1 //===-- RISCVISelLowering.cpp - RISCV DAG Lowering Implementation --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the interfaces that RISCV uses to lower LLVM code into a 10 // selection DAG. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "RISCVISelLowering.h" 15 #include "MCTargetDesc/RISCVMatInt.h" 16 #include "RISCV.h" 17 #include "RISCVMachineFunctionInfo.h" 18 #include "RISCVRegisterInfo.h" 19 #include "RISCVSubtarget.h" 20 #include "RISCVTargetMachine.h" 21 #include "llvm/ADT/SmallSet.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Analysis/MemoryLocation.h" 24 #include "llvm/CodeGen/MachineFrameInfo.h" 25 #include "llvm/CodeGen/MachineFunction.h" 26 #include "llvm/CodeGen/MachineInstrBuilder.h" 27 #include "llvm/CodeGen/MachineRegisterInfo.h" 28 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 29 #include "llvm/CodeGen/ValueTypes.h" 30 #include "llvm/IR/DiagnosticInfo.h" 31 #include "llvm/IR/DiagnosticPrinter.h" 32 #include "llvm/IR/IRBuilder.h" 33 #include "llvm/IR/IntrinsicsRISCV.h" 34 #include "llvm/IR/PatternMatch.h" 35 #include "llvm/Support/Debug.h" 36 #include "llvm/Support/ErrorHandling.h" 37 #include "llvm/Support/KnownBits.h" 38 #include "llvm/Support/MathExtras.h" 39 #include "llvm/Support/raw_ostream.h" 40 41 using namespace llvm; 42 43 #define DEBUG_TYPE "riscv-lower" 44 45 STATISTIC(NumTailCalls, "Number of tail calls"); 46 47 RISCVTargetLowering::RISCVTargetLowering(const TargetMachine &TM, 48 const RISCVSubtarget &STI) 49 : TargetLowering(TM), Subtarget(STI) { 50 51 if (Subtarget.isRV32E()) 52 report_fatal_error("Codegen not yet implemented for RV32E"); 53 54 RISCVABI::ABI ABI = Subtarget.getTargetABI(); 55 assert(ABI != RISCVABI::ABI_Unknown && "Improperly initialised target ABI"); 56 57 if ((ABI == RISCVABI::ABI_ILP32F || ABI == RISCVABI::ABI_LP64F) && 58 !Subtarget.hasStdExtF()) { 59 errs() << "Hard-float 'f' ABI can't be used for a target that " 60 "doesn't support the F instruction set extension (ignoring " 61 "target-abi)\n"; 62 ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32; 63 } else if ((ABI == RISCVABI::ABI_ILP32D || ABI == RISCVABI::ABI_LP64D) && 64 !Subtarget.hasStdExtD()) { 65 errs() << "Hard-float 'd' ABI can't be used for a target that " 66 "doesn't support the D instruction set extension (ignoring " 67 "target-abi)\n"; 68 ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32; 69 } 70 71 switch (ABI) { 72 default: 73 report_fatal_error("Don't know how to lower this ABI"); 74 case RISCVABI::ABI_ILP32: 75 case RISCVABI::ABI_ILP32F: 76 case RISCVABI::ABI_ILP32D: 77 case RISCVABI::ABI_LP64: 78 case RISCVABI::ABI_LP64F: 79 case RISCVABI::ABI_LP64D: 80 break; 81 } 82 83 MVT XLenVT = Subtarget.getXLenVT(); 84 85 // Set up the register classes. 86 addRegisterClass(XLenVT, &RISCV::GPRRegClass); 87 88 if (Subtarget.hasStdExtZfh()) 89 addRegisterClass(MVT::f16, &RISCV::FPR16RegClass); 90 if (Subtarget.hasStdExtF()) 91 addRegisterClass(MVT::f32, &RISCV::FPR32RegClass); 92 if (Subtarget.hasStdExtD()) 93 addRegisterClass(MVT::f64, &RISCV::FPR64RegClass); 94 95 static const MVT::SimpleValueType BoolVecVTs[] = { 96 MVT::nxv1i1, MVT::nxv2i1, MVT::nxv4i1, MVT::nxv8i1, 97 MVT::nxv16i1, MVT::nxv32i1, MVT::nxv64i1}; 98 static const MVT::SimpleValueType IntVecVTs[] = { 99 MVT::nxv1i8, MVT::nxv2i8, MVT::nxv4i8, MVT::nxv8i8, MVT::nxv16i8, 100 MVT::nxv32i8, MVT::nxv64i8, MVT::nxv1i16, MVT::nxv2i16, MVT::nxv4i16, 101 MVT::nxv8i16, MVT::nxv16i16, MVT::nxv32i16, MVT::nxv1i32, MVT::nxv2i32, 102 MVT::nxv4i32, MVT::nxv8i32, MVT::nxv16i32, MVT::nxv1i64, MVT::nxv2i64, 103 MVT::nxv4i64, MVT::nxv8i64}; 104 static const MVT::SimpleValueType F16VecVTs[] = { 105 MVT::nxv1f16, MVT::nxv2f16, MVT::nxv4f16, 106 MVT::nxv8f16, MVT::nxv16f16, MVT::nxv32f16}; 107 static const MVT::SimpleValueType F32VecVTs[] = { 108 MVT::nxv1f32, MVT::nxv2f32, MVT::nxv4f32, MVT::nxv8f32, MVT::nxv16f32}; 109 static const MVT::SimpleValueType F64VecVTs[] = { 110 MVT::nxv1f64, MVT::nxv2f64, MVT::nxv4f64, MVT::nxv8f64}; 111 112 if (Subtarget.hasVInstructions()) { 113 auto addRegClassForRVV = [this](MVT VT) { 114 unsigned Size = VT.getSizeInBits().getKnownMinValue(); 115 assert(Size <= 512 && isPowerOf2_32(Size)); 116 const TargetRegisterClass *RC; 117 if (Size <= 64) 118 RC = &RISCV::VRRegClass; 119 else if (Size == 128) 120 RC = &RISCV::VRM2RegClass; 121 else if (Size == 256) 122 RC = &RISCV::VRM4RegClass; 123 else 124 RC = &RISCV::VRM8RegClass; 125 126 addRegisterClass(VT, RC); 127 }; 128 129 for (MVT VT : BoolVecVTs) 130 addRegClassForRVV(VT); 131 for (MVT VT : IntVecVTs) { 132 if (VT.getVectorElementType() == MVT::i64 && 133 !Subtarget.hasVInstructionsI64()) 134 continue; 135 addRegClassForRVV(VT); 136 } 137 138 if (Subtarget.hasVInstructionsF16()) 139 for (MVT VT : F16VecVTs) 140 addRegClassForRVV(VT); 141 142 if (Subtarget.hasVInstructionsF32()) 143 for (MVT VT : F32VecVTs) 144 addRegClassForRVV(VT); 145 146 if (Subtarget.hasVInstructionsF64()) 147 for (MVT VT : F64VecVTs) 148 addRegClassForRVV(VT); 149 150 if (Subtarget.useRVVForFixedLengthVectors()) { 151 auto addRegClassForFixedVectors = [this](MVT VT) { 152 MVT ContainerVT = getContainerForFixedLengthVector(VT); 153 unsigned RCID = getRegClassIDForVecVT(ContainerVT); 154 const RISCVRegisterInfo &TRI = *Subtarget.getRegisterInfo(); 155 addRegisterClass(VT, TRI.getRegClass(RCID)); 156 }; 157 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) 158 if (useRVVForFixedLengthVectorVT(VT)) 159 addRegClassForFixedVectors(VT); 160 161 for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) 162 if (useRVVForFixedLengthVectorVT(VT)) 163 addRegClassForFixedVectors(VT); 164 } 165 } 166 167 // Compute derived properties from the register classes. 168 computeRegisterProperties(STI.getRegisterInfo()); 169 170 setStackPointerRegisterToSaveRestore(RISCV::X2); 171 172 for (auto N : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}) 173 setLoadExtAction(N, XLenVT, MVT::i1, Promote); 174 175 // TODO: add all necessary setOperationAction calls. 176 setOperationAction(ISD::DYNAMIC_STACKALLOC, XLenVT, Expand); 177 178 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 179 setOperationAction(ISD::BR_CC, XLenVT, Expand); 180 setOperationAction(ISD::BRCOND, MVT::Other, Custom); 181 setOperationAction(ISD::SELECT_CC, XLenVT, Expand); 182 183 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); 184 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); 185 186 setOperationAction(ISD::VASTART, MVT::Other, Custom); 187 setOperationAction(ISD::VAARG, MVT::Other, Expand); 188 setOperationAction(ISD::VACOPY, MVT::Other, Expand); 189 setOperationAction(ISD::VAEND, MVT::Other, Expand); 190 191 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 192 if (!Subtarget.hasStdExtZbb()) { 193 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand); 194 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand); 195 } 196 197 if (Subtarget.is64Bit()) { 198 setOperationAction(ISD::ADD, MVT::i32, Custom); 199 setOperationAction(ISD::SUB, MVT::i32, Custom); 200 setOperationAction(ISD::SHL, MVT::i32, Custom); 201 setOperationAction(ISD::SRA, MVT::i32, Custom); 202 setOperationAction(ISD::SRL, MVT::i32, Custom); 203 204 setOperationAction(ISD::UADDO, MVT::i32, Custom); 205 setOperationAction(ISD::USUBO, MVT::i32, Custom); 206 setOperationAction(ISD::UADDSAT, MVT::i32, Custom); 207 setOperationAction(ISD::USUBSAT, MVT::i32, Custom); 208 } else { 209 setLibcallName(RTLIB::SHL_I128, nullptr); 210 setLibcallName(RTLIB::SRL_I128, nullptr); 211 setLibcallName(RTLIB::SRA_I128, nullptr); 212 setLibcallName(RTLIB::MUL_I128, nullptr); 213 setLibcallName(RTLIB::MULO_I64, nullptr); 214 } 215 216 if (!Subtarget.hasStdExtM()) { 217 setOperationAction(ISD::MUL, XLenVT, Expand); 218 setOperationAction(ISD::MULHS, XLenVT, Expand); 219 setOperationAction(ISD::MULHU, XLenVT, Expand); 220 setOperationAction(ISD::SDIV, XLenVT, Expand); 221 setOperationAction(ISD::UDIV, XLenVT, Expand); 222 setOperationAction(ISD::SREM, XLenVT, Expand); 223 setOperationAction(ISD::UREM, XLenVT, Expand); 224 } else { 225 if (Subtarget.is64Bit()) { 226 setOperationAction(ISD::MUL, MVT::i32, Custom); 227 setOperationAction(ISD::MUL, MVT::i128, Custom); 228 229 setOperationAction(ISD::SDIV, MVT::i8, Custom); 230 setOperationAction(ISD::UDIV, MVT::i8, Custom); 231 setOperationAction(ISD::UREM, MVT::i8, Custom); 232 setOperationAction(ISD::SDIV, MVT::i16, Custom); 233 setOperationAction(ISD::UDIV, MVT::i16, Custom); 234 setOperationAction(ISD::UREM, MVT::i16, Custom); 235 setOperationAction(ISD::SDIV, MVT::i32, Custom); 236 setOperationAction(ISD::UDIV, MVT::i32, Custom); 237 setOperationAction(ISD::UREM, MVT::i32, Custom); 238 } else { 239 setOperationAction(ISD::MUL, MVT::i64, Custom); 240 } 241 } 242 243 setOperationAction(ISD::SDIVREM, XLenVT, Expand); 244 setOperationAction(ISD::UDIVREM, XLenVT, Expand); 245 setOperationAction(ISD::SMUL_LOHI, XLenVT, Expand); 246 setOperationAction(ISD::UMUL_LOHI, XLenVT, Expand); 247 248 setOperationAction(ISD::SHL_PARTS, XLenVT, Custom); 249 setOperationAction(ISD::SRL_PARTS, XLenVT, Custom); 250 setOperationAction(ISD::SRA_PARTS, XLenVT, Custom); 251 252 if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp()) { 253 if (Subtarget.is64Bit()) { 254 setOperationAction(ISD::ROTL, MVT::i32, Custom); 255 setOperationAction(ISD::ROTR, MVT::i32, Custom); 256 } 257 } else { 258 setOperationAction(ISD::ROTL, XLenVT, Expand); 259 setOperationAction(ISD::ROTR, XLenVT, Expand); 260 } 261 262 if (Subtarget.hasStdExtZbp()) { 263 // Custom lower bswap/bitreverse so we can convert them to GREVI to enable 264 // more combining. 265 setOperationAction(ISD::BITREVERSE, XLenVT, Custom); 266 setOperationAction(ISD::BSWAP, XLenVT, Custom); 267 setOperationAction(ISD::BITREVERSE, MVT::i8, Custom); 268 // BSWAP i8 doesn't exist. 269 setOperationAction(ISD::BITREVERSE, MVT::i16, Custom); 270 setOperationAction(ISD::BSWAP, MVT::i16, Custom); 271 272 if (Subtarget.is64Bit()) { 273 setOperationAction(ISD::BITREVERSE, MVT::i32, Custom); 274 setOperationAction(ISD::BSWAP, MVT::i32, Custom); 275 } 276 } else { 277 // With Zbb we have an XLen rev8 instruction, but not GREVI. So we'll 278 // pattern match it directly in isel. 279 setOperationAction(ISD::BSWAP, XLenVT, 280 Subtarget.hasStdExtZbb() ? Legal : Expand); 281 } 282 283 if (Subtarget.hasStdExtZbb()) { 284 setOperationAction(ISD::SMIN, XLenVT, Legal); 285 setOperationAction(ISD::SMAX, XLenVT, Legal); 286 setOperationAction(ISD::UMIN, XLenVT, Legal); 287 setOperationAction(ISD::UMAX, XLenVT, Legal); 288 289 if (Subtarget.is64Bit()) { 290 setOperationAction(ISD::CTTZ, MVT::i32, Custom); 291 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Custom); 292 setOperationAction(ISD::CTLZ, MVT::i32, Custom); 293 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom); 294 } 295 } else { 296 setOperationAction(ISD::CTTZ, XLenVT, Expand); 297 setOperationAction(ISD::CTLZ, XLenVT, Expand); 298 setOperationAction(ISD::CTPOP, XLenVT, Expand); 299 } 300 301 if (Subtarget.hasStdExtZbt()) { 302 setOperationAction(ISD::FSHL, XLenVT, Custom); 303 setOperationAction(ISD::FSHR, XLenVT, Custom); 304 setOperationAction(ISD::SELECT, XLenVT, Legal); 305 306 if (Subtarget.is64Bit()) { 307 setOperationAction(ISD::FSHL, MVT::i32, Custom); 308 setOperationAction(ISD::FSHR, MVT::i32, Custom); 309 } 310 } else { 311 setOperationAction(ISD::SELECT, XLenVT, Custom); 312 } 313 314 static const ISD::CondCode FPCCToExpand[] = { 315 ISD::SETOGT, ISD::SETOGE, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT, 316 ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUNE, ISD::SETGT, 317 ISD::SETGE, ISD::SETNE, ISD::SETO, ISD::SETUO}; 318 319 static const ISD::NodeType FPOpToExpand[] = { 320 ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, 321 ISD::FREM, ISD::FP16_TO_FP, ISD::FP_TO_FP16}; 322 323 if (Subtarget.hasStdExtZfh()) 324 setOperationAction(ISD::BITCAST, MVT::i16, Custom); 325 326 if (Subtarget.hasStdExtZfh()) { 327 setOperationAction(ISD::FMINNUM, MVT::f16, Legal); 328 setOperationAction(ISD::FMAXNUM, MVT::f16, Legal); 329 setOperationAction(ISD::LRINT, MVT::f16, Legal); 330 setOperationAction(ISD::LLRINT, MVT::f16, Legal); 331 setOperationAction(ISD::LROUND, MVT::f16, Legal); 332 setOperationAction(ISD::LLROUND, MVT::f16, Legal); 333 setOperationAction(ISD::STRICT_FADD, MVT::f16, Legal); 334 setOperationAction(ISD::STRICT_FMA, MVT::f16, Legal); 335 setOperationAction(ISD::STRICT_FSUB, MVT::f16, Legal); 336 setOperationAction(ISD::STRICT_FMUL, MVT::f16, Legal); 337 setOperationAction(ISD::STRICT_FDIV, MVT::f16, Legal); 338 setOperationAction(ISD::STRICT_FSQRT, MVT::f16, Legal); 339 for (auto CC : FPCCToExpand) 340 setCondCodeAction(CC, MVT::f16, Expand); 341 setOperationAction(ISD::SELECT_CC, MVT::f16, Expand); 342 setOperationAction(ISD::SELECT, MVT::f16, Custom); 343 setOperationAction(ISD::BR_CC, MVT::f16, Expand); 344 345 setOperationAction(ISD::FREM, MVT::f16, Promote); 346 setOperationAction(ISD::FCEIL, MVT::f16, Promote); 347 setOperationAction(ISD::FFLOOR, MVT::f16, Promote); 348 setOperationAction(ISD::FNEARBYINT, MVT::f16, Promote); 349 setOperationAction(ISD::FRINT, MVT::f16, Promote); 350 setOperationAction(ISD::FROUND, MVT::f16, Promote); 351 setOperationAction(ISD::FROUNDEVEN, MVT::f16, Promote); 352 setOperationAction(ISD::FTRUNC, MVT::f16, Promote); 353 setOperationAction(ISD::FPOW, MVT::f16, Promote); 354 setOperationAction(ISD::FPOWI, MVT::f16, Promote); 355 setOperationAction(ISD::FCOS, MVT::f16, Promote); 356 setOperationAction(ISD::FSIN, MVT::f16, Promote); 357 setOperationAction(ISD::FSINCOS, MVT::f16, Promote); 358 setOperationAction(ISD::FEXP, MVT::f16, Promote); 359 setOperationAction(ISD::FEXP2, MVT::f16, Promote); 360 setOperationAction(ISD::FLOG, MVT::f16, Promote); 361 setOperationAction(ISD::FLOG2, MVT::f16, Promote); 362 setOperationAction(ISD::FLOG10, MVT::f16, Promote); 363 364 // We need to custom promote this. 365 if (Subtarget.is64Bit()) 366 setOperationAction(ISD::FPOWI, MVT::i32, Custom); 367 } 368 369 if (Subtarget.hasStdExtF()) { 370 setOperationAction(ISD::FMINNUM, MVT::f32, Legal); 371 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); 372 setOperationAction(ISD::LRINT, MVT::f32, Legal); 373 setOperationAction(ISD::LLRINT, MVT::f32, Legal); 374 setOperationAction(ISD::LROUND, MVT::f32, Legal); 375 setOperationAction(ISD::LLROUND, MVT::f32, Legal); 376 setOperationAction(ISD::STRICT_FADD, MVT::f32, Legal); 377 setOperationAction(ISD::STRICT_FMA, MVT::f32, Legal); 378 setOperationAction(ISD::STRICT_FSUB, MVT::f32, Legal); 379 setOperationAction(ISD::STRICT_FMUL, MVT::f32, Legal); 380 setOperationAction(ISD::STRICT_FDIV, MVT::f32, Legal); 381 setOperationAction(ISD::STRICT_FSQRT, MVT::f32, Legal); 382 for (auto CC : FPCCToExpand) 383 setCondCodeAction(CC, MVT::f32, Expand); 384 setOperationAction(ISD::SELECT_CC, MVT::f32, Expand); 385 setOperationAction(ISD::SELECT, MVT::f32, Custom); 386 setOperationAction(ISD::BR_CC, MVT::f32, Expand); 387 for (auto Op : FPOpToExpand) 388 setOperationAction(Op, MVT::f32, Expand); 389 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); 390 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 391 } 392 393 if (Subtarget.hasStdExtF() && Subtarget.is64Bit()) 394 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 395 396 if (Subtarget.hasStdExtD()) { 397 setOperationAction(ISD::FMINNUM, MVT::f64, Legal); 398 setOperationAction(ISD::FMAXNUM, MVT::f64, Legal); 399 setOperationAction(ISD::LRINT, MVT::f64, Legal); 400 setOperationAction(ISD::LLRINT, MVT::f64, Legal); 401 setOperationAction(ISD::LROUND, MVT::f64, Legal); 402 setOperationAction(ISD::LLROUND, MVT::f64, Legal); 403 setOperationAction(ISD::STRICT_FMA, MVT::f64, Legal); 404 setOperationAction(ISD::STRICT_FADD, MVT::f64, Legal); 405 setOperationAction(ISD::STRICT_FSUB, MVT::f64, Legal); 406 setOperationAction(ISD::STRICT_FMUL, MVT::f64, Legal); 407 setOperationAction(ISD::STRICT_FDIV, MVT::f64, Legal); 408 setOperationAction(ISD::STRICT_FSQRT, MVT::f64, Legal); 409 for (auto CC : FPCCToExpand) 410 setCondCodeAction(CC, MVT::f64, Expand); 411 setOperationAction(ISD::SELECT_CC, MVT::f64, Expand); 412 setOperationAction(ISD::SELECT, MVT::f64, Custom); 413 setOperationAction(ISD::BR_CC, MVT::f64, Expand); 414 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 415 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 416 for (auto Op : FPOpToExpand) 417 setOperationAction(Op, MVT::f64, Expand); 418 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); 419 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 420 } 421 422 if (Subtarget.is64Bit()) { 423 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 424 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 425 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom); 426 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom); 427 } 428 429 if (Subtarget.hasStdExtF()) { 430 setOperationAction(ISD::FP_TO_UINT_SAT, XLenVT, Custom); 431 setOperationAction(ISD::FP_TO_SINT_SAT, XLenVT, Custom); 432 433 setOperationAction(ISD::FLT_ROUNDS_, XLenVT, Custom); 434 setOperationAction(ISD::SET_ROUNDING, MVT::Other, Custom); 435 } 436 437 setOperationAction(ISD::GlobalAddress, XLenVT, Custom); 438 setOperationAction(ISD::BlockAddress, XLenVT, Custom); 439 setOperationAction(ISD::ConstantPool, XLenVT, Custom); 440 setOperationAction(ISD::JumpTable, XLenVT, Custom); 441 442 setOperationAction(ISD::GlobalTLSAddress, XLenVT, Custom); 443 444 // TODO: On M-mode only targets, the cycle[h] CSR may not be present. 445 // Unfortunately this can't be determined just from the ISA naming string. 446 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, 447 Subtarget.is64Bit() ? Legal : Custom); 448 449 setOperationAction(ISD::TRAP, MVT::Other, Legal); 450 setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal); 451 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 452 if (Subtarget.is64Bit()) 453 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i32, Custom); 454 455 if (Subtarget.hasStdExtA()) { 456 setMaxAtomicSizeInBitsSupported(Subtarget.getXLen()); 457 setMinCmpXchgSizeInBits(32); 458 } else { 459 setMaxAtomicSizeInBitsSupported(0); 460 } 461 462 setBooleanContents(ZeroOrOneBooleanContent); 463 464 if (Subtarget.hasVInstructions()) { 465 setBooleanVectorContents(ZeroOrOneBooleanContent); 466 467 setOperationAction(ISD::VSCALE, XLenVT, Custom); 468 469 // RVV intrinsics may have illegal operands. 470 // We also need to custom legalize vmv.x.s. 471 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i8, Custom); 472 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i16, Custom); 473 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i8, Custom); 474 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i16, Custom); 475 if (Subtarget.is64Bit()) { 476 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i32, Custom); 477 } else { 478 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i64, Custom); 479 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i64, Custom); 480 } 481 482 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom); 483 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); 484 485 static const unsigned IntegerVPOps[] = { 486 ISD::VP_ADD, ISD::VP_SUB, ISD::VP_MUL, 487 ISD::VP_SDIV, ISD::VP_UDIV, ISD::VP_SREM, 488 ISD::VP_UREM, ISD::VP_AND, ISD::VP_OR, 489 ISD::VP_XOR, ISD::VP_ASHR, ISD::VP_LSHR, 490 ISD::VP_SHL, ISD::VP_REDUCE_ADD, ISD::VP_REDUCE_AND, 491 ISD::VP_REDUCE_OR, ISD::VP_REDUCE_XOR, ISD::VP_REDUCE_SMAX, 492 ISD::VP_REDUCE_SMIN, ISD::VP_REDUCE_UMAX, ISD::VP_REDUCE_UMIN, 493 ISD::VP_SELECT}; 494 495 static const unsigned FloatingPointVPOps[] = { 496 ISD::VP_FADD, ISD::VP_FSUB, ISD::VP_FMUL, 497 ISD::VP_FDIV, ISD::VP_REDUCE_FADD, ISD::VP_REDUCE_SEQ_FADD, 498 ISD::VP_REDUCE_FMIN, ISD::VP_REDUCE_FMAX, ISD::VP_SELECT}; 499 500 if (!Subtarget.is64Bit()) { 501 // We must custom-lower certain vXi64 operations on RV32 due to the vector 502 // element type being illegal. 503 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::i64, Custom); 504 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::i64, Custom); 505 506 setOperationAction(ISD::VECREDUCE_ADD, MVT::i64, Custom); 507 setOperationAction(ISD::VECREDUCE_AND, MVT::i64, Custom); 508 setOperationAction(ISD::VECREDUCE_OR, MVT::i64, Custom); 509 setOperationAction(ISD::VECREDUCE_XOR, MVT::i64, Custom); 510 setOperationAction(ISD::VECREDUCE_SMAX, MVT::i64, Custom); 511 setOperationAction(ISD::VECREDUCE_SMIN, MVT::i64, Custom); 512 setOperationAction(ISD::VECREDUCE_UMAX, MVT::i64, Custom); 513 setOperationAction(ISD::VECREDUCE_UMIN, MVT::i64, Custom); 514 515 setOperationAction(ISD::VP_REDUCE_ADD, MVT::i64, Custom); 516 setOperationAction(ISD::VP_REDUCE_AND, MVT::i64, Custom); 517 setOperationAction(ISD::VP_REDUCE_OR, MVT::i64, Custom); 518 setOperationAction(ISD::VP_REDUCE_XOR, MVT::i64, Custom); 519 setOperationAction(ISD::VP_REDUCE_SMAX, MVT::i64, Custom); 520 setOperationAction(ISD::VP_REDUCE_SMIN, MVT::i64, Custom); 521 setOperationAction(ISD::VP_REDUCE_UMAX, MVT::i64, Custom); 522 setOperationAction(ISD::VP_REDUCE_UMIN, MVT::i64, Custom); 523 } 524 525 for (MVT VT : BoolVecVTs) { 526 setOperationAction(ISD::SPLAT_VECTOR, VT, Custom); 527 528 // Mask VTs are custom-expanded into a series of standard nodes 529 setOperationAction(ISD::TRUNCATE, VT, Custom); 530 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 531 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 532 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 533 534 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 535 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 536 537 setOperationAction(ISD::SELECT, VT, Custom); 538 setOperationAction(ISD::SELECT_CC, VT, Expand); 539 setOperationAction(ISD::VSELECT, VT, Expand); 540 541 setOperationAction(ISD::VECREDUCE_AND, VT, Custom); 542 setOperationAction(ISD::VECREDUCE_OR, VT, Custom); 543 setOperationAction(ISD::VECREDUCE_XOR, VT, Custom); 544 545 setOperationAction(ISD::VP_REDUCE_AND, VT, Custom); 546 setOperationAction(ISD::VP_REDUCE_OR, VT, Custom); 547 setOperationAction(ISD::VP_REDUCE_XOR, VT, Custom); 548 549 // RVV has native int->float & float->int conversions where the 550 // element type sizes are within one power-of-two of each other. Any 551 // wider distances between type sizes have to be lowered as sequences 552 // which progressively narrow the gap in stages. 553 setOperationAction(ISD::SINT_TO_FP, VT, Custom); 554 setOperationAction(ISD::UINT_TO_FP, VT, Custom); 555 setOperationAction(ISD::FP_TO_SINT, VT, Custom); 556 setOperationAction(ISD::FP_TO_UINT, VT, Custom); 557 558 // Expand all extending loads to types larger than this, and truncating 559 // stores from types larger than this. 560 for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) { 561 setTruncStoreAction(OtherVT, VT, Expand); 562 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 563 setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand); 564 setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand); 565 } 566 } 567 568 for (MVT VT : IntVecVTs) { 569 if (VT.getVectorElementType() == MVT::i64 && 570 !Subtarget.hasVInstructionsI64()) 571 continue; 572 573 setOperationAction(ISD::SPLAT_VECTOR, VT, Legal); 574 setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom); 575 576 // Vectors implement MULHS/MULHU. 577 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 578 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 579 580 setOperationAction(ISD::SMIN, VT, Legal); 581 setOperationAction(ISD::SMAX, VT, Legal); 582 setOperationAction(ISD::UMIN, VT, Legal); 583 setOperationAction(ISD::UMAX, VT, Legal); 584 585 setOperationAction(ISD::ROTL, VT, Expand); 586 setOperationAction(ISD::ROTR, VT, Expand); 587 588 setOperationAction(ISD::CTTZ, VT, Expand); 589 setOperationAction(ISD::CTLZ, VT, Expand); 590 setOperationAction(ISD::CTPOP, VT, Expand); 591 592 setOperationAction(ISD::BSWAP, VT, Expand); 593 594 // Custom-lower extensions and truncations from/to mask types. 595 setOperationAction(ISD::ANY_EXTEND, VT, Custom); 596 setOperationAction(ISD::SIGN_EXTEND, VT, Custom); 597 setOperationAction(ISD::ZERO_EXTEND, VT, Custom); 598 599 // RVV has native int->float & float->int conversions where the 600 // element type sizes are within one power-of-two of each other. Any 601 // wider distances between type sizes have to be lowered as sequences 602 // which progressively narrow the gap in stages. 603 setOperationAction(ISD::SINT_TO_FP, VT, Custom); 604 setOperationAction(ISD::UINT_TO_FP, VT, Custom); 605 setOperationAction(ISD::FP_TO_SINT, VT, Custom); 606 setOperationAction(ISD::FP_TO_UINT, VT, Custom); 607 608 setOperationAction(ISD::SADDSAT, VT, Legal); 609 setOperationAction(ISD::UADDSAT, VT, Legal); 610 setOperationAction(ISD::SSUBSAT, VT, Legal); 611 setOperationAction(ISD::USUBSAT, VT, Legal); 612 613 // Integer VTs are lowered as a series of "RISCVISD::TRUNCATE_VECTOR_VL" 614 // nodes which truncate by one power of two at a time. 615 setOperationAction(ISD::TRUNCATE, VT, Custom); 616 617 // Custom-lower insert/extract operations to simplify patterns. 618 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 619 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 620 621 // Custom-lower reduction operations to set up the corresponding custom 622 // nodes' operands. 623 setOperationAction(ISD::VECREDUCE_ADD, VT, Custom); 624 setOperationAction(ISD::VECREDUCE_AND, VT, Custom); 625 setOperationAction(ISD::VECREDUCE_OR, VT, Custom); 626 setOperationAction(ISD::VECREDUCE_XOR, VT, Custom); 627 setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom); 628 setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom); 629 setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom); 630 setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom); 631 632 for (unsigned VPOpc : IntegerVPOps) 633 setOperationAction(VPOpc, VT, Custom); 634 635 setOperationAction(ISD::LOAD, VT, Custom); 636 setOperationAction(ISD::STORE, VT, Custom); 637 638 setOperationAction(ISD::MLOAD, VT, Custom); 639 setOperationAction(ISD::MSTORE, VT, Custom); 640 setOperationAction(ISD::MGATHER, VT, Custom); 641 setOperationAction(ISD::MSCATTER, VT, Custom); 642 643 setOperationAction(ISD::VP_LOAD, VT, Custom); 644 setOperationAction(ISD::VP_STORE, VT, Custom); 645 setOperationAction(ISD::VP_GATHER, VT, Custom); 646 setOperationAction(ISD::VP_SCATTER, VT, Custom); 647 648 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 649 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 650 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 651 652 setOperationAction(ISD::SELECT, VT, Custom); 653 setOperationAction(ISD::SELECT_CC, VT, Expand); 654 655 setOperationAction(ISD::STEP_VECTOR, VT, Custom); 656 setOperationAction(ISD::VECTOR_REVERSE, VT, Custom); 657 658 for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) { 659 setTruncStoreAction(VT, OtherVT, Expand); 660 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 661 setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand); 662 setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand); 663 } 664 665 // Lower CTLZ_ZERO_UNDEF and CTTZ_ZERO_UNDEF if we have a floating point 666 // type that can represent the value exactly. 667 if (VT.getVectorElementType() != MVT::i64) { 668 MVT FloatEltVT = 669 VT.getVectorElementType() == MVT::i32 ? MVT::f64 : MVT::f32; 670 EVT FloatVT = MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount()); 671 if (isTypeLegal(FloatVT)) { 672 setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Custom); 673 setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Custom); 674 } 675 } 676 } 677 678 // Expand various CCs to best match the RVV ISA, which natively supports UNE 679 // but no other unordered comparisons, and supports all ordered comparisons 680 // except ONE. Additionally, we expand GT,OGT,GE,OGE for optimization 681 // purposes; they are expanded to their swapped-operand CCs (LT,OLT,LE,OLE), 682 // and we pattern-match those back to the "original", swapping operands once 683 // more. This way we catch both operations and both "vf" and "fv" forms with 684 // fewer patterns. 685 static const ISD::CondCode VFPCCToExpand[] = { 686 ISD::SETO, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT, 687 ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUO, 688 ISD::SETGT, ISD::SETOGT, ISD::SETGE, ISD::SETOGE, 689 }; 690 691 // Sets common operation actions on RVV floating-point vector types. 692 const auto SetCommonVFPActions = [&](MVT VT) { 693 setOperationAction(ISD::SPLAT_VECTOR, VT, Legal); 694 // RVV has native FP_ROUND & FP_EXTEND conversions where the element type 695 // sizes are within one power-of-two of each other. Therefore conversions 696 // between vXf16 and vXf64 must be lowered as sequences which convert via 697 // vXf32. 698 setOperationAction(ISD::FP_ROUND, VT, Custom); 699 setOperationAction(ISD::FP_EXTEND, VT, Custom); 700 // Custom-lower insert/extract operations to simplify patterns. 701 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 702 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 703 // Expand various condition codes (explained above). 704 for (auto CC : VFPCCToExpand) 705 setCondCodeAction(CC, VT, Expand); 706 707 setOperationAction(ISD::FMINNUM, VT, Legal); 708 setOperationAction(ISD::FMAXNUM, VT, Legal); 709 710 setOperationAction(ISD::FTRUNC, VT, Custom); 711 setOperationAction(ISD::FCEIL, VT, Custom); 712 setOperationAction(ISD::FFLOOR, VT, Custom); 713 714 setOperationAction(ISD::VECREDUCE_FADD, VT, Custom); 715 setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom); 716 setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom); 717 setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom); 718 719 setOperationAction(ISD::FCOPYSIGN, VT, Legal); 720 721 setOperationAction(ISD::LOAD, VT, Custom); 722 setOperationAction(ISD::STORE, VT, Custom); 723 724 setOperationAction(ISD::MLOAD, VT, Custom); 725 setOperationAction(ISD::MSTORE, VT, Custom); 726 setOperationAction(ISD::MGATHER, VT, Custom); 727 setOperationAction(ISD::MSCATTER, VT, Custom); 728 729 setOperationAction(ISD::VP_LOAD, VT, Custom); 730 setOperationAction(ISD::VP_STORE, VT, Custom); 731 setOperationAction(ISD::VP_GATHER, VT, Custom); 732 setOperationAction(ISD::VP_SCATTER, VT, Custom); 733 734 setOperationAction(ISD::SELECT, VT, Custom); 735 setOperationAction(ISD::SELECT_CC, VT, Expand); 736 737 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 738 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 739 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 740 741 setOperationAction(ISD::VECTOR_REVERSE, VT, Custom); 742 743 for (unsigned VPOpc : FloatingPointVPOps) 744 setOperationAction(VPOpc, VT, Custom); 745 }; 746 747 // Sets common extload/truncstore actions on RVV floating-point vector 748 // types. 749 const auto SetCommonVFPExtLoadTruncStoreActions = 750 [&](MVT VT, ArrayRef<MVT::SimpleValueType> SmallerVTs) { 751 for (auto SmallVT : SmallerVTs) { 752 setTruncStoreAction(VT, SmallVT, Expand); 753 setLoadExtAction(ISD::EXTLOAD, VT, SmallVT, Expand); 754 } 755 }; 756 757 if (Subtarget.hasVInstructionsF16()) 758 for (MVT VT : F16VecVTs) 759 SetCommonVFPActions(VT); 760 761 for (MVT VT : F32VecVTs) { 762 if (Subtarget.hasVInstructionsF32()) 763 SetCommonVFPActions(VT); 764 SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs); 765 } 766 767 for (MVT VT : F64VecVTs) { 768 if (Subtarget.hasVInstructionsF64()) 769 SetCommonVFPActions(VT); 770 SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs); 771 SetCommonVFPExtLoadTruncStoreActions(VT, F32VecVTs); 772 } 773 774 if (Subtarget.useRVVForFixedLengthVectors()) { 775 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) { 776 if (!useRVVForFixedLengthVectorVT(VT)) 777 continue; 778 779 // By default everything must be expanded. 780 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) 781 setOperationAction(Op, VT, Expand); 782 for (MVT OtherVT : MVT::integer_fixedlen_vector_valuetypes()) { 783 setTruncStoreAction(VT, OtherVT, Expand); 784 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 785 setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand); 786 setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand); 787 } 788 789 // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed. 790 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 791 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 792 793 setOperationAction(ISD::BUILD_VECTOR, VT, Custom); 794 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 795 796 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 797 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 798 799 setOperationAction(ISD::LOAD, VT, Custom); 800 setOperationAction(ISD::STORE, VT, Custom); 801 802 setOperationAction(ISD::SETCC, VT, Custom); 803 804 setOperationAction(ISD::SELECT, VT, Custom); 805 806 setOperationAction(ISD::TRUNCATE, VT, Custom); 807 808 setOperationAction(ISD::BITCAST, VT, Custom); 809 810 setOperationAction(ISD::VECREDUCE_AND, VT, Custom); 811 setOperationAction(ISD::VECREDUCE_OR, VT, Custom); 812 setOperationAction(ISD::VECREDUCE_XOR, VT, Custom); 813 814 setOperationAction(ISD::VP_REDUCE_AND, VT, Custom); 815 setOperationAction(ISD::VP_REDUCE_OR, VT, Custom); 816 setOperationAction(ISD::VP_REDUCE_XOR, VT, Custom); 817 818 setOperationAction(ISD::SINT_TO_FP, VT, Custom); 819 setOperationAction(ISD::UINT_TO_FP, VT, Custom); 820 setOperationAction(ISD::FP_TO_SINT, VT, Custom); 821 setOperationAction(ISD::FP_TO_UINT, VT, Custom); 822 823 // Operations below are different for between masks and other vectors. 824 if (VT.getVectorElementType() == MVT::i1) { 825 setOperationAction(ISD::AND, VT, Custom); 826 setOperationAction(ISD::OR, VT, Custom); 827 setOperationAction(ISD::XOR, VT, Custom); 828 continue; 829 } 830 831 // Use SPLAT_VECTOR to prevent type legalization from destroying the 832 // splats when type legalizing i64 scalar on RV32. 833 // FIXME: Use SPLAT_VECTOR for all types? DAGCombine probably needs 834 // improvements first. 835 if (!Subtarget.is64Bit() && VT.getVectorElementType() == MVT::i64) { 836 setOperationAction(ISD::SPLAT_VECTOR, VT, Custom); 837 setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom); 838 } 839 840 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); 841 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 842 843 setOperationAction(ISD::MLOAD, VT, Custom); 844 setOperationAction(ISD::MSTORE, VT, Custom); 845 setOperationAction(ISD::MGATHER, VT, Custom); 846 setOperationAction(ISD::MSCATTER, VT, Custom); 847 848 setOperationAction(ISD::VP_LOAD, VT, Custom); 849 setOperationAction(ISD::VP_STORE, VT, Custom); 850 setOperationAction(ISD::VP_GATHER, VT, Custom); 851 setOperationAction(ISD::VP_SCATTER, VT, Custom); 852 853 setOperationAction(ISD::ADD, VT, Custom); 854 setOperationAction(ISD::MUL, VT, Custom); 855 setOperationAction(ISD::SUB, VT, Custom); 856 setOperationAction(ISD::AND, VT, Custom); 857 setOperationAction(ISD::OR, VT, Custom); 858 setOperationAction(ISD::XOR, VT, Custom); 859 setOperationAction(ISD::SDIV, VT, Custom); 860 setOperationAction(ISD::SREM, VT, Custom); 861 setOperationAction(ISD::UDIV, VT, Custom); 862 setOperationAction(ISD::UREM, VT, Custom); 863 setOperationAction(ISD::SHL, VT, Custom); 864 setOperationAction(ISD::SRA, VT, Custom); 865 setOperationAction(ISD::SRL, VT, Custom); 866 867 setOperationAction(ISD::SMIN, VT, Custom); 868 setOperationAction(ISD::SMAX, VT, Custom); 869 setOperationAction(ISD::UMIN, VT, Custom); 870 setOperationAction(ISD::UMAX, VT, Custom); 871 setOperationAction(ISD::ABS, VT, Custom); 872 873 setOperationAction(ISD::MULHS, VT, Custom); 874 setOperationAction(ISD::MULHU, VT, Custom); 875 876 setOperationAction(ISD::SADDSAT, VT, Custom); 877 setOperationAction(ISD::UADDSAT, VT, Custom); 878 setOperationAction(ISD::SSUBSAT, VT, Custom); 879 setOperationAction(ISD::USUBSAT, VT, Custom); 880 881 setOperationAction(ISD::VSELECT, VT, Custom); 882 setOperationAction(ISD::SELECT_CC, VT, Expand); 883 884 setOperationAction(ISD::ANY_EXTEND, VT, Custom); 885 setOperationAction(ISD::SIGN_EXTEND, VT, Custom); 886 setOperationAction(ISD::ZERO_EXTEND, VT, Custom); 887 888 // Custom-lower reduction operations to set up the corresponding custom 889 // nodes' operands. 890 setOperationAction(ISD::VECREDUCE_ADD, VT, Custom); 891 setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom); 892 setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom); 893 setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom); 894 setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom); 895 896 for (unsigned VPOpc : IntegerVPOps) 897 setOperationAction(VPOpc, VT, Custom); 898 899 // Lower CTLZ_ZERO_UNDEF and CTTZ_ZERO_UNDEF if we have a floating point 900 // type that can represent the value exactly. 901 if (VT.getVectorElementType() != MVT::i64) { 902 MVT FloatEltVT = 903 VT.getVectorElementType() == MVT::i32 ? MVT::f64 : MVT::f32; 904 EVT FloatVT = 905 MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount()); 906 if (isTypeLegal(FloatVT)) { 907 setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Custom); 908 setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Custom); 909 } 910 } 911 } 912 913 for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) { 914 if (!useRVVForFixedLengthVectorVT(VT)) 915 continue; 916 917 // By default everything must be expanded. 918 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) 919 setOperationAction(Op, VT, Expand); 920 for (MVT OtherVT : MVT::fp_fixedlen_vector_valuetypes()) { 921 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 922 setTruncStoreAction(VT, OtherVT, Expand); 923 } 924 925 // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed. 926 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 927 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 928 929 setOperationAction(ISD::BUILD_VECTOR, VT, Custom); 930 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 931 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); 932 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 933 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 934 935 setOperationAction(ISD::LOAD, VT, Custom); 936 setOperationAction(ISD::STORE, VT, Custom); 937 setOperationAction(ISD::MLOAD, VT, Custom); 938 setOperationAction(ISD::MSTORE, VT, Custom); 939 setOperationAction(ISD::MGATHER, VT, Custom); 940 setOperationAction(ISD::MSCATTER, VT, Custom); 941 942 setOperationAction(ISD::VP_LOAD, VT, Custom); 943 setOperationAction(ISD::VP_STORE, VT, Custom); 944 setOperationAction(ISD::VP_GATHER, VT, Custom); 945 setOperationAction(ISD::VP_SCATTER, VT, Custom); 946 947 setOperationAction(ISD::FADD, VT, Custom); 948 setOperationAction(ISD::FSUB, VT, Custom); 949 setOperationAction(ISD::FMUL, VT, Custom); 950 setOperationAction(ISD::FDIV, VT, Custom); 951 setOperationAction(ISD::FNEG, VT, Custom); 952 setOperationAction(ISD::FABS, VT, Custom); 953 setOperationAction(ISD::FCOPYSIGN, VT, Custom); 954 setOperationAction(ISD::FSQRT, VT, Custom); 955 setOperationAction(ISD::FMA, VT, Custom); 956 setOperationAction(ISD::FMINNUM, VT, Custom); 957 setOperationAction(ISD::FMAXNUM, VT, Custom); 958 959 setOperationAction(ISD::FP_ROUND, VT, Custom); 960 setOperationAction(ISD::FP_EXTEND, VT, Custom); 961 962 setOperationAction(ISD::FTRUNC, VT, Custom); 963 setOperationAction(ISD::FCEIL, VT, Custom); 964 setOperationAction(ISD::FFLOOR, VT, Custom); 965 966 for (auto CC : VFPCCToExpand) 967 setCondCodeAction(CC, VT, Expand); 968 969 setOperationAction(ISD::VSELECT, VT, Custom); 970 setOperationAction(ISD::SELECT, VT, Custom); 971 setOperationAction(ISD::SELECT_CC, VT, Expand); 972 973 setOperationAction(ISD::BITCAST, VT, Custom); 974 975 setOperationAction(ISD::VECREDUCE_FADD, VT, Custom); 976 setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom); 977 setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom); 978 setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom); 979 980 for (unsigned VPOpc : FloatingPointVPOps) 981 setOperationAction(VPOpc, VT, Custom); 982 } 983 984 // Custom-legalize bitcasts from fixed-length vectors to scalar types. 985 setOperationAction(ISD::BITCAST, MVT::i8, Custom); 986 setOperationAction(ISD::BITCAST, MVT::i16, Custom); 987 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 988 setOperationAction(ISD::BITCAST, MVT::i64, Custom); 989 setOperationAction(ISD::BITCAST, MVT::f16, Custom); 990 setOperationAction(ISD::BITCAST, MVT::f32, Custom); 991 setOperationAction(ISD::BITCAST, MVT::f64, Custom); 992 } 993 } 994 995 // Function alignments. 996 const Align FunctionAlignment(Subtarget.hasStdExtC() ? 2 : 4); 997 setMinFunctionAlignment(FunctionAlignment); 998 setPrefFunctionAlignment(FunctionAlignment); 999 1000 setMinimumJumpTableEntries(5); 1001 1002 // Jumps are expensive, compared to logic 1003 setJumpIsExpensive(); 1004 1005 setTargetDAGCombine(ISD::ADD); 1006 setTargetDAGCombine(ISD::SUB); 1007 setTargetDAGCombine(ISD::AND); 1008 setTargetDAGCombine(ISD::OR); 1009 setTargetDAGCombine(ISD::XOR); 1010 setTargetDAGCombine(ISD::ANY_EXTEND); 1011 setTargetDAGCombine(ISD::ZERO_EXTEND); 1012 if (Subtarget.hasVInstructions()) { 1013 setTargetDAGCombine(ISD::FCOPYSIGN); 1014 setTargetDAGCombine(ISD::MGATHER); 1015 setTargetDAGCombine(ISD::MSCATTER); 1016 setTargetDAGCombine(ISD::VP_GATHER); 1017 setTargetDAGCombine(ISD::VP_SCATTER); 1018 setTargetDAGCombine(ISD::SRA); 1019 setTargetDAGCombine(ISD::SRL); 1020 setTargetDAGCombine(ISD::SHL); 1021 setTargetDAGCombine(ISD::STORE); 1022 } 1023 } 1024 1025 EVT RISCVTargetLowering::getSetCCResultType(const DataLayout &DL, 1026 LLVMContext &Context, 1027 EVT VT) const { 1028 if (!VT.isVector()) 1029 return getPointerTy(DL); 1030 if (Subtarget.hasVInstructions() && 1031 (VT.isScalableVector() || Subtarget.useRVVForFixedLengthVectors())) 1032 return EVT::getVectorVT(Context, MVT::i1, VT.getVectorElementCount()); 1033 return VT.changeVectorElementTypeToInteger(); 1034 } 1035 1036 MVT RISCVTargetLowering::getVPExplicitVectorLengthTy() const { 1037 return Subtarget.getXLenVT(); 1038 } 1039 1040 bool RISCVTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 1041 const CallInst &I, 1042 MachineFunction &MF, 1043 unsigned Intrinsic) const { 1044 auto &DL = I.getModule()->getDataLayout(); 1045 switch (Intrinsic) { 1046 default: 1047 return false; 1048 case Intrinsic::riscv_masked_atomicrmw_xchg_i32: 1049 case Intrinsic::riscv_masked_atomicrmw_add_i32: 1050 case Intrinsic::riscv_masked_atomicrmw_sub_i32: 1051 case Intrinsic::riscv_masked_atomicrmw_nand_i32: 1052 case Intrinsic::riscv_masked_atomicrmw_max_i32: 1053 case Intrinsic::riscv_masked_atomicrmw_min_i32: 1054 case Intrinsic::riscv_masked_atomicrmw_umax_i32: 1055 case Intrinsic::riscv_masked_atomicrmw_umin_i32: 1056 case Intrinsic::riscv_masked_cmpxchg_i32: { 1057 PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType()); 1058 Info.opc = ISD::INTRINSIC_W_CHAIN; 1059 Info.memVT = MVT::getVT(PtrTy->getElementType()); 1060 Info.ptrVal = I.getArgOperand(0); 1061 Info.offset = 0; 1062 Info.align = Align(4); 1063 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore | 1064 MachineMemOperand::MOVolatile; 1065 return true; 1066 } 1067 case Intrinsic::riscv_masked_strided_load: 1068 Info.opc = ISD::INTRINSIC_W_CHAIN; 1069 Info.ptrVal = I.getArgOperand(1); 1070 Info.memVT = getValueType(DL, I.getType()->getScalarType()); 1071 Info.align = Align(DL.getTypeSizeInBits(I.getType()->getScalarType()) / 8); 1072 Info.size = MemoryLocation::UnknownSize; 1073 Info.flags |= MachineMemOperand::MOLoad; 1074 return true; 1075 case Intrinsic::riscv_masked_strided_store: 1076 Info.opc = ISD::INTRINSIC_VOID; 1077 Info.ptrVal = I.getArgOperand(1); 1078 Info.memVT = 1079 getValueType(DL, I.getArgOperand(0)->getType()->getScalarType()); 1080 Info.align = Align( 1081 DL.getTypeSizeInBits(I.getArgOperand(0)->getType()->getScalarType()) / 1082 8); 1083 Info.size = MemoryLocation::UnknownSize; 1084 Info.flags |= MachineMemOperand::MOStore; 1085 return true; 1086 } 1087 } 1088 1089 bool RISCVTargetLowering::isLegalAddressingMode(const DataLayout &DL, 1090 const AddrMode &AM, Type *Ty, 1091 unsigned AS, 1092 Instruction *I) const { 1093 // No global is ever allowed as a base. 1094 if (AM.BaseGV) 1095 return false; 1096 1097 // Require a 12-bit signed offset. 1098 if (!isInt<12>(AM.BaseOffs)) 1099 return false; 1100 1101 switch (AM.Scale) { 1102 case 0: // "r+i" or just "i", depending on HasBaseReg. 1103 break; 1104 case 1: 1105 if (!AM.HasBaseReg) // allow "r+i". 1106 break; 1107 return false; // disallow "r+r" or "r+r+i". 1108 default: 1109 return false; 1110 } 1111 1112 return true; 1113 } 1114 1115 bool RISCVTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 1116 return isInt<12>(Imm); 1117 } 1118 1119 bool RISCVTargetLowering::isLegalAddImmediate(int64_t Imm) const { 1120 return isInt<12>(Imm); 1121 } 1122 1123 // On RV32, 64-bit integers are split into their high and low parts and held 1124 // in two different registers, so the trunc is free since the low register can 1125 // just be used. 1126 bool RISCVTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const { 1127 if (Subtarget.is64Bit() || !SrcTy->isIntegerTy() || !DstTy->isIntegerTy()) 1128 return false; 1129 unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); 1130 unsigned DestBits = DstTy->getPrimitiveSizeInBits(); 1131 return (SrcBits == 64 && DestBits == 32); 1132 } 1133 1134 bool RISCVTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const { 1135 if (Subtarget.is64Bit() || SrcVT.isVector() || DstVT.isVector() || 1136 !SrcVT.isInteger() || !DstVT.isInteger()) 1137 return false; 1138 unsigned SrcBits = SrcVT.getSizeInBits(); 1139 unsigned DestBits = DstVT.getSizeInBits(); 1140 return (SrcBits == 64 && DestBits == 32); 1141 } 1142 1143 bool RISCVTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 1144 // Zexts are free if they can be combined with a load. 1145 if (auto *LD = dyn_cast<LoadSDNode>(Val)) { 1146 EVT MemVT = LD->getMemoryVT(); 1147 if ((MemVT == MVT::i8 || MemVT == MVT::i16 || 1148 (Subtarget.is64Bit() && MemVT == MVT::i32)) && 1149 (LD->getExtensionType() == ISD::NON_EXTLOAD || 1150 LD->getExtensionType() == ISD::ZEXTLOAD)) 1151 return true; 1152 } 1153 1154 return TargetLowering::isZExtFree(Val, VT2); 1155 } 1156 1157 bool RISCVTargetLowering::isSExtCheaperThanZExt(EVT SrcVT, EVT DstVT) const { 1158 return Subtarget.is64Bit() && SrcVT == MVT::i32 && DstVT == MVT::i64; 1159 } 1160 1161 bool RISCVTargetLowering::isCheapToSpeculateCttz() const { 1162 return Subtarget.hasStdExtZbb(); 1163 } 1164 1165 bool RISCVTargetLowering::isCheapToSpeculateCtlz() const { 1166 return Subtarget.hasStdExtZbb(); 1167 } 1168 1169 bool RISCVTargetLowering::hasAndNot(SDValue Y) const { 1170 EVT VT = Y.getValueType(); 1171 1172 // FIXME: Support vectors once we have tests. 1173 if (VT.isVector()) 1174 return false; 1175 1176 return Subtarget.hasStdExtZbb() && !isa<ConstantSDNode>(Y); 1177 } 1178 1179 /// Check if sinking \p I's operands to I's basic block is profitable, because 1180 /// the operands can be folded into a target instruction, e.g. 1181 /// splats of scalars can fold into vector instructions. 1182 bool RISCVTargetLowering::shouldSinkOperands( 1183 Instruction *I, SmallVectorImpl<Use *> &Ops) const { 1184 using namespace llvm::PatternMatch; 1185 1186 if (!I->getType()->isVectorTy() || !Subtarget.hasVInstructions()) 1187 return false; 1188 1189 auto IsSinker = [&](Instruction *I, int Operand) { 1190 switch (I->getOpcode()) { 1191 case Instruction::Add: 1192 case Instruction::Sub: 1193 case Instruction::Mul: 1194 case Instruction::And: 1195 case Instruction::Or: 1196 case Instruction::Xor: 1197 case Instruction::FAdd: 1198 case Instruction::FSub: 1199 case Instruction::FMul: 1200 case Instruction::FDiv: 1201 case Instruction::ICmp: 1202 case Instruction::FCmp: 1203 return true; 1204 case Instruction::Shl: 1205 case Instruction::LShr: 1206 case Instruction::AShr: 1207 case Instruction::UDiv: 1208 case Instruction::SDiv: 1209 case Instruction::URem: 1210 case Instruction::SRem: 1211 return Operand == 1; 1212 case Instruction::Call: 1213 if (auto *II = dyn_cast<IntrinsicInst>(I)) { 1214 switch (II->getIntrinsicID()) { 1215 case Intrinsic::fma: 1216 return Operand == 0 || Operand == 1; 1217 default: 1218 return false; 1219 } 1220 } 1221 return false; 1222 default: 1223 return false; 1224 } 1225 }; 1226 1227 for (auto OpIdx : enumerate(I->operands())) { 1228 if (!IsSinker(I, OpIdx.index())) 1229 continue; 1230 1231 Instruction *Op = dyn_cast<Instruction>(OpIdx.value().get()); 1232 // Make sure we are not already sinking this operand 1233 if (!Op || any_of(Ops, [&](Use *U) { return U->get() == Op; })) 1234 continue; 1235 1236 // We are looking for a splat that can be sunk. 1237 if (!match(Op, m_Shuffle(m_InsertElt(m_Undef(), m_Value(), m_ZeroInt()), 1238 m_Undef(), m_ZeroMask()))) 1239 continue; 1240 1241 // All uses of the shuffle should be sunk to avoid duplicating it across gpr 1242 // and vector registers 1243 for (Use &U : Op->uses()) { 1244 Instruction *Insn = cast<Instruction>(U.getUser()); 1245 if (!IsSinker(Insn, U.getOperandNo())) 1246 return false; 1247 } 1248 1249 Ops.push_back(&Op->getOperandUse(0)); 1250 Ops.push_back(&OpIdx.value()); 1251 } 1252 return true; 1253 } 1254 1255 bool RISCVTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 1256 bool ForCodeSize) const { 1257 if (VT == MVT::f16 && !Subtarget.hasStdExtZfhmin()) 1258 return false; 1259 if (VT == MVT::f32 && !Subtarget.hasStdExtF()) 1260 return false; 1261 if (VT == MVT::f64 && !Subtarget.hasStdExtD()) 1262 return false; 1263 if (Imm.isNegZero()) 1264 return false; 1265 return Imm.isZero(); 1266 } 1267 1268 bool RISCVTargetLowering::hasBitPreservingFPLogic(EVT VT) const { 1269 return (VT == MVT::f16 && Subtarget.hasStdExtZfh()) || 1270 (VT == MVT::f32 && Subtarget.hasStdExtF()) || 1271 (VT == MVT::f64 && Subtarget.hasStdExtD()); 1272 } 1273 1274 MVT RISCVTargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context, 1275 CallingConv::ID CC, 1276 EVT VT) const { 1277 // Use f32 to pass f16 if it is legal and Zfhmin/Zfh is not enabled. 1278 // We might still end up using a GPR but that will be decided based on ABI. 1279 if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfhmin()) 1280 return MVT::f32; 1281 1282 return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT); 1283 } 1284 1285 unsigned RISCVTargetLowering::getNumRegistersForCallingConv(LLVMContext &Context, 1286 CallingConv::ID CC, 1287 EVT VT) const { 1288 // Use f32 to pass f16 if it is legal and Zfhmin/Zfh is not enabled. 1289 // We might still end up using a GPR but that will be decided based on ABI. 1290 if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfhmin()) 1291 return 1; 1292 1293 return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT); 1294 } 1295 1296 // Changes the condition code and swaps operands if necessary, so the SetCC 1297 // operation matches one of the comparisons supported directly by branches 1298 // in the RISC-V ISA. May adjust compares to favor compare with 0 over compare 1299 // with 1/-1. 1300 static void translateSetCCForBranch(const SDLoc &DL, SDValue &LHS, SDValue &RHS, 1301 ISD::CondCode &CC, SelectionDAG &DAG) { 1302 // Convert X > -1 to X >= 0. 1303 if (CC == ISD::SETGT && isAllOnesConstant(RHS)) { 1304 RHS = DAG.getConstant(0, DL, RHS.getValueType()); 1305 CC = ISD::SETGE; 1306 return; 1307 } 1308 // Convert X < 1 to 0 >= X. 1309 if (CC == ISD::SETLT && isOneConstant(RHS)) { 1310 RHS = LHS; 1311 LHS = DAG.getConstant(0, DL, RHS.getValueType()); 1312 CC = ISD::SETGE; 1313 return; 1314 } 1315 1316 switch (CC) { 1317 default: 1318 break; 1319 case ISD::SETGT: 1320 case ISD::SETLE: 1321 case ISD::SETUGT: 1322 case ISD::SETULE: 1323 CC = ISD::getSetCCSwappedOperands(CC); 1324 std::swap(LHS, RHS); 1325 break; 1326 } 1327 } 1328 1329 RISCVII::VLMUL RISCVTargetLowering::getLMUL(MVT VT) { 1330 assert(VT.isScalableVector() && "Expecting a scalable vector type"); 1331 unsigned KnownSize = VT.getSizeInBits().getKnownMinValue(); 1332 if (VT.getVectorElementType() == MVT::i1) 1333 KnownSize *= 8; 1334 1335 switch (KnownSize) { 1336 default: 1337 llvm_unreachable("Invalid LMUL."); 1338 case 8: 1339 return RISCVII::VLMUL::LMUL_F8; 1340 case 16: 1341 return RISCVII::VLMUL::LMUL_F4; 1342 case 32: 1343 return RISCVII::VLMUL::LMUL_F2; 1344 case 64: 1345 return RISCVII::VLMUL::LMUL_1; 1346 case 128: 1347 return RISCVII::VLMUL::LMUL_2; 1348 case 256: 1349 return RISCVII::VLMUL::LMUL_4; 1350 case 512: 1351 return RISCVII::VLMUL::LMUL_8; 1352 } 1353 } 1354 1355 unsigned RISCVTargetLowering::getRegClassIDForLMUL(RISCVII::VLMUL LMul) { 1356 switch (LMul) { 1357 default: 1358 llvm_unreachable("Invalid LMUL."); 1359 case RISCVII::VLMUL::LMUL_F8: 1360 case RISCVII::VLMUL::LMUL_F4: 1361 case RISCVII::VLMUL::LMUL_F2: 1362 case RISCVII::VLMUL::LMUL_1: 1363 return RISCV::VRRegClassID; 1364 case RISCVII::VLMUL::LMUL_2: 1365 return RISCV::VRM2RegClassID; 1366 case RISCVII::VLMUL::LMUL_4: 1367 return RISCV::VRM4RegClassID; 1368 case RISCVII::VLMUL::LMUL_8: 1369 return RISCV::VRM8RegClassID; 1370 } 1371 } 1372 1373 unsigned RISCVTargetLowering::getSubregIndexByMVT(MVT VT, unsigned Index) { 1374 RISCVII::VLMUL LMUL = getLMUL(VT); 1375 if (LMUL == RISCVII::VLMUL::LMUL_F8 || 1376 LMUL == RISCVII::VLMUL::LMUL_F4 || 1377 LMUL == RISCVII::VLMUL::LMUL_F2 || 1378 LMUL == RISCVII::VLMUL::LMUL_1) { 1379 static_assert(RISCV::sub_vrm1_7 == RISCV::sub_vrm1_0 + 7, 1380 "Unexpected subreg numbering"); 1381 return RISCV::sub_vrm1_0 + Index; 1382 } 1383 if (LMUL == RISCVII::VLMUL::LMUL_2) { 1384 static_assert(RISCV::sub_vrm2_3 == RISCV::sub_vrm2_0 + 3, 1385 "Unexpected subreg numbering"); 1386 return RISCV::sub_vrm2_0 + Index; 1387 } 1388 if (LMUL == RISCVII::VLMUL::LMUL_4) { 1389 static_assert(RISCV::sub_vrm4_1 == RISCV::sub_vrm4_0 + 1, 1390 "Unexpected subreg numbering"); 1391 return RISCV::sub_vrm4_0 + Index; 1392 } 1393 llvm_unreachable("Invalid vector type."); 1394 } 1395 1396 unsigned RISCVTargetLowering::getRegClassIDForVecVT(MVT VT) { 1397 if (VT.getVectorElementType() == MVT::i1) 1398 return RISCV::VRRegClassID; 1399 return getRegClassIDForLMUL(getLMUL(VT)); 1400 } 1401 1402 // Attempt to decompose a subvector insert/extract between VecVT and 1403 // SubVecVT via subregister indices. Returns the subregister index that 1404 // can perform the subvector insert/extract with the given element index, as 1405 // well as the index corresponding to any leftover subvectors that must be 1406 // further inserted/extracted within the register class for SubVecVT. 1407 std::pair<unsigned, unsigned> 1408 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( 1409 MVT VecVT, MVT SubVecVT, unsigned InsertExtractIdx, 1410 const RISCVRegisterInfo *TRI) { 1411 static_assert((RISCV::VRM8RegClassID > RISCV::VRM4RegClassID && 1412 RISCV::VRM4RegClassID > RISCV::VRM2RegClassID && 1413 RISCV::VRM2RegClassID > RISCV::VRRegClassID), 1414 "Register classes not ordered"); 1415 unsigned VecRegClassID = getRegClassIDForVecVT(VecVT); 1416 unsigned SubRegClassID = getRegClassIDForVecVT(SubVecVT); 1417 // Try to compose a subregister index that takes us from the incoming 1418 // LMUL>1 register class down to the outgoing one. At each step we half 1419 // the LMUL: 1420 // nxv16i32@12 -> nxv2i32: sub_vrm4_1_then_sub_vrm2_1_then_sub_vrm1_0 1421 // Note that this is not guaranteed to find a subregister index, such as 1422 // when we are extracting from one VR type to another. 1423 unsigned SubRegIdx = RISCV::NoSubRegister; 1424 for (const unsigned RCID : 1425 {RISCV::VRM4RegClassID, RISCV::VRM2RegClassID, RISCV::VRRegClassID}) 1426 if (VecRegClassID > RCID && SubRegClassID <= RCID) { 1427 VecVT = VecVT.getHalfNumVectorElementsVT(); 1428 bool IsHi = 1429 InsertExtractIdx >= VecVT.getVectorElementCount().getKnownMinValue(); 1430 SubRegIdx = TRI->composeSubRegIndices(SubRegIdx, 1431 getSubregIndexByMVT(VecVT, IsHi)); 1432 if (IsHi) 1433 InsertExtractIdx -= VecVT.getVectorElementCount().getKnownMinValue(); 1434 } 1435 return {SubRegIdx, InsertExtractIdx}; 1436 } 1437 1438 // Permit combining of mask vectors as BUILD_VECTOR never expands to scalar 1439 // stores for those types. 1440 bool RISCVTargetLowering::mergeStoresAfterLegalization(EVT VT) const { 1441 return !Subtarget.useRVVForFixedLengthVectors() || 1442 (VT.isFixedLengthVector() && VT.getVectorElementType() == MVT::i1); 1443 } 1444 1445 bool RISCVTargetLowering::isLegalElementTypeForRVV(Type *ScalarTy) const { 1446 if (ScalarTy->isPointerTy()) 1447 return true; 1448 1449 if (ScalarTy->isIntegerTy(8) || ScalarTy->isIntegerTy(16) || 1450 ScalarTy->isIntegerTy(32)) 1451 return true; 1452 1453 if (ScalarTy->isIntegerTy(64)) 1454 return Subtarget.hasVInstructionsI64(); 1455 1456 if (ScalarTy->isHalfTy()) 1457 return Subtarget.hasVInstructionsF16(); 1458 if (ScalarTy->isFloatTy()) 1459 return Subtarget.hasVInstructionsF32(); 1460 if (ScalarTy->isDoubleTy()) 1461 return Subtarget.hasVInstructionsF64(); 1462 1463 return false; 1464 } 1465 1466 static bool useRVVForFixedLengthVectorVT(MVT VT, 1467 const RISCVSubtarget &Subtarget) { 1468 assert(VT.isFixedLengthVector() && "Expected a fixed length vector type!"); 1469 if (!Subtarget.useRVVForFixedLengthVectors()) 1470 return false; 1471 1472 // We only support a set of vector types with a consistent maximum fixed size 1473 // across all supported vector element types to avoid legalization issues. 1474 // Therefore -- since the largest is v1024i8/v512i16/etc -- the largest 1475 // fixed-length vector type we support is 1024 bytes. 1476 if (VT.getFixedSizeInBits() > 1024 * 8) 1477 return false; 1478 1479 unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits(); 1480 1481 MVT EltVT = VT.getVectorElementType(); 1482 1483 // Don't use RVV for vectors we cannot scalarize if required. 1484 switch (EltVT.SimpleTy) { 1485 // i1 is supported but has different rules. 1486 default: 1487 return false; 1488 case MVT::i1: 1489 // Masks can only use a single register. 1490 if (VT.getVectorNumElements() > MinVLen) 1491 return false; 1492 MinVLen /= 8; 1493 break; 1494 case MVT::i8: 1495 case MVT::i16: 1496 case MVT::i32: 1497 break; 1498 case MVT::i64: 1499 if (!Subtarget.hasVInstructionsI64()) 1500 return false; 1501 break; 1502 case MVT::f16: 1503 if (!Subtarget.hasVInstructionsF16()) 1504 return false; 1505 break; 1506 case MVT::f32: 1507 if (!Subtarget.hasVInstructionsF32()) 1508 return false; 1509 break; 1510 case MVT::f64: 1511 if (!Subtarget.hasVInstructionsF64()) 1512 return false; 1513 break; 1514 } 1515 1516 // Reject elements larger than ELEN. 1517 if (EltVT.getSizeInBits() > Subtarget.getMaxELENForFixedLengthVectors()) 1518 return false; 1519 1520 unsigned LMul = divideCeil(VT.getSizeInBits(), MinVLen); 1521 // Don't use RVV for types that don't fit. 1522 if (LMul > Subtarget.getMaxLMULForFixedLengthVectors()) 1523 return false; 1524 1525 // TODO: Perhaps an artificial restriction, but worth having whilst getting 1526 // the base fixed length RVV support in place. 1527 if (!VT.isPow2VectorType()) 1528 return false; 1529 1530 return true; 1531 } 1532 1533 bool RISCVTargetLowering::useRVVForFixedLengthVectorVT(MVT VT) const { 1534 return ::useRVVForFixedLengthVectorVT(VT, Subtarget); 1535 } 1536 1537 // Return the largest legal scalable vector type that matches VT's element type. 1538 static MVT getContainerForFixedLengthVector(const TargetLowering &TLI, MVT VT, 1539 const RISCVSubtarget &Subtarget) { 1540 // This may be called before legal types are setup. 1541 assert(((VT.isFixedLengthVector() && TLI.isTypeLegal(VT)) || 1542 useRVVForFixedLengthVectorVT(VT, Subtarget)) && 1543 "Expected legal fixed length vector!"); 1544 1545 unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits(); 1546 unsigned MaxELen = Subtarget.getMaxELENForFixedLengthVectors(); 1547 1548 MVT EltVT = VT.getVectorElementType(); 1549 switch (EltVT.SimpleTy) { 1550 default: 1551 llvm_unreachable("unexpected element type for RVV container"); 1552 case MVT::i1: 1553 case MVT::i8: 1554 case MVT::i16: 1555 case MVT::i32: 1556 case MVT::i64: 1557 case MVT::f16: 1558 case MVT::f32: 1559 case MVT::f64: { 1560 // We prefer to use LMUL=1 for VLEN sized types. Use fractional lmuls for 1561 // narrower types. The smallest fractional LMUL we support is 8/ELEN. Within 1562 // each fractional LMUL we support SEW between 8 and LMUL*ELEN. 1563 unsigned NumElts = 1564 (VT.getVectorNumElements() * RISCV::RVVBitsPerBlock) / MinVLen; 1565 NumElts = std::max(NumElts, RISCV::RVVBitsPerBlock / MaxELen); 1566 assert(isPowerOf2_32(NumElts) && "Expected power of 2 NumElts"); 1567 return MVT::getScalableVectorVT(EltVT, NumElts); 1568 } 1569 } 1570 } 1571 1572 static MVT getContainerForFixedLengthVector(SelectionDAG &DAG, MVT VT, 1573 const RISCVSubtarget &Subtarget) { 1574 return getContainerForFixedLengthVector(DAG.getTargetLoweringInfo(), VT, 1575 Subtarget); 1576 } 1577 1578 MVT RISCVTargetLowering::getContainerForFixedLengthVector(MVT VT) const { 1579 return ::getContainerForFixedLengthVector(*this, VT, getSubtarget()); 1580 } 1581 1582 // Grow V to consume an entire RVV register. 1583 static SDValue convertToScalableVector(EVT VT, SDValue V, SelectionDAG &DAG, 1584 const RISCVSubtarget &Subtarget) { 1585 assert(VT.isScalableVector() && 1586 "Expected to convert into a scalable vector!"); 1587 assert(V.getValueType().isFixedLengthVector() && 1588 "Expected a fixed length vector operand!"); 1589 SDLoc DL(V); 1590 SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 1591 return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, DAG.getUNDEF(VT), V, Zero); 1592 } 1593 1594 // Shrink V so it's just big enough to maintain a VT's worth of data. 1595 static SDValue convertFromScalableVector(EVT VT, SDValue V, SelectionDAG &DAG, 1596 const RISCVSubtarget &Subtarget) { 1597 assert(VT.isFixedLengthVector() && 1598 "Expected to convert into a fixed length vector!"); 1599 assert(V.getValueType().isScalableVector() && 1600 "Expected a scalable vector operand!"); 1601 SDLoc DL(V); 1602 SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 1603 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V, Zero); 1604 } 1605 1606 // Gets the two common "VL" operands: an all-ones mask and the vector length. 1607 // VecVT is a vector type, either fixed-length or scalable, and ContainerVT is 1608 // the vector type that it is contained in. 1609 static std::pair<SDValue, SDValue> 1610 getDefaultVLOps(MVT VecVT, MVT ContainerVT, SDLoc DL, SelectionDAG &DAG, 1611 const RISCVSubtarget &Subtarget) { 1612 assert(ContainerVT.isScalableVector() && "Expecting scalable container type"); 1613 MVT XLenVT = Subtarget.getXLenVT(); 1614 SDValue VL = VecVT.isFixedLengthVector() 1615 ? DAG.getConstant(VecVT.getVectorNumElements(), DL, XLenVT) 1616 : DAG.getTargetConstant(RISCV::VLMaxSentinel, DL, XLenVT); 1617 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 1618 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 1619 return {Mask, VL}; 1620 } 1621 1622 // As above but assuming the given type is a scalable vector type. 1623 static std::pair<SDValue, SDValue> 1624 getDefaultScalableVLOps(MVT VecVT, SDLoc DL, SelectionDAG &DAG, 1625 const RISCVSubtarget &Subtarget) { 1626 assert(VecVT.isScalableVector() && "Expecting a scalable vector"); 1627 return getDefaultVLOps(VecVT, VecVT, DL, DAG, Subtarget); 1628 } 1629 1630 // The state of RVV BUILD_VECTOR and VECTOR_SHUFFLE lowering is that very few 1631 // of either is (currently) supported. This can get us into an infinite loop 1632 // where we try to lower a BUILD_VECTOR as a VECTOR_SHUFFLE as a BUILD_VECTOR 1633 // as a ..., etc. 1634 // Until either (or both) of these can reliably lower any node, reporting that 1635 // we don't want to expand BUILD_VECTORs via VECTOR_SHUFFLEs at least breaks 1636 // the infinite loop. Note that this lowers BUILD_VECTOR through the stack, 1637 // which is not desirable. 1638 bool RISCVTargetLowering::shouldExpandBuildVectorWithShuffles( 1639 EVT VT, unsigned DefinedValues) const { 1640 return false; 1641 } 1642 1643 bool RISCVTargetLowering::isShuffleMaskLegal(ArrayRef<int> M, EVT VT) const { 1644 // Only splats are currently supported. 1645 if (ShuffleVectorSDNode::isSplatMask(M.data(), VT)) 1646 return true; 1647 1648 return false; 1649 } 1650 1651 static SDValue lowerFP_TO_INT_SAT(SDValue Op, SelectionDAG &DAG) { 1652 // RISCV FP-to-int conversions saturate to the destination register size, but 1653 // don't produce 0 for nan. We can use a conversion instruction and fix the 1654 // nan case with a compare and a select. 1655 SDValue Src = Op.getOperand(0); 1656 1657 EVT DstVT = Op.getValueType(); 1658 EVT SatVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1659 1660 bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT_SAT; 1661 unsigned Opc; 1662 if (SatVT == DstVT) 1663 Opc = IsSigned ? RISCVISD::FCVT_X_RTZ : RISCVISD::FCVT_XU_RTZ; 1664 else if (DstVT == MVT::i64 && SatVT == MVT::i32) 1665 Opc = IsSigned ? RISCVISD::FCVT_W_RTZ_RV64 : RISCVISD::FCVT_WU_RTZ_RV64; 1666 else 1667 return SDValue(); 1668 // FIXME: Support other SatVTs by clamping before or after the conversion. 1669 1670 SDLoc DL(Op); 1671 SDValue FpToInt = DAG.getNode(Opc, DL, DstVT, Src); 1672 1673 SDValue ZeroInt = DAG.getConstant(0, DL, DstVT); 1674 return DAG.getSelectCC(DL, Src, Src, ZeroInt, FpToInt, ISD::CondCode::SETUO); 1675 } 1676 1677 // Expand vector FTRUNC, FCEIL, and FFLOOR by converting to the integer domain 1678 // and back. Taking care to avoid converting values that are nan or already 1679 // correct. 1680 // TODO: Floor and ceil could be shorter by changing rounding mode, but we don't 1681 // have FRM dependencies modeled yet. 1682 static SDValue lowerFTRUNC_FCEIL_FFLOOR(SDValue Op, SelectionDAG &DAG) { 1683 MVT VT = Op.getSimpleValueType(); 1684 assert(VT.isVector() && "Unexpected type"); 1685 1686 SDLoc DL(Op); 1687 1688 // Freeze the source since we are increasing the number of uses. 1689 SDValue Src = DAG.getNode(ISD::FREEZE, DL, VT, Op.getOperand(0)); 1690 1691 // Truncate to integer and convert back to FP. 1692 MVT IntVT = VT.changeVectorElementTypeToInteger(); 1693 SDValue Truncated = DAG.getNode(ISD::FP_TO_SINT, DL, IntVT, Src); 1694 Truncated = DAG.getNode(ISD::SINT_TO_FP, DL, VT, Truncated); 1695 1696 MVT SetccVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount()); 1697 1698 if (Op.getOpcode() == ISD::FCEIL) { 1699 // If the truncated value is the greater than or equal to the original 1700 // value, we've computed the ceil. Otherwise, we went the wrong way and 1701 // need to increase by 1. 1702 // FIXME: This should use a masked operation. Handle here or in isel? 1703 SDValue Adjust = DAG.getNode(ISD::FADD, DL, VT, Truncated, 1704 DAG.getConstantFP(1.0, DL, VT)); 1705 SDValue NeedAdjust = DAG.getSetCC(DL, SetccVT, Truncated, Src, ISD::SETOLT); 1706 Truncated = DAG.getSelect(DL, VT, NeedAdjust, Adjust, Truncated); 1707 } else if (Op.getOpcode() == ISD::FFLOOR) { 1708 // If the truncated value is the less than or equal to the original value, 1709 // we've computed the floor. Otherwise, we went the wrong way and need to 1710 // decrease by 1. 1711 // FIXME: This should use a masked operation. Handle here or in isel? 1712 SDValue Adjust = DAG.getNode(ISD::FSUB, DL, VT, Truncated, 1713 DAG.getConstantFP(1.0, DL, VT)); 1714 SDValue NeedAdjust = DAG.getSetCC(DL, SetccVT, Truncated, Src, ISD::SETOGT); 1715 Truncated = DAG.getSelect(DL, VT, NeedAdjust, Adjust, Truncated); 1716 } 1717 1718 // Restore the original sign so that -0.0 is preserved. 1719 Truncated = DAG.getNode(ISD::FCOPYSIGN, DL, VT, Truncated, Src); 1720 1721 // Determine the largest integer that can be represented exactly. This and 1722 // values larger than it don't have any fractional bits so don't need to 1723 // be converted. 1724 const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT); 1725 unsigned Precision = APFloat::semanticsPrecision(FltSem); 1726 APFloat MaxVal = APFloat(FltSem); 1727 MaxVal.convertFromAPInt(APInt::getOneBitSet(Precision, Precision - 1), 1728 /*IsSigned*/ false, APFloat::rmNearestTiesToEven); 1729 SDValue MaxValNode = DAG.getConstantFP(MaxVal, DL, VT); 1730 1731 // If abs(Src) was larger than MaxVal or nan, keep it. 1732 SDValue Abs = DAG.getNode(ISD::FABS, DL, VT, Src); 1733 SDValue Setcc = DAG.getSetCC(DL, SetccVT, Abs, MaxValNode, ISD::SETOLT); 1734 return DAG.getSelect(DL, VT, Setcc, Truncated, Src); 1735 } 1736 1737 static SDValue lowerSPLAT_VECTOR(SDValue Op, SelectionDAG &DAG, 1738 const RISCVSubtarget &Subtarget) { 1739 MVT VT = Op.getSimpleValueType(); 1740 assert(VT.isFixedLengthVector() && "Unexpected vector!"); 1741 1742 MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 1743 1744 SDLoc DL(Op); 1745 SDValue Mask, VL; 1746 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 1747 1748 unsigned Opc = 1749 VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL : RISCVISD::VMV_V_X_VL; 1750 SDValue Splat = DAG.getNode(Opc, DL, ContainerVT, Op.getOperand(0), VL); 1751 return convertFromScalableVector(VT, Splat, DAG, Subtarget); 1752 } 1753 1754 struct VIDSequence { 1755 int64_t StepNumerator; 1756 unsigned StepDenominator; 1757 int64_t Addend; 1758 }; 1759 1760 // Try to match an arithmetic-sequence BUILD_VECTOR [X,X+S,X+2*S,...,X+(N-1)*S] 1761 // to the (non-zero) step S and start value X. This can be then lowered as the 1762 // RVV sequence (VID * S) + X, for example. 1763 // The step S is represented as an integer numerator divided by a positive 1764 // denominator. Note that the implementation currently only identifies 1765 // sequences in which either the numerator is +/- 1 or the denominator is 1. It 1766 // cannot detect 2/3, for example. 1767 // Note that this method will also match potentially unappealing index 1768 // sequences, like <i32 0, i32 50939494>, however it is left to the caller to 1769 // determine whether this is worth generating code for. 1770 static Optional<VIDSequence> isSimpleVIDSequence(SDValue Op) { 1771 unsigned NumElts = Op.getNumOperands(); 1772 assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unexpected BUILD_VECTOR"); 1773 if (!Op.getValueType().isInteger()) 1774 return None; 1775 1776 Optional<unsigned> SeqStepDenom; 1777 Optional<int64_t> SeqStepNum, SeqAddend; 1778 Optional<std::pair<uint64_t, unsigned>> PrevElt; 1779 unsigned EltSizeInBits = Op.getValueType().getScalarSizeInBits(); 1780 for (unsigned Idx = 0; Idx < NumElts; Idx++) { 1781 // Assume undef elements match the sequence; we just have to be careful 1782 // when interpolating across them. 1783 if (Op.getOperand(Idx).isUndef()) 1784 continue; 1785 // The BUILD_VECTOR must be all constants. 1786 if (!isa<ConstantSDNode>(Op.getOperand(Idx))) 1787 return None; 1788 1789 uint64_t Val = Op.getConstantOperandVal(Idx) & 1790 maskTrailingOnes<uint64_t>(EltSizeInBits); 1791 1792 if (PrevElt) { 1793 // Calculate the step since the last non-undef element, and ensure 1794 // it's consistent across the entire sequence. 1795 unsigned IdxDiff = Idx - PrevElt->second; 1796 int64_t ValDiff = SignExtend64(Val - PrevElt->first, EltSizeInBits); 1797 1798 // A zero-value value difference means that we're somewhere in the middle 1799 // of a fractional step, e.g. <0,0,0*,0,1,1,1,1>. Wait until we notice a 1800 // step change before evaluating the sequence. 1801 if (ValDiff != 0) { 1802 int64_t Remainder = ValDiff % IdxDiff; 1803 // Normalize the step if it's greater than 1. 1804 if (Remainder != ValDiff) { 1805 // The difference must cleanly divide the element span. 1806 if (Remainder != 0) 1807 return None; 1808 ValDiff /= IdxDiff; 1809 IdxDiff = 1; 1810 } 1811 1812 if (!SeqStepNum) 1813 SeqStepNum = ValDiff; 1814 else if (ValDiff != SeqStepNum) 1815 return None; 1816 1817 if (!SeqStepDenom) 1818 SeqStepDenom = IdxDiff; 1819 else if (IdxDiff != *SeqStepDenom) 1820 return None; 1821 } 1822 } 1823 1824 // Record and/or check any addend. 1825 if (SeqStepNum && SeqStepDenom) { 1826 uint64_t ExpectedVal = 1827 (int64_t)(Idx * (uint64_t)*SeqStepNum) / *SeqStepDenom; 1828 int64_t Addend = SignExtend64(Val - ExpectedVal, EltSizeInBits); 1829 if (!SeqAddend) 1830 SeqAddend = Addend; 1831 else if (SeqAddend != Addend) 1832 return None; 1833 } 1834 1835 // Record this non-undef element for later. 1836 if (!PrevElt || PrevElt->first != Val) 1837 PrevElt = std::make_pair(Val, Idx); 1838 } 1839 // We need to have logged both a step and an addend for this to count as 1840 // a legal index sequence. 1841 if (!SeqStepNum || !SeqStepDenom || !SeqAddend) 1842 return None; 1843 1844 return VIDSequence{*SeqStepNum, *SeqStepDenom, *SeqAddend}; 1845 } 1846 1847 static SDValue lowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG, 1848 const RISCVSubtarget &Subtarget) { 1849 MVT VT = Op.getSimpleValueType(); 1850 assert(VT.isFixedLengthVector() && "Unexpected vector!"); 1851 1852 MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 1853 1854 SDLoc DL(Op); 1855 SDValue Mask, VL; 1856 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 1857 1858 MVT XLenVT = Subtarget.getXLenVT(); 1859 unsigned NumElts = Op.getNumOperands(); 1860 1861 if (VT.getVectorElementType() == MVT::i1) { 1862 if (ISD::isBuildVectorAllZeros(Op.getNode())) { 1863 SDValue VMClr = DAG.getNode(RISCVISD::VMCLR_VL, DL, ContainerVT, VL); 1864 return convertFromScalableVector(VT, VMClr, DAG, Subtarget); 1865 } 1866 1867 if (ISD::isBuildVectorAllOnes(Op.getNode())) { 1868 SDValue VMSet = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL); 1869 return convertFromScalableVector(VT, VMSet, DAG, Subtarget); 1870 } 1871 1872 // Lower constant mask BUILD_VECTORs via an integer vector type, in 1873 // scalar integer chunks whose bit-width depends on the number of mask 1874 // bits and XLEN. 1875 // First, determine the most appropriate scalar integer type to use. This 1876 // is at most XLenVT, but may be shrunk to a smaller vector element type 1877 // according to the size of the final vector - use i8 chunks rather than 1878 // XLenVT if we're producing a v8i1. This results in more consistent 1879 // codegen across RV32 and RV64. 1880 unsigned NumViaIntegerBits = 1881 std::min(std::max(NumElts, 8u), Subtarget.getXLen()); 1882 if (ISD::isBuildVectorOfConstantSDNodes(Op.getNode())) { 1883 // If we have to use more than one INSERT_VECTOR_ELT then this 1884 // optimization is likely to increase code size; avoid peforming it in 1885 // such a case. We can use a load from a constant pool in this case. 1886 if (DAG.shouldOptForSize() && NumElts > NumViaIntegerBits) 1887 return SDValue(); 1888 // Now we can create our integer vector type. Note that it may be larger 1889 // than the resulting mask type: v4i1 would use v1i8 as its integer type. 1890 MVT IntegerViaVecVT = 1891 MVT::getVectorVT(MVT::getIntegerVT(NumViaIntegerBits), 1892 divideCeil(NumElts, NumViaIntegerBits)); 1893 1894 uint64_t Bits = 0; 1895 unsigned BitPos = 0, IntegerEltIdx = 0; 1896 SDValue Vec = DAG.getUNDEF(IntegerViaVecVT); 1897 1898 for (unsigned I = 0; I < NumElts; I++, BitPos++) { 1899 // Once we accumulate enough bits to fill our scalar type, insert into 1900 // our vector and clear our accumulated data. 1901 if (I != 0 && I % NumViaIntegerBits == 0) { 1902 if (NumViaIntegerBits <= 32) 1903 Bits = SignExtend64(Bits, 32); 1904 SDValue Elt = DAG.getConstant(Bits, DL, XLenVT); 1905 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec, 1906 Elt, DAG.getConstant(IntegerEltIdx, DL, XLenVT)); 1907 Bits = 0; 1908 BitPos = 0; 1909 IntegerEltIdx++; 1910 } 1911 SDValue V = Op.getOperand(I); 1912 bool BitValue = !V.isUndef() && cast<ConstantSDNode>(V)->getZExtValue(); 1913 Bits |= ((uint64_t)BitValue << BitPos); 1914 } 1915 1916 // Insert the (remaining) scalar value into position in our integer 1917 // vector type. 1918 if (NumViaIntegerBits <= 32) 1919 Bits = SignExtend64(Bits, 32); 1920 SDValue Elt = DAG.getConstant(Bits, DL, XLenVT); 1921 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec, Elt, 1922 DAG.getConstant(IntegerEltIdx, DL, XLenVT)); 1923 1924 if (NumElts < NumViaIntegerBits) { 1925 // If we're producing a smaller vector than our minimum legal integer 1926 // type, bitcast to the equivalent (known-legal) mask type, and extract 1927 // our final mask. 1928 assert(IntegerViaVecVT == MVT::v1i8 && "Unexpected mask vector type"); 1929 Vec = DAG.getBitcast(MVT::v8i1, Vec); 1930 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Vec, 1931 DAG.getConstant(0, DL, XLenVT)); 1932 } else { 1933 // Else we must have produced an integer type with the same size as the 1934 // mask type; bitcast for the final result. 1935 assert(VT.getSizeInBits() == IntegerViaVecVT.getSizeInBits()); 1936 Vec = DAG.getBitcast(VT, Vec); 1937 } 1938 1939 return Vec; 1940 } 1941 1942 // A BUILD_VECTOR can be lowered as a SETCC. For each fixed-length mask 1943 // vector type, we have a legal equivalently-sized i8 type, so we can use 1944 // that. 1945 MVT WideVecVT = VT.changeVectorElementType(MVT::i8); 1946 SDValue VecZero = DAG.getConstant(0, DL, WideVecVT); 1947 1948 SDValue WideVec; 1949 if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) { 1950 // For a splat, perform a scalar truncate before creating the wider 1951 // vector. 1952 assert(Splat.getValueType() == XLenVT && 1953 "Unexpected type for i1 splat value"); 1954 Splat = DAG.getNode(ISD::AND, DL, XLenVT, Splat, 1955 DAG.getConstant(1, DL, XLenVT)); 1956 WideVec = DAG.getSplatBuildVector(WideVecVT, DL, Splat); 1957 } else { 1958 SmallVector<SDValue, 8> Ops(Op->op_values()); 1959 WideVec = DAG.getBuildVector(WideVecVT, DL, Ops); 1960 SDValue VecOne = DAG.getConstant(1, DL, WideVecVT); 1961 WideVec = DAG.getNode(ISD::AND, DL, WideVecVT, WideVec, VecOne); 1962 } 1963 1964 return DAG.getSetCC(DL, VT, WideVec, VecZero, ISD::SETNE); 1965 } 1966 1967 if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) { 1968 unsigned Opc = VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL 1969 : RISCVISD::VMV_V_X_VL; 1970 Splat = DAG.getNode(Opc, DL, ContainerVT, Splat, VL); 1971 return convertFromScalableVector(VT, Splat, DAG, Subtarget); 1972 } 1973 1974 // Try and match index sequences, which we can lower to the vid instruction 1975 // with optional modifications. An all-undef vector is matched by 1976 // getSplatValue, above. 1977 if (auto SimpleVID = isSimpleVIDSequence(Op)) { 1978 int64_t StepNumerator = SimpleVID->StepNumerator; 1979 unsigned StepDenominator = SimpleVID->StepDenominator; 1980 int64_t Addend = SimpleVID->Addend; 1981 1982 assert(StepNumerator != 0 && "Invalid step"); 1983 bool Negate = false; 1984 int64_t SplatStepVal = StepNumerator; 1985 unsigned StepOpcode = ISD::MUL; 1986 if (StepNumerator != 1) { 1987 if (isPowerOf2_64(std::abs(StepNumerator))) { 1988 Negate = StepNumerator < 0; 1989 StepOpcode = ISD::SHL; 1990 SplatStepVal = Log2_64(std::abs(StepNumerator)); 1991 } 1992 } 1993 1994 // Only emit VIDs with suitably-small steps/addends. We use imm5 is a 1995 // threshold since it's the immediate value many RVV instructions accept. 1996 // There is no vmul.vi instruction so ensure multiply constant can fit in 1997 // a single addi instruction. 1998 if (((StepOpcode == ISD::MUL && isInt<12>(SplatStepVal)) || 1999 (StepOpcode == ISD::SHL && isUInt<5>(SplatStepVal))) && 2000 isPowerOf2_32(StepDenominator) && isInt<5>(Addend)) { 2001 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, ContainerVT, Mask, VL); 2002 // Convert right out of the scalable type so we can use standard ISD 2003 // nodes for the rest of the computation. If we used scalable types with 2004 // these, we'd lose the fixed-length vector info and generate worse 2005 // vsetvli code. 2006 VID = convertFromScalableVector(VT, VID, DAG, Subtarget); 2007 if ((StepOpcode == ISD::MUL && SplatStepVal != 1) || 2008 (StepOpcode == ISD::SHL && SplatStepVal != 0)) { 2009 SDValue SplatStep = DAG.getSplatVector( 2010 VT, DL, DAG.getConstant(SplatStepVal, DL, XLenVT)); 2011 VID = DAG.getNode(StepOpcode, DL, VT, VID, SplatStep); 2012 } 2013 if (StepDenominator != 1) { 2014 SDValue SplatStep = DAG.getSplatVector( 2015 VT, DL, DAG.getConstant(Log2_64(StepDenominator), DL, XLenVT)); 2016 VID = DAG.getNode(ISD::SRL, DL, VT, VID, SplatStep); 2017 } 2018 if (Addend != 0 || Negate) { 2019 SDValue SplatAddend = 2020 DAG.getSplatVector(VT, DL, DAG.getConstant(Addend, DL, XLenVT)); 2021 VID = DAG.getNode(Negate ? ISD::SUB : ISD::ADD, DL, VT, SplatAddend, VID); 2022 } 2023 return VID; 2024 } 2025 } 2026 2027 // Attempt to detect "hidden" splats, which only reveal themselves as splats 2028 // when re-interpreted as a vector with a larger element type. For example, 2029 // v4i16 = build_vector i16 0, i16 1, i16 0, i16 1 2030 // could be instead splat as 2031 // v2i32 = build_vector i32 0x00010000, i32 0x00010000 2032 // TODO: This optimization could also work on non-constant splats, but it 2033 // would require bit-manipulation instructions to construct the splat value. 2034 SmallVector<SDValue> Sequence; 2035 unsigned EltBitSize = VT.getScalarSizeInBits(); 2036 const auto *BV = cast<BuildVectorSDNode>(Op); 2037 if (VT.isInteger() && EltBitSize < 64 && 2038 ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) && 2039 BV->getRepeatedSequence(Sequence) && 2040 (Sequence.size() * EltBitSize) <= 64) { 2041 unsigned SeqLen = Sequence.size(); 2042 MVT ViaIntVT = MVT::getIntegerVT(EltBitSize * SeqLen); 2043 MVT ViaVecVT = MVT::getVectorVT(ViaIntVT, NumElts / SeqLen); 2044 assert((ViaIntVT == MVT::i16 || ViaIntVT == MVT::i32 || 2045 ViaIntVT == MVT::i64) && 2046 "Unexpected sequence type"); 2047 2048 unsigned EltIdx = 0; 2049 uint64_t EltMask = maskTrailingOnes<uint64_t>(EltBitSize); 2050 uint64_t SplatValue = 0; 2051 // Construct the amalgamated value which can be splatted as this larger 2052 // vector type. 2053 for (const auto &SeqV : Sequence) { 2054 if (!SeqV.isUndef()) 2055 SplatValue |= ((cast<ConstantSDNode>(SeqV)->getZExtValue() & EltMask) 2056 << (EltIdx * EltBitSize)); 2057 EltIdx++; 2058 } 2059 2060 // On RV64, sign-extend from 32 to 64 bits where possible in order to 2061 // achieve better constant materializion. 2062 if (Subtarget.is64Bit() && ViaIntVT == MVT::i32) 2063 SplatValue = SignExtend64(SplatValue, 32); 2064 2065 // Since we can't introduce illegal i64 types at this stage, we can only 2066 // perform an i64 splat on RV32 if it is its own sign-extended value. That 2067 // way we can use RVV instructions to splat. 2068 assert((ViaIntVT.bitsLE(XLenVT) || 2069 (!Subtarget.is64Bit() && ViaIntVT == MVT::i64)) && 2070 "Unexpected bitcast sequence"); 2071 if (ViaIntVT.bitsLE(XLenVT) || isInt<32>(SplatValue)) { 2072 SDValue ViaVL = 2073 DAG.getConstant(ViaVecVT.getVectorNumElements(), DL, XLenVT); 2074 MVT ViaContainerVT = 2075 getContainerForFixedLengthVector(DAG, ViaVecVT, Subtarget); 2076 SDValue Splat = 2077 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ViaContainerVT, 2078 DAG.getConstant(SplatValue, DL, XLenVT), ViaVL); 2079 Splat = convertFromScalableVector(ViaVecVT, Splat, DAG, Subtarget); 2080 return DAG.getBitcast(VT, Splat); 2081 } 2082 } 2083 2084 // Try and optimize BUILD_VECTORs with "dominant values" - these are values 2085 // which constitute a large proportion of the elements. In such cases we can 2086 // splat a vector with the dominant element and make up the shortfall with 2087 // INSERT_VECTOR_ELTs. 2088 // Note that this includes vectors of 2 elements by association. The 2089 // upper-most element is the "dominant" one, allowing us to use a splat to 2090 // "insert" the upper element, and an insert of the lower element at position 2091 // 0, which improves codegen. 2092 SDValue DominantValue; 2093 unsigned MostCommonCount = 0; 2094 DenseMap<SDValue, unsigned> ValueCounts; 2095 unsigned NumUndefElts = 2096 count_if(Op->op_values(), [](const SDValue &V) { return V.isUndef(); }); 2097 2098 // Track the number of scalar loads we know we'd be inserting, estimated as 2099 // any non-zero floating-point constant. Other kinds of element are either 2100 // already in registers or are materialized on demand. The threshold at which 2101 // a vector load is more desirable than several scalar materializion and 2102 // vector-insertion instructions is not known. 2103 unsigned NumScalarLoads = 0; 2104 2105 for (SDValue V : Op->op_values()) { 2106 if (V.isUndef()) 2107 continue; 2108 2109 ValueCounts.insert(std::make_pair(V, 0)); 2110 unsigned &Count = ValueCounts[V]; 2111 2112 if (auto *CFP = dyn_cast<ConstantFPSDNode>(V)) 2113 NumScalarLoads += !CFP->isExactlyValue(+0.0); 2114 2115 // Is this value dominant? In case of a tie, prefer the highest element as 2116 // it's cheaper to insert near the beginning of a vector than it is at the 2117 // end. 2118 if (++Count >= MostCommonCount) { 2119 DominantValue = V; 2120 MostCommonCount = Count; 2121 } 2122 } 2123 2124 assert(DominantValue && "Not expecting an all-undef BUILD_VECTOR"); 2125 unsigned NumDefElts = NumElts - NumUndefElts; 2126 unsigned DominantValueCountThreshold = NumDefElts <= 2 ? 0 : NumDefElts - 2; 2127 2128 // Don't perform this optimization when optimizing for size, since 2129 // materializing elements and inserting them tends to cause code bloat. 2130 if (!DAG.shouldOptForSize() && NumScalarLoads < NumElts && 2131 ((MostCommonCount > DominantValueCountThreshold) || 2132 (ValueCounts.size() <= Log2_32(NumDefElts)))) { 2133 // Start by splatting the most common element. 2134 SDValue Vec = DAG.getSplatBuildVector(VT, DL, DominantValue); 2135 2136 DenseSet<SDValue> Processed{DominantValue}; 2137 MVT SelMaskTy = VT.changeVectorElementType(MVT::i1); 2138 for (const auto &OpIdx : enumerate(Op->ops())) { 2139 const SDValue &V = OpIdx.value(); 2140 if (V.isUndef() || !Processed.insert(V).second) 2141 continue; 2142 if (ValueCounts[V] == 1) { 2143 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Vec, V, 2144 DAG.getConstant(OpIdx.index(), DL, XLenVT)); 2145 } else { 2146 // Blend in all instances of this value using a VSELECT, using a 2147 // mask where each bit signals whether that element is the one 2148 // we're after. 2149 SmallVector<SDValue> Ops; 2150 transform(Op->op_values(), std::back_inserter(Ops), [&](SDValue V1) { 2151 return DAG.getConstant(V == V1, DL, XLenVT); 2152 }); 2153 Vec = DAG.getNode(ISD::VSELECT, DL, VT, 2154 DAG.getBuildVector(SelMaskTy, DL, Ops), 2155 DAG.getSplatBuildVector(VT, DL, V), Vec); 2156 } 2157 } 2158 2159 return Vec; 2160 } 2161 2162 return SDValue(); 2163 } 2164 2165 static SDValue splatPartsI64WithVL(const SDLoc &DL, MVT VT, SDValue Lo, 2166 SDValue Hi, SDValue VL, SelectionDAG &DAG) { 2167 if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) { 2168 int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue(); 2169 int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue(); 2170 // If Hi constant is all the same sign bit as Lo, lower this as a custom 2171 // node in order to try and match RVV vector/scalar instructions. 2172 if ((LoC >> 31) == HiC) 2173 return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Lo, VL); 2174 } 2175 2176 // Fall back to a stack store and stride x0 vector load. 2177 return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VT, Lo, Hi, VL); 2178 } 2179 2180 // Called by type legalization to handle splat of i64 on RV32. 2181 // FIXME: We can optimize this when the type has sign or zero bits in one 2182 // of the halves. 2183 static SDValue splatSplitI64WithVL(const SDLoc &DL, MVT VT, SDValue Scalar, 2184 SDValue VL, SelectionDAG &DAG) { 2185 assert(Scalar.getValueType() == MVT::i64 && "Unexpected VT!"); 2186 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 2187 DAG.getConstant(0, DL, MVT::i32)); 2188 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 2189 DAG.getConstant(1, DL, MVT::i32)); 2190 return splatPartsI64WithVL(DL, VT, Lo, Hi, VL, DAG); 2191 } 2192 2193 // This function lowers a splat of a scalar operand Splat with the vector 2194 // length VL. It ensures the final sequence is type legal, which is useful when 2195 // lowering a splat after type legalization. 2196 static SDValue lowerScalarSplat(SDValue Scalar, SDValue VL, MVT VT, SDLoc DL, 2197 SelectionDAG &DAG, 2198 const RISCVSubtarget &Subtarget) { 2199 if (VT.isFloatingPoint()) 2200 return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, VT, Scalar, VL); 2201 2202 MVT XLenVT = Subtarget.getXLenVT(); 2203 2204 // Simplest case is that the operand needs to be promoted to XLenVT. 2205 if (Scalar.getValueType().bitsLE(XLenVT)) { 2206 // If the operand is a constant, sign extend to increase our chances 2207 // of being able to use a .vi instruction. ANY_EXTEND would become a 2208 // a zero extend and the simm5 check in isel would fail. 2209 // FIXME: Should we ignore the upper bits in isel instead? 2210 unsigned ExtOpc = 2211 isa<ConstantSDNode>(Scalar) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND; 2212 Scalar = DAG.getNode(ExtOpc, DL, XLenVT, Scalar); 2213 return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Scalar, VL); 2214 } 2215 2216 assert(XLenVT == MVT::i32 && Scalar.getValueType() == MVT::i64 && 2217 "Unexpected scalar for splat lowering!"); 2218 2219 // Otherwise use the more complicated splatting algorithm. 2220 return splatSplitI64WithVL(DL, VT, Scalar, VL, DAG); 2221 } 2222 2223 static SDValue lowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG, 2224 const RISCVSubtarget &Subtarget) { 2225 SDValue V1 = Op.getOperand(0); 2226 SDValue V2 = Op.getOperand(1); 2227 SDLoc DL(Op); 2228 MVT XLenVT = Subtarget.getXLenVT(); 2229 MVT VT = Op.getSimpleValueType(); 2230 unsigned NumElts = VT.getVectorNumElements(); 2231 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode()); 2232 2233 MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 2234 2235 SDValue TrueMask, VL; 2236 std::tie(TrueMask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 2237 2238 if (SVN->isSplat()) { 2239 const int Lane = SVN->getSplatIndex(); 2240 if (Lane >= 0) { 2241 MVT SVT = VT.getVectorElementType(); 2242 2243 // Turn splatted vector load into a strided load with an X0 stride. 2244 SDValue V = V1; 2245 // Peek through CONCAT_VECTORS as VectorCombine can concat a vector 2246 // with undef. 2247 // FIXME: Peek through INSERT_SUBVECTOR, EXTRACT_SUBVECTOR, bitcasts? 2248 int Offset = Lane; 2249 if (V.getOpcode() == ISD::CONCAT_VECTORS) { 2250 int OpElements = 2251 V.getOperand(0).getSimpleValueType().getVectorNumElements(); 2252 V = V.getOperand(Offset / OpElements); 2253 Offset %= OpElements; 2254 } 2255 2256 // We need to ensure the load isn't atomic or volatile. 2257 if (ISD::isNormalLoad(V.getNode()) && cast<LoadSDNode>(V)->isSimple()) { 2258 auto *Ld = cast<LoadSDNode>(V); 2259 Offset *= SVT.getStoreSize(); 2260 SDValue NewAddr = DAG.getMemBasePlusOffset(Ld->getBasePtr(), 2261 TypeSize::Fixed(Offset), DL); 2262 2263 // If this is SEW=64 on RV32, use a strided load with a stride of x0. 2264 if (SVT.isInteger() && SVT.bitsGT(XLenVT)) { 2265 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 2266 SDValue IntID = 2267 DAG.getTargetConstant(Intrinsic::riscv_vlse, DL, XLenVT); 2268 SDValue Ops[] = {Ld->getChain(), IntID, NewAddr, 2269 DAG.getRegister(RISCV::X0, XLenVT), VL}; 2270 SDValue NewLoad = DAG.getMemIntrinsicNode( 2271 ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, SVT, 2272 DAG.getMachineFunction().getMachineMemOperand( 2273 Ld->getMemOperand(), Offset, SVT.getStoreSize())); 2274 DAG.makeEquivalentMemoryOrdering(Ld, NewLoad); 2275 return convertFromScalableVector(VT, NewLoad, DAG, Subtarget); 2276 } 2277 2278 // Otherwise use a scalar load and splat. This will give the best 2279 // opportunity to fold a splat into the operation. ISel can turn it into 2280 // the x0 strided load if we aren't able to fold away the select. 2281 if (SVT.isFloatingPoint()) 2282 V = DAG.getLoad(SVT, DL, Ld->getChain(), NewAddr, 2283 Ld->getPointerInfo().getWithOffset(Offset), 2284 Ld->getOriginalAlign(), 2285 Ld->getMemOperand()->getFlags()); 2286 else 2287 V = DAG.getExtLoad(ISD::SEXTLOAD, DL, XLenVT, Ld->getChain(), NewAddr, 2288 Ld->getPointerInfo().getWithOffset(Offset), SVT, 2289 Ld->getOriginalAlign(), 2290 Ld->getMemOperand()->getFlags()); 2291 DAG.makeEquivalentMemoryOrdering(Ld, V); 2292 2293 unsigned Opc = 2294 VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL : RISCVISD::VMV_V_X_VL; 2295 SDValue Splat = DAG.getNode(Opc, DL, ContainerVT, V, VL); 2296 return convertFromScalableVector(VT, Splat, DAG, Subtarget); 2297 } 2298 2299 V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget); 2300 assert(Lane < (int)NumElts && "Unexpected lane!"); 2301 SDValue Gather = 2302 DAG.getNode(RISCVISD::VRGATHER_VX_VL, DL, ContainerVT, V1, 2303 DAG.getConstant(Lane, DL, XLenVT), TrueMask, VL); 2304 return convertFromScalableVector(VT, Gather, DAG, Subtarget); 2305 } 2306 } 2307 2308 // Detect shuffles which can be re-expressed as vector selects; these are 2309 // shuffles in which each element in the destination is taken from an element 2310 // at the corresponding index in either source vectors. 2311 bool IsSelect = all_of(enumerate(SVN->getMask()), [&](const auto &MaskIdx) { 2312 int MaskIndex = MaskIdx.value(); 2313 return MaskIndex < 0 || MaskIdx.index() == (unsigned)MaskIndex % NumElts; 2314 }); 2315 2316 assert(!V1.isUndef() && "Unexpected shuffle canonicalization"); 2317 2318 SmallVector<SDValue> MaskVals; 2319 // As a backup, shuffles can be lowered via a vrgather instruction, possibly 2320 // merged with a second vrgather. 2321 SmallVector<SDValue> GatherIndicesLHS, GatherIndicesRHS; 2322 2323 // By default we preserve the original operand order, and use a mask to 2324 // select LHS as true and RHS as false. However, since RVV vector selects may 2325 // feature splats but only on the LHS, we may choose to invert our mask and 2326 // instead select between RHS and LHS. 2327 bool SwapOps = DAG.isSplatValue(V2) && !DAG.isSplatValue(V1); 2328 bool InvertMask = IsSelect == SwapOps; 2329 2330 // Keep a track of which non-undef indices are used by each LHS/RHS shuffle 2331 // half. 2332 DenseMap<int, unsigned> LHSIndexCounts, RHSIndexCounts; 2333 2334 // Now construct the mask that will be used by the vselect or blended 2335 // vrgather operation. For vrgathers, construct the appropriate indices into 2336 // each vector. 2337 for (int MaskIndex : SVN->getMask()) { 2338 bool SelectMaskVal = (MaskIndex < (int)NumElts) ^ InvertMask; 2339 MaskVals.push_back(DAG.getConstant(SelectMaskVal, DL, XLenVT)); 2340 if (!IsSelect) { 2341 bool IsLHSOrUndefIndex = MaskIndex < (int)NumElts; 2342 GatherIndicesLHS.push_back(IsLHSOrUndefIndex && MaskIndex >= 0 2343 ? DAG.getConstant(MaskIndex, DL, XLenVT) 2344 : DAG.getUNDEF(XLenVT)); 2345 GatherIndicesRHS.push_back( 2346 IsLHSOrUndefIndex ? DAG.getUNDEF(XLenVT) 2347 : DAG.getConstant(MaskIndex - NumElts, DL, XLenVT)); 2348 if (IsLHSOrUndefIndex && MaskIndex >= 0) 2349 ++LHSIndexCounts[MaskIndex]; 2350 if (!IsLHSOrUndefIndex) 2351 ++RHSIndexCounts[MaskIndex - NumElts]; 2352 } 2353 } 2354 2355 if (SwapOps) { 2356 std::swap(V1, V2); 2357 std::swap(GatherIndicesLHS, GatherIndicesRHS); 2358 } 2359 2360 assert(MaskVals.size() == NumElts && "Unexpected select-like shuffle"); 2361 MVT MaskVT = MVT::getVectorVT(MVT::i1, NumElts); 2362 SDValue SelectMask = DAG.getBuildVector(MaskVT, DL, MaskVals); 2363 2364 if (IsSelect) 2365 return DAG.getNode(ISD::VSELECT, DL, VT, SelectMask, V1, V2); 2366 2367 if (VT.getScalarSizeInBits() == 8 && VT.getVectorNumElements() > 256) { 2368 // On such a large vector we're unable to use i8 as the index type. 2369 // FIXME: We could promote the index to i16 and use vrgatherei16, but that 2370 // may involve vector splitting if we're already at LMUL=8, or our 2371 // user-supplied maximum fixed-length LMUL. 2372 return SDValue(); 2373 } 2374 2375 unsigned GatherVXOpc = RISCVISD::VRGATHER_VX_VL; 2376 unsigned GatherVVOpc = RISCVISD::VRGATHER_VV_VL; 2377 MVT IndexVT = VT.changeTypeToInteger(); 2378 // Since we can't introduce illegal index types at this stage, use i16 and 2379 // vrgatherei16 if the corresponding index type for plain vrgather is greater 2380 // than XLenVT. 2381 if (IndexVT.getScalarType().bitsGT(XLenVT)) { 2382 GatherVVOpc = RISCVISD::VRGATHEREI16_VV_VL; 2383 IndexVT = IndexVT.changeVectorElementType(MVT::i16); 2384 } 2385 2386 MVT IndexContainerVT = 2387 ContainerVT.changeVectorElementType(IndexVT.getScalarType()); 2388 2389 SDValue Gather; 2390 // TODO: This doesn't trigger for i64 vectors on RV32, since there we 2391 // encounter a bitcasted BUILD_VECTOR with low/high i32 values. 2392 if (SDValue SplatValue = DAG.getSplatValue(V1, /*LegalTypes*/ true)) { 2393 Gather = lowerScalarSplat(SplatValue, VL, ContainerVT, DL, DAG, Subtarget); 2394 } else { 2395 V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget); 2396 // If only one index is used, we can use a "splat" vrgather. 2397 // TODO: We can splat the most-common index and fix-up any stragglers, if 2398 // that's beneficial. 2399 if (LHSIndexCounts.size() == 1) { 2400 int SplatIndex = LHSIndexCounts.begin()->getFirst(); 2401 Gather = 2402 DAG.getNode(GatherVXOpc, DL, ContainerVT, V1, 2403 DAG.getConstant(SplatIndex, DL, XLenVT), TrueMask, VL); 2404 } else { 2405 SDValue LHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesLHS); 2406 LHSIndices = 2407 convertToScalableVector(IndexContainerVT, LHSIndices, DAG, Subtarget); 2408 2409 Gather = DAG.getNode(GatherVVOpc, DL, ContainerVT, V1, LHSIndices, 2410 TrueMask, VL); 2411 } 2412 } 2413 2414 // If a second vector operand is used by this shuffle, blend it in with an 2415 // additional vrgather. 2416 if (!V2.isUndef()) { 2417 V2 = convertToScalableVector(ContainerVT, V2, DAG, Subtarget); 2418 // If only one index is used, we can use a "splat" vrgather. 2419 // TODO: We can splat the most-common index and fix-up any stragglers, if 2420 // that's beneficial. 2421 if (RHSIndexCounts.size() == 1) { 2422 int SplatIndex = RHSIndexCounts.begin()->getFirst(); 2423 V2 = DAG.getNode(GatherVXOpc, DL, ContainerVT, V2, 2424 DAG.getConstant(SplatIndex, DL, XLenVT), TrueMask, VL); 2425 } else { 2426 SDValue RHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesRHS); 2427 RHSIndices = 2428 convertToScalableVector(IndexContainerVT, RHSIndices, DAG, Subtarget); 2429 V2 = DAG.getNode(GatherVVOpc, DL, ContainerVT, V2, RHSIndices, TrueMask, 2430 VL); 2431 } 2432 2433 MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1); 2434 SelectMask = 2435 convertToScalableVector(MaskContainerVT, SelectMask, DAG, Subtarget); 2436 2437 Gather = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, SelectMask, V2, 2438 Gather, VL); 2439 } 2440 2441 return convertFromScalableVector(VT, Gather, DAG, Subtarget); 2442 } 2443 2444 static SDValue getRVVFPExtendOrRound(SDValue Op, MVT VT, MVT ContainerVT, 2445 SDLoc DL, SelectionDAG &DAG, 2446 const RISCVSubtarget &Subtarget) { 2447 if (VT.isScalableVector()) 2448 return DAG.getFPExtendOrRound(Op, DL, VT); 2449 assert(VT.isFixedLengthVector() && 2450 "Unexpected value type for RVV FP extend/round lowering"); 2451 SDValue Mask, VL; 2452 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 2453 unsigned RVVOpc = ContainerVT.bitsGT(Op.getSimpleValueType()) 2454 ? RISCVISD::FP_EXTEND_VL 2455 : RISCVISD::FP_ROUND_VL; 2456 return DAG.getNode(RVVOpc, DL, ContainerVT, Op, Mask, VL); 2457 } 2458 2459 // Lower CTLZ_ZERO_UNDEF or CTTZ_ZERO_UNDEF by converting to FP and extracting 2460 // the exponent. 2461 static SDValue lowerCTLZ_CTTZ_ZERO_UNDEF(SDValue Op, SelectionDAG &DAG) { 2462 MVT VT = Op.getSimpleValueType(); 2463 unsigned EltSize = VT.getScalarSizeInBits(); 2464 SDValue Src = Op.getOperand(0); 2465 SDLoc DL(Op); 2466 2467 // We need a FP type that can represent the value. 2468 // TODO: Use f16 for i8 when possible? 2469 MVT FloatEltVT = EltSize == 32 ? MVT::f64 : MVT::f32; 2470 MVT FloatVT = MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount()); 2471 2472 // Legal types should have been checked in the RISCVTargetLowering 2473 // constructor. 2474 // TODO: Splitting may make sense in some cases. 2475 assert(DAG.getTargetLoweringInfo().isTypeLegal(FloatVT) && 2476 "Expected legal float type!"); 2477 2478 // For CTTZ_ZERO_UNDEF, we need to extract the lowest set bit using X & -X. 2479 // The trailing zero count is equal to log2 of this single bit value. 2480 if (Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF) { 2481 SDValue Neg = 2482 DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Src); 2483 Src = DAG.getNode(ISD::AND, DL, VT, Src, Neg); 2484 } 2485 2486 // We have a legal FP type, convert to it. 2487 SDValue FloatVal = DAG.getNode(ISD::UINT_TO_FP, DL, FloatVT, Src); 2488 // Bitcast to integer and shift the exponent to the LSB. 2489 EVT IntVT = FloatVT.changeVectorElementTypeToInteger(); 2490 SDValue Bitcast = DAG.getBitcast(IntVT, FloatVal); 2491 unsigned ShiftAmt = FloatEltVT == MVT::f64 ? 52 : 23; 2492 SDValue Shift = DAG.getNode(ISD::SRL, DL, IntVT, Bitcast, 2493 DAG.getConstant(ShiftAmt, DL, IntVT)); 2494 // Truncate back to original type to allow vnsrl. 2495 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, VT, Shift); 2496 // The exponent contains log2 of the value in biased form. 2497 unsigned ExponentBias = FloatEltVT == MVT::f64 ? 1023 : 127; 2498 2499 // For trailing zeros, we just need to subtract the bias. 2500 if (Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF) 2501 return DAG.getNode(ISD::SUB, DL, VT, Trunc, 2502 DAG.getConstant(ExponentBias, DL, VT)); 2503 2504 // For leading zeros, we need to remove the bias and convert from log2 to 2505 // leading zeros. We can do this by subtracting from (Bias + (EltSize - 1)). 2506 unsigned Adjust = ExponentBias + (EltSize - 1); 2507 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(Adjust, DL, VT), Trunc); 2508 } 2509 2510 // While RVV has alignment restrictions, we should always be able to load as a 2511 // legal equivalently-sized byte-typed vector instead. This method is 2512 // responsible for re-expressing a ISD::LOAD via a correctly-aligned type. If 2513 // the load is already correctly-aligned, it returns SDValue(). 2514 SDValue RISCVTargetLowering::expandUnalignedRVVLoad(SDValue Op, 2515 SelectionDAG &DAG) const { 2516 auto *Load = cast<LoadSDNode>(Op); 2517 assert(Load && Load->getMemoryVT().isVector() && "Expected vector load"); 2518 2519 if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 2520 Load->getMemoryVT(), 2521 *Load->getMemOperand())) 2522 return SDValue(); 2523 2524 SDLoc DL(Op); 2525 MVT VT = Op.getSimpleValueType(); 2526 unsigned EltSizeBits = VT.getScalarSizeInBits(); 2527 assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) && 2528 "Unexpected unaligned RVV load type"); 2529 MVT NewVT = 2530 MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8)); 2531 assert(NewVT.isValid() && 2532 "Expecting equally-sized RVV vector types to be legal"); 2533 SDValue L = DAG.getLoad(NewVT, DL, Load->getChain(), Load->getBasePtr(), 2534 Load->getPointerInfo(), Load->getOriginalAlign(), 2535 Load->getMemOperand()->getFlags()); 2536 return DAG.getMergeValues({DAG.getBitcast(VT, L), L.getValue(1)}, DL); 2537 } 2538 2539 // While RVV has alignment restrictions, we should always be able to store as a 2540 // legal equivalently-sized byte-typed vector instead. This method is 2541 // responsible for re-expressing a ISD::STORE via a correctly-aligned type. It 2542 // returns SDValue() if the store is already correctly aligned. 2543 SDValue RISCVTargetLowering::expandUnalignedRVVStore(SDValue Op, 2544 SelectionDAG &DAG) const { 2545 auto *Store = cast<StoreSDNode>(Op); 2546 assert(Store && Store->getValue().getValueType().isVector() && 2547 "Expected vector store"); 2548 2549 if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 2550 Store->getMemoryVT(), 2551 *Store->getMemOperand())) 2552 return SDValue(); 2553 2554 SDLoc DL(Op); 2555 SDValue StoredVal = Store->getValue(); 2556 MVT VT = StoredVal.getSimpleValueType(); 2557 unsigned EltSizeBits = VT.getScalarSizeInBits(); 2558 assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) && 2559 "Unexpected unaligned RVV store type"); 2560 MVT NewVT = 2561 MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8)); 2562 assert(NewVT.isValid() && 2563 "Expecting equally-sized RVV vector types to be legal"); 2564 StoredVal = DAG.getBitcast(NewVT, StoredVal); 2565 return DAG.getStore(Store->getChain(), DL, StoredVal, Store->getBasePtr(), 2566 Store->getPointerInfo(), Store->getOriginalAlign(), 2567 Store->getMemOperand()->getFlags()); 2568 } 2569 2570 SDValue RISCVTargetLowering::LowerOperation(SDValue Op, 2571 SelectionDAG &DAG) const { 2572 switch (Op.getOpcode()) { 2573 default: 2574 report_fatal_error("unimplemented operand"); 2575 case ISD::GlobalAddress: 2576 return lowerGlobalAddress(Op, DAG); 2577 case ISD::BlockAddress: 2578 return lowerBlockAddress(Op, DAG); 2579 case ISD::ConstantPool: 2580 return lowerConstantPool(Op, DAG); 2581 case ISD::JumpTable: 2582 return lowerJumpTable(Op, DAG); 2583 case ISD::GlobalTLSAddress: 2584 return lowerGlobalTLSAddress(Op, DAG); 2585 case ISD::SELECT: 2586 return lowerSELECT(Op, DAG); 2587 case ISD::BRCOND: 2588 return lowerBRCOND(Op, DAG); 2589 case ISD::VASTART: 2590 return lowerVASTART(Op, DAG); 2591 case ISD::FRAMEADDR: 2592 return lowerFRAMEADDR(Op, DAG); 2593 case ISD::RETURNADDR: 2594 return lowerRETURNADDR(Op, DAG); 2595 case ISD::SHL_PARTS: 2596 return lowerShiftLeftParts(Op, DAG); 2597 case ISD::SRA_PARTS: 2598 return lowerShiftRightParts(Op, DAG, true); 2599 case ISD::SRL_PARTS: 2600 return lowerShiftRightParts(Op, DAG, false); 2601 case ISD::BITCAST: { 2602 SDLoc DL(Op); 2603 EVT VT = Op.getValueType(); 2604 SDValue Op0 = Op.getOperand(0); 2605 EVT Op0VT = Op0.getValueType(); 2606 MVT XLenVT = Subtarget.getXLenVT(); 2607 if (VT.isFixedLengthVector()) { 2608 // We can handle fixed length vector bitcasts with a simple replacement 2609 // in isel. 2610 if (Op0VT.isFixedLengthVector()) 2611 return Op; 2612 // When bitcasting from scalar to fixed-length vector, insert the scalar 2613 // into a one-element vector of the result type, and perform a vector 2614 // bitcast. 2615 if (!Op0VT.isVector()) { 2616 EVT BVT = EVT::getVectorVT(*DAG.getContext(), Op0VT, 1); 2617 if (!isTypeLegal(BVT)) 2618 return SDValue(); 2619 return DAG.getBitcast(VT, DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, BVT, 2620 DAG.getUNDEF(BVT), Op0, 2621 DAG.getConstant(0, DL, XLenVT))); 2622 } 2623 return SDValue(); 2624 } 2625 // Custom-legalize bitcasts from fixed-length vector types to scalar types 2626 // thus: bitcast the vector to a one-element vector type whose element type 2627 // is the same as the result type, and extract the first element. 2628 if (!VT.isVector() && Op0VT.isFixedLengthVector()) { 2629 EVT BVT = EVT::getVectorVT(*DAG.getContext(), VT, 1); 2630 if (!isTypeLegal(BVT)) 2631 return SDValue(); 2632 SDValue BVec = DAG.getBitcast(BVT, Op0); 2633 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec, 2634 DAG.getConstant(0, DL, XLenVT)); 2635 } 2636 if (VT == MVT::f16 && Op0VT == MVT::i16 && Subtarget.hasStdExtZfh()) { 2637 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Op0); 2638 SDValue FPConv = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, NewOp0); 2639 return FPConv; 2640 } 2641 if (VT == MVT::f32 && Op0VT == MVT::i32 && Subtarget.is64Bit() && 2642 Subtarget.hasStdExtF()) { 2643 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); 2644 SDValue FPConv = 2645 DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, NewOp0); 2646 return FPConv; 2647 } 2648 return SDValue(); 2649 } 2650 case ISD::INTRINSIC_WO_CHAIN: 2651 return LowerINTRINSIC_WO_CHAIN(Op, DAG); 2652 case ISD::INTRINSIC_W_CHAIN: 2653 return LowerINTRINSIC_W_CHAIN(Op, DAG); 2654 case ISD::INTRINSIC_VOID: 2655 return LowerINTRINSIC_VOID(Op, DAG); 2656 case ISD::BSWAP: 2657 case ISD::BITREVERSE: { 2658 // Convert BSWAP/BITREVERSE to GREVI to enable GREVI combinining. 2659 assert(Subtarget.hasStdExtZbp() && "Unexpected custom legalisation"); 2660 MVT VT = Op.getSimpleValueType(); 2661 SDLoc DL(Op); 2662 // Start with the maximum immediate value which is the bitwidth - 1. 2663 unsigned Imm = VT.getSizeInBits() - 1; 2664 // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits. 2665 if (Op.getOpcode() == ISD::BSWAP) 2666 Imm &= ~0x7U; 2667 return DAG.getNode(RISCVISD::GREV, DL, VT, Op.getOperand(0), 2668 DAG.getConstant(Imm, DL, VT)); 2669 } 2670 case ISD::FSHL: 2671 case ISD::FSHR: { 2672 MVT VT = Op.getSimpleValueType(); 2673 assert(VT == Subtarget.getXLenVT() && "Unexpected custom legalization"); 2674 SDLoc DL(Op); 2675 if (Op.getOperand(2).getOpcode() == ISD::Constant) 2676 return Op; 2677 // FSL/FSR take a log2(XLen)+1 bit shift amount but XLenVT FSHL/FSHR only 2678 // use log(XLen) bits. Mask the shift amount accordingly. 2679 unsigned ShAmtWidth = Subtarget.getXLen() - 1; 2680 SDValue ShAmt = DAG.getNode(ISD::AND, DL, VT, Op.getOperand(2), 2681 DAG.getConstant(ShAmtWidth, DL, VT)); 2682 unsigned Opc = Op.getOpcode() == ISD::FSHL ? RISCVISD::FSL : RISCVISD::FSR; 2683 return DAG.getNode(Opc, DL, VT, Op.getOperand(0), Op.getOperand(1), ShAmt); 2684 } 2685 case ISD::TRUNCATE: { 2686 SDLoc DL(Op); 2687 MVT VT = Op.getSimpleValueType(); 2688 // Only custom-lower vector truncates 2689 if (!VT.isVector()) 2690 return Op; 2691 2692 // Truncates to mask types are handled differently 2693 if (VT.getVectorElementType() == MVT::i1) 2694 return lowerVectorMaskTrunc(Op, DAG); 2695 2696 // RVV only has truncates which operate from SEW*2->SEW, so lower arbitrary 2697 // truncates as a series of "RISCVISD::TRUNCATE_VECTOR_VL" nodes which 2698 // truncate by one power of two at a time. 2699 MVT DstEltVT = VT.getVectorElementType(); 2700 2701 SDValue Src = Op.getOperand(0); 2702 MVT SrcVT = Src.getSimpleValueType(); 2703 MVT SrcEltVT = SrcVT.getVectorElementType(); 2704 2705 assert(DstEltVT.bitsLT(SrcEltVT) && 2706 isPowerOf2_64(DstEltVT.getSizeInBits()) && 2707 isPowerOf2_64(SrcEltVT.getSizeInBits()) && 2708 "Unexpected vector truncate lowering"); 2709 2710 MVT ContainerVT = SrcVT; 2711 if (SrcVT.isFixedLengthVector()) { 2712 ContainerVT = getContainerForFixedLengthVector(SrcVT); 2713 Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget); 2714 } 2715 2716 SDValue Result = Src; 2717 SDValue Mask, VL; 2718 std::tie(Mask, VL) = 2719 getDefaultVLOps(SrcVT, ContainerVT, DL, DAG, Subtarget); 2720 LLVMContext &Context = *DAG.getContext(); 2721 const ElementCount Count = ContainerVT.getVectorElementCount(); 2722 do { 2723 SrcEltVT = MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2); 2724 EVT ResultVT = EVT::getVectorVT(Context, SrcEltVT, Count); 2725 Result = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, ResultVT, Result, 2726 Mask, VL); 2727 } while (SrcEltVT != DstEltVT); 2728 2729 if (SrcVT.isFixedLengthVector()) 2730 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 2731 2732 return Result; 2733 } 2734 case ISD::ANY_EXTEND: 2735 case ISD::ZERO_EXTEND: 2736 if (Op.getOperand(0).getValueType().isVector() && 2737 Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) 2738 return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ 1); 2739 return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VZEXT_VL); 2740 case ISD::SIGN_EXTEND: 2741 if (Op.getOperand(0).getValueType().isVector() && 2742 Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) 2743 return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ -1); 2744 return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VSEXT_VL); 2745 case ISD::SPLAT_VECTOR_PARTS: 2746 return lowerSPLAT_VECTOR_PARTS(Op, DAG); 2747 case ISD::INSERT_VECTOR_ELT: 2748 return lowerINSERT_VECTOR_ELT(Op, DAG); 2749 case ISD::EXTRACT_VECTOR_ELT: 2750 return lowerEXTRACT_VECTOR_ELT(Op, DAG); 2751 case ISD::VSCALE: { 2752 MVT VT = Op.getSimpleValueType(); 2753 SDLoc DL(Op); 2754 SDValue VLENB = DAG.getNode(RISCVISD::READ_VLENB, DL, VT); 2755 // We define our scalable vector types for lmul=1 to use a 64 bit known 2756 // minimum size. e.g. <vscale x 2 x i32>. VLENB is in bytes so we calculate 2757 // vscale as VLENB / 8. 2758 assert(RISCV::RVVBitsPerBlock == 64 && "Unexpected bits per block!"); 2759 if (isa<ConstantSDNode>(Op.getOperand(0))) { 2760 // We assume VLENB is a multiple of 8. We manually choose the best shift 2761 // here because SimplifyDemandedBits isn't always able to simplify it. 2762 uint64_t Val = Op.getConstantOperandVal(0); 2763 if (isPowerOf2_64(Val)) { 2764 uint64_t Log2 = Log2_64(Val); 2765 if (Log2 < 3) 2766 return DAG.getNode(ISD::SRL, DL, VT, VLENB, 2767 DAG.getConstant(3 - Log2, DL, VT)); 2768 if (Log2 > 3) 2769 return DAG.getNode(ISD::SHL, DL, VT, VLENB, 2770 DAG.getConstant(Log2 - 3, DL, VT)); 2771 return VLENB; 2772 } 2773 // If the multiplier is a multiple of 8, scale it down to avoid needing 2774 // to shift the VLENB value. 2775 if ((Val % 8) == 0) 2776 return DAG.getNode(ISD::MUL, DL, VT, VLENB, 2777 DAG.getConstant(Val / 8, DL, VT)); 2778 } 2779 2780 SDValue VScale = DAG.getNode(ISD::SRL, DL, VT, VLENB, 2781 DAG.getConstant(3, DL, VT)); 2782 return DAG.getNode(ISD::MUL, DL, VT, VScale, Op.getOperand(0)); 2783 } 2784 case ISD::FPOWI: { 2785 // Custom promote f16 powi with illegal i32 integer type on RV64. Once 2786 // promoted this will be legalized into a libcall by LegalizeIntegerTypes. 2787 if (Op.getValueType() == MVT::f16 && Subtarget.is64Bit() && 2788 Op.getOperand(1).getValueType() == MVT::i32) { 2789 SDLoc DL(Op); 2790 SDValue Op0 = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Op.getOperand(0)); 2791 SDValue Powi = 2792 DAG.getNode(ISD::FPOWI, DL, MVT::f32, Op0, Op.getOperand(1)); 2793 return DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, Powi, 2794 DAG.getIntPtrConstant(0, DL)); 2795 } 2796 return SDValue(); 2797 } 2798 case ISD::FP_EXTEND: { 2799 // RVV can only do fp_extend to types double the size as the source. We 2800 // custom-lower f16->f64 extensions to two hops of ISD::FP_EXTEND, going 2801 // via f32. 2802 SDLoc DL(Op); 2803 MVT VT = Op.getSimpleValueType(); 2804 SDValue Src = Op.getOperand(0); 2805 MVT SrcVT = Src.getSimpleValueType(); 2806 2807 // Prepare any fixed-length vector operands. 2808 MVT ContainerVT = VT; 2809 if (SrcVT.isFixedLengthVector()) { 2810 ContainerVT = getContainerForFixedLengthVector(VT); 2811 MVT SrcContainerVT = 2812 ContainerVT.changeVectorElementType(SrcVT.getVectorElementType()); 2813 Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); 2814 } 2815 2816 if (!VT.isVector() || VT.getVectorElementType() != MVT::f64 || 2817 SrcVT.getVectorElementType() != MVT::f16) { 2818 // For scalable vectors, we only need to close the gap between 2819 // vXf16->vXf64. 2820 if (!VT.isFixedLengthVector()) 2821 return Op; 2822 // For fixed-length vectors, lower the FP_EXTEND to a custom "VL" version. 2823 Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget); 2824 return convertFromScalableVector(VT, Src, DAG, Subtarget); 2825 } 2826 2827 MVT InterVT = VT.changeVectorElementType(MVT::f32); 2828 MVT InterContainerVT = ContainerVT.changeVectorElementType(MVT::f32); 2829 SDValue IntermediateExtend = getRVVFPExtendOrRound( 2830 Src, InterVT, InterContainerVT, DL, DAG, Subtarget); 2831 2832 SDValue Extend = getRVVFPExtendOrRound(IntermediateExtend, VT, ContainerVT, 2833 DL, DAG, Subtarget); 2834 if (VT.isFixedLengthVector()) 2835 return convertFromScalableVector(VT, Extend, DAG, Subtarget); 2836 return Extend; 2837 } 2838 case ISD::FP_ROUND: { 2839 // RVV can only do fp_round to types half the size as the source. We 2840 // custom-lower f64->f16 rounds via RVV's round-to-odd float 2841 // conversion instruction. 2842 SDLoc DL(Op); 2843 MVT VT = Op.getSimpleValueType(); 2844 SDValue Src = Op.getOperand(0); 2845 MVT SrcVT = Src.getSimpleValueType(); 2846 2847 // Prepare any fixed-length vector operands. 2848 MVT ContainerVT = VT; 2849 if (VT.isFixedLengthVector()) { 2850 MVT SrcContainerVT = getContainerForFixedLengthVector(SrcVT); 2851 ContainerVT = 2852 SrcContainerVT.changeVectorElementType(VT.getVectorElementType()); 2853 Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); 2854 } 2855 2856 if (!VT.isVector() || VT.getVectorElementType() != MVT::f16 || 2857 SrcVT.getVectorElementType() != MVT::f64) { 2858 // For scalable vectors, we only need to close the gap between 2859 // vXf64<->vXf16. 2860 if (!VT.isFixedLengthVector()) 2861 return Op; 2862 // For fixed-length vectors, lower the FP_ROUND to a custom "VL" version. 2863 Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget); 2864 return convertFromScalableVector(VT, Src, DAG, Subtarget); 2865 } 2866 2867 SDValue Mask, VL; 2868 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 2869 2870 MVT InterVT = ContainerVT.changeVectorElementType(MVT::f32); 2871 SDValue IntermediateRound = 2872 DAG.getNode(RISCVISD::VFNCVT_ROD_VL, DL, InterVT, Src, Mask, VL); 2873 SDValue Round = getRVVFPExtendOrRound(IntermediateRound, VT, ContainerVT, 2874 DL, DAG, Subtarget); 2875 2876 if (VT.isFixedLengthVector()) 2877 return convertFromScalableVector(VT, Round, DAG, Subtarget); 2878 return Round; 2879 } 2880 case ISD::FP_TO_SINT: 2881 case ISD::FP_TO_UINT: 2882 case ISD::SINT_TO_FP: 2883 case ISD::UINT_TO_FP: { 2884 // RVV can only do fp<->int conversions to types half/double the size as 2885 // the source. We custom-lower any conversions that do two hops into 2886 // sequences. 2887 MVT VT = Op.getSimpleValueType(); 2888 if (!VT.isVector()) 2889 return Op; 2890 SDLoc DL(Op); 2891 SDValue Src = Op.getOperand(0); 2892 MVT EltVT = VT.getVectorElementType(); 2893 MVT SrcVT = Src.getSimpleValueType(); 2894 MVT SrcEltVT = SrcVT.getVectorElementType(); 2895 unsigned EltSize = EltVT.getSizeInBits(); 2896 unsigned SrcEltSize = SrcEltVT.getSizeInBits(); 2897 assert(isPowerOf2_32(EltSize) && isPowerOf2_32(SrcEltSize) && 2898 "Unexpected vector element types"); 2899 2900 bool IsInt2FP = SrcEltVT.isInteger(); 2901 // Widening conversions 2902 if (EltSize > SrcEltSize && (EltSize / SrcEltSize >= 4)) { 2903 if (IsInt2FP) { 2904 // Do a regular integer sign/zero extension then convert to float. 2905 MVT IVecVT = MVT::getVectorVT(MVT::getIntegerVT(EltVT.getSizeInBits()), 2906 VT.getVectorElementCount()); 2907 unsigned ExtOpcode = Op.getOpcode() == ISD::UINT_TO_FP 2908 ? ISD::ZERO_EXTEND 2909 : ISD::SIGN_EXTEND; 2910 SDValue Ext = DAG.getNode(ExtOpcode, DL, IVecVT, Src); 2911 return DAG.getNode(Op.getOpcode(), DL, VT, Ext); 2912 } 2913 // FP2Int 2914 assert(SrcEltVT == MVT::f16 && "Unexpected FP_TO_[US]INT lowering"); 2915 // Do one doubling fp_extend then complete the operation by converting 2916 // to int. 2917 MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount()); 2918 SDValue FExt = DAG.getFPExtendOrRound(Src, DL, InterimFVT); 2919 return DAG.getNode(Op.getOpcode(), DL, VT, FExt); 2920 } 2921 2922 // Narrowing conversions 2923 if (SrcEltSize > EltSize && (SrcEltSize / EltSize >= 4)) { 2924 if (IsInt2FP) { 2925 // One narrowing int_to_fp, then an fp_round. 2926 assert(EltVT == MVT::f16 && "Unexpected [US]_TO_FP lowering"); 2927 MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount()); 2928 SDValue Int2FP = DAG.getNode(Op.getOpcode(), DL, InterimFVT, Src); 2929 return DAG.getFPExtendOrRound(Int2FP, DL, VT); 2930 } 2931 // FP2Int 2932 // One narrowing fp_to_int, then truncate the integer. If the float isn't 2933 // representable by the integer, the result is poison. 2934 MVT IVecVT = 2935 MVT::getVectorVT(MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2), 2936 VT.getVectorElementCount()); 2937 SDValue FP2Int = DAG.getNode(Op.getOpcode(), DL, IVecVT, Src); 2938 return DAG.getNode(ISD::TRUNCATE, DL, VT, FP2Int); 2939 } 2940 2941 // Scalable vectors can exit here. Patterns will handle equally-sized 2942 // conversions halving/doubling ones. 2943 if (!VT.isFixedLengthVector()) 2944 return Op; 2945 2946 // For fixed-length vectors we lower to a custom "VL" node. 2947 unsigned RVVOpc = 0; 2948 switch (Op.getOpcode()) { 2949 default: 2950 llvm_unreachable("Impossible opcode"); 2951 case ISD::FP_TO_SINT: 2952 RVVOpc = RISCVISD::FP_TO_SINT_VL; 2953 break; 2954 case ISD::FP_TO_UINT: 2955 RVVOpc = RISCVISD::FP_TO_UINT_VL; 2956 break; 2957 case ISD::SINT_TO_FP: 2958 RVVOpc = RISCVISD::SINT_TO_FP_VL; 2959 break; 2960 case ISD::UINT_TO_FP: 2961 RVVOpc = RISCVISD::UINT_TO_FP_VL; 2962 break; 2963 } 2964 2965 MVT ContainerVT, SrcContainerVT; 2966 // Derive the reference container type from the larger vector type. 2967 if (SrcEltSize > EltSize) { 2968 SrcContainerVT = getContainerForFixedLengthVector(SrcVT); 2969 ContainerVT = 2970 SrcContainerVT.changeVectorElementType(VT.getVectorElementType()); 2971 } else { 2972 ContainerVT = getContainerForFixedLengthVector(VT); 2973 SrcContainerVT = ContainerVT.changeVectorElementType(SrcEltVT); 2974 } 2975 2976 SDValue Mask, VL; 2977 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 2978 2979 Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); 2980 Src = DAG.getNode(RVVOpc, DL, ContainerVT, Src, Mask, VL); 2981 return convertFromScalableVector(VT, Src, DAG, Subtarget); 2982 } 2983 case ISD::FP_TO_SINT_SAT: 2984 case ISD::FP_TO_UINT_SAT: 2985 return lowerFP_TO_INT_SAT(Op, DAG); 2986 case ISD::FTRUNC: 2987 case ISD::FCEIL: 2988 case ISD::FFLOOR: 2989 return lowerFTRUNC_FCEIL_FFLOOR(Op, DAG); 2990 case ISD::VECREDUCE_ADD: 2991 case ISD::VECREDUCE_UMAX: 2992 case ISD::VECREDUCE_SMAX: 2993 case ISD::VECREDUCE_UMIN: 2994 case ISD::VECREDUCE_SMIN: 2995 return lowerVECREDUCE(Op, DAG); 2996 case ISD::VECREDUCE_AND: 2997 case ISD::VECREDUCE_OR: 2998 case ISD::VECREDUCE_XOR: 2999 if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) 3000 return lowerVectorMaskVecReduction(Op, DAG, /*IsVP*/ false); 3001 return lowerVECREDUCE(Op, DAG); 3002 case ISD::VECREDUCE_FADD: 3003 case ISD::VECREDUCE_SEQ_FADD: 3004 case ISD::VECREDUCE_FMIN: 3005 case ISD::VECREDUCE_FMAX: 3006 return lowerFPVECREDUCE(Op, DAG); 3007 case ISD::VP_REDUCE_ADD: 3008 case ISD::VP_REDUCE_UMAX: 3009 case ISD::VP_REDUCE_SMAX: 3010 case ISD::VP_REDUCE_UMIN: 3011 case ISD::VP_REDUCE_SMIN: 3012 case ISD::VP_REDUCE_FADD: 3013 case ISD::VP_REDUCE_SEQ_FADD: 3014 case ISD::VP_REDUCE_FMIN: 3015 case ISD::VP_REDUCE_FMAX: 3016 return lowerVPREDUCE(Op, DAG); 3017 case ISD::VP_REDUCE_AND: 3018 case ISD::VP_REDUCE_OR: 3019 case ISD::VP_REDUCE_XOR: 3020 if (Op.getOperand(1).getValueType().getVectorElementType() == MVT::i1) 3021 return lowerVectorMaskVecReduction(Op, DAG, /*IsVP*/ true); 3022 return lowerVPREDUCE(Op, DAG); 3023 case ISD::INSERT_SUBVECTOR: 3024 return lowerINSERT_SUBVECTOR(Op, DAG); 3025 case ISD::EXTRACT_SUBVECTOR: 3026 return lowerEXTRACT_SUBVECTOR(Op, DAG); 3027 case ISD::STEP_VECTOR: 3028 return lowerSTEP_VECTOR(Op, DAG); 3029 case ISD::VECTOR_REVERSE: 3030 return lowerVECTOR_REVERSE(Op, DAG); 3031 case ISD::BUILD_VECTOR: 3032 return lowerBUILD_VECTOR(Op, DAG, Subtarget); 3033 case ISD::SPLAT_VECTOR: 3034 if (Op.getValueType().getVectorElementType() == MVT::i1) 3035 return lowerVectorMaskSplat(Op, DAG); 3036 return lowerSPLAT_VECTOR(Op, DAG, Subtarget); 3037 case ISD::VECTOR_SHUFFLE: 3038 return lowerVECTOR_SHUFFLE(Op, DAG, Subtarget); 3039 case ISD::CONCAT_VECTORS: { 3040 // Split CONCAT_VECTORS into a series of INSERT_SUBVECTOR nodes. This is 3041 // better than going through the stack, as the default expansion does. 3042 SDLoc DL(Op); 3043 MVT VT = Op.getSimpleValueType(); 3044 unsigned NumOpElts = 3045 Op.getOperand(0).getSimpleValueType().getVectorMinNumElements(); 3046 SDValue Vec = DAG.getUNDEF(VT); 3047 for (const auto &OpIdx : enumerate(Op->ops())) 3048 Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, Vec, OpIdx.value(), 3049 DAG.getIntPtrConstant(OpIdx.index() * NumOpElts, DL)); 3050 return Vec; 3051 } 3052 case ISD::LOAD: 3053 if (auto V = expandUnalignedRVVLoad(Op, DAG)) 3054 return V; 3055 if (Op.getValueType().isFixedLengthVector()) 3056 return lowerFixedLengthVectorLoadToRVV(Op, DAG); 3057 return Op; 3058 case ISD::STORE: 3059 if (auto V = expandUnalignedRVVStore(Op, DAG)) 3060 return V; 3061 if (Op.getOperand(1).getValueType().isFixedLengthVector()) 3062 return lowerFixedLengthVectorStoreToRVV(Op, DAG); 3063 return Op; 3064 case ISD::MLOAD: 3065 case ISD::VP_LOAD: 3066 return lowerMaskedLoad(Op, DAG); 3067 case ISD::MSTORE: 3068 case ISD::VP_STORE: 3069 return lowerMaskedStore(Op, DAG); 3070 case ISD::SETCC: 3071 return lowerFixedLengthVectorSetccToRVV(Op, DAG); 3072 case ISD::ADD: 3073 return lowerToScalableOp(Op, DAG, RISCVISD::ADD_VL); 3074 case ISD::SUB: 3075 return lowerToScalableOp(Op, DAG, RISCVISD::SUB_VL); 3076 case ISD::MUL: 3077 return lowerToScalableOp(Op, DAG, RISCVISD::MUL_VL); 3078 case ISD::MULHS: 3079 return lowerToScalableOp(Op, DAG, RISCVISD::MULHS_VL); 3080 case ISD::MULHU: 3081 return lowerToScalableOp(Op, DAG, RISCVISD::MULHU_VL); 3082 case ISD::AND: 3083 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMAND_VL, 3084 RISCVISD::AND_VL); 3085 case ISD::OR: 3086 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMOR_VL, 3087 RISCVISD::OR_VL); 3088 case ISD::XOR: 3089 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMXOR_VL, 3090 RISCVISD::XOR_VL); 3091 case ISD::SDIV: 3092 return lowerToScalableOp(Op, DAG, RISCVISD::SDIV_VL); 3093 case ISD::SREM: 3094 return lowerToScalableOp(Op, DAG, RISCVISD::SREM_VL); 3095 case ISD::UDIV: 3096 return lowerToScalableOp(Op, DAG, RISCVISD::UDIV_VL); 3097 case ISD::UREM: 3098 return lowerToScalableOp(Op, DAG, RISCVISD::UREM_VL); 3099 case ISD::SHL: 3100 case ISD::SRA: 3101 case ISD::SRL: 3102 if (Op.getSimpleValueType().isFixedLengthVector()) 3103 return lowerFixedLengthVectorShiftToRVV(Op, DAG); 3104 // This can be called for an i32 shift amount that needs to be promoted. 3105 assert(Op.getOperand(1).getValueType() == MVT::i32 && Subtarget.is64Bit() && 3106 "Unexpected custom legalisation"); 3107 return SDValue(); 3108 case ISD::SADDSAT: 3109 return lowerToScalableOp(Op, DAG, RISCVISD::SADDSAT_VL); 3110 case ISD::UADDSAT: 3111 return lowerToScalableOp(Op, DAG, RISCVISD::UADDSAT_VL); 3112 case ISD::SSUBSAT: 3113 return lowerToScalableOp(Op, DAG, RISCVISD::SSUBSAT_VL); 3114 case ISD::USUBSAT: 3115 return lowerToScalableOp(Op, DAG, RISCVISD::USUBSAT_VL); 3116 case ISD::FADD: 3117 return lowerToScalableOp(Op, DAG, RISCVISD::FADD_VL); 3118 case ISD::FSUB: 3119 return lowerToScalableOp(Op, DAG, RISCVISD::FSUB_VL); 3120 case ISD::FMUL: 3121 return lowerToScalableOp(Op, DAG, RISCVISD::FMUL_VL); 3122 case ISD::FDIV: 3123 return lowerToScalableOp(Op, DAG, RISCVISD::FDIV_VL); 3124 case ISD::FNEG: 3125 return lowerToScalableOp(Op, DAG, RISCVISD::FNEG_VL); 3126 case ISD::FABS: 3127 return lowerToScalableOp(Op, DAG, RISCVISD::FABS_VL); 3128 case ISD::FSQRT: 3129 return lowerToScalableOp(Op, DAG, RISCVISD::FSQRT_VL); 3130 case ISD::FMA: 3131 return lowerToScalableOp(Op, DAG, RISCVISD::FMA_VL); 3132 case ISD::SMIN: 3133 return lowerToScalableOp(Op, DAG, RISCVISD::SMIN_VL); 3134 case ISD::SMAX: 3135 return lowerToScalableOp(Op, DAG, RISCVISD::SMAX_VL); 3136 case ISD::UMIN: 3137 return lowerToScalableOp(Op, DAG, RISCVISD::UMIN_VL); 3138 case ISD::UMAX: 3139 return lowerToScalableOp(Op, DAG, RISCVISD::UMAX_VL); 3140 case ISD::FMINNUM: 3141 return lowerToScalableOp(Op, DAG, RISCVISD::FMINNUM_VL); 3142 case ISD::FMAXNUM: 3143 return lowerToScalableOp(Op, DAG, RISCVISD::FMAXNUM_VL); 3144 case ISD::ABS: 3145 return lowerABS(Op, DAG); 3146 case ISD::CTLZ_ZERO_UNDEF: 3147 case ISD::CTTZ_ZERO_UNDEF: 3148 return lowerCTLZ_CTTZ_ZERO_UNDEF(Op, DAG); 3149 case ISD::VSELECT: 3150 return lowerFixedLengthVectorSelectToRVV(Op, DAG); 3151 case ISD::FCOPYSIGN: 3152 return lowerFixedLengthVectorFCOPYSIGNToRVV(Op, DAG); 3153 case ISD::MGATHER: 3154 case ISD::VP_GATHER: 3155 return lowerMaskedGather(Op, DAG); 3156 case ISD::MSCATTER: 3157 case ISD::VP_SCATTER: 3158 return lowerMaskedScatter(Op, DAG); 3159 case ISD::FLT_ROUNDS_: 3160 return lowerGET_ROUNDING(Op, DAG); 3161 case ISD::SET_ROUNDING: 3162 return lowerSET_ROUNDING(Op, DAG); 3163 case ISD::VP_SELECT: 3164 return lowerVPOp(Op, DAG, RISCVISD::VSELECT_VL); 3165 case ISD::VP_ADD: 3166 return lowerVPOp(Op, DAG, RISCVISD::ADD_VL); 3167 case ISD::VP_SUB: 3168 return lowerVPOp(Op, DAG, RISCVISD::SUB_VL); 3169 case ISD::VP_MUL: 3170 return lowerVPOp(Op, DAG, RISCVISD::MUL_VL); 3171 case ISD::VP_SDIV: 3172 return lowerVPOp(Op, DAG, RISCVISD::SDIV_VL); 3173 case ISD::VP_UDIV: 3174 return lowerVPOp(Op, DAG, RISCVISD::UDIV_VL); 3175 case ISD::VP_SREM: 3176 return lowerVPOp(Op, DAG, RISCVISD::SREM_VL); 3177 case ISD::VP_UREM: 3178 return lowerVPOp(Op, DAG, RISCVISD::UREM_VL); 3179 case ISD::VP_AND: 3180 return lowerVPOp(Op, DAG, RISCVISD::AND_VL); 3181 case ISD::VP_OR: 3182 return lowerVPOp(Op, DAG, RISCVISD::OR_VL); 3183 case ISD::VP_XOR: 3184 return lowerVPOp(Op, DAG, RISCVISD::XOR_VL); 3185 case ISD::VP_ASHR: 3186 return lowerVPOp(Op, DAG, RISCVISD::SRA_VL); 3187 case ISD::VP_LSHR: 3188 return lowerVPOp(Op, DAG, RISCVISD::SRL_VL); 3189 case ISD::VP_SHL: 3190 return lowerVPOp(Op, DAG, RISCVISD::SHL_VL); 3191 case ISD::VP_FADD: 3192 return lowerVPOp(Op, DAG, RISCVISD::FADD_VL); 3193 case ISD::VP_FSUB: 3194 return lowerVPOp(Op, DAG, RISCVISD::FSUB_VL); 3195 case ISD::VP_FMUL: 3196 return lowerVPOp(Op, DAG, RISCVISD::FMUL_VL); 3197 case ISD::VP_FDIV: 3198 return lowerVPOp(Op, DAG, RISCVISD::FDIV_VL); 3199 } 3200 } 3201 3202 static SDValue getTargetNode(GlobalAddressSDNode *N, SDLoc DL, EVT Ty, 3203 SelectionDAG &DAG, unsigned Flags) { 3204 return DAG.getTargetGlobalAddress(N->getGlobal(), DL, Ty, 0, Flags); 3205 } 3206 3207 static SDValue getTargetNode(BlockAddressSDNode *N, SDLoc DL, EVT Ty, 3208 SelectionDAG &DAG, unsigned Flags) { 3209 return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, N->getOffset(), 3210 Flags); 3211 } 3212 3213 static SDValue getTargetNode(ConstantPoolSDNode *N, SDLoc DL, EVT Ty, 3214 SelectionDAG &DAG, unsigned Flags) { 3215 return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlign(), 3216 N->getOffset(), Flags); 3217 } 3218 3219 static SDValue getTargetNode(JumpTableSDNode *N, SDLoc DL, EVT Ty, 3220 SelectionDAG &DAG, unsigned Flags) { 3221 return DAG.getTargetJumpTable(N->getIndex(), Ty, Flags); 3222 } 3223 3224 template <class NodeTy> 3225 SDValue RISCVTargetLowering::getAddr(NodeTy *N, SelectionDAG &DAG, 3226 bool IsLocal) const { 3227 SDLoc DL(N); 3228 EVT Ty = getPointerTy(DAG.getDataLayout()); 3229 3230 if (isPositionIndependent()) { 3231 SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0); 3232 if (IsLocal) 3233 // Use PC-relative addressing to access the symbol. This generates the 3234 // pattern (PseudoLLA sym), which expands to (addi (auipc %pcrel_hi(sym)) 3235 // %pcrel_lo(auipc)). 3236 return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0); 3237 3238 // Use PC-relative addressing to access the GOT for this symbol, then load 3239 // the address from the GOT. This generates the pattern (PseudoLA sym), 3240 // which expands to (ld (addi (auipc %got_pcrel_hi(sym)) %pcrel_lo(auipc))). 3241 return SDValue(DAG.getMachineNode(RISCV::PseudoLA, DL, Ty, Addr), 0); 3242 } 3243 3244 switch (getTargetMachine().getCodeModel()) { 3245 default: 3246 report_fatal_error("Unsupported code model for lowering"); 3247 case CodeModel::Small: { 3248 // Generate a sequence for accessing addresses within the first 2 GiB of 3249 // address space. This generates the pattern (addi (lui %hi(sym)) %lo(sym)). 3250 SDValue AddrHi = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_HI); 3251 SDValue AddrLo = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_LO); 3252 SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0); 3253 return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNHi, AddrLo), 0); 3254 } 3255 case CodeModel::Medium: { 3256 // Generate a sequence for accessing addresses within any 2GiB range within 3257 // the address space. This generates the pattern (PseudoLLA sym), which 3258 // expands to (addi (auipc %pcrel_hi(sym)) %pcrel_lo(auipc)). 3259 SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0); 3260 return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0); 3261 } 3262 } 3263 } 3264 3265 SDValue RISCVTargetLowering::lowerGlobalAddress(SDValue Op, 3266 SelectionDAG &DAG) const { 3267 SDLoc DL(Op); 3268 EVT Ty = Op.getValueType(); 3269 GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op); 3270 int64_t Offset = N->getOffset(); 3271 MVT XLenVT = Subtarget.getXLenVT(); 3272 3273 const GlobalValue *GV = N->getGlobal(); 3274 bool IsLocal = getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV); 3275 SDValue Addr = getAddr(N, DAG, IsLocal); 3276 3277 // In order to maximise the opportunity for common subexpression elimination, 3278 // emit a separate ADD node for the global address offset instead of folding 3279 // it in the global address node. Later peephole optimisations may choose to 3280 // fold it back in when profitable. 3281 if (Offset != 0) 3282 return DAG.getNode(ISD::ADD, DL, Ty, Addr, 3283 DAG.getConstant(Offset, DL, XLenVT)); 3284 return Addr; 3285 } 3286 3287 SDValue RISCVTargetLowering::lowerBlockAddress(SDValue Op, 3288 SelectionDAG &DAG) const { 3289 BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op); 3290 3291 return getAddr(N, DAG); 3292 } 3293 3294 SDValue RISCVTargetLowering::lowerConstantPool(SDValue Op, 3295 SelectionDAG &DAG) const { 3296 ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op); 3297 3298 return getAddr(N, DAG); 3299 } 3300 3301 SDValue RISCVTargetLowering::lowerJumpTable(SDValue Op, 3302 SelectionDAG &DAG) const { 3303 JumpTableSDNode *N = cast<JumpTableSDNode>(Op); 3304 3305 return getAddr(N, DAG); 3306 } 3307 3308 SDValue RISCVTargetLowering::getStaticTLSAddr(GlobalAddressSDNode *N, 3309 SelectionDAG &DAG, 3310 bool UseGOT) const { 3311 SDLoc DL(N); 3312 EVT Ty = getPointerTy(DAG.getDataLayout()); 3313 const GlobalValue *GV = N->getGlobal(); 3314 MVT XLenVT = Subtarget.getXLenVT(); 3315 3316 if (UseGOT) { 3317 // Use PC-relative addressing to access the GOT for this TLS symbol, then 3318 // load the address from the GOT and add the thread pointer. This generates 3319 // the pattern (PseudoLA_TLS_IE sym), which expands to 3320 // (ld (auipc %tls_ie_pcrel_hi(sym)) %pcrel_lo(auipc)). 3321 SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0); 3322 SDValue Load = 3323 SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_IE, DL, Ty, Addr), 0); 3324 3325 // Add the thread pointer. 3326 SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT); 3327 return DAG.getNode(ISD::ADD, DL, Ty, Load, TPReg); 3328 } 3329 3330 // Generate a sequence for accessing the address relative to the thread 3331 // pointer, with the appropriate adjustment for the thread pointer offset. 3332 // This generates the pattern 3333 // (add (add_tprel (lui %tprel_hi(sym)) tp %tprel_add(sym)) %tprel_lo(sym)) 3334 SDValue AddrHi = 3335 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_HI); 3336 SDValue AddrAdd = 3337 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_ADD); 3338 SDValue AddrLo = 3339 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_LO); 3340 3341 SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0); 3342 SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT); 3343 SDValue MNAdd = SDValue( 3344 DAG.getMachineNode(RISCV::PseudoAddTPRel, DL, Ty, MNHi, TPReg, AddrAdd), 3345 0); 3346 return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNAdd, AddrLo), 0); 3347 } 3348 3349 SDValue RISCVTargetLowering::getDynamicTLSAddr(GlobalAddressSDNode *N, 3350 SelectionDAG &DAG) const { 3351 SDLoc DL(N); 3352 EVT Ty = getPointerTy(DAG.getDataLayout()); 3353 IntegerType *CallTy = Type::getIntNTy(*DAG.getContext(), Ty.getSizeInBits()); 3354 const GlobalValue *GV = N->getGlobal(); 3355 3356 // Use a PC-relative addressing mode to access the global dynamic GOT address. 3357 // This generates the pattern (PseudoLA_TLS_GD sym), which expands to 3358 // (addi (auipc %tls_gd_pcrel_hi(sym)) %pcrel_lo(auipc)). 3359 SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0); 3360 SDValue Load = 3361 SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_GD, DL, Ty, Addr), 0); 3362 3363 // Prepare argument list to generate call. 3364 ArgListTy Args; 3365 ArgListEntry Entry; 3366 Entry.Node = Load; 3367 Entry.Ty = CallTy; 3368 Args.push_back(Entry); 3369 3370 // Setup call to __tls_get_addr. 3371 TargetLowering::CallLoweringInfo CLI(DAG); 3372 CLI.setDebugLoc(DL) 3373 .setChain(DAG.getEntryNode()) 3374 .setLibCallee(CallingConv::C, CallTy, 3375 DAG.getExternalSymbol("__tls_get_addr", Ty), 3376 std::move(Args)); 3377 3378 return LowerCallTo(CLI).first; 3379 } 3380 3381 SDValue RISCVTargetLowering::lowerGlobalTLSAddress(SDValue Op, 3382 SelectionDAG &DAG) const { 3383 SDLoc DL(Op); 3384 EVT Ty = Op.getValueType(); 3385 GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op); 3386 int64_t Offset = N->getOffset(); 3387 MVT XLenVT = Subtarget.getXLenVT(); 3388 3389 TLSModel::Model Model = getTargetMachine().getTLSModel(N->getGlobal()); 3390 3391 if (DAG.getMachineFunction().getFunction().getCallingConv() == 3392 CallingConv::GHC) 3393 report_fatal_error("In GHC calling convention TLS is not supported"); 3394 3395 SDValue Addr; 3396 switch (Model) { 3397 case TLSModel::LocalExec: 3398 Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/false); 3399 break; 3400 case TLSModel::InitialExec: 3401 Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/true); 3402 break; 3403 case TLSModel::LocalDynamic: 3404 case TLSModel::GeneralDynamic: 3405 Addr = getDynamicTLSAddr(N, DAG); 3406 break; 3407 } 3408 3409 // In order to maximise the opportunity for common subexpression elimination, 3410 // emit a separate ADD node for the global address offset instead of folding 3411 // it in the global address node. Later peephole optimisations may choose to 3412 // fold it back in when profitable. 3413 if (Offset != 0) 3414 return DAG.getNode(ISD::ADD, DL, Ty, Addr, 3415 DAG.getConstant(Offset, DL, XLenVT)); 3416 return Addr; 3417 } 3418 3419 SDValue RISCVTargetLowering::lowerSELECT(SDValue Op, SelectionDAG &DAG) const { 3420 SDValue CondV = Op.getOperand(0); 3421 SDValue TrueV = Op.getOperand(1); 3422 SDValue FalseV = Op.getOperand(2); 3423 SDLoc DL(Op); 3424 MVT VT = Op.getSimpleValueType(); 3425 MVT XLenVT = Subtarget.getXLenVT(); 3426 3427 // Lower vector SELECTs to VSELECTs by splatting the condition. 3428 if (VT.isVector()) { 3429 MVT SplatCondVT = VT.changeVectorElementType(MVT::i1); 3430 SDValue CondSplat = VT.isScalableVector() 3431 ? DAG.getSplatVector(SplatCondVT, DL, CondV) 3432 : DAG.getSplatBuildVector(SplatCondVT, DL, CondV); 3433 return DAG.getNode(ISD::VSELECT, DL, VT, CondSplat, TrueV, FalseV); 3434 } 3435 3436 // If the result type is XLenVT and CondV is the output of a SETCC node 3437 // which also operated on XLenVT inputs, then merge the SETCC node into the 3438 // lowered RISCVISD::SELECT_CC to take advantage of the integer 3439 // compare+branch instructions. i.e.: 3440 // (select (setcc lhs, rhs, cc), truev, falsev) 3441 // -> (riscvisd::select_cc lhs, rhs, cc, truev, falsev) 3442 if (VT == XLenVT && CondV.getOpcode() == ISD::SETCC && 3443 CondV.getOperand(0).getSimpleValueType() == XLenVT) { 3444 SDValue LHS = CondV.getOperand(0); 3445 SDValue RHS = CondV.getOperand(1); 3446 const auto *CC = cast<CondCodeSDNode>(CondV.getOperand(2)); 3447 ISD::CondCode CCVal = CC->get(); 3448 3449 // Special case for a select of 2 constants that have a diffence of 1. 3450 // Normally this is done by DAGCombine, but if the select is introduced by 3451 // type legalization or op legalization, we miss it. Restricting to SETLT 3452 // case for now because that is what signed saturating add/sub need. 3453 // FIXME: We don't need the condition to be SETLT or even a SETCC, 3454 // but we would probably want to swap the true/false values if the condition 3455 // is SETGE/SETLE to avoid an XORI. 3456 if (isa<ConstantSDNode>(TrueV) && isa<ConstantSDNode>(FalseV) && 3457 CCVal == ISD::SETLT) { 3458 const APInt &TrueVal = cast<ConstantSDNode>(TrueV)->getAPIntValue(); 3459 const APInt &FalseVal = cast<ConstantSDNode>(FalseV)->getAPIntValue(); 3460 if (TrueVal - 1 == FalseVal) 3461 return DAG.getNode(ISD::ADD, DL, Op.getValueType(), CondV, FalseV); 3462 if (TrueVal + 1 == FalseVal) 3463 return DAG.getNode(ISD::SUB, DL, Op.getValueType(), FalseV, CondV); 3464 } 3465 3466 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 3467 3468 SDValue TargetCC = DAG.getCondCode(CCVal); 3469 SDValue Ops[] = {LHS, RHS, TargetCC, TrueV, FalseV}; 3470 return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops); 3471 } 3472 3473 // Otherwise: 3474 // (select condv, truev, falsev) 3475 // -> (riscvisd::select_cc condv, zero, setne, truev, falsev) 3476 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 3477 SDValue SetNE = DAG.getCondCode(ISD::SETNE); 3478 3479 SDValue Ops[] = {CondV, Zero, SetNE, TrueV, FalseV}; 3480 3481 return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops); 3482 } 3483 3484 SDValue RISCVTargetLowering::lowerBRCOND(SDValue Op, SelectionDAG &DAG) const { 3485 SDValue CondV = Op.getOperand(1); 3486 SDLoc DL(Op); 3487 MVT XLenVT = Subtarget.getXLenVT(); 3488 3489 if (CondV.getOpcode() == ISD::SETCC && 3490 CondV.getOperand(0).getValueType() == XLenVT) { 3491 SDValue LHS = CondV.getOperand(0); 3492 SDValue RHS = CondV.getOperand(1); 3493 ISD::CondCode CCVal = cast<CondCodeSDNode>(CondV.getOperand(2))->get(); 3494 3495 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 3496 3497 SDValue TargetCC = DAG.getCondCode(CCVal); 3498 return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0), 3499 LHS, RHS, TargetCC, Op.getOperand(2)); 3500 } 3501 3502 return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0), 3503 CondV, DAG.getConstant(0, DL, XLenVT), 3504 DAG.getCondCode(ISD::SETNE), Op.getOperand(2)); 3505 } 3506 3507 SDValue RISCVTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const { 3508 MachineFunction &MF = DAG.getMachineFunction(); 3509 RISCVMachineFunctionInfo *FuncInfo = MF.getInfo<RISCVMachineFunctionInfo>(); 3510 3511 SDLoc DL(Op); 3512 SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), 3513 getPointerTy(MF.getDataLayout())); 3514 3515 // vastart just stores the address of the VarArgsFrameIndex slot into the 3516 // memory location argument. 3517 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 3518 return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1), 3519 MachinePointerInfo(SV)); 3520 } 3521 3522 SDValue RISCVTargetLowering::lowerFRAMEADDR(SDValue Op, 3523 SelectionDAG &DAG) const { 3524 const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo(); 3525 MachineFunction &MF = DAG.getMachineFunction(); 3526 MachineFrameInfo &MFI = MF.getFrameInfo(); 3527 MFI.setFrameAddressIsTaken(true); 3528 Register FrameReg = RI.getFrameRegister(MF); 3529 int XLenInBytes = Subtarget.getXLen() / 8; 3530 3531 EVT VT = Op.getValueType(); 3532 SDLoc DL(Op); 3533 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, FrameReg, VT); 3534 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 3535 while (Depth--) { 3536 int Offset = -(XLenInBytes * 2); 3537 SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr, 3538 DAG.getIntPtrConstant(Offset, DL)); 3539 FrameAddr = 3540 DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo()); 3541 } 3542 return FrameAddr; 3543 } 3544 3545 SDValue RISCVTargetLowering::lowerRETURNADDR(SDValue Op, 3546 SelectionDAG &DAG) const { 3547 const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo(); 3548 MachineFunction &MF = DAG.getMachineFunction(); 3549 MachineFrameInfo &MFI = MF.getFrameInfo(); 3550 MFI.setReturnAddressIsTaken(true); 3551 MVT XLenVT = Subtarget.getXLenVT(); 3552 int XLenInBytes = Subtarget.getXLen() / 8; 3553 3554 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 3555 return SDValue(); 3556 3557 EVT VT = Op.getValueType(); 3558 SDLoc DL(Op); 3559 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 3560 if (Depth) { 3561 int Off = -XLenInBytes; 3562 SDValue FrameAddr = lowerFRAMEADDR(Op, DAG); 3563 SDValue Offset = DAG.getConstant(Off, DL, VT); 3564 return DAG.getLoad(VT, DL, DAG.getEntryNode(), 3565 DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset), 3566 MachinePointerInfo()); 3567 } 3568 3569 // Return the value of the return address register, marking it an implicit 3570 // live-in. 3571 Register Reg = MF.addLiveIn(RI.getRARegister(), getRegClassFor(XLenVT)); 3572 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, XLenVT); 3573 } 3574 3575 SDValue RISCVTargetLowering::lowerShiftLeftParts(SDValue Op, 3576 SelectionDAG &DAG) const { 3577 SDLoc DL(Op); 3578 SDValue Lo = Op.getOperand(0); 3579 SDValue Hi = Op.getOperand(1); 3580 SDValue Shamt = Op.getOperand(2); 3581 EVT VT = Lo.getValueType(); 3582 3583 // if Shamt-XLEN < 0: // Shamt < XLEN 3584 // Lo = Lo << Shamt 3585 // Hi = (Hi << Shamt) | ((Lo >>u 1) >>u (XLEN-1 - Shamt)) 3586 // else: 3587 // Lo = 0 3588 // Hi = Lo << (Shamt-XLEN) 3589 3590 SDValue Zero = DAG.getConstant(0, DL, VT); 3591 SDValue One = DAG.getConstant(1, DL, VT); 3592 SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT); 3593 SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT); 3594 SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen); 3595 SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt); 3596 3597 SDValue LoTrue = DAG.getNode(ISD::SHL, DL, VT, Lo, Shamt); 3598 SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, VT, Lo, One); 3599 SDValue ShiftRightLo = 3600 DAG.getNode(ISD::SRL, DL, VT, ShiftRight1Lo, XLenMinus1Shamt); 3601 SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, Hi, Shamt); 3602 SDValue HiTrue = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo); 3603 SDValue HiFalse = DAG.getNode(ISD::SHL, DL, VT, Lo, ShamtMinusXLen); 3604 3605 SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT); 3606 3607 Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, Zero); 3608 Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse); 3609 3610 SDValue Parts[2] = {Lo, Hi}; 3611 return DAG.getMergeValues(Parts, DL); 3612 } 3613 3614 SDValue RISCVTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG, 3615 bool IsSRA) const { 3616 SDLoc DL(Op); 3617 SDValue Lo = Op.getOperand(0); 3618 SDValue Hi = Op.getOperand(1); 3619 SDValue Shamt = Op.getOperand(2); 3620 EVT VT = Lo.getValueType(); 3621 3622 // SRA expansion: 3623 // if Shamt-XLEN < 0: // Shamt < XLEN 3624 // Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt)) 3625 // Hi = Hi >>s Shamt 3626 // else: 3627 // Lo = Hi >>s (Shamt-XLEN); 3628 // Hi = Hi >>s (XLEN-1) 3629 // 3630 // SRL expansion: 3631 // if Shamt-XLEN < 0: // Shamt < XLEN 3632 // Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt)) 3633 // Hi = Hi >>u Shamt 3634 // else: 3635 // Lo = Hi >>u (Shamt-XLEN); 3636 // Hi = 0; 3637 3638 unsigned ShiftRightOp = IsSRA ? ISD::SRA : ISD::SRL; 3639 3640 SDValue Zero = DAG.getConstant(0, DL, VT); 3641 SDValue One = DAG.getConstant(1, DL, VT); 3642 SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT); 3643 SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT); 3644 SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen); 3645 SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt); 3646 3647 SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, Lo, Shamt); 3648 SDValue ShiftLeftHi1 = DAG.getNode(ISD::SHL, DL, VT, Hi, One); 3649 SDValue ShiftLeftHi = 3650 DAG.getNode(ISD::SHL, DL, VT, ShiftLeftHi1, XLenMinus1Shamt); 3651 SDValue LoTrue = DAG.getNode(ISD::OR, DL, VT, ShiftRightLo, ShiftLeftHi); 3652 SDValue HiTrue = DAG.getNode(ShiftRightOp, DL, VT, Hi, Shamt); 3653 SDValue LoFalse = DAG.getNode(ShiftRightOp, DL, VT, Hi, ShamtMinusXLen); 3654 SDValue HiFalse = 3655 IsSRA ? DAG.getNode(ISD::SRA, DL, VT, Hi, XLenMinus1) : Zero; 3656 3657 SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT); 3658 3659 Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, LoFalse); 3660 Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse); 3661 3662 SDValue Parts[2] = {Lo, Hi}; 3663 return DAG.getMergeValues(Parts, DL); 3664 } 3665 3666 // Lower splats of i1 types to SETCC. For each mask vector type, we have a 3667 // legal equivalently-sized i8 type, so we can use that as a go-between. 3668 SDValue RISCVTargetLowering::lowerVectorMaskSplat(SDValue Op, 3669 SelectionDAG &DAG) const { 3670 SDLoc DL(Op); 3671 MVT VT = Op.getSimpleValueType(); 3672 SDValue SplatVal = Op.getOperand(0); 3673 // All-zeros or all-ones splats are handled specially. 3674 if (ISD::isConstantSplatVectorAllOnes(Op.getNode())) { 3675 SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second; 3676 return DAG.getNode(RISCVISD::VMSET_VL, DL, VT, VL); 3677 } 3678 if (ISD::isConstantSplatVectorAllZeros(Op.getNode())) { 3679 SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second; 3680 return DAG.getNode(RISCVISD::VMCLR_VL, DL, VT, VL); 3681 } 3682 MVT XLenVT = Subtarget.getXLenVT(); 3683 assert(SplatVal.getValueType() == XLenVT && 3684 "Unexpected type for i1 splat value"); 3685 MVT InterVT = VT.changeVectorElementType(MVT::i8); 3686 SplatVal = DAG.getNode(ISD::AND, DL, XLenVT, SplatVal, 3687 DAG.getConstant(1, DL, XLenVT)); 3688 SDValue LHS = DAG.getSplatVector(InterVT, DL, SplatVal); 3689 SDValue Zero = DAG.getConstant(0, DL, InterVT); 3690 return DAG.getSetCC(DL, VT, LHS, Zero, ISD::SETNE); 3691 } 3692 3693 // Custom-lower a SPLAT_VECTOR_PARTS where XLEN<SEW, as the SEW element type is 3694 // illegal (currently only vXi64 RV32). 3695 // FIXME: We could also catch non-constant sign-extended i32 values and lower 3696 // them to SPLAT_VECTOR_I64 3697 SDValue RISCVTargetLowering::lowerSPLAT_VECTOR_PARTS(SDValue Op, 3698 SelectionDAG &DAG) const { 3699 SDLoc DL(Op); 3700 MVT VecVT = Op.getSimpleValueType(); 3701 assert(!Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64 && 3702 "Unexpected SPLAT_VECTOR_PARTS lowering"); 3703 3704 assert(Op.getNumOperands() == 2 && "Unexpected number of operands!"); 3705 SDValue Lo = Op.getOperand(0); 3706 SDValue Hi = Op.getOperand(1); 3707 3708 if (VecVT.isFixedLengthVector()) { 3709 MVT ContainerVT = getContainerForFixedLengthVector(VecVT); 3710 SDLoc DL(Op); 3711 SDValue Mask, VL; 3712 std::tie(Mask, VL) = 3713 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 3714 3715 SDValue Res = splatPartsI64WithVL(DL, ContainerVT, Lo, Hi, VL, DAG); 3716 return convertFromScalableVector(VecVT, Res, DAG, Subtarget); 3717 } 3718 3719 if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) { 3720 int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue(); 3721 int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue(); 3722 // If Hi constant is all the same sign bit as Lo, lower this as a custom 3723 // node in order to try and match RVV vector/scalar instructions. 3724 if ((LoC >> 31) == HiC) 3725 return DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, Lo); 3726 } 3727 3728 // Detect cases where Hi is (SRA Lo, 31) which means Hi is Lo sign extended. 3729 if (Hi.getOpcode() == ISD::SRA && Hi.getOperand(0) == Lo && 3730 isa<ConstantSDNode>(Hi.getOperand(1)) && 3731 Hi.getConstantOperandVal(1) == 31) 3732 return DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, Lo); 3733 3734 // Fall back to use a stack store and stride x0 vector load. Use X0 as VL. 3735 return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VecVT, Lo, Hi, 3736 DAG.getTargetConstant(RISCV::VLMaxSentinel, DL, MVT::i64)); 3737 } 3738 3739 // Custom-lower extensions from mask vectors by using a vselect either with 1 3740 // for zero/any-extension or -1 for sign-extension: 3741 // (vXiN = (s|z)ext vXi1:vmask) -> (vXiN = vselect vmask, (-1 or 1), 0) 3742 // Note that any-extension is lowered identically to zero-extension. 3743 SDValue RISCVTargetLowering::lowerVectorMaskExt(SDValue Op, SelectionDAG &DAG, 3744 int64_t ExtTrueVal) const { 3745 SDLoc DL(Op); 3746 MVT VecVT = Op.getSimpleValueType(); 3747 SDValue Src = Op.getOperand(0); 3748 // Only custom-lower extensions from mask types 3749 assert(Src.getValueType().isVector() && 3750 Src.getValueType().getVectorElementType() == MVT::i1); 3751 3752 MVT XLenVT = Subtarget.getXLenVT(); 3753 SDValue SplatZero = DAG.getConstant(0, DL, XLenVT); 3754 SDValue SplatTrueVal = DAG.getConstant(ExtTrueVal, DL, XLenVT); 3755 3756 if (VecVT.isScalableVector()) { 3757 // Be careful not to introduce illegal scalar types at this stage, and be 3758 // careful also about splatting constants as on RV32, vXi64 SPLAT_VECTOR is 3759 // illegal and must be expanded. Since we know that the constants are 3760 // sign-extended 32-bit values, we use SPLAT_VECTOR_I64 directly. 3761 bool IsRV32E64 = 3762 !Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64; 3763 3764 if (!IsRV32E64) { 3765 SplatZero = DAG.getSplatVector(VecVT, DL, SplatZero); 3766 SplatTrueVal = DAG.getSplatVector(VecVT, DL, SplatTrueVal); 3767 } else { 3768 SplatZero = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, SplatZero); 3769 SplatTrueVal = 3770 DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, SplatTrueVal); 3771 } 3772 3773 return DAG.getNode(ISD::VSELECT, DL, VecVT, Src, SplatTrueVal, SplatZero); 3774 } 3775 3776 MVT ContainerVT = getContainerForFixedLengthVector(VecVT); 3777 MVT I1ContainerVT = 3778 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 3779 3780 SDValue CC = convertToScalableVector(I1ContainerVT, Src, DAG, Subtarget); 3781 3782 SDValue Mask, VL; 3783 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 3784 3785 SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatZero, VL); 3786 SplatTrueVal = 3787 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatTrueVal, VL); 3788 SDValue Select = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC, 3789 SplatTrueVal, SplatZero, VL); 3790 3791 return convertFromScalableVector(VecVT, Select, DAG, Subtarget); 3792 } 3793 3794 SDValue RISCVTargetLowering::lowerFixedLengthVectorExtendToRVV( 3795 SDValue Op, SelectionDAG &DAG, unsigned ExtendOpc) const { 3796 MVT ExtVT = Op.getSimpleValueType(); 3797 // Only custom-lower extensions from fixed-length vector types. 3798 if (!ExtVT.isFixedLengthVector()) 3799 return Op; 3800 MVT VT = Op.getOperand(0).getSimpleValueType(); 3801 // Grab the canonical container type for the extended type. Infer the smaller 3802 // type from that to ensure the same number of vector elements, as we know 3803 // the LMUL will be sufficient to hold the smaller type. 3804 MVT ContainerExtVT = getContainerForFixedLengthVector(ExtVT); 3805 // Get the extended container type manually to ensure the same number of 3806 // vector elements between source and dest. 3807 MVT ContainerVT = MVT::getVectorVT(VT.getVectorElementType(), 3808 ContainerExtVT.getVectorElementCount()); 3809 3810 SDValue Op1 = 3811 convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget); 3812 3813 SDLoc DL(Op); 3814 SDValue Mask, VL; 3815 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 3816 3817 SDValue Ext = DAG.getNode(ExtendOpc, DL, ContainerExtVT, Op1, Mask, VL); 3818 3819 return convertFromScalableVector(ExtVT, Ext, DAG, Subtarget); 3820 } 3821 3822 // Custom-lower truncations from vectors to mask vectors by using a mask and a 3823 // setcc operation: 3824 // (vXi1 = trunc vXiN vec) -> (vXi1 = setcc (and vec, 1), 0, ne) 3825 SDValue RISCVTargetLowering::lowerVectorMaskTrunc(SDValue Op, 3826 SelectionDAG &DAG) const { 3827 SDLoc DL(Op); 3828 EVT MaskVT = Op.getValueType(); 3829 // Only expect to custom-lower truncations to mask types 3830 assert(MaskVT.isVector() && MaskVT.getVectorElementType() == MVT::i1 && 3831 "Unexpected type for vector mask lowering"); 3832 SDValue Src = Op.getOperand(0); 3833 MVT VecVT = Src.getSimpleValueType(); 3834 3835 // If this is a fixed vector, we need to convert it to a scalable vector. 3836 MVT ContainerVT = VecVT; 3837 if (VecVT.isFixedLengthVector()) { 3838 ContainerVT = getContainerForFixedLengthVector(VecVT); 3839 Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget); 3840 } 3841 3842 SDValue SplatOne = DAG.getConstant(1, DL, Subtarget.getXLenVT()); 3843 SDValue SplatZero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 3844 3845 SplatOne = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatOne); 3846 SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatZero); 3847 3848 if (VecVT.isScalableVector()) { 3849 SDValue Trunc = DAG.getNode(ISD::AND, DL, VecVT, Src, SplatOne); 3850 return DAG.getSetCC(DL, MaskVT, Trunc, SplatZero, ISD::SETNE); 3851 } 3852 3853 SDValue Mask, VL; 3854 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 3855 3856 MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1); 3857 SDValue Trunc = 3858 DAG.getNode(RISCVISD::AND_VL, DL, ContainerVT, Src, SplatOne, Mask, VL); 3859 Trunc = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskContainerVT, Trunc, SplatZero, 3860 DAG.getCondCode(ISD::SETNE), Mask, VL); 3861 return convertFromScalableVector(MaskVT, Trunc, DAG, Subtarget); 3862 } 3863 3864 // Custom-legalize INSERT_VECTOR_ELT so that the value is inserted into the 3865 // first position of a vector, and that vector is slid up to the insert index. 3866 // By limiting the active vector length to index+1 and merging with the 3867 // original vector (with an undisturbed tail policy for elements >= VL), we 3868 // achieve the desired result of leaving all elements untouched except the one 3869 // at VL-1, which is replaced with the desired value. 3870 SDValue RISCVTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op, 3871 SelectionDAG &DAG) const { 3872 SDLoc DL(Op); 3873 MVT VecVT = Op.getSimpleValueType(); 3874 SDValue Vec = Op.getOperand(0); 3875 SDValue Val = Op.getOperand(1); 3876 SDValue Idx = Op.getOperand(2); 3877 3878 if (VecVT.getVectorElementType() == MVT::i1) { 3879 // FIXME: For now we just promote to an i8 vector and insert into that, 3880 // but this is probably not optimal. 3881 MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount()); 3882 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec); 3883 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, WideVT, Vec, Val, Idx); 3884 return DAG.getNode(ISD::TRUNCATE, DL, VecVT, Vec); 3885 } 3886 3887 MVT ContainerVT = VecVT; 3888 // If the operand is a fixed-length vector, convert to a scalable one. 3889 if (VecVT.isFixedLengthVector()) { 3890 ContainerVT = getContainerForFixedLengthVector(VecVT); 3891 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 3892 } 3893 3894 MVT XLenVT = Subtarget.getXLenVT(); 3895 3896 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 3897 bool IsLegalInsert = Subtarget.is64Bit() || Val.getValueType() != MVT::i64; 3898 // Even i64-element vectors on RV32 can be lowered without scalar 3899 // legalization if the most-significant 32 bits of the value are not affected 3900 // by the sign-extension of the lower 32 bits. 3901 // TODO: We could also catch sign extensions of a 32-bit value. 3902 if (!IsLegalInsert && isa<ConstantSDNode>(Val)) { 3903 const auto *CVal = cast<ConstantSDNode>(Val); 3904 if (isInt<32>(CVal->getSExtValue())) { 3905 IsLegalInsert = true; 3906 Val = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32); 3907 } 3908 } 3909 3910 SDValue Mask, VL; 3911 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 3912 3913 SDValue ValInVec; 3914 3915 if (IsLegalInsert) { 3916 unsigned Opc = 3917 VecVT.isFloatingPoint() ? RISCVISD::VFMV_S_F_VL : RISCVISD::VMV_S_X_VL; 3918 if (isNullConstant(Idx)) { 3919 Vec = DAG.getNode(Opc, DL, ContainerVT, Vec, Val, VL); 3920 if (!VecVT.isFixedLengthVector()) 3921 return Vec; 3922 return convertFromScalableVector(VecVT, Vec, DAG, Subtarget); 3923 } 3924 ValInVec = 3925 DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), Val, VL); 3926 } else { 3927 // On RV32, i64-element vectors must be specially handled to place the 3928 // value at element 0, by using two vslide1up instructions in sequence on 3929 // the i32 split lo/hi value. Use an equivalently-sized i32 vector for 3930 // this. 3931 SDValue One = DAG.getConstant(1, DL, XLenVT); 3932 SDValue ValLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, Zero); 3933 SDValue ValHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, One); 3934 MVT I32ContainerVT = 3935 MVT::getVectorVT(MVT::i32, ContainerVT.getVectorElementCount() * 2); 3936 SDValue I32Mask = 3937 getDefaultScalableVLOps(I32ContainerVT, DL, DAG, Subtarget).first; 3938 // Limit the active VL to two. 3939 SDValue InsertI64VL = DAG.getConstant(2, DL, XLenVT); 3940 // Note: We can't pass a UNDEF to the first VSLIDE1UP_VL since an untied 3941 // undef doesn't obey the earlyclobber constraint. Just splat a zero value. 3942 ValInVec = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, I32ContainerVT, Zero, 3943 InsertI64VL); 3944 // First slide in the hi value, then the lo in underneath it. 3945 ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT, ValInVec, 3946 ValHi, I32Mask, InsertI64VL); 3947 ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT, ValInVec, 3948 ValLo, I32Mask, InsertI64VL); 3949 // Bitcast back to the right container type. 3950 ValInVec = DAG.getBitcast(ContainerVT, ValInVec); 3951 } 3952 3953 // Now that the value is in a vector, slide it into position. 3954 SDValue InsertVL = 3955 DAG.getNode(ISD::ADD, DL, XLenVT, Idx, DAG.getConstant(1, DL, XLenVT)); 3956 SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec, 3957 ValInVec, Idx, Mask, InsertVL); 3958 if (!VecVT.isFixedLengthVector()) 3959 return Slideup; 3960 return convertFromScalableVector(VecVT, Slideup, DAG, Subtarget); 3961 } 3962 3963 // Custom-lower EXTRACT_VECTOR_ELT operations to slide the vector down, then 3964 // extract the first element: (extractelt (slidedown vec, idx), 0). For integer 3965 // types this is done using VMV_X_S to allow us to glean information about the 3966 // sign bits of the result. 3967 SDValue RISCVTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op, 3968 SelectionDAG &DAG) const { 3969 SDLoc DL(Op); 3970 SDValue Idx = Op.getOperand(1); 3971 SDValue Vec = Op.getOperand(0); 3972 EVT EltVT = Op.getValueType(); 3973 MVT VecVT = Vec.getSimpleValueType(); 3974 MVT XLenVT = Subtarget.getXLenVT(); 3975 3976 if (VecVT.getVectorElementType() == MVT::i1) { 3977 // FIXME: For now we just promote to an i8 vector and extract from that, 3978 // but this is probably not optimal. 3979 MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount()); 3980 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec); 3981 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec, Idx); 3982 } 3983 3984 // If this is a fixed vector, we need to convert it to a scalable vector. 3985 MVT ContainerVT = VecVT; 3986 if (VecVT.isFixedLengthVector()) { 3987 ContainerVT = getContainerForFixedLengthVector(VecVT); 3988 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 3989 } 3990 3991 // If the index is 0, the vector is already in the right position. 3992 if (!isNullConstant(Idx)) { 3993 // Use a VL of 1 to avoid processing more elements than we need. 3994 SDValue VL = DAG.getConstant(1, DL, XLenVT); 3995 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 3996 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 3997 Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 3998 DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL); 3999 } 4000 4001 if (!EltVT.isInteger()) { 4002 // Floating-point extracts are handled in TableGen. 4003 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec, 4004 DAG.getConstant(0, DL, XLenVT)); 4005 } 4006 4007 SDValue Elt0 = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); 4008 return DAG.getNode(ISD::TRUNCATE, DL, EltVT, Elt0); 4009 } 4010 4011 // Some RVV intrinsics may claim that they want an integer operand to be 4012 // promoted or expanded. 4013 static SDValue lowerVectorIntrinsicSplats(SDValue Op, SelectionDAG &DAG, 4014 const RISCVSubtarget &Subtarget) { 4015 assert((Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 4016 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN) && 4017 "Unexpected opcode"); 4018 4019 if (!Subtarget.hasVInstructions()) 4020 return SDValue(); 4021 4022 bool HasChain = Op.getOpcode() == ISD::INTRINSIC_W_CHAIN; 4023 unsigned IntNo = Op.getConstantOperandVal(HasChain ? 1 : 0); 4024 SDLoc DL(Op); 4025 4026 const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II = 4027 RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo); 4028 if (!II || !II->SplatOperand) 4029 return SDValue(); 4030 4031 unsigned SplatOp = II->SplatOperand + HasChain; 4032 assert(SplatOp < Op.getNumOperands()); 4033 4034 SmallVector<SDValue, 8> Operands(Op->op_begin(), Op->op_end()); 4035 SDValue &ScalarOp = Operands[SplatOp]; 4036 MVT OpVT = ScalarOp.getSimpleValueType(); 4037 MVT XLenVT = Subtarget.getXLenVT(); 4038 4039 // If this isn't a scalar, or its type is XLenVT we're done. 4040 if (!OpVT.isScalarInteger() || OpVT == XLenVT) 4041 return SDValue(); 4042 4043 // Simplest case is that the operand needs to be promoted to XLenVT. 4044 if (OpVT.bitsLT(XLenVT)) { 4045 // If the operand is a constant, sign extend to increase our chances 4046 // of being able to use a .vi instruction. ANY_EXTEND would become a 4047 // a zero extend and the simm5 check in isel would fail. 4048 // FIXME: Should we ignore the upper bits in isel instead? 4049 unsigned ExtOpc = 4050 isa<ConstantSDNode>(ScalarOp) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND; 4051 ScalarOp = DAG.getNode(ExtOpc, DL, XLenVT, ScalarOp); 4052 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); 4053 } 4054 4055 // Use the previous operand to get the vXi64 VT. The result might be a mask 4056 // VT for compares. Using the previous operand assumes that the previous 4057 // operand will never have a smaller element size than a scalar operand and 4058 // that a widening operation never uses SEW=64. 4059 // NOTE: If this fails the below assert, we can probably just find the 4060 // element count from any operand or result and use it to construct the VT. 4061 assert(II->SplatOperand > 1 && "Unexpected splat operand!"); 4062 MVT VT = Op.getOperand(SplatOp - 1).getSimpleValueType(); 4063 4064 // The more complex case is when the scalar is larger than XLenVT. 4065 assert(XLenVT == MVT::i32 && OpVT == MVT::i64 && 4066 VT.getVectorElementType() == MVT::i64 && "Unexpected VTs!"); 4067 4068 // If this is a sign-extended 32-bit constant, we can truncate it and rely 4069 // on the instruction to sign-extend since SEW>XLEN. 4070 if (auto *CVal = dyn_cast<ConstantSDNode>(ScalarOp)) { 4071 if (isInt<32>(CVal->getSExtValue())) { 4072 ScalarOp = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32); 4073 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); 4074 } 4075 } 4076 4077 // We need to convert the scalar to a splat vector. 4078 // FIXME: Can we implicitly truncate the scalar if it is known to 4079 // be sign extended? 4080 // VL should be the last operand. 4081 SDValue VL = Op.getOperand(Op.getNumOperands() - 1); 4082 assert(VL.getValueType() == XLenVT); 4083 ScalarOp = splatSplitI64WithVL(DL, VT, ScalarOp, VL, DAG); 4084 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); 4085 } 4086 4087 SDValue RISCVTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 4088 SelectionDAG &DAG) const { 4089 unsigned IntNo = Op.getConstantOperandVal(0); 4090 SDLoc DL(Op); 4091 MVT XLenVT = Subtarget.getXLenVT(); 4092 4093 switch (IntNo) { 4094 default: 4095 break; // Don't custom lower most intrinsics. 4096 case Intrinsic::thread_pointer: { 4097 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 4098 return DAG.getRegister(RISCV::X4, PtrVT); 4099 } 4100 case Intrinsic::riscv_orc_b: 4101 // Lower to the GORCI encoding for orc.b. 4102 return DAG.getNode(RISCVISD::GORC, DL, XLenVT, Op.getOperand(1), 4103 DAG.getConstant(7, DL, XLenVT)); 4104 case Intrinsic::riscv_grev: 4105 case Intrinsic::riscv_gorc: { 4106 unsigned Opc = 4107 IntNo == Intrinsic::riscv_grev ? RISCVISD::GREV : RISCVISD::GORC; 4108 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2)); 4109 } 4110 case Intrinsic::riscv_shfl: 4111 case Intrinsic::riscv_unshfl: { 4112 unsigned Opc = 4113 IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL; 4114 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2)); 4115 } 4116 case Intrinsic::riscv_bcompress: 4117 case Intrinsic::riscv_bdecompress: { 4118 unsigned Opc = IntNo == Intrinsic::riscv_bcompress ? RISCVISD::BCOMPRESS 4119 : RISCVISD::BDECOMPRESS; 4120 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2)); 4121 } 4122 case Intrinsic::riscv_vmv_x_s: 4123 assert(Op.getValueType() == XLenVT && "Unexpected VT!"); 4124 return DAG.getNode(RISCVISD::VMV_X_S, DL, Op.getValueType(), 4125 Op.getOperand(1)); 4126 case Intrinsic::riscv_vmv_v_x: 4127 return lowerScalarSplat(Op.getOperand(1), Op.getOperand(2), 4128 Op.getSimpleValueType(), DL, DAG, Subtarget); 4129 case Intrinsic::riscv_vfmv_v_f: 4130 return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, Op.getValueType(), 4131 Op.getOperand(1), Op.getOperand(2)); 4132 case Intrinsic::riscv_vmv_s_x: { 4133 SDValue Scalar = Op.getOperand(2); 4134 4135 if (Scalar.getValueType().bitsLE(XLenVT)) { 4136 Scalar = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Scalar); 4137 return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, Op.getValueType(), 4138 Op.getOperand(1), Scalar, Op.getOperand(3)); 4139 } 4140 4141 assert(Scalar.getValueType() == MVT::i64 && "Unexpected scalar VT!"); 4142 4143 // This is an i64 value that lives in two scalar registers. We have to 4144 // insert this in a convoluted way. First we build vXi64 splat containing 4145 // the/ two values that we assemble using some bit math. Next we'll use 4146 // vid.v and vmseq to build a mask with bit 0 set. Then we'll use that mask 4147 // to merge element 0 from our splat into the source vector. 4148 // FIXME: This is probably not the best way to do this, but it is 4149 // consistent with INSERT_VECTOR_ELT lowering so it is a good starting 4150 // point. 4151 // sw lo, (a0) 4152 // sw hi, 4(a0) 4153 // vlse vX, (a0) 4154 // 4155 // vid.v vVid 4156 // vmseq.vx mMask, vVid, 0 4157 // vmerge.vvm vDest, vSrc, vVal, mMask 4158 MVT VT = Op.getSimpleValueType(); 4159 SDValue Vec = Op.getOperand(1); 4160 SDValue VL = Op.getOperand(3); 4161 4162 SDValue SplattedVal = splatSplitI64WithVL(DL, VT, Scalar, VL, DAG); 4163 SDValue SplattedIdx = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, 4164 DAG.getConstant(0, DL, MVT::i32), VL); 4165 4166 MVT MaskVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount()); 4167 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 4168 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL); 4169 SDValue SelectCond = 4170 DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, VID, SplattedIdx, 4171 DAG.getCondCode(ISD::SETEQ), Mask, VL); 4172 return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, SelectCond, SplattedVal, 4173 Vec, VL); 4174 } 4175 case Intrinsic::riscv_vslide1up: 4176 case Intrinsic::riscv_vslide1down: 4177 case Intrinsic::riscv_vslide1up_mask: 4178 case Intrinsic::riscv_vslide1down_mask: { 4179 // We need to special case these when the scalar is larger than XLen. 4180 unsigned NumOps = Op.getNumOperands(); 4181 bool IsMasked = NumOps == 7; 4182 unsigned OpOffset = IsMasked ? 1 : 0; 4183 SDValue Scalar = Op.getOperand(2 + OpOffset); 4184 if (Scalar.getValueType().bitsLE(XLenVT)) 4185 break; 4186 4187 // Splatting a sign extended constant is fine. 4188 if (auto *CVal = dyn_cast<ConstantSDNode>(Scalar)) 4189 if (isInt<32>(CVal->getSExtValue())) 4190 break; 4191 4192 MVT VT = Op.getSimpleValueType(); 4193 assert(VT.getVectorElementType() == MVT::i64 && 4194 Scalar.getValueType() == MVT::i64 && "Unexpected VTs"); 4195 4196 // Convert the vector source to the equivalent nxvXi32 vector. 4197 MVT I32VT = MVT::getVectorVT(MVT::i32, VT.getVectorElementCount() * 2); 4198 SDValue Vec = DAG.getBitcast(I32VT, Op.getOperand(1 + OpOffset)); 4199 4200 SDValue ScalarLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 4201 DAG.getConstant(0, DL, XLenVT)); 4202 SDValue ScalarHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 4203 DAG.getConstant(1, DL, XLenVT)); 4204 4205 // Double the VL since we halved SEW. 4206 SDValue VL = Op.getOperand(NumOps - (1 + OpOffset)); 4207 SDValue I32VL = 4208 DAG.getNode(ISD::SHL, DL, XLenVT, VL, DAG.getConstant(1, DL, XLenVT)); 4209 4210 MVT I32MaskVT = MVT::getVectorVT(MVT::i1, I32VT.getVectorElementCount()); 4211 SDValue I32Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, I32MaskVT, VL); 4212 4213 // Shift the two scalar parts in using SEW=32 slide1up/slide1down 4214 // instructions. 4215 if (IntNo == Intrinsic::riscv_vslide1up || 4216 IntNo == Intrinsic::riscv_vslide1up_mask) { 4217 Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Vec, ScalarHi, 4218 I32Mask, I32VL); 4219 Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Vec, ScalarLo, 4220 I32Mask, I32VL); 4221 } else { 4222 Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Vec, ScalarLo, 4223 I32Mask, I32VL); 4224 Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Vec, ScalarHi, 4225 I32Mask, I32VL); 4226 } 4227 4228 // Convert back to nxvXi64. 4229 Vec = DAG.getBitcast(VT, Vec); 4230 4231 if (!IsMasked) 4232 return Vec; 4233 4234 // Apply mask after the operation. 4235 SDValue Mask = Op.getOperand(NumOps - 3); 4236 SDValue MaskedOff = Op.getOperand(1); 4237 return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, Mask, Vec, MaskedOff, VL); 4238 } 4239 } 4240 4241 return lowerVectorIntrinsicSplats(Op, DAG, Subtarget); 4242 } 4243 4244 SDValue RISCVTargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op, 4245 SelectionDAG &DAG) const { 4246 unsigned IntNo = Op.getConstantOperandVal(1); 4247 switch (IntNo) { 4248 default: 4249 break; 4250 case Intrinsic::riscv_masked_strided_load: { 4251 SDLoc DL(Op); 4252 MVT XLenVT = Subtarget.getXLenVT(); 4253 4254 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 4255 // the selection of the masked intrinsics doesn't do this for us. 4256 SDValue Mask = Op.getOperand(5); 4257 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 4258 4259 MVT VT = Op->getSimpleValueType(0); 4260 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4261 4262 SDValue PassThru = Op.getOperand(2); 4263 if (!IsUnmasked) { 4264 MVT MaskVT = 4265 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4266 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 4267 PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget); 4268 } 4269 4270 SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT); 4271 4272 SDValue IntID = DAG.getTargetConstant( 4273 IsUnmasked ? Intrinsic::riscv_vlse : Intrinsic::riscv_vlse_mask, DL, 4274 XLenVT); 4275 4276 auto *Load = cast<MemIntrinsicSDNode>(Op); 4277 SmallVector<SDValue, 8> Ops{Load->getChain(), IntID}; 4278 if (!IsUnmasked) 4279 Ops.push_back(PassThru); 4280 Ops.push_back(Op.getOperand(3)); // Ptr 4281 Ops.push_back(Op.getOperand(4)); // Stride 4282 if (!IsUnmasked) 4283 Ops.push_back(Mask); 4284 Ops.push_back(VL); 4285 if (!IsUnmasked) { 4286 SDValue Policy = DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT); 4287 Ops.push_back(Policy); 4288 } 4289 4290 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 4291 SDValue Result = 4292 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, 4293 Load->getMemoryVT(), Load->getMemOperand()); 4294 SDValue Chain = Result.getValue(1); 4295 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 4296 return DAG.getMergeValues({Result, Chain}, DL); 4297 } 4298 } 4299 4300 return lowerVectorIntrinsicSplats(Op, DAG, Subtarget); 4301 } 4302 4303 SDValue RISCVTargetLowering::LowerINTRINSIC_VOID(SDValue Op, 4304 SelectionDAG &DAG) const { 4305 unsigned IntNo = Op.getConstantOperandVal(1); 4306 switch (IntNo) { 4307 default: 4308 break; 4309 case Intrinsic::riscv_masked_strided_store: { 4310 SDLoc DL(Op); 4311 MVT XLenVT = Subtarget.getXLenVT(); 4312 4313 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 4314 // the selection of the masked intrinsics doesn't do this for us. 4315 SDValue Mask = Op.getOperand(5); 4316 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 4317 4318 SDValue Val = Op.getOperand(2); 4319 MVT VT = Val.getSimpleValueType(); 4320 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4321 4322 Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget); 4323 if (!IsUnmasked) { 4324 MVT MaskVT = 4325 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4326 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 4327 } 4328 4329 SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT); 4330 4331 SDValue IntID = DAG.getTargetConstant( 4332 IsUnmasked ? Intrinsic::riscv_vsse : Intrinsic::riscv_vsse_mask, DL, 4333 XLenVT); 4334 4335 auto *Store = cast<MemIntrinsicSDNode>(Op); 4336 SmallVector<SDValue, 8> Ops{Store->getChain(), IntID}; 4337 Ops.push_back(Val); 4338 Ops.push_back(Op.getOperand(3)); // Ptr 4339 Ops.push_back(Op.getOperand(4)); // Stride 4340 if (!IsUnmasked) 4341 Ops.push_back(Mask); 4342 Ops.push_back(VL); 4343 4344 return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, Store->getVTList(), 4345 Ops, Store->getMemoryVT(), 4346 Store->getMemOperand()); 4347 } 4348 } 4349 4350 return SDValue(); 4351 } 4352 4353 static MVT getLMUL1VT(MVT VT) { 4354 assert(VT.getVectorElementType().getSizeInBits() <= 64 && 4355 "Unexpected vector MVT"); 4356 return MVT::getScalableVectorVT( 4357 VT.getVectorElementType(), 4358 RISCV::RVVBitsPerBlock / VT.getVectorElementType().getSizeInBits()); 4359 } 4360 4361 static unsigned getRVVReductionOp(unsigned ISDOpcode) { 4362 switch (ISDOpcode) { 4363 default: 4364 llvm_unreachable("Unhandled reduction"); 4365 case ISD::VECREDUCE_ADD: 4366 return RISCVISD::VECREDUCE_ADD_VL; 4367 case ISD::VECREDUCE_UMAX: 4368 return RISCVISD::VECREDUCE_UMAX_VL; 4369 case ISD::VECREDUCE_SMAX: 4370 return RISCVISD::VECREDUCE_SMAX_VL; 4371 case ISD::VECREDUCE_UMIN: 4372 return RISCVISD::VECREDUCE_UMIN_VL; 4373 case ISD::VECREDUCE_SMIN: 4374 return RISCVISD::VECREDUCE_SMIN_VL; 4375 case ISD::VECREDUCE_AND: 4376 return RISCVISD::VECREDUCE_AND_VL; 4377 case ISD::VECREDUCE_OR: 4378 return RISCVISD::VECREDUCE_OR_VL; 4379 case ISD::VECREDUCE_XOR: 4380 return RISCVISD::VECREDUCE_XOR_VL; 4381 } 4382 } 4383 4384 SDValue RISCVTargetLowering::lowerVectorMaskVecReduction(SDValue Op, 4385 SelectionDAG &DAG, 4386 bool IsVP) const { 4387 SDLoc DL(Op); 4388 SDValue Vec = Op.getOperand(IsVP ? 1 : 0); 4389 MVT VecVT = Vec.getSimpleValueType(); 4390 assert((Op.getOpcode() == ISD::VECREDUCE_AND || 4391 Op.getOpcode() == ISD::VECREDUCE_OR || 4392 Op.getOpcode() == ISD::VECREDUCE_XOR || 4393 Op.getOpcode() == ISD::VP_REDUCE_AND || 4394 Op.getOpcode() == ISD::VP_REDUCE_OR || 4395 Op.getOpcode() == ISD::VP_REDUCE_XOR) && 4396 "Unexpected reduction lowering"); 4397 4398 MVT XLenVT = Subtarget.getXLenVT(); 4399 assert(Op.getValueType() == XLenVT && 4400 "Expected reduction output to be legalized to XLenVT"); 4401 4402 MVT ContainerVT = VecVT; 4403 if (VecVT.isFixedLengthVector()) { 4404 ContainerVT = getContainerForFixedLengthVector(VecVT); 4405 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 4406 } 4407 4408 SDValue Mask, VL; 4409 if (IsVP) { 4410 Mask = Op.getOperand(2); 4411 VL = Op.getOperand(3); 4412 } else { 4413 std::tie(Mask, VL) = 4414 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 4415 } 4416 4417 unsigned BaseOpc; 4418 ISD::CondCode CC; 4419 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 4420 4421 switch (Op.getOpcode()) { 4422 default: 4423 llvm_unreachable("Unhandled reduction"); 4424 case ISD::VECREDUCE_AND: 4425 case ISD::VP_REDUCE_AND: { 4426 // vcpop ~x == 0 4427 SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL); 4428 Vec = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Vec, TrueMask, VL); 4429 Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL); 4430 CC = ISD::SETEQ; 4431 BaseOpc = ISD::AND; 4432 break; 4433 } 4434 case ISD::VECREDUCE_OR: 4435 case ISD::VP_REDUCE_OR: 4436 // vcpop x != 0 4437 Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL); 4438 CC = ISD::SETNE; 4439 BaseOpc = ISD::OR; 4440 break; 4441 case ISD::VECREDUCE_XOR: 4442 case ISD::VP_REDUCE_XOR: { 4443 // ((vcpop x) & 1) != 0 4444 SDValue One = DAG.getConstant(1, DL, XLenVT); 4445 Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL); 4446 Vec = DAG.getNode(ISD::AND, DL, XLenVT, Vec, One); 4447 CC = ISD::SETNE; 4448 BaseOpc = ISD::XOR; 4449 break; 4450 } 4451 } 4452 4453 SDValue SetCC = DAG.getSetCC(DL, XLenVT, Vec, Zero, CC); 4454 4455 if (!IsVP) 4456 return SetCC; 4457 4458 // Now include the start value in the operation. 4459 // Note that we must return the start value when no elements are operated 4460 // upon. The vcpop instructions we've emitted in each case above will return 4461 // 0 for an inactive vector, and so we've already received the neutral value: 4462 // AND gives us (0 == 0) -> 1 and OR/XOR give us (0 != 0) -> 0. Therefore we 4463 // can simply include the start value. 4464 return DAG.getNode(BaseOpc, DL, XLenVT, SetCC, Op.getOperand(0)); 4465 } 4466 4467 SDValue RISCVTargetLowering::lowerVECREDUCE(SDValue Op, 4468 SelectionDAG &DAG) const { 4469 SDLoc DL(Op); 4470 SDValue Vec = Op.getOperand(0); 4471 EVT VecEVT = Vec.getValueType(); 4472 4473 unsigned BaseOpc = ISD::getVecReduceBaseOpcode(Op.getOpcode()); 4474 4475 // Due to ordering in legalize types we may have a vector type that needs to 4476 // be split. Do that manually so we can get down to a legal type. 4477 while (getTypeAction(*DAG.getContext(), VecEVT) == 4478 TargetLowering::TypeSplitVector) { 4479 SDValue Lo, Hi; 4480 std::tie(Lo, Hi) = DAG.SplitVector(Vec, DL); 4481 VecEVT = Lo.getValueType(); 4482 Vec = DAG.getNode(BaseOpc, DL, VecEVT, Lo, Hi); 4483 } 4484 4485 // TODO: The type may need to be widened rather than split. Or widened before 4486 // it can be split. 4487 if (!isTypeLegal(VecEVT)) 4488 return SDValue(); 4489 4490 MVT VecVT = VecEVT.getSimpleVT(); 4491 MVT VecEltVT = VecVT.getVectorElementType(); 4492 unsigned RVVOpcode = getRVVReductionOp(Op.getOpcode()); 4493 4494 MVT ContainerVT = VecVT; 4495 if (VecVT.isFixedLengthVector()) { 4496 ContainerVT = getContainerForFixedLengthVector(VecVT); 4497 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 4498 } 4499 4500 MVT M1VT = getLMUL1VT(ContainerVT); 4501 MVT XLenVT = Subtarget.getXLenVT(); 4502 4503 SDValue Mask, VL; 4504 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 4505 4506 SDValue NeutralElem = 4507 DAG.getNeutralElement(BaseOpc, DL, VecEltVT, SDNodeFlags()); 4508 SDValue IdentitySplat = lowerScalarSplat( 4509 NeutralElem, DAG.getConstant(1, DL, XLenVT), M1VT, DL, DAG, Subtarget); 4510 SDValue Reduction = DAG.getNode(RVVOpcode, DL, M1VT, DAG.getUNDEF(M1VT), Vec, 4511 IdentitySplat, Mask, VL); 4512 SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction, 4513 DAG.getConstant(0, DL, XLenVT)); 4514 return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType()); 4515 } 4516 4517 // Given a reduction op, this function returns the matching reduction opcode, 4518 // the vector SDValue and the scalar SDValue required to lower this to a 4519 // RISCVISD node. 4520 static std::tuple<unsigned, SDValue, SDValue> 4521 getRVVFPReductionOpAndOperands(SDValue Op, SelectionDAG &DAG, EVT EltVT) { 4522 SDLoc DL(Op); 4523 auto Flags = Op->getFlags(); 4524 unsigned Opcode = Op.getOpcode(); 4525 unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Opcode); 4526 switch (Opcode) { 4527 default: 4528 llvm_unreachable("Unhandled reduction"); 4529 case ISD::VECREDUCE_FADD: 4530 return std::make_tuple(RISCVISD::VECREDUCE_FADD_VL, Op.getOperand(0), 4531 DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags)); 4532 case ISD::VECREDUCE_SEQ_FADD: 4533 return std::make_tuple(RISCVISD::VECREDUCE_SEQ_FADD_VL, Op.getOperand(1), 4534 Op.getOperand(0)); 4535 case ISD::VECREDUCE_FMIN: 4536 return std::make_tuple(RISCVISD::VECREDUCE_FMIN_VL, Op.getOperand(0), 4537 DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags)); 4538 case ISD::VECREDUCE_FMAX: 4539 return std::make_tuple(RISCVISD::VECREDUCE_FMAX_VL, Op.getOperand(0), 4540 DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags)); 4541 } 4542 } 4543 4544 SDValue RISCVTargetLowering::lowerFPVECREDUCE(SDValue Op, 4545 SelectionDAG &DAG) const { 4546 SDLoc DL(Op); 4547 MVT VecEltVT = Op.getSimpleValueType(); 4548 4549 unsigned RVVOpcode; 4550 SDValue VectorVal, ScalarVal; 4551 std::tie(RVVOpcode, VectorVal, ScalarVal) = 4552 getRVVFPReductionOpAndOperands(Op, DAG, VecEltVT); 4553 MVT VecVT = VectorVal.getSimpleValueType(); 4554 4555 MVT ContainerVT = VecVT; 4556 if (VecVT.isFixedLengthVector()) { 4557 ContainerVT = getContainerForFixedLengthVector(VecVT); 4558 VectorVal = convertToScalableVector(ContainerVT, VectorVal, DAG, Subtarget); 4559 } 4560 4561 MVT M1VT = getLMUL1VT(VectorVal.getSimpleValueType()); 4562 MVT XLenVT = Subtarget.getXLenVT(); 4563 4564 SDValue Mask, VL; 4565 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 4566 4567 SDValue ScalarSplat = lowerScalarSplat( 4568 ScalarVal, DAG.getConstant(1, DL, XLenVT), M1VT, DL, DAG, Subtarget); 4569 SDValue Reduction = DAG.getNode(RVVOpcode, DL, M1VT, DAG.getUNDEF(M1VT), 4570 VectorVal, ScalarSplat, Mask, VL); 4571 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction, 4572 DAG.getConstant(0, DL, XLenVT)); 4573 } 4574 4575 static unsigned getRVVVPReductionOp(unsigned ISDOpcode) { 4576 switch (ISDOpcode) { 4577 default: 4578 llvm_unreachable("Unhandled reduction"); 4579 case ISD::VP_REDUCE_ADD: 4580 return RISCVISD::VECREDUCE_ADD_VL; 4581 case ISD::VP_REDUCE_UMAX: 4582 return RISCVISD::VECREDUCE_UMAX_VL; 4583 case ISD::VP_REDUCE_SMAX: 4584 return RISCVISD::VECREDUCE_SMAX_VL; 4585 case ISD::VP_REDUCE_UMIN: 4586 return RISCVISD::VECREDUCE_UMIN_VL; 4587 case ISD::VP_REDUCE_SMIN: 4588 return RISCVISD::VECREDUCE_SMIN_VL; 4589 case ISD::VP_REDUCE_AND: 4590 return RISCVISD::VECREDUCE_AND_VL; 4591 case ISD::VP_REDUCE_OR: 4592 return RISCVISD::VECREDUCE_OR_VL; 4593 case ISD::VP_REDUCE_XOR: 4594 return RISCVISD::VECREDUCE_XOR_VL; 4595 case ISD::VP_REDUCE_FADD: 4596 return RISCVISD::VECREDUCE_FADD_VL; 4597 case ISD::VP_REDUCE_SEQ_FADD: 4598 return RISCVISD::VECREDUCE_SEQ_FADD_VL; 4599 case ISD::VP_REDUCE_FMAX: 4600 return RISCVISD::VECREDUCE_FMAX_VL; 4601 case ISD::VP_REDUCE_FMIN: 4602 return RISCVISD::VECREDUCE_FMIN_VL; 4603 } 4604 } 4605 4606 SDValue RISCVTargetLowering::lowerVPREDUCE(SDValue Op, 4607 SelectionDAG &DAG) const { 4608 SDLoc DL(Op); 4609 SDValue Vec = Op.getOperand(1); 4610 EVT VecEVT = Vec.getValueType(); 4611 4612 // TODO: The type may need to be widened rather than split. Or widened before 4613 // it can be split. 4614 if (!isTypeLegal(VecEVT)) 4615 return SDValue(); 4616 4617 MVT VecVT = VecEVT.getSimpleVT(); 4618 MVT VecEltVT = VecVT.getVectorElementType(); 4619 unsigned RVVOpcode = getRVVVPReductionOp(Op.getOpcode()); 4620 4621 MVT ContainerVT = VecVT; 4622 if (VecVT.isFixedLengthVector()) { 4623 ContainerVT = getContainerForFixedLengthVector(VecVT); 4624 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 4625 } 4626 4627 SDValue VL = Op.getOperand(3); 4628 SDValue Mask = Op.getOperand(2); 4629 4630 MVT M1VT = getLMUL1VT(ContainerVT); 4631 MVT XLenVT = Subtarget.getXLenVT(); 4632 MVT ResVT = !VecVT.isInteger() || VecEltVT.bitsGE(XLenVT) ? VecEltVT : XLenVT; 4633 4634 SDValue StartSplat = 4635 lowerScalarSplat(Op.getOperand(0), DAG.getConstant(1, DL, XLenVT), M1VT, 4636 DL, DAG, Subtarget); 4637 SDValue Reduction = 4638 DAG.getNode(RVVOpcode, DL, M1VT, StartSplat, Vec, StartSplat, Mask, VL); 4639 SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Reduction, 4640 DAG.getConstant(0, DL, XLenVT)); 4641 if (!VecVT.isInteger()) 4642 return Elt0; 4643 return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType()); 4644 } 4645 4646 SDValue RISCVTargetLowering::lowerINSERT_SUBVECTOR(SDValue Op, 4647 SelectionDAG &DAG) const { 4648 SDValue Vec = Op.getOperand(0); 4649 SDValue SubVec = Op.getOperand(1); 4650 MVT VecVT = Vec.getSimpleValueType(); 4651 MVT SubVecVT = SubVec.getSimpleValueType(); 4652 4653 SDLoc DL(Op); 4654 MVT XLenVT = Subtarget.getXLenVT(); 4655 unsigned OrigIdx = Op.getConstantOperandVal(2); 4656 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 4657 4658 // We don't have the ability to slide mask vectors up indexed by their i1 4659 // elements; the smallest we can do is i8. Often we are able to bitcast to 4660 // equivalent i8 vectors. Note that when inserting a fixed-length vector 4661 // into a scalable one, we might not necessarily have enough scalable 4662 // elements to safely divide by 8: nxv1i1 = insert nxv1i1, v4i1 is valid. 4663 if (SubVecVT.getVectorElementType() == MVT::i1 && 4664 (OrigIdx != 0 || !Vec.isUndef())) { 4665 if (VecVT.getVectorMinNumElements() >= 8 && 4666 SubVecVT.getVectorMinNumElements() >= 8) { 4667 assert(OrigIdx % 8 == 0 && "Invalid index"); 4668 assert(VecVT.getVectorMinNumElements() % 8 == 0 && 4669 SubVecVT.getVectorMinNumElements() % 8 == 0 && 4670 "Unexpected mask vector lowering"); 4671 OrigIdx /= 8; 4672 SubVecVT = 4673 MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8, 4674 SubVecVT.isScalableVector()); 4675 VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8, 4676 VecVT.isScalableVector()); 4677 Vec = DAG.getBitcast(VecVT, Vec); 4678 SubVec = DAG.getBitcast(SubVecVT, SubVec); 4679 } else { 4680 // We can't slide this mask vector up indexed by its i1 elements. 4681 // This poses a problem when we wish to insert a scalable vector which 4682 // can't be re-expressed as a larger type. Just choose the slow path and 4683 // extend to a larger type, then truncate back down. 4684 MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8); 4685 MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8); 4686 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec); 4687 SubVec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtSubVecVT, SubVec); 4688 Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ExtVecVT, Vec, SubVec, 4689 Op.getOperand(2)); 4690 SDValue SplatZero = DAG.getConstant(0, DL, ExtVecVT); 4691 return DAG.getSetCC(DL, VecVT, Vec, SplatZero, ISD::SETNE); 4692 } 4693 } 4694 4695 // If the subvector vector is a fixed-length type, we cannot use subregister 4696 // manipulation to simplify the codegen; we don't know which register of a 4697 // LMUL group contains the specific subvector as we only know the minimum 4698 // register size. Therefore we must slide the vector group up the full 4699 // amount. 4700 if (SubVecVT.isFixedLengthVector()) { 4701 if (OrigIdx == 0 && Vec.isUndef()) 4702 return Op; 4703 MVT ContainerVT = VecVT; 4704 if (VecVT.isFixedLengthVector()) { 4705 ContainerVT = getContainerForFixedLengthVector(VecVT); 4706 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 4707 } 4708 SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ContainerVT, 4709 DAG.getUNDEF(ContainerVT), SubVec, 4710 DAG.getConstant(0, DL, XLenVT)); 4711 SDValue Mask = 4712 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first; 4713 // Set the vector length to only the number of elements we care about. Note 4714 // that for slideup this includes the offset. 4715 SDValue VL = 4716 DAG.getConstant(OrigIdx + SubVecVT.getVectorNumElements(), DL, XLenVT); 4717 SDValue SlideupAmt = DAG.getConstant(OrigIdx, DL, XLenVT); 4718 SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec, 4719 SubVec, SlideupAmt, Mask, VL); 4720 if (VecVT.isFixedLengthVector()) 4721 Slideup = convertFromScalableVector(VecVT, Slideup, DAG, Subtarget); 4722 return DAG.getBitcast(Op.getValueType(), Slideup); 4723 } 4724 4725 unsigned SubRegIdx, RemIdx; 4726 std::tie(SubRegIdx, RemIdx) = 4727 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( 4728 VecVT, SubVecVT, OrigIdx, TRI); 4729 4730 RISCVII::VLMUL SubVecLMUL = RISCVTargetLowering::getLMUL(SubVecVT); 4731 bool IsSubVecPartReg = SubVecLMUL == RISCVII::VLMUL::LMUL_F2 || 4732 SubVecLMUL == RISCVII::VLMUL::LMUL_F4 || 4733 SubVecLMUL == RISCVII::VLMUL::LMUL_F8; 4734 4735 // 1. If the Idx has been completely eliminated and this subvector's size is 4736 // a vector register or a multiple thereof, or the surrounding elements are 4737 // undef, then this is a subvector insert which naturally aligns to a vector 4738 // register. These can easily be handled using subregister manipulation. 4739 // 2. If the subvector is smaller than a vector register, then the insertion 4740 // must preserve the undisturbed elements of the register. We do this by 4741 // lowering to an EXTRACT_SUBVECTOR grabbing the nearest LMUL=1 vector type 4742 // (which resolves to a subregister copy), performing a VSLIDEUP to place the 4743 // subvector within the vector register, and an INSERT_SUBVECTOR of that 4744 // LMUL=1 type back into the larger vector (resolving to another subregister 4745 // operation). See below for how our VSLIDEUP works. We go via a LMUL=1 type 4746 // to avoid allocating a large register group to hold our subvector. 4747 if (RemIdx == 0 && (!IsSubVecPartReg || Vec.isUndef())) 4748 return Op; 4749 4750 // VSLIDEUP works by leaving elements 0<i<OFFSET undisturbed, elements 4751 // OFFSET<=i<VL set to the "subvector" and vl<=i<VLMAX set to the tail policy 4752 // (in our case undisturbed). This means we can set up a subvector insertion 4753 // where OFFSET is the insertion offset, and the VL is the OFFSET plus the 4754 // size of the subvector. 4755 MVT InterSubVT = VecVT; 4756 SDValue AlignedExtract = Vec; 4757 unsigned AlignedIdx = OrigIdx - RemIdx; 4758 if (VecVT.bitsGT(getLMUL1VT(VecVT))) { 4759 InterSubVT = getLMUL1VT(VecVT); 4760 // Extract a subvector equal to the nearest full vector register type. This 4761 // should resolve to a EXTRACT_SUBREG instruction. 4762 AlignedExtract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec, 4763 DAG.getConstant(AlignedIdx, DL, XLenVT)); 4764 } 4765 4766 SDValue SlideupAmt = DAG.getConstant(RemIdx, DL, XLenVT); 4767 // For scalable vectors this must be further multiplied by vscale. 4768 SlideupAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlideupAmt); 4769 4770 SDValue Mask, VL; 4771 std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget); 4772 4773 // Construct the vector length corresponding to RemIdx + length(SubVecVT). 4774 VL = DAG.getConstant(SubVecVT.getVectorMinNumElements(), DL, XLenVT); 4775 VL = DAG.getNode(ISD::VSCALE, DL, XLenVT, VL); 4776 VL = DAG.getNode(ISD::ADD, DL, XLenVT, SlideupAmt, VL); 4777 4778 SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, InterSubVT, 4779 DAG.getUNDEF(InterSubVT), SubVec, 4780 DAG.getConstant(0, DL, XLenVT)); 4781 4782 SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, InterSubVT, 4783 AlignedExtract, SubVec, SlideupAmt, Mask, VL); 4784 4785 // If required, insert this subvector back into the correct vector register. 4786 // This should resolve to an INSERT_SUBREG instruction. 4787 if (VecVT.bitsGT(InterSubVT)) 4788 Slideup = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, Vec, Slideup, 4789 DAG.getConstant(AlignedIdx, DL, XLenVT)); 4790 4791 // We might have bitcast from a mask type: cast back to the original type if 4792 // required. 4793 return DAG.getBitcast(Op.getSimpleValueType(), Slideup); 4794 } 4795 4796 SDValue RISCVTargetLowering::lowerEXTRACT_SUBVECTOR(SDValue Op, 4797 SelectionDAG &DAG) const { 4798 SDValue Vec = Op.getOperand(0); 4799 MVT SubVecVT = Op.getSimpleValueType(); 4800 MVT VecVT = Vec.getSimpleValueType(); 4801 4802 SDLoc DL(Op); 4803 MVT XLenVT = Subtarget.getXLenVT(); 4804 unsigned OrigIdx = Op.getConstantOperandVal(1); 4805 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 4806 4807 // We don't have the ability to slide mask vectors down indexed by their i1 4808 // elements; the smallest we can do is i8. Often we are able to bitcast to 4809 // equivalent i8 vectors. Note that when extracting a fixed-length vector 4810 // from a scalable one, we might not necessarily have enough scalable 4811 // elements to safely divide by 8: v8i1 = extract nxv1i1 is valid. 4812 if (SubVecVT.getVectorElementType() == MVT::i1 && OrigIdx != 0) { 4813 if (VecVT.getVectorMinNumElements() >= 8 && 4814 SubVecVT.getVectorMinNumElements() >= 8) { 4815 assert(OrigIdx % 8 == 0 && "Invalid index"); 4816 assert(VecVT.getVectorMinNumElements() % 8 == 0 && 4817 SubVecVT.getVectorMinNumElements() % 8 == 0 && 4818 "Unexpected mask vector lowering"); 4819 OrigIdx /= 8; 4820 SubVecVT = 4821 MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8, 4822 SubVecVT.isScalableVector()); 4823 VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8, 4824 VecVT.isScalableVector()); 4825 Vec = DAG.getBitcast(VecVT, Vec); 4826 } else { 4827 // We can't slide this mask vector down, indexed by its i1 elements. 4828 // This poses a problem when we wish to extract a scalable vector which 4829 // can't be re-expressed as a larger type. Just choose the slow path and 4830 // extend to a larger type, then truncate back down. 4831 // TODO: We could probably improve this when extracting certain fixed 4832 // from fixed, where we can extract as i8 and shift the correct element 4833 // right to reach the desired subvector? 4834 MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8); 4835 MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8); 4836 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec); 4837 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ExtSubVecVT, Vec, 4838 Op.getOperand(1)); 4839 SDValue SplatZero = DAG.getConstant(0, DL, ExtSubVecVT); 4840 return DAG.getSetCC(DL, SubVecVT, Vec, SplatZero, ISD::SETNE); 4841 } 4842 } 4843 4844 // If the subvector vector is a fixed-length type, we cannot use subregister 4845 // manipulation to simplify the codegen; we don't know which register of a 4846 // LMUL group contains the specific subvector as we only know the minimum 4847 // register size. Therefore we must slide the vector group down the full 4848 // amount. 4849 if (SubVecVT.isFixedLengthVector()) { 4850 // With an index of 0 this is a cast-like subvector, which can be performed 4851 // with subregister operations. 4852 if (OrigIdx == 0) 4853 return Op; 4854 MVT ContainerVT = VecVT; 4855 if (VecVT.isFixedLengthVector()) { 4856 ContainerVT = getContainerForFixedLengthVector(VecVT); 4857 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 4858 } 4859 SDValue Mask = 4860 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first; 4861 // Set the vector length to only the number of elements we care about. This 4862 // avoids sliding down elements we're going to discard straight away. 4863 SDValue VL = DAG.getConstant(SubVecVT.getVectorNumElements(), DL, XLenVT); 4864 SDValue SlidedownAmt = DAG.getConstant(OrigIdx, DL, XLenVT); 4865 SDValue Slidedown = 4866 DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 4867 DAG.getUNDEF(ContainerVT), Vec, SlidedownAmt, Mask, VL); 4868 // Now we can use a cast-like subvector extract to get the result. 4869 Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown, 4870 DAG.getConstant(0, DL, XLenVT)); 4871 return DAG.getBitcast(Op.getValueType(), Slidedown); 4872 } 4873 4874 unsigned SubRegIdx, RemIdx; 4875 std::tie(SubRegIdx, RemIdx) = 4876 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( 4877 VecVT, SubVecVT, OrigIdx, TRI); 4878 4879 // If the Idx has been completely eliminated then this is a subvector extract 4880 // which naturally aligns to a vector register. These can easily be handled 4881 // using subregister manipulation. 4882 if (RemIdx == 0) 4883 return Op; 4884 4885 // Else we must shift our vector register directly to extract the subvector. 4886 // Do this using VSLIDEDOWN. 4887 4888 // If the vector type is an LMUL-group type, extract a subvector equal to the 4889 // nearest full vector register type. This should resolve to a EXTRACT_SUBREG 4890 // instruction. 4891 MVT InterSubVT = VecVT; 4892 if (VecVT.bitsGT(getLMUL1VT(VecVT))) { 4893 InterSubVT = getLMUL1VT(VecVT); 4894 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec, 4895 DAG.getConstant(OrigIdx - RemIdx, DL, XLenVT)); 4896 } 4897 4898 // Slide this vector register down by the desired number of elements in order 4899 // to place the desired subvector starting at element 0. 4900 SDValue SlidedownAmt = DAG.getConstant(RemIdx, DL, XLenVT); 4901 // For scalable vectors this must be further multiplied by vscale. 4902 SlidedownAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlidedownAmt); 4903 4904 SDValue Mask, VL; 4905 std::tie(Mask, VL) = getDefaultScalableVLOps(InterSubVT, DL, DAG, Subtarget); 4906 SDValue Slidedown = 4907 DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, InterSubVT, 4908 DAG.getUNDEF(InterSubVT), Vec, SlidedownAmt, Mask, VL); 4909 4910 // Now the vector is in the right position, extract our final subvector. This 4911 // should resolve to a COPY. 4912 Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown, 4913 DAG.getConstant(0, DL, XLenVT)); 4914 4915 // We might have bitcast from a mask type: cast back to the original type if 4916 // required. 4917 return DAG.getBitcast(Op.getSimpleValueType(), Slidedown); 4918 } 4919 4920 // Lower step_vector to the vid instruction. Any non-identity step value must 4921 // be accounted for my manual expansion. 4922 SDValue RISCVTargetLowering::lowerSTEP_VECTOR(SDValue Op, 4923 SelectionDAG &DAG) const { 4924 SDLoc DL(Op); 4925 MVT VT = Op.getSimpleValueType(); 4926 MVT XLenVT = Subtarget.getXLenVT(); 4927 SDValue Mask, VL; 4928 std::tie(Mask, VL) = getDefaultScalableVLOps(VT, DL, DAG, Subtarget); 4929 SDValue StepVec = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL); 4930 uint64_t StepValImm = Op.getConstantOperandVal(0); 4931 if (StepValImm != 1) { 4932 if (isPowerOf2_64(StepValImm)) { 4933 SDValue StepVal = 4934 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, 4935 DAG.getConstant(Log2_64(StepValImm), DL, XLenVT)); 4936 StepVec = DAG.getNode(ISD::SHL, DL, VT, StepVec, StepVal); 4937 } else { 4938 SDValue StepVal = lowerScalarSplat( 4939 DAG.getConstant(StepValImm, DL, VT.getVectorElementType()), VL, VT, 4940 DL, DAG, Subtarget); 4941 StepVec = DAG.getNode(ISD::MUL, DL, VT, StepVec, StepVal); 4942 } 4943 } 4944 return StepVec; 4945 } 4946 4947 // Implement vector_reverse using vrgather.vv with indices determined by 4948 // subtracting the id of each element from (VLMAX-1). This will convert 4949 // the indices like so: 4950 // (0, 1,..., VLMAX-2, VLMAX-1) -> (VLMAX-1, VLMAX-2,..., 1, 0). 4951 // TODO: This code assumes VLMAX <= 65536 for LMUL=8 SEW=16. 4952 SDValue RISCVTargetLowering::lowerVECTOR_REVERSE(SDValue Op, 4953 SelectionDAG &DAG) const { 4954 SDLoc DL(Op); 4955 MVT VecVT = Op.getSimpleValueType(); 4956 unsigned EltSize = VecVT.getScalarSizeInBits(); 4957 unsigned MinSize = VecVT.getSizeInBits().getKnownMinValue(); 4958 4959 unsigned MaxVLMAX = 0; 4960 unsigned VectorBitsMax = Subtarget.getMaxRVVVectorSizeInBits(); 4961 if (VectorBitsMax != 0) 4962 MaxVLMAX = ((VectorBitsMax / EltSize) * MinSize) / RISCV::RVVBitsPerBlock; 4963 4964 unsigned GatherOpc = RISCVISD::VRGATHER_VV_VL; 4965 MVT IntVT = VecVT.changeVectorElementTypeToInteger(); 4966 4967 // If this is SEW=8 and VLMAX is unknown or more than 256, we need 4968 // to use vrgatherei16.vv. 4969 // TODO: It's also possible to use vrgatherei16.vv for other types to 4970 // decrease register width for the index calculation. 4971 if ((MaxVLMAX == 0 || MaxVLMAX > 256) && EltSize == 8) { 4972 // If this is LMUL=8, we have to split before can use vrgatherei16.vv. 4973 // Reverse each half, then reassemble them in reverse order. 4974 // NOTE: It's also possible that after splitting that VLMAX no longer 4975 // requires vrgatherei16.vv. 4976 if (MinSize == (8 * RISCV::RVVBitsPerBlock)) { 4977 SDValue Lo, Hi; 4978 std::tie(Lo, Hi) = DAG.SplitVectorOperand(Op.getNode(), 0); 4979 EVT LoVT, HiVT; 4980 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VecVT); 4981 Lo = DAG.getNode(ISD::VECTOR_REVERSE, DL, LoVT, Lo); 4982 Hi = DAG.getNode(ISD::VECTOR_REVERSE, DL, HiVT, Hi); 4983 // Reassemble the low and high pieces reversed. 4984 // FIXME: This is a CONCAT_VECTORS. 4985 SDValue Res = 4986 DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, DAG.getUNDEF(VecVT), Hi, 4987 DAG.getIntPtrConstant(0, DL)); 4988 return DAG.getNode( 4989 ISD::INSERT_SUBVECTOR, DL, VecVT, Res, Lo, 4990 DAG.getIntPtrConstant(LoVT.getVectorMinNumElements(), DL)); 4991 } 4992 4993 // Just promote the int type to i16 which will double the LMUL. 4994 IntVT = MVT::getVectorVT(MVT::i16, VecVT.getVectorElementCount()); 4995 GatherOpc = RISCVISD::VRGATHEREI16_VV_VL; 4996 } 4997 4998 MVT XLenVT = Subtarget.getXLenVT(); 4999 SDValue Mask, VL; 5000 std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget); 5001 5002 // Calculate VLMAX-1 for the desired SEW. 5003 unsigned MinElts = VecVT.getVectorMinNumElements(); 5004 SDValue VLMax = DAG.getNode(ISD::VSCALE, DL, XLenVT, 5005 DAG.getConstant(MinElts, DL, XLenVT)); 5006 SDValue VLMinus1 = 5007 DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, DAG.getConstant(1, DL, XLenVT)); 5008 5009 // Splat VLMAX-1 taking care to handle SEW==64 on RV32. 5010 bool IsRV32E64 = 5011 !Subtarget.is64Bit() && IntVT.getVectorElementType() == MVT::i64; 5012 SDValue SplatVL; 5013 if (!IsRV32E64) 5014 SplatVL = DAG.getSplatVector(IntVT, DL, VLMinus1); 5015 else 5016 SplatVL = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, IntVT, VLMinus1); 5017 5018 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, IntVT, Mask, VL); 5019 SDValue Indices = 5020 DAG.getNode(RISCVISD::SUB_VL, DL, IntVT, SplatVL, VID, Mask, VL); 5021 5022 return DAG.getNode(GatherOpc, DL, VecVT, Op.getOperand(0), Indices, Mask, VL); 5023 } 5024 5025 SDValue 5026 RISCVTargetLowering::lowerFixedLengthVectorLoadToRVV(SDValue Op, 5027 SelectionDAG &DAG) const { 5028 SDLoc DL(Op); 5029 auto *Load = cast<LoadSDNode>(Op); 5030 5031 assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 5032 Load->getMemoryVT(), 5033 *Load->getMemOperand()) && 5034 "Expecting a correctly-aligned load"); 5035 5036 MVT VT = Op.getSimpleValueType(); 5037 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5038 5039 SDValue VL = 5040 DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT()); 5041 5042 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 5043 SDValue NewLoad = DAG.getMemIntrinsicNode( 5044 RISCVISD::VLE_VL, DL, VTs, {Load->getChain(), Load->getBasePtr(), VL}, 5045 Load->getMemoryVT(), Load->getMemOperand()); 5046 5047 SDValue Result = convertFromScalableVector(VT, NewLoad, DAG, Subtarget); 5048 return DAG.getMergeValues({Result, Load->getChain()}, DL); 5049 } 5050 5051 SDValue 5052 RISCVTargetLowering::lowerFixedLengthVectorStoreToRVV(SDValue Op, 5053 SelectionDAG &DAG) const { 5054 SDLoc DL(Op); 5055 auto *Store = cast<StoreSDNode>(Op); 5056 5057 assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 5058 Store->getMemoryVT(), 5059 *Store->getMemOperand()) && 5060 "Expecting a correctly-aligned store"); 5061 5062 SDValue StoreVal = Store->getValue(); 5063 MVT VT = StoreVal.getSimpleValueType(); 5064 5065 // If the size less than a byte, we need to pad with zeros to make a byte. 5066 if (VT.getVectorElementType() == MVT::i1 && VT.getVectorNumElements() < 8) { 5067 VT = MVT::v8i1; 5068 StoreVal = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, 5069 DAG.getConstant(0, DL, VT), StoreVal, 5070 DAG.getIntPtrConstant(0, DL)); 5071 } 5072 5073 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5074 5075 SDValue VL = 5076 DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT()); 5077 5078 SDValue NewValue = 5079 convertToScalableVector(ContainerVT, StoreVal, DAG, Subtarget); 5080 return DAG.getMemIntrinsicNode( 5081 RISCVISD::VSE_VL, DL, DAG.getVTList(MVT::Other), 5082 {Store->getChain(), NewValue, Store->getBasePtr(), VL}, 5083 Store->getMemoryVT(), Store->getMemOperand()); 5084 } 5085 5086 SDValue RISCVTargetLowering::lowerMaskedLoad(SDValue Op, 5087 SelectionDAG &DAG) const { 5088 SDLoc DL(Op); 5089 MVT VT = Op.getSimpleValueType(); 5090 5091 const auto *MemSD = cast<MemSDNode>(Op); 5092 EVT MemVT = MemSD->getMemoryVT(); 5093 MachineMemOperand *MMO = MemSD->getMemOperand(); 5094 SDValue Chain = MemSD->getChain(); 5095 SDValue BasePtr = MemSD->getBasePtr(); 5096 5097 SDValue Mask, PassThru, VL; 5098 if (const auto *VPLoad = dyn_cast<VPLoadSDNode>(Op)) { 5099 Mask = VPLoad->getMask(); 5100 PassThru = DAG.getUNDEF(VT); 5101 VL = VPLoad->getVectorLength(); 5102 } else { 5103 const auto *MLoad = cast<MaskedLoadSDNode>(Op); 5104 Mask = MLoad->getMask(); 5105 PassThru = MLoad->getPassThru(); 5106 } 5107 5108 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 5109 5110 MVT XLenVT = Subtarget.getXLenVT(); 5111 5112 MVT ContainerVT = VT; 5113 if (VT.isFixedLengthVector()) { 5114 ContainerVT = getContainerForFixedLengthVector(VT); 5115 PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget); 5116 if (!IsUnmasked) { 5117 MVT MaskVT = 5118 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 5119 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 5120 } 5121 } 5122 5123 if (!VL) 5124 VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; 5125 5126 unsigned IntID = 5127 IsUnmasked ? Intrinsic::riscv_vle : Intrinsic::riscv_vle_mask; 5128 SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)}; 5129 if (!IsUnmasked) 5130 Ops.push_back(PassThru); 5131 Ops.push_back(BasePtr); 5132 if (!IsUnmasked) 5133 Ops.push_back(Mask); 5134 Ops.push_back(VL); 5135 if (!IsUnmasked) 5136 Ops.push_back(DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT)); 5137 5138 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 5139 5140 SDValue Result = 5141 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, MemVT, MMO); 5142 Chain = Result.getValue(1); 5143 5144 if (VT.isFixedLengthVector()) 5145 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 5146 5147 return DAG.getMergeValues({Result, Chain}, DL); 5148 } 5149 5150 SDValue RISCVTargetLowering::lowerMaskedStore(SDValue Op, 5151 SelectionDAG &DAG) const { 5152 SDLoc DL(Op); 5153 5154 const auto *MemSD = cast<MemSDNode>(Op); 5155 EVT MemVT = MemSD->getMemoryVT(); 5156 MachineMemOperand *MMO = MemSD->getMemOperand(); 5157 SDValue Chain = MemSD->getChain(); 5158 SDValue BasePtr = MemSD->getBasePtr(); 5159 SDValue Val, Mask, VL; 5160 5161 if (const auto *VPStore = dyn_cast<VPStoreSDNode>(Op)) { 5162 Val = VPStore->getValue(); 5163 Mask = VPStore->getMask(); 5164 VL = VPStore->getVectorLength(); 5165 } else { 5166 const auto *MStore = cast<MaskedStoreSDNode>(Op); 5167 Val = MStore->getValue(); 5168 Mask = MStore->getMask(); 5169 } 5170 5171 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 5172 5173 MVT VT = Val.getSimpleValueType(); 5174 MVT XLenVT = Subtarget.getXLenVT(); 5175 5176 MVT ContainerVT = VT; 5177 if (VT.isFixedLengthVector()) { 5178 ContainerVT = getContainerForFixedLengthVector(VT); 5179 5180 Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget); 5181 if (!IsUnmasked) { 5182 MVT MaskVT = 5183 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 5184 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 5185 } 5186 } 5187 5188 if (!VL) 5189 VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; 5190 5191 unsigned IntID = 5192 IsUnmasked ? Intrinsic::riscv_vse : Intrinsic::riscv_vse_mask; 5193 SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)}; 5194 Ops.push_back(Val); 5195 Ops.push_back(BasePtr); 5196 if (!IsUnmasked) 5197 Ops.push_back(Mask); 5198 Ops.push_back(VL); 5199 5200 return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, 5201 DAG.getVTList(MVT::Other), Ops, MemVT, MMO); 5202 } 5203 5204 SDValue 5205 RISCVTargetLowering::lowerFixedLengthVectorSetccToRVV(SDValue Op, 5206 SelectionDAG &DAG) const { 5207 MVT InVT = Op.getOperand(0).getSimpleValueType(); 5208 MVT ContainerVT = getContainerForFixedLengthVector(InVT); 5209 5210 MVT VT = Op.getSimpleValueType(); 5211 5212 SDValue Op1 = 5213 convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget); 5214 SDValue Op2 = 5215 convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget); 5216 5217 SDLoc DL(Op); 5218 SDValue VL = 5219 DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT()); 5220 5221 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 5222 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 5223 5224 SDValue Cmp = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, Op1, Op2, 5225 Op.getOperand(2), Mask, VL); 5226 5227 return convertFromScalableVector(VT, Cmp, DAG, Subtarget); 5228 } 5229 5230 SDValue RISCVTargetLowering::lowerFixedLengthVectorLogicOpToRVV( 5231 SDValue Op, SelectionDAG &DAG, unsigned MaskOpc, unsigned VecOpc) const { 5232 MVT VT = Op.getSimpleValueType(); 5233 5234 if (VT.getVectorElementType() == MVT::i1) 5235 return lowerToScalableOp(Op, DAG, MaskOpc, /*HasMask*/ false); 5236 5237 return lowerToScalableOp(Op, DAG, VecOpc, /*HasMask*/ true); 5238 } 5239 5240 SDValue 5241 RISCVTargetLowering::lowerFixedLengthVectorShiftToRVV(SDValue Op, 5242 SelectionDAG &DAG) const { 5243 unsigned Opc; 5244 switch (Op.getOpcode()) { 5245 default: llvm_unreachable("Unexpected opcode!"); 5246 case ISD::SHL: Opc = RISCVISD::SHL_VL; break; 5247 case ISD::SRA: Opc = RISCVISD::SRA_VL; break; 5248 case ISD::SRL: Opc = RISCVISD::SRL_VL; break; 5249 } 5250 5251 return lowerToScalableOp(Op, DAG, Opc); 5252 } 5253 5254 // Lower vector ABS to smax(X, sub(0, X)). 5255 SDValue RISCVTargetLowering::lowerABS(SDValue Op, SelectionDAG &DAG) const { 5256 SDLoc DL(Op); 5257 MVT VT = Op.getSimpleValueType(); 5258 SDValue X = Op.getOperand(0); 5259 5260 assert(VT.isFixedLengthVector() && "Unexpected type"); 5261 5262 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5263 X = convertToScalableVector(ContainerVT, X, DAG, Subtarget); 5264 5265 SDValue Mask, VL; 5266 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 5267 5268 SDValue SplatZero = 5269 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, 5270 DAG.getConstant(0, DL, Subtarget.getXLenVT())); 5271 SDValue NegX = 5272 DAG.getNode(RISCVISD::SUB_VL, DL, ContainerVT, SplatZero, X, Mask, VL); 5273 SDValue Max = 5274 DAG.getNode(RISCVISD::SMAX_VL, DL, ContainerVT, X, NegX, Mask, VL); 5275 5276 return convertFromScalableVector(VT, Max, DAG, Subtarget); 5277 } 5278 5279 SDValue RISCVTargetLowering::lowerFixedLengthVectorFCOPYSIGNToRVV( 5280 SDValue Op, SelectionDAG &DAG) const { 5281 SDLoc DL(Op); 5282 MVT VT = Op.getSimpleValueType(); 5283 SDValue Mag = Op.getOperand(0); 5284 SDValue Sign = Op.getOperand(1); 5285 assert(Mag.getValueType() == Sign.getValueType() && 5286 "Can only handle COPYSIGN with matching types."); 5287 5288 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5289 Mag = convertToScalableVector(ContainerVT, Mag, DAG, Subtarget); 5290 Sign = convertToScalableVector(ContainerVT, Sign, DAG, Subtarget); 5291 5292 SDValue Mask, VL; 5293 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 5294 5295 SDValue CopySign = 5296 DAG.getNode(RISCVISD::FCOPYSIGN_VL, DL, ContainerVT, Mag, Sign, Mask, VL); 5297 5298 return convertFromScalableVector(VT, CopySign, DAG, Subtarget); 5299 } 5300 5301 SDValue RISCVTargetLowering::lowerFixedLengthVectorSelectToRVV( 5302 SDValue Op, SelectionDAG &DAG) const { 5303 MVT VT = Op.getSimpleValueType(); 5304 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5305 5306 MVT I1ContainerVT = 5307 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 5308 5309 SDValue CC = 5310 convertToScalableVector(I1ContainerVT, Op.getOperand(0), DAG, Subtarget); 5311 SDValue Op1 = 5312 convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget); 5313 SDValue Op2 = 5314 convertToScalableVector(ContainerVT, Op.getOperand(2), DAG, Subtarget); 5315 5316 SDLoc DL(Op); 5317 SDValue Mask, VL; 5318 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 5319 5320 SDValue Select = 5321 DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC, Op1, Op2, VL); 5322 5323 return convertFromScalableVector(VT, Select, DAG, Subtarget); 5324 } 5325 5326 SDValue RISCVTargetLowering::lowerToScalableOp(SDValue Op, SelectionDAG &DAG, 5327 unsigned NewOpc, 5328 bool HasMask) const { 5329 MVT VT = Op.getSimpleValueType(); 5330 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5331 5332 // Create list of operands by converting existing ones to scalable types. 5333 SmallVector<SDValue, 6> Ops; 5334 for (const SDValue &V : Op->op_values()) { 5335 assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!"); 5336 5337 // Pass through non-vector operands. 5338 if (!V.getValueType().isVector()) { 5339 Ops.push_back(V); 5340 continue; 5341 } 5342 5343 // "cast" fixed length vector to a scalable vector. 5344 assert(useRVVForFixedLengthVectorVT(V.getSimpleValueType()) && 5345 "Only fixed length vectors are supported!"); 5346 Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget)); 5347 } 5348 5349 SDLoc DL(Op); 5350 SDValue Mask, VL; 5351 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 5352 if (HasMask) 5353 Ops.push_back(Mask); 5354 Ops.push_back(VL); 5355 5356 SDValue ScalableRes = DAG.getNode(NewOpc, DL, ContainerVT, Ops); 5357 return convertFromScalableVector(VT, ScalableRes, DAG, Subtarget); 5358 } 5359 5360 // Lower a VP_* ISD node to the corresponding RISCVISD::*_VL node: 5361 // * Operands of each node are assumed to be in the same order. 5362 // * The EVL operand is promoted from i32 to i64 on RV64. 5363 // * Fixed-length vectors are converted to their scalable-vector container 5364 // types. 5365 SDValue RISCVTargetLowering::lowerVPOp(SDValue Op, SelectionDAG &DAG, 5366 unsigned RISCVISDOpc) const { 5367 SDLoc DL(Op); 5368 MVT VT = Op.getSimpleValueType(); 5369 SmallVector<SDValue, 4> Ops; 5370 5371 for (const auto &OpIdx : enumerate(Op->ops())) { 5372 SDValue V = OpIdx.value(); 5373 assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!"); 5374 // Pass through operands which aren't fixed-length vectors. 5375 if (!V.getValueType().isFixedLengthVector()) { 5376 Ops.push_back(V); 5377 continue; 5378 } 5379 // "cast" fixed length vector to a scalable vector. 5380 MVT OpVT = V.getSimpleValueType(); 5381 MVT ContainerVT = getContainerForFixedLengthVector(OpVT); 5382 assert(useRVVForFixedLengthVectorVT(OpVT) && 5383 "Only fixed length vectors are supported!"); 5384 Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget)); 5385 } 5386 5387 if (!VT.isFixedLengthVector()) 5388 return DAG.getNode(RISCVISDOpc, DL, VT, Ops); 5389 5390 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5391 5392 SDValue VPOp = DAG.getNode(RISCVISDOpc, DL, ContainerVT, Ops); 5393 5394 return convertFromScalableVector(VT, VPOp, DAG, Subtarget); 5395 } 5396 5397 // Custom lower MGATHER/VP_GATHER to a legalized form for RVV. It will then be 5398 // matched to a RVV indexed load. The RVV indexed load instructions only 5399 // support the "unsigned unscaled" addressing mode; indices are implicitly 5400 // zero-extended or truncated to XLEN and are treated as byte offsets. Any 5401 // signed or scaled indexing is extended to the XLEN value type and scaled 5402 // accordingly. 5403 SDValue RISCVTargetLowering::lowerMaskedGather(SDValue Op, 5404 SelectionDAG &DAG) const { 5405 SDLoc DL(Op); 5406 MVT VT = Op.getSimpleValueType(); 5407 5408 const auto *MemSD = cast<MemSDNode>(Op.getNode()); 5409 EVT MemVT = MemSD->getMemoryVT(); 5410 MachineMemOperand *MMO = MemSD->getMemOperand(); 5411 SDValue Chain = MemSD->getChain(); 5412 SDValue BasePtr = MemSD->getBasePtr(); 5413 5414 ISD::LoadExtType LoadExtType; 5415 SDValue Index, Mask, PassThru, VL; 5416 5417 if (auto *VPGN = dyn_cast<VPGatherSDNode>(Op.getNode())) { 5418 Index = VPGN->getIndex(); 5419 Mask = VPGN->getMask(); 5420 PassThru = DAG.getUNDEF(VT); 5421 VL = VPGN->getVectorLength(); 5422 // VP doesn't support extending loads. 5423 LoadExtType = ISD::NON_EXTLOAD; 5424 } else { 5425 // Else it must be a MGATHER. 5426 auto *MGN = cast<MaskedGatherSDNode>(Op.getNode()); 5427 Index = MGN->getIndex(); 5428 Mask = MGN->getMask(); 5429 PassThru = MGN->getPassThru(); 5430 LoadExtType = MGN->getExtensionType(); 5431 } 5432 5433 MVT IndexVT = Index.getSimpleValueType(); 5434 MVT XLenVT = Subtarget.getXLenVT(); 5435 5436 assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() && 5437 "Unexpected VTs!"); 5438 assert(BasePtr.getSimpleValueType() == XLenVT && "Unexpected pointer type"); 5439 // Targets have to explicitly opt-in for extending vector loads. 5440 assert(LoadExtType == ISD::NON_EXTLOAD && 5441 "Unexpected extending MGATHER/VP_GATHER"); 5442 (void)LoadExtType; 5443 5444 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 5445 // the selection of the masked intrinsics doesn't do this for us. 5446 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 5447 5448 MVT ContainerVT = VT; 5449 if (VT.isFixedLengthVector()) { 5450 // We need to use the larger of the result and index type to determine the 5451 // scalable type to use so we don't increase LMUL for any operand/result. 5452 if (VT.bitsGE(IndexVT)) { 5453 ContainerVT = getContainerForFixedLengthVector(VT); 5454 IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(), 5455 ContainerVT.getVectorElementCount()); 5456 } else { 5457 IndexVT = getContainerForFixedLengthVector(IndexVT); 5458 ContainerVT = MVT::getVectorVT(ContainerVT.getVectorElementType(), 5459 IndexVT.getVectorElementCount()); 5460 } 5461 5462 Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget); 5463 5464 if (!IsUnmasked) { 5465 MVT MaskVT = 5466 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 5467 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 5468 PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget); 5469 } 5470 } 5471 5472 if (!VL) 5473 VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; 5474 5475 unsigned IntID = 5476 IsUnmasked ? Intrinsic::riscv_vluxei : Intrinsic::riscv_vluxei_mask; 5477 SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)}; 5478 if (!IsUnmasked) 5479 Ops.push_back(PassThru); 5480 Ops.push_back(BasePtr); 5481 Ops.push_back(Index); 5482 if (!IsUnmasked) 5483 Ops.push_back(Mask); 5484 Ops.push_back(VL); 5485 if (!IsUnmasked) 5486 Ops.push_back(DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT)); 5487 5488 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 5489 SDValue Result = 5490 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, MemVT, MMO); 5491 Chain = Result.getValue(1); 5492 5493 if (VT.isFixedLengthVector()) 5494 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 5495 5496 return DAG.getMergeValues({Result, Chain}, DL); 5497 } 5498 5499 // Custom lower MSCATTER/VP_SCATTER to a legalized form for RVV. It will then be 5500 // matched to a RVV indexed store. The RVV indexed store instructions only 5501 // support the "unsigned unscaled" addressing mode; indices are implicitly 5502 // zero-extended or truncated to XLEN and are treated as byte offsets. Any 5503 // signed or scaled indexing is extended to the XLEN value type and scaled 5504 // accordingly. 5505 SDValue RISCVTargetLowering::lowerMaskedScatter(SDValue Op, 5506 SelectionDAG &DAG) const { 5507 SDLoc DL(Op); 5508 const auto *MemSD = cast<MemSDNode>(Op.getNode()); 5509 EVT MemVT = MemSD->getMemoryVT(); 5510 MachineMemOperand *MMO = MemSD->getMemOperand(); 5511 SDValue Chain = MemSD->getChain(); 5512 SDValue BasePtr = MemSD->getBasePtr(); 5513 5514 bool IsTruncatingStore = false; 5515 SDValue Index, Mask, Val, VL; 5516 5517 if (auto *VPSN = dyn_cast<VPScatterSDNode>(Op.getNode())) { 5518 Index = VPSN->getIndex(); 5519 Mask = VPSN->getMask(); 5520 Val = VPSN->getValue(); 5521 VL = VPSN->getVectorLength(); 5522 // VP doesn't support truncating stores. 5523 IsTruncatingStore = false; 5524 } else { 5525 // Else it must be a MSCATTER. 5526 auto *MSN = cast<MaskedScatterSDNode>(Op.getNode()); 5527 Index = MSN->getIndex(); 5528 Mask = MSN->getMask(); 5529 Val = MSN->getValue(); 5530 IsTruncatingStore = MSN->isTruncatingStore(); 5531 } 5532 5533 MVT VT = Val.getSimpleValueType(); 5534 MVT IndexVT = Index.getSimpleValueType(); 5535 MVT XLenVT = Subtarget.getXLenVT(); 5536 5537 assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() && 5538 "Unexpected VTs!"); 5539 assert(BasePtr.getSimpleValueType() == XLenVT && "Unexpected pointer type"); 5540 // Targets have to explicitly opt-in for extending vector loads and 5541 // truncating vector stores. 5542 assert(!IsTruncatingStore && "Unexpected truncating MSCATTER/VP_SCATTER"); 5543 (void)IsTruncatingStore; 5544 5545 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 5546 // the selection of the masked intrinsics doesn't do this for us. 5547 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 5548 5549 MVT ContainerVT = VT; 5550 if (VT.isFixedLengthVector()) { 5551 // We need to use the larger of the value and index type to determine the 5552 // scalable type to use so we don't increase LMUL for any operand/result. 5553 if (VT.bitsGE(IndexVT)) { 5554 ContainerVT = getContainerForFixedLengthVector(VT); 5555 IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(), 5556 ContainerVT.getVectorElementCount()); 5557 } else { 5558 IndexVT = getContainerForFixedLengthVector(IndexVT); 5559 ContainerVT = MVT::getVectorVT(VT.getVectorElementType(), 5560 IndexVT.getVectorElementCount()); 5561 } 5562 5563 Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget); 5564 Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget); 5565 5566 if (!IsUnmasked) { 5567 MVT MaskVT = 5568 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 5569 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 5570 } 5571 } 5572 5573 if (!VL) 5574 VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; 5575 5576 unsigned IntID = 5577 IsUnmasked ? Intrinsic::riscv_vsoxei : Intrinsic::riscv_vsoxei_mask; 5578 SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)}; 5579 Ops.push_back(Val); 5580 Ops.push_back(BasePtr); 5581 Ops.push_back(Index); 5582 if (!IsUnmasked) 5583 Ops.push_back(Mask); 5584 Ops.push_back(VL); 5585 5586 return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, 5587 DAG.getVTList(MVT::Other), Ops, MemVT, MMO); 5588 } 5589 5590 SDValue RISCVTargetLowering::lowerGET_ROUNDING(SDValue Op, 5591 SelectionDAG &DAG) const { 5592 const MVT XLenVT = Subtarget.getXLenVT(); 5593 SDLoc DL(Op); 5594 SDValue Chain = Op->getOperand(0); 5595 SDValue SysRegNo = DAG.getTargetConstant( 5596 RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT); 5597 SDVTList VTs = DAG.getVTList(XLenVT, MVT::Other); 5598 SDValue RM = DAG.getNode(RISCVISD::READ_CSR, DL, VTs, Chain, SysRegNo); 5599 5600 // Encoding used for rounding mode in RISCV differs from that used in 5601 // FLT_ROUNDS. To convert it the RISCV rounding mode is used as an index in a 5602 // table, which consists of a sequence of 4-bit fields, each representing 5603 // corresponding FLT_ROUNDS mode. 5604 static const int Table = 5605 (int(RoundingMode::NearestTiesToEven) << 4 * RISCVFPRndMode::RNE) | 5606 (int(RoundingMode::TowardZero) << 4 * RISCVFPRndMode::RTZ) | 5607 (int(RoundingMode::TowardNegative) << 4 * RISCVFPRndMode::RDN) | 5608 (int(RoundingMode::TowardPositive) << 4 * RISCVFPRndMode::RUP) | 5609 (int(RoundingMode::NearestTiesToAway) << 4 * RISCVFPRndMode::RMM); 5610 5611 SDValue Shift = 5612 DAG.getNode(ISD::SHL, DL, XLenVT, RM, DAG.getConstant(2, DL, XLenVT)); 5613 SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT, 5614 DAG.getConstant(Table, DL, XLenVT), Shift); 5615 SDValue Masked = DAG.getNode(ISD::AND, DL, XLenVT, Shifted, 5616 DAG.getConstant(7, DL, XLenVT)); 5617 5618 return DAG.getMergeValues({Masked, Chain}, DL); 5619 } 5620 5621 SDValue RISCVTargetLowering::lowerSET_ROUNDING(SDValue Op, 5622 SelectionDAG &DAG) const { 5623 const MVT XLenVT = Subtarget.getXLenVT(); 5624 SDLoc DL(Op); 5625 SDValue Chain = Op->getOperand(0); 5626 SDValue RMValue = Op->getOperand(1); 5627 SDValue SysRegNo = DAG.getTargetConstant( 5628 RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT); 5629 5630 // Encoding used for rounding mode in RISCV differs from that used in 5631 // FLT_ROUNDS. To convert it the C rounding mode is used as an index in 5632 // a table, which consists of a sequence of 4-bit fields, each representing 5633 // corresponding RISCV mode. 5634 static const unsigned Table = 5635 (RISCVFPRndMode::RNE << 4 * int(RoundingMode::NearestTiesToEven)) | 5636 (RISCVFPRndMode::RTZ << 4 * int(RoundingMode::TowardZero)) | 5637 (RISCVFPRndMode::RDN << 4 * int(RoundingMode::TowardNegative)) | 5638 (RISCVFPRndMode::RUP << 4 * int(RoundingMode::TowardPositive)) | 5639 (RISCVFPRndMode::RMM << 4 * int(RoundingMode::NearestTiesToAway)); 5640 5641 SDValue Shift = DAG.getNode(ISD::SHL, DL, XLenVT, RMValue, 5642 DAG.getConstant(2, DL, XLenVT)); 5643 SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT, 5644 DAG.getConstant(Table, DL, XLenVT), Shift); 5645 RMValue = DAG.getNode(ISD::AND, DL, XLenVT, Shifted, 5646 DAG.getConstant(0x7, DL, XLenVT)); 5647 return DAG.getNode(RISCVISD::WRITE_CSR, DL, MVT::Other, Chain, SysRegNo, 5648 RMValue); 5649 } 5650 5651 // Returns the opcode of the target-specific SDNode that implements the 32-bit 5652 // form of the given Opcode. 5653 static RISCVISD::NodeType getRISCVWOpcode(unsigned Opcode) { 5654 switch (Opcode) { 5655 default: 5656 llvm_unreachable("Unexpected opcode"); 5657 case ISD::SHL: 5658 return RISCVISD::SLLW; 5659 case ISD::SRA: 5660 return RISCVISD::SRAW; 5661 case ISD::SRL: 5662 return RISCVISD::SRLW; 5663 case ISD::SDIV: 5664 return RISCVISD::DIVW; 5665 case ISD::UDIV: 5666 return RISCVISD::DIVUW; 5667 case ISD::UREM: 5668 return RISCVISD::REMUW; 5669 case ISD::ROTL: 5670 return RISCVISD::ROLW; 5671 case ISD::ROTR: 5672 return RISCVISD::RORW; 5673 case RISCVISD::GREV: 5674 return RISCVISD::GREVW; 5675 case RISCVISD::GORC: 5676 return RISCVISD::GORCW; 5677 } 5678 } 5679 5680 // Converts the given i8/i16/i32 operation to a target-specific SelectionDAG 5681 // node. Because i8/i16/i32 isn't a legal type for RV64, these operations would 5682 // otherwise be promoted to i64, making it difficult to select the 5683 // SLLW/DIVUW/.../*W later one because the fact the operation was originally of 5684 // type i8/i16/i32 is lost. 5685 static SDValue customLegalizeToWOp(SDNode *N, SelectionDAG &DAG, 5686 unsigned ExtOpc = ISD::ANY_EXTEND) { 5687 SDLoc DL(N); 5688 RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode()); 5689 SDValue NewOp0 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(0)); 5690 SDValue NewOp1 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(1)); 5691 SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1); 5692 // ReplaceNodeResults requires we maintain the same type for the return value. 5693 return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewRes); 5694 } 5695 5696 // Converts the given 32-bit operation to a i64 operation with signed extension 5697 // semantic to reduce the signed extension instructions. 5698 static SDValue customLegalizeToWOpWithSExt(SDNode *N, SelectionDAG &DAG) { 5699 SDLoc DL(N); 5700 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 5701 SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 5702 SDValue NewWOp = DAG.getNode(N->getOpcode(), DL, MVT::i64, NewOp0, NewOp1); 5703 SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp, 5704 DAG.getValueType(MVT::i32)); 5705 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes); 5706 } 5707 5708 void RISCVTargetLowering::ReplaceNodeResults(SDNode *N, 5709 SmallVectorImpl<SDValue> &Results, 5710 SelectionDAG &DAG) const { 5711 SDLoc DL(N); 5712 switch (N->getOpcode()) { 5713 default: 5714 llvm_unreachable("Don't know how to custom type legalize this operation!"); 5715 case ISD::STRICT_FP_TO_SINT: 5716 case ISD::STRICT_FP_TO_UINT: 5717 case ISD::FP_TO_SINT: 5718 case ISD::FP_TO_UINT: { 5719 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5720 "Unexpected custom legalisation"); 5721 bool IsStrict = N->isStrictFPOpcode(); 5722 bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT || 5723 N->getOpcode() == ISD::STRICT_FP_TO_SINT; 5724 SDValue Op0 = IsStrict ? N->getOperand(1) : N->getOperand(0); 5725 if (getTypeAction(*DAG.getContext(), Op0.getValueType()) != 5726 TargetLowering::TypeSoftenFloat) { 5727 // FIXME: Support strict FP. 5728 if (IsStrict) 5729 return; 5730 if (!isTypeLegal(Op0.getValueType())) 5731 return; 5732 unsigned Opc = 5733 IsSigned ? RISCVISD::FCVT_W_RTZ_RV64 : RISCVISD::FCVT_WU_RTZ_RV64; 5734 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, Op0); 5735 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 5736 return; 5737 } 5738 // If the FP type needs to be softened, emit a library call using the 'si' 5739 // version. If we left it to default legalization we'd end up with 'di'. If 5740 // the FP type doesn't need to be softened just let generic type 5741 // legalization promote the result type. 5742 RTLIB::Libcall LC; 5743 if (IsSigned) 5744 LC = RTLIB::getFPTOSINT(Op0.getValueType(), N->getValueType(0)); 5745 else 5746 LC = RTLIB::getFPTOUINT(Op0.getValueType(), N->getValueType(0)); 5747 MakeLibCallOptions CallOptions; 5748 EVT OpVT = Op0.getValueType(); 5749 CallOptions.setTypeListBeforeSoften(OpVT, N->getValueType(0), true); 5750 SDValue Chain = IsStrict ? N->getOperand(0) : SDValue(); 5751 SDValue Result; 5752 std::tie(Result, Chain) = 5753 makeLibCall(DAG, LC, N->getValueType(0), Op0, CallOptions, DL, Chain); 5754 Results.push_back(Result); 5755 if (IsStrict) 5756 Results.push_back(Chain); 5757 break; 5758 } 5759 case ISD::READCYCLECOUNTER: { 5760 assert(!Subtarget.is64Bit() && 5761 "READCYCLECOUNTER only has custom type legalization on riscv32"); 5762 5763 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other); 5764 SDValue RCW = 5765 DAG.getNode(RISCVISD::READ_CYCLE_WIDE, DL, VTs, N->getOperand(0)); 5766 5767 Results.push_back( 5768 DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, RCW, RCW.getValue(1))); 5769 Results.push_back(RCW.getValue(2)); 5770 break; 5771 } 5772 case ISD::MUL: { 5773 unsigned Size = N->getSimpleValueType(0).getSizeInBits(); 5774 unsigned XLen = Subtarget.getXLen(); 5775 // This multiply needs to be expanded, try to use MULHSU+MUL if possible. 5776 if (Size > XLen) { 5777 assert(Size == (XLen * 2) && "Unexpected custom legalisation"); 5778 SDValue LHS = N->getOperand(0); 5779 SDValue RHS = N->getOperand(1); 5780 APInt HighMask = APInt::getHighBitsSet(Size, XLen); 5781 5782 bool LHSIsU = DAG.MaskedValueIsZero(LHS, HighMask); 5783 bool RHSIsU = DAG.MaskedValueIsZero(RHS, HighMask); 5784 // We need exactly one side to be unsigned. 5785 if (LHSIsU == RHSIsU) 5786 return; 5787 5788 auto MakeMULPair = [&](SDValue S, SDValue U) { 5789 MVT XLenVT = Subtarget.getXLenVT(); 5790 S = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, S); 5791 U = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, U); 5792 SDValue Lo = DAG.getNode(ISD::MUL, DL, XLenVT, S, U); 5793 SDValue Hi = DAG.getNode(RISCVISD::MULHSU, DL, XLenVT, S, U); 5794 return DAG.getNode(ISD::BUILD_PAIR, DL, N->getValueType(0), Lo, Hi); 5795 }; 5796 5797 bool LHSIsS = DAG.ComputeNumSignBits(LHS) > XLen; 5798 bool RHSIsS = DAG.ComputeNumSignBits(RHS) > XLen; 5799 5800 // The other operand should be signed, but still prefer MULH when 5801 // possible. 5802 if (RHSIsU && LHSIsS && !RHSIsS) 5803 Results.push_back(MakeMULPair(LHS, RHS)); 5804 else if (LHSIsU && RHSIsS && !LHSIsS) 5805 Results.push_back(MakeMULPair(RHS, LHS)); 5806 5807 return; 5808 } 5809 LLVM_FALLTHROUGH; 5810 } 5811 case ISD::ADD: 5812 case ISD::SUB: 5813 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5814 "Unexpected custom legalisation"); 5815 Results.push_back(customLegalizeToWOpWithSExt(N, DAG)); 5816 break; 5817 case ISD::SHL: 5818 case ISD::SRA: 5819 case ISD::SRL: 5820 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5821 "Unexpected custom legalisation"); 5822 if (N->getOperand(1).getOpcode() != ISD::Constant) { 5823 Results.push_back(customLegalizeToWOp(N, DAG)); 5824 break; 5825 } 5826 5827 // Custom legalize ISD::SHL by placing a SIGN_EXTEND_INREG after. This is 5828 // similar to customLegalizeToWOpWithSExt, but we must zero_extend the 5829 // shift amount. 5830 if (N->getOpcode() == ISD::SHL) { 5831 SDLoc DL(N); 5832 SDValue NewOp0 = 5833 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 5834 SDValue NewOp1 = 5835 DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1)); 5836 SDValue NewWOp = DAG.getNode(ISD::SHL, DL, MVT::i64, NewOp0, NewOp1); 5837 SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp, 5838 DAG.getValueType(MVT::i32)); 5839 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes)); 5840 } 5841 5842 break; 5843 case ISD::ROTL: 5844 case ISD::ROTR: 5845 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5846 "Unexpected custom legalisation"); 5847 Results.push_back(customLegalizeToWOp(N, DAG)); 5848 break; 5849 case ISD::CTTZ: 5850 case ISD::CTTZ_ZERO_UNDEF: 5851 case ISD::CTLZ: 5852 case ISD::CTLZ_ZERO_UNDEF: { 5853 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5854 "Unexpected custom legalisation"); 5855 5856 SDValue NewOp0 = 5857 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 5858 bool IsCTZ = 5859 N->getOpcode() == ISD::CTTZ || N->getOpcode() == ISD::CTTZ_ZERO_UNDEF; 5860 unsigned Opc = IsCTZ ? RISCVISD::CTZW : RISCVISD::CLZW; 5861 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp0); 5862 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 5863 return; 5864 } 5865 case ISD::SDIV: 5866 case ISD::UDIV: 5867 case ISD::UREM: { 5868 MVT VT = N->getSimpleValueType(0); 5869 assert((VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) && 5870 Subtarget.is64Bit() && Subtarget.hasStdExtM() && 5871 "Unexpected custom legalisation"); 5872 // Don't promote division/remainder by constant since we should expand those 5873 // to multiply by magic constant. 5874 // FIXME: What if the expansion is disabled for minsize. 5875 if (N->getOperand(1).getOpcode() == ISD::Constant) 5876 return; 5877 5878 // If the input is i32, use ANY_EXTEND since the W instructions don't read 5879 // the upper 32 bits. For other types we need to sign or zero extend 5880 // based on the opcode. 5881 unsigned ExtOpc = ISD::ANY_EXTEND; 5882 if (VT != MVT::i32) 5883 ExtOpc = N->getOpcode() == ISD::SDIV ? ISD::SIGN_EXTEND 5884 : ISD::ZERO_EXTEND; 5885 5886 Results.push_back(customLegalizeToWOp(N, DAG, ExtOpc)); 5887 break; 5888 } 5889 case ISD::UADDO: 5890 case ISD::USUBO: { 5891 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5892 "Unexpected custom legalisation"); 5893 bool IsAdd = N->getOpcode() == ISD::UADDO; 5894 // Create an ADDW or SUBW. 5895 SDValue LHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 5896 SDValue RHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 5897 SDValue Res = 5898 DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, DL, MVT::i64, LHS, RHS); 5899 Res = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Res, 5900 DAG.getValueType(MVT::i32)); 5901 5902 // Sign extend the LHS and perform an unsigned compare with the ADDW result. 5903 // Since the inputs are sign extended from i32, this is equivalent to 5904 // comparing the lower 32 bits. 5905 LHS = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0)); 5906 SDValue Overflow = DAG.getSetCC(DL, N->getValueType(1), Res, LHS, 5907 IsAdd ? ISD::SETULT : ISD::SETUGT); 5908 5909 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 5910 Results.push_back(Overflow); 5911 return; 5912 } 5913 case ISD::UADDSAT: 5914 case ISD::USUBSAT: { 5915 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5916 "Unexpected custom legalisation"); 5917 if (Subtarget.hasStdExtZbb()) { 5918 // With Zbb we can sign extend and let LegalizeDAG use minu/maxu. Using 5919 // sign extend allows overflow of the lower 32 bits to be detected on 5920 // the promoted size. 5921 SDValue LHS = 5922 DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0)); 5923 SDValue RHS = 5924 DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(1)); 5925 SDValue Res = DAG.getNode(N->getOpcode(), DL, MVT::i64, LHS, RHS); 5926 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 5927 return; 5928 } 5929 5930 // Without Zbb, expand to UADDO/USUBO+select which will trigger our custom 5931 // promotion for UADDO/USUBO. 5932 Results.push_back(expandAddSubSat(N, DAG)); 5933 return; 5934 } 5935 case ISD::BITCAST: { 5936 EVT VT = N->getValueType(0); 5937 assert(VT.isInteger() && !VT.isVector() && "Unexpected VT!"); 5938 SDValue Op0 = N->getOperand(0); 5939 EVT Op0VT = Op0.getValueType(); 5940 MVT XLenVT = Subtarget.getXLenVT(); 5941 if (VT == MVT::i16 && Op0VT == MVT::f16 && Subtarget.hasStdExtZfh()) { 5942 SDValue FPConv = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, XLenVT, Op0); 5943 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FPConv)); 5944 } else if (VT == MVT::i32 && Op0VT == MVT::f32 && Subtarget.is64Bit() && 5945 Subtarget.hasStdExtF()) { 5946 SDValue FPConv = 5947 DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Op0); 5948 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, FPConv)); 5949 } else if (!VT.isVector() && Op0VT.isFixedLengthVector() && 5950 isTypeLegal(Op0VT)) { 5951 // Custom-legalize bitcasts from fixed-length vector types to illegal 5952 // scalar types in order to improve codegen. Bitcast the vector to a 5953 // one-element vector type whose element type is the same as the result 5954 // type, and extract the first element. 5955 EVT BVT = EVT::getVectorVT(*DAG.getContext(), VT, 1); 5956 if (isTypeLegal(BVT)) { 5957 SDValue BVec = DAG.getBitcast(BVT, Op0); 5958 Results.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec, 5959 DAG.getConstant(0, DL, XLenVT))); 5960 } 5961 } 5962 break; 5963 } 5964 case RISCVISD::GREV: 5965 case RISCVISD::GORC: { 5966 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5967 "Unexpected custom legalisation"); 5968 assert(isa<ConstantSDNode>(N->getOperand(1)) && "Expected constant"); 5969 // This is similar to customLegalizeToWOp, except that we pass the second 5970 // operand (a TargetConstant) straight through: it is already of type 5971 // XLenVT. 5972 RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode()); 5973 SDValue NewOp0 = 5974 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 5975 SDValue NewOp1 = 5976 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 5977 SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1); 5978 // ReplaceNodeResults requires we maintain the same type for the return 5979 // value. 5980 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes)); 5981 break; 5982 } 5983 case RISCVISD::SHFL: { 5984 // There is no SHFLIW instruction, but we can just promote the operation. 5985 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5986 "Unexpected custom legalisation"); 5987 assert(isa<ConstantSDNode>(N->getOperand(1)) && "Expected constant"); 5988 SDValue NewOp0 = 5989 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 5990 SDValue NewOp1 = 5991 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 5992 SDValue NewRes = DAG.getNode(RISCVISD::SHFL, DL, MVT::i64, NewOp0, NewOp1); 5993 // ReplaceNodeResults requires we maintain the same type for the return 5994 // value. 5995 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes)); 5996 break; 5997 } 5998 case ISD::BSWAP: 5999 case ISD::BITREVERSE: { 6000 MVT VT = N->getSimpleValueType(0); 6001 MVT XLenVT = Subtarget.getXLenVT(); 6002 assert((VT == MVT::i8 || VT == MVT::i16 || 6003 (VT == MVT::i32 && Subtarget.is64Bit())) && 6004 Subtarget.hasStdExtZbp() && "Unexpected custom legalisation"); 6005 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, N->getOperand(0)); 6006 unsigned Imm = VT.getSizeInBits() - 1; 6007 // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits. 6008 if (N->getOpcode() == ISD::BSWAP) 6009 Imm &= ~0x7U; 6010 unsigned Opc = Subtarget.is64Bit() ? RISCVISD::GREVW : RISCVISD::GREV; 6011 SDValue GREVI = 6012 DAG.getNode(Opc, DL, XLenVT, NewOp0, DAG.getConstant(Imm, DL, XLenVT)); 6013 // ReplaceNodeResults requires we maintain the same type for the return 6014 // value. 6015 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, GREVI)); 6016 break; 6017 } 6018 case ISD::FSHL: 6019 case ISD::FSHR: { 6020 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6021 Subtarget.hasStdExtZbt() && "Unexpected custom legalisation"); 6022 SDValue NewOp0 = 6023 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 6024 SDValue NewOp1 = 6025 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6026 SDValue NewOp2 = 6027 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 6028 // FSLW/FSRW take a 6 bit shift amount but i32 FSHL/FSHR only use 5 bits. 6029 // Mask the shift amount to 5 bits. 6030 NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2, 6031 DAG.getConstant(0x1f, DL, MVT::i64)); 6032 unsigned Opc = 6033 N->getOpcode() == ISD::FSHL ? RISCVISD::FSLW : RISCVISD::FSRW; 6034 SDValue NewOp = DAG.getNode(Opc, DL, MVT::i64, NewOp0, NewOp1, NewOp2); 6035 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewOp)); 6036 break; 6037 } 6038 case ISD::EXTRACT_VECTOR_ELT: { 6039 // Custom-legalize an EXTRACT_VECTOR_ELT where XLEN<SEW, as the SEW element 6040 // type is illegal (currently only vXi64 RV32). 6041 // With vmv.x.s, when SEW > XLEN, only the least-significant XLEN bits are 6042 // transferred to the destination register. We issue two of these from the 6043 // upper- and lower- halves of the SEW-bit vector element, slid down to the 6044 // first element. 6045 SDValue Vec = N->getOperand(0); 6046 SDValue Idx = N->getOperand(1); 6047 6048 // The vector type hasn't been legalized yet so we can't issue target 6049 // specific nodes if it needs legalization. 6050 // FIXME: We would manually legalize if it's important. 6051 if (!isTypeLegal(Vec.getValueType())) 6052 return; 6053 6054 MVT VecVT = Vec.getSimpleValueType(); 6055 6056 assert(!Subtarget.is64Bit() && N->getValueType(0) == MVT::i64 && 6057 VecVT.getVectorElementType() == MVT::i64 && 6058 "Unexpected EXTRACT_VECTOR_ELT legalization"); 6059 6060 // If this is a fixed vector, we need to convert it to a scalable vector. 6061 MVT ContainerVT = VecVT; 6062 if (VecVT.isFixedLengthVector()) { 6063 ContainerVT = getContainerForFixedLengthVector(VecVT); 6064 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 6065 } 6066 6067 MVT XLenVT = Subtarget.getXLenVT(); 6068 6069 // Use a VL of 1 to avoid processing more elements than we need. 6070 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 6071 SDValue VL = DAG.getConstant(1, DL, XLenVT); 6072 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 6073 6074 // Unless the index is known to be 0, we must slide the vector down to get 6075 // the desired element into index 0. 6076 if (!isNullConstant(Idx)) { 6077 Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 6078 DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL); 6079 } 6080 6081 // Extract the lower XLEN bits of the correct vector element. 6082 SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); 6083 6084 // To extract the upper XLEN bits of the vector element, shift the first 6085 // element right by 32 bits and re-extract the lower XLEN bits. 6086 SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, 6087 DAG.getConstant(32, DL, XLenVT), VL); 6088 SDValue LShr32 = DAG.getNode(RISCVISD::SRL_VL, DL, ContainerVT, Vec, 6089 ThirtyTwoV, Mask, VL); 6090 6091 SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32); 6092 6093 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi)); 6094 break; 6095 } 6096 case ISD::INTRINSIC_WO_CHAIN: { 6097 unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 6098 switch (IntNo) { 6099 default: 6100 llvm_unreachable( 6101 "Don't know how to custom type legalize this intrinsic!"); 6102 case Intrinsic::riscv_orc_b: { 6103 // Lower to the GORCI encoding for orc.b with the operand extended. 6104 SDValue NewOp = 6105 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6106 // If Zbp is enabled, use GORCIW which will sign extend the result. 6107 unsigned Opc = 6108 Subtarget.hasStdExtZbp() ? RISCVISD::GORCW : RISCVISD::GORC; 6109 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp, 6110 DAG.getConstant(7, DL, MVT::i64)); 6111 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6112 return; 6113 } 6114 case Intrinsic::riscv_grev: 6115 case Intrinsic::riscv_gorc: { 6116 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6117 "Unexpected custom legalisation"); 6118 SDValue NewOp1 = 6119 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6120 SDValue NewOp2 = 6121 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 6122 unsigned Opc = 6123 IntNo == Intrinsic::riscv_grev ? RISCVISD::GREVW : RISCVISD::GORCW; 6124 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2); 6125 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6126 break; 6127 } 6128 case Intrinsic::riscv_shfl: 6129 case Intrinsic::riscv_unshfl: { 6130 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6131 "Unexpected custom legalisation"); 6132 SDValue NewOp1 = 6133 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6134 SDValue NewOp2 = 6135 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 6136 unsigned Opc = 6137 IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFLW : RISCVISD::UNSHFLW; 6138 if (isa<ConstantSDNode>(N->getOperand(2))) { 6139 NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2, 6140 DAG.getConstant(0xf, DL, MVT::i64)); 6141 Opc = 6142 IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL; 6143 } 6144 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2); 6145 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6146 break; 6147 } 6148 case Intrinsic::riscv_bcompress: 6149 case Intrinsic::riscv_bdecompress: { 6150 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6151 "Unexpected custom legalisation"); 6152 SDValue NewOp1 = 6153 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6154 SDValue NewOp2 = 6155 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 6156 unsigned Opc = IntNo == Intrinsic::riscv_bcompress 6157 ? RISCVISD::BCOMPRESSW 6158 : RISCVISD::BDECOMPRESSW; 6159 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2); 6160 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6161 break; 6162 } 6163 case Intrinsic::riscv_vmv_x_s: { 6164 EVT VT = N->getValueType(0); 6165 MVT XLenVT = Subtarget.getXLenVT(); 6166 if (VT.bitsLT(XLenVT)) { 6167 // Simple case just extract using vmv.x.s and truncate. 6168 SDValue Extract = DAG.getNode(RISCVISD::VMV_X_S, DL, 6169 Subtarget.getXLenVT(), N->getOperand(1)); 6170 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, Extract)); 6171 return; 6172 } 6173 6174 assert(VT == MVT::i64 && !Subtarget.is64Bit() && 6175 "Unexpected custom legalization"); 6176 6177 // We need to do the move in two steps. 6178 SDValue Vec = N->getOperand(1); 6179 MVT VecVT = Vec.getSimpleValueType(); 6180 6181 // First extract the lower XLEN bits of the element. 6182 SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); 6183 6184 // To extract the upper XLEN bits of the vector element, shift the first 6185 // element right by 32 bits and re-extract the lower XLEN bits. 6186 SDValue VL = DAG.getConstant(1, DL, XLenVT); 6187 MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount()); 6188 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 6189 SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, 6190 DAG.getConstant(32, DL, XLenVT), VL); 6191 SDValue LShr32 = 6192 DAG.getNode(RISCVISD::SRL_VL, DL, VecVT, Vec, ThirtyTwoV, Mask, VL); 6193 SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32); 6194 6195 Results.push_back( 6196 DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi)); 6197 break; 6198 } 6199 } 6200 break; 6201 } 6202 case ISD::VECREDUCE_ADD: 6203 case ISD::VECREDUCE_AND: 6204 case ISD::VECREDUCE_OR: 6205 case ISD::VECREDUCE_XOR: 6206 case ISD::VECREDUCE_SMAX: 6207 case ISD::VECREDUCE_UMAX: 6208 case ISD::VECREDUCE_SMIN: 6209 case ISD::VECREDUCE_UMIN: 6210 if (SDValue V = lowerVECREDUCE(SDValue(N, 0), DAG)) 6211 Results.push_back(V); 6212 break; 6213 case ISD::VP_REDUCE_ADD: 6214 case ISD::VP_REDUCE_AND: 6215 case ISD::VP_REDUCE_OR: 6216 case ISD::VP_REDUCE_XOR: 6217 case ISD::VP_REDUCE_SMAX: 6218 case ISD::VP_REDUCE_UMAX: 6219 case ISD::VP_REDUCE_SMIN: 6220 case ISD::VP_REDUCE_UMIN: 6221 if (SDValue V = lowerVPREDUCE(SDValue(N, 0), DAG)) 6222 Results.push_back(V); 6223 break; 6224 case ISD::FLT_ROUNDS_: { 6225 SDVTList VTs = DAG.getVTList(Subtarget.getXLenVT(), MVT::Other); 6226 SDValue Res = DAG.getNode(ISD::FLT_ROUNDS_, DL, VTs, N->getOperand(0)); 6227 Results.push_back(Res.getValue(0)); 6228 Results.push_back(Res.getValue(1)); 6229 break; 6230 } 6231 } 6232 } 6233 6234 // A structure to hold one of the bit-manipulation patterns below. Together, a 6235 // SHL and non-SHL pattern may form a bit-manipulation pair on a single source: 6236 // (or (and (shl x, 1), 0xAAAAAAAA), 6237 // (and (srl x, 1), 0x55555555)) 6238 struct RISCVBitmanipPat { 6239 SDValue Op; 6240 unsigned ShAmt; 6241 bool IsSHL; 6242 6243 bool formsPairWith(const RISCVBitmanipPat &Other) const { 6244 return Op == Other.Op && ShAmt == Other.ShAmt && IsSHL != Other.IsSHL; 6245 } 6246 }; 6247 6248 // Matches patterns of the form 6249 // (and (shl x, C2), (C1 << C2)) 6250 // (and (srl x, C2), C1) 6251 // (shl (and x, C1), C2) 6252 // (srl (and x, (C1 << C2)), C2) 6253 // Where C2 is a power of 2 and C1 has at least that many leading zeroes. 6254 // The expected masks for each shift amount are specified in BitmanipMasks where 6255 // BitmanipMasks[log2(C2)] specifies the expected C1 value. 6256 // The max allowed shift amount is either XLen/2 or XLen/4 determined by whether 6257 // BitmanipMasks contains 6 or 5 entries assuming that the maximum possible 6258 // XLen is 64. 6259 static Optional<RISCVBitmanipPat> 6260 matchRISCVBitmanipPat(SDValue Op, ArrayRef<uint64_t> BitmanipMasks) { 6261 assert((BitmanipMasks.size() == 5 || BitmanipMasks.size() == 6) && 6262 "Unexpected number of masks"); 6263 Optional<uint64_t> Mask; 6264 // Optionally consume a mask around the shift operation. 6265 if (Op.getOpcode() == ISD::AND && isa<ConstantSDNode>(Op.getOperand(1))) { 6266 Mask = Op.getConstantOperandVal(1); 6267 Op = Op.getOperand(0); 6268 } 6269 if (Op.getOpcode() != ISD::SHL && Op.getOpcode() != ISD::SRL) 6270 return None; 6271 bool IsSHL = Op.getOpcode() == ISD::SHL; 6272 6273 if (!isa<ConstantSDNode>(Op.getOperand(1))) 6274 return None; 6275 uint64_t ShAmt = Op.getConstantOperandVal(1); 6276 6277 unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32; 6278 if (ShAmt >= Width || !isPowerOf2_64(ShAmt)) 6279 return None; 6280 // If we don't have enough masks for 64 bit, then we must be trying to 6281 // match SHFL so we're only allowed to shift 1/4 of the width. 6282 if (BitmanipMasks.size() == 5 && ShAmt >= (Width / 2)) 6283 return None; 6284 6285 SDValue Src = Op.getOperand(0); 6286 6287 // The expected mask is shifted left when the AND is found around SHL 6288 // patterns. 6289 // ((x >> 1) & 0x55555555) 6290 // ((x << 1) & 0xAAAAAAAA) 6291 bool SHLExpMask = IsSHL; 6292 6293 if (!Mask) { 6294 // Sometimes LLVM keeps the mask as an operand of the shift, typically when 6295 // the mask is all ones: consume that now. 6296 if (Src.getOpcode() == ISD::AND && isa<ConstantSDNode>(Src.getOperand(1))) { 6297 Mask = Src.getConstantOperandVal(1); 6298 Src = Src.getOperand(0); 6299 // The expected mask is now in fact shifted left for SRL, so reverse the 6300 // decision. 6301 // ((x & 0xAAAAAAAA) >> 1) 6302 // ((x & 0x55555555) << 1) 6303 SHLExpMask = !SHLExpMask; 6304 } else { 6305 // Use a default shifted mask of all-ones if there's no AND, truncated 6306 // down to the expected width. This simplifies the logic later on. 6307 Mask = maskTrailingOnes<uint64_t>(Width); 6308 *Mask &= (IsSHL ? *Mask << ShAmt : *Mask >> ShAmt); 6309 } 6310 } 6311 6312 unsigned MaskIdx = Log2_32(ShAmt); 6313 uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width); 6314 6315 if (SHLExpMask) 6316 ExpMask <<= ShAmt; 6317 6318 if (Mask != ExpMask) 6319 return None; 6320 6321 return RISCVBitmanipPat{Src, (unsigned)ShAmt, IsSHL}; 6322 } 6323 6324 // Matches any of the following bit-manipulation patterns: 6325 // (and (shl x, 1), (0x55555555 << 1)) 6326 // (and (srl x, 1), 0x55555555) 6327 // (shl (and x, 0x55555555), 1) 6328 // (srl (and x, (0x55555555 << 1)), 1) 6329 // where the shift amount and mask may vary thus: 6330 // [1] = 0x55555555 / 0xAAAAAAAA 6331 // [2] = 0x33333333 / 0xCCCCCCCC 6332 // [4] = 0x0F0F0F0F / 0xF0F0F0F0 6333 // [8] = 0x00FF00FF / 0xFF00FF00 6334 // [16] = 0x0000FFFF / 0xFFFFFFFF 6335 // [32] = 0x00000000FFFFFFFF / 0xFFFFFFFF00000000 (for RV64) 6336 static Optional<RISCVBitmanipPat> matchGREVIPat(SDValue Op) { 6337 // These are the unshifted masks which we use to match bit-manipulation 6338 // patterns. They may be shifted left in certain circumstances. 6339 static const uint64_t BitmanipMasks[] = { 6340 0x5555555555555555ULL, 0x3333333333333333ULL, 0x0F0F0F0F0F0F0F0FULL, 6341 0x00FF00FF00FF00FFULL, 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL}; 6342 6343 return matchRISCVBitmanipPat(Op, BitmanipMasks); 6344 } 6345 6346 // Match the following pattern as a GREVI(W) operation 6347 // (or (BITMANIP_SHL x), (BITMANIP_SRL x)) 6348 static SDValue combineORToGREV(SDValue Op, SelectionDAG &DAG, 6349 const RISCVSubtarget &Subtarget) { 6350 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson"); 6351 EVT VT = Op.getValueType(); 6352 6353 if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) { 6354 auto LHS = matchGREVIPat(Op.getOperand(0)); 6355 auto RHS = matchGREVIPat(Op.getOperand(1)); 6356 if (LHS && RHS && LHS->formsPairWith(*RHS)) { 6357 SDLoc DL(Op); 6358 return DAG.getNode(RISCVISD::GREV, DL, VT, LHS->Op, 6359 DAG.getConstant(LHS->ShAmt, DL, VT)); 6360 } 6361 } 6362 return SDValue(); 6363 } 6364 6365 // Matches any the following pattern as a GORCI(W) operation 6366 // 1. (or (GREVI x, shamt), x) if shamt is a power of 2 6367 // 2. (or x, (GREVI x, shamt)) if shamt is a power of 2 6368 // 3. (or (or (BITMANIP_SHL x), x), (BITMANIP_SRL x)) 6369 // Note that with the variant of 3., 6370 // (or (or (BITMANIP_SHL x), (BITMANIP_SRL x)), x) 6371 // the inner pattern will first be matched as GREVI and then the outer 6372 // pattern will be matched to GORC via the first rule above. 6373 // 4. (or (rotl/rotr x, bitwidth/2), x) 6374 static SDValue combineORToGORC(SDValue Op, SelectionDAG &DAG, 6375 const RISCVSubtarget &Subtarget) { 6376 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson"); 6377 EVT VT = Op.getValueType(); 6378 6379 if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) { 6380 SDLoc DL(Op); 6381 SDValue Op0 = Op.getOperand(0); 6382 SDValue Op1 = Op.getOperand(1); 6383 6384 auto MatchOROfReverse = [&](SDValue Reverse, SDValue X) { 6385 if (Reverse.getOpcode() == RISCVISD::GREV && Reverse.getOperand(0) == X && 6386 isa<ConstantSDNode>(Reverse.getOperand(1)) && 6387 isPowerOf2_32(Reverse.getConstantOperandVal(1))) 6388 return DAG.getNode(RISCVISD::GORC, DL, VT, X, Reverse.getOperand(1)); 6389 // We can also form GORCI from ROTL/ROTR by half the bitwidth. 6390 if ((Reverse.getOpcode() == ISD::ROTL || 6391 Reverse.getOpcode() == ISD::ROTR) && 6392 Reverse.getOperand(0) == X && 6393 isa<ConstantSDNode>(Reverse.getOperand(1))) { 6394 uint64_t RotAmt = Reverse.getConstantOperandVal(1); 6395 if (RotAmt == (VT.getSizeInBits() / 2)) 6396 return DAG.getNode(RISCVISD::GORC, DL, VT, X, 6397 DAG.getConstant(RotAmt, DL, VT)); 6398 } 6399 return SDValue(); 6400 }; 6401 6402 // Check for either commutable permutation of (or (GREVI x, shamt), x) 6403 if (SDValue V = MatchOROfReverse(Op0, Op1)) 6404 return V; 6405 if (SDValue V = MatchOROfReverse(Op1, Op0)) 6406 return V; 6407 6408 // OR is commutable so canonicalize its OR operand to the left 6409 if (Op0.getOpcode() != ISD::OR && Op1.getOpcode() == ISD::OR) 6410 std::swap(Op0, Op1); 6411 if (Op0.getOpcode() != ISD::OR) 6412 return SDValue(); 6413 SDValue OrOp0 = Op0.getOperand(0); 6414 SDValue OrOp1 = Op0.getOperand(1); 6415 auto LHS = matchGREVIPat(OrOp0); 6416 // OR is commutable so swap the operands and try again: x might have been 6417 // on the left 6418 if (!LHS) { 6419 std::swap(OrOp0, OrOp1); 6420 LHS = matchGREVIPat(OrOp0); 6421 } 6422 auto RHS = matchGREVIPat(Op1); 6423 if (LHS && RHS && LHS->formsPairWith(*RHS) && LHS->Op == OrOp1) { 6424 return DAG.getNode(RISCVISD::GORC, DL, VT, LHS->Op, 6425 DAG.getConstant(LHS->ShAmt, DL, VT)); 6426 } 6427 } 6428 return SDValue(); 6429 } 6430 6431 // Matches any of the following bit-manipulation patterns: 6432 // (and (shl x, 1), (0x22222222 << 1)) 6433 // (and (srl x, 1), 0x22222222) 6434 // (shl (and x, 0x22222222), 1) 6435 // (srl (and x, (0x22222222 << 1)), 1) 6436 // where the shift amount and mask may vary thus: 6437 // [1] = 0x22222222 / 0x44444444 6438 // [2] = 0x0C0C0C0C / 0x3C3C3C3C 6439 // [4] = 0x00F000F0 / 0x0F000F00 6440 // [8] = 0x0000FF00 / 0x00FF0000 6441 // [16] = 0x00000000FFFF0000 / 0x0000FFFF00000000 (for RV64) 6442 static Optional<RISCVBitmanipPat> matchSHFLPat(SDValue Op) { 6443 // These are the unshifted masks which we use to match bit-manipulation 6444 // patterns. They may be shifted left in certain circumstances. 6445 static const uint64_t BitmanipMasks[] = { 6446 0x2222222222222222ULL, 0x0C0C0C0C0C0C0C0CULL, 0x00F000F000F000F0ULL, 6447 0x0000FF000000FF00ULL, 0x00000000FFFF0000ULL}; 6448 6449 return matchRISCVBitmanipPat(Op, BitmanipMasks); 6450 } 6451 6452 // Match (or (or (SHFL_SHL x), (SHFL_SHR x)), (SHFL_AND x) 6453 static SDValue combineORToSHFL(SDValue Op, SelectionDAG &DAG, 6454 const RISCVSubtarget &Subtarget) { 6455 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson"); 6456 EVT VT = Op.getValueType(); 6457 6458 if (VT != MVT::i32 && VT != Subtarget.getXLenVT()) 6459 return SDValue(); 6460 6461 SDValue Op0 = Op.getOperand(0); 6462 SDValue Op1 = Op.getOperand(1); 6463 6464 // Or is commutable so canonicalize the second OR to the LHS. 6465 if (Op0.getOpcode() != ISD::OR) 6466 std::swap(Op0, Op1); 6467 if (Op0.getOpcode() != ISD::OR) 6468 return SDValue(); 6469 6470 // We found an inner OR, so our operands are the operands of the inner OR 6471 // and the other operand of the outer OR. 6472 SDValue A = Op0.getOperand(0); 6473 SDValue B = Op0.getOperand(1); 6474 SDValue C = Op1; 6475 6476 auto Match1 = matchSHFLPat(A); 6477 auto Match2 = matchSHFLPat(B); 6478 6479 // If neither matched, we failed. 6480 if (!Match1 && !Match2) 6481 return SDValue(); 6482 6483 // We had at least one match. if one failed, try the remaining C operand. 6484 if (!Match1) { 6485 std::swap(A, C); 6486 Match1 = matchSHFLPat(A); 6487 if (!Match1) 6488 return SDValue(); 6489 } else if (!Match2) { 6490 std::swap(B, C); 6491 Match2 = matchSHFLPat(B); 6492 if (!Match2) 6493 return SDValue(); 6494 } 6495 assert(Match1 && Match2); 6496 6497 // Make sure our matches pair up. 6498 if (!Match1->formsPairWith(*Match2)) 6499 return SDValue(); 6500 6501 // All the remains is to make sure C is an AND with the same input, that masks 6502 // out the bits that are being shuffled. 6503 if (C.getOpcode() != ISD::AND || !isa<ConstantSDNode>(C.getOperand(1)) || 6504 C.getOperand(0) != Match1->Op) 6505 return SDValue(); 6506 6507 uint64_t Mask = C.getConstantOperandVal(1); 6508 6509 static const uint64_t BitmanipMasks[] = { 6510 0x9999999999999999ULL, 0xC3C3C3C3C3C3C3C3ULL, 0xF00FF00FF00FF00FULL, 6511 0xFF0000FFFF0000FFULL, 0xFFFF00000000FFFFULL, 6512 }; 6513 6514 unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32; 6515 unsigned MaskIdx = Log2_32(Match1->ShAmt); 6516 uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width); 6517 6518 if (Mask != ExpMask) 6519 return SDValue(); 6520 6521 SDLoc DL(Op); 6522 return DAG.getNode(RISCVISD::SHFL, DL, VT, Match1->Op, 6523 DAG.getConstant(Match1->ShAmt, DL, VT)); 6524 } 6525 6526 // Optimize (add (shl x, c0), (shl y, c1)) -> 6527 // (SLLI (SH*ADD x, y), c0), if c1-c0 equals to [1|2|3]. 6528 static SDValue transformAddShlImm(SDNode *N, SelectionDAG &DAG, 6529 const RISCVSubtarget &Subtarget) { 6530 // Perform this optimization only in the zba extension. 6531 if (!Subtarget.hasStdExtZba()) 6532 return SDValue(); 6533 6534 // Skip for vector types and larger types. 6535 EVT VT = N->getValueType(0); 6536 if (VT.isVector() || VT.getSizeInBits() > Subtarget.getXLen()) 6537 return SDValue(); 6538 6539 // The two operand nodes must be SHL and have no other use. 6540 SDValue N0 = N->getOperand(0); 6541 SDValue N1 = N->getOperand(1); 6542 if (N0->getOpcode() != ISD::SHL || N1->getOpcode() != ISD::SHL || 6543 !N0->hasOneUse() || !N1->hasOneUse()) 6544 return SDValue(); 6545 6546 // Check c0 and c1. 6547 auto *N0C = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 6548 auto *N1C = dyn_cast<ConstantSDNode>(N1->getOperand(1)); 6549 if (!N0C || !N1C) 6550 return SDValue(); 6551 int64_t C0 = N0C->getSExtValue(); 6552 int64_t C1 = N1C->getSExtValue(); 6553 if (C0 <= 0 || C1 <= 0) 6554 return SDValue(); 6555 6556 // Skip if SH1ADD/SH2ADD/SH3ADD are not applicable. 6557 int64_t Bits = std::min(C0, C1); 6558 int64_t Diff = std::abs(C0 - C1); 6559 if (Diff != 1 && Diff != 2 && Diff != 3) 6560 return SDValue(); 6561 6562 // Build nodes. 6563 SDLoc DL(N); 6564 SDValue NS = (C0 < C1) ? N0->getOperand(0) : N1->getOperand(0); 6565 SDValue NL = (C0 > C1) ? N0->getOperand(0) : N1->getOperand(0); 6566 SDValue NA0 = 6567 DAG.getNode(ISD::SHL, DL, VT, NL, DAG.getConstant(Diff, DL, VT)); 6568 SDValue NA1 = DAG.getNode(ISD::ADD, DL, VT, NA0, NS); 6569 return DAG.getNode(ISD::SHL, DL, VT, NA1, DAG.getConstant(Bits, DL, VT)); 6570 } 6571 6572 // Combine (GREVI (GREVI x, C2), C1) -> (GREVI x, C1^C2) when C1^C2 is 6573 // non-zero, and to x when it is. Any repeated GREVI stage undoes itself. 6574 // Combine (GORCI (GORCI x, C2), C1) -> (GORCI x, C1|C2). Repeated stage does 6575 // not undo itself, but they are redundant. 6576 static SDValue combineGREVI_GORCI(SDNode *N, SelectionDAG &DAG) { 6577 SDValue Src = N->getOperand(0); 6578 6579 if (Src.getOpcode() != N->getOpcode()) 6580 return SDValue(); 6581 6582 if (!isa<ConstantSDNode>(N->getOperand(1)) || 6583 !isa<ConstantSDNode>(Src.getOperand(1))) 6584 return SDValue(); 6585 6586 unsigned ShAmt1 = N->getConstantOperandVal(1); 6587 unsigned ShAmt2 = Src.getConstantOperandVal(1); 6588 Src = Src.getOperand(0); 6589 6590 unsigned CombinedShAmt; 6591 if (N->getOpcode() == RISCVISD::GORC || N->getOpcode() == RISCVISD::GORCW) 6592 CombinedShAmt = ShAmt1 | ShAmt2; 6593 else 6594 CombinedShAmt = ShAmt1 ^ ShAmt2; 6595 6596 if (CombinedShAmt == 0) 6597 return Src; 6598 6599 SDLoc DL(N); 6600 return DAG.getNode( 6601 N->getOpcode(), DL, N->getValueType(0), Src, 6602 DAG.getConstant(CombinedShAmt, DL, N->getOperand(1).getValueType())); 6603 } 6604 6605 // Combine a constant select operand into its use: 6606 // 6607 // (and (select cond, -1, c), x) 6608 // -> (select cond, x, (and x, c)) [AllOnes=1] 6609 // (or (select cond, 0, c), x) 6610 // -> (select cond, x, (or x, c)) [AllOnes=0] 6611 // (xor (select cond, 0, c), x) 6612 // -> (select cond, x, (xor x, c)) [AllOnes=0] 6613 // (add (select cond, 0, c), x) 6614 // -> (select cond, x, (add x, c)) [AllOnes=0] 6615 // (sub x, (select cond, 0, c)) 6616 // -> (select cond, x, (sub x, c)) [AllOnes=0] 6617 static SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp, 6618 SelectionDAG &DAG, bool AllOnes) { 6619 EVT VT = N->getValueType(0); 6620 6621 // Skip vectors. 6622 if (VT.isVector()) 6623 return SDValue(); 6624 6625 if ((Slct.getOpcode() != ISD::SELECT && 6626 Slct.getOpcode() != RISCVISD::SELECT_CC) || 6627 !Slct.hasOneUse()) 6628 return SDValue(); 6629 6630 auto isZeroOrAllOnes = [](SDValue N, bool AllOnes) { 6631 return AllOnes ? isAllOnesConstant(N) : isNullConstant(N); 6632 }; 6633 6634 bool SwapSelectOps; 6635 unsigned OpOffset = Slct.getOpcode() == RISCVISD::SELECT_CC ? 2 : 0; 6636 SDValue TrueVal = Slct.getOperand(1 + OpOffset); 6637 SDValue FalseVal = Slct.getOperand(2 + OpOffset); 6638 SDValue NonConstantVal; 6639 if (isZeroOrAllOnes(TrueVal, AllOnes)) { 6640 SwapSelectOps = false; 6641 NonConstantVal = FalseVal; 6642 } else if (isZeroOrAllOnes(FalseVal, AllOnes)) { 6643 SwapSelectOps = true; 6644 NonConstantVal = TrueVal; 6645 } else 6646 return SDValue(); 6647 6648 // Slct is now know to be the desired identity constant when CC is true. 6649 TrueVal = OtherOp; 6650 FalseVal = DAG.getNode(N->getOpcode(), SDLoc(N), VT, OtherOp, NonConstantVal); 6651 // Unless SwapSelectOps says the condition should be false. 6652 if (SwapSelectOps) 6653 std::swap(TrueVal, FalseVal); 6654 6655 if (Slct.getOpcode() == RISCVISD::SELECT_CC) 6656 return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), VT, 6657 {Slct.getOperand(0), Slct.getOperand(1), 6658 Slct.getOperand(2), TrueVal, FalseVal}); 6659 6660 return DAG.getNode(ISD::SELECT, SDLoc(N), VT, 6661 {Slct.getOperand(0), TrueVal, FalseVal}); 6662 } 6663 6664 // Attempt combineSelectAndUse on each operand of a commutative operator N. 6665 static SDValue combineSelectAndUseCommutative(SDNode *N, SelectionDAG &DAG, 6666 bool AllOnes) { 6667 SDValue N0 = N->getOperand(0); 6668 SDValue N1 = N->getOperand(1); 6669 if (SDValue Result = combineSelectAndUse(N, N0, N1, DAG, AllOnes)) 6670 return Result; 6671 if (SDValue Result = combineSelectAndUse(N, N1, N0, DAG, AllOnes)) 6672 return Result; 6673 return SDValue(); 6674 } 6675 6676 // Transform (add (mul x, c0), c1) -> 6677 // (add (mul (add x, c1/c0), c0), c1%c0). 6678 // if c1/c0 and c1%c0 are simm12, while c1 is not. A special corner case 6679 // that should be excluded is when c0*(c1/c0) is simm12, which will lead 6680 // to an infinite loop in DAGCombine if transformed. 6681 // Or transform (add (mul x, c0), c1) -> 6682 // (add (mul (add x, c1/c0+1), c0), c1%c0-c0), 6683 // if c1/c0+1 and c1%c0-c0 are simm12, while c1 is not. A special corner 6684 // case that should be excluded is when c0*(c1/c0+1) is simm12, which will 6685 // lead to an infinite loop in DAGCombine if transformed. 6686 // Or transform (add (mul x, c0), c1) -> 6687 // (add (mul (add x, c1/c0-1), c0), c1%c0+c0), 6688 // if c1/c0-1 and c1%c0+c0 are simm12, while c1 is not. A special corner 6689 // case that should be excluded is when c0*(c1/c0-1) is simm12, which will 6690 // lead to an infinite loop in DAGCombine if transformed. 6691 // Or transform (add (mul x, c0), c1) -> 6692 // (mul (add x, c1/c0), c0). 6693 // if c1%c0 is zero, and c1/c0 is simm12 while c1 is not. 6694 static SDValue transformAddImmMulImm(SDNode *N, SelectionDAG &DAG, 6695 const RISCVSubtarget &Subtarget) { 6696 // Skip for vector types and larger types. 6697 EVT VT = N->getValueType(0); 6698 if (VT.isVector() || VT.getSizeInBits() > Subtarget.getXLen()) 6699 return SDValue(); 6700 // The first operand node must be a MUL and has no other use. 6701 SDValue N0 = N->getOperand(0); 6702 if (!N0->hasOneUse() || N0->getOpcode() != ISD::MUL) 6703 return SDValue(); 6704 // Check if c0 and c1 match above conditions. 6705 auto *N0C = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 6706 auto *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1)); 6707 if (!N0C || !N1C) 6708 return SDValue(); 6709 int64_t C0 = N0C->getSExtValue(); 6710 int64_t C1 = N1C->getSExtValue(); 6711 int64_t CA, CB; 6712 if (C0 == -1 || C0 == 0 || C0 == 1 || isInt<12>(C1)) 6713 return SDValue(); 6714 // Search for proper CA (non-zero) and CB that both are simm12. 6715 if ((C1 / C0) != 0 && isInt<12>(C1 / C0) && isInt<12>(C1 % C0) && 6716 !isInt<12>(C0 * (C1 / C0))) { 6717 CA = C1 / C0; 6718 CB = C1 % C0; 6719 } else if ((C1 / C0 + 1) != 0 && isInt<12>(C1 / C0 + 1) && 6720 isInt<12>(C1 % C0 - C0) && !isInt<12>(C0 * (C1 / C0 + 1))) { 6721 CA = C1 / C0 + 1; 6722 CB = C1 % C0 - C0; 6723 } else if ((C1 / C0 - 1) != 0 && isInt<12>(C1 / C0 - 1) && 6724 isInt<12>(C1 % C0 + C0) && !isInt<12>(C0 * (C1 / C0 - 1))) { 6725 CA = C1 / C0 - 1; 6726 CB = C1 % C0 + C0; 6727 } else 6728 return SDValue(); 6729 // Build new nodes (add (mul (add x, c1/c0), c0), c1%c0). 6730 SDLoc DL(N); 6731 SDValue New0 = DAG.getNode(ISD::ADD, DL, VT, N0->getOperand(0), 6732 DAG.getConstant(CA, DL, VT)); 6733 SDValue New1 = 6734 DAG.getNode(ISD::MUL, DL, VT, New0, DAG.getConstant(C0, DL, VT)); 6735 return DAG.getNode(ISD::ADD, DL, VT, New1, DAG.getConstant(CB, DL, VT)); 6736 } 6737 6738 static SDValue performADDCombine(SDNode *N, SelectionDAG &DAG, 6739 const RISCVSubtarget &Subtarget) { 6740 if (SDValue V = transformAddImmMulImm(N, DAG, Subtarget)) 6741 return V; 6742 if (SDValue V = transformAddShlImm(N, DAG, Subtarget)) 6743 return V; 6744 // fold (add (select lhs, rhs, cc, 0, y), x) -> 6745 // (select lhs, rhs, cc, x, (add x, y)) 6746 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false); 6747 } 6748 6749 static SDValue performSUBCombine(SDNode *N, SelectionDAG &DAG) { 6750 // fold (sub x, (select lhs, rhs, cc, 0, y)) -> 6751 // (select lhs, rhs, cc, x, (sub x, y)) 6752 SDValue N0 = N->getOperand(0); 6753 SDValue N1 = N->getOperand(1); 6754 return combineSelectAndUse(N, N1, N0, DAG, /*AllOnes*/ false); 6755 } 6756 6757 static SDValue performANDCombine(SDNode *N, SelectionDAG &DAG) { 6758 // fold (and (select lhs, rhs, cc, -1, y), x) -> 6759 // (select lhs, rhs, cc, x, (and x, y)) 6760 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ true); 6761 } 6762 6763 static SDValue performORCombine(SDNode *N, SelectionDAG &DAG, 6764 const RISCVSubtarget &Subtarget) { 6765 if (Subtarget.hasStdExtZbp()) { 6766 if (auto GREV = combineORToGREV(SDValue(N, 0), DAG, Subtarget)) 6767 return GREV; 6768 if (auto GORC = combineORToGORC(SDValue(N, 0), DAG, Subtarget)) 6769 return GORC; 6770 if (auto SHFL = combineORToSHFL(SDValue(N, 0), DAG, Subtarget)) 6771 return SHFL; 6772 } 6773 6774 // fold (or (select cond, 0, y), x) -> 6775 // (select cond, x, (or x, y)) 6776 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false); 6777 } 6778 6779 static SDValue performXORCombine(SDNode *N, SelectionDAG &DAG) { 6780 // fold (xor (select cond, 0, y), x) -> 6781 // (select cond, x, (xor x, y)) 6782 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false); 6783 } 6784 6785 // Attempt to turn ANY_EXTEND into SIGN_EXTEND if the input to the ANY_EXTEND 6786 // has users that require SIGN_EXTEND and the SIGN_EXTEND can be done for free 6787 // by an instruction like ADDW/SUBW/MULW. Without this the ANY_EXTEND would be 6788 // removed during type legalization leaving an ADD/SUB/MUL use that won't use 6789 // ADDW/SUBW/MULW. 6790 static SDValue performANY_EXTENDCombine(SDNode *N, 6791 TargetLowering::DAGCombinerInfo &DCI, 6792 const RISCVSubtarget &Subtarget) { 6793 if (!Subtarget.is64Bit()) 6794 return SDValue(); 6795 6796 SelectionDAG &DAG = DCI.DAG; 6797 6798 SDValue Src = N->getOperand(0); 6799 EVT VT = N->getValueType(0); 6800 if (VT != MVT::i64 || Src.getValueType() != MVT::i32) 6801 return SDValue(); 6802 6803 // The opcode must be one that can implicitly sign_extend. 6804 // FIXME: Additional opcodes. 6805 switch (Src.getOpcode()) { 6806 default: 6807 return SDValue(); 6808 case ISD::MUL: 6809 if (!Subtarget.hasStdExtM()) 6810 return SDValue(); 6811 LLVM_FALLTHROUGH; 6812 case ISD::ADD: 6813 case ISD::SUB: 6814 break; 6815 } 6816 6817 // Only handle cases where the result is used by a CopyToReg. That likely 6818 // means the value is a liveout of the basic block. This helps prevent 6819 // infinite combine loops like PR51206. 6820 if (none_of(N->uses(), 6821 [](SDNode *User) { return User->getOpcode() == ISD::CopyToReg; })) 6822 return SDValue(); 6823 6824 SmallVector<SDNode *, 4> SetCCs; 6825 for (SDNode::use_iterator UI = Src.getNode()->use_begin(), 6826 UE = Src.getNode()->use_end(); 6827 UI != UE; ++UI) { 6828 SDNode *User = *UI; 6829 if (User == N) 6830 continue; 6831 if (UI.getUse().getResNo() != Src.getResNo()) 6832 continue; 6833 // All i32 setccs are legalized by sign extending operands. 6834 if (User->getOpcode() == ISD::SETCC) { 6835 SetCCs.push_back(User); 6836 continue; 6837 } 6838 // We don't know if we can extend this user. 6839 break; 6840 } 6841 6842 // If we don't have any SetCCs, this isn't worthwhile. 6843 if (SetCCs.empty()) 6844 return SDValue(); 6845 6846 SDLoc DL(N); 6847 SDValue SExt = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Src); 6848 DCI.CombineTo(N, SExt); 6849 6850 // Promote all the setccs. 6851 for (SDNode *SetCC : SetCCs) { 6852 SmallVector<SDValue, 4> Ops; 6853 6854 for (unsigned j = 0; j != 2; ++j) { 6855 SDValue SOp = SetCC->getOperand(j); 6856 if (SOp == Src) 6857 Ops.push_back(SExt); 6858 else 6859 Ops.push_back(DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, SOp)); 6860 } 6861 6862 Ops.push_back(SetCC->getOperand(2)); 6863 DCI.CombineTo(SetCC, 6864 DAG.getNode(ISD::SETCC, DL, SetCC->getValueType(0), Ops)); 6865 } 6866 return SDValue(N, 0); 6867 } 6868 6869 // Try to form VWMUL or VWMULU. 6870 // FIXME: Support VWMULSU. 6871 static SDValue combineMUL_VLToVWMUL(SDNode *N, SDValue Op0, SDValue Op1, 6872 SelectionDAG &DAG) { 6873 assert(N->getOpcode() == RISCVISD::MUL_VL && "Unexpected opcode"); 6874 bool IsSignExt = Op0.getOpcode() == RISCVISD::VSEXT_VL; 6875 bool IsZeroExt = Op0.getOpcode() == RISCVISD::VZEXT_VL; 6876 if ((!IsSignExt && !IsZeroExt) || !Op0.hasOneUse()) 6877 return SDValue(); 6878 6879 SDValue Mask = N->getOperand(2); 6880 SDValue VL = N->getOperand(3); 6881 6882 // Make sure the mask and VL match. 6883 if (Op0.getOperand(1) != Mask || Op0.getOperand(2) != VL) 6884 return SDValue(); 6885 6886 MVT VT = N->getSimpleValueType(0); 6887 6888 // Determine the narrow size for a widening multiply. 6889 unsigned NarrowSize = VT.getScalarSizeInBits() / 2; 6890 MVT NarrowVT = MVT::getVectorVT(MVT::getIntegerVT(NarrowSize), 6891 VT.getVectorElementCount()); 6892 6893 SDLoc DL(N); 6894 6895 // See if the other operand is the same opcode. 6896 if (Op0.getOpcode() == Op1.getOpcode()) { 6897 if (!Op1.hasOneUse()) 6898 return SDValue(); 6899 6900 // Make sure the mask and VL match. 6901 if (Op1.getOperand(1) != Mask || Op1.getOperand(2) != VL) 6902 return SDValue(); 6903 6904 Op1 = Op1.getOperand(0); 6905 } else if (Op1.getOpcode() == RISCVISD::VMV_V_X_VL) { 6906 // The operand is a splat of a scalar. 6907 6908 // The VL must be the same. 6909 if (Op1.getOperand(1) != VL) 6910 return SDValue(); 6911 6912 // Get the scalar value. 6913 Op1 = Op1.getOperand(0); 6914 6915 // See if have enough sign bits or zero bits in the scalar to use a 6916 // widening multiply by splatting to smaller element size. 6917 unsigned EltBits = VT.getScalarSizeInBits(); 6918 unsigned ScalarBits = Op1.getValueSizeInBits(); 6919 // Make sure we're getting all element bits from the scalar register. 6920 // FIXME: Support implicit sign extension of vmv.v.x? 6921 if (ScalarBits < EltBits) 6922 return SDValue(); 6923 6924 if (IsSignExt) { 6925 if (DAG.ComputeNumSignBits(Op1) <= (ScalarBits - NarrowSize)) 6926 return SDValue(); 6927 } else { 6928 APInt Mask = APInt::getBitsSetFrom(ScalarBits, NarrowSize); 6929 if (!DAG.MaskedValueIsZero(Op1, Mask)) 6930 return SDValue(); 6931 } 6932 6933 Op1 = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, NarrowVT, Op1, VL); 6934 } else 6935 return SDValue(); 6936 6937 Op0 = Op0.getOperand(0); 6938 6939 // Re-introduce narrower extends if needed. 6940 unsigned ExtOpc = IsSignExt ? RISCVISD::VSEXT_VL : RISCVISD::VZEXT_VL; 6941 if (Op0.getValueType() != NarrowVT) 6942 Op0 = DAG.getNode(ExtOpc, DL, NarrowVT, Op0, Mask, VL); 6943 if (Op1.getValueType() != NarrowVT) 6944 Op1 = DAG.getNode(ExtOpc, DL, NarrowVT, Op1, Mask, VL); 6945 6946 unsigned WMulOpc = IsSignExt ? RISCVISD::VWMUL_VL : RISCVISD::VWMULU_VL; 6947 return DAG.getNode(WMulOpc, DL, VT, Op0, Op1, Mask, VL); 6948 } 6949 6950 SDValue RISCVTargetLowering::PerformDAGCombine(SDNode *N, 6951 DAGCombinerInfo &DCI) const { 6952 SelectionDAG &DAG = DCI.DAG; 6953 6954 // Helper to call SimplifyDemandedBits on an operand of N where only some low 6955 // bits are demanded. N will be added to the Worklist if it was not deleted. 6956 // Caller should return SDValue(N, 0) if this returns true. 6957 auto SimplifyDemandedLowBitsHelper = [&](unsigned OpNo, unsigned LowBits) { 6958 SDValue Op = N->getOperand(OpNo); 6959 APInt Mask = APInt::getLowBitsSet(Op.getValueSizeInBits(), LowBits); 6960 if (!SimplifyDemandedBits(Op, Mask, DCI)) 6961 return false; 6962 6963 if (N->getOpcode() != ISD::DELETED_NODE) 6964 DCI.AddToWorklist(N); 6965 return true; 6966 }; 6967 6968 switch (N->getOpcode()) { 6969 default: 6970 break; 6971 case RISCVISD::SplitF64: { 6972 SDValue Op0 = N->getOperand(0); 6973 // If the input to SplitF64 is just BuildPairF64 then the operation is 6974 // redundant. Instead, use BuildPairF64's operands directly. 6975 if (Op0->getOpcode() == RISCVISD::BuildPairF64) 6976 return DCI.CombineTo(N, Op0.getOperand(0), Op0.getOperand(1)); 6977 6978 SDLoc DL(N); 6979 6980 // It's cheaper to materialise two 32-bit integers than to load a double 6981 // from the constant pool and transfer it to integer registers through the 6982 // stack. 6983 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op0)) { 6984 APInt V = C->getValueAPF().bitcastToAPInt(); 6985 SDValue Lo = DAG.getConstant(V.trunc(32), DL, MVT::i32); 6986 SDValue Hi = DAG.getConstant(V.lshr(32).trunc(32), DL, MVT::i32); 6987 return DCI.CombineTo(N, Lo, Hi); 6988 } 6989 6990 // This is a target-specific version of a DAGCombine performed in 6991 // DAGCombiner::visitBITCAST. It performs the equivalent of: 6992 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) 6993 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) 6994 if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) || 6995 !Op0.getNode()->hasOneUse()) 6996 break; 6997 SDValue NewSplitF64 = 6998 DAG.getNode(RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), 6999 Op0.getOperand(0)); 7000 SDValue Lo = NewSplitF64.getValue(0); 7001 SDValue Hi = NewSplitF64.getValue(1); 7002 APInt SignBit = APInt::getSignMask(32); 7003 if (Op0.getOpcode() == ISD::FNEG) { 7004 SDValue NewHi = DAG.getNode(ISD::XOR, DL, MVT::i32, Hi, 7005 DAG.getConstant(SignBit, DL, MVT::i32)); 7006 return DCI.CombineTo(N, Lo, NewHi); 7007 } 7008 assert(Op0.getOpcode() == ISD::FABS); 7009 SDValue NewHi = DAG.getNode(ISD::AND, DL, MVT::i32, Hi, 7010 DAG.getConstant(~SignBit, DL, MVT::i32)); 7011 return DCI.CombineTo(N, Lo, NewHi); 7012 } 7013 case RISCVISD::SLLW: 7014 case RISCVISD::SRAW: 7015 case RISCVISD::SRLW: 7016 case RISCVISD::ROLW: 7017 case RISCVISD::RORW: { 7018 // Only the lower 32 bits of LHS and lower 5 bits of RHS are read. 7019 if (SimplifyDemandedLowBitsHelper(0, 32) || 7020 SimplifyDemandedLowBitsHelper(1, 5)) 7021 return SDValue(N, 0); 7022 break; 7023 } 7024 case RISCVISD::CLZW: 7025 case RISCVISD::CTZW: { 7026 // Only the lower 32 bits of the first operand are read 7027 if (SimplifyDemandedLowBitsHelper(0, 32)) 7028 return SDValue(N, 0); 7029 break; 7030 } 7031 case RISCVISD::FSL: 7032 case RISCVISD::FSR: { 7033 // Only the lower log2(Bitwidth)+1 bits of the the shift amount are read. 7034 unsigned BitWidth = N->getOperand(2).getValueSizeInBits(); 7035 assert(isPowerOf2_32(BitWidth) && "Unexpected bit width"); 7036 if (SimplifyDemandedLowBitsHelper(2, Log2_32(BitWidth) + 1)) 7037 return SDValue(N, 0); 7038 break; 7039 } 7040 case RISCVISD::FSLW: 7041 case RISCVISD::FSRW: { 7042 // Only the lower 32 bits of Values and lower 6 bits of shift amount are 7043 // read. 7044 if (SimplifyDemandedLowBitsHelper(0, 32) || 7045 SimplifyDemandedLowBitsHelper(1, 32) || 7046 SimplifyDemandedLowBitsHelper(2, 6)) 7047 return SDValue(N, 0); 7048 break; 7049 } 7050 case RISCVISD::GREV: 7051 case RISCVISD::GORC: { 7052 // Only the lower log2(Bitwidth) bits of the the shift amount are read. 7053 unsigned BitWidth = N->getOperand(1).getValueSizeInBits(); 7054 assert(isPowerOf2_32(BitWidth) && "Unexpected bit width"); 7055 if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth))) 7056 return SDValue(N, 0); 7057 7058 return combineGREVI_GORCI(N, DCI.DAG); 7059 } 7060 case RISCVISD::GREVW: 7061 case RISCVISD::GORCW: { 7062 // Only the lower 32 bits of LHS and lower 5 bits of RHS are read. 7063 if (SimplifyDemandedLowBitsHelper(0, 32) || 7064 SimplifyDemandedLowBitsHelper(1, 5)) 7065 return SDValue(N, 0); 7066 7067 return combineGREVI_GORCI(N, DCI.DAG); 7068 } 7069 case RISCVISD::SHFL: 7070 case RISCVISD::UNSHFL: { 7071 // Only the lower log2(Bitwidth)-1 bits of the the shift amount are read. 7072 unsigned BitWidth = N->getOperand(1).getValueSizeInBits(); 7073 assert(isPowerOf2_32(BitWidth) && "Unexpected bit width"); 7074 if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth) - 1)) 7075 return SDValue(N, 0); 7076 7077 break; 7078 } 7079 case RISCVISD::SHFLW: 7080 case RISCVISD::UNSHFLW: { 7081 // Only the lower 32 bits of LHS and lower 4 bits of RHS are read. 7082 SDValue LHS = N->getOperand(0); 7083 SDValue RHS = N->getOperand(1); 7084 APInt LHSMask = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 32); 7085 APInt RHSMask = APInt::getLowBitsSet(RHS.getValueSizeInBits(), 4); 7086 if (SimplifyDemandedLowBitsHelper(0, 32) || 7087 SimplifyDemandedLowBitsHelper(1, 4)) 7088 return SDValue(N, 0); 7089 7090 break; 7091 } 7092 case RISCVISD::BCOMPRESSW: 7093 case RISCVISD::BDECOMPRESSW: { 7094 // Only the lower 32 bits of LHS and RHS are read. 7095 if (SimplifyDemandedLowBitsHelper(0, 32) || 7096 SimplifyDemandedLowBitsHelper(1, 32)) 7097 return SDValue(N, 0); 7098 7099 break; 7100 } 7101 case RISCVISD::FMV_X_ANYEXTH: 7102 case RISCVISD::FMV_X_ANYEXTW_RV64: { 7103 SDLoc DL(N); 7104 SDValue Op0 = N->getOperand(0); 7105 MVT VT = N->getSimpleValueType(0); 7106 // If the input to FMV_X_ANYEXTW_RV64 is just FMV_W_X_RV64 then the 7107 // conversion is unnecessary and can be replaced with the FMV_W_X_RV64 7108 // operand. Similar for FMV_X_ANYEXTH and FMV_H_X. 7109 if ((N->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64 && 7110 Op0->getOpcode() == RISCVISD::FMV_W_X_RV64) || 7111 (N->getOpcode() == RISCVISD::FMV_X_ANYEXTH && 7112 Op0->getOpcode() == RISCVISD::FMV_H_X)) { 7113 assert(Op0.getOperand(0).getValueType() == VT && 7114 "Unexpected value type!"); 7115 return Op0.getOperand(0); 7116 } 7117 7118 // This is a target-specific version of a DAGCombine performed in 7119 // DAGCombiner::visitBITCAST. It performs the equivalent of: 7120 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) 7121 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) 7122 if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) || 7123 !Op0.getNode()->hasOneUse()) 7124 break; 7125 SDValue NewFMV = DAG.getNode(N->getOpcode(), DL, VT, Op0.getOperand(0)); 7126 unsigned FPBits = N->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64 ? 32 : 16; 7127 APInt SignBit = APInt::getSignMask(FPBits).sextOrSelf(VT.getSizeInBits()); 7128 if (Op0.getOpcode() == ISD::FNEG) 7129 return DAG.getNode(ISD::XOR, DL, VT, NewFMV, 7130 DAG.getConstant(SignBit, DL, VT)); 7131 7132 assert(Op0.getOpcode() == ISD::FABS); 7133 return DAG.getNode(ISD::AND, DL, VT, NewFMV, 7134 DAG.getConstant(~SignBit, DL, VT)); 7135 } 7136 case ISD::ADD: 7137 return performADDCombine(N, DAG, Subtarget); 7138 case ISD::SUB: 7139 return performSUBCombine(N, DAG); 7140 case ISD::AND: 7141 return performANDCombine(N, DAG); 7142 case ISD::OR: 7143 return performORCombine(N, DAG, Subtarget); 7144 case ISD::XOR: 7145 return performXORCombine(N, DAG); 7146 case ISD::ANY_EXTEND: 7147 return performANY_EXTENDCombine(N, DCI, Subtarget); 7148 case ISD::ZERO_EXTEND: 7149 // Fold (zero_extend (fp_to_uint X)) to prevent forming fcvt+zexti32 during 7150 // type legalization. This is safe because fp_to_uint produces poison if 7151 // it overflows. 7152 if (N->getValueType(0) == MVT::i64 && Subtarget.is64Bit() && 7153 N->getOperand(0).getOpcode() == ISD::FP_TO_UINT && 7154 isTypeLegal(N->getOperand(0).getOperand(0).getValueType())) 7155 return DAG.getNode(ISD::FP_TO_UINT, SDLoc(N), MVT::i64, 7156 N->getOperand(0).getOperand(0)); 7157 return SDValue(); 7158 case RISCVISD::SELECT_CC: { 7159 // Transform 7160 SDValue LHS = N->getOperand(0); 7161 SDValue RHS = N->getOperand(1); 7162 SDValue TrueV = N->getOperand(3); 7163 SDValue FalseV = N->getOperand(4); 7164 7165 // If the True and False values are the same, we don't need a select_cc. 7166 if (TrueV == FalseV) 7167 return TrueV; 7168 7169 ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(2))->get(); 7170 if (!ISD::isIntEqualitySetCC(CCVal)) 7171 break; 7172 7173 // Fold (select_cc (setlt X, Y), 0, ne, trueV, falseV) -> 7174 // (select_cc X, Y, lt, trueV, falseV) 7175 // Sometimes the setcc is introduced after select_cc has been formed. 7176 if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) && 7177 LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) { 7178 // If we're looking for eq 0 instead of ne 0, we need to invert the 7179 // condition. 7180 bool Invert = CCVal == ISD::SETEQ; 7181 CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get(); 7182 if (Invert) 7183 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 7184 7185 SDLoc DL(N); 7186 RHS = LHS.getOperand(1); 7187 LHS = LHS.getOperand(0); 7188 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 7189 7190 SDValue TargetCC = DAG.getCondCode(CCVal); 7191 return DAG.getNode(RISCVISD::SELECT_CC, DL, N->getValueType(0), 7192 {LHS, RHS, TargetCC, TrueV, FalseV}); 7193 } 7194 7195 // Fold (select_cc (xor X, Y), 0, eq/ne, trueV, falseV) -> 7196 // (select_cc X, Y, eq/ne, trueV, falseV) 7197 if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS)) 7198 return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), N->getValueType(0), 7199 {LHS.getOperand(0), LHS.getOperand(1), 7200 N->getOperand(2), TrueV, FalseV}); 7201 // (select_cc X, 1, setne, trueV, falseV) -> 7202 // (select_cc X, 0, seteq, trueV, falseV) if we can prove X is 0/1. 7203 // This can occur when legalizing some floating point comparisons. 7204 APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1); 7205 if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) { 7206 SDLoc DL(N); 7207 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 7208 SDValue TargetCC = DAG.getCondCode(CCVal); 7209 RHS = DAG.getConstant(0, DL, LHS.getValueType()); 7210 return DAG.getNode(RISCVISD::SELECT_CC, DL, N->getValueType(0), 7211 {LHS, RHS, TargetCC, TrueV, FalseV}); 7212 } 7213 7214 break; 7215 } 7216 case RISCVISD::BR_CC: { 7217 SDValue LHS = N->getOperand(1); 7218 SDValue RHS = N->getOperand(2); 7219 ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(3))->get(); 7220 if (!ISD::isIntEqualitySetCC(CCVal)) 7221 break; 7222 7223 // Fold (br_cc (setlt X, Y), 0, ne, dest) -> 7224 // (br_cc X, Y, lt, dest) 7225 // Sometimes the setcc is introduced after br_cc has been formed. 7226 if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) && 7227 LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) { 7228 // If we're looking for eq 0 instead of ne 0, we need to invert the 7229 // condition. 7230 bool Invert = CCVal == ISD::SETEQ; 7231 CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get(); 7232 if (Invert) 7233 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 7234 7235 SDLoc DL(N); 7236 RHS = LHS.getOperand(1); 7237 LHS = LHS.getOperand(0); 7238 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 7239 7240 return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0), 7241 N->getOperand(0), LHS, RHS, DAG.getCondCode(CCVal), 7242 N->getOperand(4)); 7243 } 7244 7245 // Fold (br_cc (xor X, Y), 0, eq/ne, dest) -> 7246 // (br_cc X, Y, eq/ne, trueV, falseV) 7247 if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS)) 7248 return DAG.getNode(RISCVISD::BR_CC, SDLoc(N), N->getValueType(0), 7249 N->getOperand(0), LHS.getOperand(0), LHS.getOperand(1), 7250 N->getOperand(3), N->getOperand(4)); 7251 7252 // (br_cc X, 1, setne, br_cc) -> 7253 // (br_cc X, 0, seteq, br_cc) if we can prove X is 0/1. 7254 // This can occur when legalizing some floating point comparisons. 7255 APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1); 7256 if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) { 7257 SDLoc DL(N); 7258 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 7259 SDValue TargetCC = DAG.getCondCode(CCVal); 7260 RHS = DAG.getConstant(0, DL, LHS.getValueType()); 7261 return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0), 7262 N->getOperand(0), LHS, RHS, TargetCC, 7263 N->getOperand(4)); 7264 } 7265 break; 7266 } 7267 case ISD::FCOPYSIGN: { 7268 EVT VT = N->getValueType(0); 7269 if (!VT.isVector()) 7270 break; 7271 // There is a form of VFSGNJ which injects the negated sign of its second 7272 // operand. Try and bubble any FNEG up after the extend/round to produce 7273 // this optimized pattern. Avoid modifying cases where FP_ROUND and 7274 // TRUNC=1. 7275 SDValue In2 = N->getOperand(1); 7276 // Avoid cases where the extend/round has multiple uses, as duplicating 7277 // those is typically more expensive than removing a fneg. 7278 if (!In2.hasOneUse()) 7279 break; 7280 if (In2.getOpcode() != ISD::FP_EXTEND && 7281 (In2.getOpcode() != ISD::FP_ROUND || In2.getConstantOperandVal(1) != 0)) 7282 break; 7283 In2 = In2.getOperand(0); 7284 if (In2.getOpcode() != ISD::FNEG) 7285 break; 7286 SDLoc DL(N); 7287 SDValue NewFPExtRound = DAG.getFPExtendOrRound(In2.getOperand(0), DL, VT); 7288 return DAG.getNode(ISD::FCOPYSIGN, DL, VT, N->getOperand(0), 7289 DAG.getNode(ISD::FNEG, DL, VT, NewFPExtRound)); 7290 } 7291 case ISD::MGATHER: 7292 case ISD::MSCATTER: 7293 case ISD::VP_GATHER: 7294 case ISD::VP_SCATTER: { 7295 if (!DCI.isBeforeLegalize()) 7296 break; 7297 SDValue Index, ScaleOp; 7298 bool IsIndexScaled = false; 7299 bool IsIndexSigned = false; 7300 if (const auto *VPGSN = dyn_cast<VPGatherScatterSDNode>(N)) { 7301 Index = VPGSN->getIndex(); 7302 ScaleOp = VPGSN->getScale(); 7303 IsIndexScaled = VPGSN->isIndexScaled(); 7304 IsIndexSigned = VPGSN->isIndexSigned(); 7305 } else { 7306 const auto *MGSN = cast<MaskedGatherScatterSDNode>(N); 7307 Index = MGSN->getIndex(); 7308 ScaleOp = MGSN->getScale(); 7309 IsIndexScaled = MGSN->isIndexScaled(); 7310 IsIndexSigned = MGSN->isIndexSigned(); 7311 } 7312 EVT IndexVT = Index.getValueType(); 7313 MVT XLenVT = Subtarget.getXLenVT(); 7314 // RISCV indexed loads only support the "unsigned unscaled" addressing 7315 // mode, so anything else must be manually legalized. 7316 bool NeedsIdxLegalization = 7317 IsIndexScaled || 7318 (IsIndexSigned && IndexVT.getVectorElementType().bitsLT(XLenVT)); 7319 if (!NeedsIdxLegalization) 7320 break; 7321 7322 SDLoc DL(N); 7323 7324 // Any index legalization should first promote to XLenVT, so we don't lose 7325 // bits when scaling. This may create an illegal index type so we let 7326 // LLVM's legalization take care of the splitting. 7327 // FIXME: LLVM can't split VP_GATHER or VP_SCATTER yet. 7328 if (IndexVT.getVectorElementType().bitsLT(XLenVT)) { 7329 IndexVT = IndexVT.changeVectorElementType(XLenVT); 7330 Index = DAG.getNode(IsIndexSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, 7331 DL, IndexVT, Index); 7332 } 7333 7334 unsigned Scale = cast<ConstantSDNode>(ScaleOp)->getZExtValue(); 7335 if (IsIndexScaled && Scale != 1) { 7336 // Manually scale the indices by the element size. 7337 // TODO: Sanitize the scale operand here? 7338 // TODO: For VP nodes, should we use VP_SHL here? 7339 assert(isPowerOf2_32(Scale) && "Expecting power-of-two types"); 7340 SDValue SplatScale = DAG.getConstant(Log2_32(Scale), DL, IndexVT); 7341 Index = DAG.getNode(ISD::SHL, DL, IndexVT, Index, SplatScale); 7342 } 7343 7344 ISD::MemIndexType NewIndexTy = ISD::UNSIGNED_UNSCALED; 7345 if (const auto *VPGN = dyn_cast<VPGatherSDNode>(N)) 7346 return DAG.getGatherVP(N->getVTList(), VPGN->getMemoryVT(), DL, 7347 {VPGN->getChain(), VPGN->getBasePtr(), Index, 7348 VPGN->getScale(), VPGN->getMask(), 7349 VPGN->getVectorLength()}, 7350 VPGN->getMemOperand(), NewIndexTy); 7351 if (const auto *VPSN = dyn_cast<VPScatterSDNode>(N)) 7352 return DAG.getScatterVP(N->getVTList(), VPSN->getMemoryVT(), DL, 7353 {VPSN->getChain(), VPSN->getValue(), 7354 VPSN->getBasePtr(), Index, VPSN->getScale(), 7355 VPSN->getMask(), VPSN->getVectorLength()}, 7356 VPSN->getMemOperand(), NewIndexTy); 7357 if (const auto *MGN = dyn_cast<MaskedGatherSDNode>(N)) 7358 return DAG.getMaskedGather( 7359 N->getVTList(), MGN->getMemoryVT(), DL, 7360 {MGN->getChain(), MGN->getPassThru(), MGN->getMask(), 7361 MGN->getBasePtr(), Index, MGN->getScale()}, 7362 MGN->getMemOperand(), NewIndexTy, MGN->getExtensionType()); 7363 const auto *MSN = cast<MaskedScatterSDNode>(N); 7364 return DAG.getMaskedScatter( 7365 N->getVTList(), MSN->getMemoryVT(), DL, 7366 {MSN->getChain(), MSN->getValue(), MSN->getMask(), MSN->getBasePtr(), 7367 Index, MSN->getScale()}, 7368 MSN->getMemOperand(), NewIndexTy, MSN->isTruncatingStore()); 7369 } 7370 case RISCVISD::SRA_VL: 7371 case RISCVISD::SRL_VL: 7372 case RISCVISD::SHL_VL: { 7373 SDValue ShAmt = N->getOperand(1); 7374 if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) { 7375 // We don't need the upper 32 bits of a 64-bit element for a shift amount. 7376 SDLoc DL(N); 7377 SDValue VL = N->getOperand(3); 7378 EVT VT = N->getValueType(0); 7379 ShAmt = 7380 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, ShAmt.getOperand(0), VL); 7381 return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt, 7382 N->getOperand(2), N->getOperand(3)); 7383 } 7384 break; 7385 } 7386 case ISD::SRA: 7387 case ISD::SRL: 7388 case ISD::SHL: { 7389 SDValue ShAmt = N->getOperand(1); 7390 if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) { 7391 // We don't need the upper 32 bits of a 64-bit element for a shift amount. 7392 SDLoc DL(N); 7393 EVT VT = N->getValueType(0); 7394 ShAmt = 7395 DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VT, ShAmt.getOperand(0)); 7396 return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt); 7397 } 7398 break; 7399 } 7400 case RISCVISD::MUL_VL: { 7401 SDValue Op0 = N->getOperand(0); 7402 SDValue Op1 = N->getOperand(1); 7403 if (SDValue V = combineMUL_VLToVWMUL(N, Op0, Op1, DAG)) 7404 return V; 7405 if (SDValue V = combineMUL_VLToVWMUL(N, Op1, Op0, DAG)) 7406 return V; 7407 return SDValue(); 7408 } 7409 case ISD::STORE: { 7410 auto *Store = cast<StoreSDNode>(N); 7411 SDValue Val = Store->getValue(); 7412 // Combine store of vmv.x.s to vse with VL of 1. 7413 // FIXME: Support FP. 7414 if (Val.getOpcode() == RISCVISD::VMV_X_S) { 7415 SDValue Src = Val.getOperand(0); 7416 EVT VecVT = Src.getValueType(); 7417 EVT MemVT = Store->getMemoryVT(); 7418 // The memory VT and the element type must match. 7419 if (VecVT.getVectorElementType() == MemVT) { 7420 SDLoc DL(N); 7421 MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount()); 7422 return DAG.getStoreVP(Store->getChain(), DL, Src, Store->getBasePtr(), 7423 DAG.getConstant(1, DL, MaskVT), 7424 DAG.getConstant(1, DL, Subtarget.getXLenVT()), 7425 Store->getPointerInfo(), 7426 Store->getOriginalAlign(), 7427 Store->getMemOperand()->getFlags()); 7428 } 7429 } 7430 7431 break; 7432 } 7433 } 7434 7435 return SDValue(); 7436 } 7437 7438 bool RISCVTargetLowering::isDesirableToCommuteWithShift( 7439 const SDNode *N, CombineLevel Level) const { 7440 // The following folds are only desirable if `(OP _, c1 << c2)` can be 7441 // materialised in fewer instructions than `(OP _, c1)`: 7442 // 7443 // (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2) 7444 // (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2) 7445 SDValue N0 = N->getOperand(0); 7446 EVT Ty = N0.getValueType(); 7447 if (Ty.isScalarInteger() && 7448 (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::OR)) { 7449 auto *C1 = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 7450 auto *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1)); 7451 if (C1 && C2) { 7452 const APInt &C1Int = C1->getAPIntValue(); 7453 APInt ShiftedC1Int = C1Int << C2->getAPIntValue(); 7454 7455 // We can materialise `c1 << c2` into an add immediate, so it's "free", 7456 // and the combine should happen, to potentially allow further combines 7457 // later. 7458 if (ShiftedC1Int.getMinSignedBits() <= 64 && 7459 isLegalAddImmediate(ShiftedC1Int.getSExtValue())) 7460 return true; 7461 7462 // We can materialise `c1` in an add immediate, so it's "free", and the 7463 // combine should be prevented. 7464 if (C1Int.getMinSignedBits() <= 64 && 7465 isLegalAddImmediate(C1Int.getSExtValue())) 7466 return false; 7467 7468 // Neither constant will fit into an immediate, so find materialisation 7469 // costs. 7470 int C1Cost = RISCVMatInt::getIntMatCost(C1Int, Ty.getSizeInBits(), 7471 Subtarget.getFeatureBits(), 7472 /*CompressionCost*/true); 7473 int ShiftedC1Cost = RISCVMatInt::getIntMatCost( 7474 ShiftedC1Int, Ty.getSizeInBits(), Subtarget.getFeatureBits(), 7475 /*CompressionCost*/true); 7476 7477 // Materialising `c1` is cheaper than materialising `c1 << c2`, so the 7478 // combine should be prevented. 7479 if (C1Cost < ShiftedC1Cost) 7480 return false; 7481 } 7482 } 7483 return true; 7484 } 7485 7486 bool RISCVTargetLowering::targetShrinkDemandedConstant( 7487 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 7488 TargetLoweringOpt &TLO) const { 7489 // Delay this optimization as late as possible. 7490 if (!TLO.LegalOps) 7491 return false; 7492 7493 EVT VT = Op.getValueType(); 7494 if (VT.isVector()) 7495 return false; 7496 7497 // Only handle AND for now. 7498 if (Op.getOpcode() != ISD::AND) 7499 return false; 7500 7501 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 7502 if (!C) 7503 return false; 7504 7505 const APInt &Mask = C->getAPIntValue(); 7506 7507 // Clear all non-demanded bits initially. 7508 APInt ShrunkMask = Mask & DemandedBits; 7509 7510 // Try to make a smaller immediate by setting undemanded bits. 7511 7512 APInt ExpandedMask = Mask | ~DemandedBits; 7513 7514 auto IsLegalMask = [ShrunkMask, ExpandedMask](const APInt &Mask) -> bool { 7515 return ShrunkMask.isSubsetOf(Mask) && Mask.isSubsetOf(ExpandedMask); 7516 }; 7517 auto UseMask = [Mask, Op, VT, &TLO](const APInt &NewMask) -> bool { 7518 if (NewMask == Mask) 7519 return true; 7520 SDLoc DL(Op); 7521 SDValue NewC = TLO.DAG.getConstant(NewMask, DL, VT); 7522 SDValue NewOp = TLO.DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), NewC); 7523 return TLO.CombineTo(Op, NewOp); 7524 }; 7525 7526 // If the shrunk mask fits in sign extended 12 bits, let the target 7527 // independent code apply it. 7528 if (ShrunkMask.isSignedIntN(12)) 7529 return false; 7530 7531 // Preserve (and X, 0xffff) when zext.h is supported. 7532 if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp()) { 7533 APInt NewMask = APInt(Mask.getBitWidth(), 0xffff); 7534 if (IsLegalMask(NewMask)) 7535 return UseMask(NewMask); 7536 } 7537 7538 // Try to preserve (and X, 0xffffffff), the (zext_inreg X, i32) pattern. 7539 if (VT == MVT::i64) { 7540 APInt NewMask = APInt(64, 0xffffffff); 7541 if (IsLegalMask(NewMask)) 7542 return UseMask(NewMask); 7543 } 7544 7545 // For the remaining optimizations, we need to be able to make a negative 7546 // number through a combination of mask and undemanded bits. 7547 if (!ExpandedMask.isNegative()) 7548 return false; 7549 7550 // What is the fewest number of bits we need to represent the negative number. 7551 unsigned MinSignedBits = ExpandedMask.getMinSignedBits(); 7552 7553 // Try to make a 12 bit negative immediate. If that fails try to make a 32 7554 // bit negative immediate unless the shrunk immediate already fits in 32 bits. 7555 APInt NewMask = ShrunkMask; 7556 if (MinSignedBits <= 12) 7557 NewMask.setBitsFrom(11); 7558 else if (MinSignedBits <= 32 && !ShrunkMask.isSignedIntN(32)) 7559 NewMask.setBitsFrom(31); 7560 else 7561 return false; 7562 7563 // Check that our new mask is a subset of the demanded mask. 7564 assert(IsLegalMask(NewMask)); 7565 return UseMask(NewMask); 7566 } 7567 7568 static void computeGREV(APInt &Src, unsigned ShAmt) { 7569 ShAmt &= Src.getBitWidth() - 1; 7570 uint64_t x = Src.getZExtValue(); 7571 if (ShAmt & 1) 7572 x = ((x & 0x5555555555555555LL) << 1) | ((x & 0xAAAAAAAAAAAAAAAALL) >> 1); 7573 if (ShAmt & 2) 7574 x = ((x & 0x3333333333333333LL) << 2) | ((x & 0xCCCCCCCCCCCCCCCCLL) >> 2); 7575 if (ShAmt & 4) 7576 x = ((x & 0x0F0F0F0F0F0F0F0FLL) << 4) | ((x & 0xF0F0F0F0F0F0F0F0LL) >> 4); 7577 if (ShAmt & 8) 7578 x = ((x & 0x00FF00FF00FF00FFLL) << 8) | ((x & 0xFF00FF00FF00FF00LL) >> 8); 7579 if (ShAmt & 16) 7580 x = ((x & 0x0000FFFF0000FFFFLL) << 16) | ((x & 0xFFFF0000FFFF0000LL) >> 16); 7581 if (ShAmt & 32) 7582 x = ((x & 0x00000000FFFFFFFFLL) << 32) | ((x & 0xFFFFFFFF00000000LL) >> 32); 7583 Src = x; 7584 } 7585 7586 void RISCVTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 7587 KnownBits &Known, 7588 const APInt &DemandedElts, 7589 const SelectionDAG &DAG, 7590 unsigned Depth) const { 7591 unsigned BitWidth = Known.getBitWidth(); 7592 unsigned Opc = Op.getOpcode(); 7593 assert((Opc >= ISD::BUILTIN_OP_END || 7594 Opc == ISD::INTRINSIC_WO_CHAIN || 7595 Opc == ISD::INTRINSIC_W_CHAIN || 7596 Opc == ISD::INTRINSIC_VOID) && 7597 "Should use MaskedValueIsZero if you don't know whether Op" 7598 " is a target node!"); 7599 7600 Known.resetAll(); 7601 switch (Opc) { 7602 default: break; 7603 case RISCVISD::SELECT_CC: { 7604 Known = DAG.computeKnownBits(Op.getOperand(4), Depth + 1); 7605 // If we don't know any bits, early out. 7606 if (Known.isUnknown()) 7607 break; 7608 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(3), Depth + 1); 7609 7610 // Only known if known in both the LHS and RHS. 7611 Known = KnownBits::commonBits(Known, Known2); 7612 break; 7613 } 7614 case RISCVISD::REMUW: { 7615 KnownBits Known2; 7616 Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 7617 Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 7618 // We only care about the lower 32 bits. 7619 Known = KnownBits::urem(Known.trunc(32), Known2.trunc(32)); 7620 // Restore the original width by sign extending. 7621 Known = Known.sext(BitWidth); 7622 break; 7623 } 7624 case RISCVISD::DIVUW: { 7625 KnownBits Known2; 7626 Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 7627 Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 7628 // We only care about the lower 32 bits. 7629 Known = KnownBits::udiv(Known.trunc(32), Known2.trunc(32)); 7630 // Restore the original width by sign extending. 7631 Known = Known.sext(BitWidth); 7632 break; 7633 } 7634 case RISCVISD::CTZW: { 7635 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 7636 unsigned PossibleTZ = Known2.trunc(32).countMaxTrailingZeros(); 7637 unsigned LowBits = Log2_32(PossibleTZ) + 1; 7638 Known.Zero.setBitsFrom(LowBits); 7639 break; 7640 } 7641 case RISCVISD::CLZW: { 7642 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 7643 unsigned PossibleLZ = Known2.trunc(32).countMaxLeadingZeros(); 7644 unsigned LowBits = Log2_32(PossibleLZ) + 1; 7645 Known.Zero.setBitsFrom(LowBits); 7646 break; 7647 } 7648 case RISCVISD::GREV: 7649 case RISCVISD::GREVW: { 7650 if (auto *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 7651 Known = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 7652 if (Opc == RISCVISD::GREVW) 7653 Known = Known.trunc(32); 7654 unsigned ShAmt = C->getZExtValue(); 7655 computeGREV(Known.Zero, ShAmt); 7656 computeGREV(Known.One, ShAmt); 7657 if (Opc == RISCVISD::GREVW) 7658 Known = Known.sext(BitWidth); 7659 } 7660 break; 7661 } 7662 case RISCVISD::READ_VLENB: 7663 // We assume VLENB is at least 16 bytes. 7664 Known.Zero.setLowBits(4); 7665 // We assume VLENB is no more than 65536 / 8 bytes. 7666 Known.Zero.setBitsFrom(14); 7667 break; 7668 case ISD::INTRINSIC_W_CHAIN: { 7669 unsigned IntNo = Op.getConstantOperandVal(1); 7670 switch (IntNo) { 7671 default: 7672 // We can't do anything for most intrinsics. 7673 break; 7674 case Intrinsic::riscv_vsetvli: 7675 case Intrinsic::riscv_vsetvlimax: 7676 // Assume that VL output is positive and would fit in an int32_t. 7677 // TODO: VLEN might be capped at 16 bits in a future V spec update. 7678 if (BitWidth >= 32) 7679 Known.Zero.setBitsFrom(31); 7680 break; 7681 } 7682 break; 7683 } 7684 } 7685 } 7686 7687 unsigned RISCVTargetLowering::ComputeNumSignBitsForTargetNode( 7688 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 7689 unsigned Depth) const { 7690 switch (Op.getOpcode()) { 7691 default: 7692 break; 7693 case RISCVISD::SELECT_CC: { 7694 unsigned Tmp = DAG.ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth + 1); 7695 if (Tmp == 1) return 1; // Early out. 7696 unsigned Tmp2 = DAG.ComputeNumSignBits(Op.getOperand(4), DemandedElts, Depth + 1); 7697 return std::min(Tmp, Tmp2); 7698 } 7699 case RISCVISD::SLLW: 7700 case RISCVISD::SRAW: 7701 case RISCVISD::SRLW: 7702 case RISCVISD::DIVW: 7703 case RISCVISD::DIVUW: 7704 case RISCVISD::REMUW: 7705 case RISCVISD::ROLW: 7706 case RISCVISD::RORW: 7707 case RISCVISD::GREVW: 7708 case RISCVISD::GORCW: 7709 case RISCVISD::FSLW: 7710 case RISCVISD::FSRW: 7711 case RISCVISD::SHFLW: 7712 case RISCVISD::UNSHFLW: 7713 case RISCVISD::BCOMPRESSW: 7714 case RISCVISD::BDECOMPRESSW: 7715 case RISCVISD::FCVT_W_RTZ_RV64: 7716 case RISCVISD::FCVT_WU_RTZ_RV64: 7717 // TODO: As the result is sign-extended, this is conservatively correct. A 7718 // more precise answer could be calculated for SRAW depending on known 7719 // bits in the shift amount. 7720 return 33; 7721 case RISCVISD::SHFL: 7722 case RISCVISD::UNSHFL: { 7723 // There is no SHFLIW, but a i64 SHFLI with bit 4 of the control word 7724 // cleared doesn't affect bit 31. The upper 32 bits will be shuffled, but 7725 // will stay within the upper 32 bits. If there were more than 32 sign bits 7726 // before there will be at least 33 sign bits after. 7727 if (Op.getValueType() == MVT::i64 && 7728 isa<ConstantSDNode>(Op.getOperand(1)) && 7729 (Op.getConstantOperandVal(1) & 0x10) == 0) { 7730 unsigned Tmp = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1); 7731 if (Tmp > 32) 7732 return 33; 7733 } 7734 break; 7735 } 7736 case RISCVISD::VMV_X_S: 7737 // The number of sign bits of the scalar result is computed by obtaining the 7738 // element type of the input vector operand, subtracting its width from the 7739 // XLEN, and then adding one (sign bit within the element type). If the 7740 // element type is wider than XLen, the least-significant XLEN bits are 7741 // taken. 7742 if (Op.getOperand(0).getScalarValueSizeInBits() > Subtarget.getXLen()) 7743 return 1; 7744 return Subtarget.getXLen() - Op.getOperand(0).getScalarValueSizeInBits() + 1; 7745 } 7746 7747 return 1; 7748 } 7749 7750 static MachineBasicBlock *emitReadCycleWidePseudo(MachineInstr &MI, 7751 MachineBasicBlock *BB) { 7752 assert(MI.getOpcode() == RISCV::ReadCycleWide && "Unexpected instruction"); 7753 7754 // To read the 64-bit cycle CSR on a 32-bit target, we read the two halves. 7755 // Should the count have wrapped while it was being read, we need to try 7756 // again. 7757 // ... 7758 // read: 7759 // rdcycleh x3 # load high word of cycle 7760 // rdcycle x2 # load low word of cycle 7761 // rdcycleh x4 # load high word of cycle 7762 // bne x3, x4, read # check if high word reads match, otherwise try again 7763 // ... 7764 7765 MachineFunction &MF = *BB->getParent(); 7766 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 7767 MachineFunction::iterator It = ++BB->getIterator(); 7768 7769 MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB); 7770 MF.insert(It, LoopMBB); 7771 7772 MachineBasicBlock *DoneMBB = MF.CreateMachineBasicBlock(LLVM_BB); 7773 MF.insert(It, DoneMBB); 7774 7775 // Transfer the remainder of BB and its successor edges to DoneMBB. 7776 DoneMBB->splice(DoneMBB->begin(), BB, 7777 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 7778 DoneMBB->transferSuccessorsAndUpdatePHIs(BB); 7779 7780 BB->addSuccessor(LoopMBB); 7781 7782 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 7783 Register ReadAgainReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 7784 Register LoReg = MI.getOperand(0).getReg(); 7785 Register HiReg = MI.getOperand(1).getReg(); 7786 DebugLoc DL = MI.getDebugLoc(); 7787 7788 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 7789 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), HiReg) 7790 .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding) 7791 .addReg(RISCV::X0); 7792 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), LoReg) 7793 .addImm(RISCVSysReg::lookupSysRegByName("CYCLE")->Encoding) 7794 .addReg(RISCV::X0); 7795 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), ReadAgainReg) 7796 .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding) 7797 .addReg(RISCV::X0); 7798 7799 BuildMI(LoopMBB, DL, TII->get(RISCV::BNE)) 7800 .addReg(HiReg) 7801 .addReg(ReadAgainReg) 7802 .addMBB(LoopMBB); 7803 7804 LoopMBB->addSuccessor(LoopMBB); 7805 LoopMBB->addSuccessor(DoneMBB); 7806 7807 MI.eraseFromParent(); 7808 7809 return DoneMBB; 7810 } 7811 7812 static MachineBasicBlock *emitSplitF64Pseudo(MachineInstr &MI, 7813 MachineBasicBlock *BB) { 7814 assert(MI.getOpcode() == RISCV::SplitF64Pseudo && "Unexpected instruction"); 7815 7816 MachineFunction &MF = *BB->getParent(); 7817 DebugLoc DL = MI.getDebugLoc(); 7818 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 7819 const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo(); 7820 Register LoReg = MI.getOperand(0).getReg(); 7821 Register HiReg = MI.getOperand(1).getReg(); 7822 Register SrcReg = MI.getOperand(2).getReg(); 7823 const TargetRegisterClass *SrcRC = &RISCV::FPR64RegClass; 7824 int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF); 7825 7826 TII.storeRegToStackSlot(*BB, MI, SrcReg, MI.getOperand(2).isKill(), FI, SrcRC, 7827 RI); 7828 MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI); 7829 MachineMemOperand *MMOLo = 7830 MF.getMachineMemOperand(MPI, MachineMemOperand::MOLoad, 4, Align(8)); 7831 MachineMemOperand *MMOHi = MF.getMachineMemOperand( 7832 MPI.getWithOffset(4), MachineMemOperand::MOLoad, 4, Align(8)); 7833 BuildMI(*BB, MI, DL, TII.get(RISCV::LW), LoReg) 7834 .addFrameIndex(FI) 7835 .addImm(0) 7836 .addMemOperand(MMOLo); 7837 BuildMI(*BB, MI, DL, TII.get(RISCV::LW), HiReg) 7838 .addFrameIndex(FI) 7839 .addImm(4) 7840 .addMemOperand(MMOHi); 7841 MI.eraseFromParent(); // The pseudo instruction is gone now. 7842 return BB; 7843 } 7844 7845 static MachineBasicBlock *emitBuildPairF64Pseudo(MachineInstr &MI, 7846 MachineBasicBlock *BB) { 7847 assert(MI.getOpcode() == RISCV::BuildPairF64Pseudo && 7848 "Unexpected instruction"); 7849 7850 MachineFunction &MF = *BB->getParent(); 7851 DebugLoc DL = MI.getDebugLoc(); 7852 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 7853 const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo(); 7854 Register DstReg = MI.getOperand(0).getReg(); 7855 Register LoReg = MI.getOperand(1).getReg(); 7856 Register HiReg = MI.getOperand(2).getReg(); 7857 const TargetRegisterClass *DstRC = &RISCV::FPR64RegClass; 7858 int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF); 7859 7860 MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI); 7861 MachineMemOperand *MMOLo = 7862 MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Align(8)); 7863 MachineMemOperand *MMOHi = MF.getMachineMemOperand( 7864 MPI.getWithOffset(4), MachineMemOperand::MOStore, 4, Align(8)); 7865 BuildMI(*BB, MI, DL, TII.get(RISCV::SW)) 7866 .addReg(LoReg, getKillRegState(MI.getOperand(1).isKill())) 7867 .addFrameIndex(FI) 7868 .addImm(0) 7869 .addMemOperand(MMOLo); 7870 BuildMI(*BB, MI, DL, TII.get(RISCV::SW)) 7871 .addReg(HiReg, getKillRegState(MI.getOperand(2).isKill())) 7872 .addFrameIndex(FI) 7873 .addImm(4) 7874 .addMemOperand(MMOHi); 7875 TII.loadRegFromStackSlot(*BB, MI, DstReg, FI, DstRC, RI); 7876 MI.eraseFromParent(); // The pseudo instruction is gone now. 7877 return BB; 7878 } 7879 7880 static bool isSelectPseudo(MachineInstr &MI) { 7881 switch (MI.getOpcode()) { 7882 default: 7883 return false; 7884 case RISCV::Select_GPR_Using_CC_GPR: 7885 case RISCV::Select_FPR16_Using_CC_GPR: 7886 case RISCV::Select_FPR32_Using_CC_GPR: 7887 case RISCV::Select_FPR64_Using_CC_GPR: 7888 return true; 7889 } 7890 } 7891 7892 static MachineBasicBlock *emitSelectPseudo(MachineInstr &MI, 7893 MachineBasicBlock *BB, 7894 const RISCVSubtarget &Subtarget) { 7895 // To "insert" Select_* instructions, we actually have to insert the triangle 7896 // control-flow pattern. The incoming instructions know the destination vreg 7897 // to set, the condition code register to branch on, the true/false values to 7898 // select between, and the condcode to use to select the appropriate branch. 7899 // 7900 // We produce the following control flow: 7901 // HeadMBB 7902 // | \ 7903 // | IfFalseMBB 7904 // | / 7905 // TailMBB 7906 // 7907 // When we find a sequence of selects we attempt to optimize their emission 7908 // by sharing the control flow. Currently we only handle cases where we have 7909 // multiple selects with the exact same condition (same LHS, RHS and CC). 7910 // The selects may be interleaved with other instructions if the other 7911 // instructions meet some requirements we deem safe: 7912 // - They are debug instructions. Otherwise, 7913 // - They do not have side-effects, do not access memory and their inputs do 7914 // not depend on the results of the select pseudo-instructions. 7915 // The TrueV/FalseV operands of the selects cannot depend on the result of 7916 // previous selects in the sequence. 7917 // These conditions could be further relaxed. See the X86 target for a 7918 // related approach and more information. 7919 Register LHS = MI.getOperand(1).getReg(); 7920 Register RHS = MI.getOperand(2).getReg(); 7921 auto CC = static_cast<RISCVCC::CondCode>(MI.getOperand(3).getImm()); 7922 7923 SmallVector<MachineInstr *, 4> SelectDebugValues; 7924 SmallSet<Register, 4> SelectDests; 7925 SelectDests.insert(MI.getOperand(0).getReg()); 7926 7927 MachineInstr *LastSelectPseudo = &MI; 7928 7929 for (auto E = BB->end(), SequenceMBBI = MachineBasicBlock::iterator(MI); 7930 SequenceMBBI != E; ++SequenceMBBI) { 7931 if (SequenceMBBI->isDebugInstr()) 7932 continue; 7933 else if (isSelectPseudo(*SequenceMBBI)) { 7934 if (SequenceMBBI->getOperand(1).getReg() != LHS || 7935 SequenceMBBI->getOperand(2).getReg() != RHS || 7936 SequenceMBBI->getOperand(3).getImm() != CC || 7937 SelectDests.count(SequenceMBBI->getOperand(4).getReg()) || 7938 SelectDests.count(SequenceMBBI->getOperand(5).getReg())) 7939 break; 7940 LastSelectPseudo = &*SequenceMBBI; 7941 SequenceMBBI->collectDebugValues(SelectDebugValues); 7942 SelectDests.insert(SequenceMBBI->getOperand(0).getReg()); 7943 } else { 7944 if (SequenceMBBI->hasUnmodeledSideEffects() || 7945 SequenceMBBI->mayLoadOrStore()) 7946 break; 7947 if (llvm::any_of(SequenceMBBI->operands(), [&](MachineOperand &MO) { 7948 return MO.isReg() && MO.isUse() && SelectDests.count(MO.getReg()); 7949 })) 7950 break; 7951 } 7952 } 7953 7954 const RISCVInstrInfo &TII = *Subtarget.getInstrInfo(); 7955 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 7956 DebugLoc DL = MI.getDebugLoc(); 7957 MachineFunction::iterator I = ++BB->getIterator(); 7958 7959 MachineBasicBlock *HeadMBB = BB; 7960 MachineFunction *F = BB->getParent(); 7961 MachineBasicBlock *TailMBB = F->CreateMachineBasicBlock(LLVM_BB); 7962 MachineBasicBlock *IfFalseMBB = F->CreateMachineBasicBlock(LLVM_BB); 7963 7964 F->insert(I, IfFalseMBB); 7965 F->insert(I, TailMBB); 7966 7967 // Transfer debug instructions associated with the selects to TailMBB. 7968 for (MachineInstr *DebugInstr : SelectDebugValues) { 7969 TailMBB->push_back(DebugInstr->removeFromParent()); 7970 } 7971 7972 // Move all instructions after the sequence to TailMBB. 7973 TailMBB->splice(TailMBB->end(), HeadMBB, 7974 std::next(LastSelectPseudo->getIterator()), HeadMBB->end()); 7975 // Update machine-CFG edges by transferring all successors of the current 7976 // block to the new block which will contain the Phi nodes for the selects. 7977 TailMBB->transferSuccessorsAndUpdatePHIs(HeadMBB); 7978 // Set the successors for HeadMBB. 7979 HeadMBB->addSuccessor(IfFalseMBB); 7980 HeadMBB->addSuccessor(TailMBB); 7981 7982 // Insert appropriate branch. 7983 BuildMI(HeadMBB, DL, TII.getBrCond(CC)) 7984 .addReg(LHS) 7985 .addReg(RHS) 7986 .addMBB(TailMBB); 7987 7988 // IfFalseMBB just falls through to TailMBB. 7989 IfFalseMBB->addSuccessor(TailMBB); 7990 7991 // Create PHIs for all of the select pseudo-instructions. 7992 auto SelectMBBI = MI.getIterator(); 7993 auto SelectEnd = std::next(LastSelectPseudo->getIterator()); 7994 auto InsertionPoint = TailMBB->begin(); 7995 while (SelectMBBI != SelectEnd) { 7996 auto Next = std::next(SelectMBBI); 7997 if (isSelectPseudo(*SelectMBBI)) { 7998 // %Result = phi [ %TrueValue, HeadMBB ], [ %FalseValue, IfFalseMBB ] 7999 BuildMI(*TailMBB, InsertionPoint, SelectMBBI->getDebugLoc(), 8000 TII.get(RISCV::PHI), SelectMBBI->getOperand(0).getReg()) 8001 .addReg(SelectMBBI->getOperand(4).getReg()) 8002 .addMBB(HeadMBB) 8003 .addReg(SelectMBBI->getOperand(5).getReg()) 8004 .addMBB(IfFalseMBB); 8005 SelectMBBI->eraseFromParent(); 8006 } 8007 SelectMBBI = Next; 8008 } 8009 8010 F->getProperties().reset(MachineFunctionProperties::Property::NoPHIs); 8011 return TailMBB; 8012 } 8013 8014 MachineBasicBlock * 8015 RISCVTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 8016 MachineBasicBlock *BB) const { 8017 switch (MI.getOpcode()) { 8018 default: 8019 llvm_unreachable("Unexpected instr type to insert"); 8020 case RISCV::ReadCycleWide: 8021 assert(!Subtarget.is64Bit() && 8022 "ReadCycleWrite is only to be used on riscv32"); 8023 return emitReadCycleWidePseudo(MI, BB); 8024 case RISCV::Select_GPR_Using_CC_GPR: 8025 case RISCV::Select_FPR16_Using_CC_GPR: 8026 case RISCV::Select_FPR32_Using_CC_GPR: 8027 case RISCV::Select_FPR64_Using_CC_GPR: 8028 return emitSelectPseudo(MI, BB, Subtarget); 8029 case RISCV::BuildPairF64Pseudo: 8030 return emitBuildPairF64Pseudo(MI, BB); 8031 case RISCV::SplitF64Pseudo: 8032 return emitSplitF64Pseudo(MI, BB); 8033 } 8034 } 8035 8036 void RISCVTargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI, 8037 SDNode *Node) const { 8038 // Add FRM dependency to any instructions with dynamic rounding mode. 8039 unsigned Opc = MI.getOpcode(); 8040 auto Idx = RISCV::getNamedOperandIdx(Opc, RISCV::OpName::frm); 8041 if (Idx < 0) 8042 return; 8043 if (MI.getOperand(Idx).getImm() != RISCVFPRndMode::DYN) 8044 return; 8045 // If the instruction already reads FRM, don't add another read. 8046 if (MI.readsRegister(RISCV::FRM)) 8047 return; 8048 MI.addOperand( 8049 MachineOperand::CreateReg(RISCV::FRM, /*isDef*/ false, /*isImp*/ true)); 8050 } 8051 8052 // Calling Convention Implementation. 8053 // The expectations for frontend ABI lowering vary from target to target. 8054 // Ideally, an LLVM frontend would be able to avoid worrying about many ABI 8055 // details, but this is a longer term goal. For now, we simply try to keep the 8056 // role of the frontend as simple and well-defined as possible. The rules can 8057 // be summarised as: 8058 // * Never split up large scalar arguments. We handle them here. 8059 // * If a hardfloat calling convention is being used, and the struct may be 8060 // passed in a pair of registers (fp+fp, int+fp), and both registers are 8061 // available, then pass as two separate arguments. If either the GPRs or FPRs 8062 // are exhausted, then pass according to the rule below. 8063 // * If a struct could never be passed in registers or directly in a stack 8064 // slot (as it is larger than 2*XLEN and the floating point rules don't 8065 // apply), then pass it using a pointer with the byval attribute. 8066 // * If a struct is less than 2*XLEN, then coerce to either a two-element 8067 // word-sized array or a 2*XLEN scalar (depending on alignment). 8068 // * The frontend can determine whether a struct is returned by reference or 8069 // not based on its size and fields. If it will be returned by reference, the 8070 // frontend must modify the prototype so a pointer with the sret annotation is 8071 // passed as the first argument. This is not necessary for large scalar 8072 // returns. 8073 // * Struct return values and varargs should be coerced to structs containing 8074 // register-size fields in the same situations they would be for fixed 8075 // arguments. 8076 8077 static const MCPhysReg ArgGPRs[] = { 8078 RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, 8079 RISCV::X14, RISCV::X15, RISCV::X16, RISCV::X17 8080 }; 8081 static const MCPhysReg ArgFPR16s[] = { 8082 RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, 8083 RISCV::F14_H, RISCV::F15_H, RISCV::F16_H, RISCV::F17_H 8084 }; 8085 static const MCPhysReg ArgFPR32s[] = { 8086 RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, 8087 RISCV::F14_F, RISCV::F15_F, RISCV::F16_F, RISCV::F17_F 8088 }; 8089 static const MCPhysReg ArgFPR64s[] = { 8090 RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, 8091 RISCV::F14_D, RISCV::F15_D, RISCV::F16_D, RISCV::F17_D 8092 }; 8093 // This is an interim calling convention and it may be changed in the future. 8094 static const MCPhysReg ArgVRs[] = { 8095 RISCV::V8, RISCV::V9, RISCV::V10, RISCV::V11, RISCV::V12, RISCV::V13, 8096 RISCV::V14, RISCV::V15, RISCV::V16, RISCV::V17, RISCV::V18, RISCV::V19, 8097 RISCV::V20, RISCV::V21, RISCV::V22, RISCV::V23}; 8098 static const MCPhysReg ArgVRM2s[] = {RISCV::V8M2, RISCV::V10M2, RISCV::V12M2, 8099 RISCV::V14M2, RISCV::V16M2, RISCV::V18M2, 8100 RISCV::V20M2, RISCV::V22M2}; 8101 static const MCPhysReg ArgVRM4s[] = {RISCV::V8M4, RISCV::V12M4, RISCV::V16M4, 8102 RISCV::V20M4}; 8103 static const MCPhysReg ArgVRM8s[] = {RISCV::V8M8, RISCV::V16M8}; 8104 8105 // Pass a 2*XLEN argument that has been split into two XLEN values through 8106 // registers or the stack as necessary. 8107 static bool CC_RISCVAssign2XLen(unsigned XLen, CCState &State, CCValAssign VA1, 8108 ISD::ArgFlagsTy ArgFlags1, unsigned ValNo2, 8109 MVT ValVT2, MVT LocVT2, 8110 ISD::ArgFlagsTy ArgFlags2) { 8111 unsigned XLenInBytes = XLen / 8; 8112 if (Register Reg = State.AllocateReg(ArgGPRs)) { 8113 // At least one half can be passed via register. 8114 State.addLoc(CCValAssign::getReg(VA1.getValNo(), VA1.getValVT(), Reg, 8115 VA1.getLocVT(), CCValAssign::Full)); 8116 } else { 8117 // Both halves must be passed on the stack, with proper alignment. 8118 Align StackAlign = 8119 std::max(Align(XLenInBytes), ArgFlags1.getNonZeroOrigAlign()); 8120 State.addLoc( 8121 CCValAssign::getMem(VA1.getValNo(), VA1.getValVT(), 8122 State.AllocateStack(XLenInBytes, StackAlign), 8123 VA1.getLocVT(), CCValAssign::Full)); 8124 State.addLoc(CCValAssign::getMem( 8125 ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)), 8126 LocVT2, CCValAssign::Full)); 8127 return false; 8128 } 8129 8130 if (Register Reg = State.AllocateReg(ArgGPRs)) { 8131 // The second half can also be passed via register. 8132 State.addLoc( 8133 CCValAssign::getReg(ValNo2, ValVT2, Reg, LocVT2, CCValAssign::Full)); 8134 } else { 8135 // The second half is passed via the stack, without additional alignment. 8136 State.addLoc(CCValAssign::getMem( 8137 ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)), 8138 LocVT2, CCValAssign::Full)); 8139 } 8140 8141 return false; 8142 } 8143 8144 static unsigned allocateRVVReg(MVT ValVT, unsigned ValNo, 8145 Optional<unsigned> FirstMaskArgument, 8146 CCState &State, const RISCVTargetLowering &TLI) { 8147 const TargetRegisterClass *RC = TLI.getRegClassFor(ValVT); 8148 if (RC == &RISCV::VRRegClass) { 8149 // Assign the first mask argument to V0. 8150 // This is an interim calling convention and it may be changed in the 8151 // future. 8152 if (FirstMaskArgument.hasValue() && ValNo == FirstMaskArgument.getValue()) 8153 return State.AllocateReg(RISCV::V0); 8154 return State.AllocateReg(ArgVRs); 8155 } 8156 if (RC == &RISCV::VRM2RegClass) 8157 return State.AllocateReg(ArgVRM2s); 8158 if (RC == &RISCV::VRM4RegClass) 8159 return State.AllocateReg(ArgVRM4s); 8160 if (RC == &RISCV::VRM8RegClass) 8161 return State.AllocateReg(ArgVRM8s); 8162 llvm_unreachable("Unhandled register class for ValueType"); 8163 } 8164 8165 // Implements the RISC-V calling convention. Returns true upon failure. 8166 static bool CC_RISCV(const DataLayout &DL, RISCVABI::ABI ABI, unsigned ValNo, 8167 MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, 8168 ISD::ArgFlagsTy ArgFlags, CCState &State, bool IsFixed, 8169 bool IsRet, Type *OrigTy, const RISCVTargetLowering &TLI, 8170 Optional<unsigned> FirstMaskArgument) { 8171 unsigned XLen = DL.getLargestLegalIntTypeSizeInBits(); 8172 assert(XLen == 32 || XLen == 64); 8173 MVT XLenVT = XLen == 32 ? MVT::i32 : MVT::i64; 8174 8175 // Any return value split in to more than two values can't be returned 8176 // directly. Vectors are returned via the available vector registers. 8177 if (!LocVT.isVector() && IsRet && ValNo > 1) 8178 return true; 8179 8180 // UseGPRForF16_F32 if targeting one of the soft-float ABIs, if passing a 8181 // variadic argument, or if no F16/F32 argument registers are available. 8182 bool UseGPRForF16_F32 = true; 8183 // UseGPRForF64 if targeting soft-float ABIs or an FLEN=32 ABI, if passing a 8184 // variadic argument, or if no F64 argument registers are available. 8185 bool UseGPRForF64 = true; 8186 8187 switch (ABI) { 8188 default: 8189 llvm_unreachable("Unexpected ABI"); 8190 case RISCVABI::ABI_ILP32: 8191 case RISCVABI::ABI_LP64: 8192 break; 8193 case RISCVABI::ABI_ILP32F: 8194 case RISCVABI::ABI_LP64F: 8195 UseGPRForF16_F32 = !IsFixed; 8196 break; 8197 case RISCVABI::ABI_ILP32D: 8198 case RISCVABI::ABI_LP64D: 8199 UseGPRForF16_F32 = !IsFixed; 8200 UseGPRForF64 = !IsFixed; 8201 break; 8202 } 8203 8204 // FPR16, FPR32, and FPR64 alias each other. 8205 if (State.getFirstUnallocated(ArgFPR32s) == array_lengthof(ArgFPR32s)) { 8206 UseGPRForF16_F32 = true; 8207 UseGPRForF64 = true; 8208 } 8209 8210 // From this point on, rely on UseGPRForF16_F32, UseGPRForF64 and 8211 // similar local variables rather than directly checking against the target 8212 // ABI. 8213 8214 if (UseGPRForF16_F32 && (ValVT == MVT::f16 || ValVT == MVT::f32)) { 8215 LocVT = XLenVT; 8216 LocInfo = CCValAssign::BCvt; 8217 } else if (UseGPRForF64 && XLen == 64 && ValVT == MVT::f64) { 8218 LocVT = MVT::i64; 8219 LocInfo = CCValAssign::BCvt; 8220 } 8221 8222 // If this is a variadic argument, the RISC-V calling convention requires 8223 // that it is assigned an 'even' or 'aligned' register if it has 8-byte 8224 // alignment (RV32) or 16-byte alignment (RV64). An aligned register should 8225 // be used regardless of whether the original argument was split during 8226 // legalisation or not. The argument will not be passed by registers if the 8227 // original type is larger than 2*XLEN, so the register alignment rule does 8228 // not apply. 8229 unsigned TwoXLenInBytes = (2 * XLen) / 8; 8230 if (!IsFixed && ArgFlags.getNonZeroOrigAlign() == TwoXLenInBytes && 8231 DL.getTypeAllocSize(OrigTy) == TwoXLenInBytes) { 8232 unsigned RegIdx = State.getFirstUnallocated(ArgGPRs); 8233 // Skip 'odd' register if necessary. 8234 if (RegIdx != array_lengthof(ArgGPRs) && RegIdx % 2 == 1) 8235 State.AllocateReg(ArgGPRs); 8236 } 8237 8238 SmallVectorImpl<CCValAssign> &PendingLocs = State.getPendingLocs(); 8239 SmallVectorImpl<ISD::ArgFlagsTy> &PendingArgFlags = 8240 State.getPendingArgFlags(); 8241 8242 assert(PendingLocs.size() == PendingArgFlags.size() && 8243 "PendingLocs and PendingArgFlags out of sync"); 8244 8245 // Handle passing f64 on RV32D with a soft float ABI or when floating point 8246 // registers are exhausted. 8247 if (UseGPRForF64 && XLen == 32 && ValVT == MVT::f64) { 8248 assert(!ArgFlags.isSplit() && PendingLocs.empty() && 8249 "Can't lower f64 if it is split"); 8250 // Depending on available argument GPRS, f64 may be passed in a pair of 8251 // GPRs, split between a GPR and the stack, or passed completely on the 8252 // stack. LowerCall/LowerFormalArguments/LowerReturn must recognise these 8253 // cases. 8254 Register Reg = State.AllocateReg(ArgGPRs); 8255 LocVT = MVT::i32; 8256 if (!Reg) { 8257 unsigned StackOffset = State.AllocateStack(8, Align(8)); 8258 State.addLoc( 8259 CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 8260 return false; 8261 } 8262 if (!State.AllocateReg(ArgGPRs)) 8263 State.AllocateStack(4, Align(4)); 8264 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 8265 return false; 8266 } 8267 8268 // Fixed-length vectors are located in the corresponding scalable-vector 8269 // container types. 8270 if (ValVT.isFixedLengthVector()) 8271 LocVT = TLI.getContainerForFixedLengthVector(LocVT); 8272 8273 // Split arguments might be passed indirectly, so keep track of the pending 8274 // values. Split vectors are passed via a mix of registers and indirectly, so 8275 // treat them as we would any other argument. 8276 if (ValVT.isScalarInteger() && (ArgFlags.isSplit() || !PendingLocs.empty())) { 8277 LocVT = XLenVT; 8278 LocInfo = CCValAssign::Indirect; 8279 PendingLocs.push_back( 8280 CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo)); 8281 PendingArgFlags.push_back(ArgFlags); 8282 if (!ArgFlags.isSplitEnd()) { 8283 return false; 8284 } 8285 } 8286 8287 // If the split argument only had two elements, it should be passed directly 8288 // in registers or on the stack. 8289 if (ValVT.isScalarInteger() && ArgFlags.isSplitEnd() && 8290 PendingLocs.size() <= 2) { 8291 assert(PendingLocs.size() == 2 && "Unexpected PendingLocs.size()"); 8292 // Apply the normal calling convention rules to the first half of the 8293 // split argument. 8294 CCValAssign VA = PendingLocs[0]; 8295 ISD::ArgFlagsTy AF = PendingArgFlags[0]; 8296 PendingLocs.clear(); 8297 PendingArgFlags.clear(); 8298 return CC_RISCVAssign2XLen(XLen, State, VA, AF, ValNo, ValVT, LocVT, 8299 ArgFlags); 8300 } 8301 8302 // Allocate to a register if possible, or else a stack slot. 8303 Register Reg; 8304 unsigned StoreSizeBytes = XLen / 8; 8305 Align StackAlign = Align(XLen / 8); 8306 8307 if (ValVT == MVT::f16 && !UseGPRForF16_F32) 8308 Reg = State.AllocateReg(ArgFPR16s); 8309 else if (ValVT == MVT::f32 && !UseGPRForF16_F32) 8310 Reg = State.AllocateReg(ArgFPR32s); 8311 else if (ValVT == MVT::f64 && !UseGPRForF64) 8312 Reg = State.AllocateReg(ArgFPR64s); 8313 else if (ValVT.isVector()) { 8314 Reg = allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI); 8315 if (!Reg) { 8316 // For return values, the vector must be passed fully via registers or 8317 // via the stack. 8318 // FIXME: The proposed vector ABI only mandates v8-v15 for return values, 8319 // but we're using all of them. 8320 if (IsRet) 8321 return true; 8322 // Try using a GPR to pass the address 8323 if ((Reg = State.AllocateReg(ArgGPRs))) { 8324 LocVT = XLenVT; 8325 LocInfo = CCValAssign::Indirect; 8326 } else if (ValVT.isScalableVector()) { 8327 report_fatal_error("Unable to pass scalable vector types on the stack"); 8328 } else { 8329 // Pass fixed-length vectors on the stack. 8330 LocVT = ValVT; 8331 StoreSizeBytes = ValVT.getStoreSize(); 8332 // Align vectors to their element sizes, being careful for vXi1 8333 // vectors. 8334 StackAlign = MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne(); 8335 } 8336 } 8337 } else { 8338 Reg = State.AllocateReg(ArgGPRs); 8339 } 8340 8341 unsigned StackOffset = 8342 Reg ? 0 : State.AllocateStack(StoreSizeBytes, StackAlign); 8343 8344 // If we reach this point and PendingLocs is non-empty, we must be at the 8345 // end of a split argument that must be passed indirectly. 8346 if (!PendingLocs.empty()) { 8347 assert(ArgFlags.isSplitEnd() && "Expected ArgFlags.isSplitEnd()"); 8348 assert(PendingLocs.size() > 2 && "Unexpected PendingLocs.size()"); 8349 8350 for (auto &It : PendingLocs) { 8351 if (Reg) 8352 It.convertToReg(Reg); 8353 else 8354 It.convertToMem(StackOffset); 8355 State.addLoc(It); 8356 } 8357 PendingLocs.clear(); 8358 PendingArgFlags.clear(); 8359 return false; 8360 } 8361 8362 assert((!UseGPRForF16_F32 || !UseGPRForF64 || LocVT == XLenVT || 8363 (TLI.getSubtarget().hasVInstructions() && ValVT.isVector())) && 8364 "Expected an XLenVT or vector types at this stage"); 8365 8366 if (Reg) { 8367 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 8368 return false; 8369 } 8370 8371 // When a floating-point value is passed on the stack, no bit-conversion is 8372 // needed. 8373 if (ValVT.isFloatingPoint()) { 8374 LocVT = ValVT; 8375 LocInfo = CCValAssign::Full; 8376 } 8377 State.addLoc(CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 8378 return false; 8379 } 8380 8381 template <typename ArgTy> 8382 static Optional<unsigned> preAssignMask(const ArgTy &Args) { 8383 for (const auto &ArgIdx : enumerate(Args)) { 8384 MVT ArgVT = ArgIdx.value().VT; 8385 if (ArgVT.isVector() && ArgVT.getVectorElementType() == MVT::i1) 8386 return ArgIdx.index(); 8387 } 8388 return None; 8389 } 8390 8391 void RISCVTargetLowering::analyzeInputArgs( 8392 MachineFunction &MF, CCState &CCInfo, 8393 const SmallVectorImpl<ISD::InputArg> &Ins, bool IsRet, 8394 RISCVCCAssignFn Fn) const { 8395 unsigned NumArgs = Ins.size(); 8396 FunctionType *FType = MF.getFunction().getFunctionType(); 8397 8398 Optional<unsigned> FirstMaskArgument; 8399 if (Subtarget.hasVInstructions()) 8400 FirstMaskArgument = preAssignMask(Ins); 8401 8402 for (unsigned i = 0; i != NumArgs; ++i) { 8403 MVT ArgVT = Ins[i].VT; 8404 ISD::ArgFlagsTy ArgFlags = Ins[i].Flags; 8405 8406 Type *ArgTy = nullptr; 8407 if (IsRet) 8408 ArgTy = FType->getReturnType(); 8409 else if (Ins[i].isOrigArg()) 8410 ArgTy = FType->getParamType(Ins[i].getOrigArgIndex()); 8411 8412 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 8413 if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full, 8414 ArgFlags, CCInfo, /*IsFixed=*/true, IsRet, ArgTy, *this, 8415 FirstMaskArgument)) { 8416 LLVM_DEBUG(dbgs() << "InputArg #" << i << " has unhandled type " 8417 << EVT(ArgVT).getEVTString() << '\n'); 8418 llvm_unreachable(nullptr); 8419 } 8420 } 8421 } 8422 8423 void RISCVTargetLowering::analyzeOutputArgs( 8424 MachineFunction &MF, CCState &CCInfo, 8425 const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsRet, 8426 CallLoweringInfo *CLI, RISCVCCAssignFn Fn) const { 8427 unsigned NumArgs = Outs.size(); 8428 8429 Optional<unsigned> FirstMaskArgument; 8430 if (Subtarget.hasVInstructions()) 8431 FirstMaskArgument = preAssignMask(Outs); 8432 8433 for (unsigned i = 0; i != NumArgs; i++) { 8434 MVT ArgVT = Outs[i].VT; 8435 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 8436 Type *OrigTy = CLI ? CLI->getArgs()[Outs[i].OrigArgIndex].Ty : nullptr; 8437 8438 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 8439 if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full, 8440 ArgFlags, CCInfo, Outs[i].IsFixed, IsRet, OrigTy, *this, 8441 FirstMaskArgument)) { 8442 LLVM_DEBUG(dbgs() << "OutputArg #" << i << " has unhandled type " 8443 << EVT(ArgVT).getEVTString() << "\n"); 8444 llvm_unreachable(nullptr); 8445 } 8446 } 8447 } 8448 8449 // Convert Val to a ValVT. Should not be called for CCValAssign::Indirect 8450 // values. 8451 static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDValue Val, 8452 const CCValAssign &VA, const SDLoc &DL, 8453 const RISCVSubtarget &Subtarget) { 8454 switch (VA.getLocInfo()) { 8455 default: 8456 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 8457 case CCValAssign::Full: 8458 if (VA.getValVT().isFixedLengthVector() && VA.getLocVT().isScalableVector()) 8459 Val = convertFromScalableVector(VA.getValVT(), Val, DAG, Subtarget); 8460 break; 8461 case CCValAssign::BCvt: 8462 if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16) 8463 Val = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, Val); 8464 else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) 8465 Val = DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, Val); 8466 else 8467 Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val); 8468 break; 8469 } 8470 return Val; 8471 } 8472 8473 // The caller is responsible for loading the full value if the argument is 8474 // passed with CCValAssign::Indirect. 8475 static SDValue unpackFromRegLoc(SelectionDAG &DAG, SDValue Chain, 8476 const CCValAssign &VA, const SDLoc &DL, 8477 const RISCVTargetLowering &TLI) { 8478 MachineFunction &MF = DAG.getMachineFunction(); 8479 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 8480 EVT LocVT = VA.getLocVT(); 8481 SDValue Val; 8482 const TargetRegisterClass *RC = TLI.getRegClassFor(LocVT.getSimpleVT()); 8483 Register VReg = RegInfo.createVirtualRegister(RC); 8484 RegInfo.addLiveIn(VA.getLocReg(), VReg); 8485 Val = DAG.getCopyFromReg(Chain, DL, VReg, LocVT); 8486 8487 if (VA.getLocInfo() == CCValAssign::Indirect) 8488 return Val; 8489 8490 return convertLocVTToValVT(DAG, Val, VA, DL, TLI.getSubtarget()); 8491 } 8492 8493 static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDValue Val, 8494 const CCValAssign &VA, const SDLoc &DL, 8495 const RISCVSubtarget &Subtarget) { 8496 EVT LocVT = VA.getLocVT(); 8497 8498 switch (VA.getLocInfo()) { 8499 default: 8500 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 8501 case CCValAssign::Full: 8502 if (VA.getValVT().isFixedLengthVector() && LocVT.isScalableVector()) 8503 Val = convertToScalableVector(LocVT, Val, DAG, Subtarget); 8504 break; 8505 case CCValAssign::BCvt: 8506 if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16) 8507 Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, VA.getLocVT(), Val); 8508 else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) 8509 Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Val); 8510 else 8511 Val = DAG.getNode(ISD::BITCAST, DL, LocVT, Val); 8512 break; 8513 } 8514 return Val; 8515 } 8516 8517 // The caller is responsible for loading the full value if the argument is 8518 // passed with CCValAssign::Indirect. 8519 static SDValue unpackFromMemLoc(SelectionDAG &DAG, SDValue Chain, 8520 const CCValAssign &VA, const SDLoc &DL) { 8521 MachineFunction &MF = DAG.getMachineFunction(); 8522 MachineFrameInfo &MFI = MF.getFrameInfo(); 8523 EVT LocVT = VA.getLocVT(); 8524 EVT ValVT = VA.getValVT(); 8525 EVT PtrVT = MVT::getIntegerVT(DAG.getDataLayout().getPointerSizeInBits(0)); 8526 int FI = MFI.CreateFixedObject(ValVT.getStoreSize(), VA.getLocMemOffset(), 8527 /*Immutable=*/true); 8528 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 8529 SDValue Val; 8530 8531 ISD::LoadExtType ExtType; 8532 switch (VA.getLocInfo()) { 8533 default: 8534 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 8535 case CCValAssign::Full: 8536 case CCValAssign::Indirect: 8537 case CCValAssign::BCvt: 8538 ExtType = ISD::NON_EXTLOAD; 8539 break; 8540 } 8541 Val = DAG.getExtLoad( 8542 ExtType, DL, LocVT, Chain, FIN, 8543 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), ValVT); 8544 return Val; 8545 } 8546 8547 static SDValue unpackF64OnRV32DSoftABI(SelectionDAG &DAG, SDValue Chain, 8548 const CCValAssign &VA, const SDLoc &DL) { 8549 assert(VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64 && 8550 "Unexpected VA"); 8551 MachineFunction &MF = DAG.getMachineFunction(); 8552 MachineFrameInfo &MFI = MF.getFrameInfo(); 8553 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 8554 8555 if (VA.isMemLoc()) { 8556 // f64 is passed on the stack. 8557 int FI = MFI.CreateFixedObject(8, VA.getLocMemOffset(), /*Immutable=*/true); 8558 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 8559 return DAG.getLoad(MVT::f64, DL, Chain, FIN, 8560 MachinePointerInfo::getFixedStack(MF, FI)); 8561 } 8562 8563 assert(VA.isRegLoc() && "Expected register VA assignment"); 8564 8565 Register LoVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 8566 RegInfo.addLiveIn(VA.getLocReg(), LoVReg); 8567 SDValue Lo = DAG.getCopyFromReg(Chain, DL, LoVReg, MVT::i32); 8568 SDValue Hi; 8569 if (VA.getLocReg() == RISCV::X17) { 8570 // Second half of f64 is passed on the stack. 8571 int FI = MFI.CreateFixedObject(4, 0, /*Immutable=*/true); 8572 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 8573 Hi = DAG.getLoad(MVT::i32, DL, Chain, FIN, 8574 MachinePointerInfo::getFixedStack(MF, FI)); 8575 } else { 8576 // Second half of f64 is passed in another GPR. 8577 Register HiVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 8578 RegInfo.addLiveIn(VA.getLocReg() + 1, HiVReg); 8579 Hi = DAG.getCopyFromReg(Chain, DL, HiVReg, MVT::i32); 8580 } 8581 return DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, Lo, Hi); 8582 } 8583 8584 // FastCC has less than 1% performance improvement for some particular 8585 // benchmark. But theoretically, it may has benenfit for some cases. 8586 static bool CC_RISCV_FastCC(const DataLayout &DL, RISCVABI::ABI ABI, 8587 unsigned ValNo, MVT ValVT, MVT LocVT, 8588 CCValAssign::LocInfo LocInfo, 8589 ISD::ArgFlagsTy ArgFlags, CCState &State, 8590 bool IsFixed, bool IsRet, Type *OrigTy, 8591 const RISCVTargetLowering &TLI, 8592 Optional<unsigned> FirstMaskArgument) { 8593 8594 // X5 and X6 might be used for save-restore libcall. 8595 static const MCPhysReg GPRList[] = { 8596 RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, RISCV::X14, 8597 RISCV::X15, RISCV::X16, RISCV::X17, RISCV::X7, RISCV::X28, 8598 RISCV::X29, RISCV::X30, RISCV::X31}; 8599 8600 if (LocVT == MVT::i32 || LocVT == MVT::i64) { 8601 if (unsigned Reg = State.AllocateReg(GPRList)) { 8602 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 8603 return false; 8604 } 8605 } 8606 8607 if (LocVT == MVT::f16) { 8608 static const MCPhysReg FPR16List[] = { 8609 RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, RISCV::F14_H, 8610 RISCV::F15_H, RISCV::F16_H, RISCV::F17_H, RISCV::F0_H, RISCV::F1_H, 8611 RISCV::F2_H, RISCV::F3_H, RISCV::F4_H, RISCV::F5_H, RISCV::F6_H, 8612 RISCV::F7_H, RISCV::F28_H, RISCV::F29_H, RISCV::F30_H, RISCV::F31_H}; 8613 if (unsigned Reg = State.AllocateReg(FPR16List)) { 8614 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 8615 return false; 8616 } 8617 } 8618 8619 if (LocVT == MVT::f32) { 8620 static const MCPhysReg FPR32List[] = { 8621 RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, RISCV::F14_F, 8622 RISCV::F15_F, RISCV::F16_F, RISCV::F17_F, RISCV::F0_F, RISCV::F1_F, 8623 RISCV::F2_F, RISCV::F3_F, RISCV::F4_F, RISCV::F5_F, RISCV::F6_F, 8624 RISCV::F7_F, RISCV::F28_F, RISCV::F29_F, RISCV::F30_F, RISCV::F31_F}; 8625 if (unsigned Reg = State.AllocateReg(FPR32List)) { 8626 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 8627 return false; 8628 } 8629 } 8630 8631 if (LocVT == MVT::f64) { 8632 static const MCPhysReg FPR64List[] = { 8633 RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, RISCV::F14_D, 8634 RISCV::F15_D, RISCV::F16_D, RISCV::F17_D, RISCV::F0_D, RISCV::F1_D, 8635 RISCV::F2_D, RISCV::F3_D, RISCV::F4_D, RISCV::F5_D, RISCV::F6_D, 8636 RISCV::F7_D, RISCV::F28_D, RISCV::F29_D, RISCV::F30_D, RISCV::F31_D}; 8637 if (unsigned Reg = State.AllocateReg(FPR64List)) { 8638 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 8639 return false; 8640 } 8641 } 8642 8643 if (LocVT == MVT::i32 || LocVT == MVT::f32) { 8644 unsigned Offset4 = State.AllocateStack(4, Align(4)); 8645 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset4, LocVT, LocInfo)); 8646 return false; 8647 } 8648 8649 if (LocVT == MVT::i64 || LocVT == MVT::f64) { 8650 unsigned Offset5 = State.AllocateStack(8, Align(8)); 8651 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset5, LocVT, LocInfo)); 8652 return false; 8653 } 8654 8655 if (LocVT.isVector()) { 8656 if (unsigned Reg = 8657 allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI)) { 8658 // Fixed-length vectors are located in the corresponding scalable-vector 8659 // container types. 8660 if (ValVT.isFixedLengthVector()) 8661 LocVT = TLI.getContainerForFixedLengthVector(LocVT); 8662 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 8663 } else { 8664 // Try and pass the address via a "fast" GPR. 8665 if (unsigned GPRReg = State.AllocateReg(GPRList)) { 8666 LocInfo = CCValAssign::Indirect; 8667 LocVT = TLI.getSubtarget().getXLenVT(); 8668 State.addLoc(CCValAssign::getReg(ValNo, ValVT, GPRReg, LocVT, LocInfo)); 8669 } else if (ValVT.isFixedLengthVector()) { 8670 auto StackAlign = 8671 MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne(); 8672 unsigned StackOffset = 8673 State.AllocateStack(ValVT.getStoreSize(), StackAlign); 8674 State.addLoc( 8675 CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 8676 } else { 8677 // Can't pass scalable vectors on the stack. 8678 return true; 8679 } 8680 } 8681 8682 return false; 8683 } 8684 8685 return true; // CC didn't match. 8686 } 8687 8688 static bool CC_RISCV_GHC(unsigned ValNo, MVT ValVT, MVT LocVT, 8689 CCValAssign::LocInfo LocInfo, 8690 ISD::ArgFlagsTy ArgFlags, CCState &State) { 8691 8692 if (LocVT == MVT::i32 || LocVT == MVT::i64) { 8693 // Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, R6, R7, SpLim 8694 // s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 8695 static const MCPhysReg GPRList[] = { 8696 RISCV::X9, RISCV::X18, RISCV::X19, RISCV::X20, RISCV::X21, RISCV::X22, 8697 RISCV::X23, RISCV::X24, RISCV::X25, RISCV::X26, RISCV::X27}; 8698 if (unsigned Reg = State.AllocateReg(GPRList)) { 8699 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 8700 return false; 8701 } 8702 } 8703 8704 if (LocVT == MVT::f32) { 8705 // Pass in STG registers: F1, ..., F6 8706 // fs0 ... fs5 8707 static const MCPhysReg FPR32List[] = {RISCV::F8_F, RISCV::F9_F, 8708 RISCV::F18_F, RISCV::F19_F, 8709 RISCV::F20_F, RISCV::F21_F}; 8710 if (unsigned Reg = State.AllocateReg(FPR32List)) { 8711 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 8712 return false; 8713 } 8714 } 8715 8716 if (LocVT == MVT::f64) { 8717 // Pass in STG registers: D1, ..., D6 8718 // fs6 ... fs11 8719 static const MCPhysReg FPR64List[] = {RISCV::F22_D, RISCV::F23_D, 8720 RISCV::F24_D, RISCV::F25_D, 8721 RISCV::F26_D, RISCV::F27_D}; 8722 if (unsigned Reg = State.AllocateReg(FPR64List)) { 8723 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 8724 return false; 8725 } 8726 } 8727 8728 report_fatal_error("No registers left in GHC calling convention"); 8729 return true; 8730 } 8731 8732 // Transform physical registers into virtual registers. 8733 SDValue RISCVTargetLowering::LowerFormalArguments( 8734 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 8735 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 8736 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 8737 8738 MachineFunction &MF = DAG.getMachineFunction(); 8739 8740 switch (CallConv) { 8741 default: 8742 report_fatal_error("Unsupported calling convention"); 8743 case CallingConv::C: 8744 case CallingConv::Fast: 8745 break; 8746 case CallingConv::GHC: 8747 if (!MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtF] || 8748 !MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtD]) 8749 report_fatal_error( 8750 "GHC calling convention requires the F and D instruction set extensions"); 8751 } 8752 8753 const Function &Func = MF.getFunction(); 8754 if (Func.hasFnAttribute("interrupt")) { 8755 if (!Func.arg_empty()) 8756 report_fatal_error( 8757 "Functions with the interrupt attribute cannot have arguments!"); 8758 8759 StringRef Kind = 8760 MF.getFunction().getFnAttribute("interrupt").getValueAsString(); 8761 8762 if (!(Kind == "user" || Kind == "supervisor" || Kind == "machine")) 8763 report_fatal_error( 8764 "Function interrupt attribute argument not supported!"); 8765 } 8766 8767 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 8768 MVT XLenVT = Subtarget.getXLenVT(); 8769 unsigned XLenInBytes = Subtarget.getXLen() / 8; 8770 // Used with vargs to acumulate store chains. 8771 std::vector<SDValue> OutChains; 8772 8773 // Assign locations to all of the incoming arguments. 8774 SmallVector<CCValAssign, 16> ArgLocs; 8775 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 8776 8777 if (CallConv == CallingConv::GHC) 8778 CCInfo.AnalyzeFormalArguments(Ins, CC_RISCV_GHC); 8779 else 8780 analyzeInputArgs(MF, CCInfo, Ins, /*IsRet=*/false, 8781 CallConv == CallingConv::Fast ? CC_RISCV_FastCC 8782 : CC_RISCV); 8783 8784 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 8785 CCValAssign &VA = ArgLocs[i]; 8786 SDValue ArgValue; 8787 // Passing f64 on RV32D with a soft float ABI must be handled as a special 8788 // case. 8789 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) 8790 ArgValue = unpackF64OnRV32DSoftABI(DAG, Chain, VA, DL); 8791 else if (VA.isRegLoc()) 8792 ArgValue = unpackFromRegLoc(DAG, Chain, VA, DL, *this); 8793 else 8794 ArgValue = unpackFromMemLoc(DAG, Chain, VA, DL); 8795 8796 if (VA.getLocInfo() == CCValAssign::Indirect) { 8797 // If the original argument was split and passed by reference (e.g. i128 8798 // on RV32), we need to load all parts of it here (using the same 8799 // address). Vectors may be partly split to registers and partly to the 8800 // stack, in which case the base address is partly offset and subsequent 8801 // stores are relative to that. 8802 InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue, 8803 MachinePointerInfo())); 8804 unsigned ArgIndex = Ins[i].OrigArgIndex; 8805 unsigned ArgPartOffset = Ins[i].PartOffset; 8806 assert(VA.getValVT().isVector() || ArgPartOffset == 0); 8807 while (i + 1 != e && Ins[i + 1].OrigArgIndex == ArgIndex) { 8808 CCValAssign &PartVA = ArgLocs[i + 1]; 8809 unsigned PartOffset = Ins[i + 1].PartOffset - ArgPartOffset; 8810 SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL); 8811 if (PartVA.getValVT().isScalableVector()) 8812 Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset); 8813 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, Offset); 8814 InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address, 8815 MachinePointerInfo())); 8816 ++i; 8817 } 8818 continue; 8819 } 8820 InVals.push_back(ArgValue); 8821 } 8822 8823 if (IsVarArg) { 8824 ArrayRef<MCPhysReg> ArgRegs = makeArrayRef(ArgGPRs); 8825 unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs); 8826 const TargetRegisterClass *RC = &RISCV::GPRRegClass; 8827 MachineFrameInfo &MFI = MF.getFrameInfo(); 8828 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 8829 RISCVMachineFunctionInfo *RVFI = MF.getInfo<RISCVMachineFunctionInfo>(); 8830 8831 // Offset of the first variable argument from stack pointer, and size of 8832 // the vararg save area. For now, the varargs save area is either zero or 8833 // large enough to hold a0-a7. 8834 int VaArgOffset, VarArgsSaveSize; 8835 8836 // If all registers are allocated, then all varargs must be passed on the 8837 // stack and we don't need to save any argregs. 8838 if (ArgRegs.size() == Idx) { 8839 VaArgOffset = CCInfo.getNextStackOffset(); 8840 VarArgsSaveSize = 0; 8841 } else { 8842 VarArgsSaveSize = XLenInBytes * (ArgRegs.size() - Idx); 8843 VaArgOffset = -VarArgsSaveSize; 8844 } 8845 8846 // Record the frame index of the first variable argument 8847 // which is a value necessary to VASTART. 8848 int FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true); 8849 RVFI->setVarArgsFrameIndex(FI); 8850 8851 // If saving an odd number of registers then create an extra stack slot to 8852 // ensure that the frame pointer is 2*XLEN-aligned, which in turn ensures 8853 // offsets to even-numbered registered remain 2*XLEN-aligned. 8854 if (Idx % 2) { 8855 MFI.CreateFixedObject(XLenInBytes, VaArgOffset - (int)XLenInBytes, true); 8856 VarArgsSaveSize += XLenInBytes; 8857 } 8858 8859 // Copy the integer registers that may have been used for passing varargs 8860 // to the vararg save area. 8861 for (unsigned I = Idx; I < ArgRegs.size(); 8862 ++I, VaArgOffset += XLenInBytes) { 8863 const Register Reg = RegInfo.createVirtualRegister(RC); 8864 RegInfo.addLiveIn(ArgRegs[I], Reg); 8865 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, XLenVT); 8866 FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true); 8867 SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 8868 SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff, 8869 MachinePointerInfo::getFixedStack(MF, FI)); 8870 cast<StoreSDNode>(Store.getNode()) 8871 ->getMemOperand() 8872 ->setValue((Value *)nullptr); 8873 OutChains.push_back(Store); 8874 } 8875 RVFI->setVarArgsSaveSize(VarArgsSaveSize); 8876 } 8877 8878 // All stores are grouped in one node to allow the matching between 8879 // the size of Ins and InVals. This only happens for vararg functions. 8880 if (!OutChains.empty()) { 8881 OutChains.push_back(Chain); 8882 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains); 8883 } 8884 8885 return Chain; 8886 } 8887 8888 /// isEligibleForTailCallOptimization - Check whether the call is eligible 8889 /// for tail call optimization. 8890 /// Note: This is modelled after ARM's IsEligibleForTailCallOptimization. 8891 bool RISCVTargetLowering::isEligibleForTailCallOptimization( 8892 CCState &CCInfo, CallLoweringInfo &CLI, MachineFunction &MF, 8893 const SmallVector<CCValAssign, 16> &ArgLocs) const { 8894 8895 auto &Callee = CLI.Callee; 8896 auto CalleeCC = CLI.CallConv; 8897 auto &Outs = CLI.Outs; 8898 auto &Caller = MF.getFunction(); 8899 auto CallerCC = Caller.getCallingConv(); 8900 8901 // Exception-handling functions need a special set of instructions to 8902 // indicate a return to the hardware. Tail-calling another function would 8903 // probably break this. 8904 // TODO: The "interrupt" attribute isn't currently defined by RISC-V. This 8905 // should be expanded as new function attributes are introduced. 8906 if (Caller.hasFnAttribute("interrupt")) 8907 return false; 8908 8909 // Do not tail call opt if the stack is used to pass parameters. 8910 if (CCInfo.getNextStackOffset() != 0) 8911 return false; 8912 8913 // Do not tail call opt if any parameters need to be passed indirectly. 8914 // Since long doubles (fp128) and i128 are larger than 2*XLEN, they are 8915 // passed indirectly. So the address of the value will be passed in a 8916 // register, or if not available, then the address is put on the stack. In 8917 // order to pass indirectly, space on the stack often needs to be allocated 8918 // in order to store the value. In this case the CCInfo.getNextStackOffset() 8919 // != 0 check is not enough and we need to check if any CCValAssign ArgsLocs 8920 // are passed CCValAssign::Indirect. 8921 for (auto &VA : ArgLocs) 8922 if (VA.getLocInfo() == CCValAssign::Indirect) 8923 return false; 8924 8925 // Do not tail call opt if either caller or callee uses struct return 8926 // semantics. 8927 auto IsCallerStructRet = Caller.hasStructRetAttr(); 8928 auto IsCalleeStructRet = Outs.empty() ? false : Outs[0].Flags.isSRet(); 8929 if (IsCallerStructRet || IsCalleeStructRet) 8930 return false; 8931 8932 // Externally-defined functions with weak linkage should not be 8933 // tail-called. The behaviour of branch instructions in this situation (as 8934 // used for tail calls) is implementation-defined, so we cannot rely on the 8935 // linker replacing the tail call with a return. 8936 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 8937 const GlobalValue *GV = G->getGlobal(); 8938 if (GV->hasExternalWeakLinkage()) 8939 return false; 8940 } 8941 8942 // The callee has to preserve all registers the caller needs to preserve. 8943 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 8944 const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC); 8945 if (CalleeCC != CallerCC) { 8946 const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC); 8947 if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved)) 8948 return false; 8949 } 8950 8951 // Byval parameters hand the function a pointer directly into the stack area 8952 // we want to reuse during a tail call. Working around this *is* possible 8953 // but less efficient and uglier in LowerCall. 8954 for (auto &Arg : Outs) 8955 if (Arg.Flags.isByVal()) 8956 return false; 8957 8958 return true; 8959 } 8960 8961 static Align getPrefTypeAlign(EVT VT, SelectionDAG &DAG) { 8962 return DAG.getDataLayout().getPrefTypeAlign( 8963 VT.getTypeForEVT(*DAG.getContext())); 8964 } 8965 8966 // Lower a call to a callseq_start + CALL + callseq_end chain, and add input 8967 // and output parameter nodes. 8968 SDValue RISCVTargetLowering::LowerCall(CallLoweringInfo &CLI, 8969 SmallVectorImpl<SDValue> &InVals) const { 8970 SelectionDAG &DAG = CLI.DAG; 8971 SDLoc &DL = CLI.DL; 8972 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 8973 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 8974 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 8975 SDValue Chain = CLI.Chain; 8976 SDValue Callee = CLI.Callee; 8977 bool &IsTailCall = CLI.IsTailCall; 8978 CallingConv::ID CallConv = CLI.CallConv; 8979 bool IsVarArg = CLI.IsVarArg; 8980 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 8981 MVT XLenVT = Subtarget.getXLenVT(); 8982 8983 MachineFunction &MF = DAG.getMachineFunction(); 8984 8985 // Analyze the operands of the call, assigning locations to each operand. 8986 SmallVector<CCValAssign, 16> ArgLocs; 8987 CCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 8988 8989 if (CallConv == CallingConv::GHC) 8990 ArgCCInfo.AnalyzeCallOperands(Outs, CC_RISCV_GHC); 8991 else 8992 analyzeOutputArgs(MF, ArgCCInfo, Outs, /*IsRet=*/false, &CLI, 8993 CallConv == CallingConv::Fast ? CC_RISCV_FastCC 8994 : CC_RISCV); 8995 8996 // Check if it's really possible to do a tail call. 8997 if (IsTailCall) 8998 IsTailCall = isEligibleForTailCallOptimization(ArgCCInfo, CLI, MF, ArgLocs); 8999 9000 if (IsTailCall) 9001 ++NumTailCalls; 9002 else if (CLI.CB && CLI.CB->isMustTailCall()) 9003 report_fatal_error("failed to perform tail call elimination on a call " 9004 "site marked musttail"); 9005 9006 // Get a count of how many bytes are to be pushed on the stack. 9007 unsigned NumBytes = ArgCCInfo.getNextStackOffset(); 9008 9009 // Create local copies for byval args 9010 SmallVector<SDValue, 8> ByValArgs; 9011 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 9012 ISD::ArgFlagsTy Flags = Outs[i].Flags; 9013 if (!Flags.isByVal()) 9014 continue; 9015 9016 SDValue Arg = OutVals[i]; 9017 unsigned Size = Flags.getByValSize(); 9018 Align Alignment = Flags.getNonZeroByValAlign(); 9019 9020 int FI = 9021 MF.getFrameInfo().CreateStackObject(Size, Alignment, /*isSS=*/false); 9022 SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 9023 SDValue SizeNode = DAG.getConstant(Size, DL, XLenVT); 9024 9025 Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Alignment, 9026 /*IsVolatile=*/false, 9027 /*AlwaysInline=*/false, IsTailCall, 9028 MachinePointerInfo(), MachinePointerInfo()); 9029 ByValArgs.push_back(FIPtr); 9030 } 9031 9032 if (!IsTailCall) 9033 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, CLI.DL); 9034 9035 // Copy argument values to their designated locations. 9036 SmallVector<std::pair<Register, SDValue>, 8> RegsToPass; 9037 SmallVector<SDValue, 8> MemOpChains; 9038 SDValue StackPtr; 9039 for (unsigned i = 0, j = 0, e = ArgLocs.size(); i != e; ++i) { 9040 CCValAssign &VA = ArgLocs[i]; 9041 SDValue ArgValue = OutVals[i]; 9042 ISD::ArgFlagsTy Flags = Outs[i].Flags; 9043 9044 // Handle passing f64 on RV32D with a soft float ABI as a special case. 9045 bool IsF64OnRV32DSoftABI = 9046 VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64; 9047 if (IsF64OnRV32DSoftABI && VA.isRegLoc()) { 9048 SDValue SplitF64 = DAG.getNode( 9049 RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), ArgValue); 9050 SDValue Lo = SplitF64.getValue(0); 9051 SDValue Hi = SplitF64.getValue(1); 9052 9053 Register RegLo = VA.getLocReg(); 9054 RegsToPass.push_back(std::make_pair(RegLo, Lo)); 9055 9056 if (RegLo == RISCV::X17) { 9057 // Second half of f64 is passed on the stack. 9058 // Work out the address of the stack slot. 9059 if (!StackPtr.getNode()) 9060 StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT); 9061 // Emit the store. 9062 MemOpChains.push_back( 9063 DAG.getStore(Chain, DL, Hi, StackPtr, MachinePointerInfo())); 9064 } else { 9065 // Second half of f64 is passed in another GPR. 9066 assert(RegLo < RISCV::X31 && "Invalid register pair"); 9067 Register RegHigh = RegLo + 1; 9068 RegsToPass.push_back(std::make_pair(RegHigh, Hi)); 9069 } 9070 continue; 9071 } 9072 9073 // IsF64OnRV32DSoftABI && VA.isMemLoc() is handled below in the same way 9074 // as any other MemLoc. 9075 9076 // Promote the value if needed. 9077 // For now, only handle fully promoted and indirect arguments. 9078 if (VA.getLocInfo() == CCValAssign::Indirect) { 9079 // Store the argument in a stack slot and pass its address. 9080 Align StackAlign = 9081 std::max(getPrefTypeAlign(Outs[i].ArgVT, DAG), 9082 getPrefTypeAlign(ArgValue.getValueType(), DAG)); 9083 TypeSize StoredSize = ArgValue.getValueType().getStoreSize(); 9084 // If the original argument was split (e.g. i128), we need 9085 // to store the required parts of it here (and pass just one address). 9086 // Vectors may be partly split to registers and partly to the stack, in 9087 // which case the base address is partly offset and subsequent stores are 9088 // relative to that. 9089 unsigned ArgIndex = Outs[i].OrigArgIndex; 9090 unsigned ArgPartOffset = Outs[i].PartOffset; 9091 assert(VA.getValVT().isVector() || ArgPartOffset == 0); 9092 // Calculate the total size to store. We don't have access to what we're 9093 // actually storing other than performing the loop and collecting the 9094 // info. 9095 SmallVector<std::pair<SDValue, SDValue>> Parts; 9096 while (i + 1 != e && Outs[i + 1].OrigArgIndex == ArgIndex) { 9097 SDValue PartValue = OutVals[i + 1]; 9098 unsigned PartOffset = Outs[i + 1].PartOffset - ArgPartOffset; 9099 SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL); 9100 EVT PartVT = PartValue.getValueType(); 9101 if (PartVT.isScalableVector()) 9102 Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset); 9103 StoredSize += PartVT.getStoreSize(); 9104 StackAlign = std::max(StackAlign, getPrefTypeAlign(PartVT, DAG)); 9105 Parts.push_back(std::make_pair(PartValue, Offset)); 9106 ++i; 9107 } 9108 SDValue SpillSlot = DAG.CreateStackTemporary(StoredSize, StackAlign); 9109 int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); 9110 MemOpChains.push_back( 9111 DAG.getStore(Chain, DL, ArgValue, SpillSlot, 9112 MachinePointerInfo::getFixedStack(MF, FI))); 9113 for (const auto &Part : Parts) { 9114 SDValue PartValue = Part.first; 9115 SDValue PartOffset = Part.second; 9116 SDValue Address = 9117 DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, PartOffset); 9118 MemOpChains.push_back( 9119 DAG.getStore(Chain, DL, PartValue, Address, 9120 MachinePointerInfo::getFixedStack(MF, FI))); 9121 } 9122 ArgValue = SpillSlot; 9123 } else { 9124 ArgValue = convertValVTToLocVT(DAG, ArgValue, VA, DL, Subtarget); 9125 } 9126 9127 // Use local copy if it is a byval arg. 9128 if (Flags.isByVal()) 9129 ArgValue = ByValArgs[j++]; 9130 9131 if (VA.isRegLoc()) { 9132 // Queue up the argument copies and emit them at the end. 9133 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue)); 9134 } else { 9135 assert(VA.isMemLoc() && "Argument not register or memory"); 9136 assert(!IsTailCall && "Tail call not allowed if stack is used " 9137 "for passing parameters"); 9138 9139 // Work out the address of the stack slot. 9140 if (!StackPtr.getNode()) 9141 StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT); 9142 SDValue Address = 9143 DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, 9144 DAG.getIntPtrConstant(VA.getLocMemOffset(), DL)); 9145 9146 // Emit the store. 9147 MemOpChains.push_back( 9148 DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo())); 9149 } 9150 } 9151 9152 // Join the stores, which are independent of one another. 9153 if (!MemOpChains.empty()) 9154 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); 9155 9156 SDValue Glue; 9157 9158 // Build a sequence of copy-to-reg nodes, chained and glued together. 9159 for (auto &Reg : RegsToPass) { 9160 Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, Glue); 9161 Glue = Chain.getValue(1); 9162 } 9163 9164 // Validate that none of the argument registers have been marked as 9165 // reserved, if so report an error. Do the same for the return address if this 9166 // is not a tailcall. 9167 validateCCReservedRegs(RegsToPass, MF); 9168 if (!IsTailCall && 9169 MF.getSubtarget<RISCVSubtarget>().isRegisterReservedByUser(RISCV::X1)) 9170 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 9171 MF.getFunction(), 9172 "Return address register required, but has been reserved."}); 9173 9174 // If the callee is a GlobalAddress/ExternalSymbol node, turn it into a 9175 // TargetGlobalAddress/TargetExternalSymbol node so that legalize won't 9176 // split it and then direct call can be matched by PseudoCALL. 9177 if (GlobalAddressSDNode *S = dyn_cast<GlobalAddressSDNode>(Callee)) { 9178 const GlobalValue *GV = S->getGlobal(); 9179 9180 unsigned OpFlags = RISCVII::MO_CALL; 9181 if (!getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV)) 9182 OpFlags = RISCVII::MO_PLT; 9183 9184 Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags); 9185 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { 9186 unsigned OpFlags = RISCVII::MO_CALL; 9187 9188 if (!getTargetMachine().shouldAssumeDSOLocal(*MF.getFunction().getParent(), 9189 nullptr)) 9190 OpFlags = RISCVII::MO_PLT; 9191 9192 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, OpFlags); 9193 } 9194 9195 // The first call operand is the chain and the second is the target address. 9196 SmallVector<SDValue, 8> Ops; 9197 Ops.push_back(Chain); 9198 Ops.push_back(Callee); 9199 9200 // Add argument registers to the end of the list so that they are 9201 // known live into the call. 9202 for (auto &Reg : RegsToPass) 9203 Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType())); 9204 9205 if (!IsTailCall) { 9206 // Add a register mask operand representing the call-preserved registers. 9207 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 9208 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv); 9209 assert(Mask && "Missing call preserved mask for calling convention"); 9210 Ops.push_back(DAG.getRegisterMask(Mask)); 9211 } 9212 9213 // Glue the call to the argument copies, if any. 9214 if (Glue.getNode()) 9215 Ops.push_back(Glue); 9216 9217 // Emit the call. 9218 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 9219 9220 if (IsTailCall) { 9221 MF.getFrameInfo().setHasTailCall(); 9222 return DAG.getNode(RISCVISD::TAIL, DL, NodeTys, Ops); 9223 } 9224 9225 Chain = DAG.getNode(RISCVISD::CALL, DL, NodeTys, Ops); 9226 DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge); 9227 Glue = Chain.getValue(1); 9228 9229 // Mark the end of the call, which is glued to the call itself. 9230 Chain = DAG.getCALLSEQ_END(Chain, 9231 DAG.getConstant(NumBytes, DL, PtrVT, true), 9232 DAG.getConstant(0, DL, PtrVT, true), 9233 Glue, DL); 9234 Glue = Chain.getValue(1); 9235 9236 // Assign locations to each value returned by this call. 9237 SmallVector<CCValAssign, 16> RVLocs; 9238 CCState RetCCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext()); 9239 analyzeInputArgs(MF, RetCCInfo, Ins, /*IsRet=*/true, CC_RISCV); 9240 9241 // Copy all of the result registers out of their specified physreg. 9242 for (auto &VA : RVLocs) { 9243 // Copy the value out 9244 SDValue RetValue = 9245 DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), Glue); 9246 // Glue the RetValue to the end of the call sequence 9247 Chain = RetValue.getValue(1); 9248 Glue = RetValue.getValue(2); 9249 9250 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { 9251 assert(VA.getLocReg() == ArgGPRs[0] && "Unexpected reg assignment"); 9252 SDValue RetValue2 = 9253 DAG.getCopyFromReg(Chain, DL, ArgGPRs[1], MVT::i32, Glue); 9254 Chain = RetValue2.getValue(1); 9255 Glue = RetValue2.getValue(2); 9256 RetValue = DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, RetValue, 9257 RetValue2); 9258 } 9259 9260 RetValue = convertLocVTToValVT(DAG, RetValue, VA, DL, Subtarget); 9261 9262 InVals.push_back(RetValue); 9263 } 9264 9265 return Chain; 9266 } 9267 9268 bool RISCVTargetLowering::CanLowerReturn( 9269 CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg, 9270 const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const { 9271 SmallVector<CCValAssign, 16> RVLocs; 9272 CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context); 9273 9274 Optional<unsigned> FirstMaskArgument; 9275 if (Subtarget.hasVInstructions()) 9276 FirstMaskArgument = preAssignMask(Outs); 9277 9278 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 9279 MVT VT = Outs[i].VT; 9280 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 9281 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 9282 if (CC_RISCV(MF.getDataLayout(), ABI, i, VT, VT, CCValAssign::Full, 9283 ArgFlags, CCInfo, /*IsFixed=*/true, /*IsRet=*/true, nullptr, 9284 *this, FirstMaskArgument)) 9285 return false; 9286 } 9287 return true; 9288 } 9289 9290 SDValue 9291 RISCVTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 9292 bool IsVarArg, 9293 const SmallVectorImpl<ISD::OutputArg> &Outs, 9294 const SmallVectorImpl<SDValue> &OutVals, 9295 const SDLoc &DL, SelectionDAG &DAG) const { 9296 const MachineFunction &MF = DAG.getMachineFunction(); 9297 const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>(); 9298 9299 // Stores the assignment of the return value to a location. 9300 SmallVector<CCValAssign, 16> RVLocs; 9301 9302 // Info about the registers and stack slot. 9303 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, 9304 *DAG.getContext()); 9305 9306 analyzeOutputArgs(DAG.getMachineFunction(), CCInfo, Outs, /*IsRet=*/true, 9307 nullptr, CC_RISCV); 9308 9309 if (CallConv == CallingConv::GHC && !RVLocs.empty()) 9310 report_fatal_error("GHC functions return void only"); 9311 9312 SDValue Glue; 9313 SmallVector<SDValue, 4> RetOps(1, Chain); 9314 9315 // Copy the result values into the output registers. 9316 for (unsigned i = 0, e = RVLocs.size(); i < e; ++i) { 9317 SDValue Val = OutVals[i]; 9318 CCValAssign &VA = RVLocs[i]; 9319 assert(VA.isRegLoc() && "Can only return in registers!"); 9320 9321 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { 9322 // Handle returning f64 on RV32D with a soft float ABI. 9323 assert(VA.isRegLoc() && "Expected return via registers"); 9324 SDValue SplitF64 = DAG.getNode(RISCVISD::SplitF64, DL, 9325 DAG.getVTList(MVT::i32, MVT::i32), Val); 9326 SDValue Lo = SplitF64.getValue(0); 9327 SDValue Hi = SplitF64.getValue(1); 9328 Register RegLo = VA.getLocReg(); 9329 assert(RegLo < RISCV::X31 && "Invalid register pair"); 9330 Register RegHi = RegLo + 1; 9331 9332 if (STI.isRegisterReservedByUser(RegLo) || 9333 STI.isRegisterReservedByUser(RegHi)) 9334 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 9335 MF.getFunction(), 9336 "Return value register required, but has been reserved."}); 9337 9338 Chain = DAG.getCopyToReg(Chain, DL, RegLo, Lo, Glue); 9339 Glue = Chain.getValue(1); 9340 RetOps.push_back(DAG.getRegister(RegLo, MVT::i32)); 9341 Chain = DAG.getCopyToReg(Chain, DL, RegHi, Hi, Glue); 9342 Glue = Chain.getValue(1); 9343 RetOps.push_back(DAG.getRegister(RegHi, MVT::i32)); 9344 } else { 9345 // Handle a 'normal' return. 9346 Val = convertValVTToLocVT(DAG, Val, VA, DL, Subtarget); 9347 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Glue); 9348 9349 if (STI.isRegisterReservedByUser(VA.getLocReg())) 9350 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 9351 MF.getFunction(), 9352 "Return value register required, but has been reserved."}); 9353 9354 // Guarantee that all emitted copies are stuck together. 9355 Glue = Chain.getValue(1); 9356 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 9357 } 9358 } 9359 9360 RetOps[0] = Chain; // Update chain. 9361 9362 // Add the glue node if we have it. 9363 if (Glue.getNode()) { 9364 RetOps.push_back(Glue); 9365 } 9366 9367 unsigned RetOpc = RISCVISD::RET_FLAG; 9368 // Interrupt service routines use different return instructions. 9369 const Function &Func = DAG.getMachineFunction().getFunction(); 9370 if (Func.hasFnAttribute("interrupt")) { 9371 if (!Func.getReturnType()->isVoidTy()) 9372 report_fatal_error( 9373 "Functions with the interrupt attribute must have void return type!"); 9374 9375 MachineFunction &MF = DAG.getMachineFunction(); 9376 StringRef Kind = 9377 MF.getFunction().getFnAttribute("interrupt").getValueAsString(); 9378 9379 if (Kind == "user") 9380 RetOpc = RISCVISD::URET_FLAG; 9381 else if (Kind == "supervisor") 9382 RetOpc = RISCVISD::SRET_FLAG; 9383 else 9384 RetOpc = RISCVISD::MRET_FLAG; 9385 } 9386 9387 return DAG.getNode(RetOpc, DL, MVT::Other, RetOps); 9388 } 9389 9390 void RISCVTargetLowering::validateCCReservedRegs( 9391 const SmallVectorImpl<std::pair<llvm::Register, llvm::SDValue>> &Regs, 9392 MachineFunction &MF) const { 9393 const Function &F = MF.getFunction(); 9394 const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>(); 9395 9396 if (llvm::any_of(Regs, [&STI](auto Reg) { 9397 return STI.isRegisterReservedByUser(Reg.first); 9398 })) 9399 F.getContext().diagnose(DiagnosticInfoUnsupported{ 9400 F, "Argument register required, but has been reserved."}); 9401 } 9402 9403 bool RISCVTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { 9404 return CI->isTailCall(); 9405 } 9406 9407 const char *RISCVTargetLowering::getTargetNodeName(unsigned Opcode) const { 9408 #define NODE_NAME_CASE(NODE) \ 9409 case RISCVISD::NODE: \ 9410 return "RISCVISD::" #NODE; 9411 // clang-format off 9412 switch ((RISCVISD::NodeType)Opcode) { 9413 case RISCVISD::FIRST_NUMBER: 9414 break; 9415 NODE_NAME_CASE(RET_FLAG) 9416 NODE_NAME_CASE(URET_FLAG) 9417 NODE_NAME_CASE(SRET_FLAG) 9418 NODE_NAME_CASE(MRET_FLAG) 9419 NODE_NAME_CASE(CALL) 9420 NODE_NAME_CASE(SELECT_CC) 9421 NODE_NAME_CASE(BR_CC) 9422 NODE_NAME_CASE(BuildPairF64) 9423 NODE_NAME_CASE(SplitF64) 9424 NODE_NAME_CASE(TAIL) 9425 NODE_NAME_CASE(MULHSU) 9426 NODE_NAME_CASE(SLLW) 9427 NODE_NAME_CASE(SRAW) 9428 NODE_NAME_CASE(SRLW) 9429 NODE_NAME_CASE(DIVW) 9430 NODE_NAME_CASE(DIVUW) 9431 NODE_NAME_CASE(REMUW) 9432 NODE_NAME_CASE(ROLW) 9433 NODE_NAME_CASE(RORW) 9434 NODE_NAME_CASE(CLZW) 9435 NODE_NAME_CASE(CTZW) 9436 NODE_NAME_CASE(FSLW) 9437 NODE_NAME_CASE(FSRW) 9438 NODE_NAME_CASE(FSL) 9439 NODE_NAME_CASE(FSR) 9440 NODE_NAME_CASE(FMV_H_X) 9441 NODE_NAME_CASE(FMV_X_ANYEXTH) 9442 NODE_NAME_CASE(FMV_W_X_RV64) 9443 NODE_NAME_CASE(FMV_X_ANYEXTW_RV64) 9444 NODE_NAME_CASE(FCVT_X_RTZ) 9445 NODE_NAME_CASE(FCVT_XU_RTZ) 9446 NODE_NAME_CASE(FCVT_W_RTZ_RV64) 9447 NODE_NAME_CASE(FCVT_WU_RTZ_RV64) 9448 NODE_NAME_CASE(READ_CYCLE_WIDE) 9449 NODE_NAME_CASE(GREV) 9450 NODE_NAME_CASE(GREVW) 9451 NODE_NAME_CASE(GORC) 9452 NODE_NAME_CASE(GORCW) 9453 NODE_NAME_CASE(SHFL) 9454 NODE_NAME_CASE(SHFLW) 9455 NODE_NAME_CASE(UNSHFL) 9456 NODE_NAME_CASE(UNSHFLW) 9457 NODE_NAME_CASE(BCOMPRESS) 9458 NODE_NAME_CASE(BCOMPRESSW) 9459 NODE_NAME_CASE(BDECOMPRESS) 9460 NODE_NAME_CASE(BDECOMPRESSW) 9461 NODE_NAME_CASE(VMV_V_X_VL) 9462 NODE_NAME_CASE(VFMV_V_F_VL) 9463 NODE_NAME_CASE(VMV_X_S) 9464 NODE_NAME_CASE(VMV_S_X_VL) 9465 NODE_NAME_CASE(VFMV_S_F_VL) 9466 NODE_NAME_CASE(SPLAT_VECTOR_I64) 9467 NODE_NAME_CASE(SPLAT_VECTOR_SPLIT_I64_VL) 9468 NODE_NAME_CASE(READ_VLENB) 9469 NODE_NAME_CASE(TRUNCATE_VECTOR_VL) 9470 NODE_NAME_CASE(VSLIDEUP_VL) 9471 NODE_NAME_CASE(VSLIDE1UP_VL) 9472 NODE_NAME_CASE(VSLIDEDOWN_VL) 9473 NODE_NAME_CASE(VSLIDE1DOWN_VL) 9474 NODE_NAME_CASE(VID_VL) 9475 NODE_NAME_CASE(VFNCVT_ROD_VL) 9476 NODE_NAME_CASE(VECREDUCE_ADD_VL) 9477 NODE_NAME_CASE(VECREDUCE_UMAX_VL) 9478 NODE_NAME_CASE(VECREDUCE_SMAX_VL) 9479 NODE_NAME_CASE(VECREDUCE_UMIN_VL) 9480 NODE_NAME_CASE(VECREDUCE_SMIN_VL) 9481 NODE_NAME_CASE(VECREDUCE_AND_VL) 9482 NODE_NAME_CASE(VECREDUCE_OR_VL) 9483 NODE_NAME_CASE(VECREDUCE_XOR_VL) 9484 NODE_NAME_CASE(VECREDUCE_FADD_VL) 9485 NODE_NAME_CASE(VECREDUCE_SEQ_FADD_VL) 9486 NODE_NAME_CASE(VECREDUCE_FMIN_VL) 9487 NODE_NAME_CASE(VECREDUCE_FMAX_VL) 9488 NODE_NAME_CASE(ADD_VL) 9489 NODE_NAME_CASE(AND_VL) 9490 NODE_NAME_CASE(MUL_VL) 9491 NODE_NAME_CASE(OR_VL) 9492 NODE_NAME_CASE(SDIV_VL) 9493 NODE_NAME_CASE(SHL_VL) 9494 NODE_NAME_CASE(SREM_VL) 9495 NODE_NAME_CASE(SRA_VL) 9496 NODE_NAME_CASE(SRL_VL) 9497 NODE_NAME_CASE(SUB_VL) 9498 NODE_NAME_CASE(UDIV_VL) 9499 NODE_NAME_CASE(UREM_VL) 9500 NODE_NAME_CASE(XOR_VL) 9501 NODE_NAME_CASE(SADDSAT_VL) 9502 NODE_NAME_CASE(UADDSAT_VL) 9503 NODE_NAME_CASE(SSUBSAT_VL) 9504 NODE_NAME_CASE(USUBSAT_VL) 9505 NODE_NAME_CASE(FADD_VL) 9506 NODE_NAME_CASE(FSUB_VL) 9507 NODE_NAME_CASE(FMUL_VL) 9508 NODE_NAME_CASE(FDIV_VL) 9509 NODE_NAME_CASE(FNEG_VL) 9510 NODE_NAME_CASE(FABS_VL) 9511 NODE_NAME_CASE(FSQRT_VL) 9512 NODE_NAME_CASE(FMA_VL) 9513 NODE_NAME_CASE(FCOPYSIGN_VL) 9514 NODE_NAME_CASE(SMIN_VL) 9515 NODE_NAME_CASE(SMAX_VL) 9516 NODE_NAME_CASE(UMIN_VL) 9517 NODE_NAME_CASE(UMAX_VL) 9518 NODE_NAME_CASE(FMINNUM_VL) 9519 NODE_NAME_CASE(FMAXNUM_VL) 9520 NODE_NAME_CASE(MULHS_VL) 9521 NODE_NAME_CASE(MULHU_VL) 9522 NODE_NAME_CASE(FP_TO_SINT_VL) 9523 NODE_NAME_CASE(FP_TO_UINT_VL) 9524 NODE_NAME_CASE(SINT_TO_FP_VL) 9525 NODE_NAME_CASE(UINT_TO_FP_VL) 9526 NODE_NAME_CASE(FP_EXTEND_VL) 9527 NODE_NAME_CASE(FP_ROUND_VL) 9528 NODE_NAME_CASE(VWMUL_VL) 9529 NODE_NAME_CASE(VWMULU_VL) 9530 NODE_NAME_CASE(SETCC_VL) 9531 NODE_NAME_CASE(VSELECT_VL) 9532 NODE_NAME_CASE(VMAND_VL) 9533 NODE_NAME_CASE(VMOR_VL) 9534 NODE_NAME_CASE(VMXOR_VL) 9535 NODE_NAME_CASE(VMCLR_VL) 9536 NODE_NAME_CASE(VMSET_VL) 9537 NODE_NAME_CASE(VRGATHER_VX_VL) 9538 NODE_NAME_CASE(VRGATHER_VV_VL) 9539 NODE_NAME_CASE(VRGATHEREI16_VV_VL) 9540 NODE_NAME_CASE(VSEXT_VL) 9541 NODE_NAME_CASE(VZEXT_VL) 9542 NODE_NAME_CASE(VCPOP_VL) 9543 NODE_NAME_CASE(VLE_VL) 9544 NODE_NAME_CASE(VSE_VL) 9545 NODE_NAME_CASE(READ_CSR) 9546 NODE_NAME_CASE(WRITE_CSR) 9547 NODE_NAME_CASE(SWAP_CSR) 9548 } 9549 // clang-format on 9550 return nullptr; 9551 #undef NODE_NAME_CASE 9552 } 9553 9554 /// getConstraintType - Given a constraint letter, return the type of 9555 /// constraint it is for this target. 9556 RISCVTargetLowering::ConstraintType 9557 RISCVTargetLowering::getConstraintType(StringRef Constraint) const { 9558 if (Constraint.size() == 1) { 9559 switch (Constraint[0]) { 9560 default: 9561 break; 9562 case 'f': 9563 return C_RegisterClass; 9564 case 'I': 9565 case 'J': 9566 case 'K': 9567 return C_Immediate; 9568 case 'A': 9569 return C_Memory; 9570 case 'S': // A symbolic address 9571 return C_Other; 9572 } 9573 } else { 9574 if (Constraint == "vr" || Constraint == "vm") 9575 return C_RegisterClass; 9576 } 9577 return TargetLowering::getConstraintType(Constraint); 9578 } 9579 9580 std::pair<unsigned, const TargetRegisterClass *> 9581 RISCVTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 9582 StringRef Constraint, 9583 MVT VT) const { 9584 // First, see if this is a constraint that directly corresponds to a 9585 // RISCV register class. 9586 if (Constraint.size() == 1) { 9587 switch (Constraint[0]) { 9588 case 'r': 9589 return std::make_pair(0U, &RISCV::GPRRegClass); 9590 case 'f': 9591 if (Subtarget.hasStdExtZfh() && VT == MVT::f16) 9592 return std::make_pair(0U, &RISCV::FPR16RegClass); 9593 if (Subtarget.hasStdExtF() && VT == MVT::f32) 9594 return std::make_pair(0U, &RISCV::FPR32RegClass); 9595 if (Subtarget.hasStdExtD() && VT == MVT::f64) 9596 return std::make_pair(0U, &RISCV::FPR64RegClass); 9597 break; 9598 default: 9599 break; 9600 } 9601 } else { 9602 if (Constraint == "vr") { 9603 for (const auto *RC : {&RISCV::VRRegClass, &RISCV::VRM2RegClass, 9604 &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) { 9605 if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy)) 9606 return std::make_pair(0U, RC); 9607 } 9608 } else if (Constraint == "vm") { 9609 if (TRI->isTypeLegalForClass(RISCV::VMV0RegClass, VT.SimpleTy)) 9610 return std::make_pair(0U, &RISCV::VMV0RegClass); 9611 } 9612 } 9613 9614 // Clang will correctly decode the usage of register name aliases into their 9615 // official names. However, other frontends like `rustc` do not. This allows 9616 // users of these frontends to use the ABI names for registers in LLVM-style 9617 // register constraints. 9618 unsigned XRegFromAlias = StringSwitch<unsigned>(Constraint.lower()) 9619 .Case("{zero}", RISCV::X0) 9620 .Case("{ra}", RISCV::X1) 9621 .Case("{sp}", RISCV::X2) 9622 .Case("{gp}", RISCV::X3) 9623 .Case("{tp}", RISCV::X4) 9624 .Case("{t0}", RISCV::X5) 9625 .Case("{t1}", RISCV::X6) 9626 .Case("{t2}", RISCV::X7) 9627 .Cases("{s0}", "{fp}", RISCV::X8) 9628 .Case("{s1}", RISCV::X9) 9629 .Case("{a0}", RISCV::X10) 9630 .Case("{a1}", RISCV::X11) 9631 .Case("{a2}", RISCV::X12) 9632 .Case("{a3}", RISCV::X13) 9633 .Case("{a4}", RISCV::X14) 9634 .Case("{a5}", RISCV::X15) 9635 .Case("{a6}", RISCV::X16) 9636 .Case("{a7}", RISCV::X17) 9637 .Case("{s2}", RISCV::X18) 9638 .Case("{s3}", RISCV::X19) 9639 .Case("{s4}", RISCV::X20) 9640 .Case("{s5}", RISCV::X21) 9641 .Case("{s6}", RISCV::X22) 9642 .Case("{s7}", RISCV::X23) 9643 .Case("{s8}", RISCV::X24) 9644 .Case("{s9}", RISCV::X25) 9645 .Case("{s10}", RISCV::X26) 9646 .Case("{s11}", RISCV::X27) 9647 .Case("{t3}", RISCV::X28) 9648 .Case("{t4}", RISCV::X29) 9649 .Case("{t5}", RISCV::X30) 9650 .Case("{t6}", RISCV::X31) 9651 .Default(RISCV::NoRegister); 9652 if (XRegFromAlias != RISCV::NoRegister) 9653 return std::make_pair(XRegFromAlias, &RISCV::GPRRegClass); 9654 9655 // Since TargetLowering::getRegForInlineAsmConstraint uses the name of the 9656 // TableGen record rather than the AsmName to choose registers for InlineAsm 9657 // constraints, plus we want to match those names to the widest floating point 9658 // register type available, manually select floating point registers here. 9659 // 9660 // The second case is the ABI name of the register, so that frontends can also 9661 // use the ABI names in register constraint lists. 9662 if (Subtarget.hasStdExtF()) { 9663 unsigned FReg = StringSwitch<unsigned>(Constraint.lower()) 9664 .Cases("{f0}", "{ft0}", RISCV::F0_F) 9665 .Cases("{f1}", "{ft1}", RISCV::F1_F) 9666 .Cases("{f2}", "{ft2}", RISCV::F2_F) 9667 .Cases("{f3}", "{ft3}", RISCV::F3_F) 9668 .Cases("{f4}", "{ft4}", RISCV::F4_F) 9669 .Cases("{f5}", "{ft5}", RISCV::F5_F) 9670 .Cases("{f6}", "{ft6}", RISCV::F6_F) 9671 .Cases("{f7}", "{ft7}", RISCV::F7_F) 9672 .Cases("{f8}", "{fs0}", RISCV::F8_F) 9673 .Cases("{f9}", "{fs1}", RISCV::F9_F) 9674 .Cases("{f10}", "{fa0}", RISCV::F10_F) 9675 .Cases("{f11}", "{fa1}", RISCV::F11_F) 9676 .Cases("{f12}", "{fa2}", RISCV::F12_F) 9677 .Cases("{f13}", "{fa3}", RISCV::F13_F) 9678 .Cases("{f14}", "{fa4}", RISCV::F14_F) 9679 .Cases("{f15}", "{fa5}", RISCV::F15_F) 9680 .Cases("{f16}", "{fa6}", RISCV::F16_F) 9681 .Cases("{f17}", "{fa7}", RISCV::F17_F) 9682 .Cases("{f18}", "{fs2}", RISCV::F18_F) 9683 .Cases("{f19}", "{fs3}", RISCV::F19_F) 9684 .Cases("{f20}", "{fs4}", RISCV::F20_F) 9685 .Cases("{f21}", "{fs5}", RISCV::F21_F) 9686 .Cases("{f22}", "{fs6}", RISCV::F22_F) 9687 .Cases("{f23}", "{fs7}", RISCV::F23_F) 9688 .Cases("{f24}", "{fs8}", RISCV::F24_F) 9689 .Cases("{f25}", "{fs9}", RISCV::F25_F) 9690 .Cases("{f26}", "{fs10}", RISCV::F26_F) 9691 .Cases("{f27}", "{fs11}", RISCV::F27_F) 9692 .Cases("{f28}", "{ft8}", RISCV::F28_F) 9693 .Cases("{f29}", "{ft9}", RISCV::F29_F) 9694 .Cases("{f30}", "{ft10}", RISCV::F30_F) 9695 .Cases("{f31}", "{ft11}", RISCV::F31_F) 9696 .Default(RISCV::NoRegister); 9697 if (FReg != RISCV::NoRegister) { 9698 assert(RISCV::F0_F <= FReg && FReg <= RISCV::F31_F && "Unknown fp-reg"); 9699 if (Subtarget.hasStdExtD()) { 9700 unsigned RegNo = FReg - RISCV::F0_F; 9701 unsigned DReg = RISCV::F0_D + RegNo; 9702 return std::make_pair(DReg, &RISCV::FPR64RegClass); 9703 } 9704 return std::make_pair(FReg, &RISCV::FPR32RegClass); 9705 } 9706 } 9707 9708 if (Subtarget.hasVInstructions()) { 9709 Register VReg = StringSwitch<Register>(Constraint.lower()) 9710 .Case("{v0}", RISCV::V0) 9711 .Case("{v1}", RISCV::V1) 9712 .Case("{v2}", RISCV::V2) 9713 .Case("{v3}", RISCV::V3) 9714 .Case("{v4}", RISCV::V4) 9715 .Case("{v5}", RISCV::V5) 9716 .Case("{v6}", RISCV::V6) 9717 .Case("{v7}", RISCV::V7) 9718 .Case("{v8}", RISCV::V8) 9719 .Case("{v9}", RISCV::V9) 9720 .Case("{v10}", RISCV::V10) 9721 .Case("{v11}", RISCV::V11) 9722 .Case("{v12}", RISCV::V12) 9723 .Case("{v13}", RISCV::V13) 9724 .Case("{v14}", RISCV::V14) 9725 .Case("{v15}", RISCV::V15) 9726 .Case("{v16}", RISCV::V16) 9727 .Case("{v17}", RISCV::V17) 9728 .Case("{v18}", RISCV::V18) 9729 .Case("{v19}", RISCV::V19) 9730 .Case("{v20}", RISCV::V20) 9731 .Case("{v21}", RISCV::V21) 9732 .Case("{v22}", RISCV::V22) 9733 .Case("{v23}", RISCV::V23) 9734 .Case("{v24}", RISCV::V24) 9735 .Case("{v25}", RISCV::V25) 9736 .Case("{v26}", RISCV::V26) 9737 .Case("{v27}", RISCV::V27) 9738 .Case("{v28}", RISCV::V28) 9739 .Case("{v29}", RISCV::V29) 9740 .Case("{v30}", RISCV::V30) 9741 .Case("{v31}", RISCV::V31) 9742 .Default(RISCV::NoRegister); 9743 if (VReg != RISCV::NoRegister) { 9744 if (TRI->isTypeLegalForClass(RISCV::VMRegClass, VT.SimpleTy)) 9745 return std::make_pair(VReg, &RISCV::VMRegClass); 9746 if (TRI->isTypeLegalForClass(RISCV::VRRegClass, VT.SimpleTy)) 9747 return std::make_pair(VReg, &RISCV::VRRegClass); 9748 for (const auto *RC : 9749 {&RISCV::VRM2RegClass, &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) { 9750 if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy)) { 9751 VReg = TRI->getMatchingSuperReg(VReg, RISCV::sub_vrm1_0, RC); 9752 return std::make_pair(VReg, RC); 9753 } 9754 } 9755 } 9756 } 9757 9758 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 9759 } 9760 9761 unsigned 9762 RISCVTargetLowering::getInlineAsmMemConstraint(StringRef ConstraintCode) const { 9763 // Currently only support length 1 constraints. 9764 if (ConstraintCode.size() == 1) { 9765 switch (ConstraintCode[0]) { 9766 case 'A': 9767 return InlineAsm::Constraint_A; 9768 default: 9769 break; 9770 } 9771 } 9772 9773 return TargetLowering::getInlineAsmMemConstraint(ConstraintCode); 9774 } 9775 9776 void RISCVTargetLowering::LowerAsmOperandForConstraint( 9777 SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops, 9778 SelectionDAG &DAG) const { 9779 // Currently only support length 1 constraints. 9780 if (Constraint.length() == 1) { 9781 switch (Constraint[0]) { 9782 case 'I': 9783 // Validate & create a 12-bit signed immediate operand. 9784 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 9785 uint64_t CVal = C->getSExtValue(); 9786 if (isInt<12>(CVal)) 9787 Ops.push_back( 9788 DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT())); 9789 } 9790 return; 9791 case 'J': 9792 // Validate & create an integer zero operand. 9793 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 9794 if (C->getZExtValue() == 0) 9795 Ops.push_back( 9796 DAG.getTargetConstant(0, SDLoc(Op), Subtarget.getXLenVT())); 9797 return; 9798 case 'K': 9799 // Validate & create a 5-bit unsigned immediate operand. 9800 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 9801 uint64_t CVal = C->getZExtValue(); 9802 if (isUInt<5>(CVal)) 9803 Ops.push_back( 9804 DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT())); 9805 } 9806 return; 9807 case 'S': 9808 if (const auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) { 9809 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op), 9810 GA->getValueType(0))); 9811 } else if (const auto *BA = dyn_cast<BlockAddressSDNode>(Op)) { 9812 Ops.push_back(DAG.getTargetBlockAddress(BA->getBlockAddress(), 9813 BA->getValueType(0))); 9814 } 9815 return; 9816 default: 9817 break; 9818 } 9819 } 9820 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 9821 } 9822 9823 Instruction *RISCVTargetLowering::emitLeadingFence(IRBuilderBase &Builder, 9824 Instruction *Inst, 9825 AtomicOrdering Ord) const { 9826 if (isa<LoadInst>(Inst) && Ord == AtomicOrdering::SequentiallyConsistent) 9827 return Builder.CreateFence(Ord); 9828 if (isa<StoreInst>(Inst) && isReleaseOrStronger(Ord)) 9829 return Builder.CreateFence(AtomicOrdering::Release); 9830 return nullptr; 9831 } 9832 9833 Instruction *RISCVTargetLowering::emitTrailingFence(IRBuilderBase &Builder, 9834 Instruction *Inst, 9835 AtomicOrdering Ord) const { 9836 if (isa<LoadInst>(Inst) && isAcquireOrStronger(Ord)) 9837 return Builder.CreateFence(AtomicOrdering::Acquire); 9838 return nullptr; 9839 } 9840 9841 TargetLowering::AtomicExpansionKind 9842 RISCVTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { 9843 // atomicrmw {fadd,fsub} must be expanded to use compare-exchange, as floating 9844 // point operations can't be used in an lr/sc sequence without breaking the 9845 // forward-progress guarantee. 9846 if (AI->isFloatingPointOperation()) 9847 return AtomicExpansionKind::CmpXChg; 9848 9849 unsigned Size = AI->getType()->getPrimitiveSizeInBits(); 9850 if (Size == 8 || Size == 16) 9851 return AtomicExpansionKind::MaskedIntrinsic; 9852 return AtomicExpansionKind::None; 9853 } 9854 9855 static Intrinsic::ID 9856 getIntrinsicForMaskedAtomicRMWBinOp(unsigned XLen, AtomicRMWInst::BinOp BinOp) { 9857 if (XLen == 32) { 9858 switch (BinOp) { 9859 default: 9860 llvm_unreachable("Unexpected AtomicRMW BinOp"); 9861 case AtomicRMWInst::Xchg: 9862 return Intrinsic::riscv_masked_atomicrmw_xchg_i32; 9863 case AtomicRMWInst::Add: 9864 return Intrinsic::riscv_masked_atomicrmw_add_i32; 9865 case AtomicRMWInst::Sub: 9866 return Intrinsic::riscv_masked_atomicrmw_sub_i32; 9867 case AtomicRMWInst::Nand: 9868 return Intrinsic::riscv_masked_atomicrmw_nand_i32; 9869 case AtomicRMWInst::Max: 9870 return Intrinsic::riscv_masked_atomicrmw_max_i32; 9871 case AtomicRMWInst::Min: 9872 return Intrinsic::riscv_masked_atomicrmw_min_i32; 9873 case AtomicRMWInst::UMax: 9874 return Intrinsic::riscv_masked_atomicrmw_umax_i32; 9875 case AtomicRMWInst::UMin: 9876 return Intrinsic::riscv_masked_atomicrmw_umin_i32; 9877 } 9878 } 9879 9880 if (XLen == 64) { 9881 switch (BinOp) { 9882 default: 9883 llvm_unreachable("Unexpected AtomicRMW BinOp"); 9884 case AtomicRMWInst::Xchg: 9885 return Intrinsic::riscv_masked_atomicrmw_xchg_i64; 9886 case AtomicRMWInst::Add: 9887 return Intrinsic::riscv_masked_atomicrmw_add_i64; 9888 case AtomicRMWInst::Sub: 9889 return Intrinsic::riscv_masked_atomicrmw_sub_i64; 9890 case AtomicRMWInst::Nand: 9891 return Intrinsic::riscv_masked_atomicrmw_nand_i64; 9892 case AtomicRMWInst::Max: 9893 return Intrinsic::riscv_masked_atomicrmw_max_i64; 9894 case AtomicRMWInst::Min: 9895 return Intrinsic::riscv_masked_atomicrmw_min_i64; 9896 case AtomicRMWInst::UMax: 9897 return Intrinsic::riscv_masked_atomicrmw_umax_i64; 9898 case AtomicRMWInst::UMin: 9899 return Intrinsic::riscv_masked_atomicrmw_umin_i64; 9900 } 9901 } 9902 9903 llvm_unreachable("Unexpected XLen\n"); 9904 } 9905 9906 Value *RISCVTargetLowering::emitMaskedAtomicRMWIntrinsic( 9907 IRBuilderBase &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr, 9908 Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const { 9909 unsigned XLen = Subtarget.getXLen(); 9910 Value *Ordering = 9911 Builder.getIntN(XLen, static_cast<uint64_t>(AI->getOrdering())); 9912 Type *Tys[] = {AlignedAddr->getType()}; 9913 Function *LrwOpScwLoop = Intrinsic::getDeclaration( 9914 AI->getModule(), 9915 getIntrinsicForMaskedAtomicRMWBinOp(XLen, AI->getOperation()), Tys); 9916 9917 if (XLen == 64) { 9918 Incr = Builder.CreateSExt(Incr, Builder.getInt64Ty()); 9919 Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty()); 9920 ShiftAmt = Builder.CreateSExt(ShiftAmt, Builder.getInt64Ty()); 9921 } 9922 9923 Value *Result; 9924 9925 // Must pass the shift amount needed to sign extend the loaded value prior 9926 // to performing a signed comparison for min/max. ShiftAmt is the number of 9927 // bits to shift the value into position. Pass XLen-ShiftAmt-ValWidth, which 9928 // is the number of bits to left+right shift the value in order to 9929 // sign-extend. 9930 if (AI->getOperation() == AtomicRMWInst::Min || 9931 AI->getOperation() == AtomicRMWInst::Max) { 9932 const DataLayout &DL = AI->getModule()->getDataLayout(); 9933 unsigned ValWidth = 9934 DL.getTypeStoreSizeInBits(AI->getValOperand()->getType()); 9935 Value *SextShamt = 9936 Builder.CreateSub(Builder.getIntN(XLen, XLen - ValWidth), ShiftAmt); 9937 Result = Builder.CreateCall(LrwOpScwLoop, 9938 {AlignedAddr, Incr, Mask, SextShamt, Ordering}); 9939 } else { 9940 Result = 9941 Builder.CreateCall(LrwOpScwLoop, {AlignedAddr, Incr, Mask, Ordering}); 9942 } 9943 9944 if (XLen == 64) 9945 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty()); 9946 return Result; 9947 } 9948 9949 TargetLowering::AtomicExpansionKind 9950 RISCVTargetLowering::shouldExpandAtomicCmpXchgInIR( 9951 AtomicCmpXchgInst *CI) const { 9952 unsigned Size = CI->getCompareOperand()->getType()->getPrimitiveSizeInBits(); 9953 if (Size == 8 || Size == 16) 9954 return AtomicExpansionKind::MaskedIntrinsic; 9955 return AtomicExpansionKind::None; 9956 } 9957 9958 Value *RISCVTargetLowering::emitMaskedAtomicCmpXchgIntrinsic( 9959 IRBuilderBase &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr, 9960 Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const { 9961 unsigned XLen = Subtarget.getXLen(); 9962 Value *Ordering = Builder.getIntN(XLen, static_cast<uint64_t>(Ord)); 9963 Intrinsic::ID CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i32; 9964 if (XLen == 64) { 9965 CmpVal = Builder.CreateSExt(CmpVal, Builder.getInt64Ty()); 9966 NewVal = Builder.CreateSExt(NewVal, Builder.getInt64Ty()); 9967 Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty()); 9968 CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i64; 9969 } 9970 Type *Tys[] = {AlignedAddr->getType()}; 9971 Function *MaskedCmpXchg = 9972 Intrinsic::getDeclaration(CI->getModule(), CmpXchgIntrID, Tys); 9973 Value *Result = Builder.CreateCall( 9974 MaskedCmpXchg, {AlignedAddr, CmpVal, NewVal, Mask, Ordering}); 9975 if (XLen == 64) 9976 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty()); 9977 return Result; 9978 } 9979 9980 bool RISCVTargetLowering::shouldRemoveExtendFromGSIndex(EVT VT) const { 9981 return false; 9982 } 9983 9984 bool RISCVTargetLowering::shouldConvertFpToSat(unsigned Op, EVT FPVT, 9985 EVT VT) const { 9986 if (!isOperationLegalOrCustom(Op, VT) || !FPVT.isSimple()) 9987 return false; 9988 9989 switch (FPVT.getSimpleVT().SimpleTy) { 9990 case MVT::f16: 9991 return Subtarget.hasStdExtZfh(); 9992 case MVT::f32: 9993 return Subtarget.hasStdExtF(); 9994 case MVT::f64: 9995 return Subtarget.hasStdExtD(); 9996 default: 9997 return false; 9998 } 9999 } 10000 10001 bool RISCVTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, 10002 EVT VT) const { 10003 VT = VT.getScalarType(); 10004 10005 if (!VT.isSimple()) 10006 return false; 10007 10008 switch (VT.getSimpleVT().SimpleTy) { 10009 case MVT::f16: 10010 return Subtarget.hasStdExtZfh(); 10011 case MVT::f32: 10012 return Subtarget.hasStdExtF(); 10013 case MVT::f64: 10014 return Subtarget.hasStdExtD(); 10015 default: 10016 break; 10017 } 10018 10019 return false; 10020 } 10021 10022 Register RISCVTargetLowering::getExceptionPointerRegister( 10023 const Constant *PersonalityFn) const { 10024 return RISCV::X10; 10025 } 10026 10027 Register RISCVTargetLowering::getExceptionSelectorRegister( 10028 const Constant *PersonalityFn) const { 10029 return RISCV::X11; 10030 } 10031 10032 bool RISCVTargetLowering::shouldExtendTypeInLibCall(EVT Type) const { 10033 // Return false to suppress the unnecessary extensions if the LibCall 10034 // arguments or return value is f32 type for LP64 ABI. 10035 RISCVABI::ABI ABI = Subtarget.getTargetABI(); 10036 if (ABI == RISCVABI::ABI_LP64 && (Type == MVT::f32)) 10037 return false; 10038 10039 return true; 10040 } 10041 10042 bool RISCVTargetLowering::shouldSignExtendTypeInLibCall(EVT Type, bool IsSigned) const { 10043 if (Subtarget.is64Bit() && Type == MVT::i32) 10044 return true; 10045 10046 return IsSigned; 10047 } 10048 10049 bool RISCVTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT, 10050 SDValue C) const { 10051 // Check integral scalar types. 10052 if (VT.isScalarInteger()) { 10053 // Omit the optimization if the sub target has the M extension and the data 10054 // size exceeds XLen. 10055 if (Subtarget.hasStdExtM() && VT.getSizeInBits() > Subtarget.getXLen()) 10056 return false; 10057 if (auto *ConstNode = dyn_cast<ConstantSDNode>(C.getNode())) { 10058 // Break the MUL to a SLLI and an ADD/SUB. 10059 const APInt &Imm = ConstNode->getAPIntValue(); 10060 if ((Imm + 1).isPowerOf2() || (Imm - 1).isPowerOf2() || 10061 (1 - Imm).isPowerOf2() || (-1 - Imm).isPowerOf2()) 10062 return true; 10063 // Optimize the MUL to (SH*ADD x, (SLLI x, bits)) if Imm is not simm12. 10064 if (Subtarget.hasStdExtZba() && !Imm.isSignedIntN(12) && 10065 ((Imm - 2).isPowerOf2() || (Imm - 4).isPowerOf2() || 10066 (Imm - 8).isPowerOf2())) 10067 return true; 10068 // Omit the following optimization if the sub target has the M extension 10069 // and the data size >= XLen. 10070 if (Subtarget.hasStdExtM() && VT.getSizeInBits() >= Subtarget.getXLen()) 10071 return false; 10072 // Break the MUL to two SLLI instructions and an ADD/SUB, if Imm needs 10073 // a pair of LUI/ADDI. 10074 if (!Imm.isSignedIntN(12) && Imm.countTrailingZeros() < 12) { 10075 APInt ImmS = Imm.ashr(Imm.countTrailingZeros()); 10076 if ((ImmS + 1).isPowerOf2() || (ImmS - 1).isPowerOf2() || 10077 (1 - ImmS).isPowerOf2()) 10078 return true; 10079 } 10080 } 10081 } 10082 10083 return false; 10084 } 10085 10086 bool RISCVTargetLowering::isMulAddWithConstProfitable( 10087 const SDValue &AddNode, const SDValue &ConstNode) const { 10088 // Let the DAGCombiner decide for vectors. 10089 EVT VT = AddNode.getValueType(); 10090 if (VT.isVector()) 10091 return true; 10092 10093 // Let the DAGCombiner decide for larger types. 10094 if (VT.getScalarSizeInBits() > Subtarget.getXLen()) 10095 return true; 10096 10097 // It is worse if c1 is simm12 while c1*c2 is not. 10098 ConstantSDNode *C1Node = cast<ConstantSDNode>(AddNode.getOperand(1)); 10099 ConstantSDNode *C2Node = cast<ConstantSDNode>(ConstNode); 10100 const APInt &C1 = C1Node->getAPIntValue(); 10101 const APInt &C2 = C2Node->getAPIntValue(); 10102 if (C1.isSignedIntN(12) && !(C1 * C2).isSignedIntN(12)) 10103 return false; 10104 10105 // Default to true and let the DAGCombiner decide. 10106 return true; 10107 } 10108 10109 bool RISCVTargetLowering::allowsMisalignedMemoryAccesses( 10110 EVT VT, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags, 10111 bool *Fast) const { 10112 if (!VT.isVector()) 10113 return false; 10114 10115 EVT ElemVT = VT.getVectorElementType(); 10116 if (Alignment >= ElemVT.getStoreSize()) { 10117 if (Fast) 10118 *Fast = true; 10119 return true; 10120 } 10121 10122 return false; 10123 } 10124 10125 bool RISCVTargetLowering::splitValueIntoRegisterParts( 10126 SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts, 10127 unsigned NumParts, MVT PartVT, Optional<CallingConv::ID> CC) const { 10128 bool IsABIRegCopy = CC.hasValue(); 10129 EVT ValueVT = Val.getValueType(); 10130 if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) { 10131 // Cast the f16 to i16, extend to i32, pad with ones to make a float nan, 10132 // and cast to f32. 10133 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i16, Val); 10134 Val = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Val); 10135 Val = DAG.getNode(ISD::OR, DL, MVT::i32, Val, 10136 DAG.getConstant(0xFFFF0000, DL, MVT::i32)); 10137 Val = DAG.getNode(ISD::BITCAST, DL, MVT::f32, Val); 10138 Parts[0] = Val; 10139 return true; 10140 } 10141 10142 if (ValueVT.isScalableVector() && PartVT.isScalableVector()) { 10143 LLVMContext &Context = *DAG.getContext(); 10144 EVT ValueEltVT = ValueVT.getVectorElementType(); 10145 EVT PartEltVT = PartVT.getVectorElementType(); 10146 unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize(); 10147 unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize(); 10148 if (PartVTBitSize % ValueVTBitSize == 0) { 10149 assert(PartVTBitSize >= ValueVTBitSize); 10150 // If the element types are different, bitcast to the same element type of 10151 // PartVT first. 10152 // Give an example here, we want copy a <vscale x 1 x i8> value to 10153 // <vscale x 4 x i16>. 10154 // We need to convert <vscale x 1 x i8> to <vscale x 8 x i8> by insert 10155 // subvector, then we can bitcast to <vscale x 4 x i16>. 10156 if (ValueEltVT != PartEltVT) { 10157 if (PartVTBitSize > ValueVTBitSize) { 10158 unsigned Count = PartVTBitSize / ValueEltVT.getFixedSizeInBits(); 10159 assert(Count != 0 && "The number of element should not be zero."); 10160 EVT SameEltTypeVT = 10161 EVT::getVectorVT(Context, ValueEltVT, Count, /*IsScalable=*/true); 10162 Val = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, SameEltTypeVT, 10163 DAG.getUNDEF(SameEltTypeVT), Val, 10164 DAG.getVectorIdxConstant(0, DL)); 10165 } 10166 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 10167 } else { 10168 Val = 10169 DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT), 10170 Val, DAG.getVectorIdxConstant(0, DL)); 10171 } 10172 Parts[0] = Val; 10173 return true; 10174 } 10175 } 10176 return false; 10177 } 10178 10179 SDValue RISCVTargetLowering::joinRegisterPartsIntoValue( 10180 SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts, 10181 MVT PartVT, EVT ValueVT, Optional<CallingConv::ID> CC) const { 10182 bool IsABIRegCopy = CC.hasValue(); 10183 if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) { 10184 SDValue Val = Parts[0]; 10185 10186 // Cast the f32 to i32, truncate to i16, and cast back to f16. 10187 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Val); 10188 Val = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Val); 10189 Val = DAG.getNode(ISD::BITCAST, DL, MVT::f16, Val); 10190 return Val; 10191 } 10192 10193 if (ValueVT.isScalableVector() && PartVT.isScalableVector()) { 10194 LLVMContext &Context = *DAG.getContext(); 10195 SDValue Val = Parts[0]; 10196 EVT ValueEltVT = ValueVT.getVectorElementType(); 10197 EVT PartEltVT = PartVT.getVectorElementType(); 10198 unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize(); 10199 unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize(); 10200 if (PartVTBitSize % ValueVTBitSize == 0) { 10201 assert(PartVTBitSize >= ValueVTBitSize); 10202 EVT SameEltTypeVT = ValueVT; 10203 // If the element types are different, convert it to the same element type 10204 // of PartVT. 10205 // Give an example here, we want copy a <vscale x 1 x i8> value from 10206 // <vscale x 4 x i16>. 10207 // We need to convert <vscale x 4 x i16> to <vscale x 8 x i8> first, 10208 // then we can extract <vscale x 1 x i8>. 10209 if (ValueEltVT != PartEltVT) { 10210 unsigned Count = PartVTBitSize / ValueEltVT.getFixedSizeInBits(); 10211 assert(Count != 0 && "The number of element should not be zero."); 10212 SameEltTypeVT = 10213 EVT::getVectorVT(Context, ValueEltVT, Count, /*IsScalable=*/true); 10214 Val = DAG.getNode(ISD::BITCAST, DL, SameEltTypeVT, Val); 10215 } 10216 Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 10217 DAG.getVectorIdxConstant(0, DL)); 10218 return Val; 10219 } 10220 } 10221 return SDValue(); 10222 } 10223 10224 #define GET_REGISTER_MATCHER 10225 #include "RISCVGenAsmMatcher.inc" 10226 10227 Register 10228 RISCVTargetLowering::getRegisterByName(const char *RegName, LLT VT, 10229 const MachineFunction &MF) const { 10230 Register Reg = MatchRegisterAltName(RegName); 10231 if (Reg == RISCV::NoRegister) 10232 Reg = MatchRegisterName(RegName); 10233 if (Reg == RISCV::NoRegister) 10234 report_fatal_error( 10235 Twine("Invalid register name \"" + StringRef(RegName) + "\".")); 10236 BitVector ReservedRegs = Subtarget.getRegisterInfo()->getReservedRegs(MF); 10237 if (!ReservedRegs.test(Reg) && !Subtarget.isRegisterReservedByUser(Reg)) 10238 report_fatal_error(Twine("Trying to obtain non-reserved register \"" + 10239 StringRef(RegName) + "\".")); 10240 return Reg; 10241 } 10242 10243 namespace llvm { 10244 namespace RISCVVIntrinsicsTable { 10245 10246 #define GET_RISCVVIntrinsicsTable_IMPL 10247 #include "RISCVGenSearchableTables.inc" 10248 10249 } // namespace RISCVVIntrinsicsTable 10250 10251 } // namespace llvm 10252