1 //===-- RISCVISelLowering.cpp - RISCV DAG Lowering Implementation --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the interfaces that RISCV uses to lower LLVM code into a 10 // selection DAG. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "RISCVISelLowering.h" 15 #include "MCTargetDesc/RISCVMatInt.h" 16 #include "RISCV.h" 17 #include "RISCVMachineFunctionInfo.h" 18 #include "RISCVRegisterInfo.h" 19 #include "RISCVSubtarget.h" 20 #include "RISCVTargetMachine.h" 21 #include "llvm/ADT/SmallSet.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/CodeGen/CallingConvLower.h" 24 #include "llvm/CodeGen/MachineFrameInfo.h" 25 #include "llvm/CodeGen/MachineFunction.h" 26 #include "llvm/CodeGen/MachineInstrBuilder.h" 27 #include "llvm/CodeGen/MachineRegisterInfo.h" 28 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 29 #include "llvm/CodeGen/ValueTypes.h" 30 #include "llvm/IR/DiagnosticInfo.h" 31 #include "llvm/IR/DiagnosticPrinter.h" 32 #include "llvm/IR/IntrinsicsRISCV.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/ErrorHandling.h" 35 #include "llvm/Support/KnownBits.h" 36 #include "llvm/Support/MathExtras.h" 37 #include "llvm/Support/raw_ostream.h" 38 39 using namespace llvm; 40 41 #define DEBUG_TYPE "riscv-lower" 42 43 STATISTIC(NumTailCalls, "Number of tail calls"); 44 45 RISCVTargetLowering::RISCVTargetLowering(const TargetMachine &TM, 46 const RISCVSubtarget &STI) 47 : TargetLowering(TM), Subtarget(STI) { 48 49 if (Subtarget.isRV32E()) 50 report_fatal_error("Codegen not yet implemented for RV32E"); 51 52 RISCVABI::ABI ABI = Subtarget.getTargetABI(); 53 assert(ABI != RISCVABI::ABI_Unknown && "Improperly initialised target ABI"); 54 55 if ((ABI == RISCVABI::ABI_ILP32F || ABI == RISCVABI::ABI_LP64F) && 56 !Subtarget.hasStdExtF()) { 57 errs() << "Hard-float 'f' ABI can't be used for a target that " 58 "doesn't support the F instruction set extension (ignoring " 59 "target-abi)\n"; 60 ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32; 61 } else if ((ABI == RISCVABI::ABI_ILP32D || ABI == RISCVABI::ABI_LP64D) && 62 !Subtarget.hasStdExtD()) { 63 errs() << "Hard-float 'd' ABI can't be used for a target that " 64 "doesn't support the D instruction set extension (ignoring " 65 "target-abi)\n"; 66 ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32; 67 } 68 69 switch (ABI) { 70 default: 71 report_fatal_error("Don't know how to lower this ABI"); 72 case RISCVABI::ABI_ILP32: 73 case RISCVABI::ABI_ILP32F: 74 case RISCVABI::ABI_ILP32D: 75 case RISCVABI::ABI_LP64: 76 case RISCVABI::ABI_LP64F: 77 case RISCVABI::ABI_LP64D: 78 break; 79 } 80 81 MVT XLenVT = Subtarget.getXLenVT(); 82 83 // Set up the register classes. 84 addRegisterClass(XLenVT, &RISCV::GPRRegClass); 85 86 if (Subtarget.hasStdExtZfh()) 87 addRegisterClass(MVT::f16, &RISCV::FPR16RegClass); 88 if (Subtarget.hasStdExtF()) 89 addRegisterClass(MVT::f32, &RISCV::FPR32RegClass); 90 if (Subtarget.hasStdExtD()) 91 addRegisterClass(MVT::f64, &RISCV::FPR64RegClass); 92 93 if (Subtarget.hasStdExtV()) { 94 addRegisterClass(RISCVVMVTs::vbool64_t, &RISCV::VRRegClass); 95 addRegisterClass(RISCVVMVTs::vbool32_t, &RISCV::VRRegClass); 96 addRegisterClass(RISCVVMVTs::vbool16_t, &RISCV::VRRegClass); 97 addRegisterClass(RISCVVMVTs::vbool8_t, &RISCV::VRRegClass); 98 addRegisterClass(RISCVVMVTs::vbool4_t, &RISCV::VRRegClass); 99 addRegisterClass(RISCVVMVTs::vbool2_t, &RISCV::VRRegClass); 100 addRegisterClass(RISCVVMVTs::vbool1_t, &RISCV::VRRegClass); 101 102 addRegisterClass(RISCVVMVTs::vint8mf8_t, &RISCV::VRRegClass); 103 addRegisterClass(RISCVVMVTs::vint8mf4_t, &RISCV::VRRegClass); 104 addRegisterClass(RISCVVMVTs::vint8mf2_t, &RISCV::VRRegClass); 105 addRegisterClass(RISCVVMVTs::vint8m1_t, &RISCV::VRRegClass); 106 addRegisterClass(RISCVVMVTs::vint8m2_t, &RISCV::VRM2RegClass); 107 addRegisterClass(RISCVVMVTs::vint8m4_t, &RISCV::VRM4RegClass); 108 addRegisterClass(RISCVVMVTs::vint8m8_t, &RISCV::VRM8RegClass); 109 110 addRegisterClass(RISCVVMVTs::vint16mf4_t, &RISCV::VRRegClass); 111 addRegisterClass(RISCVVMVTs::vint16mf2_t, &RISCV::VRRegClass); 112 addRegisterClass(RISCVVMVTs::vint16m1_t, &RISCV::VRRegClass); 113 addRegisterClass(RISCVVMVTs::vint16m2_t, &RISCV::VRM2RegClass); 114 addRegisterClass(RISCVVMVTs::vint16m4_t, &RISCV::VRM4RegClass); 115 addRegisterClass(RISCVVMVTs::vint16m8_t, &RISCV::VRM8RegClass); 116 117 addRegisterClass(RISCVVMVTs::vint32mf2_t, &RISCV::VRRegClass); 118 addRegisterClass(RISCVVMVTs::vint32m1_t, &RISCV::VRRegClass); 119 addRegisterClass(RISCVVMVTs::vint32m2_t, &RISCV::VRM2RegClass); 120 addRegisterClass(RISCVVMVTs::vint32m4_t, &RISCV::VRM4RegClass); 121 addRegisterClass(RISCVVMVTs::vint32m8_t, &RISCV::VRM8RegClass); 122 123 addRegisterClass(RISCVVMVTs::vint64m1_t, &RISCV::VRRegClass); 124 addRegisterClass(RISCVVMVTs::vint64m2_t, &RISCV::VRM2RegClass); 125 addRegisterClass(RISCVVMVTs::vint64m4_t, &RISCV::VRM4RegClass); 126 addRegisterClass(RISCVVMVTs::vint64m8_t, &RISCV::VRM8RegClass); 127 128 if (Subtarget.hasStdExtZfh()) { 129 addRegisterClass(RISCVVMVTs::vfloat16mf4_t, &RISCV::VRRegClass); 130 addRegisterClass(RISCVVMVTs::vfloat16mf2_t, &RISCV::VRRegClass); 131 addRegisterClass(RISCVVMVTs::vfloat16m1_t, &RISCV::VRRegClass); 132 addRegisterClass(RISCVVMVTs::vfloat16m2_t, &RISCV::VRM2RegClass); 133 addRegisterClass(RISCVVMVTs::vfloat16m4_t, &RISCV::VRM4RegClass); 134 addRegisterClass(RISCVVMVTs::vfloat16m8_t, &RISCV::VRM8RegClass); 135 } 136 137 if (Subtarget.hasStdExtF()) { 138 addRegisterClass(RISCVVMVTs::vfloat32mf2_t, &RISCV::VRRegClass); 139 addRegisterClass(RISCVVMVTs::vfloat32m1_t, &RISCV::VRRegClass); 140 addRegisterClass(RISCVVMVTs::vfloat32m2_t, &RISCV::VRM2RegClass); 141 addRegisterClass(RISCVVMVTs::vfloat32m4_t, &RISCV::VRM4RegClass); 142 addRegisterClass(RISCVVMVTs::vfloat32m8_t, &RISCV::VRM8RegClass); 143 } 144 145 if (Subtarget.hasStdExtD()) { 146 addRegisterClass(RISCVVMVTs::vfloat64m1_t, &RISCV::VRRegClass); 147 addRegisterClass(RISCVVMVTs::vfloat64m2_t, &RISCV::VRM2RegClass); 148 addRegisterClass(RISCVVMVTs::vfloat64m4_t, &RISCV::VRM4RegClass); 149 addRegisterClass(RISCVVMVTs::vfloat64m8_t, &RISCV::VRM8RegClass); 150 } 151 } 152 153 // Compute derived properties from the register classes. 154 computeRegisterProperties(STI.getRegisterInfo()); 155 156 setStackPointerRegisterToSaveRestore(RISCV::X2); 157 158 for (auto N : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}) 159 setLoadExtAction(N, XLenVT, MVT::i1, Promote); 160 161 // TODO: add all necessary setOperationAction calls. 162 setOperationAction(ISD::DYNAMIC_STACKALLOC, XLenVT, Expand); 163 164 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 165 setOperationAction(ISD::BR_CC, XLenVT, Expand); 166 setOperationAction(ISD::SELECT_CC, XLenVT, Expand); 167 168 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); 169 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); 170 171 setOperationAction(ISD::VASTART, MVT::Other, Custom); 172 setOperationAction(ISD::VAARG, MVT::Other, Expand); 173 setOperationAction(ISD::VACOPY, MVT::Other, Expand); 174 setOperationAction(ISD::VAEND, MVT::Other, Expand); 175 176 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 177 if (!Subtarget.hasStdExtZbb()) { 178 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand); 179 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand); 180 } 181 182 if (Subtarget.is64Bit()) { 183 setOperationAction(ISD::ADD, MVT::i32, Custom); 184 setOperationAction(ISD::SUB, MVT::i32, Custom); 185 setOperationAction(ISD::SHL, MVT::i32, Custom); 186 setOperationAction(ISD::SRA, MVT::i32, Custom); 187 setOperationAction(ISD::SRL, MVT::i32, Custom); 188 } 189 190 if (!Subtarget.hasStdExtM()) { 191 setOperationAction(ISD::MUL, XLenVT, Expand); 192 setOperationAction(ISD::MULHS, XLenVT, Expand); 193 setOperationAction(ISD::MULHU, XLenVT, Expand); 194 setOperationAction(ISD::SDIV, XLenVT, Expand); 195 setOperationAction(ISD::UDIV, XLenVT, Expand); 196 setOperationAction(ISD::SREM, XLenVT, Expand); 197 setOperationAction(ISD::UREM, XLenVT, Expand); 198 } 199 200 if (Subtarget.is64Bit() && Subtarget.hasStdExtM()) { 201 setOperationAction(ISD::MUL, MVT::i32, Custom); 202 203 setOperationAction(ISD::SDIV, MVT::i8, Custom); 204 setOperationAction(ISD::UDIV, MVT::i8, Custom); 205 setOperationAction(ISD::UREM, MVT::i8, Custom); 206 setOperationAction(ISD::SDIV, MVT::i16, Custom); 207 setOperationAction(ISD::UDIV, MVT::i16, Custom); 208 setOperationAction(ISD::UREM, MVT::i16, Custom); 209 setOperationAction(ISD::SDIV, MVT::i32, Custom); 210 setOperationAction(ISD::UDIV, MVT::i32, Custom); 211 setOperationAction(ISD::UREM, MVT::i32, Custom); 212 } 213 214 setOperationAction(ISD::SDIVREM, XLenVT, Expand); 215 setOperationAction(ISD::UDIVREM, XLenVT, Expand); 216 setOperationAction(ISD::SMUL_LOHI, XLenVT, Expand); 217 setOperationAction(ISD::UMUL_LOHI, XLenVT, Expand); 218 219 setOperationAction(ISD::SHL_PARTS, XLenVT, Custom); 220 setOperationAction(ISD::SRL_PARTS, XLenVT, Custom); 221 setOperationAction(ISD::SRA_PARTS, XLenVT, Custom); 222 223 if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp()) { 224 if (Subtarget.is64Bit()) { 225 setOperationAction(ISD::ROTL, MVT::i32, Custom); 226 setOperationAction(ISD::ROTR, MVT::i32, Custom); 227 } 228 } else { 229 setOperationAction(ISD::ROTL, XLenVT, Expand); 230 setOperationAction(ISD::ROTR, XLenVT, Expand); 231 } 232 233 if (Subtarget.hasStdExtZbp()) { 234 // Custom lower bswap/bitreverse so we can convert them to GREVI to enable 235 // more combining. 236 setOperationAction(ISD::BITREVERSE, XLenVT, Custom); 237 setOperationAction(ISD::BSWAP, XLenVT, Custom); 238 239 if (Subtarget.is64Bit()) { 240 setOperationAction(ISD::BITREVERSE, MVT::i32, Custom); 241 setOperationAction(ISD::BSWAP, MVT::i32, Custom); 242 } 243 } else { 244 // With Zbb we have an XLen rev8 instruction, but not GREVI. So we'll 245 // pattern match it directly in isel. 246 setOperationAction(ISD::BSWAP, XLenVT, 247 Subtarget.hasStdExtZbb() ? Legal : Expand); 248 } 249 250 if (Subtarget.hasStdExtZbb()) { 251 setOperationAction(ISD::SMIN, XLenVT, Legal); 252 setOperationAction(ISD::SMAX, XLenVT, Legal); 253 setOperationAction(ISD::UMIN, XLenVT, Legal); 254 setOperationAction(ISD::UMAX, XLenVT, Legal); 255 } else { 256 setOperationAction(ISD::CTTZ, XLenVT, Expand); 257 setOperationAction(ISD::CTLZ, XLenVT, Expand); 258 setOperationAction(ISD::CTPOP, XLenVT, Expand); 259 } 260 261 if (Subtarget.hasStdExtZbt()) { 262 setOperationAction(ISD::FSHL, XLenVT, Legal); 263 setOperationAction(ISD::FSHR, XLenVT, Legal); 264 setOperationAction(ISD::SELECT, XLenVT, Legal); 265 266 if (Subtarget.is64Bit()) { 267 setOperationAction(ISD::FSHL, MVT::i32, Custom); 268 setOperationAction(ISD::FSHR, MVT::i32, Custom); 269 } 270 } else { 271 setOperationAction(ISD::SELECT, XLenVT, Custom); 272 } 273 274 ISD::CondCode FPCCToExpand[] = { 275 ISD::SETOGT, ISD::SETOGE, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT, 276 ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUNE, ISD::SETGT, 277 ISD::SETGE, ISD::SETNE, ISD::SETO, ISD::SETUO}; 278 279 ISD::NodeType FPOpToExpand[] = { 280 ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, ISD::FREM, ISD::FP16_TO_FP, 281 ISD::FP_TO_FP16}; 282 283 if (Subtarget.hasStdExtZfh()) 284 setOperationAction(ISD::BITCAST, MVT::i16, Custom); 285 286 if (Subtarget.hasStdExtZfh()) { 287 setOperationAction(ISD::FMINNUM, MVT::f16, Legal); 288 setOperationAction(ISD::FMAXNUM, MVT::f16, Legal); 289 for (auto CC : FPCCToExpand) 290 setCondCodeAction(CC, MVT::f16, Expand); 291 setOperationAction(ISD::SELECT_CC, MVT::f16, Expand); 292 setOperationAction(ISD::SELECT, MVT::f16, Custom); 293 setOperationAction(ISD::BR_CC, MVT::f16, Expand); 294 for (auto Op : FPOpToExpand) 295 setOperationAction(Op, MVT::f16, Expand); 296 } 297 298 if (Subtarget.hasStdExtF()) { 299 setOperationAction(ISD::FMINNUM, MVT::f32, Legal); 300 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); 301 for (auto CC : FPCCToExpand) 302 setCondCodeAction(CC, MVT::f32, Expand); 303 setOperationAction(ISD::SELECT_CC, MVT::f32, Expand); 304 setOperationAction(ISD::SELECT, MVT::f32, Custom); 305 setOperationAction(ISD::BR_CC, MVT::f32, Expand); 306 for (auto Op : FPOpToExpand) 307 setOperationAction(Op, MVT::f32, Expand); 308 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); 309 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 310 } 311 312 if (Subtarget.hasStdExtF() && Subtarget.is64Bit()) 313 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 314 315 if (Subtarget.hasStdExtD()) { 316 setOperationAction(ISD::FMINNUM, MVT::f64, Legal); 317 setOperationAction(ISD::FMAXNUM, MVT::f64, Legal); 318 for (auto CC : FPCCToExpand) 319 setCondCodeAction(CC, MVT::f64, Expand); 320 setOperationAction(ISD::SELECT_CC, MVT::f64, Expand); 321 setOperationAction(ISD::SELECT, MVT::f64, Custom); 322 setOperationAction(ISD::BR_CC, MVT::f64, Expand); 323 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 324 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 325 for (auto Op : FPOpToExpand) 326 setOperationAction(Op, MVT::f64, Expand); 327 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); 328 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 329 } 330 331 if (Subtarget.is64Bit()) { 332 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 333 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 334 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom); 335 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom); 336 } 337 338 setOperationAction(ISD::GlobalAddress, XLenVT, Custom); 339 setOperationAction(ISD::BlockAddress, XLenVT, Custom); 340 setOperationAction(ISD::ConstantPool, XLenVT, Custom); 341 setOperationAction(ISD::JumpTable, XLenVT, Custom); 342 343 setOperationAction(ISD::GlobalTLSAddress, XLenVT, Custom); 344 345 // TODO: On M-mode only targets, the cycle[h] CSR may not be present. 346 // Unfortunately this can't be determined just from the ISA naming string. 347 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, 348 Subtarget.is64Bit() ? Legal : Custom); 349 350 setOperationAction(ISD::TRAP, MVT::Other, Legal); 351 setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal); 352 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 353 354 if (Subtarget.hasStdExtA()) { 355 setMaxAtomicSizeInBitsSupported(Subtarget.getXLen()); 356 setMinCmpXchgSizeInBits(32); 357 } else { 358 setMaxAtomicSizeInBitsSupported(0); 359 } 360 361 setBooleanContents(ZeroOrOneBooleanContent); 362 363 if (Subtarget.hasStdExtV()) { 364 setBooleanVectorContents(ZeroOrOneBooleanContent); 365 366 setOperationAction(ISD::VSCALE, XLenVT, Custom); 367 368 // RVV intrinsics may have illegal operands. 369 // We also need to custom legalize vmv.x.s. 370 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i8, Custom); 371 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i16, Custom); 372 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i8, Custom); 373 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i16, Custom); 374 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i32, Custom); 375 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i32, Custom); 376 377 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom); 378 379 if (Subtarget.is64Bit()) { 380 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i64, Custom); 381 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i64, Custom); 382 } 383 384 for (auto VT : MVT::integer_scalable_vector_valuetypes()) { 385 setOperationAction(ISD::SPLAT_VECTOR, VT, Legal); 386 387 setOperationAction(ISD::SMIN, VT, Legal); 388 setOperationAction(ISD::SMAX, VT, Legal); 389 setOperationAction(ISD::UMIN, VT, Legal); 390 setOperationAction(ISD::UMAX, VT, Legal); 391 392 setOperationAction(ISD::ROTL, VT, Expand); 393 setOperationAction(ISD::ROTR, VT, Expand); 394 395 if (isTypeLegal(VT)) { 396 // Custom-lower extensions and truncations from/to mask types. 397 setOperationAction(ISD::ANY_EXTEND, VT, Custom); 398 setOperationAction(ISD::SIGN_EXTEND, VT, Custom); 399 setOperationAction(ISD::ZERO_EXTEND, VT, Custom); 400 401 // We custom-lower all legally-typed vector truncates: 402 // 1. Mask VTs are custom-expanded into a series of standard nodes 403 // 2. Integer VTs are lowered as a series of "RISCVISD::TRUNCATE_VECTOR" 404 // nodes which truncate by one power of two at a time. 405 setOperationAction(ISD::TRUNCATE, VT, Custom); 406 } 407 } 408 409 // We must custom-lower SPLAT_VECTOR vXi64 on RV32 410 if (!Subtarget.is64Bit()) 411 setOperationAction(ISD::SPLAT_VECTOR, MVT::i64, Custom); 412 413 // Expand various CCs to best match the RVV ISA, which natively supports UNE 414 // but no other unordered comparisons, and supports all ordered comparisons 415 // except ONE. Additionally, we expand GT,OGT,GE,OGE for optimization 416 // purposes; they are expanded to their swapped-operand CCs (LT,OLT,LE,OLE), 417 // and we pattern-match those back to the "original", swapping operands once 418 // more. This way we catch both operations and both "vf" and "fv" forms with 419 // fewer patterns. 420 ISD::CondCode VFPCCToExpand[] = { 421 ISD::SETO, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT, 422 ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUO, 423 ISD::SETGT, ISD::SETOGT, ISD::SETGE, ISD::SETOGE, 424 }; 425 426 if (Subtarget.hasStdExtZfh()) { 427 for (auto VT : {RISCVVMVTs::vfloat16mf4_t, RISCVVMVTs::vfloat16mf2_t, 428 RISCVVMVTs::vfloat16m1_t, RISCVVMVTs::vfloat16m2_t, 429 RISCVVMVTs::vfloat16m4_t, RISCVVMVTs::vfloat16m8_t}) { 430 setOperationAction(ISD::SPLAT_VECTOR, VT, Legal); 431 for (auto CC : VFPCCToExpand) 432 setCondCodeAction(CC, VT, Expand); 433 } 434 } 435 436 if (Subtarget.hasStdExtF()) { 437 for (auto VT : {RISCVVMVTs::vfloat32mf2_t, RISCVVMVTs::vfloat32m1_t, 438 RISCVVMVTs::vfloat32m2_t, RISCVVMVTs::vfloat32m4_t, 439 RISCVVMVTs::vfloat32m8_t}) { 440 setOperationAction(ISD::SPLAT_VECTOR, VT, Legal); 441 for (auto CC : VFPCCToExpand) 442 setCondCodeAction(CC, VT, Expand); 443 } 444 } 445 446 if (Subtarget.hasStdExtD()) { 447 for (auto VT : {RISCVVMVTs::vfloat64m1_t, RISCVVMVTs::vfloat64m2_t, 448 RISCVVMVTs::vfloat64m4_t, RISCVVMVTs::vfloat64m8_t}) { 449 setOperationAction(ISD::SPLAT_VECTOR, VT, Legal); 450 for (auto CC : VFPCCToExpand) 451 setCondCodeAction(CC, VT, Expand); 452 } 453 } 454 } 455 456 // Function alignments. 457 const Align FunctionAlignment(Subtarget.hasStdExtC() ? 2 : 4); 458 setMinFunctionAlignment(FunctionAlignment); 459 setPrefFunctionAlignment(FunctionAlignment); 460 461 setMinimumJumpTableEntries(5); 462 463 // Jumps are expensive, compared to logic 464 setJumpIsExpensive(); 465 466 // We can use any register for comparisons 467 setHasMultipleConditionRegisters(); 468 469 setTargetDAGCombine(ISD::SETCC); 470 if (Subtarget.hasStdExtZbp()) { 471 setTargetDAGCombine(ISD::OR); 472 } 473 } 474 475 EVT RISCVTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &, 476 EVT VT) const { 477 if (!VT.isVector()) 478 return getPointerTy(DL); 479 if (Subtarget.hasStdExtV()) 480 return MVT::getVectorVT(MVT::i1, VT.getVectorElementCount()); 481 return VT.changeVectorElementTypeToInteger(); 482 } 483 484 bool RISCVTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 485 const CallInst &I, 486 MachineFunction &MF, 487 unsigned Intrinsic) const { 488 switch (Intrinsic) { 489 default: 490 return false; 491 case Intrinsic::riscv_masked_atomicrmw_xchg_i32: 492 case Intrinsic::riscv_masked_atomicrmw_add_i32: 493 case Intrinsic::riscv_masked_atomicrmw_sub_i32: 494 case Intrinsic::riscv_masked_atomicrmw_nand_i32: 495 case Intrinsic::riscv_masked_atomicrmw_max_i32: 496 case Intrinsic::riscv_masked_atomicrmw_min_i32: 497 case Intrinsic::riscv_masked_atomicrmw_umax_i32: 498 case Intrinsic::riscv_masked_atomicrmw_umin_i32: 499 case Intrinsic::riscv_masked_cmpxchg_i32: 500 PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType()); 501 Info.opc = ISD::INTRINSIC_W_CHAIN; 502 Info.memVT = MVT::getVT(PtrTy->getElementType()); 503 Info.ptrVal = I.getArgOperand(0); 504 Info.offset = 0; 505 Info.align = Align(4); 506 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore | 507 MachineMemOperand::MOVolatile; 508 return true; 509 } 510 } 511 512 bool RISCVTargetLowering::isLegalAddressingMode(const DataLayout &DL, 513 const AddrMode &AM, Type *Ty, 514 unsigned AS, 515 Instruction *I) const { 516 // No global is ever allowed as a base. 517 if (AM.BaseGV) 518 return false; 519 520 // Require a 12-bit signed offset. 521 if (!isInt<12>(AM.BaseOffs)) 522 return false; 523 524 switch (AM.Scale) { 525 case 0: // "r+i" or just "i", depending on HasBaseReg. 526 break; 527 case 1: 528 if (!AM.HasBaseReg) // allow "r+i". 529 break; 530 return false; // disallow "r+r" or "r+r+i". 531 default: 532 return false; 533 } 534 535 return true; 536 } 537 538 bool RISCVTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 539 return isInt<12>(Imm); 540 } 541 542 bool RISCVTargetLowering::isLegalAddImmediate(int64_t Imm) const { 543 return isInt<12>(Imm); 544 } 545 546 // On RV32, 64-bit integers are split into their high and low parts and held 547 // in two different registers, so the trunc is free since the low register can 548 // just be used. 549 bool RISCVTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const { 550 if (Subtarget.is64Bit() || !SrcTy->isIntegerTy() || !DstTy->isIntegerTy()) 551 return false; 552 unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); 553 unsigned DestBits = DstTy->getPrimitiveSizeInBits(); 554 return (SrcBits == 64 && DestBits == 32); 555 } 556 557 bool RISCVTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const { 558 if (Subtarget.is64Bit() || SrcVT.isVector() || DstVT.isVector() || 559 !SrcVT.isInteger() || !DstVT.isInteger()) 560 return false; 561 unsigned SrcBits = SrcVT.getSizeInBits(); 562 unsigned DestBits = DstVT.getSizeInBits(); 563 return (SrcBits == 64 && DestBits == 32); 564 } 565 566 bool RISCVTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 567 // Zexts are free if they can be combined with a load. 568 if (auto *LD = dyn_cast<LoadSDNode>(Val)) { 569 EVT MemVT = LD->getMemoryVT(); 570 if ((MemVT == MVT::i8 || MemVT == MVT::i16 || 571 (Subtarget.is64Bit() && MemVT == MVT::i32)) && 572 (LD->getExtensionType() == ISD::NON_EXTLOAD || 573 LD->getExtensionType() == ISD::ZEXTLOAD)) 574 return true; 575 } 576 577 return TargetLowering::isZExtFree(Val, VT2); 578 } 579 580 bool RISCVTargetLowering::isSExtCheaperThanZExt(EVT SrcVT, EVT DstVT) const { 581 return Subtarget.is64Bit() && SrcVT == MVT::i32 && DstVT == MVT::i64; 582 } 583 584 bool RISCVTargetLowering::isCheapToSpeculateCttz() const { 585 return Subtarget.hasStdExtZbb(); 586 } 587 588 bool RISCVTargetLowering::isCheapToSpeculateCtlz() const { 589 return Subtarget.hasStdExtZbb(); 590 } 591 592 bool RISCVTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 593 bool ForCodeSize) const { 594 if (VT == MVT::f16 && !Subtarget.hasStdExtZfh()) 595 return false; 596 if (VT == MVT::f32 && !Subtarget.hasStdExtF()) 597 return false; 598 if (VT == MVT::f64 && !Subtarget.hasStdExtD()) 599 return false; 600 if (Imm.isNegZero()) 601 return false; 602 return Imm.isZero(); 603 } 604 605 bool RISCVTargetLowering::hasBitPreservingFPLogic(EVT VT) const { 606 return (VT == MVT::f16 && Subtarget.hasStdExtZfh()) || 607 (VT == MVT::f32 && Subtarget.hasStdExtF()) || 608 (VT == MVT::f64 && Subtarget.hasStdExtD()); 609 } 610 611 // Changes the condition code and swaps operands if necessary, so the SetCC 612 // operation matches one of the comparisons supported directly in the RISC-V 613 // ISA. 614 static void normaliseSetCC(SDValue &LHS, SDValue &RHS, ISD::CondCode &CC) { 615 switch (CC) { 616 default: 617 break; 618 case ISD::SETGT: 619 case ISD::SETLE: 620 case ISD::SETUGT: 621 case ISD::SETULE: 622 CC = ISD::getSetCCSwappedOperands(CC); 623 std::swap(LHS, RHS); 624 break; 625 } 626 } 627 628 // Return the RISC-V branch opcode that matches the given DAG integer 629 // condition code. The CondCode must be one of those supported by the RISC-V 630 // ISA (see normaliseSetCC). 631 static unsigned getBranchOpcodeForIntCondCode(ISD::CondCode CC) { 632 switch (CC) { 633 default: 634 llvm_unreachable("Unsupported CondCode"); 635 case ISD::SETEQ: 636 return RISCV::BEQ; 637 case ISD::SETNE: 638 return RISCV::BNE; 639 case ISD::SETLT: 640 return RISCV::BLT; 641 case ISD::SETGE: 642 return RISCV::BGE; 643 case ISD::SETULT: 644 return RISCV::BLTU; 645 case ISD::SETUGE: 646 return RISCV::BGEU; 647 } 648 } 649 650 SDValue RISCVTargetLowering::LowerOperation(SDValue Op, 651 SelectionDAG &DAG) const { 652 switch (Op.getOpcode()) { 653 default: 654 report_fatal_error("unimplemented operand"); 655 case ISD::GlobalAddress: 656 return lowerGlobalAddress(Op, DAG); 657 case ISD::BlockAddress: 658 return lowerBlockAddress(Op, DAG); 659 case ISD::ConstantPool: 660 return lowerConstantPool(Op, DAG); 661 case ISD::JumpTable: 662 return lowerJumpTable(Op, DAG); 663 case ISD::GlobalTLSAddress: 664 return lowerGlobalTLSAddress(Op, DAG); 665 case ISD::SELECT: 666 return lowerSELECT(Op, DAG); 667 case ISD::VASTART: 668 return lowerVASTART(Op, DAG); 669 case ISD::FRAMEADDR: 670 return lowerFRAMEADDR(Op, DAG); 671 case ISD::RETURNADDR: 672 return lowerRETURNADDR(Op, DAG); 673 case ISD::SHL_PARTS: 674 return lowerShiftLeftParts(Op, DAG); 675 case ISD::SRA_PARTS: 676 return lowerShiftRightParts(Op, DAG, true); 677 case ISD::SRL_PARTS: 678 return lowerShiftRightParts(Op, DAG, false); 679 case ISD::BITCAST: { 680 assert(((Subtarget.is64Bit() && Subtarget.hasStdExtF()) || 681 Subtarget.hasStdExtZfh()) && 682 "Unexpected custom legalisation"); 683 SDLoc DL(Op); 684 SDValue Op0 = Op.getOperand(0); 685 if (Op.getValueType() == MVT::f16 && Subtarget.hasStdExtZfh()) { 686 if (Op0.getValueType() != MVT::i16) 687 return SDValue(); 688 SDValue NewOp0 = 689 DAG.getNode(ISD::ANY_EXTEND, DL, Subtarget.getXLenVT(), Op0); 690 SDValue FPConv = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, NewOp0); 691 return FPConv; 692 } else if (Op.getValueType() == MVT::f32 && Subtarget.is64Bit() && 693 Subtarget.hasStdExtF()) { 694 if (Op0.getValueType() != MVT::i32) 695 return SDValue(); 696 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); 697 SDValue FPConv = 698 DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, NewOp0); 699 return FPConv; 700 } 701 return SDValue(); 702 } 703 case ISD::INTRINSIC_WO_CHAIN: 704 return LowerINTRINSIC_WO_CHAIN(Op, DAG); 705 case ISD::INTRINSIC_W_CHAIN: 706 return LowerINTRINSIC_W_CHAIN(Op, DAG); 707 case ISD::BSWAP: 708 case ISD::BITREVERSE: { 709 // Convert BSWAP/BITREVERSE to GREVI to enable GREVI combinining. 710 assert(Subtarget.hasStdExtZbp() && "Unexpected custom legalisation"); 711 MVT VT = Op.getSimpleValueType(); 712 SDLoc DL(Op); 713 // Start with the maximum immediate value which is the bitwidth - 1. 714 unsigned Imm = VT.getSizeInBits() - 1; 715 // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits. 716 if (Op.getOpcode() == ISD::BSWAP) 717 Imm &= ~0x7U; 718 return DAG.getNode(RISCVISD::GREVI, DL, VT, Op.getOperand(0), 719 DAG.getTargetConstant(Imm, DL, Subtarget.getXLenVT())); 720 } 721 case ISD::TRUNCATE: { 722 SDLoc DL(Op); 723 EVT VT = Op.getValueType(); 724 // Only custom-lower vector truncates 725 if (!VT.isVector()) 726 return Op; 727 728 // Truncates to mask types are handled differently 729 if (VT.getVectorElementType() == MVT::i1) 730 return lowerVectorMaskTrunc(Op, DAG); 731 732 // RVV only has truncates which operate from SEW*2->SEW, so lower arbitrary 733 // truncates as a series of "RISCVISD::TRUNCATE_VECTOR" nodes which 734 // truncate by one power of two at a time. 735 EVT DstEltVT = VT.getVectorElementType(); 736 737 SDValue Src = Op.getOperand(0); 738 EVT SrcVT = Src.getValueType(); 739 EVT SrcEltVT = SrcVT.getVectorElementType(); 740 741 assert(DstEltVT.bitsLT(SrcEltVT) && 742 isPowerOf2_64(DstEltVT.getSizeInBits()) && 743 isPowerOf2_64(SrcEltVT.getSizeInBits()) && 744 "Unexpected vector truncate lowering"); 745 746 SDValue Result = Src; 747 LLVMContext &Context = *DAG.getContext(); 748 const ElementCount Count = SrcVT.getVectorElementCount(); 749 do { 750 SrcEltVT = EVT::getIntegerVT(Context, SrcEltVT.getSizeInBits() / 2); 751 EVT ResultVT = EVT::getVectorVT(Context, SrcEltVT, Count); 752 Result = DAG.getNode(RISCVISD::TRUNCATE_VECTOR, DL, ResultVT, Result); 753 } while (SrcEltVT != DstEltVT); 754 755 return Result; 756 } 757 case ISD::ANY_EXTEND: 758 case ISD::ZERO_EXTEND: 759 return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ 1); 760 case ISD::SIGN_EXTEND: 761 return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ -1); 762 case ISD::SPLAT_VECTOR: 763 return lowerSPLATVECTOR(Op, DAG); 764 case ISD::VSCALE: { 765 MVT VT = Op.getSimpleValueType(); 766 SDLoc DL(Op); 767 SDValue VLENB = DAG.getNode(RISCVISD::READ_VLENB, DL, VT); 768 // We define our scalable vector types for lmul=1 to use a 64 bit known 769 // minimum size. e.g. <vscale x 2 x i32>. VLENB is in bytes so we calculate 770 // vscale as VLENB / 8. 771 SDValue VScale = DAG.getNode(ISD::SRL, DL, VT, VLENB, 772 DAG.getConstant(3, DL, VT)); 773 return DAG.getNode(ISD::MUL, DL, VT, VScale, Op.getOperand(0)); 774 } 775 } 776 } 777 778 static SDValue getTargetNode(GlobalAddressSDNode *N, SDLoc DL, EVT Ty, 779 SelectionDAG &DAG, unsigned Flags) { 780 return DAG.getTargetGlobalAddress(N->getGlobal(), DL, Ty, 0, Flags); 781 } 782 783 static SDValue getTargetNode(BlockAddressSDNode *N, SDLoc DL, EVT Ty, 784 SelectionDAG &DAG, unsigned Flags) { 785 return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, N->getOffset(), 786 Flags); 787 } 788 789 static SDValue getTargetNode(ConstantPoolSDNode *N, SDLoc DL, EVT Ty, 790 SelectionDAG &DAG, unsigned Flags) { 791 return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlign(), 792 N->getOffset(), Flags); 793 } 794 795 static SDValue getTargetNode(JumpTableSDNode *N, SDLoc DL, EVT Ty, 796 SelectionDAG &DAG, unsigned Flags) { 797 return DAG.getTargetJumpTable(N->getIndex(), Ty, Flags); 798 } 799 800 template <class NodeTy> 801 SDValue RISCVTargetLowering::getAddr(NodeTy *N, SelectionDAG &DAG, 802 bool IsLocal) const { 803 SDLoc DL(N); 804 EVT Ty = getPointerTy(DAG.getDataLayout()); 805 806 if (isPositionIndependent()) { 807 SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0); 808 if (IsLocal) 809 // Use PC-relative addressing to access the symbol. This generates the 810 // pattern (PseudoLLA sym), which expands to (addi (auipc %pcrel_hi(sym)) 811 // %pcrel_lo(auipc)). 812 return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0); 813 814 // Use PC-relative addressing to access the GOT for this symbol, then load 815 // the address from the GOT. This generates the pattern (PseudoLA sym), 816 // which expands to (ld (addi (auipc %got_pcrel_hi(sym)) %pcrel_lo(auipc))). 817 return SDValue(DAG.getMachineNode(RISCV::PseudoLA, DL, Ty, Addr), 0); 818 } 819 820 switch (getTargetMachine().getCodeModel()) { 821 default: 822 report_fatal_error("Unsupported code model for lowering"); 823 case CodeModel::Small: { 824 // Generate a sequence for accessing addresses within the first 2 GiB of 825 // address space. This generates the pattern (addi (lui %hi(sym)) %lo(sym)). 826 SDValue AddrHi = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_HI); 827 SDValue AddrLo = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_LO); 828 SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0); 829 return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNHi, AddrLo), 0); 830 } 831 case CodeModel::Medium: { 832 // Generate a sequence for accessing addresses within any 2GiB range within 833 // the address space. This generates the pattern (PseudoLLA sym), which 834 // expands to (addi (auipc %pcrel_hi(sym)) %pcrel_lo(auipc)). 835 SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0); 836 return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0); 837 } 838 } 839 } 840 841 SDValue RISCVTargetLowering::lowerGlobalAddress(SDValue Op, 842 SelectionDAG &DAG) const { 843 SDLoc DL(Op); 844 EVT Ty = Op.getValueType(); 845 GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op); 846 int64_t Offset = N->getOffset(); 847 MVT XLenVT = Subtarget.getXLenVT(); 848 849 const GlobalValue *GV = N->getGlobal(); 850 bool IsLocal = getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV); 851 SDValue Addr = getAddr(N, DAG, IsLocal); 852 853 // In order to maximise the opportunity for common subexpression elimination, 854 // emit a separate ADD node for the global address offset instead of folding 855 // it in the global address node. Later peephole optimisations may choose to 856 // fold it back in when profitable. 857 if (Offset != 0) 858 return DAG.getNode(ISD::ADD, DL, Ty, Addr, 859 DAG.getConstant(Offset, DL, XLenVT)); 860 return Addr; 861 } 862 863 SDValue RISCVTargetLowering::lowerBlockAddress(SDValue Op, 864 SelectionDAG &DAG) const { 865 BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op); 866 867 return getAddr(N, DAG); 868 } 869 870 SDValue RISCVTargetLowering::lowerConstantPool(SDValue Op, 871 SelectionDAG &DAG) const { 872 ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op); 873 874 return getAddr(N, DAG); 875 } 876 877 SDValue RISCVTargetLowering::lowerJumpTable(SDValue Op, 878 SelectionDAG &DAG) const { 879 JumpTableSDNode *N = cast<JumpTableSDNode>(Op); 880 881 return getAddr(N, DAG); 882 } 883 884 SDValue RISCVTargetLowering::getStaticTLSAddr(GlobalAddressSDNode *N, 885 SelectionDAG &DAG, 886 bool UseGOT) const { 887 SDLoc DL(N); 888 EVT Ty = getPointerTy(DAG.getDataLayout()); 889 const GlobalValue *GV = N->getGlobal(); 890 MVT XLenVT = Subtarget.getXLenVT(); 891 892 if (UseGOT) { 893 // Use PC-relative addressing to access the GOT for this TLS symbol, then 894 // load the address from the GOT and add the thread pointer. This generates 895 // the pattern (PseudoLA_TLS_IE sym), which expands to 896 // (ld (auipc %tls_ie_pcrel_hi(sym)) %pcrel_lo(auipc)). 897 SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0); 898 SDValue Load = 899 SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_IE, DL, Ty, Addr), 0); 900 901 // Add the thread pointer. 902 SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT); 903 return DAG.getNode(ISD::ADD, DL, Ty, Load, TPReg); 904 } 905 906 // Generate a sequence for accessing the address relative to the thread 907 // pointer, with the appropriate adjustment for the thread pointer offset. 908 // This generates the pattern 909 // (add (add_tprel (lui %tprel_hi(sym)) tp %tprel_add(sym)) %tprel_lo(sym)) 910 SDValue AddrHi = 911 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_HI); 912 SDValue AddrAdd = 913 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_ADD); 914 SDValue AddrLo = 915 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_LO); 916 917 SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0); 918 SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT); 919 SDValue MNAdd = SDValue( 920 DAG.getMachineNode(RISCV::PseudoAddTPRel, DL, Ty, MNHi, TPReg, AddrAdd), 921 0); 922 return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNAdd, AddrLo), 0); 923 } 924 925 SDValue RISCVTargetLowering::getDynamicTLSAddr(GlobalAddressSDNode *N, 926 SelectionDAG &DAG) const { 927 SDLoc DL(N); 928 EVT Ty = getPointerTy(DAG.getDataLayout()); 929 IntegerType *CallTy = Type::getIntNTy(*DAG.getContext(), Ty.getSizeInBits()); 930 const GlobalValue *GV = N->getGlobal(); 931 932 // Use a PC-relative addressing mode to access the global dynamic GOT address. 933 // This generates the pattern (PseudoLA_TLS_GD sym), which expands to 934 // (addi (auipc %tls_gd_pcrel_hi(sym)) %pcrel_lo(auipc)). 935 SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0); 936 SDValue Load = 937 SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_GD, DL, Ty, Addr), 0); 938 939 // Prepare argument list to generate call. 940 ArgListTy Args; 941 ArgListEntry Entry; 942 Entry.Node = Load; 943 Entry.Ty = CallTy; 944 Args.push_back(Entry); 945 946 // Setup call to __tls_get_addr. 947 TargetLowering::CallLoweringInfo CLI(DAG); 948 CLI.setDebugLoc(DL) 949 .setChain(DAG.getEntryNode()) 950 .setLibCallee(CallingConv::C, CallTy, 951 DAG.getExternalSymbol("__tls_get_addr", Ty), 952 std::move(Args)); 953 954 return LowerCallTo(CLI).first; 955 } 956 957 SDValue RISCVTargetLowering::lowerGlobalTLSAddress(SDValue Op, 958 SelectionDAG &DAG) const { 959 SDLoc DL(Op); 960 EVT Ty = Op.getValueType(); 961 GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op); 962 int64_t Offset = N->getOffset(); 963 MVT XLenVT = Subtarget.getXLenVT(); 964 965 TLSModel::Model Model = getTargetMachine().getTLSModel(N->getGlobal()); 966 967 if (DAG.getMachineFunction().getFunction().getCallingConv() == 968 CallingConv::GHC) 969 report_fatal_error("In GHC calling convention TLS is not supported"); 970 971 SDValue Addr; 972 switch (Model) { 973 case TLSModel::LocalExec: 974 Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/false); 975 break; 976 case TLSModel::InitialExec: 977 Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/true); 978 break; 979 case TLSModel::LocalDynamic: 980 case TLSModel::GeneralDynamic: 981 Addr = getDynamicTLSAddr(N, DAG); 982 break; 983 } 984 985 // In order to maximise the opportunity for common subexpression elimination, 986 // emit a separate ADD node for the global address offset instead of folding 987 // it in the global address node. Later peephole optimisations may choose to 988 // fold it back in when profitable. 989 if (Offset != 0) 990 return DAG.getNode(ISD::ADD, DL, Ty, Addr, 991 DAG.getConstant(Offset, DL, XLenVT)); 992 return Addr; 993 } 994 995 SDValue RISCVTargetLowering::lowerSELECT(SDValue Op, SelectionDAG &DAG) const { 996 SDValue CondV = Op.getOperand(0); 997 SDValue TrueV = Op.getOperand(1); 998 SDValue FalseV = Op.getOperand(2); 999 SDLoc DL(Op); 1000 MVT XLenVT = Subtarget.getXLenVT(); 1001 1002 // If the result type is XLenVT and CondV is the output of a SETCC node 1003 // which also operated on XLenVT inputs, then merge the SETCC node into the 1004 // lowered RISCVISD::SELECT_CC to take advantage of the integer 1005 // compare+branch instructions. i.e.: 1006 // (select (setcc lhs, rhs, cc), truev, falsev) 1007 // -> (riscvisd::select_cc lhs, rhs, cc, truev, falsev) 1008 if (Op.getSimpleValueType() == XLenVT && CondV.getOpcode() == ISD::SETCC && 1009 CondV.getOperand(0).getSimpleValueType() == XLenVT) { 1010 SDValue LHS = CondV.getOperand(0); 1011 SDValue RHS = CondV.getOperand(1); 1012 auto CC = cast<CondCodeSDNode>(CondV.getOperand(2)); 1013 ISD::CondCode CCVal = CC->get(); 1014 1015 normaliseSetCC(LHS, RHS, CCVal); 1016 1017 SDValue TargetCC = DAG.getConstant(CCVal, DL, XLenVT); 1018 SDValue Ops[] = {LHS, RHS, TargetCC, TrueV, FalseV}; 1019 return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops); 1020 } 1021 1022 // Otherwise: 1023 // (select condv, truev, falsev) 1024 // -> (riscvisd::select_cc condv, zero, setne, truev, falsev) 1025 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 1026 SDValue SetNE = DAG.getConstant(ISD::SETNE, DL, XLenVT); 1027 1028 SDValue Ops[] = {CondV, Zero, SetNE, TrueV, FalseV}; 1029 1030 return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops); 1031 } 1032 1033 SDValue RISCVTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const { 1034 MachineFunction &MF = DAG.getMachineFunction(); 1035 RISCVMachineFunctionInfo *FuncInfo = MF.getInfo<RISCVMachineFunctionInfo>(); 1036 1037 SDLoc DL(Op); 1038 SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), 1039 getPointerTy(MF.getDataLayout())); 1040 1041 // vastart just stores the address of the VarArgsFrameIndex slot into the 1042 // memory location argument. 1043 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 1044 return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1), 1045 MachinePointerInfo(SV)); 1046 } 1047 1048 SDValue RISCVTargetLowering::lowerFRAMEADDR(SDValue Op, 1049 SelectionDAG &DAG) const { 1050 const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo(); 1051 MachineFunction &MF = DAG.getMachineFunction(); 1052 MachineFrameInfo &MFI = MF.getFrameInfo(); 1053 MFI.setFrameAddressIsTaken(true); 1054 Register FrameReg = RI.getFrameRegister(MF); 1055 int XLenInBytes = Subtarget.getXLen() / 8; 1056 1057 EVT VT = Op.getValueType(); 1058 SDLoc DL(Op); 1059 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, FrameReg, VT); 1060 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 1061 while (Depth--) { 1062 int Offset = -(XLenInBytes * 2); 1063 SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr, 1064 DAG.getIntPtrConstant(Offset, DL)); 1065 FrameAddr = 1066 DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo()); 1067 } 1068 return FrameAddr; 1069 } 1070 1071 SDValue RISCVTargetLowering::lowerRETURNADDR(SDValue Op, 1072 SelectionDAG &DAG) const { 1073 const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo(); 1074 MachineFunction &MF = DAG.getMachineFunction(); 1075 MachineFrameInfo &MFI = MF.getFrameInfo(); 1076 MFI.setReturnAddressIsTaken(true); 1077 MVT XLenVT = Subtarget.getXLenVT(); 1078 int XLenInBytes = Subtarget.getXLen() / 8; 1079 1080 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 1081 return SDValue(); 1082 1083 EVT VT = Op.getValueType(); 1084 SDLoc DL(Op); 1085 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 1086 if (Depth) { 1087 int Off = -XLenInBytes; 1088 SDValue FrameAddr = lowerFRAMEADDR(Op, DAG); 1089 SDValue Offset = DAG.getConstant(Off, DL, VT); 1090 return DAG.getLoad(VT, DL, DAG.getEntryNode(), 1091 DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset), 1092 MachinePointerInfo()); 1093 } 1094 1095 // Return the value of the return address register, marking it an implicit 1096 // live-in. 1097 Register Reg = MF.addLiveIn(RI.getRARegister(), getRegClassFor(XLenVT)); 1098 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, XLenVT); 1099 } 1100 1101 SDValue RISCVTargetLowering::lowerShiftLeftParts(SDValue Op, 1102 SelectionDAG &DAG) const { 1103 SDLoc DL(Op); 1104 SDValue Lo = Op.getOperand(0); 1105 SDValue Hi = Op.getOperand(1); 1106 SDValue Shamt = Op.getOperand(2); 1107 EVT VT = Lo.getValueType(); 1108 1109 // if Shamt-XLEN < 0: // Shamt < XLEN 1110 // Lo = Lo << Shamt 1111 // Hi = (Hi << Shamt) | ((Lo >>u 1) >>u (XLEN-1 - Shamt)) 1112 // else: 1113 // Lo = 0 1114 // Hi = Lo << (Shamt-XLEN) 1115 1116 SDValue Zero = DAG.getConstant(0, DL, VT); 1117 SDValue One = DAG.getConstant(1, DL, VT); 1118 SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT); 1119 SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT); 1120 SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen); 1121 SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt); 1122 1123 SDValue LoTrue = DAG.getNode(ISD::SHL, DL, VT, Lo, Shamt); 1124 SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, VT, Lo, One); 1125 SDValue ShiftRightLo = 1126 DAG.getNode(ISD::SRL, DL, VT, ShiftRight1Lo, XLenMinus1Shamt); 1127 SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, Hi, Shamt); 1128 SDValue HiTrue = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo); 1129 SDValue HiFalse = DAG.getNode(ISD::SHL, DL, VT, Lo, ShamtMinusXLen); 1130 1131 SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT); 1132 1133 Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, Zero); 1134 Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse); 1135 1136 SDValue Parts[2] = {Lo, Hi}; 1137 return DAG.getMergeValues(Parts, DL); 1138 } 1139 1140 SDValue RISCVTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG, 1141 bool IsSRA) const { 1142 SDLoc DL(Op); 1143 SDValue Lo = Op.getOperand(0); 1144 SDValue Hi = Op.getOperand(1); 1145 SDValue Shamt = Op.getOperand(2); 1146 EVT VT = Lo.getValueType(); 1147 1148 // SRA expansion: 1149 // if Shamt-XLEN < 0: // Shamt < XLEN 1150 // Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt)) 1151 // Hi = Hi >>s Shamt 1152 // else: 1153 // Lo = Hi >>s (Shamt-XLEN); 1154 // Hi = Hi >>s (XLEN-1) 1155 // 1156 // SRL expansion: 1157 // if Shamt-XLEN < 0: // Shamt < XLEN 1158 // Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt)) 1159 // Hi = Hi >>u Shamt 1160 // else: 1161 // Lo = Hi >>u (Shamt-XLEN); 1162 // Hi = 0; 1163 1164 unsigned ShiftRightOp = IsSRA ? ISD::SRA : ISD::SRL; 1165 1166 SDValue Zero = DAG.getConstant(0, DL, VT); 1167 SDValue One = DAG.getConstant(1, DL, VT); 1168 SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT); 1169 SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT); 1170 SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen); 1171 SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt); 1172 1173 SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, Lo, Shamt); 1174 SDValue ShiftLeftHi1 = DAG.getNode(ISD::SHL, DL, VT, Hi, One); 1175 SDValue ShiftLeftHi = 1176 DAG.getNode(ISD::SHL, DL, VT, ShiftLeftHi1, XLenMinus1Shamt); 1177 SDValue LoTrue = DAG.getNode(ISD::OR, DL, VT, ShiftRightLo, ShiftLeftHi); 1178 SDValue HiTrue = DAG.getNode(ShiftRightOp, DL, VT, Hi, Shamt); 1179 SDValue LoFalse = DAG.getNode(ShiftRightOp, DL, VT, Hi, ShamtMinusXLen); 1180 SDValue HiFalse = 1181 IsSRA ? DAG.getNode(ISD::SRA, DL, VT, Hi, XLenMinus1) : Zero; 1182 1183 SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT); 1184 1185 Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, LoFalse); 1186 Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse); 1187 1188 SDValue Parts[2] = {Lo, Hi}; 1189 return DAG.getMergeValues(Parts, DL); 1190 } 1191 1192 // Custom-lower a SPLAT_VECTOR where XLEN<SEW, as the SEW element type is 1193 // illegal (currently only vXi64 RV32). 1194 // FIXME: We could also catch non-constant sign-extended i32 values and lower 1195 // them to SPLAT_VECTOR_I64 1196 SDValue RISCVTargetLowering::lowerSPLATVECTOR(SDValue Op, 1197 SelectionDAG &DAG) const { 1198 SDLoc DL(Op); 1199 EVT VecVT = Op.getValueType(); 1200 assert(!Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64 && 1201 "Unexpected SPLAT_VECTOR lowering"); 1202 SDValue SplatVal = Op.getOperand(0); 1203 1204 // If we can prove that the value is a sign-extended 32-bit value, lower this 1205 // as a custom node in order to try and match RVV vector/scalar instructions. 1206 if (auto *CVal = dyn_cast<ConstantSDNode>(SplatVal)) { 1207 if (isInt<32>(CVal->getSExtValue())) 1208 return DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, 1209 DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32)); 1210 } 1211 1212 // Else, on RV32 we lower an i64-element SPLAT_VECTOR thus, being careful not 1213 // to accidentally sign-extend the 32-bit halves to the e64 SEW: 1214 // vmv.v.x vX, hi 1215 // vsll.vx vX, vX, /*32*/ 1216 // vmv.v.x vY, lo 1217 // vsll.vx vY, vY, /*32*/ 1218 // vsrl.vx vY, vY, /*32*/ 1219 // vor.vv vX, vX, vY 1220 SDValue One = DAG.getConstant(1, DL, MVT::i32); 1221 SDValue Zero = DAG.getConstant(0, DL, MVT::i32); 1222 SDValue ThirtyTwoV = DAG.getConstant(32, DL, VecVT); 1223 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, SplatVal, Zero); 1224 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, SplatVal, One); 1225 1226 Lo = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, Lo); 1227 Lo = DAG.getNode(ISD::SHL, DL, VecVT, Lo, ThirtyTwoV); 1228 Lo = DAG.getNode(ISD::SRL, DL, VecVT, Lo, ThirtyTwoV); 1229 1230 if (isNullConstant(Hi)) 1231 return Lo; 1232 1233 Hi = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, Hi); 1234 Hi = DAG.getNode(ISD::SHL, DL, VecVT, Hi, ThirtyTwoV); 1235 1236 return DAG.getNode(ISD::OR, DL, VecVT, Lo, Hi); 1237 } 1238 1239 // Custom-lower extensions from mask vectors by using a vselect either with 1 1240 // for zero/any-extension or -1 for sign-extension: 1241 // (vXiN = (s|z)ext vXi1:vmask) -> (vXiN = vselect vmask, (-1 or 1), 0) 1242 // Note that any-extension is lowered identically to zero-extension. 1243 SDValue RISCVTargetLowering::lowerVectorMaskExt(SDValue Op, SelectionDAG &DAG, 1244 int64_t ExtTrueVal) const { 1245 SDLoc DL(Op); 1246 EVT VecVT = Op.getValueType(); 1247 SDValue Src = Op.getOperand(0); 1248 // Only custom-lower extensions from mask types 1249 if (!Src.getValueType().isVector() || 1250 Src.getValueType().getVectorElementType() != MVT::i1) 1251 return Op; 1252 1253 // Be careful not to introduce illegal scalar types at this stage, and be 1254 // careful also about splatting constants as on RV32, vXi64 SPLAT_VECTOR is 1255 // illegal and must be expanded. Since we know that the constants are 1256 // sign-extended 32-bit values, we use SPLAT_VECTOR_I64 directly. 1257 bool IsRV32E64 = 1258 !Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64; 1259 SDValue SplatZero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 1260 SDValue SplatTrueVal = DAG.getConstant(ExtTrueVal, DL, Subtarget.getXLenVT()); 1261 1262 if (!IsRV32E64) { 1263 SplatZero = DAG.getSplatVector(VecVT, DL, SplatZero); 1264 SplatTrueVal = DAG.getSplatVector(VecVT, DL, SplatTrueVal); 1265 } else { 1266 SplatZero = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, SplatZero); 1267 SplatTrueVal = 1268 DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, SplatTrueVal); 1269 } 1270 1271 return DAG.getNode(ISD::VSELECT, DL, VecVT, Src, SplatTrueVal, SplatZero); 1272 } 1273 1274 // Custom-lower truncations from vectors to mask vectors by using a mask and a 1275 // setcc operation: 1276 // (vXi1 = trunc vXiN vec) -> (vXi1 = setcc (and vec, 1), 0, ne) 1277 SDValue RISCVTargetLowering::lowerVectorMaskTrunc(SDValue Op, 1278 SelectionDAG &DAG) const { 1279 SDLoc DL(Op); 1280 EVT MaskVT = Op.getValueType(); 1281 // Only expect to custom-lower truncations to mask types 1282 assert(MaskVT.isVector() && MaskVT.getVectorElementType() == MVT::i1 && 1283 "Unexpected type for vector mask lowering"); 1284 SDValue Src = Op.getOperand(0); 1285 EVT VecVT = Src.getValueType(); 1286 1287 // Be careful not to introduce illegal scalar types at this stage, and be 1288 // careful also about splatting constants as on RV32, vXi64 SPLAT_VECTOR is 1289 // illegal and must be expanded. Since we know that the constants are 1290 // sign-extended 32-bit values, we use SPLAT_VECTOR_I64 directly. 1291 bool IsRV32E64 = 1292 !Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64; 1293 SDValue SplatOne = DAG.getConstant(1, DL, Subtarget.getXLenVT()); 1294 SDValue SplatZero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 1295 1296 if (!IsRV32E64) { 1297 SplatOne = DAG.getSplatVector(VecVT, DL, SplatOne); 1298 SplatZero = DAG.getSplatVector(VecVT, DL, SplatZero); 1299 } else { 1300 SplatOne = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, SplatOne); 1301 SplatZero = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, SplatZero); 1302 } 1303 1304 SDValue Trunc = DAG.getNode(ISD::AND, DL, VecVT, Src, SplatOne); 1305 1306 return DAG.getSetCC(DL, MaskVT, Trunc, SplatZero, ISD::SETNE); 1307 } 1308 1309 SDValue RISCVTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 1310 SelectionDAG &DAG) const { 1311 unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 1312 SDLoc DL(Op); 1313 1314 if (Subtarget.hasStdExtV()) { 1315 // Some RVV intrinsics may claim that they want an integer operand to be 1316 // extended. 1317 if (const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II = 1318 RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo)) { 1319 if (II->ExtendedOperand) { 1320 assert(II->ExtendedOperand < Op.getNumOperands()); 1321 SmallVector<SDValue, 8> Operands(Op->op_begin(), Op->op_end()); 1322 SDValue &ScalarOp = Operands[II->ExtendedOperand]; 1323 EVT OpVT = ScalarOp.getValueType(); 1324 if (OpVT == MVT::i8 || OpVT == MVT::i16 || 1325 (OpVT == MVT::i32 && Subtarget.is64Bit())) { 1326 // If the operand is a constant, sign extend to increase our chances 1327 // of being able to use a .vi instruction. ANY_EXTEND would become a 1328 // a zero extend and the simm5 check in isel would fail. 1329 // FIXME: Should we ignore the upper bits in isel instead? 1330 unsigned ExtOpc = isa<ConstantSDNode>(ScalarOp) ? ISD::SIGN_EXTEND 1331 : ISD::ANY_EXTEND; 1332 ScalarOp = DAG.getNode(ExtOpc, DL, Subtarget.getXLenVT(), ScalarOp); 1333 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, Op.getValueType(), 1334 Operands); 1335 } 1336 } 1337 } 1338 } 1339 1340 switch (IntNo) { 1341 default: 1342 return SDValue(); // Don't custom lower most intrinsics. 1343 case Intrinsic::thread_pointer: { 1344 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 1345 return DAG.getRegister(RISCV::X4, PtrVT); 1346 } 1347 case Intrinsic::riscv_vmv_x_s: 1348 assert(Op.getValueType() == Subtarget.getXLenVT() && "Unexpected VT!"); 1349 return DAG.getNode(RISCVISD::VMV_X_S, DL, Op.getValueType(), 1350 Op.getOperand(1)); 1351 } 1352 } 1353 1354 SDValue RISCVTargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op, 1355 SelectionDAG &DAG) const { 1356 unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 1357 SDLoc DL(Op); 1358 1359 if (Subtarget.hasStdExtV()) { 1360 // Some RVV intrinsics may claim that they want an integer operand to be 1361 // extended. 1362 if (const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II = 1363 RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo)) { 1364 if (II->ExtendedOperand) { 1365 // The operands start from the second argument in INTRINSIC_W_CHAIN. 1366 unsigned ExtendOp = II->ExtendedOperand + 1; 1367 assert(ExtendOp < Op.getNumOperands()); 1368 SmallVector<SDValue, 8> Operands(Op->op_begin(), Op->op_end()); 1369 SDValue &ScalarOp = Operands[ExtendOp]; 1370 EVT OpVT = ScalarOp.getValueType(); 1371 if (OpVT == MVT::i8 || OpVT == MVT::i16 || 1372 (OpVT == MVT::i32 && Subtarget.is64Bit())) { 1373 // If the operand is a constant, sign extend to increase our chances 1374 // of being able to use a .vi instruction. ANY_EXTEND would become a 1375 // a zero extend and the simm5 check in isel would fail. 1376 // FIXME: Should we ignore the upper bits in isel instead? 1377 unsigned ExtOpc = isa<ConstantSDNode>(ScalarOp) ? ISD::SIGN_EXTEND 1378 : ISD::ANY_EXTEND; 1379 ScalarOp = DAG.getNode(ExtOpc, DL, Subtarget.getXLenVT(), ScalarOp); 1380 return DAG.getNode(ISD::INTRINSIC_W_CHAIN, DL, Op->getVTList(), 1381 Operands); 1382 } 1383 } 1384 } 1385 } 1386 1387 switch (IntNo) { 1388 default: 1389 return SDValue(); // Don't custom lower most intrinsics. 1390 case Intrinsic::riscv_vleff: { 1391 SDLoc DL(Op); 1392 SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Other, MVT::Glue); 1393 SDValue Load = DAG.getNode(RISCVISD::VLEFF, DL, VTs, Op.getOperand(0), 1394 Op.getOperand(2), Op.getOperand(3)); 1395 VTs = DAG.getVTList(Op->getValueType(1), MVT::Other); 1396 SDValue ReadVL = DAG.getNode(RISCVISD::READ_VL, DL, VTs, Load.getValue(2)); 1397 return DAG.getMergeValues({Load, ReadVL, Load.getValue(1)}, DL); 1398 } 1399 case Intrinsic::riscv_vleff_mask: { 1400 SDLoc DL(Op); 1401 SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Other, MVT::Glue); 1402 SDValue Load = DAG.getNode(RISCVISD::VLEFF_MASK, DL, VTs, Op.getOperand(0), 1403 Op.getOperand(2), Op.getOperand(3), 1404 Op.getOperand(4), Op.getOperand(5)); 1405 VTs = DAG.getVTList(Op->getValueType(1), MVT::Other); 1406 SDValue ReadVL = DAG.getNode(RISCVISD::READ_VL, DL, VTs, Load.getValue(2)); 1407 return DAG.getMergeValues({Load, ReadVL, Load.getValue(1)}, DL); 1408 } 1409 } 1410 } 1411 1412 // Returns the opcode of the target-specific SDNode that implements the 32-bit 1413 // form of the given Opcode. 1414 static RISCVISD::NodeType getRISCVWOpcode(unsigned Opcode) { 1415 switch (Opcode) { 1416 default: 1417 llvm_unreachable("Unexpected opcode"); 1418 case ISD::SHL: 1419 return RISCVISD::SLLW; 1420 case ISD::SRA: 1421 return RISCVISD::SRAW; 1422 case ISD::SRL: 1423 return RISCVISD::SRLW; 1424 case ISD::SDIV: 1425 return RISCVISD::DIVW; 1426 case ISD::UDIV: 1427 return RISCVISD::DIVUW; 1428 case ISD::UREM: 1429 return RISCVISD::REMUW; 1430 case ISD::ROTL: 1431 return RISCVISD::ROLW; 1432 case ISD::ROTR: 1433 return RISCVISD::RORW; 1434 case RISCVISD::GREVI: 1435 return RISCVISD::GREVIW; 1436 case RISCVISD::GORCI: 1437 return RISCVISD::GORCIW; 1438 } 1439 } 1440 1441 // Converts the given 32-bit operation to a target-specific SelectionDAG node. 1442 // Because i32 isn't a legal type for RV64, these operations would otherwise 1443 // be promoted to i64, making it difficult to select the SLLW/DIVUW/.../*W 1444 // later one because the fact the operation was originally of type i32 is 1445 // lost. 1446 static SDValue customLegalizeToWOp(SDNode *N, SelectionDAG &DAG, 1447 unsigned ExtOpc = ISD::ANY_EXTEND) { 1448 SDLoc DL(N); 1449 RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode()); 1450 SDValue NewOp0 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(0)); 1451 SDValue NewOp1 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(1)); 1452 SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1); 1453 // ReplaceNodeResults requires we maintain the same type for the return value. 1454 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes); 1455 } 1456 1457 // Converts the given 32-bit operation to a i64 operation with signed extension 1458 // semantic to reduce the signed extension instructions. 1459 static SDValue customLegalizeToWOpWithSExt(SDNode *N, SelectionDAG &DAG) { 1460 SDLoc DL(N); 1461 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 1462 SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 1463 SDValue NewWOp = DAG.getNode(N->getOpcode(), DL, MVT::i64, NewOp0, NewOp1); 1464 SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp, 1465 DAG.getValueType(MVT::i32)); 1466 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes); 1467 } 1468 1469 void RISCVTargetLowering::ReplaceNodeResults(SDNode *N, 1470 SmallVectorImpl<SDValue> &Results, 1471 SelectionDAG &DAG) const { 1472 SDLoc DL(N); 1473 switch (N->getOpcode()) { 1474 default: 1475 llvm_unreachable("Don't know how to custom type legalize this operation!"); 1476 case ISD::STRICT_FP_TO_SINT: 1477 case ISD::STRICT_FP_TO_UINT: 1478 case ISD::FP_TO_SINT: 1479 case ISD::FP_TO_UINT: { 1480 bool IsStrict = N->isStrictFPOpcode(); 1481 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 1482 "Unexpected custom legalisation"); 1483 SDValue Op0 = IsStrict ? N->getOperand(1) : N->getOperand(0); 1484 // If the FP type needs to be softened, emit a library call using the 'si' 1485 // version. If we left it to default legalization we'd end up with 'di'. If 1486 // the FP type doesn't need to be softened just let generic type 1487 // legalization promote the result type. 1488 if (getTypeAction(*DAG.getContext(), Op0.getValueType()) != 1489 TargetLowering::TypeSoftenFloat) 1490 return; 1491 RTLIB::Libcall LC; 1492 if (N->getOpcode() == ISD::FP_TO_SINT || 1493 N->getOpcode() == ISD::STRICT_FP_TO_SINT) 1494 LC = RTLIB::getFPTOSINT(Op0.getValueType(), N->getValueType(0)); 1495 else 1496 LC = RTLIB::getFPTOUINT(Op0.getValueType(), N->getValueType(0)); 1497 MakeLibCallOptions CallOptions; 1498 EVT OpVT = Op0.getValueType(); 1499 CallOptions.setTypeListBeforeSoften(OpVT, N->getValueType(0), true); 1500 SDValue Chain = IsStrict ? N->getOperand(0) : SDValue(); 1501 SDValue Result; 1502 std::tie(Result, Chain) = 1503 makeLibCall(DAG, LC, N->getValueType(0), Op0, CallOptions, DL, Chain); 1504 Results.push_back(Result); 1505 if (IsStrict) 1506 Results.push_back(Chain); 1507 break; 1508 } 1509 case ISD::READCYCLECOUNTER: { 1510 assert(!Subtarget.is64Bit() && 1511 "READCYCLECOUNTER only has custom type legalization on riscv32"); 1512 1513 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other); 1514 SDValue RCW = 1515 DAG.getNode(RISCVISD::READ_CYCLE_WIDE, DL, VTs, N->getOperand(0)); 1516 1517 Results.push_back( 1518 DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, RCW, RCW.getValue(1))); 1519 Results.push_back(RCW.getValue(2)); 1520 break; 1521 } 1522 case ISD::ADD: 1523 case ISD::SUB: 1524 case ISD::MUL: 1525 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 1526 "Unexpected custom legalisation"); 1527 if (N->getOperand(1).getOpcode() == ISD::Constant) 1528 return; 1529 Results.push_back(customLegalizeToWOpWithSExt(N, DAG)); 1530 break; 1531 case ISD::SHL: 1532 case ISD::SRA: 1533 case ISD::SRL: 1534 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 1535 "Unexpected custom legalisation"); 1536 if (N->getOperand(1).getOpcode() == ISD::Constant) 1537 return; 1538 Results.push_back(customLegalizeToWOp(N, DAG)); 1539 break; 1540 case ISD::ROTL: 1541 case ISD::ROTR: 1542 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 1543 "Unexpected custom legalisation"); 1544 Results.push_back(customLegalizeToWOp(N, DAG)); 1545 break; 1546 case ISD::SDIV: 1547 case ISD::UDIV: 1548 case ISD::UREM: { 1549 MVT VT = N->getSimpleValueType(0); 1550 assert((VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) && 1551 Subtarget.is64Bit() && Subtarget.hasStdExtM() && 1552 "Unexpected custom legalisation"); 1553 if (N->getOperand(0).getOpcode() == ISD::Constant || 1554 N->getOperand(1).getOpcode() == ISD::Constant) 1555 return; 1556 1557 // If the input is i32, use ANY_EXTEND since the W instructions don't read 1558 // the upper 32 bits. For other types we need to sign or zero extend 1559 // based on the opcode. 1560 unsigned ExtOpc = ISD::ANY_EXTEND; 1561 if (VT != MVT::i32) 1562 ExtOpc = N->getOpcode() == ISD::SDIV ? ISD::SIGN_EXTEND 1563 : ISD::ZERO_EXTEND; 1564 1565 Results.push_back(customLegalizeToWOp(N, DAG, ExtOpc)); 1566 break; 1567 } 1568 case ISD::BITCAST: { 1569 assert(((N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 1570 Subtarget.hasStdExtF()) || 1571 (N->getValueType(0) == MVT::i16 && Subtarget.hasStdExtZfh())) && 1572 "Unexpected custom legalisation"); 1573 SDValue Op0 = N->getOperand(0); 1574 if (N->getValueType(0) == MVT::i16 && Subtarget.hasStdExtZfh()) { 1575 if (Op0.getValueType() != MVT::f16) 1576 return; 1577 SDValue FPConv = 1578 DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, Subtarget.getXLenVT(), Op0); 1579 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FPConv)); 1580 } else if (N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 1581 Subtarget.hasStdExtF()) { 1582 if (Op0.getValueType() != MVT::f32) 1583 return; 1584 SDValue FPConv = 1585 DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Op0); 1586 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, FPConv)); 1587 } 1588 break; 1589 } 1590 case RISCVISD::GREVI: 1591 case RISCVISD::GORCI: { 1592 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 1593 "Unexpected custom legalisation"); 1594 // This is similar to customLegalizeToWOp, except that we pass the second 1595 // operand (a TargetConstant) straight through: it is already of type 1596 // XLenVT. 1597 SDLoc DL(N); 1598 RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode()); 1599 SDValue NewOp0 = 1600 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 1601 SDValue NewRes = 1602 DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, N->getOperand(1)); 1603 // ReplaceNodeResults requires we maintain the same type for the return 1604 // value. 1605 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes)); 1606 break; 1607 } 1608 case ISD::BSWAP: 1609 case ISD::BITREVERSE: { 1610 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 1611 Subtarget.hasStdExtZbp() && "Unexpected custom legalisation"); 1612 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, 1613 N->getOperand(0)); 1614 unsigned Imm = N->getOpcode() == ISD::BITREVERSE ? 31 : 24; 1615 SDValue GREVIW = DAG.getNode(RISCVISD::GREVIW, DL, MVT::i64, NewOp0, 1616 DAG.getTargetConstant(Imm, DL, 1617 Subtarget.getXLenVT())); 1618 // ReplaceNodeResults requires we maintain the same type for the return 1619 // value. 1620 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, GREVIW)); 1621 break; 1622 } 1623 case ISD::FSHL: 1624 case ISD::FSHR: { 1625 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 1626 Subtarget.hasStdExtZbt() && "Unexpected custom legalisation"); 1627 SDValue NewOp0 = 1628 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 1629 SDValue NewOp1 = 1630 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 1631 SDValue NewOp2 = 1632 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 1633 // FSLW/FSRW take a 6 bit shift amount but i32 FSHL/FSHR only use 5 bits. 1634 // Mask the shift amount to 5 bits. 1635 NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2, 1636 DAG.getConstant(0x1f, DL, MVT::i64)); 1637 unsigned Opc = 1638 N->getOpcode() == ISD::FSHL ? RISCVISD::FSLW : RISCVISD::FSRW; 1639 SDValue NewOp = DAG.getNode(Opc, DL, MVT::i64, NewOp0, NewOp1, NewOp2); 1640 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewOp)); 1641 break; 1642 } 1643 case ISD::INTRINSIC_WO_CHAIN: { 1644 unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 1645 switch (IntNo) { 1646 default: 1647 llvm_unreachable( 1648 "Don't know how to custom type legalize this intrinsic!"); 1649 case Intrinsic::riscv_vmv_x_s: { 1650 EVT VT = N->getValueType(0); 1651 assert((VT == MVT::i8 || VT == MVT::i16 || 1652 (Subtarget.is64Bit() && VT == MVT::i32)) && 1653 "Unexpected custom legalisation!"); 1654 SDValue Extract = DAG.getNode(RISCVISD::VMV_X_S, DL, 1655 Subtarget.getXLenVT(), N->getOperand(1)); 1656 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, Extract)); 1657 break; 1658 } 1659 } 1660 break; 1661 } 1662 } 1663 } 1664 1665 // A structure to hold one of the bit-manipulation patterns below. Together, a 1666 // SHL and non-SHL pattern may form a bit-manipulation pair on a single source: 1667 // (or (and (shl x, 1), 0xAAAAAAAA), 1668 // (and (srl x, 1), 0x55555555)) 1669 struct RISCVBitmanipPat { 1670 SDValue Op; 1671 unsigned ShAmt; 1672 bool IsSHL; 1673 1674 bool formsPairWith(const RISCVBitmanipPat &Other) const { 1675 return Op == Other.Op && ShAmt == Other.ShAmt && IsSHL != Other.IsSHL; 1676 } 1677 }; 1678 1679 // Matches any of the following bit-manipulation patterns: 1680 // (and (shl x, 1), (0x55555555 << 1)) 1681 // (and (srl x, 1), 0x55555555) 1682 // (shl (and x, 0x55555555), 1) 1683 // (srl (and x, (0x55555555 << 1)), 1) 1684 // where the shift amount and mask may vary thus: 1685 // [1] = 0x55555555 / 0xAAAAAAAA 1686 // [2] = 0x33333333 / 0xCCCCCCCC 1687 // [4] = 0x0F0F0F0F / 0xF0F0F0F0 1688 // [8] = 0x00FF00FF / 0xFF00FF00 1689 // [16] = 0x0000FFFF / 0xFFFFFFFF 1690 // [32] = 0x00000000FFFFFFFF / 0xFFFFFFFF00000000 (for RV64) 1691 static Optional<RISCVBitmanipPat> matchRISCVBitmanipPat(SDValue Op) { 1692 Optional<uint64_t> Mask; 1693 // Optionally consume a mask around the shift operation. 1694 if (Op.getOpcode() == ISD::AND && isa<ConstantSDNode>(Op.getOperand(1))) { 1695 Mask = Op.getConstantOperandVal(1); 1696 Op = Op.getOperand(0); 1697 } 1698 if (Op.getOpcode() != ISD::SHL && Op.getOpcode() != ISD::SRL) 1699 return None; 1700 bool IsSHL = Op.getOpcode() == ISD::SHL; 1701 1702 if (!isa<ConstantSDNode>(Op.getOperand(1))) 1703 return None; 1704 auto ShAmt = Op.getConstantOperandVal(1); 1705 1706 if (!isPowerOf2_64(ShAmt)) 1707 return None; 1708 1709 // These are the unshifted masks which we use to match bit-manipulation 1710 // patterns. They may be shifted left in certain circumstances. 1711 static const uint64_t BitmanipMasks[] = { 1712 0x5555555555555555ULL, 0x3333333333333333ULL, 0x0F0F0F0F0F0F0F0FULL, 1713 0x00FF00FF00FF00FFULL, 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL, 1714 }; 1715 1716 unsigned MaskIdx = Log2_64(ShAmt); 1717 if (MaskIdx >= array_lengthof(BitmanipMasks)) 1718 return None; 1719 1720 auto Src = Op.getOperand(0); 1721 1722 unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32; 1723 auto ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width); 1724 1725 // The expected mask is shifted left when the AND is found around SHL 1726 // patterns. 1727 // ((x >> 1) & 0x55555555) 1728 // ((x << 1) & 0xAAAAAAAA) 1729 bool SHLExpMask = IsSHL; 1730 1731 if (!Mask) { 1732 // Sometimes LLVM keeps the mask as an operand of the shift, typically when 1733 // the mask is all ones: consume that now. 1734 if (Src.getOpcode() == ISD::AND && isa<ConstantSDNode>(Src.getOperand(1))) { 1735 Mask = Src.getConstantOperandVal(1); 1736 Src = Src.getOperand(0); 1737 // The expected mask is now in fact shifted left for SRL, so reverse the 1738 // decision. 1739 // ((x & 0xAAAAAAAA) >> 1) 1740 // ((x & 0x55555555) << 1) 1741 SHLExpMask = !SHLExpMask; 1742 } else { 1743 // Use a default shifted mask of all-ones if there's no AND, truncated 1744 // down to the expected width. This simplifies the logic later on. 1745 Mask = maskTrailingOnes<uint64_t>(Width); 1746 *Mask &= (IsSHL ? *Mask << ShAmt : *Mask >> ShAmt); 1747 } 1748 } 1749 1750 if (SHLExpMask) 1751 ExpMask <<= ShAmt; 1752 1753 if (Mask != ExpMask) 1754 return None; 1755 1756 return RISCVBitmanipPat{Src, (unsigned)ShAmt, IsSHL}; 1757 } 1758 1759 // Match the following pattern as a GREVI(W) operation 1760 // (or (BITMANIP_SHL x), (BITMANIP_SRL x)) 1761 static SDValue combineORToGREV(SDValue Op, SelectionDAG &DAG, 1762 const RISCVSubtarget &Subtarget) { 1763 EVT VT = Op.getValueType(); 1764 1765 if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) { 1766 auto LHS = matchRISCVBitmanipPat(Op.getOperand(0)); 1767 auto RHS = matchRISCVBitmanipPat(Op.getOperand(1)); 1768 if (LHS && RHS && LHS->formsPairWith(*RHS)) { 1769 SDLoc DL(Op); 1770 return DAG.getNode( 1771 RISCVISD::GREVI, DL, VT, LHS->Op, 1772 DAG.getTargetConstant(LHS->ShAmt, DL, Subtarget.getXLenVT())); 1773 } 1774 } 1775 return SDValue(); 1776 } 1777 1778 // Matches any the following pattern as a GORCI(W) operation 1779 // 1. (or (GREVI x, shamt), x) if shamt is a power of 2 1780 // 2. (or x, (GREVI x, shamt)) if shamt is a power of 2 1781 // 3. (or (or (BITMANIP_SHL x), x), (BITMANIP_SRL x)) 1782 // Note that with the variant of 3., 1783 // (or (or (BITMANIP_SHL x), (BITMANIP_SRL x)), x) 1784 // the inner pattern will first be matched as GREVI and then the outer 1785 // pattern will be matched to GORC via the first rule above. 1786 // 4. (or (rotl/rotr x, bitwidth/2), x) 1787 static SDValue combineORToGORC(SDValue Op, SelectionDAG &DAG, 1788 const RISCVSubtarget &Subtarget) { 1789 EVT VT = Op.getValueType(); 1790 1791 if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) { 1792 SDLoc DL(Op); 1793 SDValue Op0 = Op.getOperand(0); 1794 SDValue Op1 = Op.getOperand(1); 1795 1796 auto MatchOROfReverse = [&](SDValue Reverse, SDValue X) { 1797 if (Reverse.getOpcode() == RISCVISD::GREVI && Reverse.getOperand(0) == X && 1798 isPowerOf2_32(Reverse.getConstantOperandVal(1))) 1799 return DAG.getNode(RISCVISD::GORCI, DL, VT, X, Reverse.getOperand(1)); 1800 // We can also form GORCI from ROTL/ROTR by half the bitwidth. 1801 if ((Reverse.getOpcode() == ISD::ROTL || 1802 Reverse.getOpcode() == ISD::ROTR) && 1803 Reverse.getOperand(0) == X && 1804 isa<ConstantSDNode>(Reverse.getOperand(1))) { 1805 uint64_t RotAmt = Reverse.getConstantOperandVal(1); 1806 if (RotAmt == (VT.getSizeInBits() / 2)) 1807 return DAG.getNode( 1808 RISCVISD::GORCI, DL, VT, X, 1809 DAG.getTargetConstant(RotAmt, DL, Subtarget.getXLenVT())); 1810 } 1811 return SDValue(); 1812 }; 1813 1814 // Check for either commutable permutation of (or (GREVI x, shamt), x) 1815 if (SDValue V = MatchOROfReverse(Op0, Op1)) 1816 return V; 1817 if (SDValue V = MatchOROfReverse(Op1, Op0)) 1818 return V; 1819 1820 // OR is commutable so canonicalize its OR operand to the left 1821 if (Op0.getOpcode() != ISD::OR && Op1.getOpcode() == ISD::OR) 1822 std::swap(Op0, Op1); 1823 if (Op0.getOpcode() != ISD::OR) 1824 return SDValue(); 1825 SDValue OrOp0 = Op0.getOperand(0); 1826 SDValue OrOp1 = Op0.getOperand(1); 1827 auto LHS = matchRISCVBitmanipPat(OrOp0); 1828 // OR is commutable so swap the operands and try again: x might have been 1829 // on the left 1830 if (!LHS) { 1831 std::swap(OrOp0, OrOp1); 1832 LHS = matchRISCVBitmanipPat(OrOp0); 1833 } 1834 auto RHS = matchRISCVBitmanipPat(Op1); 1835 if (LHS && RHS && LHS->formsPairWith(*RHS) && LHS->Op == OrOp1) { 1836 return DAG.getNode( 1837 RISCVISD::GORCI, DL, VT, LHS->Op, 1838 DAG.getTargetConstant(LHS->ShAmt, DL, Subtarget.getXLenVT())); 1839 } 1840 } 1841 return SDValue(); 1842 } 1843 1844 // Combine (GREVI (GREVI x, C2), C1) -> (GREVI x, C1^C2) when C1^C2 is 1845 // non-zero, and to x when it is. Any repeated GREVI stage undoes itself. 1846 // Combine (GORCI (GORCI x, C2), C1) -> (GORCI x, C1|C2). Repeated stage does 1847 // not undo itself, but they are redundant. 1848 static SDValue combineGREVI_GORCI(SDNode *N, SelectionDAG &DAG) { 1849 unsigned ShAmt1 = N->getConstantOperandVal(1); 1850 SDValue Src = N->getOperand(0); 1851 1852 if (Src.getOpcode() != N->getOpcode()) 1853 return SDValue(); 1854 1855 unsigned ShAmt2 = Src.getConstantOperandVal(1); 1856 Src = Src.getOperand(0); 1857 1858 unsigned CombinedShAmt; 1859 if (N->getOpcode() == RISCVISD::GORCI || N->getOpcode() == RISCVISD::GORCIW) 1860 CombinedShAmt = ShAmt1 | ShAmt2; 1861 else 1862 CombinedShAmt = ShAmt1 ^ ShAmt2; 1863 1864 if (CombinedShAmt == 0) 1865 return Src; 1866 1867 SDLoc DL(N); 1868 return DAG.getNode(N->getOpcode(), DL, N->getValueType(0), Src, 1869 DAG.getTargetConstant(CombinedShAmt, DL, 1870 N->getOperand(1).getValueType())); 1871 } 1872 1873 SDValue RISCVTargetLowering::PerformDAGCombine(SDNode *N, 1874 DAGCombinerInfo &DCI) const { 1875 SelectionDAG &DAG = DCI.DAG; 1876 1877 switch (N->getOpcode()) { 1878 default: 1879 break; 1880 case RISCVISD::SplitF64: { 1881 SDValue Op0 = N->getOperand(0); 1882 // If the input to SplitF64 is just BuildPairF64 then the operation is 1883 // redundant. Instead, use BuildPairF64's operands directly. 1884 if (Op0->getOpcode() == RISCVISD::BuildPairF64) 1885 return DCI.CombineTo(N, Op0.getOperand(0), Op0.getOperand(1)); 1886 1887 SDLoc DL(N); 1888 1889 // It's cheaper to materialise two 32-bit integers than to load a double 1890 // from the constant pool and transfer it to integer registers through the 1891 // stack. 1892 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op0)) { 1893 APInt V = C->getValueAPF().bitcastToAPInt(); 1894 SDValue Lo = DAG.getConstant(V.trunc(32), DL, MVT::i32); 1895 SDValue Hi = DAG.getConstant(V.lshr(32).trunc(32), DL, MVT::i32); 1896 return DCI.CombineTo(N, Lo, Hi); 1897 } 1898 1899 // This is a target-specific version of a DAGCombine performed in 1900 // DAGCombiner::visitBITCAST. It performs the equivalent of: 1901 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) 1902 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) 1903 if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) || 1904 !Op0.getNode()->hasOneUse()) 1905 break; 1906 SDValue NewSplitF64 = 1907 DAG.getNode(RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), 1908 Op0.getOperand(0)); 1909 SDValue Lo = NewSplitF64.getValue(0); 1910 SDValue Hi = NewSplitF64.getValue(1); 1911 APInt SignBit = APInt::getSignMask(32); 1912 if (Op0.getOpcode() == ISD::FNEG) { 1913 SDValue NewHi = DAG.getNode(ISD::XOR, DL, MVT::i32, Hi, 1914 DAG.getConstant(SignBit, DL, MVT::i32)); 1915 return DCI.CombineTo(N, Lo, NewHi); 1916 } 1917 assert(Op0.getOpcode() == ISD::FABS); 1918 SDValue NewHi = DAG.getNode(ISD::AND, DL, MVT::i32, Hi, 1919 DAG.getConstant(~SignBit, DL, MVT::i32)); 1920 return DCI.CombineTo(N, Lo, NewHi); 1921 } 1922 case RISCVISD::SLLW: 1923 case RISCVISD::SRAW: 1924 case RISCVISD::SRLW: 1925 case RISCVISD::ROLW: 1926 case RISCVISD::RORW: { 1927 // Only the lower 32 bits of LHS and lower 5 bits of RHS are read. 1928 SDValue LHS = N->getOperand(0); 1929 SDValue RHS = N->getOperand(1); 1930 APInt LHSMask = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 32); 1931 APInt RHSMask = APInt::getLowBitsSet(RHS.getValueSizeInBits(), 5); 1932 if (SimplifyDemandedBits(N->getOperand(0), LHSMask, DCI) || 1933 SimplifyDemandedBits(N->getOperand(1), RHSMask, DCI)) { 1934 if (N->getOpcode() != ISD::DELETED_NODE) 1935 DCI.AddToWorklist(N); 1936 return SDValue(N, 0); 1937 } 1938 break; 1939 } 1940 case RISCVISD::FSLW: 1941 case RISCVISD::FSRW: { 1942 // Only the lower 32 bits of Values and lower 6 bits of shift amount are 1943 // read. 1944 SDValue Op0 = N->getOperand(0); 1945 SDValue Op1 = N->getOperand(1); 1946 SDValue ShAmt = N->getOperand(2); 1947 APInt OpMask = APInt::getLowBitsSet(Op0.getValueSizeInBits(), 32); 1948 APInt ShAmtMask = APInt::getLowBitsSet(ShAmt.getValueSizeInBits(), 6); 1949 if (SimplifyDemandedBits(Op0, OpMask, DCI) || 1950 SimplifyDemandedBits(Op1, OpMask, DCI) || 1951 SimplifyDemandedBits(ShAmt, ShAmtMask, DCI)) { 1952 if (N->getOpcode() != ISD::DELETED_NODE) 1953 DCI.AddToWorklist(N); 1954 return SDValue(N, 0); 1955 } 1956 break; 1957 } 1958 case RISCVISD::GREVIW: 1959 case RISCVISD::GORCIW: { 1960 // Only the lower 32 bits of the first operand are read 1961 SDValue Op0 = N->getOperand(0); 1962 APInt Mask = APInt::getLowBitsSet(Op0.getValueSizeInBits(), 32); 1963 if (SimplifyDemandedBits(Op0, Mask, DCI)) { 1964 if (N->getOpcode() != ISD::DELETED_NODE) 1965 DCI.AddToWorklist(N); 1966 return SDValue(N, 0); 1967 } 1968 1969 return combineGREVI_GORCI(N, DCI.DAG); 1970 } 1971 case RISCVISD::FMV_X_ANYEXTW_RV64: { 1972 SDLoc DL(N); 1973 SDValue Op0 = N->getOperand(0); 1974 // If the input to FMV_X_ANYEXTW_RV64 is just FMV_W_X_RV64 then the 1975 // conversion is unnecessary and can be replaced with an ANY_EXTEND 1976 // of the FMV_W_X_RV64 operand. 1977 if (Op0->getOpcode() == RISCVISD::FMV_W_X_RV64) { 1978 assert(Op0.getOperand(0).getValueType() == MVT::i64 && 1979 "Unexpected value type!"); 1980 return Op0.getOperand(0); 1981 } 1982 1983 // This is a target-specific version of a DAGCombine performed in 1984 // DAGCombiner::visitBITCAST. It performs the equivalent of: 1985 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) 1986 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) 1987 if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) || 1988 !Op0.getNode()->hasOneUse()) 1989 break; 1990 SDValue NewFMV = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, 1991 Op0.getOperand(0)); 1992 APInt SignBit = APInt::getSignMask(32).sext(64); 1993 if (Op0.getOpcode() == ISD::FNEG) 1994 return DAG.getNode(ISD::XOR, DL, MVT::i64, NewFMV, 1995 DAG.getConstant(SignBit, DL, MVT::i64)); 1996 1997 assert(Op0.getOpcode() == ISD::FABS); 1998 return DAG.getNode(ISD::AND, DL, MVT::i64, NewFMV, 1999 DAG.getConstant(~SignBit, DL, MVT::i64)); 2000 } 2001 case RISCVISD::GREVI: 2002 case RISCVISD::GORCI: 2003 return combineGREVI_GORCI(N, DCI.DAG); 2004 case ISD::OR: 2005 if (auto GREV = combineORToGREV(SDValue(N, 0), DCI.DAG, Subtarget)) 2006 return GREV; 2007 if (auto GORC = combineORToGORC(SDValue(N, 0), DCI.DAG, Subtarget)) 2008 return GORC; 2009 break; 2010 case RISCVISD::SELECT_CC: { 2011 // Transform 2012 // (select_cc (xor X, 1), 0, setne, trueV, falseV) -> 2013 // (select_cc X, 0, seteq, trueV, falseV) if we can prove X is 0/1. 2014 // This can occur when legalizing some floating point comparisons. 2015 SDValue LHS = N->getOperand(0); 2016 SDValue RHS = N->getOperand(1); 2017 auto CCVal = static_cast<ISD::CondCode>(N->getConstantOperandVal(2)); 2018 APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1); 2019 if (ISD::isIntEqualitySetCC(CCVal) && isNullConstant(RHS) && 2020 LHS.getOpcode() == ISD::XOR && isOneConstant(LHS.getOperand(1)) && 2021 DAG.MaskedValueIsZero(LHS.getOperand(0), Mask)) { 2022 SDLoc DL(N); 2023 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 2024 SDValue TargetCC = DAG.getConstant(CCVal, DL, Subtarget.getXLenVT()); 2025 return DAG.getNode(RISCVISD::SELECT_CC, DL, N->getValueType(0), 2026 {LHS.getOperand(0), RHS, TargetCC, N->getOperand(3), 2027 N->getOperand(4)}); 2028 } 2029 break; 2030 } 2031 case ISD::SETCC: { 2032 // (setcc X, 1, setne) -> (setcc X, 0, seteq) if we can prove X is 0/1. 2033 // Comparing with 0 may allow us to fold into bnez/beqz. 2034 SDValue LHS = N->getOperand(0); 2035 SDValue RHS = N->getOperand(1); 2036 if (LHS.getValueType().isScalableVector()) 2037 break; 2038 auto CC = cast<CondCodeSDNode>(N->getOperand(2))->get(); 2039 APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1); 2040 if (isOneConstant(RHS) && ISD::isIntEqualitySetCC(CC) && 2041 DAG.MaskedValueIsZero(LHS, Mask)) { 2042 SDLoc DL(N); 2043 SDValue Zero = DAG.getConstant(0, DL, LHS.getValueType()); 2044 CC = ISD::getSetCCInverse(CC, LHS.getValueType()); 2045 return DAG.getSetCC(DL, N->getValueType(0), LHS, Zero, CC); 2046 } 2047 break; 2048 } 2049 } 2050 2051 return SDValue(); 2052 } 2053 2054 bool RISCVTargetLowering::isDesirableToCommuteWithShift( 2055 const SDNode *N, CombineLevel Level) const { 2056 // The following folds are only desirable if `(OP _, c1 << c2)` can be 2057 // materialised in fewer instructions than `(OP _, c1)`: 2058 // 2059 // (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2) 2060 // (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2) 2061 SDValue N0 = N->getOperand(0); 2062 EVT Ty = N0.getValueType(); 2063 if (Ty.isScalarInteger() && 2064 (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::OR)) { 2065 auto *C1 = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 2066 auto *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2067 if (C1 && C2) { 2068 const APInt &C1Int = C1->getAPIntValue(); 2069 APInt ShiftedC1Int = C1Int << C2->getAPIntValue(); 2070 2071 // We can materialise `c1 << c2` into an add immediate, so it's "free", 2072 // and the combine should happen, to potentially allow further combines 2073 // later. 2074 if (ShiftedC1Int.getMinSignedBits() <= 64 && 2075 isLegalAddImmediate(ShiftedC1Int.getSExtValue())) 2076 return true; 2077 2078 // We can materialise `c1` in an add immediate, so it's "free", and the 2079 // combine should be prevented. 2080 if (C1Int.getMinSignedBits() <= 64 && 2081 isLegalAddImmediate(C1Int.getSExtValue())) 2082 return false; 2083 2084 // Neither constant will fit into an immediate, so find materialisation 2085 // costs. 2086 int C1Cost = RISCVMatInt::getIntMatCost(C1Int, Ty.getSizeInBits(), 2087 Subtarget.is64Bit()); 2088 int ShiftedC1Cost = RISCVMatInt::getIntMatCost( 2089 ShiftedC1Int, Ty.getSizeInBits(), Subtarget.is64Bit()); 2090 2091 // Materialising `c1` is cheaper than materialising `c1 << c2`, so the 2092 // combine should be prevented. 2093 if (C1Cost < ShiftedC1Cost) 2094 return false; 2095 } 2096 } 2097 return true; 2098 } 2099 2100 bool RISCVTargetLowering::targetShrinkDemandedConstant( 2101 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 2102 TargetLoweringOpt &TLO) const { 2103 // Delay this optimization as late as possible. 2104 if (!TLO.LegalOps) 2105 return false; 2106 2107 EVT VT = Op.getValueType(); 2108 if (VT.isVector()) 2109 return false; 2110 2111 // Only handle AND for now. 2112 if (Op.getOpcode() != ISD::AND) 2113 return false; 2114 2115 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 2116 if (!C) 2117 return false; 2118 2119 const APInt &Mask = C->getAPIntValue(); 2120 2121 // Clear all non-demanded bits initially. 2122 APInt ShrunkMask = Mask & DemandedBits; 2123 2124 // If the shrunk mask fits in sign extended 12 bits, let the target 2125 // independent code apply it. 2126 if (ShrunkMask.isSignedIntN(12)) 2127 return false; 2128 2129 // Try to make a smaller immediate by setting undemanded bits. 2130 2131 // We need to be able to make a negative number through a combination of mask 2132 // and undemanded bits. 2133 APInt ExpandedMask = Mask | ~DemandedBits; 2134 if (!ExpandedMask.isNegative()) 2135 return false; 2136 2137 // What is the fewest number of bits we need to represent the negative number. 2138 unsigned MinSignedBits = ExpandedMask.getMinSignedBits(); 2139 2140 // Try to make a 12 bit negative immediate. If that fails try to make a 32 2141 // bit negative immediate unless the shrunk immediate already fits in 32 bits. 2142 APInt NewMask = ShrunkMask; 2143 if (MinSignedBits <= 12) 2144 NewMask.setBitsFrom(11); 2145 else if (MinSignedBits <= 32 && !ShrunkMask.isSignedIntN(32)) 2146 NewMask.setBitsFrom(31); 2147 else 2148 return false; 2149 2150 // Sanity check that our new mask is a subset of the demanded mask. 2151 assert(NewMask.isSubsetOf(ExpandedMask)); 2152 2153 // If we aren't changing the mask, just return true to keep it and prevent 2154 // the caller from optimizing. 2155 if (NewMask == Mask) 2156 return true; 2157 2158 // Replace the constant with the new mask. 2159 SDLoc DL(Op); 2160 SDValue NewC = TLO.DAG.getConstant(NewMask, DL, VT); 2161 SDValue NewOp = TLO.DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), NewC); 2162 return TLO.CombineTo(Op, NewOp); 2163 } 2164 2165 void RISCVTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 2166 KnownBits &Known, 2167 const APInt &DemandedElts, 2168 const SelectionDAG &DAG, 2169 unsigned Depth) const { 2170 unsigned BitWidth = Known.getBitWidth(); 2171 unsigned Opc = Op.getOpcode(); 2172 assert((Opc >= ISD::BUILTIN_OP_END || 2173 Opc == ISD::INTRINSIC_WO_CHAIN || 2174 Opc == ISD::INTRINSIC_W_CHAIN || 2175 Opc == ISD::INTRINSIC_VOID) && 2176 "Should use MaskedValueIsZero if you don't know whether Op" 2177 " is a target node!"); 2178 2179 Known.resetAll(); 2180 switch (Opc) { 2181 default: break; 2182 case RISCVISD::REMUW: { 2183 KnownBits Known2; 2184 Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2185 Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2186 // We only care about the lower 32 bits. 2187 Known = KnownBits::urem(Known.trunc(32), Known2.trunc(32)); 2188 // Restore the original width by sign extending. 2189 Known = Known.sext(BitWidth); 2190 break; 2191 } 2192 case RISCVISD::DIVUW: { 2193 KnownBits Known2; 2194 Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2195 Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2196 // We only care about the lower 32 bits. 2197 Known = KnownBits::udiv(Known.trunc(32), Known2.trunc(32)); 2198 // Restore the original width by sign extending. 2199 Known = Known.sext(BitWidth); 2200 break; 2201 } 2202 case RISCVISD::READ_VLENB: 2203 // We assume VLENB is at least 8 bytes. 2204 // FIXME: The 1.0 draft spec defines minimum VLEN as 128 bits. 2205 Known.Zero.setLowBits(3); 2206 break; 2207 } 2208 } 2209 2210 unsigned RISCVTargetLowering::ComputeNumSignBitsForTargetNode( 2211 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 2212 unsigned Depth) const { 2213 switch (Op.getOpcode()) { 2214 default: 2215 break; 2216 case RISCVISD::SLLW: 2217 case RISCVISD::SRAW: 2218 case RISCVISD::SRLW: 2219 case RISCVISD::DIVW: 2220 case RISCVISD::DIVUW: 2221 case RISCVISD::REMUW: 2222 case RISCVISD::ROLW: 2223 case RISCVISD::RORW: 2224 case RISCVISD::GREVIW: 2225 case RISCVISD::GORCIW: 2226 case RISCVISD::FSLW: 2227 case RISCVISD::FSRW: 2228 // TODO: As the result is sign-extended, this is conservatively correct. A 2229 // more precise answer could be calculated for SRAW depending on known 2230 // bits in the shift amount. 2231 return 33; 2232 case RISCVISD::VMV_X_S: 2233 // The number of sign bits of the scalar result is computed by obtaining the 2234 // element type of the input vector operand, substracting its width from the 2235 // XLEN, and then adding one (sign bit within the element type). 2236 return Subtarget.getXLen() - Op.getOperand(0).getScalarValueSizeInBits() + 1; 2237 } 2238 2239 return 1; 2240 } 2241 2242 static MachineBasicBlock *emitReadCycleWidePseudo(MachineInstr &MI, 2243 MachineBasicBlock *BB) { 2244 assert(MI.getOpcode() == RISCV::ReadCycleWide && "Unexpected instruction"); 2245 2246 // To read the 64-bit cycle CSR on a 32-bit target, we read the two halves. 2247 // Should the count have wrapped while it was being read, we need to try 2248 // again. 2249 // ... 2250 // read: 2251 // rdcycleh x3 # load high word of cycle 2252 // rdcycle x2 # load low word of cycle 2253 // rdcycleh x4 # load high word of cycle 2254 // bne x3, x4, read # check if high word reads match, otherwise try again 2255 // ... 2256 2257 MachineFunction &MF = *BB->getParent(); 2258 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 2259 MachineFunction::iterator It = ++BB->getIterator(); 2260 2261 MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB); 2262 MF.insert(It, LoopMBB); 2263 2264 MachineBasicBlock *DoneMBB = MF.CreateMachineBasicBlock(LLVM_BB); 2265 MF.insert(It, DoneMBB); 2266 2267 // Transfer the remainder of BB and its successor edges to DoneMBB. 2268 DoneMBB->splice(DoneMBB->begin(), BB, 2269 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 2270 DoneMBB->transferSuccessorsAndUpdatePHIs(BB); 2271 2272 BB->addSuccessor(LoopMBB); 2273 2274 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 2275 Register ReadAgainReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 2276 Register LoReg = MI.getOperand(0).getReg(); 2277 Register HiReg = MI.getOperand(1).getReg(); 2278 DebugLoc DL = MI.getDebugLoc(); 2279 2280 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 2281 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), HiReg) 2282 .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding) 2283 .addReg(RISCV::X0); 2284 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), LoReg) 2285 .addImm(RISCVSysReg::lookupSysRegByName("CYCLE")->Encoding) 2286 .addReg(RISCV::X0); 2287 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), ReadAgainReg) 2288 .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding) 2289 .addReg(RISCV::X0); 2290 2291 BuildMI(LoopMBB, DL, TII->get(RISCV::BNE)) 2292 .addReg(HiReg) 2293 .addReg(ReadAgainReg) 2294 .addMBB(LoopMBB); 2295 2296 LoopMBB->addSuccessor(LoopMBB); 2297 LoopMBB->addSuccessor(DoneMBB); 2298 2299 MI.eraseFromParent(); 2300 2301 return DoneMBB; 2302 } 2303 2304 static MachineBasicBlock *emitSplitF64Pseudo(MachineInstr &MI, 2305 MachineBasicBlock *BB) { 2306 assert(MI.getOpcode() == RISCV::SplitF64Pseudo && "Unexpected instruction"); 2307 2308 MachineFunction &MF = *BB->getParent(); 2309 DebugLoc DL = MI.getDebugLoc(); 2310 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 2311 const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo(); 2312 Register LoReg = MI.getOperand(0).getReg(); 2313 Register HiReg = MI.getOperand(1).getReg(); 2314 Register SrcReg = MI.getOperand(2).getReg(); 2315 const TargetRegisterClass *SrcRC = &RISCV::FPR64RegClass; 2316 int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF); 2317 2318 TII.storeRegToStackSlot(*BB, MI, SrcReg, MI.getOperand(2).isKill(), FI, SrcRC, 2319 RI); 2320 MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI); 2321 MachineMemOperand *MMOLo = 2322 MF.getMachineMemOperand(MPI, MachineMemOperand::MOLoad, 4, Align(8)); 2323 MachineMemOperand *MMOHi = MF.getMachineMemOperand( 2324 MPI.getWithOffset(4), MachineMemOperand::MOLoad, 4, Align(8)); 2325 BuildMI(*BB, MI, DL, TII.get(RISCV::LW), LoReg) 2326 .addFrameIndex(FI) 2327 .addImm(0) 2328 .addMemOperand(MMOLo); 2329 BuildMI(*BB, MI, DL, TII.get(RISCV::LW), HiReg) 2330 .addFrameIndex(FI) 2331 .addImm(4) 2332 .addMemOperand(MMOHi); 2333 MI.eraseFromParent(); // The pseudo instruction is gone now. 2334 return BB; 2335 } 2336 2337 static MachineBasicBlock *emitBuildPairF64Pseudo(MachineInstr &MI, 2338 MachineBasicBlock *BB) { 2339 assert(MI.getOpcode() == RISCV::BuildPairF64Pseudo && 2340 "Unexpected instruction"); 2341 2342 MachineFunction &MF = *BB->getParent(); 2343 DebugLoc DL = MI.getDebugLoc(); 2344 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 2345 const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo(); 2346 Register DstReg = MI.getOperand(0).getReg(); 2347 Register LoReg = MI.getOperand(1).getReg(); 2348 Register HiReg = MI.getOperand(2).getReg(); 2349 const TargetRegisterClass *DstRC = &RISCV::FPR64RegClass; 2350 int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF); 2351 2352 MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI); 2353 MachineMemOperand *MMOLo = 2354 MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Align(8)); 2355 MachineMemOperand *MMOHi = MF.getMachineMemOperand( 2356 MPI.getWithOffset(4), MachineMemOperand::MOStore, 4, Align(8)); 2357 BuildMI(*BB, MI, DL, TII.get(RISCV::SW)) 2358 .addReg(LoReg, getKillRegState(MI.getOperand(1).isKill())) 2359 .addFrameIndex(FI) 2360 .addImm(0) 2361 .addMemOperand(MMOLo); 2362 BuildMI(*BB, MI, DL, TII.get(RISCV::SW)) 2363 .addReg(HiReg, getKillRegState(MI.getOperand(2).isKill())) 2364 .addFrameIndex(FI) 2365 .addImm(4) 2366 .addMemOperand(MMOHi); 2367 TII.loadRegFromStackSlot(*BB, MI, DstReg, FI, DstRC, RI); 2368 MI.eraseFromParent(); // The pseudo instruction is gone now. 2369 return BB; 2370 } 2371 2372 static bool isSelectPseudo(MachineInstr &MI) { 2373 switch (MI.getOpcode()) { 2374 default: 2375 return false; 2376 case RISCV::Select_GPR_Using_CC_GPR: 2377 case RISCV::Select_FPR16_Using_CC_GPR: 2378 case RISCV::Select_FPR32_Using_CC_GPR: 2379 case RISCV::Select_FPR64_Using_CC_GPR: 2380 return true; 2381 } 2382 } 2383 2384 static MachineBasicBlock *emitSelectPseudo(MachineInstr &MI, 2385 MachineBasicBlock *BB) { 2386 // To "insert" Select_* instructions, we actually have to insert the triangle 2387 // control-flow pattern. The incoming instructions know the destination vreg 2388 // to set, the condition code register to branch on, the true/false values to 2389 // select between, and the condcode to use to select the appropriate branch. 2390 // 2391 // We produce the following control flow: 2392 // HeadMBB 2393 // | \ 2394 // | IfFalseMBB 2395 // | / 2396 // TailMBB 2397 // 2398 // When we find a sequence of selects we attempt to optimize their emission 2399 // by sharing the control flow. Currently we only handle cases where we have 2400 // multiple selects with the exact same condition (same LHS, RHS and CC). 2401 // The selects may be interleaved with other instructions if the other 2402 // instructions meet some requirements we deem safe: 2403 // - They are debug instructions. Otherwise, 2404 // - They do not have side-effects, do not access memory and their inputs do 2405 // not depend on the results of the select pseudo-instructions. 2406 // The TrueV/FalseV operands of the selects cannot depend on the result of 2407 // previous selects in the sequence. 2408 // These conditions could be further relaxed. See the X86 target for a 2409 // related approach and more information. 2410 Register LHS = MI.getOperand(1).getReg(); 2411 Register RHS = MI.getOperand(2).getReg(); 2412 auto CC = static_cast<ISD::CondCode>(MI.getOperand(3).getImm()); 2413 2414 SmallVector<MachineInstr *, 4> SelectDebugValues; 2415 SmallSet<Register, 4> SelectDests; 2416 SelectDests.insert(MI.getOperand(0).getReg()); 2417 2418 MachineInstr *LastSelectPseudo = &MI; 2419 2420 for (auto E = BB->end(), SequenceMBBI = MachineBasicBlock::iterator(MI); 2421 SequenceMBBI != E; ++SequenceMBBI) { 2422 if (SequenceMBBI->isDebugInstr()) 2423 continue; 2424 else if (isSelectPseudo(*SequenceMBBI)) { 2425 if (SequenceMBBI->getOperand(1).getReg() != LHS || 2426 SequenceMBBI->getOperand(2).getReg() != RHS || 2427 SequenceMBBI->getOperand(3).getImm() != CC || 2428 SelectDests.count(SequenceMBBI->getOperand(4).getReg()) || 2429 SelectDests.count(SequenceMBBI->getOperand(5).getReg())) 2430 break; 2431 LastSelectPseudo = &*SequenceMBBI; 2432 SequenceMBBI->collectDebugValues(SelectDebugValues); 2433 SelectDests.insert(SequenceMBBI->getOperand(0).getReg()); 2434 } else { 2435 if (SequenceMBBI->hasUnmodeledSideEffects() || 2436 SequenceMBBI->mayLoadOrStore()) 2437 break; 2438 if (llvm::any_of(SequenceMBBI->operands(), [&](MachineOperand &MO) { 2439 return MO.isReg() && MO.isUse() && SelectDests.count(MO.getReg()); 2440 })) 2441 break; 2442 } 2443 } 2444 2445 const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo(); 2446 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 2447 DebugLoc DL = MI.getDebugLoc(); 2448 MachineFunction::iterator I = ++BB->getIterator(); 2449 2450 MachineBasicBlock *HeadMBB = BB; 2451 MachineFunction *F = BB->getParent(); 2452 MachineBasicBlock *TailMBB = F->CreateMachineBasicBlock(LLVM_BB); 2453 MachineBasicBlock *IfFalseMBB = F->CreateMachineBasicBlock(LLVM_BB); 2454 2455 F->insert(I, IfFalseMBB); 2456 F->insert(I, TailMBB); 2457 2458 // Transfer debug instructions associated with the selects to TailMBB. 2459 for (MachineInstr *DebugInstr : SelectDebugValues) { 2460 TailMBB->push_back(DebugInstr->removeFromParent()); 2461 } 2462 2463 // Move all instructions after the sequence to TailMBB. 2464 TailMBB->splice(TailMBB->end(), HeadMBB, 2465 std::next(LastSelectPseudo->getIterator()), HeadMBB->end()); 2466 // Update machine-CFG edges by transferring all successors of the current 2467 // block to the new block which will contain the Phi nodes for the selects. 2468 TailMBB->transferSuccessorsAndUpdatePHIs(HeadMBB); 2469 // Set the successors for HeadMBB. 2470 HeadMBB->addSuccessor(IfFalseMBB); 2471 HeadMBB->addSuccessor(TailMBB); 2472 2473 // Insert appropriate branch. 2474 unsigned Opcode = getBranchOpcodeForIntCondCode(CC); 2475 2476 BuildMI(HeadMBB, DL, TII.get(Opcode)) 2477 .addReg(LHS) 2478 .addReg(RHS) 2479 .addMBB(TailMBB); 2480 2481 // IfFalseMBB just falls through to TailMBB. 2482 IfFalseMBB->addSuccessor(TailMBB); 2483 2484 // Create PHIs for all of the select pseudo-instructions. 2485 auto SelectMBBI = MI.getIterator(); 2486 auto SelectEnd = std::next(LastSelectPseudo->getIterator()); 2487 auto InsertionPoint = TailMBB->begin(); 2488 while (SelectMBBI != SelectEnd) { 2489 auto Next = std::next(SelectMBBI); 2490 if (isSelectPseudo(*SelectMBBI)) { 2491 // %Result = phi [ %TrueValue, HeadMBB ], [ %FalseValue, IfFalseMBB ] 2492 BuildMI(*TailMBB, InsertionPoint, SelectMBBI->getDebugLoc(), 2493 TII.get(RISCV::PHI), SelectMBBI->getOperand(0).getReg()) 2494 .addReg(SelectMBBI->getOperand(4).getReg()) 2495 .addMBB(HeadMBB) 2496 .addReg(SelectMBBI->getOperand(5).getReg()) 2497 .addMBB(IfFalseMBB); 2498 SelectMBBI->eraseFromParent(); 2499 } 2500 SelectMBBI = Next; 2501 } 2502 2503 F->getProperties().reset(MachineFunctionProperties::Property::NoPHIs); 2504 return TailMBB; 2505 } 2506 2507 static MachineBasicBlock *addVSetVL(MachineInstr &MI, MachineBasicBlock *BB, 2508 int VLIndex, unsigned SEWIndex, 2509 RISCVVLMUL VLMul, bool WritesElement0) { 2510 MachineFunction &MF = *BB->getParent(); 2511 DebugLoc DL = MI.getDebugLoc(); 2512 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 2513 2514 unsigned SEW = MI.getOperand(SEWIndex).getImm(); 2515 assert(RISCVVType::isValidSEW(SEW) && "Unexpected SEW"); 2516 RISCVVSEW ElementWidth = static_cast<RISCVVSEW>(Log2_32(SEW / 8)); 2517 2518 MachineRegisterInfo &MRI = MF.getRegInfo(); 2519 2520 // VL and VTYPE are alive here. 2521 MachineInstrBuilder MIB = BuildMI(*BB, MI, DL, TII.get(RISCV::PseudoVSETVLI)); 2522 2523 if (VLIndex >= 0) { 2524 // Set VL (rs1 != X0). 2525 Register DestReg = MRI.createVirtualRegister(&RISCV::GPRRegClass); 2526 MIB.addReg(DestReg, RegState::Define | RegState::Dead) 2527 .addReg(MI.getOperand(VLIndex).getReg()); 2528 } else 2529 // With no VL operator in the pseudo, do not modify VL (rd = X0, rs1 = X0). 2530 MIB.addReg(RISCV::X0, RegState::Define | RegState::Dead) 2531 .addReg(RISCV::X0, RegState::Kill); 2532 2533 // Default to tail agnostic unless the destination is tied to a source. In 2534 // that case the user would have some control over the tail values. The tail 2535 // policy is also ignored on instructions that only update element 0 like 2536 // vmv.s.x or reductions so use agnostic there to match the common case. 2537 // FIXME: This is conservatively correct, but we might want to detect that 2538 // the input is undefined. 2539 bool TailAgnostic = true; 2540 unsigned UseOpIdx; 2541 if (MI.isRegTiedToUseOperand(0, &UseOpIdx) && !WritesElement0) { 2542 TailAgnostic = false; 2543 // If the tied operand is an IMPLICIT_DEF we can keep TailAgnostic. 2544 const MachineOperand &UseMO = MI.getOperand(UseOpIdx); 2545 MachineInstr *UseMI = MRI.getVRegDef(UseMO.getReg()); 2546 if (UseMI && UseMI->isImplicitDef()) 2547 TailAgnostic = true; 2548 } 2549 2550 // For simplicity we reuse the vtype representation here. 2551 MIB.addImm(RISCVVType::encodeVTYPE(VLMul, ElementWidth, 2552 /*TailAgnostic*/ TailAgnostic, 2553 /*MaskAgnostic*/ false)); 2554 2555 // Remove (now) redundant operands from pseudo 2556 MI.getOperand(SEWIndex).setImm(-1); 2557 if (VLIndex >= 0) { 2558 MI.getOperand(VLIndex).setReg(RISCV::NoRegister); 2559 MI.getOperand(VLIndex).setIsKill(false); 2560 } 2561 2562 return BB; 2563 } 2564 2565 MachineBasicBlock * 2566 RISCVTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 2567 MachineBasicBlock *BB) const { 2568 uint64_t TSFlags = MI.getDesc().TSFlags; 2569 2570 if (TSFlags & RISCVII::HasSEWOpMask) { 2571 unsigned NumOperands = MI.getNumExplicitOperands(); 2572 int VLIndex = (TSFlags & RISCVII::HasVLOpMask) ? NumOperands - 2 : -1; 2573 unsigned SEWIndex = NumOperands - 1; 2574 bool WritesElement0 = TSFlags & RISCVII::WritesElement0Mask; 2575 2576 RISCVVLMUL VLMul = static_cast<RISCVVLMUL>((TSFlags & RISCVII::VLMulMask) >> 2577 RISCVII::VLMulShift); 2578 return addVSetVL(MI, BB, VLIndex, SEWIndex, VLMul, WritesElement0); 2579 } 2580 2581 switch (MI.getOpcode()) { 2582 default: 2583 llvm_unreachable("Unexpected instr type to insert"); 2584 case RISCV::ReadCycleWide: 2585 assert(!Subtarget.is64Bit() && 2586 "ReadCycleWrite is only to be used on riscv32"); 2587 return emitReadCycleWidePseudo(MI, BB); 2588 case RISCV::Select_GPR_Using_CC_GPR: 2589 case RISCV::Select_FPR16_Using_CC_GPR: 2590 case RISCV::Select_FPR32_Using_CC_GPR: 2591 case RISCV::Select_FPR64_Using_CC_GPR: 2592 return emitSelectPseudo(MI, BB); 2593 case RISCV::BuildPairF64Pseudo: 2594 return emitBuildPairF64Pseudo(MI, BB); 2595 case RISCV::SplitF64Pseudo: 2596 return emitSplitF64Pseudo(MI, BB); 2597 } 2598 } 2599 2600 // Calling Convention Implementation. 2601 // The expectations for frontend ABI lowering vary from target to target. 2602 // Ideally, an LLVM frontend would be able to avoid worrying about many ABI 2603 // details, but this is a longer term goal. For now, we simply try to keep the 2604 // role of the frontend as simple and well-defined as possible. The rules can 2605 // be summarised as: 2606 // * Never split up large scalar arguments. We handle them here. 2607 // * If a hardfloat calling convention is being used, and the struct may be 2608 // passed in a pair of registers (fp+fp, int+fp), and both registers are 2609 // available, then pass as two separate arguments. If either the GPRs or FPRs 2610 // are exhausted, then pass according to the rule below. 2611 // * If a struct could never be passed in registers or directly in a stack 2612 // slot (as it is larger than 2*XLEN and the floating point rules don't 2613 // apply), then pass it using a pointer with the byval attribute. 2614 // * If a struct is less than 2*XLEN, then coerce to either a two-element 2615 // word-sized array or a 2*XLEN scalar (depending on alignment). 2616 // * The frontend can determine whether a struct is returned by reference or 2617 // not based on its size and fields. If it will be returned by reference, the 2618 // frontend must modify the prototype so a pointer with the sret annotation is 2619 // passed as the first argument. This is not necessary for large scalar 2620 // returns. 2621 // * Struct return values and varargs should be coerced to structs containing 2622 // register-size fields in the same situations they would be for fixed 2623 // arguments. 2624 2625 static const MCPhysReg ArgGPRs[] = { 2626 RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, 2627 RISCV::X14, RISCV::X15, RISCV::X16, RISCV::X17 2628 }; 2629 static const MCPhysReg ArgFPR16s[] = { 2630 RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, 2631 RISCV::F14_H, RISCV::F15_H, RISCV::F16_H, RISCV::F17_H 2632 }; 2633 static const MCPhysReg ArgFPR32s[] = { 2634 RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, 2635 RISCV::F14_F, RISCV::F15_F, RISCV::F16_F, RISCV::F17_F 2636 }; 2637 static const MCPhysReg ArgFPR64s[] = { 2638 RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, 2639 RISCV::F14_D, RISCV::F15_D, RISCV::F16_D, RISCV::F17_D 2640 }; 2641 // This is an interim calling convention and it may be changed in the future. 2642 static const MCPhysReg ArgVRs[] = { 2643 RISCV::V8, RISCV::V9, RISCV::V10, RISCV::V11, RISCV::V12, RISCV::V13, 2644 RISCV::V14, RISCV::V15, RISCV::V16, RISCV::V17, RISCV::V18, RISCV::V19, 2645 RISCV::V20, RISCV::V21, RISCV::V22, RISCV::V23}; 2646 static const MCPhysReg ArgVRM2s[] = {RISCV::V8M2, RISCV::V10M2, RISCV::V12M2, 2647 RISCV::V14M2, RISCV::V16M2, RISCV::V18M2, 2648 RISCV::V20M2, RISCV::V22M2}; 2649 static const MCPhysReg ArgVRM4s[] = {RISCV::V8M4, RISCV::V12M4, RISCV::V16M4, 2650 RISCV::V20M4}; 2651 static const MCPhysReg ArgVRM8s[] = {RISCV::V8M8, RISCV::V16M8}; 2652 2653 // Pass a 2*XLEN argument that has been split into two XLEN values through 2654 // registers or the stack as necessary. 2655 static bool CC_RISCVAssign2XLen(unsigned XLen, CCState &State, CCValAssign VA1, 2656 ISD::ArgFlagsTy ArgFlags1, unsigned ValNo2, 2657 MVT ValVT2, MVT LocVT2, 2658 ISD::ArgFlagsTy ArgFlags2) { 2659 unsigned XLenInBytes = XLen / 8; 2660 if (Register Reg = State.AllocateReg(ArgGPRs)) { 2661 // At least one half can be passed via register. 2662 State.addLoc(CCValAssign::getReg(VA1.getValNo(), VA1.getValVT(), Reg, 2663 VA1.getLocVT(), CCValAssign::Full)); 2664 } else { 2665 // Both halves must be passed on the stack, with proper alignment. 2666 Align StackAlign = 2667 std::max(Align(XLenInBytes), ArgFlags1.getNonZeroOrigAlign()); 2668 State.addLoc( 2669 CCValAssign::getMem(VA1.getValNo(), VA1.getValVT(), 2670 State.AllocateStack(XLenInBytes, StackAlign), 2671 VA1.getLocVT(), CCValAssign::Full)); 2672 State.addLoc(CCValAssign::getMem( 2673 ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)), 2674 LocVT2, CCValAssign::Full)); 2675 return false; 2676 } 2677 2678 if (Register Reg = State.AllocateReg(ArgGPRs)) { 2679 // The second half can also be passed via register. 2680 State.addLoc( 2681 CCValAssign::getReg(ValNo2, ValVT2, Reg, LocVT2, CCValAssign::Full)); 2682 } else { 2683 // The second half is passed via the stack, without additional alignment. 2684 State.addLoc(CCValAssign::getMem( 2685 ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)), 2686 LocVT2, CCValAssign::Full)); 2687 } 2688 2689 return false; 2690 } 2691 2692 // Implements the RISC-V calling convention. Returns true upon failure. 2693 static bool CC_RISCV(const DataLayout &DL, RISCVABI::ABI ABI, unsigned ValNo, 2694 MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, 2695 ISD::ArgFlagsTy ArgFlags, CCState &State, bool IsFixed, 2696 bool IsRet, Type *OrigTy, const RISCVTargetLowering &TLI, 2697 Optional<unsigned> FirstMaskArgument) { 2698 unsigned XLen = DL.getLargestLegalIntTypeSizeInBits(); 2699 assert(XLen == 32 || XLen == 64); 2700 MVT XLenVT = XLen == 32 ? MVT::i32 : MVT::i64; 2701 2702 // Any return value split in to more than two values can't be returned 2703 // directly. 2704 if (IsRet && ValNo > 1) 2705 return true; 2706 2707 // UseGPRForF16_F32 if targeting one of the soft-float ABIs, if passing a 2708 // variadic argument, or if no F16/F32 argument registers are available. 2709 bool UseGPRForF16_F32 = true; 2710 // UseGPRForF64 if targeting soft-float ABIs or an FLEN=32 ABI, if passing a 2711 // variadic argument, or if no F64 argument registers are available. 2712 bool UseGPRForF64 = true; 2713 2714 switch (ABI) { 2715 default: 2716 llvm_unreachable("Unexpected ABI"); 2717 case RISCVABI::ABI_ILP32: 2718 case RISCVABI::ABI_LP64: 2719 break; 2720 case RISCVABI::ABI_ILP32F: 2721 case RISCVABI::ABI_LP64F: 2722 UseGPRForF16_F32 = !IsFixed; 2723 break; 2724 case RISCVABI::ABI_ILP32D: 2725 case RISCVABI::ABI_LP64D: 2726 UseGPRForF16_F32 = !IsFixed; 2727 UseGPRForF64 = !IsFixed; 2728 break; 2729 } 2730 2731 // FPR16, FPR32, and FPR64 alias each other. 2732 if (State.getFirstUnallocated(ArgFPR32s) == array_lengthof(ArgFPR32s)) { 2733 UseGPRForF16_F32 = true; 2734 UseGPRForF64 = true; 2735 } 2736 2737 // From this point on, rely on UseGPRForF16_F32, UseGPRForF64 and 2738 // similar local variables rather than directly checking against the target 2739 // ABI. 2740 2741 if (UseGPRForF16_F32 && (ValVT == MVT::f16 || ValVT == MVT::f32)) { 2742 LocVT = XLenVT; 2743 LocInfo = CCValAssign::BCvt; 2744 } else if (UseGPRForF64 && XLen == 64 && ValVT == MVT::f64) { 2745 LocVT = MVT::i64; 2746 LocInfo = CCValAssign::BCvt; 2747 } 2748 2749 // If this is a variadic argument, the RISC-V calling convention requires 2750 // that it is assigned an 'even' or 'aligned' register if it has 8-byte 2751 // alignment (RV32) or 16-byte alignment (RV64). An aligned register should 2752 // be used regardless of whether the original argument was split during 2753 // legalisation or not. The argument will not be passed by registers if the 2754 // original type is larger than 2*XLEN, so the register alignment rule does 2755 // not apply. 2756 unsigned TwoXLenInBytes = (2 * XLen) / 8; 2757 if (!IsFixed && ArgFlags.getNonZeroOrigAlign() == TwoXLenInBytes && 2758 DL.getTypeAllocSize(OrigTy) == TwoXLenInBytes) { 2759 unsigned RegIdx = State.getFirstUnallocated(ArgGPRs); 2760 // Skip 'odd' register if necessary. 2761 if (RegIdx != array_lengthof(ArgGPRs) && RegIdx % 2 == 1) 2762 State.AllocateReg(ArgGPRs); 2763 } 2764 2765 SmallVectorImpl<CCValAssign> &PendingLocs = State.getPendingLocs(); 2766 SmallVectorImpl<ISD::ArgFlagsTy> &PendingArgFlags = 2767 State.getPendingArgFlags(); 2768 2769 assert(PendingLocs.size() == PendingArgFlags.size() && 2770 "PendingLocs and PendingArgFlags out of sync"); 2771 2772 // Handle passing f64 on RV32D with a soft float ABI or when floating point 2773 // registers are exhausted. 2774 if (UseGPRForF64 && XLen == 32 && ValVT == MVT::f64) { 2775 assert(!ArgFlags.isSplit() && PendingLocs.empty() && 2776 "Can't lower f64 if it is split"); 2777 // Depending on available argument GPRS, f64 may be passed in a pair of 2778 // GPRs, split between a GPR and the stack, or passed completely on the 2779 // stack. LowerCall/LowerFormalArguments/LowerReturn must recognise these 2780 // cases. 2781 Register Reg = State.AllocateReg(ArgGPRs); 2782 LocVT = MVT::i32; 2783 if (!Reg) { 2784 unsigned StackOffset = State.AllocateStack(8, Align(8)); 2785 State.addLoc( 2786 CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 2787 return false; 2788 } 2789 if (!State.AllocateReg(ArgGPRs)) 2790 State.AllocateStack(4, Align(4)); 2791 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 2792 return false; 2793 } 2794 2795 // Split arguments might be passed indirectly, so keep track of the pending 2796 // values. 2797 if (ArgFlags.isSplit() || !PendingLocs.empty()) { 2798 LocVT = XLenVT; 2799 LocInfo = CCValAssign::Indirect; 2800 PendingLocs.push_back( 2801 CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo)); 2802 PendingArgFlags.push_back(ArgFlags); 2803 if (!ArgFlags.isSplitEnd()) { 2804 return false; 2805 } 2806 } 2807 2808 // If the split argument only had two elements, it should be passed directly 2809 // in registers or on the stack. 2810 if (ArgFlags.isSplitEnd() && PendingLocs.size() <= 2) { 2811 assert(PendingLocs.size() == 2 && "Unexpected PendingLocs.size()"); 2812 // Apply the normal calling convention rules to the first half of the 2813 // split argument. 2814 CCValAssign VA = PendingLocs[0]; 2815 ISD::ArgFlagsTy AF = PendingArgFlags[0]; 2816 PendingLocs.clear(); 2817 PendingArgFlags.clear(); 2818 return CC_RISCVAssign2XLen(XLen, State, VA, AF, ValNo, ValVT, LocVT, 2819 ArgFlags); 2820 } 2821 2822 // Allocate to a register if possible, or else a stack slot. 2823 Register Reg; 2824 if (ValVT == MVT::f16 && !UseGPRForF16_F32) 2825 Reg = State.AllocateReg(ArgFPR16s); 2826 else if (ValVT == MVT::f32 && !UseGPRForF16_F32) 2827 Reg = State.AllocateReg(ArgFPR32s); 2828 else if (ValVT == MVT::f64 && !UseGPRForF64) 2829 Reg = State.AllocateReg(ArgFPR64s); 2830 else if (ValVT.isScalableVector()) { 2831 const TargetRegisterClass *RC = TLI.getRegClassFor(ValVT); 2832 if (RC == &RISCV::VRRegClass) { 2833 // Assign the first mask argument to V0. 2834 // This is an interim calling convention and it may be changed in the 2835 // future. 2836 if (FirstMaskArgument.hasValue() && 2837 ValNo == FirstMaskArgument.getValue()) { 2838 Reg = State.AllocateReg(RISCV::V0); 2839 } else { 2840 Reg = State.AllocateReg(ArgVRs); 2841 } 2842 } else if (RC == &RISCV::VRM2RegClass) { 2843 Reg = State.AllocateReg(ArgVRM2s); 2844 } else if (RC == &RISCV::VRM4RegClass) { 2845 Reg = State.AllocateReg(ArgVRM4s); 2846 } else if (RC == &RISCV::VRM8RegClass) { 2847 Reg = State.AllocateReg(ArgVRM8s); 2848 } else { 2849 llvm_unreachable("Unhandled class register for ValueType"); 2850 } 2851 if (!Reg) { 2852 LocInfo = CCValAssign::Indirect; 2853 // Try using a GPR to pass the address 2854 Reg = State.AllocateReg(ArgGPRs); 2855 LocVT = XLenVT; 2856 } 2857 } else 2858 Reg = State.AllocateReg(ArgGPRs); 2859 unsigned StackOffset = 2860 Reg ? 0 : State.AllocateStack(XLen / 8, Align(XLen / 8)); 2861 2862 // If we reach this point and PendingLocs is non-empty, we must be at the 2863 // end of a split argument that must be passed indirectly. 2864 if (!PendingLocs.empty()) { 2865 assert(ArgFlags.isSplitEnd() && "Expected ArgFlags.isSplitEnd()"); 2866 assert(PendingLocs.size() > 2 && "Unexpected PendingLocs.size()"); 2867 2868 for (auto &It : PendingLocs) { 2869 if (Reg) 2870 It.convertToReg(Reg); 2871 else 2872 It.convertToMem(StackOffset); 2873 State.addLoc(It); 2874 } 2875 PendingLocs.clear(); 2876 PendingArgFlags.clear(); 2877 return false; 2878 } 2879 2880 assert((!UseGPRForF16_F32 || !UseGPRForF64 || LocVT == XLenVT || 2881 (TLI.getSubtarget().hasStdExtV() && ValVT.isScalableVector())) && 2882 "Expected an XLenVT or scalable vector types at this stage"); 2883 2884 if (Reg) { 2885 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 2886 return false; 2887 } 2888 2889 // When a floating-point value is passed on the stack, no bit-conversion is 2890 // needed. 2891 if (ValVT.isFloatingPoint()) { 2892 LocVT = ValVT; 2893 LocInfo = CCValAssign::Full; 2894 } 2895 State.addLoc(CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 2896 return false; 2897 } 2898 2899 template <typename ArgTy> 2900 static Optional<unsigned> preAssignMask(const ArgTy &Args) { 2901 for (const auto &ArgIdx : enumerate(Args)) { 2902 MVT ArgVT = ArgIdx.value().VT; 2903 if (ArgVT.isScalableVector() && 2904 ArgVT.getVectorElementType().SimpleTy == MVT::i1) 2905 return ArgIdx.index(); 2906 } 2907 return None; 2908 } 2909 2910 void RISCVTargetLowering::analyzeInputArgs( 2911 MachineFunction &MF, CCState &CCInfo, 2912 const SmallVectorImpl<ISD::InputArg> &Ins, bool IsRet) const { 2913 unsigned NumArgs = Ins.size(); 2914 FunctionType *FType = MF.getFunction().getFunctionType(); 2915 2916 Optional<unsigned> FirstMaskArgument; 2917 if (Subtarget.hasStdExtV()) 2918 FirstMaskArgument = preAssignMask(Ins); 2919 2920 for (unsigned i = 0; i != NumArgs; ++i) { 2921 MVT ArgVT = Ins[i].VT; 2922 ISD::ArgFlagsTy ArgFlags = Ins[i].Flags; 2923 2924 Type *ArgTy = nullptr; 2925 if (IsRet) 2926 ArgTy = FType->getReturnType(); 2927 else if (Ins[i].isOrigArg()) 2928 ArgTy = FType->getParamType(Ins[i].getOrigArgIndex()); 2929 2930 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 2931 if (CC_RISCV(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full, 2932 ArgFlags, CCInfo, /*IsFixed=*/true, IsRet, ArgTy, *this, 2933 FirstMaskArgument)) { 2934 LLVM_DEBUG(dbgs() << "InputArg #" << i << " has unhandled type " 2935 << EVT(ArgVT).getEVTString() << '\n'); 2936 llvm_unreachable(nullptr); 2937 } 2938 } 2939 } 2940 2941 void RISCVTargetLowering::analyzeOutputArgs( 2942 MachineFunction &MF, CCState &CCInfo, 2943 const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsRet, 2944 CallLoweringInfo *CLI) const { 2945 unsigned NumArgs = Outs.size(); 2946 2947 Optional<unsigned> FirstMaskArgument; 2948 if (Subtarget.hasStdExtV()) 2949 FirstMaskArgument = preAssignMask(Outs); 2950 2951 for (unsigned i = 0; i != NumArgs; i++) { 2952 MVT ArgVT = Outs[i].VT; 2953 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 2954 Type *OrigTy = CLI ? CLI->getArgs()[Outs[i].OrigArgIndex].Ty : nullptr; 2955 2956 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 2957 if (CC_RISCV(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full, 2958 ArgFlags, CCInfo, Outs[i].IsFixed, IsRet, OrigTy, *this, 2959 FirstMaskArgument)) { 2960 LLVM_DEBUG(dbgs() << "OutputArg #" << i << " has unhandled type " 2961 << EVT(ArgVT).getEVTString() << "\n"); 2962 llvm_unreachable(nullptr); 2963 } 2964 } 2965 } 2966 2967 // Convert Val to a ValVT. Should not be called for CCValAssign::Indirect 2968 // values. 2969 static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDValue Val, 2970 const CCValAssign &VA, const SDLoc &DL) { 2971 switch (VA.getLocInfo()) { 2972 default: 2973 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 2974 case CCValAssign::Full: 2975 break; 2976 case CCValAssign::BCvt: 2977 if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16) 2978 Val = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, Val); 2979 else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) 2980 Val = DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, Val); 2981 else 2982 Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val); 2983 break; 2984 } 2985 return Val; 2986 } 2987 2988 // The caller is responsible for loading the full value if the argument is 2989 // passed with CCValAssign::Indirect. 2990 static SDValue unpackFromRegLoc(SelectionDAG &DAG, SDValue Chain, 2991 const CCValAssign &VA, const SDLoc &DL, 2992 const RISCVTargetLowering &TLI) { 2993 MachineFunction &MF = DAG.getMachineFunction(); 2994 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 2995 EVT LocVT = VA.getLocVT(); 2996 SDValue Val; 2997 const TargetRegisterClass *RC = TLI.getRegClassFor(LocVT.getSimpleVT()); 2998 Register VReg = RegInfo.createVirtualRegister(RC); 2999 RegInfo.addLiveIn(VA.getLocReg(), VReg); 3000 Val = DAG.getCopyFromReg(Chain, DL, VReg, LocVT); 3001 3002 if (VA.getLocInfo() == CCValAssign::Indirect) 3003 return Val; 3004 3005 return convertLocVTToValVT(DAG, Val, VA, DL); 3006 } 3007 3008 static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDValue Val, 3009 const CCValAssign &VA, const SDLoc &DL) { 3010 EVT LocVT = VA.getLocVT(); 3011 3012 switch (VA.getLocInfo()) { 3013 default: 3014 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 3015 case CCValAssign::Full: 3016 break; 3017 case CCValAssign::BCvt: 3018 if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16) 3019 Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, VA.getLocVT(), Val); 3020 else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) 3021 Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Val); 3022 else 3023 Val = DAG.getNode(ISD::BITCAST, DL, LocVT, Val); 3024 break; 3025 } 3026 return Val; 3027 } 3028 3029 // The caller is responsible for loading the full value if the argument is 3030 // passed with CCValAssign::Indirect. 3031 static SDValue unpackFromMemLoc(SelectionDAG &DAG, SDValue Chain, 3032 const CCValAssign &VA, const SDLoc &DL) { 3033 MachineFunction &MF = DAG.getMachineFunction(); 3034 MachineFrameInfo &MFI = MF.getFrameInfo(); 3035 EVT LocVT = VA.getLocVT(); 3036 EVT ValVT = VA.getValVT(); 3037 EVT PtrVT = MVT::getIntegerVT(DAG.getDataLayout().getPointerSizeInBits(0)); 3038 int FI = MFI.CreateFixedObject(ValVT.getSizeInBits() / 8, 3039 VA.getLocMemOffset(), /*Immutable=*/true); 3040 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3041 SDValue Val; 3042 3043 ISD::LoadExtType ExtType; 3044 switch (VA.getLocInfo()) { 3045 default: 3046 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 3047 case CCValAssign::Full: 3048 case CCValAssign::Indirect: 3049 case CCValAssign::BCvt: 3050 ExtType = ISD::NON_EXTLOAD; 3051 break; 3052 } 3053 Val = DAG.getExtLoad( 3054 ExtType, DL, LocVT, Chain, FIN, 3055 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), ValVT); 3056 return Val; 3057 } 3058 3059 static SDValue unpackF64OnRV32DSoftABI(SelectionDAG &DAG, SDValue Chain, 3060 const CCValAssign &VA, const SDLoc &DL) { 3061 assert(VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64 && 3062 "Unexpected VA"); 3063 MachineFunction &MF = DAG.getMachineFunction(); 3064 MachineFrameInfo &MFI = MF.getFrameInfo(); 3065 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 3066 3067 if (VA.isMemLoc()) { 3068 // f64 is passed on the stack. 3069 int FI = MFI.CreateFixedObject(8, VA.getLocMemOffset(), /*Immutable=*/true); 3070 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 3071 return DAG.getLoad(MVT::f64, DL, Chain, FIN, 3072 MachinePointerInfo::getFixedStack(MF, FI)); 3073 } 3074 3075 assert(VA.isRegLoc() && "Expected register VA assignment"); 3076 3077 Register LoVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 3078 RegInfo.addLiveIn(VA.getLocReg(), LoVReg); 3079 SDValue Lo = DAG.getCopyFromReg(Chain, DL, LoVReg, MVT::i32); 3080 SDValue Hi; 3081 if (VA.getLocReg() == RISCV::X17) { 3082 // Second half of f64 is passed on the stack. 3083 int FI = MFI.CreateFixedObject(4, 0, /*Immutable=*/true); 3084 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 3085 Hi = DAG.getLoad(MVT::i32, DL, Chain, FIN, 3086 MachinePointerInfo::getFixedStack(MF, FI)); 3087 } else { 3088 // Second half of f64 is passed in another GPR. 3089 Register HiVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 3090 RegInfo.addLiveIn(VA.getLocReg() + 1, HiVReg); 3091 Hi = DAG.getCopyFromReg(Chain, DL, HiVReg, MVT::i32); 3092 } 3093 return DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, Lo, Hi); 3094 } 3095 3096 // FastCC has less than 1% performance improvement for some particular 3097 // benchmark. But theoretically, it may has benenfit for some cases. 3098 static bool CC_RISCV_FastCC(unsigned ValNo, MVT ValVT, MVT LocVT, 3099 CCValAssign::LocInfo LocInfo, 3100 ISD::ArgFlagsTy ArgFlags, CCState &State) { 3101 3102 if (LocVT == MVT::i32 || LocVT == MVT::i64) { 3103 // X5 and X6 might be used for save-restore libcall. 3104 static const MCPhysReg GPRList[] = { 3105 RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, RISCV::X14, 3106 RISCV::X15, RISCV::X16, RISCV::X17, RISCV::X7, RISCV::X28, 3107 RISCV::X29, RISCV::X30, RISCV::X31}; 3108 if (unsigned Reg = State.AllocateReg(GPRList)) { 3109 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 3110 return false; 3111 } 3112 } 3113 3114 if (LocVT == MVT::f16) { 3115 static const MCPhysReg FPR16List[] = { 3116 RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, RISCV::F14_H, 3117 RISCV::F15_H, RISCV::F16_H, RISCV::F17_H, RISCV::F0_H, RISCV::F1_H, 3118 RISCV::F2_H, RISCV::F3_H, RISCV::F4_H, RISCV::F5_H, RISCV::F6_H, 3119 RISCV::F7_H, RISCV::F28_H, RISCV::F29_H, RISCV::F30_H, RISCV::F31_H}; 3120 if (unsigned Reg = State.AllocateReg(FPR16List)) { 3121 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 3122 return false; 3123 } 3124 } 3125 3126 if (LocVT == MVT::f32) { 3127 static const MCPhysReg FPR32List[] = { 3128 RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, RISCV::F14_F, 3129 RISCV::F15_F, RISCV::F16_F, RISCV::F17_F, RISCV::F0_F, RISCV::F1_F, 3130 RISCV::F2_F, RISCV::F3_F, RISCV::F4_F, RISCV::F5_F, RISCV::F6_F, 3131 RISCV::F7_F, RISCV::F28_F, RISCV::F29_F, RISCV::F30_F, RISCV::F31_F}; 3132 if (unsigned Reg = State.AllocateReg(FPR32List)) { 3133 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 3134 return false; 3135 } 3136 } 3137 3138 if (LocVT == MVT::f64) { 3139 static const MCPhysReg FPR64List[] = { 3140 RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, RISCV::F14_D, 3141 RISCV::F15_D, RISCV::F16_D, RISCV::F17_D, RISCV::F0_D, RISCV::F1_D, 3142 RISCV::F2_D, RISCV::F3_D, RISCV::F4_D, RISCV::F5_D, RISCV::F6_D, 3143 RISCV::F7_D, RISCV::F28_D, RISCV::F29_D, RISCV::F30_D, RISCV::F31_D}; 3144 if (unsigned Reg = State.AllocateReg(FPR64List)) { 3145 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 3146 return false; 3147 } 3148 } 3149 3150 if (LocVT == MVT::i32 || LocVT == MVT::f32) { 3151 unsigned Offset4 = State.AllocateStack(4, Align(4)); 3152 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset4, LocVT, LocInfo)); 3153 return false; 3154 } 3155 3156 if (LocVT == MVT::i64 || LocVT == MVT::f64) { 3157 unsigned Offset5 = State.AllocateStack(8, Align(8)); 3158 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset5, LocVT, LocInfo)); 3159 return false; 3160 } 3161 3162 return true; // CC didn't match. 3163 } 3164 3165 static bool CC_RISCV_GHC(unsigned ValNo, MVT ValVT, MVT LocVT, 3166 CCValAssign::LocInfo LocInfo, 3167 ISD::ArgFlagsTy ArgFlags, CCState &State) { 3168 3169 if (LocVT == MVT::i32 || LocVT == MVT::i64) { 3170 // Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, R6, R7, SpLim 3171 // s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 3172 static const MCPhysReg GPRList[] = { 3173 RISCV::X9, RISCV::X18, RISCV::X19, RISCV::X20, RISCV::X21, RISCV::X22, 3174 RISCV::X23, RISCV::X24, RISCV::X25, RISCV::X26, RISCV::X27}; 3175 if (unsigned Reg = State.AllocateReg(GPRList)) { 3176 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 3177 return false; 3178 } 3179 } 3180 3181 if (LocVT == MVT::f32) { 3182 // Pass in STG registers: F1, ..., F6 3183 // fs0 ... fs5 3184 static const MCPhysReg FPR32List[] = {RISCV::F8_F, RISCV::F9_F, 3185 RISCV::F18_F, RISCV::F19_F, 3186 RISCV::F20_F, RISCV::F21_F}; 3187 if (unsigned Reg = State.AllocateReg(FPR32List)) { 3188 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 3189 return false; 3190 } 3191 } 3192 3193 if (LocVT == MVT::f64) { 3194 // Pass in STG registers: D1, ..., D6 3195 // fs6 ... fs11 3196 static const MCPhysReg FPR64List[] = {RISCV::F22_D, RISCV::F23_D, 3197 RISCV::F24_D, RISCV::F25_D, 3198 RISCV::F26_D, RISCV::F27_D}; 3199 if (unsigned Reg = State.AllocateReg(FPR64List)) { 3200 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 3201 return false; 3202 } 3203 } 3204 3205 report_fatal_error("No registers left in GHC calling convention"); 3206 return true; 3207 } 3208 3209 // Transform physical registers into virtual registers. 3210 SDValue RISCVTargetLowering::LowerFormalArguments( 3211 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 3212 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 3213 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 3214 3215 MachineFunction &MF = DAG.getMachineFunction(); 3216 3217 switch (CallConv) { 3218 default: 3219 report_fatal_error("Unsupported calling convention"); 3220 case CallingConv::C: 3221 case CallingConv::Fast: 3222 break; 3223 case CallingConv::GHC: 3224 if (!MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtF] || 3225 !MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtD]) 3226 report_fatal_error( 3227 "GHC calling convention requires the F and D instruction set extensions"); 3228 } 3229 3230 const Function &Func = MF.getFunction(); 3231 if (Func.hasFnAttribute("interrupt")) { 3232 if (!Func.arg_empty()) 3233 report_fatal_error( 3234 "Functions with the interrupt attribute cannot have arguments!"); 3235 3236 StringRef Kind = 3237 MF.getFunction().getFnAttribute("interrupt").getValueAsString(); 3238 3239 if (!(Kind == "user" || Kind == "supervisor" || Kind == "machine")) 3240 report_fatal_error( 3241 "Function interrupt attribute argument not supported!"); 3242 } 3243 3244 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3245 MVT XLenVT = Subtarget.getXLenVT(); 3246 unsigned XLenInBytes = Subtarget.getXLen() / 8; 3247 // Used with vargs to acumulate store chains. 3248 std::vector<SDValue> OutChains; 3249 3250 // Assign locations to all of the incoming arguments. 3251 SmallVector<CCValAssign, 16> ArgLocs; 3252 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 3253 3254 if (CallConv == CallingConv::Fast) 3255 CCInfo.AnalyzeFormalArguments(Ins, CC_RISCV_FastCC); 3256 else if (CallConv == CallingConv::GHC) 3257 CCInfo.AnalyzeFormalArguments(Ins, CC_RISCV_GHC); 3258 else 3259 analyzeInputArgs(MF, CCInfo, Ins, /*IsRet=*/false); 3260 3261 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 3262 CCValAssign &VA = ArgLocs[i]; 3263 SDValue ArgValue; 3264 // Passing f64 on RV32D with a soft float ABI must be handled as a special 3265 // case. 3266 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) 3267 ArgValue = unpackF64OnRV32DSoftABI(DAG, Chain, VA, DL); 3268 else if (VA.isRegLoc()) 3269 ArgValue = unpackFromRegLoc(DAG, Chain, VA, DL, *this); 3270 else 3271 ArgValue = unpackFromMemLoc(DAG, Chain, VA, DL); 3272 3273 if (VA.getLocInfo() == CCValAssign::Indirect) { 3274 // If the original argument was split and passed by reference (e.g. i128 3275 // on RV32), we need to load all parts of it here (using the same 3276 // address). 3277 InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue, 3278 MachinePointerInfo())); 3279 unsigned ArgIndex = Ins[i].OrigArgIndex; 3280 assert(Ins[i].PartOffset == 0); 3281 while (i + 1 != e && Ins[i + 1].OrigArgIndex == ArgIndex) { 3282 CCValAssign &PartVA = ArgLocs[i + 1]; 3283 unsigned PartOffset = Ins[i + 1].PartOffset; 3284 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, 3285 DAG.getIntPtrConstant(PartOffset, DL)); 3286 InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address, 3287 MachinePointerInfo())); 3288 ++i; 3289 } 3290 continue; 3291 } 3292 InVals.push_back(ArgValue); 3293 } 3294 3295 if (IsVarArg) { 3296 ArrayRef<MCPhysReg> ArgRegs = makeArrayRef(ArgGPRs); 3297 unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs); 3298 const TargetRegisterClass *RC = &RISCV::GPRRegClass; 3299 MachineFrameInfo &MFI = MF.getFrameInfo(); 3300 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 3301 RISCVMachineFunctionInfo *RVFI = MF.getInfo<RISCVMachineFunctionInfo>(); 3302 3303 // Offset of the first variable argument from stack pointer, and size of 3304 // the vararg save area. For now, the varargs save area is either zero or 3305 // large enough to hold a0-a7. 3306 int VaArgOffset, VarArgsSaveSize; 3307 3308 // If all registers are allocated, then all varargs must be passed on the 3309 // stack and we don't need to save any argregs. 3310 if (ArgRegs.size() == Idx) { 3311 VaArgOffset = CCInfo.getNextStackOffset(); 3312 VarArgsSaveSize = 0; 3313 } else { 3314 VarArgsSaveSize = XLenInBytes * (ArgRegs.size() - Idx); 3315 VaArgOffset = -VarArgsSaveSize; 3316 } 3317 3318 // Record the frame index of the first variable argument 3319 // which is a value necessary to VASTART. 3320 int FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true); 3321 RVFI->setVarArgsFrameIndex(FI); 3322 3323 // If saving an odd number of registers then create an extra stack slot to 3324 // ensure that the frame pointer is 2*XLEN-aligned, which in turn ensures 3325 // offsets to even-numbered registered remain 2*XLEN-aligned. 3326 if (Idx % 2) { 3327 MFI.CreateFixedObject(XLenInBytes, VaArgOffset - (int)XLenInBytes, true); 3328 VarArgsSaveSize += XLenInBytes; 3329 } 3330 3331 // Copy the integer registers that may have been used for passing varargs 3332 // to the vararg save area. 3333 for (unsigned I = Idx; I < ArgRegs.size(); 3334 ++I, VaArgOffset += XLenInBytes) { 3335 const Register Reg = RegInfo.createVirtualRegister(RC); 3336 RegInfo.addLiveIn(ArgRegs[I], Reg); 3337 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, XLenVT); 3338 FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true); 3339 SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 3340 SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff, 3341 MachinePointerInfo::getFixedStack(MF, FI)); 3342 cast<StoreSDNode>(Store.getNode()) 3343 ->getMemOperand() 3344 ->setValue((Value *)nullptr); 3345 OutChains.push_back(Store); 3346 } 3347 RVFI->setVarArgsSaveSize(VarArgsSaveSize); 3348 } 3349 3350 // All stores are grouped in one node to allow the matching between 3351 // the size of Ins and InVals. This only happens for vararg functions. 3352 if (!OutChains.empty()) { 3353 OutChains.push_back(Chain); 3354 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains); 3355 } 3356 3357 return Chain; 3358 } 3359 3360 /// isEligibleForTailCallOptimization - Check whether the call is eligible 3361 /// for tail call optimization. 3362 /// Note: This is modelled after ARM's IsEligibleForTailCallOptimization. 3363 bool RISCVTargetLowering::isEligibleForTailCallOptimization( 3364 CCState &CCInfo, CallLoweringInfo &CLI, MachineFunction &MF, 3365 const SmallVector<CCValAssign, 16> &ArgLocs) const { 3366 3367 auto &Callee = CLI.Callee; 3368 auto CalleeCC = CLI.CallConv; 3369 auto &Outs = CLI.Outs; 3370 auto &Caller = MF.getFunction(); 3371 auto CallerCC = Caller.getCallingConv(); 3372 3373 // Exception-handling functions need a special set of instructions to 3374 // indicate a return to the hardware. Tail-calling another function would 3375 // probably break this. 3376 // TODO: The "interrupt" attribute isn't currently defined by RISC-V. This 3377 // should be expanded as new function attributes are introduced. 3378 if (Caller.hasFnAttribute("interrupt")) 3379 return false; 3380 3381 // Do not tail call opt if the stack is used to pass parameters. 3382 if (CCInfo.getNextStackOffset() != 0) 3383 return false; 3384 3385 // Do not tail call opt if any parameters need to be passed indirectly. 3386 // Since long doubles (fp128) and i128 are larger than 2*XLEN, they are 3387 // passed indirectly. So the address of the value will be passed in a 3388 // register, or if not available, then the address is put on the stack. In 3389 // order to pass indirectly, space on the stack often needs to be allocated 3390 // in order to store the value. In this case the CCInfo.getNextStackOffset() 3391 // != 0 check is not enough and we need to check if any CCValAssign ArgsLocs 3392 // are passed CCValAssign::Indirect. 3393 for (auto &VA : ArgLocs) 3394 if (VA.getLocInfo() == CCValAssign::Indirect) 3395 return false; 3396 3397 // Do not tail call opt if either caller or callee uses struct return 3398 // semantics. 3399 auto IsCallerStructRet = Caller.hasStructRetAttr(); 3400 auto IsCalleeStructRet = Outs.empty() ? false : Outs[0].Flags.isSRet(); 3401 if (IsCallerStructRet || IsCalleeStructRet) 3402 return false; 3403 3404 // Externally-defined functions with weak linkage should not be 3405 // tail-called. The behaviour of branch instructions in this situation (as 3406 // used for tail calls) is implementation-defined, so we cannot rely on the 3407 // linker replacing the tail call with a return. 3408 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 3409 const GlobalValue *GV = G->getGlobal(); 3410 if (GV->hasExternalWeakLinkage()) 3411 return false; 3412 } 3413 3414 // The callee has to preserve all registers the caller needs to preserve. 3415 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 3416 const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC); 3417 if (CalleeCC != CallerCC) { 3418 const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC); 3419 if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved)) 3420 return false; 3421 } 3422 3423 // Byval parameters hand the function a pointer directly into the stack area 3424 // we want to reuse during a tail call. Working around this *is* possible 3425 // but less efficient and uglier in LowerCall. 3426 for (auto &Arg : Outs) 3427 if (Arg.Flags.isByVal()) 3428 return false; 3429 3430 return true; 3431 } 3432 3433 // Lower a call to a callseq_start + CALL + callseq_end chain, and add input 3434 // and output parameter nodes. 3435 SDValue RISCVTargetLowering::LowerCall(CallLoweringInfo &CLI, 3436 SmallVectorImpl<SDValue> &InVals) const { 3437 SelectionDAG &DAG = CLI.DAG; 3438 SDLoc &DL = CLI.DL; 3439 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 3440 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 3441 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 3442 SDValue Chain = CLI.Chain; 3443 SDValue Callee = CLI.Callee; 3444 bool &IsTailCall = CLI.IsTailCall; 3445 CallingConv::ID CallConv = CLI.CallConv; 3446 bool IsVarArg = CLI.IsVarArg; 3447 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3448 MVT XLenVT = Subtarget.getXLenVT(); 3449 3450 MachineFunction &MF = DAG.getMachineFunction(); 3451 3452 // Analyze the operands of the call, assigning locations to each operand. 3453 SmallVector<CCValAssign, 16> ArgLocs; 3454 CCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 3455 3456 if (CallConv == CallingConv::Fast) 3457 ArgCCInfo.AnalyzeCallOperands(Outs, CC_RISCV_FastCC); 3458 else if (CallConv == CallingConv::GHC) 3459 ArgCCInfo.AnalyzeCallOperands(Outs, CC_RISCV_GHC); 3460 else 3461 analyzeOutputArgs(MF, ArgCCInfo, Outs, /*IsRet=*/false, &CLI); 3462 3463 // Check if it's really possible to do a tail call. 3464 if (IsTailCall) 3465 IsTailCall = isEligibleForTailCallOptimization(ArgCCInfo, CLI, MF, ArgLocs); 3466 3467 if (IsTailCall) 3468 ++NumTailCalls; 3469 else if (CLI.CB && CLI.CB->isMustTailCall()) 3470 report_fatal_error("failed to perform tail call elimination on a call " 3471 "site marked musttail"); 3472 3473 // Get a count of how many bytes are to be pushed on the stack. 3474 unsigned NumBytes = ArgCCInfo.getNextStackOffset(); 3475 3476 // Create local copies for byval args 3477 SmallVector<SDValue, 8> ByValArgs; 3478 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 3479 ISD::ArgFlagsTy Flags = Outs[i].Flags; 3480 if (!Flags.isByVal()) 3481 continue; 3482 3483 SDValue Arg = OutVals[i]; 3484 unsigned Size = Flags.getByValSize(); 3485 Align Alignment = Flags.getNonZeroByValAlign(); 3486 3487 int FI = 3488 MF.getFrameInfo().CreateStackObject(Size, Alignment, /*isSS=*/false); 3489 SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 3490 SDValue SizeNode = DAG.getConstant(Size, DL, XLenVT); 3491 3492 Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Alignment, 3493 /*IsVolatile=*/false, 3494 /*AlwaysInline=*/false, IsTailCall, 3495 MachinePointerInfo(), MachinePointerInfo()); 3496 ByValArgs.push_back(FIPtr); 3497 } 3498 3499 if (!IsTailCall) 3500 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, CLI.DL); 3501 3502 // Copy argument values to their designated locations. 3503 SmallVector<std::pair<Register, SDValue>, 8> RegsToPass; 3504 SmallVector<SDValue, 8> MemOpChains; 3505 SDValue StackPtr; 3506 for (unsigned i = 0, j = 0, e = ArgLocs.size(); i != e; ++i) { 3507 CCValAssign &VA = ArgLocs[i]; 3508 SDValue ArgValue = OutVals[i]; 3509 ISD::ArgFlagsTy Flags = Outs[i].Flags; 3510 3511 // Handle passing f64 on RV32D with a soft float ABI as a special case. 3512 bool IsF64OnRV32DSoftABI = 3513 VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64; 3514 if (IsF64OnRV32DSoftABI && VA.isRegLoc()) { 3515 SDValue SplitF64 = DAG.getNode( 3516 RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), ArgValue); 3517 SDValue Lo = SplitF64.getValue(0); 3518 SDValue Hi = SplitF64.getValue(1); 3519 3520 Register RegLo = VA.getLocReg(); 3521 RegsToPass.push_back(std::make_pair(RegLo, Lo)); 3522 3523 if (RegLo == RISCV::X17) { 3524 // Second half of f64 is passed on the stack. 3525 // Work out the address of the stack slot. 3526 if (!StackPtr.getNode()) 3527 StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT); 3528 // Emit the store. 3529 MemOpChains.push_back( 3530 DAG.getStore(Chain, DL, Hi, StackPtr, MachinePointerInfo())); 3531 } else { 3532 // Second half of f64 is passed in another GPR. 3533 assert(RegLo < RISCV::X31 && "Invalid register pair"); 3534 Register RegHigh = RegLo + 1; 3535 RegsToPass.push_back(std::make_pair(RegHigh, Hi)); 3536 } 3537 continue; 3538 } 3539 3540 // IsF64OnRV32DSoftABI && VA.isMemLoc() is handled below in the same way 3541 // as any other MemLoc. 3542 3543 // Promote the value if needed. 3544 // For now, only handle fully promoted and indirect arguments. 3545 if (VA.getLocInfo() == CCValAssign::Indirect) { 3546 // Store the argument in a stack slot and pass its address. 3547 SDValue SpillSlot = DAG.CreateStackTemporary(Outs[i].ArgVT); 3548 int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); 3549 MemOpChains.push_back( 3550 DAG.getStore(Chain, DL, ArgValue, SpillSlot, 3551 MachinePointerInfo::getFixedStack(MF, FI))); 3552 // If the original argument was split (e.g. i128), we need 3553 // to store all parts of it here (and pass just one address). 3554 unsigned ArgIndex = Outs[i].OrigArgIndex; 3555 assert(Outs[i].PartOffset == 0); 3556 while (i + 1 != e && Outs[i + 1].OrigArgIndex == ArgIndex) { 3557 SDValue PartValue = OutVals[i + 1]; 3558 unsigned PartOffset = Outs[i + 1].PartOffset; 3559 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, 3560 DAG.getIntPtrConstant(PartOffset, DL)); 3561 MemOpChains.push_back( 3562 DAG.getStore(Chain, DL, PartValue, Address, 3563 MachinePointerInfo::getFixedStack(MF, FI))); 3564 ++i; 3565 } 3566 ArgValue = SpillSlot; 3567 } else { 3568 ArgValue = convertValVTToLocVT(DAG, ArgValue, VA, DL); 3569 } 3570 3571 // Use local copy if it is a byval arg. 3572 if (Flags.isByVal()) 3573 ArgValue = ByValArgs[j++]; 3574 3575 if (VA.isRegLoc()) { 3576 // Queue up the argument copies and emit them at the end. 3577 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue)); 3578 } else { 3579 assert(VA.isMemLoc() && "Argument not register or memory"); 3580 assert(!IsTailCall && "Tail call not allowed if stack is used " 3581 "for passing parameters"); 3582 3583 // Work out the address of the stack slot. 3584 if (!StackPtr.getNode()) 3585 StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT); 3586 SDValue Address = 3587 DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, 3588 DAG.getIntPtrConstant(VA.getLocMemOffset(), DL)); 3589 3590 // Emit the store. 3591 MemOpChains.push_back( 3592 DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo())); 3593 } 3594 } 3595 3596 // Join the stores, which are independent of one another. 3597 if (!MemOpChains.empty()) 3598 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); 3599 3600 SDValue Glue; 3601 3602 // Build a sequence of copy-to-reg nodes, chained and glued together. 3603 for (auto &Reg : RegsToPass) { 3604 Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, Glue); 3605 Glue = Chain.getValue(1); 3606 } 3607 3608 // Validate that none of the argument registers have been marked as 3609 // reserved, if so report an error. Do the same for the return address if this 3610 // is not a tailcall. 3611 validateCCReservedRegs(RegsToPass, MF); 3612 if (!IsTailCall && 3613 MF.getSubtarget<RISCVSubtarget>().isRegisterReservedByUser(RISCV::X1)) 3614 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 3615 MF.getFunction(), 3616 "Return address register required, but has been reserved."}); 3617 3618 // If the callee is a GlobalAddress/ExternalSymbol node, turn it into a 3619 // TargetGlobalAddress/TargetExternalSymbol node so that legalize won't 3620 // split it and then direct call can be matched by PseudoCALL. 3621 if (GlobalAddressSDNode *S = dyn_cast<GlobalAddressSDNode>(Callee)) { 3622 const GlobalValue *GV = S->getGlobal(); 3623 3624 unsigned OpFlags = RISCVII::MO_CALL; 3625 if (!getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV)) 3626 OpFlags = RISCVII::MO_PLT; 3627 3628 Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags); 3629 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { 3630 unsigned OpFlags = RISCVII::MO_CALL; 3631 3632 if (!getTargetMachine().shouldAssumeDSOLocal(*MF.getFunction().getParent(), 3633 nullptr)) 3634 OpFlags = RISCVII::MO_PLT; 3635 3636 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, OpFlags); 3637 } 3638 3639 // The first call operand is the chain and the second is the target address. 3640 SmallVector<SDValue, 8> Ops; 3641 Ops.push_back(Chain); 3642 Ops.push_back(Callee); 3643 3644 // Add argument registers to the end of the list so that they are 3645 // known live into the call. 3646 for (auto &Reg : RegsToPass) 3647 Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType())); 3648 3649 if (!IsTailCall) { 3650 // Add a register mask operand representing the call-preserved registers. 3651 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 3652 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv); 3653 assert(Mask && "Missing call preserved mask for calling convention"); 3654 Ops.push_back(DAG.getRegisterMask(Mask)); 3655 } 3656 3657 // Glue the call to the argument copies, if any. 3658 if (Glue.getNode()) 3659 Ops.push_back(Glue); 3660 3661 // Emit the call. 3662 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 3663 3664 if (IsTailCall) { 3665 MF.getFrameInfo().setHasTailCall(); 3666 return DAG.getNode(RISCVISD::TAIL, DL, NodeTys, Ops); 3667 } 3668 3669 Chain = DAG.getNode(RISCVISD::CALL, DL, NodeTys, Ops); 3670 DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge); 3671 Glue = Chain.getValue(1); 3672 3673 // Mark the end of the call, which is glued to the call itself. 3674 Chain = DAG.getCALLSEQ_END(Chain, 3675 DAG.getConstant(NumBytes, DL, PtrVT, true), 3676 DAG.getConstant(0, DL, PtrVT, true), 3677 Glue, DL); 3678 Glue = Chain.getValue(1); 3679 3680 // Assign locations to each value returned by this call. 3681 SmallVector<CCValAssign, 16> RVLocs; 3682 CCState RetCCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext()); 3683 analyzeInputArgs(MF, RetCCInfo, Ins, /*IsRet=*/true); 3684 3685 // Copy all of the result registers out of their specified physreg. 3686 for (auto &VA : RVLocs) { 3687 // Copy the value out 3688 SDValue RetValue = 3689 DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), Glue); 3690 // Glue the RetValue to the end of the call sequence 3691 Chain = RetValue.getValue(1); 3692 Glue = RetValue.getValue(2); 3693 3694 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { 3695 assert(VA.getLocReg() == ArgGPRs[0] && "Unexpected reg assignment"); 3696 SDValue RetValue2 = 3697 DAG.getCopyFromReg(Chain, DL, ArgGPRs[1], MVT::i32, Glue); 3698 Chain = RetValue2.getValue(1); 3699 Glue = RetValue2.getValue(2); 3700 RetValue = DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, RetValue, 3701 RetValue2); 3702 } 3703 3704 RetValue = convertLocVTToValVT(DAG, RetValue, VA, DL); 3705 3706 InVals.push_back(RetValue); 3707 } 3708 3709 return Chain; 3710 } 3711 3712 bool RISCVTargetLowering::CanLowerReturn( 3713 CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg, 3714 const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const { 3715 SmallVector<CCValAssign, 16> RVLocs; 3716 CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context); 3717 3718 Optional<unsigned> FirstMaskArgument; 3719 if (Subtarget.hasStdExtV()) 3720 FirstMaskArgument = preAssignMask(Outs); 3721 3722 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 3723 MVT VT = Outs[i].VT; 3724 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 3725 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 3726 if (CC_RISCV(MF.getDataLayout(), ABI, i, VT, VT, CCValAssign::Full, 3727 ArgFlags, CCInfo, /*IsFixed=*/true, /*IsRet=*/true, nullptr, 3728 *this, FirstMaskArgument)) 3729 return false; 3730 } 3731 return true; 3732 } 3733 3734 SDValue 3735 RISCVTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 3736 bool IsVarArg, 3737 const SmallVectorImpl<ISD::OutputArg> &Outs, 3738 const SmallVectorImpl<SDValue> &OutVals, 3739 const SDLoc &DL, SelectionDAG &DAG) const { 3740 const MachineFunction &MF = DAG.getMachineFunction(); 3741 const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>(); 3742 3743 // Stores the assignment of the return value to a location. 3744 SmallVector<CCValAssign, 16> RVLocs; 3745 3746 // Info about the registers and stack slot. 3747 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, 3748 *DAG.getContext()); 3749 3750 analyzeOutputArgs(DAG.getMachineFunction(), CCInfo, Outs, /*IsRet=*/true, 3751 nullptr); 3752 3753 if (CallConv == CallingConv::GHC && !RVLocs.empty()) 3754 report_fatal_error("GHC functions return void only"); 3755 3756 SDValue Glue; 3757 SmallVector<SDValue, 4> RetOps(1, Chain); 3758 3759 // Copy the result values into the output registers. 3760 for (unsigned i = 0, e = RVLocs.size(); i < e; ++i) { 3761 SDValue Val = OutVals[i]; 3762 CCValAssign &VA = RVLocs[i]; 3763 assert(VA.isRegLoc() && "Can only return in registers!"); 3764 3765 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { 3766 // Handle returning f64 on RV32D with a soft float ABI. 3767 assert(VA.isRegLoc() && "Expected return via registers"); 3768 SDValue SplitF64 = DAG.getNode(RISCVISD::SplitF64, DL, 3769 DAG.getVTList(MVT::i32, MVT::i32), Val); 3770 SDValue Lo = SplitF64.getValue(0); 3771 SDValue Hi = SplitF64.getValue(1); 3772 Register RegLo = VA.getLocReg(); 3773 assert(RegLo < RISCV::X31 && "Invalid register pair"); 3774 Register RegHi = RegLo + 1; 3775 3776 if (STI.isRegisterReservedByUser(RegLo) || 3777 STI.isRegisterReservedByUser(RegHi)) 3778 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 3779 MF.getFunction(), 3780 "Return value register required, but has been reserved."}); 3781 3782 Chain = DAG.getCopyToReg(Chain, DL, RegLo, Lo, Glue); 3783 Glue = Chain.getValue(1); 3784 RetOps.push_back(DAG.getRegister(RegLo, MVT::i32)); 3785 Chain = DAG.getCopyToReg(Chain, DL, RegHi, Hi, Glue); 3786 Glue = Chain.getValue(1); 3787 RetOps.push_back(DAG.getRegister(RegHi, MVT::i32)); 3788 } else { 3789 // Handle a 'normal' return. 3790 Val = convertValVTToLocVT(DAG, Val, VA, DL); 3791 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Glue); 3792 3793 if (STI.isRegisterReservedByUser(VA.getLocReg())) 3794 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 3795 MF.getFunction(), 3796 "Return value register required, but has been reserved."}); 3797 3798 // Guarantee that all emitted copies are stuck together. 3799 Glue = Chain.getValue(1); 3800 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 3801 } 3802 } 3803 3804 RetOps[0] = Chain; // Update chain. 3805 3806 // Add the glue node if we have it. 3807 if (Glue.getNode()) { 3808 RetOps.push_back(Glue); 3809 } 3810 3811 // Interrupt service routines use different return instructions. 3812 const Function &Func = DAG.getMachineFunction().getFunction(); 3813 if (Func.hasFnAttribute("interrupt")) { 3814 if (!Func.getReturnType()->isVoidTy()) 3815 report_fatal_error( 3816 "Functions with the interrupt attribute must have void return type!"); 3817 3818 MachineFunction &MF = DAG.getMachineFunction(); 3819 StringRef Kind = 3820 MF.getFunction().getFnAttribute("interrupt").getValueAsString(); 3821 3822 unsigned RetOpc; 3823 if (Kind == "user") 3824 RetOpc = RISCVISD::URET_FLAG; 3825 else if (Kind == "supervisor") 3826 RetOpc = RISCVISD::SRET_FLAG; 3827 else 3828 RetOpc = RISCVISD::MRET_FLAG; 3829 3830 return DAG.getNode(RetOpc, DL, MVT::Other, RetOps); 3831 } 3832 3833 return DAG.getNode(RISCVISD::RET_FLAG, DL, MVT::Other, RetOps); 3834 } 3835 3836 void RISCVTargetLowering::validateCCReservedRegs( 3837 const SmallVectorImpl<std::pair<llvm::Register, llvm::SDValue>> &Regs, 3838 MachineFunction &MF) const { 3839 const Function &F = MF.getFunction(); 3840 const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>(); 3841 3842 if (llvm::any_of(Regs, [&STI](auto Reg) { 3843 return STI.isRegisterReservedByUser(Reg.first); 3844 })) 3845 F.getContext().diagnose(DiagnosticInfoUnsupported{ 3846 F, "Argument register required, but has been reserved."}); 3847 } 3848 3849 bool RISCVTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { 3850 return CI->isTailCall(); 3851 } 3852 3853 const char *RISCVTargetLowering::getTargetNodeName(unsigned Opcode) const { 3854 #define NODE_NAME_CASE(NODE) \ 3855 case RISCVISD::NODE: \ 3856 return "RISCVISD::" #NODE; 3857 // clang-format off 3858 switch ((RISCVISD::NodeType)Opcode) { 3859 case RISCVISD::FIRST_NUMBER: 3860 break; 3861 NODE_NAME_CASE(RET_FLAG) 3862 NODE_NAME_CASE(URET_FLAG) 3863 NODE_NAME_CASE(SRET_FLAG) 3864 NODE_NAME_CASE(MRET_FLAG) 3865 NODE_NAME_CASE(CALL) 3866 NODE_NAME_CASE(SELECT_CC) 3867 NODE_NAME_CASE(BuildPairF64) 3868 NODE_NAME_CASE(SplitF64) 3869 NODE_NAME_CASE(TAIL) 3870 NODE_NAME_CASE(SLLW) 3871 NODE_NAME_CASE(SRAW) 3872 NODE_NAME_CASE(SRLW) 3873 NODE_NAME_CASE(DIVW) 3874 NODE_NAME_CASE(DIVUW) 3875 NODE_NAME_CASE(REMUW) 3876 NODE_NAME_CASE(ROLW) 3877 NODE_NAME_CASE(RORW) 3878 NODE_NAME_CASE(FSLW) 3879 NODE_NAME_CASE(FSRW) 3880 NODE_NAME_CASE(FMV_H_X) 3881 NODE_NAME_CASE(FMV_X_ANYEXTH) 3882 NODE_NAME_CASE(FMV_W_X_RV64) 3883 NODE_NAME_CASE(FMV_X_ANYEXTW_RV64) 3884 NODE_NAME_CASE(READ_CYCLE_WIDE) 3885 NODE_NAME_CASE(GREVI) 3886 NODE_NAME_CASE(GREVIW) 3887 NODE_NAME_CASE(GORCI) 3888 NODE_NAME_CASE(GORCIW) 3889 NODE_NAME_CASE(VMV_X_S) 3890 NODE_NAME_CASE(SPLAT_VECTOR_I64) 3891 NODE_NAME_CASE(READ_VLENB) 3892 NODE_NAME_CASE(TRUNCATE_VECTOR) 3893 NODE_NAME_CASE(VLEFF) 3894 NODE_NAME_CASE(VLEFF_MASK) 3895 NODE_NAME_CASE(READ_VL) 3896 } 3897 // clang-format on 3898 return nullptr; 3899 #undef NODE_NAME_CASE 3900 } 3901 3902 /// getConstraintType - Given a constraint letter, return the type of 3903 /// constraint it is for this target. 3904 RISCVTargetLowering::ConstraintType 3905 RISCVTargetLowering::getConstraintType(StringRef Constraint) const { 3906 if (Constraint.size() == 1) { 3907 switch (Constraint[0]) { 3908 default: 3909 break; 3910 case 'f': 3911 return C_RegisterClass; 3912 case 'I': 3913 case 'J': 3914 case 'K': 3915 return C_Immediate; 3916 case 'A': 3917 return C_Memory; 3918 } 3919 } 3920 return TargetLowering::getConstraintType(Constraint); 3921 } 3922 3923 std::pair<unsigned, const TargetRegisterClass *> 3924 RISCVTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 3925 StringRef Constraint, 3926 MVT VT) const { 3927 // First, see if this is a constraint that directly corresponds to a 3928 // RISCV register class. 3929 if (Constraint.size() == 1) { 3930 switch (Constraint[0]) { 3931 case 'r': 3932 return std::make_pair(0U, &RISCV::GPRRegClass); 3933 case 'f': 3934 if (Subtarget.hasStdExtZfh() && VT == MVT::f16) 3935 return std::make_pair(0U, &RISCV::FPR16RegClass); 3936 if (Subtarget.hasStdExtF() && VT == MVT::f32) 3937 return std::make_pair(0U, &RISCV::FPR32RegClass); 3938 if (Subtarget.hasStdExtD() && VT == MVT::f64) 3939 return std::make_pair(0U, &RISCV::FPR64RegClass); 3940 break; 3941 default: 3942 break; 3943 } 3944 } 3945 3946 // Clang will correctly decode the usage of register name aliases into their 3947 // official names. However, other frontends like `rustc` do not. This allows 3948 // users of these frontends to use the ABI names for registers in LLVM-style 3949 // register constraints. 3950 unsigned XRegFromAlias = StringSwitch<unsigned>(Constraint.lower()) 3951 .Case("{zero}", RISCV::X0) 3952 .Case("{ra}", RISCV::X1) 3953 .Case("{sp}", RISCV::X2) 3954 .Case("{gp}", RISCV::X3) 3955 .Case("{tp}", RISCV::X4) 3956 .Case("{t0}", RISCV::X5) 3957 .Case("{t1}", RISCV::X6) 3958 .Case("{t2}", RISCV::X7) 3959 .Cases("{s0}", "{fp}", RISCV::X8) 3960 .Case("{s1}", RISCV::X9) 3961 .Case("{a0}", RISCV::X10) 3962 .Case("{a1}", RISCV::X11) 3963 .Case("{a2}", RISCV::X12) 3964 .Case("{a3}", RISCV::X13) 3965 .Case("{a4}", RISCV::X14) 3966 .Case("{a5}", RISCV::X15) 3967 .Case("{a6}", RISCV::X16) 3968 .Case("{a7}", RISCV::X17) 3969 .Case("{s2}", RISCV::X18) 3970 .Case("{s3}", RISCV::X19) 3971 .Case("{s4}", RISCV::X20) 3972 .Case("{s5}", RISCV::X21) 3973 .Case("{s6}", RISCV::X22) 3974 .Case("{s7}", RISCV::X23) 3975 .Case("{s8}", RISCV::X24) 3976 .Case("{s9}", RISCV::X25) 3977 .Case("{s10}", RISCV::X26) 3978 .Case("{s11}", RISCV::X27) 3979 .Case("{t3}", RISCV::X28) 3980 .Case("{t4}", RISCV::X29) 3981 .Case("{t5}", RISCV::X30) 3982 .Case("{t6}", RISCV::X31) 3983 .Default(RISCV::NoRegister); 3984 if (XRegFromAlias != RISCV::NoRegister) 3985 return std::make_pair(XRegFromAlias, &RISCV::GPRRegClass); 3986 3987 // Since TargetLowering::getRegForInlineAsmConstraint uses the name of the 3988 // TableGen record rather than the AsmName to choose registers for InlineAsm 3989 // constraints, plus we want to match those names to the widest floating point 3990 // register type available, manually select floating point registers here. 3991 // 3992 // The second case is the ABI name of the register, so that frontends can also 3993 // use the ABI names in register constraint lists. 3994 if (Subtarget.hasStdExtF()) { 3995 unsigned FReg = StringSwitch<unsigned>(Constraint.lower()) 3996 .Cases("{f0}", "{ft0}", RISCV::F0_F) 3997 .Cases("{f1}", "{ft1}", RISCV::F1_F) 3998 .Cases("{f2}", "{ft2}", RISCV::F2_F) 3999 .Cases("{f3}", "{ft3}", RISCV::F3_F) 4000 .Cases("{f4}", "{ft4}", RISCV::F4_F) 4001 .Cases("{f5}", "{ft5}", RISCV::F5_F) 4002 .Cases("{f6}", "{ft6}", RISCV::F6_F) 4003 .Cases("{f7}", "{ft7}", RISCV::F7_F) 4004 .Cases("{f8}", "{fs0}", RISCV::F8_F) 4005 .Cases("{f9}", "{fs1}", RISCV::F9_F) 4006 .Cases("{f10}", "{fa0}", RISCV::F10_F) 4007 .Cases("{f11}", "{fa1}", RISCV::F11_F) 4008 .Cases("{f12}", "{fa2}", RISCV::F12_F) 4009 .Cases("{f13}", "{fa3}", RISCV::F13_F) 4010 .Cases("{f14}", "{fa4}", RISCV::F14_F) 4011 .Cases("{f15}", "{fa5}", RISCV::F15_F) 4012 .Cases("{f16}", "{fa6}", RISCV::F16_F) 4013 .Cases("{f17}", "{fa7}", RISCV::F17_F) 4014 .Cases("{f18}", "{fs2}", RISCV::F18_F) 4015 .Cases("{f19}", "{fs3}", RISCV::F19_F) 4016 .Cases("{f20}", "{fs4}", RISCV::F20_F) 4017 .Cases("{f21}", "{fs5}", RISCV::F21_F) 4018 .Cases("{f22}", "{fs6}", RISCV::F22_F) 4019 .Cases("{f23}", "{fs7}", RISCV::F23_F) 4020 .Cases("{f24}", "{fs8}", RISCV::F24_F) 4021 .Cases("{f25}", "{fs9}", RISCV::F25_F) 4022 .Cases("{f26}", "{fs10}", RISCV::F26_F) 4023 .Cases("{f27}", "{fs11}", RISCV::F27_F) 4024 .Cases("{f28}", "{ft8}", RISCV::F28_F) 4025 .Cases("{f29}", "{ft9}", RISCV::F29_F) 4026 .Cases("{f30}", "{ft10}", RISCV::F30_F) 4027 .Cases("{f31}", "{ft11}", RISCV::F31_F) 4028 .Default(RISCV::NoRegister); 4029 if (FReg != RISCV::NoRegister) { 4030 assert(RISCV::F0_F <= FReg && FReg <= RISCV::F31_F && "Unknown fp-reg"); 4031 if (Subtarget.hasStdExtD()) { 4032 unsigned RegNo = FReg - RISCV::F0_F; 4033 unsigned DReg = RISCV::F0_D + RegNo; 4034 return std::make_pair(DReg, &RISCV::FPR64RegClass); 4035 } 4036 return std::make_pair(FReg, &RISCV::FPR32RegClass); 4037 } 4038 } 4039 4040 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 4041 } 4042 4043 unsigned 4044 RISCVTargetLowering::getInlineAsmMemConstraint(StringRef ConstraintCode) const { 4045 // Currently only support length 1 constraints. 4046 if (ConstraintCode.size() == 1) { 4047 switch (ConstraintCode[0]) { 4048 case 'A': 4049 return InlineAsm::Constraint_A; 4050 default: 4051 break; 4052 } 4053 } 4054 4055 return TargetLowering::getInlineAsmMemConstraint(ConstraintCode); 4056 } 4057 4058 void RISCVTargetLowering::LowerAsmOperandForConstraint( 4059 SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops, 4060 SelectionDAG &DAG) const { 4061 // Currently only support length 1 constraints. 4062 if (Constraint.length() == 1) { 4063 switch (Constraint[0]) { 4064 case 'I': 4065 // Validate & create a 12-bit signed immediate operand. 4066 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 4067 uint64_t CVal = C->getSExtValue(); 4068 if (isInt<12>(CVal)) 4069 Ops.push_back( 4070 DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT())); 4071 } 4072 return; 4073 case 'J': 4074 // Validate & create an integer zero operand. 4075 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 4076 if (C->getZExtValue() == 0) 4077 Ops.push_back( 4078 DAG.getTargetConstant(0, SDLoc(Op), Subtarget.getXLenVT())); 4079 return; 4080 case 'K': 4081 // Validate & create a 5-bit unsigned immediate operand. 4082 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 4083 uint64_t CVal = C->getZExtValue(); 4084 if (isUInt<5>(CVal)) 4085 Ops.push_back( 4086 DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT())); 4087 } 4088 return; 4089 default: 4090 break; 4091 } 4092 } 4093 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 4094 } 4095 4096 Instruction *RISCVTargetLowering::emitLeadingFence(IRBuilder<> &Builder, 4097 Instruction *Inst, 4098 AtomicOrdering Ord) const { 4099 if (isa<LoadInst>(Inst) && Ord == AtomicOrdering::SequentiallyConsistent) 4100 return Builder.CreateFence(Ord); 4101 if (isa<StoreInst>(Inst) && isReleaseOrStronger(Ord)) 4102 return Builder.CreateFence(AtomicOrdering::Release); 4103 return nullptr; 4104 } 4105 4106 Instruction *RISCVTargetLowering::emitTrailingFence(IRBuilder<> &Builder, 4107 Instruction *Inst, 4108 AtomicOrdering Ord) const { 4109 if (isa<LoadInst>(Inst) && isAcquireOrStronger(Ord)) 4110 return Builder.CreateFence(AtomicOrdering::Acquire); 4111 return nullptr; 4112 } 4113 4114 TargetLowering::AtomicExpansionKind 4115 RISCVTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { 4116 // atomicrmw {fadd,fsub} must be expanded to use compare-exchange, as floating 4117 // point operations can't be used in an lr/sc sequence without breaking the 4118 // forward-progress guarantee. 4119 if (AI->isFloatingPointOperation()) 4120 return AtomicExpansionKind::CmpXChg; 4121 4122 unsigned Size = AI->getType()->getPrimitiveSizeInBits(); 4123 if (Size == 8 || Size == 16) 4124 return AtomicExpansionKind::MaskedIntrinsic; 4125 return AtomicExpansionKind::None; 4126 } 4127 4128 static Intrinsic::ID 4129 getIntrinsicForMaskedAtomicRMWBinOp(unsigned XLen, AtomicRMWInst::BinOp BinOp) { 4130 if (XLen == 32) { 4131 switch (BinOp) { 4132 default: 4133 llvm_unreachable("Unexpected AtomicRMW BinOp"); 4134 case AtomicRMWInst::Xchg: 4135 return Intrinsic::riscv_masked_atomicrmw_xchg_i32; 4136 case AtomicRMWInst::Add: 4137 return Intrinsic::riscv_masked_atomicrmw_add_i32; 4138 case AtomicRMWInst::Sub: 4139 return Intrinsic::riscv_masked_atomicrmw_sub_i32; 4140 case AtomicRMWInst::Nand: 4141 return Intrinsic::riscv_masked_atomicrmw_nand_i32; 4142 case AtomicRMWInst::Max: 4143 return Intrinsic::riscv_masked_atomicrmw_max_i32; 4144 case AtomicRMWInst::Min: 4145 return Intrinsic::riscv_masked_atomicrmw_min_i32; 4146 case AtomicRMWInst::UMax: 4147 return Intrinsic::riscv_masked_atomicrmw_umax_i32; 4148 case AtomicRMWInst::UMin: 4149 return Intrinsic::riscv_masked_atomicrmw_umin_i32; 4150 } 4151 } 4152 4153 if (XLen == 64) { 4154 switch (BinOp) { 4155 default: 4156 llvm_unreachable("Unexpected AtomicRMW BinOp"); 4157 case AtomicRMWInst::Xchg: 4158 return Intrinsic::riscv_masked_atomicrmw_xchg_i64; 4159 case AtomicRMWInst::Add: 4160 return Intrinsic::riscv_masked_atomicrmw_add_i64; 4161 case AtomicRMWInst::Sub: 4162 return Intrinsic::riscv_masked_atomicrmw_sub_i64; 4163 case AtomicRMWInst::Nand: 4164 return Intrinsic::riscv_masked_atomicrmw_nand_i64; 4165 case AtomicRMWInst::Max: 4166 return Intrinsic::riscv_masked_atomicrmw_max_i64; 4167 case AtomicRMWInst::Min: 4168 return Intrinsic::riscv_masked_atomicrmw_min_i64; 4169 case AtomicRMWInst::UMax: 4170 return Intrinsic::riscv_masked_atomicrmw_umax_i64; 4171 case AtomicRMWInst::UMin: 4172 return Intrinsic::riscv_masked_atomicrmw_umin_i64; 4173 } 4174 } 4175 4176 llvm_unreachable("Unexpected XLen\n"); 4177 } 4178 4179 Value *RISCVTargetLowering::emitMaskedAtomicRMWIntrinsic( 4180 IRBuilder<> &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr, 4181 Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const { 4182 unsigned XLen = Subtarget.getXLen(); 4183 Value *Ordering = 4184 Builder.getIntN(XLen, static_cast<uint64_t>(AI->getOrdering())); 4185 Type *Tys[] = {AlignedAddr->getType()}; 4186 Function *LrwOpScwLoop = Intrinsic::getDeclaration( 4187 AI->getModule(), 4188 getIntrinsicForMaskedAtomicRMWBinOp(XLen, AI->getOperation()), Tys); 4189 4190 if (XLen == 64) { 4191 Incr = Builder.CreateSExt(Incr, Builder.getInt64Ty()); 4192 Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty()); 4193 ShiftAmt = Builder.CreateSExt(ShiftAmt, Builder.getInt64Ty()); 4194 } 4195 4196 Value *Result; 4197 4198 // Must pass the shift amount needed to sign extend the loaded value prior 4199 // to performing a signed comparison for min/max. ShiftAmt is the number of 4200 // bits to shift the value into position. Pass XLen-ShiftAmt-ValWidth, which 4201 // is the number of bits to left+right shift the value in order to 4202 // sign-extend. 4203 if (AI->getOperation() == AtomicRMWInst::Min || 4204 AI->getOperation() == AtomicRMWInst::Max) { 4205 const DataLayout &DL = AI->getModule()->getDataLayout(); 4206 unsigned ValWidth = 4207 DL.getTypeStoreSizeInBits(AI->getValOperand()->getType()); 4208 Value *SextShamt = 4209 Builder.CreateSub(Builder.getIntN(XLen, XLen - ValWidth), ShiftAmt); 4210 Result = Builder.CreateCall(LrwOpScwLoop, 4211 {AlignedAddr, Incr, Mask, SextShamt, Ordering}); 4212 } else { 4213 Result = 4214 Builder.CreateCall(LrwOpScwLoop, {AlignedAddr, Incr, Mask, Ordering}); 4215 } 4216 4217 if (XLen == 64) 4218 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty()); 4219 return Result; 4220 } 4221 4222 TargetLowering::AtomicExpansionKind 4223 RISCVTargetLowering::shouldExpandAtomicCmpXchgInIR( 4224 AtomicCmpXchgInst *CI) const { 4225 unsigned Size = CI->getCompareOperand()->getType()->getPrimitiveSizeInBits(); 4226 if (Size == 8 || Size == 16) 4227 return AtomicExpansionKind::MaskedIntrinsic; 4228 return AtomicExpansionKind::None; 4229 } 4230 4231 Value *RISCVTargetLowering::emitMaskedAtomicCmpXchgIntrinsic( 4232 IRBuilder<> &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr, 4233 Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const { 4234 unsigned XLen = Subtarget.getXLen(); 4235 Value *Ordering = Builder.getIntN(XLen, static_cast<uint64_t>(Ord)); 4236 Intrinsic::ID CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i32; 4237 if (XLen == 64) { 4238 CmpVal = Builder.CreateSExt(CmpVal, Builder.getInt64Ty()); 4239 NewVal = Builder.CreateSExt(NewVal, Builder.getInt64Ty()); 4240 Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty()); 4241 CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i64; 4242 } 4243 Type *Tys[] = {AlignedAddr->getType()}; 4244 Function *MaskedCmpXchg = 4245 Intrinsic::getDeclaration(CI->getModule(), CmpXchgIntrID, Tys); 4246 Value *Result = Builder.CreateCall( 4247 MaskedCmpXchg, {AlignedAddr, CmpVal, NewVal, Mask, Ordering}); 4248 if (XLen == 64) 4249 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty()); 4250 return Result; 4251 } 4252 4253 bool RISCVTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, 4254 EVT VT) const { 4255 VT = VT.getScalarType(); 4256 4257 if (!VT.isSimple()) 4258 return false; 4259 4260 switch (VT.getSimpleVT().SimpleTy) { 4261 case MVT::f16: 4262 return Subtarget.hasStdExtZfh(); 4263 case MVT::f32: 4264 return Subtarget.hasStdExtF(); 4265 case MVT::f64: 4266 return Subtarget.hasStdExtD(); 4267 default: 4268 break; 4269 } 4270 4271 return false; 4272 } 4273 4274 Register RISCVTargetLowering::getExceptionPointerRegister( 4275 const Constant *PersonalityFn) const { 4276 return RISCV::X10; 4277 } 4278 4279 Register RISCVTargetLowering::getExceptionSelectorRegister( 4280 const Constant *PersonalityFn) const { 4281 return RISCV::X11; 4282 } 4283 4284 bool RISCVTargetLowering::shouldExtendTypeInLibCall(EVT Type) const { 4285 // Return false to suppress the unnecessary extensions if the LibCall 4286 // arguments or return value is f32 type for LP64 ABI. 4287 RISCVABI::ABI ABI = Subtarget.getTargetABI(); 4288 if (ABI == RISCVABI::ABI_LP64 && (Type == MVT::f32)) 4289 return false; 4290 4291 return true; 4292 } 4293 4294 bool RISCVTargetLowering::shouldSignExtendTypeInLibCall(EVT Type, bool IsSigned) const { 4295 if (Subtarget.is64Bit() && Type == MVT::i32) 4296 return true; 4297 4298 return IsSigned; 4299 } 4300 4301 bool RISCVTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT, 4302 SDValue C) const { 4303 // Check integral scalar types. 4304 if (VT.isScalarInteger()) { 4305 // Omit the optimization if the sub target has the M extension and the data 4306 // size exceeds XLen. 4307 if (Subtarget.hasStdExtM() && VT.getSizeInBits() > Subtarget.getXLen()) 4308 return false; 4309 if (auto *ConstNode = dyn_cast<ConstantSDNode>(C.getNode())) { 4310 // Break the MUL to a SLLI and an ADD/SUB. 4311 const APInt &Imm = ConstNode->getAPIntValue(); 4312 if ((Imm + 1).isPowerOf2() || (Imm - 1).isPowerOf2() || 4313 (1 - Imm).isPowerOf2() || (-1 - Imm).isPowerOf2()) 4314 return true; 4315 // Omit the following optimization if the sub target has the M extension 4316 // and the data size >= XLen. 4317 if (Subtarget.hasStdExtM() && VT.getSizeInBits() >= Subtarget.getXLen()) 4318 return false; 4319 // Break the MUL to two SLLI instructions and an ADD/SUB, if Imm needs 4320 // a pair of LUI/ADDI. 4321 if (!Imm.isSignedIntN(12) && Imm.countTrailingZeros() < 12) { 4322 APInt ImmS = Imm.ashr(Imm.countTrailingZeros()); 4323 if ((ImmS + 1).isPowerOf2() || (ImmS - 1).isPowerOf2() || 4324 (1 - ImmS).isPowerOf2()) 4325 return true; 4326 } 4327 } 4328 } 4329 4330 return false; 4331 } 4332 4333 #define GET_REGISTER_MATCHER 4334 #include "RISCVGenAsmMatcher.inc" 4335 4336 Register 4337 RISCVTargetLowering::getRegisterByName(const char *RegName, LLT VT, 4338 const MachineFunction &MF) const { 4339 Register Reg = MatchRegisterAltName(RegName); 4340 if (Reg == RISCV::NoRegister) 4341 Reg = MatchRegisterName(RegName); 4342 if (Reg == RISCV::NoRegister) 4343 report_fatal_error( 4344 Twine("Invalid register name \"" + StringRef(RegName) + "\".")); 4345 BitVector ReservedRegs = Subtarget.getRegisterInfo()->getReservedRegs(MF); 4346 if (!ReservedRegs.test(Reg) && !Subtarget.isRegisterReservedByUser(Reg)) 4347 report_fatal_error(Twine("Trying to obtain non-reserved register \"" + 4348 StringRef(RegName) + "\".")); 4349 return Reg; 4350 } 4351 4352 namespace llvm { 4353 namespace RISCVVIntrinsicsTable { 4354 4355 #define GET_RISCVVIntrinsicsTable_IMPL 4356 #include "RISCVGenSearchableTables.inc" 4357 4358 } // namespace RISCVVIntrinsicsTable 4359 4360 namespace RISCVZvlssegTable { 4361 4362 #define GET_RISCVZvlssegTable_IMPL 4363 #include "RISCVGenSearchableTables.inc" 4364 4365 } // namespace RISCVZvlssegTable 4366 } // namespace llvm 4367