1 //===-- RISCVISelLowering.cpp - RISCV DAG Lowering Implementation --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the interfaces that RISCV uses to lower LLVM code into a 10 // selection DAG. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "RISCVISelLowering.h" 15 #include "MCTargetDesc/RISCVMatInt.h" 16 #include "RISCV.h" 17 #include "RISCVMachineFunctionInfo.h" 18 #include "RISCVRegisterInfo.h" 19 #include "RISCVSubtarget.h" 20 #include "RISCVTargetMachine.h" 21 #include "llvm/ADT/SmallSet.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/CodeGen/CallingConvLower.h" 24 #include "llvm/CodeGen/MachineFrameInfo.h" 25 #include "llvm/CodeGen/MachineFunction.h" 26 #include "llvm/CodeGen/MachineInstrBuilder.h" 27 #include "llvm/CodeGen/MachineRegisterInfo.h" 28 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 29 #include "llvm/CodeGen/ValueTypes.h" 30 #include "llvm/IR/DiagnosticInfo.h" 31 #include "llvm/IR/DiagnosticPrinter.h" 32 #include "llvm/IR/IntrinsicsRISCV.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/ErrorHandling.h" 35 #include "llvm/Support/KnownBits.h" 36 #include "llvm/Support/MathExtras.h" 37 #include "llvm/Support/raw_ostream.h" 38 39 using namespace llvm; 40 41 #define DEBUG_TYPE "riscv-lower" 42 43 STATISTIC(NumTailCalls, "Number of tail calls"); 44 45 RISCVTargetLowering::RISCVTargetLowering(const TargetMachine &TM, 46 const RISCVSubtarget &STI) 47 : TargetLowering(TM), Subtarget(STI) { 48 49 if (Subtarget.isRV32E()) 50 report_fatal_error("Codegen not yet implemented for RV32E"); 51 52 RISCVABI::ABI ABI = Subtarget.getTargetABI(); 53 assert(ABI != RISCVABI::ABI_Unknown && "Improperly initialised target ABI"); 54 55 if ((ABI == RISCVABI::ABI_ILP32F || ABI == RISCVABI::ABI_LP64F) && 56 !Subtarget.hasStdExtF()) { 57 errs() << "Hard-float 'f' ABI can't be used for a target that " 58 "doesn't support the F instruction set extension (ignoring " 59 "target-abi)\n"; 60 ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32; 61 } else if ((ABI == RISCVABI::ABI_ILP32D || ABI == RISCVABI::ABI_LP64D) && 62 !Subtarget.hasStdExtD()) { 63 errs() << "Hard-float 'd' ABI can't be used for a target that " 64 "doesn't support the D instruction set extension (ignoring " 65 "target-abi)\n"; 66 ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32; 67 } 68 69 switch (ABI) { 70 default: 71 report_fatal_error("Don't know how to lower this ABI"); 72 case RISCVABI::ABI_ILP32: 73 case RISCVABI::ABI_ILP32F: 74 case RISCVABI::ABI_ILP32D: 75 case RISCVABI::ABI_LP64: 76 case RISCVABI::ABI_LP64F: 77 case RISCVABI::ABI_LP64D: 78 break; 79 } 80 81 MVT XLenVT = Subtarget.getXLenVT(); 82 83 // Set up the register classes. 84 addRegisterClass(XLenVT, &RISCV::GPRRegClass); 85 86 if (Subtarget.hasStdExtZfh()) 87 addRegisterClass(MVT::f16, &RISCV::FPR16RegClass); 88 if (Subtarget.hasStdExtF()) 89 addRegisterClass(MVT::f32, &RISCV::FPR32RegClass); 90 if (Subtarget.hasStdExtD()) 91 addRegisterClass(MVT::f64, &RISCV::FPR64RegClass); 92 93 static const MVT::SimpleValueType BoolVecVTs[] = { 94 MVT::nxv1i1, MVT::nxv2i1, MVT::nxv4i1, MVT::nxv8i1, 95 MVT::nxv16i1, MVT::nxv32i1, MVT::nxv64i1}; 96 static const MVT::SimpleValueType IntVecVTs[] = { 97 MVT::nxv1i8, MVT::nxv2i8, MVT::nxv4i8, MVT::nxv8i8, MVT::nxv16i8, 98 MVT::nxv32i8, MVT::nxv64i8, MVT::nxv1i16, MVT::nxv2i16, MVT::nxv4i16, 99 MVT::nxv8i16, MVT::nxv16i16, MVT::nxv32i16, MVT::nxv1i32, MVT::nxv2i32, 100 MVT::nxv4i32, MVT::nxv8i32, MVT::nxv16i32, MVT::nxv1i64, MVT::nxv2i64, 101 MVT::nxv4i64, MVT::nxv8i64}; 102 static const MVT::SimpleValueType F16VecVTs[] = { 103 MVT::nxv1f16, MVT::nxv2f16, MVT::nxv4f16, 104 MVT::nxv8f16, MVT::nxv16f16, MVT::nxv32f16}; 105 static const MVT::SimpleValueType F32VecVTs[] = { 106 MVT::nxv1f32, MVT::nxv2f32, MVT::nxv4f32, MVT::nxv8f32, MVT::nxv16f32}; 107 static const MVT::SimpleValueType F64VecVTs[] = { 108 MVT::nxv1f64, MVT::nxv2f64, MVT::nxv4f64, MVT::nxv8f64}; 109 110 if (Subtarget.hasStdExtV()) { 111 auto addRegClassForRVV = [this](MVT VT) { 112 unsigned Size = VT.getSizeInBits().getKnownMinValue(); 113 assert(Size <= 512 && isPowerOf2_32(Size)); 114 const TargetRegisterClass *RC; 115 if (Size <= 64) 116 RC = &RISCV::VRRegClass; 117 else if (Size == 128) 118 RC = &RISCV::VRM2RegClass; 119 else if (Size == 256) 120 RC = &RISCV::VRM4RegClass; 121 else 122 RC = &RISCV::VRM8RegClass; 123 124 addRegisterClass(VT, RC); 125 }; 126 127 for (MVT VT : BoolVecVTs) 128 addRegClassForRVV(VT); 129 for (MVT VT : IntVecVTs) 130 addRegClassForRVV(VT); 131 132 if (Subtarget.hasStdExtZfh()) 133 for (MVT VT : F16VecVTs) 134 addRegClassForRVV(VT); 135 136 if (Subtarget.hasStdExtF()) 137 for (MVT VT : F32VecVTs) 138 addRegClassForRVV(VT); 139 140 if (Subtarget.hasStdExtD()) 141 for (MVT VT : F64VecVTs) 142 addRegClassForRVV(VT); 143 144 if (Subtarget.useRVVForFixedLengthVectors()) { 145 auto addRegClassForFixedVectors = [this](MVT VT) { 146 unsigned LMul = Subtarget.getLMULForFixedLengthVector(VT); 147 const TargetRegisterClass *RC; 148 if (LMul == 1) 149 RC = &RISCV::VRRegClass; 150 else if (LMul == 2) 151 RC = &RISCV::VRM2RegClass; 152 else if (LMul == 4) 153 RC = &RISCV::VRM4RegClass; 154 else if (LMul == 8) 155 RC = &RISCV::VRM8RegClass; 156 else 157 llvm_unreachable("Unexpected LMul!"); 158 159 addRegisterClass(VT, RC); 160 }; 161 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) 162 if (useRVVForFixedLengthVectorVT(VT)) 163 addRegClassForFixedVectors(VT); 164 165 for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) 166 if (useRVVForFixedLengthVectorVT(VT)) 167 addRegClassForFixedVectors(VT); 168 } 169 } 170 171 // Compute derived properties from the register classes. 172 computeRegisterProperties(STI.getRegisterInfo()); 173 174 setStackPointerRegisterToSaveRestore(RISCV::X2); 175 176 for (auto N : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}) 177 setLoadExtAction(N, XLenVT, MVT::i1, Promote); 178 179 // TODO: add all necessary setOperationAction calls. 180 setOperationAction(ISD::DYNAMIC_STACKALLOC, XLenVT, Expand); 181 182 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 183 setOperationAction(ISD::BR_CC, XLenVT, Expand); 184 setOperationAction(ISD::SELECT_CC, XLenVT, Expand); 185 186 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); 187 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); 188 189 setOperationAction(ISD::VASTART, MVT::Other, Custom); 190 setOperationAction(ISD::VAARG, MVT::Other, Expand); 191 setOperationAction(ISD::VACOPY, MVT::Other, Expand); 192 setOperationAction(ISD::VAEND, MVT::Other, Expand); 193 194 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 195 if (!Subtarget.hasStdExtZbb()) { 196 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand); 197 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand); 198 } 199 200 if (Subtarget.is64Bit()) { 201 setOperationAction(ISD::ADD, MVT::i32, Custom); 202 setOperationAction(ISD::SUB, MVT::i32, Custom); 203 setOperationAction(ISD::SHL, MVT::i32, Custom); 204 setOperationAction(ISD::SRA, MVT::i32, Custom); 205 setOperationAction(ISD::SRL, MVT::i32, Custom); 206 } 207 208 if (!Subtarget.hasStdExtM()) { 209 setOperationAction(ISD::MUL, XLenVT, Expand); 210 setOperationAction(ISD::MULHS, XLenVT, Expand); 211 setOperationAction(ISD::MULHU, XLenVT, Expand); 212 setOperationAction(ISD::SDIV, XLenVT, Expand); 213 setOperationAction(ISD::UDIV, XLenVT, Expand); 214 setOperationAction(ISD::SREM, XLenVT, Expand); 215 setOperationAction(ISD::UREM, XLenVT, Expand); 216 } 217 218 if (Subtarget.is64Bit() && Subtarget.hasStdExtM()) { 219 setOperationAction(ISD::MUL, MVT::i32, Custom); 220 221 setOperationAction(ISD::SDIV, MVT::i8, Custom); 222 setOperationAction(ISD::UDIV, MVT::i8, Custom); 223 setOperationAction(ISD::UREM, MVT::i8, Custom); 224 setOperationAction(ISD::SDIV, MVT::i16, Custom); 225 setOperationAction(ISD::UDIV, MVT::i16, Custom); 226 setOperationAction(ISD::UREM, MVT::i16, Custom); 227 setOperationAction(ISD::SDIV, MVT::i32, Custom); 228 setOperationAction(ISD::UDIV, MVT::i32, Custom); 229 setOperationAction(ISD::UREM, MVT::i32, Custom); 230 } 231 232 setOperationAction(ISD::SDIVREM, XLenVT, Expand); 233 setOperationAction(ISD::UDIVREM, XLenVT, Expand); 234 setOperationAction(ISD::SMUL_LOHI, XLenVT, Expand); 235 setOperationAction(ISD::UMUL_LOHI, XLenVT, Expand); 236 237 setOperationAction(ISD::SHL_PARTS, XLenVT, Custom); 238 setOperationAction(ISD::SRL_PARTS, XLenVT, Custom); 239 setOperationAction(ISD::SRA_PARTS, XLenVT, Custom); 240 241 if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp()) { 242 if (Subtarget.is64Bit()) { 243 setOperationAction(ISD::ROTL, MVT::i32, Custom); 244 setOperationAction(ISD::ROTR, MVT::i32, Custom); 245 } 246 } else { 247 setOperationAction(ISD::ROTL, XLenVT, Expand); 248 setOperationAction(ISD::ROTR, XLenVT, Expand); 249 } 250 251 if (Subtarget.hasStdExtZbp()) { 252 // Custom lower bswap/bitreverse so we can convert them to GREVI to enable 253 // more combining. 254 setOperationAction(ISD::BITREVERSE, XLenVT, Custom); 255 setOperationAction(ISD::BSWAP, XLenVT, Custom); 256 257 if (Subtarget.is64Bit()) { 258 setOperationAction(ISD::BITREVERSE, MVT::i32, Custom); 259 setOperationAction(ISD::BSWAP, MVT::i32, Custom); 260 } 261 } else { 262 // With Zbb we have an XLen rev8 instruction, but not GREVI. So we'll 263 // pattern match it directly in isel. 264 setOperationAction(ISD::BSWAP, XLenVT, 265 Subtarget.hasStdExtZbb() ? Legal : Expand); 266 } 267 268 if (Subtarget.hasStdExtZbb()) { 269 setOperationAction(ISD::SMIN, XLenVT, Legal); 270 setOperationAction(ISD::SMAX, XLenVT, Legal); 271 setOperationAction(ISD::UMIN, XLenVT, Legal); 272 setOperationAction(ISD::UMAX, XLenVT, Legal); 273 } else { 274 setOperationAction(ISD::CTTZ, XLenVT, Expand); 275 setOperationAction(ISD::CTLZ, XLenVT, Expand); 276 setOperationAction(ISD::CTPOP, XLenVT, Expand); 277 } 278 279 if (Subtarget.hasStdExtZbt()) { 280 setOperationAction(ISD::FSHL, XLenVT, Custom); 281 setOperationAction(ISD::FSHR, XLenVT, Custom); 282 setOperationAction(ISD::SELECT, XLenVT, Legal); 283 284 if (Subtarget.is64Bit()) { 285 setOperationAction(ISD::FSHL, MVT::i32, Custom); 286 setOperationAction(ISD::FSHR, MVT::i32, Custom); 287 } 288 } else { 289 setOperationAction(ISD::SELECT, XLenVT, Custom); 290 } 291 292 ISD::CondCode FPCCToExpand[] = { 293 ISD::SETOGT, ISD::SETOGE, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT, 294 ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUNE, ISD::SETGT, 295 ISD::SETGE, ISD::SETNE, ISD::SETO, ISD::SETUO}; 296 297 ISD::NodeType FPOpToExpand[] = { 298 ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, ISD::FREM, ISD::FP16_TO_FP, 299 ISD::FP_TO_FP16}; 300 301 if (Subtarget.hasStdExtZfh()) 302 setOperationAction(ISD::BITCAST, MVT::i16, Custom); 303 304 if (Subtarget.hasStdExtZfh()) { 305 setOperationAction(ISD::FMINNUM, MVT::f16, Legal); 306 setOperationAction(ISD::FMAXNUM, MVT::f16, Legal); 307 for (auto CC : FPCCToExpand) 308 setCondCodeAction(CC, MVT::f16, Expand); 309 setOperationAction(ISD::SELECT_CC, MVT::f16, Expand); 310 setOperationAction(ISD::SELECT, MVT::f16, Custom); 311 setOperationAction(ISD::BR_CC, MVT::f16, Expand); 312 for (auto Op : FPOpToExpand) 313 setOperationAction(Op, MVT::f16, Expand); 314 } 315 316 if (Subtarget.hasStdExtF()) { 317 setOperationAction(ISD::FMINNUM, MVT::f32, Legal); 318 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); 319 for (auto CC : FPCCToExpand) 320 setCondCodeAction(CC, MVT::f32, Expand); 321 setOperationAction(ISD::SELECT_CC, MVT::f32, Expand); 322 setOperationAction(ISD::SELECT, MVT::f32, Custom); 323 setOperationAction(ISD::BR_CC, MVT::f32, Expand); 324 for (auto Op : FPOpToExpand) 325 setOperationAction(Op, MVT::f32, Expand); 326 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); 327 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 328 } 329 330 if (Subtarget.hasStdExtF() && Subtarget.is64Bit()) 331 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 332 333 if (Subtarget.hasStdExtD()) { 334 setOperationAction(ISD::FMINNUM, MVT::f64, Legal); 335 setOperationAction(ISD::FMAXNUM, MVT::f64, Legal); 336 for (auto CC : FPCCToExpand) 337 setCondCodeAction(CC, MVT::f64, Expand); 338 setOperationAction(ISD::SELECT_CC, MVT::f64, Expand); 339 setOperationAction(ISD::SELECT, MVT::f64, Custom); 340 setOperationAction(ISD::BR_CC, MVT::f64, Expand); 341 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 342 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 343 for (auto Op : FPOpToExpand) 344 setOperationAction(Op, MVT::f64, Expand); 345 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); 346 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 347 } 348 349 if (Subtarget.is64Bit()) { 350 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 351 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 352 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom); 353 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom); 354 } 355 356 setOperationAction(ISD::GlobalAddress, XLenVT, Custom); 357 setOperationAction(ISD::BlockAddress, XLenVT, Custom); 358 setOperationAction(ISD::ConstantPool, XLenVT, Custom); 359 setOperationAction(ISD::JumpTable, XLenVT, Custom); 360 361 setOperationAction(ISD::GlobalTLSAddress, XLenVT, Custom); 362 363 // TODO: On M-mode only targets, the cycle[h] CSR may not be present. 364 // Unfortunately this can't be determined just from the ISA naming string. 365 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, 366 Subtarget.is64Bit() ? Legal : Custom); 367 368 setOperationAction(ISD::TRAP, MVT::Other, Legal); 369 setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal); 370 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 371 372 if (Subtarget.hasStdExtA()) { 373 setMaxAtomicSizeInBitsSupported(Subtarget.getXLen()); 374 setMinCmpXchgSizeInBits(32); 375 } else { 376 setMaxAtomicSizeInBitsSupported(0); 377 } 378 379 setBooleanContents(ZeroOrOneBooleanContent); 380 381 if (Subtarget.hasStdExtV()) { 382 setBooleanVectorContents(ZeroOrOneBooleanContent); 383 384 setOperationAction(ISD::VSCALE, XLenVT, Custom); 385 386 // RVV intrinsics may have illegal operands. 387 // We also need to custom legalize vmv.x.s. 388 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i8, Custom); 389 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i16, Custom); 390 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i8, Custom); 391 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i16, Custom); 392 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i32, Custom); 393 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i32, Custom); 394 395 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom); 396 397 if (Subtarget.is64Bit()) { 398 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i64, Custom); 399 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i64, Custom); 400 } else { 401 // We must custom-lower certain vXi64 operations on RV32 due to the vector 402 // element type being illegal. 403 setOperationAction(ISD::SPLAT_VECTOR, MVT::i64, Custom); 404 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::i64, Custom); 405 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::i64, Custom); 406 407 setOperationAction(ISD::VECREDUCE_ADD, MVT::i64, Custom); 408 setOperationAction(ISD::VECREDUCE_AND, MVT::i64, Custom); 409 setOperationAction(ISD::VECREDUCE_OR, MVT::i64, Custom); 410 setOperationAction(ISD::VECREDUCE_XOR, MVT::i64, Custom); 411 setOperationAction(ISD::VECREDUCE_SMAX, MVT::i64, Custom); 412 setOperationAction(ISD::VECREDUCE_SMIN, MVT::i64, Custom); 413 setOperationAction(ISD::VECREDUCE_UMAX, MVT::i64, Custom); 414 setOperationAction(ISD::VECREDUCE_UMIN, MVT::i64, Custom); 415 } 416 417 for (MVT VT : BoolVecVTs) { 418 setOperationAction(ISD::SPLAT_VECTOR, VT, Legal); 419 420 // Mask VTs are custom-expanded into a series of standard nodes 421 setOperationAction(ISD::TRUNCATE, VT, Custom); 422 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 423 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 424 } 425 426 for (MVT VT : IntVecVTs) { 427 setOperationAction(ISD::SPLAT_VECTOR, VT, Legal); 428 429 setOperationAction(ISD::SMIN, VT, Legal); 430 setOperationAction(ISD::SMAX, VT, Legal); 431 setOperationAction(ISD::UMIN, VT, Legal); 432 setOperationAction(ISD::UMAX, VT, Legal); 433 434 setOperationAction(ISD::ROTL, VT, Expand); 435 setOperationAction(ISD::ROTR, VT, Expand); 436 437 // Custom-lower extensions and truncations from/to mask types. 438 setOperationAction(ISD::ANY_EXTEND, VT, Custom); 439 setOperationAction(ISD::SIGN_EXTEND, VT, Custom); 440 setOperationAction(ISD::ZERO_EXTEND, VT, Custom); 441 442 // RVV has native int->float & float->int conversions where the 443 // element type sizes are within one power-of-two of each other. Any 444 // wider distances between type sizes have to be lowered as sequences 445 // which progressively narrow the gap in stages. 446 setOperationAction(ISD::SINT_TO_FP, VT, Custom); 447 setOperationAction(ISD::UINT_TO_FP, VT, Custom); 448 setOperationAction(ISD::FP_TO_SINT, VT, Custom); 449 setOperationAction(ISD::FP_TO_UINT, VT, Custom); 450 451 // Integer VTs are lowered as a series of "RISCVISD::TRUNCATE_VECTOR_VL" 452 // nodes which truncate by one power of two at a time. 453 setOperationAction(ISD::TRUNCATE, VT, Custom); 454 455 // Custom-lower insert/extract operations to simplify patterns. 456 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 457 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 458 459 // Custom-lower reduction operations to set up the corresponding custom 460 // nodes' operands. 461 setOperationAction(ISD::VECREDUCE_ADD, VT, Custom); 462 setOperationAction(ISD::VECREDUCE_AND, VT, Custom); 463 setOperationAction(ISD::VECREDUCE_OR, VT, Custom); 464 setOperationAction(ISD::VECREDUCE_XOR, VT, Custom); 465 setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom); 466 setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom); 467 setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom); 468 setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom); 469 470 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 471 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 472 } 473 474 // Expand various CCs to best match the RVV ISA, which natively supports UNE 475 // but no other unordered comparisons, and supports all ordered comparisons 476 // except ONE. Additionally, we expand GT,OGT,GE,OGE for optimization 477 // purposes; they are expanded to their swapped-operand CCs (LT,OLT,LE,OLE), 478 // and we pattern-match those back to the "original", swapping operands once 479 // more. This way we catch both operations and both "vf" and "fv" forms with 480 // fewer patterns. 481 ISD::CondCode VFPCCToExpand[] = { 482 ISD::SETO, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT, 483 ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUO, 484 ISD::SETGT, ISD::SETOGT, ISD::SETGE, ISD::SETOGE, 485 }; 486 487 // Sets common operation actions on RVV floating-point vector types. 488 const auto SetCommonVFPActions = [&](MVT VT) { 489 setOperationAction(ISD::SPLAT_VECTOR, VT, Legal); 490 // RVV has native FP_ROUND & FP_EXTEND conversions where the element type 491 // sizes are within one power-of-two of each other. Therefore conversions 492 // between vXf16 and vXf64 must be lowered as sequences which convert via 493 // vXf32. 494 setOperationAction(ISD::FP_ROUND, VT, Custom); 495 setOperationAction(ISD::FP_EXTEND, VT, Custom); 496 // Custom-lower insert/extract operations to simplify patterns. 497 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 498 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 499 // Expand various condition codes (explained above). 500 for (auto CC : VFPCCToExpand) 501 setCondCodeAction(CC, VT, Expand); 502 503 setOperationAction(ISD::VECREDUCE_FADD, VT, Custom); 504 setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom); 505 setOperationAction(ISD::FCOPYSIGN, VT, Legal); 506 507 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 508 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 509 }; 510 511 if (Subtarget.hasStdExtZfh()) 512 for (MVT VT : F16VecVTs) 513 SetCommonVFPActions(VT); 514 515 if (Subtarget.hasStdExtF()) 516 for (MVT VT : F32VecVTs) 517 SetCommonVFPActions(VT); 518 519 if (Subtarget.hasStdExtD()) 520 for (MVT VT : F64VecVTs) 521 SetCommonVFPActions(VT); 522 523 if (Subtarget.useRVVForFixedLengthVectors()) { 524 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) { 525 if (!useRVVForFixedLengthVectorVT(VT)) 526 continue; 527 528 // By default everything must be expanded. 529 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) 530 setOperationAction(Op, VT, Expand); 531 for (MVT OtherVT : MVT::fixedlen_vector_valuetypes()) 532 setTruncStoreAction(VT, OtherVT, Expand); 533 534 // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed. 535 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 536 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 537 538 setOperationAction(ISD::BUILD_VECTOR, VT, Custom); 539 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 540 541 setOperationAction(ISD::LOAD, VT, Custom); 542 setOperationAction(ISD::STORE, VT, Custom); 543 544 setOperationAction(ISD::SETCC, VT, Custom); 545 546 setOperationAction(ISD::TRUNCATE, VT, Custom); 547 548 // Operations below are different for between masks and other vectors. 549 if (VT.getVectorElementType() == MVT::i1) { 550 setOperationAction(ISD::AND, VT, Custom); 551 setOperationAction(ISD::OR, VT, Custom); 552 setOperationAction(ISD::XOR, VT, Custom); 553 continue; 554 } 555 556 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); 557 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 558 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 559 560 setOperationAction(ISD::ADD, VT, Custom); 561 setOperationAction(ISD::MUL, VT, Custom); 562 setOperationAction(ISD::SUB, VT, Custom); 563 setOperationAction(ISD::AND, VT, Custom); 564 setOperationAction(ISD::OR, VT, Custom); 565 setOperationAction(ISD::XOR, VT, Custom); 566 setOperationAction(ISD::SDIV, VT, Custom); 567 setOperationAction(ISD::SREM, VT, Custom); 568 setOperationAction(ISD::UDIV, VT, Custom); 569 setOperationAction(ISD::UREM, VT, Custom); 570 setOperationAction(ISD::SHL, VT, Custom); 571 setOperationAction(ISD::SRA, VT, Custom); 572 setOperationAction(ISD::SRL, VT, Custom); 573 574 setOperationAction(ISD::SMIN, VT, Custom); 575 setOperationAction(ISD::SMAX, VT, Custom); 576 setOperationAction(ISD::UMIN, VT, Custom); 577 setOperationAction(ISD::UMAX, VT, Custom); 578 579 setOperationAction(ISD::MULHS, VT, Custom); 580 setOperationAction(ISD::MULHU, VT, Custom); 581 582 setOperationAction(ISD::SINT_TO_FP, VT, Custom); 583 setOperationAction(ISD::UINT_TO_FP, VT, Custom); 584 setOperationAction(ISD::FP_TO_SINT, VT, Custom); 585 setOperationAction(ISD::FP_TO_UINT, VT, Custom); 586 587 setOperationAction(ISD::VSELECT, VT, Custom); 588 589 setOperationAction(ISD::ANY_EXTEND, VT, Custom); 590 setOperationAction(ISD::SIGN_EXTEND, VT, Custom); 591 setOperationAction(ISD::ZERO_EXTEND, VT, Custom); 592 593 setOperationAction(ISD::BITCAST, VT, Custom); 594 } 595 596 for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) { 597 if (!useRVVForFixedLengthVectorVT(VT)) 598 continue; 599 600 // By default everything must be expanded. 601 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) 602 setOperationAction(Op, VT, Expand); 603 for (MVT OtherVT : MVT::fp_fixedlen_vector_valuetypes()) { 604 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 605 setTruncStoreAction(VT, OtherVT, Expand); 606 } 607 608 // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed. 609 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 610 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 611 612 setOperationAction(ISD::BUILD_VECTOR, VT, Custom); 613 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); 614 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 615 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 616 617 setOperationAction(ISD::LOAD, VT, Custom); 618 setOperationAction(ISD::STORE, VT, Custom); 619 setOperationAction(ISD::FADD, VT, Custom); 620 setOperationAction(ISD::FSUB, VT, Custom); 621 setOperationAction(ISD::FMUL, VT, Custom); 622 setOperationAction(ISD::FDIV, VT, Custom); 623 setOperationAction(ISD::FNEG, VT, Custom); 624 setOperationAction(ISD::FABS, VT, Custom); 625 setOperationAction(ISD::FSQRT, VT, Custom); 626 setOperationAction(ISD::FMA, VT, Custom); 627 628 setOperationAction(ISD::FP_ROUND, VT, Custom); 629 setOperationAction(ISD::FP_EXTEND, VT, Custom); 630 631 for (auto CC : VFPCCToExpand) 632 setCondCodeAction(CC, VT, Expand); 633 634 setOperationAction(ISD::VSELECT, VT, Custom); 635 636 setOperationAction(ISD::BITCAST, VT, Custom); 637 } 638 } 639 } 640 641 // Function alignments. 642 const Align FunctionAlignment(Subtarget.hasStdExtC() ? 2 : 4); 643 setMinFunctionAlignment(FunctionAlignment); 644 setPrefFunctionAlignment(FunctionAlignment); 645 646 setMinimumJumpTableEntries(5); 647 648 // Jumps are expensive, compared to logic 649 setJumpIsExpensive(); 650 651 // We can use any register for comparisons 652 setHasMultipleConditionRegisters(); 653 654 setTargetDAGCombine(ISD::SETCC); 655 if (Subtarget.hasStdExtZbp()) { 656 setTargetDAGCombine(ISD::OR); 657 } 658 if (Subtarget.hasStdExtV()) 659 setTargetDAGCombine(ISD::FCOPYSIGN); 660 } 661 662 EVT RISCVTargetLowering::getSetCCResultType(const DataLayout &DL, 663 LLVMContext &Context, 664 EVT VT) const { 665 if (!VT.isVector()) 666 return getPointerTy(DL); 667 if (Subtarget.hasStdExtV() && 668 (VT.isScalableVector() || Subtarget.useRVVForFixedLengthVectors())) 669 return EVT::getVectorVT(Context, MVT::i1, VT.getVectorElementCount()); 670 return VT.changeVectorElementTypeToInteger(); 671 } 672 673 bool RISCVTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 674 const CallInst &I, 675 MachineFunction &MF, 676 unsigned Intrinsic) const { 677 switch (Intrinsic) { 678 default: 679 return false; 680 case Intrinsic::riscv_masked_atomicrmw_xchg_i32: 681 case Intrinsic::riscv_masked_atomicrmw_add_i32: 682 case Intrinsic::riscv_masked_atomicrmw_sub_i32: 683 case Intrinsic::riscv_masked_atomicrmw_nand_i32: 684 case Intrinsic::riscv_masked_atomicrmw_max_i32: 685 case Intrinsic::riscv_masked_atomicrmw_min_i32: 686 case Intrinsic::riscv_masked_atomicrmw_umax_i32: 687 case Intrinsic::riscv_masked_atomicrmw_umin_i32: 688 case Intrinsic::riscv_masked_cmpxchg_i32: 689 PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType()); 690 Info.opc = ISD::INTRINSIC_W_CHAIN; 691 Info.memVT = MVT::getVT(PtrTy->getElementType()); 692 Info.ptrVal = I.getArgOperand(0); 693 Info.offset = 0; 694 Info.align = Align(4); 695 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore | 696 MachineMemOperand::MOVolatile; 697 return true; 698 } 699 } 700 701 bool RISCVTargetLowering::isLegalAddressingMode(const DataLayout &DL, 702 const AddrMode &AM, Type *Ty, 703 unsigned AS, 704 Instruction *I) const { 705 // No global is ever allowed as a base. 706 if (AM.BaseGV) 707 return false; 708 709 // Require a 12-bit signed offset. 710 if (!isInt<12>(AM.BaseOffs)) 711 return false; 712 713 switch (AM.Scale) { 714 case 0: // "r+i" or just "i", depending on HasBaseReg. 715 break; 716 case 1: 717 if (!AM.HasBaseReg) // allow "r+i". 718 break; 719 return false; // disallow "r+r" or "r+r+i". 720 default: 721 return false; 722 } 723 724 return true; 725 } 726 727 bool RISCVTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 728 return isInt<12>(Imm); 729 } 730 731 bool RISCVTargetLowering::isLegalAddImmediate(int64_t Imm) const { 732 return isInt<12>(Imm); 733 } 734 735 // On RV32, 64-bit integers are split into their high and low parts and held 736 // in two different registers, so the trunc is free since the low register can 737 // just be used. 738 bool RISCVTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const { 739 if (Subtarget.is64Bit() || !SrcTy->isIntegerTy() || !DstTy->isIntegerTy()) 740 return false; 741 unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); 742 unsigned DestBits = DstTy->getPrimitiveSizeInBits(); 743 return (SrcBits == 64 && DestBits == 32); 744 } 745 746 bool RISCVTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const { 747 if (Subtarget.is64Bit() || SrcVT.isVector() || DstVT.isVector() || 748 !SrcVT.isInteger() || !DstVT.isInteger()) 749 return false; 750 unsigned SrcBits = SrcVT.getSizeInBits(); 751 unsigned DestBits = DstVT.getSizeInBits(); 752 return (SrcBits == 64 && DestBits == 32); 753 } 754 755 bool RISCVTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 756 // Zexts are free if they can be combined with a load. 757 if (auto *LD = dyn_cast<LoadSDNode>(Val)) { 758 EVT MemVT = LD->getMemoryVT(); 759 if ((MemVT == MVT::i8 || MemVT == MVT::i16 || 760 (Subtarget.is64Bit() && MemVT == MVT::i32)) && 761 (LD->getExtensionType() == ISD::NON_EXTLOAD || 762 LD->getExtensionType() == ISD::ZEXTLOAD)) 763 return true; 764 } 765 766 return TargetLowering::isZExtFree(Val, VT2); 767 } 768 769 bool RISCVTargetLowering::isSExtCheaperThanZExt(EVT SrcVT, EVT DstVT) const { 770 return Subtarget.is64Bit() && SrcVT == MVT::i32 && DstVT == MVT::i64; 771 } 772 773 bool RISCVTargetLowering::isCheapToSpeculateCttz() const { 774 return Subtarget.hasStdExtZbb(); 775 } 776 777 bool RISCVTargetLowering::isCheapToSpeculateCtlz() const { 778 return Subtarget.hasStdExtZbb(); 779 } 780 781 bool RISCVTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 782 bool ForCodeSize) const { 783 if (VT == MVT::f16 && !Subtarget.hasStdExtZfh()) 784 return false; 785 if (VT == MVT::f32 && !Subtarget.hasStdExtF()) 786 return false; 787 if (VT == MVT::f64 && !Subtarget.hasStdExtD()) 788 return false; 789 if (Imm.isNegZero()) 790 return false; 791 return Imm.isZero(); 792 } 793 794 bool RISCVTargetLowering::hasBitPreservingFPLogic(EVT VT) const { 795 return (VT == MVT::f16 && Subtarget.hasStdExtZfh()) || 796 (VT == MVT::f32 && Subtarget.hasStdExtF()) || 797 (VT == MVT::f64 && Subtarget.hasStdExtD()); 798 } 799 800 // Changes the condition code and swaps operands if necessary, so the SetCC 801 // operation matches one of the comparisons supported directly in the RISC-V 802 // ISA. 803 static void normaliseSetCC(SDValue &LHS, SDValue &RHS, ISD::CondCode &CC) { 804 switch (CC) { 805 default: 806 break; 807 case ISD::SETGT: 808 case ISD::SETLE: 809 case ISD::SETUGT: 810 case ISD::SETULE: 811 CC = ISD::getSetCCSwappedOperands(CC); 812 std::swap(LHS, RHS); 813 break; 814 } 815 } 816 817 // Return the RISC-V branch opcode that matches the given DAG integer 818 // condition code. The CondCode must be one of those supported by the RISC-V 819 // ISA (see normaliseSetCC). 820 static unsigned getBranchOpcodeForIntCondCode(ISD::CondCode CC) { 821 switch (CC) { 822 default: 823 llvm_unreachable("Unsupported CondCode"); 824 case ISD::SETEQ: 825 return RISCV::BEQ; 826 case ISD::SETNE: 827 return RISCV::BNE; 828 case ISD::SETLT: 829 return RISCV::BLT; 830 case ISD::SETGE: 831 return RISCV::BGE; 832 case ISD::SETULT: 833 return RISCV::BLTU; 834 case ISD::SETUGE: 835 return RISCV::BGEU; 836 } 837 } 838 839 RISCVVLMUL RISCVTargetLowering::getLMUL(MVT VT) { 840 unsigned KnownSize = VT.getSizeInBits().getKnownMinValue(); 841 if (VT.getVectorElementType() == MVT::i1) 842 KnownSize *= 8; 843 844 switch (KnownSize) { 845 default: 846 llvm_unreachable("Invalid LMUL."); 847 case 8: 848 return RISCVVLMUL::LMUL_F8; 849 case 16: 850 return RISCVVLMUL::LMUL_F4; 851 case 32: 852 return RISCVVLMUL::LMUL_F2; 853 case 64: 854 return RISCVVLMUL::LMUL_1; 855 case 128: 856 return RISCVVLMUL::LMUL_2; 857 case 256: 858 return RISCVVLMUL::LMUL_4; 859 case 512: 860 return RISCVVLMUL::LMUL_8; 861 } 862 } 863 864 unsigned RISCVTargetLowering::getRegClassIDForLMUL(RISCVVLMUL LMul) { 865 switch (LMul) { 866 default: 867 llvm_unreachable("Invalid LMUL."); 868 case RISCVVLMUL::LMUL_F8: 869 case RISCVVLMUL::LMUL_F4: 870 case RISCVVLMUL::LMUL_F2: 871 case RISCVVLMUL::LMUL_1: 872 return RISCV::VRRegClassID; 873 case RISCVVLMUL::LMUL_2: 874 return RISCV::VRM2RegClassID; 875 case RISCVVLMUL::LMUL_4: 876 return RISCV::VRM4RegClassID; 877 case RISCVVLMUL::LMUL_8: 878 return RISCV::VRM8RegClassID; 879 } 880 } 881 882 unsigned RISCVTargetLowering::getSubregIndexByMVT(MVT VT, unsigned Index) { 883 RISCVVLMUL LMUL = getLMUL(VT); 884 if (LMUL == RISCVVLMUL::LMUL_F8 || LMUL == RISCVVLMUL::LMUL_F4 || 885 LMUL == RISCVVLMUL::LMUL_F2 || LMUL == RISCVVLMUL::LMUL_1) { 886 static_assert(RISCV::sub_vrm1_7 == RISCV::sub_vrm1_0 + 7, 887 "Unexpected subreg numbering"); 888 return RISCV::sub_vrm1_0 + Index; 889 } 890 if (LMUL == RISCVVLMUL::LMUL_2) { 891 static_assert(RISCV::sub_vrm2_3 == RISCV::sub_vrm2_0 + 3, 892 "Unexpected subreg numbering"); 893 return RISCV::sub_vrm2_0 + Index; 894 } 895 if (LMUL == RISCVVLMUL::LMUL_4) { 896 static_assert(RISCV::sub_vrm4_1 == RISCV::sub_vrm4_0 + 1, 897 "Unexpected subreg numbering"); 898 return RISCV::sub_vrm4_0 + Index; 899 } 900 llvm_unreachable("Invalid vector type."); 901 } 902 903 unsigned RISCVTargetLowering::getRegClassIDForVecVT(MVT VT) { 904 if (VT.getVectorElementType() == MVT::i1) 905 return RISCV::VRRegClassID; 906 return getRegClassIDForLMUL(getLMUL(VT)); 907 } 908 909 // Attempt to decompose a subvector insert/extract between VecVT and 910 // SubVecVT via subregister indices. Returns the subregister index that 911 // can perform the subvector insert/extract with the given element index, as 912 // well as the index corresponding to any leftover subvectors that must be 913 // further inserted/extracted within the register class for SubVecVT. 914 std::pair<unsigned, unsigned> 915 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( 916 MVT VecVT, MVT SubVecVT, unsigned InsertExtractIdx, 917 const RISCVRegisterInfo *TRI) { 918 static_assert((RISCV::VRM8RegClassID > RISCV::VRM4RegClassID && 919 RISCV::VRM4RegClassID > RISCV::VRM2RegClassID && 920 RISCV::VRM2RegClassID > RISCV::VRRegClassID), 921 "Register classes not ordered"); 922 unsigned VecRegClassID = getRegClassIDForVecVT(VecVT); 923 unsigned SubRegClassID = getRegClassIDForVecVT(SubVecVT); 924 // Try to compose a subregister index that takes us from the incoming 925 // LMUL>1 register class down to the outgoing one. At each step we half 926 // the LMUL: 927 // nxv16i32@12 -> nxv2i32: sub_vrm4_1_then_sub_vrm2_1_then_sub_vrm1_0 928 // Note that this is not guaranteed to find a subregister index, such as 929 // when we are extracting from one VR type to another. 930 unsigned SubRegIdx = RISCV::NoSubRegister; 931 for (const unsigned RCID : 932 {RISCV::VRM4RegClassID, RISCV::VRM2RegClassID, RISCV::VRRegClassID}) 933 if (VecRegClassID > RCID && SubRegClassID <= RCID) { 934 VecVT = VecVT.getHalfNumVectorElementsVT(); 935 bool IsHi = 936 InsertExtractIdx >= VecVT.getVectorElementCount().getKnownMinValue(); 937 SubRegIdx = TRI->composeSubRegIndices(SubRegIdx, 938 getSubregIndexByMVT(VecVT, IsHi)); 939 if (IsHi) 940 InsertExtractIdx -= VecVT.getVectorElementCount().getKnownMinValue(); 941 } 942 return {SubRegIdx, InsertExtractIdx}; 943 } 944 945 // Return the largest legal scalable vector type that matches VT's element type. 946 MVT RISCVTargetLowering::getContainerForFixedLengthVector( 947 SelectionDAG &DAG, MVT VT, const RISCVSubtarget &Subtarget) { 948 assert(VT.isFixedLengthVector() && 949 DAG.getTargetLoweringInfo().isTypeLegal(VT) && 950 "Expected legal fixed length vector!"); 951 952 unsigned LMul = Subtarget.getLMULForFixedLengthVector(VT); 953 assert(LMul <= 8 && isPowerOf2_32(LMul) && "Unexpected LMUL!"); 954 955 MVT EltVT = VT.getVectorElementType(); 956 switch (EltVT.SimpleTy) { 957 default: 958 llvm_unreachable("unexpected element type for RVV container"); 959 case MVT::i1: { 960 // Masks are calculated assuming 8-bit elements since that's when we need 961 // the most elements. 962 unsigned EltsPerBlock = RISCV::RVVBitsPerBlock / 8; 963 return MVT::getScalableVectorVT(MVT::i1, LMul * EltsPerBlock); 964 } 965 case MVT::i8: 966 case MVT::i16: 967 case MVT::i32: 968 case MVT::i64: 969 case MVT::f16: 970 case MVT::f32: 971 case MVT::f64: { 972 unsigned EltsPerBlock = RISCV::RVVBitsPerBlock / EltVT.getSizeInBits(); 973 return MVT::getScalableVectorVT(EltVT, LMul * EltsPerBlock); 974 } 975 } 976 } 977 978 // Grow V to consume an entire RVV register. 979 static SDValue convertToScalableVector(EVT VT, SDValue V, SelectionDAG &DAG, 980 const RISCVSubtarget &Subtarget) { 981 assert(VT.isScalableVector() && 982 "Expected to convert into a scalable vector!"); 983 assert(V.getValueType().isFixedLengthVector() && 984 "Expected a fixed length vector operand!"); 985 SDLoc DL(V); 986 SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 987 return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, DAG.getUNDEF(VT), V, Zero); 988 } 989 990 // Shrink V so it's just big enough to maintain a VT's worth of data. 991 static SDValue convertFromScalableVector(EVT VT, SDValue V, SelectionDAG &DAG, 992 const RISCVSubtarget &Subtarget) { 993 assert(VT.isFixedLengthVector() && 994 "Expected to convert into a fixed length vector!"); 995 assert(V.getValueType().isScalableVector() && 996 "Expected a scalable vector operand!"); 997 SDLoc DL(V); 998 SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 999 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V, Zero); 1000 } 1001 1002 // Gets the two common "VL" operands: an all-ones mask and the vector length. 1003 // VecVT is a vector type, either fixed-length or scalable, and ContainerVT is 1004 // the vector type that it is contained in. 1005 static std::pair<SDValue, SDValue> 1006 getDefaultVLOps(MVT VecVT, MVT ContainerVT, SDLoc DL, SelectionDAG &DAG, 1007 const RISCVSubtarget &Subtarget) { 1008 assert(ContainerVT.isScalableVector() && "Expecting scalable container type"); 1009 MVT XLenVT = Subtarget.getXLenVT(); 1010 SDValue VL = VecVT.isFixedLengthVector() 1011 ? DAG.getConstant(VecVT.getVectorNumElements(), DL, XLenVT) 1012 : DAG.getRegister(RISCV::X0, XLenVT); 1013 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 1014 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 1015 return {Mask, VL}; 1016 } 1017 1018 // As above but assuming the given type is a scalable vector type. 1019 static std::pair<SDValue, SDValue> 1020 getDefaultScalableVLOps(MVT VecVT, SDLoc DL, SelectionDAG &DAG, 1021 const RISCVSubtarget &Subtarget) { 1022 assert(VecVT.isScalableVector() && "Expecting a scalable vector"); 1023 return getDefaultVLOps(VecVT, VecVT, DL, DAG, Subtarget); 1024 } 1025 1026 // The state of RVV BUILD_VECTOR and VECTOR_SHUFFLE lowering is that very few 1027 // of either is (currently) supported. This can get us into an infinite loop 1028 // where we try to lower a BUILD_VECTOR as a VECTOR_SHUFFLE as a BUILD_VECTOR 1029 // as a ..., etc. 1030 // Until either (or both) of these can reliably lower any node, reporting that 1031 // we don't want to expand BUILD_VECTORs via VECTOR_SHUFFLEs at least breaks 1032 // the infinite loop. Note that this lowers BUILD_VECTOR through the stack, 1033 // which is not desirable. 1034 bool RISCVTargetLowering::shouldExpandBuildVectorWithShuffles( 1035 EVT VT, unsigned DefinedValues) const { 1036 return false; 1037 } 1038 1039 static SDValue lowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG, 1040 const RISCVSubtarget &Subtarget) { 1041 MVT VT = Op.getSimpleValueType(); 1042 assert(VT.isFixedLengthVector() && "Unexpected vector!"); 1043 1044 MVT ContainerVT = 1045 RISCVTargetLowering::getContainerForFixedLengthVector(DAG, VT, Subtarget); 1046 1047 SDLoc DL(Op); 1048 SDValue Mask, VL; 1049 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 1050 1051 if (VT.getVectorElementType() == MVT::i1) { 1052 if (ISD::isBuildVectorAllZeros(Op.getNode())) { 1053 SDValue VMClr = DAG.getNode(RISCVISD::VMCLR_VL, DL, ContainerVT, VL); 1054 return convertFromScalableVector(VT, VMClr, DAG, Subtarget); 1055 } 1056 1057 if (ISD::isBuildVectorAllOnes(Op.getNode())) { 1058 SDValue VMSet = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL); 1059 return convertFromScalableVector(VT, VMSet, DAG, Subtarget); 1060 } 1061 1062 return SDValue(); 1063 } 1064 1065 if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) { 1066 unsigned Opc = VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL 1067 : RISCVISD::VMV_V_X_VL; 1068 Splat = DAG.getNode(Opc, DL, ContainerVT, Splat, VL); 1069 return convertFromScalableVector(VT, Splat, DAG, Subtarget); 1070 } 1071 1072 // Try and match an index sequence, which we can lower directly to the vid 1073 // instruction. An all-undef vector is matched by getSplatValue, above. 1074 if (VT.isInteger()) { 1075 bool IsVID = true; 1076 for (unsigned i = 0, e = Op.getNumOperands(); i < e && IsVID; i++) 1077 IsVID &= Op.getOperand(i).isUndef() || 1078 (isa<ConstantSDNode>(Op.getOperand(i)) && 1079 Op.getConstantOperandVal(i) == i); 1080 1081 if (IsVID) { 1082 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, ContainerVT, Mask, VL); 1083 return convertFromScalableVector(VT, VID, DAG, Subtarget); 1084 } 1085 } 1086 1087 return SDValue(); 1088 } 1089 1090 static SDValue lowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG, 1091 const RISCVSubtarget &Subtarget) { 1092 SDValue V1 = Op.getOperand(0); 1093 SDLoc DL(Op); 1094 MVT VT = Op.getSimpleValueType(); 1095 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode()); 1096 1097 if (SVN->isSplat()) { 1098 int Lane = SVN->getSplatIndex(); 1099 if (Lane >= 0) { 1100 MVT ContainerVT = RISCVTargetLowering::getContainerForFixedLengthVector( 1101 DAG, VT, Subtarget); 1102 1103 V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget); 1104 assert(Lane < (int)VT.getVectorNumElements() && "Unexpected lane!"); 1105 1106 SDValue Mask, VL; 1107 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 1108 MVT XLenVT = Subtarget.getXLenVT(); 1109 SDValue Gather = 1110 DAG.getNode(RISCVISD::VRGATHER_VX_VL, DL, ContainerVT, V1, 1111 DAG.getConstant(Lane, DL, XLenVT), Mask, VL); 1112 return convertFromScalableVector(VT, Gather, DAG, Subtarget); 1113 } 1114 } 1115 1116 return SDValue(); 1117 } 1118 1119 static SDValue getRVVFPExtendOrRound(SDValue Op, MVT VT, MVT ContainerVT, 1120 SDLoc DL, SelectionDAG &DAG, 1121 const RISCVSubtarget &Subtarget) { 1122 if (VT.isScalableVector()) 1123 return DAG.getFPExtendOrRound(Op, DL, VT); 1124 assert(VT.isFixedLengthVector() && 1125 "Unexpected value type for RVV FP extend/round lowering"); 1126 SDValue Mask, VL; 1127 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 1128 unsigned RVVOpc = ContainerVT.bitsGT(Op.getSimpleValueType()) 1129 ? RISCVISD::FP_EXTEND_VL 1130 : RISCVISD::FP_ROUND_VL; 1131 return DAG.getNode(RVVOpc, DL, ContainerVT, Op, Mask, VL); 1132 } 1133 1134 SDValue RISCVTargetLowering::LowerOperation(SDValue Op, 1135 SelectionDAG &DAG) const { 1136 switch (Op.getOpcode()) { 1137 default: 1138 report_fatal_error("unimplemented operand"); 1139 case ISD::GlobalAddress: 1140 return lowerGlobalAddress(Op, DAG); 1141 case ISD::BlockAddress: 1142 return lowerBlockAddress(Op, DAG); 1143 case ISD::ConstantPool: 1144 return lowerConstantPool(Op, DAG); 1145 case ISD::JumpTable: 1146 return lowerJumpTable(Op, DAG); 1147 case ISD::GlobalTLSAddress: 1148 return lowerGlobalTLSAddress(Op, DAG); 1149 case ISD::SELECT: 1150 return lowerSELECT(Op, DAG); 1151 case ISD::VASTART: 1152 return lowerVASTART(Op, DAG); 1153 case ISD::FRAMEADDR: 1154 return lowerFRAMEADDR(Op, DAG); 1155 case ISD::RETURNADDR: 1156 return lowerRETURNADDR(Op, DAG); 1157 case ISD::SHL_PARTS: 1158 return lowerShiftLeftParts(Op, DAG); 1159 case ISD::SRA_PARTS: 1160 return lowerShiftRightParts(Op, DAG, true); 1161 case ISD::SRL_PARTS: 1162 return lowerShiftRightParts(Op, DAG, false); 1163 case ISD::BITCAST: { 1164 SDValue Op0 = Op.getOperand(0); 1165 // We can handle fixed length vector bitcasts with a simple replacement 1166 // in isel. 1167 if (Op.getValueType().isFixedLengthVector()) { 1168 if (Op0.getValueType().isFixedLengthVector()) 1169 return Op; 1170 return SDValue(); 1171 } 1172 assert(((Subtarget.is64Bit() && Subtarget.hasStdExtF()) || 1173 Subtarget.hasStdExtZfh()) && 1174 "Unexpected custom legalisation"); 1175 SDLoc DL(Op); 1176 if (Op.getValueType() == MVT::f16 && Subtarget.hasStdExtZfh()) { 1177 if (Op0.getValueType() != MVT::i16) 1178 return SDValue(); 1179 SDValue NewOp0 = 1180 DAG.getNode(ISD::ANY_EXTEND, DL, Subtarget.getXLenVT(), Op0); 1181 SDValue FPConv = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, NewOp0); 1182 return FPConv; 1183 } else if (Op.getValueType() == MVT::f32 && Subtarget.is64Bit() && 1184 Subtarget.hasStdExtF()) { 1185 if (Op0.getValueType() != MVT::i32) 1186 return SDValue(); 1187 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); 1188 SDValue FPConv = 1189 DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, NewOp0); 1190 return FPConv; 1191 } 1192 return SDValue(); 1193 } 1194 case ISD::INTRINSIC_WO_CHAIN: 1195 return LowerINTRINSIC_WO_CHAIN(Op, DAG); 1196 case ISD::INTRINSIC_W_CHAIN: 1197 return LowerINTRINSIC_W_CHAIN(Op, DAG); 1198 case ISD::BSWAP: 1199 case ISD::BITREVERSE: { 1200 // Convert BSWAP/BITREVERSE to GREVI to enable GREVI combinining. 1201 assert(Subtarget.hasStdExtZbp() && "Unexpected custom legalisation"); 1202 MVT VT = Op.getSimpleValueType(); 1203 SDLoc DL(Op); 1204 // Start with the maximum immediate value which is the bitwidth - 1. 1205 unsigned Imm = VT.getSizeInBits() - 1; 1206 // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits. 1207 if (Op.getOpcode() == ISD::BSWAP) 1208 Imm &= ~0x7U; 1209 return DAG.getNode(RISCVISD::GREVI, DL, VT, Op.getOperand(0), 1210 DAG.getTargetConstant(Imm, DL, Subtarget.getXLenVT())); 1211 } 1212 case ISD::FSHL: 1213 case ISD::FSHR: { 1214 MVT VT = Op.getSimpleValueType(); 1215 assert(VT == Subtarget.getXLenVT() && "Unexpected custom legalization"); 1216 SDLoc DL(Op); 1217 // FSL/FSR take a log2(XLen)+1 bit shift amount but XLenVT FSHL/FSHR only 1218 // use log(XLen) bits. Mask the shift amount accordingly. 1219 unsigned ShAmtWidth = Subtarget.getXLen() - 1; 1220 SDValue ShAmt = DAG.getNode(ISD::AND, DL, VT, Op.getOperand(2), 1221 DAG.getConstant(ShAmtWidth, DL, VT)); 1222 unsigned Opc = Op.getOpcode() == ISD::FSHL ? RISCVISD::FSL : RISCVISD::FSR; 1223 return DAG.getNode(Opc, DL, VT, Op.getOperand(0), Op.getOperand(1), ShAmt); 1224 } 1225 case ISD::TRUNCATE: { 1226 SDLoc DL(Op); 1227 MVT VT = Op.getSimpleValueType(); 1228 // Only custom-lower vector truncates 1229 if (!VT.isVector()) 1230 return Op; 1231 1232 // Truncates to mask types are handled differently 1233 if (VT.getVectorElementType() == MVT::i1) 1234 return lowerVectorMaskTrunc(Op, DAG); 1235 1236 // RVV only has truncates which operate from SEW*2->SEW, so lower arbitrary 1237 // truncates as a series of "RISCVISD::TRUNCATE_VECTOR_VL" nodes which 1238 // truncate by one power of two at a time. 1239 MVT DstEltVT = VT.getVectorElementType(); 1240 1241 SDValue Src = Op.getOperand(0); 1242 MVT SrcVT = Src.getSimpleValueType(); 1243 MVT SrcEltVT = SrcVT.getVectorElementType(); 1244 1245 assert(DstEltVT.bitsLT(SrcEltVT) && 1246 isPowerOf2_64(DstEltVT.getSizeInBits()) && 1247 isPowerOf2_64(SrcEltVT.getSizeInBits()) && 1248 "Unexpected vector truncate lowering"); 1249 1250 MVT ContainerVT = SrcVT; 1251 if (SrcVT.isFixedLengthVector()) { 1252 ContainerVT = RISCVTargetLowering::getContainerForFixedLengthVector( 1253 DAG, SrcVT, Subtarget); 1254 Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget); 1255 } 1256 1257 SDValue Result = Src; 1258 SDValue Mask, VL; 1259 std::tie(Mask, VL) = 1260 getDefaultVLOps(SrcVT, ContainerVT, DL, DAG, Subtarget); 1261 LLVMContext &Context = *DAG.getContext(); 1262 const ElementCount Count = ContainerVT.getVectorElementCount(); 1263 do { 1264 SrcEltVT = MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2); 1265 EVT ResultVT = EVT::getVectorVT(Context, SrcEltVT, Count); 1266 Result = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, ResultVT, Result, 1267 Mask, VL); 1268 } while (SrcEltVT != DstEltVT); 1269 1270 if (SrcVT.isFixedLengthVector()) 1271 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 1272 1273 return Result; 1274 } 1275 case ISD::ANY_EXTEND: 1276 case ISD::ZERO_EXTEND: 1277 if (Op.getOperand(0).getValueType().isVector() && 1278 Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) 1279 return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ 1); 1280 return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VZEXT_VL); 1281 case ISD::SIGN_EXTEND: 1282 if (Op.getOperand(0).getValueType().isVector() && 1283 Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) 1284 return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ -1); 1285 return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VSEXT_VL); 1286 case ISD::SPLAT_VECTOR: 1287 return lowerSPLATVECTOR(Op, DAG); 1288 case ISD::INSERT_VECTOR_ELT: 1289 return lowerINSERT_VECTOR_ELT(Op, DAG); 1290 case ISD::EXTRACT_VECTOR_ELT: 1291 return lowerEXTRACT_VECTOR_ELT(Op, DAG); 1292 case ISD::VSCALE: { 1293 MVT VT = Op.getSimpleValueType(); 1294 SDLoc DL(Op); 1295 SDValue VLENB = DAG.getNode(RISCVISD::READ_VLENB, DL, VT); 1296 // We define our scalable vector types for lmul=1 to use a 64 bit known 1297 // minimum size. e.g. <vscale x 2 x i32>. VLENB is in bytes so we calculate 1298 // vscale as VLENB / 8. 1299 SDValue VScale = DAG.getNode(ISD::SRL, DL, VT, VLENB, 1300 DAG.getConstant(3, DL, VT)); 1301 return DAG.getNode(ISD::MUL, DL, VT, VScale, Op.getOperand(0)); 1302 } 1303 case ISD::FP_EXTEND: { 1304 // RVV can only do fp_extend to types double the size as the source. We 1305 // custom-lower f16->f64 extensions to two hops of ISD::FP_EXTEND, going 1306 // via f32. 1307 SDLoc DL(Op); 1308 MVT VT = Op.getSimpleValueType(); 1309 SDValue Src = Op.getOperand(0); 1310 MVT SrcVT = Src.getSimpleValueType(); 1311 1312 // Prepare any fixed-length vector operands. 1313 MVT ContainerVT = VT; 1314 if (SrcVT.isFixedLengthVector()) { 1315 ContainerVT = RISCVTargetLowering::getContainerForFixedLengthVector( 1316 DAG, VT, Subtarget); 1317 MVT SrcContainerVT = 1318 ContainerVT.changeVectorElementType(SrcVT.getVectorElementType()); 1319 Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); 1320 } 1321 1322 if (!VT.isVector() || VT.getVectorElementType() != MVT::f64 || 1323 SrcVT.getVectorElementType() != MVT::f16) { 1324 // For scalable vectors, we only need to close the gap between 1325 // vXf16->vXf64. 1326 if (!VT.isFixedLengthVector()) 1327 return Op; 1328 // For fixed-length vectors, lower the FP_EXTEND to a custom "VL" version. 1329 Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget); 1330 return convertFromScalableVector(VT, Src, DAG, Subtarget); 1331 } 1332 1333 MVT InterVT = VT.changeVectorElementType(MVT::f32); 1334 MVT InterContainerVT = ContainerVT.changeVectorElementType(MVT::f32); 1335 SDValue IntermediateExtend = getRVVFPExtendOrRound( 1336 Src, InterVT, InterContainerVT, DL, DAG, Subtarget); 1337 1338 SDValue Extend = getRVVFPExtendOrRound(IntermediateExtend, VT, ContainerVT, 1339 DL, DAG, Subtarget); 1340 if (VT.isFixedLengthVector()) 1341 return convertFromScalableVector(VT, Extend, DAG, Subtarget); 1342 return Extend; 1343 } 1344 case ISD::FP_ROUND: { 1345 // RVV can only do fp_round to types half the size as the source. We 1346 // custom-lower f64->f16 rounds via RVV's round-to-odd float 1347 // conversion instruction. 1348 SDLoc DL(Op); 1349 MVT VT = Op.getSimpleValueType(); 1350 SDValue Src = Op.getOperand(0); 1351 MVT SrcVT = Src.getSimpleValueType(); 1352 1353 // Prepare any fixed-length vector operands. 1354 MVT ContainerVT = VT; 1355 if (VT.isFixedLengthVector()) { 1356 MVT SrcContainerVT = 1357 RISCVTargetLowering::getContainerForFixedLengthVector(DAG, SrcVT, 1358 Subtarget); 1359 ContainerVT = 1360 SrcContainerVT.changeVectorElementType(VT.getVectorElementType()); 1361 Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); 1362 } 1363 1364 if (!VT.isVector() || VT.getVectorElementType() != MVT::f16 || 1365 SrcVT.getVectorElementType() != MVT::f64) { 1366 // For scalable vectors, we only need to close the gap between 1367 // vXf64<->vXf16. 1368 if (!VT.isFixedLengthVector()) 1369 return Op; 1370 // For fixed-length vectors, lower the FP_ROUND to a custom "VL" version. 1371 Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget); 1372 return convertFromScalableVector(VT, Src, DAG, Subtarget); 1373 } 1374 1375 SDValue Mask, VL; 1376 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 1377 1378 MVT InterVT = ContainerVT.changeVectorElementType(MVT::f32); 1379 SDValue IntermediateRound = 1380 DAG.getNode(RISCVISD::VFNCVT_ROD_VL, DL, InterVT, Src, Mask, VL); 1381 SDValue Round = getRVVFPExtendOrRound(IntermediateRound, VT, ContainerVT, 1382 DL, DAG, Subtarget); 1383 1384 if (VT.isFixedLengthVector()) 1385 return convertFromScalableVector(VT, Round, DAG, Subtarget); 1386 return Round; 1387 } 1388 case ISD::FP_TO_SINT: 1389 case ISD::FP_TO_UINT: 1390 case ISD::SINT_TO_FP: 1391 case ISD::UINT_TO_FP: { 1392 // RVV can only do fp<->int conversions to types half/double the size as 1393 // the source. We custom-lower any conversions that do two hops into 1394 // sequences. 1395 MVT VT = Op.getSimpleValueType(); 1396 if (!VT.isVector()) 1397 return Op; 1398 SDLoc DL(Op); 1399 SDValue Src = Op.getOperand(0); 1400 MVT EltVT = VT.getVectorElementType(); 1401 MVT SrcVT = Src.getSimpleValueType(); 1402 MVT SrcEltVT = SrcVT.getVectorElementType(); 1403 unsigned EltSize = EltVT.getSizeInBits(); 1404 unsigned SrcEltSize = SrcEltVT.getSizeInBits(); 1405 assert(isPowerOf2_32(EltSize) && isPowerOf2_32(SrcEltSize) && 1406 "Unexpected vector element types"); 1407 1408 bool IsInt2FP = SrcEltVT.isInteger(); 1409 // Widening conversions 1410 if (EltSize > SrcEltSize && (EltSize / SrcEltSize >= 4)) { 1411 if (IsInt2FP) { 1412 // Do a regular integer sign/zero extension then convert to float. 1413 MVT IVecVT = MVT::getVectorVT(MVT::getIntegerVT(EltVT.getSizeInBits()), 1414 VT.getVectorElementCount()); 1415 unsigned ExtOpcode = Op.getOpcode() == ISD::UINT_TO_FP 1416 ? ISD::ZERO_EXTEND 1417 : ISD::SIGN_EXTEND; 1418 SDValue Ext = DAG.getNode(ExtOpcode, DL, IVecVT, Src); 1419 return DAG.getNode(Op.getOpcode(), DL, VT, Ext); 1420 } 1421 // FP2Int 1422 assert(SrcEltVT == MVT::f16 && "Unexpected FP_TO_[US]INT lowering"); 1423 // Do one doubling fp_extend then complete the operation by converting 1424 // to int. 1425 MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount()); 1426 SDValue FExt = DAG.getFPExtendOrRound(Src, DL, InterimFVT); 1427 return DAG.getNode(Op.getOpcode(), DL, VT, FExt); 1428 } 1429 1430 // Narrowing conversions 1431 if (SrcEltSize > EltSize && (SrcEltSize / EltSize >= 4)) { 1432 if (IsInt2FP) { 1433 // One narrowing int_to_fp, then an fp_round. 1434 assert(EltVT == MVT::f16 && "Unexpected [US]_TO_FP lowering"); 1435 MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount()); 1436 SDValue Int2FP = DAG.getNode(Op.getOpcode(), DL, InterimFVT, Src); 1437 return DAG.getFPExtendOrRound(Int2FP, DL, VT); 1438 } 1439 // FP2Int 1440 // One narrowing fp_to_int, then truncate the integer. If the float isn't 1441 // representable by the integer, the result is poison. 1442 MVT IVecVT = 1443 MVT::getVectorVT(MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2), 1444 VT.getVectorElementCount()); 1445 SDValue FP2Int = DAG.getNode(Op.getOpcode(), DL, IVecVT, Src); 1446 return DAG.getNode(ISD::TRUNCATE, DL, VT, FP2Int); 1447 } 1448 1449 // Scalable vectors can exit here. Patterns will handle equally-sized 1450 // conversions halving/doubling ones. 1451 if (!VT.isFixedLengthVector()) 1452 return Op; 1453 1454 // For fixed-length vectors we lower to a custom "VL" node. 1455 unsigned RVVOpc = 0; 1456 switch (Op.getOpcode()) { 1457 default: 1458 llvm_unreachable("Impossible opcode"); 1459 case ISD::FP_TO_SINT: 1460 RVVOpc = RISCVISD::FP_TO_SINT_VL; 1461 break; 1462 case ISD::FP_TO_UINT: 1463 RVVOpc = RISCVISD::FP_TO_UINT_VL; 1464 break; 1465 case ISD::SINT_TO_FP: 1466 RVVOpc = RISCVISD::SINT_TO_FP_VL; 1467 break; 1468 case ISD::UINT_TO_FP: 1469 RVVOpc = RISCVISD::UINT_TO_FP_VL; 1470 break; 1471 } 1472 1473 MVT ContainerVT, SrcContainerVT; 1474 // Derive the reference container type from the larger vector type. 1475 if (SrcEltSize > EltSize) { 1476 SrcContainerVT = RISCVTargetLowering::getContainerForFixedLengthVector( 1477 DAG, SrcVT, Subtarget); 1478 ContainerVT = 1479 SrcContainerVT.changeVectorElementType(VT.getVectorElementType()); 1480 } else { 1481 ContainerVT = RISCVTargetLowering::getContainerForFixedLengthVector( 1482 DAG, VT, Subtarget); 1483 SrcContainerVT = ContainerVT.changeVectorElementType(SrcEltVT); 1484 } 1485 1486 SDValue Mask, VL; 1487 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 1488 1489 Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); 1490 Src = DAG.getNode(RVVOpc, DL, ContainerVT, Src, Mask, VL); 1491 return convertFromScalableVector(VT, Src, DAG, Subtarget); 1492 } 1493 case ISD::VECREDUCE_ADD: 1494 case ISD::VECREDUCE_UMAX: 1495 case ISD::VECREDUCE_SMAX: 1496 case ISD::VECREDUCE_UMIN: 1497 case ISD::VECREDUCE_SMIN: 1498 case ISD::VECREDUCE_AND: 1499 case ISD::VECREDUCE_OR: 1500 case ISD::VECREDUCE_XOR: 1501 return lowerVECREDUCE(Op, DAG); 1502 case ISD::VECREDUCE_FADD: 1503 case ISD::VECREDUCE_SEQ_FADD: 1504 return lowerFPVECREDUCE(Op, DAG); 1505 case ISD::INSERT_SUBVECTOR: 1506 return lowerINSERT_SUBVECTOR(Op, DAG); 1507 case ISD::EXTRACT_SUBVECTOR: 1508 return lowerEXTRACT_SUBVECTOR(Op, DAG); 1509 case ISD::BUILD_VECTOR: 1510 return lowerBUILD_VECTOR(Op, DAG, Subtarget); 1511 case ISD::VECTOR_SHUFFLE: 1512 return lowerVECTOR_SHUFFLE(Op, DAG, Subtarget); 1513 case ISD::CONCAT_VECTORS: { 1514 // Split CONCAT_VECTORS into a series of INSERT_SUBVECTOR nodes. This is 1515 // better than going through the stack, as the default expansion does. 1516 SDLoc DL(Op); 1517 MVT VT = Op.getSimpleValueType(); 1518 assert(VT.isFixedLengthVector() && "Unexpected CONCAT_VECTORS lowering"); 1519 unsigned NumOpElts = 1520 Op.getOperand(0).getSimpleValueType().getVectorNumElements(); 1521 SDValue Vec = DAG.getUNDEF(VT); 1522 for (const auto &OpIdx : enumerate(Op->ops())) 1523 Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, Vec, OpIdx.value(), 1524 DAG.getIntPtrConstant(OpIdx.index() * NumOpElts, DL)); 1525 return Vec; 1526 } 1527 case ISD::LOAD: 1528 return lowerFixedLengthVectorLoadToRVV(Op, DAG); 1529 case ISD::STORE: 1530 return lowerFixedLengthVectorStoreToRVV(Op, DAG); 1531 case ISD::SETCC: 1532 return lowerFixedLengthVectorSetccToRVV(Op, DAG); 1533 case ISD::ADD: 1534 return lowerToScalableOp(Op, DAG, RISCVISD::ADD_VL); 1535 case ISD::SUB: 1536 return lowerToScalableOp(Op, DAG, RISCVISD::SUB_VL); 1537 case ISD::MUL: 1538 return lowerToScalableOp(Op, DAG, RISCVISD::MUL_VL); 1539 case ISD::MULHS: 1540 return lowerToScalableOp(Op, DAG, RISCVISD::MULHS_VL); 1541 case ISD::MULHU: 1542 return lowerToScalableOp(Op, DAG, RISCVISD::MULHU_VL); 1543 case ISD::AND: 1544 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMAND_VL, 1545 RISCVISD::AND_VL); 1546 case ISD::OR: 1547 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMOR_VL, 1548 RISCVISD::OR_VL); 1549 case ISD::XOR: 1550 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMXOR_VL, 1551 RISCVISD::XOR_VL); 1552 case ISD::SDIV: 1553 return lowerToScalableOp(Op, DAG, RISCVISD::SDIV_VL); 1554 case ISD::SREM: 1555 return lowerToScalableOp(Op, DAG, RISCVISD::SREM_VL); 1556 case ISD::UDIV: 1557 return lowerToScalableOp(Op, DAG, RISCVISD::UDIV_VL); 1558 case ISD::UREM: 1559 return lowerToScalableOp(Op, DAG, RISCVISD::UREM_VL); 1560 case ISD::SHL: 1561 return lowerToScalableOp(Op, DAG, RISCVISD::SHL_VL); 1562 case ISD::SRA: 1563 return lowerToScalableOp(Op, DAG, RISCVISD::SRA_VL); 1564 case ISD::SRL: 1565 return lowerToScalableOp(Op, DAG, RISCVISD::SRL_VL); 1566 case ISD::FADD: 1567 return lowerToScalableOp(Op, DAG, RISCVISD::FADD_VL); 1568 case ISD::FSUB: 1569 return lowerToScalableOp(Op, DAG, RISCVISD::FSUB_VL); 1570 case ISD::FMUL: 1571 return lowerToScalableOp(Op, DAG, RISCVISD::FMUL_VL); 1572 case ISD::FDIV: 1573 return lowerToScalableOp(Op, DAG, RISCVISD::FDIV_VL); 1574 case ISD::FNEG: 1575 return lowerToScalableOp(Op, DAG, RISCVISD::FNEG_VL); 1576 case ISD::FABS: 1577 return lowerToScalableOp(Op, DAG, RISCVISD::FABS_VL); 1578 case ISD::FSQRT: 1579 return lowerToScalableOp(Op, DAG, RISCVISD::FSQRT_VL); 1580 case ISD::FMA: 1581 return lowerToScalableOp(Op, DAG, RISCVISD::FMA_VL); 1582 case ISD::SMIN: 1583 return lowerToScalableOp(Op, DAG, RISCVISD::SMIN_VL); 1584 case ISD::SMAX: 1585 return lowerToScalableOp(Op, DAG, RISCVISD::SMAX_VL); 1586 case ISD::UMIN: 1587 return lowerToScalableOp(Op, DAG, RISCVISD::UMIN_VL); 1588 case ISD::UMAX: 1589 return lowerToScalableOp(Op, DAG, RISCVISD::UMAX_VL); 1590 case ISD::VSELECT: 1591 return lowerFixedLengthVectorSelectToRVV(Op, DAG); 1592 } 1593 } 1594 1595 static SDValue getTargetNode(GlobalAddressSDNode *N, SDLoc DL, EVT Ty, 1596 SelectionDAG &DAG, unsigned Flags) { 1597 return DAG.getTargetGlobalAddress(N->getGlobal(), DL, Ty, 0, Flags); 1598 } 1599 1600 static SDValue getTargetNode(BlockAddressSDNode *N, SDLoc DL, EVT Ty, 1601 SelectionDAG &DAG, unsigned Flags) { 1602 return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, N->getOffset(), 1603 Flags); 1604 } 1605 1606 static SDValue getTargetNode(ConstantPoolSDNode *N, SDLoc DL, EVT Ty, 1607 SelectionDAG &DAG, unsigned Flags) { 1608 return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlign(), 1609 N->getOffset(), Flags); 1610 } 1611 1612 static SDValue getTargetNode(JumpTableSDNode *N, SDLoc DL, EVT Ty, 1613 SelectionDAG &DAG, unsigned Flags) { 1614 return DAG.getTargetJumpTable(N->getIndex(), Ty, Flags); 1615 } 1616 1617 template <class NodeTy> 1618 SDValue RISCVTargetLowering::getAddr(NodeTy *N, SelectionDAG &DAG, 1619 bool IsLocal) const { 1620 SDLoc DL(N); 1621 EVT Ty = getPointerTy(DAG.getDataLayout()); 1622 1623 if (isPositionIndependent()) { 1624 SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0); 1625 if (IsLocal) 1626 // Use PC-relative addressing to access the symbol. This generates the 1627 // pattern (PseudoLLA sym), which expands to (addi (auipc %pcrel_hi(sym)) 1628 // %pcrel_lo(auipc)). 1629 return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0); 1630 1631 // Use PC-relative addressing to access the GOT for this symbol, then load 1632 // the address from the GOT. This generates the pattern (PseudoLA sym), 1633 // which expands to (ld (addi (auipc %got_pcrel_hi(sym)) %pcrel_lo(auipc))). 1634 return SDValue(DAG.getMachineNode(RISCV::PseudoLA, DL, Ty, Addr), 0); 1635 } 1636 1637 switch (getTargetMachine().getCodeModel()) { 1638 default: 1639 report_fatal_error("Unsupported code model for lowering"); 1640 case CodeModel::Small: { 1641 // Generate a sequence for accessing addresses within the first 2 GiB of 1642 // address space. This generates the pattern (addi (lui %hi(sym)) %lo(sym)). 1643 SDValue AddrHi = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_HI); 1644 SDValue AddrLo = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_LO); 1645 SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0); 1646 return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNHi, AddrLo), 0); 1647 } 1648 case CodeModel::Medium: { 1649 // Generate a sequence for accessing addresses within any 2GiB range within 1650 // the address space. This generates the pattern (PseudoLLA sym), which 1651 // expands to (addi (auipc %pcrel_hi(sym)) %pcrel_lo(auipc)). 1652 SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0); 1653 return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0); 1654 } 1655 } 1656 } 1657 1658 SDValue RISCVTargetLowering::lowerGlobalAddress(SDValue Op, 1659 SelectionDAG &DAG) const { 1660 SDLoc DL(Op); 1661 EVT Ty = Op.getValueType(); 1662 GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op); 1663 int64_t Offset = N->getOffset(); 1664 MVT XLenVT = Subtarget.getXLenVT(); 1665 1666 const GlobalValue *GV = N->getGlobal(); 1667 bool IsLocal = getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV); 1668 SDValue Addr = getAddr(N, DAG, IsLocal); 1669 1670 // In order to maximise the opportunity for common subexpression elimination, 1671 // emit a separate ADD node for the global address offset instead of folding 1672 // it in the global address node. Later peephole optimisations may choose to 1673 // fold it back in when profitable. 1674 if (Offset != 0) 1675 return DAG.getNode(ISD::ADD, DL, Ty, Addr, 1676 DAG.getConstant(Offset, DL, XLenVT)); 1677 return Addr; 1678 } 1679 1680 SDValue RISCVTargetLowering::lowerBlockAddress(SDValue Op, 1681 SelectionDAG &DAG) const { 1682 BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op); 1683 1684 return getAddr(N, DAG); 1685 } 1686 1687 SDValue RISCVTargetLowering::lowerConstantPool(SDValue Op, 1688 SelectionDAG &DAG) const { 1689 ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op); 1690 1691 return getAddr(N, DAG); 1692 } 1693 1694 SDValue RISCVTargetLowering::lowerJumpTable(SDValue Op, 1695 SelectionDAG &DAG) const { 1696 JumpTableSDNode *N = cast<JumpTableSDNode>(Op); 1697 1698 return getAddr(N, DAG); 1699 } 1700 1701 SDValue RISCVTargetLowering::getStaticTLSAddr(GlobalAddressSDNode *N, 1702 SelectionDAG &DAG, 1703 bool UseGOT) const { 1704 SDLoc DL(N); 1705 EVT Ty = getPointerTy(DAG.getDataLayout()); 1706 const GlobalValue *GV = N->getGlobal(); 1707 MVT XLenVT = Subtarget.getXLenVT(); 1708 1709 if (UseGOT) { 1710 // Use PC-relative addressing to access the GOT for this TLS symbol, then 1711 // load the address from the GOT and add the thread pointer. This generates 1712 // the pattern (PseudoLA_TLS_IE sym), which expands to 1713 // (ld (auipc %tls_ie_pcrel_hi(sym)) %pcrel_lo(auipc)). 1714 SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0); 1715 SDValue Load = 1716 SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_IE, DL, Ty, Addr), 0); 1717 1718 // Add the thread pointer. 1719 SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT); 1720 return DAG.getNode(ISD::ADD, DL, Ty, Load, TPReg); 1721 } 1722 1723 // Generate a sequence for accessing the address relative to the thread 1724 // pointer, with the appropriate adjustment for the thread pointer offset. 1725 // This generates the pattern 1726 // (add (add_tprel (lui %tprel_hi(sym)) tp %tprel_add(sym)) %tprel_lo(sym)) 1727 SDValue AddrHi = 1728 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_HI); 1729 SDValue AddrAdd = 1730 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_ADD); 1731 SDValue AddrLo = 1732 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_LO); 1733 1734 SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0); 1735 SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT); 1736 SDValue MNAdd = SDValue( 1737 DAG.getMachineNode(RISCV::PseudoAddTPRel, DL, Ty, MNHi, TPReg, AddrAdd), 1738 0); 1739 return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNAdd, AddrLo), 0); 1740 } 1741 1742 SDValue RISCVTargetLowering::getDynamicTLSAddr(GlobalAddressSDNode *N, 1743 SelectionDAG &DAG) const { 1744 SDLoc DL(N); 1745 EVT Ty = getPointerTy(DAG.getDataLayout()); 1746 IntegerType *CallTy = Type::getIntNTy(*DAG.getContext(), Ty.getSizeInBits()); 1747 const GlobalValue *GV = N->getGlobal(); 1748 1749 // Use a PC-relative addressing mode to access the global dynamic GOT address. 1750 // This generates the pattern (PseudoLA_TLS_GD sym), which expands to 1751 // (addi (auipc %tls_gd_pcrel_hi(sym)) %pcrel_lo(auipc)). 1752 SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0); 1753 SDValue Load = 1754 SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_GD, DL, Ty, Addr), 0); 1755 1756 // Prepare argument list to generate call. 1757 ArgListTy Args; 1758 ArgListEntry Entry; 1759 Entry.Node = Load; 1760 Entry.Ty = CallTy; 1761 Args.push_back(Entry); 1762 1763 // Setup call to __tls_get_addr. 1764 TargetLowering::CallLoweringInfo CLI(DAG); 1765 CLI.setDebugLoc(DL) 1766 .setChain(DAG.getEntryNode()) 1767 .setLibCallee(CallingConv::C, CallTy, 1768 DAG.getExternalSymbol("__tls_get_addr", Ty), 1769 std::move(Args)); 1770 1771 return LowerCallTo(CLI).first; 1772 } 1773 1774 SDValue RISCVTargetLowering::lowerGlobalTLSAddress(SDValue Op, 1775 SelectionDAG &DAG) const { 1776 SDLoc DL(Op); 1777 EVT Ty = Op.getValueType(); 1778 GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op); 1779 int64_t Offset = N->getOffset(); 1780 MVT XLenVT = Subtarget.getXLenVT(); 1781 1782 TLSModel::Model Model = getTargetMachine().getTLSModel(N->getGlobal()); 1783 1784 if (DAG.getMachineFunction().getFunction().getCallingConv() == 1785 CallingConv::GHC) 1786 report_fatal_error("In GHC calling convention TLS is not supported"); 1787 1788 SDValue Addr; 1789 switch (Model) { 1790 case TLSModel::LocalExec: 1791 Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/false); 1792 break; 1793 case TLSModel::InitialExec: 1794 Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/true); 1795 break; 1796 case TLSModel::LocalDynamic: 1797 case TLSModel::GeneralDynamic: 1798 Addr = getDynamicTLSAddr(N, DAG); 1799 break; 1800 } 1801 1802 // In order to maximise the opportunity for common subexpression elimination, 1803 // emit a separate ADD node for the global address offset instead of folding 1804 // it in the global address node. Later peephole optimisations may choose to 1805 // fold it back in when profitable. 1806 if (Offset != 0) 1807 return DAG.getNode(ISD::ADD, DL, Ty, Addr, 1808 DAG.getConstant(Offset, DL, XLenVT)); 1809 return Addr; 1810 } 1811 1812 SDValue RISCVTargetLowering::lowerSELECT(SDValue Op, SelectionDAG &DAG) const { 1813 SDValue CondV = Op.getOperand(0); 1814 SDValue TrueV = Op.getOperand(1); 1815 SDValue FalseV = Op.getOperand(2); 1816 SDLoc DL(Op); 1817 MVT XLenVT = Subtarget.getXLenVT(); 1818 1819 // If the result type is XLenVT and CondV is the output of a SETCC node 1820 // which also operated on XLenVT inputs, then merge the SETCC node into the 1821 // lowered RISCVISD::SELECT_CC to take advantage of the integer 1822 // compare+branch instructions. i.e.: 1823 // (select (setcc lhs, rhs, cc), truev, falsev) 1824 // -> (riscvisd::select_cc lhs, rhs, cc, truev, falsev) 1825 if (Op.getSimpleValueType() == XLenVT && CondV.getOpcode() == ISD::SETCC && 1826 CondV.getOperand(0).getSimpleValueType() == XLenVT) { 1827 SDValue LHS = CondV.getOperand(0); 1828 SDValue RHS = CondV.getOperand(1); 1829 auto CC = cast<CondCodeSDNode>(CondV.getOperand(2)); 1830 ISD::CondCode CCVal = CC->get(); 1831 1832 normaliseSetCC(LHS, RHS, CCVal); 1833 1834 SDValue TargetCC = DAG.getConstant(CCVal, DL, XLenVT); 1835 SDValue Ops[] = {LHS, RHS, TargetCC, TrueV, FalseV}; 1836 return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops); 1837 } 1838 1839 // Otherwise: 1840 // (select condv, truev, falsev) 1841 // -> (riscvisd::select_cc condv, zero, setne, truev, falsev) 1842 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 1843 SDValue SetNE = DAG.getConstant(ISD::SETNE, DL, XLenVT); 1844 1845 SDValue Ops[] = {CondV, Zero, SetNE, TrueV, FalseV}; 1846 1847 return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops); 1848 } 1849 1850 SDValue RISCVTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const { 1851 MachineFunction &MF = DAG.getMachineFunction(); 1852 RISCVMachineFunctionInfo *FuncInfo = MF.getInfo<RISCVMachineFunctionInfo>(); 1853 1854 SDLoc DL(Op); 1855 SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), 1856 getPointerTy(MF.getDataLayout())); 1857 1858 // vastart just stores the address of the VarArgsFrameIndex slot into the 1859 // memory location argument. 1860 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 1861 return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1), 1862 MachinePointerInfo(SV)); 1863 } 1864 1865 SDValue RISCVTargetLowering::lowerFRAMEADDR(SDValue Op, 1866 SelectionDAG &DAG) const { 1867 const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo(); 1868 MachineFunction &MF = DAG.getMachineFunction(); 1869 MachineFrameInfo &MFI = MF.getFrameInfo(); 1870 MFI.setFrameAddressIsTaken(true); 1871 Register FrameReg = RI.getFrameRegister(MF); 1872 int XLenInBytes = Subtarget.getXLen() / 8; 1873 1874 EVT VT = Op.getValueType(); 1875 SDLoc DL(Op); 1876 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, FrameReg, VT); 1877 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 1878 while (Depth--) { 1879 int Offset = -(XLenInBytes * 2); 1880 SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr, 1881 DAG.getIntPtrConstant(Offset, DL)); 1882 FrameAddr = 1883 DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo()); 1884 } 1885 return FrameAddr; 1886 } 1887 1888 SDValue RISCVTargetLowering::lowerRETURNADDR(SDValue Op, 1889 SelectionDAG &DAG) const { 1890 const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo(); 1891 MachineFunction &MF = DAG.getMachineFunction(); 1892 MachineFrameInfo &MFI = MF.getFrameInfo(); 1893 MFI.setReturnAddressIsTaken(true); 1894 MVT XLenVT = Subtarget.getXLenVT(); 1895 int XLenInBytes = Subtarget.getXLen() / 8; 1896 1897 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 1898 return SDValue(); 1899 1900 EVT VT = Op.getValueType(); 1901 SDLoc DL(Op); 1902 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 1903 if (Depth) { 1904 int Off = -XLenInBytes; 1905 SDValue FrameAddr = lowerFRAMEADDR(Op, DAG); 1906 SDValue Offset = DAG.getConstant(Off, DL, VT); 1907 return DAG.getLoad(VT, DL, DAG.getEntryNode(), 1908 DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset), 1909 MachinePointerInfo()); 1910 } 1911 1912 // Return the value of the return address register, marking it an implicit 1913 // live-in. 1914 Register Reg = MF.addLiveIn(RI.getRARegister(), getRegClassFor(XLenVT)); 1915 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, XLenVT); 1916 } 1917 1918 SDValue RISCVTargetLowering::lowerShiftLeftParts(SDValue Op, 1919 SelectionDAG &DAG) const { 1920 SDLoc DL(Op); 1921 SDValue Lo = Op.getOperand(0); 1922 SDValue Hi = Op.getOperand(1); 1923 SDValue Shamt = Op.getOperand(2); 1924 EVT VT = Lo.getValueType(); 1925 1926 // if Shamt-XLEN < 0: // Shamt < XLEN 1927 // Lo = Lo << Shamt 1928 // Hi = (Hi << Shamt) | ((Lo >>u 1) >>u (XLEN-1 - Shamt)) 1929 // else: 1930 // Lo = 0 1931 // Hi = Lo << (Shamt-XLEN) 1932 1933 SDValue Zero = DAG.getConstant(0, DL, VT); 1934 SDValue One = DAG.getConstant(1, DL, VT); 1935 SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT); 1936 SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT); 1937 SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen); 1938 SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt); 1939 1940 SDValue LoTrue = DAG.getNode(ISD::SHL, DL, VT, Lo, Shamt); 1941 SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, VT, Lo, One); 1942 SDValue ShiftRightLo = 1943 DAG.getNode(ISD::SRL, DL, VT, ShiftRight1Lo, XLenMinus1Shamt); 1944 SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, Hi, Shamt); 1945 SDValue HiTrue = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo); 1946 SDValue HiFalse = DAG.getNode(ISD::SHL, DL, VT, Lo, ShamtMinusXLen); 1947 1948 SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT); 1949 1950 Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, Zero); 1951 Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse); 1952 1953 SDValue Parts[2] = {Lo, Hi}; 1954 return DAG.getMergeValues(Parts, DL); 1955 } 1956 1957 SDValue RISCVTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG, 1958 bool IsSRA) const { 1959 SDLoc DL(Op); 1960 SDValue Lo = Op.getOperand(0); 1961 SDValue Hi = Op.getOperand(1); 1962 SDValue Shamt = Op.getOperand(2); 1963 EVT VT = Lo.getValueType(); 1964 1965 // SRA expansion: 1966 // if Shamt-XLEN < 0: // Shamt < XLEN 1967 // Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt)) 1968 // Hi = Hi >>s Shamt 1969 // else: 1970 // Lo = Hi >>s (Shamt-XLEN); 1971 // Hi = Hi >>s (XLEN-1) 1972 // 1973 // SRL expansion: 1974 // if Shamt-XLEN < 0: // Shamt < XLEN 1975 // Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt)) 1976 // Hi = Hi >>u Shamt 1977 // else: 1978 // Lo = Hi >>u (Shamt-XLEN); 1979 // Hi = 0; 1980 1981 unsigned ShiftRightOp = IsSRA ? ISD::SRA : ISD::SRL; 1982 1983 SDValue Zero = DAG.getConstant(0, DL, VT); 1984 SDValue One = DAG.getConstant(1, DL, VT); 1985 SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT); 1986 SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT); 1987 SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen); 1988 SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt); 1989 1990 SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, Lo, Shamt); 1991 SDValue ShiftLeftHi1 = DAG.getNode(ISD::SHL, DL, VT, Hi, One); 1992 SDValue ShiftLeftHi = 1993 DAG.getNode(ISD::SHL, DL, VT, ShiftLeftHi1, XLenMinus1Shamt); 1994 SDValue LoTrue = DAG.getNode(ISD::OR, DL, VT, ShiftRightLo, ShiftLeftHi); 1995 SDValue HiTrue = DAG.getNode(ShiftRightOp, DL, VT, Hi, Shamt); 1996 SDValue LoFalse = DAG.getNode(ShiftRightOp, DL, VT, Hi, ShamtMinusXLen); 1997 SDValue HiFalse = 1998 IsSRA ? DAG.getNode(ISD::SRA, DL, VT, Hi, XLenMinus1) : Zero; 1999 2000 SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT); 2001 2002 Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, LoFalse); 2003 Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse); 2004 2005 SDValue Parts[2] = {Lo, Hi}; 2006 return DAG.getMergeValues(Parts, DL); 2007 } 2008 2009 // Custom-lower a SPLAT_VECTOR where XLEN<SEW, as the SEW element type is 2010 // illegal (currently only vXi64 RV32). 2011 // FIXME: We could also catch non-constant sign-extended i32 values and lower 2012 // them to SPLAT_VECTOR_I64 2013 SDValue RISCVTargetLowering::lowerSPLATVECTOR(SDValue Op, 2014 SelectionDAG &DAG) const { 2015 SDLoc DL(Op); 2016 EVT VecVT = Op.getValueType(); 2017 assert(!Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64 && 2018 "Unexpected SPLAT_VECTOR lowering"); 2019 SDValue SplatVal = Op.getOperand(0); 2020 2021 // If we can prove that the value is a sign-extended 32-bit value, lower this 2022 // as a custom node in order to try and match RVV vector/scalar instructions. 2023 if (auto *CVal = dyn_cast<ConstantSDNode>(SplatVal)) { 2024 if (isInt<32>(CVal->getSExtValue())) 2025 return DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, 2026 DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32)); 2027 } 2028 2029 if (SplatVal.getOpcode() == ISD::SIGN_EXTEND && 2030 SplatVal.getOperand(0).getValueType() == MVT::i32) { 2031 return DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, 2032 SplatVal.getOperand(0)); 2033 } 2034 2035 // Else, on RV32 we lower an i64-element SPLAT_VECTOR thus, being careful not 2036 // to accidentally sign-extend the 32-bit halves to the e64 SEW: 2037 // vmv.v.x vX, hi 2038 // vsll.vx vX, vX, /*32*/ 2039 // vmv.v.x vY, lo 2040 // vsll.vx vY, vY, /*32*/ 2041 // vsrl.vx vY, vY, /*32*/ 2042 // vor.vv vX, vX, vY 2043 SDValue One = DAG.getConstant(1, DL, MVT::i32); 2044 SDValue Zero = DAG.getConstant(0, DL, MVT::i32); 2045 SDValue ThirtyTwoV = DAG.getConstant(32, DL, VecVT); 2046 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, SplatVal, Zero); 2047 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, SplatVal, One); 2048 2049 Lo = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, Lo); 2050 Lo = DAG.getNode(ISD::SHL, DL, VecVT, Lo, ThirtyTwoV); 2051 Lo = DAG.getNode(ISD::SRL, DL, VecVT, Lo, ThirtyTwoV); 2052 2053 if (isNullConstant(Hi)) 2054 return Lo; 2055 2056 Hi = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, Hi); 2057 Hi = DAG.getNode(ISD::SHL, DL, VecVT, Hi, ThirtyTwoV); 2058 2059 return DAG.getNode(ISD::OR, DL, VecVT, Lo, Hi); 2060 } 2061 2062 // Custom-lower extensions from mask vectors by using a vselect either with 1 2063 // for zero/any-extension or -1 for sign-extension: 2064 // (vXiN = (s|z)ext vXi1:vmask) -> (vXiN = vselect vmask, (-1 or 1), 0) 2065 // Note that any-extension is lowered identically to zero-extension. 2066 SDValue RISCVTargetLowering::lowerVectorMaskExt(SDValue Op, SelectionDAG &DAG, 2067 int64_t ExtTrueVal) const { 2068 SDLoc DL(Op); 2069 MVT VecVT = Op.getSimpleValueType(); 2070 SDValue Src = Op.getOperand(0); 2071 // Only custom-lower extensions from mask types 2072 assert(Src.getValueType().isVector() && 2073 Src.getValueType().getVectorElementType() == MVT::i1); 2074 2075 MVT XLenVT = Subtarget.getXLenVT(); 2076 SDValue SplatZero = DAG.getConstant(0, DL, XLenVT); 2077 SDValue SplatTrueVal = DAG.getConstant(ExtTrueVal, DL, XLenVT); 2078 2079 if (VecVT.isScalableVector()) { 2080 // Be careful not to introduce illegal scalar types at this stage, and be 2081 // careful also about splatting constants as on RV32, vXi64 SPLAT_VECTOR is 2082 // illegal and must be expanded. Since we know that the constants are 2083 // sign-extended 32-bit values, we use SPLAT_VECTOR_I64 directly. 2084 bool IsRV32E64 = 2085 !Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64; 2086 2087 if (!IsRV32E64) { 2088 SplatZero = DAG.getSplatVector(VecVT, DL, SplatZero); 2089 SplatTrueVal = DAG.getSplatVector(VecVT, DL, SplatTrueVal); 2090 } else { 2091 SplatZero = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, SplatZero); 2092 SplatTrueVal = 2093 DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, SplatTrueVal); 2094 } 2095 2096 return DAG.getNode(ISD::VSELECT, DL, VecVT, Src, SplatTrueVal, SplatZero); 2097 } 2098 2099 MVT ContainerVT = RISCVTargetLowering::getContainerForFixedLengthVector( 2100 DAG, VecVT, Subtarget); 2101 MVT I1ContainerVT = 2102 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 2103 2104 SDValue CC = convertToScalableVector(I1ContainerVT, Src, DAG, Subtarget); 2105 2106 SDValue Mask, VL; 2107 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 2108 2109 SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatZero, VL); 2110 SplatTrueVal = 2111 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatTrueVal, VL); 2112 SDValue Select = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC, 2113 SplatTrueVal, SplatZero, VL); 2114 2115 return convertFromScalableVector(VecVT, Select, DAG, Subtarget); 2116 } 2117 2118 SDValue RISCVTargetLowering::lowerFixedLengthVectorExtendToRVV( 2119 SDValue Op, SelectionDAG &DAG, unsigned ExtendOpc) const { 2120 MVT ExtVT = Op.getSimpleValueType(); 2121 // Only custom-lower extensions from fixed-length vector types. 2122 if (!ExtVT.isFixedLengthVector()) 2123 return Op; 2124 MVT VT = Op.getOperand(0).getSimpleValueType(); 2125 // Grab the canonical container type for the extended type. Infer the smaller 2126 // type from that to ensure the same number of vector elements, as we know 2127 // the LMUL will be sufficient to hold the smaller type. 2128 MVT ContainerExtVT = RISCVTargetLowering::getContainerForFixedLengthVector( 2129 DAG, ExtVT, Subtarget); 2130 // Get the extended container type manually to ensure the same number of 2131 // vector elements between source and dest. 2132 MVT ContainerVT = MVT::getVectorVT(VT.getVectorElementType(), 2133 ContainerExtVT.getVectorElementCount()); 2134 2135 SDValue Op1 = 2136 convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget); 2137 2138 SDLoc DL(Op); 2139 SDValue Mask, VL; 2140 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 2141 2142 SDValue Ext = DAG.getNode(ExtendOpc, DL, ContainerExtVT, Op1, Mask, VL); 2143 2144 return convertFromScalableVector(ExtVT, Ext, DAG, Subtarget); 2145 } 2146 2147 // Custom-lower truncations from vectors to mask vectors by using a mask and a 2148 // setcc operation: 2149 // (vXi1 = trunc vXiN vec) -> (vXi1 = setcc (and vec, 1), 0, ne) 2150 SDValue RISCVTargetLowering::lowerVectorMaskTrunc(SDValue Op, 2151 SelectionDAG &DAG) const { 2152 SDLoc DL(Op); 2153 EVT MaskVT = Op.getValueType(); 2154 // Only expect to custom-lower truncations to mask types 2155 assert(MaskVT.isVector() && MaskVT.getVectorElementType() == MVT::i1 && 2156 "Unexpected type for vector mask lowering"); 2157 SDValue Src = Op.getOperand(0); 2158 MVT VecVT = Src.getSimpleValueType(); 2159 2160 // If this is a fixed vector, we need to convert it to a scalable vector. 2161 MVT ContainerVT = VecVT; 2162 if (VecVT.isFixedLengthVector()) { 2163 ContainerVT = getContainerForFixedLengthVector(DAG, VecVT, Subtarget); 2164 Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget); 2165 } 2166 2167 SDValue SplatOne = DAG.getConstant(1, DL, Subtarget.getXLenVT()); 2168 SDValue SplatZero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 2169 2170 SplatOne = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatOne); 2171 SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatZero); 2172 2173 if (VecVT.isScalableVector()) { 2174 SDValue Trunc = DAG.getNode(ISD::AND, DL, VecVT, Src, SplatOne); 2175 return DAG.getSetCC(DL, MaskVT, Trunc, SplatZero, ISD::SETNE); 2176 } 2177 2178 SDValue Mask, VL; 2179 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 2180 2181 MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1); 2182 SDValue Trunc = 2183 DAG.getNode(RISCVISD::AND_VL, DL, ContainerVT, Src, SplatOne, Mask, VL); 2184 Trunc = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskContainerVT, Trunc, SplatZero, 2185 DAG.getCondCode(ISD::SETNE), Mask, VL); 2186 return convertFromScalableVector(MaskVT, Trunc, DAG, Subtarget); 2187 } 2188 2189 SDValue RISCVTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op, 2190 SelectionDAG &DAG) const { 2191 SDLoc DL(Op); 2192 MVT VecVT = Op.getSimpleValueType(); 2193 SDValue Vec = Op.getOperand(0); 2194 SDValue Val = Op.getOperand(1); 2195 SDValue Idx = Op.getOperand(2); 2196 2197 MVT ContainerVT = VecVT; 2198 // If the operand is a fixed-length vector, convert to a scalable one. 2199 if (VecVT.isFixedLengthVector()) { 2200 ContainerVT = getContainerForFixedLengthVector(DAG, VecVT, Subtarget); 2201 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 2202 } 2203 2204 SDValue Mask, VL; 2205 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 2206 2207 // Custom-legalize INSERT_VECTOR_ELT where XLEN>=SEW, so that the vector is 2208 // first slid down into position, the value is inserted into the first 2209 // position, and the vector is slid back up. We do this to simplify patterns. 2210 // (slideup vec, (insertelt (slidedown impdef, vec, idx), val, 0), idx), 2211 if (Subtarget.is64Bit() || Val.getValueType() != MVT::i64) { 2212 if (isNullConstant(Idx)) 2213 return Op; 2214 SDValue Slidedown = 2215 DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 2216 DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL); 2217 SDValue InsertElt0 = 2218 DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, ContainerVT, Slidedown, Val, 2219 DAG.getConstant(0, DL, Subtarget.getXLenVT())); 2220 2221 return DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec, InsertElt0, 2222 Idx, Mask, VL); 2223 } 2224 2225 // Custom-legalize INSERT_VECTOR_ELT where XLEN<SEW, as the SEW element type 2226 // is illegal (currently only vXi64 RV32). 2227 // Since there is no easy way of getting a single element into a vector when 2228 // XLEN<SEW, we lower the operation to the following sequence: 2229 // splat vVal, rVal 2230 // vid.v vVid 2231 // vmseq.vx mMask, vVid, rIdx 2232 // vmerge.vvm vDest, vSrc, vVal, mMask 2233 // This essentially merges the original vector with the inserted element by 2234 // using a mask whose only set bit is that corresponding to the insert 2235 // index. 2236 SDValue SplattedVal = DAG.getSplatVector(ContainerVT, DL, Val); 2237 SDValue SplattedIdx = 2238 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, Idx, VL); 2239 2240 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, ContainerVT, Mask, VL); 2241 auto SetCCVT = 2242 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ContainerVT); 2243 SDValue SelectCond = 2244 DAG.getNode(RISCVISD::SETCC_VL, DL, SetCCVT, VID, SplattedIdx, 2245 DAG.getCondCode(ISD::SETEQ), Mask, VL); 2246 SDValue Select = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, 2247 SelectCond, SplattedVal, Vec, VL); 2248 if (!VecVT.isFixedLengthVector()) 2249 return Select; 2250 return convertFromScalableVector(VecVT, Select, DAG, Subtarget); 2251 } 2252 2253 // Custom-lower EXTRACT_VECTOR_ELT operations to slide the vector down, then 2254 // extract the first element: (extractelt (slidedown vec, idx), 0). For integer 2255 // types this is done using VMV_X_S to allow us to glean information about the 2256 // sign bits of the result. 2257 SDValue RISCVTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op, 2258 SelectionDAG &DAG) const { 2259 SDLoc DL(Op); 2260 SDValue Idx = Op.getOperand(1); 2261 SDValue Vec = Op.getOperand(0); 2262 EVT EltVT = Op.getValueType(); 2263 MVT VecVT = Vec.getSimpleValueType(); 2264 MVT XLenVT = Subtarget.getXLenVT(); 2265 2266 // If this is a fixed vector, we need to convert it to a scalable vector. 2267 MVT ContainerVT = VecVT; 2268 if (VecVT.isFixedLengthVector()) { 2269 ContainerVT = getContainerForFixedLengthVector(DAG, VecVT, Subtarget); 2270 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 2271 } 2272 2273 // If the index is 0, the vector is already in the right position. 2274 if (!isNullConstant(Idx)) { 2275 // Use a VL of 1 to avoid processing more elements than we need. 2276 SDValue VL = DAG.getConstant(1, DL, XLenVT); 2277 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 2278 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 2279 Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 2280 DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL); 2281 } 2282 2283 if (!EltVT.isInteger()) { 2284 // Floating-point extracts are handled in TableGen. 2285 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec, 2286 DAG.getConstant(0, DL, XLenVT)); 2287 } 2288 2289 SDValue Elt0 = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); 2290 return DAG.getNode(ISD::TRUNCATE, DL, EltVT, Elt0); 2291 } 2292 2293 SDValue RISCVTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 2294 SelectionDAG &DAG) const { 2295 unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 2296 SDLoc DL(Op); 2297 2298 if (Subtarget.hasStdExtV()) { 2299 // Some RVV intrinsics may claim that they want an integer operand to be 2300 // extended. 2301 if (const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II = 2302 RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo)) { 2303 if (II->ExtendedOperand) { 2304 assert(II->ExtendedOperand < Op.getNumOperands()); 2305 SmallVector<SDValue, 8> Operands(Op->op_begin(), Op->op_end()); 2306 SDValue &ScalarOp = Operands[II->ExtendedOperand]; 2307 EVT OpVT = ScalarOp.getValueType(); 2308 if (OpVT == MVT::i8 || OpVT == MVT::i16 || 2309 (OpVT == MVT::i32 && Subtarget.is64Bit())) { 2310 // If the operand is a constant, sign extend to increase our chances 2311 // of being able to use a .vi instruction. ANY_EXTEND would become a 2312 // a zero extend and the simm5 check in isel would fail. 2313 // FIXME: Should we ignore the upper bits in isel instead? 2314 unsigned ExtOpc = isa<ConstantSDNode>(ScalarOp) ? ISD::SIGN_EXTEND 2315 : ISD::ANY_EXTEND; 2316 ScalarOp = DAG.getNode(ExtOpc, DL, Subtarget.getXLenVT(), ScalarOp); 2317 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, Op.getValueType(), 2318 Operands); 2319 } 2320 } 2321 } 2322 } 2323 2324 switch (IntNo) { 2325 default: 2326 return SDValue(); // Don't custom lower most intrinsics. 2327 case Intrinsic::thread_pointer: { 2328 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2329 return DAG.getRegister(RISCV::X4, PtrVT); 2330 } 2331 case Intrinsic::riscv_vmv_x_s: 2332 assert(Op.getValueType() == Subtarget.getXLenVT() && "Unexpected VT!"); 2333 return DAG.getNode(RISCVISD::VMV_X_S, DL, Op.getValueType(), 2334 Op.getOperand(1)); 2335 case Intrinsic::riscv_vmv_v_x: { 2336 SDValue Scalar = DAG.getNode(ISD::ANY_EXTEND, DL, Subtarget.getXLenVT(), 2337 Op.getOperand(1)); 2338 return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, Op.getValueType(), 2339 Scalar, Op.getOperand(2)); 2340 } 2341 case Intrinsic::riscv_vfmv_v_f: 2342 return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, Op.getValueType(), 2343 Op.getOperand(1), Op.getOperand(2)); 2344 } 2345 } 2346 2347 SDValue RISCVTargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op, 2348 SelectionDAG &DAG) const { 2349 unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 2350 SDLoc DL(Op); 2351 2352 if (Subtarget.hasStdExtV()) { 2353 // Some RVV intrinsics may claim that they want an integer operand to be 2354 // extended. 2355 if (const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II = 2356 RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo)) { 2357 if (II->ExtendedOperand) { 2358 // The operands start from the second argument in INTRINSIC_W_CHAIN. 2359 unsigned ExtendOp = II->ExtendedOperand + 1; 2360 assert(ExtendOp < Op.getNumOperands()); 2361 SmallVector<SDValue, 8> Operands(Op->op_begin(), Op->op_end()); 2362 SDValue &ScalarOp = Operands[ExtendOp]; 2363 EVT OpVT = ScalarOp.getValueType(); 2364 if (OpVT == MVT::i8 || OpVT == MVT::i16 || 2365 (OpVT == MVT::i32 && Subtarget.is64Bit())) { 2366 // If the operand is a constant, sign extend to increase our chances 2367 // of being able to use a .vi instruction. ANY_EXTEND would become a 2368 // a zero extend and the simm5 check in isel would fail. 2369 // FIXME: Should we ignore the upper bits in isel instead? 2370 unsigned ExtOpc = isa<ConstantSDNode>(ScalarOp) ? ISD::SIGN_EXTEND 2371 : ISD::ANY_EXTEND; 2372 ScalarOp = DAG.getNode(ExtOpc, DL, Subtarget.getXLenVT(), ScalarOp); 2373 return DAG.getNode(ISD::INTRINSIC_W_CHAIN, DL, Op->getVTList(), 2374 Operands); 2375 } 2376 } 2377 } 2378 } 2379 2380 return SDValue(); // Don't custom lower most intrinsics. 2381 } 2382 2383 static MVT getLMUL1VT(MVT VT) { 2384 assert(VT.getVectorElementType().getSizeInBits() <= 64 && 2385 "Unexpected vector MVT"); 2386 return MVT::getScalableVectorVT( 2387 VT.getVectorElementType(), 2388 RISCV::RVVBitsPerBlock / VT.getVectorElementType().getSizeInBits()); 2389 } 2390 2391 static std::pair<unsigned, uint64_t> 2392 getRVVReductionOpAndIdentityVal(unsigned ISDOpcode, unsigned EltSizeBits) { 2393 switch (ISDOpcode) { 2394 default: 2395 llvm_unreachable("Unhandled reduction"); 2396 case ISD::VECREDUCE_ADD: 2397 return {RISCVISD::VECREDUCE_ADD, 0}; 2398 case ISD::VECREDUCE_UMAX: 2399 return {RISCVISD::VECREDUCE_UMAX, 0}; 2400 case ISD::VECREDUCE_SMAX: 2401 return {RISCVISD::VECREDUCE_SMAX, minIntN(EltSizeBits)}; 2402 case ISD::VECREDUCE_UMIN: 2403 return {RISCVISD::VECREDUCE_UMIN, maxUIntN(EltSizeBits)}; 2404 case ISD::VECREDUCE_SMIN: 2405 return {RISCVISD::VECREDUCE_SMIN, maxIntN(EltSizeBits)}; 2406 case ISD::VECREDUCE_AND: 2407 return {RISCVISD::VECREDUCE_AND, -1}; 2408 case ISD::VECREDUCE_OR: 2409 return {RISCVISD::VECREDUCE_OR, 0}; 2410 case ISD::VECREDUCE_XOR: 2411 return {RISCVISD::VECREDUCE_XOR, 0}; 2412 } 2413 } 2414 2415 // Take a (supported) standard ISD reduction opcode and transform it to a RISCV 2416 // reduction opcode. Note that this returns a vector type, which must be 2417 // further processed to access the scalar result in element 0. 2418 SDValue RISCVTargetLowering::lowerVECREDUCE(SDValue Op, 2419 SelectionDAG &DAG) const { 2420 SDLoc DL(Op); 2421 assert(Op.getValueType().isSimple() && 2422 Op.getOperand(0).getValueType().isSimple() && 2423 "Unexpected vector-reduce lowering"); 2424 MVT VecVT = Op.getOperand(0).getSimpleValueType(); 2425 MVT VecEltVT = VecVT.getVectorElementType(); 2426 unsigned RVVOpcode; 2427 uint64_t IdentityVal; 2428 std::tie(RVVOpcode, IdentityVal) = 2429 getRVVReductionOpAndIdentityVal(Op.getOpcode(), VecEltVT.getSizeInBits()); 2430 MVT M1VT = getLMUL1VT(VecVT); 2431 SDValue IdentitySplat = 2432 DAG.getSplatVector(M1VT, DL, DAG.getConstant(IdentityVal, DL, VecEltVT)); 2433 SDValue Reduction = 2434 DAG.getNode(RVVOpcode, DL, M1VT, Op.getOperand(0), IdentitySplat); 2435 SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction, 2436 DAG.getConstant(0, DL, Subtarget.getXLenVT())); 2437 return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType()); 2438 } 2439 2440 // Given a reduction op, this function returns the matching reduction opcode, 2441 // the vector SDValue and the scalar SDValue required to lower this to a 2442 // RISCVISD node. 2443 static std::tuple<unsigned, SDValue, SDValue> 2444 getRVVFPReductionOpAndOperands(SDValue Op, SelectionDAG &DAG, EVT EltVT) { 2445 SDLoc DL(Op); 2446 switch (Op.getOpcode()) { 2447 default: 2448 llvm_unreachable("Unhandled reduction"); 2449 case ISD::VECREDUCE_FADD: 2450 return std::make_tuple(RISCVISD::VECREDUCE_FADD, Op.getOperand(0), 2451 DAG.getConstantFP(0.0, DL, EltVT)); 2452 case ISD::VECREDUCE_SEQ_FADD: 2453 return std::make_tuple(RISCVISD::VECREDUCE_SEQ_FADD, Op.getOperand(1), 2454 Op.getOperand(0)); 2455 } 2456 } 2457 2458 SDValue RISCVTargetLowering::lowerFPVECREDUCE(SDValue Op, 2459 SelectionDAG &DAG) const { 2460 SDLoc DL(Op); 2461 MVT VecEltVT = Op.getSimpleValueType(); 2462 2463 unsigned RVVOpcode; 2464 SDValue VectorVal, ScalarVal; 2465 std::tie(RVVOpcode, VectorVal, ScalarVal) = 2466 getRVVFPReductionOpAndOperands(Op, DAG, VecEltVT); 2467 2468 MVT M1VT = getLMUL1VT(VectorVal.getSimpleValueType()); 2469 SDValue ScalarSplat = DAG.getSplatVector(M1VT, DL, ScalarVal); 2470 SDValue Reduction = DAG.getNode(RVVOpcode, DL, M1VT, VectorVal, ScalarSplat); 2471 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction, 2472 DAG.getConstant(0, DL, Subtarget.getXLenVT())); 2473 } 2474 2475 SDValue RISCVTargetLowering::lowerINSERT_SUBVECTOR(SDValue Op, 2476 SelectionDAG &DAG) const { 2477 SDValue Vec = Op.getOperand(0); 2478 SDValue SubVec = Op.getOperand(1); 2479 MVT VecVT = Vec.getSimpleValueType(); 2480 MVT SubVecVT = SubVec.getSimpleValueType(); 2481 2482 SDLoc DL(Op); 2483 MVT XLenVT = Subtarget.getXLenVT(); 2484 unsigned OrigIdx = Op.getConstantOperandVal(2); 2485 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 2486 2487 // We don't have the ability to slide mask vectors up indexed by their i1 2488 // elements; the smallest we can do is i8. Often we are able to bitcast to 2489 // equivalent i8 vectors. Note that when inserting a fixed-length vector 2490 // into a scalable one, we might not necessarily have enough scalable 2491 // elements to safely divide by 8: nxv1i1 = insert nxv1i1, v4i1 is valid. 2492 if (SubVecVT.getVectorElementType() == MVT::i1 && 2493 (OrigIdx != 0 || !Vec.isUndef())) { 2494 if (VecVT.getVectorMinNumElements() >= 8 && 2495 SubVecVT.getVectorMinNumElements() >= 8) { 2496 assert(OrigIdx % 8 == 0 && "Invalid index"); 2497 assert(VecVT.getVectorMinNumElements() % 8 == 0 && 2498 SubVecVT.getVectorMinNumElements() % 8 == 0 && 2499 "Unexpected mask vector lowering"); 2500 OrigIdx /= 8; 2501 SubVecVT = 2502 MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8, 2503 SubVecVT.isScalableVector()); 2504 VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8, 2505 VecVT.isScalableVector()); 2506 Vec = DAG.getBitcast(VecVT, Vec); 2507 SubVec = DAG.getBitcast(SubVecVT, SubVec); 2508 } else { 2509 // We can't slide this mask vector up indexed by its i1 elements. 2510 // This poses a problem when we wish to insert a scalable vector which 2511 // can't be re-expressed as a larger type. Just choose the slow path and 2512 // extend to a larger type, then truncate back down. 2513 MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8); 2514 MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8); 2515 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec); 2516 SubVec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtSubVecVT, SubVec); 2517 Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ExtVecVT, Vec, SubVec, 2518 Op.getOperand(2)); 2519 SDValue SplatZero = DAG.getConstant(0, DL, ExtVecVT); 2520 return DAG.getSetCC(DL, VecVT, Vec, SplatZero, ISD::SETNE); 2521 } 2522 } 2523 2524 // If the subvector vector is a fixed-length type, we cannot use subregister 2525 // manipulation to simplify the codegen; we don't know which register of a 2526 // LMUL group contains the specific subvector as we only know the minimum 2527 // register size. Therefore we must slide the vector group up the full 2528 // amount. 2529 if (SubVecVT.isFixedLengthVector()) { 2530 if (OrigIdx == 0 && Vec.isUndef()) 2531 return Op; 2532 MVT ContainerVT = VecVT; 2533 if (VecVT.isFixedLengthVector()) { 2534 ContainerVT = RISCVTargetLowering::getContainerForFixedLengthVector( 2535 DAG, VecVT, Subtarget); 2536 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 2537 } 2538 SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ContainerVT, 2539 DAG.getUNDEF(ContainerVT), SubVec, 2540 DAG.getConstant(0, DL, XLenVT)); 2541 SDValue Mask = 2542 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first; 2543 // Set the vector length to only the number of elements we care about. Note 2544 // that for slideup this includes the offset. 2545 SDValue VL = 2546 DAG.getConstant(OrigIdx + SubVecVT.getVectorNumElements(), DL, XLenVT); 2547 SDValue SlideupAmt = DAG.getConstant(OrigIdx, DL, XLenVT); 2548 SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec, 2549 SubVec, SlideupAmt, Mask, VL); 2550 if (!VecVT.isFixedLengthVector()) 2551 return Slideup; 2552 return convertFromScalableVector(VecVT, Slideup, DAG, Subtarget); 2553 } 2554 2555 unsigned SubRegIdx, RemIdx; 2556 std::tie(SubRegIdx, RemIdx) = 2557 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( 2558 VecVT, SubVecVT, OrigIdx, TRI); 2559 2560 RISCVVLMUL SubVecLMUL = RISCVTargetLowering::getLMUL(SubVecVT); 2561 bool IsSubVecPartReg = SubVecLMUL == RISCVVLMUL::LMUL_F2 || 2562 SubVecLMUL == RISCVVLMUL::LMUL_F4 || 2563 SubVecLMUL == RISCVVLMUL::LMUL_F8; 2564 2565 // 1. If the Idx has been completely eliminated and this subvector's size is 2566 // a vector register or a multiple thereof, or the surrounding elements are 2567 // undef, then this is a subvector insert which naturally aligns to a vector 2568 // register. These can easily be handled using subregister manipulation. 2569 // 2. If the subvector is smaller than a vector register, then the insertion 2570 // must preserve the undisturbed elements of the register. We do this by 2571 // lowering to an EXTRACT_SUBVECTOR grabbing the nearest LMUL=1 vector type 2572 // (which resolves to a subregister copy), performing a VSLIDEUP to place the 2573 // subvector within the vector register, and an INSERT_SUBVECTOR of that 2574 // LMUL=1 type back into the larger vector (resolving to another subregister 2575 // operation). See below for how our VSLIDEUP works. We go via a LMUL=1 type 2576 // to avoid allocating a large register group to hold our subvector. 2577 if (RemIdx == 0 && (!IsSubVecPartReg || Vec.isUndef())) 2578 return Op; 2579 2580 // VSLIDEUP works by leaving elements 0<i<OFFSET undisturbed, elements 2581 // OFFSET<=i<VL set to the "subvector" and vl<=i<VLMAX set to the tail policy 2582 // (in our case undisturbed). This means we can set up a subvector insertion 2583 // where OFFSET is the insertion offset, and the VL is the OFFSET plus the 2584 // size of the subvector. 2585 MVT InterSubVT = VecVT; 2586 SDValue AlignedExtract = Vec; 2587 unsigned AlignedIdx = OrigIdx - RemIdx; 2588 if (VecVT.bitsGT(getLMUL1VT(VecVT))) { 2589 InterSubVT = getLMUL1VT(VecVT); 2590 // Extract a subvector equal to the nearest full vector register type. This 2591 // should resolve to a EXTRACT_SUBREG instruction. 2592 AlignedExtract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec, 2593 DAG.getConstant(AlignedIdx, DL, XLenVT)); 2594 } 2595 2596 SDValue SlideupAmt = DAG.getConstant(RemIdx, DL, XLenVT); 2597 // For scalable vectors this must be further multiplied by vscale. 2598 SlideupAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlideupAmt); 2599 2600 SDValue Mask, VL; 2601 std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget); 2602 2603 // Construct the vector length corresponding to RemIdx + length(SubVecVT). 2604 VL = DAG.getConstant(SubVecVT.getVectorMinNumElements(), DL, XLenVT); 2605 VL = DAG.getNode(ISD::VSCALE, DL, XLenVT, VL); 2606 VL = DAG.getNode(ISD::ADD, DL, XLenVT, SlideupAmt, VL); 2607 2608 SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, InterSubVT, 2609 DAG.getUNDEF(InterSubVT), SubVec, 2610 DAG.getConstant(0, DL, XLenVT)); 2611 2612 SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, InterSubVT, 2613 AlignedExtract, SubVec, SlideupAmt, Mask, VL); 2614 2615 // If required, insert this subvector back into the correct vector register. 2616 // This should resolve to an INSERT_SUBREG instruction. 2617 if (VecVT.bitsGT(InterSubVT)) 2618 Slideup = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, Vec, Slideup, 2619 DAG.getConstant(AlignedIdx, DL, XLenVT)); 2620 2621 // We might have bitcast from a mask type: cast back to the original type if 2622 // required. 2623 return DAG.getBitcast(Op.getSimpleValueType(), Slideup); 2624 } 2625 2626 SDValue RISCVTargetLowering::lowerEXTRACT_SUBVECTOR(SDValue Op, 2627 SelectionDAG &DAG) const { 2628 SDValue Vec = Op.getOperand(0); 2629 MVT SubVecVT = Op.getSimpleValueType(); 2630 MVT VecVT = Vec.getSimpleValueType(); 2631 2632 SDLoc DL(Op); 2633 MVT XLenVT = Subtarget.getXLenVT(); 2634 unsigned OrigIdx = Op.getConstantOperandVal(1); 2635 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 2636 2637 // We don't have the ability to slide mask vectors down indexed by their i1 2638 // elements; the smallest we can do is i8. Often we are able to bitcast to 2639 // equivalent i8 vectors. Note that when extracting a fixed-length vector 2640 // from a scalable one, we might not necessarily have enough scalable 2641 // elements to safely divide by 8: v8i1 = extract nxv1i1 is valid. 2642 if (SubVecVT.getVectorElementType() == MVT::i1 && OrigIdx != 0) { 2643 if (VecVT.getVectorMinNumElements() >= 8 && 2644 SubVecVT.getVectorMinNumElements() >= 8) { 2645 assert(OrigIdx % 8 == 0 && "Invalid index"); 2646 assert(VecVT.getVectorMinNumElements() % 8 == 0 && 2647 SubVecVT.getVectorMinNumElements() % 8 == 0 && 2648 "Unexpected mask vector lowering"); 2649 OrigIdx /= 8; 2650 SubVecVT = 2651 MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8, 2652 SubVecVT.isScalableVector()); 2653 VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8, 2654 VecVT.isScalableVector()); 2655 Vec = DAG.getBitcast(VecVT, Vec); 2656 } else { 2657 // We can't slide this mask vector down, indexed by its i1 elements. 2658 // This poses a problem when we wish to extract a scalable vector which 2659 // can't be re-expressed as a larger type. Just choose the slow path and 2660 // extend to a larger type, then truncate back down. 2661 // TODO: We could probably improve this when extracting certain fixed 2662 // from fixed, where we can extract as i8 and shift the correct element 2663 // right to reach the desired subvector? 2664 MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8); 2665 MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8); 2666 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec); 2667 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ExtSubVecVT, Vec, 2668 Op.getOperand(1)); 2669 SDValue SplatZero = DAG.getConstant(0, DL, ExtSubVecVT); 2670 return DAG.getSetCC(DL, SubVecVT, Vec, SplatZero, ISD::SETNE); 2671 } 2672 } 2673 2674 // If the subvector vector is a fixed-length type, we cannot use subregister 2675 // manipulation to simplify the codegen; we don't know which register of a 2676 // LMUL group contains the specific subvector as we only know the minimum 2677 // register size. Therefore we must slide the vector group down the full 2678 // amount. 2679 if (SubVecVT.isFixedLengthVector()) { 2680 // With an index of 0 this is a cast-like subvector, which can be performed 2681 // with subregister operations. 2682 if (OrigIdx == 0) 2683 return Op; 2684 MVT ContainerVT = VecVT; 2685 if (VecVT.isFixedLengthVector()) { 2686 ContainerVT = RISCVTargetLowering::getContainerForFixedLengthVector( 2687 DAG, VecVT, Subtarget); 2688 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 2689 } 2690 SDValue Mask = 2691 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first; 2692 // Set the vector length to only the number of elements we care about. This 2693 // avoids sliding down elements we're going to discard straight away. 2694 SDValue VL = DAG.getConstant(SubVecVT.getVectorNumElements(), DL, XLenVT); 2695 SDValue SlidedownAmt = DAG.getConstant(OrigIdx, DL, XLenVT); 2696 SDValue Slidedown = 2697 DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 2698 DAG.getUNDEF(ContainerVT), Vec, SlidedownAmt, Mask, VL); 2699 // Now we can use a cast-like subvector extract to get the result. 2700 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown, 2701 DAG.getConstant(0, DL, XLenVT)); 2702 } 2703 2704 unsigned SubRegIdx, RemIdx; 2705 std::tie(SubRegIdx, RemIdx) = 2706 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( 2707 VecVT, SubVecVT, OrigIdx, TRI); 2708 2709 // If the Idx has been completely eliminated then this is a subvector extract 2710 // which naturally aligns to a vector register. These can easily be handled 2711 // using subregister manipulation. 2712 if (RemIdx == 0) 2713 return Op; 2714 2715 // Else we must shift our vector register directly to extract the subvector. 2716 // Do this using VSLIDEDOWN. 2717 2718 // If the vector type is an LMUL-group type, extract a subvector equal to the 2719 // nearest full vector register type. This should resolve to a EXTRACT_SUBREG 2720 // instruction. 2721 MVT InterSubVT = VecVT; 2722 if (VecVT.bitsGT(getLMUL1VT(VecVT))) { 2723 InterSubVT = getLMUL1VT(VecVT); 2724 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec, 2725 DAG.getConstant(OrigIdx - RemIdx, DL, XLenVT)); 2726 } 2727 2728 // Slide this vector register down by the desired number of elements in order 2729 // to place the desired subvector starting at element 0. 2730 SDValue SlidedownAmt = DAG.getConstant(RemIdx, DL, XLenVT); 2731 // For scalable vectors this must be further multiplied by vscale. 2732 SlidedownAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlidedownAmt); 2733 2734 SDValue Mask, VL; 2735 std::tie(Mask, VL) = getDefaultScalableVLOps(InterSubVT, DL, DAG, Subtarget); 2736 SDValue Slidedown = 2737 DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, InterSubVT, 2738 DAG.getUNDEF(InterSubVT), Vec, SlidedownAmt, Mask, VL); 2739 2740 // Now the vector is in the right position, extract our final subvector. This 2741 // should resolve to a COPY. 2742 Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown, 2743 DAG.getConstant(0, DL, XLenVT)); 2744 2745 // We might have bitcast from a mask type: cast back to the original type if 2746 // required. 2747 return DAG.getBitcast(Op.getSimpleValueType(), Slidedown); 2748 } 2749 2750 SDValue 2751 RISCVTargetLowering::lowerFixedLengthVectorLoadToRVV(SDValue Op, 2752 SelectionDAG &DAG) const { 2753 auto *Load = cast<LoadSDNode>(Op); 2754 2755 SDLoc DL(Op); 2756 MVT VT = Op.getSimpleValueType(); 2757 MVT ContainerVT = 2758 RISCVTargetLowering::getContainerForFixedLengthVector(DAG, VT, Subtarget); 2759 2760 SDValue VL = 2761 DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT()); 2762 2763 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 2764 SDValue NewLoad = DAG.getMemIntrinsicNode( 2765 RISCVISD::VLE_VL, DL, VTs, {Load->getChain(), Load->getBasePtr(), VL}, 2766 Load->getMemoryVT(), Load->getMemOperand()); 2767 2768 SDValue Result = convertFromScalableVector(VT, NewLoad, DAG, Subtarget); 2769 return DAG.getMergeValues({Result, Load->getChain()}, DL); 2770 } 2771 2772 SDValue 2773 RISCVTargetLowering::lowerFixedLengthVectorStoreToRVV(SDValue Op, 2774 SelectionDAG &DAG) const { 2775 auto *Store = cast<StoreSDNode>(Op); 2776 2777 SDLoc DL(Op); 2778 MVT VT = Store->getValue().getSimpleValueType(); 2779 2780 // FIXME: We probably need to zero any extra bits in a byte for mask stores. 2781 // This is tricky to do. 2782 2783 MVT ContainerVT = 2784 RISCVTargetLowering::getContainerForFixedLengthVector(DAG, VT, Subtarget); 2785 2786 SDValue VL = 2787 DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT()); 2788 2789 SDValue NewValue = 2790 convertToScalableVector(ContainerVT, Store->getValue(), DAG, Subtarget); 2791 return DAG.getMemIntrinsicNode( 2792 RISCVISD::VSE_VL, DL, DAG.getVTList(MVT::Other), 2793 {Store->getChain(), NewValue, Store->getBasePtr(), VL}, 2794 Store->getMemoryVT(), Store->getMemOperand()); 2795 } 2796 2797 SDValue 2798 RISCVTargetLowering::lowerFixedLengthVectorSetccToRVV(SDValue Op, 2799 SelectionDAG &DAG) const { 2800 MVT InVT = Op.getOperand(0).getSimpleValueType(); 2801 MVT ContainerVT = RISCVTargetLowering::getContainerForFixedLengthVector( 2802 DAG, InVT, Subtarget); 2803 2804 MVT VT = Op.getSimpleValueType(); 2805 2806 SDValue Op1 = 2807 convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget); 2808 SDValue Op2 = 2809 convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget); 2810 2811 SDLoc DL(Op); 2812 SDValue VL = 2813 DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT()); 2814 2815 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 2816 2817 bool Invert = false; 2818 Optional<unsigned> LogicOpc; 2819 if (ContainerVT.isFloatingPoint()) { 2820 bool Swap = false; 2821 switch (CC) { 2822 default: 2823 break; 2824 case ISD::SETULE: 2825 case ISD::SETULT: 2826 Swap = true; 2827 LLVM_FALLTHROUGH; 2828 case ISD::SETUGE: 2829 case ISD::SETUGT: 2830 CC = getSetCCInverse(CC, ContainerVT); 2831 Invert = true; 2832 break; 2833 case ISD::SETOGE: 2834 case ISD::SETOGT: 2835 case ISD::SETGE: 2836 case ISD::SETGT: 2837 Swap = true; 2838 break; 2839 case ISD::SETUEQ: 2840 // Use !((OLT Op1, Op2) || (OLT Op2, Op1)) 2841 Invert = true; 2842 LogicOpc = RISCVISD::VMOR_VL; 2843 CC = ISD::SETOLT; 2844 break; 2845 case ISD::SETONE: 2846 // Use ((OLT Op1, Op2) || (OLT Op2, Op1)) 2847 LogicOpc = RISCVISD::VMOR_VL; 2848 CC = ISD::SETOLT; 2849 break; 2850 case ISD::SETO: 2851 // Use (OEQ Op1, Op1) && (OEQ Op2, Op2) 2852 LogicOpc = RISCVISD::VMAND_VL; 2853 CC = ISD::SETOEQ; 2854 break; 2855 case ISD::SETUO: 2856 // Use (UNE Op1, Op1) || (UNE Op2, Op2) 2857 LogicOpc = RISCVISD::VMOR_VL; 2858 CC = ISD::SETUNE; 2859 break; 2860 } 2861 2862 if (Swap) { 2863 CC = getSetCCSwappedOperands(CC); 2864 std::swap(Op1, Op2); 2865 } 2866 } 2867 2868 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 2869 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 2870 2871 // There are 3 cases we need to emit. 2872 // 1. For (OEQ Op1, Op1) && (OEQ Op2, Op2) or (UNE Op1, Op1) || (UNE Op2, Op2) 2873 // we need to compare each operand with itself. 2874 // 2. For (OLT Op1, Op2) || (OLT Op2, Op1) we need to compare Op1 and Op2 in 2875 // both orders. 2876 // 3. For any other case we just need one compare with Op1 and Op2. 2877 SDValue Cmp; 2878 if (LogicOpc && (CC == ISD::SETOEQ || CC == ISD::SETUNE)) { 2879 Cmp = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, Op1, Op1, 2880 DAG.getCondCode(CC), Mask, VL); 2881 SDValue Cmp2 = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, Op2, Op2, 2882 DAG.getCondCode(CC), Mask, VL); 2883 Cmp = DAG.getNode(*LogicOpc, DL, MaskVT, Cmp, Cmp2, VL); 2884 } else { 2885 Cmp = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, Op1, Op2, 2886 DAG.getCondCode(CC), Mask, VL); 2887 if (LogicOpc) { 2888 SDValue Cmp2 = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, Op2, Op1, 2889 DAG.getCondCode(CC), Mask, VL); 2890 Cmp = DAG.getNode(*LogicOpc, DL, MaskVT, Cmp, Cmp2, VL); 2891 } 2892 } 2893 2894 if (Invert) { 2895 SDValue AllOnes = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 2896 Cmp = DAG.getNode(RISCVISD::VMXOR_VL, DL, MaskVT, Cmp, AllOnes, VL); 2897 } 2898 2899 return convertFromScalableVector(VT, Cmp, DAG, Subtarget); 2900 } 2901 2902 SDValue RISCVTargetLowering::lowerFixedLengthVectorLogicOpToRVV( 2903 SDValue Op, SelectionDAG &DAG, unsigned MaskOpc, unsigned VecOpc) const { 2904 MVT VT = Op.getSimpleValueType(); 2905 2906 if (VT.getVectorElementType() == MVT::i1) 2907 return lowerToScalableOp(Op, DAG, MaskOpc, /*HasMask*/ false); 2908 2909 return lowerToScalableOp(Op, DAG, VecOpc, /*HasMask*/ true); 2910 } 2911 2912 SDValue RISCVTargetLowering::lowerFixedLengthVectorSelectToRVV( 2913 SDValue Op, SelectionDAG &DAG) const { 2914 MVT VT = Op.getSimpleValueType(); 2915 MVT ContainerVT = 2916 RISCVTargetLowering::getContainerForFixedLengthVector(DAG, VT, Subtarget); 2917 2918 MVT I1ContainerVT = 2919 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 2920 2921 SDValue CC = 2922 convertToScalableVector(I1ContainerVT, Op.getOperand(0), DAG, Subtarget); 2923 SDValue Op1 = 2924 convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget); 2925 SDValue Op2 = 2926 convertToScalableVector(ContainerVT, Op.getOperand(2), DAG, Subtarget); 2927 2928 SDLoc DL(Op); 2929 SDValue Mask, VL; 2930 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 2931 2932 SDValue Select = 2933 DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC, Op1, Op2, VL); 2934 2935 return convertFromScalableVector(VT, Select, DAG, Subtarget); 2936 } 2937 2938 SDValue RISCVTargetLowering::lowerToScalableOp(SDValue Op, SelectionDAG &DAG, 2939 unsigned NewOpc, 2940 bool HasMask) const { 2941 MVT VT = Op.getSimpleValueType(); 2942 assert(useRVVForFixedLengthVectorVT(VT) && 2943 "Only expected to lower fixed length vector operation!"); 2944 MVT ContainerVT = 2945 RISCVTargetLowering::getContainerForFixedLengthVector(DAG, VT, Subtarget); 2946 2947 // Create list of operands by converting existing ones to scalable types. 2948 SmallVector<SDValue, 6> Ops; 2949 for (const SDValue &V : Op->op_values()) { 2950 assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!"); 2951 2952 // Pass through non-vector operands. 2953 if (!V.getValueType().isVector()) { 2954 Ops.push_back(V); 2955 continue; 2956 } 2957 2958 // "cast" fixed length vector to a scalable vector. 2959 assert(useRVVForFixedLengthVectorVT(V.getSimpleValueType()) && 2960 "Only fixed length vectors are supported!"); 2961 Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget)); 2962 } 2963 2964 SDLoc DL(Op); 2965 SDValue Mask, VL; 2966 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 2967 if (HasMask) 2968 Ops.push_back(Mask); 2969 Ops.push_back(VL); 2970 2971 SDValue ScalableRes = DAG.getNode(NewOpc, DL, ContainerVT, Ops); 2972 return convertFromScalableVector(VT, ScalableRes, DAG, Subtarget); 2973 } 2974 2975 // Returns the opcode of the target-specific SDNode that implements the 32-bit 2976 // form of the given Opcode. 2977 static RISCVISD::NodeType getRISCVWOpcode(unsigned Opcode) { 2978 switch (Opcode) { 2979 default: 2980 llvm_unreachable("Unexpected opcode"); 2981 case ISD::SHL: 2982 return RISCVISD::SLLW; 2983 case ISD::SRA: 2984 return RISCVISD::SRAW; 2985 case ISD::SRL: 2986 return RISCVISD::SRLW; 2987 case ISD::SDIV: 2988 return RISCVISD::DIVW; 2989 case ISD::UDIV: 2990 return RISCVISD::DIVUW; 2991 case ISD::UREM: 2992 return RISCVISD::REMUW; 2993 case ISD::ROTL: 2994 return RISCVISD::ROLW; 2995 case ISD::ROTR: 2996 return RISCVISD::RORW; 2997 case RISCVISD::GREVI: 2998 return RISCVISD::GREVIW; 2999 case RISCVISD::GORCI: 3000 return RISCVISD::GORCIW; 3001 } 3002 } 3003 3004 // Converts the given 32-bit operation to a target-specific SelectionDAG node. 3005 // Because i32 isn't a legal type for RV64, these operations would otherwise 3006 // be promoted to i64, making it difficult to select the SLLW/DIVUW/.../*W 3007 // later one because the fact the operation was originally of type i32 is 3008 // lost. 3009 static SDValue customLegalizeToWOp(SDNode *N, SelectionDAG &DAG, 3010 unsigned ExtOpc = ISD::ANY_EXTEND) { 3011 SDLoc DL(N); 3012 RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode()); 3013 SDValue NewOp0 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(0)); 3014 SDValue NewOp1 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(1)); 3015 SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1); 3016 // ReplaceNodeResults requires we maintain the same type for the return value. 3017 return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewRes); 3018 } 3019 3020 // Converts the given 32-bit operation to a i64 operation with signed extension 3021 // semantic to reduce the signed extension instructions. 3022 static SDValue customLegalizeToWOpWithSExt(SDNode *N, SelectionDAG &DAG) { 3023 SDLoc DL(N); 3024 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 3025 SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 3026 SDValue NewWOp = DAG.getNode(N->getOpcode(), DL, MVT::i64, NewOp0, NewOp1); 3027 SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp, 3028 DAG.getValueType(MVT::i32)); 3029 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes); 3030 } 3031 3032 void RISCVTargetLowering::ReplaceNodeResults(SDNode *N, 3033 SmallVectorImpl<SDValue> &Results, 3034 SelectionDAG &DAG) const { 3035 SDLoc DL(N); 3036 switch (N->getOpcode()) { 3037 default: 3038 llvm_unreachable("Don't know how to custom type legalize this operation!"); 3039 case ISD::STRICT_FP_TO_SINT: 3040 case ISD::STRICT_FP_TO_UINT: 3041 case ISD::FP_TO_SINT: 3042 case ISD::FP_TO_UINT: { 3043 bool IsStrict = N->isStrictFPOpcode(); 3044 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 3045 "Unexpected custom legalisation"); 3046 SDValue Op0 = IsStrict ? N->getOperand(1) : N->getOperand(0); 3047 // If the FP type needs to be softened, emit a library call using the 'si' 3048 // version. If we left it to default legalization we'd end up with 'di'. If 3049 // the FP type doesn't need to be softened just let generic type 3050 // legalization promote the result type. 3051 if (getTypeAction(*DAG.getContext(), Op0.getValueType()) != 3052 TargetLowering::TypeSoftenFloat) 3053 return; 3054 RTLIB::Libcall LC; 3055 if (N->getOpcode() == ISD::FP_TO_SINT || 3056 N->getOpcode() == ISD::STRICT_FP_TO_SINT) 3057 LC = RTLIB::getFPTOSINT(Op0.getValueType(), N->getValueType(0)); 3058 else 3059 LC = RTLIB::getFPTOUINT(Op0.getValueType(), N->getValueType(0)); 3060 MakeLibCallOptions CallOptions; 3061 EVT OpVT = Op0.getValueType(); 3062 CallOptions.setTypeListBeforeSoften(OpVT, N->getValueType(0), true); 3063 SDValue Chain = IsStrict ? N->getOperand(0) : SDValue(); 3064 SDValue Result; 3065 std::tie(Result, Chain) = 3066 makeLibCall(DAG, LC, N->getValueType(0), Op0, CallOptions, DL, Chain); 3067 Results.push_back(Result); 3068 if (IsStrict) 3069 Results.push_back(Chain); 3070 break; 3071 } 3072 case ISD::READCYCLECOUNTER: { 3073 assert(!Subtarget.is64Bit() && 3074 "READCYCLECOUNTER only has custom type legalization on riscv32"); 3075 3076 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other); 3077 SDValue RCW = 3078 DAG.getNode(RISCVISD::READ_CYCLE_WIDE, DL, VTs, N->getOperand(0)); 3079 3080 Results.push_back( 3081 DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, RCW, RCW.getValue(1))); 3082 Results.push_back(RCW.getValue(2)); 3083 break; 3084 } 3085 case ISD::ADD: 3086 case ISD::SUB: 3087 case ISD::MUL: 3088 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 3089 "Unexpected custom legalisation"); 3090 if (N->getOperand(1).getOpcode() == ISD::Constant) 3091 return; 3092 Results.push_back(customLegalizeToWOpWithSExt(N, DAG)); 3093 break; 3094 case ISD::SHL: 3095 case ISD::SRA: 3096 case ISD::SRL: 3097 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 3098 "Unexpected custom legalisation"); 3099 if (N->getOperand(1).getOpcode() == ISD::Constant) 3100 return; 3101 Results.push_back(customLegalizeToWOp(N, DAG)); 3102 break; 3103 case ISD::ROTL: 3104 case ISD::ROTR: 3105 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 3106 "Unexpected custom legalisation"); 3107 Results.push_back(customLegalizeToWOp(N, DAG)); 3108 break; 3109 case ISD::SDIV: 3110 case ISD::UDIV: 3111 case ISD::UREM: { 3112 MVT VT = N->getSimpleValueType(0); 3113 assert((VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) && 3114 Subtarget.is64Bit() && Subtarget.hasStdExtM() && 3115 "Unexpected custom legalisation"); 3116 if (N->getOperand(0).getOpcode() == ISD::Constant || 3117 N->getOperand(1).getOpcode() == ISD::Constant) 3118 return; 3119 3120 // If the input is i32, use ANY_EXTEND since the W instructions don't read 3121 // the upper 32 bits. For other types we need to sign or zero extend 3122 // based on the opcode. 3123 unsigned ExtOpc = ISD::ANY_EXTEND; 3124 if (VT != MVT::i32) 3125 ExtOpc = N->getOpcode() == ISD::SDIV ? ISD::SIGN_EXTEND 3126 : ISD::ZERO_EXTEND; 3127 3128 Results.push_back(customLegalizeToWOp(N, DAG, ExtOpc)); 3129 break; 3130 } 3131 case ISD::BITCAST: { 3132 assert(((N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 3133 Subtarget.hasStdExtF()) || 3134 (N->getValueType(0) == MVT::i16 && Subtarget.hasStdExtZfh())) && 3135 "Unexpected custom legalisation"); 3136 SDValue Op0 = N->getOperand(0); 3137 if (N->getValueType(0) == MVT::i16 && Subtarget.hasStdExtZfh()) { 3138 if (Op0.getValueType() != MVT::f16) 3139 return; 3140 SDValue FPConv = 3141 DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, Subtarget.getXLenVT(), Op0); 3142 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FPConv)); 3143 } else if (N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 3144 Subtarget.hasStdExtF()) { 3145 if (Op0.getValueType() != MVT::f32) 3146 return; 3147 SDValue FPConv = 3148 DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Op0); 3149 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, FPConv)); 3150 } 3151 break; 3152 } 3153 case RISCVISD::GREVI: 3154 case RISCVISD::GORCI: { 3155 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 3156 "Unexpected custom legalisation"); 3157 // This is similar to customLegalizeToWOp, except that we pass the second 3158 // operand (a TargetConstant) straight through: it is already of type 3159 // XLenVT. 3160 SDLoc DL(N); 3161 RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode()); 3162 SDValue NewOp0 = 3163 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 3164 SDValue NewRes = 3165 DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, N->getOperand(1)); 3166 // ReplaceNodeResults requires we maintain the same type for the return 3167 // value. 3168 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes)); 3169 break; 3170 } 3171 case RISCVISD::SHFLI: { 3172 // There is no SHFLIW instruction, but we can just promote the operation. 3173 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 3174 "Unexpected custom legalisation"); 3175 SDLoc DL(N); 3176 SDValue NewOp0 = 3177 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 3178 SDValue NewRes = 3179 DAG.getNode(RISCVISD::SHFLI, DL, MVT::i64, NewOp0, N->getOperand(1)); 3180 // ReplaceNodeResults requires we maintain the same type for the return 3181 // value. 3182 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes)); 3183 break; 3184 } 3185 case ISD::BSWAP: 3186 case ISD::BITREVERSE: { 3187 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 3188 Subtarget.hasStdExtZbp() && "Unexpected custom legalisation"); 3189 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, 3190 N->getOperand(0)); 3191 unsigned Imm = N->getOpcode() == ISD::BITREVERSE ? 31 : 24; 3192 SDValue GREVIW = DAG.getNode(RISCVISD::GREVIW, DL, MVT::i64, NewOp0, 3193 DAG.getTargetConstant(Imm, DL, 3194 Subtarget.getXLenVT())); 3195 // ReplaceNodeResults requires we maintain the same type for the return 3196 // value. 3197 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, GREVIW)); 3198 break; 3199 } 3200 case ISD::FSHL: 3201 case ISD::FSHR: { 3202 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 3203 Subtarget.hasStdExtZbt() && "Unexpected custom legalisation"); 3204 SDValue NewOp0 = 3205 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 3206 SDValue NewOp1 = 3207 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 3208 SDValue NewOp2 = 3209 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 3210 // FSLW/FSRW take a 6 bit shift amount but i32 FSHL/FSHR only use 5 bits. 3211 // Mask the shift amount to 5 bits. 3212 NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2, 3213 DAG.getConstant(0x1f, DL, MVT::i64)); 3214 unsigned Opc = 3215 N->getOpcode() == ISD::FSHL ? RISCVISD::FSLW : RISCVISD::FSRW; 3216 SDValue NewOp = DAG.getNode(Opc, DL, MVT::i64, NewOp0, NewOp1, NewOp2); 3217 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewOp)); 3218 break; 3219 } 3220 case ISD::EXTRACT_VECTOR_ELT: { 3221 // Custom-legalize an EXTRACT_VECTOR_ELT where XLEN<SEW, as the SEW element 3222 // type is illegal (currently only vXi64 RV32). 3223 // With vmv.x.s, when SEW > XLEN, only the least-significant XLEN bits are 3224 // transferred to the destination register. We issue two of these from the 3225 // upper- and lower- halves of the SEW-bit vector element, slid down to the 3226 // first element. 3227 SDLoc DL(N); 3228 SDValue Vec = N->getOperand(0); 3229 SDValue Idx = N->getOperand(1); 3230 3231 // The vector type hasn't been legalized yet so we can't issue target 3232 // specific nodes if it needs legalization. 3233 // FIXME: We would manually legalize if it's important. 3234 if (!isTypeLegal(Vec.getValueType())) 3235 return; 3236 3237 MVT VecVT = Vec.getSimpleValueType(); 3238 3239 assert(!Subtarget.is64Bit() && N->getValueType(0) == MVT::i64 && 3240 VecVT.getVectorElementType() == MVT::i64 && 3241 "Unexpected EXTRACT_VECTOR_ELT legalization"); 3242 3243 // If this is a fixed vector, we need to convert it to a scalable vector. 3244 MVT ContainerVT = VecVT; 3245 if (VecVT.isFixedLengthVector()) { 3246 ContainerVT = getContainerForFixedLengthVector(DAG, VecVT, Subtarget); 3247 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 3248 } 3249 3250 MVT XLenVT = Subtarget.getXLenVT(); 3251 3252 // Use a VL of 1 to avoid processing more elements than we need. 3253 MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount()); 3254 SDValue VL = DAG.getConstant(1, DL, XLenVT); 3255 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 3256 3257 // Unless the index is known to be 0, we must slide the vector down to get 3258 // the desired element into index 0. 3259 if (!isNullConstant(Idx)) { 3260 Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 3261 DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL); 3262 } 3263 3264 // Extract the lower XLEN bits of the correct vector element. 3265 SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); 3266 3267 // To extract the upper XLEN bits of the vector element, shift the first 3268 // element right by 32 bits and re-extract the lower XLEN bits. 3269 SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, 3270 DAG.getConstant(32, DL, XLenVT), VL); 3271 SDValue LShr32 = DAG.getNode(RISCVISD::SRL_VL, DL, ContainerVT, Vec, 3272 ThirtyTwoV, Mask, VL); 3273 3274 SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32); 3275 3276 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi)); 3277 break; 3278 } 3279 case ISD::INTRINSIC_WO_CHAIN: { 3280 unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 3281 switch (IntNo) { 3282 default: 3283 llvm_unreachable( 3284 "Don't know how to custom type legalize this intrinsic!"); 3285 case Intrinsic::riscv_vmv_x_s: { 3286 EVT VT = N->getValueType(0); 3287 assert((VT == MVT::i8 || VT == MVT::i16 || 3288 (Subtarget.is64Bit() && VT == MVT::i32)) && 3289 "Unexpected custom legalisation!"); 3290 SDValue Extract = DAG.getNode(RISCVISD::VMV_X_S, DL, 3291 Subtarget.getXLenVT(), N->getOperand(1)); 3292 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, Extract)); 3293 break; 3294 } 3295 } 3296 break; 3297 } 3298 case ISD::VECREDUCE_ADD: 3299 case ISD::VECREDUCE_AND: 3300 case ISD::VECREDUCE_OR: 3301 case ISD::VECREDUCE_XOR: 3302 case ISD::VECREDUCE_SMAX: 3303 case ISD::VECREDUCE_UMAX: 3304 case ISD::VECREDUCE_SMIN: 3305 case ISD::VECREDUCE_UMIN: 3306 // The custom-lowering for these nodes returns a vector whose first element 3307 // is the result of the reduction. Extract its first element and let the 3308 // legalization for EXTRACT_VECTOR_ELT do the rest of the job. 3309 Results.push_back(lowerVECREDUCE(SDValue(N, 0), DAG)); 3310 break; 3311 } 3312 } 3313 3314 // A structure to hold one of the bit-manipulation patterns below. Together, a 3315 // SHL and non-SHL pattern may form a bit-manipulation pair on a single source: 3316 // (or (and (shl x, 1), 0xAAAAAAAA), 3317 // (and (srl x, 1), 0x55555555)) 3318 struct RISCVBitmanipPat { 3319 SDValue Op; 3320 unsigned ShAmt; 3321 bool IsSHL; 3322 3323 bool formsPairWith(const RISCVBitmanipPat &Other) const { 3324 return Op == Other.Op && ShAmt == Other.ShAmt && IsSHL != Other.IsSHL; 3325 } 3326 }; 3327 3328 // Matches patterns of the form 3329 // (and (shl x, C2), (C1 << C2)) 3330 // (and (srl x, C2), C1) 3331 // (shl (and x, C1), C2) 3332 // (srl (and x, (C1 << C2)), C2) 3333 // Where C2 is a power of 2 and C1 has at least that many leading zeroes. 3334 // The expected masks for each shift amount are specified in BitmanipMasks where 3335 // BitmanipMasks[log2(C2)] specifies the expected C1 value. 3336 // The max allowed shift amount is either XLen/2 or XLen/4 determined by whether 3337 // BitmanipMasks contains 6 or 5 entries assuming that the maximum possible 3338 // XLen is 64. 3339 static Optional<RISCVBitmanipPat> 3340 matchRISCVBitmanipPat(SDValue Op, ArrayRef<uint64_t> BitmanipMasks) { 3341 assert((BitmanipMasks.size() == 5 || BitmanipMasks.size() == 6) && 3342 "Unexpected number of masks"); 3343 Optional<uint64_t> Mask; 3344 // Optionally consume a mask around the shift operation. 3345 if (Op.getOpcode() == ISD::AND && isa<ConstantSDNode>(Op.getOperand(1))) { 3346 Mask = Op.getConstantOperandVal(1); 3347 Op = Op.getOperand(0); 3348 } 3349 if (Op.getOpcode() != ISD::SHL && Op.getOpcode() != ISD::SRL) 3350 return None; 3351 bool IsSHL = Op.getOpcode() == ISD::SHL; 3352 3353 if (!isa<ConstantSDNode>(Op.getOperand(1))) 3354 return None; 3355 uint64_t ShAmt = Op.getConstantOperandVal(1); 3356 3357 unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32; 3358 if (ShAmt >= Width && !isPowerOf2_64(ShAmt)) 3359 return None; 3360 // If we don't have enough masks for 64 bit, then we must be trying to 3361 // match SHFL so we're only allowed to shift 1/4 of the width. 3362 if (BitmanipMasks.size() == 5 && ShAmt >= (Width / 2)) 3363 return None; 3364 3365 SDValue Src = Op.getOperand(0); 3366 3367 // The expected mask is shifted left when the AND is found around SHL 3368 // patterns. 3369 // ((x >> 1) & 0x55555555) 3370 // ((x << 1) & 0xAAAAAAAA) 3371 bool SHLExpMask = IsSHL; 3372 3373 if (!Mask) { 3374 // Sometimes LLVM keeps the mask as an operand of the shift, typically when 3375 // the mask is all ones: consume that now. 3376 if (Src.getOpcode() == ISD::AND && isa<ConstantSDNode>(Src.getOperand(1))) { 3377 Mask = Src.getConstantOperandVal(1); 3378 Src = Src.getOperand(0); 3379 // The expected mask is now in fact shifted left for SRL, so reverse the 3380 // decision. 3381 // ((x & 0xAAAAAAAA) >> 1) 3382 // ((x & 0x55555555) << 1) 3383 SHLExpMask = !SHLExpMask; 3384 } else { 3385 // Use a default shifted mask of all-ones if there's no AND, truncated 3386 // down to the expected width. This simplifies the logic later on. 3387 Mask = maskTrailingOnes<uint64_t>(Width); 3388 *Mask &= (IsSHL ? *Mask << ShAmt : *Mask >> ShAmt); 3389 } 3390 } 3391 3392 unsigned MaskIdx = Log2_32(ShAmt); 3393 uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width); 3394 3395 if (SHLExpMask) 3396 ExpMask <<= ShAmt; 3397 3398 if (Mask != ExpMask) 3399 return None; 3400 3401 return RISCVBitmanipPat{Src, (unsigned)ShAmt, IsSHL}; 3402 } 3403 3404 // Matches any of the following bit-manipulation patterns: 3405 // (and (shl x, 1), (0x55555555 << 1)) 3406 // (and (srl x, 1), 0x55555555) 3407 // (shl (and x, 0x55555555), 1) 3408 // (srl (and x, (0x55555555 << 1)), 1) 3409 // where the shift amount and mask may vary thus: 3410 // [1] = 0x55555555 / 0xAAAAAAAA 3411 // [2] = 0x33333333 / 0xCCCCCCCC 3412 // [4] = 0x0F0F0F0F / 0xF0F0F0F0 3413 // [8] = 0x00FF00FF / 0xFF00FF00 3414 // [16] = 0x0000FFFF / 0xFFFFFFFF 3415 // [32] = 0x00000000FFFFFFFF / 0xFFFFFFFF00000000 (for RV64) 3416 static Optional<RISCVBitmanipPat> matchGREVIPat(SDValue Op) { 3417 // These are the unshifted masks which we use to match bit-manipulation 3418 // patterns. They may be shifted left in certain circumstances. 3419 static const uint64_t BitmanipMasks[] = { 3420 0x5555555555555555ULL, 0x3333333333333333ULL, 0x0F0F0F0F0F0F0F0FULL, 3421 0x00FF00FF00FF00FFULL, 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL}; 3422 3423 return matchRISCVBitmanipPat(Op, BitmanipMasks); 3424 } 3425 3426 // Match the following pattern as a GREVI(W) operation 3427 // (or (BITMANIP_SHL x), (BITMANIP_SRL x)) 3428 static SDValue combineORToGREV(SDValue Op, SelectionDAG &DAG, 3429 const RISCVSubtarget &Subtarget) { 3430 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson"); 3431 EVT VT = Op.getValueType(); 3432 3433 if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) { 3434 auto LHS = matchGREVIPat(Op.getOperand(0)); 3435 auto RHS = matchGREVIPat(Op.getOperand(1)); 3436 if (LHS && RHS && LHS->formsPairWith(*RHS)) { 3437 SDLoc DL(Op); 3438 return DAG.getNode( 3439 RISCVISD::GREVI, DL, VT, LHS->Op, 3440 DAG.getTargetConstant(LHS->ShAmt, DL, Subtarget.getXLenVT())); 3441 } 3442 } 3443 return SDValue(); 3444 } 3445 3446 // Matches any the following pattern as a GORCI(W) operation 3447 // 1. (or (GREVI x, shamt), x) if shamt is a power of 2 3448 // 2. (or x, (GREVI x, shamt)) if shamt is a power of 2 3449 // 3. (or (or (BITMANIP_SHL x), x), (BITMANIP_SRL x)) 3450 // Note that with the variant of 3., 3451 // (or (or (BITMANIP_SHL x), (BITMANIP_SRL x)), x) 3452 // the inner pattern will first be matched as GREVI and then the outer 3453 // pattern will be matched to GORC via the first rule above. 3454 // 4. (or (rotl/rotr x, bitwidth/2), x) 3455 static SDValue combineORToGORC(SDValue Op, SelectionDAG &DAG, 3456 const RISCVSubtarget &Subtarget) { 3457 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson"); 3458 EVT VT = Op.getValueType(); 3459 3460 if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) { 3461 SDLoc DL(Op); 3462 SDValue Op0 = Op.getOperand(0); 3463 SDValue Op1 = Op.getOperand(1); 3464 3465 auto MatchOROfReverse = [&](SDValue Reverse, SDValue X) { 3466 if (Reverse.getOpcode() == RISCVISD::GREVI && Reverse.getOperand(0) == X && 3467 isPowerOf2_32(Reverse.getConstantOperandVal(1))) 3468 return DAG.getNode(RISCVISD::GORCI, DL, VT, X, Reverse.getOperand(1)); 3469 // We can also form GORCI from ROTL/ROTR by half the bitwidth. 3470 if ((Reverse.getOpcode() == ISD::ROTL || 3471 Reverse.getOpcode() == ISD::ROTR) && 3472 Reverse.getOperand(0) == X && 3473 isa<ConstantSDNode>(Reverse.getOperand(1))) { 3474 uint64_t RotAmt = Reverse.getConstantOperandVal(1); 3475 if (RotAmt == (VT.getSizeInBits() / 2)) 3476 return DAG.getNode( 3477 RISCVISD::GORCI, DL, VT, X, 3478 DAG.getTargetConstant(RotAmt, DL, Subtarget.getXLenVT())); 3479 } 3480 return SDValue(); 3481 }; 3482 3483 // Check for either commutable permutation of (or (GREVI x, shamt), x) 3484 if (SDValue V = MatchOROfReverse(Op0, Op1)) 3485 return V; 3486 if (SDValue V = MatchOROfReverse(Op1, Op0)) 3487 return V; 3488 3489 // OR is commutable so canonicalize its OR operand to the left 3490 if (Op0.getOpcode() != ISD::OR && Op1.getOpcode() == ISD::OR) 3491 std::swap(Op0, Op1); 3492 if (Op0.getOpcode() != ISD::OR) 3493 return SDValue(); 3494 SDValue OrOp0 = Op0.getOperand(0); 3495 SDValue OrOp1 = Op0.getOperand(1); 3496 auto LHS = matchGREVIPat(OrOp0); 3497 // OR is commutable so swap the operands and try again: x might have been 3498 // on the left 3499 if (!LHS) { 3500 std::swap(OrOp0, OrOp1); 3501 LHS = matchGREVIPat(OrOp0); 3502 } 3503 auto RHS = matchGREVIPat(Op1); 3504 if (LHS && RHS && LHS->formsPairWith(*RHS) && LHS->Op == OrOp1) { 3505 return DAG.getNode( 3506 RISCVISD::GORCI, DL, VT, LHS->Op, 3507 DAG.getTargetConstant(LHS->ShAmt, DL, Subtarget.getXLenVT())); 3508 } 3509 } 3510 return SDValue(); 3511 } 3512 3513 // Matches any of the following bit-manipulation patterns: 3514 // (and (shl x, 1), (0x22222222 << 1)) 3515 // (and (srl x, 1), 0x22222222) 3516 // (shl (and x, 0x22222222), 1) 3517 // (srl (and x, (0x22222222 << 1)), 1) 3518 // where the shift amount and mask may vary thus: 3519 // [1] = 0x22222222 / 0x44444444 3520 // [2] = 0x0C0C0C0C / 0x3C3C3C3C 3521 // [4] = 0x00F000F0 / 0x0F000F00 3522 // [8] = 0x0000FF00 / 0x00FF0000 3523 // [16] = 0x00000000FFFF0000 / 0x0000FFFF00000000 (for RV64) 3524 static Optional<RISCVBitmanipPat> matchSHFLPat(SDValue Op) { 3525 // These are the unshifted masks which we use to match bit-manipulation 3526 // patterns. They may be shifted left in certain circumstances. 3527 static const uint64_t BitmanipMasks[] = { 3528 0x2222222222222222ULL, 0x0C0C0C0C0C0C0C0CULL, 0x00F000F000F000F0ULL, 3529 0x0000FF000000FF00ULL, 0x00000000FFFF0000ULL}; 3530 3531 return matchRISCVBitmanipPat(Op, BitmanipMasks); 3532 } 3533 3534 // Match (or (or (SHFL_SHL x), (SHFL_SHR x)), (SHFL_AND x) 3535 static SDValue combineORToSHFL(SDValue Op, SelectionDAG &DAG, 3536 const RISCVSubtarget &Subtarget) { 3537 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson"); 3538 EVT VT = Op.getValueType(); 3539 3540 if (VT != MVT::i32 && VT != Subtarget.getXLenVT()) 3541 return SDValue(); 3542 3543 SDValue Op0 = Op.getOperand(0); 3544 SDValue Op1 = Op.getOperand(1); 3545 3546 // Or is commutable so canonicalize the second OR to the LHS. 3547 if (Op0.getOpcode() != ISD::OR) 3548 std::swap(Op0, Op1); 3549 if (Op0.getOpcode() != ISD::OR) 3550 return SDValue(); 3551 3552 // We found an inner OR, so our operands are the operands of the inner OR 3553 // and the other operand of the outer OR. 3554 SDValue A = Op0.getOperand(0); 3555 SDValue B = Op0.getOperand(1); 3556 SDValue C = Op1; 3557 3558 auto Match1 = matchSHFLPat(A); 3559 auto Match2 = matchSHFLPat(B); 3560 3561 // If neither matched, we failed. 3562 if (!Match1 && !Match2) 3563 return SDValue(); 3564 3565 // We had at least one match. if one failed, try the remaining C operand. 3566 if (!Match1) { 3567 std::swap(A, C); 3568 Match1 = matchSHFLPat(A); 3569 if (!Match1) 3570 return SDValue(); 3571 } else if (!Match2) { 3572 std::swap(B, C); 3573 Match2 = matchSHFLPat(B); 3574 if (!Match2) 3575 return SDValue(); 3576 } 3577 assert(Match1 && Match2); 3578 3579 // Make sure our matches pair up. 3580 if (!Match1->formsPairWith(*Match2)) 3581 return SDValue(); 3582 3583 // All the remains is to make sure C is an AND with the same input, that masks 3584 // out the bits that are being shuffled. 3585 if (C.getOpcode() != ISD::AND || !isa<ConstantSDNode>(C.getOperand(1)) || 3586 C.getOperand(0) != Match1->Op) 3587 return SDValue(); 3588 3589 uint64_t Mask = C.getConstantOperandVal(1); 3590 3591 static const uint64_t BitmanipMasks[] = { 3592 0x9999999999999999ULL, 0xC3C3C3C3C3C3C3C3ULL, 0xF00FF00FF00FF00FULL, 3593 0xFF0000FFFF0000FFULL, 0xFFFF00000000FFFFULL, 3594 }; 3595 3596 unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32; 3597 unsigned MaskIdx = Log2_32(Match1->ShAmt); 3598 uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width); 3599 3600 if (Mask != ExpMask) 3601 return SDValue(); 3602 3603 SDLoc DL(Op); 3604 return DAG.getNode( 3605 RISCVISD::SHFLI, DL, VT, Match1->Op, 3606 DAG.getTargetConstant(Match1->ShAmt, DL, Subtarget.getXLenVT())); 3607 } 3608 3609 // Combine (GREVI (GREVI x, C2), C1) -> (GREVI x, C1^C2) when C1^C2 is 3610 // non-zero, and to x when it is. Any repeated GREVI stage undoes itself. 3611 // Combine (GORCI (GORCI x, C2), C1) -> (GORCI x, C1|C2). Repeated stage does 3612 // not undo itself, but they are redundant. 3613 static SDValue combineGREVI_GORCI(SDNode *N, SelectionDAG &DAG) { 3614 unsigned ShAmt1 = N->getConstantOperandVal(1); 3615 SDValue Src = N->getOperand(0); 3616 3617 if (Src.getOpcode() != N->getOpcode()) 3618 return SDValue(); 3619 3620 unsigned ShAmt2 = Src.getConstantOperandVal(1); 3621 Src = Src.getOperand(0); 3622 3623 unsigned CombinedShAmt; 3624 if (N->getOpcode() == RISCVISD::GORCI || N->getOpcode() == RISCVISD::GORCIW) 3625 CombinedShAmt = ShAmt1 | ShAmt2; 3626 else 3627 CombinedShAmt = ShAmt1 ^ ShAmt2; 3628 3629 if (CombinedShAmt == 0) 3630 return Src; 3631 3632 SDLoc DL(N); 3633 return DAG.getNode(N->getOpcode(), DL, N->getValueType(0), Src, 3634 DAG.getTargetConstant(CombinedShAmt, DL, 3635 N->getOperand(1).getValueType())); 3636 } 3637 3638 SDValue RISCVTargetLowering::PerformDAGCombine(SDNode *N, 3639 DAGCombinerInfo &DCI) const { 3640 SelectionDAG &DAG = DCI.DAG; 3641 3642 switch (N->getOpcode()) { 3643 default: 3644 break; 3645 case RISCVISD::SplitF64: { 3646 SDValue Op0 = N->getOperand(0); 3647 // If the input to SplitF64 is just BuildPairF64 then the operation is 3648 // redundant. Instead, use BuildPairF64's operands directly. 3649 if (Op0->getOpcode() == RISCVISD::BuildPairF64) 3650 return DCI.CombineTo(N, Op0.getOperand(0), Op0.getOperand(1)); 3651 3652 SDLoc DL(N); 3653 3654 // It's cheaper to materialise two 32-bit integers than to load a double 3655 // from the constant pool and transfer it to integer registers through the 3656 // stack. 3657 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op0)) { 3658 APInt V = C->getValueAPF().bitcastToAPInt(); 3659 SDValue Lo = DAG.getConstant(V.trunc(32), DL, MVT::i32); 3660 SDValue Hi = DAG.getConstant(V.lshr(32).trunc(32), DL, MVT::i32); 3661 return DCI.CombineTo(N, Lo, Hi); 3662 } 3663 3664 // This is a target-specific version of a DAGCombine performed in 3665 // DAGCombiner::visitBITCAST. It performs the equivalent of: 3666 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) 3667 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) 3668 if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) || 3669 !Op0.getNode()->hasOneUse()) 3670 break; 3671 SDValue NewSplitF64 = 3672 DAG.getNode(RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), 3673 Op0.getOperand(0)); 3674 SDValue Lo = NewSplitF64.getValue(0); 3675 SDValue Hi = NewSplitF64.getValue(1); 3676 APInt SignBit = APInt::getSignMask(32); 3677 if (Op0.getOpcode() == ISD::FNEG) { 3678 SDValue NewHi = DAG.getNode(ISD::XOR, DL, MVT::i32, Hi, 3679 DAG.getConstant(SignBit, DL, MVT::i32)); 3680 return DCI.CombineTo(N, Lo, NewHi); 3681 } 3682 assert(Op0.getOpcode() == ISD::FABS); 3683 SDValue NewHi = DAG.getNode(ISD::AND, DL, MVT::i32, Hi, 3684 DAG.getConstant(~SignBit, DL, MVT::i32)); 3685 return DCI.CombineTo(N, Lo, NewHi); 3686 } 3687 case RISCVISD::SLLW: 3688 case RISCVISD::SRAW: 3689 case RISCVISD::SRLW: 3690 case RISCVISD::ROLW: 3691 case RISCVISD::RORW: { 3692 // Only the lower 32 bits of LHS and lower 5 bits of RHS are read. 3693 SDValue LHS = N->getOperand(0); 3694 SDValue RHS = N->getOperand(1); 3695 APInt LHSMask = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 32); 3696 APInt RHSMask = APInt::getLowBitsSet(RHS.getValueSizeInBits(), 5); 3697 if (SimplifyDemandedBits(N->getOperand(0), LHSMask, DCI) || 3698 SimplifyDemandedBits(N->getOperand(1), RHSMask, DCI)) { 3699 if (N->getOpcode() != ISD::DELETED_NODE) 3700 DCI.AddToWorklist(N); 3701 return SDValue(N, 0); 3702 } 3703 break; 3704 } 3705 case RISCVISD::FSL: 3706 case RISCVISD::FSR: { 3707 // Only the lower log2(Bitwidth)+1 bits of the the shift amount are read. 3708 SDValue ShAmt = N->getOperand(2); 3709 unsigned BitWidth = ShAmt.getValueSizeInBits(); 3710 assert(isPowerOf2_32(BitWidth) && "Unexpected bit width"); 3711 APInt ShAmtMask(BitWidth, (BitWidth * 2) - 1); 3712 if (SimplifyDemandedBits(ShAmt, ShAmtMask, DCI)) { 3713 if (N->getOpcode() != ISD::DELETED_NODE) 3714 DCI.AddToWorklist(N); 3715 return SDValue(N, 0); 3716 } 3717 break; 3718 } 3719 case RISCVISD::FSLW: 3720 case RISCVISD::FSRW: { 3721 // Only the lower 32 bits of Values and lower 6 bits of shift amount are 3722 // read. 3723 SDValue Op0 = N->getOperand(0); 3724 SDValue Op1 = N->getOperand(1); 3725 SDValue ShAmt = N->getOperand(2); 3726 APInt OpMask = APInt::getLowBitsSet(Op0.getValueSizeInBits(), 32); 3727 APInt ShAmtMask = APInt::getLowBitsSet(ShAmt.getValueSizeInBits(), 6); 3728 if (SimplifyDemandedBits(Op0, OpMask, DCI) || 3729 SimplifyDemandedBits(Op1, OpMask, DCI) || 3730 SimplifyDemandedBits(ShAmt, ShAmtMask, DCI)) { 3731 if (N->getOpcode() != ISD::DELETED_NODE) 3732 DCI.AddToWorklist(N); 3733 return SDValue(N, 0); 3734 } 3735 break; 3736 } 3737 case RISCVISD::GREVIW: 3738 case RISCVISD::GORCIW: { 3739 // Only the lower 32 bits of the first operand are read 3740 SDValue Op0 = N->getOperand(0); 3741 APInt Mask = APInt::getLowBitsSet(Op0.getValueSizeInBits(), 32); 3742 if (SimplifyDemandedBits(Op0, Mask, DCI)) { 3743 if (N->getOpcode() != ISD::DELETED_NODE) 3744 DCI.AddToWorklist(N); 3745 return SDValue(N, 0); 3746 } 3747 3748 return combineGREVI_GORCI(N, DCI.DAG); 3749 } 3750 case RISCVISD::FMV_X_ANYEXTW_RV64: { 3751 SDLoc DL(N); 3752 SDValue Op0 = N->getOperand(0); 3753 // If the input to FMV_X_ANYEXTW_RV64 is just FMV_W_X_RV64 then the 3754 // conversion is unnecessary and can be replaced with an ANY_EXTEND 3755 // of the FMV_W_X_RV64 operand. 3756 if (Op0->getOpcode() == RISCVISD::FMV_W_X_RV64) { 3757 assert(Op0.getOperand(0).getValueType() == MVT::i64 && 3758 "Unexpected value type!"); 3759 return Op0.getOperand(0); 3760 } 3761 3762 // This is a target-specific version of a DAGCombine performed in 3763 // DAGCombiner::visitBITCAST. It performs the equivalent of: 3764 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) 3765 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) 3766 if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) || 3767 !Op0.getNode()->hasOneUse()) 3768 break; 3769 SDValue NewFMV = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, 3770 Op0.getOperand(0)); 3771 APInt SignBit = APInt::getSignMask(32).sext(64); 3772 if (Op0.getOpcode() == ISD::FNEG) 3773 return DAG.getNode(ISD::XOR, DL, MVT::i64, NewFMV, 3774 DAG.getConstant(SignBit, DL, MVT::i64)); 3775 3776 assert(Op0.getOpcode() == ISD::FABS); 3777 return DAG.getNode(ISD::AND, DL, MVT::i64, NewFMV, 3778 DAG.getConstant(~SignBit, DL, MVT::i64)); 3779 } 3780 case RISCVISD::GREVI: 3781 case RISCVISD::GORCI: 3782 return combineGREVI_GORCI(N, DCI.DAG); 3783 case ISD::OR: 3784 if (auto GREV = combineORToGREV(SDValue(N, 0), DCI.DAG, Subtarget)) 3785 return GREV; 3786 if (auto GORC = combineORToGORC(SDValue(N, 0), DCI.DAG, Subtarget)) 3787 return GORC; 3788 if (auto SHFL = combineORToSHFL(SDValue(N, 0), DCI.DAG, Subtarget)) 3789 return SHFL; 3790 break; 3791 case RISCVISD::SELECT_CC: { 3792 // Transform 3793 // (select_cc (xor X, 1), 0, setne, trueV, falseV) -> 3794 // (select_cc X, 0, seteq, trueV, falseV) if we can prove X is 0/1. 3795 // This can occur when legalizing some floating point comparisons. 3796 SDValue LHS = N->getOperand(0); 3797 SDValue RHS = N->getOperand(1); 3798 auto CCVal = static_cast<ISD::CondCode>(N->getConstantOperandVal(2)); 3799 APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1); 3800 if (ISD::isIntEqualitySetCC(CCVal) && isNullConstant(RHS) && 3801 LHS.getOpcode() == ISD::XOR && isOneConstant(LHS.getOperand(1)) && 3802 DAG.MaskedValueIsZero(LHS.getOperand(0), Mask)) { 3803 SDLoc DL(N); 3804 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 3805 SDValue TargetCC = DAG.getConstant(CCVal, DL, Subtarget.getXLenVT()); 3806 return DAG.getNode(RISCVISD::SELECT_CC, DL, N->getValueType(0), 3807 {LHS.getOperand(0), RHS, TargetCC, N->getOperand(3), 3808 N->getOperand(4)}); 3809 } 3810 break; 3811 } 3812 case ISD::SETCC: { 3813 // (setcc X, 1, setne) -> (setcc X, 0, seteq) if we can prove X is 0/1. 3814 // Comparing with 0 may allow us to fold into bnez/beqz. 3815 SDValue LHS = N->getOperand(0); 3816 SDValue RHS = N->getOperand(1); 3817 if (LHS.getValueType().isScalableVector()) 3818 break; 3819 auto CC = cast<CondCodeSDNode>(N->getOperand(2))->get(); 3820 APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1); 3821 if (isOneConstant(RHS) && ISD::isIntEqualitySetCC(CC) && 3822 DAG.MaskedValueIsZero(LHS, Mask)) { 3823 SDLoc DL(N); 3824 SDValue Zero = DAG.getConstant(0, DL, LHS.getValueType()); 3825 CC = ISD::getSetCCInverse(CC, LHS.getValueType()); 3826 return DAG.getSetCC(DL, N->getValueType(0), LHS, Zero, CC); 3827 } 3828 break; 3829 } 3830 case ISD::FCOPYSIGN: { 3831 EVT VT = N->getValueType(0); 3832 if (!VT.isVector()) 3833 break; 3834 // There is a form of VFSGNJ which injects the negated sign of its second 3835 // operand. Try and bubble any FNEG up after the extend/round to produce 3836 // this optimized pattern. Avoid modifying cases where FP_ROUND and 3837 // TRUNC=1. 3838 SDValue In2 = N->getOperand(1); 3839 // Avoid cases where the extend/round has multiple uses, as duplicating 3840 // those is typically more expensive than removing a fneg. 3841 if (!In2.hasOneUse()) 3842 break; 3843 if (In2.getOpcode() != ISD::FP_EXTEND && 3844 (In2.getOpcode() != ISD::FP_ROUND || In2.getConstantOperandVal(1) != 0)) 3845 break; 3846 In2 = In2.getOperand(0); 3847 if (In2.getOpcode() != ISD::FNEG) 3848 break; 3849 SDLoc DL(N); 3850 SDValue NewFPExtRound = DAG.getFPExtendOrRound(In2.getOperand(0), DL, VT); 3851 return DAG.getNode(ISD::FCOPYSIGN, DL, VT, N->getOperand(0), 3852 DAG.getNode(ISD::FNEG, DL, VT, NewFPExtRound)); 3853 } 3854 } 3855 3856 return SDValue(); 3857 } 3858 3859 bool RISCVTargetLowering::isDesirableToCommuteWithShift( 3860 const SDNode *N, CombineLevel Level) const { 3861 // The following folds are only desirable if `(OP _, c1 << c2)` can be 3862 // materialised in fewer instructions than `(OP _, c1)`: 3863 // 3864 // (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2) 3865 // (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2) 3866 SDValue N0 = N->getOperand(0); 3867 EVT Ty = N0.getValueType(); 3868 if (Ty.isScalarInteger() && 3869 (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::OR)) { 3870 auto *C1 = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 3871 auto *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1)); 3872 if (C1 && C2) { 3873 const APInt &C1Int = C1->getAPIntValue(); 3874 APInt ShiftedC1Int = C1Int << C2->getAPIntValue(); 3875 3876 // We can materialise `c1 << c2` into an add immediate, so it's "free", 3877 // and the combine should happen, to potentially allow further combines 3878 // later. 3879 if (ShiftedC1Int.getMinSignedBits() <= 64 && 3880 isLegalAddImmediate(ShiftedC1Int.getSExtValue())) 3881 return true; 3882 3883 // We can materialise `c1` in an add immediate, so it's "free", and the 3884 // combine should be prevented. 3885 if (C1Int.getMinSignedBits() <= 64 && 3886 isLegalAddImmediate(C1Int.getSExtValue())) 3887 return false; 3888 3889 // Neither constant will fit into an immediate, so find materialisation 3890 // costs. 3891 int C1Cost = RISCVMatInt::getIntMatCost(C1Int, Ty.getSizeInBits(), 3892 Subtarget.is64Bit()); 3893 int ShiftedC1Cost = RISCVMatInt::getIntMatCost( 3894 ShiftedC1Int, Ty.getSizeInBits(), Subtarget.is64Bit()); 3895 3896 // Materialising `c1` is cheaper than materialising `c1 << c2`, so the 3897 // combine should be prevented. 3898 if (C1Cost < ShiftedC1Cost) 3899 return false; 3900 } 3901 } 3902 return true; 3903 } 3904 3905 bool RISCVTargetLowering::targetShrinkDemandedConstant( 3906 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 3907 TargetLoweringOpt &TLO) const { 3908 // Delay this optimization as late as possible. 3909 if (!TLO.LegalOps) 3910 return false; 3911 3912 EVT VT = Op.getValueType(); 3913 if (VT.isVector()) 3914 return false; 3915 3916 // Only handle AND for now. 3917 if (Op.getOpcode() != ISD::AND) 3918 return false; 3919 3920 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 3921 if (!C) 3922 return false; 3923 3924 const APInt &Mask = C->getAPIntValue(); 3925 3926 // Clear all non-demanded bits initially. 3927 APInt ShrunkMask = Mask & DemandedBits; 3928 3929 // If the shrunk mask fits in sign extended 12 bits, let the target 3930 // independent code apply it. 3931 if (ShrunkMask.isSignedIntN(12)) 3932 return false; 3933 3934 // Try to make a smaller immediate by setting undemanded bits. 3935 3936 // We need to be able to make a negative number through a combination of mask 3937 // and undemanded bits. 3938 APInt ExpandedMask = Mask | ~DemandedBits; 3939 if (!ExpandedMask.isNegative()) 3940 return false; 3941 3942 // What is the fewest number of bits we need to represent the negative number. 3943 unsigned MinSignedBits = ExpandedMask.getMinSignedBits(); 3944 3945 // Try to make a 12 bit negative immediate. If that fails try to make a 32 3946 // bit negative immediate unless the shrunk immediate already fits in 32 bits. 3947 APInt NewMask = ShrunkMask; 3948 if (MinSignedBits <= 12) 3949 NewMask.setBitsFrom(11); 3950 else if (MinSignedBits <= 32 && !ShrunkMask.isSignedIntN(32)) 3951 NewMask.setBitsFrom(31); 3952 else 3953 return false; 3954 3955 // Sanity check that our new mask is a subset of the demanded mask. 3956 assert(NewMask.isSubsetOf(ExpandedMask)); 3957 3958 // If we aren't changing the mask, just return true to keep it and prevent 3959 // the caller from optimizing. 3960 if (NewMask == Mask) 3961 return true; 3962 3963 // Replace the constant with the new mask. 3964 SDLoc DL(Op); 3965 SDValue NewC = TLO.DAG.getConstant(NewMask, DL, VT); 3966 SDValue NewOp = TLO.DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), NewC); 3967 return TLO.CombineTo(Op, NewOp); 3968 } 3969 3970 void RISCVTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 3971 KnownBits &Known, 3972 const APInt &DemandedElts, 3973 const SelectionDAG &DAG, 3974 unsigned Depth) const { 3975 unsigned BitWidth = Known.getBitWidth(); 3976 unsigned Opc = Op.getOpcode(); 3977 assert((Opc >= ISD::BUILTIN_OP_END || 3978 Opc == ISD::INTRINSIC_WO_CHAIN || 3979 Opc == ISD::INTRINSIC_W_CHAIN || 3980 Opc == ISD::INTRINSIC_VOID) && 3981 "Should use MaskedValueIsZero if you don't know whether Op" 3982 " is a target node!"); 3983 3984 Known.resetAll(); 3985 switch (Opc) { 3986 default: break; 3987 case RISCVISD::REMUW: { 3988 KnownBits Known2; 3989 Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3990 Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3991 // We only care about the lower 32 bits. 3992 Known = KnownBits::urem(Known.trunc(32), Known2.trunc(32)); 3993 // Restore the original width by sign extending. 3994 Known = Known.sext(BitWidth); 3995 break; 3996 } 3997 case RISCVISD::DIVUW: { 3998 KnownBits Known2; 3999 Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 4000 Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 4001 // We only care about the lower 32 bits. 4002 Known = KnownBits::udiv(Known.trunc(32), Known2.trunc(32)); 4003 // Restore the original width by sign extending. 4004 Known = Known.sext(BitWidth); 4005 break; 4006 } 4007 case RISCVISD::READ_VLENB: 4008 // We assume VLENB is at least 8 bytes. 4009 // FIXME: The 1.0 draft spec defines minimum VLEN as 128 bits. 4010 Known.Zero.setLowBits(3); 4011 break; 4012 } 4013 } 4014 4015 unsigned RISCVTargetLowering::ComputeNumSignBitsForTargetNode( 4016 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 4017 unsigned Depth) const { 4018 switch (Op.getOpcode()) { 4019 default: 4020 break; 4021 case RISCVISD::SLLW: 4022 case RISCVISD::SRAW: 4023 case RISCVISD::SRLW: 4024 case RISCVISD::DIVW: 4025 case RISCVISD::DIVUW: 4026 case RISCVISD::REMUW: 4027 case RISCVISD::ROLW: 4028 case RISCVISD::RORW: 4029 case RISCVISD::GREVIW: 4030 case RISCVISD::GORCIW: 4031 case RISCVISD::FSLW: 4032 case RISCVISD::FSRW: 4033 // TODO: As the result is sign-extended, this is conservatively correct. A 4034 // more precise answer could be calculated for SRAW depending on known 4035 // bits in the shift amount. 4036 return 33; 4037 case RISCVISD::SHFLI: { 4038 // There is no SHFLIW, but a i64 SHFLI with bit 4 of the control word 4039 // cleared doesn't affect bit 31. The upper 32 bits will be shuffled, but 4040 // will stay within the upper 32 bits. If there were more than 32 sign bits 4041 // before there will be at least 33 sign bits after. 4042 if (Op.getValueType() == MVT::i64 && 4043 (Op.getConstantOperandVal(1) & 0x10) == 0) { 4044 unsigned Tmp = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1); 4045 if (Tmp > 32) 4046 return 33; 4047 } 4048 break; 4049 } 4050 case RISCVISD::VMV_X_S: 4051 // The number of sign bits of the scalar result is computed by obtaining the 4052 // element type of the input vector operand, subtracting its width from the 4053 // XLEN, and then adding one (sign bit within the element type). If the 4054 // element type is wider than XLen, the least-significant XLEN bits are 4055 // taken. 4056 if (Op.getOperand(0).getScalarValueSizeInBits() > Subtarget.getXLen()) 4057 return 1; 4058 return Subtarget.getXLen() - Op.getOperand(0).getScalarValueSizeInBits() + 1; 4059 } 4060 4061 return 1; 4062 } 4063 4064 static MachineBasicBlock *emitReadCycleWidePseudo(MachineInstr &MI, 4065 MachineBasicBlock *BB) { 4066 assert(MI.getOpcode() == RISCV::ReadCycleWide && "Unexpected instruction"); 4067 4068 // To read the 64-bit cycle CSR on a 32-bit target, we read the two halves. 4069 // Should the count have wrapped while it was being read, we need to try 4070 // again. 4071 // ... 4072 // read: 4073 // rdcycleh x3 # load high word of cycle 4074 // rdcycle x2 # load low word of cycle 4075 // rdcycleh x4 # load high word of cycle 4076 // bne x3, x4, read # check if high word reads match, otherwise try again 4077 // ... 4078 4079 MachineFunction &MF = *BB->getParent(); 4080 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 4081 MachineFunction::iterator It = ++BB->getIterator(); 4082 4083 MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB); 4084 MF.insert(It, LoopMBB); 4085 4086 MachineBasicBlock *DoneMBB = MF.CreateMachineBasicBlock(LLVM_BB); 4087 MF.insert(It, DoneMBB); 4088 4089 // Transfer the remainder of BB and its successor edges to DoneMBB. 4090 DoneMBB->splice(DoneMBB->begin(), BB, 4091 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 4092 DoneMBB->transferSuccessorsAndUpdatePHIs(BB); 4093 4094 BB->addSuccessor(LoopMBB); 4095 4096 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 4097 Register ReadAgainReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 4098 Register LoReg = MI.getOperand(0).getReg(); 4099 Register HiReg = MI.getOperand(1).getReg(); 4100 DebugLoc DL = MI.getDebugLoc(); 4101 4102 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 4103 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), HiReg) 4104 .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding) 4105 .addReg(RISCV::X0); 4106 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), LoReg) 4107 .addImm(RISCVSysReg::lookupSysRegByName("CYCLE")->Encoding) 4108 .addReg(RISCV::X0); 4109 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), ReadAgainReg) 4110 .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding) 4111 .addReg(RISCV::X0); 4112 4113 BuildMI(LoopMBB, DL, TII->get(RISCV::BNE)) 4114 .addReg(HiReg) 4115 .addReg(ReadAgainReg) 4116 .addMBB(LoopMBB); 4117 4118 LoopMBB->addSuccessor(LoopMBB); 4119 LoopMBB->addSuccessor(DoneMBB); 4120 4121 MI.eraseFromParent(); 4122 4123 return DoneMBB; 4124 } 4125 4126 static MachineBasicBlock *emitSplitF64Pseudo(MachineInstr &MI, 4127 MachineBasicBlock *BB) { 4128 assert(MI.getOpcode() == RISCV::SplitF64Pseudo && "Unexpected instruction"); 4129 4130 MachineFunction &MF = *BB->getParent(); 4131 DebugLoc DL = MI.getDebugLoc(); 4132 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 4133 const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo(); 4134 Register LoReg = MI.getOperand(0).getReg(); 4135 Register HiReg = MI.getOperand(1).getReg(); 4136 Register SrcReg = MI.getOperand(2).getReg(); 4137 const TargetRegisterClass *SrcRC = &RISCV::FPR64RegClass; 4138 int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF); 4139 4140 TII.storeRegToStackSlot(*BB, MI, SrcReg, MI.getOperand(2).isKill(), FI, SrcRC, 4141 RI); 4142 MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI); 4143 MachineMemOperand *MMOLo = 4144 MF.getMachineMemOperand(MPI, MachineMemOperand::MOLoad, 4, Align(8)); 4145 MachineMemOperand *MMOHi = MF.getMachineMemOperand( 4146 MPI.getWithOffset(4), MachineMemOperand::MOLoad, 4, Align(8)); 4147 BuildMI(*BB, MI, DL, TII.get(RISCV::LW), LoReg) 4148 .addFrameIndex(FI) 4149 .addImm(0) 4150 .addMemOperand(MMOLo); 4151 BuildMI(*BB, MI, DL, TII.get(RISCV::LW), HiReg) 4152 .addFrameIndex(FI) 4153 .addImm(4) 4154 .addMemOperand(MMOHi); 4155 MI.eraseFromParent(); // The pseudo instruction is gone now. 4156 return BB; 4157 } 4158 4159 static MachineBasicBlock *emitBuildPairF64Pseudo(MachineInstr &MI, 4160 MachineBasicBlock *BB) { 4161 assert(MI.getOpcode() == RISCV::BuildPairF64Pseudo && 4162 "Unexpected instruction"); 4163 4164 MachineFunction &MF = *BB->getParent(); 4165 DebugLoc DL = MI.getDebugLoc(); 4166 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 4167 const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo(); 4168 Register DstReg = MI.getOperand(0).getReg(); 4169 Register LoReg = MI.getOperand(1).getReg(); 4170 Register HiReg = MI.getOperand(2).getReg(); 4171 const TargetRegisterClass *DstRC = &RISCV::FPR64RegClass; 4172 int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF); 4173 4174 MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI); 4175 MachineMemOperand *MMOLo = 4176 MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Align(8)); 4177 MachineMemOperand *MMOHi = MF.getMachineMemOperand( 4178 MPI.getWithOffset(4), MachineMemOperand::MOStore, 4, Align(8)); 4179 BuildMI(*BB, MI, DL, TII.get(RISCV::SW)) 4180 .addReg(LoReg, getKillRegState(MI.getOperand(1).isKill())) 4181 .addFrameIndex(FI) 4182 .addImm(0) 4183 .addMemOperand(MMOLo); 4184 BuildMI(*BB, MI, DL, TII.get(RISCV::SW)) 4185 .addReg(HiReg, getKillRegState(MI.getOperand(2).isKill())) 4186 .addFrameIndex(FI) 4187 .addImm(4) 4188 .addMemOperand(MMOHi); 4189 TII.loadRegFromStackSlot(*BB, MI, DstReg, FI, DstRC, RI); 4190 MI.eraseFromParent(); // The pseudo instruction is gone now. 4191 return BB; 4192 } 4193 4194 static bool isSelectPseudo(MachineInstr &MI) { 4195 switch (MI.getOpcode()) { 4196 default: 4197 return false; 4198 case RISCV::Select_GPR_Using_CC_GPR: 4199 case RISCV::Select_FPR16_Using_CC_GPR: 4200 case RISCV::Select_FPR32_Using_CC_GPR: 4201 case RISCV::Select_FPR64_Using_CC_GPR: 4202 return true; 4203 } 4204 } 4205 4206 static MachineBasicBlock *emitSelectPseudo(MachineInstr &MI, 4207 MachineBasicBlock *BB) { 4208 // To "insert" Select_* instructions, we actually have to insert the triangle 4209 // control-flow pattern. The incoming instructions know the destination vreg 4210 // to set, the condition code register to branch on, the true/false values to 4211 // select between, and the condcode to use to select the appropriate branch. 4212 // 4213 // We produce the following control flow: 4214 // HeadMBB 4215 // | \ 4216 // | IfFalseMBB 4217 // | / 4218 // TailMBB 4219 // 4220 // When we find a sequence of selects we attempt to optimize their emission 4221 // by sharing the control flow. Currently we only handle cases where we have 4222 // multiple selects with the exact same condition (same LHS, RHS and CC). 4223 // The selects may be interleaved with other instructions if the other 4224 // instructions meet some requirements we deem safe: 4225 // - They are debug instructions. Otherwise, 4226 // - They do not have side-effects, do not access memory and their inputs do 4227 // not depend on the results of the select pseudo-instructions. 4228 // The TrueV/FalseV operands of the selects cannot depend on the result of 4229 // previous selects in the sequence. 4230 // These conditions could be further relaxed. See the X86 target for a 4231 // related approach and more information. 4232 Register LHS = MI.getOperand(1).getReg(); 4233 Register RHS = MI.getOperand(2).getReg(); 4234 auto CC = static_cast<ISD::CondCode>(MI.getOperand(3).getImm()); 4235 4236 SmallVector<MachineInstr *, 4> SelectDebugValues; 4237 SmallSet<Register, 4> SelectDests; 4238 SelectDests.insert(MI.getOperand(0).getReg()); 4239 4240 MachineInstr *LastSelectPseudo = &MI; 4241 4242 for (auto E = BB->end(), SequenceMBBI = MachineBasicBlock::iterator(MI); 4243 SequenceMBBI != E; ++SequenceMBBI) { 4244 if (SequenceMBBI->isDebugInstr()) 4245 continue; 4246 else if (isSelectPseudo(*SequenceMBBI)) { 4247 if (SequenceMBBI->getOperand(1).getReg() != LHS || 4248 SequenceMBBI->getOperand(2).getReg() != RHS || 4249 SequenceMBBI->getOperand(3).getImm() != CC || 4250 SelectDests.count(SequenceMBBI->getOperand(4).getReg()) || 4251 SelectDests.count(SequenceMBBI->getOperand(5).getReg())) 4252 break; 4253 LastSelectPseudo = &*SequenceMBBI; 4254 SequenceMBBI->collectDebugValues(SelectDebugValues); 4255 SelectDests.insert(SequenceMBBI->getOperand(0).getReg()); 4256 } else { 4257 if (SequenceMBBI->hasUnmodeledSideEffects() || 4258 SequenceMBBI->mayLoadOrStore()) 4259 break; 4260 if (llvm::any_of(SequenceMBBI->operands(), [&](MachineOperand &MO) { 4261 return MO.isReg() && MO.isUse() && SelectDests.count(MO.getReg()); 4262 })) 4263 break; 4264 } 4265 } 4266 4267 const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo(); 4268 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 4269 DebugLoc DL = MI.getDebugLoc(); 4270 MachineFunction::iterator I = ++BB->getIterator(); 4271 4272 MachineBasicBlock *HeadMBB = BB; 4273 MachineFunction *F = BB->getParent(); 4274 MachineBasicBlock *TailMBB = F->CreateMachineBasicBlock(LLVM_BB); 4275 MachineBasicBlock *IfFalseMBB = F->CreateMachineBasicBlock(LLVM_BB); 4276 4277 F->insert(I, IfFalseMBB); 4278 F->insert(I, TailMBB); 4279 4280 // Transfer debug instructions associated with the selects to TailMBB. 4281 for (MachineInstr *DebugInstr : SelectDebugValues) { 4282 TailMBB->push_back(DebugInstr->removeFromParent()); 4283 } 4284 4285 // Move all instructions after the sequence to TailMBB. 4286 TailMBB->splice(TailMBB->end(), HeadMBB, 4287 std::next(LastSelectPseudo->getIterator()), HeadMBB->end()); 4288 // Update machine-CFG edges by transferring all successors of the current 4289 // block to the new block which will contain the Phi nodes for the selects. 4290 TailMBB->transferSuccessorsAndUpdatePHIs(HeadMBB); 4291 // Set the successors for HeadMBB. 4292 HeadMBB->addSuccessor(IfFalseMBB); 4293 HeadMBB->addSuccessor(TailMBB); 4294 4295 // Insert appropriate branch. 4296 unsigned Opcode = getBranchOpcodeForIntCondCode(CC); 4297 4298 BuildMI(HeadMBB, DL, TII.get(Opcode)) 4299 .addReg(LHS) 4300 .addReg(RHS) 4301 .addMBB(TailMBB); 4302 4303 // IfFalseMBB just falls through to TailMBB. 4304 IfFalseMBB->addSuccessor(TailMBB); 4305 4306 // Create PHIs for all of the select pseudo-instructions. 4307 auto SelectMBBI = MI.getIterator(); 4308 auto SelectEnd = std::next(LastSelectPseudo->getIterator()); 4309 auto InsertionPoint = TailMBB->begin(); 4310 while (SelectMBBI != SelectEnd) { 4311 auto Next = std::next(SelectMBBI); 4312 if (isSelectPseudo(*SelectMBBI)) { 4313 // %Result = phi [ %TrueValue, HeadMBB ], [ %FalseValue, IfFalseMBB ] 4314 BuildMI(*TailMBB, InsertionPoint, SelectMBBI->getDebugLoc(), 4315 TII.get(RISCV::PHI), SelectMBBI->getOperand(0).getReg()) 4316 .addReg(SelectMBBI->getOperand(4).getReg()) 4317 .addMBB(HeadMBB) 4318 .addReg(SelectMBBI->getOperand(5).getReg()) 4319 .addMBB(IfFalseMBB); 4320 SelectMBBI->eraseFromParent(); 4321 } 4322 SelectMBBI = Next; 4323 } 4324 4325 F->getProperties().reset(MachineFunctionProperties::Property::NoPHIs); 4326 return TailMBB; 4327 } 4328 4329 static MachineBasicBlock *addVSetVL(MachineInstr &MI, MachineBasicBlock *BB, 4330 int VLIndex, unsigned SEWIndex, 4331 RISCVVLMUL VLMul, bool ForceTailAgnostic) { 4332 MachineFunction &MF = *BB->getParent(); 4333 DebugLoc DL = MI.getDebugLoc(); 4334 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 4335 4336 unsigned SEW = MI.getOperand(SEWIndex).getImm(); 4337 assert(RISCVVType::isValidSEW(SEW) && "Unexpected SEW"); 4338 RISCVVSEW ElementWidth = static_cast<RISCVVSEW>(Log2_32(SEW / 8)); 4339 4340 MachineRegisterInfo &MRI = MF.getRegInfo(); 4341 4342 auto BuildVSETVLI = [&]() { 4343 if (VLIndex >= 0) { 4344 Register DestReg = MRI.createVirtualRegister(&RISCV::GPRRegClass); 4345 Register VLReg = MI.getOperand(VLIndex).getReg(); 4346 4347 // VL might be a compile time constant, but isel would have to put it 4348 // in a register. See if VL comes from an ADDI X0, imm. 4349 if (VLReg.isVirtual()) { 4350 MachineInstr *Def = MRI.getVRegDef(VLReg); 4351 if (Def && Def->getOpcode() == RISCV::ADDI && 4352 Def->getOperand(1).getReg() == RISCV::X0 && 4353 Def->getOperand(2).isImm()) { 4354 uint64_t Imm = Def->getOperand(2).getImm(); 4355 // VSETIVLI allows a 5-bit zero extended immediate. 4356 if (isUInt<5>(Imm)) 4357 return BuildMI(*BB, MI, DL, TII.get(RISCV::PseudoVSETIVLI)) 4358 .addReg(DestReg, RegState::Define | RegState::Dead) 4359 .addImm(Imm); 4360 } 4361 } 4362 4363 return BuildMI(*BB, MI, DL, TII.get(RISCV::PseudoVSETVLI)) 4364 .addReg(DestReg, RegState::Define | RegState::Dead) 4365 .addReg(VLReg); 4366 } 4367 4368 // With no VL operator in the pseudo, do not modify VL (rd = X0, rs1 = X0). 4369 return BuildMI(*BB, MI, DL, TII.get(RISCV::PseudoVSETVLI)) 4370 .addReg(RISCV::X0, RegState::Define | RegState::Dead) 4371 .addReg(RISCV::X0, RegState::Kill); 4372 }; 4373 4374 MachineInstrBuilder MIB = BuildVSETVLI(); 4375 4376 // Default to tail agnostic unless the destination is tied to a source. In 4377 // that case the user would have some control over the tail values. The tail 4378 // policy is also ignored on instructions that only update element 0 like 4379 // vmv.s.x or reductions so use agnostic there to match the common case. 4380 // FIXME: This is conservatively correct, but we might want to detect that 4381 // the input is undefined. 4382 bool TailAgnostic = true; 4383 unsigned UseOpIdx; 4384 if (!ForceTailAgnostic && MI.isRegTiedToUseOperand(0, &UseOpIdx)) { 4385 TailAgnostic = false; 4386 // If the tied operand is an IMPLICIT_DEF we can keep TailAgnostic. 4387 const MachineOperand &UseMO = MI.getOperand(UseOpIdx); 4388 MachineInstr *UseMI = MRI.getVRegDef(UseMO.getReg()); 4389 if (UseMI && UseMI->isImplicitDef()) 4390 TailAgnostic = true; 4391 } 4392 4393 // For simplicity we reuse the vtype representation here. 4394 MIB.addImm(RISCVVType::encodeVTYPE(VLMul, ElementWidth, 4395 /*TailAgnostic*/ TailAgnostic, 4396 /*MaskAgnostic*/ false)); 4397 4398 // Remove (now) redundant operands from pseudo 4399 MI.getOperand(SEWIndex).setImm(-1); 4400 if (VLIndex >= 0) { 4401 MI.getOperand(VLIndex).setReg(RISCV::NoRegister); 4402 MI.getOperand(VLIndex).setIsKill(false); 4403 } 4404 4405 return BB; 4406 } 4407 4408 MachineBasicBlock * 4409 RISCVTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 4410 MachineBasicBlock *BB) const { 4411 uint64_t TSFlags = MI.getDesc().TSFlags; 4412 4413 if (TSFlags & RISCVII::HasSEWOpMask) { 4414 unsigned NumOperands = MI.getNumExplicitOperands(); 4415 int VLIndex = (TSFlags & RISCVII::HasVLOpMask) ? NumOperands - 2 : -1; 4416 unsigned SEWIndex = NumOperands - 1; 4417 bool ForceTailAgnostic = TSFlags & RISCVII::ForceTailAgnosticMask; 4418 4419 RISCVVLMUL VLMul = static_cast<RISCVVLMUL>((TSFlags & RISCVII::VLMulMask) >> 4420 RISCVII::VLMulShift); 4421 return addVSetVL(MI, BB, VLIndex, SEWIndex, VLMul, ForceTailAgnostic); 4422 } 4423 4424 switch (MI.getOpcode()) { 4425 default: 4426 llvm_unreachable("Unexpected instr type to insert"); 4427 case RISCV::ReadCycleWide: 4428 assert(!Subtarget.is64Bit() && 4429 "ReadCycleWrite is only to be used on riscv32"); 4430 return emitReadCycleWidePseudo(MI, BB); 4431 case RISCV::Select_GPR_Using_CC_GPR: 4432 case RISCV::Select_FPR16_Using_CC_GPR: 4433 case RISCV::Select_FPR32_Using_CC_GPR: 4434 case RISCV::Select_FPR64_Using_CC_GPR: 4435 return emitSelectPseudo(MI, BB); 4436 case RISCV::BuildPairF64Pseudo: 4437 return emitBuildPairF64Pseudo(MI, BB); 4438 case RISCV::SplitF64Pseudo: 4439 return emitSplitF64Pseudo(MI, BB); 4440 } 4441 } 4442 4443 // Calling Convention Implementation. 4444 // The expectations for frontend ABI lowering vary from target to target. 4445 // Ideally, an LLVM frontend would be able to avoid worrying about many ABI 4446 // details, but this is a longer term goal. For now, we simply try to keep the 4447 // role of the frontend as simple and well-defined as possible. The rules can 4448 // be summarised as: 4449 // * Never split up large scalar arguments. We handle them here. 4450 // * If a hardfloat calling convention is being used, and the struct may be 4451 // passed in a pair of registers (fp+fp, int+fp), and both registers are 4452 // available, then pass as two separate arguments. If either the GPRs or FPRs 4453 // are exhausted, then pass according to the rule below. 4454 // * If a struct could never be passed in registers or directly in a stack 4455 // slot (as it is larger than 2*XLEN and the floating point rules don't 4456 // apply), then pass it using a pointer with the byval attribute. 4457 // * If a struct is less than 2*XLEN, then coerce to either a two-element 4458 // word-sized array or a 2*XLEN scalar (depending on alignment). 4459 // * The frontend can determine whether a struct is returned by reference or 4460 // not based on its size and fields. If it will be returned by reference, the 4461 // frontend must modify the prototype so a pointer with the sret annotation is 4462 // passed as the first argument. This is not necessary for large scalar 4463 // returns. 4464 // * Struct return values and varargs should be coerced to structs containing 4465 // register-size fields in the same situations they would be for fixed 4466 // arguments. 4467 4468 static const MCPhysReg ArgGPRs[] = { 4469 RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, 4470 RISCV::X14, RISCV::X15, RISCV::X16, RISCV::X17 4471 }; 4472 static const MCPhysReg ArgFPR16s[] = { 4473 RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, 4474 RISCV::F14_H, RISCV::F15_H, RISCV::F16_H, RISCV::F17_H 4475 }; 4476 static const MCPhysReg ArgFPR32s[] = { 4477 RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, 4478 RISCV::F14_F, RISCV::F15_F, RISCV::F16_F, RISCV::F17_F 4479 }; 4480 static const MCPhysReg ArgFPR64s[] = { 4481 RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, 4482 RISCV::F14_D, RISCV::F15_D, RISCV::F16_D, RISCV::F17_D 4483 }; 4484 // This is an interim calling convention and it may be changed in the future. 4485 static const MCPhysReg ArgVRs[] = { 4486 RISCV::V8, RISCV::V9, RISCV::V10, RISCV::V11, RISCV::V12, RISCV::V13, 4487 RISCV::V14, RISCV::V15, RISCV::V16, RISCV::V17, RISCV::V18, RISCV::V19, 4488 RISCV::V20, RISCV::V21, RISCV::V22, RISCV::V23}; 4489 static const MCPhysReg ArgVRM2s[] = {RISCV::V8M2, RISCV::V10M2, RISCV::V12M2, 4490 RISCV::V14M2, RISCV::V16M2, RISCV::V18M2, 4491 RISCV::V20M2, RISCV::V22M2}; 4492 static const MCPhysReg ArgVRM4s[] = {RISCV::V8M4, RISCV::V12M4, RISCV::V16M4, 4493 RISCV::V20M4}; 4494 static const MCPhysReg ArgVRM8s[] = {RISCV::V8M8, RISCV::V16M8}; 4495 4496 // Pass a 2*XLEN argument that has been split into two XLEN values through 4497 // registers or the stack as necessary. 4498 static bool CC_RISCVAssign2XLen(unsigned XLen, CCState &State, CCValAssign VA1, 4499 ISD::ArgFlagsTy ArgFlags1, unsigned ValNo2, 4500 MVT ValVT2, MVT LocVT2, 4501 ISD::ArgFlagsTy ArgFlags2) { 4502 unsigned XLenInBytes = XLen / 8; 4503 if (Register Reg = State.AllocateReg(ArgGPRs)) { 4504 // At least one half can be passed via register. 4505 State.addLoc(CCValAssign::getReg(VA1.getValNo(), VA1.getValVT(), Reg, 4506 VA1.getLocVT(), CCValAssign::Full)); 4507 } else { 4508 // Both halves must be passed on the stack, with proper alignment. 4509 Align StackAlign = 4510 std::max(Align(XLenInBytes), ArgFlags1.getNonZeroOrigAlign()); 4511 State.addLoc( 4512 CCValAssign::getMem(VA1.getValNo(), VA1.getValVT(), 4513 State.AllocateStack(XLenInBytes, StackAlign), 4514 VA1.getLocVT(), CCValAssign::Full)); 4515 State.addLoc(CCValAssign::getMem( 4516 ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)), 4517 LocVT2, CCValAssign::Full)); 4518 return false; 4519 } 4520 4521 if (Register Reg = State.AllocateReg(ArgGPRs)) { 4522 // The second half can also be passed via register. 4523 State.addLoc( 4524 CCValAssign::getReg(ValNo2, ValVT2, Reg, LocVT2, CCValAssign::Full)); 4525 } else { 4526 // The second half is passed via the stack, without additional alignment. 4527 State.addLoc(CCValAssign::getMem( 4528 ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)), 4529 LocVT2, CCValAssign::Full)); 4530 } 4531 4532 return false; 4533 } 4534 4535 // Implements the RISC-V calling convention. Returns true upon failure. 4536 static bool CC_RISCV(const DataLayout &DL, RISCVABI::ABI ABI, unsigned ValNo, 4537 MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, 4538 ISD::ArgFlagsTy ArgFlags, CCState &State, bool IsFixed, 4539 bool IsRet, Type *OrigTy, const RISCVTargetLowering &TLI, 4540 Optional<unsigned> FirstMaskArgument) { 4541 unsigned XLen = DL.getLargestLegalIntTypeSizeInBits(); 4542 assert(XLen == 32 || XLen == 64); 4543 MVT XLenVT = XLen == 32 ? MVT::i32 : MVT::i64; 4544 4545 // Any return value split in to more than two values can't be returned 4546 // directly. 4547 if (IsRet && ValNo > 1) 4548 return true; 4549 4550 // UseGPRForF16_F32 if targeting one of the soft-float ABIs, if passing a 4551 // variadic argument, or if no F16/F32 argument registers are available. 4552 bool UseGPRForF16_F32 = true; 4553 // UseGPRForF64 if targeting soft-float ABIs or an FLEN=32 ABI, if passing a 4554 // variadic argument, or if no F64 argument registers are available. 4555 bool UseGPRForF64 = true; 4556 4557 switch (ABI) { 4558 default: 4559 llvm_unreachable("Unexpected ABI"); 4560 case RISCVABI::ABI_ILP32: 4561 case RISCVABI::ABI_LP64: 4562 break; 4563 case RISCVABI::ABI_ILP32F: 4564 case RISCVABI::ABI_LP64F: 4565 UseGPRForF16_F32 = !IsFixed; 4566 break; 4567 case RISCVABI::ABI_ILP32D: 4568 case RISCVABI::ABI_LP64D: 4569 UseGPRForF16_F32 = !IsFixed; 4570 UseGPRForF64 = !IsFixed; 4571 break; 4572 } 4573 4574 // FPR16, FPR32, and FPR64 alias each other. 4575 if (State.getFirstUnallocated(ArgFPR32s) == array_lengthof(ArgFPR32s)) { 4576 UseGPRForF16_F32 = true; 4577 UseGPRForF64 = true; 4578 } 4579 4580 // From this point on, rely on UseGPRForF16_F32, UseGPRForF64 and 4581 // similar local variables rather than directly checking against the target 4582 // ABI. 4583 4584 if (UseGPRForF16_F32 && (ValVT == MVT::f16 || ValVT == MVT::f32)) { 4585 LocVT = XLenVT; 4586 LocInfo = CCValAssign::BCvt; 4587 } else if (UseGPRForF64 && XLen == 64 && ValVT == MVT::f64) { 4588 LocVT = MVT::i64; 4589 LocInfo = CCValAssign::BCvt; 4590 } 4591 4592 // If this is a variadic argument, the RISC-V calling convention requires 4593 // that it is assigned an 'even' or 'aligned' register if it has 8-byte 4594 // alignment (RV32) or 16-byte alignment (RV64). An aligned register should 4595 // be used regardless of whether the original argument was split during 4596 // legalisation or not. The argument will not be passed by registers if the 4597 // original type is larger than 2*XLEN, so the register alignment rule does 4598 // not apply. 4599 unsigned TwoXLenInBytes = (2 * XLen) / 8; 4600 if (!IsFixed && ArgFlags.getNonZeroOrigAlign() == TwoXLenInBytes && 4601 DL.getTypeAllocSize(OrigTy) == TwoXLenInBytes) { 4602 unsigned RegIdx = State.getFirstUnallocated(ArgGPRs); 4603 // Skip 'odd' register if necessary. 4604 if (RegIdx != array_lengthof(ArgGPRs) && RegIdx % 2 == 1) 4605 State.AllocateReg(ArgGPRs); 4606 } 4607 4608 SmallVectorImpl<CCValAssign> &PendingLocs = State.getPendingLocs(); 4609 SmallVectorImpl<ISD::ArgFlagsTy> &PendingArgFlags = 4610 State.getPendingArgFlags(); 4611 4612 assert(PendingLocs.size() == PendingArgFlags.size() && 4613 "PendingLocs and PendingArgFlags out of sync"); 4614 4615 // Handle passing f64 on RV32D with a soft float ABI or when floating point 4616 // registers are exhausted. 4617 if (UseGPRForF64 && XLen == 32 && ValVT == MVT::f64) { 4618 assert(!ArgFlags.isSplit() && PendingLocs.empty() && 4619 "Can't lower f64 if it is split"); 4620 // Depending on available argument GPRS, f64 may be passed in a pair of 4621 // GPRs, split between a GPR and the stack, or passed completely on the 4622 // stack. LowerCall/LowerFormalArguments/LowerReturn must recognise these 4623 // cases. 4624 Register Reg = State.AllocateReg(ArgGPRs); 4625 LocVT = MVT::i32; 4626 if (!Reg) { 4627 unsigned StackOffset = State.AllocateStack(8, Align(8)); 4628 State.addLoc( 4629 CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 4630 return false; 4631 } 4632 if (!State.AllocateReg(ArgGPRs)) 4633 State.AllocateStack(4, Align(4)); 4634 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 4635 return false; 4636 } 4637 4638 // Split arguments might be passed indirectly, so keep track of the pending 4639 // values. 4640 if (ArgFlags.isSplit() || !PendingLocs.empty()) { 4641 LocVT = XLenVT; 4642 LocInfo = CCValAssign::Indirect; 4643 PendingLocs.push_back( 4644 CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo)); 4645 PendingArgFlags.push_back(ArgFlags); 4646 if (!ArgFlags.isSplitEnd()) { 4647 return false; 4648 } 4649 } 4650 4651 // If the split argument only had two elements, it should be passed directly 4652 // in registers or on the stack. 4653 if (ArgFlags.isSplitEnd() && PendingLocs.size() <= 2) { 4654 assert(PendingLocs.size() == 2 && "Unexpected PendingLocs.size()"); 4655 // Apply the normal calling convention rules to the first half of the 4656 // split argument. 4657 CCValAssign VA = PendingLocs[0]; 4658 ISD::ArgFlagsTy AF = PendingArgFlags[0]; 4659 PendingLocs.clear(); 4660 PendingArgFlags.clear(); 4661 return CC_RISCVAssign2XLen(XLen, State, VA, AF, ValNo, ValVT, LocVT, 4662 ArgFlags); 4663 } 4664 4665 // Allocate to a register if possible, or else a stack slot. 4666 Register Reg; 4667 if (ValVT == MVT::f16 && !UseGPRForF16_F32) 4668 Reg = State.AllocateReg(ArgFPR16s); 4669 else if (ValVT == MVT::f32 && !UseGPRForF16_F32) 4670 Reg = State.AllocateReg(ArgFPR32s); 4671 else if (ValVT == MVT::f64 && !UseGPRForF64) 4672 Reg = State.AllocateReg(ArgFPR64s); 4673 else if (ValVT.isScalableVector()) { 4674 const TargetRegisterClass *RC = TLI.getRegClassFor(ValVT); 4675 if (RC == &RISCV::VRRegClass) { 4676 // Assign the first mask argument to V0. 4677 // This is an interim calling convention and it may be changed in the 4678 // future. 4679 if (FirstMaskArgument.hasValue() && 4680 ValNo == FirstMaskArgument.getValue()) { 4681 Reg = State.AllocateReg(RISCV::V0); 4682 } else { 4683 Reg = State.AllocateReg(ArgVRs); 4684 } 4685 } else if (RC == &RISCV::VRM2RegClass) { 4686 Reg = State.AllocateReg(ArgVRM2s); 4687 } else if (RC == &RISCV::VRM4RegClass) { 4688 Reg = State.AllocateReg(ArgVRM4s); 4689 } else if (RC == &RISCV::VRM8RegClass) { 4690 Reg = State.AllocateReg(ArgVRM8s); 4691 } else { 4692 llvm_unreachable("Unhandled class register for ValueType"); 4693 } 4694 if (!Reg) { 4695 LocInfo = CCValAssign::Indirect; 4696 // Try using a GPR to pass the address 4697 Reg = State.AllocateReg(ArgGPRs); 4698 LocVT = XLenVT; 4699 } 4700 } else 4701 Reg = State.AllocateReg(ArgGPRs); 4702 unsigned StackOffset = 4703 Reg ? 0 : State.AllocateStack(XLen / 8, Align(XLen / 8)); 4704 4705 // If we reach this point and PendingLocs is non-empty, we must be at the 4706 // end of a split argument that must be passed indirectly. 4707 if (!PendingLocs.empty()) { 4708 assert(ArgFlags.isSplitEnd() && "Expected ArgFlags.isSplitEnd()"); 4709 assert(PendingLocs.size() > 2 && "Unexpected PendingLocs.size()"); 4710 4711 for (auto &It : PendingLocs) { 4712 if (Reg) 4713 It.convertToReg(Reg); 4714 else 4715 It.convertToMem(StackOffset); 4716 State.addLoc(It); 4717 } 4718 PendingLocs.clear(); 4719 PendingArgFlags.clear(); 4720 return false; 4721 } 4722 4723 assert((!UseGPRForF16_F32 || !UseGPRForF64 || LocVT == XLenVT || 4724 (TLI.getSubtarget().hasStdExtV() && ValVT.isScalableVector())) && 4725 "Expected an XLenVT or scalable vector types at this stage"); 4726 4727 if (Reg) { 4728 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 4729 return false; 4730 } 4731 4732 // When a floating-point value is passed on the stack, no bit-conversion is 4733 // needed. 4734 if (ValVT.isFloatingPoint()) { 4735 LocVT = ValVT; 4736 LocInfo = CCValAssign::Full; 4737 } 4738 State.addLoc(CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 4739 return false; 4740 } 4741 4742 template <typename ArgTy> 4743 static Optional<unsigned> preAssignMask(const ArgTy &Args) { 4744 for (const auto &ArgIdx : enumerate(Args)) { 4745 MVT ArgVT = ArgIdx.value().VT; 4746 if (ArgVT.isScalableVector() && 4747 ArgVT.getVectorElementType().SimpleTy == MVT::i1) 4748 return ArgIdx.index(); 4749 } 4750 return None; 4751 } 4752 4753 void RISCVTargetLowering::analyzeInputArgs( 4754 MachineFunction &MF, CCState &CCInfo, 4755 const SmallVectorImpl<ISD::InputArg> &Ins, bool IsRet) const { 4756 unsigned NumArgs = Ins.size(); 4757 FunctionType *FType = MF.getFunction().getFunctionType(); 4758 4759 Optional<unsigned> FirstMaskArgument; 4760 if (Subtarget.hasStdExtV()) 4761 FirstMaskArgument = preAssignMask(Ins); 4762 4763 for (unsigned i = 0; i != NumArgs; ++i) { 4764 MVT ArgVT = Ins[i].VT; 4765 ISD::ArgFlagsTy ArgFlags = Ins[i].Flags; 4766 4767 Type *ArgTy = nullptr; 4768 if (IsRet) 4769 ArgTy = FType->getReturnType(); 4770 else if (Ins[i].isOrigArg()) 4771 ArgTy = FType->getParamType(Ins[i].getOrigArgIndex()); 4772 4773 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 4774 if (CC_RISCV(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full, 4775 ArgFlags, CCInfo, /*IsFixed=*/true, IsRet, ArgTy, *this, 4776 FirstMaskArgument)) { 4777 LLVM_DEBUG(dbgs() << "InputArg #" << i << " has unhandled type " 4778 << EVT(ArgVT).getEVTString() << '\n'); 4779 llvm_unreachable(nullptr); 4780 } 4781 } 4782 } 4783 4784 void RISCVTargetLowering::analyzeOutputArgs( 4785 MachineFunction &MF, CCState &CCInfo, 4786 const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsRet, 4787 CallLoweringInfo *CLI) const { 4788 unsigned NumArgs = Outs.size(); 4789 4790 Optional<unsigned> FirstMaskArgument; 4791 if (Subtarget.hasStdExtV()) 4792 FirstMaskArgument = preAssignMask(Outs); 4793 4794 for (unsigned i = 0; i != NumArgs; i++) { 4795 MVT ArgVT = Outs[i].VT; 4796 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 4797 Type *OrigTy = CLI ? CLI->getArgs()[Outs[i].OrigArgIndex].Ty : nullptr; 4798 4799 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 4800 if (CC_RISCV(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full, 4801 ArgFlags, CCInfo, Outs[i].IsFixed, IsRet, OrigTy, *this, 4802 FirstMaskArgument)) { 4803 LLVM_DEBUG(dbgs() << "OutputArg #" << i << " has unhandled type " 4804 << EVT(ArgVT).getEVTString() << "\n"); 4805 llvm_unreachable(nullptr); 4806 } 4807 } 4808 } 4809 4810 // Convert Val to a ValVT. Should not be called for CCValAssign::Indirect 4811 // values. 4812 static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDValue Val, 4813 const CCValAssign &VA, const SDLoc &DL) { 4814 switch (VA.getLocInfo()) { 4815 default: 4816 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 4817 case CCValAssign::Full: 4818 break; 4819 case CCValAssign::BCvt: 4820 if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16) 4821 Val = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, Val); 4822 else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) 4823 Val = DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, Val); 4824 else 4825 Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val); 4826 break; 4827 } 4828 return Val; 4829 } 4830 4831 // The caller is responsible for loading the full value if the argument is 4832 // passed with CCValAssign::Indirect. 4833 static SDValue unpackFromRegLoc(SelectionDAG &DAG, SDValue Chain, 4834 const CCValAssign &VA, const SDLoc &DL, 4835 const RISCVTargetLowering &TLI) { 4836 MachineFunction &MF = DAG.getMachineFunction(); 4837 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 4838 EVT LocVT = VA.getLocVT(); 4839 SDValue Val; 4840 const TargetRegisterClass *RC = TLI.getRegClassFor(LocVT.getSimpleVT()); 4841 Register VReg = RegInfo.createVirtualRegister(RC); 4842 RegInfo.addLiveIn(VA.getLocReg(), VReg); 4843 Val = DAG.getCopyFromReg(Chain, DL, VReg, LocVT); 4844 4845 if (VA.getLocInfo() == CCValAssign::Indirect) 4846 return Val; 4847 4848 return convertLocVTToValVT(DAG, Val, VA, DL); 4849 } 4850 4851 static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDValue Val, 4852 const CCValAssign &VA, const SDLoc &DL) { 4853 EVT LocVT = VA.getLocVT(); 4854 4855 switch (VA.getLocInfo()) { 4856 default: 4857 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 4858 case CCValAssign::Full: 4859 break; 4860 case CCValAssign::BCvt: 4861 if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16) 4862 Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, VA.getLocVT(), Val); 4863 else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) 4864 Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Val); 4865 else 4866 Val = DAG.getNode(ISD::BITCAST, DL, LocVT, Val); 4867 break; 4868 } 4869 return Val; 4870 } 4871 4872 // The caller is responsible for loading the full value if the argument is 4873 // passed with CCValAssign::Indirect. 4874 static SDValue unpackFromMemLoc(SelectionDAG &DAG, SDValue Chain, 4875 const CCValAssign &VA, const SDLoc &DL) { 4876 MachineFunction &MF = DAG.getMachineFunction(); 4877 MachineFrameInfo &MFI = MF.getFrameInfo(); 4878 EVT LocVT = VA.getLocVT(); 4879 EVT ValVT = VA.getValVT(); 4880 EVT PtrVT = MVT::getIntegerVT(DAG.getDataLayout().getPointerSizeInBits(0)); 4881 int FI = MFI.CreateFixedObject(ValVT.getSizeInBits() / 8, 4882 VA.getLocMemOffset(), /*Immutable=*/true); 4883 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4884 SDValue Val; 4885 4886 ISD::LoadExtType ExtType; 4887 switch (VA.getLocInfo()) { 4888 default: 4889 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 4890 case CCValAssign::Full: 4891 case CCValAssign::Indirect: 4892 case CCValAssign::BCvt: 4893 ExtType = ISD::NON_EXTLOAD; 4894 break; 4895 } 4896 Val = DAG.getExtLoad( 4897 ExtType, DL, LocVT, Chain, FIN, 4898 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), ValVT); 4899 return Val; 4900 } 4901 4902 static SDValue unpackF64OnRV32DSoftABI(SelectionDAG &DAG, SDValue Chain, 4903 const CCValAssign &VA, const SDLoc &DL) { 4904 assert(VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64 && 4905 "Unexpected VA"); 4906 MachineFunction &MF = DAG.getMachineFunction(); 4907 MachineFrameInfo &MFI = MF.getFrameInfo(); 4908 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 4909 4910 if (VA.isMemLoc()) { 4911 // f64 is passed on the stack. 4912 int FI = MFI.CreateFixedObject(8, VA.getLocMemOffset(), /*Immutable=*/true); 4913 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 4914 return DAG.getLoad(MVT::f64, DL, Chain, FIN, 4915 MachinePointerInfo::getFixedStack(MF, FI)); 4916 } 4917 4918 assert(VA.isRegLoc() && "Expected register VA assignment"); 4919 4920 Register LoVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 4921 RegInfo.addLiveIn(VA.getLocReg(), LoVReg); 4922 SDValue Lo = DAG.getCopyFromReg(Chain, DL, LoVReg, MVT::i32); 4923 SDValue Hi; 4924 if (VA.getLocReg() == RISCV::X17) { 4925 // Second half of f64 is passed on the stack. 4926 int FI = MFI.CreateFixedObject(4, 0, /*Immutable=*/true); 4927 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 4928 Hi = DAG.getLoad(MVT::i32, DL, Chain, FIN, 4929 MachinePointerInfo::getFixedStack(MF, FI)); 4930 } else { 4931 // Second half of f64 is passed in another GPR. 4932 Register HiVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 4933 RegInfo.addLiveIn(VA.getLocReg() + 1, HiVReg); 4934 Hi = DAG.getCopyFromReg(Chain, DL, HiVReg, MVT::i32); 4935 } 4936 return DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, Lo, Hi); 4937 } 4938 4939 // FastCC has less than 1% performance improvement for some particular 4940 // benchmark. But theoretically, it may has benenfit for some cases. 4941 static bool CC_RISCV_FastCC(unsigned ValNo, MVT ValVT, MVT LocVT, 4942 CCValAssign::LocInfo LocInfo, 4943 ISD::ArgFlagsTy ArgFlags, CCState &State) { 4944 4945 if (LocVT == MVT::i32 || LocVT == MVT::i64) { 4946 // X5 and X6 might be used for save-restore libcall. 4947 static const MCPhysReg GPRList[] = { 4948 RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, RISCV::X14, 4949 RISCV::X15, RISCV::X16, RISCV::X17, RISCV::X7, RISCV::X28, 4950 RISCV::X29, RISCV::X30, RISCV::X31}; 4951 if (unsigned Reg = State.AllocateReg(GPRList)) { 4952 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 4953 return false; 4954 } 4955 } 4956 4957 if (LocVT == MVT::f16) { 4958 static const MCPhysReg FPR16List[] = { 4959 RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, RISCV::F14_H, 4960 RISCV::F15_H, RISCV::F16_H, RISCV::F17_H, RISCV::F0_H, RISCV::F1_H, 4961 RISCV::F2_H, RISCV::F3_H, RISCV::F4_H, RISCV::F5_H, RISCV::F6_H, 4962 RISCV::F7_H, RISCV::F28_H, RISCV::F29_H, RISCV::F30_H, RISCV::F31_H}; 4963 if (unsigned Reg = State.AllocateReg(FPR16List)) { 4964 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 4965 return false; 4966 } 4967 } 4968 4969 if (LocVT == MVT::f32) { 4970 static const MCPhysReg FPR32List[] = { 4971 RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, RISCV::F14_F, 4972 RISCV::F15_F, RISCV::F16_F, RISCV::F17_F, RISCV::F0_F, RISCV::F1_F, 4973 RISCV::F2_F, RISCV::F3_F, RISCV::F4_F, RISCV::F5_F, RISCV::F6_F, 4974 RISCV::F7_F, RISCV::F28_F, RISCV::F29_F, RISCV::F30_F, RISCV::F31_F}; 4975 if (unsigned Reg = State.AllocateReg(FPR32List)) { 4976 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 4977 return false; 4978 } 4979 } 4980 4981 if (LocVT == MVT::f64) { 4982 static const MCPhysReg FPR64List[] = { 4983 RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, RISCV::F14_D, 4984 RISCV::F15_D, RISCV::F16_D, RISCV::F17_D, RISCV::F0_D, RISCV::F1_D, 4985 RISCV::F2_D, RISCV::F3_D, RISCV::F4_D, RISCV::F5_D, RISCV::F6_D, 4986 RISCV::F7_D, RISCV::F28_D, RISCV::F29_D, RISCV::F30_D, RISCV::F31_D}; 4987 if (unsigned Reg = State.AllocateReg(FPR64List)) { 4988 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 4989 return false; 4990 } 4991 } 4992 4993 if (LocVT == MVT::i32 || LocVT == MVT::f32) { 4994 unsigned Offset4 = State.AllocateStack(4, Align(4)); 4995 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset4, LocVT, LocInfo)); 4996 return false; 4997 } 4998 4999 if (LocVT == MVT::i64 || LocVT == MVT::f64) { 5000 unsigned Offset5 = State.AllocateStack(8, Align(8)); 5001 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset5, LocVT, LocInfo)); 5002 return false; 5003 } 5004 5005 return true; // CC didn't match. 5006 } 5007 5008 static bool CC_RISCV_GHC(unsigned ValNo, MVT ValVT, MVT LocVT, 5009 CCValAssign::LocInfo LocInfo, 5010 ISD::ArgFlagsTy ArgFlags, CCState &State) { 5011 5012 if (LocVT == MVT::i32 || LocVT == MVT::i64) { 5013 // Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, R6, R7, SpLim 5014 // s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 5015 static const MCPhysReg GPRList[] = { 5016 RISCV::X9, RISCV::X18, RISCV::X19, RISCV::X20, RISCV::X21, RISCV::X22, 5017 RISCV::X23, RISCV::X24, RISCV::X25, RISCV::X26, RISCV::X27}; 5018 if (unsigned Reg = State.AllocateReg(GPRList)) { 5019 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 5020 return false; 5021 } 5022 } 5023 5024 if (LocVT == MVT::f32) { 5025 // Pass in STG registers: F1, ..., F6 5026 // fs0 ... fs5 5027 static const MCPhysReg FPR32List[] = {RISCV::F8_F, RISCV::F9_F, 5028 RISCV::F18_F, RISCV::F19_F, 5029 RISCV::F20_F, RISCV::F21_F}; 5030 if (unsigned Reg = State.AllocateReg(FPR32List)) { 5031 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 5032 return false; 5033 } 5034 } 5035 5036 if (LocVT == MVT::f64) { 5037 // Pass in STG registers: D1, ..., D6 5038 // fs6 ... fs11 5039 static const MCPhysReg FPR64List[] = {RISCV::F22_D, RISCV::F23_D, 5040 RISCV::F24_D, RISCV::F25_D, 5041 RISCV::F26_D, RISCV::F27_D}; 5042 if (unsigned Reg = State.AllocateReg(FPR64List)) { 5043 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 5044 return false; 5045 } 5046 } 5047 5048 report_fatal_error("No registers left in GHC calling convention"); 5049 return true; 5050 } 5051 5052 // Transform physical registers into virtual registers. 5053 SDValue RISCVTargetLowering::LowerFormalArguments( 5054 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 5055 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 5056 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 5057 5058 MachineFunction &MF = DAG.getMachineFunction(); 5059 5060 switch (CallConv) { 5061 default: 5062 report_fatal_error("Unsupported calling convention"); 5063 case CallingConv::C: 5064 case CallingConv::Fast: 5065 break; 5066 case CallingConv::GHC: 5067 if (!MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtF] || 5068 !MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtD]) 5069 report_fatal_error( 5070 "GHC calling convention requires the F and D instruction set extensions"); 5071 } 5072 5073 const Function &Func = MF.getFunction(); 5074 if (Func.hasFnAttribute("interrupt")) { 5075 if (!Func.arg_empty()) 5076 report_fatal_error( 5077 "Functions with the interrupt attribute cannot have arguments!"); 5078 5079 StringRef Kind = 5080 MF.getFunction().getFnAttribute("interrupt").getValueAsString(); 5081 5082 if (!(Kind == "user" || Kind == "supervisor" || Kind == "machine")) 5083 report_fatal_error( 5084 "Function interrupt attribute argument not supported!"); 5085 } 5086 5087 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 5088 MVT XLenVT = Subtarget.getXLenVT(); 5089 unsigned XLenInBytes = Subtarget.getXLen() / 8; 5090 // Used with vargs to acumulate store chains. 5091 std::vector<SDValue> OutChains; 5092 5093 // Assign locations to all of the incoming arguments. 5094 SmallVector<CCValAssign, 16> ArgLocs; 5095 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 5096 5097 if (CallConv == CallingConv::Fast) 5098 CCInfo.AnalyzeFormalArguments(Ins, CC_RISCV_FastCC); 5099 else if (CallConv == CallingConv::GHC) 5100 CCInfo.AnalyzeFormalArguments(Ins, CC_RISCV_GHC); 5101 else 5102 analyzeInputArgs(MF, CCInfo, Ins, /*IsRet=*/false); 5103 5104 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 5105 CCValAssign &VA = ArgLocs[i]; 5106 SDValue ArgValue; 5107 // Passing f64 on RV32D with a soft float ABI must be handled as a special 5108 // case. 5109 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) 5110 ArgValue = unpackF64OnRV32DSoftABI(DAG, Chain, VA, DL); 5111 else if (VA.isRegLoc()) 5112 ArgValue = unpackFromRegLoc(DAG, Chain, VA, DL, *this); 5113 else 5114 ArgValue = unpackFromMemLoc(DAG, Chain, VA, DL); 5115 5116 if (VA.getLocInfo() == CCValAssign::Indirect) { 5117 // If the original argument was split and passed by reference (e.g. i128 5118 // on RV32), we need to load all parts of it here (using the same 5119 // address). 5120 InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue, 5121 MachinePointerInfo())); 5122 unsigned ArgIndex = Ins[i].OrigArgIndex; 5123 assert(Ins[i].PartOffset == 0); 5124 while (i + 1 != e && Ins[i + 1].OrigArgIndex == ArgIndex) { 5125 CCValAssign &PartVA = ArgLocs[i + 1]; 5126 unsigned PartOffset = Ins[i + 1].PartOffset; 5127 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, 5128 DAG.getIntPtrConstant(PartOffset, DL)); 5129 InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address, 5130 MachinePointerInfo())); 5131 ++i; 5132 } 5133 continue; 5134 } 5135 InVals.push_back(ArgValue); 5136 } 5137 5138 if (IsVarArg) { 5139 ArrayRef<MCPhysReg> ArgRegs = makeArrayRef(ArgGPRs); 5140 unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs); 5141 const TargetRegisterClass *RC = &RISCV::GPRRegClass; 5142 MachineFrameInfo &MFI = MF.getFrameInfo(); 5143 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 5144 RISCVMachineFunctionInfo *RVFI = MF.getInfo<RISCVMachineFunctionInfo>(); 5145 5146 // Offset of the first variable argument from stack pointer, and size of 5147 // the vararg save area. For now, the varargs save area is either zero or 5148 // large enough to hold a0-a7. 5149 int VaArgOffset, VarArgsSaveSize; 5150 5151 // If all registers are allocated, then all varargs must be passed on the 5152 // stack and we don't need to save any argregs. 5153 if (ArgRegs.size() == Idx) { 5154 VaArgOffset = CCInfo.getNextStackOffset(); 5155 VarArgsSaveSize = 0; 5156 } else { 5157 VarArgsSaveSize = XLenInBytes * (ArgRegs.size() - Idx); 5158 VaArgOffset = -VarArgsSaveSize; 5159 } 5160 5161 // Record the frame index of the first variable argument 5162 // which is a value necessary to VASTART. 5163 int FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true); 5164 RVFI->setVarArgsFrameIndex(FI); 5165 5166 // If saving an odd number of registers then create an extra stack slot to 5167 // ensure that the frame pointer is 2*XLEN-aligned, which in turn ensures 5168 // offsets to even-numbered registered remain 2*XLEN-aligned. 5169 if (Idx % 2) { 5170 MFI.CreateFixedObject(XLenInBytes, VaArgOffset - (int)XLenInBytes, true); 5171 VarArgsSaveSize += XLenInBytes; 5172 } 5173 5174 // Copy the integer registers that may have been used for passing varargs 5175 // to the vararg save area. 5176 for (unsigned I = Idx; I < ArgRegs.size(); 5177 ++I, VaArgOffset += XLenInBytes) { 5178 const Register Reg = RegInfo.createVirtualRegister(RC); 5179 RegInfo.addLiveIn(ArgRegs[I], Reg); 5180 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, XLenVT); 5181 FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true); 5182 SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 5183 SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff, 5184 MachinePointerInfo::getFixedStack(MF, FI)); 5185 cast<StoreSDNode>(Store.getNode()) 5186 ->getMemOperand() 5187 ->setValue((Value *)nullptr); 5188 OutChains.push_back(Store); 5189 } 5190 RVFI->setVarArgsSaveSize(VarArgsSaveSize); 5191 } 5192 5193 // All stores are grouped in one node to allow the matching between 5194 // the size of Ins and InVals. This only happens for vararg functions. 5195 if (!OutChains.empty()) { 5196 OutChains.push_back(Chain); 5197 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains); 5198 } 5199 5200 return Chain; 5201 } 5202 5203 /// isEligibleForTailCallOptimization - Check whether the call is eligible 5204 /// for tail call optimization. 5205 /// Note: This is modelled after ARM's IsEligibleForTailCallOptimization. 5206 bool RISCVTargetLowering::isEligibleForTailCallOptimization( 5207 CCState &CCInfo, CallLoweringInfo &CLI, MachineFunction &MF, 5208 const SmallVector<CCValAssign, 16> &ArgLocs) const { 5209 5210 auto &Callee = CLI.Callee; 5211 auto CalleeCC = CLI.CallConv; 5212 auto &Outs = CLI.Outs; 5213 auto &Caller = MF.getFunction(); 5214 auto CallerCC = Caller.getCallingConv(); 5215 5216 // Exception-handling functions need a special set of instructions to 5217 // indicate a return to the hardware. Tail-calling another function would 5218 // probably break this. 5219 // TODO: The "interrupt" attribute isn't currently defined by RISC-V. This 5220 // should be expanded as new function attributes are introduced. 5221 if (Caller.hasFnAttribute("interrupt")) 5222 return false; 5223 5224 // Do not tail call opt if the stack is used to pass parameters. 5225 if (CCInfo.getNextStackOffset() != 0) 5226 return false; 5227 5228 // Do not tail call opt if any parameters need to be passed indirectly. 5229 // Since long doubles (fp128) and i128 are larger than 2*XLEN, they are 5230 // passed indirectly. So the address of the value will be passed in a 5231 // register, or if not available, then the address is put on the stack. In 5232 // order to pass indirectly, space on the stack often needs to be allocated 5233 // in order to store the value. In this case the CCInfo.getNextStackOffset() 5234 // != 0 check is not enough and we need to check if any CCValAssign ArgsLocs 5235 // are passed CCValAssign::Indirect. 5236 for (auto &VA : ArgLocs) 5237 if (VA.getLocInfo() == CCValAssign::Indirect) 5238 return false; 5239 5240 // Do not tail call opt if either caller or callee uses struct return 5241 // semantics. 5242 auto IsCallerStructRet = Caller.hasStructRetAttr(); 5243 auto IsCalleeStructRet = Outs.empty() ? false : Outs[0].Flags.isSRet(); 5244 if (IsCallerStructRet || IsCalleeStructRet) 5245 return false; 5246 5247 // Externally-defined functions with weak linkage should not be 5248 // tail-called. The behaviour of branch instructions in this situation (as 5249 // used for tail calls) is implementation-defined, so we cannot rely on the 5250 // linker replacing the tail call with a return. 5251 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 5252 const GlobalValue *GV = G->getGlobal(); 5253 if (GV->hasExternalWeakLinkage()) 5254 return false; 5255 } 5256 5257 // The callee has to preserve all registers the caller needs to preserve. 5258 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 5259 const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC); 5260 if (CalleeCC != CallerCC) { 5261 const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC); 5262 if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved)) 5263 return false; 5264 } 5265 5266 // Byval parameters hand the function a pointer directly into the stack area 5267 // we want to reuse during a tail call. Working around this *is* possible 5268 // but less efficient and uglier in LowerCall. 5269 for (auto &Arg : Outs) 5270 if (Arg.Flags.isByVal()) 5271 return false; 5272 5273 return true; 5274 } 5275 5276 // Lower a call to a callseq_start + CALL + callseq_end chain, and add input 5277 // and output parameter nodes. 5278 SDValue RISCVTargetLowering::LowerCall(CallLoweringInfo &CLI, 5279 SmallVectorImpl<SDValue> &InVals) const { 5280 SelectionDAG &DAG = CLI.DAG; 5281 SDLoc &DL = CLI.DL; 5282 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 5283 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 5284 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 5285 SDValue Chain = CLI.Chain; 5286 SDValue Callee = CLI.Callee; 5287 bool &IsTailCall = CLI.IsTailCall; 5288 CallingConv::ID CallConv = CLI.CallConv; 5289 bool IsVarArg = CLI.IsVarArg; 5290 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 5291 MVT XLenVT = Subtarget.getXLenVT(); 5292 5293 MachineFunction &MF = DAG.getMachineFunction(); 5294 5295 // Analyze the operands of the call, assigning locations to each operand. 5296 SmallVector<CCValAssign, 16> ArgLocs; 5297 CCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 5298 5299 if (CallConv == CallingConv::Fast) 5300 ArgCCInfo.AnalyzeCallOperands(Outs, CC_RISCV_FastCC); 5301 else if (CallConv == CallingConv::GHC) 5302 ArgCCInfo.AnalyzeCallOperands(Outs, CC_RISCV_GHC); 5303 else 5304 analyzeOutputArgs(MF, ArgCCInfo, Outs, /*IsRet=*/false, &CLI); 5305 5306 // Check if it's really possible to do a tail call. 5307 if (IsTailCall) 5308 IsTailCall = isEligibleForTailCallOptimization(ArgCCInfo, CLI, MF, ArgLocs); 5309 5310 if (IsTailCall) 5311 ++NumTailCalls; 5312 else if (CLI.CB && CLI.CB->isMustTailCall()) 5313 report_fatal_error("failed to perform tail call elimination on a call " 5314 "site marked musttail"); 5315 5316 // Get a count of how many bytes are to be pushed on the stack. 5317 unsigned NumBytes = ArgCCInfo.getNextStackOffset(); 5318 5319 // Create local copies for byval args 5320 SmallVector<SDValue, 8> ByValArgs; 5321 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 5322 ISD::ArgFlagsTy Flags = Outs[i].Flags; 5323 if (!Flags.isByVal()) 5324 continue; 5325 5326 SDValue Arg = OutVals[i]; 5327 unsigned Size = Flags.getByValSize(); 5328 Align Alignment = Flags.getNonZeroByValAlign(); 5329 5330 int FI = 5331 MF.getFrameInfo().CreateStackObject(Size, Alignment, /*isSS=*/false); 5332 SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 5333 SDValue SizeNode = DAG.getConstant(Size, DL, XLenVT); 5334 5335 Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Alignment, 5336 /*IsVolatile=*/false, 5337 /*AlwaysInline=*/false, IsTailCall, 5338 MachinePointerInfo(), MachinePointerInfo()); 5339 ByValArgs.push_back(FIPtr); 5340 } 5341 5342 if (!IsTailCall) 5343 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, CLI.DL); 5344 5345 // Copy argument values to their designated locations. 5346 SmallVector<std::pair<Register, SDValue>, 8> RegsToPass; 5347 SmallVector<SDValue, 8> MemOpChains; 5348 SDValue StackPtr; 5349 for (unsigned i = 0, j = 0, e = ArgLocs.size(); i != e; ++i) { 5350 CCValAssign &VA = ArgLocs[i]; 5351 SDValue ArgValue = OutVals[i]; 5352 ISD::ArgFlagsTy Flags = Outs[i].Flags; 5353 5354 // Handle passing f64 on RV32D with a soft float ABI as a special case. 5355 bool IsF64OnRV32DSoftABI = 5356 VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64; 5357 if (IsF64OnRV32DSoftABI && VA.isRegLoc()) { 5358 SDValue SplitF64 = DAG.getNode( 5359 RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), ArgValue); 5360 SDValue Lo = SplitF64.getValue(0); 5361 SDValue Hi = SplitF64.getValue(1); 5362 5363 Register RegLo = VA.getLocReg(); 5364 RegsToPass.push_back(std::make_pair(RegLo, Lo)); 5365 5366 if (RegLo == RISCV::X17) { 5367 // Second half of f64 is passed on the stack. 5368 // Work out the address of the stack slot. 5369 if (!StackPtr.getNode()) 5370 StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT); 5371 // Emit the store. 5372 MemOpChains.push_back( 5373 DAG.getStore(Chain, DL, Hi, StackPtr, MachinePointerInfo())); 5374 } else { 5375 // Second half of f64 is passed in another GPR. 5376 assert(RegLo < RISCV::X31 && "Invalid register pair"); 5377 Register RegHigh = RegLo + 1; 5378 RegsToPass.push_back(std::make_pair(RegHigh, Hi)); 5379 } 5380 continue; 5381 } 5382 5383 // IsF64OnRV32DSoftABI && VA.isMemLoc() is handled below in the same way 5384 // as any other MemLoc. 5385 5386 // Promote the value if needed. 5387 // For now, only handle fully promoted and indirect arguments. 5388 if (VA.getLocInfo() == CCValAssign::Indirect) { 5389 // Store the argument in a stack slot and pass its address. 5390 SDValue SpillSlot = DAG.CreateStackTemporary(Outs[i].ArgVT); 5391 int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); 5392 MemOpChains.push_back( 5393 DAG.getStore(Chain, DL, ArgValue, SpillSlot, 5394 MachinePointerInfo::getFixedStack(MF, FI))); 5395 // If the original argument was split (e.g. i128), we need 5396 // to store all parts of it here (and pass just one address). 5397 unsigned ArgIndex = Outs[i].OrigArgIndex; 5398 assert(Outs[i].PartOffset == 0); 5399 while (i + 1 != e && Outs[i + 1].OrigArgIndex == ArgIndex) { 5400 SDValue PartValue = OutVals[i + 1]; 5401 unsigned PartOffset = Outs[i + 1].PartOffset; 5402 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, 5403 DAG.getIntPtrConstant(PartOffset, DL)); 5404 MemOpChains.push_back( 5405 DAG.getStore(Chain, DL, PartValue, Address, 5406 MachinePointerInfo::getFixedStack(MF, FI))); 5407 ++i; 5408 } 5409 ArgValue = SpillSlot; 5410 } else { 5411 ArgValue = convertValVTToLocVT(DAG, ArgValue, VA, DL); 5412 } 5413 5414 // Use local copy if it is a byval arg. 5415 if (Flags.isByVal()) 5416 ArgValue = ByValArgs[j++]; 5417 5418 if (VA.isRegLoc()) { 5419 // Queue up the argument copies and emit them at the end. 5420 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue)); 5421 } else { 5422 assert(VA.isMemLoc() && "Argument not register or memory"); 5423 assert(!IsTailCall && "Tail call not allowed if stack is used " 5424 "for passing parameters"); 5425 5426 // Work out the address of the stack slot. 5427 if (!StackPtr.getNode()) 5428 StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT); 5429 SDValue Address = 5430 DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, 5431 DAG.getIntPtrConstant(VA.getLocMemOffset(), DL)); 5432 5433 // Emit the store. 5434 MemOpChains.push_back( 5435 DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo())); 5436 } 5437 } 5438 5439 // Join the stores, which are independent of one another. 5440 if (!MemOpChains.empty()) 5441 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); 5442 5443 SDValue Glue; 5444 5445 // Build a sequence of copy-to-reg nodes, chained and glued together. 5446 for (auto &Reg : RegsToPass) { 5447 Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, Glue); 5448 Glue = Chain.getValue(1); 5449 } 5450 5451 // Validate that none of the argument registers have been marked as 5452 // reserved, if so report an error. Do the same for the return address if this 5453 // is not a tailcall. 5454 validateCCReservedRegs(RegsToPass, MF); 5455 if (!IsTailCall && 5456 MF.getSubtarget<RISCVSubtarget>().isRegisterReservedByUser(RISCV::X1)) 5457 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 5458 MF.getFunction(), 5459 "Return address register required, but has been reserved."}); 5460 5461 // If the callee is a GlobalAddress/ExternalSymbol node, turn it into a 5462 // TargetGlobalAddress/TargetExternalSymbol node so that legalize won't 5463 // split it and then direct call can be matched by PseudoCALL. 5464 if (GlobalAddressSDNode *S = dyn_cast<GlobalAddressSDNode>(Callee)) { 5465 const GlobalValue *GV = S->getGlobal(); 5466 5467 unsigned OpFlags = RISCVII::MO_CALL; 5468 if (!getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV)) 5469 OpFlags = RISCVII::MO_PLT; 5470 5471 Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags); 5472 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { 5473 unsigned OpFlags = RISCVII::MO_CALL; 5474 5475 if (!getTargetMachine().shouldAssumeDSOLocal(*MF.getFunction().getParent(), 5476 nullptr)) 5477 OpFlags = RISCVII::MO_PLT; 5478 5479 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, OpFlags); 5480 } 5481 5482 // The first call operand is the chain and the second is the target address. 5483 SmallVector<SDValue, 8> Ops; 5484 Ops.push_back(Chain); 5485 Ops.push_back(Callee); 5486 5487 // Add argument registers to the end of the list so that they are 5488 // known live into the call. 5489 for (auto &Reg : RegsToPass) 5490 Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType())); 5491 5492 if (!IsTailCall) { 5493 // Add a register mask operand representing the call-preserved registers. 5494 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 5495 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv); 5496 assert(Mask && "Missing call preserved mask for calling convention"); 5497 Ops.push_back(DAG.getRegisterMask(Mask)); 5498 } 5499 5500 // Glue the call to the argument copies, if any. 5501 if (Glue.getNode()) 5502 Ops.push_back(Glue); 5503 5504 // Emit the call. 5505 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 5506 5507 if (IsTailCall) { 5508 MF.getFrameInfo().setHasTailCall(); 5509 return DAG.getNode(RISCVISD::TAIL, DL, NodeTys, Ops); 5510 } 5511 5512 Chain = DAG.getNode(RISCVISD::CALL, DL, NodeTys, Ops); 5513 DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge); 5514 Glue = Chain.getValue(1); 5515 5516 // Mark the end of the call, which is glued to the call itself. 5517 Chain = DAG.getCALLSEQ_END(Chain, 5518 DAG.getConstant(NumBytes, DL, PtrVT, true), 5519 DAG.getConstant(0, DL, PtrVT, true), 5520 Glue, DL); 5521 Glue = Chain.getValue(1); 5522 5523 // Assign locations to each value returned by this call. 5524 SmallVector<CCValAssign, 16> RVLocs; 5525 CCState RetCCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext()); 5526 analyzeInputArgs(MF, RetCCInfo, Ins, /*IsRet=*/true); 5527 5528 // Copy all of the result registers out of their specified physreg. 5529 for (auto &VA : RVLocs) { 5530 // Copy the value out 5531 SDValue RetValue = 5532 DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), Glue); 5533 // Glue the RetValue to the end of the call sequence 5534 Chain = RetValue.getValue(1); 5535 Glue = RetValue.getValue(2); 5536 5537 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { 5538 assert(VA.getLocReg() == ArgGPRs[0] && "Unexpected reg assignment"); 5539 SDValue RetValue2 = 5540 DAG.getCopyFromReg(Chain, DL, ArgGPRs[1], MVT::i32, Glue); 5541 Chain = RetValue2.getValue(1); 5542 Glue = RetValue2.getValue(2); 5543 RetValue = DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, RetValue, 5544 RetValue2); 5545 } 5546 5547 RetValue = convertLocVTToValVT(DAG, RetValue, VA, DL); 5548 5549 InVals.push_back(RetValue); 5550 } 5551 5552 return Chain; 5553 } 5554 5555 bool RISCVTargetLowering::CanLowerReturn( 5556 CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg, 5557 const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const { 5558 SmallVector<CCValAssign, 16> RVLocs; 5559 CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context); 5560 5561 Optional<unsigned> FirstMaskArgument; 5562 if (Subtarget.hasStdExtV()) 5563 FirstMaskArgument = preAssignMask(Outs); 5564 5565 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 5566 MVT VT = Outs[i].VT; 5567 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 5568 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 5569 if (CC_RISCV(MF.getDataLayout(), ABI, i, VT, VT, CCValAssign::Full, 5570 ArgFlags, CCInfo, /*IsFixed=*/true, /*IsRet=*/true, nullptr, 5571 *this, FirstMaskArgument)) 5572 return false; 5573 } 5574 return true; 5575 } 5576 5577 SDValue 5578 RISCVTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 5579 bool IsVarArg, 5580 const SmallVectorImpl<ISD::OutputArg> &Outs, 5581 const SmallVectorImpl<SDValue> &OutVals, 5582 const SDLoc &DL, SelectionDAG &DAG) const { 5583 const MachineFunction &MF = DAG.getMachineFunction(); 5584 const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>(); 5585 5586 // Stores the assignment of the return value to a location. 5587 SmallVector<CCValAssign, 16> RVLocs; 5588 5589 // Info about the registers and stack slot. 5590 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, 5591 *DAG.getContext()); 5592 5593 analyzeOutputArgs(DAG.getMachineFunction(), CCInfo, Outs, /*IsRet=*/true, 5594 nullptr); 5595 5596 if (CallConv == CallingConv::GHC && !RVLocs.empty()) 5597 report_fatal_error("GHC functions return void only"); 5598 5599 SDValue Glue; 5600 SmallVector<SDValue, 4> RetOps(1, Chain); 5601 5602 // Copy the result values into the output registers. 5603 for (unsigned i = 0, e = RVLocs.size(); i < e; ++i) { 5604 SDValue Val = OutVals[i]; 5605 CCValAssign &VA = RVLocs[i]; 5606 assert(VA.isRegLoc() && "Can only return in registers!"); 5607 5608 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { 5609 // Handle returning f64 on RV32D with a soft float ABI. 5610 assert(VA.isRegLoc() && "Expected return via registers"); 5611 SDValue SplitF64 = DAG.getNode(RISCVISD::SplitF64, DL, 5612 DAG.getVTList(MVT::i32, MVT::i32), Val); 5613 SDValue Lo = SplitF64.getValue(0); 5614 SDValue Hi = SplitF64.getValue(1); 5615 Register RegLo = VA.getLocReg(); 5616 assert(RegLo < RISCV::X31 && "Invalid register pair"); 5617 Register RegHi = RegLo + 1; 5618 5619 if (STI.isRegisterReservedByUser(RegLo) || 5620 STI.isRegisterReservedByUser(RegHi)) 5621 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 5622 MF.getFunction(), 5623 "Return value register required, but has been reserved."}); 5624 5625 Chain = DAG.getCopyToReg(Chain, DL, RegLo, Lo, Glue); 5626 Glue = Chain.getValue(1); 5627 RetOps.push_back(DAG.getRegister(RegLo, MVT::i32)); 5628 Chain = DAG.getCopyToReg(Chain, DL, RegHi, Hi, Glue); 5629 Glue = Chain.getValue(1); 5630 RetOps.push_back(DAG.getRegister(RegHi, MVT::i32)); 5631 } else { 5632 // Handle a 'normal' return. 5633 Val = convertValVTToLocVT(DAG, Val, VA, DL); 5634 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Glue); 5635 5636 if (STI.isRegisterReservedByUser(VA.getLocReg())) 5637 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 5638 MF.getFunction(), 5639 "Return value register required, but has been reserved."}); 5640 5641 // Guarantee that all emitted copies are stuck together. 5642 Glue = Chain.getValue(1); 5643 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 5644 } 5645 } 5646 5647 RetOps[0] = Chain; // Update chain. 5648 5649 // Add the glue node if we have it. 5650 if (Glue.getNode()) { 5651 RetOps.push_back(Glue); 5652 } 5653 5654 // Interrupt service routines use different return instructions. 5655 const Function &Func = DAG.getMachineFunction().getFunction(); 5656 if (Func.hasFnAttribute("interrupt")) { 5657 if (!Func.getReturnType()->isVoidTy()) 5658 report_fatal_error( 5659 "Functions with the interrupt attribute must have void return type!"); 5660 5661 MachineFunction &MF = DAG.getMachineFunction(); 5662 StringRef Kind = 5663 MF.getFunction().getFnAttribute("interrupt").getValueAsString(); 5664 5665 unsigned RetOpc; 5666 if (Kind == "user") 5667 RetOpc = RISCVISD::URET_FLAG; 5668 else if (Kind == "supervisor") 5669 RetOpc = RISCVISD::SRET_FLAG; 5670 else 5671 RetOpc = RISCVISD::MRET_FLAG; 5672 5673 return DAG.getNode(RetOpc, DL, MVT::Other, RetOps); 5674 } 5675 5676 return DAG.getNode(RISCVISD::RET_FLAG, DL, MVT::Other, RetOps); 5677 } 5678 5679 void RISCVTargetLowering::validateCCReservedRegs( 5680 const SmallVectorImpl<std::pair<llvm::Register, llvm::SDValue>> &Regs, 5681 MachineFunction &MF) const { 5682 const Function &F = MF.getFunction(); 5683 const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>(); 5684 5685 if (llvm::any_of(Regs, [&STI](auto Reg) { 5686 return STI.isRegisterReservedByUser(Reg.first); 5687 })) 5688 F.getContext().diagnose(DiagnosticInfoUnsupported{ 5689 F, "Argument register required, but has been reserved."}); 5690 } 5691 5692 bool RISCVTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { 5693 return CI->isTailCall(); 5694 } 5695 5696 const char *RISCVTargetLowering::getTargetNodeName(unsigned Opcode) const { 5697 #define NODE_NAME_CASE(NODE) \ 5698 case RISCVISD::NODE: \ 5699 return "RISCVISD::" #NODE; 5700 // clang-format off 5701 switch ((RISCVISD::NodeType)Opcode) { 5702 case RISCVISD::FIRST_NUMBER: 5703 break; 5704 NODE_NAME_CASE(RET_FLAG) 5705 NODE_NAME_CASE(URET_FLAG) 5706 NODE_NAME_CASE(SRET_FLAG) 5707 NODE_NAME_CASE(MRET_FLAG) 5708 NODE_NAME_CASE(CALL) 5709 NODE_NAME_CASE(SELECT_CC) 5710 NODE_NAME_CASE(BuildPairF64) 5711 NODE_NAME_CASE(SplitF64) 5712 NODE_NAME_CASE(TAIL) 5713 NODE_NAME_CASE(SLLW) 5714 NODE_NAME_CASE(SRAW) 5715 NODE_NAME_CASE(SRLW) 5716 NODE_NAME_CASE(DIVW) 5717 NODE_NAME_CASE(DIVUW) 5718 NODE_NAME_CASE(REMUW) 5719 NODE_NAME_CASE(ROLW) 5720 NODE_NAME_CASE(RORW) 5721 NODE_NAME_CASE(FSLW) 5722 NODE_NAME_CASE(FSRW) 5723 NODE_NAME_CASE(FSL) 5724 NODE_NAME_CASE(FSR) 5725 NODE_NAME_CASE(FMV_H_X) 5726 NODE_NAME_CASE(FMV_X_ANYEXTH) 5727 NODE_NAME_CASE(FMV_W_X_RV64) 5728 NODE_NAME_CASE(FMV_X_ANYEXTW_RV64) 5729 NODE_NAME_CASE(READ_CYCLE_WIDE) 5730 NODE_NAME_CASE(GREVI) 5731 NODE_NAME_CASE(GREVIW) 5732 NODE_NAME_CASE(GORCI) 5733 NODE_NAME_CASE(GORCIW) 5734 NODE_NAME_CASE(SHFLI) 5735 NODE_NAME_CASE(VMV_V_X_VL) 5736 NODE_NAME_CASE(VFMV_V_F_VL) 5737 NODE_NAME_CASE(VMV_X_S) 5738 NODE_NAME_CASE(SPLAT_VECTOR_I64) 5739 NODE_NAME_CASE(READ_VLENB) 5740 NODE_NAME_CASE(TRUNCATE_VECTOR_VL) 5741 NODE_NAME_CASE(VLEFF) 5742 NODE_NAME_CASE(VLEFF_MASK) 5743 NODE_NAME_CASE(VSLIDEUP_VL) 5744 NODE_NAME_CASE(VSLIDEDOWN_VL) 5745 NODE_NAME_CASE(VID_VL) 5746 NODE_NAME_CASE(VFNCVT_ROD_VL) 5747 NODE_NAME_CASE(VECREDUCE_ADD) 5748 NODE_NAME_CASE(VECREDUCE_UMAX) 5749 NODE_NAME_CASE(VECREDUCE_SMAX) 5750 NODE_NAME_CASE(VECREDUCE_UMIN) 5751 NODE_NAME_CASE(VECREDUCE_SMIN) 5752 NODE_NAME_CASE(VECREDUCE_AND) 5753 NODE_NAME_CASE(VECREDUCE_OR) 5754 NODE_NAME_CASE(VECREDUCE_XOR) 5755 NODE_NAME_CASE(VECREDUCE_FADD) 5756 NODE_NAME_CASE(VECREDUCE_SEQ_FADD) 5757 NODE_NAME_CASE(ADD_VL) 5758 NODE_NAME_CASE(AND_VL) 5759 NODE_NAME_CASE(MUL_VL) 5760 NODE_NAME_CASE(OR_VL) 5761 NODE_NAME_CASE(SDIV_VL) 5762 NODE_NAME_CASE(SHL_VL) 5763 NODE_NAME_CASE(SREM_VL) 5764 NODE_NAME_CASE(SRA_VL) 5765 NODE_NAME_CASE(SRL_VL) 5766 NODE_NAME_CASE(SUB_VL) 5767 NODE_NAME_CASE(UDIV_VL) 5768 NODE_NAME_CASE(UREM_VL) 5769 NODE_NAME_CASE(XOR_VL) 5770 NODE_NAME_CASE(FADD_VL) 5771 NODE_NAME_CASE(FSUB_VL) 5772 NODE_NAME_CASE(FMUL_VL) 5773 NODE_NAME_CASE(FDIV_VL) 5774 NODE_NAME_CASE(FNEG_VL) 5775 NODE_NAME_CASE(FABS_VL) 5776 NODE_NAME_CASE(FSQRT_VL) 5777 NODE_NAME_CASE(FMA_VL) 5778 NODE_NAME_CASE(SMIN_VL) 5779 NODE_NAME_CASE(SMAX_VL) 5780 NODE_NAME_CASE(UMIN_VL) 5781 NODE_NAME_CASE(UMAX_VL) 5782 NODE_NAME_CASE(MULHS_VL) 5783 NODE_NAME_CASE(MULHU_VL) 5784 NODE_NAME_CASE(FP_TO_SINT_VL) 5785 NODE_NAME_CASE(FP_TO_UINT_VL) 5786 NODE_NAME_CASE(SINT_TO_FP_VL) 5787 NODE_NAME_CASE(UINT_TO_FP_VL) 5788 NODE_NAME_CASE(FP_EXTEND_VL) 5789 NODE_NAME_CASE(FP_ROUND_VL) 5790 NODE_NAME_CASE(SETCC_VL) 5791 NODE_NAME_CASE(VSELECT_VL) 5792 NODE_NAME_CASE(VMAND_VL) 5793 NODE_NAME_CASE(VMOR_VL) 5794 NODE_NAME_CASE(VMXOR_VL) 5795 NODE_NAME_CASE(VMCLR_VL) 5796 NODE_NAME_CASE(VMSET_VL) 5797 NODE_NAME_CASE(VRGATHER_VX_VL) 5798 NODE_NAME_CASE(VSEXT_VL) 5799 NODE_NAME_CASE(VZEXT_VL) 5800 NODE_NAME_CASE(VLE_VL) 5801 NODE_NAME_CASE(VSE_VL) 5802 } 5803 // clang-format on 5804 return nullptr; 5805 #undef NODE_NAME_CASE 5806 } 5807 5808 /// getConstraintType - Given a constraint letter, return the type of 5809 /// constraint it is for this target. 5810 RISCVTargetLowering::ConstraintType 5811 RISCVTargetLowering::getConstraintType(StringRef Constraint) const { 5812 if (Constraint.size() == 1) { 5813 switch (Constraint[0]) { 5814 default: 5815 break; 5816 case 'f': 5817 return C_RegisterClass; 5818 case 'I': 5819 case 'J': 5820 case 'K': 5821 return C_Immediate; 5822 case 'A': 5823 return C_Memory; 5824 } 5825 } 5826 return TargetLowering::getConstraintType(Constraint); 5827 } 5828 5829 std::pair<unsigned, const TargetRegisterClass *> 5830 RISCVTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 5831 StringRef Constraint, 5832 MVT VT) const { 5833 // First, see if this is a constraint that directly corresponds to a 5834 // RISCV register class. 5835 if (Constraint.size() == 1) { 5836 switch (Constraint[0]) { 5837 case 'r': 5838 return std::make_pair(0U, &RISCV::GPRRegClass); 5839 case 'f': 5840 if (Subtarget.hasStdExtZfh() && VT == MVT::f16) 5841 return std::make_pair(0U, &RISCV::FPR16RegClass); 5842 if (Subtarget.hasStdExtF() && VT == MVT::f32) 5843 return std::make_pair(0U, &RISCV::FPR32RegClass); 5844 if (Subtarget.hasStdExtD() && VT == MVT::f64) 5845 return std::make_pair(0U, &RISCV::FPR64RegClass); 5846 break; 5847 default: 5848 break; 5849 } 5850 } 5851 5852 // Clang will correctly decode the usage of register name aliases into their 5853 // official names. However, other frontends like `rustc` do not. This allows 5854 // users of these frontends to use the ABI names for registers in LLVM-style 5855 // register constraints. 5856 unsigned XRegFromAlias = StringSwitch<unsigned>(Constraint.lower()) 5857 .Case("{zero}", RISCV::X0) 5858 .Case("{ra}", RISCV::X1) 5859 .Case("{sp}", RISCV::X2) 5860 .Case("{gp}", RISCV::X3) 5861 .Case("{tp}", RISCV::X4) 5862 .Case("{t0}", RISCV::X5) 5863 .Case("{t1}", RISCV::X6) 5864 .Case("{t2}", RISCV::X7) 5865 .Cases("{s0}", "{fp}", RISCV::X8) 5866 .Case("{s1}", RISCV::X9) 5867 .Case("{a0}", RISCV::X10) 5868 .Case("{a1}", RISCV::X11) 5869 .Case("{a2}", RISCV::X12) 5870 .Case("{a3}", RISCV::X13) 5871 .Case("{a4}", RISCV::X14) 5872 .Case("{a5}", RISCV::X15) 5873 .Case("{a6}", RISCV::X16) 5874 .Case("{a7}", RISCV::X17) 5875 .Case("{s2}", RISCV::X18) 5876 .Case("{s3}", RISCV::X19) 5877 .Case("{s4}", RISCV::X20) 5878 .Case("{s5}", RISCV::X21) 5879 .Case("{s6}", RISCV::X22) 5880 .Case("{s7}", RISCV::X23) 5881 .Case("{s8}", RISCV::X24) 5882 .Case("{s9}", RISCV::X25) 5883 .Case("{s10}", RISCV::X26) 5884 .Case("{s11}", RISCV::X27) 5885 .Case("{t3}", RISCV::X28) 5886 .Case("{t4}", RISCV::X29) 5887 .Case("{t5}", RISCV::X30) 5888 .Case("{t6}", RISCV::X31) 5889 .Default(RISCV::NoRegister); 5890 if (XRegFromAlias != RISCV::NoRegister) 5891 return std::make_pair(XRegFromAlias, &RISCV::GPRRegClass); 5892 5893 // Since TargetLowering::getRegForInlineAsmConstraint uses the name of the 5894 // TableGen record rather than the AsmName to choose registers for InlineAsm 5895 // constraints, plus we want to match those names to the widest floating point 5896 // register type available, manually select floating point registers here. 5897 // 5898 // The second case is the ABI name of the register, so that frontends can also 5899 // use the ABI names in register constraint lists. 5900 if (Subtarget.hasStdExtF()) { 5901 unsigned FReg = StringSwitch<unsigned>(Constraint.lower()) 5902 .Cases("{f0}", "{ft0}", RISCV::F0_F) 5903 .Cases("{f1}", "{ft1}", RISCV::F1_F) 5904 .Cases("{f2}", "{ft2}", RISCV::F2_F) 5905 .Cases("{f3}", "{ft3}", RISCV::F3_F) 5906 .Cases("{f4}", "{ft4}", RISCV::F4_F) 5907 .Cases("{f5}", "{ft5}", RISCV::F5_F) 5908 .Cases("{f6}", "{ft6}", RISCV::F6_F) 5909 .Cases("{f7}", "{ft7}", RISCV::F7_F) 5910 .Cases("{f8}", "{fs0}", RISCV::F8_F) 5911 .Cases("{f9}", "{fs1}", RISCV::F9_F) 5912 .Cases("{f10}", "{fa0}", RISCV::F10_F) 5913 .Cases("{f11}", "{fa1}", RISCV::F11_F) 5914 .Cases("{f12}", "{fa2}", RISCV::F12_F) 5915 .Cases("{f13}", "{fa3}", RISCV::F13_F) 5916 .Cases("{f14}", "{fa4}", RISCV::F14_F) 5917 .Cases("{f15}", "{fa5}", RISCV::F15_F) 5918 .Cases("{f16}", "{fa6}", RISCV::F16_F) 5919 .Cases("{f17}", "{fa7}", RISCV::F17_F) 5920 .Cases("{f18}", "{fs2}", RISCV::F18_F) 5921 .Cases("{f19}", "{fs3}", RISCV::F19_F) 5922 .Cases("{f20}", "{fs4}", RISCV::F20_F) 5923 .Cases("{f21}", "{fs5}", RISCV::F21_F) 5924 .Cases("{f22}", "{fs6}", RISCV::F22_F) 5925 .Cases("{f23}", "{fs7}", RISCV::F23_F) 5926 .Cases("{f24}", "{fs8}", RISCV::F24_F) 5927 .Cases("{f25}", "{fs9}", RISCV::F25_F) 5928 .Cases("{f26}", "{fs10}", RISCV::F26_F) 5929 .Cases("{f27}", "{fs11}", RISCV::F27_F) 5930 .Cases("{f28}", "{ft8}", RISCV::F28_F) 5931 .Cases("{f29}", "{ft9}", RISCV::F29_F) 5932 .Cases("{f30}", "{ft10}", RISCV::F30_F) 5933 .Cases("{f31}", "{ft11}", RISCV::F31_F) 5934 .Default(RISCV::NoRegister); 5935 if (FReg != RISCV::NoRegister) { 5936 assert(RISCV::F0_F <= FReg && FReg <= RISCV::F31_F && "Unknown fp-reg"); 5937 if (Subtarget.hasStdExtD()) { 5938 unsigned RegNo = FReg - RISCV::F0_F; 5939 unsigned DReg = RISCV::F0_D + RegNo; 5940 return std::make_pair(DReg, &RISCV::FPR64RegClass); 5941 } 5942 return std::make_pair(FReg, &RISCV::FPR32RegClass); 5943 } 5944 } 5945 5946 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 5947 } 5948 5949 unsigned 5950 RISCVTargetLowering::getInlineAsmMemConstraint(StringRef ConstraintCode) const { 5951 // Currently only support length 1 constraints. 5952 if (ConstraintCode.size() == 1) { 5953 switch (ConstraintCode[0]) { 5954 case 'A': 5955 return InlineAsm::Constraint_A; 5956 default: 5957 break; 5958 } 5959 } 5960 5961 return TargetLowering::getInlineAsmMemConstraint(ConstraintCode); 5962 } 5963 5964 void RISCVTargetLowering::LowerAsmOperandForConstraint( 5965 SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops, 5966 SelectionDAG &DAG) const { 5967 // Currently only support length 1 constraints. 5968 if (Constraint.length() == 1) { 5969 switch (Constraint[0]) { 5970 case 'I': 5971 // Validate & create a 12-bit signed immediate operand. 5972 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 5973 uint64_t CVal = C->getSExtValue(); 5974 if (isInt<12>(CVal)) 5975 Ops.push_back( 5976 DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT())); 5977 } 5978 return; 5979 case 'J': 5980 // Validate & create an integer zero operand. 5981 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 5982 if (C->getZExtValue() == 0) 5983 Ops.push_back( 5984 DAG.getTargetConstant(0, SDLoc(Op), Subtarget.getXLenVT())); 5985 return; 5986 case 'K': 5987 // Validate & create a 5-bit unsigned immediate operand. 5988 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 5989 uint64_t CVal = C->getZExtValue(); 5990 if (isUInt<5>(CVal)) 5991 Ops.push_back( 5992 DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT())); 5993 } 5994 return; 5995 default: 5996 break; 5997 } 5998 } 5999 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 6000 } 6001 6002 Instruction *RISCVTargetLowering::emitLeadingFence(IRBuilder<> &Builder, 6003 Instruction *Inst, 6004 AtomicOrdering Ord) const { 6005 if (isa<LoadInst>(Inst) && Ord == AtomicOrdering::SequentiallyConsistent) 6006 return Builder.CreateFence(Ord); 6007 if (isa<StoreInst>(Inst) && isReleaseOrStronger(Ord)) 6008 return Builder.CreateFence(AtomicOrdering::Release); 6009 return nullptr; 6010 } 6011 6012 Instruction *RISCVTargetLowering::emitTrailingFence(IRBuilder<> &Builder, 6013 Instruction *Inst, 6014 AtomicOrdering Ord) const { 6015 if (isa<LoadInst>(Inst) && isAcquireOrStronger(Ord)) 6016 return Builder.CreateFence(AtomicOrdering::Acquire); 6017 return nullptr; 6018 } 6019 6020 TargetLowering::AtomicExpansionKind 6021 RISCVTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { 6022 // atomicrmw {fadd,fsub} must be expanded to use compare-exchange, as floating 6023 // point operations can't be used in an lr/sc sequence without breaking the 6024 // forward-progress guarantee. 6025 if (AI->isFloatingPointOperation()) 6026 return AtomicExpansionKind::CmpXChg; 6027 6028 unsigned Size = AI->getType()->getPrimitiveSizeInBits(); 6029 if (Size == 8 || Size == 16) 6030 return AtomicExpansionKind::MaskedIntrinsic; 6031 return AtomicExpansionKind::None; 6032 } 6033 6034 static Intrinsic::ID 6035 getIntrinsicForMaskedAtomicRMWBinOp(unsigned XLen, AtomicRMWInst::BinOp BinOp) { 6036 if (XLen == 32) { 6037 switch (BinOp) { 6038 default: 6039 llvm_unreachable("Unexpected AtomicRMW BinOp"); 6040 case AtomicRMWInst::Xchg: 6041 return Intrinsic::riscv_masked_atomicrmw_xchg_i32; 6042 case AtomicRMWInst::Add: 6043 return Intrinsic::riscv_masked_atomicrmw_add_i32; 6044 case AtomicRMWInst::Sub: 6045 return Intrinsic::riscv_masked_atomicrmw_sub_i32; 6046 case AtomicRMWInst::Nand: 6047 return Intrinsic::riscv_masked_atomicrmw_nand_i32; 6048 case AtomicRMWInst::Max: 6049 return Intrinsic::riscv_masked_atomicrmw_max_i32; 6050 case AtomicRMWInst::Min: 6051 return Intrinsic::riscv_masked_atomicrmw_min_i32; 6052 case AtomicRMWInst::UMax: 6053 return Intrinsic::riscv_masked_atomicrmw_umax_i32; 6054 case AtomicRMWInst::UMin: 6055 return Intrinsic::riscv_masked_atomicrmw_umin_i32; 6056 } 6057 } 6058 6059 if (XLen == 64) { 6060 switch (BinOp) { 6061 default: 6062 llvm_unreachable("Unexpected AtomicRMW BinOp"); 6063 case AtomicRMWInst::Xchg: 6064 return Intrinsic::riscv_masked_atomicrmw_xchg_i64; 6065 case AtomicRMWInst::Add: 6066 return Intrinsic::riscv_masked_atomicrmw_add_i64; 6067 case AtomicRMWInst::Sub: 6068 return Intrinsic::riscv_masked_atomicrmw_sub_i64; 6069 case AtomicRMWInst::Nand: 6070 return Intrinsic::riscv_masked_atomicrmw_nand_i64; 6071 case AtomicRMWInst::Max: 6072 return Intrinsic::riscv_masked_atomicrmw_max_i64; 6073 case AtomicRMWInst::Min: 6074 return Intrinsic::riscv_masked_atomicrmw_min_i64; 6075 case AtomicRMWInst::UMax: 6076 return Intrinsic::riscv_masked_atomicrmw_umax_i64; 6077 case AtomicRMWInst::UMin: 6078 return Intrinsic::riscv_masked_atomicrmw_umin_i64; 6079 } 6080 } 6081 6082 llvm_unreachable("Unexpected XLen\n"); 6083 } 6084 6085 Value *RISCVTargetLowering::emitMaskedAtomicRMWIntrinsic( 6086 IRBuilder<> &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr, 6087 Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const { 6088 unsigned XLen = Subtarget.getXLen(); 6089 Value *Ordering = 6090 Builder.getIntN(XLen, static_cast<uint64_t>(AI->getOrdering())); 6091 Type *Tys[] = {AlignedAddr->getType()}; 6092 Function *LrwOpScwLoop = Intrinsic::getDeclaration( 6093 AI->getModule(), 6094 getIntrinsicForMaskedAtomicRMWBinOp(XLen, AI->getOperation()), Tys); 6095 6096 if (XLen == 64) { 6097 Incr = Builder.CreateSExt(Incr, Builder.getInt64Ty()); 6098 Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty()); 6099 ShiftAmt = Builder.CreateSExt(ShiftAmt, Builder.getInt64Ty()); 6100 } 6101 6102 Value *Result; 6103 6104 // Must pass the shift amount needed to sign extend the loaded value prior 6105 // to performing a signed comparison for min/max. ShiftAmt is the number of 6106 // bits to shift the value into position. Pass XLen-ShiftAmt-ValWidth, which 6107 // is the number of bits to left+right shift the value in order to 6108 // sign-extend. 6109 if (AI->getOperation() == AtomicRMWInst::Min || 6110 AI->getOperation() == AtomicRMWInst::Max) { 6111 const DataLayout &DL = AI->getModule()->getDataLayout(); 6112 unsigned ValWidth = 6113 DL.getTypeStoreSizeInBits(AI->getValOperand()->getType()); 6114 Value *SextShamt = 6115 Builder.CreateSub(Builder.getIntN(XLen, XLen - ValWidth), ShiftAmt); 6116 Result = Builder.CreateCall(LrwOpScwLoop, 6117 {AlignedAddr, Incr, Mask, SextShamt, Ordering}); 6118 } else { 6119 Result = 6120 Builder.CreateCall(LrwOpScwLoop, {AlignedAddr, Incr, Mask, Ordering}); 6121 } 6122 6123 if (XLen == 64) 6124 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty()); 6125 return Result; 6126 } 6127 6128 TargetLowering::AtomicExpansionKind 6129 RISCVTargetLowering::shouldExpandAtomicCmpXchgInIR( 6130 AtomicCmpXchgInst *CI) const { 6131 unsigned Size = CI->getCompareOperand()->getType()->getPrimitiveSizeInBits(); 6132 if (Size == 8 || Size == 16) 6133 return AtomicExpansionKind::MaskedIntrinsic; 6134 return AtomicExpansionKind::None; 6135 } 6136 6137 Value *RISCVTargetLowering::emitMaskedAtomicCmpXchgIntrinsic( 6138 IRBuilder<> &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr, 6139 Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const { 6140 unsigned XLen = Subtarget.getXLen(); 6141 Value *Ordering = Builder.getIntN(XLen, static_cast<uint64_t>(Ord)); 6142 Intrinsic::ID CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i32; 6143 if (XLen == 64) { 6144 CmpVal = Builder.CreateSExt(CmpVal, Builder.getInt64Ty()); 6145 NewVal = Builder.CreateSExt(NewVal, Builder.getInt64Ty()); 6146 Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty()); 6147 CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i64; 6148 } 6149 Type *Tys[] = {AlignedAddr->getType()}; 6150 Function *MaskedCmpXchg = 6151 Intrinsic::getDeclaration(CI->getModule(), CmpXchgIntrID, Tys); 6152 Value *Result = Builder.CreateCall( 6153 MaskedCmpXchg, {AlignedAddr, CmpVal, NewVal, Mask, Ordering}); 6154 if (XLen == 64) 6155 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty()); 6156 return Result; 6157 } 6158 6159 bool RISCVTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, 6160 EVT VT) const { 6161 VT = VT.getScalarType(); 6162 6163 if (!VT.isSimple()) 6164 return false; 6165 6166 switch (VT.getSimpleVT().SimpleTy) { 6167 case MVT::f16: 6168 return Subtarget.hasStdExtZfh(); 6169 case MVT::f32: 6170 return Subtarget.hasStdExtF(); 6171 case MVT::f64: 6172 return Subtarget.hasStdExtD(); 6173 default: 6174 break; 6175 } 6176 6177 return false; 6178 } 6179 6180 Register RISCVTargetLowering::getExceptionPointerRegister( 6181 const Constant *PersonalityFn) const { 6182 return RISCV::X10; 6183 } 6184 6185 Register RISCVTargetLowering::getExceptionSelectorRegister( 6186 const Constant *PersonalityFn) const { 6187 return RISCV::X11; 6188 } 6189 6190 bool RISCVTargetLowering::shouldExtendTypeInLibCall(EVT Type) const { 6191 // Return false to suppress the unnecessary extensions if the LibCall 6192 // arguments or return value is f32 type for LP64 ABI. 6193 RISCVABI::ABI ABI = Subtarget.getTargetABI(); 6194 if (ABI == RISCVABI::ABI_LP64 && (Type == MVT::f32)) 6195 return false; 6196 6197 return true; 6198 } 6199 6200 bool RISCVTargetLowering::shouldSignExtendTypeInLibCall(EVT Type, bool IsSigned) const { 6201 if (Subtarget.is64Bit() && Type == MVT::i32) 6202 return true; 6203 6204 return IsSigned; 6205 } 6206 6207 bool RISCVTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT, 6208 SDValue C) const { 6209 // Check integral scalar types. 6210 if (VT.isScalarInteger()) { 6211 // Omit the optimization if the sub target has the M extension and the data 6212 // size exceeds XLen. 6213 if (Subtarget.hasStdExtM() && VT.getSizeInBits() > Subtarget.getXLen()) 6214 return false; 6215 if (auto *ConstNode = dyn_cast<ConstantSDNode>(C.getNode())) { 6216 // Break the MUL to a SLLI and an ADD/SUB. 6217 const APInt &Imm = ConstNode->getAPIntValue(); 6218 if ((Imm + 1).isPowerOf2() || (Imm - 1).isPowerOf2() || 6219 (1 - Imm).isPowerOf2() || (-1 - Imm).isPowerOf2()) 6220 return true; 6221 // Omit the following optimization if the sub target has the M extension 6222 // and the data size >= XLen. 6223 if (Subtarget.hasStdExtM() && VT.getSizeInBits() >= Subtarget.getXLen()) 6224 return false; 6225 // Break the MUL to two SLLI instructions and an ADD/SUB, if Imm needs 6226 // a pair of LUI/ADDI. 6227 if (!Imm.isSignedIntN(12) && Imm.countTrailingZeros() < 12) { 6228 APInt ImmS = Imm.ashr(Imm.countTrailingZeros()); 6229 if ((ImmS + 1).isPowerOf2() || (ImmS - 1).isPowerOf2() || 6230 (1 - ImmS).isPowerOf2()) 6231 return true; 6232 } 6233 } 6234 } 6235 6236 return false; 6237 } 6238 6239 bool RISCVTargetLowering::useRVVForFixedLengthVectorVT(MVT VT) const { 6240 if (!Subtarget.useRVVForFixedLengthVectors()) 6241 return false; 6242 6243 if (!VT.isFixedLengthVector()) 6244 return false; 6245 6246 // Don't use RVV for vectors we cannot scalarize if required. 6247 switch (VT.getVectorElementType().SimpleTy) { 6248 // i1 is supported but has different rules. 6249 default: 6250 return false; 6251 case MVT::i1: 6252 // Masks can only use a single register. 6253 if (VT.getVectorNumElements() > Subtarget.getMinRVVVectorSizeInBits()) 6254 return false; 6255 break; 6256 case MVT::i8: 6257 case MVT::i16: 6258 case MVT::i32: 6259 case MVT::i64: 6260 break; 6261 case MVT::f16: 6262 if (!Subtarget.hasStdExtZfh()) 6263 return false; 6264 break; 6265 case MVT::f32: 6266 if (!Subtarget.hasStdExtF()) 6267 return false; 6268 break; 6269 case MVT::f64: 6270 if (!Subtarget.hasStdExtD()) 6271 return false; 6272 break; 6273 } 6274 6275 unsigned LMul = Subtarget.getLMULForFixedLengthVector(VT); 6276 // Don't use RVV for types that don't fit. 6277 if (LMul > Subtarget.getMaxLMULForFixedLengthVectors()) 6278 return false; 6279 6280 // TODO: Perhaps an artificial restriction, but worth having whilst getting 6281 // the base fixed length RVV support in place. 6282 if (!VT.isPow2VectorType()) 6283 return false; 6284 6285 return true; 6286 } 6287 6288 bool RISCVTargetLowering::allowsMisalignedMemoryAccesses( 6289 EVT VT, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags, 6290 bool *Fast) const { 6291 if (!VT.isScalableVector()) 6292 return false; 6293 6294 EVT ElemVT = VT.getVectorElementType(); 6295 if (Alignment >= ElemVT.getStoreSize()) { 6296 if (Fast) 6297 *Fast = true; 6298 return true; 6299 } 6300 6301 return false; 6302 } 6303 6304 #define GET_REGISTER_MATCHER 6305 #include "RISCVGenAsmMatcher.inc" 6306 6307 Register 6308 RISCVTargetLowering::getRegisterByName(const char *RegName, LLT VT, 6309 const MachineFunction &MF) const { 6310 Register Reg = MatchRegisterAltName(RegName); 6311 if (Reg == RISCV::NoRegister) 6312 Reg = MatchRegisterName(RegName); 6313 if (Reg == RISCV::NoRegister) 6314 report_fatal_error( 6315 Twine("Invalid register name \"" + StringRef(RegName) + "\".")); 6316 BitVector ReservedRegs = Subtarget.getRegisterInfo()->getReservedRegs(MF); 6317 if (!ReservedRegs.test(Reg) && !Subtarget.isRegisterReservedByUser(Reg)) 6318 report_fatal_error(Twine("Trying to obtain non-reserved register \"" + 6319 StringRef(RegName) + "\".")); 6320 return Reg; 6321 } 6322 6323 namespace llvm { 6324 namespace RISCVVIntrinsicsTable { 6325 6326 #define GET_RISCVVIntrinsicsTable_IMPL 6327 #include "RISCVGenSearchableTables.inc" 6328 6329 } // namespace RISCVVIntrinsicsTable 6330 6331 } // namespace llvm 6332