1 //===-- RISCVISelLowering.cpp - RISCV DAG Lowering Implementation --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the interfaces that RISCV uses to lower LLVM code into a 10 // selection DAG. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "RISCVISelLowering.h" 15 #include "RISCV.h" 16 #include "RISCVMachineFunctionInfo.h" 17 #include "RISCVRegisterInfo.h" 18 #include "RISCVSubtarget.h" 19 #include "RISCVTargetMachine.h" 20 #include "Utils/RISCVMatInt.h" 21 #include "llvm/ADT/SmallSet.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/CodeGen/CallingConvLower.h" 24 #include "llvm/CodeGen/MachineFrameInfo.h" 25 #include "llvm/CodeGen/MachineFunction.h" 26 #include "llvm/CodeGen/MachineInstrBuilder.h" 27 #include "llvm/CodeGen/MachineRegisterInfo.h" 28 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 29 #include "llvm/CodeGen/ValueTypes.h" 30 #include "llvm/IR/DiagnosticInfo.h" 31 #include "llvm/IR/DiagnosticPrinter.h" 32 #include "llvm/IR/IntrinsicsRISCV.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/ErrorHandling.h" 35 #include "llvm/Support/MathExtras.h" 36 #include "llvm/Support/raw_ostream.h" 37 38 using namespace llvm; 39 40 #define DEBUG_TYPE "riscv-lower" 41 42 STATISTIC(NumTailCalls, "Number of tail calls"); 43 44 RISCVTargetLowering::RISCVTargetLowering(const TargetMachine &TM, 45 const RISCVSubtarget &STI) 46 : TargetLowering(TM), Subtarget(STI) { 47 48 if (Subtarget.isRV32E()) 49 report_fatal_error("Codegen not yet implemented for RV32E"); 50 51 RISCVABI::ABI ABI = Subtarget.getTargetABI(); 52 assert(ABI != RISCVABI::ABI_Unknown && "Improperly initialised target ABI"); 53 54 if ((ABI == RISCVABI::ABI_ILP32F || ABI == RISCVABI::ABI_LP64F) && 55 !Subtarget.hasStdExtF()) { 56 errs() << "Hard-float 'f' ABI can't be used for a target that " 57 "doesn't support the F instruction set extension (ignoring " 58 "target-abi)\n"; 59 ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32; 60 } else if ((ABI == RISCVABI::ABI_ILP32D || ABI == RISCVABI::ABI_LP64D) && 61 !Subtarget.hasStdExtD()) { 62 errs() << "Hard-float 'd' ABI can't be used for a target that " 63 "doesn't support the D instruction set extension (ignoring " 64 "target-abi)\n"; 65 ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32; 66 } 67 68 switch (ABI) { 69 default: 70 report_fatal_error("Don't know how to lower this ABI"); 71 case RISCVABI::ABI_ILP32: 72 case RISCVABI::ABI_ILP32F: 73 case RISCVABI::ABI_ILP32D: 74 case RISCVABI::ABI_LP64: 75 case RISCVABI::ABI_LP64F: 76 case RISCVABI::ABI_LP64D: 77 break; 78 } 79 80 MVT XLenVT = Subtarget.getXLenVT(); 81 82 // Set up the register classes. 83 addRegisterClass(XLenVT, &RISCV::GPRRegClass); 84 85 if (Subtarget.hasStdExtF()) 86 addRegisterClass(MVT::f32, &RISCV::FPR32RegClass); 87 if (Subtarget.hasStdExtD()) 88 addRegisterClass(MVT::f64, &RISCV::FPR64RegClass); 89 90 // Compute derived properties from the register classes. 91 computeRegisterProperties(STI.getRegisterInfo()); 92 93 setStackPointerRegisterToSaveRestore(RISCV::X2); 94 95 for (auto N : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}) 96 setLoadExtAction(N, XLenVT, MVT::i1, Promote); 97 98 // TODO: add all necessary setOperationAction calls. 99 setOperationAction(ISD::DYNAMIC_STACKALLOC, XLenVT, Expand); 100 101 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 102 setOperationAction(ISD::BR_CC, XLenVT, Expand); 103 setOperationAction(ISD::SELECT, XLenVT, Custom); 104 setOperationAction(ISD::SELECT_CC, XLenVT, Expand); 105 106 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); 107 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); 108 109 setOperationAction(ISD::VASTART, MVT::Other, Custom); 110 setOperationAction(ISD::VAARG, MVT::Other, Expand); 111 setOperationAction(ISD::VACOPY, MVT::Other, Expand); 112 setOperationAction(ISD::VAEND, MVT::Other, Expand); 113 114 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 115 if (!Subtarget.hasStdExtZbb()) { 116 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand); 117 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand); 118 } 119 120 if (Subtarget.is64Bit()) { 121 setOperationAction(ISD::ADD, MVT::i32, Custom); 122 setOperationAction(ISD::SUB, MVT::i32, Custom); 123 setOperationAction(ISD::SHL, MVT::i32, Custom); 124 setOperationAction(ISD::SRA, MVT::i32, Custom); 125 setOperationAction(ISD::SRL, MVT::i32, Custom); 126 } 127 128 if (!Subtarget.hasStdExtM()) { 129 setOperationAction(ISD::MUL, XLenVT, Expand); 130 setOperationAction(ISD::MULHS, XLenVT, Expand); 131 setOperationAction(ISD::MULHU, XLenVT, Expand); 132 setOperationAction(ISD::SDIV, XLenVT, Expand); 133 setOperationAction(ISD::UDIV, XLenVT, Expand); 134 setOperationAction(ISD::SREM, XLenVT, Expand); 135 setOperationAction(ISD::UREM, XLenVT, Expand); 136 } 137 138 if (Subtarget.is64Bit() && Subtarget.hasStdExtM()) { 139 setOperationAction(ISD::MUL, MVT::i32, Custom); 140 setOperationAction(ISD::SDIV, MVT::i32, Custom); 141 setOperationAction(ISD::UDIV, MVT::i32, Custom); 142 setOperationAction(ISD::UREM, MVT::i32, Custom); 143 } 144 145 setOperationAction(ISD::SDIVREM, XLenVT, Expand); 146 setOperationAction(ISD::UDIVREM, XLenVT, Expand); 147 setOperationAction(ISD::SMUL_LOHI, XLenVT, Expand); 148 setOperationAction(ISD::UMUL_LOHI, XLenVT, Expand); 149 150 setOperationAction(ISD::SHL_PARTS, XLenVT, Custom); 151 setOperationAction(ISD::SRL_PARTS, XLenVT, Custom); 152 setOperationAction(ISD::SRA_PARTS, XLenVT, Custom); 153 154 if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp()) { 155 if (Subtarget.is64Bit()) { 156 setOperationAction(ISD::ROTL, MVT::i32, Custom); 157 setOperationAction(ISD::ROTR, MVT::i32, Custom); 158 } 159 } else { 160 setOperationAction(ISD::ROTL, XLenVT, Expand); 161 setOperationAction(ISD::ROTR, XLenVT, Expand); 162 } 163 164 if (Subtarget.hasStdExtZbp()) { 165 setOperationAction(ISD::BITREVERSE, XLenVT, Legal); 166 167 if (Subtarget.is64Bit()) { 168 setOperationAction(ISD::BITREVERSE, MVT::i32, Custom); 169 setOperationAction(ISD::BSWAP, MVT::i32, Custom); 170 } 171 } else { 172 setOperationAction(ISD::BSWAP, XLenVT, Expand); 173 } 174 175 if (!Subtarget.hasStdExtZbb()) { 176 setOperationAction(ISD::CTTZ, XLenVT, Expand); 177 setOperationAction(ISD::CTLZ, XLenVT, Expand); 178 setOperationAction(ISD::CTPOP, XLenVT, Expand); 179 } 180 181 if (Subtarget.hasStdExtZbt()) { 182 setOperationAction(ISD::FSHL, XLenVT, Legal); 183 setOperationAction(ISD::FSHR, XLenVT, Legal); 184 } 185 186 ISD::CondCode FPCCToExtend[] = { 187 ISD::SETOGT, ISD::SETOGE, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT, 188 ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUNE, ISD::SETGT, 189 ISD::SETGE, ISD::SETNE}; 190 191 ISD::NodeType FPOpToExtend[] = { 192 ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, ISD::FREM, ISD::FP16_TO_FP, 193 ISD::FP_TO_FP16}; 194 195 if (Subtarget.hasStdExtF()) { 196 setOperationAction(ISD::FMINNUM, MVT::f32, Legal); 197 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); 198 for (auto CC : FPCCToExtend) 199 setCondCodeAction(CC, MVT::f32, Expand); 200 setOperationAction(ISD::SELECT_CC, MVT::f32, Expand); 201 setOperationAction(ISD::SELECT, MVT::f32, Custom); 202 setOperationAction(ISD::BR_CC, MVT::f32, Expand); 203 for (auto Op : FPOpToExtend) 204 setOperationAction(Op, MVT::f32, Expand); 205 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); 206 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 207 } 208 209 if (Subtarget.hasStdExtF() && Subtarget.is64Bit()) 210 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 211 212 if (Subtarget.hasStdExtD()) { 213 setOperationAction(ISD::FMINNUM, MVT::f64, Legal); 214 setOperationAction(ISD::FMAXNUM, MVT::f64, Legal); 215 for (auto CC : FPCCToExtend) 216 setCondCodeAction(CC, MVT::f64, Expand); 217 setOperationAction(ISD::SELECT_CC, MVT::f64, Expand); 218 setOperationAction(ISD::SELECT, MVT::f64, Custom); 219 setOperationAction(ISD::BR_CC, MVT::f64, Expand); 220 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 221 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 222 for (auto Op : FPOpToExtend) 223 setOperationAction(Op, MVT::f64, Expand); 224 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); 225 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 226 } 227 228 if (Subtarget.is64Bit()) { 229 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 230 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 231 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom); 232 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom); 233 } 234 235 setOperationAction(ISD::GlobalAddress, XLenVT, Custom); 236 setOperationAction(ISD::BlockAddress, XLenVT, Custom); 237 setOperationAction(ISD::ConstantPool, XLenVT, Custom); 238 239 setOperationAction(ISD::GlobalTLSAddress, XLenVT, Custom); 240 241 // TODO: On M-mode only targets, the cycle[h] CSR may not be present. 242 // Unfortunately this can't be determined just from the ISA naming string. 243 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, 244 Subtarget.is64Bit() ? Legal : Custom); 245 246 setOperationAction(ISD::TRAP, MVT::Other, Legal); 247 setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal); 248 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 249 250 if (Subtarget.hasStdExtA()) { 251 setMaxAtomicSizeInBitsSupported(Subtarget.getXLen()); 252 setMinCmpXchgSizeInBits(32); 253 } else { 254 setMaxAtomicSizeInBitsSupported(0); 255 } 256 257 setBooleanContents(ZeroOrOneBooleanContent); 258 259 // Function alignments. 260 const Align FunctionAlignment(Subtarget.hasStdExtC() ? 2 : 4); 261 setMinFunctionAlignment(FunctionAlignment); 262 setPrefFunctionAlignment(FunctionAlignment); 263 264 // Effectively disable jump table generation. 265 setMinimumJumpTableEntries(INT_MAX); 266 267 // Jumps are expensive, compared to logic 268 setJumpIsExpensive(); 269 270 // We can use any register for comparisons 271 setHasMultipleConditionRegisters(); 272 273 if (Subtarget.hasStdExtZbp()) { 274 setTargetDAGCombine(ISD::OR); 275 } 276 } 277 278 EVT RISCVTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &, 279 EVT VT) const { 280 if (!VT.isVector()) 281 return getPointerTy(DL); 282 return VT.changeVectorElementTypeToInteger(); 283 } 284 285 bool RISCVTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 286 const CallInst &I, 287 MachineFunction &MF, 288 unsigned Intrinsic) const { 289 switch (Intrinsic) { 290 default: 291 return false; 292 case Intrinsic::riscv_masked_atomicrmw_xchg_i32: 293 case Intrinsic::riscv_masked_atomicrmw_add_i32: 294 case Intrinsic::riscv_masked_atomicrmw_sub_i32: 295 case Intrinsic::riscv_masked_atomicrmw_nand_i32: 296 case Intrinsic::riscv_masked_atomicrmw_max_i32: 297 case Intrinsic::riscv_masked_atomicrmw_min_i32: 298 case Intrinsic::riscv_masked_atomicrmw_umax_i32: 299 case Intrinsic::riscv_masked_atomicrmw_umin_i32: 300 case Intrinsic::riscv_masked_cmpxchg_i32: 301 PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType()); 302 Info.opc = ISD::INTRINSIC_W_CHAIN; 303 Info.memVT = MVT::getVT(PtrTy->getElementType()); 304 Info.ptrVal = I.getArgOperand(0); 305 Info.offset = 0; 306 Info.align = Align(4); 307 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore | 308 MachineMemOperand::MOVolatile; 309 return true; 310 } 311 } 312 313 bool RISCVTargetLowering::isLegalAddressingMode(const DataLayout &DL, 314 const AddrMode &AM, Type *Ty, 315 unsigned AS, 316 Instruction *I) const { 317 // No global is ever allowed as a base. 318 if (AM.BaseGV) 319 return false; 320 321 // Require a 12-bit signed offset. 322 if (!isInt<12>(AM.BaseOffs)) 323 return false; 324 325 switch (AM.Scale) { 326 case 0: // "r+i" or just "i", depending on HasBaseReg. 327 break; 328 case 1: 329 if (!AM.HasBaseReg) // allow "r+i". 330 break; 331 return false; // disallow "r+r" or "r+r+i". 332 default: 333 return false; 334 } 335 336 return true; 337 } 338 339 bool RISCVTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 340 return isInt<12>(Imm); 341 } 342 343 bool RISCVTargetLowering::isLegalAddImmediate(int64_t Imm) const { 344 return isInt<12>(Imm); 345 } 346 347 // On RV32, 64-bit integers are split into their high and low parts and held 348 // in two different registers, so the trunc is free since the low register can 349 // just be used. 350 bool RISCVTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const { 351 if (Subtarget.is64Bit() || !SrcTy->isIntegerTy() || !DstTy->isIntegerTy()) 352 return false; 353 unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); 354 unsigned DestBits = DstTy->getPrimitiveSizeInBits(); 355 return (SrcBits == 64 && DestBits == 32); 356 } 357 358 bool RISCVTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const { 359 if (Subtarget.is64Bit() || SrcVT.isVector() || DstVT.isVector() || 360 !SrcVT.isInteger() || !DstVT.isInteger()) 361 return false; 362 unsigned SrcBits = SrcVT.getSizeInBits(); 363 unsigned DestBits = DstVT.getSizeInBits(); 364 return (SrcBits == 64 && DestBits == 32); 365 } 366 367 bool RISCVTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 368 // Zexts are free if they can be combined with a load. 369 if (auto *LD = dyn_cast<LoadSDNode>(Val)) { 370 EVT MemVT = LD->getMemoryVT(); 371 if ((MemVT == MVT::i8 || MemVT == MVT::i16 || 372 (Subtarget.is64Bit() && MemVT == MVT::i32)) && 373 (LD->getExtensionType() == ISD::NON_EXTLOAD || 374 LD->getExtensionType() == ISD::ZEXTLOAD)) 375 return true; 376 } 377 378 return TargetLowering::isZExtFree(Val, VT2); 379 } 380 381 bool RISCVTargetLowering::isSExtCheaperThanZExt(EVT SrcVT, EVT DstVT) const { 382 return Subtarget.is64Bit() && SrcVT == MVT::i32 && DstVT == MVT::i64; 383 } 384 385 bool RISCVTargetLowering::isCheapToSpeculateCttz() const { 386 return Subtarget.hasStdExtZbb(); 387 } 388 389 bool RISCVTargetLowering::isCheapToSpeculateCtlz() const { 390 return Subtarget.hasStdExtZbb(); 391 } 392 393 bool RISCVTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 394 bool ForCodeSize) const { 395 if (VT == MVT::f32 && !Subtarget.hasStdExtF()) 396 return false; 397 if (VT == MVT::f64 && !Subtarget.hasStdExtD()) 398 return false; 399 if (Imm.isNegZero()) 400 return false; 401 return Imm.isZero(); 402 } 403 404 bool RISCVTargetLowering::hasBitPreservingFPLogic(EVT VT) const { 405 return (VT == MVT::f32 && Subtarget.hasStdExtF()) || 406 (VT == MVT::f64 && Subtarget.hasStdExtD()); 407 } 408 409 // Changes the condition code and swaps operands if necessary, so the SetCC 410 // operation matches one of the comparisons supported directly in the RISC-V 411 // ISA. 412 static void normaliseSetCC(SDValue &LHS, SDValue &RHS, ISD::CondCode &CC) { 413 switch (CC) { 414 default: 415 break; 416 case ISD::SETGT: 417 case ISD::SETLE: 418 case ISD::SETUGT: 419 case ISD::SETULE: 420 CC = ISD::getSetCCSwappedOperands(CC); 421 std::swap(LHS, RHS); 422 break; 423 } 424 } 425 426 // Return the RISC-V branch opcode that matches the given DAG integer 427 // condition code. The CondCode must be one of those supported by the RISC-V 428 // ISA (see normaliseSetCC). 429 static unsigned getBranchOpcodeForIntCondCode(ISD::CondCode CC) { 430 switch (CC) { 431 default: 432 llvm_unreachable("Unsupported CondCode"); 433 case ISD::SETEQ: 434 return RISCV::BEQ; 435 case ISD::SETNE: 436 return RISCV::BNE; 437 case ISD::SETLT: 438 return RISCV::BLT; 439 case ISD::SETGE: 440 return RISCV::BGE; 441 case ISD::SETULT: 442 return RISCV::BLTU; 443 case ISD::SETUGE: 444 return RISCV::BGEU; 445 } 446 } 447 448 SDValue RISCVTargetLowering::LowerOperation(SDValue Op, 449 SelectionDAG &DAG) const { 450 switch (Op.getOpcode()) { 451 default: 452 report_fatal_error("unimplemented operand"); 453 case ISD::GlobalAddress: 454 return lowerGlobalAddress(Op, DAG); 455 case ISD::BlockAddress: 456 return lowerBlockAddress(Op, DAG); 457 case ISD::ConstantPool: 458 return lowerConstantPool(Op, DAG); 459 case ISD::GlobalTLSAddress: 460 return lowerGlobalTLSAddress(Op, DAG); 461 case ISD::SELECT: 462 return lowerSELECT(Op, DAG); 463 case ISD::VASTART: 464 return lowerVASTART(Op, DAG); 465 case ISD::FRAMEADDR: 466 return lowerFRAMEADDR(Op, DAG); 467 case ISD::RETURNADDR: 468 return lowerRETURNADDR(Op, DAG); 469 case ISD::SHL_PARTS: 470 return lowerShiftLeftParts(Op, DAG); 471 case ISD::SRA_PARTS: 472 return lowerShiftRightParts(Op, DAG, true); 473 case ISD::SRL_PARTS: 474 return lowerShiftRightParts(Op, DAG, false); 475 case ISD::BITCAST: { 476 assert(Subtarget.is64Bit() && Subtarget.hasStdExtF() && 477 "Unexpected custom legalisation"); 478 SDLoc DL(Op); 479 SDValue Op0 = Op.getOperand(0); 480 if (Op.getValueType() != MVT::f32 || Op0.getValueType() != MVT::i32) 481 return SDValue(); 482 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); 483 SDValue FPConv = DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, NewOp0); 484 return FPConv; 485 } 486 case ISD::INTRINSIC_WO_CHAIN: 487 return LowerINTRINSIC_WO_CHAIN(Op, DAG); 488 } 489 } 490 491 static SDValue getTargetNode(GlobalAddressSDNode *N, SDLoc DL, EVT Ty, 492 SelectionDAG &DAG, unsigned Flags) { 493 return DAG.getTargetGlobalAddress(N->getGlobal(), DL, Ty, 0, Flags); 494 } 495 496 static SDValue getTargetNode(BlockAddressSDNode *N, SDLoc DL, EVT Ty, 497 SelectionDAG &DAG, unsigned Flags) { 498 return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, N->getOffset(), 499 Flags); 500 } 501 502 static SDValue getTargetNode(ConstantPoolSDNode *N, SDLoc DL, EVT Ty, 503 SelectionDAG &DAG, unsigned Flags) { 504 return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlign(), 505 N->getOffset(), Flags); 506 } 507 508 template <class NodeTy> 509 SDValue RISCVTargetLowering::getAddr(NodeTy *N, SelectionDAG &DAG, 510 bool IsLocal) const { 511 SDLoc DL(N); 512 EVT Ty = getPointerTy(DAG.getDataLayout()); 513 514 if (isPositionIndependent()) { 515 SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0); 516 if (IsLocal) 517 // Use PC-relative addressing to access the symbol. This generates the 518 // pattern (PseudoLLA sym), which expands to (addi (auipc %pcrel_hi(sym)) 519 // %pcrel_lo(auipc)). 520 return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0); 521 522 // Use PC-relative addressing to access the GOT for this symbol, then load 523 // the address from the GOT. This generates the pattern (PseudoLA sym), 524 // which expands to (ld (addi (auipc %got_pcrel_hi(sym)) %pcrel_lo(auipc))). 525 return SDValue(DAG.getMachineNode(RISCV::PseudoLA, DL, Ty, Addr), 0); 526 } 527 528 switch (getTargetMachine().getCodeModel()) { 529 default: 530 report_fatal_error("Unsupported code model for lowering"); 531 case CodeModel::Small: { 532 // Generate a sequence for accessing addresses within the first 2 GiB of 533 // address space. This generates the pattern (addi (lui %hi(sym)) %lo(sym)). 534 SDValue AddrHi = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_HI); 535 SDValue AddrLo = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_LO); 536 SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0); 537 return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNHi, AddrLo), 0); 538 } 539 case CodeModel::Medium: { 540 // Generate a sequence for accessing addresses within any 2GiB range within 541 // the address space. This generates the pattern (PseudoLLA sym), which 542 // expands to (addi (auipc %pcrel_hi(sym)) %pcrel_lo(auipc)). 543 SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0); 544 return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0); 545 } 546 } 547 } 548 549 SDValue RISCVTargetLowering::lowerGlobalAddress(SDValue Op, 550 SelectionDAG &DAG) const { 551 SDLoc DL(Op); 552 EVT Ty = Op.getValueType(); 553 GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op); 554 int64_t Offset = N->getOffset(); 555 MVT XLenVT = Subtarget.getXLenVT(); 556 557 const GlobalValue *GV = N->getGlobal(); 558 bool IsLocal = getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV); 559 SDValue Addr = getAddr(N, DAG, IsLocal); 560 561 // In order to maximise the opportunity for common subexpression elimination, 562 // emit a separate ADD node for the global address offset instead of folding 563 // it in the global address node. Later peephole optimisations may choose to 564 // fold it back in when profitable. 565 if (Offset != 0) 566 return DAG.getNode(ISD::ADD, DL, Ty, Addr, 567 DAG.getConstant(Offset, DL, XLenVT)); 568 return Addr; 569 } 570 571 SDValue RISCVTargetLowering::lowerBlockAddress(SDValue Op, 572 SelectionDAG &DAG) const { 573 BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op); 574 575 return getAddr(N, DAG); 576 } 577 578 SDValue RISCVTargetLowering::lowerConstantPool(SDValue Op, 579 SelectionDAG &DAG) const { 580 ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op); 581 582 return getAddr(N, DAG); 583 } 584 585 SDValue RISCVTargetLowering::getStaticTLSAddr(GlobalAddressSDNode *N, 586 SelectionDAG &DAG, 587 bool UseGOT) const { 588 SDLoc DL(N); 589 EVT Ty = getPointerTy(DAG.getDataLayout()); 590 const GlobalValue *GV = N->getGlobal(); 591 MVT XLenVT = Subtarget.getXLenVT(); 592 593 if (UseGOT) { 594 // Use PC-relative addressing to access the GOT for this TLS symbol, then 595 // load the address from the GOT and add the thread pointer. This generates 596 // the pattern (PseudoLA_TLS_IE sym), which expands to 597 // (ld (auipc %tls_ie_pcrel_hi(sym)) %pcrel_lo(auipc)). 598 SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0); 599 SDValue Load = 600 SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_IE, DL, Ty, Addr), 0); 601 602 // Add the thread pointer. 603 SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT); 604 return DAG.getNode(ISD::ADD, DL, Ty, Load, TPReg); 605 } 606 607 // Generate a sequence for accessing the address relative to the thread 608 // pointer, with the appropriate adjustment for the thread pointer offset. 609 // This generates the pattern 610 // (add (add_tprel (lui %tprel_hi(sym)) tp %tprel_add(sym)) %tprel_lo(sym)) 611 SDValue AddrHi = 612 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_HI); 613 SDValue AddrAdd = 614 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_ADD); 615 SDValue AddrLo = 616 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_LO); 617 618 SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0); 619 SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT); 620 SDValue MNAdd = SDValue( 621 DAG.getMachineNode(RISCV::PseudoAddTPRel, DL, Ty, MNHi, TPReg, AddrAdd), 622 0); 623 return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNAdd, AddrLo), 0); 624 } 625 626 SDValue RISCVTargetLowering::getDynamicTLSAddr(GlobalAddressSDNode *N, 627 SelectionDAG &DAG) const { 628 SDLoc DL(N); 629 EVT Ty = getPointerTy(DAG.getDataLayout()); 630 IntegerType *CallTy = Type::getIntNTy(*DAG.getContext(), Ty.getSizeInBits()); 631 const GlobalValue *GV = N->getGlobal(); 632 633 // Use a PC-relative addressing mode to access the global dynamic GOT address. 634 // This generates the pattern (PseudoLA_TLS_GD sym), which expands to 635 // (addi (auipc %tls_gd_pcrel_hi(sym)) %pcrel_lo(auipc)). 636 SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0); 637 SDValue Load = 638 SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_GD, DL, Ty, Addr), 0); 639 640 // Prepare argument list to generate call. 641 ArgListTy Args; 642 ArgListEntry Entry; 643 Entry.Node = Load; 644 Entry.Ty = CallTy; 645 Args.push_back(Entry); 646 647 // Setup call to __tls_get_addr. 648 TargetLowering::CallLoweringInfo CLI(DAG); 649 CLI.setDebugLoc(DL) 650 .setChain(DAG.getEntryNode()) 651 .setLibCallee(CallingConv::C, CallTy, 652 DAG.getExternalSymbol("__tls_get_addr", Ty), 653 std::move(Args)); 654 655 return LowerCallTo(CLI).first; 656 } 657 658 SDValue RISCVTargetLowering::lowerGlobalTLSAddress(SDValue Op, 659 SelectionDAG &DAG) const { 660 SDLoc DL(Op); 661 EVT Ty = Op.getValueType(); 662 GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op); 663 int64_t Offset = N->getOffset(); 664 MVT XLenVT = Subtarget.getXLenVT(); 665 666 TLSModel::Model Model = getTargetMachine().getTLSModel(N->getGlobal()); 667 668 SDValue Addr; 669 switch (Model) { 670 case TLSModel::LocalExec: 671 Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/false); 672 break; 673 case TLSModel::InitialExec: 674 Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/true); 675 break; 676 case TLSModel::LocalDynamic: 677 case TLSModel::GeneralDynamic: 678 Addr = getDynamicTLSAddr(N, DAG); 679 break; 680 } 681 682 // In order to maximise the opportunity for common subexpression elimination, 683 // emit a separate ADD node for the global address offset instead of folding 684 // it in the global address node. Later peephole optimisations may choose to 685 // fold it back in when profitable. 686 if (Offset != 0) 687 return DAG.getNode(ISD::ADD, DL, Ty, Addr, 688 DAG.getConstant(Offset, DL, XLenVT)); 689 return Addr; 690 } 691 692 SDValue RISCVTargetLowering::lowerSELECT(SDValue Op, SelectionDAG &DAG) const { 693 SDValue CondV = Op.getOperand(0); 694 SDValue TrueV = Op.getOperand(1); 695 SDValue FalseV = Op.getOperand(2); 696 SDLoc DL(Op); 697 MVT XLenVT = Subtarget.getXLenVT(); 698 699 // If the result type is XLenVT and CondV is the output of a SETCC node 700 // which also operated on XLenVT inputs, then merge the SETCC node into the 701 // lowered RISCVISD::SELECT_CC to take advantage of the integer 702 // compare+branch instructions. i.e.: 703 // (select (setcc lhs, rhs, cc), truev, falsev) 704 // -> (riscvisd::select_cc lhs, rhs, cc, truev, falsev) 705 if (Op.getSimpleValueType() == XLenVT && CondV.getOpcode() == ISD::SETCC && 706 CondV.getOperand(0).getSimpleValueType() == XLenVT) { 707 SDValue LHS = CondV.getOperand(0); 708 SDValue RHS = CondV.getOperand(1); 709 auto CC = cast<CondCodeSDNode>(CondV.getOperand(2)); 710 ISD::CondCode CCVal = CC->get(); 711 712 normaliseSetCC(LHS, RHS, CCVal); 713 714 SDValue TargetCC = DAG.getConstant(CCVal, DL, XLenVT); 715 SDValue Ops[] = {LHS, RHS, TargetCC, TrueV, FalseV}; 716 return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops); 717 } 718 719 // Otherwise: 720 // (select condv, truev, falsev) 721 // -> (riscvisd::select_cc condv, zero, setne, truev, falsev) 722 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 723 SDValue SetNE = DAG.getConstant(ISD::SETNE, DL, XLenVT); 724 725 SDValue Ops[] = {CondV, Zero, SetNE, TrueV, FalseV}; 726 727 return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops); 728 } 729 730 SDValue RISCVTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const { 731 MachineFunction &MF = DAG.getMachineFunction(); 732 RISCVMachineFunctionInfo *FuncInfo = MF.getInfo<RISCVMachineFunctionInfo>(); 733 734 SDLoc DL(Op); 735 SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), 736 getPointerTy(MF.getDataLayout())); 737 738 // vastart just stores the address of the VarArgsFrameIndex slot into the 739 // memory location argument. 740 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 741 return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1), 742 MachinePointerInfo(SV)); 743 } 744 745 SDValue RISCVTargetLowering::lowerFRAMEADDR(SDValue Op, 746 SelectionDAG &DAG) const { 747 const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo(); 748 MachineFunction &MF = DAG.getMachineFunction(); 749 MachineFrameInfo &MFI = MF.getFrameInfo(); 750 MFI.setFrameAddressIsTaken(true); 751 Register FrameReg = RI.getFrameRegister(MF); 752 int XLenInBytes = Subtarget.getXLen() / 8; 753 754 EVT VT = Op.getValueType(); 755 SDLoc DL(Op); 756 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, FrameReg, VT); 757 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 758 while (Depth--) { 759 int Offset = -(XLenInBytes * 2); 760 SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr, 761 DAG.getIntPtrConstant(Offset, DL)); 762 FrameAddr = 763 DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo()); 764 } 765 return FrameAddr; 766 } 767 768 SDValue RISCVTargetLowering::lowerRETURNADDR(SDValue Op, 769 SelectionDAG &DAG) const { 770 const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo(); 771 MachineFunction &MF = DAG.getMachineFunction(); 772 MachineFrameInfo &MFI = MF.getFrameInfo(); 773 MFI.setReturnAddressIsTaken(true); 774 MVT XLenVT = Subtarget.getXLenVT(); 775 int XLenInBytes = Subtarget.getXLen() / 8; 776 777 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 778 return SDValue(); 779 780 EVT VT = Op.getValueType(); 781 SDLoc DL(Op); 782 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 783 if (Depth) { 784 int Off = -XLenInBytes; 785 SDValue FrameAddr = lowerFRAMEADDR(Op, DAG); 786 SDValue Offset = DAG.getConstant(Off, DL, VT); 787 return DAG.getLoad(VT, DL, DAG.getEntryNode(), 788 DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset), 789 MachinePointerInfo()); 790 } 791 792 // Return the value of the return address register, marking it an implicit 793 // live-in. 794 Register Reg = MF.addLiveIn(RI.getRARegister(), getRegClassFor(XLenVT)); 795 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, XLenVT); 796 } 797 798 SDValue RISCVTargetLowering::lowerShiftLeftParts(SDValue Op, 799 SelectionDAG &DAG) const { 800 SDLoc DL(Op); 801 SDValue Lo = Op.getOperand(0); 802 SDValue Hi = Op.getOperand(1); 803 SDValue Shamt = Op.getOperand(2); 804 EVT VT = Lo.getValueType(); 805 806 // if Shamt-XLEN < 0: // Shamt < XLEN 807 // Lo = Lo << Shamt 808 // Hi = (Hi << Shamt) | ((Lo >>u 1) >>u (XLEN-1 - Shamt)) 809 // else: 810 // Lo = 0 811 // Hi = Lo << (Shamt-XLEN) 812 813 SDValue Zero = DAG.getConstant(0, DL, VT); 814 SDValue One = DAG.getConstant(1, DL, VT); 815 SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT); 816 SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT); 817 SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen); 818 SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt); 819 820 SDValue LoTrue = DAG.getNode(ISD::SHL, DL, VT, Lo, Shamt); 821 SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, VT, Lo, One); 822 SDValue ShiftRightLo = 823 DAG.getNode(ISD::SRL, DL, VT, ShiftRight1Lo, XLenMinus1Shamt); 824 SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, Hi, Shamt); 825 SDValue HiTrue = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo); 826 SDValue HiFalse = DAG.getNode(ISD::SHL, DL, VT, Lo, ShamtMinusXLen); 827 828 SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT); 829 830 Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, Zero); 831 Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse); 832 833 SDValue Parts[2] = {Lo, Hi}; 834 return DAG.getMergeValues(Parts, DL); 835 } 836 837 SDValue RISCVTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG, 838 bool IsSRA) const { 839 SDLoc DL(Op); 840 SDValue Lo = Op.getOperand(0); 841 SDValue Hi = Op.getOperand(1); 842 SDValue Shamt = Op.getOperand(2); 843 EVT VT = Lo.getValueType(); 844 845 // SRA expansion: 846 // if Shamt-XLEN < 0: // Shamt < XLEN 847 // Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt)) 848 // Hi = Hi >>s Shamt 849 // else: 850 // Lo = Hi >>s (Shamt-XLEN); 851 // Hi = Hi >>s (XLEN-1) 852 // 853 // SRL expansion: 854 // if Shamt-XLEN < 0: // Shamt < XLEN 855 // Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt)) 856 // Hi = Hi >>u Shamt 857 // else: 858 // Lo = Hi >>u (Shamt-XLEN); 859 // Hi = 0; 860 861 unsigned ShiftRightOp = IsSRA ? ISD::SRA : ISD::SRL; 862 863 SDValue Zero = DAG.getConstant(0, DL, VT); 864 SDValue One = DAG.getConstant(1, DL, VT); 865 SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT); 866 SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT); 867 SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen); 868 SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt); 869 870 SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, Lo, Shamt); 871 SDValue ShiftLeftHi1 = DAG.getNode(ISD::SHL, DL, VT, Hi, One); 872 SDValue ShiftLeftHi = 873 DAG.getNode(ISD::SHL, DL, VT, ShiftLeftHi1, XLenMinus1Shamt); 874 SDValue LoTrue = DAG.getNode(ISD::OR, DL, VT, ShiftRightLo, ShiftLeftHi); 875 SDValue HiTrue = DAG.getNode(ShiftRightOp, DL, VT, Hi, Shamt); 876 SDValue LoFalse = DAG.getNode(ShiftRightOp, DL, VT, Hi, ShamtMinusXLen); 877 SDValue HiFalse = 878 IsSRA ? DAG.getNode(ISD::SRA, DL, VT, Hi, XLenMinus1) : Zero; 879 880 SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT); 881 882 Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, LoFalse); 883 Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse); 884 885 SDValue Parts[2] = {Lo, Hi}; 886 return DAG.getMergeValues(Parts, DL); 887 } 888 889 SDValue RISCVTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 890 SelectionDAG &DAG) const { 891 unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 892 SDLoc DL(Op); 893 switch (IntNo) { 894 default: 895 return SDValue(); // Don't custom lower most intrinsics. 896 case Intrinsic::thread_pointer: { 897 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 898 return DAG.getRegister(RISCV::X4, PtrVT); 899 } 900 } 901 } 902 903 // Returns the opcode of the target-specific SDNode that implements the 32-bit 904 // form of the given Opcode. 905 static RISCVISD::NodeType getRISCVWOpcode(unsigned Opcode) { 906 switch (Opcode) { 907 default: 908 llvm_unreachable("Unexpected opcode"); 909 case ISD::SHL: 910 return RISCVISD::SLLW; 911 case ISD::SRA: 912 return RISCVISD::SRAW; 913 case ISD::SRL: 914 return RISCVISD::SRLW; 915 case ISD::SDIV: 916 return RISCVISD::DIVW; 917 case ISD::UDIV: 918 return RISCVISD::DIVUW; 919 case ISD::UREM: 920 return RISCVISD::REMUW; 921 case ISD::ROTL: 922 return RISCVISD::ROLW; 923 case ISD::ROTR: 924 return RISCVISD::RORW; 925 case RISCVISD::GREVI: 926 return RISCVISD::GREVIW; 927 case RISCVISD::GORCI: 928 return RISCVISD::GORCIW; 929 } 930 } 931 932 // Converts the given 32-bit operation to a target-specific SelectionDAG node. 933 // Because i32 isn't a legal type for RV64, these operations would otherwise 934 // be promoted to i64, making it difficult to select the SLLW/DIVUW/.../*W 935 // later one because the fact the operation was originally of type i32 is 936 // lost. 937 static SDValue customLegalizeToWOp(SDNode *N, SelectionDAG &DAG) { 938 SDLoc DL(N); 939 RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode()); 940 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 941 SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 942 SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1); 943 // ReplaceNodeResults requires we maintain the same type for the return value. 944 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes); 945 } 946 947 // Converts the given 32-bit operation to a i64 operation with signed extension 948 // semantic to reduce the signed extension instructions. 949 static SDValue customLegalizeToWOpWithSExt(SDNode *N, SelectionDAG &DAG) { 950 SDLoc DL(N); 951 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 952 SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 953 SDValue NewWOp = DAG.getNode(N->getOpcode(), DL, MVT::i64, NewOp0, NewOp1); 954 SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp, 955 DAG.getValueType(MVT::i32)); 956 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes); 957 } 958 959 void RISCVTargetLowering::ReplaceNodeResults(SDNode *N, 960 SmallVectorImpl<SDValue> &Results, 961 SelectionDAG &DAG) const { 962 SDLoc DL(N); 963 switch (N->getOpcode()) { 964 default: 965 llvm_unreachable("Don't know how to custom type legalize this operation!"); 966 case ISD::STRICT_FP_TO_SINT: 967 case ISD::STRICT_FP_TO_UINT: 968 case ISD::FP_TO_SINT: 969 case ISD::FP_TO_UINT: { 970 bool IsStrict = N->isStrictFPOpcode(); 971 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 972 "Unexpected custom legalisation"); 973 SDValue Op0 = IsStrict ? N->getOperand(1) : N->getOperand(0); 974 // If the FP type needs to be softened, emit a library call using the 'si' 975 // version. If we left it to default legalization we'd end up with 'di'. If 976 // the FP type doesn't need to be softened just let generic type 977 // legalization promote the result type. 978 if (getTypeAction(*DAG.getContext(), Op0.getValueType()) != 979 TargetLowering::TypeSoftenFloat) 980 return; 981 RTLIB::Libcall LC; 982 if (N->getOpcode() == ISD::FP_TO_SINT || 983 N->getOpcode() == ISD::STRICT_FP_TO_SINT) 984 LC = RTLIB::getFPTOSINT(Op0.getValueType(), N->getValueType(0)); 985 else 986 LC = RTLIB::getFPTOUINT(Op0.getValueType(), N->getValueType(0)); 987 MakeLibCallOptions CallOptions; 988 EVT OpVT = Op0.getValueType(); 989 CallOptions.setTypeListBeforeSoften(OpVT, N->getValueType(0), true); 990 SDValue Chain = IsStrict ? N->getOperand(0) : SDValue(); 991 SDValue Result; 992 std::tie(Result, Chain) = 993 makeLibCall(DAG, LC, N->getValueType(0), Op0, CallOptions, DL, Chain); 994 Results.push_back(Result); 995 if (IsStrict) 996 Results.push_back(Chain); 997 break; 998 } 999 case ISD::READCYCLECOUNTER: { 1000 assert(!Subtarget.is64Bit() && 1001 "READCYCLECOUNTER only has custom type legalization on riscv32"); 1002 1003 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other); 1004 SDValue RCW = 1005 DAG.getNode(RISCVISD::READ_CYCLE_WIDE, DL, VTs, N->getOperand(0)); 1006 1007 Results.push_back( 1008 DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, RCW, RCW.getValue(1))); 1009 Results.push_back(RCW.getValue(2)); 1010 break; 1011 } 1012 case ISD::ADD: 1013 case ISD::SUB: 1014 case ISD::MUL: 1015 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 1016 "Unexpected custom legalisation"); 1017 if (N->getOperand(1).getOpcode() == ISD::Constant) 1018 return; 1019 Results.push_back(customLegalizeToWOpWithSExt(N, DAG)); 1020 break; 1021 case ISD::SHL: 1022 case ISD::SRA: 1023 case ISD::SRL: 1024 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 1025 "Unexpected custom legalisation"); 1026 if (N->getOperand(1).getOpcode() == ISD::Constant) 1027 return; 1028 Results.push_back(customLegalizeToWOp(N, DAG)); 1029 break; 1030 case ISD::ROTL: 1031 case ISD::ROTR: 1032 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 1033 "Unexpected custom legalisation"); 1034 Results.push_back(customLegalizeToWOp(N, DAG)); 1035 break; 1036 case ISD::SDIV: 1037 case ISD::UDIV: 1038 case ISD::UREM: 1039 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 1040 Subtarget.hasStdExtM() && "Unexpected custom legalisation"); 1041 if (N->getOperand(0).getOpcode() == ISD::Constant || 1042 N->getOperand(1).getOpcode() == ISD::Constant) 1043 return; 1044 Results.push_back(customLegalizeToWOp(N, DAG)); 1045 break; 1046 case ISD::BITCAST: { 1047 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 1048 Subtarget.hasStdExtF() && "Unexpected custom legalisation"); 1049 SDValue Op0 = N->getOperand(0); 1050 if (Op0.getValueType() != MVT::f32) 1051 return; 1052 SDValue FPConv = 1053 DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Op0); 1054 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, FPConv)); 1055 break; 1056 } 1057 case RISCVISD::GREVI: 1058 case RISCVISD::GORCI: { 1059 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 1060 "Unexpected custom legalisation"); 1061 // This is similar to customLegalizeToWOp, except that we pass the second 1062 // operand (a TargetConstant) straight through: it is already of type 1063 // XLenVT. 1064 SDLoc DL(N); 1065 RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode()); 1066 SDValue NewOp0 = 1067 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 1068 SDValue NewRes = 1069 DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, N->getOperand(1)); 1070 // ReplaceNodeResults requires we maintain the same type for the return 1071 // value. 1072 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes)); 1073 break; 1074 } 1075 case ISD::BSWAP: 1076 case ISD::BITREVERSE: { 1077 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 1078 Subtarget.hasStdExtZbp() && "Unexpected custom legalisation"); 1079 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, 1080 N->getOperand(0)); 1081 unsigned Imm = N->getOpcode() == ISD::BITREVERSE ? 31 : 24; 1082 SDValue GREVIW = DAG.getNode(RISCVISD::GREVIW, DL, MVT::i64, NewOp0, 1083 DAG.getTargetConstant(Imm, DL, 1084 Subtarget.getXLenVT())); 1085 // ReplaceNodeResults requires we maintain the same type for the return 1086 // value. 1087 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, GREVIW)); 1088 break; 1089 } 1090 } 1091 } 1092 1093 // A structure to hold one of the bit-manipulation patterns below. Together, a 1094 // SHL and non-SHL pattern may form a bit-manipulation pair on a single source: 1095 // (or (and (shl x, 1), 0xAAAAAAAA), 1096 // (and (srl x, 1), 0x55555555)) 1097 struct RISCVBitmanipPat { 1098 SDValue Op; 1099 unsigned ShAmt; 1100 bool IsSHL; 1101 1102 bool formsPairWith(const RISCVBitmanipPat &Other) const { 1103 return Op == Other.Op && ShAmt == Other.ShAmt && IsSHL != Other.IsSHL; 1104 } 1105 }; 1106 1107 // Matches any of the following bit-manipulation patterns: 1108 // (and (shl x, 1), (0x55555555 << 1)) 1109 // (and (srl x, 1), 0x55555555) 1110 // (shl (and x, 0x55555555), 1) 1111 // (srl (and x, (0x55555555 << 1)), 1) 1112 // where the shift amount and mask may vary thus: 1113 // [1] = 0x55555555 / 0xAAAAAAAA 1114 // [2] = 0x33333333 / 0xCCCCCCCC 1115 // [4] = 0x0F0F0F0F / 0xF0F0F0F0 1116 // [8] = 0x00FF00FF / 0xFF00FF00 1117 // [16] = 0x0000FFFF / 0xFFFFFFFF 1118 // [32] = 0x00000000FFFFFFFF / 0xFFFFFFFF00000000 (for RV64) 1119 static Optional<RISCVBitmanipPat> matchRISCVBitmanipPat(SDValue Op) { 1120 Optional<uint64_t> Mask; 1121 // Optionally consume a mask around the shift operation. 1122 if (Op.getOpcode() == ISD::AND && isa<ConstantSDNode>(Op.getOperand(1))) { 1123 Mask = Op.getConstantOperandVal(1); 1124 Op = Op.getOperand(0); 1125 } 1126 if (Op.getOpcode() != ISD::SHL && Op.getOpcode() != ISD::SRL) 1127 return None; 1128 bool IsSHL = Op.getOpcode() == ISD::SHL; 1129 1130 if (!isa<ConstantSDNode>(Op.getOperand(1))) 1131 return None; 1132 auto ShAmt = Op.getConstantOperandVal(1); 1133 1134 if (!isPowerOf2_64(ShAmt)) 1135 return None; 1136 1137 // These are the unshifted masks which we use to match bit-manipulation 1138 // patterns. They may be shifted left in certain circumstances. 1139 static const uint64_t BitmanipMasks[] = { 1140 0x5555555555555555ULL, 0x3333333333333333ULL, 0x0F0F0F0F0F0F0F0FULL, 1141 0x00FF00FF00FF00FFULL, 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL, 1142 }; 1143 1144 unsigned MaskIdx = Log2_64(ShAmt); 1145 if (MaskIdx >= array_lengthof(BitmanipMasks)) 1146 return None; 1147 1148 auto Src = Op.getOperand(0); 1149 1150 unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32; 1151 auto ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width); 1152 1153 // The expected mask is shifted left when the AND is found around SHL 1154 // patterns. 1155 // ((x >> 1) & 0x55555555) 1156 // ((x << 1) & 0xAAAAAAAA) 1157 bool SHLExpMask = IsSHL; 1158 1159 if (!Mask) { 1160 // Sometimes LLVM keeps the mask as an operand of the shift, typically when 1161 // the mask is all ones: consume that now. 1162 if (Src.getOpcode() == ISD::AND && isa<ConstantSDNode>(Src.getOperand(1))) { 1163 Mask = Src.getConstantOperandVal(1); 1164 Src = Src.getOperand(0); 1165 // The expected mask is now in fact shifted left for SRL, so reverse the 1166 // decision. 1167 // ((x & 0xAAAAAAAA) >> 1) 1168 // ((x & 0x55555555) << 1) 1169 SHLExpMask = !SHLExpMask; 1170 } else { 1171 // Use a default shifted mask of all-ones if there's no AND, truncated 1172 // down to the expected width. This simplifies the logic later on. 1173 Mask = maskTrailingOnes<uint64_t>(Width); 1174 *Mask &= (IsSHL ? *Mask << ShAmt : *Mask >> ShAmt); 1175 } 1176 } 1177 1178 if (SHLExpMask) 1179 ExpMask <<= ShAmt; 1180 1181 if (Mask != ExpMask) 1182 return None; 1183 1184 return RISCVBitmanipPat{Src, (unsigned)ShAmt, IsSHL}; 1185 } 1186 1187 // Match the following pattern as a GREVI(W) operation 1188 // (or (BITMANIP_SHL x), (BITMANIP_SRL x)) 1189 static SDValue combineORToGREV(SDValue Op, SelectionDAG &DAG, 1190 const RISCVSubtarget &Subtarget) { 1191 if (Op.getSimpleValueType() == Subtarget.getXLenVT() || 1192 (Subtarget.is64Bit() && Op.getSimpleValueType() == MVT::i32)) { 1193 auto LHS = matchRISCVBitmanipPat(Op.getOperand(0)); 1194 auto RHS = matchRISCVBitmanipPat(Op.getOperand(1)); 1195 if (LHS && RHS && LHS->formsPairWith(*RHS)) { 1196 SDLoc DL(Op); 1197 return DAG.getNode( 1198 RISCVISD::GREVI, DL, Op.getValueType(), LHS->Op, 1199 DAG.getTargetConstant(LHS->ShAmt, DL, Subtarget.getXLenVT())); 1200 } 1201 } 1202 return SDValue(); 1203 } 1204 1205 // Matches any the following pattern as a GORCI(W) operation 1206 // 1. (or (GREVI x, shamt), x) 1207 // 2. (or x, (GREVI x, shamt)) 1208 // 3. (or (or (BITMANIP_SHL x), x), (BITMANIP_SRL x)) 1209 // Note that with the variant of 3., 1210 // (or (or (BITMANIP_SHL x), (BITMANIP_SRL x)), x) 1211 // the inner pattern will first be matched as GREVI and then the outer 1212 // pattern will be matched to GORC via the first rule above. 1213 static SDValue combineORToGORC(SDValue Op, SelectionDAG &DAG, 1214 const RISCVSubtarget &Subtarget) { 1215 if (Op.getSimpleValueType() == Subtarget.getXLenVT() || 1216 (Subtarget.is64Bit() && Op.getSimpleValueType() == MVT::i32)) { 1217 SDLoc DL(Op); 1218 SDValue Op0 = Op.getOperand(0); 1219 SDValue Op1 = Op.getOperand(1); 1220 1221 // Check for either commutable permutation of (or (GREVI x, shamt), x) 1222 for (const auto &OpPair : 1223 {std::make_pair(Op0, Op1), std::make_pair(Op1, Op0)}) { 1224 if (OpPair.first.getOpcode() == RISCVISD::GREVI && 1225 OpPair.first.getOperand(0) == OpPair.second) 1226 return DAG.getNode(RISCVISD::GORCI, DL, Op.getValueType(), 1227 OpPair.second, OpPair.first.getOperand(1)); 1228 } 1229 1230 // OR is commutable so canonicalize its OR operand to the left 1231 if (Op0.getOpcode() != ISD::OR && Op1.getOpcode() == ISD::OR) 1232 std::swap(Op0, Op1); 1233 if (Op0.getOpcode() != ISD::OR) 1234 return SDValue(); 1235 SDValue OrOp0 = Op0.getOperand(0); 1236 SDValue OrOp1 = Op0.getOperand(1); 1237 auto LHS = matchRISCVBitmanipPat(OrOp0); 1238 // OR is commutable so swap the operands and try again: x might have been 1239 // on the left 1240 if (!LHS) { 1241 std::swap(OrOp0, OrOp1); 1242 LHS = matchRISCVBitmanipPat(OrOp0); 1243 } 1244 auto RHS = matchRISCVBitmanipPat(Op1); 1245 if (LHS && RHS && LHS->formsPairWith(*RHS) && LHS->Op == OrOp1) { 1246 return DAG.getNode( 1247 RISCVISD::GORCI, DL, Op.getValueType(), LHS->Op, 1248 DAG.getTargetConstant(LHS->ShAmt, DL, Subtarget.getXLenVT())); 1249 } 1250 } 1251 return SDValue(); 1252 } 1253 1254 SDValue RISCVTargetLowering::PerformDAGCombine(SDNode *N, 1255 DAGCombinerInfo &DCI) const { 1256 SelectionDAG &DAG = DCI.DAG; 1257 1258 switch (N->getOpcode()) { 1259 default: 1260 break; 1261 case RISCVISD::SplitF64: { 1262 SDValue Op0 = N->getOperand(0); 1263 // If the input to SplitF64 is just BuildPairF64 then the operation is 1264 // redundant. Instead, use BuildPairF64's operands directly. 1265 if (Op0->getOpcode() == RISCVISD::BuildPairF64) 1266 return DCI.CombineTo(N, Op0.getOperand(0), Op0.getOperand(1)); 1267 1268 SDLoc DL(N); 1269 1270 // It's cheaper to materialise two 32-bit integers than to load a double 1271 // from the constant pool and transfer it to integer registers through the 1272 // stack. 1273 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op0)) { 1274 APInt V = C->getValueAPF().bitcastToAPInt(); 1275 SDValue Lo = DAG.getConstant(V.trunc(32), DL, MVT::i32); 1276 SDValue Hi = DAG.getConstant(V.lshr(32).trunc(32), DL, MVT::i32); 1277 return DCI.CombineTo(N, Lo, Hi); 1278 } 1279 1280 // This is a target-specific version of a DAGCombine performed in 1281 // DAGCombiner::visitBITCAST. It performs the equivalent of: 1282 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) 1283 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) 1284 if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) || 1285 !Op0.getNode()->hasOneUse()) 1286 break; 1287 SDValue NewSplitF64 = 1288 DAG.getNode(RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), 1289 Op0.getOperand(0)); 1290 SDValue Lo = NewSplitF64.getValue(0); 1291 SDValue Hi = NewSplitF64.getValue(1); 1292 APInt SignBit = APInt::getSignMask(32); 1293 if (Op0.getOpcode() == ISD::FNEG) { 1294 SDValue NewHi = DAG.getNode(ISD::XOR, DL, MVT::i32, Hi, 1295 DAG.getConstant(SignBit, DL, MVT::i32)); 1296 return DCI.CombineTo(N, Lo, NewHi); 1297 } 1298 assert(Op0.getOpcode() == ISD::FABS); 1299 SDValue NewHi = DAG.getNode(ISD::AND, DL, MVT::i32, Hi, 1300 DAG.getConstant(~SignBit, DL, MVT::i32)); 1301 return DCI.CombineTo(N, Lo, NewHi); 1302 } 1303 case RISCVISD::SLLW: 1304 case RISCVISD::SRAW: 1305 case RISCVISD::SRLW: 1306 case RISCVISD::ROLW: 1307 case RISCVISD::RORW: { 1308 // Only the lower 32 bits of LHS and lower 5 bits of RHS are read. 1309 SDValue LHS = N->getOperand(0); 1310 SDValue RHS = N->getOperand(1); 1311 APInt LHSMask = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 32); 1312 APInt RHSMask = APInt::getLowBitsSet(RHS.getValueSizeInBits(), 5); 1313 if (SimplifyDemandedBits(N->getOperand(0), LHSMask, DCI) || 1314 SimplifyDemandedBits(N->getOperand(1), RHSMask, DCI)) { 1315 if (N->getOpcode() != ISD::DELETED_NODE) 1316 DCI.AddToWorklist(N); 1317 return SDValue(N, 0); 1318 } 1319 break; 1320 } 1321 case RISCVISD::GREVIW: 1322 case RISCVISD::GORCIW: { 1323 // Only the lower 32 bits of the first operand are read 1324 SDValue Op0 = N->getOperand(0); 1325 APInt Mask = APInt::getLowBitsSet(Op0.getValueSizeInBits(), 32); 1326 if (SimplifyDemandedBits(Op0, Mask, DCI)) { 1327 if (N->getOpcode() != ISD::DELETED_NODE) 1328 DCI.AddToWorklist(N); 1329 return SDValue(N, 0); 1330 } 1331 break; 1332 } 1333 case RISCVISD::FMV_X_ANYEXTW_RV64: { 1334 SDLoc DL(N); 1335 SDValue Op0 = N->getOperand(0); 1336 // If the input to FMV_X_ANYEXTW_RV64 is just FMV_W_X_RV64 then the 1337 // conversion is unnecessary and can be replaced with an ANY_EXTEND 1338 // of the FMV_W_X_RV64 operand. 1339 if (Op0->getOpcode() == RISCVISD::FMV_W_X_RV64) { 1340 assert(Op0.getOperand(0).getValueType() == MVT::i64 && 1341 "Unexpected value type!"); 1342 return Op0.getOperand(0); 1343 } 1344 1345 // This is a target-specific version of a DAGCombine performed in 1346 // DAGCombiner::visitBITCAST. It performs the equivalent of: 1347 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) 1348 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) 1349 if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) || 1350 !Op0.getNode()->hasOneUse()) 1351 break; 1352 SDValue NewFMV = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, 1353 Op0.getOperand(0)); 1354 APInt SignBit = APInt::getSignMask(32).sext(64); 1355 if (Op0.getOpcode() == ISD::FNEG) 1356 return DAG.getNode(ISD::XOR, DL, MVT::i64, NewFMV, 1357 DAG.getConstant(SignBit, DL, MVT::i64)); 1358 1359 assert(Op0.getOpcode() == ISD::FABS); 1360 return DAG.getNode(ISD::AND, DL, MVT::i64, NewFMV, 1361 DAG.getConstant(~SignBit, DL, MVT::i64)); 1362 } 1363 case RISCVISD::GREVI: { 1364 // Combine (GREVI (GREVI x, C2), C1) -> (GREVI x, C1^C2) when C1^C2 is 1365 // non-zero, and to x when it is. Any repeated GREVI stage undoes itself. 1366 SDLoc DL(N); 1367 auto GREVSrc = N->getOperand(0); 1368 uint64_t ShAmt1 = N->getConstantOperandVal(1); 1369 if (GREVSrc->getOpcode() != RISCVISD::GREVI) 1370 break; 1371 uint64_t ShAmt2 = GREVSrc.getConstantOperandVal(1); 1372 GREVSrc = GREVSrc->getOperand(0); 1373 uint64_t CombinedShAmt = ShAmt1 ^ ShAmt2; 1374 if (CombinedShAmt == 0) 1375 return GREVSrc; 1376 return DAG.getNode( 1377 RISCVISD::GREVI, DL, N->getValueType(0), GREVSrc, 1378 DAG.getTargetConstant(CombinedShAmt, DL, Subtarget.getXLenVT())); 1379 } 1380 case ISD::OR: 1381 if (auto GREV = combineORToGREV(SDValue(N, 0), DCI.DAG, Subtarget)) 1382 return GREV; 1383 if (auto GORC = combineORToGORC(SDValue(N, 0), DCI.DAG, Subtarget)) 1384 return GORC; 1385 break; 1386 } 1387 1388 return SDValue(); 1389 } 1390 1391 bool RISCVTargetLowering::isDesirableToCommuteWithShift( 1392 const SDNode *N, CombineLevel Level) const { 1393 // The following folds are only desirable if `(OP _, c1 << c2)` can be 1394 // materialised in fewer instructions than `(OP _, c1)`: 1395 // 1396 // (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2) 1397 // (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2) 1398 SDValue N0 = N->getOperand(0); 1399 EVT Ty = N0.getValueType(); 1400 if (Ty.isScalarInteger() && 1401 (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::OR)) { 1402 auto *C1 = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 1403 auto *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1)); 1404 if (C1 && C2) { 1405 APInt C1Int = C1->getAPIntValue(); 1406 APInt ShiftedC1Int = C1Int << C2->getAPIntValue(); 1407 1408 // We can materialise `c1 << c2` into an add immediate, so it's "free", 1409 // and the combine should happen, to potentially allow further combines 1410 // later. 1411 if (ShiftedC1Int.getMinSignedBits() <= 64 && 1412 isLegalAddImmediate(ShiftedC1Int.getSExtValue())) 1413 return true; 1414 1415 // We can materialise `c1` in an add immediate, so it's "free", and the 1416 // combine should be prevented. 1417 if (C1Int.getMinSignedBits() <= 64 && 1418 isLegalAddImmediate(C1Int.getSExtValue())) 1419 return false; 1420 1421 // Neither constant will fit into an immediate, so find materialisation 1422 // costs. 1423 int C1Cost = RISCVMatInt::getIntMatCost(C1Int, Ty.getSizeInBits(), 1424 Subtarget.is64Bit()); 1425 int ShiftedC1Cost = RISCVMatInt::getIntMatCost( 1426 ShiftedC1Int, Ty.getSizeInBits(), Subtarget.is64Bit()); 1427 1428 // Materialising `c1` is cheaper than materialising `c1 << c2`, so the 1429 // combine should be prevented. 1430 if (C1Cost < ShiftedC1Cost) 1431 return false; 1432 } 1433 } 1434 return true; 1435 } 1436 1437 unsigned RISCVTargetLowering::ComputeNumSignBitsForTargetNode( 1438 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 1439 unsigned Depth) const { 1440 switch (Op.getOpcode()) { 1441 default: 1442 break; 1443 case RISCVISD::SLLW: 1444 case RISCVISD::SRAW: 1445 case RISCVISD::SRLW: 1446 case RISCVISD::DIVW: 1447 case RISCVISD::DIVUW: 1448 case RISCVISD::REMUW: 1449 case RISCVISD::ROLW: 1450 case RISCVISD::RORW: 1451 case RISCVISD::GREVIW: 1452 case RISCVISD::GORCIW: 1453 // TODO: As the result is sign-extended, this is conservatively correct. A 1454 // more precise answer could be calculated for SRAW depending on known 1455 // bits in the shift amount. 1456 return 33; 1457 } 1458 1459 return 1; 1460 } 1461 1462 static MachineBasicBlock *emitReadCycleWidePseudo(MachineInstr &MI, 1463 MachineBasicBlock *BB) { 1464 assert(MI.getOpcode() == RISCV::ReadCycleWide && "Unexpected instruction"); 1465 1466 // To read the 64-bit cycle CSR on a 32-bit target, we read the two halves. 1467 // Should the count have wrapped while it was being read, we need to try 1468 // again. 1469 // ... 1470 // read: 1471 // rdcycleh x3 # load high word of cycle 1472 // rdcycle x2 # load low word of cycle 1473 // rdcycleh x4 # load high word of cycle 1474 // bne x3, x4, read # check if high word reads match, otherwise try again 1475 // ... 1476 1477 MachineFunction &MF = *BB->getParent(); 1478 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 1479 MachineFunction::iterator It = ++BB->getIterator(); 1480 1481 MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB); 1482 MF.insert(It, LoopMBB); 1483 1484 MachineBasicBlock *DoneMBB = MF.CreateMachineBasicBlock(LLVM_BB); 1485 MF.insert(It, DoneMBB); 1486 1487 // Transfer the remainder of BB and its successor edges to DoneMBB. 1488 DoneMBB->splice(DoneMBB->begin(), BB, 1489 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 1490 DoneMBB->transferSuccessorsAndUpdatePHIs(BB); 1491 1492 BB->addSuccessor(LoopMBB); 1493 1494 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 1495 Register ReadAgainReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 1496 Register LoReg = MI.getOperand(0).getReg(); 1497 Register HiReg = MI.getOperand(1).getReg(); 1498 DebugLoc DL = MI.getDebugLoc(); 1499 1500 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 1501 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), HiReg) 1502 .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding) 1503 .addReg(RISCV::X0); 1504 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), LoReg) 1505 .addImm(RISCVSysReg::lookupSysRegByName("CYCLE")->Encoding) 1506 .addReg(RISCV::X0); 1507 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), ReadAgainReg) 1508 .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding) 1509 .addReg(RISCV::X0); 1510 1511 BuildMI(LoopMBB, DL, TII->get(RISCV::BNE)) 1512 .addReg(HiReg) 1513 .addReg(ReadAgainReg) 1514 .addMBB(LoopMBB); 1515 1516 LoopMBB->addSuccessor(LoopMBB); 1517 LoopMBB->addSuccessor(DoneMBB); 1518 1519 MI.eraseFromParent(); 1520 1521 return DoneMBB; 1522 } 1523 1524 static MachineBasicBlock *emitSplitF64Pseudo(MachineInstr &MI, 1525 MachineBasicBlock *BB) { 1526 assert(MI.getOpcode() == RISCV::SplitF64Pseudo && "Unexpected instruction"); 1527 1528 MachineFunction &MF = *BB->getParent(); 1529 DebugLoc DL = MI.getDebugLoc(); 1530 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 1531 const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo(); 1532 Register LoReg = MI.getOperand(0).getReg(); 1533 Register HiReg = MI.getOperand(1).getReg(); 1534 Register SrcReg = MI.getOperand(2).getReg(); 1535 const TargetRegisterClass *SrcRC = &RISCV::FPR64RegClass; 1536 int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF); 1537 1538 TII.storeRegToStackSlot(*BB, MI, SrcReg, MI.getOperand(2).isKill(), FI, SrcRC, 1539 RI); 1540 MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI); 1541 MachineMemOperand *MMOLo = 1542 MF.getMachineMemOperand(MPI, MachineMemOperand::MOLoad, 4, Align(8)); 1543 MachineMemOperand *MMOHi = MF.getMachineMemOperand( 1544 MPI.getWithOffset(4), MachineMemOperand::MOLoad, 4, Align(8)); 1545 BuildMI(*BB, MI, DL, TII.get(RISCV::LW), LoReg) 1546 .addFrameIndex(FI) 1547 .addImm(0) 1548 .addMemOperand(MMOLo); 1549 BuildMI(*BB, MI, DL, TII.get(RISCV::LW), HiReg) 1550 .addFrameIndex(FI) 1551 .addImm(4) 1552 .addMemOperand(MMOHi); 1553 MI.eraseFromParent(); // The pseudo instruction is gone now. 1554 return BB; 1555 } 1556 1557 static MachineBasicBlock *emitBuildPairF64Pseudo(MachineInstr &MI, 1558 MachineBasicBlock *BB) { 1559 assert(MI.getOpcode() == RISCV::BuildPairF64Pseudo && 1560 "Unexpected instruction"); 1561 1562 MachineFunction &MF = *BB->getParent(); 1563 DebugLoc DL = MI.getDebugLoc(); 1564 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 1565 const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo(); 1566 Register DstReg = MI.getOperand(0).getReg(); 1567 Register LoReg = MI.getOperand(1).getReg(); 1568 Register HiReg = MI.getOperand(2).getReg(); 1569 const TargetRegisterClass *DstRC = &RISCV::FPR64RegClass; 1570 int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF); 1571 1572 MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI); 1573 MachineMemOperand *MMOLo = 1574 MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Align(8)); 1575 MachineMemOperand *MMOHi = MF.getMachineMemOperand( 1576 MPI.getWithOffset(4), MachineMemOperand::MOStore, 4, Align(8)); 1577 BuildMI(*BB, MI, DL, TII.get(RISCV::SW)) 1578 .addReg(LoReg, getKillRegState(MI.getOperand(1).isKill())) 1579 .addFrameIndex(FI) 1580 .addImm(0) 1581 .addMemOperand(MMOLo); 1582 BuildMI(*BB, MI, DL, TII.get(RISCV::SW)) 1583 .addReg(HiReg, getKillRegState(MI.getOperand(2).isKill())) 1584 .addFrameIndex(FI) 1585 .addImm(4) 1586 .addMemOperand(MMOHi); 1587 TII.loadRegFromStackSlot(*BB, MI, DstReg, FI, DstRC, RI); 1588 MI.eraseFromParent(); // The pseudo instruction is gone now. 1589 return BB; 1590 } 1591 1592 static bool isSelectPseudo(MachineInstr &MI) { 1593 switch (MI.getOpcode()) { 1594 default: 1595 return false; 1596 case RISCV::Select_GPR_Using_CC_GPR: 1597 case RISCV::Select_FPR32_Using_CC_GPR: 1598 case RISCV::Select_FPR64_Using_CC_GPR: 1599 return true; 1600 } 1601 } 1602 1603 static MachineBasicBlock *emitSelectPseudo(MachineInstr &MI, 1604 MachineBasicBlock *BB) { 1605 // To "insert" Select_* instructions, we actually have to insert the triangle 1606 // control-flow pattern. The incoming instructions know the destination vreg 1607 // to set, the condition code register to branch on, the true/false values to 1608 // select between, and the condcode to use to select the appropriate branch. 1609 // 1610 // We produce the following control flow: 1611 // HeadMBB 1612 // | \ 1613 // | IfFalseMBB 1614 // | / 1615 // TailMBB 1616 // 1617 // When we find a sequence of selects we attempt to optimize their emission 1618 // by sharing the control flow. Currently we only handle cases where we have 1619 // multiple selects with the exact same condition (same LHS, RHS and CC). 1620 // The selects may be interleaved with other instructions if the other 1621 // instructions meet some requirements we deem safe: 1622 // - They are debug instructions. Otherwise, 1623 // - They do not have side-effects, do not access memory and their inputs do 1624 // not depend on the results of the select pseudo-instructions. 1625 // The TrueV/FalseV operands of the selects cannot depend on the result of 1626 // previous selects in the sequence. 1627 // These conditions could be further relaxed. See the X86 target for a 1628 // related approach and more information. 1629 Register LHS = MI.getOperand(1).getReg(); 1630 Register RHS = MI.getOperand(2).getReg(); 1631 auto CC = static_cast<ISD::CondCode>(MI.getOperand(3).getImm()); 1632 1633 SmallVector<MachineInstr *, 4> SelectDebugValues; 1634 SmallSet<Register, 4> SelectDests; 1635 SelectDests.insert(MI.getOperand(0).getReg()); 1636 1637 MachineInstr *LastSelectPseudo = &MI; 1638 1639 for (auto E = BB->end(), SequenceMBBI = MachineBasicBlock::iterator(MI); 1640 SequenceMBBI != E; ++SequenceMBBI) { 1641 if (SequenceMBBI->isDebugInstr()) 1642 continue; 1643 else if (isSelectPseudo(*SequenceMBBI)) { 1644 if (SequenceMBBI->getOperand(1).getReg() != LHS || 1645 SequenceMBBI->getOperand(2).getReg() != RHS || 1646 SequenceMBBI->getOperand(3).getImm() != CC || 1647 SelectDests.count(SequenceMBBI->getOperand(4).getReg()) || 1648 SelectDests.count(SequenceMBBI->getOperand(5).getReg())) 1649 break; 1650 LastSelectPseudo = &*SequenceMBBI; 1651 SequenceMBBI->collectDebugValues(SelectDebugValues); 1652 SelectDests.insert(SequenceMBBI->getOperand(0).getReg()); 1653 } else { 1654 if (SequenceMBBI->hasUnmodeledSideEffects() || 1655 SequenceMBBI->mayLoadOrStore()) 1656 break; 1657 if (llvm::any_of(SequenceMBBI->operands(), [&](MachineOperand &MO) { 1658 return MO.isReg() && MO.isUse() && SelectDests.count(MO.getReg()); 1659 })) 1660 break; 1661 } 1662 } 1663 1664 const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo(); 1665 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 1666 DebugLoc DL = MI.getDebugLoc(); 1667 MachineFunction::iterator I = ++BB->getIterator(); 1668 1669 MachineBasicBlock *HeadMBB = BB; 1670 MachineFunction *F = BB->getParent(); 1671 MachineBasicBlock *TailMBB = F->CreateMachineBasicBlock(LLVM_BB); 1672 MachineBasicBlock *IfFalseMBB = F->CreateMachineBasicBlock(LLVM_BB); 1673 1674 F->insert(I, IfFalseMBB); 1675 F->insert(I, TailMBB); 1676 1677 // Transfer debug instructions associated with the selects to TailMBB. 1678 for (MachineInstr *DebugInstr : SelectDebugValues) { 1679 TailMBB->push_back(DebugInstr->removeFromParent()); 1680 } 1681 1682 // Move all instructions after the sequence to TailMBB. 1683 TailMBB->splice(TailMBB->end(), HeadMBB, 1684 std::next(LastSelectPseudo->getIterator()), HeadMBB->end()); 1685 // Update machine-CFG edges by transferring all successors of the current 1686 // block to the new block which will contain the Phi nodes for the selects. 1687 TailMBB->transferSuccessorsAndUpdatePHIs(HeadMBB); 1688 // Set the successors for HeadMBB. 1689 HeadMBB->addSuccessor(IfFalseMBB); 1690 HeadMBB->addSuccessor(TailMBB); 1691 1692 // Insert appropriate branch. 1693 unsigned Opcode = getBranchOpcodeForIntCondCode(CC); 1694 1695 BuildMI(HeadMBB, DL, TII.get(Opcode)) 1696 .addReg(LHS) 1697 .addReg(RHS) 1698 .addMBB(TailMBB); 1699 1700 // IfFalseMBB just falls through to TailMBB. 1701 IfFalseMBB->addSuccessor(TailMBB); 1702 1703 // Create PHIs for all of the select pseudo-instructions. 1704 auto SelectMBBI = MI.getIterator(); 1705 auto SelectEnd = std::next(LastSelectPseudo->getIterator()); 1706 auto InsertionPoint = TailMBB->begin(); 1707 while (SelectMBBI != SelectEnd) { 1708 auto Next = std::next(SelectMBBI); 1709 if (isSelectPseudo(*SelectMBBI)) { 1710 // %Result = phi [ %TrueValue, HeadMBB ], [ %FalseValue, IfFalseMBB ] 1711 BuildMI(*TailMBB, InsertionPoint, SelectMBBI->getDebugLoc(), 1712 TII.get(RISCV::PHI), SelectMBBI->getOperand(0).getReg()) 1713 .addReg(SelectMBBI->getOperand(4).getReg()) 1714 .addMBB(HeadMBB) 1715 .addReg(SelectMBBI->getOperand(5).getReg()) 1716 .addMBB(IfFalseMBB); 1717 SelectMBBI->eraseFromParent(); 1718 } 1719 SelectMBBI = Next; 1720 } 1721 1722 F->getProperties().reset(MachineFunctionProperties::Property::NoPHIs); 1723 return TailMBB; 1724 } 1725 1726 MachineBasicBlock * 1727 RISCVTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 1728 MachineBasicBlock *BB) const { 1729 switch (MI.getOpcode()) { 1730 default: 1731 llvm_unreachable("Unexpected instr type to insert"); 1732 case RISCV::ReadCycleWide: 1733 assert(!Subtarget.is64Bit() && 1734 "ReadCycleWrite is only to be used on riscv32"); 1735 return emitReadCycleWidePseudo(MI, BB); 1736 case RISCV::Select_GPR_Using_CC_GPR: 1737 case RISCV::Select_FPR32_Using_CC_GPR: 1738 case RISCV::Select_FPR64_Using_CC_GPR: 1739 return emitSelectPseudo(MI, BB); 1740 case RISCV::BuildPairF64Pseudo: 1741 return emitBuildPairF64Pseudo(MI, BB); 1742 case RISCV::SplitF64Pseudo: 1743 return emitSplitF64Pseudo(MI, BB); 1744 } 1745 } 1746 1747 // Calling Convention Implementation. 1748 // The expectations for frontend ABI lowering vary from target to target. 1749 // Ideally, an LLVM frontend would be able to avoid worrying about many ABI 1750 // details, but this is a longer term goal. For now, we simply try to keep the 1751 // role of the frontend as simple and well-defined as possible. The rules can 1752 // be summarised as: 1753 // * Never split up large scalar arguments. We handle them here. 1754 // * If a hardfloat calling convention is being used, and the struct may be 1755 // passed in a pair of registers (fp+fp, int+fp), and both registers are 1756 // available, then pass as two separate arguments. If either the GPRs or FPRs 1757 // are exhausted, then pass according to the rule below. 1758 // * If a struct could never be passed in registers or directly in a stack 1759 // slot (as it is larger than 2*XLEN and the floating point rules don't 1760 // apply), then pass it using a pointer with the byval attribute. 1761 // * If a struct is less than 2*XLEN, then coerce to either a two-element 1762 // word-sized array or a 2*XLEN scalar (depending on alignment). 1763 // * The frontend can determine whether a struct is returned by reference or 1764 // not based on its size and fields. If it will be returned by reference, the 1765 // frontend must modify the prototype so a pointer with the sret annotation is 1766 // passed as the first argument. This is not necessary for large scalar 1767 // returns. 1768 // * Struct return values and varargs should be coerced to structs containing 1769 // register-size fields in the same situations they would be for fixed 1770 // arguments. 1771 1772 static const MCPhysReg ArgGPRs[] = { 1773 RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, 1774 RISCV::X14, RISCV::X15, RISCV::X16, RISCV::X17 1775 }; 1776 static const MCPhysReg ArgFPR32s[] = { 1777 RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, 1778 RISCV::F14_F, RISCV::F15_F, RISCV::F16_F, RISCV::F17_F 1779 }; 1780 static const MCPhysReg ArgFPR64s[] = { 1781 RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, 1782 RISCV::F14_D, RISCV::F15_D, RISCV::F16_D, RISCV::F17_D 1783 }; 1784 1785 // Pass a 2*XLEN argument that has been split into two XLEN values through 1786 // registers or the stack as necessary. 1787 static bool CC_RISCVAssign2XLen(unsigned XLen, CCState &State, CCValAssign VA1, 1788 ISD::ArgFlagsTy ArgFlags1, unsigned ValNo2, 1789 MVT ValVT2, MVT LocVT2, 1790 ISD::ArgFlagsTy ArgFlags2) { 1791 unsigned XLenInBytes = XLen / 8; 1792 if (Register Reg = State.AllocateReg(ArgGPRs)) { 1793 // At least one half can be passed via register. 1794 State.addLoc(CCValAssign::getReg(VA1.getValNo(), VA1.getValVT(), Reg, 1795 VA1.getLocVT(), CCValAssign::Full)); 1796 } else { 1797 // Both halves must be passed on the stack, with proper alignment. 1798 Align StackAlign = 1799 std::max(Align(XLenInBytes), ArgFlags1.getNonZeroOrigAlign()); 1800 State.addLoc( 1801 CCValAssign::getMem(VA1.getValNo(), VA1.getValVT(), 1802 State.AllocateStack(XLenInBytes, StackAlign), 1803 VA1.getLocVT(), CCValAssign::Full)); 1804 State.addLoc(CCValAssign::getMem( 1805 ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)), 1806 LocVT2, CCValAssign::Full)); 1807 return false; 1808 } 1809 1810 if (Register Reg = State.AllocateReg(ArgGPRs)) { 1811 // The second half can also be passed via register. 1812 State.addLoc( 1813 CCValAssign::getReg(ValNo2, ValVT2, Reg, LocVT2, CCValAssign::Full)); 1814 } else { 1815 // The second half is passed via the stack, without additional alignment. 1816 State.addLoc(CCValAssign::getMem( 1817 ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)), 1818 LocVT2, CCValAssign::Full)); 1819 } 1820 1821 return false; 1822 } 1823 1824 // Implements the RISC-V calling convention. Returns true upon failure. 1825 static bool CC_RISCV(const DataLayout &DL, RISCVABI::ABI ABI, unsigned ValNo, 1826 MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, 1827 ISD::ArgFlagsTy ArgFlags, CCState &State, bool IsFixed, 1828 bool IsRet, Type *OrigTy) { 1829 unsigned XLen = DL.getLargestLegalIntTypeSizeInBits(); 1830 assert(XLen == 32 || XLen == 64); 1831 MVT XLenVT = XLen == 32 ? MVT::i32 : MVT::i64; 1832 1833 // Any return value split in to more than two values can't be returned 1834 // directly. 1835 if (IsRet && ValNo > 1) 1836 return true; 1837 1838 // UseGPRForF32 if targeting one of the soft-float ABIs, if passing a 1839 // variadic argument, or if no F32 argument registers are available. 1840 bool UseGPRForF32 = true; 1841 // UseGPRForF64 if targeting soft-float ABIs or an FLEN=32 ABI, if passing a 1842 // variadic argument, or if no F64 argument registers are available. 1843 bool UseGPRForF64 = true; 1844 1845 switch (ABI) { 1846 default: 1847 llvm_unreachable("Unexpected ABI"); 1848 case RISCVABI::ABI_ILP32: 1849 case RISCVABI::ABI_LP64: 1850 break; 1851 case RISCVABI::ABI_ILP32F: 1852 case RISCVABI::ABI_LP64F: 1853 UseGPRForF32 = !IsFixed; 1854 break; 1855 case RISCVABI::ABI_ILP32D: 1856 case RISCVABI::ABI_LP64D: 1857 UseGPRForF32 = !IsFixed; 1858 UseGPRForF64 = !IsFixed; 1859 break; 1860 } 1861 1862 if (State.getFirstUnallocated(ArgFPR32s) == array_lengthof(ArgFPR32s)) 1863 UseGPRForF32 = true; 1864 if (State.getFirstUnallocated(ArgFPR64s) == array_lengthof(ArgFPR64s)) 1865 UseGPRForF64 = true; 1866 1867 // From this point on, rely on UseGPRForF32, UseGPRForF64 and similar local 1868 // variables rather than directly checking against the target ABI. 1869 1870 if (UseGPRForF32 && ValVT == MVT::f32) { 1871 LocVT = XLenVT; 1872 LocInfo = CCValAssign::BCvt; 1873 } else if (UseGPRForF64 && XLen == 64 && ValVT == MVT::f64) { 1874 LocVT = MVT::i64; 1875 LocInfo = CCValAssign::BCvt; 1876 } 1877 1878 // If this is a variadic argument, the RISC-V calling convention requires 1879 // that it is assigned an 'even' or 'aligned' register if it has 8-byte 1880 // alignment (RV32) or 16-byte alignment (RV64). An aligned register should 1881 // be used regardless of whether the original argument was split during 1882 // legalisation or not. The argument will not be passed by registers if the 1883 // original type is larger than 2*XLEN, so the register alignment rule does 1884 // not apply. 1885 unsigned TwoXLenInBytes = (2 * XLen) / 8; 1886 if (!IsFixed && ArgFlags.getNonZeroOrigAlign() == TwoXLenInBytes && 1887 DL.getTypeAllocSize(OrigTy) == TwoXLenInBytes) { 1888 unsigned RegIdx = State.getFirstUnallocated(ArgGPRs); 1889 // Skip 'odd' register if necessary. 1890 if (RegIdx != array_lengthof(ArgGPRs) && RegIdx % 2 == 1) 1891 State.AllocateReg(ArgGPRs); 1892 } 1893 1894 SmallVectorImpl<CCValAssign> &PendingLocs = State.getPendingLocs(); 1895 SmallVectorImpl<ISD::ArgFlagsTy> &PendingArgFlags = 1896 State.getPendingArgFlags(); 1897 1898 assert(PendingLocs.size() == PendingArgFlags.size() && 1899 "PendingLocs and PendingArgFlags out of sync"); 1900 1901 // Handle passing f64 on RV32D with a soft float ABI or when floating point 1902 // registers are exhausted. 1903 if (UseGPRForF64 && XLen == 32 && ValVT == MVT::f64) { 1904 assert(!ArgFlags.isSplit() && PendingLocs.empty() && 1905 "Can't lower f64 if it is split"); 1906 // Depending on available argument GPRS, f64 may be passed in a pair of 1907 // GPRs, split between a GPR and the stack, or passed completely on the 1908 // stack. LowerCall/LowerFormalArguments/LowerReturn must recognise these 1909 // cases. 1910 Register Reg = State.AllocateReg(ArgGPRs); 1911 LocVT = MVT::i32; 1912 if (!Reg) { 1913 unsigned StackOffset = State.AllocateStack(8, Align(8)); 1914 State.addLoc( 1915 CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 1916 return false; 1917 } 1918 if (!State.AllocateReg(ArgGPRs)) 1919 State.AllocateStack(4, Align(4)); 1920 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 1921 return false; 1922 } 1923 1924 // Split arguments might be passed indirectly, so keep track of the pending 1925 // values. 1926 if (ArgFlags.isSplit() || !PendingLocs.empty()) { 1927 LocVT = XLenVT; 1928 LocInfo = CCValAssign::Indirect; 1929 PendingLocs.push_back( 1930 CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo)); 1931 PendingArgFlags.push_back(ArgFlags); 1932 if (!ArgFlags.isSplitEnd()) { 1933 return false; 1934 } 1935 } 1936 1937 // If the split argument only had two elements, it should be passed directly 1938 // in registers or on the stack. 1939 if (ArgFlags.isSplitEnd() && PendingLocs.size() <= 2) { 1940 assert(PendingLocs.size() == 2 && "Unexpected PendingLocs.size()"); 1941 // Apply the normal calling convention rules to the first half of the 1942 // split argument. 1943 CCValAssign VA = PendingLocs[0]; 1944 ISD::ArgFlagsTy AF = PendingArgFlags[0]; 1945 PendingLocs.clear(); 1946 PendingArgFlags.clear(); 1947 return CC_RISCVAssign2XLen(XLen, State, VA, AF, ValNo, ValVT, LocVT, 1948 ArgFlags); 1949 } 1950 1951 // Allocate to a register if possible, or else a stack slot. 1952 Register Reg; 1953 if (ValVT == MVT::f32 && !UseGPRForF32) 1954 Reg = State.AllocateReg(ArgFPR32s); 1955 else if (ValVT == MVT::f64 && !UseGPRForF64) 1956 Reg = State.AllocateReg(ArgFPR64s); 1957 else 1958 Reg = State.AllocateReg(ArgGPRs); 1959 unsigned StackOffset = 1960 Reg ? 0 : State.AllocateStack(XLen / 8, Align(XLen / 8)); 1961 1962 // If we reach this point and PendingLocs is non-empty, we must be at the 1963 // end of a split argument that must be passed indirectly. 1964 if (!PendingLocs.empty()) { 1965 assert(ArgFlags.isSplitEnd() && "Expected ArgFlags.isSplitEnd()"); 1966 assert(PendingLocs.size() > 2 && "Unexpected PendingLocs.size()"); 1967 1968 for (auto &It : PendingLocs) { 1969 if (Reg) 1970 It.convertToReg(Reg); 1971 else 1972 It.convertToMem(StackOffset); 1973 State.addLoc(It); 1974 } 1975 PendingLocs.clear(); 1976 PendingArgFlags.clear(); 1977 return false; 1978 } 1979 1980 assert((!UseGPRForF32 || !UseGPRForF64 || LocVT == XLenVT) && 1981 "Expected an XLenVT at this stage"); 1982 1983 if (Reg) { 1984 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 1985 return false; 1986 } 1987 1988 // When an f32 or f64 is passed on the stack, no bit-conversion is needed. 1989 if (ValVT == MVT::f32 || ValVT == MVT::f64) { 1990 LocVT = ValVT; 1991 LocInfo = CCValAssign::Full; 1992 } 1993 State.addLoc(CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 1994 return false; 1995 } 1996 1997 void RISCVTargetLowering::analyzeInputArgs( 1998 MachineFunction &MF, CCState &CCInfo, 1999 const SmallVectorImpl<ISD::InputArg> &Ins, bool IsRet) const { 2000 unsigned NumArgs = Ins.size(); 2001 FunctionType *FType = MF.getFunction().getFunctionType(); 2002 2003 for (unsigned i = 0; i != NumArgs; ++i) { 2004 MVT ArgVT = Ins[i].VT; 2005 ISD::ArgFlagsTy ArgFlags = Ins[i].Flags; 2006 2007 Type *ArgTy = nullptr; 2008 if (IsRet) 2009 ArgTy = FType->getReturnType(); 2010 else if (Ins[i].isOrigArg()) 2011 ArgTy = FType->getParamType(Ins[i].getOrigArgIndex()); 2012 2013 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 2014 if (CC_RISCV(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full, 2015 ArgFlags, CCInfo, /*IsFixed=*/true, IsRet, ArgTy)) { 2016 LLVM_DEBUG(dbgs() << "InputArg #" << i << " has unhandled type " 2017 << EVT(ArgVT).getEVTString() << '\n'); 2018 llvm_unreachable(nullptr); 2019 } 2020 } 2021 } 2022 2023 void RISCVTargetLowering::analyzeOutputArgs( 2024 MachineFunction &MF, CCState &CCInfo, 2025 const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsRet, 2026 CallLoweringInfo *CLI) const { 2027 unsigned NumArgs = Outs.size(); 2028 2029 for (unsigned i = 0; i != NumArgs; i++) { 2030 MVT ArgVT = Outs[i].VT; 2031 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 2032 Type *OrigTy = CLI ? CLI->getArgs()[Outs[i].OrigArgIndex].Ty : nullptr; 2033 2034 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 2035 if (CC_RISCV(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full, 2036 ArgFlags, CCInfo, Outs[i].IsFixed, IsRet, OrigTy)) { 2037 LLVM_DEBUG(dbgs() << "OutputArg #" << i << " has unhandled type " 2038 << EVT(ArgVT).getEVTString() << "\n"); 2039 llvm_unreachable(nullptr); 2040 } 2041 } 2042 } 2043 2044 // Convert Val to a ValVT. Should not be called for CCValAssign::Indirect 2045 // values. 2046 static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDValue Val, 2047 const CCValAssign &VA, const SDLoc &DL) { 2048 switch (VA.getLocInfo()) { 2049 default: 2050 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 2051 case CCValAssign::Full: 2052 break; 2053 case CCValAssign::BCvt: 2054 if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) { 2055 Val = DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, Val); 2056 break; 2057 } 2058 Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val); 2059 break; 2060 } 2061 return Val; 2062 } 2063 2064 // The caller is responsible for loading the full value if the argument is 2065 // passed with CCValAssign::Indirect. 2066 static SDValue unpackFromRegLoc(SelectionDAG &DAG, SDValue Chain, 2067 const CCValAssign &VA, const SDLoc &DL) { 2068 MachineFunction &MF = DAG.getMachineFunction(); 2069 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 2070 EVT LocVT = VA.getLocVT(); 2071 SDValue Val; 2072 const TargetRegisterClass *RC; 2073 2074 switch (LocVT.getSimpleVT().SimpleTy) { 2075 default: 2076 llvm_unreachable("Unexpected register type"); 2077 case MVT::i32: 2078 case MVT::i64: 2079 RC = &RISCV::GPRRegClass; 2080 break; 2081 case MVT::f32: 2082 RC = &RISCV::FPR32RegClass; 2083 break; 2084 case MVT::f64: 2085 RC = &RISCV::FPR64RegClass; 2086 break; 2087 } 2088 2089 Register VReg = RegInfo.createVirtualRegister(RC); 2090 RegInfo.addLiveIn(VA.getLocReg(), VReg); 2091 Val = DAG.getCopyFromReg(Chain, DL, VReg, LocVT); 2092 2093 if (VA.getLocInfo() == CCValAssign::Indirect) 2094 return Val; 2095 2096 return convertLocVTToValVT(DAG, Val, VA, DL); 2097 } 2098 2099 static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDValue Val, 2100 const CCValAssign &VA, const SDLoc &DL) { 2101 EVT LocVT = VA.getLocVT(); 2102 2103 switch (VA.getLocInfo()) { 2104 default: 2105 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 2106 case CCValAssign::Full: 2107 break; 2108 case CCValAssign::BCvt: 2109 if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) { 2110 Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Val); 2111 break; 2112 } 2113 Val = DAG.getNode(ISD::BITCAST, DL, LocVT, Val); 2114 break; 2115 } 2116 return Val; 2117 } 2118 2119 // The caller is responsible for loading the full value if the argument is 2120 // passed with CCValAssign::Indirect. 2121 static SDValue unpackFromMemLoc(SelectionDAG &DAG, SDValue Chain, 2122 const CCValAssign &VA, const SDLoc &DL) { 2123 MachineFunction &MF = DAG.getMachineFunction(); 2124 MachineFrameInfo &MFI = MF.getFrameInfo(); 2125 EVT LocVT = VA.getLocVT(); 2126 EVT ValVT = VA.getValVT(); 2127 EVT PtrVT = MVT::getIntegerVT(DAG.getDataLayout().getPointerSizeInBits(0)); 2128 int FI = MFI.CreateFixedObject(ValVT.getSizeInBits() / 8, 2129 VA.getLocMemOffset(), /*Immutable=*/true); 2130 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 2131 SDValue Val; 2132 2133 ISD::LoadExtType ExtType; 2134 switch (VA.getLocInfo()) { 2135 default: 2136 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 2137 case CCValAssign::Full: 2138 case CCValAssign::Indirect: 2139 case CCValAssign::BCvt: 2140 ExtType = ISD::NON_EXTLOAD; 2141 break; 2142 } 2143 Val = DAG.getExtLoad( 2144 ExtType, DL, LocVT, Chain, FIN, 2145 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), ValVT); 2146 return Val; 2147 } 2148 2149 static SDValue unpackF64OnRV32DSoftABI(SelectionDAG &DAG, SDValue Chain, 2150 const CCValAssign &VA, const SDLoc &DL) { 2151 assert(VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64 && 2152 "Unexpected VA"); 2153 MachineFunction &MF = DAG.getMachineFunction(); 2154 MachineFrameInfo &MFI = MF.getFrameInfo(); 2155 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 2156 2157 if (VA.isMemLoc()) { 2158 // f64 is passed on the stack. 2159 int FI = MFI.CreateFixedObject(8, VA.getLocMemOffset(), /*Immutable=*/true); 2160 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 2161 return DAG.getLoad(MVT::f64, DL, Chain, FIN, 2162 MachinePointerInfo::getFixedStack(MF, FI)); 2163 } 2164 2165 assert(VA.isRegLoc() && "Expected register VA assignment"); 2166 2167 Register LoVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 2168 RegInfo.addLiveIn(VA.getLocReg(), LoVReg); 2169 SDValue Lo = DAG.getCopyFromReg(Chain, DL, LoVReg, MVT::i32); 2170 SDValue Hi; 2171 if (VA.getLocReg() == RISCV::X17) { 2172 // Second half of f64 is passed on the stack. 2173 int FI = MFI.CreateFixedObject(4, 0, /*Immutable=*/true); 2174 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 2175 Hi = DAG.getLoad(MVT::i32, DL, Chain, FIN, 2176 MachinePointerInfo::getFixedStack(MF, FI)); 2177 } else { 2178 // Second half of f64 is passed in another GPR. 2179 Register HiVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 2180 RegInfo.addLiveIn(VA.getLocReg() + 1, HiVReg); 2181 Hi = DAG.getCopyFromReg(Chain, DL, HiVReg, MVT::i32); 2182 } 2183 return DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, Lo, Hi); 2184 } 2185 2186 // FastCC has less than 1% performance improvement for some particular 2187 // benchmark. But theoretically, it may has benenfit for some cases. 2188 static bool CC_RISCV_FastCC(unsigned ValNo, MVT ValVT, MVT LocVT, 2189 CCValAssign::LocInfo LocInfo, 2190 ISD::ArgFlagsTy ArgFlags, CCState &State) { 2191 2192 if (LocVT == MVT::i32 || LocVT == MVT::i64) { 2193 // X5 and X6 might be used for save-restore libcall. 2194 static const MCPhysReg GPRList[] = { 2195 RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, RISCV::X14, 2196 RISCV::X15, RISCV::X16, RISCV::X17, RISCV::X7, RISCV::X28, 2197 RISCV::X29, RISCV::X30, RISCV::X31}; 2198 if (unsigned Reg = State.AllocateReg(GPRList)) { 2199 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 2200 return false; 2201 } 2202 } 2203 2204 if (LocVT == MVT::f32) { 2205 static const MCPhysReg FPR32List[] = { 2206 RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, RISCV::F14_F, 2207 RISCV::F15_F, RISCV::F16_F, RISCV::F17_F, RISCV::F0_F, RISCV::F1_F, 2208 RISCV::F2_F, RISCV::F3_F, RISCV::F4_F, RISCV::F5_F, RISCV::F6_F, 2209 RISCV::F7_F, RISCV::F28_F, RISCV::F29_F, RISCV::F30_F, RISCV::F31_F}; 2210 if (unsigned Reg = State.AllocateReg(FPR32List)) { 2211 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 2212 return false; 2213 } 2214 } 2215 2216 if (LocVT == MVT::f64) { 2217 static const MCPhysReg FPR64List[] = { 2218 RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, RISCV::F14_D, 2219 RISCV::F15_D, RISCV::F16_D, RISCV::F17_D, RISCV::F0_D, RISCV::F1_D, 2220 RISCV::F2_D, RISCV::F3_D, RISCV::F4_D, RISCV::F5_D, RISCV::F6_D, 2221 RISCV::F7_D, RISCV::F28_D, RISCV::F29_D, RISCV::F30_D, RISCV::F31_D}; 2222 if (unsigned Reg = State.AllocateReg(FPR64List)) { 2223 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 2224 return false; 2225 } 2226 } 2227 2228 if (LocVT == MVT::i32 || LocVT == MVT::f32) { 2229 unsigned Offset4 = State.AllocateStack(4, Align(4)); 2230 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset4, LocVT, LocInfo)); 2231 return false; 2232 } 2233 2234 if (LocVT == MVT::i64 || LocVT == MVT::f64) { 2235 unsigned Offset5 = State.AllocateStack(8, Align(8)); 2236 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset5, LocVT, LocInfo)); 2237 return false; 2238 } 2239 2240 return true; // CC didn't match. 2241 } 2242 2243 // Transform physical registers into virtual registers. 2244 SDValue RISCVTargetLowering::LowerFormalArguments( 2245 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 2246 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 2247 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 2248 2249 switch (CallConv) { 2250 default: 2251 report_fatal_error("Unsupported calling convention"); 2252 case CallingConv::C: 2253 case CallingConv::Fast: 2254 break; 2255 } 2256 2257 MachineFunction &MF = DAG.getMachineFunction(); 2258 2259 const Function &Func = MF.getFunction(); 2260 if (Func.hasFnAttribute("interrupt")) { 2261 if (!Func.arg_empty()) 2262 report_fatal_error( 2263 "Functions with the interrupt attribute cannot have arguments!"); 2264 2265 StringRef Kind = 2266 MF.getFunction().getFnAttribute("interrupt").getValueAsString(); 2267 2268 if (!(Kind == "user" || Kind == "supervisor" || Kind == "machine")) 2269 report_fatal_error( 2270 "Function interrupt attribute argument not supported!"); 2271 } 2272 2273 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2274 MVT XLenVT = Subtarget.getXLenVT(); 2275 unsigned XLenInBytes = Subtarget.getXLen() / 8; 2276 // Used with vargs to acumulate store chains. 2277 std::vector<SDValue> OutChains; 2278 2279 // Assign locations to all of the incoming arguments. 2280 SmallVector<CCValAssign, 16> ArgLocs; 2281 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 2282 2283 if (CallConv == CallingConv::Fast) 2284 CCInfo.AnalyzeFormalArguments(Ins, CC_RISCV_FastCC); 2285 else 2286 analyzeInputArgs(MF, CCInfo, Ins, /*IsRet=*/false); 2287 2288 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 2289 CCValAssign &VA = ArgLocs[i]; 2290 SDValue ArgValue; 2291 // Passing f64 on RV32D with a soft float ABI must be handled as a special 2292 // case. 2293 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) 2294 ArgValue = unpackF64OnRV32DSoftABI(DAG, Chain, VA, DL); 2295 else if (VA.isRegLoc()) 2296 ArgValue = unpackFromRegLoc(DAG, Chain, VA, DL); 2297 else 2298 ArgValue = unpackFromMemLoc(DAG, Chain, VA, DL); 2299 2300 if (VA.getLocInfo() == CCValAssign::Indirect) { 2301 // If the original argument was split and passed by reference (e.g. i128 2302 // on RV32), we need to load all parts of it here (using the same 2303 // address). 2304 InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue, 2305 MachinePointerInfo())); 2306 unsigned ArgIndex = Ins[i].OrigArgIndex; 2307 assert(Ins[i].PartOffset == 0); 2308 while (i + 1 != e && Ins[i + 1].OrigArgIndex == ArgIndex) { 2309 CCValAssign &PartVA = ArgLocs[i + 1]; 2310 unsigned PartOffset = Ins[i + 1].PartOffset; 2311 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, 2312 DAG.getIntPtrConstant(PartOffset, DL)); 2313 InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address, 2314 MachinePointerInfo())); 2315 ++i; 2316 } 2317 continue; 2318 } 2319 InVals.push_back(ArgValue); 2320 } 2321 2322 if (IsVarArg) { 2323 ArrayRef<MCPhysReg> ArgRegs = makeArrayRef(ArgGPRs); 2324 unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs); 2325 const TargetRegisterClass *RC = &RISCV::GPRRegClass; 2326 MachineFrameInfo &MFI = MF.getFrameInfo(); 2327 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 2328 RISCVMachineFunctionInfo *RVFI = MF.getInfo<RISCVMachineFunctionInfo>(); 2329 2330 // Offset of the first variable argument from stack pointer, and size of 2331 // the vararg save area. For now, the varargs save area is either zero or 2332 // large enough to hold a0-a7. 2333 int VaArgOffset, VarArgsSaveSize; 2334 2335 // If all registers are allocated, then all varargs must be passed on the 2336 // stack and we don't need to save any argregs. 2337 if (ArgRegs.size() == Idx) { 2338 VaArgOffset = CCInfo.getNextStackOffset(); 2339 VarArgsSaveSize = 0; 2340 } else { 2341 VarArgsSaveSize = XLenInBytes * (ArgRegs.size() - Idx); 2342 VaArgOffset = -VarArgsSaveSize; 2343 } 2344 2345 // Record the frame index of the first variable argument 2346 // which is a value necessary to VASTART. 2347 int FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true); 2348 RVFI->setVarArgsFrameIndex(FI); 2349 2350 // If saving an odd number of registers then create an extra stack slot to 2351 // ensure that the frame pointer is 2*XLEN-aligned, which in turn ensures 2352 // offsets to even-numbered registered remain 2*XLEN-aligned. 2353 if (Idx % 2) { 2354 MFI.CreateFixedObject(XLenInBytes, VaArgOffset - (int)XLenInBytes, true); 2355 VarArgsSaveSize += XLenInBytes; 2356 } 2357 2358 // Copy the integer registers that may have been used for passing varargs 2359 // to the vararg save area. 2360 for (unsigned I = Idx; I < ArgRegs.size(); 2361 ++I, VaArgOffset += XLenInBytes) { 2362 const Register Reg = RegInfo.createVirtualRegister(RC); 2363 RegInfo.addLiveIn(ArgRegs[I], Reg); 2364 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, XLenVT); 2365 FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true); 2366 SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 2367 SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff, 2368 MachinePointerInfo::getFixedStack(MF, FI)); 2369 cast<StoreSDNode>(Store.getNode()) 2370 ->getMemOperand() 2371 ->setValue((Value *)nullptr); 2372 OutChains.push_back(Store); 2373 } 2374 RVFI->setVarArgsSaveSize(VarArgsSaveSize); 2375 } 2376 2377 // All stores are grouped in one node to allow the matching between 2378 // the size of Ins and InVals. This only happens for vararg functions. 2379 if (!OutChains.empty()) { 2380 OutChains.push_back(Chain); 2381 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains); 2382 } 2383 2384 return Chain; 2385 } 2386 2387 /// isEligibleForTailCallOptimization - Check whether the call is eligible 2388 /// for tail call optimization. 2389 /// Note: This is modelled after ARM's IsEligibleForTailCallOptimization. 2390 bool RISCVTargetLowering::isEligibleForTailCallOptimization( 2391 CCState &CCInfo, CallLoweringInfo &CLI, MachineFunction &MF, 2392 const SmallVector<CCValAssign, 16> &ArgLocs) const { 2393 2394 auto &Callee = CLI.Callee; 2395 auto CalleeCC = CLI.CallConv; 2396 auto &Outs = CLI.Outs; 2397 auto &Caller = MF.getFunction(); 2398 auto CallerCC = Caller.getCallingConv(); 2399 2400 // Exception-handling functions need a special set of instructions to 2401 // indicate a return to the hardware. Tail-calling another function would 2402 // probably break this. 2403 // TODO: The "interrupt" attribute isn't currently defined by RISC-V. This 2404 // should be expanded as new function attributes are introduced. 2405 if (Caller.hasFnAttribute("interrupt")) 2406 return false; 2407 2408 // Do not tail call opt if the stack is used to pass parameters. 2409 if (CCInfo.getNextStackOffset() != 0) 2410 return false; 2411 2412 // Do not tail call opt if any parameters need to be passed indirectly. 2413 // Since long doubles (fp128) and i128 are larger than 2*XLEN, they are 2414 // passed indirectly. So the address of the value will be passed in a 2415 // register, or if not available, then the address is put on the stack. In 2416 // order to pass indirectly, space on the stack often needs to be allocated 2417 // in order to store the value. In this case the CCInfo.getNextStackOffset() 2418 // != 0 check is not enough and we need to check if any CCValAssign ArgsLocs 2419 // are passed CCValAssign::Indirect. 2420 for (auto &VA : ArgLocs) 2421 if (VA.getLocInfo() == CCValAssign::Indirect) 2422 return false; 2423 2424 // Do not tail call opt if either caller or callee uses struct return 2425 // semantics. 2426 auto IsCallerStructRet = Caller.hasStructRetAttr(); 2427 auto IsCalleeStructRet = Outs.empty() ? false : Outs[0].Flags.isSRet(); 2428 if (IsCallerStructRet || IsCalleeStructRet) 2429 return false; 2430 2431 // Externally-defined functions with weak linkage should not be 2432 // tail-called. The behaviour of branch instructions in this situation (as 2433 // used for tail calls) is implementation-defined, so we cannot rely on the 2434 // linker replacing the tail call with a return. 2435 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 2436 const GlobalValue *GV = G->getGlobal(); 2437 if (GV->hasExternalWeakLinkage()) 2438 return false; 2439 } 2440 2441 // The callee has to preserve all registers the caller needs to preserve. 2442 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 2443 const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC); 2444 if (CalleeCC != CallerCC) { 2445 const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC); 2446 if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved)) 2447 return false; 2448 } 2449 2450 // Byval parameters hand the function a pointer directly into the stack area 2451 // we want to reuse during a tail call. Working around this *is* possible 2452 // but less efficient and uglier in LowerCall. 2453 for (auto &Arg : Outs) 2454 if (Arg.Flags.isByVal()) 2455 return false; 2456 2457 return true; 2458 } 2459 2460 // Lower a call to a callseq_start + CALL + callseq_end chain, and add input 2461 // and output parameter nodes. 2462 SDValue RISCVTargetLowering::LowerCall(CallLoweringInfo &CLI, 2463 SmallVectorImpl<SDValue> &InVals) const { 2464 SelectionDAG &DAG = CLI.DAG; 2465 SDLoc &DL = CLI.DL; 2466 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 2467 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 2468 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 2469 SDValue Chain = CLI.Chain; 2470 SDValue Callee = CLI.Callee; 2471 bool &IsTailCall = CLI.IsTailCall; 2472 CallingConv::ID CallConv = CLI.CallConv; 2473 bool IsVarArg = CLI.IsVarArg; 2474 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2475 MVT XLenVT = Subtarget.getXLenVT(); 2476 2477 MachineFunction &MF = DAG.getMachineFunction(); 2478 2479 // Analyze the operands of the call, assigning locations to each operand. 2480 SmallVector<CCValAssign, 16> ArgLocs; 2481 CCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 2482 2483 if (CallConv == CallingConv::Fast) 2484 ArgCCInfo.AnalyzeCallOperands(Outs, CC_RISCV_FastCC); 2485 else 2486 analyzeOutputArgs(MF, ArgCCInfo, Outs, /*IsRet=*/false, &CLI); 2487 2488 // Check if it's really possible to do a tail call. 2489 if (IsTailCall) 2490 IsTailCall = isEligibleForTailCallOptimization(ArgCCInfo, CLI, MF, ArgLocs); 2491 2492 if (IsTailCall) 2493 ++NumTailCalls; 2494 else if (CLI.CB && CLI.CB->isMustTailCall()) 2495 report_fatal_error("failed to perform tail call elimination on a call " 2496 "site marked musttail"); 2497 2498 // Get a count of how many bytes are to be pushed on the stack. 2499 unsigned NumBytes = ArgCCInfo.getNextStackOffset(); 2500 2501 // Create local copies for byval args 2502 SmallVector<SDValue, 8> ByValArgs; 2503 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 2504 ISD::ArgFlagsTy Flags = Outs[i].Flags; 2505 if (!Flags.isByVal()) 2506 continue; 2507 2508 SDValue Arg = OutVals[i]; 2509 unsigned Size = Flags.getByValSize(); 2510 Align Alignment = Flags.getNonZeroByValAlign(); 2511 2512 int FI = 2513 MF.getFrameInfo().CreateStackObject(Size, Alignment, /*isSS=*/false); 2514 SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 2515 SDValue SizeNode = DAG.getConstant(Size, DL, XLenVT); 2516 2517 Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Alignment, 2518 /*IsVolatile=*/false, 2519 /*AlwaysInline=*/false, IsTailCall, 2520 MachinePointerInfo(), MachinePointerInfo()); 2521 ByValArgs.push_back(FIPtr); 2522 } 2523 2524 if (!IsTailCall) 2525 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, CLI.DL); 2526 2527 // Copy argument values to their designated locations. 2528 SmallVector<std::pair<Register, SDValue>, 8> RegsToPass; 2529 SmallVector<SDValue, 8> MemOpChains; 2530 SDValue StackPtr; 2531 for (unsigned i = 0, j = 0, e = ArgLocs.size(); i != e; ++i) { 2532 CCValAssign &VA = ArgLocs[i]; 2533 SDValue ArgValue = OutVals[i]; 2534 ISD::ArgFlagsTy Flags = Outs[i].Flags; 2535 2536 // Handle passing f64 on RV32D with a soft float ABI as a special case. 2537 bool IsF64OnRV32DSoftABI = 2538 VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64; 2539 if (IsF64OnRV32DSoftABI && VA.isRegLoc()) { 2540 SDValue SplitF64 = DAG.getNode( 2541 RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), ArgValue); 2542 SDValue Lo = SplitF64.getValue(0); 2543 SDValue Hi = SplitF64.getValue(1); 2544 2545 Register RegLo = VA.getLocReg(); 2546 RegsToPass.push_back(std::make_pair(RegLo, Lo)); 2547 2548 if (RegLo == RISCV::X17) { 2549 // Second half of f64 is passed on the stack. 2550 // Work out the address of the stack slot. 2551 if (!StackPtr.getNode()) 2552 StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT); 2553 // Emit the store. 2554 MemOpChains.push_back( 2555 DAG.getStore(Chain, DL, Hi, StackPtr, MachinePointerInfo())); 2556 } else { 2557 // Second half of f64 is passed in another GPR. 2558 assert(RegLo < RISCV::X31 && "Invalid register pair"); 2559 Register RegHigh = RegLo + 1; 2560 RegsToPass.push_back(std::make_pair(RegHigh, Hi)); 2561 } 2562 continue; 2563 } 2564 2565 // IsF64OnRV32DSoftABI && VA.isMemLoc() is handled below in the same way 2566 // as any other MemLoc. 2567 2568 // Promote the value if needed. 2569 // For now, only handle fully promoted and indirect arguments. 2570 if (VA.getLocInfo() == CCValAssign::Indirect) { 2571 // Store the argument in a stack slot and pass its address. 2572 SDValue SpillSlot = DAG.CreateStackTemporary(Outs[i].ArgVT); 2573 int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); 2574 MemOpChains.push_back( 2575 DAG.getStore(Chain, DL, ArgValue, SpillSlot, 2576 MachinePointerInfo::getFixedStack(MF, FI))); 2577 // If the original argument was split (e.g. i128), we need 2578 // to store all parts of it here (and pass just one address). 2579 unsigned ArgIndex = Outs[i].OrigArgIndex; 2580 assert(Outs[i].PartOffset == 0); 2581 while (i + 1 != e && Outs[i + 1].OrigArgIndex == ArgIndex) { 2582 SDValue PartValue = OutVals[i + 1]; 2583 unsigned PartOffset = Outs[i + 1].PartOffset; 2584 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, 2585 DAG.getIntPtrConstant(PartOffset, DL)); 2586 MemOpChains.push_back( 2587 DAG.getStore(Chain, DL, PartValue, Address, 2588 MachinePointerInfo::getFixedStack(MF, FI))); 2589 ++i; 2590 } 2591 ArgValue = SpillSlot; 2592 } else { 2593 ArgValue = convertValVTToLocVT(DAG, ArgValue, VA, DL); 2594 } 2595 2596 // Use local copy if it is a byval arg. 2597 if (Flags.isByVal()) 2598 ArgValue = ByValArgs[j++]; 2599 2600 if (VA.isRegLoc()) { 2601 // Queue up the argument copies and emit them at the end. 2602 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue)); 2603 } else { 2604 assert(VA.isMemLoc() && "Argument not register or memory"); 2605 assert(!IsTailCall && "Tail call not allowed if stack is used " 2606 "for passing parameters"); 2607 2608 // Work out the address of the stack slot. 2609 if (!StackPtr.getNode()) 2610 StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT); 2611 SDValue Address = 2612 DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, 2613 DAG.getIntPtrConstant(VA.getLocMemOffset(), DL)); 2614 2615 // Emit the store. 2616 MemOpChains.push_back( 2617 DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo())); 2618 } 2619 } 2620 2621 // Join the stores, which are independent of one another. 2622 if (!MemOpChains.empty()) 2623 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); 2624 2625 SDValue Glue; 2626 2627 // Build a sequence of copy-to-reg nodes, chained and glued together. 2628 for (auto &Reg : RegsToPass) { 2629 Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, Glue); 2630 Glue = Chain.getValue(1); 2631 } 2632 2633 // Validate that none of the argument registers have been marked as 2634 // reserved, if so report an error. Do the same for the return address if this 2635 // is not a tailcall. 2636 validateCCReservedRegs(RegsToPass, MF); 2637 if (!IsTailCall && 2638 MF.getSubtarget<RISCVSubtarget>().isRegisterReservedByUser(RISCV::X1)) 2639 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 2640 MF.getFunction(), 2641 "Return address register required, but has been reserved."}); 2642 2643 // If the callee is a GlobalAddress/ExternalSymbol node, turn it into a 2644 // TargetGlobalAddress/TargetExternalSymbol node so that legalize won't 2645 // split it and then direct call can be matched by PseudoCALL. 2646 if (GlobalAddressSDNode *S = dyn_cast<GlobalAddressSDNode>(Callee)) { 2647 const GlobalValue *GV = S->getGlobal(); 2648 2649 unsigned OpFlags = RISCVII::MO_CALL; 2650 if (!getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV)) 2651 OpFlags = RISCVII::MO_PLT; 2652 2653 Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags); 2654 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { 2655 unsigned OpFlags = RISCVII::MO_CALL; 2656 2657 if (!getTargetMachine().shouldAssumeDSOLocal(*MF.getFunction().getParent(), 2658 nullptr)) 2659 OpFlags = RISCVII::MO_PLT; 2660 2661 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, OpFlags); 2662 } 2663 2664 // The first call operand is the chain and the second is the target address. 2665 SmallVector<SDValue, 8> Ops; 2666 Ops.push_back(Chain); 2667 Ops.push_back(Callee); 2668 2669 // Add argument registers to the end of the list so that they are 2670 // known live into the call. 2671 for (auto &Reg : RegsToPass) 2672 Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType())); 2673 2674 if (!IsTailCall) { 2675 // Add a register mask operand representing the call-preserved registers. 2676 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 2677 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv); 2678 assert(Mask && "Missing call preserved mask for calling convention"); 2679 Ops.push_back(DAG.getRegisterMask(Mask)); 2680 } 2681 2682 // Glue the call to the argument copies, if any. 2683 if (Glue.getNode()) 2684 Ops.push_back(Glue); 2685 2686 // Emit the call. 2687 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 2688 2689 if (IsTailCall) { 2690 MF.getFrameInfo().setHasTailCall(); 2691 return DAG.getNode(RISCVISD::TAIL, DL, NodeTys, Ops); 2692 } 2693 2694 Chain = DAG.getNode(RISCVISD::CALL, DL, NodeTys, Ops); 2695 DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge); 2696 Glue = Chain.getValue(1); 2697 2698 // Mark the end of the call, which is glued to the call itself. 2699 Chain = DAG.getCALLSEQ_END(Chain, 2700 DAG.getConstant(NumBytes, DL, PtrVT, true), 2701 DAG.getConstant(0, DL, PtrVT, true), 2702 Glue, DL); 2703 Glue = Chain.getValue(1); 2704 2705 // Assign locations to each value returned by this call. 2706 SmallVector<CCValAssign, 16> RVLocs; 2707 CCState RetCCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext()); 2708 analyzeInputArgs(MF, RetCCInfo, Ins, /*IsRet=*/true); 2709 2710 // Copy all of the result registers out of their specified physreg. 2711 for (auto &VA : RVLocs) { 2712 // Copy the value out 2713 SDValue RetValue = 2714 DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), Glue); 2715 // Glue the RetValue to the end of the call sequence 2716 Chain = RetValue.getValue(1); 2717 Glue = RetValue.getValue(2); 2718 2719 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { 2720 assert(VA.getLocReg() == ArgGPRs[0] && "Unexpected reg assignment"); 2721 SDValue RetValue2 = 2722 DAG.getCopyFromReg(Chain, DL, ArgGPRs[1], MVT::i32, Glue); 2723 Chain = RetValue2.getValue(1); 2724 Glue = RetValue2.getValue(2); 2725 RetValue = DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, RetValue, 2726 RetValue2); 2727 } 2728 2729 RetValue = convertLocVTToValVT(DAG, RetValue, VA, DL); 2730 2731 InVals.push_back(RetValue); 2732 } 2733 2734 return Chain; 2735 } 2736 2737 bool RISCVTargetLowering::CanLowerReturn( 2738 CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg, 2739 const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const { 2740 SmallVector<CCValAssign, 16> RVLocs; 2741 CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context); 2742 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 2743 MVT VT = Outs[i].VT; 2744 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 2745 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 2746 if (CC_RISCV(MF.getDataLayout(), ABI, i, VT, VT, CCValAssign::Full, 2747 ArgFlags, CCInfo, /*IsFixed=*/true, /*IsRet=*/true, nullptr)) 2748 return false; 2749 } 2750 return true; 2751 } 2752 2753 SDValue 2754 RISCVTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 2755 bool IsVarArg, 2756 const SmallVectorImpl<ISD::OutputArg> &Outs, 2757 const SmallVectorImpl<SDValue> &OutVals, 2758 const SDLoc &DL, SelectionDAG &DAG) const { 2759 const MachineFunction &MF = DAG.getMachineFunction(); 2760 const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>(); 2761 2762 // Stores the assignment of the return value to a location. 2763 SmallVector<CCValAssign, 16> RVLocs; 2764 2765 // Info about the registers and stack slot. 2766 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, 2767 *DAG.getContext()); 2768 2769 analyzeOutputArgs(DAG.getMachineFunction(), CCInfo, Outs, /*IsRet=*/true, 2770 nullptr); 2771 2772 SDValue Glue; 2773 SmallVector<SDValue, 4> RetOps(1, Chain); 2774 2775 // Copy the result values into the output registers. 2776 for (unsigned i = 0, e = RVLocs.size(); i < e; ++i) { 2777 SDValue Val = OutVals[i]; 2778 CCValAssign &VA = RVLocs[i]; 2779 assert(VA.isRegLoc() && "Can only return in registers!"); 2780 2781 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { 2782 // Handle returning f64 on RV32D with a soft float ABI. 2783 assert(VA.isRegLoc() && "Expected return via registers"); 2784 SDValue SplitF64 = DAG.getNode(RISCVISD::SplitF64, DL, 2785 DAG.getVTList(MVT::i32, MVT::i32), Val); 2786 SDValue Lo = SplitF64.getValue(0); 2787 SDValue Hi = SplitF64.getValue(1); 2788 Register RegLo = VA.getLocReg(); 2789 assert(RegLo < RISCV::X31 && "Invalid register pair"); 2790 Register RegHi = RegLo + 1; 2791 2792 if (STI.isRegisterReservedByUser(RegLo) || 2793 STI.isRegisterReservedByUser(RegHi)) 2794 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 2795 MF.getFunction(), 2796 "Return value register required, but has been reserved."}); 2797 2798 Chain = DAG.getCopyToReg(Chain, DL, RegLo, Lo, Glue); 2799 Glue = Chain.getValue(1); 2800 RetOps.push_back(DAG.getRegister(RegLo, MVT::i32)); 2801 Chain = DAG.getCopyToReg(Chain, DL, RegHi, Hi, Glue); 2802 Glue = Chain.getValue(1); 2803 RetOps.push_back(DAG.getRegister(RegHi, MVT::i32)); 2804 } else { 2805 // Handle a 'normal' return. 2806 Val = convertValVTToLocVT(DAG, Val, VA, DL); 2807 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Glue); 2808 2809 if (STI.isRegisterReservedByUser(VA.getLocReg())) 2810 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 2811 MF.getFunction(), 2812 "Return value register required, but has been reserved."}); 2813 2814 // Guarantee that all emitted copies are stuck together. 2815 Glue = Chain.getValue(1); 2816 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 2817 } 2818 } 2819 2820 RetOps[0] = Chain; // Update chain. 2821 2822 // Add the glue node if we have it. 2823 if (Glue.getNode()) { 2824 RetOps.push_back(Glue); 2825 } 2826 2827 // Interrupt service routines use different return instructions. 2828 const Function &Func = DAG.getMachineFunction().getFunction(); 2829 if (Func.hasFnAttribute("interrupt")) { 2830 if (!Func.getReturnType()->isVoidTy()) 2831 report_fatal_error( 2832 "Functions with the interrupt attribute must have void return type!"); 2833 2834 MachineFunction &MF = DAG.getMachineFunction(); 2835 StringRef Kind = 2836 MF.getFunction().getFnAttribute("interrupt").getValueAsString(); 2837 2838 unsigned RetOpc; 2839 if (Kind == "user") 2840 RetOpc = RISCVISD::URET_FLAG; 2841 else if (Kind == "supervisor") 2842 RetOpc = RISCVISD::SRET_FLAG; 2843 else 2844 RetOpc = RISCVISD::MRET_FLAG; 2845 2846 return DAG.getNode(RetOpc, DL, MVT::Other, RetOps); 2847 } 2848 2849 return DAG.getNode(RISCVISD::RET_FLAG, DL, MVT::Other, RetOps); 2850 } 2851 2852 void RISCVTargetLowering::validateCCReservedRegs( 2853 const SmallVectorImpl<std::pair<llvm::Register, llvm::SDValue>> &Regs, 2854 MachineFunction &MF) const { 2855 const Function &F = MF.getFunction(); 2856 const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>(); 2857 2858 if (std::any_of(std::begin(Regs), std::end(Regs), [&STI](auto Reg) { 2859 return STI.isRegisterReservedByUser(Reg.first); 2860 })) 2861 F.getContext().diagnose(DiagnosticInfoUnsupported{ 2862 F, "Argument register required, but has been reserved."}); 2863 } 2864 2865 bool RISCVTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { 2866 return CI->isTailCall(); 2867 } 2868 2869 const char *RISCVTargetLowering::getTargetNodeName(unsigned Opcode) const { 2870 #define NODE_NAME_CASE(NODE) \ 2871 case RISCVISD::NODE: \ 2872 return "RISCVISD::" #NODE; 2873 // clang-format off 2874 switch ((RISCVISD::NodeType)Opcode) { 2875 case RISCVISD::FIRST_NUMBER: 2876 break; 2877 NODE_NAME_CASE(RET_FLAG) 2878 NODE_NAME_CASE(URET_FLAG) 2879 NODE_NAME_CASE(SRET_FLAG) 2880 NODE_NAME_CASE(MRET_FLAG) 2881 NODE_NAME_CASE(CALL) 2882 NODE_NAME_CASE(SELECT_CC) 2883 NODE_NAME_CASE(BuildPairF64) 2884 NODE_NAME_CASE(SplitF64) 2885 NODE_NAME_CASE(TAIL) 2886 NODE_NAME_CASE(SLLW) 2887 NODE_NAME_CASE(SRAW) 2888 NODE_NAME_CASE(SRLW) 2889 NODE_NAME_CASE(DIVW) 2890 NODE_NAME_CASE(DIVUW) 2891 NODE_NAME_CASE(REMUW) 2892 NODE_NAME_CASE(ROLW) 2893 NODE_NAME_CASE(RORW) 2894 NODE_NAME_CASE(FMV_W_X_RV64) 2895 NODE_NAME_CASE(FMV_X_ANYEXTW_RV64) 2896 NODE_NAME_CASE(READ_CYCLE_WIDE) 2897 NODE_NAME_CASE(GREVI) 2898 NODE_NAME_CASE(GREVIW) 2899 NODE_NAME_CASE(GORCI) 2900 NODE_NAME_CASE(GORCIW) 2901 } 2902 // clang-format on 2903 return nullptr; 2904 #undef NODE_NAME_CASE 2905 } 2906 2907 /// getConstraintType - Given a constraint letter, return the type of 2908 /// constraint it is for this target. 2909 RISCVTargetLowering::ConstraintType 2910 RISCVTargetLowering::getConstraintType(StringRef Constraint) const { 2911 if (Constraint.size() == 1) { 2912 switch (Constraint[0]) { 2913 default: 2914 break; 2915 case 'f': 2916 return C_RegisterClass; 2917 case 'I': 2918 case 'J': 2919 case 'K': 2920 return C_Immediate; 2921 case 'A': 2922 return C_Memory; 2923 } 2924 } 2925 return TargetLowering::getConstraintType(Constraint); 2926 } 2927 2928 std::pair<unsigned, const TargetRegisterClass *> 2929 RISCVTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 2930 StringRef Constraint, 2931 MVT VT) const { 2932 // First, see if this is a constraint that directly corresponds to a 2933 // RISCV register class. 2934 if (Constraint.size() == 1) { 2935 switch (Constraint[0]) { 2936 case 'r': 2937 return std::make_pair(0U, &RISCV::GPRRegClass); 2938 case 'f': 2939 if (Subtarget.hasStdExtF() && VT == MVT::f32) 2940 return std::make_pair(0U, &RISCV::FPR32RegClass); 2941 if (Subtarget.hasStdExtD() && VT == MVT::f64) 2942 return std::make_pair(0U, &RISCV::FPR64RegClass); 2943 break; 2944 default: 2945 break; 2946 } 2947 } 2948 2949 // Clang will correctly decode the usage of register name aliases into their 2950 // official names. However, other frontends like `rustc` do not. This allows 2951 // users of these frontends to use the ABI names for registers in LLVM-style 2952 // register constraints. 2953 unsigned XRegFromAlias = StringSwitch<unsigned>(Constraint.lower()) 2954 .Case("{zero}", RISCV::X0) 2955 .Case("{ra}", RISCV::X1) 2956 .Case("{sp}", RISCV::X2) 2957 .Case("{gp}", RISCV::X3) 2958 .Case("{tp}", RISCV::X4) 2959 .Case("{t0}", RISCV::X5) 2960 .Case("{t1}", RISCV::X6) 2961 .Case("{t2}", RISCV::X7) 2962 .Cases("{s0}", "{fp}", RISCV::X8) 2963 .Case("{s1}", RISCV::X9) 2964 .Case("{a0}", RISCV::X10) 2965 .Case("{a1}", RISCV::X11) 2966 .Case("{a2}", RISCV::X12) 2967 .Case("{a3}", RISCV::X13) 2968 .Case("{a4}", RISCV::X14) 2969 .Case("{a5}", RISCV::X15) 2970 .Case("{a6}", RISCV::X16) 2971 .Case("{a7}", RISCV::X17) 2972 .Case("{s2}", RISCV::X18) 2973 .Case("{s3}", RISCV::X19) 2974 .Case("{s4}", RISCV::X20) 2975 .Case("{s5}", RISCV::X21) 2976 .Case("{s6}", RISCV::X22) 2977 .Case("{s7}", RISCV::X23) 2978 .Case("{s8}", RISCV::X24) 2979 .Case("{s9}", RISCV::X25) 2980 .Case("{s10}", RISCV::X26) 2981 .Case("{s11}", RISCV::X27) 2982 .Case("{t3}", RISCV::X28) 2983 .Case("{t4}", RISCV::X29) 2984 .Case("{t5}", RISCV::X30) 2985 .Case("{t6}", RISCV::X31) 2986 .Default(RISCV::NoRegister); 2987 if (XRegFromAlias != RISCV::NoRegister) 2988 return std::make_pair(XRegFromAlias, &RISCV::GPRRegClass); 2989 2990 // Since TargetLowering::getRegForInlineAsmConstraint uses the name of the 2991 // TableGen record rather than the AsmName to choose registers for InlineAsm 2992 // constraints, plus we want to match those names to the widest floating point 2993 // register type available, manually select floating point registers here. 2994 // 2995 // The second case is the ABI name of the register, so that frontends can also 2996 // use the ABI names in register constraint lists. 2997 if (Subtarget.hasStdExtF() || Subtarget.hasStdExtD()) { 2998 unsigned FReg = StringSwitch<unsigned>(Constraint.lower()) 2999 .Cases("{f0}", "{ft0}", RISCV::F0_F) 3000 .Cases("{f1}", "{ft1}", RISCV::F1_F) 3001 .Cases("{f2}", "{ft2}", RISCV::F2_F) 3002 .Cases("{f3}", "{ft3}", RISCV::F3_F) 3003 .Cases("{f4}", "{ft4}", RISCV::F4_F) 3004 .Cases("{f5}", "{ft5}", RISCV::F5_F) 3005 .Cases("{f6}", "{ft6}", RISCV::F6_F) 3006 .Cases("{f7}", "{ft7}", RISCV::F7_F) 3007 .Cases("{f8}", "{fs0}", RISCV::F8_F) 3008 .Cases("{f9}", "{fs1}", RISCV::F9_F) 3009 .Cases("{f10}", "{fa0}", RISCV::F10_F) 3010 .Cases("{f11}", "{fa1}", RISCV::F11_F) 3011 .Cases("{f12}", "{fa2}", RISCV::F12_F) 3012 .Cases("{f13}", "{fa3}", RISCV::F13_F) 3013 .Cases("{f14}", "{fa4}", RISCV::F14_F) 3014 .Cases("{f15}", "{fa5}", RISCV::F15_F) 3015 .Cases("{f16}", "{fa6}", RISCV::F16_F) 3016 .Cases("{f17}", "{fa7}", RISCV::F17_F) 3017 .Cases("{f18}", "{fs2}", RISCV::F18_F) 3018 .Cases("{f19}", "{fs3}", RISCV::F19_F) 3019 .Cases("{f20}", "{fs4}", RISCV::F20_F) 3020 .Cases("{f21}", "{fs5}", RISCV::F21_F) 3021 .Cases("{f22}", "{fs6}", RISCV::F22_F) 3022 .Cases("{f23}", "{fs7}", RISCV::F23_F) 3023 .Cases("{f24}", "{fs8}", RISCV::F24_F) 3024 .Cases("{f25}", "{fs9}", RISCV::F25_F) 3025 .Cases("{f26}", "{fs10}", RISCV::F26_F) 3026 .Cases("{f27}", "{fs11}", RISCV::F27_F) 3027 .Cases("{f28}", "{ft8}", RISCV::F28_F) 3028 .Cases("{f29}", "{ft9}", RISCV::F29_F) 3029 .Cases("{f30}", "{ft10}", RISCV::F30_F) 3030 .Cases("{f31}", "{ft11}", RISCV::F31_F) 3031 .Default(RISCV::NoRegister); 3032 if (FReg != RISCV::NoRegister) { 3033 assert(RISCV::F0_F <= FReg && FReg <= RISCV::F31_F && "Unknown fp-reg"); 3034 if (Subtarget.hasStdExtD()) { 3035 unsigned RegNo = FReg - RISCV::F0_F; 3036 unsigned DReg = RISCV::F0_D + RegNo; 3037 return std::make_pair(DReg, &RISCV::FPR64RegClass); 3038 } 3039 return std::make_pair(FReg, &RISCV::FPR32RegClass); 3040 } 3041 } 3042 3043 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 3044 } 3045 3046 unsigned 3047 RISCVTargetLowering::getInlineAsmMemConstraint(StringRef ConstraintCode) const { 3048 // Currently only support length 1 constraints. 3049 if (ConstraintCode.size() == 1) { 3050 switch (ConstraintCode[0]) { 3051 case 'A': 3052 return InlineAsm::Constraint_A; 3053 default: 3054 break; 3055 } 3056 } 3057 3058 return TargetLowering::getInlineAsmMemConstraint(ConstraintCode); 3059 } 3060 3061 void RISCVTargetLowering::LowerAsmOperandForConstraint( 3062 SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops, 3063 SelectionDAG &DAG) const { 3064 // Currently only support length 1 constraints. 3065 if (Constraint.length() == 1) { 3066 switch (Constraint[0]) { 3067 case 'I': 3068 // Validate & create a 12-bit signed immediate operand. 3069 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 3070 uint64_t CVal = C->getSExtValue(); 3071 if (isInt<12>(CVal)) 3072 Ops.push_back( 3073 DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT())); 3074 } 3075 return; 3076 case 'J': 3077 // Validate & create an integer zero operand. 3078 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 3079 if (C->getZExtValue() == 0) 3080 Ops.push_back( 3081 DAG.getTargetConstant(0, SDLoc(Op), Subtarget.getXLenVT())); 3082 return; 3083 case 'K': 3084 // Validate & create a 5-bit unsigned immediate operand. 3085 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 3086 uint64_t CVal = C->getZExtValue(); 3087 if (isUInt<5>(CVal)) 3088 Ops.push_back( 3089 DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT())); 3090 } 3091 return; 3092 default: 3093 break; 3094 } 3095 } 3096 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 3097 } 3098 3099 Instruction *RISCVTargetLowering::emitLeadingFence(IRBuilder<> &Builder, 3100 Instruction *Inst, 3101 AtomicOrdering Ord) const { 3102 if (isa<LoadInst>(Inst) && Ord == AtomicOrdering::SequentiallyConsistent) 3103 return Builder.CreateFence(Ord); 3104 if (isa<StoreInst>(Inst) && isReleaseOrStronger(Ord)) 3105 return Builder.CreateFence(AtomicOrdering::Release); 3106 return nullptr; 3107 } 3108 3109 Instruction *RISCVTargetLowering::emitTrailingFence(IRBuilder<> &Builder, 3110 Instruction *Inst, 3111 AtomicOrdering Ord) const { 3112 if (isa<LoadInst>(Inst) && isAcquireOrStronger(Ord)) 3113 return Builder.CreateFence(AtomicOrdering::Acquire); 3114 return nullptr; 3115 } 3116 3117 TargetLowering::AtomicExpansionKind 3118 RISCVTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { 3119 // atomicrmw {fadd,fsub} must be expanded to use compare-exchange, as floating 3120 // point operations can't be used in an lr/sc sequence without breaking the 3121 // forward-progress guarantee. 3122 if (AI->isFloatingPointOperation()) 3123 return AtomicExpansionKind::CmpXChg; 3124 3125 unsigned Size = AI->getType()->getPrimitiveSizeInBits(); 3126 if (Size == 8 || Size == 16) 3127 return AtomicExpansionKind::MaskedIntrinsic; 3128 return AtomicExpansionKind::None; 3129 } 3130 3131 static Intrinsic::ID 3132 getIntrinsicForMaskedAtomicRMWBinOp(unsigned XLen, AtomicRMWInst::BinOp BinOp) { 3133 if (XLen == 32) { 3134 switch (BinOp) { 3135 default: 3136 llvm_unreachable("Unexpected AtomicRMW BinOp"); 3137 case AtomicRMWInst::Xchg: 3138 return Intrinsic::riscv_masked_atomicrmw_xchg_i32; 3139 case AtomicRMWInst::Add: 3140 return Intrinsic::riscv_masked_atomicrmw_add_i32; 3141 case AtomicRMWInst::Sub: 3142 return Intrinsic::riscv_masked_atomicrmw_sub_i32; 3143 case AtomicRMWInst::Nand: 3144 return Intrinsic::riscv_masked_atomicrmw_nand_i32; 3145 case AtomicRMWInst::Max: 3146 return Intrinsic::riscv_masked_atomicrmw_max_i32; 3147 case AtomicRMWInst::Min: 3148 return Intrinsic::riscv_masked_atomicrmw_min_i32; 3149 case AtomicRMWInst::UMax: 3150 return Intrinsic::riscv_masked_atomicrmw_umax_i32; 3151 case AtomicRMWInst::UMin: 3152 return Intrinsic::riscv_masked_atomicrmw_umin_i32; 3153 } 3154 } 3155 3156 if (XLen == 64) { 3157 switch (BinOp) { 3158 default: 3159 llvm_unreachable("Unexpected AtomicRMW BinOp"); 3160 case AtomicRMWInst::Xchg: 3161 return Intrinsic::riscv_masked_atomicrmw_xchg_i64; 3162 case AtomicRMWInst::Add: 3163 return Intrinsic::riscv_masked_atomicrmw_add_i64; 3164 case AtomicRMWInst::Sub: 3165 return Intrinsic::riscv_masked_atomicrmw_sub_i64; 3166 case AtomicRMWInst::Nand: 3167 return Intrinsic::riscv_masked_atomicrmw_nand_i64; 3168 case AtomicRMWInst::Max: 3169 return Intrinsic::riscv_masked_atomicrmw_max_i64; 3170 case AtomicRMWInst::Min: 3171 return Intrinsic::riscv_masked_atomicrmw_min_i64; 3172 case AtomicRMWInst::UMax: 3173 return Intrinsic::riscv_masked_atomicrmw_umax_i64; 3174 case AtomicRMWInst::UMin: 3175 return Intrinsic::riscv_masked_atomicrmw_umin_i64; 3176 } 3177 } 3178 3179 llvm_unreachable("Unexpected XLen\n"); 3180 } 3181 3182 Value *RISCVTargetLowering::emitMaskedAtomicRMWIntrinsic( 3183 IRBuilder<> &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr, 3184 Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const { 3185 unsigned XLen = Subtarget.getXLen(); 3186 Value *Ordering = 3187 Builder.getIntN(XLen, static_cast<uint64_t>(AI->getOrdering())); 3188 Type *Tys[] = {AlignedAddr->getType()}; 3189 Function *LrwOpScwLoop = Intrinsic::getDeclaration( 3190 AI->getModule(), 3191 getIntrinsicForMaskedAtomicRMWBinOp(XLen, AI->getOperation()), Tys); 3192 3193 if (XLen == 64) { 3194 Incr = Builder.CreateSExt(Incr, Builder.getInt64Ty()); 3195 Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty()); 3196 ShiftAmt = Builder.CreateSExt(ShiftAmt, Builder.getInt64Ty()); 3197 } 3198 3199 Value *Result; 3200 3201 // Must pass the shift amount needed to sign extend the loaded value prior 3202 // to performing a signed comparison for min/max. ShiftAmt is the number of 3203 // bits to shift the value into position. Pass XLen-ShiftAmt-ValWidth, which 3204 // is the number of bits to left+right shift the value in order to 3205 // sign-extend. 3206 if (AI->getOperation() == AtomicRMWInst::Min || 3207 AI->getOperation() == AtomicRMWInst::Max) { 3208 const DataLayout &DL = AI->getModule()->getDataLayout(); 3209 unsigned ValWidth = 3210 DL.getTypeStoreSizeInBits(AI->getValOperand()->getType()); 3211 Value *SextShamt = 3212 Builder.CreateSub(Builder.getIntN(XLen, XLen - ValWidth), ShiftAmt); 3213 Result = Builder.CreateCall(LrwOpScwLoop, 3214 {AlignedAddr, Incr, Mask, SextShamt, Ordering}); 3215 } else { 3216 Result = 3217 Builder.CreateCall(LrwOpScwLoop, {AlignedAddr, Incr, Mask, Ordering}); 3218 } 3219 3220 if (XLen == 64) 3221 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty()); 3222 return Result; 3223 } 3224 3225 TargetLowering::AtomicExpansionKind 3226 RISCVTargetLowering::shouldExpandAtomicCmpXchgInIR( 3227 AtomicCmpXchgInst *CI) const { 3228 unsigned Size = CI->getCompareOperand()->getType()->getPrimitiveSizeInBits(); 3229 if (Size == 8 || Size == 16) 3230 return AtomicExpansionKind::MaskedIntrinsic; 3231 return AtomicExpansionKind::None; 3232 } 3233 3234 Value *RISCVTargetLowering::emitMaskedAtomicCmpXchgIntrinsic( 3235 IRBuilder<> &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr, 3236 Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const { 3237 unsigned XLen = Subtarget.getXLen(); 3238 Value *Ordering = Builder.getIntN(XLen, static_cast<uint64_t>(Ord)); 3239 Intrinsic::ID CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i32; 3240 if (XLen == 64) { 3241 CmpVal = Builder.CreateSExt(CmpVal, Builder.getInt64Ty()); 3242 NewVal = Builder.CreateSExt(NewVal, Builder.getInt64Ty()); 3243 Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty()); 3244 CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i64; 3245 } 3246 Type *Tys[] = {AlignedAddr->getType()}; 3247 Function *MaskedCmpXchg = 3248 Intrinsic::getDeclaration(CI->getModule(), CmpXchgIntrID, Tys); 3249 Value *Result = Builder.CreateCall( 3250 MaskedCmpXchg, {AlignedAddr, CmpVal, NewVal, Mask, Ordering}); 3251 if (XLen == 64) 3252 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty()); 3253 return Result; 3254 } 3255 3256 Register RISCVTargetLowering::getExceptionPointerRegister( 3257 const Constant *PersonalityFn) const { 3258 return RISCV::X10; 3259 } 3260 3261 Register RISCVTargetLowering::getExceptionSelectorRegister( 3262 const Constant *PersonalityFn) const { 3263 return RISCV::X11; 3264 } 3265 3266 bool RISCVTargetLowering::shouldExtendTypeInLibCall(EVT Type) const { 3267 // Return false to suppress the unnecessary extensions if the LibCall 3268 // arguments or return value is f32 type for LP64 ABI. 3269 RISCVABI::ABI ABI = Subtarget.getTargetABI(); 3270 if (ABI == RISCVABI::ABI_LP64 && (Type == MVT::f32)) 3271 return false; 3272 3273 return true; 3274 } 3275 3276 bool RISCVTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT, 3277 SDValue C) const { 3278 // Check integral scalar types. 3279 if (VT.isScalarInteger()) { 3280 // Do not perform the transformation on riscv32 with the M extension. 3281 if (!Subtarget.is64Bit() && Subtarget.hasStdExtM()) 3282 return false; 3283 if (auto *ConstNode = dyn_cast<ConstantSDNode>(C.getNode())) { 3284 if (ConstNode->getAPIntValue().getBitWidth() > 8 * sizeof(int64_t)) 3285 return false; 3286 int64_t Imm = ConstNode->getSExtValue(); 3287 if (isPowerOf2_64(Imm + 1) || isPowerOf2_64(Imm - 1) || 3288 isPowerOf2_64(1 - Imm) || isPowerOf2_64(-1 - Imm)) 3289 return true; 3290 } 3291 } 3292 3293 return false; 3294 } 3295 3296 #define GET_REGISTER_MATCHER 3297 #include "RISCVGenAsmMatcher.inc" 3298 3299 Register 3300 RISCVTargetLowering::getRegisterByName(const char *RegName, LLT VT, 3301 const MachineFunction &MF) const { 3302 Register Reg = MatchRegisterAltName(RegName); 3303 if (Reg == RISCV::NoRegister) 3304 Reg = MatchRegisterName(RegName); 3305 if (Reg == RISCV::NoRegister) 3306 report_fatal_error( 3307 Twine("Invalid register name \"" + StringRef(RegName) + "\".")); 3308 BitVector ReservedRegs = Subtarget.getRegisterInfo()->getReservedRegs(MF); 3309 if (!ReservedRegs.test(Reg) && !Subtarget.isRegisterReservedByUser(Reg)) 3310 report_fatal_error(Twine("Trying to obtain non-reserved register \"" + 3311 StringRef(RegName) + "\".")); 3312 return Reg; 3313 } 3314