1 //===-- RISCVISelLowering.cpp - RISCV DAG Lowering Implementation  --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the interfaces that RISCV uses to lower LLVM code into a
10 // selection DAG.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "RISCVISelLowering.h"
15 #include "MCTargetDesc/RISCVMatInt.h"
16 #include "RISCV.h"
17 #include "RISCVMachineFunctionInfo.h"
18 #include "RISCVRegisterInfo.h"
19 #include "RISCVSubtarget.h"
20 #include "RISCVTargetMachine.h"
21 #include "llvm/ADT/SmallSet.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/Analysis/MemoryLocation.h"
24 #include "llvm/CodeGen/MachineFrameInfo.h"
25 #include "llvm/CodeGen/MachineFunction.h"
26 #include "llvm/CodeGen/MachineInstrBuilder.h"
27 #include "llvm/CodeGen/MachineJumpTableInfo.h"
28 #include "llvm/CodeGen/MachineRegisterInfo.h"
29 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
30 #include "llvm/CodeGen/ValueTypes.h"
31 #include "llvm/IR/DiagnosticInfo.h"
32 #include "llvm/IR/DiagnosticPrinter.h"
33 #include "llvm/IR/IRBuilder.h"
34 #include "llvm/IR/IntrinsicsRISCV.h"
35 #include "llvm/IR/PatternMatch.h"
36 #include "llvm/Support/Debug.h"
37 #include "llvm/Support/ErrorHandling.h"
38 #include "llvm/Support/KnownBits.h"
39 #include "llvm/Support/MathExtras.h"
40 #include "llvm/Support/raw_ostream.h"
41 
42 using namespace llvm;
43 
44 #define DEBUG_TYPE "riscv-lower"
45 
46 STATISTIC(NumTailCalls, "Number of tail calls");
47 
48 RISCVTargetLowering::RISCVTargetLowering(const TargetMachine &TM,
49                                          const RISCVSubtarget &STI)
50     : TargetLowering(TM), Subtarget(STI) {
51 
52   if (Subtarget.isRV32E())
53     report_fatal_error("Codegen not yet implemented for RV32E");
54 
55   RISCVABI::ABI ABI = Subtarget.getTargetABI();
56   assert(ABI != RISCVABI::ABI_Unknown && "Improperly initialised target ABI");
57 
58   if ((ABI == RISCVABI::ABI_ILP32F || ABI == RISCVABI::ABI_LP64F) &&
59       !Subtarget.hasStdExtF()) {
60     errs() << "Hard-float 'f' ABI can't be used for a target that "
61                 "doesn't support the F instruction set extension (ignoring "
62                           "target-abi)\n";
63     ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32;
64   } else if ((ABI == RISCVABI::ABI_ILP32D || ABI == RISCVABI::ABI_LP64D) &&
65              !Subtarget.hasStdExtD()) {
66     errs() << "Hard-float 'd' ABI can't be used for a target that "
67               "doesn't support the D instruction set extension (ignoring "
68               "target-abi)\n";
69     ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32;
70   }
71 
72   switch (ABI) {
73   default:
74     report_fatal_error("Don't know how to lower this ABI");
75   case RISCVABI::ABI_ILP32:
76   case RISCVABI::ABI_ILP32F:
77   case RISCVABI::ABI_ILP32D:
78   case RISCVABI::ABI_LP64:
79   case RISCVABI::ABI_LP64F:
80   case RISCVABI::ABI_LP64D:
81     break;
82   }
83 
84   MVT XLenVT = Subtarget.getXLenVT();
85 
86   // Set up the register classes.
87   addRegisterClass(XLenVT, &RISCV::GPRRegClass);
88 
89   if (Subtarget.hasStdExtZfh())
90     addRegisterClass(MVT::f16, &RISCV::FPR16RegClass);
91   if (Subtarget.hasStdExtF())
92     addRegisterClass(MVT::f32, &RISCV::FPR32RegClass);
93   if (Subtarget.hasStdExtD())
94     addRegisterClass(MVT::f64, &RISCV::FPR64RegClass);
95 
96   static const MVT::SimpleValueType BoolVecVTs[] = {
97       MVT::nxv1i1,  MVT::nxv2i1,  MVT::nxv4i1, MVT::nxv8i1,
98       MVT::nxv16i1, MVT::nxv32i1, MVT::nxv64i1};
99   static const MVT::SimpleValueType IntVecVTs[] = {
100       MVT::nxv1i8,  MVT::nxv2i8,   MVT::nxv4i8,   MVT::nxv8i8,  MVT::nxv16i8,
101       MVT::nxv32i8, MVT::nxv64i8,  MVT::nxv1i16,  MVT::nxv2i16, MVT::nxv4i16,
102       MVT::nxv8i16, MVT::nxv16i16, MVT::nxv32i16, MVT::nxv1i32, MVT::nxv2i32,
103       MVT::nxv4i32, MVT::nxv8i32,  MVT::nxv16i32, MVT::nxv1i64, MVT::nxv2i64,
104       MVT::nxv4i64, MVT::nxv8i64};
105   static const MVT::SimpleValueType F16VecVTs[] = {
106       MVT::nxv1f16, MVT::nxv2f16,  MVT::nxv4f16,
107       MVT::nxv8f16, MVT::nxv16f16, MVT::nxv32f16};
108   static const MVT::SimpleValueType F32VecVTs[] = {
109       MVT::nxv1f32, MVT::nxv2f32, MVT::nxv4f32, MVT::nxv8f32, MVT::nxv16f32};
110   static const MVT::SimpleValueType F64VecVTs[] = {
111       MVT::nxv1f64, MVT::nxv2f64, MVT::nxv4f64, MVT::nxv8f64};
112 
113   if (Subtarget.hasVInstructions()) {
114     auto addRegClassForRVV = [this](MVT VT) {
115       // Disable the smallest fractional LMUL types if ELEN is less than
116       // RVVBitsPerBlock.
117       unsigned MinElts = RISCV::RVVBitsPerBlock / Subtarget.getELEN();
118       if (VT.getVectorMinNumElements() < MinElts)
119         return;
120 
121       unsigned Size = VT.getSizeInBits().getKnownMinValue();
122       const TargetRegisterClass *RC;
123       if (Size <= RISCV::RVVBitsPerBlock)
124         RC = &RISCV::VRRegClass;
125       else if (Size == 2 * RISCV::RVVBitsPerBlock)
126         RC = &RISCV::VRM2RegClass;
127       else if (Size == 4 * RISCV::RVVBitsPerBlock)
128         RC = &RISCV::VRM4RegClass;
129       else if (Size == 8 * RISCV::RVVBitsPerBlock)
130         RC = &RISCV::VRM8RegClass;
131       else
132         llvm_unreachable("Unexpected size");
133 
134       addRegisterClass(VT, RC);
135     };
136 
137     for (MVT VT : BoolVecVTs)
138       addRegClassForRVV(VT);
139     for (MVT VT : IntVecVTs) {
140       if (VT.getVectorElementType() == MVT::i64 &&
141           !Subtarget.hasVInstructionsI64())
142         continue;
143       addRegClassForRVV(VT);
144     }
145 
146     if (Subtarget.hasVInstructionsF16())
147       for (MVT VT : F16VecVTs)
148         addRegClassForRVV(VT);
149 
150     if (Subtarget.hasVInstructionsF32())
151       for (MVT VT : F32VecVTs)
152         addRegClassForRVV(VT);
153 
154     if (Subtarget.hasVInstructionsF64())
155       for (MVT VT : F64VecVTs)
156         addRegClassForRVV(VT);
157 
158     if (Subtarget.useRVVForFixedLengthVectors()) {
159       auto addRegClassForFixedVectors = [this](MVT VT) {
160         MVT ContainerVT = getContainerForFixedLengthVector(VT);
161         unsigned RCID = getRegClassIDForVecVT(ContainerVT);
162         const RISCVRegisterInfo &TRI = *Subtarget.getRegisterInfo();
163         addRegisterClass(VT, TRI.getRegClass(RCID));
164       };
165       for (MVT VT : MVT::integer_fixedlen_vector_valuetypes())
166         if (useRVVForFixedLengthVectorVT(VT))
167           addRegClassForFixedVectors(VT);
168 
169       for (MVT VT : MVT::fp_fixedlen_vector_valuetypes())
170         if (useRVVForFixedLengthVectorVT(VT))
171           addRegClassForFixedVectors(VT);
172     }
173   }
174 
175   // Compute derived properties from the register classes.
176   computeRegisterProperties(STI.getRegisterInfo());
177 
178   setStackPointerRegisterToSaveRestore(RISCV::X2);
179 
180   setLoadExtAction({ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}, XLenVT,
181                    MVT::i1, Promote);
182 
183   // TODO: add all necessary setOperationAction calls.
184   setOperationAction(ISD::DYNAMIC_STACKALLOC, XLenVT, Expand);
185 
186   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
187   setOperationAction(ISD::BR_CC, XLenVT, Expand);
188   setOperationAction(ISD::BRCOND, MVT::Other, Custom);
189   setOperationAction(ISD::SELECT_CC, XLenVT, Expand);
190 
191   setOperationAction({ISD::STACKSAVE, ISD::STACKRESTORE}, MVT::Other, Expand);
192 
193   setOperationAction(ISD::VASTART, MVT::Other, Custom);
194   setOperationAction({ISD::VAARG, ISD::VACOPY, ISD::VAEND}, MVT::Other, Expand);
195 
196   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
197 
198   setOperationAction(ISD::EH_DWARF_CFA, MVT::i32, Custom);
199 
200   if (!Subtarget.hasStdExtZbb())
201     setOperationAction(ISD::SIGN_EXTEND_INREG, {MVT::i8, MVT::i16}, Expand);
202 
203   if (Subtarget.is64Bit()) {
204     setOperationAction(ISD::EH_DWARF_CFA, MVT::i64, Custom);
205 
206     setOperationAction({ISD::ADD, ISD::SUB, ISD::SHL, ISD::SRA, ISD::SRL},
207                        MVT::i32, Custom);
208 
209     setOperationAction({ISD::UADDO, ISD::USUBO, ISD::UADDSAT, ISD::USUBSAT},
210                        MVT::i32, Custom);
211   } else {
212     setLibcallName(
213         {RTLIB::SHL_I128, RTLIB::SRL_I128, RTLIB::SRA_I128, RTLIB::MUL_I128},
214         nullptr);
215     setLibcallName(RTLIB::MULO_I64, nullptr);
216   }
217 
218   if (!Subtarget.hasStdExtM()) {
219     setOperationAction({ISD::MUL, ISD::MULHS, ISD::MULHU, ISD::SDIV, ISD::UDIV,
220                         ISD::SREM, ISD::UREM},
221                        XLenVT, Expand);
222   } else {
223     if (Subtarget.is64Bit()) {
224       setOperationAction(ISD::MUL, {MVT::i32, MVT::i128}, Custom);
225 
226       setOperationAction({ISD::SDIV, ISD::UDIV, ISD::UREM},
227                          {MVT::i8, MVT::i16, MVT::i32}, Custom);
228     } else {
229       setOperationAction(ISD::MUL, MVT::i64, Custom);
230     }
231   }
232 
233   setOperationAction(
234       {ISD::SDIVREM, ISD::UDIVREM, ISD::SMUL_LOHI, ISD::UMUL_LOHI}, XLenVT,
235       Expand);
236 
237   setOperationAction({ISD::SHL_PARTS, ISD::SRL_PARTS, ISD::SRA_PARTS}, XLenVT,
238                      Custom);
239 
240   if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp() ||
241       Subtarget.hasStdExtZbkb()) {
242     if (Subtarget.is64Bit())
243       setOperationAction({ISD::ROTL, ISD::ROTR}, MVT::i32, Custom);
244   } else {
245     setOperationAction({ISD::ROTL, ISD::ROTR}, XLenVT, Expand);
246   }
247 
248   if (Subtarget.hasStdExtZbp()) {
249     // Custom lower bswap/bitreverse so we can convert them to GREVI to enable
250     // more combining.
251     setOperationAction({ISD::BITREVERSE, ISD::BSWAP}, XLenVT, Custom);
252 
253     // BSWAP i8 doesn't exist.
254     setOperationAction(ISD::BITREVERSE, MVT::i8, Custom);
255 
256     setOperationAction({ISD::BITREVERSE, ISD::BSWAP}, MVT::i16, Custom);
257 
258     if (Subtarget.is64Bit())
259       setOperationAction({ISD::BITREVERSE, ISD::BSWAP}, MVT::i32, Custom);
260   } else {
261     // With Zbb we have an XLen rev8 instruction, but not GREVI. So we'll
262     // pattern match it directly in isel.
263     setOperationAction(ISD::BSWAP, XLenVT,
264                        (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbkb())
265                            ? Legal
266                            : Expand);
267     // Zbkb can use rev8+brev8 to implement bitreverse.
268     setOperationAction(ISD::BITREVERSE, XLenVT,
269                        Subtarget.hasStdExtZbkb() ? Custom : Expand);
270   }
271 
272   if (Subtarget.hasStdExtZbb()) {
273     setOperationAction({ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX}, XLenVT,
274                        Legal);
275 
276     if (Subtarget.is64Bit())
277       setOperationAction(
278           {ISD::CTTZ, ISD::CTTZ_ZERO_UNDEF, ISD::CTLZ, ISD::CTLZ_ZERO_UNDEF},
279           MVT::i32, Custom);
280   } else {
281     setOperationAction({ISD::CTTZ, ISD::CTLZ, ISD::CTPOP}, XLenVT, Expand);
282 
283     if (Subtarget.is64Bit())
284       setOperationAction(ISD::ABS, MVT::i32, Custom);
285   }
286 
287   if (Subtarget.hasStdExtZbt()) {
288     setOperationAction({ISD::FSHL, ISD::FSHR}, XLenVT, Custom);
289     setOperationAction(ISD::SELECT, XLenVT, Legal);
290 
291     if (Subtarget.is64Bit())
292       setOperationAction({ISD::FSHL, ISD::FSHR}, MVT::i32, Custom);
293   } else {
294     setOperationAction(ISD::SELECT, XLenVT, Custom);
295   }
296 
297   static constexpr ISD::NodeType FPLegalNodeTypes[] = {
298       ISD::FMINNUM,        ISD::FMAXNUM,       ISD::LRINT,
299       ISD::LLRINT,         ISD::LROUND,        ISD::LLROUND,
300       ISD::STRICT_LRINT,   ISD::STRICT_LLRINT, ISD::STRICT_LROUND,
301       ISD::STRICT_LLROUND, ISD::STRICT_FMA,    ISD::STRICT_FADD,
302       ISD::STRICT_FSUB,    ISD::STRICT_FMUL,   ISD::STRICT_FDIV,
303       ISD::STRICT_FSQRT,   ISD::STRICT_FSETCC, ISD::STRICT_FSETCCS};
304 
305   static const ISD::CondCode FPCCToExpand[] = {
306       ISD::SETOGT, ISD::SETOGE, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT,
307       ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUNE, ISD::SETGT,
308       ISD::SETGE,  ISD::SETNE,  ISD::SETO,   ISD::SETUO};
309 
310   static const ISD::NodeType FPOpToExpand[] = {
311       ISD::FSIN, ISD::FCOS,       ISD::FSINCOS,   ISD::FPOW,
312       ISD::FREM, ISD::FP16_TO_FP, ISD::FP_TO_FP16};
313 
314   if (Subtarget.hasStdExtZfh())
315     setOperationAction(ISD::BITCAST, MVT::i16, Custom);
316 
317   if (Subtarget.hasStdExtZfh()) {
318     for (auto NT : FPLegalNodeTypes)
319       setOperationAction(NT, MVT::f16, Legal);
320     setOperationAction(ISD::STRICT_FP_ROUND, MVT::f16, Legal);
321     setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f32, Legal);
322     setCondCodeAction(FPCCToExpand, MVT::f16, Expand);
323     setOperationAction(ISD::SELECT_CC, MVT::f16, Expand);
324     setOperationAction(ISD::SELECT, MVT::f16, Custom);
325     setOperationAction(ISD::BR_CC, MVT::f16, Expand);
326 
327     setOperationAction({ISD::FREM, ISD::FCEIL, ISD::FFLOOR, ISD::FNEARBYINT,
328                         ISD::FRINT, ISD::FROUND, ISD::FROUNDEVEN, ISD::FTRUNC,
329                         ISD::FPOW, ISD::FPOWI, ISD::FCOS, ISD::FSIN,
330                         ISD::FSINCOS, ISD::FEXP, ISD::FEXP2, ISD::FLOG,
331                         ISD::FLOG2, ISD::FLOG10},
332                        MVT::f16, Promote);
333 
334     // FIXME: Need to promote f16 STRICT_* to f32 libcalls, but we don't have
335     // complete support for all operations in LegalizeDAG.
336 
337     // We need to custom promote this.
338     if (Subtarget.is64Bit())
339       setOperationAction(ISD::FPOWI, MVT::i32, Custom);
340   }
341 
342   if (Subtarget.hasStdExtF()) {
343     for (auto NT : FPLegalNodeTypes)
344       setOperationAction(NT, MVT::f32, Legal);
345     setCondCodeAction(FPCCToExpand, MVT::f32, Expand);
346     setOperationAction(ISD::SELECT_CC, MVT::f32, Expand);
347     setOperationAction(ISD::SELECT, MVT::f32, Custom);
348     setOperationAction(ISD::BR_CC, MVT::f32, Expand);
349     for (auto Op : FPOpToExpand)
350       setOperationAction(Op, MVT::f32, Expand);
351     setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
352     setTruncStoreAction(MVT::f32, MVT::f16, Expand);
353   }
354 
355   if (Subtarget.hasStdExtF() && Subtarget.is64Bit())
356     setOperationAction(ISD::BITCAST, MVT::i32, Custom);
357 
358   if (Subtarget.hasStdExtD()) {
359     for (auto NT : FPLegalNodeTypes)
360       setOperationAction(NT, MVT::f64, Legal);
361     setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal);
362     setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f64, Legal);
363     setCondCodeAction(FPCCToExpand, MVT::f64, Expand);
364     setOperationAction(ISD::SELECT_CC, MVT::f64, Expand);
365     setOperationAction(ISD::SELECT, MVT::f64, Custom);
366     setOperationAction(ISD::BR_CC, MVT::f64, Expand);
367     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
368     setTruncStoreAction(MVT::f64, MVT::f32, Expand);
369     for (auto Op : FPOpToExpand)
370       setOperationAction(Op, MVT::f64, Expand);
371     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
372     setTruncStoreAction(MVT::f64, MVT::f16, Expand);
373   }
374 
375   if (Subtarget.is64Bit())
376     setOperationAction({ISD::FP_TO_UINT, ISD::FP_TO_SINT,
377                         ISD::STRICT_FP_TO_UINT, ISD::STRICT_FP_TO_SINT},
378                        MVT::i32, Custom);
379 
380   if (Subtarget.hasStdExtF()) {
381     setOperationAction({ISD::FP_TO_UINT_SAT, ISD::FP_TO_SINT_SAT}, XLenVT,
382                        Custom);
383 
384     setOperationAction({ISD::STRICT_FP_TO_UINT, ISD::STRICT_FP_TO_SINT,
385                         ISD::STRICT_UINT_TO_FP, ISD::STRICT_SINT_TO_FP},
386                        XLenVT, Legal);
387 
388     setOperationAction(ISD::FLT_ROUNDS_, XLenVT, Custom);
389     setOperationAction(ISD::SET_ROUNDING, MVT::Other, Custom);
390   }
391 
392   setOperationAction({ISD::GlobalAddress, ISD::BlockAddress, ISD::ConstantPool,
393                       ISD::JumpTable},
394                      XLenVT, Custom);
395 
396   setOperationAction(ISD::GlobalTLSAddress, XLenVT, Custom);
397 
398   if (Subtarget.is64Bit())
399     setOperationAction(ISD::Constant, MVT::i64, Custom);
400 
401   // TODO: On M-mode only targets, the cycle[h] CSR may not be present.
402   // Unfortunately this can't be determined just from the ISA naming string.
403   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64,
404                      Subtarget.is64Bit() ? Legal : Custom);
405 
406   setOperationAction({ISD::TRAP, ISD::DEBUGTRAP}, MVT::Other, Legal);
407   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
408   if (Subtarget.is64Bit())
409     setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i32, Custom);
410 
411   if (Subtarget.hasStdExtA()) {
412     setMaxAtomicSizeInBitsSupported(Subtarget.getXLen());
413     setMinCmpXchgSizeInBits(32);
414   } else {
415     setMaxAtomicSizeInBitsSupported(0);
416   }
417 
418   setBooleanContents(ZeroOrOneBooleanContent);
419 
420   if (Subtarget.hasVInstructions()) {
421     setBooleanVectorContents(ZeroOrOneBooleanContent);
422 
423     setOperationAction(ISD::VSCALE, XLenVT, Custom);
424 
425     // RVV intrinsics may have illegal operands.
426     // We also need to custom legalize vmv.x.s.
427     setOperationAction({ISD::INTRINSIC_WO_CHAIN, ISD::INTRINSIC_W_CHAIN},
428                        {MVT::i8, MVT::i16}, Custom);
429     if (Subtarget.is64Bit())
430       setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i32, Custom);
431     else
432       setOperationAction({ISD::INTRINSIC_WO_CHAIN, ISD::INTRINSIC_W_CHAIN},
433                          MVT::i64, Custom);
434 
435     setOperationAction({ISD::INTRINSIC_W_CHAIN, ISD::INTRINSIC_VOID},
436                        MVT::Other, Custom);
437 
438     static const unsigned IntegerVPOps[] = {
439         ISD::VP_ADD,         ISD::VP_SUB,         ISD::VP_MUL,
440         ISD::VP_SDIV,        ISD::VP_UDIV,        ISD::VP_SREM,
441         ISD::VP_UREM,        ISD::VP_AND,         ISD::VP_OR,
442         ISD::VP_XOR,         ISD::VP_ASHR,        ISD::VP_LSHR,
443         ISD::VP_SHL,         ISD::VP_REDUCE_ADD,  ISD::VP_REDUCE_AND,
444         ISD::VP_REDUCE_OR,   ISD::VP_REDUCE_XOR,  ISD::VP_REDUCE_SMAX,
445         ISD::VP_REDUCE_SMIN, ISD::VP_REDUCE_UMAX, ISD::VP_REDUCE_UMIN,
446         ISD::VP_MERGE,       ISD::VP_SELECT,      ISD::VP_FPTOSI,
447         ISD::VP_FPTOUI,      ISD::VP_SETCC,       ISD::VP_SIGN_EXTEND,
448         ISD::VP_ZERO_EXTEND, ISD::VP_TRUNCATE};
449 
450     static const unsigned FloatingPointVPOps[] = {
451         ISD::VP_FADD,        ISD::VP_FSUB,
452         ISD::VP_FMUL,        ISD::VP_FDIV,
453         ISD::VP_FNEG,        ISD::VP_FMA,
454         ISD::VP_REDUCE_FADD, ISD::VP_REDUCE_SEQ_FADD,
455         ISD::VP_REDUCE_FMIN, ISD::VP_REDUCE_FMAX,
456         ISD::VP_MERGE,       ISD::VP_SELECT,
457         ISD::VP_SITOFP,      ISD::VP_UITOFP,
458         ISD::VP_SETCC,       ISD::VP_FP_ROUND,
459         ISD::VP_FP_EXTEND};
460 
461     if (!Subtarget.is64Bit()) {
462       // We must custom-lower certain vXi64 operations on RV32 due to the vector
463       // element type being illegal.
464       setOperationAction({ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT},
465                          MVT::i64, Custom);
466 
467       setOperationAction({ISD::VECREDUCE_ADD, ISD::VECREDUCE_AND,
468                           ISD::VECREDUCE_OR, ISD::VECREDUCE_XOR,
469                           ISD::VECREDUCE_SMAX, ISD::VECREDUCE_SMIN,
470                           ISD::VECREDUCE_UMAX, ISD::VECREDUCE_UMIN},
471                          MVT::i64, Custom);
472 
473       setOperationAction({ISD::VP_REDUCE_ADD, ISD::VP_REDUCE_AND,
474                           ISD::VP_REDUCE_OR, ISD::VP_REDUCE_XOR,
475                           ISD::VP_REDUCE_SMAX, ISD::VP_REDUCE_SMIN,
476                           ISD::VP_REDUCE_UMAX, ISD::VP_REDUCE_UMIN},
477                          MVT::i64, Custom);
478     }
479 
480     for (MVT VT : BoolVecVTs) {
481       if (!isTypeLegal(VT))
482         continue;
483 
484       setOperationAction(ISD::SPLAT_VECTOR, VT, Custom);
485 
486       // Mask VTs are custom-expanded into a series of standard nodes
487       setOperationAction({ISD::TRUNCATE, ISD::CONCAT_VECTORS,
488                           ISD::INSERT_SUBVECTOR, ISD::EXTRACT_SUBVECTOR},
489                          VT, Custom);
490 
491       setOperationAction({ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT}, VT,
492                          Custom);
493 
494       setOperationAction(ISD::SELECT, VT, Custom);
495       setOperationAction(
496           {ISD::SELECT_CC, ISD::VSELECT, ISD::VP_MERGE, ISD::VP_SELECT}, VT,
497           Expand);
498 
499       setOperationAction({ISD::VP_AND, ISD::VP_OR, ISD::VP_XOR}, VT, Custom);
500 
501       setOperationAction(
502           {ISD::VECREDUCE_AND, ISD::VECREDUCE_OR, ISD::VECREDUCE_XOR}, VT,
503           Custom);
504 
505       setOperationAction(
506           {ISD::VP_REDUCE_AND, ISD::VP_REDUCE_OR, ISD::VP_REDUCE_XOR}, VT,
507           Custom);
508 
509       // RVV has native int->float & float->int conversions where the
510       // element type sizes are within one power-of-two of each other. Any
511       // wider distances between type sizes have to be lowered as sequences
512       // which progressively narrow the gap in stages.
513       setOperationAction(
514           {ISD::SINT_TO_FP, ISD::UINT_TO_FP, ISD::FP_TO_SINT, ISD::FP_TO_UINT},
515           VT, Custom);
516 
517       // Expand all extending loads to types larger than this, and truncating
518       // stores from types larger than this.
519       for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) {
520         setTruncStoreAction(OtherVT, VT, Expand);
521         setLoadExtAction({ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}, OtherVT,
522                          VT, Expand);
523       }
524 
525       setOperationAction(
526           {ISD::VP_FPTOSI, ISD::VP_FPTOUI, ISD::VP_TRUNCATE, ISD::VP_SETCC}, VT,
527           Custom);
528       setOperationAction(ISD::VECTOR_REVERSE, VT, Custom);
529 
530       setOperationPromotedToType(
531           ISD::VECTOR_SPLICE, VT,
532           MVT::getVectorVT(MVT::i8, VT.getVectorElementCount()));
533     }
534 
535     for (MVT VT : IntVecVTs) {
536       if (!isTypeLegal(VT))
537         continue;
538 
539       setOperationAction(ISD::SPLAT_VECTOR, VT, Legal);
540       setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom);
541 
542       // Vectors implement MULHS/MULHU.
543       setOperationAction({ISD::SMUL_LOHI, ISD::UMUL_LOHI}, VT, Expand);
544 
545       // nxvXi64 MULHS/MULHU requires the V extension instead of Zve64*.
546       if (VT.getVectorElementType() == MVT::i64 && !Subtarget.hasStdExtV())
547         setOperationAction({ISD::MULHU, ISD::MULHS}, VT, Expand);
548 
549       setOperationAction({ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX}, VT,
550                          Legal);
551 
552       setOperationAction({ISD::ROTL, ISD::ROTR}, VT, Expand);
553 
554       setOperationAction({ISD::CTTZ, ISD::CTLZ, ISD::CTPOP, ISD::BSWAP}, VT,
555                          Expand);
556 
557       setOperationAction(ISD::BSWAP, VT, Expand);
558 
559       // Custom-lower extensions and truncations from/to mask types.
560       setOperationAction({ISD::ANY_EXTEND, ISD::SIGN_EXTEND, ISD::ZERO_EXTEND},
561                          VT, Custom);
562 
563       // RVV has native int->float & float->int conversions where the
564       // element type sizes are within one power-of-two of each other. Any
565       // wider distances between type sizes have to be lowered as sequences
566       // which progressively narrow the gap in stages.
567       setOperationAction(
568           {ISD::SINT_TO_FP, ISD::UINT_TO_FP, ISD::FP_TO_SINT, ISD::FP_TO_UINT},
569           VT, Custom);
570 
571       setOperationAction(
572           {ISD::SADDSAT, ISD::UADDSAT, ISD::SSUBSAT, ISD::USUBSAT}, VT, Legal);
573 
574       // Integer VTs are lowered as a series of "RISCVISD::TRUNCATE_VECTOR_VL"
575       // nodes which truncate by one power of two at a time.
576       setOperationAction(ISD::TRUNCATE, VT, Custom);
577 
578       // Custom-lower insert/extract operations to simplify patterns.
579       setOperationAction({ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT}, VT,
580                          Custom);
581 
582       // Custom-lower reduction operations to set up the corresponding custom
583       // nodes' operands.
584       setOperationAction({ISD::VECREDUCE_ADD, ISD::VECREDUCE_AND,
585                           ISD::VECREDUCE_OR, ISD::VECREDUCE_XOR,
586                           ISD::VECREDUCE_SMAX, ISD::VECREDUCE_SMIN,
587                           ISD::VECREDUCE_UMAX, ISD::VECREDUCE_UMIN},
588                          VT, Custom);
589 
590       setOperationAction(IntegerVPOps, VT, Custom);
591 
592       setOperationAction({ISD::LOAD, ISD::STORE}, VT, Custom);
593 
594       setOperationAction({ISD::MLOAD, ISD::MSTORE, ISD::MGATHER, ISD::MSCATTER},
595                          VT, Custom);
596 
597       setOperationAction(
598           {ISD::VP_LOAD, ISD::VP_STORE, ISD::VP_GATHER, ISD::VP_SCATTER}, VT,
599           Custom);
600 
601       setOperationAction(
602           {ISD::CONCAT_VECTORS, ISD::INSERT_SUBVECTOR, ISD::EXTRACT_SUBVECTOR},
603           VT, Custom);
604 
605       setOperationAction(ISD::SELECT, VT, Custom);
606       setOperationAction(ISD::SELECT_CC, VT, Expand);
607 
608       setOperationAction({ISD::STEP_VECTOR, ISD::VECTOR_REVERSE}, VT, Custom);
609 
610       for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) {
611         setTruncStoreAction(VT, OtherVT, Expand);
612         setLoadExtAction({ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}, OtherVT,
613                          VT, Expand);
614       }
615 
616       // Splice
617       setOperationAction(ISD::VECTOR_SPLICE, VT, Custom);
618 
619       // Lower CTLZ_ZERO_UNDEF and CTTZ_ZERO_UNDEF if we have a floating point
620       // type that can represent the value exactly.
621       if (VT.getVectorElementType() != MVT::i64) {
622         MVT FloatEltVT =
623             VT.getVectorElementType() == MVT::i32 ? MVT::f64 : MVT::f32;
624         EVT FloatVT = MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount());
625         if (isTypeLegal(FloatVT)) {
626           setOperationAction({ISD::CTLZ_ZERO_UNDEF, ISD::CTTZ_ZERO_UNDEF}, VT,
627                              Custom);
628         }
629       }
630     }
631 
632     // Expand various CCs to best match the RVV ISA, which natively supports UNE
633     // but no other unordered comparisons, and supports all ordered comparisons
634     // except ONE. Additionally, we expand GT,OGT,GE,OGE for optimization
635     // purposes; they are expanded to their swapped-operand CCs (LT,OLT,LE,OLE),
636     // and we pattern-match those back to the "original", swapping operands once
637     // more. This way we catch both operations and both "vf" and "fv" forms with
638     // fewer patterns.
639     static const ISD::CondCode VFPCCToExpand[] = {
640         ISD::SETO,   ISD::SETONE, ISD::SETUEQ, ISD::SETUGT,
641         ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUO,
642         ISD::SETGT,  ISD::SETOGT, ISD::SETGE,  ISD::SETOGE,
643     };
644 
645     // Sets common operation actions on RVV floating-point vector types.
646     const auto SetCommonVFPActions = [&](MVT VT) {
647       setOperationAction(ISD::SPLAT_VECTOR, VT, Legal);
648       // RVV has native FP_ROUND & FP_EXTEND conversions where the element type
649       // sizes are within one power-of-two of each other. Therefore conversions
650       // between vXf16 and vXf64 must be lowered as sequences which convert via
651       // vXf32.
652       setOperationAction({ISD::FP_ROUND, ISD::FP_EXTEND}, VT, Custom);
653       // Custom-lower insert/extract operations to simplify patterns.
654       setOperationAction({ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT}, VT,
655                          Custom);
656       // Expand various condition codes (explained above).
657       setCondCodeAction(VFPCCToExpand, VT, Expand);
658 
659       setOperationAction({ISD::FMINNUM, ISD::FMAXNUM}, VT, Legal);
660 
661       setOperationAction({ISD::FTRUNC, ISD::FCEIL, ISD::FFLOOR, ISD::FROUND},
662                          VT, Custom);
663 
664       setOperationAction({ISD::VECREDUCE_FADD, ISD::VECREDUCE_SEQ_FADD,
665                           ISD::VECREDUCE_FMIN, ISD::VECREDUCE_FMAX},
666                          VT, Custom);
667 
668       // Expand FP operations that need libcalls.
669       setOperationAction(ISD::FREM, VT, Expand);
670       setOperationAction(ISD::FPOW, VT, Expand);
671       setOperationAction(ISD::FCOS, VT, Expand);
672       setOperationAction(ISD::FSIN, VT, Expand);
673       setOperationAction(ISD::FSINCOS, VT, Expand);
674       setOperationAction(ISD::FEXP, VT, Expand);
675       setOperationAction(ISD::FEXP2, VT, Expand);
676       setOperationAction(ISD::FLOG, VT, Expand);
677       setOperationAction(ISD::FLOG2, VT, Expand);
678       setOperationAction(ISD::FLOG10, VT, Expand);
679       setOperationAction(ISD::FRINT, VT, Expand);
680       setOperationAction(ISD::FNEARBYINT, VT, Expand);
681 
682       setOperationAction(ISD::VECREDUCE_FADD, VT, Custom);
683       setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom);
684       setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom);
685       setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom);
686 
687       setOperationAction(ISD::FCOPYSIGN, VT, Legal);
688 
689       setOperationAction({ISD::LOAD, ISD::STORE}, VT, Custom);
690 
691       setOperationAction({ISD::MLOAD, ISD::MSTORE, ISD::MGATHER, ISD::MSCATTER},
692                          VT, Custom);
693 
694       setOperationAction(
695           {ISD::VP_LOAD, ISD::VP_STORE, ISD::VP_GATHER, ISD::VP_SCATTER}, VT,
696           Custom);
697 
698       setOperationAction(ISD::SELECT, VT, Custom);
699       setOperationAction(ISD::SELECT_CC, VT, Expand);
700 
701       setOperationAction(
702           {ISD::CONCAT_VECTORS, ISD::INSERT_SUBVECTOR, ISD::EXTRACT_SUBVECTOR},
703           VT, Custom);
704 
705       setOperationAction({ISD::VECTOR_REVERSE, ISD::VECTOR_SPLICE}, VT, Custom);
706 
707       setOperationAction(FloatingPointVPOps, VT, Custom);
708     };
709 
710     // Sets common extload/truncstore actions on RVV floating-point vector
711     // types.
712     const auto SetCommonVFPExtLoadTruncStoreActions =
713         [&](MVT VT, ArrayRef<MVT::SimpleValueType> SmallerVTs) {
714           for (auto SmallVT : SmallerVTs) {
715             setTruncStoreAction(VT, SmallVT, Expand);
716             setLoadExtAction(ISD::EXTLOAD, VT, SmallVT, Expand);
717           }
718         };
719 
720     if (Subtarget.hasVInstructionsF16()) {
721       for (MVT VT : F16VecVTs) {
722         if (!isTypeLegal(VT))
723           continue;
724         SetCommonVFPActions(VT);
725       }
726     }
727 
728     if (Subtarget.hasVInstructionsF32()) {
729       for (MVT VT : F32VecVTs) {
730         if (!isTypeLegal(VT))
731           continue;
732         SetCommonVFPActions(VT);
733         SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs);
734       }
735     }
736 
737     if (Subtarget.hasVInstructionsF64()) {
738       for (MVT VT : F64VecVTs) {
739         if (!isTypeLegal(VT))
740           continue;
741         SetCommonVFPActions(VT);
742         SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs);
743         SetCommonVFPExtLoadTruncStoreActions(VT, F32VecVTs);
744       }
745     }
746 
747     if (Subtarget.useRVVForFixedLengthVectors()) {
748       for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) {
749         if (!useRVVForFixedLengthVectorVT(VT))
750           continue;
751 
752         // By default everything must be expanded.
753         for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op)
754           setOperationAction(Op, VT, Expand);
755         for (MVT OtherVT : MVT::integer_fixedlen_vector_valuetypes()) {
756           setTruncStoreAction(VT, OtherVT, Expand);
757           setLoadExtAction({ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD},
758                            OtherVT, VT, Expand);
759         }
760 
761         // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed.
762         setOperationAction({ISD::INSERT_SUBVECTOR, ISD::EXTRACT_SUBVECTOR}, VT,
763                            Custom);
764 
765         setOperationAction({ISD::BUILD_VECTOR, ISD::CONCAT_VECTORS}, VT,
766                            Custom);
767 
768         setOperationAction({ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT},
769                            VT, Custom);
770 
771         setOperationAction({ISD::LOAD, ISD::STORE}, VT, Custom);
772 
773         setOperationAction(ISD::SETCC, VT, Custom);
774 
775         setOperationAction(ISD::SELECT, VT, Custom);
776 
777         setOperationAction(ISD::TRUNCATE, VT, Custom);
778 
779         setOperationAction(ISD::BITCAST, VT, Custom);
780 
781         setOperationAction(
782             {ISD::VECREDUCE_AND, ISD::VECREDUCE_OR, ISD::VECREDUCE_XOR}, VT,
783             Custom);
784 
785         setOperationAction(
786             {ISD::VP_REDUCE_AND, ISD::VP_REDUCE_OR, ISD::VP_REDUCE_XOR}, VT,
787             Custom);
788 
789         setOperationAction({ISD::SINT_TO_FP, ISD::UINT_TO_FP, ISD::FP_TO_SINT,
790                             ISD::FP_TO_UINT},
791                            VT, Custom);
792 
793         // Operations below are different for between masks and other vectors.
794         if (VT.getVectorElementType() == MVT::i1) {
795           setOperationAction({ISD::VP_AND, ISD::VP_OR, ISD::VP_XOR, ISD::AND,
796                               ISD::OR, ISD::XOR},
797                              VT, Custom);
798 
799           setOperationAction(
800               {ISD::VP_FPTOSI, ISD::VP_FPTOUI, ISD::VP_SETCC, ISD::VP_TRUNCATE},
801               VT, Custom);
802           continue;
803         }
804 
805         // Make SPLAT_VECTOR Legal so DAGCombine will convert splat vectors to
806         // it before type legalization for i64 vectors on RV32. It will then be
807         // type legalized to SPLAT_VECTOR_PARTS which we need to Custom handle.
808         // FIXME: Use SPLAT_VECTOR for all types? DAGCombine probably needs
809         // improvements first.
810         if (!Subtarget.is64Bit() && VT.getVectorElementType() == MVT::i64) {
811           setOperationAction(ISD::SPLAT_VECTOR, VT, Legal);
812           setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom);
813         }
814 
815         setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
816         setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
817 
818         setOperationAction(
819             {ISD::MLOAD, ISD::MSTORE, ISD::MGATHER, ISD::MSCATTER}, VT, Custom);
820 
821         setOperationAction(
822             {ISD::VP_LOAD, ISD::VP_STORE, ISD::VP_GATHER, ISD::VP_SCATTER}, VT,
823             Custom);
824 
825         setOperationAction({ISD::ADD, ISD::MUL, ISD::SUB, ISD::AND, ISD::OR,
826                             ISD::XOR, ISD::SDIV, ISD::SREM, ISD::UDIV,
827                             ISD::UREM, ISD::SHL, ISD::SRA, ISD::SRL},
828                            VT, Custom);
829 
830         setOperationAction(
831             {ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX, ISD::ABS}, VT, Custom);
832 
833         // vXi64 MULHS/MULHU requires the V extension instead of Zve64*.
834         if (VT.getVectorElementType() != MVT::i64 || Subtarget.hasStdExtV())
835           setOperationAction({ISD::MULHS, ISD::MULHU}, VT, Custom);
836 
837         setOperationAction(
838             {ISD::SADDSAT, ISD::UADDSAT, ISD::SSUBSAT, ISD::USUBSAT}, VT,
839             Custom);
840 
841         setOperationAction(ISD::VSELECT, VT, Custom);
842         setOperationAction(ISD::SELECT_CC, VT, Expand);
843 
844         setOperationAction(
845             {ISD::ANY_EXTEND, ISD::SIGN_EXTEND, ISD::ZERO_EXTEND}, VT, Custom);
846 
847         // Custom-lower reduction operations to set up the corresponding custom
848         // nodes' operands.
849         setOperationAction({ISD::VECREDUCE_ADD, ISD::VECREDUCE_SMAX,
850                             ISD::VECREDUCE_SMIN, ISD::VECREDUCE_UMAX,
851                             ISD::VECREDUCE_UMIN},
852                            VT, Custom);
853 
854         setOperationAction(IntegerVPOps, VT, Custom);
855 
856         // Lower CTLZ_ZERO_UNDEF and CTTZ_ZERO_UNDEF if we have a floating point
857         // type that can represent the value exactly.
858         if (VT.getVectorElementType() != MVT::i64) {
859           MVT FloatEltVT =
860               VT.getVectorElementType() == MVT::i32 ? MVT::f64 : MVT::f32;
861           EVT FloatVT =
862               MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount());
863           if (isTypeLegal(FloatVT))
864             setOperationAction({ISD::CTLZ_ZERO_UNDEF, ISD::CTTZ_ZERO_UNDEF}, VT,
865                                Custom);
866         }
867       }
868 
869       for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) {
870         if (!useRVVForFixedLengthVectorVT(VT))
871           continue;
872 
873         // By default everything must be expanded.
874         for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op)
875           setOperationAction(Op, VT, Expand);
876         for (MVT OtherVT : MVT::fp_fixedlen_vector_valuetypes()) {
877           setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand);
878           setTruncStoreAction(VT, OtherVT, Expand);
879         }
880 
881         // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed.
882         setOperationAction({ISD::INSERT_SUBVECTOR, ISD::EXTRACT_SUBVECTOR}, VT,
883                            Custom);
884 
885         setOperationAction({ISD::BUILD_VECTOR, ISD::CONCAT_VECTORS,
886                             ISD::VECTOR_SHUFFLE, ISD::INSERT_VECTOR_ELT,
887                             ISD::EXTRACT_VECTOR_ELT},
888                            VT, Custom);
889 
890         setOperationAction({ISD::LOAD, ISD::STORE, ISD::MLOAD, ISD::MSTORE,
891                             ISD::MGATHER, ISD::MSCATTER},
892                            VT, Custom);
893 
894         setOperationAction(
895             {ISD::VP_LOAD, ISD::VP_STORE, ISD::VP_GATHER, ISD::VP_SCATTER}, VT,
896             Custom);
897 
898         setOperationAction({ISD::FADD, ISD::FSUB, ISD::FMUL, ISD::FDIV,
899                             ISD::FNEG, ISD::FABS, ISD::FCOPYSIGN, ISD::FSQRT,
900                             ISD::FMA, ISD::FMINNUM, ISD::FMAXNUM},
901                            VT, Custom);
902 
903         setOperationAction({ISD::FP_ROUND, ISD::FP_EXTEND}, VT, Custom);
904 
905         setOperationAction({ISD::FTRUNC, ISD::FCEIL, ISD::FFLOOR, ISD::FROUND},
906                            VT, Custom);
907 
908         for (auto CC : VFPCCToExpand)
909           setCondCodeAction(CC, VT, Expand);
910 
911         setOperationAction({ISD::VSELECT, ISD::SELECT}, VT, Custom);
912         setOperationAction(ISD::SELECT_CC, VT, Expand);
913 
914         setOperationAction(ISD::BITCAST, VT, Custom);
915 
916         setOperationAction({ISD::VECREDUCE_FADD, ISD::VECREDUCE_SEQ_FADD,
917                             ISD::VECREDUCE_FMIN, ISD::VECREDUCE_FMAX},
918                            VT, Custom);
919 
920         setOperationAction(FloatingPointVPOps, VT, Custom);
921       }
922 
923       // Custom-legalize bitcasts from fixed-length vectors to scalar types.
924       setOperationAction(ISD::BITCAST, {MVT::i8, MVT::i16, MVT::i32, MVT::i64},
925                          Custom);
926       if (Subtarget.hasStdExtZfh())
927         setOperationAction(ISD::BITCAST, MVT::f16, Custom);
928       if (Subtarget.hasStdExtF())
929         setOperationAction(ISD::BITCAST, MVT::f32, Custom);
930       if (Subtarget.hasStdExtD())
931         setOperationAction(ISD::BITCAST, MVT::f64, Custom);
932     }
933   }
934 
935   // Function alignments.
936   const Align FunctionAlignment(Subtarget.hasStdExtC() ? 2 : 4);
937   setMinFunctionAlignment(FunctionAlignment);
938   setPrefFunctionAlignment(FunctionAlignment);
939 
940   setMinimumJumpTableEntries(5);
941 
942   // Jumps are expensive, compared to logic
943   setJumpIsExpensive();
944 
945   setTargetDAGCombine({ISD::INTRINSIC_WO_CHAIN, ISD::ADD, ISD::SUB, ISD::AND,
946                        ISD::OR, ISD::XOR});
947   if (Subtarget.is64Bit())
948     setTargetDAGCombine(ISD::SRA);
949 
950   if (Subtarget.hasStdExtF())
951     setTargetDAGCombine({ISD::FADD, ISD::FMAXNUM, ISD::FMINNUM});
952 
953   if (Subtarget.hasStdExtZbp())
954     setTargetDAGCombine({ISD::ROTL, ISD::ROTR});
955 
956   if (Subtarget.hasStdExtZbb())
957     setTargetDAGCombine({ISD::UMAX, ISD::UMIN, ISD::SMAX, ISD::SMIN});
958 
959   if (Subtarget.hasStdExtZbkb())
960     setTargetDAGCombine(ISD::BITREVERSE);
961   if (Subtarget.hasStdExtZfh() || Subtarget.hasStdExtZbb())
962     setTargetDAGCombine(ISD::SIGN_EXTEND_INREG);
963   if (Subtarget.hasStdExtF())
964     setTargetDAGCombine({ISD::ZERO_EXTEND, ISD::FP_TO_SINT, ISD::FP_TO_UINT,
965                          ISD::FP_TO_SINT_SAT, ISD::FP_TO_UINT_SAT});
966   if (Subtarget.hasVInstructions())
967     setTargetDAGCombine({ISD::FCOPYSIGN, ISD::MGATHER, ISD::MSCATTER,
968                          ISD::VP_GATHER, ISD::VP_SCATTER, ISD::SRA, ISD::SRL,
969                          ISD::SHL, ISD::STORE, ISD::SPLAT_VECTOR});
970   if (Subtarget.useRVVForFixedLengthVectors())
971     setTargetDAGCombine(ISD::BITCAST);
972 
973   setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2");
974   setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2");
975 }
976 
977 EVT RISCVTargetLowering::getSetCCResultType(const DataLayout &DL,
978                                             LLVMContext &Context,
979                                             EVT VT) const {
980   if (!VT.isVector())
981     return getPointerTy(DL);
982   if (Subtarget.hasVInstructions() &&
983       (VT.isScalableVector() || Subtarget.useRVVForFixedLengthVectors()))
984     return EVT::getVectorVT(Context, MVT::i1, VT.getVectorElementCount());
985   return VT.changeVectorElementTypeToInteger();
986 }
987 
988 MVT RISCVTargetLowering::getVPExplicitVectorLengthTy() const {
989   return Subtarget.getXLenVT();
990 }
991 
992 bool RISCVTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
993                                              const CallInst &I,
994                                              MachineFunction &MF,
995                                              unsigned Intrinsic) const {
996   auto &DL = I.getModule()->getDataLayout();
997   switch (Intrinsic) {
998   default:
999     return false;
1000   case Intrinsic::riscv_masked_atomicrmw_xchg_i32:
1001   case Intrinsic::riscv_masked_atomicrmw_add_i32:
1002   case Intrinsic::riscv_masked_atomicrmw_sub_i32:
1003   case Intrinsic::riscv_masked_atomicrmw_nand_i32:
1004   case Intrinsic::riscv_masked_atomicrmw_max_i32:
1005   case Intrinsic::riscv_masked_atomicrmw_min_i32:
1006   case Intrinsic::riscv_masked_atomicrmw_umax_i32:
1007   case Intrinsic::riscv_masked_atomicrmw_umin_i32:
1008   case Intrinsic::riscv_masked_cmpxchg_i32:
1009     Info.opc = ISD::INTRINSIC_W_CHAIN;
1010     Info.memVT = MVT::i32;
1011     Info.ptrVal = I.getArgOperand(0);
1012     Info.offset = 0;
1013     Info.align = Align(4);
1014     Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore |
1015                  MachineMemOperand::MOVolatile;
1016     return true;
1017   case Intrinsic::riscv_masked_strided_load:
1018     Info.opc = ISD::INTRINSIC_W_CHAIN;
1019     Info.ptrVal = I.getArgOperand(1);
1020     Info.memVT = getValueType(DL, I.getType()->getScalarType());
1021     Info.align = Align(DL.getTypeSizeInBits(I.getType()->getScalarType()) / 8);
1022     Info.size = MemoryLocation::UnknownSize;
1023     Info.flags |= MachineMemOperand::MOLoad;
1024     return true;
1025   case Intrinsic::riscv_masked_strided_store:
1026     Info.opc = ISD::INTRINSIC_VOID;
1027     Info.ptrVal = I.getArgOperand(1);
1028     Info.memVT =
1029         getValueType(DL, I.getArgOperand(0)->getType()->getScalarType());
1030     Info.align = Align(
1031         DL.getTypeSizeInBits(I.getArgOperand(0)->getType()->getScalarType()) /
1032         8);
1033     Info.size = MemoryLocation::UnknownSize;
1034     Info.flags |= MachineMemOperand::MOStore;
1035     return true;
1036   case Intrinsic::riscv_seg2_load:
1037   case Intrinsic::riscv_seg3_load:
1038   case Intrinsic::riscv_seg4_load:
1039   case Intrinsic::riscv_seg5_load:
1040   case Intrinsic::riscv_seg6_load:
1041   case Intrinsic::riscv_seg7_load:
1042   case Intrinsic::riscv_seg8_load:
1043     Info.opc = ISD::INTRINSIC_W_CHAIN;
1044     Info.ptrVal = I.getArgOperand(0);
1045     Info.memVT =
1046         getValueType(DL, I.getType()->getStructElementType(0)->getScalarType());
1047     Info.align =
1048         Align(DL.getTypeSizeInBits(
1049                   I.getType()->getStructElementType(0)->getScalarType()) /
1050               8);
1051     Info.size = MemoryLocation::UnknownSize;
1052     Info.flags |= MachineMemOperand::MOLoad;
1053     return true;
1054   }
1055 }
1056 
1057 bool RISCVTargetLowering::isLegalAddressingMode(const DataLayout &DL,
1058                                                 const AddrMode &AM, Type *Ty,
1059                                                 unsigned AS,
1060                                                 Instruction *I) const {
1061   // No global is ever allowed as a base.
1062   if (AM.BaseGV)
1063     return false;
1064 
1065   // RVV instructions only support register addressing.
1066   if (Subtarget.hasVInstructions() && isa<VectorType>(Ty))
1067     return AM.HasBaseReg && AM.Scale == 0 && !AM.BaseOffs;
1068 
1069   // Require a 12-bit signed offset.
1070   if (!isInt<12>(AM.BaseOffs))
1071     return false;
1072 
1073   switch (AM.Scale) {
1074   case 0: // "r+i" or just "i", depending on HasBaseReg.
1075     break;
1076   case 1:
1077     if (!AM.HasBaseReg) // allow "r+i".
1078       break;
1079     return false; // disallow "r+r" or "r+r+i".
1080   default:
1081     return false;
1082   }
1083 
1084   return true;
1085 }
1086 
1087 bool RISCVTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
1088   return isInt<12>(Imm);
1089 }
1090 
1091 bool RISCVTargetLowering::isLegalAddImmediate(int64_t Imm) const {
1092   return isInt<12>(Imm);
1093 }
1094 
1095 // On RV32, 64-bit integers are split into their high and low parts and held
1096 // in two different registers, so the trunc is free since the low register can
1097 // just be used.
1098 bool RISCVTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const {
1099   if (Subtarget.is64Bit() || !SrcTy->isIntegerTy() || !DstTy->isIntegerTy())
1100     return false;
1101   unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();
1102   unsigned DestBits = DstTy->getPrimitiveSizeInBits();
1103   return (SrcBits == 64 && DestBits == 32);
1104 }
1105 
1106 bool RISCVTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const {
1107   if (Subtarget.is64Bit() || SrcVT.isVector() || DstVT.isVector() ||
1108       !SrcVT.isInteger() || !DstVT.isInteger())
1109     return false;
1110   unsigned SrcBits = SrcVT.getSizeInBits();
1111   unsigned DestBits = DstVT.getSizeInBits();
1112   return (SrcBits == 64 && DestBits == 32);
1113 }
1114 
1115 bool RISCVTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
1116   // Zexts are free if they can be combined with a load.
1117   // Don't advertise i32->i64 zextload as being free for RV64. It interacts
1118   // poorly with type legalization of compares preferring sext.
1119   if (auto *LD = dyn_cast<LoadSDNode>(Val)) {
1120     EVT MemVT = LD->getMemoryVT();
1121     if ((MemVT == MVT::i8 || MemVT == MVT::i16) &&
1122         (LD->getExtensionType() == ISD::NON_EXTLOAD ||
1123          LD->getExtensionType() == ISD::ZEXTLOAD))
1124       return true;
1125   }
1126 
1127   return TargetLowering::isZExtFree(Val, VT2);
1128 }
1129 
1130 bool RISCVTargetLowering::isSExtCheaperThanZExt(EVT SrcVT, EVT DstVT) const {
1131   return Subtarget.is64Bit() && SrcVT == MVT::i32 && DstVT == MVT::i64;
1132 }
1133 
1134 bool RISCVTargetLowering::signExtendConstant(const ConstantInt *CI) const {
1135   return Subtarget.is64Bit() && CI->getType()->isIntegerTy(32);
1136 }
1137 
1138 bool RISCVTargetLowering::isCheapToSpeculateCttz() const {
1139   return Subtarget.hasStdExtZbb();
1140 }
1141 
1142 bool RISCVTargetLowering::isCheapToSpeculateCtlz() const {
1143   return Subtarget.hasStdExtZbb();
1144 }
1145 
1146 bool RISCVTargetLowering::hasAndNotCompare(SDValue Y) const {
1147   EVT VT = Y.getValueType();
1148 
1149   // FIXME: Support vectors once we have tests.
1150   if (VT.isVector())
1151     return false;
1152 
1153   return (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp() ||
1154           Subtarget.hasStdExtZbkb()) &&
1155          !isa<ConstantSDNode>(Y);
1156 }
1157 
1158 bool RISCVTargetLowering::hasBitTest(SDValue X, SDValue Y) const {
1159   // We can use ANDI+SEQZ/SNEZ as a bit test. Y contains the bit position.
1160   auto *C = dyn_cast<ConstantSDNode>(Y);
1161   return C && C->getAPIntValue().ule(10);
1162 }
1163 
1164 bool RISCVTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
1165                                                             Type *Ty) const {
1166   assert(Ty->isIntegerTy());
1167 
1168   unsigned BitSize = Ty->getIntegerBitWidth();
1169   if (BitSize > Subtarget.getXLen())
1170     return false;
1171 
1172   // Fast path, assume 32-bit immediates are cheap.
1173   int64_t Val = Imm.getSExtValue();
1174   if (isInt<32>(Val))
1175     return true;
1176 
1177   // Prefer to keep the load if it would require many instructions.
1178   // This uses the same threshold we use for constant pools but doesn't
1179   // check useConstantPoolForLargeInts.
1180   // TODO: Should we keep the load only when we're definitely going to emit a
1181   // constant pool?
1182 
1183   RISCVMatInt::InstSeq Seq =
1184       RISCVMatInt::generateInstSeq(Val, Subtarget.getFeatureBits());
1185   return Seq.size() <= Subtarget.getMaxBuildIntsCost();
1186 }
1187 
1188 bool RISCVTargetLowering::
1189     shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd(
1190         SDValue X, ConstantSDNode *XC, ConstantSDNode *CC, SDValue Y,
1191         unsigned OldShiftOpcode, unsigned NewShiftOpcode,
1192         SelectionDAG &DAG) const {
1193   // One interesting pattern that we'd want to form is 'bit extract':
1194   //   ((1 >> Y) & 1) ==/!= 0
1195   // But we also need to be careful not to try to reverse that fold.
1196 
1197   // Is this '((1 >> Y) & 1)'?
1198   if (XC && OldShiftOpcode == ISD::SRL && XC->isOne())
1199     return false; // Keep the 'bit extract' pattern.
1200 
1201   // Will this be '((1 >> Y) & 1)' after the transform?
1202   if (NewShiftOpcode == ISD::SRL && CC->isOne())
1203     return true; // Do form the 'bit extract' pattern.
1204 
1205   // If 'X' is a constant, and we transform, then we will immediately
1206   // try to undo the fold, thus causing endless combine loop.
1207   // So only do the transform if X is not a constant. This matches the default
1208   // implementation of this function.
1209   return !XC;
1210 }
1211 
1212 /// Check if sinking \p I's operands to I's basic block is profitable, because
1213 /// the operands can be folded into a target instruction, e.g.
1214 /// splats of scalars can fold into vector instructions.
1215 bool RISCVTargetLowering::shouldSinkOperands(
1216     Instruction *I, SmallVectorImpl<Use *> &Ops) const {
1217   using namespace llvm::PatternMatch;
1218 
1219   if (!I->getType()->isVectorTy() || !Subtarget.hasVInstructions())
1220     return false;
1221 
1222   auto IsSinker = [&](Instruction *I, int Operand) {
1223     switch (I->getOpcode()) {
1224     case Instruction::Add:
1225     case Instruction::Sub:
1226     case Instruction::Mul:
1227     case Instruction::And:
1228     case Instruction::Or:
1229     case Instruction::Xor:
1230     case Instruction::FAdd:
1231     case Instruction::FSub:
1232     case Instruction::FMul:
1233     case Instruction::FDiv:
1234     case Instruction::ICmp:
1235     case Instruction::FCmp:
1236       return true;
1237     case Instruction::Shl:
1238     case Instruction::LShr:
1239     case Instruction::AShr:
1240     case Instruction::UDiv:
1241     case Instruction::SDiv:
1242     case Instruction::URem:
1243     case Instruction::SRem:
1244       return Operand == 1;
1245     case Instruction::Call:
1246       if (auto *II = dyn_cast<IntrinsicInst>(I)) {
1247         switch (II->getIntrinsicID()) {
1248         case Intrinsic::fma:
1249         case Intrinsic::vp_fma:
1250           return Operand == 0 || Operand == 1;
1251         // FIXME: Our patterns can only match vx/vf instructions when the splat
1252         // it on the RHS, because TableGen doesn't recognize our VP operations
1253         // as commutative.
1254         case Intrinsic::vp_add:
1255         case Intrinsic::vp_mul:
1256         case Intrinsic::vp_and:
1257         case Intrinsic::vp_or:
1258         case Intrinsic::vp_xor:
1259         case Intrinsic::vp_fadd:
1260         case Intrinsic::vp_fmul:
1261         case Intrinsic::vp_shl:
1262         case Intrinsic::vp_lshr:
1263         case Intrinsic::vp_ashr:
1264         case Intrinsic::vp_udiv:
1265         case Intrinsic::vp_sdiv:
1266         case Intrinsic::vp_urem:
1267         case Intrinsic::vp_srem:
1268           return Operand == 1;
1269         // ... with the exception of vp.sub/vp.fsub/vp.fdiv, which have
1270         // explicit patterns for both LHS and RHS (as 'vr' versions).
1271         case Intrinsic::vp_sub:
1272         case Intrinsic::vp_fsub:
1273         case Intrinsic::vp_fdiv:
1274           return Operand == 0 || Operand == 1;
1275         default:
1276           return false;
1277         }
1278       }
1279       return false;
1280     default:
1281       return false;
1282     }
1283   };
1284 
1285   for (auto OpIdx : enumerate(I->operands())) {
1286     if (!IsSinker(I, OpIdx.index()))
1287       continue;
1288 
1289     Instruction *Op = dyn_cast<Instruction>(OpIdx.value().get());
1290     // Make sure we are not already sinking this operand
1291     if (!Op || any_of(Ops, [&](Use *U) { return U->get() == Op; }))
1292       continue;
1293 
1294     // We are looking for a splat that can be sunk.
1295     if (!match(Op, m_Shuffle(m_InsertElt(m_Undef(), m_Value(), m_ZeroInt()),
1296                              m_Undef(), m_ZeroMask())))
1297       continue;
1298 
1299     // All uses of the shuffle should be sunk to avoid duplicating it across gpr
1300     // and vector registers
1301     for (Use &U : Op->uses()) {
1302       Instruction *Insn = cast<Instruction>(U.getUser());
1303       if (!IsSinker(Insn, U.getOperandNo()))
1304         return false;
1305     }
1306 
1307     Ops.push_back(&Op->getOperandUse(0));
1308     Ops.push_back(&OpIdx.value());
1309   }
1310   return true;
1311 }
1312 
1313 bool RISCVTargetLowering::isOffsetFoldingLegal(
1314     const GlobalAddressSDNode *GA) const {
1315   // In order to maximise the opportunity for common subexpression elimination,
1316   // keep a separate ADD node for the global address offset instead of folding
1317   // it in the global address node. Later peephole optimisations may choose to
1318   // fold it back in when profitable.
1319   return false;
1320 }
1321 
1322 bool RISCVTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
1323                                        bool ForCodeSize) const {
1324   // FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin.
1325   if (VT == MVT::f16 && !Subtarget.hasStdExtZfh())
1326     return false;
1327   if (VT == MVT::f32 && !Subtarget.hasStdExtF())
1328     return false;
1329   if (VT == MVT::f64 && !Subtarget.hasStdExtD())
1330     return false;
1331   return Imm.isZero();
1332 }
1333 
1334 bool RISCVTargetLowering::hasBitPreservingFPLogic(EVT VT) const {
1335   return (VT == MVT::f16 && Subtarget.hasStdExtZfh()) ||
1336          (VT == MVT::f32 && Subtarget.hasStdExtF()) ||
1337          (VT == MVT::f64 && Subtarget.hasStdExtD());
1338 }
1339 
1340 MVT RISCVTargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context,
1341                                                       CallingConv::ID CC,
1342                                                       EVT VT) const {
1343   // Use f32 to pass f16 if it is legal and Zfh is not enabled.
1344   // We might still end up using a GPR but that will be decided based on ABI.
1345   // FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin.
1346   if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh())
1347     return MVT::f32;
1348 
1349   return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT);
1350 }
1351 
1352 unsigned RISCVTargetLowering::getNumRegistersForCallingConv(LLVMContext &Context,
1353                                                            CallingConv::ID CC,
1354                                                            EVT VT) const {
1355   // Use f32 to pass f16 if it is legal and Zfh is not enabled.
1356   // We might still end up using a GPR but that will be decided based on ABI.
1357   // FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin.
1358   if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh())
1359     return 1;
1360 
1361   return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT);
1362 }
1363 
1364 // Changes the condition code and swaps operands if necessary, so the SetCC
1365 // operation matches one of the comparisons supported directly by branches
1366 // in the RISC-V ISA. May adjust compares to favor compare with 0 over compare
1367 // with 1/-1.
1368 static void translateSetCCForBranch(const SDLoc &DL, SDValue &LHS, SDValue &RHS,
1369                                     ISD::CondCode &CC, SelectionDAG &DAG) {
1370   // Convert X > -1 to X >= 0.
1371   if (CC == ISD::SETGT && isAllOnesConstant(RHS)) {
1372     RHS = DAG.getConstant(0, DL, RHS.getValueType());
1373     CC = ISD::SETGE;
1374     return;
1375   }
1376   // Convert X < 1 to 0 >= X.
1377   if (CC == ISD::SETLT && isOneConstant(RHS)) {
1378     RHS = LHS;
1379     LHS = DAG.getConstant(0, DL, RHS.getValueType());
1380     CC = ISD::SETGE;
1381     return;
1382   }
1383 
1384   switch (CC) {
1385   default:
1386     break;
1387   case ISD::SETGT:
1388   case ISD::SETLE:
1389   case ISD::SETUGT:
1390   case ISD::SETULE:
1391     CC = ISD::getSetCCSwappedOperands(CC);
1392     std::swap(LHS, RHS);
1393     break;
1394   }
1395 }
1396 
1397 RISCVII::VLMUL RISCVTargetLowering::getLMUL(MVT VT) {
1398   assert(VT.isScalableVector() && "Expecting a scalable vector type");
1399   unsigned KnownSize = VT.getSizeInBits().getKnownMinValue();
1400   if (VT.getVectorElementType() == MVT::i1)
1401     KnownSize *= 8;
1402 
1403   switch (KnownSize) {
1404   default:
1405     llvm_unreachable("Invalid LMUL.");
1406   case 8:
1407     return RISCVII::VLMUL::LMUL_F8;
1408   case 16:
1409     return RISCVII::VLMUL::LMUL_F4;
1410   case 32:
1411     return RISCVII::VLMUL::LMUL_F2;
1412   case 64:
1413     return RISCVII::VLMUL::LMUL_1;
1414   case 128:
1415     return RISCVII::VLMUL::LMUL_2;
1416   case 256:
1417     return RISCVII::VLMUL::LMUL_4;
1418   case 512:
1419     return RISCVII::VLMUL::LMUL_8;
1420   }
1421 }
1422 
1423 unsigned RISCVTargetLowering::getRegClassIDForLMUL(RISCVII::VLMUL LMul) {
1424   switch (LMul) {
1425   default:
1426     llvm_unreachable("Invalid LMUL.");
1427   case RISCVII::VLMUL::LMUL_F8:
1428   case RISCVII::VLMUL::LMUL_F4:
1429   case RISCVII::VLMUL::LMUL_F2:
1430   case RISCVII::VLMUL::LMUL_1:
1431     return RISCV::VRRegClassID;
1432   case RISCVII::VLMUL::LMUL_2:
1433     return RISCV::VRM2RegClassID;
1434   case RISCVII::VLMUL::LMUL_4:
1435     return RISCV::VRM4RegClassID;
1436   case RISCVII::VLMUL::LMUL_8:
1437     return RISCV::VRM8RegClassID;
1438   }
1439 }
1440 
1441 unsigned RISCVTargetLowering::getSubregIndexByMVT(MVT VT, unsigned Index) {
1442   RISCVII::VLMUL LMUL = getLMUL(VT);
1443   if (LMUL == RISCVII::VLMUL::LMUL_F8 ||
1444       LMUL == RISCVII::VLMUL::LMUL_F4 ||
1445       LMUL == RISCVII::VLMUL::LMUL_F2 ||
1446       LMUL == RISCVII::VLMUL::LMUL_1) {
1447     static_assert(RISCV::sub_vrm1_7 == RISCV::sub_vrm1_0 + 7,
1448                   "Unexpected subreg numbering");
1449     return RISCV::sub_vrm1_0 + Index;
1450   }
1451   if (LMUL == RISCVII::VLMUL::LMUL_2) {
1452     static_assert(RISCV::sub_vrm2_3 == RISCV::sub_vrm2_0 + 3,
1453                   "Unexpected subreg numbering");
1454     return RISCV::sub_vrm2_0 + Index;
1455   }
1456   if (LMUL == RISCVII::VLMUL::LMUL_4) {
1457     static_assert(RISCV::sub_vrm4_1 == RISCV::sub_vrm4_0 + 1,
1458                   "Unexpected subreg numbering");
1459     return RISCV::sub_vrm4_0 + Index;
1460   }
1461   llvm_unreachable("Invalid vector type.");
1462 }
1463 
1464 unsigned RISCVTargetLowering::getRegClassIDForVecVT(MVT VT) {
1465   if (VT.getVectorElementType() == MVT::i1)
1466     return RISCV::VRRegClassID;
1467   return getRegClassIDForLMUL(getLMUL(VT));
1468 }
1469 
1470 // Attempt to decompose a subvector insert/extract between VecVT and
1471 // SubVecVT via subregister indices. Returns the subregister index that
1472 // can perform the subvector insert/extract with the given element index, as
1473 // well as the index corresponding to any leftover subvectors that must be
1474 // further inserted/extracted within the register class for SubVecVT.
1475 std::pair<unsigned, unsigned>
1476 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs(
1477     MVT VecVT, MVT SubVecVT, unsigned InsertExtractIdx,
1478     const RISCVRegisterInfo *TRI) {
1479   static_assert((RISCV::VRM8RegClassID > RISCV::VRM4RegClassID &&
1480                  RISCV::VRM4RegClassID > RISCV::VRM2RegClassID &&
1481                  RISCV::VRM2RegClassID > RISCV::VRRegClassID),
1482                 "Register classes not ordered");
1483   unsigned VecRegClassID = getRegClassIDForVecVT(VecVT);
1484   unsigned SubRegClassID = getRegClassIDForVecVT(SubVecVT);
1485   // Try to compose a subregister index that takes us from the incoming
1486   // LMUL>1 register class down to the outgoing one. At each step we half
1487   // the LMUL:
1488   //   nxv16i32@12 -> nxv2i32: sub_vrm4_1_then_sub_vrm2_1_then_sub_vrm1_0
1489   // Note that this is not guaranteed to find a subregister index, such as
1490   // when we are extracting from one VR type to another.
1491   unsigned SubRegIdx = RISCV::NoSubRegister;
1492   for (const unsigned RCID :
1493        {RISCV::VRM4RegClassID, RISCV::VRM2RegClassID, RISCV::VRRegClassID})
1494     if (VecRegClassID > RCID && SubRegClassID <= RCID) {
1495       VecVT = VecVT.getHalfNumVectorElementsVT();
1496       bool IsHi =
1497           InsertExtractIdx >= VecVT.getVectorElementCount().getKnownMinValue();
1498       SubRegIdx = TRI->composeSubRegIndices(SubRegIdx,
1499                                             getSubregIndexByMVT(VecVT, IsHi));
1500       if (IsHi)
1501         InsertExtractIdx -= VecVT.getVectorElementCount().getKnownMinValue();
1502     }
1503   return {SubRegIdx, InsertExtractIdx};
1504 }
1505 
1506 // Permit combining of mask vectors as BUILD_VECTOR never expands to scalar
1507 // stores for those types.
1508 bool RISCVTargetLowering::mergeStoresAfterLegalization(EVT VT) const {
1509   return !Subtarget.useRVVForFixedLengthVectors() ||
1510          (VT.isFixedLengthVector() && VT.getVectorElementType() == MVT::i1);
1511 }
1512 
1513 bool RISCVTargetLowering::isLegalElementTypeForRVV(Type *ScalarTy) const {
1514   if (ScalarTy->isPointerTy())
1515     return true;
1516 
1517   if (ScalarTy->isIntegerTy(8) || ScalarTy->isIntegerTy(16) ||
1518       ScalarTy->isIntegerTy(32))
1519     return true;
1520 
1521   if (ScalarTy->isIntegerTy(64))
1522     return Subtarget.hasVInstructionsI64();
1523 
1524   if (ScalarTy->isHalfTy())
1525     return Subtarget.hasVInstructionsF16();
1526   if (ScalarTy->isFloatTy())
1527     return Subtarget.hasVInstructionsF32();
1528   if (ScalarTy->isDoubleTy())
1529     return Subtarget.hasVInstructionsF64();
1530 
1531   return false;
1532 }
1533 
1534 static SDValue getVLOperand(SDValue Op) {
1535   assert((Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1536           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN) &&
1537          "Unexpected opcode");
1538   bool HasChain = Op.getOpcode() == ISD::INTRINSIC_W_CHAIN;
1539   unsigned IntNo = Op.getConstantOperandVal(HasChain ? 1 : 0);
1540   const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II =
1541       RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo);
1542   if (!II)
1543     return SDValue();
1544   return Op.getOperand(II->VLOperand + 1 + HasChain);
1545 }
1546 
1547 static bool useRVVForFixedLengthVectorVT(MVT VT,
1548                                          const RISCVSubtarget &Subtarget) {
1549   assert(VT.isFixedLengthVector() && "Expected a fixed length vector type!");
1550   if (!Subtarget.useRVVForFixedLengthVectors())
1551     return false;
1552 
1553   // We only support a set of vector types with a consistent maximum fixed size
1554   // across all supported vector element types to avoid legalization issues.
1555   // Therefore -- since the largest is v1024i8/v512i16/etc -- the largest
1556   // fixed-length vector type we support is 1024 bytes.
1557   if (VT.getFixedSizeInBits() > 1024 * 8)
1558     return false;
1559 
1560   unsigned MinVLen = Subtarget.getRealMinVLen();
1561 
1562   MVT EltVT = VT.getVectorElementType();
1563 
1564   // Don't use RVV for vectors we cannot scalarize if required.
1565   switch (EltVT.SimpleTy) {
1566   // i1 is supported but has different rules.
1567   default:
1568     return false;
1569   case MVT::i1:
1570     // Masks can only use a single register.
1571     if (VT.getVectorNumElements() > MinVLen)
1572       return false;
1573     MinVLen /= 8;
1574     break;
1575   case MVT::i8:
1576   case MVT::i16:
1577   case MVT::i32:
1578     break;
1579   case MVT::i64:
1580     if (!Subtarget.hasVInstructionsI64())
1581       return false;
1582     break;
1583   case MVT::f16:
1584     if (!Subtarget.hasVInstructionsF16())
1585       return false;
1586     break;
1587   case MVT::f32:
1588     if (!Subtarget.hasVInstructionsF32())
1589       return false;
1590     break;
1591   case MVT::f64:
1592     if (!Subtarget.hasVInstructionsF64())
1593       return false;
1594     break;
1595   }
1596 
1597   // Reject elements larger than ELEN.
1598   if (EltVT.getSizeInBits() > Subtarget.getELEN())
1599     return false;
1600 
1601   unsigned LMul = divideCeil(VT.getSizeInBits(), MinVLen);
1602   // Don't use RVV for types that don't fit.
1603   if (LMul > Subtarget.getMaxLMULForFixedLengthVectors())
1604     return false;
1605 
1606   // TODO: Perhaps an artificial restriction, but worth having whilst getting
1607   // the base fixed length RVV support in place.
1608   if (!VT.isPow2VectorType())
1609     return false;
1610 
1611   return true;
1612 }
1613 
1614 bool RISCVTargetLowering::useRVVForFixedLengthVectorVT(MVT VT) const {
1615   return ::useRVVForFixedLengthVectorVT(VT, Subtarget);
1616 }
1617 
1618 // Return the largest legal scalable vector type that matches VT's element type.
1619 static MVT getContainerForFixedLengthVector(const TargetLowering &TLI, MVT VT,
1620                                             const RISCVSubtarget &Subtarget) {
1621   // This may be called before legal types are setup.
1622   assert(((VT.isFixedLengthVector() && TLI.isTypeLegal(VT)) ||
1623           useRVVForFixedLengthVectorVT(VT, Subtarget)) &&
1624          "Expected legal fixed length vector!");
1625 
1626   unsigned MinVLen = Subtarget.getRealMinVLen();
1627   unsigned MaxELen = Subtarget.getELEN();
1628 
1629   MVT EltVT = VT.getVectorElementType();
1630   switch (EltVT.SimpleTy) {
1631   default:
1632     llvm_unreachable("unexpected element type for RVV container");
1633   case MVT::i1:
1634   case MVT::i8:
1635   case MVT::i16:
1636   case MVT::i32:
1637   case MVT::i64:
1638   case MVT::f16:
1639   case MVT::f32:
1640   case MVT::f64: {
1641     // We prefer to use LMUL=1 for VLEN sized types. Use fractional lmuls for
1642     // narrower types. The smallest fractional LMUL we support is 8/ELEN. Within
1643     // each fractional LMUL we support SEW between 8 and LMUL*ELEN.
1644     unsigned NumElts =
1645         (VT.getVectorNumElements() * RISCV::RVVBitsPerBlock) / MinVLen;
1646     NumElts = std::max(NumElts, RISCV::RVVBitsPerBlock / MaxELen);
1647     assert(isPowerOf2_32(NumElts) && "Expected power of 2 NumElts");
1648     return MVT::getScalableVectorVT(EltVT, NumElts);
1649   }
1650   }
1651 }
1652 
1653 static MVT getContainerForFixedLengthVector(SelectionDAG &DAG, MVT VT,
1654                                             const RISCVSubtarget &Subtarget) {
1655   return getContainerForFixedLengthVector(DAG.getTargetLoweringInfo(), VT,
1656                                           Subtarget);
1657 }
1658 
1659 MVT RISCVTargetLowering::getContainerForFixedLengthVector(MVT VT) const {
1660   return ::getContainerForFixedLengthVector(*this, VT, getSubtarget());
1661 }
1662 
1663 // Grow V to consume an entire RVV register.
1664 static SDValue convertToScalableVector(EVT VT, SDValue V, SelectionDAG &DAG,
1665                                        const RISCVSubtarget &Subtarget) {
1666   assert(VT.isScalableVector() &&
1667          "Expected to convert into a scalable vector!");
1668   assert(V.getValueType().isFixedLengthVector() &&
1669          "Expected a fixed length vector operand!");
1670   SDLoc DL(V);
1671   SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT());
1672   return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, DAG.getUNDEF(VT), V, Zero);
1673 }
1674 
1675 // Shrink V so it's just big enough to maintain a VT's worth of data.
1676 static SDValue convertFromScalableVector(EVT VT, SDValue V, SelectionDAG &DAG,
1677                                          const RISCVSubtarget &Subtarget) {
1678   assert(VT.isFixedLengthVector() &&
1679          "Expected to convert into a fixed length vector!");
1680   assert(V.getValueType().isScalableVector() &&
1681          "Expected a scalable vector operand!");
1682   SDLoc DL(V);
1683   SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT());
1684   return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V, Zero);
1685 }
1686 
1687 /// Return the type of the mask type suitable for masking the provided
1688 /// vector type.  This is simply an i1 element type vector of the same
1689 /// (possibly scalable) length.
1690 static MVT getMaskTypeFor(EVT VecVT) {
1691   assert(VecVT.isVector());
1692   ElementCount EC = VecVT.getVectorElementCount();
1693   return MVT::getVectorVT(MVT::i1, EC);
1694 }
1695 
1696 /// Creates an all ones mask suitable for masking a vector of type VecTy with
1697 /// vector length VL.  .
1698 static SDValue getAllOnesMask(MVT VecVT, SDValue VL, SDLoc DL,
1699                               SelectionDAG &DAG) {
1700   MVT MaskVT = getMaskTypeFor(VecVT);
1701   return DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
1702 }
1703 
1704 // Gets the two common "VL" operands: an all-ones mask and the vector length.
1705 // VecVT is a vector type, either fixed-length or scalable, and ContainerVT is
1706 // the vector type that it is contained in.
1707 static std::pair<SDValue, SDValue>
1708 getDefaultVLOps(MVT VecVT, MVT ContainerVT, SDLoc DL, SelectionDAG &DAG,
1709                 const RISCVSubtarget &Subtarget) {
1710   assert(ContainerVT.isScalableVector() && "Expecting scalable container type");
1711   MVT XLenVT = Subtarget.getXLenVT();
1712   SDValue VL = VecVT.isFixedLengthVector()
1713                    ? DAG.getConstant(VecVT.getVectorNumElements(), DL, XLenVT)
1714                    : DAG.getRegister(RISCV::X0, XLenVT);
1715   SDValue Mask = getAllOnesMask(ContainerVT, VL, DL, DAG);
1716   return {Mask, VL};
1717 }
1718 
1719 // As above but assuming the given type is a scalable vector type.
1720 static std::pair<SDValue, SDValue>
1721 getDefaultScalableVLOps(MVT VecVT, SDLoc DL, SelectionDAG &DAG,
1722                         const RISCVSubtarget &Subtarget) {
1723   assert(VecVT.isScalableVector() && "Expecting a scalable vector");
1724   return getDefaultVLOps(VecVT, VecVT, DL, DAG, Subtarget);
1725 }
1726 
1727 // The state of RVV BUILD_VECTOR and VECTOR_SHUFFLE lowering is that very few
1728 // of either is (currently) supported. This can get us into an infinite loop
1729 // where we try to lower a BUILD_VECTOR as a VECTOR_SHUFFLE as a BUILD_VECTOR
1730 // as a ..., etc.
1731 // Until either (or both) of these can reliably lower any node, reporting that
1732 // we don't want to expand BUILD_VECTORs via VECTOR_SHUFFLEs at least breaks
1733 // the infinite loop. Note that this lowers BUILD_VECTOR through the stack,
1734 // which is not desirable.
1735 bool RISCVTargetLowering::shouldExpandBuildVectorWithShuffles(
1736     EVT VT, unsigned DefinedValues) const {
1737   return false;
1738 }
1739 
1740 static SDValue lowerFP_TO_INT_SAT(SDValue Op, SelectionDAG &DAG,
1741                                   const RISCVSubtarget &Subtarget) {
1742   // RISCV FP-to-int conversions saturate to the destination register size, but
1743   // don't produce 0 for nan. We can use a conversion instruction and fix the
1744   // nan case with a compare and a select.
1745   SDValue Src = Op.getOperand(0);
1746 
1747   EVT DstVT = Op.getValueType();
1748   EVT SatVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1749 
1750   bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT_SAT;
1751   unsigned Opc;
1752   if (SatVT == DstVT)
1753     Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU;
1754   else if (DstVT == MVT::i64 && SatVT == MVT::i32)
1755     Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64;
1756   else
1757     return SDValue();
1758   // FIXME: Support other SatVTs by clamping before or after the conversion.
1759 
1760   SDLoc DL(Op);
1761   SDValue FpToInt = DAG.getNode(
1762       Opc, DL, DstVT, Src,
1763       DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, Subtarget.getXLenVT()));
1764 
1765   SDValue ZeroInt = DAG.getConstant(0, DL, DstVT);
1766   return DAG.getSelectCC(DL, Src, Src, ZeroInt, FpToInt, ISD::CondCode::SETUO);
1767 }
1768 
1769 // Expand vector FTRUNC, FCEIL, and FFLOOR by converting to the integer domain
1770 // and back. Taking care to avoid converting values that are nan or already
1771 // correct.
1772 // TODO: Floor and ceil could be shorter by changing rounding mode, but we don't
1773 // have FRM dependencies modeled yet.
1774 static SDValue lowerFTRUNC_FCEIL_FFLOOR(SDValue Op, SelectionDAG &DAG) {
1775   MVT VT = Op.getSimpleValueType();
1776   assert(VT.isVector() && "Unexpected type");
1777 
1778   SDLoc DL(Op);
1779 
1780   // Freeze the source since we are increasing the number of uses.
1781   SDValue Src = DAG.getFreeze(Op.getOperand(0));
1782 
1783   // Truncate to integer and convert back to FP.
1784   MVT IntVT = VT.changeVectorElementTypeToInteger();
1785   SDValue Truncated = DAG.getNode(ISD::FP_TO_SINT, DL, IntVT, Src);
1786   Truncated = DAG.getNode(ISD::SINT_TO_FP, DL, VT, Truncated);
1787 
1788   MVT SetccVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount());
1789 
1790   if (Op.getOpcode() == ISD::FCEIL) {
1791     // If the truncated value is the greater than or equal to the original
1792     // value, we've computed the ceil. Otherwise, we went the wrong way and
1793     // need to increase by 1.
1794     // FIXME: This should use a masked operation. Handle here or in isel?
1795     SDValue Adjust = DAG.getNode(ISD::FADD, DL, VT, Truncated,
1796                                  DAG.getConstantFP(1.0, DL, VT));
1797     SDValue NeedAdjust = DAG.getSetCC(DL, SetccVT, Truncated, Src, ISD::SETOLT);
1798     Truncated = DAG.getSelect(DL, VT, NeedAdjust, Adjust, Truncated);
1799   } else if (Op.getOpcode() == ISD::FFLOOR) {
1800     // If the truncated value is the less than or equal to the original value,
1801     // we've computed the floor. Otherwise, we went the wrong way and need to
1802     // decrease by 1.
1803     // FIXME: This should use a masked operation. Handle here or in isel?
1804     SDValue Adjust = DAG.getNode(ISD::FSUB, DL, VT, Truncated,
1805                                  DAG.getConstantFP(1.0, DL, VT));
1806     SDValue NeedAdjust = DAG.getSetCC(DL, SetccVT, Truncated, Src, ISD::SETOGT);
1807     Truncated = DAG.getSelect(DL, VT, NeedAdjust, Adjust, Truncated);
1808   }
1809 
1810   // Restore the original sign so that -0.0 is preserved.
1811   Truncated = DAG.getNode(ISD::FCOPYSIGN, DL, VT, Truncated, Src);
1812 
1813   // Determine the largest integer that can be represented exactly. This and
1814   // values larger than it don't have any fractional bits so don't need to
1815   // be converted.
1816   const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT);
1817   unsigned Precision = APFloat::semanticsPrecision(FltSem);
1818   APFloat MaxVal = APFloat(FltSem);
1819   MaxVal.convertFromAPInt(APInt::getOneBitSet(Precision, Precision - 1),
1820                           /*IsSigned*/ false, APFloat::rmNearestTiesToEven);
1821   SDValue MaxValNode = DAG.getConstantFP(MaxVal, DL, VT);
1822 
1823   // If abs(Src) was larger than MaxVal or nan, keep it.
1824   SDValue Abs = DAG.getNode(ISD::FABS, DL, VT, Src);
1825   SDValue Setcc = DAG.getSetCC(DL, SetccVT, Abs, MaxValNode, ISD::SETOLT);
1826   return DAG.getSelect(DL, VT, Setcc, Truncated, Src);
1827 }
1828 
1829 // ISD::FROUND is defined to round to nearest with ties rounding away from 0.
1830 // This mode isn't supported in vector hardware on RISCV. But as long as we
1831 // aren't compiling with trapping math, we can emulate this with
1832 // floor(X + copysign(nextafter(0.5, 0.0), X)).
1833 // FIXME: Could be shorter by changing rounding mode, but we don't have FRM
1834 // dependencies modeled yet.
1835 // FIXME: Use masked operations to avoid final merge.
1836 static SDValue lowerFROUND(SDValue Op, SelectionDAG &DAG) {
1837   MVT VT = Op.getSimpleValueType();
1838   assert(VT.isVector() && "Unexpected type");
1839 
1840   SDLoc DL(Op);
1841 
1842   // Freeze the source since we are increasing the number of uses.
1843   SDValue Src = DAG.getFreeze(Op.getOperand(0));
1844 
1845   // We do the conversion on the absolute value and fix the sign at the end.
1846   SDValue Abs = DAG.getNode(ISD::FABS, DL, VT, Src);
1847 
1848   const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT);
1849   bool Ignored;
1850   APFloat Point5Pred = APFloat(0.5f);
1851   Point5Pred.convert(FltSem, APFloat::rmNearestTiesToEven, &Ignored);
1852   Point5Pred.next(/*nextDown*/ true);
1853 
1854   // Add the adjustment.
1855   SDValue Adjust = DAG.getNode(ISD::FADD, DL, VT, Abs,
1856                                DAG.getConstantFP(Point5Pred, DL, VT));
1857 
1858   // Truncate to integer and convert back to fp.
1859   MVT IntVT = VT.changeVectorElementTypeToInteger();
1860   SDValue Truncated = DAG.getNode(ISD::FP_TO_SINT, DL, IntVT, Adjust);
1861   Truncated = DAG.getNode(ISD::SINT_TO_FP, DL, VT, Truncated);
1862 
1863   // Restore the original sign.
1864   Truncated = DAG.getNode(ISD::FCOPYSIGN, DL, VT, Truncated, Src);
1865 
1866   // Determine the largest integer that can be represented exactly. This and
1867   // values larger than it don't have any fractional bits so don't need to
1868   // be converted.
1869   unsigned Precision = APFloat::semanticsPrecision(FltSem);
1870   APFloat MaxVal = APFloat(FltSem);
1871   MaxVal.convertFromAPInt(APInt::getOneBitSet(Precision, Precision - 1),
1872                           /*IsSigned*/ false, APFloat::rmNearestTiesToEven);
1873   SDValue MaxValNode = DAG.getConstantFP(MaxVal, DL, VT);
1874 
1875   // If abs(Src) was larger than MaxVal or nan, keep it.
1876   MVT SetccVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount());
1877   SDValue Setcc = DAG.getSetCC(DL, SetccVT, Abs, MaxValNode, ISD::SETOLT);
1878   return DAG.getSelect(DL, VT, Setcc, Truncated, Src);
1879 }
1880 
1881 struct VIDSequence {
1882   int64_t StepNumerator;
1883   unsigned StepDenominator;
1884   int64_t Addend;
1885 };
1886 
1887 // Try to match an arithmetic-sequence BUILD_VECTOR [X,X+S,X+2*S,...,X+(N-1)*S]
1888 // to the (non-zero) step S and start value X. This can be then lowered as the
1889 // RVV sequence (VID * S) + X, for example.
1890 // The step S is represented as an integer numerator divided by a positive
1891 // denominator. Note that the implementation currently only identifies
1892 // sequences in which either the numerator is +/- 1 or the denominator is 1. It
1893 // cannot detect 2/3, for example.
1894 // Note that this method will also match potentially unappealing index
1895 // sequences, like <i32 0, i32 50939494>, however it is left to the caller to
1896 // determine whether this is worth generating code for.
1897 static Optional<VIDSequence> isSimpleVIDSequence(SDValue Op) {
1898   unsigned NumElts = Op.getNumOperands();
1899   assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unexpected BUILD_VECTOR");
1900   if (!Op.getValueType().isInteger())
1901     return None;
1902 
1903   Optional<unsigned> SeqStepDenom;
1904   Optional<int64_t> SeqStepNum, SeqAddend;
1905   Optional<std::pair<uint64_t, unsigned>> PrevElt;
1906   unsigned EltSizeInBits = Op.getValueType().getScalarSizeInBits();
1907   for (unsigned Idx = 0; Idx < NumElts; Idx++) {
1908     // Assume undef elements match the sequence; we just have to be careful
1909     // when interpolating across them.
1910     if (Op.getOperand(Idx).isUndef())
1911       continue;
1912     // The BUILD_VECTOR must be all constants.
1913     if (!isa<ConstantSDNode>(Op.getOperand(Idx)))
1914       return None;
1915 
1916     uint64_t Val = Op.getConstantOperandVal(Idx) &
1917                    maskTrailingOnes<uint64_t>(EltSizeInBits);
1918 
1919     if (PrevElt) {
1920       // Calculate the step since the last non-undef element, and ensure
1921       // it's consistent across the entire sequence.
1922       unsigned IdxDiff = Idx - PrevElt->second;
1923       int64_t ValDiff = SignExtend64(Val - PrevElt->first, EltSizeInBits);
1924 
1925       // A zero-value value difference means that we're somewhere in the middle
1926       // of a fractional step, e.g. <0,0,0*,0,1,1,1,1>. Wait until we notice a
1927       // step change before evaluating the sequence.
1928       if (ValDiff == 0)
1929         continue;
1930 
1931       int64_t Remainder = ValDiff % IdxDiff;
1932       // Normalize the step if it's greater than 1.
1933       if (Remainder != ValDiff) {
1934         // The difference must cleanly divide the element span.
1935         if (Remainder != 0)
1936           return None;
1937         ValDiff /= IdxDiff;
1938         IdxDiff = 1;
1939       }
1940 
1941       if (!SeqStepNum)
1942         SeqStepNum = ValDiff;
1943       else if (ValDiff != SeqStepNum)
1944         return None;
1945 
1946       if (!SeqStepDenom)
1947         SeqStepDenom = IdxDiff;
1948       else if (IdxDiff != *SeqStepDenom)
1949         return None;
1950     }
1951 
1952     // Record this non-undef element for later.
1953     if (!PrevElt || PrevElt->first != Val)
1954       PrevElt = std::make_pair(Val, Idx);
1955   }
1956 
1957   // We need to have logged a step for this to count as a legal index sequence.
1958   if (!SeqStepNum || !SeqStepDenom)
1959     return None;
1960 
1961   // Loop back through the sequence and validate elements we might have skipped
1962   // while waiting for a valid step. While doing this, log any sequence addend.
1963   for (unsigned Idx = 0; Idx < NumElts; Idx++) {
1964     if (Op.getOperand(Idx).isUndef())
1965       continue;
1966     uint64_t Val = Op.getConstantOperandVal(Idx) &
1967                    maskTrailingOnes<uint64_t>(EltSizeInBits);
1968     uint64_t ExpectedVal =
1969         (int64_t)(Idx * (uint64_t)*SeqStepNum) / *SeqStepDenom;
1970     int64_t Addend = SignExtend64(Val - ExpectedVal, EltSizeInBits);
1971     if (!SeqAddend)
1972       SeqAddend = Addend;
1973     else if (Addend != SeqAddend)
1974       return None;
1975   }
1976 
1977   assert(SeqAddend && "Must have an addend if we have a step");
1978 
1979   return VIDSequence{*SeqStepNum, *SeqStepDenom, *SeqAddend};
1980 }
1981 
1982 // Match a splatted value (SPLAT_VECTOR/BUILD_VECTOR) of an EXTRACT_VECTOR_ELT
1983 // and lower it as a VRGATHER_VX_VL from the source vector.
1984 static SDValue matchSplatAsGather(SDValue SplatVal, MVT VT, const SDLoc &DL,
1985                                   SelectionDAG &DAG,
1986                                   const RISCVSubtarget &Subtarget) {
1987   if (SplatVal.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
1988     return SDValue();
1989   SDValue Vec = SplatVal.getOperand(0);
1990   // Only perform this optimization on vectors of the same size for simplicity.
1991   // Don't perform this optimization for i1 vectors.
1992   // FIXME: Support i1 vectors, maybe by promoting to i8?
1993   if (Vec.getValueType() != VT || VT.getVectorElementType() == MVT::i1)
1994     return SDValue();
1995   SDValue Idx = SplatVal.getOperand(1);
1996   // The index must be a legal type.
1997   if (Idx.getValueType() != Subtarget.getXLenVT())
1998     return SDValue();
1999 
2000   MVT ContainerVT = VT;
2001   if (VT.isFixedLengthVector()) {
2002     ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
2003     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
2004   }
2005 
2006   SDValue Mask, VL;
2007   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
2008 
2009   SDValue Gather = DAG.getNode(RISCVISD::VRGATHER_VX_VL, DL, ContainerVT, Vec,
2010                                Idx, Mask, DAG.getUNDEF(ContainerVT), VL);
2011 
2012   if (!VT.isFixedLengthVector())
2013     return Gather;
2014 
2015   return convertFromScalableVector(VT, Gather, DAG, Subtarget);
2016 }
2017 
2018 static SDValue lowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG,
2019                                  const RISCVSubtarget &Subtarget) {
2020   MVT VT = Op.getSimpleValueType();
2021   assert(VT.isFixedLengthVector() && "Unexpected vector!");
2022 
2023   MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
2024 
2025   SDLoc DL(Op);
2026   SDValue Mask, VL;
2027   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
2028 
2029   MVT XLenVT = Subtarget.getXLenVT();
2030   unsigned NumElts = Op.getNumOperands();
2031 
2032   if (VT.getVectorElementType() == MVT::i1) {
2033     if (ISD::isBuildVectorAllZeros(Op.getNode())) {
2034       SDValue VMClr = DAG.getNode(RISCVISD::VMCLR_VL, DL, ContainerVT, VL);
2035       return convertFromScalableVector(VT, VMClr, DAG, Subtarget);
2036     }
2037 
2038     if (ISD::isBuildVectorAllOnes(Op.getNode())) {
2039       SDValue VMSet = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL);
2040       return convertFromScalableVector(VT, VMSet, DAG, Subtarget);
2041     }
2042 
2043     // Lower constant mask BUILD_VECTORs via an integer vector type, in
2044     // scalar integer chunks whose bit-width depends on the number of mask
2045     // bits and XLEN.
2046     // First, determine the most appropriate scalar integer type to use. This
2047     // is at most XLenVT, but may be shrunk to a smaller vector element type
2048     // according to the size of the final vector - use i8 chunks rather than
2049     // XLenVT if we're producing a v8i1. This results in more consistent
2050     // codegen across RV32 and RV64.
2051     unsigned NumViaIntegerBits =
2052         std::min(std::max(NumElts, 8u), Subtarget.getXLen());
2053     NumViaIntegerBits = std::min(NumViaIntegerBits, Subtarget.getELEN());
2054     if (ISD::isBuildVectorOfConstantSDNodes(Op.getNode())) {
2055       // If we have to use more than one INSERT_VECTOR_ELT then this
2056       // optimization is likely to increase code size; avoid peforming it in
2057       // such a case. We can use a load from a constant pool in this case.
2058       if (DAG.shouldOptForSize() && NumElts > NumViaIntegerBits)
2059         return SDValue();
2060       // Now we can create our integer vector type. Note that it may be larger
2061       // than the resulting mask type: v4i1 would use v1i8 as its integer type.
2062       MVT IntegerViaVecVT =
2063           MVT::getVectorVT(MVT::getIntegerVT(NumViaIntegerBits),
2064                            divideCeil(NumElts, NumViaIntegerBits));
2065 
2066       uint64_t Bits = 0;
2067       unsigned BitPos = 0, IntegerEltIdx = 0;
2068       SDValue Vec = DAG.getUNDEF(IntegerViaVecVT);
2069 
2070       for (unsigned I = 0; I < NumElts; I++, BitPos++) {
2071         // Once we accumulate enough bits to fill our scalar type, insert into
2072         // our vector and clear our accumulated data.
2073         if (I != 0 && I % NumViaIntegerBits == 0) {
2074           if (NumViaIntegerBits <= 32)
2075             Bits = SignExtend64<32>(Bits);
2076           SDValue Elt = DAG.getConstant(Bits, DL, XLenVT);
2077           Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec,
2078                             Elt, DAG.getConstant(IntegerEltIdx, DL, XLenVT));
2079           Bits = 0;
2080           BitPos = 0;
2081           IntegerEltIdx++;
2082         }
2083         SDValue V = Op.getOperand(I);
2084         bool BitValue = !V.isUndef() && cast<ConstantSDNode>(V)->getZExtValue();
2085         Bits |= ((uint64_t)BitValue << BitPos);
2086       }
2087 
2088       // Insert the (remaining) scalar value into position in our integer
2089       // vector type.
2090       if (NumViaIntegerBits <= 32)
2091         Bits = SignExtend64<32>(Bits);
2092       SDValue Elt = DAG.getConstant(Bits, DL, XLenVT);
2093       Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec, Elt,
2094                         DAG.getConstant(IntegerEltIdx, DL, XLenVT));
2095 
2096       if (NumElts < NumViaIntegerBits) {
2097         // If we're producing a smaller vector than our minimum legal integer
2098         // type, bitcast to the equivalent (known-legal) mask type, and extract
2099         // our final mask.
2100         assert(IntegerViaVecVT == MVT::v1i8 && "Unexpected mask vector type");
2101         Vec = DAG.getBitcast(MVT::v8i1, Vec);
2102         Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Vec,
2103                           DAG.getConstant(0, DL, XLenVT));
2104       } else {
2105         // Else we must have produced an integer type with the same size as the
2106         // mask type; bitcast for the final result.
2107         assert(VT.getSizeInBits() == IntegerViaVecVT.getSizeInBits());
2108         Vec = DAG.getBitcast(VT, Vec);
2109       }
2110 
2111       return Vec;
2112     }
2113 
2114     // A BUILD_VECTOR can be lowered as a SETCC. For each fixed-length mask
2115     // vector type, we have a legal equivalently-sized i8 type, so we can use
2116     // that.
2117     MVT WideVecVT = VT.changeVectorElementType(MVT::i8);
2118     SDValue VecZero = DAG.getConstant(0, DL, WideVecVT);
2119 
2120     SDValue WideVec;
2121     if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) {
2122       // For a splat, perform a scalar truncate before creating the wider
2123       // vector.
2124       assert(Splat.getValueType() == XLenVT &&
2125              "Unexpected type for i1 splat value");
2126       Splat = DAG.getNode(ISD::AND, DL, XLenVT, Splat,
2127                           DAG.getConstant(1, DL, XLenVT));
2128       WideVec = DAG.getSplatBuildVector(WideVecVT, DL, Splat);
2129     } else {
2130       SmallVector<SDValue, 8> Ops(Op->op_values());
2131       WideVec = DAG.getBuildVector(WideVecVT, DL, Ops);
2132       SDValue VecOne = DAG.getConstant(1, DL, WideVecVT);
2133       WideVec = DAG.getNode(ISD::AND, DL, WideVecVT, WideVec, VecOne);
2134     }
2135 
2136     return DAG.getSetCC(DL, VT, WideVec, VecZero, ISD::SETNE);
2137   }
2138 
2139   if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) {
2140     if (auto Gather = matchSplatAsGather(Splat, VT, DL, DAG, Subtarget))
2141       return Gather;
2142     unsigned Opc = VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL
2143                                         : RISCVISD::VMV_V_X_VL;
2144     Splat =
2145         DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), Splat, VL);
2146     return convertFromScalableVector(VT, Splat, DAG, Subtarget);
2147   }
2148 
2149   // Try and match index sequences, which we can lower to the vid instruction
2150   // with optional modifications. An all-undef vector is matched by
2151   // getSplatValue, above.
2152   if (auto SimpleVID = isSimpleVIDSequence(Op)) {
2153     int64_t StepNumerator = SimpleVID->StepNumerator;
2154     unsigned StepDenominator = SimpleVID->StepDenominator;
2155     int64_t Addend = SimpleVID->Addend;
2156 
2157     assert(StepNumerator != 0 && "Invalid step");
2158     bool Negate = false;
2159     int64_t SplatStepVal = StepNumerator;
2160     unsigned StepOpcode = ISD::MUL;
2161     if (StepNumerator != 1) {
2162       if (isPowerOf2_64(std::abs(StepNumerator))) {
2163         Negate = StepNumerator < 0;
2164         StepOpcode = ISD::SHL;
2165         SplatStepVal = Log2_64(std::abs(StepNumerator));
2166       }
2167     }
2168 
2169     // Only emit VIDs with suitably-small steps/addends. We use imm5 is a
2170     // threshold since it's the immediate value many RVV instructions accept.
2171     // There is no vmul.vi instruction so ensure multiply constant can fit in
2172     // a single addi instruction.
2173     if (((StepOpcode == ISD::MUL && isInt<12>(SplatStepVal)) ||
2174          (StepOpcode == ISD::SHL && isUInt<5>(SplatStepVal))) &&
2175         isPowerOf2_32(StepDenominator) &&
2176         (SplatStepVal >= 0 || StepDenominator == 1) && isInt<5>(Addend)) {
2177       SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, ContainerVT, Mask, VL);
2178       // Convert right out of the scalable type so we can use standard ISD
2179       // nodes for the rest of the computation. If we used scalable types with
2180       // these, we'd lose the fixed-length vector info and generate worse
2181       // vsetvli code.
2182       VID = convertFromScalableVector(VT, VID, DAG, Subtarget);
2183       if ((StepOpcode == ISD::MUL && SplatStepVal != 1) ||
2184           (StepOpcode == ISD::SHL && SplatStepVal != 0)) {
2185         SDValue SplatStep = DAG.getSplatBuildVector(
2186             VT, DL, DAG.getConstant(SplatStepVal, DL, XLenVT));
2187         VID = DAG.getNode(StepOpcode, DL, VT, VID, SplatStep);
2188       }
2189       if (StepDenominator != 1) {
2190         SDValue SplatStep = DAG.getSplatBuildVector(
2191             VT, DL, DAG.getConstant(Log2_64(StepDenominator), DL, XLenVT));
2192         VID = DAG.getNode(ISD::SRL, DL, VT, VID, SplatStep);
2193       }
2194       if (Addend != 0 || Negate) {
2195         SDValue SplatAddend = DAG.getSplatBuildVector(
2196             VT, DL, DAG.getConstant(Addend, DL, XLenVT));
2197         VID = DAG.getNode(Negate ? ISD::SUB : ISD::ADD, DL, VT, SplatAddend, VID);
2198       }
2199       return VID;
2200     }
2201   }
2202 
2203   // Attempt to detect "hidden" splats, which only reveal themselves as splats
2204   // when re-interpreted as a vector with a larger element type. For example,
2205   //   v4i16 = build_vector i16 0, i16 1, i16 0, i16 1
2206   // could be instead splat as
2207   //   v2i32 = build_vector i32 0x00010000, i32 0x00010000
2208   // TODO: This optimization could also work on non-constant splats, but it
2209   // would require bit-manipulation instructions to construct the splat value.
2210   SmallVector<SDValue> Sequence;
2211   unsigned EltBitSize = VT.getScalarSizeInBits();
2212   const auto *BV = cast<BuildVectorSDNode>(Op);
2213   if (VT.isInteger() && EltBitSize < 64 &&
2214       ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) &&
2215       BV->getRepeatedSequence(Sequence) &&
2216       (Sequence.size() * EltBitSize) <= 64) {
2217     unsigned SeqLen = Sequence.size();
2218     MVT ViaIntVT = MVT::getIntegerVT(EltBitSize * SeqLen);
2219     MVT ViaVecVT = MVT::getVectorVT(ViaIntVT, NumElts / SeqLen);
2220     assert((ViaIntVT == MVT::i16 || ViaIntVT == MVT::i32 ||
2221             ViaIntVT == MVT::i64) &&
2222            "Unexpected sequence type");
2223 
2224     unsigned EltIdx = 0;
2225     uint64_t EltMask = maskTrailingOnes<uint64_t>(EltBitSize);
2226     uint64_t SplatValue = 0;
2227     // Construct the amalgamated value which can be splatted as this larger
2228     // vector type.
2229     for (const auto &SeqV : Sequence) {
2230       if (!SeqV.isUndef())
2231         SplatValue |= ((cast<ConstantSDNode>(SeqV)->getZExtValue() & EltMask)
2232                        << (EltIdx * EltBitSize));
2233       EltIdx++;
2234     }
2235 
2236     // On RV64, sign-extend from 32 to 64 bits where possible in order to
2237     // achieve better constant materializion.
2238     if (Subtarget.is64Bit() && ViaIntVT == MVT::i32)
2239       SplatValue = SignExtend64<32>(SplatValue);
2240 
2241     // Since we can't introduce illegal i64 types at this stage, we can only
2242     // perform an i64 splat on RV32 if it is its own sign-extended value. That
2243     // way we can use RVV instructions to splat.
2244     assert((ViaIntVT.bitsLE(XLenVT) ||
2245             (!Subtarget.is64Bit() && ViaIntVT == MVT::i64)) &&
2246            "Unexpected bitcast sequence");
2247     if (ViaIntVT.bitsLE(XLenVT) || isInt<32>(SplatValue)) {
2248       SDValue ViaVL =
2249           DAG.getConstant(ViaVecVT.getVectorNumElements(), DL, XLenVT);
2250       MVT ViaContainerVT =
2251           getContainerForFixedLengthVector(DAG, ViaVecVT, Subtarget);
2252       SDValue Splat =
2253           DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ViaContainerVT,
2254                       DAG.getUNDEF(ViaContainerVT),
2255                       DAG.getConstant(SplatValue, DL, XLenVT), ViaVL);
2256       Splat = convertFromScalableVector(ViaVecVT, Splat, DAG, Subtarget);
2257       return DAG.getBitcast(VT, Splat);
2258     }
2259   }
2260 
2261   // Try and optimize BUILD_VECTORs with "dominant values" - these are values
2262   // which constitute a large proportion of the elements. In such cases we can
2263   // splat a vector with the dominant element and make up the shortfall with
2264   // INSERT_VECTOR_ELTs.
2265   // Note that this includes vectors of 2 elements by association. The
2266   // upper-most element is the "dominant" one, allowing us to use a splat to
2267   // "insert" the upper element, and an insert of the lower element at position
2268   // 0, which improves codegen.
2269   SDValue DominantValue;
2270   unsigned MostCommonCount = 0;
2271   DenseMap<SDValue, unsigned> ValueCounts;
2272   unsigned NumUndefElts =
2273       count_if(Op->op_values(), [](const SDValue &V) { return V.isUndef(); });
2274 
2275   // Track the number of scalar loads we know we'd be inserting, estimated as
2276   // any non-zero floating-point constant. Other kinds of element are either
2277   // already in registers or are materialized on demand. The threshold at which
2278   // a vector load is more desirable than several scalar materializion and
2279   // vector-insertion instructions is not known.
2280   unsigned NumScalarLoads = 0;
2281 
2282   for (SDValue V : Op->op_values()) {
2283     if (V.isUndef())
2284       continue;
2285 
2286     ValueCounts.insert(std::make_pair(V, 0));
2287     unsigned &Count = ValueCounts[V];
2288 
2289     if (auto *CFP = dyn_cast<ConstantFPSDNode>(V))
2290       NumScalarLoads += !CFP->isExactlyValue(+0.0);
2291 
2292     // Is this value dominant? In case of a tie, prefer the highest element as
2293     // it's cheaper to insert near the beginning of a vector than it is at the
2294     // end.
2295     if (++Count >= MostCommonCount) {
2296       DominantValue = V;
2297       MostCommonCount = Count;
2298     }
2299   }
2300 
2301   assert(DominantValue && "Not expecting an all-undef BUILD_VECTOR");
2302   unsigned NumDefElts = NumElts - NumUndefElts;
2303   unsigned DominantValueCountThreshold = NumDefElts <= 2 ? 0 : NumDefElts - 2;
2304 
2305   // Don't perform this optimization when optimizing for size, since
2306   // materializing elements and inserting them tends to cause code bloat.
2307   if (!DAG.shouldOptForSize() && NumScalarLoads < NumElts &&
2308       ((MostCommonCount > DominantValueCountThreshold) ||
2309        (ValueCounts.size() <= Log2_32(NumDefElts)))) {
2310     // Start by splatting the most common element.
2311     SDValue Vec = DAG.getSplatBuildVector(VT, DL, DominantValue);
2312 
2313     DenseSet<SDValue> Processed{DominantValue};
2314     MVT SelMaskTy = VT.changeVectorElementType(MVT::i1);
2315     for (const auto &OpIdx : enumerate(Op->ops())) {
2316       const SDValue &V = OpIdx.value();
2317       if (V.isUndef() || !Processed.insert(V).second)
2318         continue;
2319       if (ValueCounts[V] == 1) {
2320         Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Vec, V,
2321                           DAG.getConstant(OpIdx.index(), DL, XLenVT));
2322       } else {
2323         // Blend in all instances of this value using a VSELECT, using a
2324         // mask where each bit signals whether that element is the one
2325         // we're after.
2326         SmallVector<SDValue> Ops;
2327         transform(Op->op_values(), std::back_inserter(Ops), [&](SDValue V1) {
2328           return DAG.getConstant(V == V1, DL, XLenVT);
2329         });
2330         Vec = DAG.getNode(ISD::VSELECT, DL, VT,
2331                           DAG.getBuildVector(SelMaskTy, DL, Ops),
2332                           DAG.getSplatBuildVector(VT, DL, V), Vec);
2333       }
2334     }
2335 
2336     return Vec;
2337   }
2338 
2339   return SDValue();
2340 }
2341 
2342 static SDValue splatPartsI64WithVL(const SDLoc &DL, MVT VT, SDValue Passthru,
2343                                    SDValue Lo, SDValue Hi, SDValue VL,
2344                                    SelectionDAG &DAG) {
2345   if (!Passthru)
2346     Passthru = DAG.getUNDEF(VT);
2347   if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) {
2348     int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue();
2349     int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue();
2350     // If Hi constant is all the same sign bit as Lo, lower this as a custom
2351     // node in order to try and match RVV vector/scalar instructions.
2352     if ((LoC >> 31) == HiC)
2353       return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Passthru, Lo, VL);
2354 
2355     // If vl is equal to XLEN_MAX and Hi constant is equal to Lo, we could use
2356     // vmv.v.x whose EEW = 32 to lower it.
2357     auto *Const = dyn_cast<ConstantSDNode>(VL);
2358     if (LoC == HiC && Const && Const->isAllOnesValue()) {
2359       MVT InterVT = MVT::getVectorVT(MVT::i32, VT.getVectorElementCount() * 2);
2360       // TODO: if vl <= min(VLMAX), we can also do this. But we could not
2361       // access the subtarget here now.
2362       auto InterVec = DAG.getNode(
2363           RISCVISD::VMV_V_X_VL, DL, InterVT, DAG.getUNDEF(InterVT), Lo,
2364                                   DAG.getRegister(RISCV::X0, MVT::i32));
2365       return DAG.getNode(ISD::BITCAST, DL, VT, InterVec);
2366     }
2367   }
2368 
2369   // Fall back to a stack store and stride x0 vector load.
2370   return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VT, Passthru, Lo,
2371                      Hi, VL);
2372 }
2373 
2374 // Called by type legalization to handle splat of i64 on RV32.
2375 // FIXME: We can optimize this when the type has sign or zero bits in one
2376 // of the halves.
2377 static SDValue splatSplitI64WithVL(const SDLoc &DL, MVT VT, SDValue Passthru,
2378                                    SDValue Scalar, SDValue VL,
2379                                    SelectionDAG &DAG) {
2380   assert(Scalar.getValueType() == MVT::i64 && "Unexpected VT!");
2381   SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar,
2382                            DAG.getConstant(0, DL, MVT::i32));
2383   SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar,
2384                            DAG.getConstant(1, DL, MVT::i32));
2385   return splatPartsI64WithVL(DL, VT, Passthru, Lo, Hi, VL, DAG);
2386 }
2387 
2388 // This function lowers a splat of a scalar operand Splat with the vector
2389 // length VL. It ensures the final sequence is type legal, which is useful when
2390 // lowering a splat after type legalization.
2391 static SDValue lowerScalarSplat(SDValue Passthru, SDValue Scalar, SDValue VL,
2392                                 MVT VT, SDLoc DL, SelectionDAG &DAG,
2393                                 const RISCVSubtarget &Subtarget) {
2394   bool HasPassthru = Passthru && !Passthru.isUndef();
2395   if (!HasPassthru && !Passthru)
2396     Passthru = DAG.getUNDEF(VT);
2397   if (VT.isFloatingPoint()) {
2398     // If VL is 1, we could use vfmv.s.f.
2399     if (isOneConstant(VL))
2400       return DAG.getNode(RISCVISD::VFMV_S_F_VL, DL, VT, Passthru, Scalar, VL);
2401     return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, VT, Passthru, Scalar, VL);
2402   }
2403 
2404   MVT XLenVT = Subtarget.getXLenVT();
2405 
2406   // Simplest case is that the operand needs to be promoted to XLenVT.
2407   if (Scalar.getValueType().bitsLE(XLenVT)) {
2408     // If the operand is a constant, sign extend to increase our chances
2409     // of being able to use a .vi instruction. ANY_EXTEND would become a
2410     // a zero extend and the simm5 check in isel would fail.
2411     // FIXME: Should we ignore the upper bits in isel instead?
2412     unsigned ExtOpc =
2413         isa<ConstantSDNode>(Scalar) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND;
2414     Scalar = DAG.getNode(ExtOpc, DL, XLenVT, Scalar);
2415     ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Scalar);
2416     // If VL is 1 and the scalar value won't benefit from immediate, we could
2417     // use vmv.s.x.
2418     if (isOneConstant(VL) &&
2419         (!Const || isNullConstant(Scalar) || !isInt<5>(Const->getSExtValue())))
2420       return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, VT, Passthru, Scalar, VL);
2421     return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Passthru, Scalar, VL);
2422   }
2423 
2424   assert(XLenVT == MVT::i32 && Scalar.getValueType() == MVT::i64 &&
2425          "Unexpected scalar for splat lowering!");
2426 
2427   if (isOneConstant(VL) && isNullConstant(Scalar))
2428     return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, VT, Passthru,
2429                        DAG.getConstant(0, DL, XLenVT), VL);
2430 
2431   // Otherwise use the more complicated splatting algorithm.
2432   return splatSplitI64WithVL(DL, VT, Passthru, Scalar, VL, DAG);
2433 }
2434 
2435 static bool isInterleaveShuffle(ArrayRef<int> Mask, MVT VT, bool &SwapSources,
2436                                 const RISCVSubtarget &Subtarget) {
2437   // We need to be able to widen elements to the next larger integer type.
2438   if (VT.getScalarSizeInBits() >= Subtarget.getELEN())
2439     return false;
2440 
2441   int Size = Mask.size();
2442   assert(Size == (int)VT.getVectorNumElements() && "Unexpected mask size");
2443 
2444   int Srcs[] = {-1, -1};
2445   for (int i = 0; i != Size; ++i) {
2446     // Ignore undef elements.
2447     if (Mask[i] < 0)
2448       continue;
2449 
2450     // Is this an even or odd element.
2451     int Pol = i % 2;
2452 
2453     // Ensure we consistently use the same source for this element polarity.
2454     int Src = Mask[i] / Size;
2455     if (Srcs[Pol] < 0)
2456       Srcs[Pol] = Src;
2457     if (Srcs[Pol] != Src)
2458       return false;
2459 
2460     // Make sure the element within the source is appropriate for this element
2461     // in the destination.
2462     int Elt = Mask[i] % Size;
2463     if (Elt != i / 2)
2464       return false;
2465   }
2466 
2467   // We need to find a source for each polarity and they can't be the same.
2468   if (Srcs[0] < 0 || Srcs[1] < 0 || Srcs[0] == Srcs[1])
2469     return false;
2470 
2471   // Swap the sources if the second source was in the even polarity.
2472   SwapSources = Srcs[0] > Srcs[1];
2473 
2474   return true;
2475 }
2476 
2477 /// Match shuffles that concatenate two vectors, rotate the concatenation,
2478 /// and then extract the original number of elements from the rotated result.
2479 /// This is equivalent to vector.splice or X86's PALIGNR instruction. The
2480 /// returned rotation amount is for a rotate right, where elements move from
2481 /// higher elements to lower elements. \p LoSrc indicates the first source
2482 /// vector of the rotate or -1 for undef. \p HiSrc indicates the second vector
2483 /// of the rotate or -1 for undef. At least one of \p LoSrc and \p HiSrc will be
2484 /// 0 or 1 if a rotation is found.
2485 ///
2486 /// NOTE: We talk about rotate to the right which matches how bit shift and
2487 /// rotate instructions are described where LSBs are on the right, but LLVM IR
2488 /// and the table below write vectors with the lowest elements on the left.
2489 static int isElementRotate(int &LoSrc, int &HiSrc, ArrayRef<int> Mask) {
2490   int Size = Mask.size();
2491 
2492   // We need to detect various ways of spelling a rotation:
2493   //   [11, 12, 13, 14, 15,  0,  1,  2]
2494   //   [-1, 12, 13, 14, -1, -1,  1, -1]
2495   //   [-1, -1, -1, -1, -1, -1,  1,  2]
2496   //   [ 3,  4,  5,  6,  7,  8,  9, 10]
2497   //   [-1,  4,  5,  6, -1, -1,  9, -1]
2498   //   [-1,  4,  5,  6, -1, -1, -1, -1]
2499   int Rotation = 0;
2500   LoSrc = -1;
2501   HiSrc = -1;
2502   for (int i = 0; i != Size; ++i) {
2503     int M = Mask[i];
2504     if (M < 0)
2505       continue;
2506 
2507     // Determine where a rotate vector would have started.
2508     int StartIdx = i - (M % Size);
2509     // The identity rotation isn't interesting, stop.
2510     if (StartIdx == 0)
2511       return -1;
2512 
2513     // If we found the tail of a vector the rotation must be the missing
2514     // front. If we found the head of a vector, it must be how much of the
2515     // head.
2516     int CandidateRotation = StartIdx < 0 ? -StartIdx : Size - StartIdx;
2517 
2518     if (Rotation == 0)
2519       Rotation = CandidateRotation;
2520     else if (Rotation != CandidateRotation)
2521       // The rotations don't match, so we can't match this mask.
2522       return -1;
2523 
2524     // Compute which value this mask is pointing at.
2525     int MaskSrc = M < Size ? 0 : 1;
2526 
2527     // Compute which of the two target values this index should be assigned to.
2528     // This reflects whether the high elements are remaining or the low elemnts
2529     // are remaining.
2530     int &TargetSrc = StartIdx < 0 ? HiSrc : LoSrc;
2531 
2532     // Either set up this value if we've not encountered it before, or check
2533     // that it remains consistent.
2534     if (TargetSrc < 0)
2535       TargetSrc = MaskSrc;
2536     else if (TargetSrc != MaskSrc)
2537       // This may be a rotation, but it pulls from the inputs in some
2538       // unsupported interleaving.
2539       return -1;
2540   }
2541 
2542   // Check that we successfully analyzed the mask, and normalize the results.
2543   assert(Rotation != 0 && "Failed to locate a viable rotation!");
2544   assert((LoSrc >= 0 || HiSrc >= 0) &&
2545          "Failed to find a rotated input vector!");
2546 
2547   return Rotation;
2548 }
2549 
2550 static SDValue lowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG,
2551                                    const RISCVSubtarget &Subtarget) {
2552   SDValue V1 = Op.getOperand(0);
2553   SDValue V2 = Op.getOperand(1);
2554   SDLoc DL(Op);
2555   MVT XLenVT = Subtarget.getXLenVT();
2556   MVT VT = Op.getSimpleValueType();
2557   unsigned NumElts = VT.getVectorNumElements();
2558   ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
2559 
2560   MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
2561 
2562   SDValue TrueMask, VL;
2563   std::tie(TrueMask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
2564 
2565   if (SVN->isSplat()) {
2566     const int Lane = SVN->getSplatIndex();
2567     if (Lane >= 0) {
2568       MVT SVT = VT.getVectorElementType();
2569 
2570       // Turn splatted vector load into a strided load with an X0 stride.
2571       SDValue V = V1;
2572       // Peek through CONCAT_VECTORS as VectorCombine can concat a vector
2573       // with undef.
2574       // FIXME: Peek through INSERT_SUBVECTOR, EXTRACT_SUBVECTOR, bitcasts?
2575       int Offset = Lane;
2576       if (V.getOpcode() == ISD::CONCAT_VECTORS) {
2577         int OpElements =
2578             V.getOperand(0).getSimpleValueType().getVectorNumElements();
2579         V = V.getOperand(Offset / OpElements);
2580         Offset %= OpElements;
2581       }
2582 
2583       // We need to ensure the load isn't atomic or volatile.
2584       if (ISD::isNormalLoad(V.getNode()) && cast<LoadSDNode>(V)->isSimple()) {
2585         auto *Ld = cast<LoadSDNode>(V);
2586         Offset *= SVT.getStoreSize();
2587         SDValue NewAddr = DAG.getMemBasePlusOffset(Ld->getBasePtr(),
2588                                                    TypeSize::Fixed(Offset), DL);
2589 
2590         // If this is SEW=64 on RV32, use a strided load with a stride of x0.
2591         if (SVT.isInteger() && SVT.bitsGT(XLenVT)) {
2592           SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
2593           SDValue IntID =
2594               DAG.getTargetConstant(Intrinsic::riscv_vlse, DL, XLenVT);
2595           SDValue Ops[] = {Ld->getChain(),
2596                            IntID,
2597                            DAG.getUNDEF(ContainerVT),
2598                            NewAddr,
2599                            DAG.getRegister(RISCV::X0, XLenVT),
2600                            VL};
2601           SDValue NewLoad = DAG.getMemIntrinsicNode(
2602               ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, SVT,
2603               DAG.getMachineFunction().getMachineMemOperand(
2604                   Ld->getMemOperand(), Offset, SVT.getStoreSize()));
2605           DAG.makeEquivalentMemoryOrdering(Ld, NewLoad);
2606           return convertFromScalableVector(VT, NewLoad, DAG, Subtarget);
2607         }
2608 
2609         // Otherwise use a scalar load and splat. This will give the best
2610         // opportunity to fold a splat into the operation. ISel can turn it into
2611         // the x0 strided load if we aren't able to fold away the select.
2612         if (SVT.isFloatingPoint())
2613           V = DAG.getLoad(SVT, DL, Ld->getChain(), NewAddr,
2614                           Ld->getPointerInfo().getWithOffset(Offset),
2615                           Ld->getOriginalAlign(),
2616                           Ld->getMemOperand()->getFlags());
2617         else
2618           V = DAG.getExtLoad(ISD::SEXTLOAD, DL, XLenVT, Ld->getChain(), NewAddr,
2619                              Ld->getPointerInfo().getWithOffset(Offset), SVT,
2620                              Ld->getOriginalAlign(),
2621                              Ld->getMemOperand()->getFlags());
2622         DAG.makeEquivalentMemoryOrdering(Ld, V);
2623 
2624         unsigned Opc =
2625             VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL : RISCVISD::VMV_V_X_VL;
2626         SDValue Splat =
2627             DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), V, VL);
2628         return convertFromScalableVector(VT, Splat, DAG, Subtarget);
2629       }
2630 
2631       V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget);
2632       assert(Lane < (int)NumElts && "Unexpected lane!");
2633       SDValue Gather = DAG.getNode(RISCVISD::VRGATHER_VX_VL, DL, ContainerVT,
2634                                    V1, DAG.getConstant(Lane, DL, XLenVT),
2635                                    TrueMask, DAG.getUNDEF(ContainerVT), VL);
2636       return convertFromScalableVector(VT, Gather, DAG, Subtarget);
2637     }
2638   }
2639 
2640   ArrayRef<int> Mask = SVN->getMask();
2641 
2642   // Lower rotations to a SLIDEDOWN and a SLIDEUP. One of the source vectors may
2643   // be undef which can be handled with a single SLIDEDOWN/UP.
2644   int LoSrc, HiSrc;
2645   int Rotation = isElementRotate(LoSrc, HiSrc, Mask);
2646   if (Rotation > 0) {
2647     SDValue LoV, HiV;
2648     if (LoSrc >= 0) {
2649       LoV = LoSrc == 0 ? V1 : V2;
2650       LoV = convertToScalableVector(ContainerVT, LoV, DAG, Subtarget);
2651     }
2652     if (HiSrc >= 0) {
2653       HiV = HiSrc == 0 ? V1 : V2;
2654       HiV = convertToScalableVector(ContainerVT, HiV, DAG, Subtarget);
2655     }
2656 
2657     // We found a rotation. We need to slide HiV down by Rotation. Then we need
2658     // to slide LoV up by (NumElts - Rotation).
2659     unsigned InvRotate = NumElts - Rotation;
2660 
2661     SDValue Res = DAG.getUNDEF(ContainerVT);
2662     if (HiV) {
2663       // If we are doing a SLIDEDOWN+SLIDEUP, reduce the VL for the SLIDEDOWN.
2664       // FIXME: If we are only doing a SLIDEDOWN, don't reduce the VL as it
2665       // causes multiple vsetvlis in some test cases such as lowering
2666       // reduce.mul
2667       SDValue DownVL = VL;
2668       if (LoV)
2669         DownVL = DAG.getConstant(InvRotate, DL, XLenVT);
2670       Res =
2671           DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, Res, HiV,
2672                       DAG.getConstant(Rotation, DL, XLenVT), TrueMask, DownVL);
2673     }
2674     if (LoV)
2675       Res = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Res, LoV,
2676                         DAG.getConstant(InvRotate, DL, XLenVT), TrueMask, VL);
2677 
2678     return convertFromScalableVector(VT, Res, DAG, Subtarget);
2679   }
2680 
2681   // Detect an interleave shuffle and lower to
2682   // (vmaccu.vx (vwaddu.vx lohalf(V1), lohalf(V2)), lohalf(V2), (2^eltbits - 1))
2683   bool SwapSources;
2684   if (isInterleaveShuffle(Mask, VT, SwapSources, Subtarget)) {
2685     // Swap sources if needed.
2686     if (SwapSources)
2687       std::swap(V1, V2);
2688 
2689     // Extract the lower half of the vectors.
2690     MVT HalfVT = VT.getHalfNumVectorElementsVT();
2691     V1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, V1,
2692                      DAG.getConstant(0, DL, XLenVT));
2693     V2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, V2,
2694                      DAG.getConstant(0, DL, XLenVT));
2695 
2696     // Double the element width and halve the number of elements in an int type.
2697     unsigned EltBits = VT.getScalarSizeInBits();
2698     MVT WideIntEltVT = MVT::getIntegerVT(EltBits * 2);
2699     MVT WideIntVT =
2700         MVT::getVectorVT(WideIntEltVT, VT.getVectorNumElements() / 2);
2701     // Convert this to a scalable vector. We need to base this on the
2702     // destination size to ensure there's always a type with a smaller LMUL.
2703     MVT WideIntContainerVT =
2704         getContainerForFixedLengthVector(DAG, WideIntVT, Subtarget);
2705 
2706     // Convert sources to scalable vectors with the same element count as the
2707     // larger type.
2708     MVT HalfContainerVT = MVT::getVectorVT(
2709         VT.getVectorElementType(), WideIntContainerVT.getVectorElementCount());
2710     V1 = convertToScalableVector(HalfContainerVT, V1, DAG, Subtarget);
2711     V2 = convertToScalableVector(HalfContainerVT, V2, DAG, Subtarget);
2712 
2713     // Cast sources to integer.
2714     MVT IntEltVT = MVT::getIntegerVT(EltBits);
2715     MVT IntHalfVT =
2716         MVT::getVectorVT(IntEltVT, HalfContainerVT.getVectorElementCount());
2717     V1 = DAG.getBitcast(IntHalfVT, V1);
2718     V2 = DAG.getBitcast(IntHalfVT, V2);
2719 
2720     // Freeze V2 since we use it twice and we need to be sure that the add and
2721     // multiply see the same value.
2722     V2 = DAG.getFreeze(V2);
2723 
2724     // Recreate TrueMask using the widened type's element count.
2725     TrueMask = getAllOnesMask(HalfContainerVT, VL, DL, DAG);
2726 
2727     // Widen V1 and V2 with 0s and add one copy of V2 to V1.
2728     SDValue Add = DAG.getNode(RISCVISD::VWADDU_VL, DL, WideIntContainerVT, V1,
2729                               V2, TrueMask, VL);
2730     // Create 2^eltbits - 1 copies of V2 by multiplying by the largest integer.
2731     SDValue Multiplier = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, IntHalfVT,
2732                                      DAG.getUNDEF(IntHalfVT),
2733                                      DAG.getAllOnesConstant(DL, XLenVT));
2734     SDValue WidenMul = DAG.getNode(RISCVISD::VWMULU_VL, DL, WideIntContainerVT,
2735                                    V2, Multiplier, TrueMask, VL);
2736     // Add the new copies to our previous addition giving us 2^eltbits copies of
2737     // V2. This is equivalent to shifting V2 left by eltbits. This should
2738     // combine with the vwmulu.vv above to form vwmaccu.vv.
2739     Add = DAG.getNode(RISCVISD::ADD_VL, DL, WideIntContainerVT, Add, WidenMul,
2740                       TrueMask, VL);
2741     // Cast back to ContainerVT. We need to re-create a new ContainerVT in case
2742     // WideIntContainerVT is a larger fractional LMUL than implied by the fixed
2743     // vector VT.
2744     ContainerVT =
2745         MVT::getVectorVT(VT.getVectorElementType(),
2746                          WideIntContainerVT.getVectorElementCount() * 2);
2747     Add = DAG.getBitcast(ContainerVT, Add);
2748     return convertFromScalableVector(VT, Add, DAG, Subtarget);
2749   }
2750 
2751   // Detect shuffles which can be re-expressed as vector selects; these are
2752   // shuffles in which each element in the destination is taken from an element
2753   // at the corresponding index in either source vectors.
2754   bool IsSelect = all_of(enumerate(Mask), [&](const auto &MaskIdx) {
2755     int MaskIndex = MaskIdx.value();
2756     return MaskIndex < 0 || MaskIdx.index() == (unsigned)MaskIndex % NumElts;
2757   });
2758 
2759   assert(!V1.isUndef() && "Unexpected shuffle canonicalization");
2760 
2761   SmallVector<SDValue> MaskVals;
2762   // As a backup, shuffles can be lowered via a vrgather instruction, possibly
2763   // merged with a second vrgather.
2764   SmallVector<SDValue> GatherIndicesLHS, GatherIndicesRHS;
2765 
2766   // By default we preserve the original operand order, and use a mask to
2767   // select LHS as true and RHS as false. However, since RVV vector selects may
2768   // feature splats but only on the LHS, we may choose to invert our mask and
2769   // instead select between RHS and LHS.
2770   bool SwapOps = DAG.isSplatValue(V2) && !DAG.isSplatValue(V1);
2771   bool InvertMask = IsSelect == SwapOps;
2772 
2773   // Keep a track of which non-undef indices are used by each LHS/RHS shuffle
2774   // half.
2775   DenseMap<int, unsigned> LHSIndexCounts, RHSIndexCounts;
2776 
2777   // Now construct the mask that will be used by the vselect or blended
2778   // vrgather operation. For vrgathers, construct the appropriate indices into
2779   // each vector.
2780   for (int MaskIndex : Mask) {
2781     bool SelectMaskVal = (MaskIndex < (int)NumElts) ^ InvertMask;
2782     MaskVals.push_back(DAG.getConstant(SelectMaskVal, DL, XLenVT));
2783     if (!IsSelect) {
2784       bool IsLHSOrUndefIndex = MaskIndex < (int)NumElts;
2785       GatherIndicesLHS.push_back(IsLHSOrUndefIndex && MaskIndex >= 0
2786                                      ? DAG.getConstant(MaskIndex, DL, XLenVT)
2787                                      : DAG.getUNDEF(XLenVT));
2788       GatherIndicesRHS.push_back(
2789           IsLHSOrUndefIndex ? DAG.getUNDEF(XLenVT)
2790                             : DAG.getConstant(MaskIndex - NumElts, DL, XLenVT));
2791       if (IsLHSOrUndefIndex && MaskIndex >= 0)
2792         ++LHSIndexCounts[MaskIndex];
2793       if (!IsLHSOrUndefIndex)
2794         ++RHSIndexCounts[MaskIndex - NumElts];
2795     }
2796   }
2797 
2798   if (SwapOps) {
2799     std::swap(V1, V2);
2800     std::swap(GatherIndicesLHS, GatherIndicesRHS);
2801   }
2802 
2803   assert(MaskVals.size() == NumElts && "Unexpected select-like shuffle");
2804   MVT MaskVT = MVT::getVectorVT(MVT::i1, NumElts);
2805   SDValue SelectMask = DAG.getBuildVector(MaskVT, DL, MaskVals);
2806 
2807   if (IsSelect)
2808     return DAG.getNode(ISD::VSELECT, DL, VT, SelectMask, V1, V2);
2809 
2810   if (VT.getScalarSizeInBits() == 8 && VT.getVectorNumElements() > 256) {
2811     // On such a large vector we're unable to use i8 as the index type.
2812     // FIXME: We could promote the index to i16 and use vrgatherei16, but that
2813     // may involve vector splitting if we're already at LMUL=8, or our
2814     // user-supplied maximum fixed-length LMUL.
2815     return SDValue();
2816   }
2817 
2818   unsigned GatherVXOpc = RISCVISD::VRGATHER_VX_VL;
2819   unsigned GatherVVOpc = RISCVISD::VRGATHER_VV_VL;
2820   MVT IndexVT = VT.changeTypeToInteger();
2821   // Since we can't introduce illegal index types at this stage, use i16 and
2822   // vrgatherei16 if the corresponding index type for plain vrgather is greater
2823   // than XLenVT.
2824   if (IndexVT.getScalarType().bitsGT(XLenVT)) {
2825     GatherVVOpc = RISCVISD::VRGATHEREI16_VV_VL;
2826     IndexVT = IndexVT.changeVectorElementType(MVT::i16);
2827   }
2828 
2829   MVT IndexContainerVT =
2830       ContainerVT.changeVectorElementType(IndexVT.getScalarType());
2831 
2832   SDValue Gather;
2833   // TODO: This doesn't trigger for i64 vectors on RV32, since there we
2834   // encounter a bitcasted BUILD_VECTOR with low/high i32 values.
2835   if (SDValue SplatValue = DAG.getSplatValue(V1, /*LegalTypes*/ true)) {
2836     Gather = lowerScalarSplat(SDValue(), SplatValue, VL, ContainerVT, DL, DAG,
2837                               Subtarget);
2838   } else {
2839     V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget);
2840     // If only one index is used, we can use a "splat" vrgather.
2841     // TODO: We can splat the most-common index and fix-up any stragglers, if
2842     // that's beneficial.
2843     if (LHSIndexCounts.size() == 1) {
2844       int SplatIndex = LHSIndexCounts.begin()->getFirst();
2845       Gather = DAG.getNode(GatherVXOpc, DL, ContainerVT, V1,
2846                            DAG.getConstant(SplatIndex, DL, XLenVT), TrueMask,
2847                            DAG.getUNDEF(ContainerVT), VL);
2848     } else {
2849       SDValue LHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesLHS);
2850       LHSIndices =
2851           convertToScalableVector(IndexContainerVT, LHSIndices, DAG, Subtarget);
2852 
2853       Gather = DAG.getNode(GatherVVOpc, DL, ContainerVT, V1, LHSIndices,
2854                            TrueMask, DAG.getUNDEF(ContainerVT), VL);
2855     }
2856   }
2857 
2858   // If a second vector operand is used by this shuffle, blend it in with an
2859   // additional vrgather.
2860   if (!V2.isUndef()) {
2861     V2 = convertToScalableVector(ContainerVT, V2, DAG, Subtarget);
2862 
2863     MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1);
2864     SelectMask =
2865         convertToScalableVector(MaskContainerVT, SelectMask, DAG, Subtarget);
2866 
2867     // If only one index is used, we can use a "splat" vrgather.
2868     // TODO: We can splat the most-common index and fix-up any stragglers, if
2869     // that's beneficial.
2870     if (RHSIndexCounts.size() == 1) {
2871       int SplatIndex = RHSIndexCounts.begin()->getFirst();
2872       Gather = DAG.getNode(GatherVXOpc, DL, ContainerVT, V2,
2873                            DAG.getConstant(SplatIndex, DL, XLenVT), SelectMask,
2874                            Gather, VL);
2875     } else {
2876       SDValue RHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesRHS);
2877       RHSIndices =
2878           convertToScalableVector(IndexContainerVT, RHSIndices, DAG, Subtarget);
2879       Gather = DAG.getNode(GatherVVOpc, DL, ContainerVT, V2, RHSIndices,
2880                            SelectMask, Gather, VL);
2881     }
2882   }
2883 
2884   return convertFromScalableVector(VT, Gather, DAG, Subtarget);
2885 }
2886 
2887 bool RISCVTargetLowering::isShuffleMaskLegal(ArrayRef<int> M, EVT VT) const {
2888   // Support splats for any type. These should type legalize well.
2889   if (ShuffleVectorSDNode::isSplatMask(M.data(), VT))
2890     return true;
2891 
2892   // Only support legal VTs for other shuffles for now.
2893   if (!isTypeLegal(VT))
2894     return false;
2895 
2896   MVT SVT = VT.getSimpleVT();
2897 
2898   bool SwapSources;
2899   int LoSrc, HiSrc;
2900   return (isElementRotate(LoSrc, HiSrc, M) > 0) ||
2901          isInterleaveShuffle(M, SVT, SwapSources, Subtarget);
2902 }
2903 
2904 // Lower CTLZ_ZERO_UNDEF or CTTZ_ZERO_UNDEF by converting to FP and extracting
2905 // the exponent.
2906 static SDValue lowerCTLZ_CTTZ_ZERO_UNDEF(SDValue Op, SelectionDAG &DAG) {
2907   MVT VT = Op.getSimpleValueType();
2908   unsigned EltSize = VT.getScalarSizeInBits();
2909   SDValue Src = Op.getOperand(0);
2910   SDLoc DL(Op);
2911 
2912   // We need a FP type that can represent the value.
2913   // TODO: Use f16 for i8 when possible?
2914   MVT FloatEltVT = EltSize == 32 ? MVT::f64 : MVT::f32;
2915   MVT FloatVT = MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount());
2916 
2917   // Legal types should have been checked in the RISCVTargetLowering
2918   // constructor.
2919   // TODO: Splitting may make sense in some cases.
2920   assert(DAG.getTargetLoweringInfo().isTypeLegal(FloatVT) &&
2921          "Expected legal float type!");
2922 
2923   // For CTTZ_ZERO_UNDEF, we need to extract the lowest set bit using X & -X.
2924   // The trailing zero count is equal to log2 of this single bit value.
2925   if (Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF) {
2926     SDValue Neg =
2927         DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Src);
2928     Src = DAG.getNode(ISD::AND, DL, VT, Src, Neg);
2929   }
2930 
2931   // We have a legal FP type, convert to it.
2932   SDValue FloatVal = DAG.getNode(ISD::UINT_TO_FP, DL, FloatVT, Src);
2933   // Bitcast to integer and shift the exponent to the LSB.
2934   EVT IntVT = FloatVT.changeVectorElementTypeToInteger();
2935   SDValue Bitcast = DAG.getBitcast(IntVT, FloatVal);
2936   unsigned ShiftAmt = FloatEltVT == MVT::f64 ? 52 : 23;
2937   SDValue Shift = DAG.getNode(ISD::SRL, DL, IntVT, Bitcast,
2938                               DAG.getConstant(ShiftAmt, DL, IntVT));
2939   // Truncate back to original type to allow vnsrl.
2940   SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, VT, Shift);
2941   // The exponent contains log2 of the value in biased form.
2942   unsigned ExponentBias = FloatEltVT == MVT::f64 ? 1023 : 127;
2943 
2944   // For trailing zeros, we just need to subtract the bias.
2945   if (Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF)
2946     return DAG.getNode(ISD::SUB, DL, VT, Trunc,
2947                        DAG.getConstant(ExponentBias, DL, VT));
2948 
2949   // For leading zeros, we need to remove the bias and convert from log2 to
2950   // leading zeros. We can do this by subtracting from (Bias + (EltSize - 1)).
2951   unsigned Adjust = ExponentBias + (EltSize - 1);
2952   return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(Adjust, DL, VT), Trunc);
2953 }
2954 
2955 // While RVV has alignment restrictions, we should always be able to load as a
2956 // legal equivalently-sized byte-typed vector instead. This method is
2957 // responsible for re-expressing a ISD::LOAD via a correctly-aligned type. If
2958 // the load is already correctly-aligned, it returns SDValue().
2959 SDValue RISCVTargetLowering::expandUnalignedRVVLoad(SDValue Op,
2960                                                     SelectionDAG &DAG) const {
2961   auto *Load = cast<LoadSDNode>(Op);
2962   assert(Load && Load->getMemoryVT().isVector() && "Expected vector load");
2963 
2964   if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
2965                                      Load->getMemoryVT(),
2966                                      *Load->getMemOperand()))
2967     return SDValue();
2968 
2969   SDLoc DL(Op);
2970   MVT VT = Op.getSimpleValueType();
2971   unsigned EltSizeBits = VT.getScalarSizeInBits();
2972   assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) &&
2973          "Unexpected unaligned RVV load type");
2974   MVT NewVT =
2975       MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8));
2976   assert(NewVT.isValid() &&
2977          "Expecting equally-sized RVV vector types to be legal");
2978   SDValue L = DAG.getLoad(NewVT, DL, Load->getChain(), Load->getBasePtr(),
2979                           Load->getPointerInfo(), Load->getOriginalAlign(),
2980                           Load->getMemOperand()->getFlags());
2981   return DAG.getMergeValues({DAG.getBitcast(VT, L), L.getValue(1)}, DL);
2982 }
2983 
2984 // While RVV has alignment restrictions, we should always be able to store as a
2985 // legal equivalently-sized byte-typed vector instead. This method is
2986 // responsible for re-expressing a ISD::STORE via a correctly-aligned type. It
2987 // returns SDValue() if the store is already correctly aligned.
2988 SDValue RISCVTargetLowering::expandUnalignedRVVStore(SDValue Op,
2989                                                      SelectionDAG &DAG) const {
2990   auto *Store = cast<StoreSDNode>(Op);
2991   assert(Store && Store->getValue().getValueType().isVector() &&
2992          "Expected vector store");
2993 
2994   if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
2995                                      Store->getMemoryVT(),
2996                                      *Store->getMemOperand()))
2997     return SDValue();
2998 
2999   SDLoc DL(Op);
3000   SDValue StoredVal = Store->getValue();
3001   MVT VT = StoredVal.getSimpleValueType();
3002   unsigned EltSizeBits = VT.getScalarSizeInBits();
3003   assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) &&
3004          "Unexpected unaligned RVV store type");
3005   MVT NewVT =
3006       MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8));
3007   assert(NewVT.isValid() &&
3008          "Expecting equally-sized RVV vector types to be legal");
3009   StoredVal = DAG.getBitcast(NewVT, StoredVal);
3010   return DAG.getStore(Store->getChain(), DL, StoredVal, Store->getBasePtr(),
3011                       Store->getPointerInfo(), Store->getOriginalAlign(),
3012                       Store->getMemOperand()->getFlags());
3013 }
3014 
3015 static SDValue lowerConstant(SDValue Op, SelectionDAG &DAG,
3016                              const RISCVSubtarget &Subtarget) {
3017   assert(Op.getValueType() == MVT::i64 && "Unexpected VT");
3018 
3019   int64_t Imm = cast<ConstantSDNode>(Op)->getSExtValue();
3020 
3021   // All simm32 constants should be handled by isel.
3022   // NOTE: The getMaxBuildIntsCost call below should return a value >= 2 making
3023   // this check redundant, but small immediates are common so this check
3024   // should have better compile time.
3025   if (isInt<32>(Imm))
3026     return Op;
3027 
3028   // We only need to cost the immediate, if constant pool lowering is enabled.
3029   if (!Subtarget.useConstantPoolForLargeInts())
3030     return Op;
3031 
3032   RISCVMatInt::InstSeq Seq =
3033       RISCVMatInt::generateInstSeq(Imm, Subtarget.getFeatureBits());
3034   if (Seq.size() <= Subtarget.getMaxBuildIntsCost())
3035     return Op;
3036 
3037   // Expand to a constant pool using the default expansion code.
3038   return SDValue();
3039 }
3040 
3041 SDValue RISCVTargetLowering::LowerOperation(SDValue Op,
3042                                             SelectionDAG &DAG) const {
3043   switch (Op.getOpcode()) {
3044   default:
3045     report_fatal_error("unimplemented operand");
3046   case ISD::GlobalAddress:
3047     return lowerGlobalAddress(Op, DAG);
3048   case ISD::BlockAddress:
3049     return lowerBlockAddress(Op, DAG);
3050   case ISD::ConstantPool:
3051     return lowerConstantPool(Op, DAG);
3052   case ISD::JumpTable:
3053     return lowerJumpTable(Op, DAG);
3054   case ISD::GlobalTLSAddress:
3055     return lowerGlobalTLSAddress(Op, DAG);
3056   case ISD::Constant:
3057     return lowerConstant(Op, DAG, Subtarget);
3058   case ISD::SELECT:
3059     return lowerSELECT(Op, DAG);
3060   case ISD::BRCOND:
3061     return lowerBRCOND(Op, DAG);
3062   case ISD::VASTART:
3063     return lowerVASTART(Op, DAG);
3064   case ISD::FRAMEADDR:
3065     return lowerFRAMEADDR(Op, DAG);
3066   case ISD::RETURNADDR:
3067     return lowerRETURNADDR(Op, DAG);
3068   case ISD::SHL_PARTS:
3069     return lowerShiftLeftParts(Op, DAG);
3070   case ISD::SRA_PARTS:
3071     return lowerShiftRightParts(Op, DAG, true);
3072   case ISD::SRL_PARTS:
3073     return lowerShiftRightParts(Op, DAG, false);
3074   case ISD::BITCAST: {
3075     SDLoc DL(Op);
3076     EVT VT = Op.getValueType();
3077     SDValue Op0 = Op.getOperand(0);
3078     EVT Op0VT = Op0.getValueType();
3079     MVT XLenVT = Subtarget.getXLenVT();
3080     if (VT == MVT::f16 && Op0VT == MVT::i16 && Subtarget.hasStdExtZfh()) {
3081       SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Op0);
3082       SDValue FPConv = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, NewOp0);
3083       return FPConv;
3084     }
3085     if (VT == MVT::f32 && Op0VT == MVT::i32 && Subtarget.is64Bit() &&
3086         Subtarget.hasStdExtF()) {
3087       SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
3088       SDValue FPConv =
3089           DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, NewOp0);
3090       return FPConv;
3091     }
3092 
3093     // Consider other scalar<->scalar casts as legal if the types are legal.
3094     // Otherwise expand them.
3095     if (!VT.isVector() && !Op0VT.isVector()) {
3096       if (isTypeLegal(VT) && isTypeLegal(Op0VT))
3097         return Op;
3098       return SDValue();
3099     }
3100 
3101     assert(!VT.isScalableVector() && !Op0VT.isScalableVector() &&
3102            "Unexpected types");
3103 
3104     if (VT.isFixedLengthVector()) {
3105       // We can handle fixed length vector bitcasts with a simple replacement
3106       // in isel.
3107       if (Op0VT.isFixedLengthVector())
3108         return Op;
3109       // When bitcasting from scalar to fixed-length vector, insert the scalar
3110       // into a one-element vector of the result type, and perform a vector
3111       // bitcast.
3112       if (!Op0VT.isVector()) {
3113         EVT BVT = EVT::getVectorVT(*DAG.getContext(), Op0VT, 1);
3114         if (!isTypeLegal(BVT))
3115           return SDValue();
3116         return DAG.getBitcast(VT, DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, BVT,
3117                                               DAG.getUNDEF(BVT), Op0,
3118                                               DAG.getConstant(0, DL, XLenVT)));
3119       }
3120       return SDValue();
3121     }
3122     // Custom-legalize bitcasts from fixed-length vector types to scalar types
3123     // thus: bitcast the vector to a one-element vector type whose element type
3124     // is the same as the result type, and extract the first element.
3125     if (!VT.isVector() && Op0VT.isFixedLengthVector()) {
3126       EVT BVT = EVT::getVectorVT(*DAG.getContext(), VT, 1);
3127       if (!isTypeLegal(BVT))
3128         return SDValue();
3129       SDValue BVec = DAG.getBitcast(BVT, Op0);
3130       return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec,
3131                          DAG.getConstant(0, DL, XLenVT));
3132     }
3133     return SDValue();
3134   }
3135   case ISD::INTRINSIC_WO_CHAIN:
3136     return LowerINTRINSIC_WO_CHAIN(Op, DAG);
3137   case ISD::INTRINSIC_W_CHAIN:
3138     return LowerINTRINSIC_W_CHAIN(Op, DAG);
3139   case ISD::INTRINSIC_VOID:
3140     return LowerINTRINSIC_VOID(Op, DAG);
3141   case ISD::BSWAP:
3142   case ISD::BITREVERSE: {
3143     MVT VT = Op.getSimpleValueType();
3144     SDLoc DL(Op);
3145     if (Subtarget.hasStdExtZbp()) {
3146       // Convert BSWAP/BITREVERSE to GREVI to enable GREVI combinining.
3147       // Start with the maximum immediate value which is the bitwidth - 1.
3148       unsigned Imm = VT.getSizeInBits() - 1;
3149       // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits.
3150       if (Op.getOpcode() == ISD::BSWAP)
3151         Imm &= ~0x7U;
3152       return DAG.getNode(RISCVISD::GREV, DL, VT, Op.getOperand(0),
3153                          DAG.getConstant(Imm, DL, VT));
3154     }
3155     assert(Subtarget.hasStdExtZbkb() && "Unexpected custom legalization");
3156     assert(Op.getOpcode() == ISD::BITREVERSE && "Unexpected opcode");
3157     // Expand bitreverse to a bswap(rev8) followed by brev8.
3158     SDValue BSwap = DAG.getNode(ISD::BSWAP, DL, VT, Op.getOperand(0));
3159     // We use the Zbp grevi encoding for rev.b/brev8 which will be recognized
3160     // as brev8 by an isel pattern.
3161     return DAG.getNode(RISCVISD::GREV, DL, VT, BSwap,
3162                        DAG.getConstant(7, DL, VT));
3163   }
3164   case ISD::FSHL:
3165   case ISD::FSHR: {
3166     MVT VT = Op.getSimpleValueType();
3167     assert(VT == Subtarget.getXLenVT() && "Unexpected custom legalization");
3168     SDLoc DL(Op);
3169     // FSL/FSR take a log2(XLen)+1 bit shift amount but XLenVT FSHL/FSHR only
3170     // use log(XLen) bits. Mask the shift amount accordingly to prevent
3171     // accidentally setting the extra bit.
3172     unsigned ShAmtWidth = Subtarget.getXLen() - 1;
3173     SDValue ShAmt = DAG.getNode(ISD::AND, DL, VT, Op.getOperand(2),
3174                                 DAG.getConstant(ShAmtWidth, DL, VT));
3175     // fshl and fshr concatenate their operands in the same order. fsr and fsl
3176     // instruction use different orders. fshl will return its first operand for
3177     // shift of zero, fshr will return its second operand. fsl and fsr both
3178     // return rs1 so the ISD nodes need to have different operand orders.
3179     // Shift amount is in rs2.
3180     SDValue Op0 = Op.getOperand(0);
3181     SDValue Op1 = Op.getOperand(1);
3182     unsigned Opc = RISCVISD::FSL;
3183     if (Op.getOpcode() == ISD::FSHR) {
3184       std::swap(Op0, Op1);
3185       Opc = RISCVISD::FSR;
3186     }
3187     return DAG.getNode(Opc, DL, VT, Op0, Op1, ShAmt);
3188   }
3189   case ISD::TRUNCATE:
3190     // Only custom-lower vector truncates
3191     if (!Op.getSimpleValueType().isVector())
3192       return Op;
3193     return lowerVectorTruncLike(Op, DAG);
3194   case ISD::ANY_EXTEND:
3195   case ISD::ZERO_EXTEND:
3196     if (Op.getOperand(0).getValueType().isVector() &&
3197         Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1)
3198       return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ 1);
3199     return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VZEXT_VL);
3200   case ISD::SIGN_EXTEND:
3201     if (Op.getOperand(0).getValueType().isVector() &&
3202         Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1)
3203       return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ -1);
3204     return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VSEXT_VL);
3205   case ISD::SPLAT_VECTOR_PARTS:
3206     return lowerSPLAT_VECTOR_PARTS(Op, DAG);
3207   case ISD::INSERT_VECTOR_ELT:
3208     return lowerINSERT_VECTOR_ELT(Op, DAG);
3209   case ISD::EXTRACT_VECTOR_ELT:
3210     return lowerEXTRACT_VECTOR_ELT(Op, DAG);
3211   case ISD::VSCALE: {
3212     MVT VT = Op.getSimpleValueType();
3213     SDLoc DL(Op);
3214     SDValue VLENB = DAG.getNode(RISCVISD::READ_VLENB, DL, VT);
3215     // We define our scalable vector types for lmul=1 to use a 64 bit known
3216     // minimum size. e.g. <vscale x 2 x i32>. VLENB is in bytes so we calculate
3217     // vscale as VLENB / 8.
3218     static_assert(RISCV::RVVBitsPerBlock == 64, "Unexpected bits per block!");
3219     if (Subtarget.getRealMinVLen() < RISCV::RVVBitsPerBlock)
3220       report_fatal_error("Support for VLEN==32 is incomplete.");
3221     // We assume VLENB is a multiple of 8. We manually choose the best shift
3222     // here because SimplifyDemandedBits isn't always able to simplify it.
3223     uint64_t Val = Op.getConstantOperandVal(0);
3224     if (isPowerOf2_64(Val)) {
3225       uint64_t Log2 = Log2_64(Val);
3226       if (Log2 < 3)
3227         return DAG.getNode(ISD::SRL, DL, VT, VLENB,
3228                            DAG.getConstant(3 - Log2, DL, VT));
3229       if (Log2 > 3)
3230         return DAG.getNode(ISD::SHL, DL, VT, VLENB,
3231                            DAG.getConstant(Log2 - 3, DL, VT));
3232       return VLENB;
3233     }
3234     // If the multiplier is a multiple of 8, scale it down to avoid needing
3235     // to shift the VLENB value.
3236     if ((Val % 8) == 0)
3237       return DAG.getNode(ISD::MUL, DL, VT, VLENB,
3238                          DAG.getConstant(Val / 8, DL, VT));
3239 
3240     SDValue VScale = DAG.getNode(ISD::SRL, DL, VT, VLENB,
3241                                  DAG.getConstant(3, DL, VT));
3242     return DAG.getNode(ISD::MUL, DL, VT, VScale, Op.getOperand(0));
3243   }
3244   case ISD::FPOWI: {
3245     // Custom promote f16 powi with illegal i32 integer type on RV64. Once
3246     // promoted this will be legalized into a libcall by LegalizeIntegerTypes.
3247     if (Op.getValueType() == MVT::f16 && Subtarget.is64Bit() &&
3248         Op.getOperand(1).getValueType() == MVT::i32) {
3249       SDLoc DL(Op);
3250       SDValue Op0 = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Op.getOperand(0));
3251       SDValue Powi =
3252           DAG.getNode(ISD::FPOWI, DL, MVT::f32, Op0, Op.getOperand(1));
3253       return DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, Powi,
3254                          DAG.getIntPtrConstant(0, DL));
3255     }
3256     return SDValue();
3257   }
3258   case ISD::FP_EXTEND:
3259   case ISD::FP_ROUND:
3260     if (!Op.getValueType().isVector())
3261       return Op;
3262     return lowerVectorFPExtendOrRoundLike(Op, DAG);
3263   case ISD::FP_TO_SINT:
3264   case ISD::FP_TO_UINT:
3265   case ISD::SINT_TO_FP:
3266   case ISD::UINT_TO_FP: {
3267     // RVV can only do fp<->int conversions to types half/double the size as
3268     // the source. We custom-lower any conversions that do two hops into
3269     // sequences.
3270     MVT VT = Op.getSimpleValueType();
3271     if (!VT.isVector())
3272       return Op;
3273     SDLoc DL(Op);
3274     SDValue Src = Op.getOperand(0);
3275     MVT EltVT = VT.getVectorElementType();
3276     MVT SrcVT = Src.getSimpleValueType();
3277     MVT SrcEltVT = SrcVT.getVectorElementType();
3278     unsigned EltSize = EltVT.getSizeInBits();
3279     unsigned SrcEltSize = SrcEltVT.getSizeInBits();
3280     assert(isPowerOf2_32(EltSize) && isPowerOf2_32(SrcEltSize) &&
3281            "Unexpected vector element types");
3282 
3283     bool IsInt2FP = SrcEltVT.isInteger();
3284     // Widening conversions
3285     if (EltSize > (2 * SrcEltSize)) {
3286       if (IsInt2FP) {
3287         // Do a regular integer sign/zero extension then convert to float.
3288         MVT IVecVT = MVT::getVectorVT(MVT::getIntegerVT(EltSize),
3289                                       VT.getVectorElementCount());
3290         unsigned ExtOpcode = Op.getOpcode() == ISD::UINT_TO_FP
3291                                  ? ISD::ZERO_EXTEND
3292                                  : ISD::SIGN_EXTEND;
3293         SDValue Ext = DAG.getNode(ExtOpcode, DL, IVecVT, Src);
3294         return DAG.getNode(Op.getOpcode(), DL, VT, Ext);
3295       }
3296       // FP2Int
3297       assert(SrcEltVT == MVT::f16 && "Unexpected FP_TO_[US]INT lowering");
3298       // Do one doubling fp_extend then complete the operation by converting
3299       // to int.
3300       MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount());
3301       SDValue FExt = DAG.getFPExtendOrRound(Src, DL, InterimFVT);
3302       return DAG.getNode(Op.getOpcode(), DL, VT, FExt);
3303     }
3304 
3305     // Narrowing conversions
3306     if (SrcEltSize > (2 * EltSize)) {
3307       if (IsInt2FP) {
3308         // One narrowing int_to_fp, then an fp_round.
3309         assert(EltVT == MVT::f16 && "Unexpected [US]_TO_FP lowering");
3310         MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount());
3311         SDValue Int2FP = DAG.getNode(Op.getOpcode(), DL, InterimFVT, Src);
3312         return DAG.getFPExtendOrRound(Int2FP, DL, VT);
3313       }
3314       // FP2Int
3315       // One narrowing fp_to_int, then truncate the integer. If the float isn't
3316       // representable by the integer, the result is poison.
3317       MVT IVecVT = MVT::getVectorVT(MVT::getIntegerVT(SrcEltSize / 2),
3318                                     VT.getVectorElementCount());
3319       SDValue FP2Int = DAG.getNode(Op.getOpcode(), DL, IVecVT, Src);
3320       return DAG.getNode(ISD::TRUNCATE, DL, VT, FP2Int);
3321     }
3322 
3323     // Scalable vectors can exit here. Patterns will handle equally-sized
3324     // conversions halving/doubling ones.
3325     if (!VT.isFixedLengthVector())
3326       return Op;
3327 
3328     // For fixed-length vectors we lower to a custom "VL" node.
3329     unsigned RVVOpc = 0;
3330     switch (Op.getOpcode()) {
3331     default:
3332       llvm_unreachable("Impossible opcode");
3333     case ISD::FP_TO_SINT:
3334       RVVOpc = RISCVISD::FP_TO_SINT_VL;
3335       break;
3336     case ISD::FP_TO_UINT:
3337       RVVOpc = RISCVISD::FP_TO_UINT_VL;
3338       break;
3339     case ISD::SINT_TO_FP:
3340       RVVOpc = RISCVISD::SINT_TO_FP_VL;
3341       break;
3342     case ISD::UINT_TO_FP:
3343       RVVOpc = RISCVISD::UINT_TO_FP_VL;
3344       break;
3345     }
3346 
3347     MVT ContainerVT, SrcContainerVT;
3348     // Derive the reference container type from the larger vector type.
3349     if (SrcEltSize > EltSize) {
3350       SrcContainerVT = getContainerForFixedLengthVector(SrcVT);
3351       ContainerVT =
3352           SrcContainerVT.changeVectorElementType(VT.getVectorElementType());
3353     } else {
3354       ContainerVT = getContainerForFixedLengthVector(VT);
3355       SrcContainerVT = ContainerVT.changeVectorElementType(SrcEltVT);
3356     }
3357 
3358     SDValue Mask, VL;
3359     std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
3360 
3361     Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget);
3362     Src = DAG.getNode(RVVOpc, DL, ContainerVT, Src, Mask, VL);
3363     return convertFromScalableVector(VT, Src, DAG, Subtarget);
3364   }
3365   case ISD::FP_TO_SINT_SAT:
3366   case ISD::FP_TO_UINT_SAT:
3367     return lowerFP_TO_INT_SAT(Op, DAG, Subtarget);
3368   case ISD::FTRUNC:
3369   case ISD::FCEIL:
3370   case ISD::FFLOOR:
3371     return lowerFTRUNC_FCEIL_FFLOOR(Op, DAG);
3372   case ISD::FROUND:
3373     return lowerFROUND(Op, DAG);
3374   case ISD::VECREDUCE_ADD:
3375   case ISD::VECREDUCE_UMAX:
3376   case ISD::VECREDUCE_SMAX:
3377   case ISD::VECREDUCE_UMIN:
3378   case ISD::VECREDUCE_SMIN:
3379     return lowerVECREDUCE(Op, DAG);
3380   case ISD::VECREDUCE_AND:
3381   case ISD::VECREDUCE_OR:
3382   case ISD::VECREDUCE_XOR:
3383     if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1)
3384       return lowerVectorMaskVecReduction(Op, DAG, /*IsVP*/ false);
3385     return lowerVECREDUCE(Op, DAG);
3386   case ISD::VECREDUCE_FADD:
3387   case ISD::VECREDUCE_SEQ_FADD:
3388   case ISD::VECREDUCE_FMIN:
3389   case ISD::VECREDUCE_FMAX:
3390     return lowerFPVECREDUCE(Op, DAG);
3391   case ISD::VP_REDUCE_ADD:
3392   case ISD::VP_REDUCE_UMAX:
3393   case ISD::VP_REDUCE_SMAX:
3394   case ISD::VP_REDUCE_UMIN:
3395   case ISD::VP_REDUCE_SMIN:
3396   case ISD::VP_REDUCE_FADD:
3397   case ISD::VP_REDUCE_SEQ_FADD:
3398   case ISD::VP_REDUCE_FMIN:
3399   case ISD::VP_REDUCE_FMAX:
3400     return lowerVPREDUCE(Op, DAG);
3401   case ISD::VP_REDUCE_AND:
3402   case ISD::VP_REDUCE_OR:
3403   case ISD::VP_REDUCE_XOR:
3404     if (Op.getOperand(1).getValueType().getVectorElementType() == MVT::i1)
3405       return lowerVectorMaskVecReduction(Op, DAG, /*IsVP*/ true);
3406     return lowerVPREDUCE(Op, DAG);
3407   case ISD::INSERT_SUBVECTOR:
3408     return lowerINSERT_SUBVECTOR(Op, DAG);
3409   case ISD::EXTRACT_SUBVECTOR:
3410     return lowerEXTRACT_SUBVECTOR(Op, DAG);
3411   case ISD::STEP_VECTOR:
3412     return lowerSTEP_VECTOR(Op, DAG);
3413   case ISD::VECTOR_REVERSE:
3414     return lowerVECTOR_REVERSE(Op, DAG);
3415   case ISD::VECTOR_SPLICE:
3416     return lowerVECTOR_SPLICE(Op, DAG);
3417   case ISD::BUILD_VECTOR:
3418     return lowerBUILD_VECTOR(Op, DAG, Subtarget);
3419   case ISD::SPLAT_VECTOR:
3420     if (Op.getValueType().getVectorElementType() == MVT::i1)
3421       return lowerVectorMaskSplat(Op, DAG);
3422     return SDValue();
3423   case ISD::VECTOR_SHUFFLE:
3424     return lowerVECTOR_SHUFFLE(Op, DAG, Subtarget);
3425   case ISD::CONCAT_VECTORS: {
3426     // Split CONCAT_VECTORS into a series of INSERT_SUBVECTOR nodes. This is
3427     // better than going through the stack, as the default expansion does.
3428     SDLoc DL(Op);
3429     MVT VT = Op.getSimpleValueType();
3430     unsigned NumOpElts =
3431         Op.getOperand(0).getSimpleValueType().getVectorMinNumElements();
3432     SDValue Vec = DAG.getUNDEF(VT);
3433     for (const auto &OpIdx : enumerate(Op->ops())) {
3434       SDValue SubVec = OpIdx.value();
3435       // Don't insert undef subvectors.
3436       if (SubVec.isUndef())
3437         continue;
3438       Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, Vec, SubVec,
3439                         DAG.getIntPtrConstant(OpIdx.index() * NumOpElts, DL));
3440     }
3441     return Vec;
3442   }
3443   case ISD::LOAD:
3444     if (auto V = expandUnalignedRVVLoad(Op, DAG))
3445       return V;
3446     if (Op.getValueType().isFixedLengthVector())
3447       return lowerFixedLengthVectorLoadToRVV(Op, DAG);
3448     return Op;
3449   case ISD::STORE:
3450     if (auto V = expandUnalignedRVVStore(Op, DAG))
3451       return V;
3452     if (Op.getOperand(1).getValueType().isFixedLengthVector())
3453       return lowerFixedLengthVectorStoreToRVV(Op, DAG);
3454     return Op;
3455   case ISD::MLOAD:
3456   case ISD::VP_LOAD:
3457     return lowerMaskedLoad(Op, DAG);
3458   case ISD::MSTORE:
3459   case ISD::VP_STORE:
3460     return lowerMaskedStore(Op, DAG);
3461   case ISD::SETCC:
3462     return lowerFixedLengthVectorSetccToRVV(Op, DAG);
3463   case ISD::ADD:
3464     return lowerToScalableOp(Op, DAG, RISCVISD::ADD_VL);
3465   case ISD::SUB:
3466     return lowerToScalableOp(Op, DAG, RISCVISD::SUB_VL);
3467   case ISD::MUL:
3468     return lowerToScalableOp(Op, DAG, RISCVISD::MUL_VL);
3469   case ISD::MULHS:
3470     return lowerToScalableOp(Op, DAG, RISCVISD::MULHS_VL);
3471   case ISD::MULHU:
3472     return lowerToScalableOp(Op, DAG, RISCVISD::MULHU_VL);
3473   case ISD::AND:
3474     return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMAND_VL,
3475                                               RISCVISD::AND_VL);
3476   case ISD::OR:
3477     return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMOR_VL,
3478                                               RISCVISD::OR_VL);
3479   case ISD::XOR:
3480     return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMXOR_VL,
3481                                               RISCVISD::XOR_VL);
3482   case ISD::SDIV:
3483     return lowerToScalableOp(Op, DAG, RISCVISD::SDIV_VL);
3484   case ISD::SREM:
3485     return lowerToScalableOp(Op, DAG, RISCVISD::SREM_VL);
3486   case ISD::UDIV:
3487     return lowerToScalableOp(Op, DAG, RISCVISD::UDIV_VL);
3488   case ISD::UREM:
3489     return lowerToScalableOp(Op, DAG, RISCVISD::UREM_VL);
3490   case ISD::SHL:
3491   case ISD::SRA:
3492   case ISD::SRL:
3493     if (Op.getSimpleValueType().isFixedLengthVector())
3494       return lowerFixedLengthVectorShiftToRVV(Op, DAG);
3495     // This can be called for an i32 shift amount that needs to be promoted.
3496     assert(Op.getOperand(1).getValueType() == MVT::i32 && Subtarget.is64Bit() &&
3497            "Unexpected custom legalisation");
3498     return SDValue();
3499   case ISD::SADDSAT:
3500     return lowerToScalableOp(Op, DAG, RISCVISD::SADDSAT_VL);
3501   case ISD::UADDSAT:
3502     return lowerToScalableOp(Op, DAG, RISCVISD::UADDSAT_VL);
3503   case ISD::SSUBSAT:
3504     return lowerToScalableOp(Op, DAG, RISCVISD::SSUBSAT_VL);
3505   case ISD::USUBSAT:
3506     return lowerToScalableOp(Op, DAG, RISCVISD::USUBSAT_VL);
3507   case ISD::FADD:
3508     return lowerToScalableOp(Op, DAG, RISCVISD::FADD_VL);
3509   case ISD::FSUB:
3510     return lowerToScalableOp(Op, DAG, RISCVISD::FSUB_VL);
3511   case ISD::FMUL:
3512     return lowerToScalableOp(Op, DAG, RISCVISD::FMUL_VL);
3513   case ISD::FDIV:
3514     return lowerToScalableOp(Op, DAG, RISCVISD::FDIV_VL);
3515   case ISD::FNEG:
3516     return lowerToScalableOp(Op, DAG, RISCVISD::FNEG_VL);
3517   case ISD::FABS:
3518     return lowerToScalableOp(Op, DAG, RISCVISD::FABS_VL);
3519   case ISD::FSQRT:
3520     return lowerToScalableOp(Op, DAG, RISCVISD::FSQRT_VL);
3521   case ISD::FMA:
3522     return lowerToScalableOp(Op, DAG, RISCVISD::VFMADD_VL);
3523   case ISD::SMIN:
3524     return lowerToScalableOp(Op, DAG, RISCVISD::SMIN_VL);
3525   case ISD::SMAX:
3526     return lowerToScalableOp(Op, DAG, RISCVISD::SMAX_VL);
3527   case ISD::UMIN:
3528     return lowerToScalableOp(Op, DAG, RISCVISD::UMIN_VL);
3529   case ISD::UMAX:
3530     return lowerToScalableOp(Op, DAG, RISCVISD::UMAX_VL);
3531   case ISD::FMINNUM:
3532     return lowerToScalableOp(Op, DAG, RISCVISD::FMINNUM_VL);
3533   case ISD::FMAXNUM:
3534     return lowerToScalableOp(Op, DAG, RISCVISD::FMAXNUM_VL);
3535   case ISD::ABS:
3536     return lowerABS(Op, DAG);
3537   case ISD::CTLZ_ZERO_UNDEF:
3538   case ISD::CTTZ_ZERO_UNDEF:
3539     return lowerCTLZ_CTTZ_ZERO_UNDEF(Op, DAG);
3540   case ISD::VSELECT:
3541     return lowerFixedLengthVectorSelectToRVV(Op, DAG);
3542   case ISD::FCOPYSIGN:
3543     return lowerFixedLengthVectorFCOPYSIGNToRVV(Op, DAG);
3544   case ISD::MGATHER:
3545   case ISD::VP_GATHER:
3546     return lowerMaskedGather(Op, DAG);
3547   case ISD::MSCATTER:
3548   case ISD::VP_SCATTER:
3549     return lowerMaskedScatter(Op, DAG);
3550   case ISD::FLT_ROUNDS_:
3551     return lowerGET_ROUNDING(Op, DAG);
3552   case ISD::SET_ROUNDING:
3553     return lowerSET_ROUNDING(Op, DAG);
3554   case ISD::EH_DWARF_CFA:
3555     return lowerEH_DWARF_CFA(Op, DAG);
3556   case ISD::VP_SELECT:
3557     return lowerVPOp(Op, DAG, RISCVISD::VSELECT_VL);
3558   case ISD::VP_MERGE:
3559     return lowerVPOp(Op, DAG, RISCVISD::VP_MERGE_VL);
3560   case ISD::VP_ADD:
3561     return lowerVPOp(Op, DAG, RISCVISD::ADD_VL);
3562   case ISD::VP_SUB:
3563     return lowerVPOp(Op, DAG, RISCVISD::SUB_VL);
3564   case ISD::VP_MUL:
3565     return lowerVPOp(Op, DAG, RISCVISD::MUL_VL);
3566   case ISD::VP_SDIV:
3567     return lowerVPOp(Op, DAG, RISCVISD::SDIV_VL);
3568   case ISD::VP_UDIV:
3569     return lowerVPOp(Op, DAG, RISCVISD::UDIV_VL);
3570   case ISD::VP_SREM:
3571     return lowerVPOp(Op, DAG, RISCVISD::SREM_VL);
3572   case ISD::VP_UREM:
3573     return lowerVPOp(Op, DAG, RISCVISD::UREM_VL);
3574   case ISD::VP_AND:
3575     return lowerLogicVPOp(Op, DAG, RISCVISD::VMAND_VL, RISCVISD::AND_VL);
3576   case ISD::VP_OR:
3577     return lowerLogicVPOp(Op, DAG, RISCVISD::VMOR_VL, RISCVISD::OR_VL);
3578   case ISD::VP_XOR:
3579     return lowerLogicVPOp(Op, DAG, RISCVISD::VMXOR_VL, RISCVISD::XOR_VL);
3580   case ISD::VP_ASHR:
3581     return lowerVPOp(Op, DAG, RISCVISD::SRA_VL);
3582   case ISD::VP_LSHR:
3583     return lowerVPOp(Op, DAG, RISCVISD::SRL_VL);
3584   case ISD::VP_SHL:
3585     return lowerVPOp(Op, DAG, RISCVISD::SHL_VL);
3586   case ISD::VP_FADD:
3587     return lowerVPOp(Op, DAG, RISCVISD::FADD_VL);
3588   case ISD::VP_FSUB:
3589     return lowerVPOp(Op, DAG, RISCVISD::FSUB_VL);
3590   case ISD::VP_FMUL:
3591     return lowerVPOp(Op, DAG, RISCVISD::FMUL_VL);
3592   case ISD::VP_FDIV:
3593     return lowerVPOp(Op, DAG, RISCVISD::FDIV_VL);
3594   case ISD::VP_FNEG:
3595     return lowerVPOp(Op, DAG, RISCVISD::FNEG_VL);
3596   case ISD::VP_FMA:
3597     return lowerVPOp(Op, DAG, RISCVISD::VFMADD_VL);
3598   case ISD::VP_SIGN_EXTEND:
3599   case ISD::VP_ZERO_EXTEND:
3600     if (Op.getOperand(0).getSimpleValueType().getVectorElementType() == MVT::i1)
3601       return lowerVPExtMaskOp(Op, DAG);
3602     return lowerVPOp(Op, DAG,
3603                      Op.getOpcode() == ISD::VP_SIGN_EXTEND
3604                          ? RISCVISD::VSEXT_VL
3605                          : RISCVISD::VZEXT_VL);
3606   case ISD::VP_TRUNCATE:
3607     return lowerVectorTruncLike(Op, DAG);
3608   case ISD::VP_FP_EXTEND:
3609   case ISD::VP_FP_ROUND:
3610     return lowerVectorFPExtendOrRoundLike(Op, DAG);
3611   case ISD::VP_FPTOSI:
3612     return lowerVPFPIntConvOp(Op, DAG, RISCVISD::FP_TO_SINT_VL);
3613   case ISD::VP_FPTOUI:
3614     return lowerVPFPIntConvOp(Op, DAG, RISCVISD::FP_TO_UINT_VL);
3615   case ISD::VP_SITOFP:
3616     return lowerVPFPIntConvOp(Op, DAG, RISCVISD::SINT_TO_FP_VL);
3617   case ISD::VP_UITOFP:
3618     return lowerVPFPIntConvOp(Op, DAG, RISCVISD::UINT_TO_FP_VL);
3619   case ISD::VP_SETCC:
3620     if (Op.getOperand(0).getSimpleValueType().getVectorElementType() == MVT::i1)
3621       return lowerVPSetCCMaskOp(Op, DAG);
3622     return lowerVPOp(Op, DAG, RISCVISD::SETCC_VL);
3623   }
3624 }
3625 
3626 static SDValue getTargetNode(GlobalAddressSDNode *N, SDLoc DL, EVT Ty,
3627                              SelectionDAG &DAG, unsigned Flags) {
3628   return DAG.getTargetGlobalAddress(N->getGlobal(), DL, Ty, 0, Flags);
3629 }
3630 
3631 static SDValue getTargetNode(BlockAddressSDNode *N, SDLoc DL, EVT Ty,
3632                              SelectionDAG &DAG, unsigned Flags) {
3633   return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, N->getOffset(),
3634                                    Flags);
3635 }
3636 
3637 static SDValue getTargetNode(ConstantPoolSDNode *N, SDLoc DL, EVT Ty,
3638                              SelectionDAG &DAG, unsigned Flags) {
3639   return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlign(),
3640                                    N->getOffset(), Flags);
3641 }
3642 
3643 static SDValue getTargetNode(JumpTableSDNode *N, SDLoc DL, EVT Ty,
3644                              SelectionDAG &DAG, unsigned Flags) {
3645   return DAG.getTargetJumpTable(N->getIndex(), Ty, Flags);
3646 }
3647 
3648 template <class NodeTy>
3649 SDValue RISCVTargetLowering::getAddr(NodeTy *N, SelectionDAG &DAG,
3650                                      bool IsLocal) const {
3651   SDLoc DL(N);
3652   EVT Ty = getPointerTy(DAG.getDataLayout());
3653 
3654   if (isPositionIndependent()) {
3655     SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0);
3656     if (IsLocal)
3657       // Use PC-relative addressing to access the symbol. This generates the
3658       // pattern (PseudoLLA sym), which expands to (addi (auipc %pcrel_hi(sym))
3659       // %pcrel_lo(auipc)).
3660       return DAG.getNode(RISCVISD::LLA, DL, Ty, Addr);
3661 
3662     // Use PC-relative addressing to access the GOT for this symbol, then load
3663     // the address from the GOT. This generates the pattern (PseudoLA sym),
3664     // which expands to (ld (addi (auipc %got_pcrel_hi(sym)) %pcrel_lo(auipc))).
3665     MachineFunction &MF = DAG.getMachineFunction();
3666     MachineMemOperand *MemOp = MF.getMachineMemOperand(
3667         MachinePointerInfo::getGOT(MF),
3668         MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable |
3669             MachineMemOperand::MOInvariant,
3670         LLT(Ty.getSimpleVT()), Align(Ty.getFixedSizeInBits() / 8));
3671     SDValue Load =
3672         DAG.getMemIntrinsicNode(RISCVISD::LA, DL, DAG.getVTList(Ty, MVT::Other),
3673                                 {DAG.getEntryNode(), Addr}, Ty, MemOp);
3674     return Load;
3675   }
3676 
3677   switch (getTargetMachine().getCodeModel()) {
3678   default:
3679     report_fatal_error("Unsupported code model for lowering");
3680   case CodeModel::Small: {
3681     // Generate a sequence for accessing addresses within the first 2 GiB of
3682     // address space. This generates the pattern (addi (lui %hi(sym)) %lo(sym)).
3683     SDValue AddrHi = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_HI);
3684     SDValue AddrLo = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_LO);
3685     SDValue MNHi = DAG.getNode(RISCVISD::HI, DL, Ty, AddrHi);
3686     return DAG.getNode(RISCVISD::ADD_LO, DL, Ty, MNHi, AddrLo);
3687   }
3688   case CodeModel::Medium: {
3689     // Generate a sequence for accessing addresses within any 2GiB range within
3690     // the address space. This generates the pattern (PseudoLLA sym), which
3691     // expands to (addi (auipc %pcrel_hi(sym)) %pcrel_lo(auipc)).
3692     SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0);
3693     return DAG.getNode(RISCVISD::LLA, DL, Ty, Addr);
3694   }
3695   }
3696 }
3697 
3698 SDValue RISCVTargetLowering::lowerGlobalAddress(SDValue Op,
3699                                                 SelectionDAG &DAG) const {
3700   SDLoc DL(Op);
3701   GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op);
3702   assert(N->getOffset() == 0 && "unexpected offset in global node");
3703 
3704   const GlobalValue *GV = N->getGlobal();
3705   bool IsLocal = getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV);
3706   return getAddr(N, DAG, IsLocal);
3707 }
3708 
3709 SDValue RISCVTargetLowering::lowerBlockAddress(SDValue Op,
3710                                                SelectionDAG &DAG) const {
3711   BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op);
3712 
3713   return getAddr(N, DAG);
3714 }
3715 
3716 SDValue RISCVTargetLowering::lowerConstantPool(SDValue Op,
3717                                                SelectionDAG &DAG) const {
3718   ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op);
3719 
3720   return getAddr(N, DAG);
3721 }
3722 
3723 SDValue RISCVTargetLowering::lowerJumpTable(SDValue Op,
3724                                             SelectionDAG &DAG) const {
3725   JumpTableSDNode *N = cast<JumpTableSDNode>(Op);
3726 
3727   return getAddr(N, DAG);
3728 }
3729 
3730 SDValue RISCVTargetLowering::getStaticTLSAddr(GlobalAddressSDNode *N,
3731                                               SelectionDAG &DAG,
3732                                               bool UseGOT) const {
3733   SDLoc DL(N);
3734   EVT Ty = getPointerTy(DAG.getDataLayout());
3735   const GlobalValue *GV = N->getGlobal();
3736   MVT XLenVT = Subtarget.getXLenVT();
3737 
3738   if (UseGOT) {
3739     // Use PC-relative addressing to access the GOT for this TLS symbol, then
3740     // load the address from the GOT and add the thread pointer. This generates
3741     // the pattern (PseudoLA_TLS_IE sym), which expands to
3742     // (ld (auipc %tls_ie_pcrel_hi(sym)) %pcrel_lo(auipc)).
3743     SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0);
3744     MachineFunction &MF = DAG.getMachineFunction();
3745     MachineMemOperand *MemOp = MF.getMachineMemOperand(
3746         MachinePointerInfo::getGOT(MF),
3747         MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable |
3748             MachineMemOperand::MOInvariant,
3749         LLT(Ty.getSimpleVT()), Align(Ty.getFixedSizeInBits() / 8));
3750     SDValue Load = DAG.getMemIntrinsicNode(
3751         RISCVISD::LA_TLS_IE, DL, DAG.getVTList(Ty, MVT::Other),
3752         {DAG.getEntryNode(), Addr}, Ty, MemOp);
3753 
3754     // Add the thread pointer.
3755     SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT);
3756     return DAG.getNode(ISD::ADD, DL, Ty, Load, TPReg);
3757   }
3758 
3759   // Generate a sequence for accessing the address relative to the thread
3760   // pointer, with the appropriate adjustment for the thread pointer offset.
3761   // This generates the pattern
3762   // (add (add_tprel (lui %tprel_hi(sym)) tp %tprel_add(sym)) %tprel_lo(sym))
3763   SDValue AddrHi =
3764       DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_HI);
3765   SDValue AddrAdd =
3766       DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_ADD);
3767   SDValue AddrLo =
3768       DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_LO);
3769 
3770   SDValue MNHi = DAG.getNode(RISCVISD::HI, DL, Ty, AddrHi);
3771   SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT);
3772   SDValue MNAdd =
3773       DAG.getNode(RISCVISD::ADD_TPREL, DL, Ty, MNHi, TPReg, AddrAdd);
3774   return DAG.getNode(RISCVISD::ADD_LO, DL, Ty, MNAdd, AddrLo);
3775 }
3776 
3777 SDValue RISCVTargetLowering::getDynamicTLSAddr(GlobalAddressSDNode *N,
3778                                                SelectionDAG &DAG) const {
3779   SDLoc DL(N);
3780   EVT Ty = getPointerTy(DAG.getDataLayout());
3781   IntegerType *CallTy = Type::getIntNTy(*DAG.getContext(), Ty.getSizeInBits());
3782   const GlobalValue *GV = N->getGlobal();
3783 
3784   // Use a PC-relative addressing mode to access the global dynamic GOT address.
3785   // This generates the pattern (PseudoLA_TLS_GD sym), which expands to
3786   // (addi (auipc %tls_gd_pcrel_hi(sym)) %pcrel_lo(auipc)).
3787   SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0);
3788   SDValue Load = DAG.getNode(RISCVISD::LA_TLS_GD, DL, Ty, Addr);
3789 
3790   // Prepare argument list to generate call.
3791   ArgListTy Args;
3792   ArgListEntry Entry;
3793   Entry.Node = Load;
3794   Entry.Ty = CallTy;
3795   Args.push_back(Entry);
3796 
3797   // Setup call to __tls_get_addr.
3798   TargetLowering::CallLoweringInfo CLI(DAG);
3799   CLI.setDebugLoc(DL)
3800       .setChain(DAG.getEntryNode())
3801       .setLibCallee(CallingConv::C, CallTy,
3802                     DAG.getExternalSymbol("__tls_get_addr", Ty),
3803                     std::move(Args));
3804 
3805   return LowerCallTo(CLI).first;
3806 }
3807 
3808 SDValue RISCVTargetLowering::lowerGlobalTLSAddress(SDValue Op,
3809                                                    SelectionDAG &DAG) const {
3810   SDLoc DL(Op);
3811   GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op);
3812   assert(N->getOffset() == 0 && "unexpected offset in global node");
3813 
3814   TLSModel::Model Model = getTargetMachine().getTLSModel(N->getGlobal());
3815 
3816   if (DAG.getMachineFunction().getFunction().getCallingConv() ==
3817       CallingConv::GHC)
3818     report_fatal_error("In GHC calling convention TLS is not supported");
3819 
3820   SDValue Addr;
3821   switch (Model) {
3822   case TLSModel::LocalExec:
3823     Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/false);
3824     break;
3825   case TLSModel::InitialExec:
3826     Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/true);
3827     break;
3828   case TLSModel::LocalDynamic:
3829   case TLSModel::GeneralDynamic:
3830     Addr = getDynamicTLSAddr(N, DAG);
3831     break;
3832   }
3833 
3834   return Addr;
3835 }
3836 
3837 SDValue RISCVTargetLowering::lowerSELECT(SDValue Op, SelectionDAG &DAG) const {
3838   SDValue CondV = Op.getOperand(0);
3839   SDValue TrueV = Op.getOperand(1);
3840   SDValue FalseV = Op.getOperand(2);
3841   SDLoc DL(Op);
3842   MVT VT = Op.getSimpleValueType();
3843   MVT XLenVT = Subtarget.getXLenVT();
3844 
3845   // Lower vector SELECTs to VSELECTs by splatting the condition.
3846   if (VT.isVector()) {
3847     MVT SplatCondVT = VT.changeVectorElementType(MVT::i1);
3848     SDValue CondSplat = VT.isScalableVector()
3849                             ? DAG.getSplatVector(SplatCondVT, DL, CondV)
3850                             : DAG.getSplatBuildVector(SplatCondVT, DL, CondV);
3851     return DAG.getNode(ISD::VSELECT, DL, VT, CondSplat, TrueV, FalseV);
3852   }
3853 
3854   // If the result type is XLenVT and CondV is the output of a SETCC node
3855   // which also operated on XLenVT inputs, then merge the SETCC node into the
3856   // lowered RISCVISD::SELECT_CC to take advantage of the integer
3857   // compare+branch instructions. i.e.:
3858   // (select (setcc lhs, rhs, cc), truev, falsev)
3859   // -> (riscvisd::select_cc lhs, rhs, cc, truev, falsev)
3860   if (VT == XLenVT && CondV.getOpcode() == ISD::SETCC &&
3861       CondV.getOperand(0).getSimpleValueType() == XLenVT) {
3862     SDValue LHS = CondV.getOperand(0);
3863     SDValue RHS = CondV.getOperand(1);
3864     const auto *CC = cast<CondCodeSDNode>(CondV.getOperand(2));
3865     ISD::CondCode CCVal = CC->get();
3866 
3867     // Special case for a select of 2 constants that have a diffence of 1.
3868     // Normally this is done by DAGCombine, but if the select is introduced by
3869     // type legalization or op legalization, we miss it. Restricting to SETLT
3870     // case for now because that is what signed saturating add/sub need.
3871     // FIXME: We don't need the condition to be SETLT or even a SETCC,
3872     // but we would probably want to swap the true/false values if the condition
3873     // is SETGE/SETLE to avoid an XORI.
3874     if (isa<ConstantSDNode>(TrueV) && isa<ConstantSDNode>(FalseV) &&
3875         CCVal == ISD::SETLT) {
3876       const APInt &TrueVal = cast<ConstantSDNode>(TrueV)->getAPIntValue();
3877       const APInt &FalseVal = cast<ConstantSDNode>(FalseV)->getAPIntValue();
3878       if (TrueVal - 1 == FalseVal)
3879         return DAG.getNode(ISD::ADD, DL, Op.getValueType(), CondV, FalseV);
3880       if (TrueVal + 1 == FalseVal)
3881         return DAG.getNode(ISD::SUB, DL, Op.getValueType(), FalseV, CondV);
3882     }
3883 
3884     translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
3885 
3886     SDValue TargetCC = DAG.getCondCode(CCVal);
3887     SDValue Ops[] = {LHS, RHS, TargetCC, TrueV, FalseV};
3888     return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops);
3889   }
3890 
3891   // Otherwise:
3892   // (select condv, truev, falsev)
3893   // -> (riscvisd::select_cc condv, zero, setne, truev, falsev)
3894   SDValue Zero = DAG.getConstant(0, DL, XLenVT);
3895   SDValue SetNE = DAG.getCondCode(ISD::SETNE);
3896 
3897   SDValue Ops[] = {CondV, Zero, SetNE, TrueV, FalseV};
3898 
3899   return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops);
3900 }
3901 
3902 SDValue RISCVTargetLowering::lowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
3903   SDValue CondV = Op.getOperand(1);
3904   SDLoc DL(Op);
3905   MVT XLenVT = Subtarget.getXLenVT();
3906 
3907   if (CondV.getOpcode() == ISD::SETCC &&
3908       CondV.getOperand(0).getValueType() == XLenVT) {
3909     SDValue LHS = CondV.getOperand(0);
3910     SDValue RHS = CondV.getOperand(1);
3911     ISD::CondCode CCVal = cast<CondCodeSDNode>(CondV.getOperand(2))->get();
3912 
3913     translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
3914 
3915     SDValue TargetCC = DAG.getCondCode(CCVal);
3916     return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0),
3917                        LHS, RHS, TargetCC, Op.getOperand(2));
3918   }
3919 
3920   return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0),
3921                      CondV, DAG.getConstant(0, DL, XLenVT),
3922                      DAG.getCondCode(ISD::SETNE), Op.getOperand(2));
3923 }
3924 
3925 SDValue RISCVTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const {
3926   MachineFunction &MF = DAG.getMachineFunction();
3927   RISCVMachineFunctionInfo *FuncInfo = MF.getInfo<RISCVMachineFunctionInfo>();
3928 
3929   SDLoc DL(Op);
3930   SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
3931                                  getPointerTy(MF.getDataLayout()));
3932 
3933   // vastart just stores the address of the VarArgsFrameIndex slot into the
3934   // memory location argument.
3935   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3936   return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1),
3937                       MachinePointerInfo(SV));
3938 }
3939 
3940 SDValue RISCVTargetLowering::lowerFRAMEADDR(SDValue Op,
3941                                             SelectionDAG &DAG) const {
3942   const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo();
3943   MachineFunction &MF = DAG.getMachineFunction();
3944   MachineFrameInfo &MFI = MF.getFrameInfo();
3945   MFI.setFrameAddressIsTaken(true);
3946   Register FrameReg = RI.getFrameRegister(MF);
3947   int XLenInBytes = Subtarget.getXLen() / 8;
3948 
3949   EVT VT = Op.getValueType();
3950   SDLoc DL(Op);
3951   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, FrameReg, VT);
3952   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3953   while (Depth--) {
3954     int Offset = -(XLenInBytes * 2);
3955     SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr,
3956                               DAG.getIntPtrConstant(Offset, DL));
3957     FrameAddr =
3958         DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo());
3959   }
3960   return FrameAddr;
3961 }
3962 
3963 SDValue RISCVTargetLowering::lowerRETURNADDR(SDValue Op,
3964                                              SelectionDAG &DAG) const {
3965   const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo();
3966   MachineFunction &MF = DAG.getMachineFunction();
3967   MachineFrameInfo &MFI = MF.getFrameInfo();
3968   MFI.setReturnAddressIsTaken(true);
3969   MVT XLenVT = Subtarget.getXLenVT();
3970   int XLenInBytes = Subtarget.getXLen() / 8;
3971 
3972   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
3973     return SDValue();
3974 
3975   EVT VT = Op.getValueType();
3976   SDLoc DL(Op);
3977   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3978   if (Depth) {
3979     int Off = -XLenInBytes;
3980     SDValue FrameAddr = lowerFRAMEADDR(Op, DAG);
3981     SDValue Offset = DAG.getConstant(Off, DL, VT);
3982     return DAG.getLoad(VT, DL, DAG.getEntryNode(),
3983                        DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset),
3984                        MachinePointerInfo());
3985   }
3986 
3987   // Return the value of the return address register, marking it an implicit
3988   // live-in.
3989   Register Reg = MF.addLiveIn(RI.getRARegister(), getRegClassFor(XLenVT));
3990   return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, XLenVT);
3991 }
3992 
3993 SDValue RISCVTargetLowering::lowerShiftLeftParts(SDValue Op,
3994                                                  SelectionDAG &DAG) const {
3995   SDLoc DL(Op);
3996   SDValue Lo = Op.getOperand(0);
3997   SDValue Hi = Op.getOperand(1);
3998   SDValue Shamt = Op.getOperand(2);
3999   EVT VT = Lo.getValueType();
4000 
4001   // if Shamt-XLEN < 0: // Shamt < XLEN
4002   //   Lo = Lo << Shamt
4003   //   Hi = (Hi << Shamt) | ((Lo >>u 1) >>u (XLEN-1 ^ Shamt))
4004   // else:
4005   //   Lo = 0
4006   //   Hi = Lo << (Shamt-XLEN)
4007 
4008   SDValue Zero = DAG.getConstant(0, DL, VT);
4009   SDValue One = DAG.getConstant(1, DL, VT);
4010   SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT);
4011   SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT);
4012   SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen);
4013   SDValue XLenMinus1Shamt = DAG.getNode(ISD::XOR, DL, VT, Shamt, XLenMinus1);
4014 
4015   SDValue LoTrue = DAG.getNode(ISD::SHL, DL, VT, Lo, Shamt);
4016   SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, VT, Lo, One);
4017   SDValue ShiftRightLo =
4018       DAG.getNode(ISD::SRL, DL, VT, ShiftRight1Lo, XLenMinus1Shamt);
4019   SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, Hi, Shamt);
4020   SDValue HiTrue = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo);
4021   SDValue HiFalse = DAG.getNode(ISD::SHL, DL, VT, Lo, ShamtMinusXLen);
4022 
4023   SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT);
4024 
4025   Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, Zero);
4026   Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse);
4027 
4028   SDValue Parts[2] = {Lo, Hi};
4029   return DAG.getMergeValues(Parts, DL);
4030 }
4031 
4032 SDValue RISCVTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG,
4033                                                   bool IsSRA) const {
4034   SDLoc DL(Op);
4035   SDValue Lo = Op.getOperand(0);
4036   SDValue Hi = Op.getOperand(1);
4037   SDValue Shamt = Op.getOperand(2);
4038   EVT VT = Lo.getValueType();
4039 
4040   // SRA expansion:
4041   //   if Shamt-XLEN < 0: // Shamt < XLEN
4042   //     Lo = (Lo >>u Shamt) | ((Hi << 1) << (ShAmt ^ XLEN-1))
4043   //     Hi = Hi >>s Shamt
4044   //   else:
4045   //     Lo = Hi >>s (Shamt-XLEN);
4046   //     Hi = Hi >>s (XLEN-1)
4047   //
4048   // SRL expansion:
4049   //   if Shamt-XLEN < 0: // Shamt < XLEN
4050   //     Lo = (Lo >>u Shamt) | ((Hi << 1) << (ShAmt ^ XLEN-1))
4051   //     Hi = Hi >>u Shamt
4052   //   else:
4053   //     Lo = Hi >>u (Shamt-XLEN);
4054   //     Hi = 0;
4055 
4056   unsigned ShiftRightOp = IsSRA ? ISD::SRA : ISD::SRL;
4057 
4058   SDValue Zero = DAG.getConstant(0, DL, VT);
4059   SDValue One = DAG.getConstant(1, DL, VT);
4060   SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT);
4061   SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT);
4062   SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen);
4063   SDValue XLenMinus1Shamt = DAG.getNode(ISD::XOR, DL, VT, Shamt, XLenMinus1);
4064 
4065   SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, Lo, Shamt);
4066   SDValue ShiftLeftHi1 = DAG.getNode(ISD::SHL, DL, VT, Hi, One);
4067   SDValue ShiftLeftHi =
4068       DAG.getNode(ISD::SHL, DL, VT, ShiftLeftHi1, XLenMinus1Shamt);
4069   SDValue LoTrue = DAG.getNode(ISD::OR, DL, VT, ShiftRightLo, ShiftLeftHi);
4070   SDValue HiTrue = DAG.getNode(ShiftRightOp, DL, VT, Hi, Shamt);
4071   SDValue LoFalse = DAG.getNode(ShiftRightOp, DL, VT, Hi, ShamtMinusXLen);
4072   SDValue HiFalse =
4073       IsSRA ? DAG.getNode(ISD::SRA, DL, VT, Hi, XLenMinus1) : Zero;
4074 
4075   SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT);
4076 
4077   Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, LoFalse);
4078   Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse);
4079 
4080   SDValue Parts[2] = {Lo, Hi};
4081   return DAG.getMergeValues(Parts, DL);
4082 }
4083 
4084 // Lower splats of i1 types to SETCC. For each mask vector type, we have a
4085 // legal equivalently-sized i8 type, so we can use that as a go-between.
4086 SDValue RISCVTargetLowering::lowerVectorMaskSplat(SDValue Op,
4087                                                   SelectionDAG &DAG) const {
4088   SDLoc DL(Op);
4089   MVT VT = Op.getSimpleValueType();
4090   SDValue SplatVal = Op.getOperand(0);
4091   // All-zeros or all-ones splats are handled specially.
4092   if (ISD::isConstantSplatVectorAllOnes(Op.getNode())) {
4093     SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second;
4094     return DAG.getNode(RISCVISD::VMSET_VL, DL, VT, VL);
4095   }
4096   if (ISD::isConstantSplatVectorAllZeros(Op.getNode())) {
4097     SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second;
4098     return DAG.getNode(RISCVISD::VMCLR_VL, DL, VT, VL);
4099   }
4100   MVT XLenVT = Subtarget.getXLenVT();
4101   assert(SplatVal.getValueType() == XLenVT &&
4102          "Unexpected type for i1 splat value");
4103   MVT InterVT = VT.changeVectorElementType(MVT::i8);
4104   SplatVal = DAG.getNode(ISD::AND, DL, XLenVT, SplatVal,
4105                          DAG.getConstant(1, DL, XLenVT));
4106   SDValue LHS = DAG.getSplatVector(InterVT, DL, SplatVal);
4107   SDValue Zero = DAG.getConstant(0, DL, InterVT);
4108   return DAG.getSetCC(DL, VT, LHS, Zero, ISD::SETNE);
4109 }
4110 
4111 // Custom-lower a SPLAT_VECTOR_PARTS where XLEN<SEW, as the SEW element type is
4112 // illegal (currently only vXi64 RV32).
4113 // FIXME: We could also catch non-constant sign-extended i32 values and lower
4114 // them to VMV_V_X_VL.
4115 SDValue RISCVTargetLowering::lowerSPLAT_VECTOR_PARTS(SDValue Op,
4116                                                      SelectionDAG &DAG) const {
4117   SDLoc DL(Op);
4118   MVT VecVT = Op.getSimpleValueType();
4119   assert(!Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64 &&
4120          "Unexpected SPLAT_VECTOR_PARTS lowering");
4121 
4122   assert(Op.getNumOperands() == 2 && "Unexpected number of operands!");
4123   SDValue Lo = Op.getOperand(0);
4124   SDValue Hi = Op.getOperand(1);
4125 
4126   if (VecVT.isFixedLengthVector()) {
4127     MVT ContainerVT = getContainerForFixedLengthVector(VecVT);
4128     SDLoc DL(Op);
4129     SDValue Mask, VL;
4130     std::tie(Mask, VL) =
4131         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
4132 
4133     SDValue Res =
4134         splatPartsI64WithVL(DL, ContainerVT, SDValue(), Lo, Hi, VL, DAG);
4135     return convertFromScalableVector(VecVT, Res, DAG, Subtarget);
4136   }
4137 
4138   if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) {
4139     int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue();
4140     int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue();
4141     // If Hi constant is all the same sign bit as Lo, lower this as a custom
4142     // node in order to try and match RVV vector/scalar instructions.
4143     if ((LoC >> 31) == HiC)
4144       return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, DAG.getUNDEF(VecVT),
4145                          Lo, DAG.getRegister(RISCV::X0, MVT::i32));
4146   }
4147 
4148   // Detect cases where Hi is (SRA Lo, 31) which means Hi is Lo sign extended.
4149   if (Hi.getOpcode() == ISD::SRA && Hi.getOperand(0) == Lo &&
4150       isa<ConstantSDNode>(Hi.getOperand(1)) &&
4151       Hi.getConstantOperandVal(1) == 31)
4152     return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, DAG.getUNDEF(VecVT), Lo,
4153                        DAG.getRegister(RISCV::X0, MVT::i32));
4154 
4155   // Fall back to use a stack store and stride x0 vector load. Use X0 as VL.
4156   return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VecVT,
4157                      DAG.getUNDEF(VecVT), Lo, Hi,
4158                      DAG.getRegister(RISCV::X0, MVT::i32));
4159 }
4160 
4161 // Custom-lower extensions from mask vectors by using a vselect either with 1
4162 // for zero/any-extension or -1 for sign-extension:
4163 //   (vXiN = (s|z)ext vXi1:vmask) -> (vXiN = vselect vmask, (-1 or 1), 0)
4164 // Note that any-extension is lowered identically to zero-extension.
4165 SDValue RISCVTargetLowering::lowerVectorMaskExt(SDValue Op, SelectionDAG &DAG,
4166                                                 int64_t ExtTrueVal) const {
4167   SDLoc DL(Op);
4168   MVT VecVT = Op.getSimpleValueType();
4169   SDValue Src = Op.getOperand(0);
4170   // Only custom-lower extensions from mask types
4171   assert(Src.getValueType().isVector() &&
4172          Src.getValueType().getVectorElementType() == MVT::i1);
4173 
4174   if (VecVT.isScalableVector()) {
4175     SDValue SplatZero = DAG.getConstant(0, DL, VecVT);
4176     SDValue SplatTrueVal = DAG.getConstant(ExtTrueVal, DL, VecVT);
4177     return DAG.getNode(ISD::VSELECT, DL, VecVT, Src, SplatTrueVal, SplatZero);
4178   }
4179 
4180   MVT ContainerVT = getContainerForFixedLengthVector(VecVT);
4181   MVT I1ContainerVT =
4182       MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
4183 
4184   SDValue CC = convertToScalableVector(I1ContainerVT, Src, DAG, Subtarget);
4185 
4186   SDValue Mask, VL;
4187   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
4188 
4189   MVT XLenVT = Subtarget.getXLenVT();
4190   SDValue SplatZero = DAG.getConstant(0, DL, XLenVT);
4191   SDValue SplatTrueVal = DAG.getConstant(ExtTrueVal, DL, XLenVT);
4192 
4193   SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
4194                           DAG.getUNDEF(ContainerVT), SplatZero, VL);
4195   SplatTrueVal = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
4196                              DAG.getUNDEF(ContainerVT), SplatTrueVal, VL);
4197   SDValue Select = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC,
4198                                SplatTrueVal, SplatZero, VL);
4199 
4200   return convertFromScalableVector(VecVT, Select, DAG, Subtarget);
4201 }
4202 
4203 SDValue RISCVTargetLowering::lowerFixedLengthVectorExtendToRVV(
4204     SDValue Op, SelectionDAG &DAG, unsigned ExtendOpc) const {
4205   MVT ExtVT = Op.getSimpleValueType();
4206   // Only custom-lower extensions from fixed-length vector types.
4207   if (!ExtVT.isFixedLengthVector())
4208     return Op;
4209   MVT VT = Op.getOperand(0).getSimpleValueType();
4210   // Grab the canonical container type for the extended type. Infer the smaller
4211   // type from that to ensure the same number of vector elements, as we know
4212   // the LMUL will be sufficient to hold the smaller type.
4213   MVT ContainerExtVT = getContainerForFixedLengthVector(ExtVT);
4214   // Get the extended container type manually to ensure the same number of
4215   // vector elements between source and dest.
4216   MVT ContainerVT = MVT::getVectorVT(VT.getVectorElementType(),
4217                                      ContainerExtVT.getVectorElementCount());
4218 
4219   SDValue Op1 =
4220       convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget);
4221 
4222   SDLoc DL(Op);
4223   SDValue Mask, VL;
4224   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
4225 
4226   SDValue Ext = DAG.getNode(ExtendOpc, DL, ContainerExtVT, Op1, Mask, VL);
4227 
4228   return convertFromScalableVector(ExtVT, Ext, DAG, Subtarget);
4229 }
4230 
4231 // Custom-lower truncations from vectors to mask vectors by using a mask and a
4232 // setcc operation:
4233 //   (vXi1 = trunc vXiN vec) -> (vXi1 = setcc (and vec, 1), 0, ne)
4234 SDValue RISCVTargetLowering::lowerVectorMaskTruncLike(SDValue Op,
4235                                                       SelectionDAG &DAG) const {
4236   bool IsVPTrunc = Op.getOpcode() == ISD::VP_TRUNCATE;
4237   SDLoc DL(Op);
4238   EVT MaskVT = Op.getValueType();
4239   // Only expect to custom-lower truncations to mask types
4240   assert(MaskVT.isVector() && MaskVT.getVectorElementType() == MVT::i1 &&
4241          "Unexpected type for vector mask lowering");
4242   SDValue Src = Op.getOperand(0);
4243   MVT VecVT = Src.getSimpleValueType();
4244   SDValue Mask, VL;
4245   if (IsVPTrunc) {
4246     Mask = Op.getOperand(1);
4247     VL = Op.getOperand(2);
4248   }
4249   // If this is a fixed vector, we need to convert it to a scalable vector.
4250   MVT ContainerVT = VecVT;
4251 
4252   if (VecVT.isFixedLengthVector()) {
4253     ContainerVT = getContainerForFixedLengthVector(VecVT);
4254     Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget);
4255     if (IsVPTrunc) {
4256       MVT MaskContainerVT =
4257           getContainerForFixedLengthVector(Mask.getSimpleValueType());
4258       Mask = convertToScalableVector(MaskContainerVT, Mask, DAG, Subtarget);
4259     }
4260   }
4261 
4262   if (!IsVPTrunc) {
4263     std::tie(Mask, VL) =
4264         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
4265   }
4266 
4267   SDValue SplatOne = DAG.getConstant(1, DL, Subtarget.getXLenVT());
4268   SDValue SplatZero = DAG.getConstant(0, DL, Subtarget.getXLenVT());
4269 
4270   SplatOne = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
4271                          DAG.getUNDEF(ContainerVT), SplatOne, VL);
4272   SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
4273                           DAG.getUNDEF(ContainerVT), SplatZero, VL);
4274 
4275   MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1);
4276   SDValue Trunc =
4277       DAG.getNode(RISCVISD::AND_VL, DL, ContainerVT, Src, SplatOne, Mask, VL);
4278   Trunc = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskContainerVT, Trunc, SplatZero,
4279                       DAG.getCondCode(ISD::SETNE), Mask, VL);
4280   if (MaskVT.isFixedLengthVector())
4281     Trunc = convertFromScalableVector(MaskVT, Trunc, DAG, Subtarget);
4282   return Trunc;
4283 }
4284 
4285 SDValue RISCVTargetLowering::lowerVectorTruncLike(SDValue Op,
4286                                                   SelectionDAG &DAG) const {
4287   bool IsVPTrunc = Op.getOpcode() == ISD::VP_TRUNCATE;
4288   SDLoc DL(Op);
4289 
4290   MVT VT = Op.getSimpleValueType();
4291   // Only custom-lower vector truncates
4292   assert(VT.isVector() && "Unexpected type for vector truncate lowering");
4293 
4294   // Truncates to mask types are handled differently
4295   if (VT.getVectorElementType() == MVT::i1)
4296     return lowerVectorMaskTruncLike(Op, DAG);
4297 
4298   // RVV only has truncates which operate from SEW*2->SEW, so lower arbitrary
4299   // truncates as a series of "RISCVISD::TRUNCATE_VECTOR_VL" nodes which
4300   // truncate by one power of two at a time.
4301   MVT DstEltVT = VT.getVectorElementType();
4302 
4303   SDValue Src = Op.getOperand(0);
4304   MVT SrcVT = Src.getSimpleValueType();
4305   MVT SrcEltVT = SrcVT.getVectorElementType();
4306 
4307   assert(DstEltVT.bitsLT(SrcEltVT) && isPowerOf2_64(DstEltVT.getSizeInBits()) &&
4308          isPowerOf2_64(SrcEltVT.getSizeInBits()) &&
4309          "Unexpected vector truncate lowering");
4310 
4311   MVT ContainerVT = SrcVT;
4312   SDValue Mask, VL;
4313   if (IsVPTrunc) {
4314     Mask = Op.getOperand(1);
4315     VL = Op.getOperand(2);
4316   }
4317   if (SrcVT.isFixedLengthVector()) {
4318     ContainerVT = getContainerForFixedLengthVector(SrcVT);
4319     Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget);
4320     if (IsVPTrunc) {
4321       MVT MaskVT = getMaskTypeFor(ContainerVT);
4322       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
4323     }
4324   }
4325 
4326   SDValue Result = Src;
4327   if (!IsVPTrunc) {
4328     std::tie(Mask, VL) =
4329         getDefaultVLOps(SrcVT, ContainerVT, DL, DAG, Subtarget);
4330   }
4331 
4332   LLVMContext &Context = *DAG.getContext();
4333   const ElementCount Count = ContainerVT.getVectorElementCount();
4334   do {
4335     SrcEltVT = MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2);
4336     EVT ResultVT = EVT::getVectorVT(Context, SrcEltVT, Count);
4337     Result = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, ResultVT, Result,
4338                          Mask, VL);
4339   } while (SrcEltVT != DstEltVT);
4340 
4341   if (SrcVT.isFixedLengthVector())
4342     Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
4343 
4344   return Result;
4345 }
4346 
4347 SDValue
4348 RISCVTargetLowering::lowerVectorFPExtendOrRoundLike(SDValue Op,
4349                                                     SelectionDAG &DAG) const {
4350   bool IsVP =
4351       Op.getOpcode() == ISD::VP_FP_ROUND || Op.getOpcode() == ISD::VP_FP_EXTEND;
4352   bool IsExtend =
4353       Op.getOpcode() == ISD::VP_FP_EXTEND || Op.getOpcode() == ISD::FP_EXTEND;
4354   // RVV can only do truncate fp to types half the size as the source. We
4355   // custom-lower f64->f16 rounds via RVV's round-to-odd float
4356   // conversion instruction.
4357   SDLoc DL(Op);
4358   MVT VT = Op.getSimpleValueType();
4359 
4360   assert(VT.isVector() && "Unexpected type for vector truncate lowering");
4361 
4362   SDValue Src = Op.getOperand(0);
4363   MVT SrcVT = Src.getSimpleValueType();
4364 
4365   bool IsDirectExtend = IsExtend && (VT.getVectorElementType() != MVT::f64 ||
4366                                      SrcVT.getVectorElementType() != MVT::f16);
4367   bool IsDirectTrunc = !IsExtend && (VT.getVectorElementType() != MVT::f16 ||
4368                                      SrcVT.getVectorElementType() != MVT::f64);
4369 
4370   bool IsDirectConv = IsDirectExtend || IsDirectTrunc;
4371 
4372   // Prepare any fixed-length vector operands.
4373   MVT ContainerVT = VT;
4374   SDValue Mask, VL;
4375   if (IsVP) {
4376     Mask = Op.getOperand(1);
4377     VL = Op.getOperand(2);
4378   }
4379   if (VT.isFixedLengthVector()) {
4380     MVT SrcContainerVT = getContainerForFixedLengthVector(SrcVT);
4381     ContainerVT =
4382         SrcContainerVT.changeVectorElementType(VT.getVectorElementType());
4383     Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget);
4384     if (IsVP) {
4385       MVT MaskVT = getMaskTypeFor(ContainerVT);
4386       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
4387     }
4388   }
4389 
4390   if (!IsVP)
4391     std::tie(Mask, VL) =
4392         getDefaultVLOps(SrcVT, ContainerVT, DL, DAG, Subtarget);
4393 
4394   unsigned ConvOpc = IsExtend ? RISCVISD::FP_EXTEND_VL : RISCVISD::FP_ROUND_VL;
4395 
4396   if (IsDirectConv) {
4397     Src = DAG.getNode(ConvOpc, DL, ContainerVT, Src, Mask, VL);
4398     if (VT.isFixedLengthVector())
4399       Src = convertFromScalableVector(VT, Src, DAG, Subtarget);
4400     return Src;
4401   }
4402 
4403   unsigned InterConvOpc =
4404       IsExtend ? RISCVISD::FP_EXTEND_VL : RISCVISD::VFNCVT_ROD_VL;
4405 
4406   MVT InterVT = ContainerVT.changeVectorElementType(MVT::f32);
4407   SDValue IntermediateConv =
4408       DAG.getNode(InterConvOpc, DL, InterVT, Src, Mask, VL);
4409   SDValue Result =
4410       DAG.getNode(ConvOpc, DL, ContainerVT, IntermediateConv, Mask, VL);
4411   if (VT.isFixedLengthVector())
4412     return convertFromScalableVector(VT, Result, DAG, Subtarget);
4413   return Result;
4414 }
4415 
4416 // Custom-legalize INSERT_VECTOR_ELT so that the value is inserted into the
4417 // first position of a vector, and that vector is slid up to the insert index.
4418 // By limiting the active vector length to index+1 and merging with the
4419 // original vector (with an undisturbed tail policy for elements >= VL), we
4420 // achieve the desired result of leaving all elements untouched except the one
4421 // at VL-1, which is replaced with the desired value.
4422 SDValue RISCVTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op,
4423                                                     SelectionDAG &DAG) const {
4424   SDLoc DL(Op);
4425   MVT VecVT = Op.getSimpleValueType();
4426   SDValue Vec = Op.getOperand(0);
4427   SDValue Val = Op.getOperand(1);
4428   SDValue Idx = Op.getOperand(2);
4429 
4430   if (VecVT.getVectorElementType() == MVT::i1) {
4431     // FIXME: For now we just promote to an i8 vector and insert into that,
4432     // but this is probably not optimal.
4433     MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount());
4434     Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec);
4435     Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, WideVT, Vec, Val, Idx);
4436     return DAG.getNode(ISD::TRUNCATE, DL, VecVT, Vec);
4437   }
4438 
4439   MVT ContainerVT = VecVT;
4440   // If the operand is a fixed-length vector, convert to a scalable one.
4441   if (VecVT.isFixedLengthVector()) {
4442     ContainerVT = getContainerForFixedLengthVector(VecVT);
4443     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
4444   }
4445 
4446   MVT XLenVT = Subtarget.getXLenVT();
4447 
4448   SDValue Zero = DAG.getConstant(0, DL, XLenVT);
4449   bool IsLegalInsert = Subtarget.is64Bit() || Val.getValueType() != MVT::i64;
4450   // Even i64-element vectors on RV32 can be lowered without scalar
4451   // legalization if the most-significant 32 bits of the value are not affected
4452   // by the sign-extension of the lower 32 bits.
4453   // TODO: We could also catch sign extensions of a 32-bit value.
4454   if (!IsLegalInsert && isa<ConstantSDNode>(Val)) {
4455     const auto *CVal = cast<ConstantSDNode>(Val);
4456     if (isInt<32>(CVal->getSExtValue())) {
4457       IsLegalInsert = true;
4458       Val = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32);
4459     }
4460   }
4461 
4462   SDValue Mask, VL;
4463   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
4464 
4465   SDValue ValInVec;
4466 
4467   if (IsLegalInsert) {
4468     unsigned Opc =
4469         VecVT.isFloatingPoint() ? RISCVISD::VFMV_S_F_VL : RISCVISD::VMV_S_X_VL;
4470     if (isNullConstant(Idx)) {
4471       Vec = DAG.getNode(Opc, DL, ContainerVT, Vec, Val, VL);
4472       if (!VecVT.isFixedLengthVector())
4473         return Vec;
4474       return convertFromScalableVector(VecVT, Vec, DAG, Subtarget);
4475     }
4476     ValInVec =
4477         DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), Val, VL);
4478   } else {
4479     // On RV32, i64-element vectors must be specially handled to place the
4480     // value at element 0, by using two vslide1up instructions in sequence on
4481     // the i32 split lo/hi value. Use an equivalently-sized i32 vector for
4482     // this.
4483     SDValue One = DAG.getConstant(1, DL, XLenVT);
4484     SDValue ValLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, Zero);
4485     SDValue ValHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, One);
4486     MVT I32ContainerVT =
4487         MVT::getVectorVT(MVT::i32, ContainerVT.getVectorElementCount() * 2);
4488     SDValue I32Mask =
4489         getDefaultScalableVLOps(I32ContainerVT, DL, DAG, Subtarget).first;
4490     // Limit the active VL to two.
4491     SDValue InsertI64VL = DAG.getConstant(2, DL, XLenVT);
4492     // Note: We can't pass a UNDEF to the first VSLIDE1UP_VL since an untied
4493     // undef doesn't obey the earlyclobber constraint. Just splat a zero value.
4494     ValInVec = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, I32ContainerVT,
4495                            DAG.getUNDEF(I32ContainerVT), Zero, InsertI64VL);
4496     // First slide in the hi value, then the lo in underneath it.
4497     ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT,
4498                            DAG.getUNDEF(I32ContainerVT), ValInVec, ValHi,
4499                            I32Mask, InsertI64VL);
4500     ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT,
4501                            DAG.getUNDEF(I32ContainerVT), ValInVec, ValLo,
4502                            I32Mask, InsertI64VL);
4503     // Bitcast back to the right container type.
4504     ValInVec = DAG.getBitcast(ContainerVT, ValInVec);
4505   }
4506 
4507   // Now that the value is in a vector, slide it into position.
4508   SDValue InsertVL =
4509       DAG.getNode(ISD::ADD, DL, XLenVT, Idx, DAG.getConstant(1, DL, XLenVT));
4510   SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec,
4511                                 ValInVec, Idx, Mask, InsertVL);
4512   if (!VecVT.isFixedLengthVector())
4513     return Slideup;
4514   return convertFromScalableVector(VecVT, Slideup, DAG, Subtarget);
4515 }
4516 
4517 // Custom-lower EXTRACT_VECTOR_ELT operations to slide the vector down, then
4518 // extract the first element: (extractelt (slidedown vec, idx), 0). For integer
4519 // types this is done using VMV_X_S to allow us to glean information about the
4520 // sign bits of the result.
4521 SDValue RISCVTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op,
4522                                                      SelectionDAG &DAG) const {
4523   SDLoc DL(Op);
4524   SDValue Idx = Op.getOperand(1);
4525   SDValue Vec = Op.getOperand(0);
4526   EVT EltVT = Op.getValueType();
4527   MVT VecVT = Vec.getSimpleValueType();
4528   MVT XLenVT = Subtarget.getXLenVT();
4529 
4530   if (VecVT.getVectorElementType() == MVT::i1) {
4531     if (VecVT.isFixedLengthVector()) {
4532       unsigned NumElts = VecVT.getVectorNumElements();
4533       if (NumElts >= 8) {
4534         MVT WideEltVT;
4535         unsigned WidenVecLen;
4536         SDValue ExtractElementIdx;
4537         SDValue ExtractBitIdx;
4538         unsigned MaxEEW = Subtarget.getELEN();
4539         MVT LargestEltVT = MVT::getIntegerVT(
4540             std::min(MaxEEW, unsigned(XLenVT.getSizeInBits())));
4541         if (NumElts <= LargestEltVT.getSizeInBits()) {
4542           assert(isPowerOf2_32(NumElts) &&
4543                  "the number of elements should be power of 2");
4544           WideEltVT = MVT::getIntegerVT(NumElts);
4545           WidenVecLen = 1;
4546           ExtractElementIdx = DAG.getConstant(0, DL, XLenVT);
4547           ExtractBitIdx = Idx;
4548         } else {
4549           WideEltVT = LargestEltVT;
4550           WidenVecLen = NumElts / WideEltVT.getSizeInBits();
4551           // extract element index = index / element width
4552           ExtractElementIdx = DAG.getNode(
4553               ISD::SRL, DL, XLenVT, Idx,
4554               DAG.getConstant(Log2_64(WideEltVT.getSizeInBits()), DL, XLenVT));
4555           // mask bit index = index % element width
4556           ExtractBitIdx = DAG.getNode(
4557               ISD::AND, DL, XLenVT, Idx,
4558               DAG.getConstant(WideEltVT.getSizeInBits() - 1, DL, XLenVT));
4559         }
4560         MVT WideVT = MVT::getVectorVT(WideEltVT, WidenVecLen);
4561         Vec = DAG.getNode(ISD::BITCAST, DL, WideVT, Vec);
4562         SDValue ExtractElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, XLenVT,
4563                                          Vec, ExtractElementIdx);
4564         // Extract the bit from GPR.
4565         SDValue ShiftRight =
4566             DAG.getNode(ISD::SRL, DL, XLenVT, ExtractElt, ExtractBitIdx);
4567         return DAG.getNode(ISD::AND, DL, XLenVT, ShiftRight,
4568                            DAG.getConstant(1, DL, XLenVT));
4569       }
4570     }
4571     // Otherwise, promote to an i8 vector and extract from that.
4572     MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount());
4573     Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec);
4574     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec, Idx);
4575   }
4576 
4577   // If this is a fixed vector, we need to convert it to a scalable vector.
4578   MVT ContainerVT = VecVT;
4579   if (VecVT.isFixedLengthVector()) {
4580     ContainerVT = getContainerForFixedLengthVector(VecVT);
4581     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
4582   }
4583 
4584   // If the index is 0, the vector is already in the right position.
4585   if (!isNullConstant(Idx)) {
4586     // Use a VL of 1 to avoid processing more elements than we need.
4587     SDValue VL = DAG.getConstant(1, DL, XLenVT);
4588     SDValue Mask = getAllOnesMask(ContainerVT, VL, DL, DAG);
4589     Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT,
4590                       DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL);
4591   }
4592 
4593   if (!EltVT.isInteger()) {
4594     // Floating-point extracts are handled in TableGen.
4595     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec,
4596                        DAG.getConstant(0, DL, XLenVT));
4597   }
4598 
4599   SDValue Elt0 = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec);
4600   return DAG.getNode(ISD::TRUNCATE, DL, EltVT, Elt0);
4601 }
4602 
4603 // Some RVV intrinsics may claim that they want an integer operand to be
4604 // promoted or expanded.
4605 static SDValue lowerVectorIntrinsicScalars(SDValue Op, SelectionDAG &DAG,
4606                                            const RISCVSubtarget &Subtarget) {
4607   assert((Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
4608           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN) &&
4609          "Unexpected opcode");
4610 
4611   if (!Subtarget.hasVInstructions())
4612     return SDValue();
4613 
4614   bool HasChain = Op.getOpcode() == ISD::INTRINSIC_W_CHAIN;
4615   unsigned IntNo = Op.getConstantOperandVal(HasChain ? 1 : 0);
4616   SDLoc DL(Op);
4617 
4618   const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II =
4619       RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo);
4620   if (!II || !II->hasScalarOperand())
4621     return SDValue();
4622 
4623   unsigned SplatOp = II->ScalarOperand + 1 + HasChain;
4624   assert(SplatOp < Op.getNumOperands());
4625 
4626   SmallVector<SDValue, 8> Operands(Op->op_begin(), Op->op_end());
4627   SDValue &ScalarOp = Operands[SplatOp];
4628   MVT OpVT = ScalarOp.getSimpleValueType();
4629   MVT XLenVT = Subtarget.getXLenVT();
4630 
4631   // If this isn't a scalar, or its type is XLenVT we're done.
4632   if (!OpVT.isScalarInteger() || OpVT == XLenVT)
4633     return SDValue();
4634 
4635   // Simplest case is that the operand needs to be promoted to XLenVT.
4636   if (OpVT.bitsLT(XLenVT)) {
4637     // If the operand is a constant, sign extend to increase our chances
4638     // of being able to use a .vi instruction. ANY_EXTEND would become a
4639     // a zero extend and the simm5 check in isel would fail.
4640     // FIXME: Should we ignore the upper bits in isel instead?
4641     unsigned ExtOpc =
4642         isa<ConstantSDNode>(ScalarOp) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND;
4643     ScalarOp = DAG.getNode(ExtOpc, DL, XLenVT, ScalarOp);
4644     return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands);
4645   }
4646 
4647   // Use the previous operand to get the vXi64 VT. The result might be a mask
4648   // VT for compares. Using the previous operand assumes that the previous
4649   // operand will never have a smaller element size than a scalar operand and
4650   // that a widening operation never uses SEW=64.
4651   // NOTE: If this fails the below assert, we can probably just find the
4652   // element count from any operand or result and use it to construct the VT.
4653   assert(II->ScalarOperand > 0 && "Unexpected splat operand!");
4654   MVT VT = Op.getOperand(SplatOp - 1).getSimpleValueType();
4655 
4656   // The more complex case is when the scalar is larger than XLenVT.
4657   assert(XLenVT == MVT::i32 && OpVT == MVT::i64 &&
4658          VT.getVectorElementType() == MVT::i64 && "Unexpected VTs!");
4659 
4660   // If this is a sign-extended 32-bit value, we can truncate it and rely on the
4661   // instruction to sign-extend since SEW>XLEN.
4662   if (DAG.ComputeNumSignBits(ScalarOp) > 32) {
4663     ScalarOp = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, ScalarOp);
4664     return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands);
4665   }
4666 
4667   switch (IntNo) {
4668   case Intrinsic::riscv_vslide1up:
4669   case Intrinsic::riscv_vslide1down:
4670   case Intrinsic::riscv_vslide1up_mask:
4671   case Intrinsic::riscv_vslide1down_mask: {
4672     // We need to special case these when the scalar is larger than XLen.
4673     unsigned NumOps = Op.getNumOperands();
4674     bool IsMasked = NumOps == 7;
4675 
4676     // Convert the vector source to the equivalent nxvXi32 vector.
4677     MVT I32VT = MVT::getVectorVT(MVT::i32, VT.getVectorElementCount() * 2);
4678     SDValue Vec = DAG.getBitcast(I32VT, Operands[2]);
4679 
4680     SDValue ScalarLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, ScalarOp,
4681                                    DAG.getConstant(0, DL, XLenVT));
4682     SDValue ScalarHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, ScalarOp,
4683                                    DAG.getConstant(1, DL, XLenVT));
4684 
4685     // Double the VL since we halved SEW.
4686     SDValue AVL = getVLOperand(Op);
4687     SDValue I32VL;
4688 
4689     // Optimize for constant AVL
4690     if (isa<ConstantSDNode>(AVL)) {
4691       unsigned EltSize = VT.getScalarSizeInBits();
4692       unsigned MinSize = VT.getSizeInBits().getKnownMinValue();
4693 
4694       unsigned VectorBitsMax = Subtarget.getRealMaxVLen();
4695       unsigned MaxVLMAX =
4696           RISCVTargetLowering::computeVLMAX(VectorBitsMax, EltSize, MinSize);
4697 
4698       unsigned VectorBitsMin = Subtarget.getRealMinVLen();
4699       unsigned MinVLMAX =
4700           RISCVTargetLowering::computeVLMAX(VectorBitsMin, EltSize, MinSize);
4701 
4702       uint64_t AVLInt = cast<ConstantSDNode>(AVL)->getZExtValue();
4703       if (AVLInt <= MinVLMAX) {
4704         I32VL = DAG.getConstant(2 * AVLInt, DL, XLenVT);
4705       } else if (AVLInt >= 2 * MaxVLMAX) {
4706         // Just set vl to VLMAX in this situation
4707         RISCVII::VLMUL Lmul = RISCVTargetLowering::getLMUL(I32VT);
4708         SDValue LMUL = DAG.getConstant(Lmul, DL, XLenVT);
4709         unsigned Sew = RISCVVType::encodeSEW(I32VT.getScalarSizeInBits());
4710         SDValue SEW = DAG.getConstant(Sew, DL, XLenVT);
4711         SDValue SETVLMAX = DAG.getTargetConstant(
4712             Intrinsic::riscv_vsetvlimax_opt, DL, MVT::i32);
4713         I32VL = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, XLenVT, SETVLMAX, SEW,
4714                             LMUL);
4715       } else {
4716         // For AVL between (MinVLMAX, 2 * MaxVLMAX), the actual working vl
4717         // is related to the hardware implementation.
4718         // So let the following code handle
4719       }
4720     }
4721     if (!I32VL) {
4722       RISCVII::VLMUL Lmul = RISCVTargetLowering::getLMUL(VT);
4723       SDValue LMUL = DAG.getConstant(Lmul, DL, XLenVT);
4724       unsigned Sew = RISCVVType::encodeSEW(VT.getScalarSizeInBits());
4725       SDValue SEW = DAG.getConstant(Sew, DL, XLenVT);
4726       SDValue SETVL =
4727           DAG.getTargetConstant(Intrinsic::riscv_vsetvli_opt, DL, MVT::i32);
4728       // Using vsetvli instruction to get actually used length which related to
4729       // the hardware implementation
4730       SDValue VL = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, XLenVT, SETVL, AVL,
4731                                SEW, LMUL);
4732       I32VL =
4733           DAG.getNode(ISD::SHL, DL, XLenVT, VL, DAG.getConstant(1, DL, XLenVT));
4734     }
4735 
4736     SDValue I32Mask = getAllOnesMask(I32VT, I32VL, DL, DAG);
4737 
4738     // Shift the two scalar parts in using SEW=32 slide1up/slide1down
4739     // instructions.
4740     SDValue Passthru;
4741     if (IsMasked)
4742       Passthru = DAG.getUNDEF(I32VT);
4743     else
4744       Passthru = DAG.getBitcast(I32VT, Operands[1]);
4745 
4746     if (IntNo == Intrinsic::riscv_vslide1up ||
4747         IntNo == Intrinsic::riscv_vslide1up_mask) {
4748       Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Passthru, Vec,
4749                         ScalarHi, I32Mask, I32VL);
4750       Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Passthru, Vec,
4751                         ScalarLo, I32Mask, I32VL);
4752     } else {
4753       Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Passthru, Vec,
4754                         ScalarLo, I32Mask, I32VL);
4755       Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Passthru, Vec,
4756                         ScalarHi, I32Mask, I32VL);
4757     }
4758 
4759     // Convert back to nxvXi64.
4760     Vec = DAG.getBitcast(VT, Vec);
4761 
4762     if (!IsMasked)
4763       return Vec;
4764     // Apply mask after the operation.
4765     SDValue Mask = Operands[NumOps - 3];
4766     SDValue MaskedOff = Operands[1];
4767     // Assume Policy operand is the last operand.
4768     uint64_t Policy =
4769         cast<ConstantSDNode>(Operands[NumOps - 1])->getZExtValue();
4770     // We don't need to select maskedoff if it's undef.
4771     if (MaskedOff.isUndef())
4772       return Vec;
4773     // TAMU
4774     if (Policy == RISCVII::TAIL_AGNOSTIC)
4775       return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, Mask, Vec, MaskedOff,
4776                          AVL);
4777     // TUMA or TUMU: Currently we always emit tumu policy regardless of tuma.
4778     // It's fine because vmerge does not care mask policy.
4779     return DAG.getNode(RISCVISD::VP_MERGE_VL, DL, VT, Mask, Vec, MaskedOff,
4780                        AVL);
4781   }
4782   }
4783 
4784   // We need to convert the scalar to a splat vector.
4785   SDValue VL = getVLOperand(Op);
4786   assert(VL.getValueType() == XLenVT);
4787   ScalarOp = splatSplitI64WithVL(DL, VT, SDValue(), ScalarOp, VL, DAG);
4788   return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands);
4789 }
4790 
4791 SDValue RISCVTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
4792                                                      SelectionDAG &DAG) const {
4793   unsigned IntNo = Op.getConstantOperandVal(0);
4794   SDLoc DL(Op);
4795   MVT XLenVT = Subtarget.getXLenVT();
4796 
4797   switch (IntNo) {
4798   default:
4799     break; // Don't custom lower most intrinsics.
4800   case Intrinsic::thread_pointer: {
4801     EVT PtrVT = getPointerTy(DAG.getDataLayout());
4802     return DAG.getRegister(RISCV::X4, PtrVT);
4803   }
4804   case Intrinsic::riscv_orc_b:
4805   case Intrinsic::riscv_brev8: {
4806     // Lower to the GORCI encoding for orc.b or the GREVI encoding for brev8.
4807     unsigned Opc =
4808         IntNo == Intrinsic::riscv_brev8 ? RISCVISD::GREV : RISCVISD::GORC;
4809     return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1),
4810                        DAG.getConstant(7, DL, XLenVT));
4811   }
4812   case Intrinsic::riscv_grev:
4813   case Intrinsic::riscv_gorc: {
4814     unsigned Opc =
4815         IntNo == Intrinsic::riscv_grev ? RISCVISD::GREV : RISCVISD::GORC;
4816     return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2));
4817   }
4818   case Intrinsic::riscv_zip:
4819   case Intrinsic::riscv_unzip: {
4820     // Lower to the SHFLI encoding for zip or the UNSHFLI encoding for unzip.
4821     // For i32 the immediate is 15. For i64 the immediate is 31.
4822     unsigned Opc =
4823         IntNo == Intrinsic::riscv_zip ? RISCVISD::SHFL : RISCVISD::UNSHFL;
4824     unsigned BitWidth = Op.getValueSizeInBits();
4825     assert(isPowerOf2_32(BitWidth) && BitWidth >= 2 && "Unexpected bit width");
4826     return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1),
4827                        DAG.getConstant((BitWidth / 2) - 1, DL, XLenVT));
4828   }
4829   case Intrinsic::riscv_shfl:
4830   case Intrinsic::riscv_unshfl: {
4831     unsigned Opc =
4832         IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL;
4833     return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2));
4834   }
4835   case Intrinsic::riscv_bcompress:
4836   case Intrinsic::riscv_bdecompress: {
4837     unsigned Opc = IntNo == Intrinsic::riscv_bcompress ? RISCVISD::BCOMPRESS
4838                                                        : RISCVISD::BDECOMPRESS;
4839     return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2));
4840   }
4841   case Intrinsic::riscv_bfp:
4842     return DAG.getNode(RISCVISD::BFP, DL, XLenVT, Op.getOperand(1),
4843                        Op.getOperand(2));
4844   case Intrinsic::riscv_fsl:
4845     return DAG.getNode(RISCVISD::FSL, DL, XLenVT, Op.getOperand(1),
4846                        Op.getOperand(2), Op.getOperand(3));
4847   case Intrinsic::riscv_fsr:
4848     return DAG.getNode(RISCVISD::FSR, DL, XLenVT, Op.getOperand(1),
4849                        Op.getOperand(2), Op.getOperand(3));
4850   case Intrinsic::riscv_vmv_x_s:
4851     assert(Op.getValueType() == XLenVT && "Unexpected VT!");
4852     return DAG.getNode(RISCVISD::VMV_X_S, DL, Op.getValueType(),
4853                        Op.getOperand(1));
4854   case Intrinsic::riscv_vmv_v_x:
4855     return lowerScalarSplat(Op.getOperand(1), Op.getOperand(2),
4856                             Op.getOperand(3), Op.getSimpleValueType(), DL, DAG,
4857                             Subtarget);
4858   case Intrinsic::riscv_vfmv_v_f:
4859     return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, Op.getValueType(),
4860                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
4861   case Intrinsic::riscv_vmv_s_x: {
4862     SDValue Scalar = Op.getOperand(2);
4863 
4864     if (Scalar.getValueType().bitsLE(XLenVT)) {
4865       Scalar = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Scalar);
4866       return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, Op.getValueType(),
4867                          Op.getOperand(1), Scalar, Op.getOperand(3));
4868     }
4869 
4870     assert(Scalar.getValueType() == MVT::i64 && "Unexpected scalar VT!");
4871 
4872     // This is an i64 value that lives in two scalar registers. We have to
4873     // insert this in a convoluted way. First we build vXi64 splat containing
4874     // the two values that we assemble using some bit math. Next we'll use
4875     // vid.v and vmseq to build a mask with bit 0 set. Then we'll use that mask
4876     // to merge element 0 from our splat into the source vector.
4877     // FIXME: This is probably not the best way to do this, but it is
4878     // consistent with INSERT_VECTOR_ELT lowering so it is a good starting
4879     // point.
4880     //   sw lo, (a0)
4881     //   sw hi, 4(a0)
4882     //   vlse vX, (a0)
4883     //
4884     //   vid.v      vVid
4885     //   vmseq.vx   mMask, vVid, 0
4886     //   vmerge.vvm vDest, vSrc, vVal, mMask
4887     MVT VT = Op.getSimpleValueType();
4888     SDValue Vec = Op.getOperand(1);
4889     SDValue VL = getVLOperand(Op);
4890 
4891     SDValue SplattedVal = splatSplitI64WithVL(DL, VT, SDValue(), Scalar, VL, DAG);
4892     if (Op.getOperand(1).isUndef())
4893       return SplattedVal;
4894     SDValue SplattedIdx =
4895         DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, DAG.getUNDEF(VT),
4896                     DAG.getConstant(0, DL, MVT::i32), VL);
4897 
4898     MVT MaskVT = getMaskTypeFor(VT);
4899     SDValue Mask = getAllOnesMask(VT, VL, DL, DAG);
4900     SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL);
4901     SDValue SelectCond =
4902         DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, VID, SplattedIdx,
4903                     DAG.getCondCode(ISD::SETEQ), Mask, VL);
4904     return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, SelectCond, SplattedVal,
4905                        Vec, VL);
4906   }
4907   }
4908 
4909   return lowerVectorIntrinsicScalars(Op, DAG, Subtarget);
4910 }
4911 
4912 SDValue RISCVTargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op,
4913                                                     SelectionDAG &DAG) const {
4914   unsigned IntNo = Op.getConstantOperandVal(1);
4915   switch (IntNo) {
4916   default:
4917     break;
4918   case Intrinsic::riscv_masked_strided_load: {
4919     SDLoc DL(Op);
4920     MVT XLenVT = Subtarget.getXLenVT();
4921 
4922     // If the mask is known to be all ones, optimize to an unmasked intrinsic;
4923     // the selection of the masked intrinsics doesn't do this for us.
4924     SDValue Mask = Op.getOperand(5);
4925     bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
4926 
4927     MVT VT = Op->getSimpleValueType(0);
4928     MVT ContainerVT = getContainerForFixedLengthVector(VT);
4929 
4930     SDValue PassThru = Op.getOperand(2);
4931     if (!IsUnmasked) {
4932       MVT MaskVT = getMaskTypeFor(ContainerVT);
4933       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
4934       PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget);
4935     }
4936 
4937     SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT);
4938 
4939     SDValue IntID = DAG.getTargetConstant(
4940         IsUnmasked ? Intrinsic::riscv_vlse : Intrinsic::riscv_vlse_mask, DL,
4941         XLenVT);
4942 
4943     auto *Load = cast<MemIntrinsicSDNode>(Op);
4944     SmallVector<SDValue, 8> Ops{Load->getChain(), IntID};
4945     if (IsUnmasked)
4946       Ops.push_back(DAG.getUNDEF(ContainerVT));
4947     else
4948       Ops.push_back(PassThru);
4949     Ops.push_back(Op.getOperand(3)); // Ptr
4950     Ops.push_back(Op.getOperand(4)); // Stride
4951     if (!IsUnmasked)
4952       Ops.push_back(Mask);
4953     Ops.push_back(VL);
4954     if (!IsUnmasked) {
4955       SDValue Policy = DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT);
4956       Ops.push_back(Policy);
4957     }
4958 
4959     SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
4960     SDValue Result =
4961         DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops,
4962                                 Load->getMemoryVT(), Load->getMemOperand());
4963     SDValue Chain = Result.getValue(1);
4964     Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
4965     return DAG.getMergeValues({Result, Chain}, DL);
4966   }
4967   case Intrinsic::riscv_seg2_load:
4968   case Intrinsic::riscv_seg3_load:
4969   case Intrinsic::riscv_seg4_load:
4970   case Intrinsic::riscv_seg5_load:
4971   case Intrinsic::riscv_seg6_load:
4972   case Intrinsic::riscv_seg7_load:
4973   case Intrinsic::riscv_seg8_load: {
4974     SDLoc DL(Op);
4975     static const Intrinsic::ID VlsegInts[7] = {
4976         Intrinsic::riscv_vlseg2, Intrinsic::riscv_vlseg3,
4977         Intrinsic::riscv_vlseg4, Intrinsic::riscv_vlseg5,
4978         Intrinsic::riscv_vlseg6, Intrinsic::riscv_vlseg7,
4979         Intrinsic::riscv_vlseg8};
4980     unsigned NF = Op->getNumValues() - 1;
4981     assert(NF >= 2 && NF <= 8 && "Unexpected seg number");
4982     MVT XLenVT = Subtarget.getXLenVT();
4983     MVT VT = Op->getSimpleValueType(0);
4984     MVT ContainerVT = getContainerForFixedLengthVector(VT);
4985 
4986     SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT);
4987     SDValue IntID = DAG.getTargetConstant(VlsegInts[NF - 2], DL, XLenVT);
4988     auto *Load = cast<MemIntrinsicSDNode>(Op);
4989     SmallVector<EVT, 9> ContainerVTs(NF, ContainerVT);
4990     ContainerVTs.push_back(MVT::Other);
4991     SDVTList VTs = DAG.getVTList(ContainerVTs);
4992     SmallVector<SDValue, 12> Ops = {Load->getChain(), IntID};
4993     Ops.insert(Ops.end(), NF, DAG.getUNDEF(ContainerVT));
4994     Ops.push_back(Op.getOperand(2));
4995     Ops.push_back(VL);
4996     SDValue Result =
4997         DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops,
4998                                 Load->getMemoryVT(), Load->getMemOperand());
4999     SmallVector<SDValue, 9> Results;
5000     for (unsigned int RetIdx = 0; RetIdx < NF; RetIdx++)
5001       Results.push_back(convertFromScalableVector(VT, Result.getValue(RetIdx),
5002                                                   DAG, Subtarget));
5003     Results.push_back(Result.getValue(NF));
5004     return DAG.getMergeValues(Results, DL);
5005   }
5006   }
5007 
5008   return lowerVectorIntrinsicScalars(Op, DAG, Subtarget);
5009 }
5010 
5011 SDValue RISCVTargetLowering::LowerINTRINSIC_VOID(SDValue Op,
5012                                                  SelectionDAG &DAG) const {
5013   unsigned IntNo = Op.getConstantOperandVal(1);
5014   switch (IntNo) {
5015   default:
5016     break;
5017   case Intrinsic::riscv_masked_strided_store: {
5018     SDLoc DL(Op);
5019     MVT XLenVT = Subtarget.getXLenVT();
5020 
5021     // If the mask is known to be all ones, optimize to an unmasked intrinsic;
5022     // the selection of the masked intrinsics doesn't do this for us.
5023     SDValue Mask = Op.getOperand(5);
5024     bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
5025 
5026     SDValue Val = Op.getOperand(2);
5027     MVT VT = Val.getSimpleValueType();
5028     MVT ContainerVT = getContainerForFixedLengthVector(VT);
5029 
5030     Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget);
5031     if (!IsUnmasked) {
5032       MVT MaskVT = getMaskTypeFor(ContainerVT);
5033       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
5034     }
5035 
5036     SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT);
5037 
5038     SDValue IntID = DAG.getTargetConstant(
5039         IsUnmasked ? Intrinsic::riscv_vsse : Intrinsic::riscv_vsse_mask, DL,
5040         XLenVT);
5041 
5042     auto *Store = cast<MemIntrinsicSDNode>(Op);
5043     SmallVector<SDValue, 8> Ops{Store->getChain(), IntID};
5044     Ops.push_back(Val);
5045     Ops.push_back(Op.getOperand(3)); // Ptr
5046     Ops.push_back(Op.getOperand(4)); // Stride
5047     if (!IsUnmasked)
5048       Ops.push_back(Mask);
5049     Ops.push_back(VL);
5050 
5051     return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, Store->getVTList(),
5052                                    Ops, Store->getMemoryVT(),
5053                                    Store->getMemOperand());
5054   }
5055   }
5056 
5057   return SDValue();
5058 }
5059 
5060 static MVT getLMUL1VT(MVT VT) {
5061   assert(VT.getVectorElementType().getSizeInBits() <= 64 &&
5062          "Unexpected vector MVT");
5063   return MVT::getScalableVectorVT(
5064       VT.getVectorElementType(),
5065       RISCV::RVVBitsPerBlock / VT.getVectorElementType().getSizeInBits());
5066 }
5067 
5068 static unsigned getRVVReductionOp(unsigned ISDOpcode) {
5069   switch (ISDOpcode) {
5070   default:
5071     llvm_unreachable("Unhandled reduction");
5072   case ISD::VECREDUCE_ADD:
5073     return RISCVISD::VECREDUCE_ADD_VL;
5074   case ISD::VECREDUCE_UMAX:
5075     return RISCVISD::VECREDUCE_UMAX_VL;
5076   case ISD::VECREDUCE_SMAX:
5077     return RISCVISD::VECREDUCE_SMAX_VL;
5078   case ISD::VECREDUCE_UMIN:
5079     return RISCVISD::VECREDUCE_UMIN_VL;
5080   case ISD::VECREDUCE_SMIN:
5081     return RISCVISD::VECREDUCE_SMIN_VL;
5082   case ISD::VECREDUCE_AND:
5083     return RISCVISD::VECREDUCE_AND_VL;
5084   case ISD::VECREDUCE_OR:
5085     return RISCVISD::VECREDUCE_OR_VL;
5086   case ISD::VECREDUCE_XOR:
5087     return RISCVISD::VECREDUCE_XOR_VL;
5088   }
5089 }
5090 
5091 SDValue RISCVTargetLowering::lowerVectorMaskVecReduction(SDValue Op,
5092                                                          SelectionDAG &DAG,
5093                                                          bool IsVP) const {
5094   SDLoc DL(Op);
5095   SDValue Vec = Op.getOperand(IsVP ? 1 : 0);
5096   MVT VecVT = Vec.getSimpleValueType();
5097   assert((Op.getOpcode() == ISD::VECREDUCE_AND ||
5098           Op.getOpcode() == ISD::VECREDUCE_OR ||
5099           Op.getOpcode() == ISD::VECREDUCE_XOR ||
5100           Op.getOpcode() == ISD::VP_REDUCE_AND ||
5101           Op.getOpcode() == ISD::VP_REDUCE_OR ||
5102           Op.getOpcode() == ISD::VP_REDUCE_XOR) &&
5103          "Unexpected reduction lowering");
5104 
5105   MVT XLenVT = Subtarget.getXLenVT();
5106   assert(Op.getValueType() == XLenVT &&
5107          "Expected reduction output to be legalized to XLenVT");
5108 
5109   MVT ContainerVT = VecVT;
5110   if (VecVT.isFixedLengthVector()) {
5111     ContainerVT = getContainerForFixedLengthVector(VecVT);
5112     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
5113   }
5114 
5115   SDValue Mask, VL;
5116   if (IsVP) {
5117     Mask = Op.getOperand(2);
5118     VL = Op.getOperand(3);
5119   } else {
5120     std::tie(Mask, VL) =
5121         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
5122   }
5123 
5124   unsigned BaseOpc;
5125   ISD::CondCode CC;
5126   SDValue Zero = DAG.getConstant(0, DL, XLenVT);
5127 
5128   switch (Op.getOpcode()) {
5129   default:
5130     llvm_unreachable("Unhandled reduction");
5131   case ISD::VECREDUCE_AND:
5132   case ISD::VP_REDUCE_AND: {
5133     // vcpop ~x == 0
5134     SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL);
5135     Vec = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Vec, TrueMask, VL);
5136     Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL);
5137     CC = ISD::SETEQ;
5138     BaseOpc = ISD::AND;
5139     break;
5140   }
5141   case ISD::VECREDUCE_OR:
5142   case ISD::VP_REDUCE_OR:
5143     // vcpop x != 0
5144     Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL);
5145     CC = ISD::SETNE;
5146     BaseOpc = ISD::OR;
5147     break;
5148   case ISD::VECREDUCE_XOR:
5149   case ISD::VP_REDUCE_XOR: {
5150     // ((vcpop x) & 1) != 0
5151     SDValue One = DAG.getConstant(1, DL, XLenVT);
5152     Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL);
5153     Vec = DAG.getNode(ISD::AND, DL, XLenVT, Vec, One);
5154     CC = ISD::SETNE;
5155     BaseOpc = ISD::XOR;
5156     break;
5157   }
5158   }
5159 
5160   SDValue SetCC = DAG.getSetCC(DL, XLenVT, Vec, Zero, CC);
5161 
5162   if (!IsVP)
5163     return SetCC;
5164 
5165   // Now include the start value in the operation.
5166   // Note that we must return the start value when no elements are operated
5167   // upon. The vcpop instructions we've emitted in each case above will return
5168   // 0 for an inactive vector, and so we've already received the neutral value:
5169   // AND gives us (0 == 0) -> 1 and OR/XOR give us (0 != 0) -> 0. Therefore we
5170   // can simply include the start value.
5171   return DAG.getNode(BaseOpc, DL, XLenVT, SetCC, Op.getOperand(0));
5172 }
5173 
5174 SDValue RISCVTargetLowering::lowerVECREDUCE(SDValue Op,
5175                                             SelectionDAG &DAG) const {
5176   SDLoc DL(Op);
5177   SDValue Vec = Op.getOperand(0);
5178   EVT VecEVT = Vec.getValueType();
5179 
5180   unsigned BaseOpc = ISD::getVecReduceBaseOpcode(Op.getOpcode());
5181 
5182   // Due to ordering in legalize types we may have a vector type that needs to
5183   // be split. Do that manually so we can get down to a legal type.
5184   while (getTypeAction(*DAG.getContext(), VecEVT) ==
5185          TargetLowering::TypeSplitVector) {
5186     SDValue Lo, Hi;
5187     std::tie(Lo, Hi) = DAG.SplitVector(Vec, DL);
5188     VecEVT = Lo.getValueType();
5189     Vec = DAG.getNode(BaseOpc, DL, VecEVT, Lo, Hi);
5190   }
5191 
5192   // TODO: The type may need to be widened rather than split. Or widened before
5193   // it can be split.
5194   if (!isTypeLegal(VecEVT))
5195     return SDValue();
5196 
5197   MVT VecVT = VecEVT.getSimpleVT();
5198   MVT VecEltVT = VecVT.getVectorElementType();
5199   unsigned RVVOpcode = getRVVReductionOp(Op.getOpcode());
5200 
5201   MVT ContainerVT = VecVT;
5202   if (VecVT.isFixedLengthVector()) {
5203     ContainerVT = getContainerForFixedLengthVector(VecVT);
5204     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
5205   }
5206 
5207   MVT M1VT = getLMUL1VT(ContainerVT);
5208   MVT XLenVT = Subtarget.getXLenVT();
5209 
5210   SDValue Mask, VL;
5211   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
5212 
5213   SDValue NeutralElem =
5214       DAG.getNeutralElement(BaseOpc, DL, VecEltVT, SDNodeFlags());
5215   SDValue IdentitySplat =
5216       lowerScalarSplat(SDValue(), NeutralElem, DAG.getConstant(1, DL, XLenVT),
5217                        M1VT, DL, DAG, Subtarget);
5218   SDValue Reduction = DAG.getNode(RVVOpcode, DL, M1VT, DAG.getUNDEF(M1VT), Vec,
5219                                   IdentitySplat, Mask, VL);
5220   SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction,
5221                              DAG.getConstant(0, DL, XLenVT));
5222   return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType());
5223 }
5224 
5225 // Given a reduction op, this function returns the matching reduction opcode,
5226 // the vector SDValue and the scalar SDValue required to lower this to a
5227 // RISCVISD node.
5228 static std::tuple<unsigned, SDValue, SDValue>
5229 getRVVFPReductionOpAndOperands(SDValue Op, SelectionDAG &DAG, EVT EltVT) {
5230   SDLoc DL(Op);
5231   auto Flags = Op->getFlags();
5232   unsigned Opcode = Op.getOpcode();
5233   unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Opcode);
5234   switch (Opcode) {
5235   default:
5236     llvm_unreachable("Unhandled reduction");
5237   case ISD::VECREDUCE_FADD: {
5238     // Use positive zero if we can. It is cheaper to materialize.
5239     SDValue Zero =
5240         DAG.getConstantFP(Flags.hasNoSignedZeros() ? 0.0 : -0.0, DL, EltVT);
5241     return std::make_tuple(RISCVISD::VECREDUCE_FADD_VL, Op.getOperand(0), Zero);
5242   }
5243   case ISD::VECREDUCE_SEQ_FADD:
5244     return std::make_tuple(RISCVISD::VECREDUCE_SEQ_FADD_VL, Op.getOperand(1),
5245                            Op.getOperand(0));
5246   case ISD::VECREDUCE_FMIN:
5247     return std::make_tuple(RISCVISD::VECREDUCE_FMIN_VL, Op.getOperand(0),
5248                            DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags));
5249   case ISD::VECREDUCE_FMAX:
5250     return std::make_tuple(RISCVISD::VECREDUCE_FMAX_VL, Op.getOperand(0),
5251                            DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags));
5252   }
5253 }
5254 
5255 SDValue RISCVTargetLowering::lowerFPVECREDUCE(SDValue Op,
5256                                               SelectionDAG &DAG) const {
5257   SDLoc DL(Op);
5258   MVT VecEltVT = Op.getSimpleValueType();
5259 
5260   unsigned RVVOpcode;
5261   SDValue VectorVal, ScalarVal;
5262   std::tie(RVVOpcode, VectorVal, ScalarVal) =
5263       getRVVFPReductionOpAndOperands(Op, DAG, VecEltVT);
5264   MVT VecVT = VectorVal.getSimpleValueType();
5265 
5266   MVT ContainerVT = VecVT;
5267   if (VecVT.isFixedLengthVector()) {
5268     ContainerVT = getContainerForFixedLengthVector(VecVT);
5269     VectorVal = convertToScalableVector(ContainerVT, VectorVal, DAG, Subtarget);
5270   }
5271 
5272   MVT M1VT = getLMUL1VT(VectorVal.getSimpleValueType());
5273   MVT XLenVT = Subtarget.getXLenVT();
5274 
5275   SDValue Mask, VL;
5276   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
5277 
5278   SDValue ScalarSplat =
5279       lowerScalarSplat(SDValue(), ScalarVal, DAG.getConstant(1, DL, XLenVT),
5280                        M1VT, DL, DAG, Subtarget);
5281   SDValue Reduction = DAG.getNode(RVVOpcode, DL, M1VT, DAG.getUNDEF(M1VT),
5282                                   VectorVal, ScalarSplat, Mask, VL);
5283   return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction,
5284                      DAG.getConstant(0, DL, XLenVT));
5285 }
5286 
5287 static unsigned getRVVVPReductionOp(unsigned ISDOpcode) {
5288   switch (ISDOpcode) {
5289   default:
5290     llvm_unreachable("Unhandled reduction");
5291   case ISD::VP_REDUCE_ADD:
5292     return RISCVISD::VECREDUCE_ADD_VL;
5293   case ISD::VP_REDUCE_UMAX:
5294     return RISCVISD::VECREDUCE_UMAX_VL;
5295   case ISD::VP_REDUCE_SMAX:
5296     return RISCVISD::VECREDUCE_SMAX_VL;
5297   case ISD::VP_REDUCE_UMIN:
5298     return RISCVISD::VECREDUCE_UMIN_VL;
5299   case ISD::VP_REDUCE_SMIN:
5300     return RISCVISD::VECREDUCE_SMIN_VL;
5301   case ISD::VP_REDUCE_AND:
5302     return RISCVISD::VECREDUCE_AND_VL;
5303   case ISD::VP_REDUCE_OR:
5304     return RISCVISD::VECREDUCE_OR_VL;
5305   case ISD::VP_REDUCE_XOR:
5306     return RISCVISD::VECREDUCE_XOR_VL;
5307   case ISD::VP_REDUCE_FADD:
5308     return RISCVISD::VECREDUCE_FADD_VL;
5309   case ISD::VP_REDUCE_SEQ_FADD:
5310     return RISCVISD::VECREDUCE_SEQ_FADD_VL;
5311   case ISD::VP_REDUCE_FMAX:
5312     return RISCVISD::VECREDUCE_FMAX_VL;
5313   case ISD::VP_REDUCE_FMIN:
5314     return RISCVISD::VECREDUCE_FMIN_VL;
5315   }
5316 }
5317 
5318 SDValue RISCVTargetLowering::lowerVPREDUCE(SDValue Op,
5319                                            SelectionDAG &DAG) const {
5320   SDLoc DL(Op);
5321   SDValue Vec = Op.getOperand(1);
5322   EVT VecEVT = Vec.getValueType();
5323 
5324   // TODO: The type may need to be widened rather than split. Or widened before
5325   // it can be split.
5326   if (!isTypeLegal(VecEVT))
5327     return SDValue();
5328 
5329   MVT VecVT = VecEVT.getSimpleVT();
5330   MVT VecEltVT = VecVT.getVectorElementType();
5331   unsigned RVVOpcode = getRVVVPReductionOp(Op.getOpcode());
5332 
5333   MVT ContainerVT = VecVT;
5334   if (VecVT.isFixedLengthVector()) {
5335     ContainerVT = getContainerForFixedLengthVector(VecVT);
5336     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
5337   }
5338 
5339   SDValue VL = Op.getOperand(3);
5340   SDValue Mask = Op.getOperand(2);
5341 
5342   MVT M1VT = getLMUL1VT(ContainerVT);
5343   MVT XLenVT = Subtarget.getXLenVT();
5344   MVT ResVT = !VecVT.isInteger() || VecEltVT.bitsGE(XLenVT) ? VecEltVT : XLenVT;
5345 
5346   SDValue StartSplat = lowerScalarSplat(SDValue(), Op.getOperand(0),
5347                                         DAG.getConstant(1, DL, XLenVT), M1VT,
5348                                         DL, DAG, Subtarget);
5349   SDValue Reduction =
5350       DAG.getNode(RVVOpcode, DL, M1VT, StartSplat, Vec, StartSplat, Mask, VL);
5351   SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Reduction,
5352                              DAG.getConstant(0, DL, XLenVT));
5353   if (!VecVT.isInteger())
5354     return Elt0;
5355   return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType());
5356 }
5357 
5358 SDValue RISCVTargetLowering::lowerINSERT_SUBVECTOR(SDValue Op,
5359                                                    SelectionDAG &DAG) const {
5360   SDValue Vec = Op.getOperand(0);
5361   SDValue SubVec = Op.getOperand(1);
5362   MVT VecVT = Vec.getSimpleValueType();
5363   MVT SubVecVT = SubVec.getSimpleValueType();
5364 
5365   SDLoc DL(Op);
5366   MVT XLenVT = Subtarget.getXLenVT();
5367   unsigned OrigIdx = Op.getConstantOperandVal(2);
5368   const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo();
5369 
5370   // We don't have the ability to slide mask vectors up indexed by their i1
5371   // elements; the smallest we can do is i8. Often we are able to bitcast to
5372   // equivalent i8 vectors. Note that when inserting a fixed-length vector
5373   // into a scalable one, we might not necessarily have enough scalable
5374   // elements to safely divide by 8: nxv1i1 = insert nxv1i1, v4i1 is valid.
5375   if (SubVecVT.getVectorElementType() == MVT::i1 &&
5376       (OrigIdx != 0 || !Vec.isUndef())) {
5377     if (VecVT.getVectorMinNumElements() >= 8 &&
5378         SubVecVT.getVectorMinNumElements() >= 8) {
5379       assert(OrigIdx % 8 == 0 && "Invalid index");
5380       assert(VecVT.getVectorMinNumElements() % 8 == 0 &&
5381              SubVecVT.getVectorMinNumElements() % 8 == 0 &&
5382              "Unexpected mask vector lowering");
5383       OrigIdx /= 8;
5384       SubVecVT =
5385           MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8,
5386                            SubVecVT.isScalableVector());
5387       VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8,
5388                                VecVT.isScalableVector());
5389       Vec = DAG.getBitcast(VecVT, Vec);
5390       SubVec = DAG.getBitcast(SubVecVT, SubVec);
5391     } else {
5392       // We can't slide this mask vector up indexed by its i1 elements.
5393       // This poses a problem when we wish to insert a scalable vector which
5394       // can't be re-expressed as a larger type. Just choose the slow path and
5395       // extend to a larger type, then truncate back down.
5396       MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8);
5397       MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8);
5398       Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec);
5399       SubVec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtSubVecVT, SubVec);
5400       Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ExtVecVT, Vec, SubVec,
5401                         Op.getOperand(2));
5402       SDValue SplatZero = DAG.getConstant(0, DL, ExtVecVT);
5403       return DAG.getSetCC(DL, VecVT, Vec, SplatZero, ISD::SETNE);
5404     }
5405   }
5406 
5407   // If the subvector vector is a fixed-length type, we cannot use subregister
5408   // manipulation to simplify the codegen; we don't know which register of a
5409   // LMUL group contains the specific subvector as we only know the minimum
5410   // register size. Therefore we must slide the vector group up the full
5411   // amount.
5412   if (SubVecVT.isFixedLengthVector()) {
5413     if (OrigIdx == 0 && Vec.isUndef() && !VecVT.isFixedLengthVector())
5414       return Op;
5415     MVT ContainerVT = VecVT;
5416     if (VecVT.isFixedLengthVector()) {
5417       ContainerVT = getContainerForFixedLengthVector(VecVT);
5418       Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
5419     }
5420     SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ContainerVT,
5421                          DAG.getUNDEF(ContainerVT), SubVec,
5422                          DAG.getConstant(0, DL, XLenVT));
5423     if (OrigIdx == 0 && Vec.isUndef() && VecVT.isFixedLengthVector()) {
5424       SubVec = convertFromScalableVector(VecVT, SubVec, DAG, Subtarget);
5425       return DAG.getBitcast(Op.getValueType(), SubVec);
5426     }
5427     SDValue Mask =
5428         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first;
5429     // Set the vector length to only the number of elements we care about. Note
5430     // that for slideup this includes the offset.
5431     SDValue VL =
5432         DAG.getConstant(OrigIdx + SubVecVT.getVectorNumElements(), DL, XLenVT);
5433     SDValue SlideupAmt = DAG.getConstant(OrigIdx, DL, XLenVT);
5434     SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec,
5435                                   SubVec, SlideupAmt, Mask, VL);
5436     if (VecVT.isFixedLengthVector())
5437       Slideup = convertFromScalableVector(VecVT, Slideup, DAG, Subtarget);
5438     return DAG.getBitcast(Op.getValueType(), Slideup);
5439   }
5440 
5441   unsigned SubRegIdx, RemIdx;
5442   std::tie(SubRegIdx, RemIdx) =
5443       RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs(
5444           VecVT, SubVecVT, OrigIdx, TRI);
5445 
5446   RISCVII::VLMUL SubVecLMUL = RISCVTargetLowering::getLMUL(SubVecVT);
5447   bool IsSubVecPartReg = SubVecLMUL == RISCVII::VLMUL::LMUL_F2 ||
5448                          SubVecLMUL == RISCVII::VLMUL::LMUL_F4 ||
5449                          SubVecLMUL == RISCVII::VLMUL::LMUL_F8;
5450 
5451   // 1. If the Idx has been completely eliminated and this subvector's size is
5452   // a vector register or a multiple thereof, or the surrounding elements are
5453   // undef, then this is a subvector insert which naturally aligns to a vector
5454   // register. These can easily be handled using subregister manipulation.
5455   // 2. If the subvector is smaller than a vector register, then the insertion
5456   // must preserve the undisturbed elements of the register. We do this by
5457   // lowering to an EXTRACT_SUBVECTOR grabbing the nearest LMUL=1 vector type
5458   // (which resolves to a subregister copy), performing a VSLIDEUP to place the
5459   // subvector within the vector register, and an INSERT_SUBVECTOR of that
5460   // LMUL=1 type back into the larger vector (resolving to another subregister
5461   // operation). See below for how our VSLIDEUP works. We go via a LMUL=1 type
5462   // to avoid allocating a large register group to hold our subvector.
5463   if (RemIdx == 0 && (!IsSubVecPartReg || Vec.isUndef()))
5464     return Op;
5465 
5466   // VSLIDEUP works by leaving elements 0<i<OFFSET undisturbed, elements
5467   // OFFSET<=i<VL set to the "subvector" and vl<=i<VLMAX set to the tail policy
5468   // (in our case undisturbed). This means we can set up a subvector insertion
5469   // where OFFSET is the insertion offset, and the VL is the OFFSET plus the
5470   // size of the subvector.
5471   MVT InterSubVT = VecVT;
5472   SDValue AlignedExtract = Vec;
5473   unsigned AlignedIdx = OrigIdx - RemIdx;
5474   if (VecVT.bitsGT(getLMUL1VT(VecVT))) {
5475     InterSubVT = getLMUL1VT(VecVT);
5476     // Extract a subvector equal to the nearest full vector register type. This
5477     // should resolve to a EXTRACT_SUBREG instruction.
5478     AlignedExtract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec,
5479                                  DAG.getConstant(AlignedIdx, DL, XLenVT));
5480   }
5481 
5482   SDValue SlideupAmt = DAG.getConstant(RemIdx, DL, XLenVT);
5483   // For scalable vectors this must be further multiplied by vscale.
5484   SlideupAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlideupAmt);
5485 
5486   SDValue Mask, VL;
5487   std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget);
5488 
5489   // Construct the vector length corresponding to RemIdx + length(SubVecVT).
5490   VL = DAG.getConstant(SubVecVT.getVectorMinNumElements(), DL, XLenVT);
5491   VL = DAG.getNode(ISD::VSCALE, DL, XLenVT, VL);
5492   VL = DAG.getNode(ISD::ADD, DL, XLenVT, SlideupAmt, VL);
5493 
5494   SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, InterSubVT,
5495                        DAG.getUNDEF(InterSubVT), SubVec,
5496                        DAG.getConstant(0, DL, XLenVT));
5497 
5498   SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, InterSubVT,
5499                                 AlignedExtract, SubVec, SlideupAmt, Mask, VL);
5500 
5501   // If required, insert this subvector back into the correct vector register.
5502   // This should resolve to an INSERT_SUBREG instruction.
5503   if (VecVT.bitsGT(InterSubVT))
5504     Slideup = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, Vec, Slideup,
5505                           DAG.getConstant(AlignedIdx, DL, XLenVT));
5506 
5507   // We might have bitcast from a mask type: cast back to the original type if
5508   // required.
5509   return DAG.getBitcast(Op.getSimpleValueType(), Slideup);
5510 }
5511 
5512 SDValue RISCVTargetLowering::lowerEXTRACT_SUBVECTOR(SDValue Op,
5513                                                     SelectionDAG &DAG) const {
5514   SDValue Vec = Op.getOperand(0);
5515   MVT SubVecVT = Op.getSimpleValueType();
5516   MVT VecVT = Vec.getSimpleValueType();
5517 
5518   SDLoc DL(Op);
5519   MVT XLenVT = Subtarget.getXLenVT();
5520   unsigned OrigIdx = Op.getConstantOperandVal(1);
5521   const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo();
5522 
5523   // We don't have the ability to slide mask vectors down indexed by their i1
5524   // elements; the smallest we can do is i8. Often we are able to bitcast to
5525   // equivalent i8 vectors. Note that when extracting a fixed-length vector
5526   // from a scalable one, we might not necessarily have enough scalable
5527   // elements to safely divide by 8: v8i1 = extract nxv1i1 is valid.
5528   if (SubVecVT.getVectorElementType() == MVT::i1 && OrigIdx != 0) {
5529     if (VecVT.getVectorMinNumElements() >= 8 &&
5530         SubVecVT.getVectorMinNumElements() >= 8) {
5531       assert(OrigIdx % 8 == 0 && "Invalid index");
5532       assert(VecVT.getVectorMinNumElements() % 8 == 0 &&
5533              SubVecVT.getVectorMinNumElements() % 8 == 0 &&
5534              "Unexpected mask vector lowering");
5535       OrigIdx /= 8;
5536       SubVecVT =
5537           MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8,
5538                            SubVecVT.isScalableVector());
5539       VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8,
5540                                VecVT.isScalableVector());
5541       Vec = DAG.getBitcast(VecVT, Vec);
5542     } else {
5543       // We can't slide this mask vector down, indexed by its i1 elements.
5544       // This poses a problem when we wish to extract a scalable vector which
5545       // can't be re-expressed as a larger type. Just choose the slow path and
5546       // extend to a larger type, then truncate back down.
5547       // TODO: We could probably improve this when extracting certain fixed
5548       // from fixed, where we can extract as i8 and shift the correct element
5549       // right to reach the desired subvector?
5550       MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8);
5551       MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8);
5552       Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec);
5553       Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ExtSubVecVT, Vec,
5554                         Op.getOperand(1));
5555       SDValue SplatZero = DAG.getConstant(0, DL, ExtSubVecVT);
5556       return DAG.getSetCC(DL, SubVecVT, Vec, SplatZero, ISD::SETNE);
5557     }
5558   }
5559 
5560   // If the subvector vector is a fixed-length type, we cannot use subregister
5561   // manipulation to simplify the codegen; we don't know which register of a
5562   // LMUL group contains the specific subvector as we only know the minimum
5563   // register size. Therefore we must slide the vector group down the full
5564   // amount.
5565   if (SubVecVT.isFixedLengthVector()) {
5566     // With an index of 0 this is a cast-like subvector, which can be performed
5567     // with subregister operations.
5568     if (OrigIdx == 0)
5569       return Op;
5570     MVT ContainerVT = VecVT;
5571     if (VecVT.isFixedLengthVector()) {
5572       ContainerVT = getContainerForFixedLengthVector(VecVT);
5573       Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
5574     }
5575     SDValue Mask =
5576         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first;
5577     // Set the vector length to only the number of elements we care about. This
5578     // avoids sliding down elements we're going to discard straight away.
5579     SDValue VL = DAG.getConstant(SubVecVT.getVectorNumElements(), DL, XLenVT);
5580     SDValue SlidedownAmt = DAG.getConstant(OrigIdx, DL, XLenVT);
5581     SDValue Slidedown =
5582         DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT,
5583                     DAG.getUNDEF(ContainerVT), Vec, SlidedownAmt, Mask, VL);
5584     // Now we can use a cast-like subvector extract to get the result.
5585     Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown,
5586                             DAG.getConstant(0, DL, XLenVT));
5587     return DAG.getBitcast(Op.getValueType(), Slidedown);
5588   }
5589 
5590   unsigned SubRegIdx, RemIdx;
5591   std::tie(SubRegIdx, RemIdx) =
5592       RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs(
5593           VecVT, SubVecVT, OrigIdx, TRI);
5594 
5595   // If the Idx has been completely eliminated then this is a subvector extract
5596   // which naturally aligns to a vector register. These can easily be handled
5597   // using subregister manipulation.
5598   if (RemIdx == 0)
5599     return Op;
5600 
5601   // Else we must shift our vector register directly to extract the subvector.
5602   // Do this using VSLIDEDOWN.
5603 
5604   // If the vector type is an LMUL-group type, extract a subvector equal to the
5605   // nearest full vector register type. This should resolve to a EXTRACT_SUBREG
5606   // instruction.
5607   MVT InterSubVT = VecVT;
5608   if (VecVT.bitsGT(getLMUL1VT(VecVT))) {
5609     InterSubVT = getLMUL1VT(VecVT);
5610     Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec,
5611                       DAG.getConstant(OrigIdx - RemIdx, DL, XLenVT));
5612   }
5613 
5614   // Slide this vector register down by the desired number of elements in order
5615   // to place the desired subvector starting at element 0.
5616   SDValue SlidedownAmt = DAG.getConstant(RemIdx, DL, XLenVT);
5617   // For scalable vectors this must be further multiplied by vscale.
5618   SlidedownAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlidedownAmt);
5619 
5620   SDValue Mask, VL;
5621   std::tie(Mask, VL) = getDefaultScalableVLOps(InterSubVT, DL, DAG, Subtarget);
5622   SDValue Slidedown =
5623       DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, InterSubVT,
5624                   DAG.getUNDEF(InterSubVT), Vec, SlidedownAmt, Mask, VL);
5625 
5626   // Now the vector is in the right position, extract our final subvector. This
5627   // should resolve to a COPY.
5628   Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown,
5629                           DAG.getConstant(0, DL, XLenVT));
5630 
5631   // We might have bitcast from a mask type: cast back to the original type if
5632   // required.
5633   return DAG.getBitcast(Op.getSimpleValueType(), Slidedown);
5634 }
5635 
5636 // Lower step_vector to the vid instruction. Any non-identity step value must
5637 // be accounted for my manual expansion.
5638 SDValue RISCVTargetLowering::lowerSTEP_VECTOR(SDValue Op,
5639                                               SelectionDAG &DAG) const {
5640   SDLoc DL(Op);
5641   MVT VT = Op.getSimpleValueType();
5642   MVT XLenVT = Subtarget.getXLenVT();
5643   SDValue Mask, VL;
5644   std::tie(Mask, VL) = getDefaultScalableVLOps(VT, DL, DAG, Subtarget);
5645   SDValue StepVec = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL);
5646   uint64_t StepValImm = Op.getConstantOperandVal(0);
5647   if (StepValImm != 1) {
5648     if (isPowerOf2_64(StepValImm)) {
5649       SDValue StepVal =
5650           DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, DAG.getUNDEF(VT),
5651                       DAG.getConstant(Log2_64(StepValImm), DL, XLenVT));
5652       StepVec = DAG.getNode(ISD::SHL, DL, VT, StepVec, StepVal);
5653     } else {
5654       SDValue StepVal = lowerScalarSplat(
5655           SDValue(), DAG.getConstant(StepValImm, DL, VT.getVectorElementType()),
5656           VL, VT, DL, DAG, Subtarget);
5657       StepVec = DAG.getNode(ISD::MUL, DL, VT, StepVec, StepVal);
5658     }
5659   }
5660   return StepVec;
5661 }
5662 
5663 // Implement vector_reverse using vrgather.vv with indices determined by
5664 // subtracting the id of each element from (VLMAX-1). This will convert
5665 // the indices like so:
5666 // (0, 1,..., VLMAX-2, VLMAX-1) -> (VLMAX-1, VLMAX-2,..., 1, 0).
5667 // TODO: This code assumes VLMAX <= 65536 for LMUL=8 SEW=16.
5668 SDValue RISCVTargetLowering::lowerVECTOR_REVERSE(SDValue Op,
5669                                                  SelectionDAG &DAG) const {
5670   SDLoc DL(Op);
5671   MVT VecVT = Op.getSimpleValueType();
5672   if (VecVT.getVectorElementType() == MVT::i1) {
5673     MVT WidenVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount());
5674     SDValue Op1 = DAG.getNode(ISD::ZERO_EXTEND, DL, WidenVT, Op.getOperand(0));
5675     SDValue Op2 = DAG.getNode(ISD::VECTOR_REVERSE, DL, WidenVT, Op1);
5676     return DAG.getNode(ISD::TRUNCATE, DL, VecVT, Op2);
5677   }
5678   unsigned EltSize = VecVT.getScalarSizeInBits();
5679   unsigned MinSize = VecVT.getSizeInBits().getKnownMinValue();
5680   unsigned VectorBitsMax = Subtarget.getRealMaxVLen();
5681   unsigned MaxVLMAX =
5682     RISCVTargetLowering::computeVLMAX(VectorBitsMax, EltSize, MinSize);
5683 
5684   unsigned GatherOpc = RISCVISD::VRGATHER_VV_VL;
5685   MVT IntVT = VecVT.changeVectorElementTypeToInteger();
5686 
5687   // If this is SEW=8 and VLMAX is potentially more than 256, we need
5688   // to use vrgatherei16.vv.
5689   // TODO: It's also possible to use vrgatherei16.vv for other types to
5690   // decrease register width for the index calculation.
5691   if (MaxVLMAX > 256 && EltSize == 8) {
5692     // If this is LMUL=8, we have to split before can use vrgatherei16.vv.
5693     // Reverse each half, then reassemble them in reverse order.
5694     // NOTE: It's also possible that after splitting that VLMAX no longer
5695     // requires vrgatherei16.vv.
5696     if (MinSize == (8 * RISCV::RVVBitsPerBlock)) {
5697       SDValue Lo, Hi;
5698       std::tie(Lo, Hi) = DAG.SplitVectorOperand(Op.getNode(), 0);
5699       EVT LoVT, HiVT;
5700       std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VecVT);
5701       Lo = DAG.getNode(ISD::VECTOR_REVERSE, DL, LoVT, Lo);
5702       Hi = DAG.getNode(ISD::VECTOR_REVERSE, DL, HiVT, Hi);
5703       // Reassemble the low and high pieces reversed.
5704       // FIXME: This is a CONCAT_VECTORS.
5705       SDValue Res =
5706           DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, DAG.getUNDEF(VecVT), Hi,
5707                       DAG.getIntPtrConstant(0, DL));
5708       return DAG.getNode(
5709           ISD::INSERT_SUBVECTOR, DL, VecVT, Res, Lo,
5710           DAG.getIntPtrConstant(LoVT.getVectorMinNumElements(), DL));
5711     }
5712 
5713     // Just promote the int type to i16 which will double the LMUL.
5714     IntVT = MVT::getVectorVT(MVT::i16, VecVT.getVectorElementCount());
5715     GatherOpc = RISCVISD::VRGATHEREI16_VV_VL;
5716   }
5717 
5718   MVT XLenVT = Subtarget.getXLenVT();
5719   SDValue Mask, VL;
5720   std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget);
5721 
5722   // Calculate VLMAX-1 for the desired SEW.
5723   unsigned MinElts = VecVT.getVectorMinNumElements();
5724   SDValue VLMax = DAG.getNode(ISD::VSCALE, DL, XLenVT,
5725                               DAG.getConstant(MinElts, DL, XLenVT));
5726   SDValue VLMinus1 =
5727       DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, DAG.getConstant(1, DL, XLenVT));
5728 
5729   // Splat VLMAX-1 taking care to handle SEW==64 on RV32.
5730   bool IsRV32E64 =
5731       !Subtarget.is64Bit() && IntVT.getVectorElementType() == MVT::i64;
5732   SDValue SplatVL;
5733   if (!IsRV32E64)
5734     SplatVL = DAG.getSplatVector(IntVT, DL, VLMinus1);
5735   else
5736     SplatVL = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, IntVT, DAG.getUNDEF(IntVT),
5737                           VLMinus1, DAG.getRegister(RISCV::X0, XLenVT));
5738 
5739   SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, IntVT, Mask, VL);
5740   SDValue Indices =
5741       DAG.getNode(RISCVISD::SUB_VL, DL, IntVT, SplatVL, VID, Mask, VL);
5742 
5743   return DAG.getNode(GatherOpc, DL, VecVT, Op.getOperand(0), Indices, Mask,
5744                      DAG.getUNDEF(VecVT), VL);
5745 }
5746 
5747 SDValue RISCVTargetLowering::lowerVECTOR_SPLICE(SDValue Op,
5748                                                 SelectionDAG &DAG) const {
5749   SDLoc DL(Op);
5750   SDValue V1 = Op.getOperand(0);
5751   SDValue V2 = Op.getOperand(1);
5752   MVT XLenVT = Subtarget.getXLenVT();
5753   MVT VecVT = Op.getSimpleValueType();
5754 
5755   unsigned MinElts = VecVT.getVectorMinNumElements();
5756   SDValue VLMax = DAG.getNode(ISD::VSCALE, DL, XLenVT,
5757                               DAG.getConstant(MinElts, DL, XLenVT));
5758 
5759   int64_t ImmValue = cast<ConstantSDNode>(Op.getOperand(2))->getSExtValue();
5760   SDValue DownOffset, UpOffset;
5761   if (ImmValue >= 0) {
5762     // The operand is a TargetConstant, we need to rebuild it as a regular
5763     // constant.
5764     DownOffset = DAG.getConstant(ImmValue, DL, XLenVT);
5765     UpOffset = DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, DownOffset);
5766   } else {
5767     // The operand is a TargetConstant, we need to rebuild it as a regular
5768     // constant rather than negating the original operand.
5769     UpOffset = DAG.getConstant(-ImmValue, DL, XLenVT);
5770     DownOffset = DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, UpOffset);
5771   }
5772 
5773   SDValue TrueMask = getAllOnesMask(VecVT, VLMax, DL, DAG);
5774 
5775   SDValue SlideDown =
5776       DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, VecVT, DAG.getUNDEF(VecVT), V1,
5777                   DownOffset, TrueMask, UpOffset);
5778   return DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, VecVT, SlideDown, V2, UpOffset,
5779                      TrueMask,
5780                      DAG.getTargetConstant(RISCV::VLMaxSentinel, DL, XLenVT));
5781 }
5782 
5783 SDValue
5784 RISCVTargetLowering::lowerFixedLengthVectorLoadToRVV(SDValue Op,
5785                                                      SelectionDAG &DAG) const {
5786   SDLoc DL(Op);
5787   auto *Load = cast<LoadSDNode>(Op);
5788 
5789   assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
5790                                         Load->getMemoryVT(),
5791                                         *Load->getMemOperand()) &&
5792          "Expecting a correctly-aligned load");
5793 
5794   MVT VT = Op.getSimpleValueType();
5795   MVT XLenVT = Subtarget.getXLenVT();
5796   MVT ContainerVT = getContainerForFixedLengthVector(VT);
5797 
5798   SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT);
5799 
5800   bool IsMaskOp = VT.getVectorElementType() == MVT::i1;
5801   SDValue IntID = DAG.getTargetConstant(
5802       IsMaskOp ? Intrinsic::riscv_vlm : Intrinsic::riscv_vle, DL, XLenVT);
5803   SmallVector<SDValue, 4> Ops{Load->getChain(), IntID};
5804   if (!IsMaskOp)
5805     Ops.push_back(DAG.getUNDEF(ContainerVT));
5806   Ops.push_back(Load->getBasePtr());
5807   Ops.push_back(VL);
5808   SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
5809   SDValue NewLoad =
5810       DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops,
5811                               Load->getMemoryVT(), Load->getMemOperand());
5812 
5813   SDValue Result = convertFromScalableVector(VT, NewLoad, DAG, Subtarget);
5814   return DAG.getMergeValues({Result, NewLoad.getValue(1)}, DL);
5815 }
5816 
5817 SDValue
5818 RISCVTargetLowering::lowerFixedLengthVectorStoreToRVV(SDValue Op,
5819                                                       SelectionDAG &DAG) const {
5820   SDLoc DL(Op);
5821   auto *Store = cast<StoreSDNode>(Op);
5822 
5823   assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
5824                                         Store->getMemoryVT(),
5825                                         *Store->getMemOperand()) &&
5826          "Expecting a correctly-aligned store");
5827 
5828   SDValue StoreVal = Store->getValue();
5829   MVT VT = StoreVal.getSimpleValueType();
5830   MVT XLenVT = Subtarget.getXLenVT();
5831 
5832   // If the size less than a byte, we need to pad with zeros to make a byte.
5833   if (VT.getVectorElementType() == MVT::i1 && VT.getVectorNumElements() < 8) {
5834     VT = MVT::v8i1;
5835     StoreVal = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT,
5836                            DAG.getConstant(0, DL, VT), StoreVal,
5837                            DAG.getIntPtrConstant(0, DL));
5838   }
5839 
5840   MVT ContainerVT = getContainerForFixedLengthVector(VT);
5841 
5842   SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT);
5843 
5844   SDValue NewValue =
5845       convertToScalableVector(ContainerVT, StoreVal, DAG, Subtarget);
5846 
5847   bool IsMaskOp = VT.getVectorElementType() == MVT::i1;
5848   SDValue IntID = DAG.getTargetConstant(
5849       IsMaskOp ? Intrinsic::riscv_vsm : Intrinsic::riscv_vse, DL, XLenVT);
5850   return DAG.getMemIntrinsicNode(
5851       ISD::INTRINSIC_VOID, DL, DAG.getVTList(MVT::Other),
5852       {Store->getChain(), IntID, NewValue, Store->getBasePtr(), VL},
5853       Store->getMemoryVT(), Store->getMemOperand());
5854 }
5855 
5856 SDValue RISCVTargetLowering::lowerMaskedLoad(SDValue Op,
5857                                              SelectionDAG &DAG) const {
5858   SDLoc DL(Op);
5859   MVT VT = Op.getSimpleValueType();
5860 
5861   const auto *MemSD = cast<MemSDNode>(Op);
5862   EVT MemVT = MemSD->getMemoryVT();
5863   MachineMemOperand *MMO = MemSD->getMemOperand();
5864   SDValue Chain = MemSD->getChain();
5865   SDValue BasePtr = MemSD->getBasePtr();
5866 
5867   SDValue Mask, PassThru, VL;
5868   if (const auto *VPLoad = dyn_cast<VPLoadSDNode>(Op)) {
5869     Mask = VPLoad->getMask();
5870     PassThru = DAG.getUNDEF(VT);
5871     VL = VPLoad->getVectorLength();
5872   } else {
5873     const auto *MLoad = cast<MaskedLoadSDNode>(Op);
5874     Mask = MLoad->getMask();
5875     PassThru = MLoad->getPassThru();
5876   }
5877 
5878   bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
5879 
5880   MVT XLenVT = Subtarget.getXLenVT();
5881 
5882   MVT ContainerVT = VT;
5883   if (VT.isFixedLengthVector()) {
5884     ContainerVT = getContainerForFixedLengthVector(VT);
5885     PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget);
5886     if (!IsUnmasked) {
5887       MVT MaskVT = getMaskTypeFor(ContainerVT);
5888       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
5889     }
5890   }
5891 
5892   if (!VL)
5893     VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second;
5894 
5895   unsigned IntID =
5896       IsUnmasked ? Intrinsic::riscv_vle : Intrinsic::riscv_vle_mask;
5897   SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)};
5898   if (IsUnmasked)
5899     Ops.push_back(DAG.getUNDEF(ContainerVT));
5900   else
5901     Ops.push_back(PassThru);
5902   Ops.push_back(BasePtr);
5903   if (!IsUnmasked)
5904     Ops.push_back(Mask);
5905   Ops.push_back(VL);
5906   if (!IsUnmasked)
5907     Ops.push_back(DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT));
5908 
5909   SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
5910 
5911   SDValue Result =
5912       DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, MemVT, MMO);
5913   Chain = Result.getValue(1);
5914 
5915   if (VT.isFixedLengthVector())
5916     Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
5917 
5918   return DAG.getMergeValues({Result, Chain}, DL);
5919 }
5920 
5921 SDValue RISCVTargetLowering::lowerMaskedStore(SDValue Op,
5922                                               SelectionDAG &DAG) const {
5923   SDLoc DL(Op);
5924 
5925   const auto *MemSD = cast<MemSDNode>(Op);
5926   EVT MemVT = MemSD->getMemoryVT();
5927   MachineMemOperand *MMO = MemSD->getMemOperand();
5928   SDValue Chain = MemSD->getChain();
5929   SDValue BasePtr = MemSD->getBasePtr();
5930   SDValue Val, Mask, VL;
5931 
5932   if (const auto *VPStore = dyn_cast<VPStoreSDNode>(Op)) {
5933     Val = VPStore->getValue();
5934     Mask = VPStore->getMask();
5935     VL = VPStore->getVectorLength();
5936   } else {
5937     const auto *MStore = cast<MaskedStoreSDNode>(Op);
5938     Val = MStore->getValue();
5939     Mask = MStore->getMask();
5940   }
5941 
5942   bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
5943 
5944   MVT VT = Val.getSimpleValueType();
5945   MVT XLenVT = Subtarget.getXLenVT();
5946 
5947   MVT ContainerVT = VT;
5948   if (VT.isFixedLengthVector()) {
5949     ContainerVT = getContainerForFixedLengthVector(VT);
5950 
5951     Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget);
5952     if (!IsUnmasked) {
5953       MVT MaskVT = getMaskTypeFor(ContainerVT);
5954       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
5955     }
5956   }
5957 
5958   if (!VL)
5959     VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second;
5960 
5961   unsigned IntID =
5962       IsUnmasked ? Intrinsic::riscv_vse : Intrinsic::riscv_vse_mask;
5963   SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)};
5964   Ops.push_back(Val);
5965   Ops.push_back(BasePtr);
5966   if (!IsUnmasked)
5967     Ops.push_back(Mask);
5968   Ops.push_back(VL);
5969 
5970   return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL,
5971                                  DAG.getVTList(MVT::Other), Ops, MemVT, MMO);
5972 }
5973 
5974 SDValue
5975 RISCVTargetLowering::lowerFixedLengthVectorSetccToRVV(SDValue Op,
5976                                                       SelectionDAG &DAG) const {
5977   MVT InVT = Op.getOperand(0).getSimpleValueType();
5978   MVT ContainerVT = getContainerForFixedLengthVector(InVT);
5979 
5980   MVT VT = Op.getSimpleValueType();
5981 
5982   SDValue Op1 =
5983       convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget);
5984   SDValue Op2 =
5985       convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget);
5986 
5987   SDLoc DL(Op);
5988   SDValue VL =
5989       DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT());
5990 
5991   MVT MaskVT = getMaskTypeFor(ContainerVT);
5992   SDValue Mask = getAllOnesMask(ContainerVT, VL, DL, DAG);
5993 
5994   SDValue Cmp = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, Op1, Op2,
5995                             Op.getOperand(2), Mask, VL);
5996 
5997   return convertFromScalableVector(VT, Cmp, DAG, Subtarget);
5998 }
5999 
6000 SDValue RISCVTargetLowering::lowerFixedLengthVectorLogicOpToRVV(
6001     SDValue Op, SelectionDAG &DAG, unsigned MaskOpc, unsigned VecOpc) const {
6002   MVT VT = Op.getSimpleValueType();
6003 
6004   if (VT.getVectorElementType() == MVT::i1)
6005     return lowerToScalableOp(Op, DAG, MaskOpc, /*HasMask*/ false);
6006 
6007   return lowerToScalableOp(Op, DAG, VecOpc, /*HasMask*/ true);
6008 }
6009 
6010 SDValue
6011 RISCVTargetLowering::lowerFixedLengthVectorShiftToRVV(SDValue Op,
6012                                                       SelectionDAG &DAG) const {
6013   unsigned Opc;
6014   switch (Op.getOpcode()) {
6015   default: llvm_unreachable("Unexpected opcode!");
6016   case ISD::SHL: Opc = RISCVISD::SHL_VL; break;
6017   case ISD::SRA: Opc = RISCVISD::SRA_VL; break;
6018   case ISD::SRL: Opc = RISCVISD::SRL_VL; break;
6019   }
6020 
6021   return lowerToScalableOp(Op, DAG, Opc);
6022 }
6023 
6024 // Lower vector ABS to smax(X, sub(0, X)).
6025 SDValue RISCVTargetLowering::lowerABS(SDValue Op, SelectionDAG &DAG) const {
6026   SDLoc DL(Op);
6027   MVT VT = Op.getSimpleValueType();
6028   SDValue X = Op.getOperand(0);
6029 
6030   assert(VT.isFixedLengthVector() && "Unexpected type");
6031 
6032   MVT ContainerVT = getContainerForFixedLengthVector(VT);
6033   X = convertToScalableVector(ContainerVT, X, DAG, Subtarget);
6034 
6035   SDValue Mask, VL;
6036   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
6037 
6038   SDValue SplatZero = DAG.getNode(
6039       RISCVISD::VMV_V_X_VL, DL, ContainerVT, DAG.getUNDEF(ContainerVT),
6040       DAG.getConstant(0, DL, Subtarget.getXLenVT()));
6041   SDValue NegX =
6042       DAG.getNode(RISCVISD::SUB_VL, DL, ContainerVT, SplatZero, X, Mask, VL);
6043   SDValue Max =
6044       DAG.getNode(RISCVISD::SMAX_VL, DL, ContainerVT, X, NegX, Mask, VL);
6045 
6046   return convertFromScalableVector(VT, Max, DAG, Subtarget);
6047 }
6048 
6049 SDValue RISCVTargetLowering::lowerFixedLengthVectorFCOPYSIGNToRVV(
6050     SDValue Op, SelectionDAG &DAG) const {
6051   SDLoc DL(Op);
6052   MVT VT = Op.getSimpleValueType();
6053   SDValue Mag = Op.getOperand(0);
6054   SDValue Sign = Op.getOperand(1);
6055   assert(Mag.getValueType() == Sign.getValueType() &&
6056          "Can only handle COPYSIGN with matching types.");
6057 
6058   MVT ContainerVT = getContainerForFixedLengthVector(VT);
6059   Mag = convertToScalableVector(ContainerVT, Mag, DAG, Subtarget);
6060   Sign = convertToScalableVector(ContainerVT, Sign, DAG, Subtarget);
6061 
6062   SDValue Mask, VL;
6063   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
6064 
6065   SDValue CopySign =
6066       DAG.getNode(RISCVISD::FCOPYSIGN_VL, DL, ContainerVT, Mag, Sign, Mask, VL);
6067 
6068   return convertFromScalableVector(VT, CopySign, DAG, Subtarget);
6069 }
6070 
6071 SDValue RISCVTargetLowering::lowerFixedLengthVectorSelectToRVV(
6072     SDValue Op, SelectionDAG &DAG) const {
6073   MVT VT = Op.getSimpleValueType();
6074   MVT ContainerVT = getContainerForFixedLengthVector(VT);
6075 
6076   MVT I1ContainerVT =
6077       MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
6078 
6079   SDValue CC =
6080       convertToScalableVector(I1ContainerVT, Op.getOperand(0), DAG, Subtarget);
6081   SDValue Op1 =
6082       convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget);
6083   SDValue Op2 =
6084       convertToScalableVector(ContainerVT, Op.getOperand(2), DAG, Subtarget);
6085 
6086   SDLoc DL(Op);
6087   SDValue Mask, VL;
6088   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
6089 
6090   SDValue Select =
6091       DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC, Op1, Op2, VL);
6092 
6093   return convertFromScalableVector(VT, Select, DAG, Subtarget);
6094 }
6095 
6096 SDValue RISCVTargetLowering::lowerToScalableOp(SDValue Op, SelectionDAG &DAG,
6097                                                unsigned NewOpc,
6098                                                bool HasMask) const {
6099   MVT VT = Op.getSimpleValueType();
6100   MVT ContainerVT = getContainerForFixedLengthVector(VT);
6101 
6102   // Create list of operands by converting existing ones to scalable types.
6103   SmallVector<SDValue, 6> Ops;
6104   for (const SDValue &V : Op->op_values()) {
6105     assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!");
6106 
6107     // Pass through non-vector operands.
6108     if (!V.getValueType().isVector()) {
6109       Ops.push_back(V);
6110       continue;
6111     }
6112 
6113     // "cast" fixed length vector to a scalable vector.
6114     assert(useRVVForFixedLengthVectorVT(V.getSimpleValueType()) &&
6115            "Only fixed length vectors are supported!");
6116     Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget));
6117   }
6118 
6119   SDLoc DL(Op);
6120   SDValue Mask, VL;
6121   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
6122   if (HasMask)
6123     Ops.push_back(Mask);
6124   Ops.push_back(VL);
6125 
6126   SDValue ScalableRes = DAG.getNode(NewOpc, DL, ContainerVT, Ops);
6127   return convertFromScalableVector(VT, ScalableRes, DAG, Subtarget);
6128 }
6129 
6130 // Lower a VP_* ISD node to the corresponding RISCVISD::*_VL node:
6131 // * Operands of each node are assumed to be in the same order.
6132 // * The EVL operand is promoted from i32 to i64 on RV64.
6133 // * Fixed-length vectors are converted to their scalable-vector container
6134 //   types.
6135 SDValue RISCVTargetLowering::lowerVPOp(SDValue Op, SelectionDAG &DAG,
6136                                        unsigned RISCVISDOpc) const {
6137   SDLoc DL(Op);
6138   MVT VT = Op.getSimpleValueType();
6139   SmallVector<SDValue, 4> Ops;
6140 
6141   for (const auto &OpIdx : enumerate(Op->ops())) {
6142     SDValue V = OpIdx.value();
6143     assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!");
6144     // Pass through operands which aren't fixed-length vectors.
6145     if (!V.getValueType().isFixedLengthVector()) {
6146       Ops.push_back(V);
6147       continue;
6148     }
6149     // "cast" fixed length vector to a scalable vector.
6150     MVT OpVT = V.getSimpleValueType();
6151     MVT ContainerVT = getContainerForFixedLengthVector(OpVT);
6152     assert(useRVVForFixedLengthVectorVT(OpVT) &&
6153            "Only fixed length vectors are supported!");
6154     Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget));
6155   }
6156 
6157   if (!VT.isFixedLengthVector())
6158     return DAG.getNode(RISCVISDOpc, DL, VT, Ops, Op->getFlags());
6159 
6160   MVT ContainerVT = getContainerForFixedLengthVector(VT);
6161 
6162   SDValue VPOp = DAG.getNode(RISCVISDOpc, DL, ContainerVT, Ops, Op->getFlags());
6163 
6164   return convertFromScalableVector(VT, VPOp, DAG, Subtarget);
6165 }
6166 
6167 SDValue RISCVTargetLowering::lowerVPExtMaskOp(SDValue Op,
6168                                               SelectionDAG &DAG) const {
6169   SDLoc DL(Op);
6170   MVT VT = Op.getSimpleValueType();
6171 
6172   SDValue Src = Op.getOperand(0);
6173   // NOTE: Mask is dropped.
6174   SDValue VL = Op.getOperand(2);
6175 
6176   MVT ContainerVT = VT;
6177   if (VT.isFixedLengthVector()) {
6178     ContainerVT = getContainerForFixedLengthVector(VT);
6179     MVT SrcVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
6180     Src = convertToScalableVector(SrcVT, Src, DAG, Subtarget);
6181   }
6182 
6183   MVT XLenVT = Subtarget.getXLenVT();
6184   SDValue Zero = DAG.getConstant(0, DL, XLenVT);
6185   SDValue ZeroSplat = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
6186                                   DAG.getUNDEF(ContainerVT), Zero, VL);
6187 
6188   SDValue SplatValue = DAG.getConstant(
6189       Op.getOpcode() == ISD::VP_ZERO_EXTEND ? 1 : -1, DL, XLenVT);
6190   SDValue Splat = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
6191                               DAG.getUNDEF(ContainerVT), SplatValue, VL);
6192 
6193   SDValue Result = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, Src,
6194                                Splat, ZeroSplat, VL);
6195   if (!VT.isFixedLengthVector())
6196     return Result;
6197   return convertFromScalableVector(VT, Result, DAG, Subtarget);
6198 }
6199 
6200 SDValue RISCVTargetLowering::lowerVPSetCCMaskOp(SDValue Op,
6201                                                 SelectionDAG &DAG) const {
6202   SDLoc DL(Op);
6203   MVT VT = Op.getSimpleValueType();
6204 
6205   SDValue Op1 = Op.getOperand(0);
6206   SDValue Op2 = Op.getOperand(1);
6207   ISD::CondCode Condition = cast<CondCodeSDNode>(Op.getOperand(2))->get();
6208   // NOTE: Mask is dropped.
6209   SDValue VL = Op.getOperand(4);
6210 
6211   MVT ContainerVT = VT;
6212   if (VT.isFixedLengthVector()) {
6213     ContainerVT = getContainerForFixedLengthVector(VT);
6214     Op1 = convertToScalableVector(ContainerVT, Op1, DAG, Subtarget);
6215     Op2 = convertToScalableVector(ContainerVT, Op2, DAG, Subtarget);
6216   }
6217 
6218   SDValue Result;
6219   SDValue AllOneMask = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL);
6220 
6221   switch (Condition) {
6222   default:
6223     break;
6224   // X != Y  --> (X^Y)
6225   case ISD::SETNE:
6226     Result = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Op1, Op2, VL);
6227     break;
6228   // X == Y  --> ~(X^Y)
6229   case ISD::SETEQ: {
6230     SDValue Temp =
6231         DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Op1, Op2, VL);
6232     Result =
6233         DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Temp, AllOneMask, VL);
6234     break;
6235   }
6236   // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y
6237   // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y
6238   case ISD::SETGT:
6239   case ISD::SETULT: {
6240     SDValue Temp =
6241         DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Op1, AllOneMask, VL);
6242     Result = DAG.getNode(RISCVISD::VMAND_VL, DL, ContainerVT, Temp, Op2, VL);
6243     break;
6244   }
6245   // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X
6246   // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X
6247   case ISD::SETLT:
6248   case ISD::SETUGT: {
6249     SDValue Temp =
6250         DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Op2, AllOneMask, VL);
6251     Result = DAG.getNode(RISCVISD::VMAND_VL, DL, ContainerVT, Op1, Temp, VL);
6252     break;
6253   }
6254   // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y
6255   // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y
6256   case ISD::SETGE:
6257   case ISD::SETULE: {
6258     SDValue Temp =
6259         DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Op1, AllOneMask, VL);
6260     Result = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Temp, Op2, VL);
6261     break;
6262   }
6263   // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X
6264   // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X
6265   case ISD::SETLE:
6266   case ISD::SETUGE: {
6267     SDValue Temp =
6268         DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Op2, AllOneMask, VL);
6269     Result = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Temp, Op1, VL);
6270     break;
6271   }
6272   }
6273 
6274   if (!VT.isFixedLengthVector())
6275     return Result;
6276   return convertFromScalableVector(VT, Result, DAG, Subtarget);
6277 }
6278 
6279 // Lower Floating-Point/Integer Type-Convert VP SDNodes
6280 SDValue RISCVTargetLowering::lowerVPFPIntConvOp(SDValue Op, SelectionDAG &DAG,
6281                                                 unsigned RISCVISDOpc) const {
6282   SDLoc DL(Op);
6283 
6284   SDValue Src = Op.getOperand(0);
6285   SDValue Mask = Op.getOperand(1);
6286   SDValue VL = Op.getOperand(2);
6287 
6288   MVT DstVT = Op.getSimpleValueType();
6289   MVT SrcVT = Src.getSimpleValueType();
6290   if (DstVT.isFixedLengthVector()) {
6291     DstVT = getContainerForFixedLengthVector(DstVT);
6292     SrcVT = getContainerForFixedLengthVector(SrcVT);
6293     Src = convertToScalableVector(SrcVT, Src, DAG, Subtarget);
6294     MVT MaskVT = getMaskTypeFor(DstVT);
6295     Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
6296   }
6297 
6298   unsigned RISCVISDExtOpc = (RISCVISDOpc == RISCVISD::SINT_TO_FP_VL ||
6299                              RISCVISDOpc == RISCVISD::FP_TO_SINT_VL)
6300                                 ? RISCVISD::VSEXT_VL
6301                                 : RISCVISD::VZEXT_VL;
6302 
6303   unsigned DstEltSize = DstVT.getScalarSizeInBits();
6304   unsigned SrcEltSize = SrcVT.getScalarSizeInBits();
6305 
6306   SDValue Result;
6307   if (DstEltSize >= SrcEltSize) { // Single-width and widening conversion.
6308     if (SrcVT.isInteger()) {
6309       assert(DstVT.isFloatingPoint() && "Wrong input/output vector types");
6310 
6311       // Do we need to do any pre-widening before converting?
6312       if (SrcEltSize == 1) {
6313         MVT IntVT = DstVT.changeVectorElementTypeToInteger();
6314         MVT XLenVT = Subtarget.getXLenVT();
6315         SDValue Zero = DAG.getConstant(0, DL, XLenVT);
6316         SDValue ZeroSplat = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, IntVT,
6317                                         DAG.getUNDEF(IntVT), Zero, VL);
6318         SDValue One = DAG.getConstant(
6319             RISCVISDExtOpc == RISCVISD::VZEXT_VL ? 1 : -1, DL, XLenVT);
6320         SDValue OneSplat = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, IntVT,
6321                                        DAG.getUNDEF(IntVT), One, VL);
6322         Src = DAG.getNode(RISCVISD::VSELECT_VL, DL, IntVT, Src, OneSplat,
6323                           ZeroSplat, VL);
6324       } else if (DstEltSize > (2 * SrcEltSize)) {
6325         // Widen before converting.
6326         MVT IntVT = MVT::getVectorVT(MVT::getIntegerVT(DstEltSize / 2),
6327                                      DstVT.getVectorElementCount());
6328         Src = DAG.getNode(RISCVISDExtOpc, DL, IntVT, Src, Mask, VL);
6329       }
6330 
6331       Result = DAG.getNode(RISCVISDOpc, DL, DstVT, Src, Mask, VL);
6332     } else {
6333       assert(SrcVT.isFloatingPoint() && DstVT.isInteger() &&
6334              "Wrong input/output vector types");
6335 
6336       // Convert f16 to f32 then convert f32 to i64.
6337       if (DstEltSize > (2 * SrcEltSize)) {
6338         assert(SrcVT.getVectorElementType() == MVT::f16 && "Unexpected type!");
6339         MVT InterimFVT =
6340             MVT::getVectorVT(MVT::f32, DstVT.getVectorElementCount());
6341         Src =
6342             DAG.getNode(RISCVISD::FP_EXTEND_VL, DL, InterimFVT, Src, Mask, VL);
6343       }
6344 
6345       Result = DAG.getNode(RISCVISDOpc, DL, DstVT, Src, Mask, VL);
6346     }
6347   } else { // Narrowing + Conversion
6348     if (SrcVT.isInteger()) {
6349       assert(DstVT.isFloatingPoint() && "Wrong input/output vector types");
6350       // First do a narrowing convert to an FP type half the size, then round
6351       // the FP type to a small FP type if needed.
6352 
6353       MVT InterimFVT = DstVT;
6354       if (SrcEltSize > (2 * DstEltSize)) {
6355         assert(SrcEltSize == (4 * DstEltSize) && "Unexpected types!");
6356         assert(DstVT.getVectorElementType() == MVT::f16 && "Unexpected type!");
6357         InterimFVT = MVT::getVectorVT(MVT::f32, DstVT.getVectorElementCount());
6358       }
6359 
6360       Result = DAG.getNode(RISCVISDOpc, DL, InterimFVT, Src, Mask, VL);
6361 
6362       if (InterimFVT != DstVT) {
6363         Src = Result;
6364         Result = DAG.getNode(RISCVISD::FP_ROUND_VL, DL, DstVT, Src, Mask, VL);
6365       }
6366     } else {
6367       assert(SrcVT.isFloatingPoint() && DstVT.isInteger() &&
6368              "Wrong input/output vector types");
6369       // First do a narrowing conversion to an integer half the size, then
6370       // truncate if needed.
6371 
6372       if (DstEltSize == 1) {
6373         // First convert to the same size integer, then convert to mask using
6374         // setcc.
6375         assert(SrcEltSize >= 16 && "Unexpected FP type!");
6376         MVT InterimIVT = MVT::getVectorVT(MVT::getIntegerVT(SrcEltSize),
6377                                           DstVT.getVectorElementCount());
6378         Result = DAG.getNode(RISCVISDOpc, DL, InterimIVT, Src, Mask, VL);
6379 
6380         // Compare the integer result to 0. The integer should be 0 or 1/-1,
6381         // otherwise the conversion was undefined.
6382         MVT XLenVT = Subtarget.getXLenVT();
6383         SDValue SplatZero = DAG.getConstant(0, DL, XLenVT);
6384         SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, InterimIVT,
6385                                 DAG.getUNDEF(InterimIVT), SplatZero);
6386         Result = DAG.getNode(RISCVISD::SETCC_VL, DL, DstVT, Result, SplatZero,
6387                              DAG.getCondCode(ISD::SETNE), Mask, VL);
6388       } else {
6389         MVT InterimIVT = MVT::getVectorVT(MVT::getIntegerVT(SrcEltSize / 2),
6390                                           DstVT.getVectorElementCount());
6391 
6392         Result = DAG.getNode(RISCVISDOpc, DL, InterimIVT, Src, Mask, VL);
6393 
6394         while (InterimIVT != DstVT) {
6395           SrcEltSize /= 2;
6396           Src = Result;
6397           InterimIVT = MVT::getVectorVT(MVT::getIntegerVT(SrcEltSize / 2),
6398                                         DstVT.getVectorElementCount());
6399           Result = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, InterimIVT,
6400                                Src, Mask, VL);
6401         }
6402       }
6403     }
6404   }
6405 
6406   MVT VT = Op.getSimpleValueType();
6407   if (!VT.isFixedLengthVector())
6408     return Result;
6409   return convertFromScalableVector(VT, Result, DAG, Subtarget);
6410 }
6411 
6412 SDValue RISCVTargetLowering::lowerLogicVPOp(SDValue Op, SelectionDAG &DAG,
6413                                             unsigned MaskOpc,
6414                                             unsigned VecOpc) const {
6415   MVT VT = Op.getSimpleValueType();
6416   if (VT.getVectorElementType() != MVT::i1)
6417     return lowerVPOp(Op, DAG, VecOpc);
6418 
6419   // It is safe to drop mask parameter as masked-off elements are undef.
6420   SDValue Op1 = Op->getOperand(0);
6421   SDValue Op2 = Op->getOperand(1);
6422   SDValue VL = Op->getOperand(3);
6423 
6424   MVT ContainerVT = VT;
6425   const bool IsFixed = VT.isFixedLengthVector();
6426   if (IsFixed) {
6427     ContainerVT = getContainerForFixedLengthVector(VT);
6428     Op1 = convertToScalableVector(ContainerVT, Op1, DAG, Subtarget);
6429     Op2 = convertToScalableVector(ContainerVT, Op2, DAG, Subtarget);
6430   }
6431 
6432   SDLoc DL(Op);
6433   SDValue Val = DAG.getNode(MaskOpc, DL, ContainerVT, Op1, Op2, VL);
6434   if (!IsFixed)
6435     return Val;
6436   return convertFromScalableVector(VT, Val, DAG, Subtarget);
6437 }
6438 
6439 // Custom lower MGATHER/VP_GATHER to a legalized form for RVV. It will then be
6440 // matched to a RVV indexed load. The RVV indexed load instructions only
6441 // support the "unsigned unscaled" addressing mode; indices are implicitly
6442 // zero-extended or truncated to XLEN and are treated as byte offsets. Any
6443 // signed or scaled indexing is extended to the XLEN value type and scaled
6444 // accordingly.
6445 SDValue RISCVTargetLowering::lowerMaskedGather(SDValue Op,
6446                                                SelectionDAG &DAG) const {
6447   SDLoc DL(Op);
6448   MVT VT = Op.getSimpleValueType();
6449 
6450   const auto *MemSD = cast<MemSDNode>(Op.getNode());
6451   EVT MemVT = MemSD->getMemoryVT();
6452   MachineMemOperand *MMO = MemSD->getMemOperand();
6453   SDValue Chain = MemSD->getChain();
6454   SDValue BasePtr = MemSD->getBasePtr();
6455 
6456   ISD::LoadExtType LoadExtType;
6457   SDValue Index, Mask, PassThru, VL;
6458 
6459   if (auto *VPGN = dyn_cast<VPGatherSDNode>(Op.getNode())) {
6460     Index = VPGN->getIndex();
6461     Mask = VPGN->getMask();
6462     PassThru = DAG.getUNDEF(VT);
6463     VL = VPGN->getVectorLength();
6464     // VP doesn't support extending loads.
6465     LoadExtType = ISD::NON_EXTLOAD;
6466   } else {
6467     // Else it must be a MGATHER.
6468     auto *MGN = cast<MaskedGatherSDNode>(Op.getNode());
6469     Index = MGN->getIndex();
6470     Mask = MGN->getMask();
6471     PassThru = MGN->getPassThru();
6472     LoadExtType = MGN->getExtensionType();
6473   }
6474 
6475   MVT IndexVT = Index.getSimpleValueType();
6476   MVT XLenVT = Subtarget.getXLenVT();
6477 
6478   assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() &&
6479          "Unexpected VTs!");
6480   assert(BasePtr.getSimpleValueType() == XLenVT && "Unexpected pointer type");
6481   // Targets have to explicitly opt-in for extending vector loads.
6482   assert(LoadExtType == ISD::NON_EXTLOAD &&
6483          "Unexpected extending MGATHER/VP_GATHER");
6484   (void)LoadExtType;
6485 
6486   // If the mask is known to be all ones, optimize to an unmasked intrinsic;
6487   // the selection of the masked intrinsics doesn't do this for us.
6488   bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
6489 
6490   MVT ContainerVT = VT;
6491   if (VT.isFixedLengthVector()) {
6492     ContainerVT = getContainerForFixedLengthVector(VT);
6493     IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(),
6494                                ContainerVT.getVectorElementCount());
6495 
6496     Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget);
6497 
6498     if (!IsUnmasked) {
6499       MVT MaskVT = getMaskTypeFor(ContainerVT);
6500       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
6501       PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget);
6502     }
6503   }
6504 
6505   if (!VL)
6506     VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second;
6507 
6508   if (XLenVT == MVT::i32 && IndexVT.getVectorElementType().bitsGT(XLenVT)) {
6509     IndexVT = IndexVT.changeVectorElementType(XLenVT);
6510     SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, Mask.getValueType(),
6511                                    VL);
6512     Index = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, IndexVT, Index,
6513                         TrueMask, VL);
6514   }
6515 
6516   unsigned IntID =
6517       IsUnmasked ? Intrinsic::riscv_vluxei : Intrinsic::riscv_vluxei_mask;
6518   SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)};
6519   if (IsUnmasked)
6520     Ops.push_back(DAG.getUNDEF(ContainerVT));
6521   else
6522     Ops.push_back(PassThru);
6523   Ops.push_back(BasePtr);
6524   Ops.push_back(Index);
6525   if (!IsUnmasked)
6526     Ops.push_back(Mask);
6527   Ops.push_back(VL);
6528   if (!IsUnmasked)
6529     Ops.push_back(DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT));
6530 
6531   SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
6532   SDValue Result =
6533       DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, MemVT, MMO);
6534   Chain = Result.getValue(1);
6535 
6536   if (VT.isFixedLengthVector())
6537     Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
6538 
6539   return DAG.getMergeValues({Result, Chain}, DL);
6540 }
6541 
6542 // Custom lower MSCATTER/VP_SCATTER to a legalized form for RVV. It will then be
6543 // matched to a RVV indexed store. The RVV indexed store instructions only
6544 // support the "unsigned unscaled" addressing mode; indices are implicitly
6545 // zero-extended or truncated to XLEN and are treated as byte offsets. Any
6546 // signed or scaled indexing is extended to the XLEN value type and scaled
6547 // accordingly.
6548 SDValue RISCVTargetLowering::lowerMaskedScatter(SDValue Op,
6549                                                 SelectionDAG &DAG) const {
6550   SDLoc DL(Op);
6551   const auto *MemSD = cast<MemSDNode>(Op.getNode());
6552   EVT MemVT = MemSD->getMemoryVT();
6553   MachineMemOperand *MMO = MemSD->getMemOperand();
6554   SDValue Chain = MemSD->getChain();
6555   SDValue BasePtr = MemSD->getBasePtr();
6556 
6557   bool IsTruncatingStore = false;
6558   SDValue Index, Mask, Val, VL;
6559 
6560   if (auto *VPSN = dyn_cast<VPScatterSDNode>(Op.getNode())) {
6561     Index = VPSN->getIndex();
6562     Mask = VPSN->getMask();
6563     Val = VPSN->getValue();
6564     VL = VPSN->getVectorLength();
6565     // VP doesn't support truncating stores.
6566     IsTruncatingStore = false;
6567   } else {
6568     // Else it must be a MSCATTER.
6569     auto *MSN = cast<MaskedScatterSDNode>(Op.getNode());
6570     Index = MSN->getIndex();
6571     Mask = MSN->getMask();
6572     Val = MSN->getValue();
6573     IsTruncatingStore = MSN->isTruncatingStore();
6574   }
6575 
6576   MVT VT = Val.getSimpleValueType();
6577   MVT IndexVT = Index.getSimpleValueType();
6578   MVT XLenVT = Subtarget.getXLenVT();
6579 
6580   assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() &&
6581          "Unexpected VTs!");
6582   assert(BasePtr.getSimpleValueType() == XLenVT && "Unexpected pointer type");
6583   // Targets have to explicitly opt-in for extending vector loads and
6584   // truncating vector stores.
6585   assert(!IsTruncatingStore && "Unexpected truncating MSCATTER/VP_SCATTER");
6586   (void)IsTruncatingStore;
6587 
6588   // If the mask is known to be all ones, optimize to an unmasked intrinsic;
6589   // the selection of the masked intrinsics doesn't do this for us.
6590   bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
6591 
6592   MVT ContainerVT = VT;
6593   if (VT.isFixedLengthVector()) {
6594     ContainerVT = getContainerForFixedLengthVector(VT);
6595     IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(),
6596                                ContainerVT.getVectorElementCount());
6597 
6598     Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget);
6599     Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget);
6600 
6601     if (!IsUnmasked) {
6602       MVT MaskVT = getMaskTypeFor(ContainerVT);
6603       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
6604     }
6605   }
6606 
6607   if (!VL)
6608     VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second;
6609 
6610   if (XLenVT == MVT::i32 && IndexVT.getVectorElementType().bitsGT(XLenVT)) {
6611     IndexVT = IndexVT.changeVectorElementType(XLenVT);
6612     SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, Mask.getValueType(),
6613                                    VL);
6614     Index = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, IndexVT, Index,
6615                         TrueMask, VL);
6616   }
6617 
6618   unsigned IntID =
6619       IsUnmasked ? Intrinsic::riscv_vsoxei : Intrinsic::riscv_vsoxei_mask;
6620   SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)};
6621   Ops.push_back(Val);
6622   Ops.push_back(BasePtr);
6623   Ops.push_back(Index);
6624   if (!IsUnmasked)
6625     Ops.push_back(Mask);
6626   Ops.push_back(VL);
6627 
6628   return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL,
6629                                  DAG.getVTList(MVT::Other), Ops, MemVT, MMO);
6630 }
6631 
6632 SDValue RISCVTargetLowering::lowerGET_ROUNDING(SDValue Op,
6633                                                SelectionDAG &DAG) const {
6634   const MVT XLenVT = Subtarget.getXLenVT();
6635   SDLoc DL(Op);
6636   SDValue Chain = Op->getOperand(0);
6637   SDValue SysRegNo = DAG.getTargetConstant(
6638       RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT);
6639   SDVTList VTs = DAG.getVTList(XLenVT, MVT::Other);
6640   SDValue RM = DAG.getNode(RISCVISD::READ_CSR, DL, VTs, Chain, SysRegNo);
6641 
6642   // Encoding used for rounding mode in RISCV differs from that used in
6643   // FLT_ROUNDS. To convert it the RISCV rounding mode is used as an index in a
6644   // table, which consists of a sequence of 4-bit fields, each representing
6645   // corresponding FLT_ROUNDS mode.
6646   static const int Table =
6647       (int(RoundingMode::NearestTiesToEven) << 4 * RISCVFPRndMode::RNE) |
6648       (int(RoundingMode::TowardZero) << 4 * RISCVFPRndMode::RTZ) |
6649       (int(RoundingMode::TowardNegative) << 4 * RISCVFPRndMode::RDN) |
6650       (int(RoundingMode::TowardPositive) << 4 * RISCVFPRndMode::RUP) |
6651       (int(RoundingMode::NearestTiesToAway) << 4 * RISCVFPRndMode::RMM);
6652 
6653   SDValue Shift =
6654       DAG.getNode(ISD::SHL, DL, XLenVT, RM, DAG.getConstant(2, DL, XLenVT));
6655   SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT,
6656                                 DAG.getConstant(Table, DL, XLenVT), Shift);
6657   SDValue Masked = DAG.getNode(ISD::AND, DL, XLenVT, Shifted,
6658                                DAG.getConstant(7, DL, XLenVT));
6659 
6660   return DAG.getMergeValues({Masked, Chain}, DL);
6661 }
6662 
6663 SDValue RISCVTargetLowering::lowerSET_ROUNDING(SDValue Op,
6664                                                SelectionDAG &DAG) const {
6665   const MVT XLenVT = Subtarget.getXLenVT();
6666   SDLoc DL(Op);
6667   SDValue Chain = Op->getOperand(0);
6668   SDValue RMValue = Op->getOperand(1);
6669   SDValue SysRegNo = DAG.getTargetConstant(
6670       RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT);
6671 
6672   // Encoding used for rounding mode in RISCV differs from that used in
6673   // FLT_ROUNDS. To convert it the C rounding mode is used as an index in
6674   // a table, which consists of a sequence of 4-bit fields, each representing
6675   // corresponding RISCV mode.
6676   static const unsigned Table =
6677       (RISCVFPRndMode::RNE << 4 * int(RoundingMode::NearestTiesToEven)) |
6678       (RISCVFPRndMode::RTZ << 4 * int(RoundingMode::TowardZero)) |
6679       (RISCVFPRndMode::RDN << 4 * int(RoundingMode::TowardNegative)) |
6680       (RISCVFPRndMode::RUP << 4 * int(RoundingMode::TowardPositive)) |
6681       (RISCVFPRndMode::RMM << 4 * int(RoundingMode::NearestTiesToAway));
6682 
6683   SDValue Shift = DAG.getNode(ISD::SHL, DL, XLenVT, RMValue,
6684                               DAG.getConstant(2, DL, XLenVT));
6685   SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT,
6686                                 DAG.getConstant(Table, DL, XLenVT), Shift);
6687   RMValue = DAG.getNode(ISD::AND, DL, XLenVT, Shifted,
6688                         DAG.getConstant(0x7, DL, XLenVT));
6689   return DAG.getNode(RISCVISD::WRITE_CSR, DL, MVT::Other, Chain, SysRegNo,
6690                      RMValue);
6691 }
6692 
6693 SDValue RISCVTargetLowering::lowerEH_DWARF_CFA(SDValue Op,
6694                                                SelectionDAG &DAG) const {
6695   MachineFunction &MF = DAG.getMachineFunction();
6696 
6697   bool isRISCV64 = Subtarget.is64Bit();
6698   EVT PtrVT = getPointerTy(DAG.getDataLayout());
6699 
6700   int FI = MF.getFrameInfo().CreateFixedObject(isRISCV64 ? 8 : 4, 0, false);
6701   return DAG.getFrameIndex(FI, PtrVT);
6702 }
6703 
6704 static RISCVISD::NodeType getRISCVWOpcodeByIntr(unsigned IntNo) {
6705   switch (IntNo) {
6706   default:
6707     llvm_unreachable("Unexpected Intrinsic");
6708   case Intrinsic::riscv_bcompress:
6709     return RISCVISD::BCOMPRESSW;
6710   case Intrinsic::riscv_bdecompress:
6711     return RISCVISD::BDECOMPRESSW;
6712   case Intrinsic::riscv_bfp:
6713     return RISCVISD::BFPW;
6714   case Intrinsic::riscv_fsl:
6715     return RISCVISD::FSLW;
6716   case Intrinsic::riscv_fsr:
6717     return RISCVISD::FSRW;
6718   }
6719 }
6720 
6721 // Converts the given intrinsic to a i64 operation with any extension.
6722 static SDValue customLegalizeToWOpByIntr(SDNode *N, SelectionDAG &DAG,
6723                                          unsigned IntNo) {
6724   SDLoc DL(N);
6725   RISCVISD::NodeType WOpcode = getRISCVWOpcodeByIntr(IntNo);
6726   // Deal with the Instruction Operands
6727   SmallVector<SDValue, 3> NewOps;
6728   for (SDValue Op : drop_begin(N->ops()))
6729     // Promote the operand to i64 type
6730     NewOps.push_back(DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op));
6731   SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOps);
6732   // ReplaceNodeResults requires we maintain the same type for the return value.
6733   return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewRes);
6734 }
6735 
6736 // Returns the opcode of the target-specific SDNode that implements the 32-bit
6737 // form of the given Opcode.
6738 static RISCVISD::NodeType getRISCVWOpcode(unsigned Opcode) {
6739   switch (Opcode) {
6740   default:
6741     llvm_unreachable("Unexpected opcode");
6742   case ISD::SHL:
6743     return RISCVISD::SLLW;
6744   case ISD::SRA:
6745     return RISCVISD::SRAW;
6746   case ISD::SRL:
6747     return RISCVISD::SRLW;
6748   case ISD::SDIV:
6749     return RISCVISD::DIVW;
6750   case ISD::UDIV:
6751     return RISCVISD::DIVUW;
6752   case ISD::UREM:
6753     return RISCVISD::REMUW;
6754   case ISD::ROTL:
6755     return RISCVISD::ROLW;
6756   case ISD::ROTR:
6757     return RISCVISD::RORW;
6758   }
6759 }
6760 
6761 // Converts the given i8/i16/i32 operation to a target-specific SelectionDAG
6762 // node. Because i8/i16/i32 isn't a legal type for RV64, these operations would
6763 // otherwise be promoted to i64, making it difficult to select the
6764 // SLLW/DIVUW/.../*W later one because the fact the operation was originally of
6765 // type i8/i16/i32 is lost.
6766 static SDValue customLegalizeToWOp(SDNode *N, SelectionDAG &DAG,
6767                                    unsigned ExtOpc = ISD::ANY_EXTEND) {
6768   SDLoc DL(N);
6769   RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode());
6770   SDValue NewOp0 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(0));
6771   SDValue NewOp1 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(1));
6772   SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1);
6773   // ReplaceNodeResults requires we maintain the same type for the return value.
6774   return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewRes);
6775 }
6776 
6777 // Converts the given 32-bit operation to a i64 operation with signed extension
6778 // semantic to reduce the signed extension instructions.
6779 static SDValue customLegalizeToWOpWithSExt(SDNode *N, SelectionDAG &DAG) {
6780   SDLoc DL(N);
6781   SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
6782   SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
6783   SDValue NewWOp = DAG.getNode(N->getOpcode(), DL, MVT::i64, NewOp0, NewOp1);
6784   SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp,
6785                                DAG.getValueType(MVT::i32));
6786   return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes);
6787 }
6788 
6789 void RISCVTargetLowering::ReplaceNodeResults(SDNode *N,
6790                                              SmallVectorImpl<SDValue> &Results,
6791                                              SelectionDAG &DAG) const {
6792   SDLoc DL(N);
6793   switch (N->getOpcode()) {
6794   default:
6795     llvm_unreachable("Don't know how to custom type legalize this operation!");
6796   case ISD::STRICT_FP_TO_SINT:
6797   case ISD::STRICT_FP_TO_UINT:
6798   case ISD::FP_TO_SINT:
6799   case ISD::FP_TO_UINT: {
6800     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6801            "Unexpected custom legalisation");
6802     bool IsStrict = N->isStrictFPOpcode();
6803     bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT ||
6804                     N->getOpcode() == ISD::STRICT_FP_TO_SINT;
6805     SDValue Op0 = IsStrict ? N->getOperand(1) : N->getOperand(0);
6806     if (getTypeAction(*DAG.getContext(), Op0.getValueType()) !=
6807         TargetLowering::TypeSoftenFloat) {
6808       if (!isTypeLegal(Op0.getValueType()))
6809         return;
6810       if (IsStrict) {
6811         unsigned Opc = IsSigned ? RISCVISD::STRICT_FCVT_W_RV64
6812                                 : RISCVISD::STRICT_FCVT_WU_RV64;
6813         SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other);
6814         SDValue Res = DAG.getNode(
6815             Opc, DL, VTs, N->getOperand(0), Op0,
6816             DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, MVT::i64));
6817         Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
6818         Results.push_back(Res.getValue(1));
6819         return;
6820       }
6821       unsigned Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64;
6822       SDValue Res =
6823           DAG.getNode(Opc, DL, MVT::i64, Op0,
6824                       DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, MVT::i64));
6825       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
6826       return;
6827     }
6828     // If the FP type needs to be softened, emit a library call using the 'si'
6829     // version. If we left it to default legalization we'd end up with 'di'. If
6830     // the FP type doesn't need to be softened just let generic type
6831     // legalization promote the result type.
6832     RTLIB::Libcall LC;
6833     if (IsSigned)
6834       LC = RTLIB::getFPTOSINT(Op0.getValueType(), N->getValueType(0));
6835     else
6836       LC = RTLIB::getFPTOUINT(Op0.getValueType(), N->getValueType(0));
6837     MakeLibCallOptions CallOptions;
6838     EVT OpVT = Op0.getValueType();
6839     CallOptions.setTypeListBeforeSoften(OpVT, N->getValueType(0), true);
6840     SDValue Chain = IsStrict ? N->getOperand(0) : SDValue();
6841     SDValue Result;
6842     std::tie(Result, Chain) =
6843         makeLibCall(DAG, LC, N->getValueType(0), Op0, CallOptions, DL, Chain);
6844     Results.push_back(Result);
6845     if (IsStrict)
6846       Results.push_back(Chain);
6847     break;
6848   }
6849   case ISD::READCYCLECOUNTER: {
6850     assert(!Subtarget.is64Bit() &&
6851            "READCYCLECOUNTER only has custom type legalization on riscv32");
6852 
6853     SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
6854     SDValue RCW =
6855         DAG.getNode(RISCVISD::READ_CYCLE_WIDE, DL, VTs, N->getOperand(0));
6856 
6857     Results.push_back(
6858         DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, RCW, RCW.getValue(1)));
6859     Results.push_back(RCW.getValue(2));
6860     break;
6861   }
6862   case ISD::MUL: {
6863     unsigned Size = N->getSimpleValueType(0).getSizeInBits();
6864     unsigned XLen = Subtarget.getXLen();
6865     // This multiply needs to be expanded, try to use MULHSU+MUL if possible.
6866     if (Size > XLen) {
6867       assert(Size == (XLen * 2) && "Unexpected custom legalisation");
6868       SDValue LHS = N->getOperand(0);
6869       SDValue RHS = N->getOperand(1);
6870       APInt HighMask = APInt::getHighBitsSet(Size, XLen);
6871 
6872       bool LHSIsU = DAG.MaskedValueIsZero(LHS, HighMask);
6873       bool RHSIsU = DAG.MaskedValueIsZero(RHS, HighMask);
6874       // We need exactly one side to be unsigned.
6875       if (LHSIsU == RHSIsU)
6876         return;
6877 
6878       auto MakeMULPair = [&](SDValue S, SDValue U) {
6879         MVT XLenVT = Subtarget.getXLenVT();
6880         S = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, S);
6881         U = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, U);
6882         SDValue Lo = DAG.getNode(ISD::MUL, DL, XLenVT, S, U);
6883         SDValue Hi = DAG.getNode(RISCVISD::MULHSU, DL, XLenVT, S, U);
6884         return DAG.getNode(ISD::BUILD_PAIR, DL, N->getValueType(0), Lo, Hi);
6885       };
6886 
6887       bool LHSIsS = DAG.ComputeNumSignBits(LHS) > XLen;
6888       bool RHSIsS = DAG.ComputeNumSignBits(RHS) > XLen;
6889 
6890       // The other operand should be signed, but still prefer MULH when
6891       // possible.
6892       if (RHSIsU && LHSIsS && !RHSIsS)
6893         Results.push_back(MakeMULPair(LHS, RHS));
6894       else if (LHSIsU && RHSIsS && !LHSIsS)
6895         Results.push_back(MakeMULPair(RHS, LHS));
6896 
6897       return;
6898     }
6899     LLVM_FALLTHROUGH;
6900   }
6901   case ISD::ADD:
6902   case ISD::SUB:
6903     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6904            "Unexpected custom legalisation");
6905     Results.push_back(customLegalizeToWOpWithSExt(N, DAG));
6906     break;
6907   case ISD::SHL:
6908   case ISD::SRA:
6909   case ISD::SRL:
6910     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6911            "Unexpected custom legalisation");
6912     if (N->getOperand(1).getOpcode() != ISD::Constant) {
6913       // If we can use a BSET instruction, allow default promotion to apply.
6914       if (N->getOpcode() == ISD::SHL && Subtarget.hasStdExtZbs() &&
6915           isOneConstant(N->getOperand(0)))
6916         break;
6917       Results.push_back(customLegalizeToWOp(N, DAG));
6918       break;
6919     }
6920 
6921     // Custom legalize ISD::SHL by placing a SIGN_EXTEND_INREG after. This is
6922     // similar to customLegalizeToWOpWithSExt, but we must zero_extend the
6923     // shift amount.
6924     if (N->getOpcode() == ISD::SHL) {
6925       SDLoc DL(N);
6926       SDValue NewOp0 =
6927           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
6928       SDValue NewOp1 =
6929           DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1));
6930       SDValue NewWOp = DAG.getNode(ISD::SHL, DL, MVT::i64, NewOp0, NewOp1);
6931       SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp,
6932                                    DAG.getValueType(MVT::i32));
6933       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes));
6934     }
6935 
6936     break;
6937   case ISD::ROTL:
6938   case ISD::ROTR:
6939     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6940            "Unexpected custom legalisation");
6941     Results.push_back(customLegalizeToWOp(N, DAG));
6942     break;
6943   case ISD::CTTZ:
6944   case ISD::CTTZ_ZERO_UNDEF:
6945   case ISD::CTLZ:
6946   case ISD::CTLZ_ZERO_UNDEF: {
6947     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6948            "Unexpected custom legalisation");
6949 
6950     SDValue NewOp0 =
6951         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
6952     bool IsCTZ =
6953         N->getOpcode() == ISD::CTTZ || N->getOpcode() == ISD::CTTZ_ZERO_UNDEF;
6954     unsigned Opc = IsCTZ ? RISCVISD::CTZW : RISCVISD::CLZW;
6955     SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp0);
6956     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
6957     return;
6958   }
6959   case ISD::SDIV:
6960   case ISD::UDIV:
6961   case ISD::UREM: {
6962     MVT VT = N->getSimpleValueType(0);
6963     assert((VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) &&
6964            Subtarget.is64Bit() && Subtarget.hasStdExtM() &&
6965            "Unexpected custom legalisation");
6966     // Don't promote division/remainder by constant since we should expand those
6967     // to multiply by magic constant.
6968     // FIXME: What if the expansion is disabled for minsize.
6969     if (N->getOperand(1).getOpcode() == ISD::Constant)
6970       return;
6971 
6972     // If the input is i32, use ANY_EXTEND since the W instructions don't read
6973     // the upper 32 bits. For other types we need to sign or zero extend
6974     // based on the opcode.
6975     unsigned ExtOpc = ISD::ANY_EXTEND;
6976     if (VT != MVT::i32)
6977       ExtOpc = N->getOpcode() == ISD::SDIV ? ISD::SIGN_EXTEND
6978                                            : ISD::ZERO_EXTEND;
6979 
6980     Results.push_back(customLegalizeToWOp(N, DAG, ExtOpc));
6981     break;
6982   }
6983   case ISD::UADDO:
6984   case ISD::USUBO: {
6985     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6986            "Unexpected custom legalisation");
6987     bool IsAdd = N->getOpcode() == ISD::UADDO;
6988     // Create an ADDW or SUBW.
6989     SDValue LHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
6990     SDValue RHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
6991     SDValue Res =
6992         DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, DL, MVT::i64, LHS, RHS);
6993     Res = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Res,
6994                       DAG.getValueType(MVT::i32));
6995 
6996     SDValue Overflow;
6997     if (IsAdd && isOneConstant(RHS)) {
6998       // Special case uaddo X, 1 overflowed if the addition result is 0.
6999       // The general case (X + C) < C is not necessarily beneficial. Although we
7000       // reduce the live range of X, we may introduce the materialization of
7001       // constant C, especially when the setcc result is used by branch. We have
7002       // no compare with constant and branch instructions.
7003       Overflow = DAG.getSetCC(DL, N->getValueType(1), Res,
7004                               DAG.getConstant(0, DL, MVT::i64), ISD::SETEQ);
7005     } else {
7006       // Sign extend the LHS and perform an unsigned compare with the ADDW
7007       // result. Since the inputs are sign extended from i32, this is equivalent
7008       // to comparing the lower 32 bits.
7009       LHS = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0));
7010       Overflow = DAG.getSetCC(DL, N->getValueType(1), Res, LHS,
7011                               IsAdd ? ISD::SETULT : ISD::SETUGT);
7012     }
7013 
7014     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
7015     Results.push_back(Overflow);
7016     return;
7017   }
7018   case ISD::UADDSAT:
7019   case ISD::USUBSAT: {
7020     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
7021            "Unexpected custom legalisation");
7022     if (Subtarget.hasStdExtZbb()) {
7023       // With Zbb we can sign extend and let LegalizeDAG use minu/maxu. Using
7024       // sign extend allows overflow of the lower 32 bits to be detected on
7025       // the promoted size.
7026       SDValue LHS =
7027           DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0));
7028       SDValue RHS =
7029           DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(1));
7030       SDValue Res = DAG.getNode(N->getOpcode(), DL, MVT::i64, LHS, RHS);
7031       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
7032       return;
7033     }
7034 
7035     // Without Zbb, expand to UADDO/USUBO+select which will trigger our custom
7036     // promotion for UADDO/USUBO.
7037     Results.push_back(expandAddSubSat(N, DAG));
7038     return;
7039   }
7040   case ISD::ABS: {
7041     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
7042            "Unexpected custom legalisation");
7043 
7044     // Expand abs to Y = (sraiw X, 31); subw(xor(X, Y), Y)
7045 
7046     SDValue Src = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
7047 
7048     // Freeze the source so we can increase it's use count.
7049     Src = DAG.getFreeze(Src);
7050 
7051     // Copy sign bit to all bits using the sraiw pattern.
7052     SDValue SignFill = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Src,
7053                                    DAG.getValueType(MVT::i32));
7054     SignFill = DAG.getNode(ISD::SRA, DL, MVT::i64, SignFill,
7055                            DAG.getConstant(31, DL, MVT::i64));
7056 
7057     SDValue NewRes = DAG.getNode(ISD::XOR, DL, MVT::i64, Src, SignFill);
7058     NewRes = DAG.getNode(ISD::SUB, DL, MVT::i64, NewRes, SignFill);
7059 
7060     // NOTE: The result is only required to be anyextended, but sext is
7061     // consistent with type legalization of sub.
7062     NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewRes,
7063                          DAG.getValueType(MVT::i32));
7064     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes));
7065     return;
7066   }
7067   case ISD::BITCAST: {
7068     EVT VT = N->getValueType(0);
7069     assert(VT.isInteger() && !VT.isVector() && "Unexpected VT!");
7070     SDValue Op0 = N->getOperand(0);
7071     EVT Op0VT = Op0.getValueType();
7072     MVT XLenVT = Subtarget.getXLenVT();
7073     if (VT == MVT::i16 && Op0VT == MVT::f16 && Subtarget.hasStdExtZfh()) {
7074       SDValue FPConv = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, XLenVT, Op0);
7075       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FPConv));
7076     } else if (VT == MVT::i32 && Op0VT == MVT::f32 && Subtarget.is64Bit() &&
7077                Subtarget.hasStdExtF()) {
7078       SDValue FPConv =
7079           DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Op0);
7080       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, FPConv));
7081     } else if (!VT.isVector() && Op0VT.isFixedLengthVector() &&
7082                isTypeLegal(Op0VT)) {
7083       // Custom-legalize bitcasts from fixed-length vector types to illegal
7084       // scalar types in order to improve codegen. Bitcast the vector to a
7085       // one-element vector type whose element type is the same as the result
7086       // type, and extract the first element.
7087       EVT BVT = EVT::getVectorVT(*DAG.getContext(), VT, 1);
7088       if (isTypeLegal(BVT)) {
7089         SDValue BVec = DAG.getBitcast(BVT, Op0);
7090         Results.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec,
7091                                       DAG.getConstant(0, DL, XLenVT)));
7092       }
7093     }
7094     break;
7095   }
7096   case RISCVISD::GREV:
7097   case RISCVISD::GORC:
7098   case RISCVISD::SHFL: {
7099     MVT VT = N->getSimpleValueType(0);
7100     MVT XLenVT = Subtarget.getXLenVT();
7101     assert((VT == MVT::i16 || (VT == MVT::i32 && Subtarget.is64Bit())) &&
7102            "Unexpected custom legalisation");
7103     assert(isa<ConstantSDNode>(N->getOperand(1)) && "Expected constant");
7104     assert((Subtarget.hasStdExtZbp() ||
7105             (Subtarget.hasStdExtZbkb() && N->getOpcode() == RISCVISD::GREV &&
7106              N->getConstantOperandVal(1) == 7)) &&
7107            "Unexpected extension");
7108     SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, N->getOperand(0));
7109     SDValue NewOp1 =
7110         DAG.getNode(ISD::ZERO_EXTEND, DL, XLenVT, N->getOperand(1));
7111     SDValue NewRes = DAG.getNode(N->getOpcode(), DL, XLenVT, NewOp0, NewOp1);
7112     // ReplaceNodeResults requires we maintain the same type for the return
7113     // value.
7114     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, NewRes));
7115     break;
7116   }
7117   case ISD::BSWAP:
7118   case ISD::BITREVERSE: {
7119     MVT VT = N->getSimpleValueType(0);
7120     MVT XLenVT = Subtarget.getXLenVT();
7121     assert((VT == MVT::i8 || VT == MVT::i16 ||
7122             (VT == MVT::i32 && Subtarget.is64Bit())) &&
7123            Subtarget.hasStdExtZbp() && "Unexpected custom legalisation");
7124     SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, N->getOperand(0));
7125     unsigned Imm = VT.getSizeInBits() - 1;
7126     // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits.
7127     if (N->getOpcode() == ISD::BSWAP)
7128       Imm &= ~0x7U;
7129     SDValue GREVI = DAG.getNode(RISCVISD::GREV, DL, XLenVT, NewOp0,
7130                                 DAG.getConstant(Imm, DL, XLenVT));
7131     // ReplaceNodeResults requires we maintain the same type for the return
7132     // value.
7133     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, GREVI));
7134     break;
7135   }
7136   case ISD::FSHL:
7137   case ISD::FSHR: {
7138     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
7139            Subtarget.hasStdExtZbt() && "Unexpected custom legalisation");
7140     SDValue NewOp0 =
7141         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
7142     SDValue NewOp1 =
7143         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
7144     SDValue NewShAmt =
7145         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
7146     // FSLW/FSRW take a 6 bit shift amount but i32 FSHL/FSHR only use 5 bits.
7147     // Mask the shift amount to 5 bits to prevent accidentally setting bit 5.
7148     NewShAmt = DAG.getNode(ISD::AND, DL, MVT::i64, NewShAmt,
7149                            DAG.getConstant(0x1f, DL, MVT::i64));
7150     // fshl and fshr concatenate their operands in the same order. fsrw and fslw
7151     // instruction use different orders. fshl will return its first operand for
7152     // shift of zero, fshr will return its second operand. fsl and fsr both
7153     // return rs1 so the ISD nodes need to have different operand orders.
7154     // Shift amount is in rs2.
7155     unsigned Opc = RISCVISD::FSLW;
7156     if (N->getOpcode() == ISD::FSHR) {
7157       std::swap(NewOp0, NewOp1);
7158       Opc = RISCVISD::FSRW;
7159     }
7160     SDValue NewOp = DAG.getNode(Opc, DL, MVT::i64, NewOp0, NewOp1, NewShAmt);
7161     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewOp));
7162     break;
7163   }
7164   case ISD::EXTRACT_VECTOR_ELT: {
7165     // Custom-legalize an EXTRACT_VECTOR_ELT where XLEN<SEW, as the SEW element
7166     // type is illegal (currently only vXi64 RV32).
7167     // With vmv.x.s, when SEW > XLEN, only the least-significant XLEN bits are
7168     // transferred to the destination register. We issue two of these from the
7169     // upper- and lower- halves of the SEW-bit vector element, slid down to the
7170     // first element.
7171     SDValue Vec = N->getOperand(0);
7172     SDValue Idx = N->getOperand(1);
7173 
7174     // The vector type hasn't been legalized yet so we can't issue target
7175     // specific nodes if it needs legalization.
7176     // FIXME: We would manually legalize if it's important.
7177     if (!isTypeLegal(Vec.getValueType()))
7178       return;
7179 
7180     MVT VecVT = Vec.getSimpleValueType();
7181 
7182     assert(!Subtarget.is64Bit() && N->getValueType(0) == MVT::i64 &&
7183            VecVT.getVectorElementType() == MVT::i64 &&
7184            "Unexpected EXTRACT_VECTOR_ELT legalization");
7185 
7186     // If this is a fixed vector, we need to convert it to a scalable vector.
7187     MVT ContainerVT = VecVT;
7188     if (VecVT.isFixedLengthVector()) {
7189       ContainerVT = getContainerForFixedLengthVector(VecVT);
7190       Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
7191     }
7192 
7193     MVT XLenVT = Subtarget.getXLenVT();
7194 
7195     // Use a VL of 1 to avoid processing more elements than we need.
7196     SDValue VL = DAG.getConstant(1, DL, XLenVT);
7197     SDValue Mask = getAllOnesMask(ContainerVT, VL, DL, DAG);
7198 
7199     // Unless the index is known to be 0, we must slide the vector down to get
7200     // the desired element into index 0.
7201     if (!isNullConstant(Idx)) {
7202       Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT,
7203                         DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL);
7204     }
7205 
7206     // Extract the lower XLEN bits of the correct vector element.
7207     SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec);
7208 
7209     // To extract the upper XLEN bits of the vector element, shift the first
7210     // element right by 32 bits and re-extract the lower XLEN bits.
7211     SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
7212                                      DAG.getUNDEF(ContainerVT),
7213                                      DAG.getConstant(32, DL, XLenVT), VL);
7214     SDValue LShr32 = DAG.getNode(RISCVISD::SRL_VL, DL, ContainerVT, Vec,
7215                                  ThirtyTwoV, Mask, VL);
7216 
7217     SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32);
7218 
7219     Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi));
7220     break;
7221   }
7222   case ISD::INTRINSIC_WO_CHAIN: {
7223     unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
7224     switch (IntNo) {
7225     default:
7226       llvm_unreachable(
7227           "Don't know how to custom type legalize this intrinsic!");
7228     case Intrinsic::riscv_grev:
7229     case Intrinsic::riscv_gorc: {
7230       assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
7231              "Unexpected custom legalisation");
7232       SDValue NewOp1 =
7233           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
7234       SDValue NewOp2 =
7235           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
7236       unsigned Opc =
7237           IntNo == Intrinsic::riscv_grev ? RISCVISD::GREVW : RISCVISD::GORCW;
7238       // If the control is a constant, promote the node by clearing any extra
7239       // bits bits in the control. isel will form greviw/gorciw if the result is
7240       // sign extended.
7241       if (isa<ConstantSDNode>(NewOp2)) {
7242         NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2,
7243                              DAG.getConstant(0x1f, DL, MVT::i64));
7244         Opc = IntNo == Intrinsic::riscv_grev ? RISCVISD::GREV : RISCVISD::GORC;
7245       }
7246       SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2);
7247       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
7248       break;
7249     }
7250     case Intrinsic::riscv_bcompress:
7251     case Intrinsic::riscv_bdecompress:
7252     case Intrinsic::riscv_bfp:
7253     case Intrinsic::riscv_fsl:
7254     case Intrinsic::riscv_fsr: {
7255       assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
7256              "Unexpected custom legalisation");
7257       Results.push_back(customLegalizeToWOpByIntr(N, DAG, IntNo));
7258       break;
7259     }
7260     case Intrinsic::riscv_orc_b: {
7261       // Lower to the GORCI encoding for orc.b with the operand extended.
7262       SDValue NewOp =
7263           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
7264       SDValue Res = DAG.getNode(RISCVISD::GORC, DL, MVT::i64, NewOp,
7265                                 DAG.getConstant(7, DL, MVT::i64));
7266       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
7267       return;
7268     }
7269     case Intrinsic::riscv_shfl:
7270     case Intrinsic::riscv_unshfl: {
7271       assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
7272              "Unexpected custom legalisation");
7273       SDValue NewOp1 =
7274           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
7275       SDValue NewOp2 =
7276           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
7277       unsigned Opc =
7278           IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFLW : RISCVISD::UNSHFLW;
7279       // There is no (UN)SHFLIW. If the control word is a constant, we can use
7280       // (UN)SHFLI with bit 4 of the control word cleared. The upper 32 bit half
7281       // will be shuffled the same way as the lower 32 bit half, but the two
7282       // halves won't cross.
7283       if (isa<ConstantSDNode>(NewOp2)) {
7284         NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2,
7285                              DAG.getConstant(0xf, DL, MVT::i64));
7286         Opc =
7287             IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL;
7288       }
7289       SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2);
7290       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
7291       break;
7292     }
7293     case Intrinsic::riscv_vmv_x_s: {
7294       EVT VT = N->getValueType(0);
7295       MVT XLenVT = Subtarget.getXLenVT();
7296       if (VT.bitsLT(XLenVT)) {
7297         // Simple case just extract using vmv.x.s and truncate.
7298         SDValue Extract = DAG.getNode(RISCVISD::VMV_X_S, DL,
7299                                       Subtarget.getXLenVT(), N->getOperand(1));
7300         Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, Extract));
7301         return;
7302       }
7303 
7304       assert(VT == MVT::i64 && !Subtarget.is64Bit() &&
7305              "Unexpected custom legalization");
7306 
7307       // We need to do the move in two steps.
7308       SDValue Vec = N->getOperand(1);
7309       MVT VecVT = Vec.getSimpleValueType();
7310 
7311       // First extract the lower XLEN bits of the element.
7312       SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec);
7313 
7314       // To extract the upper XLEN bits of the vector element, shift the first
7315       // element right by 32 bits and re-extract the lower XLEN bits.
7316       SDValue VL = DAG.getConstant(1, DL, XLenVT);
7317       SDValue Mask = getAllOnesMask(VecVT, VL, DL, DAG);
7318 
7319       SDValue ThirtyTwoV =
7320           DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, DAG.getUNDEF(VecVT),
7321                       DAG.getConstant(32, DL, XLenVT), VL);
7322       SDValue LShr32 =
7323           DAG.getNode(RISCVISD::SRL_VL, DL, VecVT, Vec, ThirtyTwoV, Mask, VL);
7324       SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32);
7325 
7326       Results.push_back(
7327           DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi));
7328       break;
7329     }
7330     }
7331     break;
7332   }
7333   case ISD::VECREDUCE_ADD:
7334   case ISD::VECREDUCE_AND:
7335   case ISD::VECREDUCE_OR:
7336   case ISD::VECREDUCE_XOR:
7337   case ISD::VECREDUCE_SMAX:
7338   case ISD::VECREDUCE_UMAX:
7339   case ISD::VECREDUCE_SMIN:
7340   case ISD::VECREDUCE_UMIN:
7341     if (SDValue V = lowerVECREDUCE(SDValue(N, 0), DAG))
7342       Results.push_back(V);
7343     break;
7344   case ISD::VP_REDUCE_ADD:
7345   case ISD::VP_REDUCE_AND:
7346   case ISD::VP_REDUCE_OR:
7347   case ISD::VP_REDUCE_XOR:
7348   case ISD::VP_REDUCE_SMAX:
7349   case ISD::VP_REDUCE_UMAX:
7350   case ISD::VP_REDUCE_SMIN:
7351   case ISD::VP_REDUCE_UMIN:
7352     if (SDValue V = lowerVPREDUCE(SDValue(N, 0), DAG))
7353       Results.push_back(V);
7354     break;
7355   case ISD::FLT_ROUNDS_: {
7356     SDVTList VTs = DAG.getVTList(Subtarget.getXLenVT(), MVT::Other);
7357     SDValue Res = DAG.getNode(ISD::FLT_ROUNDS_, DL, VTs, N->getOperand(0));
7358     Results.push_back(Res.getValue(0));
7359     Results.push_back(Res.getValue(1));
7360     break;
7361   }
7362   }
7363 }
7364 
7365 // A structure to hold one of the bit-manipulation patterns below. Together, a
7366 // SHL and non-SHL pattern may form a bit-manipulation pair on a single source:
7367 //   (or (and (shl x, 1), 0xAAAAAAAA),
7368 //       (and (srl x, 1), 0x55555555))
7369 struct RISCVBitmanipPat {
7370   SDValue Op;
7371   unsigned ShAmt;
7372   bool IsSHL;
7373 
7374   bool formsPairWith(const RISCVBitmanipPat &Other) const {
7375     return Op == Other.Op && ShAmt == Other.ShAmt && IsSHL != Other.IsSHL;
7376   }
7377 };
7378 
7379 // Matches patterns of the form
7380 //   (and (shl x, C2), (C1 << C2))
7381 //   (and (srl x, C2), C1)
7382 //   (shl (and x, C1), C2)
7383 //   (srl (and x, (C1 << C2)), C2)
7384 // Where C2 is a power of 2 and C1 has at least that many leading zeroes.
7385 // The expected masks for each shift amount are specified in BitmanipMasks where
7386 // BitmanipMasks[log2(C2)] specifies the expected C1 value.
7387 // The max allowed shift amount is either XLen/2 or XLen/4 determined by whether
7388 // BitmanipMasks contains 6 or 5 entries assuming that the maximum possible
7389 // XLen is 64.
7390 static Optional<RISCVBitmanipPat>
7391 matchRISCVBitmanipPat(SDValue Op, ArrayRef<uint64_t> BitmanipMasks) {
7392   assert((BitmanipMasks.size() == 5 || BitmanipMasks.size() == 6) &&
7393          "Unexpected number of masks");
7394   Optional<uint64_t> Mask;
7395   // Optionally consume a mask around the shift operation.
7396   if (Op.getOpcode() == ISD::AND && isa<ConstantSDNode>(Op.getOperand(1))) {
7397     Mask = Op.getConstantOperandVal(1);
7398     Op = Op.getOperand(0);
7399   }
7400   if (Op.getOpcode() != ISD::SHL && Op.getOpcode() != ISD::SRL)
7401     return None;
7402   bool IsSHL = Op.getOpcode() == ISD::SHL;
7403 
7404   if (!isa<ConstantSDNode>(Op.getOperand(1)))
7405     return None;
7406   uint64_t ShAmt = Op.getConstantOperandVal(1);
7407 
7408   unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32;
7409   if (ShAmt >= Width || !isPowerOf2_64(ShAmt))
7410     return None;
7411   // If we don't have enough masks for 64 bit, then we must be trying to
7412   // match SHFL so we're only allowed to shift 1/4 of the width.
7413   if (BitmanipMasks.size() == 5 && ShAmt >= (Width / 2))
7414     return None;
7415 
7416   SDValue Src = Op.getOperand(0);
7417 
7418   // The expected mask is shifted left when the AND is found around SHL
7419   // patterns.
7420   //   ((x >> 1) & 0x55555555)
7421   //   ((x << 1) & 0xAAAAAAAA)
7422   bool SHLExpMask = IsSHL;
7423 
7424   if (!Mask) {
7425     // Sometimes LLVM keeps the mask as an operand of the shift, typically when
7426     // the mask is all ones: consume that now.
7427     if (Src.getOpcode() == ISD::AND && isa<ConstantSDNode>(Src.getOperand(1))) {
7428       Mask = Src.getConstantOperandVal(1);
7429       Src = Src.getOperand(0);
7430       // The expected mask is now in fact shifted left for SRL, so reverse the
7431       // decision.
7432       //   ((x & 0xAAAAAAAA) >> 1)
7433       //   ((x & 0x55555555) << 1)
7434       SHLExpMask = !SHLExpMask;
7435     } else {
7436       // Use a default shifted mask of all-ones if there's no AND, truncated
7437       // down to the expected width. This simplifies the logic later on.
7438       Mask = maskTrailingOnes<uint64_t>(Width);
7439       *Mask &= (IsSHL ? *Mask << ShAmt : *Mask >> ShAmt);
7440     }
7441   }
7442 
7443   unsigned MaskIdx = Log2_32(ShAmt);
7444   uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width);
7445 
7446   if (SHLExpMask)
7447     ExpMask <<= ShAmt;
7448 
7449   if (Mask != ExpMask)
7450     return None;
7451 
7452   return RISCVBitmanipPat{Src, (unsigned)ShAmt, IsSHL};
7453 }
7454 
7455 // Matches any of the following bit-manipulation patterns:
7456 //   (and (shl x, 1), (0x55555555 << 1))
7457 //   (and (srl x, 1), 0x55555555)
7458 //   (shl (and x, 0x55555555), 1)
7459 //   (srl (and x, (0x55555555 << 1)), 1)
7460 // where the shift amount and mask may vary thus:
7461 //   [1]  = 0x55555555 / 0xAAAAAAAA
7462 //   [2]  = 0x33333333 / 0xCCCCCCCC
7463 //   [4]  = 0x0F0F0F0F / 0xF0F0F0F0
7464 //   [8]  = 0x00FF00FF / 0xFF00FF00
7465 //   [16] = 0x0000FFFF / 0xFFFFFFFF
7466 //   [32] = 0x00000000FFFFFFFF / 0xFFFFFFFF00000000 (for RV64)
7467 static Optional<RISCVBitmanipPat> matchGREVIPat(SDValue Op) {
7468   // These are the unshifted masks which we use to match bit-manipulation
7469   // patterns. They may be shifted left in certain circumstances.
7470   static const uint64_t BitmanipMasks[] = {
7471       0x5555555555555555ULL, 0x3333333333333333ULL, 0x0F0F0F0F0F0F0F0FULL,
7472       0x00FF00FF00FF00FFULL, 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL};
7473 
7474   return matchRISCVBitmanipPat(Op, BitmanipMasks);
7475 }
7476 
7477 // Try to fold (<bop> x, (reduction.<bop> vec, start))
7478 static SDValue combineBinOpToReduce(SDNode *N, SelectionDAG &DAG) {
7479   auto BinOpToRVVReduce = [](unsigned Opc) {
7480     switch (Opc) {
7481     default:
7482       llvm_unreachable("Unhandled binary to transfrom reduction");
7483     case ISD::ADD:
7484       return RISCVISD::VECREDUCE_ADD_VL;
7485     case ISD::UMAX:
7486       return RISCVISD::VECREDUCE_UMAX_VL;
7487     case ISD::SMAX:
7488       return RISCVISD::VECREDUCE_SMAX_VL;
7489     case ISD::UMIN:
7490       return RISCVISD::VECREDUCE_UMIN_VL;
7491     case ISD::SMIN:
7492       return RISCVISD::VECREDUCE_SMIN_VL;
7493     case ISD::AND:
7494       return RISCVISD::VECREDUCE_AND_VL;
7495     case ISD::OR:
7496       return RISCVISD::VECREDUCE_OR_VL;
7497     case ISD::XOR:
7498       return RISCVISD::VECREDUCE_XOR_VL;
7499     case ISD::FADD:
7500       return RISCVISD::VECREDUCE_FADD_VL;
7501     case ISD::FMAXNUM:
7502       return RISCVISD::VECREDUCE_FMAX_VL;
7503     case ISD::FMINNUM:
7504       return RISCVISD::VECREDUCE_FMIN_VL;
7505     }
7506   };
7507 
7508   auto IsReduction = [&BinOpToRVVReduce](SDValue V, unsigned Opc) {
7509     return V.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
7510            isNullConstant(V.getOperand(1)) &&
7511            V.getOperand(0).getOpcode() == BinOpToRVVReduce(Opc);
7512   };
7513 
7514   unsigned Opc = N->getOpcode();
7515   unsigned ReduceIdx;
7516   if (IsReduction(N->getOperand(0), Opc))
7517     ReduceIdx = 0;
7518   else if (IsReduction(N->getOperand(1), Opc))
7519     ReduceIdx = 1;
7520   else
7521     return SDValue();
7522 
7523   // Skip if FADD disallows reassociation but the combiner needs.
7524   if (Opc == ISD::FADD && !N->getFlags().hasAllowReassociation())
7525     return SDValue();
7526 
7527   SDValue Extract = N->getOperand(ReduceIdx);
7528   SDValue Reduce = Extract.getOperand(0);
7529   if (!Reduce.hasOneUse())
7530     return SDValue();
7531 
7532   SDValue ScalarV = Reduce.getOperand(2);
7533 
7534   // Make sure that ScalarV is a splat with VL=1.
7535   if (ScalarV.getOpcode() != RISCVISD::VFMV_S_F_VL &&
7536       ScalarV.getOpcode() != RISCVISD::VMV_S_X_VL &&
7537       ScalarV.getOpcode() != RISCVISD::VMV_V_X_VL)
7538     return SDValue();
7539 
7540   if (!isOneConstant(ScalarV.getOperand(2)))
7541     return SDValue();
7542 
7543   // TODO: Deal with value other than neutral element.
7544   auto IsRVVNeutralElement = [Opc, &DAG](SDNode *N, SDValue V) {
7545     if (Opc == ISD::FADD && N->getFlags().hasNoSignedZeros() &&
7546         isNullFPConstant(V))
7547       return true;
7548     return DAG.getNeutralElement(Opc, SDLoc(V), V.getSimpleValueType(),
7549                                  N->getFlags()) == V;
7550   };
7551 
7552   // Check the scalar of ScalarV is neutral element
7553   if (!IsRVVNeutralElement(N, ScalarV.getOperand(1)))
7554     return SDValue();
7555 
7556   if (!ScalarV.hasOneUse())
7557     return SDValue();
7558 
7559   EVT SplatVT = ScalarV.getValueType();
7560   SDValue NewStart = N->getOperand(1 - ReduceIdx);
7561   unsigned SplatOpc = RISCVISD::VFMV_S_F_VL;
7562   if (SplatVT.isInteger()) {
7563     auto *C = dyn_cast<ConstantSDNode>(NewStart.getNode());
7564     if (!C || C->isZero() || !isInt<5>(C->getSExtValue()))
7565       SplatOpc = RISCVISD::VMV_S_X_VL;
7566     else
7567       SplatOpc = RISCVISD::VMV_V_X_VL;
7568   }
7569 
7570   SDValue NewScalarV =
7571       DAG.getNode(SplatOpc, SDLoc(N), SplatVT, ScalarV.getOperand(0), NewStart,
7572                   ScalarV.getOperand(2));
7573   SDValue NewReduce =
7574       DAG.getNode(Reduce.getOpcode(), SDLoc(Reduce), Reduce.getValueType(),
7575                   Reduce.getOperand(0), Reduce.getOperand(1), NewScalarV,
7576                   Reduce.getOperand(3), Reduce.getOperand(4));
7577   return DAG.getNode(Extract.getOpcode(), SDLoc(Extract),
7578                      Extract.getValueType(), NewReduce, Extract.getOperand(1));
7579 }
7580 
7581 // Match the following pattern as a GREVI(W) operation
7582 //   (or (BITMANIP_SHL x), (BITMANIP_SRL x))
7583 static SDValue combineORToGREV(SDValue Op, SelectionDAG &DAG,
7584                                const RISCVSubtarget &Subtarget) {
7585   assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson");
7586   EVT VT = Op.getValueType();
7587 
7588   if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) {
7589     auto LHS = matchGREVIPat(Op.getOperand(0));
7590     auto RHS = matchGREVIPat(Op.getOperand(1));
7591     if (LHS && RHS && LHS->formsPairWith(*RHS)) {
7592       SDLoc DL(Op);
7593       return DAG.getNode(RISCVISD::GREV, DL, VT, LHS->Op,
7594                          DAG.getConstant(LHS->ShAmt, DL, VT));
7595     }
7596   }
7597   return SDValue();
7598 }
7599 
7600 // Matches any the following pattern as a GORCI(W) operation
7601 // 1.  (or (GREVI x, shamt), x) if shamt is a power of 2
7602 // 2.  (or x, (GREVI x, shamt)) if shamt is a power of 2
7603 // 3.  (or (or (BITMANIP_SHL x), x), (BITMANIP_SRL x))
7604 // Note that with the variant of 3.,
7605 //     (or (or (BITMANIP_SHL x), (BITMANIP_SRL x)), x)
7606 // the inner pattern will first be matched as GREVI and then the outer
7607 // pattern will be matched to GORC via the first rule above.
7608 // 4.  (or (rotl/rotr x, bitwidth/2), x)
7609 static SDValue combineORToGORC(SDValue Op, SelectionDAG &DAG,
7610                                const RISCVSubtarget &Subtarget) {
7611   assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson");
7612   EVT VT = Op.getValueType();
7613 
7614   if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) {
7615     SDLoc DL(Op);
7616     SDValue Op0 = Op.getOperand(0);
7617     SDValue Op1 = Op.getOperand(1);
7618 
7619     auto MatchOROfReverse = [&](SDValue Reverse, SDValue X) {
7620       if (Reverse.getOpcode() == RISCVISD::GREV && Reverse.getOperand(0) == X &&
7621           isa<ConstantSDNode>(Reverse.getOperand(1)) &&
7622           isPowerOf2_32(Reverse.getConstantOperandVal(1)))
7623         return DAG.getNode(RISCVISD::GORC, DL, VT, X, Reverse.getOperand(1));
7624       // We can also form GORCI from ROTL/ROTR by half the bitwidth.
7625       if ((Reverse.getOpcode() == ISD::ROTL ||
7626            Reverse.getOpcode() == ISD::ROTR) &&
7627           Reverse.getOperand(0) == X &&
7628           isa<ConstantSDNode>(Reverse.getOperand(1))) {
7629         uint64_t RotAmt = Reverse.getConstantOperandVal(1);
7630         if (RotAmt == (VT.getSizeInBits() / 2))
7631           return DAG.getNode(RISCVISD::GORC, DL, VT, X,
7632                              DAG.getConstant(RotAmt, DL, VT));
7633       }
7634       return SDValue();
7635     };
7636 
7637     // Check for either commutable permutation of (or (GREVI x, shamt), x)
7638     if (SDValue V = MatchOROfReverse(Op0, Op1))
7639       return V;
7640     if (SDValue V = MatchOROfReverse(Op1, Op0))
7641       return V;
7642 
7643     // OR is commutable so canonicalize its OR operand to the left
7644     if (Op0.getOpcode() != ISD::OR && Op1.getOpcode() == ISD::OR)
7645       std::swap(Op0, Op1);
7646     if (Op0.getOpcode() != ISD::OR)
7647       return SDValue();
7648     SDValue OrOp0 = Op0.getOperand(0);
7649     SDValue OrOp1 = Op0.getOperand(1);
7650     auto LHS = matchGREVIPat(OrOp0);
7651     // OR is commutable so swap the operands and try again: x might have been
7652     // on the left
7653     if (!LHS) {
7654       std::swap(OrOp0, OrOp1);
7655       LHS = matchGREVIPat(OrOp0);
7656     }
7657     auto RHS = matchGREVIPat(Op1);
7658     if (LHS && RHS && LHS->formsPairWith(*RHS) && LHS->Op == OrOp1) {
7659       return DAG.getNode(RISCVISD::GORC, DL, VT, LHS->Op,
7660                          DAG.getConstant(LHS->ShAmt, DL, VT));
7661     }
7662   }
7663   return SDValue();
7664 }
7665 
7666 // Matches any of the following bit-manipulation patterns:
7667 //   (and (shl x, 1), (0x22222222 << 1))
7668 //   (and (srl x, 1), 0x22222222)
7669 //   (shl (and x, 0x22222222), 1)
7670 //   (srl (and x, (0x22222222 << 1)), 1)
7671 // where the shift amount and mask may vary thus:
7672 //   [1]  = 0x22222222 / 0x44444444
7673 //   [2]  = 0x0C0C0C0C / 0x3C3C3C3C
7674 //   [4]  = 0x00F000F0 / 0x0F000F00
7675 //   [8]  = 0x0000FF00 / 0x00FF0000
7676 //   [16] = 0x00000000FFFF0000 / 0x0000FFFF00000000 (for RV64)
7677 static Optional<RISCVBitmanipPat> matchSHFLPat(SDValue Op) {
7678   // These are the unshifted masks which we use to match bit-manipulation
7679   // patterns. They may be shifted left in certain circumstances.
7680   static const uint64_t BitmanipMasks[] = {
7681       0x2222222222222222ULL, 0x0C0C0C0C0C0C0C0CULL, 0x00F000F000F000F0ULL,
7682       0x0000FF000000FF00ULL, 0x00000000FFFF0000ULL};
7683 
7684   return matchRISCVBitmanipPat(Op, BitmanipMasks);
7685 }
7686 
7687 // Match (or (or (SHFL_SHL x), (SHFL_SHR x)), (SHFL_AND x)
7688 static SDValue combineORToSHFL(SDValue Op, SelectionDAG &DAG,
7689                                const RISCVSubtarget &Subtarget) {
7690   assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson");
7691   EVT VT = Op.getValueType();
7692 
7693   if (VT != MVT::i32 && VT != Subtarget.getXLenVT())
7694     return SDValue();
7695 
7696   SDValue Op0 = Op.getOperand(0);
7697   SDValue Op1 = Op.getOperand(1);
7698 
7699   // Or is commutable so canonicalize the second OR to the LHS.
7700   if (Op0.getOpcode() != ISD::OR)
7701     std::swap(Op0, Op1);
7702   if (Op0.getOpcode() != ISD::OR)
7703     return SDValue();
7704 
7705   // We found an inner OR, so our operands are the operands of the inner OR
7706   // and the other operand of the outer OR.
7707   SDValue A = Op0.getOperand(0);
7708   SDValue B = Op0.getOperand(1);
7709   SDValue C = Op1;
7710 
7711   auto Match1 = matchSHFLPat(A);
7712   auto Match2 = matchSHFLPat(B);
7713 
7714   // If neither matched, we failed.
7715   if (!Match1 && !Match2)
7716     return SDValue();
7717 
7718   // We had at least one match. if one failed, try the remaining C operand.
7719   if (!Match1) {
7720     std::swap(A, C);
7721     Match1 = matchSHFLPat(A);
7722     if (!Match1)
7723       return SDValue();
7724   } else if (!Match2) {
7725     std::swap(B, C);
7726     Match2 = matchSHFLPat(B);
7727     if (!Match2)
7728       return SDValue();
7729   }
7730   assert(Match1 && Match2);
7731 
7732   // Make sure our matches pair up.
7733   if (!Match1->formsPairWith(*Match2))
7734     return SDValue();
7735 
7736   // All the remains is to make sure C is an AND with the same input, that masks
7737   // out the bits that are being shuffled.
7738   if (C.getOpcode() != ISD::AND || !isa<ConstantSDNode>(C.getOperand(1)) ||
7739       C.getOperand(0) != Match1->Op)
7740     return SDValue();
7741 
7742   uint64_t Mask = C.getConstantOperandVal(1);
7743 
7744   static const uint64_t BitmanipMasks[] = {
7745       0x9999999999999999ULL, 0xC3C3C3C3C3C3C3C3ULL, 0xF00FF00FF00FF00FULL,
7746       0xFF0000FFFF0000FFULL, 0xFFFF00000000FFFFULL,
7747   };
7748 
7749   unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32;
7750   unsigned MaskIdx = Log2_32(Match1->ShAmt);
7751   uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width);
7752 
7753   if (Mask != ExpMask)
7754     return SDValue();
7755 
7756   SDLoc DL(Op);
7757   return DAG.getNode(RISCVISD::SHFL, DL, VT, Match1->Op,
7758                      DAG.getConstant(Match1->ShAmt, DL, VT));
7759 }
7760 
7761 // Optimize (add (shl x, c0), (shl y, c1)) ->
7762 //          (SLLI (SH*ADD x, y), c0), if c1-c0 equals to [1|2|3].
7763 static SDValue transformAddShlImm(SDNode *N, SelectionDAG &DAG,
7764                                   const RISCVSubtarget &Subtarget) {
7765   // Perform this optimization only in the zba extension.
7766   if (!Subtarget.hasStdExtZba())
7767     return SDValue();
7768 
7769   // Skip for vector types and larger types.
7770   EVT VT = N->getValueType(0);
7771   if (VT.isVector() || VT.getSizeInBits() > Subtarget.getXLen())
7772     return SDValue();
7773 
7774   // The two operand nodes must be SHL and have no other use.
7775   SDValue N0 = N->getOperand(0);
7776   SDValue N1 = N->getOperand(1);
7777   if (N0->getOpcode() != ISD::SHL || N1->getOpcode() != ISD::SHL ||
7778       !N0->hasOneUse() || !N1->hasOneUse())
7779     return SDValue();
7780 
7781   // Check c0 and c1.
7782   auto *N0C = dyn_cast<ConstantSDNode>(N0->getOperand(1));
7783   auto *N1C = dyn_cast<ConstantSDNode>(N1->getOperand(1));
7784   if (!N0C || !N1C)
7785     return SDValue();
7786   int64_t C0 = N0C->getSExtValue();
7787   int64_t C1 = N1C->getSExtValue();
7788   if (C0 <= 0 || C1 <= 0)
7789     return SDValue();
7790 
7791   // Skip if SH1ADD/SH2ADD/SH3ADD are not applicable.
7792   int64_t Bits = std::min(C0, C1);
7793   int64_t Diff = std::abs(C0 - C1);
7794   if (Diff != 1 && Diff != 2 && Diff != 3)
7795     return SDValue();
7796 
7797   // Build nodes.
7798   SDLoc DL(N);
7799   SDValue NS = (C0 < C1) ? N0->getOperand(0) : N1->getOperand(0);
7800   SDValue NL = (C0 > C1) ? N0->getOperand(0) : N1->getOperand(0);
7801   SDValue NA0 =
7802       DAG.getNode(ISD::SHL, DL, VT, NL, DAG.getConstant(Diff, DL, VT));
7803   SDValue NA1 = DAG.getNode(ISD::ADD, DL, VT, NA0, NS);
7804   return DAG.getNode(ISD::SHL, DL, VT, NA1, DAG.getConstant(Bits, DL, VT));
7805 }
7806 
7807 // Combine
7808 // ROTR ((GREVI x, 24), 16) -> (GREVI x, 8) for RV32
7809 // ROTL ((GREVI x, 24), 16) -> (GREVI x, 8) for RV32
7810 // ROTR ((GREVI x, 56), 32) -> (GREVI x, 24) for RV64
7811 // ROTL ((GREVI x, 56), 32) -> (GREVI x, 24) for RV64
7812 // RORW ((GREVI x, 24), 16) -> (GREVIW x, 8) for RV64
7813 // ROLW ((GREVI x, 24), 16) -> (GREVIW x, 8) for RV64
7814 // The grev patterns represents BSWAP.
7815 // FIXME: This can be generalized to any GREV. We just need to toggle the MSB
7816 // off the grev.
7817 static SDValue combineROTR_ROTL_RORW_ROLW(SDNode *N, SelectionDAG &DAG,
7818                                           const RISCVSubtarget &Subtarget) {
7819   bool IsWInstruction =
7820       N->getOpcode() == RISCVISD::RORW || N->getOpcode() == RISCVISD::ROLW;
7821   assert((N->getOpcode() == ISD::ROTR || N->getOpcode() == ISD::ROTL ||
7822           IsWInstruction) &&
7823          "Unexpected opcode!");
7824   SDValue Src = N->getOperand(0);
7825   EVT VT = N->getValueType(0);
7826   SDLoc DL(N);
7827 
7828   if (!Subtarget.hasStdExtZbp() || Src.getOpcode() != RISCVISD::GREV)
7829     return SDValue();
7830 
7831   if (!isa<ConstantSDNode>(N->getOperand(1)) ||
7832       !isa<ConstantSDNode>(Src.getOperand(1)))
7833     return SDValue();
7834 
7835   unsigned BitWidth = IsWInstruction ? 32 : VT.getSizeInBits();
7836   assert(isPowerOf2_32(BitWidth) && "Expected a power of 2");
7837 
7838   // Needs to be a rotate by half the bitwidth for ROTR/ROTL or by 16 for
7839   // RORW/ROLW. And the grev should be the encoding for bswap for this width.
7840   unsigned ShAmt1 = N->getConstantOperandVal(1);
7841   unsigned ShAmt2 = Src.getConstantOperandVal(1);
7842   if (BitWidth < 32 || ShAmt1 != (BitWidth / 2) || ShAmt2 != (BitWidth - 8))
7843     return SDValue();
7844 
7845   Src = Src.getOperand(0);
7846 
7847   // Toggle bit the MSB of the shift.
7848   unsigned CombinedShAmt = ShAmt1 ^ ShAmt2;
7849   if (CombinedShAmt == 0)
7850     return Src;
7851 
7852   SDValue Res = DAG.getNode(
7853       RISCVISD::GREV, DL, VT, Src,
7854       DAG.getConstant(CombinedShAmt, DL, N->getOperand(1).getValueType()));
7855   if (!IsWInstruction)
7856     return Res;
7857 
7858   // Sign extend the result to match the behavior of the rotate. This will be
7859   // selected to GREVIW in isel.
7860   return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Res,
7861                      DAG.getValueType(MVT::i32));
7862 }
7863 
7864 // Combine (GREVI (GREVI x, C2), C1) -> (GREVI x, C1^C2) when C1^C2 is
7865 // non-zero, and to x when it is. Any repeated GREVI stage undoes itself.
7866 // Combine (GORCI (GORCI x, C2), C1) -> (GORCI x, C1|C2). Repeated stage does
7867 // not undo itself, but they are redundant.
7868 static SDValue combineGREVI_GORCI(SDNode *N, SelectionDAG &DAG) {
7869   bool IsGORC = N->getOpcode() == RISCVISD::GORC;
7870   assert((IsGORC || N->getOpcode() == RISCVISD::GREV) && "Unexpected opcode");
7871   SDValue Src = N->getOperand(0);
7872 
7873   if (Src.getOpcode() != N->getOpcode())
7874     return SDValue();
7875 
7876   if (!isa<ConstantSDNode>(N->getOperand(1)) ||
7877       !isa<ConstantSDNode>(Src.getOperand(1)))
7878     return SDValue();
7879 
7880   unsigned ShAmt1 = N->getConstantOperandVal(1);
7881   unsigned ShAmt2 = Src.getConstantOperandVal(1);
7882   Src = Src.getOperand(0);
7883 
7884   unsigned CombinedShAmt;
7885   if (IsGORC)
7886     CombinedShAmt = ShAmt1 | ShAmt2;
7887   else
7888     CombinedShAmt = ShAmt1 ^ ShAmt2;
7889 
7890   if (CombinedShAmt == 0)
7891     return Src;
7892 
7893   SDLoc DL(N);
7894   return DAG.getNode(
7895       N->getOpcode(), DL, N->getValueType(0), Src,
7896       DAG.getConstant(CombinedShAmt, DL, N->getOperand(1).getValueType()));
7897 }
7898 
7899 // Combine a constant select operand into its use:
7900 //
7901 // (and (select cond, -1, c), x)
7902 //   -> (select cond, x, (and x, c))  [AllOnes=1]
7903 // (or  (select cond, 0, c), x)
7904 //   -> (select cond, x, (or x, c))  [AllOnes=0]
7905 // (xor (select cond, 0, c), x)
7906 //   -> (select cond, x, (xor x, c))  [AllOnes=0]
7907 // (add (select cond, 0, c), x)
7908 //   -> (select cond, x, (add x, c))  [AllOnes=0]
7909 // (sub x, (select cond, 0, c))
7910 //   -> (select cond, x, (sub x, c))  [AllOnes=0]
7911 static SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp,
7912                                    SelectionDAG &DAG, bool AllOnes) {
7913   EVT VT = N->getValueType(0);
7914 
7915   // Skip vectors.
7916   if (VT.isVector())
7917     return SDValue();
7918 
7919   if ((Slct.getOpcode() != ISD::SELECT &&
7920        Slct.getOpcode() != RISCVISD::SELECT_CC) ||
7921       !Slct.hasOneUse())
7922     return SDValue();
7923 
7924   auto isZeroOrAllOnes = [](SDValue N, bool AllOnes) {
7925     return AllOnes ? isAllOnesConstant(N) : isNullConstant(N);
7926   };
7927 
7928   bool SwapSelectOps;
7929   unsigned OpOffset = Slct.getOpcode() == RISCVISD::SELECT_CC ? 2 : 0;
7930   SDValue TrueVal = Slct.getOperand(1 + OpOffset);
7931   SDValue FalseVal = Slct.getOperand(2 + OpOffset);
7932   SDValue NonConstantVal;
7933   if (isZeroOrAllOnes(TrueVal, AllOnes)) {
7934     SwapSelectOps = false;
7935     NonConstantVal = FalseVal;
7936   } else if (isZeroOrAllOnes(FalseVal, AllOnes)) {
7937     SwapSelectOps = true;
7938     NonConstantVal = TrueVal;
7939   } else
7940     return SDValue();
7941 
7942   // Slct is now know to be the desired identity constant when CC is true.
7943   TrueVal = OtherOp;
7944   FalseVal = DAG.getNode(N->getOpcode(), SDLoc(N), VT, OtherOp, NonConstantVal);
7945   // Unless SwapSelectOps says the condition should be false.
7946   if (SwapSelectOps)
7947     std::swap(TrueVal, FalseVal);
7948 
7949   if (Slct.getOpcode() == RISCVISD::SELECT_CC)
7950     return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), VT,
7951                        {Slct.getOperand(0), Slct.getOperand(1),
7952                         Slct.getOperand(2), TrueVal, FalseVal});
7953 
7954   return DAG.getNode(ISD::SELECT, SDLoc(N), VT,
7955                      {Slct.getOperand(0), TrueVal, FalseVal});
7956 }
7957 
7958 // Attempt combineSelectAndUse on each operand of a commutative operator N.
7959 static SDValue combineSelectAndUseCommutative(SDNode *N, SelectionDAG &DAG,
7960                                               bool AllOnes) {
7961   SDValue N0 = N->getOperand(0);
7962   SDValue N1 = N->getOperand(1);
7963   if (SDValue Result = combineSelectAndUse(N, N0, N1, DAG, AllOnes))
7964     return Result;
7965   if (SDValue Result = combineSelectAndUse(N, N1, N0, DAG, AllOnes))
7966     return Result;
7967   return SDValue();
7968 }
7969 
7970 // Transform (add (mul x, c0), c1) ->
7971 //           (add (mul (add x, c1/c0), c0), c1%c0).
7972 // if c1/c0 and c1%c0 are simm12, while c1 is not. A special corner case
7973 // that should be excluded is when c0*(c1/c0) is simm12, which will lead
7974 // to an infinite loop in DAGCombine if transformed.
7975 // Or transform (add (mul x, c0), c1) ->
7976 //              (add (mul (add x, c1/c0+1), c0), c1%c0-c0),
7977 // if c1/c0+1 and c1%c0-c0 are simm12, while c1 is not. A special corner
7978 // case that should be excluded is when c0*(c1/c0+1) is simm12, which will
7979 // lead to an infinite loop in DAGCombine if transformed.
7980 // Or transform (add (mul x, c0), c1) ->
7981 //              (add (mul (add x, c1/c0-1), c0), c1%c0+c0),
7982 // if c1/c0-1 and c1%c0+c0 are simm12, while c1 is not. A special corner
7983 // case that should be excluded is when c0*(c1/c0-1) is simm12, which will
7984 // lead to an infinite loop in DAGCombine if transformed.
7985 // Or transform (add (mul x, c0), c1) ->
7986 //              (mul (add x, c1/c0), c0).
7987 // if c1%c0 is zero, and c1/c0 is simm12 while c1 is not.
7988 static SDValue transformAddImmMulImm(SDNode *N, SelectionDAG &DAG,
7989                                      const RISCVSubtarget &Subtarget) {
7990   // Skip for vector types and larger types.
7991   EVT VT = N->getValueType(0);
7992   if (VT.isVector() || VT.getSizeInBits() > Subtarget.getXLen())
7993     return SDValue();
7994   // The first operand node must be a MUL and has no other use.
7995   SDValue N0 = N->getOperand(0);
7996   if (!N0->hasOneUse() || N0->getOpcode() != ISD::MUL)
7997     return SDValue();
7998   // Check if c0 and c1 match above conditions.
7999   auto *N0C = dyn_cast<ConstantSDNode>(N0->getOperand(1));
8000   auto *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1));
8001   if (!N0C || !N1C)
8002     return SDValue();
8003   // If N0C has multiple uses it's possible one of the cases in
8004   // DAGCombiner::isMulAddWithConstProfitable will be true, which would result
8005   // in an infinite loop.
8006   if (!N0C->hasOneUse())
8007     return SDValue();
8008   int64_t C0 = N0C->getSExtValue();
8009   int64_t C1 = N1C->getSExtValue();
8010   int64_t CA, CB;
8011   if (C0 == -1 || C0 == 0 || C0 == 1 || isInt<12>(C1))
8012     return SDValue();
8013   // Search for proper CA (non-zero) and CB that both are simm12.
8014   if ((C1 / C0) != 0 && isInt<12>(C1 / C0) && isInt<12>(C1 % C0) &&
8015       !isInt<12>(C0 * (C1 / C0))) {
8016     CA = C1 / C0;
8017     CB = C1 % C0;
8018   } else if ((C1 / C0 + 1) != 0 && isInt<12>(C1 / C0 + 1) &&
8019              isInt<12>(C1 % C0 - C0) && !isInt<12>(C0 * (C1 / C0 + 1))) {
8020     CA = C1 / C0 + 1;
8021     CB = C1 % C0 - C0;
8022   } else if ((C1 / C0 - 1) != 0 && isInt<12>(C1 / C0 - 1) &&
8023              isInt<12>(C1 % C0 + C0) && !isInt<12>(C0 * (C1 / C0 - 1))) {
8024     CA = C1 / C0 - 1;
8025     CB = C1 % C0 + C0;
8026   } else
8027     return SDValue();
8028   // Build new nodes (add (mul (add x, c1/c0), c0), c1%c0).
8029   SDLoc DL(N);
8030   SDValue New0 = DAG.getNode(ISD::ADD, DL, VT, N0->getOperand(0),
8031                              DAG.getConstant(CA, DL, VT));
8032   SDValue New1 =
8033       DAG.getNode(ISD::MUL, DL, VT, New0, DAG.getConstant(C0, DL, VT));
8034   return DAG.getNode(ISD::ADD, DL, VT, New1, DAG.getConstant(CB, DL, VT));
8035 }
8036 
8037 static SDValue performADDCombine(SDNode *N, SelectionDAG &DAG,
8038                                  const RISCVSubtarget &Subtarget) {
8039   if (SDValue V = transformAddImmMulImm(N, DAG, Subtarget))
8040     return V;
8041   if (SDValue V = transformAddShlImm(N, DAG, Subtarget))
8042     return V;
8043   if (SDValue V = combineBinOpToReduce(N, DAG))
8044     return V;
8045   // fold (add (select lhs, rhs, cc, 0, y), x) ->
8046   //      (select lhs, rhs, cc, x, (add x, y))
8047   return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false);
8048 }
8049 
8050 static SDValue performSUBCombine(SDNode *N, SelectionDAG &DAG) {
8051   // fold (sub x, (select lhs, rhs, cc, 0, y)) ->
8052   //      (select lhs, rhs, cc, x, (sub x, y))
8053   SDValue N0 = N->getOperand(0);
8054   SDValue N1 = N->getOperand(1);
8055   return combineSelectAndUse(N, N1, N0, DAG, /*AllOnes*/ false);
8056 }
8057 
8058 static SDValue performANDCombine(SDNode *N, SelectionDAG &DAG,
8059                                  const RISCVSubtarget &Subtarget) {
8060   SDValue N0 = N->getOperand(0);
8061   // Pre-promote (i32 (and (srl X, Y), 1)) on RV64 with Zbs without zero
8062   // extending X. This is safe since we only need the LSB after the shift and
8063   // shift amounts larger than 31 would produce poison. If we wait until
8064   // type legalization, we'll create RISCVISD::SRLW and we can't recover it
8065   // to use a BEXT instruction.
8066   if (Subtarget.is64Bit() && Subtarget.hasStdExtZbs() &&
8067       N->getValueType(0) == MVT::i32 && isOneConstant(N->getOperand(1)) &&
8068       N0.getOpcode() == ISD::SRL && !isa<ConstantSDNode>(N0.getOperand(1)) &&
8069       N0.hasOneUse()) {
8070     SDLoc DL(N);
8071     SDValue Op0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N0.getOperand(0));
8072     SDValue Op1 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N0.getOperand(1));
8073     SDValue Srl = DAG.getNode(ISD::SRL, DL, MVT::i64, Op0, Op1);
8074     SDValue And = DAG.getNode(ISD::AND, DL, MVT::i64, Srl,
8075                               DAG.getConstant(1, DL, MVT::i64));
8076     return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, And);
8077   }
8078 
8079   if (SDValue V = combineBinOpToReduce(N, DAG))
8080     return V;
8081 
8082   // fold (and (select lhs, rhs, cc, -1, y), x) ->
8083   //      (select lhs, rhs, cc, x, (and x, y))
8084   return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ true);
8085 }
8086 
8087 static SDValue performORCombine(SDNode *N, SelectionDAG &DAG,
8088                                 const RISCVSubtarget &Subtarget) {
8089   if (Subtarget.hasStdExtZbp()) {
8090     if (auto GREV = combineORToGREV(SDValue(N, 0), DAG, Subtarget))
8091       return GREV;
8092     if (auto GORC = combineORToGORC(SDValue(N, 0), DAG, Subtarget))
8093       return GORC;
8094     if (auto SHFL = combineORToSHFL(SDValue(N, 0), DAG, Subtarget))
8095       return SHFL;
8096   }
8097 
8098   if (SDValue V = combineBinOpToReduce(N, DAG))
8099     return V;
8100   // fold (or (select cond, 0, y), x) ->
8101   //      (select cond, x, (or x, y))
8102   return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false);
8103 }
8104 
8105 static SDValue performXORCombine(SDNode *N, SelectionDAG &DAG) {
8106   SDValue N0 = N->getOperand(0);
8107   SDValue N1 = N->getOperand(1);
8108 
8109   // fold (xor (sllw 1, x), -1) -> (rolw ~1, x)
8110   // NOTE: Assumes ROL being legal means ROLW is legal.
8111   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8112   if (N0.getOpcode() == RISCVISD::SLLW &&
8113       isAllOnesConstant(N1) && isOneConstant(N0.getOperand(0)) &&
8114       TLI.isOperationLegal(ISD::ROTL, MVT::i64)) {
8115     SDLoc DL(N);
8116     return DAG.getNode(RISCVISD::ROLW, DL, MVT::i64,
8117                        DAG.getConstant(~1, DL, MVT::i64), N0.getOperand(1));
8118   }
8119 
8120   if (SDValue V = combineBinOpToReduce(N, DAG))
8121     return V;
8122   // fold (xor (select cond, 0, y), x) ->
8123   //      (select cond, x, (xor x, y))
8124   return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false);
8125 }
8126 
8127 static SDValue
8128 performSIGN_EXTEND_INREGCombine(SDNode *N, SelectionDAG &DAG,
8129                                 const RISCVSubtarget &Subtarget) {
8130   SDValue Src = N->getOperand(0);
8131   EVT VT = N->getValueType(0);
8132 
8133   // Fold (sext_inreg (fmv_x_anyexth X), i16) -> (fmv_x_signexth X)
8134   if (Src.getOpcode() == RISCVISD::FMV_X_ANYEXTH &&
8135       cast<VTSDNode>(N->getOperand(1))->getVT().bitsGE(MVT::i16))
8136     return DAG.getNode(RISCVISD::FMV_X_SIGNEXTH, SDLoc(N), VT,
8137                        Src.getOperand(0));
8138 
8139   // Fold (i64 (sext_inreg (abs X), i32)) ->
8140   // (i64 (smax (sext_inreg (neg X), i32), X)) if X has more than 32 sign bits.
8141   // The (sext_inreg (neg X), i32) will be selected to negw by isel. This
8142   // pattern occurs after type legalization of (i32 (abs X)) on RV64 if the user
8143   // of the (i32 (abs X)) is a sext or setcc or something else that causes type
8144   // legalization to add a sext_inreg after the abs. The (i32 (abs X)) will have
8145   // been type legalized to (i64 (abs (sext_inreg X, i32))), but the sext_inreg
8146   // may get combined into an earlier operation so we need to use
8147   // ComputeNumSignBits.
8148   // NOTE: (i64 (sext_inreg (abs X), i32)) can also be created for
8149   // (i64 (ashr (shl (abs X), 32), 32)) without any type legalization so
8150   // we can't assume that X has 33 sign bits. We must check.
8151   if (Subtarget.hasStdExtZbb() && Subtarget.is64Bit() &&
8152       Src.getOpcode() == ISD::ABS && Src.hasOneUse() && VT == MVT::i64 &&
8153       cast<VTSDNode>(N->getOperand(1))->getVT() == MVT::i32 &&
8154       DAG.ComputeNumSignBits(Src.getOperand(0)) > 32) {
8155     SDLoc DL(N);
8156     SDValue Freeze = DAG.getFreeze(Src.getOperand(0));
8157     SDValue Neg =
8158         DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, MVT::i64), Freeze);
8159     Neg = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Neg,
8160                       DAG.getValueType(MVT::i32));
8161     return DAG.getNode(ISD::SMAX, DL, MVT::i64, Freeze, Neg);
8162   }
8163 
8164   return SDValue();
8165 }
8166 
8167 // Try to form vwadd(u).wv/wx or vwsub(u).wv/wx. It might later be optimized to
8168 // vwadd(u).vv/vx or vwsub(u).vv/vx.
8169 static SDValue combineADDSUB_VLToVWADDSUB_VL(SDNode *N, SelectionDAG &DAG,
8170                                              bool Commute = false) {
8171   assert((N->getOpcode() == RISCVISD::ADD_VL ||
8172           N->getOpcode() == RISCVISD::SUB_VL) &&
8173          "Unexpected opcode");
8174   bool IsAdd = N->getOpcode() == RISCVISD::ADD_VL;
8175   SDValue Op0 = N->getOperand(0);
8176   SDValue Op1 = N->getOperand(1);
8177   if (Commute)
8178     std::swap(Op0, Op1);
8179 
8180   MVT VT = N->getSimpleValueType(0);
8181 
8182   // Determine the narrow size for a widening add/sub.
8183   unsigned NarrowSize = VT.getScalarSizeInBits() / 2;
8184   MVT NarrowVT = MVT::getVectorVT(MVT::getIntegerVT(NarrowSize),
8185                                   VT.getVectorElementCount());
8186 
8187   SDValue Mask = N->getOperand(2);
8188   SDValue VL = N->getOperand(3);
8189 
8190   SDLoc DL(N);
8191 
8192   // If the RHS is a sext or zext, we can form a widening op.
8193   if ((Op1.getOpcode() == RISCVISD::VZEXT_VL ||
8194        Op1.getOpcode() == RISCVISD::VSEXT_VL) &&
8195       Op1.hasOneUse() && Op1.getOperand(1) == Mask && Op1.getOperand(2) == VL) {
8196     unsigned ExtOpc = Op1.getOpcode();
8197     Op1 = Op1.getOperand(0);
8198     // Re-introduce narrower extends if needed.
8199     if (Op1.getValueType() != NarrowVT)
8200       Op1 = DAG.getNode(ExtOpc, DL, NarrowVT, Op1, Mask, VL);
8201 
8202     unsigned WOpc;
8203     if (ExtOpc == RISCVISD::VSEXT_VL)
8204       WOpc = IsAdd ? RISCVISD::VWADD_W_VL : RISCVISD::VWSUB_W_VL;
8205     else
8206       WOpc = IsAdd ? RISCVISD::VWADDU_W_VL : RISCVISD::VWSUBU_W_VL;
8207 
8208     return DAG.getNode(WOpc, DL, VT, Op0, Op1, Mask, VL);
8209   }
8210 
8211   // FIXME: Is it useful to form a vwadd.wx or vwsub.wx if it removes a scalar
8212   // sext/zext?
8213 
8214   return SDValue();
8215 }
8216 
8217 // Try to convert vwadd(u).wv/wx or vwsub(u).wv/wx to vwadd(u).vv/vx or
8218 // vwsub(u).vv/vx.
8219 static SDValue combineVWADD_W_VL_VWSUB_W_VL(SDNode *N, SelectionDAG &DAG) {
8220   SDValue Op0 = N->getOperand(0);
8221   SDValue Op1 = N->getOperand(1);
8222   SDValue Mask = N->getOperand(2);
8223   SDValue VL = N->getOperand(3);
8224 
8225   MVT VT = N->getSimpleValueType(0);
8226   MVT NarrowVT = Op1.getSimpleValueType();
8227   unsigned NarrowSize = NarrowVT.getScalarSizeInBits();
8228 
8229   unsigned VOpc;
8230   switch (N->getOpcode()) {
8231   default: llvm_unreachable("Unexpected opcode");
8232   case RISCVISD::VWADD_W_VL:  VOpc = RISCVISD::VWADD_VL;  break;
8233   case RISCVISD::VWSUB_W_VL:  VOpc = RISCVISD::VWSUB_VL;  break;
8234   case RISCVISD::VWADDU_W_VL: VOpc = RISCVISD::VWADDU_VL; break;
8235   case RISCVISD::VWSUBU_W_VL: VOpc = RISCVISD::VWSUBU_VL; break;
8236   }
8237 
8238   bool IsSigned = N->getOpcode() == RISCVISD::VWADD_W_VL ||
8239                   N->getOpcode() == RISCVISD::VWSUB_W_VL;
8240 
8241   SDLoc DL(N);
8242 
8243   // If the LHS is a sext or zext, we can narrow this op to the same size as
8244   // the RHS.
8245   if (((Op0.getOpcode() == RISCVISD::VZEXT_VL && !IsSigned) ||
8246        (Op0.getOpcode() == RISCVISD::VSEXT_VL && IsSigned)) &&
8247       Op0.hasOneUse() && Op0.getOperand(1) == Mask && Op0.getOperand(2) == VL) {
8248     unsigned ExtOpc = Op0.getOpcode();
8249     Op0 = Op0.getOperand(0);
8250     // Re-introduce narrower extends if needed.
8251     if (Op0.getValueType() != NarrowVT)
8252       Op0 = DAG.getNode(ExtOpc, DL, NarrowVT, Op0, Mask, VL);
8253     return DAG.getNode(VOpc, DL, VT, Op0, Op1, Mask, VL);
8254   }
8255 
8256   bool IsAdd = N->getOpcode() == RISCVISD::VWADD_W_VL ||
8257                N->getOpcode() == RISCVISD::VWADDU_W_VL;
8258 
8259   // Look for splats on the left hand side of a vwadd(u).wv. We might be able
8260   // to commute and use a vwadd(u).vx instead.
8261   if (IsAdd && Op0.getOpcode() == RISCVISD::VMV_V_X_VL &&
8262       Op0.getOperand(0).isUndef() && Op0.getOperand(2) == VL) {
8263     Op0 = Op0.getOperand(1);
8264 
8265     // See if have enough sign bits or zero bits in the scalar to use a
8266     // widening add/sub by splatting to smaller element size.
8267     unsigned EltBits = VT.getScalarSizeInBits();
8268     unsigned ScalarBits = Op0.getValueSizeInBits();
8269     // Make sure we're getting all element bits from the scalar register.
8270     // FIXME: Support implicit sign extension of vmv.v.x?
8271     if (ScalarBits < EltBits)
8272       return SDValue();
8273 
8274     if (IsSigned) {
8275       if (DAG.ComputeNumSignBits(Op0) <= (ScalarBits - NarrowSize))
8276         return SDValue();
8277     } else {
8278       APInt Mask = APInt::getBitsSetFrom(ScalarBits, NarrowSize);
8279       if (!DAG.MaskedValueIsZero(Op0, Mask))
8280         return SDValue();
8281     }
8282 
8283     Op0 = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, NarrowVT,
8284                       DAG.getUNDEF(NarrowVT), Op0, VL);
8285     return DAG.getNode(VOpc, DL, VT, Op1, Op0, Mask, VL);
8286   }
8287 
8288   return SDValue();
8289 }
8290 
8291 // Try to form VWMUL, VWMULU or VWMULSU.
8292 // TODO: Support VWMULSU.vx with a sign extend Op and a splat of scalar Op.
8293 static SDValue combineMUL_VLToVWMUL_VL(SDNode *N, SelectionDAG &DAG,
8294                                        bool Commute) {
8295   assert(N->getOpcode() == RISCVISD::MUL_VL && "Unexpected opcode");
8296   SDValue Op0 = N->getOperand(0);
8297   SDValue Op1 = N->getOperand(1);
8298   if (Commute)
8299     std::swap(Op0, Op1);
8300 
8301   bool IsSignExt = Op0.getOpcode() == RISCVISD::VSEXT_VL;
8302   bool IsZeroExt = Op0.getOpcode() == RISCVISD::VZEXT_VL;
8303   bool IsVWMULSU = IsSignExt && Op1.getOpcode() == RISCVISD::VZEXT_VL;
8304   if ((!IsSignExt && !IsZeroExt) || !Op0.hasOneUse())
8305     return SDValue();
8306 
8307   SDValue Mask = N->getOperand(2);
8308   SDValue VL = N->getOperand(3);
8309 
8310   // Make sure the mask and VL match.
8311   if (Op0.getOperand(1) != Mask || Op0.getOperand(2) != VL)
8312     return SDValue();
8313 
8314   MVT VT = N->getSimpleValueType(0);
8315 
8316   // Determine the narrow size for a widening multiply.
8317   unsigned NarrowSize = VT.getScalarSizeInBits() / 2;
8318   MVT NarrowVT = MVT::getVectorVT(MVT::getIntegerVT(NarrowSize),
8319                                   VT.getVectorElementCount());
8320 
8321   SDLoc DL(N);
8322 
8323   // See if the other operand is the same opcode.
8324   if (IsVWMULSU || Op0.getOpcode() == Op1.getOpcode()) {
8325     if (!Op1.hasOneUse())
8326       return SDValue();
8327 
8328     // Make sure the mask and VL match.
8329     if (Op1.getOperand(1) != Mask || Op1.getOperand(2) != VL)
8330       return SDValue();
8331 
8332     Op1 = Op1.getOperand(0);
8333   } else if (Op1.getOpcode() == RISCVISD::VMV_V_X_VL) {
8334     // The operand is a splat of a scalar.
8335 
8336     // The pasthru must be undef for tail agnostic
8337     if (!Op1.getOperand(0).isUndef())
8338       return SDValue();
8339     // The VL must be the same.
8340     if (Op1.getOperand(2) != VL)
8341       return SDValue();
8342 
8343     // Get the scalar value.
8344     Op1 = Op1.getOperand(1);
8345 
8346     // See if have enough sign bits or zero bits in the scalar to use a
8347     // widening multiply by splatting to smaller element size.
8348     unsigned EltBits = VT.getScalarSizeInBits();
8349     unsigned ScalarBits = Op1.getValueSizeInBits();
8350     // Make sure we're getting all element bits from the scalar register.
8351     // FIXME: Support implicit sign extension of vmv.v.x?
8352     if (ScalarBits < EltBits)
8353       return SDValue();
8354 
8355     // If the LHS is a sign extend, try to use vwmul.
8356     if (IsSignExt && DAG.ComputeNumSignBits(Op1) > (ScalarBits - NarrowSize)) {
8357       // Can use vwmul.
8358     } else {
8359       // Otherwise try to use vwmulu or vwmulsu.
8360       APInt Mask = APInt::getBitsSetFrom(ScalarBits, NarrowSize);
8361       if (DAG.MaskedValueIsZero(Op1, Mask))
8362         IsVWMULSU = IsSignExt;
8363       else
8364         return SDValue();
8365     }
8366 
8367     Op1 = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, NarrowVT,
8368                       DAG.getUNDEF(NarrowVT), Op1, VL);
8369   } else
8370     return SDValue();
8371 
8372   Op0 = Op0.getOperand(0);
8373 
8374   // Re-introduce narrower extends if needed.
8375   unsigned ExtOpc = IsSignExt ? RISCVISD::VSEXT_VL : RISCVISD::VZEXT_VL;
8376   if (Op0.getValueType() != NarrowVT)
8377     Op0 = DAG.getNode(ExtOpc, DL, NarrowVT, Op0, Mask, VL);
8378   // vwmulsu requires second operand to be zero extended.
8379   ExtOpc = IsVWMULSU ? RISCVISD::VZEXT_VL : ExtOpc;
8380   if (Op1.getValueType() != NarrowVT)
8381     Op1 = DAG.getNode(ExtOpc, DL, NarrowVT, Op1, Mask, VL);
8382 
8383   unsigned WMulOpc = RISCVISD::VWMULSU_VL;
8384   if (!IsVWMULSU)
8385     WMulOpc = IsSignExt ? RISCVISD::VWMUL_VL : RISCVISD::VWMULU_VL;
8386   return DAG.getNode(WMulOpc, DL, VT, Op0, Op1, Mask, VL);
8387 }
8388 
8389 static RISCVFPRndMode::RoundingMode matchRoundingOp(SDValue Op) {
8390   switch (Op.getOpcode()) {
8391   case ISD::FROUNDEVEN: return RISCVFPRndMode::RNE;
8392   case ISD::FTRUNC:     return RISCVFPRndMode::RTZ;
8393   case ISD::FFLOOR:     return RISCVFPRndMode::RDN;
8394   case ISD::FCEIL:      return RISCVFPRndMode::RUP;
8395   case ISD::FROUND:     return RISCVFPRndMode::RMM;
8396   }
8397 
8398   return RISCVFPRndMode::Invalid;
8399 }
8400 
8401 // Fold
8402 //   (fp_to_int (froundeven X)) -> fcvt X, rne
8403 //   (fp_to_int (ftrunc X))     -> fcvt X, rtz
8404 //   (fp_to_int (ffloor X))     -> fcvt X, rdn
8405 //   (fp_to_int (fceil X))      -> fcvt X, rup
8406 //   (fp_to_int (fround X))     -> fcvt X, rmm
8407 static SDValue performFP_TO_INTCombine(SDNode *N,
8408                                        TargetLowering::DAGCombinerInfo &DCI,
8409                                        const RISCVSubtarget &Subtarget) {
8410   SelectionDAG &DAG = DCI.DAG;
8411   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8412   MVT XLenVT = Subtarget.getXLenVT();
8413 
8414   // Only handle XLen or i32 types. Other types narrower than XLen will
8415   // eventually be legalized to XLenVT.
8416   EVT VT = N->getValueType(0);
8417   if (VT != MVT::i32 && VT != XLenVT)
8418     return SDValue();
8419 
8420   SDValue Src = N->getOperand(0);
8421 
8422   // Ensure the FP type is also legal.
8423   if (!TLI.isTypeLegal(Src.getValueType()))
8424     return SDValue();
8425 
8426   // Don't do this for f16 with Zfhmin and not Zfh.
8427   if (Src.getValueType() == MVT::f16 && !Subtarget.hasStdExtZfh())
8428     return SDValue();
8429 
8430   RISCVFPRndMode::RoundingMode FRM = matchRoundingOp(Src);
8431   if (FRM == RISCVFPRndMode::Invalid)
8432     return SDValue();
8433 
8434   bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT;
8435 
8436   unsigned Opc;
8437   if (VT == XLenVT)
8438     Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU;
8439   else
8440     Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64;
8441 
8442   SDLoc DL(N);
8443   SDValue FpToInt = DAG.getNode(Opc, DL, XLenVT, Src.getOperand(0),
8444                                 DAG.getTargetConstant(FRM, DL, XLenVT));
8445   return DAG.getNode(ISD::TRUNCATE, DL, VT, FpToInt);
8446 }
8447 
8448 // Fold
8449 //   (fp_to_int_sat (froundeven X)) -> (select X == nan, 0, (fcvt X, rne))
8450 //   (fp_to_int_sat (ftrunc X))     -> (select X == nan, 0, (fcvt X, rtz))
8451 //   (fp_to_int_sat (ffloor X))     -> (select X == nan, 0, (fcvt X, rdn))
8452 //   (fp_to_int_sat (fceil X))      -> (select X == nan, 0, (fcvt X, rup))
8453 //   (fp_to_int_sat (fround X))     -> (select X == nan, 0, (fcvt X, rmm))
8454 static SDValue performFP_TO_INT_SATCombine(SDNode *N,
8455                                        TargetLowering::DAGCombinerInfo &DCI,
8456                                        const RISCVSubtarget &Subtarget) {
8457   SelectionDAG &DAG = DCI.DAG;
8458   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8459   MVT XLenVT = Subtarget.getXLenVT();
8460 
8461   // Only handle XLen types. Other types narrower than XLen will eventually be
8462   // legalized to XLenVT.
8463   EVT DstVT = N->getValueType(0);
8464   if (DstVT != XLenVT)
8465     return SDValue();
8466 
8467   SDValue Src = N->getOperand(0);
8468 
8469   // Ensure the FP type is also legal.
8470   if (!TLI.isTypeLegal(Src.getValueType()))
8471     return SDValue();
8472 
8473   // Don't do this for f16 with Zfhmin and not Zfh.
8474   if (Src.getValueType() == MVT::f16 && !Subtarget.hasStdExtZfh())
8475     return SDValue();
8476 
8477   EVT SatVT = cast<VTSDNode>(N->getOperand(1))->getVT();
8478 
8479   RISCVFPRndMode::RoundingMode FRM = matchRoundingOp(Src);
8480   if (FRM == RISCVFPRndMode::Invalid)
8481     return SDValue();
8482 
8483   bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT_SAT;
8484 
8485   unsigned Opc;
8486   if (SatVT == DstVT)
8487     Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU;
8488   else if (DstVT == MVT::i64 && SatVT == MVT::i32)
8489     Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64;
8490   else
8491     return SDValue();
8492   // FIXME: Support other SatVTs by clamping before or after the conversion.
8493 
8494   Src = Src.getOperand(0);
8495 
8496   SDLoc DL(N);
8497   SDValue FpToInt = DAG.getNode(Opc, DL, XLenVT, Src,
8498                                 DAG.getTargetConstant(FRM, DL, XLenVT));
8499 
8500   // RISCV FP-to-int conversions saturate to the destination register size, but
8501   // don't produce 0 for nan.
8502   SDValue ZeroInt = DAG.getConstant(0, DL, DstVT);
8503   return DAG.getSelectCC(DL, Src, Src, ZeroInt, FpToInt, ISD::CondCode::SETUO);
8504 }
8505 
8506 // Combine (bitreverse (bswap X)) to the BREV8 GREVI encoding if the type is
8507 // smaller than XLenVT.
8508 static SDValue performBITREVERSECombine(SDNode *N, SelectionDAG &DAG,
8509                                         const RISCVSubtarget &Subtarget) {
8510   assert(Subtarget.hasStdExtZbkb() && "Unexpected extension");
8511 
8512   SDValue Src = N->getOperand(0);
8513   if (Src.getOpcode() != ISD::BSWAP)
8514     return SDValue();
8515 
8516   EVT VT = N->getValueType(0);
8517   if (!VT.isScalarInteger() || VT.getSizeInBits() >= Subtarget.getXLen() ||
8518       !isPowerOf2_32(VT.getSizeInBits()))
8519     return SDValue();
8520 
8521   SDLoc DL(N);
8522   return DAG.getNode(RISCVISD::GREV, DL, VT, Src.getOperand(0),
8523                      DAG.getConstant(7, DL, VT));
8524 }
8525 
8526 // Convert from one FMA opcode to another based on whether we are negating the
8527 // multiply result and/or the accumulator.
8528 // NOTE: Only supports RVV operations with VL.
8529 static unsigned negateFMAOpcode(unsigned Opcode, bool NegMul, bool NegAcc) {
8530   assert((NegMul || NegAcc) && "Not negating anything?");
8531 
8532   // Negating the multiply result changes ADD<->SUB and toggles 'N'.
8533   if (NegMul) {
8534     // clang-format off
8535     switch (Opcode) {
8536     default: llvm_unreachable("Unexpected opcode");
8537     case RISCVISD::VFMADD_VL:  Opcode = RISCVISD::VFNMSUB_VL; break;
8538     case RISCVISD::VFNMSUB_VL: Opcode = RISCVISD::VFMADD_VL;  break;
8539     case RISCVISD::VFNMADD_VL: Opcode = RISCVISD::VFMSUB_VL;  break;
8540     case RISCVISD::VFMSUB_VL:  Opcode = RISCVISD::VFNMADD_VL; break;
8541     }
8542     // clang-format on
8543   }
8544 
8545   // Negating the accumulator changes ADD<->SUB.
8546   if (NegAcc) {
8547     // clang-format off
8548     switch (Opcode) {
8549     default: llvm_unreachable("Unexpected opcode");
8550     case RISCVISD::VFMADD_VL:  Opcode = RISCVISD::VFMSUB_VL;  break;
8551     case RISCVISD::VFMSUB_VL:  Opcode = RISCVISD::VFMADD_VL;  break;
8552     case RISCVISD::VFNMADD_VL: Opcode = RISCVISD::VFNMSUB_VL; break;
8553     case RISCVISD::VFNMSUB_VL: Opcode = RISCVISD::VFNMADD_VL; break;
8554     }
8555     // clang-format on
8556   }
8557 
8558   return Opcode;
8559 }
8560 
8561 // Combine (sra (shl X, 32), 32 - C) -> (shl (sext_inreg X, i32), C)
8562 // FIXME: Should this be a generic combine? There's a similar combine on X86.
8563 //
8564 // Also try these folds where an add or sub is in the middle.
8565 // (sra (add (shl X, 32), C1), 32 - C) -> (shl (sext_inreg (add X, C1), C)
8566 // (sra (sub C1, (shl X, 32)), 32 - C) -> (shl (sext_inreg (sub C1, X), C)
8567 static SDValue performSRACombine(SDNode *N, SelectionDAG &DAG,
8568                                  const RISCVSubtarget &Subtarget) {
8569   assert(N->getOpcode() == ISD::SRA && "Unexpected opcode");
8570 
8571   if (N->getValueType(0) != MVT::i64 || !Subtarget.is64Bit())
8572     return SDValue();
8573 
8574   auto *ShAmtC = dyn_cast<ConstantSDNode>(N->getOperand(1));
8575   if (!ShAmtC || ShAmtC->getZExtValue() > 32)
8576     return SDValue();
8577 
8578   SDValue N0 = N->getOperand(0);
8579 
8580   SDValue Shl;
8581   ConstantSDNode *AddC = nullptr;
8582 
8583   // We might have an ADD or SUB between the SRA and SHL.
8584   bool IsAdd = N0.getOpcode() == ISD::ADD;
8585   if ((IsAdd || N0.getOpcode() == ISD::SUB)) {
8586     if (!N0.hasOneUse())
8587       return SDValue();
8588     // Other operand needs to be a constant we can modify.
8589     AddC = dyn_cast<ConstantSDNode>(N0.getOperand(IsAdd ? 1 : 0));
8590     if (!AddC)
8591       return SDValue();
8592 
8593     // AddC needs to have at least 32 trailing zeros.
8594     if (AddC->getAPIntValue().countTrailingZeros() < 32)
8595       return SDValue();
8596 
8597     Shl = N0.getOperand(IsAdd ? 0 : 1);
8598   } else {
8599     // Not an ADD or SUB.
8600     Shl = N0;
8601   }
8602 
8603   // Look for a shift left by 32.
8604   if (Shl.getOpcode() != ISD::SHL || !Shl.hasOneUse() ||
8605       !isa<ConstantSDNode>(Shl.getOperand(1)) ||
8606       Shl.getConstantOperandVal(1) != 32)
8607     return SDValue();
8608 
8609   SDLoc DL(N);
8610   SDValue In = Shl.getOperand(0);
8611 
8612   // If we looked through an ADD or SUB, we need to rebuild it with the shifted
8613   // constant.
8614   if (AddC) {
8615     SDValue ShiftedAddC =
8616         DAG.getConstant(AddC->getAPIntValue().lshr(32), DL, MVT::i64);
8617     if (IsAdd)
8618       In = DAG.getNode(ISD::ADD, DL, MVT::i64, In, ShiftedAddC);
8619     else
8620       In = DAG.getNode(ISD::SUB, DL, MVT::i64, ShiftedAddC, In);
8621   }
8622 
8623   SDValue SExt = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, In,
8624                              DAG.getValueType(MVT::i32));
8625   if (ShAmtC->getZExtValue() == 32)
8626     return SExt;
8627 
8628   return DAG.getNode(
8629       ISD::SHL, DL, MVT::i64, SExt,
8630       DAG.getConstant(32 - ShAmtC->getZExtValue(), DL, MVT::i64));
8631 }
8632 
8633 SDValue RISCVTargetLowering::PerformDAGCombine(SDNode *N,
8634                                                DAGCombinerInfo &DCI) const {
8635   SelectionDAG &DAG = DCI.DAG;
8636 
8637   // Helper to call SimplifyDemandedBits on an operand of N where only some low
8638   // bits are demanded. N will be added to the Worklist if it was not deleted.
8639   // Caller should return SDValue(N, 0) if this returns true.
8640   auto SimplifyDemandedLowBitsHelper = [&](unsigned OpNo, unsigned LowBits) {
8641     SDValue Op = N->getOperand(OpNo);
8642     APInt Mask = APInt::getLowBitsSet(Op.getValueSizeInBits(), LowBits);
8643     if (!SimplifyDemandedBits(Op, Mask, DCI))
8644       return false;
8645 
8646     if (N->getOpcode() != ISD::DELETED_NODE)
8647       DCI.AddToWorklist(N);
8648     return true;
8649   };
8650 
8651   switch (N->getOpcode()) {
8652   default:
8653     break;
8654   case RISCVISD::SplitF64: {
8655     SDValue Op0 = N->getOperand(0);
8656     // If the input to SplitF64 is just BuildPairF64 then the operation is
8657     // redundant. Instead, use BuildPairF64's operands directly.
8658     if (Op0->getOpcode() == RISCVISD::BuildPairF64)
8659       return DCI.CombineTo(N, Op0.getOperand(0), Op0.getOperand(1));
8660 
8661     if (Op0->isUndef()) {
8662       SDValue Lo = DAG.getUNDEF(MVT::i32);
8663       SDValue Hi = DAG.getUNDEF(MVT::i32);
8664       return DCI.CombineTo(N, Lo, Hi);
8665     }
8666 
8667     SDLoc DL(N);
8668 
8669     // It's cheaper to materialise two 32-bit integers than to load a double
8670     // from the constant pool and transfer it to integer registers through the
8671     // stack.
8672     if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op0)) {
8673       APInt V = C->getValueAPF().bitcastToAPInt();
8674       SDValue Lo = DAG.getConstant(V.trunc(32), DL, MVT::i32);
8675       SDValue Hi = DAG.getConstant(V.lshr(32).trunc(32), DL, MVT::i32);
8676       return DCI.CombineTo(N, Lo, Hi);
8677     }
8678 
8679     // This is a target-specific version of a DAGCombine performed in
8680     // DAGCombiner::visitBITCAST. It performs the equivalent of:
8681     // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
8682     // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
8683     if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) ||
8684         !Op0.getNode()->hasOneUse())
8685       break;
8686     SDValue NewSplitF64 =
8687         DAG.getNode(RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32),
8688                     Op0.getOperand(0));
8689     SDValue Lo = NewSplitF64.getValue(0);
8690     SDValue Hi = NewSplitF64.getValue(1);
8691     APInt SignBit = APInt::getSignMask(32);
8692     if (Op0.getOpcode() == ISD::FNEG) {
8693       SDValue NewHi = DAG.getNode(ISD::XOR, DL, MVT::i32, Hi,
8694                                   DAG.getConstant(SignBit, DL, MVT::i32));
8695       return DCI.CombineTo(N, Lo, NewHi);
8696     }
8697     assert(Op0.getOpcode() == ISD::FABS);
8698     SDValue NewHi = DAG.getNode(ISD::AND, DL, MVT::i32, Hi,
8699                                 DAG.getConstant(~SignBit, DL, MVT::i32));
8700     return DCI.CombineTo(N, Lo, NewHi);
8701   }
8702   case RISCVISD::SLLW:
8703   case RISCVISD::SRAW:
8704   case RISCVISD::SRLW: {
8705     // Only the lower 32 bits of LHS and lower 5 bits of RHS are read.
8706     if (SimplifyDemandedLowBitsHelper(0, 32) ||
8707         SimplifyDemandedLowBitsHelper(1, 5))
8708       return SDValue(N, 0);
8709 
8710     break;
8711   }
8712   case ISD::ROTR:
8713   case ISD::ROTL:
8714   case RISCVISD::RORW:
8715   case RISCVISD::ROLW: {
8716     if (N->getOpcode() == RISCVISD::RORW || N->getOpcode() == RISCVISD::ROLW) {
8717       // Only the lower 32 bits of LHS and lower 5 bits of RHS are read.
8718       if (SimplifyDemandedLowBitsHelper(0, 32) ||
8719           SimplifyDemandedLowBitsHelper(1, 5))
8720         return SDValue(N, 0);
8721     }
8722 
8723     return combineROTR_ROTL_RORW_ROLW(N, DAG, Subtarget);
8724   }
8725   case RISCVISD::CLZW:
8726   case RISCVISD::CTZW: {
8727     // Only the lower 32 bits of the first operand are read
8728     if (SimplifyDemandedLowBitsHelper(0, 32))
8729       return SDValue(N, 0);
8730     break;
8731   }
8732   case RISCVISD::GREV:
8733   case RISCVISD::GORC: {
8734     // Only the lower log2(Bitwidth) bits of the the shift amount are read.
8735     unsigned BitWidth = N->getOperand(1).getValueSizeInBits();
8736     assert(isPowerOf2_32(BitWidth) && "Unexpected bit width");
8737     if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth)))
8738       return SDValue(N, 0);
8739 
8740     return combineGREVI_GORCI(N, DAG);
8741   }
8742   case RISCVISD::GREVW:
8743   case RISCVISD::GORCW: {
8744     // Only the lower 32 bits of LHS and lower 5 bits of RHS are read.
8745     if (SimplifyDemandedLowBitsHelper(0, 32) ||
8746         SimplifyDemandedLowBitsHelper(1, 5))
8747       return SDValue(N, 0);
8748 
8749     break;
8750   }
8751   case RISCVISD::SHFL:
8752   case RISCVISD::UNSHFL: {
8753     // Only the lower log2(Bitwidth)-1 bits of the the shift amount are read.
8754     unsigned BitWidth = N->getOperand(1).getValueSizeInBits();
8755     assert(isPowerOf2_32(BitWidth) && "Unexpected bit width");
8756     if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth) - 1))
8757       return SDValue(N, 0);
8758 
8759     break;
8760   }
8761   case RISCVISD::SHFLW:
8762   case RISCVISD::UNSHFLW: {
8763     // Only the lower 32 bits of LHS and lower 4 bits of RHS are read.
8764     if (SimplifyDemandedLowBitsHelper(0, 32) ||
8765         SimplifyDemandedLowBitsHelper(1, 4))
8766       return SDValue(N, 0);
8767 
8768     break;
8769   }
8770   case RISCVISD::BCOMPRESSW:
8771   case RISCVISD::BDECOMPRESSW: {
8772     // Only the lower 32 bits of LHS and RHS are read.
8773     if (SimplifyDemandedLowBitsHelper(0, 32) ||
8774         SimplifyDemandedLowBitsHelper(1, 32))
8775       return SDValue(N, 0);
8776 
8777     break;
8778   }
8779   case RISCVISD::FSR:
8780   case RISCVISD::FSL:
8781   case RISCVISD::FSRW:
8782   case RISCVISD::FSLW: {
8783     bool IsWInstruction =
8784         N->getOpcode() == RISCVISD::FSRW || N->getOpcode() == RISCVISD::FSLW;
8785     unsigned BitWidth =
8786         IsWInstruction ? 32 : N->getSimpleValueType(0).getSizeInBits();
8787     assert(isPowerOf2_32(BitWidth) && "Unexpected bit width");
8788     // Only the lower log2(Bitwidth)+1 bits of the the shift amount are read.
8789     if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth) + 1))
8790       return SDValue(N, 0);
8791 
8792     break;
8793   }
8794   case RISCVISD::FMV_X_ANYEXTH:
8795   case RISCVISD::FMV_X_ANYEXTW_RV64: {
8796     SDLoc DL(N);
8797     SDValue Op0 = N->getOperand(0);
8798     MVT VT = N->getSimpleValueType(0);
8799     // If the input to FMV_X_ANYEXTW_RV64 is just FMV_W_X_RV64 then the
8800     // conversion is unnecessary and can be replaced with the FMV_W_X_RV64
8801     // operand. Similar for FMV_X_ANYEXTH and FMV_H_X.
8802     if ((N->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64 &&
8803          Op0->getOpcode() == RISCVISD::FMV_W_X_RV64) ||
8804         (N->getOpcode() == RISCVISD::FMV_X_ANYEXTH &&
8805          Op0->getOpcode() == RISCVISD::FMV_H_X)) {
8806       assert(Op0.getOperand(0).getValueType() == VT &&
8807              "Unexpected value type!");
8808       return Op0.getOperand(0);
8809     }
8810 
8811     // This is a target-specific version of a DAGCombine performed in
8812     // DAGCombiner::visitBITCAST. It performs the equivalent of:
8813     // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
8814     // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
8815     if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) ||
8816         !Op0.getNode()->hasOneUse())
8817       break;
8818     SDValue NewFMV = DAG.getNode(N->getOpcode(), DL, VT, Op0.getOperand(0));
8819     unsigned FPBits = N->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64 ? 32 : 16;
8820     APInt SignBit = APInt::getSignMask(FPBits).sext(VT.getSizeInBits());
8821     if (Op0.getOpcode() == ISD::FNEG)
8822       return DAG.getNode(ISD::XOR, DL, VT, NewFMV,
8823                          DAG.getConstant(SignBit, DL, VT));
8824 
8825     assert(Op0.getOpcode() == ISD::FABS);
8826     return DAG.getNode(ISD::AND, DL, VT, NewFMV,
8827                        DAG.getConstant(~SignBit, DL, VT));
8828   }
8829   case ISD::ADD:
8830     return performADDCombine(N, DAG, Subtarget);
8831   case ISD::SUB:
8832     return performSUBCombine(N, DAG);
8833   case ISD::AND:
8834     return performANDCombine(N, DAG, Subtarget);
8835   case ISD::OR:
8836     return performORCombine(N, DAG, Subtarget);
8837   case ISD::XOR:
8838     return performXORCombine(N, DAG);
8839   case ISD::FADD:
8840   case ISD::UMAX:
8841   case ISD::UMIN:
8842   case ISD::SMAX:
8843   case ISD::SMIN:
8844   case ISD::FMAXNUM:
8845   case ISD::FMINNUM:
8846     return combineBinOpToReduce(N, DAG);
8847   case ISD::SIGN_EXTEND_INREG:
8848     return performSIGN_EXTEND_INREGCombine(N, DAG, Subtarget);
8849   case ISD::ZERO_EXTEND:
8850     // Fold (zero_extend (fp_to_uint X)) to prevent forming fcvt+zexti32 during
8851     // type legalization. This is safe because fp_to_uint produces poison if
8852     // it overflows.
8853     if (N->getValueType(0) == MVT::i64 && Subtarget.is64Bit()) {
8854       SDValue Src = N->getOperand(0);
8855       if (Src.getOpcode() == ISD::FP_TO_UINT &&
8856           isTypeLegal(Src.getOperand(0).getValueType()))
8857         return DAG.getNode(ISD::FP_TO_UINT, SDLoc(N), MVT::i64,
8858                            Src.getOperand(0));
8859       if (Src.getOpcode() == ISD::STRICT_FP_TO_UINT && Src.hasOneUse() &&
8860           isTypeLegal(Src.getOperand(1).getValueType())) {
8861         SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other);
8862         SDValue Res = DAG.getNode(ISD::STRICT_FP_TO_UINT, SDLoc(N), VTs,
8863                                   Src.getOperand(0), Src.getOperand(1));
8864         DCI.CombineTo(N, Res);
8865         DAG.ReplaceAllUsesOfValueWith(Src.getValue(1), Res.getValue(1));
8866         DCI.recursivelyDeleteUnusedNodes(Src.getNode());
8867         return SDValue(N, 0); // Return N so it doesn't get rechecked.
8868       }
8869     }
8870     return SDValue();
8871   case RISCVISD::SELECT_CC: {
8872     // Transform
8873     SDValue LHS = N->getOperand(0);
8874     SDValue RHS = N->getOperand(1);
8875     SDValue TrueV = N->getOperand(3);
8876     SDValue FalseV = N->getOperand(4);
8877 
8878     // If the True and False values are the same, we don't need a select_cc.
8879     if (TrueV == FalseV)
8880       return TrueV;
8881 
8882     ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(2))->get();
8883     if (!ISD::isIntEqualitySetCC(CCVal))
8884       break;
8885 
8886     // Fold (select_cc (setlt X, Y), 0, ne, trueV, falseV) ->
8887     //      (select_cc X, Y, lt, trueV, falseV)
8888     // Sometimes the setcc is introduced after select_cc has been formed.
8889     if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) &&
8890         LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) {
8891       // If we're looking for eq 0 instead of ne 0, we need to invert the
8892       // condition.
8893       bool Invert = CCVal == ISD::SETEQ;
8894       CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
8895       if (Invert)
8896         CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
8897 
8898       SDLoc DL(N);
8899       RHS = LHS.getOperand(1);
8900       LHS = LHS.getOperand(0);
8901       translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
8902 
8903       SDValue TargetCC = DAG.getCondCode(CCVal);
8904       return DAG.getNode(RISCVISD::SELECT_CC, DL, N->getValueType(0),
8905                          {LHS, RHS, TargetCC, TrueV, FalseV});
8906     }
8907 
8908     // Fold (select_cc (xor X, Y), 0, eq/ne, trueV, falseV) ->
8909     //      (select_cc X, Y, eq/ne, trueV, falseV)
8910     if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS))
8911       return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), N->getValueType(0),
8912                          {LHS.getOperand(0), LHS.getOperand(1),
8913                           N->getOperand(2), TrueV, FalseV});
8914     // (select_cc X, 1, setne, trueV, falseV) ->
8915     // (select_cc X, 0, seteq, trueV, falseV) if we can prove X is 0/1.
8916     // This can occur when legalizing some floating point comparisons.
8917     APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1);
8918     if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) {
8919       SDLoc DL(N);
8920       CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
8921       SDValue TargetCC = DAG.getCondCode(CCVal);
8922       RHS = DAG.getConstant(0, DL, LHS.getValueType());
8923       return DAG.getNode(RISCVISD::SELECT_CC, DL, N->getValueType(0),
8924                          {LHS, RHS, TargetCC, TrueV, FalseV});
8925     }
8926 
8927     break;
8928   }
8929   case RISCVISD::BR_CC: {
8930     SDValue LHS = N->getOperand(1);
8931     SDValue RHS = N->getOperand(2);
8932     ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(3))->get();
8933     if (!ISD::isIntEqualitySetCC(CCVal))
8934       break;
8935 
8936     // Fold (br_cc (setlt X, Y), 0, ne, dest) ->
8937     //      (br_cc X, Y, lt, dest)
8938     // Sometimes the setcc is introduced after br_cc has been formed.
8939     if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) &&
8940         LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) {
8941       // If we're looking for eq 0 instead of ne 0, we need to invert the
8942       // condition.
8943       bool Invert = CCVal == ISD::SETEQ;
8944       CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
8945       if (Invert)
8946         CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
8947 
8948       SDLoc DL(N);
8949       RHS = LHS.getOperand(1);
8950       LHS = LHS.getOperand(0);
8951       translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
8952 
8953       return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0),
8954                          N->getOperand(0), LHS, RHS, DAG.getCondCode(CCVal),
8955                          N->getOperand(4));
8956     }
8957 
8958     // Fold (br_cc (xor X, Y), 0, eq/ne, dest) ->
8959     //      (br_cc X, Y, eq/ne, trueV, falseV)
8960     if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS))
8961       return DAG.getNode(RISCVISD::BR_CC, SDLoc(N), N->getValueType(0),
8962                          N->getOperand(0), LHS.getOperand(0), LHS.getOperand(1),
8963                          N->getOperand(3), N->getOperand(4));
8964 
8965     // (br_cc X, 1, setne, br_cc) ->
8966     // (br_cc X, 0, seteq, br_cc) if we can prove X is 0/1.
8967     // This can occur when legalizing some floating point comparisons.
8968     APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1);
8969     if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) {
8970       SDLoc DL(N);
8971       CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
8972       SDValue TargetCC = DAG.getCondCode(CCVal);
8973       RHS = DAG.getConstant(0, DL, LHS.getValueType());
8974       return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0),
8975                          N->getOperand(0), LHS, RHS, TargetCC,
8976                          N->getOperand(4));
8977     }
8978     break;
8979   }
8980   case ISD::BITREVERSE:
8981     return performBITREVERSECombine(N, DAG, Subtarget);
8982   case ISD::FP_TO_SINT:
8983   case ISD::FP_TO_UINT:
8984     return performFP_TO_INTCombine(N, DCI, Subtarget);
8985   case ISD::FP_TO_SINT_SAT:
8986   case ISD::FP_TO_UINT_SAT:
8987     return performFP_TO_INT_SATCombine(N, DCI, Subtarget);
8988   case ISD::FCOPYSIGN: {
8989     EVT VT = N->getValueType(0);
8990     if (!VT.isVector())
8991       break;
8992     // There is a form of VFSGNJ which injects the negated sign of its second
8993     // operand. Try and bubble any FNEG up after the extend/round to produce
8994     // this optimized pattern. Avoid modifying cases where FP_ROUND and
8995     // TRUNC=1.
8996     SDValue In2 = N->getOperand(1);
8997     // Avoid cases where the extend/round has multiple uses, as duplicating
8998     // those is typically more expensive than removing a fneg.
8999     if (!In2.hasOneUse())
9000       break;
9001     if (In2.getOpcode() != ISD::FP_EXTEND &&
9002         (In2.getOpcode() != ISD::FP_ROUND || In2.getConstantOperandVal(1) != 0))
9003       break;
9004     In2 = In2.getOperand(0);
9005     if (In2.getOpcode() != ISD::FNEG)
9006       break;
9007     SDLoc DL(N);
9008     SDValue NewFPExtRound = DAG.getFPExtendOrRound(In2.getOperand(0), DL, VT);
9009     return DAG.getNode(ISD::FCOPYSIGN, DL, VT, N->getOperand(0),
9010                        DAG.getNode(ISD::FNEG, DL, VT, NewFPExtRound));
9011   }
9012   case ISD::MGATHER:
9013   case ISD::MSCATTER:
9014   case ISD::VP_GATHER:
9015   case ISD::VP_SCATTER: {
9016     if (!DCI.isBeforeLegalize())
9017       break;
9018     SDValue Index, ScaleOp;
9019     bool IsIndexScaled = false;
9020     bool IsIndexSigned = false;
9021     if (const auto *VPGSN = dyn_cast<VPGatherScatterSDNode>(N)) {
9022       Index = VPGSN->getIndex();
9023       ScaleOp = VPGSN->getScale();
9024       IsIndexScaled = VPGSN->isIndexScaled();
9025       IsIndexSigned = VPGSN->isIndexSigned();
9026     } else {
9027       const auto *MGSN = cast<MaskedGatherScatterSDNode>(N);
9028       Index = MGSN->getIndex();
9029       ScaleOp = MGSN->getScale();
9030       IsIndexScaled = MGSN->isIndexScaled();
9031       IsIndexSigned = MGSN->isIndexSigned();
9032     }
9033     EVT IndexVT = Index.getValueType();
9034     MVT XLenVT = Subtarget.getXLenVT();
9035     // RISCV indexed loads only support the "unsigned unscaled" addressing
9036     // mode, so anything else must be manually legalized.
9037     bool NeedsIdxLegalization =
9038         IsIndexScaled ||
9039         (IsIndexSigned && IndexVT.getVectorElementType().bitsLT(XLenVT));
9040     if (!NeedsIdxLegalization)
9041       break;
9042 
9043     SDLoc DL(N);
9044 
9045     // Any index legalization should first promote to XLenVT, so we don't lose
9046     // bits when scaling. This may create an illegal index type so we let
9047     // LLVM's legalization take care of the splitting.
9048     // FIXME: LLVM can't split VP_GATHER or VP_SCATTER yet.
9049     if (IndexVT.getVectorElementType().bitsLT(XLenVT)) {
9050       IndexVT = IndexVT.changeVectorElementType(XLenVT);
9051       Index = DAG.getNode(IsIndexSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
9052                           DL, IndexVT, Index);
9053     }
9054 
9055     if (IsIndexScaled) {
9056       // Manually scale the indices.
9057       // TODO: Sanitize the scale operand here?
9058       // TODO: For VP nodes, should we use VP_SHL here?
9059       unsigned Scale = cast<ConstantSDNode>(ScaleOp)->getZExtValue();
9060       assert(isPowerOf2_32(Scale) && "Expecting power-of-two types");
9061       SDValue SplatScale = DAG.getConstant(Log2_32(Scale), DL, IndexVT);
9062       Index = DAG.getNode(ISD::SHL, DL, IndexVT, Index, SplatScale);
9063       ScaleOp = DAG.getTargetConstant(1, DL, ScaleOp.getValueType());
9064     }
9065 
9066     ISD::MemIndexType NewIndexTy = ISD::UNSIGNED_SCALED;
9067     if (const auto *VPGN = dyn_cast<VPGatherSDNode>(N))
9068       return DAG.getGatherVP(N->getVTList(), VPGN->getMemoryVT(), DL,
9069                              {VPGN->getChain(), VPGN->getBasePtr(), Index,
9070                               ScaleOp, VPGN->getMask(),
9071                               VPGN->getVectorLength()},
9072                              VPGN->getMemOperand(), NewIndexTy);
9073     if (const auto *VPSN = dyn_cast<VPScatterSDNode>(N))
9074       return DAG.getScatterVP(N->getVTList(), VPSN->getMemoryVT(), DL,
9075                               {VPSN->getChain(), VPSN->getValue(),
9076                                VPSN->getBasePtr(), Index, ScaleOp,
9077                                VPSN->getMask(), VPSN->getVectorLength()},
9078                               VPSN->getMemOperand(), NewIndexTy);
9079     if (const auto *MGN = dyn_cast<MaskedGatherSDNode>(N))
9080       return DAG.getMaskedGather(
9081           N->getVTList(), MGN->getMemoryVT(), DL,
9082           {MGN->getChain(), MGN->getPassThru(), MGN->getMask(),
9083            MGN->getBasePtr(), Index, ScaleOp},
9084           MGN->getMemOperand(), NewIndexTy, MGN->getExtensionType());
9085     const auto *MSN = cast<MaskedScatterSDNode>(N);
9086     return DAG.getMaskedScatter(
9087         N->getVTList(), MSN->getMemoryVT(), DL,
9088         {MSN->getChain(), MSN->getValue(), MSN->getMask(), MSN->getBasePtr(),
9089          Index, ScaleOp},
9090         MSN->getMemOperand(), NewIndexTy, MSN->isTruncatingStore());
9091   }
9092   case RISCVISD::SRA_VL:
9093   case RISCVISD::SRL_VL:
9094   case RISCVISD::SHL_VL: {
9095     SDValue ShAmt = N->getOperand(1);
9096     if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) {
9097       // We don't need the upper 32 bits of a 64-bit element for a shift amount.
9098       SDLoc DL(N);
9099       SDValue VL = N->getOperand(3);
9100       EVT VT = N->getValueType(0);
9101       ShAmt = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, DAG.getUNDEF(VT),
9102                           ShAmt.getOperand(1), VL);
9103       return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt,
9104                          N->getOperand(2), N->getOperand(3));
9105     }
9106     break;
9107   }
9108   case ISD::SRA:
9109     if (SDValue V = performSRACombine(N, DAG, Subtarget))
9110       return V;
9111     LLVM_FALLTHROUGH;
9112   case ISD::SRL:
9113   case ISD::SHL: {
9114     SDValue ShAmt = N->getOperand(1);
9115     if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) {
9116       // We don't need the upper 32 bits of a 64-bit element for a shift amount.
9117       SDLoc DL(N);
9118       EVT VT = N->getValueType(0);
9119       ShAmt = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, DAG.getUNDEF(VT),
9120                           ShAmt.getOperand(1),
9121                           DAG.getRegister(RISCV::X0, Subtarget.getXLenVT()));
9122       return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt);
9123     }
9124     break;
9125   }
9126   case RISCVISD::ADD_VL:
9127     if (SDValue V = combineADDSUB_VLToVWADDSUB_VL(N, DAG, /*Commute*/ false))
9128       return V;
9129     return combineADDSUB_VLToVWADDSUB_VL(N, DAG, /*Commute*/ true);
9130   case RISCVISD::SUB_VL:
9131     return combineADDSUB_VLToVWADDSUB_VL(N, DAG);
9132   case RISCVISD::VWADD_W_VL:
9133   case RISCVISD::VWADDU_W_VL:
9134   case RISCVISD::VWSUB_W_VL:
9135   case RISCVISD::VWSUBU_W_VL:
9136     return combineVWADD_W_VL_VWSUB_W_VL(N, DAG);
9137   case RISCVISD::MUL_VL:
9138     if (SDValue V = combineMUL_VLToVWMUL_VL(N, DAG, /*Commute*/ false))
9139       return V;
9140     // Mul is commutative.
9141     return combineMUL_VLToVWMUL_VL(N, DAG, /*Commute*/ true);
9142   case RISCVISD::VFMADD_VL:
9143   case RISCVISD::VFNMADD_VL:
9144   case RISCVISD::VFMSUB_VL:
9145   case RISCVISD::VFNMSUB_VL: {
9146     // Fold FNEG_VL into FMA opcodes.
9147     SDValue A = N->getOperand(0);
9148     SDValue B = N->getOperand(1);
9149     SDValue C = N->getOperand(2);
9150     SDValue Mask = N->getOperand(3);
9151     SDValue VL = N->getOperand(4);
9152 
9153     auto invertIfNegative = [&Mask, &VL](SDValue &V) {
9154       if (V.getOpcode() == RISCVISD::FNEG_VL && V.getOperand(1) == Mask &&
9155           V.getOperand(2) == VL) {
9156         // Return the negated input.
9157         V = V.getOperand(0);
9158         return true;
9159       }
9160 
9161       return false;
9162     };
9163 
9164     bool NegA = invertIfNegative(A);
9165     bool NegB = invertIfNegative(B);
9166     bool NegC = invertIfNegative(C);
9167 
9168     // If no operands are negated, we're done.
9169     if (!NegA && !NegB && !NegC)
9170       return SDValue();
9171 
9172     unsigned NewOpcode = negateFMAOpcode(N->getOpcode(), NegA != NegB, NegC);
9173     return DAG.getNode(NewOpcode, SDLoc(N), N->getValueType(0), A, B, C, Mask,
9174                        VL);
9175   }
9176   case ISD::STORE: {
9177     auto *Store = cast<StoreSDNode>(N);
9178     SDValue Val = Store->getValue();
9179     // Combine store of vmv.x.s to vse with VL of 1.
9180     // FIXME: Support FP.
9181     if (Val.getOpcode() == RISCVISD::VMV_X_S) {
9182       SDValue Src = Val.getOperand(0);
9183       EVT VecVT = Src.getValueType();
9184       EVT MemVT = Store->getMemoryVT();
9185       // The memory VT and the element type must match.
9186       if (VecVT.getVectorElementType() == MemVT) {
9187         SDLoc DL(N);
9188         MVT MaskVT = getMaskTypeFor(VecVT);
9189         return DAG.getStoreVP(
9190             Store->getChain(), DL, Src, Store->getBasePtr(), Store->getOffset(),
9191             DAG.getConstant(1, DL, MaskVT),
9192             DAG.getConstant(1, DL, Subtarget.getXLenVT()), MemVT,
9193             Store->getMemOperand(), Store->getAddressingMode(),
9194             Store->isTruncatingStore(), /*IsCompress*/ false);
9195       }
9196     }
9197 
9198     break;
9199   }
9200   case ISD::SPLAT_VECTOR: {
9201     EVT VT = N->getValueType(0);
9202     // Only perform this combine on legal MVT types.
9203     if (!isTypeLegal(VT))
9204       break;
9205     if (auto Gather = matchSplatAsGather(N->getOperand(0), VT.getSimpleVT(), N,
9206                                          DAG, Subtarget))
9207       return Gather;
9208     break;
9209   }
9210   case RISCVISD::VMV_V_X_VL: {
9211     // Tail agnostic VMV.V.X only demands the vector element bitwidth from the
9212     // scalar input.
9213     unsigned ScalarSize = N->getOperand(1).getValueSizeInBits();
9214     unsigned EltWidth = N->getValueType(0).getScalarSizeInBits();
9215     if (ScalarSize > EltWidth && N->getOperand(0).isUndef())
9216       if (SimplifyDemandedLowBitsHelper(1, EltWidth))
9217         return SDValue(N, 0);
9218 
9219     break;
9220   }
9221   case ISD::INTRINSIC_WO_CHAIN: {
9222     unsigned IntNo = N->getConstantOperandVal(0);
9223     switch (IntNo) {
9224       // By default we do not combine any intrinsic.
9225     default:
9226       return SDValue();
9227     case Intrinsic::riscv_vcpop:
9228     case Intrinsic::riscv_vcpop_mask:
9229     case Intrinsic::riscv_vfirst:
9230     case Intrinsic::riscv_vfirst_mask: {
9231       SDValue VL = N->getOperand(2);
9232       if (IntNo == Intrinsic::riscv_vcpop_mask ||
9233           IntNo == Intrinsic::riscv_vfirst_mask)
9234         VL = N->getOperand(3);
9235       if (!isNullConstant(VL))
9236         return SDValue();
9237       // If VL is 0, vcpop -> li 0, vfirst -> li -1.
9238       SDLoc DL(N);
9239       EVT VT = N->getValueType(0);
9240       if (IntNo == Intrinsic::riscv_vfirst ||
9241           IntNo == Intrinsic::riscv_vfirst_mask)
9242         return DAG.getConstant(-1, DL, VT);
9243       return DAG.getConstant(0, DL, VT);
9244     }
9245     }
9246   }
9247   case ISD::BITCAST: {
9248     assert(Subtarget.useRVVForFixedLengthVectors());
9249     SDValue N0 = N->getOperand(0);
9250     EVT VT = N->getValueType(0);
9251     EVT SrcVT = N0.getValueType();
9252     // If this is a bitcast between a MVT::v4i1/v2i1/v1i1 and an illegal integer
9253     // type, widen both sides to avoid a trip through memory.
9254     if ((SrcVT == MVT::v1i1 || SrcVT == MVT::v2i1 || SrcVT == MVT::v4i1) &&
9255         VT.isScalarInteger()) {
9256       unsigned NumConcats = 8 / SrcVT.getVectorNumElements();
9257       SmallVector<SDValue, 4> Ops(NumConcats, DAG.getUNDEF(SrcVT));
9258       Ops[0] = N0;
9259       SDLoc DL(N);
9260       N0 = DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v8i1, Ops);
9261       N0 = DAG.getBitcast(MVT::i8, N0);
9262       return DAG.getNode(ISD::TRUNCATE, DL, VT, N0);
9263     }
9264 
9265     return SDValue();
9266   }
9267   }
9268 
9269   return SDValue();
9270 }
9271 
9272 bool RISCVTargetLowering::isDesirableToCommuteWithShift(
9273     const SDNode *N, CombineLevel Level) const {
9274   // The following folds are only desirable if `(OP _, c1 << c2)` can be
9275   // materialised in fewer instructions than `(OP _, c1)`:
9276   //
9277   //   (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2)
9278   //   (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2)
9279   SDValue N0 = N->getOperand(0);
9280   EVT Ty = N0.getValueType();
9281   if (Ty.isScalarInteger() &&
9282       (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::OR)) {
9283     auto *C1 = dyn_cast<ConstantSDNode>(N0->getOperand(1));
9284     auto *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1));
9285     if (C1 && C2) {
9286       const APInt &C1Int = C1->getAPIntValue();
9287       APInt ShiftedC1Int = C1Int << C2->getAPIntValue();
9288 
9289       // We can materialise `c1 << c2` into an add immediate, so it's "free",
9290       // and the combine should happen, to potentially allow further combines
9291       // later.
9292       if (ShiftedC1Int.getMinSignedBits() <= 64 &&
9293           isLegalAddImmediate(ShiftedC1Int.getSExtValue()))
9294         return true;
9295 
9296       // We can materialise `c1` in an add immediate, so it's "free", and the
9297       // combine should be prevented.
9298       if (C1Int.getMinSignedBits() <= 64 &&
9299           isLegalAddImmediate(C1Int.getSExtValue()))
9300         return false;
9301 
9302       // Neither constant will fit into an immediate, so find materialisation
9303       // costs.
9304       int C1Cost = RISCVMatInt::getIntMatCost(C1Int, Ty.getSizeInBits(),
9305                                               Subtarget.getFeatureBits(),
9306                                               /*CompressionCost*/true);
9307       int ShiftedC1Cost = RISCVMatInt::getIntMatCost(
9308           ShiftedC1Int, Ty.getSizeInBits(), Subtarget.getFeatureBits(),
9309           /*CompressionCost*/true);
9310 
9311       // Materialising `c1` is cheaper than materialising `c1 << c2`, so the
9312       // combine should be prevented.
9313       if (C1Cost < ShiftedC1Cost)
9314         return false;
9315     }
9316   }
9317   return true;
9318 }
9319 
9320 bool RISCVTargetLowering::targetShrinkDemandedConstant(
9321     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
9322     TargetLoweringOpt &TLO) const {
9323   // Delay this optimization as late as possible.
9324   if (!TLO.LegalOps)
9325     return false;
9326 
9327   EVT VT = Op.getValueType();
9328   if (VT.isVector())
9329     return false;
9330 
9331   // Only handle AND for now.
9332   if (Op.getOpcode() != ISD::AND)
9333     return false;
9334 
9335   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
9336   if (!C)
9337     return false;
9338 
9339   const APInt &Mask = C->getAPIntValue();
9340 
9341   // Clear all non-demanded bits initially.
9342   APInt ShrunkMask = Mask & DemandedBits;
9343 
9344   // Try to make a smaller immediate by setting undemanded bits.
9345 
9346   APInt ExpandedMask = Mask | ~DemandedBits;
9347 
9348   auto IsLegalMask = [ShrunkMask, ExpandedMask](const APInt &Mask) -> bool {
9349     return ShrunkMask.isSubsetOf(Mask) && Mask.isSubsetOf(ExpandedMask);
9350   };
9351   auto UseMask = [Mask, Op, VT, &TLO](const APInt &NewMask) -> bool {
9352     if (NewMask == Mask)
9353       return true;
9354     SDLoc DL(Op);
9355     SDValue NewC = TLO.DAG.getConstant(NewMask, DL, VT);
9356     SDValue NewOp = TLO.DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), NewC);
9357     return TLO.CombineTo(Op, NewOp);
9358   };
9359 
9360   // If the shrunk mask fits in sign extended 12 bits, let the target
9361   // independent code apply it.
9362   if (ShrunkMask.isSignedIntN(12))
9363     return false;
9364 
9365   // Preserve (and X, 0xffff) when zext.h is supported.
9366   if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp()) {
9367     APInt NewMask = APInt(Mask.getBitWidth(), 0xffff);
9368     if (IsLegalMask(NewMask))
9369       return UseMask(NewMask);
9370   }
9371 
9372   // Try to preserve (and X, 0xffffffff), the (zext_inreg X, i32) pattern.
9373   if (VT == MVT::i64) {
9374     APInt NewMask = APInt(64, 0xffffffff);
9375     if (IsLegalMask(NewMask))
9376       return UseMask(NewMask);
9377   }
9378 
9379   // For the remaining optimizations, we need to be able to make a negative
9380   // number through a combination of mask and undemanded bits.
9381   if (!ExpandedMask.isNegative())
9382     return false;
9383 
9384   // What is the fewest number of bits we need to represent the negative number.
9385   unsigned MinSignedBits = ExpandedMask.getMinSignedBits();
9386 
9387   // Try to make a 12 bit negative immediate. If that fails try to make a 32
9388   // bit negative immediate unless the shrunk immediate already fits in 32 bits.
9389   APInt NewMask = ShrunkMask;
9390   if (MinSignedBits <= 12)
9391     NewMask.setBitsFrom(11);
9392   else if (MinSignedBits <= 32 && !ShrunkMask.isSignedIntN(32))
9393     NewMask.setBitsFrom(31);
9394   else
9395     return false;
9396 
9397   // Check that our new mask is a subset of the demanded mask.
9398   assert(IsLegalMask(NewMask));
9399   return UseMask(NewMask);
9400 }
9401 
9402 static uint64_t computeGREVOrGORC(uint64_t x, unsigned ShAmt, bool IsGORC) {
9403   static const uint64_t GREVMasks[] = {
9404       0x5555555555555555ULL, 0x3333333333333333ULL, 0x0F0F0F0F0F0F0F0FULL,
9405       0x00FF00FF00FF00FFULL, 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL};
9406 
9407   for (unsigned Stage = 0; Stage != 6; ++Stage) {
9408     unsigned Shift = 1 << Stage;
9409     if (ShAmt & Shift) {
9410       uint64_t Mask = GREVMasks[Stage];
9411       uint64_t Res = ((x & Mask) << Shift) | ((x >> Shift) & Mask);
9412       if (IsGORC)
9413         Res |= x;
9414       x = Res;
9415     }
9416   }
9417 
9418   return x;
9419 }
9420 
9421 void RISCVTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
9422                                                         KnownBits &Known,
9423                                                         const APInt &DemandedElts,
9424                                                         const SelectionDAG &DAG,
9425                                                         unsigned Depth) const {
9426   unsigned BitWidth = Known.getBitWidth();
9427   unsigned Opc = Op.getOpcode();
9428   assert((Opc >= ISD::BUILTIN_OP_END ||
9429           Opc == ISD::INTRINSIC_WO_CHAIN ||
9430           Opc == ISD::INTRINSIC_W_CHAIN ||
9431           Opc == ISD::INTRINSIC_VOID) &&
9432          "Should use MaskedValueIsZero if you don't know whether Op"
9433          " is a target node!");
9434 
9435   Known.resetAll();
9436   switch (Opc) {
9437   default: break;
9438   case RISCVISD::SELECT_CC: {
9439     Known = DAG.computeKnownBits(Op.getOperand(4), Depth + 1);
9440     // If we don't know any bits, early out.
9441     if (Known.isUnknown())
9442       break;
9443     KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(3), Depth + 1);
9444 
9445     // Only known if known in both the LHS and RHS.
9446     Known = KnownBits::commonBits(Known, Known2);
9447     break;
9448   }
9449   case RISCVISD::REMUW: {
9450     KnownBits Known2;
9451     Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
9452     Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
9453     // We only care about the lower 32 bits.
9454     Known = KnownBits::urem(Known.trunc(32), Known2.trunc(32));
9455     // Restore the original width by sign extending.
9456     Known = Known.sext(BitWidth);
9457     break;
9458   }
9459   case RISCVISD::DIVUW: {
9460     KnownBits Known2;
9461     Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
9462     Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
9463     // We only care about the lower 32 bits.
9464     Known = KnownBits::udiv(Known.trunc(32), Known2.trunc(32));
9465     // Restore the original width by sign extending.
9466     Known = Known.sext(BitWidth);
9467     break;
9468   }
9469   case RISCVISD::CTZW: {
9470     KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
9471     unsigned PossibleTZ = Known2.trunc(32).countMaxTrailingZeros();
9472     unsigned LowBits = Log2_32(PossibleTZ) + 1;
9473     Known.Zero.setBitsFrom(LowBits);
9474     break;
9475   }
9476   case RISCVISD::CLZW: {
9477     KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
9478     unsigned PossibleLZ = Known2.trunc(32).countMaxLeadingZeros();
9479     unsigned LowBits = Log2_32(PossibleLZ) + 1;
9480     Known.Zero.setBitsFrom(LowBits);
9481     break;
9482   }
9483   case RISCVISD::GREV:
9484   case RISCVISD::GORC: {
9485     if (auto *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
9486       Known = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
9487       unsigned ShAmt = C->getZExtValue() & (Known.getBitWidth() - 1);
9488       bool IsGORC = Op.getOpcode() == RISCVISD::GORC;
9489       // To compute zeros, we need to invert the value and invert it back after.
9490       Known.Zero =
9491           ~computeGREVOrGORC(~Known.Zero.getZExtValue(), ShAmt, IsGORC);
9492       Known.One = computeGREVOrGORC(Known.One.getZExtValue(), ShAmt, IsGORC);
9493     }
9494     break;
9495   }
9496   case RISCVISD::READ_VLENB: {
9497     // We can use the minimum and maximum VLEN values to bound VLENB.  We
9498     // know VLEN must be a power of two.
9499     const unsigned MinVLenB = Subtarget.getRealMinVLen() / 8;
9500     const unsigned MaxVLenB = Subtarget.getRealMaxVLen() / 8;
9501     assert(MinVLenB > 0 && "READ_VLENB without vector extension enabled?");
9502     Known.Zero.setLowBits(Log2_32(MinVLenB));
9503     Known.Zero.setBitsFrom(Log2_32(MaxVLenB)+1);
9504     if (MaxVLenB == MinVLenB)
9505       Known.One.setBit(Log2_32(MinVLenB));
9506     break;
9507   }
9508   case ISD::INTRINSIC_W_CHAIN:
9509   case ISD::INTRINSIC_WO_CHAIN: {
9510     unsigned IntNo =
9511         Op.getConstantOperandVal(Opc == ISD::INTRINSIC_WO_CHAIN ? 0 : 1);
9512     switch (IntNo) {
9513     default:
9514       // We can't do anything for most intrinsics.
9515       break;
9516     case Intrinsic::riscv_vsetvli:
9517     case Intrinsic::riscv_vsetvlimax:
9518     case Intrinsic::riscv_vsetvli_opt:
9519     case Intrinsic::riscv_vsetvlimax_opt:
9520       // Assume that VL output is positive and would fit in an int32_t.
9521       // TODO: VLEN might be capped at 16 bits in a future V spec update.
9522       if (BitWidth >= 32)
9523         Known.Zero.setBitsFrom(31);
9524       break;
9525     }
9526     break;
9527   }
9528   }
9529 }
9530 
9531 unsigned RISCVTargetLowering::ComputeNumSignBitsForTargetNode(
9532     SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
9533     unsigned Depth) const {
9534   switch (Op.getOpcode()) {
9535   default:
9536     break;
9537   case RISCVISD::SELECT_CC: {
9538     unsigned Tmp =
9539         DAG.ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth + 1);
9540     if (Tmp == 1) return 1;  // Early out.
9541     unsigned Tmp2 =
9542         DAG.ComputeNumSignBits(Op.getOperand(4), DemandedElts, Depth + 1);
9543     return std::min(Tmp, Tmp2);
9544   }
9545   case RISCVISD::SLLW:
9546   case RISCVISD::SRAW:
9547   case RISCVISD::SRLW:
9548   case RISCVISD::DIVW:
9549   case RISCVISD::DIVUW:
9550   case RISCVISD::REMUW:
9551   case RISCVISD::ROLW:
9552   case RISCVISD::RORW:
9553   case RISCVISD::GREVW:
9554   case RISCVISD::GORCW:
9555   case RISCVISD::FSLW:
9556   case RISCVISD::FSRW:
9557   case RISCVISD::SHFLW:
9558   case RISCVISD::UNSHFLW:
9559   case RISCVISD::BCOMPRESSW:
9560   case RISCVISD::BDECOMPRESSW:
9561   case RISCVISD::BFPW:
9562   case RISCVISD::FCVT_W_RV64:
9563   case RISCVISD::FCVT_WU_RV64:
9564   case RISCVISD::STRICT_FCVT_W_RV64:
9565   case RISCVISD::STRICT_FCVT_WU_RV64:
9566     // TODO: As the result is sign-extended, this is conservatively correct. A
9567     // more precise answer could be calculated for SRAW depending on known
9568     // bits in the shift amount.
9569     return 33;
9570   case RISCVISD::SHFL:
9571   case RISCVISD::UNSHFL: {
9572     // There is no SHFLIW, but a i64 SHFLI with bit 4 of the control word
9573     // cleared doesn't affect bit 31. The upper 32 bits will be shuffled, but
9574     // will stay within the upper 32 bits. If there were more than 32 sign bits
9575     // before there will be at least 33 sign bits after.
9576     if (Op.getValueType() == MVT::i64 &&
9577         isa<ConstantSDNode>(Op.getOperand(1)) &&
9578         (Op.getConstantOperandVal(1) & 0x10) == 0) {
9579       unsigned Tmp = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1);
9580       if (Tmp > 32)
9581         return 33;
9582     }
9583     break;
9584   }
9585   case RISCVISD::VMV_X_S: {
9586     // The number of sign bits of the scalar result is computed by obtaining the
9587     // element type of the input vector operand, subtracting its width from the
9588     // XLEN, and then adding one (sign bit within the element type). If the
9589     // element type is wider than XLen, the least-significant XLEN bits are
9590     // taken.
9591     unsigned XLen = Subtarget.getXLen();
9592     unsigned EltBits = Op.getOperand(0).getScalarValueSizeInBits();
9593     if (EltBits <= XLen)
9594       return XLen - EltBits + 1;
9595     break;
9596   }
9597   }
9598 
9599   return 1;
9600 }
9601 
9602 const Constant *
9603 RISCVTargetLowering::getTargetConstantFromLoad(LoadSDNode *Ld) const {
9604   assert(Ld && "Unexpected null LoadSDNode");
9605   if (!ISD::isNormalLoad(Ld))
9606     return nullptr;
9607 
9608   SDValue Ptr = Ld->getBasePtr();
9609 
9610   // Only constant pools with no offset are supported.
9611   auto GetSupportedConstantPool = [](SDValue Ptr) -> ConstantPoolSDNode * {
9612     auto *CNode = dyn_cast<ConstantPoolSDNode>(Ptr);
9613     if (!CNode || CNode->isMachineConstantPoolEntry() ||
9614         CNode->getOffset() != 0)
9615       return nullptr;
9616 
9617     return CNode;
9618   };
9619 
9620   // Simple case, LLA.
9621   if (Ptr.getOpcode() == RISCVISD::LLA) {
9622     auto *CNode = GetSupportedConstantPool(Ptr);
9623     if (!CNode || CNode->getTargetFlags() != 0)
9624       return nullptr;
9625 
9626     return CNode->getConstVal();
9627   }
9628 
9629   // Look for a HI and ADD_LO pair.
9630   if (Ptr.getOpcode() != RISCVISD::ADD_LO ||
9631       Ptr.getOperand(0).getOpcode() != RISCVISD::HI)
9632     return nullptr;
9633 
9634   auto *CNodeLo = GetSupportedConstantPool(Ptr.getOperand(1));
9635   auto *CNodeHi = GetSupportedConstantPool(Ptr.getOperand(0).getOperand(0));
9636 
9637   if (!CNodeLo || CNodeLo->getTargetFlags() != RISCVII::MO_LO ||
9638       !CNodeHi || CNodeHi->getTargetFlags() != RISCVII::MO_HI)
9639     return nullptr;
9640 
9641   if (CNodeLo->getConstVal() != CNodeHi->getConstVal())
9642     return nullptr;
9643 
9644   return CNodeLo->getConstVal();
9645 }
9646 
9647 static MachineBasicBlock *emitReadCycleWidePseudo(MachineInstr &MI,
9648                                                   MachineBasicBlock *BB) {
9649   assert(MI.getOpcode() == RISCV::ReadCycleWide && "Unexpected instruction");
9650 
9651   // To read the 64-bit cycle CSR on a 32-bit target, we read the two halves.
9652   // Should the count have wrapped while it was being read, we need to try
9653   // again.
9654   // ...
9655   // read:
9656   // rdcycleh x3 # load high word of cycle
9657   // rdcycle  x2 # load low word of cycle
9658   // rdcycleh x4 # load high word of cycle
9659   // bne x3, x4, read # check if high word reads match, otherwise try again
9660   // ...
9661 
9662   MachineFunction &MF = *BB->getParent();
9663   const BasicBlock *LLVM_BB = BB->getBasicBlock();
9664   MachineFunction::iterator It = ++BB->getIterator();
9665 
9666   MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB);
9667   MF.insert(It, LoopMBB);
9668 
9669   MachineBasicBlock *DoneMBB = MF.CreateMachineBasicBlock(LLVM_BB);
9670   MF.insert(It, DoneMBB);
9671 
9672   // Transfer the remainder of BB and its successor edges to DoneMBB.
9673   DoneMBB->splice(DoneMBB->begin(), BB,
9674                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
9675   DoneMBB->transferSuccessorsAndUpdatePHIs(BB);
9676 
9677   BB->addSuccessor(LoopMBB);
9678 
9679   MachineRegisterInfo &RegInfo = MF.getRegInfo();
9680   Register ReadAgainReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
9681   Register LoReg = MI.getOperand(0).getReg();
9682   Register HiReg = MI.getOperand(1).getReg();
9683   DebugLoc DL = MI.getDebugLoc();
9684 
9685   const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
9686   BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), HiReg)
9687       .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding)
9688       .addReg(RISCV::X0);
9689   BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), LoReg)
9690       .addImm(RISCVSysReg::lookupSysRegByName("CYCLE")->Encoding)
9691       .addReg(RISCV::X0);
9692   BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), ReadAgainReg)
9693       .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding)
9694       .addReg(RISCV::X0);
9695 
9696   BuildMI(LoopMBB, DL, TII->get(RISCV::BNE))
9697       .addReg(HiReg)
9698       .addReg(ReadAgainReg)
9699       .addMBB(LoopMBB);
9700 
9701   LoopMBB->addSuccessor(LoopMBB);
9702   LoopMBB->addSuccessor(DoneMBB);
9703 
9704   MI.eraseFromParent();
9705 
9706   return DoneMBB;
9707 }
9708 
9709 static MachineBasicBlock *emitSplitF64Pseudo(MachineInstr &MI,
9710                                              MachineBasicBlock *BB) {
9711   assert(MI.getOpcode() == RISCV::SplitF64Pseudo && "Unexpected instruction");
9712 
9713   MachineFunction &MF = *BB->getParent();
9714   DebugLoc DL = MI.getDebugLoc();
9715   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
9716   const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo();
9717   Register LoReg = MI.getOperand(0).getReg();
9718   Register HiReg = MI.getOperand(1).getReg();
9719   Register SrcReg = MI.getOperand(2).getReg();
9720   const TargetRegisterClass *SrcRC = &RISCV::FPR64RegClass;
9721   int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF);
9722 
9723   TII.storeRegToStackSlot(*BB, MI, SrcReg, MI.getOperand(2).isKill(), FI, SrcRC,
9724                           RI);
9725   MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI);
9726   MachineMemOperand *MMOLo =
9727       MF.getMachineMemOperand(MPI, MachineMemOperand::MOLoad, 4, Align(8));
9728   MachineMemOperand *MMOHi = MF.getMachineMemOperand(
9729       MPI.getWithOffset(4), MachineMemOperand::MOLoad, 4, Align(8));
9730   BuildMI(*BB, MI, DL, TII.get(RISCV::LW), LoReg)
9731       .addFrameIndex(FI)
9732       .addImm(0)
9733       .addMemOperand(MMOLo);
9734   BuildMI(*BB, MI, DL, TII.get(RISCV::LW), HiReg)
9735       .addFrameIndex(FI)
9736       .addImm(4)
9737       .addMemOperand(MMOHi);
9738   MI.eraseFromParent(); // The pseudo instruction is gone now.
9739   return BB;
9740 }
9741 
9742 static MachineBasicBlock *emitBuildPairF64Pseudo(MachineInstr &MI,
9743                                                  MachineBasicBlock *BB) {
9744   assert(MI.getOpcode() == RISCV::BuildPairF64Pseudo &&
9745          "Unexpected instruction");
9746 
9747   MachineFunction &MF = *BB->getParent();
9748   DebugLoc DL = MI.getDebugLoc();
9749   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
9750   const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo();
9751   Register DstReg = MI.getOperand(0).getReg();
9752   Register LoReg = MI.getOperand(1).getReg();
9753   Register HiReg = MI.getOperand(2).getReg();
9754   const TargetRegisterClass *DstRC = &RISCV::FPR64RegClass;
9755   int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF);
9756 
9757   MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI);
9758   MachineMemOperand *MMOLo =
9759       MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Align(8));
9760   MachineMemOperand *MMOHi = MF.getMachineMemOperand(
9761       MPI.getWithOffset(4), MachineMemOperand::MOStore, 4, Align(8));
9762   BuildMI(*BB, MI, DL, TII.get(RISCV::SW))
9763       .addReg(LoReg, getKillRegState(MI.getOperand(1).isKill()))
9764       .addFrameIndex(FI)
9765       .addImm(0)
9766       .addMemOperand(MMOLo);
9767   BuildMI(*BB, MI, DL, TII.get(RISCV::SW))
9768       .addReg(HiReg, getKillRegState(MI.getOperand(2).isKill()))
9769       .addFrameIndex(FI)
9770       .addImm(4)
9771       .addMemOperand(MMOHi);
9772   TII.loadRegFromStackSlot(*BB, MI, DstReg, FI, DstRC, RI);
9773   MI.eraseFromParent(); // The pseudo instruction is gone now.
9774   return BB;
9775 }
9776 
9777 static bool isSelectPseudo(MachineInstr &MI) {
9778   switch (MI.getOpcode()) {
9779   default:
9780     return false;
9781   case RISCV::Select_GPR_Using_CC_GPR:
9782   case RISCV::Select_FPR16_Using_CC_GPR:
9783   case RISCV::Select_FPR32_Using_CC_GPR:
9784   case RISCV::Select_FPR64_Using_CC_GPR:
9785     return true;
9786   }
9787 }
9788 
9789 static MachineBasicBlock *emitQuietFCMP(MachineInstr &MI, MachineBasicBlock *BB,
9790                                         unsigned RelOpcode, unsigned EqOpcode,
9791                                         const RISCVSubtarget &Subtarget) {
9792   DebugLoc DL = MI.getDebugLoc();
9793   Register DstReg = MI.getOperand(0).getReg();
9794   Register Src1Reg = MI.getOperand(1).getReg();
9795   Register Src2Reg = MI.getOperand(2).getReg();
9796   MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
9797   Register SavedFFlags = MRI.createVirtualRegister(&RISCV::GPRRegClass);
9798   const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo();
9799 
9800   // Save the current FFLAGS.
9801   BuildMI(*BB, MI, DL, TII.get(RISCV::ReadFFLAGS), SavedFFlags);
9802 
9803   auto MIB = BuildMI(*BB, MI, DL, TII.get(RelOpcode), DstReg)
9804                  .addReg(Src1Reg)
9805                  .addReg(Src2Reg);
9806   if (MI.getFlag(MachineInstr::MIFlag::NoFPExcept))
9807     MIB->setFlag(MachineInstr::MIFlag::NoFPExcept);
9808 
9809   // Restore the FFLAGS.
9810   BuildMI(*BB, MI, DL, TII.get(RISCV::WriteFFLAGS))
9811       .addReg(SavedFFlags, RegState::Kill);
9812 
9813   // Issue a dummy FEQ opcode to raise exception for signaling NaNs.
9814   auto MIB2 = BuildMI(*BB, MI, DL, TII.get(EqOpcode), RISCV::X0)
9815                   .addReg(Src1Reg, getKillRegState(MI.getOperand(1).isKill()))
9816                   .addReg(Src2Reg, getKillRegState(MI.getOperand(2).isKill()));
9817   if (MI.getFlag(MachineInstr::MIFlag::NoFPExcept))
9818     MIB2->setFlag(MachineInstr::MIFlag::NoFPExcept);
9819 
9820   // Erase the pseudoinstruction.
9821   MI.eraseFromParent();
9822   return BB;
9823 }
9824 
9825 static MachineBasicBlock *emitSelectPseudo(MachineInstr &MI,
9826                                            MachineBasicBlock *BB,
9827                                            const RISCVSubtarget &Subtarget) {
9828   // To "insert" Select_* instructions, we actually have to insert the triangle
9829   // control-flow pattern.  The incoming instructions know the destination vreg
9830   // to set, the condition code register to branch on, the true/false values to
9831   // select between, and the condcode to use to select the appropriate branch.
9832   //
9833   // We produce the following control flow:
9834   //     HeadMBB
9835   //     |  \
9836   //     |  IfFalseMBB
9837   //     | /
9838   //    TailMBB
9839   //
9840   // When we find a sequence of selects we attempt to optimize their emission
9841   // by sharing the control flow. Currently we only handle cases where we have
9842   // multiple selects with the exact same condition (same LHS, RHS and CC).
9843   // The selects may be interleaved with other instructions if the other
9844   // instructions meet some requirements we deem safe:
9845   // - They are debug instructions. Otherwise,
9846   // - They do not have side-effects, do not access memory and their inputs do
9847   //   not depend on the results of the select pseudo-instructions.
9848   // The TrueV/FalseV operands of the selects cannot depend on the result of
9849   // previous selects in the sequence.
9850   // These conditions could be further relaxed. See the X86 target for a
9851   // related approach and more information.
9852   Register LHS = MI.getOperand(1).getReg();
9853   Register RHS = MI.getOperand(2).getReg();
9854   auto CC = static_cast<RISCVCC::CondCode>(MI.getOperand(3).getImm());
9855 
9856   SmallVector<MachineInstr *, 4> SelectDebugValues;
9857   SmallSet<Register, 4> SelectDests;
9858   SelectDests.insert(MI.getOperand(0).getReg());
9859 
9860   MachineInstr *LastSelectPseudo = &MI;
9861 
9862   for (auto E = BB->end(), SequenceMBBI = MachineBasicBlock::iterator(MI);
9863        SequenceMBBI != E; ++SequenceMBBI) {
9864     if (SequenceMBBI->isDebugInstr())
9865       continue;
9866     if (isSelectPseudo(*SequenceMBBI)) {
9867       if (SequenceMBBI->getOperand(1).getReg() != LHS ||
9868           SequenceMBBI->getOperand(2).getReg() != RHS ||
9869           SequenceMBBI->getOperand(3).getImm() != CC ||
9870           SelectDests.count(SequenceMBBI->getOperand(4).getReg()) ||
9871           SelectDests.count(SequenceMBBI->getOperand(5).getReg()))
9872         break;
9873       LastSelectPseudo = &*SequenceMBBI;
9874       SequenceMBBI->collectDebugValues(SelectDebugValues);
9875       SelectDests.insert(SequenceMBBI->getOperand(0).getReg());
9876     } else {
9877       if (SequenceMBBI->hasUnmodeledSideEffects() ||
9878           SequenceMBBI->mayLoadOrStore())
9879         break;
9880       if (llvm::any_of(SequenceMBBI->operands(), [&](MachineOperand &MO) {
9881             return MO.isReg() && MO.isUse() && SelectDests.count(MO.getReg());
9882           }))
9883         break;
9884     }
9885   }
9886 
9887   const RISCVInstrInfo &TII = *Subtarget.getInstrInfo();
9888   const BasicBlock *LLVM_BB = BB->getBasicBlock();
9889   DebugLoc DL = MI.getDebugLoc();
9890   MachineFunction::iterator I = ++BB->getIterator();
9891 
9892   MachineBasicBlock *HeadMBB = BB;
9893   MachineFunction *F = BB->getParent();
9894   MachineBasicBlock *TailMBB = F->CreateMachineBasicBlock(LLVM_BB);
9895   MachineBasicBlock *IfFalseMBB = F->CreateMachineBasicBlock(LLVM_BB);
9896 
9897   F->insert(I, IfFalseMBB);
9898   F->insert(I, TailMBB);
9899 
9900   // Transfer debug instructions associated with the selects to TailMBB.
9901   for (MachineInstr *DebugInstr : SelectDebugValues) {
9902     TailMBB->push_back(DebugInstr->removeFromParent());
9903   }
9904 
9905   // Move all instructions after the sequence to TailMBB.
9906   TailMBB->splice(TailMBB->end(), HeadMBB,
9907                   std::next(LastSelectPseudo->getIterator()), HeadMBB->end());
9908   // Update machine-CFG edges by transferring all successors of the current
9909   // block to the new block which will contain the Phi nodes for the selects.
9910   TailMBB->transferSuccessorsAndUpdatePHIs(HeadMBB);
9911   // Set the successors for HeadMBB.
9912   HeadMBB->addSuccessor(IfFalseMBB);
9913   HeadMBB->addSuccessor(TailMBB);
9914 
9915   // Insert appropriate branch.
9916   BuildMI(HeadMBB, DL, TII.getBrCond(CC))
9917     .addReg(LHS)
9918     .addReg(RHS)
9919     .addMBB(TailMBB);
9920 
9921   // IfFalseMBB just falls through to TailMBB.
9922   IfFalseMBB->addSuccessor(TailMBB);
9923 
9924   // Create PHIs for all of the select pseudo-instructions.
9925   auto SelectMBBI = MI.getIterator();
9926   auto SelectEnd = std::next(LastSelectPseudo->getIterator());
9927   auto InsertionPoint = TailMBB->begin();
9928   while (SelectMBBI != SelectEnd) {
9929     auto Next = std::next(SelectMBBI);
9930     if (isSelectPseudo(*SelectMBBI)) {
9931       // %Result = phi [ %TrueValue, HeadMBB ], [ %FalseValue, IfFalseMBB ]
9932       BuildMI(*TailMBB, InsertionPoint, SelectMBBI->getDebugLoc(),
9933               TII.get(RISCV::PHI), SelectMBBI->getOperand(0).getReg())
9934           .addReg(SelectMBBI->getOperand(4).getReg())
9935           .addMBB(HeadMBB)
9936           .addReg(SelectMBBI->getOperand(5).getReg())
9937           .addMBB(IfFalseMBB);
9938       SelectMBBI->eraseFromParent();
9939     }
9940     SelectMBBI = Next;
9941   }
9942 
9943   F->getProperties().reset(MachineFunctionProperties::Property::NoPHIs);
9944   return TailMBB;
9945 }
9946 
9947 MachineBasicBlock *
9948 RISCVTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
9949                                                  MachineBasicBlock *BB) const {
9950   switch (MI.getOpcode()) {
9951   default:
9952     llvm_unreachable("Unexpected instr type to insert");
9953   case RISCV::ReadCycleWide:
9954     assert(!Subtarget.is64Bit() &&
9955            "ReadCycleWrite is only to be used on riscv32");
9956     return emitReadCycleWidePseudo(MI, BB);
9957   case RISCV::Select_GPR_Using_CC_GPR:
9958   case RISCV::Select_FPR16_Using_CC_GPR:
9959   case RISCV::Select_FPR32_Using_CC_GPR:
9960   case RISCV::Select_FPR64_Using_CC_GPR:
9961     return emitSelectPseudo(MI, BB, Subtarget);
9962   case RISCV::BuildPairF64Pseudo:
9963     return emitBuildPairF64Pseudo(MI, BB);
9964   case RISCV::SplitF64Pseudo:
9965     return emitSplitF64Pseudo(MI, BB);
9966   case RISCV::PseudoQuietFLE_H:
9967     return emitQuietFCMP(MI, BB, RISCV::FLE_H, RISCV::FEQ_H, Subtarget);
9968   case RISCV::PseudoQuietFLT_H:
9969     return emitQuietFCMP(MI, BB, RISCV::FLT_H, RISCV::FEQ_H, Subtarget);
9970   case RISCV::PseudoQuietFLE_S:
9971     return emitQuietFCMP(MI, BB, RISCV::FLE_S, RISCV::FEQ_S, Subtarget);
9972   case RISCV::PseudoQuietFLT_S:
9973     return emitQuietFCMP(MI, BB, RISCV::FLT_S, RISCV::FEQ_S, Subtarget);
9974   case RISCV::PseudoQuietFLE_D:
9975     return emitQuietFCMP(MI, BB, RISCV::FLE_D, RISCV::FEQ_D, Subtarget);
9976   case RISCV::PseudoQuietFLT_D:
9977     return emitQuietFCMP(MI, BB, RISCV::FLT_D, RISCV::FEQ_D, Subtarget);
9978   }
9979 }
9980 
9981 void RISCVTargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI,
9982                                                         SDNode *Node) const {
9983   // Add FRM dependency to any instructions with dynamic rounding mode.
9984   unsigned Opc = MI.getOpcode();
9985   auto Idx = RISCV::getNamedOperandIdx(Opc, RISCV::OpName::frm);
9986   if (Idx < 0)
9987     return;
9988   if (MI.getOperand(Idx).getImm() != RISCVFPRndMode::DYN)
9989     return;
9990   // If the instruction already reads FRM, don't add another read.
9991   if (MI.readsRegister(RISCV::FRM))
9992     return;
9993   MI.addOperand(
9994       MachineOperand::CreateReg(RISCV::FRM, /*isDef*/ false, /*isImp*/ true));
9995 }
9996 
9997 // Calling Convention Implementation.
9998 // The expectations for frontend ABI lowering vary from target to target.
9999 // Ideally, an LLVM frontend would be able to avoid worrying about many ABI
10000 // details, but this is a longer term goal. For now, we simply try to keep the
10001 // role of the frontend as simple and well-defined as possible. The rules can
10002 // be summarised as:
10003 // * Never split up large scalar arguments. We handle them here.
10004 // * If a hardfloat calling convention is being used, and the struct may be
10005 // passed in a pair of registers (fp+fp, int+fp), and both registers are
10006 // available, then pass as two separate arguments. If either the GPRs or FPRs
10007 // are exhausted, then pass according to the rule below.
10008 // * If a struct could never be passed in registers or directly in a stack
10009 // slot (as it is larger than 2*XLEN and the floating point rules don't
10010 // apply), then pass it using a pointer with the byval attribute.
10011 // * If a struct is less than 2*XLEN, then coerce to either a two-element
10012 // word-sized array or a 2*XLEN scalar (depending on alignment).
10013 // * The frontend can determine whether a struct is returned by reference or
10014 // not based on its size and fields. If it will be returned by reference, the
10015 // frontend must modify the prototype so a pointer with the sret annotation is
10016 // passed as the first argument. This is not necessary for large scalar
10017 // returns.
10018 // * Struct return values and varargs should be coerced to structs containing
10019 // register-size fields in the same situations they would be for fixed
10020 // arguments.
10021 
10022 static const MCPhysReg ArgGPRs[] = {
10023   RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13,
10024   RISCV::X14, RISCV::X15, RISCV::X16, RISCV::X17
10025 };
10026 static const MCPhysReg ArgFPR16s[] = {
10027   RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H,
10028   RISCV::F14_H, RISCV::F15_H, RISCV::F16_H, RISCV::F17_H
10029 };
10030 static const MCPhysReg ArgFPR32s[] = {
10031   RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F,
10032   RISCV::F14_F, RISCV::F15_F, RISCV::F16_F, RISCV::F17_F
10033 };
10034 static const MCPhysReg ArgFPR64s[] = {
10035   RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D,
10036   RISCV::F14_D, RISCV::F15_D, RISCV::F16_D, RISCV::F17_D
10037 };
10038 // This is an interim calling convention and it may be changed in the future.
10039 static const MCPhysReg ArgVRs[] = {
10040     RISCV::V8,  RISCV::V9,  RISCV::V10, RISCV::V11, RISCV::V12, RISCV::V13,
10041     RISCV::V14, RISCV::V15, RISCV::V16, RISCV::V17, RISCV::V18, RISCV::V19,
10042     RISCV::V20, RISCV::V21, RISCV::V22, RISCV::V23};
10043 static const MCPhysReg ArgVRM2s[] = {RISCV::V8M2,  RISCV::V10M2, RISCV::V12M2,
10044                                      RISCV::V14M2, RISCV::V16M2, RISCV::V18M2,
10045                                      RISCV::V20M2, RISCV::V22M2};
10046 static const MCPhysReg ArgVRM4s[] = {RISCV::V8M4, RISCV::V12M4, RISCV::V16M4,
10047                                      RISCV::V20M4};
10048 static const MCPhysReg ArgVRM8s[] = {RISCV::V8M8, RISCV::V16M8};
10049 
10050 // Pass a 2*XLEN argument that has been split into two XLEN values through
10051 // registers or the stack as necessary.
10052 static bool CC_RISCVAssign2XLen(unsigned XLen, CCState &State, CCValAssign VA1,
10053                                 ISD::ArgFlagsTy ArgFlags1, unsigned ValNo2,
10054                                 MVT ValVT2, MVT LocVT2,
10055                                 ISD::ArgFlagsTy ArgFlags2) {
10056   unsigned XLenInBytes = XLen / 8;
10057   if (Register Reg = State.AllocateReg(ArgGPRs)) {
10058     // At least one half can be passed via register.
10059     State.addLoc(CCValAssign::getReg(VA1.getValNo(), VA1.getValVT(), Reg,
10060                                      VA1.getLocVT(), CCValAssign::Full));
10061   } else {
10062     // Both halves must be passed on the stack, with proper alignment.
10063     Align StackAlign =
10064         std::max(Align(XLenInBytes), ArgFlags1.getNonZeroOrigAlign());
10065     State.addLoc(
10066         CCValAssign::getMem(VA1.getValNo(), VA1.getValVT(),
10067                             State.AllocateStack(XLenInBytes, StackAlign),
10068                             VA1.getLocVT(), CCValAssign::Full));
10069     State.addLoc(CCValAssign::getMem(
10070         ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)),
10071         LocVT2, CCValAssign::Full));
10072     return false;
10073   }
10074 
10075   if (Register Reg = State.AllocateReg(ArgGPRs)) {
10076     // The second half can also be passed via register.
10077     State.addLoc(
10078         CCValAssign::getReg(ValNo2, ValVT2, Reg, LocVT2, CCValAssign::Full));
10079   } else {
10080     // The second half is passed via the stack, without additional alignment.
10081     State.addLoc(CCValAssign::getMem(
10082         ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)),
10083         LocVT2, CCValAssign::Full));
10084   }
10085 
10086   return false;
10087 }
10088 
10089 static unsigned allocateRVVReg(MVT ValVT, unsigned ValNo,
10090                                Optional<unsigned> FirstMaskArgument,
10091                                CCState &State, const RISCVTargetLowering &TLI) {
10092   const TargetRegisterClass *RC = TLI.getRegClassFor(ValVT);
10093   if (RC == &RISCV::VRRegClass) {
10094     // Assign the first mask argument to V0.
10095     // This is an interim calling convention and it may be changed in the
10096     // future.
10097     if (FirstMaskArgument && ValNo == *FirstMaskArgument)
10098       return State.AllocateReg(RISCV::V0);
10099     return State.AllocateReg(ArgVRs);
10100   }
10101   if (RC == &RISCV::VRM2RegClass)
10102     return State.AllocateReg(ArgVRM2s);
10103   if (RC == &RISCV::VRM4RegClass)
10104     return State.AllocateReg(ArgVRM4s);
10105   if (RC == &RISCV::VRM8RegClass)
10106     return State.AllocateReg(ArgVRM8s);
10107   llvm_unreachable("Unhandled register class for ValueType");
10108 }
10109 
10110 // Implements the RISC-V calling convention. Returns true upon failure.
10111 static bool CC_RISCV(const DataLayout &DL, RISCVABI::ABI ABI, unsigned ValNo,
10112                      MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo,
10113                      ISD::ArgFlagsTy ArgFlags, CCState &State, bool IsFixed,
10114                      bool IsRet, Type *OrigTy, const RISCVTargetLowering &TLI,
10115                      Optional<unsigned> FirstMaskArgument) {
10116   unsigned XLen = DL.getLargestLegalIntTypeSizeInBits();
10117   assert(XLen == 32 || XLen == 64);
10118   MVT XLenVT = XLen == 32 ? MVT::i32 : MVT::i64;
10119 
10120   // Any return value split in to more than two values can't be returned
10121   // directly. Vectors are returned via the available vector registers.
10122   if (!LocVT.isVector() && IsRet && ValNo > 1)
10123     return true;
10124 
10125   // UseGPRForF16_F32 if targeting one of the soft-float ABIs, if passing a
10126   // variadic argument, or if no F16/F32 argument registers are available.
10127   bool UseGPRForF16_F32 = true;
10128   // UseGPRForF64 if targeting soft-float ABIs or an FLEN=32 ABI, if passing a
10129   // variadic argument, or if no F64 argument registers are available.
10130   bool UseGPRForF64 = true;
10131 
10132   switch (ABI) {
10133   default:
10134     llvm_unreachable("Unexpected ABI");
10135   case RISCVABI::ABI_ILP32:
10136   case RISCVABI::ABI_LP64:
10137     break;
10138   case RISCVABI::ABI_ILP32F:
10139   case RISCVABI::ABI_LP64F:
10140     UseGPRForF16_F32 = !IsFixed;
10141     break;
10142   case RISCVABI::ABI_ILP32D:
10143   case RISCVABI::ABI_LP64D:
10144     UseGPRForF16_F32 = !IsFixed;
10145     UseGPRForF64 = !IsFixed;
10146     break;
10147   }
10148 
10149   // FPR16, FPR32, and FPR64 alias each other.
10150   if (State.getFirstUnallocated(ArgFPR32s) == array_lengthof(ArgFPR32s)) {
10151     UseGPRForF16_F32 = true;
10152     UseGPRForF64 = true;
10153   }
10154 
10155   // From this point on, rely on UseGPRForF16_F32, UseGPRForF64 and
10156   // similar local variables rather than directly checking against the target
10157   // ABI.
10158 
10159   if (UseGPRForF16_F32 && (ValVT == MVT::f16 || ValVT == MVT::f32)) {
10160     LocVT = XLenVT;
10161     LocInfo = CCValAssign::BCvt;
10162   } else if (UseGPRForF64 && XLen == 64 && ValVT == MVT::f64) {
10163     LocVT = MVT::i64;
10164     LocInfo = CCValAssign::BCvt;
10165   }
10166 
10167   // If this is a variadic argument, the RISC-V calling convention requires
10168   // that it is assigned an 'even' or 'aligned' register if it has 8-byte
10169   // alignment (RV32) or 16-byte alignment (RV64). An aligned register should
10170   // be used regardless of whether the original argument was split during
10171   // legalisation or not. The argument will not be passed by registers if the
10172   // original type is larger than 2*XLEN, so the register alignment rule does
10173   // not apply.
10174   unsigned TwoXLenInBytes = (2 * XLen) / 8;
10175   if (!IsFixed && ArgFlags.getNonZeroOrigAlign() == TwoXLenInBytes &&
10176       DL.getTypeAllocSize(OrigTy) == TwoXLenInBytes) {
10177     unsigned RegIdx = State.getFirstUnallocated(ArgGPRs);
10178     // Skip 'odd' register if necessary.
10179     if (RegIdx != array_lengthof(ArgGPRs) && RegIdx % 2 == 1)
10180       State.AllocateReg(ArgGPRs);
10181   }
10182 
10183   SmallVectorImpl<CCValAssign> &PendingLocs = State.getPendingLocs();
10184   SmallVectorImpl<ISD::ArgFlagsTy> &PendingArgFlags =
10185       State.getPendingArgFlags();
10186 
10187   assert(PendingLocs.size() == PendingArgFlags.size() &&
10188          "PendingLocs and PendingArgFlags out of sync");
10189 
10190   // Handle passing f64 on RV32D with a soft float ABI or when floating point
10191   // registers are exhausted.
10192   if (UseGPRForF64 && XLen == 32 && ValVT == MVT::f64) {
10193     assert(!ArgFlags.isSplit() && PendingLocs.empty() &&
10194            "Can't lower f64 if it is split");
10195     // Depending on available argument GPRS, f64 may be passed in a pair of
10196     // GPRs, split between a GPR and the stack, or passed completely on the
10197     // stack. LowerCall/LowerFormalArguments/LowerReturn must recognise these
10198     // cases.
10199     Register Reg = State.AllocateReg(ArgGPRs);
10200     LocVT = MVT::i32;
10201     if (!Reg) {
10202       unsigned StackOffset = State.AllocateStack(8, Align(8));
10203       State.addLoc(
10204           CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
10205       return false;
10206     }
10207     if (!State.AllocateReg(ArgGPRs))
10208       State.AllocateStack(4, Align(4));
10209     State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
10210     return false;
10211   }
10212 
10213   // Fixed-length vectors are located in the corresponding scalable-vector
10214   // container types.
10215   if (ValVT.isFixedLengthVector())
10216     LocVT = TLI.getContainerForFixedLengthVector(LocVT);
10217 
10218   // Split arguments might be passed indirectly, so keep track of the pending
10219   // values. Split vectors are passed via a mix of registers and indirectly, so
10220   // treat them as we would any other argument.
10221   if (ValVT.isScalarInteger() && (ArgFlags.isSplit() || !PendingLocs.empty())) {
10222     LocVT = XLenVT;
10223     LocInfo = CCValAssign::Indirect;
10224     PendingLocs.push_back(
10225         CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo));
10226     PendingArgFlags.push_back(ArgFlags);
10227     if (!ArgFlags.isSplitEnd()) {
10228       return false;
10229     }
10230   }
10231 
10232   // If the split argument only had two elements, it should be passed directly
10233   // in registers or on the stack.
10234   if (ValVT.isScalarInteger() && ArgFlags.isSplitEnd() &&
10235       PendingLocs.size() <= 2) {
10236     assert(PendingLocs.size() == 2 && "Unexpected PendingLocs.size()");
10237     // Apply the normal calling convention rules to the first half of the
10238     // split argument.
10239     CCValAssign VA = PendingLocs[0];
10240     ISD::ArgFlagsTy AF = PendingArgFlags[0];
10241     PendingLocs.clear();
10242     PendingArgFlags.clear();
10243     return CC_RISCVAssign2XLen(XLen, State, VA, AF, ValNo, ValVT, LocVT,
10244                                ArgFlags);
10245   }
10246 
10247   // Allocate to a register if possible, or else a stack slot.
10248   Register Reg;
10249   unsigned StoreSizeBytes = XLen / 8;
10250   Align StackAlign = Align(XLen / 8);
10251 
10252   if (ValVT == MVT::f16 && !UseGPRForF16_F32)
10253     Reg = State.AllocateReg(ArgFPR16s);
10254   else if (ValVT == MVT::f32 && !UseGPRForF16_F32)
10255     Reg = State.AllocateReg(ArgFPR32s);
10256   else if (ValVT == MVT::f64 && !UseGPRForF64)
10257     Reg = State.AllocateReg(ArgFPR64s);
10258   else if (ValVT.isVector()) {
10259     Reg = allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI);
10260     if (!Reg) {
10261       // For return values, the vector must be passed fully via registers or
10262       // via the stack.
10263       // FIXME: The proposed vector ABI only mandates v8-v15 for return values,
10264       // but we're using all of them.
10265       if (IsRet)
10266         return true;
10267       // Try using a GPR to pass the address
10268       if ((Reg = State.AllocateReg(ArgGPRs))) {
10269         LocVT = XLenVT;
10270         LocInfo = CCValAssign::Indirect;
10271       } else if (ValVT.isScalableVector()) {
10272         LocVT = XLenVT;
10273         LocInfo = CCValAssign::Indirect;
10274       } else {
10275         // Pass fixed-length vectors on the stack.
10276         LocVT = ValVT;
10277         StoreSizeBytes = ValVT.getStoreSize();
10278         // Align vectors to their element sizes, being careful for vXi1
10279         // vectors.
10280         StackAlign = MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne();
10281       }
10282     }
10283   } else {
10284     Reg = State.AllocateReg(ArgGPRs);
10285   }
10286 
10287   unsigned StackOffset =
10288       Reg ? 0 : State.AllocateStack(StoreSizeBytes, StackAlign);
10289 
10290   // If we reach this point and PendingLocs is non-empty, we must be at the
10291   // end of a split argument that must be passed indirectly.
10292   if (!PendingLocs.empty()) {
10293     assert(ArgFlags.isSplitEnd() && "Expected ArgFlags.isSplitEnd()");
10294     assert(PendingLocs.size() > 2 && "Unexpected PendingLocs.size()");
10295 
10296     for (auto &It : PendingLocs) {
10297       if (Reg)
10298         It.convertToReg(Reg);
10299       else
10300         It.convertToMem(StackOffset);
10301       State.addLoc(It);
10302     }
10303     PendingLocs.clear();
10304     PendingArgFlags.clear();
10305     return false;
10306   }
10307 
10308   assert((!UseGPRForF16_F32 || !UseGPRForF64 || LocVT == XLenVT ||
10309           (TLI.getSubtarget().hasVInstructions() && ValVT.isVector())) &&
10310          "Expected an XLenVT or vector types at this stage");
10311 
10312   if (Reg) {
10313     State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
10314     return false;
10315   }
10316 
10317   // When a floating-point value is passed on the stack, no bit-conversion is
10318   // needed.
10319   if (ValVT.isFloatingPoint()) {
10320     LocVT = ValVT;
10321     LocInfo = CCValAssign::Full;
10322   }
10323   State.addLoc(CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
10324   return false;
10325 }
10326 
10327 template <typename ArgTy>
10328 static Optional<unsigned> preAssignMask(const ArgTy &Args) {
10329   for (const auto &ArgIdx : enumerate(Args)) {
10330     MVT ArgVT = ArgIdx.value().VT;
10331     if (ArgVT.isVector() && ArgVT.getVectorElementType() == MVT::i1)
10332       return ArgIdx.index();
10333   }
10334   return None;
10335 }
10336 
10337 void RISCVTargetLowering::analyzeInputArgs(
10338     MachineFunction &MF, CCState &CCInfo,
10339     const SmallVectorImpl<ISD::InputArg> &Ins, bool IsRet,
10340     RISCVCCAssignFn Fn) const {
10341   unsigned NumArgs = Ins.size();
10342   FunctionType *FType = MF.getFunction().getFunctionType();
10343 
10344   Optional<unsigned> FirstMaskArgument;
10345   if (Subtarget.hasVInstructions())
10346     FirstMaskArgument = preAssignMask(Ins);
10347 
10348   for (unsigned i = 0; i != NumArgs; ++i) {
10349     MVT ArgVT = Ins[i].VT;
10350     ISD::ArgFlagsTy ArgFlags = Ins[i].Flags;
10351 
10352     Type *ArgTy = nullptr;
10353     if (IsRet)
10354       ArgTy = FType->getReturnType();
10355     else if (Ins[i].isOrigArg())
10356       ArgTy = FType->getParamType(Ins[i].getOrigArgIndex());
10357 
10358     RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
10359     if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full,
10360            ArgFlags, CCInfo, /*IsFixed=*/true, IsRet, ArgTy, *this,
10361            FirstMaskArgument)) {
10362       LLVM_DEBUG(dbgs() << "InputArg #" << i << " has unhandled type "
10363                         << EVT(ArgVT).getEVTString() << '\n');
10364       llvm_unreachable(nullptr);
10365     }
10366   }
10367 }
10368 
10369 void RISCVTargetLowering::analyzeOutputArgs(
10370     MachineFunction &MF, CCState &CCInfo,
10371     const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsRet,
10372     CallLoweringInfo *CLI, RISCVCCAssignFn Fn) const {
10373   unsigned NumArgs = Outs.size();
10374 
10375   Optional<unsigned> FirstMaskArgument;
10376   if (Subtarget.hasVInstructions())
10377     FirstMaskArgument = preAssignMask(Outs);
10378 
10379   for (unsigned i = 0; i != NumArgs; i++) {
10380     MVT ArgVT = Outs[i].VT;
10381     ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
10382     Type *OrigTy = CLI ? CLI->getArgs()[Outs[i].OrigArgIndex].Ty : nullptr;
10383 
10384     RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
10385     if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full,
10386            ArgFlags, CCInfo, Outs[i].IsFixed, IsRet, OrigTy, *this,
10387            FirstMaskArgument)) {
10388       LLVM_DEBUG(dbgs() << "OutputArg #" << i << " has unhandled type "
10389                         << EVT(ArgVT).getEVTString() << "\n");
10390       llvm_unreachable(nullptr);
10391     }
10392   }
10393 }
10394 
10395 // Convert Val to a ValVT. Should not be called for CCValAssign::Indirect
10396 // values.
10397 static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDValue Val,
10398                                    const CCValAssign &VA, const SDLoc &DL,
10399                                    const RISCVSubtarget &Subtarget) {
10400   switch (VA.getLocInfo()) {
10401   default:
10402     llvm_unreachable("Unexpected CCValAssign::LocInfo");
10403   case CCValAssign::Full:
10404     if (VA.getValVT().isFixedLengthVector() && VA.getLocVT().isScalableVector())
10405       Val = convertFromScalableVector(VA.getValVT(), Val, DAG, Subtarget);
10406     break;
10407   case CCValAssign::BCvt:
10408     if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16)
10409       Val = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, Val);
10410     else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32)
10411       Val = DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, Val);
10412     else
10413       Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val);
10414     break;
10415   }
10416   return Val;
10417 }
10418 
10419 // The caller is responsible for loading the full value if the argument is
10420 // passed with CCValAssign::Indirect.
10421 static SDValue unpackFromRegLoc(SelectionDAG &DAG, SDValue Chain,
10422                                 const CCValAssign &VA, const SDLoc &DL,
10423                                 const RISCVTargetLowering &TLI) {
10424   MachineFunction &MF = DAG.getMachineFunction();
10425   MachineRegisterInfo &RegInfo = MF.getRegInfo();
10426   EVT LocVT = VA.getLocVT();
10427   SDValue Val;
10428   const TargetRegisterClass *RC = TLI.getRegClassFor(LocVT.getSimpleVT());
10429   Register VReg = RegInfo.createVirtualRegister(RC);
10430   RegInfo.addLiveIn(VA.getLocReg(), VReg);
10431   Val = DAG.getCopyFromReg(Chain, DL, VReg, LocVT);
10432 
10433   if (VA.getLocInfo() == CCValAssign::Indirect)
10434     return Val;
10435 
10436   return convertLocVTToValVT(DAG, Val, VA, DL, TLI.getSubtarget());
10437 }
10438 
10439 static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDValue Val,
10440                                    const CCValAssign &VA, const SDLoc &DL,
10441                                    const RISCVSubtarget &Subtarget) {
10442   EVT LocVT = VA.getLocVT();
10443 
10444   switch (VA.getLocInfo()) {
10445   default:
10446     llvm_unreachable("Unexpected CCValAssign::LocInfo");
10447   case CCValAssign::Full:
10448     if (VA.getValVT().isFixedLengthVector() && LocVT.isScalableVector())
10449       Val = convertToScalableVector(LocVT, Val, DAG, Subtarget);
10450     break;
10451   case CCValAssign::BCvt:
10452     if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16)
10453       Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, VA.getLocVT(), Val);
10454     else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32)
10455       Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Val);
10456     else
10457       Val = DAG.getNode(ISD::BITCAST, DL, LocVT, Val);
10458     break;
10459   }
10460   return Val;
10461 }
10462 
10463 // The caller is responsible for loading the full value if the argument is
10464 // passed with CCValAssign::Indirect.
10465 static SDValue unpackFromMemLoc(SelectionDAG &DAG, SDValue Chain,
10466                                 const CCValAssign &VA, const SDLoc &DL) {
10467   MachineFunction &MF = DAG.getMachineFunction();
10468   MachineFrameInfo &MFI = MF.getFrameInfo();
10469   EVT LocVT = VA.getLocVT();
10470   EVT ValVT = VA.getValVT();
10471   EVT PtrVT = MVT::getIntegerVT(DAG.getDataLayout().getPointerSizeInBits(0));
10472   if (ValVT.isScalableVector()) {
10473     // When the value is a scalable vector, we save the pointer which points to
10474     // the scalable vector value in the stack. The ValVT will be the pointer
10475     // type, instead of the scalable vector type.
10476     ValVT = LocVT;
10477   }
10478   int FI = MFI.CreateFixedObject(ValVT.getStoreSize(), VA.getLocMemOffset(),
10479                                  /*IsImmutable=*/true);
10480   SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
10481   SDValue Val;
10482 
10483   ISD::LoadExtType ExtType;
10484   switch (VA.getLocInfo()) {
10485   default:
10486     llvm_unreachable("Unexpected CCValAssign::LocInfo");
10487   case CCValAssign::Full:
10488   case CCValAssign::Indirect:
10489   case CCValAssign::BCvt:
10490     ExtType = ISD::NON_EXTLOAD;
10491     break;
10492   }
10493   Val = DAG.getExtLoad(
10494       ExtType, DL, LocVT, Chain, FIN,
10495       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), ValVT);
10496   return Val;
10497 }
10498 
10499 static SDValue unpackF64OnRV32DSoftABI(SelectionDAG &DAG, SDValue Chain,
10500                                        const CCValAssign &VA, const SDLoc &DL) {
10501   assert(VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64 &&
10502          "Unexpected VA");
10503   MachineFunction &MF = DAG.getMachineFunction();
10504   MachineFrameInfo &MFI = MF.getFrameInfo();
10505   MachineRegisterInfo &RegInfo = MF.getRegInfo();
10506 
10507   if (VA.isMemLoc()) {
10508     // f64 is passed on the stack.
10509     int FI =
10510         MFI.CreateFixedObject(8, VA.getLocMemOffset(), /*IsImmutable=*/true);
10511     SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
10512     return DAG.getLoad(MVT::f64, DL, Chain, FIN,
10513                        MachinePointerInfo::getFixedStack(MF, FI));
10514   }
10515 
10516   assert(VA.isRegLoc() && "Expected register VA assignment");
10517 
10518   Register LoVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
10519   RegInfo.addLiveIn(VA.getLocReg(), LoVReg);
10520   SDValue Lo = DAG.getCopyFromReg(Chain, DL, LoVReg, MVT::i32);
10521   SDValue Hi;
10522   if (VA.getLocReg() == RISCV::X17) {
10523     // Second half of f64 is passed on the stack.
10524     int FI = MFI.CreateFixedObject(4, 0, /*IsImmutable=*/true);
10525     SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
10526     Hi = DAG.getLoad(MVT::i32, DL, Chain, FIN,
10527                      MachinePointerInfo::getFixedStack(MF, FI));
10528   } else {
10529     // Second half of f64 is passed in another GPR.
10530     Register HiVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
10531     RegInfo.addLiveIn(VA.getLocReg() + 1, HiVReg);
10532     Hi = DAG.getCopyFromReg(Chain, DL, HiVReg, MVT::i32);
10533   }
10534   return DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, Lo, Hi);
10535 }
10536 
10537 // FastCC has less than 1% performance improvement for some particular
10538 // benchmark. But theoretically, it may has benenfit for some cases.
10539 static bool CC_RISCV_FastCC(const DataLayout &DL, RISCVABI::ABI ABI,
10540                             unsigned ValNo, MVT ValVT, MVT LocVT,
10541                             CCValAssign::LocInfo LocInfo,
10542                             ISD::ArgFlagsTy ArgFlags, CCState &State,
10543                             bool IsFixed, bool IsRet, Type *OrigTy,
10544                             const RISCVTargetLowering &TLI,
10545                             Optional<unsigned> FirstMaskArgument) {
10546 
10547   // X5 and X6 might be used for save-restore libcall.
10548   static const MCPhysReg GPRList[] = {
10549       RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, RISCV::X14,
10550       RISCV::X15, RISCV::X16, RISCV::X17, RISCV::X7,  RISCV::X28,
10551       RISCV::X29, RISCV::X30, RISCV::X31};
10552 
10553   if (LocVT == MVT::i32 || LocVT == MVT::i64) {
10554     if (unsigned Reg = State.AllocateReg(GPRList)) {
10555       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
10556       return false;
10557     }
10558   }
10559 
10560   if (LocVT == MVT::f16) {
10561     static const MCPhysReg FPR16List[] = {
10562         RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, RISCV::F14_H,
10563         RISCV::F15_H, RISCV::F16_H, RISCV::F17_H, RISCV::F0_H,  RISCV::F1_H,
10564         RISCV::F2_H,  RISCV::F3_H,  RISCV::F4_H,  RISCV::F5_H,  RISCV::F6_H,
10565         RISCV::F7_H,  RISCV::F28_H, RISCV::F29_H, RISCV::F30_H, RISCV::F31_H};
10566     if (unsigned Reg = State.AllocateReg(FPR16List)) {
10567       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
10568       return false;
10569     }
10570   }
10571 
10572   if (LocVT == MVT::f32) {
10573     static const MCPhysReg FPR32List[] = {
10574         RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, RISCV::F14_F,
10575         RISCV::F15_F, RISCV::F16_F, RISCV::F17_F, RISCV::F0_F,  RISCV::F1_F,
10576         RISCV::F2_F,  RISCV::F3_F,  RISCV::F4_F,  RISCV::F5_F,  RISCV::F6_F,
10577         RISCV::F7_F,  RISCV::F28_F, RISCV::F29_F, RISCV::F30_F, RISCV::F31_F};
10578     if (unsigned Reg = State.AllocateReg(FPR32List)) {
10579       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
10580       return false;
10581     }
10582   }
10583 
10584   if (LocVT == MVT::f64) {
10585     static const MCPhysReg FPR64List[] = {
10586         RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, RISCV::F14_D,
10587         RISCV::F15_D, RISCV::F16_D, RISCV::F17_D, RISCV::F0_D,  RISCV::F1_D,
10588         RISCV::F2_D,  RISCV::F3_D,  RISCV::F4_D,  RISCV::F5_D,  RISCV::F6_D,
10589         RISCV::F7_D,  RISCV::F28_D, RISCV::F29_D, RISCV::F30_D, RISCV::F31_D};
10590     if (unsigned Reg = State.AllocateReg(FPR64List)) {
10591       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
10592       return false;
10593     }
10594   }
10595 
10596   if (LocVT == MVT::i32 || LocVT == MVT::f32) {
10597     unsigned Offset4 = State.AllocateStack(4, Align(4));
10598     State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset4, LocVT, LocInfo));
10599     return false;
10600   }
10601 
10602   if (LocVT == MVT::i64 || LocVT == MVT::f64) {
10603     unsigned Offset5 = State.AllocateStack(8, Align(8));
10604     State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset5, LocVT, LocInfo));
10605     return false;
10606   }
10607 
10608   if (LocVT.isVector()) {
10609     if (unsigned Reg =
10610             allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI)) {
10611       // Fixed-length vectors are located in the corresponding scalable-vector
10612       // container types.
10613       if (ValVT.isFixedLengthVector())
10614         LocVT = TLI.getContainerForFixedLengthVector(LocVT);
10615       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
10616     } else {
10617       // Try and pass the address via a "fast" GPR.
10618       if (unsigned GPRReg = State.AllocateReg(GPRList)) {
10619         LocInfo = CCValAssign::Indirect;
10620         LocVT = TLI.getSubtarget().getXLenVT();
10621         State.addLoc(CCValAssign::getReg(ValNo, ValVT, GPRReg, LocVT, LocInfo));
10622       } else if (ValVT.isFixedLengthVector()) {
10623         auto StackAlign =
10624             MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne();
10625         unsigned StackOffset =
10626             State.AllocateStack(ValVT.getStoreSize(), StackAlign);
10627         State.addLoc(
10628             CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
10629       } else {
10630         // Can't pass scalable vectors on the stack.
10631         return true;
10632       }
10633     }
10634 
10635     return false;
10636   }
10637 
10638   return true; // CC didn't match.
10639 }
10640 
10641 static bool CC_RISCV_GHC(unsigned ValNo, MVT ValVT, MVT LocVT,
10642                          CCValAssign::LocInfo LocInfo,
10643                          ISD::ArgFlagsTy ArgFlags, CCState &State) {
10644 
10645   if (LocVT == MVT::i32 || LocVT == MVT::i64) {
10646     // Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, R6, R7, SpLim
10647     //                        s1    s2  s3  s4  s5  s6  s7  s8  s9  s10 s11
10648     static const MCPhysReg GPRList[] = {
10649         RISCV::X9, RISCV::X18, RISCV::X19, RISCV::X20, RISCV::X21, RISCV::X22,
10650         RISCV::X23, RISCV::X24, RISCV::X25, RISCV::X26, RISCV::X27};
10651     if (unsigned Reg = State.AllocateReg(GPRList)) {
10652       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
10653       return false;
10654     }
10655   }
10656 
10657   if (LocVT == MVT::f32) {
10658     // Pass in STG registers: F1, ..., F6
10659     //                        fs0 ... fs5
10660     static const MCPhysReg FPR32List[] = {RISCV::F8_F, RISCV::F9_F,
10661                                           RISCV::F18_F, RISCV::F19_F,
10662                                           RISCV::F20_F, RISCV::F21_F};
10663     if (unsigned Reg = State.AllocateReg(FPR32List)) {
10664       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
10665       return false;
10666     }
10667   }
10668 
10669   if (LocVT == MVT::f64) {
10670     // Pass in STG registers: D1, ..., D6
10671     //                        fs6 ... fs11
10672     static const MCPhysReg FPR64List[] = {RISCV::F22_D, RISCV::F23_D,
10673                                           RISCV::F24_D, RISCV::F25_D,
10674                                           RISCV::F26_D, RISCV::F27_D};
10675     if (unsigned Reg = State.AllocateReg(FPR64List)) {
10676       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
10677       return false;
10678     }
10679   }
10680 
10681   report_fatal_error("No registers left in GHC calling convention");
10682   return true;
10683 }
10684 
10685 // Transform physical registers into virtual registers.
10686 SDValue RISCVTargetLowering::LowerFormalArguments(
10687     SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
10688     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
10689     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
10690 
10691   MachineFunction &MF = DAG.getMachineFunction();
10692 
10693   switch (CallConv) {
10694   default:
10695     report_fatal_error("Unsupported calling convention");
10696   case CallingConv::C:
10697   case CallingConv::Fast:
10698     break;
10699   case CallingConv::GHC:
10700     if (!MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtF] ||
10701         !MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtD])
10702       report_fatal_error(
10703         "GHC calling convention requires the F and D instruction set extensions");
10704   }
10705 
10706   const Function &Func = MF.getFunction();
10707   if (Func.hasFnAttribute("interrupt")) {
10708     if (!Func.arg_empty())
10709       report_fatal_error(
10710         "Functions with the interrupt attribute cannot have arguments!");
10711 
10712     StringRef Kind =
10713       MF.getFunction().getFnAttribute("interrupt").getValueAsString();
10714 
10715     if (!(Kind == "user" || Kind == "supervisor" || Kind == "machine"))
10716       report_fatal_error(
10717         "Function interrupt attribute argument not supported!");
10718   }
10719 
10720   EVT PtrVT = getPointerTy(DAG.getDataLayout());
10721   MVT XLenVT = Subtarget.getXLenVT();
10722   unsigned XLenInBytes = Subtarget.getXLen() / 8;
10723   // Used with vargs to acumulate store chains.
10724   std::vector<SDValue> OutChains;
10725 
10726   // Assign locations to all of the incoming arguments.
10727   SmallVector<CCValAssign, 16> ArgLocs;
10728   CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
10729 
10730   if (CallConv == CallingConv::GHC)
10731     CCInfo.AnalyzeFormalArguments(Ins, CC_RISCV_GHC);
10732   else
10733     analyzeInputArgs(MF, CCInfo, Ins, /*IsRet=*/false,
10734                      CallConv == CallingConv::Fast ? CC_RISCV_FastCC
10735                                                    : CC_RISCV);
10736 
10737   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
10738     CCValAssign &VA = ArgLocs[i];
10739     SDValue ArgValue;
10740     // Passing f64 on RV32D with a soft float ABI must be handled as a special
10741     // case.
10742     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64)
10743       ArgValue = unpackF64OnRV32DSoftABI(DAG, Chain, VA, DL);
10744     else if (VA.isRegLoc())
10745       ArgValue = unpackFromRegLoc(DAG, Chain, VA, DL, *this);
10746     else
10747       ArgValue = unpackFromMemLoc(DAG, Chain, VA, DL);
10748 
10749     if (VA.getLocInfo() == CCValAssign::Indirect) {
10750       // If the original argument was split and passed by reference (e.g. i128
10751       // on RV32), we need to load all parts of it here (using the same
10752       // address). Vectors may be partly split to registers and partly to the
10753       // stack, in which case the base address is partly offset and subsequent
10754       // stores are relative to that.
10755       InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue,
10756                                    MachinePointerInfo()));
10757       unsigned ArgIndex = Ins[i].OrigArgIndex;
10758       unsigned ArgPartOffset = Ins[i].PartOffset;
10759       assert(VA.getValVT().isVector() || ArgPartOffset == 0);
10760       while (i + 1 != e && Ins[i + 1].OrigArgIndex == ArgIndex) {
10761         CCValAssign &PartVA = ArgLocs[i + 1];
10762         unsigned PartOffset = Ins[i + 1].PartOffset - ArgPartOffset;
10763         SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL);
10764         if (PartVA.getValVT().isScalableVector())
10765           Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset);
10766         SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, Offset);
10767         InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address,
10768                                      MachinePointerInfo()));
10769         ++i;
10770       }
10771       continue;
10772     }
10773     InVals.push_back(ArgValue);
10774   }
10775 
10776   if (IsVarArg) {
10777     ArrayRef<MCPhysReg> ArgRegs = makeArrayRef(ArgGPRs);
10778     unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs);
10779     const TargetRegisterClass *RC = &RISCV::GPRRegClass;
10780     MachineFrameInfo &MFI = MF.getFrameInfo();
10781     MachineRegisterInfo &RegInfo = MF.getRegInfo();
10782     RISCVMachineFunctionInfo *RVFI = MF.getInfo<RISCVMachineFunctionInfo>();
10783 
10784     // Offset of the first variable argument from stack pointer, and size of
10785     // the vararg save area. For now, the varargs save area is either zero or
10786     // large enough to hold a0-a7.
10787     int VaArgOffset, VarArgsSaveSize;
10788 
10789     // If all registers are allocated, then all varargs must be passed on the
10790     // stack and we don't need to save any argregs.
10791     if (ArgRegs.size() == Idx) {
10792       VaArgOffset = CCInfo.getNextStackOffset();
10793       VarArgsSaveSize = 0;
10794     } else {
10795       VarArgsSaveSize = XLenInBytes * (ArgRegs.size() - Idx);
10796       VaArgOffset = -VarArgsSaveSize;
10797     }
10798 
10799     // Record the frame index of the first variable argument
10800     // which is a value necessary to VASTART.
10801     int FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true);
10802     RVFI->setVarArgsFrameIndex(FI);
10803 
10804     // If saving an odd number of registers then create an extra stack slot to
10805     // ensure that the frame pointer is 2*XLEN-aligned, which in turn ensures
10806     // offsets to even-numbered registered remain 2*XLEN-aligned.
10807     if (Idx % 2) {
10808       MFI.CreateFixedObject(XLenInBytes, VaArgOffset - (int)XLenInBytes, true);
10809       VarArgsSaveSize += XLenInBytes;
10810     }
10811 
10812     // Copy the integer registers that may have been used for passing varargs
10813     // to the vararg save area.
10814     for (unsigned I = Idx; I < ArgRegs.size();
10815          ++I, VaArgOffset += XLenInBytes) {
10816       const Register Reg = RegInfo.createVirtualRegister(RC);
10817       RegInfo.addLiveIn(ArgRegs[I], Reg);
10818       SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, XLenVT);
10819       FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true);
10820       SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
10821       SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff,
10822                                    MachinePointerInfo::getFixedStack(MF, FI));
10823       cast<StoreSDNode>(Store.getNode())
10824           ->getMemOperand()
10825           ->setValue((Value *)nullptr);
10826       OutChains.push_back(Store);
10827     }
10828     RVFI->setVarArgsSaveSize(VarArgsSaveSize);
10829   }
10830 
10831   // All stores are grouped in one node to allow the matching between
10832   // the size of Ins and InVals. This only happens for vararg functions.
10833   if (!OutChains.empty()) {
10834     OutChains.push_back(Chain);
10835     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains);
10836   }
10837 
10838   return Chain;
10839 }
10840 
10841 /// isEligibleForTailCallOptimization - Check whether the call is eligible
10842 /// for tail call optimization.
10843 /// Note: This is modelled after ARM's IsEligibleForTailCallOptimization.
10844 bool RISCVTargetLowering::isEligibleForTailCallOptimization(
10845     CCState &CCInfo, CallLoweringInfo &CLI, MachineFunction &MF,
10846     const SmallVector<CCValAssign, 16> &ArgLocs) const {
10847 
10848   auto &Callee = CLI.Callee;
10849   auto CalleeCC = CLI.CallConv;
10850   auto &Outs = CLI.Outs;
10851   auto &Caller = MF.getFunction();
10852   auto CallerCC = Caller.getCallingConv();
10853 
10854   // Exception-handling functions need a special set of instructions to
10855   // indicate a return to the hardware. Tail-calling another function would
10856   // probably break this.
10857   // TODO: The "interrupt" attribute isn't currently defined by RISC-V. This
10858   // should be expanded as new function attributes are introduced.
10859   if (Caller.hasFnAttribute("interrupt"))
10860     return false;
10861 
10862   // Do not tail call opt if the stack is used to pass parameters.
10863   if (CCInfo.getNextStackOffset() != 0)
10864     return false;
10865 
10866   // Do not tail call opt if any parameters need to be passed indirectly.
10867   // Since long doubles (fp128) and i128 are larger than 2*XLEN, they are
10868   // passed indirectly. So the address of the value will be passed in a
10869   // register, or if not available, then the address is put on the stack. In
10870   // order to pass indirectly, space on the stack often needs to be allocated
10871   // in order to store the value. In this case the CCInfo.getNextStackOffset()
10872   // != 0 check is not enough and we need to check if any CCValAssign ArgsLocs
10873   // are passed CCValAssign::Indirect.
10874   for (auto &VA : ArgLocs)
10875     if (VA.getLocInfo() == CCValAssign::Indirect)
10876       return false;
10877 
10878   // Do not tail call opt if either caller or callee uses struct return
10879   // semantics.
10880   auto IsCallerStructRet = Caller.hasStructRetAttr();
10881   auto IsCalleeStructRet = Outs.empty() ? false : Outs[0].Flags.isSRet();
10882   if (IsCallerStructRet || IsCalleeStructRet)
10883     return false;
10884 
10885   // Externally-defined functions with weak linkage should not be
10886   // tail-called. The behaviour of branch instructions in this situation (as
10887   // used for tail calls) is implementation-defined, so we cannot rely on the
10888   // linker replacing the tail call with a return.
10889   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
10890     const GlobalValue *GV = G->getGlobal();
10891     if (GV->hasExternalWeakLinkage())
10892       return false;
10893   }
10894 
10895   // The callee has to preserve all registers the caller needs to preserve.
10896   const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo();
10897   const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
10898   if (CalleeCC != CallerCC) {
10899     const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
10900     if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
10901       return false;
10902   }
10903 
10904   // Byval parameters hand the function a pointer directly into the stack area
10905   // we want to reuse during a tail call. Working around this *is* possible
10906   // but less efficient and uglier in LowerCall.
10907   for (auto &Arg : Outs)
10908     if (Arg.Flags.isByVal())
10909       return false;
10910 
10911   return true;
10912 }
10913 
10914 static Align getPrefTypeAlign(EVT VT, SelectionDAG &DAG) {
10915   return DAG.getDataLayout().getPrefTypeAlign(
10916       VT.getTypeForEVT(*DAG.getContext()));
10917 }
10918 
10919 // Lower a call to a callseq_start + CALL + callseq_end chain, and add input
10920 // and output parameter nodes.
10921 SDValue RISCVTargetLowering::LowerCall(CallLoweringInfo &CLI,
10922                                        SmallVectorImpl<SDValue> &InVals) const {
10923   SelectionDAG &DAG = CLI.DAG;
10924   SDLoc &DL = CLI.DL;
10925   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
10926   SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
10927   SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
10928   SDValue Chain = CLI.Chain;
10929   SDValue Callee = CLI.Callee;
10930   bool &IsTailCall = CLI.IsTailCall;
10931   CallingConv::ID CallConv = CLI.CallConv;
10932   bool IsVarArg = CLI.IsVarArg;
10933   EVT PtrVT = getPointerTy(DAG.getDataLayout());
10934   MVT XLenVT = Subtarget.getXLenVT();
10935 
10936   MachineFunction &MF = DAG.getMachineFunction();
10937 
10938   // Analyze the operands of the call, assigning locations to each operand.
10939   SmallVector<CCValAssign, 16> ArgLocs;
10940   CCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
10941 
10942   if (CallConv == CallingConv::GHC)
10943     ArgCCInfo.AnalyzeCallOperands(Outs, CC_RISCV_GHC);
10944   else
10945     analyzeOutputArgs(MF, ArgCCInfo, Outs, /*IsRet=*/false, &CLI,
10946                       CallConv == CallingConv::Fast ? CC_RISCV_FastCC
10947                                                     : CC_RISCV);
10948 
10949   // Check if it's really possible to do a tail call.
10950   if (IsTailCall)
10951     IsTailCall = isEligibleForTailCallOptimization(ArgCCInfo, CLI, MF, ArgLocs);
10952 
10953   if (IsTailCall)
10954     ++NumTailCalls;
10955   else if (CLI.CB && CLI.CB->isMustTailCall())
10956     report_fatal_error("failed to perform tail call elimination on a call "
10957                        "site marked musttail");
10958 
10959   // Get a count of how many bytes are to be pushed on the stack.
10960   unsigned NumBytes = ArgCCInfo.getNextStackOffset();
10961 
10962   // Create local copies for byval args
10963   SmallVector<SDValue, 8> ByValArgs;
10964   for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
10965     ISD::ArgFlagsTy Flags = Outs[i].Flags;
10966     if (!Flags.isByVal())
10967       continue;
10968 
10969     SDValue Arg = OutVals[i];
10970     unsigned Size = Flags.getByValSize();
10971     Align Alignment = Flags.getNonZeroByValAlign();
10972 
10973     int FI =
10974         MF.getFrameInfo().CreateStackObject(Size, Alignment, /*isSS=*/false);
10975     SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
10976     SDValue SizeNode = DAG.getConstant(Size, DL, XLenVT);
10977 
10978     Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Alignment,
10979                           /*IsVolatile=*/false,
10980                           /*AlwaysInline=*/false, IsTailCall,
10981                           MachinePointerInfo(), MachinePointerInfo());
10982     ByValArgs.push_back(FIPtr);
10983   }
10984 
10985   if (!IsTailCall)
10986     Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, CLI.DL);
10987 
10988   // Copy argument values to their designated locations.
10989   SmallVector<std::pair<Register, SDValue>, 8> RegsToPass;
10990   SmallVector<SDValue, 8> MemOpChains;
10991   SDValue StackPtr;
10992   for (unsigned i = 0, j = 0, e = ArgLocs.size(); i != e; ++i) {
10993     CCValAssign &VA = ArgLocs[i];
10994     SDValue ArgValue = OutVals[i];
10995     ISD::ArgFlagsTy Flags = Outs[i].Flags;
10996 
10997     // Handle passing f64 on RV32D with a soft float ABI as a special case.
10998     bool IsF64OnRV32DSoftABI =
10999         VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64;
11000     if (IsF64OnRV32DSoftABI && VA.isRegLoc()) {
11001       SDValue SplitF64 = DAG.getNode(
11002           RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), ArgValue);
11003       SDValue Lo = SplitF64.getValue(0);
11004       SDValue Hi = SplitF64.getValue(1);
11005 
11006       Register RegLo = VA.getLocReg();
11007       RegsToPass.push_back(std::make_pair(RegLo, Lo));
11008 
11009       if (RegLo == RISCV::X17) {
11010         // Second half of f64 is passed on the stack.
11011         // Work out the address of the stack slot.
11012         if (!StackPtr.getNode())
11013           StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT);
11014         // Emit the store.
11015         MemOpChains.push_back(
11016             DAG.getStore(Chain, DL, Hi, StackPtr, MachinePointerInfo()));
11017       } else {
11018         // Second half of f64 is passed in another GPR.
11019         assert(RegLo < RISCV::X31 && "Invalid register pair");
11020         Register RegHigh = RegLo + 1;
11021         RegsToPass.push_back(std::make_pair(RegHigh, Hi));
11022       }
11023       continue;
11024     }
11025 
11026     // IsF64OnRV32DSoftABI && VA.isMemLoc() is handled below in the same way
11027     // as any other MemLoc.
11028 
11029     // Promote the value if needed.
11030     // For now, only handle fully promoted and indirect arguments.
11031     if (VA.getLocInfo() == CCValAssign::Indirect) {
11032       // Store the argument in a stack slot and pass its address.
11033       Align StackAlign =
11034           std::max(getPrefTypeAlign(Outs[i].ArgVT, DAG),
11035                    getPrefTypeAlign(ArgValue.getValueType(), DAG));
11036       TypeSize StoredSize = ArgValue.getValueType().getStoreSize();
11037       // If the original argument was split (e.g. i128), we need
11038       // to store the required parts of it here (and pass just one address).
11039       // Vectors may be partly split to registers and partly to the stack, in
11040       // which case the base address is partly offset and subsequent stores are
11041       // relative to that.
11042       unsigned ArgIndex = Outs[i].OrigArgIndex;
11043       unsigned ArgPartOffset = Outs[i].PartOffset;
11044       assert(VA.getValVT().isVector() || ArgPartOffset == 0);
11045       // Calculate the total size to store. We don't have access to what we're
11046       // actually storing other than performing the loop and collecting the
11047       // info.
11048       SmallVector<std::pair<SDValue, SDValue>> Parts;
11049       while (i + 1 != e && Outs[i + 1].OrigArgIndex == ArgIndex) {
11050         SDValue PartValue = OutVals[i + 1];
11051         unsigned PartOffset = Outs[i + 1].PartOffset - ArgPartOffset;
11052         SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL);
11053         EVT PartVT = PartValue.getValueType();
11054         if (PartVT.isScalableVector())
11055           Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset);
11056         StoredSize += PartVT.getStoreSize();
11057         StackAlign = std::max(StackAlign, getPrefTypeAlign(PartVT, DAG));
11058         Parts.push_back(std::make_pair(PartValue, Offset));
11059         ++i;
11060       }
11061       SDValue SpillSlot = DAG.CreateStackTemporary(StoredSize, StackAlign);
11062       int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
11063       MemOpChains.push_back(
11064           DAG.getStore(Chain, DL, ArgValue, SpillSlot,
11065                        MachinePointerInfo::getFixedStack(MF, FI)));
11066       for (const auto &Part : Parts) {
11067         SDValue PartValue = Part.first;
11068         SDValue PartOffset = Part.second;
11069         SDValue Address =
11070             DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, PartOffset);
11071         MemOpChains.push_back(
11072             DAG.getStore(Chain, DL, PartValue, Address,
11073                          MachinePointerInfo::getFixedStack(MF, FI)));
11074       }
11075       ArgValue = SpillSlot;
11076     } else {
11077       ArgValue = convertValVTToLocVT(DAG, ArgValue, VA, DL, Subtarget);
11078     }
11079 
11080     // Use local copy if it is a byval arg.
11081     if (Flags.isByVal())
11082       ArgValue = ByValArgs[j++];
11083 
11084     if (VA.isRegLoc()) {
11085       // Queue up the argument copies and emit them at the end.
11086       RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue));
11087     } else {
11088       assert(VA.isMemLoc() && "Argument not register or memory");
11089       assert(!IsTailCall && "Tail call not allowed if stack is used "
11090                             "for passing parameters");
11091 
11092       // Work out the address of the stack slot.
11093       if (!StackPtr.getNode())
11094         StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT);
11095       SDValue Address =
11096           DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr,
11097                       DAG.getIntPtrConstant(VA.getLocMemOffset(), DL));
11098 
11099       // Emit the store.
11100       MemOpChains.push_back(
11101           DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo()));
11102     }
11103   }
11104 
11105   // Join the stores, which are independent of one another.
11106   if (!MemOpChains.empty())
11107     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
11108 
11109   SDValue Glue;
11110 
11111   // Build a sequence of copy-to-reg nodes, chained and glued together.
11112   for (auto &Reg : RegsToPass) {
11113     Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, Glue);
11114     Glue = Chain.getValue(1);
11115   }
11116 
11117   // Validate that none of the argument registers have been marked as
11118   // reserved, if so report an error. Do the same for the return address if this
11119   // is not a tailcall.
11120   validateCCReservedRegs(RegsToPass, MF);
11121   if (!IsTailCall &&
11122       MF.getSubtarget<RISCVSubtarget>().isRegisterReservedByUser(RISCV::X1))
11123     MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
11124         MF.getFunction(),
11125         "Return address register required, but has been reserved."});
11126 
11127   // If the callee is a GlobalAddress/ExternalSymbol node, turn it into a
11128   // TargetGlobalAddress/TargetExternalSymbol node so that legalize won't
11129   // split it and then direct call can be matched by PseudoCALL.
11130   if (GlobalAddressSDNode *S = dyn_cast<GlobalAddressSDNode>(Callee)) {
11131     const GlobalValue *GV = S->getGlobal();
11132 
11133     unsigned OpFlags = RISCVII::MO_CALL;
11134     if (!getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV))
11135       OpFlags = RISCVII::MO_PLT;
11136 
11137     Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags);
11138   } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
11139     unsigned OpFlags = RISCVII::MO_CALL;
11140 
11141     if (!getTargetMachine().shouldAssumeDSOLocal(*MF.getFunction().getParent(),
11142                                                  nullptr))
11143       OpFlags = RISCVII::MO_PLT;
11144 
11145     Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, OpFlags);
11146   }
11147 
11148   // The first call operand is the chain and the second is the target address.
11149   SmallVector<SDValue, 8> Ops;
11150   Ops.push_back(Chain);
11151   Ops.push_back(Callee);
11152 
11153   // Add argument registers to the end of the list so that they are
11154   // known live into the call.
11155   for (auto &Reg : RegsToPass)
11156     Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType()));
11157 
11158   if (!IsTailCall) {
11159     // Add a register mask operand representing the call-preserved registers.
11160     const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
11161     const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
11162     assert(Mask && "Missing call preserved mask for calling convention");
11163     Ops.push_back(DAG.getRegisterMask(Mask));
11164   }
11165 
11166   // Glue the call to the argument copies, if any.
11167   if (Glue.getNode())
11168     Ops.push_back(Glue);
11169 
11170   // Emit the call.
11171   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
11172 
11173   if (IsTailCall) {
11174     MF.getFrameInfo().setHasTailCall();
11175     return DAG.getNode(RISCVISD::TAIL, DL, NodeTys, Ops);
11176   }
11177 
11178   Chain = DAG.getNode(RISCVISD::CALL, DL, NodeTys, Ops);
11179   DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge);
11180   Glue = Chain.getValue(1);
11181 
11182   // Mark the end of the call, which is glued to the call itself.
11183   Chain = DAG.getCALLSEQ_END(Chain,
11184                              DAG.getConstant(NumBytes, DL, PtrVT, true),
11185                              DAG.getConstant(0, DL, PtrVT, true),
11186                              Glue, DL);
11187   Glue = Chain.getValue(1);
11188 
11189   // Assign locations to each value returned by this call.
11190   SmallVector<CCValAssign, 16> RVLocs;
11191   CCState RetCCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext());
11192   analyzeInputArgs(MF, RetCCInfo, Ins, /*IsRet=*/true, CC_RISCV);
11193 
11194   // Copy all of the result registers out of their specified physreg.
11195   for (auto &VA : RVLocs) {
11196     // Copy the value out
11197     SDValue RetValue =
11198         DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), Glue);
11199     // Glue the RetValue to the end of the call sequence
11200     Chain = RetValue.getValue(1);
11201     Glue = RetValue.getValue(2);
11202 
11203     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) {
11204       assert(VA.getLocReg() == ArgGPRs[0] && "Unexpected reg assignment");
11205       SDValue RetValue2 =
11206           DAG.getCopyFromReg(Chain, DL, ArgGPRs[1], MVT::i32, Glue);
11207       Chain = RetValue2.getValue(1);
11208       Glue = RetValue2.getValue(2);
11209       RetValue = DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, RetValue,
11210                              RetValue2);
11211     }
11212 
11213     RetValue = convertLocVTToValVT(DAG, RetValue, VA, DL, Subtarget);
11214 
11215     InVals.push_back(RetValue);
11216   }
11217 
11218   return Chain;
11219 }
11220 
11221 bool RISCVTargetLowering::CanLowerReturn(
11222     CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg,
11223     const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const {
11224   SmallVector<CCValAssign, 16> RVLocs;
11225   CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);
11226 
11227   Optional<unsigned> FirstMaskArgument;
11228   if (Subtarget.hasVInstructions())
11229     FirstMaskArgument = preAssignMask(Outs);
11230 
11231   for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
11232     MVT VT = Outs[i].VT;
11233     ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
11234     RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
11235     if (CC_RISCV(MF.getDataLayout(), ABI, i, VT, VT, CCValAssign::Full,
11236                  ArgFlags, CCInfo, /*IsFixed=*/true, /*IsRet=*/true, nullptr,
11237                  *this, FirstMaskArgument))
11238       return false;
11239   }
11240   return true;
11241 }
11242 
11243 SDValue
11244 RISCVTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
11245                                  bool IsVarArg,
11246                                  const SmallVectorImpl<ISD::OutputArg> &Outs,
11247                                  const SmallVectorImpl<SDValue> &OutVals,
11248                                  const SDLoc &DL, SelectionDAG &DAG) const {
11249   const MachineFunction &MF = DAG.getMachineFunction();
11250   const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>();
11251 
11252   // Stores the assignment of the return value to a location.
11253   SmallVector<CCValAssign, 16> RVLocs;
11254 
11255   // Info about the registers and stack slot.
11256   CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
11257                  *DAG.getContext());
11258 
11259   analyzeOutputArgs(DAG.getMachineFunction(), CCInfo, Outs, /*IsRet=*/true,
11260                     nullptr, CC_RISCV);
11261 
11262   if (CallConv == CallingConv::GHC && !RVLocs.empty())
11263     report_fatal_error("GHC functions return void only");
11264 
11265   SDValue Glue;
11266   SmallVector<SDValue, 4> RetOps(1, Chain);
11267 
11268   // Copy the result values into the output registers.
11269   for (unsigned i = 0, e = RVLocs.size(); i < e; ++i) {
11270     SDValue Val = OutVals[i];
11271     CCValAssign &VA = RVLocs[i];
11272     assert(VA.isRegLoc() && "Can only return in registers!");
11273 
11274     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) {
11275       // Handle returning f64 on RV32D with a soft float ABI.
11276       assert(VA.isRegLoc() && "Expected return via registers");
11277       SDValue SplitF64 = DAG.getNode(RISCVISD::SplitF64, DL,
11278                                      DAG.getVTList(MVT::i32, MVT::i32), Val);
11279       SDValue Lo = SplitF64.getValue(0);
11280       SDValue Hi = SplitF64.getValue(1);
11281       Register RegLo = VA.getLocReg();
11282       assert(RegLo < RISCV::X31 && "Invalid register pair");
11283       Register RegHi = RegLo + 1;
11284 
11285       if (STI.isRegisterReservedByUser(RegLo) ||
11286           STI.isRegisterReservedByUser(RegHi))
11287         MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
11288             MF.getFunction(),
11289             "Return value register required, but has been reserved."});
11290 
11291       Chain = DAG.getCopyToReg(Chain, DL, RegLo, Lo, Glue);
11292       Glue = Chain.getValue(1);
11293       RetOps.push_back(DAG.getRegister(RegLo, MVT::i32));
11294       Chain = DAG.getCopyToReg(Chain, DL, RegHi, Hi, Glue);
11295       Glue = Chain.getValue(1);
11296       RetOps.push_back(DAG.getRegister(RegHi, MVT::i32));
11297     } else {
11298       // Handle a 'normal' return.
11299       Val = convertValVTToLocVT(DAG, Val, VA, DL, Subtarget);
11300       Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Glue);
11301 
11302       if (STI.isRegisterReservedByUser(VA.getLocReg()))
11303         MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
11304             MF.getFunction(),
11305             "Return value register required, but has been reserved."});
11306 
11307       // Guarantee that all emitted copies are stuck together.
11308       Glue = Chain.getValue(1);
11309       RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
11310     }
11311   }
11312 
11313   RetOps[0] = Chain; // Update chain.
11314 
11315   // Add the glue node if we have it.
11316   if (Glue.getNode()) {
11317     RetOps.push_back(Glue);
11318   }
11319 
11320   unsigned RetOpc = RISCVISD::RET_FLAG;
11321   // Interrupt service routines use different return instructions.
11322   const Function &Func = DAG.getMachineFunction().getFunction();
11323   if (Func.hasFnAttribute("interrupt")) {
11324     if (!Func.getReturnType()->isVoidTy())
11325       report_fatal_error(
11326           "Functions with the interrupt attribute must have void return type!");
11327 
11328     MachineFunction &MF = DAG.getMachineFunction();
11329     StringRef Kind =
11330       MF.getFunction().getFnAttribute("interrupt").getValueAsString();
11331 
11332     if (Kind == "user")
11333       RetOpc = RISCVISD::URET_FLAG;
11334     else if (Kind == "supervisor")
11335       RetOpc = RISCVISD::SRET_FLAG;
11336     else
11337       RetOpc = RISCVISD::MRET_FLAG;
11338   }
11339 
11340   return DAG.getNode(RetOpc, DL, MVT::Other, RetOps);
11341 }
11342 
11343 void RISCVTargetLowering::validateCCReservedRegs(
11344     const SmallVectorImpl<std::pair<llvm::Register, llvm::SDValue>> &Regs,
11345     MachineFunction &MF) const {
11346   const Function &F = MF.getFunction();
11347   const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>();
11348 
11349   if (llvm::any_of(Regs, [&STI](auto Reg) {
11350         return STI.isRegisterReservedByUser(Reg.first);
11351       }))
11352     F.getContext().diagnose(DiagnosticInfoUnsupported{
11353         F, "Argument register required, but has been reserved."});
11354 }
11355 
11356 bool RISCVTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
11357   return CI->isTailCall();
11358 }
11359 
11360 const char *RISCVTargetLowering::getTargetNodeName(unsigned Opcode) const {
11361 #define NODE_NAME_CASE(NODE)                                                   \
11362   case RISCVISD::NODE:                                                         \
11363     return "RISCVISD::" #NODE;
11364   // clang-format off
11365   switch ((RISCVISD::NodeType)Opcode) {
11366   case RISCVISD::FIRST_NUMBER:
11367     break;
11368   NODE_NAME_CASE(RET_FLAG)
11369   NODE_NAME_CASE(URET_FLAG)
11370   NODE_NAME_CASE(SRET_FLAG)
11371   NODE_NAME_CASE(MRET_FLAG)
11372   NODE_NAME_CASE(CALL)
11373   NODE_NAME_CASE(SELECT_CC)
11374   NODE_NAME_CASE(BR_CC)
11375   NODE_NAME_CASE(BuildPairF64)
11376   NODE_NAME_CASE(SplitF64)
11377   NODE_NAME_CASE(TAIL)
11378   NODE_NAME_CASE(ADD_LO)
11379   NODE_NAME_CASE(HI)
11380   NODE_NAME_CASE(LLA)
11381   NODE_NAME_CASE(ADD_TPREL)
11382   NODE_NAME_CASE(LA)
11383   NODE_NAME_CASE(LA_TLS_IE)
11384   NODE_NAME_CASE(LA_TLS_GD)
11385   NODE_NAME_CASE(MULHSU)
11386   NODE_NAME_CASE(SLLW)
11387   NODE_NAME_CASE(SRAW)
11388   NODE_NAME_CASE(SRLW)
11389   NODE_NAME_CASE(DIVW)
11390   NODE_NAME_CASE(DIVUW)
11391   NODE_NAME_CASE(REMUW)
11392   NODE_NAME_CASE(ROLW)
11393   NODE_NAME_CASE(RORW)
11394   NODE_NAME_CASE(CLZW)
11395   NODE_NAME_CASE(CTZW)
11396   NODE_NAME_CASE(FSLW)
11397   NODE_NAME_CASE(FSRW)
11398   NODE_NAME_CASE(FSL)
11399   NODE_NAME_CASE(FSR)
11400   NODE_NAME_CASE(FMV_H_X)
11401   NODE_NAME_CASE(FMV_X_ANYEXTH)
11402   NODE_NAME_CASE(FMV_X_SIGNEXTH)
11403   NODE_NAME_CASE(FMV_W_X_RV64)
11404   NODE_NAME_CASE(FMV_X_ANYEXTW_RV64)
11405   NODE_NAME_CASE(FCVT_X)
11406   NODE_NAME_CASE(FCVT_XU)
11407   NODE_NAME_CASE(FCVT_W_RV64)
11408   NODE_NAME_CASE(FCVT_WU_RV64)
11409   NODE_NAME_CASE(STRICT_FCVT_W_RV64)
11410   NODE_NAME_CASE(STRICT_FCVT_WU_RV64)
11411   NODE_NAME_CASE(READ_CYCLE_WIDE)
11412   NODE_NAME_CASE(GREV)
11413   NODE_NAME_CASE(GREVW)
11414   NODE_NAME_CASE(GORC)
11415   NODE_NAME_CASE(GORCW)
11416   NODE_NAME_CASE(SHFL)
11417   NODE_NAME_CASE(SHFLW)
11418   NODE_NAME_CASE(UNSHFL)
11419   NODE_NAME_CASE(UNSHFLW)
11420   NODE_NAME_CASE(BFP)
11421   NODE_NAME_CASE(BFPW)
11422   NODE_NAME_CASE(BCOMPRESS)
11423   NODE_NAME_CASE(BCOMPRESSW)
11424   NODE_NAME_CASE(BDECOMPRESS)
11425   NODE_NAME_CASE(BDECOMPRESSW)
11426   NODE_NAME_CASE(VMV_V_X_VL)
11427   NODE_NAME_CASE(VFMV_V_F_VL)
11428   NODE_NAME_CASE(VMV_X_S)
11429   NODE_NAME_CASE(VMV_S_X_VL)
11430   NODE_NAME_CASE(VFMV_S_F_VL)
11431   NODE_NAME_CASE(SPLAT_VECTOR_SPLIT_I64_VL)
11432   NODE_NAME_CASE(READ_VLENB)
11433   NODE_NAME_CASE(TRUNCATE_VECTOR_VL)
11434   NODE_NAME_CASE(VSLIDEUP_VL)
11435   NODE_NAME_CASE(VSLIDE1UP_VL)
11436   NODE_NAME_CASE(VSLIDEDOWN_VL)
11437   NODE_NAME_CASE(VSLIDE1DOWN_VL)
11438   NODE_NAME_CASE(VID_VL)
11439   NODE_NAME_CASE(VFNCVT_ROD_VL)
11440   NODE_NAME_CASE(VECREDUCE_ADD_VL)
11441   NODE_NAME_CASE(VECREDUCE_UMAX_VL)
11442   NODE_NAME_CASE(VECREDUCE_SMAX_VL)
11443   NODE_NAME_CASE(VECREDUCE_UMIN_VL)
11444   NODE_NAME_CASE(VECREDUCE_SMIN_VL)
11445   NODE_NAME_CASE(VECREDUCE_AND_VL)
11446   NODE_NAME_CASE(VECREDUCE_OR_VL)
11447   NODE_NAME_CASE(VECREDUCE_XOR_VL)
11448   NODE_NAME_CASE(VECREDUCE_FADD_VL)
11449   NODE_NAME_CASE(VECREDUCE_SEQ_FADD_VL)
11450   NODE_NAME_CASE(VECREDUCE_FMIN_VL)
11451   NODE_NAME_CASE(VECREDUCE_FMAX_VL)
11452   NODE_NAME_CASE(ADD_VL)
11453   NODE_NAME_CASE(AND_VL)
11454   NODE_NAME_CASE(MUL_VL)
11455   NODE_NAME_CASE(OR_VL)
11456   NODE_NAME_CASE(SDIV_VL)
11457   NODE_NAME_CASE(SHL_VL)
11458   NODE_NAME_CASE(SREM_VL)
11459   NODE_NAME_CASE(SRA_VL)
11460   NODE_NAME_CASE(SRL_VL)
11461   NODE_NAME_CASE(SUB_VL)
11462   NODE_NAME_CASE(UDIV_VL)
11463   NODE_NAME_CASE(UREM_VL)
11464   NODE_NAME_CASE(XOR_VL)
11465   NODE_NAME_CASE(SADDSAT_VL)
11466   NODE_NAME_CASE(UADDSAT_VL)
11467   NODE_NAME_CASE(SSUBSAT_VL)
11468   NODE_NAME_CASE(USUBSAT_VL)
11469   NODE_NAME_CASE(FADD_VL)
11470   NODE_NAME_CASE(FSUB_VL)
11471   NODE_NAME_CASE(FMUL_VL)
11472   NODE_NAME_CASE(FDIV_VL)
11473   NODE_NAME_CASE(FNEG_VL)
11474   NODE_NAME_CASE(FABS_VL)
11475   NODE_NAME_CASE(FSQRT_VL)
11476   NODE_NAME_CASE(VFMADD_VL)
11477   NODE_NAME_CASE(VFNMADD_VL)
11478   NODE_NAME_CASE(VFMSUB_VL)
11479   NODE_NAME_CASE(VFNMSUB_VL)
11480   NODE_NAME_CASE(FCOPYSIGN_VL)
11481   NODE_NAME_CASE(SMIN_VL)
11482   NODE_NAME_CASE(SMAX_VL)
11483   NODE_NAME_CASE(UMIN_VL)
11484   NODE_NAME_CASE(UMAX_VL)
11485   NODE_NAME_CASE(FMINNUM_VL)
11486   NODE_NAME_CASE(FMAXNUM_VL)
11487   NODE_NAME_CASE(MULHS_VL)
11488   NODE_NAME_CASE(MULHU_VL)
11489   NODE_NAME_CASE(FP_TO_SINT_VL)
11490   NODE_NAME_CASE(FP_TO_UINT_VL)
11491   NODE_NAME_CASE(SINT_TO_FP_VL)
11492   NODE_NAME_CASE(UINT_TO_FP_VL)
11493   NODE_NAME_CASE(FP_EXTEND_VL)
11494   NODE_NAME_CASE(FP_ROUND_VL)
11495   NODE_NAME_CASE(VWMUL_VL)
11496   NODE_NAME_CASE(VWMULU_VL)
11497   NODE_NAME_CASE(VWMULSU_VL)
11498   NODE_NAME_CASE(VWADD_VL)
11499   NODE_NAME_CASE(VWADDU_VL)
11500   NODE_NAME_CASE(VWSUB_VL)
11501   NODE_NAME_CASE(VWSUBU_VL)
11502   NODE_NAME_CASE(VWADD_W_VL)
11503   NODE_NAME_CASE(VWADDU_W_VL)
11504   NODE_NAME_CASE(VWSUB_W_VL)
11505   NODE_NAME_CASE(VWSUBU_W_VL)
11506   NODE_NAME_CASE(SETCC_VL)
11507   NODE_NAME_CASE(VSELECT_VL)
11508   NODE_NAME_CASE(VP_MERGE_VL)
11509   NODE_NAME_CASE(VMAND_VL)
11510   NODE_NAME_CASE(VMOR_VL)
11511   NODE_NAME_CASE(VMXOR_VL)
11512   NODE_NAME_CASE(VMCLR_VL)
11513   NODE_NAME_CASE(VMSET_VL)
11514   NODE_NAME_CASE(VRGATHER_VX_VL)
11515   NODE_NAME_CASE(VRGATHER_VV_VL)
11516   NODE_NAME_CASE(VRGATHEREI16_VV_VL)
11517   NODE_NAME_CASE(VSEXT_VL)
11518   NODE_NAME_CASE(VZEXT_VL)
11519   NODE_NAME_CASE(VCPOP_VL)
11520   NODE_NAME_CASE(READ_CSR)
11521   NODE_NAME_CASE(WRITE_CSR)
11522   NODE_NAME_CASE(SWAP_CSR)
11523   }
11524   // clang-format on
11525   return nullptr;
11526 #undef NODE_NAME_CASE
11527 }
11528 
11529 /// getConstraintType - Given a constraint letter, return the type of
11530 /// constraint it is for this target.
11531 RISCVTargetLowering::ConstraintType
11532 RISCVTargetLowering::getConstraintType(StringRef Constraint) const {
11533   if (Constraint.size() == 1) {
11534     switch (Constraint[0]) {
11535     default:
11536       break;
11537     case 'f':
11538       return C_RegisterClass;
11539     case 'I':
11540     case 'J':
11541     case 'K':
11542       return C_Immediate;
11543     case 'A':
11544       return C_Memory;
11545     case 'S': // A symbolic address
11546       return C_Other;
11547     }
11548   } else {
11549     if (Constraint == "vr" || Constraint == "vm")
11550       return C_RegisterClass;
11551   }
11552   return TargetLowering::getConstraintType(Constraint);
11553 }
11554 
11555 std::pair<unsigned, const TargetRegisterClass *>
11556 RISCVTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
11557                                                   StringRef Constraint,
11558                                                   MVT VT) const {
11559   // First, see if this is a constraint that directly corresponds to a
11560   // RISCV register class.
11561   if (Constraint.size() == 1) {
11562     switch (Constraint[0]) {
11563     case 'r':
11564       // TODO: Support fixed vectors up to XLen for P extension?
11565       if (VT.isVector())
11566         break;
11567       return std::make_pair(0U, &RISCV::GPRRegClass);
11568     case 'f':
11569       if (Subtarget.hasStdExtZfh() && VT == MVT::f16)
11570         return std::make_pair(0U, &RISCV::FPR16RegClass);
11571       if (Subtarget.hasStdExtF() && VT == MVT::f32)
11572         return std::make_pair(0U, &RISCV::FPR32RegClass);
11573       if (Subtarget.hasStdExtD() && VT == MVT::f64)
11574         return std::make_pair(0U, &RISCV::FPR64RegClass);
11575       break;
11576     default:
11577       break;
11578     }
11579   } else if (Constraint == "vr") {
11580     for (const auto *RC : {&RISCV::VRRegClass, &RISCV::VRM2RegClass,
11581                            &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) {
11582       if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy))
11583         return std::make_pair(0U, RC);
11584     }
11585   } else if (Constraint == "vm") {
11586     if (TRI->isTypeLegalForClass(RISCV::VMV0RegClass, VT.SimpleTy))
11587       return std::make_pair(0U, &RISCV::VMV0RegClass);
11588   }
11589 
11590   // Clang will correctly decode the usage of register name aliases into their
11591   // official names. However, other frontends like `rustc` do not. This allows
11592   // users of these frontends to use the ABI names for registers in LLVM-style
11593   // register constraints.
11594   unsigned XRegFromAlias = StringSwitch<unsigned>(Constraint.lower())
11595                                .Case("{zero}", RISCV::X0)
11596                                .Case("{ra}", RISCV::X1)
11597                                .Case("{sp}", RISCV::X2)
11598                                .Case("{gp}", RISCV::X3)
11599                                .Case("{tp}", RISCV::X4)
11600                                .Case("{t0}", RISCV::X5)
11601                                .Case("{t1}", RISCV::X6)
11602                                .Case("{t2}", RISCV::X7)
11603                                .Cases("{s0}", "{fp}", RISCV::X8)
11604                                .Case("{s1}", RISCV::X9)
11605                                .Case("{a0}", RISCV::X10)
11606                                .Case("{a1}", RISCV::X11)
11607                                .Case("{a2}", RISCV::X12)
11608                                .Case("{a3}", RISCV::X13)
11609                                .Case("{a4}", RISCV::X14)
11610                                .Case("{a5}", RISCV::X15)
11611                                .Case("{a6}", RISCV::X16)
11612                                .Case("{a7}", RISCV::X17)
11613                                .Case("{s2}", RISCV::X18)
11614                                .Case("{s3}", RISCV::X19)
11615                                .Case("{s4}", RISCV::X20)
11616                                .Case("{s5}", RISCV::X21)
11617                                .Case("{s6}", RISCV::X22)
11618                                .Case("{s7}", RISCV::X23)
11619                                .Case("{s8}", RISCV::X24)
11620                                .Case("{s9}", RISCV::X25)
11621                                .Case("{s10}", RISCV::X26)
11622                                .Case("{s11}", RISCV::X27)
11623                                .Case("{t3}", RISCV::X28)
11624                                .Case("{t4}", RISCV::X29)
11625                                .Case("{t5}", RISCV::X30)
11626                                .Case("{t6}", RISCV::X31)
11627                                .Default(RISCV::NoRegister);
11628   if (XRegFromAlias != RISCV::NoRegister)
11629     return std::make_pair(XRegFromAlias, &RISCV::GPRRegClass);
11630 
11631   // Since TargetLowering::getRegForInlineAsmConstraint uses the name of the
11632   // TableGen record rather than the AsmName to choose registers for InlineAsm
11633   // constraints, plus we want to match those names to the widest floating point
11634   // register type available, manually select floating point registers here.
11635   //
11636   // The second case is the ABI name of the register, so that frontends can also
11637   // use the ABI names in register constraint lists.
11638   if (Subtarget.hasStdExtF()) {
11639     unsigned FReg = StringSwitch<unsigned>(Constraint.lower())
11640                         .Cases("{f0}", "{ft0}", RISCV::F0_F)
11641                         .Cases("{f1}", "{ft1}", RISCV::F1_F)
11642                         .Cases("{f2}", "{ft2}", RISCV::F2_F)
11643                         .Cases("{f3}", "{ft3}", RISCV::F3_F)
11644                         .Cases("{f4}", "{ft4}", RISCV::F4_F)
11645                         .Cases("{f5}", "{ft5}", RISCV::F5_F)
11646                         .Cases("{f6}", "{ft6}", RISCV::F6_F)
11647                         .Cases("{f7}", "{ft7}", RISCV::F7_F)
11648                         .Cases("{f8}", "{fs0}", RISCV::F8_F)
11649                         .Cases("{f9}", "{fs1}", RISCV::F9_F)
11650                         .Cases("{f10}", "{fa0}", RISCV::F10_F)
11651                         .Cases("{f11}", "{fa1}", RISCV::F11_F)
11652                         .Cases("{f12}", "{fa2}", RISCV::F12_F)
11653                         .Cases("{f13}", "{fa3}", RISCV::F13_F)
11654                         .Cases("{f14}", "{fa4}", RISCV::F14_F)
11655                         .Cases("{f15}", "{fa5}", RISCV::F15_F)
11656                         .Cases("{f16}", "{fa6}", RISCV::F16_F)
11657                         .Cases("{f17}", "{fa7}", RISCV::F17_F)
11658                         .Cases("{f18}", "{fs2}", RISCV::F18_F)
11659                         .Cases("{f19}", "{fs3}", RISCV::F19_F)
11660                         .Cases("{f20}", "{fs4}", RISCV::F20_F)
11661                         .Cases("{f21}", "{fs5}", RISCV::F21_F)
11662                         .Cases("{f22}", "{fs6}", RISCV::F22_F)
11663                         .Cases("{f23}", "{fs7}", RISCV::F23_F)
11664                         .Cases("{f24}", "{fs8}", RISCV::F24_F)
11665                         .Cases("{f25}", "{fs9}", RISCV::F25_F)
11666                         .Cases("{f26}", "{fs10}", RISCV::F26_F)
11667                         .Cases("{f27}", "{fs11}", RISCV::F27_F)
11668                         .Cases("{f28}", "{ft8}", RISCV::F28_F)
11669                         .Cases("{f29}", "{ft9}", RISCV::F29_F)
11670                         .Cases("{f30}", "{ft10}", RISCV::F30_F)
11671                         .Cases("{f31}", "{ft11}", RISCV::F31_F)
11672                         .Default(RISCV::NoRegister);
11673     if (FReg != RISCV::NoRegister) {
11674       assert(RISCV::F0_F <= FReg && FReg <= RISCV::F31_F && "Unknown fp-reg");
11675       if (Subtarget.hasStdExtD() && (VT == MVT::f64 || VT == MVT::Other)) {
11676         unsigned RegNo = FReg - RISCV::F0_F;
11677         unsigned DReg = RISCV::F0_D + RegNo;
11678         return std::make_pair(DReg, &RISCV::FPR64RegClass);
11679       }
11680       if (VT == MVT::f32 || VT == MVT::Other)
11681         return std::make_pair(FReg, &RISCV::FPR32RegClass);
11682       if (Subtarget.hasStdExtZfh() && VT == MVT::f16) {
11683         unsigned RegNo = FReg - RISCV::F0_F;
11684         unsigned HReg = RISCV::F0_H + RegNo;
11685         return std::make_pair(HReg, &RISCV::FPR16RegClass);
11686       }
11687     }
11688   }
11689 
11690   if (Subtarget.hasVInstructions()) {
11691     Register VReg = StringSwitch<Register>(Constraint.lower())
11692                         .Case("{v0}", RISCV::V0)
11693                         .Case("{v1}", RISCV::V1)
11694                         .Case("{v2}", RISCV::V2)
11695                         .Case("{v3}", RISCV::V3)
11696                         .Case("{v4}", RISCV::V4)
11697                         .Case("{v5}", RISCV::V5)
11698                         .Case("{v6}", RISCV::V6)
11699                         .Case("{v7}", RISCV::V7)
11700                         .Case("{v8}", RISCV::V8)
11701                         .Case("{v9}", RISCV::V9)
11702                         .Case("{v10}", RISCV::V10)
11703                         .Case("{v11}", RISCV::V11)
11704                         .Case("{v12}", RISCV::V12)
11705                         .Case("{v13}", RISCV::V13)
11706                         .Case("{v14}", RISCV::V14)
11707                         .Case("{v15}", RISCV::V15)
11708                         .Case("{v16}", RISCV::V16)
11709                         .Case("{v17}", RISCV::V17)
11710                         .Case("{v18}", RISCV::V18)
11711                         .Case("{v19}", RISCV::V19)
11712                         .Case("{v20}", RISCV::V20)
11713                         .Case("{v21}", RISCV::V21)
11714                         .Case("{v22}", RISCV::V22)
11715                         .Case("{v23}", RISCV::V23)
11716                         .Case("{v24}", RISCV::V24)
11717                         .Case("{v25}", RISCV::V25)
11718                         .Case("{v26}", RISCV::V26)
11719                         .Case("{v27}", RISCV::V27)
11720                         .Case("{v28}", RISCV::V28)
11721                         .Case("{v29}", RISCV::V29)
11722                         .Case("{v30}", RISCV::V30)
11723                         .Case("{v31}", RISCV::V31)
11724                         .Default(RISCV::NoRegister);
11725     if (VReg != RISCV::NoRegister) {
11726       if (TRI->isTypeLegalForClass(RISCV::VMRegClass, VT.SimpleTy))
11727         return std::make_pair(VReg, &RISCV::VMRegClass);
11728       if (TRI->isTypeLegalForClass(RISCV::VRRegClass, VT.SimpleTy))
11729         return std::make_pair(VReg, &RISCV::VRRegClass);
11730       for (const auto *RC :
11731            {&RISCV::VRM2RegClass, &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) {
11732         if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy)) {
11733           VReg = TRI->getMatchingSuperReg(VReg, RISCV::sub_vrm1_0, RC);
11734           return std::make_pair(VReg, RC);
11735         }
11736       }
11737     }
11738   }
11739 
11740   std::pair<Register, const TargetRegisterClass *> Res =
11741       TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
11742 
11743   // If we picked one of the Zfinx register classes, remap it to the GPR class.
11744   // FIXME: When Zfinx is supported in CodeGen this will need to take the
11745   // Subtarget into account.
11746   if (Res.second == &RISCV::GPRF16RegClass ||
11747       Res.second == &RISCV::GPRF32RegClass ||
11748       Res.second == &RISCV::GPRF64RegClass)
11749     return std::make_pair(Res.first, &RISCV::GPRRegClass);
11750 
11751   return Res;
11752 }
11753 
11754 unsigned
11755 RISCVTargetLowering::getInlineAsmMemConstraint(StringRef ConstraintCode) const {
11756   // Currently only support length 1 constraints.
11757   if (ConstraintCode.size() == 1) {
11758     switch (ConstraintCode[0]) {
11759     case 'A':
11760       return InlineAsm::Constraint_A;
11761     default:
11762       break;
11763     }
11764   }
11765 
11766   return TargetLowering::getInlineAsmMemConstraint(ConstraintCode);
11767 }
11768 
11769 void RISCVTargetLowering::LowerAsmOperandForConstraint(
11770     SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops,
11771     SelectionDAG &DAG) const {
11772   // Currently only support length 1 constraints.
11773   if (Constraint.length() == 1) {
11774     switch (Constraint[0]) {
11775     case 'I':
11776       // Validate & create a 12-bit signed immediate operand.
11777       if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
11778         uint64_t CVal = C->getSExtValue();
11779         if (isInt<12>(CVal))
11780           Ops.push_back(
11781               DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT()));
11782       }
11783       return;
11784     case 'J':
11785       // Validate & create an integer zero operand.
11786       if (auto *C = dyn_cast<ConstantSDNode>(Op))
11787         if (C->getZExtValue() == 0)
11788           Ops.push_back(
11789               DAG.getTargetConstant(0, SDLoc(Op), Subtarget.getXLenVT()));
11790       return;
11791     case 'K':
11792       // Validate & create a 5-bit unsigned immediate operand.
11793       if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
11794         uint64_t CVal = C->getZExtValue();
11795         if (isUInt<5>(CVal))
11796           Ops.push_back(
11797               DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT()));
11798       }
11799       return;
11800     case 'S':
11801       if (const auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) {
11802         Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op),
11803                                                  GA->getValueType(0)));
11804       } else if (const auto *BA = dyn_cast<BlockAddressSDNode>(Op)) {
11805         Ops.push_back(DAG.getTargetBlockAddress(BA->getBlockAddress(),
11806                                                 BA->getValueType(0)));
11807       }
11808       return;
11809     default:
11810       break;
11811     }
11812   }
11813   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
11814 }
11815 
11816 Instruction *RISCVTargetLowering::emitLeadingFence(IRBuilderBase &Builder,
11817                                                    Instruction *Inst,
11818                                                    AtomicOrdering Ord) const {
11819   if (isa<LoadInst>(Inst) && Ord == AtomicOrdering::SequentiallyConsistent)
11820     return Builder.CreateFence(Ord);
11821   if (isa<StoreInst>(Inst) && isReleaseOrStronger(Ord))
11822     return Builder.CreateFence(AtomicOrdering::Release);
11823   return nullptr;
11824 }
11825 
11826 Instruction *RISCVTargetLowering::emitTrailingFence(IRBuilderBase &Builder,
11827                                                     Instruction *Inst,
11828                                                     AtomicOrdering Ord) const {
11829   if (isa<LoadInst>(Inst) && isAcquireOrStronger(Ord))
11830     return Builder.CreateFence(AtomicOrdering::Acquire);
11831   return nullptr;
11832 }
11833 
11834 TargetLowering::AtomicExpansionKind
11835 RISCVTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
11836   // atomicrmw {fadd,fsub} must be expanded to use compare-exchange, as floating
11837   // point operations can't be used in an lr/sc sequence without breaking the
11838   // forward-progress guarantee.
11839   if (AI->isFloatingPointOperation())
11840     return AtomicExpansionKind::CmpXChg;
11841 
11842   unsigned Size = AI->getType()->getPrimitiveSizeInBits();
11843   if (Size == 8 || Size == 16)
11844     return AtomicExpansionKind::MaskedIntrinsic;
11845   return AtomicExpansionKind::None;
11846 }
11847 
11848 static Intrinsic::ID
11849 getIntrinsicForMaskedAtomicRMWBinOp(unsigned XLen, AtomicRMWInst::BinOp BinOp) {
11850   if (XLen == 32) {
11851     switch (BinOp) {
11852     default:
11853       llvm_unreachable("Unexpected AtomicRMW BinOp");
11854     case AtomicRMWInst::Xchg:
11855       return Intrinsic::riscv_masked_atomicrmw_xchg_i32;
11856     case AtomicRMWInst::Add:
11857       return Intrinsic::riscv_masked_atomicrmw_add_i32;
11858     case AtomicRMWInst::Sub:
11859       return Intrinsic::riscv_masked_atomicrmw_sub_i32;
11860     case AtomicRMWInst::Nand:
11861       return Intrinsic::riscv_masked_atomicrmw_nand_i32;
11862     case AtomicRMWInst::Max:
11863       return Intrinsic::riscv_masked_atomicrmw_max_i32;
11864     case AtomicRMWInst::Min:
11865       return Intrinsic::riscv_masked_atomicrmw_min_i32;
11866     case AtomicRMWInst::UMax:
11867       return Intrinsic::riscv_masked_atomicrmw_umax_i32;
11868     case AtomicRMWInst::UMin:
11869       return Intrinsic::riscv_masked_atomicrmw_umin_i32;
11870     }
11871   }
11872 
11873   if (XLen == 64) {
11874     switch (BinOp) {
11875     default:
11876       llvm_unreachable("Unexpected AtomicRMW BinOp");
11877     case AtomicRMWInst::Xchg:
11878       return Intrinsic::riscv_masked_atomicrmw_xchg_i64;
11879     case AtomicRMWInst::Add:
11880       return Intrinsic::riscv_masked_atomicrmw_add_i64;
11881     case AtomicRMWInst::Sub:
11882       return Intrinsic::riscv_masked_atomicrmw_sub_i64;
11883     case AtomicRMWInst::Nand:
11884       return Intrinsic::riscv_masked_atomicrmw_nand_i64;
11885     case AtomicRMWInst::Max:
11886       return Intrinsic::riscv_masked_atomicrmw_max_i64;
11887     case AtomicRMWInst::Min:
11888       return Intrinsic::riscv_masked_atomicrmw_min_i64;
11889     case AtomicRMWInst::UMax:
11890       return Intrinsic::riscv_masked_atomicrmw_umax_i64;
11891     case AtomicRMWInst::UMin:
11892       return Intrinsic::riscv_masked_atomicrmw_umin_i64;
11893     }
11894   }
11895 
11896   llvm_unreachable("Unexpected XLen\n");
11897 }
11898 
11899 Value *RISCVTargetLowering::emitMaskedAtomicRMWIntrinsic(
11900     IRBuilderBase &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr,
11901     Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const {
11902   unsigned XLen = Subtarget.getXLen();
11903   Value *Ordering =
11904       Builder.getIntN(XLen, static_cast<uint64_t>(AI->getOrdering()));
11905   Type *Tys[] = {AlignedAddr->getType()};
11906   Function *LrwOpScwLoop = Intrinsic::getDeclaration(
11907       AI->getModule(),
11908       getIntrinsicForMaskedAtomicRMWBinOp(XLen, AI->getOperation()), Tys);
11909 
11910   if (XLen == 64) {
11911     Incr = Builder.CreateSExt(Incr, Builder.getInt64Ty());
11912     Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty());
11913     ShiftAmt = Builder.CreateSExt(ShiftAmt, Builder.getInt64Ty());
11914   }
11915 
11916   Value *Result;
11917 
11918   // Must pass the shift amount needed to sign extend the loaded value prior
11919   // to performing a signed comparison for min/max. ShiftAmt is the number of
11920   // bits to shift the value into position. Pass XLen-ShiftAmt-ValWidth, which
11921   // is the number of bits to left+right shift the value in order to
11922   // sign-extend.
11923   if (AI->getOperation() == AtomicRMWInst::Min ||
11924       AI->getOperation() == AtomicRMWInst::Max) {
11925     const DataLayout &DL = AI->getModule()->getDataLayout();
11926     unsigned ValWidth =
11927         DL.getTypeStoreSizeInBits(AI->getValOperand()->getType());
11928     Value *SextShamt =
11929         Builder.CreateSub(Builder.getIntN(XLen, XLen - ValWidth), ShiftAmt);
11930     Result = Builder.CreateCall(LrwOpScwLoop,
11931                                 {AlignedAddr, Incr, Mask, SextShamt, Ordering});
11932   } else {
11933     Result =
11934         Builder.CreateCall(LrwOpScwLoop, {AlignedAddr, Incr, Mask, Ordering});
11935   }
11936 
11937   if (XLen == 64)
11938     Result = Builder.CreateTrunc(Result, Builder.getInt32Ty());
11939   return Result;
11940 }
11941 
11942 TargetLowering::AtomicExpansionKind
11943 RISCVTargetLowering::shouldExpandAtomicCmpXchgInIR(
11944     AtomicCmpXchgInst *CI) const {
11945   unsigned Size = CI->getCompareOperand()->getType()->getPrimitiveSizeInBits();
11946   if (Size == 8 || Size == 16)
11947     return AtomicExpansionKind::MaskedIntrinsic;
11948   return AtomicExpansionKind::None;
11949 }
11950 
11951 Value *RISCVTargetLowering::emitMaskedAtomicCmpXchgIntrinsic(
11952     IRBuilderBase &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr,
11953     Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const {
11954   unsigned XLen = Subtarget.getXLen();
11955   Value *Ordering = Builder.getIntN(XLen, static_cast<uint64_t>(Ord));
11956   Intrinsic::ID CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i32;
11957   if (XLen == 64) {
11958     CmpVal = Builder.CreateSExt(CmpVal, Builder.getInt64Ty());
11959     NewVal = Builder.CreateSExt(NewVal, Builder.getInt64Ty());
11960     Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty());
11961     CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i64;
11962   }
11963   Type *Tys[] = {AlignedAddr->getType()};
11964   Function *MaskedCmpXchg =
11965       Intrinsic::getDeclaration(CI->getModule(), CmpXchgIntrID, Tys);
11966   Value *Result = Builder.CreateCall(
11967       MaskedCmpXchg, {AlignedAddr, CmpVal, NewVal, Mask, Ordering});
11968   if (XLen == 64)
11969     Result = Builder.CreateTrunc(Result, Builder.getInt32Ty());
11970   return Result;
11971 }
11972 
11973 bool RISCVTargetLowering::shouldRemoveExtendFromGSIndex(EVT IndexVT,
11974                                                         EVT DataVT) const {
11975   return false;
11976 }
11977 
11978 bool RISCVTargetLowering::shouldConvertFpToSat(unsigned Op, EVT FPVT,
11979                                                EVT VT) const {
11980   if (!isOperationLegalOrCustom(Op, VT) || !FPVT.isSimple())
11981     return false;
11982 
11983   switch (FPVT.getSimpleVT().SimpleTy) {
11984   case MVT::f16:
11985     return Subtarget.hasStdExtZfh();
11986   case MVT::f32:
11987     return Subtarget.hasStdExtF();
11988   case MVT::f64:
11989     return Subtarget.hasStdExtD();
11990   default:
11991     return false;
11992   }
11993 }
11994 
11995 unsigned RISCVTargetLowering::getJumpTableEncoding() const {
11996   // If we are using the small code model, we can reduce size of jump table
11997   // entry to 4 bytes.
11998   if (Subtarget.is64Bit() && !isPositionIndependent() &&
11999       getTargetMachine().getCodeModel() == CodeModel::Small) {
12000     return MachineJumpTableInfo::EK_Custom32;
12001   }
12002   return TargetLowering::getJumpTableEncoding();
12003 }
12004 
12005 const MCExpr *RISCVTargetLowering::LowerCustomJumpTableEntry(
12006     const MachineJumpTableInfo *MJTI, const MachineBasicBlock *MBB,
12007     unsigned uid, MCContext &Ctx) const {
12008   assert(Subtarget.is64Bit() && !isPositionIndependent() &&
12009          getTargetMachine().getCodeModel() == CodeModel::Small);
12010   return MCSymbolRefExpr::create(MBB->getSymbol(), Ctx);
12011 }
12012 
12013 bool RISCVTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF,
12014                                                      EVT VT) const {
12015   VT = VT.getScalarType();
12016 
12017   if (!VT.isSimple())
12018     return false;
12019 
12020   switch (VT.getSimpleVT().SimpleTy) {
12021   case MVT::f16:
12022     return Subtarget.hasStdExtZfh();
12023   case MVT::f32:
12024     return Subtarget.hasStdExtF();
12025   case MVT::f64:
12026     return Subtarget.hasStdExtD();
12027   default:
12028     break;
12029   }
12030 
12031   return false;
12032 }
12033 
12034 Register RISCVTargetLowering::getExceptionPointerRegister(
12035     const Constant *PersonalityFn) const {
12036   return RISCV::X10;
12037 }
12038 
12039 Register RISCVTargetLowering::getExceptionSelectorRegister(
12040     const Constant *PersonalityFn) const {
12041   return RISCV::X11;
12042 }
12043 
12044 bool RISCVTargetLowering::shouldExtendTypeInLibCall(EVT Type) const {
12045   // Return false to suppress the unnecessary extensions if the LibCall
12046   // arguments or return value is f32 type for LP64 ABI.
12047   RISCVABI::ABI ABI = Subtarget.getTargetABI();
12048   if (ABI == RISCVABI::ABI_LP64 && (Type == MVT::f32))
12049     return false;
12050 
12051   return true;
12052 }
12053 
12054 bool RISCVTargetLowering::shouldSignExtendTypeInLibCall(EVT Type, bool IsSigned) const {
12055   if (Subtarget.is64Bit() && Type == MVT::i32)
12056     return true;
12057 
12058   return IsSigned;
12059 }
12060 
12061 bool RISCVTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT,
12062                                                  SDValue C) const {
12063   // Check integral scalar types.
12064   if (VT.isScalarInteger()) {
12065     // Omit the optimization if the sub target has the M extension and the data
12066     // size exceeds XLen.
12067     if (Subtarget.hasStdExtM() && VT.getSizeInBits() > Subtarget.getXLen())
12068       return false;
12069     if (auto *ConstNode = dyn_cast<ConstantSDNode>(C.getNode())) {
12070       // Break the MUL to a SLLI and an ADD/SUB.
12071       const APInt &Imm = ConstNode->getAPIntValue();
12072       if ((Imm + 1).isPowerOf2() || (Imm - 1).isPowerOf2() ||
12073           (1 - Imm).isPowerOf2() || (-1 - Imm).isPowerOf2())
12074         return true;
12075       // Optimize the MUL to (SH*ADD x, (SLLI x, bits)) if Imm is not simm12.
12076       if (Subtarget.hasStdExtZba() && !Imm.isSignedIntN(12) &&
12077           ((Imm - 2).isPowerOf2() || (Imm - 4).isPowerOf2() ||
12078            (Imm - 8).isPowerOf2()))
12079         return true;
12080       // Omit the following optimization if the sub target has the M extension
12081       // and the data size >= XLen.
12082       if (Subtarget.hasStdExtM() && VT.getSizeInBits() >= Subtarget.getXLen())
12083         return false;
12084       // Break the MUL to two SLLI instructions and an ADD/SUB, if Imm needs
12085       // a pair of LUI/ADDI.
12086       if (!Imm.isSignedIntN(12) && Imm.countTrailingZeros() < 12) {
12087         APInt ImmS = Imm.ashr(Imm.countTrailingZeros());
12088         if ((ImmS + 1).isPowerOf2() || (ImmS - 1).isPowerOf2() ||
12089             (1 - ImmS).isPowerOf2())
12090           return true;
12091       }
12092     }
12093   }
12094 
12095   return false;
12096 }
12097 
12098 bool RISCVTargetLowering::isMulAddWithConstProfitable(SDValue AddNode,
12099                                                       SDValue ConstNode) const {
12100   // Let the DAGCombiner decide for vectors.
12101   EVT VT = AddNode.getValueType();
12102   if (VT.isVector())
12103     return true;
12104 
12105   // Let the DAGCombiner decide for larger types.
12106   if (VT.getScalarSizeInBits() > Subtarget.getXLen())
12107     return true;
12108 
12109   // It is worse if c1 is simm12 while c1*c2 is not.
12110   ConstantSDNode *C1Node = cast<ConstantSDNode>(AddNode.getOperand(1));
12111   ConstantSDNode *C2Node = cast<ConstantSDNode>(ConstNode);
12112   const APInt &C1 = C1Node->getAPIntValue();
12113   const APInt &C2 = C2Node->getAPIntValue();
12114   if (C1.isSignedIntN(12) && !(C1 * C2).isSignedIntN(12))
12115     return false;
12116 
12117   // Default to true and let the DAGCombiner decide.
12118   return true;
12119 }
12120 
12121 bool RISCVTargetLowering::allowsMisalignedMemoryAccesses(
12122     EVT VT, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags,
12123     bool *Fast) const {
12124   if (!VT.isVector()) {
12125     if (Fast)
12126       *Fast = false;
12127     return Subtarget.enableUnalignedScalarMem();
12128   }
12129 
12130   // All vector implementations must support element alignment
12131   EVT ElemVT = VT.getVectorElementType();
12132   if (Alignment >= ElemVT.getStoreSize()) {
12133     if (Fast)
12134       *Fast = true;
12135     return true;
12136   }
12137 
12138   return false;
12139 }
12140 
12141 bool RISCVTargetLowering::splitValueIntoRegisterParts(
12142     SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts,
12143     unsigned NumParts, MVT PartVT, Optional<CallingConv::ID> CC) const {
12144   bool IsABIRegCopy = CC.has_value();
12145   EVT ValueVT = Val.getValueType();
12146   if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) {
12147     // Cast the f16 to i16, extend to i32, pad with ones to make a float nan,
12148     // and cast to f32.
12149     Val = DAG.getNode(ISD::BITCAST, DL, MVT::i16, Val);
12150     Val = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Val);
12151     Val = DAG.getNode(ISD::OR, DL, MVT::i32, Val,
12152                       DAG.getConstant(0xFFFF0000, DL, MVT::i32));
12153     Val = DAG.getNode(ISD::BITCAST, DL, MVT::f32, Val);
12154     Parts[0] = Val;
12155     return true;
12156   }
12157 
12158   if (ValueVT.isScalableVector() && PartVT.isScalableVector()) {
12159     LLVMContext &Context = *DAG.getContext();
12160     EVT ValueEltVT = ValueVT.getVectorElementType();
12161     EVT PartEltVT = PartVT.getVectorElementType();
12162     unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize();
12163     unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize();
12164     if (PartVTBitSize % ValueVTBitSize == 0) {
12165       assert(PartVTBitSize >= ValueVTBitSize);
12166       // If the element types are different, bitcast to the same element type of
12167       // PartVT first.
12168       // Give an example here, we want copy a <vscale x 1 x i8> value to
12169       // <vscale x 4 x i16>.
12170       // We need to convert <vscale x 1 x i8> to <vscale x 8 x i8> by insert
12171       // subvector, then we can bitcast to <vscale x 4 x i16>.
12172       if (ValueEltVT != PartEltVT) {
12173         if (PartVTBitSize > ValueVTBitSize) {
12174           unsigned Count = PartVTBitSize / ValueEltVT.getFixedSizeInBits();
12175           assert(Count != 0 && "The number of element should not be zero.");
12176           EVT SameEltTypeVT =
12177               EVT::getVectorVT(Context, ValueEltVT, Count, /*IsScalable=*/true);
12178           Val = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, SameEltTypeVT,
12179                             DAG.getUNDEF(SameEltTypeVT), Val,
12180                             DAG.getVectorIdxConstant(0, DL));
12181         }
12182         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
12183       } else {
12184         Val =
12185             DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT),
12186                         Val, DAG.getVectorIdxConstant(0, DL));
12187       }
12188       Parts[0] = Val;
12189       return true;
12190     }
12191   }
12192   return false;
12193 }
12194 
12195 SDValue RISCVTargetLowering::joinRegisterPartsIntoValue(
12196     SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts,
12197     MVT PartVT, EVT ValueVT, Optional<CallingConv::ID> CC) const {
12198   bool IsABIRegCopy = CC.has_value();
12199   if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) {
12200     SDValue Val = Parts[0];
12201 
12202     // Cast the f32 to i32, truncate to i16, and cast back to f16.
12203     Val = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Val);
12204     Val = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Val);
12205     Val = DAG.getNode(ISD::BITCAST, DL, MVT::f16, Val);
12206     return Val;
12207   }
12208 
12209   if (ValueVT.isScalableVector() && PartVT.isScalableVector()) {
12210     LLVMContext &Context = *DAG.getContext();
12211     SDValue Val = Parts[0];
12212     EVT ValueEltVT = ValueVT.getVectorElementType();
12213     EVT PartEltVT = PartVT.getVectorElementType();
12214     unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize();
12215     unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize();
12216     if (PartVTBitSize % ValueVTBitSize == 0) {
12217       assert(PartVTBitSize >= ValueVTBitSize);
12218       EVT SameEltTypeVT = ValueVT;
12219       // If the element types are different, convert it to the same element type
12220       // of PartVT.
12221       // Give an example here, we want copy a <vscale x 1 x i8> value from
12222       // <vscale x 4 x i16>.
12223       // We need to convert <vscale x 4 x i16> to <vscale x 8 x i8> first,
12224       // then we can extract <vscale x 1 x i8>.
12225       if (ValueEltVT != PartEltVT) {
12226         unsigned Count = PartVTBitSize / ValueEltVT.getFixedSizeInBits();
12227         assert(Count != 0 && "The number of element should not be zero.");
12228         SameEltTypeVT =
12229             EVT::getVectorVT(Context, ValueEltVT, Count, /*IsScalable=*/true);
12230         Val = DAG.getNode(ISD::BITCAST, DL, SameEltTypeVT, Val);
12231       }
12232       Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
12233                         DAG.getVectorIdxConstant(0, DL));
12234       return Val;
12235     }
12236   }
12237   return SDValue();
12238 }
12239 
12240 SDValue
12241 RISCVTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
12242                                    SelectionDAG &DAG,
12243                                    SmallVectorImpl<SDNode *> &Created) const {
12244   AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
12245   if (isIntDivCheap(N->getValueType(0), Attr))
12246     return SDValue(N, 0); // Lower SDIV as SDIV
12247 
12248   assert((Divisor.isPowerOf2() || Divisor.isNegatedPowerOf2()) &&
12249          "Unexpected divisor!");
12250 
12251   // Conditional move is needed, so do the transformation iff Zbt is enabled.
12252   if (!Subtarget.hasStdExtZbt())
12253     return SDValue();
12254 
12255   // When |Divisor| >= 2 ^ 12, it isn't profitable to do such transformation.
12256   // Besides, more critical path instructions will be generated when dividing
12257   // by 2. So we keep using the original DAGs for these cases.
12258   unsigned Lg2 = Divisor.countTrailingZeros();
12259   if (Lg2 == 1 || Lg2 >= 12)
12260     return SDValue();
12261 
12262   // fold (sdiv X, pow2)
12263   EVT VT = N->getValueType(0);
12264   if (VT != MVT::i32 && !(Subtarget.is64Bit() && VT == MVT::i64))
12265     return SDValue();
12266 
12267   SDLoc DL(N);
12268   SDValue N0 = N->getOperand(0);
12269   SDValue Zero = DAG.getConstant(0, DL, VT);
12270   SDValue Pow2MinusOne = DAG.getConstant((1ULL << Lg2) - 1, DL, VT);
12271 
12272   // Add (N0 < 0) ? Pow2 - 1 : 0;
12273   SDValue Cmp = DAG.getSetCC(DL, VT, N0, Zero, ISD::SETLT);
12274   SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0, Pow2MinusOne);
12275   SDValue Sel = DAG.getNode(ISD::SELECT, DL, VT, Cmp, Add, N0);
12276 
12277   Created.push_back(Cmp.getNode());
12278   Created.push_back(Add.getNode());
12279   Created.push_back(Sel.getNode());
12280 
12281   // Divide by pow2.
12282   SDValue SRA =
12283       DAG.getNode(ISD::SRA, DL, VT, Sel, DAG.getConstant(Lg2, DL, VT));
12284 
12285   // If we're dividing by a positive value, we're done.  Otherwise, we must
12286   // negate the result.
12287   if (Divisor.isNonNegative())
12288     return SRA;
12289 
12290   Created.push_back(SRA.getNode());
12291   return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), SRA);
12292 }
12293 
12294 #define GET_REGISTER_MATCHER
12295 #include "RISCVGenAsmMatcher.inc"
12296 
12297 Register
12298 RISCVTargetLowering::getRegisterByName(const char *RegName, LLT VT,
12299                                        const MachineFunction &MF) const {
12300   Register Reg = MatchRegisterAltName(RegName);
12301   if (Reg == RISCV::NoRegister)
12302     Reg = MatchRegisterName(RegName);
12303   if (Reg == RISCV::NoRegister)
12304     report_fatal_error(
12305         Twine("Invalid register name \"" + StringRef(RegName) + "\"."));
12306   BitVector ReservedRegs = Subtarget.getRegisterInfo()->getReservedRegs(MF);
12307   if (!ReservedRegs.test(Reg) && !Subtarget.isRegisterReservedByUser(Reg))
12308     report_fatal_error(Twine("Trying to obtain non-reserved register \"" +
12309                              StringRef(RegName) + "\"."));
12310   return Reg;
12311 }
12312 
12313 namespace llvm {
12314 namespace RISCVVIntrinsicsTable {
12315 
12316 #define GET_RISCVVIntrinsicsTable_IMPL
12317 #include "RISCVGenSearchableTables.inc"
12318 
12319 } // namespace RISCVVIntrinsicsTable
12320 
12321 } // namespace llvm
12322