), VT)) 2892 return true; 2893 2894 // Only support legal VTs for other shuffles for now. 2895 if (!isTypeLegal(VT)) 2896 return false; 2897 2898 MVT SVT = VT.getSimpleVT(); 2899 2900 bool SwapSources; 2901 int LoSrc, HiSrc; 2902 return (isElementRotate(LoSrc, HiSrc, M) > 0) || 2903 isInterleaveShuffle(M, SVT, SwapSources, Subtarget); 2904 } 2905 2906 static SDValue getRVVFPExtendOrRound(SDValue Op, MVT VT, MVT ContainerVT, 2907 SDLoc DL, SelectionDAG &DAG, 2908 const RISCVSubtarget &Subtarget) { 2909 if (VT.isScalableVector()) 2910 return DAG.getFPExtendOrRound(Op, DL, VT); 2911 assert(VT.isFixedLengthVector() && 2912 "Unexpected value type for RVV FP extend/round lowering"); 2913 SDValue Mask, VL; 2914 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 2915 unsigned RVVOpc = ContainerVT.bitsGT(Op.getSimpleValueType()) 2916 ? RISCVISD::FP_EXTEND_VL 2917 : RISCVISD::FP_ROUND_VL; 2918 return DAG.getNode(RVVOpc, DL, ContainerVT, Op, Mask, VL); 2919 } 2920 2921 // Lower CTLZ_ZERO_UNDEF or CTTZ_ZERO_UNDEF by converting to FP and extracting 2922 // the exponent. 2923 static SDValue lowerCTLZ_CTTZ_ZERO_UNDEF(SDValue Op, SelectionDAG &DAG) { 2924 MVT VT = Op.getSimpleValueType(); 2925 unsigned EltSize = VT.getScalarSizeInBits(); 2926 SDValue Src = Op.getOperand(0); 2927 SDLoc DL(Op); 2928 2929 // We need a FP type that can represent the value. 2930 // TODO: Use f16 for i8 when possible? 2931 MVT FloatEltVT = EltSize == 32 ? MVT::f64 : MVT::f32; 2932 MVT FloatVT = MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount()); 2933 2934 // Legal types should have been checked in the RISCVTargetLowering 2935 // constructor. 2936 // TODO: Splitting may make sense in some cases. 2937 assert(DAG.getTargetLoweringInfo().isTypeLegal(FloatVT) && 2938 "Expected legal float type!"); 2939 2940 // For CTTZ_ZERO_UNDEF, we need to extract the lowest set bit using X & -X. 2941 // The trailing zero count is equal to log2 of this single bit value. 2942 if (Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF) { 2943 SDValue Neg = 2944 DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Src); 2945 Src = DAG.getNode(ISD::AND, DL, VT, Src, Neg); 2946 } 2947 2948 // We have a legal FP type, convert to it. 2949 SDValue FloatVal = DAG.getNode(ISD::UINT_TO_FP, DL, FloatVT, Src); 2950 // Bitcast to integer and shift the exponent to the LSB. 2951 EVT IntVT = FloatVT.changeVectorElementTypeToInteger(); 2952 SDValue Bitcast = DAG.getBitcast(IntVT, FloatVal); 2953 unsigned ShiftAmt = FloatEltVT == MVT::f64 ? 52 : 23; 2954 SDValue Shift = DAG.getNode(ISD::SRL, DL, IntVT, Bitcast, 2955 DAG.getConstant(ShiftAmt, DL, IntVT)); 2956 // Truncate back to original type to allow vnsrl. 2957 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, VT, Shift); 2958 // The exponent contains log2 of the value in biased form. 2959 unsigned ExponentBias = FloatEltVT == MVT::f64 ? 1023 : 127; 2960 2961 // For trailing zeros, we just need to subtract the bias. 2962 if (Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF) 2963 return DAG.getNode(ISD::SUB, DL, VT, Trunc, 2964 DAG.getConstant(ExponentBias, DL, VT)); 2965 2966 // For leading zeros, we need to remove the bias and convert from log2 to 2967 // leading zeros. We can do this by subtracting from (Bias + (EltSize - 1)). 2968 unsigned Adjust = ExponentBias + (EltSize - 1); 2969 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(Adjust, DL, VT), Trunc); 2970 } 2971 2972 // While RVV has alignment restrictions, we should always be able to load as a 2973 // legal equivalently-sized byte-typed vector instead. This method is 2974 // responsible for re-expressing a ISD::LOAD via a correctly-aligned type. If 2975 // the load is already correctly-aligned, it returns SDValue(). 2976 SDValue RISCVTargetLowering::expandUnalignedRVVLoad(SDValue Op, 2977 SelectionDAG &DAG) const { 2978 auto *Load = cast<LoadSDNode>(Op); 2979 assert(Load && Load->getMemoryVT().isVector() && "Expected vector load"); 2980 2981 if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 2982 Load->getMemoryVT(), 2983 *Load->getMemOperand())) 2984 return SDValue(); 2985 2986 SDLoc DL(Op); 2987 MVT VT = Op.getSimpleValueType(); 2988 unsigned EltSizeBits = VT.getScalarSizeInBits(); 2989 assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) && 2990 "Unexpected unaligned RVV load type"); 2991 MVT NewVT = 2992 MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8)); 2993 assert(NewVT.isValid() && 2994 "Expecting equally-sized RVV vector types to be legal"); 2995 SDValue L = DAG.getLoad(NewVT, DL, Load->getChain(), Load->getBasePtr(), 2996 Load->getPointerInfo(), Load->getOriginalAlign(), 2997 Load->getMemOperand()->getFlags()); 2998 return DAG.getMergeValues({DAG.getBitcast(VT, L), L.getValue(1)}, DL); 2999 } 3000 3001 // While RVV has alignment restrictions, we should always be able to store as a 3002 // legal equivalently-sized byte-typed vector instead. This method is 3003 // responsible for re-expressing a ISD::STORE via a correctly-aligned type. It 3004 // returns SDValue() if the store is already correctly aligned. 3005 SDValue RISCVTargetLowering::expandUnalignedRVVStore(SDValue Op, 3006 SelectionDAG &DAG) const { 3007 auto *Store = cast<StoreSDNode>(Op); 3008 assert(Store && Store->getValue().getValueType().isVector() && 3009 "Expected vector store"); 3010 3011 if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 3012 Store->getMemoryVT(), 3013 *Store->getMemOperand())) 3014 return SDValue(); 3015 3016 SDLoc DL(Op); 3017 SDValue StoredVal = Store->getValue(); 3018 MVT VT = StoredVal.getSimpleValueType(); 3019 unsigned EltSizeBits = VT.getScalarSizeInBits(); 3020 assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) && 3021 "Unexpected unaligned RVV store type"); 3022 MVT NewVT = 3023 MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8)); 3024 assert(NewVT.isValid() && 3025 "Expecting equally-sized RVV vector types to be legal"); 3026 StoredVal = DAG.getBitcast(NewVT, StoredVal); 3027 return DAG.getStore(Store->getChain(), DL, StoredVal, Store->getBasePtr(), 3028 Store->getPointerInfo(), Store->getOriginalAlign(), 3029 Store->getMemOperand()->getFlags()); 3030 } 3031 3032 SDValue RISCVTargetLowering::LowerOperation(SDValue Op, 3033 SelectionDAG &DAG) const { 3034 switch (Op.getOpcode()) { 3035 default: 3036 report_fatal_error("unimplemented operand"); 3037 case ISD::GlobalAddress: 3038 return lowerGlobalAddress(Op, DAG); 3039 case ISD::BlockAddress: 3040 return lowerBlockAddress(Op, DAG); 3041 case ISD::ConstantPool: 3042 return lowerConstantPool(Op, DAG); 3043 case ISD::JumpTable: 3044 return lowerJumpTable(Op, DAG); 3045 case ISD::GlobalTLSAddress: 3046 return lowerGlobalTLSAddress(Op, DAG); 3047 case ISD::SELECT: 3048 return lowerSELECT(Op, DAG); 3049 case ISD::BRCOND: 3050 return lowerBRCOND(Op, DAG); 3051 case ISD::VASTART: 3052 return lowerVASTART(Op, DAG); 3053 case ISD::FRAMEADDR: 3054 return lowerFRAMEADDR(Op, DAG); 3055 case ISD::RETURNADDR: 3056 return lowerRETURNADDR(Op, DAG); 3057 case ISD::SHL_PARTS: 3058 return lowerShiftLeftParts(Op, DAG); 3059 case ISD::SRA_PARTS: 3060 return lowerShiftRightParts(Op, DAG, true); 3061 case ISD::SRL_PARTS: 3062 return lowerShiftRightParts(Op, DAG, false); 3063 case ISD::BITCAST: { 3064 SDLoc DL(Op); 3065 EVT VT = Op.getValueType(); 3066 SDValue Op0 = Op.getOperand(0); 3067 EVT Op0VT = Op0.getValueType(); 3068 MVT XLenVT = Subtarget.getXLenVT(); 3069 if (VT.isFixedLengthVector()) { 3070 // We can handle fixed length vector bitcasts with a simple replacement 3071 // in isel. 3072 if (Op0VT.isFixedLengthVector()) 3073 return Op; 3074 // When bitcasting from scalar to fixed-length vector, insert the scalar 3075 // into a one-element vector of the result type, and perform a vector 3076 // bitcast. 3077 if (!Op0VT.isVector()) { 3078 EVT BVT = EVT::getVectorVT(*DAG.getContext(), Op0VT, 1); 3079 if (!isTypeLegal(BVT)) 3080 return SDValue(); 3081 return DAG.getBitcast(VT, DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, BVT, 3082 DAG.getUNDEF(BVT), Op0, 3083 DAG.getConstant(0, DL, XLenVT))); 3084 } 3085 return SDValue(); 3086 } 3087 // Custom-legalize bitcasts from fixed-length vector types to scalar types 3088 // thus: bitcast the vector to a one-element vector type whose element type 3089 // is the same as the result type, and extract the first element. 3090 if (!VT.isVector() && Op0VT.isFixedLengthVector()) { 3091 EVT BVT = EVT::getVectorVT(*DAG.getContext(), VT, 1); 3092 if (!isTypeLegal(BVT)) 3093 return SDValue(); 3094 SDValue BVec = DAG.getBitcast(BVT, Op0); 3095 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec, 3096 DAG.getConstant(0, DL, XLenVT)); 3097 } 3098 if (VT == MVT::f16 && Op0VT == MVT::i16 && Subtarget.hasStdExtZfh()) { 3099 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Op0); 3100 SDValue FPConv = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, NewOp0); 3101 return FPConv; 3102 } 3103 if (VT == MVT::f32 && Op0VT == MVT::i32 && Subtarget.is64Bit() && 3104 Subtarget.hasStdExtF()) { 3105 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); 3106 SDValue FPConv = 3107 DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, NewOp0); 3108 return FPConv; 3109 } 3110 return SDValue(); 3111 } 3112 case ISD::INTRINSIC_WO_CHAIN: 3113 return LowerINTRINSIC_WO_CHAIN(Op, DAG); 3114 case ISD::INTRINSIC_W_CHAIN: 3115 return LowerINTRINSIC_W_CHAIN(Op, DAG); 3116 case ISD::INTRINSIC_VOID: 3117 return LowerINTRINSIC_VOID(Op, DAG); 3118 case ISD::BSWAP: 3119 case ISD::BITREVERSE: { 3120 MVT VT = Op.getSimpleValueType(); 3121 SDLoc DL(Op); 3122 if (Subtarget.hasStdExtZbp()) { 3123 // Convert BSWAP/BITREVERSE to GREVI to enable GREVI combinining. 3124 // Start with the maximum immediate value which is the bitwidth - 1. 3125 unsigned Imm = VT.getSizeInBits() - 1; 3126 // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits. 3127 if (Op.getOpcode() == ISD::BSWAP) 3128 Imm &= ~0x7U; 3129 return DAG.getNode(RISCVISD::GREV, DL, VT, Op.getOperand(0), 3130 DAG.getConstant(Imm, DL, VT)); 3131 } 3132 assert(Subtarget.hasStdExtZbkb() && "Unexpected custom legalization"); 3133 assert(Op.getOpcode() == ISD::BITREVERSE && "Unexpected opcode"); 3134 // Expand bitreverse to a bswap(rev8) followed by brev8. 3135 SDValue BSwap = DAG.getNode(ISD::BSWAP, DL, VT, Op.getOperand(0)); 3136 // We use the Zbp grevi encoding for rev.b/brev8 which will be recognized 3137 // as brev8 by an isel pattern. 3138 return DAG.getNode(RISCVISD::GREV, DL, VT, BSwap, 3139 DAG.getConstant(7, DL, VT)); 3140 } 3141 case ISD::FSHL: 3142 case ISD::FSHR: { 3143 MVT VT = Op.getSimpleValueType(); 3144 assert(VT == Subtarget.getXLenVT() && "Unexpected custom legalization"); 3145 SDLoc DL(Op); 3146 // FSL/FSR take a log2(XLen)+1 bit shift amount but XLenVT FSHL/FSHR only 3147 // use log(XLen) bits. Mask the shift amount accordingly to prevent 3148 // accidentally setting the extra bit. 3149 unsigned ShAmtWidth = Subtarget.getXLen() - 1; 3150 SDValue ShAmt = DAG.getNode(ISD::AND, DL, VT, Op.getOperand(2), 3151 DAG.getConstant(ShAmtWidth, DL, VT)); 3152 // fshl and fshr concatenate their operands in the same order. fsr and fsl 3153 // instruction use different orders. fshl will return its first operand for 3154 // shift of zero, fshr will return its second operand. fsl and fsr both 3155 // return rs1 so the ISD nodes need to have different operand orders. 3156 // Shift amount is in rs2. 3157 SDValue Op0 = Op.getOperand(0); 3158 SDValue Op1 = Op.getOperand(1); 3159 unsigned Opc = RISCVISD::FSL; 3160 if (Op.getOpcode() == ISD::FSHR) { 3161 std::swap(Op0, Op1); 3162 Opc = RISCVISD::FSR; 3163 } 3164 return DAG.getNode(Opc, DL, VT, Op0, Op1, ShAmt); 3165 } 3166 case ISD::TRUNCATE: { 3167 SDLoc DL(Op); 3168 MVT VT = Op.getSimpleValueType(); 3169 // Only custom-lower vector truncates 3170 if (!VT.isVector()) 3171 return Op; 3172 3173 // Truncates to mask types are handled differently 3174 if (VT.getVectorElementType() == MVT::i1) 3175 return lowerVectorMaskTrunc(Op, DAG); 3176 3177 // RVV only has truncates which operate from SEW*2->SEW, so lower arbitrary 3178 // truncates as a series of "RISCVISD::TRUNCATE_VECTOR_VL" nodes which 3179 // truncate by one power of two at a time. 3180 MVT DstEltVT = VT.getVectorElementType(); 3181 3182 SDValue Src = Op.getOperand(0); 3183 MVT SrcVT = Src.getSimpleValueType(); 3184 MVT SrcEltVT = SrcVT.getVectorElementType(); 3185 3186 assert(DstEltVT.bitsLT(SrcEltVT) && 3187 isPowerOf2_64(DstEltVT.getSizeInBits()) && 3188 isPowerOf2_64(SrcEltVT.getSizeInBits()) && 3189 "Unexpected vector truncate lowering"); 3190 3191 MVT ContainerVT = SrcVT; 3192 if (SrcVT.isFixedLengthVector()) { 3193 ContainerVT = getContainerForFixedLengthVector(SrcVT); 3194 Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget); 3195 } 3196 3197 SDValue Result = Src; 3198 SDValue Mask, VL; 3199 std::tie(Mask, VL) = 3200 getDefaultVLOps(SrcVT, ContainerVT, DL, DAG, Subtarget); 3201 LLVMContext &Context = *DAG.getContext(); 3202 const ElementCount Count = ContainerVT.getVectorElementCount(); 3203 do { 3204 SrcEltVT = MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2); 3205 EVT ResultVT = EVT::getVectorVT(Context, SrcEltVT, Count); 3206 Result = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, ResultVT, Result, 3207 Mask, VL); 3208 } while (SrcEltVT != DstEltVT); 3209 3210 if (SrcVT.isFixedLengthVector()) 3211 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 3212 3213 return Result; 3214 } 3215 case ISD::ANY_EXTEND: 3216 case ISD::ZERO_EXTEND: 3217 if (Op.getOperand(0).getValueType().isVector() && 3218 Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) 3219 return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ 1); 3220 return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VZEXT_VL); 3221 case ISD::SIGN_EXTEND: 3222 if (Op.getOperand(0).getValueType().isVector() && 3223 Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) 3224 return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ -1); 3225 return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VSEXT_VL); 3226 case ISD::SPLAT_VECTOR_PARTS: 3227 return lowerSPLAT_VECTOR_PARTS(Op, DAG); 3228 case ISD::INSERT_VECTOR_ELT: 3229 return lowerINSERT_VECTOR_ELT(Op, DAG); 3230 case ISD::EXTRACT_VECTOR_ELT: 3231 return lowerEXTRACT_VECTOR_ELT(Op, DAG); 3232 case ISD::VSCALE: { 3233 MVT VT = Op.getSimpleValueType(); 3234 SDLoc DL(Op); 3235 SDValue VLENB = DAG.getNode(RISCVISD::READ_VLENB, DL, VT); 3236 // We define our scalable vector types for lmul=1 to use a 64 bit known 3237 // minimum size. e.g. <vscale x 2 x i32>. VLENB is in bytes so we calculate 3238 // vscale as VLENB / 8. 3239 static_assert(RISCV::RVVBitsPerBlock == 64, "Unexpected bits per block!"); 3240 if (Subtarget.getMinVLen() < RISCV::RVVBitsPerBlock) 3241 report_fatal_error("Support for VLEN==32 is incomplete."); 3242 if (isa<ConstantSDNode>(Op.getOperand(0))) { 3243 // We assume VLENB is a multiple of 8. We manually choose the best shift 3244 // here because SimplifyDemandedBits isn't always able to simplify it. 3245 uint64_t Val = Op.getConstantOperandVal(0); 3246 if (isPowerOf2_64(Val)) { 3247 uint64_t Log2 = Log2_64(Val); 3248 if (Log2 < 3) 3249 return DAG.getNode(ISD::SRL, DL, VT, VLENB, 3250 DAG.getConstant(3 - Log2, DL, VT)); 3251 if (Log2 > 3) 3252 return DAG.getNode(ISD::SHL, DL, VT, VLENB, 3253 DAG.getConstant(Log2 - 3, DL, VT)); 3254 return VLENB; 3255 } 3256 // If the multiplier is a multiple of 8, scale it down to avoid needing 3257 // to shift the VLENB value. 3258 if ((Val % 8) == 0) 3259 return DAG.getNode(ISD::MUL, DL, VT, VLENB, 3260 DAG.getConstant(Val / 8, DL, VT)); 3261 } 3262 3263 SDValue VScale = DAG.getNode(ISD::SRL, DL, VT, VLENB, 3264 DAG.getConstant(3, DL, VT)); 3265 return DAG.getNode(ISD::MUL, DL, VT, VScale, Op.getOperand(0)); 3266 } 3267 case ISD::FPOWI: { 3268 // Custom promote f16 powi with illegal i32 integer type on RV64. Once 3269 // promoted this will be legalized into a libcall by LegalizeIntegerTypes. 3270 if (Op.getValueType() == MVT::f16 && Subtarget.is64Bit() && 3271 Op.getOperand(1).getValueType() == MVT::i32) { 3272 SDLoc DL(Op); 3273 SDValue Op0 = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Op.getOperand(0)); 3274 SDValue Powi = 3275 DAG.getNode(ISD::FPOWI, DL, MVT::f32, Op0, Op.getOperand(1)); 3276 return DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, Powi, 3277 DAG.getIntPtrConstant(0, DL)); 3278 } 3279 return SDValue(); 3280 } 3281 case ISD::FP_EXTEND: { 3282 // RVV can only do fp_extend to types double the size as the source. We 3283 // custom-lower f16->f64 extensions to two hops of ISD::FP_EXTEND, going 3284 // via f32. 3285 SDLoc DL(Op); 3286 MVT VT = Op.getSimpleValueType(); 3287 SDValue Src = Op.getOperand(0); 3288 MVT SrcVT = Src.getSimpleValueType(); 3289 3290 // Prepare any fixed-length vector operands. 3291 MVT ContainerVT = VT; 3292 if (SrcVT.isFixedLengthVector()) { 3293 ContainerVT = getContainerForFixedLengthVector(VT); 3294 MVT SrcContainerVT = 3295 ContainerVT.changeVectorElementType(SrcVT.getVectorElementType()); 3296 Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); 3297 } 3298 3299 if (!VT.isVector() || VT.getVectorElementType() != MVT::f64 || 3300 SrcVT.getVectorElementType() != MVT::f16) { 3301 // For scalable vectors, we only need to close the gap between 3302 // vXf16->vXf64. 3303 if (!VT.isFixedLengthVector()) 3304 return Op; 3305 // For fixed-length vectors, lower the FP_EXTEND to a custom "VL" version. 3306 Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget); 3307 return convertFromScalableVector(VT, Src, DAG, Subtarget); 3308 } 3309 3310 MVT InterVT = VT.changeVectorElementType(MVT::f32); 3311 MVT InterContainerVT = ContainerVT.changeVectorElementType(MVT::f32); 3312 SDValue IntermediateExtend = getRVVFPExtendOrRound( 3313 Src, InterVT, InterContainerVT, DL, DAG, Subtarget); 3314 3315 SDValue Extend = getRVVFPExtendOrRound(IntermediateExtend, VT, ContainerVT, 3316 DL, DAG, Subtarget); 3317 if (VT.isFixedLengthVector()) 3318 return convertFromScalableVector(VT, Extend, DAG, Subtarget); 3319 return Extend; 3320 } 3321 case ISD::FP_ROUND: { 3322 // RVV can only do fp_round to types half the size as the source. We 3323 // custom-lower f64->f16 rounds via RVV's round-to-odd float 3324 // conversion instruction. 3325 SDLoc DL(Op); 3326 MVT VT = Op.getSimpleValueType(); 3327 SDValue Src = Op.getOperand(0); 3328 MVT SrcVT = Src.getSimpleValueType(); 3329 3330 // Prepare any fixed-length vector operands. 3331 MVT ContainerVT = VT; 3332 if (VT.isFixedLengthVector()) { 3333 MVT SrcContainerVT = getContainerForFixedLengthVector(SrcVT); 3334 ContainerVT = 3335 SrcContainerVT.changeVectorElementType(VT.getVectorElementType()); 3336 Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); 3337 } 3338 3339 if (!VT.isVector() || VT.getVectorElementType() != MVT::f16 || 3340 SrcVT.getVectorElementType() != MVT::f64) { 3341 // For scalable vectors, we only need to close the gap between 3342 // vXf64<->vXf16. 3343 if (!VT.isFixedLengthVector()) 3344 return Op; 3345 // For fixed-length vectors, lower the FP_ROUND to a custom "VL" version. 3346 Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget); 3347 return convertFromScalableVector(VT, Src, DAG, Subtarget); 3348 } 3349 3350 SDValue Mask, VL; 3351 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 3352 3353 MVT InterVT = ContainerVT.changeVectorElementType(MVT::f32); 3354 SDValue IntermediateRound = 3355 DAG.getNode(RISCVISD::VFNCVT_ROD_VL, DL, InterVT, Src, Mask, VL); 3356 SDValue Round = getRVVFPExtendOrRound(IntermediateRound, VT, ContainerVT, 3357 DL, DAG, Subtarget); 3358 3359 if (VT.isFixedLengthVector()) 3360 return convertFromScalableVector(VT, Round, DAG, Subtarget); 3361 return Round; 3362 } 3363 case ISD::FP_TO_SINT: 3364 case ISD::FP_TO_UINT: 3365 case ISD::SINT_TO_FP: 3366 case ISD::UINT_TO_FP: { 3367 // RVV can only do fp<->int conversions to types half/double the size as 3368 // the source. We custom-lower any conversions that do two hops into 3369 // sequences. 3370 MVT VT = Op.getSimpleValueType(); 3371 if (!VT.isVector()) 3372 return Op; 3373 SDLoc DL(Op); 3374 SDValue Src = Op.getOperand(0); 3375 MVT EltVT = VT.getVectorElementType(); 3376 MVT SrcVT = Src.getSimpleValueType(); 3377 MVT SrcEltVT = SrcVT.getVectorElementType(); 3378 unsigned EltSize = EltVT.getSizeInBits(); 3379 unsigned SrcEltSize = SrcEltVT.getSizeInBits(); 3380 assert(isPowerOf2_32(EltSize) && isPowerOf2_32(SrcEltSize) && 3381 "Unexpected vector element types"); 3382 3383 bool IsInt2FP = SrcEltVT.isInteger(); 3384 // Widening conversions 3385 if (EltSize > SrcEltSize && (EltSize / SrcEltSize >= 4)) { 3386 if (IsInt2FP) { 3387 // Do a regular integer sign/zero extension then convert to float. 3388 MVT IVecVT = MVT::getVectorVT(MVT::getIntegerVT(EltVT.getSizeInBits()), 3389 VT.getVectorElementCount()); 3390 unsigned ExtOpcode = Op.getOpcode() == ISD::UINT_TO_FP 3391 ? ISD::ZERO_EXTEND 3392 : ISD::SIGN_EXTEND; 3393 SDValue Ext = DAG.getNode(ExtOpcode, DL, IVecVT, Src); 3394 return DAG.getNode(Op.getOpcode(), DL, VT, Ext); 3395 } 3396 // FP2Int 3397 assert(SrcEltVT == MVT::f16 && "Unexpected FP_TO_[US]INT lowering"); 3398 // Do one doubling fp_extend then complete the operation by converting 3399 // to int. 3400 MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount()); 3401 SDValue FExt = DAG.getFPExtendOrRound(Src, DL, InterimFVT); 3402 return DAG.getNode(Op.getOpcode(), DL, VT, FExt); 3403 } 3404 3405 // Narrowing conversions 3406 if (SrcEltSize > EltSize && (SrcEltSize / EltSize >= 4)) { 3407 if (IsInt2FP) { 3408 // One narrowing int_to_fp, then an fp_round. 3409 assert(EltVT == MVT::f16 && "Unexpected [US]_TO_FP lowering"); 3410 MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount()); 3411 SDValue Int2FP = DAG.getNode(Op.getOpcode(), DL, InterimFVT, Src); 3412 return DAG.getFPExtendOrRound(Int2FP, DL, VT); 3413 } 3414 // FP2Int 3415 // One narrowing fp_to_int, then truncate the integer. If the float isn't 3416 // representable by the integer, the result is poison. 3417 MVT IVecVT = 3418 MVT::getVectorVT(MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2), 3419 VT.getVectorElementCount()); 3420 SDValue FP2Int = DAG.getNode(Op.getOpcode(), DL, IVecVT, Src); 3421 return DAG.getNode(ISD::TRUNCATE, DL, VT, FP2Int); 3422 } 3423 3424 // Scalable vectors can exit here. Patterns will handle equally-sized 3425 // conversions halving/doubling ones. 3426 if (!VT.isFixedLengthVector()) 3427 return Op; 3428 3429 // For fixed-length vectors we lower to a custom "VL" node. 3430 unsigned RVVOpc = 0; 3431 switch (Op.getOpcode()) { 3432 default: 3433 llvm_unreachable("Impossible opcode"); 3434 case ISD::FP_TO_SINT: 3435 RVVOpc = RISCVISD::FP_TO_SINT_VL; 3436 break; 3437 case ISD::FP_TO_UINT: 3438 RVVOpc = RISCVISD::FP_TO_UINT_VL; 3439 break; 3440 case ISD::SINT_TO_FP: 3441 RVVOpc = RISCVISD::SINT_TO_FP_VL; 3442 break; 3443 case ISD::UINT_TO_FP: 3444 RVVOpc = RISCVISD::UINT_TO_FP_VL; 3445 break; 3446 } 3447 3448 MVT ContainerVT, SrcContainerVT; 3449 // Derive the reference container type from the larger vector type. 3450 if (SrcEltSize > EltSize) { 3451 SrcContainerVT = getContainerForFixedLengthVector(SrcVT); 3452 ContainerVT = 3453 SrcContainerVT.changeVectorElementType(VT.getVectorElementType()); 3454 } else { 3455 ContainerVT = getContainerForFixedLengthVector(VT); 3456 SrcContainerVT = ContainerVT.changeVectorElementType(SrcEltVT); 3457 } 3458 3459 SDValue Mask, VL; 3460 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 3461 3462 Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); 3463 Src = DAG.getNode(RVVOpc, DL, ContainerVT, Src, Mask, VL); 3464 return convertFromScalableVector(VT, Src, DAG, Subtarget); 3465 } 3466 case ISD::FP_TO_SINT_SAT: 3467 case ISD::FP_TO_UINT_SAT: 3468 return lowerFP_TO_INT_SAT(Op, DAG, Subtarget); 3469 case ISD::FTRUNC: 3470 case ISD::FCEIL: 3471 case ISD::FFLOOR: 3472 return lowerFTRUNC_FCEIL_FFLOOR(Op, DAG); 3473 case ISD::FROUND: 3474 return lowerFROUND(Op, DAG); 3475 case ISD::VECREDUCE_ADD: 3476 case ISD::VECREDUCE_UMAX: 3477 case ISD::VECREDUCE_SMAX: 3478 case ISD::VECREDUCE_UMIN: 3479 case ISD::VECREDUCE_SMIN: 3480 return lowerVECREDUCE(Op, DAG); 3481 case ISD::VECREDUCE_AND: 3482 case ISD::VECREDUCE_OR: 3483 case ISD::VECREDUCE_XOR: 3484 if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) 3485 return lowerVectorMaskVecReduction(Op, DAG, /*IsVP*/ false); 3486 return lowerVECREDUCE(Op, DAG); 3487 case ISD::VECREDUCE_FADD: 3488 case ISD::VECREDUCE_SEQ_FADD: 3489 case ISD::VECREDUCE_FMIN: 3490 case ISD::VECREDUCE_FMAX: 3491 return lowerFPVECREDUCE(Op, DAG); 3492 case ISD::VP_REDUCE_ADD: 3493 case ISD::VP_REDUCE_UMAX: 3494 case ISD::VP_REDUCE_SMAX: 3495 case ISD::VP_REDUCE_UMIN: 3496 case ISD::VP_REDUCE_SMIN: 3497 case ISD::VP_REDUCE_FADD: 3498 case ISD::VP_REDUCE_SEQ_FADD: 3499 case ISD::VP_REDUCE_FMIN: 3500 case ISD::VP_REDUCE_FMAX: 3501 return lowerVPREDUCE(Op, DAG); 3502 case ISD::VP_REDUCE_AND: 3503 case ISD::VP_REDUCE_OR: 3504 case ISD::VP_REDUCE_XOR: 3505 if (Op.getOperand(1).getValueType().getVectorElementType() == MVT::i1) 3506 return lowerVectorMaskVecReduction(Op, DAG, /*IsVP*/ true); 3507 return lowerVPREDUCE(Op, DAG); 3508 case ISD::INSERT_SUBVECTOR: 3509 return lowerINSERT_SUBVECTOR(Op, DAG); 3510 case ISD::EXTRACT_SUBVECTOR: 3511 return lowerEXTRACT_SUBVECTOR(Op, DAG); 3512 case ISD::STEP_VECTOR: 3513 return lowerSTEP_VECTOR(Op, DAG); 3514 case ISD::VECTOR_REVERSE: 3515 return lowerVECTOR_REVERSE(Op, DAG); 3516 case ISD::VECTOR_SPLICE: 3517 return lowerVECTOR_SPLICE(Op, DAG); 3518 case ISD::BUILD_VECTOR: 3519 return lowerBUILD_VECTOR(Op, DAG, Subtarget); 3520 case ISD::SPLAT_VECTOR: 3521 if (Op.getValueType().getVectorElementType() == MVT::i1) 3522 return lowerVectorMaskSplat(Op, DAG); 3523 return SDValue(); 3524 case ISD::VECTOR_SHUFFLE: 3525 return lowerVECTOR_SHUFFLE(Op, DAG, Subtarget); 3526 case ISD::CONCAT_VECTORS: { 3527 // Split CONCAT_VECTORS into a series of INSERT_SUBVECTOR nodes. This is 3528 // better than going through the stack, as the default expansion does. 3529 SDLoc DL(Op); 3530 MVT VT = Op.getSimpleValueType(); 3531 unsigned NumOpElts = 3532 Op.getOperand(0).getSimpleValueType().getVectorMinNumElements(); 3533 SDValue Vec = DAG.getUNDEF(VT); 3534 for (const auto &OpIdx : enumerate(Op->ops())) { 3535 SDValue SubVec = OpIdx.value(); 3536 // Don't insert undef subvectors. 3537 if (SubVec.isUndef()) 3538 continue; 3539 Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, Vec, SubVec, 3540 DAG.getIntPtrConstant(OpIdx.index() * NumOpElts, DL)); 3541 } 3542 return Vec; 3543 } 3544 case ISD::LOAD: 3545 if (auto V = expandUnalignedRVVLoad(Op, DAG)) 3546 return V; 3547 if (Op.getValueType().isFixedLengthVector()) 3548 return lowerFixedLengthVectorLoadToRVV(Op, DAG); 3549 return Op; 3550 case ISD::STORE: 3551 if (auto V = expandUnalignedRVVStore(Op, DAG)) 3552 return V; 3553 if (Op.getOperand(1).getValueType().isFixedLengthVector()) 3554 return lowerFixedLengthVectorStoreToRVV(Op, DAG); 3555 return Op; 3556 case ISD::MLOAD: 3557 case ISD::VP_LOAD: 3558 return lowerMaskedLoad(Op, DAG); 3559 case ISD::MSTORE: 3560 case ISD::VP_STORE: 3561 return lowerMaskedStore(Op, DAG); 3562 case ISD::SETCC: 3563 return lowerFixedLengthVectorSetccToRVV(Op, DAG); 3564 case ISD::ADD: 3565 return lowerToScalableOp(Op, DAG, RISCVISD::ADD_VL); 3566 case ISD::SUB: 3567 return lowerToScalableOp(Op, DAG, RISCVISD::SUB_VL); 3568 case ISD::MUL: 3569 return lowerToScalableOp(Op, DAG, RISCVISD::MUL_VL); 3570 case ISD::MULHS: 3571 return lowerToScalableOp(Op, DAG, RISCVISD::MULHS_VL); 3572 case ISD::MULHU: 3573 return lowerToScalableOp(Op, DAG, RISCVISD::MULHU_VL); 3574 case ISD::AND: 3575 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMAND_VL, 3576 RISCVISD::AND_VL); 3577 case ISD::OR: 3578 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMOR_VL, 3579 RISCVISD::OR_VL); 3580 case ISD::XOR: 3581 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMXOR_VL, 3582 RISCVISD::XOR_VL); 3583 case ISD::SDIV: 3584 return lowerToScalableOp(Op, DAG, RISCVISD::SDIV_VL); 3585 case ISD::SREM: 3586 return lowerToScalableOp(Op, DAG, RISCVISD::SREM_VL); 3587 case ISD::UDIV: 3588 return lowerToScalableOp(Op, DAG, RISCVISD::UDIV_VL); 3589 case ISD::UREM: 3590 return lowerToScalableOp(Op, DAG, RISCVISD::UREM_VL); 3591 case ISD::SHL: 3592 case ISD::SRA: 3593 case ISD::SRL: 3594 if (Op.getSimpleValueType().isFixedLengthVector()) 3595 return lowerFixedLengthVectorShiftToRVV(Op, DAG); 3596 // This can be called for an i32 shift amount that needs to be promoted. 3597 assert(Op.getOperand(1).getValueType() == MVT::i32 && Subtarget.is64Bit() && 3598 "Unexpected custom legalisation"); 3599 return SDValue(); 3600 case ISD::SADDSAT: 3601 return lowerToScalableOp(Op, DAG, RISCVISD::SADDSAT_VL); 3602 case ISD::UADDSAT: 3603 return lowerToScalableOp(Op, DAG, RISCVISD::UADDSAT_VL); 3604 case ISD::SSUBSAT: 3605 return lowerToScalableOp(Op, DAG, RISCVISD::SSUBSAT_VL); 3606 case ISD::USUBSAT: 3607 return lowerToScalableOp(Op, DAG, RISCVISD::USUBSAT_VL); 3608 case ISD::FADD: 3609 return lowerToScalableOp(Op, DAG, RISCVISD::FADD_VL); 3610 case ISD::FSUB: 3611 return lowerToScalableOp(Op, DAG, RISCVISD::FSUB_VL); 3612 case ISD::FMUL: 3613 return lowerToScalableOp(Op, DAG, RISCVISD::FMUL_VL); 3614 case ISD::FDIV: 3615 return lowerToScalableOp(Op, DAG, RISCVISD::FDIV_VL); 3616 case ISD::FNEG: 3617 return lowerToScalableOp(Op, DAG, RISCVISD::FNEG_VL); 3618 case ISD::FABS: 3619 return lowerToScalableOp(Op, DAG, RISCVISD::FABS_VL); 3620 case ISD::FSQRT: 3621 return lowerToScalableOp(Op, DAG, RISCVISD::FSQRT_VL); 3622 case ISD::FMA: 3623 return lowerToScalableOp(Op, DAG, RISCVISD::FMA_VL); 3624 case ISD::SMIN: 3625 return lowerToScalableOp(Op, DAG, RISCVISD::SMIN_VL); 3626 case ISD::SMAX: 3627 return lowerToScalableOp(Op, DAG, RISCVISD::SMAX_VL); 3628 case ISD::UMIN: 3629 return lowerToScalableOp(Op, DAG, RISCVISD::UMIN_VL); 3630 case ISD::UMAX: 3631 return lowerToScalableOp(Op, DAG, RISCVISD::UMAX_VL); 3632 case ISD::FMINNUM: 3633 return lowerToScalableOp(Op, DAG, RISCVISD::FMINNUM_VL); 3634 case ISD::FMAXNUM: 3635 return lowerToScalableOp(Op, DAG, RISCVISD::FMAXNUM_VL); 3636 case ISD::ABS: 3637 return lowerABS(Op, DAG); 3638 case ISD::CTLZ_ZERO_UNDEF: 3639 case ISD::CTTZ_ZERO_UNDEF: 3640 return lowerCTLZ_CTTZ_ZERO_UNDEF(Op, DAG); 3641 case ISD::VSELECT: 3642 return lowerFixedLengthVectorSelectToRVV(Op, DAG); 3643 case ISD::FCOPYSIGN: 3644 return lowerFixedLengthVectorFCOPYSIGNToRVV(Op, DAG); 3645 case ISD::MGATHER: 3646 case ISD::VP_GATHER: 3647 return lowerMaskedGather(Op, DAG); 3648 case ISD::MSCATTER: 3649 case ISD::VP_SCATTER: 3650 return lowerMaskedScatter(Op, DAG); 3651 case ISD::FLT_ROUNDS_: 3652 return lowerGET_ROUNDING(Op, DAG); 3653 case ISD::SET_ROUNDING: 3654 return lowerSET_ROUNDING(Op, DAG); 3655 case ISD::VP_SELECT: 3656 return lowerVPOp(Op, DAG, RISCVISD::VSELECT_VL); 3657 case ISD::VP_MERGE: 3658 return lowerVPOp(Op, DAG, RISCVISD::VP_MERGE_VL); 3659 case ISD::VP_ADD: 3660 return lowerVPOp(Op, DAG, RISCVISD::ADD_VL); 3661 case ISD::VP_SUB: 3662 return lowerVPOp(Op, DAG, RISCVISD::SUB_VL); 3663 case ISD::VP_MUL: 3664 return lowerVPOp(Op, DAG, RISCVISD::MUL_VL); 3665 case ISD::VP_SDIV: 3666 return lowerVPOp(Op, DAG, RISCVISD::SDIV_VL); 3667 case ISD::VP_UDIV: 3668 return lowerVPOp(Op, DAG, RISCVISD::UDIV_VL); 3669 case ISD::VP_SREM: 3670 return lowerVPOp(Op, DAG, RISCVISD::SREM_VL); 3671 case ISD::VP_UREM: 3672 return lowerVPOp(Op, DAG, RISCVISD::UREM_VL); 3673 case ISD::VP_AND: 3674 return lowerLogicVPOp(Op, DAG, RISCVISD::VMAND_VL, RISCVISD::AND_VL); 3675 case ISD::VP_OR: 3676 return lowerLogicVPOp(Op, DAG, RISCVISD::VMOR_VL, RISCVISD::OR_VL); 3677 case ISD::VP_XOR: 3678 return lowerLogicVPOp(Op, DAG, RISCVISD::VMXOR_VL, RISCVISD::XOR_VL); 3679 case ISD::VP_ASHR: 3680 return lowerVPOp(Op, DAG, RISCVISD::SRA_VL); 3681 case ISD::VP_LSHR: 3682 return lowerVPOp(Op, DAG, RISCVISD::SRL_VL); 3683 case ISD::VP_SHL: 3684 return lowerVPOp(Op, DAG, RISCVISD::SHL_VL); 3685 case ISD::VP_FADD: 3686 return lowerVPOp(Op, DAG, RISCVISD::FADD_VL); 3687 case ISD::VP_FSUB: 3688 return lowerVPOp(Op, DAG, RISCVISD::FSUB_VL); 3689 case ISD::VP_FMUL: 3690 return lowerVPOp(Op, DAG, RISCVISD::FMUL_VL); 3691 case ISD::VP_FDIV: 3692 return lowerVPOp(Op, DAG, RISCVISD::FDIV_VL); 3693 case ISD::VP_FNEG: 3694 return lowerVPOp(Op, DAG, RISCVISD::FNEG_VL); 3695 case ISD::VP_FMA: 3696 return lowerVPOp(Op, DAG, RISCVISD::FMA_VL); 3697 } 3698 } 3699 3700 static SDValue getTargetNode(GlobalAddressSDNode *N, SDLoc DL, EVT Ty, 3701 SelectionDAG &DAG, unsigned Flags) { 3702 return DAG.getTargetGlobalAddress(N->getGlobal(), DL, Ty, 0, Flags); 3703 } 3704 3705 static SDValue getTargetNode(BlockAddressSDNode *N, SDLoc DL, EVT Ty, 3706 SelectionDAG &DAG, unsigned Flags) { 3707 return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, N->getOffset(), 3708 Flags); 3709 } 3710 3711 static SDValue getTargetNode(ConstantPoolSDNode *N, SDLoc DL, EVT Ty, 3712 SelectionDAG &DAG, unsigned Flags) { 3713 return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlign(), 3714 N->getOffset(), Flags); 3715 } 3716 3717 static SDValue getTargetNode(JumpTableSDNode *N, SDLoc DL, EVT Ty, 3718 SelectionDAG &DAG, unsigned Flags) { 3719 return DAG.getTargetJumpTable(N->getIndex(), Ty, Flags); 3720 } 3721 3722 template <class NodeTy> 3723 SDValue RISCVTargetLowering::getAddr(NodeTy *N, SelectionDAG &DAG, 3724 bool IsLocal) const { 3725 SDLoc DL(N); 3726 EVT Ty = getPointerTy(DAG.getDataLayout()); 3727 3728 if (isPositionIndependent()) { 3729 SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0); 3730 if (IsLocal) 3731 // Use PC-relative addressing to access the symbol. This generates the 3732 // pattern (PseudoLLA sym), which expands to (addi (auipc %pcrel_hi(sym)) 3733 // %pcrel_lo(auipc)). 3734 return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0); 3735 3736 // Use PC-relative addressing to access the GOT for this symbol, then load 3737 // the address from the GOT. This generates the pattern (PseudoLA sym), 3738 // which expands to (ld (addi (auipc %got_pcrel_hi(sym)) %pcrel_lo(auipc))). 3739 SDValue Load = 3740 SDValue(DAG.getMachineNode(RISCV::PseudoLA, DL, Ty, Addr), 0); 3741 MachineFunction &MF = DAG.getMachineFunction(); 3742 MachineMemOperand *MemOp = MF.getMachineMemOperand( 3743 MachinePointerInfo::getGOT(MF), 3744 MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable | 3745 MachineMemOperand::MOInvariant, 3746 LLT(Ty.getSimpleVT()), Align(Ty.getFixedSizeInBits() / 8)); 3747 DAG.setNodeMemRefs(cast<MachineSDNode>(Load.getNode()), {MemOp}); 3748 return Load; 3749 } 3750 3751 switch (getTargetMachine().getCodeModel()) { 3752 default: 3753 report_fatal_error("Unsupported code model for lowering"); 3754 case CodeModel::Small: { 3755 // Generate a sequence for accessing addresses within the first 2 GiB of 3756 // address space. This generates the pattern (addi (lui %hi(sym)) %lo(sym)). 3757 SDValue AddrHi = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_HI); 3758 SDValue AddrLo = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_LO); 3759 SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0); 3760 return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNHi, AddrLo), 0); 3761 } 3762 case CodeModel::Medium: { 3763 // Generate a sequence for accessing addresses within any 2GiB range within 3764 // the address space. This generates the pattern (PseudoLLA sym), which 3765 // expands to (addi (auipc %pcrel_hi(sym)) %pcrel_lo(auipc)). 3766 SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0); 3767 return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0); 3768 } 3769 } 3770 } 3771 3772 SDValue RISCVTargetLowering::lowerGlobalAddress(SDValue Op, 3773 SelectionDAG &DAG) const { 3774 SDLoc DL(Op); 3775 EVT Ty = Op.getValueType(); 3776 GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op); 3777 int64_t Offset = N->getOffset(); 3778 MVT XLenVT = Subtarget.getXLenVT(); 3779 3780 const GlobalValue *GV = N->getGlobal(); 3781 bool IsLocal = getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV); 3782 SDValue Addr = getAddr(N, DAG, IsLocal); 3783 3784 // In order to maximise the opportunity for common subexpression elimination, 3785 // emit a separate ADD node for the global address offset instead of folding 3786 // it in the global address node. Later peephole optimisations may choose to 3787 // fold it back in when profitable. 3788 if (Offset != 0) 3789 return DAG.getNode(ISD::ADD, DL, Ty, Addr, 3790 DAG.getConstant(Offset, DL, XLenVT)); 3791 return Addr; 3792 } 3793 3794 SDValue RISCVTargetLowering::lowerBlockAddress(SDValue Op, 3795 SelectionDAG &DAG) const { 3796 BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op); 3797 3798 return getAddr(N, DAG); 3799 } 3800 3801 SDValue RISCVTargetLowering::lowerConstantPool(SDValue Op, 3802 SelectionDAG &DAG) const { 3803 ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op); 3804 3805 return getAddr(N, DAG); 3806 } 3807 3808 SDValue RISCVTargetLowering::lowerJumpTable(SDValue Op, 3809 SelectionDAG &DAG) const { 3810 JumpTableSDNode *N = cast<JumpTableSDNode>(Op); 3811 3812 return getAddr(N, DAG); 3813 } 3814 3815 SDValue RISCVTargetLowering::getStaticTLSAddr(GlobalAddressSDNode *N, 3816 SelectionDAG &DAG, 3817 bool UseGOT) const { 3818 SDLoc DL(N); 3819 EVT Ty = getPointerTy(DAG.getDataLayout()); 3820 const GlobalValue *GV = N->getGlobal(); 3821 MVT XLenVT = Subtarget.getXLenVT(); 3822 3823 if (UseGOT) { 3824 // Use PC-relative addressing to access the GOT for this TLS symbol, then 3825 // load the address from the GOT and add the thread pointer. This generates 3826 // the pattern (PseudoLA_TLS_IE sym), which expands to 3827 // (ld (auipc %tls_ie_pcrel_hi(sym)) %pcrel_lo(auipc)). 3828 SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0); 3829 SDValue Load = 3830 SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_IE, DL, Ty, Addr), 0); 3831 MachineFunction &MF = DAG.getMachineFunction(); 3832 MachineMemOperand *MemOp = MF.getMachineMemOperand( 3833 MachinePointerInfo::getGOT(MF), 3834 MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable | 3835 MachineMemOperand::MOInvariant, 3836 LLT(Ty.getSimpleVT()), Align(Ty.getFixedSizeInBits() / 8)); 3837 DAG.setNodeMemRefs(cast<MachineSDNode>(Load.getNode()), {MemOp}); 3838 3839 // Add the thread pointer. 3840 SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT); 3841 return DAG.getNode(ISD::ADD, DL, Ty, Load, TPReg); 3842 } 3843 3844 // Generate a sequence for accessing the address relative to the thread 3845 // pointer, with the appropriate adjustment for the thread pointer offset. 3846 // This generates the pattern 3847 // (add (add_tprel (lui %tprel_hi(sym)) tp %tprel_add(sym)) %tprel_lo(sym)) 3848 SDValue AddrHi = 3849 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_HI); 3850 SDValue AddrAdd = 3851 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_ADD); 3852 SDValue AddrLo = 3853 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_LO); 3854 3855 SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0); 3856 SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT); 3857 SDValue MNAdd = SDValue( 3858 DAG.getMachineNode(RISCV::PseudoAddTPRel, DL, Ty, MNHi, TPReg, AddrAdd), 3859 0); 3860 return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNAdd, AddrLo), 0); 3861 } 3862 3863 SDValue RISCVTargetLowering::getDynamicTLSAddr(GlobalAddressSDNode *N, 3864 SelectionDAG &DAG) const { 3865 SDLoc DL(N); 3866 EVT Ty = getPointerTy(DAG.getDataLayout()); 3867 IntegerType *CallTy = Type::getIntNTy(*DAG.getContext(), Ty.getSizeInBits()); 3868 const GlobalValue *GV = N->getGlobal(); 3869 3870 // Use a PC-relative addressing mode to access the global dynamic GOT address. 3871 // This generates the pattern (PseudoLA_TLS_GD sym), which expands to 3872 // (addi (auipc %tls_gd_pcrel_hi(sym)) %pcrel_lo(auipc)). 3873 SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0); 3874 SDValue Load = 3875 SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_GD, DL, Ty, Addr), 0); 3876 3877 // Prepare argument list to generate call. 3878 ArgListTy Args; 3879 ArgListEntry Entry; 3880 Entry.Node = Load; 3881 Entry.Ty = CallTy; 3882 Args.push_back(Entry); 3883 3884 // Setup call to __tls_get_addr. 3885 TargetLowering::CallLoweringInfo CLI(DAG); 3886 CLI.setDebugLoc(DL) 3887 .setChain(DAG.getEntryNode()) 3888 .setLibCallee(CallingConv::C, CallTy, 3889 DAG.getExternalSymbol("__tls_get_addr", Ty), 3890 std::move(Args)); 3891 3892 return LowerCallTo(CLI).first; 3893 } 3894 3895 SDValue RISCVTargetLowering::lowerGlobalTLSAddress(SDValue Op, 3896 SelectionDAG &DAG) const { 3897 SDLoc DL(Op); 3898 EVT Ty = Op.getValueType(); 3899 GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op); 3900 int64_t Offset = N->getOffset(); 3901 MVT XLenVT = Subtarget.getXLenVT(); 3902 3903 TLSModel::Model Model = getTargetMachine().getTLSModel(N->getGlobal()); 3904 3905 if (DAG.getMachineFunction().getFunction().getCallingConv() == 3906 CallingConv::GHC) 3907 report_fatal_error("In GHC calling convention TLS is not supported"); 3908 3909 SDValue Addr; 3910 switch (Model) { 3911 case TLSModel::LocalExec: 3912 Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/false); 3913 break; 3914 case TLSModel::InitialExec: 3915 Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/true); 3916 break; 3917 case TLSModel::LocalDynamic: 3918 case TLSModel::GeneralDynamic: 3919 Addr = getDynamicTLSAddr(N, DAG); 3920 break; 3921 } 3922 3923 // In order to maximise the opportunity for common subexpression elimination, 3924 // emit a separate ADD node for the global address offset instead of folding 3925 // it in the global address node. Later peephole optimisations may choose to 3926 // fold it back in when profitable. 3927 if (Offset != 0) 3928 return DAG.getNode(ISD::ADD, DL, Ty, Addr, 3929 DAG.getConstant(Offset, DL, XLenVT)); 3930 return Addr; 3931 } 3932 3933 SDValue RISCVTargetLowering::lowerSELECT(SDValue Op, SelectionDAG &DAG) const { 3934 SDValue CondV = Op.getOperand(0); 3935 SDValue TrueV = Op.getOperand(1); 3936 SDValue FalseV = Op.getOperand(2); 3937 SDLoc DL(Op); 3938 MVT VT = Op.getSimpleValueType(); 3939 MVT XLenVT = Subtarget.getXLenVT(); 3940 3941 // Lower vector SELECTs to VSELECTs by splatting the condition. 3942 if (VT.isVector()) { 3943 MVT SplatCondVT = VT.changeVectorElementType(MVT::i1); 3944 SDValue CondSplat = VT.isScalableVector() 3945 ? DAG.getSplatVector(SplatCondVT, DL, CondV) 3946 : DAG.getSplatBuildVector(SplatCondVT, DL, CondV); 3947 return DAG.getNode(ISD::VSELECT, DL, VT, CondSplat, TrueV, FalseV); 3948 } 3949 3950 // If the result type is XLenVT and CondV is the output of a SETCC node 3951 // which also operated on XLenVT inputs, then merge the SETCC node into the 3952 // lowered RISCVISD::SELECT_CC to take advantage of the integer 3953 // compare+branch instructions. i.e.: 3954 // (select (setcc lhs, rhs, cc), truev, falsev) 3955 // -> (riscvisd::select_cc lhs, rhs, cc, truev, falsev) 3956 if (VT == XLenVT && CondV.getOpcode() == ISD::SETCC && 3957 CondV.getOperand(0).getSimpleValueType() == XLenVT) { 3958 SDValue LHS = CondV.getOperand(0); 3959 SDValue RHS = CondV.getOperand(1); 3960 const auto *CC = cast<CondCodeSDNode>(CondV.getOperand(2)); 3961 ISD::CondCode CCVal = CC->get(); 3962 3963 // Special case for a select of 2 constants that have a diffence of 1. 3964 // Normally this is done by DAGCombine, but if the select is introduced by 3965 // type legalization or op legalization, we miss it. Restricting to SETLT 3966 // case for now because that is what signed saturating add/sub need. 3967 // FIXME: We don't need the condition to be SETLT or even a SETCC, 3968 // but we would probably want to swap the true/false values if the condition 3969 // is SETGE/SETLE to avoid an XORI. 3970 if (isa<ConstantSDNode>(TrueV) && isa<ConstantSDNode>(FalseV) && 3971 CCVal == ISD::SETLT) { 3972 const APInt &TrueVal = cast<ConstantSDNode>(TrueV)->getAPIntValue(); 3973 const APInt &FalseVal = cast<ConstantSDNode>(FalseV)->getAPIntValue(); 3974 if (TrueVal - 1 == FalseVal) 3975 return DAG.getNode(ISD::ADD, DL, Op.getValueType(), CondV, FalseV); 3976 if (TrueVal + 1 == FalseVal) 3977 return DAG.getNode(ISD::SUB, DL, Op.getValueType(), FalseV, CondV); 3978 } 3979 3980 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 3981 3982 SDValue TargetCC = DAG.getCondCode(CCVal); 3983 SDValue Ops[] = {LHS, RHS, TargetCC, TrueV, FalseV}; 3984 return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops); 3985 } 3986 3987 // Otherwise: 3988 // (select condv, truev, falsev) 3989 // -> (riscvisd::select_cc condv, zero, setne, truev, falsev) 3990 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 3991 SDValue SetNE = DAG.getCondCode(ISD::SETNE); 3992 3993 SDValue Ops[] = {CondV, Zero, SetNE, TrueV, FalseV}; 3994 3995 return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops); 3996 } 3997 3998 SDValue RISCVTargetLowering::lowerBRCOND(SDValue Op, SelectionDAG &DAG) const { 3999 SDValue CondV = Op.getOperand(1); 4000 SDLoc DL(Op); 4001 MVT XLenVT = Subtarget.getXLenVT(); 4002 4003 if (CondV.getOpcode() == ISD::SETCC && 4004 CondV.getOperand(0).getValueType() == XLenVT) { 4005 SDValue LHS = CondV.getOperand(0); 4006 SDValue RHS = CondV.getOperand(1); 4007 ISD::CondCode CCVal = cast<CondCodeSDNode>(CondV.getOperand(2))->get(); 4008 4009 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 4010 4011 SDValue TargetCC = DAG.getCondCode(CCVal); 4012 return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0), 4013 LHS, RHS, TargetCC, Op.getOperand(2)); 4014 } 4015 4016 return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0), 4017 CondV, DAG.getConstant(0, DL, XLenVT), 4018 DAG.getCondCode(ISD::SETNE), Op.getOperand(2)); 4019 } 4020 4021 SDValue RISCVTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const { 4022 MachineFunction &MF = DAG.getMachineFunction(); 4023 RISCVMachineFunctionInfo *FuncInfo = MF.getInfo<RISCVMachineFunctionInfo>(); 4024 4025 SDLoc DL(Op); 4026 SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), 4027 getPointerTy(MF.getDataLayout())); 4028 4029 // vastart just stores the address of the VarArgsFrameIndex slot into the 4030 // memory location argument. 4031 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 4032 return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1), 4033 MachinePointerInfo(SV)); 4034 } 4035 4036 SDValue RISCVTargetLowering::lowerFRAMEADDR(SDValue Op, 4037 SelectionDAG &DAG) const { 4038 const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo(); 4039 MachineFunction &MF = DAG.getMachineFunction(); 4040 MachineFrameInfo &MFI = MF.getFrameInfo(); 4041 MFI.setFrameAddressIsTaken(true); 4042 Register FrameReg = RI.getFrameRegister(MF); 4043 int XLenInBytes = Subtarget.getXLen() / 8; 4044 4045 EVT VT = Op.getValueType(); 4046 SDLoc DL(Op); 4047 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, FrameReg, VT); 4048 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 4049 while (Depth--) { 4050 int Offset = -(XLenInBytes * 2); 4051 SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr, 4052 DAG.getIntPtrConstant(Offset, DL)); 4053 FrameAddr = 4054 DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo()); 4055 } 4056 return FrameAddr; 4057 } 4058 4059 SDValue RISCVTargetLowering::lowerRETURNADDR(SDValue Op, 4060 SelectionDAG &DAG) const { 4061 const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo(); 4062 MachineFunction &MF = DAG.getMachineFunction(); 4063 MachineFrameInfo &MFI = MF.getFrameInfo(); 4064 MFI.setReturnAddressIsTaken(true); 4065 MVT XLenVT = Subtarget.getXLenVT(); 4066 int XLenInBytes = Subtarget.getXLen() / 8; 4067 4068 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 4069 return SDValue(); 4070 4071 EVT VT = Op.getValueType(); 4072 SDLoc DL(Op); 4073 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 4074 if (Depth) { 4075 int Off = -XLenInBytes; 4076 SDValue FrameAddr = lowerFRAMEADDR(Op, DAG); 4077 SDValue Offset = DAG.getConstant(Off, DL, VT); 4078 return DAG.getLoad(VT, DL, DAG.getEntryNode(), 4079 DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset), 4080 MachinePointerInfo()); 4081 } 4082 4083 // Return the value of the return address register, marking it an implicit 4084 // live-in. 4085 Register Reg = MF.addLiveIn(RI.getRARegister(), getRegClassFor(XLenVT)); 4086 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, XLenVT); 4087 } 4088 4089 SDValue RISCVTargetLowering::lowerShiftLeftParts(SDValue Op, 4090 SelectionDAG &DAG) const { 4091 SDLoc DL(Op); 4092 SDValue Lo = Op.getOperand(0); 4093 SDValue Hi = Op.getOperand(1); 4094 SDValue Shamt = Op.getOperand(2); 4095 EVT VT = Lo.getValueType(); 4096 4097 // if Shamt-XLEN < 0: // Shamt < XLEN 4098 // Lo = Lo << Shamt 4099 // Hi = (Hi << Shamt) | ((Lo >>u 1) >>u (XLEN-1 ^ Shamt)) 4100 // else: 4101 // Lo = 0 4102 // Hi = Lo << (Shamt-XLEN) 4103 4104 SDValue Zero = DAG.getConstant(0, DL, VT); 4105 SDValue One = DAG.getConstant(1, DL, VT); 4106 SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT); 4107 SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT); 4108 SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen); 4109 SDValue XLenMinus1Shamt = DAG.getNode(ISD::XOR, DL, VT, Shamt, XLenMinus1); 4110 4111 SDValue LoTrue = DAG.getNode(ISD::SHL, DL, VT, Lo, Shamt); 4112 SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, VT, Lo, One); 4113 SDValue ShiftRightLo = 4114 DAG.getNode(ISD::SRL, DL, VT, ShiftRight1Lo, XLenMinus1Shamt); 4115 SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, Hi, Shamt); 4116 SDValue HiTrue = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo); 4117 SDValue HiFalse = DAG.getNode(ISD::SHL, DL, VT, Lo, ShamtMinusXLen); 4118 4119 SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT); 4120 4121 Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, Zero); 4122 Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse); 4123 4124 SDValue Parts[2] = {Lo, Hi}; 4125 return DAG.getMergeValues(Parts, DL); 4126 } 4127 4128 SDValue RISCVTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG, 4129 bool IsSRA) const { 4130 SDLoc DL(Op); 4131 SDValue Lo = Op.getOperand(0); 4132 SDValue Hi = Op.getOperand(1); 4133 SDValue Shamt = Op.getOperand(2); 4134 EVT VT = Lo.getValueType(); 4135 4136 // SRA expansion: 4137 // if Shamt-XLEN < 0: // Shamt < XLEN 4138 // Lo = (Lo >>u Shamt) | ((Hi << 1) << (ShAmt ^ XLEN-1)) 4139 // Hi = Hi >>s Shamt 4140 // else: 4141 // Lo = Hi >>s (Shamt-XLEN); 4142 // Hi = Hi >>s (XLEN-1) 4143 // 4144 // SRL expansion: 4145 // if Shamt-XLEN < 0: // Shamt < XLEN 4146 // Lo = (Lo >>u Shamt) | ((Hi << 1) << (ShAmt ^ XLEN-1)) 4147 // Hi = Hi >>u Shamt 4148 // else: 4149 // Lo = Hi >>u (Shamt-XLEN); 4150 // Hi = 0; 4151 4152 unsigned ShiftRightOp = IsSRA ? ISD::SRA : ISD::SRL; 4153 4154 SDValue Zero = DAG.getConstant(0, DL, VT); 4155 SDValue One = DAG.getConstant(1, DL, VT); 4156 SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT); 4157 SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT); 4158 SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen); 4159 SDValue XLenMinus1Shamt = DAG.getNode(ISD::XOR, DL, VT, Shamt, XLenMinus1); 4160 4161 SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, Lo, Shamt); 4162 SDValue ShiftLeftHi1 = DAG.getNode(ISD::SHL, DL, VT, Hi, One); 4163 SDValue ShiftLeftHi = 4164 DAG.getNode(ISD::SHL, DL, VT, ShiftLeftHi1, XLenMinus1Shamt); 4165 SDValue LoTrue = DAG.getNode(ISD::OR, DL, VT, ShiftRightLo, ShiftLeftHi); 4166 SDValue HiTrue = DAG.getNode(ShiftRightOp, DL, VT, Hi, Shamt); 4167 SDValue LoFalse = DAG.getNode(ShiftRightOp, DL, VT, Hi, ShamtMinusXLen); 4168 SDValue HiFalse = 4169 IsSRA ? DAG.getNode(ISD::SRA, DL, VT, Hi, XLenMinus1) : Zero; 4170 4171 SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT); 4172 4173 Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, LoFalse); 4174 Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse); 4175 4176 SDValue Parts[2] = {Lo, Hi}; 4177 return DAG.getMergeValues(Parts, DL); 4178 } 4179 4180 // Lower splats of i1 types to SETCC. For each mask vector type, we have a 4181 // legal equivalently-sized i8 type, so we can use that as a go-between. 4182 SDValue RISCVTargetLowering::lowerVectorMaskSplat(SDValue Op, 4183 SelectionDAG &DAG) const { 4184 SDLoc DL(Op); 4185 MVT VT = Op.getSimpleValueType(); 4186 SDValue SplatVal = Op.getOperand(0); 4187 // All-zeros or all-ones splats are handled specially. 4188 if (ISD::isConstantSplatVectorAllOnes(Op.getNode())) { 4189 SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second; 4190 return DAG.getNode(RISCVISD::VMSET_VL, DL, VT, VL); 4191 } 4192 if (ISD::isConstantSplatVectorAllZeros(Op.getNode())) { 4193 SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second; 4194 return DAG.getNode(RISCVISD::VMCLR_VL, DL, VT, VL); 4195 } 4196 MVT XLenVT = Subtarget.getXLenVT(); 4197 assert(SplatVal.getValueType() == XLenVT && 4198 "Unexpected type for i1 splat value"); 4199 MVT InterVT = VT.changeVectorElementType(MVT::i8); 4200 SplatVal = DAG.getNode(ISD::AND, DL, XLenVT, SplatVal, 4201 DAG.getConstant(1, DL, XLenVT)); 4202 SDValue LHS = DAG.getSplatVector(InterVT, DL, SplatVal); 4203 SDValue Zero = DAG.getConstant(0, DL, InterVT); 4204 return DAG.getSetCC(DL, VT, LHS, Zero, ISD::SETNE); 4205 } 4206 4207 // Custom-lower a SPLAT_VECTOR_PARTS where XLEN<SEW, as the SEW element type is 4208 // illegal (currently only vXi64 RV32). 4209 // FIXME: We could also catch non-constant sign-extended i32 values and lower 4210 // them to VMV_V_X_VL. 4211 SDValue RISCVTargetLowering::lowerSPLAT_VECTOR_PARTS(SDValue Op, 4212 SelectionDAG &DAG) const { 4213 SDLoc DL(Op); 4214 MVT VecVT = Op.getSimpleValueType(); 4215 assert(!Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64 && 4216 "Unexpected SPLAT_VECTOR_PARTS lowering"); 4217 4218 assert(Op.getNumOperands() == 2 && "Unexpected number of operands!"); 4219 SDValue Lo = Op.getOperand(0); 4220 SDValue Hi = Op.getOperand(1); 4221 4222 if (VecVT.isFixedLengthVector()) { 4223 MVT ContainerVT = getContainerForFixedLengthVector(VecVT); 4224 SDLoc DL(Op); 4225 SDValue Mask, VL; 4226 std::tie(Mask, VL) = 4227 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 4228 4229 SDValue Res = 4230 splatPartsI64WithVL(DL, ContainerVT, SDValue(), Lo, Hi, VL, DAG); 4231 return convertFromScalableVector(VecVT, Res, DAG, Subtarget); 4232 } 4233 4234 if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) { 4235 int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue(); 4236 int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue(); 4237 // If Hi constant is all the same sign bit as Lo, lower this as a custom 4238 // node in order to try and match RVV vector/scalar instructions. 4239 if ((LoC >> 31) == HiC) 4240 return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, DAG.getUNDEF(VecVT), 4241 Lo, DAG.getRegister(RISCV::X0, MVT::i32)); 4242 } 4243 4244 // Detect cases where Hi is (SRA Lo, 31) which means Hi is Lo sign extended. 4245 if (Hi.getOpcode() == ISD::SRA && Hi.getOperand(0) == Lo && 4246 isa<ConstantSDNode>(Hi.getOperand(1)) && 4247 Hi.getConstantOperandVal(1) == 31) 4248 return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, DAG.getUNDEF(VecVT), Lo, 4249 DAG.getRegister(RISCV::X0, MVT::i32)); 4250 4251 // Fall back to use a stack store and stride x0 vector load. Use X0 as VL. 4252 return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VecVT, 4253 DAG.getUNDEF(VecVT), Lo, Hi, 4254 DAG.getRegister(RISCV::X0, MVT::i32)); 4255 } 4256 4257 // Custom-lower extensions from mask vectors by using a vselect either with 1 4258 // for zero/any-extension or -1 for sign-extension: 4259 // (vXiN = (s|z)ext vXi1:vmask) -> (vXiN = vselect vmask, (-1 or 1), 0) 4260 // Note that any-extension is lowered identically to zero-extension. 4261 SDValue RISCVTargetLowering::lowerVectorMaskExt(SDValue Op, SelectionDAG &DAG, 4262 int64_t ExtTrueVal) const { 4263 SDLoc DL(Op); 4264 MVT VecVT = Op.getSimpleValueType(); 4265 SDValue Src = Op.getOperand(0); 4266 // Only custom-lower extensions from mask types 4267 assert(Src.getValueType().isVector() && 4268 Src.getValueType().getVectorElementType() == MVT::i1); 4269 4270 MVT XLenVT = Subtarget.getXLenVT(); 4271 SDValue SplatZero = DAG.getConstant(0, DL, XLenVT); 4272 SDValue SplatTrueVal = DAG.getConstant(ExtTrueVal, DL, XLenVT); 4273 4274 if (VecVT.isScalableVector()) { 4275 // Be careful not to introduce illegal scalar types at this stage, and be 4276 // careful also about splatting constants as on RV32, vXi64 SPLAT_VECTOR is 4277 // illegal and must be expanded. Since we know that the constants are 4278 // sign-extended 32-bit values, we use VMV_V_X_VL directly. 4279 bool IsRV32E64 = 4280 !Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64; 4281 4282 if (!IsRV32E64) { 4283 SplatZero = DAG.getSplatVector(VecVT, DL, SplatZero); 4284 SplatTrueVal = DAG.getSplatVector(VecVT, DL, SplatTrueVal); 4285 } else { 4286 SplatZero = 4287 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, DAG.getUNDEF(VecVT), 4288 SplatZero, DAG.getRegister(RISCV::X0, XLenVT)); 4289 SplatTrueVal = 4290 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, DAG.getUNDEF(VecVT), 4291 SplatTrueVal, DAG.getRegister(RISCV::X0, XLenVT)); 4292 } 4293 4294 return DAG.getNode(ISD::VSELECT, DL, VecVT, Src, SplatTrueVal, SplatZero); 4295 } 4296 4297 MVT ContainerVT = getContainerForFixedLengthVector(VecVT); 4298 MVT I1ContainerVT = 4299 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4300 4301 SDValue CC = convertToScalableVector(I1ContainerVT, Src, DAG, Subtarget); 4302 4303 SDValue Mask, VL; 4304 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 4305 4306 SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, 4307 DAG.getUNDEF(ContainerVT), SplatZero, VL); 4308 SplatTrueVal = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, 4309 DAG.getUNDEF(ContainerVT), SplatTrueVal, VL); 4310 SDValue Select = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC, 4311 SplatTrueVal, SplatZero, VL); 4312 4313 return convertFromScalableVector(VecVT, Select, DAG, Subtarget); 4314 } 4315 4316 SDValue RISCVTargetLowering::lowerFixedLengthVectorExtendToRVV( 4317 SDValue Op, SelectionDAG &DAG, unsigned ExtendOpc) const { 4318 MVT ExtVT = Op.getSimpleValueType(); 4319 // Only custom-lower extensions from fixed-length vector types. 4320 if (!ExtVT.isFixedLengthVector()) 4321 return Op; 4322 MVT VT = Op.getOperand(0).getSimpleValueType(); 4323 // Grab the canonical container type for the extended type. Infer the smaller 4324 // type from that to ensure the same number of vector elements, as we know 4325 // the LMUL will be sufficient to hold the smaller type. 4326 MVT ContainerExtVT = getContainerForFixedLengthVector(ExtVT); 4327 // Get the extended container type manually to ensure the same number of 4328 // vector elements between source and dest. 4329 MVT ContainerVT = MVT::getVectorVT(VT.getVectorElementType(), 4330 ContainerExtVT.getVectorElementCount()); 4331 4332 SDValue Op1 = 4333 convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget); 4334 4335 SDLoc DL(Op); 4336 SDValue Mask, VL; 4337 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 4338 4339 SDValue Ext = DAG.getNode(ExtendOpc, DL, ContainerExtVT, Op1, Mask, VL); 4340 4341 return convertFromScalableVector(ExtVT, Ext, DAG, Subtarget); 4342 } 4343 4344 // Custom-lower truncations from vectors to mask vectors by using a mask and a 4345 // setcc operation: 4346 // (vXi1 = trunc vXiN vec) -> (vXi1 = setcc (and vec, 1), 0, ne) 4347 SDValue RISCVTargetLowering::lowerVectorMaskTrunc(SDValue Op, 4348 SelectionDAG &DAG) const { 4349 SDLoc DL(Op); 4350 EVT MaskVT = Op.getValueType(); 4351 // Only expect to custom-lower truncations to mask types 4352 assert(MaskVT.isVector() && MaskVT.getVectorElementType() == MVT::i1 && 4353 "Unexpected type for vector mask lowering"); 4354 SDValue Src = Op.getOperand(0); 4355 MVT VecVT = Src.getSimpleValueType(); 4356 4357 // If this is a fixed vector, we need to convert it to a scalable vector. 4358 MVT ContainerVT = VecVT; 4359 if (VecVT.isFixedLengthVector()) { 4360 ContainerVT = getContainerForFixedLengthVector(VecVT); 4361 Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget); 4362 } 4363 4364 SDValue SplatOne = DAG.getConstant(1, DL, Subtarget.getXLenVT()); 4365 SDValue SplatZero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 4366 4367 SplatOne = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, 4368 DAG.getUNDEF(ContainerVT), SplatOne); 4369 SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, 4370 DAG.getUNDEF(ContainerVT), SplatZero); 4371 4372 if (VecVT.isScalableVector()) { 4373 SDValue Trunc = DAG.getNode(ISD::AND, DL, VecVT, Src, SplatOne); 4374 return DAG.getSetCC(DL, MaskVT, Trunc, SplatZero, ISD::SETNE); 4375 } 4376 4377 SDValue Mask, VL; 4378 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 4379 4380 MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1); 4381 SDValue Trunc = 4382 DAG.getNode(RISCVISD::AND_VL, DL, ContainerVT, Src, SplatOne, Mask, VL); 4383 Trunc = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskContainerVT, Trunc, SplatZero, 4384 DAG.getCondCode(ISD::SETNE), Mask, VL); 4385 return convertFromScalableVector(MaskVT, Trunc, DAG, Subtarget); 4386 } 4387 4388 // Custom-legalize INSERT_VECTOR_ELT so that the value is inserted into the 4389 // first position of a vector, and that vector is slid up to the insert index. 4390 // By limiting the active vector length to index+1 and merging with the 4391 // original vector (with an undisturbed tail policy for elements >= VL), we 4392 // achieve the desired result of leaving all elements untouched except the one 4393 // at VL-1, which is replaced with the desired value. 4394 SDValue RISCVTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op, 4395 SelectionDAG &DAG) const { 4396 SDLoc DL(Op); 4397 MVT VecVT = Op.getSimpleValueType(); 4398 SDValue Vec = Op.getOperand(0); 4399 SDValue Val = Op.getOperand(1); 4400 SDValue Idx = Op.getOperand(2); 4401 4402 if (VecVT.getVectorElementType() == MVT::i1) { 4403 // FIXME: For now we just promote to an i8 vector and insert into that, 4404 // but this is probably not optimal. 4405 MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount()); 4406 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec); 4407 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, WideVT, Vec, Val, Idx); 4408 return DAG.getNode(ISD::TRUNCATE, DL, VecVT, Vec); 4409 } 4410 4411 MVT ContainerVT = VecVT; 4412 // If the operand is a fixed-length vector, convert to a scalable one. 4413 if (VecVT.isFixedLengthVector()) { 4414 ContainerVT = getContainerForFixedLengthVector(VecVT); 4415 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 4416 } 4417 4418 MVT XLenVT = Subtarget.getXLenVT(); 4419 4420 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 4421 bool IsLegalInsert = Subtarget.is64Bit() || Val.getValueType() != MVT::i64; 4422 // Even i64-element vectors on RV32 can be lowered without scalar 4423 // legalization if the most-significant 32 bits of the value are not affected 4424 // by the sign-extension of the lower 32 bits. 4425 // TODO: We could also catch sign extensions of a 32-bit value. 4426 if (!IsLegalInsert && isa<ConstantSDNode>(Val)) { 4427 const auto *CVal = cast<ConstantSDNode>(Val); 4428 if (isInt<32>(CVal->getSExtValue())) { 4429 IsLegalInsert = true; 4430 Val = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32); 4431 } 4432 } 4433 4434 SDValue Mask, VL; 4435 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 4436 4437 SDValue ValInVec; 4438 4439 if (IsLegalInsert) { 4440 unsigned Opc = 4441 VecVT.isFloatingPoint() ? RISCVISD::VFMV_S_F_VL : RISCVISD::VMV_S_X_VL; 4442 if (isNullConstant(Idx)) { 4443 Vec = DAG.getNode(Opc, DL, ContainerVT, Vec, Val, VL); 4444 if (!VecVT.isFixedLengthVector()) 4445 return Vec; 4446 return convertFromScalableVector(VecVT, Vec, DAG, Subtarget); 4447 } 4448 ValInVec = 4449 DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), Val, VL); 4450 } else { 4451 // On RV32, i64-element vectors must be specially handled to place the 4452 // value at element 0, by using two vslide1up instructions in sequence on 4453 // the i32 split lo/hi value. Use an equivalently-sized i32 vector for 4454 // this. 4455 SDValue One = DAG.getConstant(1, DL, XLenVT); 4456 SDValue ValLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, Zero); 4457 SDValue ValHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, One); 4458 MVT I32ContainerVT = 4459 MVT::getVectorVT(MVT::i32, ContainerVT.getVectorElementCount() * 2); 4460 SDValue I32Mask = 4461 getDefaultScalableVLOps(I32ContainerVT, DL, DAG, Subtarget).first; 4462 // Limit the active VL to two. 4463 SDValue InsertI64VL = DAG.getConstant(2, DL, XLenVT); 4464 // Note: We can't pass a UNDEF to the first VSLIDE1UP_VL since an untied 4465 // undef doesn't obey the earlyclobber constraint. Just splat a zero value. 4466 ValInVec = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, I32ContainerVT, 4467 DAG.getUNDEF(I32ContainerVT), Zero, InsertI64VL); 4468 // First slide in the hi value, then the lo in underneath it. 4469 ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT, 4470 DAG.getUNDEF(I32ContainerVT), ValInVec, ValHi, 4471 I32Mask, InsertI64VL); 4472 ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT, 4473 DAG.getUNDEF(I32ContainerVT), ValInVec, ValLo, 4474 I32Mask, InsertI64VL); 4475 // Bitcast back to the right container type. 4476 ValInVec = DAG.getBitcast(ContainerVT, ValInVec); 4477 } 4478 4479 // Now that the value is in a vector, slide it into position. 4480 SDValue InsertVL = 4481 DAG.getNode(ISD::ADD, DL, XLenVT, Idx, DAG.getConstant(1, DL, XLenVT)); 4482 SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec, 4483 ValInVec, Idx, Mask, InsertVL); 4484 if (!VecVT.isFixedLengthVector()) 4485 return Slideup; 4486 return convertFromScalableVector(VecVT, Slideup, DAG, Subtarget); 4487 } 4488 4489 // Custom-lower EXTRACT_VECTOR_ELT operations to slide the vector down, then 4490 // extract the first element: (extractelt (slidedown vec, idx), 0). For integer 4491 // types this is done using VMV_X_S to allow us to glean information about the 4492 // sign bits of the result. 4493 SDValue RISCVTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op, 4494 SelectionDAG &DAG) const { 4495 SDLoc DL(Op); 4496 SDValue Idx = Op.getOperand(1); 4497 SDValue Vec = Op.getOperand(0); 4498 EVT EltVT = Op.getValueType(); 4499 MVT VecVT = Vec.getSimpleValueType(); 4500 MVT XLenVT = Subtarget.getXLenVT(); 4501 4502 if (VecVT.getVectorElementType() == MVT::i1) { 4503 if (VecVT.isFixedLengthVector()) { 4504 unsigned NumElts = VecVT.getVectorNumElements(); 4505 if (NumElts >= 8) { 4506 MVT WideEltVT; 4507 unsigned WidenVecLen; 4508 SDValue ExtractElementIdx; 4509 SDValue ExtractBitIdx; 4510 unsigned MaxEEW = Subtarget.getMaxELENForFixedLengthVectors(); 4511 MVT LargestEltVT = MVT::getIntegerVT( 4512 std::min(MaxEEW, unsigned(XLenVT.getSizeInBits()))); 4513 if (NumElts <= LargestEltVT.getSizeInBits()) { 4514 assert(isPowerOf2_32(NumElts) && 4515 "the number of elements should be power of 2"); 4516 WideEltVT = MVT::getIntegerVT(NumElts); 4517 WidenVecLen = 1; 4518 ExtractElementIdx = DAG.getConstant(0, DL, XLenVT); 4519 ExtractBitIdx = Idx; 4520 } else { 4521 WideEltVT = LargestEltVT; 4522 WidenVecLen = NumElts / WideEltVT.getSizeInBits(); 4523 // extract element index = index / element width 4524 ExtractElementIdx = DAG.getNode( 4525 ISD::SRL, DL, XLenVT, Idx, 4526 DAG.getConstant(Log2_64(WideEltVT.getSizeInBits()), DL, XLenVT)); 4527 // mask bit index = index % element width 4528 ExtractBitIdx = DAG.getNode( 4529 ISD::AND, DL, XLenVT, Idx, 4530 DAG.getConstant(WideEltVT.getSizeInBits() - 1, DL, XLenVT)); 4531 } 4532 MVT WideVT = MVT::getVectorVT(WideEltVT, WidenVecLen); 4533 Vec = DAG.getNode(ISD::BITCAST, DL, WideVT, Vec); 4534 SDValue ExtractElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, XLenVT, 4535 Vec, ExtractElementIdx); 4536 // Extract the bit from GPR. 4537 SDValue ShiftRight = 4538 DAG.getNode(ISD::SRL, DL, XLenVT, ExtractElt, ExtractBitIdx); 4539 return DAG.getNode(ISD::AND, DL, XLenVT, ShiftRight, 4540 DAG.getConstant(1, DL, XLenVT)); 4541 } 4542 } 4543 // Otherwise, promote to an i8 vector and extract from that. 4544 MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount()); 4545 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec); 4546 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec, Idx); 4547 } 4548 4549 // If this is a fixed vector, we need to convert it to a scalable vector. 4550 MVT ContainerVT = VecVT; 4551 if (VecVT.isFixedLengthVector()) { 4552 ContainerVT = getContainerForFixedLengthVector(VecVT); 4553 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 4554 } 4555 4556 // If the index is 0, the vector is already in the right position. 4557 if (!isNullConstant(Idx)) { 4558 // Use a VL of 1 to avoid processing more elements than we need. 4559 SDValue VL = DAG.getConstant(1, DL, XLenVT); 4560 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4561 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 4562 Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 4563 DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL); 4564 } 4565 4566 if (!EltVT.isInteger()) { 4567 // Floating-point extracts are handled in TableGen. 4568 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec, 4569 DAG.getConstant(0, DL, XLenVT)); 4570 } 4571 4572 SDValue Elt0 = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); 4573 return DAG.getNode(ISD::TRUNCATE, DL, EltVT, Elt0); 4574 } 4575 4576 // Some RVV intrinsics may claim that they want an integer operand to be 4577 // promoted or expanded. 4578 static SDValue lowerVectorIntrinsicScalars(SDValue Op, SelectionDAG &DAG, 4579 const RISCVSubtarget &Subtarget) { 4580 assert((Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 4581 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN) && 4582 "Unexpected opcode"); 4583 4584 if (!Subtarget.hasVInstructions()) 4585 return SDValue(); 4586 4587 bool HasChain = Op.getOpcode() == ISD::INTRINSIC_W_CHAIN; 4588 unsigned IntNo = Op.getConstantOperandVal(HasChain ? 1 : 0); 4589 SDLoc DL(Op); 4590 4591 const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II = 4592 RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo); 4593 if (!II || !II->hasScalarOperand()) 4594 return SDValue(); 4595 4596 unsigned SplatOp = II->ScalarOperand + 1 + HasChain; 4597 assert(SplatOp < Op.getNumOperands()); 4598 4599 SmallVector<SDValue, 8> Operands(Op->op_begin(), Op->op_end()); 4600 SDValue &ScalarOp = Operands[SplatOp]; 4601 MVT OpVT = ScalarOp.getSimpleValueType(); 4602 MVT XLenVT = Subtarget.getXLenVT(); 4603 4604 // If this isn't a scalar, or its type is XLenVT we're done. 4605 if (!OpVT.isScalarInteger() || OpVT == XLenVT) 4606 return SDValue(); 4607 4608 // Simplest case is that the operand needs to be promoted to XLenVT. 4609 if (OpVT.bitsLT(XLenVT)) { 4610 // If the operand is a constant, sign extend to increase our chances 4611 // of being able to use a .vi instruction. ANY_EXTEND would become a 4612 // a zero extend and the simm5 check in isel would fail. 4613 // FIXME: Should we ignore the upper bits in isel instead? 4614 unsigned ExtOpc = 4615 isa<ConstantSDNode>(ScalarOp) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND; 4616 ScalarOp = DAG.getNode(ExtOpc, DL, XLenVT, ScalarOp); 4617 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); 4618 } 4619 4620 // Use the previous operand to get the vXi64 VT. The result might be a mask 4621 // VT for compares. Using the previous operand assumes that the previous 4622 // operand will never have a smaller element size than a scalar operand and 4623 // that a widening operation never uses SEW=64. 4624 // NOTE: If this fails the below assert, we can probably just find the 4625 // element count from any operand or result and use it to construct the VT. 4626 assert(II->ScalarOperand > 0 && "Unexpected splat operand!"); 4627 MVT VT = Op.getOperand(SplatOp - 1).getSimpleValueType(); 4628 4629 // The more complex case is when the scalar is larger than XLenVT. 4630 assert(XLenVT == MVT::i32 && OpVT == MVT::i64 && 4631 VT.getVectorElementType() == MVT::i64 && "Unexpected VTs!"); 4632 4633 // If this is a sign-extended 32-bit constant, we can truncate it and rely 4634 // on the instruction to sign-extend since SEW>XLEN. 4635 if (auto *CVal = dyn_cast<ConstantSDNode>(ScalarOp)) { 4636 if (isInt<32>(CVal->getSExtValue())) { 4637 ScalarOp = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32); 4638 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); 4639 } 4640 } 4641 4642 switch (IntNo) { 4643 case Intrinsic::riscv_vslide1up: 4644 case Intrinsic::riscv_vslide1down: 4645 case Intrinsic::riscv_vslide1up_mask: 4646 case Intrinsic::riscv_vslide1down_mask: { 4647 // We need to special case these when the scalar is larger than XLen. 4648 unsigned NumOps = Op.getNumOperands(); 4649 bool IsMasked = NumOps == 7; 4650 4651 // Convert the vector source to the equivalent nxvXi32 vector. 4652 MVT I32VT = MVT::getVectorVT(MVT::i32, VT.getVectorElementCount() * 2); 4653 SDValue Vec = DAG.getBitcast(I32VT, Operands[2]); 4654 4655 SDValue ScalarLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, ScalarOp, 4656 DAG.getConstant(0, DL, XLenVT)); 4657 SDValue ScalarHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, ScalarOp, 4658 DAG.getConstant(1, DL, XLenVT)); 4659 4660 // Double the VL since we halved SEW. 4661 SDValue AVL = getVLOperand(Op); 4662 SDValue I32VL; 4663 4664 // Optimize for constant AVL 4665 if (isa<ConstantSDNode>(AVL)) { 4666 unsigned EltSize = VT.getScalarSizeInBits(); 4667 unsigned MinSize = VT.getSizeInBits().getKnownMinValue(); 4668 4669 unsigned VectorBitsMax = Subtarget.getRealMaxVLen(); 4670 unsigned MaxVLMAX = 4671 RISCVTargetLowering::computeVLMAX(VectorBitsMax, EltSize, MinSize); 4672 4673 unsigned VectorBitsMin = Subtarget.getRealMinVLen(); 4674 unsigned MinVLMAX = 4675 RISCVTargetLowering::computeVLMAX(VectorBitsMin, EltSize, MinSize); 4676 4677 uint64_t AVLInt = cast<ConstantSDNode>(AVL)->getZExtValue(); 4678 if (AVLInt <= MinVLMAX) { 4679 I32VL = DAG.getConstant(2 * AVLInt, DL, XLenVT); 4680 } else if (AVLInt >= 2 * MaxVLMAX) { 4681 // Just set vl to VLMAX in this situation 4682 RISCVII::VLMUL Lmul = RISCVTargetLowering::getLMUL(I32VT); 4683 SDValue LMUL = DAG.getConstant(Lmul, DL, XLenVT); 4684 unsigned Sew = RISCVVType::encodeSEW(I32VT.getScalarSizeInBits()); 4685 SDValue SEW = DAG.getConstant(Sew, DL, XLenVT); 4686 SDValue SETVLMAX = DAG.getTargetConstant( 4687 Intrinsic::riscv_vsetvlimax_opt, DL, MVT::i32); 4688 I32VL = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, XLenVT, SETVLMAX, SEW, 4689 LMUL); 4690 } else { 4691 // For AVL between (MinVLMAX, 2 * MaxVLMAX), the actual working vl 4692 // is related to the hardware implementation. 4693 // So let the following code handle 4694 } 4695 } 4696 if (!I32VL) { 4697 RISCVII::VLMUL Lmul = RISCVTargetLowering::getLMUL(VT); 4698 SDValue LMUL = DAG.getConstant(Lmul, DL, XLenVT); 4699 unsigned Sew = RISCVVType::encodeSEW(VT.getScalarSizeInBits()); 4700 SDValue SEW = DAG.getConstant(Sew, DL, XLenVT); 4701 SDValue SETVL = 4702 DAG.getTargetConstant(Intrinsic::riscv_vsetvli_opt, DL, MVT::i32); 4703 // Using vsetvli instruction to get actually used length which related to 4704 // the hardware implementation 4705 SDValue VL = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, XLenVT, SETVL, AVL, 4706 SEW, LMUL); 4707 I32VL = 4708 DAG.getNode(ISD::SHL, DL, XLenVT, VL, DAG.getConstant(1, DL, XLenVT)); 4709 } 4710 4711 MVT I32MaskVT = MVT::getVectorVT(MVT::i1, I32VT.getVectorElementCount()); 4712 SDValue I32Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, I32MaskVT, I32VL); 4713 4714 // Shift the two scalar parts in using SEW=32 slide1up/slide1down 4715 // instructions. 4716 SDValue Passthru; 4717 if (IsMasked) 4718 Passthru = DAG.getUNDEF(I32VT); 4719 else 4720 Passthru = DAG.getBitcast(I32VT, Operands[1]); 4721 4722 if (IntNo == Intrinsic::riscv_vslide1up || 4723 IntNo == Intrinsic::riscv_vslide1up_mask) { 4724 Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Passthru, Vec, 4725 ScalarHi, I32Mask, I32VL); 4726 Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Passthru, Vec, 4727 ScalarLo, I32Mask, I32VL); 4728 } else { 4729 Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Passthru, Vec, 4730 ScalarLo, I32Mask, I32VL); 4731 Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Passthru, Vec, 4732 ScalarHi, I32Mask, I32VL); 4733 } 4734 4735 // Convert back to nxvXi64. 4736 Vec = DAG.getBitcast(VT, Vec); 4737 4738 if (!IsMasked) 4739 return Vec; 4740 // Apply mask after the operation. 4741 SDValue Mask = Operands[NumOps - 3]; 4742 SDValue MaskedOff = Operands[1]; 4743 // Assume Policy operand is the last operand. 4744 uint64_t Policy = 4745 cast<ConstantSDNode>(Operands[NumOps - 1])->getZExtValue(); 4746 // We don't need to select maskedoff if it's undef. 4747 if (MaskedOff.isUndef()) 4748 return Vec; 4749 // TAMU 4750 if (Policy == RISCVII::TAIL_AGNOSTIC) 4751 return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, Mask, Vec, MaskedOff, 4752 AVL); 4753 // TUMA or TUMU: Currently we always emit tumu policy regardless of tuma. 4754 // It's fine because vmerge does not care mask policy. 4755 return DAG.getNode(RISCVISD::VP_MERGE_VL, DL, VT, Mask, Vec, MaskedOff, 4756 AVL); 4757 } 4758 } 4759 4760 // We need to convert the scalar to a splat vector. 4761 // FIXME: Can we implicitly truncate the scalar if it is known to 4762 // be sign extended? 4763 SDValue VL = getVLOperand(Op); 4764 assert(VL.getValueType() == XLenVT); 4765 ScalarOp = splatSplitI64WithVL(DL, VT, SDValue(), ScalarOp, VL, DAG); 4766 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); 4767 } 4768 4769 SDValue RISCVTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 4770 SelectionDAG &DAG) const { 4771 unsigned IntNo = Op.getConstantOperandVal(0); 4772 SDLoc DL(Op); 4773 MVT XLenVT = Subtarget.getXLenVT(); 4774 4775 switch (IntNo) { 4776 default: 4777 break; // Don't custom lower most intrinsics. 4778 case Intrinsic::thread_pointer: { 4779 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 4780 return DAG.getRegister(RISCV::X4, PtrVT); 4781 } 4782 case Intrinsic::riscv_orc_b: 4783 case Intrinsic::riscv_brev8: { 4784 // Lower to the GORCI encoding for orc.b or the GREVI encoding for brev8. 4785 unsigned Opc = 4786 IntNo == Intrinsic::riscv_brev8 ? RISCVISD::GREV : RISCVISD::GORC; 4787 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), 4788 DAG.getConstant(7, DL, XLenVT)); 4789 } 4790 case Intrinsic::riscv_grev: 4791 case Intrinsic::riscv_gorc: { 4792 unsigned Opc = 4793 IntNo == Intrinsic::riscv_grev ? RISCVISD::GREV : RISCVISD::GORC; 4794 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2)); 4795 } 4796 case Intrinsic::riscv_zip: 4797 case Intrinsic::riscv_unzip: { 4798 // Lower to the SHFLI encoding for zip or the UNSHFLI encoding for unzip. 4799 // For i32 the immediate is 15. For i64 the immediate is 31. 4800 unsigned Opc = 4801 IntNo == Intrinsic::riscv_zip ? RISCVISD::SHFL : RISCVISD::UNSHFL; 4802 unsigned BitWidth = Op.getValueSizeInBits(); 4803 assert(isPowerOf2_32(BitWidth) && BitWidth >= 2 && "Unexpected bit width"); 4804 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), 4805 DAG.getConstant((BitWidth / 2) - 1, DL, XLenVT)); 4806 } 4807 case Intrinsic::riscv_shfl: 4808 case Intrinsic::riscv_unshfl: { 4809 unsigned Opc = 4810 IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL; 4811 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2)); 4812 } 4813 case Intrinsic::riscv_bcompress: 4814 case Intrinsic::riscv_bdecompress: { 4815 unsigned Opc = IntNo == Intrinsic::riscv_bcompress ? RISCVISD::BCOMPRESS 4816 : RISCVISD::BDECOMPRESS; 4817 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2)); 4818 } 4819 case Intrinsic::riscv_bfp: 4820 return DAG.getNode(RISCVISD::BFP, DL, XLenVT, Op.getOperand(1), 4821 Op.getOperand(2)); 4822 case Intrinsic::riscv_fsl: 4823 return DAG.getNode(RISCVISD::FSL, DL, XLenVT, Op.getOperand(1), 4824 Op.getOperand(2), Op.getOperand(3)); 4825 case Intrinsic::riscv_fsr: 4826 return DAG.getNode(RISCVISD::FSR, DL, XLenVT, Op.getOperand(1), 4827 Op.getOperand(2), Op.getOperand(3)); 4828 case Intrinsic::riscv_vmv_x_s: 4829 assert(Op.getValueType() == XLenVT && "Unexpected VT!"); 4830 return DAG.getNode(RISCVISD::VMV_X_S, DL, Op.getValueType(), 4831 Op.getOperand(1)); 4832 case Intrinsic::riscv_vmv_v_x: 4833 return lowerScalarSplat(Op.getOperand(1), Op.getOperand(2), 4834 Op.getOperand(3), Op.getSimpleValueType(), DL, DAG, 4835 Subtarget); 4836 case Intrinsic::riscv_vfmv_v_f: 4837 return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, Op.getValueType(), 4838 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 4839 case Intrinsic::riscv_vmv_s_x: { 4840 SDValue Scalar = Op.getOperand(2); 4841 4842 if (Scalar.getValueType().bitsLE(XLenVT)) { 4843 Scalar = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Scalar); 4844 return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, Op.getValueType(), 4845 Op.getOperand(1), Scalar, Op.getOperand(3)); 4846 } 4847 4848 assert(Scalar.getValueType() == MVT::i64 && "Unexpected scalar VT!"); 4849 4850 // This is an i64 value that lives in two scalar registers. We have to 4851 // insert this in a convoluted way. First we build vXi64 splat containing 4852 // the/ two values that we assemble using some bit math. Next we'll use 4853 // vid.v and vmseq to build a mask with bit 0 set. Then we'll use that mask 4854 // to merge element 0 from our splat into the source vector. 4855 // FIXME: This is probably not the best way to do this, but it is 4856 // consistent with INSERT_VECTOR_ELT lowering so it is a good starting 4857 // point. 4858 // sw lo, (a0) 4859 // sw hi, 4(a0) 4860 // vlse vX, (a0) 4861 // 4862 // vid.v vVid 4863 // vmseq.vx mMask, vVid, 0 4864 // vmerge.vvm vDest, vSrc, vVal, mMask 4865 MVT VT = Op.getSimpleValueType(); 4866 SDValue Vec = Op.getOperand(1); 4867 SDValue VL = getVLOperand(Op); 4868 4869 SDValue SplattedVal = splatSplitI64WithVL(DL, VT, SDValue(), Scalar, VL, DAG); 4870 if (Op.getOperand(1).isUndef()) 4871 return SplattedVal; 4872 SDValue SplattedIdx = 4873 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, DAG.getUNDEF(VT), 4874 DAG.getConstant(0, DL, MVT::i32), VL); 4875 4876 MVT MaskVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount()); 4877 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 4878 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL); 4879 SDValue SelectCond = 4880 DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, VID, SplattedIdx, 4881 DAG.getCondCode(ISD::SETEQ), Mask, VL); 4882 return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, SelectCond, SplattedVal, 4883 Vec, VL); 4884 } 4885 } 4886 4887 return lowerVectorIntrinsicScalars(Op, DAG, Subtarget); 4888 } 4889 4890 SDValue RISCVTargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op, 4891 SelectionDAG &DAG) const { 4892 unsigned IntNo = Op.getConstantOperandVal(1); 4893 switch (IntNo) { 4894 default: 4895 break; 4896 case Intrinsic::riscv_masked_strided_load: { 4897 SDLoc DL(Op); 4898 MVT XLenVT = Subtarget.getXLenVT(); 4899 4900 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 4901 // the selection of the masked intrinsics doesn't do this for us. 4902 SDValue Mask = Op.getOperand(5); 4903 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 4904 4905 MVT VT = Op->getSimpleValueType(0); 4906 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4907 4908 SDValue PassThru = Op.getOperand(2); 4909 if (!IsUnmasked) { 4910 MVT MaskVT = 4911 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4912 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 4913 PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget); 4914 } 4915 4916 SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT); 4917 4918 SDValue IntID = DAG.getTargetConstant( 4919 IsUnmasked ? Intrinsic::riscv_vlse : Intrinsic::riscv_vlse_mask, DL, 4920 XLenVT); 4921 4922 auto *Load = cast<MemIntrinsicSDNode>(Op); 4923 SmallVector<SDValue, 8> Ops{Load->getChain(), IntID}; 4924 if (IsUnmasked) 4925 Ops.push_back(DAG.getUNDEF(ContainerVT)); 4926 else 4927 Ops.push_back(PassThru); 4928 Ops.push_back(Op.getOperand(3)); // Ptr 4929 Ops.push_back(Op.getOperand(4)); // Stride 4930 if (!IsUnmasked) 4931 Ops.push_back(Mask); 4932 Ops.push_back(VL); 4933 if (!IsUnmasked) { 4934 SDValue Policy = DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT); 4935 Ops.push_back(Policy); 4936 } 4937 4938 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 4939 SDValue Result = 4940 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, 4941 Load->getMemoryVT(), Load->getMemOperand()); 4942 SDValue Chain = Result.getValue(1); 4943 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 4944 return DAG.getMergeValues({Result, Chain}, DL); 4945 } 4946 case Intrinsic::riscv_seg2_load: 4947 case Intrinsic::riscv_seg3_load: 4948 case Intrinsic::riscv_seg4_load: 4949 case Intrinsic::riscv_seg5_load: 4950 case Intrinsic::riscv_seg6_load: 4951 case Intrinsic::riscv_seg7_load: 4952 case Intrinsic::riscv_seg8_load: { 4953 SDLoc DL(Op); 4954 static const Intrinsic::ID VlsegInts[7] = { 4955 Intrinsic::riscv_vlseg2, Intrinsic::riscv_vlseg3, 4956 Intrinsic::riscv_vlseg4, Intrinsic::riscv_vlseg5, 4957 Intrinsic::riscv_vlseg6, Intrinsic::riscv_vlseg7, 4958 Intrinsic::riscv_vlseg8}; 4959 unsigned NF = Op->getNumValues() - 1; 4960 assert(NF >= 2 && NF <= 8 && "Unexpected seg number"); 4961 MVT XLenVT = Subtarget.getXLenVT(); 4962 MVT VT = Op->getSimpleValueType(0); 4963 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4964 4965 SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT); 4966 SDValue IntID = DAG.getTargetConstant(VlsegInts[NF - 2], DL, XLenVT); 4967 auto *Load = cast<MemIntrinsicSDNode>(Op); 4968 SmallVector<EVT, 9> ContainerVTs(NF, ContainerVT); 4969 ContainerVTs.push_back(MVT::Other); 4970 SDVTList VTs = DAG.getVTList(ContainerVTs); 4971 SDValue Result = 4972 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, 4973 {Load->getChain(), IntID, Op.getOperand(2), VL}, 4974 Load->getMemoryVT(), Load->getMemOperand()); 4975 SmallVector<SDValue, 9> Results; 4976 for (unsigned int RetIdx = 0; RetIdx < NF; RetIdx++) 4977 Results.push_back(convertFromScalableVector(VT, Result.getValue(RetIdx), 4978 DAG, Subtarget)); 4979 Results.push_back(Result.getValue(NF)); 4980 return DAG.getMergeValues(Results, DL); 4981 } 4982 } 4983 4984 return lowerVectorIntrinsicScalars(Op, DAG, Subtarget); 4985 } 4986 4987 SDValue RISCVTargetLowering::LowerINTRINSIC_VOID(SDValue Op, 4988 SelectionDAG &DAG) const { 4989 unsigned IntNo = Op.getConstantOperandVal(1); 4990 switch (IntNo) { 4991 default: 4992 break; 4993 case Intrinsic::riscv_masked_strided_store: { 4994 SDLoc DL(Op); 4995 MVT XLenVT = Subtarget.getXLenVT(); 4996 4997 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 4998 // the selection of the masked intrinsics doesn't do this for us. 4999 SDValue Mask = Op.getOperand(5); 5000 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 5001 5002 SDValue Val = Op.getOperand(2); 5003 MVT VT = Val.getSimpleValueType(); 5004 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5005 5006 Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget); 5007 if (!IsUnmasked) { 5008 MVT MaskVT = 5009 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 5010 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 5011 } 5012 5013 SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT); 5014 5015 SDValue IntID = DAG.getTargetConstant( 5016 IsUnmasked ? Intrinsic::riscv_vsse : Intrinsic::riscv_vsse_mask, DL, 5017 XLenVT); 5018 5019 auto *Store = cast<MemIntrinsicSDNode>(Op); 5020 SmallVector<SDValue, 8> Ops{Store->getChain(), IntID}; 5021 Ops.push_back(Val); 5022 Ops.push_back(Op.getOperand(3)); // Ptr 5023 Ops.push_back(Op.getOperand(4)); // Stride 5024 if (!IsUnmasked) 5025 Ops.push_back(Mask); 5026 Ops.push_back(VL); 5027 5028 return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, Store->getVTList(), 5029 Ops, Store->getMemoryVT(), 5030 Store->getMemOperand()); 5031 } 5032 } 5033 5034 return SDValue(); 5035 } 5036 5037 static MVT getLMUL1VT(MVT VT) { 5038 assert(VT.getVectorElementType().getSizeInBits() <= 64 && 5039 "Unexpected vector MVT"); 5040 return MVT::getScalableVectorVT( 5041 VT.getVectorElementType(), 5042 RISCV::RVVBitsPerBlock / VT.getVectorElementType().getSizeInBits()); 5043 } 5044 5045 static unsigned getRVVReductionOp(unsigned ISDOpcode) { 5046 switch (ISDOpcode) { 5047 default: 5048 llvm_unreachable("Unhandled reduction"); 5049 case ISD::VECREDUCE_ADD: 5050 return RISCVISD::VECREDUCE_ADD_VL; 5051 case ISD::VECREDUCE_UMAX: 5052 return RISCVISD::VECREDUCE_UMAX_VL; 5053 case ISD::VECREDUCE_SMAX: 5054 return RISCVISD::VECREDUCE_SMAX_VL; 5055 case ISD::VECREDUCE_UMIN: 5056 return RISCVISD::VECREDUCE_UMIN_VL; 5057 case ISD::VECREDUCE_SMIN: 5058 return RISCVISD::VECREDUCE_SMIN_VL; 5059 case ISD::VECREDUCE_AND: 5060 return RISCVISD::VECREDUCE_AND_VL; 5061 case ISD::VECREDUCE_OR: 5062 return RISCVISD::VECREDUCE_OR_VL; 5063 case ISD::VECREDUCE_XOR: 5064 return RISCVISD::VECREDUCE_XOR_VL; 5065 } 5066 } 5067 5068 SDValue RISCVTargetLowering::lowerVectorMaskVecReduction(SDValue Op, 5069 SelectionDAG &DAG, 5070 bool IsVP) const { 5071 SDLoc DL(Op); 5072 SDValue Vec = Op.getOperand(IsVP ? 1 : 0); 5073 MVT VecVT = Vec.getSimpleValueType(); 5074 assert((Op.getOpcode() == ISD::VECREDUCE_AND || 5075 Op.getOpcode() == ISD::VECREDUCE_OR || 5076 Op.getOpcode() == ISD::VECREDUCE_XOR || 5077 Op.getOpcode() == ISD::VP_REDUCE_AND || 5078 Op.getOpcode() == ISD::VP_REDUCE_OR || 5079 Op.getOpcode() == ISD::VP_REDUCE_XOR) && 5080 "Unexpected reduction lowering"); 5081 5082 MVT XLenVT = Subtarget.getXLenVT(); 5083 assert(Op.getValueType() == XLenVT && 5084 "Expected reduction output to be legalized to XLenVT"); 5085 5086 MVT ContainerVT = VecVT; 5087 if (VecVT.isFixedLengthVector()) { 5088 ContainerVT = getContainerForFixedLengthVector(VecVT); 5089 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 5090 } 5091 5092 SDValue Mask, VL; 5093 if (IsVP) { 5094 Mask = Op.getOperand(2); 5095 VL = Op.getOperand(3); 5096 } else { 5097 std::tie(Mask, VL) = 5098 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 5099 } 5100 5101 unsigned BaseOpc; 5102 ISD::CondCode CC; 5103 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 5104 5105 switch (Op.getOpcode()) { 5106 default: 5107 llvm_unreachable("Unhandled reduction"); 5108 case ISD::VECREDUCE_AND: 5109 case ISD::VP_REDUCE_AND: { 5110 // vcpop ~x == 0 5111 SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL); 5112 Vec = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Vec, TrueMask, VL); 5113 Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL); 5114 CC = ISD::SETEQ; 5115 BaseOpc = ISD::AND; 5116 break; 5117 } 5118 case ISD::VECREDUCE_OR: 5119 case ISD::VP_REDUCE_OR: 5120 // vcpop x != 0 5121 Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL); 5122 CC = ISD::SETNE; 5123 BaseOpc = ISD::OR; 5124 break; 5125 case ISD::VECREDUCE_XOR: 5126 case ISD::VP_REDUCE_XOR: { 5127 // ((vcpop x) & 1) != 0 5128 SDValue One = DAG.getConstant(1, DL, XLenVT); 5129 Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL); 5130 Vec = DAG.getNode(ISD::AND, DL, XLenVT, Vec, One); 5131 CC = ISD::SETNE; 5132 BaseOpc = ISD::XOR; 5133 break; 5134 } 5135 } 5136 5137 SDValue SetCC = DAG.getSetCC(DL, XLenVT, Vec, Zero, CC); 5138 5139 if (!IsVP) 5140 return SetCC; 5141 5142 // Now include the start value in the operation. 5143 // Note that we must return the start value when no elements are operated 5144 // upon. The vcpop instructions we've emitted in each case above will return 5145 // 0 for an inactive vector, and so we've already received the neutral value: 5146 // AND gives us (0 == 0) -> 1 and OR/XOR give us (0 != 0) -> 0. Therefore we 5147 // can simply include the start value. 5148 return DAG.getNode(BaseOpc, DL, XLenVT, SetCC, Op.getOperand(0)); 5149 } 5150 5151 SDValue RISCVTargetLowering::lowerVECREDUCE(SDValue Op, 5152 SelectionDAG &DAG) const { 5153 SDLoc DL(Op); 5154 SDValue Vec = Op.getOperand(0); 5155 EVT VecEVT = Vec.getValueType(); 5156 5157 unsigned BaseOpc = ISD::getVecReduceBaseOpcode(Op.getOpcode()); 5158 5159 // Due to ordering in legalize types we may have a vector type that needs to 5160 // be split. Do that manually so we can get down to a legal type. 5161 while (getTypeAction(*DAG.getContext(), VecEVT) == 5162 TargetLowering::TypeSplitVector) { 5163 SDValue Lo, Hi; 5164 std::tie(Lo, Hi) = DAG.SplitVector(Vec, DL); 5165 VecEVT = Lo.getValueType(); 5166 Vec = DAG.getNode(BaseOpc, DL, VecEVT, Lo, Hi); 5167 } 5168 5169 // TODO: The type may need to be widened rather than split. Or widened before 5170 // it can be split. 5171 if (!isTypeLegal(VecEVT)) 5172 return SDValue(); 5173 5174 MVT VecVT = VecEVT.getSimpleVT(); 5175 MVT VecEltVT = VecVT.getVectorElementType(); 5176 unsigned RVVOpcode = getRVVReductionOp(Op.getOpcode()); 5177 5178 MVT ContainerVT = VecVT; 5179 if (VecVT.isFixedLengthVector()) { 5180 ContainerVT = getContainerForFixedLengthVector(VecVT); 5181 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 5182 } 5183 5184 MVT M1VT = getLMUL1VT(ContainerVT); 5185 MVT XLenVT = Subtarget.getXLenVT(); 5186 5187 SDValue Mask, VL; 5188 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 5189 5190 SDValue NeutralElem = 5191 DAG.getNeutralElement(BaseOpc, DL, VecEltVT, SDNodeFlags()); 5192 SDValue IdentitySplat = 5193 lowerScalarSplat(SDValue(), NeutralElem, DAG.getConstant(1, DL, XLenVT), 5194 M1VT, DL, DAG, Subtarget); 5195 SDValue Reduction = DAG.getNode(RVVOpcode, DL, M1VT, DAG.getUNDEF(M1VT), Vec, 5196 IdentitySplat, Mask, VL); 5197 SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction, 5198 DAG.getConstant(0, DL, XLenVT)); 5199 return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType()); 5200 } 5201 5202 // Given a reduction op, this function returns the matching reduction opcode, 5203 // the vector SDValue and the scalar SDValue required to lower this to a 5204 // RISCVISD node. 5205 static std::tuple<unsigned, SDValue, SDValue> 5206 getRVVFPReductionOpAndOperands(SDValue Op, SelectionDAG &DAG, EVT EltVT) { 5207 SDLoc DL(Op); 5208 auto Flags = Op->getFlags(); 5209 unsigned Opcode = Op.getOpcode(); 5210 unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Opcode); 5211 switch (Opcode) { 5212 default: 5213 llvm_unreachable("Unhandled reduction"); 5214 case ISD::VECREDUCE_FADD: { 5215 // Use positive zero if we can. It is cheaper to materialize. 5216 SDValue Zero = 5217 DAG.getConstantFP(Flags.hasNoSignedZeros() ? 0.0 : -0.0, DL, EltVT); 5218 return std::make_tuple(RISCVISD::VECREDUCE_FADD_VL, Op.getOperand(0), Zero); 5219 } 5220 case ISD::VECREDUCE_SEQ_FADD: 5221 return std::make_tuple(RISCVISD::VECREDUCE_SEQ_FADD_VL, Op.getOperand(1), 5222 Op.getOperand(0)); 5223 case ISD::VECREDUCE_FMIN: 5224 return std::make_tuple(RISCVISD::VECREDUCE_FMIN_VL, Op.getOperand(0), 5225 DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags)); 5226 case ISD::VECREDUCE_FMAX: 5227 return std::make_tuple(RISCVISD::VECREDUCE_FMAX_VL, Op.getOperand(0), 5228 DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags)); 5229 } 5230 } 5231 5232 SDValue RISCVTargetLowering::lowerFPVECREDUCE(SDValue Op, 5233 SelectionDAG &DAG) const { 5234 SDLoc DL(Op); 5235 MVT VecEltVT = Op.getSimpleValueType(); 5236 5237 unsigned RVVOpcode; 5238 SDValue VectorVal, ScalarVal; 5239 std::tie(RVVOpcode, VectorVal, ScalarVal) = 5240 getRVVFPReductionOpAndOperands(Op, DAG, VecEltVT); 5241 MVT VecVT = VectorVal.getSimpleValueType(); 5242 5243 MVT ContainerVT = VecVT; 5244 if (VecVT.isFixedLengthVector()) { 5245 ContainerVT = getContainerForFixedLengthVector(VecVT); 5246 VectorVal = convertToScalableVector(ContainerVT, VectorVal, DAG, Subtarget); 5247 } 5248 5249 MVT M1VT = getLMUL1VT(VectorVal.getSimpleValueType()); 5250 MVT XLenVT = Subtarget.getXLenVT(); 5251 5252 SDValue Mask, VL; 5253 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 5254 5255 SDValue ScalarSplat = 5256 lowerScalarSplat(SDValue(), ScalarVal, DAG.getConstant(1, DL, XLenVT), 5257 M1VT, DL, DAG, Subtarget); 5258 SDValue Reduction = DAG.getNode(RVVOpcode, DL, M1VT, DAG.getUNDEF(M1VT), 5259 VectorVal, ScalarSplat, Mask, VL); 5260 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction, 5261 DAG.getConstant(0, DL, XLenVT)); 5262 } 5263 5264 static unsigned getRVVVPReductionOp(unsigned ISDOpcode) { 5265 switch (ISDOpcode) { 5266 default: 5267 llvm_unreachable("Unhandled reduction"); 5268 case ISD::VP_REDUCE_ADD: 5269 return RISCVISD::VECREDUCE_ADD_VL; 5270 case ISD::VP_REDUCE_UMAX: 5271 return RISCVISD::VECREDUCE_UMAX_VL; 5272 case ISD::VP_REDUCE_SMAX: 5273 return RISCVISD::VECREDUCE_SMAX_VL; 5274 case ISD::VP_REDUCE_UMIN: 5275 return RISCVISD::VECREDUCE_UMIN_VL; 5276 case ISD::VP_REDUCE_SMIN: 5277 return RISCVISD::VECREDUCE_SMIN_VL; 5278 case ISD::VP_REDUCE_AND: 5279 return RISCVISD::VECREDUCE_AND_VL; 5280 case ISD::VP_REDUCE_OR: 5281 return RISCVISD::VECREDUCE_OR_VL; 5282 case ISD::VP_REDUCE_XOR: 5283 return RISCVISD::VECREDUCE_XOR_VL; 5284 case ISD::VP_REDUCE_FADD: 5285 return RISCVISD::VECREDUCE_FADD_VL; 5286 case ISD::VP_REDUCE_SEQ_FADD: 5287 return RISCVISD::VECREDUCE_SEQ_FADD_VL; 5288 case ISD::VP_REDUCE_FMAX: 5289 return RISCVISD::VECREDUCE_FMAX_VL; 5290 case ISD::VP_REDUCE_FMIN: 5291 return RISCVISD::VECREDUCE_FMIN_VL; 5292 } 5293 } 5294 5295 SDValue RISCVTargetLowering::lowerVPREDUCE(SDValue Op, 5296 SelectionDAG &DAG) const { 5297 SDLoc DL(Op); 5298 SDValue Vec = Op.getOperand(1); 5299 EVT VecEVT = Vec.getValueType(); 5300 5301 // TODO: The type may need to be widened rather than split. Or widened before 5302 // it can be split. 5303 if (!isTypeLegal(VecEVT)) 5304 return SDValue(); 5305 5306 MVT VecVT = VecEVT.getSimpleVT(); 5307 MVT VecEltVT = VecVT.getVectorElementType(); 5308 unsigned RVVOpcode = getRVVVPReductionOp(Op.getOpcode()); 5309 5310 MVT ContainerVT = VecVT; 5311 if (VecVT.isFixedLengthVector()) { 5312 ContainerVT = getContainerForFixedLengthVector(VecVT); 5313 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 5314 } 5315 5316 SDValue VL = Op.getOperand(3); 5317 SDValue Mask = Op.getOperand(2); 5318 5319 MVT M1VT = getLMUL1VT(ContainerVT); 5320 MVT XLenVT = Subtarget.getXLenVT(); 5321 MVT ResVT = !VecVT.isInteger() || VecEltVT.bitsGE(XLenVT) ? VecEltVT : XLenVT; 5322 5323 SDValue StartSplat = lowerScalarSplat(SDValue(), Op.getOperand(0), 5324 DAG.getConstant(1, DL, XLenVT), M1VT, 5325 DL, DAG, Subtarget); 5326 SDValue Reduction = 5327 DAG.getNode(RVVOpcode, DL, M1VT, StartSplat, Vec, StartSplat, Mask, VL); 5328 SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Reduction, 5329 DAG.getConstant(0, DL, XLenVT)); 5330 if (!VecVT.isInteger()) 5331 return Elt0; 5332 return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType()); 5333 } 5334 5335 SDValue RISCVTargetLowering::lowerINSERT_SUBVECTOR(SDValue Op, 5336 SelectionDAG &DAG) const { 5337 SDValue Vec = Op.getOperand(0); 5338 SDValue SubVec = Op.getOperand(1); 5339 MVT VecVT = Vec.getSimpleValueType(); 5340 MVT SubVecVT = SubVec.getSimpleValueType(); 5341 5342 SDLoc DL(Op); 5343 MVT XLenVT = Subtarget.getXLenVT(); 5344 unsigned OrigIdx = Op.getConstantOperandVal(2); 5345 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 5346 5347 // We don't have the ability to slide mask vectors up indexed by their i1 5348 // elements; the smallest we can do is i8. Often we are able to bitcast to 5349 // equivalent i8 vectors. Note that when inserting a fixed-length vector 5350 // into a scalable one, we might not necessarily have enough scalable 5351 // elements to safely divide by 8: nxv1i1 = insert nxv1i1, v4i1 is valid. 5352 if (SubVecVT.getVectorElementType() == MVT::i1 && 5353 (OrigIdx != 0 || !Vec.isUndef())) { 5354 if (VecVT.getVectorMinNumElements() >= 8 && 5355 SubVecVT.getVectorMinNumElements() >= 8) { 5356 assert(OrigIdx % 8 == 0 && "Invalid index"); 5357 assert(VecVT.getVectorMinNumElements() % 8 == 0 && 5358 SubVecVT.getVectorMinNumElements() % 8 == 0 && 5359 "Unexpected mask vector lowering"); 5360 OrigIdx /= 8; 5361 SubVecVT = 5362 MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8, 5363 SubVecVT.isScalableVector()); 5364 VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8, 5365 VecVT.isScalableVector()); 5366 Vec = DAG.getBitcast(VecVT, Vec); 5367 SubVec = DAG.getBitcast(SubVecVT, SubVec); 5368 } else { 5369 // We can't slide this mask vector up indexed by its i1 elements. 5370 // This poses a problem when we wish to insert a scalable vector which 5371 // can't be re-expressed as a larger type. Just choose the slow path and 5372 // extend to a larger type, then truncate back down. 5373 MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8); 5374 MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8); 5375 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec); 5376 SubVec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtSubVecVT, SubVec); 5377 Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ExtVecVT, Vec, SubVec, 5378 Op.getOperand(2)); 5379 SDValue SplatZero = DAG.getConstant(0, DL, ExtVecVT); 5380 return DAG.getSetCC(DL, VecVT, Vec, SplatZero, ISD::SETNE); 5381 } 5382 } 5383 5384 // If the subvector vector is a fixed-length type, we cannot use subregister 5385 // manipulation to simplify the codegen; we don't know which register of a 5386 // LMUL group contains the specific subvector as we only know the minimum 5387 // register size. Therefore we must slide the vector group up the full 5388 // amount. 5389 if (SubVecVT.isFixedLengthVector()) { 5390 if (OrigIdx == 0 && Vec.isUndef() && !VecVT.isFixedLengthVector()) 5391 return Op; 5392 MVT ContainerVT = VecVT; 5393 if (VecVT.isFixedLengthVector()) { 5394 ContainerVT = getContainerForFixedLengthVector(VecVT); 5395 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 5396 } 5397 SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ContainerVT, 5398 DAG.getUNDEF(ContainerVT), SubVec, 5399 DAG.getConstant(0, DL, XLenVT)); 5400 if (OrigIdx == 0 && Vec.isUndef() && VecVT.isFixedLengthVector()) { 5401 SubVec = convertFromScalableVector(VecVT, SubVec, DAG, Subtarget); 5402 return DAG.getBitcast(Op.getValueType(), SubVec); 5403 } 5404 SDValue Mask = 5405 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first; 5406 // Set the vector length to only the number of elements we care about. Note 5407 // that for slideup this includes the offset. 5408 SDValue VL = 5409 DAG.getConstant(OrigIdx + SubVecVT.getVectorNumElements(), DL, XLenVT); 5410 SDValue SlideupAmt = DAG.getConstant(OrigIdx, DL, XLenVT); 5411 SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec, 5412 SubVec, SlideupAmt, Mask, VL); 5413 if (VecVT.isFixedLengthVector()) 5414 Slideup = convertFromScalableVector(VecVT, Slideup, DAG, Subtarget); 5415 return DAG.getBitcast(Op.getValueType(), Slideup); 5416 } 5417 5418 unsigned SubRegIdx, RemIdx; 5419 std::tie(SubRegIdx, RemIdx) = 5420 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( 5421 VecVT, SubVecVT, OrigIdx, TRI); 5422 5423 RISCVII::VLMUL SubVecLMUL = RISCVTargetLowering::getLMUL(SubVecVT); 5424 bool IsSubVecPartReg = SubVecLMUL == RISCVII::VLMUL::LMUL_F2 || 5425 SubVecLMUL == RISCVII::VLMUL::LMUL_F4 || 5426 SubVecLMUL == RISCVII::VLMUL::LMUL_F8; 5427 5428 // 1. If the Idx has been completely eliminated and this subvector's size is 5429 // a vector register or a multiple thereof, or the surrounding elements are 5430 // undef, then this is a subvector insert which naturally aligns to a vector 5431 // register. These can easily be handled using subregister manipulation. 5432 // 2. If the subvector is smaller than a vector register, then the insertion 5433 // must preserve the undisturbed elements of the register. We do this by 5434 // lowering to an EXTRACT_SUBVECTOR grabbing the nearest LMUL=1 vector type 5435 // (which resolves to a subregister copy), performing a VSLIDEUP to place the 5436 // subvector within the vector register, and an INSERT_SUBVECTOR of that 5437 // LMUL=1 type back into the larger vector (resolving to another subregister 5438 // operation). See below for how our VSLIDEUP works. We go via a LMUL=1 type 5439 // to avoid allocating a large register group to hold our subvector. 5440 if (RemIdx == 0 && (!IsSubVecPartReg || Vec.isUndef())) 5441 return Op; 5442 5443 // VSLIDEUP works by leaving elements 0<i<OFFSET undisturbed, elements 5444 // OFFSET<=i<VL set to the "subvector" and vl<=i<VLMAX set to the tail policy 5445 // (in our case undisturbed). This means we can set up a subvector insertion 5446 // where OFFSET is the insertion offset, and the VL is the OFFSET plus the 5447 // size of the subvector. 5448 MVT InterSubVT = VecVT; 5449 SDValue AlignedExtract = Vec; 5450 unsigned AlignedIdx = OrigIdx - RemIdx; 5451 if (VecVT.bitsGT(getLMUL1VT(VecVT))) { 5452 InterSubVT = getLMUL1VT(VecVT); 5453 // Extract a subvector equal to the nearest full vector register type. This 5454 // should resolve to a EXTRACT_SUBREG instruction. 5455 AlignedExtract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec, 5456 DAG.getConstant(AlignedIdx, DL, XLenVT)); 5457 } 5458 5459 SDValue SlideupAmt = DAG.getConstant(RemIdx, DL, XLenVT); 5460 // For scalable vectors this must be further multiplied by vscale. 5461 SlideupAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlideupAmt); 5462 5463 SDValue Mask, VL; 5464 std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget); 5465 5466 // Construct the vector length corresponding to RemIdx + length(SubVecVT). 5467 VL = DAG.getConstant(SubVecVT.getVectorMinNumElements(), DL, XLenVT); 5468 VL = DAG.getNode(ISD::VSCALE, DL, XLenVT, VL); 5469 VL = DAG.getNode(ISD::ADD, DL, XLenVT, SlideupAmt, VL); 5470 5471 SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, InterSubVT, 5472 DAG.getUNDEF(InterSubVT), SubVec, 5473 DAG.getConstant(0, DL, XLenVT)); 5474 5475 SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, InterSubVT, 5476 AlignedExtract, SubVec, SlideupAmt, Mask, VL); 5477 5478 // If required, insert this subvector back into the correct vector register. 5479 // This should resolve to an INSERT_SUBREG instruction. 5480 if (VecVT.bitsGT(InterSubVT)) 5481 Slideup = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, Vec, Slideup, 5482 DAG.getConstant(AlignedIdx, DL, XLenVT)); 5483 5484 // We might have bitcast from a mask type: cast back to the original type if 5485 // required. 5486 return DAG.getBitcast(Op.getSimpleValueType(), Slideup); 5487 } 5488 5489 SDValue RISCVTargetLowering::lowerEXTRACT_SUBVECTOR(SDValue Op, 5490 SelectionDAG &DAG) const { 5491 SDValue Vec = Op.getOperand(0); 5492 MVT SubVecVT = Op.getSimpleValueType(); 5493 MVT VecVT = Vec.getSimpleValueType(); 5494 5495 SDLoc DL(Op); 5496 MVT XLenVT = Subtarget.getXLenVT(); 5497 unsigned OrigIdx = Op.getConstantOperandVal(1); 5498 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 5499 5500 // We don't have the ability to slide mask vectors down indexed by their i1 5501 // elements; the smallest we can do is i8. Often we are able to bitcast to 5502 // equivalent i8 vectors. Note that when extracting a fixed-length vector 5503 // from a scalable one, we might not necessarily have enough scalable 5504 // elements to safely divide by 8: v8i1 = extract nxv1i1 is valid. 5505 if (SubVecVT.getVectorElementType() == MVT::i1 && OrigIdx != 0) { 5506 if (VecVT.getVectorMinNumElements() >= 8 && 5507 SubVecVT.getVectorMinNumElements() >= 8) { 5508 assert(OrigIdx % 8 == 0 && "Invalid index"); 5509 assert(VecVT.getVectorMinNumElements() % 8 == 0 && 5510 SubVecVT.getVectorMinNumElements() % 8 == 0 && 5511 "Unexpected mask vector lowering"); 5512 OrigIdx /= 8; 5513 SubVecVT = 5514 MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8, 5515 SubVecVT.isScalableVector()); 5516 VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8, 5517 VecVT.isScalableVector()); 5518 Vec = DAG.getBitcast(VecVT, Vec); 5519 } else { 5520 // We can't slide this mask vector down, indexed by its i1 elements. 5521 // This poses a problem when we wish to extract a scalable vector which 5522 // can't be re-expressed as a larger type. Just choose the slow path and 5523 // extend to a larger type, then truncate back down. 5524 // TODO: We could probably improve this when extracting certain fixed 5525 // from fixed, where we can extract as i8 and shift the correct element 5526 // right to reach the desired subvector? 5527 MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8); 5528 MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8); 5529 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec); 5530 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ExtSubVecVT, Vec, 5531 Op.getOperand(1)); 5532 SDValue SplatZero = DAG.getConstant(0, DL, ExtSubVecVT); 5533 return DAG.getSetCC(DL, SubVecVT, Vec, SplatZero, ISD::SETNE); 5534 } 5535 } 5536 5537 // If the subvector vector is a fixed-length type, we cannot use subregister 5538 // manipulation to simplify the codegen; we don't know which register of a 5539 // LMUL group contains the specific subvector as we only know the minimum 5540 // register size. Therefore we must slide the vector group down the full 5541 // amount. 5542 if (SubVecVT.isFixedLengthVector()) { 5543 // With an index of 0 this is a cast-like subvector, which can be performed 5544 // with subregister operations. 5545 if (OrigIdx == 0) 5546 return Op; 5547 MVT ContainerVT = VecVT; 5548 if (VecVT.isFixedLengthVector()) { 5549 ContainerVT = getContainerForFixedLengthVector(VecVT); 5550 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 5551 } 5552 SDValue Mask = 5553 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first; 5554 // Set the vector length to only the number of elements we care about. This 5555 // avoids sliding down elements we're going to discard straight away. 5556 SDValue VL = DAG.getConstant(SubVecVT.getVectorNumElements(), DL, XLenVT); 5557 SDValue SlidedownAmt = DAG.getConstant(OrigIdx, DL, XLenVT); 5558 SDValue Slidedown = 5559 DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 5560 DAG.getUNDEF(ContainerVT), Vec, SlidedownAmt, Mask, VL); 5561 // Now we can use a cast-like subvector extract to get the result. 5562 Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown, 5563 DAG.getConstant(0, DL, XLenVT)); 5564 return DAG.getBitcast(Op.getValueType(), Slidedown); 5565 } 5566 5567 unsigned SubRegIdx, RemIdx; 5568 std::tie(SubRegIdx, RemIdx) = 5569 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( 5570 VecVT, SubVecVT, OrigIdx, TRI); 5571 5572 // If the Idx has been completely eliminated then this is a subvector extract 5573 // which naturally aligns to a vector register. These can easily be handled 5574 // using subregister manipulation. 5575 if (RemIdx == 0) 5576 return Op; 5577 5578 // Else we must shift our vector register directly to extract the subvector. 5579 // Do this using VSLIDEDOWN. 5580 5581 // If the vector type is an LMUL-group type, extract a subvector equal to the 5582 // nearest full vector register type. This should resolve to a EXTRACT_SUBREG 5583 // instruction. 5584 MVT InterSubVT = VecVT; 5585 if (VecVT.bitsGT(getLMUL1VT(VecVT))) { 5586 InterSubVT = getLMUL1VT(VecVT); 5587 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec, 5588 DAG.getConstant(OrigIdx - RemIdx, DL, XLenVT)); 5589 } 5590 5591 // Slide this vector register down by the desired number of elements in order 5592 // to place the desired subvector starting at element 0. 5593 SDValue SlidedownAmt = DAG.getConstant(RemIdx, DL, XLenVT); 5594 // For scalable vectors this must be further multiplied by vscale. 5595 SlidedownAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlidedownAmt); 5596 5597 SDValue Mask, VL; 5598 std::tie(Mask, VL) = getDefaultScalableVLOps(InterSubVT, DL, DAG, Subtarget); 5599 SDValue Slidedown = 5600 DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, InterSubVT, 5601 DAG.getUNDEF(InterSubVT), Vec, SlidedownAmt, Mask, VL); 5602 5603 // Now the vector is in the right position, extract our final subvector. This 5604 // should resolve to a COPY. 5605 Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown, 5606 DAG.getConstant(0, DL, XLenVT)); 5607 5608 // We might have bitcast from a mask type: cast back to the original type if 5609 // required. 5610 return DAG.getBitcast(Op.getSimpleValueType(), Slidedown); 5611 } 5612 5613 // Lower step_vector to the vid instruction. Any non-identity step value must 5614 // be accounted for my manual expansion. 5615 SDValue RISCVTargetLowering::lowerSTEP_VECTOR(SDValue Op, 5616 SelectionDAG &DAG) const { 5617 SDLoc DL(Op); 5618 MVT VT = Op.getSimpleValueType(); 5619 MVT XLenVT = Subtarget.getXLenVT(); 5620 SDValue Mask, VL; 5621 std::tie(Mask, VL) = getDefaultScalableVLOps(VT, DL, DAG, Subtarget); 5622 SDValue StepVec = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL); 5623 uint64_t StepValImm = Op.getConstantOperandVal(0); 5624 if (StepValImm != 1) { 5625 if (isPowerOf2_64(StepValImm)) { 5626 SDValue StepVal = 5627 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, DAG.getUNDEF(VT), 5628 DAG.getConstant(Log2_64(StepValImm), DL, XLenVT)); 5629 StepVec = DAG.getNode(ISD::SHL, DL, VT, StepVec, StepVal); 5630 } else { 5631 SDValue StepVal = lowerScalarSplat( 5632 SDValue(), DAG.getConstant(StepValImm, DL, VT.getVectorElementType()), 5633 VL, VT, DL, DAG, Subtarget); 5634 StepVec = DAG.getNode(ISD::MUL, DL, VT, StepVec, StepVal); 5635 } 5636 } 5637 return StepVec; 5638 } 5639 5640 // Implement vector_reverse using vrgather.vv with indices determined by 5641 // subtracting the id of each element from (VLMAX-1). This will convert 5642 // the indices like so: 5643 // (0, 1,..., VLMAX-2, VLMAX-1) -> (VLMAX-1, VLMAX-2,..., 1, 0). 5644 // TODO: This code assumes VLMAX <= 65536 for LMUL=8 SEW=16. 5645 SDValue RISCVTargetLowering::lowerVECTOR_REVERSE(SDValue Op, 5646 SelectionDAG &DAG) const { 5647 SDLoc DL(Op); 5648 MVT VecVT = Op.getSimpleValueType(); 5649 unsigned EltSize = VecVT.getScalarSizeInBits(); 5650 unsigned MinSize = VecVT.getSizeInBits().getKnownMinValue(); 5651 5652 unsigned MaxVLMAX = 0; 5653 unsigned VectorBitsMax = Subtarget.getMaxRVVVectorSizeInBits(); 5654 if (VectorBitsMax != 0) 5655 MaxVLMAX = 5656 RISCVTargetLowering::computeVLMAX(VectorBitsMax, EltSize, MinSize); 5657 5658 unsigned GatherOpc = RISCVISD::VRGATHER_VV_VL; 5659 MVT IntVT = VecVT.changeVectorElementTypeToInteger(); 5660 5661 // If this is SEW=8 and VLMAX is unknown or more than 256, we need 5662 // to use vrgatherei16.vv. 5663 // TODO: It's also possible to use vrgatherei16.vv for other types to 5664 // decrease register width for the index calculation. 5665 if ((MaxVLMAX == 0 || MaxVLMAX > 256) && EltSize == 8) { 5666 // If this is LMUL=8, we have to split before can use vrgatherei16.vv. 5667 // Reverse each half, then reassemble them in reverse order. 5668 // NOTE: It's also possible that after splitting that VLMAX no longer 5669 // requires vrgatherei16.vv. 5670 if (MinSize == (8 * RISCV::RVVBitsPerBlock)) { 5671 SDValue Lo, Hi; 5672 std::tie(Lo, Hi) = DAG.SplitVectorOperand(Op.getNode(), 0); 5673 EVT LoVT, HiVT; 5674 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VecVT); 5675 Lo = DAG.getNode(ISD::VECTOR_REVERSE, DL, LoVT, Lo); 5676 Hi = DAG.getNode(ISD::VECTOR_REVERSE, DL, HiVT, Hi); 5677 // Reassemble the low and high pieces reversed. 5678 // FIXME: This is a CONCAT_VECTORS. 5679 SDValue Res = 5680 DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, DAG.getUNDEF(VecVT), Hi, 5681 DAG.getIntPtrConstant(0, DL)); 5682 return DAG.getNode( 5683 ISD::INSERT_SUBVECTOR, DL, VecVT, Res, Lo, 5684 DAG.getIntPtrConstant(LoVT.getVectorMinNumElements(), DL)); 5685 } 5686 5687 // Just promote the int type to i16 which will double the LMUL. 5688 IntVT = MVT::getVectorVT(MVT::i16, VecVT.getVectorElementCount()); 5689 GatherOpc = RISCVISD::VRGATHEREI16_VV_VL; 5690 } 5691 5692 MVT XLenVT = Subtarget.getXLenVT(); 5693 SDValue Mask, VL; 5694 std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget); 5695 5696 // Calculate VLMAX-1 for the desired SEW. 5697 unsigned MinElts = VecVT.getVectorMinNumElements(); 5698 SDValue VLMax = DAG.getNode(ISD::VSCALE, DL, XLenVT, 5699 DAG.getConstant(MinElts, DL, XLenVT)); 5700 SDValue VLMinus1 = 5701 DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, DAG.getConstant(1, DL, XLenVT)); 5702 5703 // Splat VLMAX-1 taking care to handle SEW==64 on RV32. 5704 bool IsRV32E64 = 5705 !Subtarget.is64Bit() && IntVT.getVectorElementType() == MVT::i64; 5706 SDValue SplatVL; 5707 if (!IsRV32E64) 5708 SplatVL = DAG.getSplatVector(IntVT, DL, VLMinus1); 5709 else 5710 SplatVL = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, IntVT, DAG.getUNDEF(IntVT), 5711 VLMinus1, DAG.getRegister(RISCV::X0, XLenVT)); 5712 5713 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, IntVT, Mask, VL); 5714 SDValue Indices = 5715 DAG.getNode(RISCVISD::SUB_VL, DL, IntVT, SplatVL, VID, Mask, VL); 5716 5717 return DAG.getNode(GatherOpc, DL, VecVT, Op.getOperand(0), Indices, Mask, VL); 5718 } 5719 5720 SDValue RISCVTargetLowering::lowerVECTOR_SPLICE(SDValue Op, 5721 SelectionDAG &DAG) const { 5722 SDLoc DL(Op); 5723 SDValue V1 = Op.getOperand(0); 5724 SDValue V2 = Op.getOperand(1); 5725 MVT XLenVT = Subtarget.getXLenVT(); 5726 MVT VecVT = Op.getSimpleValueType(); 5727 5728 unsigned MinElts = VecVT.getVectorMinNumElements(); 5729 SDValue VLMax = DAG.getNode(ISD::VSCALE, DL, XLenVT, 5730 DAG.getConstant(MinElts, DL, XLenVT)); 5731 5732 int64_t ImmValue = cast<ConstantSDNode>(Op.getOperand(2))->getSExtValue(); 5733 SDValue DownOffset, UpOffset; 5734 if (ImmValue >= 0) { 5735 // The operand is a TargetConstant, we need to rebuild it as a regular 5736 // constant. 5737 DownOffset = DAG.getConstant(ImmValue, DL, XLenVT); 5738 UpOffset = DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, DownOffset); 5739 } else { 5740 // The operand is a TargetConstant, we need to rebuild it as a regular 5741 // constant rather than negating the original operand. 5742 UpOffset = DAG.getConstant(-ImmValue, DL, XLenVT); 5743 DownOffset = DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, UpOffset); 5744 } 5745 5746 MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount()); 5747 SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VLMax); 5748 5749 SDValue SlideDown = 5750 DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, VecVT, DAG.getUNDEF(VecVT), V1, 5751 DownOffset, TrueMask, UpOffset); 5752 return DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, VecVT, SlideDown, V2, UpOffset, 5753 TrueMask, 5754 DAG.getTargetConstant(RISCV::VLMaxSentinel, DL, XLenVT)); 5755 } 5756 5757 SDValue 5758 RISCVTargetLowering::lowerFixedLengthVectorLoadToRVV(SDValue Op, 5759 SelectionDAG &DAG) const { 5760 SDLoc DL(Op); 5761 auto *Load = cast<LoadSDNode>(Op); 5762 5763 assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 5764 Load->getMemoryVT(), 5765 *Load->getMemOperand()) && 5766 "Expecting a correctly-aligned load"); 5767 5768 MVT VT = Op.getSimpleValueType(); 5769 MVT XLenVT = Subtarget.getXLenVT(); 5770 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5771 5772 SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT); 5773 5774 bool IsMaskOp = VT.getVectorElementType() == MVT::i1; 5775 SDValue IntID = DAG.getTargetConstant( 5776 IsMaskOp ? Intrinsic::riscv_vlm : Intrinsic::riscv_vle, DL, XLenVT); 5777 SmallVector<SDValue, 4> Ops{Load->getChain(), IntID}; 5778 if (!IsMaskOp) 5779 Ops.push_back(DAG.getUNDEF(ContainerVT)); 5780 Ops.push_back(Load->getBasePtr()); 5781 Ops.push_back(VL); 5782 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 5783 SDValue NewLoad = 5784 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, 5785 Load->getMemoryVT(), Load->getMemOperand()); 5786 5787 SDValue Result = convertFromScalableVector(VT, NewLoad, DAG, Subtarget); 5788 return DAG.getMergeValues({Result, Load->getChain()}, DL); 5789 } 5790 5791 SDValue 5792 RISCVTargetLowering::lowerFixedLengthVectorStoreToRVV(SDValue Op, 5793 SelectionDAG &DAG) const { 5794 SDLoc DL(Op); 5795 auto *Store = cast<StoreSDNode>(Op); 5796 5797 assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 5798 Store->getMemoryVT(), 5799 *Store->getMemOperand()) && 5800 "Expecting a correctly-aligned store"); 5801 5802 SDValue StoreVal = Store->getValue(); 5803 MVT VT = StoreVal.getSimpleValueType(); 5804 MVT XLenVT = Subtarget.getXLenVT(); 5805 5806 // If the size less than a byte, we need to pad with zeros to make a byte. 5807 if (VT.getVectorElementType() == MVT::i1 && VT.getVectorNumElements() < 8) { 5808 VT = MVT::v8i1; 5809 StoreVal = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, 5810 DAG.getConstant(0, DL, VT), StoreVal, 5811 DAG.getIntPtrConstant(0, DL)); 5812 } 5813 5814 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5815 5816 SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT); 5817 5818 SDValue NewValue = 5819 convertToScalableVector(ContainerVT, StoreVal, DAG, Subtarget); 5820 5821 bool IsMaskOp = VT.getVectorElementType() == MVT::i1; 5822 SDValue IntID = DAG.getTargetConstant( 5823 IsMaskOp ? Intrinsic::riscv_vsm : Intrinsic::riscv_vse, DL, XLenVT); 5824 return DAG.getMemIntrinsicNode( 5825 ISD::INTRINSIC_VOID, DL, DAG.getVTList(MVT::Other), 5826 {Store->getChain(), IntID, NewValue, Store->getBasePtr(), VL}, 5827 Store->getMemoryVT(), Store->getMemOperand()); 5828 } 5829 5830 SDValue RISCVTargetLowering::lowerMaskedLoad(SDValue Op, 5831 SelectionDAG &DAG) const { 5832 SDLoc DL(Op); 5833 MVT VT = Op.getSimpleValueType(); 5834 5835 const auto *MemSD = cast<MemSDNode>(Op); 5836 EVT MemVT = MemSD->getMemoryVT(); 5837 MachineMemOperand *MMO = MemSD->getMemOperand(); 5838 SDValue Chain = MemSD->getChain(); 5839 SDValue BasePtr = MemSD->getBasePtr(); 5840 5841 SDValue Mask, PassThru, VL; 5842 if (const auto *VPLoad = dyn_cast<VPLoadSDNode>(Op)) { 5843 Mask = VPLoad->getMask(); 5844 PassThru = DAG.getUNDEF(VT); 5845 VL = VPLoad->getVectorLength(); 5846 } else { 5847 const auto *MLoad = cast<MaskedLoadSDNode>(Op); 5848 Mask = MLoad->getMask(); 5849 PassThru = MLoad->getPassThru(); 5850 } 5851 5852 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 5853 5854 MVT XLenVT = Subtarget.getXLenVT(); 5855 5856 MVT ContainerVT = VT; 5857 if (VT.isFixedLengthVector()) { 5858 ContainerVT = getContainerForFixedLengthVector(VT); 5859 PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget); 5860 if (!IsUnmasked) { 5861 MVT MaskVT = 5862 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 5863 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 5864 } 5865 } 5866 5867 if (!VL) 5868 VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; 5869 5870 unsigned IntID = 5871 IsUnmasked ? Intrinsic::riscv_vle : Intrinsic::riscv_vle_mask; 5872 SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)}; 5873 if (IsUnmasked) 5874 Ops.push_back(DAG.getUNDEF(ContainerVT)); 5875 else 5876 Ops.push_back(PassThru); 5877 Ops.push_back(BasePtr); 5878 if (!IsUnmasked) 5879 Ops.push_back(Mask); 5880 Ops.push_back(VL); 5881 if (!IsUnmasked) 5882 Ops.push_back(DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT)); 5883 5884 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 5885 5886 SDValue Result = 5887 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, MemVT, MMO); 5888 Chain = Result.getValue(1); 5889 5890 if (VT.isFixedLengthVector()) 5891 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 5892 5893 return DAG.getMergeValues({Result, Chain}, DL); 5894 } 5895 5896 SDValue RISCVTargetLowering::lowerMaskedStore(SDValue Op, 5897 SelectionDAG &DAG) const { 5898 SDLoc DL(Op); 5899 5900 const auto *MemSD = cast<MemSDNode>(Op); 5901 EVT MemVT = MemSD->getMemoryVT(); 5902 MachineMemOperand *MMO = MemSD->getMemOperand(); 5903 SDValue Chain = MemSD->getChain(); 5904 SDValue BasePtr = MemSD->getBasePtr(); 5905 SDValue Val, Mask, VL; 5906 5907 if (const auto *VPStore = dyn_cast<VPStoreSDNode>(Op)) { 5908 Val = VPStore->getValue(); 5909 Mask = VPStore->getMask(); 5910 VL = VPStore->getVectorLength(); 5911 } else { 5912 const auto *MStore = cast<MaskedStoreSDNode>(Op); 5913 Val = MStore->getValue(); 5914 Mask = MStore->getMask(); 5915 } 5916 5917 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 5918 5919 MVT VT = Val.getSimpleValueType(); 5920 MVT XLenVT = Subtarget.getXLenVT(); 5921 5922 MVT ContainerVT = VT; 5923 if (VT.isFixedLengthVector()) { 5924 ContainerVT = getContainerForFixedLengthVector(VT); 5925 5926 Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget); 5927 if (!IsUnmasked) { 5928 MVT MaskVT = 5929 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 5930 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 5931 } 5932 } 5933 5934 if (!VL) 5935 VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; 5936 5937 unsigned IntID = 5938 IsUnmasked ? Intrinsic::riscv_vse : Intrinsic::riscv_vse_mask; 5939 SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)}; 5940 Ops.push_back(Val); 5941 Ops.push_back(BasePtr); 5942 if (!IsUnmasked) 5943 Ops.push_back(Mask); 5944 Ops.push_back(VL); 5945 5946 return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, 5947 DAG.getVTList(MVT::Other), Ops, MemVT, MMO); 5948 } 5949 5950 SDValue 5951 RISCVTargetLowering::lowerFixedLengthVectorSetccToRVV(SDValue Op, 5952 SelectionDAG &DAG) const { 5953 MVT InVT = Op.getOperand(0).getSimpleValueType(); 5954 MVT ContainerVT = getContainerForFixedLengthVector(InVT); 5955 5956 MVT VT = Op.getSimpleValueType(); 5957 5958 SDValue Op1 = 5959 convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget); 5960 SDValue Op2 = 5961 convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget); 5962 5963 SDLoc DL(Op); 5964 SDValue VL = 5965 DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT()); 5966 5967 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 5968 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 5969 5970 SDValue Cmp = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, Op1, Op2, 5971 Op.getOperand(2), Mask, VL); 5972 5973 return convertFromScalableVector(VT, Cmp, DAG, Subtarget); 5974 } 5975 5976 SDValue RISCVTargetLowering::lowerFixedLengthVectorLogicOpToRVV( 5977 SDValue Op, SelectionDAG &DAG, unsigned MaskOpc, unsigned VecOpc) const { 5978 MVT VT = Op.getSimpleValueType(); 5979 5980 if (VT.getVectorElementType() == MVT::i1) 5981 return lowerToScalableOp(Op, DAG, MaskOpc, /*HasMask*/ false); 5982 5983 return lowerToScalableOp(Op, DAG, VecOpc, /*HasMask*/ true); 5984 } 5985 5986 SDValue 5987 RISCVTargetLowering::lowerFixedLengthVectorShiftToRVV(SDValue Op, 5988 SelectionDAG &DAG) const { 5989 unsigned Opc; 5990 switch (Op.getOpcode()) { 5991 default: llvm_unreachable("Unexpected opcode!"); 5992 case ISD::SHL: Opc = RISCVISD::SHL_VL; break; 5993 case ISD::SRA: Opc = RISCVISD::SRA_VL; break; 5994 case ISD::SRL: Opc = RISCVISD::SRL_VL; break; 5995 } 5996 5997 return lowerToScalableOp(Op, DAG, Opc); 5998 } 5999 6000 // Lower vector ABS to smax(X, sub(0, X)). 6001 SDValue RISCVTargetLowering::lowerABS(SDValue Op, SelectionDAG &DAG) const { 6002 SDLoc DL(Op); 6003 MVT VT = Op.getSimpleValueType(); 6004 SDValue X = Op.getOperand(0); 6005 6006 assert(VT.isFixedLengthVector() && "Unexpected type"); 6007 6008 MVT ContainerVT = getContainerForFixedLengthVector(VT); 6009 X = convertToScalableVector(ContainerVT, X, DAG, Subtarget); 6010 6011 SDValue Mask, VL; 6012 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 6013 6014 SDValue SplatZero = DAG.getNode( 6015 RISCVISD::VMV_V_X_VL, DL, ContainerVT, DAG.getUNDEF(ContainerVT), 6016 DAG.getConstant(0, DL, Subtarget.getXLenVT())); 6017 SDValue NegX = 6018 DAG.getNode(RISCVISD::SUB_VL, DL, ContainerVT, SplatZero, X, Mask, VL); 6019 SDValue Max = 6020 DAG.getNode(RISCVISD::SMAX_VL, DL, ContainerVT, X, NegX, Mask, VL); 6021 6022 return convertFromScalableVector(VT, Max, DAG, Subtarget); 6023 } 6024 6025 SDValue RISCVTargetLowering::lowerFixedLengthVectorFCOPYSIGNToRVV( 6026 SDValue Op, SelectionDAG &DAG) const { 6027 SDLoc DL(Op); 6028 MVT VT = Op.getSimpleValueType(); 6029 SDValue Mag = Op.getOperand(0); 6030 SDValue Sign = Op.getOperand(1); 6031 assert(Mag.getValueType() == Sign.getValueType() && 6032 "Can only handle COPYSIGN with matching types."); 6033 6034 MVT ContainerVT = getContainerForFixedLengthVector(VT); 6035 Mag = convertToScalableVector(ContainerVT, Mag, DAG, Subtarget); 6036 Sign = convertToScalableVector(ContainerVT, Sign, DAG, Subtarget); 6037 6038 SDValue Mask, VL; 6039 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 6040 6041 SDValue CopySign = 6042 DAG.getNode(RISCVISD::FCOPYSIGN_VL, DL, ContainerVT, Mag, Sign, Mask, VL); 6043 6044 return convertFromScalableVector(VT, CopySign, DAG, Subtarget); 6045 } 6046 6047 SDValue RISCVTargetLowering::lowerFixedLengthVectorSelectToRVV( 6048 SDValue Op, SelectionDAG &DAG) const { 6049 MVT VT = Op.getSimpleValueType(); 6050 MVT ContainerVT = getContainerForFixedLengthVector(VT); 6051 6052 MVT I1ContainerVT = 6053 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 6054 6055 SDValue CC = 6056 convertToScalableVector(I1ContainerVT, Op.getOperand(0), DAG, Subtarget); 6057 SDValue Op1 = 6058 convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget); 6059 SDValue Op2 = 6060 convertToScalableVector(ContainerVT, Op.getOperand(2), DAG, Subtarget); 6061 6062 SDLoc DL(Op); 6063 SDValue Mask, VL; 6064 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 6065 6066 SDValue Select = 6067 DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC, Op1, Op2, VL); 6068 6069 return convertFromScalableVector(VT, Select, DAG, Subtarget); 6070 } 6071 6072 SDValue RISCVTargetLowering::lowerToScalableOp(SDValue Op, SelectionDAG &DAG, 6073 unsigned NewOpc, 6074 bool HasMask) const { 6075 MVT VT = Op.getSimpleValueType(); 6076 MVT ContainerVT = getContainerForFixedLengthVector(VT); 6077 6078 // Create list of operands by converting existing ones to scalable types. 6079 SmallVector<SDValue, 6> Ops; 6080 for (const SDValue &V : Op->op_values()) { 6081 assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!"); 6082 6083 // Pass through non-vector operands. 6084 if (!V.getValueType().isVector()) { 6085 Ops.push_back(V); 6086 continue; 6087 } 6088 6089 // "cast" fixed length vector to a scalable vector. 6090 assert(useRVVForFixedLengthVectorVT(V.getSimpleValueType()) && 6091 "Only fixed length vectors are supported!"); 6092 Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget)); 6093 } 6094 6095 SDLoc DL(Op); 6096 SDValue Mask, VL; 6097 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 6098 if (HasMask) 6099 Ops.push_back(Mask); 6100 Ops.push_back(VL); 6101 6102 SDValue ScalableRes = DAG.getNode(NewOpc, DL, ContainerVT, Ops); 6103 return convertFromScalableVector(VT, ScalableRes, DAG, Subtarget); 6104 } 6105 6106 // Lower a VP_* ISD node to the corresponding RISCVISD::*_VL node: 6107 // * Operands of each node are assumed to be in the same order. 6108 // * The EVL operand is promoted from i32 to i64 on RV64. 6109 // * Fixed-length vectors are converted to their scalable-vector container 6110 // types. 6111 SDValue RISCVTargetLowering::lowerVPOp(SDValue Op, SelectionDAG &DAG, 6112 unsigned RISCVISDOpc) const { 6113 SDLoc DL(Op); 6114 MVT VT = Op.getSimpleValueType(); 6115 SmallVector<SDValue, 4> Ops; 6116 6117 for (const auto &OpIdx : enumerate(Op->ops())) { 6118 SDValue V = OpIdx.value(); 6119 assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!"); 6120 // Pass through operands which aren't fixed-length vectors. 6121 if (!V.getValueType().isFixedLengthVector()) { 6122 Ops.push_back(V); 6123 continue; 6124 } 6125 // "cast" fixed length vector to a scalable vector. 6126 MVT OpVT = V.getSimpleValueType(); 6127 MVT ContainerVT = getContainerForFixedLengthVector(OpVT); 6128 assert(useRVVForFixedLengthVectorVT(OpVT) && 6129 "Only fixed length vectors are supported!"); 6130 Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget)); 6131 } 6132 6133 if (!VT.isFixedLengthVector()) 6134 return DAG.getNode(RISCVISDOpc, DL, VT, Ops); 6135 6136 MVT ContainerVT = getContainerForFixedLengthVector(VT); 6137 6138 SDValue VPOp = DAG.getNode(RISCVISDOpc, DL, ContainerVT, Ops); 6139 6140 return convertFromScalableVector(VT, VPOp, DAG, Subtarget); 6141 } 6142 6143 SDValue RISCVTargetLowering::lowerLogicVPOp(SDValue Op, SelectionDAG &DAG, 6144 unsigned MaskOpc, 6145 unsigned VecOpc) const { 6146 MVT VT = Op.getSimpleValueType(); 6147 if (VT.getVectorElementType() != MVT::i1) 6148 return lowerVPOp(Op, DAG, VecOpc); 6149 6150 // It is safe to drop mask parameter as masked-off elements are undef. 6151 SDValue Op1 = Op->getOperand(0); 6152 SDValue Op2 = Op->getOperand(1); 6153 SDValue VL = Op->getOperand(3); 6154 6155 MVT ContainerVT = VT; 6156 const bool IsFixed = VT.isFixedLengthVector(); 6157 if (IsFixed) { 6158 ContainerVT = getContainerForFixedLengthVector(VT); 6159 Op1 = convertToScalableVector(ContainerVT, Op1, DAG, Subtarget); 6160 Op2 = convertToScalableVector(ContainerVT, Op2, DAG, Subtarget); 6161 } 6162 6163 SDLoc DL(Op); 6164 SDValue Val = DAG.getNode(MaskOpc, DL, ContainerVT, Op1, Op2, VL); 6165 if (!IsFixed) 6166 return Val; 6167 return convertFromScalableVector(VT, Val, DAG, Subtarget); 6168 } 6169 6170 // Custom lower MGATHER/VP_GATHER to a legalized form for RVV. It will then be 6171 // matched to a RVV indexed load. The RVV indexed load instructions only 6172 // support the "unsigned unscaled" addressing mode; indices are implicitly 6173 // zero-extended or truncated to XLEN and are treated as byte offsets. Any 6174 // signed or scaled indexing is extended to the XLEN value type and scaled 6175 // accordingly. 6176 SDValue RISCVTargetLowering::lowerMaskedGather(SDValue Op, 6177 SelectionDAG &DAG) const { 6178 SDLoc DL(Op); 6179 MVT VT = Op.getSimpleValueType(); 6180 6181 const auto *MemSD = cast<MemSDNode>(Op.getNode()); 6182 EVT MemVT = MemSD->getMemoryVT(); 6183 MachineMemOperand *MMO = MemSD->getMemOperand(); 6184 SDValue Chain = MemSD->getChain(); 6185 SDValue BasePtr = MemSD->getBasePtr(); 6186 6187 ISD::LoadExtType LoadExtType; 6188 SDValue Index, Mask, PassThru, VL; 6189 6190 if (auto *VPGN = dyn_cast<VPGatherSDNode>(Op.getNode())) { 6191 Index = VPGN->getIndex(); 6192 Mask = VPGN->getMask(); 6193 PassThru = DAG.getUNDEF(VT); 6194 VL = VPGN->getVectorLength(); 6195 // VP doesn't support extending loads. 6196 LoadExtType = ISD::NON_EXTLOAD; 6197 } else { 6198 // Else it must be a MGATHER. 6199 auto *MGN = cast<MaskedGatherSDNode>(Op.getNode()); 6200 Index = MGN->getIndex(); 6201 Mask = MGN->getMask(); 6202 PassThru = MGN->getPassThru(); 6203 LoadExtType = MGN->getExtensionType(); 6204 } 6205 6206 MVT IndexVT = Index.getSimpleValueType(); 6207 MVT XLenVT = Subtarget.getXLenVT(); 6208 6209 assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() && 6210 "Unexpected VTs!"); 6211 assert(BasePtr.getSimpleValueType() == XLenVT && "Unexpected pointer type"); 6212 // Targets have to explicitly opt-in for extending vector loads. 6213 assert(LoadExtType == ISD::NON_EXTLOAD && 6214 "Unexpected extending MGATHER/VP_GATHER"); 6215 (void)LoadExtType; 6216 6217 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 6218 // the selection of the masked intrinsics doesn't do this for us. 6219 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 6220 6221 MVT ContainerVT = VT; 6222 if (VT.isFixedLengthVector()) { 6223 // We need to use the larger of the result and index type to determine the 6224 // scalable type to use so we don't increase LMUL for any operand/result. 6225 if (VT.bitsGE(IndexVT)) { 6226 ContainerVT = getContainerForFixedLengthVector(VT); 6227 IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(), 6228 ContainerVT.getVectorElementCount()); 6229 } else { 6230 IndexVT = getContainerForFixedLengthVector(IndexVT); 6231 ContainerVT = MVT::getVectorVT(ContainerVT.getVectorElementType(), 6232 IndexVT.getVectorElementCount()); 6233 } 6234 6235 Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget); 6236 6237 if (!IsUnmasked) { 6238 MVT MaskVT = 6239 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 6240 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 6241 PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget); 6242 } 6243 } 6244 6245 if (!VL) 6246 VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; 6247 6248 if (XLenVT == MVT::i32 && IndexVT.getVectorElementType().bitsGT(XLenVT)) { 6249 IndexVT = IndexVT.changeVectorElementType(XLenVT); 6250 SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, Mask.getValueType(), 6251 VL); 6252 Index = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, IndexVT, Index, 6253 TrueMask, VL); 6254 } 6255 6256 unsigned IntID = 6257 IsUnmasked ? Intrinsic::riscv_vluxei : Intrinsic::riscv_vluxei_mask; 6258 SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)}; 6259 if (IsUnmasked) 6260 Ops.push_back(DAG.getUNDEF(ContainerVT)); 6261 else 6262 Ops.push_back(PassThru); 6263 Ops.push_back(BasePtr); 6264 Ops.push_back(Index); 6265 if (!IsUnmasked) 6266 Ops.push_back(Mask); 6267 Ops.push_back(VL); 6268 if (!IsUnmasked) 6269 Ops.push_back(DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT)); 6270 6271 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 6272 SDValue Result = 6273 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, MemVT, MMO); 6274 Chain = Result.getValue(1); 6275 6276 if (VT.isFixedLengthVector()) 6277 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 6278 6279 return DAG.getMergeValues({Result, Chain}, DL); 6280 } 6281 6282 // Custom lower MSCATTER/VP_SCATTER to a legalized form for RVV. It will then be 6283 // matched to a RVV indexed store. The RVV indexed store instructions only 6284 // support the "unsigned unscaled" addressing mode; indices are implicitly 6285 // zero-extended or truncated to XLEN and are treated as byte offsets. Any 6286 // signed or scaled indexing is extended to the XLEN value type and scaled 6287 // accordingly. 6288 SDValue RISCVTargetLowering::lowerMaskedScatter(SDValue Op, 6289 SelectionDAG &DAG) const { 6290 SDLoc DL(Op); 6291 const auto *MemSD = cast<MemSDNode>(Op.getNode()); 6292 EVT MemVT = MemSD->getMemoryVT(); 6293 MachineMemOperand *MMO = MemSD->getMemOperand(); 6294 SDValue Chain = MemSD->getChain(); 6295 SDValue BasePtr = MemSD->getBasePtr(); 6296 6297 bool IsTruncatingStore = false; 6298 SDValue Index, Mask, Val, VL; 6299 6300 if (auto *VPSN = dyn_cast<VPScatterSDNode>(Op.getNode())) { 6301 Index = VPSN->getIndex(); 6302 Mask = VPSN->getMask(); 6303 Val = VPSN->getValue(); 6304 VL = VPSN->getVectorLength(); 6305 // VP doesn't support truncating stores. 6306 IsTruncatingStore = false; 6307 } else { 6308 // Else it must be a MSCATTER. 6309 auto *MSN = cast<MaskedScatterSDNode>(Op.getNode()); 6310 Index = MSN->getIndex(); 6311 Mask = MSN->getMask(); 6312 Val = MSN->getValue(); 6313 IsTruncatingStore = MSN->isTruncatingStore(); 6314 } 6315 6316 MVT VT = Val.getSimpleValueType(); 6317 MVT IndexVT = Index.getSimpleValueType(); 6318 MVT XLenVT = Subtarget.getXLenVT(); 6319 6320 assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() && 6321 "Unexpected VTs!"); 6322 assert(BasePtr.getSimpleValueType() == XLenVT && "Unexpected pointer type"); 6323 // Targets have to explicitly opt-in for extending vector loads and 6324 // truncating vector stores. 6325 assert(!IsTruncatingStore && "Unexpected truncating MSCATTER/VP_SCATTER"); 6326 (void)IsTruncatingStore; 6327 6328 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 6329 // the selection of the masked intrinsics doesn't do this for us. 6330 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 6331 6332 MVT ContainerVT = VT; 6333 if (VT.isFixedLengthVector()) { 6334 // We need to use the larger of the value and index type to determine the 6335 // scalable type to use so we don't increase LMUL for any operand/result. 6336 if (VT.bitsGE(IndexVT)) { 6337 ContainerVT = getContainerForFixedLengthVector(VT); 6338 IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(), 6339 ContainerVT.getVectorElementCount()); 6340 } else { 6341 IndexVT = getContainerForFixedLengthVector(IndexVT); 6342 ContainerVT = MVT::getVectorVT(VT.getVectorElementType(), 6343 IndexVT.getVectorElementCount()); 6344 } 6345 6346 Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget); 6347 Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget); 6348 6349 if (!IsUnmasked) { 6350 MVT MaskVT = 6351 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 6352 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 6353 } 6354 } 6355 6356 if (!VL) 6357 VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; 6358 6359 if (XLenVT == MVT::i32 && IndexVT.getVectorElementType().bitsGT(XLenVT)) { 6360 IndexVT = IndexVT.changeVectorElementType(XLenVT); 6361 SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, Mask.getValueType(), 6362 VL); 6363 Index = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, IndexVT, Index, 6364 TrueMask, VL); 6365 } 6366 6367 unsigned IntID = 6368 IsUnmasked ? Intrinsic::riscv_vsoxei : Intrinsic::riscv_vsoxei_mask; 6369 SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)}; 6370 Ops.push_back(Val); 6371 Ops.push_back(BasePtr); 6372 Ops.push_back(Index); 6373 if (!IsUnmasked) 6374 Ops.push_back(Mask); 6375 Ops.push_back(VL); 6376 6377 return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, 6378 DAG.getVTList(MVT::Other), Ops, MemVT, MMO); 6379 } 6380 6381 SDValue RISCVTargetLowering::lowerGET_ROUNDING(SDValue Op, 6382 SelectionDAG &DAG) const { 6383 const MVT XLenVT = Subtarget.getXLenVT(); 6384 SDLoc DL(Op); 6385 SDValue Chain = Op->getOperand(0); 6386 SDValue SysRegNo = DAG.getTargetConstant( 6387 RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT); 6388 SDVTList VTs = DAG.getVTList(XLenVT, MVT::Other); 6389 SDValue RM = DAG.getNode(RISCVISD::READ_CSR, DL, VTs, Chain, SysRegNo); 6390 6391 // Encoding used for rounding mode in RISCV differs from that used in 6392 // FLT_ROUNDS. To convert it the RISCV rounding mode is used as an index in a 6393 // table, which consists of a sequence of 4-bit fields, each representing 6394 // corresponding FLT_ROUNDS mode. 6395 static const int Table = 6396 (int(RoundingMode::NearestTiesToEven) << 4 * RISCVFPRndMode::RNE) | 6397 (int(RoundingMode::TowardZero) << 4 * RISCVFPRndMode::RTZ) | 6398 (int(RoundingMode::TowardNegative) << 4 * RISCVFPRndMode::RDN) | 6399 (int(RoundingMode::TowardPositive) << 4 * RISCVFPRndMode::RUP) | 6400 (int(RoundingMode::NearestTiesToAway) << 4 * RISCVFPRndMode::RMM); 6401 6402 SDValue Shift = 6403 DAG.getNode(ISD::SHL, DL, XLenVT, RM, DAG.getConstant(2, DL, XLenVT)); 6404 SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT, 6405 DAG.getConstant(Table, DL, XLenVT), Shift); 6406 SDValue Masked = DAG.getNode(ISD::AND, DL, XLenVT, Shifted, 6407 DAG.getConstant(7, DL, XLenVT)); 6408 6409 return DAG.getMergeValues({Masked, Chain}, DL); 6410 } 6411 6412 SDValue RISCVTargetLowering::lowerSET_ROUNDING(SDValue Op, 6413 SelectionDAG &DAG) const { 6414 const MVT XLenVT = Subtarget.getXLenVT(); 6415 SDLoc DL(Op); 6416 SDValue Chain = Op->getOperand(0); 6417 SDValue RMValue = Op->getOperand(1); 6418 SDValue SysRegNo = DAG.getTargetConstant( 6419 RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT); 6420 6421 // Encoding used for rounding mode in RISCV differs from that used in 6422 // FLT_ROUNDS. To convert it the C rounding mode is used as an index in 6423 // a table, which consists of a sequence of 4-bit fields, each representing 6424 // corresponding RISCV mode. 6425 static const unsigned Table = 6426 (RISCVFPRndMode::RNE << 4 * int(RoundingMode::NearestTiesToEven)) | 6427 (RISCVFPRndMode::RTZ << 4 * int(RoundingMode::TowardZero)) | 6428 (RISCVFPRndMode::RDN << 4 * int(RoundingMode::TowardNegative)) | 6429 (RISCVFPRndMode::RUP << 4 * int(RoundingMode::TowardPositive)) | 6430 (RISCVFPRndMode::RMM << 4 * int(RoundingMode::NearestTiesToAway)); 6431 6432 SDValue Shift = DAG.getNode(ISD::SHL, DL, XLenVT, RMValue, 6433 DAG.getConstant(2, DL, XLenVT)); 6434 SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT, 6435 DAG.getConstant(Table, DL, XLenVT), Shift); 6436 RMValue = DAG.getNode(ISD::AND, DL, XLenVT, Shifted, 6437 DAG.getConstant(0x7, DL, XLenVT)); 6438 return DAG.getNode(RISCVISD::WRITE_CSR, DL, MVT::Other, Chain, SysRegNo, 6439 RMValue); 6440 } 6441 6442 static RISCVISD::NodeType getRISCVWOpcodeByIntr(unsigned IntNo) { 6443 switch (IntNo) { 6444 default: 6445 llvm_unreachable("Unexpected Intrinsic"); 6446 case Intrinsic::riscv_bcompress: 6447 return RISCVISD::BCOMPRESSW; 6448 case Intrinsic::riscv_bdecompress: 6449 return RISCVISD::BDECOMPRESSW; 6450 case Intrinsic::riscv_bfp: 6451 return RISCVISD::BFPW; 6452 case Intrinsic::riscv_fsl: 6453 return RISCVISD::FSLW; 6454 case Intrinsic::riscv_fsr: 6455 return RISCVISD::FSRW; 6456 } 6457 } 6458 6459 // Converts the given intrinsic to a i64 operation with any extension. 6460 static SDValue customLegalizeToWOpByIntr(SDNode *N, SelectionDAG &DAG, 6461 unsigned IntNo) { 6462 SDLoc DL(N); 6463 RISCVISD::NodeType WOpcode = getRISCVWOpcodeByIntr(IntNo); 6464 SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6465 SDValue NewOp2 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 6466 SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp1, NewOp2); 6467 // ReplaceNodeResults requires we maintain the same type for the return value. 6468 return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewRes); 6469 } 6470 6471 // Returns the opcode of the target-specific SDNode that implements the 32-bit 6472 // form of the given Opcode. 6473 static RISCVISD::NodeType getRISCVWOpcode(unsigned Opcode) { 6474 switch (Opcode) { 6475 default: 6476 llvm_unreachable("Unexpected opcode"); 6477 case ISD::SHL: 6478 return RISCVISD::SLLW; 6479 case ISD::SRA: 6480 return RISCVISD::SRAW; 6481 case ISD::SRL: 6482 return RISCVISD::SRLW; 6483 case ISD::SDIV: 6484 return RISCVISD::DIVW; 6485 case ISD::UDIV: 6486 return RISCVISD::DIVUW; 6487 case ISD::UREM: 6488 return RISCVISD::REMUW; 6489 case ISD::ROTL: 6490 return RISCVISD::ROLW; 6491 case ISD::ROTR: 6492 return RISCVISD::RORW; 6493 } 6494 } 6495 6496 // Converts the given i8/i16/i32 operation to a target-specific SelectionDAG 6497 // node. Because i8/i16/i32 isn't a legal type for RV64, these operations would 6498 // otherwise be promoted to i64, making it difficult to select the 6499 // SLLW/DIVUW/.../*W later one because the fact the operation was originally of 6500 // type i8/i16/i32 is lost. 6501 static SDValue customLegalizeToWOp(SDNode *N, SelectionDAG &DAG, 6502 unsigned ExtOpc = ISD::ANY_EXTEND) { 6503 SDLoc DL(N); 6504 RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode()); 6505 SDValue NewOp0 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(0)); 6506 SDValue NewOp1 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(1)); 6507 SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1); 6508 // ReplaceNodeResults requires we maintain the same type for the return value. 6509 return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewRes); 6510 } 6511 6512 // Converts the given 32-bit operation to a i64 operation with signed extension 6513 // semantic to reduce the signed extension instructions. 6514 static SDValue customLegalizeToWOpWithSExt(SDNode *N, SelectionDAG &DAG) { 6515 SDLoc DL(N); 6516 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 6517 SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6518 SDValue NewWOp = DAG.getNode(N->getOpcode(), DL, MVT::i64, NewOp0, NewOp1); 6519 SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp, 6520 DAG.getValueType(MVT::i32)); 6521 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes); 6522 } 6523 6524 void RISCVTargetLowering::ReplaceNodeResults(SDNode *N, 6525 SmallVectorImpl<SDValue> &Results, 6526 SelectionDAG &DAG) const { 6527 SDLoc DL(N); 6528 switch (N->getOpcode()) { 6529 default: 6530 llvm_unreachable("Don't know how to custom type legalize this operation!"); 6531 case ISD::STRICT_FP_TO_SINT: 6532 case ISD::STRICT_FP_TO_UINT: 6533 case ISD::FP_TO_SINT: 6534 case ISD::FP_TO_UINT: { 6535 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6536 "Unexpected custom legalisation"); 6537 bool IsStrict = N->isStrictFPOpcode(); 6538 bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT || 6539 N->getOpcode() == ISD::STRICT_FP_TO_SINT; 6540 SDValue Op0 = IsStrict ? N->getOperand(1) : N->getOperand(0); 6541 if (getTypeAction(*DAG.getContext(), Op0.getValueType()) != 6542 TargetLowering::TypeSoftenFloat) { 6543 if (!isTypeLegal(Op0.getValueType())) 6544 return; 6545 if (IsStrict) { 6546 unsigned Opc = IsSigned ? RISCVISD::STRICT_FCVT_W_RV64 6547 : RISCVISD::STRICT_FCVT_WU_RV64; 6548 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other); 6549 SDValue Res = DAG.getNode( 6550 Opc, DL, VTs, N->getOperand(0), Op0, 6551 DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, MVT::i64)); 6552 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6553 Results.push_back(Res.getValue(1)); 6554 return; 6555 } 6556 unsigned Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64; 6557 SDValue Res = 6558 DAG.getNode(Opc, DL, MVT::i64, Op0, 6559 DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, MVT::i64)); 6560 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6561 return; 6562 } 6563 // If the FP type needs to be softened, emit a library call using the 'si' 6564 // version. If we left it to default legalization we'd end up with 'di'. If 6565 // the FP type doesn't need to be softened just let generic type 6566 // legalization promote the result type. 6567 RTLIB::Libcall LC; 6568 if (IsSigned) 6569 LC = RTLIB::getFPTOSINT(Op0.getValueType(), N->getValueType(0)); 6570 else 6571 LC = RTLIB::getFPTOUINT(Op0.getValueType(), N->getValueType(0)); 6572 MakeLibCallOptions CallOptions; 6573 EVT OpVT = Op0.getValueType(); 6574 CallOptions.setTypeListBeforeSoften(OpVT, N->getValueType(0), true); 6575 SDValue Chain = IsStrict ? N->getOperand(0) : SDValue(); 6576 SDValue Result; 6577 std::tie(Result, Chain) = 6578 makeLibCall(DAG, LC, N->getValueType(0), Op0, CallOptions, DL, Chain); 6579 Results.push_back(Result); 6580 if (IsStrict) 6581 Results.push_back(Chain); 6582 break; 6583 } 6584 case ISD::READCYCLECOUNTER: { 6585 assert(!Subtarget.is64Bit() && 6586 "READCYCLECOUNTER only has custom type legalization on riscv32"); 6587 6588 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other); 6589 SDValue RCW = 6590 DAG.getNode(RISCVISD::READ_CYCLE_WIDE, DL, VTs, N->getOperand(0)); 6591 6592 Results.push_back( 6593 DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, RCW, RCW.getValue(1))); 6594 Results.push_back(RCW.getValue(2)); 6595 break; 6596 } 6597 case ISD::MUL: { 6598 unsigned Size = N->getSimpleValueType(0).getSizeInBits(); 6599 unsigned XLen = Subtarget.getXLen(); 6600 // This multiply needs to be expanded, try to use MULHSU+MUL if possible. 6601 if (Size > XLen) { 6602 assert(Size == (XLen * 2) && "Unexpected custom legalisation"); 6603 SDValue LHS = N->getOperand(0); 6604 SDValue RHS = N->getOperand(1); 6605 APInt HighMask = APInt::getHighBitsSet(Size, XLen); 6606 6607 bool LHSIsU = DAG.MaskedValueIsZero(LHS, HighMask); 6608 bool RHSIsU = DAG.MaskedValueIsZero(RHS, HighMask); 6609 // We need exactly one side to be unsigned. 6610 if (LHSIsU == RHSIsU) 6611 return; 6612 6613 auto MakeMULPair = [&](SDValue S, SDValue U) { 6614 MVT XLenVT = Subtarget.getXLenVT(); 6615 S = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, S); 6616 U = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, U); 6617 SDValue Lo = DAG.getNode(ISD::MUL, DL, XLenVT, S, U); 6618 SDValue Hi = DAG.getNode(RISCVISD::MULHSU, DL, XLenVT, S, U); 6619 return DAG.getNode(ISD::BUILD_PAIR, DL, N->getValueType(0), Lo, Hi); 6620 }; 6621 6622 bool LHSIsS = DAG.ComputeNumSignBits(LHS) > XLen; 6623 bool RHSIsS = DAG.ComputeNumSignBits(RHS) > XLen; 6624 6625 // The other operand should be signed, but still prefer MULH when 6626 // possible. 6627 if (RHSIsU && LHSIsS && !RHSIsS) 6628 Results.push_back(MakeMULPair(LHS, RHS)); 6629 else if (LHSIsU && RHSIsS && !LHSIsS) 6630 Results.push_back(MakeMULPair(RHS, LHS)); 6631 6632 return; 6633 } 6634 LLVM_FALLTHROUGH; 6635 } 6636 case ISD::ADD: 6637 case ISD::SUB: 6638 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6639 "Unexpected custom legalisation"); 6640 Results.push_back(customLegalizeToWOpWithSExt(N, DAG)); 6641 break; 6642 case ISD::SHL: 6643 case ISD::SRA: 6644 case ISD::SRL: 6645 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6646 "Unexpected custom legalisation"); 6647 if (N->getOperand(1).getOpcode() != ISD::Constant) { 6648 Results.push_back(customLegalizeToWOp(N, DAG)); 6649 break; 6650 } 6651 6652 // Custom legalize ISD::SHL by placing a SIGN_EXTEND_INREG after. This is 6653 // similar to customLegalizeToWOpWithSExt, but we must zero_extend the 6654 // shift amount. 6655 if (N->getOpcode() == ISD::SHL) { 6656 SDLoc DL(N); 6657 SDValue NewOp0 = 6658 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 6659 SDValue NewOp1 = 6660 DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1)); 6661 SDValue NewWOp = DAG.getNode(ISD::SHL, DL, MVT::i64, NewOp0, NewOp1); 6662 SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp, 6663 DAG.getValueType(MVT::i32)); 6664 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes)); 6665 } 6666 6667 break; 6668 case ISD::ROTL: 6669 case ISD::ROTR: 6670 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6671 "Unexpected custom legalisation"); 6672 Results.push_back(customLegalizeToWOp(N, DAG)); 6673 break; 6674 case ISD::CTTZ: 6675 case ISD::CTTZ_ZERO_UNDEF: 6676 case ISD::CTLZ: 6677 case ISD::CTLZ_ZERO_UNDEF: { 6678 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6679 "Unexpected custom legalisation"); 6680 6681 SDValue NewOp0 = 6682 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 6683 bool IsCTZ = 6684 N->getOpcode() == ISD::CTTZ || N->getOpcode() == ISD::CTTZ_ZERO_UNDEF; 6685 unsigned Opc = IsCTZ ? RISCVISD::CTZW : RISCVISD::CLZW; 6686 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp0); 6687 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6688 return; 6689 } 6690 case ISD::SDIV: 6691 case ISD::UDIV: 6692 case ISD::UREM: { 6693 MVT VT = N->getSimpleValueType(0); 6694 assert((VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) && 6695 Subtarget.is64Bit() && Subtarget.hasStdExtM() && 6696 "Unexpected custom legalisation"); 6697 // Don't promote division/remainder by constant since we should expand those 6698 // to multiply by magic constant. 6699 // FIXME: What if the expansion is disabled for minsize. 6700 if (N->getOperand(1).getOpcode() == ISD::Constant) 6701 return; 6702 6703 // If the input is i32, use ANY_EXTEND since the W instructions don't read 6704 // the upper 32 bits. For other types we need to sign or zero extend 6705 // based on the opcode. 6706 unsigned ExtOpc = ISD::ANY_EXTEND; 6707 if (VT != MVT::i32) 6708 ExtOpc = N->getOpcode() == ISD::SDIV ? ISD::SIGN_EXTEND 6709 : ISD::ZERO_EXTEND; 6710 6711 Results.push_back(customLegalizeToWOp(N, DAG, ExtOpc)); 6712 break; 6713 } 6714 case ISD::UADDO: 6715 case ISD::USUBO: { 6716 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6717 "Unexpected custom legalisation"); 6718 bool IsAdd = N->getOpcode() == ISD::UADDO; 6719 // Create an ADDW or SUBW. 6720 SDValue LHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 6721 SDValue RHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6722 SDValue Res = 6723 DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, DL, MVT::i64, LHS, RHS); 6724 Res = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Res, 6725 DAG.getValueType(MVT::i32)); 6726 6727 // Sign extend the LHS and perform an unsigned compare with the ADDW result. 6728 // Since the inputs are sign extended from i32, this is equivalent to 6729 // comparing the lower 32 bits. 6730 LHS = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0)); 6731 SDValue Overflow = DAG.getSetCC(DL, N->getValueType(1), Res, LHS, 6732 IsAdd ? ISD::SETULT : ISD::SETUGT); 6733 6734 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6735 Results.push_back(Overflow); 6736 return; 6737 } 6738 case ISD::UADDSAT: 6739 case ISD::USUBSAT: { 6740 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6741 "Unexpected custom legalisation"); 6742 if (Subtarget.hasStdExtZbb()) { 6743 // With Zbb we can sign extend and let LegalizeDAG use minu/maxu. Using 6744 // sign extend allows overflow of the lower 32 bits to be detected on 6745 // the promoted size. 6746 SDValue LHS = 6747 DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0)); 6748 SDValue RHS = 6749 DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(1)); 6750 SDValue Res = DAG.getNode(N->getOpcode(), DL, MVT::i64, LHS, RHS); 6751 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6752 return; 6753 } 6754 6755 // Without Zbb, expand to UADDO/USUBO+select which will trigger our custom 6756 // promotion for UADDO/USUBO. 6757 Results.push_back(expandAddSubSat(N, DAG)); 6758 return; 6759 } 6760 case ISD::ABS: { 6761 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6762 "Unexpected custom legalisation"); 6763 DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0)); 6764 6765 // Expand abs to Y = (sraiw X, 31); subw(xor(X, Y), Y) 6766 6767 SDValue Src = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 6768 6769 // Freeze the source so we can increase it's use count. 6770 Src = DAG.getFreeze(Src); 6771 6772 // Copy sign bit to all bits using the sraiw pattern. 6773 SDValue SignFill = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Src, 6774 DAG.getValueType(MVT::i32)); 6775 SignFill = DAG.getNode(ISD::SRA, DL, MVT::i64, SignFill, 6776 DAG.getConstant(31, DL, MVT::i64)); 6777 6778 SDValue NewRes = DAG.getNode(ISD::XOR, DL, MVT::i64, Src, SignFill); 6779 NewRes = DAG.getNode(ISD::SUB, DL, MVT::i64, NewRes, SignFill); 6780 6781 // NOTE: The result is only required to be anyextended, but sext is 6782 // consistent with type legalization of sub. 6783 NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewRes, 6784 DAG.getValueType(MVT::i32)); 6785 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes)); 6786 return; 6787 } 6788 case ISD::BITCAST: { 6789 EVT VT = N->getValueType(0); 6790 assert(VT.isInteger() && !VT.isVector() && "Unexpected VT!"); 6791 SDValue Op0 = N->getOperand(0); 6792 EVT Op0VT = Op0.getValueType(); 6793 MVT XLenVT = Subtarget.getXLenVT(); 6794 if (VT == MVT::i16 && Op0VT == MVT::f16 && Subtarget.hasStdExtZfh()) { 6795 SDValue FPConv = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, XLenVT, Op0); 6796 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FPConv)); 6797 } else if (VT == MVT::i32 && Op0VT == MVT::f32 && Subtarget.is64Bit() && 6798 Subtarget.hasStdExtF()) { 6799 SDValue FPConv = 6800 DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Op0); 6801 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, FPConv)); 6802 } else if (!VT.isVector() && Op0VT.isFixedLengthVector() && 6803 isTypeLegal(Op0VT)) { 6804 // Custom-legalize bitcasts from fixed-length vector types to illegal 6805 // scalar types in order to improve codegen. Bitcast the vector to a 6806 // one-element vector type whose element type is the same as the result 6807 // type, and extract the first element. 6808 EVT BVT = EVT::getVectorVT(*DAG.getContext(), VT, 1); 6809 if (isTypeLegal(BVT)) { 6810 SDValue BVec = DAG.getBitcast(BVT, Op0); 6811 Results.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec, 6812 DAG.getConstant(0, DL, XLenVT))); 6813 } 6814 } 6815 break; 6816 } 6817 case RISCVISD::GREV: 6818 case RISCVISD::GORC: 6819 case RISCVISD::SHFL: { 6820 MVT VT = N->getSimpleValueType(0); 6821 MVT XLenVT = Subtarget.getXLenVT(); 6822 assert((VT == MVT::i16 || (VT == MVT::i32 && Subtarget.is64Bit())) && 6823 "Unexpected custom legalisation"); 6824 assert(isa<ConstantSDNode>(N->getOperand(1)) && "Expected constant"); 6825 assert((Subtarget.hasStdExtZbp() || 6826 (Subtarget.hasStdExtZbkb() && N->getOpcode() == RISCVISD::GREV && 6827 N->getConstantOperandVal(1) == 7)) && 6828 "Unexpected extension"); 6829 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, N->getOperand(0)); 6830 SDValue NewOp1 = 6831 DAG.getNode(ISD::ZERO_EXTEND, DL, XLenVT, N->getOperand(1)); 6832 SDValue NewRes = DAG.getNode(N->getOpcode(), DL, XLenVT, NewOp0, NewOp1); 6833 // ReplaceNodeResults requires we maintain the same type for the return 6834 // value. 6835 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, NewRes)); 6836 break; 6837 } 6838 case ISD::BSWAP: 6839 case ISD::BITREVERSE: { 6840 MVT VT = N->getSimpleValueType(0); 6841 MVT XLenVT = Subtarget.getXLenVT(); 6842 assert((VT == MVT::i8 || VT == MVT::i16 || 6843 (VT == MVT::i32 && Subtarget.is64Bit())) && 6844 Subtarget.hasStdExtZbp() && "Unexpected custom legalisation"); 6845 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, N->getOperand(0)); 6846 unsigned Imm = VT.getSizeInBits() - 1; 6847 // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits. 6848 if (N->getOpcode() == ISD::BSWAP) 6849 Imm &= ~0x7U; 6850 SDValue GREVI = DAG.getNode(RISCVISD::GREV, DL, XLenVT, NewOp0, 6851 DAG.getConstant(Imm, DL, XLenVT)); 6852 // ReplaceNodeResults requires we maintain the same type for the return 6853 // value. 6854 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, GREVI)); 6855 break; 6856 } 6857 case ISD::FSHL: 6858 case ISD::FSHR: { 6859 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6860 Subtarget.hasStdExtZbt() && "Unexpected custom legalisation"); 6861 SDValue NewOp0 = 6862 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 6863 SDValue NewOp1 = 6864 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6865 SDValue NewShAmt = 6866 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 6867 // FSLW/FSRW take a 6 bit shift amount but i32 FSHL/FSHR only use 5 bits. 6868 // Mask the shift amount to 5 bits to prevent accidentally setting bit 5. 6869 NewShAmt = DAG.getNode(ISD::AND, DL, MVT::i64, NewShAmt, 6870 DAG.getConstant(0x1f, DL, MVT::i64)); 6871 // fshl and fshr concatenate their operands in the same order. fsrw and fslw 6872 // instruction use different orders. fshl will return its first operand for 6873 // shift of zero, fshr will return its second operand. fsl and fsr both 6874 // return rs1 so the ISD nodes need to have different operand orders. 6875 // Shift amount is in rs2. 6876 unsigned Opc = RISCVISD::FSLW; 6877 if (N->getOpcode() == ISD::FSHR) { 6878 std::swap(NewOp0, NewOp1); 6879 Opc = RISCVISD::FSRW; 6880 } 6881 SDValue NewOp = DAG.getNode(Opc, DL, MVT::i64, NewOp0, NewOp1, NewShAmt); 6882 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewOp)); 6883 break; 6884 } 6885 case ISD::EXTRACT_VECTOR_ELT: { 6886 // Custom-legalize an EXTRACT_VECTOR_ELT where XLEN<SEW, as the SEW element 6887 // type is illegal (currently only vXi64 RV32). 6888 // With vmv.x.s, when SEW > XLEN, only the least-significant XLEN bits are 6889 // transferred to the destination register. We issue two of these from the 6890 // upper- and lower- halves of the SEW-bit vector element, slid down to the 6891 // first element. 6892 SDValue Vec = N->getOperand(0); 6893 SDValue Idx = N->getOperand(1); 6894 6895 // The vector type hasn't been legalized yet so we can't issue target 6896 // specific nodes if it needs legalization. 6897 // FIXME: We would manually legalize if it's important. 6898 if (!isTypeLegal(Vec.getValueType())) 6899 return; 6900 6901 MVT VecVT = Vec.getSimpleValueType(); 6902 6903 assert(!Subtarget.is64Bit() && N->getValueType(0) == MVT::i64 && 6904 VecVT.getVectorElementType() == MVT::i64 && 6905 "Unexpected EXTRACT_VECTOR_ELT legalization"); 6906 6907 // If this is a fixed vector, we need to convert it to a scalable vector. 6908 MVT ContainerVT = VecVT; 6909 if (VecVT.isFixedLengthVector()) { 6910 ContainerVT = getContainerForFixedLengthVector(VecVT); 6911 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 6912 } 6913 6914 MVT XLenVT = Subtarget.getXLenVT(); 6915 6916 // Use a VL of 1 to avoid processing more elements than we need. 6917 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 6918 SDValue VL = DAG.getConstant(1, DL, XLenVT); 6919 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 6920 6921 // Unless the index is known to be 0, we must slide the vector down to get 6922 // the desired element into index 0. 6923 if (!isNullConstant(Idx)) { 6924 Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 6925 DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL); 6926 } 6927 6928 // Extract the lower XLEN bits of the correct vector element. 6929 SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); 6930 6931 // To extract the upper XLEN bits of the vector element, shift the first 6932 // element right by 32 bits and re-extract the lower XLEN bits. 6933 SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, 6934 DAG.getUNDEF(ContainerVT), 6935 DAG.getConstant(32, DL, XLenVT), VL); 6936 SDValue LShr32 = DAG.getNode(RISCVISD::SRL_VL, DL, ContainerVT, Vec, 6937 ThirtyTwoV, Mask, VL); 6938 6939 SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32); 6940 6941 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi)); 6942 break; 6943 } 6944 case ISD::INTRINSIC_WO_CHAIN: { 6945 unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 6946 switch (IntNo) { 6947 default: 6948 llvm_unreachable( 6949 "Don't know how to custom type legalize this intrinsic!"); 6950 case Intrinsic::riscv_grev: 6951 case Intrinsic::riscv_gorc: { 6952 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6953 "Unexpected custom legalisation"); 6954 SDValue NewOp1 = 6955 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6956 SDValue NewOp2 = 6957 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 6958 unsigned Opc = 6959 IntNo == Intrinsic::riscv_grev ? RISCVISD::GREVW : RISCVISD::GORCW; 6960 // If the control is a constant, promote the node by clearing any extra 6961 // bits bits in the control. isel will form greviw/gorciw if the result is 6962 // sign extended. 6963 if (isa<ConstantSDNode>(NewOp2)) { 6964 NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2, 6965 DAG.getConstant(0x1f, DL, MVT::i64)); 6966 Opc = IntNo == Intrinsic::riscv_grev ? RISCVISD::GREV : RISCVISD::GORC; 6967 } 6968 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2); 6969 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6970 break; 6971 } 6972 case Intrinsic::riscv_bcompress: 6973 case Intrinsic::riscv_bdecompress: 6974 case Intrinsic::riscv_bfp: { 6975 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6976 "Unexpected custom legalisation"); 6977 Results.push_back(customLegalizeToWOpByIntr(N, DAG, IntNo)); 6978 break; 6979 } 6980 case Intrinsic::riscv_fsl: 6981 case Intrinsic::riscv_fsr: { 6982 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6983 "Unexpected custom legalisation"); 6984 SDValue NewOp1 = 6985 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6986 SDValue NewOp2 = 6987 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 6988 SDValue NewOp3 = 6989 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(3)); 6990 unsigned Opc = getRISCVWOpcodeByIntr(IntNo); 6991 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2, NewOp3); 6992 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6993 break; 6994 } 6995 case Intrinsic::riscv_orc_b: { 6996 // Lower to the GORCI encoding for orc.b with the operand extended. 6997 SDValue NewOp = 6998 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6999 SDValue Res = DAG.getNode(RISCVISD::GORC, DL, MVT::i64, NewOp, 7000 DAG.getConstant(7, DL, MVT::i64)); 7001 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 7002 return; 7003 } 7004 case Intrinsic::riscv_shfl: 7005 case Intrinsic::riscv_unshfl: { 7006 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 7007 "Unexpected custom legalisation"); 7008 SDValue NewOp1 = 7009 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 7010 SDValue NewOp2 = 7011 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 7012 unsigned Opc = 7013 IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFLW : RISCVISD::UNSHFLW; 7014 // There is no (UN)SHFLIW. If the control word is a constant, we can use 7015 // (UN)SHFLI with bit 4 of the control word cleared. The upper 32 bit half 7016 // will be shuffled the same way as the lower 32 bit half, but the two 7017 // halves won't cross. 7018 if (isa<ConstantSDNode>(NewOp2)) { 7019 NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2, 7020 DAG.getConstant(0xf, DL, MVT::i64)); 7021 Opc = 7022 IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL; 7023 } 7024 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2); 7025 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 7026 break; 7027 } 7028 case Intrinsic::riscv_vmv_x_s: { 7029 EVT VT = N->getValueType(0); 7030 MVT XLenVT = Subtarget.getXLenVT(); 7031 if (VT.bitsLT(XLenVT)) { 7032 // Simple case just extract using vmv.x.s and truncate. 7033 SDValue Extract = DAG.getNode(RISCVISD::VMV_X_S, DL, 7034 Subtarget.getXLenVT(), N->getOperand(1)); 7035 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, Extract)); 7036 return; 7037 } 7038 7039 assert(VT == MVT::i64 && !Subtarget.is64Bit() && 7040 "Unexpected custom legalization"); 7041 7042 // We need to do the move in two steps. 7043 SDValue Vec = N->getOperand(1); 7044 MVT VecVT = Vec.getSimpleValueType(); 7045 7046 // First extract the lower XLEN bits of the element. 7047 SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); 7048 7049 // To extract the upper XLEN bits of the vector element, shift the first 7050 // element right by 32 bits and re-extract the lower XLEN bits. 7051 SDValue VL = DAG.getConstant(1, DL, XLenVT); 7052 MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount()); 7053 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 7054 SDValue ThirtyTwoV = 7055 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, DAG.getUNDEF(VecVT), 7056 DAG.getConstant(32, DL, XLenVT), VL); 7057 SDValue LShr32 = 7058 DAG.getNode(RISCVISD::SRL_VL, DL, VecVT, Vec, ThirtyTwoV, Mask, VL); 7059 SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32); 7060 7061 Results.push_back( 7062 DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi)); 7063 break; 7064 } 7065 } 7066 break; 7067 } 7068 case ISD::VECREDUCE_ADD: 7069 case ISD::VECREDUCE_AND: 7070 case ISD::VECREDUCE_OR: 7071 case ISD::VECREDUCE_XOR: 7072 case ISD::VECREDUCE_SMAX: 7073 case ISD::VECREDUCE_UMAX: 7074 case ISD::VECREDUCE_SMIN: 7075 case ISD::VECREDUCE_UMIN: 7076 if (SDValue V = lowerVECREDUCE(SDValue(N, 0), DAG)) 7077 Results.push_back(V); 7078 break; 7079 case ISD::VP_REDUCE_ADD: 7080 case ISD::VP_REDUCE_AND: 7081 case ISD::VP_REDUCE_OR: 7082 case ISD::VP_REDUCE_XOR: 7083 case ISD::VP_REDUCE_SMAX: 7084 case ISD::VP_REDUCE_UMAX: 7085 case ISD::VP_REDUCE_SMIN: 7086 case ISD::VP_REDUCE_UMIN: 7087 if (SDValue V = lowerVPREDUCE(SDValue(N, 0), DAG)) 7088 Results.push_back(V); 7089 break; 7090 case ISD::FLT_ROUNDS_: { 7091 SDVTList VTs = DAG.getVTList(Subtarget.getXLenVT(), MVT::Other); 7092 SDValue Res = DAG.getNode(ISD::FLT_ROUNDS_, DL, VTs, N->getOperand(0)); 7093 Results.push_back(Res.getValue(0)); 7094 Results.push_back(Res.getValue(1)); 7095 break; 7096 } 7097 } 7098 } 7099 7100 // A structure to hold one of the bit-manipulation patterns below. Together, a 7101 // SHL and non-SHL pattern may form a bit-manipulation pair on a single source: 7102 // (or (and (shl x, 1), 0xAAAAAAAA), 7103 // (and (srl x, 1), 0x55555555)) 7104 struct RISCVBitmanipPat { 7105 SDValue Op; 7106 unsigned ShAmt; 7107 bool IsSHL; 7108 7109 bool formsPairWith(const RISCVBitmanipPat &Other) const { 7110 return Op == Other.Op && ShAmt == Other.ShAmt && IsSHL != Other.IsSHL; 7111 } 7112 }; 7113 7114 // Matches patterns of the form 7115 // (and (shl x, C2), (C1 << C2)) 7116 // (and (srl x, C2), C1) 7117 // (shl (and x, C1), C2) 7118 // (srl (and x, (C1 << C2)), C2) 7119 // Where C2 is a power of 2 and C1 has at least that many leading zeroes. 7120 // The expected masks for each shift amount are specified in BitmanipMasks where 7121 // BitmanipMasks[log2(C2)] specifies the expected C1 value. 7122 // The max allowed shift amount is either XLen/2 or XLen/4 determined by whether 7123 // BitmanipMasks contains 6 or 5 entries assuming that the maximum possible 7124 // XLen is 64. 7125 static Optional<RISCVBitmanipPat> 7126 matchRISCVBitmanipPat(SDValue Op, ArrayRef<uint64_t> BitmanipMasks) { 7127 assert((BitmanipMasks.size() == 5 || BitmanipMasks.size() == 6) && 7128 "Unexpected number of masks"); 7129 Optional<uint64_t> Mask; 7130 // Optionally consume a mask around the shift operation. 7131 if (Op.getOpcode() == ISD::AND && isa<ConstantSDNode>(Op.getOperand(1))) { 7132 Mask = Op.getConstantOperandVal(1); 7133 Op = Op.getOperand(0); 7134 } 7135 if (Op.getOpcode() != ISD::SHL && Op.getOpcode() != ISD::SRL) 7136 return None; 7137 bool IsSHL = Op.getOpcode() == ISD::SHL; 7138 7139 if (!isa<ConstantSDNode>(Op.getOperand(1))) 7140 return None; 7141 uint64_t ShAmt = Op.getConstantOperandVal(1); 7142 7143 unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32; 7144 if (ShAmt >= Width || !isPowerOf2_64(ShAmt)) 7145 return None; 7146 // If we don't have enough masks for 64 bit, then we must be trying to 7147 // match SHFL so we're only allowed to shift 1/4 of the width. 7148 if (BitmanipMasks.size() == 5 && ShAmt >= (Width / 2)) 7149 return None; 7150 7151 SDValue Src = Op.getOperand(0); 7152 7153 // The expected mask is shifted left when the AND is found around SHL 7154 // patterns. 7155 // ((x >> 1) & 0x55555555) 7156 // ((x << 1) & 0xAAAAAAAA) 7157 bool SHLExpMask = IsSHL; 7158 7159 if (!Mask) { 7160 // Sometimes LLVM keeps the mask as an operand of the shift, typically when 7161 // the mask is all ones: consume that now. 7162 if (Src.getOpcode() == ISD::AND && isa<ConstantSDNode>(Src.getOperand(1))) { 7163 Mask = Src.getConstantOperandVal(1); 7164 Src = Src.getOperand(0); 7165 // The expected mask is now in fact shifted left for SRL, so reverse the 7166 // decision. 7167 // ((x & 0xAAAAAAAA) >> 1) 7168 // ((x & 0x55555555) << 1) 7169 SHLExpMask = !SHLExpMask; 7170 } else { 7171 // Use a default shifted mask of all-ones if there's no AND, truncated 7172 // down to the expected width. This simplifies the logic later on. 7173 Mask = maskTrailingOnes<uint64_t>(Width); 7174 *Mask &= (IsSHL ? *Mask << ShAmt : *Mask >> ShAmt); 7175 } 7176 } 7177 7178 unsigned MaskIdx = Log2_32(ShAmt); 7179 uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width); 7180 7181 if (SHLExpMask) 7182 ExpMask <<= ShAmt; 7183 7184 if (Mask != ExpMask) 7185 return None; 7186 7187 return RISCVBitmanipPat{Src, (unsigned)ShAmt, IsSHL}; 7188 } 7189 7190 // Matches any of the following bit-manipulation patterns: 7191 // (and (shl x, 1), (0x55555555 << 1)) 7192 // (and (srl x, 1), 0x55555555) 7193 // (shl (and x, 0x55555555), 1) 7194 // (srl (and x, (0x55555555 << 1)), 1) 7195 // where the shift amount and mask may vary thus: 7196 // [1] = 0x55555555 / 0xAAAAAAAA 7197 // [2] = 0x33333333 / 0xCCCCCCCC 7198 // [4] = 0x0F0F0F0F / 0xF0F0F0F0 7199 // [8] = 0x00FF00FF / 0xFF00FF00 7200 // [16] = 0x0000FFFF / 0xFFFFFFFF 7201 // [32] = 0x00000000FFFFFFFF / 0xFFFFFFFF00000000 (for RV64) 7202 static Optional<RISCVBitmanipPat> matchGREVIPat(SDValue Op) { 7203 // These are the unshifted masks which we use to match bit-manipulation 7204 // patterns. They may be shifted left in certain circumstances. 7205 static const uint64_t BitmanipMasks[] = { 7206 0x5555555555555555ULL, 0x3333333333333333ULL, 0x0F0F0F0F0F0F0F0FULL, 7207 0x00FF00FF00FF00FFULL, 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL}; 7208 7209 return matchRISCVBitmanipPat(Op, BitmanipMasks); 7210 } 7211 7212 // Match the following pattern as a GREVI(W) operation 7213 // (or (BITMANIP_SHL x), (BITMANIP_SRL x)) 7214 static SDValue combineORToGREV(SDValue Op, SelectionDAG &DAG, 7215 const RISCVSubtarget &Subtarget) { 7216 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson"); 7217 EVT VT = Op.getValueType(); 7218 7219 if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) { 7220 auto LHS = matchGREVIPat(Op.getOperand(0)); 7221 auto RHS = matchGREVIPat(Op.getOperand(1)); 7222 if (LHS && RHS && LHS->formsPairWith(*RHS)) { 7223 SDLoc DL(Op); 7224 return DAG.getNode(RISCVISD::GREV, DL, VT, LHS->Op, 7225 DAG.getConstant(LHS->ShAmt, DL, VT)); 7226 } 7227 } 7228 return SDValue(); 7229 } 7230 7231 // Matches any the following pattern as a GORCI(W) operation 7232 // 1. (or (GREVI x, shamt), x) if shamt is a power of 2 7233 // 2. (or x, (GREVI x, shamt)) if shamt is a power of 2 7234 // 3. (or (or (BITMANIP_SHL x), x), (BITMANIP_SRL x)) 7235 // Note that with the variant of 3., 7236 // (or (or (BITMANIP_SHL x), (BITMANIP_SRL x)), x) 7237 // the inner pattern will first be matched as GREVI and then the outer 7238 // pattern will be matched to GORC via the first rule above. 7239 // 4. (or (rotl/rotr x, bitwidth/2), x) 7240 static SDValue combineORToGORC(SDValue Op, SelectionDAG &DAG, 7241 const RISCVSubtarget &Subtarget) { 7242 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson"); 7243 EVT VT = Op.getValueType(); 7244 7245 if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) { 7246 SDLoc DL(Op); 7247 SDValue Op0 = Op.getOperand(0); 7248 SDValue Op1 = Op.getOperand(1); 7249 7250 auto MatchOROfReverse = [&](SDValue Reverse, SDValue X) { 7251 if (Reverse.getOpcode() == RISCVISD::GREV && Reverse.getOperand(0) == X && 7252 isa<ConstantSDNode>(Reverse.getOperand(1)) && 7253 isPowerOf2_32(Reverse.getConstantOperandVal(1))) 7254 return DAG.getNode(RISCVISD::GORC, DL, VT, X, Reverse.getOperand(1)); 7255 // We can also form GORCI from ROTL/ROTR by half the bitwidth. 7256 if ((Reverse.getOpcode() == ISD::ROTL || 7257 Reverse.getOpcode() == ISD::ROTR) && 7258 Reverse.getOperand(0) == X && 7259 isa<ConstantSDNode>(Reverse.getOperand(1))) { 7260 uint64_t RotAmt = Reverse.getConstantOperandVal(1); 7261 if (RotAmt == (VT.getSizeInBits() / 2)) 7262 return DAG.getNode(RISCVISD::GORC, DL, VT, X, 7263 DAG.getConstant(RotAmt, DL, VT)); 7264 } 7265 return SDValue(); 7266 }; 7267 7268 // Check for either commutable permutation of (or (GREVI x, shamt), x) 7269 if (SDValue V = MatchOROfReverse(Op0, Op1)) 7270 return V; 7271 if (SDValue V = MatchOROfReverse(Op1, Op0)) 7272 return V; 7273 7274 // OR is commutable so canonicalize its OR operand to the left 7275 if (Op0.getOpcode() != ISD::OR && Op1.getOpcode() == ISD::OR) 7276 std::swap(Op0, Op1); 7277 if (Op0.getOpcode() != ISD::OR) 7278 return SDValue(); 7279 SDValue OrOp0 = Op0.getOperand(0); 7280 SDValue OrOp1 = Op0.getOperand(1); 7281 auto LHS = matchGREVIPat(OrOp0); 7282 // OR is commutable so swap the operands and try again: x might have been 7283 // on the left 7284 if (!LHS) { 7285 std::swap(OrOp0, OrOp1); 7286 LHS = matchGREVIPat(OrOp0); 7287 } 7288 auto RHS = matchGREVIPat(Op1); 7289 if (LHS && RHS && LHS->formsPairWith(*RHS) && LHS->Op == OrOp1) { 7290 return DAG.getNode(RISCVISD::GORC, DL, VT, LHS->Op, 7291 DAG.getConstant(LHS->ShAmt, DL, VT)); 7292 } 7293 } 7294 return SDValue(); 7295 } 7296 7297 // Matches any of the following bit-manipulation patterns: 7298 // (and (shl x, 1), (0x22222222 << 1)) 7299 // (and (srl x, 1), 0x22222222) 7300 // (shl (and x, 0x22222222), 1) 7301 // (srl (and x, (0x22222222 << 1)), 1) 7302 // where the shift amount and mask may vary thus: 7303 // [1] = 0x22222222 / 0x44444444 7304 // [2] = 0x0C0C0C0C / 0x3C3C3C3C 7305 // [4] = 0x00F000F0 / 0x0F000F00 7306 // [8] = 0x0000FF00 / 0x00FF0000 7307 // [16] = 0x00000000FFFF0000 / 0x0000FFFF00000000 (for RV64) 7308 static Optional<RISCVBitmanipPat> matchSHFLPat(SDValue Op) { 7309 // These are the unshifted masks which we use to match bit-manipulation 7310 // patterns. They may be shifted left in certain circumstances. 7311 static const uint64_t BitmanipMasks[] = { 7312 0x2222222222222222ULL, 0x0C0C0C0C0C0C0C0CULL, 0x00F000F000F000F0ULL, 7313 0x0000FF000000FF00ULL, 0x00000000FFFF0000ULL}; 7314 7315 return matchRISCVBitmanipPat(Op, BitmanipMasks); 7316 } 7317 7318 // Match (or (or (SHFL_SHL x), (SHFL_SHR x)), (SHFL_AND x) 7319 static SDValue combineORToSHFL(SDValue Op, SelectionDAG &DAG, 7320 const RISCVSubtarget &Subtarget) { 7321 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson"); 7322 EVT VT = Op.getValueType(); 7323 7324 if (VT != MVT::i32 && VT != Subtarget.getXLenVT()) 7325 return SDValue(); 7326 7327 SDValue Op0 = Op.getOperand(0); 7328 SDValue Op1 = Op.getOperand(1); 7329 7330 // Or is commutable so canonicalize the second OR to the LHS. 7331 if (Op0.getOpcode() != ISD::OR) 7332 std::swap(Op0, Op1); 7333 if (Op0.getOpcode() != ISD::OR) 7334 return SDValue(); 7335 7336 // We found an inner OR, so our operands are the operands of the inner OR 7337 // and the other operand of the outer OR. 7338 SDValue A = Op0.getOperand(0); 7339 SDValue B = Op0.getOperand(1); 7340 SDValue C = Op1; 7341 7342 auto Match1 = matchSHFLPat(A); 7343 auto Match2 = matchSHFLPat(B); 7344 7345 // If neither matched, we failed. 7346 if (!Match1 && !Match2) 7347 return SDValue(); 7348 7349 // We had at least one match. if one failed, try the remaining C operand. 7350 if (!Match1) { 7351 std::swap(A, C); 7352 Match1 = matchSHFLPat(A); 7353 if (!Match1) 7354 return SDValue(); 7355 } else if (!Match2) { 7356 std::swap(B, C); 7357 Match2 = matchSHFLPat(B); 7358 if (!Match2) 7359 return SDValue(); 7360 } 7361 assert(Match1 && Match2); 7362 7363 // Make sure our matches pair up. 7364 if (!Match1->formsPairWith(*Match2)) 7365 return SDValue(); 7366 7367 // All the remains is to make sure C is an AND with the same input, that masks 7368 // out the bits that are being shuffled. 7369 if (C.getOpcode() != ISD::AND || !isa<ConstantSDNode>(C.getOperand(1)) || 7370 C.getOperand(0) != Match1->Op) 7371 return SDValue(); 7372 7373 uint64_t Mask = C.getConstantOperandVal(1); 7374 7375 static const uint64_t BitmanipMasks[] = { 7376 0x9999999999999999ULL, 0xC3C3C3C3C3C3C3C3ULL, 0xF00FF00FF00FF00FULL, 7377 0xFF0000FFFF0000FFULL, 0xFFFF00000000FFFFULL, 7378 }; 7379 7380 unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32; 7381 unsigned MaskIdx = Log2_32(Match1->ShAmt); 7382 uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width); 7383 7384 if (Mask != ExpMask) 7385 return SDValue(); 7386 7387 SDLoc DL(Op); 7388 return DAG.getNode(RISCVISD::SHFL, DL, VT, Match1->Op, 7389 DAG.getConstant(Match1->ShAmt, DL, VT)); 7390 } 7391 7392 // Optimize (add (shl x, c0), (shl y, c1)) -> 7393 // (SLLI (SH*ADD x, y), c0), if c1-c0 equals to [1|2|3]. 7394 static SDValue transformAddShlImm(SDNode *N, SelectionDAG &DAG, 7395 const RISCVSubtarget &Subtarget) { 7396 // Perform this optimization only in the zba extension. 7397 if (!Subtarget.hasStdExtZba()) 7398 return SDValue(); 7399 7400 // Skip for vector types and larger types. 7401 EVT VT = N->getValueType(0); 7402 if (VT.isVector() || VT.getSizeInBits() > Subtarget.getXLen()) 7403 return SDValue(); 7404 7405 // The two operand nodes must be SHL and have no other use. 7406 SDValue N0 = N->getOperand(0); 7407 SDValue N1 = N->getOperand(1); 7408 if (N0->getOpcode() != ISD::SHL || N1->getOpcode() != ISD::SHL || 7409 !N0->hasOneUse() || !N1->hasOneUse()) 7410 return SDValue(); 7411 7412 // Check c0 and c1. 7413 auto *N0C = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 7414 auto *N1C = dyn_cast<ConstantSDNode>(N1->getOperand(1)); 7415 if (!N0C || !N1C) 7416 return SDValue(); 7417 int64_t C0 = N0C->getSExtValue(); 7418 int64_t C1 = N1C->getSExtValue(); 7419 if (C0 <= 0 || C1 <= 0) 7420 return SDValue(); 7421 7422 // Skip if SH1ADD/SH2ADD/SH3ADD are not applicable. 7423 int64_t Bits = std::min(C0, C1); 7424 int64_t Diff = std::abs(C0 - C1); 7425 if (Diff != 1 && Diff != 2 && Diff != 3) 7426 return SDValue(); 7427 7428 // Build nodes. 7429 SDLoc DL(N); 7430 SDValue NS = (C0 < C1) ? N0->getOperand(0) : N1->getOperand(0); 7431 SDValue NL = (C0 > C1) ? N0->getOperand(0) : N1->getOperand(0); 7432 SDValue NA0 = 7433 DAG.getNode(ISD::SHL, DL, VT, NL, DAG.getConstant(Diff, DL, VT)); 7434 SDValue NA1 = DAG.getNode(ISD::ADD, DL, VT, NA0, NS); 7435 return DAG.getNode(ISD::SHL, DL, VT, NA1, DAG.getConstant(Bits, DL, VT)); 7436 } 7437 7438 // Combine 7439 // ROTR ((GREVI x, 24), 16) -> (GREVI x, 8) for RV32 7440 // ROTL ((GREVI x, 24), 16) -> (GREVI x, 8) for RV32 7441 // ROTR ((GREVI x, 56), 32) -> (GREVI x, 24) for RV64 7442 // ROTL ((GREVI x, 56), 32) -> (GREVI x, 24) for RV64 7443 // RORW ((GREVI x, 24), 16) -> (GREVIW x, 8) for RV64 7444 // ROLW ((GREVI x, 24), 16) -> (GREVIW x, 8) for RV64 7445 // The grev patterns represents BSWAP. 7446 // FIXME: This can be generalized to any GREV. We just need to toggle the MSB 7447 // off the grev. 7448 static SDValue combineROTR_ROTL_RORW_ROLW(SDNode *N, SelectionDAG &DAG, 7449 const RISCVSubtarget &Subtarget) { 7450 bool IsWInstruction = 7451 N->getOpcode() == RISCVISD::RORW || N->getOpcode() == RISCVISD::ROLW; 7452 assert((N->getOpcode() == ISD::ROTR || N->getOpcode() == ISD::ROTL || 7453 IsWInstruction) && 7454 "Unexpected opcode!"); 7455 SDValue Src = N->getOperand(0); 7456 EVT VT = N->getValueType(0); 7457 SDLoc DL(N); 7458 7459 if (!Subtarget.hasStdExtZbp() || Src.getOpcode() != RISCVISD::GREV) 7460 return SDValue(); 7461 7462 if (!isa<ConstantSDNode>(N->getOperand(1)) || 7463 !isa<ConstantSDNode>(Src.getOperand(1))) 7464 return SDValue(); 7465 7466 unsigned BitWidth = IsWInstruction ? 32 : VT.getSizeInBits(); 7467 assert(isPowerOf2_32(BitWidth) && "Expected a power of 2"); 7468 7469 // Needs to be a rotate by half the bitwidth for ROTR/ROTL or by 16 for 7470 // RORW/ROLW. And the grev should be the encoding for bswap for this width. 7471 unsigned ShAmt1 = N->getConstantOperandVal(1); 7472 unsigned ShAmt2 = Src.getConstantOperandVal(1); 7473 if (BitWidth < 32 || ShAmt1 != (BitWidth / 2) || ShAmt2 != (BitWidth - 8)) 7474 return SDValue(); 7475 7476 Src = Src.getOperand(0); 7477 7478 // Toggle bit the MSB of the shift. 7479 unsigned CombinedShAmt = ShAmt1 ^ ShAmt2; 7480 if (CombinedShAmt == 0) 7481 return Src; 7482 7483 SDValue Res = DAG.getNode( 7484 RISCVISD::GREV, DL, VT, Src, 7485 DAG.getConstant(CombinedShAmt, DL, N->getOperand(1).getValueType())); 7486 if (!IsWInstruction) 7487 return Res; 7488 7489 // Sign extend the result to match the behavior of the rotate. This will be 7490 // selected to GREVIW in isel. 7491 return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Res, 7492 DAG.getValueType(MVT::i32)); 7493 } 7494 7495 // Combine (GREVI (GREVI x, C2), C1) -> (GREVI x, C1^C2) when C1^C2 is 7496 // non-zero, and to x when it is. Any repeated GREVI stage undoes itself. 7497 // Combine (GORCI (GORCI x, C2), C1) -> (GORCI x, C1|C2). Repeated stage does 7498 // not undo itself, but they are redundant. 7499 static SDValue combineGREVI_GORCI(SDNode *N, SelectionDAG &DAG) { 7500 bool IsGORC = N->getOpcode() == RISCVISD::GORC; 7501 assert((IsGORC || N->getOpcode() == RISCVISD::GREV) && "Unexpected opcode"); 7502 SDValue Src = N->getOperand(0); 7503 7504 if (Src.getOpcode() != N->getOpcode()) 7505 return SDValue(); 7506 7507 if (!isa<ConstantSDNode>(N->getOperand(1)) || 7508 !isa<ConstantSDNode>(Src.getOperand(1))) 7509 return SDValue(); 7510 7511 unsigned ShAmt1 = N->getConstantOperandVal(1); 7512 unsigned ShAmt2 = Src.getConstantOperandVal(1); 7513 Src = Src.getOperand(0); 7514 7515 unsigned CombinedShAmt; 7516 if (IsGORC) 7517 CombinedShAmt = ShAmt1 | ShAmt2; 7518 else 7519 CombinedShAmt = ShAmt1 ^ ShAmt2; 7520 7521 if (CombinedShAmt == 0) 7522 return Src; 7523 7524 SDLoc DL(N); 7525 return DAG.getNode( 7526 N->getOpcode(), DL, N->getValueType(0), Src, 7527 DAG.getConstant(CombinedShAmt, DL, N->getOperand(1).getValueType())); 7528 } 7529 7530 // Combine a constant select operand into its use: 7531 // 7532 // (and (select cond, -1, c), x) 7533 // -> (select cond, x, (and x, c)) [AllOnes=1] 7534 // (or (select cond, 0, c), x) 7535 // -> (select cond, x, (or x, c)) [AllOnes=0] 7536 // (xor (select cond, 0, c), x) 7537 // -> (select cond, x, (xor x, c)) [AllOnes=0] 7538 // (add (select cond, 0, c), x) 7539 // -> (select cond, x, (add x, c)) [AllOnes=0] 7540 // (sub x, (select cond, 0, c)) 7541 // -> (select cond, x, (sub x, c)) [AllOnes=0] 7542 static SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp, 7543 SelectionDAG &DAG, bool AllOnes) { 7544 EVT VT = N->getValueType(0); 7545 7546 // Skip vectors. 7547 if (VT.isVector()) 7548 return SDValue(); 7549 7550 if ((Slct.getOpcode() != ISD::SELECT && 7551 Slct.getOpcode() != RISCVISD::SELECT_CC) || 7552 !Slct.hasOneUse()) 7553 return SDValue(); 7554 7555 auto isZeroOrAllOnes = [](SDValue N, bool AllOnes) { 7556 return AllOnes ? isAllOnesConstant(N) : isNullConstant(N); 7557 }; 7558 7559 bool SwapSelectOps; 7560 unsigned OpOffset = Slct.getOpcode() == RISCVISD::SELECT_CC ? 2 : 0; 7561 SDValue TrueVal = Slct.getOperand(1 + OpOffset); 7562 SDValue FalseVal = Slct.getOperand(2 + OpOffset); 7563 SDValue NonConstantVal; 7564 if (isZeroOrAllOnes(TrueVal, AllOnes)) { 7565 SwapSelectOps = false; 7566 NonConstantVal = FalseVal; 7567 } else if (isZeroOrAllOnes(FalseVal, AllOnes)) { 7568 SwapSelectOps = true; 7569 NonConstantVal = TrueVal; 7570 } else 7571 return SDValue(); 7572 7573 // Slct is now know to be the desired identity constant when CC is true. 7574 TrueVal = OtherOp; 7575 FalseVal = DAG.getNode(N->getOpcode(), SDLoc(N), VT, OtherOp, NonConstantVal); 7576 // Unless SwapSelectOps says the condition should be false. 7577 if (SwapSelectOps) 7578 std::swap(TrueVal, FalseVal); 7579 7580 if (Slct.getOpcode() == RISCVISD::SELECT_CC) 7581 return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), VT, 7582 {Slct.getOperand(0), Slct.getOperand(1), 7583 Slct.getOperand(2), TrueVal, FalseVal}); 7584 7585 return DAG.getNode(ISD::SELECT, SDLoc(N), VT, 7586 {Slct.getOperand(0), TrueVal, FalseVal}); 7587 } 7588 7589 // Attempt combineSelectAndUse on each operand of a commutative operator N. 7590 static SDValue combineSelectAndUseCommutative(SDNode *N, SelectionDAG &DAG, 7591 bool AllOnes) { 7592 SDValue N0 = N->getOperand(0); 7593 SDValue N1 = N->getOperand(1); 7594 if (SDValue Result = combineSelectAndUse(N, N0, N1, DAG, AllOnes)) 7595 return Result; 7596 if (SDValue Result = combineSelectAndUse(N, N1, N0, DAG, AllOnes)) 7597 return Result; 7598 return SDValue(); 7599 } 7600 7601 // Transform (add (mul x, c0), c1) -> 7602 // (add (mul (add x, c1/c0), c0), c1%c0). 7603 // if c1/c0 and c1%c0 are simm12, while c1 is not. A special corner case 7604 // that should be excluded is when c0*(c1/c0) is simm12, which will lead 7605 // to an infinite loop in DAGCombine if transformed. 7606 // Or transform (add (mul x, c0), c1) -> 7607 // (add (mul (add x, c1/c0+1), c0), c1%c0-c0), 7608 // if c1/c0+1 and c1%c0-c0 are simm12, while c1 is not. A special corner 7609 // case that should be excluded is when c0*(c1/c0+1) is simm12, which will 7610 // lead to an infinite loop in DAGCombine if transformed. 7611 // Or transform (add (mul x, c0), c1) -> 7612 // (add (mul (add x, c1/c0-1), c0), c1%c0+c0), 7613 // if c1/c0-1 and c1%c0+c0 are simm12, while c1 is not. A special corner 7614 // case that should be excluded is when c0*(c1/c0-1) is simm12, which will 7615 // lead to an infinite loop in DAGCombine if transformed. 7616 // Or transform (add (mul x, c0), c1) -> 7617 // (mul (add x, c1/c0), c0). 7618 // if c1%c0 is zero, and c1/c0 is simm12 while c1 is not. 7619 static SDValue transformAddImmMulImm(SDNode *N, SelectionDAG &DAG, 7620 const RISCVSubtarget &Subtarget) { 7621 // Skip for vector types and larger types. 7622 EVT VT = N->getValueType(0); 7623 if (VT.isVector() || VT.getSizeInBits() > Subtarget.getXLen()) 7624 return SDValue(); 7625 // The first operand node must be a MUL and has no other use. 7626 SDValue N0 = N->getOperand(0); 7627 if (!N0->hasOneUse() || N0->getOpcode() != ISD::MUL) 7628 return SDValue(); 7629 // Check if c0 and c1 match above conditions. 7630 auto *N0C = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 7631 auto *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1)); 7632 if (!N0C || !N1C) 7633 return SDValue(); 7634 // If N0C has multiple uses it's possible one of the cases in 7635 // DAGCombiner::isMulAddWithConstProfitable will be true, which would result 7636 // in an infinite loop. 7637 if (!N0C->hasOneUse()) 7638 return SDValue(); 7639 int64_t C0 = N0C->getSExtValue(); 7640 int64_t C1 = N1C->getSExtValue(); 7641 int64_t CA, CB; 7642 if (C0 == -1 || C0 == 0 || C0 == 1 || isInt<12>(C1)) 7643 return SDValue(); 7644 // Search for proper CA (non-zero) and CB that both are simm12. 7645 if ((C1 / C0) != 0 && isInt<12>(C1 / C0) && isInt<12>(C1 % C0) && 7646 !isInt<12>(C0 * (C1 / C0))) { 7647 CA = C1 / C0; 7648 CB = C1 % C0; 7649 } else if ((C1 / C0 + 1) != 0 && isInt<12>(C1 / C0 + 1) && 7650 isInt<12>(C1 % C0 - C0) && !isInt<12>(C0 * (C1 / C0 + 1))) { 7651 CA = C1 / C0 + 1; 7652 CB = C1 % C0 - C0; 7653 } else if ((C1 / C0 - 1) != 0 && isInt<12>(C1 / C0 - 1) && 7654 isInt<12>(C1 % C0 + C0) && !isInt<12>(C0 * (C1 / C0 - 1))) { 7655 CA = C1 / C0 - 1; 7656 CB = C1 % C0 + C0; 7657 } else 7658 return SDValue(); 7659 // Build new nodes (add (mul (add x, c1/c0), c0), c1%c0). 7660 SDLoc DL(N); 7661 SDValue New0 = DAG.getNode(ISD::ADD, DL, VT, N0->getOperand(0), 7662 DAG.getConstant(CA, DL, VT)); 7663 SDValue New1 = 7664 DAG.getNode(ISD::MUL, DL, VT, New0, DAG.getConstant(C0, DL, VT)); 7665 return DAG.getNode(ISD::ADD, DL, VT, New1, DAG.getConstant(CB, DL, VT)); 7666 } 7667 7668 static SDValue performADDCombine(SDNode *N, SelectionDAG &DAG, 7669 const RISCVSubtarget &Subtarget) { 7670 if (SDValue V = transformAddImmMulImm(N, DAG, Subtarget)) 7671 return V; 7672 if (SDValue V = transformAddShlImm(N, DAG, Subtarget)) 7673 return V; 7674 // fold (add (select lhs, rhs, cc, 0, y), x) -> 7675 // (select lhs, rhs, cc, x, (add x, y)) 7676 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false); 7677 } 7678 7679 static SDValue performSUBCombine(SDNode *N, SelectionDAG &DAG) { 7680 // fold (sub x, (select lhs, rhs, cc, 0, y)) -> 7681 // (select lhs, rhs, cc, x, (sub x, y)) 7682 SDValue N0 = N->getOperand(0); 7683 SDValue N1 = N->getOperand(1); 7684 return combineSelectAndUse(N, N1, N0, DAG, /*AllOnes*/ false); 7685 } 7686 7687 static SDValue performANDCombine(SDNode *N, SelectionDAG &DAG) { 7688 // fold (and (select lhs, rhs, cc, -1, y), x) -> 7689 // (select lhs, rhs, cc, x, (and x, y)) 7690 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ true); 7691 } 7692 7693 static SDValue performORCombine(SDNode *N, SelectionDAG &DAG, 7694 const RISCVSubtarget &Subtarget) { 7695 if (Subtarget.hasStdExtZbp()) { 7696 if (auto GREV = combineORToGREV(SDValue(N, 0), DAG, Subtarget)) 7697 return GREV; 7698 if (auto GORC = combineORToGORC(SDValue(N, 0), DAG, Subtarget)) 7699 return GORC; 7700 if (auto SHFL = combineORToSHFL(SDValue(N, 0), DAG, Subtarget)) 7701 return SHFL; 7702 } 7703 7704 // fold (or (select cond, 0, y), x) -> 7705 // (select cond, x, (or x, y)) 7706 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false); 7707 } 7708 7709 static SDValue performXORCombine(SDNode *N, SelectionDAG &DAG) { 7710 // fold (xor (select cond, 0, y), x) -> 7711 // (select cond, x, (xor x, y)) 7712 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false); 7713 } 7714 7715 static SDValue 7716 performSIGN_EXTEND_INREGCombine(SDNode *N, SelectionDAG &DAG, 7717 const RISCVSubtarget &Subtarget) { 7718 SDValue Src = N->getOperand(0); 7719 EVT VT = N->getValueType(0); 7720 7721 // Fold (sext_inreg (fmv_x_anyexth X), i16) -> (fmv_x_signexth X) 7722 if (Src.getOpcode() == RISCVISD::FMV_X_ANYEXTH && 7723 cast<VTSDNode>(N->getOperand(1))->getVT().bitsGE(MVT::i16)) 7724 return DAG.getNode(RISCVISD::FMV_X_SIGNEXTH, SDLoc(N), VT, 7725 Src.getOperand(0)); 7726 7727 // Fold (i64 (sext_inreg (abs X), i32)) -> 7728 // (i64 (smax (sext_inreg (neg X), i32), X)) if X has more than 32 sign bits. 7729 // The (sext_inreg (neg X), i32) will be selected to negw by isel. This 7730 // pattern occurs after type legalization of (i32 (abs X)) on RV64 if the user 7731 // of the (i32 (abs X)) is a sext or setcc or something else that causes type 7732 // legalization to add a sext_inreg after the abs. The (i32 (abs X)) will have 7733 // been type legalized to (i64 (abs (sext_inreg X, i32))), but the sext_inreg 7734 // may get combined into an earlier operation so we need to use 7735 // ComputeNumSignBits. 7736 // NOTE: (i64 (sext_inreg (abs X), i32)) can also be created for 7737 // (i64 (ashr (shl (abs X), 32), 32)) without any type legalization so 7738 // we can't assume that X has 33 sign bits. We must check. 7739 if (Subtarget.hasStdExtZbb() && Subtarget.is64Bit() && 7740 Src.getOpcode() == ISD::ABS && Src.hasOneUse() && VT == MVT::i64 && 7741 cast<VTSDNode>(N->getOperand(1))->getVT() == MVT::i32 && 7742 DAG.ComputeNumSignBits(Src.getOperand(0)) > 32) { 7743 SDLoc DL(N); 7744 SDValue Freeze = DAG.getFreeze(Src.getOperand(0)); 7745 SDValue Neg = 7746 DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, MVT::i64), Freeze); 7747 Neg = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Neg, 7748 DAG.getValueType(MVT::i32)); 7749 return DAG.getNode(ISD::SMAX, DL, MVT::i64, Freeze, Neg); 7750 } 7751 7752 return SDValue(); 7753 } 7754 7755 // Try to form vwadd(u).wv/wx or vwsub(u).wv/wx. It might later be optimized to 7756 // vwadd(u).vv/vx or vwsub(u).vv/vx. 7757 static SDValue combineADDSUB_VLToVWADDSUB_VL(SDNode *N, SelectionDAG &DAG, 7758 bool Commute = false) { 7759 assert((N->getOpcode() == RISCVISD::ADD_VL || 7760 N->getOpcode() == RISCVISD::SUB_VL) && 7761 "Unexpected opcode"); 7762 bool IsAdd = N->getOpcode() == RISCVISD::ADD_VL; 7763 SDValue Op0 = N->getOperand(0); 7764 SDValue Op1 = N->getOperand(1); 7765 if (Commute) 7766 std::swap(Op0, Op1); 7767 7768 MVT VT = N->getSimpleValueType(0); 7769 7770 // Determine the narrow size for a widening add/sub. 7771 unsigned NarrowSize = VT.getScalarSizeInBits() / 2; 7772 MVT NarrowVT = MVT::getVectorVT(MVT::getIntegerVT(NarrowSize), 7773 VT.getVectorElementCount()); 7774 7775 SDValue Mask = N->getOperand(2); 7776 SDValue VL = N->getOperand(3); 7777 7778 SDLoc DL(N); 7779 7780 // If the RHS is a sext or zext, we can form a widening op. 7781 if ((Op1.getOpcode() == RISCVISD::VZEXT_VL || 7782 Op1.getOpcode() == RISCVISD::VSEXT_VL) && 7783 Op1.hasOneUse() && Op1.getOperand(1) == Mask && Op1.getOperand(2) == VL) { 7784 unsigned ExtOpc = Op1.getOpcode(); 7785 Op1 = Op1.getOperand(0); 7786 // Re-introduce narrower extends if needed. 7787 if (Op1.getValueType() != NarrowVT) 7788 Op1 = DAG.getNode(ExtOpc, DL, NarrowVT, Op1, Mask, VL); 7789 7790 unsigned WOpc; 7791 if (ExtOpc == RISCVISD::VSEXT_VL) 7792 WOpc = IsAdd ? RISCVISD::VWADD_W_VL : RISCVISD::VWSUB_W_VL; 7793 else 7794 WOpc = IsAdd ? RISCVISD::VWADDU_W_VL : RISCVISD::VWSUBU_W_VL; 7795 7796 return DAG.getNode(WOpc, DL, VT, Op0, Op1, Mask, VL); 7797 } 7798 7799 // FIXME: Is it useful to form a vwadd.wx or vwsub.wx if it removes a scalar 7800 // sext/zext? 7801 7802 return SDValue(); 7803 } 7804 7805 // Try to convert vwadd(u).wv/wx or vwsub(u).wv/wx to vwadd(u).vv/vx or 7806 // vwsub(u).vv/vx. 7807 static SDValue combineVWADD_W_VL_VWSUB_W_VL(SDNode *N, SelectionDAG &DAG) { 7808 SDValue Op0 = N->getOperand(0); 7809 SDValue Op1 = N->getOperand(1); 7810 SDValue Mask = N->getOperand(2); 7811 SDValue VL = N->getOperand(3); 7812 7813 MVT VT = N->getSimpleValueType(0); 7814 MVT NarrowVT = Op1.getSimpleValueType(); 7815 unsigned NarrowSize = NarrowVT.getScalarSizeInBits(); 7816 7817 unsigned VOpc; 7818 switch (N->getOpcode()) { 7819 default: llvm_unreachable("Unexpected opcode"); 7820 case RISCVISD::VWADD_W_VL: VOpc = RISCVISD::VWADD_VL; break; 7821 case RISCVISD::VWSUB_W_VL: VOpc = RISCVISD::VWSUB_VL; break; 7822 case RISCVISD::VWADDU_W_VL: VOpc = RISCVISD::VWADDU_VL; break; 7823 case RISCVISD::VWSUBU_W_VL: VOpc = RISCVISD::VWSUBU_VL; break; 7824 } 7825 7826 bool IsSigned = N->getOpcode() == RISCVISD::VWADD_W_VL || 7827 N->getOpcode() == RISCVISD::VWSUB_W_VL; 7828 7829 SDLoc DL(N); 7830 7831 // If the LHS is a sext or zext, we can narrow this op to the same size as 7832 // the RHS. 7833 if (((Op0.getOpcode() == RISCVISD::VZEXT_VL && !IsSigned) || 7834 (Op0.getOpcode() == RISCVISD::VSEXT_VL && IsSigned)) && 7835 Op0.hasOneUse() && Op0.getOperand(1) == Mask && Op0.getOperand(2) == VL) { 7836 unsigned ExtOpc = Op0.getOpcode(); 7837 Op0 = Op0.getOperand(0); 7838 // Re-introduce narrower extends if needed. 7839 if (Op0.getValueType() != NarrowVT) 7840 Op0 = DAG.getNode(ExtOpc, DL, NarrowVT, Op0, Mask, VL); 7841 return DAG.getNode(VOpc, DL, VT, Op0, Op1, Mask, VL); 7842 } 7843 7844 bool IsAdd = N->getOpcode() == RISCVISD::VWADD_W_VL || 7845 N->getOpcode() == RISCVISD::VWADDU_W_VL; 7846 7847 // Look for splats on the left hand side of a vwadd(u).wv. We might be able 7848 // to commute and use a vwadd(u).vx instead. 7849 if (IsAdd && Op0.getOpcode() == RISCVISD::VMV_V_X_VL && 7850 Op0.getOperand(0).isUndef() && Op0.getOperand(2) == VL) { 7851 Op0 = Op0.getOperand(1); 7852 7853 // See if have enough sign bits or zero bits in the scalar to use a 7854 // widening add/sub by splatting to smaller element size. 7855 unsigned EltBits = VT.getScalarSizeInBits(); 7856 unsigned ScalarBits = Op0.getValueSizeInBits(); 7857 // Make sure we're getting all element bits from the scalar register. 7858 // FIXME: Support implicit sign extension of vmv.v.x? 7859 if (ScalarBits < EltBits) 7860 return SDValue(); 7861 7862 if (IsSigned) { 7863 if (DAG.ComputeNumSignBits(Op0) <= (ScalarBits - NarrowSize)) 7864 return SDValue(); 7865 } else { 7866 APInt Mask = APInt::getBitsSetFrom(ScalarBits, NarrowSize); 7867 if (!DAG.MaskedValueIsZero(Op0, Mask)) 7868 return SDValue(); 7869 } 7870 7871 Op0 = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, NarrowVT, 7872 DAG.getUNDEF(NarrowVT), Op0, VL); 7873 return DAG.getNode(VOpc, DL, VT, Op1, Op0, Mask, VL); 7874 } 7875 7876 return SDValue(); 7877 } 7878 7879 // Try to form VWMUL, VWMULU or VWMULSU. 7880 // TODO: Support VWMULSU.vx with a sign extend Op and a splat of scalar Op. 7881 static SDValue combineMUL_VLToVWMUL_VL(SDNode *N, SelectionDAG &DAG, 7882 bool Commute) { 7883 assert(N->getOpcode() == RISCVISD::MUL_VL && "Unexpected opcode"); 7884 SDValue Op0 = N->getOperand(0); 7885 SDValue Op1 = N->getOperand(1); 7886 if (Commute) 7887 std::swap(Op0, Op1); 7888 7889 bool IsSignExt = Op0.getOpcode() == RISCVISD::VSEXT_VL; 7890 bool IsZeroExt = Op0.getOpcode() == RISCVISD::VZEXT_VL; 7891 bool IsVWMULSU = IsSignExt && Op1.getOpcode() == RISCVISD::VZEXT_VL; 7892 if ((!IsSignExt && !IsZeroExt) || !Op0.hasOneUse()) 7893 return SDValue(); 7894 7895 SDValue Mask = N->getOperand(2); 7896 SDValue VL = N->getOperand(3); 7897 7898 // Make sure the mask and VL match. 7899 if (Op0.getOperand(1) != Mask || Op0.getOperand(2) != VL) 7900 return SDValue(); 7901 7902 MVT VT = N->getSimpleValueType(0); 7903 7904 // Determine the narrow size for a widening multiply. 7905 unsigned NarrowSize = VT.getScalarSizeInBits() / 2; 7906 MVT NarrowVT = MVT::getVectorVT(MVT::getIntegerVT(NarrowSize), 7907 VT.getVectorElementCount()); 7908 7909 SDLoc DL(N); 7910 7911 // See if the other operand is the same opcode. 7912 if (IsVWMULSU || Op0.getOpcode() == Op1.getOpcode()) { 7913 if (!Op1.hasOneUse()) 7914 return SDValue(); 7915 7916 // Make sure the mask and VL match. 7917 if (Op1.getOperand(1) != Mask || Op1.getOperand(2) != VL) 7918 return SDValue(); 7919 7920 Op1 = Op1.getOperand(0); 7921 } else if (Op1.getOpcode() == RISCVISD::VMV_V_X_VL) { 7922 // The operand is a splat of a scalar. 7923 7924 // The pasthru must be undef for tail agnostic 7925 if (!Op1.getOperand(0).isUndef()) 7926 return SDValue(); 7927 // The VL must be the same. 7928 if (Op1.getOperand(2) != VL) 7929 return SDValue(); 7930 7931 // Get the scalar value. 7932 Op1 = Op1.getOperand(1); 7933 7934 // See if have enough sign bits or zero bits in the scalar to use a 7935 // widening multiply by splatting to smaller element size. 7936 unsigned EltBits = VT.getScalarSizeInBits(); 7937 unsigned ScalarBits = Op1.getValueSizeInBits(); 7938 // Make sure we're getting all element bits from the scalar register. 7939 // FIXME: Support implicit sign extension of vmv.v.x? 7940 if (ScalarBits < EltBits) 7941 return SDValue(); 7942 7943 // If the LHS is a sign extend, try to use vwmul. 7944 if (IsSignExt && DAG.ComputeNumSignBits(Op1) > (ScalarBits - NarrowSize)) { 7945 // Can use vwmul. 7946 } else { 7947 // Otherwise try to use vwmulu or vwmulsu. 7948 APInt Mask = APInt::getBitsSetFrom(ScalarBits, NarrowSize); 7949 if (DAG.MaskedValueIsZero(Op1, Mask)) 7950 IsVWMULSU = IsSignExt; 7951 else 7952 return SDValue(); 7953 } 7954 7955 Op1 = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, NarrowVT, 7956 DAG.getUNDEF(NarrowVT), Op1, VL); 7957 } else 7958 return SDValue(); 7959 7960 Op0 = Op0.getOperand(0); 7961 7962 // Re-introduce narrower extends if needed. 7963 unsigned ExtOpc = IsSignExt ? RISCVISD::VSEXT_VL : RISCVISD::VZEXT_VL; 7964 if (Op0.getValueType() != NarrowVT) 7965 Op0 = DAG.getNode(ExtOpc, DL, NarrowVT, Op0, Mask, VL); 7966 // vwmulsu requires second operand to be zero extended. 7967 ExtOpc = IsVWMULSU ? RISCVISD::VZEXT_VL : ExtOpc; 7968 if (Op1.getValueType() != NarrowVT) 7969 Op1 = DAG.getNode(ExtOpc, DL, NarrowVT, Op1, Mask, VL); 7970 7971 unsigned WMulOpc = RISCVISD::VWMULSU_VL; 7972 if (!IsVWMULSU) 7973 WMulOpc = IsSignExt ? RISCVISD::VWMUL_VL : RISCVISD::VWMULU_VL; 7974 return DAG.getNode(WMulOpc, DL, VT, Op0, Op1, Mask, VL); 7975 } 7976 7977 static RISCVFPRndMode::RoundingMode matchRoundingOp(SDValue Op) { 7978 switch (Op.getOpcode()) { 7979 case ISD::FROUNDEVEN: return RISCVFPRndMode::RNE; 7980 case ISD::FTRUNC: return RISCVFPRndMode::RTZ; 7981 case ISD::FFLOOR: return RISCVFPRndMode::RDN; 7982 case ISD::FCEIL: return RISCVFPRndMode::RUP; 7983 case ISD::FROUND: return RISCVFPRndMode::RMM; 7984 } 7985 7986 return RISCVFPRndMode::Invalid; 7987 } 7988 7989 // Fold 7990 // (fp_to_int (froundeven X)) -> fcvt X, rne 7991 // (fp_to_int (ftrunc X)) -> fcvt X, rtz 7992 // (fp_to_int (ffloor X)) -> fcvt X, rdn 7993 // (fp_to_int (fceil X)) -> fcvt X, rup 7994 // (fp_to_int (fround X)) -> fcvt X, rmm 7995 static SDValue performFP_TO_INTCombine(SDNode *N, 7996 TargetLowering::DAGCombinerInfo &DCI, 7997 const RISCVSubtarget &Subtarget) { 7998 SelectionDAG &DAG = DCI.DAG; 7999 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8000 MVT XLenVT = Subtarget.getXLenVT(); 8001 8002 // Only handle XLen or i32 types. Other types narrower than XLen will 8003 // eventually be legalized to XLenVT. 8004 EVT VT = N->getValueType(0); 8005 if (VT != MVT::i32 && VT != XLenVT) 8006 return SDValue(); 8007 8008 SDValue Src = N->getOperand(0); 8009 8010 // Ensure the FP type is also legal. 8011 if (!TLI.isTypeLegal(Src.getValueType())) 8012 return SDValue(); 8013 8014 // Don't do this for f16 with Zfhmin and not Zfh. 8015 if (Src.getValueType() == MVT::f16 && !Subtarget.hasStdExtZfh()) 8016 return SDValue(); 8017 8018 RISCVFPRndMode::RoundingMode FRM = matchRoundingOp(Src); 8019 if (FRM == RISCVFPRndMode::Invalid) 8020 return SDValue(); 8021 8022 bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT; 8023 8024 unsigned Opc; 8025 if (VT == XLenVT) 8026 Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU; 8027 else 8028 Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64; 8029 8030 SDLoc DL(N); 8031 SDValue FpToInt = DAG.getNode(Opc, DL, XLenVT, Src.getOperand(0), 8032 DAG.getTargetConstant(FRM, DL, XLenVT)); 8033 return DAG.getNode(ISD::TRUNCATE, DL, VT, FpToInt); 8034 } 8035 8036 // Fold 8037 // (fp_to_int_sat (froundeven X)) -> (select X == nan, 0, (fcvt X, rne)) 8038 // (fp_to_int_sat (ftrunc X)) -> (select X == nan, 0, (fcvt X, rtz)) 8039 // (fp_to_int_sat (ffloor X)) -> (select X == nan, 0, (fcvt X, rdn)) 8040 // (fp_to_int_sat (fceil X)) -> (select X == nan, 0, (fcvt X, rup)) 8041 // (fp_to_int_sat (fround X)) -> (select X == nan, 0, (fcvt X, rmm)) 8042 static SDValue performFP_TO_INT_SATCombine(SDNode *N, 8043 TargetLowering::DAGCombinerInfo &DCI, 8044 const RISCVSubtarget &Subtarget) { 8045 SelectionDAG &DAG = DCI.DAG; 8046 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8047 MVT XLenVT = Subtarget.getXLenVT(); 8048 8049 // Only handle XLen types. Other types narrower than XLen will eventually be 8050 // legalized to XLenVT. 8051 EVT DstVT = N->getValueType(0); 8052 if (DstVT != XLenVT) 8053 return SDValue(); 8054 8055 SDValue Src = N->getOperand(0); 8056 8057 // Ensure the FP type is also legal. 8058 if (!TLI.isTypeLegal(Src.getValueType())) 8059 return SDValue(); 8060 8061 // Don't do this for f16 with Zfhmin and not Zfh. 8062 if (Src.getValueType() == MVT::f16 && !Subtarget.hasStdExtZfh()) 8063 return SDValue(); 8064 8065 EVT SatVT = cast<VTSDNode>(N->getOperand(1))->getVT(); 8066 8067 RISCVFPRndMode::RoundingMode FRM = matchRoundingOp(Src); 8068 if (FRM == RISCVFPRndMode::Invalid) 8069 return SDValue(); 8070 8071 bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT_SAT; 8072 8073 unsigned Opc; 8074 if (SatVT == DstVT) 8075 Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU; 8076 else if (DstVT == MVT::i64 && SatVT == MVT::i32) 8077 Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64; 8078 else 8079 return SDValue(); 8080 // FIXME: Support other SatVTs by clamping before or after the conversion. 8081 8082 Src = Src.getOperand(0); 8083 8084 SDLoc DL(N); 8085 SDValue FpToInt = DAG.getNode(Opc, DL, XLenVT, Src, 8086 DAG.getTargetConstant(FRM, DL, XLenVT)); 8087 8088 // RISCV FP-to-int conversions saturate to the destination register size, but 8089 // don't produce 0 for nan. 8090 SDValue ZeroInt = DAG.getConstant(0, DL, DstVT); 8091 return DAG.getSelectCC(DL, Src, Src, ZeroInt, FpToInt, ISD::CondCode::SETUO); 8092 } 8093 8094 // Combine (bitreverse (bswap X)) to the BREV8 GREVI encoding if the type is 8095 // smaller than XLenVT. 8096 static SDValue performBITREVERSECombine(SDNode *N, SelectionDAG &DAG, 8097 const RISCVSubtarget &Subtarget) { 8098 assert(Subtarget.hasStdExtZbkb() && "Unexpected extension"); 8099 8100 SDValue Src = N->getOperand(0); 8101 if (Src.getOpcode() != ISD::BSWAP) 8102 return SDValue(); 8103 8104 EVT VT = N->getValueType(0); 8105 if (!VT.isScalarInteger() || VT.getSizeInBits() >= Subtarget.getXLen() || 8106 !isPowerOf2_32(VT.getSizeInBits())) 8107 return SDValue(); 8108 8109 SDLoc DL(N); 8110 return DAG.getNode(RISCVISD::GREV, DL, VT, Src.getOperand(0), 8111 DAG.getConstant(7, DL, VT)); 8112 } 8113 8114 SDValue RISCVTargetLowering::PerformDAGCombine(SDNode *N, 8115 DAGCombinerInfo &DCI) const { 8116 SelectionDAG &DAG = DCI.DAG; 8117 8118 // Helper to call SimplifyDemandedBits on an operand of N where only some low 8119 // bits are demanded. N will be added to the Worklist if it was not deleted. 8120 // Caller should return SDValue(N, 0) if this returns true. 8121 auto SimplifyDemandedLowBitsHelper = [&](unsigned OpNo, unsigned LowBits) { 8122 SDValue Op = N->getOperand(OpNo); 8123 APInt Mask = APInt::getLowBitsSet(Op.getValueSizeInBits(), LowBits); 8124 if (!SimplifyDemandedBits(Op, Mask, DCI)) 8125 return false; 8126 8127 if (N->getOpcode() != ISD::DELETED_NODE) 8128 DCI.AddToWorklist(N); 8129 return true; 8130 }; 8131 8132 switch (N->getOpcode()) { 8133 default: 8134 break; 8135 case RISCVISD::SplitF64: { 8136 SDValue Op0 = N->getOperand(0); 8137 // If the input to SplitF64 is just BuildPairF64 then the operation is 8138 // redundant. Instead, use BuildPairF64's operands directly. 8139 if (Op0->getOpcode() == RISCVISD::BuildPairF64) 8140 return DCI.CombineTo(N, Op0.getOperand(0), Op0.getOperand(1)); 8141 8142 if (Op0->isUndef()) { 8143 SDValue Lo = DAG.getUNDEF(MVT::i32); 8144 SDValue Hi = DAG.getUNDEF(MVT::i32); 8145 return DCI.CombineTo(N, Lo, Hi); 8146 } 8147 8148 SDLoc DL(N); 8149 8150 // It's cheaper to materialise two 32-bit integers than to load a double 8151 // from the constant pool and transfer it to integer registers through the 8152 // stack. 8153 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op0)) { 8154 APInt V = C->getValueAPF().bitcastToAPInt(); 8155 SDValue Lo = DAG.getConstant(V.trunc(32), DL, MVT::i32); 8156 SDValue Hi = DAG.getConstant(V.lshr(32).trunc(32), DL, MVT::i32); 8157 return DCI.CombineTo(N, Lo, Hi); 8158 } 8159 8160 // This is a target-specific version of a DAGCombine performed in 8161 // DAGCombiner::visitBITCAST. It performs the equivalent of: 8162 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) 8163 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) 8164 if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) || 8165 !Op0.getNode()->hasOneUse()) 8166 break; 8167 SDValue NewSplitF64 = 8168 DAG.getNode(RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), 8169 Op0.getOperand(0)); 8170 SDValue Lo = NewSplitF64.getValue(0); 8171 SDValue Hi = NewSplitF64.getValue(1); 8172 APInt SignBit = APInt::getSignMask(32); 8173 if (Op0.getOpcode() == ISD::FNEG) { 8174 SDValue NewHi = DAG.getNode(ISD::XOR, DL, MVT::i32, Hi, 8175 DAG.getConstant(SignBit, DL, MVT::i32)); 8176 return DCI.CombineTo(N, Lo, NewHi); 8177 } 8178 assert(Op0.getOpcode() == ISD::FABS); 8179 SDValue NewHi = DAG.getNode(ISD::AND, DL, MVT::i32, Hi, 8180 DAG.getConstant(~SignBit, DL, MVT::i32)); 8181 return DCI.CombineTo(N, Lo, NewHi); 8182 } 8183 case RISCVISD::SLLW: 8184 case RISCVISD::SRAW: 8185 case RISCVISD::SRLW: { 8186 // Only the lower 32 bits of LHS and lower 5 bits of RHS are read. 8187 if (SimplifyDemandedLowBitsHelper(0, 32) || 8188 SimplifyDemandedLowBitsHelper(1, 5)) 8189 return SDValue(N, 0); 8190 8191 break; 8192 } 8193 case ISD::ROTR: 8194 case ISD::ROTL: 8195 case RISCVISD::RORW: 8196 case RISCVISD::ROLW: { 8197 if (N->getOpcode() == RISCVISD::RORW || N->getOpcode() == RISCVISD::ROLW) { 8198 // Only the lower 32 bits of LHS and lower 5 bits of RHS are read. 8199 if (SimplifyDemandedLowBitsHelper(0, 32) || 8200 SimplifyDemandedLowBitsHelper(1, 5)) 8201 return SDValue(N, 0); 8202 } 8203 8204 return combineROTR_ROTL_RORW_ROLW(N, DAG, Subtarget); 8205 } 8206 case RISCVISD::CLZW: 8207 case RISCVISD::CTZW: { 8208 // Only the lower 32 bits of the first operand are read 8209 if (SimplifyDemandedLowBitsHelper(0, 32)) 8210 return SDValue(N, 0); 8211 break; 8212 } 8213 case RISCVISD::GREV: 8214 case RISCVISD::GORC: { 8215 // Only the lower log2(Bitwidth) bits of the the shift amount are read. 8216 unsigned BitWidth = N->getOperand(1).getValueSizeInBits(); 8217 assert(isPowerOf2_32(BitWidth) && "Unexpected bit width"); 8218 if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth))) 8219 return SDValue(N, 0); 8220 8221 return combineGREVI_GORCI(N, DAG); 8222 } 8223 case RISCVISD::GREVW: 8224 case RISCVISD::GORCW: { 8225 // Only the lower 32 bits of LHS and lower 5 bits of RHS are read. 8226 if (SimplifyDemandedLowBitsHelper(0, 32) || 8227 SimplifyDemandedLowBitsHelper(1, 5)) 8228 return SDValue(N, 0); 8229 8230 break; 8231 } 8232 case RISCVISD::SHFL: 8233 case RISCVISD::UNSHFL: { 8234 // Only the lower log2(Bitwidth)-1 bits of the the shift amount are read. 8235 unsigned BitWidth = N->getOperand(1).getValueSizeInBits(); 8236 assert(isPowerOf2_32(BitWidth) && "Unexpected bit width"); 8237 if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth) - 1)) 8238 return SDValue(N, 0); 8239 8240 break; 8241 } 8242 case RISCVISD::SHFLW: 8243 case RISCVISD::UNSHFLW: { 8244 // Only the lower 32 bits of LHS and lower 4 bits of RHS are read. 8245 if (SimplifyDemandedLowBitsHelper(0, 32) || 8246 SimplifyDemandedLowBitsHelper(1, 4)) 8247 return SDValue(N, 0); 8248 8249 break; 8250 } 8251 case RISCVISD::BCOMPRESSW: 8252 case RISCVISD::BDECOMPRESSW: { 8253 // Only the lower 32 bits of LHS and RHS are read. 8254 if (SimplifyDemandedLowBitsHelper(0, 32) || 8255 SimplifyDemandedLowBitsHelper(1, 32)) 8256 return SDValue(N, 0); 8257 8258 break; 8259 } 8260 case RISCVISD::FSR: 8261 case RISCVISD::FSL: 8262 case RISCVISD::FSRW: 8263 case RISCVISD::FSLW: { 8264 bool IsWInstruction = 8265 N->getOpcode() == RISCVISD::FSRW || N->getOpcode() == RISCVISD::FSLW; 8266 unsigned BitWidth = 8267 IsWInstruction ? 32 : N->getSimpleValueType(0).getSizeInBits(); 8268 assert(isPowerOf2_32(BitWidth) && "Unexpected bit width"); 8269 // Only the lower log2(Bitwidth)+1 bits of the the shift amount are read. 8270 if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth) + 1)) 8271 return SDValue(N, 0); 8272 8273 break; 8274 } 8275 case RISCVISD::FMV_X_ANYEXTH: 8276 case RISCVISD::FMV_X_ANYEXTW_RV64: { 8277 SDLoc DL(N); 8278 SDValue Op0 = N->getOperand(0); 8279 MVT VT = N->getSimpleValueType(0); 8280 // If the input to FMV_X_ANYEXTW_RV64 is just FMV_W_X_RV64 then the 8281 // conversion is unnecessary and can be replaced with the FMV_W_X_RV64 8282 // operand. Similar for FMV_X_ANYEXTH and FMV_H_X. 8283 if ((N->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64 && 8284 Op0->getOpcode() == RISCVISD::FMV_W_X_RV64) || 8285 (N->getOpcode() == RISCVISD::FMV_X_ANYEXTH && 8286 Op0->getOpcode() == RISCVISD::FMV_H_X)) { 8287 assert(Op0.getOperand(0).getValueType() == VT && 8288 "Unexpected value type!"); 8289 return Op0.getOperand(0); 8290 } 8291 8292 // This is a target-specific version of a DAGCombine performed in 8293 // DAGCombiner::visitBITCAST. It performs the equivalent of: 8294 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) 8295 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) 8296 if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) || 8297 !Op0.getNode()->hasOneUse()) 8298 break; 8299 SDValue NewFMV = DAG.getNode(N->getOpcode(), DL, VT, Op0.getOperand(0)); 8300 unsigned FPBits = N->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64 ? 32 : 16; 8301 APInt SignBit = APInt::getSignMask(FPBits).sextOrSelf(VT.getSizeInBits()); 8302 if (Op0.getOpcode() == ISD::FNEG) 8303 return DAG.getNode(ISD::XOR, DL, VT, NewFMV, 8304 DAG.getConstant(SignBit, DL, VT)); 8305 8306 assert(Op0.getOpcode() == ISD::FABS); 8307 return DAG.getNode(ISD::AND, DL, VT, NewFMV, 8308 DAG.getConstant(~SignBit, DL, VT)); 8309 } 8310 case ISD::ADD: 8311 return performADDCombine(N, DAG, Subtarget); 8312 case ISD::SUB: 8313 return performSUBCombine(N, DAG); 8314 case ISD::AND: 8315 return performANDCombine(N, DAG); 8316 case ISD::OR: 8317 return performORCombine(N, DAG, Subtarget); 8318 case ISD::XOR: 8319 return performXORCombine(N, DAG); 8320 case ISD::SIGN_EXTEND_INREG: 8321 return performSIGN_EXTEND_INREGCombine(N, DAG, Subtarget); 8322 case ISD::ZERO_EXTEND: 8323 // Fold (zero_extend (fp_to_uint X)) to prevent forming fcvt+zexti32 during 8324 // type legalization. This is safe because fp_to_uint produces poison if 8325 // it overflows. 8326 if (N->getValueType(0) == MVT::i64 && Subtarget.is64Bit()) { 8327 SDValue Src = N->getOperand(0); 8328 if (Src.getOpcode() == ISD::FP_TO_UINT && 8329 isTypeLegal(Src.getOperand(0).getValueType())) 8330 return DAG.getNode(ISD::FP_TO_UINT, SDLoc(N), MVT::i64, 8331 Src.getOperand(0)); 8332 if (Src.getOpcode() == ISD::STRICT_FP_TO_UINT && Src.hasOneUse() && 8333 isTypeLegal(Src.getOperand(1).getValueType())) { 8334 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other); 8335 SDValue Res = DAG.getNode(ISD::STRICT_FP_TO_UINT, SDLoc(N), VTs, 8336 Src.getOperand(0), Src.getOperand(1)); 8337 DCI.CombineTo(N, Res); 8338 DAG.ReplaceAllUsesOfValueWith(Src.getValue(1), Res.getValue(1)); 8339 DCI.recursivelyDeleteUnusedNodes(Src.getNode()); 8340 return SDValue(N, 0); // Return N so it doesn't get rechecked. 8341 } 8342 } 8343 return SDValue(); 8344 case RISCVISD::SELECT_CC: { 8345 // Transform 8346 SDValue LHS = N->getOperand(0); 8347 SDValue RHS = N->getOperand(1); 8348 SDValue TrueV = N->getOperand(3); 8349 SDValue FalseV = N->getOperand(4); 8350 8351 // If the True and False values are the same, we don't need a select_cc. 8352 if (TrueV == FalseV) 8353 return TrueV; 8354 8355 ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(2))->get(); 8356 if (!ISD::isIntEqualitySetCC(CCVal)) 8357 break; 8358 8359 // Fold (select_cc (setlt X, Y), 0, ne, trueV, falseV) -> 8360 // (select_cc X, Y, lt, trueV, falseV) 8361 // Sometimes the setcc is introduced after select_cc has been formed. 8362 if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) && 8363 LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) { 8364 // If we're looking for eq 0 instead of ne 0, we need to invert the 8365 // condition. 8366 bool Invert = CCVal == ISD::SETEQ; 8367 CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get(); 8368 if (Invert) 8369 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 8370 8371 SDLoc DL(N); 8372 RHS = LHS.getOperand(1); 8373 LHS = LHS.getOperand(0); 8374 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 8375 8376 SDValue TargetCC = DAG.getCondCode(CCVal); 8377 return DAG.getNode(RISCVISD::SELECT_CC, DL, N->getValueType(0), 8378 {LHS, RHS, TargetCC, TrueV, FalseV}); 8379 } 8380 8381 // Fold (select_cc (xor X, Y), 0, eq/ne, trueV, falseV) -> 8382 // (select_cc X, Y, eq/ne, trueV, falseV) 8383 if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS)) 8384 return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), N->getValueType(0), 8385 {LHS.getOperand(0), LHS.getOperand(1), 8386 N->getOperand(2), TrueV, FalseV}); 8387 // (select_cc X, 1, setne, trueV, falseV) -> 8388 // (select_cc X, 0, seteq, trueV, falseV) if we can prove X is 0/1. 8389 // This can occur when legalizing some floating point comparisons. 8390 APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1); 8391 if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) { 8392 SDLoc DL(N); 8393 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 8394 SDValue TargetCC = DAG.getCondCode(CCVal); 8395 RHS = DAG.getConstant(0, DL, LHS.getValueType()); 8396 return DAG.getNode(RISCVISD::SELECT_CC, DL, N->getValueType(0), 8397 {LHS, RHS, TargetCC, TrueV, FalseV}); 8398 } 8399 8400 break; 8401 } 8402 case RISCVISD::BR_CC: { 8403 SDValue LHS = N->getOperand(1); 8404 SDValue RHS = N->getOperand(2); 8405 ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(3))->get(); 8406 if (!ISD::isIntEqualitySetCC(CCVal)) 8407 break; 8408 8409 // Fold (br_cc (setlt X, Y), 0, ne, dest) -> 8410 // (br_cc X, Y, lt, dest) 8411 // Sometimes the setcc is introduced after br_cc has been formed. 8412 if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) && 8413 LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) { 8414 // If we're looking for eq 0 instead of ne 0, we need to invert the 8415 // condition. 8416 bool Invert = CCVal == ISD::SETEQ; 8417 CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get(); 8418 if (Invert) 8419 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 8420 8421 SDLoc DL(N); 8422 RHS = LHS.getOperand(1); 8423 LHS = LHS.getOperand(0); 8424 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 8425 8426 return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0), 8427 N->getOperand(0), LHS, RHS, DAG.getCondCode(CCVal), 8428 N->getOperand(4)); 8429 } 8430 8431 // Fold (br_cc (xor X, Y), 0, eq/ne, dest) -> 8432 // (br_cc X, Y, eq/ne, trueV, falseV) 8433 if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS)) 8434 return DAG.getNode(RISCVISD::BR_CC, SDLoc(N), N->getValueType(0), 8435 N->getOperand(0), LHS.getOperand(0), LHS.getOperand(1), 8436 N->getOperand(3), N->getOperand(4)); 8437 8438 // (br_cc X, 1, setne, br_cc) -> 8439 // (br_cc X, 0, seteq, br_cc) if we can prove X is 0/1. 8440 // This can occur when legalizing some floating point comparisons. 8441 APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1); 8442 if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) { 8443 SDLoc DL(N); 8444 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 8445 SDValue TargetCC = DAG.getCondCode(CCVal); 8446 RHS = DAG.getConstant(0, DL, LHS.getValueType()); 8447 return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0), 8448 N->getOperand(0), LHS, RHS, TargetCC, 8449 N->getOperand(4)); 8450 } 8451 break; 8452 } 8453 case ISD::BITREVERSE: 8454 return performBITREVERSECombine(N, DAG, Subtarget); 8455 case ISD::FP_TO_SINT: 8456 case ISD::FP_TO_UINT: 8457 return performFP_TO_INTCombine(N, DCI, Subtarget); 8458 case ISD::FP_TO_SINT_SAT: 8459 case ISD::FP_TO_UINT_SAT: 8460 return performFP_TO_INT_SATCombine(N, DCI, Subtarget); 8461 case ISD::FCOPYSIGN: { 8462 EVT VT = N->getValueType(0); 8463 if (!VT.isVector()) 8464 break; 8465 // There is a form of VFSGNJ which injects the negated sign of its second 8466 // operand. Try and bubble any FNEG up after the extend/round to produce 8467 // this optimized pattern. Avoid modifying cases where FP_ROUND and 8468 // TRUNC=1. 8469 SDValue In2 = N->getOperand(1); 8470 // Avoid cases where the extend/round has multiple uses, as duplicating 8471 // those is typically more expensive than removing a fneg. 8472 if (!In2.hasOneUse()) 8473 break; 8474 if (In2.getOpcode() != ISD::FP_EXTEND && 8475 (In2.getOpcode() != ISD::FP_ROUND || In2.getConstantOperandVal(1) != 0)) 8476 break; 8477 In2 = In2.getOperand(0); 8478 if (In2.getOpcode() != ISD::FNEG) 8479 break; 8480 SDLoc DL(N); 8481 SDValue NewFPExtRound = DAG.getFPExtendOrRound(In2.getOperand(0), DL, VT); 8482 return DAG.getNode(ISD::FCOPYSIGN, DL, VT, N->getOperand(0), 8483 DAG.getNode(ISD::FNEG, DL, VT, NewFPExtRound)); 8484 } 8485 case ISD::MGATHER: 8486 case ISD::MSCATTER: 8487 case ISD::VP_GATHER: 8488 case ISD::VP_SCATTER: { 8489 if (!DCI.isBeforeLegalize()) 8490 break; 8491 SDValue Index, ScaleOp; 8492 bool IsIndexScaled = false; 8493 bool IsIndexSigned = false; 8494 if (const auto *VPGSN = dyn_cast<VPGatherScatterSDNode>(N)) { 8495 Index = VPGSN->getIndex(); 8496 ScaleOp = VPGSN->getScale(); 8497 IsIndexScaled = VPGSN->isIndexScaled(); 8498 IsIndexSigned = VPGSN->isIndexSigned(); 8499 } else { 8500 const auto *MGSN = cast<MaskedGatherScatterSDNode>(N); 8501 Index = MGSN->getIndex(); 8502 ScaleOp = MGSN->getScale(); 8503 IsIndexScaled = MGSN->isIndexScaled(); 8504 IsIndexSigned = MGSN->isIndexSigned(); 8505 } 8506 EVT IndexVT = Index.getValueType(); 8507 MVT XLenVT = Subtarget.getXLenVT(); 8508 // RISCV indexed loads only support the "unsigned unscaled" addressing 8509 // mode, so anything else must be manually legalized. 8510 bool NeedsIdxLegalization = 8511 IsIndexScaled || 8512 (IsIndexSigned && IndexVT.getVectorElementType().bitsLT(XLenVT)); 8513 if (!NeedsIdxLegalization) 8514 break; 8515 8516 SDLoc DL(N); 8517 8518 // Any index legalization should first promote to XLenVT, so we don't lose 8519 // bits when scaling. This may create an illegal index type so we let 8520 // LLVM's legalization take care of the splitting. 8521 // FIXME: LLVM can't split VP_GATHER or VP_SCATTER yet. 8522 if (IndexVT.getVectorElementType().bitsLT(XLenVT)) { 8523 IndexVT = IndexVT.changeVectorElementType(XLenVT); 8524 Index = DAG.getNode(IsIndexSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, 8525 DL, IndexVT, Index); 8526 } 8527 8528 unsigned Scale = cast<ConstantSDNode>(ScaleOp)->getZExtValue(); 8529 if (IsIndexScaled && Scale != 1) { 8530 // Manually scale the indices by the element size. 8531 // TODO: Sanitize the scale operand here? 8532 // TODO: For VP nodes, should we use VP_SHL here? 8533 assert(isPowerOf2_32(Scale) && "Expecting power-of-two types"); 8534 SDValue SplatScale = DAG.getConstant(Log2_32(Scale), DL, IndexVT); 8535 Index = DAG.getNode(ISD::SHL, DL, IndexVT, Index, SplatScale); 8536 } 8537 8538 ISD::MemIndexType NewIndexTy = ISD::UNSIGNED_UNSCALED; 8539 if (const auto *VPGN = dyn_cast<VPGatherSDNode>(N)) 8540 return DAG.getGatherVP(N->getVTList(), VPGN->getMemoryVT(), DL, 8541 {VPGN->getChain(), VPGN->getBasePtr(), Index, 8542 VPGN->getScale(), VPGN->getMask(), 8543 VPGN->getVectorLength()}, 8544 VPGN->getMemOperand(), NewIndexTy); 8545 if (const auto *VPSN = dyn_cast<VPScatterSDNode>(N)) 8546 return DAG.getScatterVP(N->getVTList(), VPSN->getMemoryVT(), DL, 8547 {VPSN->getChain(), VPSN->getValue(), 8548 VPSN->getBasePtr(), Index, VPSN->getScale(), 8549 VPSN->getMask(), VPSN->getVectorLength()}, 8550 VPSN->getMemOperand(), NewIndexTy); 8551 if (const auto *MGN = dyn_cast<MaskedGatherSDNode>(N)) 8552 return DAG.getMaskedGather( 8553 N->getVTList(), MGN->getMemoryVT(), DL, 8554 {MGN->getChain(), MGN->getPassThru(), MGN->getMask(), 8555 MGN->getBasePtr(), Index, MGN->getScale()}, 8556 MGN->getMemOperand(), NewIndexTy, MGN->getExtensionType()); 8557 const auto *MSN = cast<MaskedScatterSDNode>(N); 8558 return DAG.getMaskedScatter( 8559 N->getVTList(), MSN->getMemoryVT(), DL, 8560 {MSN->getChain(), MSN->getValue(), MSN->getMask(), MSN->getBasePtr(), 8561 Index, MSN->getScale()}, 8562 MSN->getMemOperand(), NewIndexTy, MSN->isTruncatingStore()); 8563 } 8564 case RISCVISD::SRA_VL: 8565 case RISCVISD::SRL_VL: 8566 case RISCVISD::SHL_VL: { 8567 SDValue ShAmt = N->getOperand(1); 8568 if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) { 8569 // We don't need the upper 32 bits of a 64-bit element for a shift amount. 8570 SDLoc DL(N); 8571 SDValue VL = N->getOperand(3); 8572 EVT VT = N->getValueType(0); 8573 ShAmt = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, DAG.getUNDEF(VT), 8574 ShAmt.getOperand(1), VL); 8575 return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt, 8576 N->getOperand(2), N->getOperand(3)); 8577 } 8578 break; 8579 } 8580 case ISD::SRA: 8581 case ISD::SRL: 8582 case ISD::SHL: { 8583 SDValue ShAmt = N->getOperand(1); 8584 if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) { 8585 // We don't need the upper 32 bits of a 64-bit element for a shift amount. 8586 SDLoc DL(N); 8587 EVT VT = N->getValueType(0); 8588 ShAmt = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, DAG.getUNDEF(VT), 8589 ShAmt.getOperand(1), 8590 DAG.getRegister(RISCV::X0, Subtarget.getXLenVT())); 8591 return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt); 8592 } 8593 break; 8594 } 8595 case RISCVISD::ADD_VL: 8596 if (SDValue V = combineADDSUB_VLToVWADDSUB_VL(N, DAG, /*Commute*/ false)) 8597 return V; 8598 return combineADDSUB_VLToVWADDSUB_VL(N, DAG, /*Commute*/ true); 8599 case RISCVISD::SUB_VL: 8600 return combineADDSUB_VLToVWADDSUB_VL(N, DAG); 8601 case RISCVISD::VWADD_W_VL: 8602 case RISCVISD::VWADDU_W_VL: 8603 case RISCVISD::VWSUB_W_VL: 8604 case RISCVISD::VWSUBU_W_VL: 8605 return combineVWADD_W_VL_VWSUB_W_VL(N, DAG); 8606 case RISCVISD::MUL_VL: 8607 if (SDValue V = combineMUL_VLToVWMUL_VL(N, DAG, /*Commute*/ false)) 8608 return V; 8609 // Mul is commutative. 8610 return combineMUL_VLToVWMUL_VL(N, DAG, /*Commute*/ true); 8611 case ISD::STORE: { 8612 auto *Store = cast<StoreSDNode>(N); 8613 SDValue Val = Store->getValue(); 8614 // Combine store of vmv.x.s to vse with VL of 1. 8615 // FIXME: Support FP. 8616 if (Val.getOpcode() == RISCVISD::VMV_X_S) { 8617 SDValue Src = Val.getOperand(0); 8618 EVT VecVT = Src.getValueType(); 8619 EVT MemVT = Store->getMemoryVT(); 8620 // The memory VT and the element type must match. 8621 if (VecVT.getVectorElementType() == MemVT) { 8622 SDLoc DL(N); 8623 MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount()); 8624 return DAG.getStoreVP( 8625 Store->getChain(), DL, Src, Store->getBasePtr(), Store->getOffset(), 8626 DAG.getConstant(1, DL, MaskVT), 8627 DAG.getConstant(1, DL, Subtarget.getXLenVT()), MemVT, 8628 Store->getMemOperand(), Store->getAddressingMode(), 8629 Store->isTruncatingStore(), /*IsCompress*/ false); 8630 } 8631 } 8632 8633 break; 8634 } 8635 case ISD::SPLAT_VECTOR: { 8636 EVT VT = N->getValueType(0); 8637 // Only perform this combine on legal MVT types. 8638 if (!isTypeLegal(VT)) 8639 break; 8640 if (auto Gather = matchSplatAsGather(N->getOperand(0), VT.getSimpleVT(), N, 8641 DAG, Subtarget)) 8642 return Gather; 8643 break; 8644 } 8645 case RISCVISD::VMV_V_X_VL: { 8646 // Tail agnostic VMV.V.X only demands the vector element bitwidth from the 8647 // scalar input. 8648 unsigned ScalarSize = N->getOperand(1).getValueSizeInBits(); 8649 unsigned EltWidth = N->getValueType(0).getScalarSizeInBits(); 8650 if (ScalarSize > EltWidth && N->getOperand(0).isUndef()) 8651 if (SimplifyDemandedLowBitsHelper(1, EltWidth)) 8652 return SDValue(N, 0); 8653 8654 break; 8655 } 8656 case ISD::INTRINSIC_WO_CHAIN: { 8657 unsigned IntNo = N->getConstantOperandVal(0); 8658 switch (IntNo) { 8659 // By default we do not combine any intrinsic. 8660 default: 8661 return SDValue(); 8662 case Intrinsic::riscv_vcpop: 8663 case Intrinsic::riscv_vcpop_mask: 8664 case Intrinsic::riscv_vfirst: 8665 case Intrinsic::riscv_vfirst_mask: { 8666 SDValue VL = N->getOperand(2); 8667 if (IntNo == Intrinsic::riscv_vcpop_mask || 8668 IntNo == Intrinsic::riscv_vfirst_mask) 8669 VL = N->getOperand(3); 8670 if (!isNullConstant(VL)) 8671 return SDValue(); 8672 // If VL is 0, vcpop -> li 0, vfirst -> li -1. 8673 SDLoc DL(N); 8674 EVT VT = N->getValueType(0); 8675 if (IntNo == Intrinsic::riscv_vfirst || 8676 IntNo == Intrinsic::riscv_vfirst_mask) 8677 return DAG.getConstant(-1, DL, VT); 8678 return DAG.getConstant(0, DL, VT); 8679 } 8680 } 8681 } 8682 } 8683 8684 return SDValue(); 8685 } 8686 8687 bool RISCVTargetLowering::isDesirableToCommuteWithShift( 8688 const SDNode *N, CombineLevel Level) const { 8689 // The following folds are only desirable if `(OP _, c1 << c2)` can be 8690 // materialised in fewer instructions than `(OP _, c1)`: 8691 // 8692 // (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2) 8693 // (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2) 8694 SDValue N0 = N->getOperand(0); 8695 EVT Ty = N0.getValueType(); 8696 if (Ty.isScalarInteger() && 8697 (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::OR)) { 8698 auto *C1 = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 8699 auto *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1)); 8700 if (C1 && C2) { 8701 const APInt &C1Int = C1->getAPIntValue(); 8702 APInt ShiftedC1Int = C1Int << C2->getAPIntValue(); 8703 8704 // We can materialise `c1 << c2` into an add immediate, so it's "free", 8705 // and the combine should happen, to potentially allow further combines 8706 // later. 8707 if (ShiftedC1Int.getMinSignedBits() <= 64 && 8708 isLegalAddImmediate(ShiftedC1Int.getSExtValue())) 8709 return true; 8710 8711 // We can materialise `c1` in an add immediate, so it's "free", and the 8712 // combine should be prevented. 8713 if (C1Int.getMinSignedBits() <= 64 && 8714 isLegalAddImmediate(C1Int.getSExtValue())) 8715 return false; 8716 8717 // Neither constant will fit into an immediate, so find materialisation 8718 // costs. 8719 int C1Cost = RISCVMatInt::getIntMatCost(C1Int, Ty.getSizeInBits(), 8720 Subtarget.getFeatureBits(), 8721 /*CompressionCost*/true); 8722 int ShiftedC1Cost = RISCVMatInt::getIntMatCost( 8723 ShiftedC1Int, Ty.getSizeInBits(), Subtarget.getFeatureBits(), 8724 /*CompressionCost*/true); 8725 8726 // Materialising `c1` is cheaper than materialising `c1 << c2`, so the 8727 // combine should be prevented. 8728 if (C1Cost < ShiftedC1Cost) 8729 return false; 8730 } 8731 } 8732 return true; 8733 } 8734 8735 bool RISCVTargetLowering::targetShrinkDemandedConstant( 8736 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 8737 TargetLoweringOpt &TLO) const { 8738 // Delay this optimization as late as possible. 8739 if (!TLO.LegalOps) 8740 return false; 8741 8742 EVT VT = Op.getValueType(); 8743 if (VT.isVector()) 8744 return false; 8745 8746 // Only handle AND for now. 8747 if (Op.getOpcode() != ISD::AND) 8748 return false; 8749 8750 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 8751 if (!C) 8752 return false; 8753 8754 const APInt &Mask = C->getAPIntValue(); 8755 8756 // Clear all non-demanded bits initially. 8757 APInt ShrunkMask = Mask & DemandedBits; 8758 8759 // Try to make a smaller immediate by setting undemanded bits. 8760 8761 APInt ExpandedMask = Mask | ~DemandedBits; 8762 8763 auto IsLegalMask = [ShrunkMask, ExpandedMask](const APInt &Mask) -> bool { 8764 return ShrunkMask.isSubsetOf(Mask) && Mask.isSubsetOf(ExpandedMask); 8765 }; 8766 auto UseMask = [Mask, Op, VT, &TLO](const APInt &NewMask) -> bool { 8767 if (NewMask == Mask) 8768 return true; 8769 SDLoc DL(Op); 8770 SDValue NewC = TLO.DAG.getConstant(NewMask, DL, VT); 8771 SDValue NewOp = TLO.DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), NewC); 8772 return TLO.CombineTo(Op, NewOp); 8773 }; 8774 8775 // If the shrunk mask fits in sign extended 12 bits, let the target 8776 // independent code apply it. 8777 if (ShrunkMask.isSignedIntN(12)) 8778 return false; 8779 8780 // Preserve (and X, 0xffff) when zext.h is supported. 8781 if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp()) { 8782 APInt NewMask = APInt(Mask.getBitWidth(), 0xffff); 8783 if (IsLegalMask(NewMask)) 8784 return UseMask(NewMask); 8785 } 8786 8787 // Try to preserve (and X, 0xffffffff), the (zext_inreg X, i32) pattern. 8788 if (VT == MVT::i64) { 8789 APInt NewMask = APInt(64, 0xffffffff); 8790 if (IsLegalMask(NewMask)) 8791 return UseMask(NewMask); 8792 } 8793 8794 // For the remaining optimizations, we need to be able to make a negative 8795 // number through a combination of mask and undemanded bits. 8796 if (!ExpandedMask.isNegative()) 8797 return false; 8798 8799 // What is the fewest number of bits we need to represent the negative number. 8800 unsigned MinSignedBits = ExpandedMask.getMinSignedBits(); 8801 8802 // Try to make a 12 bit negative immediate. If that fails try to make a 32 8803 // bit negative immediate unless the shrunk immediate already fits in 32 bits. 8804 APInt NewMask = ShrunkMask; 8805 if (MinSignedBits <= 12) 8806 NewMask.setBitsFrom(11); 8807 else if (MinSignedBits <= 32 && !ShrunkMask.isSignedIntN(32)) 8808 NewMask.setBitsFrom(31); 8809 else 8810 return false; 8811 8812 // Check that our new mask is a subset of the demanded mask. 8813 assert(IsLegalMask(NewMask)); 8814 return UseMask(NewMask); 8815 } 8816 8817 static void computeGREV(APInt &Src, unsigned ShAmt) { 8818 ShAmt &= Src.getBitWidth() - 1; 8819 uint64_t x = Src.getZExtValue(); 8820 if (ShAmt & 1) 8821 x = ((x & 0x5555555555555555LL) << 1) | ((x & 0xAAAAAAAAAAAAAAAALL) >> 1); 8822 if (ShAmt & 2) 8823 x = ((x & 0x3333333333333333LL) << 2) | ((x & 0xCCCCCCCCCCCCCCCCLL) >> 2); 8824 if (ShAmt & 4) 8825 x = ((x & 0x0F0F0F0F0F0F0F0FLL) << 4) | ((x & 0xF0F0F0F0F0F0F0F0LL) >> 4); 8826 if (ShAmt & 8) 8827 x = ((x & 0x00FF00FF00FF00FFLL) << 8) | ((x & 0xFF00FF00FF00FF00LL) >> 8); 8828 if (ShAmt & 16) 8829 x = ((x & 0x0000FFFF0000FFFFLL) << 16) | ((x & 0xFFFF0000FFFF0000LL) >> 16); 8830 if (ShAmt & 32) 8831 x = ((x & 0x00000000FFFFFFFFLL) << 32) | ((x & 0xFFFFFFFF00000000LL) >> 32); 8832 Src = x; 8833 } 8834 8835 void RISCVTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 8836 KnownBits &Known, 8837 const APInt &DemandedElts, 8838 const SelectionDAG &DAG, 8839 unsigned Depth) const { 8840 unsigned BitWidth = Known.getBitWidth(); 8841 unsigned Opc = Op.getOpcode(); 8842 assert((Opc >= ISD::BUILTIN_OP_END || 8843 Opc == ISD::INTRINSIC_WO_CHAIN || 8844 Opc == ISD::INTRINSIC_W_CHAIN || 8845 Opc == ISD::INTRINSIC_VOID) && 8846 "Should use MaskedValueIsZero if you don't know whether Op" 8847 " is a target node!"); 8848 8849 Known.resetAll(); 8850 switch (Opc) { 8851 default: break; 8852 case RISCVISD::SELECT_CC: { 8853 Known = DAG.computeKnownBits(Op.getOperand(4), Depth + 1); 8854 // If we don't know any bits, early out. 8855 if (Known.isUnknown()) 8856 break; 8857 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(3), Depth + 1); 8858 8859 // Only known if known in both the LHS and RHS. 8860 Known = KnownBits::commonBits(Known, Known2); 8861 break; 8862 } 8863 case RISCVISD::REMUW: { 8864 KnownBits Known2; 8865 Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 8866 Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 8867 // We only care about the lower 32 bits. 8868 Known = KnownBits::urem(Known.trunc(32), Known2.trunc(32)); 8869 // Restore the original width by sign extending. 8870 Known = Known.sext(BitWidth); 8871 break; 8872 } 8873 case RISCVISD::DIVUW: { 8874 KnownBits Known2; 8875 Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 8876 Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 8877 // We only care about the lower 32 bits. 8878 Known = KnownBits::udiv(Known.trunc(32), Known2.trunc(32)); 8879 // Restore the original width by sign extending. 8880 Known = Known.sext(BitWidth); 8881 break; 8882 } 8883 case RISCVISD::CTZW: { 8884 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 8885 unsigned PossibleTZ = Known2.trunc(32).countMaxTrailingZeros(); 8886 unsigned LowBits = Log2_32(PossibleTZ) + 1; 8887 Known.Zero.setBitsFrom(LowBits); 8888 break; 8889 } 8890 case RISCVISD::CLZW: { 8891 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 8892 unsigned PossibleLZ = Known2.trunc(32).countMaxLeadingZeros(); 8893 unsigned LowBits = Log2_32(PossibleLZ) + 1; 8894 Known.Zero.setBitsFrom(LowBits); 8895 break; 8896 } 8897 case RISCVISD::GREV: { 8898 if (auto *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 8899 Known = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 8900 unsigned ShAmt = C->getZExtValue(); 8901 computeGREV(Known.Zero, ShAmt); 8902 computeGREV(Known.One, ShAmt); 8903 } 8904 break; 8905 } 8906 case RISCVISD::READ_VLENB: { 8907 // If we know the minimum VLen from Zvl extensions, we can use that to 8908 // determine the trailing zeros of VLENB. 8909 // FIXME: Limit to 128 bit vectors until we have more testing. 8910 unsigned MinVLenB = std::min(128U, Subtarget.getMinVLen()) / 8; 8911 if (MinVLenB > 0) 8912 Known.Zero.setLowBits(Log2_32(MinVLenB)); 8913 // We assume VLENB is no more than 65536 / 8 bytes. 8914 Known.Zero.setBitsFrom(14); 8915 break; 8916 } 8917 case ISD::INTRINSIC_W_CHAIN: 8918 case ISD::INTRINSIC_WO_CHAIN: { 8919 unsigned IntNo = 8920 Op.getConstantOperandVal(Opc == ISD::INTRINSIC_WO_CHAIN ? 0 : 1); 8921 switch (IntNo) { 8922 default: 8923 // We can't do anything for most intrinsics. 8924 break; 8925 case Intrinsic::riscv_vsetvli: 8926 case Intrinsic::riscv_vsetvlimax: 8927 case Intrinsic::riscv_vsetvli_opt: 8928 case Intrinsic::riscv_vsetvlimax_opt: 8929 // Assume that VL output is positive and would fit in an int32_t. 8930 // TODO: VLEN might be capped at 16 bits in a future V spec update. 8931 if (BitWidth >= 32) 8932 Known.Zero.setBitsFrom(31); 8933 break; 8934 } 8935 break; 8936 } 8937 } 8938 } 8939 8940 unsigned RISCVTargetLowering::ComputeNumSignBitsForTargetNode( 8941 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 8942 unsigned Depth) const { 8943 switch (Op.getOpcode()) { 8944 default: 8945 break; 8946 case RISCVISD::SELECT_CC: { 8947 unsigned Tmp = 8948 DAG.ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth + 1); 8949 if (Tmp == 1) return 1; // Early out. 8950 unsigned Tmp2 = 8951 DAG.ComputeNumSignBits(Op.getOperand(4), DemandedElts, Depth + 1); 8952 return std::min(Tmp, Tmp2); 8953 } 8954 case RISCVISD::SLLW: 8955 case RISCVISD::SRAW: 8956 case RISCVISD::SRLW: 8957 case RISCVISD::DIVW: 8958 case RISCVISD::DIVUW: 8959 case RISCVISD::REMUW: 8960 case RISCVISD::ROLW: 8961 case RISCVISD::RORW: 8962 case RISCVISD::GREVW: 8963 case RISCVISD::GORCW: 8964 case RISCVISD::FSLW: 8965 case RISCVISD::FSRW: 8966 case RISCVISD::SHFLW: 8967 case RISCVISD::UNSHFLW: 8968 case RISCVISD::BCOMPRESSW: 8969 case RISCVISD::BDECOMPRESSW: 8970 case RISCVISD::BFPW: 8971 case RISCVISD::FCVT_W_RV64: 8972 case RISCVISD::FCVT_WU_RV64: 8973 case RISCVISD::STRICT_FCVT_W_RV64: 8974 case RISCVISD::STRICT_FCVT_WU_RV64: 8975 // TODO: As the result is sign-extended, this is conservatively correct. A 8976 // more precise answer could be calculated for SRAW depending on known 8977 // bits in the shift amount. 8978 return 33; 8979 case RISCVISD::SHFL: 8980 case RISCVISD::UNSHFL: { 8981 // There is no SHFLIW, but a i64 SHFLI with bit 4 of the control word 8982 // cleared doesn't affect bit 31. The upper 32 bits will be shuffled, but 8983 // will stay within the upper 32 bits. If there were more than 32 sign bits 8984 // before there will be at least 33 sign bits after. 8985 if (Op.getValueType() == MVT::i64 && 8986 isa<ConstantSDNode>(Op.getOperand(1)) && 8987 (Op.getConstantOperandVal(1) & 0x10) == 0) { 8988 unsigned Tmp = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1); 8989 if (Tmp > 32) 8990 return 33; 8991 } 8992 break; 8993 } 8994 case RISCVISD::VMV_X_S: { 8995 // The number of sign bits of the scalar result is computed by obtaining the 8996 // element type of the input vector operand, subtracting its width from the 8997 // XLEN, and then adding one (sign bit within the element type). If the 8998 // element type is wider than XLen, the least-significant XLEN bits are 8999 // taken. 9000 unsigned XLen = Subtarget.getXLen(); 9001 unsigned EltBits = Op.getOperand(0).getScalarValueSizeInBits(); 9002 if (EltBits <= XLen) 9003 return XLen - EltBits + 1; 9004 break; 9005 } 9006 } 9007 9008 return 1; 9009 } 9010 9011 static MachineBasicBlock *emitReadCycleWidePseudo(MachineInstr &MI, 9012 MachineBasicBlock *BB) { 9013 assert(MI.getOpcode() == RISCV::ReadCycleWide && "Unexpected instruction"); 9014 9015 // To read the 64-bit cycle CSR on a 32-bit target, we read the two halves. 9016 // Should the count have wrapped while it was being read, we need to try 9017 // again. 9018 // ... 9019 // read: 9020 // rdcycleh x3 # load high word of cycle 9021 // rdcycle x2 # load low word of cycle 9022 // rdcycleh x4 # load high word of cycle 9023 // bne x3, x4, read # check if high word reads match, otherwise try again 9024 // ... 9025 9026 MachineFunction &MF = *BB->getParent(); 9027 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 9028 MachineFunction::iterator It = ++BB->getIterator(); 9029 9030 MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB); 9031 MF.insert(It, LoopMBB); 9032 9033 MachineBasicBlock *DoneMBB = MF.CreateMachineBasicBlock(LLVM_BB); 9034 MF.insert(It, DoneMBB); 9035 9036 // Transfer the remainder of BB and its successor edges to DoneMBB. 9037 DoneMBB->splice(DoneMBB->begin(), BB, 9038 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 9039 DoneMBB->transferSuccessorsAndUpdatePHIs(BB); 9040 9041 BB->addSuccessor(LoopMBB); 9042 9043 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 9044 Register ReadAgainReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 9045 Register LoReg = MI.getOperand(0).getReg(); 9046 Register HiReg = MI.getOperand(1).getReg(); 9047 DebugLoc DL = MI.getDebugLoc(); 9048 9049 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 9050 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), HiReg) 9051 .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding) 9052 .addReg(RISCV::X0); 9053 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), LoReg) 9054 .addImm(RISCVSysReg::lookupSysRegByName("CYCLE")->Encoding) 9055 .addReg(RISCV::X0); 9056 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), ReadAgainReg) 9057 .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding) 9058 .addReg(RISCV::X0); 9059 9060 BuildMI(LoopMBB, DL, TII->get(RISCV::BNE)) 9061 .addReg(HiReg) 9062 .addReg(ReadAgainReg) 9063 .addMBB(LoopMBB); 9064 9065 LoopMBB->addSuccessor(LoopMBB); 9066 LoopMBB->addSuccessor(DoneMBB); 9067 9068 MI.eraseFromParent(); 9069 9070 return DoneMBB; 9071 } 9072 9073 static MachineBasicBlock *emitSplitF64Pseudo(MachineInstr &MI, 9074 MachineBasicBlock *BB) { 9075 assert(MI.getOpcode() == RISCV::SplitF64Pseudo && "Unexpected instruction"); 9076 9077 MachineFunction &MF = *BB->getParent(); 9078 DebugLoc DL = MI.getDebugLoc(); 9079 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 9080 const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo(); 9081 Register LoReg = MI.getOperand(0).getReg(); 9082 Register HiReg = MI.getOperand(1).getReg(); 9083 Register SrcReg = MI.getOperand(2).getReg(); 9084 const TargetRegisterClass *SrcRC = &RISCV::FPR64RegClass; 9085 int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF); 9086 9087 TII.storeRegToStackSlot(*BB, MI, SrcReg, MI.getOperand(2).isKill(), FI, SrcRC, 9088 RI); 9089 MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI); 9090 MachineMemOperand *MMOLo = 9091 MF.getMachineMemOperand(MPI, MachineMemOperand::MOLoad, 4, Align(8)); 9092 MachineMemOperand *MMOHi = MF.getMachineMemOperand( 9093 MPI.getWithOffset(4), MachineMemOperand::MOLoad, 4, Align(8)); 9094 BuildMI(*BB, MI, DL, TII.get(RISCV::LW), LoReg) 9095 .addFrameIndex(FI) 9096 .addImm(0) 9097 .addMemOperand(MMOLo); 9098 BuildMI(*BB, MI, DL, TII.get(RISCV::LW), HiReg) 9099 .addFrameIndex(FI) 9100 .addImm(4) 9101 .addMemOperand(MMOHi); 9102 MI.eraseFromParent(); // The pseudo instruction is gone now. 9103 return BB; 9104 } 9105 9106 static MachineBasicBlock *emitBuildPairF64Pseudo(MachineInstr &MI, 9107 MachineBasicBlock *BB) { 9108 assert(MI.getOpcode() == RISCV::BuildPairF64Pseudo && 9109 "Unexpected instruction"); 9110 9111 MachineFunction &MF = *BB->getParent(); 9112 DebugLoc DL = MI.getDebugLoc(); 9113 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 9114 const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo(); 9115 Register DstReg = MI.getOperand(0).getReg(); 9116 Register LoReg = MI.getOperand(1).getReg(); 9117 Register HiReg = MI.getOperand(2).getReg(); 9118 const TargetRegisterClass *DstRC = &RISCV::FPR64RegClass; 9119 int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF); 9120 9121 MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI); 9122 MachineMemOperand *MMOLo = 9123 MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Align(8)); 9124 MachineMemOperand *MMOHi = MF.getMachineMemOperand( 9125 MPI.getWithOffset(4), MachineMemOperand::MOStore, 4, Align(8)); 9126 BuildMI(*BB, MI, DL, TII.get(RISCV::SW)) 9127 .addReg(LoReg, getKillRegState(MI.getOperand(1).isKill())) 9128 .addFrameIndex(FI) 9129 .addImm(0) 9130 .addMemOperand(MMOLo); 9131 BuildMI(*BB, MI, DL, TII.get(RISCV::SW)) 9132 .addReg(HiReg, getKillRegState(MI.getOperand(2).isKill())) 9133 .addFrameIndex(FI) 9134 .addImm(4) 9135 .addMemOperand(MMOHi); 9136 TII.loadRegFromStackSlot(*BB, MI, DstReg, FI, DstRC, RI); 9137 MI.eraseFromParent(); // The pseudo instruction is gone now. 9138 return BB; 9139 } 9140 9141 static bool isSelectPseudo(MachineInstr &MI) { 9142 switch (MI.getOpcode()) { 9143 default: 9144 return false; 9145 case RISCV::Select_GPR_Using_CC_GPR: 9146 case RISCV::Select_FPR16_Using_CC_GPR: 9147 case RISCV::Select_FPR32_Using_CC_GPR: 9148 case RISCV::Select_FPR64_Using_CC_GPR: 9149 return true; 9150 } 9151 } 9152 9153 static MachineBasicBlock *emitQuietFCMP(MachineInstr &MI, MachineBasicBlock *BB, 9154 unsigned RelOpcode, unsigned EqOpcode, 9155 const RISCVSubtarget &Subtarget) { 9156 DebugLoc DL = MI.getDebugLoc(); 9157 Register DstReg = MI.getOperand(0).getReg(); 9158 Register Src1Reg = MI.getOperand(1).getReg(); 9159 Register Src2Reg = MI.getOperand(2).getReg(); 9160 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); 9161 Register SavedFFlags = MRI.createVirtualRegister(&RISCV::GPRRegClass); 9162 const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo(); 9163 9164 // Save the current FFLAGS. 9165 BuildMI(*BB, MI, DL, TII.get(RISCV::ReadFFLAGS), SavedFFlags); 9166 9167 auto MIB = BuildMI(*BB, MI, DL, TII.get(RelOpcode), DstReg) 9168 .addReg(Src1Reg) 9169 .addReg(Src2Reg); 9170 if (MI.getFlag(MachineInstr::MIFlag::NoFPExcept)) 9171 MIB->setFlag(MachineInstr::MIFlag::NoFPExcept); 9172 9173 // Restore the FFLAGS. 9174 BuildMI(*BB, MI, DL, TII.get(RISCV::WriteFFLAGS)) 9175 .addReg(SavedFFlags, RegState::Kill); 9176 9177 // Issue a dummy FEQ opcode to raise exception for signaling NaNs. 9178 auto MIB2 = BuildMI(*BB, MI, DL, TII.get(EqOpcode), RISCV::X0) 9179 .addReg(Src1Reg, getKillRegState(MI.getOperand(1).isKill())) 9180 .addReg(Src2Reg, getKillRegState(MI.getOperand(2).isKill())); 9181 if (MI.getFlag(MachineInstr::MIFlag::NoFPExcept)) 9182 MIB2->setFlag(MachineInstr::MIFlag::NoFPExcept); 9183 9184 // Erase the pseudoinstruction. 9185 MI.eraseFromParent(); 9186 return BB; 9187 } 9188 9189 static MachineBasicBlock *emitSelectPseudo(MachineInstr &MI, 9190 MachineBasicBlock *BB, 9191 const RISCVSubtarget &Subtarget) { 9192 // To "insert" Select_* instructions, we actually have to insert the triangle 9193 // control-flow pattern. The incoming instructions know the destination vreg 9194 // to set, the condition code register to branch on, the true/false values to 9195 // select between, and the condcode to use to select the appropriate branch. 9196 // 9197 // We produce the following control flow: 9198 // HeadMBB 9199 // | \ 9200 // | IfFalseMBB 9201 // | / 9202 // TailMBB 9203 // 9204 // When we find a sequence of selects we attempt to optimize their emission 9205 // by sharing the control flow. Currently we only handle cases where we have 9206 // multiple selects with the exact same condition (same LHS, RHS and CC). 9207 // The selects may be interleaved with other instructions if the other 9208 // instructions meet some requirements we deem safe: 9209 // - They are debug instructions. Otherwise, 9210 // - They do not have side-effects, do not access memory and their inputs do 9211 // not depend on the results of the select pseudo-instructions. 9212 // The TrueV/FalseV operands of the selects cannot depend on the result of 9213 // previous selects in the sequence. 9214 // These conditions could be further relaxed. See the X86 target for a 9215 // related approach and more information. 9216 Register LHS = MI.getOperand(1).getReg(); 9217 Register RHS = MI.getOperand(2).getReg(); 9218 auto CC = static_cast<RISCVCC::CondCode>(MI.getOperand(3).getImm()); 9219 9220 SmallVector<MachineInstr *, 4> SelectDebugValues; 9221 SmallSet<Register, 4> SelectDests; 9222 SelectDests.insert(MI.getOperand(0).getReg()); 9223 9224 MachineInstr *LastSelectPseudo = &MI; 9225 9226 for (auto E = BB->end(), SequenceMBBI = MachineBasicBlock::iterator(MI); 9227 SequenceMBBI != E; ++SequenceMBBI) { 9228 if (SequenceMBBI->isDebugInstr()) 9229 continue; 9230 else if (isSelectPseudo(*SequenceMBBI)) { 9231 if (SequenceMBBI->getOperand(1).getReg() != LHS || 9232 SequenceMBBI->getOperand(2).getReg() != RHS || 9233 SequenceMBBI->getOperand(3).getImm() != CC || 9234 SelectDests.count(SequenceMBBI->getOperand(4).getReg()) || 9235 SelectDests.count(SequenceMBBI->getOperand(5).getReg())) 9236 break; 9237 LastSelectPseudo = &*SequenceMBBI; 9238 SequenceMBBI->collectDebugValues(SelectDebugValues); 9239 SelectDests.insert(SequenceMBBI->getOperand(0).getReg()); 9240 } else { 9241 if (SequenceMBBI->hasUnmodeledSideEffects() || 9242 SequenceMBBI->mayLoadOrStore()) 9243 break; 9244 if (llvm::any_of(SequenceMBBI->operands(), [&](MachineOperand &MO) { 9245 return MO.isReg() && MO.isUse() && SelectDests.count(MO.getReg()); 9246 })) 9247 break; 9248 } 9249 } 9250 9251 const RISCVInstrInfo &TII = *Subtarget.getInstrInfo(); 9252 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 9253 DebugLoc DL = MI.getDebugLoc(); 9254 MachineFunction::iterator I = ++BB->getIterator(); 9255 9256 MachineBasicBlock *HeadMBB = BB; 9257 MachineFunction *F = BB->getParent(); 9258 MachineBasicBlock *TailMBB = F->CreateMachineBasicBlock(LLVM_BB); 9259 MachineBasicBlock *IfFalseMBB = F->CreateMachineBasicBlock(LLVM_BB); 9260 9261 F->insert(I, IfFalseMBB); 9262 F->insert(I, TailMBB); 9263 9264 // Transfer debug instructions associated with the selects to TailMBB. 9265 for (MachineInstr *DebugInstr : SelectDebugValues) { 9266 TailMBB->push_back(DebugInstr->removeFromParent()); 9267 } 9268 9269 // Move all instructions after the sequence to TailMBB. 9270 TailMBB->splice(TailMBB->end(), HeadMBB, 9271 std::next(LastSelectPseudo->getIterator()), HeadMBB->end()); 9272 // Update machine-CFG edges by transferring all successors of the current 9273 // block to the new block which will contain the Phi nodes for the selects. 9274 TailMBB->transferSuccessorsAndUpdatePHIs(HeadMBB); 9275 // Set the successors for HeadMBB. 9276 HeadMBB->addSuccessor(IfFalseMBB); 9277 HeadMBB->addSuccessor(TailMBB); 9278 9279 // Insert appropriate branch. 9280 BuildMI(HeadMBB, DL, TII.getBrCond(CC)) 9281 .addReg(LHS) 9282 .addReg(RHS) 9283 .addMBB(TailMBB); 9284 9285 // IfFalseMBB just falls through to TailMBB. 9286 IfFalseMBB->addSuccessor(TailMBB); 9287 9288 // Create PHIs for all of the select pseudo-instructions. 9289 auto SelectMBBI = MI.getIterator(); 9290 auto SelectEnd = std::next(LastSelectPseudo->getIterator()); 9291 auto InsertionPoint = TailMBB->begin(); 9292 while (SelectMBBI != SelectEnd) { 9293 auto Next = std::next(SelectMBBI); 9294 if (isSelectPseudo(*SelectMBBI)) { 9295 // %Result = phi [ %TrueValue, HeadMBB ], [ %FalseValue, IfFalseMBB ] 9296 BuildMI(*TailMBB, InsertionPoint, SelectMBBI->getDebugLoc(), 9297 TII.get(RISCV::PHI), SelectMBBI->getOperand(0).getReg()) 9298 .addReg(SelectMBBI->getOperand(4).getReg()) 9299 .addMBB(HeadMBB) 9300 .addReg(SelectMBBI->getOperand(5).getReg()) 9301 .addMBB(IfFalseMBB); 9302 SelectMBBI->eraseFromParent(); 9303 } 9304 SelectMBBI = Next; 9305 } 9306 9307 F->getProperties().reset(MachineFunctionProperties::Property::NoPHIs); 9308 return TailMBB; 9309 } 9310 9311 MachineBasicBlock * 9312 RISCVTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 9313 MachineBasicBlock *BB) const { 9314 switch (MI.getOpcode()) { 9315 default: 9316 llvm_unreachable("Unexpected instr type to insert"); 9317 case RISCV::ReadCycleWide: 9318 assert(!Subtarget.is64Bit() && 9319 "ReadCycleWrite is only to be used on riscv32"); 9320 return emitReadCycleWidePseudo(MI, BB); 9321 case RISCV::Select_GPR_Using_CC_GPR: 9322 case RISCV::Select_FPR16_Using_CC_GPR: 9323 case RISCV::Select_FPR32_Using_CC_GPR: 9324 case RISCV::Select_FPR64_Using_CC_GPR: 9325 return emitSelectPseudo(MI, BB, Subtarget); 9326 case RISCV::BuildPairF64Pseudo: 9327 return emitBuildPairF64Pseudo(MI, BB); 9328 case RISCV::SplitF64Pseudo: 9329 return emitSplitF64Pseudo(MI, BB); 9330 case RISCV::PseudoQuietFLE_H: 9331 return emitQuietFCMP(MI, BB, RISCV::FLE_H, RISCV::FEQ_H, Subtarget); 9332 case RISCV::PseudoQuietFLT_H: 9333 return emitQuietFCMP(MI, BB, RISCV::FLT_H, RISCV::FEQ_H, Subtarget); 9334 case RISCV::PseudoQuietFLE_S: 9335 return emitQuietFCMP(MI, BB, RISCV::FLE_S, RISCV::FEQ_S, Subtarget); 9336 case RISCV::PseudoQuietFLT_S: 9337 return emitQuietFCMP(MI, BB, RISCV::FLT_S, RISCV::FEQ_S, Subtarget); 9338 case RISCV::PseudoQuietFLE_D: 9339 return emitQuietFCMP(MI, BB, RISCV::FLE_D, RISCV::FEQ_D, Subtarget); 9340 case RISCV::PseudoQuietFLT_D: 9341 return emitQuietFCMP(MI, BB, RISCV::FLT_D, RISCV::FEQ_D, Subtarget); 9342 } 9343 } 9344 9345 void RISCVTargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI, 9346 SDNode *Node) const { 9347 // Add FRM dependency to any instructions with dynamic rounding mode. 9348 unsigned Opc = MI.getOpcode(); 9349 auto Idx = RISCV::getNamedOperandIdx(Opc, RISCV::OpName::frm); 9350 if (Idx < 0) 9351 return; 9352 if (MI.getOperand(Idx).getImm() != RISCVFPRndMode::DYN) 9353 return; 9354 // If the instruction already reads FRM, don't add another read. 9355 if (MI.readsRegister(RISCV::FRM)) 9356 return; 9357 MI.addOperand( 9358 MachineOperand::CreateReg(RISCV::FRM, /*isDef*/ false, /*isImp*/ true)); 9359 } 9360 9361 // Calling Convention Implementation. 9362 // The expectations for frontend ABI lowering vary from target to target. 9363 // Ideally, an LLVM frontend would be able to avoid worrying about many ABI 9364 // details, but this is a longer term goal. For now, we simply try to keep the 9365 // role of the frontend as simple and well-defined as possible. The rules can 9366 // be summarised as: 9367 // * Never split up large scalar arguments. We handle them here. 9368 // * If a hardfloat calling convention is being used, and the struct may be 9369 // passed in a pair of registers (fp+fp, int+fp), and both registers are 9370 // available, then pass as two separate arguments. If either the GPRs or FPRs 9371 // are exhausted, then pass according to the rule below. 9372 // * If a struct could never be passed in registers or directly in a stack 9373 // slot (as it is larger than 2*XLEN and the floating point rules don't 9374 // apply), then pass it using a pointer with the byval attribute. 9375 // * If a struct is less than 2*XLEN, then coerce to either a two-element 9376 // word-sized array or a 2*XLEN scalar (depending on alignment). 9377 // * The frontend can determine whether a struct is returned by reference or 9378 // not based on its size and fields. If it will be returned by reference, the 9379 // frontend must modify the prototype so a pointer with the sret annotation is 9380 // passed as the first argument. This is not necessary for large scalar 9381 // returns. 9382 // * Struct return values and varargs should be coerced to structs containing 9383 // register-size fields in the same situations they would be for fixed 9384 // arguments. 9385 9386 static const MCPhysReg ArgGPRs[] = { 9387 RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, 9388 RISCV::X14, RISCV::X15, RISCV::X16, RISCV::X17 9389 }; 9390 static const MCPhysReg ArgFPR16s[] = { 9391 RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, 9392 RISCV::F14_H, RISCV::F15_H, RISCV::F16_H, RISCV::F17_H 9393 }; 9394 static const MCPhysReg ArgFPR32s[] = { 9395 RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, 9396 RISCV::F14_F, RISCV::F15_F, RISCV::F16_F, RISCV::F17_F 9397 }; 9398 static const MCPhysReg ArgFPR64s[] = { 9399 RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, 9400 RISCV::F14_D, RISCV::F15_D, RISCV::F16_D, RISCV::F17_D 9401 }; 9402 // This is an interim calling convention and it may be changed in the future. 9403 static const MCPhysReg ArgVRs[] = { 9404 RISCV::V8, RISCV::V9, RISCV::V10, RISCV::V11, RISCV::V12, RISCV::V13, 9405 RISCV::V14, RISCV::V15, RISCV::V16, RISCV::V17, RISCV::V18, RISCV::V19, 9406 RISCV::V20, RISCV::V21, RISCV::V22, RISCV::V23}; 9407 static const MCPhysReg ArgVRM2s[] = {RISCV::V8M2, RISCV::V10M2, RISCV::V12M2, 9408 RISCV::V14M2, RISCV::V16M2, RISCV::V18M2, 9409 RISCV::V20M2, RISCV::V22M2}; 9410 static const MCPhysReg ArgVRM4s[] = {RISCV::V8M4, RISCV::V12M4, RISCV::V16M4, 9411 RISCV::V20M4}; 9412 static const MCPhysReg ArgVRM8s[] = {RISCV::V8M8, RISCV::V16M8}; 9413 9414 // Pass a 2*XLEN argument that has been split into two XLEN values through 9415 // registers or the stack as necessary. 9416 static bool CC_RISCVAssign2XLen(unsigned XLen, CCState &State, CCValAssign VA1, 9417 ISD::ArgFlagsTy ArgFlags1, unsigned ValNo2, 9418 MVT ValVT2, MVT LocVT2, 9419 ISD::ArgFlagsTy ArgFlags2) { 9420 unsigned XLenInBytes = XLen / 8; 9421 if (Register Reg = State.AllocateReg(ArgGPRs)) { 9422 // At least one half can be passed via register. 9423 State.addLoc(CCValAssign::getReg(VA1.getValNo(), VA1.getValVT(), Reg, 9424 VA1.getLocVT(), CCValAssign::Full)); 9425 } else { 9426 // Both halves must be passed on the stack, with proper alignment. 9427 Align StackAlign = 9428 std::max(Align(XLenInBytes), ArgFlags1.getNonZeroOrigAlign()); 9429 State.addLoc( 9430 CCValAssign::getMem(VA1.getValNo(), VA1.getValVT(), 9431 State.AllocateStack(XLenInBytes, StackAlign), 9432 VA1.getLocVT(), CCValAssign::Full)); 9433 State.addLoc(CCValAssign::getMem( 9434 ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)), 9435 LocVT2, CCValAssign::Full)); 9436 return false; 9437 } 9438 9439 if (Register Reg = State.AllocateReg(ArgGPRs)) { 9440 // The second half can also be passed via register. 9441 State.addLoc( 9442 CCValAssign::getReg(ValNo2, ValVT2, Reg, LocVT2, CCValAssign::Full)); 9443 } else { 9444 // The second half is passed via the stack, without additional alignment. 9445 State.addLoc(CCValAssign::getMem( 9446 ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)), 9447 LocVT2, CCValAssign::Full)); 9448 } 9449 9450 return false; 9451 } 9452 9453 static unsigned allocateRVVReg(MVT ValVT, unsigned ValNo, 9454 Optional<unsigned> FirstMaskArgument, 9455 CCState &State, const RISCVTargetLowering &TLI) { 9456 const TargetRegisterClass *RC = TLI.getRegClassFor(ValVT); 9457 if (RC == &RISCV::VRRegClass) { 9458 // Assign the first mask argument to V0. 9459 // This is an interim calling convention and it may be changed in the 9460 // future. 9461 if (FirstMaskArgument.hasValue() && ValNo == FirstMaskArgument.getValue()) 9462 return State.AllocateReg(RISCV::V0); 9463 return State.AllocateReg(ArgVRs); 9464 } 9465 if (RC == &RISCV::VRM2RegClass) 9466 return State.AllocateReg(ArgVRM2s); 9467 if (RC == &RISCV::VRM4RegClass) 9468 return State.AllocateReg(ArgVRM4s); 9469 if (RC == &RISCV::VRM8RegClass) 9470 return State.AllocateReg(ArgVRM8s); 9471 llvm_unreachable("Unhandled register class for ValueType"); 9472 } 9473 9474 // Implements the RISC-V calling convention. Returns true upon failure. 9475 static bool CC_RISCV(const DataLayout &DL, RISCVABI::ABI ABI, unsigned ValNo, 9476 MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, 9477 ISD::ArgFlagsTy ArgFlags, CCState &State, bool IsFixed, 9478 bool IsRet, Type *OrigTy, const RISCVTargetLowering &TLI, 9479 Optional<unsigned> FirstMaskArgument) { 9480 unsigned XLen = DL.getLargestLegalIntTypeSizeInBits(); 9481 assert(XLen == 32 || XLen == 64); 9482 MVT XLenVT = XLen == 32 ? MVT::i32 : MVT::i64; 9483 9484 // Any return value split in to more than two values can't be returned 9485 // directly. Vectors are returned via the available vector registers. 9486 if (!LocVT.isVector() && IsRet && ValNo > 1) 9487 return true; 9488 9489 // UseGPRForF16_F32 if targeting one of the soft-float ABIs, if passing a 9490 // variadic argument, or if no F16/F32 argument registers are available. 9491 bool UseGPRForF16_F32 = true; 9492 // UseGPRForF64 if targeting soft-float ABIs or an FLEN=32 ABI, if passing a 9493 // variadic argument, or if no F64 argument registers are available. 9494 bool UseGPRForF64 = true; 9495 9496 switch (ABI) { 9497 default: 9498 llvm_unreachable("Unexpected ABI"); 9499 case RISCVABI::ABI_ILP32: 9500 case RISCVABI::ABI_LP64: 9501 break; 9502 case RISCVABI::ABI_ILP32F: 9503 case RISCVABI::ABI_LP64F: 9504 UseGPRForF16_F32 = !IsFixed; 9505 break; 9506 case RISCVABI::ABI_ILP32D: 9507 case RISCVABI::ABI_LP64D: 9508 UseGPRForF16_F32 = !IsFixed; 9509 UseGPRForF64 = !IsFixed; 9510 break; 9511 } 9512 9513 // FPR16, FPR32, and FPR64 alias each other. 9514 if (State.getFirstUnallocated(ArgFPR32s) == array_lengthof(ArgFPR32s)) { 9515 UseGPRForF16_F32 = true; 9516 UseGPRForF64 = true; 9517 } 9518 9519 // From this point on, rely on UseGPRForF16_F32, UseGPRForF64 and 9520 // similar local variables rather than directly checking against the target 9521 // ABI. 9522 9523 if (UseGPRForF16_F32 && (ValVT == MVT::f16 || ValVT == MVT::f32)) { 9524 LocVT = XLenVT; 9525 LocInfo = CCValAssign::BCvt; 9526 } else if (UseGPRForF64 && XLen == 64 && ValVT == MVT::f64) { 9527 LocVT = MVT::i64; 9528 LocInfo = CCValAssign::BCvt; 9529 } 9530 9531 // If this is a variadic argument, the RISC-V calling convention requires 9532 // that it is assigned an 'even' or 'aligned' register if it has 8-byte 9533 // alignment (RV32) or 16-byte alignment (RV64). An aligned register should 9534 // be used regardless of whether the original argument was split during 9535 // legalisation or not. The argument will not be passed by registers if the 9536 // original type is larger than 2*XLEN, so the register alignment rule does 9537 // not apply. 9538 unsigned TwoXLenInBytes = (2 * XLen) / 8; 9539 if (!IsFixed && ArgFlags.getNonZeroOrigAlign() == TwoXLenInBytes && 9540 DL.getTypeAllocSize(OrigTy) == TwoXLenInBytes) { 9541 unsigned RegIdx = State.getFirstUnallocated(ArgGPRs); 9542 // Skip 'odd' register if necessary. 9543 if (RegIdx != array_lengthof(ArgGPRs) && RegIdx % 2 == 1) 9544 State.AllocateReg(ArgGPRs); 9545 } 9546 9547 SmallVectorImpl<CCValAssign> &PendingLocs = State.getPendingLocs(); 9548 SmallVectorImpl<ISD::ArgFlagsTy> &PendingArgFlags = 9549 State.getPendingArgFlags(); 9550 9551 assert(PendingLocs.size() == PendingArgFlags.size() && 9552 "PendingLocs and PendingArgFlags out of sync"); 9553 9554 // Handle passing f64 on RV32D with a soft float ABI or when floating point 9555 // registers are exhausted. 9556 if (UseGPRForF64 && XLen == 32 && ValVT == MVT::f64) { 9557 assert(!ArgFlags.isSplit() && PendingLocs.empty() && 9558 "Can't lower f64 if it is split"); 9559 // Depending on available argument GPRS, f64 may be passed in a pair of 9560 // GPRs, split between a GPR and the stack, or passed completely on the 9561 // stack. LowerCall/LowerFormalArguments/LowerReturn must recognise these 9562 // cases. 9563 Register Reg = State.AllocateReg(ArgGPRs); 9564 LocVT = MVT::i32; 9565 if (!Reg) { 9566 unsigned StackOffset = State.AllocateStack(8, Align(8)); 9567 State.addLoc( 9568 CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 9569 return false; 9570 } 9571 if (!State.AllocateReg(ArgGPRs)) 9572 State.AllocateStack(4, Align(4)); 9573 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 9574 return false; 9575 } 9576 9577 // Fixed-length vectors are located in the corresponding scalable-vector 9578 // container types. 9579 if (ValVT.isFixedLengthVector()) 9580 LocVT = TLI.getContainerForFixedLengthVector(LocVT); 9581 9582 // Split arguments might be passed indirectly, so keep track of the pending 9583 // values. Split vectors are passed via a mix of registers and indirectly, so 9584 // treat them as we would any other argument. 9585 if (ValVT.isScalarInteger() && (ArgFlags.isSplit() || !PendingLocs.empty())) { 9586 LocVT = XLenVT; 9587 LocInfo = CCValAssign::Indirect; 9588 PendingLocs.push_back( 9589 CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo)); 9590 PendingArgFlags.push_back(ArgFlags); 9591 if (!ArgFlags.isSplitEnd()) { 9592 return false; 9593 } 9594 } 9595 9596 // If the split argument only had two elements, it should be passed directly 9597 // in registers or on the stack. 9598 if (ValVT.isScalarInteger() && ArgFlags.isSplitEnd() && 9599 PendingLocs.size() <= 2) { 9600 assert(PendingLocs.size() == 2 && "Unexpected PendingLocs.size()"); 9601 // Apply the normal calling convention rules to the first half of the 9602 // split argument. 9603 CCValAssign VA = PendingLocs[0]; 9604 ISD::ArgFlagsTy AF = PendingArgFlags[0]; 9605 PendingLocs.clear(); 9606 PendingArgFlags.clear(); 9607 return CC_RISCVAssign2XLen(XLen, State, VA, AF, ValNo, ValVT, LocVT, 9608 ArgFlags); 9609 } 9610 9611 // Allocate to a register if possible, or else a stack slot. 9612 Register Reg; 9613 unsigned StoreSizeBytes = XLen / 8; 9614 Align StackAlign = Align(XLen / 8); 9615 9616 if (ValVT == MVT::f16 && !UseGPRForF16_F32) 9617 Reg = State.AllocateReg(ArgFPR16s); 9618 else if (ValVT == MVT::f32 && !UseGPRForF16_F32) 9619 Reg = State.AllocateReg(ArgFPR32s); 9620 else if (ValVT == MVT::f64 && !UseGPRForF64) 9621 Reg = State.AllocateReg(ArgFPR64s); 9622 else if (ValVT.isVector()) { 9623 Reg = allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI); 9624 if (!Reg) { 9625 // For return values, the vector must be passed fully via registers or 9626 // via the stack. 9627 // FIXME: The proposed vector ABI only mandates v8-v15 for return values, 9628 // but we're using all of them. 9629 if (IsRet) 9630 return true; 9631 // Try using a GPR to pass the address 9632 if ((Reg = State.AllocateReg(ArgGPRs))) { 9633 LocVT = XLenVT; 9634 LocInfo = CCValAssign::Indirect; 9635 } else if (ValVT.isScalableVector()) { 9636 LocVT = XLenVT; 9637 LocInfo = CCValAssign::Indirect; 9638 } else { 9639 // Pass fixed-length vectors on the stack. 9640 LocVT = ValVT; 9641 StoreSizeBytes = ValVT.getStoreSize(); 9642 // Align vectors to their element sizes, being careful for vXi1 9643 // vectors. 9644 StackAlign = MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne(); 9645 } 9646 } 9647 } else { 9648 Reg = State.AllocateReg(ArgGPRs); 9649 } 9650 9651 unsigned StackOffset = 9652 Reg ? 0 : State.AllocateStack(StoreSizeBytes, StackAlign); 9653 9654 // If we reach this point and PendingLocs is non-empty, we must be at the 9655 // end of a split argument that must be passed indirectly. 9656 if (!PendingLocs.empty()) { 9657 assert(ArgFlags.isSplitEnd() && "Expected ArgFlags.isSplitEnd()"); 9658 assert(PendingLocs.size() > 2 && "Unexpected PendingLocs.size()"); 9659 9660 for (auto &It : PendingLocs) { 9661 if (Reg) 9662 It.convertToReg(Reg); 9663 else 9664 It.convertToMem(StackOffset); 9665 State.addLoc(It); 9666 } 9667 PendingLocs.clear(); 9668 PendingArgFlags.clear(); 9669 return false; 9670 } 9671 9672 assert((!UseGPRForF16_F32 || !UseGPRForF64 || LocVT == XLenVT || 9673 (TLI.getSubtarget().hasVInstructions() && ValVT.isVector())) && 9674 "Expected an XLenVT or vector types at this stage"); 9675 9676 if (Reg) { 9677 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 9678 return false; 9679 } 9680 9681 // When a floating-point value is passed on the stack, no bit-conversion is 9682 // needed. 9683 if (ValVT.isFloatingPoint()) { 9684 LocVT = ValVT; 9685 LocInfo = CCValAssign::Full; 9686 } 9687 State.addLoc(CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 9688 return false; 9689 } 9690 9691 template <typename ArgTy> 9692 static Optional<unsigned> preAssignMask(const ArgTy &Args) { 9693 for (const auto &ArgIdx : enumerate(Args)) { 9694 MVT ArgVT = ArgIdx.value().VT; 9695 if (ArgVT.isVector() && ArgVT.getVectorElementType() == MVT::i1) 9696 return ArgIdx.index(); 9697 } 9698 return None; 9699 } 9700 9701 void RISCVTargetLowering::analyzeInputArgs( 9702 MachineFunction &MF, CCState &CCInfo, 9703 const SmallVectorImpl<ISD::InputArg> &Ins, bool IsRet, 9704 RISCVCCAssignFn Fn) const { 9705 unsigned NumArgs = Ins.size(); 9706 FunctionType *FType = MF.getFunction().getFunctionType(); 9707 9708 Optional<unsigned> FirstMaskArgument; 9709 if (Subtarget.hasVInstructions()) 9710 FirstMaskArgument = preAssignMask(Ins); 9711 9712 for (unsigned i = 0; i != NumArgs; ++i) { 9713 MVT ArgVT = Ins[i].VT; 9714 ISD::ArgFlagsTy ArgFlags = Ins[i].Flags; 9715 9716 Type *ArgTy = nullptr; 9717 if (IsRet) 9718 ArgTy = FType->getReturnType(); 9719 else if (Ins[i].isOrigArg()) 9720 ArgTy = FType->getParamType(Ins[i].getOrigArgIndex()); 9721 9722 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 9723 if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full, 9724 ArgFlags, CCInfo, /*IsFixed=*/true, IsRet, ArgTy, *this, 9725 FirstMaskArgument)) { 9726 LLVM_DEBUG(dbgs() << "InputArg #" << i << " has unhandled type " 9727 << EVT(ArgVT).getEVTString() << '\n'); 9728 llvm_unreachable(nullptr); 9729 } 9730 } 9731 } 9732 9733 void RISCVTargetLowering::analyzeOutputArgs( 9734 MachineFunction &MF, CCState &CCInfo, 9735 const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsRet, 9736 CallLoweringInfo *CLI, RISCVCCAssignFn Fn) const { 9737 unsigned NumArgs = Outs.size(); 9738 9739 Optional<unsigned> FirstMaskArgument; 9740 if (Subtarget.hasVInstructions()) 9741 FirstMaskArgument = preAssignMask(Outs); 9742 9743 for (unsigned i = 0; i != NumArgs; i++) { 9744 MVT ArgVT = Outs[i].VT; 9745 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 9746 Type *OrigTy = CLI ? CLI->getArgs()[Outs[i].OrigArgIndex].Ty : nullptr; 9747 9748 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 9749 if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full, 9750 ArgFlags, CCInfo, Outs[i].IsFixed, IsRet, OrigTy, *this, 9751 FirstMaskArgument)) { 9752 LLVM_DEBUG(dbgs() << "OutputArg #" << i << " has unhandled type " 9753 << EVT(ArgVT).getEVTString() << "\n"); 9754 llvm_unreachable(nullptr); 9755 } 9756 } 9757 } 9758 9759 // Convert Val to a ValVT. Should not be called for CCValAssign::Indirect 9760 // values. 9761 static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDValue Val, 9762 const CCValAssign &VA, const SDLoc &DL, 9763 const RISCVSubtarget &Subtarget) { 9764 switch (VA.getLocInfo()) { 9765 default: 9766 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 9767 case CCValAssign::Full: 9768 if (VA.getValVT().isFixedLengthVector() && VA.getLocVT().isScalableVector()) 9769 Val = convertFromScalableVector(VA.getValVT(), Val, DAG, Subtarget); 9770 break; 9771 case CCValAssign::BCvt: 9772 if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16) 9773 Val = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, Val); 9774 else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) 9775 Val = DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, Val); 9776 else 9777 Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val); 9778 break; 9779 } 9780 return Val; 9781 } 9782 9783 // The caller is responsible for loading the full value if the argument is 9784 // passed with CCValAssign::Indirect. 9785 static SDValue unpackFromRegLoc(SelectionDAG &DAG, SDValue Chain, 9786 const CCValAssign &VA, const SDLoc &DL, 9787 const RISCVTargetLowering &TLI) { 9788 MachineFunction &MF = DAG.getMachineFunction(); 9789 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 9790 EVT LocVT = VA.getLocVT(); 9791 SDValue Val; 9792 const TargetRegisterClass *RC = TLI.getRegClassFor(LocVT.getSimpleVT()); 9793 Register VReg = RegInfo.createVirtualRegister(RC); 9794 RegInfo.addLiveIn(VA.getLocReg(), VReg); 9795 Val = DAG.getCopyFromReg(Chain, DL, VReg, LocVT); 9796 9797 if (VA.getLocInfo() == CCValAssign::Indirect) 9798 return Val; 9799 9800 return convertLocVTToValVT(DAG, Val, VA, DL, TLI.getSubtarget()); 9801 } 9802 9803 static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDValue Val, 9804 const CCValAssign &VA, const SDLoc &DL, 9805 const RISCVSubtarget &Subtarget) { 9806 EVT LocVT = VA.getLocVT(); 9807 9808 switch (VA.getLocInfo()) { 9809 default: 9810 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 9811 case CCValAssign::Full: 9812 if (VA.getValVT().isFixedLengthVector() && LocVT.isScalableVector()) 9813 Val = convertToScalableVector(LocVT, Val, DAG, Subtarget); 9814 break; 9815 case CCValAssign::BCvt: 9816 if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16) 9817 Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, VA.getLocVT(), Val); 9818 else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) 9819 Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Val); 9820 else 9821 Val = DAG.getNode(ISD::BITCAST, DL, LocVT, Val); 9822 break; 9823 } 9824 return Val; 9825 } 9826 9827 // The caller is responsible for loading the full value if the argument is 9828 // passed with CCValAssign::Indirect. 9829 static SDValue unpackFromMemLoc(SelectionDAG &DAG, SDValue Chain, 9830 const CCValAssign &VA, const SDLoc &DL) { 9831 MachineFunction &MF = DAG.getMachineFunction(); 9832 MachineFrameInfo &MFI = MF.getFrameInfo(); 9833 EVT LocVT = VA.getLocVT(); 9834 EVT ValVT = VA.getValVT(); 9835 EVT PtrVT = MVT::getIntegerVT(DAG.getDataLayout().getPointerSizeInBits(0)); 9836 if (ValVT.isScalableVector()) { 9837 // When the value is a scalable vector, we save the pointer which points to 9838 // the scalable vector value in the stack. The ValVT will be the pointer 9839 // type, instead of the scalable vector type. 9840 ValVT = LocVT; 9841 } 9842 int FI = MFI.CreateFixedObject(ValVT.getStoreSize(), VA.getLocMemOffset(), 9843 /*IsImmutable=*/true); 9844 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 9845 SDValue Val; 9846 9847 ISD::LoadExtType ExtType; 9848 switch (VA.getLocInfo()) { 9849 default: 9850 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 9851 case CCValAssign::Full: 9852 case CCValAssign::Indirect: 9853 case CCValAssign::BCvt: 9854 ExtType = ISD::NON_EXTLOAD; 9855 break; 9856 } 9857 Val = DAG.getExtLoad( 9858 ExtType, DL, LocVT, Chain, FIN, 9859 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), ValVT); 9860 return Val; 9861 } 9862 9863 static SDValue unpackF64OnRV32DSoftABI(SelectionDAG &DAG, SDValue Chain, 9864 const CCValAssign &VA, const SDLoc &DL) { 9865 assert(VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64 && 9866 "Unexpected VA"); 9867 MachineFunction &MF = DAG.getMachineFunction(); 9868 MachineFrameInfo &MFI = MF.getFrameInfo(); 9869 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 9870 9871 if (VA.isMemLoc()) { 9872 // f64 is passed on the stack. 9873 int FI = 9874 MFI.CreateFixedObject(8, VA.getLocMemOffset(), /*IsImmutable=*/true); 9875 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 9876 return DAG.getLoad(MVT::f64, DL, Chain, FIN, 9877 MachinePointerInfo::getFixedStack(MF, FI)); 9878 } 9879 9880 assert(VA.isRegLoc() && "Expected register VA assignment"); 9881 9882 Register LoVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 9883 RegInfo.addLiveIn(VA.getLocReg(), LoVReg); 9884 SDValue Lo = DAG.getCopyFromReg(Chain, DL, LoVReg, MVT::i32); 9885 SDValue Hi; 9886 if (VA.getLocReg() == RISCV::X17) { 9887 // Second half of f64 is passed on the stack. 9888 int FI = MFI.CreateFixedObject(4, 0, /*IsImmutable=*/true); 9889 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 9890 Hi = DAG.getLoad(MVT::i32, DL, Chain, FIN, 9891 MachinePointerInfo::getFixedStack(MF, FI)); 9892 } else { 9893 // Second half of f64 is passed in another GPR. 9894 Register HiVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 9895 RegInfo.addLiveIn(VA.getLocReg() + 1, HiVReg); 9896 Hi = DAG.getCopyFromReg(Chain, DL, HiVReg, MVT::i32); 9897 } 9898 return DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, Lo, Hi); 9899 } 9900 9901 // FastCC has less than 1% performance improvement for some particular 9902 // benchmark. But theoretically, it may has benenfit for some cases. 9903 static bool CC_RISCV_FastCC(const DataLayout &DL, RISCVABI::ABI ABI, 9904 unsigned ValNo, MVT ValVT, MVT LocVT, 9905 CCValAssign::LocInfo LocInfo, 9906 ISD::ArgFlagsTy ArgFlags, CCState &State, 9907 bool IsFixed, bool IsRet, Type *OrigTy, 9908 const RISCVTargetLowering &TLI, 9909 Optional<unsigned> FirstMaskArgument) { 9910 9911 // X5 and X6 might be used for save-restore libcall. 9912 static const MCPhysReg GPRList[] = { 9913 RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, RISCV::X14, 9914 RISCV::X15, RISCV::X16, RISCV::X17, RISCV::X7, RISCV::X28, 9915 RISCV::X29, RISCV::X30, RISCV::X31}; 9916 9917 if (LocVT == MVT::i32 || LocVT == MVT::i64) { 9918 if (unsigned Reg = State.AllocateReg(GPRList)) { 9919 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 9920 return false; 9921 } 9922 } 9923 9924 if (LocVT == MVT::f16) { 9925 static const MCPhysReg FPR16List[] = { 9926 RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, RISCV::F14_H, 9927 RISCV::F15_H, RISCV::F16_H, RISCV::F17_H, RISCV::F0_H, RISCV::F1_H, 9928 RISCV::F2_H, RISCV::F3_H, RISCV::F4_H, RISCV::F5_H, RISCV::F6_H, 9929 RISCV::F7_H, RISCV::F28_H, RISCV::F29_H, RISCV::F30_H, RISCV::F31_H}; 9930 if (unsigned Reg = State.AllocateReg(FPR16List)) { 9931 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 9932 return false; 9933 } 9934 } 9935 9936 if (LocVT == MVT::f32) { 9937 static const MCPhysReg FPR32List[] = { 9938 RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, RISCV::F14_F, 9939 RISCV::F15_F, RISCV::F16_F, RISCV::F17_F, RISCV::F0_F, RISCV::F1_F, 9940 RISCV::F2_F, RISCV::F3_F, RISCV::F4_F, RISCV::F5_F, RISCV::F6_F, 9941 RISCV::F7_F, RISCV::F28_F, RISCV::F29_F, RISCV::F30_F, RISCV::F31_F}; 9942 if (unsigned Reg = State.AllocateReg(FPR32List)) { 9943 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 9944 return false; 9945 } 9946 } 9947 9948 if (LocVT == MVT::f64) { 9949 static const MCPhysReg FPR64List[] = { 9950 RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, RISCV::F14_D, 9951 RISCV::F15_D, RISCV::F16_D, RISCV::F17_D, RISCV::F0_D, RISCV::F1_D, 9952 RISCV::F2_D, RISCV::F3_D, RISCV::F4_D, RISCV::F5_D, RISCV::F6_D, 9953 RISCV::F7_D, RISCV::F28_D, RISCV::F29_D, RISCV::F30_D, RISCV::F31_D}; 9954 if (unsigned Reg = State.AllocateReg(FPR64List)) { 9955 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 9956 return false; 9957 } 9958 } 9959 9960 if (LocVT == MVT::i32 || LocVT == MVT::f32) { 9961 unsigned Offset4 = State.AllocateStack(4, Align(4)); 9962 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset4, LocVT, LocInfo)); 9963 return false; 9964 } 9965 9966 if (LocVT == MVT::i64 || LocVT == MVT::f64) { 9967 unsigned Offset5 = State.AllocateStack(8, Align(8)); 9968 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset5, LocVT, LocInfo)); 9969 return false; 9970 } 9971 9972 if (LocVT.isVector()) { 9973 if (unsigned Reg = 9974 allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI)) { 9975 // Fixed-length vectors are located in the corresponding scalable-vector 9976 // container types. 9977 if (ValVT.isFixedLengthVector()) 9978 LocVT = TLI.getContainerForFixedLengthVector(LocVT); 9979 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 9980 } else { 9981 // Try and pass the address via a "fast" GPR. 9982 if (unsigned GPRReg = State.AllocateReg(GPRList)) { 9983 LocInfo = CCValAssign::Indirect; 9984 LocVT = TLI.getSubtarget().getXLenVT(); 9985 State.addLoc(CCValAssign::getReg(ValNo, ValVT, GPRReg, LocVT, LocInfo)); 9986 } else if (ValVT.isFixedLengthVector()) { 9987 auto StackAlign = 9988 MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne(); 9989 unsigned StackOffset = 9990 State.AllocateStack(ValVT.getStoreSize(), StackAlign); 9991 State.addLoc( 9992 CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 9993 } else { 9994 // Can't pass scalable vectors on the stack. 9995 return true; 9996 } 9997 } 9998 9999 return false; 10000 } 10001 10002 return true; // CC didn't match. 10003 } 10004 10005 static bool CC_RISCV_GHC(unsigned ValNo, MVT ValVT, MVT LocVT, 10006 CCValAssign::LocInfo LocInfo, 10007 ISD::ArgFlagsTy ArgFlags, CCState &State) { 10008 10009 if (LocVT == MVT::i32 || LocVT == MVT::i64) { 10010 // Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, R6, R7, SpLim 10011 // s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 10012 static const MCPhysReg GPRList[] = { 10013 RISCV::X9, RISCV::X18, RISCV::X19, RISCV::X20, RISCV::X21, RISCV::X22, 10014 RISCV::X23, RISCV::X24, RISCV::X25, RISCV::X26, RISCV::X27}; 10015 if (unsigned Reg = State.AllocateReg(GPRList)) { 10016 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 10017 return false; 10018 } 10019 } 10020 10021 if (LocVT == MVT::f32) { 10022 // Pass in STG registers: F1, ..., F6 10023 // fs0 ... fs5 10024 static const MCPhysReg FPR32List[] = {RISCV::F8_F, RISCV::F9_F, 10025 RISCV::F18_F, RISCV::F19_F, 10026 RISCV::F20_F, RISCV::F21_F}; 10027 if (unsigned Reg = State.AllocateReg(FPR32List)) { 10028 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 10029 return false; 10030 } 10031 } 10032 10033 if (LocVT == MVT::f64) { 10034 // Pass in STG registers: D1, ..., D6 10035 // fs6 ... fs11 10036 static const MCPhysReg FPR64List[] = {RISCV::F22_D, RISCV::F23_D, 10037 RISCV::F24_D, RISCV::F25_D, 10038 RISCV::F26_D, RISCV::F27_D}; 10039 if (unsigned Reg = State.AllocateReg(FPR64List)) { 10040 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 10041 return false; 10042 } 10043 } 10044 10045 report_fatal_error("No registers left in GHC calling convention"); 10046 return true; 10047 } 10048 10049 // Transform physical registers into virtual registers. 10050 SDValue RISCVTargetLowering::LowerFormalArguments( 10051 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 10052 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 10053 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 10054 10055 MachineFunction &MF = DAG.getMachineFunction(); 10056 10057 switch (CallConv) { 10058 default: 10059 report_fatal_error("Unsupported calling convention"); 10060 case CallingConv::C: 10061 case CallingConv::Fast: 10062 break; 10063 case CallingConv::GHC: 10064 if (!MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtF] || 10065 !MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtD]) 10066 report_fatal_error( 10067 "GHC calling convention requires the F and D instruction set extensions"); 10068 } 10069 10070 const Function &Func = MF.getFunction(); 10071 if (Func.hasFnAttribute("interrupt")) { 10072 if (!Func.arg_empty()) 10073 report_fatal_error( 10074 "Functions with the interrupt attribute cannot have arguments!"); 10075 10076 StringRef Kind = 10077 MF.getFunction().getFnAttribute("interrupt").getValueAsString(); 10078 10079 if (!(Kind == "user" || Kind == "supervisor" || Kind == "machine")) 10080 report_fatal_error( 10081 "Function interrupt attribute argument not supported!"); 10082 } 10083 10084 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 10085 MVT XLenVT = Subtarget.getXLenVT(); 10086 unsigned XLenInBytes = Subtarget.getXLen() / 8; 10087 // Used with vargs to acumulate store chains. 10088 std::vector<SDValue> OutChains; 10089 10090 // Assign locations to all of the incoming arguments. 10091 SmallVector<CCValAssign, 16> ArgLocs; 10092 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 10093 10094 if (CallConv == CallingConv::GHC) 10095 CCInfo.AnalyzeFormalArguments(Ins, CC_RISCV_GHC); 10096 else 10097 analyzeInputArgs(MF, CCInfo, Ins, /*IsRet=*/false, 10098 CallConv == CallingConv::Fast ? CC_RISCV_FastCC 10099 : CC_RISCV); 10100 10101 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 10102 CCValAssign &VA = ArgLocs[i]; 10103 SDValue ArgValue; 10104 // Passing f64 on RV32D with a soft float ABI must be handled as a special 10105 // case. 10106 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) 10107 ArgValue = unpackF64OnRV32DSoftABI(DAG, Chain, VA, DL); 10108 else if (VA.isRegLoc()) 10109 ArgValue = unpackFromRegLoc(DAG, Chain, VA, DL, *this); 10110 else 10111 ArgValue = unpackFromMemLoc(DAG, Chain, VA, DL); 10112 10113 if (VA.getLocInfo() == CCValAssign::Indirect) { 10114 // If the original argument was split and passed by reference (e.g. i128 10115 // on RV32), we need to load all parts of it here (using the same 10116 // address). Vectors may be partly split to registers and partly to the 10117 // stack, in which case the base address is partly offset and subsequent 10118 // stores are relative to that. 10119 InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue, 10120 MachinePointerInfo())); 10121 unsigned ArgIndex = Ins[i].OrigArgIndex; 10122 unsigned ArgPartOffset = Ins[i].PartOffset; 10123 assert(VA.getValVT().isVector() || ArgPartOffset == 0); 10124 while (i + 1 != e && Ins[i + 1].OrigArgIndex == ArgIndex) { 10125 CCValAssign &PartVA = ArgLocs[i + 1]; 10126 unsigned PartOffset = Ins[i + 1].PartOffset - ArgPartOffset; 10127 SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL); 10128 if (PartVA.getValVT().isScalableVector()) 10129 Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset); 10130 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, Offset); 10131 InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address, 10132 MachinePointerInfo())); 10133 ++i; 10134 } 10135 continue; 10136 } 10137 InVals.push_back(ArgValue); 10138 } 10139 10140 if (IsVarArg) { 10141 ArrayRef<MCPhysReg> ArgRegs = makeArrayRef(ArgGPRs); 10142 unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs); 10143 const TargetRegisterClass *RC = &RISCV::GPRRegClass; 10144 MachineFrameInfo &MFI = MF.getFrameInfo(); 10145 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 10146 RISCVMachineFunctionInfo *RVFI = MF.getInfo<RISCVMachineFunctionInfo>(); 10147 10148 // Offset of the first variable argument from stack pointer, and size of 10149 // the vararg save area. For now, the varargs save area is either zero or 10150 // large enough to hold a0-a7. 10151 int VaArgOffset, VarArgsSaveSize; 10152 10153 // If all registers are allocated, then all varargs must be passed on the 10154 // stack and we don't need to save any argregs. 10155 if (ArgRegs.size() == Idx) { 10156 VaArgOffset = CCInfo.getNextStackOffset(); 10157 VarArgsSaveSize = 0; 10158 } else { 10159 VarArgsSaveSize = XLenInBytes * (ArgRegs.size() - Idx); 10160 VaArgOffset = -VarArgsSaveSize; 10161 } 10162 10163 // Record the frame index of the first variable argument 10164 // which is a value necessary to VASTART. 10165 int FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true); 10166 RVFI->setVarArgsFrameIndex(FI); 10167 10168 // If saving an odd number of registers then create an extra stack slot to 10169 // ensure that the frame pointer is 2*XLEN-aligned, which in turn ensures 10170 // offsets to even-numbered registered remain 2*XLEN-aligned. 10171 if (Idx % 2) { 10172 MFI.CreateFixedObject(XLenInBytes, VaArgOffset - (int)XLenInBytes, true); 10173 VarArgsSaveSize += XLenInBytes; 10174 } 10175 10176 // Copy the integer registers that may have been used for passing varargs 10177 // to the vararg save area. 10178 for (unsigned I = Idx; I < ArgRegs.size(); 10179 ++I, VaArgOffset += XLenInBytes) { 10180 const Register Reg = RegInfo.createVirtualRegister(RC); 10181 RegInfo.addLiveIn(ArgRegs[I], Reg); 10182 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, XLenVT); 10183 FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true); 10184 SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 10185 SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff, 10186 MachinePointerInfo::getFixedStack(MF, FI)); 10187 cast<StoreSDNode>(Store.getNode()) 10188 ->getMemOperand() 10189 ->setValue((Value *)nullptr); 10190 OutChains.push_back(Store); 10191 } 10192 RVFI->setVarArgsSaveSize(VarArgsSaveSize); 10193 } 10194 10195 // All stores are grouped in one node to allow the matching between 10196 // the size of Ins and InVals. This only happens for vararg functions. 10197 if (!OutChains.empty()) { 10198 OutChains.push_back(Chain); 10199 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains); 10200 } 10201 10202 return Chain; 10203 } 10204 10205 /// isEligibleForTailCallOptimization - Check whether the call is eligible 10206 /// for tail call optimization. 10207 /// Note: This is modelled after ARM's IsEligibleForTailCallOptimization. 10208 bool RISCVTargetLowering::isEligibleForTailCallOptimization( 10209 CCState &CCInfo, CallLoweringInfo &CLI, MachineFunction &MF, 10210 const SmallVector<CCValAssign, 16> &ArgLocs) const { 10211 10212 auto &Callee = CLI.Callee; 10213 auto CalleeCC = CLI.CallConv; 10214 auto &Outs = CLI.Outs; 10215 auto &Caller = MF.getFunction(); 10216 auto CallerCC = Caller.getCallingConv(); 10217 10218 // Exception-handling functions need a special set of instructions to 10219 // indicate a return to the hardware. Tail-calling another function would 10220 // probably break this. 10221 // TODO: The "interrupt" attribute isn't currently defined by RISC-V. This 10222 // should be expanded as new function attributes are introduced. 10223 if (Caller.hasFnAttribute("interrupt")) 10224 return false; 10225 10226 // Do not tail call opt if the stack is used to pass parameters. 10227 if (CCInfo.getNextStackOffset() != 0) 10228 return false; 10229 10230 // Do not tail call opt if any parameters need to be passed indirectly. 10231 // Since long doubles (fp128) and i128 are larger than 2*XLEN, they are 10232 // passed indirectly. So the address of the value will be passed in a 10233 // register, or if not available, then the address is put on the stack. In 10234 // order to pass indirectly, space on the stack often needs to be allocated 10235 // in order to store the value. In this case the CCInfo.getNextStackOffset() 10236 // != 0 check is not enough and we need to check if any CCValAssign ArgsLocs 10237 // are passed CCValAssign::Indirect. 10238 for (auto &VA : ArgLocs) 10239 if (VA.getLocInfo() == CCValAssign::Indirect) 10240 return false; 10241 10242 // Do not tail call opt if either caller or callee uses struct return 10243 // semantics. 10244 auto IsCallerStructRet = Caller.hasStructRetAttr(); 10245 auto IsCalleeStructRet = Outs.empty() ? false : Outs[0].Flags.isSRet(); 10246 if (IsCallerStructRet || IsCalleeStructRet) 10247 return false; 10248 10249 // Externally-defined functions with weak linkage should not be 10250 // tail-called. The behaviour of branch instructions in this situation (as 10251 // used for tail calls) is implementation-defined, so we cannot rely on the 10252 // linker replacing the tail call with a return. 10253 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 10254 const GlobalValue *GV = G->getGlobal(); 10255 if (GV->hasExternalWeakLinkage()) 10256 return false; 10257 } 10258 10259 // The callee has to preserve all registers the caller needs to preserve. 10260 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 10261 const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC); 10262 if (CalleeCC != CallerCC) { 10263 const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC); 10264 if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved)) 10265 return false; 10266 } 10267 10268 // Byval parameters hand the function a pointer directly into the stack area 10269 // we want to reuse during a tail call. Working around this *is* possible 10270 // but less efficient and uglier in LowerCall. 10271 for (auto &Arg : Outs) 10272 if (Arg.Flags.isByVal()) 10273 return false; 10274 10275 return true; 10276 } 10277 10278 static Align getPrefTypeAlign(EVT VT, SelectionDAG &DAG) { 10279 return DAG.getDataLayout().getPrefTypeAlign( 10280 VT.getTypeForEVT(*DAG.getContext())); 10281 } 10282 10283 // Lower a call to a callseq_start + CALL + callseq_end chain, and add input 10284 // and output parameter nodes. 10285 SDValue RISCVTargetLowering::LowerCall(CallLoweringInfo &CLI, 10286 SmallVectorImpl<SDValue> &InVals) const { 10287 SelectionDAG &DAG = CLI.DAG; 10288 SDLoc &DL = CLI.DL; 10289 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 10290 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 10291 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 10292 SDValue Chain = CLI.Chain; 10293 SDValue Callee = CLI.Callee; 10294 bool &IsTailCall = CLI.IsTailCall; 10295 CallingConv::ID CallConv = CLI.CallConv; 10296 bool IsVarArg = CLI.IsVarArg; 10297 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 10298 MVT XLenVT = Subtarget.getXLenVT(); 10299 10300 MachineFunction &MF = DAG.getMachineFunction(); 10301 10302 // Analyze the operands of the call, assigning locations to each operand. 10303 SmallVector<CCValAssign, 16> ArgLocs; 10304 CCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 10305 10306 if (CallConv == CallingConv::GHC) 10307 ArgCCInfo.AnalyzeCallOperands(Outs, CC_RISCV_GHC); 10308 else 10309 analyzeOutputArgs(MF, ArgCCInfo, Outs, /*IsRet=*/false, &CLI, 10310 CallConv == CallingConv::Fast ? CC_RISCV_FastCC 10311 : CC_RISCV); 10312 10313 // Check if it's really possible to do a tail call. 10314 if (IsTailCall) 10315 IsTailCall = isEligibleForTailCallOptimization(ArgCCInfo, CLI, MF, ArgLocs); 10316 10317 if (IsTailCall) 10318 ++NumTailCalls; 10319 else if (CLI.CB && CLI.CB->isMustTailCall()) 10320 report_fatal_error("failed to perform tail call elimination on a call " 10321 "site marked musttail"); 10322 10323 // Get a count of how many bytes are to be pushed on the stack. 10324 unsigned NumBytes = ArgCCInfo.getNextStackOffset(); 10325 10326 // Create local copies for byval args 10327 SmallVector<SDValue, 8> ByValArgs; 10328 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 10329 ISD::ArgFlagsTy Flags = Outs[i].Flags; 10330 if (!Flags.isByVal()) 10331 continue; 10332 10333 SDValue Arg = OutVals[i]; 10334 unsigned Size = Flags.getByValSize(); 10335 Align Alignment = Flags.getNonZeroByValAlign(); 10336 10337 int FI = 10338 MF.getFrameInfo().CreateStackObject(Size, Alignment, /*isSS=*/false); 10339 SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 10340 SDValue SizeNode = DAG.getConstant(Size, DL, XLenVT); 10341 10342 Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Alignment, 10343 /*IsVolatile=*/false, 10344 /*AlwaysInline=*/false, IsTailCall, 10345 MachinePointerInfo(), MachinePointerInfo()); 10346 ByValArgs.push_back(FIPtr); 10347 } 10348 10349 if (!IsTailCall) 10350 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, CLI.DL); 10351 10352 // Copy argument values to their designated locations. 10353 SmallVector<std::pair<Register, SDValue>, 8> RegsToPass; 10354 SmallVector<SDValue, 8> MemOpChains; 10355 SDValue StackPtr; 10356 for (unsigned i = 0, j = 0, e = ArgLocs.size(); i != e; ++i) { 10357 CCValAssign &VA = ArgLocs[i]; 10358 SDValue ArgValue = OutVals[i]; 10359 ISD::ArgFlagsTy Flags = Outs[i].Flags; 10360 10361 // Handle passing f64 on RV32D with a soft float ABI as a special case. 10362 bool IsF64OnRV32DSoftABI = 10363 VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64; 10364 if (IsF64OnRV32DSoftABI && VA.isRegLoc()) { 10365 SDValue SplitF64 = DAG.getNode( 10366 RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), ArgValue); 10367 SDValue Lo = SplitF64.getValue(0); 10368 SDValue Hi = SplitF64.getValue(1); 10369 10370 Register RegLo = VA.getLocReg(); 10371 RegsToPass.push_back(std::make_pair(RegLo, Lo)); 10372 10373 if (RegLo == RISCV::X17) { 10374 // Second half of f64 is passed on the stack. 10375 // Work out the address of the stack slot. 10376 if (!StackPtr.getNode()) 10377 StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT); 10378 // Emit the store. 10379 MemOpChains.push_back( 10380 DAG.getStore(Chain, DL, Hi, StackPtr, MachinePointerInfo())); 10381 } else { 10382 // Second half of f64 is passed in another GPR. 10383 assert(RegLo < RISCV::X31 && "Invalid register pair"); 10384 Register RegHigh = RegLo + 1; 10385 RegsToPass.push_back(std::make_pair(RegHigh, Hi)); 10386 } 10387 continue; 10388 } 10389 10390 // IsF64OnRV32DSoftABI && VA.isMemLoc() is handled below in the same way 10391 // as any other MemLoc. 10392 10393 // Promote the value if needed. 10394 // For now, only handle fully promoted and indirect arguments. 10395 if (VA.getLocInfo() == CCValAssign::Indirect) { 10396 // Store the argument in a stack slot and pass its address. 10397 Align StackAlign = 10398 std::max(getPrefTypeAlign(Outs[i].ArgVT, DAG), 10399 getPrefTypeAlign(ArgValue.getValueType(), DAG)); 10400 TypeSize StoredSize = ArgValue.getValueType().getStoreSize(); 10401 // If the original argument was split (e.g. i128), we need 10402 // to store the required parts of it here (and pass just one address). 10403 // Vectors may be partly split to registers and partly to the stack, in 10404 // which case the base address is partly offset and subsequent stores are 10405 // relative to that. 10406 unsigned ArgIndex = Outs[i].OrigArgIndex; 10407 unsigned ArgPartOffset = Outs[i].PartOffset; 10408 assert(VA.getValVT().isVector() || ArgPartOffset == 0); 10409 // Calculate the total size to store. We don't have access to what we're 10410 // actually storing other than performing the loop and collecting the 10411 // info. 10412 SmallVector<std::pair<SDValue, SDValue>> Parts; 10413 while (i + 1 != e && Outs[i + 1].OrigArgIndex == ArgIndex) { 10414 SDValue PartValue = OutVals[i + 1]; 10415 unsigned PartOffset = Outs[i + 1].PartOffset - ArgPartOffset; 10416 SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL); 10417 EVT PartVT = PartValue.getValueType(); 10418 if (PartVT.isScalableVector()) 10419 Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset); 10420 StoredSize += PartVT.getStoreSize(); 10421 StackAlign = std::max(StackAlign, getPrefTypeAlign(PartVT, DAG)); 10422 Parts.push_back(std::make_pair(PartValue, Offset)); 10423 ++i; 10424 } 10425 SDValue SpillSlot = DAG.CreateStackTemporary(StoredSize, StackAlign); 10426 int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); 10427 MemOpChains.push_back( 10428 DAG.getStore(Chain, DL, ArgValue, SpillSlot, 10429 MachinePointerInfo::getFixedStack(MF, FI))); 10430 for (const auto &Part : Parts) { 10431 SDValue PartValue = Part.first; 10432 SDValue PartOffset = Part.second; 10433 SDValue Address = 10434 DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, PartOffset); 10435 MemOpChains.push_back( 10436 DAG.getStore(Chain, DL, PartValue, Address, 10437 MachinePointerInfo::getFixedStack(MF, FI))); 10438 } 10439 ArgValue = SpillSlot; 10440 } else { 10441 ArgValue = convertValVTToLocVT(DAG, ArgValue, VA, DL, Subtarget); 10442 } 10443 10444 // Use local copy if it is a byval arg. 10445 if (Flags.isByVal()) 10446 ArgValue = ByValArgs[j++]; 10447 10448 if (VA.isRegLoc()) { 10449 // Queue up the argument copies and emit them at the end. 10450 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue)); 10451 } else { 10452 assert(VA.isMemLoc() && "Argument not register or memory"); 10453 assert(!IsTailCall && "Tail call not allowed if stack is used " 10454 "for passing parameters"); 10455 10456 // Work out the address of the stack slot. 10457 if (!StackPtr.getNode()) 10458 StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT); 10459 SDValue Address = 10460 DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, 10461 DAG.getIntPtrConstant(VA.getLocMemOffset(), DL)); 10462 10463 // Emit the store. 10464 MemOpChains.push_back( 10465 DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo())); 10466 } 10467 } 10468 10469 // Join the stores, which are independent of one another. 10470 if (!MemOpChains.empty()) 10471 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); 10472 10473 SDValue Glue; 10474 10475 // Build a sequence of copy-to-reg nodes, chained and glued together. 10476 for (auto &Reg : RegsToPass) { 10477 Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, Glue); 10478 Glue = Chain.getValue(1); 10479 } 10480 10481 // Validate that none of the argument registers have been marked as 10482 // reserved, if so report an error. Do the same for the return address if this 10483 // is not a tailcall. 10484 validateCCReservedRegs(RegsToPass, MF); 10485 if (!IsTailCall && 10486 MF.getSubtarget<RISCVSubtarget>().isRegisterReservedByUser(RISCV::X1)) 10487 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 10488 MF.getFunction(), 10489 "Return address register required, but has been reserved."}); 10490 10491 // If the callee is a GlobalAddress/ExternalSymbol node, turn it into a 10492 // TargetGlobalAddress/TargetExternalSymbol node so that legalize won't 10493 // split it and then direct call can be matched by PseudoCALL. 10494 if (GlobalAddressSDNode *S = dyn_cast<GlobalAddressSDNode>(Callee)) { 10495 const GlobalValue *GV = S->getGlobal(); 10496 10497 unsigned OpFlags = RISCVII::MO_CALL; 10498 if (!getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV)) 10499 OpFlags = RISCVII::MO_PLT; 10500 10501 Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags); 10502 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { 10503 unsigned OpFlags = RISCVII::MO_CALL; 10504 10505 if (!getTargetMachine().shouldAssumeDSOLocal(*MF.getFunction().getParent(), 10506 nullptr)) 10507 OpFlags = RISCVII::MO_PLT; 10508 10509 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, OpFlags); 10510 } 10511 10512 // The first call operand is the chain and the second is the target address. 10513 SmallVector<SDValue, 8> Ops; 10514 Ops.push_back(Chain); 10515 Ops.push_back(Callee); 10516 10517 // Add argument registers to the end of the list so that they are 10518 // known live into the call. 10519 for (auto &Reg : RegsToPass) 10520 Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType())); 10521 10522 if (!IsTailCall) { 10523 // Add a register mask operand representing the call-preserved registers. 10524 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 10525 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv); 10526 assert(Mask && "Missing call preserved mask for calling convention"); 10527 Ops.push_back(DAG.getRegisterMask(Mask)); 10528 } 10529 10530 // Glue the call to the argument copies, if any. 10531 if (Glue.getNode()) 10532 Ops.push_back(Glue); 10533 10534 // Emit the call. 10535 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 10536 10537 if (IsTailCall) { 10538 MF.getFrameInfo().setHasTailCall(); 10539 return DAG.getNode(RISCVISD::TAIL, DL, NodeTys, Ops); 10540 } 10541 10542 Chain = DAG.getNode(RISCVISD::CALL, DL, NodeTys, Ops); 10543 DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge); 10544 Glue = Chain.getValue(1); 10545 10546 // Mark the end of the call, which is glued to the call itself. 10547 Chain = DAG.getCALLSEQ_END(Chain, 10548 DAG.getConstant(NumBytes, DL, PtrVT, true), 10549 DAG.getConstant(0, DL, PtrVT, true), 10550 Glue, DL); 10551 Glue = Chain.getValue(1); 10552 10553 // Assign locations to each value returned by this call. 10554 SmallVector<CCValAssign, 16> RVLocs; 10555 CCState RetCCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext()); 10556 analyzeInputArgs(MF, RetCCInfo, Ins, /*IsRet=*/true, CC_RISCV); 10557 10558 // Copy all of the result registers out of their specified physreg. 10559 for (auto &VA : RVLocs) { 10560 // Copy the value out 10561 SDValue RetValue = 10562 DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), Glue); 10563 // Glue the RetValue to the end of the call sequence 10564 Chain = RetValue.getValue(1); 10565 Glue = RetValue.getValue(2); 10566 10567 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { 10568 assert(VA.getLocReg() == ArgGPRs[0] && "Unexpected reg assignment"); 10569 SDValue RetValue2 = 10570 DAG.getCopyFromReg(Chain, DL, ArgGPRs[1], MVT::i32, Glue); 10571 Chain = RetValue2.getValue(1); 10572 Glue = RetValue2.getValue(2); 10573 RetValue = DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, RetValue, 10574 RetValue2); 10575 } 10576 10577 RetValue = convertLocVTToValVT(DAG, RetValue, VA, DL, Subtarget); 10578 10579 InVals.push_back(RetValue); 10580 } 10581 10582 return Chain; 10583 } 10584 10585 bool RISCVTargetLowering::CanLowerReturn( 10586 CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg, 10587 const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const { 10588 SmallVector<CCValAssign, 16> RVLocs; 10589 CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context); 10590 10591 Optional<unsigned> FirstMaskArgument; 10592 if (Subtarget.hasVInstructions()) 10593 FirstMaskArgument = preAssignMask(Outs); 10594 10595 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 10596 MVT VT = Outs[i].VT; 10597 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 10598 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 10599 if (CC_RISCV(MF.getDataLayout(), ABI, i, VT, VT, CCValAssign::Full, 10600 ArgFlags, CCInfo, /*IsFixed=*/true, /*IsRet=*/true, nullptr, 10601 *this, FirstMaskArgument)) 10602 return false; 10603 } 10604 return true; 10605 } 10606 10607 SDValue 10608 RISCVTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 10609 bool IsVarArg, 10610 const SmallVectorImpl<ISD::OutputArg> &Outs, 10611 const SmallVectorImpl<SDValue> &OutVals, 10612 const SDLoc &DL, SelectionDAG &DAG) const { 10613 const MachineFunction &MF = DAG.getMachineFunction(); 10614 const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>(); 10615 10616 // Stores the assignment of the return value to a location. 10617 SmallVector<CCValAssign, 16> RVLocs; 10618 10619 // Info about the registers and stack slot. 10620 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, 10621 *DAG.getContext()); 10622 10623 analyzeOutputArgs(DAG.getMachineFunction(), CCInfo, Outs, /*IsRet=*/true, 10624 nullptr, CC_RISCV); 10625 10626 if (CallConv == CallingConv::GHC && !RVLocs.empty()) 10627 report_fatal_error("GHC functions return void only"); 10628 10629 SDValue Glue; 10630 SmallVector<SDValue, 4> RetOps(1, Chain); 10631 10632 // Copy the result values into the output registers. 10633 for (unsigned i = 0, e = RVLocs.size(); i < e; ++i) { 10634 SDValue Val = OutVals[i]; 10635 CCValAssign &VA = RVLocs[i]; 10636 assert(VA.isRegLoc() && "Can only return in registers!"); 10637 10638 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { 10639 // Handle returning f64 on RV32D with a soft float ABI. 10640 assert(VA.isRegLoc() && "Expected return via registers"); 10641 SDValue SplitF64 = DAG.getNode(RISCVISD::SplitF64, DL, 10642 DAG.getVTList(MVT::i32, MVT::i32), Val); 10643 SDValue Lo = SplitF64.getValue(0); 10644 SDValue Hi = SplitF64.getValue(1); 10645 Register RegLo = VA.getLocReg(); 10646 assert(RegLo < RISCV::X31 && "Invalid register pair"); 10647 Register RegHi = RegLo + 1; 10648 10649 if (STI.isRegisterReservedByUser(RegLo) || 10650 STI.isRegisterReservedByUser(RegHi)) 10651 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 10652 MF.getFunction(), 10653 "Return value register required, but has been reserved."}); 10654 10655 Chain = DAG.getCopyToReg(Chain, DL, RegLo, Lo, Glue); 10656 Glue = Chain.getValue(1); 10657 RetOps.push_back(DAG.getRegister(RegLo, MVT::i32)); 10658 Chain = DAG.getCopyToReg(Chain, DL, RegHi, Hi, Glue); 10659 Glue = Chain.getValue(1); 10660 RetOps.push_back(DAG.getRegister(RegHi, MVT::i32)); 10661 } else { 10662 // Handle a 'normal' return. 10663 Val = convertValVTToLocVT(DAG, Val, VA, DL, Subtarget); 10664 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Glue); 10665 10666 if (STI.isRegisterReservedByUser(VA.getLocReg())) 10667 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 10668 MF.getFunction(), 10669 "Return value register required, but has been reserved."}); 10670 10671 // Guarantee that all emitted copies are stuck together. 10672 Glue = Chain.getValue(1); 10673 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 10674 } 10675 } 10676 10677 RetOps[0] = Chain; // Update chain. 10678 10679 // Add the glue node if we have it. 10680 if (Glue.getNode()) { 10681 RetOps.push_back(Glue); 10682 } 10683 10684 unsigned RetOpc = RISCVISD::RET_FLAG; 10685 // Interrupt service routines use different return instructions. 10686 const Function &Func = DAG.getMachineFunction().getFunction(); 10687 if (Func.hasFnAttribute("interrupt")) { 10688 if (!Func.getReturnType()->isVoidTy()) 10689 report_fatal_error( 10690 "Functions with the interrupt attribute must have void return type!"); 10691 10692 MachineFunction &MF = DAG.getMachineFunction(); 10693 StringRef Kind = 10694 MF.getFunction().getFnAttribute("interrupt").getValueAsString(); 10695 10696 if (Kind == "user") 10697 RetOpc = RISCVISD::URET_FLAG; 10698 else if (Kind == "supervisor") 10699 RetOpc = RISCVISD::SRET_FLAG; 10700 else 10701 RetOpc = RISCVISD::MRET_FLAG; 10702 } 10703 10704 return DAG.getNode(RetOpc, DL, MVT::Other, RetOps); 10705 } 10706 10707 void RISCVTargetLowering::validateCCReservedRegs( 10708 const SmallVectorImpl<std::pair<llvm::Register, llvm::SDValue>> &Regs, 10709 MachineFunction &MF) const { 10710 const Function &F = MF.getFunction(); 10711 const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>(); 10712 10713 if (llvm::any_of(Regs, [&STI](auto Reg) { 10714 return STI.isRegisterReservedByUser(Reg.first); 10715 })) 10716 F.getContext().diagnose(DiagnosticInfoUnsupported{ 10717 F, "Argument register required, but has been reserved."}); 10718 } 10719 10720 bool RISCVTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { 10721 return CI->isTailCall(); 10722 } 10723 10724 const char *RISCVTargetLowering::getTargetNodeName(unsigned Opcode) const { 10725 #define NODE_NAME_CASE(NODE) \ 10726 case RISCVISD::NODE: \ 10727 return "RISCVISD::" #NODE; 10728 // clang-format off 10729 switch ((RISCVISD::NodeType)Opcode) { 10730 case RISCVISD::FIRST_NUMBER: 10731 break; 10732 NODE_NAME_CASE(RET_FLAG) 10733 NODE_NAME_CASE(URET_FLAG) 10734 NODE_NAME_CASE(SRET_FLAG) 10735 NODE_NAME_CASE(MRET_FLAG) 10736 NODE_NAME_CASE(CALL) 10737 NODE_NAME_CASE(SELECT_CC) 10738 NODE_NAME_CASE(BR_CC) 10739 NODE_NAME_CASE(BuildPairF64) 10740 NODE_NAME_CASE(SplitF64) 10741 NODE_NAME_CASE(TAIL) 10742 NODE_NAME_CASE(MULHSU) 10743 NODE_NAME_CASE(SLLW) 10744 NODE_NAME_CASE(SRAW) 10745 NODE_NAME_CASE(SRLW) 10746 NODE_NAME_CASE(DIVW) 10747 NODE_NAME_CASE(DIVUW) 10748 NODE_NAME_CASE(REMUW) 10749 NODE_NAME_CASE(ROLW) 10750 NODE_NAME_CASE(RORW) 10751 NODE_NAME_CASE(CLZW) 10752 NODE_NAME_CASE(CTZW) 10753 NODE_NAME_CASE(FSLW) 10754 NODE_NAME_CASE(FSRW) 10755 NODE_NAME_CASE(FSL) 10756 NODE_NAME_CASE(FSR) 10757 NODE_NAME_CASE(FMV_H_X) 10758 NODE_NAME_CASE(FMV_X_ANYEXTH) 10759 NODE_NAME_CASE(FMV_X_SIGNEXTH) 10760 NODE_NAME_CASE(FMV_W_X_RV64) 10761 NODE_NAME_CASE(FMV_X_ANYEXTW_RV64) 10762 NODE_NAME_CASE(FCVT_X) 10763 NODE_NAME_CASE(FCVT_XU) 10764 NODE_NAME_CASE(FCVT_W_RV64) 10765 NODE_NAME_CASE(FCVT_WU_RV64) 10766 NODE_NAME_CASE(STRICT_FCVT_W_RV64) 10767 NODE_NAME_CASE(STRICT_FCVT_WU_RV64) 10768 NODE_NAME_CASE(READ_CYCLE_WIDE) 10769 NODE_NAME_CASE(GREV) 10770 NODE_NAME_CASE(GREVW) 10771 NODE_NAME_CASE(GORC) 10772 NODE_NAME_CASE(GORCW) 10773 NODE_NAME_CASE(SHFL) 10774 NODE_NAME_CASE(SHFLW) 10775 NODE_NAME_CASE(UNSHFL) 10776 NODE_NAME_CASE(UNSHFLW) 10777 NODE_NAME_CASE(BFP) 10778 NODE_NAME_CASE(BFPW) 10779 NODE_NAME_CASE(BCOMPRESS) 10780 NODE_NAME_CASE(BCOMPRESSW) 10781 NODE_NAME_CASE(BDECOMPRESS) 10782 NODE_NAME_CASE(BDECOMPRESSW) 10783 NODE_NAME_CASE(VMV_V_X_VL) 10784 NODE_NAME_CASE(VFMV_V_F_VL) 10785 NODE_NAME_CASE(VMV_X_S) 10786 NODE_NAME_CASE(VMV_S_X_VL) 10787 NODE_NAME_CASE(VFMV_S_F_VL) 10788 NODE_NAME_CASE(SPLAT_VECTOR_SPLIT_I64_VL) 10789 NODE_NAME_CASE(READ_VLENB) 10790 NODE_NAME_CASE(TRUNCATE_VECTOR_VL) 10791 NODE_NAME_CASE(VSLIDEUP_VL) 10792 NODE_NAME_CASE(VSLIDE1UP_VL) 10793 NODE_NAME_CASE(VSLIDEDOWN_VL) 10794 NODE_NAME_CASE(VSLIDE1DOWN_VL) 10795 NODE_NAME_CASE(VID_VL) 10796 NODE_NAME_CASE(VFNCVT_ROD_VL) 10797 NODE_NAME_CASE(VECREDUCE_ADD_VL) 10798 NODE_NAME_CASE(VECREDUCE_UMAX_VL) 10799 NODE_NAME_CASE(VECREDUCE_SMAX_VL) 10800 NODE_NAME_CASE(VECREDUCE_UMIN_VL) 10801 NODE_NAME_CASE(VECREDUCE_SMIN_VL) 10802 NODE_NAME_CASE(VECREDUCE_AND_VL) 10803 NODE_NAME_CASE(VECREDUCE_OR_VL) 10804 NODE_NAME_CASE(VECREDUCE_XOR_VL) 10805 NODE_NAME_CASE(VECREDUCE_FADD_VL) 10806 NODE_NAME_CASE(VECREDUCE_SEQ_FADD_VL) 10807 NODE_NAME_CASE(VECREDUCE_FMIN_VL) 10808 NODE_NAME_CASE(VECREDUCE_FMAX_VL) 10809 NODE_NAME_CASE(ADD_VL) 10810 NODE_NAME_CASE(AND_VL) 10811 NODE_NAME_CASE(MUL_VL) 10812 NODE_NAME_CASE(OR_VL) 10813 NODE_NAME_CASE(SDIV_VL) 10814 NODE_NAME_CASE(SHL_VL) 10815 NODE_NAME_CASE(SREM_VL) 10816 NODE_NAME_CASE(SRA_VL) 10817 NODE_NAME_CASE(SRL_VL) 10818 NODE_NAME_CASE(SUB_VL) 10819 NODE_NAME_CASE(UDIV_VL) 10820 NODE_NAME_CASE(UREM_VL) 10821 NODE_NAME_CASE(XOR_VL) 10822 NODE_NAME_CASE(SADDSAT_VL) 10823 NODE_NAME_CASE(UADDSAT_VL) 10824 NODE_NAME_CASE(SSUBSAT_VL) 10825 NODE_NAME_CASE(USUBSAT_VL) 10826 NODE_NAME_CASE(FADD_VL) 10827 NODE_NAME_CASE(FSUB_VL) 10828 NODE_NAME_CASE(FMUL_VL) 10829 NODE_NAME_CASE(FDIV_VL) 10830 NODE_NAME_CASE(FNEG_VL) 10831 NODE_NAME_CASE(FABS_VL) 10832 NODE_NAME_CASE(FSQRT_VL) 10833 NODE_NAME_CASE(FMA_VL) 10834 NODE_NAME_CASE(FCOPYSIGN_VL) 10835 NODE_NAME_CASE(SMIN_VL) 10836 NODE_NAME_CASE(SMAX_VL) 10837 NODE_NAME_CASE(UMIN_VL) 10838 NODE_NAME_CASE(UMAX_VL) 10839 NODE_NAME_CASE(FMINNUM_VL) 10840 NODE_NAME_CASE(FMAXNUM_VL) 10841 NODE_NAME_CASE(MULHS_VL) 10842 NODE_NAME_CASE(MULHU_VL) 10843 NODE_NAME_CASE(FP_TO_SINT_VL) 10844 NODE_NAME_CASE(FP_TO_UINT_VL) 10845 NODE_NAME_CASE(SINT_TO_FP_VL) 10846 NODE_NAME_CASE(UINT_TO_FP_VL) 10847 NODE_NAME_CASE(FP_EXTEND_VL) 10848 NODE_NAME_CASE(FP_ROUND_VL) 10849 NODE_NAME_CASE(VWMUL_VL) 10850 NODE_NAME_CASE(VWMULU_VL) 10851 NODE_NAME_CASE(VWMULSU_VL) 10852 NODE_NAME_CASE(VWADD_VL) 10853 NODE_NAME_CASE(VWADDU_VL) 10854 NODE_NAME_CASE(VWSUB_VL) 10855 NODE_NAME_CASE(VWSUBU_VL) 10856 NODE_NAME_CASE(VWADD_W_VL) 10857 NODE_NAME_CASE(VWADDU_W_VL) 10858 NODE_NAME_CASE(VWSUB_W_VL) 10859 NODE_NAME_CASE(VWSUBU_W_VL) 10860 NODE_NAME_CASE(SETCC_VL) 10861 NODE_NAME_CASE(VSELECT_VL) 10862 NODE_NAME_CASE(VP_MERGE_VL) 10863 NODE_NAME_CASE(VMAND_VL) 10864 NODE_NAME_CASE(VMOR_VL) 10865 NODE_NAME_CASE(VMXOR_VL) 10866 NODE_NAME_CASE(VMCLR_VL) 10867 NODE_NAME_CASE(VMSET_VL) 10868 NODE_NAME_CASE(VRGATHER_VX_VL) 10869 NODE_NAME_CASE(VRGATHER_VV_VL) 10870 NODE_NAME_CASE(VRGATHEREI16_VV_VL) 10871 NODE_NAME_CASE(VSEXT_VL) 10872 NODE_NAME_CASE(VZEXT_VL) 10873 NODE_NAME_CASE(VCPOP_VL) 10874 NODE_NAME_CASE(READ_CSR) 10875 NODE_NAME_CASE(WRITE_CSR) 10876 NODE_NAME_CASE(SWAP_CSR) 10877 } 10878 // clang-format on 10879 return nullptr; 10880 #undef NODE_NAME_CASE 10881 } 10882 10883 /// getConstraintType - Given a constraint letter, return the type of 10884 /// constraint it is for this target. 10885 RISCVTargetLowering::ConstraintType 10886 RISCVTargetLowering::getConstraintType(StringRef Constraint) const { 10887 if (Constraint.size() == 1) { 10888 switch (Constraint[0]) { 10889 default: 10890 break; 10891 case 'f': 10892 return C_RegisterClass; 10893 case 'I': 10894 case 'J': 10895 case 'K': 10896 return C_Immediate; 10897 case 'A': 10898 return C_Memory; 10899 case 'S': // A symbolic address 10900 return C_Other; 10901 } 10902 } else { 10903 if (Constraint == "vr" || Constraint == "vm") 10904 return C_RegisterClass; 10905 } 10906 return TargetLowering::getConstraintType(Constraint); 10907 } 10908 10909 std::pair<unsigned, const TargetRegisterClass *> 10910 RISCVTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 10911 StringRef Constraint, 10912 MVT VT) const { 10913 // First, see if this is a constraint that directly corresponds to a 10914 // RISCV register class. 10915 if (Constraint.size() == 1) { 10916 switch (Constraint[0]) { 10917 case 'r': 10918 // TODO: Support fixed vectors up to XLen for P extension? 10919 if (VT.isVector()) 10920 break; 10921 return std::make_pair(0U, &RISCV::GPRRegClass); 10922 case 'f': 10923 if (Subtarget.hasStdExtZfh() && VT == MVT::f16) 10924 return std::make_pair(0U, &RISCV::FPR16RegClass); 10925 if (Subtarget.hasStdExtF() && VT == MVT::f32) 10926 return std::make_pair(0U, &RISCV::FPR32RegClass); 10927 if (Subtarget.hasStdExtD() && VT == MVT::f64) 10928 return std::make_pair(0U, &RISCV::FPR64RegClass); 10929 break; 10930 default: 10931 break; 10932 } 10933 } else if (Constraint == "vr") { 10934 for (const auto *RC : {&RISCV::VRRegClass, &RISCV::VRM2RegClass, 10935 &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) { 10936 if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy)) 10937 return std::make_pair(0U, RC); 10938 } 10939 } else if (Constraint == "vm") { 10940 if (TRI->isTypeLegalForClass(RISCV::VMV0RegClass, VT.SimpleTy)) 10941 return std::make_pair(0U, &RISCV::VMV0RegClass); 10942 } 10943 10944 // Clang will correctly decode the usage of register name aliases into their 10945 // official names. However, other frontends like `rustc` do not. This allows 10946 // users of these frontends to use the ABI names for registers in LLVM-style 10947 // register constraints. 10948 unsigned XRegFromAlias = StringSwitch<unsigned>(Constraint.lower()) 10949 .Case("{zero}", RISCV::X0) 10950 .Case("{ra}", RISCV::X1) 10951 .Case("{sp}", RISCV::X2) 10952 .Case("{gp}", RISCV::X3) 10953 .Case("{tp}", RISCV::X4) 10954 .Case("{t0}", RISCV::X5) 10955 .Case("{t1}", RISCV::X6) 10956 .Case("{t2}", RISCV::X7) 10957 .Cases("{s0}", "{fp}", RISCV::X8) 10958 .Case("{s1}", RISCV::X9) 10959 .Case("{a0}", RISCV::X10) 10960 .Case("{a1}", RISCV::X11) 10961 .Case("{a2}", RISCV::X12) 10962 .Case("{a3}", RISCV::X13) 10963 .Case("{a4}", RISCV::X14) 10964 .Case("{a5}", RISCV::X15) 10965 .Case("{a6}", RISCV::X16) 10966 .Case("{a7}", RISCV::X17) 10967 .Case("{s2}", RISCV::X18) 10968 .Case("{s3}", RISCV::X19) 10969 .Case("{s4}", RISCV::X20) 10970 .Case("{s5}", RISCV::X21) 10971 .Case("{s6}", RISCV::X22) 10972 .Case("{s7}", RISCV::X23) 10973 .Case("{s8}", RISCV::X24) 10974 .Case("{s9}", RISCV::X25) 10975 .Case("{s10}", RISCV::X26) 10976 .Case("{s11}", RISCV::X27) 10977 .Case("{t3}", RISCV::X28) 10978 .Case("{t4}", RISCV::X29) 10979 .Case("{t5}", RISCV::X30) 10980 .Case("{t6}", RISCV::X31) 10981 .Default(RISCV::NoRegister); 10982 if (XRegFromAlias != RISCV::NoRegister) 10983 return std::make_pair(XRegFromAlias, &RISCV::GPRRegClass); 10984 10985 // Since TargetLowering::getRegForInlineAsmConstraint uses the name of the 10986 // TableGen record rather than the AsmName to choose registers for InlineAsm 10987 // constraints, plus we want to match those names to the widest floating point 10988 // register type available, manually select floating point registers here. 10989 // 10990 // The second case is the ABI name of the register, so that frontends can also 10991 // use the ABI names in register constraint lists. 10992 if (Subtarget.hasStdExtF()) { 10993 unsigned FReg = StringSwitch<unsigned>(Constraint.lower()) 10994 .Cases("{f0}", "{ft0}", RISCV::F0_F) 10995 .Cases("{f1}", "{ft1}", RISCV::F1_F) 10996 .Cases("{f2}", "{ft2}", RISCV::F2_F) 10997 .Cases("{f3}", "{ft3}", RISCV::F3_F) 10998 .Cases("{f4}", "{ft4}", RISCV::F4_F) 10999 .Cases("{f5}", "{ft5}", RISCV::F5_F) 11000 .Cases("{f6}", "{ft6}", RISCV::F6_F) 11001 .Cases("{f7}", "{ft7}", RISCV::F7_F) 11002 .Cases("{f8}", "{fs0}", RISCV::F8_F) 11003 .Cases("{f9}", "{fs1}", RISCV::F9_F) 11004 .Cases("{f10}", "{fa0}", RISCV::F10_F) 11005 .Cases("{f11}", "{fa1}", RISCV::F11_F) 11006 .Cases("{f12}", "{fa2}", RISCV::F12_F) 11007 .Cases("{f13}", "{fa3}", RISCV::F13_F) 11008 .Cases("{f14}", "{fa4}", RISCV::F14_F) 11009 .Cases("{f15}", "{fa5}", RISCV::F15_F) 11010 .Cases("{f16}", "{fa6}", RISCV::F16_F) 11011 .Cases("{f17}", "{fa7}", RISCV::F17_F) 11012 .Cases("{f18}", "{fs2}", RISCV::F18_F) 11013 .Cases("{f19}", "{fs3}", RISCV::F19_F) 11014 .Cases("{f20}", "{fs4}", RISCV::F20_F) 11015 .Cases("{f21}", "{fs5}", RISCV::F21_F) 11016 .Cases("{f22}", "{fs6}", RISCV::F22_F) 11017 .Cases("{f23}", "{fs7}", RISCV::F23_F) 11018 .Cases("{f24}", "{fs8}", RISCV::F24_F) 11019 .Cases("{f25}", "{fs9}", RISCV::F25_F) 11020 .Cases("{f26}", "{fs10}", RISCV::F26_F) 11021 .Cases("{f27}", "{fs11}", RISCV::F27_F) 11022 .Cases("{f28}", "{ft8}", RISCV::F28_F) 11023 .Cases("{f29}", "{ft9}", RISCV::F29_F) 11024 .Cases("{f30}", "{ft10}", RISCV::F30_F) 11025 .Cases("{f31}", "{ft11}", RISCV::F31_F) 11026 .Default(RISCV::NoRegister); 11027 if (FReg != RISCV::NoRegister) { 11028 assert(RISCV::F0_F <= FReg && FReg <= RISCV::F31_F && "Unknown fp-reg"); 11029 if (Subtarget.hasStdExtD() && (VT == MVT::f64 || VT == MVT::Other)) { 11030 unsigned RegNo = FReg - RISCV::F0_F; 11031 unsigned DReg = RISCV::F0_D + RegNo; 11032 return std::make_pair(DReg, &RISCV::FPR64RegClass); 11033 } 11034 if (VT == MVT::f32 || VT == MVT::Other) 11035 return std::make_pair(FReg, &RISCV::FPR32RegClass); 11036 if (Subtarget.hasStdExtZfh() && VT == MVT::f16) { 11037 unsigned RegNo = FReg - RISCV::F0_F; 11038 unsigned HReg = RISCV::F0_H + RegNo; 11039 return std::make_pair(HReg, &RISCV::FPR16RegClass); 11040 } 11041 } 11042 } 11043 11044 if (Subtarget.hasVInstructions()) { 11045 Register VReg = StringSwitch<Register>(Constraint.lower()) 11046 .Case("{v0}", RISCV::V0) 11047 .Case("{v1}", RISCV::V1) 11048 .Case("{v2}", RISCV::V2) 11049 .Case("{v3}", RISCV::V3) 11050 .Case("{v4}", RISCV::V4) 11051 .Case("{v5}", RISCV::V5) 11052 .Case("{v6}", RISCV::V6) 11053 .Case("{v7}", RISCV::V7) 11054 .Case("{v8}", RISCV::V8) 11055 .Case("{v9}", RISCV::V9) 11056 .Case("{v10}", RISCV::V10) 11057 .Case("{v11}", RISCV::V11) 11058 .Case("{v12}", RISCV::V12) 11059 .Case("{v13}", RISCV::V13) 11060 .Case("{v14}", RISCV::V14) 11061 .Case("{v15}", RISCV::V15) 11062 .Case("{v16}", RISCV::V16) 11063 .Case("{v17}", RISCV::V17) 11064 .Case("{v18}", RISCV::V18) 11065 .Case("{v19}", RISCV::V19) 11066 .Case("{v20}", RISCV::V20) 11067 .Case("{v21}", RISCV::V21) 11068 .Case("{v22}", RISCV::V22) 11069 .Case("{v23}", RISCV::V23) 11070 .Case("{v24}", RISCV::V24) 11071 .Case("{v25}", RISCV::V25) 11072 .Case("{v26}", RISCV::V26) 11073 .Case("{v27}", RISCV::V27) 11074 .Case("{v28}", RISCV::V28) 11075 .Case("{v29}", RISCV::V29) 11076 .Case("{v30}", RISCV::V30) 11077 .Case("{v31}", RISCV::V31) 11078 .Default(RISCV::NoRegister); 11079 if (VReg != RISCV::NoRegister) { 11080 if (TRI->isTypeLegalForClass(RISCV::VMRegClass, VT.SimpleTy)) 11081 return std::make_pair(VReg, &RISCV::VMRegClass); 11082 if (TRI->isTypeLegalForClass(RISCV::VRRegClass, VT.SimpleTy)) 11083 return std::make_pair(VReg, &RISCV::VRRegClass); 11084 for (const auto *RC : 11085 {&RISCV::VRM2RegClass, &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) { 11086 if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy)) { 11087 VReg = TRI->getMatchingSuperReg(VReg, RISCV::sub_vrm1_0, RC); 11088 return std::make_pair(VReg, RC); 11089 } 11090 } 11091 } 11092 } 11093 11094 std::pair<Register, const TargetRegisterClass *> Res = 11095 TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 11096 11097 // If we picked one of the Zfinx register classes, remap it to the GPR class. 11098 // FIXME: When Zfinx is supported in CodeGen this will need to take the 11099 // Subtarget into account. 11100 if (Res.second == &RISCV::GPRF16RegClass || 11101 Res.second == &RISCV::GPRF32RegClass || 11102 Res.second == &RISCV::GPRF64RegClass) 11103 return std::make_pair(Res.first, &RISCV::GPRRegClass); 11104 11105 return Res; 11106 } 11107 11108 unsigned 11109 RISCVTargetLowering::getInlineAsmMemConstraint(StringRef ConstraintCode) const { 11110 // Currently only support length 1 constraints. 11111 if (ConstraintCode.size() == 1) { 11112 switch (ConstraintCode[0]) { 11113 case 'A': 11114 return InlineAsm::Constraint_A; 11115 default: 11116 break; 11117 } 11118 } 11119 11120 return TargetLowering::getInlineAsmMemConstraint(ConstraintCode); 11121 } 11122 11123 void RISCVTargetLowering::LowerAsmOperandForConstraint( 11124 SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops, 11125 SelectionDAG &DAG) const { 11126 // Currently only support length 1 constraints. 11127 if (Constraint.length() == 1) { 11128 switch (Constraint[0]) { 11129 case 'I': 11130 // Validate & create a 12-bit signed immediate operand. 11131 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 11132 uint64_t CVal = C->getSExtValue(); 11133 if (isInt<12>(CVal)) 11134 Ops.push_back( 11135 DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT())); 11136 } 11137 return; 11138 case 'J': 11139 // Validate & create an integer zero operand. 11140 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 11141 if (C->getZExtValue() == 0) 11142 Ops.push_back( 11143 DAG.getTargetConstant(0, SDLoc(Op), Subtarget.getXLenVT())); 11144 return; 11145 case 'K': 11146 // Validate & create a 5-bit unsigned immediate operand. 11147 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 11148 uint64_t CVal = C->getZExtValue(); 11149 if (isUInt<5>(CVal)) 11150 Ops.push_back( 11151 DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT())); 11152 } 11153 return; 11154 case 'S': 11155 if (const auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) { 11156 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op), 11157 GA->getValueType(0))); 11158 } else if (const auto *BA = dyn_cast<BlockAddressSDNode>(Op)) { 11159 Ops.push_back(DAG.getTargetBlockAddress(BA->getBlockAddress(), 11160 BA->getValueType(0))); 11161 } 11162 return; 11163 default: 11164 break; 11165 } 11166 } 11167 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 11168 } 11169 11170 Instruction *RISCVTargetLowering::emitLeadingFence(IRBuilderBase &Builder, 11171 Instruction *Inst, 11172 AtomicOrdering Ord) const { 11173 if (isa<LoadInst>(Inst) && Ord == AtomicOrdering::SequentiallyConsistent) 11174 return Builder.CreateFence(Ord); 11175 if (isa<StoreInst>(Inst) && isReleaseOrStronger(Ord)) 11176 return Builder.CreateFence(AtomicOrdering::Release); 11177 return nullptr; 11178 } 11179 11180 Instruction *RISCVTargetLowering::emitTrailingFence(IRBuilderBase &Builder, 11181 Instruction *Inst, 11182 AtomicOrdering Ord) const { 11183 if (isa<LoadInst>(Inst) && isAcquireOrStronger(Ord)) 11184 return Builder.CreateFence(AtomicOrdering::Acquire); 11185 return nullptr; 11186 } 11187 11188 TargetLowering::AtomicExpansionKind 11189 RISCVTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { 11190 // atomicrmw {fadd,fsub} must be expanded to use compare-exchange, as floating 11191 // point operations can't be used in an lr/sc sequence without breaking the 11192 // forward-progress guarantee. 11193 if (AI->isFloatingPointOperation()) 11194 return AtomicExpansionKind::CmpXChg; 11195 11196 unsigned Size = AI->getType()->getPrimitiveSizeInBits(); 11197 if (Size == 8 || Size == 16) 11198 return AtomicExpansionKind::MaskedIntrinsic; 11199 return AtomicExpansionKind::None; 11200 } 11201 11202 static Intrinsic::ID 11203 getIntrinsicForMaskedAtomicRMWBinOp(unsigned XLen, AtomicRMWInst::BinOp BinOp) { 11204 if (XLen == 32) { 11205 switch (BinOp) { 11206 default: 11207 llvm_unreachable("Unexpected AtomicRMW BinOp"); 11208 case AtomicRMWInst::Xchg: 11209 return Intrinsic::riscv_masked_atomicrmw_xchg_i32; 11210 case AtomicRMWInst::Add: 11211 return Intrinsic::riscv_masked_atomicrmw_add_i32; 11212 case AtomicRMWInst::Sub: 11213 return Intrinsic::riscv_masked_atomicrmw_sub_i32; 11214 case AtomicRMWInst::Nand: 11215 return Intrinsic::riscv_masked_atomicrmw_nand_i32; 11216 case AtomicRMWInst::Max: 11217 return Intrinsic::riscv_masked_atomicrmw_max_i32; 11218 case AtomicRMWInst::Min: 11219 return Intrinsic::riscv_masked_atomicrmw_min_i32; 11220 case AtomicRMWInst::UMax: 11221 return Intrinsic::riscv_masked_atomicrmw_umax_i32; 11222 case AtomicRMWInst::UMin: 11223 return Intrinsic::riscv_masked_atomicrmw_umin_i32; 11224 } 11225 } 11226 11227 if (XLen == 64) { 11228 switch (BinOp) { 11229 default: 11230 llvm_unreachable("Unexpected AtomicRMW BinOp"); 11231 case AtomicRMWInst::Xchg: 11232 return Intrinsic::riscv_masked_atomicrmw_xchg_i64; 11233 case AtomicRMWInst::Add: 11234 return Intrinsic::riscv_masked_atomicrmw_add_i64; 11235 case AtomicRMWInst::Sub: 11236 return Intrinsic::riscv_masked_atomicrmw_sub_i64; 11237 case AtomicRMWInst::Nand: 11238 return Intrinsic::riscv_masked_atomicrmw_nand_i64; 11239 case AtomicRMWInst::Max: 11240 return Intrinsic::riscv_masked_atomicrmw_max_i64; 11241 case AtomicRMWInst::Min: 11242 return Intrinsic::riscv_masked_atomicrmw_min_i64; 11243 case AtomicRMWInst::UMax: 11244 return Intrinsic::riscv_masked_atomicrmw_umax_i64; 11245 case AtomicRMWInst::UMin: 11246 return Intrinsic::riscv_masked_atomicrmw_umin_i64; 11247 } 11248 } 11249 11250 llvm_unreachable("Unexpected XLen\n"); 11251 } 11252 11253 Value *RISCVTargetLowering::emitMaskedAtomicRMWIntrinsic( 11254 IRBuilderBase &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr, 11255 Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const { 11256 unsigned XLen = Subtarget.getXLen(); 11257 Value *Ordering = 11258 Builder.getIntN(XLen, static_cast<uint64_t>(AI->getOrdering())); 11259 Type *Tys[] = {AlignedAddr->getType()}; 11260 Function *LrwOpScwLoop = Intrinsic::getDeclaration( 11261 AI->getModule(), 11262 getIntrinsicForMaskedAtomicRMWBinOp(XLen, AI->getOperation()), Tys); 11263 11264 if (XLen == 64) { 11265 Incr = Builder.CreateSExt(Incr, Builder.getInt64Ty()); 11266 Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty()); 11267 ShiftAmt = Builder.CreateSExt(ShiftAmt, Builder.getInt64Ty()); 11268 } 11269 11270 Value *Result; 11271 11272 // Must pass the shift amount needed to sign extend the loaded value prior 11273 // to performing a signed comparison for min/max. ShiftAmt is the number of 11274 // bits to shift the value into position. Pass XLen-ShiftAmt-ValWidth, which 11275 // is the number of bits to left+right shift the value in order to 11276 // sign-extend. 11277 if (AI->getOperation() == AtomicRMWInst::Min || 11278 AI->getOperation() == AtomicRMWInst::Max) { 11279 const DataLayout &DL = AI->getModule()->getDataLayout(); 11280 unsigned ValWidth = 11281 DL.getTypeStoreSizeInBits(AI->getValOperand()->getType()); 11282 Value *SextShamt = 11283 Builder.CreateSub(Builder.getIntN(XLen, XLen - ValWidth), ShiftAmt); 11284 Result = Builder.CreateCall(LrwOpScwLoop, 11285 {AlignedAddr, Incr, Mask, SextShamt, Ordering}); 11286 } else { 11287 Result = 11288 Builder.CreateCall(LrwOpScwLoop, {AlignedAddr, Incr, Mask, Ordering}); 11289 } 11290 11291 if (XLen == 64) 11292 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty()); 11293 return Result; 11294 } 11295 11296 TargetLowering::AtomicExpansionKind 11297 RISCVTargetLowering::shouldExpandAtomicCmpXchgInIR( 11298 AtomicCmpXchgInst *CI) const { 11299 unsigned Size = CI->getCompareOperand()->getType()->getPrimitiveSizeInBits(); 11300 if (Size == 8 || Size == 16) 11301 return AtomicExpansionKind::MaskedIntrinsic; 11302 return AtomicExpansionKind::None; 11303 } 11304 11305 Value *RISCVTargetLowering::emitMaskedAtomicCmpXchgIntrinsic( 11306 IRBuilderBase &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr, 11307 Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const { 11308 unsigned XLen = Subtarget.getXLen(); 11309 Value *Ordering = Builder.getIntN(XLen, static_cast<uint64_t>(Ord)); 11310 Intrinsic::ID CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i32; 11311 if (XLen == 64) { 11312 CmpVal = Builder.CreateSExt(CmpVal, Builder.getInt64Ty()); 11313 NewVal = Builder.CreateSExt(NewVal, Builder.getInt64Ty()); 11314 Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty()); 11315 CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i64; 11316 } 11317 Type *Tys[] = {AlignedAddr->getType()}; 11318 Function *MaskedCmpXchg = 11319 Intrinsic::getDeclaration(CI->getModule(), CmpXchgIntrID, Tys); 11320 Value *Result = Builder.CreateCall( 11321 MaskedCmpXchg, {AlignedAddr, CmpVal, NewVal, Mask, Ordering}); 11322 if (XLen == 64) 11323 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty()); 11324 return Result; 11325 } 11326 11327 bool RISCVTargetLowering::shouldRemoveExtendFromGSIndex(EVT VT) const { 11328 return false; 11329 } 11330 11331 bool RISCVTargetLowering::shouldConvertFpToSat(unsigned Op, EVT FPVT, 11332 EVT VT) const { 11333 if (!isOperationLegalOrCustom(Op, VT) || !FPVT.isSimple()) 11334 return false; 11335 11336 switch (FPVT.getSimpleVT().SimpleTy) { 11337 case MVT::f16: 11338 return Subtarget.hasStdExtZfh(); 11339 case MVT::f32: 11340 return Subtarget.hasStdExtF(); 11341 case MVT::f64: 11342 return Subtarget.hasStdExtD(); 11343 default: 11344 return false; 11345 } 11346 } 11347 11348 unsigned RISCVTargetLowering::getJumpTableEncoding() const { 11349 // If we are using the small code model, we can reduce size of jump table 11350 // entry to 4 bytes. 11351 if (Subtarget.is64Bit() && !isPositionIndependent() && 11352 getTargetMachine().getCodeModel() == CodeModel::Small) { 11353 return MachineJumpTableInfo::EK_Custom32; 11354 } 11355 return TargetLowering::getJumpTableEncoding(); 11356 } 11357 11358 const MCExpr *RISCVTargetLowering::LowerCustomJumpTableEntry( 11359 const MachineJumpTableInfo *MJTI, const MachineBasicBlock *MBB, 11360 unsigned uid, MCContext &Ctx) const { 11361 assert(Subtarget.is64Bit() && !isPositionIndependent() && 11362 getTargetMachine().getCodeModel() == CodeModel::Small); 11363 return MCSymbolRefExpr::create(MBB->getSymbol(), Ctx); 11364 } 11365 11366 bool RISCVTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, 11367 EVT VT) const { 11368 VT = VT.getScalarType(); 11369 11370 if (!VT.isSimple()) 11371 return false; 11372 11373 switch (VT.getSimpleVT().SimpleTy) { 11374 case MVT::f16: 11375 return Subtarget.hasStdExtZfh(); 11376 case MVT::f32: 11377 return Subtarget.hasStdExtF(); 11378 case MVT::f64: 11379 return Subtarget.hasStdExtD(); 11380 default: 11381 break; 11382 } 11383 11384 return false; 11385 } 11386 11387 Register RISCVTargetLowering::getExceptionPointerRegister( 11388 const Constant *PersonalityFn) const { 11389 return RISCV::X10; 11390 } 11391 11392 Register RISCVTargetLowering::getExceptionSelectorRegister( 11393 const Constant *PersonalityFn) const { 11394 return RISCV::X11; 11395 } 11396 11397 bool RISCVTargetLowering::shouldExtendTypeInLibCall(EVT Type) const { 11398 // Return false to suppress the unnecessary extensions if the LibCall 11399 // arguments or return value is f32 type for LP64 ABI. 11400 RISCVABI::ABI ABI = Subtarget.getTargetABI(); 11401 if (ABI == RISCVABI::ABI_LP64 && (Type == MVT::f32)) 11402 return false; 11403 11404 return true; 11405 } 11406 11407 bool RISCVTargetLowering::shouldSignExtendTypeInLibCall(EVT Type, bool IsSigned) const { 11408 if (Subtarget.is64Bit() && Type == MVT::i32) 11409 return true; 11410 11411 return IsSigned; 11412 } 11413 11414 bool RISCVTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT, 11415 SDValue C) const { 11416 // Check integral scalar types. 11417 if (VT.isScalarInteger()) { 11418 // Omit the optimization if the sub target has the M extension and the data 11419 // size exceeds XLen. 11420 if (Subtarget.hasStdExtM() && VT.getSizeInBits() > Subtarget.getXLen()) 11421 return false; 11422 if (auto *ConstNode = dyn_cast<ConstantSDNode>(C.getNode())) { 11423 // Break the MUL to a SLLI and an ADD/SUB. 11424 const APInt &Imm = ConstNode->getAPIntValue(); 11425 if ((Imm + 1).isPowerOf2() || (Imm - 1).isPowerOf2() || 11426 (1 - Imm).isPowerOf2() || (-1 - Imm).isPowerOf2()) 11427 return true; 11428 // Optimize the MUL to (SH*ADD x, (SLLI x, bits)) if Imm is not simm12. 11429 if (Subtarget.hasStdExtZba() && !Imm.isSignedIntN(12) && 11430 ((Imm - 2).isPowerOf2() || (Imm - 4).isPowerOf2() || 11431 (Imm - 8).isPowerOf2())) 11432 return true; 11433 // Omit the following optimization if the sub target has the M extension 11434 // and the data size >= XLen. 11435 if (Subtarget.hasStdExtM() && VT.getSizeInBits() >= Subtarget.getXLen()) 11436 return false; 11437 // Break the MUL to two SLLI instructions and an ADD/SUB, if Imm needs 11438 // a pair of LUI/ADDI. 11439 if (!Imm.isSignedIntN(12) && Imm.countTrailingZeros() < 12) { 11440 APInt ImmS = Imm.ashr(Imm.countTrailingZeros()); 11441 if ((ImmS + 1).isPowerOf2() || (ImmS - 1).isPowerOf2() || 11442 (1 - ImmS).isPowerOf2()) 11443 return true; 11444 } 11445 } 11446 } 11447 11448 return false; 11449 } 11450 11451 bool RISCVTargetLowering::isMulAddWithConstProfitable(SDValue AddNode, 11452 SDValue ConstNode) const { 11453 // Let the DAGCombiner decide for vectors. 11454 EVT VT = AddNode.getValueType(); 11455 if (VT.isVector()) 11456 return true; 11457 11458 // Let the DAGCombiner decide for larger types. 11459 if (VT.getScalarSizeInBits() > Subtarget.getXLen()) 11460 return true; 11461 11462 // It is worse if c1 is simm12 while c1*c2 is not. 11463 ConstantSDNode *C1Node = cast<ConstantSDNode>(AddNode.getOperand(1)); 11464 ConstantSDNode *C2Node = cast<ConstantSDNode>(ConstNode); 11465 const APInt &C1 = C1Node->getAPIntValue(); 11466 const APInt &C2 = C2Node->getAPIntValue(); 11467 if (C1.isSignedIntN(12) && !(C1 * C2).isSignedIntN(12)) 11468 return false; 11469 11470 // Default to true and let the DAGCombiner decide. 11471 return true; 11472 } 11473 11474 bool RISCVTargetLowering::allowsMisalignedMemoryAccesses( 11475 EVT VT, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags, 11476 bool *Fast) const { 11477 if (!VT.isVector()) 11478 return false; 11479 11480 EVT ElemVT = VT.getVectorElementType(); 11481 if (Alignment >= ElemVT.getStoreSize()) { 11482 if (Fast) 11483 *Fast = true; 11484 return true; 11485 } 11486 11487 return false; 11488 } 11489 11490 bool RISCVTargetLowering::splitValueIntoRegisterParts( 11491 SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts, 11492 unsigned NumParts, MVT PartVT, Optional<CallingConv::ID> CC) const { 11493 bool IsABIRegCopy = CC.hasValue(); 11494 EVT ValueVT = Val.getValueType(); 11495 if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) { 11496 // Cast the f16 to i16, extend to i32, pad with ones to make a float nan, 11497 // and cast to f32. 11498 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i16, Val); 11499 Val = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Val); 11500 Val = DAG.getNode(ISD::OR, DL, MVT::i32, Val, 11501 DAG.getConstant(0xFFFF0000, DL, MVT::i32)); 11502 Val = DAG.getNode(ISD::BITCAST, DL, MVT::f32, Val); 11503 Parts[0] = Val; 11504 return true; 11505 } 11506 11507 if (ValueVT.isScalableVector() && PartVT.isScalableVector()) { 11508 LLVMContext &Context = *DAG.getContext(); 11509 EVT ValueEltVT = ValueVT.getVectorElementType(); 11510 EVT PartEltVT = PartVT.getVectorElementType(); 11511 unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize(); 11512 unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize(); 11513 if (PartVTBitSize % ValueVTBitSize == 0) { 11514 assert(PartVTBitSize >= ValueVTBitSize); 11515 // If the element types are different, bitcast to the same element type of 11516 // PartVT first. 11517 // Give an example here, we want copy a <vscale x 1 x i8> value to 11518 // <vscale x 4 x i16>. 11519 // We need to convert <vscale x 1 x i8> to <vscale x 8 x i8> by insert 11520 // subvector, then we can bitcast to <vscale x 4 x i16>. 11521 if (ValueEltVT != PartEltVT) { 11522 if (PartVTBitSize > ValueVTBitSize) { 11523 unsigned Count = PartVTBitSize / ValueEltVT.getFixedSizeInBits(); 11524 assert(Count != 0 && "The number of element should not be zero."); 11525 EVT SameEltTypeVT = 11526 EVT::getVectorVT(Context, ValueEltVT, Count, /*IsScalable=*/true); 11527 Val = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, SameEltTypeVT, 11528 DAG.getUNDEF(SameEltTypeVT), Val, 11529 DAG.getVectorIdxConstant(0, DL)); 11530 } 11531 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 11532 } else { 11533 Val = 11534 DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT), 11535 Val, DAG.getVectorIdxConstant(0, DL)); 11536 } 11537 Parts[0] = Val; 11538 return true; 11539 } 11540 } 11541 return false; 11542 } 11543 11544 SDValue RISCVTargetLowering::joinRegisterPartsIntoValue( 11545 SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts, 11546 MVT PartVT, EVT ValueVT, Optional<CallingConv::ID> CC) const { 11547 bool IsABIRegCopy = CC.hasValue(); 11548 if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) { 11549 SDValue Val = Parts[0]; 11550 11551 // Cast the f32 to i32, truncate to i16, and cast back to f16. 11552 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Val); 11553 Val = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Val); 11554 Val = DAG.getNode(ISD::BITCAST, DL, MVT::f16, Val); 11555 return Val; 11556 } 11557 11558 if (ValueVT.isScalableVector() && PartVT.isScalableVector()) { 11559 LLVMContext &Context = *DAG.getContext(); 11560 SDValue Val = Parts[0]; 11561 EVT ValueEltVT = ValueVT.getVectorElementType(); 11562 EVT PartEltVT = PartVT.getVectorElementType(); 11563 unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize(); 11564 unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize(); 11565 if (PartVTBitSize % ValueVTBitSize == 0) { 11566 assert(PartVTBitSize >= ValueVTBitSize); 11567 EVT SameEltTypeVT = ValueVT; 11568 // If the element types are different, convert it to the same element type 11569 // of PartVT. 11570 // Give an example here, we want copy a <vscale x 1 x i8> value from 11571 // <vscale x 4 x i16>. 11572 // We need to convert <vscale x 4 x i16> to <vscale x 8 x i8> first, 11573 // then we can extract <vscale x 1 x i8>. 11574 if (ValueEltVT != PartEltVT) { 11575 unsigned Count = PartVTBitSize / ValueEltVT.getFixedSizeInBits(); 11576 assert(Count != 0 && "The number of element should not be zero."); 11577 SameEltTypeVT = 11578 EVT::getVectorVT(Context, ValueEltVT, Count, /*IsScalable=*/true); 11579 Val = DAG.getNode(ISD::BITCAST, DL, SameEltTypeVT, Val); 11580 } 11581 Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 11582 DAG.getVectorIdxConstant(0, DL)); 11583 return Val; 11584 } 11585 } 11586 return SDValue(); 11587 } 11588 11589 SDValue 11590 RISCVTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 11591 SelectionDAG &DAG, 11592 SmallVectorImpl<SDNode *> &Created) const { 11593 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 11594 if (isIntDivCheap(N->getValueType(0), Attr)) 11595 return SDValue(N, 0); // Lower SDIV as SDIV 11596 11597 assert((Divisor.isPowerOf2() || Divisor.isNegatedPowerOf2()) && 11598 "Unexpected divisor!"); 11599 11600 // Conditional move is needed, so do the transformation iff Zbt is enabled. 11601 if (!Subtarget.hasStdExtZbt()) 11602 return SDValue(); 11603 11604 // When |Divisor| >= 2 ^ 12, it isn't profitable to do such transformation. 11605 // Besides, more critical path instructions will be generated when dividing 11606 // by 2. So we keep using the original DAGs for these cases. 11607 unsigned Lg2 = Divisor.countTrailingZeros(); 11608 if (Lg2 == 1 || Lg2 >= 12) 11609 return SDValue(); 11610 11611 // fold (sdiv X, pow2) 11612 EVT VT = N->getValueType(0); 11613 if (VT != MVT::i32 && !(Subtarget.is64Bit() && VT == MVT::i64)) 11614 return SDValue(); 11615 11616 SDLoc DL(N); 11617 SDValue N0 = N->getOperand(0); 11618 SDValue Zero = DAG.getConstant(0, DL, VT); 11619 SDValue Pow2MinusOne = DAG.getConstant((1ULL << Lg2) - 1, DL, VT); 11620 11621 // Add (N0 < 0) ? Pow2 - 1 : 0; 11622 SDValue Cmp = DAG.getSetCC(DL, VT, N0, Zero, ISD::SETLT); 11623 SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0, Pow2MinusOne); 11624 SDValue Sel = DAG.getNode(ISD::SELECT, DL, VT, Cmp, Add, N0); 11625 11626 Created.push_back(Cmp.getNode()); 11627 Created.push_back(Add.getNode()); 11628 Created.push_back(Sel.getNode()); 11629 11630 // Divide by pow2. 11631 SDValue SRA = 11632 DAG.getNode(ISD::SRA, DL, VT, Sel, DAG.getConstant(Lg2, DL, VT)); 11633 11634 // If we're dividing by a positive value, we're done. Otherwise, we must 11635 // negate the result. 11636 if (Divisor.isNonNegative()) 11637 return SRA; 11638 11639 Created.push_back(SRA.getNode()); 11640 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), SRA); 11641 } 11642 11643 #define GET_REGISTER_MATCHER 11644 #include "RISCVGenAsmMatcher.inc" 11645 11646 Register 11647 RISCVTargetLowering::getRegisterByName(const char *RegName, LLT VT, 11648 const MachineFunction &MF) const { 11649 Register Reg = MatchRegisterAltName(RegName); 11650 if (Reg == RISCV::NoRegister) 11651 Reg = MatchRegisterName(RegName); 11652 if (Reg == RISCV::NoRegister) 11653 report_fatal_error( 11654 Twine("Invalid register name \"" + StringRef(RegName) + "\".")); 11655 BitVector ReservedRegs = Subtarget.getRegisterInfo()->getReservedRegs(MF); 11656 if (!ReservedRegs.test(Reg) && !Subtarget.isRegisterReservedByUser(Reg)) 11657 report_fatal_error(Twine("Trying to obtain non-reserved register \"" + 11658 StringRef(RegName) + "\".")); 11659 return Reg; 11660 } 11661 11662 namespace llvm { 11663 namespace RISCVVIntrinsicsTable { 11664 11665 #define GET_RISCVVIntrinsicsTable_IMPL 11666 #include "RISCVGenSearchableTables.inc" 11667 11668 } // namespace RISCVVIntrinsicsTable 11669 11670 } // namespace llvm 11671