1 //===-- RISCVISelLowering.cpp - RISCV DAG Lowering Implementation --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the interfaces that RISCV uses to lower LLVM code into a 10 // selection DAG. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "RISCVISelLowering.h" 15 #include "MCTargetDesc/RISCVMatInt.h" 16 #include "RISCV.h" 17 #include "RISCVMachineFunctionInfo.h" 18 #include "RISCVRegisterInfo.h" 19 #include "RISCVSubtarget.h" 20 #include "RISCVTargetMachine.h" 21 #include "llvm/ADT/SmallSet.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/CodeGen/MachineFrameInfo.h" 24 #include "llvm/CodeGen/MachineFunction.h" 25 #include "llvm/CodeGen/MachineInstrBuilder.h" 26 #include "llvm/CodeGen/MachineRegisterInfo.h" 27 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 28 #include "llvm/CodeGen/ValueTypes.h" 29 #include "llvm/IR/DiagnosticInfo.h" 30 #include "llvm/IR/DiagnosticPrinter.h" 31 #include "llvm/IR/IntrinsicsRISCV.h" 32 #include "llvm/IR/IRBuilder.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/ErrorHandling.h" 35 #include "llvm/Support/KnownBits.h" 36 #include "llvm/Support/MathExtras.h" 37 #include "llvm/Support/raw_ostream.h" 38 39 using namespace llvm; 40 41 #define DEBUG_TYPE "riscv-lower" 42 43 STATISTIC(NumTailCalls, "Number of tail calls"); 44 45 RISCVTargetLowering::RISCVTargetLowering(const TargetMachine &TM, 46 const RISCVSubtarget &STI) 47 : TargetLowering(TM), Subtarget(STI) { 48 49 if (Subtarget.isRV32E()) 50 report_fatal_error("Codegen not yet implemented for RV32E"); 51 52 RISCVABI::ABI ABI = Subtarget.getTargetABI(); 53 assert(ABI != RISCVABI::ABI_Unknown && "Improperly initialised target ABI"); 54 55 if ((ABI == RISCVABI::ABI_ILP32F || ABI == RISCVABI::ABI_LP64F) && 56 !Subtarget.hasStdExtF()) { 57 errs() << "Hard-float 'f' ABI can't be used for a target that " 58 "doesn't support the F instruction set extension (ignoring " 59 "target-abi)\n"; 60 ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32; 61 } else if ((ABI == RISCVABI::ABI_ILP32D || ABI == RISCVABI::ABI_LP64D) && 62 !Subtarget.hasStdExtD()) { 63 errs() << "Hard-float 'd' ABI can't be used for a target that " 64 "doesn't support the D instruction set extension (ignoring " 65 "target-abi)\n"; 66 ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32; 67 } 68 69 switch (ABI) { 70 default: 71 report_fatal_error("Don't know how to lower this ABI"); 72 case RISCVABI::ABI_ILP32: 73 case RISCVABI::ABI_ILP32F: 74 case RISCVABI::ABI_ILP32D: 75 case RISCVABI::ABI_LP64: 76 case RISCVABI::ABI_LP64F: 77 case RISCVABI::ABI_LP64D: 78 break; 79 } 80 81 MVT XLenVT = Subtarget.getXLenVT(); 82 83 // Set up the register classes. 84 addRegisterClass(XLenVT, &RISCV::GPRRegClass); 85 86 if (Subtarget.hasStdExtZfh()) 87 addRegisterClass(MVT::f16, &RISCV::FPR16RegClass); 88 if (Subtarget.hasStdExtF()) 89 addRegisterClass(MVT::f32, &RISCV::FPR32RegClass); 90 if (Subtarget.hasStdExtD()) 91 addRegisterClass(MVT::f64, &RISCV::FPR64RegClass); 92 93 static const MVT::SimpleValueType BoolVecVTs[] = { 94 MVT::nxv1i1, MVT::nxv2i1, MVT::nxv4i1, MVT::nxv8i1, 95 MVT::nxv16i1, MVT::nxv32i1, MVT::nxv64i1}; 96 static const MVT::SimpleValueType IntVecVTs[] = { 97 MVT::nxv1i8, MVT::nxv2i8, MVT::nxv4i8, MVT::nxv8i8, MVT::nxv16i8, 98 MVT::nxv32i8, MVT::nxv64i8, MVT::nxv1i16, MVT::nxv2i16, MVT::nxv4i16, 99 MVT::nxv8i16, MVT::nxv16i16, MVT::nxv32i16, MVT::nxv1i32, MVT::nxv2i32, 100 MVT::nxv4i32, MVT::nxv8i32, MVT::nxv16i32, MVT::nxv1i64, MVT::nxv2i64, 101 MVT::nxv4i64, MVT::nxv8i64}; 102 static const MVT::SimpleValueType F16VecVTs[] = { 103 MVT::nxv1f16, MVT::nxv2f16, MVT::nxv4f16, 104 MVT::nxv8f16, MVT::nxv16f16, MVT::nxv32f16}; 105 static const MVT::SimpleValueType F32VecVTs[] = { 106 MVT::nxv1f32, MVT::nxv2f32, MVT::nxv4f32, MVT::nxv8f32, MVT::nxv16f32}; 107 static const MVT::SimpleValueType F64VecVTs[] = { 108 MVT::nxv1f64, MVT::nxv2f64, MVT::nxv4f64, MVT::nxv8f64}; 109 110 if (Subtarget.hasStdExtV()) { 111 auto addRegClassForRVV = [this](MVT VT) { 112 unsigned Size = VT.getSizeInBits().getKnownMinValue(); 113 assert(Size <= 512 && isPowerOf2_32(Size)); 114 const TargetRegisterClass *RC; 115 if (Size <= 64) 116 RC = &RISCV::VRRegClass; 117 else if (Size == 128) 118 RC = &RISCV::VRM2RegClass; 119 else if (Size == 256) 120 RC = &RISCV::VRM4RegClass; 121 else 122 RC = &RISCV::VRM8RegClass; 123 124 addRegisterClass(VT, RC); 125 }; 126 127 for (MVT VT : BoolVecVTs) 128 addRegClassForRVV(VT); 129 for (MVT VT : IntVecVTs) 130 addRegClassForRVV(VT); 131 132 if (Subtarget.hasStdExtZfh()) 133 for (MVT VT : F16VecVTs) 134 addRegClassForRVV(VT); 135 136 if (Subtarget.hasStdExtF()) 137 for (MVT VT : F32VecVTs) 138 addRegClassForRVV(VT); 139 140 if (Subtarget.hasStdExtD()) 141 for (MVT VT : F64VecVTs) 142 addRegClassForRVV(VT); 143 144 if (Subtarget.useRVVForFixedLengthVectors()) { 145 auto addRegClassForFixedVectors = [this](MVT VT) { 146 MVT ContainerVT = getContainerForFixedLengthVector(VT); 147 unsigned RCID = getRegClassIDForVecVT(ContainerVT); 148 const RISCVRegisterInfo &TRI = *Subtarget.getRegisterInfo(); 149 addRegisterClass(VT, TRI.getRegClass(RCID)); 150 }; 151 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) 152 if (useRVVForFixedLengthVectorVT(VT)) 153 addRegClassForFixedVectors(VT); 154 155 for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) 156 if (useRVVForFixedLengthVectorVT(VT)) 157 addRegClassForFixedVectors(VT); 158 } 159 } 160 161 // Compute derived properties from the register classes. 162 computeRegisterProperties(STI.getRegisterInfo()); 163 164 setStackPointerRegisterToSaveRestore(RISCV::X2); 165 166 for (auto N : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}) 167 setLoadExtAction(N, XLenVT, MVT::i1, Promote); 168 169 // TODO: add all necessary setOperationAction calls. 170 setOperationAction(ISD::DYNAMIC_STACKALLOC, XLenVT, Expand); 171 172 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 173 setOperationAction(ISD::BR_CC, XLenVT, Expand); 174 setOperationAction(ISD::BRCOND, MVT::Other, Custom); 175 setOperationAction(ISD::SELECT_CC, XLenVT, Expand); 176 177 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); 178 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); 179 180 setOperationAction(ISD::VASTART, MVT::Other, Custom); 181 setOperationAction(ISD::VAARG, MVT::Other, Expand); 182 setOperationAction(ISD::VACOPY, MVT::Other, Expand); 183 setOperationAction(ISD::VAEND, MVT::Other, Expand); 184 185 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 186 if (!Subtarget.hasStdExtZbb()) { 187 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand); 188 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand); 189 } 190 191 if (Subtarget.is64Bit()) { 192 setOperationAction(ISD::ADD, MVT::i32, Custom); 193 setOperationAction(ISD::SUB, MVT::i32, Custom); 194 setOperationAction(ISD::SHL, MVT::i32, Custom); 195 setOperationAction(ISD::SRA, MVT::i32, Custom); 196 setOperationAction(ISD::SRL, MVT::i32, Custom); 197 198 setOperationAction(ISD::UADDO, MVT::i32, Custom); 199 setOperationAction(ISD::USUBO, MVT::i32, Custom); 200 setOperationAction(ISD::UADDSAT, MVT::i32, Custom); 201 setOperationAction(ISD::USUBSAT, MVT::i32, Custom); 202 } 203 204 if (!Subtarget.hasStdExtM()) { 205 setOperationAction(ISD::MUL, XLenVT, Expand); 206 setOperationAction(ISD::MULHS, XLenVT, Expand); 207 setOperationAction(ISD::MULHU, XLenVT, Expand); 208 setOperationAction(ISD::SDIV, XLenVT, Expand); 209 setOperationAction(ISD::UDIV, XLenVT, Expand); 210 setOperationAction(ISD::SREM, XLenVT, Expand); 211 setOperationAction(ISD::UREM, XLenVT, Expand); 212 } else { 213 if (Subtarget.is64Bit()) { 214 setOperationAction(ISD::MUL, MVT::i32, Custom); 215 setOperationAction(ISD::MUL, MVT::i128, Custom); 216 217 setOperationAction(ISD::SDIV, MVT::i8, Custom); 218 setOperationAction(ISD::UDIV, MVT::i8, Custom); 219 setOperationAction(ISD::UREM, MVT::i8, Custom); 220 setOperationAction(ISD::SDIV, MVT::i16, Custom); 221 setOperationAction(ISD::UDIV, MVT::i16, Custom); 222 setOperationAction(ISD::UREM, MVT::i16, Custom); 223 setOperationAction(ISD::SDIV, MVT::i32, Custom); 224 setOperationAction(ISD::UDIV, MVT::i32, Custom); 225 setOperationAction(ISD::UREM, MVT::i32, Custom); 226 } else { 227 setOperationAction(ISD::MUL, MVT::i64, Custom); 228 } 229 } 230 231 setOperationAction(ISD::SDIVREM, XLenVT, Expand); 232 setOperationAction(ISD::UDIVREM, XLenVT, Expand); 233 setOperationAction(ISD::SMUL_LOHI, XLenVT, Expand); 234 setOperationAction(ISD::UMUL_LOHI, XLenVT, Expand); 235 236 setOperationAction(ISD::SHL_PARTS, XLenVT, Custom); 237 setOperationAction(ISD::SRL_PARTS, XLenVT, Custom); 238 setOperationAction(ISD::SRA_PARTS, XLenVT, Custom); 239 240 if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp()) { 241 if (Subtarget.is64Bit()) { 242 setOperationAction(ISD::ROTL, MVT::i32, Custom); 243 setOperationAction(ISD::ROTR, MVT::i32, Custom); 244 } 245 } else { 246 setOperationAction(ISD::ROTL, XLenVT, Expand); 247 setOperationAction(ISD::ROTR, XLenVT, Expand); 248 } 249 250 if (Subtarget.hasStdExtZbp()) { 251 // Custom lower bswap/bitreverse so we can convert them to GREVI to enable 252 // more combining. 253 setOperationAction(ISD::BITREVERSE, XLenVT, Custom); 254 setOperationAction(ISD::BSWAP, XLenVT, Custom); 255 setOperationAction(ISD::BITREVERSE, MVT::i8, Custom); 256 // BSWAP i8 doesn't exist. 257 setOperationAction(ISD::BITREVERSE, MVT::i16, Custom); 258 setOperationAction(ISD::BSWAP, MVT::i16, Custom); 259 260 if (Subtarget.is64Bit()) { 261 setOperationAction(ISD::BITREVERSE, MVT::i32, Custom); 262 setOperationAction(ISD::BSWAP, MVT::i32, Custom); 263 } 264 } else { 265 // With Zbb we have an XLen rev8 instruction, but not GREVI. So we'll 266 // pattern match it directly in isel. 267 setOperationAction(ISD::BSWAP, XLenVT, 268 Subtarget.hasStdExtZbb() ? Legal : Expand); 269 } 270 271 if (Subtarget.hasStdExtZbb()) { 272 setOperationAction(ISD::SMIN, XLenVT, Legal); 273 setOperationAction(ISD::SMAX, XLenVT, Legal); 274 setOperationAction(ISD::UMIN, XLenVT, Legal); 275 setOperationAction(ISD::UMAX, XLenVT, Legal); 276 277 if (Subtarget.is64Bit()) { 278 setOperationAction(ISD::CTTZ, MVT::i32, Custom); 279 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Custom); 280 setOperationAction(ISD::CTLZ, MVT::i32, Custom); 281 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom); 282 } 283 } else { 284 setOperationAction(ISD::CTTZ, XLenVT, Expand); 285 setOperationAction(ISD::CTLZ, XLenVT, Expand); 286 setOperationAction(ISD::CTPOP, XLenVT, Expand); 287 } 288 289 if (Subtarget.hasStdExtZbt()) { 290 setOperationAction(ISD::FSHL, XLenVT, Custom); 291 setOperationAction(ISD::FSHR, XLenVT, Custom); 292 setOperationAction(ISD::SELECT, XLenVT, Legal); 293 294 if (Subtarget.is64Bit()) { 295 setOperationAction(ISD::FSHL, MVT::i32, Custom); 296 setOperationAction(ISD::FSHR, MVT::i32, Custom); 297 } 298 } else { 299 setOperationAction(ISD::SELECT, XLenVT, Custom); 300 } 301 302 ISD::CondCode FPCCToExpand[] = { 303 ISD::SETOGT, ISD::SETOGE, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT, 304 ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUNE, ISD::SETGT, 305 ISD::SETGE, ISD::SETNE, ISD::SETO, ISD::SETUO}; 306 307 ISD::NodeType FPOpToExpand[] = { 308 ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, ISD::FREM, ISD::FP16_TO_FP, 309 ISD::FP_TO_FP16}; 310 311 if (Subtarget.hasStdExtZfh()) 312 setOperationAction(ISD::BITCAST, MVT::i16, Custom); 313 314 if (Subtarget.hasStdExtZfh()) { 315 setOperationAction(ISD::FMINNUM, MVT::f16, Legal); 316 setOperationAction(ISD::FMAXNUM, MVT::f16, Legal); 317 setOperationAction(ISD::LRINT, MVT::f16, Legal); 318 setOperationAction(ISD::LLRINT, MVT::f16, Legal); 319 setOperationAction(ISD::LROUND, MVT::f16, Legal); 320 setOperationAction(ISD::LLROUND, MVT::f16, Legal); 321 for (auto CC : FPCCToExpand) 322 setCondCodeAction(CC, MVT::f16, Expand); 323 setOperationAction(ISD::SELECT_CC, MVT::f16, Expand); 324 setOperationAction(ISD::SELECT, MVT::f16, Custom); 325 setOperationAction(ISD::BR_CC, MVT::f16, Expand); 326 for (auto Op : FPOpToExpand) 327 setOperationAction(Op, MVT::f16, Expand); 328 } 329 330 if (Subtarget.hasStdExtF()) { 331 setOperationAction(ISD::FMINNUM, MVT::f32, Legal); 332 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); 333 setOperationAction(ISD::LRINT, MVT::f32, Legal); 334 setOperationAction(ISD::LLRINT, MVT::f32, Legal); 335 setOperationAction(ISD::LROUND, MVT::f32, Legal); 336 setOperationAction(ISD::LLROUND, MVT::f32, Legal); 337 for (auto CC : FPCCToExpand) 338 setCondCodeAction(CC, MVT::f32, Expand); 339 setOperationAction(ISD::SELECT_CC, MVT::f32, Expand); 340 setOperationAction(ISD::SELECT, MVT::f32, Custom); 341 setOperationAction(ISD::BR_CC, MVT::f32, Expand); 342 for (auto Op : FPOpToExpand) 343 setOperationAction(Op, MVT::f32, Expand); 344 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); 345 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 346 } 347 348 if (Subtarget.hasStdExtF() && Subtarget.is64Bit()) 349 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 350 351 if (Subtarget.hasStdExtD()) { 352 setOperationAction(ISD::FMINNUM, MVT::f64, Legal); 353 setOperationAction(ISD::FMAXNUM, MVT::f64, Legal); 354 setOperationAction(ISD::LRINT, MVT::f64, Legal); 355 setOperationAction(ISD::LLRINT, MVT::f64, Legal); 356 setOperationAction(ISD::LROUND, MVT::f64, Legal); 357 setOperationAction(ISD::LLROUND, MVT::f64, Legal); 358 for (auto CC : FPCCToExpand) 359 setCondCodeAction(CC, MVT::f64, Expand); 360 setOperationAction(ISD::SELECT_CC, MVT::f64, Expand); 361 setOperationAction(ISD::SELECT, MVT::f64, Custom); 362 setOperationAction(ISD::BR_CC, MVT::f64, Expand); 363 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 364 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 365 for (auto Op : FPOpToExpand) 366 setOperationAction(Op, MVT::f64, Expand); 367 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); 368 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 369 } 370 371 if (Subtarget.is64Bit()) { 372 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 373 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 374 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom); 375 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom); 376 } 377 378 if (Subtarget.hasStdExtF()) { 379 setOperationAction(ISD::FLT_ROUNDS_, XLenVT, Custom); 380 setOperationAction(ISD::SET_ROUNDING, MVT::Other, Custom); 381 } 382 383 setOperationAction(ISD::GlobalAddress, XLenVT, Custom); 384 setOperationAction(ISD::BlockAddress, XLenVT, Custom); 385 setOperationAction(ISD::ConstantPool, XLenVT, Custom); 386 setOperationAction(ISD::JumpTable, XLenVT, Custom); 387 388 setOperationAction(ISD::GlobalTLSAddress, XLenVT, Custom); 389 390 // TODO: On M-mode only targets, the cycle[h] CSR may not be present. 391 // Unfortunately this can't be determined just from the ISA naming string. 392 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, 393 Subtarget.is64Bit() ? Legal : Custom); 394 395 setOperationAction(ISD::TRAP, MVT::Other, Legal); 396 setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal); 397 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 398 if (Subtarget.is64Bit()) 399 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i32, Custom); 400 401 if (Subtarget.hasStdExtA()) { 402 setMaxAtomicSizeInBitsSupported(Subtarget.getXLen()); 403 setMinCmpXchgSizeInBits(32); 404 } else { 405 setMaxAtomicSizeInBitsSupported(0); 406 } 407 408 setBooleanContents(ZeroOrOneBooleanContent); 409 410 if (Subtarget.hasStdExtV()) { 411 setBooleanVectorContents(ZeroOrOneBooleanContent); 412 413 setOperationAction(ISD::VSCALE, XLenVT, Custom); 414 415 // RVV intrinsics may have illegal operands. 416 // We also need to custom legalize vmv.x.s. 417 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i8, Custom); 418 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i16, Custom); 419 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i8, Custom); 420 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i16, Custom); 421 if (Subtarget.is64Bit()) { 422 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i32, Custom); 423 } else { 424 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i64, Custom); 425 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i64, Custom); 426 } 427 428 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom); 429 430 static unsigned IntegerVPOps[] = { 431 ISD::VP_ADD, ISD::VP_SUB, ISD::VP_MUL, ISD::VP_SDIV, ISD::VP_UDIV, 432 ISD::VP_SREM, ISD::VP_UREM, ISD::VP_AND, ISD::VP_OR, ISD::VP_XOR, 433 ISD::VP_ASHR, ISD::VP_LSHR, ISD::VP_SHL}; 434 435 static unsigned FloatingPointVPOps[] = {ISD::VP_FADD, ISD::VP_FSUB, 436 ISD::VP_FMUL, ISD::VP_FDIV}; 437 438 if (!Subtarget.is64Bit()) { 439 // We must custom-lower certain vXi64 operations on RV32 due to the vector 440 // element type being illegal. 441 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::i64, Custom); 442 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::i64, Custom); 443 444 setOperationAction(ISD::VECREDUCE_ADD, MVT::i64, Custom); 445 setOperationAction(ISD::VECREDUCE_AND, MVT::i64, Custom); 446 setOperationAction(ISD::VECREDUCE_OR, MVT::i64, Custom); 447 setOperationAction(ISD::VECREDUCE_XOR, MVT::i64, Custom); 448 setOperationAction(ISD::VECREDUCE_SMAX, MVT::i64, Custom); 449 setOperationAction(ISD::VECREDUCE_SMIN, MVT::i64, Custom); 450 setOperationAction(ISD::VECREDUCE_UMAX, MVT::i64, Custom); 451 setOperationAction(ISD::VECREDUCE_UMIN, MVT::i64, Custom); 452 } 453 454 for (MVT VT : BoolVecVTs) { 455 setOperationAction(ISD::SPLAT_VECTOR, VT, Custom); 456 457 // Mask VTs are custom-expanded into a series of standard nodes 458 setOperationAction(ISD::TRUNCATE, VT, Custom); 459 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 460 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 461 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 462 463 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 464 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 465 466 setOperationAction(ISD::SELECT, VT, Custom); 467 setOperationAction(ISD::SELECT_CC, VT, Expand); 468 setOperationAction(ISD::VSELECT, VT, Expand); 469 470 setOperationAction(ISD::VECREDUCE_AND, VT, Custom); 471 setOperationAction(ISD::VECREDUCE_OR, VT, Custom); 472 setOperationAction(ISD::VECREDUCE_XOR, VT, Custom); 473 474 // RVV has native int->float & float->int conversions where the 475 // element type sizes are within one power-of-two of each other. Any 476 // wider distances between type sizes have to be lowered as sequences 477 // which progressively narrow the gap in stages. 478 setOperationAction(ISD::SINT_TO_FP, VT, Custom); 479 setOperationAction(ISD::UINT_TO_FP, VT, Custom); 480 setOperationAction(ISD::FP_TO_SINT, VT, Custom); 481 setOperationAction(ISD::FP_TO_UINT, VT, Custom); 482 483 // Expand all extending loads to types larger than this, and truncating 484 // stores from types larger than this. 485 for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) { 486 setTruncStoreAction(OtherVT, VT, Expand); 487 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 488 setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand); 489 setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand); 490 } 491 } 492 493 for (MVT VT : IntVecVTs) { 494 setOperationAction(ISD::SPLAT_VECTOR, VT, Legal); 495 setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom); 496 497 setOperationAction(ISD::SMIN, VT, Legal); 498 setOperationAction(ISD::SMAX, VT, Legal); 499 setOperationAction(ISD::UMIN, VT, Legal); 500 setOperationAction(ISD::UMAX, VT, Legal); 501 502 setOperationAction(ISD::ROTL, VT, Expand); 503 setOperationAction(ISD::ROTR, VT, Expand); 504 505 // Custom-lower extensions and truncations from/to mask types. 506 setOperationAction(ISD::ANY_EXTEND, VT, Custom); 507 setOperationAction(ISD::SIGN_EXTEND, VT, Custom); 508 setOperationAction(ISD::ZERO_EXTEND, VT, Custom); 509 510 // RVV has native int->float & float->int conversions where the 511 // element type sizes are within one power-of-two of each other. Any 512 // wider distances between type sizes have to be lowered as sequences 513 // which progressively narrow the gap in stages. 514 setOperationAction(ISD::SINT_TO_FP, VT, Custom); 515 setOperationAction(ISD::UINT_TO_FP, VT, Custom); 516 setOperationAction(ISD::FP_TO_SINT, VT, Custom); 517 setOperationAction(ISD::FP_TO_UINT, VT, Custom); 518 519 // Integer VTs are lowered as a series of "RISCVISD::TRUNCATE_VECTOR_VL" 520 // nodes which truncate by one power of two at a time. 521 setOperationAction(ISD::TRUNCATE, VT, Custom); 522 523 // Custom-lower insert/extract operations to simplify patterns. 524 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 525 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 526 527 // Custom-lower reduction operations to set up the corresponding custom 528 // nodes' operands. 529 setOperationAction(ISD::VECREDUCE_ADD, VT, Custom); 530 setOperationAction(ISD::VECREDUCE_AND, VT, Custom); 531 setOperationAction(ISD::VECREDUCE_OR, VT, Custom); 532 setOperationAction(ISD::VECREDUCE_XOR, VT, Custom); 533 setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom); 534 setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom); 535 setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom); 536 setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom); 537 538 for (unsigned VPOpc : IntegerVPOps) 539 setOperationAction(VPOpc, VT, Custom); 540 541 setOperationAction(ISD::LOAD, VT, Custom); 542 setOperationAction(ISD::STORE, VT, Custom); 543 544 setOperationAction(ISD::MLOAD, VT, Custom); 545 setOperationAction(ISD::MSTORE, VT, Custom); 546 setOperationAction(ISD::MGATHER, VT, Custom); 547 setOperationAction(ISD::MSCATTER, VT, Custom); 548 549 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 550 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 551 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 552 553 setOperationAction(ISD::SELECT, VT, Custom); 554 setOperationAction(ISD::SELECT_CC, VT, Expand); 555 556 setOperationAction(ISD::STEP_VECTOR, VT, Custom); 557 setOperationAction(ISD::VECTOR_REVERSE, VT, Custom); 558 559 for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) { 560 setTruncStoreAction(VT, OtherVT, Expand); 561 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 562 setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand); 563 setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand); 564 } 565 } 566 567 // Expand various CCs to best match the RVV ISA, which natively supports UNE 568 // but no other unordered comparisons, and supports all ordered comparisons 569 // except ONE. Additionally, we expand GT,OGT,GE,OGE for optimization 570 // purposes; they are expanded to their swapped-operand CCs (LT,OLT,LE,OLE), 571 // and we pattern-match those back to the "original", swapping operands once 572 // more. This way we catch both operations and both "vf" and "fv" forms with 573 // fewer patterns. 574 ISD::CondCode VFPCCToExpand[] = { 575 ISD::SETO, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT, 576 ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUO, 577 ISD::SETGT, ISD::SETOGT, ISD::SETGE, ISD::SETOGE, 578 }; 579 580 // Sets common operation actions on RVV floating-point vector types. 581 const auto SetCommonVFPActions = [&](MVT VT) { 582 setOperationAction(ISD::SPLAT_VECTOR, VT, Legal); 583 // RVV has native FP_ROUND & FP_EXTEND conversions where the element type 584 // sizes are within one power-of-two of each other. Therefore conversions 585 // between vXf16 and vXf64 must be lowered as sequences which convert via 586 // vXf32. 587 setOperationAction(ISD::FP_ROUND, VT, Custom); 588 setOperationAction(ISD::FP_EXTEND, VT, Custom); 589 // Custom-lower insert/extract operations to simplify patterns. 590 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 591 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 592 // Expand various condition codes (explained above). 593 for (auto CC : VFPCCToExpand) 594 setCondCodeAction(CC, VT, Expand); 595 596 setOperationAction(ISD::FMINNUM, VT, Legal); 597 setOperationAction(ISD::FMAXNUM, VT, Legal); 598 599 setOperationAction(ISD::VECREDUCE_FADD, VT, Custom); 600 setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom); 601 setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom); 602 setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom); 603 setOperationAction(ISD::FCOPYSIGN, VT, Legal); 604 605 setOperationAction(ISD::LOAD, VT, Custom); 606 setOperationAction(ISD::STORE, VT, Custom); 607 608 setOperationAction(ISD::MLOAD, VT, Custom); 609 setOperationAction(ISD::MSTORE, VT, Custom); 610 setOperationAction(ISD::MGATHER, VT, Custom); 611 setOperationAction(ISD::MSCATTER, VT, Custom); 612 613 setOperationAction(ISD::SELECT, VT, Custom); 614 setOperationAction(ISD::SELECT_CC, VT, Expand); 615 616 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 617 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 618 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 619 620 setOperationAction(ISD::VECTOR_REVERSE, VT, Custom); 621 622 for (unsigned VPOpc : FloatingPointVPOps) 623 setOperationAction(VPOpc, VT, Custom); 624 }; 625 626 // Sets common extload/truncstore actions on RVV floating-point vector 627 // types. 628 const auto SetCommonVFPExtLoadTruncStoreActions = 629 [&](MVT VT, ArrayRef<MVT::SimpleValueType> SmallerVTs) { 630 for (auto SmallVT : SmallerVTs) { 631 setTruncStoreAction(VT, SmallVT, Expand); 632 setLoadExtAction(ISD::EXTLOAD, VT, SmallVT, Expand); 633 } 634 }; 635 636 if (Subtarget.hasStdExtZfh()) 637 for (MVT VT : F16VecVTs) 638 SetCommonVFPActions(VT); 639 640 for (MVT VT : F32VecVTs) { 641 if (Subtarget.hasStdExtF()) 642 SetCommonVFPActions(VT); 643 SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs); 644 } 645 646 for (MVT VT : F64VecVTs) { 647 if (Subtarget.hasStdExtD()) 648 SetCommonVFPActions(VT); 649 SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs); 650 SetCommonVFPExtLoadTruncStoreActions(VT, F32VecVTs); 651 } 652 653 if (Subtarget.useRVVForFixedLengthVectors()) { 654 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) { 655 if (!useRVVForFixedLengthVectorVT(VT)) 656 continue; 657 658 // By default everything must be expanded. 659 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) 660 setOperationAction(Op, VT, Expand); 661 for (MVT OtherVT : MVT::integer_fixedlen_vector_valuetypes()) { 662 setTruncStoreAction(VT, OtherVT, Expand); 663 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 664 setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand); 665 setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand); 666 } 667 668 // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed. 669 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 670 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 671 672 setOperationAction(ISD::BUILD_VECTOR, VT, Custom); 673 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 674 675 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 676 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 677 678 setOperationAction(ISD::LOAD, VT, Custom); 679 setOperationAction(ISD::STORE, VT, Custom); 680 681 setOperationAction(ISD::SETCC, VT, Custom); 682 683 setOperationAction(ISD::SELECT, VT, Custom); 684 685 setOperationAction(ISD::TRUNCATE, VT, Custom); 686 687 setOperationAction(ISD::BITCAST, VT, Custom); 688 689 setOperationAction(ISD::VECREDUCE_AND, VT, Custom); 690 setOperationAction(ISD::VECREDUCE_OR, VT, Custom); 691 setOperationAction(ISD::VECREDUCE_XOR, VT, Custom); 692 693 setOperationAction(ISD::SINT_TO_FP, VT, Custom); 694 setOperationAction(ISD::UINT_TO_FP, VT, Custom); 695 setOperationAction(ISD::FP_TO_SINT, VT, Custom); 696 setOperationAction(ISD::FP_TO_UINT, VT, Custom); 697 698 // Operations below are different for between masks and other vectors. 699 if (VT.getVectorElementType() == MVT::i1) { 700 setOperationAction(ISD::AND, VT, Custom); 701 setOperationAction(ISD::OR, VT, Custom); 702 setOperationAction(ISD::XOR, VT, Custom); 703 continue; 704 } 705 706 // Use SPLAT_VECTOR to prevent type legalization from destroying the 707 // splats when type legalizing i64 scalar on RV32. 708 // FIXME: Use SPLAT_VECTOR for all types? DAGCombine probably needs 709 // improvements first. 710 if (!Subtarget.is64Bit() && VT.getVectorElementType() == MVT::i64) { 711 setOperationAction(ISD::SPLAT_VECTOR, VT, Custom); 712 setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom); 713 } 714 715 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); 716 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 717 718 setOperationAction(ISD::MLOAD, VT, Custom); 719 setOperationAction(ISD::MSTORE, VT, Custom); 720 setOperationAction(ISD::MGATHER, VT, Custom); 721 setOperationAction(ISD::MSCATTER, VT, Custom); 722 setOperationAction(ISD::ADD, VT, Custom); 723 setOperationAction(ISD::MUL, VT, Custom); 724 setOperationAction(ISD::SUB, VT, Custom); 725 setOperationAction(ISD::AND, VT, Custom); 726 setOperationAction(ISD::OR, VT, Custom); 727 setOperationAction(ISD::XOR, VT, Custom); 728 setOperationAction(ISD::SDIV, VT, Custom); 729 setOperationAction(ISD::SREM, VT, Custom); 730 setOperationAction(ISD::UDIV, VT, Custom); 731 setOperationAction(ISD::UREM, VT, Custom); 732 setOperationAction(ISD::SHL, VT, Custom); 733 setOperationAction(ISD::SRA, VT, Custom); 734 setOperationAction(ISD::SRL, VT, Custom); 735 736 setOperationAction(ISD::SMIN, VT, Custom); 737 setOperationAction(ISD::SMAX, VT, Custom); 738 setOperationAction(ISD::UMIN, VT, Custom); 739 setOperationAction(ISD::UMAX, VT, Custom); 740 setOperationAction(ISD::ABS, VT, Custom); 741 742 setOperationAction(ISD::MULHS, VT, Custom); 743 setOperationAction(ISD::MULHU, VT, Custom); 744 745 setOperationAction(ISD::VSELECT, VT, Custom); 746 setOperationAction(ISD::SELECT_CC, VT, Expand); 747 748 setOperationAction(ISD::ANY_EXTEND, VT, Custom); 749 setOperationAction(ISD::SIGN_EXTEND, VT, Custom); 750 setOperationAction(ISD::ZERO_EXTEND, VT, Custom); 751 752 // Custom-lower reduction operations to set up the corresponding custom 753 // nodes' operands. 754 setOperationAction(ISD::VECREDUCE_ADD, VT, Custom); 755 setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom); 756 setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom); 757 setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom); 758 setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom); 759 760 for (unsigned VPOpc : IntegerVPOps) 761 setOperationAction(VPOpc, VT, Custom); 762 } 763 764 for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) { 765 if (!useRVVForFixedLengthVectorVT(VT)) 766 continue; 767 768 // By default everything must be expanded. 769 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) 770 setOperationAction(Op, VT, Expand); 771 for (MVT OtherVT : MVT::fp_fixedlen_vector_valuetypes()) { 772 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 773 setTruncStoreAction(VT, OtherVT, Expand); 774 } 775 776 // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed. 777 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 778 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 779 780 setOperationAction(ISD::BUILD_VECTOR, VT, Custom); 781 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); 782 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 783 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 784 785 setOperationAction(ISD::LOAD, VT, Custom); 786 setOperationAction(ISD::STORE, VT, Custom); 787 setOperationAction(ISD::MLOAD, VT, Custom); 788 setOperationAction(ISD::MSTORE, VT, Custom); 789 setOperationAction(ISD::MGATHER, VT, Custom); 790 setOperationAction(ISD::MSCATTER, VT, Custom); 791 setOperationAction(ISD::FADD, VT, Custom); 792 setOperationAction(ISD::FSUB, VT, Custom); 793 setOperationAction(ISD::FMUL, VT, Custom); 794 setOperationAction(ISD::FDIV, VT, Custom); 795 setOperationAction(ISD::FNEG, VT, Custom); 796 setOperationAction(ISD::FABS, VT, Custom); 797 setOperationAction(ISD::FCOPYSIGN, VT, Custom); 798 setOperationAction(ISD::FSQRT, VT, Custom); 799 setOperationAction(ISD::FMA, VT, Custom); 800 setOperationAction(ISD::FMINNUM, VT, Custom); 801 setOperationAction(ISD::FMAXNUM, VT, Custom); 802 803 setOperationAction(ISD::FP_ROUND, VT, Custom); 804 setOperationAction(ISD::FP_EXTEND, VT, Custom); 805 806 for (auto CC : VFPCCToExpand) 807 setCondCodeAction(CC, VT, Expand); 808 809 setOperationAction(ISD::VSELECT, VT, Custom); 810 setOperationAction(ISD::SELECT, VT, Custom); 811 setOperationAction(ISD::SELECT_CC, VT, Expand); 812 813 setOperationAction(ISD::BITCAST, VT, Custom); 814 815 setOperationAction(ISD::VECREDUCE_FADD, VT, Custom); 816 setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom); 817 setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom); 818 setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom); 819 820 for (unsigned VPOpc : FloatingPointVPOps) 821 setOperationAction(VPOpc, VT, Custom); 822 } 823 824 // Custom-legalize bitcasts from fixed-length vectors to scalar types. 825 setOperationAction(ISD::BITCAST, MVT::i8, Custom); 826 setOperationAction(ISD::BITCAST, MVT::i16, Custom); 827 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 828 setOperationAction(ISD::BITCAST, MVT::i64, Custom); 829 setOperationAction(ISD::BITCAST, MVT::f16, Custom); 830 setOperationAction(ISD::BITCAST, MVT::f32, Custom); 831 setOperationAction(ISD::BITCAST, MVT::f64, Custom); 832 } 833 } 834 835 // Function alignments. 836 const Align FunctionAlignment(Subtarget.hasStdExtC() ? 2 : 4); 837 setMinFunctionAlignment(FunctionAlignment); 838 setPrefFunctionAlignment(FunctionAlignment); 839 840 setMinimumJumpTableEntries(5); 841 842 // Jumps are expensive, compared to logic 843 setJumpIsExpensive(); 844 845 // We can use any register for comparisons 846 setHasMultipleConditionRegisters(); 847 848 setTargetDAGCombine(ISD::AND); 849 setTargetDAGCombine(ISD::OR); 850 setTargetDAGCombine(ISD::XOR); 851 setTargetDAGCombine(ISD::ANY_EXTEND); 852 if (Subtarget.hasStdExtV()) { 853 setTargetDAGCombine(ISD::FCOPYSIGN); 854 setTargetDAGCombine(ISD::MGATHER); 855 setTargetDAGCombine(ISD::MSCATTER); 856 setTargetDAGCombine(ISD::SRA); 857 setTargetDAGCombine(ISD::SRL); 858 setTargetDAGCombine(ISD::SHL); 859 } 860 } 861 862 EVT RISCVTargetLowering::getSetCCResultType(const DataLayout &DL, 863 LLVMContext &Context, 864 EVT VT) const { 865 if (!VT.isVector()) 866 return getPointerTy(DL); 867 if (Subtarget.hasStdExtV() && 868 (VT.isScalableVector() || Subtarget.useRVVForFixedLengthVectors())) 869 return EVT::getVectorVT(Context, MVT::i1, VT.getVectorElementCount()); 870 return VT.changeVectorElementTypeToInteger(); 871 } 872 873 MVT RISCVTargetLowering::getVPExplicitVectorLengthTy() const { 874 return Subtarget.getXLenVT(); 875 } 876 877 bool RISCVTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 878 const CallInst &I, 879 MachineFunction &MF, 880 unsigned Intrinsic) const { 881 switch (Intrinsic) { 882 default: 883 return false; 884 case Intrinsic::riscv_masked_atomicrmw_xchg_i32: 885 case Intrinsic::riscv_masked_atomicrmw_add_i32: 886 case Intrinsic::riscv_masked_atomicrmw_sub_i32: 887 case Intrinsic::riscv_masked_atomicrmw_nand_i32: 888 case Intrinsic::riscv_masked_atomicrmw_max_i32: 889 case Intrinsic::riscv_masked_atomicrmw_min_i32: 890 case Intrinsic::riscv_masked_atomicrmw_umax_i32: 891 case Intrinsic::riscv_masked_atomicrmw_umin_i32: 892 case Intrinsic::riscv_masked_cmpxchg_i32: 893 PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType()); 894 Info.opc = ISD::INTRINSIC_W_CHAIN; 895 Info.memVT = MVT::getVT(PtrTy->getElementType()); 896 Info.ptrVal = I.getArgOperand(0); 897 Info.offset = 0; 898 Info.align = Align(4); 899 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore | 900 MachineMemOperand::MOVolatile; 901 return true; 902 } 903 } 904 905 bool RISCVTargetLowering::isLegalAddressingMode(const DataLayout &DL, 906 const AddrMode &AM, Type *Ty, 907 unsigned AS, 908 Instruction *I) const { 909 // No global is ever allowed as a base. 910 if (AM.BaseGV) 911 return false; 912 913 // Require a 12-bit signed offset. 914 if (!isInt<12>(AM.BaseOffs)) 915 return false; 916 917 switch (AM.Scale) { 918 case 0: // "r+i" or just "i", depending on HasBaseReg. 919 break; 920 case 1: 921 if (!AM.HasBaseReg) // allow "r+i". 922 break; 923 return false; // disallow "r+r" or "r+r+i". 924 default: 925 return false; 926 } 927 928 return true; 929 } 930 931 bool RISCVTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 932 return isInt<12>(Imm); 933 } 934 935 bool RISCVTargetLowering::isLegalAddImmediate(int64_t Imm) const { 936 return isInt<12>(Imm); 937 } 938 939 // On RV32, 64-bit integers are split into their high and low parts and held 940 // in two different registers, so the trunc is free since the low register can 941 // just be used. 942 bool RISCVTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const { 943 if (Subtarget.is64Bit() || !SrcTy->isIntegerTy() || !DstTy->isIntegerTy()) 944 return false; 945 unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); 946 unsigned DestBits = DstTy->getPrimitiveSizeInBits(); 947 return (SrcBits == 64 && DestBits == 32); 948 } 949 950 bool RISCVTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const { 951 if (Subtarget.is64Bit() || SrcVT.isVector() || DstVT.isVector() || 952 !SrcVT.isInteger() || !DstVT.isInteger()) 953 return false; 954 unsigned SrcBits = SrcVT.getSizeInBits(); 955 unsigned DestBits = DstVT.getSizeInBits(); 956 return (SrcBits == 64 && DestBits == 32); 957 } 958 959 bool RISCVTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 960 // Zexts are free if they can be combined with a load. 961 if (auto *LD = dyn_cast<LoadSDNode>(Val)) { 962 EVT MemVT = LD->getMemoryVT(); 963 if ((MemVT == MVT::i8 || MemVT == MVT::i16 || 964 (Subtarget.is64Bit() && MemVT == MVT::i32)) && 965 (LD->getExtensionType() == ISD::NON_EXTLOAD || 966 LD->getExtensionType() == ISD::ZEXTLOAD)) 967 return true; 968 } 969 970 return TargetLowering::isZExtFree(Val, VT2); 971 } 972 973 bool RISCVTargetLowering::isSExtCheaperThanZExt(EVT SrcVT, EVT DstVT) const { 974 return Subtarget.is64Bit() && SrcVT == MVT::i32 && DstVT == MVT::i64; 975 } 976 977 bool RISCVTargetLowering::isCheapToSpeculateCttz() const { 978 return Subtarget.hasStdExtZbb(); 979 } 980 981 bool RISCVTargetLowering::isCheapToSpeculateCtlz() const { 982 return Subtarget.hasStdExtZbb(); 983 } 984 985 bool RISCVTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 986 bool ForCodeSize) const { 987 if (VT == MVT::f16 && !Subtarget.hasStdExtZfh()) 988 return false; 989 if (VT == MVT::f32 && !Subtarget.hasStdExtF()) 990 return false; 991 if (VT == MVT::f64 && !Subtarget.hasStdExtD()) 992 return false; 993 if (Imm.isNegZero()) 994 return false; 995 return Imm.isZero(); 996 } 997 998 bool RISCVTargetLowering::hasBitPreservingFPLogic(EVT VT) const { 999 return (VT == MVT::f16 && Subtarget.hasStdExtZfh()) || 1000 (VT == MVT::f32 && Subtarget.hasStdExtF()) || 1001 (VT == MVT::f64 && Subtarget.hasStdExtD()); 1002 } 1003 1004 MVT RISCVTargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context, 1005 CallingConv::ID CC, 1006 EVT VT) const { 1007 // Use f32 to pass f16 if it is legal and Zfh is not enabled. We might still 1008 // end up using a GPR but that will be decided based on ABI. 1009 if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh()) 1010 return MVT::f32; 1011 1012 return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT); 1013 } 1014 1015 unsigned RISCVTargetLowering::getNumRegistersForCallingConv(LLVMContext &Context, 1016 CallingConv::ID CC, 1017 EVT VT) const { 1018 // Use f32 to pass f16 if it is legal and Zfh is not enabled. We might still 1019 // end up using a GPR but that will be decided based on ABI. 1020 if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh()) 1021 return 1; 1022 1023 return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT); 1024 } 1025 1026 // Changes the condition code and swaps operands if necessary, so the SetCC 1027 // operation matches one of the comparisons supported directly by branches 1028 // in the RISC-V ISA. May adjust compares to favor compare with 0 over compare 1029 // with 1/-1. 1030 static void translateSetCCForBranch(const SDLoc &DL, SDValue &LHS, SDValue &RHS, 1031 ISD::CondCode &CC, SelectionDAG &DAG) { 1032 // Convert X > -1 to X >= 0. 1033 if (CC == ISD::SETGT && isAllOnesConstant(RHS)) { 1034 RHS = DAG.getConstant(0, DL, RHS.getValueType()); 1035 CC = ISD::SETGE; 1036 return; 1037 } 1038 // Convert X < 1 to 0 >= X. 1039 if (CC == ISD::SETLT && isOneConstant(RHS)) { 1040 RHS = LHS; 1041 LHS = DAG.getConstant(0, DL, RHS.getValueType()); 1042 CC = ISD::SETGE; 1043 return; 1044 } 1045 1046 switch (CC) { 1047 default: 1048 break; 1049 case ISD::SETGT: 1050 case ISD::SETLE: 1051 case ISD::SETUGT: 1052 case ISD::SETULE: 1053 CC = ISD::getSetCCSwappedOperands(CC); 1054 std::swap(LHS, RHS); 1055 break; 1056 } 1057 } 1058 1059 // Return the RISC-V branch opcode that matches the given DAG integer 1060 // condition code. The CondCode must be one of those supported by the RISC-V 1061 // ISA (see translateSetCCForBranch). 1062 static unsigned getBranchOpcodeForIntCondCode(ISD::CondCode CC) { 1063 switch (CC) { 1064 default: 1065 llvm_unreachable("Unsupported CondCode"); 1066 case ISD::SETEQ: 1067 return RISCV::BEQ; 1068 case ISD::SETNE: 1069 return RISCV::BNE; 1070 case ISD::SETLT: 1071 return RISCV::BLT; 1072 case ISD::SETGE: 1073 return RISCV::BGE; 1074 case ISD::SETULT: 1075 return RISCV::BLTU; 1076 case ISD::SETUGE: 1077 return RISCV::BGEU; 1078 } 1079 } 1080 1081 RISCVII::VLMUL RISCVTargetLowering::getLMUL(MVT VT) { 1082 assert(VT.isScalableVector() && "Expecting a scalable vector type"); 1083 unsigned KnownSize = VT.getSizeInBits().getKnownMinValue(); 1084 if (VT.getVectorElementType() == MVT::i1) 1085 KnownSize *= 8; 1086 1087 switch (KnownSize) { 1088 default: 1089 llvm_unreachable("Invalid LMUL."); 1090 case 8: 1091 return RISCVII::VLMUL::LMUL_F8; 1092 case 16: 1093 return RISCVII::VLMUL::LMUL_F4; 1094 case 32: 1095 return RISCVII::VLMUL::LMUL_F2; 1096 case 64: 1097 return RISCVII::VLMUL::LMUL_1; 1098 case 128: 1099 return RISCVII::VLMUL::LMUL_2; 1100 case 256: 1101 return RISCVII::VLMUL::LMUL_4; 1102 case 512: 1103 return RISCVII::VLMUL::LMUL_8; 1104 } 1105 } 1106 1107 unsigned RISCVTargetLowering::getRegClassIDForLMUL(RISCVII::VLMUL LMul) { 1108 switch (LMul) { 1109 default: 1110 llvm_unreachable("Invalid LMUL."); 1111 case RISCVII::VLMUL::LMUL_F8: 1112 case RISCVII::VLMUL::LMUL_F4: 1113 case RISCVII::VLMUL::LMUL_F2: 1114 case RISCVII::VLMUL::LMUL_1: 1115 return RISCV::VRRegClassID; 1116 case RISCVII::VLMUL::LMUL_2: 1117 return RISCV::VRM2RegClassID; 1118 case RISCVII::VLMUL::LMUL_4: 1119 return RISCV::VRM4RegClassID; 1120 case RISCVII::VLMUL::LMUL_8: 1121 return RISCV::VRM8RegClassID; 1122 } 1123 } 1124 1125 unsigned RISCVTargetLowering::getSubregIndexByMVT(MVT VT, unsigned Index) { 1126 RISCVII::VLMUL LMUL = getLMUL(VT); 1127 if (LMUL == RISCVII::VLMUL::LMUL_F8 || 1128 LMUL == RISCVII::VLMUL::LMUL_F4 || 1129 LMUL == RISCVII::VLMUL::LMUL_F2 || 1130 LMUL == RISCVII::VLMUL::LMUL_1) { 1131 static_assert(RISCV::sub_vrm1_7 == RISCV::sub_vrm1_0 + 7, 1132 "Unexpected subreg numbering"); 1133 return RISCV::sub_vrm1_0 + Index; 1134 } 1135 if (LMUL == RISCVII::VLMUL::LMUL_2) { 1136 static_assert(RISCV::sub_vrm2_3 == RISCV::sub_vrm2_0 + 3, 1137 "Unexpected subreg numbering"); 1138 return RISCV::sub_vrm2_0 + Index; 1139 } 1140 if (LMUL == RISCVII::VLMUL::LMUL_4) { 1141 static_assert(RISCV::sub_vrm4_1 == RISCV::sub_vrm4_0 + 1, 1142 "Unexpected subreg numbering"); 1143 return RISCV::sub_vrm4_0 + Index; 1144 } 1145 llvm_unreachable("Invalid vector type."); 1146 } 1147 1148 unsigned RISCVTargetLowering::getRegClassIDForVecVT(MVT VT) { 1149 if (VT.getVectorElementType() == MVT::i1) 1150 return RISCV::VRRegClassID; 1151 return getRegClassIDForLMUL(getLMUL(VT)); 1152 } 1153 1154 // Attempt to decompose a subvector insert/extract between VecVT and 1155 // SubVecVT via subregister indices. Returns the subregister index that 1156 // can perform the subvector insert/extract with the given element index, as 1157 // well as the index corresponding to any leftover subvectors that must be 1158 // further inserted/extracted within the register class for SubVecVT. 1159 std::pair<unsigned, unsigned> 1160 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( 1161 MVT VecVT, MVT SubVecVT, unsigned InsertExtractIdx, 1162 const RISCVRegisterInfo *TRI) { 1163 static_assert((RISCV::VRM8RegClassID > RISCV::VRM4RegClassID && 1164 RISCV::VRM4RegClassID > RISCV::VRM2RegClassID && 1165 RISCV::VRM2RegClassID > RISCV::VRRegClassID), 1166 "Register classes not ordered"); 1167 unsigned VecRegClassID = getRegClassIDForVecVT(VecVT); 1168 unsigned SubRegClassID = getRegClassIDForVecVT(SubVecVT); 1169 // Try to compose a subregister index that takes us from the incoming 1170 // LMUL>1 register class down to the outgoing one. At each step we half 1171 // the LMUL: 1172 // nxv16i32@12 -> nxv2i32: sub_vrm4_1_then_sub_vrm2_1_then_sub_vrm1_0 1173 // Note that this is not guaranteed to find a subregister index, such as 1174 // when we are extracting from one VR type to another. 1175 unsigned SubRegIdx = RISCV::NoSubRegister; 1176 for (const unsigned RCID : 1177 {RISCV::VRM4RegClassID, RISCV::VRM2RegClassID, RISCV::VRRegClassID}) 1178 if (VecRegClassID > RCID && SubRegClassID <= RCID) { 1179 VecVT = VecVT.getHalfNumVectorElementsVT(); 1180 bool IsHi = 1181 InsertExtractIdx >= VecVT.getVectorElementCount().getKnownMinValue(); 1182 SubRegIdx = TRI->composeSubRegIndices(SubRegIdx, 1183 getSubregIndexByMVT(VecVT, IsHi)); 1184 if (IsHi) 1185 InsertExtractIdx -= VecVT.getVectorElementCount().getKnownMinValue(); 1186 } 1187 return {SubRegIdx, InsertExtractIdx}; 1188 } 1189 1190 // Permit combining of mask vectors as BUILD_VECTOR never expands to scalar 1191 // stores for those types. 1192 bool RISCVTargetLowering::mergeStoresAfterLegalization(EVT VT) const { 1193 return !Subtarget.useRVVForFixedLengthVectors() || 1194 (VT.isFixedLengthVector() && VT.getVectorElementType() == MVT::i1); 1195 } 1196 1197 static bool useRVVForFixedLengthVectorVT(MVT VT, 1198 const RISCVSubtarget &Subtarget) { 1199 assert(VT.isFixedLengthVector() && "Expected a fixed length vector type!"); 1200 if (!Subtarget.useRVVForFixedLengthVectors()) 1201 return false; 1202 1203 // We only support a set of vector types with a consistent maximum fixed size 1204 // across all supported vector element types to avoid legalization issues. 1205 // Therefore -- since the largest is v1024i8/v512i16/etc -- the largest 1206 // fixed-length vector type we support is 1024 bytes. 1207 if (VT.getFixedSizeInBits() > 1024 * 8) 1208 return false; 1209 1210 unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits(); 1211 1212 // Don't use RVV for vectors we cannot scalarize if required. 1213 switch (VT.getVectorElementType().SimpleTy) { 1214 // i1 is supported but has different rules. 1215 default: 1216 return false; 1217 case MVT::i1: 1218 // Masks can only use a single register. 1219 if (VT.getVectorNumElements() > MinVLen) 1220 return false; 1221 MinVLen /= 8; 1222 break; 1223 case MVT::i8: 1224 case MVT::i16: 1225 case MVT::i32: 1226 case MVT::i64: 1227 break; 1228 case MVT::f16: 1229 if (!Subtarget.hasStdExtZfh()) 1230 return false; 1231 break; 1232 case MVT::f32: 1233 if (!Subtarget.hasStdExtF()) 1234 return false; 1235 break; 1236 case MVT::f64: 1237 if (!Subtarget.hasStdExtD()) 1238 return false; 1239 break; 1240 } 1241 1242 unsigned LMul = divideCeil(VT.getSizeInBits(), MinVLen); 1243 // Don't use RVV for types that don't fit. 1244 if (LMul > Subtarget.getMaxLMULForFixedLengthVectors()) 1245 return false; 1246 1247 // TODO: Perhaps an artificial restriction, but worth having whilst getting 1248 // the base fixed length RVV support in place. 1249 if (!VT.isPow2VectorType()) 1250 return false; 1251 1252 return true; 1253 } 1254 1255 bool RISCVTargetLowering::useRVVForFixedLengthVectorVT(MVT VT) const { 1256 return ::useRVVForFixedLengthVectorVT(VT, Subtarget); 1257 } 1258 1259 // Return the largest legal scalable vector type that matches VT's element type. 1260 static MVT getContainerForFixedLengthVector(const TargetLowering &TLI, MVT VT, 1261 const RISCVSubtarget &Subtarget) { 1262 // This may be called before legal types are setup. 1263 assert(((VT.isFixedLengthVector() && TLI.isTypeLegal(VT)) || 1264 useRVVForFixedLengthVectorVT(VT, Subtarget)) && 1265 "Expected legal fixed length vector!"); 1266 1267 unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits(); 1268 1269 MVT EltVT = VT.getVectorElementType(); 1270 switch (EltVT.SimpleTy) { 1271 default: 1272 llvm_unreachable("unexpected element type for RVV container"); 1273 case MVT::i1: 1274 case MVT::i8: 1275 case MVT::i16: 1276 case MVT::i32: 1277 case MVT::i64: 1278 case MVT::f16: 1279 case MVT::f32: 1280 case MVT::f64: { 1281 // We prefer to use LMUL=1 for VLEN sized types. Use fractional lmuls for 1282 // narrower types, but we can't have a fractional LMUL with demoninator less 1283 // than 64/SEW. 1284 unsigned NumElts = 1285 divideCeil(VT.getVectorNumElements(), MinVLen / RISCV::RVVBitsPerBlock); 1286 return MVT::getScalableVectorVT(EltVT, NumElts); 1287 } 1288 } 1289 } 1290 1291 static MVT getContainerForFixedLengthVector(SelectionDAG &DAG, MVT VT, 1292 const RISCVSubtarget &Subtarget) { 1293 return getContainerForFixedLengthVector(DAG.getTargetLoweringInfo(), VT, 1294 Subtarget); 1295 } 1296 1297 MVT RISCVTargetLowering::getContainerForFixedLengthVector(MVT VT) const { 1298 return ::getContainerForFixedLengthVector(*this, VT, getSubtarget()); 1299 } 1300 1301 // Grow V to consume an entire RVV register. 1302 static SDValue convertToScalableVector(EVT VT, SDValue V, SelectionDAG &DAG, 1303 const RISCVSubtarget &Subtarget) { 1304 assert(VT.isScalableVector() && 1305 "Expected to convert into a scalable vector!"); 1306 assert(V.getValueType().isFixedLengthVector() && 1307 "Expected a fixed length vector operand!"); 1308 SDLoc DL(V); 1309 SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 1310 return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, DAG.getUNDEF(VT), V, Zero); 1311 } 1312 1313 // Shrink V so it's just big enough to maintain a VT's worth of data. 1314 static SDValue convertFromScalableVector(EVT VT, SDValue V, SelectionDAG &DAG, 1315 const RISCVSubtarget &Subtarget) { 1316 assert(VT.isFixedLengthVector() && 1317 "Expected to convert into a fixed length vector!"); 1318 assert(V.getValueType().isScalableVector() && 1319 "Expected a scalable vector operand!"); 1320 SDLoc DL(V); 1321 SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 1322 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V, Zero); 1323 } 1324 1325 // Gets the two common "VL" operands: an all-ones mask and the vector length. 1326 // VecVT is a vector type, either fixed-length or scalable, and ContainerVT is 1327 // the vector type that it is contained in. 1328 static std::pair<SDValue, SDValue> 1329 getDefaultVLOps(MVT VecVT, MVT ContainerVT, SDLoc DL, SelectionDAG &DAG, 1330 const RISCVSubtarget &Subtarget) { 1331 assert(ContainerVT.isScalableVector() && "Expecting scalable container type"); 1332 MVT XLenVT = Subtarget.getXLenVT(); 1333 SDValue VL = VecVT.isFixedLengthVector() 1334 ? DAG.getConstant(VecVT.getVectorNumElements(), DL, XLenVT) 1335 : DAG.getRegister(RISCV::X0, XLenVT); 1336 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 1337 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 1338 return {Mask, VL}; 1339 } 1340 1341 // As above but assuming the given type is a scalable vector type. 1342 static std::pair<SDValue, SDValue> 1343 getDefaultScalableVLOps(MVT VecVT, SDLoc DL, SelectionDAG &DAG, 1344 const RISCVSubtarget &Subtarget) { 1345 assert(VecVT.isScalableVector() && "Expecting a scalable vector"); 1346 return getDefaultVLOps(VecVT, VecVT, DL, DAG, Subtarget); 1347 } 1348 1349 // The state of RVV BUILD_VECTOR and VECTOR_SHUFFLE lowering is that very few 1350 // of either is (currently) supported. This can get us into an infinite loop 1351 // where we try to lower a BUILD_VECTOR as a VECTOR_SHUFFLE as a BUILD_VECTOR 1352 // as a ..., etc. 1353 // Until either (or both) of these can reliably lower any node, reporting that 1354 // we don't want to expand BUILD_VECTORs via VECTOR_SHUFFLEs at least breaks 1355 // the infinite loop. Note that this lowers BUILD_VECTOR through the stack, 1356 // which is not desirable. 1357 bool RISCVTargetLowering::shouldExpandBuildVectorWithShuffles( 1358 EVT VT, unsigned DefinedValues) const { 1359 return false; 1360 } 1361 1362 bool RISCVTargetLowering::isShuffleMaskLegal(ArrayRef<int> M, EVT VT) const { 1363 // Only splats are currently supported. 1364 if (ShuffleVectorSDNode::isSplatMask(M.data(), VT)) 1365 return true; 1366 1367 return false; 1368 } 1369 1370 static SDValue lowerSPLAT_VECTOR(SDValue Op, SelectionDAG &DAG, 1371 const RISCVSubtarget &Subtarget) { 1372 MVT VT = Op.getSimpleValueType(); 1373 assert(VT.isFixedLengthVector() && "Unexpected vector!"); 1374 1375 MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 1376 1377 SDLoc DL(Op); 1378 SDValue Mask, VL; 1379 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 1380 1381 unsigned Opc = 1382 VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL : RISCVISD::VMV_V_X_VL; 1383 SDValue Splat = DAG.getNode(Opc, DL, ContainerVT, Op.getOperand(0), VL); 1384 return convertFromScalableVector(VT, Splat, DAG, Subtarget); 1385 } 1386 1387 static SDValue lowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG, 1388 const RISCVSubtarget &Subtarget) { 1389 MVT VT = Op.getSimpleValueType(); 1390 assert(VT.isFixedLengthVector() && "Unexpected vector!"); 1391 1392 MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 1393 1394 SDLoc DL(Op); 1395 SDValue Mask, VL; 1396 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 1397 1398 MVT XLenVT = Subtarget.getXLenVT(); 1399 unsigned NumElts = Op.getNumOperands(); 1400 1401 if (VT.getVectorElementType() == MVT::i1) { 1402 if (ISD::isBuildVectorAllZeros(Op.getNode())) { 1403 SDValue VMClr = DAG.getNode(RISCVISD::VMCLR_VL, DL, ContainerVT, VL); 1404 return convertFromScalableVector(VT, VMClr, DAG, Subtarget); 1405 } 1406 1407 if (ISD::isBuildVectorAllOnes(Op.getNode())) { 1408 SDValue VMSet = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL); 1409 return convertFromScalableVector(VT, VMSet, DAG, Subtarget); 1410 } 1411 1412 // Lower constant mask BUILD_VECTORs via an integer vector type, in 1413 // scalar integer chunks whose bit-width depends on the number of mask 1414 // bits and XLEN. 1415 // First, determine the most appropriate scalar integer type to use. This 1416 // is at most XLenVT, but may be shrunk to a smaller vector element type 1417 // according to the size of the final vector - use i8 chunks rather than 1418 // XLenVT if we're producing a v8i1. This results in more consistent 1419 // codegen across RV32 and RV64. 1420 unsigned NumViaIntegerBits = 1421 std::min(std::max(NumElts, 8u), Subtarget.getXLen()); 1422 if (ISD::isBuildVectorOfConstantSDNodes(Op.getNode())) { 1423 // If we have to use more than one INSERT_VECTOR_ELT then this 1424 // optimization is likely to increase code size; avoid peforming it in 1425 // such a case. We can use a load from a constant pool in this case. 1426 if (DAG.shouldOptForSize() && NumElts > NumViaIntegerBits) 1427 return SDValue(); 1428 // Now we can create our integer vector type. Note that it may be larger 1429 // than the resulting mask type: v4i1 would use v1i8 as its integer type. 1430 MVT IntegerViaVecVT = 1431 MVT::getVectorVT(MVT::getIntegerVT(NumViaIntegerBits), 1432 divideCeil(NumElts, NumViaIntegerBits)); 1433 1434 uint64_t Bits = 0; 1435 unsigned BitPos = 0, IntegerEltIdx = 0; 1436 SDValue Vec = DAG.getUNDEF(IntegerViaVecVT); 1437 1438 for (unsigned I = 0; I < NumElts; I++, BitPos++) { 1439 // Once we accumulate enough bits to fill our scalar type, insert into 1440 // our vector and clear our accumulated data. 1441 if (I != 0 && I % NumViaIntegerBits == 0) { 1442 if (NumViaIntegerBits <= 32) 1443 Bits = SignExtend64(Bits, 32); 1444 SDValue Elt = DAG.getConstant(Bits, DL, XLenVT); 1445 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec, 1446 Elt, DAG.getConstant(IntegerEltIdx, DL, XLenVT)); 1447 Bits = 0; 1448 BitPos = 0; 1449 IntegerEltIdx++; 1450 } 1451 SDValue V = Op.getOperand(I); 1452 bool BitValue = !V.isUndef() && cast<ConstantSDNode>(V)->getZExtValue(); 1453 Bits |= ((uint64_t)BitValue << BitPos); 1454 } 1455 1456 // Insert the (remaining) scalar value into position in our integer 1457 // vector type. 1458 if (NumViaIntegerBits <= 32) 1459 Bits = SignExtend64(Bits, 32); 1460 SDValue Elt = DAG.getConstant(Bits, DL, XLenVT); 1461 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec, Elt, 1462 DAG.getConstant(IntegerEltIdx, DL, XLenVT)); 1463 1464 if (NumElts < NumViaIntegerBits) { 1465 // If we're producing a smaller vector than our minimum legal integer 1466 // type, bitcast to the equivalent (known-legal) mask type, and extract 1467 // our final mask. 1468 assert(IntegerViaVecVT == MVT::v1i8 && "Unexpected mask vector type"); 1469 Vec = DAG.getBitcast(MVT::v8i1, Vec); 1470 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Vec, 1471 DAG.getConstant(0, DL, XLenVT)); 1472 } else { 1473 // Else we must have produced an integer type with the same size as the 1474 // mask type; bitcast for the final result. 1475 assert(VT.getSizeInBits() == IntegerViaVecVT.getSizeInBits()); 1476 Vec = DAG.getBitcast(VT, Vec); 1477 } 1478 1479 return Vec; 1480 } 1481 1482 // A BUILD_VECTOR can be lowered as a SETCC. For each fixed-length mask 1483 // vector type, we have a legal equivalently-sized i8 type, so we can use 1484 // that. 1485 MVT WideVecVT = VT.changeVectorElementType(MVT::i8); 1486 SDValue VecZero = DAG.getConstant(0, DL, WideVecVT); 1487 1488 SDValue WideVec; 1489 if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) { 1490 // For a splat, perform a scalar truncate before creating the wider 1491 // vector. 1492 assert(Splat.getValueType() == XLenVT && 1493 "Unexpected type for i1 splat value"); 1494 Splat = DAG.getNode(ISD::AND, DL, XLenVT, Splat, 1495 DAG.getConstant(1, DL, XLenVT)); 1496 WideVec = DAG.getSplatBuildVector(WideVecVT, DL, Splat); 1497 } else { 1498 SmallVector<SDValue, 8> Ops(Op->op_values()); 1499 WideVec = DAG.getBuildVector(WideVecVT, DL, Ops); 1500 SDValue VecOne = DAG.getConstant(1, DL, WideVecVT); 1501 WideVec = DAG.getNode(ISD::AND, DL, WideVecVT, WideVec, VecOne); 1502 } 1503 1504 return DAG.getSetCC(DL, VT, WideVec, VecZero, ISD::SETNE); 1505 } 1506 1507 if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) { 1508 unsigned Opc = VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL 1509 : RISCVISD::VMV_V_X_VL; 1510 Splat = DAG.getNode(Opc, DL, ContainerVT, Splat, VL); 1511 return convertFromScalableVector(VT, Splat, DAG, Subtarget); 1512 } 1513 1514 // Try and match an index sequence, which we can lower directly to the vid 1515 // instruction. An all-undef vector is matched by getSplatValue, above. 1516 if (VT.isInteger()) { 1517 bool IsVID = true; 1518 for (unsigned I = 0; I < NumElts && IsVID; I++) 1519 IsVID &= Op.getOperand(I).isUndef() || 1520 (isa<ConstantSDNode>(Op.getOperand(I)) && 1521 Op.getConstantOperandVal(I) == I); 1522 1523 if (IsVID) { 1524 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, ContainerVT, Mask, VL); 1525 return convertFromScalableVector(VT, VID, DAG, Subtarget); 1526 } 1527 } 1528 1529 // Attempt to detect "hidden" splats, which only reveal themselves as splats 1530 // when re-interpreted as a vector with a larger element type. For example, 1531 // v4i16 = build_vector i16 0, i16 1, i16 0, i16 1 1532 // could be instead splat as 1533 // v2i32 = build_vector i32 0x00010000, i32 0x00010000 1534 // TODO: This optimization could also work on non-constant splats, but it 1535 // would require bit-manipulation instructions to construct the splat value. 1536 SmallVector<SDValue> Sequence; 1537 unsigned EltBitSize = VT.getScalarSizeInBits(); 1538 const auto *BV = cast<BuildVectorSDNode>(Op); 1539 if (VT.isInteger() && EltBitSize < 64 && 1540 ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) && 1541 BV->getRepeatedSequence(Sequence) && 1542 (Sequence.size() * EltBitSize) <= 64) { 1543 unsigned SeqLen = Sequence.size(); 1544 MVT ViaIntVT = MVT::getIntegerVT(EltBitSize * SeqLen); 1545 MVT ViaVecVT = MVT::getVectorVT(ViaIntVT, NumElts / SeqLen); 1546 assert((ViaIntVT == MVT::i16 || ViaIntVT == MVT::i32 || 1547 ViaIntVT == MVT::i64) && 1548 "Unexpected sequence type"); 1549 1550 unsigned EltIdx = 0; 1551 uint64_t EltMask = maskTrailingOnes<uint64_t>(EltBitSize); 1552 uint64_t SplatValue = 0; 1553 // Construct the amalgamated value which can be splatted as this larger 1554 // vector type. 1555 for (const auto &SeqV : Sequence) { 1556 if (!SeqV.isUndef()) 1557 SplatValue |= ((cast<ConstantSDNode>(SeqV)->getZExtValue() & EltMask) 1558 << (EltIdx * EltBitSize)); 1559 EltIdx++; 1560 } 1561 1562 // On RV64, sign-extend from 32 to 64 bits where possible in order to 1563 // achieve better constant materializion. 1564 if (Subtarget.is64Bit() && ViaIntVT == MVT::i32) 1565 SplatValue = SignExtend64(SplatValue, 32); 1566 1567 // Since we can't introduce illegal i64 types at this stage, we can only 1568 // perform an i64 splat on RV32 if it is its own sign-extended value. That 1569 // way we can use RVV instructions to splat. 1570 assert((ViaIntVT.bitsLE(XLenVT) || 1571 (!Subtarget.is64Bit() && ViaIntVT == MVT::i64)) && 1572 "Unexpected bitcast sequence"); 1573 if (ViaIntVT.bitsLE(XLenVT) || isInt<32>(SplatValue)) { 1574 SDValue ViaVL = 1575 DAG.getConstant(ViaVecVT.getVectorNumElements(), DL, XLenVT); 1576 MVT ViaContainerVT = 1577 getContainerForFixedLengthVector(DAG, ViaVecVT, Subtarget); 1578 SDValue Splat = 1579 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ViaContainerVT, 1580 DAG.getConstant(SplatValue, DL, XLenVT), ViaVL); 1581 Splat = convertFromScalableVector(ViaVecVT, Splat, DAG, Subtarget); 1582 return DAG.getBitcast(VT, Splat); 1583 } 1584 } 1585 1586 // Try and optimize BUILD_VECTORs with "dominant values" - these are values 1587 // which constitute a large proportion of the elements. In such cases we can 1588 // splat a vector with the dominant element and make up the shortfall with 1589 // INSERT_VECTOR_ELTs. 1590 // Note that this includes vectors of 2 elements by association. The 1591 // upper-most element is the "dominant" one, allowing us to use a splat to 1592 // "insert" the upper element, and an insert of the lower element at position 1593 // 0, which improves codegen. 1594 SDValue DominantValue; 1595 unsigned MostCommonCount = 0; 1596 DenseMap<SDValue, unsigned> ValueCounts; 1597 unsigned NumUndefElts = 1598 count_if(Op->op_values(), [](const SDValue &V) { return V.isUndef(); }); 1599 1600 for (SDValue V : Op->op_values()) { 1601 if (V.isUndef()) 1602 continue; 1603 1604 ValueCounts.insert(std::make_pair(V, 0)); 1605 unsigned &Count = ValueCounts[V]; 1606 1607 // Is this value dominant? In case of a tie, prefer the highest element as 1608 // it's cheaper to insert near the beginning of a vector than it is at the 1609 // end. 1610 if (++Count >= MostCommonCount) { 1611 DominantValue = V; 1612 MostCommonCount = Count; 1613 } 1614 } 1615 1616 assert(DominantValue && "Not expecting an all-undef BUILD_VECTOR"); 1617 unsigned NumDefElts = NumElts - NumUndefElts; 1618 unsigned DominantValueCountThreshold = NumDefElts <= 2 ? 0 : NumDefElts - 2; 1619 1620 // Don't perform this optimization when optimizing for size, since 1621 // materializing elements and inserting them tends to cause code bloat. 1622 if (!DAG.shouldOptForSize() && 1623 ((MostCommonCount > DominantValueCountThreshold) || 1624 (ValueCounts.size() <= Log2_32(NumDefElts)))) { 1625 // Start by splatting the most common element. 1626 SDValue Vec = DAG.getSplatBuildVector(VT, DL, DominantValue); 1627 1628 DenseSet<SDValue> Processed{DominantValue}; 1629 MVT SelMaskTy = VT.changeVectorElementType(MVT::i1); 1630 for (const auto &OpIdx : enumerate(Op->ops())) { 1631 const SDValue &V = OpIdx.value(); 1632 if (V.isUndef() || !Processed.insert(V).second) 1633 continue; 1634 if (ValueCounts[V] == 1) { 1635 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Vec, V, 1636 DAG.getConstant(OpIdx.index(), DL, XLenVT)); 1637 } else { 1638 // Blend in all instances of this value using a VSELECT, using a 1639 // mask where each bit signals whether that element is the one 1640 // we're after. 1641 SmallVector<SDValue> Ops; 1642 transform(Op->op_values(), std::back_inserter(Ops), [&](SDValue V1) { 1643 return DAG.getConstant(V == V1, DL, XLenVT); 1644 }); 1645 Vec = DAG.getNode(ISD::VSELECT, DL, VT, 1646 DAG.getBuildVector(SelMaskTy, DL, Ops), 1647 DAG.getSplatBuildVector(VT, DL, V), Vec); 1648 } 1649 } 1650 1651 return Vec; 1652 } 1653 1654 return SDValue(); 1655 } 1656 1657 static SDValue splatPartsI64WithVL(const SDLoc &DL, MVT VT, SDValue Lo, 1658 SDValue Hi, SDValue VL, SelectionDAG &DAG) { 1659 if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) { 1660 int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue(); 1661 int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue(); 1662 // If Hi constant is all the same sign bit as Lo, lower this as a custom 1663 // node in order to try and match RVV vector/scalar instructions. 1664 if ((LoC >> 31) == HiC) 1665 return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Lo, VL); 1666 } 1667 1668 // Fall back to a stack store and stride x0 vector load. 1669 return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VT, Lo, Hi, VL); 1670 } 1671 1672 // Called by type legalization to handle splat of i64 on RV32. 1673 // FIXME: We can optimize this when the type has sign or zero bits in one 1674 // of the halves. 1675 static SDValue splatSplitI64WithVL(const SDLoc &DL, MVT VT, SDValue Scalar, 1676 SDValue VL, SelectionDAG &DAG) { 1677 assert(Scalar.getValueType() == MVT::i64 && "Unexpected VT!"); 1678 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 1679 DAG.getConstant(0, DL, MVT::i32)); 1680 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 1681 DAG.getConstant(1, DL, MVT::i32)); 1682 return splatPartsI64WithVL(DL, VT, Lo, Hi, VL, DAG); 1683 } 1684 1685 // This function lowers a splat of a scalar operand Splat with the vector 1686 // length VL. It ensures the final sequence is type legal, which is useful when 1687 // lowering a splat after type legalization. 1688 static SDValue lowerScalarSplat(SDValue Scalar, SDValue VL, MVT VT, SDLoc DL, 1689 SelectionDAG &DAG, 1690 const RISCVSubtarget &Subtarget) { 1691 if (VT.isFloatingPoint()) 1692 return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, VT, Scalar, VL); 1693 1694 MVT XLenVT = Subtarget.getXLenVT(); 1695 1696 // Simplest case is that the operand needs to be promoted to XLenVT. 1697 if (Scalar.getValueType().bitsLE(XLenVT)) { 1698 // If the operand is a constant, sign extend to increase our chances 1699 // of being able to use a .vi instruction. ANY_EXTEND would become a 1700 // a zero extend and the simm5 check in isel would fail. 1701 // FIXME: Should we ignore the upper bits in isel instead? 1702 unsigned ExtOpc = 1703 isa<ConstantSDNode>(Scalar) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND; 1704 Scalar = DAG.getNode(ExtOpc, DL, XLenVT, Scalar); 1705 return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Scalar, VL); 1706 } 1707 1708 assert(XLenVT == MVT::i32 && Scalar.getValueType() == MVT::i64 && 1709 "Unexpected scalar for splat lowering!"); 1710 1711 // Otherwise use the more complicated splatting algorithm. 1712 return splatSplitI64WithVL(DL, VT, Scalar, VL, DAG); 1713 } 1714 1715 static SDValue lowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG, 1716 const RISCVSubtarget &Subtarget) { 1717 SDValue V1 = Op.getOperand(0); 1718 SDValue V2 = Op.getOperand(1); 1719 SDLoc DL(Op); 1720 MVT XLenVT = Subtarget.getXLenVT(); 1721 MVT VT = Op.getSimpleValueType(); 1722 unsigned NumElts = VT.getVectorNumElements(); 1723 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode()); 1724 1725 MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 1726 1727 SDValue TrueMask, VL; 1728 std::tie(TrueMask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 1729 1730 if (SVN->isSplat()) { 1731 const int Lane = SVN->getSplatIndex(); 1732 if (Lane >= 0) { 1733 MVT SVT = VT.getVectorElementType(); 1734 1735 // Turn splatted vector load into a strided load with an X0 stride. 1736 SDValue V = V1; 1737 // Peek through CONCAT_VECTORS as VectorCombine can concat a vector 1738 // with undef. 1739 // FIXME: Peek through INSERT_SUBVECTOR, EXTRACT_SUBVECTOR, bitcasts? 1740 int Offset = Lane; 1741 if (V.getOpcode() == ISD::CONCAT_VECTORS) { 1742 int OpElements = 1743 V.getOperand(0).getSimpleValueType().getVectorNumElements(); 1744 V = V.getOperand(Offset / OpElements); 1745 Offset %= OpElements; 1746 } 1747 1748 // We need to ensure the load isn't atomic or volatile. 1749 if (ISD::isNormalLoad(V.getNode()) && cast<LoadSDNode>(V)->isSimple()) { 1750 auto *Ld = cast<LoadSDNode>(V); 1751 Offset *= SVT.getStoreSize(); 1752 SDValue NewAddr = DAG.getMemBasePlusOffset(Ld->getBasePtr(), 1753 TypeSize::Fixed(Offset), DL); 1754 1755 // If this is SEW=64 on RV32, use a strided load with a stride of x0. 1756 if (SVT.isInteger() && SVT.bitsGT(XLenVT)) { 1757 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 1758 SDValue IntID = 1759 DAG.getTargetConstant(Intrinsic::riscv_vlse, DL, XLenVT); 1760 SDValue Ops[] = {Ld->getChain(), IntID, NewAddr, 1761 DAG.getRegister(RISCV::X0, XLenVT), VL}; 1762 SDValue NewLoad = DAG.getMemIntrinsicNode( 1763 ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, SVT, 1764 DAG.getMachineFunction().getMachineMemOperand( 1765 Ld->getMemOperand(), Offset, SVT.getStoreSize())); 1766 DAG.makeEquivalentMemoryOrdering(Ld, NewLoad); 1767 return convertFromScalableVector(VT, NewLoad, DAG, Subtarget); 1768 } 1769 1770 // Otherwise use a scalar load and splat. This will give the best 1771 // opportunity to fold a splat into the operation. ISel can turn it into 1772 // the x0 strided load if we aren't able to fold away the select. 1773 if (SVT.isFloatingPoint()) 1774 V = DAG.getLoad(SVT, DL, Ld->getChain(), NewAddr, 1775 Ld->getPointerInfo().getWithOffset(Offset), 1776 Ld->getOriginalAlign(), 1777 Ld->getMemOperand()->getFlags()); 1778 else 1779 V = DAG.getExtLoad(ISD::SEXTLOAD, DL, XLenVT, Ld->getChain(), NewAddr, 1780 Ld->getPointerInfo().getWithOffset(Offset), SVT, 1781 Ld->getOriginalAlign(), 1782 Ld->getMemOperand()->getFlags()); 1783 DAG.makeEquivalentMemoryOrdering(Ld, V); 1784 1785 unsigned Opc = 1786 VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL : RISCVISD::VMV_V_X_VL; 1787 SDValue Splat = DAG.getNode(Opc, DL, ContainerVT, V, VL); 1788 return convertFromScalableVector(VT, Splat, DAG, Subtarget); 1789 } 1790 1791 V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget); 1792 assert(Lane < (int)NumElts && "Unexpected lane!"); 1793 SDValue Gather = 1794 DAG.getNode(RISCVISD::VRGATHER_VX_VL, DL, ContainerVT, V1, 1795 DAG.getConstant(Lane, DL, XLenVT), TrueMask, VL); 1796 return convertFromScalableVector(VT, Gather, DAG, Subtarget); 1797 } 1798 } 1799 1800 // Detect shuffles which can be re-expressed as vector selects; these are 1801 // shuffles in which each element in the destination is taken from an element 1802 // at the corresponding index in either source vectors. 1803 bool IsSelect = all_of(enumerate(SVN->getMask()), [&](const auto &MaskIdx) { 1804 int MaskIndex = MaskIdx.value(); 1805 return MaskIndex < 0 || MaskIdx.index() == (unsigned)MaskIndex % NumElts; 1806 }); 1807 1808 assert(!V1.isUndef() && "Unexpected shuffle canonicalization"); 1809 1810 SmallVector<SDValue> MaskVals; 1811 // As a backup, shuffles can be lowered via a vrgather instruction, possibly 1812 // merged with a second vrgather. 1813 SmallVector<SDValue> GatherIndicesLHS, GatherIndicesRHS; 1814 1815 // By default we preserve the original operand order, and use a mask to 1816 // select LHS as true and RHS as false. However, since RVV vector selects may 1817 // feature splats but only on the LHS, we may choose to invert our mask and 1818 // instead select between RHS and LHS. 1819 bool SwapOps = DAG.isSplatValue(V2) && !DAG.isSplatValue(V1); 1820 bool InvertMask = IsSelect == SwapOps; 1821 1822 // Now construct the mask that will be used by the vselect or blended 1823 // vrgather operation. For vrgathers, construct the appropriate indices into 1824 // each vector. 1825 for (int MaskIndex : SVN->getMask()) { 1826 bool SelectMaskVal = (MaskIndex < (int)NumElts) ^ InvertMask; 1827 MaskVals.push_back(DAG.getConstant(SelectMaskVal, DL, XLenVT)); 1828 if (!IsSelect) { 1829 bool IsLHS = MaskIndex < (int)NumElts; 1830 // For "undef" elements of -1, shuffle in element 0 instead. 1831 GatherIndicesLHS.push_back( 1832 DAG.getConstant(IsLHS ? std::max(MaskIndex, 0) : 0, DL, XLenVT)); 1833 // TODO: If we're masking out unused elements anyway, it might produce 1834 // better code if we use the most-common element index instead of 0. 1835 GatherIndicesRHS.push_back( 1836 DAG.getConstant(IsLHS ? 0 : MaskIndex - NumElts, DL, XLenVT)); 1837 } 1838 } 1839 1840 if (SwapOps) { 1841 std::swap(V1, V2); 1842 std::swap(GatherIndicesLHS, GatherIndicesRHS); 1843 } 1844 1845 assert(MaskVals.size() == NumElts && "Unexpected select-like shuffle"); 1846 MVT MaskVT = MVT::getVectorVT(MVT::i1, NumElts); 1847 SDValue SelectMask = DAG.getBuildVector(MaskVT, DL, MaskVals); 1848 1849 if (IsSelect) 1850 return DAG.getNode(ISD::VSELECT, DL, VT, SelectMask, V1, V2); 1851 1852 if (VT.getScalarSizeInBits() == 8 && VT.getVectorNumElements() > 256) { 1853 // On such a large vector we're unable to use i8 as the index type. 1854 // FIXME: We could promote the index to i16 and use vrgatherei16, but that 1855 // may involve vector splitting if we're already at LMUL=8, or our 1856 // user-supplied maximum fixed-length LMUL. 1857 return SDValue(); 1858 } 1859 1860 unsigned GatherOpc = RISCVISD::VRGATHER_VV_VL; 1861 MVT IndexVT = VT.changeTypeToInteger(); 1862 // Since we can't introduce illegal index types at this stage, use i16 and 1863 // vrgatherei16 if the corresponding index type for plain vrgather is greater 1864 // than XLenVT. 1865 if (IndexVT.getScalarType().bitsGT(XLenVT)) { 1866 GatherOpc = RISCVISD::VRGATHEREI16_VV_VL; 1867 IndexVT = IndexVT.changeVectorElementType(MVT::i16); 1868 } 1869 1870 MVT IndexContainerVT = 1871 ContainerVT.changeVectorElementType(IndexVT.getScalarType()); 1872 1873 SDValue Gather; 1874 // TODO: This doesn't trigger for i64 vectors on RV32, since there we 1875 // encounter a bitcasted BUILD_VECTOR with low/high i32 values. 1876 if (SDValue SplatValue = DAG.getSplatValue(V1, /*LegalTypes*/ true)) { 1877 Gather = lowerScalarSplat(SplatValue, VL, ContainerVT, DL, DAG, Subtarget); 1878 } else { 1879 SDValue LHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesLHS); 1880 LHSIndices = 1881 convertToScalableVector(IndexContainerVT, LHSIndices, DAG, Subtarget); 1882 1883 V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget); 1884 Gather = 1885 DAG.getNode(GatherOpc, DL, ContainerVT, V1, LHSIndices, TrueMask, VL); 1886 } 1887 1888 // If a second vector operand is used by this shuffle, blend it in with an 1889 // additional vrgather. 1890 if (!V2.isUndef()) { 1891 MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1); 1892 SelectMask = 1893 convertToScalableVector(MaskContainerVT, SelectMask, DAG, Subtarget); 1894 1895 SDValue RHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesRHS); 1896 RHSIndices = 1897 convertToScalableVector(IndexContainerVT, RHSIndices, DAG, Subtarget); 1898 1899 V2 = convertToScalableVector(ContainerVT, V2, DAG, Subtarget); 1900 V2 = DAG.getNode(GatherOpc, DL, ContainerVT, V2, RHSIndices, TrueMask, VL); 1901 Gather = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, SelectMask, V2, 1902 Gather, VL); 1903 } 1904 1905 return convertFromScalableVector(VT, Gather, DAG, Subtarget); 1906 } 1907 1908 static SDValue getRVVFPExtendOrRound(SDValue Op, MVT VT, MVT ContainerVT, 1909 SDLoc DL, SelectionDAG &DAG, 1910 const RISCVSubtarget &Subtarget) { 1911 if (VT.isScalableVector()) 1912 return DAG.getFPExtendOrRound(Op, DL, VT); 1913 assert(VT.isFixedLengthVector() && 1914 "Unexpected value type for RVV FP extend/round lowering"); 1915 SDValue Mask, VL; 1916 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 1917 unsigned RVVOpc = ContainerVT.bitsGT(Op.getSimpleValueType()) 1918 ? RISCVISD::FP_EXTEND_VL 1919 : RISCVISD::FP_ROUND_VL; 1920 return DAG.getNode(RVVOpc, DL, ContainerVT, Op, Mask, VL); 1921 } 1922 1923 // While RVV has alignment restrictions, we should always be able to load as a 1924 // legal equivalently-sized byte-typed vector instead. This method is 1925 // responsible for re-expressing a ISD::LOAD via a correctly-aligned type. If 1926 // the load is already correctly-aligned, it returns SDValue(). 1927 SDValue RISCVTargetLowering::expandUnalignedRVVLoad(SDValue Op, 1928 SelectionDAG &DAG) const { 1929 auto *Load = cast<LoadSDNode>(Op); 1930 assert(Load && Load->getMemoryVT().isVector() && "Expected vector load"); 1931 1932 if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 1933 Load->getMemoryVT(), 1934 *Load->getMemOperand())) 1935 return SDValue(); 1936 1937 SDLoc DL(Op); 1938 MVT VT = Op.getSimpleValueType(); 1939 unsigned EltSizeBits = VT.getScalarSizeInBits(); 1940 assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) && 1941 "Unexpected unaligned RVV load type"); 1942 MVT NewVT = 1943 MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8)); 1944 assert(NewVT.isValid() && 1945 "Expecting equally-sized RVV vector types to be legal"); 1946 SDValue L = DAG.getLoad(NewVT, DL, Load->getChain(), Load->getBasePtr(), 1947 Load->getPointerInfo(), Load->getOriginalAlign(), 1948 Load->getMemOperand()->getFlags()); 1949 return DAG.getMergeValues({DAG.getBitcast(VT, L), L.getValue(1)}, DL); 1950 } 1951 1952 // While RVV has alignment restrictions, we should always be able to store as a 1953 // legal equivalently-sized byte-typed vector instead. This method is 1954 // responsible for re-expressing a ISD::STORE via a correctly-aligned type. It 1955 // returns SDValue() if the store is already correctly aligned. 1956 SDValue RISCVTargetLowering::expandUnalignedRVVStore(SDValue Op, 1957 SelectionDAG &DAG) const { 1958 auto *Store = cast<StoreSDNode>(Op); 1959 assert(Store && Store->getValue().getValueType().isVector() && 1960 "Expected vector store"); 1961 1962 if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 1963 Store->getMemoryVT(), 1964 *Store->getMemOperand())) 1965 return SDValue(); 1966 1967 SDLoc DL(Op); 1968 SDValue StoredVal = Store->getValue(); 1969 MVT VT = StoredVal.getSimpleValueType(); 1970 unsigned EltSizeBits = VT.getScalarSizeInBits(); 1971 assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) && 1972 "Unexpected unaligned RVV store type"); 1973 MVT NewVT = 1974 MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8)); 1975 assert(NewVT.isValid() && 1976 "Expecting equally-sized RVV vector types to be legal"); 1977 StoredVal = DAG.getBitcast(NewVT, StoredVal); 1978 return DAG.getStore(Store->getChain(), DL, StoredVal, Store->getBasePtr(), 1979 Store->getPointerInfo(), Store->getOriginalAlign(), 1980 Store->getMemOperand()->getFlags()); 1981 } 1982 1983 SDValue RISCVTargetLowering::LowerOperation(SDValue Op, 1984 SelectionDAG &DAG) const { 1985 switch (Op.getOpcode()) { 1986 default: 1987 report_fatal_error("unimplemented operand"); 1988 case ISD::GlobalAddress: 1989 return lowerGlobalAddress(Op, DAG); 1990 case ISD::BlockAddress: 1991 return lowerBlockAddress(Op, DAG); 1992 case ISD::ConstantPool: 1993 return lowerConstantPool(Op, DAG); 1994 case ISD::JumpTable: 1995 return lowerJumpTable(Op, DAG); 1996 case ISD::GlobalTLSAddress: 1997 return lowerGlobalTLSAddress(Op, DAG); 1998 case ISD::SELECT: 1999 return lowerSELECT(Op, DAG); 2000 case ISD::BRCOND: 2001 return lowerBRCOND(Op, DAG); 2002 case ISD::VASTART: 2003 return lowerVASTART(Op, DAG); 2004 case ISD::FRAMEADDR: 2005 return lowerFRAMEADDR(Op, DAG); 2006 case ISD::RETURNADDR: 2007 return lowerRETURNADDR(Op, DAG); 2008 case ISD::SHL_PARTS: 2009 return lowerShiftLeftParts(Op, DAG); 2010 case ISD::SRA_PARTS: 2011 return lowerShiftRightParts(Op, DAG, true); 2012 case ISD::SRL_PARTS: 2013 return lowerShiftRightParts(Op, DAG, false); 2014 case ISD::BITCAST: { 2015 SDLoc DL(Op); 2016 EVT VT = Op.getValueType(); 2017 SDValue Op0 = Op.getOperand(0); 2018 EVT Op0VT = Op0.getValueType(); 2019 MVT XLenVT = Subtarget.getXLenVT(); 2020 if (VT.isFixedLengthVector()) { 2021 // We can handle fixed length vector bitcasts with a simple replacement 2022 // in isel. 2023 if (Op0VT.isFixedLengthVector()) 2024 return Op; 2025 // When bitcasting from scalar to fixed-length vector, insert the scalar 2026 // into a one-element vector of the result type, and perform a vector 2027 // bitcast. 2028 if (!Op0VT.isVector()) { 2029 auto BVT = EVT::getVectorVT(*DAG.getContext(), Op0VT, 1); 2030 return DAG.getBitcast(VT, DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, BVT, 2031 DAG.getUNDEF(BVT), Op0, 2032 DAG.getConstant(0, DL, XLenVT))); 2033 } 2034 return SDValue(); 2035 } 2036 // Custom-legalize bitcasts from fixed-length vector types to scalar types 2037 // thus: bitcast the vector to a one-element vector type whose element type 2038 // is the same as the result type, and extract the first element. 2039 if (!VT.isVector() && Op0VT.isFixedLengthVector()) { 2040 LLVMContext &Context = *DAG.getContext(); 2041 SDValue BVec = DAG.getBitcast(EVT::getVectorVT(Context, VT, 1), Op0); 2042 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec, 2043 DAG.getConstant(0, DL, XLenVT)); 2044 } 2045 if (VT == MVT::f16 && Op0VT == MVT::i16 && Subtarget.hasStdExtZfh()) { 2046 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Op0); 2047 SDValue FPConv = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, NewOp0); 2048 return FPConv; 2049 } 2050 if (VT == MVT::f32 && Op0VT == MVT::i32 && Subtarget.is64Bit() && 2051 Subtarget.hasStdExtF()) { 2052 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); 2053 SDValue FPConv = 2054 DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, NewOp0); 2055 return FPConv; 2056 } 2057 return SDValue(); 2058 } 2059 case ISD::INTRINSIC_WO_CHAIN: 2060 return LowerINTRINSIC_WO_CHAIN(Op, DAG); 2061 case ISD::INTRINSIC_W_CHAIN: 2062 return LowerINTRINSIC_W_CHAIN(Op, DAG); 2063 case ISD::BSWAP: 2064 case ISD::BITREVERSE: { 2065 // Convert BSWAP/BITREVERSE to GREVI to enable GREVI combinining. 2066 assert(Subtarget.hasStdExtZbp() && "Unexpected custom legalisation"); 2067 MVT VT = Op.getSimpleValueType(); 2068 SDLoc DL(Op); 2069 // Start with the maximum immediate value which is the bitwidth - 1. 2070 unsigned Imm = VT.getSizeInBits() - 1; 2071 // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits. 2072 if (Op.getOpcode() == ISD::BSWAP) 2073 Imm &= ~0x7U; 2074 return DAG.getNode(RISCVISD::GREV, DL, VT, Op.getOperand(0), 2075 DAG.getConstant(Imm, DL, VT)); 2076 } 2077 case ISD::FSHL: 2078 case ISD::FSHR: { 2079 MVT VT = Op.getSimpleValueType(); 2080 assert(VT == Subtarget.getXLenVT() && "Unexpected custom legalization"); 2081 SDLoc DL(Op); 2082 if (Op.getOperand(2).getOpcode() == ISD::Constant) 2083 return Op; 2084 // FSL/FSR take a log2(XLen)+1 bit shift amount but XLenVT FSHL/FSHR only 2085 // use log(XLen) bits. Mask the shift amount accordingly. 2086 unsigned ShAmtWidth = Subtarget.getXLen() - 1; 2087 SDValue ShAmt = DAG.getNode(ISD::AND, DL, VT, Op.getOperand(2), 2088 DAG.getConstant(ShAmtWidth, DL, VT)); 2089 unsigned Opc = Op.getOpcode() == ISD::FSHL ? RISCVISD::FSL : RISCVISD::FSR; 2090 return DAG.getNode(Opc, DL, VT, Op.getOperand(0), Op.getOperand(1), ShAmt); 2091 } 2092 case ISD::TRUNCATE: { 2093 SDLoc DL(Op); 2094 MVT VT = Op.getSimpleValueType(); 2095 // Only custom-lower vector truncates 2096 if (!VT.isVector()) 2097 return Op; 2098 2099 // Truncates to mask types are handled differently 2100 if (VT.getVectorElementType() == MVT::i1) 2101 return lowerVectorMaskTrunc(Op, DAG); 2102 2103 // RVV only has truncates which operate from SEW*2->SEW, so lower arbitrary 2104 // truncates as a series of "RISCVISD::TRUNCATE_VECTOR_VL" nodes which 2105 // truncate by one power of two at a time. 2106 MVT DstEltVT = VT.getVectorElementType(); 2107 2108 SDValue Src = Op.getOperand(0); 2109 MVT SrcVT = Src.getSimpleValueType(); 2110 MVT SrcEltVT = SrcVT.getVectorElementType(); 2111 2112 assert(DstEltVT.bitsLT(SrcEltVT) && 2113 isPowerOf2_64(DstEltVT.getSizeInBits()) && 2114 isPowerOf2_64(SrcEltVT.getSizeInBits()) && 2115 "Unexpected vector truncate lowering"); 2116 2117 MVT ContainerVT = SrcVT; 2118 if (SrcVT.isFixedLengthVector()) { 2119 ContainerVT = getContainerForFixedLengthVector(SrcVT); 2120 Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget); 2121 } 2122 2123 SDValue Result = Src; 2124 SDValue Mask, VL; 2125 std::tie(Mask, VL) = 2126 getDefaultVLOps(SrcVT, ContainerVT, DL, DAG, Subtarget); 2127 LLVMContext &Context = *DAG.getContext(); 2128 const ElementCount Count = ContainerVT.getVectorElementCount(); 2129 do { 2130 SrcEltVT = MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2); 2131 EVT ResultVT = EVT::getVectorVT(Context, SrcEltVT, Count); 2132 Result = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, ResultVT, Result, 2133 Mask, VL); 2134 } while (SrcEltVT != DstEltVT); 2135 2136 if (SrcVT.isFixedLengthVector()) 2137 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 2138 2139 return Result; 2140 } 2141 case ISD::ANY_EXTEND: 2142 case ISD::ZERO_EXTEND: 2143 if (Op.getOperand(0).getValueType().isVector() && 2144 Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) 2145 return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ 1); 2146 return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VZEXT_VL); 2147 case ISD::SIGN_EXTEND: 2148 if (Op.getOperand(0).getValueType().isVector() && 2149 Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) 2150 return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ -1); 2151 return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VSEXT_VL); 2152 case ISD::SPLAT_VECTOR_PARTS: 2153 return lowerSPLAT_VECTOR_PARTS(Op, DAG); 2154 case ISD::INSERT_VECTOR_ELT: 2155 return lowerINSERT_VECTOR_ELT(Op, DAG); 2156 case ISD::EXTRACT_VECTOR_ELT: 2157 return lowerEXTRACT_VECTOR_ELT(Op, DAG); 2158 case ISD::VSCALE: { 2159 MVT VT = Op.getSimpleValueType(); 2160 SDLoc DL(Op); 2161 SDValue VLENB = DAG.getNode(RISCVISD::READ_VLENB, DL, VT); 2162 // We define our scalable vector types for lmul=1 to use a 64 bit known 2163 // minimum size. e.g. <vscale x 2 x i32>. VLENB is in bytes so we calculate 2164 // vscale as VLENB / 8. 2165 assert(RISCV::RVVBitsPerBlock == 64 && "Unexpected bits per block!"); 2166 SDValue VScale = DAG.getNode(ISD::SRL, DL, VT, VLENB, 2167 DAG.getConstant(3, DL, VT)); 2168 return DAG.getNode(ISD::MUL, DL, VT, VScale, Op.getOperand(0)); 2169 } 2170 case ISD::FP_EXTEND: { 2171 // RVV can only do fp_extend to types double the size as the source. We 2172 // custom-lower f16->f64 extensions to two hops of ISD::FP_EXTEND, going 2173 // via f32. 2174 SDLoc DL(Op); 2175 MVT VT = Op.getSimpleValueType(); 2176 SDValue Src = Op.getOperand(0); 2177 MVT SrcVT = Src.getSimpleValueType(); 2178 2179 // Prepare any fixed-length vector operands. 2180 MVT ContainerVT = VT; 2181 if (SrcVT.isFixedLengthVector()) { 2182 ContainerVT = getContainerForFixedLengthVector(VT); 2183 MVT SrcContainerVT = 2184 ContainerVT.changeVectorElementType(SrcVT.getVectorElementType()); 2185 Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); 2186 } 2187 2188 if (!VT.isVector() || VT.getVectorElementType() != MVT::f64 || 2189 SrcVT.getVectorElementType() != MVT::f16) { 2190 // For scalable vectors, we only need to close the gap between 2191 // vXf16->vXf64. 2192 if (!VT.isFixedLengthVector()) 2193 return Op; 2194 // For fixed-length vectors, lower the FP_EXTEND to a custom "VL" version. 2195 Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget); 2196 return convertFromScalableVector(VT, Src, DAG, Subtarget); 2197 } 2198 2199 MVT InterVT = VT.changeVectorElementType(MVT::f32); 2200 MVT InterContainerVT = ContainerVT.changeVectorElementType(MVT::f32); 2201 SDValue IntermediateExtend = getRVVFPExtendOrRound( 2202 Src, InterVT, InterContainerVT, DL, DAG, Subtarget); 2203 2204 SDValue Extend = getRVVFPExtendOrRound(IntermediateExtend, VT, ContainerVT, 2205 DL, DAG, Subtarget); 2206 if (VT.isFixedLengthVector()) 2207 return convertFromScalableVector(VT, Extend, DAG, Subtarget); 2208 return Extend; 2209 } 2210 case ISD::FP_ROUND: { 2211 // RVV can only do fp_round to types half the size as the source. We 2212 // custom-lower f64->f16 rounds via RVV's round-to-odd float 2213 // conversion instruction. 2214 SDLoc DL(Op); 2215 MVT VT = Op.getSimpleValueType(); 2216 SDValue Src = Op.getOperand(0); 2217 MVT SrcVT = Src.getSimpleValueType(); 2218 2219 // Prepare any fixed-length vector operands. 2220 MVT ContainerVT = VT; 2221 if (VT.isFixedLengthVector()) { 2222 MVT SrcContainerVT = getContainerForFixedLengthVector(SrcVT); 2223 ContainerVT = 2224 SrcContainerVT.changeVectorElementType(VT.getVectorElementType()); 2225 Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); 2226 } 2227 2228 if (!VT.isVector() || VT.getVectorElementType() != MVT::f16 || 2229 SrcVT.getVectorElementType() != MVT::f64) { 2230 // For scalable vectors, we only need to close the gap between 2231 // vXf64<->vXf16. 2232 if (!VT.isFixedLengthVector()) 2233 return Op; 2234 // For fixed-length vectors, lower the FP_ROUND to a custom "VL" version. 2235 Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget); 2236 return convertFromScalableVector(VT, Src, DAG, Subtarget); 2237 } 2238 2239 SDValue Mask, VL; 2240 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 2241 2242 MVT InterVT = ContainerVT.changeVectorElementType(MVT::f32); 2243 SDValue IntermediateRound = 2244 DAG.getNode(RISCVISD::VFNCVT_ROD_VL, DL, InterVT, Src, Mask, VL); 2245 SDValue Round = getRVVFPExtendOrRound(IntermediateRound, VT, ContainerVT, 2246 DL, DAG, Subtarget); 2247 2248 if (VT.isFixedLengthVector()) 2249 return convertFromScalableVector(VT, Round, DAG, Subtarget); 2250 return Round; 2251 } 2252 case ISD::FP_TO_SINT: 2253 case ISD::FP_TO_UINT: 2254 case ISD::SINT_TO_FP: 2255 case ISD::UINT_TO_FP: { 2256 // RVV can only do fp<->int conversions to types half/double the size as 2257 // the source. We custom-lower any conversions that do two hops into 2258 // sequences. 2259 MVT VT = Op.getSimpleValueType(); 2260 if (!VT.isVector()) 2261 return Op; 2262 SDLoc DL(Op); 2263 SDValue Src = Op.getOperand(0); 2264 MVT EltVT = VT.getVectorElementType(); 2265 MVT SrcVT = Src.getSimpleValueType(); 2266 MVT SrcEltVT = SrcVT.getVectorElementType(); 2267 unsigned EltSize = EltVT.getSizeInBits(); 2268 unsigned SrcEltSize = SrcEltVT.getSizeInBits(); 2269 assert(isPowerOf2_32(EltSize) && isPowerOf2_32(SrcEltSize) && 2270 "Unexpected vector element types"); 2271 2272 bool IsInt2FP = SrcEltVT.isInteger(); 2273 // Widening conversions 2274 if (EltSize > SrcEltSize && (EltSize / SrcEltSize >= 4)) { 2275 if (IsInt2FP) { 2276 // Do a regular integer sign/zero extension then convert to float. 2277 MVT IVecVT = MVT::getVectorVT(MVT::getIntegerVT(EltVT.getSizeInBits()), 2278 VT.getVectorElementCount()); 2279 unsigned ExtOpcode = Op.getOpcode() == ISD::UINT_TO_FP 2280 ? ISD::ZERO_EXTEND 2281 : ISD::SIGN_EXTEND; 2282 SDValue Ext = DAG.getNode(ExtOpcode, DL, IVecVT, Src); 2283 return DAG.getNode(Op.getOpcode(), DL, VT, Ext); 2284 } 2285 // FP2Int 2286 assert(SrcEltVT == MVT::f16 && "Unexpected FP_TO_[US]INT lowering"); 2287 // Do one doubling fp_extend then complete the operation by converting 2288 // to int. 2289 MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount()); 2290 SDValue FExt = DAG.getFPExtendOrRound(Src, DL, InterimFVT); 2291 return DAG.getNode(Op.getOpcode(), DL, VT, FExt); 2292 } 2293 2294 // Narrowing conversions 2295 if (SrcEltSize > EltSize && (SrcEltSize / EltSize >= 4)) { 2296 if (IsInt2FP) { 2297 // One narrowing int_to_fp, then an fp_round. 2298 assert(EltVT == MVT::f16 && "Unexpected [US]_TO_FP lowering"); 2299 MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount()); 2300 SDValue Int2FP = DAG.getNode(Op.getOpcode(), DL, InterimFVT, Src); 2301 return DAG.getFPExtendOrRound(Int2FP, DL, VT); 2302 } 2303 // FP2Int 2304 // One narrowing fp_to_int, then truncate the integer. If the float isn't 2305 // representable by the integer, the result is poison. 2306 MVT IVecVT = 2307 MVT::getVectorVT(MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2), 2308 VT.getVectorElementCount()); 2309 SDValue FP2Int = DAG.getNode(Op.getOpcode(), DL, IVecVT, Src); 2310 return DAG.getNode(ISD::TRUNCATE, DL, VT, FP2Int); 2311 } 2312 2313 // Scalable vectors can exit here. Patterns will handle equally-sized 2314 // conversions halving/doubling ones. 2315 if (!VT.isFixedLengthVector()) 2316 return Op; 2317 2318 // For fixed-length vectors we lower to a custom "VL" node. 2319 unsigned RVVOpc = 0; 2320 switch (Op.getOpcode()) { 2321 default: 2322 llvm_unreachable("Impossible opcode"); 2323 case ISD::FP_TO_SINT: 2324 RVVOpc = RISCVISD::FP_TO_SINT_VL; 2325 break; 2326 case ISD::FP_TO_UINT: 2327 RVVOpc = RISCVISD::FP_TO_UINT_VL; 2328 break; 2329 case ISD::SINT_TO_FP: 2330 RVVOpc = RISCVISD::SINT_TO_FP_VL; 2331 break; 2332 case ISD::UINT_TO_FP: 2333 RVVOpc = RISCVISD::UINT_TO_FP_VL; 2334 break; 2335 } 2336 2337 MVT ContainerVT, SrcContainerVT; 2338 // Derive the reference container type from the larger vector type. 2339 if (SrcEltSize > EltSize) { 2340 SrcContainerVT = getContainerForFixedLengthVector(SrcVT); 2341 ContainerVT = 2342 SrcContainerVT.changeVectorElementType(VT.getVectorElementType()); 2343 } else { 2344 ContainerVT = getContainerForFixedLengthVector(VT); 2345 SrcContainerVT = ContainerVT.changeVectorElementType(SrcEltVT); 2346 } 2347 2348 SDValue Mask, VL; 2349 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 2350 2351 Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); 2352 Src = DAG.getNode(RVVOpc, DL, ContainerVT, Src, Mask, VL); 2353 return convertFromScalableVector(VT, Src, DAG, Subtarget); 2354 } 2355 case ISD::VECREDUCE_ADD: 2356 case ISD::VECREDUCE_UMAX: 2357 case ISD::VECREDUCE_SMAX: 2358 case ISD::VECREDUCE_UMIN: 2359 case ISD::VECREDUCE_SMIN: 2360 return lowerVECREDUCE(Op, DAG); 2361 case ISD::VECREDUCE_AND: 2362 case ISD::VECREDUCE_OR: 2363 case ISD::VECREDUCE_XOR: 2364 if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) 2365 return lowerVectorMaskVECREDUCE(Op, DAG); 2366 return lowerVECREDUCE(Op, DAG); 2367 case ISD::VECREDUCE_FADD: 2368 case ISD::VECREDUCE_SEQ_FADD: 2369 case ISD::VECREDUCE_FMIN: 2370 case ISD::VECREDUCE_FMAX: 2371 return lowerFPVECREDUCE(Op, DAG); 2372 case ISD::INSERT_SUBVECTOR: 2373 return lowerINSERT_SUBVECTOR(Op, DAG); 2374 case ISD::EXTRACT_SUBVECTOR: 2375 return lowerEXTRACT_SUBVECTOR(Op, DAG); 2376 case ISD::STEP_VECTOR: 2377 return lowerSTEP_VECTOR(Op, DAG); 2378 case ISD::VECTOR_REVERSE: 2379 return lowerVECTOR_REVERSE(Op, DAG); 2380 case ISD::BUILD_VECTOR: 2381 return lowerBUILD_VECTOR(Op, DAG, Subtarget); 2382 case ISD::SPLAT_VECTOR: 2383 if (Op.getValueType().getVectorElementType() == MVT::i1) 2384 return lowerVectorMaskSplat(Op, DAG); 2385 return lowerSPLAT_VECTOR(Op, DAG, Subtarget); 2386 case ISD::VECTOR_SHUFFLE: 2387 return lowerVECTOR_SHUFFLE(Op, DAG, Subtarget); 2388 case ISD::CONCAT_VECTORS: { 2389 // Split CONCAT_VECTORS into a series of INSERT_SUBVECTOR nodes. This is 2390 // better than going through the stack, as the default expansion does. 2391 SDLoc DL(Op); 2392 MVT VT = Op.getSimpleValueType(); 2393 unsigned NumOpElts = 2394 Op.getOperand(0).getSimpleValueType().getVectorMinNumElements(); 2395 SDValue Vec = DAG.getUNDEF(VT); 2396 for (const auto &OpIdx : enumerate(Op->ops())) 2397 Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, Vec, OpIdx.value(), 2398 DAG.getIntPtrConstant(OpIdx.index() * NumOpElts, DL)); 2399 return Vec; 2400 } 2401 case ISD::LOAD: 2402 if (auto V = expandUnalignedRVVLoad(Op, DAG)) 2403 return V; 2404 if (Op.getValueType().isFixedLengthVector()) 2405 return lowerFixedLengthVectorLoadToRVV(Op, DAG); 2406 return Op; 2407 case ISD::STORE: 2408 if (auto V = expandUnalignedRVVStore(Op, DAG)) 2409 return V; 2410 if (Op.getOperand(1).getValueType().isFixedLengthVector()) 2411 return lowerFixedLengthVectorStoreToRVV(Op, DAG); 2412 return Op; 2413 case ISD::MLOAD: 2414 return lowerMLOAD(Op, DAG); 2415 case ISD::MSTORE: 2416 return lowerMSTORE(Op, DAG); 2417 case ISD::SETCC: 2418 return lowerFixedLengthVectorSetccToRVV(Op, DAG); 2419 case ISD::ADD: 2420 return lowerToScalableOp(Op, DAG, RISCVISD::ADD_VL); 2421 case ISD::SUB: 2422 return lowerToScalableOp(Op, DAG, RISCVISD::SUB_VL); 2423 case ISD::MUL: 2424 return lowerToScalableOp(Op, DAG, RISCVISD::MUL_VL); 2425 case ISD::MULHS: 2426 return lowerToScalableOp(Op, DAG, RISCVISD::MULHS_VL); 2427 case ISD::MULHU: 2428 return lowerToScalableOp(Op, DAG, RISCVISD::MULHU_VL); 2429 case ISD::AND: 2430 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMAND_VL, 2431 RISCVISD::AND_VL); 2432 case ISD::OR: 2433 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMOR_VL, 2434 RISCVISD::OR_VL); 2435 case ISD::XOR: 2436 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMXOR_VL, 2437 RISCVISD::XOR_VL); 2438 case ISD::SDIV: 2439 return lowerToScalableOp(Op, DAG, RISCVISD::SDIV_VL); 2440 case ISD::SREM: 2441 return lowerToScalableOp(Op, DAG, RISCVISD::SREM_VL); 2442 case ISD::UDIV: 2443 return lowerToScalableOp(Op, DAG, RISCVISD::UDIV_VL); 2444 case ISD::UREM: 2445 return lowerToScalableOp(Op, DAG, RISCVISD::UREM_VL); 2446 case ISD::SHL: 2447 case ISD::SRA: 2448 case ISD::SRL: 2449 if (Op.getSimpleValueType().isFixedLengthVector()) 2450 return lowerFixedLengthVectorShiftToRVV(Op, DAG); 2451 // This can be called for an i32 shift amount that needs to be promoted. 2452 assert(Op.getOperand(1).getValueType() == MVT::i32 && Subtarget.is64Bit() && 2453 "Unexpected custom legalisation"); 2454 return SDValue(); 2455 case ISD::FADD: 2456 return lowerToScalableOp(Op, DAG, RISCVISD::FADD_VL); 2457 case ISD::FSUB: 2458 return lowerToScalableOp(Op, DAG, RISCVISD::FSUB_VL); 2459 case ISD::FMUL: 2460 return lowerToScalableOp(Op, DAG, RISCVISD::FMUL_VL); 2461 case ISD::FDIV: 2462 return lowerToScalableOp(Op, DAG, RISCVISD::FDIV_VL); 2463 case ISD::FNEG: 2464 return lowerToScalableOp(Op, DAG, RISCVISD::FNEG_VL); 2465 case ISD::FABS: 2466 return lowerToScalableOp(Op, DAG, RISCVISD::FABS_VL); 2467 case ISD::FSQRT: 2468 return lowerToScalableOp(Op, DAG, RISCVISD::FSQRT_VL); 2469 case ISD::FMA: 2470 return lowerToScalableOp(Op, DAG, RISCVISD::FMA_VL); 2471 case ISD::SMIN: 2472 return lowerToScalableOp(Op, DAG, RISCVISD::SMIN_VL); 2473 case ISD::SMAX: 2474 return lowerToScalableOp(Op, DAG, RISCVISD::SMAX_VL); 2475 case ISD::UMIN: 2476 return lowerToScalableOp(Op, DAG, RISCVISD::UMIN_VL); 2477 case ISD::UMAX: 2478 return lowerToScalableOp(Op, DAG, RISCVISD::UMAX_VL); 2479 case ISD::FMINNUM: 2480 return lowerToScalableOp(Op, DAG, RISCVISD::FMINNUM_VL); 2481 case ISD::FMAXNUM: 2482 return lowerToScalableOp(Op, DAG, RISCVISD::FMAXNUM_VL); 2483 case ISD::ABS: 2484 return lowerABS(Op, DAG); 2485 case ISD::VSELECT: 2486 return lowerFixedLengthVectorSelectToRVV(Op, DAG); 2487 case ISD::FCOPYSIGN: 2488 return lowerFixedLengthVectorFCOPYSIGNToRVV(Op, DAG); 2489 case ISD::MGATHER: 2490 return lowerMGATHER(Op, DAG); 2491 case ISD::MSCATTER: 2492 return lowerMSCATTER(Op, DAG); 2493 case ISD::FLT_ROUNDS_: 2494 return lowerGET_ROUNDING(Op, DAG); 2495 case ISD::SET_ROUNDING: 2496 return lowerSET_ROUNDING(Op, DAG); 2497 case ISD::VP_ADD: 2498 return lowerVPOp(Op, DAG, RISCVISD::ADD_VL); 2499 case ISD::VP_SUB: 2500 return lowerVPOp(Op, DAG, RISCVISD::SUB_VL); 2501 case ISD::VP_MUL: 2502 return lowerVPOp(Op, DAG, RISCVISD::MUL_VL); 2503 case ISD::VP_SDIV: 2504 return lowerVPOp(Op, DAG, RISCVISD::SDIV_VL); 2505 case ISD::VP_UDIV: 2506 return lowerVPOp(Op, DAG, RISCVISD::UDIV_VL); 2507 case ISD::VP_SREM: 2508 return lowerVPOp(Op, DAG, RISCVISD::SREM_VL); 2509 case ISD::VP_UREM: 2510 return lowerVPOp(Op, DAG, RISCVISD::UREM_VL); 2511 case ISD::VP_AND: 2512 return lowerVPOp(Op, DAG, RISCVISD::AND_VL); 2513 case ISD::VP_OR: 2514 return lowerVPOp(Op, DAG, RISCVISD::OR_VL); 2515 case ISD::VP_XOR: 2516 return lowerVPOp(Op, DAG, RISCVISD::XOR_VL); 2517 case ISD::VP_ASHR: 2518 return lowerVPOp(Op, DAG, RISCVISD::SRA_VL); 2519 case ISD::VP_LSHR: 2520 return lowerVPOp(Op, DAG, RISCVISD::SRL_VL); 2521 case ISD::VP_SHL: 2522 return lowerVPOp(Op, DAG, RISCVISD::SHL_VL); 2523 case ISD::VP_FADD: 2524 return lowerVPOp(Op, DAG, RISCVISD::FADD_VL); 2525 case ISD::VP_FSUB: 2526 return lowerVPOp(Op, DAG, RISCVISD::FSUB_VL); 2527 case ISD::VP_FMUL: 2528 return lowerVPOp(Op, DAG, RISCVISD::FMUL_VL); 2529 case ISD::VP_FDIV: 2530 return lowerVPOp(Op, DAG, RISCVISD::FDIV_VL); 2531 } 2532 } 2533 2534 static SDValue getTargetNode(GlobalAddressSDNode *N, SDLoc DL, EVT Ty, 2535 SelectionDAG &DAG, unsigned Flags) { 2536 return DAG.getTargetGlobalAddress(N->getGlobal(), DL, Ty, 0, Flags); 2537 } 2538 2539 static SDValue getTargetNode(BlockAddressSDNode *N, SDLoc DL, EVT Ty, 2540 SelectionDAG &DAG, unsigned Flags) { 2541 return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, N->getOffset(), 2542 Flags); 2543 } 2544 2545 static SDValue getTargetNode(ConstantPoolSDNode *N, SDLoc DL, EVT Ty, 2546 SelectionDAG &DAG, unsigned Flags) { 2547 return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlign(), 2548 N->getOffset(), Flags); 2549 } 2550 2551 static SDValue getTargetNode(JumpTableSDNode *N, SDLoc DL, EVT Ty, 2552 SelectionDAG &DAG, unsigned Flags) { 2553 return DAG.getTargetJumpTable(N->getIndex(), Ty, Flags); 2554 } 2555 2556 template <class NodeTy> 2557 SDValue RISCVTargetLowering::getAddr(NodeTy *N, SelectionDAG &DAG, 2558 bool IsLocal) const { 2559 SDLoc DL(N); 2560 EVT Ty = getPointerTy(DAG.getDataLayout()); 2561 2562 if (isPositionIndependent()) { 2563 SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0); 2564 if (IsLocal) 2565 // Use PC-relative addressing to access the symbol. This generates the 2566 // pattern (PseudoLLA sym), which expands to (addi (auipc %pcrel_hi(sym)) 2567 // %pcrel_lo(auipc)). 2568 return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0); 2569 2570 // Use PC-relative addressing to access the GOT for this symbol, then load 2571 // the address from the GOT. This generates the pattern (PseudoLA sym), 2572 // which expands to (ld (addi (auipc %got_pcrel_hi(sym)) %pcrel_lo(auipc))). 2573 return SDValue(DAG.getMachineNode(RISCV::PseudoLA, DL, Ty, Addr), 0); 2574 } 2575 2576 switch (getTargetMachine().getCodeModel()) { 2577 default: 2578 report_fatal_error("Unsupported code model for lowering"); 2579 case CodeModel::Small: { 2580 // Generate a sequence for accessing addresses within the first 2 GiB of 2581 // address space. This generates the pattern (addi (lui %hi(sym)) %lo(sym)). 2582 SDValue AddrHi = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_HI); 2583 SDValue AddrLo = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_LO); 2584 SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0); 2585 return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNHi, AddrLo), 0); 2586 } 2587 case CodeModel::Medium: { 2588 // Generate a sequence for accessing addresses within any 2GiB range within 2589 // the address space. This generates the pattern (PseudoLLA sym), which 2590 // expands to (addi (auipc %pcrel_hi(sym)) %pcrel_lo(auipc)). 2591 SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0); 2592 return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0); 2593 } 2594 } 2595 } 2596 2597 SDValue RISCVTargetLowering::lowerGlobalAddress(SDValue Op, 2598 SelectionDAG &DAG) const { 2599 SDLoc DL(Op); 2600 EVT Ty = Op.getValueType(); 2601 GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op); 2602 int64_t Offset = N->getOffset(); 2603 MVT XLenVT = Subtarget.getXLenVT(); 2604 2605 const GlobalValue *GV = N->getGlobal(); 2606 bool IsLocal = getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV); 2607 SDValue Addr = getAddr(N, DAG, IsLocal); 2608 2609 // In order to maximise the opportunity for common subexpression elimination, 2610 // emit a separate ADD node for the global address offset instead of folding 2611 // it in the global address node. Later peephole optimisations may choose to 2612 // fold it back in when profitable. 2613 if (Offset != 0) 2614 return DAG.getNode(ISD::ADD, DL, Ty, Addr, 2615 DAG.getConstant(Offset, DL, XLenVT)); 2616 return Addr; 2617 } 2618 2619 SDValue RISCVTargetLowering::lowerBlockAddress(SDValue Op, 2620 SelectionDAG &DAG) const { 2621 BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op); 2622 2623 return getAddr(N, DAG); 2624 } 2625 2626 SDValue RISCVTargetLowering::lowerConstantPool(SDValue Op, 2627 SelectionDAG &DAG) const { 2628 ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op); 2629 2630 return getAddr(N, DAG); 2631 } 2632 2633 SDValue RISCVTargetLowering::lowerJumpTable(SDValue Op, 2634 SelectionDAG &DAG) const { 2635 JumpTableSDNode *N = cast<JumpTableSDNode>(Op); 2636 2637 return getAddr(N, DAG); 2638 } 2639 2640 SDValue RISCVTargetLowering::getStaticTLSAddr(GlobalAddressSDNode *N, 2641 SelectionDAG &DAG, 2642 bool UseGOT) const { 2643 SDLoc DL(N); 2644 EVT Ty = getPointerTy(DAG.getDataLayout()); 2645 const GlobalValue *GV = N->getGlobal(); 2646 MVT XLenVT = Subtarget.getXLenVT(); 2647 2648 if (UseGOT) { 2649 // Use PC-relative addressing to access the GOT for this TLS symbol, then 2650 // load the address from the GOT and add the thread pointer. This generates 2651 // the pattern (PseudoLA_TLS_IE sym), which expands to 2652 // (ld (auipc %tls_ie_pcrel_hi(sym)) %pcrel_lo(auipc)). 2653 SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0); 2654 SDValue Load = 2655 SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_IE, DL, Ty, Addr), 0); 2656 2657 // Add the thread pointer. 2658 SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT); 2659 return DAG.getNode(ISD::ADD, DL, Ty, Load, TPReg); 2660 } 2661 2662 // Generate a sequence for accessing the address relative to the thread 2663 // pointer, with the appropriate adjustment for the thread pointer offset. 2664 // This generates the pattern 2665 // (add (add_tprel (lui %tprel_hi(sym)) tp %tprel_add(sym)) %tprel_lo(sym)) 2666 SDValue AddrHi = 2667 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_HI); 2668 SDValue AddrAdd = 2669 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_ADD); 2670 SDValue AddrLo = 2671 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_LO); 2672 2673 SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0); 2674 SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT); 2675 SDValue MNAdd = SDValue( 2676 DAG.getMachineNode(RISCV::PseudoAddTPRel, DL, Ty, MNHi, TPReg, AddrAdd), 2677 0); 2678 return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNAdd, AddrLo), 0); 2679 } 2680 2681 SDValue RISCVTargetLowering::getDynamicTLSAddr(GlobalAddressSDNode *N, 2682 SelectionDAG &DAG) const { 2683 SDLoc DL(N); 2684 EVT Ty = getPointerTy(DAG.getDataLayout()); 2685 IntegerType *CallTy = Type::getIntNTy(*DAG.getContext(), Ty.getSizeInBits()); 2686 const GlobalValue *GV = N->getGlobal(); 2687 2688 // Use a PC-relative addressing mode to access the global dynamic GOT address. 2689 // This generates the pattern (PseudoLA_TLS_GD sym), which expands to 2690 // (addi (auipc %tls_gd_pcrel_hi(sym)) %pcrel_lo(auipc)). 2691 SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0); 2692 SDValue Load = 2693 SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_GD, DL, Ty, Addr), 0); 2694 2695 // Prepare argument list to generate call. 2696 ArgListTy Args; 2697 ArgListEntry Entry; 2698 Entry.Node = Load; 2699 Entry.Ty = CallTy; 2700 Args.push_back(Entry); 2701 2702 // Setup call to __tls_get_addr. 2703 TargetLowering::CallLoweringInfo CLI(DAG); 2704 CLI.setDebugLoc(DL) 2705 .setChain(DAG.getEntryNode()) 2706 .setLibCallee(CallingConv::C, CallTy, 2707 DAG.getExternalSymbol("__tls_get_addr", Ty), 2708 std::move(Args)); 2709 2710 return LowerCallTo(CLI).first; 2711 } 2712 2713 SDValue RISCVTargetLowering::lowerGlobalTLSAddress(SDValue Op, 2714 SelectionDAG &DAG) const { 2715 SDLoc DL(Op); 2716 EVT Ty = Op.getValueType(); 2717 GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op); 2718 int64_t Offset = N->getOffset(); 2719 MVT XLenVT = Subtarget.getXLenVT(); 2720 2721 TLSModel::Model Model = getTargetMachine().getTLSModel(N->getGlobal()); 2722 2723 if (DAG.getMachineFunction().getFunction().getCallingConv() == 2724 CallingConv::GHC) 2725 report_fatal_error("In GHC calling convention TLS is not supported"); 2726 2727 SDValue Addr; 2728 switch (Model) { 2729 case TLSModel::LocalExec: 2730 Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/false); 2731 break; 2732 case TLSModel::InitialExec: 2733 Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/true); 2734 break; 2735 case TLSModel::LocalDynamic: 2736 case TLSModel::GeneralDynamic: 2737 Addr = getDynamicTLSAddr(N, DAG); 2738 break; 2739 } 2740 2741 // In order to maximise the opportunity for common subexpression elimination, 2742 // emit a separate ADD node for the global address offset instead of folding 2743 // it in the global address node. Later peephole optimisations may choose to 2744 // fold it back in when profitable. 2745 if (Offset != 0) 2746 return DAG.getNode(ISD::ADD, DL, Ty, Addr, 2747 DAG.getConstant(Offset, DL, XLenVT)); 2748 return Addr; 2749 } 2750 2751 SDValue RISCVTargetLowering::lowerSELECT(SDValue Op, SelectionDAG &DAG) const { 2752 SDValue CondV = Op.getOperand(0); 2753 SDValue TrueV = Op.getOperand(1); 2754 SDValue FalseV = Op.getOperand(2); 2755 SDLoc DL(Op); 2756 MVT VT = Op.getSimpleValueType(); 2757 MVT XLenVT = Subtarget.getXLenVT(); 2758 2759 // Lower vector SELECTs to VSELECTs by splatting the condition. 2760 if (VT.isVector()) { 2761 MVT SplatCondVT = VT.changeVectorElementType(MVT::i1); 2762 SDValue CondSplat = VT.isScalableVector() 2763 ? DAG.getSplatVector(SplatCondVT, DL, CondV) 2764 : DAG.getSplatBuildVector(SplatCondVT, DL, CondV); 2765 return DAG.getNode(ISD::VSELECT, DL, VT, CondSplat, TrueV, FalseV); 2766 } 2767 2768 // If the result type is XLenVT and CondV is the output of a SETCC node 2769 // which also operated on XLenVT inputs, then merge the SETCC node into the 2770 // lowered RISCVISD::SELECT_CC to take advantage of the integer 2771 // compare+branch instructions. i.e.: 2772 // (select (setcc lhs, rhs, cc), truev, falsev) 2773 // -> (riscvisd::select_cc lhs, rhs, cc, truev, falsev) 2774 if (VT == XLenVT && CondV.getOpcode() == ISD::SETCC && 2775 CondV.getOperand(0).getSimpleValueType() == XLenVT) { 2776 SDValue LHS = CondV.getOperand(0); 2777 SDValue RHS = CondV.getOperand(1); 2778 const auto *CC = cast<CondCodeSDNode>(CondV.getOperand(2)); 2779 ISD::CondCode CCVal = CC->get(); 2780 2781 // Special case for a select of 2 constants that have a diffence of 1. 2782 // Normally this is done by DAGCombine, but if the select is introduced by 2783 // type legalization or op legalization, we miss it. Restricting to SETLT 2784 // case for now because that is what signed saturating add/sub need. 2785 // FIXME: We don't need the condition to be SETLT or even a SETCC, 2786 // but we would probably want to swap the true/false values if the condition 2787 // is SETGE/SETLE to avoid an XORI. 2788 if (isa<ConstantSDNode>(TrueV) && isa<ConstantSDNode>(FalseV) && 2789 CCVal == ISD::SETLT) { 2790 const APInt &TrueVal = cast<ConstantSDNode>(TrueV)->getAPIntValue(); 2791 const APInt &FalseVal = cast<ConstantSDNode>(FalseV)->getAPIntValue(); 2792 if (TrueVal - 1 == FalseVal) 2793 return DAG.getNode(ISD::ADD, DL, Op.getValueType(), CondV, FalseV); 2794 if (TrueVal + 1 == FalseVal) 2795 return DAG.getNode(ISD::SUB, DL, Op.getValueType(), FalseV, CondV); 2796 } 2797 2798 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 2799 2800 SDValue TargetCC = DAG.getTargetConstant(CCVal, DL, XLenVT); 2801 SDValue Ops[] = {LHS, RHS, TargetCC, TrueV, FalseV}; 2802 return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops); 2803 } 2804 2805 // Otherwise: 2806 // (select condv, truev, falsev) 2807 // -> (riscvisd::select_cc condv, zero, setne, truev, falsev) 2808 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 2809 SDValue SetNE = DAG.getTargetConstant(ISD::SETNE, DL, XLenVT); 2810 2811 SDValue Ops[] = {CondV, Zero, SetNE, TrueV, FalseV}; 2812 2813 return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops); 2814 } 2815 2816 SDValue RISCVTargetLowering::lowerBRCOND(SDValue Op, SelectionDAG &DAG) const { 2817 SDValue CondV = Op.getOperand(1); 2818 SDLoc DL(Op); 2819 MVT XLenVT = Subtarget.getXLenVT(); 2820 2821 if (CondV.getOpcode() == ISD::SETCC && 2822 CondV.getOperand(0).getValueType() == XLenVT) { 2823 SDValue LHS = CondV.getOperand(0); 2824 SDValue RHS = CondV.getOperand(1); 2825 ISD::CondCode CCVal = cast<CondCodeSDNode>(CondV.getOperand(2))->get(); 2826 2827 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 2828 2829 SDValue TargetCC = DAG.getCondCode(CCVal); 2830 return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0), 2831 LHS, RHS, TargetCC, Op.getOperand(2)); 2832 } 2833 2834 return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0), 2835 CondV, DAG.getConstant(0, DL, XLenVT), 2836 DAG.getCondCode(ISD::SETNE), Op.getOperand(2)); 2837 } 2838 2839 SDValue RISCVTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const { 2840 MachineFunction &MF = DAG.getMachineFunction(); 2841 RISCVMachineFunctionInfo *FuncInfo = MF.getInfo<RISCVMachineFunctionInfo>(); 2842 2843 SDLoc DL(Op); 2844 SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), 2845 getPointerTy(MF.getDataLayout())); 2846 2847 // vastart just stores the address of the VarArgsFrameIndex slot into the 2848 // memory location argument. 2849 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 2850 return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1), 2851 MachinePointerInfo(SV)); 2852 } 2853 2854 SDValue RISCVTargetLowering::lowerFRAMEADDR(SDValue Op, 2855 SelectionDAG &DAG) const { 2856 const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo(); 2857 MachineFunction &MF = DAG.getMachineFunction(); 2858 MachineFrameInfo &MFI = MF.getFrameInfo(); 2859 MFI.setFrameAddressIsTaken(true); 2860 Register FrameReg = RI.getFrameRegister(MF); 2861 int XLenInBytes = Subtarget.getXLen() / 8; 2862 2863 EVT VT = Op.getValueType(); 2864 SDLoc DL(Op); 2865 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, FrameReg, VT); 2866 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 2867 while (Depth--) { 2868 int Offset = -(XLenInBytes * 2); 2869 SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr, 2870 DAG.getIntPtrConstant(Offset, DL)); 2871 FrameAddr = 2872 DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo()); 2873 } 2874 return FrameAddr; 2875 } 2876 2877 SDValue RISCVTargetLowering::lowerRETURNADDR(SDValue Op, 2878 SelectionDAG &DAG) const { 2879 const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo(); 2880 MachineFunction &MF = DAG.getMachineFunction(); 2881 MachineFrameInfo &MFI = MF.getFrameInfo(); 2882 MFI.setReturnAddressIsTaken(true); 2883 MVT XLenVT = Subtarget.getXLenVT(); 2884 int XLenInBytes = Subtarget.getXLen() / 8; 2885 2886 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 2887 return SDValue(); 2888 2889 EVT VT = Op.getValueType(); 2890 SDLoc DL(Op); 2891 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 2892 if (Depth) { 2893 int Off = -XLenInBytes; 2894 SDValue FrameAddr = lowerFRAMEADDR(Op, DAG); 2895 SDValue Offset = DAG.getConstant(Off, DL, VT); 2896 return DAG.getLoad(VT, DL, DAG.getEntryNode(), 2897 DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset), 2898 MachinePointerInfo()); 2899 } 2900 2901 // Return the value of the return address register, marking it an implicit 2902 // live-in. 2903 Register Reg = MF.addLiveIn(RI.getRARegister(), getRegClassFor(XLenVT)); 2904 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, XLenVT); 2905 } 2906 2907 SDValue RISCVTargetLowering::lowerShiftLeftParts(SDValue Op, 2908 SelectionDAG &DAG) const { 2909 SDLoc DL(Op); 2910 SDValue Lo = Op.getOperand(0); 2911 SDValue Hi = Op.getOperand(1); 2912 SDValue Shamt = Op.getOperand(2); 2913 EVT VT = Lo.getValueType(); 2914 2915 // if Shamt-XLEN < 0: // Shamt < XLEN 2916 // Lo = Lo << Shamt 2917 // Hi = (Hi << Shamt) | ((Lo >>u 1) >>u (XLEN-1 - Shamt)) 2918 // else: 2919 // Lo = 0 2920 // Hi = Lo << (Shamt-XLEN) 2921 2922 SDValue Zero = DAG.getConstant(0, DL, VT); 2923 SDValue One = DAG.getConstant(1, DL, VT); 2924 SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT); 2925 SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT); 2926 SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen); 2927 SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt); 2928 2929 SDValue LoTrue = DAG.getNode(ISD::SHL, DL, VT, Lo, Shamt); 2930 SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, VT, Lo, One); 2931 SDValue ShiftRightLo = 2932 DAG.getNode(ISD::SRL, DL, VT, ShiftRight1Lo, XLenMinus1Shamt); 2933 SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, Hi, Shamt); 2934 SDValue HiTrue = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo); 2935 SDValue HiFalse = DAG.getNode(ISD::SHL, DL, VT, Lo, ShamtMinusXLen); 2936 2937 SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT); 2938 2939 Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, Zero); 2940 Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse); 2941 2942 SDValue Parts[2] = {Lo, Hi}; 2943 return DAG.getMergeValues(Parts, DL); 2944 } 2945 2946 SDValue RISCVTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG, 2947 bool IsSRA) const { 2948 SDLoc DL(Op); 2949 SDValue Lo = Op.getOperand(0); 2950 SDValue Hi = Op.getOperand(1); 2951 SDValue Shamt = Op.getOperand(2); 2952 EVT VT = Lo.getValueType(); 2953 2954 // SRA expansion: 2955 // if Shamt-XLEN < 0: // Shamt < XLEN 2956 // Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt)) 2957 // Hi = Hi >>s Shamt 2958 // else: 2959 // Lo = Hi >>s (Shamt-XLEN); 2960 // Hi = Hi >>s (XLEN-1) 2961 // 2962 // SRL expansion: 2963 // if Shamt-XLEN < 0: // Shamt < XLEN 2964 // Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt)) 2965 // Hi = Hi >>u Shamt 2966 // else: 2967 // Lo = Hi >>u (Shamt-XLEN); 2968 // Hi = 0; 2969 2970 unsigned ShiftRightOp = IsSRA ? ISD::SRA : ISD::SRL; 2971 2972 SDValue Zero = DAG.getConstant(0, DL, VT); 2973 SDValue One = DAG.getConstant(1, DL, VT); 2974 SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT); 2975 SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT); 2976 SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen); 2977 SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt); 2978 2979 SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, Lo, Shamt); 2980 SDValue ShiftLeftHi1 = DAG.getNode(ISD::SHL, DL, VT, Hi, One); 2981 SDValue ShiftLeftHi = 2982 DAG.getNode(ISD::SHL, DL, VT, ShiftLeftHi1, XLenMinus1Shamt); 2983 SDValue LoTrue = DAG.getNode(ISD::OR, DL, VT, ShiftRightLo, ShiftLeftHi); 2984 SDValue HiTrue = DAG.getNode(ShiftRightOp, DL, VT, Hi, Shamt); 2985 SDValue LoFalse = DAG.getNode(ShiftRightOp, DL, VT, Hi, ShamtMinusXLen); 2986 SDValue HiFalse = 2987 IsSRA ? DAG.getNode(ISD::SRA, DL, VT, Hi, XLenMinus1) : Zero; 2988 2989 SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT); 2990 2991 Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, LoFalse); 2992 Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse); 2993 2994 SDValue Parts[2] = {Lo, Hi}; 2995 return DAG.getMergeValues(Parts, DL); 2996 } 2997 2998 // Lower splats of i1 types to SETCC. For each mask vector type, we have a 2999 // legal equivalently-sized i8 type, so we can use that as a go-between. 3000 SDValue RISCVTargetLowering::lowerVectorMaskSplat(SDValue Op, 3001 SelectionDAG &DAG) const { 3002 SDLoc DL(Op); 3003 MVT VT = Op.getSimpleValueType(); 3004 SDValue SplatVal = Op.getOperand(0); 3005 // All-zeros or all-ones splats are handled specially. 3006 if (ISD::isConstantSplatVectorAllOnes(Op.getNode())) { 3007 SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second; 3008 return DAG.getNode(RISCVISD::VMSET_VL, DL, VT, VL); 3009 } 3010 if (ISD::isConstantSplatVectorAllZeros(Op.getNode())) { 3011 SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second; 3012 return DAG.getNode(RISCVISD::VMCLR_VL, DL, VT, VL); 3013 } 3014 MVT XLenVT = Subtarget.getXLenVT(); 3015 assert(SplatVal.getValueType() == XLenVT && 3016 "Unexpected type for i1 splat value"); 3017 MVT InterVT = VT.changeVectorElementType(MVT::i8); 3018 SplatVal = DAG.getNode(ISD::AND, DL, XLenVT, SplatVal, 3019 DAG.getConstant(1, DL, XLenVT)); 3020 SDValue LHS = DAG.getSplatVector(InterVT, DL, SplatVal); 3021 SDValue Zero = DAG.getConstant(0, DL, InterVT); 3022 return DAG.getSetCC(DL, VT, LHS, Zero, ISD::SETNE); 3023 } 3024 3025 // Custom-lower a SPLAT_VECTOR_PARTS where XLEN<SEW, as the SEW element type is 3026 // illegal (currently only vXi64 RV32). 3027 // FIXME: We could also catch non-constant sign-extended i32 values and lower 3028 // them to SPLAT_VECTOR_I64 3029 SDValue RISCVTargetLowering::lowerSPLAT_VECTOR_PARTS(SDValue Op, 3030 SelectionDAG &DAG) const { 3031 SDLoc DL(Op); 3032 MVT VecVT = Op.getSimpleValueType(); 3033 assert(!Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64 && 3034 "Unexpected SPLAT_VECTOR_PARTS lowering"); 3035 3036 assert(Op.getNumOperands() == 2 && "Unexpected number of operands!"); 3037 SDValue Lo = Op.getOperand(0); 3038 SDValue Hi = Op.getOperand(1); 3039 3040 if (VecVT.isFixedLengthVector()) { 3041 MVT ContainerVT = getContainerForFixedLengthVector(VecVT); 3042 SDLoc DL(Op); 3043 SDValue Mask, VL; 3044 std::tie(Mask, VL) = 3045 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 3046 3047 SDValue Res = splatPartsI64WithVL(DL, ContainerVT, Lo, Hi, VL, DAG); 3048 return convertFromScalableVector(VecVT, Res, DAG, Subtarget); 3049 } 3050 3051 if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) { 3052 int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue(); 3053 int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue(); 3054 // If Hi constant is all the same sign bit as Lo, lower this as a custom 3055 // node in order to try and match RVV vector/scalar instructions. 3056 if ((LoC >> 31) == HiC) 3057 return DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, Lo); 3058 } 3059 3060 // Detect cases where Hi is (SRA Lo, 31) which means Hi is Lo sign extended. 3061 if (Hi.getOpcode() == ISD::SRA && Hi.getOperand(0) == Lo && 3062 isa<ConstantSDNode>(Hi.getOperand(1)) && 3063 Hi.getConstantOperandVal(1) == 31) 3064 return DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, Lo); 3065 3066 // Fall back to use a stack store and stride x0 vector load. Use X0 as VL. 3067 return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VecVT, Lo, Hi, 3068 DAG.getRegister(RISCV::X0, MVT::i64)); 3069 } 3070 3071 // Custom-lower extensions from mask vectors by using a vselect either with 1 3072 // for zero/any-extension or -1 for sign-extension: 3073 // (vXiN = (s|z)ext vXi1:vmask) -> (vXiN = vselect vmask, (-1 or 1), 0) 3074 // Note that any-extension is lowered identically to zero-extension. 3075 SDValue RISCVTargetLowering::lowerVectorMaskExt(SDValue Op, SelectionDAG &DAG, 3076 int64_t ExtTrueVal) const { 3077 SDLoc DL(Op); 3078 MVT VecVT = Op.getSimpleValueType(); 3079 SDValue Src = Op.getOperand(0); 3080 // Only custom-lower extensions from mask types 3081 assert(Src.getValueType().isVector() && 3082 Src.getValueType().getVectorElementType() == MVT::i1); 3083 3084 MVT XLenVT = Subtarget.getXLenVT(); 3085 SDValue SplatZero = DAG.getConstant(0, DL, XLenVT); 3086 SDValue SplatTrueVal = DAG.getConstant(ExtTrueVal, DL, XLenVT); 3087 3088 if (VecVT.isScalableVector()) { 3089 // Be careful not to introduce illegal scalar types at this stage, and be 3090 // careful also about splatting constants as on RV32, vXi64 SPLAT_VECTOR is 3091 // illegal and must be expanded. Since we know that the constants are 3092 // sign-extended 32-bit values, we use SPLAT_VECTOR_I64 directly. 3093 bool IsRV32E64 = 3094 !Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64; 3095 3096 if (!IsRV32E64) { 3097 SplatZero = DAG.getSplatVector(VecVT, DL, SplatZero); 3098 SplatTrueVal = DAG.getSplatVector(VecVT, DL, SplatTrueVal); 3099 } else { 3100 SplatZero = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, SplatZero); 3101 SplatTrueVal = 3102 DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, SplatTrueVal); 3103 } 3104 3105 return DAG.getNode(ISD::VSELECT, DL, VecVT, Src, SplatTrueVal, SplatZero); 3106 } 3107 3108 MVT ContainerVT = getContainerForFixedLengthVector(VecVT); 3109 MVT I1ContainerVT = 3110 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 3111 3112 SDValue CC = convertToScalableVector(I1ContainerVT, Src, DAG, Subtarget); 3113 3114 SDValue Mask, VL; 3115 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 3116 3117 SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatZero, VL); 3118 SplatTrueVal = 3119 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatTrueVal, VL); 3120 SDValue Select = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC, 3121 SplatTrueVal, SplatZero, VL); 3122 3123 return convertFromScalableVector(VecVT, Select, DAG, Subtarget); 3124 } 3125 3126 SDValue RISCVTargetLowering::lowerFixedLengthVectorExtendToRVV( 3127 SDValue Op, SelectionDAG &DAG, unsigned ExtendOpc) const { 3128 MVT ExtVT = Op.getSimpleValueType(); 3129 // Only custom-lower extensions from fixed-length vector types. 3130 if (!ExtVT.isFixedLengthVector()) 3131 return Op; 3132 MVT VT = Op.getOperand(0).getSimpleValueType(); 3133 // Grab the canonical container type for the extended type. Infer the smaller 3134 // type from that to ensure the same number of vector elements, as we know 3135 // the LMUL will be sufficient to hold the smaller type. 3136 MVT ContainerExtVT = getContainerForFixedLengthVector(ExtVT); 3137 // Get the extended container type manually to ensure the same number of 3138 // vector elements between source and dest. 3139 MVT ContainerVT = MVT::getVectorVT(VT.getVectorElementType(), 3140 ContainerExtVT.getVectorElementCount()); 3141 3142 SDValue Op1 = 3143 convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget); 3144 3145 SDLoc DL(Op); 3146 SDValue Mask, VL; 3147 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 3148 3149 SDValue Ext = DAG.getNode(ExtendOpc, DL, ContainerExtVT, Op1, Mask, VL); 3150 3151 return convertFromScalableVector(ExtVT, Ext, DAG, Subtarget); 3152 } 3153 3154 // Custom-lower truncations from vectors to mask vectors by using a mask and a 3155 // setcc operation: 3156 // (vXi1 = trunc vXiN vec) -> (vXi1 = setcc (and vec, 1), 0, ne) 3157 SDValue RISCVTargetLowering::lowerVectorMaskTrunc(SDValue Op, 3158 SelectionDAG &DAG) const { 3159 SDLoc DL(Op); 3160 EVT MaskVT = Op.getValueType(); 3161 // Only expect to custom-lower truncations to mask types 3162 assert(MaskVT.isVector() && MaskVT.getVectorElementType() == MVT::i1 && 3163 "Unexpected type for vector mask lowering"); 3164 SDValue Src = Op.getOperand(0); 3165 MVT VecVT = Src.getSimpleValueType(); 3166 3167 // If this is a fixed vector, we need to convert it to a scalable vector. 3168 MVT ContainerVT = VecVT; 3169 if (VecVT.isFixedLengthVector()) { 3170 ContainerVT = getContainerForFixedLengthVector(VecVT); 3171 Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget); 3172 } 3173 3174 SDValue SplatOne = DAG.getConstant(1, DL, Subtarget.getXLenVT()); 3175 SDValue SplatZero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 3176 3177 SplatOne = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatOne); 3178 SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatZero); 3179 3180 if (VecVT.isScalableVector()) { 3181 SDValue Trunc = DAG.getNode(ISD::AND, DL, VecVT, Src, SplatOne); 3182 return DAG.getSetCC(DL, MaskVT, Trunc, SplatZero, ISD::SETNE); 3183 } 3184 3185 SDValue Mask, VL; 3186 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 3187 3188 MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1); 3189 SDValue Trunc = 3190 DAG.getNode(RISCVISD::AND_VL, DL, ContainerVT, Src, SplatOne, Mask, VL); 3191 Trunc = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskContainerVT, Trunc, SplatZero, 3192 DAG.getCondCode(ISD::SETNE), Mask, VL); 3193 return convertFromScalableVector(MaskVT, Trunc, DAG, Subtarget); 3194 } 3195 3196 // Custom-legalize INSERT_VECTOR_ELT so that the value is inserted into the 3197 // first position of a vector, and that vector is slid up to the insert index. 3198 // By limiting the active vector length to index+1 and merging with the 3199 // original vector (with an undisturbed tail policy for elements >= VL), we 3200 // achieve the desired result of leaving all elements untouched except the one 3201 // at VL-1, which is replaced with the desired value. 3202 SDValue RISCVTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op, 3203 SelectionDAG &DAG) const { 3204 SDLoc DL(Op); 3205 MVT VecVT = Op.getSimpleValueType(); 3206 SDValue Vec = Op.getOperand(0); 3207 SDValue Val = Op.getOperand(1); 3208 SDValue Idx = Op.getOperand(2); 3209 3210 if (VecVT.getVectorElementType() == MVT::i1) { 3211 // FIXME: For now we just promote to an i8 vector and insert into that, 3212 // but this is probably not optimal. 3213 MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount()); 3214 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec); 3215 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, WideVT, Vec, Val, Idx); 3216 return DAG.getNode(ISD::TRUNCATE, DL, VecVT, Vec); 3217 } 3218 3219 MVT ContainerVT = VecVT; 3220 // If the operand is a fixed-length vector, convert to a scalable one. 3221 if (VecVT.isFixedLengthVector()) { 3222 ContainerVT = getContainerForFixedLengthVector(VecVT); 3223 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 3224 } 3225 3226 MVT XLenVT = Subtarget.getXLenVT(); 3227 3228 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 3229 bool IsLegalInsert = Subtarget.is64Bit() || Val.getValueType() != MVT::i64; 3230 // Even i64-element vectors on RV32 can be lowered without scalar 3231 // legalization if the most-significant 32 bits of the value are not affected 3232 // by the sign-extension of the lower 32 bits. 3233 // TODO: We could also catch sign extensions of a 32-bit value. 3234 if (!IsLegalInsert && isa<ConstantSDNode>(Val)) { 3235 const auto *CVal = cast<ConstantSDNode>(Val); 3236 if (isInt<32>(CVal->getSExtValue())) { 3237 IsLegalInsert = true; 3238 Val = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32); 3239 } 3240 } 3241 3242 SDValue Mask, VL; 3243 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 3244 3245 SDValue ValInVec; 3246 3247 if (IsLegalInsert) { 3248 unsigned Opc = 3249 VecVT.isFloatingPoint() ? RISCVISD::VFMV_S_F_VL : RISCVISD::VMV_S_X_VL; 3250 if (isNullConstant(Idx)) { 3251 Vec = DAG.getNode(Opc, DL, ContainerVT, Vec, Val, VL); 3252 if (!VecVT.isFixedLengthVector()) 3253 return Vec; 3254 return convertFromScalableVector(VecVT, Vec, DAG, Subtarget); 3255 } 3256 ValInVec = 3257 DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), Val, VL); 3258 } else { 3259 // On RV32, i64-element vectors must be specially handled to place the 3260 // value at element 0, by using two vslide1up instructions in sequence on 3261 // the i32 split lo/hi value. Use an equivalently-sized i32 vector for 3262 // this. 3263 SDValue One = DAG.getConstant(1, DL, XLenVT); 3264 SDValue ValLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, Zero); 3265 SDValue ValHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, One); 3266 MVT I32ContainerVT = 3267 MVT::getVectorVT(MVT::i32, ContainerVT.getVectorElementCount() * 2); 3268 SDValue I32Mask = 3269 getDefaultScalableVLOps(I32ContainerVT, DL, DAG, Subtarget).first; 3270 // Limit the active VL to two. 3271 SDValue InsertI64VL = DAG.getConstant(2, DL, XLenVT); 3272 // Note: We can't pass a UNDEF to the first VSLIDE1UP_VL since an untied 3273 // undef doesn't obey the earlyclobber constraint. Just splat a zero value. 3274 ValInVec = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, I32ContainerVT, Zero, 3275 InsertI64VL); 3276 // First slide in the hi value, then the lo in underneath it. 3277 ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT, ValInVec, 3278 ValHi, I32Mask, InsertI64VL); 3279 ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT, ValInVec, 3280 ValLo, I32Mask, InsertI64VL); 3281 // Bitcast back to the right container type. 3282 ValInVec = DAG.getBitcast(ContainerVT, ValInVec); 3283 } 3284 3285 // Now that the value is in a vector, slide it into position. 3286 SDValue InsertVL = 3287 DAG.getNode(ISD::ADD, DL, XLenVT, Idx, DAG.getConstant(1, DL, XLenVT)); 3288 SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec, 3289 ValInVec, Idx, Mask, InsertVL); 3290 if (!VecVT.isFixedLengthVector()) 3291 return Slideup; 3292 return convertFromScalableVector(VecVT, Slideup, DAG, Subtarget); 3293 } 3294 3295 // Custom-lower EXTRACT_VECTOR_ELT operations to slide the vector down, then 3296 // extract the first element: (extractelt (slidedown vec, idx), 0). For integer 3297 // types this is done using VMV_X_S to allow us to glean information about the 3298 // sign bits of the result. 3299 SDValue RISCVTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op, 3300 SelectionDAG &DAG) const { 3301 SDLoc DL(Op); 3302 SDValue Idx = Op.getOperand(1); 3303 SDValue Vec = Op.getOperand(0); 3304 EVT EltVT = Op.getValueType(); 3305 MVT VecVT = Vec.getSimpleValueType(); 3306 MVT XLenVT = Subtarget.getXLenVT(); 3307 3308 if (VecVT.getVectorElementType() == MVT::i1) { 3309 // FIXME: For now we just promote to an i8 vector and extract from that, 3310 // but this is probably not optimal. 3311 MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount()); 3312 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec); 3313 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec, Idx); 3314 } 3315 3316 // If this is a fixed vector, we need to convert it to a scalable vector. 3317 MVT ContainerVT = VecVT; 3318 if (VecVT.isFixedLengthVector()) { 3319 ContainerVT = getContainerForFixedLengthVector(VecVT); 3320 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 3321 } 3322 3323 // If the index is 0, the vector is already in the right position. 3324 if (!isNullConstant(Idx)) { 3325 // Use a VL of 1 to avoid processing more elements than we need. 3326 SDValue VL = DAG.getConstant(1, DL, XLenVT); 3327 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 3328 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 3329 Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 3330 DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL); 3331 } 3332 3333 if (!EltVT.isInteger()) { 3334 // Floating-point extracts are handled in TableGen. 3335 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec, 3336 DAG.getConstant(0, DL, XLenVT)); 3337 } 3338 3339 SDValue Elt0 = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); 3340 return DAG.getNode(ISD::TRUNCATE, DL, EltVT, Elt0); 3341 } 3342 3343 // Some RVV intrinsics may claim that they want an integer operand to be 3344 // promoted or expanded. 3345 static SDValue lowerVectorIntrinsicSplats(SDValue Op, SelectionDAG &DAG, 3346 const RISCVSubtarget &Subtarget) { 3347 assert((Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3348 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN) && 3349 "Unexpected opcode"); 3350 3351 if (!Subtarget.hasStdExtV()) 3352 return SDValue(); 3353 3354 bool HasChain = Op.getOpcode() == ISD::INTRINSIC_W_CHAIN; 3355 unsigned IntNo = Op.getConstantOperandVal(HasChain ? 1 : 0); 3356 SDLoc DL(Op); 3357 3358 const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II = 3359 RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo); 3360 if (!II || !II->SplatOperand) 3361 return SDValue(); 3362 3363 unsigned SplatOp = II->SplatOperand + HasChain; 3364 assert(SplatOp < Op.getNumOperands()); 3365 3366 SmallVector<SDValue, 8> Operands(Op->op_begin(), Op->op_end()); 3367 SDValue &ScalarOp = Operands[SplatOp]; 3368 MVT OpVT = ScalarOp.getSimpleValueType(); 3369 MVT XLenVT = Subtarget.getXLenVT(); 3370 3371 // If this isn't a scalar, or its type is XLenVT we're done. 3372 if (!OpVT.isScalarInteger() || OpVT == XLenVT) 3373 return SDValue(); 3374 3375 // Simplest case is that the operand needs to be promoted to XLenVT. 3376 if (OpVT.bitsLT(XLenVT)) { 3377 // If the operand is a constant, sign extend to increase our chances 3378 // of being able to use a .vi instruction. ANY_EXTEND would become a 3379 // a zero extend and the simm5 check in isel would fail. 3380 // FIXME: Should we ignore the upper bits in isel instead? 3381 unsigned ExtOpc = 3382 isa<ConstantSDNode>(ScalarOp) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND; 3383 ScalarOp = DAG.getNode(ExtOpc, DL, XLenVT, ScalarOp); 3384 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); 3385 } 3386 3387 // Use the previous operand to get the vXi64 VT. The result might be a mask 3388 // VT for compares. Using the previous operand assumes that the previous 3389 // operand will never have a smaller element size than a scalar operand and 3390 // that a widening operation never uses SEW=64. 3391 // NOTE: If this fails the below assert, we can probably just find the 3392 // element count from any operand or result and use it to construct the VT. 3393 assert(II->SplatOperand > 1 && "Unexpected splat operand!"); 3394 MVT VT = Op.getOperand(SplatOp - 1).getSimpleValueType(); 3395 3396 // The more complex case is when the scalar is larger than XLenVT. 3397 assert(XLenVT == MVT::i32 && OpVT == MVT::i64 && 3398 VT.getVectorElementType() == MVT::i64 && "Unexpected VTs!"); 3399 3400 // If this is a sign-extended 32-bit constant, we can truncate it and rely 3401 // on the instruction to sign-extend since SEW>XLEN. 3402 if (auto *CVal = dyn_cast<ConstantSDNode>(ScalarOp)) { 3403 if (isInt<32>(CVal->getSExtValue())) { 3404 ScalarOp = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32); 3405 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); 3406 } 3407 } 3408 3409 // We need to convert the scalar to a splat vector. 3410 // FIXME: Can we implicitly truncate the scalar if it is known to 3411 // be sign extended? 3412 // VL should be the last operand. 3413 SDValue VL = Op.getOperand(Op.getNumOperands() - 1); 3414 assert(VL.getValueType() == XLenVT); 3415 ScalarOp = splatSplitI64WithVL(DL, VT, ScalarOp, VL, DAG); 3416 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); 3417 } 3418 3419 SDValue RISCVTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 3420 SelectionDAG &DAG) const { 3421 unsigned IntNo = Op.getConstantOperandVal(0); 3422 SDLoc DL(Op); 3423 MVT XLenVT = Subtarget.getXLenVT(); 3424 3425 switch (IntNo) { 3426 default: 3427 break; // Don't custom lower most intrinsics. 3428 case Intrinsic::thread_pointer: { 3429 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3430 return DAG.getRegister(RISCV::X4, PtrVT); 3431 } 3432 case Intrinsic::riscv_orc_b: 3433 // Lower to the GORCI encoding for orc.b. 3434 return DAG.getNode(RISCVISD::GORC, DL, XLenVT, Op.getOperand(1), 3435 DAG.getConstant(7, DL, XLenVT)); 3436 case Intrinsic::riscv_grev: 3437 case Intrinsic::riscv_gorc: { 3438 unsigned Opc = 3439 IntNo == Intrinsic::riscv_grev ? RISCVISD::GREV : RISCVISD::GORC; 3440 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2)); 3441 } 3442 case Intrinsic::riscv_shfl: 3443 case Intrinsic::riscv_unshfl: { 3444 unsigned Opc = 3445 IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL; 3446 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2)); 3447 } 3448 case Intrinsic::riscv_bcompress: 3449 case Intrinsic::riscv_bdecompress: { 3450 unsigned Opc = IntNo == Intrinsic::riscv_bcompress ? RISCVISD::BCOMPRESS 3451 : RISCVISD::BDECOMPRESS; 3452 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2)); 3453 } 3454 case Intrinsic::riscv_vmv_x_s: 3455 assert(Op.getValueType() == XLenVT && "Unexpected VT!"); 3456 return DAG.getNode(RISCVISD::VMV_X_S, DL, Op.getValueType(), 3457 Op.getOperand(1)); 3458 case Intrinsic::riscv_vmv_v_x: 3459 return lowerScalarSplat(Op.getOperand(1), Op.getOperand(2), 3460 Op.getSimpleValueType(), DL, DAG, Subtarget); 3461 case Intrinsic::riscv_vfmv_v_f: 3462 return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, Op.getValueType(), 3463 Op.getOperand(1), Op.getOperand(2)); 3464 case Intrinsic::riscv_vmv_s_x: { 3465 SDValue Scalar = Op.getOperand(2); 3466 3467 if (Scalar.getValueType().bitsLE(XLenVT)) { 3468 Scalar = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Scalar); 3469 return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, Op.getValueType(), 3470 Op.getOperand(1), Scalar, Op.getOperand(3)); 3471 } 3472 3473 assert(Scalar.getValueType() == MVT::i64 && "Unexpected scalar VT!"); 3474 3475 // This is an i64 value that lives in two scalar registers. We have to 3476 // insert this in a convoluted way. First we build vXi64 splat containing 3477 // the/ two values that we assemble using some bit math. Next we'll use 3478 // vid.v and vmseq to build a mask with bit 0 set. Then we'll use that mask 3479 // to merge element 0 from our splat into the source vector. 3480 // FIXME: This is probably not the best way to do this, but it is 3481 // consistent with INSERT_VECTOR_ELT lowering so it is a good starting 3482 // point. 3483 // sw lo, (a0) 3484 // sw hi, 4(a0) 3485 // vlse vX, (a0) 3486 // 3487 // vid.v vVid 3488 // vmseq.vx mMask, vVid, 0 3489 // vmerge.vvm vDest, vSrc, vVal, mMask 3490 MVT VT = Op.getSimpleValueType(); 3491 SDValue Vec = Op.getOperand(1); 3492 SDValue VL = Op.getOperand(3); 3493 3494 SDValue SplattedVal = splatSplitI64WithVL(DL, VT, Scalar, VL, DAG); 3495 SDValue SplattedIdx = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, 3496 DAG.getConstant(0, DL, MVT::i32), VL); 3497 3498 MVT MaskVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount()); 3499 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 3500 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL); 3501 SDValue SelectCond = 3502 DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, VID, SplattedIdx, 3503 DAG.getCondCode(ISD::SETEQ), Mask, VL); 3504 return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, SelectCond, SplattedVal, 3505 Vec, VL); 3506 } 3507 case Intrinsic::riscv_vslide1up: 3508 case Intrinsic::riscv_vslide1down: 3509 case Intrinsic::riscv_vslide1up_mask: 3510 case Intrinsic::riscv_vslide1down_mask: { 3511 // We need to special case these when the scalar is larger than XLen. 3512 unsigned NumOps = Op.getNumOperands(); 3513 bool IsMasked = NumOps == 6; 3514 unsigned OpOffset = IsMasked ? 1 : 0; 3515 SDValue Scalar = Op.getOperand(2 + OpOffset); 3516 if (Scalar.getValueType().bitsLE(XLenVT)) 3517 break; 3518 3519 // Splatting a sign extended constant is fine. 3520 if (auto *CVal = dyn_cast<ConstantSDNode>(Scalar)) 3521 if (isInt<32>(CVal->getSExtValue())) 3522 break; 3523 3524 MVT VT = Op.getSimpleValueType(); 3525 assert(VT.getVectorElementType() == MVT::i64 && 3526 Scalar.getValueType() == MVT::i64 && "Unexpected VTs"); 3527 3528 // Convert the vector source to the equivalent nxvXi32 vector. 3529 MVT I32VT = MVT::getVectorVT(MVT::i32, VT.getVectorElementCount() * 2); 3530 SDValue Vec = DAG.getBitcast(I32VT, Op.getOperand(1 + OpOffset)); 3531 3532 SDValue ScalarLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 3533 DAG.getConstant(0, DL, XLenVT)); 3534 SDValue ScalarHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 3535 DAG.getConstant(1, DL, XLenVT)); 3536 3537 // Double the VL since we halved SEW. 3538 SDValue VL = Op.getOperand(NumOps - 1); 3539 SDValue I32VL = 3540 DAG.getNode(ISD::SHL, DL, XLenVT, VL, DAG.getConstant(1, DL, XLenVT)); 3541 3542 MVT I32MaskVT = MVT::getVectorVT(MVT::i1, I32VT.getVectorElementCount()); 3543 SDValue I32Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, I32MaskVT, VL); 3544 3545 // Shift the two scalar parts in using SEW=32 slide1up/slide1down 3546 // instructions. 3547 if (IntNo == Intrinsic::riscv_vslide1up || 3548 IntNo == Intrinsic::riscv_vslide1up_mask) { 3549 Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Vec, ScalarHi, 3550 I32Mask, I32VL); 3551 Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Vec, ScalarLo, 3552 I32Mask, I32VL); 3553 } else { 3554 Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Vec, ScalarLo, 3555 I32Mask, I32VL); 3556 Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Vec, ScalarHi, 3557 I32Mask, I32VL); 3558 } 3559 3560 // Convert back to nxvXi64. 3561 Vec = DAG.getBitcast(VT, Vec); 3562 3563 if (!IsMasked) 3564 return Vec; 3565 3566 // Apply mask after the operation. 3567 SDValue Mask = Op.getOperand(NumOps - 2); 3568 SDValue MaskedOff = Op.getOperand(1); 3569 return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, Mask, Vec, MaskedOff, VL); 3570 } 3571 } 3572 3573 return lowerVectorIntrinsicSplats(Op, DAG, Subtarget); 3574 } 3575 3576 SDValue RISCVTargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op, 3577 SelectionDAG &DAG) const { 3578 return lowerVectorIntrinsicSplats(Op, DAG, Subtarget); 3579 } 3580 3581 static MVT getLMUL1VT(MVT VT) { 3582 assert(VT.getVectorElementType().getSizeInBits() <= 64 && 3583 "Unexpected vector MVT"); 3584 return MVT::getScalableVectorVT( 3585 VT.getVectorElementType(), 3586 RISCV::RVVBitsPerBlock / VT.getVectorElementType().getSizeInBits()); 3587 } 3588 3589 static unsigned getRVVReductionOp(unsigned ISDOpcode) { 3590 switch (ISDOpcode) { 3591 default: 3592 llvm_unreachable("Unhandled reduction"); 3593 case ISD::VECREDUCE_ADD: 3594 return RISCVISD::VECREDUCE_ADD_VL; 3595 case ISD::VECREDUCE_UMAX: 3596 return RISCVISD::VECREDUCE_UMAX_VL; 3597 case ISD::VECREDUCE_SMAX: 3598 return RISCVISD::VECREDUCE_SMAX_VL; 3599 case ISD::VECREDUCE_UMIN: 3600 return RISCVISD::VECREDUCE_UMIN_VL; 3601 case ISD::VECREDUCE_SMIN: 3602 return RISCVISD::VECREDUCE_SMIN_VL; 3603 case ISD::VECREDUCE_AND: 3604 return RISCVISD::VECREDUCE_AND_VL; 3605 case ISD::VECREDUCE_OR: 3606 return RISCVISD::VECREDUCE_OR_VL; 3607 case ISD::VECREDUCE_XOR: 3608 return RISCVISD::VECREDUCE_XOR_VL; 3609 } 3610 } 3611 3612 SDValue RISCVTargetLowering::lowerVectorMaskVECREDUCE(SDValue Op, 3613 SelectionDAG &DAG) const { 3614 SDLoc DL(Op); 3615 SDValue Vec = Op.getOperand(0); 3616 MVT VecVT = Vec.getSimpleValueType(); 3617 assert((Op.getOpcode() == ISD::VECREDUCE_AND || 3618 Op.getOpcode() == ISD::VECREDUCE_OR || 3619 Op.getOpcode() == ISD::VECREDUCE_XOR) && 3620 "Unexpected reduction lowering"); 3621 3622 MVT XLenVT = Subtarget.getXLenVT(); 3623 assert(Op.getValueType() == XLenVT && 3624 "Expected reduction output to be legalized to XLenVT"); 3625 3626 MVT ContainerVT = VecVT; 3627 if (VecVT.isFixedLengthVector()) { 3628 ContainerVT = getContainerForFixedLengthVector(VecVT); 3629 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 3630 } 3631 3632 SDValue Mask, VL; 3633 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 3634 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 3635 3636 switch (Op.getOpcode()) { 3637 default: 3638 llvm_unreachable("Unhandled reduction"); 3639 case ISD::VECREDUCE_AND: 3640 // vpopc ~x == 0 3641 Vec = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Vec, Mask, VL); 3642 Vec = DAG.getNode(RISCVISD::VPOPC_VL, DL, XLenVT, Vec, Mask, VL); 3643 return DAG.getSetCC(DL, XLenVT, Vec, Zero, ISD::SETEQ); 3644 case ISD::VECREDUCE_OR: 3645 // vpopc x != 0 3646 Vec = DAG.getNode(RISCVISD::VPOPC_VL, DL, XLenVT, Vec, Mask, VL); 3647 return DAG.getSetCC(DL, XLenVT, Vec, Zero, ISD::SETNE); 3648 case ISD::VECREDUCE_XOR: { 3649 // ((vpopc x) & 1) != 0 3650 SDValue One = DAG.getConstant(1, DL, XLenVT); 3651 Vec = DAG.getNode(RISCVISD::VPOPC_VL, DL, XLenVT, Vec, Mask, VL); 3652 Vec = DAG.getNode(ISD::AND, DL, XLenVT, Vec, One); 3653 return DAG.getSetCC(DL, XLenVT, Vec, Zero, ISD::SETNE); 3654 } 3655 } 3656 } 3657 3658 SDValue RISCVTargetLowering::lowerVECREDUCE(SDValue Op, 3659 SelectionDAG &DAG) const { 3660 SDLoc DL(Op); 3661 SDValue Vec = Op.getOperand(0); 3662 EVT VecEVT = Vec.getValueType(); 3663 3664 unsigned BaseOpc = ISD::getVecReduceBaseOpcode(Op.getOpcode()); 3665 3666 // Due to ordering in legalize types we may have a vector type that needs to 3667 // be split. Do that manually so we can get down to a legal type. 3668 while (getTypeAction(*DAG.getContext(), VecEVT) == 3669 TargetLowering::TypeSplitVector) { 3670 SDValue Lo, Hi; 3671 std::tie(Lo, Hi) = DAG.SplitVector(Vec, DL); 3672 VecEVT = Lo.getValueType(); 3673 Vec = DAG.getNode(BaseOpc, DL, VecEVT, Lo, Hi); 3674 } 3675 3676 // TODO: The type may need to be widened rather than split. Or widened before 3677 // it can be split. 3678 if (!isTypeLegal(VecEVT)) 3679 return SDValue(); 3680 3681 MVT VecVT = VecEVT.getSimpleVT(); 3682 MVT VecEltVT = VecVT.getVectorElementType(); 3683 unsigned RVVOpcode = getRVVReductionOp(Op.getOpcode()); 3684 3685 MVT ContainerVT = VecVT; 3686 if (VecVT.isFixedLengthVector()) { 3687 ContainerVT = getContainerForFixedLengthVector(VecVT); 3688 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 3689 } 3690 3691 MVT M1VT = getLMUL1VT(ContainerVT); 3692 3693 SDValue Mask, VL; 3694 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 3695 3696 // FIXME: This is a VLMAX splat which might be too large and can prevent 3697 // vsetvli removal. 3698 SDValue NeutralElem = 3699 DAG.getNeutralElement(BaseOpc, DL, VecEltVT, SDNodeFlags()); 3700 SDValue IdentitySplat = DAG.getSplatVector(M1VT, DL, NeutralElem); 3701 SDValue Reduction = 3702 DAG.getNode(RVVOpcode, DL, M1VT, Vec, IdentitySplat, Mask, VL); 3703 SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction, 3704 DAG.getConstant(0, DL, Subtarget.getXLenVT())); 3705 return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType()); 3706 } 3707 3708 // Given a reduction op, this function returns the matching reduction opcode, 3709 // the vector SDValue and the scalar SDValue required to lower this to a 3710 // RISCVISD node. 3711 static std::tuple<unsigned, SDValue, SDValue> 3712 getRVVFPReductionOpAndOperands(SDValue Op, SelectionDAG &DAG, EVT EltVT) { 3713 SDLoc DL(Op); 3714 auto Flags = Op->getFlags(); 3715 unsigned Opcode = Op.getOpcode(); 3716 unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Opcode); 3717 switch (Opcode) { 3718 default: 3719 llvm_unreachable("Unhandled reduction"); 3720 case ISD::VECREDUCE_FADD: 3721 return std::make_tuple(RISCVISD::VECREDUCE_FADD_VL, Op.getOperand(0), 3722 DAG.getConstantFP(0.0, DL, EltVT)); 3723 case ISD::VECREDUCE_SEQ_FADD: 3724 return std::make_tuple(RISCVISD::VECREDUCE_SEQ_FADD_VL, Op.getOperand(1), 3725 Op.getOperand(0)); 3726 case ISD::VECREDUCE_FMIN: 3727 return std::make_tuple(RISCVISD::VECREDUCE_FMIN_VL, Op.getOperand(0), 3728 DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags)); 3729 case ISD::VECREDUCE_FMAX: 3730 return std::make_tuple(RISCVISD::VECREDUCE_FMAX_VL, Op.getOperand(0), 3731 DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags)); 3732 } 3733 } 3734 3735 SDValue RISCVTargetLowering::lowerFPVECREDUCE(SDValue Op, 3736 SelectionDAG &DAG) const { 3737 SDLoc DL(Op); 3738 MVT VecEltVT = Op.getSimpleValueType(); 3739 3740 unsigned RVVOpcode; 3741 SDValue VectorVal, ScalarVal; 3742 std::tie(RVVOpcode, VectorVal, ScalarVal) = 3743 getRVVFPReductionOpAndOperands(Op, DAG, VecEltVT); 3744 MVT VecVT = VectorVal.getSimpleValueType(); 3745 3746 MVT ContainerVT = VecVT; 3747 if (VecVT.isFixedLengthVector()) { 3748 ContainerVT = getContainerForFixedLengthVector(VecVT); 3749 VectorVal = convertToScalableVector(ContainerVT, VectorVal, DAG, Subtarget); 3750 } 3751 3752 MVT M1VT = getLMUL1VT(VectorVal.getSimpleValueType()); 3753 3754 SDValue Mask, VL; 3755 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 3756 3757 // FIXME: This is a VLMAX splat which might be too large and can prevent 3758 // vsetvli removal. 3759 SDValue ScalarSplat = DAG.getSplatVector(M1VT, DL, ScalarVal); 3760 SDValue Reduction = 3761 DAG.getNode(RVVOpcode, DL, M1VT, VectorVal, ScalarSplat, Mask, VL); 3762 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction, 3763 DAG.getConstant(0, DL, Subtarget.getXLenVT())); 3764 } 3765 3766 SDValue RISCVTargetLowering::lowerINSERT_SUBVECTOR(SDValue Op, 3767 SelectionDAG &DAG) const { 3768 SDValue Vec = Op.getOperand(0); 3769 SDValue SubVec = Op.getOperand(1); 3770 MVT VecVT = Vec.getSimpleValueType(); 3771 MVT SubVecVT = SubVec.getSimpleValueType(); 3772 3773 SDLoc DL(Op); 3774 MVT XLenVT = Subtarget.getXLenVT(); 3775 unsigned OrigIdx = Op.getConstantOperandVal(2); 3776 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 3777 3778 // We don't have the ability to slide mask vectors up indexed by their i1 3779 // elements; the smallest we can do is i8. Often we are able to bitcast to 3780 // equivalent i8 vectors. Note that when inserting a fixed-length vector 3781 // into a scalable one, we might not necessarily have enough scalable 3782 // elements to safely divide by 8: nxv1i1 = insert nxv1i1, v4i1 is valid. 3783 if (SubVecVT.getVectorElementType() == MVT::i1 && 3784 (OrigIdx != 0 || !Vec.isUndef())) { 3785 if (VecVT.getVectorMinNumElements() >= 8 && 3786 SubVecVT.getVectorMinNumElements() >= 8) { 3787 assert(OrigIdx % 8 == 0 && "Invalid index"); 3788 assert(VecVT.getVectorMinNumElements() % 8 == 0 && 3789 SubVecVT.getVectorMinNumElements() % 8 == 0 && 3790 "Unexpected mask vector lowering"); 3791 OrigIdx /= 8; 3792 SubVecVT = 3793 MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8, 3794 SubVecVT.isScalableVector()); 3795 VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8, 3796 VecVT.isScalableVector()); 3797 Vec = DAG.getBitcast(VecVT, Vec); 3798 SubVec = DAG.getBitcast(SubVecVT, SubVec); 3799 } else { 3800 // We can't slide this mask vector up indexed by its i1 elements. 3801 // This poses a problem when we wish to insert a scalable vector which 3802 // can't be re-expressed as a larger type. Just choose the slow path and 3803 // extend to a larger type, then truncate back down. 3804 MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8); 3805 MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8); 3806 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec); 3807 SubVec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtSubVecVT, SubVec); 3808 Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ExtVecVT, Vec, SubVec, 3809 Op.getOperand(2)); 3810 SDValue SplatZero = DAG.getConstant(0, DL, ExtVecVT); 3811 return DAG.getSetCC(DL, VecVT, Vec, SplatZero, ISD::SETNE); 3812 } 3813 } 3814 3815 // If the subvector vector is a fixed-length type, we cannot use subregister 3816 // manipulation to simplify the codegen; we don't know which register of a 3817 // LMUL group contains the specific subvector as we only know the minimum 3818 // register size. Therefore we must slide the vector group up the full 3819 // amount. 3820 if (SubVecVT.isFixedLengthVector()) { 3821 if (OrigIdx == 0 && Vec.isUndef()) 3822 return Op; 3823 MVT ContainerVT = VecVT; 3824 if (VecVT.isFixedLengthVector()) { 3825 ContainerVT = getContainerForFixedLengthVector(VecVT); 3826 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 3827 } 3828 SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ContainerVT, 3829 DAG.getUNDEF(ContainerVT), SubVec, 3830 DAG.getConstant(0, DL, XLenVT)); 3831 SDValue Mask = 3832 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first; 3833 // Set the vector length to only the number of elements we care about. Note 3834 // that for slideup this includes the offset. 3835 SDValue VL = 3836 DAG.getConstant(OrigIdx + SubVecVT.getVectorNumElements(), DL, XLenVT); 3837 SDValue SlideupAmt = DAG.getConstant(OrigIdx, DL, XLenVT); 3838 SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec, 3839 SubVec, SlideupAmt, Mask, VL); 3840 if (VecVT.isFixedLengthVector()) 3841 Slideup = convertFromScalableVector(VecVT, Slideup, DAG, Subtarget); 3842 return DAG.getBitcast(Op.getValueType(), Slideup); 3843 } 3844 3845 unsigned SubRegIdx, RemIdx; 3846 std::tie(SubRegIdx, RemIdx) = 3847 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( 3848 VecVT, SubVecVT, OrigIdx, TRI); 3849 3850 RISCVII::VLMUL SubVecLMUL = RISCVTargetLowering::getLMUL(SubVecVT); 3851 bool IsSubVecPartReg = SubVecLMUL == RISCVII::VLMUL::LMUL_F2 || 3852 SubVecLMUL == RISCVII::VLMUL::LMUL_F4 || 3853 SubVecLMUL == RISCVII::VLMUL::LMUL_F8; 3854 3855 // 1. If the Idx has been completely eliminated and this subvector's size is 3856 // a vector register or a multiple thereof, or the surrounding elements are 3857 // undef, then this is a subvector insert which naturally aligns to a vector 3858 // register. These can easily be handled using subregister manipulation. 3859 // 2. If the subvector is smaller than a vector register, then the insertion 3860 // must preserve the undisturbed elements of the register. We do this by 3861 // lowering to an EXTRACT_SUBVECTOR grabbing the nearest LMUL=1 vector type 3862 // (which resolves to a subregister copy), performing a VSLIDEUP to place the 3863 // subvector within the vector register, and an INSERT_SUBVECTOR of that 3864 // LMUL=1 type back into the larger vector (resolving to another subregister 3865 // operation). See below for how our VSLIDEUP works. We go via a LMUL=1 type 3866 // to avoid allocating a large register group to hold our subvector. 3867 if (RemIdx == 0 && (!IsSubVecPartReg || Vec.isUndef())) 3868 return Op; 3869 3870 // VSLIDEUP works by leaving elements 0<i<OFFSET undisturbed, elements 3871 // OFFSET<=i<VL set to the "subvector" and vl<=i<VLMAX set to the tail policy 3872 // (in our case undisturbed). This means we can set up a subvector insertion 3873 // where OFFSET is the insertion offset, and the VL is the OFFSET plus the 3874 // size of the subvector. 3875 MVT InterSubVT = VecVT; 3876 SDValue AlignedExtract = Vec; 3877 unsigned AlignedIdx = OrigIdx - RemIdx; 3878 if (VecVT.bitsGT(getLMUL1VT(VecVT))) { 3879 InterSubVT = getLMUL1VT(VecVT); 3880 // Extract a subvector equal to the nearest full vector register type. This 3881 // should resolve to a EXTRACT_SUBREG instruction. 3882 AlignedExtract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec, 3883 DAG.getConstant(AlignedIdx, DL, XLenVT)); 3884 } 3885 3886 SDValue SlideupAmt = DAG.getConstant(RemIdx, DL, XLenVT); 3887 // For scalable vectors this must be further multiplied by vscale. 3888 SlideupAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlideupAmt); 3889 3890 SDValue Mask, VL; 3891 std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget); 3892 3893 // Construct the vector length corresponding to RemIdx + length(SubVecVT). 3894 VL = DAG.getConstant(SubVecVT.getVectorMinNumElements(), DL, XLenVT); 3895 VL = DAG.getNode(ISD::VSCALE, DL, XLenVT, VL); 3896 VL = DAG.getNode(ISD::ADD, DL, XLenVT, SlideupAmt, VL); 3897 3898 SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, InterSubVT, 3899 DAG.getUNDEF(InterSubVT), SubVec, 3900 DAG.getConstant(0, DL, XLenVT)); 3901 3902 SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, InterSubVT, 3903 AlignedExtract, SubVec, SlideupAmt, Mask, VL); 3904 3905 // If required, insert this subvector back into the correct vector register. 3906 // This should resolve to an INSERT_SUBREG instruction. 3907 if (VecVT.bitsGT(InterSubVT)) 3908 Slideup = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, Vec, Slideup, 3909 DAG.getConstant(AlignedIdx, DL, XLenVT)); 3910 3911 // We might have bitcast from a mask type: cast back to the original type if 3912 // required. 3913 return DAG.getBitcast(Op.getSimpleValueType(), Slideup); 3914 } 3915 3916 SDValue RISCVTargetLowering::lowerEXTRACT_SUBVECTOR(SDValue Op, 3917 SelectionDAG &DAG) const { 3918 SDValue Vec = Op.getOperand(0); 3919 MVT SubVecVT = Op.getSimpleValueType(); 3920 MVT VecVT = Vec.getSimpleValueType(); 3921 3922 SDLoc DL(Op); 3923 MVT XLenVT = Subtarget.getXLenVT(); 3924 unsigned OrigIdx = Op.getConstantOperandVal(1); 3925 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 3926 3927 // We don't have the ability to slide mask vectors down indexed by their i1 3928 // elements; the smallest we can do is i8. Often we are able to bitcast to 3929 // equivalent i8 vectors. Note that when extracting a fixed-length vector 3930 // from a scalable one, we might not necessarily have enough scalable 3931 // elements to safely divide by 8: v8i1 = extract nxv1i1 is valid. 3932 if (SubVecVT.getVectorElementType() == MVT::i1 && OrigIdx != 0) { 3933 if (VecVT.getVectorMinNumElements() >= 8 && 3934 SubVecVT.getVectorMinNumElements() >= 8) { 3935 assert(OrigIdx % 8 == 0 && "Invalid index"); 3936 assert(VecVT.getVectorMinNumElements() % 8 == 0 && 3937 SubVecVT.getVectorMinNumElements() % 8 == 0 && 3938 "Unexpected mask vector lowering"); 3939 OrigIdx /= 8; 3940 SubVecVT = 3941 MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8, 3942 SubVecVT.isScalableVector()); 3943 VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8, 3944 VecVT.isScalableVector()); 3945 Vec = DAG.getBitcast(VecVT, Vec); 3946 } else { 3947 // We can't slide this mask vector down, indexed by its i1 elements. 3948 // This poses a problem when we wish to extract a scalable vector which 3949 // can't be re-expressed as a larger type. Just choose the slow path and 3950 // extend to a larger type, then truncate back down. 3951 // TODO: We could probably improve this when extracting certain fixed 3952 // from fixed, where we can extract as i8 and shift the correct element 3953 // right to reach the desired subvector? 3954 MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8); 3955 MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8); 3956 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec); 3957 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ExtSubVecVT, Vec, 3958 Op.getOperand(1)); 3959 SDValue SplatZero = DAG.getConstant(0, DL, ExtSubVecVT); 3960 return DAG.getSetCC(DL, SubVecVT, Vec, SplatZero, ISD::SETNE); 3961 } 3962 } 3963 3964 // If the subvector vector is a fixed-length type, we cannot use subregister 3965 // manipulation to simplify the codegen; we don't know which register of a 3966 // LMUL group contains the specific subvector as we only know the minimum 3967 // register size. Therefore we must slide the vector group down the full 3968 // amount. 3969 if (SubVecVT.isFixedLengthVector()) { 3970 // With an index of 0 this is a cast-like subvector, which can be performed 3971 // with subregister operations. 3972 if (OrigIdx == 0) 3973 return Op; 3974 MVT ContainerVT = VecVT; 3975 if (VecVT.isFixedLengthVector()) { 3976 ContainerVT = getContainerForFixedLengthVector(VecVT); 3977 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 3978 } 3979 SDValue Mask = 3980 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first; 3981 // Set the vector length to only the number of elements we care about. This 3982 // avoids sliding down elements we're going to discard straight away. 3983 SDValue VL = DAG.getConstant(SubVecVT.getVectorNumElements(), DL, XLenVT); 3984 SDValue SlidedownAmt = DAG.getConstant(OrigIdx, DL, XLenVT); 3985 SDValue Slidedown = 3986 DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 3987 DAG.getUNDEF(ContainerVT), Vec, SlidedownAmt, Mask, VL); 3988 // Now we can use a cast-like subvector extract to get the result. 3989 Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown, 3990 DAG.getConstant(0, DL, XLenVT)); 3991 return DAG.getBitcast(Op.getValueType(), Slidedown); 3992 } 3993 3994 unsigned SubRegIdx, RemIdx; 3995 std::tie(SubRegIdx, RemIdx) = 3996 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( 3997 VecVT, SubVecVT, OrigIdx, TRI); 3998 3999 // If the Idx has been completely eliminated then this is a subvector extract 4000 // which naturally aligns to a vector register. These can easily be handled 4001 // using subregister manipulation. 4002 if (RemIdx == 0) 4003 return Op; 4004 4005 // Else we must shift our vector register directly to extract the subvector. 4006 // Do this using VSLIDEDOWN. 4007 4008 // If the vector type is an LMUL-group type, extract a subvector equal to the 4009 // nearest full vector register type. This should resolve to a EXTRACT_SUBREG 4010 // instruction. 4011 MVT InterSubVT = VecVT; 4012 if (VecVT.bitsGT(getLMUL1VT(VecVT))) { 4013 InterSubVT = getLMUL1VT(VecVT); 4014 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec, 4015 DAG.getConstant(OrigIdx - RemIdx, DL, XLenVT)); 4016 } 4017 4018 // Slide this vector register down by the desired number of elements in order 4019 // to place the desired subvector starting at element 0. 4020 SDValue SlidedownAmt = DAG.getConstant(RemIdx, DL, XLenVT); 4021 // For scalable vectors this must be further multiplied by vscale. 4022 SlidedownAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlidedownAmt); 4023 4024 SDValue Mask, VL; 4025 std::tie(Mask, VL) = getDefaultScalableVLOps(InterSubVT, DL, DAG, Subtarget); 4026 SDValue Slidedown = 4027 DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, InterSubVT, 4028 DAG.getUNDEF(InterSubVT), Vec, SlidedownAmt, Mask, VL); 4029 4030 // Now the vector is in the right position, extract our final subvector. This 4031 // should resolve to a COPY. 4032 Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown, 4033 DAG.getConstant(0, DL, XLenVT)); 4034 4035 // We might have bitcast from a mask type: cast back to the original type if 4036 // required. 4037 return DAG.getBitcast(Op.getSimpleValueType(), Slidedown); 4038 } 4039 4040 // Lower step_vector to the vid instruction. Any non-identity step value must 4041 // be accounted for my manual expansion. 4042 SDValue RISCVTargetLowering::lowerSTEP_VECTOR(SDValue Op, 4043 SelectionDAG &DAG) const { 4044 SDLoc DL(Op); 4045 MVT VT = Op.getSimpleValueType(); 4046 MVT XLenVT = Subtarget.getXLenVT(); 4047 SDValue Mask, VL; 4048 std::tie(Mask, VL) = getDefaultScalableVLOps(VT, DL, DAG, Subtarget); 4049 SDValue StepVec = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL); 4050 uint64_t StepValImm = Op.getConstantOperandVal(0); 4051 if (StepValImm != 1) { 4052 assert(Op.getOperand(0).getValueType() == XLenVT && 4053 "Unexpected step value type"); 4054 if (isPowerOf2_64(StepValImm)) { 4055 SDValue StepVal = 4056 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, 4057 DAG.getConstant(Log2_64(StepValImm), DL, XLenVT)); 4058 StepVec = DAG.getNode(ISD::SHL, DL, VT, StepVec, StepVal); 4059 } else { 4060 SDValue StepVal = 4061 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Op.getOperand(0)); 4062 StepVec = DAG.getNode(ISD::MUL, DL, VT, StepVec, StepVal); 4063 } 4064 } 4065 return StepVec; 4066 } 4067 4068 // Implement vector_reverse using vrgather.vv with indices determined by 4069 // subtracting the id of each element from (VLMAX-1). This will convert 4070 // the indices like so: 4071 // (0, 1,..., VLMAX-2, VLMAX-1) -> (VLMAX-1, VLMAX-2,..., 1, 0). 4072 // TODO: This code assumes VLMAX <= 65536 for LMUL=8 SEW=16. 4073 SDValue RISCVTargetLowering::lowerVECTOR_REVERSE(SDValue Op, 4074 SelectionDAG &DAG) const { 4075 SDLoc DL(Op); 4076 MVT VecVT = Op.getSimpleValueType(); 4077 unsigned EltSize = VecVT.getScalarSizeInBits(); 4078 unsigned MinSize = VecVT.getSizeInBits().getKnownMinValue(); 4079 4080 unsigned MaxVLMAX = 0; 4081 unsigned VectorBitsMax = Subtarget.getMaxRVVVectorSizeInBits(); 4082 if (VectorBitsMax != 0) 4083 MaxVLMAX = ((VectorBitsMax / EltSize) * MinSize) / RISCV::RVVBitsPerBlock; 4084 4085 unsigned GatherOpc = RISCVISD::VRGATHER_VV_VL; 4086 MVT IntVT = VecVT.changeVectorElementTypeToInteger(); 4087 4088 // If this is SEW=8 and VLMAX is unknown or more than 256, we need 4089 // to use vrgatherei16.vv. 4090 // TODO: It's also possible to use vrgatherei16.vv for other types to 4091 // decrease register width for the index calculation. 4092 if ((MaxVLMAX == 0 || MaxVLMAX > 256) && EltSize == 8) { 4093 // If this is LMUL=8, we have to split before can use vrgatherei16.vv. 4094 // Reverse each half, then reassemble them in reverse order. 4095 // NOTE: It's also possible that after splitting that VLMAX no longer 4096 // requires vrgatherei16.vv. 4097 if (MinSize == (8 * RISCV::RVVBitsPerBlock)) { 4098 SDValue Lo, Hi; 4099 std::tie(Lo, Hi) = DAG.SplitVectorOperand(Op.getNode(), 0); 4100 EVT LoVT, HiVT; 4101 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VecVT); 4102 Lo = DAG.getNode(ISD::VECTOR_REVERSE, DL, LoVT, Lo); 4103 Hi = DAG.getNode(ISD::VECTOR_REVERSE, DL, HiVT, Hi); 4104 // Reassemble the low and high pieces reversed. 4105 // FIXME: This is a CONCAT_VECTORS. 4106 SDValue Res = 4107 DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, DAG.getUNDEF(VecVT), Hi, 4108 DAG.getIntPtrConstant(0, DL)); 4109 return DAG.getNode( 4110 ISD::INSERT_SUBVECTOR, DL, VecVT, Res, Lo, 4111 DAG.getIntPtrConstant(LoVT.getVectorMinNumElements(), DL)); 4112 } 4113 4114 // Just promote the int type to i16 which will double the LMUL. 4115 IntVT = MVT::getVectorVT(MVT::i16, VecVT.getVectorElementCount()); 4116 GatherOpc = RISCVISD::VRGATHEREI16_VV_VL; 4117 } 4118 4119 MVT XLenVT = Subtarget.getXLenVT(); 4120 SDValue Mask, VL; 4121 std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget); 4122 4123 // Calculate VLMAX-1 for the desired SEW. 4124 unsigned MinElts = VecVT.getVectorMinNumElements(); 4125 SDValue VLMax = DAG.getNode(ISD::VSCALE, DL, XLenVT, 4126 DAG.getConstant(MinElts, DL, XLenVT)); 4127 SDValue VLMinus1 = 4128 DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, DAG.getConstant(1, DL, XLenVT)); 4129 4130 // Splat VLMAX-1 taking care to handle SEW==64 on RV32. 4131 bool IsRV32E64 = 4132 !Subtarget.is64Bit() && IntVT.getVectorElementType() == MVT::i64; 4133 SDValue SplatVL; 4134 if (!IsRV32E64) 4135 SplatVL = DAG.getSplatVector(IntVT, DL, VLMinus1); 4136 else 4137 SplatVL = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, IntVT, VLMinus1); 4138 4139 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, IntVT, Mask, VL); 4140 SDValue Indices = 4141 DAG.getNode(RISCVISD::SUB_VL, DL, IntVT, SplatVL, VID, Mask, VL); 4142 4143 return DAG.getNode(GatherOpc, DL, VecVT, Op.getOperand(0), Indices, Mask, VL); 4144 } 4145 4146 SDValue 4147 RISCVTargetLowering::lowerFixedLengthVectorLoadToRVV(SDValue Op, 4148 SelectionDAG &DAG) const { 4149 SDLoc DL(Op); 4150 auto *Load = cast<LoadSDNode>(Op); 4151 4152 assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 4153 Load->getMemoryVT(), 4154 *Load->getMemOperand()) && 4155 "Expecting a correctly-aligned load"); 4156 4157 MVT VT = Op.getSimpleValueType(); 4158 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4159 4160 SDValue VL = 4161 DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT()); 4162 4163 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 4164 SDValue NewLoad = DAG.getMemIntrinsicNode( 4165 RISCVISD::VLE_VL, DL, VTs, {Load->getChain(), Load->getBasePtr(), VL}, 4166 Load->getMemoryVT(), Load->getMemOperand()); 4167 4168 SDValue Result = convertFromScalableVector(VT, NewLoad, DAG, Subtarget); 4169 return DAG.getMergeValues({Result, Load->getChain()}, DL); 4170 } 4171 4172 SDValue 4173 RISCVTargetLowering::lowerFixedLengthVectorStoreToRVV(SDValue Op, 4174 SelectionDAG &DAG) const { 4175 SDLoc DL(Op); 4176 auto *Store = cast<StoreSDNode>(Op); 4177 4178 assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 4179 Store->getMemoryVT(), 4180 *Store->getMemOperand()) && 4181 "Expecting a correctly-aligned store"); 4182 4183 SDValue StoreVal = Store->getValue(); 4184 MVT VT = StoreVal.getSimpleValueType(); 4185 4186 // If the size less than a byte, we need to pad with zeros to make a byte. 4187 if (VT.getVectorElementType() == MVT::i1 && VT.getVectorNumElements() < 8) { 4188 VT = MVT::v8i1; 4189 StoreVal = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, 4190 DAG.getConstant(0, DL, VT), StoreVal, 4191 DAG.getIntPtrConstant(0, DL)); 4192 } 4193 4194 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4195 4196 SDValue VL = 4197 DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT()); 4198 4199 SDValue NewValue = 4200 convertToScalableVector(ContainerVT, StoreVal, DAG, Subtarget); 4201 return DAG.getMemIntrinsicNode( 4202 RISCVISD::VSE_VL, DL, DAG.getVTList(MVT::Other), 4203 {Store->getChain(), NewValue, Store->getBasePtr(), VL}, 4204 Store->getMemoryVT(), Store->getMemOperand()); 4205 } 4206 4207 SDValue RISCVTargetLowering::lowerMLOAD(SDValue Op, SelectionDAG &DAG) const { 4208 auto *Load = cast<MaskedLoadSDNode>(Op); 4209 4210 SDLoc DL(Op); 4211 MVT VT = Op.getSimpleValueType(); 4212 MVT XLenVT = Subtarget.getXLenVT(); 4213 4214 SDValue Mask = Load->getMask(); 4215 SDValue PassThru = Load->getPassThru(); 4216 SDValue VL; 4217 4218 MVT ContainerVT = VT; 4219 if (VT.isFixedLengthVector()) { 4220 ContainerVT = getContainerForFixedLengthVector(VT); 4221 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4222 4223 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 4224 PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget); 4225 VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT); 4226 } else 4227 VL = DAG.getRegister(RISCV::X0, XLenVT); 4228 4229 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 4230 SDValue IntID = DAG.getTargetConstant(Intrinsic::riscv_vle_mask, DL, XLenVT); 4231 SDValue Ops[] = {Load->getChain(), IntID, PassThru, 4232 Load->getBasePtr(), Mask, VL}; 4233 SDValue Result = 4234 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, 4235 Load->getMemoryVT(), Load->getMemOperand()); 4236 SDValue Chain = Result.getValue(1); 4237 4238 if (VT.isFixedLengthVector()) 4239 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 4240 4241 return DAG.getMergeValues({Result, Chain}, DL); 4242 } 4243 4244 SDValue RISCVTargetLowering::lowerMSTORE(SDValue Op, SelectionDAG &DAG) const { 4245 auto *Store = cast<MaskedStoreSDNode>(Op); 4246 4247 SDLoc DL(Op); 4248 SDValue Val = Store->getValue(); 4249 SDValue Mask = Store->getMask(); 4250 MVT VT = Val.getSimpleValueType(); 4251 MVT XLenVT = Subtarget.getXLenVT(); 4252 SDValue VL; 4253 4254 MVT ContainerVT = VT; 4255 if (VT.isFixedLengthVector()) { 4256 ContainerVT = getContainerForFixedLengthVector(VT); 4257 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4258 4259 Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget); 4260 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 4261 VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT); 4262 } else 4263 VL = DAG.getRegister(RISCV::X0, XLenVT); 4264 4265 SDValue IntID = DAG.getTargetConstant(Intrinsic::riscv_vse_mask, DL, XLenVT); 4266 return DAG.getMemIntrinsicNode( 4267 ISD::INTRINSIC_VOID, DL, DAG.getVTList(MVT::Other), 4268 {Store->getChain(), IntID, Val, Store->getBasePtr(), Mask, VL}, 4269 Store->getMemoryVT(), Store->getMemOperand()); 4270 } 4271 4272 SDValue 4273 RISCVTargetLowering::lowerFixedLengthVectorSetccToRVV(SDValue Op, 4274 SelectionDAG &DAG) const { 4275 MVT InVT = Op.getOperand(0).getSimpleValueType(); 4276 MVT ContainerVT = getContainerForFixedLengthVector(InVT); 4277 4278 MVT VT = Op.getSimpleValueType(); 4279 4280 SDValue Op1 = 4281 convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget); 4282 SDValue Op2 = 4283 convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget); 4284 4285 SDLoc DL(Op); 4286 SDValue VL = 4287 DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT()); 4288 4289 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4290 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 4291 4292 SDValue Cmp = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, Op1, Op2, 4293 Op.getOperand(2), Mask, VL); 4294 4295 return convertFromScalableVector(VT, Cmp, DAG, Subtarget); 4296 } 4297 4298 SDValue RISCVTargetLowering::lowerFixedLengthVectorLogicOpToRVV( 4299 SDValue Op, SelectionDAG &DAG, unsigned MaskOpc, unsigned VecOpc) const { 4300 MVT VT = Op.getSimpleValueType(); 4301 4302 if (VT.getVectorElementType() == MVT::i1) 4303 return lowerToScalableOp(Op, DAG, MaskOpc, /*HasMask*/ false); 4304 4305 return lowerToScalableOp(Op, DAG, VecOpc, /*HasMask*/ true); 4306 } 4307 4308 SDValue 4309 RISCVTargetLowering::lowerFixedLengthVectorShiftToRVV(SDValue Op, 4310 SelectionDAG &DAG) const { 4311 unsigned Opc; 4312 switch (Op.getOpcode()) { 4313 default: llvm_unreachable("Unexpected opcode!"); 4314 case ISD::SHL: Opc = RISCVISD::SHL_VL; break; 4315 case ISD::SRA: Opc = RISCVISD::SRA_VL; break; 4316 case ISD::SRL: Opc = RISCVISD::SRL_VL; break; 4317 } 4318 4319 return lowerToScalableOp(Op, DAG, Opc); 4320 } 4321 4322 // Lower vector ABS to smax(X, sub(0, X)). 4323 SDValue RISCVTargetLowering::lowerABS(SDValue Op, SelectionDAG &DAG) const { 4324 SDLoc DL(Op); 4325 MVT VT = Op.getSimpleValueType(); 4326 SDValue X = Op.getOperand(0); 4327 4328 assert(VT.isFixedLengthVector() && "Unexpected type"); 4329 4330 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4331 X = convertToScalableVector(ContainerVT, X, DAG, Subtarget); 4332 4333 SDValue Mask, VL; 4334 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 4335 4336 SDValue SplatZero = 4337 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, 4338 DAG.getConstant(0, DL, Subtarget.getXLenVT())); 4339 SDValue NegX = 4340 DAG.getNode(RISCVISD::SUB_VL, DL, ContainerVT, SplatZero, X, Mask, VL); 4341 SDValue Max = 4342 DAG.getNode(RISCVISD::SMAX_VL, DL, ContainerVT, X, NegX, Mask, VL); 4343 4344 return convertFromScalableVector(VT, Max, DAG, Subtarget); 4345 } 4346 4347 SDValue RISCVTargetLowering::lowerFixedLengthVectorFCOPYSIGNToRVV( 4348 SDValue Op, SelectionDAG &DAG) const { 4349 SDLoc DL(Op); 4350 MVT VT = Op.getSimpleValueType(); 4351 SDValue Mag = Op.getOperand(0); 4352 SDValue Sign = Op.getOperand(1); 4353 assert(Mag.getValueType() == Sign.getValueType() && 4354 "Can only handle COPYSIGN with matching types."); 4355 4356 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4357 Mag = convertToScalableVector(ContainerVT, Mag, DAG, Subtarget); 4358 Sign = convertToScalableVector(ContainerVT, Sign, DAG, Subtarget); 4359 4360 SDValue Mask, VL; 4361 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 4362 4363 SDValue CopySign = 4364 DAG.getNode(RISCVISD::FCOPYSIGN_VL, DL, ContainerVT, Mag, Sign, Mask, VL); 4365 4366 return convertFromScalableVector(VT, CopySign, DAG, Subtarget); 4367 } 4368 4369 SDValue RISCVTargetLowering::lowerFixedLengthVectorSelectToRVV( 4370 SDValue Op, SelectionDAG &DAG) const { 4371 MVT VT = Op.getSimpleValueType(); 4372 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4373 4374 MVT I1ContainerVT = 4375 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4376 4377 SDValue CC = 4378 convertToScalableVector(I1ContainerVT, Op.getOperand(0), DAG, Subtarget); 4379 SDValue Op1 = 4380 convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget); 4381 SDValue Op2 = 4382 convertToScalableVector(ContainerVT, Op.getOperand(2), DAG, Subtarget); 4383 4384 SDLoc DL(Op); 4385 SDValue Mask, VL; 4386 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 4387 4388 SDValue Select = 4389 DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC, Op1, Op2, VL); 4390 4391 return convertFromScalableVector(VT, Select, DAG, Subtarget); 4392 } 4393 4394 SDValue RISCVTargetLowering::lowerToScalableOp(SDValue Op, SelectionDAG &DAG, 4395 unsigned NewOpc, 4396 bool HasMask) const { 4397 MVT VT = Op.getSimpleValueType(); 4398 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4399 4400 // Create list of operands by converting existing ones to scalable types. 4401 SmallVector<SDValue, 6> Ops; 4402 for (const SDValue &V : Op->op_values()) { 4403 assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!"); 4404 4405 // Pass through non-vector operands. 4406 if (!V.getValueType().isVector()) { 4407 Ops.push_back(V); 4408 continue; 4409 } 4410 4411 // "cast" fixed length vector to a scalable vector. 4412 assert(useRVVForFixedLengthVectorVT(V.getSimpleValueType()) && 4413 "Only fixed length vectors are supported!"); 4414 Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget)); 4415 } 4416 4417 SDLoc DL(Op); 4418 SDValue Mask, VL; 4419 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 4420 if (HasMask) 4421 Ops.push_back(Mask); 4422 Ops.push_back(VL); 4423 4424 SDValue ScalableRes = DAG.getNode(NewOpc, DL, ContainerVT, Ops); 4425 return convertFromScalableVector(VT, ScalableRes, DAG, Subtarget); 4426 } 4427 4428 // Lower a VP_* ISD node to the corresponding RISCVISD::*_VL node: 4429 // * Operands of each node are assumed to be in the same order. 4430 // * The EVL operand is promoted from i32 to i64 on RV64. 4431 // * Fixed-length vectors are converted to their scalable-vector container 4432 // types. 4433 SDValue RISCVTargetLowering::lowerVPOp(SDValue Op, SelectionDAG &DAG, 4434 unsigned RISCVISDOpc) const { 4435 SDLoc DL(Op); 4436 MVT VT = Op.getSimpleValueType(); 4437 SmallVector<SDValue, 4> Ops; 4438 4439 for (const auto &OpIdx : enumerate(Op->ops())) { 4440 SDValue V = OpIdx.value(); 4441 assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!"); 4442 // Pass through operands which aren't fixed-length vectors. 4443 if (!V.getValueType().isFixedLengthVector()) { 4444 Ops.push_back(V); 4445 continue; 4446 } 4447 // "cast" fixed length vector to a scalable vector. 4448 MVT OpVT = V.getSimpleValueType(); 4449 MVT ContainerVT = getContainerForFixedLengthVector(OpVT); 4450 assert(useRVVForFixedLengthVectorVT(OpVT) && 4451 "Only fixed length vectors are supported!"); 4452 Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget)); 4453 } 4454 4455 if (!VT.isFixedLengthVector()) 4456 return DAG.getNode(RISCVISDOpc, DL, VT, Ops); 4457 4458 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4459 4460 SDValue VPOp = DAG.getNode(RISCVISDOpc, DL, ContainerVT, Ops); 4461 4462 return convertFromScalableVector(VT, VPOp, DAG, Subtarget); 4463 } 4464 4465 // Custom lower MGATHER to a legalized form for RVV. It will then be matched to 4466 // a RVV indexed load. The RVV indexed load instructions only support the 4467 // "unsigned unscaled" addressing mode; indices are implicitly zero-extended or 4468 // truncated to XLEN and are treated as byte offsets. Any signed or scaled 4469 // indexing is extended to the XLEN value type and scaled accordingly. 4470 SDValue RISCVTargetLowering::lowerMGATHER(SDValue Op, SelectionDAG &DAG) const { 4471 auto *MGN = cast<MaskedGatherSDNode>(Op.getNode()); 4472 SDLoc DL(Op); 4473 4474 SDValue Index = MGN->getIndex(); 4475 SDValue Mask = MGN->getMask(); 4476 SDValue PassThru = MGN->getPassThru(); 4477 4478 MVT VT = Op.getSimpleValueType(); 4479 MVT IndexVT = Index.getSimpleValueType(); 4480 MVT XLenVT = Subtarget.getXLenVT(); 4481 4482 assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() && 4483 "Unexpected VTs!"); 4484 assert(MGN->getBasePtr().getSimpleValueType() == XLenVT && 4485 "Unexpected pointer type"); 4486 // Targets have to explicitly opt-in for extending vector loads. 4487 assert(MGN->getExtensionType() == ISD::NON_EXTLOAD && 4488 "Unexpected extending MGATHER"); 4489 4490 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 4491 // the selection of the masked intrinsics doesn't do this for us. 4492 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 4493 4494 SDValue VL; 4495 MVT ContainerVT = VT; 4496 if (VT.isFixedLengthVector()) { 4497 // We need to use the larger of the result and index type to determine the 4498 // scalable type to use so we don't increase LMUL for any operand/result. 4499 if (VT.bitsGE(IndexVT)) { 4500 ContainerVT = getContainerForFixedLengthVector(VT); 4501 IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(), 4502 ContainerVT.getVectorElementCount()); 4503 } else { 4504 IndexVT = getContainerForFixedLengthVector(IndexVT); 4505 ContainerVT = MVT::getVectorVT(ContainerVT.getVectorElementType(), 4506 IndexVT.getVectorElementCount()); 4507 } 4508 4509 Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget); 4510 4511 if (!IsUnmasked) { 4512 MVT MaskVT = 4513 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4514 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 4515 PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget); 4516 } 4517 4518 VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT); 4519 } else 4520 VL = DAG.getRegister(RISCV::X0, XLenVT); 4521 4522 unsigned IntID = 4523 IsUnmasked ? Intrinsic::riscv_vloxei : Intrinsic::riscv_vloxei_mask; 4524 SmallVector<SDValue, 8> Ops{MGN->getChain(), 4525 DAG.getTargetConstant(IntID, DL, XLenVT)}; 4526 if (!IsUnmasked) 4527 Ops.push_back(PassThru); 4528 Ops.push_back(MGN->getBasePtr()); 4529 Ops.push_back(Index); 4530 if (!IsUnmasked) 4531 Ops.push_back(Mask); 4532 Ops.push_back(VL); 4533 4534 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 4535 SDValue Result = 4536 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, 4537 MGN->getMemoryVT(), MGN->getMemOperand()); 4538 SDValue Chain = Result.getValue(1); 4539 4540 if (VT.isFixedLengthVector()) 4541 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 4542 4543 return DAG.getMergeValues({Result, Chain}, DL); 4544 } 4545 4546 // Custom lower MSCATTER to a legalized form for RVV. It will then be matched to 4547 // a RVV indexed store. The RVV indexed store instructions only support the 4548 // "unsigned unscaled" addressing mode; indices are implicitly zero-extended or 4549 // truncated to XLEN and are treated as byte offsets. Any signed or scaled 4550 // indexing is extended to the XLEN value type and scaled accordingly. 4551 SDValue RISCVTargetLowering::lowerMSCATTER(SDValue Op, 4552 SelectionDAG &DAG) const { 4553 auto *MSN = cast<MaskedScatterSDNode>(Op.getNode()); 4554 SDLoc DL(Op); 4555 SDValue Index = MSN->getIndex(); 4556 SDValue Mask = MSN->getMask(); 4557 SDValue Val = MSN->getValue(); 4558 4559 MVT VT = Val.getSimpleValueType(); 4560 MVT IndexVT = Index.getSimpleValueType(); 4561 MVT XLenVT = Subtarget.getXLenVT(); 4562 4563 assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() && 4564 "Unexpected VTs!"); 4565 assert(MSN->getBasePtr().getSimpleValueType() == XLenVT && 4566 "Unexpected pointer type"); 4567 // Targets have to explicitly opt-in for extending vector loads and 4568 // truncating vector stores. 4569 assert(!MSN->isTruncatingStore() && "Unexpected extending MSCATTER"); 4570 4571 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 4572 // the selection of the masked intrinsics doesn't do this for us. 4573 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 4574 4575 SDValue VL; 4576 if (VT.isFixedLengthVector()) { 4577 // We need to use the larger of the value and index type to determine the 4578 // scalable type to use so we don't increase LMUL for any operand/result. 4579 MVT ContainerVT; 4580 if (VT.bitsGE(IndexVT)) { 4581 ContainerVT = getContainerForFixedLengthVector(VT); 4582 IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(), 4583 ContainerVT.getVectorElementCount()); 4584 } else { 4585 IndexVT = getContainerForFixedLengthVector(IndexVT); 4586 ContainerVT = MVT::getVectorVT(VT.getVectorElementType(), 4587 IndexVT.getVectorElementCount()); 4588 } 4589 4590 Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget); 4591 Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget); 4592 4593 if (!IsUnmasked) { 4594 MVT MaskVT = 4595 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4596 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 4597 } 4598 4599 VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT); 4600 } else 4601 VL = DAG.getRegister(RISCV::X0, XLenVT); 4602 4603 unsigned IntID = 4604 IsUnmasked ? Intrinsic::riscv_vsoxei : Intrinsic::riscv_vsoxei_mask; 4605 SmallVector<SDValue, 8> Ops{MSN->getChain(), 4606 DAG.getTargetConstant(IntID, DL, XLenVT)}; 4607 Ops.push_back(Val); 4608 Ops.push_back(MSN->getBasePtr()); 4609 Ops.push_back(Index); 4610 if (!IsUnmasked) 4611 Ops.push_back(Mask); 4612 Ops.push_back(VL); 4613 4614 return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, MSN->getVTList(), Ops, 4615 MSN->getMemoryVT(), MSN->getMemOperand()); 4616 } 4617 4618 SDValue RISCVTargetLowering::lowerGET_ROUNDING(SDValue Op, 4619 SelectionDAG &DAG) const { 4620 const MVT XLenVT = Subtarget.getXLenVT(); 4621 SDLoc DL(Op); 4622 SDValue Chain = Op->getOperand(0); 4623 SDValue SysRegNo = DAG.getConstant( 4624 RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT); 4625 SDVTList VTs = DAG.getVTList(XLenVT, MVT::Other); 4626 SDValue RM = DAG.getNode(RISCVISD::READ_CSR, DL, VTs, Chain, SysRegNo); 4627 4628 // Encoding used for rounding mode in RISCV differs from that used in 4629 // FLT_ROUNDS. To convert it the RISCV rounding mode is used as an index in a 4630 // table, which consists of a sequence of 4-bit fields, each representing 4631 // corresponding FLT_ROUNDS mode. 4632 static const int Table = 4633 (int(RoundingMode::NearestTiesToEven) << 4 * RISCVFPRndMode::RNE) | 4634 (int(RoundingMode::TowardZero) << 4 * RISCVFPRndMode::RTZ) | 4635 (int(RoundingMode::TowardNegative) << 4 * RISCVFPRndMode::RDN) | 4636 (int(RoundingMode::TowardPositive) << 4 * RISCVFPRndMode::RUP) | 4637 (int(RoundingMode::NearestTiesToAway) << 4 * RISCVFPRndMode::RMM); 4638 4639 SDValue Shift = 4640 DAG.getNode(ISD::SHL, DL, XLenVT, RM, DAG.getConstant(2, DL, XLenVT)); 4641 SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT, 4642 DAG.getConstant(Table, DL, XLenVT), Shift); 4643 SDValue Masked = DAG.getNode(ISD::AND, DL, XLenVT, Shifted, 4644 DAG.getConstant(7, DL, XLenVT)); 4645 4646 return DAG.getMergeValues({Masked, Chain}, DL); 4647 } 4648 4649 SDValue RISCVTargetLowering::lowerSET_ROUNDING(SDValue Op, 4650 SelectionDAG &DAG) const { 4651 const MVT XLenVT = Subtarget.getXLenVT(); 4652 SDLoc DL(Op); 4653 SDValue Chain = Op->getOperand(0); 4654 SDValue RMValue = Op->getOperand(1); 4655 SDValue SysRegNo = DAG.getConstant( 4656 RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT); 4657 4658 // Encoding used for rounding mode in RISCV differs from that used in 4659 // FLT_ROUNDS. To convert it the C rounding mode is used as an index in 4660 // a table, which consists of a sequence of 4-bit fields, each representing 4661 // corresponding RISCV mode. 4662 static const unsigned Table = 4663 (RISCVFPRndMode::RNE << 4 * int(RoundingMode::NearestTiesToEven)) | 4664 (RISCVFPRndMode::RTZ << 4 * int(RoundingMode::TowardZero)) | 4665 (RISCVFPRndMode::RDN << 4 * int(RoundingMode::TowardNegative)) | 4666 (RISCVFPRndMode::RUP << 4 * int(RoundingMode::TowardPositive)) | 4667 (RISCVFPRndMode::RMM << 4 * int(RoundingMode::NearestTiesToAway)); 4668 4669 SDValue Shift = DAG.getNode(ISD::SHL, DL, XLenVT, RMValue, 4670 DAG.getConstant(2, DL, XLenVT)); 4671 SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT, 4672 DAG.getConstant(Table, DL, XLenVT), Shift); 4673 RMValue = DAG.getNode(ISD::AND, DL, XLenVT, Shifted, 4674 DAG.getConstant(0x7, DL, XLenVT)); 4675 return DAG.getNode(RISCVISD::WRITE_CSR, DL, MVT::Other, Chain, SysRegNo, 4676 RMValue); 4677 } 4678 4679 // Returns the opcode of the target-specific SDNode that implements the 32-bit 4680 // form of the given Opcode. 4681 static RISCVISD::NodeType getRISCVWOpcode(unsigned Opcode) { 4682 switch (Opcode) { 4683 default: 4684 llvm_unreachable("Unexpected opcode"); 4685 case ISD::SHL: 4686 return RISCVISD::SLLW; 4687 case ISD::SRA: 4688 return RISCVISD::SRAW; 4689 case ISD::SRL: 4690 return RISCVISD::SRLW; 4691 case ISD::SDIV: 4692 return RISCVISD::DIVW; 4693 case ISD::UDIV: 4694 return RISCVISD::DIVUW; 4695 case ISD::UREM: 4696 return RISCVISD::REMUW; 4697 case ISD::ROTL: 4698 return RISCVISD::ROLW; 4699 case ISD::ROTR: 4700 return RISCVISD::RORW; 4701 case RISCVISD::GREV: 4702 return RISCVISD::GREVW; 4703 case RISCVISD::GORC: 4704 return RISCVISD::GORCW; 4705 } 4706 } 4707 4708 // Converts the given 32-bit operation to a target-specific SelectionDAG node. 4709 // Because i32 isn't a legal type for RV64, these operations would otherwise 4710 // be promoted to i64, making it difficult to select the SLLW/DIVUW/.../*W 4711 // later one because the fact the operation was originally of type i32 is 4712 // lost. 4713 static SDValue customLegalizeToWOp(SDNode *N, SelectionDAG &DAG, 4714 unsigned ExtOpc = ISD::ANY_EXTEND) { 4715 SDLoc DL(N); 4716 RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode()); 4717 SDValue NewOp0 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(0)); 4718 SDValue NewOp1 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(1)); 4719 SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1); 4720 // ReplaceNodeResults requires we maintain the same type for the return value. 4721 return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewRes); 4722 } 4723 4724 // Converts the given 32-bit operation to a i64 operation with signed extension 4725 // semantic to reduce the signed extension instructions. 4726 static SDValue customLegalizeToWOpWithSExt(SDNode *N, SelectionDAG &DAG) { 4727 SDLoc DL(N); 4728 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 4729 SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 4730 SDValue NewWOp = DAG.getNode(N->getOpcode(), DL, MVT::i64, NewOp0, NewOp1); 4731 SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp, 4732 DAG.getValueType(MVT::i32)); 4733 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes); 4734 } 4735 4736 void RISCVTargetLowering::ReplaceNodeResults(SDNode *N, 4737 SmallVectorImpl<SDValue> &Results, 4738 SelectionDAG &DAG) const { 4739 SDLoc DL(N); 4740 switch (N->getOpcode()) { 4741 default: 4742 llvm_unreachable("Don't know how to custom type legalize this operation!"); 4743 case ISD::STRICT_FP_TO_SINT: 4744 case ISD::STRICT_FP_TO_UINT: 4745 case ISD::FP_TO_SINT: 4746 case ISD::FP_TO_UINT: { 4747 bool IsStrict = N->isStrictFPOpcode(); 4748 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 4749 "Unexpected custom legalisation"); 4750 SDValue Op0 = IsStrict ? N->getOperand(1) : N->getOperand(0); 4751 // If the FP type needs to be softened, emit a library call using the 'si' 4752 // version. If we left it to default legalization we'd end up with 'di'. If 4753 // the FP type doesn't need to be softened just let generic type 4754 // legalization promote the result type. 4755 if (getTypeAction(*DAG.getContext(), Op0.getValueType()) != 4756 TargetLowering::TypeSoftenFloat) 4757 return; 4758 RTLIB::Libcall LC; 4759 if (N->getOpcode() == ISD::FP_TO_SINT || 4760 N->getOpcode() == ISD::STRICT_FP_TO_SINT) 4761 LC = RTLIB::getFPTOSINT(Op0.getValueType(), N->getValueType(0)); 4762 else 4763 LC = RTLIB::getFPTOUINT(Op0.getValueType(), N->getValueType(0)); 4764 MakeLibCallOptions CallOptions; 4765 EVT OpVT = Op0.getValueType(); 4766 CallOptions.setTypeListBeforeSoften(OpVT, N->getValueType(0), true); 4767 SDValue Chain = IsStrict ? N->getOperand(0) : SDValue(); 4768 SDValue Result; 4769 std::tie(Result, Chain) = 4770 makeLibCall(DAG, LC, N->getValueType(0), Op0, CallOptions, DL, Chain); 4771 Results.push_back(Result); 4772 if (IsStrict) 4773 Results.push_back(Chain); 4774 break; 4775 } 4776 case ISD::READCYCLECOUNTER: { 4777 assert(!Subtarget.is64Bit() && 4778 "READCYCLECOUNTER only has custom type legalization on riscv32"); 4779 4780 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other); 4781 SDValue RCW = 4782 DAG.getNode(RISCVISD::READ_CYCLE_WIDE, DL, VTs, N->getOperand(0)); 4783 4784 Results.push_back( 4785 DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, RCW, RCW.getValue(1))); 4786 Results.push_back(RCW.getValue(2)); 4787 break; 4788 } 4789 case ISD::MUL: { 4790 unsigned Size = N->getSimpleValueType(0).getSizeInBits(); 4791 unsigned XLen = Subtarget.getXLen(); 4792 // This multiply needs to be expanded, try to use MULHSU+MUL if possible. 4793 if (Size > XLen) { 4794 assert(Size == (XLen * 2) && "Unexpected custom legalisation"); 4795 SDValue LHS = N->getOperand(0); 4796 SDValue RHS = N->getOperand(1); 4797 APInt HighMask = APInt::getHighBitsSet(Size, XLen); 4798 4799 bool LHSIsU = DAG.MaskedValueIsZero(LHS, HighMask); 4800 bool RHSIsU = DAG.MaskedValueIsZero(RHS, HighMask); 4801 // We need exactly one side to be unsigned. 4802 if (LHSIsU == RHSIsU) 4803 return; 4804 4805 auto MakeMULPair = [&](SDValue S, SDValue U) { 4806 MVT XLenVT = Subtarget.getXLenVT(); 4807 S = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, S); 4808 U = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, U); 4809 SDValue Lo = DAG.getNode(ISD::MUL, DL, XLenVT, S, U); 4810 SDValue Hi = DAG.getNode(RISCVISD::MULHSU, DL, XLenVT, S, U); 4811 return DAG.getNode(ISD::BUILD_PAIR, DL, N->getValueType(0), Lo, Hi); 4812 }; 4813 4814 bool LHSIsS = DAG.ComputeNumSignBits(LHS) > XLen; 4815 bool RHSIsS = DAG.ComputeNumSignBits(RHS) > XLen; 4816 4817 // The other operand should be signed, but still prefer MULH when 4818 // possible. 4819 if (RHSIsU && LHSIsS && !RHSIsS) 4820 Results.push_back(MakeMULPair(LHS, RHS)); 4821 else if (LHSIsU && RHSIsS && !LHSIsS) 4822 Results.push_back(MakeMULPair(RHS, LHS)); 4823 4824 return; 4825 } 4826 LLVM_FALLTHROUGH; 4827 } 4828 case ISD::ADD: 4829 case ISD::SUB: 4830 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 4831 "Unexpected custom legalisation"); 4832 if (N->getOperand(1).getOpcode() == ISD::Constant) 4833 return; 4834 Results.push_back(customLegalizeToWOpWithSExt(N, DAG)); 4835 break; 4836 case ISD::SHL: 4837 case ISD::SRA: 4838 case ISD::SRL: 4839 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 4840 "Unexpected custom legalisation"); 4841 if (N->getOperand(1).getOpcode() == ISD::Constant) 4842 return; 4843 Results.push_back(customLegalizeToWOp(N, DAG)); 4844 break; 4845 case ISD::ROTL: 4846 case ISD::ROTR: 4847 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 4848 "Unexpected custom legalisation"); 4849 Results.push_back(customLegalizeToWOp(N, DAG)); 4850 break; 4851 case ISD::CTTZ: 4852 case ISD::CTTZ_ZERO_UNDEF: 4853 case ISD::CTLZ: 4854 case ISD::CTLZ_ZERO_UNDEF: { 4855 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 4856 "Unexpected custom legalisation"); 4857 4858 SDValue NewOp0 = 4859 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 4860 bool IsCTZ = 4861 N->getOpcode() == ISD::CTTZ || N->getOpcode() == ISD::CTTZ_ZERO_UNDEF; 4862 unsigned Opc = IsCTZ ? RISCVISD::CTZW : RISCVISD::CLZW; 4863 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp0); 4864 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 4865 return; 4866 } 4867 case ISD::SDIV: 4868 case ISD::UDIV: 4869 case ISD::UREM: { 4870 MVT VT = N->getSimpleValueType(0); 4871 assert((VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) && 4872 Subtarget.is64Bit() && Subtarget.hasStdExtM() && 4873 "Unexpected custom legalisation"); 4874 if (N->getOperand(0).getOpcode() == ISD::Constant || 4875 N->getOperand(1).getOpcode() == ISD::Constant) 4876 return; 4877 4878 // If the input is i32, use ANY_EXTEND since the W instructions don't read 4879 // the upper 32 bits. For other types we need to sign or zero extend 4880 // based on the opcode. 4881 unsigned ExtOpc = ISD::ANY_EXTEND; 4882 if (VT != MVT::i32) 4883 ExtOpc = N->getOpcode() == ISD::SDIV ? ISD::SIGN_EXTEND 4884 : ISD::ZERO_EXTEND; 4885 4886 Results.push_back(customLegalizeToWOp(N, DAG, ExtOpc)); 4887 break; 4888 } 4889 case ISD::UADDO: 4890 case ISD::USUBO: { 4891 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 4892 "Unexpected custom legalisation"); 4893 bool IsAdd = N->getOpcode() == ISD::UADDO; 4894 // Create an ADDW or SUBW. 4895 SDValue LHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 4896 SDValue RHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 4897 SDValue Res = 4898 DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, DL, MVT::i64, LHS, RHS); 4899 Res = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Res, 4900 DAG.getValueType(MVT::i32)); 4901 4902 // Sign extend the LHS and perform an unsigned compare with the ADDW result. 4903 // Since the inputs are sign extended from i32, this is equivalent to 4904 // comparing the lower 32 bits. 4905 LHS = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0)); 4906 SDValue Overflow = DAG.getSetCC(DL, N->getValueType(1), Res, LHS, 4907 IsAdd ? ISD::SETULT : ISD::SETUGT); 4908 4909 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 4910 Results.push_back(Overflow); 4911 return; 4912 } 4913 case ISD::UADDSAT: 4914 case ISD::USUBSAT: { 4915 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 4916 "Unexpected custom legalisation"); 4917 if (Subtarget.hasStdExtZbb()) { 4918 // With Zbb we can sign extend and let LegalizeDAG use minu/maxu. Using 4919 // sign extend allows overflow of the lower 32 bits to be detected on 4920 // the promoted size. 4921 SDValue LHS = 4922 DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0)); 4923 SDValue RHS = 4924 DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(1)); 4925 SDValue Res = DAG.getNode(N->getOpcode(), DL, MVT::i64, LHS, RHS); 4926 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 4927 return; 4928 } 4929 4930 // Without Zbb, expand to UADDO/USUBO+select which will trigger our custom 4931 // promotion for UADDO/USUBO. 4932 Results.push_back(expandAddSubSat(N, DAG)); 4933 return; 4934 } 4935 case ISD::BITCAST: { 4936 EVT VT = N->getValueType(0); 4937 assert(VT.isInteger() && !VT.isVector() && "Unexpected VT!"); 4938 SDValue Op0 = N->getOperand(0); 4939 EVT Op0VT = Op0.getValueType(); 4940 MVT XLenVT = Subtarget.getXLenVT(); 4941 if (VT == MVT::i16 && Op0VT == MVT::f16 && Subtarget.hasStdExtZfh()) { 4942 SDValue FPConv = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, XLenVT, Op0); 4943 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FPConv)); 4944 } else if (VT == MVT::i32 && Op0VT == MVT::f32 && Subtarget.is64Bit() && 4945 Subtarget.hasStdExtF()) { 4946 SDValue FPConv = 4947 DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Op0); 4948 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, FPConv)); 4949 } else if (!VT.isVector() && Op0VT.isFixedLengthVector() && 4950 isTypeLegal(Op0VT)) { 4951 // Custom-legalize bitcasts from fixed-length vector types to illegal 4952 // scalar types in order to improve codegen. Bitcast the vector to a 4953 // one-element vector type whose element type is the same as the result 4954 // type, and extract the first element. 4955 LLVMContext &Context = *DAG.getContext(); 4956 SDValue BVec = DAG.getBitcast(EVT::getVectorVT(Context, VT, 1), Op0); 4957 Results.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec, 4958 DAG.getConstant(0, DL, XLenVT))); 4959 } 4960 break; 4961 } 4962 case RISCVISD::GREV: 4963 case RISCVISD::GORC: { 4964 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 4965 "Unexpected custom legalisation"); 4966 assert(isa<ConstantSDNode>(N->getOperand(1)) && "Expected constant"); 4967 // This is similar to customLegalizeToWOp, except that we pass the second 4968 // operand (a TargetConstant) straight through: it is already of type 4969 // XLenVT. 4970 RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode()); 4971 SDValue NewOp0 = 4972 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 4973 SDValue NewOp1 = 4974 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 4975 SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1); 4976 // ReplaceNodeResults requires we maintain the same type for the return 4977 // value. 4978 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes)); 4979 break; 4980 } 4981 case RISCVISD::SHFL: { 4982 // There is no SHFLIW instruction, but we can just promote the operation. 4983 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 4984 "Unexpected custom legalisation"); 4985 assert(isa<ConstantSDNode>(N->getOperand(1)) && "Expected constant"); 4986 SDValue NewOp0 = 4987 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 4988 SDValue NewOp1 = 4989 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 4990 SDValue NewRes = DAG.getNode(RISCVISD::SHFL, DL, MVT::i64, NewOp0, NewOp1); 4991 // ReplaceNodeResults requires we maintain the same type for the return 4992 // value. 4993 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes)); 4994 break; 4995 } 4996 case ISD::BSWAP: 4997 case ISD::BITREVERSE: { 4998 MVT VT = N->getSimpleValueType(0); 4999 MVT XLenVT = Subtarget.getXLenVT(); 5000 assert((VT == MVT::i8 || VT == MVT::i16 || 5001 (VT == MVT::i32 && Subtarget.is64Bit())) && 5002 Subtarget.hasStdExtZbp() && "Unexpected custom legalisation"); 5003 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, N->getOperand(0)); 5004 unsigned Imm = VT.getSizeInBits() - 1; 5005 // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits. 5006 if (N->getOpcode() == ISD::BSWAP) 5007 Imm &= ~0x7U; 5008 unsigned Opc = Subtarget.is64Bit() ? RISCVISD::GREVW : RISCVISD::GREV; 5009 SDValue GREVI = 5010 DAG.getNode(Opc, DL, XLenVT, NewOp0, DAG.getConstant(Imm, DL, XLenVT)); 5011 // ReplaceNodeResults requires we maintain the same type for the return 5012 // value. 5013 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, GREVI)); 5014 break; 5015 } 5016 case ISD::FSHL: 5017 case ISD::FSHR: { 5018 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5019 Subtarget.hasStdExtZbt() && "Unexpected custom legalisation"); 5020 SDValue NewOp0 = 5021 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 5022 SDValue NewOp1 = 5023 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 5024 SDValue NewOp2 = 5025 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 5026 // FSLW/FSRW take a 6 bit shift amount but i32 FSHL/FSHR only use 5 bits. 5027 // Mask the shift amount to 5 bits. 5028 NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2, 5029 DAG.getConstant(0x1f, DL, MVT::i64)); 5030 unsigned Opc = 5031 N->getOpcode() == ISD::FSHL ? RISCVISD::FSLW : RISCVISD::FSRW; 5032 SDValue NewOp = DAG.getNode(Opc, DL, MVT::i64, NewOp0, NewOp1, NewOp2); 5033 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewOp)); 5034 break; 5035 } 5036 case ISD::EXTRACT_VECTOR_ELT: { 5037 // Custom-legalize an EXTRACT_VECTOR_ELT where XLEN<SEW, as the SEW element 5038 // type is illegal (currently only vXi64 RV32). 5039 // With vmv.x.s, when SEW > XLEN, only the least-significant XLEN bits are 5040 // transferred to the destination register. We issue two of these from the 5041 // upper- and lower- halves of the SEW-bit vector element, slid down to the 5042 // first element. 5043 SDValue Vec = N->getOperand(0); 5044 SDValue Idx = N->getOperand(1); 5045 5046 // The vector type hasn't been legalized yet so we can't issue target 5047 // specific nodes if it needs legalization. 5048 // FIXME: We would manually legalize if it's important. 5049 if (!isTypeLegal(Vec.getValueType())) 5050 return; 5051 5052 MVT VecVT = Vec.getSimpleValueType(); 5053 5054 assert(!Subtarget.is64Bit() && N->getValueType(0) == MVT::i64 && 5055 VecVT.getVectorElementType() == MVT::i64 && 5056 "Unexpected EXTRACT_VECTOR_ELT legalization"); 5057 5058 // If this is a fixed vector, we need to convert it to a scalable vector. 5059 MVT ContainerVT = VecVT; 5060 if (VecVT.isFixedLengthVector()) { 5061 ContainerVT = getContainerForFixedLengthVector(VecVT); 5062 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 5063 } 5064 5065 MVT XLenVT = Subtarget.getXLenVT(); 5066 5067 // Use a VL of 1 to avoid processing more elements than we need. 5068 MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount()); 5069 SDValue VL = DAG.getConstant(1, DL, XLenVT); 5070 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 5071 5072 // Unless the index is known to be 0, we must slide the vector down to get 5073 // the desired element into index 0. 5074 if (!isNullConstant(Idx)) { 5075 Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 5076 DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL); 5077 } 5078 5079 // Extract the lower XLEN bits of the correct vector element. 5080 SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); 5081 5082 // To extract the upper XLEN bits of the vector element, shift the first 5083 // element right by 32 bits and re-extract the lower XLEN bits. 5084 SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, 5085 DAG.getConstant(32, DL, XLenVT), VL); 5086 SDValue LShr32 = DAG.getNode(RISCVISD::SRL_VL, DL, ContainerVT, Vec, 5087 ThirtyTwoV, Mask, VL); 5088 5089 SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32); 5090 5091 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi)); 5092 break; 5093 } 5094 case ISD::INTRINSIC_WO_CHAIN: { 5095 unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 5096 switch (IntNo) { 5097 default: 5098 llvm_unreachable( 5099 "Don't know how to custom type legalize this intrinsic!"); 5100 case Intrinsic::riscv_orc_b: { 5101 // Lower to the GORCI encoding for orc.b with the operand extended. 5102 SDValue NewOp = 5103 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 5104 // If Zbp is enabled, use GORCIW which will sign extend the result. 5105 unsigned Opc = 5106 Subtarget.hasStdExtZbp() ? RISCVISD::GORCW : RISCVISD::GORC; 5107 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp, 5108 DAG.getConstant(7, DL, MVT::i64)); 5109 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 5110 return; 5111 } 5112 case Intrinsic::riscv_grev: 5113 case Intrinsic::riscv_gorc: { 5114 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5115 "Unexpected custom legalisation"); 5116 SDValue NewOp1 = 5117 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 5118 SDValue NewOp2 = 5119 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 5120 unsigned Opc = 5121 IntNo == Intrinsic::riscv_grev ? RISCVISD::GREVW : RISCVISD::GORCW; 5122 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2); 5123 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 5124 break; 5125 } 5126 case Intrinsic::riscv_shfl: 5127 case Intrinsic::riscv_unshfl: { 5128 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5129 "Unexpected custom legalisation"); 5130 SDValue NewOp1 = 5131 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 5132 SDValue NewOp2 = 5133 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 5134 unsigned Opc = 5135 IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFLW : RISCVISD::UNSHFLW; 5136 if (isa<ConstantSDNode>(N->getOperand(2))) { 5137 NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2, 5138 DAG.getConstant(0xf, DL, MVT::i64)); 5139 Opc = 5140 IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL; 5141 } 5142 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2); 5143 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 5144 break; 5145 } 5146 case Intrinsic::riscv_bcompress: 5147 case Intrinsic::riscv_bdecompress: { 5148 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5149 "Unexpected custom legalisation"); 5150 SDValue NewOp1 = 5151 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 5152 SDValue NewOp2 = 5153 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 5154 unsigned Opc = IntNo == Intrinsic::riscv_bcompress 5155 ? RISCVISD::BCOMPRESSW 5156 : RISCVISD::BDECOMPRESSW; 5157 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2); 5158 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 5159 break; 5160 } 5161 case Intrinsic::riscv_vmv_x_s: { 5162 EVT VT = N->getValueType(0); 5163 MVT XLenVT = Subtarget.getXLenVT(); 5164 if (VT.bitsLT(XLenVT)) { 5165 // Simple case just extract using vmv.x.s and truncate. 5166 SDValue Extract = DAG.getNode(RISCVISD::VMV_X_S, DL, 5167 Subtarget.getXLenVT(), N->getOperand(1)); 5168 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, Extract)); 5169 return; 5170 } 5171 5172 assert(VT == MVT::i64 && !Subtarget.is64Bit() && 5173 "Unexpected custom legalization"); 5174 5175 // We need to do the move in two steps. 5176 SDValue Vec = N->getOperand(1); 5177 MVT VecVT = Vec.getSimpleValueType(); 5178 5179 // First extract the lower XLEN bits of the element. 5180 SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); 5181 5182 // To extract the upper XLEN bits of the vector element, shift the first 5183 // element right by 32 bits and re-extract the lower XLEN bits. 5184 SDValue VL = DAG.getConstant(1, DL, XLenVT); 5185 MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount()); 5186 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 5187 SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, 5188 DAG.getConstant(32, DL, XLenVT), VL); 5189 SDValue LShr32 = 5190 DAG.getNode(RISCVISD::SRL_VL, DL, VecVT, Vec, ThirtyTwoV, Mask, VL); 5191 SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32); 5192 5193 Results.push_back( 5194 DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi)); 5195 break; 5196 } 5197 } 5198 break; 5199 } 5200 case ISD::VECREDUCE_ADD: 5201 case ISD::VECREDUCE_AND: 5202 case ISD::VECREDUCE_OR: 5203 case ISD::VECREDUCE_XOR: 5204 case ISD::VECREDUCE_SMAX: 5205 case ISD::VECREDUCE_UMAX: 5206 case ISD::VECREDUCE_SMIN: 5207 case ISD::VECREDUCE_UMIN: 5208 if (SDValue V = lowerVECREDUCE(SDValue(N, 0), DAG)) 5209 Results.push_back(V); 5210 break; 5211 case ISD::FLT_ROUNDS_: { 5212 SDVTList VTs = DAG.getVTList(Subtarget.getXLenVT(), MVT::Other); 5213 SDValue Res = DAG.getNode(ISD::FLT_ROUNDS_, DL, VTs, N->getOperand(0)); 5214 Results.push_back(Res.getValue(0)); 5215 Results.push_back(Res.getValue(1)); 5216 break; 5217 } 5218 } 5219 } 5220 5221 // A structure to hold one of the bit-manipulation patterns below. Together, a 5222 // SHL and non-SHL pattern may form a bit-manipulation pair on a single source: 5223 // (or (and (shl x, 1), 0xAAAAAAAA), 5224 // (and (srl x, 1), 0x55555555)) 5225 struct RISCVBitmanipPat { 5226 SDValue Op; 5227 unsigned ShAmt; 5228 bool IsSHL; 5229 5230 bool formsPairWith(const RISCVBitmanipPat &Other) const { 5231 return Op == Other.Op && ShAmt == Other.ShAmt && IsSHL != Other.IsSHL; 5232 } 5233 }; 5234 5235 // Matches patterns of the form 5236 // (and (shl x, C2), (C1 << C2)) 5237 // (and (srl x, C2), C1) 5238 // (shl (and x, C1), C2) 5239 // (srl (and x, (C1 << C2)), C2) 5240 // Where C2 is a power of 2 and C1 has at least that many leading zeroes. 5241 // The expected masks for each shift amount are specified in BitmanipMasks where 5242 // BitmanipMasks[log2(C2)] specifies the expected C1 value. 5243 // The max allowed shift amount is either XLen/2 or XLen/4 determined by whether 5244 // BitmanipMasks contains 6 or 5 entries assuming that the maximum possible 5245 // XLen is 64. 5246 static Optional<RISCVBitmanipPat> 5247 matchRISCVBitmanipPat(SDValue Op, ArrayRef<uint64_t> BitmanipMasks) { 5248 assert((BitmanipMasks.size() == 5 || BitmanipMasks.size() == 6) && 5249 "Unexpected number of masks"); 5250 Optional<uint64_t> Mask; 5251 // Optionally consume a mask around the shift operation. 5252 if (Op.getOpcode() == ISD::AND && isa<ConstantSDNode>(Op.getOperand(1))) { 5253 Mask = Op.getConstantOperandVal(1); 5254 Op = Op.getOperand(0); 5255 } 5256 if (Op.getOpcode() != ISD::SHL && Op.getOpcode() != ISD::SRL) 5257 return None; 5258 bool IsSHL = Op.getOpcode() == ISD::SHL; 5259 5260 if (!isa<ConstantSDNode>(Op.getOperand(1))) 5261 return None; 5262 uint64_t ShAmt = Op.getConstantOperandVal(1); 5263 5264 unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32; 5265 if (ShAmt >= Width || !isPowerOf2_64(ShAmt)) 5266 return None; 5267 // If we don't have enough masks for 64 bit, then we must be trying to 5268 // match SHFL so we're only allowed to shift 1/4 of the width. 5269 if (BitmanipMasks.size() == 5 && ShAmt >= (Width / 2)) 5270 return None; 5271 5272 SDValue Src = Op.getOperand(0); 5273 5274 // The expected mask is shifted left when the AND is found around SHL 5275 // patterns. 5276 // ((x >> 1) & 0x55555555) 5277 // ((x << 1) & 0xAAAAAAAA) 5278 bool SHLExpMask = IsSHL; 5279 5280 if (!Mask) { 5281 // Sometimes LLVM keeps the mask as an operand of the shift, typically when 5282 // the mask is all ones: consume that now. 5283 if (Src.getOpcode() == ISD::AND && isa<ConstantSDNode>(Src.getOperand(1))) { 5284 Mask = Src.getConstantOperandVal(1); 5285 Src = Src.getOperand(0); 5286 // The expected mask is now in fact shifted left for SRL, so reverse the 5287 // decision. 5288 // ((x & 0xAAAAAAAA) >> 1) 5289 // ((x & 0x55555555) << 1) 5290 SHLExpMask = !SHLExpMask; 5291 } else { 5292 // Use a default shifted mask of all-ones if there's no AND, truncated 5293 // down to the expected width. This simplifies the logic later on. 5294 Mask = maskTrailingOnes<uint64_t>(Width); 5295 *Mask &= (IsSHL ? *Mask << ShAmt : *Mask >> ShAmt); 5296 } 5297 } 5298 5299 unsigned MaskIdx = Log2_32(ShAmt); 5300 uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width); 5301 5302 if (SHLExpMask) 5303 ExpMask <<= ShAmt; 5304 5305 if (Mask != ExpMask) 5306 return None; 5307 5308 return RISCVBitmanipPat{Src, (unsigned)ShAmt, IsSHL}; 5309 } 5310 5311 // Matches any of the following bit-manipulation patterns: 5312 // (and (shl x, 1), (0x55555555 << 1)) 5313 // (and (srl x, 1), 0x55555555) 5314 // (shl (and x, 0x55555555), 1) 5315 // (srl (and x, (0x55555555 << 1)), 1) 5316 // where the shift amount and mask may vary thus: 5317 // [1] = 0x55555555 / 0xAAAAAAAA 5318 // [2] = 0x33333333 / 0xCCCCCCCC 5319 // [4] = 0x0F0F0F0F / 0xF0F0F0F0 5320 // [8] = 0x00FF00FF / 0xFF00FF00 5321 // [16] = 0x0000FFFF / 0xFFFFFFFF 5322 // [32] = 0x00000000FFFFFFFF / 0xFFFFFFFF00000000 (for RV64) 5323 static Optional<RISCVBitmanipPat> matchGREVIPat(SDValue Op) { 5324 // These are the unshifted masks which we use to match bit-manipulation 5325 // patterns. They may be shifted left in certain circumstances. 5326 static const uint64_t BitmanipMasks[] = { 5327 0x5555555555555555ULL, 0x3333333333333333ULL, 0x0F0F0F0F0F0F0F0FULL, 5328 0x00FF00FF00FF00FFULL, 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL}; 5329 5330 return matchRISCVBitmanipPat(Op, BitmanipMasks); 5331 } 5332 5333 // Match the following pattern as a GREVI(W) operation 5334 // (or (BITMANIP_SHL x), (BITMANIP_SRL x)) 5335 static SDValue combineORToGREV(SDValue Op, SelectionDAG &DAG, 5336 const RISCVSubtarget &Subtarget) { 5337 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson"); 5338 EVT VT = Op.getValueType(); 5339 5340 if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) { 5341 auto LHS = matchGREVIPat(Op.getOperand(0)); 5342 auto RHS = matchGREVIPat(Op.getOperand(1)); 5343 if (LHS && RHS && LHS->formsPairWith(*RHS)) { 5344 SDLoc DL(Op); 5345 return DAG.getNode(RISCVISD::GREV, DL, VT, LHS->Op, 5346 DAG.getConstant(LHS->ShAmt, DL, VT)); 5347 } 5348 } 5349 return SDValue(); 5350 } 5351 5352 // Matches any the following pattern as a GORCI(W) operation 5353 // 1. (or (GREVI x, shamt), x) if shamt is a power of 2 5354 // 2. (or x, (GREVI x, shamt)) if shamt is a power of 2 5355 // 3. (or (or (BITMANIP_SHL x), x), (BITMANIP_SRL x)) 5356 // Note that with the variant of 3., 5357 // (or (or (BITMANIP_SHL x), (BITMANIP_SRL x)), x) 5358 // the inner pattern will first be matched as GREVI and then the outer 5359 // pattern will be matched to GORC via the first rule above. 5360 // 4. (or (rotl/rotr x, bitwidth/2), x) 5361 static SDValue combineORToGORC(SDValue Op, SelectionDAG &DAG, 5362 const RISCVSubtarget &Subtarget) { 5363 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson"); 5364 EVT VT = Op.getValueType(); 5365 5366 if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) { 5367 SDLoc DL(Op); 5368 SDValue Op0 = Op.getOperand(0); 5369 SDValue Op1 = Op.getOperand(1); 5370 5371 auto MatchOROfReverse = [&](SDValue Reverse, SDValue X) { 5372 if (Reverse.getOpcode() == RISCVISD::GREV && Reverse.getOperand(0) == X && 5373 isa<ConstantSDNode>(Reverse.getOperand(1)) && 5374 isPowerOf2_32(Reverse.getConstantOperandVal(1))) 5375 return DAG.getNode(RISCVISD::GORC, DL, VT, X, Reverse.getOperand(1)); 5376 // We can also form GORCI from ROTL/ROTR by half the bitwidth. 5377 if ((Reverse.getOpcode() == ISD::ROTL || 5378 Reverse.getOpcode() == ISD::ROTR) && 5379 Reverse.getOperand(0) == X && 5380 isa<ConstantSDNode>(Reverse.getOperand(1))) { 5381 uint64_t RotAmt = Reverse.getConstantOperandVal(1); 5382 if (RotAmt == (VT.getSizeInBits() / 2)) 5383 return DAG.getNode(RISCVISD::GORC, DL, VT, X, 5384 DAG.getConstant(RotAmt, DL, VT)); 5385 } 5386 return SDValue(); 5387 }; 5388 5389 // Check for either commutable permutation of (or (GREVI x, shamt), x) 5390 if (SDValue V = MatchOROfReverse(Op0, Op1)) 5391 return V; 5392 if (SDValue V = MatchOROfReverse(Op1, Op0)) 5393 return V; 5394 5395 // OR is commutable so canonicalize its OR operand to the left 5396 if (Op0.getOpcode() != ISD::OR && Op1.getOpcode() == ISD::OR) 5397 std::swap(Op0, Op1); 5398 if (Op0.getOpcode() != ISD::OR) 5399 return SDValue(); 5400 SDValue OrOp0 = Op0.getOperand(0); 5401 SDValue OrOp1 = Op0.getOperand(1); 5402 auto LHS = matchGREVIPat(OrOp0); 5403 // OR is commutable so swap the operands and try again: x might have been 5404 // on the left 5405 if (!LHS) { 5406 std::swap(OrOp0, OrOp1); 5407 LHS = matchGREVIPat(OrOp0); 5408 } 5409 auto RHS = matchGREVIPat(Op1); 5410 if (LHS && RHS && LHS->formsPairWith(*RHS) && LHS->Op == OrOp1) { 5411 return DAG.getNode(RISCVISD::GORC, DL, VT, LHS->Op, 5412 DAG.getConstant(LHS->ShAmt, DL, VT)); 5413 } 5414 } 5415 return SDValue(); 5416 } 5417 5418 // Matches any of the following bit-manipulation patterns: 5419 // (and (shl x, 1), (0x22222222 << 1)) 5420 // (and (srl x, 1), 0x22222222) 5421 // (shl (and x, 0x22222222), 1) 5422 // (srl (and x, (0x22222222 << 1)), 1) 5423 // where the shift amount and mask may vary thus: 5424 // [1] = 0x22222222 / 0x44444444 5425 // [2] = 0x0C0C0C0C / 0x3C3C3C3C 5426 // [4] = 0x00F000F0 / 0x0F000F00 5427 // [8] = 0x0000FF00 / 0x00FF0000 5428 // [16] = 0x00000000FFFF0000 / 0x0000FFFF00000000 (for RV64) 5429 static Optional<RISCVBitmanipPat> matchSHFLPat(SDValue Op) { 5430 // These are the unshifted masks which we use to match bit-manipulation 5431 // patterns. They may be shifted left in certain circumstances. 5432 static const uint64_t BitmanipMasks[] = { 5433 0x2222222222222222ULL, 0x0C0C0C0C0C0C0C0CULL, 0x00F000F000F000F0ULL, 5434 0x0000FF000000FF00ULL, 0x00000000FFFF0000ULL}; 5435 5436 return matchRISCVBitmanipPat(Op, BitmanipMasks); 5437 } 5438 5439 // Match (or (or (SHFL_SHL x), (SHFL_SHR x)), (SHFL_AND x) 5440 static SDValue combineORToSHFL(SDValue Op, SelectionDAG &DAG, 5441 const RISCVSubtarget &Subtarget) { 5442 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson"); 5443 EVT VT = Op.getValueType(); 5444 5445 if (VT != MVT::i32 && VT != Subtarget.getXLenVT()) 5446 return SDValue(); 5447 5448 SDValue Op0 = Op.getOperand(0); 5449 SDValue Op1 = Op.getOperand(1); 5450 5451 // Or is commutable so canonicalize the second OR to the LHS. 5452 if (Op0.getOpcode() != ISD::OR) 5453 std::swap(Op0, Op1); 5454 if (Op0.getOpcode() != ISD::OR) 5455 return SDValue(); 5456 5457 // We found an inner OR, so our operands are the operands of the inner OR 5458 // and the other operand of the outer OR. 5459 SDValue A = Op0.getOperand(0); 5460 SDValue B = Op0.getOperand(1); 5461 SDValue C = Op1; 5462 5463 auto Match1 = matchSHFLPat(A); 5464 auto Match2 = matchSHFLPat(B); 5465 5466 // If neither matched, we failed. 5467 if (!Match1 && !Match2) 5468 return SDValue(); 5469 5470 // We had at least one match. if one failed, try the remaining C operand. 5471 if (!Match1) { 5472 std::swap(A, C); 5473 Match1 = matchSHFLPat(A); 5474 if (!Match1) 5475 return SDValue(); 5476 } else if (!Match2) { 5477 std::swap(B, C); 5478 Match2 = matchSHFLPat(B); 5479 if (!Match2) 5480 return SDValue(); 5481 } 5482 assert(Match1 && Match2); 5483 5484 // Make sure our matches pair up. 5485 if (!Match1->formsPairWith(*Match2)) 5486 return SDValue(); 5487 5488 // All the remains is to make sure C is an AND with the same input, that masks 5489 // out the bits that are being shuffled. 5490 if (C.getOpcode() != ISD::AND || !isa<ConstantSDNode>(C.getOperand(1)) || 5491 C.getOperand(0) != Match1->Op) 5492 return SDValue(); 5493 5494 uint64_t Mask = C.getConstantOperandVal(1); 5495 5496 static const uint64_t BitmanipMasks[] = { 5497 0x9999999999999999ULL, 0xC3C3C3C3C3C3C3C3ULL, 0xF00FF00FF00FF00FULL, 5498 0xFF0000FFFF0000FFULL, 0xFFFF00000000FFFFULL, 5499 }; 5500 5501 unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32; 5502 unsigned MaskIdx = Log2_32(Match1->ShAmt); 5503 uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width); 5504 5505 if (Mask != ExpMask) 5506 return SDValue(); 5507 5508 SDLoc DL(Op); 5509 return DAG.getNode(RISCVISD::SHFL, DL, VT, Match1->Op, 5510 DAG.getConstant(Match1->ShAmt, DL, VT)); 5511 } 5512 5513 // Combine (GREVI (GREVI x, C2), C1) -> (GREVI x, C1^C2) when C1^C2 is 5514 // non-zero, and to x when it is. Any repeated GREVI stage undoes itself. 5515 // Combine (GORCI (GORCI x, C2), C1) -> (GORCI x, C1|C2). Repeated stage does 5516 // not undo itself, but they are redundant. 5517 static SDValue combineGREVI_GORCI(SDNode *N, SelectionDAG &DAG) { 5518 SDValue Src = N->getOperand(0); 5519 5520 if (Src.getOpcode() != N->getOpcode()) 5521 return SDValue(); 5522 5523 if (!isa<ConstantSDNode>(N->getOperand(1)) || 5524 !isa<ConstantSDNode>(Src.getOperand(1))) 5525 return SDValue(); 5526 5527 unsigned ShAmt1 = N->getConstantOperandVal(1); 5528 unsigned ShAmt2 = Src.getConstantOperandVal(1); 5529 Src = Src.getOperand(0); 5530 5531 unsigned CombinedShAmt; 5532 if (N->getOpcode() == RISCVISD::GORC || N->getOpcode() == RISCVISD::GORCW) 5533 CombinedShAmt = ShAmt1 | ShAmt2; 5534 else 5535 CombinedShAmt = ShAmt1 ^ ShAmt2; 5536 5537 if (CombinedShAmt == 0) 5538 return Src; 5539 5540 SDLoc DL(N); 5541 return DAG.getNode( 5542 N->getOpcode(), DL, N->getValueType(0), Src, 5543 DAG.getConstant(CombinedShAmt, DL, N->getOperand(1).getValueType())); 5544 } 5545 5546 // Combine a constant select operand into its use: 5547 // 5548 // (and (select_cc lhs, rhs, cc, -1, c), x) 5549 // -> (select_cc lhs, rhs, cc, x, (and, x, c)) [AllOnes=1] 5550 // (or (select_cc lhs, rhs, cc, 0, c), x) 5551 // -> (select_cc lhs, rhs, cc, x, (or, x, c)) [AllOnes=0] 5552 // (xor (select_cc lhs, rhs, cc, 0, c), x) 5553 // -> (select_cc lhs, rhs, cc, x, (xor, x, c)) [AllOnes=0] 5554 static SDValue combineSelectCCAndUse(SDNode *N, SDValue Slct, SDValue OtherOp, 5555 SelectionDAG &DAG, bool AllOnes) { 5556 EVT VT = N->getValueType(0); 5557 5558 if (Slct.getOpcode() != RISCVISD::SELECT_CC || !Slct.hasOneUse()) 5559 return SDValue(); 5560 5561 auto isZeroOrAllOnes = [](SDValue N, bool AllOnes) { 5562 return AllOnes ? isAllOnesConstant(N) : isNullConstant(N); 5563 }; 5564 5565 bool SwapSelectOps; 5566 SDValue TrueVal = Slct.getOperand(3); 5567 SDValue FalseVal = Slct.getOperand(4); 5568 SDValue NonConstantVal; 5569 if (isZeroOrAllOnes(TrueVal, AllOnes)) { 5570 SwapSelectOps = false; 5571 NonConstantVal = FalseVal; 5572 } else if (isZeroOrAllOnes(FalseVal, AllOnes)) { 5573 SwapSelectOps = true; 5574 NonConstantVal = TrueVal; 5575 } else 5576 return SDValue(); 5577 5578 // Slct is now know to be the desired identity constant when CC is true. 5579 TrueVal = OtherOp; 5580 FalseVal = DAG.getNode(N->getOpcode(), SDLoc(N), VT, OtherOp, NonConstantVal); 5581 // Unless SwapSelectOps says CC should be false. 5582 if (SwapSelectOps) 5583 std::swap(TrueVal, FalseVal); 5584 5585 return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), VT, 5586 {Slct.getOperand(0), Slct.getOperand(1), 5587 Slct.getOperand(2), TrueVal, FalseVal}); 5588 } 5589 5590 // Attempt combineSelectAndUse on each operand of a commutative operator N. 5591 static SDValue combineSelectCCAndUseCommutative(SDNode *N, SelectionDAG &DAG, 5592 bool AllOnes) { 5593 SDValue N0 = N->getOperand(0); 5594 SDValue N1 = N->getOperand(1); 5595 if (SDValue Result = combineSelectCCAndUse(N, N0, N1, DAG, AllOnes)) 5596 return Result; 5597 if (SDValue Result = combineSelectCCAndUse(N, N1, N0, DAG, AllOnes)) 5598 return Result; 5599 return SDValue(); 5600 } 5601 5602 static SDValue performANDCombine(SDNode *N, 5603 TargetLowering::DAGCombinerInfo &DCI, 5604 const RISCVSubtarget &Subtarget) { 5605 SelectionDAG &DAG = DCI.DAG; 5606 5607 // fold (and (select_cc lhs, rhs, cc, -1, y), x) -> 5608 // (select lhs, rhs, cc, x, (and x, y)) 5609 return combineSelectCCAndUseCommutative(N, DAG, true); 5610 } 5611 5612 static SDValue performORCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, 5613 const RISCVSubtarget &Subtarget) { 5614 SelectionDAG &DAG = DCI.DAG; 5615 if (Subtarget.hasStdExtZbp()) { 5616 if (auto GREV = combineORToGREV(SDValue(N, 0), DAG, Subtarget)) 5617 return GREV; 5618 if (auto GORC = combineORToGORC(SDValue(N, 0), DAG, Subtarget)) 5619 return GORC; 5620 if (auto SHFL = combineORToSHFL(SDValue(N, 0), DAG, Subtarget)) 5621 return SHFL; 5622 } 5623 5624 // fold (or (select_cc lhs, rhs, cc, 0, y), x) -> 5625 // (select lhs, rhs, cc, x, (or x, y)) 5626 return combineSelectCCAndUseCommutative(N, DAG, false); 5627 } 5628 5629 static SDValue performXORCombine(SDNode *N, 5630 TargetLowering::DAGCombinerInfo &DCI, 5631 const RISCVSubtarget &Subtarget) { 5632 SelectionDAG &DAG = DCI.DAG; 5633 5634 // fold (xor (select_cc lhs, rhs, cc, 0, y), x) -> 5635 // (select lhs, rhs, cc, x, (xor x, y)) 5636 return combineSelectCCAndUseCommutative(N, DAG, false); 5637 } 5638 5639 // Attempt to turn ANY_EXTEND into SIGN_EXTEND if the input to the ANY_EXTEND 5640 // has users that require SIGN_EXTEND and the SIGN_EXTEND can be done for free 5641 // by an instruction like ADDW/SUBW/MULW. Without this the ANY_EXTEND would be 5642 // removed during type legalization leaving an ADD/SUB/MUL use that won't use 5643 // ADDW/SUBW/MULW. 5644 static SDValue performANY_EXTENDCombine(SDNode *N, 5645 TargetLowering::DAGCombinerInfo &DCI, 5646 const RISCVSubtarget &Subtarget) { 5647 if (!Subtarget.is64Bit()) 5648 return SDValue(); 5649 5650 SelectionDAG &DAG = DCI.DAG; 5651 5652 SDValue Src = N->getOperand(0); 5653 EVT VT = N->getValueType(0); 5654 if (VT != MVT::i64 || Src.getValueType() != MVT::i32) 5655 return SDValue(); 5656 5657 // The opcode must be one that can implicitly sign_extend. 5658 // FIXME: Additional opcodes. 5659 switch (Src.getOpcode()) { 5660 default: 5661 return SDValue(); 5662 case ISD::MUL: 5663 if (!Subtarget.hasStdExtM()) 5664 return SDValue(); 5665 LLVM_FALLTHROUGH; 5666 case ISD::ADD: 5667 case ISD::SUB: 5668 break; 5669 } 5670 5671 SmallVector<SDNode *, 4> SetCCs; 5672 for (SDNode::use_iterator UI = Src.getNode()->use_begin(), 5673 UE = Src.getNode()->use_end(); 5674 UI != UE; ++UI) { 5675 SDNode *User = *UI; 5676 if (User == N) 5677 continue; 5678 if (UI.getUse().getResNo() != Src.getResNo()) 5679 continue; 5680 // All i32 setccs are legalized by sign extending operands. 5681 if (User->getOpcode() == ISD::SETCC) { 5682 SetCCs.push_back(User); 5683 continue; 5684 } 5685 // We don't know if we can extend this user. 5686 break; 5687 } 5688 5689 // If we don't have any SetCCs, this isn't worthwhile. 5690 if (SetCCs.empty()) 5691 return SDValue(); 5692 5693 SDLoc DL(N); 5694 SDValue SExt = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Src); 5695 DCI.CombineTo(N, SExt); 5696 5697 // Promote all the setccs. 5698 for (SDNode *SetCC : SetCCs) { 5699 SmallVector<SDValue, 4> Ops; 5700 5701 for (unsigned j = 0; j != 2; ++j) { 5702 SDValue SOp = SetCC->getOperand(j); 5703 if (SOp == Src) 5704 Ops.push_back(SExt); 5705 else 5706 Ops.push_back(DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, SOp)); 5707 } 5708 5709 Ops.push_back(SetCC->getOperand(2)); 5710 DCI.CombineTo(SetCC, 5711 DAG.getNode(ISD::SETCC, DL, SetCC->getValueType(0), Ops)); 5712 } 5713 return SDValue(N, 0); 5714 } 5715 5716 SDValue RISCVTargetLowering::PerformDAGCombine(SDNode *N, 5717 DAGCombinerInfo &DCI) const { 5718 SelectionDAG &DAG = DCI.DAG; 5719 5720 switch (N->getOpcode()) { 5721 default: 5722 break; 5723 case RISCVISD::SplitF64: { 5724 SDValue Op0 = N->getOperand(0); 5725 // If the input to SplitF64 is just BuildPairF64 then the operation is 5726 // redundant. Instead, use BuildPairF64's operands directly. 5727 if (Op0->getOpcode() == RISCVISD::BuildPairF64) 5728 return DCI.CombineTo(N, Op0.getOperand(0), Op0.getOperand(1)); 5729 5730 SDLoc DL(N); 5731 5732 // It's cheaper to materialise two 32-bit integers than to load a double 5733 // from the constant pool and transfer it to integer registers through the 5734 // stack. 5735 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op0)) { 5736 APInt V = C->getValueAPF().bitcastToAPInt(); 5737 SDValue Lo = DAG.getConstant(V.trunc(32), DL, MVT::i32); 5738 SDValue Hi = DAG.getConstant(V.lshr(32).trunc(32), DL, MVT::i32); 5739 return DCI.CombineTo(N, Lo, Hi); 5740 } 5741 5742 // This is a target-specific version of a DAGCombine performed in 5743 // DAGCombiner::visitBITCAST. It performs the equivalent of: 5744 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) 5745 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) 5746 if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) || 5747 !Op0.getNode()->hasOneUse()) 5748 break; 5749 SDValue NewSplitF64 = 5750 DAG.getNode(RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), 5751 Op0.getOperand(0)); 5752 SDValue Lo = NewSplitF64.getValue(0); 5753 SDValue Hi = NewSplitF64.getValue(1); 5754 APInt SignBit = APInt::getSignMask(32); 5755 if (Op0.getOpcode() == ISD::FNEG) { 5756 SDValue NewHi = DAG.getNode(ISD::XOR, DL, MVT::i32, Hi, 5757 DAG.getConstant(SignBit, DL, MVT::i32)); 5758 return DCI.CombineTo(N, Lo, NewHi); 5759 } 5760 assert(Op0.getOpcode() == ISD::FABS); 5761 SDValue NewHi = DAG.getNode(ISD::AND, DL, MVT::i32, Hi, 5762 DAG.getConstant(~SignBit, DL, MVT::i32)); 5763 return DCI.CombineTo(N, Lo, NewHi); 5764 } 5765 case RISCVISD::SLLW: 5766 case RISCVISD::SRAW: 5767 case RISCVISD::SRLW: 5768 case RISCVISD::ROLW: 5769 case RISCVISD::RORW: { 5770 // Only the lower 32 bits of LHS and lower 5 bits of RHS are read. 5771 SDValue LHS = N->getOperand(0); 5772 SDValue RHS = N->getOperand(1); 5773 APInt LHSMask = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 32); 5774 APInt RHSMask = APInt::getLowBitsSet(RHS.getValueSizeInBits(), 5); 5775 if (SimplifyDemandedBits(N->getOperand(0), LHSMask, DCI) || 5776 SimplifyDemandedBits(N->getOperand(1), RHSMask, DCI)) { 5777 if (N->getOpcode() != ISD::DELETED_NODE) 5778 DCI.AddToWorklist(N); 5779 return SDValue(N, 0); 5780 } 5781 break; 5782 } 5783 case RISCVISD::CLZW: 5784 case RISCVISD::CTZW: { 5785 // Only the lower 32 bits of the first operand are read 5786 SDValue Op0 = N->getOperand(0); 5787 APInt Mask = APInt::getLowBitsSet(Op0.getValueSizeInBits(), 32); 5788 if (SimplifyDemandedBits(Op0, Mask, DCI)) { 5789 if (N->getOpcode() != ISD::DELETED_NODE) 5790 DCI.AddToWorklist(N); 5791 return SDValue(N, 0); 5792 } 5793 break; 5794 } 5795 case RISCVISD::FSL: 5796 case RISCVISD::FSR: { 5797 // Only the lower log2(Bitwidth)+1 bits of the the shift amount are read. 5798 SDValue ShAmt = N->getOperand(2); 5799 unsigned BitWidth = ShAmt.getValueSizeInBits(); 5800 assert(isPowerOf2_32(BitWidth) && "Unexpected bit width"); 5801 APInt ShAmtMask(BitWidth, (BitWidth * 2) - 1); 5802 if (SimplifyDemandedBits(ShAmt, ShAmtMask, DCI)) { 5803 if (N->getOpcode() != ISD::DELETED_NODE) 5804 DCI.AddToWorklist(N); 5805 return SDValue(N, 0); 5806 } 5807 break; 5808 } 5809 case RISCVISD::FSLW: 5810 case RISCVISD::FSRW: { 5811 // Only the lower 32 bits of Values and lower 6 bits of shift amount are 5812 // read. 5813 SDValue Op0 = N->getOperand(0); 5814 SDValue Op1 = N->getOperand(1); 5815 SDValue ShAmt = N->getOperand(2); 5816 APInt OpMask = APInt::getLowBitsSet(Op0.getValueSizeInBits(), 32); 5817 APInt ShAmtMask = APInt::getLowBitsSet(ShAmt.getValueSizeInBits(), 6); 5818 if (SimplifyDemandedBits(Op0, OpMask, DCI) || 5819 SimplifyDemandedBits(Op1, OpMask, DCI) || 5820 SimplifyDemandedBits(ShAmt, ShAmtMask, DCI)) { 5821 if (N->getOpcode() != ISD::DELETED_NODE) 5822 DCI.AddToWorklist(N); 5823 return SDValue(N, 0); 5824 } 5825 break; 5826 } 5827 case RISCVISD::GREV: 5828 case RISCVISD::GORC: { 5829 // Only the lower log2(Bitwidth) bits of the the shift amount are read. 5830 SDValue ShAmt = N->getOperand(1); 5831 unsigned BitWidth = ShAmt.getValueSizeInBits(); 5832 assert(isPowerOf2_32(BitWidth) && "Unexpected bit width"); 5833 APInt ShAmtMask(BitWidth, BitWidth - 1); 5834 if (SimplifyDemandedBits(ShAmt, ShAmtMask, DCI)) { 5835 if (N->getOpcode() != ISD::DELETED_NODE) 5836 DCI.AddToWorklist(N); 5837 return SDValue(N, 0); 5838 } 5839 5840 return combineGREVI_GORCI(N, DCI.DAG); 5841 } 5842 case RISCVISD::GREVW: 5843 case RISCVISD::GORCW: { 5844 // Only the lower 32 bits of LHS and lower 5 bits of RHS are read. 5845 SDValue LHS = N->getOperand(0); 5846 SDValue RHS = N->getOperand(1); 5847 APInt LHSMask = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 32); 5848 APInt RHSMask = APInt::getLowBitsSet(RHS.getValueSizeInBits(), 5); 5849 if (SimplifyDemandedBits(LHS, LHSMask, DCI) || 5850 SimplifyDemandedBits(RHS, RHSMask, DCI)) { 5851 if (N->getOpcode() != ISD::DELETED_NODE) 5852 DCI.AddToWorklist(N); 5853 return SDValue(N, 0); 5854 } 5855 5856 return combineGREVI_GORCI(N, DCI.DAG); 5857 } 5858 case RISCVISD::SHFL: 5859 case RISCVISD::UNSHFL: { 5860 // Only the lower log2(Bitwidth) bits of the the shift amount are read. 5861 SDValue ShAmt = N->getOperand(1); 5862 unsigned BitWidth = ShAmt.getValueSizeInBits(); 5863 assert(isPowerOf2_32(BitWidth) && "Unexpected bit width"); 5864 APInt ShAmtMask(BitWidth, (BitWidth / 2) - 1); 5865 if (SimplifyDemandedBits(ShAmt, ShAmtMask, DCI)) { 5866 if (N->getOpcode() != ISD::DELETED_NODE) 5867 DCI.AddToWorklist(N); 5868 return SDValue(N, 0); 5869 } 5870 5871 break; 5872 } 5873 case RISCVISD::SHFLW: 5874 case RISCVISD::UNSHFLW: { 5875 // Only the lower 32 bits of LHS and lower 5 bits of RHS are read. 5876 SDValue LHS = N->getOperand(0); 5877 SDValue RHS = N->getOperand(1); 5878 APInt LHSMask = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 32); 5879 APInt RHSMask = APInt::getLowBitsSet(RHS.getValueSizeInBits(), 4); 5880 if (SimplifyDemandedBits(LHS, LHSMask, DCI) || 5881 SimplifyDemandedBits(RHS, RHSMask, DCI)) { 5882 if (N->getOpcode() != ISD::DELETED_NODE) 5883 DCI.AddToWorklist(N); 5884 return SDValue(N, 0); 5885 } 5886 5887 break; 5888 } 5889 case RISCVISD::BCOMPRESSW: 5890 case RISCVISD::BDECOMPRESSW: { 5891 // Only the lower 32 bits of LHS and RHS are read. 5892 SDValue LHS = N->getOperand(0); 5893 SDValue RHS = N->getOperand(1); 5894 APInt Mask = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 32); 5895 if (SimplifyDemandedBits(LHS, Mask, DCI) || 5896 SimplifyDemandedBits(RHS, Mask, DCI)) { 5897 if (N->getOpcode() != ISD::DELETED_NODE) 5898 DCI.AddToWorklist(N); 5899 return SDValue(N, 0); 5900 } 5901 5902 break; 5903 } 5904 case RISCVISD::FMV_X_ANYEXTW_RV64: { 5905 SDLoc DL(N); 5906 SDValue Op0 = N->getOperand(0); 5907 // If the input to FMV_X_ANYEXTW_RV64 is just FMV_W_X_RV64 then the 5908 // conversion is unnecessary and can be replaced with an ANY_EXTEND 5909 // of the FMV_W_X_RV64 operand. 5910 if (Op0->getOpcode() == RISCVISD::FMV_W_X_RV64) { 5911 assert(Op0.getOperand(0).getValueType() == MVT::i64 && 5912 "Unexpected value type!"); 5913 return Op0.getOperand(0); 5914 } 5915 5916 // This is a target-specific version of a DAGCombine performed in 5917 // DAGCombiner::visitBITCAST. It performs the equivalent of: 5918 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) 5919 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) 5920 if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) || 5921 !Op0.getNode()->hasOneUse()) 5922 break; 5923 SDValue NewFMV = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, 5924 Op0.getOperand(0)); 5925 APInt SignBit = APInt::getSignMask(32).sext(64); 5926 if (Op0.getOpcode() == ISD::FNEG) 5927 return DAG.getNode(ISD::XOR, DL, MVT::i64, NewFMV, 5928 DAG.getConstant(SignBit, DL, MVT::i64)); 5929 5930 assert(Op0.getOpcode() == ISD::FABS); 5931 return DAG.getNode(ISD::AND, DL, MVT::i64, NewFMV, 5932 DAG.getConstant(~SignBit, DL, MVT::i64)); 5933 } 5934 case ISD::AND: 5935 return performANDCombine(N, DCI, Subtarget); 5936 case ISD::OR: 5937 return performORCombine(N, DCI, Subtarget); 5938 case ISD::XOR: 5939 return performXORCombine(N, DCI, Subtarget); 5940 case ISD::ANY_EXTEND: 5941 return performANY_EXTENDCombine(N, DCI, Subtarget); 5942 case RISCVISD::SELECT_CC: { 5943 // Transform 5944 SDValue LHS = N->getOperand(0); 5945 SDValue RHS = N->getOperand(1); 5946 auto CCVal = static_cast<ISD::CondCode>(N->getConstantOperandVal(2)); 5947 if (!ISD::isIntEqualitySetCC(CCVal)) 5948 break; 5949 5950 // Fold (select_cc (setlt X, Y), 0, ne, trueV, falseV) -> 5951 // (select_cc X, Y, lt, trueV, falseV) 5952 // Sometimes the setcc is introduced after select_cc has been formed. 5953 if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) && 5954 LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) { 5955 // If we're looking for eq 0 instead of ne 0, we need to invert the 5956 // condition. 5957 bool Invert = CCVal == ISD::SETEQ; 5958 CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get(); 5959 if (Invert) 5960 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 5961 5962 SDLoc DL(N); 5963 RHS = LHS.getOperand(1); 5964 LHS = LHS.getOperand(0); 5965 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 5966 5967 SDValue TargetCC = 5968 DAG.getTargetConstant(CCVal, DL, Subtarget.getXLenVT()); 5969 return DAG.getNode( 5970 RISCVISD::SELECT_CC, DL, N->getValueType(0), 5971 {LHS, RHS, TargetCC, N->getOperand(3), N->getOperand(4)}); 5972 } 5973 5974 // Fold (select_cc (xor X, Y), 0, eq/ne, trueV, falseV) -> 5975 // (select_cc X, Y, eq/ne, trueV, falseV) 5976 if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS)) 5977 return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), N->getValueType(0), 5978 {LHS.getOperand(0), LHS.getOperand(1), 5979 N->getOperand(2), N->getOperand(3), 5980 N->getOperand(4)}); 5981 // (select_cc X, 1, setne, trueV, falseV) -> 5982 // (select_cc X, 0, seteq, trueV, falseV) if we can prove X is 0/1. 5983 // This can occur when legalizing some floating point comparisons. 5984 APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1); 5985 if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) { 5986 SDLoc DL(N); 5987 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 5988 SDValue TargetCC = 5989 DAG.getTargetConstant(CCVal, DL, Subtarget.getXLenVT()); 5990 RHS = DAG.getConstant(0, DL, LHS.getValueType()); 5991 return DAG.getNode( 5992 RISCVISD::SELECT_CC, DL, N->getValueType(0), 5993 {LHS, RHS, TargetCC, N->getOperand(3), N->getOperand(4)}); 5994 } 5995 5996 break; 5997 } 5998 case RISCVISD::BR_CC: { 5999 SDValue LHS = N->getOperand(1); 6000 SDValue RHS = N->getOperand(2); 6001 ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(3))->get(); 6002 if (!ISD::isIntEqualitySetCC(CCVal)) 6003 break; 6004 6005 // Fold (br_cc (setlt X, Y), 0, ne, dest) -> 6006 // (br_cc X, Y, lt, dest) 6007 // Sometimes the setcc is introduced after br_cc has been formed. 6008 if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) && 6009 LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) { 6010 // If we're looking for eq 0 instead of ne 0, we need to invert the 6011 // condition. 6012 bool Invert = CCVal == ISD::SETEQ; 6013 CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get(); 6014 if (Invert) 6015 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 6016 6017 SDLoc DL(N); 6018 RHS = LHS.getOperand(1); 6019 LHS = LHS.getOperand(0); 6020 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 6021 6022 return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0), 6023 N->getOperand(0), LHS, RHS, DAG.getCondCode(CCVal), 6024 N->getOperand(4)); 6025 } 6026 6027 // Fold (br_cc (xor X, Y), 0, eq/ne, dest) -> 6028 // (br_cc X, Y, eq/ne, trueV, falseV) 6029 if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS)) 6030 return DAG.getNode(RISCVISD::BR_CC, SDLoc(N), N->getValueType(0), 6031 N->getOperand(0), LHS.getOperand(0), LHS.getOperand(1), 6032 N->getOperand(3), N->getOperand(4)); 6033 6034 // (br_cc X, 1, setne, br_cc) -> 6035 // (br_cc X, 0, seteq, br_cc) if we can prove X is 0/1. 6036 // This can occur when legalizing some floating point comparisons. 6037 APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1); 6038 if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) { 6039 SDLoc DL(N); 6040 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 6041 SDValue TargetCC = DAG.getCondCode(CCVal); 6042 RHS = DAG.getConstant(0, DL, LHS.getValueType()); 6043 return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0), 6044 N->getOperand(0), LHS, RHS, TargetCC, 6045 N->getOperand(4)); 6046 } 6047 break; 6048 } 6049 case ISD::FCOPYSIGN: { 6050 EVT VT = N->getValueType(0); 6051 if (!VT.isVector()) 6052 break; 6053 // There is a form of VFSGNJ which injects the negated sign of its second 6054 // operand. Try and bubble any FNEG up after the extend/round to produce 6055 // this optimized pattern. Avoid modifying cases where FP_ROUND and 6056 // TRUNC=1. 6057 SDValue In2 = N->getOperand(1); 6058 // Avoid cases where the extend/round has multiple uses, as duplicating 6059 // those is typically more expensive than removing a fneg. 6060 if (!In2.hasOneUse()) 6061 break; 6062 if (In2.getOpcode() != ISD::FP_EXTEND && 6063 (In2.getOpcode() != ISD::FP_ROUND || In2.getConstantOperandVal(1) != 0)) 6064 break; 6065 In2 = In2.getOperand(0); 6066 if (In2.getOpcode() != ISD::FNEG) 6067 break; 6068 SDLoc DL(N); 6069 SDValue NewFPExtRound = DAG.getFPExtendOrRound(In2.getOperand(0), DL, VT); 6070 return DAG.getNode(ISD::FCOPYSIGN, DL, VT, N->getOperand(0), 6071 DAG.getNode(ISD::FNEG, DL, VT, NewFPExtRound)); 6072 } 6073 case ISD::MGATHER: 6074 case ISD::MSCATTER: { 6075 if (!DCI.isBeforeLegalize()) 6076 break; 6077 MaskedGatherScatterSDNode *MGSN = cast<MaskedGatherScatterSDNode>(N); 6078 SDValue Index = MGSN->getIndex(); 6079 EVT IndexVT = Index.getValueType(); 6080 MVT XLenVT = Subtarget.getXLenVT(); 6081 // RISCV indexed loads only support the "unsigned unscaled" addressing 6082 // mode, so anything else must be manually legalized. 6083 bool NeedsIdxLegalization = MGSN->isIndexScaled() || 6084 (MGSN->isIndexSigned() && 6085 IndexVT.getVectorElementType().bitsLT(XLenVT)); 6086 if (!NeedsIdxLegalization) 6087 break; 6088 6089 SDLoc DL(N); 6090 6091 // Any index legalization should first promote to XLenVT, so we don't lose 6092 // bits when scaling. This may create an illegal index type so we let 6093 // LLVM's legalization take care of the splitting. 6094 if (IndexVT.getVectorElementType().bitsLT(XLenVT)) { 6095 IndexVT = IndexVT.changeVectorElementType(XLenVT); 6096 Index = DAG.getNode(MGSN->isIndexSigned() ? ISD::SIGN_EXTEND 6097 : ISD::ZERO_EXTEND, 6098 DL, IndexVT, Index); 6099 } 6100 6101 unsigned Scale = N->getConstantOperandVal(5); 6102 if (MGSN->isIndexScaled() && Scale != 1) { 6103 // Manually scale the indices by the element size. 6104 // TODO: Sanitize the scale operand here? 6105 assert(isPowerOf2_32(Scale) && "Expecting power-of-two types"); 6106 SDValue SplatScale = DAG.getConstant(Log2_32(Scale), DL, IndexVT); 6107 Index = DAG.getNode(ISD::SHL, DL, IndexVT, Index, SplatScale); 6108 } 6109 6110 ISD::MemIndexType NewIndexTy = ISD::UNSIGNED_UNSCALED; 6111 if (const auto *MGN = dyn_cast<MaskedGatherSDNode>(N)) { 6112 return DAG.getMaskedGather( 6113 N->getVTList(), MGSN->getMemoryVT(), DL, 6114 {MGSN->getChain(), MGN->getPassThru(), MGSN->getMask(), 6115 MGSN->getBasePtr(), Index, MGN->getScale()}, 6116 MGN->getMemOperand(), NewIndexTy, MGN->getExtensionType()); 6117 } 6118 const auto *MSN = cast<MaskedScatterSDNode>(N); 6119 return DAG.getMaskedScatter( 6120 N->getVTList(), MGSN->getMemoryVT(), DL, 6121 {MGSN->getChain(), MSN->getValue(), MGSN->getMask(), MGSN->getBasePtr(), 6122 Index, MGSN->getScale()}, 6123 MGSN->getMemOperand(), NewIndexTy, MSN->isTruncatingStore()); 6124 } 6125 case RISCVISD::SRA_VL: 6126 case RISCVISD::SRL_VL: 6127 case RISCVISD::SHL_VL: { 6128 SDValue ShAmt = N->getOperand(1); 6129 if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) { 6130 // We don't need the upper 32 bits of a 64-bit element for a shift amount. 6131 SDLoc DL(N); 6132 SDValue VL = N->getOperand(3); 6133 EVT VT = N->getValueType(0); 6134 ShAmt = 6135 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, ShAmt.getOperand(0), VL); 6136 return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt, 6137 N->getOperand(2), N->getOperand(3)); 6138 } 6139 break; 6140 } 6141 case ISD::SRA: 6142 case ISD::SRL: 6143 case ISD::SHL: { 6144 SDValue ShAmt = N->getOperand(1); 6145 if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) { 6146 // We don't need the upper 32 bits of a 64-bit element for a shift amount. 6147 SDLoc DL(N); 6148 EVT VT = N->getValueType(0); 6149 ShAmt = 6150 DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VT, ShAmt.getOperand(0)); 6151 return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt); 6152 } 6153 break; 6154 } 6155 case RISCVISD::MUL_VL: { 6156 // Try to form VWMUL or VWMULU. 6157 // FIXME: Look for splat of extended scalar as well. 6158 // FIXME: Support VWMULSU. 6159 SDValue Op0 = N->getOperand(0); 6160 SDValue Op1 = N->getOperand(1); 6161 bool IsSignExt = Op0.getOpcode() == RISCVISD::VSEXT_VL; 6162 bool IsZeroExt = Op0.getOpcode() == RISCVISD::VZEXT_VL; 6163 if ((!IsSignExt && !IsZeroExt) || Op0.getOpcode() != Op1.getOpcode()) 6164 return SDValue(); 6165 6166 // Make sure the extends have a single use. 6167 if (!Op0.hasOneUse() || !Op1.hasOneUse()) 6168 return SDValue(); 6169 6170 SDValue Mask = N->getOperand(2); 6171 SDValue VL = N->getOperand(3); 6172 if (Op0.getOperand(1) != Mask || Op1.getOperand(1) != Mask || 6173 Op0.getOperand(2) != VL || Op1.getOperand(2) != VL) 6174 return SDValue(); 6175 6176 Op0 = Op0.getOperand(0); 6177 Op1 = Op1.getOperand(0); 6178 6179 MVT VT = N->getSimpleValueType(0); 6180 MVT NarrowVT = 6181 MVT::getVectorVT(MVT::getIntegerVT(VT.getScalarSizeInBits() / 2), 6182 VT.getVectorElementCount()); 6183 6184 SDLoc DL(N); 6185 6186 // Re-introduce narrower extends if needed. 6187 unsigned ExtOpc = IsSignExt ? RISCVISD::VSEXT_VL : RISCVISD::VZEXT_VL; 6188 if (Op0.getValueType() != NarrowVT) 6189 Op0 = DAG.getNode(ExtOpc, DL, NarrowVT, Op0, Mask, VL); 6190 if (Op1.getValueType() != NarrowVT) 6191 Op1 = DAG.getNode(ExtOpc, DL, NarrowVT, Op1, Mask, VL); 6192 6193 unsigned WMulOpc = IsSignExt ? RISCVISD::VWMUL_VL : RISCVISD::VWMULU_VL; 6194 return DAG.getNode(WMulOpc, DL, VT, Op0, Op1, Mask, VL); 6195 } 6196 } 6197 6198 return SDValue(); 6199 } 6200 6201 bool RISCVTargetLowering::isDesirableToCommuteWithShift( 6202 const SDNode *N, CombineLevel Level) const { 6203 // The following folds are only desirable if `(OP _, c1 << c2)` can be 6204 // materialised in fewer instructions than `(OP _, c1)`: 6205 // 6206 // (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2) 6207 // (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2) 6208 SDValue N0 = N->getOperand(0); 6209 EVT Ty = N0.getValueType(); 6210 if (Ty.isScalarInteger() && 6211 (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::OR)) { 6212 auto *C1 = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 6213 auto *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1)); 6214 if (C1 && C2) { 6215 const APInt &C1Int = C1->getAPIntValue(); 6216 APInt ShiftedC1Int = C1Int << C2->getAPIntValue(); 6217 6218 // We can materialise `c1 << c2` into an add immediate, so it's "free", 6219 // and the combine should happen, to potentially allow further combines 6220 // later. 6221 if (ShiftedC1Int.getMinSignedBits() <= 64 && 6222 isLegalAddImmediate(ShiftedC1Int.getSExtValue())) 6223 return true; 6224 6225 // We can materialise `c1` in an add immediate, so it's "free", and the 6226 // combine should be prevented. 6227 if (C1Int.getMinSignedBits() <= 64 && 6228 isLegalAddImmediate(C1Int.getSExtValue())) 6229 return false; 6230 6231 // Neither constant will fit into an immediate, so find materialisation 6232 // costs. 6233 int C1Cost = RISCVMatInt::getIntMatCost(C1Int, Ty.getSizeInBits(), 6234 Subtarget.is64Bit()); 6235 int ShiftedC1Cost = RISCVMatInt::getIntMatCost( 6236 ShiftedC1Int, Ty.getSizeInBits(), Subtarget.is64Bit()); 6237 6238 // Materialising `c1` is cheaper than materialising `c1 << c2`, so the 6239 // combine should be prevented. 6240 if (C1Cost < ShiftedC1Cost) 6241 return false; 6242 } 6243 } 6244 return true; 6245 } 6246 6247 bool RISCVTargetLowering::targetShrinkDemandedConstant( 6248 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 6249 TargetLoweringOpt &TLO) const { 6250 // Delay this optimization as late as possible. 6251 if (!TLO.LegalOps) 6252 return false; 6253 6254 EVT VT = Op.getValueType(); 6255 if (VT.isVector()) 6256 return false; 6257 6258 // Only handle AND for now. 6259 if (Op.getOpcode() != ISD::AND) 6260 return false; 6261 6262 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 6263 if (!C) 6264 return false; 6265 6266 const APInt &Mask = C->getAPIntValue(); 6267 6268 // Clear all non-demanded bits initially. 6269 APInt ShrunkMask = Mask & DemandedBits; 6270 6271 // Try to make a smaller immediate by setting undemanded bits. 6272 6273 APInt ExpandedMask = Mask | ~DemandedBits; 6274 6275 auto IsLegalMask = [ShrunkMask, ExpandedMask](const APInt &Mask) -> bool { 6276 return ShrunkMask.isSubsetOf(Mask) && Mask.isSubsetOf(ExpandedMask); 6277 }; 6278 auto UseMask = [Mask, Op, VT, &TLO](const APInt &NewMask) -> bool { 6279 if (NewMask == Mask) 6280 return true; 6281 SDLoc DL(Op); 6282 SDValue NewC = TLO.DAG.getConstant(NewMask, DL, VT); 6283 SDValue NewOp = TLO.DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), NewC); 6284 return TLO.CombineTo(Op, NewOp); 6285 }; 6286 6287 // If the shrunk mask fits in sign extended 12 bits, let the target 6288 // independent code apply it. 6289 if (ShrunkMask.isSignedIntN(12)) 6290 return false; 6291 6292 // Preserve (and X, 0xffff) when zext.h is supported. 6293 if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp()) { 6294 APInt NewMask = APInt(Mask.getBitWidth(), 0xffff); 6295 if (IsLegalMask(NewMask)) 6296 return UseMask(NewMask); 6297 } 6298 6299 // Try to preserve (and X, 0xffffffff), the (zext_inreg X, i32) pattern. 6300 if (VT == MVT::i64) { 6301 APInt NewMask = APInt(64, 0xffffffff); 6302 if (IsLegalMask(NewMask)) 6303 return UseMask(NewMask); 6304 } 6305 6306 // For the remaining optimizations, we need to be able to make a negative 6307 // number through a combination of mask and undemanded bits. 6308 if (!ExpandedMask.isNegative()) 6309 return false; 6310 6311 // What is the fewest number of bits we need to represent the negative number. 6312 unsigned MinSignedBits = ExpandedMask.getMinSignedBits(); 6313 6314 // Try to make a 12 bit negative immediate. If that fails try to make a 32 6315 // bit negative immediate unless the shrunk immediate already fits in 32 bits. 6316 APInt NewMask = ShrunkMask; 6317 if (MinSignedBits <= 12) 6318 NewMask.setBitsFrom(11); 6319 else if (MinSignedBits <= 32 && !ShrunkMask.isSignedIntN(32)) 6320 NewMask.setBitsFrom(31); 6321 else 6322 return false; 6323 6324 // Sanity check that our new mask is a subset of the demanded mask. 6325 assert(IsLegalMask(NewMask)); 6326 return UseMask(NewMask); 6327 } 6328 6329 static void computeGREV(APInt &Src, unsigned ShAmt) { 6330 ShAmt &= Src.getBitWidth() - 1; 6331 uint64_t x = Src.getZExtValue(); 6332 if (ShAmt & 1) 6333 x = ((x & 0x5555555555555555LL) << 1) | ((x & 0xAAAAAAAAAAAAAAAALL) >> 1); 6334 if (ShAmt & 2) 6335 x = ((x & 0x3333333333333333LL) << 2) | ((x & 0xCCCCCCCCCCCCCCCCLL) >> 2); 6336 if (ShAmt & 4) 6337 x = ((x & 0x0F0F0F0F0F0F0F0FLL) << 4) | ((x & 0xF0F0F0F0F0F0F0F0LL) >> 4); 6338 if (ShAmt & 8) 6339 x = ((x & 0x00FF00FF00FF00FFLL) << 8) | ((x & 0xFF00FF00FF00FF00LL) >> 8); 6340 if (ShAmt & 16) 6341 x = ((x & 0x0000FFFF0000FFFFLL) << 16) | ((x & 0xFFFF0000FFFF0000LL) >> 16); 6342 if (ShAmt & 32) 6343 x = ((x & 0x00000000FFFFFFFFLL) << 32) | ((x & 0xFFFFFFFF00000000LL) >> 32); 6344 Src = x; 6345 } 6346 6347 void RISCVTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 6348 KnownBits &Known, 6349 const APInt &DemandedElts, 6350 const SelectionDAG &DAG, 6351 unsigned Depth) const { 6352 unsigned BitWidth = Known.getBitWidth(); 6353 unsigned Opc = Op.getOpcode(); 6354 assert((Opc >= ISD::BUILTIN_OP_END || 6355 Opc == ISD::INTRINSIC_WO_CHAIN || 6356 Opc == ISD::INTRINSIC_W_CHAIN || 6357 Opc == ISD::INTRINSIC_VOID) && 6358 "Should use MaskedValueIsZero if you don't know whether Op" 6359 " is a target node!"); 6360 6361 Known.resetAll(); 6362 switch (Opc) { 6363 default: break; 6364 case RISCVISD::SELECT_CC: { 6365 Known = DAG.computeKnownBits(Op.getOperand(4), Depth + 1); 6366 // If we don't know any bits, early out. 6367 if (Known.isUnknown()) 6368 break; 6369 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(3), Depth + 1); 6370 6371 // Only known if known in both the LHS and RHS. 6372 Known = KnownBits::commonBits(Known, Known2); 6373 break; 6374 } 6375 case RISCVISD::REMUW: { 6376 KnownBits Known2; 6377 Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 6378 Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 6379 // We only care about the lower 32 bits. 6380 Known = KnownBits::urem(Known.trunc(32), Known2.trunc(32)); 6381 // Restore the original width by sign extending. 6382 Known = Known.sext(BitWidth); 6383 break; 6384 } 6385 case RISCVISD::DIVUW: { 6386 KnownBits Known2; 6387 Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 6388 Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 6389 // We only care about the lower 32 bits. 6390 Known = KnownBits::udiv(Known.trunc(32), Known2.trunc(32)); 6391 // Restore the original width by sign extending. 6392 Known = Known.sext(BitWidth); 6393 break; 6394 } 6395 case RISCVISD::CTZW: { 6396 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 6397 unsigned PossibleTZ = Known2.trunc(32).countMaxTrailingZeros(); 6398 unsigned LowBits = Log2_32(PossibleTZ) + 1; 6399 Known.Zero.setBitsFrom(LowBits); 6400 break; 6401 } 6402 case RISCVISD::CLZW: { 6403 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 6404 unsigned PossibleLZ = Known2.trunc(32).countMaxLeadingZeros(); 6405 unsigned LowBits = Log2_32(PossibleLZ) + 1; 6406 Known.Zero.setBitsFrom(LowBits); 6407 break; 6408 } 6409 case RISCVISD::GREV: 6410 case RISCVISD::GREVW: { 6411 if (auto *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 6412 Known = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 6413 if (Opc == RISCVISD::GREVW) 6414 Known = Known.trunc(32); 6415 unsigned ShAmt = C->getZExtValue(); 6416 computeGREV(Known.Zero, ShAmt); 6417 computeGREV(Known.One, ShAmt); 6418 if (Opc == RISCVISD::GREVW) 6419 Known = Known.sext(BitWidth); 6420 } 6421 break; 6422 } 6423 case RISCVISD::READ_VLENB: 6424 // We assume VLENB is at least 16 bytes. 6425 Known.Zero.setLowBits(4); 6426 break; 6427 case ISD::INTRINSIC_W_CHAIN: { 6428 unsigned IntNo = Op.getConstantOperandVal(1); 6429 switch (IntNo) { 6430 default: 6431 // We can't do anything for most intrinsics. 6432 break; 6433 case Intrinsic::riscv_vsetvli: 6434 case Intrinsic::riscv_vsetvlimax: 6435 // Assume that VL output is positive and would fit in an int32_t. 6436 // TODO: VLEN might be capped at 16 bits in a future V spec update. 6437 if (BitWidth >= 32) 6438 Known.Zero.setBitsFrom(31); 6439 break; 6440 } 6441 break; 6442 } 6443 } 6444 } 6445 6446 unsigned RISCVTargetLowering::ComputeNumSignBitsForTargetNode( 6447 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 6448 unsigned Depth) const { 6449 switch (Op.getOpcode()) { 6450 default: 6451 break; 6452 case RISCVISD::SLLW: 6453 case RISCVISD::SRAW: 6454 case RISCVISD::SRLW: 6455 case RISCVISD::DIVW: 6456 case RISCVISD::DIVUW: 6457 case RISCVISD::REMUW: 6458 case RISCVISD::ROLW: 6459 case RISCVISD::RORW: 6460 case RISCVISD::GREVW: 6461 case RISCVISD::GORCW: 6462 case RISCVISD::FSLW: 6463 case RISCVISD::FSRW: 6464 case RISCVISD::SHFLW: 6465 case RISCVISD::UNSHFLW: 6466 case RISCVISD::BCOMPRESSW: 6467 case RISCVISD::BDECOMPRESSW: 6468 // TODO: As the result is sign-extended, this is conservatively correct. A 6469 // more precise answer could be calculated for SRAW depending on known 6470 // bits in the shift amount. 6471 return 33; 6472 case RISCVISD::SHFL: 6473 case RISCVISD::UNSHFL: { 6474 // There is no SHFLIW, but a i64 SHFLI with bit 4 of the control word 6475 // cleared doesn't affect bit 31. The upper 32 bits will be shuffled, but 6476 // will stay within the upper 32 bits. If there were more than 32 sign bits 6477 // before there will be at least 33 sign bits after. 6478 if (Op.getValueType() == MVT::i64 && 6479 isa<ConstantSDNode>(Op.getOperand(1)) && 6480 (Op.getConstantOperandVal(1) & 0x10) == 0) { 6481 unsigned Tmp = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1); 6482 if (Tmp > 32) 6483 return 33; 6484 } 6485 break; 6486 } 6487 case RISCVISD::VMV_X_S: 6488 // The number of sign bits of the scalar result is computed by obtaining the 6489 // element type of the input vector operand, subtracting its width from the 6490 // XLEN, and then adding one (sign bit within the element type). If the 6491 // element type is wider than XLen, the least-significant XLEN bits are 6492 // taken. 6493 if (Op.getOperand(0).getScalarValueSizeInBits() > Subtarget.getXLen()) 6494 return 1; 6495 return Subtarget.getXLen() - Op.getOperand(0).getScalarValueSizeInBits() + 1; 6496 } 6497 6498 return 1; 6499 } 6500 6501 static MachineBasicBlock *emitReadCycleWidePseudo(MachineInstr &MI, 6502 MachineBasicBlock *BB) { 6503 assert(MI.getOpcode() == RISCV::ReadCycleWide && "Unexpected instruction"); 6504 6505 // To read the 64-bit cycle CSR on a 32-bit target, we read the two halves. 6506 // Should the count have wrapped while it was being read, we need to try 6507 // again. 6508 // ... 6509 // read: 6510 // rdcycleh x3 # load high word of cycle 6511 // rdcycle x2 # load low word of cycle 6512 // rdcycleh x4 # load high word of cycle 6513 // bne x3, x4, read # check if high word reads match, otherwise try again 6514 // ... 6515 6516 MachineFunction &MF = *BB->getParent(); 6517 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 6518 MachineFunction::iterator It = ++BB->getIterator(); 6519 6520 MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB); 6521 MF.insert(It, LoopMBB); 6522 6523 MachineBasicBlock *DoneMBB = MF.CreateMachineBasicBlock(LLVM_BB); 6524 MF.insert(It, DoneMBB); 6525 6526 // Transfer the remainder of BB and its successor edges to DoneMBB. 6527 DoneMBB->splice(DoneMBB->begin(), BB, 6528 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 6529 DoneMBB->transferSuccessorsAndUpdatePHIs(BB); 6530 6531 BB->addSuccessor(LoopMBB); 6532 6533 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 6534 Register ReadAgainReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 6535 Register LoReg = MI.getOperand(0).getReg(); 6536 Register HiReg = MI.getOperand(1).getReg(); 6537 DebugLoc DL = MI.getDebugLoc(); 6538 6539 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 6540 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), HiReg) 6541 .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding) 6542 .addReg(RISCV::X0); 6543 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), LoReg) 6544 .addImm(RISCVSysReg::lookupSysRegByName("CYCLE")->Encoding) 6545 .addReg(RISCV::X0); 6546 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), ReadAgainReg) 6547 .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding) 6548 .addReg(RISCV::X0); 6549 6550 BuildMI(LoopMBB, DL, TII->get(RISCV::BNE)) 6551 .addReg(HiReg) 6552 .addReg(ReadAgainReg) 6553 .addMBB(LoopMBB); 6554 6555 LoopMBB->addSuccessor(LoopMBB); 6556 LoopMBB->addSuccessor(DoneMBB); 6557 6558 MI.eraseFromParent(); 6559 6560 return DoneMBB; 6561 } 6562 6563 static MachineBasicBlock *emitSplitF64Pseudo(MachineInstr &MI, 6564 MachineBasicBlock *BB) { 6565 assert(MI.getOpcode() == RISCV::SplitF64Pseudo && "Unexpected instruction"); 6566 6567 MachineFunction &MF = *BB->getParent(); 6568 DebugLoc DL = MI.getDebugLoc(); 6569 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 6570 const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo(); 6571 Register LoReg = MI.getOperand(0).getReg(); 6572 Register HiReg = MI.getOperand(1).getReg(); 6573 Register SrcReg = MI.getOperand(2).getReg(); 6574 const TargetRegisterClass *SrcRC = &RISCV::FPR64RegClass; 6575 int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF); 6576 6577 TII.storeRegToStackSlot(*BB, MI, SrcReg, MI.getOperand(2).isKill(), FI, SrcRC, 6578 RI); 6579 MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI); 6580 MachineMemOperand *MMOLo = 6581 MF.getMachineMemOperand(MPI, MachineMemOperand::MOLoad, 4, Align(8)); 6582 MachineMemOperand *MMOHi = MF.getMachineMemOperand( 6583 MPI.getWithOffset(4), MachineMemOperand::MOLoad, 4, Align(8)); 6584 BuildMI(*BB, MI, DL, TII.get(RISCV::LW), LoReg) 6585 .addFrameIndex(FI) 6586 .addImm(0) 6587 .addMemOperand(MMOLo); 6588 BuildMI(*BB, MI, DL, TII.get(RISCV::LW), HiReg) 6589 .addFrameIndex(FI) 6590 .addImm(4) 6591 .addMemOperand(MMOHi); 6592 MI.eraseFromParent(); // The pseudo instruction is gone now. 6593 return BB; 6594 } 6595 6596 static MachineBasicBlock *emitBuildPairF64Pseudo(MachineInstr &MI, 6597 MachineBasicBlock *BB) { 6598 assert(MI.getOpcode() == RISCV::BuildPairF64Pseudo && 6599 "Unexpected instruction"); 6600 6601 MachineFunction &MF = *BB->getParent(); 6602 DebugLoc DL = MI.getDebugLoc(); 6603 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 6604 const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo(); 6605 Register DstReg = MI.getOperand(0).getReg(); 6606 Register LoReg = MI.getOperand(1).getReg(); 6607 Register HiReg = MI.getOperand(2).getReg(); 6608 const TargetRegisterClass *DstRC = &RISCV::FPR64RegClass; 6609 int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF); 6610 6611 MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI); 6612 MachineMemOperand *MMOLo = 6613 MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Align(8)); 6614 MachineMemOperand *MMOHi = MF.getMachineMemOperand( 6615 MPI.getWithOffset(4), MachineMemOperand::MOStore, 4, Align(8)); 6616 BuildMI(*BB, MI, DL, TII.get(RISCV::SW)) 6617 .addReg(LoReg, getKillRegState(MI.getOperand(1).isKill())) 6618 .addFrameIndex(FI) 6619 .addImm(0) 6620 .addMemOperand(MMOLo); 6621 BuildMI(*BB, MI, DL, TII.get(RISCV::SW)) 6622 .addReg(HiReg, getKillRegState(MI.getOperand(2).isKill())) 6623 .addFrameIndex(FI) 6624 .addImm(4) 6625 .addMemOperand(MMOHi); 6626 TII.loadRegFromStackSlot(*BB, MI, DstReg, FI, DstRC, RI); 6627 MI.eraseFromParent(); // The pseudo instruction is gone now. 6628 return BB; 6629 } 6630 6631 static bool isSelectPseudo(MachineInstr &MI) { 6632 switch (MI.getOpcode()) { 6633 default: 6634 return false; 6635 case RISCV::Select_GPR_Using_CC_GPR: 6636 case RISCV::Select_FPR16_Using_CC_GPR: 6637 case RISCV::Select_FPR32_Using_CC_GPR: 6638 case RISCV::Select_FPR64_Using_CC_GPR: 6639 return true; 6640 } 6641 } 6642 6643 static MachineBasicBlock *emitSelectPseudo(MachineInstr &MI, 6644 MachineBasicBlock *BB) { 6645 // To "insert" Select_* instructions, we actually have to insert the triangle 6646 // control-flow pattern. The incoming instructions know the destination vreg 6647 // to set, the condition code register to branch on, the true/false values to 6648 // select between, and the condcode to use to select the appropriate branch. 6649 // 6650 // We produce the following control flow: 6651 // HeadMBB 6652 // | \ 6653 // | IfFalseMBB 6654 // | / 6655 // TailMBB 6656 // 6657 // When we find a sequence of selects we attempt to optimize their emission 6658 // by sharing the control flow. Currently we only handle cases where we have 6659 // multiple selects with the exact same condition (same LHS, RHS and CC). 6660 // The selects may be interleaved with other instructions if the other 6661 // instructions meet some requirements we deem safe: 6662 // - They are debug instructions. Otherwise, 6663 // - They do not have side-effects, do not access memory and their inputs do 6664 // not depend on the results of the select pseudo-instructions. 6665 // The TrueV/FalseV operands of the selects cannot depend on the result of 6666 // previous selects in the sequence. 6667 // These conditions could be further relaxed. See the X86 target for a 6668 // related approach and more information. 6669 Register LHS = MI.getOperand(1).getReg(); 6670 Register RHS = MI.getOperand(2).getReg(); 6671 auto CC = static_cast<ISD::CondCode>(MI.getOperand(3).getImm()); 6672 6673 SmallVector<MachineInstr *, 4> SelectDebugValues; 6674 SmallSet<Register, 4> SelectDests; 6675 SelectDests.insert(MI.getOperand(0).getReg()); 6676 6677 MachineInstr *LastSelectPseudo = &MI; 6678 6679 for (auto E = BB->end(), SequenceMBBI = MachineBasicBlock::iterator(MI); 6680 SequenceMBBI != E; ++SequenceMBBI) { 6681 if (SequenceMBBI->isDebugInstr()) 6682 continue; 6683 else if (isSelectPseudo(*SequenceMBBI)) { 6684 if (SequenceMBBI->getOperand(1).getReg() != LHS || 6685 SequenceMBBI->getOperand(2).getReg() != RHS || 6686 SequenceMBBI->getOperand(3).getImm() != CC || 6687 SelectDests.count(SequenceMBBI->getOperand(4).getReg()) || 6688 SelectDests.count(SequenceMBBI->getOperand(5).getReg())) 6689 break; 6690 LastSelectPseudo = &*SequenceMBBI; 6691 SequenceMBBI->collectDebugValues(SelectDebugValues); 6692 SelectDests.insert(SequenceMBBI->getOperand(0).getReg()); 6693 } else { 6694 if (SequenceMBBI->hasUnmodeledSideEffects() || 6695 SequenceMBBI->mayLoadOrStore()) 6696 break; 6697 if (llvm::any_of(SequenceMBBI->operands(), [&](MachineOperand &MO) { 6698 return MO.isReg() && MO.isUse() && SelectDests.count(MO.getReg()); 6699 })) 6700 break; 6701 } 6702 } 6703 6704 const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo(); 6705 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 6706 DebugLoc DL = MI.getDebugLoc(); 6707 MachineFunction::iterator I = ++BB->getIterator(); 6708 6709 MachineBasicBlock *HeadMBB = BB; 6710 MachineFunction *F = BB->getParent(); 6711 MachineBasicBlock *TailMBB = F->CreateMachineBasicBlock(LLVM_BB); 6712 MachineBasicBlock *IfFalseMBB = F->CreateMachineBasicBlock(LLVM_BB); 6713 6714 F->insert(I, IfFalseMBB); 6715 F->insert(I, TailMBB); 6716 6717 // Transfer debug instructions associated with the selects to TailMBB. 6718 for (MachineInstr *DebugInstr : SelectDebugValues) { 6719 TailMBB->push_back(DebugInstr->removeFromParent()); 6720 } 6721 6722 // Move all instructions after the sequence to TailMBB. 6723 TailMBB->splice(TailMBB->end(), HeadMBB, 6724 std::next(LastSelectPseudo->getIterator()), HeadMBB->end()); 6725 // Update machine-CFG edges by transferring all successors of the current 6726 // block to the new block which will contain the Phi nodes for the selects. 6727 TailMBB->transferSuccessorsAndUpdatePHIs(HeadMBB); 6728 // Set the successors for HeadMBB. 6729 HeadMBB->addSuccessor(IfFalseMBB); 6730 HeadMBB->addSuccessor(TailMBB); 6731 6732 // Insert appropriate branch. 6733 unsigned Opcode = getBranchOpcodeForIntCondCode(CC); 6734 6735 BuildMI(HeadMBB, DL, TII.get(Opcode)) 6736 .addReg(LHS) 6737 .addReg(RHS) 6738 .addMBB(TailMBB); 6739 6740 // IfFalseMBB just falls through to TailMBB. 6741 IfFalseMBB->addSuccessor(TailMBB); 6742 6743 // Create PHIs for all of the select pseudo-instructions. 6744 auto SelectMBBI = MI.getIterator(); 6745 auto SelectEnd = std::next(LastSelectPseudo->getIterator()); 6746 auto InsertionPoint = TailMBB->begin(); 6747 while (SelectMBBI != SelectEnd) { 6748 auto Next = std::next(SelectMBBI); 6749 if (isSelectPseudo(*SelectMBBI)) { 6750 // %Result = phi [ %TrueValue, HeadMBB ], [ %FalseValue, IfFalseMBB ] 6751 BuildMI(*TailMBB, InsertionPoint, SelectMBBI->getDebugLoc(), 6752 TII.get(RISCV::PHI), SelectMBBI->getOperand(0).getReg()) 6753 .addReg(SelectMBBI->getOperand(4).getReg()) 6754 .addMBB(HeadMBB) 6755 .addReg(SelectMBBI->getOperand(5).getReg()) 6756 .addMBB(IfFalseMBB); 6757 SelectMBBI->eraseFromParent(); 6758 } 6759 SelectMBBI = Next; 6760 } 6761 6762 F->getProperties().reset(MachineFunctionProperties::Property::NoPHIs); 6763 return TailMBB; 6764 } 6765 6766 MachineBasicBlock * 6767 RISCVTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 6768 MachineBasicBlock *BB) const { 6769 switch (MI.getOpcode()) { 6770 default: 6771 llvm_unreachable("Unexpected instr type to insert"); 6772 case RISCV::ReadCycleWide: 6773 assert(!Subtarget.is64Bit() && 6774 "ReadCycleWrite is only to be used on riscv32"); 6775 return emitReadCycleWidePseudo(MI, BB); 6776 case RISCV::Select_GPR_Using_CC_GPR: 6777 case RISCV::Select_FPR16_Using_CC_GPR: 6778 case RISCV::Select_FPR32_Using_CC_GPR: 6779 case RISCV::Select_FPR64_Using_CC_GPR: 6780 return emitSelectPseudo(MI, BB); 6781 case RISCV::BuildPairF64Pseudo: 6782 return emitBuildPairF64Pseudo(MI, BB); 6783 case RISCV::SplitF64Pseudo: 6784 return emitSplitF64Pseudo(MI, BB); 6785 } 6786 } 6787 6788 // Calling Convention Implementation. 6789 // The expectations for frontend ABI lowering vary from target to target. 6790 // Ideally, an LLVM frontend would be able to avoid worrying about many ABI 6791 // details, but this is a longer term goal. For now, we simply try to keep the 6792 // role of the frontend as simple and well-defined as possible. The rules can 6793 // be summarised as: 6794 // * Never split up large scalar arguments. We handle them here. 6795 // * If a hardfloat calling convention is being used, and the struct may be 6796 // passed in a pair of registers (fp+fp, int+fp), and both registers are 6797 // available, then pass as two separate arguments. If either the GPRs or FPRs 6798 // are exhausted, then pass according to the rule below. 6799 // * If a struct could never be passed in registers or directly in a stack 6800 // slot (as it is larger than 2*XLEN and the floating point rules don't 6801 // apply), then pass it using a pointer with the byval attribute. 6802 // * If a struct is less than 2*XLEN, then coerce to either a two-element 6803 // word-sized array or a 2*XLEN scalar (depending on alignment). 6804 // * The frontend can determine whether a struct is returned by reference or 6805 // not based on its size and fields. If it will be returned by reference, the 6806 // frontend must modify the prototype so a pointer with the sret annotation is 6807 // passed as the first argument. This is not necessary for large scalar 6808 // returns. 6809 // * Struct return values and varargs should be coerced to structs containing 6810 // register-size fields in the same situations they would be for fixed 6811 // arguments. 6812 6813 static const MCPhysReg ArgGPRs[] = { 6814 RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, 6815 RISCV::X14, RISCV::X15, RISCV::X16, RISCV::X17 6816 }; 6817 static const MCPhysReg ArgFPR16s[] = { 6818 RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, 6819 RISCV::F14_H, RISCV::F15_H, RISCV::F16_H, RISCV::F17_H 6820 }; 6821 static const MCPhysReg ArgFPR32s[] = { 6822 RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, 6823 RISCV::F14_F, RISCV::F15_F, RISCV::F16_F, RISCV::F17_F 6824 }; 6825 static const MCPhysReg ArgFPR64s[] = { 6826 RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, 6827 RISCV::F14_D, RISCV::F15_D, RISCV::F16_D, RISCV::F17_D 6828 }; 6829 // This is an interim calling convention and it may be changed in the future. 6830 static const MCPhysReg ArgVRs[] = { 6831 RISCV::V8, RISCV::V9, RISCV::V10, RISCV::V11, RISCV::V12, RISCV::V13, 6832 RISCV::V14, RISCV::V15, RISCV::V16, RISCV::V17, RISCV::V18, RISCV::V19, 6833 RISCV::V20, RISCV::V21, RISCV::V22, RISCV::V23}; 6834 static const MCPhysReg ArgVRM2s[] = {RISCV::V8M2, RISCV::V10M2, RISCV::V12M2, 6835 RISCV::V14M2, RISCV::V16M2, RISCV::V18M2, 6836 RISCV::V20M2, RISCV::V22M2}; 6837 static const MCPhysReg ArgVRM4s[] = {RISCV::V8M4, RISCV::V12M4, RISCV::V16M4, 6838 RISCV::V20M4}; 6839 static const MCPhysReg ArgVRM8s[] = {RISCV::V8M8, RISCV::V16M8}; 6840 6841 // Pass a 2*XLEN argument that has been split into two XLEN values through 6842 // registers or the stack as necessary. 6843 static bool CC_RISCVAssign2XLen(unsigned XLen, CCState &State, CCValAssign VA1, 6844 ISD::ArgFlagsTy ArgFlags1, unsigned ValNo2, 6845 MVT ValVT2, MVT LocVT2, 6846 ISD::ArgFlagsTy ArgFlags2) { 6847 unsigned XLenInBytes = XLen / 8; 6848 if (Register Reg = State.AllocateReg(ArgGPRs)) { 6849 // At least one half can be passed via register. 6850 State.addLoc(CCValAssign::getReg(VA1.getValNo(), VA1.getValVT(), Reg, 6851 VA1.getLocVT(), CCValAssign::Full)); 6852 } else { 6853 // Both halves must be passed on the stack, with proper alignment. 6854 Align StackAlign = 6855 std::max(Align(XLenInBytes), ArgFlags1.getNonZeroOrigAlign()); 6856 State.addLoc( 6857 CCValAssign::getMem(VA1.getValNo(), VA1.getValVT(), 6858 State.AllocateStack(XLenInBytes, StackAlign), 6859 VA1.getLocVT(), CCValAssign::Full)); 6860 State.addLoc(CCValAssign::getMem( 6861 ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)), 6862 LocVT2, CCValAssign::Full)); 6863 return false; 6864 } 6865 6866 if (Register Reg = State.AllocateReg(ArgGPRs)) { 6867 // The second half can also be passed via register. 6868 State.addLoc( 6869 CCValAssign::getReg(ValNo2, ValVT2, Reg, LocVT2, CCValAssign::Full)); 6870 } else { 6871 // The second half is passed via the stack, without additional alignment. 6872 State.addLoc(CCValAssign::getMem( 6873 ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)), 6874 LocVT2, CCValAssign::Full)); 6875 } 6876 6877 return false; 6878 } 6879 6880 static unsigned allocateRVVReg(MVT ValVT, unsigned ValNo, 6881 Optional<unsigned> FirstMaskArgument, 6882 CCState &State, const RISCVTargetLowering &TLI) { 6883 const TargetRegisterClass *RC = TLI.getRegClassFor(ValVT); 6884 if (RC == &RISCV::VRRegClass) { 6885 // Assign the first mask argument to V0. 6886 // This is an interim calling convention and it may be changed in the 6887 // future. 6888 if (FirstMaskArgument.hasValue() && ValNo == FirstMaskArgument.getValue()) 6889 return State.AllocateReg(RISCV::V0); 6890 return State.AllocateReg(ArgVRs); 6891 } 6892 if (RC == &RISCV::VRM2RegClass) 6893 return State.AllocateReg(ArgVRM2s); 6894 if (RC == &RISCV::VRM4RegClass) 6895 return State.AllocateReg(ArgVRM4s); 6896 if (RC == &RISCV::VRM8RegClass) 6897 return State.AllocateReg(ArgVRM8s); 6898 llvm_unreachable("Unhandled register class for ValueType"); 6899 } 6900 6901 // Implements the RISC-V calling convention. Returns true upon failure. 6902 static bool CC_RISCV(const DataLayout &DL, RISCVABI::ABI ABI, unsigned ValNo, 6903 MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, 6904 ISD::ArgFlagsTy ArgFlags, CCState &State, bool IsFixed, 6905 bool IsRet, Type *OrigTy, const RISCVTargetLowering &TLI, 6906 Optional<unsigned> FirstMaskArgument) { 6907 unsigned XLen = DL.getLargestLegalIntTypeSizeInBits(); 6908 assert(XLen == 32 || XLen == 64); 6909 MVT XLenVT = XLen == 32 ? MVT::i32 : MVT::i64; 6910 6911 // Any return value split in to more than two values can't be returned 6912 // directly. Vectors are returned via the available vector registers. 6913 if (!LocVT.isVector() && IsRet && ValNo > 1) 6914 return true; 6915 6916 // UseGPRForF16_F32 if targeting one of the soft-float ABIs, if passing a 6917 // variadic argument, or if no F16/F32 argument registers are available. 6918 bool UseGPRForF16_F32 = true; 6919 // UseGPRForF64 if targeting soft-float ABIs or an FLEN=32 ABI, if passing a 6920 // variadic argument, or if no F64 argument registers are available. 6921 bool UseGPRForF64 = true; 6922 6923 switch (ABI) { 6924 default: 6925 llvm_unreachable("Unexpected ABI"); 6926 case RISCVABI::ABI_ILP32: 6927 case RISCVABI::ABI_LP64: 6928 break; 6929 case RISCVABI::ABI_ILP32F: 6930 case RISCVABI::ABI_LP64F: 6931 UseGPRForF16_F32 = !IsFixed; 6932 break; 6933 case RISCVABI::ABI_ILP32D: 6934 case RISCVABI::ABI_LP64D: 6935 UseGPRForF16_F32 = !IsFixed; 6936 UseGPRForF64 = !IsFixed; 6937 break; 6938 } 6939 6940 // FPR16, FPR32, and FPR64 alias each other. 6941 if (State.getFirstUnallocated(ArgFPR32s) == array_lengthof(ArgFPR32s)) { 6942 UseGPRForF16_F32 = true; 6943 UseGPRForF64 = true; 6944 } 6945 6946 // From this point on, rely on UseGPRForF16_F32, UseGPRForF64 and 6947 // similar local variables rather than directly checking against the target 6948 // ABI. 6949 6950 if (UseGPRForF16_F32 && (ValVT == MVT::f16 || ValVT == MVT::f32)) { 6951 LocVT = XLenVT; 6952 LocInfo = CCValAssign::BCvt; 6953 } else if (UseGPRForF64 && XLen == 64 && ValVT == MVT::f64) { 6954 LocVT = MVT::i64; 6955 LocInfo = CCValAssign::BCvt; 6956 } 6957 6958 // If this is a variadic argument, the RISC-V calling convention requires 6959 // that it is assigned an 'even' or 'aligned' register if it has 8-byte 6960 // alignment (RV32) or 16-byte alignment (RV64). An aligned register should 6961 // be used regardless of whether the original argument was split during 6962 // legalisation or not. The argument will not be passed by registers if the 6963 // original type is larger than 2*XLEN, so the register alignment rule does 6964 // not apply. 6965 unsigned TwoXLenInBytes = (2 * XLen) / 8; 6966 if (!IsFixed && ArgFlags.getNonZeroOrigAlign() == TwoXLenInBytes && 6967 DL.getTypeAllocSize(OrigTy) == TwoXLenInBytes) { 6968 unsigned RegIdx = State.getFirstUnallocated(ArgGPRs); 6969 // Skip 'odd' register if necessary. 6970 if (RegIdx != array_lengthof(ArgGPRs) && RegIdx % 2 == 1) 6971 State.AllocateReg(ArgGPRs); 6972 } 6973 6974 SmallVectorImpl<CCValAssign> &PendingLocs = State.getPendingLocs(); 6975 SmallVectorImpl<ISD::ArgFlagsTy> &PendingArgFlags = 6976 State.getPendingArgFlags(); 6977 6978 assert(PendingLocs.size() == PendingArgFlags.size() && 6979 "PendingLocs and PendingArgFlags out of sync"); 6980 6981 // Handle passing f64 on RV32D with a soft float ABI or when floating point 6982 // registers are exhausted. 6983 if (UseGPRForF64 && XLen == 32 && ValVT == MVT::f64) { 6984 assert(!ArgFlags.isSplit() && PendingLocs.empty() && 6985 "Can't lower f64 if it is split"); 6986 // Depending on available argument GPRS, f64 may be passed in a pair of 6987 // GPRs, split between a GPR and the stack, or passed completely on the 6988 // stack. LowerCall/LowerFormalArguments/LowerReturn must recognise these 6989 // cases. 6990 Register Reg = State.AllocateReg(ArgGPRs); 6991 LocVT = MVT::i32; 6992 if (!Reg) { 6993 unsigned StackOffset = State.AllocateStack(8, Align(8)); 6994 State.addLoc( 6995 CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 6996 return false; 6997 } 6998 if (!State.AllocateReg(ArgGPRs)) 6999 State.AllocateStack(4, Align(4)); 7000 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 7001 return false; 7002 } 7003 7004 // Fixed-length vectors are located in the corresponding scalable-vector 7005 // container types. 7006 if (ValVT.isFixedLengthVector()) 7007 LocVT = TLI.getContainerForFixedLengthVector(LocVT); 7008 7009 // Split arguments might be passed indirectly, so keep track of the pending 7010 // values. Split vectors are passed via a mix of registers and indirectly, so 7011 // treat them as we would any other argument. 7012 if (!LocVT.isVector() && (ArgFlags.isSplit() || !PendingLocs.empty())) { 7013 LocVT = XLenVT; 7014 LocInfo = CCValAssign::Indirect; 7015 PendingLocs.push_back( 7016 CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo)); 7017 PendingArgFlags.push_back(ArgFlags); 7018 if (!ArgFlags.isSplitEnd()) { 7019 return false; 7020 } 7021 } 7022 7023 // If the split argument only had two elements, it should be passed directly 7024 // in registers or on the stack. 7025 if (!LocVT.isVector() && ArgFlags.isSplitEnd() && PendingLocs.size() <= 2) { 7026 assert(PendingLocs.size() == 2 && "Unexpected PendingLocs.size()"); 7027 // Apply the normal calling convention rules to the first half of the 7028 // split argument. 7029 CCValAssign VA = PendingLocs[0]; 7030 ISD::ArgFlagsTy AF = PendingArgFlags[0]; 7031 PendingLocs.clear(); 7032 PendingArgFlags.clear(); 7033 return CC_RISCVAssign2XLen(XLen, State, VA, AF, ValNo, ValVT, LocVT, 7034 ArgFlags); 7035 } 7036 7037 // Allocate to a register if possible, or else a stack slot. 7038 Register Reg; 7039 unsigned StoreSizeBytes = XLen / 8; 7040 Align StackAlign = Align(XLen / 8); 7041 7042 if (ValVT == MVT::f16 && !UseGPRForF16_F32) 7043 Reg = State.AllocateReg(ArgFPR16s); 7044 else if (ValVT == MVT::f32 && !UseGPRForF16_F32) 7045 Reg = State.AllocateReg(ArgFPR32s); 7046 else if (ValVT == MVT::f64 && !UseGPRForF64) 7047 Reg = State.AllocateReg(ArgFPR64s); 7048 else if (ValVT.isVector()) { 7049 Reg = allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI); 7050 if (!Reg) { 7051 // For return values, the vector must be passed fully via registers or 7052 // via the stack. 7053 // FIXME: The proposed vector ABI only mandates v8-v15 for return values, 7054 // but we're using all of them. 7055 if (IsRet) 7056 return true; 7057 // Try using a GPR to pass the address 7058 if ((Reg = State.AllocateReg(ArgGPRs))) { 7059 LocVT = XLenVT; 7060 LocInfo = CCValAssign::Indirect; 7061 } else if (ValVT.isScalableVector()) { 7062 report_fatal_error("Unable to pass scalable vector types on the stack"); 7063 } else { 7064 // Pass fixed-length vectors on the stack. 7065 LocVT = ValVT; 7066 StoreSizeBytes = ValVT.getStoreSize(); 7067 // Align vectors to their element sizes, being careful for vXi1 7068 // vectors. 7069 StackAlign = MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne(); 7070 } 7071 } 7072 } else { 7073 Reg = State.AllocateReg(ArgGPRs); 7074 } 7075 7076 unsigned StackOffset = 7077 Reg ? 0 : State.AllocateStack(StoreSizeBytes, StackAlign); 7078 7079 // If we reach this point and PendingLocs is non-empty, we must be at the 7080 // end of a split argument that must be passed indirectly. 7081 if (!PendingLocs.empty()) { 7082 assert(ArgFlags.isSplitEnd() && "Expected ArgFlags.isSplitEnd()"); 7083 assert(PendingLocs.size() > 2 && "Unexpected PendingLocs.size()"); 7084 7085 for (auto &It : PendingLocs) { 7086 if (Reg) 7087 It.convertToReg(Reg); 7088 else 7089 It.convertToMem(StackOffset); 7090 State.addLoc(It); 7091 } 7092 PendingLocs.clear(); 7093 PendingArgFlags.clear(); 7094 return false; 7095 } 7096 7097 assert((!UseGPRForF16_F32 || !UseGPRForF64 || LocVT == XLenVT || 7098 (TLI.getSubtarget().hasStdExtV() && ValVT.isVector())) && 7099 "Expected an XLenVT or vector types at this stage"); 7100 7101 if (Reg) { 7102 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 7103 return false; 7104 } 7105 7106 // When a floating-point value is passed on the stack, no bit-conversion is 7107 // needed. 7108 if (ValVT.isFloatingPoint()) { 7109 LocVT = ValVT; 7110 LocInfo = CCValAssign::Full; 7111 } 7112 State.addLoc(CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 7113 return false; 7114 } 7115 7116 template <typename ArgTy> 7117 static Optional<unsigned> preAssignMask(const ArgTy &Args) { 7118 for (const auto &ArgIdx : enumerate(Args)) { 7119 MVT ArgVT = ArgIdx.value().VT; 7120 if (ArgVT.isVector() && ArgVT.getVectorElementType() == MVT::i1) 7121 return ArgIdx.index(); 7122 } 7123 return None; 7124 } 7125 7126 void RISCVTargetLowering::analyzeInputArgs( 7127 MachineFunction &MF, CCState &CCInfo, 7128 const SmallVectorImpl<ISD::InputArg> &Ins, bool IsRet, 7129 RISCVCCAssignFn Fn) const { 7130 unsigned NumArgs = Ins.size(); 7131 FunctionType *FType = MF.getFunction().getFunctionType(); 7132 7133 Optional<unsigned> FirstMaskArgument; 7134 if (Subtarget.hasStdExtV()) 7135 FirstMaskArgument = preAssignMask(Ins); 7136 7137 for (unsigned i = 0; i != NumArgs; ++i) { 7138 MVT ArgVT = Ins[i].VT; 7139 ISD::ArgFlagsTy ArgFlags = Ins[i].Flags; 7140 7141 Type *ArgTy = nullptr; 7142 if (IsRet) 7143 ArgTy = FType->getReturnType(); 7144 else if (Ins[i].isOrigArg()) 7145 ArgTy = FType->getParamType(Ins[i].getOrigArgIndex()); 7146 7147 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 7148 if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full, 7149 ArgFlags, CCInfo, /*IsFixed=*/true, IsRet, ArgTy, *this, 7150 FirstMaskArgument)) { 7151 LLVM_DEBUG(dbgs() << "InputArg #" << i << " has unhandled type " 7152 << EVT(ArgVT).getEVTString() << '\n'); 7153 llvm_unreachable(nullptr); 7154 } 7155 } 7156 } 7157 7158 void RISCVTargetLowering::analyzeOutputArgs( 7159 MachineFunction &MF, CCState &CCInfo, 7160 const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsRet, 7161 CallLoweringInfo *CLI, RISCVCCAssignFn Fn) const { 7162 unsigned NumArgs = Outs.size(); 7163 7164 Optional<unsigned> FirstMaskArgument; 7165 if (Subtarget.hasStdExtV()) 7166 FirstMaskArgument = preAssignMask(Outs); 7167 7168 for (unsigned i = 0; i != NumArgs; i++) { 7169 MVT ArgVT = Outs[i].VT; 7170 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 7171 Type *OrigTy = CLI ? CLI->getArgs()[Outs[i].OrigArgIndex].Ty : nullptr; 7172 7173 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 7174 if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full, 7175 ArgFlags, CCInfo, Outs[i].IsFixed, IsRet, OrigTy, *this, 7176 FirstMaskArgument)) { 7177 LLVM_DEBUG(dbgs() << "OutputArg #" << i << " has unhandled type " 7178 << EVT(ArgVT).getEVTString() << "\n"); 7179 llvm_unreachable(nullptr); 7180 } 7181 } 7182 } 7183 7184 // Convert Val to a ValVT. Should not be called for CCValAssign::Indirect 7185 // values. 7186 static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDValue Val, 7187 const CCValAssign &VA, const SDLoc &DL, 7188 const RISCVSubtarget &Subtarget) { 7189 switch (VA.getLocInfo()) { 7190 default: 7191 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 7192 case CCValAssign::Full: 7193 if (VA.getValVT().isFixedLengthVector() && VA.getLocVT().isScalableVector()) 7194 Val = convertFromScalableVector(VA.getValVT(), Val, DAG, Subtarget); 7195 break; 7196 case CCValAssign::BCvt: 7197 if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16) 7198 Val = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, Val); 7199 else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) 7200 Val = DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, Val); 7201 else 7202 Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val); 7203 break; 7204 } 7205 return Val; 7206 } 7207 7208 // The caller is responsible for loading the full value if the argument is 7209 // passed with CCValAssign::Indirect. 7210 static SDValue unpackFromRegLoc(SelectionDAG &DAG, SDValue Chain, 7211 const CCValAssign &VA, const SDLoc &DL, 7212 const RISCVTargetLowering &TLI) { 7213 MachineFunction &MF = DAG.getMachineFunction(); 7214 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 7215 EVT LocVT = VA.getLocVT(); 7216 SDValue Val; 7217 const TargetRegisterClass *RC = TLI.getRegClassFor(LocVT.getSimpleVT()); 7218 Register VReg = RegInfo.createVirtualRegister(RC); 7219 RegInfo.addLiveIn(VA.getLocReg(), VReg); 7220 Val = DAG.getCopyFromReg(Chain, DL, VReg, LocVT); 7221 7222 if (VA.getLocInfo() == CCValAssign::Indirect) 7223 return Val; 7224 7225 return convertLocVTToValVT(DAG, Val, VA, DL, TLI.getSubtarget()); 7226 } 7227 7228 static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDValue Val, 7229 const CCValAssign &VA, const SDLoc &DL, 7230 const RISCVSubtarget &Subtarget) { 7231 EVT LocVT = VA.getLocVT(); 7232 7233 switch (VA.getLocInfo()) { 7234 default: 7235 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 7236 case CCValAssign::Full: 7237 if (VA.getValVT().isFixedLengthVector() && LocVT.isScalableVector()) 7238 Val = convertToScalableVector(LocVT, Val, DAG, Subtarget); 7239 break; 7240 case CCValAssign::BCvt: 7241 if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16) 7242 Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, VA.getLocVT(), Val); 7243 else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) 7244 Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Val); 7245 else 7246 Val = DAG.getNode(ISD::BITCAST, DL, LocVT, Val); 7247 break; 7248 } 7249 return Val; 7250 } 7251 7252 // The caller is responsible for loading the full value if the argument is 7253 // passed with CCValAssign::Indirect. 7254 static SDValue unpackFromMemLoc(SelectionDAG &DAG, SDValue Chain, 7255 const CCValAssign &VA, const SDLoc &DL) { 7256 MachineFunction &MF = DAG.getMachineFunction(); 7257 MachineFrameInfo &MFI = MF.getFrameInfo(); 7258 EVT LocVT = VA.getLocVT(); 7259 EVT ValVT = VA.getValVT(); 7260 EVT PtrVT = MVT::getIntegerVT(DAG.getDataLayout().getPointerSizeInBits(0)); 7261 int FI = MFI.CreateFixedObject(ValVT.getStoreSize(), VA.getLocMemOffset(), 7262 /*Immutable=*/true); 7263 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 7264 SDValue Val; 7265 7266 ISD::LoadExtType ExtType; 7267 switch (VA.getLocInfo()) { 7268 default: 7269 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 7270 case CCValAssign::Full: 7271 case CCValAssign::Indirect: 7272 case CCValAssign::BCvt: 7273 ExtType = ISD::NON_EXTLOAD; 7274 break; 7275 } 7276 Val = DAG.getExtLoad( 7277 ExtType, DL, LocVT, Chain, FIN, 7278 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), ValVT); 7279 return Val; 7280 } 7281 7282 static SDValue unpackF64OnRV32DSoftABI(SelectionDAG &DAG, SDValue Chain, 7283 const CCValAssign &VA, const SDLoc &DL) { 7284 assert(VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64 && 7285 "Unexpected VA"); 7286 MachineFunction &MF = DAG.getMachineFunction(); 7287 MachineFrameInfo &MFI = MF.getFrameInfo(); 7288 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 7289 7290 if (VA.isMemLoc()) { 7291 // f64 is passed on the stack. 7292 int FI = MFI.CreateFixedObject(8, VA.getLocMemOffset(), /*Immutable=*/true); 7293 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 7294 return DAG.getLoad(MVT::f64, DL, Chain, FIN, 7295 MachinePointerInfo::getFixedStack(MF, FI)); 7296 } 7297 7298 assert(VA.isRegLoc() && "Expected register VA assignment"); 7299 7300 Register LoVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 7301 RegInfo.addLiveIn(VA.getLocReg(), LoVReg); 7302 SDValue Lo = DAG.getCopyFromReg(Chain, DL, LoVReg, MVT::i32); 7303 SDValue Hi; 7304 if (VA.getLocReg() == RISCV::X17) { 7305 // Second half of f64 is passed on the stack. 7306 int FI = MFI.CreateFixedObject(4, 0, /*Immutable=*/true); 7307 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 7308 Hi = DAG.getLoad(MVT::i32, DL, Chain, FIN, 7309 MachinePointerInfo::getFixedStack(MF, FI)); 7310 } else { 7311 // Second half of f64 is passed in another GPR. 7312 Register HiVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 7313 RegInfo.addLiveIn(VA.getLocReg() + 1, HiVReg); 7314 Hi = DAG.getCopyFromReg(Chain, DL, HiVReg, MVT::i32); 7315 } 7316 return DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, Lo, Hi); 7317 } 7318 7319 // FastCC has less than 1% performance improvement for some particular 7320 // benchmark. But theoretically, it may has benenfit for some cases. 7321 static bool CC_RISCV_FastCC(const DataLayout &DL, RISCVABI::ABI ABI, 7322 unsigned ValNo, MVT ValVT, MVT LocVT, 7323 CCValAssign::LocInfo LocInfo, 7324 ISD::ArgFlagsTy ArgFlags, CCState &State, 7325 bool IsFixed, bool IsRet, Type *OrigTy, 7326 const RISCVTargetLowering &TLI, 7327 Optional<unsigned> FirstMaskArgument) { 7328 7329 // X5 and X6 might be used for save-restore libcall. 7330 static const MCPhysReg GPRList[] = { 7331 RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, RISCV::X14, 7332 RISCV::X15, RISCV::X16, RISCV::X17, RISCV::X7, RISCV::X28, 7333 RISCV::X29, RISCV::X30, RISCV::X31}; 7334 7335 if (LocVT == MVT::i32 || LocVT == MVT::i64) { 7336 if (unsigned Reg = State.AllocateReg(GPRList)) { 7337 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 7338 return false; 7339 } 7340 } 7341 7342 if (LocVT == MVT::f16) { 7343 static const MCPhysReg FPR16List[] = { 7344 RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, RISCV::F14_H, 7345 RISCV::F15_H, RISCV::F16_H, RISCV::F17_H, RISCV::F0_H, RISCV::F1_H, 7346 RISCV::F2_H, RISCV::F3_H, RISCV::F4_H, RISCV::F5_H, RISCV::F6_H, 7347 RISCV::F7_H, RISCV::F28_H, RISCV::F29_H, RISCV::F30_H, RISCV::F31_H}; 7348 if (unsigned Reg = State.AllocateReg(FPR16List)) { 7349 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 7350 return false; 7351 } 7352 } 7353 7354 if (LocVT == MVT::f32) { 7355 static const MCPhysReg FPR32List[] = { 7356 RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, RISCV::F14_F, 7357 RISCV::F15_F, RISCV::F16_F, RISCV::F17_F, RISCV::F0_F, RISCV::F1_F, 7358 RISCV::F2_F, RISCV::F3_F, RISCV::F4_F, RISCV::F5_F, RISCV::F6_F, 7359 RISCV::F7_F, RISCV::F28_F, RISCV::F29_F, RISCV::F30_F, RISCV::F31_F}; 7360 if (unsigned Reg = State.AllocateReg(FPR32List)) { 7361 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 7362 return false; 7363 } 7364 } 7365 7366 if (LocVT == MVT::f64) { 7367 static const MCPhysReg FPR64List[] = { 7368 RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, RISCV::F14_D, 7369 RISCV::F15_D, RISCV::F16_D, RISCV::F17_D, RISCV::F0_D, RISCV::F1_D, 7370 RISCV::F2_D, RISCV::F3_D, RISCV::F4_D, RISCV::F5_D, RISCV::F6_D, 7371 RISCV::F7_D, RISCV::F28_D, RISCV::F29_D, RISCV::F30_D, RISCV::F31_D}; 7372 if (unsigned Reg = State.AllocateReg(FPR64List)) { 7373 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 7374 return false; 7375 } 7376 } 7377 7378 if (LocVT == MVT::i32 || LocVT == MVT::f32) { 7379 unsigned Offset4 = State.AllocateStack(4, Align(4)); 7380 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset4, LocVT, LocInfo)); 7381 return false; 7382 } 7383 7384 if (LocVT == MVT::i64 || LocVT == MVT::f64) { 7385 unsigned Offset5 = State.AllocateStack(8, Align(8)); 7386 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset5, LocVT, LocInfo)); 7387 return false; 7388 } 7389 7390 if (LocVT.isVector()) { 7391 if (unsigned Reg = 7392 allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI)) { 7393 // Fixed-length vectors are located in the corresponding scalable-vector 7394 // container types. 7395 if (ValVT.isFixedLengthVector()) 7396 LocVT = TLI.getContainerForFixedLengthVector(LocVT); 7397 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 7398 } else { 7399 // Try and pass the address via a "fast" GPR. 7400 if (unsigned GPRReg = State.AllocateReg(GPRList)) { 7401 LocInfo = CCValAssign::Indirect; 7402 LocVT = TLI.getSubtarget().getXLenVT(); 7403 State.addLoc(CCValAssign::getReg(ValNo, ValVT, GPRReg, LocVT, LocInfo)); 7404 } else if (ValVT.isFixedLengthVector()) { 7405 auto StackAlign = 7406 MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne(); 7407 unsigned StackOffset = 7408 State.AllocateStack(ValVT.getStoreSize(), StackAlign); 7409 State.addLoc( 7410 CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 7411 } else { 7412 // Can't pass scalable vectors on the stack. 7413 return true; 7414 } 7415 } 7416 7417 return false; 7418 } 7419 7420 return true; // CC didn't match. 7421 } 7422 7423 static bool CC_RISCV_GHC(unsigned ValNo, MVT ValVT, MVT LocVT, 7424 CCValAssign::LocInfo LocInfo, 7425 ISD::ArgFlagsTy ArgFlags, CCState &State) { 7426 7427 if (LocVT == MVT::i32 || LocVT == MVT::i64) { 7428 // Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, R6, R7, SpLim 7429 // s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 7430 static const MCPhysReg GPRList[] = { 7431 RISCV::X9, RISCV::X18, RISCV::X19, RISCV::X20, RISCV::X21, RISCV::X22, 7432 RISCV::X23, RISCV::X24, RISCV::X25, RISCV::X26, RISCV::X27}; 7433 if (unsigned Reg = State.AllocateReg(GPRList)) { 7434 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 7435 return false; 7436 } 7437 } 7438 7439 if (LocVT == MVT::f32) { 7440 // Pass in STG registers: F1, ..., F6 7441 // fs0 ... fs5 7442 static const MCPhysReg FPR32List[] = {RISCV::F8_F, RISCV::F9_F, 7443 RISCV::F18_F, RISCV::F19_F, 7444 RISCV::F20_F, RISCV::F21_F}; 7445 if (unsigned Reg = State.AllocateReg(FPR32List)) { 7446 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 7447 return false; 7448 } 7449 } 7450 7451 if (LocVT == MVT::f64) { 7452 // Pass in STG registers: D1, ..., D6 7453 // fs6 ... fs11 7454 static const MCPhysReg FPR64List[] = {RISCV::F22_D, RISCV::F23_D, 7455 RISCV::F24_D, RISCV::F25_D, 7456 RISCV::F26_D, RISCV::F27_D}; 7457 if (unsigned Reg = State.AllocateReg(FPR64List)) { 7458 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 7459 return false; 7460 } 7461 } 7462 7463 report_fatal_error("No registers left in GHC calling convention"); 7464 return true; 7465 } 7466 7467 // Transform physical registers into virtual registers. 7468 SDValue RISCVTargetLowering::LowerFormalArguments( 7469 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 7470 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 7471 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 7472 7473 MachineFunction &MF = DAG.getMachineFunction(); 7474 7475 switch (CallConv) { 7476 default: 7477 report_fatal_error("Unsupported calling convention"); 7478 case CallingConv::C: 7479 case CallingConv::Fast: 7480 break; 7481 case CallingConv::GHC: 7482 if (!MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtF] || 7483 !MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtD]) 7484 report_fatal_error( 7485 "GHC calling convention requires the F and D instruction set extensions"); 7486 } 7487 7488 const Function &Func = MF.getFunction(); 7489 if (Func.hasFnAttribute("interrupt")) { 7490 if (!Func.arg_empty()) 7491 report_fatal_error( 7492 "Functions with the interrupt attribute cannot have arguments!"); 7493 7494 StringRef Kind = 7495 MF.getFunction().getFnAttribute("interrupt").getValueAsString(); 7496 7497 if (!(Kind == "user" || Kind == "supervisor" || Kind == "machine")) 7498 report_fatal_error( 7499 "Function interrupt attribute argument not supported!"); 7500 } 7501 7502 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7503 MVT XLenVT = Subtarget.getXLenVT(); 7504 unsigned XLenInBytes = Subtarget.getXLen() / 8; 7505 // Used with vargs to acumulate store chains. 7506 std::vector<SDValue> OutChains; 7507 7508 // Assign locations to all of the incoming arguments. 7509 SmallVector<CCValAssign, 16> ArgLocs; 7510 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 7511 7512 if (CallConv == CallingConv::GHC) 7513 CCInfo.AnalyzeFormalArguments(Ins, CC_RISCV_GHC); 7514 else 7515 analyzeInputArgs(MF, CCInfo, Ins, /*IsRet=*/false, 7516 CallConv == CallingConv::Fast ? CC_RISCV_FastCC 7517 : CC_RISCV); 7518 7519 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 7520 CCValAssign &VA = ArgLocs[i]; 7521 SDValue ArgValue; 7522 // Passing f64 on RV32D with a soft float ABI must be handled as a special 7523 // case. 7524 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) 7525 ArgValue = unpackF64OnRV32DSoftABI(DAG, Chain, VA, DL); 7526 else if (VA.isRegLoc()) 7527 ArgValue = unpackFromRegLoc(DAG, Chain, VA, DL, *this); 7528 else 7529 ArgValue = unpackFromMemLoc(DAG, Chain, VA, DL); 7530 7531 if (VA.getLocInfo() == CCValAssign::Indirect) { 7532 // If the original argument was split and passed by reference (e.g. i128 7533 // on RV32), we need to load all parts of it here (using the same 7534 // address). Vectors may be partly split to registers and partly to the 7535 // stack, in which case the base address is partly offset and subsequent 7536 // stores are relative to that. 7537 InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue, 7538 MachinePointerInfo())); 7539 unsigned ArgIndex = Ins[i].OrigArgIndex; 7540 unsigned ArgPartOffset = Ins[i].PartOffset; 7541 assert(VA.getValVT().isVector() || ArgPartOffset == 0); 7542 while (i + 1 != e && Ins[i + 1].OrigArgIndex == ArgIndex) { 7543 CCValAssign &PartVA = ArgLocs[i + 1]; 7544 unsigned PartOffset = Ins[i + 1].PartOffset - ArgPartOffset; 7545 SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL); 7546 if (PartVA.getValVT().isScalableVector()) 7547 Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset); 7548 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, Offset); 7549 InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address, 7550 MachinePointerInfo())); 7551 ++i; 7552 } 7553 continue; 7554 } 7555 InVals.push_back(ArgValue); 7556 } 7557 7558 if (IsVarArg) { 7559 ArrayRef<MCPhysReg> ArgRegs = makeArrayRef(ArgGPRs); 7560 unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs); 7561 const TargetRegisterClass *RC = &RISCV::GPRRegClass; 7562 MachineFrameInfo &MFI = MF.getFrameInfo(); 7563 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 7564 RISCVMachineFunctionInfo *RVFI = MF.getInfo<RISCVMachineFunctionInfo>(); 7565 7566 // Offset of the first variable argument from stack pointer, and size of 7567 // the vararg save area. For now, the varargs save area is either zero or 7568 // large enough to hold a0-a7. 7569 int VaArgOffset, VarArgsSaveSize; 7570 7571 // If all registers are allocated, then all varargs must be passed on the 7572 // stack and we don't need to save any argregs. 7573 if (ArgRegs.size() == Idx) { 7574 VaArgOffset = CCInfo.getNextStackOffset(); 7575 VarArgsSaveSize = 0; 7576 } else { 7577 VarArgsSaveSize = XLenInBytes * (ArgRegs.size() - Idx); 7578 VaArgOffset = -VarArgsSaveSize; 7579 } 7580 7581 // Record the frame index of the first variable argument 7582 // which is a value necessary to VASTART. 7583 int FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true); 7584 RVFI->setVarArgsFrameIndex(FI); 7585 7586 // If saving an odd number of registers then create an extra stack slot to 7587 // ensure that the frame pointer is 2*XLEN-aligned, which in turn ensures 7588 // offsets to even-numbered registered remain 2*XLEN-aligned. 7589 if (Idx % 2) { 7590 MFI.CreateFixedObject(XLenInBytes, VaArgOffset - (int)XLenInBytes, true); 7591 VarArgsSaveSize += XLenInBytes; 7592 } 7593 7594 // Copy the integer registers that may have been used for passing varargs 7595 // to the vararg save area. 7596 for (unsigned I = Idx; I < ArgRegs.size(); 7597 ++I, VaArgOffset += XLenInBytes) { 7598 const Register Reg = RegInfo.createVirtualRegister(RC); 7599 RegInfo.addLiveIn(ArgRegs[I], Reg); 7600 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, XLenVT); 7601 FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true); 7602 SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 7603 SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff, 7604 MachinePointerInfo::getFixedStack(MF, FI)); 7605 cast<StoreSDNode>(Store.getNode()) 7606 ->getMemOperand() 7607 ->setValue((Value *)nullptr); 7608 OutChains.push_back(Store); 7609 } 7610 RVFI->setVarArgsSaveSize(VarArgsSaveSize); 7611 } 7612 7613 // All stores are grouped in one node to allow the matching between 7614 // the size of Ins and InVals. This only happens for vararg functions. 7615 if (!OutChains.empty()) { 7616 OutChains.push_back(Chain); 7617 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains); 7618 } 7619 7620 return Chain; 7621 } 7622 7623 /// isEligibleForTailCallOptimization - Check whether the call is eligible 7624 /// for tail call optimization. 7625 /// Note: This is modelled after ARM's IsEligibleForTailCallOptimization. 7626 bool RISCVTargetLowering::isEligibleForTailCallOptimization( 7627 CCState &CCInfo, CallLoweringInfo &CLI, MachineFunction &MF, 7628 const SmallVector<CCValAssign, 16> &ArgLocs) const { 7629 7630 auto &Callee = CLI.Callee; 7631 auto CalleeCC = CLI.CallConv; 7632 auto &Outs = CLI.Outs; 7633 auto &Caller = MF.getFunction(); 7634 auto CallerCC = Caller.getCallingConv(); 7635 7636 // Exception-handling functions need a special set of instructions to 7637 // indicate a return to the hardware. Tail-calling another function would 7638 // probably break this. 7639 // TODO: The "interrupt" attribute isn't currently defined by RISC-V. This 7640 // should be expanded as new function attributes are introduced. 7641 if (Caller.hasFnAttribute("interrupt")) 7642 return false; 7643 7644 // Do not tail call opt if the stack is used to pass parameters. 7645 if (CCInfo.getNextStackOffset() != 0) 7646 return false; 7647 7648 // Do not tail call opt if any parameters need to be passed indirectly. 7649 // Since long doubles (fp128) and i128 are larger than 2*XLEN, they are 7650 // passed indirectly. So the address of the value will be passed in a 7651 // register, or if not available, then the address is put on the stack. In 7652 // order to pass indirectly, space on the stack often needs to be allocated 7653 // in order to store the value. In this case the CCInfo.getNextStackOffset() 7654 // != 0 check is not enough and we need to check if any CCValAssign ArgsLocs 7655 // are passed CCValAssign::Indirect. 7656 for (auto &VA : ArgLocs) 7657 if (VA.getLocInfo() == CCValAssign::Indirect) 7658 return false; 7659 7660 // Do not tail call opt if either caller or callee uses struct return 7661 // semantics. 7662 auto IsCallerStructRet = Caller.hasStructRetAttr(); 7663 auto IsCalleeStructRet = Outs.empty() ? false : Outs[0].Flags.isSRet(); 7664 if (IsCallerStructRet || IsCalleeStructRet) 7665 return false; 7666 7667 // Externally-defined functions with weak linkage should not be 7668 // tail-called. The behaviour of branch instructions in this situation (as 7669 // used for tail calls) is implementation-defined, so we cannot rely on the 7670 // linker replacing the tail call with a return. 7671 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 7672 const GlobalValue *GV = G->getGlobal(); 7673 if (GV->hasExternalWeakLinkage()) 7674 return false; 7675 } 7676 7677 // The callee has to preserve all registers the caller needs to preserve. 7678 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 7679 const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC); 7680 if (CalleeCC != CallerCC) { 7681 const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC); 7682 if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved)) 7683 return false; 7684 } 7685 7686 // Byval parameters hand the function a pointer directly into the stack area 7687 // we want to reuse during a tail call. Working around this *is* possible 7688 // but less efficient and uglier in LowerCall. 7689 for (auto &Arg : Outs) 7690 if (Arg.Flags.isByVal()) 7691 return false; 7692 7693 return true; 7694 } 7695 7696 static Align getPrefTypeAlign(EVT VT, SelectionDAG &DAG) { 7697 return DAG.getDataLayout().getPrefTypeAlign( 7698 VT.getTypeForEVT(*DAG.getContext())); 7699 } 7700 7701 // Lower a call to a callseq_start + CALL + callseq_end chain, and add input 7702 // and output parameter nodes. 7703 SDValue RISCVTargetLowering::LowerCall(CallLoweringInfo &CLI, 7704 SmallVectorImpl<SDValue> &InVals) const { 7705 SelectionDAG &DAG = CLI.DAG; 7706 SDLoc &DL = CLI.DL; 7707 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 7708 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 7709 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 7710 SDValue Chain = CLI.Chain; 7711 SDValue Callee = CLI.Callee; 7712 bool &IsTailCall = CLI.IsTailCall; 7713 CallingConv::ID CallConv = CLI.CallConv; 7714 bool IsVarArg = CLI.IsVarArg; 7715 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7716 MVT XLenVT = Subtarget.getXLenVT(); 7717 7718 MachineFunction &MF = DAG.getMachineFunction(); 7719 7720 // Analyze the operands of the call, assigning locations to each operand. 7721 SmallVector<CCValAssign, 16> ArgLocs; 7722 CCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 7723 7724 if (CallConv == CallingConv::GHC) 7725 ArgCCInfo.AnalyzeCallOperands(Outs, CC_RISCV_GHC); 7726 else 7727 analyzeOutputArgs(MF, ArgCCInfo, Outs, /*IsRet=*/false, &CLI, 7728 CallConv == CallingConv::Fast ? CC_RISCV_FastCC 7729 : CC_RISCV); 7730 7731 // Check if it's really possible to do a tail call. 7732 if (IsTailCall) 7733 IsTailCall = isEligibleForTailCallOptimization(ArgCCInfo, CLI, MF, ArgLocs); 7734 7735 if (IsTailCall) 7736 ++NumTailCalls; 7737 else if (CLI.CB && CLI.CB->isMustTailCall()) 7738 report_fatal_error("failed to perform tail call elimination on a call " 7739 "site marked musttail"); 7740 7741 // Get a count of how many bytes are to be pushed on the stack. 7742 unsigned NumBytes = ArgCCInfo.getNextStackOffset(); 7743 7744 // Create local copies for byval args 7745 SmallVector<SDValue, 8> ByValArgs; 7746 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 7747 ISD::ArgFlagsTy Flags = Outs[i].Flags; 7748 if (!Flags.isByVal()) 7749 continue; 7750 7751 SDValue Arg = OutVals[i]; 7752 unsigned Size = Flags.getByValSize(); 7753 Align Alignment = Flags.getNonZeroByValAlign(); 7754 7755 int FI = 7756 MF.getFrameInfo().CreateStackObject(Size, Alignment, /*isSS=*/false); 7757 SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 7758 SDValue SizeNode = DAG.getConstant(Size, DL, XLenVT); 7759 7760 Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Alignment, 7761 /*IsVolatile=*/false, 7762 /*AlwaysInline=*/false, IsTailCall, 7763 MachinePointerInfo(), MachinePointerInfo()); 7764 ByValArgs.push_back(FIPtr); 7765 } 7766 7767 if (!IsTailCall) 7768 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, CLI.DL); 7769 7770 // Copy argument values to their designated locations. 7771 SmallVector<std::pair<Register, SDValue>, 8> RegsToPass; 7772 SmallVector<SDValue, 8> MemOpChains; 7773 SDValue StackPtr; 7774 for (unsigned i = 0, j = 0, e = ArgLocs.size(); i != e; ++i) { 7775 CCValAssign &VA = ArgLocs[i]; 7776 SDValue ArgValue = OutVals[i]; 7777 ISD::ArgFlagsTy Flags = Outs[i].Flags; 7778 7779 // Handle passing f64 on RV32D with a soft float ABI as a special case. 7780 bool IsF64OnRV32DSoftABI = 7781 VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64; 7782 if (IsF64OnRV32DSoftABI && VA.isRegLoc()) { 7783 SDValue SplitF64 = DAG.getNode( 7784 RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), ArgValue); 7785 SDValue Lo = SplitF64.getValue(0); 7786 SDValue Hi = SplitF64.getValue(1); 7787 7788 Register RegLo = VA.getLocReg(); 7789 RegsToPass.push_back(std::make_pair(RegLo, Lo)); 7790 7791 if (RegLo == RISCV::X17) { 7792 // Second half of f64 is passed on the stack. 7793 // Work out the address of the stack slot. 7794 if (!StackPtr.getNode()) 7795 StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT); 7796 // Emit the store. 7797 MemOpChains.push_back( 7798 DAG.getStore(Chain, DL, Hi, StackPtr, MachinePointerInfo())); 7799 } else { 7800 // Second half of f64 is passed in another GPR. 7801 assert(RegLo < RISCV::X31 && "Invalid register pair"); 7802 Register RegHigh = RegLo + 1; 7803 RegsToPass.push_back(std::make_pair(RegHigh, Hi)); 7804 } 7805 continue; 7806 } 7807 7808 // IsF64OnRV32DSoftABI && VA.isMemLoc() is handled below in the same way 7809 // as any other MemLoc. 7810 7811 // Promote the value if needed. 7812 // For now, only handle fully promoted and indirect arguments. 7813 if (VA.getLocInfo() == CCValAssign::Indirect) { 7814 // Store the argument in a stack slot and pass its address. 7815 Align StackAlign = 7816 std::max(getPrefTypeAlign(Outs[i].ArgVT, DAG), 7817 getPrefTypeAlign(ArgValue.getValueType(), DAG)); 7818 TypeSize StoredSize = ArgValue.getValueType().getStoreSize(); 7819 // If the original argument was split (e.g. i128), we need 7820 // to store the required parts of it here (and pass just one address). 7821 // Vectors may be partly split to registers and partly to the stack, in 7822 // which case the base address is partly offset and subsequent stores are 7823 // relative to that. 7824 unsigned ArgIndex = Outs[i].OrigArgIndex; 7825 unsigned ArgPartOffset = Outs[i].PartOffset; 7826 assert(VA.getValVT().isVector() || ArgPartOffset == 0); 7827 // Calculate the total size to store. We don't have access to what we're 7828 // actually storing other than performing the loop and collecting the 7829 // info. 7830 SmallVector<std::pair<SDValue, SDValue>> Parts; 7831 while (i + 1 != e && Outs[i + 1].OrigArgIndex == ArgIndex) { 7832 SDValue PartValue = OutVals[i + 1]; 7833 unsigned PartOffset = Outs[i + 1].PartOffset - ArgPartOffset; 7834 SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL); 7835 EVT PartVT = PartValue.getValueType(); 7836 if (PartVT.isScalableVector()) 7837 Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset); 7838 StoredSize += PartVT.getStoreSize(); 7839 StackAlign = std::max(StackAlign, getPrefTypeAlign(PartVT, DAG)); 7840 Parts.push_back(std::make_pair(PartValue, Offset)); 7841 ++i; 7842 } 7843 SDValue SpillSlot = DAG.CreateStackTemporary(StoredSize, StackAlign); 7844 int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); 7845 MemOpChains.push_back( 7846 DAG.getStore(Chain, DL, ArgValue, SpillSlot, 7847 MachinePointerInfo::getFixedStack(MF, FI))); 7848 for (const auto &Part : Parts) { 7849 SDValue PartValue = Part.first; 7850 SDValue PartOffset = Part.second; 7851 SDValue Address = 7852 DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, PartOffset); 7853 MemOpChains.push_back( 7854 DAG.getStore(Chain, DL, PartValue, Address, 7855 MachinePointerInfo::getFixedStack(MF, FI))); 7856 } 7857 ArgValue = SpillSlot; 7858 } else { 7859 ArgValue = convertValVTToLocVT(DAG, ArgValue, VA, DL, Subtarget); 7860 } 7861 7862 // Use local copy if it is a byval arg. 7863 if (Flags.isByVal()) 7864 ArgValue = ByValArgs[j++]; 7865 7866 if (VA.isRegLoc()) { 7867 // Queue up the argument copies and emit them at the end. 7868 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue)); 7869 } else { 7870 assert(VA.isMemLoc() && "Argument not register or memory"); 7871 assert(!IsTailCall && "Tail call not allowed if stack is used " 7872 "for passing parameters"); 7873 7874 // Work out the address of the stack slot. 7875 if (!StackPtr.getNode()) 7876 StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT); 7877 SDValue Address = 7878 DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, 7879 DAG.getIntPtrConstant(VA.getLocMemOffset(), DL)); 7880 7881 // Emit the store. 7882 MemOpChains.push_back( 7883 DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo())); 7884 } 7885 } 7886 7887 // Join the stores, which are independent of one another. 7888 if (!MemOpChains.empty()) 7889 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); 7890 7891 SDValue Glue; 7892 7893 // Build a sequence of copy-to-reg nodes, chained and glued together. 7894 for (auto &Reg : RegsToPass) { 7895 Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, Glue); 7896 Glue = Chain.getValue(1); 7897 } 7898 7899 // Validate that none of the argument registers have been marked as 7900 // reserved, if so report an error. Do the same for the return address if this 7901 // is not a tailcall. 7902 validateCCReservedRegs(RegsToPass, MF); 7903 if (!IsTailCall && 7904 MF.getSubtarget<RISCVSubtarget>().isRegisterReservedByUser(RISCV::X1)) 7905 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 7906 MF.getFunction(), 7907 "Return address register required, but has been reserved."}); 7908 7909 // If the callee is a GlobalAddress/ExternalSymbol node, turn it into a 7910 // TargetGlobalAddress/TargetExternalSymbol node so that legalize won't 7911 // split it and then direct call can be matched by PseudoCALL. 7912 if (GlobalAddressSDNode *S = dyn_cast<GlobalAddressSDNode>(Callee)) { 7913 const GlobalValue *GV = S->getGlobal(); 7914 7915 unsigned OpFlags = RISCVII::MO_CALL; 7916 if (!getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV)) 7917 OpFlags = RISCVII::MO_PLT; 7918 7919 Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags); 7920 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { 7921 unsigned OpFlags = RISCVII::MO_CALL; 7922 7923 if (!getTargetMachine().shouldAssumeDSOLocal(*MF.getFunction().getParent(), 7924 nullptr)) 7925 OpFlags = RISCVII::MO_PLT; 7926 7927 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, OpFlags); 7928 } 7929 7930 // The first call operand is the chain and the second is the target address. 7931 SmallVector<SDValue, 8> Ops; 7932 Ops.push_back(Chain); 7933 Ops.push_back(Callee); 7934 7935 // Add argument registers to the end of the list so that they are 7936 // known live into the call. 7937 for (auto &Reg : RegsToPass) 7938 Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType())); 7939 7940 if (!IsTailCall) { 7941 // Add a register mask operand representing the call-preserved registers. 7942 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 7943 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv); 7944 assert(Mask && "Missing call preserved mask for calling convention"); 7945 Ops.push_back(DAG.getRegisterMask(Mask)); 7946 } 7947 7948 // Glue the call to the argument copies, if any. 7949 if (Glue.getNode()) 7950 Ops.push_back(Glue); 7951 7952 // Emit the call. 7953 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7954 7955 if (IsTailCall) { 7956 MF.getFrameInfo().setHasTailCall(); 7957 return DAG.getNode(RISCVISD::TAIL, DL, NodeTys, Ops); 7958 } 7959 7960 Chain = DAG.getNode(RISCVISD::CALL, DL, NodeTys, Ops); 7961 DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge); 7962 Glue = Chain.getValue(1); 7963 7964 // Mark the end of the call, which is glued to the call itself. 7965 Chain = DAG.getCALLSEQ_END(Chain, 7966 DAG.getConstant(NumBytes, DL, PtrVT, true), 7967 DAG.getConstant(0, DL, PtrVT, true), 7968 Glue, DL); 7969 Glue = Chain.getValue(1); 7970 7971 // Assign locations to each value returned by this call. 7972 SmallVector<CCValAssign, 16> RVLocs; 7973 CCState RetCCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext()); 7974 analyzeInputArgs(MF, RetCCInfo, Ins, /*IsRet=*/true, CC_RISCV); 7975 7976 // Copy all of the result registers out of their specified physreg. 7977 for (auto &VA : RVLocs) { 7978 // Copy the value out 7979 SDValue RetValue = 7980 DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), Glue); 7981 // Glue the RetValue to the end of the call sequence 7982 Chain = RetValue.getValue(1); 7983 Glue = RetValue.getValue(2); 7984 7985 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { 7986 assert(VA.getLocReg() == ArgGPRs[0] && "Unexpected reg assignment"); 7987 SDValue RetValue2 = 7988 DAG.getCopyFromReg(Chain, DL, ArgGPRs[1], MVT::i32, Glue); 7989 Chain = RetValue2.getValue(1); 7990 Glue = RetValue2.getValue(2); 7991 RetValue = DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, RetValue, 7992 RetValue2); 7993 } 7994 7995 RetValue = convertLocVTToValVT(DAG, RetValue, VA, DL, Subtarget); 7996 7997 InVals.push_back(RetValue); 7998 } 7999 8000 return Chain; 8001 } 8002 8003 bool RISCVTargetLowering::CanLowerReturn( 8004 CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg, 8005 const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const { 8006 SmallVector<CCValAssign, 16> RVLocs; 8007 CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context); 8008 8009 Optional<unsigned> FirstMaskArgument; 8010 if (Subtarget.hasStdExtV()) 8011 FirstMaskArgument = preAssignMask(Outs); 8012 8013 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 8014 MVT VT = Outs[i].VT; 8015 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 8016 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 8017 if (CC_RISCV(MF.getDataLayout(), ABI, i, VT, VT, CCValAssign::Full, 8018 ArgFlags, CCInfo, /*IsFixed=*/true, /*IsRet=*/true, nullptr, 8019 *this, FirstMaskArgument)) 8020 return false; 8021 } 8022 return true; 8023 } 8024 8025 SDValue 8026 RISCVTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 8027 bool IsVarArg, 8028 const SmallVectorImpl<ISD::OutputArg> &Outs, 8029 const SmallVectorImpl<SDValue> &OutVals, 8030 const SDLoc &DL, SelectionDAG &DAG) const { 8031 const MachineFunction &MF = DAG.getMachineFunction(); 8032 const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>(); 8033 8034 // Stores the assignment of the return value to a location. 8035 SmallVector<CCValAssign, 16> RVLocs; 8036 8037 // Info about the registers and stack slot. 8038 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, 8039 *DAG.getContext()); 8040 8041 analyzeOutputArgs(DAG.getMachineFunction(), CCInfo, Outs, /*IsRet=*/true, 8042 nullptr, CC_RISCV); 8043 8044 if (CallConv == CallingConv::GHC && !RVLocs.empty()) 8045 report_fatal_error("GHC functions return void only"); 8046 8047 SDValue Glue; 8048 SmallVector<SDValue, 4> RetOps(1, Chain); 8049 8050 // Copy the result values into the output registers. 8051 for (unsigned i = 0, e = RVLocs.size(); i < e; ++i) { 8052 SDValue Val = OutVals[i]; 8053 CCValAssign &VA = RVLocs[i]; 8054 assert(VA.isRegLoc() && "Can only return in registers!"); 8055 8056 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { 8057 // Handle returning f64 on RV32D with a soft float ABI. 8058 assert(VA.isRegLoc() && "Expected return via registers"); 8059 SDValue SplitF64 = DAG.getNode(RISCVISD::SplitF64, DL, 8060 DAG.getVTList(MVT::i32, MVT::i32), Val); 8061 SDValue Lo = SplitF64.getValue(0); 8062 SDValue Hi = SplitF64.getValue(1); 8063 Register RegLo = VA.getLocReg(); 8064 assert(RegLo < RISCV::X31 && "Invalid register pair"); 8065 Register RegHi = RegLo + 1; 8066 8067 if (STI.isRegisterReservedByUser(RegLo) || 8068 STI.isRegisterReservedByUser(RegHi)) 8069 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 8070 MF.getFunction(), 8071 "Return value register required, but has been reserved."}); 8072 8073 Chain = DAG.getCopyToReg(Chain, DL, RegLo, Lo, Glue); 8074 Glue = Chain.getValue(1); 8075 RetOps.push_back(DAG.getRegister(RegLo, MVT::i32)); 8076 Chain = DAG.getCopyToReg(Chain, DL, RegHi, Hi, Glue); 8077 Glue = Chain.getValue(1); 8078 RetOps.push_back(DAG.getRegister(RegHi, MVT::i32)); 8079 } else { 8080 // Handle a 'normal' return. 8081 Val = convertValVTToLocVT(DAG, Val, VA, DL, Subtarget); 8082 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Glue); 8083 8084 if (STI.isRegisterReservedByUser(VA.getLocReg())) 8085 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 8086 MF.getFunction(), 8087 "Return value register required, but has been reserved."}); 8088 8089 // Guarantee that all emitted copies are stuck together. 8090 Glue = Chain.getValue(1); 8091 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 8092 } 8093 } 8094 8095 RetOps[0] = Chain; // Update chain. 8096 8097 // Add the glue node if we have it. 8098 if (Glue.getNode()) { 8099 RetOps.push_back(Glue); 8100 } 8101 8102 unsigned RetOpc = RISCVISD::RET_FLAG; 8103 // Interrupt service routines use different return instructions. 8104 const Function &Func = DAG.getMachineFunction().getFunction(); 8105 if (Func.hasFnAttribute("interrupt")) { 8106 if (!Func.getReturnType()->isVoidTy()) 8107 report_fatal_error( 8108 "Functions with the interrupt attribute must have void return type!"); 8109 8110 MachineFunction &MF = DAG.getMachineFunction(); 8111 StringRef Kind = 8112 MF.getFunction().getFnAttribute("interrupt").getValueAsString(); 8113 8114 if (Kind == "user") 8115 RetOpc = RISCVISD::URET_FLAG; 8116 else if (Kind == "supervisor") 8117 RetOpc = RISCVISD::SRET_FLAG; 8118 else 8119 RetOpc = RISCVISD::MRET_FLAG; 8120 } 8121 8122 return DAG.getNode(RetOpc, DL, MVT::Other, RetOps); 8123 } 8124 8125 void RISCVTargetLowering::validateCCReservedRegs( 8126 const SmallVectorImpl<std::pair<llvm::Register, llvm::SDValue>> &Regs, 8127 MachineFunction &MF) const { 8128 const Function &F = MF.getFunction(); 8129 const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>(); 8130 8131 if (llvm::any_of(Regs, [&STI](auto Reg) { 8132 return STI.isRegisterReservedByUser(Reg.first); 8133 })) 8134 F.getContext().diagnose(DiagnosticInfoUnsupported{ 8135 F, "Argument register required, but has been reserved."}); 8136 } 8137 8138 bool RISCVTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { 8139 return CI->isTailCall(); 8140 } 8141 8142 const char *RISCVTargetLowering::getTargetNodeName(unsigned Opcode) const { 8143 #define NODE_NAME_CASE(NODE) \ 8144 case RISCVISD::NODE: \ 8145 return "RISCVISD::" #NODE; 8146 // clang-format off 8147 switch ((RISCVISD::NodeType)Opcode) { 8148 case RISCVISD::FIRST_NUMBER: 8149 break; 8150 NODE_NAME_CASE(RET_FLAG) 8151 NODE_NAME_CASE(URET_FLAG) 8152 NODE_NAME_CASE(SRET_FLAG) 8153 NODE_NAME_CASE(MRET_FLAG) 8154 NODE_NAME_CASE(CALL) 8155 NODE_NAME_CASE(SELECT_CC) 8156 NODE_NAME_CASE(BR_CC) 8157 NODE_NAME_CASE(BuildPairF64) 8158 NODE_NAME_CASE(SplitF64) 8159 NODE_NAME_CASE(TAIL) 8160 NODE_NAME_CASE(MULHSU) 8161 NODE_NAME_CASE(SLLW) 8162 NODE_NAME_CASE(SRAW) 8163 NODE_NAME_CASE(SRLW) 8164 NODE_NAME_CASE(DIVW) 8165 NODE_NAME_CASE(DIVUW) 8166 NODE_NAME_CASE(REMUW) 8167 NODE_NAME_CASE(ROLW) 8168 NODE_NAME_CASE(RORW) 8169 NODE_NAME_CASE(CLZW) 8170 NODE_NAME_CASE(CTZW) 8171 NODE_NAME_CASE(FSLW) 8172 NODE_NAME_CASE(FSRW) 8173 NODE_NAME_CASE(FSL) 8174 NODE_NAME_CASE(FSR) 8175 NODE_NAME_CASE(FMV_H_X) 8176 NODE_NAME_CASE(FMV_X_ANYEXTH) 8177 NODE_NAME_CASE(FMV_W_X_RV64) 8178 NODE_NAME_CASE(FMV_X_ANYEXTW_RV64) 8179 NODE_NAME_CASE(READ_CYCLE_WIDE) 8180 NODE_NAME_CASE(GREV) 8181 NODE_NAME_CASE(GREVW) 8182 NODE_NAME_CASE(GORC) 8183 NODE_NAME_CASE(GORCW) 8184 NODE_NAME_CASE(SHFL) 8185 NODE_NAME_CASE(SHFLW) 8186 NODE_NAME_CASE(UNSHFL) 8187 NODE_NAME_CASE(UNSHFLW) 8188 NODE_NAME_CASE(BCOMPRESS) 8189 NODE_NAME_CASE(BCOMPRESSW) 8190 NODE_NAME_CASE(BDECOMPRESS) 8191 NODE_NAME_CASE(BDECOMPRESSW) 8192 NODE_NAME_CASE(VMV_V_X_VL) 8193 NODE_NAME_CASE(VFMV_V_F_VL) 8194 NODE_NAME_CASE(VMV_X_S) 8195 NODE_NAME_CASE(VMV_S_X_VL) 8196 NODE_NAME_CASE(VFMV_S_F_VL) 8197 NODE_NAME_CASE(SPLAT_VECTOR_I64) 8198 NODE_NAME_CASE(SPLAT_VECTOR_SPLIT_I64_VL) 8199 NODE_NAME_CASE(READ_VLENB) 8200 NODE_NAME_CASE(TRUNCATE_VECTOR_VL) 8201 NODE_NAME_CASE(VSLIDEUP_VL) 8202 NODE_NAME_CASE(VSLIDE1UP_VL) 8203 NODE_NAME_CASE(VSLIDEDOWN_VL) 8204 NODE_NAME_CASE(VSLIDE1DOWN_VL) 8205 NODE_NAME_CASE(VID_VL) 8206 NODE_NAME_CASE(VFNCVT_ROD_VL) 8207 NODE_NAME_CASE(VECREDUCE_ADD_VL) 8208 NODE_NAME_CASE(VECREDUCE_UMAX_VL) 8209 NODE_NAME_CASE(VECREDUCE_SMAX_VL) 8210 NODE_NAME_CASE(VECREDUCE_UMIN_VL) 8211 NODE_NAME_CASE(VECREDUCE_SMIN_VL) 8212 NODE_NAME_CASE(VECREDUCE_AND_VL) 8213 NODE_NAME_CASE(VECREDUCE_OR_VL) 8214 NODE_NAME_CASE(VECREDUCE_XOR_VL) 8215 NODE_NAME_CASE(VECREDUCE_FADD_VL) 8216 NODE_NAME_CASE(VECREDUCE_SEQ_FADD_VL) 8217 NODE_NAME_CASE(VECREDUCE_FMIN_VL) 8218 NODE_NAME_CASE(VECREDUCE_FMAX_VL) 8219 NODE_NAME_CASE(ADD_VL) 8220 NODE_NAME_CASE(AND_VL) 8221 NODE_NAME_CASE(MUL_VL) 8222 NODE_NAME_CASE(OR_VL) 8223 NODE_NAME_CASE(SDIV_VL) 8224 NODE_NAME_CASE(SHL_VL) 8225 NODE_NAME_CASE(SREM_VL) 8226 NODE_NAME_CASE(SRA_VL) 8227 NODE_NAME_CASE(SRL_VL) 8228 NODE_NAME_CASE(SUB_VL) 8229 NODE_NAME_CASE(UDIV_VL) 8230 NODE_NAME_CASE(UREM_VL) 8231 NODE_NAME_CASE(XOR_VL) 8232 NODE_NAME_CASE(FADD_VL) 8233 NODE_NAME_CASE(FSUB_VL) 8234 NODE_NAME_CASE(FMUL_VL) 8235 NODE_NAME_CASE(FDIV_VL) 8236 NODE_NAME_CASE(FNEG_VL) 8237 NODE_NAME_CASE(FABS_VL) 8238 NODE_NAME_CASE(FSQRT_VL) 8239 NODE_NAME_CASE(FMA_VL) 8240 NODE_NAME_CASE(FCOPYSIGN_VL) 8241 NODE_NAME_CASE(SMIN_VL) 8242 NODE_NAME_CASE(SMAX_VL) 8243 NODE_NAME_CASE(UMIN_VL) 8244 NODE_NAME_CASE(UMAX_VL) 8245 NODE_NAME_CASE(FMINNUM_VL) 8246 NODE_NAME_CASE(FMAXNUM_VL) 8247 NODE_NAME_CASE(MULHS_VL) 8248 NODE_NAME_CASE(MULHU_VL) 8249 NODE_NAME_CASE(FP_TO_SINT_VL) 8250 NODE_NAME_CASE(FP_TO_UINT_VL) 8251 NODE_NAME_CASE(SINT_TO_FP_VL) 8252 NODE_NAME_CASE(UINT_TO_FP_VL) 8253 NODE_NAME_CASE(FP_EXTEND_VL) 8254 NODE_NAME_CASE(FP_ROUND_VL) 8255 NODE_NAME_CASE(VWMUL_VL) 8256 NODE_NAME_CASE(VWMULU_VL) 8257 NODE_NAME_CASE(SETCC_VL) 8258 NODE_NAME_CASE(VSELECT_VL) 8259 NODE_NAME_CASE(VMAND_VL) 8260 NODE_NAME_CASE(VMOR_VL) 8261 NODE_NAME_CASE(VMXOR_VL) 8262 NODE_NAME_CASE(VMCLR_VL) 8263 NODE_NAME_CASE(VMSET_VL) 8264 NODE_NAME_CASE(VRGATHER_VX_VL) 8265 NODE_NAME_CASE(VRGATHER_VV_VL) 8266 NODE_NAME_CASE(VRGATHEREI16_VV_VL) 8267 NODE_NAME_CASE(VSEXT_VL) 8268 NODE_NAME_CASE(VZEXT_VL) 8269 NODE_NAME_CASE(VPOPC_VL) 8270 NODE_NAME_CASE(VLE_VL) 8271 NODE_NAME_CASE(VSE_VL) 8272 NODE_NAME_CASE(READ_CSR) 8273 NODE_NAME_CASE(WRITE_CSR) 8274 NODE_NAME_CASE(SWAP_CSR) 8275 } 8276 // clang-format on 8277 return nullptr; 8278 #undef NODE_NAME_CASE 8279 } 8280 8281 /// getConstraintType - Given a constraint letter, return the type of 8282 /// constraint it is for this target. 8283 RISCVTargetLowering::ConstraintType 8284 RISCVTargetLowering::getConstraintType(StringRef Constraint) const { 8285 if (Constraint.size() == 1) { 8286 switch (Constraint[0]) { 8287 default: 8288 break; 8289 case 'f': 8290 case 'v': 8291 return C_RegisterClass; 8292 case 'I': 8293 case 'J': 8294 case 'K': 8295 return C_Immediate; 8296 case 'A': 8297 return C_Memory; 8298 } 8299 } 8300 return TargetLowering::getConstraintType(Constraint); 8301 } 8302 8303 std::pair<unsigned, const TargetRegisterClass *> 8304 RISCVTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 8305 StringRef Constraint, 8306 MVT VT) const { 8307 // First, see if this is a constraint that directly corresponds to a 8308 // RISCV register class. 8309 if (Constraint.size() == 1) { 8310 switch (Constraint[0]) { 8311 case 'r': 8312 return std::make_pair(0U, &RISCV::GPRRegClass); 8313 case 'f': 8314 if (Subtarget.hasStdExtZfh() && VT == MVT::f16) 8315 return std::make_pair(0U, &RISCV::FPR16RegClass); 8316 if (Subtarget.hasStdExtF() && VT == MVT::f32) 8317 return std::make_pair(0U, &RISCV::FPR32RegClass); 8318 if (Subtarget.hasStdExtD() && VT == MVT::f64) 8319 return std::make_pair(0U, &RISCV::FPR64RegClass); 8320 break; 8321 case 'v': 8322 for (const auto *RC : 8323 {&RISCV::VMRegClass, &RISCV::VRRegClass, &RISCV::VRM2RegClass, 8324 &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) { 8325 if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy)) 8326 return std::make_pair(0U, RC); 8327 } 8328 break; 8329 default: 8330 break; 8331 } 8332 } 8333 8334 // Clang will correctly decode the usage of register name aliases into their 8335 // official names. However, other frontends like `rustc` do not. This allows 8336 // users of these frontends to use the ABI names for registers in LLVM-style 8337 // register constraints. 8338 unsigned XRegFromAlias = StringSwitch<unsigned>(Constraint.lower()) 8339 .Case("{zero}", RISCV::X0) 8340 .Case("{ra}", RISCV::X1) 8341 .Case("{sp}", RISCV::X2) 8342 .Case("{gp}", RISCV::X3) 8343 .Case("{tp}", RISCV::X4) 8344 .Case("{t0}", RISCV::X5) 8345 .Case("{t1}", RISCV::X6) 8346 .Case("{t2}", RISCV::X7) 8347 .Cases("{s0}", "{fp}", RISCV::X8) 8348 .Case("{s1}", RISCV::X9) 8349 .Case("{a0}", RISCV::X10) 8350 .Case("{a1}", RISCV::X11) 8351 .Case("{a2}", RISCV::X12) 8352 .Case("{a3}", RISCV::X13) 8353 .Case("{a4}", RISCV::X14) 8354 .Case("{a5}", RISCV::X15) 8355 .Case("{a6}", RISCV::X16) 8356 .Case("{a7}", RISCV::X17) 8357 .Case("{s2}", RISCV::X18) 8358 .Case("{s3}", RISCV::X19) 8359 .Case("{s4}", RISCV::X20) 8360 .Case("{s5}", RISCV::X21) 8361 .Case("{s6}", RISCV::X22) 8362 .Case("{s7}", RISCV::X23) 8363 .Case("{s8}", RISCV::X24) 8364 .Case("{s9}", RISCV::X25) 8365 .Case("{s10}", RISCV::X26) 8366 .Case("{s11}", RISCV::X27) 8367 .Case("{t3}", RISCV::X28) 8368 .Case("{t4}", RISCV::X29) 8369 .Case("{t5}", RISCV::X30) 8370 .Case("{t6}", RISCV::X31) 8371 .Default(RISCV::NoRegister); 8372 if (XRegFromAlias != RISCV::NoRegister) 8373 return std::make_pair(XRegFromAlias, &RISCV::GPRRegClass); 8374 8375 // Since TargetLowering::getRegForInlineAsmConstraint uses the name of the 8376 // TableGen record rather than the AsmName to choose registers for InlineAsm 8377 // constraints, plus we want to match those names to the widest floating point 8378 // register type available, manually select floating point registers here. 8379 // 8380 // The second case is the ABI name of the register, so that frontends can also 8381 // use the ABI names in register constraint lists. 8382 if (Subtarget.hasStdExtF()) { 8383 unsigned FReg = StringSwitch<unsigned>(Constraint.lower()) 8384 .Cases("{f0}", "{ft0}", RISCV::F0_F) 8385 .Cases("{f1}", "{ft1}", RISCV::F1_F) 8386 .Cases("{f2}", "{ft2}", RISCV::F2_F) 8387 .Cases("{f3}", "{ft3}", RISCV::F3_F) 8388 .Cases("{f4}", "{ft4}", RISCV::F4_F) 8389 .Cases("{f5}", "{ft5}", RISCV::F5_F) 8390 .Cases("{f6}", "{ft6}", RISCV::F6_F) 8391 .Cases("{f7}", "{ft7}", RISCV::F7_F) 8392 .Cases("{f8}", "{fs0}", RISCV::F8_F) 8393 .Cases("{f9}", "{fs1}", RISCV::F9_F) 8394 .Cases("{f10}", "{fa0}", RISCV::F10_F) 8395 .Cases("{f11}", "{fa1}", RISCV::F11_F) 8396 .Cases("{f12}", "{fa2}", RISCV::F12_F) 8397 .Cases("{f13}", "{fa3}", RISCV::F13_F) 8398 .Cases("{f14}", "{fa4}", RISCV::F14_F) 8399 .Cases("{f15}", "{fa5}", RISCV::F15_F) 8400 .Cases("{f16}", "{fa6}", RISCV::F16_F) 8401 .Cases("{f17}", "{fa7}", RISCV::F17_F) 8402 .Cases("{f18}", "{fs2}", RISCV::F18_F) 8403 .Cases("{f19}", "{fs3}", RISCV::F19_F) 8404 .Cases("{f20}", "{fs4}", RISCV::F20_F) 8405 .Cases("{f21}", "{fs5}", RISCV::F21_F) 8406 .Cases("{f22}", "{fs6}", RISCV::F22_F) 8407 .Cases("{f23}", "{fs7}", RISCV::F23_F) 8408 .Cases("{f24}", "{fs8}", RISCV::F24_F) 8409 .Cases("{f25}", "{fs9}", RISCV::F25_F) 8410 .Cases("{f26}", "{fs10}", RISCV::F26_F) 8411 .Cases("{f27}", "{fs11}", RISCV::F27_F) 8412 .Cases("{f28}", "{ft8}", RISCV::F28_F) 8413 .Cases("{f29}", "{ft9}", RISCV::F29_F) 8414 .Cases("{f30}", "{ft10}", RISCV::F30_F) 8415 .Cases("{f31}", "{ft11}", RISCV::F31_F) 8416 .Default(RISCV::NoRegister); 8417 if (FReg != RISCV::NoRegister) { 8418 assert(RISCV::F0_F <= FReg && FReg <= RISCV::F31_F && "Unknown fp-reg"); 8419 if (Subtarget.hasStdExtD()) { 8420 unsigned RegNo = FReg - RISCV::F0_F; 8421 unsigned DReg = RISCV::F0_D + RegNo; 8422 return std::make_pair(DReg, &RISCV::FPR64RegClass); 8423 } 8424 return std::make_pair(FReg, &RISCV::FPR32RegClass); 8425 } 8426 } 8427 8428 if (Subtarget.hasStdExtV()) { 8429 Register VReg = StringSwitch<Register>(Constraint.lower()) 8430 .Case("{v0}", RISCV::V0) 8431 .Case("{v1}", RISCV::V1) 8432 .Case("{v2}", RISCV::V2) 8433 .Case("{v3}", RISCV::V3) 8434 .Case("{v4}", RISCV::V4) 8435 .Case("{v5}", RISCV::V5) 8436 .Case("{v6}", RISCV::V6) 8437 .Case("{v7}", RISCV::V7) 8438 .Case("{v8}", RISCV::V8) 8439 .Case("{v9}", RISCV::V9) 8440 .Case("{v10}", RISCV::V10) 8441 .Case("{v11}", RISCV::V11) 8442 .Case("{v12}", RISCV::V12) 8443 .Case("{v13}", RISCV::V13) 8444 .Case("{v14}", RISCV::V14) 8445 .Case("{v15}", RISCV::V15) 8446 .Case("{v16}", RISCV::V16) 8447 .Case("{v17}", RISCV::V17) 8448 .Case("{v18}", RISCV::V18) 8449 .Case("{v19}", RISCV::V19) 8450 .Case("{v20}", RISCV::V20) 8451 .Case("{v21}", RISCV::V21) 8452 .Case("{v22}", RISCV::V22) 8453 .Case("{v23}", RISCV::V23) 8454 .Case("{v24}", RISCV::V24) 8455 .Case("{v25}", RISCV::V25) 8456 .Case("{v26}", RISCV::V26) 8457 .Case("{v27}", RISCV::V27) 8458 .Case("{v28}", RISCV::V28) 8459 .Case("{v29}", RISCV::V29) 8460 .Case("{v30}", RISCV::V30) 8461 .Case("{v31}", RISCV::V31) 8462 .Default(RISCV::NoRegister); 8463 if (VReg != RISCV::NoRegister) { 8464 if (TRI->isTypeLegalForClass(RISCV::VMRegClass, VT.SimpleTy)) 8465 return std::make_pair(VReg, &RISCV::VMRegClass); 8466 if (TRI->isTypeLegalForClass(RISCV::VRRegClass, VT.SimpleTy)) 8467 return std::make_pair(VReg, &RISCV::VRRegClass); 8468 for (const auto *RC : 8469 {&RISCV::VRM2RegClass, &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) { 8470 if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy)) { 8471 VReg = TRI->getMatchingSuperReg(VReg, RISCV::sub_vrm1_0, RC); 8472 return std::make_pair(VReg, RC); 8473 } 8474 } 8475 } 8476 } 8477 8478 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 8479 } 8480 8481 unsigned 8482 RISCVTargetLowering::getInlineAsmMemConstraint(StringRef ConstraintCode) const { 8483 // Currently only support length 1 constraints. 8484 if (ConstraintCode.size() == 1) { 8485 switch (ConstraintCode[0]) { 8486 case 'A': 8487 return InlineAsm::Constraint_A; 8488 default: 8489 break; 8490 } 8491 } 8492 8493 return TargetLowering::getInlineAsmMemConstraint(ConstraintCode); 8494 } 8495 8496 void RISCVTargetLowering::LowerAsmOperandForConstraint( 8497 SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops, 8498 SelectionDAG &DAG) const { 8499 // Currently only support length 1 constraints. 8500 if (Constraint.length() == 1) { 8501 switch (Constraint[0]) { 8502 case 'I': 8503 // Validate & create a 12-bit signed immediate operand. 8504 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 8505 uint64_t CVal = C->getSExtValue(); 8506 if (isInt<12>(CVal)) 8507 Ops.push_back( 8508 DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT())); 8509 } 8510 return; 8511 case 'J': 8512 // Validate & create an integer zero operand. 8513 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 8514 if (C->getZExtValue() == 0) 8515 Ops.push_back( 8516 DAG.getTargetConstant(0, SDLoc(Op), Subtarget.getXLenVT())); 8517 return; 8518 case 'K': 8519 // Validate & create a 5-bit unsigned immediate operand. 8520 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 8521 uint64_t CVal = C->getZExtValue(); 8522 if (isUInt<5>(CVal)) 8523 Ops.push_back( 8524 DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT())); 8525 } 8526 return; 8527 default: 8528 break; 8529 } 8530 } 8531 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 8532 } 8533 8534 Instruction *RISCVTargetLowering::emitLeadingFence(IRBuilderBase &Builder, 8535 Instruction *Inst, 8536 AtomicOrdering Ord) const { 8537 if (isa<LoadInst>(Inst) && Ord == AtomicOrdering::SequentiallyConsistent) 8538 return Builder.CreateFence(Ord); 8539 if (isa<StoreInst>(Inst) && isReleaseOrStronger(Ord)) 8540 return Builder.CreateFence(AtomicOrdering::Release); 8541 return nullptr; 8542 } 8543 8544 Instruction *RISCVTargetLowering::emitTrailingFence(IRBuilderBase &Builder, 8545 Instruction *Inst, 8546 AtomicOrdering Ord) const { 8547 if (isa<LoadInst>(Inst) && isAcquireOrStronger(Ord)) 8548 return Builder.CreateFence(AtomicOrdering::Acquire); 8549 return nullptr; 8550 } 8551 8552 TargetLowering::AtomicExpansionKind 8553 RISCVTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { 8554 // atomicrmw {fadd,fsub} must be expanded to use compare-exchange, as floating 8555 // point operations can't be used in an lr/sc sequence without breaking the 8556 // forward-progress guarantee. 8557 if (AI->isFloatingPointOperation()) 8558 return AtomicExpansionKind::CmpXChg; 8559 8560 unsigned Size = AI->getType()->getPrimitiveSizeInBits(); 8561 if (Size == 8 || Size == 16) 8562 return AtomicExpansionKind::MaskedIntrinsic; 8563 return AtomicExpansionKind::None; 8564 } 8565 8566 static Intrinsic::ID 8567 getIntrinsicForMaskedAtomicRMWBinOp(unsigned XLen, AtomicRMWInst::BinOp BinOp) { 8568 if (XLen == 32) { 8569 switch (BinOp) { 8570 default: 8571 llvm_unreachable("Unexpected AtomicRMW BinOp"); 8572 case AtomicRMWInst::Xchg: 8573 return Intrinsic::riscv_masked_atomicrmw_xchg_i32; 8574 case AtomicRMWInst::Add: 8575 return Intrinsic::riscv_masked_atomicrmw_add_i32; 8576 case AtomicRMWInst::Sub: 8577 return Intrinsic::riscv_masked_atomicrmw_sub_i32; 8578 case AtomicRMWInst::Nand: 8579 return Intrinsic::riscv_masked_atomicrmw_nand_i32; 8580 case AtomicRMWInst::Max: 8581 return Intrinsic::riscv_masked_atomicrmw_max_i32; 8582 case AtomicRMWInst::Min: 8583 return Intrinsic::riscv_masked_atomicrmw_min_i32; 8584 case AtomicRMWInst::UMax: 8585 return Intrinsic::riscv_masked_atomicrmw_umax_i32; 8586 case AtomicRMWInst::UMin: 8587 return Intrinsic::riscv_masked_atomicrmw_umin_i32; 8588 } 8589 } 8590 8591 if (XLen == 64) { 8592 switch (BinOp) { 8593 default: 8594 llvm_unreachable("Unexpected AtomicRMW BinOp"); 8595 case AtomicRMWInst::Xchg: 8596 return Intrinsic::riscv_masked_atomicrmw_xchg_i64; 8597 case AtomicRMWInst::Add: 8598 return Intrinsic::riscv_masked_atomicrmw_add_i64; 8599 case AtomicRMWInst::Sub: 8600 return Intrinsic::riscv_masked_atomicrmw_sub_i64; 8601 case AtomicRMWInst::Nand: 8602 return Intrinsic::riscv_masked_atomicrmw_nand_i64; 8603 case AtomicRMWInst::Max: 8604 return Intrinsic::riscv_masked_atomicrmw_max_i64; 8605 case AtomicRMWInst::Min: 8606 return Intrinsic::riscv_masked_atomicrmw_min_i64; 8607 case AtomicRMWInst::UMax: 8608 return Intrinsic::riscv_masked_atomicrmw_umax_i64; 8609 case AtomicRMWInst::UMin: 8610 return Intrinsic::riscv_masked_atomicrmw_umin_i64; 8611 } 8612 } 8613 8614 llvm_unreachable("Unexpected XLen\n"); 8615 } 8616 8617 Value *RISCVTargetLowering::emitMaskedAtomicRMWIntrinsic( 8618 IRBuilderBase &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr, 8619 Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const { 8620 unsigned XLen = Subtarget.getXLen(); 8621 Value *Ordering = 8622 Builder.getIntN(XLen, static_cast<uint64_t>(AI->getOrdering())); 8623 Type *Tys[] = {AlignedAddr->getType()}; 8624 Function *LrwOpScwLoop = Intrinsic::getDeclaration( 8625 AI->getModule(), 8626 getIntrinsicForMaskedAtomicRMWBinOp(XLen, AI->getOperation()), Tys); 8627 8628 if (XLen == 64) { 8629 Incr = Builder.CreateSExt(Incr, Builder.getInt64Ty()); 8630 Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty()); 8631 ShiftAmt = Builder.CreateSExt(ShiftAmt, Builder.getInt64Ty()); 8632 } 8633 8634 Value *Result; 8635 8636 // Must pass the shift amount needed to sign extend the loaded value prior 8637 // to performing a signed comparison for min/max. ShiftAmt is the number of 8638 // bits to shift the value into position. Pass XLen-ShiftAmt-ValWidth, which 8639 // is the number of bits to left+right shift the value in order to 8640 // sign-extend. 8641 if (AI->getOperation() == AtomicRMWInst::Min || 8642 AI->getOperation() == AtomicRMWInst::Max) { 8643 const DataLayout &DL = AI->getModule()->getDataLayout(); 8644 unsigned ValWidth = 8645 DL.getTypeStoreSizeInBits(AI->getValOperand()->getType()); 8646 Value *SextShamt = 8647 Builder.CreateSub(Builder.getIntN(XLen, XLen - ValWidth), ShiftAmt); 8648 Result = Builder.CreateCall(LrwOpScwLoop, 8649 {AlignedAddr, Incr, Mask, SextShamt, Ordering}); 8650 } else { 8651 Result = 8652 Builder.CreateCall(LrwOpScwLoop, {AlignedAddr, Incr, Mask, Ordering}); 8653 } 8654 8655 if (XLen == 64) 8656 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty()); 8657 return Result; 8658 } 8659 8660 TargetLowering::AtomicExpansionKind 8661 RISCVTargetLowering::shouldExpandAtomicCmpXchgInIR( 8662 AtomicCmpXchgInst *CI) const { 8663 unsigned Size = CI->getCompareOperand()->getType()->getPrimitiveSizeInBits(); 8664 if (Size == 8 || Size == 16) 8665 return AtomicExpansionKind::MaskedIntrinsic; 8666 return AtomicExpansionKind::None; 8667 } 8668 8669 Value *RISCVTargetLowering::emitMaskedAtomicCmpXchgIntrinsic( 8670 IRBuilderBase &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr, 8671 Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const { 8672 unsigned XLen = Subtarget.getXLen(); 8673 Value *Ordering = Builder.getIntN(XLen, static_cast<uint64_t>(Ord)); 8674 Intrinsic::ID CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i32; 8675 if (XLen == 64) { 8676 CmpVal = Builder.CreateSExt(CmpVal, Builder.getInt64Ty()); 8677 NewVal = Builder.CreateSExt(NewVal, Builder.getInt64Ty()); 8678 Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty()); 8679 CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i64; 8680 } 8681 Type *Tys[] = {AlignedAddr->getType()}; 8682 Function *MaskedCmpXchg = 8683 Intrinsic::getDeclaration(CI->getModule(), CmpXchgIntrID, Tys); 8684 Value *Result = Builder.CreateCall( 8685 MaskedCmpXchg, {AlignedAddr, CmpVal, NewVal, Mask, Ordering}); 8686 if (XLen == 64) 8687 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty()); 8688 return Result; 8689 } 8690 8691 bool RISCVTargetLowering::shouldRemoveExtendFromGSIndex(EVT VT) const { 8692 return false; 8693 } 8694 8695 bool RISCVTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, 8696 EVT VT) const { 8697 VT = VT.getScalarType(); 8698 8699 if (!VT.isSimple()) 8700 return false; 8701 8702 switch (VT.getSimpleVT().SimpleTy) { 8703 case MVT::f16: 8704 return Subtarget.hasStdExtZfh(); 8705 case MVT::f32: 8706 return Subtarget.hasStdExtF(); 8707 case MVT::f64: 8708 return Subtarget.hasStdExtD(); 8709 default: 8710 break; 8711 } 8712 8713 return false; 8714 } 8715 8716 Register RISCVTargetLowering::getExceptionPointerRegister( 8717 const Constant *PersonalityFn) const { 8718 return RISCV::X10; 8719 } 8720 8721 Register RISCVTargetLowering::getExceptionSelectorRegister( 8722 const Constant *PersonalityFn) const { 8723 return RISCV::X11; 8724 } 8725 8726 bool RISCVTargetLowering::shouldExtendTypeInLibCall(EVT Type) const { 8727 // Return false to suppress the unnecessary extensions if the LibCall 8728 // arguments or return value is f32 type for LP64 ABI. 8729 RISCVABI::ABI ABI = Subtarget.getTargetABI(); 8730 if (ABI == RISCVABI::ABI_LP64 && (Type == MVT::f32)) 8731 return false; 8732 8733 return true; 8734 } 8735 8736 bool RISCVTargetLowering::shouldSignExtendTypeInLibCall(EVT Type, bool IsSigned) const { 8737 if (Subtarget.is64Bit() && Type == MVT::i32) 8738 return true; 8739 8740 return IsSigned; 8741 } 8742 8743 bool RISCVTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT, 8744 SDValue C) const { 8745 // Check integral scalar types. 8746 if (VT.isScalarInteger()) { 8747 // Omit the optimization if the sub target has the M extension and the data 8748 // size exceeds XLen. 8749 if (Subtarget.hasStdExtM() && VT.getSizeInBits() > Subtarget.getXLen()) 8750 return false; 8751 if (auto *ConstNode = dyn_cast<ConstantSDNode>(C.getNode())) { 8752 // Break the MUL to a SLLI and an ADD/SUB. 8753 const APInt &Imm = ConstNode->getAPIntValue(); 8754 if ((Imm + 1).isPowerOf2() || (Imm - 1).isPowerOf2() || 8755 (1 - Imm).isPowerOf2() || (-1 - Imm).isPowerOf2()) 8756 return true; 8757 // Omit the following optimization if the sub target has the M extension 8758 // and the data size >= XLen. 8759 if (Subtarget.hasStdExtM() && VT.getSizeInBits() >= Subtarget.getXLen()) 8760 return false; 8761 // Break the MUL to two SLLI instructions and an ADD/SUB, if Imm needs 8762 // a pair of LUI/ADDI. 8763 if (!Imm.isSignedIntN(12) && Imm.countTrailingZeros() < 12) { 8764 APInt ImmS = Imm.ashr(Imm.countTrailingZeros()); 8765 if ((ImmS + 1).isPowerOf2() || (ImmS - 1).isPowerOf2() || 8766 (1 - ImmS).isPowerOf2()) 8767 return true; 8768 } 8769 } 8770 } 8771 8772 return false; 8773 } 8774 8775 bool RISCVTargetLowering::allowsMisalignedMemoryAccesses( 8776 EVT VT, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags, 8777 bool *Fast) const { 8778 if (!VT.isVector()) 8779 return false; 8780 8781 EVT ElemVT = VT.getVectorElementType(); 8782 if (Alignment >= ElemVT.getStoreSize()) { 8783 if (Fast) 8784 *Fast = true; 8785 return true; 8786 } 8787 8788 return false; 8789 } 8790 8791 bool RISCVTargetLowering::splitValueIntoRegisterParts( 8792 SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts, 8793 unsigned NumParts, MVT PartVT, Optional<CallingConv::ID> CC) const { 8794 bool IsABIRegCopy = CC.hasValue(); 8795 EVT ValueVT = Val.getValueType(); 8796 if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) { 8797 // Cast the f16 to i16, extend to i32, pad with ones to make a float nan, 8798 // and cast to f32. 8799 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i16, Val); 8800 Val = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Val); 8801 Val = DAG.getNode(ISD::OR, DL, MVT::i32, Val, 8802 DAG.getConstant(0xFFFF0000, DL, MVT::i32)); 8803 Val = DAG.getNode(ISD::BITCAST, DL, MVT::f32, Val); 8804 Parts[0] = Val; 8805 return true; 8806 } 8807 8808 if (ValueVT.isScalableVector() && PartVT.isScalableVector()) { 8809 LLVMContext &Context = *DAG.getContext(); 8810 EVT ValueEltVT = ValueVT.getVectorElementType(); 8811 EVT PartEltVT = PartVT.getVectorElementType(); 8812 unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize(); 8813 unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize(); 8814 if (PartVTBitSize % ValueVTBitSize == 0) { 8815 // If the element types are different, bitcast to the same element type of 8816 // PartVT first. 8817 if (ValueEltVT != PartEltVT) { 8818 unsigned Count = ValueVTBitSize / PartEltVT.getSizeInBits(); 8819 assert(Count != 0 && "The number of element should not be zero."); 8820 EVT SameEltTypeVT = 8821 EVT::getVectorVT(Context, PartEltVT, Count, /*IsScalable=*/true); 8822 Val = DAG.getNode(ISD::BITCAST, DL, SameEltTypeVT, Val); 8823 } 8824 Val = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT), 8825 Val, DAG.getConstant(0, DL, Subtarget.getXLenVT())); 8826 Parts[0] = Val; 8827 return true; 8828 } 8829 } 8830 return false; 8831 } 8832 8833 SDValue RISCVTargetLowering::joinRegisterPartsIntoValue( 8834 SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts, 8835 MVT PartVT, EVT ValueVT, Optional<CallingConv::ID> CC) const { 8836 bool IsABIRegCopy = CC.hasValue(); 8837 if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) { 8838 SDValue Val = Parts[0]; 8839 8840 // Cast the f32 to i32, truncate to i16, and cast back to f16. 8841 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Val); 8842 Val = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Val); 8843 Val = DAG.getNode(ISD::BITCAST, DL, MVT::f16, Val); 8844 return Val; 8845 } 8846 8847 if (ValueVT.isScalableVector() && PartVT.isScalableVector()) { 8848 LLVMContext &Context = *DAG.getContext(); 8849 SDValue Val = Parts[0]; 8850 EVT ValueEltVT = ValueVT.getVectorElementType(); 8851 EVT PartEltVT = PartVT.getVectorElementType(); 8852 unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize(); 8853 unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize(); 8854 if (PartVTBitSize % ValueVTBitSize == 0) { 8855 EVT SameEltTypeVT = ValueVT; 8856 // If the element types are different, convert it to the same element type 8857 // of PartVT. 8858 if (ValueEltVT != PartEltVT) { 8859 unsigned Count = ValueVTBitSize / PartEltVT.getSizeInBits(); 8860 assert(Count != 0 && "The number of element should not be zero."); 8861 SameEltTypeVT = 8862 EVT::getVectorVT(Context, PartEltVT, Count, /*IsScalable=*/true); 8863 } 8864 Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SameEltTypeVT, Val, 8865 DAG.getConstant(0, DL, Subtarget.getXLenVT())); 8866 if (ValueEltVT != PartEltVT) 8867 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 8868 return Val; 8869 } 8870 } 8871 return SDValue(); 8872 } 8873 8874 #define GET_REGISTER_MATCHER 8875 #include "RISCVGenAsmMatcher.inc" 8876 8877 Register 8878 RISCVTargetLowering::getRegisterByName(const char *RegName, LLT VT, 8879 const MachineFunction &MF) const { 8880 Register Reg = MatchRegisterAltName(RegName); 8881 if (Reg == RISCV::NoRegister) 8882 Reg = MatchRegisterName(RegName); 8883 if (Reg == RISCV::NoRegister) 8884 report_fatal_error( 8885 Twine("Invalid register name \"" + StringRef(RegName) + "\".")); 8886 BitVector ReservedRegs = Subtarget.getRegisterInfo()->getReservedRegs(MF); 8887 if (!ReservedRegs.test(Reg) && !Subtarget.isRegisterReservedByUser(Reg)) 8888 report_fatal_error(Twine("Trying to obtain non-reserved register \"" + 8889 StringRef(RegName) + "\".")); 8890 return Reg; 8891 } 8892 8893 namespace llvm { 8894 namespace RISCVVIntrinsicsTable { 8895 8896 #define GET_RISCVVIntrinsicsTable_IMPL 8897 #include "RISCVGenSearchableTables.inc" 8898 8899 } // namespace RISCVVIntrinsicsTable 8900 8901 } // namespace llvm 8902